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Mathematik-Olympiade
21. Die neun gesuchten Zahlen

22. Die Gleichheit zu einer Kreisfläche

23. Die Fläche in einem Kreis

24. Die interessante Ungleichung

25. Die Darstellung als Summe zweier Quadrate
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Meine Highlights
51. Die schwere IQ-Test-Aufgabe

52. Die Seitenhalbierenden im Dreieck

53. Die fixpunktfreien Permutationen

54. Die explizite Formel für die Fibonacci-Zahlen

55. Die Raucher in einem Zimmer
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60. Die Catalan-Zahlen
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Der Kreisverkehr
[Zurück zur Liste]

Aufgabe. Fünf Autos fahren gleichzeitig in einen Kreisverkehr, jedes aus einer anderen Richtung. Jedes der Autos fährt

weniger als eine ganze Runde und alle Autos verlassen den Kreisverkehr in unterschiedliche Richtungen. Wie viele verschiedene

Kombinationen gibt es für die Autos, den Kreisverkehr zu verlassen?

Lösung. Gesucht ist hier also die Anzahl fixpunktfreier Permutationen der Länge n = 5. Insgesamt gibt es nun n! Permutationen,

wobei man die Permutationen davon abziehen muss, die einen Fixpunkt haben, d.h. 1 steht auf 1 oder 2 auf 2 und so weiter. Weil

die Permutationen mit einem bestimmten Fixpunkt nicht disjunkt sind, muss man die Siebformel von Sylvester benutzen, die man

leicht mit vollständiger Induktion beweist. Die Anzahl der Permutationen mit Fixpunkt lautet dann:

5 · 4!−
(5

2

)
· 3! +

(5

3

)
· 2!−

(5

4

)
· 1! +

(5

5

)
· 0! = 76

Nun muss man diese Anzahl von der Anzahl aller möglichen Permutationen abziehen:

5!− 76 = 120− 76 = 44

Es gibt also 44 Möglichkeiten für die Autos den Kreisverkehr zu verlassen.

Die Strichcodes
[Zurück zur Liste]

Aufgabe. Die Strichcodes, die wir untersuchen wollen, bestehen abwechselnd aus schwarzen und weißen Strichen und beginnen

und enden schwarz. Die Striche haben die Breite 1 oder 2, und die Gesamtbreite eines Codes soll 14 sein. Wie viele verschiedene

Codes sind möglich, wenn stets von links nach rechts gelesen wird?
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Lösung. Weil der Strichcode mit einem schwarzen Strich anfängt und endet, gibt es genau einen schwarzen Strich mehr als man

weiße hat. Das bedeutet, dass man immer eine ungerade Zahl an Strichen insgesamt hat. Wenn man nur Striche der Länge 2 benutzt,

dann weiß man, dass man mindestens 7 Striche haben muss. Benutzt man nur Striche der Länge 1, dann ist klar, dass man höchstens

14 Striche haben kann. Schließlich gibt es nur die Gesamtanzahlen 7, 9, 11 und 13. Betrachte nun 7: Schreibt man 7 Einsen auf,

dann müssen auch ingesamt 7 Einsen auf die jeweiligen Einserstellen addiert werden, weil man sonst nicht die Gesamtlänge 14 hat.

Betrachte nun 13: Auf die Einserstellen muss jetzt genau eine 1 addiert werden; man hat dafür 13 Stellen zur Verfügung. Insgesamt

hat man also bis jetzt 1 + 13 = 14 Möglichkeiten. Betrachte nun also 9 und 11: Bei 11 kann man nun auf die 11 Einserstellen,

14 − 11 = 3 Einsen verteilen, wofür es
(11

3

)
Möglichkeiten gibt. Bei 9 hat man deswegen also den Wert

(9

5

)
. Also ist die Lösung

dieser Aufgabe 14 +
(9

5

)
+
(11

3

)
= 305.

Die guten und bösen Kröten
[Zurück zur Liste]

Aufgabe. Frau Unkes magische Kröten sind äußerlich alle gleich, doch es gibt gute und böse. Ist eine gute Kröte mit 3 bösen in

einem Raum, wird auch sie böse. Ist eine böse Kröte mit 3 guten in einem Raum, wird sie rot und schämt sich. Zu Testzwecken

setzt Frau Unke 3 Kröten in einen leeren Raum. Dann setzt sie die 4. Kröte dazu und nimmt kurz danach die 1. wieder heraus.

Dann setzt sie die 5. dazu und nimmt kurz danach die 2. wieder heraus usw. Als sie die 2012. Kröte in den Raum setzt, läuft

zum ersten Mal eine Kröte rot an. Welche der folgenden Kröten könnten beide von Beginn an böse gewesen sein? (A) 1., 2011.

(B) 2., 2010. (C) 3., 2009. (D) 4., 2012. (E) 2., 2011.

Lösung. Es gibt für die ersten 4 Kröten x1x2x3x4 im Raum fünf verschiedene Möglichkeiten: (0b, 4g), (1b, 3g), (2b, 2g), (3b, 1g),

(4b, 0g). Die Kombination (4b, 0g) darf nicht sein, weil die späteren Kombinationen, dann immer böse bleiben, da eine böse Kröte

dazukommt oder eine gute Kröte böse wird, weil die anderen drei böse sind. (1b, 3g) gibt es nur bei x2009x2010x2011x2012. Da in den

Multiple-Choice-Antworten mindestens einer der vier xi von x1x2x3x4 böse ist, kann man auch (0b, 4g) ausschließen. (3b, 1g) kann

auch nicht sein, weil sonst die gute Kröte böse wird und dann immer alle böse bleiben, so dass man es am Ende nicht erreichen kann,

dass für x2009x2010x2011x2012 die Konstellation (1b, 3g) erreicht wird. Es bleibt für x1x2x3x4 nur noch (2b, 2g). Mal angenommen,

x4 ist gut, dann gilt 1. x1 = g, x2 = b, x3 = b oder 2. x1 = b, x2 = g, x3 = b oder 3. x1 = b, x2 = b, x3 = g. Setzt man Frau

Unke’s Verfahren fort, so dass sich nie eine Kröte vor dem letzten Mal schämt oder alle Kröten böse werden, dann hat man immer

genau 2 böse und 2 gute Kröten, und wegen einer auftretenden Periodizität der Länge 4 gilt dann, dass x2009x2010x2011 die Form

von 1., 2. oder 3. hat. Da man immer genau zwei böse und eine gute Kröte hat, kann die Hinzunahme von x2012 nicht das Schämen

einer Kröte resultieren lassen. Also sollte von nun an x4 = b sein. Das bedeutet, dass man am Ende des Verfahrens x2009x2010x2011

genau eine böse und genau zwei gute Kröten hat. Also schämt sich eine Kröte, wenn x2012 = g hinzugefügt wird. Von Anfang an

können also x1 und x2009 oder x2 und x2010 oder schließlich x3 und x2011 böse gewesen sein. Auch könnte x4 mit x2009, x2010 und

x2011 von Anfang an böse gewesen sein. Die Lösung ist also (B) 2., 2010. und damit ist man jetzt fertig.

Die Teiler einer zweistelligen Zahl
[Zurück zur Liste]

Aufgabe. Wir ordnen jeder zweistelligen Zahl z diejenige Zahl t(z) zu, die entsteht, wenn sämtliche Teiler von z, einschließlich

1 und z selbst, der Größe nach hintereinander geschrieben werden. So ist z.B. t(14) = 12714. Wie viele Stellen hat die größte

dieser Zahlen t(z)?

Lösung. Zunächst mal hat eine zweistellige Zahl höchstens 3 verschiedene Primteiler ungleich 1, denn das kleinste Produkt 4

verschiedener Primteiler ungleich 1 ist 2 · 3 · 5 · 7 = 210 > 99. Man betrachtet nun den Fall, dass z genau 3 verschiedene Primteiler

hat, also z = p
e1
1 ·p

e2
2 ·p

e3
3 (p1 < p2 < p3) mit ei ≥ 1. Es folgt, dass ei ≤ 2 sein muss, denn nimmt man die kleinsten drei Primteiler

für z, also z = 2e1 · 3e2 · 5e3 , dann würde bei der Wahl eines ei > 2 das Produkt größer sein als 99. Es gilt also ei = 1 oder ei = 2.

Weiter kann man feststellen, dass e3 nur 1 sein kann, weil 2 · 3 · 52 > 99 gilt. Wenn e1 = 2 ist, dann muss e2 = 1 sein, denn es

gilt 22 · 32 · 51 > 99. Es ist also höchstens ein ei gleich 2. Man hat also z = p
e1
1 · p

e2
2 · p

1
3. Ist e1 = e2 = 1, dann hat z höchstens

(1 + 1) · (1 + 1) · (1 + 1) = 8 Teiler, d.h. t(z) hat maximal 8 · 2 = 16 Stellen. Nun ist e1 = 1 und e2 = 2 oder e1 = 2 und e2 = 1.

Das heißt z hat in den beiden Fällen höchstens (2 + 1) · (1 + 1) · (1 + 1) = 12 Teiler. Wären alle pi > 2, dann müssten die ei = 1

sein, weil sonst z > 99 wäre. Man hat dann (1 + 1) · (1 + 1) · (1 + 1) = 8 Teiler für z, d.h. die Anzahl der Stellen von t(z) sind

höchstens 8 · 2 = 16. Ist nun ein pi = 2, dann hat man z = 22 · p1
2 · p

1
3 oder z = 21 · p2

2 · p
1
3. Im ersten Fall gilt nur p2 = 3 und

p3 = 5, also z = 60, d.h. t(z) hat genau 18 Ziffern. Im zweiten Fall ist nur p2 = 3 und p3 = 5, d.h. z = 90 und also hat t(z) genau
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18 Stellen. Sei nun angenommen, dass z aus genau einem Primteiler besteht, dann sei z = pe, dann gibt es z = 26, z = 34, z = 43,

z = 52, . . .. Die letzten drei z und fortfahrende haben höchstens 5 Teiler, also ist die Stellenzahl von t(z) ≤ 5 · 2 = 10. z = 26

hat 7 Teiler, von denen 3 zweistellig sind, also t(z) hat 10 Stellen. Sei nun z mit zwei verschiedenen Primteiler ausgestattet. Frage

nun: Wieviele Stellen mehr als 18 sind nun drin? Antwort: Nimmt man zwei zweistellige Primzahlen, so ist das Produkt der beiden

größer als 99, d.h. mindestens eine Primzahl muss einstellig sein. Die zweistelligen Primzahlen haben höchstens den Exponenten

1. Man nehme nun eine zweistellige Zahl wie p
e2
2 = 111, dann kann p

e1
1 = 71 oder gleich 51 oder 32, 31 oder 21, 22, 23 sein. Es

werden z = 51 · 111, z = 32 · 111 = 99 und z = 23 · 111 betrachtet. Der erste Fall hat nur 4 Teiler; 4 · 2 < 18. Im zweiten Fall hat

man (2 + 1) · (1 + 1) = 6, also t(z) höchstens 12 Stellen, und im dritten Fall hat man (3 + 1) · (1 + 1) = 8, also t(z) höchstens 16

Stellen. Nimmt man größere zweistellige Zahlen als 11, dann sind die p
e1
1 eine Teilmenge von denen bei 11, also t(z) nicht größer.

Seien nun p1 und p2 aus {2, 3, 5, 7}, wobei man die Exponenten so groß wie möglich gestalte. Das Paar p1 = 5 und p2 = 7 können

nur den Exponenten e1 = e2 = 1 haben. Die Stellenanzahl von t(z) ist offensichtlich nicht größer als 18, der bisherige Maximalwert.

Also weiter: z = 32 · 71 hat 6 Teiler und z = 23 · 71 hat 8 Teiler, also 18 wird immer noch nicht überboten. Nun das Paar p1 = 3

und p2 = 5: z = 31 · 52, z = 32 · 51 - beide jeweils 6 Teiler. Jetzt kommt p1 = 2 und p2 = 5: z = 21 · 52, z = 32 · 51 - wieder beide 6

Teiler, also die Stellenanzahl von t(z) höchstens 6 · 2 = 12. Jetzt nur noch das Paar p1 = 2 und p2 = 3: z = 21 · 33, z = 23 · 32 = 72,

z = 25 · 31 = 96 - das erste z hat nur 8 Teiler, das zweite 12 und das dritte auch 12. Also müssen die beiden letzten z überprüft

werden: 72 hat 12 Teiler, von denen 5 zweistellig sind, also |t(z)| = 7 + 5 · 2 = 17. 96 hat auch 12 Teiler, von denen 6 zweistellig

sind, also |t(z)| = 6 + 6 · 2 = 18. Die Anwort ist also 18: Die Stellenanzahl von t(z) hat den Maximalwert 18. Damit ist die Lösung

der Aufgabe beendet.

Die interessante Zahlenfolge
[Zurück zur Liste]

Aufgabe. Die wachsende Zahlenfolge 1, 3, 4, 9, 10, 12, 13, . . . (= 30, 31, 30 + 31, 32, 30 + 32, 31 + 32, 30 + 31 + 32, . . . ) besteht

aus Potenzen der Zahl 3 sowie aus allen möglichen Summen verschiedener solcher Potenzen. Wie lautet dann die hundertste

Zahl der Folge?

Lösung. Man kann die Exponentenfolge rekursiv konstruieren: Man startet mit 0, dann kommt die 1, als nächstes kommt dann

01, dann 2. Es wird dann die Zahlenfolge vor 2 nochmal aufgeschrieben, nur, dass man dann die 2 dranhängt. Ist das beendet,

dann kommt die 3 und es wird dann die bisherige Zahlenfolge wieder aufgeschrieben, wobei dann die 3 hinten drangeheftet wird.

Aufgrund der Rekursion stellt sich heraus, dass 2 and vierter Stelle, 3 an achter und 4 an 16. Stelle steht usw. Es folgt, dass die 6

an 64. Stelle steht. Jetzt werden die vorhergehenden Stellen wieder aufgeschrieben und die 6 drangehängt. An 32. Stelle steht die

5, also steht an 96. Stelle die Folge 56, also an 97. Stelle: 056, an 98: Stelle: 156, an 99. Stelle 0156 und schließlich an hundertster

Stelle 256. Das bedeutet, dass die Lösung 32 + 35 + 36 = 9 + 243 + 729 = 981 ist. Damit ist diese Aufgabe endlich gelöst.

Die Bimsel, Gnafze und Ylpen
[Zurück zur Liste]

Aufgabe. Im Wald des Wandels gibt es merkwürdige Wesen: 17 Bimsel, 55 Gnafze und 6 Ylpen. Treffen ein Bimsel und ein

Gnafz aufeinander, verschmelzen sie zu einer Ylpe. Treffen ein Bimsel und eine Ylpe aufeinander, verschmelzen sie zu einem

Gnafz. Treffen ein Gnafz und eine Ylpe aufeinander, verschmelzen sie zu einem Bimsel. Dies führt dazu, dass irgendwann nur

noch eine der drei Arten übrig ist. Wie viele Wesen dieser Art sind dann höchstens übrig?

Lösung. Man hat also folgende drei Transformationen: T1(b, g, y) = (b − 1, g − 1, y + 1), T2(b, g, y) = (b − 1, g + 1, y − 1) und

T3(b, g, y) = (b+ 1, g − 1, y − 1). Diese Abbildungen sind paarweise kommutativ, wie man leicht nachrechnet. Deswegen kann man

die beliebigen Hintereinanderschaltungen sortiert aufschreiben. Es gilt also:

(T
α
1 ◦ T

β
2 ◦ T

γ
3 )(17, 55, 6) = (17− α− β + γ, 55− α+ β − γ, 6 + α− β − γ)

Mal angenommen, es bleiben nur noch Bimsel übrig, dann gilt:

(17− α− β + γ, 55− α+ β − γ, 6 + α− β − γ) = (∗, 0, 0)

Daraus würde dann folgen, dass 61 = 55 + 6 = 2γ ist, also gibt es diesen Fall nicht. Sei nun

(17− α− β + γ, 55− α+ β − γ, 6 + α− β − γ) = (0, ∗, 0)
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Hier folgt dann 17 + 6 = 23 = 2β, also gibt es diesen Fall auch nicht. Es bleiben nur noch Ylpen übrig:

(17− α− β + γ, 55− α+ β − γ, 6 + α− β − γ) = (0, 0, ∗)

In diesem Fall nämlich folgt 17 + 55 = 72 = 2α⇒ α = 36. Also gilt:

(−19− β + γ, 19 + β − γ, 42− β − γ) = (0, 0, ∗)

Weil −19 eine negative Zahl ist, muss γ mindestens 19 sein. Am größten wird ∗, wenn man γ = 19 und β = 0 wählt, denn wäre

γ = 19 + n (n ≥ 1), dann müsste β = n gelten, also wäre 42 − β − γ kleiner als 23. Das bedeutet also, dass am Ende höchstens

42− β − γ = 42− 0− 19 = 23 Ylpen übrigbleiben.

Die Fahrt von Bremen nach Rostock
[Zurück zur Liste]

Aufgabe. Henry muss von Bremen nach Rostock fahren, und er plant dafür eine gewisse Durchschnittsgeschwindigkeit ein.

Wenn er durchschnittlich 5km/h schneller als geplant fahren würde, käme er 5 Stunden eher an, würde er im Durchschnitt

10km/h schneller als geplant fahren, wäre er sogar 8 Stunden eher am Ziel. Nun wird die große Frage gestellt: Welche Durch-

schnittsgeschwindigkeit hat er geplant?

Lösung. Es gilt zunächst mal folgendes:

s = v · t = (v + 5) · (t− 5) = (v + 10) · (t− 8)⇔ 0 = −5v + 5t− 25 = −8v + 10t− 80

Aus der ersten Gleichung ist dann folgendes bekannt:

t =
5v + 25

5

Dieses Ergebnis setzt man dann in die Gleichung −8v + 10t− 80 = 0 ein und erhält:

−8v + 2 · (5v + 25)− 80 = 0⇔ −8v + 10v + 50− 80 = 0⇔ 2v = 30⇔ v = 15

Man weiß nun, dass Henry die Durchschnittsgeschwindigkeit 15km/h gewählt hat.

Die Primzahl teilt eine bestimmte Summe
[Zurück zur Liste]

Aufgabe. Alexandra berechnet die Summe der natürlichen Zahlen von 1 bis n. Dabei bemerkt sie, dass die Primzahl p diese

Summe teilt, aber keinen der Summanden. Welche der folgenden Zahlen könnte gleich n + p sein? Es gibt hier die folgenden

Antwortmöglichkeiten: (A) 217 (B) 221 (C) 229 (D) 245 (E) 269

Lösung. Es gilt also p - 1, . . . , n⇒ p > n und p | s = 1+. . .+n =
n · (n+ 1)

2
, woraus folgt, dass p | (n·(n+1))⇒ p | n∨p | (n+1).

p | n gilt ja nicht nach Voraussetzung. p | (n + 1) bedeutet p ≤ n + 1, also p = n + 1. Also n + p = (p − 1) + p = 2p − 1. Nun ist

Antwort (A) 217 die einzig mögliche Antwort, weil (217 + 1) : 2 = 109 auch eine Primzahl ist.

Die Zahlenpaare für eine Gleichung
[Zurück zur Liste]

Aufgabe. Wie viele positive ganzzahlige Lösungen (x, y) mit x < y hat die Gleichung x+ y + xy + 1 = 2002?

Lösung. Zunächst mal gilt x + y + xy + 1 = (x + 1) · (y + 1) und 2002 = 2 · 7 · 11 · 13. Die Frage ist also wie viele Möglichkeiten

es gibt die vier Primzahlen auf zwei Boxen so zu verteilen, dass das Produkt in der ersten Box kleiner ist als in der zweiten! Wenn

man jede der vier Zahlen jeweils einmal in die erste tut und die restlichen Primzahlen in die zweite Box, dann hat man schonmal 4

Möglichkeiten. Jetzt sucht man sich zwei Primzahlen in die erste Box. Dafür gibt es 6 Möglichkeiten, aber nur bei drei von denen

ist das Produkt in der ersten Box auch kleiner. Die Antwort ist also: Es gibt genau 7 mögliche Paare (x, y), die die Gleichung oben

erfüllen.
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Das Quadrat einer bestimmten Zahl
[Zurück zur Liste]

Aufgabe. Die Dezimaldarstellung der Zahl n besteht aus 2001 Ziffern 9. Die Frage dieser Aufgabe lautet nun: Wie oft ist die

Ziffer 9 dann in der Zahl n2 enthalten?

Lösung. Es gilt erstmal 9 . . . 9︸ ︷︷ ︸
m-mal

= 10m−1. Also gilt 9 . . . 9︸ ︷︷ ︸
m-mal

· 9 . . . 9︸ ︷︷ ︸
m-mal

= (10m−1)·(10m−1) = 102m−2·10m+1 = 9 . . . 9︸ ︷︷ ︸
(m−1)-mal

8 0 . . . 0︸ ︷︷ ︸
(m−1)-mal

1.

Die Antwort ist also 2001− 1 = 2000 Ziffern 9 befinden sich in der quadrierten Zahl.

Die Wölfe, Schafe und Schlangen
[Zurück zur Liste]

Aufgabe. In einem blühenden Tal leben Wölfe, Schafe und Schlangen. Jeden Morgen um 8 Uhr reißt jeder Wolf genau zwei

Schafe. Jeden Mittag um 12 Uhr zertritt jedes Schaf genau zwei Schlangen, die faul in der Sonne liegen, und jeden Abend um

18 Uhr versetzt jede Schlange genau zwei Wölfen ihren tödlichen Biss. Am Morgen des 6. Tages, um sechs Uhr, lebt schließlich

nur noch ein einsamer Wolf an diesem paradiesischen Fleckchen Erde. Wie viele Tiere von jeder Art bevolkerten das Tal am

ersten Tag um sechs Uhr morgens?

Lösung. Sei w die Anzahl der Schafe zu Beginn und sf die der Schafe sowie sl die der Schlangen. Dann gilt für die Anzahl der

Tiere nach einem Tag:


sf − 2w

sl− 2 · (sf − 2w)

w − 2 · (sl− 2 · (sf − 2w))

 =


sf − 2w

sl− 2sf + 4w

w − 2sl + 4sf − 8w

 =


sf − 2w

sl− 2sf + 4w

−7w − 2sl + 4sf

 =


1 0 −2

−2 1 4

4 −2 −7

 ·


sf

sl

w


Weil also am sechsten Tag vor 8 Uhr nur noch ein Wolf übrigbleibt gilt dann:


1 0 −2

−2 1 4

4 −2 −7


5

·


sf

sl

w

 =


609 −376 −986

−986 609 1596

1596 −986 −2583

 ·


sf

sl

w

 =


0

0

1


Jetzt kann die Anzahl der Tiere am Anfang berechnen:


sf

sl

w

 =


609 −376 −986

−986 609 1596

1596 −986 −2583


−1

·


0

0

1

 =


609 988 378

378 609 232

232 378 145

 ·


0

0

1

 =


378

232

145


Also waren zu Beginn 378 Schafe, 232 Schlangen und 145 Wölfe vorhanden.

Die Gras fressenden Kühe
[Zurück zur Liste]

Aufgabe. Jan kennt seine Kühe. Er weiß, dass 25 seiner Kühe in vier Tagen eine Weide von 20Ar kahl fresssen, während für

27 Tiere eine Weide von 24Ar fünf Tage reicht. Wenn er die Herde auf eine Weide treibt, hat das Gras stets die gleiche Höhe.

Außerdem wächst das Gras auf seinen Weiden stetig und mit konstanter Geschwindigkeit nach. Wie groß muss eine Weide

sein, auf der 100 Kühe 16 Tage grasen können?

Lösung. Zunächst macht man einige Definitionen: g sei das vorhandene Gras pro Ar, n die Menge des Grases pro Ar pro Tag und

f sei dann die Menge des gefressenen Grases pro Kuh pro Tag. Es gelten dann folgende Gleichungen, die sich nämlich aus der

Aufgabenstellung, wie folgt, ergeben:

20 · g + 20 · 4 · n = 25 · 4 · f

24 · g + 24 · 5 · n = 27 · 5 · f
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Aus diesem Gleichungssystem folgt nun, dass g =
5

2
· f und n =

5

8
· f gilt. Sei nun a die gesuchte Fläche in Ar, auf der 100 Kühe

16 Tage lang weiden können. Es gilt also: a · g + a · 16 · n = 100 · 16 · f . Jetzt setzt man in diese Gleichung g und n ein:

a ·
5

2
· f + a · 16 ·

5

8
· f = 100 · 16 · f ⇔ a ·

5

2
+ 10 · a = 1600⇔ 12, 5 · a = 1600⇔ a = 128

Die Antwort ist also: Man braucht 128Ar für soviele Kühe und soviele Tage.

Die Fliege auf dem Luftballon
[Zurück zur Liste]

Aufgabe. Ein Luftballon wird so aufgeblasen, dass der Radius mit der Geschwindigkeit v zunimmt. Zum Zeitpunkt t = 0 sei

der Radius r = r0. Auf dem Äquator krabbelt eine Fliege mit der Geschwindigkeit c. Nun soll die Bahnkurve der Fliege im

Raum bestimmt werden. Nach welcher Zeit in Abhängigkeit von c und v gelingt der Fliege eine Umrundung?

Lösung. Für die Darstellung der Bahnkurve werden Polarkoordinaten verwendet. Auf der Fliege wirken zwei Geschwindigkeiten: Die

Geschwindigkeit c wirkt orthogonal zum Radiusvektor in mathematisch positiver Richtung und v wirkt kolinear zum Radiusvektor

nach außen. Es gilt also:

d

dt

 cos(ω(t))

sin(ω(t))

 · r(t)
 =

 − sin(ω(t)) · ω̇(t)

cos(ω(t)) · ω̇(t)

 · r(t) +

 cos(ω(t))

sin(ω(t))

 · ṙ(t) = ~c+ ~v

Daraus folgt also: ∣∣∣∣∣∣
 − sin(ω(t)) · ω̇(t) · r(t) + cos(ω(t)) · ṙ(t)

cos(ω(t)) · ω̇(t) · r(t) + sin(ω(t)) · ṙ(t)

∣∣∣∣∣∣ = |~c+ ~v|

Wenn die Beträge unter Berücksichtigung von Additionstheoremen für Sinus und Kosinus ausgerechnet werden, erhält man:

√
ω̇(t)2 · r(t)2 + ṙ(t)2 =

√
c2 + v2

Es ist bekannt, dass r(t) = r0 + t · v ⇒ ṙ(t) = v gilt, also r(0) = r0. Weiter:

ω̇(t)
2 · r(t)2

+ v
2

= c
2

+ v
2 ⇒ ω̇(t) =

c

r(t)
=

c

r0 + t · v
⇒ ω(t) =

c

v
· ln(r0 + t · v) + C

Nun gilt noch die Anfangsbedingung ω(0) = 0⇒
c

v
· ln(r0) + C = 0⇒ C = −

c

v
· ln(r0), also:

ω(t) =
c

v
· ln
(
r0 + t · v

r0

)
Die gesuchte Bahnkurve lautet also:  cos

(
c

v
· ln
(
r0 + t · v

r0

))
sin

(
c

v
· ln
(
r0 + t · v

r0

))
 · (r0 + t · v)

Es handelt sich bei dieser Kurve um die logarithmische Spirale. Nun wird die Zeit bis zur ersten Umrundung ausgerechnet:

c

v
· ln
(
r0 + tU · v

r0

)
= 2π ⇒ tU =

r0

v
·

e2π·vc − 1


Damit ist die Aufgabe gelöst.

Der Käfer auf dem Gummiband
[Zurück zur Liste]

Aufgabe. Es sei ein x0 = 1 Meter langes Gummiband an einer Wand befestigt, auf dessen Anfang ein Käfer gesetzt wurde.

Dieser Käfer bewege sich auf diesem Gummiband mit der Geschwindigkeit vK = 1
cm

s
zum anderen Ende, während ein Läufer

das Gummiband mit der Geschwindigkeit vL = 1
m

s
hinter sich herzieht und so das Gummiband unendlich lang dehnt. Die

Frage ist nun, wann der Käfer den Läufer auf dem Gummiband eingeholt hat?
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Lösung. Sei x(t) die Länge der Strecke, die der Käfer zurückgelegt hat. Der Käfer hat die Geschwindigkeit vK plus die Geschwin-

digkeit vG(t), die es durch die Dehnung des Gummibandes erfährt. Es gilt dabei vG(t) =
x(t)

L(t)
· vL =

x(t)

x0 + vL · t
· vL, denn die

Dehnung des Gummibandes hinter dem Käfer ist dafür verantwortlich, dass der Käfer sich schneller bewegt. Je mehr Strecke der

Käfer auf dem Gummiband relativ zur Gummibandlänge zurückgelegt hat, desto mehr bekommt er von der Geschwindigkeit vL

dazu. Ist der Käfer am Ende des Gummibandes, dann hat er die zusätzliche Geschwindigkeit vL. Also gilt jetzt:

ẋ(t) = vK + vG(t) = vK +
x(t)

x0 + vL · t
· vL ⇔ ẋ(t)−

vL

x0 + vL · t
· x(t) = vK

Das ist eine Differentialgleichung, deren allgemeine Lösung sich aus der Summe der homogenen und einer partikulären Lösung

zusammensetzt. Zunächst zur homogenen Lösung:

ẋ(t)−
vL

x0 + vL · t
· x(t) = 0⇒

ẋ(t)

x(t)
=

vL

x0 + vL · t

Auf beiden Seiten wird nun integriert und man erhält:

ln(x(t)) =

∫
vL

x0 + vL · t
dt+ C ⇒ x(t) = e

C · e

∫
vL

x0 + vL · t
dt

=: K · e
vL·

ln(x0 + vL · t)
vL = K · (x0 + vL · t)

Nun zur partikulären Lösung. Eine solche erhält man durch Variation der Konstanten. Es gilt ja xh(t) = K · (x0 + vL · t) und jetzt

macht man den Ansatz xp(t) = K(t) · (x0 + vL · t). Das führt dann zu:

ẋp(t)−
vL

x0 + vL · t
· xp(t) = vK ⇒

[
K̇(t) · (x0 + vL · t) +K(t) · vL

]
−

vL

x0 + vL · t
· [K(t) · (x0 + vL · t)] = vK

Jetzt noch ein bisschen umformen:[
K̇(t) · (x0 + vL · t) +K(t) · vL

]
−K(t) · vL = K̇(t) · (x0 + vL · t) = vK ⇒ K̇(t) =

vK

x0 + vL · t

Daraus folgt dann also:

K(t) =
vK

vL
· ln(x0 + vL · t) + C

′

Nun lautet die allgemeine Lösung:

x(t) = xh(t) + xp(t) = K · (x0 + vL · t) +

(
vK

vL
· ln(x0 + vL · t) + C

′
)
· (x0 + vL · t)

Jetzt müssen die Konstanten K und C′ durch Bedingungen festgelegt werden: Eine Anfangsbedingung ist: x(0) = 0, also:

x(0) = 0⇔ K · x0 +

(
vK

vL
· ln(x0) + C

′
)
· x0 = 0⇔ K +

vK

vL
· ln(x0) + C

′
= 0⇔ C

′
= −K −

vK

vL
· ln(x0)

Setzt man dieses C′ in x(t) = K · (x0 + vL · t) +

(
vK

vL
· ln(x0 + vL · t) + C′

)
· (x0 + vL · t) ein, so hebt sich die Konstante K raus,

so dass man nämlich erhält:

x(t) =
vK

vL
· ln
(
x0 + vL · t

x0

)
· (x0 + vL · t)

Zum Zeitpunkt tE , wo der Käfer den Läufer einholt, gilt x(tE) = x0 + vL · tE . Weiter:

vK

vL
·ln
(
x0 + vL · tE

x0

)
·(x0+vL·tE) = x0+vL·tE ⇒

vK

vL
·ln
(
x0 + vL · tE

x0

)
= 1⇒

x0 + vL · tE
x0

= e

vL

vK ⇒ tE =

x0 ·

e vLvK − 1


vL

Es gilt vK = 0, 01 und vL = 1 sowie x0 = 1. Also muss dann gelten:

tE =

x0 ·

e vLvK − 1


vL

=

1 ·

e
1

0, 01 − 1


1

= e
100 − 1

Es dauert also e100 − 1 Sekunden bis der Käfer den Läufer eingeholt hat. Das sind
e100 − 1

60 · 60 · 24 · 365
≈ 8, 52 · 1035 Jahre.
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Die Zerteilung einer Fläche
[Zurück zur Liste]

Aufgabe. Es seien A, B, C, D die Eckpunkte eines trapezförmigen Geländes. Vermessen wurden die parallelen Seiten AB = a,

CD = b, a > b sowie die spitzen Winkel ^BAD = α = 30◦ und ^ABC = β = 60◦. Zwischen den Punkten X auf der Seite AD

und Y auf BC soll ein Zaun minimaler Länge so gezogen werden, dass die beiden Teilstücke des Trapezes flächengleich sind.

Nun soll die minimale Länge des Zaunes bestimmt werden!

Lösung. Zunächst wird der Flächeninhalt des Trapezes ABCD ausgerechnet: Es gilt a − b = x′ + y′ und tan(α) =
h

x′
sowie

tan(β) =
h

y′
. Daraus folgt dann a−b = x′+y′ =

h

tan(α)
+

h

tan(β)
= h·

(
1

tan(α)
+

1

tan(β)

)
, also gilt dann: h =

a− b
1

tan(α)
+

1

tan(β)

.

Der Flächeninhalt des Trapezes ist AT = h·
a+ b

2
=

a2 − b2

2

tan(α)
+

2

tan(β)

. Jetzt wird der Flächeninhalt des Vierecks ABYX bestimmt.

Seien λ, λ′ aus [0, 1] so, dass gilt |AX| = λ · |AD| und |BY | = λ′ · |BC|. Nach dem zweiten Strahlensatz gilt: λ =
|AX|
|AD|

=
hX

h
⇔

hX = λ · h. Analog findet man: hY = λ′ · h. Der erste Strahlensatz besagt
|AS1|
x′

=
|AX|
|AD|

= λ ⇔ |AS1| = λ · x′ = λ ·
h

tanα
.

Analog: |BS2| = λ′ ·y′ = λ′ ·
h

tan β
. Der Flächeninhalt des Dreiecks AS1X ist also

|AS1| · hX
2

=
λ2 · h2

2 · tan(α)
. Analog erhält man für

das Dreieck BS2Y :
λ′2 · h2

2 · tan(β)
. Jetzt zum Flächeninhalt des Vierecks S1S2Y X:

hX + hY

2
·
(
a− |AS1| − |BS2|

)
=
λ · h+ λ′ · h

2
·(

a−
λ · h

tan(α)
−

λ′ · h
tan(β)

)
. Der Flächeninhalt des Vierecks ABYX soll halb so groß sein, wie der des Trapezes ABCD, also:

λ2 · h2

2 · tan(α)
+

λ′2 · h2

2 · tan(β)
+

(λ+ λ′) · h2

2
·
(
a

h
−

λ

tan(α)
−

λ′

tan(β)

)
=
AT

2

Weiter umgeformt also:

λ2

tan(α)
+

λ′2

tan(β)
+ (λ+ λ

′
) ·
(
a

h
−

λ

tan(α)
−

λ′

tan(β)

)
= λ ·

a

h
+ λ
′ ·
a

h
−

λ · λ′

tan(α)
−

λ · λ′

tan(β)
=
AT

h2

Und das ist äquivalent zu:

λ =

AT

h2
− λ′ ·

a

h
a

h
−

λ′

tan(α)
−

λ′

tan(β)

Jetzt werden bekannte Größen eingesetzt: tan(α) = tan(30◦) =

√
3

3
und tan(β) = tan(60◦) =

√
3. Daraus folgt dann:

λ =

AT

h2
− λ′ ·

a

h
a

h
−

3
√

3
· λ′ −

1
√

3
· λ′

Nun wird h ausgerechnet:

h =
a− b

1

tan(α)
+

1

tan(β)

=
a− b

3
√

3
+

1
√

3

=

√
3

4
· (a− b)
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Jetzt wird noch AT etwas vereinfacht dargestellt:

AT =
a2 − b2

2

tan(α)
+

2

tan(β)

=
a2 − b2

6
√

3
+

2
√

3

=

√
3

8
· (a2 − b2)

Also gilt dann für λ:

λ =

√
3

8
· (a2 − b2)

3

16
· (a− b)2

− λ′ ·
4
√

3
·

a

a− b

4
√

3
·

a

a− b
−

3
√

3
· λ′ −

1
√

3
· λ′

= λ =

2

3
·
√

3 ·
a2 − b2

(a− b)2
− λ′ ·

4
√

3
·

a

a− b
4
√

3
·
(

a

a− b
− λ′

) =

a2 − b2

2 · (a− b)2
− λ′ ·

a

a− b
a

a− b
− λ′

Insgesamt erhält man schließlich nach einer längeren Rechnung:

λ =
a · (2 · λ′ − 1)− b

2 · (a · (λ′ − 1)− λ′ · b)

λ und λ′ aus [0, 1] parametrisieren jeweils die Punkte X auf AD bzw. Y auf BC. Nun sind λ′ und λ(λ′) so konstruiert, dass XY

das Trapez ABCD in zwei gleichgroße Flächen zerlegt. Die Länge LXY von XY soll nun zusätzlich so klein, wie möglich, sein. Es

gilt die folgende Identität:

(hY − hX)
2

+ (a− |AS1| − |BS2|)2
= (λ

′ − λ)
2 · h2

+

(
a−

λ · h
tan(α)

−
λ′ · h
tan(β)

)2

= L
2
XY

Nun ist L2
XY genau dann minimal, wenn LXY minimal ist. Setzt man nun alle bekannten Werte ein, so dass man eine Formel für

L2
XY bekommt, die nur noch von a, b und λ′ abhängt, dann kann man diesen Wert auf Extremwerte hin untersuchen. Da 0 ≤ λ′ ≤ 1

gilt, muss man die zu minimierende Funktion nur auf [0, 1] untersuchen. Es stellt sich dabei heraus, dass in Abhängigkeit von a

und b die Funktion L2
XY (λ′) auf [0, 1] monoton steigend (die Ableitung ist dort größer-gleich Null) ist (nämlich, wenn dort keine

Extremalstellen sind), also nimmt es sein Minimum an der Stelle λ′ = 0 an. Dann gilt λ = λ(λ′) = λ(0) =
a+ b

2 · a
. Damit sind also

die Punkte X und Y identifiziert, für die die Zaunlänge minimal ist, wenn die Strecke XY zusätzlich das Trapez in zwei gleich-große

Flächen zerlegt. Die minimale Zaunlänge beträgt in diesem Fall

√
13 · a4 + 2 · a2 · b2 + b4

4 · a
. Manchmal passiert es auch, dass auf

[0, 1] eine innere Minimalstelle zu finden ist. Und zwar genau dann wenn a ≥
√

2 ·
√

3− 1 · b mit a, b > 0 und b < a gilt; dann

ist die Extremalstelle bei λ′ =

4√108 ·
(√

a2 + b2 − 4√12 · a
)

6 · (b− a)
und deswegen λ = λ(λ′) =

√
2 ·
(

4√3 ·
√
a2 + b2 −

√
2 · a

)
2 · (b− a)

. Nach

meinen Berechnungen ist dies die einzige Extremalstelle in [0, 1], wenn a, b > 0 gilt. Weil die zweite Ableitung an der Stelle λ′

echt größer ist als Null, hat man dort also eine Minimalstelle. Ist die Bedingung für eine innere Minimalstelle in [0, 1] erfüllt, dann

ist die kürzeste Zaunlänge, wo dieser Zaun das Trapez auch in zwei flächengleiche Teilfelder zerlegt, gleich
4√3

2
·
√
a2 + b2. Dieses

Ergebnis erhält man, wenn man λ′ in L2
XY auswertet und dann die Wurzel aus dem erhaltenen Ergebnis zieht.

Der Abstand zweier Kreispunkte
[Zurück zur Liste]

Aufgabe. Gegeben ist ein Würfel der Kantenlänge 2 · a. Einer Seitenfläche ist der Kreis k1 umbeschrieben, einer benach-

barten Seitenfläche ist der Kreis k2 einbeschrieben (Abbildung unten). Je ein Punkt bewegt sich auf k1 und k2. Was ist der

geringstmögliche Abstand dieser beiden Punkte und was sind die Koordinaten dieser Punkte?
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Lösung. Der Mittelpunkt des Würfels mit der Kantenlänge 2 · a befinde sich im Nullpunkt des Koordinatensystems. Es gilt:

k1 :


0

−a

0

+


cos(α)

0

sin(α)

 · √2 · a und k2 :


a

0

0

+


0

cos(β)

sin(β)

 · a
Der Abstand der beiden Punkte auf k1 bzw. k2 beträgt dann:

d(α, β) := |a| ·
√
−2 ·

√
2 · cos(α)− 2 ·

√
2 · sin(α) · sin(β) + 2 · cos(β) + 5

Wenn die Funktion d an der Stelle (α, β) ein Extrempunkt hat, müssen dort die partiellen Ableitungen von d verschwinden:

d

dα
d(α, β) = 0⇔ sin(α)− cos(α) · sin(β) = 0 und

d

dβ
d(α, β) = 0⇔

√
2 · sin(α) · cos(β) + sin(β) = 0

Es muss also gelten: (a) α = atan(sin(β)) und (b) tan(β) = −
√

2 · sin(α). Also gilt dann tan(β) = −
√

2 · sin(atan(sin(β))). Diese

Gleichung wird erfüllt von β = 0, β = atan

(√
2

2

)
, β = π − atan

(√
2

2

)
, β = π, β = π + atan

(√
2

2

)
und β = 2π − atan

(√
2

2

)
.

Das sind alle Werte aus [0, 2π), die jene Gleichung erfüllen. Nun setzt man jedes β in (a) ein und erhält das α. Es gibt also folgende

mögliche Extrempunkte:

β = 0, α = 0 (1)

β = 0, α = π (2)

β = atan

(√
2

2

)
, α =

7

6
π (3)

β = π − atan

(√
2

2

)
, α =

π

6
(4)

β = π, α = 0 (5)

β = π, α = π (6)

β = π + atan

(√
2

2

)
, α =

11

6
π (7)

β = 2π − atan

(√
2

2

)
, α =

5

6
π (8)

Sei (αE , βE) einer der möglichen Extrempunkte. Man betrachtet nun die Funktion g(t) := d(αE + t · cos(ω), βE + t · sin(ω)). Ist

g′′(0) > 0 ∀ω ∈ [0, 2π), dann handelt es sich bei (αE , βE) um ein Minimum. Gilt g′′(0) < 0 ∀ω ∈ [0, 2π), dann handelt es sich um

ein Maximum an der Stelle (αE , βE). Nun gilt weiter:

g
′′

(0) = dαα(αE , βE) · cos(ω)
2

+ 2 · dαβ(αE , βE) · cos(ω) · sin(ω) + dββ(αE , βE) · sin(ω)
2

Mithilfe von g′′(0) findet man heraus, dass (1), (2), (5) und (6) keine Extrempunkte sind. (3) und (8) sind Maxima. Nun sind (4)

und (7) Minima; die hier gesucht sind. Setzt man nun die α- und β-Werte von (4) und (7) in d(α, β) ein, dann erhält man in beiden

Fällen den Wert (
√

3 −
√

2) · a, was der kürzeste Abstand zwischen Punkten von k1 zu den Punkten von k2 darstellt. Die beiden

Punktpaare, für die der Abstand minimal ist, lauten:

k1 :


0

−a

0

+


√

3

2
0
1

2

 ·
√

2 · a und k2 :


a

0

0

+


0

−
√

6

3√
3

3

 · a

Und:

k1 :


0

−a

0

+


√

3

2
0

−
1

2

 ·
√

2 · a und k2 :


a

0

0

+


0

−
√

6

3

−
√

3

3

 · a

Damit ist die Aufgabe also gelöst.
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Das gleichseitige Dreieck
[Zurück zur Liste]

Aufgabe. Gegeben ist ein gleichseitiges Dreieck. Dem Dreieck sind drei Seiten mit bekannter Länge einbeschrieben. Bestimmt

werden soll nun die Seitenlänge a des Dreiecks.

Lösung. Die Flächeninhalte F1, F2 und F3 sind durch jeweils drei Seiten eindeutig bestimmt. Es wird nun die Heronische Flächen-

formel benutzt: Sei ein Dreieck mit den Seitenlängen a, b und c gegeben. Dann beträgt der Flächeninhalt dieses Dreiecks dann

Fa,b,c =
√
s · (s− a) · (s− b) · (s− c) mit s :=

a+ b+ c

2
. Es muss also gelten: F1 + F2 + F3 =

√
3

4
· a2. Der rechte Term ist die

Formel für den Flächeninhalt eines gleichseitigen Dreiecks der Kantenlänge a. Es gilt nun:

F1 =

√(
45 +

a

2

)
·
(

45−
a

2

)
·
(

5 +
a

2

)
·
(
−5 +

a

2

)

Und:

F2 =

√(
40 +

a

2

)
·
(

40−
a

2

)
·
(
−10 +

a

2

)
·
(

10 +
a

2

)
Sowie:

F3 =

√(
35 +

a

2

)
·
(

35−
a

2

)
·
(

5 +
a

2

)
·
(
−5 +

a

2

)
Der Wert für a ist durch die folgende Gleichung festgelegt:

F1(a) + F2(a) + F3(a) =

√
3

4
· a2

Mithilfe eines Computeralgebrasystems findet man auf numerischen Wege, dass gilt a ≈ 67, 66.

Der gesuchte Teildreiecks-Flächeninhalt
[Zurück zur Liste]

Aufgabe. Vorgelegt sei das schiefwinklige Dreieck ABC. Die zwei eingezeichneten Diagonalen teilen das Dreieck in vier

Flächen auf. Drei Flächeninhalte sind gegeben. Es soll mithilfe dieser Angaben der Flächeninhalt von X bestimmt werden!
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Lösung. Man erweitert die Zeichnung oben um einige Winkel- und Streckenbezeichnungen:

Aus den drei gegebenen Teilflächen lassen sich Beziehungen zwischen den Strecken u, v und x, y ableiten:

sin(α)

2
· c · u = 7,

sin(α)

2
· c · (u+ v) = 7 + 7⇒ u = v

Und man hat auch folgendes:
sin(β)

2
· c · y = 7,

sin(β)

2
· c · (x+ y) = 7 + 3⇒ x =

3

7
· y

Analog kann für die beiden gesuchten Flächeninhalte A1 und A2 notiert werden:

sin(γ)

2
· a · y = 7 + A2,

sin(γ)

2
· a · (x+ y) = 7 + A1 + A2

Desweiteren hat man auch die Beziehungen:

sin(δ)

2
· b · u = 3 + A1,

sin(δ)

2
· b · (u+ v) = 3 + A1 + A2

Löst man die bisherigen Gleichungen nach A1 und A2 auf, dann erhält man:

A1 =
15

2
, A2 =

21

2
⇒ X = A1 + A2 = 18

Und das war es auch schon!
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Die unterschiedlichen Würfel
[Zurück zur Liste]

Aufgabe. Es sei ein großer und schwarzer Würfel gegeben, der außen weiß angestrichen ist. Nun wird dieser Würfel in 4×4×4

kleine und gleich-große Würfel zerschnitten und diese in einen Sack getan. Ist das Spiel fair, dass man mit einem Würfel aus

dem Sack für das Würfeln der Farbe weiß gewinnt?

Lösung. Wenn man den großen Würfel in 64 gleich-große Würfel zerschneidet, dann haben 8 Würfel alle Seiten schwarz, weitere 8

Würfel drei von sechs Feldern weiß, 24 Würfel haben dann eine weiße Fläche und nochmal 24 Würfel zwei von sechs weiße Flächen.

Man rechnet nun:

P =
8

64
·

0

6
+

8

64
·

3

6
+

24

64
·

1

6
+

24

64
·

2

6
= 0 +

4

64
+

4

64
+

8

64
=

16

64
=

1

4

Die Antwort ist also, dass das Spiel nicht fair ist.

Das Spiel mit dem Würfel
[Zurück zur Liste]

Aufgabe. An einem Spielstand verspricht der Inhaber, dass bei seinem Spiel die Gewinnwahrscheinlichkeit doppelt so hoch ist,

wie die Wahrscheinlichkeit zu verlieren. Das Spiel geht so: Wirft jemand mit einem Würfel sofort die 6, hat er schon gewonnen

und bekommt 3 Euro. Falls mehrere Würfe notwendig sind, um eine 6 zu bekommen, so erhält der Kunde pro gemachten Wurf

3 Euro. Jetzt kommt der Haken: Wer eine 1 würfelt, hat einen Fluch am Hals und kann solange nicht mehr gewinnen, bis er

eine 6 würfelt, die den Fluch aufhebt. Jede andere Augenzahl als 1 und 6 lässt den Fluch weiterhin bestehen. Solange der Fluch

besteht, kann der Kunde das Spiel verlieren, indem er erneut eine 1 würfelt. Dann muss der Kunde pro gemachten Wurf 4

Euro bezahlen und ist dann vom Fluch befreit, so dass er ein neues Spiel beginnen kann.

Lösung. Zunächst hat man die folgende Markov-Kette:

Kein FluchStart Fluch

Gewonnen Verloren

4/6

1/6

1/6

4/6

1/6

1/6

1
1

Damit sieht die Übergangsmatrix folgendermaßen aus:

M ·


KF

F

G

V

 =


4
6

1
6 0 0

1
6

4
6 0 0

1
6 0 1 0

0 1
6 0 1

 ·


KF

F

G

V

 =


4
6 ·KF + 1

6 · F
1
6 ·KF + 4

6 · F
1
6 ·KF +G

1
6 · F + V


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Nun soll Mn berechnet werden. Es gilt dafür:

T
−1 ·M · T =


1
6 − 1

6 0 0

− 1
2 − 1

2 0 0

2
3

1
3 1 0

1
3

2
3 0 1

 ·


4
6

1
6 0 0

1
6

4
6 0 0

1
6 0 1 0

0 1
6 0 1

 ·


3 −1 0 0

−3 −1 0 0

−1 1 1 0

1 1 0 1

 =


1
2 0 0 0

0 5
6 0 0

0 0 1 0

0 0 0 1


Es folgt daraus:

T
−1 ·Mn · T = (T

−1 ·M · T )
n

=


1
2 0 0 0

0 5
6 0 0

0 0 1 0

0 0 0 1


n

=


(

1
2

)n 0 0 0

0
(

5
6

)n 0 0

0 0 1n 0

0 0 0 1n


Jetzt weiß man also:

M
n

=


3 −1 0 0

−3 −1 0 0

−1 1 1 0

1 1 0 1

 ·

(

1
2

)n 0 0 0

0
(

5
6

)n 0 0

0 0 1 0

0 0 0 1

 ·


1
6 − 1

6 0 0

− 1
2 − 1

2 0 0

2
3

1
3 1 0

1
3

2
3 0 1


Nach einer etwas mühseligen Rechnung gilt also:

M
n

=


2−n−1 ·

(
5
3

)n + 2−n−1 2−n−1 ·
(

5
3

)n − 2−n−1 0 0

2−n−1 ·
(

5
3

)n − 2−n−1 2−n−1 ·
(

5
3

)n + 2−n−1 0 0

−2−n−1 ·
(

5
3

)n + 2−n−1

3 + 2
3 −2−n−1 ·

(
5
3

)n + 2−n−1

3 + 1
3 1 0

−2−n−1 ·
(

5
3

)n + 2−n−1

3 + 1
3 −2−n−1 ·

(
5
3

)n + 2−n−1

3 + 2
3 0 1


Jetzt wird der Grenzwert für n gegen ∞ ausgerechnet:

lim
n→∞

M
n

=


3 −1 0 0

−3 −1 0 0

−1 1 1 0

1 1 0 1

 ·


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

 ·


1
6 − 1

6 0 0

− 1
2 − 1

2 0 0

2
3

1
3 1 0

1
3

2
3 0 1

 =


0 0 0 0

0 0 0 0

2
3

1
3 1 0

1
3

2
3 0 1


Also gilt dann:

M
∞ ·


KF

F

G

V

 =


0 0 0 0

0 0 0 0

2
3

1
3 1 0

1
3

2
3 0 1

 ·


KF

F

G

V

 =


0

0

2
3 ·KF + 1

3 · F +G

1
3 ·KF + 2

3 · F + V


Daraus sieht man nun, dass die Gewinnwahrscheinlichkeit P [Gewinn] =

2

3
ist, und die Verlierwahrscheinlichkeit P [V erloren] =

1

3
,

denn es gilt nämlichG+ 2
3 ·KF+. . . (vom Startpunkt nach Gewonnen) und es gilt eben V+ 1

3 ·KF+. . . (der Wahrscheinlichkeitsfluss

vom Startzustand nach Verloren). Es ist also wirklich doppelt so wahrscheinlich zu gewinnen als zu verlieren. Als nächstes soll die

Anzahl der zu erwartenen Schritte für einen Gewinn und für eine Niederlage berechnet werden: Sei P (Ai) die Wahrscheinlichkeit,

dass das Spiel nach genau i Schritten zu Ende ist. P (G) =
2

3
sei die Wahrscheinlichkeit, dass man das Spiel gewinnt. Man braucht

nun die Wahrscheinlichkeit für die Anzahl i der Schritte im Falle eines Gewinns; das wird durch die bedingte Wahrscheinlichkeit

PG(Ai) = P (Ai|G) =
P (Ai ∩G)

P (G)
gegeben. Man betrachtet nun die Zahl Mi−1

11 ; diese Zahl gibt an, mit welcher Wahrscheinlichkeit

man in genau i− 1 Schritten vom Startzustand in denselben Zustand landet, sodass man im nächsten Schritt gewinnen kann. Ein

Spiel ist genau dann im i-ten Schritt gewonnen, wenn man sich im (i− 1)-ten Schritt im Zustand
”
Kein Fluch“ befindet und dann

eine 6 mit der Wahrscheinlichkeit
1

6
würfelt. Es gilt also P (Ai ∩G) = Mi−1

11 ·
1

6
. Man rechnet nun:

E(G) =

∞∑
i=1

i · P (Ai|G) =

∞∑
i=1

i ·
P (Ai ∩G)

P (G)
=

∞∑
i=1

i ·
Mi−1

11 ·
1

6
2

3

=
1

4
·
∞∑
i=1

i ·Mi−1
11 =

1

4
·
∞∑
i=1

i ·

(
5

3

)i−1

+ 1

2i
=

1

8
·
∞∑
i=1

i ·
[(

1

2

)i−1

+

(
5

6

)i−1]

=
1

8
·
[ ∞∑
i=0

(i+ 1) ·
(

1

2

)i
+

∞∑
i=0

(i+ 1) ·
(

5

6

)i]
=

1

8
·

 1(
1−

1

2

)2
+

1(
1−

5

6

)2

 =
1

8
· (4 + 36) = 5
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Nun wird die Anzahl der zu erwartenen Schritte für eine Niederlage berechnet. Es gilt PV (Ai) = P (Ai|V ) =
P (Ai ∩ V )

P (V )
, wobei

gilt: P (V ) =
1

3
und P (Ai ∩ V ) = Mi−1

21 ·
1

6
. Ein Spiel ist genau dann verloren, wenn man im (i− 1)-ten Schritt vom Startzustand

angefangen sich im Zustand
”
Fluch“ befindet und dann eine 1 mit der Wahrscheinlichkeit

1

6
würfelt. Also:

E(V ) =
∞∑
i=1

i · P (Ai|V ) =
∞∑
i=1

i ·
P (Ai ∩ V )

P (V )
=
∞∑
i=1

i ·
Mi−1

21 ·
1

6
1

3

=
1

2
·
∞∑
i=1

i ·Mi−1
21 =

1

2
·
∞∑
i=1

i ·

(
5

3

)i−1

− 1

2i
=

1

4
·
∞∑
i=1

i ·
[
−
(

1

2

)i−1

+

(
5

6

)i−1]

=
1

4
·
[
−
∞∑
i=0

(i+ 1) ·
(

1

2

)i
+
∞∑
i=0

(i+ 1) ·
(

5

6

)i]
=

1

4
·

 −1(
1−

1

2

)2
+

1(
1−

5

6

)2

 =
1

4
· (−4 + 36) = 8

Es wurde hier die Formel
∞∑
i=0

(i+ 1) · qi =
1

(1− q)2
für 0 < q < 1 benutzt und wird hier nicht bewiesen. Man weiß nun also: Wenn

man gewinnt, dann hat man erwartungsgemäß 5-mal gewürfelt. Hat man verloren, dann hat man wohl 8-mal gewürfelt. Nun kann

man nachrechnen, wie lukrativ das Spiel ist:

Profit = Gewinn−Kosten = 3e · E(G) · P (G)− 4e · E(V ) · P (V ) = 3e · 5 ·
2

3
− 4e · 8 ·

1

3
= −

2

3
e

Obwohl die Gewinnwahrscheinlichkeit tatsächlich doppelt so hoch ist, wie die Wahrscheinlichkeit zu verlieren, macht man im Schnitt
2

3
e Verlust. Man sollte also nicht zu viel würfeln.

Die neun gesuchten Zahlen
[Zurück zur Liste]

Aufgabe. Gegeben sind neun positive ganze Zahlen, die in einer solchen Reihenfolge angeordnet sind, dass die Summe von

jeweils drei aufeinander folgenden Zahlen gleich ist. Die erste Zahl in der Reihenfolge ist 450, die letzte 50. Die Summe aller

Zahlen beträgt 2010. Man bestimme alle neun Zahlen.

Lösung. Es gilt also nach Aufgabenstellung:

x1 + x2 + x3 = x2 + x3 + x4 = x3 + x4 + x5 = x4 + x5 + x6 = x5 + x6 + x7 = x6 + x7 + x8 = x7 + x8 + x9 = α

Daraus folgt dann:

x1 − x4 = 0 ∧ x2 − x5 = 0 ∧ x3 − x6 = 0 ∧ x4 − x7 = 0 ∧ x5 − x8 = 0 ∧ x6 − x9 = 0

Also gilt dann:

450 = x1 = x4 = x7 ∧ x3 = x6 = x9 = 50

Nun sind noch drei Zahlen unbestimmt: x2 = x5 = x8 = x. Die Summe aller Zahlen ist ja 2010, also:

2010 = (x1 + x4 + x7) + (x3 + x6 + x9) + (x2 + x5 + x8) = (3 · 450) + (3 · 50) + 3x = 1500 + 3x⇔ 510 = 3x⇔ x = 170

Die Zahlen lauten also: 

x1

x2

x3

x4

x5

x6

x7

x8

x9



=



450

170

50

450

170

50

450

170

50


Und das war auch schon alles.
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Die Gleichheit zu einer Kreisfläche
[Zurück zur Liste]

Aufgabe. Gegeben sei ein Halbkreis über die Strecke AC. Auf der Strecke AC liege der Punkt B. Die Senkrechte zu AC durch

B schneide den Halbkreis über der Strecke AC im Punkt D. Über den Strecken AB und BC seien Halbkreise gezeichnet:

Man beweise nun, dass der Kreis mit dem Durchmesser BD und die grau markierte Fläche denselben Flächeninhalt haben.

Lösung. Sei zunächst |AB| = x und |BC| = y und |AC| = a, also x + y = a. Nun gilt F1 =

π ·
(
x

2

)2

2
=

π

8
· x2 und

F2 =

π ·
(
y

2

)2

2
=
π

8
· y2 =

π

8
· (a− x)2. Also gilt dann:

G =

π ·
(
a

2

)2

2
−F1−F2 =

π

8
· a2−

π

8
·x2−

π

8
· (a−x)

2
=
π

8
· (a2−x2− a2

+ 2 · a ·x−x2
) =

π

8
· (2 · a ·x− 2x

2
) =

π

4
· (a ·x−x2

)

Sei nun BD = h, dann gilt

(
a

2
− x
)2

+ h2 =

(
a

2

)2

⇔ h2 = a · x− x2. Und jetzt gilt dann für den Flächeninhalt des Kreises mit

dem Durchmesser h:

FBC := π ·
(
h

2

)2

=
π

4
· h2

=
π

4
· (a · x− x2

) = G

Also ist die Aufgabe gelöst.

Die Fläche in einem Kreis
[Zurück zur Liste]

Aufgabe. Zwei konzentrische Kreise k und k0 liegen so zueinander, dass es genau sechs zum Kreis k0 kongruente Kreise gibt,

die den Kreis k0 von außen, den Kreis k von innen und je zwei der sechs Kreise berühren. Man berechne die Größe des Inhalts

des schraffierten Flächenstückes in Abhängigkeit vom Radius r des Kreises k0.
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Lösung. Der Flächeninhalt eines gleichseitigen Dreiecks mit der Seitenlänge a ist bekanntlich

√
3

4
· a2. Also gilt für die Fläche des

gleichseitigen Dreiecks, oben im Bild:

√
3

4
· (2 · r)2 =

√
3 · r2. Als nächstes zieht man von dieser Fläche die drei Kreissektoren ab:

S =
√

3 · r2 − 3 ·
(
π · r2

6

)
=

(√
3−

π

2

)
· r2. Die schraffierte Fläche erhält man folgendermaßen: Man zieht vom Flächeninhalt des

großen Kreises 6-mal S und 7-mal die Fläche der kleinen Kreise ab. Die Differenz ist dann das sechsfache der schraffierten Fläche.

Die zugehörige Rechnung lautet also:

π · (3 · r)2 − 6 · S − 7 · (π · r2)

6
=

9 · π · r2 − 6 ·
(√

3−
π

2

)
· r2 − 7 · π · r2

6
=

2 · π · r2 − 6 ·
(√

3−
π

2

)
· r2

6

Die schraffierte Fläche hat also den Flächeninhalt Aschraff. =
π

3
· r2 −

(√
3−

π

2

)
· r2 =

(
5

6
· π −

√
3

)
· r2.

Die interessante Ungleichung
[Zurück zur Liste]

Aufgabe. Gegeben seien n nichtnegative reelle Zahlen x1, . . . , xn mit x1 ≤ x2 ≤ . . . ≤ xn, die die Ungleichungen x2
1+. . .+x2

m ≥

m2 für alle 1 ≤ m ≤ n erfüllen. Man zeige nun, dass dann gilt:

x1 + x2 + . . .+ xn ≥
√

1 +
√

3 + . . .+
√

2 · n− 1

Lösung. Es gilt nach Voraussetzung x2
1 ≥ 12. Man wähle dann x2

1 minimal, also x2
1 = 12. Weil x2

1 +x2
2 ≥ 22 gilt, folgt x2

2 ≥ 22−12.

Dann wählt man x2
2 minimal, also x2

2 = 22 − 12. Wegen x2
1 + x2

2 + x2
3 ≥ 32 folgt dann (12) + (22 − 12) + x2

3 ≥ 32, also x2
3 ≥ 32 − 22.

Man macht so weiter und erhält damit: x2
i ≥ i

2 − (i− 1)2 = 2 · i− 1 für alle 1 ≤ i ≤ n. Also gilt dann xi ≥
√

2 · i− 1, folglich also

x1 + x2 + . . .+ xn ≥
√

1 +
√

3 + . . .+
√

2 · n− 1.

Die Darstellung als Summe zweier Quadrate
[Zurück zur Liste]

Aufgabe. Es seien n ≥ 2 Zahlen x1, x2, . . . , xn gegeben, und es sei bekannt, dass jede von ihnen als Summe zweier Quadrat-

zahlen geschrieben werden kann. Es soll nun also bewiesen werden, dass dann auch das Produkt x1 · x2 · . . . · xn gleich der

Summe zweier Quadrate ganzer Zahlen ist.

Lösung. Sei zunächst x1 = a2+b2 und x2 = x2+y2, d.h. x1 und x2 sind beide darstellbar als Summe zweier Quadratzahlen. Es wird

nun gezeigt, dass dann auch das Produkt x1 ·x2 darstellbar ist als Summe zweier Quadrate. Weiter: x1 ·x2 = (a2 + b2) · (x2 +y2) =

a2 ·x2 +a2 ·y2 +b2 ·x2 +b2 ·y2 = (a2 ·x2 +b2 ·y2)+(a2 ·y2 +b2 ·x2) = (a2 ·x2−2 ·a ·x ·b ·y+b2 ·y2)+(a2 ·y2 +2 ·a ·y ·b ·x+b2 ·x2) =

(a · x − b · y)2 + (a · y + b · x)2. Also hat man hier das Produkt x1 · x2 dargestellt als Summe zweier Quadrate. Mit vollständiger

Induktion zeigt man nun die Behauptung für das Produkt aus n darstellbaren Zahlen. I.A.: Die Behauptung gilt schonmal für
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n = 2. I.V.: Es gelte die Behauptung für ein beliebiges n. I.S.: Es gilt doch x1 · . . . · xn · xn+1 = (x1 · . . . · xn) · xn+1. Nach

Induktionsvoraussetzung ist x1 · . . . · xn darstellbar, genauso, wie xn+1. Weil das Produkt zweier darstellbarer Zahlen, wie oben

bewiesen, darstellbar ist, ist also auch x1 · . . . · xn+1 darstellbar. Der Induktionsschluss ist also gelungen.

Die nicht-primen Zahlen
[Zurück zur Liste]

Aufgabe. Man beweise, dass keine der Zahlen 1001, 1001001, 1001001001, 1001001001001, usw. eine Primzahl ist.

Lösung. Es gilt für diese Zahlen die Darstellung Zn =
n∑
k=0

1000k =
1000n+1 − 1

1000− 1
mit n ≥ 1. Wenn n+ 1 durch 3 teilbar ist, dann

hat die Zahl Zn eine durch drei teilbare Anzahl an Einsen, und der Rest sind nur Nullen. Also ist die Quersumme durch 3 teilbar,

also sind in diesen Fällen Zn (durch 3 teilbar) keine Primzahlen. Sei also von nun an n+ 1 nicht durch 3 teilbar.

Zn =
n∑
k=0

1000
k

=
1000n+1 − 1

1000− 1
=

(
10n+1 − 1

)
·
(
100n+1 + 10n+1 + 1

)
999

=
10n+1 − 1

9
·

100n+1 + 10n+1 + 1

111

Nun ist 10n+1− 1 durch 9 teilbar, also ist
10n+1 − 1

9
eine ganze Zahl ungleich Eins für n ≥ 1. Es bleibt nun zu prüfen, ob die Zahl

100n+1 + 10n+1 + 1 durch 111 teilbar ist. Es gilt:

n = 0 : 1000+1 mod 111 = 100 100+1 mod 111 = 10 1 mod 111 = 1

n = 1 : 1001+1 mod 111 = 10 101+1 mod 111 = 100 1 mod 111 = 1

n = 2 : 1002+1 mod 111 = 1 102+1 mod 111 = 1 1 mod 111 = 1

n = 3 : 1003+1 mod 111 = 100 103+1 mod 111 = 10 1 mod 111 = 1

n = 4 : 1004+1 mod 111 = 10 104+1 mod 111 = 100 1 mod 111 = 1

n = 5 : 1005+1 mod 111 = 1 105+1 mod 111 = 1 1 mod 111 = 1

n = 6 : 1006+1 mod 111 = 100 106+1 mod 111 = 10 1 mod 111 = 1

n = 7 : 1006+1 mod 111 = 10 107+1 mod 111 = 100 1 mod 111 = 1

.

.

.
.
.
.

.

.

.
.
.
.

Man sieht also, dass 100n+1 +10n+1 +1 genau dann durch 111 teilbar ist, wenn n+1 nicht durch drei teilbar ist. Und dieser Fall war

ja vorausgesetzt. Der Quotient
100n+1 + 10n+1 + 1

111
ist also in diesen Fällen eine ganze Zahl ungleich 1, wobei gilt n ≥ 1. Es wurde

also bewiesen, dass Zn =
n∑
k=0

1000k dargestellt werden kann als Produkt zweier Zahlen, die ungleich 1 sind. Die Nichtprimalität ist

also auch in diesem Fall gegeben. Die Lösung ist somit vollbracht.

Die schwere Gleichung
[Zurück zur Liste]

Aufgabe. Man beweise, dass es keine ganzen Zahlen x und y gibt, die die Gleichung 19 · x3 − 17 · y3 = 50 erfüllen.

Lösung. Mal angenommen, es gibt solche Zahlen x und y. Dann folgt (19·x3−17·y3) mod 19 = 50 mod 19 = 12, also: ((−17 mod 19)·

(y3 mod 19)) mod 19 = 12, folglich (2 ·(y3 mod 19)) mod 19 = 12, und: y3 mod 19 = 6. Es wird nun geprüft, ob es Restklassen modulo
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19 gibt, deren Kubik bei der Division durch 19 den Rest 6 hat. Es gilt:

03 mod 19

13 mod 19

23 mod 19

33 mod 19

43 mod 19

53 mod 19

63 mod 19

73 mod 19

83 mod 19

93 mod 19

103 mod 19

113 mod 19

123 mod 19

133 mod 19

143 mod 19

153 mod 19

163 mod 19

173 mod 19

183 mod 19



=



0 mod 19

1 mod 19

8mod 19

27 mod 19

64 mod 19

125 mod 19

216 mod 19

343 mod 19

512 mod 19

729 mod 19

1000 mod 19

1331 mod 19

1728 mod 19

2197 mod 19

2744 mod 19

3375 mod 19

4096 mod 19

4913 mod 19

5832 mod 19



=



0

1

8

8

7

11

7

1

18

7

12

1

18

12

8

12

11

11

18


Man sieht also, dass y3 mod 19 niemals gleich 6 ist. Dieser Widerspruch zeigt, dass es keine x und y mit der oben genannten

Eigenschaft geben kann. Die Aufgabe ist damit gelöst.

Die Summe aufeinanderfolgender Zahlen
[Zurück zur Liste]

Lemma. Eine lineare diophantische Gleichung a ·x+ b · y = c für a, b, c ∈ Z besitzt genau dann ganzzahlige Lösungen x, y ∈ Z,

wenn c ein ganzzahliges Vielfaches von ggT(a, b) ist.

Beweis. Angenommen, es gilt a · x + b · y = c für bestimmte x, y ∈ Z. Es gibt Zahlen a′, b′ ∈ Z mit a = a′ · ggT(a, b) und

b = b′ · ggT(a, b), also: (a′ · ggT(a, b)) · x + (b′ · ggT(a, b)) · y = c, woraus ggT(a, b)|c folgt. Sei nun umgekehrt c = k · ggT(a, b)

(k ∈ Z). Der rekursive Algorithmus zu Berechnung des ggT zweier ganzer Zahlen lautet:

ggT(a, b) =


a, a = b

ggT(a− b, b), a > b

ggT(b, a), a < b

Dieser Algorithmus liefert im Abbruchsfall: x̃ · a+ ỹ · b = ggT(a, b). Daraus folgt dann:

(x̃ · k) · a+ (ỹ · k) · b = k · ggT(a, b) = c

Also ist die diophantische Gleichung lösbar. Das ist das Ende des Beweises.

Satz. Seien x0 und y0 eine spezielle Lösung der linearen diophantischen Gleichung a · x+ b · y = c = k · ggT(a, b). Dann haben

alle weiteren ganzzahligen Lösungen (x, y) die Form:

x = x0 +
l · b

ggT(a, b)
∧ y = y0 −

l · a
ggT(a, b)

mit l ∈ Z

Beweis. Seien (x0, y0) eine spezielle und (x, y) die allgemeine Lösung. Dann gilt: a · x0 + b · y0 = c und a · x + b · y = c,

also: a · (x − x0) + b · (y − y0) = 0. Wieder gibt es Zahlen a′, b′ ∈ Z mit a = a′ · ggT(a, b) und b = b′ · ggT(a, b), also:

a′ · (x− x0) + b′ · (y − y0) = 0 · ggT(a, b) = 0. Also folgt:

a′ · (x− x0)

b′
= −(y − y0) ∈ Z

Weil ggT(a, b) = ggT(ggT(a, b) · a′, ggT(a, b) · b′) = ggT(a′, b′) = 1 gilt, folgt, dass b′ die ganze Zahl x − x0 teilt, d.h. x − x0 =

t1 · b′ ⇔ x = x0 + t1 · b′ = x0 +
t1 · b

ggT(a, b)
. Es gilt nun auch:

−(y − y0) · b′

a′
= x− x0 ∈ Z
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Wegen ggT(a′, b′) = 1 folgt, dass a′ die ganze Zahl −(y− y0) teilt, also y− y0 = −t2 · a′ ⇔ y = y0 − t2 · a′ = y0 −
t2 · a

ggT(a, b)
. Nun

gilt die folgende Rechnung:

a
′ · (x− x0) = −b · (y − y0)⇔ a

′ · (t1 · b′) = −b′ · (−t2 · a′)⇔ t1 = t2 = l

Setzt man nun t1 = t2 gleich l, so folgt die Behauptung für x und y.

Aufgabe. Es seien m und n teilerfremde positive ganze Zahlen. Man beweise, dass es dann stets zwei Mengen M und N von

m bzw. n aufeinanderfolgenden postiven ganzen Zahlen gibt, deren Elemente die gleiche Summe haben. Beispielsweise gilt für

m = 2 und n = 3 mit M = {4, 5} und N = {2, 3, 4}: 4 + 5 = 2 + 3 + 4.

Lösung. Es soll also gelten:

(x+ 0) + (x+ 1) + . . .+ (x+ (m− 1)) = (y + 0) + (y + 1) + . . .+ (y + (n− 1))⇔ m · x+
(m− 1) ·m

2
= n · y +

(n− 1) · n
2

Und das ist äquivalent zu:

m · x− n · y =
(n− 1) · n

2
−

(m− 1) ·m
2

=: α ∈ Z

Es ist nun die Aufgabe positive ganze Zahlen x und y so zu finden, dass m · x − n · y = α gilt. Nach dem obigen Lemma ist

m · x+n · (−y) = α lösbar, weil α ein Vielfaches von ggT(m,n) = 1 ist. Sei (x0, y0) eine spezielle Lösung, dann sind alle Lösungen

(nach dem Satz oben) gegeben durch:

x = x0 + l · n ∧ −y = y0 − l ·m⇔ x = x0 + l · n ∧ y = l ·m− y0

Man kann nun das l so groß machen, dass x und y positiv sind. Also ist die Aufgabe gelöst.

Die Summe dreier Inkreisradien
[Zurück zur Liste]

Aufgabe. Gegeben sei ein Dreieck ABC mit dem Inkreis k. Der Radius von k sei r. Durch Tangenten an k, die parallel zu

den Dreiecksseiten sind, entstehen die Dreiecke ABACA, ABBCB und ACBCC, wie im Bild unten. Die Radien ihrer Inkreise

seien ra, rb bzw. rc. Man beweise, dass ra + rb + rc = r gilt.

Lösung. Zunächst sind die drei kleinen Kreise kongruent zum Dreieck ABC. Sie sind jeweils mit einem bestimmten Faktor kleins-

kaliert. Das gilt auch für die jeweiligen Inkreisradien. Es sind λa =
a′

a
, λb =

b′

b
und λc =

c′

c
die Kontraktionsfaktoren für ihr

jeweiliges kleines Dreieck im Vergleich zum Dreieck ABC. AB = c, BC = a und AC = b sind bekannt. a′, b′ und c′ können mittels

Analytischer Geometrie berechnet werden, weil die Winkel α bei A, β bei B und γ bei C bekannt sind, und da man weiß, dass die

parallen Strecken a und a′, b und b′ sowie c und c′ den Abstand 2 · r haben. Es gilt dann:

a
′

= a− 2 · r ·
(

1

tan(β)
+

1

tan(γ)

)
∧ b′ = b− 2 · r ·

(
1

tan(α)
+

1

tan(γ)

)
∧ c′ = c− 2 · r ·

(
1

tan(β)
+

1

tan(β)

)

Die Formel für den Inkreisradius des Dreiecks ABC lautet: r =
2 · AABC
UABC

, wobei AABC der Flächeninhalt und UABC der Umfang

des Dreiecks ABC ist. Also gilt dann:

r =
sin(α) · b · c
a+ b+ c

=
sin(β) · a · c
a+ b+ c

=
sin(γ) · a · b
a+ b+ c
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Aus dem Kosinussatz folgen die folgenden Identitäten:

α = acos

(
b2 + c2

2 · b · c

)
∧ β = acos

(
a2 + c2

2 · a · c

)
∧ γ = acos

(
a2 + b2

2 · a · b

)

Setzt man nun die bekannten Werte für α, β, γ und r ein, so erhält man a′, b′ und c′ nur noch in Abhängigkeit von a, b und c.

Nach einer etwas längeren Rechnung, wo sin(acos(x)) =
√

1− x2 und tan(acos(x)) =

√
1− x2

x
gebraucht wird, ergibt sich, ohne

Durchführung einer genaueren Berechnung:

λa =
a′

a
=
−a+ b+ c

a+ b+ c
∧ λb =

b′

b
=
a− b+ c

a+ b+ c
∧ λc =

c′

c
=
a+ b− c
a+ b+ c

Also gilt dann für die Inkreisradien:

ra + rb + rc = (λa · r) + (λb · r) + (λc · r) = (λa + λb + λc) · r =

(−a+ b+ c

a+ b+ c
+
a− b+ c

a+ b+ c
+
a+ b− c
a+ b+ c

)
· r =

a+ b+ c

a+ b+ c
· r = r

Damit ist die Aufgabe also vollständig gelöst.

Die Dreiecke um einen Kreis
[Zurück zur Liste]

Aufgabe. Auf dem Tisch liegt eine Kreisscheibe mit dem Radius 6cm. Inge möchte von außen möglichst viele gleichseitige

Dreiecke mit der Seitenlänge 6cm an die Kreisscheibe legen. Dabei möchte sie folgende Bedingungen einhalten:

1. Von jedem Dreieck liegt eine Ecke auf der Peripherie des Kreises.

2. Die Dreiecke überdecken sich nicht.

3. Je zwei aufeinanderfolgende Dreiecke besitzen genau einen gemeinsamen Eckpunkt, und dieser liegt nicht auf dem Kreis.

Man bestimme, wie viele Dreiecke Inge höchstens an den Kreis legen kann, ohne dass sich Dreiecke überdecken. Man beweise,

dass sich bei dieser Anzahl das erste und das letzte Dreieck in Eckpunkten berühren.

Lösung. Als erstes braucht man eine gute Zeichnung:

25



Wie dem Bild oben zu entnehmen ist, gilt α1 + 60◦ + α2 = 180◦ ⇔ α2 = 120◦ − α1. Außerdem findet man 2 · ϕ1 + 2 · α2 + 180◦ =

360◦ ⇔ ϕ1 + α2 = 90◦ ⇔ ϕ1 = 90◦ − α2. Analog findet man ϕ2 = 90◦ − α1. Also folgt nun:

ϕ1 + ϕ2 = (90
◦ − α2) + (90

◦ − α1) = 180
◦ − α2− α1 = 180

◦ − (120
◦ − α1)− α1 = 60

◦

Weil 360◦ = 6 · 60◦ = 6 · (ϕ1 + ϕ2) = 6 · ϕ1 + 6 · ϕ2 ist, hat man um den Kreis genau 12 = 6 · 2 gleichseitige Dreiecke. Die

beiden Winkel ϕ1 und ϕ1 wechseln sich um den Kreis immer ab. Das erste und letzte Dreieck berühren sich in einem Punkt. Die

Dreiecke schaffen genau eine Runde. Das funktioniert, weil von den Winkel ϕ1 und ϕ2 gleichlange Schenkel kommen, die mit ihren

Endpunkten auf dem Kreisrand liegen. Fertig!

Der Streckenzug in einem Dreieck
[Zurück zur Liste]

Aufgabe. Ein rechtwinkliges Dreieck P0P1P habe die Seitenlängen 3, 4 und 5, wobei P0P1 die kürzeste Seite des Dreiecks sei.

Es soll nun die Länge des unendlichen Streckenzuges P0P1P2P3 . . . berechnet werden.
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Lösung. Es gilt schonmal P0P1 = 3 = 3 ·
(

4

5

)0

. Da das Dreieck P0P1P2 kongruent zum Dreieck P0P1P ist, gilt
P1P2

3
=

4

5
,

also P1P2 = 3 ·
(

4

5

)1

. Da das Dreieck P1P3P2 ebenfalls kongruent zum Dreieck P0P1P ist, gilt also
P2P3

P1P2

=
4

5
⇔ P2P3 =

3 ·
(

4

5

)1

·
4

5
= 3 ·

(
4

5

)2

. Durch vollständige Induktion wird nun bewiesen, dass gilt PkPk+1 = 3 ·
(

4

5

)k
. Der Induktionsanfang gilt,

weil P0P1 = 3 ·
(

4

5

)0

und P1P2 = 3 ·
(

4

5

)1

gilt. Induktionsvoraussetzung: Gelte die Behauptung für 0 bis k. Induktionsschluss:

Man berechnet nun also Pk+1Pk+2. Ist k + 1 ungerade, dann gilt
Pk+1Pk+2

PkPk+1

=
4

5
, weil das Dreieck Pk+1Pk+2Pk kongruent ist

zum Dreieck P1P2P0, welches wiederum kongruent ist zum Dreieck P0P1P . Also folgt nach I.V.: Pk+1Pk+2 = PkPk+1 ·
4

5

I.V.
=

3 ·
(

4

5

)k
·

4

5
= 3 ·

(
4

5

)k+1

. Ist nun k + 1 gerade, dann gilt:
Pk+1Pk+2

PkPk+1

=
4

5
, weil das Dreieck Pk+1Pk+2Pk kongruent ist zum

Dreieck P2P3P1, welches wiederum wieder kongruent ist zum Dreieck P0P1P , also auch hier Pk+1Pk+2 = 3 ·
(

4

5

)k+1

. Nun wird

die Länge des unendlichen Streckenzuges berechnet:

∞∑
k=0

|PkPk+1| =
∞∑
k=0

∣∣∣∣∣3 ·
(

4

5

)k∣∣∣∣∣ = 3 ·
∞∑
k=0

(
4

5

)k
= 3 ·

1

1−
4

5

= 3 · 5 = 15

Damit ist also die Aufgabe gelöst.

Der herumhüpfende Floh
[Zurück zur Liste]

Aufgabe. Im Punkt P0 = (−2, 0) sitzt ein junger, hüpffreudiger Floh. Zunächst springt er in Richtung des Punktes A = (1,−2)

und landet genau auf halber Strecke. Von dort aus hüpft er die halbe Distanz in Richtung des Punktes B = (2, 2), anschließend

die halbe Distanz nach C = (−1, 1). Im nun erreichten Punkt P1 macht er eine kurze Verschnaufpause, bevor er wieder in

Richtung A startet und nach dem gleichen Prinzip weitere Dreieckssprünge vollführt. Nach jeweils drei Sätzen ruht sich der

Floh aus. Die folgende Zeichnung veranschaulich die Sprünge:

Die Folge (Pn) der Ruhepunkte nach 3n Sätzen konvergiert gegen einen Grenzpunkt P∞. Es soll nun jeweils die 1000. Dezi-

malstelle der x- und der y-Koordinate von P∞ berechnet werden.

Lösung. Man startet also in P0 und man fliegt dann um (A − P0)
1

2
, also nach P0 + (A − P0)

1

2
=: P1,A. Dann: P1,B := P1,A +

(B − P1,A)
1

2
und also P1 = P1,B + (C − P1,B)

1

2
. Also gilt:

P1 = P1,B + (C − P1,B)
1

2
= (P1,A + (B − P1,A)

1

2
) + (C − (P1,A + (B − P1,A)

1

2
))

1

2

Setzt man jetzt P1,A ein, erhält man:

P1 = ((P0 + (A− P0)
1

2
) + (B − (P0 + (A− P0)

1

2
))

1

2
) + (C − (P0 + (A− P0)

1

2
) + (B − (P0 + (A− P0)

1

2
))

1

2
))

1

2
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Nach einer etwas längeren Umformung erhält man dann:

P1 =
A+ 2B + 4C + P0

8
=

23·1 − 1

7
A+ 2 ·

23·1 − 1

7
B + 4 ·

23·1 − 1

7
C + P0

23·1

Mit vollständiger Induktion wird nun gezeigt:

Pi =

23·i − 1

7
A+ 2 ·

23·i − 1

7
B + 4 ·

23·i − 1

7
C + P0

23·i

Der Induktionsanfang (i = 1) gilt bereits. Sei die Behauptung richtig für i. Es wird dann gezeigt, dass die Behauptung auch für

i + 1 gilt. Folgendermaßen wird jetzt weitergerechnet: Pi+1,A = Pi + (A − Pi)
1

2
, Pi+1,B = Pi+1,A + (B − Pi+1,A)

1

2
und es gilt

also Pi+1 = Pi+1,B + (C − Pi+1,B)
1

2
, also folgt dann:

Pi+1 = Pi+1,B + (C − Pi+1,B)
1

2
= (Pi+1,A + (B − Pi+1,A)

1

2
) + (C − (Pi+1,A + (B − Pi+1,A)

1

2
))

1

2

Setzt man nun Pi+1,A ein, so folgt dann:

Pi+1 = ((Pi + (A− Pi)
1

2
) + (B − (Pi + (A− Pi)

1

2
))

1

2
) + (C − ((Pi + (A− Pi)

1

2
) + (B − (Pi + (A− Pi)

1

2
))

1

2
))

1

2

=
A+ 2B + 4C + Pi

8
=
A · 23i

23 · 23i
+
B · 23i+1

22 · 23i+1
+
C · 23i+2

21 · 23i+2
+

23·i − 1

7
A+ 2 ·

23·i − 1

7
B + 4 ·

23·i − 1

7
C + P0

23·(i+1)

=

(
23·i − 1

7
A+ A · 23i

)
+

(
2 ·

23·i − 1

7
B + B · 23i+1

)
+

(
4 ·

23·i − 1

7
C + C · 23i+2

)
+ P0

23·(i+1)

Und so geht es dann weiter:

Pi+1 =

(
23·i − 1

7
A+ A ·

23i · 7
7

)
+

(
2 ·

23·i − 1

7
B + 2 · B ·

23i · 7
7

)
+

(
4 ·

23·i − 1

7
C + 4 · C ·

23i · 7
7

)
+ P0

23·(i+1)

=

(
8 · 23·i − 1

7
A

)
+

(
2 ·

8 · 23·i − 1

7
B

)
+

(
4 ·

8 · 23·i − 1

7
C

)
+ P0

23·(i+1)

Es gilt also, wie schon erwartet, der Induktionsschluss:

Pi+1 =

23·(i+1) − 1

7
A+ 2 ·

23·(i+1) − 1

7
B + 4 ·

23·(i+1) − 1

7
C + P0

23·(i+1)

Jetzt kann man endlich P∞ ausrechnen:

lim
i→∞

Pi =
1

7
· lim
i→∞

23·i − 1

23·i A+
2

7
· lim
i→∞

23·i − 1

23·i B +
4

7
· lim
i→∞

23·i − 1

23·i C + lim
i→∞

P0

23·i

=
1

7
· 1 · A+

2

7
· 1 · B +

4

7
· 1 · C + 0

=
1A+ 2B + 4C

7

Nun gilt A = (1,−2), B = (2, 2) und C = (−1, 1), also P∞ =
(1,−2) + (4, 4) + (−4, 4)

7
=

(
1

7
,

6

7

)
. Desweiteren gilt also auch

P∞ =

(
1

7
,

6

7

)
= (0, 142857; 0, 857142). Nun gilt 1000 mod 6 = 4. Also: 1000. Dezimalstelle von x ist 8, und 1000. Dezimalstelle

von y ist 1. Die Aufgabe ist damit gelöst.

Das Kegelvolumen im Vergleich
[Zurück zur Liste]

Aufgabe. Ein Stück Papier, das die Form eines Kreissektors mit Radius r und Sektorwinkel ϕ ∈ (0, 2π) hat, wird an den

gestrichelten Linien überlappungsfrei zusammengeklebt. Dabei entsteht ein Kreiskegel.
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Für welchen Winkel ϕ wird das Verhältnis von Kegelvolumen zu Mantelfläche maximal?

Lösung. Zunächst gilt AMantel =
ϕ

2π
· πr2 =

ϕ

2
· r2. Weiter gilt:

ϕ

2π
· 2πr = 2πrKegel ⇔ rKegel =

ϕ · r
2π

. Es wird als nächstes

die Höhe des Kegels bestimmt: h2 + r2
Kegel = r2 ⇔ h =

√
r2 −

(
ϕ · r
2π

)2

. Für die Grundfläche des Kegels gilt G = πr2
Kegel =

π ·
(
ϕ · r
2π

)2

=
ϕ2 · r2

4π
. Das Volumen V des Kegel ist damit:

V =
1

3
·G · h =

1

3
·
ϕ2 · r2

4π
·

√
r2 −

(
ϕ · r
2π

)2

=
r3

12π
· ϕ2 ·

√
1−

(
ϕ

2π

)2

Daraus folgt dann also:

Q(ϕ) :=
V

AMantel

(ϕ) =

r3

12π
· ϕ2 ·

√
1−

(
ϕ

2π

)2

ϕ

2
· r2

=
r

6π
· ϕ ·

√
1−

(
ϕ

2π

)2

Das notwendige Kriterium für ein Maximum lautet
d

dϕ
Q(ϕ) = 0, also:

d

dϕ
Q(ϕ) =

r

6π
· 1 ·

√
1−

(
ϕ

2π

)2

+
r

6π
· ϕ ·

1

2 ·

√
1−

(
ϕ

2π

)2
·
(
−

ϕ

2π2

)
= 0

Und das ist äquivalent zu:

√
1−

(
ϕ

2π

)2

= ϕ
2 ·

1

4π2 ·

√
1−

(
ϕ

2π

)2
⇔ 1−

(
ϕ

2π

)2

=
ϕ2

4π2
⇔ 4π

2
= 2 · ϕ2

An der Stelle ϕ =
√

2 · π befindet sich ein Maximum, denn man weist leicht nach, dass Q′′(
√

2 · π) < 0 gilt. Also ist der Quotient

aus Kegelvolumen und Mantelfläche maximal für ϕ =
√

2 · π. Ende.

Die letzte Ziffer sehr großer Potenzen
[Zurück zur Liste]

Aufgabe. Es sollen hier die letzte Ziffer folgender Potenzen ausgerechnet werden:

a)
(
123789

)456
b) 789

(
123456

)

Lösung. Zunächst wird sich um a) gekümmert:

(
123

789
)456

mod 10 =
(

3
789
)456

mod 10 =

((
3
5 · 35

)78
· 39

)456

mod 10 =
(

(243 · 243)
78 · 35 · 34

)456
mod 10

=
(

(3 · 3)
78 · 243 · 81

)456
mod 10 =

(
(3 · 3)

78 · 3 · 1
)456

mod 10 =
(

9
78 · 3

)456
mod 10

=

((
9
2
)39
· 3
)456

mod 10 =
(

81
39 · 3

)456
mod 10 =

(
1
39 · 3

)456
mod 10 = 3

456
mod 10

=
(

3
2
)228

mod 10 = 81
228

mod 10 = 1
228

mod 10 = 1
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Als nächstes wird b) gelöst:

789

(
123456

)
mod 10 = 9

(
123456

)
mod 10 =

(
9
2·61 · 9

)(123455
)

mod 10 =
(

81
61 · 9

)(123455
)

mod 10

=
(

1
61 · 9

)(123455
)

mod 10 = 9

(
123455

)
mod 10 =

(
9
123
)(123454

)
mod 10 = 9

(
123454

)
mod 10

= 9
123

mod 10 = (81)
61 · 9 mod 10 = 1

61 · 9 mod 10 = 9

Die Aufgabe ist damit vollständig gelöst.

Die periodische Folge
[Zurück zur Liste]

Aufgabe. Für eine Folge x1, x2, . . . sei jedes Glied um 1 kleiner als die Summe einer Nachbarn:

xk = xk−1 + xk+1 − 1, k = 2, 3, . . .

Jede solche Folge ist periodisch. Aufgaben: a) Bestimme die Periodenlänge für den allgemeinen Fall, b) Berechne die Summe

der ersten 66 Folgenglieder, c) Gebe von der Folge mit x1 = 1 und x66 = 66 die Folgenglieder x11, x22, . . . , x55 an.

Lösung. Im allgemeinen Fall sieht die Folge also folgendermaßen aus:

x1 x2 x3 x4 x5 x6 x7 x8 x9

a b 1− a+ b 2− a 2− b 1 + a− b a b 1− a+ b

Wie man sieht, hat die Folge im allgemeinen Fall die Periodenlänge 6, also ist a) gelöst. Nun zu b): Es gilt
6∑
i=1

xi = a + b + (1 −

a + b) + (2 − a) + (2 − b) + (1 + a − b) = 6, daraus folgt
66∑
i=1

xi = 11 ·
6∑
i=1

xi = 11 · 6 = 66, also b) fertig. Sei nun also x1 = a = 1

und x66 = x6 = 1 + a− b = 1 + 1− b = 2− b = 66, also a = 1 und b = −64. Also:

x1 x2 x3 x4 x5 x6 x7 x8 x9

1 −64 −64 1 66 66 1 −64 −64

Damit ist c) gelöst: x11 = 66 wegen 11 mod 6 = 5, x22 = 1 wegen 22 mod 6 = 4, x33 = −64 wegen 33 mod 6 = 3, x44 = −64

wegen 44 mod 6 = 2 und x55 = 1 wegen 55 mod 6 = 1. Ende.

Die Symbolrätsel
[Zurück zur Liste]

Aufgabe. In der folgenden Anordnung sind sechs Gleichungen enthalten, wobei jedem Symbol genau eine Ziffer entspricht.

a) Wie lauten die gesuchten Ziffern?
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b) Welche anderen Kombinationen von zweistelligen Zahlen a, b, c sind bei ganzzahligen positiven Ergebnissen d, e, f, g, h

möglich? Man beweise, dass es nur genau vier Kombinationen gibt!

Lösung. Die beiden Aufgaben werden, wie folgt, bearbeitet:

a) Wegen
`
� − �� = �� folgt � = 0. Aus •� −

a
� =

`
� ⇔ •� =

a
� +

`
� folgt � = 5. Weiter gilt

a
5 +

a
0 = �5, also

� = 2, 4, 6, 8. Weil
`
∗5 = �0 gilt, kann � = 6, 8 nicht sein, weil

`
∗5 höchstens 45 = 9 · 5 ist. Es bleibt � = 2, 4. Wäre � = 4,

dann wäre
`

= 8 wegen
`
∗5 = 40; da

a
mindestens 1 ist, folgt aus

`
= 8, dass •0 > 99 ist, also Widerspruch. Folglich kann nur

� = 2 sein. Also gilt
`

= 4, da
`
∗5 = 20 gilt. Wegen

a
5−

a
0 = 5 folgt

a
= 1. Und schließlich folgt aus •0− 15 = 45, dass • = 6

gelten muss. Insgesamt sehen alle Lösungen so aus:

• = 6 � = 0
a

= 1 � = 5
`

= 4 � = 2

Wenn man die Werte alle einsetzt, dann ergibt sich folgendes Bild:

b) Es werden nun die d, e, f, g, h in Abhängigkeit von a, b, c dargestellt:

d = a− b; e = b+ c; f =
a

b
; g = b− c; a−

a · c
b

=
a

b
· (b− c) = f · g = h = d− e = (a− b)− (b+ c) = a− 2b− c

Weil h zwei verschiedene Darstellungen hat, folgt also: a −
a · c
b

= a − 2b − c ⇔ c =
2b2

a− b
, also ist auch c festgelegt. Die Zahlen

c, d, e, f, g, h werden also durch geeignete a, b parametrisiert. Es sollen also a, b, c zweistellig sein. Man sucht nun a, b so, dass

c zweistellig ist, c 6= a und c 6= b ist, und dass gilt b | a und a 6= b. Es gilt 2 ≤
a

b
≤ 9 mit

a

b
∈ N>0, denn wäre

a

b
= 1,

dann wäre a = b, im Widerspruch zu a 6= b.
a

b
≤ 9 gilt, weil

99

10
= 9, 9 ist. Jetzt zeigt man, dass

a

b
= 2 nicht sein kann:

Also b =
a

2
⇒ c =

2 ·
a2

22

a

2

= a, im Widerspruch zu c 6= a. Auch kann nicht
a

b
= 3 sein: b =

a

3
⇒ c =

2 ·
a2

32

2

3
a

=
a

3
= b,

im Widerspruch zu c 6= b. Es gilt bisher
a

b
∈ {4, 5, 6, 7, 8, 9}. Sei nun allgemein

a

b
= λ ∈ {4, 5, 6, 7, 8, 9} mit λ ≥ 5, dann

gilt: b =
a

λ
⇒ c =

2 ·
a2

λ2

a−
a

λ

=
2 ·

a2

λ2

λ− 1

λ
a

=
2 · a

λ · (λ− 1)
=

a

λ · (λ− 1)

2

. Aus λ ≥ 5 folgt λ − 1 ≥ 4, also λ · (λ − 1) ≥ 20, also

λ · (λ− 1)

2
≥ 10. Weil a höchstens 99 ist, folgt, dass c =

a

λ · (λ− 1)

2

≤ 9, 9 ist, also, dass c nicht zweistellig sein kann. Es kann

also nur
a

b
= 4 ⇔ b =

a

4
sein, folglich: c =

2 ·
a2

22

3

4
a

=
a

6
. Weil a durch 4 und durch 6 teilbar ist, ist a auch durch 12 teilbar. a

muss wegen c =
a

6
größer-gleich 60 sein, sonst ist c nicht zweistellig. Von 60 bis 99 sind durch 12 teilbar: a = 60, 72, 84, 96. Die vier

Lösungskombinationen sollten also folgendermaßen lauten:

a b c d e f g h

60 15 10 45 25 4 5 20

72 18 12 54 30 4 6 24

84 21 14 63 35 4 7 28

96 24 16 72 40 4 8 32

Die Zahlen sind in jeder Zeile paarweise verschieden. Die Lösung der Aufgabe ist nun fertig!

Die Pokerblätter
[Zurück zur Liste]

Aufgabe. Folgende zwei Punkte sollen behandelt werden:

1. Wieviele Möglichkeiten gibt es, beim Pokerspiel mit 32 Karten genau ein Paar zu erhalten?
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2. Berechne die Anzahl der Möglichkeiten dafür, dass sich das abgebildete Blatt (siehe oben) durch Tausch von zwei Karten zu

einem Full-House verbessert!

Lösung. Zu 1.: Es gibt 8 Möglichkeiten das Zeichen des Paares festzulegen. Dann gibt es für das Paar
(4

2

)
mögliche Farbkombina-

tionen. Die Anzahl der Paare muss man dann mit der Anzahl an Möglichkeiten für die restlichen 3 Karten multiplizieren. Weil die

Zeichen der restlichen drei Karten verschieden sein sollen und ein Zeichen für das Paar vergeben ist, gibt es also
(7

3

)
Möglichkeiten

für die restlichen drei Karten. Diese drei Karten mit verschiedenen Zeichen gibt es in 43 Farbkonstellationen. Zusammengefasst ist

die Anzahl für genau ein Paar also: [
8 ·
(4

2

)]
·
[(7

3

)
· 43

]
= 107520

Damit ist 1. fertig! Nun zu 2.: Es gibt drei Fälle: (i) Man zieht eines der zwei Asse und eine Karte von den drei anderen (K,Q,J),

Anzahl der Möglichkeiten: 2 · 3 = 6; (ii) Man zieht beide Asse, Anzahl der Möglichkeiten: 1; (iii) Man zieht zwei Karten aus den

drei Karten K,Q und J, Anzahl der Möglichkeiten:
(3

2

)
= 3. Es wurden also alle

(5

2

)
Möglichkeiten betrachtet zwei Karten aus

fünf auszuwählen. Zu (i): Zieht man ein Ass und eine Karte aus K,Q und J, dann bleiben drei verschiedene Karten übrig, also

kann man sich in diesem Fall nicht zu einem Full-House verbessern. Zu (ii): Zieht man die beiden Asse, dann bleiben wieder drei

verschiedene Karten übrig und man kann sich auch hier nicht zu einem Full-House verbessern. Zu (iii): Hat man K,Q gezogen,

dann braucht man zwei J oder 1 Ass und ein J; hat man K, J gezogen, dann braucht man zwei Q oder 1 Ass und ein Q; hat man

Q, J gezogen, dann braucht man zwei K oder 1 Ass und ein K. Es gilt also die folgende Anzahl an Möglichkeiten sich zu einem

Full-House zu verbessern:

3 ·
[(3

2

)
+
(2

1

)
·
(3

1

)]
= 27

Die Lösung der Aufgabe ist daher komplett fertig!

Das MasterMind-Spiel
[Zurück zur Liste]

Aufgabe. Bei dem Spiel MasterMind muss eine Kombination aus den Farben Rot (R), Grün (G) und Blau (B) erraten werden,

wobei man nach jedem Versuch die Information erhält, wie viele Farben richtig gewählt wurden und wie viele Farben bereits an

der richtigen Position stehen. Ein möglicher Spielverlauf ist:

a) Wie viele Kombinationen sind nach der Information zu dem ersten Versuch noch möglich?

b) Welches ist die gesuchte Kombination, die nach den beiden Versuchen eindeutig festliegt?

c) Wenn zusätzlich noch die Farbe Schwarz (S) gegeben wäre, wie viele Kombinationen wären dann noch möglich?

Lösung. Zu a): Nach dem ersten Versuch weiß man, dass die drei Kugeln aus genau 2 Farben bestehen. Mögliche Farbkombinationen

sind: RG, RB und GB. Hat man die Farbkombination RB, dann ist entweder R an der richtigen Position oder B, denn G ist nicht

an der richtigen Position, weil G nicht Rot und nicht Blau ist. Mögliche Kombinationen im Fall RB: Ist R richtig an der ersten

Position, dann muss B an die zweite Position, weil B auf drei sonst auf der richtigen Position wäre. Auf drei kommt dann R, denn,

wenn dort B wäre, dann wäre auch B an der richtigen Stelle. Ist B an der dritten Stelle am richtigen Platz, dann muss R an die

zweite Stelle, weil R auf dem ersten Platz sonst auch an der richtigen Stelle wäre. An die erste Stelle kommt dann B, denn, wenn

dort R wäre, dann wäre auch R an der richtigen Stelle. In den Fällen RB und GB findet man ganz analog zum Fall RG ebenfalls

jeweils zwei mögliche Kombinationen. Insgesamt hat man also:

RB : RBR BRB

RG : RRG GGR

GB : BGG GBB
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Nach dem ersten Versuch sind also noch 6 Kombinationen möglich. Nun zu b): Aus der zweiten Information folgt, dass G nicht auf

der ersten und nicht auf der dritten Position stehen kann. Und B steht nicht auf der zweiten Position. Man kann also aus den 6

brigen Kombinationen falsche Kombinationen ausschließen:

RB : RBR B̂RB

RG : RRG GGR

GB : BGG GBB

Es bleibt BRB übrig und es erfüllt auch beide Informationen aus den zwei Versuchen. Also ist b) gelöst. Jetzt zu c): Wenn nun

Schwarz (S) dazu kommt, dann bleibt BRB weiterhin eine Lösung unter den Kombinationen, die Schwarz nicht enthalten. Man

unterscheidet drei Fälle: RB, RG und GB, wobei Schwarz in der Kombination enthalten ist, denn die ohne Schwarz hat man ja

behandelt. Man hat dann also:

RBS : RBS RSB RSB SRB

RGS : RGS RSG RGS SGR

GBS : BGS SGB GSB SGB

Man kann nun wieder Kombinationen ausschließen: Fall RBS: Ist R an der ersten Position richtig, dann darf B nicht an der zweiten

Stelle stehen, nach Information 2. Nach Information 1 darf B nicht an der dritten Stelle stehen, sonst wären zwei Buchstaben an

der richtigen Stelle. Ist jedoch B auf der dritten Position an der richtigen Stelle, dann darf R nicht an der ersten Stelle stehen, nach

Information 1. Fall RGS: Ist R an der ersten Stelle richtig, dann darf nach Information 1 das G nicht an der zweiten Stelle stehen.

Nach Information 2 darf G auch nicht an dritter Stelle stehen. Ist G an der zweiten Stelle richtig, dann darf nach Information 1 das

R nicht an der ersten Stelle stehen. Fall GBS: Ist B auf drei richtig, dann darf nach Information 1 das G nicht an zweiter Stelle

stehen. Nach Information 2 darf G auch nicht an erster Stelle stehen. Ist G auf zwei richtig, dann darf nach Information 1 das B

nicht an dritter Stelle stehen. Die Kombination BGS kann nach Information 2 nicht sein, sonst wären 2 Farben richtig.

RBS : RB
2
S RSB

1
R

1
SB ŜRB

RGS : RG
1
S RSG

2
R

1
GS ŜGR

GBS : BG
2
S SGB

1
G

2
SB SG

1
B

Es bleiben also unausgeschlossen die Kombinationen SRB und SGR. Zusammen mit BRB sind also insgesamt noch 3 Kombina-

tionen möglich, die alle den zwei Bedingungen genügen. c) ist also auch gelöst. Ende.

Die Verhältnisse im Parallelogramm
[Zurück zur Liste]

Aufgabe. Im Parallelogramm ABCD bezeichne M den Mittelpunkt der Strecke BC und S den Schnittpunkt der Strecke AM

mit der Diagonalen BD.

a) In welchem Verhältnis teilt S die Diagonale BD?

b) In welchem Verhältnis steht die Fläche des Parallelogramms ABCD zur Fläche des Dreiecks BMS?

Lösung. a) Nach dem Strahlensatz gilt
|BS|
|SD|

=
|BM |
|AD|

. Desweiteren gilt DS + SB = DB und setze DS = λ · DB sowie SB =

(1 − λ) ·DB, so dass also gilt DS + SB = λ ·DB + (1 − λ) ·DB = DB. Nun folgt dann
|BS|
|SD|

=
|(1− λ) ·DB|
|λ ·DB|

=
1− λ
λ

=
1

2
=
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∣∣∣∣ 12 · BC
∣∣∣∣

|BC|
=
|BM |
|BC|

=
|BM |
|AD|

⇔ 2−2λ = λ⇔ λ =
2

3
, also 1−λ =

1

3
. Damit ist also gezeigt, dass S die Diagonale BD im Verhältnis

1 : 2 teilt. Völlig analog zeigt man, dass S die Seitenhalbierende AM im Verhältnis 2 : 1 teilt. Nun zu b): Sei
−−→
AB = ~a und

−−→
BC = ~b.

Das Parallelogramm wird von den Vektoren ~a und ~b aufgespannt, also gilt für den Flächeninhalt des Parallelogramms ABCD:

AABCD = | det(~a,~b)| =

∣∣∣∣∣∣det

 a1 b1

a2 b2

∣∣∣∣∣∣ = |a1 · b2 − a2 · b1|

Das Dreieck BMS hingegen wird von den Vektoren
−→
SB =

1

3
·
−−→
DB =

1

3
· (~a−~b) und

−−→
SM =

1

3
·
−−→
AM =

1

3
·
(
~a+

1

2
·~b
)

. Also:

ABMS =
1

2
·
∣∣∣det

(−→
SB,
−−→
SM

)∣∣∣ =
1

2
·
∣∣∣∣det

(
1

3
· (~a−~b),

1

3
·
(
~a+

1

2
·~b
))∣∣∣∣ =

1

2
·

∣∣∣∣∣∣∣∣det


1

3
· (a1 − b1)

1

3
·
(
a1 +

1

2
· b1
)

1

3
· (a2 − b2)

1

3
·
(
a2 +

1

2
· b2
)

∣∣∣∣∣∣∣∣

=
1

2
·
(

1

3

)2

·

∣∣∣∣∣∣∣∣det

 (a1 − b1)

(
a1 +

1

2
· b1
)

(a2 − b2)

(
a2 +

1

2
· b2
)

∣∣∣∣∣∣∣∣ =

1

2
·
(

1

3

)2

·
∣∣∣∣ 32 · (a1 · b2 − b1 · a2)

∣∣∣∣ =
1

12
· |a1 · b2 − b1 · a2|

Die Lösung von b) lautet also: Das Parallelogramm ABCD hat eine 12-mal so große Fläche wie das Dreieck BMS. Fertig!

Der Schnitt von vier Viertelkreisen
[Zurück zur Liste]

Aufgabe. Sei ABCD ein Quadrat mit Kantenlänge r = 1.

Aufgaben: a) Bestimme in der abgebildeten Figur oben den Winkel P̂AQ, b) die Länge der Strecke PQ und c) den Flächeninhalt

F der vier Viertelkreise (schraffiert).

Lösung. Die Koordinaten von P erhält man so: x =
1

2
⇒
(

1

2

)2

+ y2 = 1 ⇔ y2 =
3

4
, also P =

(
1

2
,

√
3

2

)
. Q geht so:

y =
1

2
⇒ x2 +

(
1

2

)2

= 1 ⇔ x2 =
3

4
, also Q =

(√
3

2
,

1

2

)
. Zu a): cos(]PAQ) =

~P · ~Q
|~P | · |~Q|

=

√
3

4
+

√
3

4
1 · 1

=

√
3

2
, also gilt

]PAQ = acos

(√
3

2

)
=
π

6
' 30◦. Nun zu b): |PQ| = |Q − P | =

∣∣∣∣∣∣∣∣

√

3

2
−

1

2
1

2
−
√

3

2


∣∣∣∣∣∣∣∣ =

√√√√2 ·
(√

3

2
−

1

2

)2

=

√
2

2
· (
√

3 − 1). Nun

wird also c) behandelt: F = 4 ·
∫ √3

2
1

2

√
1− x2 −

1

2
dx =

π − 3 ·
√

3 + 3

3
. Also: Ende.
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Aus der Funktionentheorie
[Zurück zur Liste]

Aufgabe. Man beweise mit Funktionentheorie, dass gilt:

∫ ∞
−∞

sin(x)

x
dx = π.

Lösung. Es wird die Funktion
ei·z

z
über die folgende geschlossene Kurve integriert:

Es gilt also das folgende: γ1 = −r + t, t ∈
[
0,−

1

r
+ r

]
; γ2 =

1

r
· e−i·t, t ∈ [π, 2π]; γ3 =

1

r
+ t, t ∈

[
0, r −

1

r

]
und γ4 = r · ei·t,

t ∈ [0, π]. Daraus folgt dann also:

∮
γ

ei·z

z
dz =

∮
γ1

ei·z

z
dz +

∮
γ2

ei·z

z
dz +

∮
γ3

ei·z

z
dz +

∮
γ4

ei·z

z
dz

=

∫ − 1

r
+r

0

ei·(−r+t)

−r + t
· 1 dt+

∫ 2π

π

e
i·

 1

r
·e−i·t


1

r
· e−i·t

·
(

1

r
· e−i·t · (−i)

)
dt+

∫ r−
1

r
0

e
i·

 1

r
+t


1

r
+ t

· 1 dt

+

∫ π

0

ei·(r·e
i·t)

r · ei·t
· (r · ei·t · i) dt

=

∫ − 1

r
+r

0

ei·(−r+t)

−r + t
· 1 dt+

∫ 2π

π

e
i·

 1

r
·e−i·t


· (−i) dt+

∫ r−
1

r
0

e
i·

 1

r
+t


1

r
+ t

· 1 dt+

∫ π

0

e
i·(r·ei·t) · i dt

=

∫ − 1

r
−r

ei·t

t
· 1 dt+

∫ r

1

r

ei·t

t
· 1 dt+

∫ 2π

π

e
i·

 1

r
·e−i·t


· (−i) dt+

∫ π

0

e
i·(r·ei·t) · i dt

Weil γ geschlossen ist und die Polstelle von
ei·z

z
nicht umrundet, gilt

∮
γ

ei·z

z
dz = 0, woraus dann folgt:

0 = lim
r→∞

∫ −
1

r
−r

ei·t

t
dt+

∫ r

1

r

ei·t

t
dt+

∫ 2π

π

e
i·

 1

r
·e−i·t


· (−i) dt+

∫ π

0

e
i·(r·ei·t) · i dt


=

∫ 0

−∞

ei·t

t
dt+

∫ ∞
0

ei·t

t
dt+

∫ 2π

π

e
i·
(
0·e−i·t

)
· (−i) dt+ lim

r→∞

∫ π

0

e
i·(r·(cos(t)+i·sin(t))) · i dt

=

∫ ∞
−∞

ei·t

t
dt− i ·

∫ 2π

π

1 dt+ i · lim
r→∞

∫ π

0

e
i·r·cos(t)−r·sin(t)

dt

=

∫ ∞
−∞

ei·t

t
dt− i · (2π − π) + i ·

∫ π

0

lim
r→∞

(
e
−r·sin(t) · ei·r·cos(t)

)
dt

=

∫ ∞
−∞

ei·t

t
dt− i · π + i ·

∫ π

0

lim
r→∞

(
e
−r·sin(t) · [cos(r · cos(t)) + i · sin(r · cos(t))]

)
dt

=

∫ ∞
−∞

ei·t

t
dt− i · π + i ·

∫ π

0

0 · [cos(∞ · cos(t)) + i · sin(∞ · cos(t))] dt

=

∫ ∞
−∞

ei·t

t
dt− i · π + i · 0

=

∫ ∞
−∞

ei·t

t
dt− i · π
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Denn es gilt cos(r · cos(t)) + i · sin(r · cos(t)) ∈ ([0, 1] + i · [0, 1]) für alle r ∈ R. Es folgt also:∫ ∞
−∞

ei·t

t
dt =

∫ ∞
−∞

cos(t)

t
+ i ·

sin(t)

t
dt = i · π

Durch Vergleich der Imaginärteile erhält man also:

∫ ∞
−∞

sin(t)

t
dt = π. Und damit ist man hier fertig!

Aus der Fourieranalysis
[Zurück zur Liste]

Aufgabe. Man beweise mit Fourieranalysis, dass gilt:

∫ ∞
−∞

(
sin(x)

x

)2

dx = π.

Lösung. Sei g(x) := 1[−1,1](x), dann gilt:

(g ∗ g)(x) =

∫ ∞
−∞

g(x− y) · g(y) dy =

∫ ∞
−∞

1[−1,1](x− y) · 1[−1,1](y) dy =

∫ 1

−1

1[−1,1](x− y) dy

=

∫ x−1

x+1

1[−1,1](x− (x− t)) · (−1) dt =

∫ x+1

x−1

1[−1,1](t) dt

Es gilt also das folgende:

(g ∗ g)(x) =


0, x < −2

x+ 2, −2 ≤ x < 0

−x+ 2, 0 ≤ x ≤ 2

0, 2 < x

Jetzt wird die Fouriertransformierte ĝ von g berechnet:

ĝ(x) =
1
√

2π
·
∫ ∞
−∞

g(t) · e−ixt dt =
1
√

2π

∫ ∞
−∞

1[−1,1](t) · e
−ixt

dt =
1
√

2π
·
∫ 1

−1

e
−ixt

dt =
1
√

2π

∫ 1

−1

cos(−xt) + i · sin(−xt) dt

=
1
√

2π
·
∫ 1

−1

cos(xt)− i · sin(xt) dt =
1
√

2π
·
∫ x

−x

[
cos

(
x ·

z

x

)
− i · sin

(
x ·

z

x

)]
·

1

x
dz

=
1
√

2π
·

1

x
·
(∫ x

−x
cos(z) dz − i ·

∫ x

−x
sin(z) dz

)
=

1
√

2π
·

1

x
· (2 · sin(x)− i · 0) =

2
√

2π
·

sin(x)

x

Nach der Faltungsregel gilt (ĝ ∗ g)(x) =
√

2π · (ĝ(x) · ĝ(x)) =
√

2π ·
4

2π
·
(

sin(x)

x

)2

=
4
√

2π
·
(

sin(x)

x

)2

. Nach dem Umkehrsatz

der Fouriertransformation gilt dann:
1
√

2π
·
∫ ∞
−∞

(ĝ ∗ g)(x) · eixt dx = (g ∗ g)(t)

Daraus folgt also insbesondere:

1
√

2π
·
∫ ∞
−∞

(ĝ ∗ g)(x) · eix·0 dx =
1
√

2π
·
∫ ∞
−∞

4
√

2π
·
(

sin(x)

x

)2

· 1 dx = (g ∗ g)(0) = 2

Daraus folgt dann also

∫ ∞
−∞

(
sin(x)

x

)2

dx = 2 ·
2π

4
= π, die Behauptung. Ende.

Aus der Analysis
[Zurück zur Liste]

Aufgabe. Die Fibonacci-Zahlen werden rekursiv definiert durch fn+2 = fn+1 + fn mit f1 = f0 = 1. Man beweise dann, dass

also die folgende Identität gilt:

∞∑
n=0

1

fn · fn+2

= 1.

Lösung. Der Beweis geht so: fn + fn+1 = fn+2 ⇒ fn+1 = fn+2 − fn ⇒
fn+1

fn+2

= 1−
fn

fn+2

⇒
fn+1

fn · fn+2

=
1

fn
−

1

fn+2

. Also:

1

fn · fn+2

=
1

fn · fn+1

−
1

fn+1 · fn+2

Es folgt also:

g∑
n=0

1

fn · fn+2

=

(
1

f0 · f1

−
1

f1 · f2

)
+

(
1

f1 · f2

−
1

f2 · f3

)
+

(
1

f2 · f3

−
1

f3 · f4

)
+ . . .+

(
1

fg · fg+1

−
1

fg+1 · fg+2

)
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Das ist eine Teleskopsumme, und deswegen gilt:

g∑
n=0

1

fn · fn+2

=
1

f0 · f1

+ 0 + . . .+ 0︸ ︷︷ ︸
g-mal

−
1

fg+1 · fg+2

Weil lim
n→∞

fn =∞ gilt, folgt:
∞∑
n=0

1

fn · fn+2

=
1

f0 · f1

− 0 =
1

1 · 1
= 1. Fertig!

Aus der Gruppentheorie
[Zurück zur Liste]

Aufgabe. Sei p eine Primzahl und G = (G, ·) eine abelsche aber nicht zyklische Gruppe der Ordnung p2. Dann zeige:

1. Es gibt u, v ∈ G mit

(a) ord(u) = ord(v) = p und

(b) jedes a ∈ G lässt sich eindeutig schreiben als a = unvm mit n,m ∈ {0, 1, . . . , p− 1}

2. G ' (Z/pZ)× (Z/pZ)

Lösung. Zu 1.: |G| = p2 ⇒ für alle a ∈ G: ord(a) | p2 ⇒ ord(a) = 1 ∨ ord(a) = p ∨ ord(a) = p2. Wäre ord(a) = p2 = |G|,

dann wäre G =< a >, also G zyklisch, Widerspruch zur Voraussetzung. Gilt ord(a) = 1 ⇒ a = e, davon gibt es in G nur

ein Element. p2 − 1 Elemente haben also die Ordnung p. Wegen ord(u) = p für eines aus den p2 − 1 Elementen, die ungleich e

sind, ist H := {u0, . . . , up−1} eine zyklische Untergruppe von G. Sei v ∈ G \ H. Dann sei K := {v0, . . . , vp−1} (zyklisch). Nun:

uivj = ukul. Es wird nun gezeigt, dass dann gilt (i, j) = (k, l): Es gilt also ui−kvj−k = e ⇒ ui−k = vl−j ∈ H ∩ K =: W . W

ist eine Untergruppe von H und K. Also |W | | p ⇒ |W | = 1 ∨ |W | = p. Wäre |W | = p, dann würde W = H = K folgen, aber

e 6= v ∈ K ist in K enthalten, aber nicht in H. Deswegen kann H = K nicht sein. Es ist also W = {e}. Also: ui−k = vl−j = e mit

0 ≤ |i − k|, |l − j| ≤ p − 1. Folglich gilt: i − k = 0 = l − j, also gilt dann (i, j) = (k, l). Das heißt, dass sich also jedes Element

eindeutig schreiben lässt als unvm = a ∈ G. Bei uivj gilt i, j ∈ {0, . . . , p − 1}, also p2 Elemente in G, die alle verschieden sind.

Nun zu 2.: Definiere:

ϕ : G→ (Z/pZ)× (Z/pZ), a = u
n
v
m 7→ (n mod p,m mod p)

Wohldefiniertheit: Sei unvm mit n,m ∈ Z und un
′
vm
′

mit n′,m′ ∈ {0, . . . , p − 1}. Ist n mod p = n′ und m mod p = m′,

dann ist auch ϕ(unvm) = ϕ(un
′
vm
′
). Homomorphismus: ϕ(ab) = ϕ(unvmun

′
vm
′
) = ϕ(un+n′vm+m′ ) = ((n + n′) mod p, (m +

m′) mod p) = (n mod p,m mod p) + (n′ mod p,m′ mod p) = ϕ(unvm) + ϕ(un
′
vm
′
) = ϕ(a) + ϕ(b). Injektivität: ϕ(a) = ϕ(b) ⇒

ϕ(unvm) = ϕ(un
′
vm
′
) ⇒ (n mod p,m mod p) = (n′ mod p,m′ mod p) ⇒ n ≡ n′ (mod p) ∧m ≡ m′ (mod p) ⇒ a = b. Surjekti-

vität: Sei α = (x mod p, y mod p) ∈ (Z/pZ)× (Z/pZ). Dann ist a = uxvy mit ϕ(α) = a. Also: Ende.

Aus der Zahlentheorie
[Zurück zur Liste]

Aufgabe. In einem Korb sind n Eier. Wenn aus dem Korb Eier entfernt werden, und zwar 2, 3, 4, 5 und 6 auf einmal, so

bleiben 1, 2, 3, 4 und 5 Eier übrig. Wenn aber immer 7 Eier auf einmal entfernt werden, dann bleibt kein Ei übrig. Welches ist

die kleinste Anzahl von Eiern, die sich im Korb befinden kann?

Lösung. Mathematisch betrachtet gilt zunächst:

n mod 2 = 1⇔ (n+ 1) mod 2 = 0

n mod 3 = 2⇔ (n+ 1) mod 3 = 0

n mod 4 = 3⇔ (n+ 1) mod 4 = 0

n mod 5 = 4⇔ (n+ 1) mod 5 = 0

n mod 6 = 5⇔ (n+ 1) mod 6 = 0

n mod 7 = 0

Man sucht nun die kleinste Zahl, die von 2, 3, 4 = 2 · 2, 5, 6 = 2 · 3 geteilt wird. kgV(2, 3, 4, 5, 6) = 2 · 2 · 3 · 5 = 60. Nun gilt

aber mit 60 = n + 1 ⇔ n = 59 nicht 59 mod 7 = 0. Das nächstgrößere Vielfache, dass immer noch von 2, 3, 4, 5, 6 geteilt wird, ist

2 · 60 = 120 = n+ 1. Nach Konstruktion wird n+ 1 = 120 von 2, 3, 4, 5, 6 geteilt und es gilt n mod 7 = 119 mod 7 = 0. Also lautet

die Antwort: Im Korb befinden sich auf jeden Fall nicht weniger als 119 Eier.
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Aus der Algebra
[Zurück zur Liste]

Aufgabe. Sei K ein Körper mit char(K) 6= 2. Man zeige:

(a) Jede Körpererweiterung L : K mit [L : K] = 2 ist von der Form L = K(d) mit d2 ∈ K.

(b) Sei M : K eine Körpererweiterung und a ∈M mit a2 ∈ K, aber a /∈ K. Dann gilt [K(a) : K] = 2.

Lösung. Zu (a): Sei also L : K eine Körpererweiterung mit [L : K] = 2. Sei a ∈ L mit a /∈ K. Dann ist K(a) 6= K. Andererseits

ist K(a) ⊆ L, also folgt [K(a) : K] = 2. Da a /∈ K gilt, sind 1 und a linear unabhängig über K. Andererseits ist a2 linear abhängig

von 1 und a, weil ja dimK K(a) = 2 gilt. Es bleibt also k, l ∈ K mit a2 = k · a + l oder a2 − k · a − l = 0. Es folgt (quadratische

Ergänzung) a2 − k · a +
k2

4
−
k2

4
− l = 0. Diesen Schritt kann man jedoch nur durchführen, wenn man durch 4 teilen kann, wenn

also char(K) 6= 2 gilt. Für d = a −
k

2
gilt dann also d2 = a2 − k · a +

k2

4
=

k2

4
+ l ∈ K. Außerdem gilt d ∈ K(a) und wegen

a = d +
k

2
auch a ∈ K(d). Damit ist K(d) = K(a) = L. Zu (b): Sei M : K eine Körpererweiterung und a ∈ M mit a2 ∈ K,

aber a /∈ K. Sei a2 = k ∈ K, also a2 − k = 0. Da a /∈ K gilt, ist der Grad des Minimalpolynoms von a über K nicht 1. Da für

f = T 2 − k ∈ K[T ] aber f(a) = 0 gilt, ist der Grad des Minimalpolynoms von a über K gleich 2. Es folgt, dass [K(a) : K] = 2

gilt, Beweis für n: Zunächst wird gezeigt, dass K(a) ' K[T ]/(g) gilt, wobei (g) = {x ∈ K[T ] : x(a) = 0} ist. Man sieht leicht, dass

φ : K[T ] → K(a) mit φ(p) = p(a) ein Ringhomomorphismus ist. Weiter gilt kern(φ) = (g) und φ : K[T ] → bild(φ) =: B ⊆ K(a)

ist surjektiv. Nach dem Homomorphiesatz gilt dann K[T ]/(g) ' B. Weil g irreduzibel ist in K[T ], folgt, dass K[T ]/(g) ein Körper

ist, also auch B wegen K[T ]/(g) ' B. B ist also ein Körper, der K und a enthält. Wegen B ⊆ K(a) folgt B = K(a), denn K(a) ist

der kleinste Körper, der K und a enthält. Also gilt tatsächlich K[T ]/(g) ' K(a). Man hat hier bewiesen, dass Elemente aus K(a)

in der Form p(a) mit p ∈ K[T ] darstellbar sind. Sei nun m das Minimalpolynom vom Grad n. Man dividiert dann p durch m mit

Rest und erhält p = q · g + r mit q, r ∈ K[T ] und grad(r) < grad(g) = n. Also gilt: p(a) = q(a) · g(a) + r(a) = r(a), denn g(a) = 0.

Sei r =
n−1∑
i=0

αi · T i mit αi ∈ K (0 ≤ i ≤ n − 1), dann gilt p(a) = r(a) =
n−1∑
i=0

αi · ai. Damit folgt, dass 1, a, a2, . . . , an−1 ein

Erzeugendensystem von K(a) ist. Nun zur Linearen Unabhängigkeit: Seien α0, α1, . . . , αn−1 ∈ K mit
n−1∑
i=0

αi · ai = 0. Dann folgt

p(a) = 0, wobei p =
n−1∑
i=0

αi · T i ∈ K[T ] gilt. Es gilt also p ∈ (g) = {x ∈ K[T ] : x(a) = 0}. Also gibt es ein h ∈ K[T ] mit p = g · h.

Beweis: Es gilt r = p− q · g mit grad(r) < grad(g) = n und also r(a) = p(a)− q(a) · g(a) = 0 + q(a) · 0 = 0, also r ∈ (g), was nicht

sein kann, weil Elemente aus (g) mindestens den Grad n haben, also muss r = 0 sein, folglich gilt r = 0 = p − q · g ⇔ p = q · g,

also g | p. Angenommen, h 6= 0. Dann ist grad(p) = grad(g · h) ≥ grad(g) = n, ein Widerspruch. Also ist h = p = 0 und deswegen

α0 = α1 = . . . = αn−1 = 0. Man hat damit also eine Basis für K(a) aus n Elementen angegeben, folglich gilt dimK K(a) = n, also

[K(a) : K] = n. Damit ist die Aufgabe gelöst!

Aus der Kombinatorik
[Zurück zur Liste]

Aufgabe. Zwei Kandidaten A und B erhalten in einer Wahl a bzw. b Stimmen mit a > b. Auf wie viele Arten können die

Stimmzettel arrangiert werden, so dass bei der Auszählung, eine Stimme nach der anderen, A stets mehr Stimmen als B hat.

Es wird gezeigt, dass es dafür
a− b
a+ b

·
(a+ b

a

)
Möglichkeiten gibt.

Lösung. Der Trick ist eine Folge von Punkten (x, y) in ein Koordinatensystem zu zeichnen, wobei y die Anzahl der A-Stimmen

minus die Anzahl der B-Stimmen ist, wenn x Stimmen ausgezählt sind. Die gesuchten Folgen sind dann also die Wege von (0, 0)

nach (a + b, a − b), welche nach (0, 0) nicht mehr die x-Achse berühren oder schneiden. Der erste Buchstabe muss eine A-Stimme

sein, sonst hat man an der Stelle 1 mehr B-Stimmen als von A. Das heißt, dass man also alle Wege von (1, 1) nach (a + b, a − b)

sucht, die die x-Achse nicht berühren oder schneiden. Weil man a−1 A-Stimmen und b B-Stimmen in unterschiedlicher Reihenfolge

für die Wege behandelt, gibt es also überhaupt
((a− 1) + b

a− 1

)
=
((a− 1) + b

b

)
-viele Wege von (1, 1) nach (a+ b, a− b). Von dieser

Anzahl muss die Anzahl der Wege abgezogen werden, die die x-Achse berühren oder schneiden. Dazu betrachtet man die Wege von

(1,−1) nach (a+b, a−b). Diese Wege müssen also mindestens einmal die x-Achse schneiden. Man spiegelt dann die Pfade zwischen

den Punkten mit y = 0 auf der x-Achse an der x-Achse und lässt den Endpfad über der x-Achse unverändert. Man erhält also

alle Pfade, die von (1, 1) nach (a + b, a − b) laufen und mindestens einmal die x-Achse berühren oder schneiden. Man hat damit

eine Bijektion zwischen Wegen hergestellt. Da man nun von (−1, 1) startet, braucht man genau ein A mehr, also (1, 1), und ein B

weniger, also (1,−1). Die Anzahl der Pfade von (1, 1) nach (a + b, a − b), die die x-Achse schneiden oder berühren, welche gleich

der Anzahl der Pfade ist, die von (1,−1) nach (a + b, a − b) laufen, ist also
((a− 1 + 1) + (b− 1)

(a− 1 + 1)

)
=
(a+ b− 1

a

)
. Also gibt es(a+ b− 1

a− 1

)
−
(a+ b− 1

a

)
=
a− b
a+ b

·
(a+ b

a

)
Möglichkeiten die Stimmen so anzuordnen, wie schon behauptet.
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Aus der Graphentheorie
[Zurück zur Liste]

Aufgabe. Ein (endlicher) Hypergraph H ist ein Paar (E,K), bestehend aus einer (endlichen) Grundmenge (der Menge der

Ecken) E sowie einer Menge K von Teilmengen von E (der Menge) der Hyperkanten. Insbesondere fordert man damit, dass

die Hyperkanten paarweise verschieden sind. Eine Ecke e ∈ E und eine Hyperkante k ∈ K heißen inzident, falls e ∈ k. Der

Grad d(e) einer Ecke e ist definiert als die Anzahl der Hyperkanten mit denen e inzident ist. H heißt r-regulär, falls für jede

Ecke e gilt: d(e) = r. H ist p-uniform, falls jede Kante genau p Ecken enthält.

(a) Man zeige, dass für jeden p-uniformen Hypergraph H = (E,K) gilt:
∑
e∈E

d(e) = p · |K|.

(b) Man zeige oder widerlege die Existenz

(i) eines 5-regulären 3-uniformen Hypergraphen H = (E,K) mit |E| = 4, |K| = 6, bzw.

(ii) eines 4-regulären 5-uniformen Hypergraphen H = (E,K) mit |E| gerade, |K| = 5, bzw.

(iii) eines 2-regulären 5-uniformen Hypergraphen H = (E,K) mit |K| ≤ 4, bzw.

(iv) eines 3-regulären 3-uniformen Hypergraphen H = (E,K) mit |E| = |K| = 7.

Lösung. Zu (a): Sei M := {(e, k) ∈ E ×K : e ∈ k}. Dann gilt einerseits:

|M | = |{(e, k) ∈ E ×K : e ∈ k}| =
∑
e∈E
|{(e, k) ∈ {e} ×K : e ∈ k}| =

∑
e∈E

d(e)

Andererseits gilt aber auch:

|M | = |{(e, k) ∈ E ×K : e ∈ k}| =
∑
k∈K

|{(e, k) ∈ E × {k} : e ∈ k}| =
∑
k∈K

p = p · |K|

Insgesamt hat man also: ∑
e∈E

d(e) = |M | = p · |K|

Nun zu (b): Ist ein Hypergraph r-regulär, dann gilt also d(e) = r, mit (a) also:
∑
e∈E

d(e) = r · |E| = p · |K|. Wenn es einen

Hypergraphen, wie in (i) gäbe, dann gelte 20 = 5 · 4 = r · |E| = p · |K| = 3 · 6 = 18, also ein Widerspruch. (ii): 8i = 4 · (2i) =

r · |E| = p · |K| = 5 · 5 = 25 ist wieder ein Widerspruch, da 25 nicht durch 8 teilbar ist, also gibt es so einen Hypergraphen nicht,

wie in (ii) beschrieben. Nun zu (iii): Sei zunächst |K| ∈ {1, 3}, dann würde folgen 2 · |E| = r · |E| = p · |K| = 5 · 1 = 5 bzw.

2 · |E| = r · |E| = p · |K| = 5 · 3 = 15. Also gibt es in diesem Fall keinen solchen Hypergraphen. Ist |K| = 2: 2 · |E| = r · |E| =

p · |K| = 5 · 2 = 10⇒ |E| = 5. Da der Hypergraph 5-uniform ist, liegen alle 5 Ecken auf einer Kante; damit die andere Kante auch

5 Ecken hat, müssten die beiden Kanten gleich sein, was ein Widerspruch ist. Es bleibt also nur noch der Fall |K| = 4 mit r = 2

und p = 5. Der folgende Graph ist eine Lösung:

Dabei sind Ecken als Punkte und Hyperkanten als Rechtecke dargestellt. Jetzt (iv): So einen Graphen gibt es, die sogenannte

Fano-Ebene, die folgendermaßen aussieht:
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Also ist man hier fertig!

Aus der Diskreten Mathematik
[Zurück zur Liste]

Aufgabe. Sei n ∈ N. Eine Diagonale in einem konvexen n-Eck ist eine Verbindungsstrecke von zwei nicht benachbarten Ecken.

Gegeben sei ein konvexes n-Eck, bei dem sich keine drei Diagonalen in einem gemeinsamen inneren Punkt schneiden. Wieviele

Schnittpunkte von Diagonalen gibt es im Inneren des n-Ecks?

Lösung. Es wird gezeigt, dass die Anzahl der Schnittpunkte von Diagonalen im Inneren des n-Ecks gleich
(n

4

)
ist. Betrachtet man

einen Schnittpunkt, dann ist nach Voraussetzung dieser Schnittpunkt ein Schnittpunkt genau zweier Diagonalen, denn mindestens

drei Diagonalen sind es ja nicht. Man betrachtet nun die Anfangs- und Endecken der beiden Diagonalen, die sich in einem Punkt

schneiden. Man hat also vier Eckpunkte. Hat man einen anderen Schnittpunkt, dann ist mindestens einer der vier Eckpunkte

verschieden. Jedem Schnittpunkt kann man nun auch immer vier Eckpunkte zuordnen. Hat man umgekehrt vier Ecken gegeben, dann

kann man sich darunter auch immer genau einen Schnittpunkt vorstellen. Man hat also eine Bijektion zwischen Schnittpunkt und

den zugehörigen vier Eckpunkten aus den n Ecken hergestellt. Es folgt also, dass es, wie schon behauptet, genau
(n

4

)
Schnittpunkte

geben muss.

Aus der Differentialgeometrie
[Zurück zur Liste]

Aufgabe. Sei α : I → R3 eine geschlossene, reguläre, parametrisierte Kurve mit nicht verschwindender Krümmung. Man

nehme an, dass die durch den Normalenvektor n(s) in der Einheitssphäre S2 beschriebene Kurve (die Normalenindikatrix)

einfach ist. Dann wird S2 durch n(I) in zwei abgeschlossene Gebiete mit gleichem Flächeninhalt zerlegt.

Lösung. Man nimmt an, dass α nach der Bogenlänge s parametrisiert ist. s̄ bezeichne die Bogenlänge der Kurve n = n(s) auf

S2. Die geodätische Krümmung κ̄g von n(s) ist: κ̄g = 〈n̈, n × ṅ〉, wobei die Punkte für Ableitungen bezüglich s̄ stehen. Nach den

Frenet’schen Formeln aus der Kurventheorie gilt
d

ds
n = −kt − τb, wobei t der Einheitstangentenvektor, n der Normalenvektor, b
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der Binormalenvektor, k die Krümmung und τ die Torsion der Kurve α ist. Es gilt zunächst:

ṅ =
d

ds̄
n(s(s̄)) =

dn

ds

ds

ds̄
= (−kt− τb) ·

ds

ds̄

n̈ = (−kt− τb) ·
d2s

ds̄2
+

(
−k′ ·

ds

ds̄
· t− k · t′ ·

ds

ds̄
− τ ′ ·

ds

ds̄
· b− τ · b′ ·

ds

ds̄

)
·
ds

ds̄

= (−kt− τb) ·
d2s

ds̄2
+ (−k′t− τ ′b− kt′ − τb′) ·

(
ds

ds̄

)2

= (−kt− τb) ·
d2s

ds̄2
+ (−k′t− τ ′b) ·

(
ds

ds̄

)2

− (kt
′
+ τb

′
) ·
(
ds

ds̄

)2

= (−kt− τb) ·
d2s

ds̄2
+ (−k′t− τ ′b) ·

(
ds

ds̄

)2

− (k · kn+ τ · τn) ·
(
ds

ds̄

)2

= (−kt− τb) ·
d2s

ds̄2
+ (−k′t− τ ′b) ·

(
ds

ds̄

)2

− (k
2

+ τ
2
) · n ·

(
ds

ds̄

)2

Denn es gilt t′ = kn und b′ = τn. Weiter gilt noch:

s̄(s) =

∫ s

0

∣∣∣∣ ddxn(x)

∣∣∣∣ dx =

∫ s

0

|(−kt− τb)(x)| dx⇒
d

ds
s̄(s) = |(−kt− τb)(s)| = |(kt+ τb)(s)| =

√
k2 + τ2 =

ds̄

ds

Das gilt, weil t und b die Länge 1 haben und senkrecht zueinander stehen. Es folgt:
ds

ds̄
=

1
√
k2 + τ2

, also:

(
ds

ds̄

)2

=
1

k2 + τ2

Jetzt kann man die geodätische Krümmung ausrechnen:

κ̄g = 〈n× ṅ, n̈〉 =

〈
n×

[
(−kt− τb) ·

ds

ds̄

]
, n̈

〉
=
ds

ds̄
· 〈−k · (n× t)− τ · (n× b), n̈〉 =

ds

ds̄
· 〈−k · (−b)− τ · t, n̈〉

=
ds

ds̄
· 〈kb− τt, n̈〉 =

ds

ds̄
·
〈
kb− τt, (−kt− τb) ·

d2s

ds̄2
+ (−k′t− τ ′b) ·

(
ds

ds̄

)2

− n
〉

=
ds

ds̄
·
(
d2s

ds̄2
· 〈kb− τt,−kt− τb〉+

(
ds

ds̄

)2

· 〈kb− τt,−k′t− τ ′b〉 − 〈kb− τt, n〉
)

=
ds

ds̄
·
(
d2s

ds̄2
· 0 +

(
ds

ds̄

)2

· 〈kb− τt,−k′t− τ ′b〉 − 0

)
=

(
ds

ds̄

)3

· 〈kb− τt,−k′t− τ ′b〉

=

(
ds

ds̄

)3

· (〈kb,−k′t〉+ 〈kb,−τ ′b〉+ 〈−τt,−k′t〉+ 〈−τt,−τ ′b〉) =

(
ds

ds̄

)3

· (0 + 〈kb,−τ ′b〉+ 〈−τt,−k′t〉+ 0)

=

(
ds

ds̄

)3

· (−kτ ′ · 〈b, b〉+ τk
′ · 〈t, t〉) =

(
ds

ds̄

)3

· (−kτ ′ · 1 + τk
′ · 1) =

(
ds

ds̄

)3

· (−kτ ′ + k
′
τ)

= −
τ ′k − k′τ
k2 + τ2

·
ds

ds̄
= −

d

ds
atan

(
τ(s)

k(s)

)
·
ds

ds̄
= −

d

ds̄
atan

(
τ

k
(s(s̄))

)

Dabei gilt n×t = −b und n×b = t, weil t, n, b das Frenet’sche Dreibein bilden. Aus dem gleichen Grund gilt 〈kb−τt,−kt−τb〉 = 0,

〈kb−τt, n〉 = 0, 〈kb,−k′t〉 = 0 und 〈−τt,−τ ′b〉 = 0. Man wendet nun das Gauß-Bonnet-Theorem auf eines der von n(I) berandeten

abgeschlossenen Gebiete R an und benutzt die Tatsache, dass K ≡ 1 gilt:

2π =

∫
R

K dA+

∫
∂R

κ̄g(s̄) ds̄

=

∫
R

1 dA−
∫ l∂R

0

d

ds̄
atan

(
τ

k
(s̄)

)
ds̄

=

∫
R

dA−
[
atan

(
τ

k
(s̄)

)]s̄=l∂R
s̄=0

= Flächeninhalt von R− 0

= Flächeninhalt von R

Es gilt nämlich

[
atan

(
τ

k
(s̄)

)]s̄=l∂R
s̄=0

= 0, weil die Kurve ∂R, parametrisiert nach Bogenlänge s̄, geschlossen ist und deswegen

τ

k
(0) =

τ

k
(l∂R) gilt. Wichtig dafür, dass

∫
∂R

κ̄g ds̄ = 0 ist, war hier, dass in −atan

(
τ

k
(s̄)

)
gilt: k(s̄) 6= 0 für alle s̄. Da der

Flächeninhalt von S2 gleich 4π ist, folgt also die Behauptung, dass die geschlossene Kurve n(s̄) die Oberfläche S2 in zwei gleich-

große Flächen zerlegt. Man ist hier also fertig!
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Die schwere IQ-Test-Aufgabe
[Zurück zur Liste]

Aufgabe. Wenn DGJ + JAE + BHF = DDAB und
F · C
J

= GA, wieviel ist dann
A

G
?

Lösung. Es gilt erstmal D 6= 0, weil sonst in DGJ die 0 führende Ziffer wäre. Wegen 999 + 999 + 999 = 2997 gilt also D ≤ 2.

Angenommen, D = 2, dann gilt:

2 G J

+ J A E

+ B H F

0, 1, 2

2 2 A B

Es gilt 9 + 8 + 7 = 24, also ist der Übertrag der Summe J +E +F höchstens 2. Der Übertrag von (G+A+H) + 2, (G+A+H) +

1, (G+A+H)+0 ist ebenfalls höchstens 2, denn (9+8+7)+2 = 26. Also ist der Übertrag bei 2+J+B nun 0, 1, 2. (2+J+B)+2

ist höchstens (2 + 9 + 8) +2 ≤ 21, also kann (2 +J+B) + 2, (2 +J+B) + 1, (2 +J+B) + 0 nicht gleich 22 sein. Es folgt, dass D = 1

gilt. Es wird nun gezeigt, dass A 6= 0 ist, sei also A = 0: Es gilt J ·GA = F ·C ≤ 9 · 8 = 72. Es gilt J 6= 0, andernfalls wäre in JAE

die 0 führende Ziffer. Es gilt auch J 6= 1, weil D = 1. Also gilt J ≥ 2. Weiter: G 6= 0, sonst wäre in GA die 0 führende Ziffer. Auch:

G 6= 1, weil D = 1. Die Kandidaten für GA = G0 sind also: G0 = 20, 30, 40, 50, 60, 70, 80, 90. Wegen J · G0 = F · C ≤ 9 · 8 = 72

und J ≥ 2 kann 40, 50, 60, 70, 80, 90 für G0 nicht sein. Es bleibt 20, 30. Es muss gelten J ≤ 3, denn wäre J ≥ 4, dann gelte für

G0 = 20, 30 nicht J ·G0 ≤ 72. Also ist J = 2, 3. Ist J = 2, dann muss G = 3 sein, also J ·G0 = 2 ·30 = 60 = F ·C, aber 60 = 2 ·2 ·3 ·5

kann man nicht als Produkt zweier Ziffern darstellen. Ist J = 3, dann muss G = 2 sein, also J ·G0 = 3 ·20 = 60 = F ·C, und wieder

kann man 60 = 2 · 2 · 3 · 5 nicht als Produkt zweier Ziffern darstellen. Es muss also A 6= 0 gelten, auch: A 6= 1. Man nimmt nun

an, dass G | A gilt. Es gilt A = 2, 3, 4, 5, 6, 7, 8, 9. Da muss man die Primzahlen p = 2, 3, 5, 7 streichen, weil sonst aus G | A = p

dann G = A oder G = 1 folgen würde, aber: G 6= 1, und A und G müssen verschieden sein. Also: A = 4, 6, 8, 9. Aus G | A folgt:

Ist A = 4, dann muss G = 2 sein. Ist A = 6, dann ist G = 2, 3. Ist A = 8, dann muss G = 2, 4 sein. Ist A = 9, dann muss G = 3

sein. Die Kandidaten von GA sind also: GA = 24, 26, 36, 28, 48, 39 = 24, 26, 28, 36, 39, 48. Es muss wieder 0, 1 6= J ≤ 3 gelten, denn

sonst gilt wegen J ≥ 4 nicht J ·GA = F · C ≤ 9 · 8 = 72. Ist J = 2, dann gilt GA = 36, 39, 48. Man kann 39 und 48 streichen, weil

J · GA = 2 · 39, 2 · 48 > 72. Es bleibt GA = 36, also J · GA = 2 · 36 = 72 = 9 · 8 = F · C, also F = 8, 9. Wegen J = 2, GA = 36

(G = 3, A = 6) und D = 1 gilt dann das Folgende:

1 3 2

+ 2 6 E

+ B H F

1

1 1 6 B

Der Übertrag von 2 + E + F ist wegen F = 8, 9 mindestens 1. Wegen 2 + 9 + 8 = 19 < 20 ist er auch höchstens 1, also insgesamt

gleich 1. Wegen (3 + 6 + 9) + 1 = 19 < 26 und (3 + 6 + H) + 1 > 6 muss also gelten: (3 + 6 + H) + 1 = 16 ⇒ H = 6,

Widerspruch, denn es gilt schon A = 6. Es muss also J = 3 gelten, also GA = 24, 26, 28, 48. Man kann also 26, 28, 48 streichen, weil

J ·GA = 3 · 26, 3 · 28, 3 · 48 > 72 ist. Es bleibt also GA = 24, also 72 = 3 · 24 = J ·GA = F · C = 9 · 8 (⇒ F = 8, 9). Also:

1 2 3

+ 3 4 E

+ B H F

1

1 1 4 B

Der Übertrag von 3+E+F ist wegen 3+9+8 ≤ 20 höchstens 2. Es gilt 2+4+H > 4 und (2+4+H)+2 ≤ (2+4+9)+2 = 17 < 24,

also ist der Übertrag von 2 + 4 + H + 0, 1, 2 gleich 1. Es folgt B = 6, also: Wegen 3 + E + F ≤ 3 + 8 + 9 = 20 < 2B = 26 und

3 + E + F > 6 (wegen F = 8, 9) folgt, dass der Übertrag von 3 + E + F gleich 1 ist, also:

1 2 3

+ 3 4 E

+ 6 H F

1 1

1 1 4 6

Es folgt dann H = 7. Es bleiben die Ziffern 5, 8, 9 übrig. Es muss gelten: 3 + E + F = 16 ⇔ E + F = 13, also E,F = 5, 8. Weil
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F = 8, 9 gilt, folgt E = 5 und F = 8. Also hat man:

1 2 3

+ 3 4 5

+ 6 7 8

1 1

1 1 4 6

Die Lösung lautet also: A = 4, B = 6, C = 9, D = 1, E = 5, F = 8, G = 2, H = 7, I = 0, J = 3 und
A

G
=

4

2
= 2 = G, denn I = 0,

weil C 6= 0, denn:
F · C
J

= GA. Wäre also C = 0, dann folgte GA = 0, Widerspruch. Weil C 6= ist, folgt C = 9. Es wird nun noch

gezeigt, dass GA mit G - A keine Lösung erlauben. Es gilt A,G 6= 0, 1. Die Kandidaten von GA seien in einer Matrix (mij) mit

2 ≤ i ≤ 9 und 2 ≤ j ≤ 9 sowie mij = ij, wobei mii = × (2 ≤ i ≤ 9) sei, weil die Ziffern verschieden sein müssen, aufgelistet.

Wegen J ≥ 2 und J ·GA ≤ 72 kann man in der Matrix (mij) die Zeilen für i = 4, 5, 6, 7, 8, 9 streichen, und es bleiben die folgenden

Kandidaten:  × 23 24// 25 26// 27 28// 29

32 × 34 35 36// 37 38 39//


Dabei sind die Zahlen in der Matrix gestrichen, weil dasGA sind mitG | A. Es bleiben also die Kandidaten:GA = 23, 25, 27, 29, 32, 34, 35, 37, 38.

Es gilt wieder J ≤ 3, denn sonst (J ≥ 4) gelte für die Kandidaten von GA nicht J ·GA ≤ 72. Also gilt J = 2, 3, also kann man 23, 32

streichen. Es bleiben GA = 25, 27, 29, 34, 35, 37, 38, Weil J ≥ 2 und J · GA ≤ 72 gelten, kann man auch 37, 38 (2 · 37 = 74 > 72

und 2 · 38 = 76 > 72) streichen. Es bleiben GA = 25, 27, 29, 34, 35. Ist J = 3, dann gilt für alle Kandidaten von GA nun

72 ≥ J · GA ≥ 3 · 25 = 75, also ein Widerspruch. Es muss also J = 2 gelten, dann bleiben die Kandidaten GA = 34, 35 (Ziffer

2 ist schon an J vergeben). Es gilt J · GA = F · C (J = 2). Es gilt dann J · GA = 2 · 34 = 68 oder J · GA = 2 · 35 = 70, aber

68 = 2 ·2 ·17 und 70 = 2 ·5 ·7 lassen sich nicht als Produkt zweier Ziffern darstellen. Es folgt also, dass die Lösung des Rechenrätels

hier eindeutig ist.

Die Seitenhalbierenden im Dreieck
[Zurück zur Liste]

Aufgabe. Man beweise, dass das Teilungsverhältnis der Seitenhalbierenden im Dreieck 1 : 2 ist.

Lösung. Zuerst kommt ein Bild:

Es gilt dann:
−−−→
AMC +

−−−→
MCS =

−→
AS, also:

−−−→
AMC +

−−−→
MCS−

−→
AS = ~0, also:

1

2
·
−−→
AB+ s ·

−−−→
MCC− r ·

−−−→
AMA = ~0. Nun gilt:

−−→
AB = ~c,

−−→
BC = ~a,

−−−→
MCC =

1

2
· ~c+ ~a und

−−−→
AMA = ~c+

1

2
· ~a. Also gilt:

~0 =
1

2
· ~c+ s ·

(
1

2
· ~c+ ~a

)
− r ·

(
~c+

1

2
· ~a
)

=
1

2
· ~c+ s ·

1

2
· ~c+ s · ~a− r · ~c− r ·

1

2
· ~a =

(
1

2
+ s ·

1

2
− r
)
· ~c+

(
s− r ·

1

2

)
· ~a
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Da die Vektoren ~c und ~a linear unabhängig sind, weil sie ein Dreieck aufspannen, folgt also
1

2
+ s ·

1

2
− r = 0 und s − r ·

1

2
= 0.

Folglich gilt s = r ·
1

2
, also

1

2
+

(
r ·

1

2

)
·

1

2
− r = 0⇒

1

2
−

3

4
· r = 0⇒

1

2
=

3

4
· r ⇒ 1 =

3

2
· r ⇒ r =

2

3
, also s = r ·

1

2
=

2

3
·

1

2
=

1

3
.

Man hat also: r =
2

3
und s =

1

3
. Damit ist also gezeigt, dass die Seitenhalbierenden

−−−→
AMA und

−−−→
MCC durch den Punkt S im

Verhältnis 1 : 2 geteilt werden. Folgendes Bild:

Es gilt im Bild:
−→
CA = ~b. Nun wird jetzt gezeigt, dass auch die Seitenhalbierende

−−−→
BMB so geteilt wird: Es gilt:

−→
BS =

−→
AS −

−−→
AB =

2

3
·
−−−→
AMA −

−−→
AB =

2

3
·
(
~c+

1

2
· ~a
)
− ~c =

2

3
· ~c +

1

3
· ~a − ~c =

1

3
· ~a −

1

3
· ~c, und es gilt:

−−−→
BMB =

−−−→
AMB −

−−→
AB = −

1

2
· ~b − ~c =

−
1

2
· (−~c− ~a)− ~c =

1

2
· (~c + ~a)− ~c =

1

2
· ~c +

1

2
· ~a− ~c =

1

2
· ~a−

1

2
· ~c, denn es gilt ~c + ~a = −~b. Es folgt wegen

−→
BS =

1

3
· ~a−

1

3
· ~c

und
−−−→
BMB =

1

2
· ~a −

1

2
· ~c also

2

3
·
−−−→
BMB =

−→
BS. Daraus folgen zwei Dinge: 1.: Weil

−−−→
BMB und

−→
BS kolinear sind, folgt, dass auch

die Seitenhalbierende
−−−→
BMB den Punkt S schneidet, 2.: Das Teilungsverhältnis der Seitenhalbierenden

−−−→
BMB durch den Punkt S

ist 1 : 2. Damit ist der Beweis also vollständig erbracht.

Die fixpunktfreien Permutationen
[Zurück zur Liste]

Aufgabe. Man zeige, dass die Anzahl der fixpunktfreien Permutationen einer n-elementigen Menge gegeben ist durch:

dn = n! ·
n∑
k=0

(−1)k

k!

Lösung. Es bezeichne Ai := {π ∈ Sn : π(i) = i} die Menge aller Permutationen, die einen Fixpunkt an der Stelle i haben. Dann

hat die Menge der fixpunktfreien Permutationen die Darstellung Dn = Sn \(A1∪ . . .∪An). Dann gilt also: dn = n!−|A1∪ . . .∪An|.

Es gilt die Siebformel von Sylvester, die man ganz einfach mit vollständiger Induktion beweist:

|A1 ∪ . . . ∪ An| =
n∑
k=1

(−1)
k−1 ·

∑
1≤i1<...<ik≤n

|Ai1 ∩ . . . ∩ Aik |

Es gilt |Ai1 ∩ . . . ∩ Aik | = (n − k)!, weil k Stellen fix sind.
(n
k

)
ist die Anzahl aus n Stellen k Fixpunkte auszuwählen, also gilt:∑

1≤i1<...<ik≤n

|Ai1 ∩ . . . ∩ Aik | =
(n
k

)
· (n− k)! =

n!

k!
. Daraus folgt also:

|A1 ∪ . . . ∪ An| =
n∑
k=1

(−1)
k−1 ·

n!

k!
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Es folgt also die Lösung dieser Aufgabe:

dn = n!− |A1 ∪ . . . ∪ An| = n!−
n∑
k=1

(−1)
k−1 ·

n!

k!
= n! +

n∑
k=1

(−1)
k ·

n!

k!
=

n∑
k=0

(−1)
k ·

n!

k!
= n! ·

n∑
k=0

(−1)k

k!

Das war es auch schon!

Die explizite Formel für die Fibonacci-Zahlen
[Zurück zur Liste]

Aufgabe. Es soll bewiesen werden, dass die n-te Fibonacci-Zahl gegeben ist durch fn =
1
√

5
·
[
ϕn −

(
−

1

ϕ

)n]
, wobei dort

ϕ :=
1 +
√

5

2
der goldene Schnitt sei.

Lösung. Sei der Endomorphismus a : V → V mit V = R2 und a(v) = A ·v mit A =

 1 1

1 0

 gegeben. Zur Bestimmung der Ei-

genvektoren von a berechnet man zunächst die Eigenwerte von a. Das charakteristische Polynom ist χa(λ) = det
(
MBB (a)− λ · E2

)
=

det(A − λ · E2) = det

 1 1

1 0

−
 λ 0

0 λ

 = det

 1− λ 1

1 −λ

 = (1 − λ) · (−λ) − 1 · 1 = λ2 − λ − 1, wobei

B =

 1

0

 ,

 0

1

 die Standardbasis von V = R2 sei, also MBB (a) = A. Die Nullstellen des charakteristischen Polynoms

sind die Eigenwerte von a: χa(λ) = 0⇔ λ2 − λ− 1 = 0⇔ λ1,2 =
1±
√

5

2
. Sei ϕ :=

1 +
√

5

2
, dann sind die Eigenwerte von a also

λ1 = ϕ und λ2 = −
1

ϕ
. Weil χ(λ) = λ2 − λ− 1 = (λ− λ1) · (λ− λ2) gilt, ist a diagonalisierbar. Es werden nun die Eigenvektoren

v1 und v2 zu den Eigenwerten λ1 und λ2 bestimmt. Es muss gelten: a(v1) = A · v1 = λ1 · v1 und a(v2) = A · v2 = λ2 · v2. Es

ergibt sich daraus: v1 =

 1

1
ϕ

 und v2 =

 1

−ϕ

. Weil die Eigenwerte λ1 und λ2 verschieden sind, folgt, dass v1 und v2

linear unabhängig sind. Die Eigenvektoren v1 und v2 bilden eine maximale linear unabhängige Teilmenge von V = R2, denn fügt

man zu v1, v2 einen Vektor v ∈ R2 \ {v1, v2} hinzu, dann gilt 2 = dimR R
2 < |{v1, v2, v}| = 3, also folgt aus einer Folgerung aus

dem Austauschsatz, dass v1, v2, v linear abhängig sind. Also bildet (v1, v2) eine Basis von V = R2. Sei also B′ = (v1, v2), dann gilt

MB
′
B′ (a) =

 λ1 0

0 λ2

. Weiter gilt aus der Linearen Algebra: A = MBB (a) = T−1 · MB
′
B′ (a) · T = T−1 ·

 λ1 0

0 λ2

 · T
mit T := MB

′
B (id). Wegen T · MBB′ (a) = MB

′
B (a) · MBB′ (a) = MB

′
B′ (a) = E2 folgt

 1 1

1
ϕ −ϕ

 = MBB′ (a) = T−1. Also

folgt: A =

 1 1

1 0

 =

 1 1

1
ϕ −ϕ

 ·
 ϕ 0

0 − 1

ϕ

 ·
 1 1

1
ϕ −ϕ

−1

. Also gilt An =

 1 1

1 0

n =

 1 1

1
ϕ −ϕ

 ·
 ϕn 0

0
(
− 1

ϕ

)n
·
 1 1

1
ϕ −ϕ

−1

=

 1 1

1
ϕ −ϕ

·
 ϕn 0

0
(
− 1

ϕ

)n
· −1
√

5
·

 −ϕ −1

− 1
ϕ 1

. Es folgt also

 1 1

1 0

n =

−
1
√

5

 −ϕn+1 +

(
−

1

ϕ

)n+1

−ϕn +

(
−

1

ϕ

)n
−ϕn +

(
−

1

ϕ

)n
−ϕn−1 +

(
−

1

ϕ

)n−1

, also gilt dann:

 1 1

1 0

n ·
 1

0

 =


1
√

5
·
[
ϕn+1 −

(
−

1

ϕ

)n+1]
1
√

5
·
[
ϕn −

(
−

1

ϕ

)n]


Die Fibonacci-Zahlen werden rekursiv definiert: fn+1 = fn+fn−1 mit f0 = 0 und f1 = 1 für alle n ≥ 1. Es wird nun bewiesen, dass

gilt:

 1 1

1 0

n ·
 1

0

 =

 fn+1

fn

. Beweis durch vollständige Induktion: I.A.: Für n = 0 gilt

 1 1

1 0

0

·

 1

0

 = 1 0

0 1

 ·
 1

0

 =

 1

0

 =

 f1

f0

. Für n = 1 gilt

 1 1

1 0

1

·

 1

0

 =

 1 1

1 0

 ·
 1

0

 =

 1

1

 =

 f2

f1

. Der Induktionsanfang ist also O.K.! I.V.: Gelte die Behauptung für n. I.S.:

 1 1

1 0

n+1

·

 1

0

 =

 1 1

1 0

 · 1 1

1 0

n ·
 1

0

 =
I.V.

 1 1

1 0

 ·
 fn+1

fn

 =

 fn+1 + fn

fn+1

 =

 fn+2

fn+1

. Also ist der Beweis vollbracht. Also:

 1 1

1 0

n ·
 1

0

 =

 fn+1

fn

 =


1
√

5
·
[
ϕn+1 −

(
−

1

ϕ

)n+1]
1
√

5
·
[
ϕn −

(
−

1

ϕ

)n]

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Es folgt also fn =
1
√

5
·
[
ϕn −

(
−

1

ϕ

)n]
, die Behauptung.

Die Raucher in einem Zimmer
[Zurück zur Liste]

Aufgabe. In einem Zimmer sitzen 4 Raucher und vergnügen sich beim Skatspiel. Das Zimmer enthalte V Liter Luft. Die

Raucher stoßen je Minute Z Liter Zigarettenqualm aus, der 4 Volumenprozent Kohlenmonoxid (CO) enthalte und sich sofort

mit der Zimmerluft gleichmäßig vermischt. Ein Ventilator ersetzt pro Minute Z Liter der Zimmerluft durch Frischluft.

1. Wie hoch ist t Minuten nach Beginn des Raucherabends die CO-Konzentration im Raum?

2. Nach welcher Zeit T wird eine CO-Konzentration von 0, 012 Prozent erreicht? Wird ein Mensch zu lange diser Konzen-

tration ausgesetzt, treten Schädigungen ein.

3. Sei V = 40m3 = 40000l und Z = 2
l

min
- berechne T !

Lösung. Bezeichne y(t) die Volumenmenge an Kohlenmonoxid in der Zimmerluft. Pro Minute gelangen von den Rauchern c·Z Liter

Kohlenmonoxid in das Zimmer. Durch den Ventilator fließen im gleichen Zeitraum Z Liter Luft mit der CO-Konzentration
y(t)

V
ab. Die Funktion y(t) beschreibt einen Ausgleichsvorgang erster Ordnung und genügt nämlich der folgenden Differentialgleichung:

y
′
(t) = c · Z − Z ·

y(t)

V
, also: y

′
(t) +

Z

V
· y(t) = c · Z

Als Anfangsbedingung befinde sich im Zimmer reine Luft: y(0) = 0. Zuerst löst man die homogene Differentialgleichung y′h(t)+
Z

V
·

yh(t) = 0, also y′h(t) = −
Z

V
· yh(t), also

y′h(t)

yh(t)
= −

Z

V
. Integriert man auf beiden Seiten, dann erhält man ln(y(t)) = −

Z

V
· t + C,

also y(t) = A ·e
−
Z

V
·t

mit A := eC . Die partikuläre Lösung erhält man durch Variation der Konstanten: Setze yp(t) = A(t) ·e
−
Z

V
·t

,

dann gilt y′p(t)+
Z

V
·yp(t) = c ·Z, also

A′(t) · e−ZV ·t + A(t) · e
−
Z

V
·t
·
(
−
Z

V

)+
Z

V
·A(t) ·e

−
Z

V
·t

, also A′(t) ·e
−
Z

V
·t

= c ·Z, also

A′(t) = c·Z ·e
Z

V
·t

. Integrieren auf beiden Seiten liefert A(t) = c·V ·e
Z

V
·t

+C′. Man hat also yp(t) =

c · V · e ZV ·t + C′

··e−ZV ·t =

c·V+C′·e
−
Z

V
·t

. Die allgemeine Lösung also lautet: y(t) = yh(t)+yp(t) = A·e
−
Z

V
·t

+

c · V + C′ · e
−
Z

V
·t

 = (A+C′)·e
−
Z

V
·t

+c·V .

Wegen y(0) = 0 folgt (A+C′) ·1+c ·V = 0, also A+C′ = −c ·V , und daraus folgt also, dass die allgemeine Lösung folgendermaßen

lautet:

y(t) = −c · V · e
−
Z

V
·t

+ c · V = c · V − c · V · e
−
Z

V
·t

= c · V ·

1− e
−
Z

V
·t


Gesucht war die Konzentration an CO in der Zimmerluft. Man teilt beide Seiten der Gleichung durch das Volumen V und erhält:

CCO(t) =
y(t)

V
= c ·

1− e
−
Z

V
·t

. Offensichtlich konvergiert CCO(t) für t → ∞ gegen c. Sei nun also 40m3 = 40000l, Z =

2
l

min
und c = 0, 04, denn 4 Volumenprozent von Z Litern Zigarettenqualm pro Minute ist CO, Kohlenmonoxid. Es wird jetzt

die Zeit T bestimmt, nach der eine Konzentration von 0, 012 Prozent an Kohlenmonoxid erreicht ist: CCO(T ) = 0, 00012, also

0, 00012 = 0, 04 ·

1− e
−

2

40000
·T
, also

0, 00012

0, 04
= 1− e

−
1

20000
·T

, also e
−

1

20000
·T

= 1− 0, 003, also −
1

20000
· T = ln(0, 997),

also T = −20000 · ln(0.997) ≈ 60, 0901840[min]. Nach ungefähr einer Stunde ist die schädliche Konzentration von 0, 012 Prozent

im Zimmer erreicht! Das war es!

Der Schäferhund und seine Schafherde
[Zurück zur Liste]

Aufgabe. Der Schäferhund Boy befindet sich am Ende einer 1km langen Schafherde, die sich mit konstanter Geschwindigkeit

vorwärtsbewegt. Zur Kontrolle läuft er nun - mit einer größeren konstanten Geschwindigkeit als die Herde - vom Ende bis zur

Spitze der Herde und wieder an seinen Platz am Ende der Herde zurück. Als er wieder hinten ankommt, ist die Schafherde

genau einen Kilometer weiter gewandert. Wie weit ist Boy gelaufen?
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Lösung. Sei vS die konstante Geschwindigkeit des Schäferhundes, und vH die der Schafherde. Der Schäferhund braucht für seinen

Weg die Zeit tg = t1+t2 =
1

vS + vH
+

1

vS − vH
. Also hat die Herde die Geschindigkeit vH =

1

tg
. Also gilt: tg =

1

vS + 1
tg

+
1

vS − 1
tg

,

also tg =
tg

vS · tg + 1
+

tg

vS · tg − 1
. Nun ist vS ·tg =: sS gerade der Weg, den der Hund zurücklegt. Es gilt also: 1 =

1

sS + 1
+

1

sS − 1
.

Sei x := sS , dann gilt also 1 =
1

x+ 1
+

1

x− 1
, also (x + 1) · (x − 1) = (x − 1) + (x + 1), also x2 − 1 = 2x, also x2 − 2x − 1 = 0,

also x1,2 = −
−2

2
±

√
(−2)2

4
− (−1) = 1±

√
1 + 1 = 1±

√
2. Weil 1−

√
2 negativ ist, ist die Lösung also sS = x = (1 +

√
2)[km].

Das war es!

Die Luftwiderstandsbeiwert-Bestimmung
[Zurück zur Liste]

Aufgabe. Die Bewegungsgleichung eines gleichförmig beschleunigten Kraftfahrzeugs lautet unter Berücksichtigung des Luftwi-

derstandes bei Vernachlässigung aller übrigen Kräfte:

m · v′(t) = m · a−
1

2
· cW · ρ · A · v(t)

2

Dabei soll gelten:

m = 800 kg Fahrzeugmasse

v
m

s
Geschwindigkeit

a = 1
m

s2
Beschleunigung

cW = ? Luftwiderstandsbeiwert (dimensionslos)

ρ = 1, 25
kg

m3
Luftdichte

A = 2 m2 angeströmte Fläche

Sei die erzielbare Höchstgeschwindigkeit v∞ = lim
t→∞

v(t) = 144
km

h
= 40

m

s
. Berechne cW !

Lösung. Es gilt also: v′(t) = a −

1

2
· cW · ρ · A

m
· v(t)2. Setze λ :=

1

2
· cW · ρ · A

m
, dann gilt also v′(t) = a − λ · v(t)2, al-

so
v′(t)

a− λ · v(t)2
= 1, also

∫
v′(t)

a− λ · v(t)2
dt =

∫
1 dt, also −

ln

(√
λ · v(t)−

√
a

√
λ · v(t) +

√
a

)
2 ·
√
λ ·
√
a

= t + C ⇒ −2 ·
√
λ ·
√
a · t + C′ =

ln

(√
λ · v(t)−

√
a

√
λ · v(t) +

√
a

)
⇒ A · e−2·

√
λ·
√
a·t = e−2·

√
λ·
√
a·t+C′ =

√
λ · v(t)−

√
a

√
λ · v(t) +

√
a

, wobei A := eC
′

sei. Setze f(t) := A · e−2·
√
λ·
√
a·t,

dann gilt: f(t) =

√
λ · v(t)−

√
a

√
λ · v(t) +

√
a

, also f(t) ·
√
λ ·v(t) +f(t) ·

√
a =
√
λ ·v(t)−

√
a, also f(t) ·

√
λ ·v(t)−

√
λ ·v(t) = −

√
a−f(t) ·

√
a,

also v(t) =
−
√
a− f(t) ·

√
a

f(t) ·
√
λ−
√
λ

=

√
a+ f(t) ·

√
a

√
λ− f(t) ·

√
λ

=

√
a
√
λ
·

1 + f(t)

1− f(t)
. Es folgt also: v(t) =

√
a
√
λ
·

1 + A · e−2·
√
λ·
√
a·t

1− A · e−2·
√
λ·
√
a·t

. Wegen v(0) = 0

folgt

√
a
√
λ
·
1 + A · 1
1− A · 1

= 0, also 1+A = 0, also A = −1. Es gilt also v(t) =

√
a
√
λ
·
1− e−2·

√
λ·
√
a·t

1 + e−2·
√
λ·
√
a·t

. Daraus folgt lim
t→∞

v(t) =

√
a
√
λ

= v∞,

also v2
∞ =

a

λ
=

a

1

2
· cW · ρ · A

m

. Es folgt
a

v2
∞

=

1

2
· cW · ρ · A

m
, also cW =

2 ·m · a
ρ · A · v2

∞
=

2 · 800 · 1
1, 25 · 2 · 402

= 0, 4. Der cW -Wert ist also

0, 4. Das ist das Ende!

Die zwei gleichseitigen Dreiecke
[Zurück zur Liste]

Aufgabe. Gegeben sei das Rechteck ABCD mit der Grundseite AB = 2 · a. Dem Rechteck sind zwei gleichseitige Dreiecke

AEF und EBG einbeschrieben, wie im Bild unten gezeigt. Die Diagonale BD schneidet die Dreieckseiten in den Punkten M,

N und P . Berechne die Länge der eingezeichneten Strecken w, x, y, z in Abhängigkeit von AE = EB = a!
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Lösung. Folgende Verhältnisgleichungen lassen sich aus den Strahlensätzen aufstellen:

z

x+ y + z
=
BE

BA
=

a

2 · a
⇔ 2 · z = x+ y + z ⇔ z = x+ y

Weiter:
w

w + x+ y
=
DF

DG
=

a
2

a
2 + a

=
1

3
⇔ 3 · w = w + x+ y ⇔ 2 · w = x+ y

Weiter:
w + x

w + x+ y + z
=
DF

DG
=

1

3
⇔ 3 · w + 3 · x = w + x+ y + z ⇔ 2 · (w + x) = y + z

Aus z = x + y und 2 · w = x + y folgt z = 2 · w. Aus 2 · (w + x) = y + z und z = 2 · w folgt dann 2 · w + 2 · x = y + 2 · w, also

y = 2 ·x. Aus y = 2 ·x und 2 ·w = x+ y = x+ 2 ·x = 3 ·x folgt w =
3

2
·x. Aus z = 2 ·w und w =

3

2
·x folgt z = 3 ·x. Man hat also

w =
3

2
· x, x, y = 2 · x und z = 3 · x, also w+ x+ y+ z =

3

2
· x+ x+ 2 · x+ 3 · x =

15

2
· x. Die Breite des Rechtecks ABCD ist 2 · a

und die Höhe ist gleich der Höhe h des gleichseitigen Dreiecks mit der Kantenlänge a, also h =

√
a2 −

(
a

2

)2

=

√
3

2
· a. Daraus

folgt, dass die Diagonale d von ABCD ist: d =

√√√√(2 · a)2 +

(√
3

2
· a
)2

=

√
19

2
· a. Also gilt

15

2
· x = w+ x+ y+ z = d =

√
19

2
· a,

also x =

√
19

15
· a. Daraus lassen sich w, y, z bestimmen. Ende!

Die Kette unendlich vieler Kreise
[Zurück zur Liste]

Aufgabe. Gegeben ist der Kreissektor OAB mit dem Radius r und dem Winkel 2 · t. Dem Kreissektor werden, von rechts

beginnend, fortlaufend Kreise einbeschrieben, so dass sich eine Kette stetig verjüngender Kreise bildet. Die Radien Ri der

Kreise laufen gegen Null. In dem Bild unten sind nur die ersten drei Kreise eingezeichnet. Für welchen Winkel t ist das

Verhältnis aus der Summe aller Kreisflächeninhalte zur Fläche des Kreissektors maximal?
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Lösung. Nochmal eine Zeichnung:

Es gilt: sin(t) =
R0 − R1

R0 + R1

und nach Strahlensatz:
R1

R0

=
r − R1 − 2 · R0

r − R0

. Aus sin(t) =
R0 − R1

R0 + R1

folgt R1 = R0 ·
1− sin(t)

1 + sin(t)
, wobei:

λ :=
1− sin(t)

1 + sin(t)
, also in die andere Gleichung eingesetzt:

R0 · λ
R0

=
r − R0 · λ− 2 · R0

r − R0

, also λ·(r−R0) = λ·r−R0·λ = r−R0·λ−2·R0,

also λ · r = r − 2 · R0, also R0 = r ·
1− λ

2
= r ·

1− 1−sin(t)
1+sin(t)

2
= r ·

1+sin(t)
1+sin(t)

− 1−sin(t)
1+sin(t)

2
= r ·

2 · sin(t)

2 · (sin(t) + 1)
= r ·

sin(t)

1 + sin(t)
. Nun

gilt aber auch: sin(t) =
Ri − Ri+1

Ri + Ri+1

, also folgt Ri+1 = Ri ·
1− sin(t)

1 + sin(t)
= Ri · λ, woraus Ri+1 = R0 · λi+1 (i ∈ N0) folgt. Der

Gesamtflächeninhalt aller Kreise ist nun:

AK :=
∞∑
i=0

π · R2
i = π ·

∞∑
i=0

R
2
i = π ·

∞∑
i=0

(
R0 · λi

)2
= π · R2

0 ·
∞∑
i=0

(
λ

2
)i

= π · R2
0 ·

1

1− λ2

Denn die geometrische Reihe ist anwendbar wegen 0 ≤ λ =
1− sin(t)

1 + sin(t)
< 1 für 0 < t < π. Nun gilt:

1

1− λ2
=

1

1−
(

1−sin(t)
1+sin(t)

)2
=

49



1

1+2·sin(t)+sin(t)2

1+2·sin(t)+sin(t)2
− 1−2·sin(t)+sin(t)2

1+2·sin(t)+sin(t)2

=
1 + 2 · sin(t) + sin(t)2

4 · sin(t)
. Dann gilt:

AK = π · R2
0 ·

1

1− λ2
= π ·

(
r ·

sin(t)

1 + sin(t)

)2

·
1 + 2 · sin(t) + sin(t)2

4 · sin(t)
= π · r2 ·

sin(t)2

(1 + sin(t))2
·

(1 + sin(t))2

4 · sin(t)
=
π

4
· r2 · sin(t)

Der Flächeninhalt des Kreissektors vom Radius r ist gleich AS :=
2 · t
2π
· (π · r2) = t · r2. Also ist das Flächenverhältnis von

Kreisflächensumme zu Sektorfläche: v(t) :=
AK

AS
=

π
4 · r

2 · sin(t)

t · r2
=
π

4
·

sin(t)

t
. Gesucht ist der Winkel t, für den v(t) ein Maximum

hat. Es gilt v′(t) =
π

4
·
(
t · cos(t)− sin(t)

t2

)
. Nun gilt lim

t→0
t2 = 0 und lim

t→0
(t·cos(t)−sin(t)) = lim

t→0
t· lim
t→0

cos(t)− lim
t→0

sin(t) = 0·1−0 =

0. Also ist L’Hospital anwendbar: lim
t→0

t · cos(t)− sin(t)

t2
= lim
t→0

d
dt (t · cos(t)− sin(t))

d
dt t

2
= lim
t→0

−t · sin(t)

2 · t
= lim
t→0
−

sin(t)

2
= 0. Also gilt

lim
t→0

v′(t) = 0, also hat man mit t = 0 einen Kandidaten für eine Extremalstelle. Es gilt v′′(t) =
π

4
·

(2− t2) · sin(t)− 2 · t · cos(t)

t3
.

Weil Zähler und Nenner beide für t→ 0 gegen 0 konvergieren, ist wieder L’Hospital anwendbar: lim
t→0

(2− t2) · sin(t)− 2 · t · cos(t)

t3
=

lim
t→0

−t2 · cos(t)

3 · t2
= −

1

3
· lim
t→0

cos(t) = −
1

3
· 1 = −

1

3
, also lim

t→0
v′′(t) = −

π

4
·

1

3
= −

π

12
< 0, also hat man bei t = 0 ein relatives

Maximum, welches den Wert lim
t→0

v(t) =
π

4
· lim
t→0

sin(t)

t
=
π

4
· 1 =

π

4
≈ 0.7854 ' 78, 54% hat. Beweis von lim

t→0

sin(t)

t
= 1: Es gilt

sin(t) =
∞∑
k=0

(−1)k · t2k+1

(2k + 1)!
, also

sin(t)

t
=
∞∑
k=0

(−1)k · t2k

(2k + 1)!
= 1 +

∞∑
k=1

(−1)k · t2k

(2k + 1)!
. Wegen

∞∑
k=1

(−1)k · 02k

(2k + 1)!
= 0 folgt die Behauptung.

Weiter: Ist t ≤ 2, dann gilt |v(t)| =
∣∣∣∣π4 · sin(t)

t

∣∣∣∣ =
π

4
·
∣∣∣∣ sin(t)

t

∣∣∣∣ ≤ 1 · | sin(t)| ·
1

t
≤ 1 · 1 ·

1

t
≤

1

2
. Also ist v(t) auf [2,∞) kleiner als

das relative Maximum lim
t→0

v(t) =
π

4
>

1

2
. Es wird nun gezeigt, dass v(t) auf (0, 2] streng monoton fällt, denn dann ist lim

t→0
v(t) das

absolute Maximum von v(t): Gilt
π

2
< t < π, dann gilt t, sin(t) > 0 und cos(t) < 0, also t ·cos(t) < 0 < sin(t), also t ·cos(t) < sin(t).

Ist t =
π

2
, dann gilt t · cos(t) < sin(t), denn

π

2
· cos

(
π

2

)
< sin

(
π

2

)
⇔

π

2
· 0 < 1⇔ 0 < 1. Sei nun 0 < t <

π

2
. Folgendes Bild:

Der Kreissektor 01P hat den Flächeninhalt F1 :=
t

2 · π
· 2 · π · 12 =

t

2
. Das Dreieck 01Q hat den Flächeninhalt F2 :=

1 · tan(t)

2
.

Weil wegen 0 < t <
π

2
nun der Flächeninhalt von S echt-größer 0 ist (|S| > 0), folgt: F1 < F2, also

t

2
<

1 · tan(t)

2
, also

t · cos(t) < sin(t). Es wurde also gezeigt: Auf (0, π) gilt t · cos(t) < sin(t), also t · cos(t) − sin(t) < 0 und wegen t > 0 folgt

v′(t) =
π

4
·
t · cos(t)− sin(t)

t2
< 0. Nochmal: Das absolute Maximum von v(t) befindet sich bei t = 0, also dann: lim

t→0
v(t) =

π

4
· lim
t→0

sin(t)

t
=
π

4
· 1 =

π

4
≈ 0.7854 ' 78, 54%. Ende!

Die Catalan-Zahlen
[Zurück zur Liste]

Aufgabe. Gelte die Rekursion Cn =
n∑
k=1

Ck−1 · Cn−k mit C0 = C1 = 1, dann gilt Cn =
1

n+ 1
·
(2 · n
n

)
(Catalan-Zahlen) -

Beweise dies! Gebe 5 Abzählprobleme an, die mithilfe der Catalan-Zahlen gelöst werden.

50



Lösung. Sei E(x) :=
∞∑
n=0

Cn · xn, dann gilt:

E(x)− 1 =

∞∑
n=1

Cn · xn =

∞∑
n=1

(
n∑
k=1

Ck−1 · Cn−k

)
· xn =

∞∑
n=1

n−1∑
k=0

Ck · Cn−k−1 · xn

= x ·
∞∑
n=1

n−1∑
k=0

Ck · Cn−1−k · xn−1
= x ·

∞∑
n=0

n∑
k=0

Ck · Cn−k · xn = x · E(x)
2

Also gilt x · E(x)2 − E(x) + 1 = 0, also E(x)2 −
1

x
· E(x) +

1

x
. Das ist eine quadratische Gleichung, also: E(x)1,2 = −

− 1
x

2
±√(

− 1
x

)2
4

−
1

x
=

1

2 · x
±
√

1

4 · x2
−

4 · x
4 · x2

=
1±
√

1− 4 · x
2 · x

. Weil x ·E(x) für x = 0 gleich 0 sein muss, folgt, dass nur das negative

Vorzeichen in Frage kommt, denn mit dem Pluszeichen hat man sonst: x · E(x) =
1 +
√

1− 4 · x
2

=
1

2
+

√
1− 4 · x

2
> 0 für alle x,

Widerspruch. Es gilt also: E(x) =
1−
√

1− 4 · x
2 · x

. Es wird nun die Taylorreihe von f(x) :=
√

1 + x = (1+x)
1
2 ermittelt: Betrachtet

man f(n)(0), so erkennt man das Muster f(n)(0) =
(−1)n−1

2n
·
(
n−1∏
i=1

2 · i− 1

)
· 1. Es gilt

n−1∏
i=1

(2 · i− 1) =
(2 · n− 3)!

2n−2 · (n− 2)!
. Also gilt:

√
1 + x = f(x) =

∞∑
n=0

f(n)(0)

n!
· xn = 1 +

∞∑
n=1

(−1)n−1

2n · n!
·

(2 · n− 3)!

2n−2 · (n− 2)!
· xn = 1 +

∞∑
n=1

(−1)n−1

22·n−2 · n!
·

(2 · n− 2) · (2 · n− 3)!

2 · (n− 1) · (n− 2)!
· xn

Und weiter gilt dann das Folgende:

√
1 + x = 1 +

∞∑
n=1

(−1)n−1

22·n−1 · n!
·

(2 · n− 2)!

(n− 1)!
· xn = 1 +

∞∑
n=1

(−1)n−1

22·n−1 · n
·

(2 · n− 2)!

(n− 1)! · (n− 1)!
· xn = 1 +

∞∑
n=1

(−1)n−1

22·n−1 · n
·
(2 · n− 2

n− 1

)
· xn

Weil E(x) =
1−
√

1− 4 · x
2 · x

gilt, folgt also:

E(x) =
1

2 · x
·
(

1− 1−
∞∑
n=1

(−1)n−1

22·n−1 · n
·
(2 · n− 2

n− 1

)
· (−4 · x)

n

)
=

1

2 · x
·
∞∑
n=1

2

n
·
(2 · n− 2

n− 1

)
· xn =

∞∑
n=1

1

n
·
(2 · n− 2

n− 1

)
· xn−1

Nun gilt noch E(x) =

∞∑
n=1

1

n
·
(2 · n− 2

n− 1

)
·xn−1

=

∞∑
n=0

1

n+ 1
·
(2 · n
n

)
·xn. Es gilt also E(x) =

∞∑
n=0

Cn ·xn =

∞∑
n=0

1

n+ 1
·
(2 · n
n

)
·xn

und ein Koeffizientenvergleich liefert:

Cn =
1

n+ 1
·
(2 · n
n

)
Es wird nun noch gezeigt, dass die Taylorreihe von f um den Entwicklungspunkt x0 = 0 auch wirklich gegen f(x) =

√
1 + x

konvergiert: Es gilt: f(n+1)(t) =
(−1)n

2n+1
·
(

n∏
i=1

2i− 1

)
· (1+ t)−

2n+1
2 . Das Restglied ist: Rn+1(x, 0) =

1

n!
·
∫ x

0

(x− t)n ·f(n+1)
(t) dt.

Dann gilt |Rn+1(x, 0)| ≤
1

n!
·
∫ x

0

|x− t|n · |f(n+1)
(t)| dt. Weil |f(n+1)(t)| =

1

2
·
(

n∏
i=1

i−
1

2

)
· |1 + t|−

2n+1
2 ≤ 1 ·n! · |1 + t|−

2n+1
2 ≤

n!·|1+t|−
2n+1

2 gilt, folgt dann |Rn+1(x, 0)| ≤
∫ x

0

|x−t|n ·|1+t|−
2n+1

2 dt. Man zeigt nun, dass gilt: lim
n→∞

|x−t|n ·|1+t|−
2n+1

2 = 0,

wenn |x| < 1, also |t| < |x| < 1. Sei |x| < 1. 1. Fall: x > 0, also 0 < t < x < 1, dann gilt 0 > −t > −x, also 1 > x > x− t > 0, also

0 < x− t < 1, also |x− t| < 1. Wegen 0 < t < 1 folgt 1 < 1 + t < 2, also 1 < |1 + t|, also
1

|1 + t|
< 1. Also gilt: lim

n→∞
|x− t|n = 0

und lim
n→∞

|1 + t|−
2n+1

2 = lim
n→∞

(
1

|1 + t|

)n+ 1
2

= 0. 2. Fall: x = 0, dann ist das Restglied trivialerweise gleich 0. 3. Fall: x < 0, also

−1 < x < t < 0, also 1 > −x > −t > 0, also 0 > x − t > x > −1, also 0 > x − t > −1. Wegen −1 < t < 0 folgt 0 < 1 + t < 1.

Es gilt: |x − t|n · |1 + t|−
2n+1

2 = |x − t|n · |1 + t|−n−
1
2 = |x − t|n · |1 + t|−n · |1 + t|−

1
2 =

( |x− t|
|1 + t|

)n
·

1√
|1 + t|

. Wenn man

zeigt, dass
|x− t|
|1 + t|

< 1 gilt, dann ist man fertig! Es gilt: |x− t| = −(x− t) und |1 + t| = 1 + t. Angenommen: |x− t| ≥ |1 + t|, also

−(x− t) ≥ 1 + t, also −x+ t ≥ 1 + t, also −x ≥ 1, also x ≤ −1, Widerspruch, denn es gilt −1 < x. Also muss sein: |x− t| < |1 + t|,

also
|x− t|
|1 + t|

< 1. Insgesamt also konvergiert das Restglied der Taylorreihe von f , nämlich Rn+1(x, 0) =
1

n!
·
∫ x

0

(x−t)n ·f(n+1)
(t) dt,

für n → ∞ und x ∈ (−1, 1) gegen 0, also konvergiert die Taylorreihe auf (−1, 1) auch wirklich gegen f(x) =
√

1 + x. Es werden

nun 5 Abzählprobleme vorgestellt:

1.) Die Anzahl der Binärbäume mit insgesamt n Knoten

Ein Binärbaum hat an jedem Knoten 0, 1 oder 2 ausgehende Kanten. Die Wurzel hat 0 eingehende Kanten und die anderen

Knoten genau 1 eingehende Kante. Sei die Anzahl mit Bn bezeichnet. Man teilt nun in zwei Teilbinärbäume auf: Der Binärbaum,

der k Knoten links von der Wurzel hat, und der andere Binärbaum, der n − 1 − k Knoten rechts davon hat. Also gilt Bn =
n−1∑
k=0

Bk · Bn−1−k = Cn wegen B0 = B1 = 1.

2.) Die Anzahl der syntaktisch korrekten Klammerausdrücke mit n Klammerpaaren

Ein Klammerausdruck mit 2·n Klammern ist syntaktisch korrekt, wenn eine geöffnete Klammer auch immer irgendwann geschlossen

wird und bis zu keiner Stelle mehr Klammern geschlossen sind als geöffnet. Sei die gesuchte Anzahl mit Kn bezeichnet. Es wird

die Menge der möglichen Klammerausdrücke zerlegt: Man zerlegt die Klammerausdrücke in solche, dessen erste Klammer an der

Position 2 · k geschlossen wird. Innerhalb der ersten Klammer liegen dann k− 1 Klammerpaare, außerhalb gerade n− k. Also gilt:
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Kn =
n∑
k=1

Kk−1 ·Kn−k = Cn, weil K0 = K1 = 1 gilt.

3.) Die Anzahl der Triangulierungen eines konvexen (n+ 2)-Ecks

Es seien P0, P1, . . . , Pn+1 die Punkte bei Umrundung des (n + 2)-Ecks im mathematisch positiven Sinn. Die gesuchte Anzahl

von Triangulierungen sei Tn. Dann gibt es genau Tn−1−(k−2) · Tk−2 Triangulierungen, bei denen P0P1Pk ein Dreieck bilden,

weil links von P0P1Pk ein ((n − 1 − (k − 2)) + 2)-Eck zu triangulieren ist, und rechts davon ein ((k − 2) + 2)-Eck. Also gilt

Tn =
n+1∑
k=2

Tn−1−(k−2) · Tk−2 =
n−1∑
k=0

Tk · Tn−1−k = Cn, weil T0 = T1 = 1 gilt.

4.) Die Anzahl der Möglichkeiten, 2·n auf einem Kreis gelegene Punkte paarweise durch n sich nicht überschneidende

Strecken zu verbinden

Sei die Anzahl mit Vn bezeichnet. Seien die Punkte auf dem Kreis im mathematisch positiven Sinn durch P0 bis P2·n−1 bezeichnet.

Man zerlegt die Möglichkeiten in solche, wo P0 mit P2·k−1 verbunden ist (k = 1, . . . , n). Diese Verbindung zerlegt in zwei Bereiche:

Ein Bereich hat 2 · k − 2 = 2 · (k − 1) und der andere 2 · n − 2 · k = 2 · (n − k) Punkte auf dem Kreis. Innerhalb dieser Bereiche

zählt man die Möglichkeiten von Verbindungen ohne Überkreuzung. Es gibt also Vk−1 ·Vn−k Möglichkeiten ohne Überkreuzung zu

verbinden, wobei P0 mit P2·k−1 verbunden ist. Also gilt Vn =
n∑
k=1

Vk−1 · Vn−k = Cn, weil für die Startwerte gilt: V0 = V1 = 1.

5.) Die Anzahl der Turmwege von links unten nach rechts oben auf einem n× n-Schachbrett ohne die Diagonale zu

überschreiten

Sei die Anzahl mit Wn bezeichnet. Man zerlegt auf dem n × n-Schachbrett jeden nicht über der Diagonalen von unten links nach

oben rechts verlaufenden Turmweg in einen Turmweg von (0, 0) nach (k, k) und einen von (k, k) nach (n, n), für ein k > 0. Darum

kann man die Turmwege disjunkt aufteilen in solche, die bei (k, k) erstmals die Hauptdiagonale berühren. Für gegebenes k > 0 ist

deren Anzahl gleich Wk−1 ·Wn−k. Man muss für die Wege von (0, 0) nach (k, k) die Anzahl Wk−1 statt Wk zugrundelegen, weil

im Bild unten die Strecken s1 und s2 schon festgelegt sind. Das Bild:

Die Anzahl aller Turmwege ist dann die Summe über k der Turmwege, die bei (k, k) die Hauptdiagonale erstmals betreten. Also

gilt: Wn =
n∑
k=1

Wk−1 ·Wn−k = Cn wegen W0 = W1 = 1.
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