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Der Kreisverkehr

[Zuriick zur Liste]

Aufgabe. Finf Autos fahren gleichzeitig in einen Kreisverkehr, jedes aus einer anderen Richtung. Jedes der Autos fdihrt
weniger als eine ganze Runde und alle Autos verlassen den Kreisverkehr in unterschiedliche Richtungen. Wie viele verschiedene

Kombinationen gibt es fiir die Autos, den Kreisverkehr zu verlassen?

Losung. Gesucht ist hier also die Anzahl fixpunktfreier Permutationen der Linge n = 5. Insgesamt gibt es nun n! Permutationen,
wobei man die Permutationen davon abziehen muss, die einen Fixpunkt haben, d.h. 1 steht auf 1 oder 2 auf 2 und so weiter. Weil
die Permutationen mit einem bestimmten Fixpunkt nicht disjunkt sind, muss man die Siebformel von Sylvester benutzen, die man

leicht mit vollstdndiger Induktion beweist. Die Anzahl der Permutationen mit Fixpunkt lautet dann:

5

5-4!7(2)-31+(§)-2!7(4)-1!+(§)~0!:76

Nun muss man diese Anzahl von der Anzahl aller moglichen Permutationen abziehen:
5! — 76 = 120 — 76 = 44

Es gibt also 44 Moglichkeiten fiir die Autos den Kreisverkehr zu verlassen. O

Die Strichcodes

[Zuriick zur Liste]

Aufgabe. Die Strichcodes, die wir untersuchen wollen, bestehen abwechselnd aus schwarzen und weiffen Strichen und beginnen
und enden schwarz. Die Striche haben die Breite 1 oder 2, und die Gesamtbreite eines Codes soll 14 sein. Wie viele verschiedene

Codes sind mdglich, wenn stets von links nach rechts gelesen wird?



Lésung. Weil der Strichcode mit einem schwarzen Strich anfingt und endet, gibt es genau einen schwarzen Strich mehr als man
weifle hat. Das bedeutet, dass man immer eine ungerade Zahl an Strichen insgesamt hat. Wenn man nur Striche der Lénge 2 benutzt,
dann weifl man, dass man mindestens 7 Striche haben muss. Benutzt man nur Striche der Linge 1, dann ist klar, dass man héchstens
14 Striche haben kann. Schliefllich gibt es nur die Gesamtanzahlen 7, 9, 11 und 13. Betrachte nun 7: Schreibt man 7 Einsen auf,
dann miissen auch ingesamt 7 Einsen auf die jeweiligen Einserstellen addiert werden, weil man sonst nicht die Gesamtldnge 14 hat.
Betrachte nun 13: Auf die Einserstellen muss jetzt genau eine 1 addiert werden; man hat dafiir 13 Stellen zur Verfiigung. Insgesamt
hat man also bis jetzt 1 4+ 13 = 14 Moéglichkeiten. Betrachte nun also 9 und 11: Bei 11 kann man nun auf die 11 Einserstellen,
14 — 11 = 3 Einsen verteilen, wofiir es (131) Moglichkeiten gibt. Bei 9 hat man deswegen also den Wert (z) Also ist die Loésung

dieser Aufgabe 14 + (59)) + (131) = 305. O

Die guten und bésen Kroéten

[Zuriick zur Liste]

Aufgabe. Frau Unkes magische Kréten sind duflerlich alle gleich, doch es gibt gute und bose. Ist eine gute Kréte mit 3 bosen in
einem Raum, wird auch sie bdse. Ist eine bise Krite mit 3 guten in einem Raum, wird sie rot und schdimt sich. Zu Testzwecken
setzt Frau Unke 3 Krioten in einen leeren Raum. Dann setzt sie die 4. Krite dazu und nimmt kurz danach die 1. wieder heraus.
Dann setzt sie die 5. dazu und nimmt kurz danach die 2. wieder heraus usw. Als ste die 2012. Krite in den Raum setzt, lduft
zum ersten Mal eine Kréte rot an. Welche der folgenden Kréten kénnten beide von Beginn an bdse gewesen sein? (A) 1., 2011.

(B) 2., 2010. (C) 3., 2009. (D) 4., 2012. (E) 2., 2011.

Lésung. Es gibt fiir die ersten 4 Kroten zizozzzs im Raum fiinf verschiedene Moglichkeiten: (0b, 4g), (1b,3g), (2b, 2g), (3b, 1g),
(4b,0g). Die Kombination (4b,0g) darf nicht sein, weil die spidteren Kombinationen, dann immer b&se bleiben, da eine bése Krote
dazukommt oder eine gute Kréte bose wird, weil die anderen drei bése sind. (1b, 3g) gibt es nur bei z2009Z2010%2011%2012. Da in den
Multiple-Choice-Antworten mindestens einer der vier x; von z1z2x3x4 bose ist, kann man auch (0b, 4g) ausschlieBen. (3b, 1g) kann
auch nicht sein, weil sonst die gute Kréte bose wird und dann immer alle bése bleiben, so dass man es am Ende nicht erreichen kann,
dass fiir 2000201072011 2012 die Konstellation (1b, 3g) erreicht wird. Es bleibt fiir 1z2x3x4 nur noch (2b, 2g). Mal angenommen,
x4 ist gut, dann gilt 1. 1 = g, x2 = b, z3 = b oder 2. x1 = b, x2 = g, 3 = b oder 3. x1 = b, x2 = b, 3 = g. Setzt man Frau
Unke’s Verfahren fort, so dass sich nie eine Krote vor dem letzten Mal schamt oder alle Kréten bése werden, dann hat man immer
genau 2 bose und 2 gute Kréten, und wegen einer auftretenden Periodizitdt der Lange 4 gilt dann, dass z2009%2010%2011 die Form
von 1., 2. oder 3. hat. Da man immer genau zwei bése und eine gute Kréte hat, kann die Hinzunahme von x2¢12 nicht das Schimen
einer Kroéte resultieren lassen. Also sollte von nun an x4 = b sein. Das bedeutet, dass man am Ende des Verfahrens 2009201022011
genau eine bose und genau zwei gute Kroten hat. Also schiamt sich eine Krote, wenn x2012 = g hinzugefiigt wird. Von Anfang an
kénnen also x1 und x2009 oder xs und x2010 oder schlieBlich 3 und x2011 bdse gewesen sein. Auch kénnte x4 mit x2009, 2010 und

22011 von Anfang an bése gewesen sein. Die Lésung ist also (B) 2., 2010. und damit ist man jetzt fertig. O

Die Teiler einer zweistelligen Zahl

[Zuriick zur Liste]

Aufgabe. Wir ordnen jeder zweistelligen Zahl z diejenige Zahl t(z) zu, die entsteht, wenn sdmtliche Teiler von z, einschlieflich
1 und z selbst, der Gréfle nach hintereinander geschrieben werden. So ist z.B. t(14) = 12714. Wie viele Stellen hat die gréfSte
dieser Zahlen t(z)?

Lésung. Zundchst mal hat eine zweistellige Zahl hochstens 3 verschiedene Primteiler ungleich 1, denn das kleinste Produkt 4
verschiedener Primteiler ungleich 1 ist 2-3-5-7 = 210 > 99. Man betrachtet nun den Fall, dass z genau 3 verschiedene Primteiler
hat, also z = py* -py2 - ps® (p1 < p2 < p3) mit e; > 1. Es folgt, dass e; < 2 sein muss, denn nimmt man die kleinsten drei Primteiler
fiir z, also z = 2°1 - 3°2 . 5°3 | dann wiirde bei der Wahl eines e; > 2 das Produkt groer sein als 99. Es gilt also e; = 1 oder e; = 2.
Weiter kann man feststellen, dass ez nur 1 sein kann, weil 2 - 3 - 52 > 99 gilt. Wenn e; = 2 ist, dann muss es = 1 sein, denn es
gilt 22 .32 .5 > 99. Es ist also héchstens ein e; gleich 2. Man hat also z = pfl -pgz . pé. Ist e = es = 1, dann hat z hdchstens
(1+1)-(1+1)-(1+1) =8 Teiler, d.h. t(z) hat maximal 8 - 2 = 16 Stellen. Nun ist e; = 1 und e = 2 oder e; = 2 und ez = 1.
Das heiit z hat in den beiden Féllen hochstens (2 + 1) - (1 4+ 1) - (1 4+ 1) = 12 Teiler. Wéren alle p; > 2, dann miissten die e; = 1
sein, weil sonst z > 99 wire. Man hat dann (1 4+ 1) - (1 4+ 1) - (1 + 1) = 8 Teiler fiir z, d.h. die Anzahl der Stellen von t(z) sind
héchstens 8 - 2 = 16. Ist nun ein p; = 2, dann hat man z = 22 -p; . p:l,’ oder z = 2% . pg -p:ls. Im ersten Fall gilt nur po = 3 und

ps = 5, also z = 60, d.h. t(z) hat genau 18 Ziffern. Im zweiten Fall ist nur po = 3 und p3 = 5, d.h. z = 90 und also hat t(z) genau



18 Stellen. Sei nun angenommen, dass z aus genau einem Primteiler besteht, dann sei z = p®, dann gibt es z = 26, z = 34, z = 43,
z = 52, .... Die letzten drei z und fortfahrende haben héchstens 5 Teiler, also ist die Stellenzahl von t(z) <5-2=10. z = 26
hat 7 Teiler, von denen 3 zweistellig sind, also ¢(z) hat 10 Stellen. Sei nun z mit zwei verschiedenen Primteiler ausgestattet. Frage
nun: Wieviele Stellen mehr als 18 sind nun drin? Antwort: Nimmt man zwei zweistellige Primzahlen, so ist das Produkt der beiden
groBler als 99, d.h. mindestens eine Primzahl muss einstellig sein. Die zweistelligen Primzahlen haben héchstens den Exponenten
1. Man nehme nun eine zweistellige Zahl wie p;2 = 11', dann kann pil = 7! oder gleich 5! oder 32, 3! oder 2, 22, 2% scin. Es
werden z = 5% - 11, 2 = 32 - 11! = 99 und z = 2% - 11' betrachtet. Der erste Fall hat nur 4 Teiler; 4 - 2 < 18. Im zweiten Fall hat
man (2+ 1) - (14 1) = 6, also t(z) hochstens 12 Stellen, und im dritten Fall hat man (3 4+ 1) - (1 4+ 1) = 8, also ¢(z) héchstens 16
Stellen. Nimmt man groflere zweistellige Zahlen als 11, dann sind die p‘fl eine Teilmenge von denen bei 11, also ¢(z) nicht groBer.
Seien nun p; und ps aus {2, 3,5, 7}, wobei man die Exponenten so grof§ wie méglich gestalte. Das Paar p; = 5 und ps = 7 kénnen
nur den Exponenten e; = es = 1 haben. Die Stellenanzahl von t(z) ist offensichtlich nicht gréfier als 18, der bisherige Maximalwert.
Also weiter: z = 32 - 7' hat 6 Teiler und z = 2% - 7% hat 8 Teiler, also 18 wird immer noch nicht iiberboten. Nun das Paar p; = 3
und py = 5: z = 31 .52, 2 = 32 . 5! - beide jeweils 6 Teiler. Jetzt kommt p; = 2 und p2 = 5: z = 2'.52 2z =32.5' - wieder beide 6
Teiler, also die Stellenanzahl von ¢(z) héchstens 6 -2 = 12. Jetzt nur noch das Paar p;1 =2 und p2 = 3: z = 21.33% 2z =12%.32 =72,
z = 2% .31 = 96 - das erste z hat nur 8 Teiler, das zweite 12 und das dritte auch 12. Also miissen die beiden letzten z iiberpriift
werden: 72 hat 12 Teiler, von denen 5 zweistellig sind, also [t(z)| = 7+ 5-2 = 17. 96 hat auch 12 Teiler, von denen 6 zweistellig
sind, also |t(z)| = 6 4+ 6 - 2 = 18. Die Anwort ist also 18: Die Stellenanzahl von ¢(z) hat den Maximalwert 18. Damit ist die L&sung
der Aufgabe beendet. O

Die interessante Zahlenfolge

[Zuriick zur Liste]

Aufgabe. Die wachsende Zahlenfolge 1, 3, 4, 9, 10, 12, 13, ... (= 3%, 3%, 39431, 32, 39432, 31 132, 3° 31 +32, ...) besteht
aus Potenzen der Zahl 3 sowie aus allen mdglichen Summen verschiedener solcher Potenzen. Wie lautet dann die hundertste

Zahl der Folge?

Lésung. Man kann die Exponentenfolge rekursiv konstruieren: Man startet mit 0, dann kommt die 1, als nédchstes kommt dann
01, dann 2. Es wird dann die Zahlenfolge vor 2 nochmal aufgeschrieben, nur, dass man dann die 2 dranhéngt. Ist das beendet,
dann kommt die 3 und es wird dann die bisherige Zahlenfolge wieder aufgeschrieben, wobei dann die 3 hinten drangeheftet wird.
Aufgrund der Rekursion stellt sich heraus, dass 2 and vierter Stelle, 3 an achter und 4 an 16. Stelle steht usw. Es folgt, dass die 6
an 64. Stelle steht. Jetzt werden die vorhergehenden Stellen wieder aufgeschrieben und die 6 drangehéngt. An 32. Stelle steht die
5, also steht an 96. Stelle die Folge 56, also an 97. Stelle: 056, an 98: Stelle: 156, an 99. Stelle 0156 und schliefllich an hundertster
Stelle 256. Das bedeutet, dass die Losung 32 4 3% + 3% = 9 4 243 + 729 = 981 ist. Damit ist diese Aufgabe endlich geldst. |

Die Bimsel, Gnafze und Ylpen

[Zuriick zur Liste]

Aufgabe. Im Wald des Wandels gibt es merkwiirdige Wesen: 17 Bimsel, 55 Gnafze und 6 Ylpen. Treffen ein Bimsel und ein
Gnafz aufeinander, verschmelzen sie zu einer Ylpe. Treffen ein Bimsel und eine Ylpe aufeinander, verschmelzen sie zu einem
Gnafz. Treffen ein Gnafz und eine Ylpe aufeinander, verschmelzen sie zu einem Bimsel. Dies fiihrt dazu, dass irgendwann nur

noch eine der drei Arten tbrig ist. Wie viele Wesen dieser Art sind dann héchstens ibrig?

Lésung. Man hat also folgende drei Transformationen: Ty (b,g,y) = (b — 1,9 — 1,y + 1), T2(b,g,y) = (b— 1,9+ 1,y — 1) und
T3(b,g,y) = (b+ 1,9 — 1,y — 1). Diese Abbildungen sind paarweise kommutativ, wie man leicht nachrechnet. Deswegen kann man

die beliebigen Hintereinanderschaltungen sortiert aufschreiben. Es gilt also:
(TP o TE o T7)(17,55,6) = (1T —a — B+ 7,55 —a+B—7,6+a — B8 —7)
Mal angenommen, es bleiben nur noch Bimsel iibrig, dann gilt:
17—a—-B+v,55—a+B—v,6+a—p—7v)=(%0,0)
Daraus wiirde dann folgen, dass 61 = 55 4+ 6 = 2+ ist, also gibt es diesen Fall nicht. Sei nun

17T—a=B+7,55—a+pB—v,6+a—p~—7)=(0,%0)



Hier folgt dann 17 4+ 6 = 23 = 273, also gibt es diesen Fall auch nicht. Es bleiben nur noch Ylpen iibrig:
AT—a—-B+v,5—a+B—7,6+a—B—7)=(0,0,%)
In diesem Fall ndmlich folgt 17 4+ 55 = 72 = 2a = a = 36. Also gilt:
(-19=B+7,19+8—7,42 - — ) = (0,0,%)

Weil —19 eine negative Zahl ist, muss v mindestens 19 sein. Am grofiten wird *, wenn man v = 19 und 8 = 0 wihlt, denn wire
¥ =194+ n (n > 1), dann miisste 8 = n gelten, also wiire 42 — 8 — ~ kleiner als 23. Das bedeutet also, dass am Ende hdchstens

42 — B — v =42 — 0 — 19 = 23 Ylpen iibrigbleiben. |

Die Fahrt von Bremen nach Rostock

[Zuriick zur Liste]

Aufgabe. Henry muss von Bremen nach Rostock fahren, und er plant dafiir eine gewisse Durchschnittsgeschwindigkeit ein.
Wenn er durchschnittlich 5km/h schneller als geplant fahren wiirde, kime er 5 Stunden eher an, wiirde er im Durchschnitt
10km/h schneller als geplant fahren, wdire er sogar 8 Stunden eher am Ziel. Nun wird die grofie Frage gestellt: Welche Durch-

schnittsgeschwindigkeit hat er geplant?

Lésung. Es gilt zunidchst mal folgendes:
s=v-t=(v+5)-(t—5)=(v+10)-(t —8) < 0= —5v+ 5t —25=—8v+ 10t — 80

Aus der ersten Gleichung ist dann folgendes bekannt:
,_Bvt25

5
Dieses Ergebnis setzt man dann in die Gleichung —8v 4 10t — 80 = 0 ein und erhilt:

—8v+4+2-(5v+25)—-80=0< —8v+10v+50—-80=0<2v =30 < v =15

Man weifl nun, dass Henry die Durchschnittsgeschwindigkeit 15km/h gew#hlt hat. O

Die Primzahl teilt eine bestimmte Summe

[Zuriick zur Liste]

Aufgabe. Alexandra berechnet die Summe der natiirlichen Zahlen von 1 bis n. Dabei bemerkt sie, dass die Primzahl p diese
Summe teilt, aber keinen der Summanden. Welche der folgenden Zahlen kinnte gleich n 4+ p sein? Es gibt hier die folgenden

Antwortmdglichkeiten: (A) 217 (B) 221 (C) 229 (D) 245 (E) 269

5 . n-(n+1)
Lésung. Esgiltalsoptl,...,n=p>nundp|s=1+...4+4n = ———= woraus folgt,dass p | (n-(n+1)) = p | nVp | (n+1).
p | n gilt ja nicht nach Voraussetzung. p | (n + 1) bedeutet p < n+1,alsop=n+1. Alson+p=(p—1)+p =2p — 1. Nun ist

Antwort (A) 217 die einzig mogliche Antwort, weil (217 + 1) : 2 = 109 auch eine Primzahl ist. a

Die Zahlenpaare fiir eine GGleichung

[Zuriick zur Liste]

Aufgabe. Wie viele positive ganzzahlige Lésungen (z,y) mit x < y hat die Gleichung z +y + zy + 1 = 200272

Lésung. Zunichst mal gilt z +y+ a2y +1=(z+ 1) (y+ 1) und 2002 = 2-7-11-13. Die Frage ist also wie viele Méglichkeiten
es gibt die vier Primzahlen auf zwei Boxen so zu verteilen, dass das Produkt in der ersten Box kleiner ist als in der zweiten! Wenn
man jede der vier Zahlen jeweils einmal in die erste tut und die restlichen Primzahlen in die zweite Box, dann hat man schonmal 4
Moglichkeiten. Jetzt sucht man sich zwei Primzahlen in die erste Box. Dalfiir gibt es 6 Moglichkeiten, aber nur bei drei von denen
ist das Produkt in der ersten Box auch kleiner. Die Antwort ist also: Es gibt genau 7 mdgliche Paare (z, y), die die Gleichung oben

erfiillen. O



Das Quadrat einer bestimmten Zahl

[Zuriick zur Liste]

Aufgabe. Die Dezimaldarstellung der Zahl n besteht aus 2001 Ziffern 9. Die Frage dieser Aufgabe lautet nun: Wie oft ist die
Ziffer 9 dann in der Zahl n® enthalten?

Lésung. Esgilt erstmal 9...9 = 10™—1. Also gilt 9...9-9...9 = (10™—1)-(10™—1) = 102" —=2.10"+1= 9...9 8 0...0 1.
N — — - ~— ——

~— N — ~—.
m-mal m-mal m-mal (m—1)-mal (m—1)-mal
Die Antwort ist also 2001 — 1 = 2000 Ziffern 9 befinden sich in der quadrierten Zahl. O

Die Wolfe, Schafe und Schlangen

[Zuriick zur Liste]

Aufgabe. In einem blihenden Tal leben Wilfe, Schafe und Schlangen. Jeden Morgen um 8 Uhr reifst jeder Wolf genau zwei
Schafe. Jeden Mittag um 12 Uhr zertritt jedes Schaf genau zwei Schlangen, die faul in der Sonne liegen, und jeden Abend um
18 Uhr versetzt jede Schlange genau zwei Wilfen thren tédlichen Biss. Am Morgen des 6. Tages, um sechs Uhr, lebt schliefSlich
nur noch ein einsamer Wolf an diesem paradiesischen Fleckchen Erde. Wie viele Tiere von jeder Art bevolkerten das Tal am

ersten Tag um sechs Uhr morgens?

Lésung. Sei w die Anzahl der Schafe zu Beginn und sf die der Schafe sowie sl die der Schlangen. Dann gilt fiir die Anzahl der

Tiere nach einem Tag:

sf —2w sf — 2w sf —2w 1 0 —2 sf
sl—2- (sf —2w) = sl —2sf + 4w = sl — 2sf + 4w = -2 1 4 : sl
w—2-(sl =2 (sf —2w)) w — 2sl + 4sf — 8w —Tw — 2sl +4sf 4 -2 =7 w

Weil also am sechsten Tag vor 8 Uhr nur noch ein Wolf iibrigbleibt gilt dann:

5

10 -2 sf 609 —376 —986 sf
—2 1 4 | st | =] —98 609 1596 | ost | =
4 -2 -7 w 1596 —986 —2583 w 1

Jetzt kann die Anzahl der Tiere am Anfang berechnen:

-1
sf 609 —376  —986 0 609 988 378 0 378
sl = —986 609 1596 : 0 = 378 609 232 : 0 = 232
w 1596 —986 —2583 1 232 378 145 1 145
Also waren zu Beginn 378 Schafe, 232 Schlangen und 145 Wélfe vorhanden. O

Die Gras fressenden Kiihe

[Zuriick zur Liste]

Aufgabe. Jan kennt seine Kiihe. Er weifs, dass 25 seiner Kiihe in vier Tagen eine Weide von 20Ar kahl fresssen, wihrend fiir
27 Tiere eine Weide von 24Ar finf Tage reicht. Wenn er die Herde auf eine Weide treibt, hat das Gras stets die gleiche Hdohe.
Auflerdem wdchst das Gras auf seinen Weiden stetig und mit konstanter Geschwindigkeit nach. Wie grofS muss eine Weide

sein, auf der 100 Kiihe 16 Tage grasen kinnen?

Lésung. Zun#chst macht man einige Definitionen: g sei das vorhandene Gras pro Ar, n die Menge des Grases pro Ar pro Tag und
f sei dann die Menge des gefressenen Grases pro Kuh pro Tag. Es gelten dann folgende Gleichungen, die sich ndmlich aus der

Aufgabenstellung, wie folgt, ergeben:

20-g+20-4.-n = 25-4.f

24.g+24-5-n

27 .5 f



5 5
Aus diesem Gleichungssystem folgt nun, dass g = 5 fund n = 5 f gilt. Sei nun a die gesuchte Fliche in Ar, auf der 100 Kiihe
16 Tage lang weiden konnen. Es gilt also: a- g+ a-16-n =100 - 16 - f. Jetzt setzt man in diese Gleichung g und n ein:

5 5 5
a g f+a-16. 2 f=100-16-f a5 +10-a=1600 ¢ 12,5 a = 1600 ¢ a = 128

Die Antwort ist also: Man braucht 128Ar fiir soviele Kiihe und soviele Tage. O

Die Fliege auf dem Luftballon

[Zuriick zur Liste]

Aufgabe. FEin Luftballon wird so aufgeblasen, dass der Radius mit der Geschwindigkeit v zunimmt. Zum Zeitpunkt t = 0 sei
der Radius r = 7¢. Auf dem Aquator krabbelt eine Fliege mit der Geschwindigkeit c. Nun soll die Bahnkurve der Fliege im

Raum bestimmt werden. Nach welcher Zeit in Abhdngigkeit von ¢ und v gelingt der Fliege eine Umrundung?

Lésung. Fiir die Darstellung der Bahnkurve werden Polarkoordinaten verwendet. Auf der Fliege wirken zwei Geschwindigkeiten: Die
Geschwindigkeit ¢ wirkt orthogonal zum Radiusvektor in mathematisch positiver Richtung und v wirkt kolinear zum Radiusvektor
nach auflen. Es gilt also:

d cos(w(t)) —sin(w(t)) - w(t) cos(w(t))

r(t)| = -r(t) + cr(t)y=¢+ U
dt sin(w(t)) 2 cos(w(t)) - w(t) sin(w(t)) )

Daraus folgt also:
—sin(w(t)) - w(t) - 7(t) + cos(w(t)) - 7(t)

=|c+ 7
cos(w(t)) - w(t) - r(t) + sin(w(t)) - 7(t) ! !

Wenn die Betrige unter Beriicksichtigung von Additionstheoremen fiir Sinus und Kosinus ausgerechnet werden, erhilt man:

Va2 - r()? + #(1)2 = Ve + 02

Es ist bekannt, dass r(t) = ro +t - v = 7(t) = v gilt, also r(0) = ro. Weiter:

W) rt)? +0? = 0% = () = c __ ¢ = w(t) = E-ln(r0+t<v)+C
r(t) ro+t-v v
Nun gilt noch die Anfangsbedingung w(0) =0 = <. In(rog) +C=0=C = <. In(rg), also:
v v
t-
wt) = S In (M)
v T0
Die gesuchte Bahnkurve lautet also:
c ro+t-v
cos| —-In{ ———
e Prodtew o+t -v)
sin | — _—
v T0

Es handelt sich bei dieser Kurve um die logarithmische Spirale. Nun wird die Zeit bis zur ersten Umrundung ausgerechnet:
v

c To +tu - v T 27—
7.1n(i):2mw:£. ST Za
v T0 v

Damit ist die Aufgabe gelost. O

Der Kéafer auf dem Gummiband

[Zuriick zur Liste]

Aufgabe. Es sei ein xg = 1 Meter langes Gummiband an einer Wand befestigt, auf dessen Anfang ein Kifer gesetzt wurde.

cm
Dieser Kifer bewege sich auf diesem Gummiband mit der Geschwindigkeit vk = 1— zum anderen Ende, wdhrend ein Ldaufer
s

das Gummiband mit der Geschwindigkeit vy = 1ﬁ hinter sich herzieht und so das Gummiband unendlich lang dehnt. Die

S
Frage ist nun, wann der Kdfer den Ldufer auf dem Gummiband eingeholt hat?

10



Ty

Kifer Gummiband v :
ey . I~

Q:—PW — > Laufer

VK

L{t)=xgp+ vy -t

x=0
Lésung. Sei z(t) die Lénge der Strecke, die der Kéfer zuriickgelegt hat. Der Kifer hat die Geschwindigkeit vk plus die Geschwin-
t t
digkeit vg(t), die es durch die Dehnung des Gummibandes erfihrt. Es gilt dabei vg(t) = & svp = % - v, denn die
o vr -

Dehnung des Gummibandes hinter dem Kifer ist dafiir verantwortlich, dass der Kéfer sich schneller bewegt. Je mehr Strecke der
Kifer auf dem Gummiband relativ zur Gummibandlédnge zuriickgelegt hat, desto mehr bekommt er von der Geschwindigkeit vy,
dazu. Ist der Kifer am Ende des Gummibandes, dann hat er die zusétzliche Geschwindigkeit vy,. Also gilt jetzt:

z(t
#.vLﬁi(t)_i.
xo +vp -t xo +vp -t

vL

z(t) = vk +va(t) = vk + z(t) = vk

Das ist eine Differentialgleichung, deren allgemeine Lésung sich aus der Summe der homogenen und einer partikuldren Lésung

zusammensetzt. Zunéchst zur homogenen Lésung:

t(t
7,90(,5):0:&:”7L
To + v -t z(t) xo +vp -t

(t) — —=

Auf beiden Seiten wird nun integriert und man erhélt:

/ v gt In(zo + vr - t)
-t vy — LR
ln(a:(t)):/mdtﬁ-C:x(t):ec‘e zo +vp -t ::K~eL vL =K (xog+vL-t)

vr

Nun zur partikuldren Lésung. Eine solche erhilt man durch Variation der Konstanten. Es gilt ja xp (t) = K - (zo + vr - t) und jetzt
macht man den Ansatz x,(t) = K(t) - (xo + v - t). Das fithrt dann zu:

vr,
xo +vr -t

vL

iy (t) — Cap(t) = vi = [I'((t)'(xo—i-vL .t)+K(t).vL] - 2 IK@®) - (@0 + v )] = vk

xo + v -
Jetzt noch ein bisschen umformen:

VK

[K(t).(x0+vL .t)+K(t).UL] — K(t)-vr = K(t) - (z0 + v - t) = vg = K(t) = P—

Daraus folgt dann also:

K(t) = Zi: n(zo + v - £) + C

Nun lautet die allgemeine Losung:
v
z(t) = xp(t) + xp(t) = K- (xo +vp - t) + (U—K sIn(xo + v - t) + C’) ~(xo +vr - t)
L

Jetzt miissen die Konstanten K und C’ durch Bedingungen festgelegt werden: Eine Anfangsbedingung ist: (0) = 0, also:

v v v
2(0) =0 < K - zo + <—K.1n(x0)+c/) =06 K+ -2 In(z0)+ C' =0& C' = —K — = . In(z0)
v, VL, vL

Setzt man dieses C’ in z(t) = K - (zo +vr - t) + (U—K sIn(zo + v - t) + C') - (xo + vr - t) ein, so hebt sich die Konstante K raus,

v,
so dass man néamlich erhilt:

v x vr -t

z(t) = 2K In (0+7L> “(xo +vr - t)

v, o

Zum Zeitpunkt tg, wo der Kifer den Léufer einholt, gilt z(tg) = zo + vr - tg. Weiter:
vrL
v To- | eVK —1
-t -t -t b

YK (w>~(zo+u,m) = zotvptp = EKin (wo +r E) 1o Bt ts | G tp=——
v, it v, o xo vL
Es gilt vg = 0,01 und vy = 1 sowie z¢g = 1. Also muss dann gelten:

vr

20 | evk —1 1. [e0:01 1
100
tp = = =e -1
B vr, 1
£100 _ ¢

Es dauert also €'%® — 1 Sekunden bis der Kifer den Liufer eingeholt hat. Das sind ~ 8,52 - 103 Jahre. O

60 - 60 - 24 - 365
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Die Zerteilung einer Fliche

[Zuriick zur Liste]

Aufgabe. Es seien A, B, C, D die Eckpunkte eines trapezférmigen Geldndes. Vermessen wurden die parallelen Seiten AB = a,
CD = b, a > b sowie die spitzen Winkel <BAD = o = 30° und <ABC = 3 = 60°. Zwischen den Punkten X auf der Seite AD
und Y auf BC soll ein Zaun minimaler Linge so gezogen werden, dass die beiden Teilstiicke des Trapezes flichengleich sind.

Nun soll die minimale Linge des Zaunes bestimmt werden!

D b &

|
|
|
|
|
|
-~ =<

A ! a

h
Lésung. Zunichst wird der Flicheninhalt des Trapezes ABCD ausgerechnet: Es gilt a — b = 2’ + 3’ und tan(a) = — sowie
x

h h h 1 1 a—b
t =—.D folgt d —b=uz ! = =h- , al ilt d cth= —/—————.
an(B) ” araus folgt dann a z' +y fan(a) + tan(3) (tan(a) + tan(ﬂ)) also gilt dann I . T
tan(a)  tan(B)
I ) a+b a® —b* i s . .
Der Flacheninhalt des Trapezes ist Ap = h- s =3 3 Jetzt wird der Flidcheninhalt des Vierecks ABY X bestimmt.
tan(a) + tan(8)
, , , ) , , AX|  hx
Seien A, A" aus [0, 1] so, dass gilt |[AX| = X-|AD| und |BY| = X' - |BC|. Nach dem zweiten Strahlensatz gilt: A = m = &
AS X RN h
hx = X - h. Analog findet man: hy = X’ - h. Der erste Strahlensatz besagt 145] = u =A& |ASi| =X/ =X .
! |AD]| tan o
— h ASi|-h A% R?
Analog: |[BS3| = X -y’ = A’ —— . Der Flicheninhalt des Dreiecks AS; X ist also A5, - hx = . Analog erhélt man fiir
tan 3 2 2 - tan(a)
i h? . : . hx + hy —_— = Ah+XN-h
das Dreieck BS2Y: 2 tan(3) Jetzt zum Flidcheninhalt des Vierecks S1S2Y X: — (a — |ASy| — IBS2|) =
- tan

Der Flicheninhalt des Vierecks ABY X soll halb so grof8 sein, wie der des Trapezes ABCD, also:

2 .
2 - ta

A-h N - h
(“ " tan(a) tanw))'

A2 p? N A2 . p? A+X)-h? [a A X\ >7AT
2-tan(a)  2-tan(B) 2 h  tan(a)  tan(B) 2
Weiter umgeformt also:
A2 N A2 L) (a A X\ )7/\ @ y.0 AL\ AN Ap
tan(a)  tan(B) h  tan(a) tan(8) ) h h  tan(a) tan(8)  h?

Und das ist dquivalent zu:

>
I
>
M
> e

a N N

h  tan(a)  tan(B)

3
Jetzt werden bekannte Grofen eingesetzt: tan(a) = tan(30°) = g und tan(B) = tan(60°) = /3. Daraus folgt dann:

Al -\ a
A\ = h?2 h
a 3 N 1 N
h V3 V3
Nun wird h ausgerechnet:
a—>b a—2>b V3
h=— R T = (@Y

tan(a) | tan(d) V3 | V3



Jetzt wird noch Ar etwas vereinfacht dargestellt:

2 2 2 2
a® —b a® —b V3 2 2
Ar = —3 L2 _6+2*?'(a — )
tan(a) | tan() V3 V3
Also gilt dann fiir A:
V3 2 2
?'(a — ) 2\ 4 @ 2 2 2 2
3<(a7b)2 V3 a-—1b 2. 3.u,)\’.i. e a”—b .l
A= 16 —a= 3 (a—b) V3 a—-b _ 2-(a—b)? a—b
- 4 a 3 1 -0 4 a - a ,
S N V) 7( ,X) - A
V3 a—b /3 V3 V3 \a—b a—1b

Insgesamt erhélt man schlielich nach einer lingeren Rechnung:

a-(2-XN —1)—b

A IS VS S VA

A und X aus [0, 1] parametrisieren jeweils die Punkte X auf AD bzw. Y auf BC. Nun sind A’ und A()\’) so konstruiert, dass XY
das Trapez ABCD in zwei gleichgroie Flachen zerlegt. Die Lange L xy von XY soll nun zusétzlich so klein, wie mdoglich, sein. Es

gilt die folgende Identitit:

A-h /\"h>2: 5
)

2 Ao Hao [\2 _ ’_ 2_ 2 oo AT
(hy = hx)* + (0 = (A1 = [B52) = (V= 0w+ (4= 2o = 2 Sy

Nun ist Liy genau dann minimal, wenn Lxy minimal ist. Setzt man nun alle bekannten Werte ein, so dass man eine Formel fiir
Lg(y bekommt, die nur noch von a, b und X\’ abhiingt, dann kann man diesen Wert auf Extremwerte hin untersuchen. Da 0 < A’ <1
gilt, muss man die zu minimierende Funktion nur auf [0, 1] untersuchen. Es stellt sich dabei heraus, dass in Abhingigkeit von a
und b die Funktion L% ()\’) auf [0, 1] monoton steigend (die Ableitung ist dort gréBer-gleich Null) ist (nidmlich, wenn dort keine

at . Damit sind also

Extremalstellen sind), also nimmt es sein Minimum an der Stelle A’ = 0 an. Dann gilt A = A()\’) = A(0) = 5
-a
die Punkte X und Y identifiziert, fiir die die Zaunldnge minimal ist, wenn die Strecke XY zusétzlich das Trapez in zwei gleich-grofle
) R « I V13- a? +2 a2 52 + b1 )
Flachen zerlegt. Die minimale Zaunldnge betrigt in diesem Fall 1 . Manchmal passiert es auch, dass auf
-a

[0, 1] eine innere Minimalstelle zu finden ist. Und zwar genau dann wenn a > /2 - V3—1-bmit a,b>0und b < a gilt; dann
V108 - (Va?+8% - ¥12-a) V2 (V3 VaTF 82 - V2 )
und deswegen A = A()\) =

6-(b—a) 2. (b—a)
meinen Berechnungen ist dies die einzige Extremalstelle in [0, 1], wenn a,b > 0 gilt. Weil die zweite Ableitung an der Stelle \’

ist die Extremalstelle bei \' = . Nach

echt groéBer ist als Null, hat man dort also eine Minimalstelle. Ist die Bedingung fiir eine innere Minimalstelle in [0, 1] erfiillt, dann
4
3
ist die kiirzeste Zaunlédnge, wo dieser Zaun das Trapez auch in zwei flichengleiche Teilfelder zerlegt, gleich 7\[ - v/a? + b2. Dieses

Ergebnis erhilt man, wenn man X’ in Lg(y auswertet und dann die Wurzel aus dem erhaltenen Ergebnis zieht. O

Der Abstand zweier Kreispunkte

[Zuriick zur Liste]

Aufgabe. Gegeben ist ein Wiirfel der Kantenlinge 2 - a. Einer Seitenfliche ist der Kreis k1 umbeschrieben, einer benach-
barten Seitenfliche ist der Kreis k2 einbeschrieben (Abbildung unten). Je ein Punkt bewegt sich auf k1 und k2. Was ist der

geringstmdgliche Abstand dieser beiden Punkte und was sind die Koordinaten dieser Punkte?




Lésung. Der Mittelpunkt des Wiirfels mit der Kantenldnge 2 - a befinde sich im Nullpunkt des Koordinatensystems. Es gilt:

0 cos(a) a 0
ky _a 4 0 -v2-a und ks : + cos(B) -a
0 sin(a) sin(3)

(=)

Der Abstand der beiden Punkte auf k1 bzw. ks betrdgt dann:

d(e, B) :=|al - \/72 -V2 - cos(a) — 2 - V2 -sin(a) - sin(B8) + 2 - cos(8) + 5
Wenn die Funktion d an der Stelle («, 3) ein Extrempunkt hat, miissen dort die partiellen Ableitungen von d verschwinden:
d . . d . .
d—d(a, B) = 0 < sin(a) — cos(a) - sin(B) = 0 und d—ﬁd(a, B) =0 < V2 -sin(a) - cos(8) + sin(8) = 0
o

Es muss also gelten: (a) a = atan(sin(3)) und (b) tan(8) = —v/2 - sin(a). Also gilt dann tan(8) = —v/2 - sin(atan(sin(8))). Diese
2 2 2 2

Gleichung wird erfiillt von 8 = 0, 8 = atan g , B =m — atan (g), B =m, B =m+ atan (%) und B8 = 27w — atan (g)

Das sind alle Werte aus [0, 27), die jene Gleichung erfiillen. Nun setzt man jedes 3 in (a) ein und erhélt das a. Es gibt also folgende

mogliche Extrempunkte:

B=0,a=0 )
B=0,a=m (2)
B = atan (?),a:%ﬂ (3)
ﬂ:ﬂ—atan(?),a:% (4)
B=m a=0 (5)
B=ma=m (6)
,B:fr+atan<§),a:%7r (7)
B =27 — atan <§),a:%ﬂ" (8)

Sei (ag, Bg) einer der méglichen Extrempunkte. Man betrachtet nun die Funktion g(¢) := d(ag + t - cos(w), Bg + t - sin(w)). Ist
9" (0) > 0Vw € [0,27), dann handelt es sich bei (ag, Bg) um ein Minimum. Gilt g”’(0) < 0Vw € [0, 27), dann handelt es sich um

ein Maximum an der Stelle (g, Bg). Nun gilt weiter:
g"(0) = daa(ar, BE) - cos(w)® + 2 - dap(ap, Br) - cos(w) - sin(w) + dgs(ag, Br) - sin(w)’

Mithilfe von g’/ (0) findet man heraus, dass (1), (2), (5) und (6) keine Extrempunkte sind. (3) und (8) sind Maxima. Nun sind (4)
und (7) Minima; die hier gesucht sind. Setzt man nun die - und 3-Werte von (4) und (7) in d(«, 8) ein, dann erhélt man in beiden
Fillen den Wert (v/3 — v/2) - a, was der kiirzeste Abstand zwischen Punkten von k1 zu den Punkten von k2 darstellt. Die beiden

Punktpaare, fiir die der Abstand minimal ist, lauten:

V3 0
0 - a
2 V6
k1 —a + 0 V2 -a und ks : 0 + Y -a
0 1 0 V3
2 3
Und:
V3 0
0 - a
2 V6
k1 —a + 0 V2 -a und ks : 0 + 3 -a
0 _1 0 _V3
2 3
Damit ist die Aufgabe also gelost. O
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Das gleichseitige Dreieck

[Zuriick zur Liste]

Aufgabe. Gegeben ist ein gleichseitiges Dreieck. Dem Dreieck sind drei Seiten mit bekannter Linge einbeschrieben. Bestimmt

werden soll nun die Seitenldnge a des Dreiecks.

Fl

Lésung. Die Fliacheninhalte F'1, F2 und F'3 sind durch jeweils drei Seiten eindeutig bestimmt. Es wird nun die Heronische Flichen-

formel benutzt: Sei ein Dreieck mit den Seitenlingen a, b und c gegeben. Dann betridgt der Fliacheninhalt dieses Dreiecks dann

b 3
Fape=+/s-(s—a) (s—b)(s—c) mit s := %A Es muss also gelten: F'1 + F2 + F3 = % - a?. Der rechte Term ist die

Formel fiir den Fliacheninhalt eines gleichseitigen Dreiecks der Kantenldnge a. Es gilt nun:

=y 5) (o8 (45 (o)
= yf(eg) (o-5) (o) (0+3)
me (g (o5 (+3) (o)

Der Wert fiir a ist durch die folgende Gleichung festgelegt:

Sowie:

S
M

Fl(a) + F2(a) + F3(a) =

Mithilfe eines Computeralgebrasystems findet man auf numerischen Wege, dass gilt a ~ 67, 66. O

Der gesuchte Teildreiecks-Fliacheninhalt

[Zuriick zur Liste]

Aufgabe. Vorgelegt sei das schiefwinklige Dreieck ABC. Die zwei eingezeichneten Diagonalen teilen das Dreieck in wvier

Fldachen auf. Drei Fldacheninhalte sind gegeben. Es soll mithilfe dieser Angaben der Flicheninhalt von X bestimmt werden!

15



Aus den drei gegebenen Teilflichen lassen sich Beziehungen zwischen den Strecken u, v und z, y ableiten:

st(a) ceru =717, $~c'(u+v):7+7éu:v
Und man hat auch folgendes:

i i 3

sz(ﬁ) ey =T, sz(ﬁ) e (@ty)=T+3= o=y

Analog kann fiir die beiden gesuchten Fliacheninhalte A; und As notiert werden:

ca-y =7+ Ay, ca-(z+y) =7+ A1+ Az

sin(7) sin(7)
2 2

Desweiteren hat man auch die Beziehungen:

sin(4) sin(d)
bou=3+ A,
2 =gt AL

b(u+v):3+A1+A2

Lost man die bisherigen Gleichungen nach A; und As auf, dann erhilt man:

15 21
AIZE,AQZE:>X:A1+A2:18

Und das war es auch schon!
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Die unterschiedlichen Wiirfel

[Zuriick zur Liste]

Aufgabe. Es sei ein grofier und schwarzer Wiirfel gegeben, der auflen weif angestrichen ist. Nun wird dieser Wiirfel in 4 x4 x4
kleine und gleich-groffe Wiirfel zerschnitten und diese in einen Sack getan. Ist das Spiel fair, dass man mit einem Wiirfel aus

dem Sack fiir das Wiirfeln der Farbe weifs gewinnt?

Losung. Wenn man den groflen Wiirfel in 64 gleich-grole Wiirfel zerschneidet, dann haben 8 Wiirfel alle Seiten schwarz, weitere 8
Wiirfel drei von sechs Feldern weifl, 24 Wiirfel haben dann eine weifle Fliche und nochmal 24 Wiirfel zwei von sechs weifle Fliachen.

Man rechnet nun:

8 0 8 3 24 1 24 2 4+4+8_16_1
T 64 6 64 6 64 6 64 6 64 64 64 64 4
Die Antwort ist also, dass das Spiel nicht fair ist. O

Das Spiel mit dem Wiirfel

[Zuriick zur Liste]

Aufgabe. An einem Spielstand verspricht der Inhaber, dass bei seinem Spiel die Gewinnwahrscheinlichkeit doppelt so hoch ist,
wie die Wahrscheinlichkeit zu verlieren. Das Spiel geht so: Wirft jemand mit einem Wiirfel sofort die 6, hat er schon gewonnen
und bekommt 3 Euro. Falls mehrere Wiirfe notwendig sind, um eine 6 zu bekommen, so erhdlt der Kunde pro gemachten Wurf
3 Euro. Jetzt kommt der Haken: Wer eine 1 wiirfelt, hat einen Fluch am Hals und kann solange nicht mehr gewinnen, bis er
eine 6 wirfelt, die den Fluch aufhebt. Jede andere Augenzahl als 1 und 6 lisst den Fluch weiterhin bestehen. Solange der Fluch
besteht, kann der Kunde das Spiel verlieren, indem er erneut eine 1 wiirfelt. Dann muss der Kunde pro gemachten Wurf 4

Euro bezahlen und ist dann vom Fluch befreit, so dass er ein neues Spiel beginnen kann.

Liésung. Zunidchst hat man die folgende Markov-Kette:

4/6
4/6
1/6
Start > Fluch
1/6
1/6 1/6
1
1
Damit sieht die Ubergangsmatrix folgendermaBen aus:
4 1 4 1
KF s s 0 O KF s KF+5 F
N F | s & 00 F _| s KF+§F
G L 0 1 0 G : KF+G
v o L o 1 v s F+V



Nun soll M™ berechnet werden. Es gilt dafiir:

=% o0 o0 4 1 0 0 3 -1 0 0 £ 0 0 o0
UM T = -+ -3 o0 o t 2 0 0 ) -3 -1 0 0 _ 0 2 0 0
2 1 1 0 £ 0 1 0 -1 1 1 0 0O 0 1 0
3 2 0 1 0o 5 0 1 1 1 0 1 0o 0 0 1
Es folgt daraus:
£ 0 0 0 H" 0 0 0
1 1 0 2 o0 o 0 ()" o o
TV Mt T =TT M) = 6 = 6
0 0 1 o0 0 0 1m0
0 0 o0 1 0 0 0o 1"
Jetzt weifl man also:
3 -1 0 0 H" 0 0 0 T -+ 0 0
yro| "3 -1 oo o 0 H* o 0| | -3 -3 0 0
-1 1 1 0 0 0 1 0 2 1 1 0
1 1 0 1 0 0 0 1 3 Z 0 1
Nach einer etwas miihseligen Rechnung gilt also:
2—n—1.(%)n+2—n—1 2777.71V(%)n_2—n71 0 0
;e 2—n—1 . (%)n _ Q—n—l z—n—l . (%)n + 2—71—1 0 0
= —n— 5\ 1 —n— 5\ 1
() =+ 2 ()" — 4 L0
-1 —n—1
2 () A4y 2 (R) A+ 0
Jetzt wird der Grenzwert fiir n gegen oo ausgerechnet:
3 -1 0 0 0 0 0 O T =% o0 o0 0 0 0 0
-3 -1 0 0 0 0 0 O - -1 0 o0 0 0 0 O
lim M" = S =,
n— oo
-1 1 1 0 0 0 1 0 % B 1 0 s 3 1 0
1 2 2
1 1 0 1 0 0 0 1 3 2 0 1 3 2 0 1
Also gilt dann:
KF 0 0 0 O KF
M F _ 0 0 0 O F _ 0
G 2 1 10 G 2. KF+1 . F+G
1% 3 2 0 1 v 3 KF+32.-F+V
Daraus sieht man nun, dass die Gewinnwahrscheinlichkeit P[Gewinn] = N ist, und die Verlierwahrscheinlichkeit P[Verloren] = 3

denn es gilt ndmlich G+% -KF+. .. (vom Startpunkt nach Gewonnen) und es gilt eben V+% - KF+. .. (der Wahrscheinlichkeitsfluss

vom Startzustand nach Verloren). Es ist also wirklich doppelt so wahrscheinlich zu gewinnen als zu verlieren. Als néchstes soll die
Anzahl der zu erwartenen Schritte fiir einen Gewinn und fiir eine Niederlage berechnet werden: Sei P(A;) die Wahrscheinlichkeit,
dass das Spiel nach genau ¢ Schritten zu Ende ist. P(G) = g sei die Wahrscheinlichkeit, dass man das Spiel gewinnt. Man braucht
nun die Wahrscheinlichkeit fiir die Anzahl ¢ der Schritte im Falle eines Gewinns; das wird durch die bedingte Wahrscheinlichkeit
Po(A) = P(ajc) = TE0E)

P(G)
man in genau ¢ — 1 Schritten vom Startzustand in denselben Zustand landet, sodass man im nichsten Schritt gewinnen kann. Ein

gegeben. Man betrachtet nun die Zahl M{;l; diese Zahl gibt an, mit welcher Wahrscheinlichkeit

Spiel ist genau dann im i-ten Schritt gewonnen, wenn man sich im (¢ — 1)-ten Schritt im Zustand ,,Kein Fluch“ befindet und dann

1 ; 1
eine 6 mit der Wahrscheinlichkeit s wiirfelt. Es gilt also P(A; N G) = Mlll_1 s Man rechnet nun:

1
S oy =S PAnG) g~ T T
;z.P(A,m)_Zz. &) _;z~

i=1

E(G)

3
3

5 7—1
77.21'.]\/[’:—177.22'.M77
T4 4 o= i T8

BN
—
hgE
S
—
7N
N | =
N—
-
—
+
7N
o v
N—
|
—
[

Il
|~
.
e
~
S
+
=
—
/N
N |~
N——
+
07
~
+
=
/N
[N
N——
S
Il
| =
—
+
[$28
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P(A; NV
Nun wird die Anzahl der zu erwartenen Schritte fiir eine Niederlage berechnet. Es gilt Py (A;) = P(A;|V) = %, wobei

1 ; 1
gilt: P(V) = 3 und P(A; NV) = M;l_l 5 Ein Spiel ist genau dann verloren, wenn man im (¢ — 1)-ten Schritt vom Startzustand

1
angefangen sich im Zustand ,,Fluch® befindet und dann eine 1 mit der Wahrscheinlichkeit s wiirfelt. Also:

i—1
— . < pA;nv) & Ma g
]E(V):ZrP(Ai\V):ZwW=Zz~f6

i=1 i=1

—

5 i—1
=z —1 ) )
oo . 1 oo (3> 1 oo 1\i-1 5\ ¢!
_ . i—1 _ . _ .
=y i =g e =05 [ (5) +(5) ]

i=1 i=1 i=1

-
I

-

-

[_i(wl)- (%)i+§(i+1)- (g)} =3

i=

1
=--(—4436) =38
7 (~4+30)

N

(-5

fiir 0 < ¢ < 1 benutzt und wird hier nicht bewiesen. Man weifl nun also: Wenn

1

" 192
man gewinnt, dann hat man erwartungsgemif 5-mal gewiirfelt. Hat man verloren, dann hat man wohl 8-mal gewiirfelt. Nun kann

Es wurde hier die Formel 3 (i +1) - ¢
i=0
man nachrechnen, wie lukrativ das Spiel ist:
X 2 1 2
Profit = Gewinn — Kosten = 3€ - E(G) - P(G) —4€-E(V) - P(V) =3€-5- 3 4€ -8 - 3= —§€

Obwohl die Gewinnwahrscheinlichkeit tatsdchlich doppelt so hoch ist, wie die Wahrscheinlichkeit zu verlieren, macht man im Schnitt

2
§€ Verlust. Man sollte also nicht zu viel wiirfeln. O

Die neun gesuchten Zahlen

[Zuriick zur Liste]

Aufgabe. Gegeben sind neun positive ganze Zahlen, die in einer solchen Reihenfolge angeordnet sind, dass die Summe von
jeweils drei aufeinander folgenden Zahlen gleich ist. Die erste Zahl in der Reihenfolge ist 450, die letzte 50. Die Summe aller

Zahlen betrdgt 2010. Man bestimme alle neun Zahlen.
Lésung. Es gilt also nach Aufgabenstellung:
Ty +x2t+ 23 =x2+x3+Tg =x3+x4+x5 =x4+2x5 +T6 =5 +x6+2x7 =% +xT7+x8 =x7+x8+T9g =0«
Daraus folgt dann:
1 — 24 =0Axg —25 =0AN2x3 —26 =0ANx24 —27 =0AN2x5 —28 =0Axzg —29 =0

Also gilt dann:

450 = 21 = x4 = x7 ANx3 = g = 9 = 50

Nun sind noch drei Zahlen unbestimmt: z2 = x5 = xg = x. Die Summe aller Zahlen ist ja 2010, also:
2010 = (z1 + x4 + x7) + (z3 + 26 + x9) + (22 + x5 + x8) = (3-450) + (3-50) + 3z = 1500 4+ 3z < 510 = 3z < = = 170

Die Zahlen lauten also:

1 450
T2 170
x3 50
T4 450
Ts5 = 170
T6 50
x7 450
g 170
X9 50
Und das war auch schon alles. a
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Die Gleichheit zu einer Kreisflache

[Zuriick zur Liste]

Aufgabe. Gegeben sei ein Halbkreis iber die Strecke AC. Auf der Strecke AC liege der Punkt B. Die Senkrechte zu AC durch
B schneide den Halbkreis tiber der Strecke AC im Punkt D. Uber den Strecken AB und BC seien Halbkreise gezeichnet:

FoR N F2

.q‘--.._;_ |
:

Man beweise nun, dass der Kreis mit dem Durchmesser BD und die grau markierte Fldche denselben Fldicheninhalt haben.

- 5 7r
—27 = — . 2% und
8

a2
T \2 T o, W 5 T 5 2 2 2 2 T 2 T 2
——4— —F1-F2=—a¢"——z°——-(a—2)"=—-(a"—2"—a"+2-a-z—x —(2ax—22")=—-(a-x—=x
: S a?- T (a=2)* = 2 )= )= )

2
(%) < h?=q-z—z% Und jetzt gilt dann fiir den Fliacheninhalt des Kreises mit

(o]

2
Sei nun BD = h, dann gilt (% - m) +h? =

dem Durchmesser h:
h\ 2 2 g 2
: ( > =—"h :Z~(a-w—w):G

N

Also ist die Aufgabe gelost.

Die Flache in einem Kreis

[Zuriick zur Liste]

Aufgabe. Zwei konzentrische Kreise k und ko liegen so zueinander, dass es genau sechs zum Kreis ko kongruente Kreise gibt,
die den Kreis kg von auflen, den Kreis k von innen und je zwei der sechs Kreise beriihren. Man berechne die Grofle des Inhalts

des schraffierten Flichenstiickes in Abhdngigkeit vom Radius r des Kreises ko.
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V3
Losung. Der Flacheninhalt eines gleichseitigen Dreiecks mit der Seitenlidnge a ist bekanntlich e -a?. Also gilt fiir die Fliche des

3
gleichseitigen Dreiecks, oben im Bild: % - (2- r)2 = /3 - r2. Als nichstes zieht man von dieser Fliche die drei Kreissektoren ab:

2
S=+3-r*-3. ﬂ-GT

groBen Kreises 6-mal S und 7-mal die Fliche der kleinen Kreise ab. Die Differenz ist dann das sechsfache der schraffierten Fliche.

™
= <\/§ - 5) -r2. Die schraffierte Fliche erhélt man folgendermaBen: Man zieht vom Flicheninhalt des

Die zugehorige Rechnung lautet also:

2 T 2 L2 2 T 2
7r-(3-'r)276-5’77-(7r-r2)79WT 6 <\f 2) T 7w 727rr 6 <f 2) T
6 B 6 B 6
5
Die schraffierte Fliche hat also den Fliacheninhalt Agchratr, = g a2 = (\[ — g) r? = (E ST = \/§> r2 O
L] L] L]

Die interessante Ungleichung
[Zuriick zur Liste]
Aufgabe. Gegeben seien n nichtnegative reelle Zahlen x1,...,x, mitz; < z2 < ... <y, die die Ungleichungen mf+. . .+zfn >

m? fir alle 1 < m < n erfillen. Man zeige nun, dass dann gilt:
T1 a2+t >VIHVEF . V2 -1

Losung. Es gilt nach Voraussetzung :c? > 12. Man wiihle dann :tf minimal, also z? =12, Weil x? +x§ > 22 gilt, folgt x% > 2212,
Dann wihlt man azg minimal, also mg =22 — 12, Wegen If + zg +93§ > 32 folgt dann (1%) + (22 — 1?) +93§ > 32, also :cg > 32 22,

Man macht so weiter und erhilt damit: zf > 42— (1 — 1)2 =2-1—1 fiir alle 1 <7 < n. Also gilt dann z; > /2 -7 — 1, folglich also
14+ zo+ ... +T, >VI+V3+... +V2 - n—1. |

Die Darstellung als Summe zweier Quadrate

[Zuriick zur Liste]

Aufgabe. Es seien n > 2 Zahlen x1,x2,...,Tn gegeben, und es sei bekannt, dass jede von ithnen als Summe zweier Quadrat-
zahlen geschrieben werden kann. Es soll nun also bewiesen werden, dass dann auch das Produkt xi - x2 - ... - x, gleich der

Summe zweier Quadrate ganzer Zahlen ist.

Lésung. Sei zuniichst 1 = a?+b und 2 = x2+y?, d.h. 21 und z» sind beide darstellbar als Summe zweier Quadratzahlen. Es wird
nun gezeigt, dass dann auch das Produkt z; - zo darstellbar ist als Summe zweier Quadrate. Weiter: 1 - x2 = (a2 +b2) . (:Jc2 + y2) =
a2-a:2+a2-y2+b2 -w2+b2»y2 = (a2~w2+b2-y2)+(a2-y2+b2 -w2) = (a2 -:v272-a»a:-b-y+b2»y2)+(a2»y2+2-a»y-b-w+b2»a:2) =
(a-x—b- v)?% + (a-y+0b- z)2. Also hat man hier das Produkt z; - z» dargestellt als Summe zweier Quadrate. Mit vollstéindiger

Induktion zeigt man nun die Behauptung fiir das Produkt aus n darstellbaren Zahlen. I.A.: Die Behauptung gilt schonmal fiir
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n = 2. LV.: Es gelte die Behauptung fiir ein beliebiges n. I.S.: Es gilt doch z1 - ... @y - Tp41 = (1 - ... Ty) * Tpt1. Nach

Induktionsvoraussetzung ist x; - ... - x,, darstellbar, genauso, wie x,41. Weil das Produkt zweier darstellbarer Zahlen, wie oben

bewiesen, darstellbar ist, ist also auch x1 - ... x,41 darstellbar. Der Induktionsschluss ist also gelungen. O

Die nicht-primen Zahlen

[Zuriick zur Liste]

Aufgabe. Man beweise, dass keine der Zahlen 1001, 1001001, 1001001001, 1001001001001, usw. eine Primzahl ist.

1000"+t — 1

1000 — 1
hat die Zahl Z,, eine durch drei teilbare Anzahl an Einsen, und der Rest sind nur Nullen. Also ist die Quersumme durch 3 teilbar,

n
Lésung. Es gilt fiir diese Zahlen die Darstellung Z,, = > 1000* = mit n > 1. Wenn n + 1 durch 3 teilbar ist, dann
k=0

also sind in diesen Fillen Z,, (durch 3 teilbar) keine Primzahlen. Sei also von nun an n + 1 nicht durch 3 teilbar.

1000+ — 1

" i (10m*t —1) - (100! 410" +1) 10"t —1 100"F! 107 F 1
Zn =Y 1000" = = = .
= 1000 — 1

999 9 111

1ot —
Nun ist 10"t — 1 durch 9 teilbar, also ist )

100"+ + 10"+ + 1 durch 111 teilbar ist. Es gilt:

eine ganze Zahl ungleich Eins fiir n > 1. Es bleibt nun zu priifen, ob die Zahl

n=0: 100t mod111 =100 10°f'mod111 =10 1mod11ll=1
n=1: 100'"'mod111 =10 10'*'mod111 =100 1mod11l =1
n=2: 100>"'mod111 =1 102t mod111 =1 1mod11l1 =1
n=3: 1003"'mod111 =100 103T'mod111 =10 1mod11ll=1
n=4: 100" mod111 =10 10*t'mod111 =100 1mod11l =1
n=>5: 100°t' mod 111 =1 10°T ' mod 111 =1 1mod111 =1
n=6: 100t mod111 =100 10°t'mod111 =10 1mod11ll =1
n=7: 100"'mod111 =10 10"*'mod111 =100 1mod11l =1

Man sieht also, dass 100"+t +10n+1 +1 genau dann durch 111 teilbar ist, wenn n+ 1 nicht durch drei teilbar ist. Und dieser Fall war

100"+t 410t 41

ja vorausgesetzt. Der Quotient ist also in diesen Féllen eine ganze Zahl ungleich 1, wobei gilt n > 1. Es wurde

111
n
also bewiesen, dass Z, = > 1000* dargestellt werden kann als Produkt zweier Zahlen, die ungleich 1 sind. Die Nichtprimalitét ist
k=0
also auch in diesem Fall gegeben. Die Losung ist somit vollbracht. O

Die schwere Gleichung

[Zuriick zur Liste]

Aufgabe. Man beweise, dass es keine ganzen Zahlen x und y gibt, die die Gleichung 19 - z° — 17 - y® = 50 erfiillen.

Lésung. Mal angenommen, es gibt solche Zahlen z und y. Dann folgt (19-2° —17-%3) mod 19 = 50 mod 19 = 12, also: ((—17 mod 19)-
(y® mod 19)) mod 19 = 12, folglich (2- (y® mod 19)) mod 19 = 12, und: y® mod 19 = 6. Es wird nun gepriift, ob es Restklassen modulo
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19 gibt, deren Kubik bei der Division durch 19 den Rest 6 hat. Es gilt:

0% mod 19 0mod 19 0
1% mod 19 1mod 19 1
2% mod 19 8mod 19 8
3% mod 19 27 mod 19 8
4% mod 19 64 mod 19 7
53 mod 19 125 mod 19 11
63 mod 19 216 mod 19 7
7% mod 19 343 mod 19 1
8% mod 19 512 mod 19 18
9% mod 19 = 729 mod 19 = 7
10® mod 19 1000 mod 19 12
11% mod 19 1331 mod 19 1
123 mod 19 1728 mod 19 18
13% mod 19 2197 mod 19 12
143 mod 19 2744 mod 19 8
15% mod 19 3375 mod 19 12
16 mod 19 4096 mod 19 11
172 mod 19 4913 mod 19 11
183 mod 19 5832 mod 19 18

Man sieht also, dass y3 mod 19 niemals gleich 6 ist. Dieser Widerspruch zeigt, dass es keine  und y mit der oben genannten

Eigenschaft geben kann. Die Aufgabe ist damit gelost. O

Die Summe aufeinanderfolgender Zahlen

[Zuriick zur Liste]

Lemma. FEine lineare diophantische Gleichung a-x+b-y = c fir a,b, c € Z besitzt genau dann ganzzahlige Lésungen x,y € Z,

wenn ¢ ein ganzzahliges Vielfaches von ggT(a,b) ist.

Beweis. Angenommen, es gilt a -2 +b -y = c fiir bestimmte z,y € Z. Es gibt Zahlen a’,b’ € Z mit a = a’ - ggT(a,b) und
b=1b"-gegT(a,b), also: (a’ - ggT(a,b)) -z + (b' - ggT(a,b)) -y = ¢, woraus ggT(a,b)|c folgt. Sei nun umgekehrt ¢ = k - ggT(a, b)

(k € Z). Der rekursive Algorithmus zu Berechnung des ggT zweier ganzer Zahlen lautet:

a, a=2»b
ggT(a,b) =1 ggT(a—b,b), a>b
ggT(b, a), a<b

Dieser Algorithmus liefert im Abbruchsfall: Z - a + § - b = ggT(a, b). Daraus folgt dann:
(@ k)-a+(G-k)-b=k- ggT(a,b)=c
Also ist die diophantische Gleichung lésbar. Das ist das Ende des Beweises. O

Satz. Seien zo und yo eine spezielle Lésung der linearen diophantischen Gleichung a-x+b-y =c =k-ggT(a,b). Dann haben

alle weiteren ganzzahligen Lésungen (z,y) die Form:

b l-a
r=x0+ —ANy=y— ——— mitl € Z
ggT(a,b) ggT(a,b)
Beweis. Seien (xo,yo) eine spezielle und (z,y) die allgemeine Losung. Dann gilt: a - 29 +b:-yo = cund a-z + b -y = ¢,

also: a - (z — x9) + b (y — yo) = 0. Wieder gibt es Zahlen a’,b’ € Z mit a = a’ - ggT(a,b) und b = b’ - ggT(a,b), also:
a - (x—x0)+b - (y—1yo) =0-ggT(a,b) = 0. Also folgt:

a'~(w—1:0):

o —(y—1yo) €EZ
Weil ggT(a,b) = ggT(ggT(a,b) - a’,ggT(a,b) - b') = ggT(a’,b’) = 1 gilt, folgt, dass b’ die ganze Zahl z — x¢ teilt, d.h. x — x¢ =
tq1 -
t1 bV S x=x0+1t-b =20+ 17. Es gilt nun auch:
ggT(a,b)
—(y — Y
vV ez
a
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t2»a

Wegen ggT(a’,b’) = 1 folgt, dass a’ die ganze Zahl —(y — yo) teilt, also y —yo = —t2-a’ © y=yo —ta-a’ = yo — ﬂ Nun
gglia,

gilt die folgende Rechnung:

’

a - (x—z0)=—b-(y—yo) S a -(t1-b)=—b - (~tz-d) & t1 =ty =1
Setzt man nun t; = to gleich I, so folgt die Behauptung fiir z und y. O

Aufgabe. Es seien m und n teilerfremde positive ganze Zahlen. Man beweise, dass es dann stets zwei Mengen M und N von
m bzw. n aufeinanderfolgenden postiven ganzen Zahlen gibt, deren Elemente die gleiche Summe haben. Beispielsweise gilt fir

m=2undn =3 mit M ={4,5} und N ={2,3,4}:44+5=2+3+4.

Losung. Es soll also gelten:

m—1)-m n—1)-n
@40+ @A+t @+ (1) =@+ + G+ D+t G+ 1) s moay Oy 20
Und das ist dquivalent zu:
~(n=-1)n (m-1)-m cz
m-r—n-y= 5 5 =«
Es ist nun die Aufgabe positive ganze Zahlen x und y so zu finden, dass m -z — n - y = « gilt. Nach dem obigen Lemma ist

m-x+n-(—y) = a lésbar, weil « ein Vielfaches von ggT(m,n) = 1 ist. Sei (zo, yo) eine spezielle Lésung, dann sind alle Lésungen

(nach dem Satz oben) gegeben durch:
c=x0+l - nA—y=yo—-l - m&&rx=xz9+l - nAy=10-m—yo

Man kann nun das [ so grofl machen, dass = und y positiv sind. Also ist die Aufgabe gelSst. O

Die Summe dreier Inkreisradien

[Zuriick zur Liste]

Aufgabe. Gegeben sei ein Dreieck ABC mit dem Inkreis k. Der Radius von k sei r. Durch Tangenten an k, die parallel zu
den Dreiecksseiten sind, entstehen die Dreiecke ABACa, ABCp und Ac BcC, wie im Bild unten. Die Radien threr Inkreise

seten rq, 1y bzw. ro. Man beweise, dass rq + 1Ty + 1c = T gilt.

Lésung. Zunichst sind die drei kleinen Kreise kongruent zum Dreieck 1/4BC’. Sie §ind jeweils mit einem bestimmten Faktor kleins-
kaliert. Das gilt auch fiir die jeweiligen Inkreisradien. Es sind A, = a—, Ap = — und A, = < die Kontraktionsfaktoren fiir ihr
jeweiliges kleines Dreieck im Vergleich zum Dreieck ABC. AB = c, Wa: a und AC = b sind bgkannt. a’, b’ und ¢’ kénnen mittels
Analytischer Geometrie berechnet werden, weil die Winkel a bei A, 8 bei B und ~ bei C bekannt sind, und da man weif}, dass die

parallen Strecken a und a’, b und b’ sowie ¢ und ¢’ den Abstand 2 - r haben. Es gilt dann:

2-A
Die Formel fiir den Inkreisradius des Dreiecks ABC lautet: r = ﬂ, wobei A4 pc der Flicheninhalt und Ug e der Umfang

Uasc
des Dreiecks ABC ist. Also gilt dann:

_sin(a)-b-c  sin(B)-a-c  sin(y)-a-b

a+b+c - a+b+c a+b+c
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Aus dem Kosinussatz folgen die folgenden Identitdten:

b2+ 2 a® +c2 a? + b2
a=acos | — | AB =acos | — | Ay =acos | ——
2:b-c 2-a-c 2-a-b
Setzt man nun die bekannten Werte fiir o, 3, ¥ und r ein, so erhdlt man a’, b’ und ¢’ nur noch in Abhingigkeit von a, b und c.

V1— 22

Nach einer etwas ldngeren Rechnung, wo sin(acos(z)) = v/1 — 22 und tan(acos(z)) = ———— gebraucht wird, ergibt sich, ohne
x

Durchfithrung einer genaueren Berechnung:

a’ —a+b+c b’ a—b+c c a+b-—c
g =—=—""A"NXp=—=—"ANAe=— = ———
a a+b+c b a+b+c c a+b+c

Also gilt dann fiir die Inkreisradien:

- b —b b— b
7’a.+7‘b+7‘c:()\a‘r)+(Ab'r)+()\c'T):()\a+Ab+)\c)'T:( atbte, @ te, ot C)-T*a—i_ te

a+b+c a+b+c a+b+c _a+b+c.r

Damit ist die Aufgabe also vollstdndig gelost. O

Die Dreiecke um einen Kreis

[Zuriick zur Liste]

Aufgabe. Auf dem Tisch liegt eine Kreisscheibe mit dem Radius 6¢cm. Inge mdéchte von auflen mdglichst viele gleichseitige

Dreiecke mit der Seitenlinge 6¢cm an die Kreisscheibe legen. Dabei mdéchte sie folgende Bedingungen einhalten:
1. Von jedem Dreieck liegt eine Ecke auf der Peripherie des Kreises.
2. Die Dreiecke tiberdecken sich nicht.

3. Je zwei aufeinanderfolgende Dreiecke besitzen genau einen gemeinsamen Eckpunkt, und dieser liegt nicht auf dem Kreis.

\
Y

__—'-"""'-f

e

N

Man bestimme, wie viele Dreiecke Inge hichstens an den Kreis legen kann, ohne dass sich Dreiecke tiberdecken. Man beweise,

dass sich bei dieser Anzahl das erste und das letzte Dreieck in Eckpunkten beriihren.

Lésung. Als erstes braucht man eine gute Zeichnung:



Wie dem Bild oben zu entnehmen ist, gilt al 4+ 60° + a2 = 180° < a2 = 120° — «al. AuBerdem findet man 2 - p1 + 2 - a2 + 180° =
360° < ol + a2 = 90° < pl = 90° — @2. Analog findet man ¢2 = 90° — al. Also folgt nun:

w1l + 92 = (90° — a2) + (90° — al) = 180° — a2 — al = 180° — (120° — al) — al = 60°
Weil 360° = 6 -60° = 6 - (¢l + 92) = 6 - pl + 6 - p2 ist, hat man um den Kreis genau 12 = 6 - 2 gleichseitige Dreiecke. Die
beiden Winkel ¢1 und ¢1 wechseln sich um den Kreis immer ab. Das erste und letzte Dreieck beriihren sich in einem Punkt. Die

Dreiecke schaffen genau eine Runde. Das funktioniert, weil von den Winkel ¢1 und ¢2 gleichlange Schenkel kommen, die mit ihren

Endpunkten auf dem Kreisrand liegen. Fertig! O

Der Streckenzug in einem Dreieck

[Zuriick zur Liste]

Aufgabe. FEin rechtwinkliges Dreieck PyPy P habe die Seitenlingen 3,4 und 5, wobei Py P; die kiirzeste Seite des Dreiecks sei.

Es soll nun die Linge des unendlichen Streckenzuges PoPy P>Ps ... berechnet werden.

By
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N 4\ PP, 4
Lésung. Es gilt schonmal PoP; = 3 = 3 - (g> . Da das Dreieck PyP; P> kongruent zum Dreieck Py P; P ist, gilt 13 2 = 5
= 4\*! . . . . PyP3 4 —_—
also PiP; = 3 - ) Da das Dreieck Py P3P> ebenfalls kongruent zum Dreieck PoP; P ist, gilt also JoD = & PyP3 =
1 Po
4\' 4 4\? a1 . . . B 4\ * . .
3- :) s =3- ) Durch vollstédndige Induktion wird nun bewiesen, dass gilt Py Pr41 = 3+ ) Der Induktionsanfang gilt,

o 4\ 0 7 AN 1
weil PPy = 3 - <g> und PP, = 3 - <g> gilt. Induktionsvoraussetzung: Gelte die Behauptung fiir 0 bis k. Induktionsschluss:

[ Pyy1 Py 4
Man berechnet nun also Pgy1Py42. Ist kK + 1 ungerade, dann gilt % = 5 weil das Dreieck Ppy1Pyy2Pj kongruent ist
kL k41
4
zum Dreieck Py P> Py, welches wiederum kongruent ist zum Dreieck Py Py P. Also folgt nach I.V.: Pyy1Pryo = PrpPiiq - B v

4\F 4 4 kF1 o PrpiPryo 4 . . .
3.1 = = =3 = . Ist nun k + 1 gerade, dann gilt: ————=- = —, weil das Dreieck Py Pr12P, kongruent ist zum
5 5 5 Py Py
4 k+1
Dreieck P> P3P;, welches wiederum wieder kongruent ist zum Dreieck PyP; P, also auch hier Py41Pr42 = 3 - <3> . Nun wird
die Lange des unendlichen Streckenzuges berechnet:
o — > 4\ 2. /4\F 1
Py, Py, = 3-( - =3 - =3- =3-5=15
yrr=f(5) = 5 6) =+
5
Damit ist also die Aufgabe gelost. O

Der herumhiipfende Floh

[Zuriick zur Liste]

Aufgabe. Im Punkt Py = (—2,0) sitzt ein junger, hiipffreudiger Floh. Zundchst springt er in Richtung des Punktes A = (1, —2)
und landet genau auf halber Strecke. Von dort aus hiipft er die halbe Distanz in Richtung des Punktes B = (2,2), anschlieflend
die halbe Distanz nach C = (—1,1). Im nun erreichten Punkt P; macht er eine kurze Verschnaufpause, bevor er wieder in
Richtung A startet und nach dem gleichen Prinzip weitere Dreiecksspriinge vollfiihrt. Nach jeweils drei Sdtzen ruht sich der

Floh aus. Die folgende Zeichnung veranschaulich die Spriinge:

« I3

Die Folge (Py) der Ruhepunkte nach 3n Sditzen konvergiert gegen einen Grenzpunkt Poo. Es soll nun jeweils die 1000. Dezi-
malstelle der x- und der y-Koordinate von P, berechnet werden.

. . 1 1
Lésung. Man startet also in Py und man fliegt dann um (A — PO)E7 also nach Py + (A — PO)E =: Py, ao. Dann: Py g := Py Ao +

1 1
(B — Pl'A)E und also P; = Py g + (C — PLB)E. Also gilt:

1 1 1.1
Py =P g+ (C— PI,B)5 = (P1,a+ (B - P1,A)5) +(C = (P1,a+(B— P1,A)§))5

Setzt man jetzt Pi 4 ein, erhdlt man:

Lt

Py= (ot (A= Po)2) + (B = (Bo+ (A= Fo)3))5) +(C = (Ro+ (A= Po)3) + (B = (Po+ (A~ Po) ) 2)3
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Nach einer etwas lingeren Umformung erhélt man dann:

931 _ 4 931 _ 4 31 _ 1
b _At2BHACHR 7 At2 ——B+4- ———C+ R
e 8 - 251
Mit vollstandiger Induktion wird nun gezeigt:
23«1‘_1A+2 3.4 1B+4 23»i_IC+P
p—_ T 7 7 0
i = 234

Der Induktionsanfang (i = 1) gilt bereits. Sei die Behauptung richtig fiir 7. Es wird dann gezeigt, dass die Behauptung auch fiir
1 1
i+ 1 gilt. FolgendermafBen wird jetzt weitergerechnet: Piy1,4 = P; + (A — Pi)E, Piy1,B = Piy1,4 + (B — Pi+1,A)§ und es gilt

1
also Piy1 = Piy1,8 + (C — Pi+133)5, also folgt dann:

1 1 1.1
Pit1=Piy1,8+(C = Piy1,B) 5 = (Pig1,4 + (B — Piy1,4)5) +(C — (Pig1,4 + (B — Piy1,4)5)) 5
2 2 272

Setzt man nun P; 1,4 ein, so folgt dann:

1 1.1 1 1..1..1
Py =((Pi+(A=-P))+(B-(Pi+(A-P)7))) +(C—(Pi+(A=-P)g)+ (B - (Pi+(A=-PF)7))7))5
2% 2% 2%
_A42B44C+ P, A-2%  p.o¥Hl 0-23"+2+f14+2‘ A
- 8 T 93.93i 22 . 93i+1 21 . 93i+2 23-(i+1)
23~i -1 . 23~i -1 . 23-i -1 .
<fA+A~231> + <2~fB+B-231+1> + (4-fc+c‘231+2 + P

23 (i+1)

Und so geht es dann weiter:

PRSI | 2%t .7 2% 1 2% .7 234 1 2% .7
A+ A +|2-=F—B+2-B-— tl4—F—C+4- 0 —— |+ h

Pit1 = 23-(i+1)
8.2%% 1 8.2%% 1 8.2%% 1
_ A 2. —— B 4. —C P
= 23-(i+1)
Es gilt also, wie schon erwartet, der Induktionsschluss:
93-(i+1) _ 1 93-(i+1) _ 1 93-(i+1) _ q
- A+2- - +4- C+ Py
Pip1 = 23-(i+1)
Jetzt kann man endlich P, ausrechnen:
i Pm otim T a2 i 2 g e i B
e T 7 A T e + 7 i 98 + 7% T3 + oo 287
1 1-A+ 2 1-B+ 1 1-C+0
7 7 7
1A+ 2B +44C

7

1,-2 4,4 —4,4 16
NungiltA:(1,—2),B:(2,2)undC’=(—1,1),alsoP¢,o=(7 )+ +( ’)=<

>4 Desweiteren gilt also auch

7 [
1 -
Py = <;, ;) = (0, 142857;0,857142). Nun gilt 1000 mod 6 = 4. Also: 1000. Dezimalstelle von z ist 8, und 1000. Dezimalstelle
von y ist 1. Die Aufgabe ist damit geldst. O

Das Kegelvolumen im Vergleich

[Zuriick zur Liste]

Aufgabe. Ein Stiick Papier, das die Form eines Kreissektors mit Radius v und Sektorwinkel ¢ € (0,27) hat, wird an den

gestrichelten Linien tberlappungsfrei zusammengeklebt. Dabei entsteht ein Kreiskegel.
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Fiir welchen Winkel ¢ wird das Verhiltnis von Kegelvolumen zu Mantelfliche mazimal?

T
Lésung. Zunidchst gilt Anantel = Qi car? = SD . Weiter gilt: — - 271 = 27TKegel € TKegel = QDT Es wird als néchstes
I

die Hohe des Kegels bestimmt: h? + rf(egel = \/T Fiir die Grundfliche des Kegels gilt G = TrTKegel =

2 2
. (SD r) —¥ T . Das Volumen V des Kegel ist damit:

2 4

<
Il
Wl =

Daraus folgt dann also:

Qe) = <so>—»12’r ” &) o= (L)

AMantel
2

d
Das notwendige Kriterium fiir ein Maximum lautet d—Q(g&) =0, also:
©

—Q(w

1
R S— <_L) _
271' 0\ 2 272
G
2
Und das ist dquivalent zu:

2 2
® 2
=— &S4r" =2
V 271' ) 472 g ks
27r

An der Stelle ¢ = /2 - w befindet sich ein Maximum, denn man weist leicht nach, dass Q”(\/i - ) < 0 gilt. Also ist der Quotient
aus Kegelvolumen und Mantelfliche maximal fiir ¢ = v/2 - 7. Ende. a

Die letzte Ziffer sehr grofier Potenzen

[Zuriick zur Liste]

Aufgabe. Es sollen hier die letzte Ziffer folgender Potenzen ausgerechnet werden:

a) (123789)456 b) 789(123456)

Losung. Zunéchst wird sich um a) gekiimmert:

(123789)456 mod 10 = (3789)456 mod 10 = ((35 : 35)78 . 39)456 mod 10 = ((243-243)™ . 3° - 34)456 mod 10
(

(3-3)7% . 243 81)456 mod 10 = ((3 .3)78.3. 1>456 mod 10 — (978 } 3>456 mod 10
= (( ) * mod 10 = (1% 3)455 mod 10 = (1% 3)456 mod 10 — 3% mod 10

- (32) mod 10 = 812%% mod 10 = 122 mod 10 = 1
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Als néchstes wird b) geldst:

123455)

455
789(123°°) 10d 10 = 00125"°) Liod 10 = (9”1 -9) (123%) od 10 = (8161 .9)( mod 10

- (161 . 9) (1238%%)  0d 10 = 00%%°) 1od 10 = (9123) (1235 od 10 = 002%) 1od 10

123

=9"2% mod 10 = (81)°' - 9 mod 10 = 1°! - 9 mod 10 = 9

Die Aufgabe ist damit vollstindig gelost. O

Die periodische Folge

[Zuriick zur Liste]

Aufgabe. Fiir eine Folge x1,x2,... sei jedes Glied um 1 kleiner als die Summe einer Nachbarn:
Ty =Tp—1+Te+1— 1, K=2,3,...

Jede solche Folge ist periodisch. Aufgaben: a) Bestimme die Periodenlinge fir den allgemeinen Fall, b) Berechne die Summe

der ersten 66 Folgenglieder, c) Gebe von der Folge mit x1 = 1 und ze¢e = 66 die Folgenglieder x11,x22,...,Ts55 an.
Lésung. Im allgemeinen Fall sieht die Folge also folgendermaflen aus:
1 T2 x3 T4 Ts5 Z6 xr7 T8 T9
a b l—a+b 2—a 2—-b 14+a-0 a b l1—a+b
6
Wie man sieht, hat die Folge im allgemeinen Fall die Periodenlédnge 6, also ist a) gelést. Nun zu b): Es gilt >, z; = a+b+ (1 —
i=1

66 6
a+b)+(2—a)+(2-0b)+ (1+a—0>b) =06, daraus folgt > x; =11- > z; = 11 -6 = 66, also b) fertig. Sei nun also z;1 =a =1
i=1 i=1

und zgg =26 =1+a—-b=14+1—b=2—b=266, also a =1 und b = —64. Also:

T T2 3 T4 Tz T T7 s Z9

1 —64 —64 1 66 66 1 —64 —64
Damit ist c) geldst: z11 = 66 wegen 11 mod 6 = 5, 2o = 1 wegen 22 mod 6 = 4, zzg3 = —64 wegen 33 mod 6 = 3, w44 = —64
wegen 44 mod 6 = 2 und xs5 = 1 wegen 55 mod 6 = 1. Ende. O

Die Symbolratsel

[Zuriick zur Liste]

Aufgabe. In der folgenden Anordnung sind sechs Gleichungen enthalten, wobei jedem Symbol genau eine Ziffer entspricht.

<

a) Wie lauten die gesuchten Ziffern?
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b) Welche anderen Kombinationen von zweistelligen Zahlen a,b,c sind bei ganzzahligen positiven Ergebnissen d,e, f,g,h

mdoglich? Man beweise, dass es nur genau vier Kombinationen gibt!

Lésung. Die beiden Aufgaben werden, wie folgt, bearbeitet:

a) Wegen VO — 00 =0 folgt 0 =0. Aus e - A0 =V 0O < o= A0+ VO folgt © = 5. Weiter gilt A5+ A0 = @5, also
© = 2,4,6,8. Weil %5 = @0 gilt, kann @ = 6, 8 nicht sein, weil V #5 hochstens 45 = 9 - 5 ist. Es bleibt @ = 2,4. Wire @ = 4,
dann wire \/ = 8 wegen Y #5 = 40; da A mindestens 1 ist, folgt aus \V = 8, dass 0 > 99 ist, also Widerspruch. Folglich kann nur
© = 2 sein. Also gilt =4, da J %5 = 20 gilt. Wegen A5 — A 0 =5 folgt A = 1. Und schlieBlich folgt aus €0 — 15 = 45, dass @ = 6

gelten muss. Insgesamt sehen alle Lésungen so aus:
e=6 0O=0 A=1 ©=5 V=4 0=2

Wenn man die Werte alle einsetzt, dann ergibt sich folgendes Bild:

B B .- 1 &5 = 45

5 ¢ 1.0 =..2.5
4 =* 5 = 2 0
b) Es werden nun die d, e, f, g, h in Abhéngigkeit von a, b, ¢ dargestellt:

d b bte f=2 b arce_2
=a—0b; e= c; = — =b—c a-— = -
p B b b

b—c)=f-g=h=d—-e=(a—-b)—(b+c)=a—2b—c

2

a-c 2b

Weil h zwei verschiedene Darstellungen hat, folgt also: a — s =a—2b—c&Sc= P also ist auch c festgelegt. Die Zahlen
a—

c,d,e, f,g,h werden also durch geeignete a,b parametrisiert. Es sollen also a, b, ¢ zweistellig sein. Man sucht nun a,b so, dass

c zweistellig ist, ¢ # a und ¢ # b ist, und dass gilt b | @ und a # b. Es gilt 2 < % < 9 mit % € N>9 denn wire % =1,

a 99 a
dann wére a = b, im Widerspruch zu a # b. 3 < 9 gilt, weil o = 9,9 ist. Jetzt zeigt man, dass 3 = 2 nicht sein kann:

a? a?
2. — 2.
a 22 . X X a . a 32 a
Also b = — = ¢ = a = a, im Widerspruch zu ¢ # a. Auch kann nicht — = 3 sein: b = - = ¢ = = — = b,
2 a b 3 2, 3
2 3
im Widerspruch zu ¢ # b. Es gilt bisher % € {4,5,6,7,8,9}. Sei nun allgemein % = X € {4,5,6,7,8,9} mit A > 5, dann
a? a?
it b = = = Y% 2a 4 Aus A > 5 folgt A — 1 > 4, also A- (A — 1) > 20, al
ilt: b = — c = = = = . Aus o — also X\ - — , also
s A T TS TXO-D X 0-D = o fols =h =
a P SO
A A 2
A-(A-1) ) ; . a . . o
— s > 10. Weil a hochstens 99 ist, folgt, dass ¢ = m < 9,9 ist, also, dass ¢ nicht zweistellig sein kann. Es kann
2
2
a a 2 22
also nur 3 =4 b= 1 sein, folglich: ¢ = 3 = —. Weil a durch 4 und durch 6 teilbar ist, ist a auch durch 12 teilbar. a
—-a
4

a
muss wegen ¢ = s grofler-gleich 60 sein, sonst ist ¢ nicht zweistellig. Von 60 bis 99 sind durch 12 teilbar: a = 60, 72, 84, 96. Die vier

Losungskombinationen sollten also folgendermaflen lauten:

a b c d e f g h
60 15 10 45 25 4 5 20
72 18 12 54 30 4 6 24
84 21 14 63 35 4 7 28
96 24 16 72 40 4 8 32
Die Zahlen sind in jeder Zeile paarweise verschieden. Die Losung der Aufgabe ist nun fertig! |

Die Pokerblatter

[Zuriick zur Liste]

Aufgabe. Folgende zwei Punkte sollen behandelt werden:

1. Wieviele Méglichkeiten gibt es, beim Pokerspiel mit 32 Karten genau ein Paar zu erhalten?
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v Y

2. Berechne die Anzahl der Méglichkeiten dafir, dass sich das abgebildete Blatt (siehe oben) durch Tausch von zwei Karten zu

einem Full-House verbessert!

4
Losung. Zu 1.: Es gibt 8 Moglichkeiten das Zeichen des Paares festzulegen. Dann gibt es fiir das Paar (2) mogliche Farbkombina-
tionen. Die Anzahl der Paare muss man dann mit der Anzahl an Moglichkeiten fiir die restlichen 3 Karten multiplizieren. Weil die
7
Zeichen der restlichen drei Karten verschieden sein sollen und ein Zeichen fiir das Paar vergeben ist, gibt es also (3) Moglichkeiten

fiir die restlichen drei Karten. Diese drei Karten mit verschiedenen Zeichen gibt es in 4% Farbkonstellationen. Zusammengefasst ist

[g. (i)] . [(;) .43} = 107520

Damit ist 1. fertig! Nun zu 2.: Es gibt drei Fille: (i) Man zieht eines der zwei Asse und eine Karte von den drei anderen (K,Q,J),

die Anzahl fiir genau ein Paar also:

Anzahl der Méglichkeiten: 2 - 3 = 6; (ii) Man zieht beide Asse, Anzahl der Méglichkeiten: 1; (iii) Man zieht zwei Karten aus den
drei Karten K,Q und J, Anzahl der Méglichkeiten: (z) = 3. Es wurden also alle (;) Moglichkeiten betrachtet zwei Karten aus
fiinf auszuwéhlen. Zu (i): Zieht man ein Ass und eine Karte aus K,Q und J, dann bleiben drei verschiedene Karten iibrig, also
kann man sich in diesem Fall nicht zu einem Full-House verbessern. Zu (ii): Zieht man die beiden Asse, dann bleiben wieder drei
verschiedene Karten iibrig und man kann sich auch hier nicht zu einem Full-House verbessern. Zu (iii): Hat man K, Q gezogen,
dann braucht man zwei J oder 1 Ass und ein J; hat man K, J gezogen, dann braucht man zwei @ oder 1 Ass und ein @Q; hat man
Q, J gezogen, dann braucht man zwei K oder 1 Ass und ein K. Es gilt also die folgende Anzahl an Mdoglichkeiten sich zu einem

Full-House zu verbessern:

Die Losung der Aufgabe ist daher komplett fertig! O

Das MasterMind-Spiel

[Zuriick zur Liste]

Aufgabe. Bei dem Spiel MasterMind muss eine Kombination aus den Farben Rot (R), Grin (G) und Blau (B) erraten werden,
wobei man nach jedem Versuch die Information erhdilt, wie viele Farben richtig gewdahlt wurden und wie viele Farben bereits an

der richtigen Position stehen. Ein mdglicher Spielverlauf ist:

richtige Farben richtige Positionen
1.Versuch: R G B 2 1
2. Versuch: G B G 1 0

a) Wie viele Kombinationen sind nach der Information zu dem ersten Versuch noch méglich?
b) Welches ist die gesuchte Kombination, die nach den beiden Versuchen eindeutig festliegt?

¢) Wenn zusdtzlich noch die Farbe Schwarz (S) gegeben wire, wie viele Kombinationen wiren dann noch mdglich?

Lésung. Zu a): Nach dem ersten Versuch weifl man, dass die drei Kugeln aus genau 2 Farben bestehen. Mégliche Farbkombinationen
sind: RG, RB und GB. Hat man die Farbkombination RB, dann ist entweder R an der richtigen Position oder B, denn G ist nicht
an der richtigen Position, weil G nicht Rot und nicht Blau ist. Mogliche Kombinationen im Fall RB: Ist R richtig an der ersten
Position, dann muss B an die zweite Position, weil B auf drei sonst auf der richtigen Position wire. Auf drei kommt dann R, denn,
wenn dort B wére, dann wire auch B an der richtigen Stelle. Ist B an der dritten Stelle am richtigen Platz, dann muss R an die
zweite Stelle, weil R auf dem ersten Platz sonst auch an der richtigen Stelle wire. An die erste Stelle kommt dann B, denn, wenn
dort R wire, dann wire auch R an der richtigen Stelle. In den Fillen RB und GB findet man ganz analog zum Fall RG ebenfalls

jeweils zwei mogliche Kombinationen. Insgesamt hat man also:

RB: RBR BRB
RG : RRG GGR
GB : BGG GBB
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Nach dem ersten Versuch sind also noch 6 Kombinationen mdglich. Nun zu b): Aus der zweiten Information folgt, dass G nicht auf
der ersten und nicht auf der dritten Position stehen kann. Und B steht nicht auf der zweiten Position. Man kann also aus den 6

brigen Kombinationen falsche Kombinationen ausschlieflen:

RB : RBR BRB
RG : RRG GGR
GB : BGG GBB

Es bleibt BRB iibrig und es erfiillt auch beide Informationen aus den zwei Versuchen. Also ist b) geldst. Jetzt zu c): Wenn nun
Schwarz (S) dazu kommt, dann bleibt BRB weiterhin eine Ldsung unter den Kombinationen, die Schwarz nicht enthalten. Man
unterscheidet drei Fille: RB, RG und G B, wobei Schwarz in der Kombination enthalten ist, denn die ohne Schwarz hat man ja

behandelt. Man hat dann also:

RBS : RBS RSB RSB SRB
RGS RGS RSG RGS SGR
GBS : BGS SGB GSB SGB

Man kann nun wieder Kombinationen ausschliefen: Fall RBS: Ist R an der ersten Position richtig, dann darf B nicht an der zweiten
Stelle stehen, nach Information 2. Nach Information 1 darf B nicht an der dritten Stelle stehen, sonst wéiren zwei Buchstaben an
der richtigen Stelle. Ist jedoch B auf der dritten Position an der richtigen Stelle, dann darf R nicht an der ersten Stelle stehen, nach
Information 1. Fall RGS: Ist R an der ersten Stelle richtig, dann darf nach Information 1 das G nicht an der zweiten Stelle stehen.
Nach Information 2 darf G auch nicht an dritter Stelle stehen. Ist G an der zweiten Stelle richtig, dann darf nach Information 1 das
R nicht an der ersten Stelle stehen. Fall GBS: Ist B auf drei richtig, dann darf nach Information 1 das G nicht an zweiter Stelle
stehen. Nach Information 2 darf G auch nicht an erster Stelle stehen. Ist G auf zwei richtig, dann darf nach Information 1 das B

nicht an dritter Stelle stehen. Die Kombination BGS kann nach Information 2 nicht sein, sonst wiren 2 Farben richtig.

—

1

RBS : RB’S RSB' R'SB SRB
RGS : RG'S RSG° TR'GS 8GR
GBS : BG’S SGB' G*SB SG'B

Es bleiben also unausgeschlossen die Kombinationen SRB und SGR. Zusammen mit BRB sind also insgesamt noch 3 Kombina-

tionen méglich, die alle den zwei Bedingungen geniigen. c) ist also auch gel6st. Ende. O

Die Verhiltnisse im Parallelogramm

[Zuriick zur Liste]

Aufgabe. Im Parallelogramm ABCD bezeichne M den Mittelpunkt der Strecke BC' und S den Schnittpunkt der Strecke AM
mit der Diagonalen BD.

A~ B

a) In welchem Verhdltnis teilt S die Diagonale BD?
b) In welchem Verhiltnis steht die Fliche des Parallelogramms ABCD zur Fliche des Dreiecks BMS ?

BS BM e J— — _

Lésung. a) Nach dem Strahlensatz gilt ﬁ = ﬁ Desweiteren gilt DS + SB = DB und setze DS = X\ - DB sowie SB =
- TS TS —_— _ |BS]| [(1 = X) - DBj 1—A 1

(1 — X) - DB, so dass also gilt DS+ SB =X-DB+ (1 —X)- DB = DB. Nun folgt dann = = = - =
|SD]| |X\ - DB A 2

33



1 —
[z

2 ‘_\BMI_IBMI

|BC| ~ |BC| |AD|
1: 2 teilt. Vollig analog zeigt man, dass S die Seitenhalbierende AM im Verhiltnis 2 : 1 teilt. Nun zu b): Sei E = d und B? =b.

2 1 —
S2-2A=A&)\= 3 also 11—\ = 3 Damit ist also gezeigt, dass S die Diagonale BD im Verhiltnis

Das Parallelogramm wird von den Vektoren @ und b aufgespannt, also gilt fiir den Flidcheninhalt des Parallelogramms ABCD:

Aapep = |det(a, b)| = |det (

aq b1
) = a1 b2 —az b1
a bg

1 1 - 1 — 1 1
Das Dreieck BM S hingegen wird von den Vektoren 5B = 3 DB = 3 (@ — b) und SM=-.AM= 3 <5+ 5 b>‘ Also:

Apms = % . |det (5@,57\7[” =

g

N |

1

3

2
) - |det

(
(

1 - 1
5 det(f @95 (a
1
ay — b1) a1+§~b1
1
az — ba) a2+5'b2

+1E =1 ldet
2 g%

1 /1\? |3 1
:7-<7) -‘7-(a1»b2—b1-a2) :ﬁ»|a1»b2—b1-a2|

3

1
- (a1 —b1) a1+§'bl

Wl =W =
Wl =W =

1
- (az — b2) 02+5'b2

3 2

Die Lésung von b) lautet also: Das Parallelogramm ABCD hat eine 12-mal so groBe Fliache wie das Dreieck BM S. Fertig!

Der Schnitt von vier Viertelkreisen

[Zuriick zur Liste]

Aufgabe. Sei ABCD ein Quadrat mit Kantenlinge r = 1.

Aufgaben: a) Bestimme in der abgebildeten Figur

I

D ___c
o ]
\
'\
P\ :

a ; e
i-*'! ﬁ"ﬁ,i
| '."
|__F_-_—::'_'_____f ______________ ? e _!

F der vier Viertelkreise (schraffiert).

Lésung. Die Koordinaten von P erhidlt man so: z =

1 5 1\2 . 3 V31
= - = - =1« z© = —, also —_—, =
Y 2 +<2> Q 272

; 2 L
wird also c) behandelt: ' =4- [, 1—a22— 5 dzr =

&

oben den Winkel m, b) die Linge der Strecke PQ und c) den Flicheninhalt

1 1\? 3 1 V3
= = (5) +y2 =1 & 2 = T also P = (5’%) Q geht so:
oL \/§+ V3
P - 2 T4 3
s = . Zu a): cos(LPAQ) = — Q_‘ =4 4 _ i, also gilt
1 P~ 1G] 1 2
V3 o1 3
~ 30°. Nun zu b): |[PQ| = |Q — P| = 2 2 = ,l2- @,l :Q-(\/gfl).Nun
¢ > "3) T
2 2
V3
—3-v3+3
%. Also: Ende. d

2
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Aus der Funktionentheorie

[Zuriick zur Liste]

> sin(z) do — =

Aufgabe. Man beweise mit Funktionentheorie, dass gilt: /

oo X

iz

e
Lésung. Es wird die Funktion —— iiber die folgende geschlossene Kurve integriert:
z

1 1 . 1 1 .
Es gilt also das folgende: v1 = —r 4+ t, t € |:O, —= +7‘]; yo=<--e Pt te[m2n];v3 ==+t te [O,r — 7] und v4 = 7 - e¥'?,
r r r r
t € [0, w]. Daraus folgt dann also:

1 . .
——+r gl (=r+t) 27 ¢
= T —1dt _—
/o -+t +/w L
T

et -+t
T
7 ogi(rett) .
+/ — (r-et i) dt
0 r.ett
1
1 1 . 1 | —+t
— g i (=) P re— o \T T i
:/ r 7-1dt+/ e \T <(—i)dt+/ Ti-ldt-‘r/ e e Lgde
0 —r+t ™ 0 lth 0
T
1 )
,1 eit r it P i~<7»e*”> _ i
=/ r -1dt+/1 ~1dt+/ e \T -(—i)dt+/ e e i at
o t Z P 0
T
iz eizz
Weil v geschlossen ist und die Polstelle von —— nicht umrundet, gilt ‘7{ —— dz = 0, woraus dann folgt:
z ~ z
1 .
,l eit r it 27 i'(*'e_l’t) LI it
0= lim / rZ_dt+ [1 —dt+/ e \” 4(7i)dt+/ e e i at
r—00 —r t _ t o 0

T

it

0 oo pitt 27 it T -
:/ e—dtJr/ e—dt+/ RAC >»(*i)dt+ lim / et (mleostisin(®)) gy
—oo U 0 t 7, r—oo [o

o gitt 27 T .
:/ 7dt—i‘/ ldt+i- lim / girmeos(t) —rsin(t) gy
o t - r—oo Jo

0o it ™ . )
= € dt —i-(2r —7) +1i- / lim (efr-sm(t) . ewur-cos(t)) dt
o T

oo t — 00

oo i-t P X
/ C dt—i-n + - / lim (e 7M. [cos(r - cos(t)) + i - sin(r - cos(t))]) dt
0

—oo r—00
o it T
:/ Tdt7i<7r+i~/ 0 - [cos(oo - cos(t)) + 4 - sin(oco - cos(t))] dt
—oo 0
oo it
= dt—imti-0
et
oo it
= e—dt—i‘ﬂ
et
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Denn es gilt cos(r - cos(t)) + ¢ - sin(r - cos(t)) € ([0,1] + 4 - [0, 1]) fiir alle » € R. Es folgt also:

/Oo ei-tdt:/m wiﬁ+i~@dt:

t

oo 1 t
Durch Vergleich der Imaginérteile erhélt man also: / m dt = w. Und damit ist man hier fertig! |

oot

Aus der Fourieranalysis

[Zuriick zur Liste]

) ) ) . ) oo /sin(x) 2
Aufgabe. Man beweise mit Fourieranalysis, dass gilt: dr = 7.
oo T

Lésung. Sei g(x) := 1;_1 1)(z), dann gilt:

oo oo 1
(g*g)(m):/_ g(w—y)'g(y)dy:/ 11[71,1](36—1;)-1[71,11(y)dy:/_11[71,11(90—y)dy

z—1 241
:/ n[,m](x—(w—t)).(—ndt:/ 1y (t) di
x+1 x—1

Es gilt also das folgende:
0, T < =2
x + 2, —2<zxz<0
—rz+2, 0<x<2
0, 2<

(g*9)(z) =

Jetzt wird die Fouriertransformierte § von g berechnet:

/°° () - e gt = /wn () - e gt = /1 —imt gy L /1 (—at) + i sin(—at) dt
. e = — — e = —— e = — COS(—T 7 -8s1n(—x
,oog V2T J o (=11 V2 1 V2m J_1

[ yentan = ivintstyae= o [ foon (o 2) tosin (o D) ]2

. cos(x — 1 - s1n(x = — " cos|x- — —%-8In|\x- — - —daz
T —1 27 — x x x
2 sin(x)

:E~%»</j;cos(z)dz7i~/j;sin(z)dz> :\/%-é-(Q»sin(a:)fi-O):ﬁ- -

_ 4 i 2 4 i 2
Nach der Faltungsregel gilt (7%9)(x) = V27 - (§(x) - 4(x)) = V27 - - (Sm(””)) = (““(””)) . Nach dem Umkehrsatz

g(z) =

-5~ 8-
3

s x \/ﬂ T
der Fouriertransformation gilt dann:
1 <~ iwt
- *g)(x)- e dr=(gxg)(t
[ @0 (9590
Daraus folgt also insbesondere:
1 >~ iz-0 1 /°° 4 <sin(z)>2
e * z)-e’ dr = —— - ey -ldx = (g * 0) =2
=/ @ =/ =(= (9% 9)(0)
o /sin(z) 2 27 .
Daraus folgt dann also —_— de =2 e = m, die Behauptung. Ende. |
oo T

Aus der Analysis

[Zuriick zur Liste]

Aufgabe. Die Fibonacci-Zahlen werden rekursiv definiert durch fny2 = fn41 + fn mit f1 = fo = 1. Man beweise dann, dass

oo
1
also die folgende Identitit gilt: — =1.
nZ:O fn : fn+2

n n n 1

Lésung. Der Beweis geht so: fr, + frnt1 = fn42 = fot1 = fni2 — fn = Fnta =1- fi = & = — — . Also:
2 2 frnfote  fn fat2

1 1 1

frfntz fofatr fag1c Fage
Es folgt also:

i1:(171)+<171>+<171>++<171)
=0 In e fo-fi fi-f2 fi-f2 f2-fs fa-fs  fa-fa fo fo+1  fot+1 - fot2
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Das ist eine Teleskopsumme, und deswegen gilt:

g 1 1
— = 404 O
= fnfar2 forfi ~—— fot1 - fot2

g-mal

=] 1 1 1
Weil ILm fn = oo gilt, folgt: >, ——— = 0= —

_— = 1. Fertig! a
n=0 fn'fn+2 f()'fl

1-1

Aus der Gruppentheorie

[Zuriick zur Liste]

Aufgabe. Seip eine Primzahl und G = (G, ) eine abelsche aber nicht zyklische Gruppe der Ordnung p2. Dann zeige:
1. Es gibt u,v € G mit

(a) ord(u) = ord(v) = p und

(b) jedes a € G lisst sich eindeutig schreiben als a = u™v™ mit n,m € {0,1,...,p — 1}
2. G~ (Z/pZ) x (Z]pZ)

Lésung. Zu 1.: |G| = p?> = fiir alle a € G: ord(a) | p> = ord(a) = 1V ord(a) = p V ord(a) = p*>. Wire ord(a) = p? = |G|,
dann wire G =< a >, also G zyklisch, Widerspruch zur Voraussetzung. Gilt ord(a) = 1 = a = e, davon gibt es in G nur
ein Element. p?> — 1 Elemente haben also die Ordnung p. Wegen ord(u) = p fiir eines aus den p?> — 1 Elementen, die ungleich e
sind, ist H := {u®,...,uP~!} eine zyklische Untergruppe von G. Sei v € G \ H. Dann sei K := {v°,...,vP~'} (zyklisch). Nun:
k

u'v? = uPFul. Es wird nun gezeigt, dass dann gilt (i,5) = (k,1): Es gilt also v’ F0/ ™" =e = u' " =o'V e HNK = W. W

ist eine Untergruppe von H und K. Also |W| | p = |[W| =1V |[W| = p. Wire |W| = p, dann wiirde W = H = K folgen, aber
e #v € K ist in K enthalten, aber nicht in H. Deswegen kann H = K nicht sein. Es ist also W = {e}. Also: u' =% = '™ = ¢ mit
0 < |i—k|, |l —j| <p— 1. Folglich gilt: ¢ — k = 0 = — j, also gilt dann (4,j) = (k,l). Das heifit, dass sich also jedes Element
eindeutig schreiben lisst als u™v™ = a € G. Bei u'v? gilt 4,5 € {0,...,p — 1}, also p?> Elemente in G, die alle verschieden sind.
Nun zu 2.: Definiere:

¢ : G — (Z/pZ) x (Z/pZ),a = u"v™ — (n mod p, m mod p)

Wohldefiniertheit: Sei w™v™ mit n,m € Z und u™ o™ mit n';m’ € {0,...,p — 1}. Ist n mod p = n’ und m mod p = m’,
dann ist auch p(u"v™) = <p(u"l'u’”,)4 Homomorphismus: ¢(ab) = go(u"v’”u”lvml) = <p(u"+”/vm+""l) = ((n +n') mod p, (m +
m') mod p) = (n mod p, m mod p) + (n’ mod p,m’ mod p) = p(u"v™) + Lp(unlvm/) = ¢(a) + ¢(b). Injektivitit: p(a) = ¢(b) =
p(uv™) = «p(u"/vm/) = (n mod p, m mod p) = (n’ mod p,m’ mod p) = n = n/ (modp) A m = m’ (modp) = a = b. Surjekti-
vitét: Sei a = (¢ mod p,y mod p) € (Z/pZ) x (Z/pZ). Dann ist a = u"v¥ mit ¢(a) = a. Also: Ende. a

Aus der Zahlentheorie

[Zuriick zur Liste]

Aufgabe. In einem Korb sind n Eier. Wenn aus dem Korb FEier entfernt werden, und zwar 2,3,4,5 und 6 auf einmal, so
bleiben 1,2,3,4 und 5 Eier tibrig. Wenn aber immer 7 Eier auf einmal entfernt werden, dann bleibt kein Ei ibrig. Welches ist

die kleinste Anzahl von Eiern, die sich im Korb befinden kann?
Lésung. Mathematisch betrachtet gilt zunéchst:

mod2=1& (n+1)mod2=0

mod3=2< (n+1) mod3=0

mod4 =3 (n+1)mod4=0

mod 5 =44 (n+1) mod 5=0

mod 6 =5< (n+1) mod 6 =0
n mod 7 =0

3 3 3 3 3

Man sucht nun die kleinste Zahl, die von 2,3,4 = 2-2,5,6 = 2 - 3 geteilt wird. kgV(2,3,4,5,6) = 2-2-3-5 = 60. Nun gilt
aber mit 60 = n + 1 < n = 59 nicht 59 mod 7 = 0. Das néchstgroBlere Vielfache, dass immer noch von 2, 3,4, 5, 6 geteilt wird, ist
2-60 = 120 = n + 1. Nach Konstruktion wird n 4+ 1 = 120 von 2, 3,4, 5,6 geteilt und es gilt n mod 7 = 119 mod 7 = 0. Also lautet
die Antwort: Im Korb befinden sich auf jeden Fall nicht weniger als 119 Eier. |
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Aus der Algebra

[Zuriick zur Liste]

Aufgabe. Sei K ein Korper mit char(K) # 2. Man zeige:
(a) Jede Kérpererweiterung I : K mit [IL : K] = 2 ist von der Form I = K(d) mit d* € K.
(b) Sei M : K eine Kérpererweiterung und a € M mit a®> € K, aber a ¢ K. Dann gilt [K(a) : K] = 2.

Lésung. Zu (a): Sei also L : K eine Kérpererweiterung mit [IL : K] = 2. Sei a € L mit a ¢ K. Dann ist K(a) # K. Andererseits
ist K(a) C L, also folgt [K(a) : K] = 2. Da a ¢ K gilt, sind 1 und a linear unabhiingig iiber K. Andererseits ist a® linear abhingig
von 1 und a, weil ja dimg K(a) = 2 gilt. Es bleibt also k,! € K mit a> = k-a + 1 oder a® — k-a — | = 0. Es folgt (quadratische
Ergénzung) a? —k-a+ ; — % — 1 = 0. Diesen Schritt kann man jedoch nur durchfiihren, wenn man durch 4 teilen kann, wenn
also char(K) # 2 gilt. Fiir d = a — g gilt dann also d? = a2 — k- a + % = %2 + 1 € K. AuBlerdem gilt d € K(a) und wegen
a=d+ E auch a € K(d). Damit ist K(d) = K(a) = L. Zu (b): Sei M : K eine Korpererweiterung und a € M mit a? € K,
aber a ¢ K. Sei a? =k €K, also a®> —k =0. Da a ¢ K gilt, ist der Grad des Minimalpolynoms von a iiber K nicht 1. Da fiir
fF=T%2—ke K[T] aber f(a) = 0 gilt, ist der Grad des Minimalpolynoms von a iiber K gleich 2. Es folgt, dass [K(a) : K] = 2
gilt, Beweis fiir n: Zunéchst wird gezeigt, dass K(a) ~ K[T']/(g) gilt, wobei (g) = {z € K[T] : z(a) = 0} ist. Man sieht leicht, dass
¢ : K[T] — K(a) mit ¢(p) = p(a) ein Ringhomomorphismus ist. Weiter gilt kern(¢) = (g) und ¢ : K[T] — bild(¢) =: B C K(a)
ist surjektiv. Nach dem Homomorphiesatz gilt dann K[T]/(g) ~ B. Weil g irreduzibel ist in K[T], folgt, dass K[T]/(g) ein Koérper
ist, also auch B wegen K[T]/(g) ~ B. B ist also ein Kérper, der K und a enthilt. Wegen B C K(a) folgt B = K(a), denn K(a) ist
der kleinste Korper, der K und a enthilt. Also gilt tatséichlich K[T]/(g) ~ K(a). Man hat hier bewiesen, dass Elemente aus K(a)
in der Form p(a) mit p € K[T] darstellbar sind. Sei nun m das Minimalpolynom vom Grad n. Man dividiert dann p durch m mit

Rest und erhélt p = ¢ - g+ r mit ¢, 7 € K[T] und grad(r) < grad(g) = n. Also gilt: p(a) = q(a) - g(a) + r(a) = r(a), denn g(a) = 0.

n—1 ) n—1 )
Seir = 3 a; T mit a; € K (0 < i < n — 1), dann gilt p(a) = r(a) = 3 a; - a*. Damit folgt, dass 1,a,a?,...,a" ! ein
i=0 i=0
n—1 )
Erzeugendensystem von K(a) ist. Nun zur Linearen Unabhéngigkeit: Seien ag, a1,...,ap—1 € K mit Y. a; - a® = 0. Dann folgt
i=0

p(a) = 0, wobei p = TEI a; - T € K[T] gilt. Es gilt also p € (9) = {x € K[T] : z(a) = 0}. Also gibt es ein h € K[T] mit p = g - h.
Beweis: Es gilt r = qu(; - g mit grad(r) < grad(g) = n und also r(a) = p(a) — q(a) - g(a) = 0+ g(a) -0 =0, also r € (g), was nicht
sein kann, weil Elemente aus (g) mindestens den Grad n haben, also muss r = 0 sein, folglich gilt r =0=p—q¢q-g<p=gq-g,
also g | p. Angenommen, h # 0. Dann ist grad(p) = grad(g - h) > grad(g) = n, ein Widerspruch. Also ist h = p = 0 und deswegen
ap =1 =...= anp—1 = 0. Man hat damit also eine Basis fiir K(a) aus n Elementen angegeben, folglich gilt dimk K(a) = n, also

[K(a) : K] = n. Damit ist die Aufgabe gelost! a

Aus der Kombinatorik

[Zuriick zur Liste]

Aufgabe. Zwei Kandidaten A und B erhalten in einer Wahl a bzw. b Stimmen mit a > b. Auf wie viele Arten kénnen die
Stimmezettel arrangiert werden, so dass bei der Auszdhlung, eine Stimme nach der anderen, A stets mehr Stimmen als B hat.

—-b b
a . (a + ) Méglichkeiten gibt.

Es wird gezeigt, dass es dafiir 0

a

Lésung. Der Trick ist eine Folge von Punkten (z,y) in ein Koordinatensystem zu zeichnen, wobei y die Anzahl der A-Stimmen
minus die Anzahl der B-Stimmen ist, wenn z Stimmen ausgezihlt sind. Die gesuchten Folgen sind dann also die Wege von (0, 0)
nach (a + b,a — b), welche nach (0, 0) nicht mehr die z-Achse beriihren oder schneiden. Der erste Buchstabe muss eine A-Stimme
sein, sonst hat man an der Stelle 1 mehr B-Stimmen als von A. Das heifit, dass man also alle Wege von (1,1) nach (a + b,a — b)
sucht, die die z-Achse nicht beriihren oder schneiden. Weil man a —1 A-Stimmen und b B-Stimmen in unterschiedlicher Reihenfolge
fiir die Wege behandelt, gibt es also iiberhaupt ((a B 1)1+ b = (a— ;) * b)—viele Wege von (1, 1) nach (a + b, a — b). Von dieser
Anzahl muss die Anzahl der Wege abgezogen Werden(): Eie die z-Achse beriihren oder schneiden. Dazu betrachtet man die Wege von
(1, —1) nach (a+b,a —b). Diese Wege miissen also mindestens einmal die z-Achse schneiden. Man spiegelt dann die Pfade zwischen
den Punkten mit y = 0 auf der z-Achse an der z-Achse und ldsst den Endpfad iiber der xz-Achse unverdndert. Man erhélt also
alle Pfade, die von (1,1) nach (a + b,a — b) laufen und mindestens einmal die z-Achse beriihren oder schneiden. Man hat damit
eine Bijektion zwischen Wegen hergestellt. Da man nun von (—1, 1) startet, braucht man genau ein A mehr, also (1, 1), und ein B

weniger, also (1, —1). Die Anzahl der Pfade von (1,1) nach (a + b,a — b), die die z-Achse schneiden oder beriihren, welche gleich

(a— (1;_12 i il); - 1)> _ <a +b— 1)_ Also gibt o8

b
(a * ) Moglichkeiten die Stimmen so anzuordnen, wie schon behauptet. |
a

der Anzahl der Pfade ist, die von (1, —1) nach (a + b, a — b) laufen, ist also (
a

(aerfl)_(aerfl): afb.

a—1 a a-+b
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Aus der Graphentheorie

[Zuriick zur Liste]

Aufgabe. FEin (endlicher) Hypergraph H ist ein Paar (E, K), bestehend aus einer (endlichen) Grundmenge (der Menge der
Ecken) E sowie einer Menge K von Teilmengen von E (der Menge) der Hyperkanten. Insbesondere fordert man damit, dass
die Hyperkanten paarweise verschieden sind. Fine Ecke e € E und eine Hyperkante k € K heiffen inzident, falls e € k. Der
Grad d(e) einer Ecke e ist definiert als die Anzahl der Hyperkanten mit denen e inzident ist. H heifst r-reguldr, falls fir jede
Ecke e gilt: d(e) = r. H ist p-uniform, falls jede Kante genau p Ecken enthdlt.
(a) Man zeige, dass fiir jeden p-uniformen Hypergraph H = (E, K) gilt: > d(e) =p-|K]|.
(b) Man zeige oder widerlege die Existenz <

(i) eines 5-reguliren 3-uniformen Hypergraphen H = (E, K) mit |E| =4, |K| =6, bzw.

(i1) eines 4-reguldren 5-uniformen Hypergraphen H = (E, K) mit |E| gerade, |K| =5, bzw.

(iit) eines 2-reguldren 5-uniformen Hypergraphen H = (E, K) mit |K| < 4, bzw.

(i) eines 3-reguliren 3-uniformen Hypergraphen H = (E,K) mit |E| = |K| =T7.

Lésung. Zu (a): Sei M := {(e,k) € E X K : e € k}. Dann gilt einerseits:

IM|=|{(e,k) EExK:e€k}=> [{(ek)€fe} x K:eck} = de)

eEE ecE

Andererseits gilt aber auch:

IM|=|{(e,k) e ExK:e€k} =D |{(e;k) e Ex{k}:e€k} =) p=p-|K]|
keK keEK

Insgesamt hat man also:

D dle) = M| =p-|K|

=)o
Nun zu (b): Ist ein Hypergraph r-reguldr, dann gilt also d(e) = r, mit (a) also: > d(e) = r - |E| = p - |K|. Wenn es einen
Hypergraphen, wie in (i) gébe, dann gelte 20 =5-4 =r - |E| =p- |K| =3-6 = ;;,Ealso ein Widerspruch. (ii): 8 = 4 - (2i) =
r-|El=p-|K|=5-5=25 ist wieder ein Widerspruch, da 25 nicht durch 8 teilbar ist, also gibt es so einen Hypergraphen nicht,
wie in (ii) beschrieben. Nun zu (iii): Sei zundchst |K| € {1,3}, dann wiirde folgen 2 - |E| =7 - |E| = p- |K| =5-1 = 5 baw.
2-|E|=r-|E|=p-|K|=05-3=15. Also gibt es in diesem Fall keinen solchen Hypergraphen. Ist |K| = 2: 2. |E| =r - |E| =
p-|K|=5-2=10= |E| = 5. Da der Hypergraph 5-uniform ist, liegen alle 5 Ecken auf einer Kante; damit die andere Kante auch
5 Ecken hat, miissten die beiden Kanten gleich sein, was ein Widerspruch ist. Es bleibt also nur noch der Fall |K| = 4 mit r = 2

und p = 5. Der folgende Graph ist eine Lésung:

Dabei sind Ecken als Punkte und Hyperkanten als Rechtecke dargestellt. Jetzt (iv): So einen Graphen gibt es, die sogenannte

Fano-Ebene, die folgendermaflen aussieht:
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Also ist man hier fertig! O

Aus der Diskreten Mathematik

[Zuriick zur Liste]

Aufgabe. Sein € N. Eine Diagonale in einem konvezen n-Eck ist eine Verbindungsstrecke von zwet nicht benachbarten Ecken.
Gegeben sei ein konvexes n-Eck, bei dem sich keine drei Diagonalen in einem gemeinsamen inneren Punkt schneiden. Wieviele

Schnittpunkte von Diagonalen gibt es im Inneren des n-Ecks?

Lésung. Es wird gezeigt, dass die Anzahl der Schnittpunkte von Diagonalen im Inneren des n-Ecks gleich (Z) ist. Betrachtet man
einen Schnittpunkt, dann ist nach Voraussetzung dieser Schnittpunkt ein Schnittpunkt genau zweier Diagonalen, denn mindestens
drei Diagonalen sind es ja nicht. Man betrachtet nun die Anfangs- und Endecken der beiden Diagonalen, die sich in einem Punkt
schneiden. Man hat also vier Eckpunkte. Hat man einen anderen Schnittpunkt, dann ist mindestens einer der vier Eckpunkte
verschieden. Jedem Schnittpunkt kann man nun auch immer vier Eckpunkte zuordnen. Hat man umgekehrt vier Ecken gegeben, dann
kann man sich darunter auch immer genau einen Schnittpunkt vorstellen. Man hat also eine Bijektion zwischen Schnittpunkt und
den zugehorigen vier Eckpunkten aus den n Ecken hergestellt. Es folgt also, dass es, wie schon behauptet, genau (Z) Schnittpunkte

geben muss. |

Aus der Differentialgeometrie

[Zuriick zur Liste]

Aufgabe. Sei a : I — R3 eine geschlossene, regulire, parametrisierte Kurve mit nicht verschwindender Kriimmung. Man
nehme an, dass die durch den Normalenvektor n(s) in der Einheitssphire S? beschriebene Kurve (die Normalenindikatriz)

einfach ist. Dann wird S2 durch n(I) in zwet abgeschlossene Gebiete mit gleichem Fldacheninhalt zerlegt.

Lésung. Man nimmt an, dass o nach der Bogenldnge s parametrisiert ist. § bezeichne die Bogenlidnge der Kurve n = n(s) auf
S2. Die geoditische Kriimmung &, von n(s) ist: &, = (i, n x 1), wobei die Punkte fiir Ableitungen beziiglich 5 stehen. Nach den

Frenet’schen Formeln aus der Kurventheorie gilt d—n = —kt — 7b, wobei t der Einheitstangentenvektor, n der Normalenvektor, b
s
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der Binormalenvektor, k die Kriimmung und 7 die Torsion der Kurve « ist. Es gilt zunéchst:

d dn ds ds
= —n(s(s)) = —— = (—kt —7b) - —
n= @) = g = ™) %
L d?s , ds , ds , ds , ds ds
n=(-kt—7b) —+(-k'-—-t—k-t'"-——-7 - —-b—7-b - — | —
ds2 ds ds ds ds ds
d’s ’ ’ ’ ’ ds\?
—(—kt—7b) (Kt — b=kt — ) (2
( 70) d§2+( T %) <d§>
d?%s , , ds\ 2 , , ds 2
= (—kt —7b) - — —k't—7b)- [ — ] — (kt b)) | —
( 76) d§2+( b <d§> (kt" +7b) (d5>
d?s , , ds\ 2 ds\ 2
:(7ktfrb)~ﬁ+(fktfrb)<<%> 7(k-kn+'r-'rn)~<£>
d?s , , ds\ 2 2 2 ds\ 2
= (—kt —7b) - — —k't—7b)- ([ —= | —(k ‘n- | —
( Tb) o+ 7'b) <d§> (k" +77)-n (d§>

Denn es gilt t' = kn und b’ = 7n. Weiter gilt noch:

s|d s d ds
5(s) = / —n(z)| de = / [(—kt — 7b)(x)| dx = —35(s) = [(—kt — 7b)(s)| = |[(kt + Tb)(s)| = VK2 + 72 = @
o |dx 0 ds ds
D ilt il t und b die L& 1 hab d krecht i der stehen. Es folgt ds ! 1
as gilt, weil ¢ un ie Linge aben und senkrecht zueinander stehen. Es folgt: — = ———, also:
& & 8% s Vk2 4+ 12
(ds)2 _ 1
ds) = k2472
Jetzt kann man die geodétische Kriitmmung ausrechnen:
d d d:
Rg = (n x 0,7y = <n>< [(—kt—rb)‘—f] n> =2 (k- (nxt) =7 (nx b)) = o (—k- (=b) = T - t,7)
ds ds ds
ds ds d?s , , ds\ 2
= — . (kb—7t, 1) = — - ( kb — 7t,(—kt — 7b) - — —k't—7'b) - -
ds { Tt ) ds < 7t ( 70) ds? +( ™) (d§> "
ds d?s ds\ 2 , ,
=0 <E - (kb —Tt, —kt — Tb) + (E) - (kb —1t, =K't — 7'b) — (kb — 7¢,n)
ds d?s ds\ 2 , , ds\ 3 , ,
=—-[-—="-0 — | (kb—7t,—k't—7b)—0| =(—) -(kb—71t,—k't — 7D
ds (d§2 + <d§> ( i T <d§> ( ™ o
ds\ 3 / / ’ ’ ds\ 3 ’ ’
=5 ((kb, =K'ty + (kb, —7'b) + (—7t, —k't) + (—7t, —T'b)) = =) (04 (kb, —=7'b) + (—7t, —k't) + 0)
s 3

ds 3 ds 3 ds 3
= <(T;) S(=kT - (b, b) + K - (t,1)) = (I;) (kT 14Tk 1) = (é) =k +K'T)
k- kT d d d d
= _7—162727— 22— Zatan (T(S)> -2 =~ Zatan <Z(3(§))>
+ 7 ds ds k(s) ds ds k

Dabei gilt n Xt = —bund n x b = t, weil ¢, n, b das Frenet’sche Dreibein bilden. Aus dem gleichen Grund gilt (kb—7t, —kt —7b) = 0,

(kb—1t,n) = 0, (kb, —k’t) = 0 und (—7t, —7'b) = 0. Man wendet nun das GauB-Bonnet-Theorem auf eines der von n(I) berandeten
abgeschlossenen Gebiete R an und benutzt die Tatsache, dass K = 1 gilt:

27r:/RKdA+/6RRg(§)d§
:/RldA—/olaR %atan <%(§)> ds
:/R dA — [atan (%(5))};;81?

= Flacheninhalt von R — 0

= Flacheninhalt von R

s=lor
Es gilt ndmlich [atan (%(5))] = 0, weil die Kurve OR, parametrisiert nach Bogenlidnge 5, geschlossen ist und deswegen
5=0
T T T
E(O) = E(laR) gilt. Wichtig dafiir, dass / Rg ds = 0 ist, war hier, dass in —atan (E(§)> gilt: k(3) # 0O fiir alle 5. Da der
AR

Flicheninhalt von S2 gleich 47 ist, folgt also die Behauptung, dass die geschlossene Kurve n(8) die Oberfliche 52 in zwei gleich-
grofle Flachen zerlegt. Man ist hier also fertig! O
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Die schwere 1Q-Test-Aufgabe

[Zuriick zur Liste]

F.C A
Aufgabe. Wenn DGJ + JAE + BHF = DDAB wund -5 = GA, wieviel ist dann bel ?

Lésung. Es gilt erstmal D # 0, weil sonst in DGJ die 0 fithrende Ziffer wire. Wegen 999 + 999 + 999 = 2997 gilt also D < 2.

Angenommen, D = 2, dann gilt:

2 G J

+ J A E

+ B H F
0,1,2

2 2 A B

Es gilt 94+ 8 4 7 = 24, also ist der Ubertrag der Summe J + E + F héchstens 2. Der Ubertrag von (G + A+ H) +2,(G+ A+ H) +
1,(G+ A+ H) 40 ist ebenfalls hichstens 2, denn (9 +847) +2 = 26. Also ist der Ubertrag bei 24+ J+ B nun 0,1,2. (2+J+ B) +2
ist héchstens (2+948) +2 < 21, also kann (2+J+ B)+2,(2+J+ B)+1, (2+ J + B) 4 0 nicht gleich 22 sein. Es folgt, dass D = 1
gilt. Es wird nun gezeigt, dass A # 0 ist, sei also A =0: Es gilt J-GA =F -C <9-8 = 72. Es gilt J # 0, andernfalls wire in JAE
die 0 fithrende Ziffer. Es gilt auch J # 1, weil D = 1. Also gilt J > 2. Weiter: G # 0, sonst wére in GA die 0 fithrende Ziffer. Auch:
G # 1, weil D = 1. Die Kandidaten fiir GA = GO sind also: GO = 20, 30, 40, 50, 60, 70, 80,90. Wegen J-GO =F -C <9-8 =172
und J > 2 kann 40, 50, 60, 70, 80,90 fiir GO nicht sein. Es bleibt 20,30. Es muss gelten J < 3, denn wéire J > 4, dann gelte fiir
GO0 = 20,30 nicht J-G0 < 72. Also ist J = 2,3. Ist J = 2, dann muss G = 3 sein, also J-G0 = 2-30 = 60 = F-C, aber 60 =2-2-3-5
kann man nicht als Produkt zweier Ziffern darstellen. Ist J = 3, dann muss G = 2 sein, also J-G0 = 3-20 = 60 = F - C, und wieder
kann man 60 = 2 -2 -3 -5 nicht als Produkt zweier Ziffern darstellen. Es muss also A # 0 gelten, auch: A # 1. Man nimmt nun
an, dass G | A gilt. Es gilt A = 2,3,4,5,6,7,8,9. Da muss man die Primzahlen p = 2, 3,5, 7 streichen, weil sonst aus G | A = p
dann G = A oder G = 1 folgen wiirde, aber: G # 1, und A und G miissen verschieden sein. Also: A = 4,6,8,9. Aus G | A folgt:
Ist A = 4, dann muss G = 2 sein. Ist A = 6, dann ist G = 2,3. Ist A = 8, dann muss G = 2,4 sein. Ist A = 9, dann muss G = 3
sein. Die Kandidaten von GA sind also: GA = 24, 26, 36, 28, 48, 39 = 24, 26, 28, 36, 39, 48. Es muss wieder 0,1 # J < 3 gelten, denn
sonst gilt wegen J > 4 nicht J-GA=F-C <9-8 =72. Ist J = 2, dann gilt GA = 36,39, 48. Man kann 39 und 48 streichen, weil
J-GA =2-39,2-48 > 72. Es bleibt GA =36, also J-GA =2-36=72=9-8=F -C, also FF = 8,9. Wegen J =2, GA = 36
(G =3, A=6) und D =1 gilt dann das Folgende:

1 3 2
+ 2 6 E
+ B H F

1 1 6 B

Der Ubertrag von 2 4+ E + F ist wegen F = 8,9 mindestens 1. Wegen 2 4+ 9 4+ 8 = 19 < 20 ist er auch héchstens 1, also insgesamt
gleich 1. Wegen 34+ 6 +9) +1 = 19 < 26 und (3+6 + H) + 1 > 6 muss also gelten: 3+ 6+ H)+1 = 16 = H = 6,
Widerspruch, denn es gilt schon A = 6. Es muss also J = 3 gelten, also GA = 24, 26, 28, 48. Man kann also 26, 28, 48 streichen, weil
J-GA=3-26,3-28,3-48 > 72 ist. Es bleibt also GA =24, also0 72=3-24=J-GA=F-C=9-8 (= F =8,9). Also:

1 2 3
+ 3 4 FE
+ B H F

Der Ubertrag von 3+ E + F ist wegen 34+9+8 < 20 héchstens 2. Es gilt 24+4+H > 4und (24+44+H)+2 < (244+9)+2 =17 < 24,
also ist der Ubertrag von 2 + 4 + H + 0,1, 2 gleich 1. Es folgt B = 6, also: Wegen 3+ E + F < 34+ 8+ 9 = 20 < 2B = 26 und
34+ E+ F > 6 (wegen F = 8,9) folgt, dass der Ubertrag von 3 + E + F gleich 1 ist, also:

1 2 3
+ 3 4 FE
+ 6 H F

1 1

1 1 4 6

Es folgt dann H = 7. Es bleiben die Ziffern 5, 8,9 iibrig. Es muss gelten: 3+ E+ F = 16 & E + F = 13, also E, F = 5,8. Weil
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F = 8,9 gilt, folgt E =5 und F = 8. Also hat man:

1 2 3
+ 3 4 5
+ 6 7 8
101
1 1 4 6
Die Lésung lautet also: A=4,B=6,C =9, D=1,E=5F =8 G =2 H:7I:O,@undg:%:Q:G,dcnnI:O7

weil C # 0, denn: ¥ = GA. Wire also C = 0, dann folgte GA = 0, Widerspruch. Weil C # ist, folgt C = 9. Es wird nun noch
gezeigt, dass GA mit G 1 A keine Lésung erlauben. Es gilt A, G # 0, 1. Die Kandidaten von GA seien in einer Matrix (m;;) mit
2<i<9und 2 < j <9 sowie m;; = ij, wobei m;; = x (2 < i < 9) sei, weil die Ziffern verschieden sein miissen, aufgelistet.
Wegen J > 2 und J-GA < 72 kann man in der Matrix (m;;) die Zeilen fiir ¢ = 4,5, 6,7, 8,9 streichen, und es bleiben die folgenden
Kandidaten:

X 23 24 25 26 27 28 29

32 x 34 35 36 37 38 3P

Dabei sind die Zahlen in der Matrix gestrichen, weil das GA sind mit G | A. Es bleiben also die Kandidaten: GA = 23, 25,27, 29, 32, 34, 35, 37, 38.
Es gilt wieder J < 3, denn sonst (J > 4) gelte fiir die Kandidaten von GA nicht J-GA < 72. Also gilt J = 2, 3, also kann man 23, 32
streichen. Es bleiben GA = 25,27, 29, 34,35,37,38, Weil J > 2 und J - GA < 72 gelten, kann man auch 37,38 (2-37 = 74 > 72
und 2 - 38 76 > 72) streichen. Es bleiben GA = 25,27,29,34,35. Ist J = 3, dann gilt fiir alle Kandidaten von GA nun
72 > J-GA > 325 = 75, also ein Widerspruch. Es muss also J = 2 gelten, dann bleiben die Kandidaten GA = 34, 35 (Ziffer
2 ist schon an J vergeben). Es gilt J-GA = F - C (J = 2). Es gilt dann J - GA = 2-34 = 68 oder J - GA = 2 .35 = 70, aber

68 =2-2-17 und 70 = 2-5-7 lassen sich nicht als Produkt zweier Ziffern darstellen. Es folgt also, dass die Losung des Rechenrétels
hier eindeutig ist. |

Die Seitenhalbierenden im Dreieck

[Zuriick zur Liste]

Aufgabe. Man beweise, dass das Teilungsverhiltnis der Seitenhalbierenden im Dreieck 1 : 2 ist.

Lésung. Zuerst kommt ein Bild:

— — _ 1 —
Esgiltdann:AMC+MC§:A_§,also:AMc+Mc§—,I§:0,also:5.A§+S.M08—T.AMA:o.Nungilt:A‘B’:afﬁza,
1 N 1
Mcx:5‘€+d’undAMA:5+5~6.Alsogilt:
G- Lo Loeia B N S, B Lo (Lt ot 1
72 C S 2 C a s C 2 a = C S C S-a T-C T 2 a = 2 S 2 T C S s 2 a



1 1 1
Da die Vektoren ¢ und @ linear unabhéngig sind, weil sie ein Dreieck aufspannen, folgt also 5 +s- 5~ r=0und s —r- 5 =0.
. R 1 1 1 1 1 3 1 3 3 2 1 2 1 1
Folglich gilt s =r-—,also -+ (r- = |- = —r=0=>-——-r=0=>-=—-r=>1l=—--r=r=-,alsos=r-—-=—--—- = —.
2 2 2 2 2 4 2 4 2 3 2 3 2 3

2 1 —_—
Man hat also: r = 3 und s = 3 Damit ist also gezeigt, dass die Seitenhalbierenden AM 4 und MCZ?' durch den Punkt S im
Verhiltnis 1 : 2 geteilt werden. Folgendes Bild:

C

Es gilt im Bild: C‘/i = b. Nun wird jetzt gezeigt, dass auch die Seitenhalbierende BMp so geteilt wird: Es gilt: ﬁ = zﬁ — E =
1 2 1

2 — 2 1 1 — — 1 -

- AMA—AB):f‘ c+—--a —6’:7~€+7‘d’—€:7~d'—7-6’,undesgi1t:BMB:AMB—AB):—f‘b—EZ
3 3 2 3 3 3 3 2

- (—e-@) =1 (E+a) Lerlia_e=2.a-1.z4 ilt @+ a@ = —b. Es folgt BS-Lt.a_-l.g
——.(=¢—a)—-¢c= = -(C —Cc= - —.d—-¢=—-a— —- nn i = —b. n =—-.d——--¢
5 c—a c 21 é a2(' 5 c 5 a—¢ 5 a 5 ¢, denn es gilt ¢+ a s folgt wege 3 a 3 é

— — — 52
und BMp = — -d — 5 ¢ also 3 BMp = B_S) Daraus folgen zwei Dinge: 1.: Weil BMp und BS kolinear sind, folgt, dass auch
—

T
die Seitenhalbierende BMp den Punkt S schneidet, 2.: Das Teilungsverhiltnis der Seitenhalbierenden BMp durch den Punkt S

ist 1 : 2. Damit ist der Beweis also vollstéindig erbracht. |

Die fixpunktfreien Permutationen

[Zuriick zur Liste]

Aufgabe. Man zeige, dass die Anzahl der firpunktfreien Permutationen einer n-elementigen Menge gegeben ist durch:

n k
=1
dp, =mn!- Z ol
k=0
Losung. Es bezeichne A; := {m € S, : (i) = i} die Menge aller Permutationen, die einen Fixpunkt an der Stelle ¢ haben. Dann

hat die Menge der fixpunktfreien Permutationen die Darstellung D,, = S, \ (A1U...UA,). Dann gilt also: d,, = n!—|A1U...UA,|.

Es gilt die Siebformel von Sylvester, die man ganz einfach mit vollstdndiger Induktion beweist:

n

A1 U UAn =D (-D)F >

k=1 1<ip<...<ip<n

A, N...NA

i1 i |

Es gilt [A;; N...N A; | = (n — k)!, weil k Stellen fix sind. (Z) ist die Anzahl aus n Stellen k Fixpunkte auszuwihlen, also gilt:

!
Z [Aip NN Ay | = (n) c(n—k)'= n—' Daraus folgt also:
1<iy <...<ip<n k kt

= n!

[A1U. UAL =D (=D o
k=1 )
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Es folgt also die Losung dieser Aufgabe:

- 1 n! ~ n! n! (—1)*
dp=n!—[A1U...UA,| =n! = > (-1)" 1-H:n!+2(71)’“-E:Z(q)k.azm.z .
k=1 k=1 k=

Das war es auch schon! O

Die explizite Formel fiir die Fibonacci-Zahlen

[Zuriick zur Liste]

1 1\"
Aufgabe. Es soll bewiesen werden, dass die n-te Fibonacci-Zahl gegeben ist durch f, = % - |:<p" - <77> ], wobei dort
1+V5

Q= 5 der goldene Schnitt sei.

1 1
Lésung. Sei der Endomorphismus a : V — V mit V = R? und a(v) =A-vmit A= gegeben. Zur Bestimmung der Ei-
1 0

genvektoren von a berechnet man zunichst die Eigenwerte von a. Das charakteristische Polynom ist x4 (A) = det (Mg(a) - Eg) =

11 A0 1-x 1 ) )
det(A — X\ - Es) = det — = det =1=X)-(=A)—1-1 =X —X—1, wobei
1 0 0 A 1 —A
1 0 . . 5 . B . L
B = s die Standardbasis von V = R* sei, also Mz (a) = A. Die Nullstellen des charakteristischen Polynoms
0 1
1+ 1 5
sind die Eigenwerte von a: xq(A) =0 < M _A-1=0¢e A1,2 = Qf. Sei ¢ : +2f, dann sind die Eigenwerte von a also
1
A =pund Ay = ——. Weil x(A\) = A2 =X =1 = (A= A1) - (X — A2) gilt, ist a diagonalisierbar. Es werden nun die Eigenvektoren
v und vs zu den Eigenwerten A1 und A2 bestimmt. Es muss gelten: a(vi) = A-v1 = A1 - v1 und a(va) = A - vy = A2 - va. Es
1
ergibt sich daraus: v; = ) und vy = . Weil die Eigenwerte A1 und As verschieden sind, folgt, dass v; und v
° —p
@

linear unabhingig sind. Die Eigenvektoren v; und vy bilden eine maximale linear unabhingige Teilmenge von V = R?, denn fiigt
man zu v, ve einen Vektor v € R? \ {v1,v2} hinzu, dann gilt 2 = dimg R? < |{v1, v2,v}| = 3, also folgt aus einer Folgerung aus
dem Austauschsatz, dass v1,va, v linear abhéngig sind. Also bildet (v1,v2) eine Basis von V = R2. Sei also B’ = (v1,v2), dann gilt

A1 0 ’ A1 0

Mg/l (a) = . Weiter gilt aus der Linearen Algebra: A = Mg(a) =717t Mg, (a) - T =T71. - T
0 )\2 0 A2
1
mit T = ME (id). Wegen T - M (a) = ME (a) - ME (a) = ME/(a) = BE» folgt [ = MB(a) = T7'. Also
r ¥
-1 n
11 ¢ 0 11 . 11 11
folgt: A = = ) 1 ) . Also gilt A™ = = .
1 0 s ¥ 0o - 7 s ¥ 1 0 s ¥
1 n
" 0 1 11 1 —p 11
= —_— . Es folgt also =
1\n 1\"n g
0 (75) — S ;) VB o\ -1 1 0
L ot 4 1 1
_ ¥
V5 n ( 1
@ ®

RGN
)

4+ fr—1 mit fo = 0 und f; = 1 fiir alle n > 1. Es wird nun bewiesen, dass

[
o
(=)

1
1
v

n+tl n
y

n f n—1 , also gilt dann:
) iy (_7)

In

Die Fibonacci-Zahlen werden rekursiv definiert: f,,41 =

n 0
. 11 1 Sfrt1 . . . . 11 1
gilt: . = . Beweis durch vollstindige Induktion: I.A.: Fiir n = 0 gilt . =
1 o 0 fn L
1
1 0 1 1 f1 ) 11 1 11 1 1
. = = . Fir n = 1 gilt . = . = =
0 1 0 0 fo 1 0 0 1 0
nl
f2 . . . 1 1 1 1
. Der Induktionsanfang ist also O.K.! I.V.: Gelte die Behauptung fiir n. I.S.: . =
f1 10 0 1 0
1 1 1 1 1 n n n
. = . Frts = o1+ f = Frte . Also ist der Beweis vollbracht. Also:
10 0 V-1 0 fn frt1 Jnt1
1 1\ "+t
n . n+l _ ( _
v\ Y (e Y ()
’ - - 1 1\™
1 0 0 fn — e = (——
V5 ¥
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1 1\"™
Es folgt also f, = — - [ n— (—7) ], die Behauptung. O
n \/g ¥ %

Die Raucher in einem Zimmer

[Zuriick zur Liste]

Aufgabe. In einem Zimmer sitzen 4 Raucher und vergniigen sich beim Skatspiel. Das Zimmer enthalte V Liter Luft. Die
Raucher stofien je Minute Z Liter Zigarettenqualm aus, der 4 Volumenprozent Kohlenmonozid (CO) enthalte und sich sofort

mit der Zimmerluft gleichmdfig vermischt. Ein Ventilator ersetzt pro Minute Z Liter der Zimmerluft durch Frischluft.

1. Wie hoch ist t Minuten nach Beginn des Raucherabends die CO-Konzentration im Raum?

2. Nach welcher Zeit T wird eine CO-Konzentration von 0,012 Prozent erreicht? Wird ein Mensch zu lange diser Konzen-

tration ausgesetzt, treten Schdidigungen ein.

3. Sei V = 40m?® = 40000l und Z = 2 - berechne T'!

min

Lésung. Bezeichne y(t) die Volumenmenge an Kohlenmonoxid in der Zimmerluft. Pro Minute gelangen von den Rauchern ¢ Z Liter

y(t)
\%

ab. Die Funktion y(¢) beschreibt einen Ausgleichsvorgang erster Ordnung und geniigt ndmlich der folgenden Differentialgleichung:

y/(t):c'Z—Z‘%,alsoz y’(t)—&-é‘y(t):c'Z

Kohlenmonoxid in das Zimmer. Durch den Ventilator flieBen im gleichen Zeitraum Z Liter Luft mit der CO-Konzentration

Z
Als Anfangsbedingung befinde sich im Zimmer reine Luft: y(0) = 0. Zuerst 16st man die homogene Differentialgleichung yj, (¢) + v

Z Lt zZ zZ
yn(t) = 0, also y},(t) = —— - ya(t), also ot = — —. Integriert man auf beiden Seiten, dann erhélt man In(y(¢t)) = —— -t + C,
\4 yn(t) \4 \4
4 4
2 ——t
also y(t) = A-e V  mit A := e®. Die partikulire Lésung erhilt man durch Variation der Konstanten: Setze y,(t) = A(t)-e V
Z Z

Z zZ
Z ——t ——t Z 7 ——t ——t
dann gilt y;(t)JrV-yp(t):c-Z, also | A’(t)-e V. +A@lt)-e V . (—V> +V-A(t)~e V Lalso A'(t)-e V =c-Z, also

4 4 V4 Z
— .t — .t — .t =
A’(t) = c-Z-eV .Integrieren auf beiden Seiten liefert A(t) = c-V-eV +C’.Manhatalsoy,(t)=|c- VeV +C' |-e V =

4 4

Z
2 2 [
c¢:V+C’-e V . Dieallgemeine Lésung also lautet: y(t) = yp (t)+yp(t) = Ae V +|c-V+C e V =

2
(A+C")e V +cV.
Wegen y(0) = 0 folgt (A+C’)-14+c-V =0, also A+C’ = —c-V, und daraus folgt also, dass die allgemeine Lésung folgendermafen

lautet:
zZ zZ zZ
-t

——t ——t ——t
yt)=—c- Ve V. 4+c¢c-V=cV-c-V.eV =cV.|[1-e V

Gesucht war die Konzentration an CO in der Zimmerluft. Man teilt beide Seiten der Gleichung durch das Volumen V und erhalt:

Z
t ——t
Ceol(t) = % =c-|1—-e V . Offensichtlich konvergiert Cco(t) fiir t — oo gegen c. Sei nun also 40m® = 40000/, Z =
2—— und ¢ = 0,04, denn 4 Volumenprozent von Z Litern Zigarettenqualm pro Minute ist CO, Kohlenmonoxid. Es wird jetzt
min
die Zeit T bestimmt, nach der eine Konzentration von 0,012 Prozent an Kohlenmonoxid erreicht ist: Cco(T) = 0,00012, also
2 1 1
-7 0,00012 - T - T 1
0,00012 = 0,04 - [ 1 — e 40000 ,also ———— =1—e 20000 | alsoe 20000 =1-0,003,also ———— -7 = In(0,997),
0,04 20000

also T = —20000 - In(0.997) =~ 60, 0901840[min]. Nach ungefiihr einer Stunde ist die schidliche Konzentration von 0,012 Prozent

im Zimmer erreicht! Das war es! O

Der Schiferhund und seine Schafherde

[Zuriick zur Liste]

Aufgabe. Der Schiferhund Boy befindet sich am Ende einer 1km langen Schafherde, die sich mit konstanter Geschwindigkeit
vorwdrtsbewegt. Zur Kontrolle liuft er nun - mit einer grifleren konstanten Geschwindigkeit als die Herde - vom Ende bis zur
Spitze der Herde und wieder an seinen Platz am Ende der Herde zuriick. Als er wieder hinten ankommt, ist die Schafherde

genau einen Kilometer weiter gewandert. Wie weit ist Boy gelaufen?
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Lésung. Sei vg die konstante Geschwindigkeit des Schiferhundes, und vy die der Schafherde. Der Schiferhund braucht fiir seinen
1 1 1
Weg die Zeit t; = t;+t2 = ————— 4+ ————. Also hat die Herde die Geschindigkeit vy = —. Also gilt: t, =
vs +vH Vs —vH tg vs tg

t t 1
g g . Nun ist vs-t, =: ss gerade der Weg, den der Hund zuriicklegt. Es gilt also: 1 = .
v -tg+1 wvs-tg—1 ss+1 ss—1

1 1
+ ——,also (x+1)-(x—1) = (x — 1) + (z + 1), also 22 — 1 = 2z, also 2% — 2z — 1 = 0,
41 x—1

verlJr -1

tg
1

alsoty, =

Sei z := sg, dann gilt also 1 =

—2 —2)2
also x1,2 = -5 + % —(=1) =1+ /T+1=12%+/2 Weil 1 — /2 negativ ist, ist die Lésung also sg = = = (1 + v/2)[km].
Das war es! |

Die Luftwiderstandsbeiwert-Bestimmung

[Zuriick zur Liste]

Aufgabe. Die Bewegungsgleichung eines gleichformig beschleunigten Kraftfahrzeugs lautet unter Berticksichtigung des Luftwi-

derstandes bei Vernachldssigung aller tibrigen Krifte:
’ 1 2
m-v (t)=m~a—§~cw~p-A-v(t)

Dabei soll gelten:

m = 800 kg Fahrzeugmasse
v m Geschwindigkeit
h
a = 1 = Beschleunigung
s
cw = ? Luftwiderstandsbeiwert (dimensionslos)
k
P = 1,25 &9 Luftdichte
m3
= 2 m? angestromte Fliche
Set die erzielbare Hochstgeschwindigkeit voo = ihm v(t) = 1447 = 40— . Berechne cw !
— 00 S
1 1
Sew-p-4A = owp-A
Lésung. Es gilt also: v/(t) = a — 2 . v(t)?. Setze A := 27, dann gilt also v'(t) = a — X - v(t)?, al-
m
VX -o(t) — Va
{0) {0) "\ va
v a
SOL=1,also/1}7dt=/1dt,also— =t+C = —2-VA-Va -t+C =
a—X\-v(t)? a—\-v(t)? 2-vVXx-va

A-o(t) — A-o(t) —
In M = A e TVAVEL _ om2 VX Va0 M, wobei A := eC sei. Setze fit)=A- 6*2'\5‘\/5%,
VA-o(t) +Vva VX -u(t) +va

dann gilt: f(t) = M, also f(t) - VA-v(t) + f(t)-vVa = VX -v(t) —/a, also f(t)-VA-v(t) —VA-v(t) = —a— f(t) Va,

VA (t) + Va
—Va-f() -Va _Vat+f@)-va _Va 1+ f() Va 14 A e VRV
also v(t) = = = — - ——. Es folgt also: v(t) = —= - ————=———. Wegen v(0) =0
D= 0 A VA VA f) VA VA 1o ) D= A 1T-a e2vavar (©)
1+A-1 1_ —2.vVX-Va-t
folgt ﬁ; =0, also 1+ A =0, also A = —1. Es gilt also v(t) = ﬁ'ei. Daraus folgt lim v(¢) = ﬁ = Voo,
Vi 1-A-1 VA 14 e-2Vr-vat t—oo NN
1
a a a 5w pA 2-m-a 28001
also Ugo = — = ——— Esfolgt — = =—— also cwy = = = 0,4. Der cy-Wert ist also
AL A v2, m p-A-v2 T 1,25-2-402
5 w P
m
0,4. Das ist das Ende! O

Die zwei gleichseitigen Dreiecke

[Zuriick zur Liste]

Aufgabe. Gegeben sei das Rechteck ABC'D mit der Grundseite AB = 2 - a. Dem Rechteck sind zwei gleichseitige Dreiecke
AEF und EBG einbeschrieben, wie im Bild unten gezeigt. Die Diagonale BD schneidet die Dreieckseiten in den Punkten M,
N und P. Berechne die Linge der eingezeichneten Strecken w, =, y, z in Abhingigkeit von AE = EB = a!
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A

Losung. Folgende Verhéltnisgleichungen lassen sich aus den Strahlensdtzen aufstellen:

z BE a &2 +y+ze +
_— = —— cz=x =x
x+y+z BA 2-a # yTzE z v

Weiter:

v _PF_ 5 s ucwtetyerw=at
w+x+y7DG7%+a73 w=wreTy w=rTy

Weiter:

_whe  _PE_ 1 s frtyt+ze2 (wta)=y+
= == cw cr=w+x z (w+x) = z
w+ax+y+z DG 3 v v

Ausz=z+yund 2 -w=z+yfolgt z=2 -w. Aus2-(w+z) =y+zund 2 =2 -w folgt dann 2- w+2 -2 =y + 2 - w, also
3
y=2-x. Ausy:2~wund2»w:z+y:a:+2-a::3~wfolgtw:5»1.Ausz:2-wundw:5-wfolgtz:3-w. Man hat also

3 3 15
w:i-w, z,y=2-zund z =3 -z, als0w+w+y+z:§»a:+z+2~w+3-z:?-w. Die Breite des Rechtecks ABCD ist 2-a

[ 2
3
und die Hoéhe ist gleich der Hohe h des gleichseitigen Dreiecks mit der Kantenldnge a, also h = /a2 — (g) = £ - a. Daraus

2
2
3 V19 15 V19
folgt, dass die Diagonale d von ABCD ist: d = \j(2»a)2 + <g . a) = Also gilt 5 = wtr+y+z=d= - w
V19
also z = ET a. Daraus lassen sich w, y, z bestimmen. Ende! O

Die Kette unendlich vieler Kreise

[Zuriick zur Liste]

Aufgabe. Gegeben ist der Kreissektor OAB mit dem Radius r und dem Winkel 2 - t. Dem Kreissektor werden, von rechts
beginnend, fortlaufend Kreise einbeschrieben, so dass sich eine Kette stetig verjingender Kreise bildet. Die Radien R; der
Kreise laufen gegen Null. In dem Bild unten sind nur die ersten drei Kreise eingezeichnet. Fir welchen Winkel t ist das

Verhdltnis aus der Summe aller Kreisflicheninhalte zur Fliche des Kreissektors mazimal?
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Lésung. Nochmal eine Zeichnung:

R
Rz
t .
r
B

0

Ro — R R — R —2-R Ro — R 1 — sin(t
Es gilt: sin(t) = 207 M nd nach Strahlensatz: -t = L SL T 20 sin(t) = e folgt R1 = Ro - &“, wobei:
Ro + Ry Ro r — Ro Ro + Ry 1+ sm(t)
lfsin(t) . . . . 0 A r—Ro-A—2-Rp
:= ———— also in die andere Gleichung eingesetzt: = ,also A\« (r—Ro) = A:r—Ro'A = r—Ro-A—2-Ryo,
1+ sin(t) Ro r — Ro
1—sin(t) 1+sin(t) 1—sin(t) . .
1—AX 1 - 1mm TFsin(f)  1Fsin(f) 2 - sin(t) sin(t)
=7r- =17r- =7r- =7r- . Nun
2 2 - (sin(t) + 1) 1 + sin(t)

also A-r=7r—2- Rgp, also Rp = r - 5 5
1 —sin(¢ .
sin(t) = R; - A\, woraus R;11 = Ry - At (i € Ng) folgt. Der

gilt aber auch: sin(t) = ziu—l’ also folgt Rij41 = R; - ————— =
Ry + Riq1 1 + sin(¢)

Gesamtflacheninhalt aller Kreise ist nun:

o o ) N\ 2
AK::ZW-R?:W~ZR?:7F'Z(RO')\1) :W'R(Q)'
i

i=0 i

(A2)i:ﬁ433'1,1>\2

gk

0

1 — sin(t 1 1

Denn die geometrische Reihe ist anwendbar wegen 0 < A = i() < 1 fiir 0 < t < w. Nun gilt: = 5

1 + sin(t) 1— A2 1_ (1—singi))
TFsin(t)

=0
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1 14 2 - sin(t) + sin(t)? .
- - - - = . . Dann gilt:
142-sin(t)+sin(t)? _ 1—2-sin(t)+sin(t)? 4 . Sln(t)

1+42-sin(t)+sin(t)2 1+42-sin(t)+sin(t)?

Ax = RE. 1 ) < sin(t) )2' L+2-sin(f) +sin(®)® 5 sin®)®  (1+sin®)® 7

_ . — —_ . 2 )
T—x2 T\ Tasing) 4-sin(?) T A sin()? | 4-sin() g 7 osin®

2.t
Der Flicheninhalt des Kreissektors vom Radius r ist gleich Ag := Tyl (- r?) = t-r2 Also ist das Flichenverhiltnis von
s

s i Ax _ F-r?esin(t) 7w sin(t) , : . . 4
Kreisflichensumme zu Sektorfliche: v(t) := 2= P, =31 "3 Gesucht ist der Winkel ¢, fiir den v(t) ein Maximum
S - T

t - cos(t) — sin(t)

hat. Es gilt v’ (t) = g ( ) Nun gilt tlgr}) t? = 0 und tlilr%](t-cos(t)fsin(t)) = lim ttlgr%] cos(iﬁ)ftliﬁm0 sin(t) =0-1-0 =

12 t—0
t - cos(t) — sin(t 2 (t - cos(t) — sin(t —t - sin(t in(t
0. Also ist L’Hospital anwendbar: lim M = lim i ( () ) = lim i() = lim —w = 0. Also gilt
t—0 2 t—0 %ﬁ t—0 2.t t—0 2
. , . . . L o 7w (2—1t%)-sin(t) — 2 -t - cos(t)
tlm'%)v (t) = 0, also hat man mit ¢ = 0 einen Kandidaten fiir eine Extremalstelle. Es gilt v"'(¢t) = 1 e .
—
2 — ) -sin(t) — 2 -t - cos(t
Weil Zihler und Nenner beide fiir t — 0 gegen 0 konvergieren, ist wieder L’Hospital anwendbar: tlin% ( ) (t)3 @) =
—
. —t% . cos(t) 1 . 1 1 . " T 1 T . X .
lim ——————~ = —— - limcos(t) = —- -1 = ——, also limv"(¢t) = —— - - = —— < 0, also hat man bei t = 0 ein relatives
t—0 3-t2 3 t—0 3 3 t—0 4 3 12
. . T sin(t) T T . . sin(¢) .
Maximum, welches den Wert lim v(t) = — - lim = —-1= — & 0.7854 ~ 78,54% hat. Beweis von lim —— = 1: Es gilt
t—0 4 t—0 t 4 4 t—0 t
so (—1)k . 42k+1 sin(t o (—1)k . 42k o 1)k . 42k s (—1)k .02k
sin(t) = > =D , also () = ) =14+ > L Wegen > CHr -0 = 0 folgt die Behauptung.
r=o0 (2k+1)! t p=o0 (2k+1)! =1 (26+ 1) =1 (2k+ 1)
sin(t sin(t 1 1
Weiter: Ist ¢ < 2, dann gilt |v(t)| = 'g : t( )| = g : t( )‘ <1-fsin(t) - 3 S 1-1- 7 < 5. Alsoist v(t) auf [2,00) kleiner als

t
s
das relative Maximum 7:hrr[l) v(t) = 1 . Es wird nun gezeigt, dass v(t) auf (0, 2] streng monoton fillt, denn dann ist tlln’(l] v(t) das
— —
s

>
absolute Maximum von v(t): Gilt — < t < 7, dann gilt ¢,sin(¢) > 0 und cos(t) < 0, also t-cos(t) < 0 < sin(t), also t-cos(t) < sin(t).

™ . . ™ T A I . ™ .
Ist t = 3 dann gilt t - cos(t) < sin(t), denn 5 Teos <§> < sin <§> & 3 0<1&0<1. Seinun0<t< 3 Folgendes Bild:

e

tan(t)
sin(t)

0 cos(t) 1

t t 1-t t
Der Kreissektor 01 P hat den Fldcheninhalt F; := Cyp 2.7-12 = 5 Das Dreieck 01Q hat den Flicheninhalt Fy := i().
=T
. m < . ; . i 1 -tan(t)
Weil wegen 0 < t < 3 nun der Flicheninhalt von S echt-gréer 0 ist (|S| > 0), folgt: Fy < Fa, also 5 < — also
t - cos(t) < sin(t). Es wurde also gezeigt: Auf (0,7) gilt ¢ - cos(t) < sin(t), also t - cos(t) — sin(t) < 0 und wegen t > 0 folgt
7 t-cos(t) — sin(t)

v (t) = 1 12 < 0. Nochmal: Das absolute Maximum von v(t) befindet sich bei t = 0, also dann: tlm}) v(t) =
—
in(t
T S T T 0 7ssa 78, 54%. Ende! O
4 t—0 4 4

Die Catalan-Zahlen

[Zuriick zur Liste]

n 1 2.
Aufgabe. Gelte die Rekursion Cp, = >, Ci_1 - Cp_ mit Co = C1 = 1, dann gilt C,, = ? . ( n) (Catalan-Zahlen) -
k=1 n n

Beweise dies! Gebe 5 Abzdhlprobleme an, die mithilfe der Catalan-Zahlen gelost werden.
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Lésung. Sei E(z) := C,, - z™, dann gilt:

n=0
oo o n—1
E(r)—1= Z Cp -z = Z (Z Cr-1 'Cn7k> cx”t = Z Ci - Crep—1 - x"
n=1 n=1 n=1k=0
oo n—1 oo n
:a:-ZZCk-C'n_l_k-z"_lzz-Z C’k~C'n_k~z":a:-E(:c)2
n=1 k=0 n=0 k=0
1 _1
Also gilt = - E(z)? — E(z) +1 = 0, also E(z)? — = - E(x) + —. Das ist eine quadratische Gleichung, also: E(z)1,2 = — 2” +

4. Vi—4-z
“ g/ Y 3; ;c . Weil z - E(x) fiir z = 0 gleich 0 sein muss, folgt, dass nur das negative
x

1+V1—-4- -z 1 VvV1ii—-4-z

Vorzeichen in Frage kommt, denn mit dem Pluszeichen hat man sonst: z - E(z) = — S =3 + — > 0 fiir alle x,
1-v1-4- 1
Widerspruch. Es gilt also: E(z) = 271 Es wird nun die Taylorreihe von f(z) := /1 + z = (14 )2 ermittelt: Betrachtet
-z
) —1)n—1 n—1 n—1 2.n —3)!
man f(™)(0), so erkennt man das Muster f(™ (0) = % . ( Im2i- 1) -1 Esgilt [T (2-i—1)= % Also gilt:
n ; P n—2.(np — 2)!
) n oo n—1 oo n—1
Mo, (1) 2-n—3) e M U HCIU L
V1 = = . =1 . . .
+z=f(@) nz::o wn +nz::1 20l 2n=2 . (n_2) z:: W 2 m-1)-(m-2

Und weiter gilt dann das Folgende:

el _1\yn—1 . —2)! oo nl n - ! n—1 n -
Y =R s R LU PRI Z“ SIS i I

— 221 .nl (n—1)! Ton (n—1! (n—1) = 22nlen n—1
1-v1—-4-
Weil E(z) = 27“’ gilt, folgt also:
-
1 < (-t 2.n—2 1 <2 2-n—2 X1 /2-n—2 1
FE = —1— ( ).74. Tl = —. ,.< .zt = —. ) n-
@) 2.z ( 222"_1-n n—1 ( @) 2.z 712::171 n—l) v ;n (n—l ¥
e R I N =1 2-ny >, =1 2-n
N ilt noch E(x) = - 2T = . -z". Es gilt also E(z) = Cp-x™ = . cx”
un gilt n (x) ;n (n_l)x, T;)n-‘rl (n)L s gi (x) nZ:O T ;n+1 (n)az

und ein Koeffizientenvergleich liefert:

1 2.
onm ity )
n+1 n
Es wird nun noch gezeigt, dass die Taylorreihe von f um den Entwicklungspunkt z¢o = 0 auch wirklich gegen f(z) = V1+ =z

n 1 x )
konvergiert: Es gilt: ("1 (¢) = (2n+1 (1‘[ 2 — ).(1 +t Das Restglied ist: Ry 1(x,0) = —./ (x—t)".f<"“>(t) dt.

1 ® ni1
Dann gilt |Ry41(z, 0)| < 7-/ lo —¢|™ - £V ()] dt. Weil |f<"+1>(t)| = (H i— 7) |14t \1+t
n: 0

hm |z —t

_2n41 @
n!-|1+¢| gilt, folgt dann |R,, 41 (x,0)| </ |z —t|™ |1+t =0,
wenn |z| < 1, also [t] < |z| < 1. Sei |z| < 1. 1. Fall z>0,also0<t<z<1, danng1lt0>—t>—x a1s01>ac>9c—t>0 also

1
0<z—t<1 also |z —t| <1. Wegen 0 <t <1folgtl<1l+1t<2 alsol<|1l+t|,also —— < 1. Also gilt: lim |z —¢t|" =0
n— oo

11+t

1
1 n+d
und lim lim = 0. 2. Fall: z = 0, dann ist das Restglied trivialerweise gleich 0. 3. Fall: x < 0, also
n— 0o n— 00 |1 |
—l<z<t<O0,alsol>—-xz>—-t>0,also0>z—t>z>—1,also0>z—t > —1. Wegen‘—1<|t<0folgt0<1+t<1
2n+41 1 T —
Esgilt: |z —t|" - |1+t~ 2 =z —t|" [1+¢t|7"72 =|z—¢t|" |1+t |1+t 2 = > ———. Wenn man
XN
zeigt, dass le = ¢ < 1 gilt, dann ist man fertig! Es gilt: |z — t| = —(x — t) und |1 4+ ¢t| = 1 + ¢t. Angenommen: |z — t| > |1 4 t|, also

[T+
—(z —t) >1+t,also —x+t>1+t, also —x > 1, also z < —1, Widerspruch, denn es gilt —1 < z. Also muss sein: |z —t| < |1+ ¢|,
lz —t|
1+ ¢
fiir n — oo und = € (—1,1) gegen 0, also konvergiert die Taylorreihe auf (—1,1) auch wirklich gegen f(z) = /1 + . Es werden

also

1 x
< 1. Insgesamt also konvergiert das Restglied der Taylorreihe von f, ndmlich R, 41(z,0) = — / (z—t)" D (t) dt,
n! Jo

nun 5 Abzihlprobleme vorgestellt:

1.) Die Anzahl der Bindrbdume mit insgesamt n Knoten

Ein Binadrbaum hat an jedem Knoten 0, 1 oder 2 ausgehende Kanten. Die Wurzel hat 0 eingehende Kanten und die anderen
Knoten genau 1 eingehende Kante. Sei die Anzahl mit B,, bezeichnet. Man teilt nun in zwei Teilbindrbidume auf: Der Bindrbaum,
der k Knoten links von der Wurzel hat, und der andere Bindrbaum, der n — 1 — k£ Knoten rechts davon hat. Also gilt B,, =
nil By -Bp_1-r = C,, wegen Bo = By = 1.

;T)ODie Anzahl der syntaktisch korrekten Klammerausdriicke mit n Klammerpaaren

Ein Klammerausdruck mit 2-n Klammern ist syntaktisch korrekt, wenn eine gedffnete Klammer auch immer irgendwann geschlossen
wird und bis zu keiner Stelle mehr Klammern geschlossen sind als gedffnet. Sei die gesuchte Anzahl mit K, bezeichnet. Es wird
die Menge der moglichen Klammerausdriicke zerlegt: Man zerlegt die Klammerausdriicke in solche, dessen erste Klammer an der

Position 2 - k geschlossen wird. Innerhalb der ersten Klammer liegen dann k — 1 Klammerpaare, aulerhalb gerade n — k. Also gilt:

51



K, = i Kip_1-Kn_ =Chp, weil Ko = K1 =1 gilt.

3.) Dilz;jlknzahl der Triangulierungen eines konvexen (n + 2)-Ecks

Es seien Py, P1,..., Pp41 die Punkte bei Umrundung des (n + 2)-Ecks im mathematisch positiven Sinn. Die gesuchte Anzahl
von Triangulierungen sei 7). Dann gibt es genau T, 1 _(x—2) - Tx—2 Triangulierungen, bei denen PyP Py ein Dreieck bilden,
weil links von PyPy Py ein ((n — 1 — (k — 2)) + 2)-Eck zu triangulieren ist, und rechts davon ein ((k — 2) + 2)-Eck. Also gilt
Tn = nan_l_(k_a) T2 = nf Ty - Tn1-1 = Cp, weil Top = T1 = 1 gilt.

4.) Dike:f&nzahl der M('jglichkv:ii;n, 2-n auf einem Kreis gelegene Punkte paarweise durch n sich nicht iiberschneidende
Strecken zu verbinden

Sei die Anzahl mit V,, bezeichnet. Seien die Punkte auf dem Kreis im mathematisch positiven Sinn durch Py bis Pa.,,—1 bezeichnet.
Man zerlegt die Méglichkeiten in solche, wo Py mit Ps.—1 verbunden ist (k = 1,...,n). Diese Verbindung zerlegt in zwei Bereiche:
Ein Bereich hat 2-k —2 = 2. (k — 1) und der andere 2-n — 2 -k = 2. (n — k) Punkte auf dem Kreis. Innerhalb dieser Bereiche
zahlt man die Moglichkeiten von Verbindungen ohne Uberkreuzung. Es gibt also Vi_1 - V,,_ Moglichkeiten ohne Uberkreuzung zu
verbinden, wobei Py mit P.,_1 verbunden ist. Also gilt V,, = i Vi1 Vh_r = Cy, weil fir die Startwerte gilt: Vo = V; = 1.
5.) Die Anzahl der Turmwege von links unten nach rechk:sloben auf einem n X n-Schachbrett ohne die Diagonale zu
iiberschreiten

Sei die Anzahl mit W,, bezeichnet. Man zerlegt auf dem n X n-Schachbrett jeden nicht iiber der Diagonalen von unten links nach
oben rechts verlaufenden Turmweg in einen Turmweg von (0, 0) nach (k, k) und einen von (k, k) nach (n,n), fiir ein k& > 0. Darum
kann man die Turmwege disjunkt aufteilen in solche, die bei (k, k) erstmals die Hauptdiagonale beriihren. Fiir gegebenes k > 0 ist

deren Anzahl gleich Wy _1 - W,, ;. Man muss fiir die Wege von (0, 0) nach (k, k) die Anzahl W, _ statt W), zugrundelegen, weil
im Bild unten die Strecken sl und s2 schon festgelegt sind. Das Bild:

/|

BN

v

/sl_/r

Die Anzahl aller Turmwege ist dann die Summe iiber k der Turmwege, die bei (k, k) die Hauptdiagonale erstmals betreten. Also

gilt: Wy, = >° Wy_1 - Wy, = C,, wegen Wy = Wy = 1. O
k=1
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