
Schönste mathematische Sätze
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K dA = 2− 2 · g

GeTeXt von: Sven Dooley.

Die Formel oben ist die Aussage des Satzes von Gauß-Bonnet in der globalen Version. Es wird dort die Gauß-Krümmung K

über eine zweidimensionale, orientierbare und kompakte Fläche M ohne Rand im dreidimensionalen Raum integriert. Dabei

gibt das Integral Auskunft über die Anzahl g der Löcher in der betrachteten Mannigfaltigkeit M.

1



Liste der mathematischen Sätze

Sammlung - Teil 1
1. Der Satz von Gauß-Bonnet

2. Der allgemeine Satz von Stokes

3. Der Satz von de Rham

4. Der Satz von Borsuk-Ulam

5. Der Indexsatz von Poincaré-Hopf
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Der Satz von Gauß-Bonnet
[Zurück zur Liste]

Lemma (Richtungs- und kovariante Ableitung). Seien X und Y Vektorfelder längs eines Flächenstücks f , dann sei die Rich-

tungsableitung definiert durch (DXY )(p) := lim
t→0

1

t
(Y (p + t · X(p)) − Y (p)) = dYp(X(p)) =

d

dt
Y (c(t))|t=0 = lim

t→0

1

t
(Y (c(t)) −

Y (c(0))), wobei c eine Kurve in f sei mit c(0) = p sowie c′(0) = X(p), und die kovariante Ableitung durch (∇XY )(p) :=

(DXY )(p)− 〈(DXY )(p), νp〉 · νp ∈ Tpf mit p, Punkt auf der Fläche f , und vp ∈ Npf . Es gelten dann folgende Rechenregeln:

1D Df1·X1+f2·X2
Y = f1 ·DX1

Y + f2 ·DX2
Y

2D DX(λ1 · Y1 + λ2 · Y2) = λ1 ·DXY1 + λ2 ·DXY2

3D DX(g · Y ) = Xg · Y + g ·DXY

4D X〈Y1, Y2〉 = 〈DXY1, Y2〉+ 〈Y1, DXY1〉

1∇ ∇f1·X1+f2·X2
Y = f1 · ∇X1

Y + f2 · ∇X2
Y

2∇ ∇X(λ1 · Y1 + λ2 · Y2) = λ1 · ∇XY1 + λ2 · ∇XY2

3∇ ∇X(g · Y ) = Xg · Y + g · ∇XY

4∇ X〈Y1, Y2〉 = 〈∇XY1, Y2〉+ 〈Y1,∇XY1〉

Dabei seien λ1, λ2 ∈ R und g, f1, f2 reellwertige Funktionen, definiert auf der Fläche f , sowie X,Y,X1, X2, Y1, Y2 Vektorfelder

längs f . Im Fall 3∇ muss Y tangential sein, und im Fall 4∇ müssen Y1 und Y2 tangential sein.

Beweis. Zunächst wird bewiesen, dass die verschiedenen Darstellungen der RichtungsableitungDXY auch alle gleich sind: (DXY )(p) =

lim
t→0

1

t
(Y (p+ t ·X(p))− Y (p)) =

d

dt
Y (p+ t ·X(p))|t=0 = dYp+t·X

(
d

dt
(p+ t ·X(p))

) ∣∣∣∣
t=0

= dYp+t·X (X(p)) |t=0 = dYp(X(p)) =

dYc(0)(c
′(0)) = dYc(t)(c

′(t))|t=0 =
d

dt
Y (c(t))|t=0 = lim

t→0

1

t
(Y (c(t)) − Y (c(0))). Jetzt wird der Beweis der Rechenregeln für alle 8

Fälle vollzogen:

Zu 1D:

Df1·X1+f2·X2
Y = dY (f1 ·X1 + f2 ·X2) = f1 · dY (X1) + f2 · dY (X2) = f1 ·DX1

Y + f2 ·DX2
Y , denn Differentiale sind, was aus

der Analysis nämlich bekannt ist, linear.

Zu 1∇:

∇f1·X1+f2·X2
Y = Df1·X1+f2·X2

Y − 〈Df1·X1+f2·X2
Y, ν〉 · ν = f1 · DX1

Y + f2 · DX2
Y − 〈f1 · DX1

Y + f2 · DX2
Y, ν〉 · ν =

f1 ·DX1
Y +f2 ·DX2

Y −f1 · 〈DX1
Y, ν〉 ·ν−f2 · 〈DX2

Y, ν〉 ·ν = (f1 ·DX1
Y −f1 · 〈DX1

Y, ν〉 ·ν)+(f2 ·DX2
Y −f2 · 〈DX2

Y, ν〉 ·ν) =

[f1 · (DX1
Y − 〈DX1

Y, ν〉 · ν)] + [f2 · (DX2
Y − 〈DX2

Y, ν〉 · ν)] = f1 · ∇X1
Y + f2 · ∇X2

Y .

Zu 2D:

DX(λ1 · Y1 + λ2 · Y2) = d(λ1 · Y1 + λ2 · Y2)(X) = λ1 · dY1(X) + λ2 · dY2(X) = λ1 ·DXY1 + λ2 ·DXY2, denn für Differentiale gilt

die Faktor- und Summenregel.

Zu 2∇:

∇X(λ1 · Y1 + λ2 · Y2) = D(λ1 · Y1 + λ2 · Y2)(X)− 〈D(λ1 · Y1 + λ2 · Y2)(X), ν〉 · ν = λ1 ·DY1(X) + λ2 ·DY2(X)− 〈λ1 ·DY1(X) +

λ2 ·DY2(X), ν〉 · ν = [λ1 ·DY1(X)− λ1 · 〈DY1(X), ν〉 · ν] + [λ2 ·DY2(X)− λ2 · 〈DY2(X), ν〉 · ν] = [λ1 · (DY1(X)− 〈DY1(X), ν〉 ·

ν)] + [λ2 · (DY2(X)− 〈DY2(X), ν〉 · ν)] = λ1 · ∇XY1 + λ2 · ∇XY2.

Zu 3D:

DX(g · Y ) = dg(X) · Y + g · dY (X) = Xg · Y + g ·DXY , denn für Differentiale gilt die Produktregel.

Zu 3∇:

∇X(g·Y ) = DX(g·Y )−〈DX(g·Y ), ν〉·ν = Xg·Y +g·DXY −〈Xg·Y +g·DXY, ν〉·ν = Xg·Y +g·DXY −Xg·〈Y, ν〉·ν−g·〈DXY, ν〉·ν =

Xg · Y + g ·DXY −Xg · 0 · ν − g · 〈DXY, ν〉 · ν = [Xg · Y − 0] + [g · (DXY − 〈DXY, ν〉 · ν)] = Xg · Y + g · ∇XY , denn Y wurde in

diesem Fall als tangential vorausgesetzt, also 〈Y, ν〉 = 0.

Zu 4D:

In diesem Beweis hier geht man etwas anders vor: (X〈Y1, Y2〉)(p) =
d

dt
〈Y1(c(t)), Y2(c(t))〉|t=0 =

〈
d

dt
Y1(c(t)), Y2(c(t))

〉 ∣∣∣∣
t=0

+〈
Y1(c(t)),

d

dt
Y2(c(t))|t=0

〉 ∣∣∣∣
t=0

=

〈
d

dt
Y1(c(t))|t=0, Y2(p)

〉
+

〈
Y1(p),

d

dt
Y2(c(t))|t=0

〉
= 〈(DXY1)(p), Y2(p)〉+〈Y1(p), (DXY2)(p)〉.

Beweis von
d

dt
〈A(t), B(t)〉 =

〈
d

dt
A(t), B(t)

〉
+

〈
A(t),

d

dt
B(t)

〉
: Man beschränkt sich hier exemplarisch auf den hier wichtigen

3-dimensionalen Fall, denn der allgemeine Fall geht völlig analog: A(t) =


a1(t)

a2(t)

a3(t)

, B(t) =


b1(t)

b2(t)

b3(t)

, also
d

dt
〈A(t), B(t)〉 =

d

dt
[a1(t)·b1(t)+a2(t)·b2(t)+a3(t)·b3(t)]

Produktregel
= [a′1(t)·b1(t)+a1(t)·b′1(t)]+[a′2(t)·b2(t)+a2(t)·b′2(t)]+[a′3(t)·b3(t)+a3(t)·b′3(t)]

und das ist gleich zu: [a′1(t) · b1(t) + a′2(t) · b2(t) + a′3(t) · b3(t)] + [a1(t) · b′1(t) + a2(t) · b′2(t) + a3(t) · b′3(t)] =

〈
d

dt
A(t), B(t)

〉
+〈

A(t),
d

dt
B(t)

〉
, fertig!

Zu 4∇:

X〈Y1, Y2〉 = 〈DXY1, Y2〉+ 〈Y1, DXY2〉 = 〈∇XY1 + 〈DXY1, ν〉 · ν, Y2〉+ 〈Y1,∇XY2 + 〈DXY2, ν〉 · ν〉 = 〈∇XY1, Y2〉+ 〈〈DXY1, ν〉 ·
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ν, Y2〉+ 〈Y1,∇XY2〉+ 〈Y1, 〈DXY2, ν〉 · ν〉 = 〈∇XY1, Y2〉+ 〈DXY1, ν〉 · 〈ν, Y2〉+ 〈Y1,∇XY2〉+ 〈Y1, ν〉 · 〈DXY2, ν〉 = 〈∇XY1, Y2〉+

〈DXY1, ν〉 · 0 + 〈Y1,∇XY2〉+ 0 · 〈DXY2, ν〉 = 〈∇XY1, Y2〉+ 〈Y1,∇XY1〉, denn es wurde in diesem Fall vorausgesetzt, dass Y1 und

Y2 tangential sind, sodass also gilt: 〈ν, Y2〉 = 〈Y1, ν〉 = 0.

Lemma (Kovariante Ableitung längs Kurven). Sei α, definiert auf I ⊆ R, eine Kurve, die in der Fläche f verläuft. Für ein

Vektorfeld X, definiert auf I ⊆ R auf f längs α gelte X(t) ∈ Tα(t)f für alle t ∈ I. Die kovariante Ableitung längs α ist dann

definiert als
∇
dt
X(t) =

d

dt
X(t)−

〈
d

dt
X(t), ν(α(t))

〉
· ν(α(t)) ∈ Tα(t)f , wobei gelte: ν(α(t)) ∈ Nα(t)f . Folgende Rechenregeln:

1.
∇
dt

(λ1 ·X + λ2 · Y ) = λ1 ·
∇
dt
X + λ2 ·

∇
dt
Y

2.
∇
dt

(g ·X) =
d

dt
g ·X + g ·

∇
dt
X

3.
d

dt
〈X,Y 〉 =

〈∇
dt
X, Y

〉
+

〈
X,
∇
dt
Y

〉
Dabei gelte X(t), Y (t) ∈ Tα(t)f für alle t ∈ I und es sei g eine Funktion g : I → R, außerdem: λ ∈ R.

Beweis. Es werden nun alle 3 Rechenregeln bewiesen:

Zu 1.:

Es gilt dann also:
∇
dt

(λ1 ·X+λ2 ·Y )(t) =
d

dt
(λ1 ·X(t)+λ2 ·Y (t))−

〈
d

dt
(λ1 ·X(t) + λ2 · Y (t)), ν(α(t))

〉
·ν(α(t)) = λ1 ·

d

dt
X(t)+λ2 ·

d

dt
Y (t)−

〈
λ1 ·

d

dt
X(t), ν(α(t))

〉
· ν(α(t))−

〈
λ2 ·

d

dt
Y (t), ν(α(t))

〉
· ν(α(t)) =

[
λ1 ·

d

dt
X(t)− λ1 ·

〈
d

dt
X(t), ν(α(t))

〉
· ν(α(t))

]
+[

λ2 ·
d

dt
Y (t)− λ2 ·

〈
d

dt
Y (t), ν(α(t))

〉
· ν(α(t))

]
= λ1 ·

∇
dt
X(t) + λ2 ·

∇
dt
Y (t), denn es gilt die Faktor- und Summenregel.

Zu 2.:

Nach der Produktregel gilt:
∇
dt

(g ·X)(t) =
d

dt
(g(t) ·X(t))−

〈
d

dt
(g(t) ·X(t)), ν(α(t))

〉
· ν(α(t)) =

d

dt
g(t) ·X(t) + g(t) ·

d

dt
X(t)−〈

d

dt
g(t) ·X(t) + g(t) ·

d

dt
X(t), ν(α(t))

〉
· ν(α(t)) =

d

dt
g(t) · X(t) + g(t) ·

d

dt
X(t) −

d

dt
g(t) · 〈X(t), ν(α(t))〉 · ν(α(t)) − g(t) ·〈

d

dt
X(t), ν(α(t))

〉
·ν(α(t)) =

d

dt
g(t)·X(t)−

d

dt
g(t)·0+g(t)·

[
d

dt
X(t)−

〈
d

dt
X(t), ν(α(t))

〉
· ν(α(t))

]
=

d

dt
g(t)·X(t)+g(t)·

∇
dt
X(t),

denn es gilt 〈X(t), ν(α(t))〉 = 0 wegen X(t) ∈ Tα(t)f und ν(α(t)) ∈ Nα(t)f .

Zu 3.:
d

dt
〈X,Y 〉(t) =

d

dt
〈X(t), Y (t)〉 =

〈
d

dt
X(t), Y (t)

〉
+

〈
X(t),

d

dt
Y (t)

〉
. Warum das gilt, wurde im Lemma (Richtungs- und ko-

variante Ableitung) oben unter 4D bewiesen. Weiter gilt dann schließlich:
d

dt
〈X,Y 〉(t) =

〈
d

dt
X(t), Y (t)

〉
+

〈
X(t),

d

dt
Y (t)

〉
=〈∇

dt
X(t) +

〈
d

dt
X(t), ν(α(t))

〉
· ν(α(t)), Y (t)

〉
+

〈
X(t),

∇
dt
Y (t) +

〈
d

dt
Y (t), ν(α(t))

〉
· ν(α(t))

〉
und das ist gleich zum Folgendem:〈∇

dt
X(t), Y (t)

〉
+

〈〈
d

dt
X(t), ν(α(t))

〉
· ν(α(t)), Y (t)

〉
+

〈
X(t),

∇
dt
Y (t)

〉
+

〈
X(t),

〈
d

dt
Y (t), ν(α(t))

〉
· ν(α(t))

〉
=

〈∇
dt
X(t), Y (t)

〉
+

0 +

〈
X(t),

∇
dt
Y (t)

〉
+ 0 =

〈∇
dt
X(t), Y (t)

〉
+

〈
X(t),

∇
dt
Y (t)

〉
, denn:

〈〈
d

dt
X(t), ν(α(t))

〉
· ν(α(t)), Y (t)

〉
=

〈
d

dt
X(t), ν(α(t))

〉
·

〈ν(α(t)), Y (t)〉 = 0 = 〈X(t), ν(α(t))〉 ·
〈
d

dt
Y (t), ν(α(t))

〉
=

〈
X(t),

〈
d

dt
Y (t), ν(α(t))

〉
· ν(α(t))

〉
, denn wegen X(t), Y (t) ∈ Tα(t)f

und ν(α(t)) ∈ Nα(t)f gilt 〈ν(α(t)), Y (t)〉 = 0 = 〈X(t), ν(α(t))〉.

Lemma (Bogenlängenparametrisierung). Sei c : I → R3 eine reguläre (für alle t sei c′(t) 6= 0) Raumkurve. Die Geschwindigkeit

dieser nach Bogenlänge parametrisierten Kurve ist gleich 1.

Beweis. Sei die Kurve c(t) gegeben. Sei s(t) =

∫ t

t0

‖c′(u)‖ du die Bogenlängenfunktion. Wegen s′(t) = ‖c′(t)‖ > 0 ist s(t)

umkehrbar mit Umkehrfunktion t(s). Ein Parameterwechsel ist dann c̃(s) = c(t(s)). Dann gilt: c̃′(s) =
d

ds
c(t(s)) = c′(t(s)) · t′(s).

Es gilt s(t(s)) = s, also s′(t(s)) · t′(s) = 1 ⇒ t′(s) =
1

s′(t(s))
. Daraus folgt dann ‖c̃′(s)‖ =

∥∥∥∥ dds c(t(s))
∥∥∥∥ = ‖c′(t(s)) · t′(s)‖ =∥∥∥∥c′(t(s)) · 1

s′(t(s))

∥∥∥∥ =

∥∥∥∥c′(t(s)) · 1

‖c′(t(s))‖

∥∥∥∥ = ‖c′(t(s))‖ ·
1

‖c′(t(s))‖
= 1.

Lemma (Geodätische Krümmung). Die geodätische Krümmung einer regulären Raumkurve γ : I → R3, die in einer Fläche f

verläuft, berechnet sich folgendermaßen:

kg(t) =
1

‖γ′(t)‖
·
〈
∇
dt

γ′(t)

‖γ′(t)‖
,

(
γ′(t)

‖γ′(t)‖

)⊥〉

Beweis. Sei γ : I → R3 eine Raumkurve. Die Krümmung dieser Kurve berechnet man, indem man diese Raumkurve nach Bo-

genlänge parametrisert und dann den Beschleunigungsvektor ausrechnet, dessen Betrag die Krümmung ist. Weil diese Raumkurve

die Geschwindigkeit 1 hat, hat nur die Form der Kurve Einfluss auf den Beschleunigungsvektor (also auf die Krümmung) und

nicht die Geschwindigkeit. Man rechnet: γ̃′′(s) = (γ ◦ t)′′(s) = (γ′(t(s)) · t′(s))′ = (γ′′(t(s)) · t′(s)) · t′(s) + γ′(t(s)) · t′′(s) =

γ′′(t(s)) · t′(s)2 + γ′(t(s)) · t′′(s). Nun gilt nach dem Lemma (Bogenlängenparametrisierung) oben t′(s) =
1

s′(t(s))
=

1

‖γ′(t(s))‖
,

also t′′(s) =
0 · s′(t(s))− 1 · (s′(t(s)))′

(s′(t(s)))2
= −

s′′(t(s)) · t′(s)
(s′(t(s)))2

= −

d

dt
‖γ′(t(s))‖ ·

1

‖γ′(t(s))‖
‖γ′(t(s))‖2

= −

d

dt
‖γ′(t(s))‖

‖γ′(t(s))‖3
. Daraus folgt dann:
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γ̃′′(s) = γ′′(t(s)) · t′(s)2 + γ′(t(s)) · t′′(s) =
γ′′(t(s))

‖γ′(t(s))‖2
−
γ′(t(s)) ·

d

dt
‖γ′(t(s))‖

‖γ′(t(s))‖3
=
γ′′(t(s)) · ‖γ′(t(s))‖ − γ′(t(s)) ·

d

dt
‖γ′(t(s))‖

‖γ′(t(s))‖2
·

1

‖γ′(t(s))‖
=

d

dt

γ′(t(s))

‖γ′(t(s))‖
‖γ′(t(s))‖

, also gilt dann: γ̃′′(s(t)) =

d

dt

γ′(t(s(t)))

‖γ′(t(s(t)))‖
‖γ′(t(s(t)))‖

=

d

dt

γ′(t)

‖γ′(t)‖
‖γ′(t)‖

, was dann die Krümmung an der Stelle

t darstellt. Es verlaufe nun γ in einer Fläche im Raum, die durch f dargestellt sei, mit Einheitsnormale ν. Es gilt γ̃′(s(t)) =

(γ ◦ t)′(s(t)) = γ′(t(s(t))) · t′(s(t)) =
γ′(t)

‖γ′(t)‖
, also folgt dann: 〈γ̃′(s(t)), γ̃′(s(t))〉 =

〈
γ′(t)

‖γ′(t)‖
,
γ′(t)

‖γ′(t)‖

〉
= 1, also 0 =

d

dt
1 =

〈γ̃′′(s(t)) · s′(t), γ̃′(s(t))〉+ 〈γ̃′(s(t)), γ̃′′(s(t)) · s′(t)〉, also 0 = 2 · s′(t) · 〈γ̃′′(s(t)), γ̃′(s(t))〉 (s′(t) 6= 0), also 〈γ̃′′(s(t)), γ̃′(s(t))〉 = 0.

Umgeschrieben gilt also

〈 d

dt

γ′(t)

‖γ′(t)‖
‖γ′(t)‖

,
γ′(t)

‖γ′(t)‖

〉
= 0. Das bedeutet, dass sich der Krümmungsvektor

d

dt

γ′(t)

‖γ′(t)‖
‖γ′(t)‖

in der Ebene befin-

det, die durch

(
γ′(t)

‖γ′(t)‖

)⊥
und ν aufgespannt wird. Dabei meint

(
γ′(t)

‖γ′(t)‖

)⊥
den von

γ′(t)

‖γ′(t)‖
in Tpf um 90◦ in positiver Richtung

gedrehten Vektor. Daraus folgt also γ̃′′(s(t)) =

d

dt

γ′(t)

‖γ′(t)‖
‖γ′(t)‖

=

〈 d

dt

γ′(t)

‖γ′(t)‖
‖γ′(t)‖

,

(
γ′(t)

‖γ′(t)‖

)⊥〉
︸ ︷︷ ︸

=kg(t)

·
(

γ′(t)

‖γ′(t)‖

)⊥
+

〈 d

dt

γ′(t)

‖γ′(t)‖
‖γ′(t)‖

, ν

〉
︸ ︷︷ ︸

=kn(t)

· ν,

denn

(
γ′(t)

‖γ′(t)‖

)⊥
und ν sind orthonormal. kg heißt die geodätische Krümmung und kn Normalkrümmung. Es gilt dann kg(t) =

1

‖γ′(t)‖
·
〈
d

dt

γ′(t)

‖γ′(t)‖
,

(
γ′(t)

‖γ′(t)‖

)⊥〉
=

1

‖γ′(t)‖
·
〈
∇
dt

γ′(t)

‖γ′(t)‖
+

〈
d

dt

γ′(t)

‖γ′(t)‖
, ν(γ(t))

〉
· ν(γ(t)),

(
γ′(t)

‖γ′(t)‖

)⊥〉
. Daraus folgt:

kg(t) =
1

‖γ′(t)‖
·
〈
∇
dt

γ′(t)

‖γ′(t)‖
,

(
γ′(t)

‖γ′(t)‖

)⊥〉
, denn es gilt doch nämlich:

〈〈
d

dt

γ′(t)

‖γ′(t)‖
,

(
γ′(t)

‖γ′(t)‖

)⊥〉
· ν(γ(t)),

(
γ′(t)

‖γ′(t)‖

)⊥〉
=〈

d

dt

γ′(t)

‖γ′(t)‖
,

(
γ′(t)

‖γ′(t)‖

)⊥〉
·
〈
ν(γ(t)),

(
γ′(t)

‖γ′(t)‖

)⊥〉
︸ ︷︷ ︸

=0

= 0. Das war es!

Lemma (Hilfssatz über Richtungsableitungen). Seien X, Y und Z Vektorfelder im R3. Dann gilt:

DX(DY Z)−DY (DXZ) = D[X,Y ]Z

Beweis. Zunächst gilt Deiej = 0 und DeiDejZ = ∂i∂jZ
Schwarz

= ∂j∂iZ = DejDeiZ für alle i, j. Seien nun X =
3∑
i=1

ξiei,

Y =
3∑
j=1

ηjej gegeben. Außerdem sei definiert: [X,Y ] = DXY −DYX Also:

DX(DY Z)−DY (DXZ) =

3∑
i=1

ξ
i
Dei

 3∑
j=1

η
j
DejZ

− 3∑
j=1

η
j
Dej

(
3∑
i=1

ξ
i
DeiZ

)

=

3∑
i=1

3∑
j=1

ξ
i
Dei (η

j
DejZ)−

3∑
i=1

3∑
j=1

η
j
Dej (ξ

i
DeiZ)

=
3∑
i=1

3∑
j=1

ξ
i
(η
j
DeiDejZ +Deiη

j
DejZ)−

3∑
i=1

3∑
j=1

η
j
(ξ
i
DejDeiZ +Dej ξ

i
DeiZ)

=

3∑
i=1

3∑
j=1

ξ
i
η
j
(DeiDejZ −DejDeiZ) +

3∑
i=1

3∑
j=1

ξ
i
∂iη

j
DejZ −

3∑
i=1

3∑
j=1

η
j
∂jξ

i
DeiZ

= 0 +
3∑
i=1

3∑
j=1

ξ
i
∂iη

j
DejZ −

3∑
i=1

3∑
j=1

η
i
∂iξ

j
DejZ =

3∑
i=1

3∑
j=1

(
ξ
i
∂iη

j − ηi∂iξj
)
DejZ

= D 3∑
i=1

3∑
j=1

[(ξi∂iηj−ηi∂iξj)ej ]
Z = D 3∑

i=1

3∑
j=1

[ξi((Deiη
j)ej+0)−ηi((Deiξ

j)ej+0)]
Z

= D 3∑
i=1

3∑
j=1

ξi((Dei
ηj)ej+ηjDei

ej)−
3∑
i=1

3∑
j=1

ηi((Dei
ξj)ej+ξjDei

ej)

Z

= D 3∑
i=1

3∑
j=1

ξiDei
(ηjej)−

3∑
i=1

3∑
j=1

ηjDej
(ξiei)

Z = DDXY−DY XZ = D[X,Y ]Z

Und das ist das, was zu beweisen war.

Satz (Gauß- und Codazzi-Mainardi-Gleichung). Seien X, Y und Z tangentiale Vektorfelder längs eines Flächenstücks, welches

durch f dargestellt sei. Dann gilt die Gauß-Gleichung:

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z = 〈LY,Z〉LX − 〈LX,Z〉LY

Dabei ist R(X,Y )Z der sogenannte Riemann’sche Krümmungstensor. Und es gilt die Gleichung von Codazzi-Mainardi:

∇X(LY )−∇Y (LX)− L([X,Y ]) = 0
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Beweis. Wegen 〈Y, ν〉 = 0 folgt 〈DXY, ν〉 = −〈Y,DXν〉 = −〈−LX, Y 〉 = 〈LX, Y 〉. Es gilt: ∇XY = DXY − 〈DXY, ν〉 · ν, also

DXY = ∇XY + 〈DXY, ν〉 · ν = ∇XY + 〈LX, Y 〉 · ν. Man zerlegt nun in Tangential- und Normalteil. Wegen des Hilfssatzes über

Richtungsableitungen gilt doch:

0 = DX(DY Z)−DY (DXZ)−D[X,Y ]Z

= DX(∇Y Z + 〈LY,Z〉 · ν)−DY (∇XZ + 〈LX,Z〉 · ν)−D[X,Y ]Z

= DX∇Y Z +DX(〈LY,Z〉 · ν)−DY∇XZ −DY (〈LX,Z〉 · ν)−D[X,Y ]Z

= DX∇Y Z +X〈LY,Z〉 · ν + 〈LY,Z〉DXν −DY∇XZ − Y 〈LX,Z〉 · ν − 〈LX,Z〉DY ν −D[X,Y ]Z

= DX∇Y Z +X〈LY,Z〉 · ν − 〈LY,Z〉LX −DY∇XZ − Y 〈LX,Z〉 · ν + 〈LX,Z〉LY −D[X,Y ]Z

Und das ist dann äquivalent zu:

0 = [∇X∇Y Z + 〈LX,∇Y Z〉 · ν] +X〈LY,Z〉 · ν − 〈LY,Z〉LX − [∇Y∇XZ + 〈LY,∇XZ〉 · ν]−

Y 〈LX,Z〉 · ν + 〈LX,Z〉LY − [∇[X,Y ]Z + 〈L([X,Y ]), Z〉 · ν]

Für den Tangentialanteil gilt:

0 = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z − 〈LY,Z〉LX + 〈LX,Z〉LY

Also ist die Gauß-Gleichung bewiesen. Und der Normalanteil ist folglich:

0 = (〈LX,∇Y Z〉+X〈LY,Z〉 − 〈LY,∇XZ〉 − Y 〈LX,Z〉 − 〈L([X,Y ]), Z〉)ν

Wegen X〈LY,Z〉 = −〈∇X(LY ), Z〉 − 〈LY,∇XZ〉 (für Y 〈LX,Z〉 analog) folgt:

(〈∇X(LY ), Z〉 − 〈∇Y (LX), Z〉 − 〈L([X,Y ]), Z〉)ν = 0

und das impliziert 〈∇X(LY )−∇Y (LX)− L([X,Y ]), Z〉 = 0 für beliebige tangentiale Z, also:

∇X(LY )−∇Y (LX)− L([X,Y ]) = 0

Damit ist der Beweis schließlich beendet.

Definition (Differentialformen). Eine Pfaffsche Form (oder 1-Form) auf einem Flächenstück, das durch f gegeben ist, ist

eine Zuordnung p 7→ ωp ∈ (Tpf)∗. Nun seien X1, X2, X3 gegeben. Dabei seien X1, X2 eine Orthonormalbasis von Tpf und

X3 = ν sei dann die Einheitsnormale auf der Fläche f . Man definiert dann dazu ω1, ω2, ω3 als die zugehörige Dualbasis, d.h.

es gilt: ωi(Xj) = δij =

 1, i = j

0, i 6= j
mit i, j = 1, 2, 3. Das Dachprodukt zweier 1-Formen ist eine 2-Form und folgendermaßen

definiert: ω ∧ η(X,Y ) = ω(X) · η(Y ) − η(X) · ω(Y ). Der Pullback einer Differentialform sieht am Beispiel einer 2-Form

so aus: ϕ∗ω(X,Y ) = ω(dϕ(X), dϕ(Y )). Die äußere Ableitung einer 1-Form ω(X) ist die 2-Form definiert durch dω(X,Y ) =

Xω(Y )−Y ω(X)−ω([X,Y ]). Es gilt der Satz von Stokes:

∫
∂M

ω =

∫
M

dω. Es sei nun vorausgesetzt, dass die Differentialformen

stetig differenzierbar sind. Das war es hier auch schon!

Lemma (Zusammenhangsformen). Seien X1 und X2 orthonormal und tangential, X3 = ν normal an der Fläche f . Man definiert

eine 1-Form ωij durch ωij(X) = ωi(DXXj). ω
i
j heißt dann Zusammenhangsform. Dann gilt eben:

DXXj =
3∑
i=1

ω
i
j(X) ·Xi und ∇XXj =

2∑
i=1

ω
i
j(X) ·Xi sowie ω

i
j = −ωji

Gebraucht wird später das Folgende: ωij(X) = 〈∇XXj , Xi〉 (i, j = 1, 2), falls die Xi tangential an f sind.

Beweis. Weil X1, X2 und X3 eine Orthonormalbasis bilden, gilt: DXXj =
3∑
k=1

〈DXXj , Xk〉 · Xk, also ωij(X) = ωi(DXXj) =

ωi
(

3∑
k=1

〈DXXj , Xk〉 ·Xk
)

=
3∑
k=1

〈DXXj , Xk〉 · ωi(Xk) = 〈DXXj , Xi〉, also gilt dann DXXj =
3∑
i=1

ωij(X) · Xi. Weiter gilt dann

ωij = −ωji . Beweis: 0 = X〈Xi, Xj〉 = 〈DXXi, Xj〉 + 〈Xi, DXXj〉 = ωji (X) + ωij(X). Nach Voraussetzung sind X1 und X2

orthonormal und tangential sowie X3 = ν normal an der Fläche f . Dann gilt: ωij(X) = ωi(DXXj) = 〈DXXj , Xi〉 = 〈∇XXj , Xi〉

(i,j=1,2), denn der Normalanteil vonDXXj hebt sich wegen des tangentialenXi raus. Es gilt weiter∇XXj =
3∑
k=1

〈∇XXj , Xk〉·Xk =

2∑
k=1

〈∇XXj , Xk〉 · Xk wegen 〈∇XXj , X3〉 = 〈∇XXj , ν〉 = 0, also ωi(∇XXj) = ωi
(

2∑
k=1

〈∇XXj , Xk〉 ·Xk
)

=
2∑
k=1

〈∇XXj , Xk〉 ·

ωi(Xk) = 〈∇XXj , Xi〉. Daraus folgt dann also: ωij(X) = ωi(DXXj) = ωi(∇XXj). Nochmal schön aufgeschrieben gilt noch:

∇XXj =
2∑
i=1

ωij(X) ·Xi. Und das war es auch schon!
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Satz (Maurer-Cartan-Strukturgleichungen). Es gelten die folgenden Gleichungen:

(i) dωij +
3∑
k=1

ωik ∧ ω
k
j = 0 für i, j = 1, 2

(ii) dωi3 +
2∑
k=1

ωik ∧ ω
k
3 = 0 für i = 1, 2

Beweis. Wegen DXDYXj −DYDXXj −D[X,Y ]Xj = 0 (Hilfssatz über Richtungsableitungen) folgt:

0 = 〈Xi, 0〉 = 〈Xi, DXDYXj −DYDXXj −D[X,Y ]Xj〉

=

〈
Xi, DX

(
3∑
k=1

ω
k
j (Y ) ·Xk

)
−DY

(
3∑
k=1

ω
k
j (X) ·Xk

)
−
(

3∑
k=1

ω
k
j ([X,Y ]) ·Xk

)〉

= ω
i

(
DX

(
3∑
k=1

ω
k
j (Y ) ·Xk

)
−DY

(
3∑
k=1

ω
k
j (X) ·Xk

)
−
(

3∑
k=1

ω
k
j ([X,Y ]) ·Xk

))

= ω
i

((
3∑
k=1

Xω
k
j (Y ) ·Xk + ω

k
j (Y ) ·DXXk

)
−
(

3∑
k=1

Y ω
k
j (X) ·Xk + ω

k
j (X) ·DYXk

)
−
(

3∑
k=1

ω
k
j ([X,Y ]) ·Xk

))

=
3∑
k=1

Xω
k
j (Y ) · ωi(Xk)−

3∑
k=1

Y ω
k
j (X) · ωi(Xk)−

3∑
k=1

ω
k
j ([X,Y ]) · ωi(Xk)+

3∑
k=1

ω
k
j (Y ) · ωi(DXXk)−

3∑
k=1

ω
k
j (X) · ωi(DYXk)

= Xω
i
j(Y )− Y ωij(X)− ωij([X,Y ]) +

3∑
k=1

ω
k
j (Y ) · 〈DXXk, Xi〉 −

3∑
k=1

ω
k
j (X) · 〈DYXk, Xi〉

= dω
i
j(X,Y ) +

3∑
k=1

ω
k
j (Y ) · ωik(X)−

3∑
k=1

ω
k
j (X) · ωik(Y ) = dω

i
j(X,Y ) +

3∑
k=1

ω
i
k(X) · ωkj (Y )− ωkj (X) · ωik(Y )

=

(
dω

i
j +

3∑
k=1

ω
i
k ∧ ω

k
j

)
(X,Y )

Zum Beweis von (i): Ist einfach der Fall i, j = 1, 2. Und (ii) entspricht dem Fall i = 1, 2 und j = 3. Also gilt dann die folgende

Rechnung: dωi3 +
3∑
k=1

ωik ∧ ω
k
3 = dωi3 +

(
2∑
k=1

ωik ∧ ω
k
3

)
+ ω

i
3 ∧ ω

3
3︸ ︷︷ ︸

=ωi3∧0=0

=
2∑
k=1

ωik ∧ ω
k
3 , denn aus der bekannten Identität ωij = −ωji

(siehe Lemma (Zusammenhangsformen) oben) folgt deswegen also ω3
3 = −ω3

3 , also ω3
3 = 0.

Satz (Krümmungsformen). Für eine gegebene Orthonormalbasis X1, X2, X3 (X1, X2, orthonormal und tangential an f sowie

X3 = ν Einheitsnormale) auf einem Flächenstück f seien die Krümmungsformen Ωij definiert durch Ωij(X,Y ) = 〈R(X,Y )Xj , Xi〉.

Dabei gilt Ωij = −Ωji sowie die Gleichung:

Ω
i
j(X,Y ) = dω

i
j +

2∑
k=1

ω
i
k ∧ ω

k
j

In Verbindung mit (i) in dem Satz (Maurer-Cartan-Strukturgleichungen) gilt: Ωij = −ωi3 ∧ ω
3
j

Beweis. Nach der Gauß-Gleichung (s.o.) gilt: Ωij(X,Y ) = 〈R(X,Y )Xj , Xi〉 = 〈〈LY,Xj〉LX − 〈LX,Xj〉LY,Xi〉 = 〈LY,Xj〉 ·

〈LX,Xi〉 − 〈LX,Xj〉 · 〈LY,Xi〉 = ω3
j (Y ) · ω3

i (X) − ω3
j (X) · ω3

i (Y ) = −(−ω3
i (X) · ω3

j (Y ) + ω3
j (X) · ω3

i (Y )) = −(ωi3(X) · ω3
j (Y ) −

ω3
j (X) ·ωi3(Y )) = −ωi3∧ω

3
j (X,Y ), denn es gilt ω3

l (Z) = 〈DZXl, X3〉 = −〈Xl, DZX3〉 = −〈Xl, DZν〉 = −〈Xl,−LZ〉 = 〈Xl, LZ〉 =

〈LZ,Xl〉. Also folgt daraus: Ωij = −ωi3 ∧ ω
3
j =

2∑
k=1

ωik ∧ ω
k
j −

3∑
k=1

ωik ∧ ω
k
j = dωij +

2∑
k=1

ωik ∧ ω
k
j (siehe Satz (Maurer-Cartan-

Strukturgleichungen) unter (i)). Nun noch der Beweis für Ωij = −Ωji : Es gilt Ωij(X,Y ) = 〈LY,Xj〉·〈LX,Xi〉−〈LX,Xj〉·〈LY,Xi〉 =

−(〈LY,Xi〉 · 〈LX,Xj〉 − 〈LX,Xi〉 · 〈LY,Xj〉) = −Ωji (X,Y ). Also ist damit der Beweis vollbracht.

Satz (Volumenform). Es gilt:

∫
f(B)

K · ω1 ∧ ω2
=

∫
f(B)

K dA.

Beweis. Zunächst einmal gilt f∗(ω1∧ω2)(u, v) = h(u, v) du∧dv, also f∗(ω1∧ω2)(e1, e2)(u, v) = h(u, v), denn: du∧dv(e1, e2) = 1,

wobei e1, e2 die Standardbasis sei. Nun ist aber folglich h(u, v) = f∗(ω1 ∧ ω2)(e1, e2)(u, v) = ω1 ∧ ω2(df(e1), df(e2))(u, v) =

ω1 ∧ ω2(∂1f(u, v), ∂2f(u, v)). Weil ∂1f, ∂2f ∈ Tpf gibt es die folgende Darstellung:

∂1f(u, v) = a11(u, v) ·X1(f(u, v)) + a21(u, v) ·X2(f(u, v)) und ∂2f(u, v) = a12(u, v) ·X1(f(u, v)) + a22(u, v) ·X2(f(u, v))

Denn: X1, X2 ist nach Voraussetzung (siehe oben) eine Orthonormalbasis von Tpf . Damit gilt dann: ω1∧ω2(∂1f(u, v), ∂2f(u, v)) =

ω1(∂1f(u, v)) ·ω2(∂2f(u, v))−ω2(∂1f(u, v)) ·ω1(∂2f(u, v)) = a11(u, v) · a22(u, v)− a21(u, v) · a12(u, v), denn es gilt doch, dass ωi

(i = 1, 2) als 1-Form im Argument linear ist, und es gilt, wie oben, ωi(Xj) = δij (i, j = 1, 2). Also:

ω
1 ∧ ω2

(∂1f(u, v), ∂2f(u, v)) = det

 a11(u, v) a12(u, v)

a21(u, v) a22(u, v)

 =: det(A)(u, v)

Nun gelten die folgenden Identitäten:
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1. E(u, v) = 〈∂1f(u, v), ∂1f(u, v)〉 = 〈a11 ·X1 + a21 ·X2, a11 ·X1 + a21 ·X2〉(u, v) = a2
11(u, v) + a2

21(u, v)

2. F (u, v) = 〈∂1f(u, v), ∂2f(u, v)〉 = 〈a11 ·X1 + a21 ·X2, a12 ·X1 + a22 ·X2〉(u, v) = a11(u, v) · a12(u, v) + a21(u, v) · a22(u, v)

3. G(u, v) = 〈∂2f(u, v), ∂2f(u, v)〉 = 〈a12 ·X1 + a22 ·X2, a12 ·X1 + a22 ·X2〉(u, v) = a2
12(u, v) + a2

22(u, v)

Man verifiziert ganz leicht, dass dann gilt: E(u, v) F (u, v)

F (u, v) G(u, v)

 =

 a11(u, v) a12(u, v)

a21(u, v) a22(u, v)

T ·
 a11(u, v) a12(u, v)

a21(u, v) a22(u, v)


Daraus folgt also:

(E ·G− F 2
)(u, v) = det

 E(u, v) F (u, v)

F (u, v) G(u, v)

 = det(A
T · A)(u, v) = det(A

T
)(u, v) · det(A)(u, v)

= det(A)
2
(u, v) = [ω

1 ∧ ω2
(∂1f(u, v), ∂2f(u, v))]

2

Schlussendlich erhält man also:

h(u, v) = ω
1 ∧ ω2

(∂1f(u, v), ∂2f(u, v)) =
√
E ·G− F 2(u, v)

Damit erhält man also das gewünschte Resultat, dass dann gilt:∫
f(B)

K · ω1 ∧ ω2
=

∫
B

f
∗
(K · ω1 ∧ ω2

) =

∫
B

(K ◦ f) · f∗(ω1 ∧ ω2
) =

∫
B

(K ◦ f) ·
√
E ·G− F 2 du ∧ dv =

∫
f(B)

K dA

.

Satz (Gauß-Bonnet, lokale Version). Sei B ⊆ R2 ein abgeschlossenes Gebiet. Durch f : B → R3 (injektiv) sei ein Flächenstück

im Raum dargestellt, wobei der Rand ∂f(B) durch die Kurve γ : [0, L] → R3 dargestellt sei. Diese zusammenhängende und

reguläre Kurve sei dann stückweise stetig differenzierbar. Denn: An den endlich vielen Ecken γ(ti) (i = 1, . . . , n + 1), wo der

Tangentialvektor um den Winkel αi (i = 1, . . . , n), auch orintierter Außenwinkel genannt, springt, ist γ dann nicht stetig

differenzierbar, nur stetig. Dabei gilt −π < αi < π (i = 1, . . . , n). γ verlaufe so, dass f(B) zur Linken liegt. Desweiteren ist

klar, dass γ geschlossen ist, also γ(0) = γ(t1) = γ(tn+1) = γ(L). Es wird unten bewiesen:∫
f(B)

K dA+

∫
γ

kg dl +

n∑
i=1

αi =

∫
f(B)

K dA+

∫
∂f(B)

kg dl +

n∑
i=1

αi = 2π

Dabei ist K die Gaußkrümmung auf der Fläche f(B) und kg die geodätische Krümmung von γ.

Beweis. Seien X1 =
∂f

∂u
und X2 =

∂f

∂v
Vektorfelder längs f , also eine Orthonormalbasis von Tpf . Dann sei X3 = ν die Einheits-

normale auf f . Man betrachtet nun X1 und X2 auf dem Rand ∂f(B), also Xi(γ(t)) = Xi(t) (i = 1, 2). Es gibt ein α(t), sodass

folgende Darstellung gilt:

γ′(t)

‖γ′(t)‖
= cosα(t) ·X1(t) + sinα(t) ·X2(t) und

(
γ′(t)

‖γ′(t)‖

)⊥
= − sinα(t) ·X1(t) + cosα(t) ·X2(t)

Es wird jetzt die geodätische Krümmung kg ausgerechnet:

kg(t) =
1

‖γ′(t)‖
·
〈
∇
dt

γ′(t)

‖γ′(t)‖
,

(
γ′(t)

‖γ′(t)‖

)⊥〉
=

1

‖γ′(t)‖
·
〈∇
dt

(cosα(t) ·X1 + sinα(t) ·X2),− sinα(t) ·X1 + cosα(t) ·X2

〉
=

1

‖γ′(t)‖
· 〈cosα(t) ·

∇
dt
X1 − α′(t) · sinα(t) ·X1 + sinα(t) ·

∇
dt
X2 + α

′
(t) · cosα(t) ·X2,− sinα(t) ·X1 + cosα(t) ·X2〉

=
1

‖γ′(t)‖
·
[
cos

2
α(t) ·

〈∇
dt
X1, X2

〉
− sin

2
α(t) ·

〈∇
dt
X2, X1

〉
+ sin

2
α(t) · α′(t) + cos

2
α(t) · α′(t)

]

Es wurde hier verwendet: 〈X1, X2〉 = 〈X2, X1〉 =

〈∇
dt
X1, X1

〉
=

〈∇
dt
X2, X2

〉
= 0, denn: 〈Xi, Xi〉 = 1, also 0 =

d

dt
〈Xi, Xi〉 =〈∇

dt
Xi, Xi

〉
+

〈
Xi,
∇
dt
Xi

〉
= 2 ·

〈∇
dt
Xi, Xi

〉
, also

〈∇
dt
Xi, Xi

〉
= 0 (i = 1, 2). Es gilt nun

〈∇
dt
X2, X1

〉
= −

〈∇
dt
X1, X2

〉
, denn:

0 = 〈X1, X2〉, also 0 =
d

dt
〈X1, X2〉 =

〈∇
dt
X1, X2

〉
+

〈
X1,
∇
dt
X2

〉
, also

〈∇
dt
X2, X1

〉
= −

〈∇
dt
X1, X2

〉
. Daraus folgt dann also:

kg(t) · ‖γ′(t)‖ =

〈∇
dt
X1, X2

〉
+ α
′
(t) = −

〈∇
dt
X2, X1

〉
+ α
′
(t)

Nun:
∇
dt
X(t) =

∇
dt

(X ◦ γ)(t) =
d

dt
(X ◦ γ)(t)−

〈
d

dt
(X ◦ γ)(t), ν(γ(t))

〉
· ν(γ(t)) = dXγ(t)γ

′(t)−
〈
dXγ(t)γ

′(t), ν(γ(t))
〉
· ν(γ(t)) =

(Dγ′(t)X)(γ(t)) −
〈

(Dγ′(t)X)(γ(t)), ν(γ(t))
〉
· ν(γ(t)) =

(
∇γ′(t)X

)
(γ(t)). Dies rechtfertigt folgende Notation:

〈∇
dt
X2, X1

〉
=〈

∇γ′(t)X2, X1

〉
. Jetzt folgt insgesamt also:

kg(t) · ‖γ′(t)‖ =

〈∇
dt
X1, X2

〉
+ α
′
(t) = −

〈∇
dt
X2, X1

〉
+ α
′
(t) = −

〈
∇γ′(t)X2, X1

〉
+ α
′
(t) = −ω1

2(γ
′
(t)) + α

′
(t)
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Letztes Gleichheitszeichen: siehe Lemma (Zusammenhangsformen). Man kann also in Zukunft benutzen:

kg(t) · ‖γ′(t)‖+ ω
1
2(γ
′
(t)) = α

′
(t)

Wegen der Gauß-Gleichung (s.o.) R(X,Y )Z = ∇X∇Y Z−∇Y∇XZ−∇[X,Y ]Z = 〈LY,Z〉LX−〈LX,Z〉LY gilt also: Ω1
2(X1, X2) =

〈R(X1, X2)X2, X1〉 = 〈〈LX2, X2〉LX1 − 〈LX1, X2〉LX2, X1〉 = 〈LX2, X2〉 · 〈LX1, X1〉 − 〈LX1, X2〉 · 〈LX2, X1〉. Also folgt daraus

dann:

Ω
1
2(X1, X2) = det

 〈LX1, X1〉 〈LX1, X2〉

〈LX2, X1〉 〈LX2, X2〉

 = det(L) = K

Nun gilt damit: Ω1
2(X1, X2) = K = K·1 = K·ω1∧ω2(X1, X2), und weilX1, X2 eine Orthonormalbasis ist, folgt also Ω1

2 = K·ω1∧ω2.

Weiter gilt wegen des Satzes (Krümmungsformen): Ω1
2 = dω1

2 + ω1
1 ∧ ω

1
2 + ω1

2 ∧ ω
2
2 = dω1

2 + 0 ∧ ω1
2 + ω1

2 ∧ 0 = dω1
2 + 0 + 0 = dω1

2 .

Mit kg(t) · ‖γ′(t)‖+ ω1
2(γ′(t)) = α′(t) folgt damit:

n∑
i=1

∫ ti+1

ti

kg(t) · ‖γ′(t)‖ dt

︸ ︷︷ ︸
=

∫
γ

kg dl

+
n∑
i=1

∫ ti+1

ti

ω
1
2(γ
′
(t)) dt =

n∑
i=1

∫ ti+1

ti

α
′
(t) dt =

n∑
i=1

α(ti+1 − 0)− α(ti + 0)
Hopf
= 2π −

n∑
i=1

αi

Wegen
n∑
i=1

∫ ti+1

ti

ω
1
2(γ
′
(t)) dt

∗1=

∫
γ

ω
1
2 =

∫
∂f(B)

ω
1
2

Stokes
=

∫
f(B)

dω
1
2

s.o.
=

∫
f(B)

Ω
1
2

s.o.
=

∫
f(B)

K · ω1 ∧ ω2 ∗2=

∫
f(B)

K dA folgt also

die Behauptung des Satzes. Noch die Begründung von ∗1:

∫
γ

ω =

∫
γ(I)

ω =

∫
I

γ
∗
ω. Nun ist γ∗ω(t) = h(t) dt, also γ∗ω(1)(t) = h(t)

wegen dt(1) = 1, also h(t) = ω(dγ(1))(t) = ω(γ′(t)), also:

∫
γ

ω =

∫
I

ω(γ
′
(t)) dt. Zu ∗2: siehe Satz (Volumenform). Es wurde also

insgesamt bewiesen: ∫
f(B)

K dA+

∫
γ

kg dl +

n∑
i=1

αi =

∫
f(B)

K dA+

∫
∂f(B)

kg dl +

n∑
i=1

αi = 2π

Und damit ist der Satz von Gauß-Bonnet in der lokalen Version bewiesen!

Satz (Gauß-Bonnet, erweiterte Version). Es sei R ⊆ S ein reguläres abgeschlossenes Gebiet einer orientierten Fläche und

C1, . . . , Cn die geschlossenen, einfachen, stückweise regulären Kurven, die den Rand ∂R von R bilden. Man nehme an, alle Ci

sind positiv orientiert, und sei {θ1, . . . , θp} die Menge der Außenwinkel der Kurven C1, . . . , Cn. Dann gilt:

n∑
i=1

∫
Ci

κg dl +

∫
R

K dA+

p∑
l=1

θl = 2π · χ(R)

Beweis. Sei das abgeschlossene Gebiet R trianguliert und der Rand eines jeden Dreiecks positiv orientiert. Man beachte, dass bei

Dreiecken, die eine Kante gemeinsam haben, die entgegengesetzten Orientierungen dafür sorgen, dass die Integrale über diese Kante

sich herausheben. Es gilt bereits der lokale Satz von Gauß-Bonnet insbesondere für Dreiecke. Man beachte, dass alle inneren Seiten

zweimal in entgegengesetzter Orientierung durchlaufen werden. Nun addiert man die Ergebnisse für die Dreiecke der Triangulierung

auf und erhält:
n∑
i=1

∫
Ci

κg dl +

∫
R

K dA+

F,3∑
j,k=1

θjk = 2πF

Dabei sei F die Anzahl der Dreiecke der Triangulierung und θj1, θj2, θj3 die Außenwinkel des Dreiecks Tj . Man führt nun die

Innenwinkel des Dreiecks Tj ein, gegeben durch ϕjk = π − θjk. Also:

F,3∑
j,k=1

θjk =

F,3∑
j,k=1

π −
F,3∑
j,k=1

ϕjk = 3F · π −
F,3∑
j,k=1

ϕjk

Sei Ka die Anzahl der äußeren Kanten, Ki die der inneren und sei Ea die Anzahl der äußeren Eckpunkte, und Ei die der inneren. Da

die Kurven Ci geschlossen sind, gilt Ka = Ea. Darüber hinaus kann man mit vollständiger Induktion zeigen, dass 3F = 2Ki +Ka

gilt. Also gilt deshalb:
F,3∑
j,k=1

θjk = 2πKi + πKa −
F,3∑
j,k=1

ϕjk

Man bemerkt nun, dass die äußeren Ecken entweder Ecken einer Kurve Ci sind, oder Ecken, die durch Triangulierung entstanden

sind. Man setzt dann: Ea = Eac +Eat, wobei Eac die Anzahl der Ecken der Kurve Ci ist, und Eat die Anzahl der äußeren Ecken

der Triangulierung, die nicht gleichzeitig Ecken einer Kurve Ci sind. Da die Summe der Winkel um jede innere Ecke gleich 2π ist,

erhält man:

F,3∑
j,k=1

θjk = 2πKi + πKa −
(

2πEi + πEat +

(
πEac −

p∑
l=1

θl

))
= 2πKi + πKa − 2πEi − πEac − πEat +

p∑
l=1

θl
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Nun wird zum obigen Ausdruck πKa addiert und wieder subtrahiert. Also folgt unter Beachtung von Ka = Ea:

F,3∑
j,k=1

θjk = 2πKi + 2πKa − 2πEi − πEa − πEac − πEat +

p∑
l=1

θl = 2πK − 2πE +

p∑
l=1

θl

Zusammengefasst gilt also folgendes:

n∑
i=1

∫
Ci

κg dl +

∫
R

K dA+

p∑
l=1

θl = 2π · (F −K + E) = 2π · χ(R)

Damit ist die Behauptung des Satzes also bewiesen.

Satz (Gauß-Bonnet, globale Version). Sei M ⊆ R3 eine kompakte 2-dimensionale Untermannigfaltigkeit ohne Rand, die also

orientierbar ist. Dann gilt die folgende Identität: ∫
M

K dA = 2π · χ(M)

Dabei ist χ(M) ∈ Z die Euler-Charakteristik von M.

Beweis. Wegen der Kompaktheit kann M durch endlich viele Teilmengen überdeckt werden, die sich als Bild eines Flächenstücks

beschreiben lassen. Daher kann M in endlich viele Teile M1, . . . ,Mm zerlegt werden, so dass dann folgendes gilt:

1. M =
m⋃
i=1

Mi

2. Mi ∩Mj enthält für i 6= j keine inneren Punkte, sondern höchstens Randpunkte von Mi oder Mj

3. Jedes Mi ist ein Kompaktum mit stückweise glattem und zusammenhängendem Rand (sowie mit endlich vielen Ecken und

Kanten mit zugehörigen Außenwinkeln αij)

Wegen der existierenden Orientierung der kompakten Untermannigfaltigkeit ohne Rand gilt für jedes i = 1, . . . ,m:

∫
Mi

K dA+

∫
∂Mi

κg dl = 2π −
ni∑
j=1

αij

Dabei heben sich bei der Summe über alle i die Randteile auf, d.h. es gilt

m∑
i=1

∫
∂Mi

κg dl = 0. Man erhält dann:

∫
M

K dA = 2πm−
m∑
i=1

ni∑
j=1

αij = 2πm−
m∑
i=1

ni∑
j=1

(π − βij) = 2π · (Zahl der Ecken− Zahl der Kanten +m) =: 2π · χ(M)

Die vorletzte Gleichung gilt, weil in jeder Ecke die Innenwinkelsumme gleich 2π und folglich
∑
i,j
βij gleich der Anzahl der Ecken,

multipliziert mit 2π, ist. Die Anzahl aller Summanden in der Summe ist gleich dem Doppelten der Zahl der Kanten, denn jede

Kante kommt in genau zwei der Mi vor und jedes Mi hat genauso viele Ecken wie Kanten, also ist
∑
i,j
π gleich der Anzahl der

Kanten, multipliziert mit 2π.

Korollar (1). Eine kompakte Fläche positiver Krümmung (K > 0) ohne Rand ist homöomorph zu einer Sphäre.

Beweis. Es gilt
1

2π
·
∫
M

K dA = χ(M) = 2 − 2 · g (g sei die Anzahl der Löcher der geschlossenen Fläche). Ist K > 0, dann folgt

1

2π
·
∫
M

K dA > 0, also g = 0, denn nur dann ist
1

2π
·
∫
M

K dA > 0. Also hat man es topologisch mit einer Sphäre, die die

Euler-Charakteristik 2 hat, zu tun.

Korollar (2). Wenn es zwei einfache geschlossene Geodätische Γ1 und Γ2 auf einer kompakten zusammenhängenden Fläche S

ohne Rand mit positiver Krümmung (K > 0) gibt, so schneiden sich Γ1 und Γ2.

Beweis. Zunächst ist unter den Voraussetzungen für S festzustellen, dass S nach Korollar 1 homöomorph zu einer Sphäre ist.

Würden sich Γ1 und Γ2 nicht schneiden, so wäre die aus Γ1 und Γ2 gebildete Menge der Rand eines abgeschlossenen Gebietes R,

dessen Euler-Charakteristik 0 = χ(R) ist. Nun gilt nach Gauß-Bonnet (erweiterte Version):

∫
R

K dA+

∫
∂R

κg dl+ 0 = 2π ·χ(R)⇔∫
R

K dA+ 0 + 0 = 2π · 0, also

∫
R

K dA = 0, im Widerpruch dazu, dass K > 0 gilt.

Korollar (3). Es sei S eine orientierbare Fläche mit Krümmung kleiner oder gleich Null. Dann können sich zwei Geodätische

γ1 und γ2, die an einem Punkt p ∈ S beginnen, nicht in einem solchen Punkt q ∈ S treffen, dass die Spuren von γ1 und γ2 den

Rand eines einfachen abgeschlossenen Gebiets R von S bilden.
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Beweis. Man nimmt das Gegenteil an. Nach dem Satz von Gauß-Bonnet in der lokalen Version gilt (R ist einfach):∫
R

K dA+

∫
∂R

κg dl + θ1 + θ2 =

∫
R

K dA+ 0 + θ1 + θ2 = 2π

Denn Geodätische haben die geodätische Krümmung Null. θ1 und θ2 seien die Außenwinkel des abgeschlossenen Gebietes R. Da

die Geodätischen γ1 und γ2 nicht tangential sein können, gilt θi < π (i = 1, 2). Nun ist aber K ≤ 0, also

∫
R

K dA ≤ 0, aber

2π − θ1 − θ2 > 0, also ein Widerspruch! Gilt θ1 = θ2 = 0, so bilden die Spuren der Geodätischen γ1 und γ2 eine einfache

geschlossene Geodätische von S. Aus θ1 = θ2 = 0 folgt ein Widerspruch:

∫
R

K dA ≤ 0, aber 2π − θ1 − θ2 = 2π − 0 − 0 = 2π.

Das heißt, dass es auf einer Fläche nicht positiver Krümmung keine einfache geschlossene Geodätische geben kann, die Rand eines

einfachen abgeschlossenen Gebietes ist.

Korollar (4). Auf einem Zylindermantel S mit Gauß’scher Krümmung K < 0, gibt es höchstens eine einfache geschlossene

Kurve, die in jedem Punkt die geodätische Krümmung 0 hat.

Beweis. Sei eine einfach geschlossene Geodätische Γ auf einem Zylindermantel S mit Gauß-Krümmung K < 0 gegeben. Nach

Korollar 3 folgt, dass es auf einem Zylindermantel wegen K < 0 keine einfach geschlossene Geodätische geben kann, die ein einfach

geschlossenes Gebiet begrenzt. Also muss eine einfach geschlossene Geodätische auf dem Zylindermantel einmal geschlossen um

den Zylindermantel herum verlaufen. Sei eine weitere einfach geschlossene Geodätische Γ′ auf S gegeben. Auch Γ′ läuft einmal

um S herum. Nun dürfen sich Γ und Γ′ in S nicht schneiden, denn sonst würden Γ und Γ′ als Geodätische ein geodätisches

Zweieck begrenzen, was nach Korollar 3 wegen K < 0 nicht geht. Weil sich Γ und Γ′ auf S nicht schneiden, begrenzen sie einen

Zylindermantel R mit χ(R) = 0. Es folgt dann:

∫
R

K dA =

∫
R

K dA + 0 + 0 =

∫
R

K dA +

∫
∂R

kg dl + 0 = 2π · χ(R) = 2π · 0 = 0,

also

∫
R

K dA = 0, im Widerspruch zu K < 0.

Korollar (Theorema Elegantissimum). Es sei D ein geodätisches Dreieck (d.h. die Seiten von D sind Geodätische) in einer

orientierten Fläche S. θ1, θ2, θ3 seien die Außenwinkel von D und ϕ1 = π− θ1, ϕ2 = π− θ2, ϕ3 = π− θ3 die Innenwinkel. Dann

gilt also die folgende Formel: ∫
D

K dA = (ϕ1 + ϕ2 + ϕ3)− π

Es folgt dann also insbesondere das Folgende: Für ein sphärisches Dreieck (K =
1

r2
) gilt: Asphärisches D. =

∫
sD

1 dA =

[(ϕ1 + ϕ2 + ϕ3)− π] · r2
; für ein hyperbolisches Dreieck (K = −

1

r2
) gilt: −Ahyperbolisches D. =

∫
hD

−1 dA = [(ϕ1 + ϕ2 + ϕ3)− π] ·

r
2 ⇔ Ahyperbolisches D. = [π − (ϕ1 + ϕ2 + ϕ3)] · r2

.

Beweis. Nach dem Satz von Gauß-Bonnet in der lokalen Version gilt

∫
D

K dA +

∫
∂D

κg dl + θ1 + θ2 + θ3 =

∫
D

K dA + 0 + (π −

ϕ1) + (π − ϕ2) + (π − ϕ3) = 2π ⇔
∫
D

K dA = (ϕ1 + ϕ2 + ϕ3)− π.

Der allgemeine Satz von Stokes
[Zurück zur Liste]

Satz. Sei M eine n-dimensionale glatte Mannigfaltigkeit mit Rand ∂M. Es sei auf M eine Orientierung gegeben. ∂M sei mit

der induzierten Orientierung versehen. Weiter sei ω eine (n − 1)-Form auf M mit kompaktem Träger und dω ihre äußere

Ableitung. Dann gilt die folgende Formel: ∫
M

dω =

∫
∂M

ω|∂M

Beweis. Sei Ik = (ak, bk) ein offenes Intervall für k = 1, 2, . . . , n. Setze:

Ĩ1 = I1 ∩ (−∞, 0], Q =
n∏
k=1

Ik, Q̃ = Q ∩ Rn− = Ĩ1 × I2 × . . .× In, ∂Q̃ = Q ∩ ∂Rn− = (I1 ∩ {0})× I2 × . . .× In

Dabei sei Rn− = {(x1, x2, . . . , xn) ∈ Rn : x1 ≤ 0}. Dann ist Q̃ eine orientierte n-dimensionale Mannigfaltigkeit mit Rand ∂Q̃. Nun

wird der Satz von Stokes für eine n-Form ω zunächst auf Q mit kompaktem Träger bewiesen: Fall 1: a1 < 0 < b1. Die (n− 1)-Form

ω hat die folgende Darstellung:

ω =
n∑
i=1

fi · dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn

Und die äußere Ableitung davon lautet:

dω =

(
n∑
i=1

(−1)
i+1 ·

∂fi

∂xi

)
· dx1 ∧ . . . ∧ dxn
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Nach dem Satz von Fubini gilt dann:∫
Q̃

dω =

n∑
i=1

(−1)
i+1 ·

∫
Ĩ1×I2×...×In

∂fi

∂xi
dx1 . . . dxn

=

∫
I2×...×In

(∫ 0

a1

∂f1

∂x1

dx1

)
dx2 . . . dxn︸ ︷︷ ︸

=:I1

+
n∑
i=2

(−1)
i+1 ·

∫
Ĩ1×I2×...×Ii−1×Ii+1×...×In

(∫
Ii

∂fi

∂xi
dxi

)
dx1 . . . d̂xi . . . dxn︸ ︷︷ ︸

=:I2

Als nächstes wird der Hauptsatz der Differential- und Integralrechnung angewandt:

I1 =

∫
I2×...×In

f1(0, x2, . . . , xn)− f1(a1, x2, . . . , xn) dx2 . . . dxn

und

I2 =
n∑
i=2

(−1)
i+1·

∫
Ĩ1×I2×...×Ii−1×Ii+1×...×In

fi(x1, . . . , xi−1, bi, xi+1, . . . , xn)−fi(x1, . . . , xi−1, ai, xi+1, . . . , xn) dx1 . . . d̂xi . . . dxn

Da der Träger Tr(ω) = {x : f(x) 6= 0} ⊆ Q kompakt ist, folgt:

f1(a1, x2, . . . , xn) = 0

und für alle i ≥ 2:

fi(x1, . . . , xi−1, bi, xi+1, . . . , xn) = fi(x1, . . . , xi−1, ai, xi+1, . . . , xn) = 0

Daraus folgt: ∫
Q̃

dω =

∫
I2×...×In

f1(0, x2, . . . , xn) dx2 . . . dxn =

∫
∂Q̃

ω

Fall 2: 0 ≤ a1. In diesem Fall sind Q̃ und ∂Q̃ leer und die Integrale auf beiden Seiten gleich 0. Fall 3: b1 ≤ 0. Dann tritt b1 in den

obigen Ausdrücken an die Stelle von 0. Also gilt:∫
Q̃

dω =

∫
I2×...×In

f1(b1, x2, . . . , xn) dx2 . . . dxn

Wieder ist f1(b1, x2, . . . , xn) = 0. Da ∂Q̃ = ∅ ist, sind auch in diesem Fall beide Integrale gleich 0. Damit ist der Satz für

M = Q̃ bewiesen. Nun wird der allgemeine Fall der n-dimensionalen glatten orientierten Mannigfaltigkeit M mit Rand ∂M und

einer (n − 1)-Form ω mit kompakten Träger betrachtet. Wähle nun einen der Orientierung entsprechenden orientierten Atlas

A = {hi : Ui → Vi : i ∈ I} mit der Eigenschaft, dass alle Vi von der Gestalt Q̃i für einen geeigneten offenen Quader Q ⊆ Rn

sind. Sei {ei : i ∈ I} eine der offenen Überdeckung {Ui : i ∈ I} von M untergeordnete Teilung der Eins. Das bedeutet, dass es für

jedes x ∈ M eine Umgebung U gibt, so dass auf dieser für alle i ∈ I bis auf endlich viele Ausnahmen ei(x) = 0 ist. Außerdem gilt∑
i∈I

ei = 1 und für jedes i ∈ I ist der Träger Tr(ei) in Ui enthalten. Es ist ∂A = {hi|Ui∩∂M : Ui∩∂M → Vi∩∂Rn−} ein der auf ∂M

induzierten Orientierung entsprechender orientierter Atlas für ∂M und {ei|∂M : i ∈ I} ist eine der Überdeckung {Ui ∩ ∂M : i ∈ I}

untergeordnete Teilung der Eins auf ∂M . Mit diesem Rüstzeug kann man den allgemeinen Fall nun durch Rückführung auf den

eben bewiesenen Spezialfall beweisen:∫
M

dω =

∫
M

d

∑
i∈I

ei · ω


=
∑
i∈I

∫
M

d(ei · ω)

=
∑
i∈I

∫
Ui

d(ei · ω)|Ui

=
∑
i∈I

∫
Vi

(h
−1
i )
∗
d(ei · ω)|Ui

=
∑
i∈I

∫
Vi

d((h
−1
i )
∗
(ei · ω)|Ui )

=
∑
i∈I

∫
∂Vi

((h
−1
i )
∗
(ei · ω)|Ui )|∂Vi

=
∑
i∈I

∫
∂Vi

((hi|Ui∩∂M )
−1

)
∗
(ei|Ui∩∂M · ω|Ui∩∂M )

=
∑
i∈I

∫
Ui∩∂M

(ei|Ui∩∂M · ω|Ui∩∂M )

=
∑
i∈I

∫
∂M

(ei|∂M · ω|∂M )

=

∫
∂M

∑
i∈I

ei|∂M · ω|∂M


=

∫
∂M

ω|∂M

Und damit ist der Beweis des Satzes auch schon fertig.
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Der Satz von de Rham
[Zurück zur Liste]

Es wird nun die de Rham-Kohomologie definiert:

Sei M eine glatte Mannigfaltigkeit der Dimension n und Ωk(M) die Menge der k-Formen auf M . Der de Rham-Komplex (Ωk(M), dk)

ist der Kokettenkomplex

0 // Ω0(M)
d0 // Ω1(M)

d1 // · · · dn−1// Ωn(M) // 0

Dabei ist dk : Ωk(M)→ Ωk+1(M) die Cartan-Ableitung. Es gilt die Komplexeigenschaft dk+1 ◦ dk = 0, d.h. es gilt:

bild(d
k−1

) ⊆ kern(d
k
)

1. Eine k-Form ω ∈ Ωk(M) heißt geschlossen, falls dkω = 0, also ω ∈ kern(dk).

2. Eine k-Form ω ∈ Ωk(M) heißt exakt, falls es ein η ∈ Ωk−1(M) gibt mit dk−1η = ω, also ω ∈ bild(dk−1).

H
k
dR(M) =

kern(dk)

bild(dk−1)
=
{geschlossene k-Formen auf M}
{exakte k-Formen auf M}

Diesen Quotientenraum kann man nämlich definieren wegen der oben geltenden Teilmengenrelation. HkdR(M) heißt die k-te de

Rham-Kohomologiegruppe von M . Nun heißt H∗dR(M) =
∞⊕
k=0

HkdR(M) die de Rham-Kohomologie von M .

[ω] = ω + d
k−1

Ω
k−1

(M) ∈ HkdR(M)

heißt die Kohomologieklasse von der geschlossenen k-Form ω ∈ Ωk(M).

Es wird nun die glatte Singuläre Homologie definiert:

Sei für R∞ nun e1, e2, e3, . . . die Standardbasis und e0 = 0. M sei wieder n-dimensional. Dann ist ein Standard k-Simplex

folgendermaßen definiert durch:

4k =

{
x =

k∑
i=0

λiei :

k∑
i=0

λi = 1, 0 ≤ λi ≤ 1

}
Weiterhin sei definiert:

fi,k := [e0, . . . , êi, . . . , ek] : 4k−1 → 4k

Man nennt fi,k auch die i-te Seite von 4k. Ein glattes singuläres k-Simplex ist dann eine glatte Abbildung σ : 4k → M . Sei

S∞k (M) die Menge der glatten singulären k-Simplices. Dann ist C∞k (M) definiert als der freie R-Modul mit der Menge S∞k (M)

(k ≥ 0) als Basis. Also ist ein Element aus C∞k (M) eine formale Summe
∑

σ∈S∞
k

(M)

rσ · σ, wobei nur endlich viele der Koeffizienten

rσ von Null verschieden sind. Sie heißt glatte singuläre k-Kette. Der Rand von σ ist:

∂k : S
∞
k (M)→ S

∞
k−1(M), σ 7→ ∂k(σ) =

k∑
i=0

(−1)
i · (σ ◦ fi,k)

Für ein Element c ∈ C∞k (M) setzt man dann:

∂k : C
∞
k (M)→ C

∞
k−1(M), c =

∑
σ∈S∞

k
(M)

rσ · σ 7→
∑

σ∈S∞
k

(M)

rσ · ∂k(σ)

Mit ∂k erhält man folglich:

· · · // C∞k+1(M)
∂k+1 // C∞k (M)

∂k // C∞k−1(M) // · · ·

Dabei gilt ∂k−1 ◦ ∂k = 0. Außerdem erhält man daraus:

· · · // hom(C∞k−1(M),R)
δk−1 // hom(C∞k (M),R)

δk // hom(C∞k+1(M),R) // · · ·

Man definiert damit dann folgendes (δk ◦ δk−1 = 0):

H
k
sing,∞(M,R) =

kern(δk)

bild(δk−1)

Dies ist die k-te glatte singuläre Kohomologiegruppe von M .

H
∗
sing,∞(M,R) =

∞⊕
k=0

H
k
sing,∞(M,R)
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heißt die glatte singuläre Homologie von M .

Es wird nun die de Rham-Abbildung definiert:

Man definiert hier die folgende Abbildung:

Ψ : Ω
k
(M)→ hom(C

∞
k (M),R), ω 7→

(
c 7→

∫
c

ω =
∑
σ

rσ ·
∫
σ

ω =
∑
σ

rσ ·
∫
4k

σ
∗
ω

)

Es gilt dann, dass das folgende Diagramm mit der Kettenabbildung Ψ kommutiert:

· · · // Ωk−1(M)
dk−1 //

Ψ

��

Ωk(M)
dk //

Ψ

��

Ωk+1(M) //

Ψ

��

· · ·

· · · // hom(C∞k−1(M),R)
δk−1

// hom(C∞k (M),R)
δk

// hom(C∞k+1(M),R) // · · ·

X heißt de Rham, falls HkdR(X)→ Hksing,∞(X,R) für k ≥ 0 ein Isomorphismus ist.

Lemma (1). Wenn F : X → Y ein Diffeomorphismus ist, dann, wenn X de Rham ist, ist auch Y de Rham.

Beweis. Sei F : X → Y eine glatte Abbildung, dann kommutiert das folgende Diagramm:

HkdR(Y )
F∗ //

Ψ∗

��

HkdR(X)

Ψ∗

��
Hksing,∞(Y,R)

F∗
// Hksing,∞(X,R)

Weil F ein Diffeomorphismus ist, ist die induzierte Abbildung F∗ ein Isomorphismus und da X de Rham ist, ist Ψ∗X ebenfalls

ein Isomorphismus. Nun ist Ψ∗Y = (F∗)−1 ◦ Ψ∗X ◦ F
∗ als Verkettung von Isomorphismen ein Isomorphismus von HkdR(Y ) nach

Hk∞(Y,R), also Y ist de Rham.

Es folgt nun der Beweis des Satzes von de Rham:

Sei {Ui} eine offene Überdeckung der n-dimensionalen Mannigfaltigkeit M . Diese Überdeckung heißt de Rham-Überdeckung, wenn

alle Ui de Rham sind und alle endliche Schnitte der Ui ebenfalls de Rham sind. Eine de Rham-Überdeckung, die zusätzlich eine

Basis der Topologie von M ist, wird dann de Rham-Basis genannt.

Lemma (2). Jede konvexe offene Menge des Rn ist de Rham.

Beweis. Sei U diese konvexe offene Menge aus dem Rn. Weil diese Menge nullhomotop ist und wegen der Homotopieinvarianz

der Homologien, gilt also HkdR(U) = HkdR({•}) = 0 und Hksing,∞(U,R) = Hksing,∞({•},R) = 0 für k > 0, nach dem Dimen-

sionsaxiom für Homologien. Also hat man in diesem Fall trivialerweise eine Isomorphie mittels Ψ∗. Wenn allerdings k = 0 ist,

dann gilt bekanntermaßen H0
dR({•}) = R und H0

sing,∞({•},R) = R. Man hat nun die Abbildung Ψ∗ : {konstante Funktionen} =

H0
dR({•}) → H0

sing,∞({•},R), also (f ∼= c0): Ψ∗[f ] = [Ψ(f)] =
[
c 7→

∫
c
f
]

=

[
c 7→

∑
σ
rσ ·

∫
σ
f

]
=

[
c 7→

∑
σ
rσ ·

∫
40

σ∗f

]
=[

c 7→
∑
σ
rσ · (f ◦ σ)(0)

]
=

[
c 7→ c0 ·

∑
σ
rσ

]
= [c 7→ c0 · r0] ∼= [c0 · r0], also hat man auch hier ein Isomorphismus. Damit ist folglich

bewiesen, dass U de Rham ist.

Lemma (3). Wenn M eine endliche de Rham-Überdeckung hat, dann ist M de Rham.

Beweis. Man zeigt diese Behauptung mit vollständiger Induktion über die endliche Anzahl k der Mengen der de Rham-Überde-

ckung. Für k = 1 ist der Fall klar und den Fall k = 2 zeigt man so: Sei also M = U ∪ V mit: U, V, U ∩ V sind de Rham. Man

benötigt hier die Mayer-Vietoris-Sequenz:

H
k−1
dR

(U)⊕Hk−1
dR

(V )

��

// Hk−1
dR

(U∩V )

��

// HkdR(M)

��

// HkdR(U)⊕HkdR(V )

��

// HkdR(U∩V )

��
H
k−1
sing,∞(U,R)⊕Hk−1

sing,∞(V,R) // Hk−1
sing,∞(U∩V,R) // Hksing,∞(M,R) // Hksing,∞(U,R)⊕Hksing,∞(V,R) // Hksing,∞(U∩V,R)

Weil also U, V und U ∩ V de Rham sind, sind der 1., 2., 4. und 5. senkrechte Pfeil Isomorphismen. Aus dem Fünferlemma folgt,

dass dann auch der senkrechte Pfeil in der Mitte, also der 3., ein Isomorphismus darstellt. Das bedeutet also, dass M de Rham

ist. Gelte nun die Behauptung für ein k ≥ 1. Setze U = U1 ∪ . . . ∪ Uk und V = Uk+1. Nach Induktions-Voraussetzung sind U

und V de Rham. U ∩ V = (U1 ∩ Uk+1) ∪ . . . ∪ (Uk ∩ Uk+1) ist de Rham, weil die Schnitte de Rham sind (Eigenschaften einer de

Rham-Überdeckung) und man über k Mengen vereinigt (I.-V.). Also: U ∪ V = U1 ∪ . . . ∪ Uk ∪ Uk+1 ist de Rham.
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Lemma (4). Ist {Xj} eine abzählbare disjunkte Sammlung von Mannigfaltigkeiten, die de Rham sind, dann ist ihre disjunkte

Vereinigung de Rham. Der Beweis dafür wird jetzt erbracht:

Beweis. Sei X =
∐
j
Xj und seien die Inklusionsabbildungen ij : Xj → X gegeben. Die Abbildung i = (i1, i2, i3, . . .) induziert die

Isomorphismen (ϕ und ϕ′) zwischen
⊕
j
HkdR(Xj) und HdR(X) sowie zwischen

⊕
j
Hksing,∞(Xj ,R) und Hksing,∞(X,R). Weil nach

Voraussetzung die Xj de Rham sind, hat man die Isomorphismen Ψ∗j : HkdR(Xj) → Hksing,∞(Xj ,R). Man benutzt im folgenden

Verlauf, dass das folgende Diagramm kommutiert:

⊕
j
HkdR(Xj)

ϕ //

⊕
j

Ψ∗j

��

HkdR(X)

Φ

��⊕
j
Hksing,∞(Xj ,R)

ϕ′
// Hksing,∞(X,R)

Da das Diagramm kommutiert gilt: Φ = ϕ′ ◦
(⊕
j

Ψ∗j

)
◦ ϕ−1 : HkdR(X) → Hksing,∞(X,R). Nun ist Φ als Verkettung von Isomor-

phismen selbst ein Isomorphismus, also folgt daraus, dass X de Rham ist.

Proposition. Auf jeder glatten n-dimensionalen Mannigfaltigkeit M existiert eine positive glatte Funktion f mit der Eigen-

schaft f−1((−∞, c]) ist kompakt für jedes c ∈ R.

Beweis. M hat eine abzählbare Überdeckung {Vi} von offenen Mengen, deren Abschluss kompakt ist. Dies realisiert man durch die

Urbilder mittels der Kartendiffeomorphismen von offenen Bällen des Rn mit rationalen Mittelpunkten und Radien aus den rationalen

Zahlen. Sei dann {fi} (glatte Funktionen) eine der Überdeckung untergeordnete Partition der Eins. Es gilt also 0 ≤ fi ≤ 1,∑
i
fi = 1 und supp(fi) ⊆ Vi sowie: Für jeden Punkt in M gibt es eine Umgebung, in der nur endlich viele fi von Null verschieden

sind. Man definiert nun f : M → R durch f(x) =
∞∑
i=1

i · fi(x). f ist dann auch glatt, den es wird nur über endlich viele fi(x)

summiert. f(x) ist positiv, denn: f(x) ≥
∞∑
i=1

fi(x) = 1. Sei N ∈ N>0, dann wird gezeigt: f(x) ≤ N ⇒ x ∈
N⋃
j=1

V j . Beweis:

Sei x /∈
N⋃
j=1

V j , dann ist fj(x) = 0 für 1 ≤ j ≤ N , weil doch supp(fj) ⊆ V j gilt. Man erhält dann: f(x) =
∞∑

j=N+1

j · fj(x) >

∞∑
j=N+1

N · fj(x) = N ·
∞∑

j=N+1

fj(x) = N . Also gilt f(x) > N . Sei jetzt c ∈ R. Es gibt nun ein N ∈ N>0 so, dass c ≤ N . Nun gilt

f−1((−∞, c]) ⊆ f−1((−∞, N ]) ⊆
N⋃
j=1

V j . Weil f−1((−∞, c]) als abgeschlossene Menge Teilmenge der kompakten Menge
N⋃
j=1

V j

ist, ist auch f−1((−∞, c]) kompakt.

Lemma (5). Wenn M eine de Rham Basis hat, dann ist M de Rham.

Beweis. Sei {Uα} eine de Rham-Basis von M . Sei f : M → R wie in der Proposition. Für jede natürliche Zahl m seien dann

folgende Teilmengen von M definiert: Am = {q ∈ M : m ≤ f(q) ≤ m+ 1} und A′m = {q ∈ M : m−
1

2
≤ f(q) ≤ m+ 1 +

1

2
}. Nun

gilt Am ⊆ A′m. Am ist eine abgeschlossene Teilmenge der kompakten Menge f−1((−∞,m + 1]), also ist auch Am kompakt. Für

jedes x ∈ Am gibt es ein Element der de Rham-Basis Uxm so, dass x ∈ Uxm ⊆ A
′
m. {Uxm} ist also eine offene de Rham-Überdeckung

von Am. Da Am kompakt ist, überdecken schon endlich viele der Uxm die Menge Am. Es gilt also Am ⊆
n⋃
i=1
Uim =: Bm. Man hat

nun eine endliche de Rham-Überdeckung von Bm und nach Lemma (3) ist dann Bm de Rham. Zur Erinnerung: Am ⊆ Bm ⊆ A′m,

daraus folgt nach Konstruktion, dass sich Bm mit Bm̃ nur dann schneiden, wenn m̃ = m + 1,m,m − 1 ist. Es folgt also, dass

U =
⋃

m ungerade

Bm und V =
⋃

m gerade

Bm abzählbare disjunkte Vereinigungen von Mannigfaltigkeiten sind, die de Rham sind. Also

sind U und V de Rham, nach Lemma (4). Auch U ∩ V ist de Rham, denn man schneidet hier über Mengen, die aus einer de

Rham-Basis stammen. Es ist jetzt M = U ∪ V und weil U ∪ V eine endliche de Rham-Überdeckung von M ist, ist M de Rham

nach Lemma (3).

Satz. Jede glatte Mannigfaltigkeit ist de Rham, d.h. Ψ∗ : HkdR(M)→ Hksing,∞(M,R) ist ein Isomorphismus.

Beweis. Jede glatte Mannigfaltigkeit besitzt einen Atlas, deren Koordinatenumgebungen eine Basis der Topologie von M darstellen.

Beweis: {(Ui, ϕi)} sei ein Atlas von M . Seien offene Bälle (sind konvex) Br(x) mit x ∈ Q und r ∈ Q>0. Nun sei Bi = {ϕ−1
i (Br(x)) :

ϕ−1
i (Br(x)) ⊆ Ui}, also ist

⋃
i
Bi eine Überdeckung von M durch abzählbar viele neue Koordinatenumgebungen, die eine Basis der

Topologie von M darstellen. Diese neuen Koordinatenumgebungen erben nun die Diffeomorphismen des alten Atlas: Ist das Urbild

eines offenen Balles in Ui, so übernimmt es den Diffeomorphismus ϕi. Alle endliche Schnitte aus den neuen Koordinatenumgebungen

sind diffeomorph zu Schnitte endlich vieler Bälle, die konvex sind, denn der Schnitt endlich vieler konvexer Mengen ist wieder konvex.

Es folgt also, dass endliche Schnitte aus den neuen Koordinatenumgebungen und die Koordinatenumgebungen selbst de Rham sind,

weil sie diffeomorph zu konvexen Mengen sind (Lemma (1)), die ja de Rham sind (nach Lemma (2)). Also hat man damit eine de

Rham-Überdeckung gefunden und weil die neuen Koordinatenumgebungen sogar eine Basis der Topologie darstellen, hat man eine

de Rham-Basis von M erhalten, also folgt nach Lemma (5), das M de Rham ist.
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Satz (de Rham). Es gilt H∗dR(M) ∼= H∗sing(M ;R).

Beweis. Bereits beweisen wurde H∗dR(M) ∼= H∗sing,∞(M,R). Es gilt C∞∗ (M) ⊆ Csing
∗ (M). Sei dann ik : C∞k (M) → Csing

k (M) die

Inklusionsabbildung. Diese induziert dann die Abbildung i∗k : Hksing,∞(M)→ Hksing(M ;R). Dass diese Abbildung ein Isomorphismus

ist, zeigt man genauso wie im Beweis für die Isomorphie von HkdR(M) nach Hksing,∞(M,R). Zusammengefasst gilt also: H∗dR(M) ∼=
H∗sing,∞(M,R) ∼= H∗sing(M ;R).

Der Satz von Borsuk-Ulam
[Zurück zur Liste]

Definition (Abbildungsgrad). Zu Ω ⊆ Rn sei f ∈ A2(Ω) := Ck(Ω,Rn) ∩ C0(Ω,Rn) und mit supp(ω) := {x ∈ R : ω(x) 6= 0}

bezeichnet man den Träger der Funktion ω : R → R. Es sei f ∈ A2(Ω) eine Funktion mit |f(x)| > ε > 0 für alle x ∈ ∂Ω. Eine

stetige Funktion ω ∈ C0(R,R) nennt man zulässig für f , wenn sie die Eigenschaften supp(ω) ⊆ (0, ε) und

∫
Rn

ω(|y|) dy = 1

hat. Für eine solche Testfunktion ω erklärt man den Abbildungsgrad von f bezüglich 0 als

deg(f,Ω, 0) =

∫
Ω

ω(|f(x)|) · Jf (x) dx

Dabei ist Jf (x) die Jacobi-Determinante an der Stelle x. Der Abbildungsgrad ist unabhängig von der Wahl einer Testfunktion.

Lemma (Nullstellen-Lemma). Sei Ω ⊆ Rn beschränkt und f ∈ C0(Ω,Rn) mit |f(x)| > ε > 0 für x ∈ ∂Ω. Besitzt f in Ω keine

Nullstelle, so folgt: deg(f,Ω) = 0.

Beweis. Bewiesen wird diese Aussage nur für Funktionen f ∈ C0(Ω,Rn) ∩ C2(Ω,Rn) =: A2(Ω). Approximiert man nur stetige

f mit Funktionen aus A2(Ω), dann gilt die Aussage auch für f ∈ C0. Besitzt f in Ω keine Nullstelle, so existiert ein ε > 0 mit

|f(x)| > ε > 0 für x ∈ Ω. Man wähle dann eine zulässige Testfunktion ω ∈ C0(R,R) mit supp(ω) ⊆ (0, ε). Dann folgt:

deg(f,Ω) =

∫
Ω

ω(|f(x)|)︸ ︷︷ ︸
=0

· Jf (x) dx = 0

Und das war auch schon alles.

Lemma (Wichtige Abschätzung). Zu a ∈ Rn und h > 0 sei W := {x ∈ Rn : |xi − ai| ≤
h

2
} ein Würfel der Kantenlänge h.

Weiter sei eine C2-Funktion f : W → Rn gegeben mit |f(x)− f(y)| ≤ L · |x− y|, |Df(x)−Df(y)| ≤ L · |x− y| für alle x, y ∈ W .

Schließlich existiere ein z ∈ W mit Jf (z) = 0. Dann gilt f(W ) ≤ C(L, n) ·hn+1, wobei mit |f(W )| das Lebesgue-Maß der Menge

f(W ) gemeint ist.

Beweis. Da W kompakt und f stetig ist, ist f(W ) kompakt und somit auch Lebesgue-messbar. Wegen Jf (z) = 0 existiert ein

Vektor v1 ∈ Rn, |v1| = 1 mit vT1 ·Df(z) = 0. Beweis: Weil die Determinante von Df(z) gleich Null ist, ist ihr Zeilenrang kleiner n,

also sind die Zeilen linear abhängig, d.h. es gibt eine nichttriviale Linearkombination von diesen Zeilen so, dass die Summe gleich

0 ist. Die Koeffizienten seien durch den Vektor v1 gegeben, wobei die Linearkombination = 0 noch durch den Skalar der Länge von

v1 auf beiden Seiten geteilt wird; die Linearkombination ist dann immer noch Null. v1 ·Df(z) ist dann die Linearkombination der

Zeilen von Df(z), also gleich 0. v1 wird nun durch Vektoren v2, . . . , vn zu einer Orthonormalbasis von Rn ergänzt. Es gilt dann:

v
T
1 · (f(z)− f(x)) = v

T
1 ·
∫ 1

0

d

dt
f(x+ t · (z−x)) dt = v

T
1 ·
∫ 1

0

Df(x+ t · (z−x)) dt · (z−x) = v
T
1 ·
∫ 1

0

Df((1− t) ·x+ t · z) dt · (z−x)

Und das ist dann gleich folgendes:

v
T
1 ·
∫ 1

0

Df(t ·x+ (1− t) · z) dt · (z−x) = v
T
1 ·
∫ 1

0

Df(z+ t · (x− z)) dt · (z−x) = v
T
1 ·
∫ 1

0

(Df(z + t · (x− z))−Df(z)) dt · (z−x)

Mit der Voraussetzung |Df(x)−Df(y)| ≤ L · |x− y| für alle x, y ∈ W folgt dann die folgende Abschätzung:

|vT1 · (f(z)− f(x))| ≤ L · |z − x|2 ·
∫ 1

0

t dt ≤ L · ((z1 − x1)
2

+ . . .+ (zn − xn)
2
) ·

1

2
≤ L · (n · h2

) · 1 ≤ L · n2 · h2

Es gilt nach Voraussetzung |f(x)− f(y)| ≤ L · |x− y| für alle x, y ∈ W , also gilt:

|vTi · (f(z)− f(x))| ≤ L · |z − x| ≤ L ·
√

(z1 − x1)2 + . . .+ (zn − xn)2 ≤ L ·
√
n · h2 ≤ L · n · h

Wobei hier i = 2, . . . , n sei. Insgesamt folgt somit also:

f(W ) ⊆ {y ∈ Rn : |vT1 · (f(z)− f(x))| ≤ L · n2 · h2
, |vTi · (f(z)− f(x))| ≤ L · n · h für i = 2, . . . , n}

Unter Verwendung der Invarianz des Lebesgue-Maßes gegenüber Rotationen ergibt sich:

|f(W )| ≤ (L · n2 · h2
) · (L · n · h)

n−1
= L

n · nn+1 · hn+1
= C(L, n) · hn+1

Und damit ist dann die Behauptung bewiesen.
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Lemma (Sard’sches Lemma). Zu Ω ⊆ Rn offen sei f ∈ C2(Ω,Rn) gegeben. Für eine kompakte Menge K ⊆ Ω sei M := {x ∈

K : Jf (x) = 0} die Menge der singulären Punkte. Dann ist f(M) = {f(x) : x ∈ K, Jf (x) = 0} eine Nullmenge.

Beweis. Da Ω offen und K ⊆ Ω kompakt ist, existieren endlich viele Würfel Wi ⊆ Ω (i = 1, . . . , N), welche K überdecken,

also K ⊆ W1 ∪ . . . ∪ WN . Es sei nun W∗ einer dieser Würfel. Es wird nun gezeigt: f(W∗ ∩ M) ist eine Nullmenge. Wegen

f(M) ⊆ f(W1 ∩M)∪ . . .∪ f(WN ∩M) ist dann auch f(M) eine Nullmenge. Es sei also W∗ :=

{
x ∈ Rn : |xi − ai| ≤

R

2

}
⊆ Ω ein

solcher Würfel mit Mittelpunkt a ∈ Rn und Kantenlänge R > 0. Wegen f ∈ C2(W∗,R
n) gibt es zunächst eine Konstante L <∞ mit

|f(x)−f(y)| ≤ L·|x−y|, |Df(x)−Df(y)| ≤ L·|x−y| für x, y ∈ W∗. Nun wird W∗ von kn achsenparallelen Würfeln Ŵi, i = 1, . . . , kn

der Kantenlänge h :=
R

k
überdeckt. Es sei nun I := {i ∈ {1, . . . , kn} : Ŵi∩M 6= ∅} die Indexmenge aller derjenigen Würfel, welche

singuläre Punkte von f enthalten. Für jedes i ∈ I liefert Lemma (Wichtige Abschätzung) dann |f(Ŵi)| ≤ C(L, n) ·
(
R

k

)n+1

.

Beachtet man f(W∗ ∩M) ⊆
⋃
i∈I

f(Ŵi), so folgt dann |f(W∗ ∩M)| ≤
∑
i∈I
|f(Ŵi)| ≤ C(L, n) ·

(
R

k

)n+1

· kn = C(L, n) ·
Rn+1

k
. Für

k →∞ folgt also |f(W∗ ∩M)| = 0, wie behauptet.

Lemma (7ε-Lemma). Gegeben seien zwei Funktionen fs, ft ∈ A2(Ω) := C0(Ω,Rn)∩C2(Ω,Rn) mit |fs(x)− ft(x)| < ε für x ∈ Ω

sowie |fs(x)| > 7ε und |ft(x)| > 7ε für x ∈ ∂Ω. Dann folgt:

deg(fs,Ω) = deg(ft,Ω)

Beweis. Man wähle zunächst eine Funktion λ ∈ C2(R, [0, 1]) mit λ(r) = 1 für r ≤ 3ε und λ(r) = 0 für r ≥ 4ε. Es wird dann die

folgende Funktion erklärt:

z(x) := fs(x) + λ(|fs(x)|) · (ft(x)− fs(x)) ∈ A2
(Ω)

Sie hat die folgende Eigenschaft:

|z(x)| ≥ |fs(x)| − λ(|fs(x)|) · |ft(x)− fs(x)| > 7ε− ε = 6ε für x ∈ ∂Ω

Zusätzlich gelten die Abschätzungen:

|fs(x)− z(x)| ≤ λ(|fs(x)|) · |ft(x)− fs(x)| < ε

Und es gilt:

|ft(x)− z(x)| ≤ (1− λ(|fs(x)|)) · |ft(x)− fs(x)| < ε

Daraus überlegt man sich leicht:

z(x) =

 fs(x), |fs(x)| ≥ 4ε

ft(x), |ft(x)| ≤ 2ε

Man wähle dann zwei zulässige Testfunktionen ω1, ω2 ∈ C0(R,R) mit supp(ω1) ⊆ (5ε, 6ε) und supp(ω2) ⊆ (0, ε). Insbesondere

folgt dann daraus: ω1(|fs(x)|) · Jfs (x) = ω1(|z(x)|) · Jz(x) und ω2(|z(x)|) · Jz(x) = ω2(|ft(x)|) · Jft (x). Wegen |fs(x)|, |ft(x)| > 7ε

sowie |z(x)| > 6ε sind die beiden Testfunktionen ω1 und ω2 zulässig zur Berechnung des Abbildungsgrades von fs, ft und z. Es

folgt somit also:

deg(fs,Ω) =

∫
Ω

ω1(|fs(x)|) · Jfs (x) dx =

∫
Ω

ω1(|z(x)|) · Jz(x) dx = deg(z,Ω)

Und es gilt auch:

deg(ft,Ω) =

∫
Ω

ω2(|ft(x)|) · Jft (x) dx =

∫
Ω

ω2(|z(x)|) · Jz(x) dx = deg(z,Ω)

Daraus folgt dann unmittelbar die Behauptung des Satzes.

Satz (Immer regulär). Für ein f ∈ C0(Ω,Rn) gelte |f(x)| > ε > 0 für x ∈ ∂Ω. Dann existiert eine Funktion fε ∈ C0(Ω,Rn) ∩

C2(Ω,Rn) mit folgenden Eigenschaften:

1. Es gilt die Abschätzung |fε(x)− f(x)| < ε für x ∈ Ω.

2. Null ist regulärer Wert von fε, insbesondere also deg(fε,Ω) ∈ Z.

3. Für die Abbildungsgrade gilt: deg(f,Ω) = deg(fε,Ω).

Wenn für eine Funktion f also Null nicht ein regulärer Wert ist, dann kann man f durch Funktionen approximieren, die diese

Eigenschaft aber haben.
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Beweis. Zu gegebenem f ∈ C0(Ω,Rn) und ε > 0 wählt man zunächst g ∈ C0(Ω,Rn)∩C2(Ω,Rn) mit der Eigenschaft |g(x)−f(x)| <
ε

2
für x ∈ Ω. Die Menge K := {x ∈ Ω : |g(x)| ≤

ε

2
} ⊆ Ω ist abgeschlossen und beschränkt, also kompakt. Nach dem Sard’schen

Lemma ist die Menge N := {g(x) : x ∈ K, Jg(x) = 0} eine Lebesgue-Nullmenge. Folglich existiert ein Vektor y ∈ Rn mit |y| <
ε

2
sowie y /∈ N . Dann setzt man fε(x) := g(x)− y mit:

|fε(x)− f(x)| ≤ |fε(x)− g(x)|+ |g(x)− f(x)| <
ε

2
+
ε

2
= ε

Und zwar gilt das für alle x ∈ ∂Ω. Es sei nun x ∈ Ω eine Nullstelle von fε, also g(x) = y. Wegen y /∈ N gilt dann 0 6= Jg(x) = Jfε (x).

Somit ist 0 ein regulärer Wert von fε. Es gilt nun auch deg(f,Ω) = deg(fε,Ω). Beweis: Es gilt erstmal |f(x)− fε(x)| < ε < |f(x)|

für alle x ∈ ∂Ω. Betrachte nun für t ∈ [0, 1] die Homotopie ft(x) := f(x) + t · (fε(x) − f(x)). Wegen |x + y| ≥ |x| − |y| gilt

also |ft(x)| ≥ |f(x)| − t · |fε(x) − f(x)| > |f(x)| − t · |f(x)| ≥ 0 für x ∈ ∂Ω und t ∈ [0, 1]. Man wählt dann ein ε > 0 so

klein, dass |ft(x)| > 7ε für x ∈ ∂Ω, t ∈ [0, 1] gilt. Da nun f auf der kompakten Menge Ω × [0, 1] gleichmäßig stetig ist, existiert

ein δ = δ(ε) > 0 mit der Eigenschaft |fs(x) − ft(x)| < ε für x ∈ Ω, s, t ∈ [0, 1], |s − t| < δ. Man approximiert dann fs und

ft gleichmäßig durch zwei Folgen von Funktionen fks , fkt aus A2(Ω) := C0(Ω,Rn) ∩ C2(Ω,Rn). Nach dem 7ε-Lemma ist dann

deg(fs,Ω) = deg(ft,Ω) für s, t ∈ [0, 1], |s − t| ≤ δ. Ein Überdeckungsargument liefert dann deg(fs,Ω) = deg(ft,Ω) für alle

s, t ∈ [0, 1]. Also gilt deg(f,Ω) = deg(f0,Ω) = deg(f1,Ω) = deg(fε,Ω).

Satz (Indexsummenformel). Für ein beschränktes Gebiet Ω ⊆ Rn sei f ∈ C0(Bn,Rn) ∩ C2(Bn,Rn) =: A2(Bn) und f(x) 6= 0

für alle x ∈ ∂Ω. Ferner sei 0 ein regulärer Wert von f . Dann gibt es nur endlich viele Lösungen x ∈ Ω von f(x) = 0, welche

man mit x1, . . . , xN ∈ Ω (N ∈ N ∪ {0}) bezeichnet. Es gilt dann:

deg(f,Ω) =
N∑
i=1

ind(f, xi) ∈ Z

Dabei sei ind(f, xi) =
Jf (xi)

|Jf (xi)|
∈ {−1, 1}, wobei hier Jf (x) die Jacobi-Determinante von f in x sei.

Beweis. Man zeigt zunächst, dass f(x) = 0 nur endlich viele Lösungen hat. Andernfalls gebe es eine Folge xk ∈ Ω, k ∈ N mit

f(xk) = 0. Nach Auswahl einer Teilfolge konvergiert diese gegen ein x∗ ∈ Ω mit f(x∗) = 0. Nach Voraussetzung ist 0 ein regulärer

Wert f , also Jf (x∗) 6= 0. Nach dem Satz über die inverse Abbildung ist f lokal um x∗ injektiv, im Widerspruch zu f(xk) = 0

und xk → x∗ für k → ∞. Die Indexsummenformel beweist man nun durch Induktion über die Anzahl N der Nullstellen von f :

Induktionsanfang N = 0, also f(x) = 0 hat keine Lösung, also folgt deg(f,Ω) = 0 (Nullstellen-Lemma) und der Induktionsanfang

gilt. Induktionsschritt: Es gebe N + 1 Lösungen x1, . . . , xN+1 ∈ Ω. Wegen Jf (x1) 6= 0 ist f lokal um x1 ∈ Ω ein Diffeomorphismus

(Satz über die inverse Abbildung). Genauer gibt es eine offene Menge U mit U ⊆ Ω, x1 ∈ U und V := f(U), so dass f eingeschränkt

auf U ein Diffeomorphismus auf V ist. Durch eventuelle Verkleinerung von U kann man annehmen, dass entweder Jf (x) > 0 oder

Jf (x) < 0 für alle x ∈ U gilt. Wegen 0 = f(x1) ∈ V und V offen existiert ein ε > 0 mit B2ε(0) ⊆ V . Weil f ein Diffeomorphismus

ist, gilt f(∂U) = ∂V , insbesondere gilt dann |f(x)| ≥ 2ε > ε für alle x ∈ ∂U . Man setzt nun σ := ind(f, x1) mit der Eigenschaft

σ · Jf (x) > 0 für alle x ∈ U . Es sei nun ω ∈ C0(R,R) eine zulässige Testfunktion, also supp(ω) ⊆ (0, ε) und
∫
Rn

ω(|z|) dz = 1. Die

Transformationsformel für Mehrfachintegrale liefert:

deg(f, U) =

∫
U

ω(|f(x)|) · Jf (x) dx = σ ·
∫
U

ω(|f(x)|) · |Jf (x)| dx = σ ·
∫
V

ω(|y|) dy = σ ·
∫
Rn

ω(|y|) dy = σ = ind(f, x1)

Im letzten Schritt wurde ω(|y|) = 0 für y /∈ V verwendet. Zusammen mit der Induktionsvoraussetzung ergibt sich dann:

deg(f,Ω) = deg(f, U) + deg(f,Ω \ U) = ind(f, x1) +

N+1∑
i=2

ind(f, xi) =

N+1∑
i=1

ind(f, xi)

Damit ist also der Induktionsschritt bewiesen und der Beweis ist damit beendet.

Satz (Borsuk). Auf der offenen Kugel Bn = {x ∈ Rn : |x| < 1} sei eine Funktion f ∈ C0(Bn,Rn) mit f(x) 6= 0 für x ∈ ∂B

gegeben. Ferner sei f ungerade, d.h. f(−x) = −f(x). Dann ist deg(f,Bn) eine ungerade, ganze Zahl.

Beweis. Sei zunächst f ∈ C0(Bn,Rn) ∩ C2(Bn,Rn) =: A2(Bn). Und sei Null ein regulärer Wert, d.h. die Jacobi-Determinate

Jf (x) ist für die Lösungen x von f(x) = 0 ungleich Null. Es gilt f(−0) = −f(0), also 2 · f(0) = 0 ⇒ f(0) = 0, also 0 ist eine

Nullstelle von f . Nach der Indexsummenformel gilt:

deg(f,B
n

) =
∑

z∈Bn,f(z)=0

ind(f, z) = ind(f, 0)︸ ︷︷ ︸
=±1

+
∑

z∈Bn\{0},f(z)=0

ind(f, z)

Ist z ∈ B eine Nullstelle von f , dann ist wegen 0 = −f(z) = f(−z) auch −z eine Nullstelle. Aus f(−z) = −f(z) folgt
∂

∂zi
f(−z) =

∂f

∂zi
(−z) · (−1) = −

∂f

∂zi
(z), also:

∂f

∂zi
(−z) =

∂f

∂zi
(z) und deswegen ind(f, z) = ind(f,−z). Es folgt also, dass∑

z∈Bn\{0},f(z)=0

ind(f, z) eine gerade Zahl ist, also ist deg(f,Bn) ungerade. Sei nun f ∈ C0(Bn,Rn) eine ungerade Funktion. Es wird

nun gezeigt, dass f sich beliebig gut von einer ungeraden Funktion g ∈ A2(Bn) approximieren lässt, für welche Null ein regulärer
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Wert ist. Zu ε > 0 wähle man ein h0 ∈ A2(Bn) mit |f(x)−h0(x)| ≤ ε in Bn. Dann ist die Funktion h1(x) :=
1

2
· (h0(x)−h0(−x))

ungerade und erfüllt ebenfalls |h1(x)− f(x)| ≤ ε in Bn, denn: |h1(x)− f(x)| =
∣∣∣∣h0(x)

2
−
f(x)

2
+
f(−x)

2
−
h0(−x)

2

∣∣∣∣ ≤ ε

2
+
ε

2
= ε.

Sei nun δ ∈ (0, ε) mit h(x) := h1(x) − δx (ungerade Funktion) so, dass δ kein Eigenwert der Jacobi-Matrix Dh(0) ist. Dann gilt

nämlich Jh(0) 6= 0 und es gilt die Abschätzung |f(x) − h(x)| ≤ 2ε in Bn. Man wählt nun eine Funktion ϕ ∈ C2(R, [−1, 1]) mit

den folgenden Eigenschaften: ϕ(−t) = −ϕ(t) für t ∈ R, ϕ(t) = 0 ⇒ t = 0 und ϕ′(0) = 0. Es wird gesetzt: Ωk = {x ∈ Bn :

xi 6= 0 für ein i ∈ {1, . . . , k}}. Also gilt dann Ω1 ⊆ Ω2 ⊆ . . . ⊆ Ωn und Ωn = Bn \ {0}. Man konstruiert nun induktiv Vektoren

y1, . . . , yn ∈ Rn mit |yk| < ε sowie ungerade Funktionen gk(x) := h(x) − ϕ(x1) · y1 − . . . − ϕ(xk) · yk mit folgender Eigenschaft:

Null ist ein regulärer Wert von gk auf der Menge Ωk. Es seien die Vektoren y1, . . . , yk−1 ∈ Rn bereits entsprechend gewählt. Man

konstruiert nun den Vektor yk. Dazu sei g̃(x) =
gk−1(x)

ϕ(xk)
für x ∈ Ω̃ := {x ∈ Bn : xk 6= 0}. Mithilfe des Sard’schen Lemmas findet

man ein yk mit |yk| < ε so, dass yk ein regulärer Wert von g̃ in Ω̃ ist. Beweis: K := {x ∈ Ω̃ : |g̃(x)| ≤ ε} ⊆ Ω̃ ist kompakt

und N := {g̃(x) : x ∈ K, Jg̃(x) = 0} ist nach dem Lemma eine Nullmenge. Also gibt es ein yk mit |yk| ≤ ε so, dass yk /∈ N

gilt, also: x′ ∈ g̃−1(yk) ⇒ Jg̃(x′) 6= 0. Alle Lösungen x ∈ Ω̃ der Gleichung g̃(x) = yk erfüllen also Jg̃(x) 6= 0. Man setzt nun

gk(x) := gk−1(x)−ϕ(xk) · yk = ϕ(xk) · (g̃(x)− yk). Es sei nun x ∈ Ω̃ mit gk(x) = 0. Daraus folgt g̃(x) = yk sowie Jg̃(x) 6= 0. Man

berechnet nun das folgende:

∂gk(x)

∂xi
=

∂

∂xi
(ϕ(xk) · (g̃(x)− yk)) = δik · ϕ′(xk) · (g̃(x)− yk)︸ ︷︷ ︸

=0

+ ϕ(xk) ·
∂g̃(x)

∂xi
= ϕ(xk) ·

∂g̃(x)

∂xi

Es gilt also Jgk (x) = ϕ(xk)n · Jg̃(x) 6= 0. Somit ist also Null ein regulärer Wert von gk in der Menge Ω̃ = {x ∈ Bn : xk 6= 0}.

Jetzt wird noch gezeigt: Null ist auch ein regulärer Wert in der Menge Ωk \ Ω̃. Ist x ∈ Ωk \ Ω̃, dann folgt x ∈ Ωk−1 und xk = 0.

Folglich:
∂gk(x)

∂xi
=
∂gk−1(x)

∂xi
− 0 für i 6= k, ist jedoch i = k, so ist

∂gk(x)

∂xi
=
∂gk−1(x)

∂xi
− ϕ′(0) · yk =

∂gk−1(x)

∂xi
. Damit gilt

also Jgk (x) = Jgk−1
(x) sowie nach Voraussetzung Jgk−1

(x) 6= 0. Somit ist Null regulärer Wert von gk in Ωk = Ω̃ ∪ (Ωk \ Ω̃). Mit

g(x) := gn(x) = h(x)−ϕ(x1) ·y1− . . .−ϕ(xn) ·yn erhält man schließlich eine ungerade Funktion, für welche Null ein regulärer Wert

in (Bn \ {0}) ∪ {0} ist, denn es gilt doch Dg(0) = Dh(0) und also Jg(0) = Jh(0) 6= 0 (siehe oben). Es gilt noch die Abschätzung

|f(x)− g(x)| = |f(x)− h(x)|+ |h(x)− g(x)| ≤ 2ε+ nε = (2 + n) · ε, d.h. g liegt beliebig nahe an f .

Satz (Borsuk-Ulam). Sei f : {x ∈ Rn : |x| = 1} = Sn−1 → Rn−1 eine stetige Funktion. Dann existiert ein x ∈ Sn−1 mit der

Eigenschaft f(x) = f(−x).

Beweis. Angenommen, es gilt f(x) 6= f(−x) für alle x ∈ Sn−1. Man setzt nun f auf Bn fort zu einer stetigen Abbildung

f : Bn → Rn−1. Dann sei G : Bn → Rn, G(x) := (f(x) − f(−x), 0) definiert. G ist eine ungerade und stetige Funktion. Weil

G(x) 6= 0 für alle x ∈ ∂Bn = Sn−1 gilt, ist demnach der Abbildungsgrad deg(G,Bn) anwendbar. Nach dem Satz von Borsuk ist

deg(G,Bn, 0) 6= 0, weil G ungerade ist. Also gibt es eine hinreichend kleine offene Umgebung Kn
r (0) ⊆ Rn von 0 so, dass auch

noch deg(G,Bn, y) 6= 0 für alle y ∈ Kn
r (0) gilt. Nach dem Lösungskriterium (Nullstellen-Lemma) gibt es also für jedes y ∈ Kn

r (0)

eine Lösung x ∈ Bn der Gleichung G(x) = y, woraus folgt: Kn
r (0) ⊆ G(Bn). Das ist aber ein Widerspruch, weil in G(Bn) die n-te

Koordinate 0 ist. Also ist der Satz bewiesen.

Satz (Ham Sandwich). Gegeben seien n beschränkte, messbare Mengen A1, . . . , An ⊆ Rn. Dann existiert ein (n−1)-dimensionaler,

affiner Raum E ⊆ Rn, welcher jede der n Mengen in volumengleiche Teile zerlegt.

Beweis. 1. Fall: Alle Ai sind Nullmengen. Dann besitzt jeder Hyperraum im Rn die gesuchte Eigenschaft. 2. Fall: Es existiert ein

k ∈ {1, . . . , n} mit µ(Ak) > 0 (µ ist das Maß). Für einen Vektor p ∈ Sn ⊆ Rn+1 betrachte nun die Menge Hp := {x ∈ Rn :

x1 · p1 + . . .+ xn · pn + pn+1 ≥ 0} ⊆ Rn. Man beachte, dass Hp ∪H−p = Rn gilt. Ferner ist Hp ∩H−p ein (n− 1)-dimensionaler

affiner Raum im Rn, falls p ∈ Sn und p 6= ±en+1 = (0, . . . , 0,±1) ist. Für i = 1, . . . , n betrachtet man die Abbildung ϕi : Sn → R,

ϕi(p) := µ(Hp∩Ai). Nach dem Satz von Borsuk-Ulam existiert also für die stetige Funktion ϕ(p) := (ϕ1(p), . . . , ϕn(p)) : Sn → Rn

ein q ∈ Sn mit ϕ(q) = ϕ(−q). Aus µ(Ak) > 0 weiß man dann qk 6= 0. Der Hyperraum Hq ∩ H−q besitzt nun die gesuchte

Eigenschaft.

Der Indexsatz von Poincaré-Hopf
[Zurück zur Liste]

Nach dem Einbettungssatz von Whitney kann jede n-dimensionale differenzierbare Mannigfaltigkeit M in den R2n+1 eingebettet

werden. Man betrachtet deswegen nur noch Untermannigfaltigkeiten im Rn.

Definition (Abbildungsgrad). Zu Ω ⊆ Rn sei f ∈ A2(Ω) := Ck(Ω,Rn) ∩ C0(Ω,Rn) und mit supp(ω) := {x ∈ R : ω(x) 6= 0}

bezeichnet man den Träger der Funktion ω : R → R. Es sei f ∈ A2(Ω) eine Funktion mit |f(x)| > ε > 0 für alle x ∈ ∂Ω. Eine
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stetige Funktion ω ∈ C0(R,R) nennt man zulässig für f , wenn sie die Eigenschaften supp(ω) ⊆ (0, ε) und

∫
Rn

ω(|y|) dy = 1

hat. Für eine solche Testfunktion ω erklärt man den Abbildungsgrad von f bezüglich 0 als

deg(f,Ω, 0) =

∫
Ω

ω(|f(x)|) · Jf (x) dx

Dabei ist Jf (x) die Jacobi-Determinante an der Stelle x. Der Abbildungsgrad ist unabhängig von der Wahl einer Testfunktion.

Lemma (Nullstellen-Lemma). Sei Ω ⊆ Rn beschränkt und f ∈ C0(Ω,Rn) mit |f(x)| > ε > 0 für x ∈ ∂Ω. Besitzt f in Ω keine

Nullstelle, so folgt: deg(f,Ω) = 0.

Beweis. Bewiesen wird diese Aussage nur für Funktionen f ∈ C0(Ω,Rn) ∩ C2(Ω,Rn) =: A2(Ω). Approximiert man nur stetige

f mit Funktionen aus A2(Ω), dann gilt die Aussage auch für f ∈ C0. Besitzt f in Ω keine Nullstelle, so existiert ein ε > 0 mit

|f(x)| > ε > 0 für x ∈ Ω. Man wähle dann eine zulässige Testfunktion ω ∈ C0(R,R) mit supp(ω) ⊆ (0, ε). Dann folgt:

deg(f,Ω) =

∫
Ω

ω(|f(x)|)︸ ︷︷ ︸
=0

· Jf (x) dx = 0

Und das war auch schon alles.

Lemma (7ε-Lemma). Gegeben seien zwei Funktionen fs, ft ∈ A2(Ω) := C0(Ω,Rn)∩C2(Ω,Rn) mit |fs(x)− ft(x)| < ε für x ∈ Ω

sowie |fs(x)| > 7ε und |ft(x)| > 7ε für x ∈ ∂Ω. Dann folgt:

deg(fs,Ω) = deg(ft,Ω)

Beweis. Man wähle zunächst eine Funktion λ ∈ C2(R, [0, 1]) mit λ(r) = 1 für r ≤ 3ε und λ(r) = 0 für r ≥ 4ε. Es wird dann die

folgende Funktion erklärt:

z(x) := fs(x) + λ(|fs(x)|) · (ft(x)− fs(x)) ∈ A2
(Ω)

Sie hat die folgende Eigenschaft:

|z(x)| ≥ |fs(x)| − λ(|fs(x)|) · |ft(x)− fs(x)| > 7ε− ε = 6ε für x ∈ ∂Ω

Zusätzlich gelten die Abschätzungen:

|fs(x)− z(x)| ≤ λ(|fs(x)|) · |ft(x)− fs(x)| < ε

Und es gilt:

|ft(x)− z(x)| ≤ (1− λ(|fs(x)|)) · |ft(x)− fs(x)| < ε

Daraus überlegt man sich leicht:

z(x) =

 fs(x), |fs(x)| ≥ 4ε

ft(x), |ft(x)| ≤ 2ε

Man wähle dann zwei zulässige Testfunktionen ω1, ω2 ∈ C0(R,R) mit supp(ω1) ⊆ (5ε, 6ε) und supp(ω2) ⊆ (0, ε). Insbesondere

folgt dann daraus: ω1(|fs(x)|) · Jfs (x) = ω1(|z(x)|) · Jz(x) und ω2(|z(x)|) · Jz(x) = ω2(|ft(x)|) · Jft (x). Wegen |fs(x)|, |ft(x)| > 7ε

sowie |z(x)| > 6ε sind die beiden Testfunktionen ω1 und ω2 zulässig zur Berechnung des Abbildungsgrades von fs, ft und z. Es

folgt somit also:

deg(fs,Ω) =

∫
Ω

ω1(|fs(x)|) · Jfs (x) dx =

∫
Ω

ω1(|z(x)|) · Jz(x) dx = deg(z,Ω)

Und es gilt auch:

deg(ft,Ω) =

∫
Ω

ω2(|ft(x)|) · Jft (x) dx =

∫
Ω

ω2(|z(x)|) · Jz(x) dx = deg(z,Ω)

Daraus folgt dann unmittelbar die Behauptung des Satzes.

Satz (Immer regulär). Für ein f ∈ C0(Ω,Rn) gelte |f(x)| > ε > 0 für x ∈ ∂Ω. Dann existiert eine Funktion fε ∈ C0(Ω,Rn) ∩

C2(Ω,Rn) mit folgenden Eigenschaften:

1. Es gilt die Abschätzung |fε(x)− f(x)| < ε für x ∈ Ω.

2. Null ist regulärer Wert von fε, insbesondere also deg(fε,Ω) ∈ Z.

3. Für die Abbildungsgrade gilt: deg(f,Ω) = deg(fε,Ω).

Wenn für eine Funktion f also Null nicht ein regulärer Wert ist, dann kann man f durch Funktionen approximieren, die diese

Eigenschaft aber haben.

22



Beweis. Zu gegebenem f ∈ C0(Ω,Rn) und ε > 0 wählt man zunächst g ∈ C0(Ω,Rn)∩C2(Ω,Rn) mit der Eigenschaft |g(x)−f(x)| <
ε

2
für x ∈ Ω. Die Menge K := {x ∈ Ω : |g(x)| ≤

ε

2
} ⊆ Ω ist abgeschlossen und beschränkt, also kompakt. Nach dem Sard’schen

Lemma ist die Menge N := {g(x) : x ∈ K, Jg(x) = 0} eine Lebesgue-Nullmenge. Folglich existiert ein Vektor y ∈ Rn mit |y| <
ε

2
sowie y /∈ N . Dann setzt man fε(x) := g(x)− y mit:

|fε(x)− f(x)| ≤ |fε(x)− g(x)|+ |g(x)− f(x)| <
ε

2
+
ε

2
= ε

Und zwar gilt das für alle x ∈ ∂Ω. Es sei nun x ∈ Ω eine Nullstelle von fε, also g(x) = y. Wegen y /∈ N gilt dann 0 6= Jg(x) = Jfε (x).

Somit ist 0 ein regulärer Wert von fε. Es gilt nun auch deg(f,Ω) = deg(fε,Ω). Beweis: Es gilt erstmal |f(x)− fε(x)| < ε < |f(x)|

für alle x ∈ ∂Ω. Betrachte nun für t ∈ [0, 1] die Homotopie ft(x) := f(x) + t · (fε(x) − f(x)). Wegen |x + y| ≥ |x| − |y| gilt

also |ft(x)| ≥ |f(x)| − t · |fε(x) − f(x)| > |f(x)| − t · |f(x)| ≥ 0 für x ∈ ∂Ω und t ∈ [0, 1]. Man wählt dann ein ε > 0 so

klein, dass |ft(x)| > 7ε für x ∈ ∂Ω, t ∈ [0, 1] gilt. Da nun f auf der kompakten Menge Ω × [0, 1] gleichmäßig stetig ist, existiert

ein δ = δ(ε) > 0 mit der Eigenschaft |fs(x) − ft(x)| < ε für x ∈ Ω, s, t ∈ [0, 1], |s − t| < δ. Man approximiert dann fs und

ft gleichmäßig durch zwei Folgen von Funktionen fks , fkt aus A2(Ω) := C0(Ω,Rn) ∩ C2(Ω,Rn). Nach dem 7ε-Lemma ist dann

deg(fs,Ω) = deg(ft,Ω) für s, t ∈ [0, 1], |s − t| ≤ δ. Ein Überdeckungsargument liefert dann deg(fs,Ω) = deg(ft,Ω) für alle

s, t ∈ [0, 1]. Also gilt deg(f,Ω) = deg(f0,Ω) = deg(f1,Ω) = deg(fε,Ω).

Satz (Indexsummenformel). Für ein beschränktes Gebiet Ω ⊆ Rn sei f ∈ C0(Bn,Rn) ∩ C2(Bn,Rn) =: A2(Bn) und f(x) 6= 0

für alle x ∈ ∂Ω. Ferner sei 0 ein regulärer Wert von f . Dann gibt es nur endlich viele Lösungen x ∈ Ω von f(x) = 0, welche

man mit x1, . . . , xN ∈ Ω (N ∈ N ∪ {0}) bezeichnet. Es gilt dann:

deg(f,Ω) =
N∑
i=1

ind(f, xi) ∈ Z

Dabei sei ind(f, xi) =
Jf (xi)

|Jf (xi)|
∈ {−1, 1}, wobei hier Jf (x) die Jacobi-Determinante von f in x sei.

Beweis. Man zeigt zunächst, dass f(x) = 0 nur endlich viele Lösungen hat. Andernfalls gebe es eine Folge xk ∈ Ω, k ∈ N mit

f(xk) = 0. Nach Auswahl einer Teilfolge konvergiert diese gegen ein x∗ ∈ Ω mit f(x∗) = 0. Nach Voraussetzung ist 0 ein regulärer

Wert f , also Jf (x∗) 6= 0. Nach dem Satz über die inverse Abbildung ist f lokal um x∗ injektiv, im Widerspruch zu f(xk) = 0

und xk → x∗ für k → ∞. Die Indexsummenformel beweist man nun durch Induktion über die Anzahl N der Nullstellen von f :

Induktionsanfang N = 0, also f(x) = 0 hat keine Lösung, also folgt deg(f,Ω) = 0 (Nullstellen-Lemma) und der Induktionsanfang

gilt. Induktionsschritt: Es gebe N + 1 Lösungen x1, . . . , xN+1 ∈ Ω. Wegen Jf (x1) 6= 0 ist f lokal um x1 ∈ Ω ein Diffeomorphismus

(Satz über die inverse Abbildung). Genauer gibt es eine offene Menge U mit U ⊆ Ω, x1 ∈ U und V := f(U), so dass f eingeschränkt

auf U ein Diffeomorphismus auf V ist. Durch eventuelle Verkleinerung von U kann man annehmen, dass entweder Jf (x) > 0 oder

Jf (x) < 0 für alle x ∈ U gilt. Wegen 0 = f(x1) ∈ V und V offen existiert ein ε > 0 mit B2ε(0) ⊆ V . Weil f ein Diffeomorphismus

ist, gilt f(∂U) = ∂V , insbesondere gilt dann |f(x)| ≥ 2ε > ε für alle x ∈ ∂U . Man setzt nun σ := ind(f, x1) mit der Eigenschaft

σ · Jf (x) > 0 für alle x ∈ U . Es sei nun ω ∈ C0(R,R) eine zulässige Testfunktion, also supp(ω) ⊆ (0, ε) und
∫
Rn

ω(|z|) dz = 1. Die

Transformationsformel für Mehrfachintegrale liefert:

deg(f, U) =

∫
U

ω(|f(x)|) · Jf (x) dx = σ ·
∫
U

ω(|f(x)|) · |Jf (x)| dx = σ ·
∫
V

ω(|y|) dy = σ ·
∫
Rn

ω(|y|) dy = σ = ind(f, x1)

Im letzten Schritt wurde ω(|y|) = 0 für y /∈ V verwendet. Zusammen mit der Induktionsvoraussetzung ergibt sich dann:

deg(f,Ω) = deg(f, U) + deg(f,Ω \ U) = ind(f, x1) +

N+1∑
i=2

ind(f, xi) =

N+1∑
i=1

ind(f, xi)

Damit ist also der Induktionsschritt bewiesen und der Beweis ist damit beendet.

Lemma (7ε-Lemma für stetige Funktionen). Gegeben seien zwei Funktionen f1, f2 ∈ C0(ΩRn) mit |f1(x)− f2(x)| < ε für x ∈ Ω

sowie fk(x) > 7ε für x ∈ ∂Ω. Dann folgt: deg(f1,Ω) = deg(f2,Ω).

Beweis. Man approximiert f1 und f2 gleichmäßig durch zwei Folgen von Funktionen fk1 und fk2 in A2(Ω) := Ck(Ω,Rn)∩C0(Ω,Rn)

und wendet das Lemma (7ε-Lemma) s.o. an.

Satz (Invarianz unter Homotopien). Es sei ft(x) = f(x, t) ∈ C0(Ω × [a, b],Rn) eine Familie von Funktionen zum Parameter

t ∈ [a, b]. Ferner gelte f(x, t) 6= 0 für alle x ∈ ∂Ω, t ∈ [a, b]. Dann gilt deg(fs,Ω) = deg(ft,Ω) für alle s, t ∈ [a, b].

Beweis. Man wählt zunächst ein ε > 0 so klein, dass |f(x, t)| > 7ε für x ∈ ∂Ω, t ∈ [a, b] gilt. Da nun f auf der kompakten Menge

Ω × [a, b] gleichmäßig stetig ist, existiert ein δ = δ(ε) > 0 mit der Eigenschaft |f(x, s) − f(x, t)| < ε für x ∈ Ω, s, t ∈ [a, b] mit

|s− t| ≤ δ. Nach dem Lemma (7ε-Lemma für stetige Funktionen) ist dann deg(fs,Ω) = deg(ft,Ω) für s, t ∈ [a, b], |s− t| ≤ δ. Ein

Überdeckungsargument liefert dann deg(fs,Ω) = deg(ft,Ω) für alle s, t ∈ [a, b].
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Satz (Rouché). Es seien f, g ∈ C0(Ω,Rn) zwei Funktionen mit |f(x) − g(x)| < |f(x)| für x ∈ ∂Ω, dann folgt deg(f,Ω) =

deg(g,Ω). Insbesondere gilt für f(x) = g(x) für x ∈ ∂Ω dann deg(f,Ω) = deg(g,Ω). Das bedeutet, dass der Abbildungsgrad

bereits durch die Randwerte f∂Ω eindeutig bestimmt ist.

Beweis. Betrachte zu t ∈ [0, 1] die Homotopie ft(x) := f(x)+t·(g(x)−f(x)) mit der Eigenschaft |ft(x)| ≥ |f(x)|−t·|g(x)−f(x)| >

|f(x)| − t · |f(x)| ≥ 0 für x ∈ ∂Ω, t ∈ [0, 1]. Der Satz (Invarianz unter Homotopien) s.o., sagt dann deg(f,Ω) = deg(f0,Ω) =

deg(f1,Ω) = deg(g,Ω).

Lemma (Wichtige Abschätzung). Zu a ∈ Rn und h > 0 sei W := {x ∈ Rn : |xi − ai| ≤
h

2
} ein Würfel der Kantenlänge h.

Weiter sei eine C2-Funktion f : W → Rn gegeben mit |f(x)− f(y)| ≤ L · |x− y|, |Df(x)−Df(y)| ≤ L · |x− y| für alle x, y ∈ W .

Schließlich existiere ein z ∈ W mit Jf (z) = 0. Dann gilt f(W ) ≤ C(L, n) ·hn+1, wobei mit |f(W )| das Lebesgue-Maß der Menge

f(W ) gemeint ist.

Beweis. Da W kompakt und f stetig ist, ist f(W ) kompakt und somit auch Lebesgue-messbar. Wegen Jf (z) = 0 existiert ein

Vektor v1 ∈ Rn, |v1| = 1 mit vT1 ·Df(z) = 0. Beweis: Weil die Determinante von Df(z) gleich Null ist, ist ihr Zeilenrang kleiner n,

also sind die Zeilen linear abhängig, d.h. es gibt eine nichttriviale Linearkombination von diesen Zeilen so, dass die Summe gleich

0 ist. Die Koeffizienten seien durch den Vektor v1 gegeben, wobei die Linearkombination = 0 noch durch den Skalar der Länge von

v1 auf beiden Seiten geteilt wird; die Linearkombination ist dann immer noch Null. v1 ·Df(z) ist dann die Linearkombination der

Zeilen von Df(z), also gleich 0. v1 wird nun durch Vektoren v2, . . . , vn zu einer Orthonormalbasis von Rn ergänzt. Es gilt dann:

v
T
1 · (f(z)− f(x)) = v

T
1 ·
∫ 1

0

d

dt
f(x+ t · (z−x)) dt = v

T
1 ·
∫ 1

0

Df(x+ t · (z−x)) dt · (z−x) = v
T
1 ·
∫ 1

0

Df((1− t) ·x+ t · z) dt · (z−x)

Und das ist dann gleich folgendes:

v
T
1 ·
∫ 1

0

Df(t ·x+ (1− t) · z) dt · (z−x) = v
T
1 ·
∫ 1

0

Df(z+ t · (x− z)) dt · (z−x) = v
T
1 ·
∫ 1

0

(Df(z + t · (x− z))−Df(z)) dt · (z−x)

Mit der Voraussetzung |Df(x)−Df(y)| ≤ L · |x− y| für alle x, y ∈ W folgt dann die folgende Abschätzung:

|vT1 · (f(z)− f(x))| ≤ L · |z − x|2 ·
∫ 1

0

t dt ≤ L · ((z1 − x1)
2

+ . . .+ (zn − xn)
2
) ·

1

2
≤ L · (n · h2

) · 1 ≤ L · n2 · h2

Es gilt nach Voraussetzung |f(x)− f(y)| ≤ L · |x− y| für alle x, y ∈ W , also gilt:

|vTi · (f(z)− f(x))| ≤ L · |z − x| ≤ L ·
√

(z1 − x1)2 + . . .+ (zn − xn)2 ≤ L ·
√
n · h2 ≤ L · n · h

Wobei hier i = 2, . . . , n sei. Insgesamt folgt somit also:

f(W ) ⊆ {y ∈ Rn : |vT1 · (f(z)− f(x))| ≤ L · n2 · h2
, |vTi · (f(z)− f(x))| ≤ L · n · h für i = 2, . . . , n}

Unter Verwendung der Invarianz des Lebesgue-Maßes gegenüber Rotationen ergibt sich:

|f(W )| ≤ (L · n2 · h2
) · (L · n · h)

n−1
= L

n · nn+1 · hn+1
= C(L, n) · hn+1

Und damit ist dann die Behauptung bewiesen.

Lemma (Sard’sches Lemma). Zu Ω ⊆ Rn offen sei f ∈ C2(Ω,Rn) gegeben. Für eine kompakte Menge K ⊆ Ω sei M := {x ∈

K : Jf (x) = 0} die Menge der singulären Punkte. Dann ist f(M) = {f(x) : x ∈ K, Jf (x) = 0} eine Nullmenge.

Beweis. Da Ω offen und K ⊆ Ω kompakt ist, existieren endlich viele Würfel Wi ⊆ Ω (i = 1, . . . , N), welche K überdecken,

also K ⊆ W1 ∪ . . . ∪ WN . Es sei nun W∗ einer dieser Würfel. Es wird nun gezeigt: f(W∗ ∩ M) ist eine Nullmenge. Wegen

f(M) ⊆ f(W1 ∩M)∪ . . .∪ f(WN ∩M) ist dann auch f(M) eine Nullmenge. Es sei also W∗ :=

{
x ∈ Rn : |xi − ai| ≤

R

2

}
⊆ Ω ein

solcher Würfel mit Mittelpunkt a ∈ Rn und Kantenlänge R > 0. Wegen f ∈ C2(W∗,R
n) gibt es zunächst eine Konstante L <∞ mit

|f(x)−f(y)| ≤ L·|x−y|, |Df(x)−Df(y)| ≤ L·|x−y| für x, y ∈ W∗. Nun wird W∗ von kn achsenparallelen Würfeln Ŵi, i = 1, . . . , kn

der Kantenlänge h :=
R

k
überdeckt. Es sei nun I := {i ∈ {1, . . . , kn} : Ŵi∩M 6= ∅} die Indexmenge aller derjenigen Würfel, welche

singuläre Punkte von f enthalten. Für jedes i ∈ I liefert Lemma (Wichtige Abschätzung) dann |f(Ŵi)| ≤ C(L, n) ·
(
R

k

)n+1

.

Beachtet man f(W∗ ∩M) ⊆
⋃
i∈I

f(Ŵi), so folgt dann |f(W∗ ∩M)| ≤
∑
i∈I
|f(Ŵi)| ≤ C(L, n) ·

(
R

k

)n+1

· kn = C(L, n) ·
Rn+1

k
. Für

k →∞ folgt also |f(W∗ ∩M)| = 0, wie behauptet.

Definition (Index eines Vektorfeldes). Der Index eines Vektorfeldes X mit X(p) = 0 um p ist definiert als deg

(
X

‖X‖

∣∣∣∣
∂B(p,ε)

)
=:

iX(p). Weitere Informationen findet man unten, Lemma (Anschauung von deg

(
X

‖X‖

)
im 2-dimensionalen Fall)
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Satz (Morse). Sei f : U → R 2-mal stetig differenzierbar, p ∈ U mit f(p) = 0, (df)p = 0 und (Hf)p ist nicht entartet. Dann

existiert ein V ⊆ Rm offen, ψ : V → ψ(V ) ⊆ U ein Diffeomorphismus mit ψ(0) = p. Es gibt dann ein r ∈ N so, dass gilt:

(f ◦ ψ)(x1, . . . , xm) = −x2
1 − x

2
2 − . . .− x

2
r + x

2
r+1 + . . .+ x

2
m

Ein solcher Punkt p heißt kritischer Punkt vom Index r. Es gilt also ind(∇f, p) =
J∇f (p)

|J∇f (p)|
= (−1)r.

Beweis. Sei f so, wie in der Voraussetzung und wie im Lemma (Separation der Variablen, s.u.). Also existiert ein σ = ±1,

g : V → R, ψ : V → ψ(V ) ⊆ U so, dass gilt (f ◦ ψ)(x1, . . . , xm) = σ · x2
1 + g(x2, . . . , xm). Es gilt:

(H(f ◦ ψ))0 =


2 · σ 0 · · · 0

0

.

.

. Hg

0


Also gilt (Hf)p nicht-entartet ⇒ Hg ist nicht-entartet. Wende nun dasselbe Lemma auf g|V∩{x1=0} an.

Lemma (Separation der Variablen). Sei f wie im Satz von Morse, aber (Hf)p 6= 0. Dann existiert ein V ⊆ Rm offen, ψ : V →

ψ(V ) ein Diffeomorphismus mit ψ(0) = p und es existiert ein σ = ±1 so, dass σ · x2
1 + g(x2, . . . , xm) gilt, wobei g : V → R

2-mal stetig differenzierbar ist.

Beweis. Sei also f : U → R glatt, p ∈ U : f(p) = 0, (df)p = 0, (Hf)p 6= 0. Ist M := (Hf)p, dann existieren nach Voraussetzung

i, j mit Mij 6= 0. Seien die Koordinaten einer Karte von der Mannigfaltigkeit durch X1, . . . , Xn gegeben, also f ◦ ϕ(X1, . . . , Xn) :

Rn → R. Man führt nun eine Koordinatentransformation zu den Koordinaten x1, . . . , xn durch so, dass
∂f

∂x2
1

= ±1 gilt in der

Hessematrix an der Position (1, 1) mit den neuen Koordinaten. Sei Hf (p) die Hessematrix in den Koordinaten X1, . . . , Xn und

Hf (p) die für x1, . . . , xn. Genauer hat man also:

J =



∂X1

∂x1

∂X1

∂x2

· · ·
∂X1

∂xn
∂X2

∂x1

∂X2

∂x2

· · ·
∂X2

∂xn
.
.
.

.

.

.
. . .

.

.

.
∂Xn

∂x1

∂Xn

∂x2

· · ·
∂Xn

∂xn


, J

T
(p) · Hf (p) · J(p) = Hf (p)

Das wird mit der Kettenregel bewiesen, unter Berücksichtigung von
∂f

∂xi
(p) = 0. Damit man eine Koordinatentransformation hat,

muss die Determinante von J(p) ungleich Null sein, also ist J(p) invertierbar. Wählt man die Einträge in J(p) geschickt, dann hat

man in den neuen Koordinaten
∂2f

∂x2
1

(p) = ±1. Wichtig ist, dass mindestens ein Eintrag in M ungleich Null ist, sonst gilt
∂f

∂x2
1

= 0.

Setze zur Vereinfachung der Rechnung p = 0; denn das Verschieben in ein p 6= 0 ändert die differenzierbare Struktur nicht. Es

gilt f(0) = 0, (df)0 = 0 und
∂2f

∂x2
1

(0) = ±1. Annahme: +1. Folglich ist f |x1-Achse lokal um 0 strikt konvex (+1) oder konkav

(−1). Weiterhin hat f |x1-Achse bei 0 ein lokal eindeutiges Minimum. Wegen der Stetigkeit von f , df und Hf existiert ein δ > 0, so

dass für alle x2, . . . , xn mit |xi| < δ gilt: fx2,...,xn
: W → R, x1 7→ f(x1, x2, . . . , xn) mit W ⊆ R offen. Diese Funktion ist dort

strikt konvex und hat ein eindeutiges Minimum x1 = x1(x2, . . . , xn). x1 ist durch die Gleichung
∂f

∂x1

(x1, x2, . . . , xn) = 0 implizit

definiert. Nach dem Satz über implizite Funktione lässt sich x1 eindeutig als Funktion in x2, . . . , xn ausdrücken. x1(x2, . . . , xn) ist

eine glatte Funktion in x2, . . . , xn. Der Satz über implizite Funktionen lässt sich anwenden, da
∂2f

∂x2
1

(0) 6= 0 gilt. Schreibe nun neue

Koordinaten:

y1 = sign(x1 − x1) ·
√
f(x1, . . . , xn)− f(x1, x2, . . . , xn)

y2 = x2

.

.

.

yn = xn

Daraus folgt dann also f(y1, . . . , yn)−y2
1 = f(x1, . . . , xn)−f(x1, . . . , xn)+f(x1, x2, . . . , xn) = f(x1, x2, . . . , xn), also: f(y1, . . . , yn)−

y2
1 = f(x1, x2, . . . , xn) = g(x2, . . . , xn) = g(y2, . . . , yn). Nun wird noch gezeigt, dass Rn → Rn, xi 7→ yj(xi) (glatt) die

Bedingung für eine Koordinatentransformation erfüllt. Es muss also gelten: det

(
∂yj

∂xi

)
6= 0. Man untersucht y1 auf der x1-

Achse: y1 = sign(x1) ·
√
f(x1, 0, . . . , 0)− f(0, 0, . . . , 0). Es gilt f(0, 0, . . . , 0) = 0 und es gilt f(x1, 0, . . . , 0) = x2

1 + O(x3
1)
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nach Taylor (f(0) = 0, f ′(0) = 0, f ′′(0) = +1). Also gilt f(x1, 0, . . . , 0) = x2
1 + h(x1) mit h(x1) ∈ O(x3

1). Folglich: y1 =

sign(x1) · |x1| ·

√
1 +

h(x1)

x2
1

= x1 ·

√
1 +

h(x1)

x2
1

ist glatt und es gilt
∂y1

∂x1

(0) = +1. Also:

(
∂yj

∂xi

)
0

=



1 ∗ ∗ · · · ∗

1 0

1

0
. . .

1


Wie man sieht, ist die Determinante ungleich Null.

Satz (Hopf). Sei X ein Vektorfeld mit isolierten Nullstellen auf der n-dimensionalen Mannigfaltigkeit M mit Rand, so, dass X

auf ∂M nach außen zeigt. Dann gilt
∑

p∈X−1(0)

iX(p) = deg(g : ∂M → Sn−1, q 7→ nq), wobei g die Gaußabbildung sei. Dabei sei

nq senkrecht auf dem Rand, habe die Länge 1 und zeige nach außen. Insbesondere ist die Summe der Indizes eines Vektorfeldes

unabhängig von der Wahl des Vektorfeldes.

Beweis. Seien p1, . . . , pk die isolierten Nullstellen von M und B(pi, ε) Kugeln um die pi, so dass alle Bi disjunkt sind und

ganz in M liegen ohne den Rand zu berühren. Definiere: M ′ := M \
k⋃
i=1

B◦(pi, ε). Definiere X′ durch
X

‖X‖
. Sei h := X′|∂M′ :

∂M ′ → Sn−1. Weil in der Menge, die von ∂M ′ eingegrenzt wird, keine Nullstellen sind, folgt nach dem Lemma (Nullstellen-

Lemma) deg(h) = 0, denn der Abbildungsgrad hängt nur von den Werten auf dem Rand ab (siehe Satz von Rouché). Weiter gilt:

0 = deg(h) = deg(h|∂M ) + deg(h|∂M′\∂M ). Es gilt h|∂M ist homotop zu g durch punktweise Drehung. Also deg(h|∂M ) = deg(g).

Weiter: deg(h|∂B(pi,ε)
) = −iX(pi), da ∂B(pi, ε) als Rand von M ′ die umgekehrte Orientierung trägt. Also: 0 = deg(h) = deg(g) +

k∑
i=1
−iX(pi), also: deg(g) =

k∑
i=1

iX(pi). Damit ist dann der Beweis vollständig erbracht.

Satz. Sei M ⊆ Rn eine n-dimensionale kompakte Mannigfaltigkeit ohne Rand und X ein glattes Vektorfeld auf M mit isolierten

Nullstellen, die alle nicht-degeneriert sind (siehe Satz (Ersatzvektorfeld)). Sei ε > 0 hinreichend klein, so dass Nε := {y ∈

Rn+1 : ∃p ∈ M : ‖p − y‖ ≤ ε} ⊆ Rn+1 eine glatte (n + 1)-Mannigfaltigkeit diesmal mit Rand ist. Dann gilt:
∑

p∈X−1(0)

iX(p) =

deg(G), wobei G : ∂Nε → Sn die Gaußabbildung sei. Wieder ist die Summe der Indizes eines Vektorfeldes unabhängig vom

Vektorfeld. Der Beweis geht dann, wie folgt:

Beweis. Idee: Verwendung des Satzes von Hopf für eine geeignete Fortsetzung von X nach Nε. Definiere r : Nε → M , y 7→ r(y)

so, dass ‖y − r(y)‖ = min
p∈M

‖y − p‖. Insbesondere ist r glatt und es gilt y − r(y) ⊥ Tr(y)M für alle y. Definiere W : Nε → Rn+1,

y 7→ X(r(y)) + y − r(y) glatt mit W (y) ∈ TyNε für alle y ∈ Nε. W zeigt nach außen auf ∂Nε. W hat ausschließlich nicht-

degenerierte Nullstellen. W hat die gleichen Nullstellen wie X, denn: W (y) = 0 ist äquivalent zu X(r(y)) = 0 und r(y) = y, weil

doch gilt y − r(y) ⊥ X(r(y)) ∈ Tr(y)M , also äquivalent zu X(y) = 0. Weiter gilt für p ∈ M mit X(p) = 0: dWp(ξ) = dXp(ξ)

für alle ξ ∈ TpM und dWp(η) = η für alle TpNε mit η ⊥ TpM , denn: dWp(η) = dVr(p) · r′(p) · η + η − r′(p) · η und weil

r′(p) ⊥ η und r′(p) ∈ TpM gilt, folgt die Behauptung. Da X nur nicht-degenerierte Nullstellen hat, ist dWp invertierbar und

es gilt ind(W, p) = sign(det(dWp)) = sign(det(dXp)) = ind(X, p). Weil die Nullstellen von W und X nicht degeneriert sind, gilt

iW (p) = ind(W, p) und iX(p) = ind(X, p) für p mit W (p) = X(p) = 0, Begründung: Siehe im Beweis des Satzes (Poincaré-Hopf)

unten. Es folgt dann nach dem Satz (Hopf): deg(G) =
∑

p∈W−1(0)

iW (p) =
∑

p∈X−1(0)

iX(p).

Satz (Poincaré-Hopf). Sei X ein glattes Vektorfeld auf M mit isolierten Nullstellen, dann gilt:
∑

p∈X−1(0)

iX(p) = χ(M).

Beweis. Da die Summe der Indizes eines Vektorfeldes unabhängig von der Wahl des Vektorfeldes ist, wird nun ein spezielles

Vektorfeld konstruiert, so dass die Summe der Indizes gleich der Euler-Charakteristik ist. Das Vektorfeld ∇f sei so konstruiert, dass

sich in der triangulierten Mannigfaltigkeit in jeder i-Zelle ein kritischer Punkt von f mit Index i befindet. Weiter seien die Nullstellen

des Vektorfeldes ∇f alle nicht entartet, also det(d(∇f)p) = det(Hf (p)) 6= 0, wie in der Voraussetzung des Satzes (Morse). Es gilt

für einen kritischen Punkt von ∇f (∇f(p) = 0) dann i∇f (p) = deg

(
∇f
‖∇f‖

∣∣∣∣
∂Kε(p)

)
=

Homotopie
deg(∇f |∂Kε(p)) =

Indexsummenformel

ind(∇f, p), weil ∂Kε(p) eine einzige Nullstelle von ∇f , nämlich p, umrundet, wobei diese Nullstelle nicht entartet ist, also die

Indexsummenformel anwendbar ist. Seien alle kritische Punkte mit p1, . . . , pl bezeichnet. Es gilt also ∇f(pi) = 0 für alle i. Daraus

folgt dann also folgendes:
∑

p∈(∇f)−1(0)

i∇f (p) =
∑

p∈(∇f)−1(0)

ind(∇f, p) =
dim(M)∑
i=0

(−1)i ·#{kritische Punkte von f mit Index i} =

dim(M)∑
i=0

(−1)i ·#{i-Zellen in der Triangulierung von M} = χ(M).

Satz (Ersatzvektorfeld). Für jedes Vektorfeld X gibt es ein Ersatzvektorfeld X̂ so, dass alle Nullstellen nicht entartet sind und

die Summe der Indizes des Vektorfeldes den gleichen Wert hat.
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Beweis. Sei das Vektorfeld X definiert auf M . Man legt nun um alle Nullstellen von X eine 2ε-Umgebung so, dass alle diese

Umgebungen disjunkt sind und den Rand ∂M nicht schneiden. Sei f : M → R eine stetige Funktion, die den Wert 1 auf den

ε-Bällen in den 2ε-Bällen um den Nullstellen hat. Außerhalb der 2ε-Bälle sei f dann 0. Man betrachtet dann das Vektorfeld

X̂(p) = X(p) − f(p) · y mit einem regulären Wert y des Vektorfeldes X, das existiert nach dem Lemma (Sard’sches Lemma).

Es gilt, dass ‖X(p)‖ > δ für alle p außerhalb der ε-Bälle und innerhalb der 2ε-Bälle. Wählt man das y so, dass ‖y‖ < δ gilt,

dann befinden sich alle Nullstellen des neuen Vektorfeldes X̂ innerhalb der ε-Bälle. Sei z eine Nullstelle des neuen Vektorfeldes:

X̂(z) = 0 ⇔ X(z) = y. Weil y regulär ist, gilt det(dX(z)) 6= 0. Wegen X̂(p) = X(p) − f(p) · y und f = 1 für z als Nullstelle des

neuen Vektorfeldes, also dX̂(z) = dX(z), also det(dX̂(z)) = det(dX(z)) 6= 0. D.h. die Nullstellen des neuen Vektorfeldes X̂ sind

nicht entartet. Nach dem Satz von Hopf sind die Summen der Indizes beider Vektorfelder gleich deg(g), wobei g die Gaußabbildung

auf dem Rand von M sei. Also gilt
∑

p∈X−1(0)

iX(p) = deg(g) =
∑

p∈X̂−1(0)

iX̂(p). Lokal kann man also das Vektorfeld X abändern,

ohne, dass sich die Summe der Indizes ändert. Also ist man hier fertig!

Lemma (Anschauung von deg

(
X

‖X‖

)
im 2-dimensionalen Fall). Sei X : M → TM ein Vektorfeld auf einer 2-dimensionalen

Mannigfaltigkeit. Sei dann p ∈M mit X(p) = 0. deg

(
X

‖X‖

)
zählt die Anzahl der Windungen von X um p mit X(p) = 0.

Beweis. Es wird nun die Abbildung ∂Kδ(0) → S1, q 7→
X(q)

‖X(q)‖
betrachtet, wobei δ so klein sei, dass p die einzige Nullstelle

des Vektorfeldes um das Bild von ∂Kδ(0) (Karte) sei. Durch Einführung von Polarkoordinaten kann man die Abbildung von eben

auffassen als ∂Kδ(0)→ S1, ϕ 7→ ψ(ϕ). Also gilt dann unter Berücksichtigung der Indexsummenformel:

deg

(
X

‖X‖
, ∂Kδ(0), ψ0

)
=

∫ 2π

0

ω(|ψ(ϕ)− ψ0|) · ψ′(ϕ) dϕ =
∑

ϕ∈ψ−1(ψ0)

ind(ψ, ϕ) =
∑

ϕ∈ψ−1(ψ0)

ψ′(ϕ)

‖ψ′(ϕ)‖

Dabei gilt
ψ′(ϕ)

‖ψ′(ϕ)‖
∈ {−1, 1}. Sei ψ0 6= ψ(0) und ψ′(ϕ) 6= 0 für alle ϕ ∈ ψ−1(ψ0). Wenn für ein ϕ0 ∈ [0, 2π] gilt ψ(ϕ0) = ψ0

und ψ′(ϕ0) > 0, dann hat man eine Umrundung in positiver Richtung. Ist hingegen ψ′(ϕ0) < 0, dann hat man eine Umrundung

in negativer Drehrichtung. Es folgt also, dass
∑

ϕ∈ψ−1(ψ0)

ψ′(ϕ)

‖ψ′(ϕ)‖
die Anzahl der Umrundungen zählt, die den Zeiger ψ0 passieren.

Es wurde also gezeigt, dass deg

(
X

‖X‖

)
die Anzahl der Windungen des Vektorfeldes um die Nullstelle p mit X(p) = 0 längs einer

geschlossenen Kurve um p zählt.

Der Einbettungssatz von Whitney
[Zurück zur Liste]

Definition (Untergeordnete Partition der Eins). Es sei M eine glatte n-Mannigfaltigkeit mit U = {Uα} eine offene Überdeckung

von M durch Kartenumgebungen. Dann ist eine zu U untergeordnete Partition der Eins gegeben durch eine Familie {ϑi} glatter

Funktionen ϑi : M → R mit den folgenden Eigenschaften:

1. ∀i ∈ N ∀x ∈M: ϑi(x) ∈ [0, 1].

2. ∀x ∈M sind nur endlich viele ϑi(x) von Null verschieden.

3. ∀i ∈ N existiert ein Kompaktum Ki und ein α mit Tr(ϑi) := {x ∈ X : ϑi(x) 6= 0} ⊆ Ki ⊆ Uα.

4. ∀x ∈M:
∞∑
i=1

ϑi(x) = 1. Diese Summe ist wegen 2. wohldefiniert.

Definition (Guter Atlas). Ist M eine glatte n-Mannigfaltigkeit, dann gilt: U = {Uα} sei eine offene Überdeckung von M durch

Kartenumgebungen. Es wird dann ein sogenannter guter Atlas {Vj} zu U mit den folgenden Eigenschaften konstruiert:

1. {Vj} (abzählbar) überdeckt M mit Koordinatensystemen hj : Vj → B3(0) := {x ∈ Rk : ‖x‖ < 3}.

2. {Vj} ist lokal endlich, d.h. jedes x ∈M liegt in nur endlich vielen Vj .

3. Für jedes j existiert ein α so, dass Vj ⊆ Uα. Durch Umnummerierung der Kartengebiete erhält man α = j.

4. Die h−1
j (B1(0)) überdecken M immer noch.

Satz (Eigentliche Abbildung). Es sei M eine glatte n-Mannigfaltigkeit. Dann existiert eine eigentliche, glatte Abbildung χ :

M → R. Die Existenz einer solchen Funktion wird im Beweis gezeigt.
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Beweis. Es sei U irgendeine offene Überdeckung von M durch Kartenumgebungen und {ϑj} eine untergeordnete Partition der Eins.

χ(x) :=
∞∑
j=1

j · ϑj(x) ist wohldefiniert, da nur endlich viele ϑj(x) 6= 0, und χ ist glatt. Sei K ⊆ R kompakt, dann gibt es ein n ∈ N

mit [−n, n] ⊇ K. Es gilt χ(x) =
∞∑
j=1

j ·ϑj(x) ≥
∞∑
j=1

ϑj(x) = 1. Ist x /∈
n⋃
j=1

Tr(ϑj), dann gilt χ(x) =
∞∑
j=1

j ·ϑj(x) =
∑
j>n

j ·ϑj(x) > n.

Also gilt χ−1([−n, n]) ⊆
n⋃
j=1

Tr(ϑi). Die Vereinigung ist eine Vereinigung von kompakten Mengen, ist also kompakt. Es gilt folglich

χ−1(K) ⊆ χ−1([−n, n]) ⊆ Kompaktum. Da das Urbild (unter einer stetigen Funktion) abgeschlossener Mengen abgeschlossen ist,

ist also χ−1(K) abgeschlossen. Weil eine abgeschlossene Menge als Teilmenge einer kompakten Menge kompakt ist, ist folglich

χ−1(K) kompakt, und damit ist χ eigentlich.

Satz (Immersion). Es sei M eine glatte n-Mannigfaltigkeit und f : M → Rm glatt mit m ≥ 2n. Dann gilt: Für alle ε > 0 gibt

es eine Immersion F : M → Rm mit sup
x∈M

‖F (x)− f(x)‖ < ε.

Beweis. Es sei U eine Überdeckung von M durch Kartengebiete und {Vj} ein untergeordneter guter Atlas. Seien hj : Vj → B3(0)

und Wj = h−1
j (B1(0)) Überdeckungen von M . Sei weiter ρj : M → R glatt mit bild(ρi) ⊆ [0, 1], ρj(x) = 1 ∀x ∈ Wj und ρj(x) = 0

∀x /∈ h−1
j (B2(0)). Es werden nun rekursiv glatte Fj : M → Rm mit den folgenden Eigenschaften konstruiert:

(i) sup
x∈M

‖Fj(x)− f(x)‖ < ε.

(ii) ∀x /∈ Vj : Fj(x) = Fj−1(x).

(iii) Fj |Mj ist eine Immersion, wobei gilt: Mj =
j⋃
i=1

Wi.

Seien nun für j = 1, . . . , k− 1 die Eigenschaften (i)-(iii) erfüllt, dann konstruiert man daraus Fk mit denselben Eigenschaften. Man

setzt F0 = f . Man setzt weiter Fk(x) := Fk−1(x) + ρk(x) · Ak(x). Dabei sei x die Koordinaten aus dem Rn mittels der Karten

von M . Ak(x) = Ak · x mit Ak ∈ MatR(m × n) ist noch zu bestimmen. Ist x /∈ Vk = h−1
k (B3(0)), dann ist auch x /∈ h−1

k (B2(0)),

also ρk(x) = 0 und deswegen Fk(x) = Fk−1(x) + 0 · Ak(x) = Fk−1(x), d.h. es gilt (ii). Nach Induktionsvoraussetzung gilt (i)

für j = k − 1, also sup
x∈M

‖Fk−1(x) − f(x)‖ < ε0. Weiter gilt sup
x∈M

‖Fk(x) − Fk−1(x)‖ = sup
x∈Tr(ρk)

‖ρk(x) · Ak(x)‖ < ε − ε0, wenn

‖Ak‖∞ < δ mit einem hinreichend kleinem δ, denn ρk(x) ∈ [0, 1]. Daraus folgt dann: sup
x∈M

‖Fk(x) − f(x)‖ ≤ sup
x∈M

‖Fk(x) −

Fk−1(x)‖ + sup
x∈M

‖Fk−1(x) − f(x)‖ < (ε − ε0) + ε0 = ε, also gilt (i). Nun wird ein Ak mit ‖Ak‖∞ < δ so konstruiert, dass Fk

auf Mk eine Immersion ist: Es gilt dFk = dFk−1 + Ak, denn für x ∈ Wk gilt ρk(x) = 1, also Fk(x) = Fk−1(x) + Ak · x. Man

konstruiert also Ak so, dass dFk vollen Rang hat, also n linear unabhängige Spalten besitzt, und es soll weiterhin ‖Ak‖∞ < δ

gelten. Es werden nun induktiv geeignete Spalten von Ak gefunden: Angenommen,
∂Fk−1

∂x1

, . . . ,
∂Fk−1

∂xl
sind linear unabhängig auf

Wk, dann beachte:

Φ : R
l × Vk → R

m
: (


λ1

.

.

.

λl

 , x) 7→
(

l∑
i=1

λi ·
∂Fk−1

∂xi
(x)

)
−
∂Fk−1

∂xl+1

(x)

Wähle nun al+1 ∈ Rm \ bild(Φ) und setze F̃k(x) := Fk−1(x) + al+1 · xl+1. Dann gilt:(
∂F̃k

∂x1

, . . . ,
∂F̃k

∂xl+1

)
=

(
∂Fk−1

∂x1

, . . . ,
∂Fk−1

∂xl
,
∂Fk−1

∂xl+1

+ al+1

)

Dabei gilt:
∂Fk−1

∂x1

, . . . ,
∂Fk−1

∂xl
sind linear unabhängig und auch

∂Fk−1

∂xl+1

+ al+1 ist keine Linearkombination von den vorausgegan-

genen. Nun ist folgendes festzustellen:

dim(bild(Φ)) ≤ l + n ≤ (n− 1) + n = 2n− 1 < m (nach Voraussetzung)

Es folgt also, dass bild(Φ) ⊆ Rm eine Nullmenge ist. Daraus folgt, dass man ein al+1 ∈ Rm \ bild(Φ) mit ‖al+1‖∞ < δ wählen

kann. Man setzt schließlich:

∀x ∈M : F (x) := lim
j→∞

Fj(x) auf M∞ = M

Der Grenzwert ist wohldefiniert, denn: Es existiert ein J ∈ N so, dass Fj(x) = FJ (x) für alle j ≥ J, da {Vj} lokal endlich ist. F ist

somit die gesuchte Immersion.

Satz (Injektive Immersion). Sei M eine glatte n-Mannigfaltigkeit und f : M → Rm eine Immersion mit m ≥ 2n+ 1. Dann gilt:

Für alle ε > 0 existiert eine injektive Immersion F : M → Rm so, dass gilt sup
x∈M

‖F (x)− f(x)‖ < ε.

Beweis. Sei U = {Uα} eine Überdeckung von M so, dass ∀α : f |Uα ist injektiv (möglich, da f eine Immersion ist). {Vj} sei ein

untergeordneter guter Atlas. Also gilt ∀i : f |Vi ist injektiv, denn: Vi ⊆ Ui. Seien hj , Wj , ρj und Mj genauso, wie im vorherigen

Satz. Es werden induktiv glatte Fj : M → Rm konstruiert, die die folgenden Bedingungen erfüllen:

(i) Fj ist eine Immersion.
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(ii) sup
x∈M

‖Fj(x)− f(x)‖ < ε.

(iii) ∀x /∈ Vj : Fj(x) = Fj−1(x).

(iv) Fj ist injektiv auf Mj .

(v) Fj ist injektiv auf Vi für alle i.

Seien für j = 1, . . . , k − 1 die Bedingungen (i)-(v) erfüllt. Man setzt dann Fk(x) = Fk−1(x) + ρk(x) · bk, wobei bk ∈ Rm

noch zu bestimmen ist, und F0 = f . Ist x /∈ Vk = h−1
k (B3(0)), dann ist auch x /∈ h−1

k (B2(0)), also ρk(x) = 0 und deswegen

Fk(x) = Fk−1(x) + 0 · bk = Fk−1(x), d.h. es gilt (iii). Nach Induktionsvoraussetzung gilt sup
x∈M

‖Fk−1(x)− f(x)‖ < ε0. Weiter gilt

sup
x∈M

‖Fk(x) − Fk−1(x)‖ = sup
x∈Tr(ρk)

‖ρk(x) · bk‖ < ε − ε0, wenn ‖bk‖∞ < δ mit einem hinreichend kleinem δ, denn ρk(x) ∈ [0, 1].

Daraus folgt dann: sup
x∈M

‖Fk(x) − f(x)‖ ≤ sup
x∈M

‖Fk(x) − Fk−1(x)‖ + sup
x∈M

‖Fk−1(x) − f(x)‖ < (ε − ε0) + ε0 = ε, also gilt (ii).

Nun zu Eigenschaft (i): Sei also Fk(x) = Fk−1(x) + ρk(x) · bk. Dabei gilt: ρk(x) = 1 für x ∈ Wk = h−1
k (B1(0)), ρk(x) = 0 für

x /∈ h−1
k (B2(0)) und es gilt 0 < ρk(x) < 1 für x ∈ h−1

k (B2(0)) \ h−1
k (B1(0)). Ist also ρk(x) gleich 0 oder 1 auf den entsprechenden

Mengen, dann gilt dFk = dFk−1 + 0 = dFk−1. Nach Induktionsvoraussetzung ist Fk−1 immersiv, also auch Fk. Sei also von nun

an x ∈ h−1
k (B2(0)) \ h−1

k (B1(0)) =: Γ. Nun gilt:

dFk(x) = dFk−1(x) + bk · ρ′k(x) = dFk−1(x) +


bk,1 ·

∂ρk

∂x1

(x) · · · bk,1 ·
∂ρk

∂xn
(x)

.

.

.
. . .

.

.

.

bk,m ·
∂ρk

∂x1

(x) · · · bk,m ·
∂ρk

∂xn
(x)



Setze:
∂Fk

∂x1

(x) =
∂Fk−1

∂x1

(x) + bk ·
∂ρk

∂x1

(x). Seien bereits
∂Fk

∂x1

, . . . ,
∂Fk

∂xl
linear unabhängig auf Γ. Nun folgende Abbildung:

Ωl : R
l × Γ→ R

m
: (


λ1

.

.

.

λl

 , x) 7→
1

∂ρl+1

∂xl+1

(x)

·
[(

l∑
i=1

λi ·
∂Fk

∂xi
(x)

)
−
∂Fk−1

∂xl+1

(x)

]

Nun ist wieder Rl ×Γ (l = 1, . . . , n− 1) eine m-dimensionale Nullmenge (wegen dim(Rl ×Γ) = l+n ≤ (n− 1) +n = 2n− 1 < m),

also auch bild(Ωl). Man wähle nun bk ∈ Rm \
n−1⋃
l=1

bild(Ωl) mit ‖bk‖∞ < δ. Das geht, weil
n−1⋃
l=1

bild(Ωl) eine endliche Vereinigung

von Nullmengen ist. Nach Wahl von bk mit ‖bk‖∞ < δ gilt also
l∑
i=1

λi ·
∂Fk

∂xi
(x) 6=

∂Fk−1

∂xl+1

(x)+bk ·
∂ρl+1

∂xl+1

(x) =
∂Fk

∂xl+1

(x) für alle l ∈

{1, . . . , n−1}, für alle λ1, . . . , λl und für alle x ∈ Γ. Es folgt also, dass bk so gewählt wurde, dass Fk mit Fk(x) = Fk−1(x)+bk ·ρk(x)

eine Immersion ist, weil das Differential aus Fk−1(x)+ bk ·ρk(x) aus n linear unabhängigen Spalten besteht. Ein anderes Argument

dafür, dass (i) gilt, geht so: Es gilt zunächst sup
x∈M

‖Fk(x)−Fk−1(x)‖ = ‖ρk(x)·bk‖ < ε, wenn ‖bk‖ < δ hinreichend klein ist. Nun ist

nach Induktionsvoraussetzung dFk−1 injektiv, hat also den Rang n. Es befindet sich Fk in einem ε-Schlauch um das immersive Fk−1.

Aus der (m×n)-Matrix dFk−1 mit n Spalten kann man wegen Spaltenrang gleich Zeilenrang n linear unabhängige Zeilen auswählen,

so dass man die (n×n)-Matrix (dFk−1)n erhält. Dann gilt: rang(dFk−1) = n⇔ rang((dFk−1)n) = n⇔ det((dFk−1)n) 6= 0. Wenn

man nun Fk−1 stetig zu einem Fk im ε-Schlauch um Fk−1 ändert, dann ändert sich auch stetig die Determinante aus dem zur

quadratischen Matrix geschnittenem Differential der verformten Funktion. Ist δ > 0 klein genug, also auch ε > 0, dann ändert

sich aus Stetigkeitgründen auch nichts daran, dass auch det((dFk)n) 6= 0 gilt; d.h, weil der ε-Schlauch dünn genug ist, ist auch

rang(dFk) = n, und also ist Fk immersiv. Es gilt also (i) für j = (k − 1) + 1 = k. Als nächstes wird das bk ∈ Rm festgelegt:

Sei U ⊆ M ×M definiert durch U = {(x, y) : ρk(x) 6= ρk(y)} und sei Ψ : U → Rm mit Ψ(x, y) = −
Fk−1(x)− Fk−1(y)

ρk(x)− ρk(y)
. Nun

gilt dim(bild(Ψ)) ≤ dim(U) ≤ 2 · dim(M) = 2n < m (nach Voraussetzung). Daraus folgt, dass bild(Ψ) eine Nullmenge in Rm

ist. Folglich existiert ein bk ∈ Rm \ bild(Ψ) mit ‖bk‖∞ < δ. bk sei dabei gleich dem bk von oben, so dass Fk weiter immersiv

bleibt. Mit diesem bk gilt also immer ρk(x) = ρk(y) und (i)-(iii). Sei Fk(x) = Fk(y) mit x, y ∈ Vi. Weil ρk(x) = ρk(y) gilt, folgt

Fk−1(x) = Fk−1(y) auf Vi; also gilt nach Induktionsvoraussetzung x = y. Es ist also (v) gezeigt für k. Jetzt wird (iv) nachgewiesen:

Sei also Fk(x) = Fk(y) auf Mk, dann gelten 2 Fälle: 1. Fall: ρk(x) 6= ρk(y), 2. Fall: ρk(x) = ρk(y). Fall 1 gilt nicht, nach Wahl

von bk. Sei also von nun an ρk(x) = ρk(y). Wieder gibt es 2 Fälle: ρk(x) = ρk(y) = 0 oder ρk(x) = ρk(y) 6= 0. Sei also zunächst

ρk(x) = ρk(y) = 0. Dann gilt x, y /∈ h−1
k (B2(0)) ⇒ x, y /∈ Wk = h−1

k (B1(0)), also x, y ∈ Mk−1, weil x, y ∈ Mk vorausgesetzt

wurde. Nach I.V. gilt wegen (iv) x = y, da x, y ∈Mk−1 und Fk−1 injektiv auf Mk−1. Sei diesmal der Fall ρk(x) = ρk(y) 6= 0. Dann

gilt x, y ∈ Vk (denn: x /∈ Vk ⇒ ρk(x) = 0). Weil Fk−1(x) = Fk−1(y) gilt, folgt nach Induktionsvoraussetzung x = y, denn Fk−1 ist

injektiv auf Vk nach (v). Damit ist also (iv) nachgewiesen. Es gelten also (iv) und (v) für k. Man definiert nun F (x) := lim
j→∞

Fj(x)

auf M∞ = M . Wieder ist der Grenzwert wohldefiniert, da {Vj} lokal endlich ist.
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Satz (Einbettungssatz von Whitney). Jede glatte n-Mannigfaltigkeit M erlaubt eine Einbettung M ↪→ R2n+1.

Beweis. Sei χ : M → R glatt und eigentlich (siehe Satz (Eigentliche Abbildung)). Dann ist auch f : M → R2n+1 mit f(x) =

(χ(x), 0, . . . , 0︸ ︷︷ ︸
2n-mal

) glatt und eigentlich. Nach dem Satz (Immersion) gibt es eine Immersion F1 : M → R2n+1 mit sup
x∈M

‖F1(x)−f(x)‖ ≤

1. Und nach dem Satz (Injektive Immersion) gibt es eine injektive Immersion F2 : M → R2n+1 mit sup
x∈M

‖F2(x) − F1(x)‖ ≤ 1.

Sei K ⊆ R2n+1 eine kompakte Menge, die in einem Ball BR(0) enthalten ist. Ist also F2(p) ∈ K, dann hat man |f(p)| ≤

|f(p) − F1(p)| + |F1(p) − F2(p)| + |F2(p)| ≤ 1 + 1 + R. Es wurde also gezeigt: F2(p) ∈ K ⊆ BR(0) ⇒ f(p) ∈ B2+R(0). Daraus

folgt dann, dass F−1
2 (K) als abgeschlossene Menge (denn das Urbild abgeschlossener Mengen unter einer stetigen Abbildung sind

ebenfalls abgeschlossen) eine Teilmenge von f−1(B2+R(0)) (kompakt, weil f eigentlich ist) ist. Folglich ist F−1
2 (K) kompakt. Also

ist F2 eine eigentliche injektive Immersion und darum also eine Einbettung.

Der Einbettungssatz von Whitney gilt sogar für R2n: Jede glatte n-Mannigfaltigkeit M erlaubt eine Einbettung M ↪→ R2n.

Korollar. Die Klein’sche Flasche (siehe Bild unten) lässt sich als 2-dimensionale Mannigfaltigkeit in den R2·2 = R4 einbetten,

so dass die Klein’sche Flasche dort also keine Selbstdurchdringung oder -berührung mehr hat.

Das Theorema Egregium
[Zurück zur Liste]

Satz. Die Gauß’sche Krümmung K einer Fläche ist invariant unter lokalen Isometrien.

Beweis. Sei x : U ⊆ R2 → S, (u, v) 7→ x(u, v) ∈ R3 eine Parametrisierung einer regulären, orientierbaren und orientierten Fläche

S. N bezeichne den Einheitsnormalenvektor auf S. Es sei nun definiert:

E = 〈xu, xu〉, F = 〈xu, xv〉, G = 〈xv, xv〉

Das sind die Koeffizienten der 1. Fundamentalform.

e = −〈Nu, xu〉, f = −〈Nu, xv〉 = −〈Nv, xu〉, g = −〈Nv, xv〉

Das sind die Koeffizienten der 2. Fundamentalform.

Beweis von −〈Nu, xv〉 = −〈Nv, xu〉: Es gilt 〈N, xu〉 = 〈N, xv〉 = 0, also 〈Nv, xu〉+ 〈N, xuv〉 ⇔ −〈Nv, xu〉 = 〈N, xuv〉 = 〈N, xvu〉.

Wieder gilt 〈Nu, xv〉 + 〈N, xvu〉 = 0, also 〈N, xvu〉 = −〈Nu, xv〉. Daraus folgt −〈Nv, xu〉 = 〈N, xvu〉 = −〈Nu, xv〉. Man möchte

nun die Ableitungen von xu, xv und N in der Basis {xu, xv, N} darstellen, was, wie folgt, aussieht:

xuu = Γ
1
11 · xu + Γ

2
11 · xv + L1 ·N

xuv = Γ
1
12 · xu + Γ

2
12 · xv + L2 ·N

xvu = Γ
1
21 · xu + Γ

2
21 · xv + L2 ·N

xvv = Γ
1
22 · xu + Γ

2
22 · xv + L3 ·N

Nu = a11 · xu + a21 · xv

Nv = a12 · xu + a22 · xv

Die Gaußkrümmung ist als die Determinante des Differentials der Gaußbbildung dNp : Tp(S)→ Tp(S) definiert. Es sollen zunächst

die aij bestimmt werden: x(u, v) sei wieder die Parametrisierung von S bei p ∈ S. Sei weiter {xu, xv} die zugehörige Basis von

Tp(S). Ist α(t) = x(u(t), v(t)) eine parametrisierte Kurve in S mit α(0) = p, dann gilt dNp(α′(0)) = dNp(xu · u′(0) + xv · v′(0)) =
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d

dt
N(u(t), v(t))

∣∣∣∣
t=0

= Nu ·u′(0)+Nv ·v′(0) = (a11 ·xu+a21 ·xv) ·u′(0)+(a12 ·xu+a22 ·xv) ·v′(0) = (a11 ·u′(0)+a12 ·v′(0)) ·xu+

(a21 ·u′(0) + a22 · v′(0)) · xv, also gilt dNp

 u′(0)

v′(0)

 =

 a11 a12

a21 a22

 ·
 u′(0)

v′(0)

. Das zeigt, dass dNp in der Basis {xu, xv}

durch die Matrix (aij), i, j = 1, 2 dargestellt wird. Die Determinante aus dieser Matrix ist dann gleich der Gaußkrümmung. Aus

der Darstellung von Nu und Nv folgt:

−f = 〈Nu, xv〉 = a11 · F + a21 ·G

−f = 〈Nv, xu〉 = a12 · E + a22 · F

−e = 〈Nu, xu〉 = a11 · E + a21 · F

−g = 〈Nv, xv〉 = a12 · F + a22 ·G

In Matrixschreibweise hat man also:

−

 e f

f g

 =

 a11 a12

a21 a22

 ·
 E F

F G

⇒
 a11 a12

a21 a22

 = −

 e f

f g

 ·
 E F

F G

−1

Damit ist also hergeleitet:

a11 =
f · F − e ·G
E ·G− F 2

, a12 =
g · F − f ·G
E ·G− F 2

, a21 =
e · F − f · E
E ·G− F 2

, a22 =
f · F − g · E
E ·G− F 2

Außerdem weiß man jetzt: K = det(aij) =
e · g − f2

E ·G− F 2
. Aus 〈N, xu〉 = 〈N, xv〉 = 0 lässt sich herleiten: e = 〈N, xuu〉, f = 〈N, xuv〉

und g = 〈N, xvv〉. Daraus folgt dann mit den Darstellungen von xuu, xuv , xvu und xvv in der Basis {xu, xv, N}, dass gilt: L1 = e,

L2 = L2 = f und L3 = g. Nun zu den Christoffel-Symbolen: Wegen xuv = xvu gilt Γ1
12 = Γ1

21 und Γ2
12 = Γ2

21. Es gilt nun für die

Christoffel-Symbole:

Γ
1
11 · E + Γ

2
11 · F = 〈xuu, xu〉 =

1

2
· Eu

Γ
1
11 · F + Γ

2
11 ·G = 〈xuu, xv〉 = Fu −

1

2
· Ev

Γ
1
12 · E + Γ

2
12 · F = 〈xuv, xu〉 =

1

2
· Ev

Γ
1
12 · F + Γ

2
12 ·G = 〈xuv, xv〉 =

1

2
·Gu

Γ
1
22 · E + Γ

2
22 · F = 〈xvv, xu〉 = Fv −

1

2
·Gu

Γ
1
22 · F + Γ

2
22 ·G = 〈xvv, xv〉 =

1

2
·Gv

Man weiß nun, dass die Christoffel-Symbole sich als Terme aus Koeffizienten der ersten Fundamentalform und ihren Ableitungen

darstellen lässt. Es gilt (xuu)v − (xuv)u = 0. Daraus folgt dann:

(
Γ

1
11 · xu + Γ

2
11 · xv + L1 ·N

)
v

=
(

Γ
1
12 · xu + Γ

2
12 · xv + L2 ·N

)
u

⇔
(

Γ
1
11 · xu + Γ

2
11 · xv + e ·N

)
v

=
(

Γ
1
12 · xu + Γ

2
12 · xv + f ·N

)
u

⇔Γ
1
11 · xuv + Γ

2
11 · xvv + e ·Nv +

(
Γ

1
11

)
v
· xu +

(
Γ

2
11

)
v
· xv + ev ·N =

Γ
1
12 · xuu + Γ

2
12 · xvu + f ·Nu +

(
Γ

1
12

)
u
· xu +

(
Γ

2
12

)
u
· xv + fu ·N

Also gilt dann folgendes: Γ1
11 ·
(
Γ1

12 · xu + Γ2
12 · xv + f ·N

)
+ Γ2

11 ·
(
Γ1

22 · xu + Γ2
22 · xv + g ·N

)
+ e · (a12 · xu + a22 · xv) +

(
Γ1

11

)
v
·

xu+
(
Γ2

11

)
v
·xv+ev ·N = Γ1

12 ·
(
Γ1

11 · xu + Γ2
11 · xv + e ·N

)
+Γ2

12 ·
(
Γ1

21 · xu + Γ2
21 · xv + f ·N

)
+f · (a11 · xu + a21 · xv)+

(
Γ1

12

)
u
·

xu +
(
Γ2

12

)
u
· xv + fu ·N . Koeffizientenvergleich bei xv (denn xu, xv und N sind linear unabhängig) liefert:

Γ
1
11 · Γ

2
12 + Γ

2
11 · Γ

2
22 + e · a22 +

(
Γ

2
11

)
v

= Γ
1
12 · Γ

2
11 + Γ

2
12 · Γ

2
21 + f · a21 +

(
Γ

2
12

)
u

Und das ist gleich zu:

Γ
1
11 · Γ

2
12 + Γ

2
11 · Γ

2
22 + e · a22 +

(
Γ

2
11

)
v

= Γ
1
12 · Γ

2
11 + Γ

2
12 · Γ

2
12 + f · a21 +

(
Γ

2
12

)
u

Daraus folgt dann also das folgende:

(
Γ

2
12

)
u
−
(

Γ
2
11

)
v

+ Γ
1
12 · Γ

2
11 + Γ

2
12 · Γ

2
12 − Γ

1
11 · Γ

2
12 − Γ

2
11 · Γ

2
22 = e · a22 − f · a21 = e ·

f · F − g · E
E ·G− F 2

− f ·
e · F − f · E
E ·G− F 2

Also gilt folglich:

(
Γ

2
12

)
u
−
(

Γ
2
11

)
v

+ Γ
1
12 · Γ

2
11 + Γ

2
12 · Γ

2
12 − Γ

1
11 · Γ

2
12 − Γ

2
11 · Γ

2
22 = −E ·

e · g − f2

E ·G− F 2
= −E ·K
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Man sieht also, dass die Gaußkrümmung K aus Termen von Koeffizienten der 1. Fundamentalform und ihren Ableitungen dar-

stellbar ist. K ist also aus Informationen nur aus der Fläche, ohne den Raum drumherum, bestimmt. Sei x : U ⊆ R2 → S eine

Parametrisierung bei p ∈ S und ϕ : V ⊆ S → S′, wobei V ⊆ x(U) eine Umgebung von p ∈ S ist, eine lokale Isometrie bei p. Dann

ist y = ϕ◦x eine Parametrisierung von S′ bei ϕ(p). Da ϕ eine Isometrie ist, stimmen die Koeffizienten der 1. Fundamentalform und

deren Ableitungen in den Parametrisierungen x und y an den entsprechenden Punkten q und ϕ(q), q ∈ V überein; also stimmen die

entsprechenden Christoffel-Symbole ebenfalls überein. Weil K in einem Punkt als Funktion der Christoffel-Symbole und Koeffizien-

ten der 1. Fundamentalform und ihren Ableitungen darstellbar ist, folgt also K(q) = K(ϕ(q)) für alle q ∈ V . Es wurde damit also

gezeigt, dass K (Gaußkrümmung) nur von der metrischen Struktur der Fläche abhängt und die Informationen außerhalb der Fläche,

im Raum, nicht benötigt. Es wird jetzt an Beispielen gezeigt, warum die Koeffizienten der 1. Fundamentalform und ihre Ableitungen

unter der Isometrie ϕ invariant bleiben: Eϕ(p) = 〈yu, yu〉 = 〈(ϕ ◦ x)u, (ϕ ◦ x)u〉 = 〈(dϕ ◦ x) · xu, (dϕ ◦ x) · xu〉 = 〈xu, xu〉 = Ep und

(Ev)ϕ(p) =
∂

∂v
〈yu, yu〉 =

∂

∂v
〈xu, xu〉 = (Ev)p. Damit ist der Beweis also vollständig und endlich abgeschlossen.

Der Brouwer’sche Fixpunktsatz
[Zurück zur Liste]

Satz. Jede stetig-differenzierbare Abbildung f : Bn → Bn der n-dimensionalen Kugel in sich besitzt mindestens einen Fixpunkt,

d.h. es existiert ein x ∈ Bn = {x ∈ Rn : ‖x‖2 ≤ 1} mit f(x) = x.

Beweis. Angenommen, f : Bn → Bn hat keine Fixpunkte. Weil dann für alle x ∈ Bn gilt f(x) 6= x, kann man eine eindeutig

definierte Halbgerade von x durch f(x) konstruieren, die den Rand von Bn, also die Menge Sn−1, in einem Punkt schneidet. Sei

dieser Schnittpunkt mit F (x) bezeichnet. F : Bn → Sn−1 hat dann folgende Gestalt:

F (x) = x+

√1− ‖x‖22 +

〈
x,

x− f(x)

‖x− f(x)‖2

〉2

−
〈
x,

x− f(x)

‖x− f(x)‖2

〉 · x− f(x)

‖x− f(x)‖2

Diese Funktion ist ebenfalls stetig-differenzierbar. Auf dem Rand der Kugel wirkt F als Identität, also: F (x) = x für alle x ∈ Sn−1.

Da F (x) ∈ Sn−1 ist für alle x ∈ Bn, gilt für diese x:

n∑
i=1

(F
i
(x))

2
= 1. Differenziert man das, erhält man:

2 ·
n∑
i=1

F
i · dF i = 2 ·

n∑
i,j=1

(
F
i
(x) ·

∂F i(x)

∂xj

)
dx
j

= 0

Wenn diese Differentialform gleich 0 ist, dann gilt für jeden Index j:

n∑
i=1

F
i
(x) ·

∂F i(x)

∂xj
= 0

Deshalb hat das Gleichungssystem
n∑
i=1

α
i ·
∂F i(x)

∂xj
= 0, j = 1, . . . , n

die nichttriviale Lösung (α1, . . . , αn) = (F 1(x), . . . , Fn(x)) 6= (0, . . . , 0). Demmnach ist das Gleichungssystem linear abhängig und

somit verschwindet die Determinante der Matrix

(
∂Fi(x)

∂xj

)
i,j=1,...,n

, d.h. also: det

(
∂Fi(x)

∂xj

)
= 0. Diese Tatsache wendet man auf

die folgende Differentialform an: ω = F 1 dF 2 ∧ . . . ∧ dFn. Es gilt dann:

dω = dF
1 ∧ dF 2 ∧ . . . ∧ dFn = det

(
∂F i(x)

∂xj

)
dx

1 ∧ . . . ∧ dxn = 0

Mithilfe des Satzes von Stokes folgt dann:

0 =

∫
Bn

dω =

∫
∂Bn

ω =

∫
Sn−1

ω

Weil F auf Sn−1 als Identität wirkt, gilt deswegen ω|Sn−1 = x1 dx2 ∧ . . . ∧ dxn, woraus folgt:

0 =

∫
Sn−1

x
1
dx

2 ∧ . . . ∧ dxn =

∫
Bn

dx
1 ∧ dx2 ∧ . . . ∧ dxn =

∫
Bn

1 dx
1
. . . dx

n
= vol(B

n
) 6= 0

Also hat man damit einen Widerspruch erzeugt, der zeigt, dass es einen Fixpunkt geben muss.
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Der Igelsatz
[Zurück zur Liste]

Satz. Es gilt nun folgendes: Jedes stetig-differenzierbare tangentiale Vektorfeld auf einer gerade-dimensionalen Sphäre hat

mindestens eine Nullstelle.

Beweis. Angenommen, es gibt ein nirgends verschwindenes tangentiales Vektorfeld auf Sn = {x ∈ Rn+1 : ‖x‖ = 1}, wobei n

gerade sei, das stetig-differenzierbar ist. Dann sind die Identität id : Sn → Sn, x 7→ x = id(x) und die antipodische Involution

τ : Sn → Sn, x 7→ −x = τ(x) homotop. Denn folgende Abbildung

h(t, x) := cos(πt) · x+ sin(πt) ·
v(x)

‖v(x)‖

ist wegen v(x) 6= 0 für alle x ∈ Sn eine stetig-differenzierbare Homotopie h : [0, 1]× Sn → Sn zwischen diesen beiden Abbildungen

id(x) = h(0, x) und τ(x) = h(1, x). Sn ist kompakt und es gilt ∂Sn = ∅, also ist Sn eine geschlossene Mannigfaltigkeit der

Dimension n. Sei dann ω eine n-Form mit

∫
Sn

ω 6= 0 und dω = 0. Die (n + 1)-dimensionale Mannigfaltigkeit [0, 1] × Sn mit

dem Rand ∂([0, 1] × Sn) = ∂[0, 1] × Sn ∪ [0, 1] × ∂Sn = {0, 1} × Sn ∪ [0, 1] × ∅ = {0, 1} × Sn erbt von Sn und [0, 1] mit

der Standardorientierung eine Orientierung, die auch eine für ihren Rand induziert. Dann gilt wegen des Satzes von Stokes für

Mannigfaltigkeiten also:∫
Sn

τ
∗
ω−
∫
Sn

id
∗
ω =

∫
Sn

h
∗
1ω−

∫
Sn

h
∗
0ω =

∫
{0,1}×Sn

h
∗
ω =

∫
∂([0,1]×Sn)

h
∗
ω|∂([0,1]×Sn) =

∫
[0,1]×Sn

d(h
∗
ω) =

∫
[0,1]×Sn

h
∗
(dω)

Nun gilt doch dω = 0, also folgt:∫
Sn

τ
∗
ω −

∫
Sn

id
∗
ω =

∫
[0,1]×Sn

h
∗
0 = 0⇒

∫
Sn

τ
∗
ω =

∫
Sn

id
∗
ω =

∫
Sn

ω 6= 0

Es gilt nun auch:

∫
Sn

τ
∗
ω =

∫
Sn

(ω1,...,n ◦ τ) · τ∗(dy1 ∧ . . . ∧ dyn) =

∫
Sn

(ω1,...,n ◦ τ) · det

(
∂τ i

∂xj

)
dx

1 ∧ . . . ∧ dxn

Und das ist nach der Transformationsformel (τ ist ein Diffeomorphismus) gleich zu:

∫
Sn

ω1,...,n(τ(x)) · det

(
∂τ i

∂xj

)
dx

1
. . . dx

n
= −

∫
Sn

ω1,...,n(τ(x)) ·

∣∣∣∣∣det

(
∂τ i

∂xj

)∣∣∣∣∣ dx1
. . . dx

n
= −

∫
τ(Sn)

ω1,...,n(y) dy
1
. . . dy

n

Das gilt wegen det
(
∂τi

∂xj

)
= (−1)n+1 = −1 (n ist gerade, also n+ 1 ungerade). Zusammengefasst gilt also:

∫
Sn

ω =

∫
Sn

τ
∗
ω = −

∫
τ(Sn)

ω1,...,n dy
1 ∧ . . . ∧ dyn = −

∫
Sn

ω 6= 0

Denn es gilt τ(Sn) = Sn. Es folgt also 1 = −1 und das ist ein Widerspruch. Folglich kann es das angenommene Vektorfeld nicht

geben und der Beweis des Satzes ist erbracht.

Das Shannon’sche Abtasttheorem
[Zurück zur Liste]

Satz. Eine Funktion f ∈ L1(R), die bandbeschränkt ist mit Bandbreite T , d.h. es gilt dann f∧(θ) = 0 für θ /∈ [−T, T ], ist

diskret rekonstruierbar abtastbar, falls die äquidistante Abtastschrittweite h echt kleiner als π
T ist.

Beweis. Zunächst gilt für j, k ∈ Z folgendes:

∫ π

−π
e
−ijt · eikt dt =

∫ π

−π
e
i(k−j)t

dt =

 2π, j = k[
1

i(k−j)t · e
i(k−j)t

]π
−π

= 0, j 6= k

Dabei sei i die imaginäre Einheit. Dann gilt für c ∈ `1(Z):

c(k) =
∑
j∈Z

c(j) ·
(

1

2π
·
∫ π

−π
e
i(k−j)t

dt

)
=

1

2π
·
∫ π

−π

∑
j∈Z

c(j) · e−ijt
 · eikt dt =

1

2π
·
∫ π

−π
c
∧

(t) · eikt dt =: (c
∧

)
∨

(k)
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Sei `1(Z) 3 Shf(k) := f(h · k) der Abtastoperator. Es folgt dann:

Shf(k) = ((Shf)
∧

)
∨

(k) =
1

2π
·
∫ π

−π
(Shf)

∧
(t) · eikt dt

Es gilt aber auch:

Shf(k) = f(h · k) = (f
∧

)
∨

(h · k) =
1

2π
·
∫ ∞
−∞

f
∧

(t) · eihkt dt

=
1

2π
·
∑
j∈Z

∫ π+2πj
h

−π+2πj
h

f
∧

(t) · eihkt dt

=
1

2π
·
∑
j∈Z

∫ π+2πj

−π+2πj

f
∧

(h
−1 · t) · eikt · h−1

dt

=
1

2πh
·
∑
j∈Z

∫ π

−π
f
∧

(h
−1 · (t+ 2πj)) · eikt dt

=
1

2π
·
∫ π

−π

 1

h
·
∑
j∈Z

f
∧

(h
−1 · (t+ 2πj))


︸ ︷︷ ︸

=:F (t)

· eikt dt

Es wurde also folgende Gleichung gezeigt (auf beiden Seiten wird noch mit
√

2π multipliziert):〈
(Shf)

∧
(t),

1
√

2π
· eikt

〉
=

1
√

2π
·
∫ π

−π
(Shf)

∧
(t) · eikt dt =

1
√

2π
·
∫ π

−π
F (t) · eikt dt =

〈
F (t),

1
√

2π
· eikt

〉

Weil die ek(t) := 1√
2π
· eikt, k ∈ Z, ein vollständiges Orthonormalsystem bilden, gilt: g =

∑
k∈Z
〈g, ek〉 · ek. Folglich gilt dann:

F (t) = (Shf)∧(t). Ist nun h so klein, dass [−T · h, T · h] ( [−π, π] ⇔ T · h < π ⇔ h < π
T gilt, dann erhält man für j > 0 und

t ∈ [−π, π], dass h−1 ·(t+2πj) > T
π ·(−π+2πj) = T ·(−1+2j) ≥ T ist. Analog erhält man für j < 0, dass gilt: h−1 ·(t+2πj) < −T .

Wegen der Bandbeschränktheit von f ist also in der Summe in F höchstens der Summand für j = 0 ungleich 0. Das heißt also:
1

h
· f∧(h

−1 · t) = F (t) = (Shf)
∧

(t) =
∑
j∈Z

f(h · j) · e−ijt. Ersetzt man t durch h · θ, hat man f
∧

(θ) = h ·
∑
j∈Z

f(h · j) · e−ijhθ. Da

T < π
h gilt und f nun T -bandbeschränkt ist, gilt:

f(x) =
1

2π
·
∫ ∞
−∞

f
∧

(θ) · eixθ dθ =
1

2π
·
∫ T

−T
f
∧

(θ) · eixθ dθ =
1

2π
·
∫ π
h

−π
h

f
∧

(θ) · eixθ dθ =
h

2π
·
∫ π
h

−π
h

∑
j∈Z

f(h · j) · ei(x−jh)θ
dθ

Und das ist gleich zu:

h

2π
·
∑
j∈Z

f(h · j) ·
∫ π
h

−π
h

e
i(x−jh)θ

dθ =
h

2π
·
∑
j∈Z

f(h · j) ·
[
ei(x−jh)θ

i(x− jh)

]π
h

−π
h

=
∑
j∈Z

f(h · j) ·
ei(x−jh)·π

h − e−i(x−jh)·π
h

2i︸ ︷︷ ︸
=sin

(
π
(
x
h
−j
))

·
h

π
·

1

(x− jh)︸ ︷︷ ︸
=
(
π
(
x
h
−j
))−1

Es wurde nun gezeigt:

f(x) =
∑
j∈Z

f(h · j) ·
sin
(
π
(
x
h − j

))
π
(
x
h − j

) =
∑
j∈Z

f(h · j) · sinc

(
x

h
− j
)

Dabei sei sinc(x) =
sin(π·x)
π·x , der sogenannte

”
Sinus Cardinalis“. Es ist also eine Rekonstruierung von f aus einer diskreten Abtas-

tungsmenge angegeben und der Satz damit bewiesen.

Der Satz von Stone-Weierstraß
[Zurück zur Liste]

Definition (Funktionenalgebra). Sei M ein kompakter metrischer Raum und C0(M,R) der vollständige reelle Raum der über

M stetigen reellwertigen Funktionen. Man bezeichnet A ⊆ C0(M,R) als Funktionenalgebra, wenn A bezüglich Addition, skalarer

Multiplikation und der Multiplikation von Funktionen abgeschlossen ist. Das heißt: Seien f, g ∈ A und c eine reelle Konstante,

dann gilt: f + g ∈ A, c · f ∈ A und f · g ∈ A.

Definition. Sei A ⊆ C0(M,R) eine Funktionenalgebra.

1. Eine Funktionenalgebra verschwindet in einem Punkt p ∈M, wenn f(p) = 0 für alle f ∈ A gilt.

2. Eine Funktionenalgebra A heißt punktetrennend, wenn zu jedem Paar x1, x2 ∈ M mit x1 6= x2 ein f ∈ A existiert mit

f(x1) 6= f(x2).
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Lemma. Es heißen rk :=
(n
k

)
· xk · (1− x)

n−k
mit k, n ∈ N und x ∈ R Bernsteinpolynome. Damit gilt dann: a)

n∑
k=0

rk(x) = 1

und b)
n∑
k=0

(k − n · x)2 · rk(x) = n · x · (1− x).

Beweis. Zu a): Es ist bekannt der Binomische Lehrsatz mit x, y ∈ R: (x + y)
n

=

n∑
k=0

(n
k

)
· xk · yn−k. Ersetzt man y durch

1− x, dann folgt a). Zu b): Die Formel des binomischen Lehrsatzes leitet man auf beiden Seiten erst einmal, dann noch einmal ab:

n·(x+y)
n−1

=
n∑
k=0

(n
k

)
·k·xk−1 ·yn−k und n·(n−1)·(x+y)

n−2
=

n∑
k=0

(n
k

)
·k·(k−1)·xk−2 ·yn−k. In beiden Formeln ersetzt man nun

y durch 1−x und multipliziert die erste Ableitung mit x und die zweite mit x2: n·x = x·
n∑
k=0

(n
k

)
·k ·xk−1 ·(1−x)

n−k
=

n∑
k=0

k ·rk(x)

und n · (n − 1) · x2
= x

2 ·
n∑
k=0

(n
k

)
· k · (k − 1) · xk−2 · (1 − x)

n−k
=

n∑
k=0

k · (k − 1) · rk(x). Es folgt dann
n∑
k=0

k · (k − 1) · rk(x) =

n∑
k=0

k2 · rk(x)−
n∑
k=0

k · rk(x). Daraus folgt dann
n∑
k=0

k2 · rk(x) = n · (n− 1) · x2 +
n∑
k=0

k · rk(x) = n · (n− 1) · x2 + n · x. Jetzt weiß

man:
n∑
k=0

(k−n ·x)2 ·rk(x) =
n∑
k=0

k2 ·rk(x)−2 ·n ·x ·
n∑
k=0

k ·rk(x)+(n ·x)2 ·
n∑
k=0

rk(x) = n · (n−1) ·x2 +n ·x−2 · (n ·x)2 +(n ·x)2 =

−n · x2 + n · x = n · x · (1− x).

Satz (Approximationssatz von Weierstraß). Die Menge der Polynome ist dicht in C0([a, b],R) mit a, b ∈ R und a < b. Das heißt

für jedes f ∈ C0([a, b],R) und jedes ε > 0 gibt es ein Polynom p so, dass für alle x ∈ [a, b] gilt:

|f(x)− p(x)| < ε

Beweis. O.B.d.A. untersuche man hier das Intervall [0, 1] statt [a, b]. Da das Intervall kompakt ist, ist eine stetige Funktion

auf diesem Intervall sogar gleichmäßig stetig. Außerdem weiß man, dass eine Folge stetiger Funktionen auf einem kompakten

Intervall gleichmäßig gegen eine stetige Funktion konvergiert. Auch das Maximum der Funktion auf dem Intervall [0, 1] lässt sich

bestimmen, weil es ein kompaktes Intervall ist. Zu jeder stetigen Funktion f : [0, 1] → R betrachte man die Funktion pn(x) =
n∑
k=0

(n
k

)
· f
(
k

n

)
· xk · (1− x)n−k mit n ∈ N und x ∈ [0, 1]. Es wird nun gezeigt, dass die Folge der Bernsteinpolynome (pn(x))n∈N

gleichmäßig gegen f konvergiert für n → ∞. Auf dem Intervall [0, 1] ist rk(x) immer positiv. Es gilt pn(x) =
n∑
k=0

f

(
k

n

)
· rk(x)

und f(x) =
n∑
k=0

f(x) · rk(x). Daraus folgt dann pn− f =
n∑
k=0

(
f

(
k

n

)
− f

)
· rk. Jetzt fehlt nur noch zu zeigen, dass diese Differenz

kleiner ist als jedes ε > 0. Da f auf [0, 1] gleichmäßig stetig ist, gilt also: Zu jedem ε > 0 gibt es ein δ > 0 so, dass |f(i)− f(j)| <
ε

2

für alle |i − j| < δ. Sei dann K1 =

{
k ∈ N0 :

∣∣∣∣ kn − x
∣∣∣∣ < δ

}
und K2 = N0 \ K1. Dann geht es so weiter: |pn(x) − f(x)| ≤

n∑
k=0

∣∣∣∣f ( kn
)
− f(x)

∣∣∣∣ · rk(x) =
∑

k∈K1

∣∣∣∣f ( kn
)
− f(x)

∣∣∣∣ · rk(x) +
∑

k∈K2

∣∣∣∣f ( kn
)
− f(x)

∣∣∣∣ · rk(x) ≤
ε

2
+
∑

k∈K2

∣∣∣∣f ( kn
)
− f(x)

∣∣∣∣ · rk(x), weil

n∑
k=0

rk(x) = 1 gilt und die k aus K1 sind. Es gilt nun: n·x·(1−x) =
n∑
k=0

(k−n·x)2·rk(x) ≥
∑

k∈K2

(k−n·x)2·rk(x) ≥
∑

k∈K2

(n·δ)2·rk(x).

Daraus folgt jetzt:
∑

k∈K2

rk(x) ≤
n · x · (1− x)

(n · δ)2
. Weil x · (1 − x) auf [0, 1] kleiner-gleich

1

4
ist, folgt

∑
k∈K2

rk(x) ≤
1

4 · n · δ2
. Sei

‖f‖ = max
t∈[0,1]

|f(t)|, dann gilt

∣∣∣∣f ( kn
)
− f(x)

∣∣∣∣ ≤ 2 · ‖f‖. Also gilt dann |pn(x)− f(x)| ≤
ε

2
+

‖f‖
2 · n · δ2

. Nun gibt es ein N ∈ N so,

dass
‖f‖

2 · n · δ2
<
ε

2
für alle n ≥ N . Also hat man endlich |pn(x)− f(x)| < ε. Damit ist man hier fertig!

Lemma. Sei A ⊆ C0(M,R) eine punktetrennende und nirgendsverschwindende Funktionenalgebra. Seien weiter p1 und p2

verschiedene Punkte und die Konstanten c1 und c2 in R. Dann existiert eine Funktion f ∈ A mit f(p1) = c1 und f(p2) = c2.

Beweis. Wähle g1, g2 ∈ A so, dass g1(p1) 6= 0 6= g2(p2). Dann ist g = g2
1 + g2

2 ∈ A und g(p1) 6= 0 6= g(p2). Wähle dann ein h ∈ A

so, dass die Punkte p1 und p2 trennt und betrachte die Matrix

H :=

 a a · b

c c · d

 :=

 g(p1) g(p1) · h(p1)

g(p2) g(p2) · h(p2)


Nach Konstruktion sind a, c 6= 0 und b 6= d. Da die Determinante von H nun det(H) = a · c · d− c · a · b = a · c · (d− b) 6= 0 ist, hat

H den Rang 2 und das lineare Gleichungssystem

a · ξ + a · b · η = c1 ∧ c · ξ + c · d · η = c2

hat eine eindeutige Lösung (ξ, η). Dann ist f = ξ · g + η · g · h ∈ A und f(p1) = c1, f(p2) = c2.

Lemma. Der Abschluss einer Funktionenalgebra in C0(M,R) ist wieder eine Funktionenalgebra.
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Beweis. Sei A eine Funktionenalgebra in C0(M,R) und f, g ∈ A. Das bedeutet dann also, dass f, g ∈ {h ∈ C0(M,R) :

h ist Berührungspunkt von A}. Ist f ein Berührpunkt von A, dann gibt es in jeder Umgebung um f ein Element aus A. Es

existieren deswegen Folgen (fn)n∈N und (gn)n∈N in A so, dass fn → f und gn → g bzgl. der gleichmäßigen Konvergenz. Da

(fn + gn)n∈N ebenfalls eine Folge in A ist und fn + gn → f + g bzgl. gleichmäßiger Konvergenz, folgt f + g ∈ A. Die Nachweise

der Abgeschlossenheit bzgl. der skalaren Multiplikation und der Multiplikation laufen analog.

Proposition. Sie A eine Funktionenalgebra, dann ist A = A.

Beweis. Ist f ∈ A, dann gibt es für alle ε > 0 ein g ∈ A so, dass gilt: ‖f − g‖ < ε. Es gilt dann A ⊆ A. Beweis: Seien f ∈ A

und ε > 0 beliebig. Es folgt: ‖f − f‖ = 0 < ε ⇒ f ∈ A. Also gilt auch: A ⊆ A. Es muss also nur noch A ⊆ A gezeigt werden: Sei

ε > 0 und f ∈ A, daraus folgt, es existiert ein g ∈ A mit ‖g − f‖ <
ε

2
. Da g ∈ A ist, existiert ein h ∈ A mit ‖g − h‖ <

ε

2
. Es folgt

‖h− f‖ = ‖h− g + g − f‖ ≤ ‖h− g‖+ ‖g − f‖ <
ε

2
+
ε

2
= ε, also A ⊆ A.

Lemma. Sei A eine Funktionenalgebra in C0(M,R), die in keinem Punkt verschwindet und punktetrennend ist. Sei f ∈ A,

dann ist auch |f | ∈ A.

Beweis. Sei ε > 0 gegeben. Nach dem Weierstraß’schen Approximationssatz existiert ein Polynom p so, dass gilt sup{|p(y) −

|y|| : |y| ≤ ‖f‖} <
ε

2
(*). |y| ist eine stetige Funktion, welche auf dem Intervall [−‖f‖, ‖f‖] definiert ist. Der konstante Term

von p ist kleiner-gleich
ε

2
, da |p(0) − |0|| <

ε

2
. Sei q(y) = p(y) − p(0). Dann ist wegen (*) also |q(y) − |y|| < ε. Setze nun

q(y) = a1 · y + a2 · y2 + . . .+ an · yn und g = a1 · f + a2 · f2 + . . .+ an · fn. Da A eine Algebra ist, ist g ∈ A wegen f ∈ A (nach

Voraussetzung). Sei nun y = f(x) mit x ∈M . Dann ist |g(x)− |f(x)|| = |q(y)− |y|| < ε. Daher ist |f | ∈ A = A.

Lemma. Sei A eine punktetrennende Funktionenalgebra, die in keinem Punkt verschwindet und seien f, g ∈ A. Dann sind

max{f, g} und min{f, g} auch Funktionen in A.

Beweis. Das Maximum und das Minimum zweier Funktionen kann, wie folgt, ausgedrückt werden:

max{f, g} =
f + g

2
+
|f − g|

2
und min{f, g} =

f + g

2
−
|f − g|

2

Da A eine Algebra ist, folgt also die Behauptung. Wenn man z.B. das Maximum von mehreren Funktionen haben möchte, dann:

max{f, g, h} = max{f,max{g, h}} ist wieder ein Term mit Betragsausdrücken.

Satz (Stone-Weierstraß). Sei M kompakt und A eine Funktionsalgebra in C0(M,R), die in keinem Punkt verschwindet und

punktetrennend ist. Dann liegt A dicht in C0(M,R): Zu gegebenen F ∈ C0(M,R) und ε > 0 ist ein G ∈ A gesucht, so dass für

alle x ∈M gilt: F (x)− ε < G(x) < F (x) + ε.

Beweis. Sei F ∈ C0(M,R) und ε > 0 gegeben. Es wird nun ein G ∈ A gesucht so, dass der Graph von G im ε-Schlauch von F

liegt. Man hält nun alle unterschiedlichen Punkte p, q ∈M fest. Nach einem Lemma oben kann man eine Funktion Hpq ∈ A finden

mit gegebenen Werten für p, q, so dass also die folgende Bedingung erfüllt ist: Hpq(p) = F (p) und Hpq(q) = F (q). Nun hält man

p fest und lässt q variieren. Aus der Stetigkeit von Hpq folgt, dass jedes q ∈ M eine Umgebung Uq hat, so dass aus x ∈ Uq folgt,

dass F (x)− ε < Hpq(x) ist. Hpq löst das Problem schonmal lokal. Die Kompaktheit von M impliziert, dass nur endlich viele dieser

Umgebungen Uq notwendig sind, um die Menge M zu überdecken. Seien diese Umgebungen Uq1 , . . . , Uqn . Definiere Gp, wie folgt:

Gp(x) = max{Hpq1 , . . . , Hpqn}

Dann ist Gp ∈ A nach einem Lemma oben und es gilt Gp(p) = F (p) und F (x) − ε < Gp(x) für alle x ∈ M . Stetigkeit impliziert

diesmal, das jedes p eine Umgebung Vp hat, so dass aus x ∈ Vp folgt, dass Gp(x) < F (x) + ε gilt. Da M kompakt ist, überdecken

endlich viele dieser Umgebungen die Menge M ; seien diese Vp1
, . . . , Vpm genannt. Setze nun:

G(x) = min{Gp1
, . . . , Gpm}

Es gilt also G ∈ A und nach Konstruktion F (x)− ε < G(x) < F (x) + ε für alle x ∈M .
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Der Satz von Tychonoff
[Zurück zur Liste]

Definition (Filter). Eine nichtleere Familie F von Teilmengen von einer Menge M ist ein Filter auf M, falls sie die folgenden

drei Bedingungen erfüllt:

1. ∅ /∈ F

2. A ∈ F und B ∈ F ⇒ A ∩ B ∈ F

3. A ∈ F und A ⊆ B ⊆M ⇒ B ∈ F

Ein Filter F konvergiert gegen ein x, wenn alle Umgebungen von x in F enthalten sind. Man nennt einen Filter U auf M

Ultrafilter, falls für jede Menge A ⊆M entweder A ∈ U oder M \ A ∈ U gilt.

Satz. Sei U ein Filter auf M. Folgende Bedingungen sind dann äquivalent:

1. U ist ein Ultrafilter.

2. Wenn F ein Filter auf M ist und U ⊆ F, dann gilt U = F.

3. Wenn A1 ∪ A2 ∈ U, dann gilt A1 ∈ U oder A2 ∈ U.

Beweis. 1. ⇒ 2.: Gebe es ein Element A ∈ F , das nicht in U wäre, so wäre M \ A in U und somit auch in F . Aber dann gelte

A ∩ (M \A) = ∅ ∈ F und das ist ein Widerspruch. 2. ⇒ 1.: Wäre U kein Ultrafilter, dann wäre für alle A ⊆M weder A ∈ U noch

M \A ∈ U . Und dann wäre {B∩U : U ∈ U, A ⊆ B ⊆M} ein Filter auf M , der A enthält und U umfasst. Diese Menge ist aber eine

echte Obermenge und das ist ein Widerspruch zur Voraussetzung. 1. ⇒ 3.: Es gilt A1 ∈ U und wenn nicht, dann gilt M \ A1 ∈ U

(Ultrafilter-Definition). Damit folgt (M \ A1) ∩ (A1 ∪ A2) ⊆ A2 ⊆ M ⇒ A2 ∈ U . 3. ⇒ 1.: Man setzt A2 = M \ A1, also ist dann

A1 ∪ A2 = M ∈ U , also A1 oder A2 in U enthalten, d.h. U ist ein Ultrafilter.

Satz. Jeder Filter wird von einem Ultrafilter auf der selben Menge umfasst.

Beweis. Sei F ein Filter auf M . Die Menge {G ⊇ F : G ist ein Filter auf M} wird durch die Teilmengenrelation ⊆ geordnet.

Wenn K eine Kette in dieser Menge ist, so ist
⋃
K wieder ein Filter, der F umfasst, und eine obere Schranke von K. Damit ist

die Voraussetzung für das Zorn’sche Lemma gegeben und es existiert ein ⊆-maximales Element U . Weil F ⊇ U nunmal F = U

impliziert, ist U ein Ultrafilter.

Satz. Ein topologischer Raum X ist genau dann kompakt, wenn alle Ultrafilter auf X konvergieren.

Beweis.
”
⇒“: Angenommen, X ist kompakt, aber ein Ultrafilter U auf X konvergiert nicht. Damit gibt es für jedes x ∈ X eine

offene Umgebung von x, die nicht in U enthalten ist. Sei dann O = {O : O offen, O /∈ U} mit
⋃
O = X und da X kompakt ist,

existiert eine endliche Menge E ⊆ O mit
⋃
E = X. Weil

⋃
E = X ∈ U gilt, folgt, dass ein Element von E in U enthalten ist, was

der Konstruktion von O widerspricht. Die andere Implikation,
”
⇐“: Angenommen, jeder Ultrafilter konvergiert, aber X ist nicht

kompakt. Sei O eine Menge von offenen Mengen mit
⋃
O = X so, dass für keine endliche Menge E ⊆ O gilt

⋃
E = X. Dann ist

{X \
⋃
E : E ⊆ O, E endlich} ein Filter, der von einem konvergenten Ultrafilter umfasst wird. Dieser Filter konvergiert gemäß

der Annahme gegen ein x. Dieses x ist in einem Ux ∈ O enthalten. Da der Ultrafilter U gegen x konvergiert, gilt Ux ∈ U . Aber es

gilt auch X \ Ux ∈ U , also ∅ ∈ U und das ist ein Widerspruch dazu, dass ein Filter die leere Menge nicht enthält und der Satz ist

bewiesen.

Satz. Wenn für alle i ∈ I der Filter pi[F ] gegen xi ∈ Xi konvergiert, dann konvergiert F auf X =
∏
i∈I

Xi gegen x.

Beweis. Sei U eine Umgebung von x. Es gibt eine endliche Menge E ⊆ I mit Ui als Umgebung von xi so, dass gilt
⋂
i∈E

p
−1
i (Ui) ⊆ U .

Dann gibt es wegen der Konvergenz pi[F ] → xi = pi(x) ein A ∈ F mit pi(A) ⊆ Ui (i ∈ E). Daraus folgt: A ⊆ p
−1
i (pi(A)) ⊆

p
−1
i (Ui)⇒ A ⊆

⋂
i∈E

p
−1
i (Ui) ⊆ U . Also gilt F 3 A ⊆ U ⊆ X, folglich U ∈ F und das bedeutet F → x.

Satz. Die Menge X =
∏
i∈I

Xi ist genau dann kompakt, wenn für alle i ∈ I die Menge Xi kompakt ist. Insbesondere ist der

unendlich-dimensionale Würfel [0, 1]∞ (Hilbertwürfel) kompakt.

Beweis.
”
⇒“: Wenn X kompakt ist, dann auch Xi = pi(X) für alle i ∈ I als Bild einer kompakten Menge unter einer stetigen

Abbildung. Die andere Richtung,
”
⇐“: Sei U ein Ultrafilter auf X. Da Xi kompakt ist, konvergiert der Ultrafilter pi(U) gegen ein

xi ∈ Xi. Dann konvergiert U gegen x = (xi)i∈I und das bedeutet, dass X kompakt ist.
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Das Brachistochrone-Problem
[Zurück zur Liste]

Satz. Durchäuft ein Körper ohne Reibung eine Bahnkurve von einem oberen Anfangspunkt A in der Ebene zu einem weiter

rechts liegenden Endpunkt B in minimaler Zeit, dann ist die Kurve ein Teil einer Zykloide von A nach B.

Beweis. Sei A = (0, 0) und B = (b1, b2). Zuerst wird die Zeit berechnet, die der Körper für den Durchlauf der Bahnkurve braucht:

Sei m die Masse des Körpers und g die Erdbeschleunigung und die Kurve werde beschrieben durch eine Funktion y(x). Ist die

Kurve an der Stelle x von A um y(x) nach unten gefallen, dann hat der Körper die potentielle Energie Epot = −mgy(x) (y(x) ist

negativ) verloren, welche in kinetische Energie Ekin = 1
2mv

2 umgewandelt wird. Es gilt deswegen:

1

2
mv

2
= −mgy(x)⇒ v =

√
−2gy(x)

Nun braucht man noch die Länge der Kurve bis zur Stelle x, die sich folgendermaßen berechnet:

s(x) =

∫ x

0

√
1 + y′(τ)2 dτ

Sei t die Zeit, die Körper von A = (0, 0) nach (x, y(x)) braucht. Dann gilt nach der Kettenregel:

v(t) =
d

dt
s(x(t)) =

d

dx
s(x(t)) ·

d

dt
x(t)

Wegen v(t) =
√
−2gy(x(t)) und d

dx s(x(t)) =
√

1 + y′(x(t))2 folgt:

d

dt
x(t) =

√
−2gy(x(t))

1 + y′(x(t))2

Da x(t) streng monoton steigend ist, existiert die Umkehrfunktion. Für die Ableitung dieser Umkehrfunktion gilt die Formel

d
dx t(x) = 1

d
dt
x(t(x))

, also gilt dann:

d

dx
t(x) =

√
1 + y′(x)2

−2gy(x)
⇒ t(x) =

∫ √
1 + y′(x)2

−2gy(x)
dx

Man kann nun die Gesamtzeit ausrechnen:

T = t(b1)− t(0) = t(b1)− 0 =

∫ b1

0

√
1 + y′(x)2

−2gy(x)
dx =

∫ b1

0

L(y(x), y
′
(x)) dx

Gesucht wird nun eine Kurve y so, dass die Gesamtzeit T minimal ist. Sei y0 diese Funktion, für die das Integral

∫ b1

0

L(y, y
′
) dx

das Extremum annimmt. Man betrachtet dann zu beliebige u(x) mit u(0) = u(b1) = 0 die Funktionenschar y0(x) + ε · u(x) und

dazu das folgende Integral:

T (ε) =

∫ b1

0

L(y0 + ε · u, y′0 + ε · u′) dx

T (ε) muss an der Stelle ε = 0 ein Extremum haben, weil y0 das Integral ja minimiert. Es gilt also T ′(0) = 0. Durch Vertauschung

von Differentiation und Integration und mit der verallgemeinerten Kettenregel erhält man dann:

T
′
(ε) =

d

dε

∫ b1

0

L(y0 + ε · u, y′0 + ε · u′) dx =

∫ b1

0

d

dε
L(y0 + ε · u, y′0 + ε · u′) dx

Und das ist gleich zu: ∫ b1

0

Ly(y0 + ε · u, y′0 + ε · u′) · u+ Ly′ (y0 + ε · u, y′0 + ε · u′) · u′ dx

Um u ausklammern zu können, wird der zweite Summand im Integral partiell integriert:∫ b1

0

Ly′ (y0 + ε · u, y′0 + ε · u′) · u′ dx = [Ly′ (y0 + ε · u, y′0 + ε · u′) · u]
b1
0︸ ︷︷ ︸

=0

−
∫ b1

0

(
d

dx
Ly′ (y0 + ε · u, y′0 + ε · u′)

)
· u dx

Insgesamt gilt also:

T
′
(ε) =

∫ b1

0

(Ly(y0 + ε · u, y′0 + ε · u′)−
d

dx
Ly′ (y0 + ε · u, y′0 + ε · u′)) · u dx

Als nächstes wird ε = 0 gesetzt. Dabei gilt:(
d

dx
Ly′ (y0 + ε · u, y′0 + ε · u′)

)
ε=0

=
(
Ly′y(y0 + ε · u, y′0 + ε · u′) · (y′0 + ε · u′) + Ly′y′ (y0 + ε · u, y′0 + ε · u′) · (y′′0 + ε · u′′)

)
ε=0

= Ly′y(y0, y
′
0) · y′0 + Ly′y′ (y0, y

′
0) · y′′0

=
d

dx
Ly′ (y0, y

′
0)
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Das notwendige Kriterium für die Extremaleigenschaft von y0 lautet also:

T
′
(0) =

∫ b1

0

(
Ly(y0, y

′
0)−

d

dx
Ly′ (y0, y

′
0)

)
· u dx = 0

Da dieses Integral für beliebige u verschwindet, folgt Ly(y0, y
′
0)− d

dxLy′ (y0, y
′
0) = 0. Diese Erkenntnis benutzt man nun, um eine

einfachere Gleichung herzuleiten:

d

dx
(L(y0, y

′
0)− y′0 · Ly′ (y0, y

′
0)) = Ly(y0, y

′
0) · y′0 + Ly′ (y0, y

′
0) · y′′0 − y

′′
0 Ly′ (y0, y

′
0)− y′0 ·

d

dx
Ly′ (y0, y

′
0)

= Ly(y0, y
′
0) · y′0 − y

′
0 ·

d

dx
Ly′ (y0, y

′
0)

=

(
Ly(y0, y

′
0)−

d

dx
Ly′ (y0, y

′
0)

)
︸ ︷︷ ︸

=0

· y′0

= 0

Eine Kurve y, die die Gesamtzeit minimiert, erfüllt also die Gleichung L(y, y′)− y′ · Ly′ (y, y
′) = C (C ∈ R). Nun gilt:

L(y, y
′
) =

√
1 + y′2

−2gy

Setzt man dies in die Gleichung oben ein, erhält man:√
1 + y′2

−2gy
− y′ ·

1

2
√

1+y′2
−2gy

·
y′

−gy
= C ⇒

−1− y′2

2gy
+
y′2

2gy
= C ·

√
1 + y′2

−2gy
⇒
( −1

2gy

)2

= C
2 ·

1 + y′2

−2gy
⇒ −

1

2gy
= C

2 · (1 + y
′2

)

Es muss also folgende Differentialgleichung erfüllt sein:

−y(x) · (1 + y
′
(x)

2
) =

1

2gC2
=: k

2

Die Lösung dieser Differentialgleichung wird im Folgenden nicht durch y(x) gegeben, sondern durch eine Parametrisierung (x(t), y(t)).

Soll dafür der Graph der Funktion y(x) gleich dem Graphen der Parametrisierung (x(t), y(t)) sein, dann muss y(x(t)) = y(t)

gelten. Aus der Differentialgleichung da oben: −y(x) · (1 + y′(x)2) = k2, folgt dann: −y(x(t)) · (1 + y′(x(t))2) = k2. Wegen

d

dt
y(x(t)) = y′(x(t)) ·

d

dt
x(t), also y′(x(t)) =

d
dty(x(t))
d
dtx(t)

=
d
dty(t)
d
dtx(t)

, muss also −y(t) ·
(

1 +

(
d
dty(t)
d
dtx(t)

)2)
= k2 erfüllt sein. Es wird

nun gezeigt, dass x(t) = k2

2 · (t − sin(t)), y(t) = k2

2 · (cos(t) − 1) eine Lösung dieser DGL ist, die sogar (x(0), y(0)) = (0, 0) = A

erfüllt. Der Nachweis also:

−y(t) ·
(

1 +

(
d
dty(t)
d
dtx(t)

)2)
=
k2

2
· (1− cos(t)) ·

1 +

(
k2

2 · (− sin(t))

k2

2 · (1− cos(t))

)2
 =

k2

2
· (1− cos(t)) ·

(
(1− cos(t))2 + (sin(t))2

(1− cos(t))2

)

Und das ist gleich zu:

k2

2
·
(

1− 2 · cos(t) + (cos(t))2 + (sin(t))2

1− cos(t)

)
=
k2

2
·
(

2− 2 · cos(t)

1− cos(t)

)
=
k2 · 2

2
= k

2

Als letztes muss das k nur noch so angepasst werden, dass die Kurve (x(t), y(t)) von A auch durch B = (b1, b2) mit b1 > 0 und

b2 < 0 läuft. Somit ist die Bahnkurve, die die Laufzeit von A nach B (rechts und unterhalb von A) minimiert, als Teil einer Zykloide

von A nach B gefunden und der Satz bewiesen.

Das isoperimetrische Problem
[Zurück zur Liste]

Satz. Das isoperimetrische Problem besteht darin, unter allen geschlossenen ebenen Kurven gleichen Umfangs diejenige zu

finden, die den größten Flächeninhalt umschließt. Die Lösung dieses Problems ist ein Kreis.

Beweis. Es sei die Lösungskurve in parametrisierter Form (x(t), y(t)) dargestellt. Da die Kurve geschlossen ist, müssen x und y

eine gewisse Periodizität haben. O.B.d.A. wählt man die Periodizität so, dass die Kurve die Periode 2π beträgt, d.h. x und y sind

Funktionen [0, 2π]→ R. Dann kann man x und y in eine Fourier-Reihe entwickeln. Man erhält also:

x(t) =
a0

2
+

∞∑
n=1

an · cos(nt) + bn · sin(nt), y(t) =
c0

2
+

∞∑
n=1

cn · cos(nt) + dn · sin(nt)
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Der Flächeninhalt der von (x(t), y(t)) umschlossenen Fläche berechnet sich mit der Leibniz’schen Sektorformel:

A =
1

2
·
∫ 2π

0

x(t)ẏ(t)− ẋ(t)y(t) dt

Der Umfang dieser Kurve ist dabei gegeben durch:

L =

∫ 2π

0

√
ẋ(t)2 + ẏ(t)2 dt

Für die Ableitungen von x(t) und y(t) gilt:

ẋ(t) =
∞∑
n=1

n · (bn · cos(nt)− an · sin(nt)), ẏ(t) =
∞∑
n=1

n · (dn · cos(nt)− cn · sin(nt))

Weiter gilt nun wegen der Konvergenz der Fourierreihen:

x(t)ẏ(t) =

a0

2
+
∞∑
n=1

an · cos(nt) + bn · sin(nt)︸ ︷︷ ︸
=:αn(t)

 ·
 ∞∑
n=1

n · (dn · cos(nt)− cn · sin(nt))︸ ︷︷ ︸
=:βn(t)


=
a0

2
·
∞∑
n=1

βn(t) +
∞∑
m=1

∞∑
n=1

αm(t)βn(t)

und

ẋ(t)y(t) =

 ∞∑
n=1

n · (bn · cos(nt)− an · sin(nt))︸ ︷︷ ︸
=:γn(t)

 ·
 c02 +

∞∑
n=1

cn · cos(nt) + dn · sin(nt)︸ ︷︷ ︸
=:δn(t)


=
c0

2
·
∞∑
n=1

γn(t) +

∞∑
m=1

∞∑
n=1

γm(t)δn(t)

Also gilt dann:

x(t)ẏ(t)− ẋ(t)y(t) =
1

2
·
∞∑
n=1

(a0 · βn(t)− c0 · γn(t)) +

∞∑
m=1

∞∑
n=1

αm(t)βn(t)− γm(t)δn(t)

Nun ist
∞∑
m=1

∞∑
n=1

αm(t)βn(t)− γm(t)δn(t) gleich A(t) + B(t), wobei gilt:

A(t) := (n · amdn −m · bmcn) · cos(mt) · cos(nt) + (m · bmdn − n · amcn) · cos(mt) · sin(nt)

und

B(t) := (n · bmdn +m · amcn) · sin(mt) · cos(nt) + (m · amdn − n · bmcn) · sin(mt) · sin(nt)

Nun gelten folgende Relationen:

∫ 2π

0

cos(mt) · cos(nt) dt =

∫ 2π

0

sin(mt) · sin(nt) dt =

 0, m 6= n

π, m = n

und ∫ 2π

0

cos(mt) · sin(nt) dt =

∫ 2π

0

sin(mt) · cos(nt) dt = 0

Daraus folgt dann: ∫ 2π

0

∞∑
m=1

∞∑
n=1

αmβn − γmδn dt = 2π ·
∞∑
n=1

n · (andn − bncn)

Desweiteren gilt:

∫ 2π

0

1

2
·
∞∑
n=1

a0 · βn(t)− c0 · γn(t) dt =

∫ 2π

0

1

2
·
∞∑
n=1

(n · a0dn − n · c0bn) · cos(nt) + (n · c0an − n · a0cn) · sin(nt) dt = 0

Denn es gilt

∫ 2π

0

cos(nt) dt =

∫ 2π

0

sin(nt) dt = 0. Zusammengefasst gilt also:

A =
1

2
·
(

2π ·
∞∑
n=1

n · (andn − bncn)

)
= π ·

∞∑
n=1

n · (andn − bncn)

O.B.d.A. wird nun weiter verlangt, dass ẋ(t)2 + ẏ(t)2 = konst. gilt, was bedeutet, dass die Kurve mit konstanter Geschwindigkeit

durchlaufen wird. Jeder mögliche Graph der Kurve kann so durchlaufen werden, dass die Geschwindigkeit konstant ist, deswegen

hat man hier keine Einschränkung. Aus der Formel für die Länge der parametrisierten Kurve folgt dann:

L = 2π ·
√
ẋ(t)2 + ẏ(t)2 − 0⇒ ẋ(t)

2
+ ẏ(t)

2
=

L2

4π2
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Nun gilt folgendes:

ẋ(t)
2

=
∞∑
m=1

∞∑
n=1

m · n · (bmbn · cos(mt) · cos(nt)− bman · cos(mt) · sin(nt)− ambn · sin(mt) · cos(nt) + aman · sin(mt) · sin(nt))

Wegen der oben gezeigten Relationen impliziert das:

∫ 2π

0

ẋ(t)
2
dt =

∞∑
n=1

n
2 · (π · b2n + π · a2

n) = π ·
∞∑
n=1

n
2 · (a2

n + b
2
n)

Analog zeigt man: ∫ 2π

0

ẏ(t)
2
dt = π ·

∞∑
n=1

n
2 · (c2n + d

2
n)

Daraus folgt:
∞∑
n=1

n
2 · (a2

n + b
2
n + c

2
n + d

2
n) =

∫ 2π

0

ẋ(t)
2

+ ẏ(t)
2
dt =

∫ 2π

0

L2

4π2
dt = 2π ·

L2

4π2
− 0 =

L2

2π

Damit hat man insgesamt:

L
2 − 4π · A = 2π ·

∞∑
n=1

n
2 · (a2

n + b
2
n + c

2
n + d

2
n)− 4π

2 ·
∞∑
n=1

n · (andn − bncn)

= 2π
2 ·
∞∑
n=1

(n · an − dn)
2

+ (n · bn + cn)
2

+ (n
2 − 1) · (c2n + d

2
n) ≥ 0

Somit hat man die isoperimetrische Ungleichung 4π ·A ≤ L2 erhalten. Wenn man nun die Koeffizienten so wählt, dass 4π ·A = L2

ist, dann hat A den größtmöglichen Wert. Es soll also gelten:

∞∑
n=1

(n · an − dn)
2

+ (n · bn + cn)
2

+ (n
2 − 1) · (c2n + d

2
n) = 0

Das ist genau dann der Fall, wenn alle Summanden in der unendlichen Summe verschwinden. Im Fall n = 1 bedeutet das a1 = d1

und b1 = −c1. Und im Fall n > 1 muss zunächst c2n + d2
n = 0 gelten, also cn = dn = 0. Damit folgt dann auch an = bn = 0. Die

parametrisierte Kurve ist nun also bestimmt:

x(t) =
a0

2
+ a1 · cos(t) + b1 · sin(t), y(t) =

c0

2
+ c1 · cos(t) + d1 · sin(t) =

c0

2
− b1 · cos(t) + a1 · sin(t)

Nun gilt: (
x(t)−

a0

2

)2

+

(
y(t)−

c0

2

)2

= a
2
1 + b

2
1

Das bedeutet, es handelt sich bei der Parametrisierung (x(t), y(t)) tatsächlich um einen Kreis mit dem Mittelpunkt
( a0

2 ,
c0
2

)
und

dem Radius r =
√
a2

1 + b21. Der Beweis ist damit beendet.

Das Verfolgungsproblem
[Zurück zur Liste]

Satz. Sei y(x) die Funktion, die die Verfolgungskurve zum sich entlang der x-Achse mit der konstanten Geschwindigkeit v

bewegenden Objekt darstellt, wobei dieser im Punkt (a, 0) auf der x-Achse starte. Der Verfolger hingegen bewege sich konstant

mit der Geschwindigkeit w und starte auf der y-Achse im Punkt (0, b). Die Tangente an der Kurve y(x) läuft dabei stets durch

den Punkt des verfolgten Objektes mit den Koordinaten (a+ v · t, 0). Die Kurve hat dann in einem x-y-Koordinatensystem die

folgende Gestalt:

x(y) =
w

v2 − w2
·

y · v · cosh(h(y)) + y · w · sinh(h(y))− w · a− v · b ·

√
a2

b2
+ 1


Dabei ist h(y) := v

w · (ln(b)− ln(y)) + asinh
(
a
b

)
.

Beweis. Es gilt erstens:
−y(x)

a+ v · t− x
= y
′
(x)⇔ a+ v · t− x = −

y(x)

y′(x)

Zweitens gilt nach Voraussetzung:

√
ẋ(t)2 + ẏ(t)2 = w ⇒ ẋ(t)

2
+ ẏ(t)

2
= w

2 ⇒ 1 +
ẏ(t)2

ẋ(t)2
= 1 + y

′
(x(t))

2
=

w2

ẋ(t)2
⇒ 1 + y

′
(x)

2
=

w2

ẋ(t(x))2
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Weiter gilt:

t(x(t)) = t⇒ t
′
(x(t)) · ẋ(t)⇒ t

′
(x) =

1

ẋ(t(x))

Daraus folgt dann:

1 + y
′
(x)

2
= w

2 · t′(x)
2 ⇒ t

′
(x) =

√
1 + y′(x)2

w

Die oberste Gleichung wird nun einmal nach x abgeleitet:

v · t′(x)− 1 = −
y′(x)2 − y(x) · y′′(x)

y′(x)2

Es gilt dann also:

v ·
√

1 + y′(x)2

w
− 1 = −

y′(x)2 − y(x) · y′′(x)

y′(x)2
⇒ y

′
(x)

2 ·
v

w
·
√

1 + y′(x)2 − y′(x)
2

= −y′(x)
2

+ y(x) · y′′(x)

⇒ y
′′

(x) =
y′(x)2

y(x)
·
v

w
·
√

1 + y′(x)2

Da die Funktion y(x) unter Umständen nicht wohldefiniert ist, da sie einem x in bestimmten Fällen zwei verschiedene y(x) zuordnet,

vertauscht man x und y und geht zur Funktion x(y) über, die dann auch eine Funktion ist. Es gilt:

y(x(y)) = x⇒ y
′
(x) =

1

x′(y(x))
⇒ y

′′
(x) =

−1 · x′′(y(x)) · y′(x)

x′(y(x))2

Bereits gezeigt wurde y′′(x(y)) =
y′(x(y))2

y · vw ·
√

1 + y′(x(y))2 = 1
x′(y)2·y

· vw ·
√

1 + 1
x′(y)2

= 1
x′(y)3·y

· vw ·
√
x′(y)2 + 1. Daraus

folgt dann mit den anderen Gleichungen:

−
x′′(y)

x′(y)3
= −

x′′(y) · y′(x(y))

x′(y)2
= y
′′

(x(y)) =
1

x′(y)3 · y
·
v

w
·
√
x′(y)2 + 1⇒ x

′′
(y) = −

v

w
·

1

y
·
√

1 + x′(y)2

Weiter umgeformt hat man also:

x′′(y)√
1 + x′(y)2

= −
v

w
·

1

y
⇒ asinh(x

′
(y)) =

∫
x′′(y)√

1 + x′(y)2
dy = −

v

w
·
∫

1

y
dy + C1 = −

v

w
· ln(y) + C1

D.h., dass folgendes gilt:

x
′
(y) = sinh

(
C1 −

v

w
· ln(y)

)
=
eC1 · y−

v
w − e−C1 · y

v
w

2

Das gilt wegen sinh(x) = ex−e−x
2 . Nach unbestimmter Integration ergibt sich:

x(y) =

eC1
1− v

w
· y1− v

w − e−C1
1+ v

w
· y1+ v

w

2
+ C2

Dieses Ergebnis wird noch ein bisschen umgeformt:

x(y) =

eC1 ·w
w−v · y

1− v
w − e−C1 ·w

w+v · y1+ v
w

2
+ C2

=
eC1 · w · (w + v)

2 · (w2 − v2)
· y1− v

w −
e−C1 · w · (w − v)

2 · (w2 − v2)
· y1+ v

w + C2

=
w · y

w2 − v2
·
(
e
C1 ·

w + v

2
· y−

v
w − e−C1 ·

w − v
2
· y

v
w

)
+ C2

=
w · y

w2 − v2
·
(
v · cosh

(
C1 −

v

w
· ln(y)

)
+ w · sinh

(
C1 −

v

w
· ln(y)

))
+ C2

Es wurde hier neben sinh(x) noch cosh(x) = ex+e−x
2 benutzt. Mithilfe der beiden Anfangsbedingungen werden die Konstanten C1

und C2 bestimmt. Im Startpunkt des Verfolgers (0, b) hat die Steigung der Kurventangente an x(y) den Wert a
b , also:

x
′
(b) =

a

b
= sinh

(
C1 −

v

w
· ln(b)

)
⇒ C1 =

v

w
· ln(b) + asinh

(
a

b

)
Das setzt man schon mal ein:

x(y) =
w · y

w2 − v2
·
(
v · cosh

(
v

w
· ln(b) + asinh

(
a

b

)
−
v

w
· ln(y)

)
+ w · sinh

(
v

w
· ln(b) + asinh

(
a

b

)
−
v

w
· ln(y)

))
+ C2

=
w · y

w2 − v2
·
(
v · cosh

(
v

w
· (ln(b)− ln(y)) + asinh

(
a

b

))
+ w · sinh

(
v

w
· (ln(b)− ln(y)) + asinh

(
a

b

)))
+ C2
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Weil der Verfolgerstartpunkt (0, b) auf der Kurve x(y) liegt, muss x(b) = 0 gelten, also:

x(b) =
w · b

w2 − v2
·
(
v · cosh

(
v

w
· (ln(b)− ln(b)) + asinh

(
a

b

))
+ w · sinh

(
v

w
· (ln(b)− ln(b)) + asinh

(
a

b

)))
+ C2

=
w · b

w2 − v2
·
(
v · cosh

(
asinh

(
a

b

))
+ w · sinh

(
asinh

(
a

b

)))
+ C2

=
w · b

w2 − v2
·

v ·
√
a2

b2
+ 1 + w ·

a

b

+ C2

= 0

Also muss dann gelten:

C2 =
w

w2 − v2
·

−w · a− v · b ·
√
a2

b2
+ 1


Setzt man auch C2 in die Darstellung von x(y) ein, so ergibt sich fast die behauptete Kurve. Zu Beginn wurde die Differentialglei-

chung
−y(x)
a+v·t−x = − y(x)

a+v·t−x = y′(x) aufgestellt. Das Minuszeichen vor y(x) müsste eigentlich ein Pluszeichen sein. Um Rechen-

vorteile zu bekommen, wurde dennoch das Minuszeichen gewählt. Die Lösungskurve ist nun natürlich eine andere als gewünscht,

nämlich die an der y-Achse gespiegelte Kurve, denn y′(x) bekommt in jedem Punkt den mit −1 multiplizierten Steigungswert.

y(x) an der y-Achse zu spiegeln heißt x(y) mit −1 zu multiplizieren. Dazu wird der Faktor w
w2−v2 in x(y) ersetzt durch w

v2−w2 .

Dadurch erhält man dann die gewünschte Lösungskurve.

Das Königsberger Brückenproblem
[Zurück zur Liste]

Satz. Das Königsberger Brückenproblem kann man auf den oben abgebildeten Graphen abstrahieren. Es ist dort nicht möglich

von einem Knoten angefangen einen Weg durch den Graphen so zu gehen, dass jede Kante genau einmal benutzt wird und man

sich am Ende des Weges wieder im Anfangsknoten befindet. In diesem Graphen existiert somit kein sogenannter Eulerkreis.

Denn es gilt: Es existiert in einem zusammenhängenden Graphen ein Eulerkreis genau dann, wenn jeder Knoten dort geraden

Grad besitzt, d.h., wenn an jedem Knoten eine gerade Anzahl an Kanten hängt. In dem damaligen Königsberg ist es deswegen

unmöglich von einem Gebiet angefangen über alle sich dort befindlichen Flussbrücken genau einmal so zu gehen, dass man zum

Schluss wieder im Ausgangsgebiet landet, denn der Grad von z.B. Knoten B ist ungerade.

Beweis. Sei der Graph zusammenhängend, d.h. von jedem Knoten gibt es zu jeden anderen Knoten einen Kantenweg.
”
⇒“: Sei

also ein Eulerkreis im Graphen existent. Das bedeutet, es gibt eine Knotenfolge (v1, v2, . . . , vi, v1), in der außer dem Startknoten

v1 jeder andere Knoten genau einmal vorkommt. In diesem Kreis wird jeder Knoten k-mal durchlaufen, d.h. jeweils über eine Kante

erreicht und über eine weitere verlassen, denn man endet nur im Anfangsknoten. Daraus folgt, dass jeder Knoten einen geraden

Grad besitzen muss. Da der Graph zusammenhängend ist und der Eulerkreis alle Knoten des Graphen umfasst, haben folglich

alle Knoten des Graphen einen geraden Grad. Die andere Richtung
”
⇐“: Alle Knoten im Graphen besitzen geraden Grad. Man

startet dann von einem Knoten v1 und benutzt solange eine Kante zum nächsten Knoten bis keine Kante mehr rausführt. Man

erhält also eine Kantenfolge (k1, . . . kn), wobei jede Kante des Graphen in dieser höchstens einmal vorkommt. Der Endknoten

sei mit vn bezeichnet. Da alle Knoten geraden Grad haben, muss v1 = vn gelten, denn jeder andere Knoten ist jeweils l-mal

passierbar, weil der Grad dieser Knoten ja gerade ist. Von v1 wurde bereits eine ungerade Anzahl an Kanten benutzt (man kann

dabei nämlich v1 noch mehrmals passiert haben). Endet man, dann deswegen nur in dem Knoten v1. Hat man nun den gesamten

Graphen durchlaufen, ist man fertig. Existiert jedoch an einem Knoten noch eine unbenutzte Kante, dann führt aus diesem Knoten

wieder ein Kantenweg heraus, der in demselben Knoten aufgrund der Geradzahligkeit der Grade endet; die zugehörige Kantenfolge

(k′1, . . . , k
′
n). Die zusammengelegten Wege (k1, k2, . . . , kj , k

′
1, k
′
2, . . . , k

′
m, kj+1, . . . , kn) bilden dann wieder einen geschlossenen

Weg. Hat man diesmal alle Kanten benutzt, dann ist man fertig. Ansonsten gibt es wieder einen geschlossenen Kantenzug in die
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bisher zusammengelegte Kantenfolge einzufügen. Das wiederholt man bis es keine unbenutzte Kante mehr gibt. Als Ergebnis erhält

man einen Kantenweg, der jede Kante des Graphen mindestens und höchstens einmal benutzt und der im Startknoten endet. Und

das ist eben ein Eulerkreis.

Satz. In diesem Satz verlangt man nun nicht mehr, anders als im vorigen Satz, dass man bei einem Weg, der jede Kante

des zusammenhängenden Graphen genau einmal benutzt, am Ende wieder im Ausgangsknoten landet. Man spricht dann nicht

mehr von einem Eulerkreis, sondern von einem Eulerweg. Es gilt: Es existiert in einem zusammenhängenden Graphen ein

Eulerweg genau dann, wenn genau zwei Knoten ungeraden Grad besitzen. Im damaligen Königsberg konnte man also auch

keinen Eulerweg finden, denn alle vier Knoten haben ungeraden Grad und nicht genau zwei.

Beweis.
”
⇒“: Sei ein Eulerweg im zusammenhängenden Graphen existent. Man starte dann vom Anfangsknoten, den man vielleicht

noch mehrmals durchläuft (rein und raus), in dem man aber nicht endet. Weil man nur im Start- und Endknoten startet bzw.

endet, werden die anderen Knoten k-mal durchlaufen. Das bedeutet, weil der Graph zusammenhängend ist und der Eulerweg alle

Kanten des Graphen umfasst, dass diese anderen Knoten geraden Grad haben, anders als der Anfangs- und der Endkonten, die

ungeraden Grad haben, da man diese vielleicht mehrere Male durchläuft (gerade), aber man dort startet bzw. endet (+1). Nun zur

anderen Richtung
”
⇐“: Der zusammenhängende Graph habe also genau zwei Knoten v1 und v2 ungeraden Grades. Man macht nun

folgenden Trick: Es wird der Knoten v1 mit dem Knoten v2 durch eine Hilfskante k∗ verbunden. Der daraus entstandene neue Graph

ist dann zusammenhängend und hat nur Knoten geraden Grades. Nach dem vorherigen Satz existiert dann ein Eulerkreis in diesem

neuen Graphen. In diesem Kreis muss irgendwo die Kante k∗ vorkommen. Sei (k1, k2, . . . , ki, k
∗, ki+2, . . . , km) die Kantenfolge des

Eulerkreises, dann ist (ki+2, . . . , km, k1, k2, . . . , ki) ein Eulerweg des ursprünglichen Graphens (ohne die Hilfskante k∗), womit die

Existenz des sogenannten Eulerweges gezeigt ist und damit auch dieser Satz bewiesen ist.

Das Kettenlinienproblem
[Zurück zur Liste]

Satz. Eine Kette, die unter der Wirkung des eigenen Gewichts in der Luft aufgehängt wird, formt sich nicht zu einem Halbkreis

oder einer Parabel, sondern man bekommt als Lösung: y(x) =
1

k
· cosh(k · (x−A)) +B mit noch zu bestimmenden Konstanten.

Dabei gilt speziell k =
% · g
S

, wobei % die Dichte der Kette (pro Längeneinheit), g die Erdbeschleunigung (welche den ungefähren

Zahlenwert 9, 81
m

s2
hat) und S die horizontale Spannungskraft in der Kette ist, die sich aus der Beschaffenheit einer konkreten

Kurve ergibt. Wird die Kettenkurve der Länge l an den beiden Punkten

(
−
w

2
, h

)
und

(
w

2
, h

)
aufgehängt, dann ist die Kurve

gegeben durch y(x) =
1

kl
· cosh (kl · x) +

(
h−

1

kl
· cosh

(
kl ·

w

2

))
, wobei kl eine positive reelle Zahl (größer Null) so sei, dass

2

kl
· sinh

(
kl ·

w

2

)
= l gilt, mit l > w, weil die Kette mindestens so lang sein muss, wie der Abstand zwischen den beiden

Aufhängepunkten. Dass die Kettenkurve so aussieht, wird nun bewiesen.

Beweis. Zuerst mal eine Zeichnung, die die Physik klar macht:
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Die beiden zur Kettenkurve tangentialen Spannungskräfte −
−→
T (s) und

−→
T (s+∆s), parametrisiert nach Bogenlänge, heben zusammen

die Gewichtskraft, die zwischen den beiden Spannungskräften wirkt, auf, damit also die Summe aller Kräfte Null ist, was auch so

sein muss, denn sonst wäre die Kette in Bewegung. Sei % die Dichte der Kette pro Längeneinheit, g die Erdbeschleunigung und

∆s die Länge der Kette zwischen den beiden Spannungskräften. Dann gilt
−→
G =

 0

−m∆s · g

 =

 0

−% ·∆s · g

. Wie oben

erwähnt, muss also gelten: −
−→
T (s) +

−→
T (s + ∆s) = −

−→
G ⇒

−→
T (s+ ∆s)−

−→
T (s)

∆s
=

 0

% · g

. Daraus folgt dann also mit ∆s → 0:

−→
T ′(s) =

 0

% · g

. Jetzt integriert man beide Seiten und erhält dann
−→
T (s) =

 C1

% · g · s+ C2

 mit den Integrationskonstanten

C1 und C2. Man sieht somit, dass die Horizontalkomponente C1 = S der Spannungskraft an jedem Punkt der Kurve gleich

ist, wohingegen ihre Vertikalkomponente von der Position auf der Kurve abhängt. Sie muss am tiefsten Punkt der Kettenkurve

verschwinden, da die Kurve dort eine horizontale Tangente hat. Vereinbart man, dass die Bogenlänge von diesem Minimum aus

gemessen wird, so verschwindet die zweite Integrationskonstante, C2 = 0, und man erhält dann
−→
T (s) =

 S

% · g · s

. Der Vektor

−→
T zeigt an jedem Punkt der Kettenkurve in Richtung ihrer Tangente. Was man hier sucht, ist aber eine Beschreibung der Form

y(x), also die Abhängigkeit der Ordinate y als Funktion der Abszisse x. Man legt den Ursprung dieses Koordinatensystems in

das Minimum der Kettenkurve und parametrisiert x und y als Funktion der Bogenlänge s, so dass also gilt

∥∥∥∥∥∥
 x′(s)

y′(s)

∥∥∥∥∥∥ = 1.

Beweis: Sei c(s) =

 x(s)

y(s)

. Es wird nun ‖c′(s)‖ = 1 gezeigt: Es gilt s(t) =

∫ t

t0

‖c′(τ)‖ dτ , also s′(t) = ‖c′(t)‖. Nun gilt

s(t(s)) = s, also
d

ds
(s(t(s))) = s′(t) · t′(s) = 1 =

d

ds
s, folglich: t′(s) =

1

s′(t)
=

1

‖c′(t)‖
. Daraus folgt dann ‖c′(s)‖ = ‖c′(t) · t′(s)‖ =

‖c′(t)‖·‖t′(s)‖ = ‖c′(t)‖·
∥∥∥∥ 1

‖c′(t)‖

∥∥∥∥ = 1. Es gelte also
−→
T (s) =

∥∥∥−→T (s)
∥∥∥ ·
 x′(s)

y′(s)

 =

 S

% · g · s

, also dann:
∥∥∥−→T (s)

∥∥∥ ·x′(s) = S

und
∥∥∥−→T (s)

∥∥∥ · y′(s) = % · g · s. Damit gilt also: x′(s) =
S∥∥∥−→T (s)
∥∥∥ und y′(s) =

% · g · s∥∥∥−→T (s)
∥∥∥ . Nun gilt doch y′(x) =

d

dx
y(s(x)) =

y′(s) · s′(x) = y′(s) ·
1

x′(s)
=
y′(s)

x′(s)
=

% · g · s∥∥∥−→T (s)
∥∥∥

S∥∥∥−→T (s)
∥∥∥

=
% · g · s
S

. Also gilt nun y′(x) ·
S

% · g
= s(x). Weil s(x) =

∫ x

0

√
1 + y′(x̃)2 dx̃,

folgt daraus s′(x) =
√

1 + y′(x)2. Jetzt wird bei y′(x) ·
S

% · g
= s(x) auf beiden Seiten nach x abgeleitet, woraus man dann

endlich die Differentialgleichung y′′(x) ·
S

% · g
= s′(x) =

√
1 + y′(x)2 erhält. Anders aufgeschrieben: y′′(x) = k ·

√
1 + y′(x)2 mit

k :=
% · g
S

. Diese DGL wird jetzt gelöst: Substituiere z(x) = y′(x), dann gilt

∫
z′(x)√

1 + z(x)2
dx =

∫
k dx = k · x + Ã. Nun muss

man wissen, dass
d

dz
asinh(z) =

1
√

1 + z2
gilt, also

∫
z′(x)√

1 + z(x)2
dx = asinh(z(x)) = k · x + Ã ⇒ z(x) = y

′
(x) = sinh(k · x + Ã).

Diesmal muss man wissen:
d

dx
cosh(x) = sinh(x). Also folgt y(x) =

∫
y
′
(x) dx =

∫
sinh(k · x+ Ã) dx =

1

k
· cosh(k · x+ Ã) +B =

1

k
·cosh(k·x−k·A)+B =

1

k
·cosh(k·(x−A))+B mit Ã = −k·A. Nun werden die Konstanten für eine konkrete Lösungskurve bestimmt:

Es sei die Kurve befestigt an zwei Pfosten mit Abstand w in der Höhe h: Die Pfosten seien dabei die Senkrechten bei x = −
w

2
und

x =
w

2
, die die Kettenlinie in der Höhe h schneiden, also ist A = 0. Es muss also gelten y

(
−
w

2

)
= h = y

(
w

2

)
. Also: y

(
w

2

)
=

1

k
· cosh

(
k ·

w

2

)
+B = h⇒ B = h−

1

k
· cosh

(
k ·

w

2

)
. Also hat man schonmal y(x) =

1

k
· cosh(k · x) +

(
h−

1

k
· cosh

(
k ·

w

2

))
.

Als weitere Bedingung hat man, dass die Kurve die Länge l haben soll, woraus k ermittelt wird: l =

∫ w

2

−
w

2

√
1 + y′(x)2 dx =

∫ w

2

−
w

2

√
1 +

(
1

k
· k · sinh(k · x) + 0

)2

dx =

∫ w

2

−
w

2

√
1 + sinh(k · x)2 dx =

∫ w

2

−
w

2

√
cosh(k · x)2 dx =

∫ w

2

−
w

2

cosh(k · x) dx und wegen

d

dx
sinh(x) = cosh(x) gilt also l =

[
1

k
· sinh(k · x)

]w
2

−
w

2

=
1

k
· sinh

(
k ·

w

2

)
−

1

k
· sinh

(
k ·
(
−
w

2

))
=

1

k
· sinh

(
k ·

w

2

)
+

1

k
·

sinh

(
k ·

w

2

)
=

2

k
· sinh

(
k ·

w

2

)
. Sei kl eine positive reelle Zahl (größer Null) so, dass

2

kl
· sinh

(
kl ·

w

2

)
= l gilt, dann sieht die

Lösungskurve also, wie folgt, aus: y(x) =
1

kl
· cosh (kl · x) +

(
h−

1

kl
· cosh

(
kl ·

w

2

))
. Ende.
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Die Konstruierbarkeit mit Zirkel und Lineal
[Zurück zur Liste]

FRAGE: Sei eine Strecke der Länge 1 gegeben. Für welche Werte a ∈ R kann man nach endlich vielen Konstruktionsschritten mit

Zirkel und Lineal eine Strecke der Länge a konstruieren?

WAS KANN MAN MIT ZIRKEL UND LINEAL TUN?:

Was macht man mit Zirkel und Lineal?

1. Mit dem Lineal kann man die Strecke zwischen zwei Punkten zeichnen

2. Mit dem Lineal kann man durch zwei schon konstruierte Punkte eine Gerade konstruieren

3. Mit dem Zirkel kann man einen Kreis mit bekanntem Radius um einen bekannten Punkt schlagen

Wie bekommt man neue konstruierbare Punkte?

1. Bestimmen des Schnittpunktes zweier nicht paralleler Geraden, die jeweils durch zwei bereits konstruierte Punkte gehen

2. Die Schnittpunkte eines Kreises mit gegebenem Radius, als Länge zwischen zwei schon konstruierten Punkten, um einen

bereits konstruierten Punkt, mit einer Geraden, die durch zwei bekannte Punkte läuft, ermitteln

3. Konstruktion der Schnittpunkte zweier Kreise, wobei sich die Mittelpunkte und Radien dieser beiden Kreise aus bereits

konstruierten Punkten ergeben

Nur mit diesen Konstruktionsschritten erhält man neue konstruierbare Punkte. Dabei fängt man die Konstruktion neuer konstru-

ierbarer Punkte immer mit einer gegebenen Einheitsstrecke an.

Es werden zunächst wichtige Hilfssätze bewiesen:

Satz (Thales). Sei T ein Punkt auf einem Halbkreis mit Mittelpunkt Z, und seien X und Y die Schnittpunkte des Durchmessers

durch Z mit dem Halbkreis, also

Dann ist der Winkel γ = ^Y TX ein rechter Winkel.

Beweis. Die Strecken XZ, TZ und ZY haben dieselbe Länge, also sind die Dreiecke
a
XZT und

a
TZY gleichschenklig.

Es folgt ^TXZ = ^ZTX = β und ^Y TZ = ^ZY T = α. Weil die Innenwinkelsumme eines Dreiecks 180◦ ist, folgt daraus:

180
◦

= 2α+ 2β ⇒ 90
◦

= α+ β

Der Beweis ist damit vollständig vollbracht.

Satz (Pythagoras). In einem rechtwinkligen Dreieck ist die Summe der Kathetenquadrate gleich dem Hypotenusenquadrat.

Beweis. Man kann ein rechtwinkliges Dreieck mit den Katheten a und b und der Hypotenuse c, wie folgt, anordnen:
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Dabei gilt α + β = 90◦, weil das Dreieck mit den Seitenlängen a, b, c ein rechtwinkliges Dreieck ist. Also ist das Quadrat mit der

Seitenlänge c auch tatsächlich ein Quadrat. Der Flächeninhalt des großen Quadrates ist (a + b)2, der der vier Dreiecke
a · b

2
und

der des kleinen Quadrates ist c2, also gilt damit dann das folgende:

c
2

= (a+ b)
2 − 4 ·

a · b
2

= a
2

+ 2ab+ b
2 − 2ab = a

2
+ b

2

Und das war es auch schon.

Satz (Höhensatz). Gegeben sei ein rechtwinkliges Dreieck mit der Höhe h.

Dann gilt h2 = p · q.

Beweis. Man wendet den Satz von Pythagoras auf alle Dreiecke an: Es gilt:

a
2

+ b
2

= c
2

= (p+ q)
2

= p
2

+ 2pq + q
2

Dann gilt auch:

a
2

= h
2

+ p
2

und b
2

= h
2

+ q
2

Einsetzen liefert:

(h
2

+ p
2
) + (h

2
+ q

2
) = p

2
+ 2pq + q

2

Daraus folgt dann also:

2h
2

= 2pq ⇒ h
2

= p · q

Und damit ist man hier fertig!

Satz (1. Strahlensatz). Sei im folgendem Bild die Gerade durch B und A parallel zu der Geraden, die durch B′ und A′ geht.

Es gilt dann die Formel des 1. Strahlensatzes:

|SA′|
|SA|

=
|SB′|
|SB|
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Beweis. Für den Beweis dieses Satzes braucht man die folgende Zeichnung:

Die Dreiecke
a
ABA′ und

a
ABB′ besitzen zur gemeinsamen Grundseite AB die gleiche Höhe (gestrichelte Linien). Sie haben also

die gleiche Fläche, die man hier mit dem Betrag der Dreiecke bezeichnet:

|
i
ABA

′| = |
i
ABB

′|

Dann kann man aber auch auf beiden Seiten dieser Gleichung die Fläche des Dreiecks
a
SBA dazuaddieren:

|
i
ABA

′|+ |
i
SBA| = |

i
ABB

′|+ |
i
SBA| ⇔ |

i
SBA

′| = |
i
SB
′
A|

Daraus folgt dann also:
|
a
SBA′|

|
a
SBA|

=
|
a
SB′A|

|
a
SBA|

Die Fläche eines Dreiecks ist genau die Hälfte des Produktes aus einer Grundseite und der zugehörigen Höhe. Als Höhen dienen

hier die gepunkteten Linien. Damit ergibt sich (|AB| heißt die Länge der Strecke AB):

1

2
· |SA′| · |BC|

1

2
· |SA| · |BC|

=

1

2
· |SB′| · |AD|

1

2
· |SB| · |AD|

Durch Kürzen ergibt sich die behauptete Formel:

|SA′|
|SA|

=
|SB′|
|SB|

Damit ist man hier fertig!

Lemma (Konstruierbare Zahlen). Wenn die Einheitslänge 1 festgegelegt ist, dann gilt: n ∈ N, z ∈ Z und q ∈ Q sind konstru-

ierbar. Denn es gilt: Wenn a und b konstruierbar sind, dann auch a+ b, a− b, a · b, a/b (b 6= 0) und
√
a (a > 0).

Beweis. Zu aller erst definiert man einen Punkt als eine Strecke der Länge 0. D.h. auch 0 ist konstruierbar. Aber zunächst muss

man die Einheitslänge definieren:

Damit kann man dann a ∈ N konstruieren:
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Danach kann man zu a ∈ N auch −a ∈ Z konstruieren:

Wenn a und b konstruierbar sind, dann auch a+ b:

Wenn a und b konstruierbar sind, dann auch a− b:

Bevor man die Multiplikation und die Division behandelt, muss man wissen, wie man zu einer Geraden eine Parallele konstruiert,

die durch einen Punkt außerhalb der Geraden läuft. Es geht folgendermaßen:

Wenn a und b konstruierbar sind, dann wegen des 1. Strahlensatzes (s.o.) auch a · b:
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Wenn a und b 6= 0 konstruierbar sind, dann wegen des 1. Strahlensatzes (s.o.) auch a/b:

Zur Konstruktion der Wurzel aus einer konstruierbaren Zahl, muss man wissen, wie man die Senkrechte zu einer Geraden konstru-

iert, die durch einen Punkt auf der Geraden verläuft. Das geht so:

Wenn a > 0 konstruierbar ist, dann wegen des Satzes von Thales (s.o.) und wegen des Höhensatzes (s.o.) auch
√
a:
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Man hat hier also gezeigt, dass aus der Einheitslänge aufbauend die Zahlen n ∈ N konstruierbar sind, also auch −n ∈ Z; daraus

folgt, dass
m

n
mit m ∈ N und n ∈ N \ {0} sowie −

m

n
konstruierbar sind, also sind alle Zahlen in Q konstruierbar.

Satz (Eigenschaften neu konstruierter Punkte). Ganz oben wurde verstanden, wie man neue Punkte mindestens und höchstens

konstruieren kann. Sie entstehen durch Schnitt zweier Geraden, durch Schnitt zwischen Gerade und Kreis und durch Schnitt

zweier Kreise. Dabei werden die Parameter der Geraden und Kreise durch bereits konstruierte Daten aus einem Körper K

bestimmt. Man wird hier zeigen, dass mit diesen Konstruktionsschritten die neuen Punkte entweder im Körper K bleiben oder

allenfalls in einer reell-quadratischen Erweiterung von K, nämlich K(
√
d), liegen.

Beweis. Der Beweis betrachtet also die 3 Fälle:

1. Gerade schneidet Gerade: Die Gerade g1 laufe durch (a1, b1) ∈ K2 und durch (x1, y1) ∈ K2 und g2 durch (a2, b2) ∈ K2 und

durch (x2, y2) ∈ K2. Man erhält dann:

g1 =

 {(x, y) ∈ R2 : a · x+ b · y + c = 0 mit (a, b, c) = (1, 0,−a1)}, a1 = x1

{(x, y) ∈ R2 : a · x+ b · y + c = 0 mit (a, b, c) = (y1 − b1, a1 − x1, b1 · x1 − a1 · y1)}, a1 6= x1

g2 =

 {(x, y) ∈ R2 : a′ · x+ b′ · y + c′ = 0 mit (a′, b′, c′) = (1, 0,−a2)}, a2 = x2

{(x, y) ∈ R2 : a′ · x+ b′ · y + c′ = 0 mit (a′, b′, c′) = (y2 − b2, a2 − x2, b2 · x2 − a2 · y2)}, a2 6= x2

Weil K ein Körper ist, gilt also a, b, c, a′, b′, c′ ∈ K. Es wird nun also g1 ∩ g2 bestimmt. Weil g1 eine Gerade ist, sind a und b in der

Geradengleichung von g1 nicht beide gleich 0. Sei O.B.d.A. a 6= 0 (Der Fall b 6= 0 läuft analog: Man löst dann nach y statt nach x

auf.), dann gilt a · x+ b · y + c = 0⇔ x = −
b

a
· y −

c

a
. Einsetzungsverfahren: a′ ·

(
−
b

a
· y −

c

a

)
+ b′ · y + c′ = 0⇔ y =

a′c− ac′

ab′ − a′b
.

Und deswegen: a · x + b ·
a′c− ac′

ab′ − a′b
+ c = 0 ⇔ x =

bc′ − b′c
ab′ − a′b

. Weil g1 und g2 nicht parallel sein sollen, damit man auch einen

Schnittpunkt erhält, gilt 0 6= det

 a a′

b b′

 = ab′ − a′b. Man hat also gezeigt, dass gilt: g1 ∩ g2 =

(
bc′ − b′c
ab′ − a′b

,
a′c− ac′

ab′ − a′b

)
. Weil

a, b, c, a′, b′, c′ ∈ K gilt, folgt g1 ∩ g2 ∈ K2. Die Koordinaten des Schnittpunktes der beiden Geraden bleiben also im Körper K.

2. Gerade schneidet Kreis: Die Gerade g laufe durch (x1, y1) ∈ K2 und durch (x2, y2) ∈ K2. Der Kreis k habe den Mittelpunkt

(xm, ym) ∈ K2 und den Radius r ∈ K. Man erhält diesmal:

g =

 {(x, y) ∈ R2 : a · x+ b · y + c = 0 mit (a, b, c) = (1, 0,−x1)}, x1 = x2

{(x, y) ∈ R2 : a · x+ b · y + c = 0 mit (a, b, c) = (y2 − y1, x1 − x2, y1 · x2 − x1 · y2)}, x1 6= x2

k = {(x, y) ∈ R2
: x

2
+ y

2
+ a
′ · x+ b

′ · y + c
′

= 0 mit (a
′
, b
′
, c
′
) = (−2xm,−2ym, x

2
m + y

2
m − r

2
)}

Weil K ein Körper ist, gilt also a, b, c, a′, b′, c′ ∈ K. Man setzt voraus, dass sich die Gerade g und der Kreis k schneiden, weil man

ja neue Punkte konstruieren will. Wie im ersten Fall, kann in der Geradengleichung a · x+ b · y + c = 0 nicht a = 0 ∧ b = 0 gelten,

da man sonst keine Gerade beschreiben würde. O.B.d.A. sei b 6= 0 (Ist a 6= 0, dann löst man eben nach x statt nach y auf.), dann

gilt y = −
a

b
· x −

c

b
. Diese y setzt man nun in die Kreisgleichung ein: x2 +

(
−
a

b
· x−

c

b

)2

+ a′ · x + b′ ·
(
−
a

b
· x−

c

b

)
+ c =

0 ⇔
(

1 +
a2

b2

)
· x2 +

(
a′ −

ab′

b
+ 2 ·

ac

b2

)
· x +

(
c′ −

b′c

b
+
c2

b2

)
= 0. Weil

a2

b2
≥ 0 und deswegen 1 +

a2

b2
6= 0 gilt, kann man die
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Gleichung auf beiden Seiten durch 1 +
a2

b2
teilen:

x
2

+
a′ −

ab′

b
+ 2 ·

ac

b2

1 +
a2

b2︸ ︷︷ ︸
=:u

· x+
c′ −

b′c

b
+
c2

b2

1 +
a2

b2︸ ︷︷ ︸
=:v

= 0

Weil K ein Körper ist, gilt u, v ∈ K. Man hat also die quadratische Gleichung x2 + ux+ v = 0 zu lösen: Es gilt:

x = −
u

2︸︷︷︸
∈K

+
1

2︸︷︷︸
∈K

·
√√√√u

2 − 4v︸ ︷︷ ︸
∈K

∨ x = −
u

2︸︷︷︸
∈K

−
1

2︸︷︷︸
∈K

·
√√√√u

2 − 4v︸ ︷︷ ︸
∈K

Setze d := u2−4v. Weil sich g und k schneiden, gilt d ≥ 0. Im Fall d = 0 gilt: x = −
u

2
∈ K und y = −

a

b
·
(
−
u

2

)
−
c

b
=
au− 2c

2b
∈ K.

Ist also d = 0, dann liegen die Koordinaten des Schnittpunktes in K. Im Fall d > 0 und
√
d /∈ K liegen beide x in K(

√
d), und

wegen y = −
a

b
·x−

c

b
liegen auch die zugehörigen y in K(

√
d). Gilt hingegen

√
d ∈ K, dann gilt K(

√
d) = K und die beiden x sind

aus K, und wegen y = −
a

b
· x −

c

b
sind dann auch die zugehörigen y aus K. Man sieht also, dass in diesem Fall die Koordinaten

der Schnittpunkte entweder alle aus K oder alle aus K(
√
d) sind.

3. Kreis schneidet Kreis: Der Kreis k1 habe den Mittelpunkt (x1, y1) ∈ K2 und den Radius r1 ∈ K und der Kreis k2 habe den

Mittelpunkt (x2, y2) ∈ K2 und den Radius r2 ∈ K. Man hat dann:

k1 = {(x, y) ∈ R2
: x

2
+ y

2
+ a · x+ b · y + c = 0 mit (a, b, c) = (−2x1,−2y1, x

2
1 + y

2
1 − r

2
1)}

k2 = {(x, y) ∈ R2
: x

2
+ y

2
+ a
′ · x+ b

′ · y + c
′

= 0 mit (a
′
, b
′
, c
′
) = (−2x2,−2y2, x

2
2 + y

2
2 − r

2
2)}

Weil K ein Körper ist, gilt also a, b, c, a′, b′, c′ ∈ K. Nun wird k1 ∩ k2 bestimmt: Man zieht nun die zweite Kreisgleichung von der

ersten Kreisgleichung ab, so dass man erhält: (a− a′) · x+ (b− b′) · y+ (c− c′) = 0. Falls a = a′ und b = b′, dann folgt c = c′, also

sind die beiden Kreise gleich, was man ausschließen möchte, weil man neue Punkte will. Also gilt a − a′ 6= 0 oder b − b′ 6= 0. Sei

α := a− a′, β = b− b′ und γ = c− c′. Man sucht hier also Punkte die α ·x+β · y+ γ = 0 (α, β, γ ∈ K und: α 6= 0 oder β 6= 0) und

x2 + y2 + a′ · x+ b′ · y + c′ = 0 erfüllen. Diese Situation entspricht algebraisch der Situation, die man im Fall 2 (Gerade schneidet

Kreis) zu diskutieren hatte. Also folgt, wie dort, dass entweder alle Koordinaten der Schnittpunkte der beiden Kreise in K liegen

oder, dass alle aus K(
√
d′) sind. Der Beweis ist hiermit beendet.

Satz (Hauptsatz über konstruierbare Zahlen). Eine reelle Zahl a ∈ R ist genau dann mit Zirkel und Lineal konstruierbar, wenn

es eine endliche Kette

Q = K0 ⊆ K1 ⊆ . . . ⊆ Kn ⊆ R (Reell-quadratischer Körperturm)

von Zwischenkörpern gibt mit Ki = Ki−1(
√
di−1) = {ai−1 + bi−1 ·

√
di−1 : ai−1, bi−1, di−1 ∈ Ki−1,

√
di−1 /∈ Ki−1} (Reell-

quadratischer Erweiterungskörper von Ki−1) so, dass a ∈ Kn gilt. Dabei heißt K = Kn iterierte reell-quadratische Erweiterung

von Q. Es ist klar, dass die Ki Körper sind, d.h. sie sind insbesondere bezüglich der Verknüpfungen abgeschlossen.

Beweis. ⇐: Sei also der Körperturm Q = K0 ⊆ K1 ⊆ . . . ⊆ Kn ⊆ R mit a ∈ Kn gegeben. Behauptung: a ist konstruierbar.

Nach dem Lemma (Konstruierbare Zahlen) sind alle Zahlen in Q = K0 konstruierbar. Nun gilt K1 = K0(
√
d0) = Q(

√
d0) =

{a0 + b0 ·
√
d0 : a0, b0, d0 ∈ Q,

√
d0 /∈ Q}. Nun sind alle Zahlen in K1 konstruierbar, denn: a0, b0, d0 ∈ Q mit

√
d0 /∈ Q sind

also konstruierbar, also nach dem Lemma (Konstruierbare Zahlen) auch
√
d0 (Wurzel), also auch b0 ·

√
d0 (Multiplikation), also

auch a0 ± b0 ·
√
d0 (Addition, Subtraktion). Weil also alle Zahlen in K1 konstruierbar sind, sind es auch die in K2 = K1(

√
d1) =

{a1 + b1 ·
√
d1 : a1, b1, d1 ∈ K1,

√
d1 /∈ K1}. Dann sind die Zahlen von K3 wegen a2, b2, d2 ∈ K2 und

√
d2 /∈ K2 konstruierbar, also

auch die von K4, usw. Macht man so weiter, dann erhält man schließlich, dass auch alle Zahlen von Kn konstruierbar sind, also

insbesondere auch das a ∈ Kn.

⇒: Sei a ∈ R konstruierbar. Behauptung: Es gibt einen reell-quadratischen Körperturm Q = K0 ⊆ K1 ⊆ . . . ⊆ Kn mit a ∈ Kn,

wobei nochmal gilt: Ki = Ki−1(
√
di−1) = {ai−1 + bi−1 ·

√
di−1 : ai−1, bi−1, di−1 ∈ Ki−1,

√
di−1 /∈ Ki−1}. Dann gibt es

eine Strecke der Länge a, deren Randpunkte aus einer Strecke der Länge 1 mit Hilfe von endlich vielen Schritten mit Zirkel und

Lineal konstruiert werden können. Seien P0, P1, . . . , Pr die Punkte, die bei dieser Konstruktion benötigt werden, aufgelistet in der

Reihenfolge ihrer Konstruktion. Der erste Konstruktionsschritt ist vorgegeben: Man zeichnet eine Strecke der Länge 1. Man kann

annehmen, dass P0 im Koordinatenursprung liegt, also P0 = (0, 0), und man kann annehmen, dass P1 = (0, 1) ist. Die Punkte

P0 und P1 liegen mit ihren Koordinaten in Q, womit der Körperturm also startet. Der Punkt Pr ist der letzte Punkt, der für die

Konstruktion der Strecke der Länge a verwendet wird. Nun kommt man zum Körperturm: P0 und P1 liegen in Q = K0 = K1.

Als nächstes wird der Punkt P2 konstruiert, wobei dieser durch eines der drei bekannten Konstruktionsmöglichkeiten (Schnitt:

Gerade-Gerade, Gerade-Kreis, Kreis-Kreis) entsteht. Die Parameter der Geraden (2 verschiedene Punkte) und Kreise (Mittelpunkt

und Radius) liegen in K1 (Alle bisher bekannte Konstruktionen stehen für die nächsten Konstruktionen zur Verfügung). Nach

dem Satz (Eigenschaften neu konstruierter Punkte) liegen die Koordinaten des Schnittpunktes P2 dann entweder in K2 = K1

oder in K2 = K1(
√
d1). Für die Konstruktion des nächsten Punktes P3 sind die Parameter der Geraden und Kreise aus K2
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(Wieder: Alle bisher bekannte Konstruktionen stehen für die nächsten Konstruktionen zur Verfügung). Wieder gilt nach dem

Satz (Eigenschaften neu konstruierter Punkte), dass K3 = K2 oder K3 = K2(
√
d2) gilt. Als nächstes kommt P4: Die Parameter

der Geraden und Kreise sind nun aus K3, also sind die Koordinaten des Schnittpunktes P4 nach dem Satz (Eigenschaften neu

konstruierter Punkte) aus K4 = K3 oder K4 = K3(
√
d3). Jetzt kommt P5, usw. Macht man so weiter, so erhält man schließlich

eine Inklusionskette von Körpern: K0 ⊆ K1 ⊆ . . . ⊆ Kr. Der Körper Ki enthält dabei die Koordinaten aller Punkte Pj mit j ≤ i.

Streicht man nun in der Folge K0 ⊆ K1 ⊆ . . . ⊆ Kr alle diejenigen Ki mit Ki = Ki+1, so erhält man einen reell-quadratischen

Körperturm Q ⊆ K1 ⊆ . . . ⊆ Ks, und die Koordinaten der Punkte P0, . . . , Pr liegen in Ks. Im letzten Konstruktionsschritt

zeichnet man die Strecke der Länge a zwischen einem Punkt Pk, 0 ≤ k < r und Pr (denn: a ist konstruierbar). Sei Pk = (x, y)

und Pr = (c, d), wobei x, y, c, d ∈ Ks gilt. Dann ist a =
√

(x− c)2 + (y − d)2 ∈ Ks

√√√√(x− c)2
+ (y − d)

2︸ ︷︷ ︸
∈Ks

. Also liegt a in

Ks (falls
√

(x− c)2 + (y − d)2 ∈ Ks) oder in einer reell-quadratischen Erweiterung von Ks. In beiden Fällen erhält man einen

reell-quadratischen Körperturm (mit n = s oder n = s+ 1). Und das war es endlich.

Lemma (Für Algebraizität). Sei K ein Unterkörper von R und K(
√
d) eine reell-quadratische Erweiterung von K. Sei c eine

Nullstelle eines Polynoms p aus K(
√
d)[x] vom Grad n. Dann ist c eine Nullstelle eines Polynoms vom Grad 2n in K[x]. Der

Beweis geht dann folgendermaßen:

Beweis. Sei c Nullstelle des Polynoms:

p = (a0 + b0 ·
√
d) + (a1 + b1 ·

√
d) · x+ . . .+ (an−1 + bn−1 ·

√
d) · xn−1

+ (an + bn ·
√
d) · xn

Dabei gilt ai, bi ∈ K für alle 0 ≤ i ≤ n, und an und bn sind nicht beide 0. Dann gilt:

(a0 + b0 ·
√
d) + (a1 + b1 ·

√
d) · c+ . . .+ (an−1 + bn−1 ·

√
d) · cn−1

+ (an + bn ·
√
d) · cn = 0

Ausmultiplizieren und Umsortieren liefert:

a0 + a1 · c+ . . .+ an−1 · cn−1
+ an · cn = −

√
d · (b0 + b1 · c+ . . .+ bn−1 · cn−1

+ bn · cn)

Nun quadriert man beide Seiten und erhält:

a
2
0 + ã1 · c+ . . .+ ã2n−1 · c2n−1

+ a
2
n · c

2n
= d · (b20 + b̃1 · c+ . . .+ b̃2n−1 · c2n−1

+ b
2
n · c

2n
)

Wie die Koeffizienten ãi und b̃i, 1 ≤ i ≤ 2n− 1, genau aussehen ist nicht wichtig. Wichtig ist nur, dass sie aus K sind, wegen der

Abgeschlossenheit eines Körpers. Es folgt:

(a
2
0 − b

2
0d) + (ã

2
1 − b̃

2
1d) · c+ . . .+ (ã

2
2n−1 − b̃

2
2n−1d) · c2n−1

+ (a
2
n − b

2
nd) · c2n = 0

Somit ist c Nullstelle von:

q = (a
2
0 − b

2
0d) + (ã

2
1 − b̃

2
1d) · x+ . . .+ (ã

2
2n−1 − b̃

2
2n−1d) · x2n−1

+ (a
2
n − b

2
nd) · x2n

Es bleibt zu zeigen, dass q aus K[x] den Grad 2n hat: Wäre nämlich a2
n − b

2
nd = 0, dann folgt an = ±bn ·

√
d, also Widerspruch,

denn es ist an ∈ K, aber bn ·
√
d /∈ K, denn wäre bn ·

√
d ∈ K, dann auch

1

bn
· (bn ·

√
d) =

√
d, Widerspruch.

Satz (Algebraizität konstruierbarer Zahlen). Sei c konstruierbar. Dann ist c eine Nullstelle eines Polynoms vom Grad 2n aus

Q[x]. Dann ist c auch eine Nullstelle eines Polynoms vom Grad 2n aus Z[x], c ist also algebraisch.

Beweis. Weil c eine konstruierbare Zahl ist, gilt nach dem Satz (Hauptsatz über konstruierbare Zahlen), dass es einen reell-

quadratischen Körperturm

Q = K0 ⊆ K1 ⊆ . . . ⊆ Kn ⊆ R

von Zwischenkörpern gibt mit Ki = Ki−1(
√
di−1) = {ai−1 + bi−1 ·

√
di−1 : ai−1, bi−1, di−1 ∈ Ki−1,

√
di−1 /∈ Ki−1} so, dass

c ∈ Kn ist. Das c ∈ Kn ist Nullstelle des Polynoms x− c aus Kn[x] vom Grad 1. Nach dem Lemma (Für Algebraizität) gilt, dass c

eine Nullstelle eines Polynoms vom Grad 2 · 1 = 2 in Kn−1[x] ist. Wiederholtes Anwenden von Lemma (Für Algebraizität) liefert

dann, dass c Nullstelle eines Polynoms vom Grad 2n · 1 = 2n in Q[x] ist. Wenn man das Polynom gleich Null für c eingesetzt mit

dem kgV aller Koeffizienten auf beiden Seiten multipliziert, dann ist c sogar Nullstelle eines Polynoms aus Z[x] vom Grad 2n, ist

also algebraisch, was genau das ist, was man hier zu zeigen hatte.

Satz (Quadratur des Kreises). Ein Kreis mit dem konstruierbaren Radius r hat bekanntlich den Flächeninhalt π · r2. Es ist

nicht möglich mit Zirkel und Lineal das Quadrat mit dem gleichen Flächeninhalt zu konstruieren.
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Beweis. Es muss also das Quadrat mit der Seitenlänge
√
π ·r konstruiert werden. Weil r konstruierbar ist, ist auch

1

r
konstruierbar.

Wäre
√
π · r konstruierbar, wäre auch

(√
π · r

)
·

1

r
=
√
π konstruierbar, also auch

√
π ·
√
π = π. Nach dem Satz (Algebraizität

konstruierbarer Zahlen) wäre π dann algebraisch. Das ist aber ein Widerspruch, denn π ist bekanntlich transzendent, also nicht

algebraisch.

Satz (Würfelverdopplung). Sei ein Würfel mit der konstruierbaren Kantenlänge a gegeben. Dann ist das Volumen dieses Würfels

gleich a3. Man kann nun mit Zirkel und Lineal nicht den Würfel mit doppelten Volumen konstruieren.

Beweis. Der Würfel doppelten Volumens hätte dann die Kantenlänge 3√2 · a. Weil a konstruierbar ist, ist auch
1

a
konstruierbar.

Wäre also 3√2 · a konstruierbar, dann auch
(

3√2 · a
)
·

1

a
= 3√2. Angenommen, 3√2 ist konstruierbar, so gäbe es nach dem Satz

(Hauptsatz über konstruierbare Zahlen) einen Körper Kn, der durch sukzessive quadratische Körpererweiterungen aus Q entsteht,

in dem x = 3√2 läge:

Q = K0 ⊆ K1 ⊆ . . . ⊆ Kn

Wenn also x = 3√2 ∈ Kn wäre, so gäbe es offenbar ein x ∈ Kn mit x3 = 2. Es wird nun gezeigt:

∃x ∈ K(
√
d) : x

3
= 2⇒ ∃y ∈ K : y

3
= 2 (∗)

Der Beweis geht dann folgendermaßen: Angenommen, es gibt ein x ∈ K(
√
d) mit x3 = 2, also (a+ b ·

√
d)3 − 2 = 0 mit a, b, d ∈ K,

d > 0,
√
d /∈ K. Daraus erhält man dann:

0 = a
3

+ 3ab
2
d− 2︸ ︷︷ ︸

=:u

+ b(3a
2

+ b
2
d)︸ ︷︷ ︸

=:v

·
√
d = u+ v ·

√
d

Wäre v = b(3a2 + b2d), der Koeffizient von
√
d, ungleich Null, so wäre

√
d = −

u

v
= −

a3 + 3ab2d− 2

b(3a2 + b2d)
∈ K, Widerpruch. Daher

muss also v = 0 sein. Wegen d > 0 wäre für b 6= 0 mit Sicherheit v 6= 0. Weil aber v = 0 ist, folgt b = 0. Da (a + b ·
√
d)3 − 2 = 0

gilt, folgt wegen b = 0 also (a+ 0)3− 2 = 0⇔ a3 = 2 mit a ∈ K. Mit der bewiesenen Aussage (∗) bekommt man: Wenn es in einem

Körper Kn eine Zahl x mit x3 = 2 gäbe, so gäbe es auch so eine Zahl in Kn−1. Dann gibt es auch so eine in Kn−2, usw. Macht

man so weiter, folgt am Ende, dass es in Q = K0 eine Zahl z ∈ Q gibt mit z3 = 2. Das heißt, dass dann aber 3√2 eine rationale

Zahl ist, Widerspruch. Also: 3√2 · a ist nicht konstruierbar.

Lemma (1). Ein Winkel α ist genau dann konstruierbar, wenn die Zahl cos(α) konstruierbar ist.

Beweis. ⇒: Sei also der Winkel α konstruiert. Es wird nun gezeigt, wie man daraus cos(α) konstruieren kann.

O ist der Scheitel des Winkels α, der durch die Strahlen g und h eingeschlossen wird. Man schlägt nun um O einen Kreis vom

Radius 1. Dieser schneidet g im Punkt P . Dann fällt man das Lot von P auf h. Dieses schneidet h im Punkt Q. Die Strecke OQ

hat dann die Länge cos(α). Es wird hier für die Vollständigkeit des Beweises nachträglich noch gezeigt, wie man das Lot von einem

Punkt auf eine Gerade konstruiert: Das geht so:

⇐: Sei nun die Zahl cos(α) gegeben. Nun zeigt man, wie man daraus den Winkel α konstruiert.
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Die Strecke von Scheitelpunkt A nach Kreuz B habe die Länge cos(α), die man z.B. mit einem Zirkel zeichnen kann. Man zeichnet

dann die Senkrechte zur Gerade, die durch A und B verläuft, die durch das Kreuz bei B geht. Danach schlägt man einen Kreis um

A mit dem Radius 1. Der Kreis schneidet dabei die Senkrechte durch B in einem Punkt C. Dann gilt ^CAB = α. Damit ist der

Beweis auch beendet!

Lemma (2). Wenn cos(20◦) konstruierbar ist, dann ist eine Nullstelle des Polynoms p = x3 − 3x− 1 konstruierbar.

Beweis. Es werden hier die folgenden bekannten Additionstheoreme benutzt:

cos(α+ β) = cos(α) · cos(β)− sin(α) · sin(β)

sin(α+ β) = cos(α) · sin(β) + sin(α) · cos(β)

Weiter gilt: sin(α)2 + cos(α)2 = 1 und cos(60◦) =
1

2
. Einschub: Beweis von cos(60◦) =

1

2
:

Es gilt also nach der Zeichnung: cos(60◦) =
Ankathete

Hypotenuse
=

a

2
a

=
1

2
, Ende des Einschubs. Sei γ = 20◦. Dann gilt:

1

2
= cos(3γ) = cos(2γ + γ) = cos(2γ) · cos(γ)− sin(2γ) · sin(γ) = cos(γ + γ) · cos(γ)− sin(γ + γ) · sin(γ)

= [cos(γ) · cos(γ)− sin(γ) · sin(γ)] · cos(γ)− [cos(γ) · sin(γ) + sin(γ) · cos(γ)] · sin(γ)

= cos(γ)
3 − sin(γ)

2 · cos(γ)− cos(γ) · sin(γ)
2 − sin(γ)

2 · cos(γ)

= cos(γ)
3 − 3 · sin(γ)

2 · cos(γ) = cos(γ)
3 − 3 · (1− cos(γ)

2
) · cos(γ)

= cos(γ)
3 − 3 · cos(γ) + 3 · cos(γ)

3
= 4 · cos(γ)

3 − 3 · cos(γ)

Es folgt daraus 4 · cos(γ)3 − 3 · cos(γ)−
1

2
= 0⇔ 8 · cos(γ)3 − 6 · cos(γ)− 1 = 0 und also

(2 · cos(γ))
3 − 3 · (2 · cos(γ))− 1 = 0

Somit ist 2 · cos(γ) eine Nullstelle von p = x3 − 3x − 1. Nach Voraussetzung ist cos(γ) = cos(20◦) konstruierbar, also ist auch

2 · cos(γ) konstruierbar. Daraus folgt dann, dass eine Nullstelle von p = x3 − 3x− 1 konstruierbar ist.

Lemma (3). Sei K ein Unterkörper von R, und sei K(
√
d) eine reell-quadratische Erweiterung von K. Sei c eine Nullstelle

von p = x3 − 3x− 1. Wenn c ∈ K(
√
d) liegt, dann gibt es eine Nullstelle c′ von p in K.

Beweis. Sei c eine Nullstelle von p und sei c ∈ K(
√
d). Dann gibt es a, b ∈ K mit c = a+b ·

√
d. Ist b = 0, dann ist c′ = c aus K und

eine Nullstelle von p, und man ist hier fertig. Man kann also b 6= 0 annehmen. Nach Annahme gilt: (a+b ·
√
d)3−3 ·(a+b ·

√
d)−1 =

0⇔ (a3 + 3ab2d− 3a− 1) + (3a2b + b3d− 3b) ·
√
d = 0. Wäre 3a2b + b3d− 3b 6= 0, so könnte man nach

√
d auflösen und erhielte

√
d ∈ K, ein Widerspruch. Es gilt also 3a2b+b3d−3b = 0⇔ 3a2 +b2d−3 = 0 und a3 +3ab2d−3a−1 = 0. Also gilt: b2d = 3−3a2

und a3 + 3a · b2d − 3a − 1 = 0. Setzt man b2d in die andere Gleichung ein, erhält man a3 + 3a · (3 − 3a2) − 3a − 1 = 0 ⇔

a3 + 9a − 9a3 − 3a − 1 = 0 ⇔ −8a3 + 6a − 1 = 0 ⇔ (−2a)3 − 3 · (−2a) − 1 = 0. Somit ist c′ = −2a eine Nullstelle von p mit

c′ = −2a ∈ K. Der Beweis ist damit beendet.
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Lemma (4). Sei c eine Nullstelle des Polynoms p = x3 − 3x− 1. Dann gilt c /∈ Q.

Beweis. Angenommen, es gibt a, b ∈ Z mit b 6= 0, so dass c =
a

b
eine Nullstelle von p ist. Da 0 keine Nullstelle von p = x3− 3x− 1

ist, gilt a 6= 0. Man nimmt an, dass a und b ausgekürzt sind. Dann gilt:
a3

b3
−

3a

b
− 1 = 0, also a3 − 3ab2 − b3 = 0. Es gilt also:

a3 = b · (3ab+ b2) und b3 = a · (a2 − 3b2). Aus der ersten Gleichung folgt: Wenn es eine Primzahl q gibt, die b teilt, so teilt q auch

a3 und damit auch a (denn q ist eine Primzahl). Weil angenommen wurde, dass gilt ggT(a, b) = 1, folgt, dass es keine Primzahl

geben kann, die b teilt, also: b = 1 ∨ b = −1. Analog folgt aus der zweiten Gleichung, dass gilt a = 1 ∨ a = −1. Damit ist
a

b
= 1

oder
a

b
= −1. Das ist ein Widerspruch, denn weder 1 noch −1 ist eine Nullstelle von p = x3 − 3x − 1. Also ist das Lemma hier

bewiesen.

Satz (Dreiteilung beliebiger Winkel). Die Dreiteilung eines 60◦-Winkels ist mit Zirkel und Lineal nicht möglich. D.h. die

Winkeldrittelung ist im Allgemeinen nicht mit Zirkel und Lineal konstruierbar.

Beweis. Angenommen, eine solche Konstruktion ist möglich. Dann wäre der 20◦-Winkel konstruierbar. Nach dem Lemma (1) ist

dann cos(20◦) konstruierbar. Nach Lemma (2) ist dann also eine Nullstelle c von p = x3 − 3x − 1 konstruierbar. Nach dem Satz

(Hauptsatz über konstruierbare Zahlen) gibt es dann einen reell-quadratischen Körperturm Q = K0 ⊆ K1 ⊆ . . . ⊆ Kn mit c ∈ Kn.

Wendet man das Lemma (3) wiederholt an, dann folgt, dass c̃ eine Nullstelle von p = x3 − 3x − 1 aus Q ist. Das ist aber ein

Widerspruch zu Lemma (4), denn nach diesem Lemma gilt, dass eine Nullstelle von p nicht aus Q sein kann. Der Widerspruch zeigt,

dass man einen 60◦-Winkel mit Zirkel und Lineal nicht dreiteilen kann. Also: Fertig!

Korollar (Regelmäßiges 18-Eck). Das regelmäßige 18-Eck ist mit Zirkel und Lineal nicht konstruierbar.

Beweis. In dem Satz (Dreiteilung beliebiger Winkel) wurde gezeigt, dass ein Winkel von 20◦ mit Zirkel und Lineal nicht konstru-

ierbar ist. Wegen 18 · 20◦ = 360◦ ist dann also auch das 18-Eck nicht konstruierbar.

Es wurde eben also gezeigt, dass man nicht alle Winkel mit Zirkel und Lineal dritteln kann. D.h. aber nicht, dass das immer nicht

geht, wie der folgende Satz zeigt:

Satz (Dreiteilung des 90◦-Winkels). Den 90◦-Winkel kann man mit Zirkel und Lineal dritteln.

Beweis. Man braucht hier die folgende Zeichnung:

Der Zeichnung kann man entnehmen: cos(30◦) =
Ankathete

Hypotenuse
=
h

a
. Nun gilt: h2 +

(
a

2

)2

= a2 ⇒ h2 =
3

4
· a2 ⇒ h =

√
3

2
· a.

Daraus folgt also cos(30◦) =

√
3

2
. Nach dem Lemma (Konstruierbare Zahlen) ist

√
3

2
konstruierbar und nach Lemma (1) ist also

auch der Winkel 30◦ konstruierbar.

Korollar (Regelmäßiges 12-Eck). Das regelmäßige 12-Eck ist mit Zirkel und Lineal konstruierbar.

Beweis. In dem Satz (Dreiteilung des 90◦-Winkels) wurde gezeigt, dass ein Winkel von 30◦ mit Zirkel und Lineal konstruierbar

ist. Wegen 12 · 30◦ = 360◦ ist dann also auch das 12-Eck konstruierbar.

Lemma (5). Sei K ein Unterkörper von R, und sei K(
√
d) eine reell-quadratische Erweiterung von K. Sei c eine Nullstelle

von p = y3 + y2 − 2y − 1. Wenn c ∈ K(
√
d) liegt, dann gibt es eine Nullstelle c′ von p in K.

Beweis. Sei c eine Nullstelle von p und sei c ∈ K(
√
d). Dann gibt es a, b ∈ K mit c = a+b ·

√
d. Ist b = 0, dann ist c′ = c aus K und

eine Nullstelle von p, und man ist hier fertig. Man kann also b 6= 0 annehmen. Nach Annahme gilt: (a+ b ·
√
d)3 + (a+ b ·

√
d)2− 2 ·

(a+b·
√
d)−1 = 0⇔ (a3 +a2−2a+3ab2d+b2d−1)+(3a2b+2ab−2b+b3d)·

√
d = 0. Wäre 3a2b+2ab−2b+b3d 6= 0, so könnte man

nach
√
d auflösen und erhielte

√
d ∈ K, ein Widerspruch. Es gilt also 3a2b+2ab−2b+b3d = 0 und a3 +a2−2a+3ab2d+b2d−1 = 0.

Dann ist auch c = a − b ·
√
d eine Nullstelle von p = y3 + y2 − 2y − 1, denn: (a − b ·

√
d)3 + (a − b ·

√
d)2 − 2 · (a − b ·

√
d) − 1 =

(a3 + a2 − 2a + 3ab2d + b2d − 1) − (3a2b + 2ab − 2b + b3d) ·
√
d = 0 − 0 ·

√
d = 0. Für die beiden Nullstellen y1 = a + b ·

√
d

56



und y2 = a − b ·
√
d von p = y3 + y2 − 2y − 1 gilt wegen b 6= 0 also y1 6= y2. Einschub: Wurzelsatz von Vieta: Seien x1, x2, x3

die Nullstellen eines kubischen Polynoms x3 + rx2 + sx + t, also gilt x3 + rx2 + sx + t = (x − x1) · (x − x2) · (x − x3) =

x3 − (x1 + x2 + x3) · x2 + (x1 · x2 + x1 · x3 + x2 · x3) · x− x1 · x2 · x3. Durch Koeffizientenvergleich erhält man insbesondere also:

r = −(x1 + x2 + x3) ⇔ x3 = −r − (x1 + x2), Einschubende. Daraus folgt für die dritte Nullstelle von p = y3 + y2 − 2y − 1 also

y3 = −1 − (y1 + y2) = −1 − ((a + b ·
√
d) + (a − b ·

√
d)) = −1 − 2a. Also hat man hier eine Nullstelle c′ von p gefunden mit

c′ = −1− 2a ∈ K. Der Beweis ist damit fertig!

Satz (Regelmäßiges 7-Eck). Ein regelmäßiges 7-Eck ist mit Zirkel und Lineal nicht konstruierbar.

Beweis. Die Ecken eines regelmäßigen 7-Ecks sind gegeben durch die komplexen Lösungen der Gleichung z7 − 1 = 0. Die Zahl

z = 1 ist eine Lösung dieser Gleichung. Es gilt dann
z7 − 1

z − 1
= z0 + z1 + z2 + z3 + z4 + z5 + z6 = 0 für z mit z7 − 1 = 0 und z 6= 1.

Dividiert man diese Gleichung durch z3 6= 0, so erhält man z3 +
1

z3
+ z2 +

1

z2
+ z +

1

z
+ 1 = 0. Ferner gilt:

(
z +

1

z

)3

+

(
z +

1

z

)2

− 2 ·
(
z +

1

z

)
− 1 = 0

Dabei sei z = cos(ϕ) + i · sin(ϕ), also z +
1

z
= 2 · cos(ϕ) =: y. Damit ist klar: z ∈ C mit z7 − 1 = 0 und z 6= 1 ist genau dann

konstruierbar, wenn y oder cos(ϕ) es ist. Es gilt also:

y
3

+ y
2 − 2y − 1 = 0

Wenn y als Nullstelle von p = y3 + y2 − 2y − 1 konstruierbar ist, dann gibt es nach dem Satz (Hauptsatz über konstruierbare

Zahlen) einen reell-quadratischen Körperturm Q = K0 ⊆ K1 ⊆ . . . ⊆ Kn mit y ∈ Kn. Wendet man das Lemma (5) wiederholt an,

dann folgt, dass es eine Nullstelle ỹ von p = y3 + y2 − 2y − 1 aus Q gibt. Das ist aber ein Widerspruch, denn wäre ỹ =
m

n
∈ Q (m

und n seien gekürzt) eine Lösung von y3 + y2 − 2y − 1 = 0, dann folgt m3 +m2n− 2mn2 − n3 = 0. Also: Jeder Primteiler von m

wäre auch einer von n und umgekehrt. Wegen ggT(m,n) = 1 dürfen m und n keine Primteiler haben, d.h. m = 1 ∨m = −1 und

n = 1∨n = −1, folglich ỹ = ±1. Aber das ist keine Lösung von p = y3 +y2−2y−1 = 0, Widerspruch. Es gibt also keine Nullstelle

von p, die aus Q ist. Also ist man somit fertig.

Satz (Regelmäßiges 17-Eck nach Gauß). Ein regelmäßiges 17-Eck ist mit Zirkel und Lineal konstruierbar.

Beweis. Zunächst gilt das folgende:
z17 − 1

z − 1
= z

0
+ z

1
+ z

2
+ . . .+ z

15
+ z

16

Sei ζ := e
i·

2π

17 . Also gilt wegen ζ − 1 6= 0 folglich: ζ0 + ζ1 + ζ2 + . . .+ ζ15 + ζ16 = 0. Nun gilt: ζk = e
i·

2π

17
·k

= cos

(
2π

17
· k
)

+ i ·

sin

(
2π

17
· k
)

für k = 0, 1, . . . , 16. Daraus folgt dann:
16∑
k=0

cos

(
2π

17
· k
)

= 0. Sei α :=
2π

17
, also

16∑
k=0

cos (α · k) = 0. Es gilt cos(0 ·α) =

cos(0) = 1 und: cos(16α) = cos(1α), cos(15α) = cos(2α), cos(14α) = cos(3α), . . . , cos(10α) = cos(7α), cos(9α) = cos(8α). Beweis:

cos(k · α) = cos

(
k ·

2π

17

)
= cos

(
k

17
· 2π

)
= cos

((
1−

17− k
17

)
· 2π

)
= cos

(
2π −

17− k
17

· 2π
)

= cos

(
−

17− k
17

· 2π
)

=

cos

(
17− k

17
· 2π

)
= cos

(
(17− k) ·

2π

17

)
= cos((17− k) · α) für k = 1, 2, . . . , 16. Daraus folgt:

16∑
k=0

cos (α · k) = cos(0) +

8∑
k=1

2 · cos(k · α) = 0⇔
8∑
k=1

cos(k · α) = −
1

2

Sei nun p = cos(1α) + cos(2α) + cos(4α) + cos(8α) und p′ = cos(3α) + cos(5α) + cos(6α) + cos(7α). Es gilt also p+ p′ = −
1

2
. Nun

wird p · p′ berechnet:

p · p′ = cos(1α) · cos(3α) + cos(1α) · cos(5α) + cos(1α) · cos(6α) + cos(1α) · cos(7α)

+ cos(2α) · cos(3α) + cos(2α) · cos(5α) + cos(2α) · cos(6α) + cos(2α) · cos(7α)

+ cos(4α) · cos(3α) + cos(4α) · cos(5α) + cos(4α) · cos(6α) + cos(4α) · cos(7α)

+ cos(8α) · cos(3α) + cos(8α) · cos(5α) + cos(8α) · cos(6α) + cos(8α) · cos(7α)

Nun gilt das Additionstheorem cos(x) · cos(y) =
cos(x+ y) + cos(x− y)

2
, also:

p · p′ =
cos(4α) + cos(2α)

2
+

cos(6α) + cos(4α)

2
+

cos(7α) + cos(5α)

2
+

cos(8α) + cos(6α)

2

+
cos(5α) + cos(1α)

2
+

cos(7α) + cos(3α)

2
+

cos(8α) + cos(4α)

2
+

cos(9α) + cos(5α)

2

+
cos(7α) + cos(1α)

2
+

cos(9α) + cos(1α)

2
+

cos(10α) + cos(2α)

2
+

cos(11α) + cos(3α)

2

+
cos(11α) + cos(5α)

2
+

cos(13α) + cos(3α)

2
+

cos(14α) + cos(2α)

2
+

cos(15α) + cos(1α)

2
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Desweiteren gilt dann:

p · p′ =
cos(4α) + cos(2α)

2
+

cos(6α) + cos(4α)

2
+

cos(7α) + cos(5α)

2
+

cos(8α) + cos(6α)

2

+
cos(5α) + cos(1α)

2
+

cos(7α) + cos(3α)

2
+

cos(8α) + cos(4α)

2
+

cos(8α) + cos(5α)

2

+
cos(7α) + cos(1α)

2
+

cos(8α) + cos(1α)

2
+

cos(7α) + cos(2α)

2
+

cos(6α) + cos(3α)

2

+
cos(6α) + cos(5α)

2
+

cos(4α) + cos(3α)

2
+

cos(3α) + cos(2α)

2
+

cos(2α) + cos(1α)

2

=
4 · cos(1α) + 4 · cos(2α) + 4 · cos(3α) + 4 · cos(4α) + 4 · cos(5α) + 4 · cos(6α) + 4 · cos(7α) + 4 · cos(8α)

2

=
−

1

2
· 4

2
= −1

Es gilt also p+p′ = −
1

2
und p ·p′ = −1. Also: p ·(−

1

2
−p) = −1⇔ p2 +

p

2
−1 = 0⇔ p1,2 = −

1

4
±

√√√√√
(

1

2

)2

4
+ 1 = −

1

4
±
√

1

16
+ 1 =

−
1

4
±
√

17

16
=
−1±

√
17

4
, also gilt: p′1,2 = −

1

2
−p = −

2

4
−
−1±

√
17

4
=
−2 + 1∓

√
17

4
=
−1∓

√
17

4
. Es wird die Probe gemacht: Es

gilt
−1−

√
17

4
6= cos(1α)+cos(2α)+cos(4α)+cos(8α) = p =

−1 +
√

17

4
. Und:

−1 +
√

17

4
6= cos(3α)+cos(5α)+cos(6α)+cos(7α) =

p′ =
−1−

√
17

4
. Sei nun q := cos(1α) + cos(4α) und r := cos(2α) + cos(8α). Dann gilt: q+ r = p und q · r wird jetzt ausgerechnet:

q ·r = cos(1α) ·cos(2α)+cos(1α) ·cos(8α)+cos(4α) ·cos(2α)+cos(4α) ·cos(8α) und mithilfe des oben benutzten Additionstheorems

folgt dann also:

q · r =
cos(3) + cos(1)

2
+

cos(9) + cos(7)

2
+

cos(6) + cos(2)

2
+

cos(12) + cos(4)

4

=
cos(3) + cos(1)

2
+

cos(8) + cos(7)

2
+

cos(6) + cos(2)

2
+

cos(5) + cos(4)

4

=
cos(3) + cos(1) + cos(8) + cos(7) + cos(6) + cos(2) + cos(5) + cos(4)

2

=
−

1

2
2

= −
1

4

Es gilt also: q + r = p und q · r = −
1

4
, also q · (p − q) = −

1

4
⇔ q2 − pq −

1

4
= 0. Jetzt nach q auflösen: q1,2 =

p

2
±√

p2

4
+

1

4
=
p±

√
p2 + 1

2
. Nun kann man r ausrechnen: r1,2 = p− q = p−

(
p±

√
p2 + 1

2

)
=

2p− p∓
√
p2 + 1

2
=
p∓

√
p2 + 1

2
.

Es wird wieder die Probe gemacht:
p−

√
p2 + 1

2
6= cos(1α) + cos(4α) = q =

p+
√
p2 + 1

2
. Sei jetzt q′ := cos(3α) + cos(5α)

und r′ := cos(6α) + cos(7α). Genau, wie bei der Berechnung von q und r, berechnet man analog, dass gilt q′ · r′ = −
1

4
und

q′ + r′ = p′. Man erhält, wie eben, dass gilt: q′1,2 =
p′ ±

√
(p′)2 + 1

2
, also gilt für r′: r′ =

p′ ∓
√

(p′)2 + 1

2
. Wieder Probe:

p′ −
√

(p′)2 + 1

2
6= cos(3α)+cos(5α) = q′ =

p′ +
√

(p′)2 + 1

2
. Und weiter geht es: Es gilt: cos(α)+cos(4α) = q und cos(α)·cos(4α) =

cos(5α) + cos(3α)

2
=
q′

2
. Setze a := cos(α) und b := cos(4α). Man hat also a+b = q und a·b =

q′

2
. Also: a·(q−a) =

q′

2
⇔ a·(a−q) =

−
q′

2
⇔ a2− qa+

q′

2
, also: a1,2 =

q

2
±

√
q2

4
−
q′

2
=
q ±

√
q2 − 2q′

2
. Wieder Probe:

q −
√
q2 − 2q′

2
6= cos(α) = a =

q +
√
q2 − 2q′

2
.

Es gilt also:

a = cos(α) =
q +

√
q2 − 2q′

2
, q =

p+
√
p2 + 1

2
, q
′

=
p′ +

√
(p′)2 + 1

2
, p =

−1 +
√

17

4
, p
′

=
−1−

√
17

4

Nach dem Satz (Konstruierbare Zahlen) ist also cos(α) und somit nach Lemma (1) der Winkel α =
2π

17
∼=

360◦

17
konstruierbar.

Damit ist man hier also endlich fertig!

Satz (Abzählbarkeit algebraischer Zahlen). Die Menge der algebraischen Zahlen ist abzählbar. Und die Menge der transzendenten

Zahlen, also der nicht algebraischen Zahlen, ist überabzählbar.

Beweis. Algebraische Zahlen sind definiert als Nullstellen von Polynomen (ungleich Nullpolynom) mit ganzzahligen Koeffizienten.

Ein Polynom n-ten Grades hat nach dem Fundamentalsatz der Algebra höchstens n Nullstellen. Es wird gezeigt, dass die Menge

der Polynome (ungleich Nullpolynom) mit ganzzahligen Koeffizienten abzählbar ist. Weil jedes solche Polynom nur endlich viele

Nullstellen hat, folgt daraus, dass die Menge der Nullstellen von Polynomen mit ganzzahligen Koeffizienten ebenfalls abzählbar

ist. Dazu: Sei also p(x) =
n∑
k=0

ak · xk mit ak ∈ Z für k = 0, . . . , n und an 6= 0 ein Polynom n-ten Grades mit ganzzahligen

Koeffizienten. Jedem solchen Polynom kann man die Zahl h(p) = n +
n∑
k=0

|ak| zuordnen. Es gilt dann folgendes: Die Menge
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∞⋃
k=1

{p ∈ Z[x] : h(p) = k} ist eine abzählbare Vereinigung von endlichen Mengen, ist also eine abzählbare Menge. Weil jedes

Polynom p einen Wert h(p) hat und die Polynome diesen Wert von 1 bis ∞ annehmen (nicht 0, da ungleich Nullpolynom), gilt

{p ∈ Z[x] : a0 6= 0} =
∞⋃
k=1

{p ∈ Z[x] : h(p) = k}. Beweis der Endlichkeit: h(p) = k bedeutet, dass der Grad eines Polynoms in

{p ∈ Z[x] : h(p) = k} nicht größer sein kann als k und es gilt auch, dass die Beträge der Koeffizienten ebenfalls höchstens k sein

können. Also ist die Menge {p ∈ Z[x] : h(p) = k} eine endliche Menge. Es folgt also, dass die Menge der Polynome mit ganzzahligen

Koeffizienten (ungleich Nullpolynom) tatsächlich abzählbar ist. Sei A die Menge der algebraischen Zahlen und T die Menge der

transzendenten Zahlen. Es gilt dann: R = A∪T mit A∩T = ∅. Da A, wie eben gezeigt, abzählbar ist, muss T überabzählbar sein,

denn sonst wäre T abzählbar, also auch R, Widerspruch. Also ist der Beweis damit vollständig vollbracht.

Korollar (Anzahl konstruierbarer und nicht konstruierbarer Zahlen). Die Menge der konstruierbaren Zahlen ist abzählbar und

die Menge der nicht konstruierbaren Zahlen ist überabzählbar.

Beweis. Nach dem Satz (Algebraizität konstruierbarer Zahlen) sind alle konstruierbaren Zahlen algebraisch. Weil algebraische

Zahlen abzählbar sind nach dem Satz (Abzählbarkeit algebraischer Zahlen), folgt, dass die Menge der konstruierbaren Zahlen

ebenfalls abzählbar ist. Es folgt weiter, dass überabzählbar viele Zahlen nicht konstruierbar sind.

Der Residuensatz
[Zurück zur Liste]

Satz (Residuensatz). Sei G ein Elementargebiet, es seien z1, . . . , zk ∈ G (zj 6= zl für j 6= l) und es sei dann noch f ∈

H(G \ {z1, . . . , zk}), heißt: f ist holomorph auf dem angegebenen Gebiet. Jedes zj ist also eine isolierte Singularität von f .

Weiter sei γ ein geschlossener, stückweise glatter Weg mit {z1, . . . , zk} /∈ γ. Dann gilt:

1

2πi
·
∫
γ

f(z) dz =

k∑
j=1

indγ(zj) · Reszj f

Beweis. ∀j ∈ {1, . . . , k} existiert ein Rj > 0: KRj (zj) ⊆ G und KRj (zj) ∩ KRl (zl) = ∅ (j 6= l); dabei sei KRj (zj) eine offene

Kreisscheibe vom Radius Rj mit Mittelpunkt zj . Sei j ∈ {1, . . . , k}, dann hat f auf K̇Rj (zj) die Laurententwicklung

f(z) =

∞∑
n=0

a
(j)
n · (z − zj)

n
+

∞∑
n=1

a
(j)
−n · (z − zj)

−n

︸ ︷︷ ︸
=:ϕj(z)

Nach dem Satz über die Laurentzerlegung gilt dabei ϕj ∈ H(C \ {zj}). Man definiert nun g ∈ H(G \ {z1, . . . , zk}) durch

g(z) = f(z) −
k∑
j=1

ϕj(z). Dann hat g in zj (j = 1, . . . , k) eine hebbare Singularität, d.h., dass in der Laurententwicklung von

g die Koeffizienten vor den (z − zj)
−n (n > 0) alle gleich 0 sind. Beweis: Sei g(z) =

∞∑
n=−∞

g(j)
n · (z − zj)

n, dann werden die

Koeffizienten berechnet durch g
(j)
n =

1

2πi
·
∫
KRj

(zj)

g(z)

(z − zj)n+1
dz, also gilt für n < 0: g

(j)
n =

1

2πi
·
∫
KRj

(zj)

f(z)

(z − zj)n+1
dz −

1

2πi
·
∫
KRj

(zj)

ϕj(z)

(z − zj)n+1
dz −

1

2πi
·
∫
KRj

(zj)

k∑
i=1
i6=j

ϕi(z)

(z − zj)n+1
dz = a

(j)
n − a

(j)
n −

1

2πi
·
∫
KRj

(zj)

k∑
i=1
i6=j

ϕi(z)

(z − zj)n+1
dz = 0 − 0 = 0,

denn es gilt
1

2πi
·
∫
KRj

(zj)

k∑
i=1
i6=j

ϕi(z)

(z − zj)n+1
dz = 0 nach dem Cauchy’schen Integralsatz für Sterngebiete (siehe unter der Über-

schrift: Die Cauchy’sche Integralformel), weil

k∑
i=1
i6=j

ϕi(z)

(z − zj)n+1
holomorph auf KRj (zj) ist, denn für i ∈ {1, . . . , k} \ {j} gilt zi /∈

KRj (zj) und wegen n < 0 ist
1

(z − zj)n+1
= (z − zj)

−n−1 holomorph auf KRj (zj). Also ist g ∈ H(G). G ist ein Elemen-

targebiet, was nach Definition bedeutet, dass g als holomorphe Funktion eine Stammfunktion Ω auf G hat, also ist deswegen∫
γ

g(z) dz = Ω(γ(b)) − Ω(γ(a)) = 0 ⇒
∫
γ

f(z) dz =
k∑
j=1

∫
γ

ϕj(z) dz, denn es gilt γ(b) = γ(a) (γ ist geschlossen). Jetzt muss

nur noch

∫
γ

ϕj(z) dz = 2πi · indγ(zj) · a(j)
−1 mit j = 1, . . . , k gezeigt werden. Die Reihe für ϕj konvergiert lokal gleichmäßig, also

können Integration und Summation vertauscht werden:

∫
γ

ϕj(z) dz =
∞∑
n=1

a
(j)
−n ·

∫
γ

(z − zj)−n dz. Da die Funktion 1
(z−zj)n

für

n ∈ {2, 3, 4, . . .} auf G \ {zj} die Stammfunktion
(z−zj)−n+1

−n+1 hat, folgt daraus für diese n:

∫
γ

(z − zj)−n dz = 0, denn es gilt
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{z1, . . . , zk} /∈ γ. Es gilt also

∫
γ

ϕj(z) dz = a
(j)
−1 ·

∫
γ

1

z − zj
dz. Nun gibt es für die Kurve γ : [a, b] → G \ {z1, . . . , zk} mit dem

Umlaufpunkt zj ∈ G ein φ : [a, b]→ R so, dass γ(t) = zj + |γ(t)− zj | · ei·φ(t) gilt. Also gilt dann das Folgende:

1

2πi
·
∫
γ

1

z − zj
dz =

1

2πi
·
∫ b

a

1

zj + |γ(t)− zj | · ei·φ(t) − zj
·
d

dt

(
zj + |γ(t)− zj | · ei·φ(t)

)
dt

=
1

2πi
·
∫ b

a

1

|γ(t)− zj | · ei·φ(t)
·
d

dt

(
|γ(t)− zj | · ei·φ(t)

)
dt

=
1

2πi
·
∫ b

a

|γ′(t)| · ei·φ(t) + |γ(t)− zj | · (i · φ′(t)) · ei·φ(t)

|γ(t)− zj | · ei·φ(t)
dt

=
1

2πi
·
∫ b

a

|γ′(t)|
|γ(t)− zj |

dt+
1

2π
·
∫ b

a

φ
′
(t) dt

=
1

2πi
·
∫ b

a

d

dt
ln(|γ(t)− zj |) dt+

φ(b)− φ(a)

2π

Wegen γ(b) = γ(a) ist das Integral gleich 0, folglich gilt

∫
γ

1

z − zj
dz = 2πi ·

φ(b)− φ(a)

2π
= 2πi · indγ(zj). Nach Definition gilt

a
(j)
−1 = Reszj f , woraus die Behauptung des Satzes folgt.

Die Cauchy’sche Integralformel
[Zurück zur Liste]

Satz (Goursat). Sei G ⊆ C ein Gebiet und f : G→ C eine holomorphe Funktion sowie 4 ⊆ G ein abgeschlossenes Dreiecksge-

biet. Dann gilt die folgende Identität: ∫
∂4

f(z) dz = 0

Beweis. Man schreibt4 = 4(0). Indem man die Seiten von4 halbiert, unterteilt man4 in 4 kongruente Teildreiecke4(1)
1 , . . . ,4(1)

4 .

Das ist im folgendem Bild zu sehen:

Sei γ = ∂4(1)
1 + ∂4(1)

2 + ∂4(1)
3 + ∂4(1)

4 , dann gilt:

∫
γ

f(z) dz =
4∑
k=1

∫
∂4(1)

k

f(z) dz =

∫
∂4(0)

f(z) dz

Denn die Integrale über die Strecken im Innern des Dreiecks heben sich gegenseitig auf, da die Strecken jeweils doppelt mit

entgegengesetztem Vorzeichen durchlaufen werden. Also ist:

∣∣∣∣∫
∂4(0)

f(z) dz

∣∣∣∣ =

∣∣∣∣∫
γ

f(z) dz

∣∣∣∣ ≤ 4 · max
1≤k≤4

∣∣∣∣∣
∫
∂4(1)

k

f(z) dz

∣∣∣∣∣
Nun wählt man unter den Dreiecken 4(1)

1 , . . . ,4(1)
4 dasjenige aus, bei dem der Betrag des Integrals am größten ist, und nennt es

4(1). Dann ist: ∣∣∣∣∫
∂4(0)

f(z) dz

∣∣∣∣ ≤ 4 ·
∣∣∣∣∫
∂4(1)

f(z) dz

∣∣∣∣
Wiederholt man diese Prozedur, so erhält man eine Folge von Dreiecken 4 = 4(0) ⊇ 4(1) ⊇ 4(2) ⊇ 4(3) ⊇ . . . mit∣∣∣∣∫

∂4
f(z) dz

∣∣∣∣ ≤ 4
n ·
∣∣∣∣∫
∂4(n)

f(z) dz

∣∣∣∣ und L(∂4(n)
) = 2

−n · L(∂4)
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Da alle 4(i) kompakt und nicht leer sind, enthält
⋂
n≥0

4(n)
einen Punkt z0, und da der Durchmesser der Dreiecke beliebig klein

wird, kann es auch nur einen solchen Punkt geben. Weil f komplex-differenzierbar in z0 ist, gibt es eine in z0 stetige Funktion A,

so dass gilt: 1. f(z) = f(z0) + (z− z0) · (f ′(z0) +A(z)) und 2. A(z0) = 0. Die affin-lineare Funktion λ(z) := f(z0) + (z− z0) · f ′(z0)

hat auf G eine Stammfunktion, nämlich: Λ(z) := (f(z0)− z0 · f ′(z0)) · z +
f ′(z0)

2
· z2, also folgt dann

∫
∂4(n)

λ(z) dz = 0 für alle

n. Daraus folgt dann:∣∣∣∣∫
∂4(n)

f(z) dz

∣∣∣∣ =

∣∣∣∣∫
∂4(n)

(z − z0) · A(z) dz

∣∣∣∣ ≤ L(∂4(n)
) · max
z∈∂4(n)

(|z − z0| · |A(z)|) ≤ (L(∂4(n)
))

2 · max
z∈∂4(n)

|A(z)|

Setzt man alles zusammen, so erhält man:∣∣∣∣∫
∂4

f(z) dz

∣∣∣∣ ≤ 4
n ·
∣∣∣∣∫
∂4(n)

f(z) dz

∣∣∣∣ ≤ 4
n · (L(∂4(n)

))
2 · max

z∈∂4(n)
|A(z)| = (L(∂4))

2 · max
z∈∂4(n)

|A(z)| ≤ (L(∂4))
2 · max

z∈4(n)
|A(z)|

Für n→∞ strebt die rechte Seite gegen 0 = |A(z0)|. Das beweist den Satz!

Satz (Cauchy’scher Integralsatz für Sterngebiete). Es sei G ein Sterngebiet mit Zentrum z1 und f : G → C holomorph auf G,

dann gilt die folgende Identität: ∫
γ

f(z) dz = 0 für jeden geschlossenen Weg γ in G

Beweis. Da G ein Sterngebiet mit Zentrum z1 ist, gilt also [z1, z] ⊆ G für alle z ∈ G. Daher ist F (z) :=

∫
z1z

f(ζ) dζ wohldefiniert.

Sei c ∈ G fixiert und beliebig. Wird z nahe genug bei c gewählt, so liegt das Dreieck 4 mit den Eckpunkten z1, c, z in G. Das sieht

man im Bild hier:

Nach dem Satz von Goursat oben gilt also 0 =

∫
∂4

f(ζ) dζ =

∫
z1c+cz+zz1

f(ζ) dζ, woraus also 0 = F (c) − F (z) +

∫
cz

f(ζ) dζ =

F (c) − F (z) +

∫ 1

0

f(c + t · (z − c)) · (z − c) dt = F (c) − F (z) + h(z) · (z − c) für z ∈ G nahe bei c, wobei hier gesetzt sei:

h(z) :=

∫ 1

0

f(c+ t · (z − c)) dt. Offensichtlich ist h(c) = f(c). Es folgt dann:

|h(z)− h(c)| =
∣∣∣∣∫ 1

0

f(c+ t · (z − c)) dt− f(c)

∣∣∣∣ =

∣∣∣∣∫ 1

0

f(c+ t · (z − c))− f(c) dt

∣∣∣∣ ≤ max
0≤t≤1

|f(c+ t · (z − c))− f(c)|

Weil f stetig in c ist, läuft die rechte Seite für z → c gegen 0, also h(z)→ h(c), d.h. h ist stetig in c. Daraus folgt, dass der Limes

des Differenzenquotienten in h(c) = lim
z→c

h(z) = lim
z→c

F (z)− F (c)

z − c
existiert. Da h(c) = f(c) gilt, gilt also F ′(c) = f(c). Weil c ∈ G

beliebig war, folgt also, dass F eine Stammfunktion von f ist, also gilt∫
γ

f(z) dz =

∫ 1

0

f(γ(t)) · γ′(t) dt =

∫ 1

0

d

dt
F (γ(t)) dt = F (γ(1))− F (γ(0)) = 0

Denn die Kurve γ ist nach Voraussetzung geschlossen, also γ(1) = γ(0). Fertig!

Satz (Zentrierungslemma). Sei g eine Funktion, die in einem Bereich D mit eventueller Ausnahme eines festen Punktes z ∈ D

holomorph ist. Sei dann B = Kr(c) eine offene Kreisscheibe vom Radius r mit Mittelpunkt c, wobei gelte: z ∈ B und B ⊆ D.

Sei S = ∂Kt(z) und S ⊆ B, dann gilt: ∫
∂B

g dz =

∫
S

g dz

Beweis. Zuerst kommt ein Bild:
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Es gibt eine Scheibe B∗ ⊇ B ∪ ∂B um c, so dass g in B∗ \ {z} holomorph ist. Es werden nun folgende geschlossene Hilfswege

betrachtet: γ := γ1 +α+γ3 +β und γ′ := γ2−β+γ4−α (siehe Bild). Da B∗ \ [a, z] ein Sterngebiet ist, folgt nach dem Cauchy’schen

Integralsatz für Sterngebiete also:

∫
γ

g dz = 0. Analog ergibt sich dann

∫
γ′
g dz = 0. Mit ∂B = γ1 + γ2 und S = −γ3 − γ4 folgt

also:

0 =

∫
γ

g dz +

∫
γ′
g dz =

∫
∂B

g dz −
∫
S

g dz ⇒
∫
∂B

g dz =

∫
S

g dz

Und das war es dann auch!

Satz (Cauchy’sche Integralformel für Kreisscheiben). Sei K = Kr(c) (Radius r, Mittelpunkt c) eine offene Kreisscheibe in C

und f eine holomorphe Funktion auf K. Für jedes z ∈ K gilt dann die folgende wichtige Identität:

f(z) =
1

2πi
·
∫
∂K

f(ζ)

ζ − z
dζ

Beweis. Sei z ∈ K fixiert. Aus dem Beweis des Residuensatzes weiß man bereits, dass
1

2πi
·
∫
∂K

1

ζ − z
dζ = 1 gilt. Also folgt

daraus dann das Folgende:

1

2πi
·
∫
∂K

f(ζ)

ζ − z
dζ − f(z) =

1

2πi
·
∫
∂K

f(ζ)

ζ − z
dζ − f(z) ·

1

2πi
·
∫
∂K

1

ζ − z
dζ =

1

2πi
·
∫
∂K

f(ζ)− f(z)

ζ − z
dζ

Die Funktion ϕ(ζ) =
f(ζ)− f(z)

ζ − z
für ζ ∈ K \ {z} mit ϕ(z) := f ′(z) ist holomorph auf K \ {z} und stetig auf K. Wegen der

Stetigkeit von ϕ um z gibt es ein δ > 0 und ein M > 0 so, dass gilt |ϕ(ζ)| ≤ M für alle ζ ∈ Kδ(z). Aus dem Zentrierungslemma

folgt:

∫
∂K

ϕ(ζ) dζ =

∫
∂Kε(z)

ϕ(ζ) dζ für ein ε > 0 mit ∂Kε(z) ⊆ K. Mit der Standardabschätzung folgt dann:

∫
∂K

ϕ(ζ) dζ =

∫
∂Kε(z)

ϕ(ζ) dζ ≤ 2πε · sup
ζ∈∂Kε(z)

|ϕ(ζ)| ≤
ε<δ

2πM · ε

Dabei muss bei ε → 0 dann ε < δ gelten. Also folgt:

∫
∂K

f(ζ)− f(z)

ζ − z
dζ =

∫
∂K

ϕ(ζ) dζ = 0, also
1

2πi
·
∫
∂K

f(ζ)

ζ − z
dζ − f(z) = 0.

Damit ist der Beweis also vollbracht!

Das Noether-Theorem
[Zurück zur Liste]

Satz. Sei die Lagrange-Funktion L (x(t), ẋ(t), t) mit x(t) = (x1, . . . , xf )(t) und ẋ(t) = (ẋ1, . . . , ẋf )(t) (Ort und Geschwindig-

keit), wobei f die Anzahl der Freiheitsgrade ist, für ein mechanisches System gegeben. Man möchte dann das Wirkungsfunktional

S[x] =

∫ t2

t1

L (x(t), ẋ(t), t) dt minimieren, gemäß dem Prinzip der kleinsten Wirkung für eine Bewegung von Massepunkten.

Setzt man z.B. L (x, ẋ, t) = Ekin−Epot, dann soll die Minimierung von S[y] bedeuten, dass man eine Bahn, von einem Punkt zu

einem anderen, möchte, die minimal viel Energie verbraucht. Nach Variationsrechnung ist S[y] genau dann extremal, wenn die

Euler-Lagrange-Gleichungen gelten:
d

dt

∂L

∂ẋi
−
∂L

∂xi
= 0. Seien nun durch xi 7→ x∗i = xi+ε·ψi(x, ẋ, t)+O(ε2) =: x∗i (x1, . . . , xf , t, ε)

und t 7→ t∗ = t+ ε ·ϕ(x, ẋ, t) +O(ε2) =: t∗(x1, . . . , xf , t, ε) die sehr allgemeinen kontinuierlichen Koordinatentransformationen

gegeben. Ist eine Transformation so gegeben, dass das Wirkungsfunktional S[x] unverändert bleibt, dann hat das nach Noether

eine Erhaltungsgröße zur Folge. Solche Transformationen heißen Symmetrietransformationen.
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Beweis. Es wird zunächst untersucht unter welchen Bedingungen für eine Transformation das Wirkungsfunktional unverändert

bleibt: Sei also S
∗

=

∫ t∗2

t∗1

L

(
x
∗
,
dx∗

dt∗
, t
∗
)
dt
∗

=

∫ t2

t1

L (x, ẋ, t) dt = S. Es gilt:

S
∗

=

∫ t∗2

t∗1

L

(
x
∗
,
dx∗

dt∗
, t
∗
)
dt
∗

=

∫ t2

t1

L

(
x
∗
(t),

dx∗

dt∗
(t), t

∗
(t)

)
·
dt∗

dt
dt

Sei f(ε) := L

(
x∗(t),

dx∗

dt∗
(t), t∗(t)

)
·
dt∗

dt
. Dann gilt nach Taylor: f(ε) =

f(0)

0!
· ε0 +

f ′(0)

1!
· ε1 +

f ′′(0)

2!
· ε2 + . . . = f(0) + f ′(0) ·

ε + O(ε2). Es gilt
dt∗

dt
= 1 + ε ·

d

dt
ϕ(x, ẋ, t) + O(ε2). Also folgt: f(ε) = L

(
x∗(t),

dx∗

dt∗
(t), t∗(t)

)
·
dt∗

dt
= L (x(t), ẋ(t), t) · 1 +

d

dε

(
L

(
x∗(t),

dx∗

dt∗
(t), t∗(t)

)
·
dt∗

dt

)
ε=0

· ε. Daraus folgt also, dass die Koordinatentransformation genau dann symmetrisch (also

S = S∗) ist, wenn
d

dε

(
L

(
x∗(t),

dx∗

dt∗
(t), t∗(t)

)
·
dt∗

dt

)
ε=0

= 0 (Invarianzbedingung) gilt. Man rechnet nun:
dt∗

dt
= 1 + ε ·

dϕ

dt
⇒

dt

dt∗
=

1

1 + ε ·
dϕ

dt

≈ 1 − ε ·
dϕ

dt
, denn:

1

1 + x
=
∞∑
k=0

(−x)k, x ∈ (−1, 1). Es folgt:
dx∗i
dt∗

=
dx∗i
dt
·
dt

dt∗
=

(
dxi

dt
+ ε ·

dψi

dt

)
·

(
1− ε ·

dϕ

dt

)
=
dxi

dt
+ ε ·

dψi

dt
− ε ·

dxi

dt
·
dϕ

dt
− ε2 ·

dψi

dt
·
dϕ

dt
=
dxi

dt
+ ε ·

dψi

dt
− ε ·

dxi

dt
·
dϕ

dt
+O(ε2) ≈

dxi

dt
+ ε ·

dψi

dt
− ε ·

dxi

dt
·
dϕ

dt
.

Diese Ergebnisse setzt man nun in die Invarianzbedingung ein:

0 =
d

dε

(
L

(
xi + ε · ψi,

dxi

dt
+ ε ·

dψi

dt
− ε ·

dxi

dt
·
dϕ

dt
, t+ ε · ϕ

)
·
(

1 + ε ·
dϕ

dt

))
ε=0

⇔

0 =
d

dε

(
L

(
xi + ε · ψi,

dxi

dt
+ ε ·

dψi

dt
− ε ·

dxi

dt
·
dϕ

dt
, t+ ε · ϕ

))
ε=0

· 1 + L (xi, ẋi, t) ·
dϕ

dt

⇔

0 =

 f∑
i=1

∂L

∂xi
(xi, ẋi, t) · ψi +

f∑
i=1

∂L

∂ẋi
(xi, ẋi, t) ·

(
dψi

dt
−
dxi

dt
·
dϕ

dt

)
+
∂L

∂t
(xi, ẋi, t) · ϕ

+ L (xi, ẋi, t) ·
dϕ

dt

⇔

0 =

f∑
i=1

∂L

∂xi
(xi, ẋi, t) · ψi +

f∑
i=1

∂L

∂ẋi
(xi, ẋi, t) ·

dψi

dt
−

f∑
i=1

∂L

∂ẋi
(xi, ẋi, t)

(
dxi

dt
·
dϕ

dt

)
+
∂L

∂t
(xi, ẋi, t) · ϕ+ L (xi, ẋi, t) ·

dϕ

dt

Eine kurze Unterbrechung; es gilt:
d

dt

(
f∑
i=1

∂L

∂ẋi
· ψi

)
=

f∑
i=1

∂L

∂ẋi
·
dψi

dt
+

f∑
i=1

d

dt

∂L

∂ẋi
· ψi =

f∑
i=1

∂L

∂ẋi
·
dψi

dt
+

f∑
i=1

∂L

∂xi
· ψi wegen der

gültigen Euler-Lagrange-Gleichungen
d

dt

∂L

∂ẋi
=
∂L

∂xi
. Also gilt weiter:

0 =
d

dt

 f∑
i=1

∂L

∂ẋi
· ψi

+

L −
f∑
i=1

∂L

∂ẋi
·
dxi

dt

 · dϕ
dt

+
∂L

∂t
· ϕ

Unterbrechung:
d

dt
L (xi, ẋi, t) =

∂L

∂t
+

f∑
i=1

∂L

∂xi
·ẋi+

f∑
i=1

∂L

∂ẋi
·ẍi =

∂L

∂t
+

f∑
i=1

d

dt

∂L

∂ẋi
·ẋi+

f∑
i=1

∂L

∂ẋi
·ẍi =

∂L

∂t
+
d

dt

(
f∑
i=1

∂L

∂ẋi
· ẋi

)
,

wieder wegen der Euler-Lagrange-Gleichungen. Weiter:

0 =
d

dt

 f∑
i=1

∂L

∂ẋi
· ψi

+

L −
f∑
i=1

∂L

∂ẋi
·
dxi

dt

 · dϕ
dt

+

 d

dt
L −

d

dt

 f∑
i=1

∂L

∂ẋi
· ẋi

 · ϕ
⇔

0 =
d

dt

 f∑
i=1

∂L

∂ẋi
· ψi

+
d

dt

L −
f∑
i=1

∂L

∂ẋi
· ẋi

 · ϕ


⇔

0 =
d

dt

 f∑
i=1

∂L

∂ẋi
· ψi +

L −
f∑
i=1

∂L

∂ẋi
· ẋi

 · ϕ


Es wurde also eine Erhaltungsgröße
f∑
i=1

∂L

∂ẋi
· ψi +

(
L −

f∑
i=1

∂L

∂ẋi
· ẋi

)
· ϕ = konst. hergeleitet.

Korollar. Aus dem Noether-Theorem oben folgt:

1. Zeittranslations-Invarianz ⇒ Energieerhaltung

2. Räumliche Translations-Invarianz ⇒ Impulserhaltung

3. Drehinvarianz ⇒ Drehimpulserhaltung
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Beweis. Zu 1.: Sei ~x(t) :=


x(t)

y(t)

z(t)

 = x(t) ·


1

0

0

+ y(t) ·


0

1

0

+ z(t) ·


0

0

1

 = x(t) · ex + y(t) · ey + z(t) · ez . Dann ist

L (~x, ~̇x, t) =
1

2
·m · (ẋ2 + ẏ2 + ż2) − V (x, y, z). Sei weiter x∗ = x, y∗ = y und z∗ = z, aber t∗ = t + ε (Zeittranslation). Also gilt

ψi = 0, aber ϕ = 1. Dann gilt: L −
f∑
i=1

∂L

∂ẋi
· ẋi =

1

2
·m · (ẋ2 + ẏ2 + ż2) − V (x, y, z) −

1

2
·m · (2 · ẋ · ẋ+ 2 · ẏ · ẏ + 2 · ż · ż) =

−
1

2
·m · (ẋ2 + ẏ2 + ż2) − V (x, y, z) = −Ekin − Epot = −(Ekin + Epot) = −E (negative Gesamtenergie) ist die Erhaltungsgröße.

Nun zu 2.: Sei diesmal also x∗ = x + ε (Räumliche Translation in x-Richtung), mit y∗ = y und z∗ = z sowie t∗ = t, also

ψ1 = 1 sowie ψ2 = ψ3 = 0, und ϕ = 0. Damit erhält man nach dem Theorem oben, dass
f∑
i=1

∂L

∂ẋi
· ψi = m · ẋ (Impuls in

x-Richtung) eine Erhaltungsgröße ist. Jetzt kommt 3.: Man wählt hier Zylinderkoordinaten: Es gilt zunächst er =


cos(φ)

sin(φ)

0

,

eφ =


− sin(φ)

cos(φ)

0

 und eh =


0

0

1

. In Zylinderkoordinaten ist ein Punkt schon dargestellt durch ~x(t) = r(t)·er(t)+h(t)·eh(t).

Also folgt ~̇x = ṙ · er + r · ėr + ḣ · eh + h · ėh = ṙ · er + r · φ̇ · eφ + ḣ · eh + h · 0 = ṙ · er + r · φ̇ · eφ + ḣ · eh, also gilt dann: ~̇x2 =

ṙ2·(er ·er)+r2·φ̇2·(eφ·eφ)+ḣ2·(eh·eh) = ṙ2+r2·φ̇2+ḣ2. Dann ist also L (~x, ~̇x, t) = L (r, φ, h, t) =
1

2
·m·(ṙ2+r2·φ̇2+ḣ2)−V (r, φ, h).

Sei nun also r∗ = r, φ∗ = φ + ε (Drehung um z-Achse) und h∗ = h, sowie: t∗ = t. Also gilt nach dem Theorem von Noether mit

ψ1 = ψ3 = 0, aber ψ2 = 1, und noch ϕ = 0, dass
f∑
i=1

∂L

∂ẋi
· ψi = m · r2 · φ̇ (Drehimpuls) eine Erhaltungsgröße ist.

Korollar (Schwerpunktsatz). Der Schwerpunkt eines n-Teilchensystems bewegt sich geradlinig und mit konstanter Geschwin-

digkeit. Der Beweis geht dann folgendermaßen:

Beweis. Für die Lagrangefunktion gilt also L (~xi, ~̇xi, t) =
n∑
i=1

1

2
·mi · ~̇x2

i − V (. . . , |~xi − ~xj |, . . .) =
n∑
i=1

1

2
·mi · (ẋ2

i + ẏ2
i + ż2

i ) −

V (. . . , |~xi − ~xj |, . . .). Sei dann x∗i = xi + ε und y∗i = yi sowie z∗i = zi als auch t∗ = t. Also gilt ψxi = 1, ψyi = 0, ψzi = 0 und

ϕ = 0. Nach dem Noether-Theorem folgt daraus, dass
n∑
i=1

∂L

∂ẋi
· ψxi =

n∑
i=1

mi · ẋi = konst. (Gesamtimpuls in x-Richtung) eine

Erhaltungsgröße ist. Genauso zeigt man, dass
n∑
i=1

mi · ẏi = konst. und
n∑
i=1

mi · żi = konst. gelten. Sei M :=
n∑
i=1

mi die Gesamtmasse

(eine konstante Größe), dann ist ~S =
1

M
·
n∑
i=1

mi · ~xi der Schwerpunkt des n-Teilchensystems. Dann folgt:

d

dt
~S =

1

M
·
n∑
i=1

mi · ~̇xi =
1

M
·



n∑
i=1

mi · ẋi
n∑
i=1

mi · ẏi
n∑
i=1

mi · żi

 =


konst.1

M
konst.2

M
konst.3

M

 =: ~vkonst.

Das ist also die gewünschte Behauptung. Das war es!

Das Euler-Produkt
[Zurück zur Liste]

Satz. Es gilt die Formel ζ(s) =

∞∑
n=1

1

ns
=
∏
p prim

1

1− p−s
für s ∈ {z ∈ C : <(z) > 1}.

Beweis. Zunächst wird die absolute Konvergenz der Zetafunktion gezeigt. Es gilt mit s = a+ b · i:

∣∣∣n−s∣∣∣ =
∣∣∣e(−a−b·i)·ln(n)

∣∣∣ =
∣∣∣e−a·ln(n)

∣∣∣ · ∣∣∣e−b·i·ln(n)
∣∣∣ =

∣∣∣e−a·ln(n)
∣∣∣ · |cos(−b · ln(n)) + i · sin(−b · ln(n))|

Wegen |cos(−b · ln(n)) + i · sin(−b · ln(n))| =
√

cos(−b · ln(n))2 + · sin(−b · ln(n))2 = 1 folgt also

∣∣∣n−s∣∣∣ =
∣∣∣e−a·ln(n)

∣∣∣ = n
−a

Nach dem Cauchy’schen Verdichtungskriterium konvergiert eine Reihe
∞∑
n=1

an genau dann, wenn die Reihe
∞∑
k=0

2k ·a
2k

konvergiert.

Damit folgt dann also:
∞∑
n=1

∣∣∣∣ 1

ns

∣∣∣∣ =
∞∑
n=1

∣∣n−s∣∣ konvergiert genau dann, wenn

∞∑
k=0

2
k · a

2k
=

∞∑
k=0

2
k ·
(

2
k
)−a

=

∞∑
k=0

(
2
k
)1−a

=
∞∑
k=0

(
2
1−a

)k
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konvergiert. Nun konvergiert
∞∑
k=0

(
21−a)k als geometrische Reihe genau dann, wenn 21−a < 1 ⇔ log2(21−a) < log2(1) ⇔ 1 − a <

0⇔ a > 1 gilt. Weil nun ζ(s) für <(s) = a > 1 definiert ist, folgt, dass die Reihe auf dem Definitonsbereich auch konvergiert, denn

aus absoluter Konvergenz der Reihe folgt die normale Konvergenz, weil die absolute Reihe eine konvergente Majorante der normalen

Reihe darstellt. Sei nun Pn := {p1, . . . , pn} die Menge der ersten n Primzahlen und N(Pn) := {N ∈ N : N = p
k1
1 ·. . .·p

k1
n (kv ≥ 0)}.

Es wird behauptet: ∑
N∈N(Pn)

1

Ns
=
∏
p∈Pn

1

1− p−s

Das wird mit vollständiger Induktion gezeigt: I.A.: Also n = 1:

∏
p∈P1

1

1− p−s
=

1

1− (p1)−s
=
∞∑
v=0

(
(p1)

−s
)v

=
∞∑
v=0

1(
pv1
)s =

∑
N∈N(P1)

1

Ns

Jetzt kommt der Induktionsschluss (I.S.: n⇒ n+ 1):

∏
p∈Pn+1

1

1− p−s
=

 ∏
p∈Pn

1

1− p−s

 · 1

1− (pn+1)−s
I.V.
=

 ∑
N∈N(Pn)

1

Ns

 ·
 ∞∑
v=0

1(
pvn+1

)s
 =

∑
N∈N(Pn+1)

1

Ns

Wegen absoluter Konvergenz sind die gliedweisen Multiplikationen und die Umordnungen erlaubt. Es gilt also
∑

N∈N(Pn)

1

Ns
=

∏
p∈Pn

1

1− p−s
. Jetzt lässt man auf beiden Seiten n gegen ∞ laufen. Nun gilt lim

n→∞

∑
N∈N(Pn)

1

Ns
=
∞∑
n=1

1

ns
. Weil diese Reihe, wie

schon nachgewiesen, konvergiert, folgt also die Behauptung des Satzes.

Das Gauß-Integral
[Zurück zur Liste]

Satz. Es gilt

∫ ∞
−∞

e
−x2

dx =
√
π.

Beweis. Γ(x) =

∫ ∞
0

t
x−1 · e−t dt heißt Gammafunktion. Es wird Γ

(
1
2

)
auf zwei Arten berechnet:

Γ

(
1

2

)
=

∫ ∞
0

t
− 1

2 · e−t dt

=

∫ √∞
√

0

(x
2
)
− 1

2 · e−x
2
· 2x dx

=

∫ ∞
0

e
−x2
·

1

x
· 2x dx

= 2 ·
∫ ∞

0

e
−x2

dx

=
2

2
·
∫ ∞
−∞

e
−x2

dx

=

∫ ∞
−∞

e
−x2

dx

Als nächstes wird die Gauß’sche Produktdarstellung der Gammafunktion hergeleitet:

e
x

= lim
n→∞

(
1 +

x

n

)n
⇒ Γ(x) = lim

n→∞

∫ n

0

t
x−1 ·

(
1−

t

n

)n
dt

Nun wird mehrfach partiell integriert:
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∫ n

0

t
x−1 ·

(
1−

t

n

)n
dt =

[
tx

x
·
(

1−
t

n

)n]n
0

−
∫ n

0

tx

x
· n ·

(
1−

t

n

)n−1

·
(
−

1

n

)
dt

= 0 +
1

x
·
∫ n

0

t
x ·
(

1−
t

n

)n−1

dt

=
1

x
·
([

tx+1

x+ 1
·
(

1−
t

n

)n−1
]n

0

−
∫ n

0

tx+1

x+ 1
· (n− 1) ·

(
1−

t

n

)n−2

·
(
−

1

n

)
dt

)

=
1

x
·
(

0 +
n− 1

n
·
∫ n

0

tx+1

x+ 1
·
(

1−
t

n

)n−2

dt

)

=
1

x · (x+ 1)
·
n− 1

n
·
∫ n

0

t
x+1 ·

(
1−

t

n

)n−2

dt

=
1

x · (x+ 1)
·
n− 1

n
·
([

tx+2

x+ 2
·
(

1−
t

n

)n−2
]n

0

−
∫ n

0

tx+2

x+ 2
· (n− 2) ·

(
1−

t

n

)n−3

·
(
−

1

n

)
dt

)

=
1

x · (x+ 1)
·
n− 1

n
·
(

0 +
n− 2

n
·
∫ n

0

tx+2

x+ 2
·
(

1−
t

n

)n−3

dt

)

=
1

x · (x+ 1) · (x+ 2)
·

(n− 1) · (n− 2)

n2
·
∫ n

0

t
x+2 ·

(
1−

t

n

)n−3

dt

Nach weiteren n− 3 partiellen Integrationen hat man:∫ n

0

t
x−1 ·

(
1−

t

n

)n
dt =

1

x · (x+ 1) · . . . · (x+ (n− 1))
·

(n− 1) · (n− 2) · . . . · 1
nn−1

·
∫ n

0

t
x+(n−1)

dt

=
1

x · (x+ 1) · . . . · (x+ n− 1)
·

(n− 1)!

nn−1
·
[
tx+n

x+ n

]n
0

=
1

x · (x+ 1) · . . . · (x+ n− 1)
·

(n− 1)!

nn−1
·
nx+n

x+ n

=
1

x · (x+ 1) · . . . · (x+ n)
·

n!

nn−1
· nx+n−1

=
n! · nx

x · (x+ 1) · . . . · (x+ n)

Zusammengefasst wurde also gezeigt:

Γ(x) = lim
n→∞

n! · nx

x · (x+ 1) · . . . · (x+ n)

Mit dieser Darstellung kann man nun Γ
(

1
2

)
auf andere Weise bestimmen:

Γ

(
1

2

)
= lim
n→∞

n! · n
1
2

1
2 · (

1
2 + 1) · ( 1

2 + 2) · . . . · ( 1
2 + n)

= lim
n→∞

n! · n
1
2

1
2 ·

3
2 ·

5
2 · . . . · (

2n+1
2 )

= lim
n→∞

n! · n
1
2 · 2n+1

1 · 3 · 5 · . . . · (2n+ 1)

= lim
n→∞

2 · n
1
2 ·

√
(n!)2 · (2n)2

(1 · 3 · 5 · . . . · (2n+ 1))2

= lim
n→∞

2 · n
1
2 ·

√
(12 · 22) · (22 · 22) · (32 · 22) · . . . · (n2 · 22)

12 · 32 · 52 · . . . · (2n+ 1)2

= lim
n→∞

2 ·
√

n

2n+ 1
·

√√√√ n∏
i=1

2i · 2i
(2i− 1) · (2i+ 1)

= 2 ·
√

lim
n→∞

n

2n+ 1
·

√√√√ ∞∏
i=1

(2i)2

(2i− 1) · (2i+ 1)

= 2 ·
√

1

2
·
√
π

2

=
√
π

Durch Gleichsetzen der beiden Darstellungen für Γ
(

1
2

)
folgt die Behauptung.

Es geht aber auch sehr viel kürzer:

Beweis.

∫ ∞
−∞

e
−x2

dx = 2 ·
∫ ∞

0

e
−x2

dx =

(
4 ·
∫ ∞

0

e
−u2

du ·
∫ ∞

0

e
−v2

dv

) 1

2 =

(
4 ·
∫ ∞

0

∫ ∞
0

e
−(u2+v2)

du dv

) 1

2
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Und das ist dann gleich zu:

4 ·
∫ π

2
0

∫ ∞
0

e
−((r·cos(ϕ))2+(r·sin(ϕ))2) · det

 cos(ϕ) −r · sin(ϕ)

sin(ϕ) r · cos(ϕ)

 dr dϕ


1

2
=

4 ·
∫ π

2
0

∫ ∞
0

e
−r2 · r dr dϕ


1

2

Und weiter gleich zu:

−2 ·
∫ π

2
0

∫ ∞
0

e
−r2 · (−2 · r) dr dϕ


1

2
=

−2 ·
∫ π

2
0

∫ −∞
0

e
t
dt dϕ


1

2
=

2 ·
∫ π

2
0

∫ 0

−∞
e
t
dt dϕ


1

2
=

2 ·
∫ π

2
0

[e
t
]
0
−∞ dϕ


1

2

Also folgt daraus:

∫ ∞
−∞

e
−x2

dx =

2 ·
∫ π

2
0

1 dϕ


1

2
=

(
2 · [ϕ]

π
2
0

) 1

2 =
√
π

Das Wallis-Produkt
[Zurück zur Liste]

Satz. Es gilt
π

2
=
∞∏
n=1

(2n)2

(2n− 1) · (2n+ 1)
.

Beweis. Man untersucht die Folge ik :=

∫ π
2

0

sin(x)
k
dx mit k ∈ N0. Je zwei Glieder von ik sind rekursiv verknüpft durch

ik+2 = k+1
k+2 · ik mit den Anfangsbedingungen i0 = π

2 und i1 = 1. Man erhält dies durch partielle Integration:

ik+2 =

∫ π
2

0

sin(x)
k+2

dx

=

∫ π
2

0

sin(x)
k+1 · sin(x) dx

=
[
sin(x)

k+1 · (− cos(x))
]π

2

0
−
∫ π

2

0

((k + 1) · sin(x)
k · cos(x)) · (− cos(x)) dx

= (k + 1) ·
∫ π

2

0

sin(x)
k · cos(x)

2
dx

= (k + 1) ·
∫ π

2

0

sin(x)
k · (1− sin(x)

2
) dx

= (k + 1) ·
∫ π

2

0

sin(x)
k − sin(x)

k+2
dx

= (k + 1) ·
(∫ π

2

0

sin(x)
k
dx−

∫ π
2

0

sin(x)
k+2

dx

)

= (k + 1) · (ik − ik+2)

Eine Umordnung des Resultates ik+2 = (k + 1) · (ik − ik+2) ergibt ik+2 = k+1
k+2 · ik. Nun kann man die Quotientenfolge

ik
ik+1

abschätzen durch 1 ≤ ik
ik+1

≤ 1 + 1
k+1 . Das ist gleichbedeutend mit lim

k→∞

ik
ik+1

= 1. Denn sei x ∈ [0; π2 ], dann gilt 0 ≤ sin(x) ≤ 1.

Also folgt sin(x)k+1 ≤ sin(x)k sowie sin(x)k+2 ≤ sin(x)k+1 und daraus 1 ≤ ik
ik+1

und
ik
ik+1

≤ ik
ik+2

. Wegen der Rekursionsformel

gilt
ik
ik+2

= k+2
k+1 = 1 + 1

k+1 . Zusammenfassend hat man also 1 ≤ ik
ik+1

≤ ik
ik+2

= 1 + 1
k+1 . Es gilt also tatsächlich lim

k→∞

ik
ik+1

= 1.

Es wird nun die Wallis-Folge definiert: wk :=
i2k
i2k+1

. Nun gilt:

wk

wk−1

= wk · (wk−1)
−1

=
i2k

i2k+1

·
i2(k−1)+1

i2(k−1)

=
i2k

i2k+1

·
i2k−1

i2k−2

=
i2k−1

i2k+1

·
i2k

i2k−2

=

(
i2k+1

i2k−1

)−1

·
i2k

i2k−2

=
(2k − 1) + 2

(2k − 1) + 1
·

(2k − 2) + 1

(2k − 2) + 2

Also gilt
wk
wk−1

=
(2k+1)·(2k−1)

2k·2k =
(2k−1)·(2k+1)

(2k)2
=: rk. Die Rekursionsgleichung wk = wk−1 · rk wird nun näher betrachtet:

w1 = w0 · r1

w2 = w1 · r2 = w0 · r1 · r2

w3 = w2 · r3 = w0 · r1 · r2 · r3

.

.

.

wk = w0 ·
k∏
n=1

rn
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Es folgt lim
k→∞

1
wk

= 1
w0
·
∞∏
n=1

(rn)−1 mit w0 =
i0
i1

= π
2 . Die Erkenntnis über den Quotienten

ik
ik+1

liefert lim
k→∞

wk = lim
k→∞

i2k
i2k+1

=

lim
k→∞

ik
ik+1

= 1. Daraus folgt wegen lim
k→∞

1
wk

= 1
lim
k→∞

wk
:

1 =
2

π
·
∞∏
n=1

(2n)2

(2n− 1) · (2n+ 1)

Und das ist die Behauptung des Satzes.

Die divergente harmonische Reihe
[Zurück zur Liste]

Satz (Divergenz der harmonischen Reihe). Es gilt

∞∑
n=1

1

n
=

1

1
+

1

2
+

1

3
+

1

4
+

1

5
+ . . . =∞.

Beweis. Zunächst gilt ln(et) = t ⇒ ln′(et) · et = 1 ⇒ ln′(et) =
1

et
⇒ ln′(eln(x)) =

1

eln(x)
⇒ ln′(x) =

1

x
. Daraus folgt dann

ln(x) =

x∫
1

1

t
dt. Weil

1

x
wegen

(
1

x

)′
= −

1

x2
< 0 für alle x ∈ [1,∞) also streng monoton fallend ist, folgt, dass für alle n ∈ N≥1

auf [n, n + 1] gilt
1

t
≤

1

n
. Also folgt damit: ln(x) =

x∫
1

1

t
dt ≤

∞∑
n=1

1

n
· 1 =

∞∑
n=1

1

n
. Nun ist aber ln(x) auf [1,∞) stetig und wegen

ln′(x) =
1

x
> 0 streng monoton steigend. Desweiteren ist ln(x) nach oben unbeschränkt, denn wäre ln(x) ≤ C für alle x ∈ [1,∞),

dann gibt es aber ein x′ ∈ [1,∞) mit x′ = eC+1, so dass also folgt ln(x′) = ln
(
eC+1

)
= C + 1 > C, Widerspruch. Also ist ln(x)

nach oben unbeschränkt. Zusammengefasst ist also bewiesen, dass lim
x→∞

ln(x) = ∞. Wegen ln(x) =

x∫
1

1

t
dt ≤

∞∑
n=1

1

n
hat man für

∞∑
n=1

1

n
also eine divergente Minorante gefunden, also gilt die Behauptung des Satzes.

Satz (Euler-Mascheroni-Konstante). Es gibt ein γ ∈ [0, 1] mit γ = lim
N→∞

(
N∑
n=1

1

n
− ln(N)

)
.

Beweis. Weil

(
1

x

)′
= −

1

x2
< 0 für alle x ∈ [1,∞) gilt, ist also

1

x
dort streng monoton fallend. Daraus folgt dann, dass für

alle n ∈ N≥1 gilt: Auf [n, n + 1] ist
1

n+ 1
≤

1

x
≤

1

n
. Daraus folgt dann also:

N∑
n=2

1

n
≤
∫ N

1

1

x
dx = ln(N) ≤

N−1∑
n=1

1

n
und daraus

folgt dann
1

N
≤ ln(N) −

N−1∑
n=2

1

n
≤ 1 ⇒ −1 ≤

N−1∑
n=2

1

n
− ln(N) ≤ −

1

N
⇒ −1 +

(
1 +

1

N

)
≤

N∑
n=1

1

n
− ln(N) ≤ −

1

N
+

(
1 +

1

N

)
,

also gilt
1

N
≤ γN :=

N∑
n=1

1

n
− ln(N) ≤ 1. Es folgt daraus, dass γN für N → ∞ nach unten durch lim

N→∞

1

N
= 0 beschränkt

ist. Nun gilt: γN−1 − γN =

(
N−1∑
n=1

1

n
− ln(N − 1)

)
−
(

N∑
n=1

1

n
− ln(N)

)
= −

1

N
− ln(N − 1) + ln(N) =

∫ N

N−1

1

x
dx −

1

N
=∫ N

N−1

1

x
−

1

N
dx > 0, also gilt damit γN−1 > γN für alle N ∈ N≥1, d.h. γN ist monoton fallend. Weil γN nach unten durch

0 beschränkt ist und monoton fallend ist, folgt, dass γN für N → ∞ konvergiert. D.h. dann, dass der folgende Limes existiert:

γ = lim
N→∞

γN = lim
N→∞

(
N∑
n=1

1

n
− ln(N)

)
, wobei gilt: γ ∈ [0, 1]. Also: Fertig!

Satz (Konvergenz der alternierenden harmonischen Reihe). Obwohl

∞∑
n=1

1

n
=∞ gilt, ist aber:

∞∑
n=1

(−1)
n−1 ·

1

n
=

1

1
−

1

2
+

1

3
−

1

4
+

1

5
− . . . = ln(2)

Beweis. Zu Beginn gilt erstmal folgendes:

2N∑
n=1

(−1)
n−1 ·

1

n
=

2N∑
n=1

1

n
− 2 ·

N∑
n=1

1

2n
=

2N∑
n=1

1

n
−

N∑
n=1

1

n

Aus dem vorherigen Satz folgt, dass aN :=

(
2N∑
n=1

1

n
− ln(2N)

)
− γ und a

′
N :=

(
N∑
n=1

1

n
− ln(N)

)
− γ Nullfolgen sind. Daraus folgt

dann:

2N∑
n=1

1

n
= ln(2N) + γ + aN und

N∑
n=1

1

n
= ln(N) + γ + a

′
N . Also:

2N∑
n=1

(−1)
n−1 ·

1

n
=

2N∑
n=1

1

n
−

N∑
n=1

1

n
= (ln(2N) +γ+aN )− (ln(N) +γ+a

′
N ) = ln(2N)− ln(N) + (aN −a′N ) = ln

(
2N

N

)
+ (aN −a′N )
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Man hat also schließlich:

lim
N→∞

2N∑
n=1

(−1)
n−1 ·

1

n
= ln

(
2N

N

)
+ lim
N→∞

(aN − a′N ) = ln(2) + lim
N→∞

aN − lim
N→∞

a
′
N = ln(2) + 0− 0 = ln(2)

Damit ist also bewiesen, dass
∞∑
n=1

(−1)
n−1 ·

1

n
= ln(2) gilt. Ende.

Der Riemann’sche Umordnungssatz
[Zurück zur Liste]

Satz (Riemann’scher Umordnungssatz). Ist die Reihe
∞∑
k=0

ak konvergent, aber nicht absolut konvergent, so findet man zu jeder

beliebigen Zahl s ∈ R ∪ {−∞,∞} eine Umordnung n : N→ N der Glieder mit
∞∑
k=0

an(k) = s.

Beweis. Sei zunächst s /∈ {−∞,∞}. Sei
∞∑
k=0

ak konvergent, aber
∞∑
k=0

|ak| =∞. O.B.d.A. kann man annehmen, dass ak 6= 0 für alle

k gilt, denn das Streichen der Nullen in
∞∑
k=0

ak und
∞∑
k=0

|ak| ändert nichts an der Konvergenz und den Grenzwert dieser Reihen. Sei

nun:

a
+
k :=

|ak|+ ak

2
= max(ak, 0) und a

−
k :=

|ak| − ak
2

= max(−ak, 0)

Es ist ersichtlich, dass die Zahlen a+
k , a

−
k alle nichtnegativ sind, und es gilt dann: ak

∗1= a+
k − a

−
k und |ak|

∗2= a+
k + a−k . Wäre eine

der beiden Reihen
∞∑
k=0

a+
k ,
∞∑
k=0

a−k konvergent, so würde aus ∗1 folgen, dass auch die andere konvergiert. Aus ∗2 würde dann folgen,

dass auch
∞∑
k=0

|ak| konvergiert, Widerspruch zur Voraussetzung.
∞∑
k=0

a+
k ,
∞∑
k=0

a−k sind also beide divergent. Nun:

{+pk} := Teilfolge aller positiven Glieder von {ak} (entsteht durch Streichung der Nullen in {a+
k })

{−qk} := Teilfolge aller negativen Glieder von {ak} (entsteht durch Streichung der Nullen in {a−k })

Also sind auch die Reihen
∞∑
k=0

pk,
∞∑
k=0

qk divergent. Da ak 6= 0 für alle k gilt, tritt jedes Glied der Folge {ak} in nur genau einer

der beiden Teilfolgen {pk} und {−qk} auf. Daraus folgt:

Es existiert ein kleinster Index n0 mit

n0∑
k=0

pk > s,

dann ein kleinster Index n1 mit

n0∑
k=0

pk +

n1∑
k=0

(−qk) < s,

und wieder ein kleinster Index n2 mit

n0∑
k=0

pk +

n1∑
k=0

(−qk) +

n2∑
k=n0+1

pk > s

und dann wieder ein kleinster Index n3 mit

n0∑
k=0

pk +

n1∑
k=0

(−qk) +

n2∑
k=n0+1

pk +

n3∑
k=n1+1

(−pk) < s, usw.

Die so entstandene Reihe

p0 + . . .+ pn0 + (−q0) + . . .+ (−qn1 ) + pn0+1 + . . .+ pn2 + (−qn1+1) + . . .+ (−qn3 ) + . . .

ist offensichtlich eine Umordnung der Ausgangsreihe und wird mit
∞∑
k=0

an(k) bezeichnet. Mithilfe der Minimaleigenschaft der Indizes

n0, n1, n2, n3, . . . kann man die Differenz zwischen s und den Teilsummen betragsmäßig durch pn0
, qn1

, pn2
, qn3

, . . . nach oben

abschätzen:

|s− [p0 + p1 + p2 + . . .+ pn0
]| ≤ pn0

|s− [p0 + . . .+ pn0
+ (−q0) + . . .+ (−qn1

)]| ≤ qn1

|s− [p0 + . . .+ pn0
+ (−q0) + . . .+ (−qn1

) + pn0+1 + . . .+ pn2
]| ≤ pn2

|s− [p0 + . . .+ pn0
+ (−q0) + . . .+ (−qn1

) + pn0+1 + . . .+ pn2
+ (−qn1+1) + . . .+ (−qn3

)]| ≤ qn3

Das sieht man so: p0 + p1 + p2 + . . . + pn0 > s ≥ p0 + p1 + p2 + . . . + pn0−1, also: 0 > s − [p0 + p1 + p2 + . . . + pn0 ] ≥ −pn0 ,

also 0 < [p0 + p1 + p2 + . . . + pn0
] − s ≤ pn0

. Bei den anderen zeigt man das analog. Da aber die Folgen (qn1
, qn3

, qn5
, . . .) und
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(pn0
, pn2

, pn4
, . . .) aufgrund der notwendigen Bedingung für die Konvergenz von

∞∑
k=0

ak gegen 0 streben, folgt
∞∑
k=0

an(k) = s. Sei

nun s ∈ {−∞,∞}. Man wähle

m1 so groß, dass p1 + p2 + . . .+ pm1
> 1 + q1,

dann m2 so, dass p1 + p2 + . . .+ pm1
+ . . .+ pm2

> 2 + q1 + q2,

und allgemein: p1 + p2 + . . .+ pmv > v + q1 + q2 + . . .+ qv

Dann gilt also:

p1 + p2 + . . .+ pm1
− q1 + pm1+1 + . . .+ pm2

− q2 + . . .+ pmv − qv > v

Die Partialsummen dieser umgeordneten Reihe
∞∑
k=0

an(k) sind unbeschränkt, also divergiert
∞∑
k=0

an(k) gegen +∞ = s. Analog kann

man eine Umordnung konstruieren, dass die umgeordnete Reihe gegen −∞ = s divergiert.

Der Fundamentalsatz der Algebra
[Zurück zur Liste]

Satz. Jedes nicht konstante Polynom besitzt im Bereich der komplexen Zahlen mindestens eine Nullstelle.

Beweis. Ein nicht-konstantes komplexes Polynom P (z) ∈ C[z] vom Grad n ∈ N lässt sich darstellen in der Form P (z) = Q(z)·z+a0

mit a0 ∈ C, Q(z) ∈ C[z]. Nimmt man nun an, P (z) sei ohne Nullstelle, so lässt sich für z ∈ C\{0} stets schreiben:

1

z
=

P (z)

z · P (z)
=
Q(z)

P (z)
+

a0

z · P (z)

Nun bildet man für jedes r ∈ N das Wegintegral der auf C\{0} gebildeten Kehrfunktion z 7→ 1
z über den Kreislinienweg γr(t) = r·eit

(t ∈ [0, 2π]) und erhält:

2πi =

∫
γr

1

z
dz =

∫
γr

Q(z)

P (z)
dz + a0 ·

∫
γr

1

z · P (z)
dz

Aufgrund der angenommenen Nullstellenfreiheit von P (z) ist z 7→ Q(z)
P (z)

holomorph, womit sich infolge des Cauchy’schen Integral-

satzes weiter ergibt:

2πi = 0 + a0 ·
∫
γr

1

z · P (z)
dz

und daraus:

2π ≤ |a0| · L(γr) · max
|z|=r

1

|z · P (z)|
= |a0| · 2πr · max

|z|=r

1

|z| · |P (z)|
= |a0| · 2π · max

|z|=r

1

|P (z)|

Dies gilt für beliebige r ∈ N. Nun ist jedoch lim
|z|→∞

|P (z)| =∞ und damit folgt aus der letzten Ungleichung unmittelbar 2π ≤ 0, was

sicher falsch ist. Damit ist die angenommene Nullstellenfreiheit von P (z) zum Widerspruch geführt und P (z) muss eine Nullstelle

haben. Also ist man hier fertig!

Der RSA-Algorithmus
[Zurück zur Liste]

Satz (Euler-Fermat). Unter der Bedingung ggT(a, n) = 1 gilt aϕ(n) modn = 1.

Beweis. Sei {r1, . . . , rϕ(n)} die Menge der Zahlen (kleiner als n), die teilerfremd sind zu n. Diese Zahlen sind multiplikativ modulo

n invertierbar, denn für alle x ∈ Z/nZ ist x · ri modn ∈ Z/nZ. Diese sind für diese x paarweise verschieden, denn ansonsten gelte

für x 6= x′: x · ri modn = x′ · ri modn ⇔ (x − x′) · ri modn = 0, also folgt n | x − x′ wegen ggT(ri, n) = 1. Das ist aber ein

Widerspruch, weil |x−x′| < n gilt. Folglich gibt es also ein x ∈ Z/nZ so, dass gilt x ·ri modn = 1, also sind die ri invertierbar. Für

jedes a mit ggT(a, n) = 1 ist r 7→ a · r eine Permutation von (Z/nZ)× := {r1, . . . , rϕ(n)}, denn wegen ggT(a, n) = ggT(ri, n) = 1

ist auch a · ri teilerfremd zu n, d.h. a · ri ∈ (Z/nZ)×, also ist die Abbildung schon mal wohldefiniert. Sie ist auch injektiv: Ist

a · rmodn = a · r′modn, dann gibt es ein ganze Zahl k so, dass gilt a · (r − r′) = k · n. Wegen ggT(a, n) = 1 folgt n | r − r′, also

r − r′modn = 0 ⇔ rmodn = r′modn. Aus der Injektivität von r 7→ a · r folgt also
∣∣a · (Z/nZ)×

∣∣ ≥ ∣∣(Z/nZ)×
∣∣. Außerdem gilt

wegen a ·r ∈ (Z/nZ)× für r ∈ (Z/nZ)× auch
∣∣a · (Z/nZ)×

∣∣ ≤ ∣∣(Z/nZ)×
∣∣, folglich ist die Abbildung bijektiv. Da die Multiplikation

kommutativ ist, folgt: ϕ(n)∏
i=1

ri

modn =

ϕ(n)∏
i=1

(a · ri)

modn =

ϕ(n)∏
i=1

ri

 · aϕ(n)

modn

Aufgrund der Invertierbarkeit der ri modulo n, folgt daraus 1 = aϕ(n) modn.
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Satz. Zunächst hat man einen Klartext m, der durch Potenzieren mit einem öffentlichen Schlüssel c verschlüsselt wird. Poten-

ziert man diesen verschlüsselten Text mc mit dem privaten Schlüssel d, so erhält man wieder den Klartext m. Der Algorithmus

arbeitet also korrekt. Dabei gelten folgende Voraussetzungen: n = p · q mit p, q ∈ P, m ∈ Z/nZ und d sei so gewählt, dass

c · dmodϕ(n) = 1 ist, wobei c, d ∈ Z/ϕ(n)Z gilt.

Beweis. Es gilt (mc)d mod p−mmod p = 0⇔ (mc·d −m) mod p = 0, denn es gilt c · dmodϕ(n) = 1, also gibt es eine ganze Zahl

k so, dass c · d = 1 + k · ϕ(n) gilt. Nun wird der Satz von Euler-Fermat angewandt. Dafür müssen aber m und p teilerfremd sein.

Sind sie es nicht, dann gilt p | m, weil p ∈ P ist, also folgt mmod p = 0. Wenn p ein Teiler von m ist, dann auch von mc·d. In

diesem Fall gilt also (mc·d −m) mod p = 0. Sei nun also ggT(m, p) = 1. Dann gilt wegen des Satzes oben mϕ(p) mod p = 1. Für

ϕ(p) = p− 1 ergibt sich daraus:

m
c·d

mod p = m
1+k·ϕ(n)

mod p

= m ·mk·ϕ(n)
mod p

= m ·mk·(p−1)·(q−1)
mod p

= m · (mp−1
)
k·(q−1)

mod p

= (mmod p · (mp−1
)
k·(q−1)

mod p) mod p

= (mmod p · (mp−1
mod p)

k·(q−1)
mod p) mod p

= (mmod p · 1k·(q−1)
mod p) mod p

= mmod p

Also auch in diesem Fall gilt (mc·d−m) mod p = 0. Ganz genauso zeigt man (mc·d−m) mod q = 0. Da die beiden Primzahlen p und

q die Zahl mc·d−m teilen, teilt auch ihr Produkt n = p·q diese Zahl. Es folgt dann (mc·d−m) modn = 0⇔ mc·d modn = mmodn,

die Behauptung des Satzes.

Das Räuber-Beute-Modell
[Zurück zur Liste]

Definition. Unter einem Ersten Integral zu einem C1-Vektorfeld v auf Ω ⊆ Rn versteht man eine C1-Funktion E : Ω→ R, die

auf der Spur jeder Integralkurve einen konstanten Wert hat. Anders formuliert: Eine Funktion E derart, dass jede Integralkurve

von v in einer Niveaumenge von E verläuft.

Lemma (Erstes Integral). Eine C1-Funktion E : Ω→ R ist genau dann ein Erstes Integral zum Vektorfeld v, wenn die Ableitung

∂vE längs v verschwindet. D.h. es gilt: ∂vE(x) = E′(x) · v(x) =
n∑
i=1

∂iE(x) · vi(x) = 0.

Beweis. Sei ∂vE = 0 und ϕ : I → Ω eine Integralkurve. Dann gilt E(ϕ(t))̇(t) = E′(ϕ(t)) · ϕ̇(t) = E′(ϕ(t)) · v(ϕ(t)) = 0. E ist

also konstant auf der Spur von ϕ. Sei umgekehrt E konstant auf jeder Integralkurve. Man wähle dann zu x ∈ Ω eine Integralkurve

mit ϕ(0) = x. Da E auf der Spur von ϕ konstant ist, folgt ∂vE(x) = E(ϕ(t))̇ = 0. Da E(ϕ(t)) konstant ist, reicht es x = ϕ(0) zu

setzen.

Lemma (Gronwall). Es sei g : I → R eine stetige Funktion auf einem Intervall I mit g ≥ 0. Für ein t0 und alle t ∈ I erfülle

g die Ungleichung g(t) ≤ A ·

∣∣∣∣∣
∫ t

t0

g(s) ds

∣∣∣∣∣+ B mit Konstanten A,B ≥ 0. Dann gilt für alle t ∈ I: g(t) ≤ B · eA·|t−t0|.

Beweis. Man betrachtet wegen der Betragsstriche in der zu zeigenden Ungleichung t > t0. Ist nämlich t = t0, dann folgt aus der

vorausgesetzten Ungleichung g(t0) ≤ B. Das beweist die Behauptung für t = t0. Sei von nun an also t > t0. Es ist nur etwas zu

zeigen für t, wo g(t) > 0 ist für mindestens einem Wert auf (t0, t], dann ist wegen der Stetigkeit sogar eine ganze Umgebung um

diesen Wert ungleich Null. Denn ist g(t) = 0 für alle Werte aus (t0, t], dann ist die Behauptung trivialerweise erfüllt. Bezeichne

G(t) := A ·
∫ t

t0

g(s) ds + B. Dann gilt Ġ(t) = A · g(t) ≤ A · G(t), also
Ġ(t)

G(t)
≤ A ⇒ ln

(
G(t)

G(t0)

)
= ln(G(t)) − ln(G(t0)) =∫ G(t)

G(t0)

1

x
dx =

∫ t

t0

Ġ(t)

G(t)
dt ≤

∫ t

t0

Adt = A · (t− t0), also folgt:
G(t)

G(t0)
≤ eA·(t−t0), folglich: G(t) ≤ G(t0) · eA·(t−t0) = B · eA·(t−t0),

also folgt damit g(t) ≤ G(t) ≤ B · eA·(t−t0), die Behauptung.

Satz (Eindeutigkeitssatz). Das dynamische System F : U → Rn, U ⊆ R × Rn, sei lokal Lipschitz-stetig bezüglich x. Stimmen

zwei Integralkurven ϕ1, ϕ2 : I → Rn von F in einem Punkt t0 ∈ I überein, so gilt ϕ1 = ϕ2 auf ganz I. F ist ein zeitabhängiges

Vektorfeld, für das man ihre Integralkurven betrachtet. Unten braucht man nur die Aussage über Integralkurven zu einem nicht

zeitabhängigen Vektorfeld. Dieser spezielle Fall ist mit diesem Satz bewiesen.
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Beweis. Es sei I′ ⊆ I die Menge der Punkte t ∈ I mit ϕ1(t) = ϕ2(t). Aus Stetigkeitsgründen ist I′ abgeschlossen in I, denn

sei (tn)n∈N eine Folge in I′ mit tn → t ∈ I. Dann gilt ψ(tn) := ϕ1(tn) − ϕ2(tn) = 0 für alle n ∈ N. Wegen der Stetigkeit

von ψ gilt dann ψ(t) = lim
n→∞

ψ(t) = 0, also t ∈ I′, d.h. I′ ist tatsächlich abgeschlossen in I. Man zeigt nun, dass I′ auch

offen in I ist. Sei t0 ∈ I′ und J × V ⊆ U eine Umgebung von (t0, ϕ1(t0)), in der F Lipschitz-stetig bezüglich x ist, etwa

mit der Konstanten L. Es sei wieder ψ := ϕ2 − ϕ1. Es gilt ψ(t0) = 0. Nach Voraussetzung gilt ϕ̇1,2(t) = F (t, ϕ1,2(t)) mit

ϕ1,2(t0) = 0, also: ϕ1,2(t) = ϕ1,2(t0) +

∫ t

t0

F (s, ϕ1,2(s)) ds, folglich: ψ(t) = ϕ2(t) − ϕ1(t) = ϕ2(t0) − ϕ1(t0) +

∫ t

t0

F (s, ϕ2(s)) −

F (s, ϕ1(s)) ds =

∫ t

t0

F (s, ϕ2(s)) − F (s, ϕ1(s)) ds. Wegen der Lipschitz-Stetigkeit: ‖ψ(t)‖ =

∥∥∥∥∥
∫ t

t0

F (s, ϕ2(s))− F (s, ϕ1(s)) ds

∥∥∥∥∥ ≤∣∣∣∣∣
∫ t

t0

‖F (s, ϕ2(s))− F (s, ϕ1(s))‖ ds

∣∣∣∣∣ ≤ L ·
∣∣∣∣∣
∫ t

t0

‖ϕ2(s)− ϕ1(s)‖ ds

∣∣∣∣∣ = L ·

∣∣∣∣∣
∫ t

t0

‖ψ(s)‖ ds

∣∣∣∣∣. Nach dem Lemma von Gronwall ist ψ = 0

in J ∩ I, also umfasst I′ die Menge J ∩ I. Es wurde also gezeigt: Für t0 ∈ I′ existiert eine Umgebung J von t0 mit J ∩ I ⊆ I′,

d.h. I′ ist offen. Weil I′ offen und abgeschlossen in I und ungleich der leeren Menge und I zusammenhängend ist, folgt I = I′.

I zusammenhängend braucht man: Wäre a < b < c < d und I = [a, b] ∪ [c, d] (I nicht zusammenhängend), dann wäre I′ = [a, b]

nicht-leer, offen und abgeschlossen in I, aber I′ 6= I. Ist also I zusammenhängend, dann gibt es keine nicht-leere, offene und

abgeschlossene echte Teilmenge von I.

Satz. Für den Bestand von Räubern und Beutetieren in einem biologisch abgeschlossenen System gelten die folgenden gekop-

pelten Differentialgleichungen, die die Wechselwirkung zwischen den beiden Populationen modelliert:

ẋ = a(y) · x ∧ ẏ = −b(x) · y

Man sieht also, dass die Wachstumsraten
ẋ

x
und

ẏ

y
vom momentanen Potential des Partners abhängen. Unter gewissen An-

nahmen an a und b stellt sich heraus, dass die Lösungen ϕ des Systems in R2
+ verlaufen, wenn nur ϕ(0) ∈ R2

+ gilt. Die Lösung

bleibt in diesem Quadranten und ist periodisch. Dieses Differentialgleichungssystem ist auch bekannt als die sogenannten Lotka-

Volterra-Gleichungen.

Beweis. Man macht zunächst mal die Voraussetzung, dass a, b : R → R streng monoton fallende C1-Funktionen sind mit je einer

positiven Nullstelle: a(η) = 0, b(ξ) = 0 mit ξ, η ∈ R+. Die kritischen Punkte des Systems sind (0, 0) und (ξ, η) ∈ R2
+, denn, wenn

man diese Werte als Lösung einsetzt, hat man ẋ = 0 und ẏ = 0. Es sind also triviale Lösungen des Differentialgleichungssystems.

Weitere Lösungen sind (c ·ea(0)·t, 0) und (0, c ·e−b(0)·t) mit c ∈ R, welche auf der x- bzw. y-Achse verlaufen. Diese beiden Lösungen

sind Integralkurven zu dem nicht zeitabhängigen Vektorfeld v(x, y) = (a(y) · x,−b(x) · y). Nach dem Eindeutigkeitssatz (s.o.) über

Integralkurven gilt: Wenn eine Lösung ϕ des Differentialgleichungssystems mit ϕ(0) ∈ R2
+ die x- oder y-Achse schneiden würde,

dann wäre ϕ gleich den Integralkurven auf den Achsen, was aber nicht sein kann, weil ϕ(0) ∈ R2
+ gilt. Fazit: Ist eine Integralkurve

einmal im positiven Quadranten, dann bleibt sie da auch. Auf R2
+ gibt es ein Erstes Integral der Bauart E(x, y) = F (x) + G(y).

Nach dem Lemma (Erstes Integral) ist E genau dann ein Erstes Integral, wenn
∂

∂x
E(x, y) · v1(x, y) +

∂

∂y
E(x, y) · v2(x, y) = 0, also

F ′(x) ·(a(y) ·x)+G′(y) ·(−b(x) ·y) = 0. Diese Bedingung wird erfüllt, falls F ′(x) = −
b(x)

x
und G′(y) = −

a(y)

y
gilt. Daher definiert

man: F sei die Stammfunktion zu −
b(x)

x
auf R+ mit F (ξ) = 0 und G sei die Stammfunktion zu −

a(y)

y
auf R+ mit G(η) = 0.

Man sieht leicht, dass F in (0, ξ] streng monoton fällt und in [ξ,∞) streng monoton wächst. G hat die analoge Eigenschaft mit η

anstelle von ξ. Ferner gilt F (u), G(u)→∞ sowohl für u→ 0 als auch u→∞. Konsequenz: E hat in (ξ, η) ein isoliertes Minimum

mit E(ξ, η) = 0. Jede Niveaumenge E−1(α), α > 0, ist eine kompakte Teilmenge des Quadranten R2
+ und enthält auf jeder der

beiden Geraden x = ξ und y = η genau zwei Punkte (siehe Zeichnung unten).
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Es sei nun ϕ = (x, y) die maximale Integralkurve mit ϕ(0) = A0, A0 ∈ E−1(α), α > 0. ϕ verläuft dann in E−1(α), also in einem

Kompaktum (das Urbild kompakter Mengen unter stetigen Funktionen ist kompakt!), und ist daher für alle t ∈ R definiert, denn eine

maximale Integralkurve endlicher Lebensdauer verlässt jedes Kompaktum. Beweis: Sei ϕ : (α, β)→ R2 eine maximale Integralkurve

des bezüglich x lokal Lipschitz-stetigen dynamischen Systems F : U → R2 (zeitabhängiges Vektorfeld; man braucht hier nur nicht

zeitabhängiges Vektorfeld!) Im Fall β < ∞ gibt es zu jeder kompakten Menge K ⊆ U in jedem Intervall (γ, β) ein τ ∈ (γ, β) mit

(τ, ϕ(τ)) /∈ K. Eine analoge Aussage gilt im Fall α > −∞. Angenommen, für alle t ∈ (γ, β) gilt (t, ϕ(t)) ∈ K. Man behauptet dann

zunächst, dass ϕ auf (α, β] stetig fortgesetzt werden kann. Dazu genügt es zu zeigen, dass ϕ auf (α, β] gleichmäßig stetig ist, was

aber aus der für alle t1, t2 ∈ (γ, β) gültigen Abschätzung ‖ϕ(t2)−ϕ(t1)‖ =

∥∥∥∥∥
∫ t2

t1

ϕ̇(s) ds

∥∥∥∥∥ ≤
∣∣∣∣∣
∫ t2

t1

‖F (s, ϕ(s))‖

∣∣∣∣∣ ≤ ‖F‖K · |t2− t1|
folgt. Die stetige Fortsetzung von ϕ auf (α, β] werde mit ϕ̃ bezeichnet. Es wird jetzt gezeigt, dass auch ϕ̃ eine Integralkurve von F

ist. Da K abgeschlossen ist, liegt (β, ϕ̃(β)) in K, also in U . Ferner gilt für beliebige t, t0 ∈ (α, β): ϕ̃(t) = ϕ̃(t0) +

∫ t

t0

F (s, ϕ̃(s)) ds

(*). Wegen der Stetigkeit von ϕ̃ auf (α, β] gilt (*) auch noch in t = β. Damit folgt, dass ϕ̃ : (α, β] → R2 die Differentialgleichung

ẋ = F (t, x) löst im Widerspruch zur Maximalität der Lösung ϕ : (α, β)→ R2. Man zeigt nun: Es gibt ein t1 ∈ (0,∞) so, dass gilt:

(i) x fällt streng monoton in [0, t1] und y wächst dort streng monoton; (ii) ϕ(t1) = A1. Beweis: Sei t1 := sup{t : x > ξ in ganz [0, t]}.

Nach der zweiten Differentialgleichung ist dann ẏ > 0 in [0, t1), y also streng monoton wachsend. Es folgt y > y(0) = η in (0, t1).

Nach der ersten Differentialgleichung ist somit ẋ < 0 in (0, t1), x also streng monoton fallend. Es wird nun gezeigt: t1 <∞. Dazu

wähle man irgendein ε ∈ (0, t1). Für t ∈ (ε, t1) gilt dann y(t) ≥ y(ε) > η und damit a(y(t)) ≤ a(y(ε)) =: λ < 0. Nach der ersten

Differentialgleichung ergibt sich für diese t weiter x(t) ≤ eλ·(t−ε) · x(ε). Denn: ẋ = a(y) · x ≤ a(y(ε)) = λ · x. Hiernach und wegen

x(t) > ξ > 0 für alle t ∈ [0, t1) muss t1 < ∞ sein, denn wäre t1 = ∞, dann folgte aus x(t) ≤ eλ·(t−ε) · x(ε) wegen λ < 0, dass

gilt x(t1) = 0, im Widerspruch zu x(t) > ξ > 0 für alle t ∈ [0, t1). Aus der Definition von t1 folgt nun sofort x(t1) = ξ und damit

ϕ(t1) = A1. Wie eben, zeigt man die Existenz von Parameterstellen t1 < t2 < t3 < t4 mit ϕ(tk) = Ak, k = 2, 3, 4. Insbesondere

gilt mit T = t4: ϕ(T ) = A4 = A0 = ϕ(0). Also ist der Satz bewiesen: Jede maximale Integralkurve ϕ mit ϕ(0) ∈ R2
+ verläuft für

alle Zeit in diesem Quadranten und ist periodisch. Es zeigt sich, dass keine Räuber oder Beutetiere aussterben. Bevor man z.B.

viele Räuber und viele Beutetiere hat, muss man bis dahin erst bestimmte andere Populationsverhältnisse durchlaufen.
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Der Satz von Schröder-Bernstein
[Zurück zur Liste]

Satz. Seien A und B Mengen mit einer Injektion f : A→ B und einer Injektion g : B → A. Dann sind A und B bijektiv.

Beweis. Sei zunächst C0 := A \ g(B) und für n ≥ 0: Cn+1 := g(f(Cn)). Definiere dann C :=
∞⋃
n=0

Cn. Für jedes x ∈ A definiert

h(x) :=

 f(x), x ∈ C

g−1(x), x /∈ C

eine wohldefinierte bijektive Abbildung von A nach B. Die Wohldefiniertheit sieht man so: Ein x ∈ A ist entweder in C oder in

C, also A = C ∪ C. Für alle x ∈ C ⊆ A ist f(x) natürlich definiert, aber auch g−1(x) für x ∈ C, denn aus x /∈ C =
∞⋃
n=0

Cn folgt

x /∈ C0 = A \ g(B), d.h., weil x ∈ A ist, folgt x ∈ g(B); dieses x wird also von einem Abbildungspfeil der Abbilfung g von der

Menge B aus getroffen, also existiert g−1(x). Die Abbildung h ist injektiv, denn: Weil f nach Voraussetzung injektiv ist, ist für

zwei verschiedene x, y ∈ C dann f(x) 6= f(y). Und da g eine wohldefinierte Abbildung ist, also jedem Element aus B genau ein

Element aus A zuordnet, kann es nicht sein, dass es zwei verschiedene x, y ∈ C gibt mit g−1(x) = g−1(y). Auch kann es nicht

ein x ∈ C und ein y ∈ C geben so, dass f(x) = g−1(y) gilt, denn sonst wäre (g ◦ f)(x) wegen x ∈ C ein Element aus C, aber

es gilt (g ◦ f)(x) = y /∈ C, also ein Widerspruch. Die Surjektivität von h: Es soll also B = f(C) ∪ g−1(C) gezeigt werden. Sei

b ∈ B beliebig. Dann gibt es zwei Fälle. 1. Fall: ∀x ∈ A : f(x) 6= b. Das heißt also b /∈ f(C). Es muss gezeigt werden, dass gilt

b ∈ g−1(C) ⇔ g(b) ∈ C. Wäre g(b) ∈ C, dann gebe es ein i ∈ N \ {0} so, dass für ein c ∈ C0 gilt: g(b) = (g ◦ f)i(c), daraus folgt

b = f((g ◦ f)i−1(c)), also b ∈ f(A) und das ist ein Widerspruch zu Fall 1. Nun der 2. Fall: ∃x ∈ A : f(x) = b und weil f injektiv

ist, gilt sogar ∃!x ∈ A : f(x) = b. Sei also x0 das eindeutige Element aus A mit f(x0) = b. Entweder ist x0 ∈ C oder x0 ∈ C. Ist

x0 ∈ C, dann ist b ∈ f(C). Ist x0 ∈ C, dann gilt x0 /∈ C =
∞⋃
n=0

Cn = C0 ∪
∞⋃
n=0

(g ◦ f)(Cn). Also ist x0 /∈ Cn für alle n ≥ 0. Es gilt

schon mal (g ◦ f)(x0) = g(b) /∈ C0 = A\ g(B). Da g ◦ f als Verkettung injektiver Abbildung ebenfalls injektiv ist, folgt aus x0 /∈ Cn
dann (g ◦ f)(x0) /∈ (g ◦ f)(Cn), denn ansonsten folgte aus (g ◦ f)(x0) = (g ◦ f)(c) mit einem c ∈ Cn wegen der Injektivität von

g ◦ f , dass gilt x0 = c ∈ Cn, Widerspruch. Insgesamt wurde also (g ◦ f)(x0) /∈ C geschlossen, also g(b) ∈ C, d.h. b ∈ g−1(C). In

jedem Fall gilt also B ⊆ f(C) ∪ g−1(C) und sowieso gilt f(C) ∪ g−1(C) ⊆ B. Damit ist also auch die Surjektivität bewiesen.

Die Summe der reziproken Quadratzahlen
[Zurück zur Liste]

Satz. Es gilt die folgende Identität:

∞∑
n=1

1

n2
=
π2

6
.

Beweis. Zunächst gilt:
∞∑
n=1

1

n2
=
∞∑
n=1

1

(2n− 1)2
+
∞∑
n=1

1

(2n)2
=
∞∑
n=1

1

(2n− 1)2
+

1

4
·
∞∑
n=1

1

n2

Daraus folgt dann:

3

4
·
∞∑
n=1

1

n2
=

∞∑
n=1

1

(2n− 1)2
=

∞∑
n=0

1

(2n+ 1)2

Weil

∫ 1

0

x
2n
dx =

[
x2n+1

2n+ 1

]1

0

=
1

2n+ 1
gilt, folgt:

3

4
·
∞∑
n=1

1

n2
=

∞∑
n=0

1

(2n+ 1)2
=

∞∑
n=0

(∫ 1

0

x
2n
dx

)2

=

∞∑
n=0

∫ 1

0

x
2n
dx ·

∫ 1

0

y
2n
dy =

∞∑
n=0

∫ 1

0

∫ 1

0

(x
2 · y2

)
n
dx dy

Wegen q ·
m∑
n=0

q
n −

m∑
n=0

q
n

= q
m+1 − 1, also

m∑
n=0

q
n

=
qm+1 − 1

q − 1
und deswegen

∞∑
n=0

q
n

=
0− 1

q − 1
=

1

1− q
, wenn |q| < 1 gilt, kann

man dann folgendermaßen fortfahren:

3

4
·
∞∑
n=1

1

n2
=
∞∑
n=0

∫ 1

0

∫ 1

0

(x
2 · y2

)
n
dx dy =

∫ 1

0

∫ 1

0

∞∑
n=0

(x
2 · y2

)
n
dx dy =

∫ 1

0

∫ 1

0

1

1− x2 · y2
dx dy =

∫
(0,1)×(0,1)

1

1− x2 · y2
d(x, y)

Nun muss nur noch ein Integral ausgewertet werden, was mithilfe der Transformationsformel geschieht:

x =
sin(u)

cos(v)
, y =

sin(v)

cos(u)
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Das ist eine Substitution der Variablen, für die gilt:

Φ : D :=

{
(u, v) : u, v > 0 ∧ u+ v <

π

2

}
→ {(x, y) : 0 < x, y < 1} =: Q ist ein Diffeomorphismus.

Also gilt folgendes:

3

4
·
∞∑
n=1

1

n2
=

∫
Q

1

1− x2 · y2
d(x, y) =

∫
D

1

1−
(

sin(u)
cos(v)

)2
·
(

sin(v)
cos(u)

)2
·

∣∣∣∣∣∣det

 ∂x(u,v)
∂u

∂y(u,v)
∂u

∂x(u,v)
∂v

∂y(u,v)
∂v

∣∣∣∣∣∣ d(u, v)

Die Funktionaldeterminante lautet:

det

 ∂x(u,v)
∂u

∂y(u,v)
∂u

∂x(u,v)
∂v

∂y(u,v)
∂v

 = det

 cos(u)
cos(v)

sin(v) · sin(u)

(cos(u))2

sin(u) · sin(v)

(cos(v))2
cos(v)
cos(u)

 = 1−
(

sin(u)

cos(v)

)2

·
(

sin(v)

cos(u)

)2

Weil D ein Dreieck mit den Eckpunkten (0, 0), (π2 , 0) und (0, π2 ) ist, gilt dann:

3

4
·
∞∑
n=1

1

n2
=

∫
D

1 d(u, v) =
1

2
·
(
π

2
·
π

2

)
⇒
∞∑
n=1

1

n2
=

4

3
·
π2

8
=
π2

6

Damit ist die Behauptung also bewiesen.

Die transzendenten Zahlen
[Zurück zur Liste]

Lemma (Gruppenweise Symmetrie). Sei J(α1, α2, . . . , αn) symmetrisch in αnt+1, . . . , αnt+1
(t ∈ {0, . . . , r − 1}) mit 0 = n0 <

n1 < . . . < nr = n. Dann gibt es für J ∈ Z[αn0+1, . . . , αn1
|αn1+1, . . . , αn2

| . . . |αnr−1+1, . . . , αnr ] also ein Polynom P ∈

Z[e1,1, . . . , en1−n0,1|e1,2, . . . , en2−n1,2| . . . |e1,r, . . . , enr−nr−1,r
], wobei e1,t+1, . . . , ent+1−nt,t+1 die elementarsymmetrischen

Polynome in αnt+1, . . . , αnt+1
mit t ∈ {0, . . . , r − 1} seien, so, dass gilt:

J(α1, α2, . . . , αn) = J(αn0+1, . . . , αn1
|αn1+1, . . . , αn2

| . . . |αnr−1+1, . . . , αnr )

= P (e1,1, . . . , en1−n0,1
|e1,2, . . . , en2−n1,2

| . . . |e1,r, . . . , enr−nr−1,r
)

Und das wird jetzt bewiesen:

Beweis. Sei P (a1, . . . , an, b1, . . . , bm) ∈ Z[a1, . . . , an, b1, . . . , bm] symmetrisch in a1, . . . , an und b1, . . . , bm seien irgendwelche

Variablen. Dann kann man P auffassen als P ′(a1, . . . , an) aus (Z[b1, . . . , bm])[a1, . . . , an]. Nach dem Hauptsatz über elementar-

symmetrische Polynome gibt es dann ein Polynom Q′ ∈ (Z[b1, . . . , bm])[e1, . . . , en], wobei e1, . . . , en die elementarsymmetrischen

Polynome in a1, . . . , an seien, so, dass gilt P ′(a1, . . . , an) = Q′(e1, . . . , en). Nun gilt P ′(a1, . . . , an) = P (a1, . . . , an, b1, . . . , bm)

und Q′(e1, . . . , en) kann man auffassen als Q(e1, . . . , en, b1, . . . , bm) ∈ Z[e1, . . . , en, b1, . . . , bm], wenn man die Koeffizienten aus

Z[b1, . . . , bm] in P ′ und Q′ mit den anderen Variablen ausmultipliziert. Also gilt dann:

P (a1, . . . , an, b1, . . . , bm) = Q(e1, . . . , en, b1, . . . , bm) = Q(e1(a1, . . . , an), . . . , en(a1, . . . , an), b1, . . . , bm)

Das wird im Folgenden gebraucht: Weil J(αn0+1, . . . , αn1
|αn1+1, . . . , αn2

| . . . |αnr−1+1, . . . , αnr ) symmetrisch in αn0+1, . . . , αn1

ist, gibt es ein Polynom P1 mit:

J(αn0+1, . . . , αn1
|αn1+1, . . . , αn2

| . . . |αnr−1+1, . . . , αnr ) =

P1(e1,1, . . . , en1−n0,1
|αn1+1, . . . , αn2

| . . . |αnr−1+1, . . . , αnr )

Da P1, genauso wie J, symmetrisch in αn1+1, . . . , αn2 ist, gibt es ein Polynom P2 mit:

P1(e1,1, . . . , en1−n0,1
|αn1+1, . . . , αn2

| . . . |αnr−1+1, . . . , αnr ) =

P2(e1,1, . . . , en1−n0,1
|e1,2, . . . , en2−n1,2

| . . . |αnr−1+1, . . . , αnr )

Das macht man so weiter, bis: Da Pr−1, genauso wie J, symmetrisch in αnr−1+1, . . . , αnr ist, gibt es ein Polynom Pr mit:

Pr−1(e1,1, . . . , en1−n0,1
|e1,2, . . . , en2−n1,2

| . . . |αnr−1+1, . . . , αnr ) =

Pr(e1,1, . . . , en1−n0,1
|e1,2, . . . , en2−n1,2

| . . . |e1,r, . . . , enr−nr−1,r
)

Man hat also J(. . .) = P1(. . .) = P2(. . .) = P3(. . .) = . . . = Pr−1(. . .) = Pr(. . .). Setzt man P := Pr, dann folgt die Behauptung

dieses Lemmas!
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Lemma (Rational und ganz-algebraisch). Eine rationale Zahl, die ganz-algebraisch ist, ist eine ganze Zahl.

Beweis. Sei α ∈ Q, dann gibt es ein u ∈ Z und ein v ∈ N \ {0} mit α =
u

v
. Insbesondere kann man u und v so wählen, dass u und

v teilerfremd sind, ansonsten kürze den Bruch. Weil α nach Voraussetzung ganz-algebraisch ist, gibt es ein normiertes Polynom

h(x) = xn + an−1 · xn−1 + . . .+ a1 · x1 + a0 ∈ Z[x] mit h(α) = 0. Es gilt also:

h(α) = 0 =

(
u

v

)n
+ an−1 ·

(
u

v

)n−1

+ . . .+ a1 ·
(
u

v

)1

+ a0 ⇒ 0 · vn = u
n

+ an−1 · un−1 · v1
+ . . .+ a1 · u1 · vn−1

+ a0 · vn

Daraus folgt dann: −un = v · (an−1 · un−1
+ an−2 · un−2 · v1

+ . . .+ a1 · u1 · vn−2
+ a0 · vn−1

)︸ ︷︷ ︸
∈Z

. Wäre v 6= 1, dann gäbe es eine

Primzahl q 6= 1 mit q | v. Weil v | un gilt, folgt q | un, also q | u (denn: q - u⇒ q - un). Man hat also q | u und q | v (q 6= 1), also

sind u und v nicht teilerfremd, Widerspruch. Also muss v = 1 sein, also α =
u

v
=
u

1
= u ∈ Z.

Satz (Lindemann-Weierstraß). Seien λ1, . . . , λm algebraische Zahlen ungleich 0 und ω1, . . . , ωm paarweise verschiedene alge-

braische Zahlen, dann gilt:

λ1 · eω1 + . . .+ λm · eωm 6= 0

Der etwas aufwendige Beweis geht, wie im Folgenden:

Beweis. Annahme: λ1 · eω1 + . . .+ λm · eωm = 0. Der Beweis wird in mehreren Schritten vollzogen:

Annahme 1:

Da λ1, . . . , λm algebraische Zahlen sind, ist λi (i = 1, . . . ,m) Nullstelle eines normierten Polynoms mit rationalen Koeffizienten.

Sei λi = λ1,i und dann λ1,i, λ2,i, . . . , λd(i),i alle Nullstellen dieses Polynoms. Also sind λ1,i, λ2,i, . . . , λd(i),i (i = 1, . . . ,m)

vollständige Nullstellensysteme eines normierten Polynoms mit rationalen Koeffizienten. Sei dann S die Menge aller Funktionen τ ,

die aus jeder der Sequenzen (1, . . . , d(1)), (1, . . . , d(2)), . . . , (1, . . . , d(m)) ein Element auswählt, so dass also für alle 1 ≤ i ≤ m

dann τ(i) eine Zahl von 1 bis d(i) ist. Definiere nun:

Q(λ1,1, . . . , λd(1),1| . . . |λ1,m, . . . , λd(m),m|e
ω1 , . . . , e

ωm ) =
∏
τ∈S

(λτ(1),1 · e
ω1 + λτ(2),2 · e

ω2 + . . .+ λτ(m),m · e
ωm ) = 0

Es ist gleich 0, weil für ein Faktor gilt τ(i) = 1 für alle i = 1, . . . ,m. Und das bedeutet dann nämlich:

λτ(1),1 ·e
ω1 +λτ(2),2 ·e

ω2 + . . .+λτ(m),m ·e
ωm = λ1,1 ·eω1 +λ1,2 ·eω2 + . . .+λ1,m ·eωm = λ1 ·eω1 +λ2 ·eω2 + . . .+λm ·eωm = 0

Es gilt nun das Folgende:

∏
τ∈S

(λτ(1),1 · e
ω1 + . . .+ λτ(m),m · e

ωm ) =

d(i)∏
j=1

∏
τ∈S

(λτ(1),1 · e
ω1 + . . .+ λj,i · eωi + . . .+ λτ(m),m · e

ωm )

Man sieht daran, dass Q symmetrisch in λ1,i, . . . , λd(i),i (i = 1, . . . ,m) ist. Wie im Beweis von Lemma (Gruppenweise Symmetrie)

folgt dann, dass es ein Polynom Q′ gibt mit:

Q(λ1,1, . . . , λd(1),1| . . . |λ1,m, . . . , λd(m),m|e
ω1 , . . . , e

ωm ) = Q
′
(e1,1, . . . , ed(1),1| . . . |e1,m, . . . , ed(m),m|e

ω1 , . . . , e
ωm )

Dabei sind e1,i, . . . , ed(i),i die elementarsymmetrischen Polynome in λ1,i, . . . , λd(i),i (i = 1, . . . ,m). Nun gilt (s.o.):

(x− λ1,i) · . . . · (x− λd(i),i) = x
d(i)

+ (−1)
1 · e1,i · xd(i)−1

+ (−1)
2 · e2,i · xd(i)−2

+ . . .+ (−1)
d(i) · ed(i),i · x

0 ∈ Q[x]

Also sind alle elementarsymmetrische Polynome e1,i, . . . , ed(i),i (i = 1, . . . ,m) aus Q. Daraus folgt, dass in

0 = Q(λ1,1, . . . , λd(1),1| . . . |λ1,m, . . . , λd(m),m|e
ω1 , . . . , e

ωm ) =

d(1)∏
i1=1

· · ·
d(m)∏
im=1

(λi1,1 · e
ω1 + λi2,2 · e

ω2 + . . .+ λim,m · e
ωm )

=
∑

j1+...+jm=|S|=d(1)·...·d(m)

(j1,...,jm∈N
≥0)

λ(j1, . . . , jm) · ej1·ω1+...+jm·ωm =: β
′′
1 · e

α′1 + . . .+ β
′′
n′ · e

α′
n′

die Koeffizienten λ(j1, . . . , jm) ∈ Z[λ1,1, . . . , λd(1),1| . . . |λ1,m, . . . , λd(m),m] alle aus Q sind. Dabei seien α′1, . . . , α
′
n′ die verschie-

denen Zahlen aus den j1 · ω1 + . . . + jm · ωm. Also sind α′1, . . . , α
′
n′ paarweise verschiedene algebraische Zahlen. Weiterhin sind

β′′i (i = 1, . . . , n′) Summen von einigen λ(j1, . . . , jm) ∈ Q, also β′′i ∈ Q für alle i ∈ {1, . . . , n′}. Weil es ein l ∈ N6=0 gibt, so, dass

lβ′′1 = β′1, . . . , lβ
′′
n′ = β′

n′ ∈ Z gilt, kann man von nun an annehmen, dass die Widerspruchsannahme so aussieht:

β
′
1 · e

α′1 + . . .+ β
′
n′ · e

α′
n′ = l · 0 = 0 mit β

′
1, . . . , β

′
n′ ∈ Z \ {0} und α

′
1, . . . , α

′
n′ paarweise verschiedene algebraische Zahlen
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Es wird noch gezeigt, dass es mindestens ein β′i 6= 0 (i ∈ {1, . . . , n′}) gibt und dass die Summe β′1 · e
α′1 + . . . + β′

n′ · e
α′
n′ nicht

trivial 0 ist. Es wird eine lexikographische Ordnung für komplexe Zahlen definiert: Für c1, c2 ∈ C gilt c1 � c2 genau dann, wenn

Re(c1) < Re(c2) oder Re(c1) = Re(c2), aber Im(c1) < Im(c2). Da ω1, . . . , ωm paarweise verschiedene algebraische Zahlen aus C

sind, existiert o.B.d.A. die Ordnung ω1 � . . . � ωm (sonst nummeriere um). Daraus folgt j1 · ω1 + . . . + jm · ωm � |S| · ωm =

(d(1) · . . . · d(m)) · ωm für alle (j1, . . . , jm) 6= (0, . . . , 0, |S|) mit j1 + . . . + jm = |S| = d(1) · . . . · d(m) und j1, . . . , jm ∈ N≥0.

Ist o.B.d.A. α′1 � . . . � α′
n′ (sonst nummeriere um) (α′1, . . . , α

′
n′ sind paarweise verschieden), dann gilt α′

n′ = |S| · ωm, also ist

β′′
n′ = λ(0, . . . , 0, |S|) =

(
d(m)∏
im=1

λim,m

) |S|
d(m)

∈ Q ungleich 0, weil
d(m)∏
im=1

λim,m 6= 0 ist. Nochmal: Die β′′i (i = 1, . . . , n′) sind Sum-

men von einigen λ(j1, . . . , jm), aber wegen j1·ω1+. . .+jm·ωm � |S|·ωm gilt β′′
n′ = λ(0, . . . , 0, |S|)+0. Also ist auch β′

n′ = l·β′′
n′ 6= 0.

Damit ist dann gezeigt, dass es mindestens ein β′i 6= 0 (i ∈ {1, . . . , n′}) gibt. Wegen j1 · ω1 + . . . + jm · ωm � |S| · ωm, kann

λ(0, . . . , 0, |S|) · e|S|·ωm von keinem der anderen Summanden λ(j1, . . . , jm) · ej1·ω1+...+jm·ωm mit (j1, . . . , jm) 6= λ(0, . . . , 0, |S|)

wegsubtrahiert werden, also ist die Summe β′1 · e
α′1 + . . . + β′

n′ · e
α′
n′ nicht trivial.

d(m)∏
im=1

λim,m 6= 0, Beweis: λim,m ist für

im = 1, . . . , d(m) ein vollständiges Nullstellensystem eines normierten Polynoms p mit rationalen Koeffizienten. λ1,m = λm ist

also Nullstelle von p. Wäre 0 nun n-fach konjugiert zu λm, dann betrachte
p(x)

(x− 0)n
=: q(x). q(x) ist immer noch ein normiertes

Polynom mit rationalen Koeffizienten, das λ1,m = λm als Nullstelle hat, aber nicht mehr die 0. Man kann also davon ausgehen,

dass λim,m 6= 0 für alle im = 1, . . . , d(m) gilt, also
d(m)∏
im=1

λim,m 6= 0, Beweis-Ende. Das war es hier!

Annahme 2:

Zuerst kommt Folgendes: Ein Minimalpolynom mα einer algebraischen Zahl α ∈ C ist das Polynom ungleich zum Nullpolynom

kleinsten Grades mit rationalen Koeffizienten und Leitkoeffizent 1, dass α als Nullstelle hat. Es gilt dann:

1.) Ein Minimalpolynom hat keine mehrfachen Nullstellen.

2.) Das Minimalpolynom mα teil jedes Polynom mit rationalen Koeffizienten, das α als Nullstelle hat.

3.) Das Minimalpolynom einer algebraischen Zahl ist eindeutig.

4.) Zwei verschiedene Minimalpolynome haben keine gemeinsamen Nullstellen.

Beweis: 1.): Angenommen, mα hat eine mehrfache Nullstelle β, dann kann man schreiben: mα(x) = (x−β)m · p(x), wobei p(x) ein

Polynom mit rationalen Koeffizienten ist und m ≥ 2 gleich der Vielfachheit von β ist. Leitet man mα(x) nach der Produktregel ab,

so erhält man ein Polynom kleineren Grades als mα(x), nämlich: m · (x−β)m−1 ·p(x)+(x−β)m ·p′(x). Also hat man ein Polynom

kleineren Grades als mα gefunden, dass α als Nullstelle hat, Widerspruch zur Minimalität von mα. Also kann ein Minimalpolynom

keine mehrfachen Nullstellen haben. 2.): Sei mα das Minimalpolynom von α und p(x) ein Polynom mit rationalen Koeffizienten und

mit p(α) = 0. Wegen der Minimalität von mα gilt grad(mα) ≤ grad(p). Dann gilt: mα | p, denn: Man macht eine Polynomdivision:

p(x) = q(x)·mα(x)+r(x) mit q, r ∈ Q[x] und grad(r) < grad(mα). Also folgt: 0 = p(α) = q(α)·mα(α)+r(α) = q(α)·0+r(α) = r(α).

Es muss dann r ≡ 0 gelten, denn sonst hätte man mit r ein Polynom kleineren Grades als mα gefunden, das α als Nullstelle hat.

Also ist die Polynomdivision ohne Rest, also gilt mα | p. 3.): Seien zwei Minimalpolynome mα und m′α einer algebraischen Zahl

α gegeben, dann folgt wegen 2.) dann mα | m′α und m′α | mα, also, weil die Leitkoeffizienten von mα und m′α gleich 1 sind, folgt

dann mα = m′α. Zu 4.): Seien ma und ma′ zwei Minimalpolynome, die eine gemeinsame Nullstelle β haben, also mβ | ma und

mβ | ma′ , nach 2.) oben. Daraus folgt dann grad(mβ) ≤ grad(ma) und grad(mβ) ≤ grad(ma′ ). Zunächst werden mβ und ma

behandelt. Fallunterscheidung: 1. Fall (grad(mβ) = grad(ma)): Man macht dann eine Polynomdivision: ma(x) = p(x)·mβ(x)+r(x)

mit p, r ∈ Q[x] und grad(r) < grad(mβ). Wegen mβ |ma folgt r ≡ 0. Wegen grad(mβ) = grad(ma) folgt grad(p) = 0, also ist

p eine Konstante. Wäre p 6= 1, dann wäre wegen der Normiertheit von mβ dann ma nicht normiert, Widerspruch, also muss

ma = 1 ·mβ + 0 = mβ gelten. Analog zeigt man ma′ = mβ , also ma = ma′ . 2. Fall (grad(mβ) < grad(ma)): Wegen mβ |ma gibt es

ein p mit p(x) ·mβ(x) = ma(x). Weil grad(mβ) < grad(ma) gilt, muss dann gelten grad(p) > 0. Als Minimalpolynom gilt für mβ

dann grad(mβ) > 0. Weil grad(mβ) > 0 gilt, folgt grad(p) < grad(ma). Insgesamt hat man also: 0 < grad(p), grad(mβ) < grad(ma).

Nun gilt: p(a) ·mβ(a) = ma(a) = 0 ⇒ p(a) = 0 ∨mβ(a) = 0. In jedem Fall hat man also ein Polynom kleineren Grades als von

grad(ma) gefunden, dass a als Nullstelle hat, Widerspruch. Genauso schließt man den Fall grad(mβ) < grad(ma′ ) aus. Der 2.

Fall ist also ausgeschlossen, es gilt nur der 1. Fall. Es wurde also bewiesen: Seien ma und ma′ zwei Minimalpolynome, die eine

gemeinsame Nullstelle β haben, dann gilt ma = ma′ . Die Kontraposition dieser Aussage ist dann die Aussage, die man beweisen

wollte. Jetzt geht es los mit der Annahme 2: Die Widerspruchsannahme aus Annahme 1 sieht doch so aus:

β
′
1 · e

α′1 + . . .+ β
′
n′ · e

α′
n′ = 0 mit β

′
1, . . . , β

′
n′ ∈ Z \ {0} und α

′
1, . . . , α

′
n′ paarweise verschiedene algebraische Zahlen

Man multipliziert: m := mα′1
, dann m := mα′1

· (mα′2
∨ 1), falls mα′2

ungleich ist zu mα′1
, ansonsten multipliziert man mit

1. Dann kommt m = mα′1
· (mα′2

∨ 1) · (mα′3
∨ 1), usw., bis als letztes mα′

n′
dranmultipliziert wird, falls wieder mα′

n′
un-

gleich ist zu den bisherigen dranmultiplizierten Minimalpolynomen, ansonsten multipliziert man mit 1. Nach Konstruktion sind

α′1, . . . , α
′
n′ Nullstellen von m, wobei m nach Konstruktion ein Polynom mit rationalen Koeffizienten mit Leitkoeffizient 1 ist. Seien

α′
(n′+1)

, . . . , α′
N′ die übrigen Nullstellen von m. Weil m ein Produkt von paarweise verschiedenen Minimalpolynomen ist und ein
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Minimalpolynom keine mehrfachen Nullstellen hat, folgt, dass α′1, . . . , α
′
n′ , α

′
(n′+1)

, . . . , α′
N′ paarweise verschieden sind und, dass

(x − α′1) · . . . · (x − α′
n′ ) · (x − α

′
n′+1

) · . . . · (x − α′
N′ ) ∈ Q[x] gilt. Daraus folgt, dass die elementarsymmetrischen Polynome in

α′1, . . . , α
′
n′ , α

′
(n′+1)

, . . . , α′
N′ aus Q sind, also: e′i(α

′
1, . . . , α

′
n′ , α

′
(n′+1)

, . . . , α′
N′ ) ∈ Q für alle i ∈ {1, . . . , N ′}. Man betrachtet nun

das folgende wichtige Produkt:

Ω(α
′
1, . . . , α

′
N′ ) :=

∏
σ∈S

N′

(
β
′
1 · e

α′
σ(1) + . . .+ β

′
n′ · e

α′
σ(n′) + β

′
n′+1 · e

α′
σ(n′+1) + . . .+ β

′
N′ · e

α′
σ(N′)

)

Dabei soll gelten β′
n′+1

= . . . = β′
N′ = 0. Bei σ(i) = i für alle i ∈ {1, . . . , N ′} gilt dann β′1 · e

α′
σ(1) + . . . + β′

n′ · e
α′
σ(n′) + β′

n′+1
·

e
α′
σ(n′+1) + . . . + β′

N′ · e
α′
σ(N′) = β′1 · e

α′1 + . . . + β′
n′ · e

α′
n′ + 0 · e

α′
n′+1 + . . . + 0 · eα

′
N′ = β′1 · e

α′1 + . . . + β′
n′ · e

α′
n′ = 0, nach

Annahme 1, also gilt dann:

∏
σ∈S

N′

(
β
′
1 · e

α′
σ(1) + . . .+ β

′
N′ · e

α′
σ(N′)

)
= 0 mit β

′
n′+1 = . . . = β

′
N′ = 0

Dieses Produkt hat N ′! Faktoren und ausmultipliziert ist es eine Summe von Summanden der Form β′h1,...,hN′
·eh1·α

′
1+...+h

N′ ·α
′
N′

über alle (h1, . . . , hN′ ) ∈ (N0)N
′

mit h1 +. . .+hN′ = N ′!, wobei β′h1,...,hN′
aus Z ist, weil β′h1,...,hN′

aus Summen, Produkte oder

Summen von Produkten von Elementen aus {β′1, . . . , β
′
N′} ⊆ Z besteht. Es wird nun gezeigt, dass bei festem (h1, . . . , hN′ ) ∈ (N0)N

′

die Menge {Aτ := h1 · α′τ(1) + . . .+ hN′ · α
′
τ(N′) : τ ∈ SN′} ein vollständiges Nullstellensystem bildet, also ist es eine Menge aller

Nullstellen eines Polynoms mit rationalen Koeffizienten. Beweis: Es gilt zunächst das Folgende:

(x− Aτ1 ) · . . . · (x− Aτ
N′!

) = x
N′!

+ e1(Aτ1 , . . . , AτN′!
) · xN

′!−1
+ . . .+ eN′!(Aτ1 , . . . , AτN′!

) · x0

Dabei sind die ei (i = 1, . . . , N ′!) die elementarsymmetrischen Polynome in Aτ1 , . . . , AτN′!
. Nun gilt doch offensichtlicherweise

Ei(α
′
1, . . . , α

′
N′ ) := ei(Aτ1 , . . . , AτN′!

) ∈ Z[α′1, . . . , α
′
N′ ] für alle i ∈ {1, . . . , N ′!}. Eine Tauschung der α′1, . . . , α

′
N′ bewirkt

eine Tauschung der Aτ1 , . . . , AτN′!
, und weil die ei symmmetrisch in Aτ1 , . . . , AτN′!

sind, folgt, dass die Ei(α
′
1, . . . , α

′
N′ ) ∈

Z[α′1, . . . , α
′
N′ ] symmetrisch sind in α′1, . . . , α

′
N′ . Nach dem Hauptsatz über elementarsymmetrische Polynome, gibt es also ein

Polynom Qi aus Z[e′1, . . . , e
′
N′ ] mit Ei(α

′
1, . . . , α

′
N′ ) = Qi(e

′
1, . . . , e

′
N′ ). Weil oben gezeigt wurde, dass e′j(α

′
1, . . . , α

′
N′ ) ∈ Q

(j = 1, . . . , N ′) ist, folgt Ei(α
′
1, . . . , α

′
N′ ) ∈ Q, also (x−Aτ1 ) · . . . · (x−AτN!

) ∈ Q[x], was zu beweisen war. Es wurde also gezeigt,

dass h1 ·α′τ(1) + . . .+ hN′ ·α
′
τ(N′) für alle τ ∈ SN′ konjugiert sind bzgl. eines Polynoms mit rationalen Koeffizienten. Als nächstes

wird gezeigt, dass in Ω(α′1, . . . , α
′
N′ ) =

∑
h1+...+h

N′=N
′!
β′h1,...,hN′

· eh1·α
′
1+...+h

N′ ·α
′
N′ die e

h1·α
′
τ(1)

+...+h
N′ ·α

′
τ(N′) (τ ∈ SN′ )

gleiche Vorfaktoren haben. Es gilt {h1 ·α′1 + . . .+hN′ ·α
′
N′ : h1 + . . .+hN′ = N ′!} =

⋃
h1+...+h

N′=N
′!

h1≤...≤hN′

{hτ(1) ·α′1 + . . .+hτ(N′) ·α
′
N′ :

τ ∈ SN′} =
⋃

h1+...+h
N′=N

′!
h1≤...≤hN′

{h1 · α′τ(1) + . . .+ hN′ · α
′
τ(N′) : τ ∈ SN′}. Weiter gilt mit β′

n′+1
= . . . = β′

N′ = 0:

Ω
(
α
′
τ(1), . . . , α

′
τ(N′)

)
=

∏
σ∈S

N′

(
β
′
1 · e

α′
σ(τ(1)) + . . .+ β

′
N′ · e

α′
σ(τ(N′))

)
=

∏
γ=σ◦τ: τ∈S

N′

(
β
′
1 · e

γ(1)
+ . . .+ β

′
N′ · e

γ(N′)
)

=
∏

γ∈S
N′

(
β
′
1 · e

γ(1)
+ . . .+ β

′
N′ · e

γ(N′)
)

= Ω(α
′
1, . . . , α

′
N′ )

Wegen Ω(α′1, . . . , α
′
N′ ) = Ω

(
α′τ(1), . . . , α

′
τ(N′)

)
folgt also:

∑
h1+...+h

N′=N
′!

β
′
h1,...,hN′

· eh1·α
′
1+...+h

N′ ·α
′
N′ =

∑
h1+...+h

N′=N
′!

β
′
h1,...,hN′

· e
h1·α

′
τ(1)

+...+h
N′ ·α

′
τ(N′)

Umgeschrieben gilt dann also das Folgende

Ω(α
′
1, . . . , α

′
N′ ) =

∑
h1+...+h

N′=N
′!

β
′
h1,...,hN′

· xh1
1 · . . . · x

h
N′
N′ =

∑
h1+...+h

N′=N
′!

β
′
h1,...,hN′

· xh1
τ(1)
· . . . · x

h
N′
τ(N′) mit xi = e

α′i

Wegen des Identitätssatzes für Polynome in mehreren Unbestimmten folgt, dass die Summanden β′h1,...,hN′
·xh1
τ(1)
· . . . ·x

h
N′
τ(N′) mit

gleichen Vorfaktoren auch in
∑

h1+...+h
N′=N

′!
β′h1,...,hN′

·xh1
1 ·. . .·x

h
N′
N′ zu finden sind, sonst gelte nicht

∑
h1+...+h

N′=N
′!
β′h1,...,hN′

·

x
h1
1 · . . . · x

h
N′
N′ =

∑
h1+...+h

N′=N
′!
β′h1,...,hN′

· xh1
τ(1)
· . . . · x

h
N′
τ(N′) mit xi = eα

′
i . Wichtig dabei ist, dass dort x

h1
1 · . . . · x

h
N′
N′

und x
h1
τ(1)

· . . . · x
h
N′
τ(N′) den gleichen Vorfaktor β′h1,...,hN′

haben, und das gilt für alle τ ∈ SN′ . Daraus folgt also, dass die

e
h1·α

′
τ(1)

+...+h
N′ ·α

′
τ(N′) in Ω(α′1, . . . , α

′
N′ ) für alle τ ∈ SN′ gleiche Vorfaktoren haben. Um einen Widerpruch für den Be-

weis dieses Satzes zu erreichen, muss noch wichtigerweise bewiesen werden, dass in
∏

σ∈S
N′

(
β′1 · e

α′
σ(1) + . . .+ β′

N′ · e
α′
σ(N′)

)
=

0 mit β′
n′+1

= . . . = β′
N′ = 0 die linke Seite nicht trivial 0 ist. Wie in Annahme 1 braucht man hier die lexikographische Ord-

nung für komplexe Zahlen. Weil α′1, . . . , α
′
N′ paarweise verschieden sind, gilt o.B.d.A. α′1 � . . . � α′

N′ (sonst nummeriere um). In
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∏
σ∈S

N′

(
β′1 · e

α′
σ(1) + . . .+ β′

N′ · e
α′
σ(N′)

)
wählt man aus jeder Klammer eine e-Funktion mit einem von Null ungleichen Vorfaktor

dessen Exponent in der Klammer lexikographisch am größten ist. Sei ai,max der in der i-ten Klammer größte Exponent dessen

e-Funktion einen von Null verschiedenen Vorfaktor hat. ai bezeichne einen Exponenten aus der i-ten Klammer dessen e-Funktion

einen von Null verschiedenen Vorfaktor hat. Dann gilt

N′!∑
i=1

ai �
N′!∑
i=1

ai,max =: amax für alle (a1, . . . , aN′!) 6= (a1,max, . . . , aN′!,max)

Daraus folgt, dass b · eamax mit b 6= 0 (ein Produkt von Elementen aus {β′1, . . . , β
′
n′} ⊆ Z \ {0}) durch keine andere e-Funktion

von der Form b∗ · ea1+...+an (b∗ ist Summe, Produkt oder Summe von Produkten von Elementen aus {β′1, . . . , β
′
n′} ⊆ Z \ {0})

aus der Summe, die durch Ausmultiplizierung des Produktes
∏

σ∈S
N′

(
β′1 · e

α′
σ(1) + . . .+ β′

N′ · e
α′
σ(N′)

)
entsteht, wegsubtrahiert

werden kann. Also ist
∏

σ∈S
N′

(
β′1 · e

α′
σ(1) + . . .+ β′

N′ · e
α′
σ(N′)

)
nicht trivial 0, was man zeigen wollte. Man setzt nun Folgendes:

∏
σ∈S

N′

(
β
′
1 · e

α′
σ(1) + . . .+ β

′
n′ · e

α′
σ(n′) + 0 · e

α′
σ(n′+1) + . . .+ 0 · e

α′
σ(N′)

)
=:

n∑
i=1

βi · eαi = 0

Beim Ausmultiplizieren des Produktes links seien e-Funktionen mit gleichem Exponenten maximal zusammengefasst. Man hat damit

bisher bewiesen, dass es 0 = n0 < n1 < · · · < nr = n gibt, so dass für alle tmit 0 ≤ t < n gilt: αnt+1, . . . , αnt+1
ist ein vollständiges

Nullstellensystem eines Polynoms mit rationalen Koeffizienten und Leitkoeffizient 1, wobei zusätzlich βnt+1 = βnt+2 = . . . = βnt+1

(alle aus Z) gilt. Es wird nun bewiesen, dass alle in
n∑
i=1

βi · eαi auftretende Exponenten als paarweise verschieden angenommen

werden können. Dabei gibt es dann 4 Fälle:

Fall 1:

Sei k ·eω1 + . . .+k ·eωl . Alle e-Funktionen haben den gleichen Vorfaktor k ∈ Z. Es sei ω1, . . . , ωl ein vollständiges Nullstellensystem

eines Polynoms mit rationalen Koeffizienten und Leitkoeffizient 1, bezeichnet als w. Wenn ω1, . . . , ωl paarweise verschieden sind,

dann ist man fertig. Trete also ωi1 (i1 ∈ {1, . . . , l}) dann genau 2 ≤ λ1-fach als Nullstelle in w auf. Dann gilt (mωi1
)λ1 | w (mωi1

sei das Minimalpolynom von ωi1 ). Das bedeutet, dass die Konjugierten von ωi1 bzgl. des Minimalpolynoms von ωi1 vom Grad g1

ebenfalls mindestens λ1-fach als Nullstelle in w auftauchen, und zwar genau λ1-mal, denn käme eine Konjugierte von ωi1 bzgl.

des Minimalpolynoms von ωi1 , bezeichnet als ωi1,j (j = 2, . . . , g1) mit ωi1,1 = ωi1 , λ′-fach (λ′ > λ1) als Nullstelle in w vor,

dann würde folgen: (mωi1,j
)λ
′
| w. Da mωi1,j

= mωi1
gilt, weil mωi1,j

und mωi1
die gemeinsame Nullstelle ωi1,j haben, folgt

(mωi1
)λ
′
| w, was bedeuten würde, dass ωi1 mehr als λ1-fach als Nullstelle in w auftaucht, Widerpruch, denn ωi1 taucht nach

Voraussetzung genau λ1-fach als Nullstelle in w auf. Man kann dann also das Folgende aufschreiben:

k · eω1 + . . .+ k · eωl =
(
k · eω1 + . . .+ k · eωl −M1

)
+

(λ1 · k) · eωi1,1 + . . .+ (λ1 · k) · eωi1,g1︸ ︷︷ ︸
=:M1


In M1 sind die Exponenten ωi1,1, . . . , ωi1,g1 als vollständiges Nullstellensystem des Minimalpolynoms mωi1

paarweise verschieden

und jede e-Funktion hat den gleichen Vorfaktor λ1 · k ∈ Z. In k · eω1 + . . .+ k · eωl −M1 sind die übrigbleibenden Exponenten der

e-Funktionen ein vollständiges Nullstellensystem des Polynoms
w

(mωi1
)λ1

mit rationalen Koeffizienten und Leitkoeffizient 1. Mal

angenommen, die Exponenten in k · eω1 + . . .+k · eωl −M1 sind jetzt paarweise verschieden. Die e-Funktionen haben dann alle den

gleichen Vorfaktor, nämlich k ∈ Z. Es muss noch gezeigt werden, dass die Exponenten-Vorkommen in k·eω1+. . .+k·eωl−M1 disjunkt

sind zu den Exponenten-Vorkommen ωi1,1, . . . , ωi1,g1 . Keine der Exponenten ωi1,1, . . . , ωi1,g1 tauchen in k ·eω1 + . . .+k ·eωl−M1

auf, weil diese Exponenten-Vorkommen in k · eω1 + . . .+ k · eωl −M1 mittels −M1 vollständig raussubtrahiert wurden. Keine der

Exponenten aus k · eω1 + . . .+ k · eωl −M1 tauchen in ωi1,1, . . . , ωi1,g1 auf, denn: Ist ein Exponent in ωi1,1, . . . , ωi1,g1 zu finden,

dann ist dieser Exponent nicht in k · eω1 + . . .+ k · eωl −M1, weil dort mittels −M1 das Exponenten-Vorkommen ωi1,1, . . . , ωi1,g1

vollständig rausubtrahiert ist. Heißt im Umkehrschluss: Ist ein Exponent in k·eω1 +. . .+k·eωl−M1, dann nicht in ωi1,1, . . . , ωi1,g1 .

Sollte es in k ·eω1 +. . .+k ·eωl−M1 jedoch immer noch Exponenten geben, die mehrfach vorkommen, dann wende man den Vorgang

von eben nochmal an. Es wird noch einmal ausgeführt: Sei der Exponent ωi2 genau 2 ≥ λ2-fach als Nullstelle in
w

(mωi1
)λ1

zu

finden, also gilt dann (mωi2
)λ2 |

w

(mωi1
)λ1

. Seien ωi2,1, . . . , ωi2,g2 mit ωi2,1 = ωi2 alle Konjugierte bzgl. des Minimalpolynoms

mωi2
, dann kann man genauso, wie es oben getan wurde, wieder schreiben:

k · eω1 + . . .+ k · eωl =
(
k · eω1 + . . .+ k · eωl −M1 −M2

)
+(λ1 · k) · eωi1,1 + . . .+ (λ1 · k) · eωi1,g1︸ ︷︷ ︸

=:M1

+

(λ2 · k) · eωi2,1 + . . .+ (λ2 · k) · eωi2,g2︸ ︷︷ ︸
=:M2


Man wiederholt diesen Vorgang bis ein d erreicht ist, wo k ·eω1 + . . .+k ·eωl −M1−M2− . . .−Md nur noch paarweise verschiedene

Exponenten hat, also bis
w

(mωi1
)λ1 · . . . · (mωid )λd

keine mehrfache Nullstellen mehr hat. Man hat dann also:

(
k · eω1 + . . .+ k · eωl −M1 −M2 − . . .−Md

)
+M1 +M2 + . . .+Md

79



Was hat man damit erreicht?: Die Exponenten in k · eω1 + . . .+ k · eωl −M1 −M2 − . . .−Md sind paarweise verschieden und ein

vollständiges Nullstellensystem des Polynoms
w

(mωi1
)λ1 · . . . · (mωid )λd

, was rationale Koeffizienten und Leitkoeffizient 1 hat. Die

e-Funktionen in k ·eω1 + . . .+k ·eωl −M1−M2− . . .−Md haben immer den Vorfaktor k ∈ Z. Die Exponenten in Mr (r = 1, . . . , d)

bilden ein vollständiges Nullstellensystem des Minimalpolynoms mωir
, sind also paarweise verschieden. Die e-Funktionen in Mr

haben immer den gleichen Vorfaktor λr · k ∈ Z. Das Wichtigste ist nun, dass in (k · eω1 + . . .+ k · eωl −M1 −M2 − . . .−Md) +

M1 +M2 + . . .+Md alle auftretenden Exponenten paarweise verschieden sind, was jetzt gezeigt wird: Nach Voraussetzung ist ωir

für alle r ∈ {1, . . . , d} nun genau λr-fache Nullstelle von
w

(mωi1
)λ1 · . . . · (mωir−1

)λr−1
, also gilt dann folglich (mωir

)λr |

w

(mωi1
)λ1 · . . . · (mωir−1

)λr−1
. Hätten Mu und Mv (u, v = 1, . . . , d und u 6= v) einen Exponenten gemeinsam, dann gelte

mωiu
= mωiv

und das kann nicht sein, denn: Sei r ∈ {2, . . . , d} und x ∈ {1, . . . , r − 1}. Gelte mωir
= mωix

. Aus (mωir
)λr |

w

(mωi1
)λ1 · . . . · (mωir−1

)λr−1
folgt dann (mωix

)λr |
w · (mωix+1

)λx+1 · . . . · (mωir−1
)λr−1

(mωi1
)λ1 · . . . · (mωir−1

)λr−1
=

w

(mωi1
)λ1 · . . . · (mωix )λx

, al-

so (mωix
)λx+λr |

w

(mωi1
)λ1 · . . . · (mωix−1

)λx−1
, also ist ωix mehr als λx-fache Nullstelle, denn λr ≥ 2, von dem folgenden:

w

(mωi1
)λ1 · . . . · (mωix−1

)λx−1
, Widerpruch, denn ωix ist genau λx-fache Nullstelle von

w

(mωi1
)λ1 · . . . · (mωix−1

)λx−1
, also gilt

für alle r ∈ {2, . . . , d} und für alle x ∈ {1, . . . , r − 1}: mωir 6= mωix
. Also kann oben nicht gelten mωiu

= mωiv
, also haben Mu

und Mv keine gemeinsame Exponenten. Es muss jetzt noch gezeigt werden, dass alle Mr (r = 1, . . . , d, Erinnerung: Die Exponenten

in Mr sind schonmal paarweise verschieden!) keine gemeinsame Exponenten mit k · eω1 + . . .+k · eωl −M1−M2− . . .−Md haben:

Für alle r ∈ {1, . . . , d} gilt: Keine der Exponenten in Mr sind in k · eω1 + . . .+ k · eωl −M1 −M2 − . . .−Md zu finden, weil diese

Exponenten-Vorkommen mittels −Mr in k · eω1 + . . .+ k · eωl −M1 −M2 − . . .−Md vollständig raussubtrahiert sind. Keine der

Exponenten aus k · eω1 + . . .+ k · eωl −M1 −M2 − . . .−Md sind in Mr zu finden, denn ist ein Exponent in Mr zu finden, dann

nicht mehr in k · eω1 + . . .+ k · eωl −M1 −M2 − . . .−Md, weil dort mittels −Mr das Exponenten-Vorkommen aus Mr vollständig

rausubtrahiert ist. Heißt im Umkehrschluss: Ist ein Exponent in k · eω1 + . . .+ k · eωl −M1 −M2 − . . .−Md zu finden, dann nicht

in Mr. Soviel also dazu!

Fall 2:

Seien k ·eω1 + . . .+k ·eωl (immer Vorfaktor k ∈ Z und ω1, . . . , ωl ist ein vollständiges Nullstellensystem bzgl. des Polynoms w1 mit

rationalen Koeffizienten und Leitkoeffizient 1) und k′ ·eω
′
1 + . . .+k′ ·eω

′
h (immer Vorfaktor k′ ∈ Z und ω′1, . . . , ω

′
h ist ein vollständi-

ges Nullstellensystem bzgl. des Polynoms w2 mit rationalen Koeffizienten und Leitkoeffizient 1) gegeben. Haben k ·eω1 + . . .+k ·eωl

und k′ · eω
′
1 + . . .+ k′ · eω

′
h keine Exponenten gemeinsam, dann ist man fertig! Man nimmt also an, dass k · eω1 + . . .+ k · eωl und

k′ · eω
′
1 + . . .+ k′ · eω

′
h mindestens einen Exponenten gemeinsam haben. Sei dieser Exponent mit Ω1 bezeichnet. mΩ1

sei vom Grad

G1. Die Nullstellen von mΩ1 seien Ω1,1, . . . ,Ω1,G1
, mit Ω1,1 = Ω1. Ω1 tauche in k · eω1 + . . .+ k · eωl genau 1 ≥ µ1-mal auf und

in k′ · eω
′
1 + . . .+ k′ · eω

′
h genau 1 ≥ µ′1-mal auf. Dann kann man, wie im Fall 1, das Folgende schreiben:

(
k · eω1 + . . .+ k · eωl

)
+
(
k
′ · eω

′
1 + . . .+ k

′ · eω
′
h

)
=
(
k · eω1 + . . .+ k · eωl −N1

)
+
(
k
′ · eω

′
1 + . . .+ k

′ · eω
′
h −N1′

)
+(µ1 · k) · eΩ1,1 + . . .+ (µ1 · k) · eΩ1,G1︸ ︷︷ ︸

=:N1

+

(µ
′
1 · k

′
) · eΩ1,1 + . . .+ (µ

′
1 · k

′
) · eΩ1,G1︸ ︷︷ ︸

=:N
1′


Und das ist gleich zu:

(
k · eω1 + . . .+ k · eωl −N1

)
+
(
k
′ · eω

′
1 + . . .+ k

′ · eω
′
h −N1′

)
+
(

(µ1 · k + µ
′
1 · k

′
) · eΩ1,1 + . . .+ (µ1 · k + µ

′
1 · k

′
) · eΩ1,G1

)
Diesen Vorgang wiederholt man bis k ·eω1 + . . .+k ·eωl−N1−N2− . . .−Nd und k′ ·eω

′
1 + . . .+k′ ·eω

′
h−N1′−N2′− . . .−Nd′ keine

gemeinsame Exponenten mehr haben. Dabei gilt Ωi,1 = Ωi und Ωi,1, . . . ,Ωi,Gi sind alle Konjugierte bzgl. des Minimalpolynoms

mΩi
. Und es gilt Ni = (µi · k) · eΩi,1 + . . .+ (µi · k) · eΩi,Gi und Ni′ = (µ′i · k

′) · eΩi,1 + . . .+ (µ′i · k
′) · eΩi,Gi . Weil Ni und Ni′

(i = 1, . . . , d) identische Exponenten haben, kann man die beiden zusammenfassen. Man hat nun also:

(
k · eω1 + . . .+ k · eωl

)
+
(
k
′ · eω

′
1 + . . .+ k

′ · eω
′
h

)
=
(
k · eω1 + . . .+ k · eωl −N1 −N2 − . . .−Nd

)
+(

k
′ · eω

′
1 + . . .+ k

′ · eω
′
h −N1′ −N2′ − . . .−Nd′

)
+ (N1 +N1′ ) + (N2 +N2′ ) + . . .+ (Nd +Nd′ )

Was hat man damit erreicht?: Die Exponenten in k ·eω1 + . . .+k ·eωl−N1−N2− . . .−Nd bilden ein vollständiges Nullstellensystem

eines Polynoms mit rationalen Koeffizienten und Leitkoeffizient 1, nämlich:
w1

(mΩ1
)µ1 · . . . · (mΩd

)µd
, Die Exponenten in k′ · eω1 +

. . . + k′ · eωl − N1′ − N2′ − . . . − Nd′ bilden ein vollständiges Nullstellensystem eines Polynoms mit rationalen Koeffizienten

und Leitkoeffizient 1, nämlich:
w2

(mΩ1
)µ
′
1 · . . . · (mΩd

)µ
′
d

. Die Exponenten in Ni + Ni′ (i = 1, . . . , d) bilden ein vollständiges

Nullstellensystem bzgl. des Minimalpolynoms mΩi
(d.h. sie sind paarweise verschieden), und alle Vorfaktoren in Ni + Ni′ sind

gleich µi · k + µ′i · k
′ ∈ Z. Wie in Fall 1 zeigt man, dass für alle i ∈ {1, . . . , d} die Exponentenmenge von Ni +Ni′ disjunkt ist zu

der von k · eω1 + . . .+ k · eωl −N1 −N2 − . . .−Nd und zu der von k′ · eω
′
1 + . . .+ k′ · eω

′
h −N1′ −N2′ − . . .−Nd′ , und man zeigt,
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wie in Fall 1, dass die Ni +Ni′ (i = 1, . . . , d) disjunkte Exponentenmengen haben. Erinnerung: Nach Konstruktion gilt auch, dass

die Exponentenmengen von k · eω1 + . . .+ k · eωl −N1−N2− . . .−Nd und k′ · eω
′
1 + . . .+ k′ · eω

′
h −N1′ −N2′ − . . .−Nd′ disjunkt

sind. Das war es also auch schon!

Fall 3:

Seien k ·eω1 + . . .+k ·eωl (immer Vorfaktor k ∈ Z und ω1, . . . , ωl ist ein vollständiges Nullstellensystem bzgl. des Minimalpolynoms

m, also sind ω1, . . . , ωl paarweise verschieden) und k′·eω
′
1 +. . .+k′·eω

′
h (immer Vorfaktor k′ ∈ Z und ω′1, . . . , ω

′
h ist ein vollständiges

Nullstellensystem bzgl. des Minimalpolynoms m′, also sind ω′1, . . . , ω
′
h paarweise verschieden) gegeben. Mal angenommen, k ·eω1 +

. . .+ k · eωl und k′ · eω
′
1 + . . .+ k′ · eω

′
h haben keinen Exponenten gemeinsam, dann ist man fertig. Haben also k · eω1 + . . .+ k · eωl

und k′ · eω
′
1 + . . . + k′ · eω

′
h mindestens einen Exponenten, bezeichnet als γ, gemeinsam, dann gilt m = mγ = m′ (denn: mγ und

m,m′ haben die gemeinsame Nullstelle γ), also m = m′. Daraus folgt also l = h und ω1 = ω′1, . . . , ωl = ω′l. Also kann man dann

schreiben:

(
k · eω1 + . . .+ k · eωl

)
+ (k

′ · eω
′
1 + . . .+ k

′ · eω
′
h ) =

(
k · eω1 + . . .+ k · eωl

)
+
(
k
′ · eω1 + . . .+ k

′ · eωl
)

= (k + k
′
) · eω1 + . . .+ (k + k

′
) · eωl

Was hat man damit erreicht?: In (k + k′) · eω1 + . . . + (k + k′) · eωl sind alle Vorfaktoren gleich k + k′ ∈ Z und ω1, . . . , ωl bilden

ein vollständiges Nullstellensystem bzgl. des Minimalpolynoms m, also sind ω1, . . . , ωl insbesondere paarweise verschieden.

Fall 4:

Seien k · eω1 + . . . + k · eωl (immer Vorfaktor k ∈ Z und ω1, . . . , ωl ist ein vollständiges Nullstellensystem bzgl. des Polynoms

w mit rationalen Koeffizienten und Leitkoeffizient 1) und k′ · eω
′
1 + . . . + k′ · eω

′
h (immer Vorfaktor k′ ∈ Z und ω′1, . . . , ω

′
h

ist ein vollständiges Nullstellensystem bzgl. des Minimalpolynoms m′, also sind ω′1, . . . , ω
′
h paarweise verschieden) gegeben. Mal

angenommen, k · eω1 + . . .+ k · eωl und k′ · eω
′
1 + . . .+ k′ · eω

′
h haben keinen Exponenten gemeinsam, dann ist man fertig. Haben

also k · eω1 + . . .+ k · eωl und k′ · eω
′
1 + . . .+ k′ · eω

′
h mindestens einen Exponenten, bezeichnet als γ, gemeinsam, dann sei λ die

Vielfachheit der Nullstelle γ von w, dann gilt (mγ)λ | w, wobei mγ das Minimalpolynom von γ sei. Weil m′ und mγ die Nullstelle

γ gemeinsam haben, folgt m′ = mγ . Seien die Nullstellen von mγ bezeichnet als Ω1, . . . ,Ωg mit Ω1 = γ. Wegen m′ = mγ , folgt

also g = h und Ω1 = ω′1, . . . ,Ωg = ω′g. Man kann also schreiben:

(
k · eω1 + . . .+ k · eωl

)
+ (k

′ · eω
′
1 + . . .+ k

′ · eω
′
h ) =

(
k · eω1 + . . .+ k · eωl − A

)
+

(λ · k) · eΩ1 + . . .+ (λ · k) · eΩg︸ ︷︷ ︸
=:A

+

(k
′ · eω

′
1 + . . .+ k

′ · eω
′
h ) =

(
k · eω1 + . . .+ k · eωl − A

)
+ ((λ · k) · eΩ1 + . . .+ (λ · k) · eΩg ) + (k

′ · eΩ1 + . . .+ k
′ · eΩg ) =(

k · eω1 + . . .+ k · eωl − A
)

+ ((λ · k + k
′
) · eΩ1 + . . .+ (λ · k + k

′
) · eΩg )

Was hat man damit erreicht?: Die Exponenten in k · eω1 + . . . + k · eωl − A bilden ein vollständiges Nullstellensystem bzgl. eines

Polynomes mit rationalen Koeffizienten und Leitkoeffizient 1, nämlich
w

(mγ)λ
=

w

(mΩ1 )λ
. In (λ ·k+k′) ·eΩ1 + . . .+(λ ·k+k′) ·eΩg

hat man immer den gleichen Vorfaktor λ · k+ k′ ∈ Z und Ω1, . . . ,Ωg bilden ein vollständiges Nullstellensystem bzgl. des Minimal-

polynoms mγ = mΩ1 , also sind diese Exponenten auch paarweise verschieden. Wie in Fall 1 zeigt man, dass die Exponentenmenge

{Ω1, . . . ,Ωg} disjunkt ist zur Exponentenmenge von k · eω1 + . . .+ k · eωl − A.

Allgemeiner Fall:

Zunächst macht man sich klar, dass sich
n∑
i=1

βi ·eαi als Summe von Termen der Form k ·eω1 + . . .+k ·eωl (k ∈ Z und ω1, . . . , ωl ist

ein vollständiges Nullstellensystem bzgl. eines Polynoms mit rationalen Koeffizienten und Leitkoeffizient 1) darstellt. Es werden hier

Bezeichnungen eingeführt: Ein Term der Form k·eω1 +. . .+k·eωl , dessen Exponenten ein vollständiges Nullstellensystem bzgl. eines

Polynoms mit rationalen Koeffizienten und Leitkoeefizient 1, welches kein Minimalpolynom ist, bezeichnet als w, darstellen, nenne

man W -Term. Ein Term der Form k·eω1 +. . .+k·eωl , dessen Exponenten ein vollständiges Nullstellensystem bzgl. eines Minimalpo-

lynoms, bezeichnet als m, darstellen, nenne man M-Term. Fall 1 sorgt dafür, dass jeder W -Term paarweise verschiedene Exponenten

hat. Dabei entstehen M-Terme. Fall 2 wendet man solange an (endlich oft!), bis alle W -Terme disjunkte Exponentenmengen haben.

Dabei entstehen wieder M-Terme. Wegen Fall 1 haben im Beweis von Fall 2 nun k · eω1 + . . .+ k · eωl und k′ · eω
′
1 + . . .+ k′ · eω

′
h

paarweise verschiedene Exponenten, was offensichtlicherweise auch weiterhin für k · eω1 + . . . + k · eωl −N1 −N2 − . . .−Nd und

k′ · eω
′
1 + . . .+k′ · eω

′
h −N1′ −N2′ − . . .−Nd′ gilt. Dabei gilt, dass die Vorfaktoren der e-Funktionen in k · eω1 + . . .+k · eωl immer

k ∈ Z und in k′ ·eω
′
1 + . . .+k′ ·eω

′
h immer k′ ∈ Z sind. Im Beweis von Fall 2 gilt, weil k ·eω1 + . . .+k ·eωl und k′ ·eω

′
1 + . . .+k′ ·eω

′
h

wegen Fall 1 paarweise verschiedene Exponenten haben, dass sogar µi = µ′i = 1 für alle i = 1, . . . , d gilt. Mit Fall 3 erreicht man,

dass zwei M-Terme, dessen Exponenten paarweise verschieden sind, disjunkte Exponentenmengen haben, denn ansonsten kann

man sie zusammenfassen. Mithilfe von Fall 4 sorgt man dann dafür, dass die Exponentenmenge jedes M-Terms, dessen Exponenten

paarweise verschieden sind, disjunkt ist zu jeder Exponentenmenge eines W -Terms. Also ist die Exponentenmenge jedes W -Terms

disjunkt zu allen Exponentenmengen eines M-Terms, denn sonst gäbe es eine Exponentenmenge eines M-Term, welches nicht dis-

junkt ist zur Exponentenmenge eines W -Terms, Widerspruch. Im Beweis von Fall 4 hat k ·eω1 + . . .+k ·eωl wegen Fall 1 paarweise

verschiedene Exponenten, was dann auch für k · eω1 + . . .+ k · eωl −A gilt. In k · eω1 + . . .+ k · eωl −A sind die Vorfaktoren der

e-Funktionen dort alle gleich k ∈ Z. Also ist bewiesen: Es gibt 0 = n0 < n1 < · · · < nr = n, so dass für alle t mit 0 ≤ t < n gilt:

αnt+1, . . . , αnt+1
ist ein vollständiges Nullstellensystem eines Polynoms mit rationalen Koeffizienten und Leitkoeffizient 1, wobei
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zusätzlich βnt+1 = βnt+2 = . . . = βnt+1
(alle aus Z) gilt. Zusammen mit dieser Eigenschaft gilt zusätzlich: Alle in

n∑
i=1

βi · eαi

auftretende Exponenten können als paarweise verschieden angenommen werden! Das war es.

Vorbereitungen:

α1, . . . , αn ∈ C sind algebraisch. Es gibt dann eine natürliche Zahl ` so, dass `α1, . . . , `αn ganz-algebraisch sind. Beweis: Sei α ∈ C

algebraisch, dann gibt es ein normiertes Polynom h(x) = xn + an−1 · xn−1 + . . .+ a1 · x1 + a0 ∈ Q[x] mit h(α) = 0. Da alle ai aus

Q sind, gibt es ein m ∈ N \ {0} so, dass m · ai ∈ Z für alle i = 0, . . . , n− 1 gilt. Es gilt also

h(α) = 0 = α
n

+ an−1 · αn−1
+ . . .+ a1 · α1

+ a0 ⇒ m
n · 0 = m

n · αn +m
n · an−1 · αn−1

+ . . .+m
n · a1 · α1

+m
n · a0

Und die rechte Seite ist dann gleich zu:

0 = (m · α)
n

+m
1 · an−1︸ ︷︷ ︸
∈Z

· (m · α)
n−1

+m
2 · an−2︸ ︷︷ ︸
∈Z

· (m · α)
n−2

+ . . .+m
n−1 · a1︸ ︷︷ ︸
∈Z

· (m · α)
1

+m
n · a0︸ ︷︷ ︸
∈Z

Man hat also ein normiertes Polynom mit ganzzahligen Koeffizienten gefunden, das m · α als Nullstelle hat. Also ist m · α ganz-

algebraisch. Wähle nun für alle i = 1, . . . , n zu αi ein `i ∈ N\{0} so, dass `iαi ganz-algebraisch ist. Sei dann ` := kgV(`1, . . . , `n).

Es gibt dann k1, . . . , kn ∈ N so, dass gilt ` = k1 · `1 = k2 · `2 = . . . = kn · `n. Also gilt dann `αi = ki · (`iαi) (i = 1, . . . , n). Weil

ki ∈ N und `iαi ganz-algebraisch sind, so ist es auch ki · (`iαi) = (ki · `i) · αi = `αi, Beweis-Ende. Es sei für i = 1, . . . , n folgende

Hilfsfunktion definiert:

fi(x) = `
np ·

(x− α1)p · . . . · (x− αn)p

x− αi

Wie man leicht nachweist, gilt: f
(j)
i (αk) = 0 für j < p − 1 und p! | f(j)

i (αk) für j > p − 1. Für j = p − 1 und k 6= i ist

f
(j)
i (αk) = f

(p−1)
i (αk) = 0. Für j = p − 1 und k = i ist f

(j)
i (αk) = f

(p−1)
i (αi) = `np · (p − 1)! ·

n∏
m=1

(m6=i)

(αi − αm)p. Nach

Konstruktion von fi(x) ist f
(j)
i (αk) und sogar

f
(j)
i (αk)

(p− 1)!
ganz-algebraisch. Sei Ii(c) =

∫
0̃c

e
c−u · fi(u) du. Dabei sei 0̃c ein Weg in

der Gauß’schen Zahlenebene, der bei 0 beginnt und bei c endet. Da der Integrand ec−u · fi(u) des Kurvenintegrals holomorph ist,

ist das Kurvenintegral wegunabängig. Man kann also den speziellen Weg 0c (Strecke von 0 nach c) wählen, ohne, dass sich der Wert

des Kurvenintegrals ändert. Also:

Ii(c) =

∫
0̃c

e
c−u · fi(u) du =

∫
0c

e
c−u · fi(u) du

Weiterhin sei Ji = β1 · Ii(α1) + . . .+ βn · Ii(αn) und J = J1 · . . . · Jn.

Die algebraische Abschätzung von |J| nach unten:

Es wird mehrfach die partielle Integration ausgeführt:

Ii(c) =

∫
0̃c

e
c−u · fi(u) du =

∫
0c

e
c−u · fi(u) du =

∫ 1

0

e
c−t·c · fi(t · c) · (t · c)′ dt =

∫ 1

0

e
c·(1−t) · fi(t · c) · c dt

=

[
1

−c
· ec·(1−t) · fi(t · c) · c

]1

0

−
∫ 1

0

1

−c
· ec·(1−t) · f(1)

i (t · c) · c · c dt =
[
−ec·(1−t) · fi(t · c)

]1
0

+

∫ 1

0

e
c·(1−t) · f(1)

i (t · c) · c dt

=
(
−fi(c) + e

c · fi(0)
)

+

[
1

−c
· ec·(1−t) · f(1)

i (t · c) · c
]1

0

−
∫ 1

0

1

−c
· ec·(1−t) · f(2)

i (t · c) · c · c dt

=
(
−fi(c) + e

c · fi(0)
)

+
(
−f(1)

i (c) + e
c · f(1)

i (0)
)

+

∫ 1

0

e
c·(1−t) · f(2)

i (t · c) · c dt

=
(
−fi(c) + e

c · fi(0)
)

+
(
−f(1)

i (c) + e
c · f(1)

i (0)
)

+

[
1

−c
· ec·(1−t) · f(2)

i (t · c) · c
]1

0

−
∫ 1

0

1

−c
· ec·(1−t) · f(3)

i (t · c) · c · c dt

=
(
−fi(c) + e

c · fi(0)
)

+
(
−f(1)

i (c) + e
c · f(1)

i (0)
)

+
(
−f(2)

i (c) + e
c · f(2)

i (0)
)

+

∫ 1

0

e
c·(1−t) · f(3)

i (t · c) · c dt = . . .

Macht man so weiter, so erhält man: Ii(c) = e
c ·
∞∑
k=0

f
(k)
i (0)−

∞∑
k=0

f
(k)
i (c). Weil fi ein Polynom vom Grad np−1 ist, gilt also sogar:

Ii(c) = e
c ·

np−1∑
k=0

f
(k)
i (0)−

np−1∑
k=0

f
(k)
i (c). Dann gilt also:

Ji =

n∑
k=1

βk · Ii(αk) =

n∑
k=1

βk ·

eαk · np−1∑
j=0

f
(j)
i (0)−

np−1∑
j=0

f
(j)
i (αk)

 =

n∑
k=1

βk · eαk · np−1∑
j=0

f
(j)
i (0)

− n∑
k=1

βk · np−1∑
j=0

f
(j)
i (αk)


=

np−1∑
j=0

f
(j)
i (0)

 ·( n∑
k=1

βk · eαk
)

︸ ︷︷ ︸
=0

−
np−1∑
j=0

n∑
k=1

βk · f(j)
i (αk) = −

np−1∑
j=0

n∑
k=1

βk · f(j)
i (αk)

Denn:
n∑
k=1

βk ·eαk = 0 ist die Widerspruchsannahme. Aus Vorbereitungen oben, weiß man, dass die Primzahl p alle f
(j)
i (αk) teilt (es

gilt nämlich: p | 0), also auch βk ·f(j)
i (αk), nur f

(p−1)
i (αi) nicht. Sei p echt größer als βi, dann gilt p - βi, also auch p - βi ·f(p−1)

i (αi).
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Weil nun aber Ji = −
np−1∑
j=0

n∑
k=1

βk · f(j)
i (αk) ist, folgt also p - Ji, also Ji 6= 0, denn gelte Ji = 0, dann würde p | Ji gelten. Beweis

von p - f(p−1)
i (αi): Mal angenommen, die ganz-algebraische Zahl f

(p−1)
i (αi) = `np · (p− 1)! ·

n∏
m=1

(m 6=i)

(αi − αm)p wird von der ganz-

algebraischen Zahl p ∈ Z geteilt, dann gibt es also eine ganz-algebraische Zahl λ so, dass `np · (p− 1)! ·
n∏

m=1
(m6=i)

(αi − αm)p = λ · p =

`p · (p− 1)! · δpi mit δi :=
n∏

m=1
(m6=i)

(`αi − `αm). Weil die Summe und das Produkt ganz-algebraischer Zahlen nun ganz-algebraisch ist,

ist δi also ganz-algebraisch. δi ist also Nullstelle eines Polynoms mit ganzzahligen Koeffizienten und Leitkoeffizient 1. Sei δi = δ(1)

und δ(2), δ(3), . . . , δ(l) alle anderen Nullstellen dieses Polynoms. Wegen
l∏

j=1
(x−δ(j)) ∈ Z[x] folgt dann di := δ(1) ·δ(2) · . . . ·δ(l) ∈ Z.

Dann gilt: λ·p·∆ = λ·p·(δ(2) ·δ(3) ·. . .·δ(m))p = `p ·(p−1)!·(δ(1) ·δ(2) ·. . .·δ(m))p = `p ·(p−1)!·dpi , wobei ∆ := (δ(2) ·δ(3) ·. . .·δ(m))p

(ganz-algebraisch) sei, und es war `, p, di ∈ Z, alle ungleich 0. Es gibt dann also eine ganz-algebraische Zahl λ′ = λ · ∆ so, dass

gilt λ′ · p = `p · (p − 1)! · dpi . Weil λ′ ganz-algebraisch ist und λ′ =
`p · (p− 1)! · dpi

p
∈ Q gilt, folgt nach Lemma (Rational und

ganz-algebraisch) oben: λ′ = k(p) ∈ Z, also teilt p ∈ Z die Zahl `p · (p − 1)! · dpi = (p − 1)! · (`di)p ∈ Z. Der Primfaktor p ist

nicht in (p− 1)! enthalten. Macht man p echt größer als die ganze Zahl `di, dann ist der Primfaktor p auch nicht in `di enthalten,

also auch nicht in (`di)
p, und das ist ein Widerpruch, denn es gilt doch λ′ · p = `p · (p − 1)! · dpi , also müsste der Primfaktor p in

(p− 1)! · (`di)p aber enthalten sein. Beweis-Ende. Festzuhalten ist also:

Ji 6= 0⇒ |J1| · . . . · |Jn| = |J1 · . . . · Jn| = |J| 6= 0

Nach Annahme 2 oben gilt β1 · eα1 + . . .+ βn · eαn = 0 (β1, . . . , βn ∈ Z), wobei es natürliche Zahlen 0 = n0 < n1 < . . . < nr = n

gibt so, dass für t ∈ {0, . . . , r − 1} gilt, dass αnt+1, . . . , αnt+1
ein vollständiges Nullstellensystem eines normierten Polynoms mit

rationalen Koeffizienten ist. Weiter gilt βnt+1 = βnt+2 = . . . = βnt+1
. Daraus folgt:

Ji = −
np−1∑
j=0

n∑
k=1

βk · f(j)
i (αk) = −

np−1∑
j=0

r−1∑
t=0

βnt+1 · f(j)
i (αnt+1) + . . .+ βnt+1

· f(j)
i (αnt+1

)

Und das ist gleich zu:

Ji = −
np−1∑
j=0

r−1∑
t=0

βnt+1 · (f(j)
i (αnt+1) + . . .+ f

(j)
i (αnt+1

))

Sei σ eine Permutation, die nt + 1, . . . , nt+1 tauscht und die anderen festhält. Dann gilt:

J = Jσ(1) · Jσ(2) · . . . · Jσ(n) =

n∏
i=1

− np−1∑
j=0

r−1∑
t=0

βnt+1 · (f(j)

σ(i)
(ασ(nt+1)) + . . .+ f

(j)

σ(i)
(ασ(nt+1)))


D.h. J ist symmetrisch in αnt+1, . . . , αnt+1

(t ∈ {0, . . . , r − 1}). Man hat also eine gruppenweise Symmetrie. Nach dem Lem-

ma (Gruppenweise Symmetrie) gibt es nun für J ∈ Z[αn0+1, . . . , αn1
|αn1+1, . . . , αn2

| . . . |αnr−1+1, . . . , αnr ] also ein Polynom

P ∈ Z[e1,1, . . . , en1−n0,1
|e1,2, . . . , en2−n1,2

| . . . |e1,r, . . . , enr−nr−1,r
], wobei e1,t+1, . . . , ent+1−nt,t+1 die elementarsymmetri-

schen Polynome in αnt+1, . . . , αnt+1
mit t ∈ {0, . . . , r − 1} seien, so, dass gilt:

J(α1, α2, . . . , αn) = J(αn0+1, . . . , αn1
|αn1+1, . . . , αn2

| . . . |αnr−1+1, . . . , αnr )

= P (e1,1, . . . , en1−n0,1
|e1,2, . . . , en2−n1,2

| . . . |e1,r, . . . , enr−nr−1,r
)

Weil die elementarsymmetrischen Polynome aus Q sind (denn: αnt+1, . . . , αnt+1
ist für alle t = 0, . . . , r − 1 ein vollständiges

Nullstellensystem eines normierten Polynoms mit rationalen Koeffizienten, d.h. (x − αnt+1) · . . . · (x − αnt+1
) = xnt+1−nt +

(−1)1 · e1,t+1 · xnt+1−nt−1 + (−1)2 · e2,t+1 · xnt+1−nt−2 + . . . + (−1)nt+1−nt · ent+1−nt,t+1 · x0 ∈ Q[x]), folgt J ∈ Q. Weil

Ji = −
np−1∑
j=0

n∑
k=1

βk · f(j)
i (αk) ganz-algebraisch ist (denn nach Vorbereitungen oben sind βk ∈ Z und f

(j)
i (αk) ganz-algebraisch),

ist es auch J = J1 · J2 · . . . · Jn. Nach dem Lemma (Rational und ganz-algebraisch) ist also J ∈ Z. Nun ist Q 3
J

(p− 1)!n
=

n∏
i=1

(
−
np−1∑
j=0

n∑
k=1

βk ·
f

(j)
i (αk)

(p− 1)!

)
ganz-algebraisch (denn nach Vorbereitungen oben sind βk ∈ Z und

f
(j)
i (αk)

(p− 1)!
ganz-algebraisch),

also gilt nach Lemma (Rational und ganz-algebraisch) dann
J

(p− 1)!n
∈ Z, also (p − 1)!n | |J|, also (p − 1)! | |J|, also folgt die

wichtige Abschätzung:

(p− 1)! ≤ |J|
s.o.

6= 0

Das ist dann die algebraische Abschätzung von |J| nach unten.

Die analytische Abschätzung von |J| nach oben:

|Ii(c)| =
∣∣∣∣∫

0c

e
c−u · fi(u) du

∣∣∣∣ =

∣∣∣∣∫ 1

0

e
c−t·c · fi(t · c) · (t · c)′ dt

∣∣∣∣ ≤ ∫ 1

0

∣∣∣ec−t·c∣∣∣ · |fi(t · c)| · |c| dt ≤ ∫ 1

0

e
|c−t·c| · |fi(t · c)| dt · |c|

≤
∫ 1

0

e
|c| · |fi(t · c)| dt · |c| =

∫ 1

0

|fi(t · c)| dt · |c| · e|c| ≤ sup
t∈[0,1]

|fi(t · c)| · (1− 0) · |c| · e|c| = sup
u∈0c

|fi(u)| · |c| · e|c|
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Denn es gilt: |ez| =

∣∣∣∣∣ ∞∑k=0

zk

k!

∣∣∣∣∣ ≤ ∞∑
k=0

|z|k

k!
= e|z| und ex ist streng monoton steigend auf R. Es gilt hier nochmal: fi(u) =

`np ·
(u− α1)p · . . . · (u− αn)p

u− αi
=
np−1∑
k=0

ak,i · uk, dann definiere fi(u) =
np−1∑
k=0

|ak,i| · uk, dann gilt:

|fi(u)| =

∣∣∣∣∣∣
np−1∑
k=0

ak,i · uk
∣∣∣∣∣∣ ≤

np−1∑
k=0

|ak,i| · |u|k ≤
np−1∑
k=0

|ak,i| · |c|k = fi(|c|)

Denn es wird fi(u) für u ∈ 0c betrachtet und
np−1∑
k=0

|ak,i| · xk ist streng monoton steigend auf R≥0. Also: sup
u∈0c

|fi(u)| ≤ fi(|c|).

Also gilt dann: |Ii(c)| ≤ sup
u∈0c

|fi(u)| · |c| · e|c| ≤ |c| · e|c| · fi(|c|). Daraus folgt:

|Ji| = |β1 · Ii(α1) + . . .+ βn · Ii(αn)| =
n∑
k=1

|βk| · |Ii(αk)| ≤
n∑
k=1

|βk| · |αk| · e|αk| · fi(|αk|)

Sei C′ := max
1≤k≤n

(|βk| · |αk| · e|αk|), also: |Ji| ≤ C′ ·
n∑
k=1

fi(|αk|). Die Koeffizienten von fi(x) sind sicher kleiner-gleich als die

Koeffizienten von f̂i(x) = `np ·
(x+ |α1|)p · . . . · (x+ |αn|)p

x+ |αi|
, was man so sieht, wenn man fi(x) und f̂i(x) ausmultipliziert und

bei den entsprechenden Koeffizienten die Dreiecksungleichung anwendet. Also gilt dann: fi(|αk|) ≤ f̂i(|αk|). Für alle x ∈ R gelten

dann die folgenden Abschätzungen:

f̂i(x) ≤ `np · (x+ max(|α1|, . . . , |αn|))np−1 ⇒ fi(|αk|) ≤ f̂i(|αk|) ≤ `np · (|αk|+ max(|α1|, . . . , |αn|))np−1

Definiere: C′′ := `np und Ck := |αk|+ max(|α1|, . . . , |αn|), also gilt:

|Ji| ≤ C′ ·
n∑
k=1

fi(|αk|) ≤ C′ ·
n∑
k=1

C
′′ · Cnp−1

k = (C
′ · C′′) ·

n∑
k=1

C
np−1
k

Sei K′ := C′ · C′′ und K := max(C1, . . . , Cn), also:

|Ji| ≤ K′ ·
n∑
k=1

K
np−1

= K
′ · (n ·Knp−1

) = (K
′ · n) ·Knp−1

Sei L′ := K′ · n und L := K, also: |Ji| ≤ L′ ·Lnp−1. Mit M := max(L′, L) folgt dann: |Ji| ≤Mnp = (Mn)p. Sei C(i) := Mn, also

|Ji| ≤ Cp
(i)

, also: |J| = |J1 · . . . · Jn| = |J1| · . . . · |Jn| ≤
n∏
i=1

Cp
(i)

=

(
n∏
i=1

C(i)

)p
. Mit C :=

n∏
i=1

C(i) folgt dann daraus die wichtige

Abschätzung:

0
s.o.

6= |J| ≤ Cp

Das ist dann die analytische Abschätzung von |J| nach oben. Dabei galt hier immer: C′, C′′, Ck, K
′, K, L′, L,M,C(i), C ∈ R>0.

Der Widerspruch:

Man weiß nun also (p − 1)! ≤ |J| und |J| ≤ Cp, also (p − 1)! ≤ Cp. Und das ist ein Widerspruch. Denn: Man wähle ein N ∈ N

hinreichend groß so, dass gilt:
|C|
N
≤

1

2
. Für p ≥ N gilt dann:

0 ≤
|C|p

p!
=
|C|
p
·
|C|p−1

(p− 1)!
≤

1

2
·
|C|
p− 1

·
|C|p−2

(p− 2)!
≤

1

22
·
|C|p−2

(p− 2)!
≤ . . . ≤

1

2p−N
·
|C|N

N !
=

1

2p
·
|2 · C|N

N !
−→
p→∞

0

Denn N ist fest. Es folgt also:

∣∣∣∣Cpp! − 0

∣∣∣∣ ≤ |C|pp! → 0. Also gibt es ein K ∈ N so, dass für alle p ≥ K gilt:
|C|p

p!
<

1

p
, also

(p − 1)! > |C|p = Cp, denn für das C von oben (analytische Abschätzung) gilt: |C| = C wegen C ∈ R>0. Und deswegen hat man

den Widerspruch zu (p− 1)! ≤ Cp. Das ist der Beweis des Satzes.

Korollar. Es gelten folgende Behauptungen:

1. Wenn eine Zahl transzendent ist, dann ist sie auch irrational.

2. Die Euler’sche Zahl e und π sind transzendent.

3. Sei 0 6= α algebraisch, dann sind eα, sin(α) und cos(α) transzendent.

4. Wenn 0, 1 6= α algebraisch ist, dann ist ln(α) transzendent.

Beweis. Zu 1.: Sei eine Zahl α rational, also α ∈ Q, dann ist x − α ein Polynom mit rationalen Koeffizienten und Leitkoeffzient

1, welches α als Nullstelle hat. Also ist α algebraisch. Umkehrschluss: Ist α transzendent, also nicht algebraisch, dann ist α

nicht rational, also irrational. Nach dem Satz von Lindemann-Weierstraß gilt: Seien λ1, λ2 algebraische Zahlen ungleich 0 und

ω1, ω2 verschiedene algebraische Zahlen, dann gilt: λ1 · eω1 + λ2 · eω2 6= 0. Zu 2.: Sei also e algebraisch, dann setze λ1 = e,
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λ2 = −1, ω1 = 0, ω2 = 1, dann gilt: λ1 · eω1 + λ2 · eω2 = e · e0 + (−1) · e1 = e − e = 0, im Widerpruch zum Lindemann-

Weierstraß-Theorem. Also muss e transzendent sein. Angenommen, π ist algebraisch. Weil die imaginäre Einheit i und die Zahl 2

algebraisch sind, folgt, dass auch i · π und 2 · i · π algebraisch sind. Setze dann: λ1 = 1, λ2 = 1, ω1 = i · π, ω2 = 2 · i · π, dann

gilt: λ1 · eω1 + λ2 · eω2 = 1 · ei·π + 1 · e2·i·π = −1 + 1 = 0 und das ist ein Widerpruch zum Lindemann-Weierstraß-Theorem,

also ist π transzendent. Zu 3.: Angenommen, eα ist algebraisch, dann setze: λ1 = −1, λ2 = eα, ω1 = α, ω2 = 0, dann gilt:

λ1 · eω1 + λ2 · eω2 = −1 · eα + eα · e0 = −eα + eα = 0, im Widerspruch zum Lindemann-Weierstraß-Theorem. Also ist eα

transzendent. Angenommen, cos(α) ist algebraisch, dann ist wegen sin2(α) + cos2(α) = 1, also | sin(α)| =
√

1− cos2(α), auch

sin(α) algebraisch, denn die Wurzel einer algebraischen Zahl ist algebraisch, was man so sieht: Sei a algebraisch, dann gibt es

ein Polynom p(x) mit rationalen Koeffizienten und Leitkoeffizient 1 so, dass gilt p(a) = 0. Dann ist p∗(x) := p(x2) ein Polynom

mit rationalen Koeffizienten und Leitkoeffizient 1 mit p∗(
√
a) = 0, also ist

√
a algebraisch. Ist sin(α) algebraisch, dann ist wegen

| cos(α)| =
√

1− sin2(α) auch cos(α) algebraisch. Also: Ist einer von beiden, cos(α) oder sin(α), algebraisch, dann sind es beide,

also ist auch cos(α) + i · sin(α) = ei·α algebraisch, denn i ist algebraisch. Das ist ein Widerspruch, denn ei·α ist transzendent, weil

i · α 6= 0 algebraisch ist. Also müssen beide, cos(α) und sin(α), transzendent sein. Zu 4.: Mal angenommen, ln(α) ist algebraisch,

dann setze a = ln(α) 6= 0. Weil a 6= 0 algebraisch ist, so ist nach 3. dann ea = eln(α) = α transzendent, Widerspruch, weil α nach

Voraussetzung algebraisch ist. Also ist ln(α) transzendent. Ende!

Satz (Abgeschlossenheitssatz für die algebraischen Zahlen). Seien a0, . . . , ak−1 algebraische Zahlen. Sei x ∈ C derart, dass

x
k

+ ak−1 · xk−1
+ . . .+ a1 · x1

+ a0 = 0

gilt. Dann ist x eine algebraische Zahl.

Beweis. Da die ai (i = 0, . . . , k− 1) nach Voraussetzung algebraisch sind, gibt es ni ∈ N und bi,j ∈ Q mit 0 ≤ j < ni so, dass gilt

a
ni
i + bi,ni−1 · a

ni−1

i + . . .+ bi,1 · a1
i + bi,0. Sei dann p = k · n0 · n1 · . . . · nk−1 und z1, z2, . . . , zp eine Aufzählung aller Produkte

der Form xe · ae00 · a
e1
1 · . . . · a

ek−1
k−1 mit 0 ≤ e < k, 0 ≤ e0 < n0, . . . , 0 ≤ ek−1 < nk−1. Dann gilt für alle 1 ≤ i ≤ p: (]) x · zi ist eine

Linearkombination von z1, z2, . . . , zp mit rationalen Koeffizienten, d.h. es gibt ci,1, . . . , ci,p ∈ Q mit x ·zi = ci,1 ·z1 + . . .+ ci,p ·zp.

Beweis von (]): Sei zi = xe · ae00 · a
e1
1 · . . . · a

ek−1
k−1 für gewisse e, e0, . . . , ek−1. Gilt e + 1 < k, so ist x · zi sogar gleich ein zi′ ,

also x · zi = 1 · zi′ mit 1 ∈ Q. Sei also e + 1 = k. Man ersetzt nun in x · zi = xk · ae00 · a
e1
1 · . . . · a

ek−1
k−1 die Potenz xk durch

−ak−1 · xk−1 − . . .− a1 · x1 − a0(= xk) und multipliziert aus. Also:

x · zi = −xk−1 · ae00 · a
e1
1 · . . . · a

ek−1+1

k−1 − . . .− x1 · ae00 · a
e1+1
1 · . . . · a

ek−1
k−1 − x

0 · ae0+1
0 · ae11 · . . . · a

ek−1
k−1

Gilt in dieser Summe für a
el+1

l (l = 0, . . . , k−1), dass el+1 < nl gilt, dann gilt −xl·ae00 ·. . .·a
el+1

l ·. . .·a
ek−1
k−1 ∈ {−z1,−z2, . . . ,−zp}

mit −1 ∈ Q. Gilt aber el + 1 = nl, dann wird a
el+1

l = a
nl
l (l = 0, . . . , k − 1) durch −bl,nl−1 · a

nl−1

l − . . .− bl,1 · a1
l − bl,0(= a

nl
l )

ersetzt. Also hat man dann das Folgende:

−xl · ae00 · . . . · a
nl
l · . . . · a

ek−1
k−1 = −xl · ae00 · . . . ·

(
−bl,nl−1 · a

nl−1

l − . . .− bl,1 · a1
l − bl,0

)
· . . . · a

ek−1
k−1

Und das ist also gleich zu:

bl,nl−1

∈Q
· xl · ae00 · . . . · a

nl−1

l · . . . · a
ek−1
k−1︸ ︷︷ ︸

∈{z1,z2,...,zp}

+ . . .+ bl,1
∈Q
· xl · ae00 · . . . · a

1
l · . . . · a

ek−1
k−1︸ ︷︷ ︸

∈{z1,z2,...,zp}

+ bl,0
∈Q
· xl · ae00 · . . . · a

0
l · . . . · a

ek−1
k−1︸ ︷︷ ︸

∈{z1,z2,...,zp}

Also ist (]) bewiesen. Seien ci,j ∈ Q, wie in (]), und sei C = (ci,j)1≤i,j≤p die zugehörige Matrix. Sei Ep (p × p-Matrix) die

Einheitsmatrix und es gelte ~z = (z1, . . . , zp)T . Nach (]) gilt (C−x ·Ep) ·~z = 0. Da ~z nicht der Nullvektor ist (denn: x0 ·a0
0 ·a

0
1 · . . . ·

a0
k−1 = 1), folgt, dass die Spalten der Matrix C−x ·Ep linear abhängig sind, also folgt det(C−x ·Ep) = 0. Aus der Entwicklung der

Determinante folgt, dass x eine Lösung von xp+rp−1 ·xp−1 +. . .+r1 ·x1 +r0 = 0 mit gewissen rationalen Koeffizienten rp−1, . . . , r0

ist (Dass det(C − x · Ep) ∈ Q[x] vom Grad p ist, macht man sich mit der Determinantenformel det(A) =
∑

σ∈Sn
sign(σ) ·

n∏
i=1

ai,σ(i)

klar, nämlich so: det(C − x · Ep) =
∑
σ∈Sp

sign(σ) ·
p∏
i=1

(ci,σ(i) − δi,σ(i) · x) mit δi,j = 1 für i = j und δi,j = 0 für i 6= j). Also ist x

algebraisch, was zu zeigen war.

Korollar. Mindestens eine der Zahlen e+ π und e · π ist transzendent.

Beweis. Angenommen, e + π und e · π sind beide algebraisch, dann auch a := −(e + π) und b := e · π. Man betrachtet dann

das Polynom P (x) := (x − e) · (x − π) = x2 − (e + π)x + e · π = x2 + ax + b, welches also algebraische Koeffizienten hat. Also

sind nach dem Satz (Abgeschlossenheitssatz für die algebraischen Zahlen) oben die Nullstellen von P algebraisch. Nun gilt aber

P (e) = P (π) = 0, also wären e und π algebraisch, Widerpruch, denn e und π sind transzendent. Folglich können e + π und e · π

nicht beide algebraisch sein.

Satz (Liouville). Sei α eine algebraische Zahl vom Grad n ≥ 2. Dann gibt es ein K > 0 so, dass für alle p ∈ Z und für alle

q ∈ N \ {0} mit
p

q
6= α dann das Folgende gilt: ∣∣∣∣α− p

q

∣∣∣∣ ≥ K

qn
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Beweis. Ist α ∈ C \ R (also |Im(α)| > 0), dann gilt

∣∣∣∣α− p

q

∣∣∣∣ =

∣∣∣∣(Re(α)−
p

q

)
+ i · Im(α)

∣∣∣∣ =

√(
Re(α)−

p

q

)2

+ (Im(α))2 ≥

√
(Im(α))2 = |Im(α)| ≥

|Im(α)|
qn

, denn wegen q ∈ N \ {0} gilt doch qn ≥ 1. Also ist man hier fertig. Sei also von nun an α ∈ R.

Falls

∣∣∣∣α− p

q

∣∣∣∣ > r für ein r > 0 gilt, dann ist man fertig, denn

∣∣∣∣α− p

q

∣∣∣∣ > r ≥
r

qn
, also

∣∣∣∣α− p

q

∣∣∣∣ > r

qn
, wegen q ∈ N \ {0}.

Sei also von nun an

∣∣∣∣α− p

q

∣∣∣∣ ≤ r. Da α eine algebraische Zahl vom Grad n ≥ 2 ist, gibt es ein Minimalpolynom f0 ∈ Q[x]

von α, nämlich: f0(x) = xn + bn−1 · xn−1 + . . . + b1 · x1 + b0 mit bn−1, . . . , b1, b0 ∈ Q und grad(f0) ≥ 2, also f0(α) = 0.

Angenommen, es gilt f0

(
p

q

)
= 0, dann kann man wegen grad(f0) ≥ 2 schreiben: f0(x) =

(
x−

p

q

)
· h(x) mit x −

p

q
, h ∈ Q[x]

und grad

(
x−

p

q

)
, grad(h) < grad(f0). Also würde folgen 0 = f0(α) =

(
α−

p

q

)
· h(α). Wegen

p

q
6= α folgt h(α) = 0, also

hat man ein Polynom kleineren Grades als das des Minimalpolynoms f0 gefunden, welches α als Nullstelle hat, Widerspruch.

Also gilt f0

(
p

q

)
6= 0. Durch Multiplikation von f0 mit dem Hauptnenner der bi (i = 1, . . . , n − 1) erhält man ein Polynom

f(x) = an · xn + an−1 · xn−1 + . . . + a1 · x1 + a0 mit Koeffizienten aus Z, wobei weiterhin grad(f) = grad(f0) ≥ 2 und f(α) = 0

sowie f

(
p

q

)
6= 0 gilt. Wegen α 6=

p

q
folgt aus dem Mittelwertsatz der Differentialrechnung:

f

(
p

q

)
= f

(
p

q

)
− 0 = f

(
p

q

)
− f(α) =

(
p

q
− α

)
· f ′(ξ)

für eine Stelle ξ, die sich zwischen
p

q
und α befindet. Zusammen mit

∣∣∣∣α− p

q

∣∣∣∣ ≤ r folgt für ξ dann |ξ − α| ≤ r, also ξ ∈ [α−r, α+r].

Da f ′ als Polynom stetig ist, folgt, dass f ′ auf [α − r, α + r] beschränkt ist, also f ′(ξ) ≤ M (M > 0). Nun gilt qn · f
(
p

q

)
=

qn ·
(
an ·

(
p

q

)n
+ an−1 ·

(
p

q

)n−1

+ . . .+ a1 ·
(
p

q

)1

+ a0

)
= an · pn + an−1 · q1 · pn−1 + . . . + a1 · qn−1 · p1 + a0 ∈ Z. Weil

f

(
p

q

)
6= 0 gilt, folgt also

∣∣∣∣qn · f (pq
)∣∣∣∣ ≥ 1, also

∣∣∣∣pq − α
∣∣∣∣ ·M ≥ ∣∣∣∣pq − α

∣∣∣∣ · |f ′(ξ)| = ∣∣∣∣f (pq
)∣∣∣∣ ≥ 1

qn
, also

∣∣∣∣α− p

q

∣∣∣∣ ≥ 1
M

qn
. Insgesamt

gilt also

∣∣∣∣α− p

q

∣∣∣∣ > r

qn
oder

∣∣∣∣α− p

q

∣∣∣∣ ≥ 1
M

qn
. Setzt man K := min

{
r,

1

M

}
(K > 0), dann gilt im Allgemeinen:

∣∣∣∣α− p

q

∣∣∣∣ ≥ K

qn
. Das

war es dann auch schon!

Korollar. Die Liouville-Konstante
∞∑
i=0

1

10i!
ist transzendent.

Beweis. Sei α =
∞∑
i=0

1

10i!
. Setze dann

pk

qk
:=

k∑
i=0

1

10i!
∈ Q mit qk := 10k! ∈ N \ {0}, also pk =

k∑
i=0

10k!

10i!
∈ Z. Weiter gilt α 6=

pk

qk
für alle k. Angenommen, α ist eine algebraische Zahl vom Grad n ≥ 2, dann gibt es nach dem Satz (Liouville) oben ein K > 0 so,

dass für alle k gilt:

∣∣∣∣α− pk

qk

∣∣∣∣ ≥ K

qnk
. Nun gilt aber das Folgende:

∣∣∣∣α− pk

qk

∣∣∣∣ =

∣∣∣∣∣
∞∑
i=0

1

10i!
−

k∑
i=0

1

10i!

∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑

i=k+1

1

10i!

∣∣∣∣∣∣ =
1

10(k+1)!
+

(
1

10(k+1)!

)k+2

+

(
1

10(k+1)!

)(k+2)·(k+3)

+ . . .

≤
k≥0

1

10(k+1)!
·
(

1 +
1

102
+

1

103
+ . . .

)
=

S

qk+1
k

Dabei gilt S := 1 +
1

102
+

1

103
+ . . . =

( ∞∑
i=0

1

10i

)
−

1

101
=

1

1− 1
10

−
1

101
=

91

90
. Insgesamt folgt also:

S

qk+1
k

≥
∣∣∣∣α− pk

qk

∣∣∣∣ ≥ K

qnk
⇒
(

1

qk

)k+1−n
=

qnk

qk+1
k

≥
K

S
=: C > 0

Weil

(
1

qk

)k+1−n
→ 0 für k → ∞ gilt, gibt es ein k groß genug so, dass

(
1

qk

)k+1−n
< C gilt, Widerspruch. Also ist

∞∑
i=0

1

10i!

transzendent oder eine algebraische Zahl vom Grad n = 1, welche also rational ist. Weil
∞∑
i=0

1

10i!
aber weder abbrechend noch

periodisch ist, also nicht rational ist, folgt also, dass die Liouville-Konstante transzendent ist.

Der Satz von Fermat-Wiles für Kuben
[Zurück zur Liste]

Lemma (Schlüssellemma). Sei s ungerade mit s3 = a2 + 3b2 und ggT(a, b) = 1. Dann gibt es u, v ∈ Z mit

s = u
2

+ 3v
2

a = u · (u2 − 9v
2
)

b = 3v · (u2 − v2
)

Dabei gilt ggT(u, v) = 1, 3 - u und u 6≡ vmod 2.
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Satz (Euler). Die Gleichung X3 + Y 3 = Z3 besitzt keine ganzzahlige Lösung (X,Y, Z) mit X · Y · Z 6= 0.

Beweis. Sei λ := ggT(X,Y ). Dann gilt (λ · X′)3 + (λ · Y ′)3 = λ3 · ((X′)3 + (Y ′)3) = Z3, also gilt λ3 | Z3. Es wird gezeigt,

dass dann λ | Z gilt: Sei α := ggT(λ, Z), dann gilt ggT

(
λ

α
,
Z

α

)
= 1, also folgt ggT

((
λ

α

)3

,

(
Z

α

)3)
= 1, denn: Sei p 6= 1

ein gemeinsamer Primfaktor von

(
λ

α

)3

und

(
Z

α

)3

, d.h. es gilt p |
(
λ

α

)3

und p |
(
Z

α

)3

, also gilt p |
λ

α
und p |

Z

α
, denn die

Kontraposition davon gilt. Weil ggT

(
λ

α
,
Z

α

)
= 1 gilt, ist also p = 1, Widerspruch, also muss ggT

((
λ

α

)3

,

(
Z

α

)3)
= 1 gelten.

Nun gilt Z3 = k · λ3, denn: λ3 | Z3, also

(
α ·

Z

α

)3

= k ·
(
α ·

λ

α

)3

⇔ α3 ·
(
Z

α

)3

= k · α3 ·
(
λ

α

)3

⇔
(
Z

α

)3

=

(
λ

α

)3

· k. Es

folgt ggT

((
λ

α

)3

, k

)
= 1, weil: Wäre ggT

((
λ

α

)3

, k

)
= β > 1, dann folgt β |

(
λ

α

)3

und β |
(
Z

α

)3

wegen

(
Z

α

)3

=

(
λ

α

)3

· k

mit β | k, also wäre ggT

((
λ

α

)3

,

(
Z

α

)3)
≥ β > 1, also Widerspruch zu ggT

((
λ

α

)3

,

(
Z

α

)3)
= 1. Aus

(
Z

α

)3

=

(
λ

α

)3

· k

und ggT

((
λ

α

)3

, k

)
= 1 folgt, dass es ein q ∈ Z gibt mit q3 = k, denn wegen ggT

((
λ

α

)3

, k

)
= 1 liegen die Primfaktoren von(

Z

α

)3

mit durch 3 teilbaren Exponenten mit ganzem Exponenten entweder in der Primfaktorzerlegung von

(
λ

α

)3

oder in der von

k. Daraus folgt dann

(
Z

α

)3

=

(
λ

α

)3

· k =

(
λ

α

)3

· q3 =

(
λ

α
· q
)3

, also
Z

α
=
λ

α
· q ⇔ Z = λ · q, folglich λ | Z, was man zeigen

wollte. Es gilt also (X′)3 + (Y ′)3 =

(
Z

λ

)3

= (Z′)3 mit
Z

λ
∈ Z, wobei man nun erreicht hat, dass X′ und Y ′ teilerfremd sind. Was

man mit X und Y gemacht hat, kann man auch mit den Paaren X′, Z′ und Y ′′, Z′′ machen, ohne die bisherige Teilerfremdheit

anderer neuer Paare zu verlieren, so dass man also paarweise teilerfremde Zahlen x, y, z ∈ Z mit x3 + y3 + z3 = 0 (x · y · z 6= 0)

erhält. Die drei Zahlen müssen paarweise verschieden sein, denn wäre z.B. x = y, dann folgt aus x3 + y3 + z3 = 0, dass gilt

2x3 = (−z)3, also −z = 3√2 · x /∈ Z, also Widerspruch. Keine zwei Variablen aus x, y, z können gerade sein, wegen der paarweisen

Teilerfremdheit. ungerade3 + ungerade3 = gerade, gerade3 + ungerade3 = ungerade3 + gerade3 = ungerade und es geht nicht:

gerade3 + gerade3 = gerade. Es gilt: z3 = gerade⇔ z = gerade, denn: gerade3 = gerade und ungerade3 = ungerade. Es ist also so,

dass immer genau zwei Variablen ungerade sind und genau eine gerade. Durch Umbenennung der Variablen kann man also o.B.d.A

annehmen, dass bei x3 +y3 +z3 = 0 dann x und y ungerade sind und z gerade ist. Von allen solchen Lösungen, die x3 +y3 +z3 = 0

erfüllen, mit x · y · z 6= 0 und x, y ungerade und z gerade sowie x, y, z paarweise verschieden, sucht man sich die Lösung heraus, die

mit minimalem |z| gegeben ist. Es wird dann gefunden, dass es von Null verschiedene, paarweise teilerfremde ganze Zahlen l,m, n

gibt mit n gerade, so dass gilt l3 +m3 + n3 = 0, ABER: |n| < |z|, was ein Widerspruch zur Minimalität von |z| darstellt, der die

Behauptung des Satzes beweist. Also los: Da x+y und x−y gerade sind, weil x und y ungerade sind, gibt es also ganze Zahlen a, b

so, dass 2a = x + y und 2b = x− y. Somit ist dann x = a + b und y = a− b und demnach ist a 6= 0, b 6= 0, ggT(a, b) = 1 und a, b

sind von verschiedener Parität. Denn: Wäre b = 0, so folgt 0 = 2 · 0 = x− y, also x = y, Widerspruch, da x und y verschieden sind.

Wäre a = 0, so folgt aus 2a = x+ y, dass gilt x = −y, also x3 + y3 + z3 = (−y)3 + y3 + z3 = −y3 + y3 + z3 = z3 = 0, also z = 0,

Widerspruch. Wäre ggT(a, b) 6= 1, dann folgt, dass es eine ganze Zahl γ > 1 gibt mit γ | a und γ | b, also folgt daraus γ | a+ b und

γ | a−b (x = a+b und y = a−b), also wäre schließlich ggT(x, y) 6= 1, Widerspruch. Wären a und b nicht von verschiedener Parität,

so wären beide gerade oder beide ungerade. Wären beide gerade, dann wäre ggT(a, b) ≥ 2, also ggT(a, b) 6= 1, Widerspruch. Wären

beide ungerade, dann wäre a + b = x gerade und a − b = y gerade, also ggT(x, y) ≥ 2, also: ggT(x, y) 6= 1, Widerspruch. Folglich

gilt jetzt also das Folgende:

−z3
= x

3
+ y

3

= (a+ b)
3

+ (a− b)3

= a
3

+ 3a
2
b+ 3ab

2
+ b

3
+ a

3 − 3a
2
b+ 3ab

2 − b3

= 2a
3

+ 6ab
2

= 2a · (a2
+ 3b

2
)

Nun ist −z3 gerade, weil z gerade ist. Also folgt 8 | z3. a2 +3b2 ist ungerade, denn: Ist a gerade und b ungerade, dann ist a2 gerade

und b2 ungerade, also 3b2 ungerade. Also ist a2 + 3b2 = gerade + ungerade = ungerade. Ist a ungerade und b gerade, dann ist a2

ungerade und 3b2 gerade, also auch in diesem Fall ist a2 + 3b2 ungerade. Aus −z3 = 2a · (a2 + 3b2) und a2 + 3b2 = ungerade, folgt

wegen 8 | z3, dass gilt 8 | 2a, also 4 | a. Folglich ist a gerade und damit b ungerade. Es wird nun gezeigt, dass ggT(2a, a2 + 3b2)

entweder 1 oder 3 ist. Wenn pk (k ≥ 1) die Potenz einer Primzahl p > 1 ist, die 2a und a2 + 3b2 teilt, dann ist p 6= 2, denn a2 + 3b2

ist ungerade, hat also nicht den Primfaktor 2 in seiner Primfaktorzerlegung. Es folgt pk | a, denn pk - 2. Also gilt auch pk | a2.

Wegen pk | a2 und pk | a2 + 3b2 folgt pk | 3b2. Nun gilt p - b, denn sonst gilt p | a und p | b mit 2 6= p > 1, also ggT(a, b) 6= 1,

Widerspruch. Wegen p - b folgt aus pk | 3b2, dass pk | 3 gilt. Ist p ein Primfaktor, also ungleich 1, so folgt k = 1 und p = 3, also

ggT(2a, a2 + 3b2) = 3. Ist p 6= 3, dann folgt k = 1 und p = 1, Widerspruch dazu, dass p ein gemeinsamer Primfaktor von 2a und

a2 + 3b2 ist, d.h. es gilt in diesem Fall ggT(2a, a2 + 3b2) = 1. Also: 1. Fall: ggT(2a, a2 + 3b2) = 1: Es gilt dann 3 - a, denn sonst

folgt 3 | 2a und wegen 3 | a auch 3 | a2; weil 3 | 3b2 gilt, folgt also ggT(2a, a2 + 3b2) 6= 1, Widerspruch. Aus −z3 = 2a · (a2 + 3b2)

folgt mit ggT(2a, a2 + 3b2) = 1, dass 2a und a2 + 3b2 dritte Potenzen sind, denn die Primfaktoren von −z3 mit durch 3 teilbaren

Exponenten liegen mit ihren gesamten Exponenten entweder in der Primfaktorzerlegung von 2a oder in der von a2 + 3b2, sonst
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wäre ggT(2a, a2 + 3b2) 6= 1, Widerspruch. Also hat man jetzt: 2a = r3 und a2 + 3b2 = s3, wobei s ungerade ist, weil a2 + 3b2

ungerade ist. Nach dem Schlüssellemma (oben) gibt es u, v ∈ Z mit s = u2 + 3v2, a = u · (u2 − 9v2) und b = 3v · (u2 − v2). Dann

ist v ungerade (und also ungleich Null), weil b = v · [3 · (u2 − v2)] sonst gerade wäre, im Widerspruch dazu, dass b ungerade ist.

Weiter ist u gerade, denn sonst folgt s = u2 + 3v2 = ungerade + ungerade = gerade, aber s ist ungerade. Es gilt u 6= 0, sonst

wäre a = 0. Es gilt weiter 3 - u, sonst folgt mit a = u · (u2 − 9v2), dass auch 3 | a gilt, Widerspruch. Wichtig ist: ggT(u, v) = 1.

Denn wäre δ > 1 eine Zahl mit δ | u und δ | v, dann folgt δ | a wegen a = u · [u2 − 9v2] und δ | b wegen b = v · [3 · (u2 − v2)],

also ggT(a, b) 6= 1, Widerspruch. Jetzt wird gezeigt, dass 2u, u + 3v und u − 3v paarweise teilerfremd sind: Mal angenommen,

p > 1 ist ein gemeinsamer Primfaktor von u + 3v und u − 3v, daraus folgt p | 2u und p | 6v, also p | 2 ∨ p | u und p | 6 ∨ p | v.

Angenommen: p = 2, dann folgt 2 | u+ 3v, aber u+ 3v ist ungerade, weil u gerade ist und v ungerade, also p 6= 2, also p | u (denn:

p | 2 ∨ p | u), dann gilt also p - v, sonst wäre ggT(u, v) 6= 1. Folglich: p | 6 (denn: p | 6 ∨ p | v), also p = 2 oder p = 3. p = 2

wurde bereits ausgeschlossen. Sei p = 3; es gilt, wie oben gezeigt, dass gilt p | u, aber es gilt 3 - u. Es gilt also, dass u + 3v und

u− 3v keine gemeinsamen Primfaktoren haben, sie sind also teilerfremd. Angenommen, p > 1 ist ein gemeinsamer Primfaktor von

2u und u + 3v. Also: p | 2 ∨ p | u und p | u + 3v. p = 2 kann nicht sein, weil u + 3v ungerade ist, also p | u (denn: p | 2 ∨ p | u).

Wegen p | u + 3v und p | u folgt dann p | 3v; es folgt p | 3 ∨ p | v. Es gilt p - v, denn sonst gelte p | u ∧ p | v, also ggT(u, v) 6= 1.

Daraus folgt p | 3, also p = 3. Es kann p = 3 auch nicht sein, weil 3 - u gilt, Widerspruch zu p | u, also haben 2u und u + 3v

keine gemeinsamen Primteiler (> 1), sind also teilerfremd. Die Teilerfremdheit von 2u und u − 3v, zeigt man völlig analog zur

Teilerfremdheit von 2u und u+ 3v. Es sind also die ganzen Zahlen 2u, u+ 3v und u− 3v paarweise teilerfremd, und zusammen mit

r3 = 2a = 2u ·(u+3v) ·(u−3v) folgt, dass 2u, u+3v und u−3v dritte Potenzen sind, also: 2u = −n3, u−3v = l3, u+3v = m3 mit

l,m, n verschieden von Null (wegen 3 - u) und paarweise teilerfremd, denn: 1 = ggT (2u, u− 3v) = ggT
(
(−n)3, l3

)
. Angenommen,

p > 1 ist ein gemeinsamer Primteiler von −n und l, dann folgt p | (−n)3 und p | l3. Wegen ggT
(
(−n)3, l3

)
= 1 folgt also p = 1,

Widerspruch dazu, dass p ein Primteiler ist. −n und l haben also keinen gemeinsamen Primteiler, sind also teilerfremd. Wegen

ggT (2u, u+ 3v) = ggT
(
(−n)3,m3

)
= 1 und ggT (u− 3v, u+ 3v) = ggT

(
l3,m3

)
= 1 folgt, wie eben: ggT (−n,m) = ggT (n,m) =

1 = ggT (l,m). Nun ist l3 +m3 + n3 = (u− 3v) + (u+ 3v) + (−2u) = 0, wobei n gerade ist. Nun wird gezeigt, dass |n| < |z| gilt:

Folgende Rechnung liefert den Widerspruch für den Fall ggT(2a, a2 + 3b2) = 1:

|z|3 = |2a · (a2
+ 3b

2
)|

= |2a| · (a2
+ 3b

2
)

= |2 · [u · (u2 − 9v
2
)]| · (a2

+ 3b
2
)

= |2u · (u2 − 9v
2
)| · (a2

+ 3b
2
)

= | − n3 · (u2 − 9v
2
)| · (a2

+ 3b
2
)

≥ | − n3 · (u2 − 9v
2
)| · 3

≥ | − n3| · 3

> |n3|

Denn es gilt Z 3 u2 + 9v2 = (u − 3v) · (u + 3v) = l3 · m3 6= 0 und b 6= 0, weil b ungerade ist, also a2 + 3b2 ≥ 3. Nun: 2. Fall:

ggT(2a, a2 + 3b2) = 3: Man setzt zunächst a := 3c, denn 3 | 2a ⇒ 3 | a. Weil a gerade ist, ist c gerade. Wegen 8 | 2a ⇒ 4 | a und

a = 3c folgt 4 | c. Wegen 3 | a darf nicht 3 | b gelten, denn sonst wäre ggT(a, b) 6= 1, also: 3 - b. Demnach gilt:

−z3
= x

3
+ z

3

= (a+ b)
3

+ (a− b)3

= (3c+ b)
3

+ (3c− b)3

= b
3

+ 9b
2
c+ 27bc

2
+ 27c

3 − b3 + 9b
2
c− 27bc

2
+ 27c

3

= 54c
3

+ 18b
2
c

= 18c · (3c2 + b
2
)

Dabei gilt ggT(18c, 3c2 + b2) = 1. Beweis: Oben wurde gezeigt, dass c gerade ist. Weil b ungerade ist und c gerade, folgt, dass

3c2 + b2 ungerade ist. Man findet wegen 3 - b ⇒ 3 - b2 heraus: 3 - 3c2 + b2, denn es gilt 3 | 3c2, aber 3 - b2. Es gilt weiter

ggT(a, b) = 1, also auch ggT(b, c) = 1, denn: c =
a

3
; sei p ein gemeinsamer Primteiler von b und c =

a

3
, also p | b und p |

a

3
, daraus

folgt p | b und p | a, also p = 1 (wegen ggT(a, b) = 1), Widerspruch, also haben b und c keine gemeinsamen Primteiler, sind also

teilerfremd. Nun zum Beweis von ggT(18c, 3c2 + b2) = 1: Sei p ein gemeinsamer Primteiler von 18c und 3c2 + b2. Es gilt p 6= 2, weil

2 - 3c2 + b2, weil 3c2 + b2 ungerade ist, und es gilt p 6= 3, denn 3 - 3c2 + b2 (siehe oben). Da p | 18c, folgt p | 18 ∨ p | c. Weil p 6= 2

und p 6= 3 gilt, folgt p - 18 = 2 · 32, also p | c ⇒ p | 3c2. Aus p | 3c2 und p | 3c2 + b2 folgt p | b2 ⇒ p | b, also ggT(b, c) ≥ p > 1,

Widerspruch. Damit ist ggT(18c, 3c2 + b2) = 1 bewiesen. Deswegen und weil −z3 = 18c · (3c2 + b2) gilt, gilt, wie oben, der Schluss,

dass 18c und 3c2 + b2 dritte Potenzen sind: 18c = r3 und 3c2 + b2 = s3, wobei s ungerade ist und 3 | r, weil 3 | r3 (3 ist eine

Primzahl). Nach dem Schlüssellemma gibt es u, v ∈ Z mit: s = u2 + 3v2, b = u · (u2 − 9v2) und c = 3v · (u2 − v2). Dann ist u

ungerade, sonst wäre b gerade. Also ist auch u 6= 0. Weiter ist v 6= 0, da c 6= 0. v ist gerade, sonst wäre b gerade. Es gilt vor allem

ggT(u, v) = 1, sonst wäre ggT(b, c) 6= 1. Es wird nun bewiesen, dass 2v, u + v und u − v paarweise teilerfremd sind: Sei p ein
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gemeinsamer Primteiler von u+ v und u− v. Es folgt p | 2u ∧ p | 2v. Weil p 6= 2 ist (denn p | u+ v, und u+ v ist ungerade), folgt

p | u∧ p | v, also ggT(u, v) 6= 1, Widerspruch. Also haben u+ v und u− v keine gemeinsamen Primteiler, sind also teilerfremd. Sei

nun p ein gemeinsamer Primteiler von 2v und u + v, also p | 2v und p | u + v, es folgt dann p 6= 2, weil u + v ungerade ist. Also

gilt p | v. Weil p | v und p | u + v gilt, folgt p | u, also ggT(u, v) 6= 1, Widerspruch. 2v und u + v sind teilerfremd. Genauso, wie

eben, zeigt man die Teilerfremdheit von 2v und u− v. Aus r3 = 18c = 18 · 3v · (u2 − v2) = 54 · v · (u + v) · (u− v) leitet man ab,

dass

(
r

3

)3

= 2v · (u + v) · (u − v) gilt. Daraus folgt, dass 2v, u + v und u − v dritte Potenzen sind: 2v = −n3, u + v = l3 und

u− v = −m3. Folglich ist l3 +m3 + n3 = (u+ v)− (u− v)− 2v = 0 mit l,m, n von Null verschieden und n ist gerade. Jetzt wird

gezeigt, dass |n| < |z| gilt: Folgende Rechnung liefert den Widerspruch für den Fall ggT(2a, a2 + 3b2) = 3:

|z|3 = 18 · |c| · (3c2 + b
2
)

= 18 · |3v · (u2 − v2
)| · (3c2 + b

2
)

= 54 · |v · (u2 − v2
)| · (3c2 + b

2
)

= 27 · |2v| · |u2 − v2| · (3c2 + b
2
)

= 27 · | − n3| · |u2 − v2| · (3c2 + b
2
)

= 27 · |n|3 · |u2 − v2| · (3c2 + b
2
)

> |n|3

Denn es gilt Z 3 u2 − v2 = (u+ v) · (u− v) = l3 · (−m3) = −l3 ·m3 6= 0 und wegen b 6= 0 (denn: b ist ungerade) folgt 3c2 + b2 ≥ 1.

Damit ist der Satz also vollständig bewiesen.

Als nächstes wird das Schlüssellemma bewiesen!

Lemma (Menge S). Sei S die Menge der ganzen Zahlen der Form a2 + 3b2 (a, b ∈ Z). Dann ist S bezüglich der Multiplikation

abgeschlossen, was später gebraucht wird.

Beweis.

(a
2

+ 3b
2
) · (c2 + 3d

2
) = a

2
c
2

+ 3a
2
d

2
+ 3b

2
c
2

+ 9b
2
d

2

= (a
2
c
2 ± 6abcd+ 9b

2
d

2
)∓ 6abcd+ 3 · (a2

d
2

+ b
2
c
2
)

= (ac± 3bd)
2

+ 3 · (a2
d

2 ∓ 2abcd+ b
2
c
2
)

= (ac± 3bd)
2

+ 3 · (ad∓ bc)2

Damit ist der Beweis abgeschlossen.

Lemma (1). Sei p eine Primzahl ≥ 5, dann gilt:

p ≡ 1 mod 3⇔ ∃w ∈ N : −3 ≡ w2
mod p

Beweis. ⇒: Nach Voraussetzung gibt es also ein n ∈ N mit p−1 = 3n. Wegen p ≥ 5 ist 2 ≤ n < p−1. Die Kongruenz xn ≡ 1 mod p

hat in Z/pZ genau n Lösungen. Also existiert ein y ∈ N, y 6≡ 0 mod p mit yn 6≡ 1 mod p. Nach dem kleinen Satz von Fermat gilt:

yp−1 ≡ 1 mod p. Setze x = yn, dann gilt: x 6≡ 1 mod p und x3 = (yn)3 = y3n = yp−1 ≡ 1 mod p, d.h. p | x3−1 = (x−1)·(x2+x+1),

aber p - x− 1. Also gilt p | x2 + x+ 1. Setze nun w = 2x+ 1:

w
2

+ 3 = (2x+ 1)
2

+ 3

= 4x
2

+ 4x+ 4

= 4 · (x2
+ x+ 1)

≡ 0 mod p

D.h., es gilt −3 ≡ w2 mod p.

⇐: Sei also ein w ∈ N mit −3 ≡ w2 mod p gegeben. Wegen ggT(2, p) = 1 gibt es x, y ∈ Z mit w − 1 = 2x + py. Es folgt

also w ≡ (2x + 1) mod p, und daher gilt außerdem 4 · (x2 + x + 1) = (2x + 1)2 + 3 = w2 + 3 ≡ 0 mod p, nach Voraussetzung.

Wegen p 6= 2 ist x2 + x + 1 ≡ 0 mod p. Angenommen, es gilt x2 ≡ 1 mod p, dann gilt ferner x2 − 1 ≡ 0 mod p und damit ist auch

(x+1)·(x−1) ≡ 0 mod p. Daher muss entweder x+1 ≡ 0 mod p oder x−1 ≡ 0 mod p gelten. Fall 1: x+1 ≡ 0 mod p⇔ x ≡ −1 mod p.

Einsetzen ergibt: x2 +x+ 1 ≡ 1 mod p, ferner gilt x2 +x+ 1 ≡ 0 mod p und daher muss p = 1 gelten. Dies ist aber ein Widerspruch

zur Voraussetzung p ≥ 5. Fall 2: x−1 ≡ 0 mod p⇔ x ≡ 1 mod p. Einsetzen ergibt: x2 +x+1 ≡ 3 mod p und da x2 +x+1 ≡ 0 mod p

gilt, muss p = 3 gelten. Dies ist aber ebenfalls ein Widerspruch zu p ≥ 5. Die Annahme ist also falsch und es gilt x2 6≡ 1 mod p,

und damit auch x 6≡ 1 mod p. Dividiert man p − 1 durch 3 mit Rest, so erhält man: p − 1 = 3q + r mit q ≥ 0 und 0 ≤ r < 3. Nun

gilt x3 − 1 = (x − 1) · (x2 + x + 1) ≡ 0 mod p, also x3 ≡ 1 mod p. Nach dem kleinen Satz von Fermat gilt xp−1 ≡ 1 mod p, wenn
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ggT(x, p) = 1. Man muss also ausschließen, dass xmod p = 0 gilt. Wäre also x = k ·p mit einem k ∈ Z, dann folgt w−1 = 2kp+py,

also w− 1 ≡ 0 mod p, also w ≡ 1 mod p, also w2 ≡ 1 mod p. Weil −3 ≡ w2 mod p gilt, folgt p = 4, aber 4 ist keine Primzahl. Es gilt

also: 1 ≡ xp−1 ≡ x3q+r ≡ (x3)q · xr ≡ xr mod p, weil x3 ≡ 1 mod p gilt. Wegen x2 6≡ 1 mod p und x 6≡ 1 mod p, wie oben gezeigt

wurde, folgt also r = 0 und daher gilt 3 | p− 1, d.h. p ≡ 1 mod 3. Der Beweis ist damit beendet.

Lemma (2). Wenn k eine von Null verschiedene ganze Zahl ist, p eine Primzahl mit p = c2 + 3d2 ∈ S und pk = a2 + 3b2 ∈ S,

dann gilt p | ac± 3bd und p | ad∓ bc und k =

(
ac± 3bd

p

)2

+ 3 ·
(
ad∓ bc

p

)2

∈ S.

Beweis. Es gilt zunächst das Folgende:

k =
pk

p

=
a2 + 3b2

c2 + 3d2

=
(a2 + 3b2) · (c2 + 3d2)

(c2 + 3d2)2

=

(
ac± 3bd

c2 + 3d2

)2

+ 3 ·
(
ad∓ bc
c2 + 3d2

)2

Die letzte Gleichung folgt nämlich aus Lemma (Menge S). Weiter gilt:

(ac+ 3bd) · (ac− 3bd) = a
2
c
2 − 9b

2
d

2

= a
2
c
2

+ 3a
2
d

2 − 3a
2
d

2 − 9b
2
d

2

= a
2 · (c2 + 3d

2
)− 3 · (a2

+ 3b
2
) · d2

= a
2
c
2

+ a
2
3d

2 − 3pkd
2

= a
2
c
2

+ 3a
2
d

2 − 3 · (c2 + 3d
2
) · kd2

= a
2
c
2

+ 3a
2
d

2 − 3kc
2
d

2 − 9kd
4

= (a
2 − 3kd

2
) · (c2 + 3d

2
)

Wegen p = c2 + 3d2 gilt also p | (ac + 3bd) · (ac − 3bd). Und weil p eine Primzahl ist, folgt: p | ac + 3bd ∨ p | ac − 3bd.

Im ersten Fall ist
ac+ 3bd

p
∈ Z, folglich auch 3 ·

(
ad− bc

p

)2

= k −
(
ac+ 3bd

p

)2

∈ Z. Demnach ist auch
ad− bc

p
∈ Z und(

ac+ 3bd

p

)2

+ 3 ·
(
ad− bc

p

)2

∈ S. Einschub: Beweis von
ad− bc

p
∈ Z: Es gilt nochmal 3 ·

(
ad− bc

p

)2

= k−
(
ac+ 3bd

p

)2

, also

3 | k −
(
ac+ 3bd

p

)2

∈ Z, also

(
ad− bc

p

)2

∈ Z. Sei α := ad − bc ∈ Z und β := p ∈ Z. Es gilt also

(
α

β

)2

∈ Z, also gibt es eine

positive ganze Zahl q (denn: α2 und β2 sind positiv) mit α2 = q · β2, also |α| = √q · |β|, also
|α|
|β|

=
√
q. Man kann annehmen, dass

der Bruch
|α|
|β|

vollständig gekürzt ist, also ggT(|α|, |β|) = 1. Es gilt nun α2 = β · (q · β), also β | α2 ⇒ ggT(α2, β) = β. Weil aber

1 = ggT(α, β) = ggT(|α|, |β|) = ggT(α2, β) = β gilt, gilt also β = 1. Es gibt nun zwei Fälle: β = 1 oder β 6= 1. Ist β = 1, dann ist
√
q ganzzahlig, also |β| | |α|, folglich

α

β
∈ Z. Ist β 6= 1, dann ist

√
q irrational, also auch |α| = |β| · √q ∈ R \ Q, demnach gilt auch

α ∈ R \ Q, Widerspruch. Also tritt dieser Fall nicht ein - Einschubende. Im Fall p | ac− 3bd schließt man analog.

Lemma (3). Wenn p eine Primzahl ist, dann ist p ∈ S genau dann, wenn p = 3 oder p ≡ 1 mod 3.

Beweis. ⇒: Sei p eine Primzahl mit p ∈ S. Offensichtlich ist p = 3 ∈ S und auch p = 1 ∈ S mit 1 = p ≡ 1 mod 3. Sei also von nun

an a2 + 3b2 = p 6= 3 und p 6= 1, 2 /∈ S; sei also a2 + 3b2 = p ≥ 5. Es muss dann b 6= 0 gelten, sonst wäre p = a2 und weil p 6= 1 gilt,

gilt auch a 6= 1, also wäre a ein echter Teiler von p, Widerspruch. Klarerweise gilt p ≡ a2 mod 3 wegen 3 | 3b2. Es muss 3 - a gelten,

sonst folgt 3 | a2 und daraus p ≡ 0 mod 3, Widerspruch dazu, dass p eine Primzahl ist. Wegen 3 - a ist amod 3 = 1 ∨ amod 3 = 2,

also p ≡ a2 ≡ 1 mod 3. Damit ist die eine Richtung gezeigt.

⇐: Ist p = 3, dann ist p ∈ S, auch: p = 1 ∈ S (p ≡ 1 mod 3). Sei also p 6= 3 und p 6= 1, also p ≥ 5. Sei dann p ≡ 1 mod 3. Nach dem

Lemma (1) gibt es ein t ∈ N so, dass −3 ≡ t2 mod p gilt. Man wähle nun dass t so klein, dass gilt p | t2 + 3, aber p - u2 + 3 für

alle 0 < u < t. Zunächst gilt: 0 < tmod p < p, und dabei > 0, weil sonst −3 ≡ 0 mod p gelten würde, also p = 3; das wurde aber

ausgeschlossen. Gilt nicht 0 < t <
p

2
, dann gilt

p

2
< t < p, also −

p

2
> −t > −p, also p −

p

2
> p − t > p − p, also 0 < p − t <

p

2
.

Man wählt also in diesem Fall t∗ = p − t und weil t∗ = p − t ≡ −tmod p gilt, ist dann immer noch −3 ≡ (t∗)2 mod p erfüllt. Für

t∗ gilt also nochmal 0 < t∗ <
p

2
und p | (t∗)2 + 3. Weil t minimal ist mit p | t2 + 3, folgt 0 < t ≤ t∗ <

p

2
. Es gibt also ein m ∈ N

mit m · p = t2 + 3 <

(
p

2

)2

+ 3 < p2, also 0 < m < p. Es wird nun gezeigt, dass für jedes T ≥ 1 (T 6= 0, sonst −3 ≡ 0 mod p, also

p = 3, Widerspruch) höchstens eine Primzahl p 6= 1, 2, 3 (also p ≥ 5) existiert so, dass gilt p | T 2 + 3, aber p - u2 + 3 für jedes u mit

1 ≤ u < T : Mal angenommen, es gibt ein T ≥ 1 mit p 6= p′ so, dass gilt: p | T 2 + 3 und p′ | T 2 + 3, sowie p - u2 + 3 und p′ - u2 + 3

für jedes u mit 1 ≤ u < T . Dann gilt T 2 + 3 = m · p = m′ · p′. Wegen der Minimalität von T für p und p′ gilt dann 0 < m < p und

0 < m′ < p′ (siehe oben). Aus m · p = m′ · p′ folgt: p | m′ (denn p kann nicht p′ teilen und p ist eine Primzahl), also p ≤ m′ < p′,

und es folgt: p′ | m (wie eben), also p′ ≤ m < p. Es folgt insgesamt also p < p′ und p > p′, Widerspruch. Es kann also so ein T
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nicht geben mit p 6= p′, also muss, wenn es so ein T gibt, sein: p = p′. Nun geht es weiter: Angenommen, es existiert eine Primzahl

p mit p ≡ 1 mod 3 so, dass p /∈ S gilt. Man nimmt das kleinstmögliche p (mit p ≡ 1 mod 3), das diese Bedingung erfüllt. Sei t ≥ 1

die kleinstmögliche ganze Zahl, so dass p | t2 + 3 gilt. Weil ja p ≡ 1 mod 3 und p ≥ 5 vorausgesetzt ist, gibt es also überhaupt ein

t ≥ 1 mit p | t2 + 3; man kann sich also unter allen möglichen t ∈ N>1 das kleinste mit jener Eigenschaft auswählen. Sei also t

minimal für p, also p | t2 + 3 und p - u2 + 3 für alle u < t. Dann gilt wegen der Eindeutigkeitsaussage: q | t2 + 3 und q - u2 + 3 für

alle u < t folgt q = p. Es gilt also: 0 < t <
p

2
und t2 + 3 = m · p mit 0 < m < p. Wenn p′ irgendeine Primzahl ist, die m teilt, also

m = p′ ·m′ (also 0 < m′ < m), dann gilt t2 + 3 = p ·m = p · (p′ ·m′) = p′ · (p ·m), also −3 ≡ t2 mod p′, also nach Lemma (1):

p′ ≡ 1 mod 3. Desweiteren gilt dann p′ ≤ m < p und somit gilt p′ ∈ S, denn p mit p ≡ 1 mod 3 ist das kleinste p mit p ≡ 1 mod 3 so,

dass p /∈ S gilt. Wegen p′ · (p ·m′) = p ·m = t2 + 3 = t2 + 3 · 12 ∈ S folgt nach Lemma (2), dass wegen p′ ∈ S dann p ·m′ ∈ S gilt.

Wenn m′ = 1 ist, dann ist p · 1 = p ∈ S, was man zeigen wollte. Ansonsten sei p′′ eine Primzahl, die m′ teilt, also m′ = m′′ · p′′

(folglich 0 < m′′ < m′ < m). Also gilt t2 + 3 = p ·m = p · (p′ ·m′) = p · (p′ · (m′′ ·p′′)) = (p ·p′ ·m′′) ·p′′, also −3 ≡ t2 mod p′′, also

nach Lemma (1): p′′ ≡ 1 mod 3. Weiter gilt p′′ ≤ m′ < m < p und also p′′ ∈ S. Und es gilt: p′′ · (p ·m′′) = p ·m′ ∈ S und wegen

p′′ ∈ S folgt also p ·m′′ ∈ S. Falls m′′ = 1, dann folgt das ersehnte p ∈ S. Ansonsten sei p′′′ eine Primzahl, die m′′ teilt, usw. Weil

diese m(n) immer kleiner werden, aber immer > 0, dann muss irgendwann für ein n∗ gelten m(n∗) = 1, also 1 · p = m(n∗) · p ∈ S.

Und das war auch schon alles.

Lemma (4). Sei m = u2 + 3v2 (also m ∈ S), mit u, v 6= 0 und ggT(u, v) = 1. Wenn p eine ungerade Primzahl ist (also gilt:

p 6= 2) und p | m gilt, dann ist p ∈ S.

Beweis. Sei also u, v 6= 0. Wegen p | m folgt m ≡ 0 mod p und somit gilt u2 ≡ −3v2 mod p. Weil klarerweise 1 ∈ S und

3 ∈ S und p = 2 ausgeschlossen ist, sei nun also p ≥ 5. Ferner gilt wegen p | m auch noch p - v, denn sonst würde auch

p | u gelten und dies wäre ein Widerspruch zur Voraussetzung ggT(u, v) = 1. Da wegen p - v (v 6= 0) gilt ggT(v, p) = 1, folgt

nach dem Satz von Euler-Fermat: vp−1 ≡ 1 mod p. Setzt man nun v′ := vp−2, dann gilt (v · v′) ≡ 1 mod p. Daher ist dann

(u · v′)2 ≡ u2 · v′2 ≡ −3v2 · v′2 ≡ −3 · (v · v′)2 ≡ −3 mod p. Nach dem Lemma (1) gilt deswegen p ≡ 1 mod 3, und nach Lemma (3)

folgt dann also p ∈ S, was nämlich hier zu beweisen war.

Lemma (5). Wenn p eine Primzahl ist und p ∈ S gilt, dann ist die Darstellung von p in der Form p = a2 + 3b2 (mit der

wichtigen Bedingung, dass gilt: a ≥ 0 und b ≥ 0) eindeutig.

Beweis. Man verwendet hier das Lemma (2) mit k = 1: Es gilt demnach p = a2 + 3b2 = c2 + 3d2, wobei gilt: a, c ≥ 0 und b, d > 0.

Folglich gilt: 1 =

(
ac± 3bd

p

)2

+ 3 ·
(
ad∓ bc

p

)2

, also
ad∓ bc

p
= 0 und

ac± 3bd

p
= 1. daraus folgt damit: p = ac ± 3bd und

ad∓ bc = 0⇔ ad = ∓bc. Daraus ergibt sich dann folgendes:

pd = acd± 3bd
2

= ±bc2 ± 3bd
2

= ±b · (c2 + 3d
2
)

= ±bp

Also gilt pd = ±bp, also d = ±b, also: ad = ±bc = ±b · c = dc⇔ a = c. Es gilt schonmal p = a2 + 3b2 = c2 + 3d2 = a2 + 3d2, also

3b2 = 3d2 ⇔ b2 = d2. Wegen b, d > 0 folgt also auch b = d.

Lemma (6). Sei m = u2 + 3v2 ≥ 3 und ggT(u, v) = 1. Wenn m ungerade ist und m =
n∏
i=1

p
ei
i (wobei p1, . . . , pn Primzahlen

sind mit ei ≥ 1), dann existieren ganze Zahlen ai und bi (i = 1, . . . , n) so, dass gilt: pi = a2
i + 3b2i und

u+ v ·
√
−3 =

n∏
i=1

(ai + bi ·
√
−3)

ei

Beweis. Der Beweis läuft durch Induktion über ungerade m: Induktionsanfang m = 3: 3 ist ungerade und es gilt für 3 = m =

u2 + 3v2 ≥ 3, dass u = 0 und v = 1 ist; dann ist auch 1 = ggT(0, 1) = ggT(u, v). Weiter: m = 3 = 31 = p
e1
1 . Setzt man nun a1 = 0

und b1 = 1, dann gilt: p1 = a2
1 + 3b21 = 02 + 3 · 12=3, und: u + v ·

√
−3 = 0 + 1 ·

√
−3 = (0 + 1 ·

√
−3)1 = (a1 + b1 ·

√
−3)e1 . Der

Induktionsanfang gilt also schonmal. Sei also von nun an m > 3 und m ungerade. Induktionsannahme: Es gelte die Behauptung

für alle ungeraden Zahlen, die kleiner sind als das ungerade m und die ≥ 3 sind. Sei ggT(u, v) = 1. Dann ist u 6= 0 oder v 6= 0,

sonst wäre ggT(u, v) 6= 1. Ist u 6= 0 und v = 0, dann darf nicht u > 1 sein, sonst ist ggT(u, v) 6= 1, also u = 1 und v = 0, also

m = 12 + 3 · 02 = 1, also m < 3, Widerspruch. Also: Ist u 6= 0, dann auch v 6= 0. Ist v 6= 0 und u = 0, dann muss v ≤ 1 sein,

sonst ggT(u, v) 6= 1. Also v = 1 und u = 0, also m = 02 + 3 · 12 = 3, man hat aber m > 3 vorausgesetzt. Also gilt: v 6= 0, dann

ist auch u 6= 0. Weil gilt: u 6= 0 oder v 6= 0, folgt u, v 6= 0. Sei also m > 3 mit m = u2 + 3v2, sowie ggT(u, v) = 1 und u, v 6= 0.

Sei dann p eine Primzahl, die m teilt, also gilt m = pk. Weil m ungerade ist, kann also p = 2 nicht sein, d.h. p ist eine ungerade

Primzahl, die m teilt. Nach Lemma (4) ist dann p ∈ S, hat also die Form p = a2 + 3b2, wobei nach Lemma (5) die positiven Zahlen

|a| und |b| eindeutig festgelegt sind. Nun kann man sagen, dass alle ungeraden Primzahlen q ∈ S die Behauptung dieses Lemmas

erfüllen, denn: Ist q = 1 ∈ S, dann ist 1 = q = u2 + 3v2 = 12 + 3 · 02 und ggT(u, v) = ggT(1, 0) = 1, und 1 ist ungerade. Nun:
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12 + 3 · 02 = a2
1 + 3b21 = p1 = p1

1 = q und man hat: 1 + 0 ·
√
−3 = u + v ·

√
−3 = (a1 + b1 ·

√
−3)e1 = (1 + 0 ·

√
−3)1. Man weiß:

q = 2 /∈ S und 2 ist keine ungerade Primzahl. Sei also q ≥ 3, also q eine ungerade Primzahl, und q ∈ S. Weil 3 ≤ q ∈ S, gilt also

q = u2 + 3v2 (|u| und |v| sind dabei eindeutig festgelegt) und ggT(u, v) = 1, sonst wäre q keine Primzahl. q ist ungerade und es gilt

q = p1
1, sowie: q = p1 = a2

1 + 3b21 = u2 + 3v2, wobei also wegen der Eindeutigkeit nach Lemma (5) gilt: |a1| = |u| und |a2| = |v|.

Es gilt dann: u+ v ·
√
−3 = (a1 + b1 ·

√
−3)1. Wegen S 3 m = u2 + 3v2, m = pk ∈ S und p = a2 + 3b2 ∈ S, folgt nach Lemma (2):

k = c2 +3d2 ∈ S, wobei c =
ua± 3vb

p
und d =

ub∓ va
p

gilt. Man weiß nun: (a±b·
√
−3)·(c∓d·

√
−3) = (ac+3bd)±(bc−ad)·

√
−3,

wobei dann auch gilt:

ac+ 3bd =
a · (ua± 3vb)

p
+

3b · (ub∓ va)

p

=
1

p
· (ua2 ± 3vab+ 3ub

2 ∓ 3vab)

= u ·
1

p
· (a2

+ 3b
2
)

= u ·
1

p
· p

= u

Desweiteren gilt auch das folgende:

±(bc− ad) = ±
(
b · (ua± 3vb)

p
−
a · (ub∓ va)

p

)
= ±

1

p
· (uab± 3vb

2 − uab± va2
)

= v ·
1

p
· (3b2 + a

2
)

= v ·
1

p
· p

= v

Man hat also herausgefunden, dass gilt:

(a± b ·
√
−3) · (c∓ d ·

√
−3) = u+ v ·

√
−3

Es gilt nochmal m = pk. Ist k = 1, dann gilt 3 < m = p, und für Primzahlen gilt ja die Behauptung dieses Lemmas hier; es ist

hier also nichts weiter zu zeigen. Im Fall k 6= 1 ist also k 6= 2, sonst wäre m eine gerade Zahl, Widerspruch. Also gilt in diesem

Fall 3 ≤ k < m. Nun gilt k = c2 + 3d2, k ist ungerade, sonst wäre wegen m = pk das m gerade. Und es gilt ggT(c, d) = 1,

weil sonst wegen u = ac + 3bd und v = ±(bc − ad) dann also auch ggT(u, v) 6= 1 wäre. Nach der Induktionsannahme gilt

die Behauptung dieses Lemmas für k mit 3 ≤ k < m. Also lässt sich c ∓ d ·
√
−3 in der angegebenen Form ausdrücken. Da

(a± b ·
√
−3) · (c∓ d ·

√
−3) = u+ v ·

√
−3 gilt, folgt, dass sich auch m so darstellen lässt. Ende.

Lemma (Beweis des Schlüssellemmas). Sei E die Menge aller Tripel (u, v, s) so, dass: s ist ungerade, ggT(u, v) = 1 und

s3 = u2 + 3v2. Sei F die Menge aller Paare (t, w) so, dass: ggT(t, w) = 1, 3 - t und t 6≡ wmod 2. Dann hat die Abbildung

φ : F → Z3, gegeben durch φ(t, w) = (u, v, s) mit

u = t · (t2 − 9w
2
)

v = 3w · (t2 − w2
)

s = t
2

+ 3w
2

das Bild E, d.h. es gilt dann bild(φ) = E.

Beweis. ⊇: Sei also die Menge F gegeben. Es gilt also ggT(t, w) = 1, 3 - t und t 6≡ wmod 2. Es wird jetzt gezeigt, dass φ(F ) ⊆ E

gilt: Es gilt zunächst das folgende:

u
2

+ 3v
2

= [t · (t2 − 9w
2
)]

2
+ 3 · [3w · (t2 − w2

)]
2

= t
6 − 18t

4
w

2
+ 81t

2
w

4
+ 27t

4
w

2 − 54t
2
w

4
+ 27w

6

= t
6

+ 9t
4
w

2
+ 27t

2
w

4
+ 27w

6

= (t
2

+ 3w
2
)
3

= s
3

Wegen t 6≡ wmod 2 sind t und w nicht beide gerade und nicht beide ungerade. Daraus folgt wegen s3 = (t2 + 3w2)3, dass s3

ungerade ist, denn s3 ist ungerade⇔ s ist ungerade. Es muss jetzt nur noch ggT(u, v) = 1 gezeigt werden. Zunächst: Angenommen,

ggT(t2 − 9w2, t2 −w2) 6= 1, dann gibt es eine Primzahl 1 6= p mit p | t2 − 9w2 und p | t2 −w2, also auch p | 9t2 − 9w2 und wegen
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p | t2 − 9w2 folgt damit p | 8t2. Es gilt p | t2 − w2, und wenn p | t, also auch p | t2, dann folgt p | w2, also p | w, also hat man

p | t und p | w, also ggT(t, w) 6= 1, Widerspruch. Also muss gelten p - t, und wegen p | 8t2, folgt also p = 2. Nun kann aber p = 2

auch nicht sein, denn es gilt ja p | t2 − w2 und weil t und w nach Voraussetzung unterschiedliche Parität haben, ist also t2 − w2

ungerade, also kann p = 2 die Zahl t2 − w2 nicht teilen, Widerspruch. Also gilt jetzt: ggT(t2 − 9w2, t2 − w2) = 1. Nun kann man

ggT(u, v) = 1 zeigen: Sei 1 6= q eine Primzahl von der Primfaktorzerlegung von u. Wegen u = t · (t2 − 9w2) gilt also: q | t oder

q | t2 − 9w2. Nun gibt es 2 Fälle: q | t oder q - t. Fall 1: q | t: Dann ist q 6= 3, weil nach Voraussetzung 3 - t gilt. Weiter gilt

q - w, denn sonst gilt q | t und q | w, also ggT(t, w) 6= 1, Widerspruch. Weil also q | t, aber q - w, folgt also q | t2, aber q - w2

und daraus ergibt sich damit q - t2 − w2. Weil also q 6= 3, q - w und q - t2 − w2 gilt, folgt also wegen v = 3w · (t2 − w2), dass

q - v gilt. Fall 2: q - t, also, weil q | t oder q | t2 − 9w2 gilt, folgt q | t2 − 9w2. Dann muss aber q - 3w ⇒ q - 9w2 gelten, denn

sonst folgt mit q | t2 − 9w2, dass q | t2 ⇒ q | t, aber q | t ist ein Widerspruch zur Annahme dieses Falles. Es gilt also q - 3w. Da

ggT(t2 − 9w2, t2 − w2) = 1 gilt, folgt zusammen mit q | t2 − 9w2, dass gilt q - t2 − w2, sonst wäre ggT(t2 − 9w2, t2 − w2) 6= 1.

Wegen q - 3w und q - t2 −w2 folgt also q - v. Man hat also insgesamt gezeigt: (q | t⇒ q - v)∧ (q - t⇒ q - v). Also gilt immer q - v.

Es folgt schließlich ggT(u, v) = 1, was man zeigen wollte. Es gilt also φ(t, w) = (u, v, s) ∈ E für alle (t, w) ∈ F .

⊆: Es wird also die entgegengesetzte Inklusion gezeigt, nämlich E ⊆ bild(φ). Gegeben sei nun also ein Tripel (u, v, s) ∈ E.

Man hat als Voraussetzung: s ist ungerade, ggT(u, v) = 1 und s3 = u2 + 3v2. Um zu zeigen, dass E ⊆ bild(φ) gilt, muss man

für alle y ∈ E ein x ∈ F finden, so dass ϕ(x) = y gilt. Wenn man also ein x = (t, w) ∈ F definiert hat, muss man zeigen,

dass auch x ∈ F ist, und dass φ(x) = y = (u, v, s) ist. Sei zuerst u2 + 3v2 = s3 mit s3 ungerade (da s ungerade ist, nach

Voraussetzung) und s3 =
n∏
i=1

p
ei
i , also gilt ei = 3 · e′i. Nach dem Lemma (6) existieren ai, bi mit i = 1, . . . , n so, dass gilt

pi = a2
i + 3b2i und: u + v ·

√
−3 =

n∏
i=1

(ai + bi ·
√
−3)ei . Nun wird (t, w) ∈ Z2 definiert: t und w seien definiert durch die

Beziehung:
n∏
i=1

(ai + bi ·
√
−3)e

′
i = t + w ·

√
−3. Also gilt dann: u + v ·

√
−3 = (t + w ·

√
−3)3. Es wird nun ausgerechnet:

(t+ w ·
√
−3)3 = t3 + 3t2w

√
−3− 9tw2 − 3

√
−3w3 = (t3 − 9tw2) + (3t2w − 3w2) ·

√
−3. Man hat also:

u+ v ·
√
−3 = [t · (t2 − 9w

2
)] + [3w · (t2 − w2

)] ·
√
−3

Nach Koeffizientenvergleich ergibt sich also: u = t · (t2 − 9w2) und v = 3w · (t2 − w2). Denn: α + β ·
√
−3 = a + b ·

√
−3 ⇒

α = a und β = b mit α, β, a, b ∈ Z. Beweis: Angenommen, es gilt α − a 6= 0 oder b − β 6= 0. Wegen α − a = (b − β) ·
√
−3 gilt:

α−a 6= 0⇔ b−β 6= 0. Gilt also: α−a 6= 0 oder b−β 6= 0, dann folgt α−a, b−β 6= 0, und daraus folgt Q 3
α− a
b− β

=
√
−3 ∈ C\Q,

Widerspruch. Nun muss man was wissen über komplexe Zahlen: Sind x, y ∈ R und z = x+ y · i ∈ C, so heißt z := x− y · i die zu z

konjugierte komplexe Zahl. Es gilt da ∀z, w ∈ C : z · w = z · w, also auch zn = zn. Daraus folgt dann:

s
3

= u
2

+ 3v
2

= (u+ v ·
√
−3) · (u− v ·

√
−3)

= (u+ v ·
√
−3) · (u+ v ·

√
−3)

= (t+ w ·
√
−3)

3 · (t+ w ·
√
−3)3

= (t+ w ·
√
−3)

3 · (t+ w ·
√
−3)

3

= [(t+ w ·
√
−3) · (t+ w ·

√
−3)]

3

= [(t+ w ·
√
−3) · (t− w ·

√
−3)]

3

= [t
2

+ 3w
2
]
3

Es folgt somit s = t2 + 3w2. Weil s ungerade ist (nach Voraussetzung), ergibt sich aus s = t2 + 3w2, dass t und w nicht die

gleiche Parität haben, d.h. es sind nicht beide gerade und nicht beide ungerade. Dann gilt noch 3 - t, denn, wenn 3 | t gilt, folgt

3 | t · (t2 − 9w2) = u und 3 | 3 · w(t2 − w2) = v, also ggT(u, v) ≥ 3, Widerspruch zur Voraussetzung, dass gilt: ggT(u, v) = 1. Es

fehlt noch ggT(t, w) = 1 zu zeigen: Wäre ggT(t, w) 6= 1, dann gäbe es ein einen Primfaktor p 6= 1, der t und w teilt. Dann gilt:

p | u wegen u = t · (. . .) und p | v wegen w · 3(. . .), also wäre ggT (u, v) 6= 1, Widerspruch, also gilt dann tatsächlich ggT(t, w) = 1.

Man hat also φ(t, w) = (u, v, s) gezeigt. Ende.

Aus diesem, letzten Lemma folgt also insbesondere: Ist s ungerade und s3 = u2 + 3v2 mit ggT (u, v) = 1. Dann schreibt sich s in

der Form s = t2 + 3w2 mit u = t · (t2 − 9w2) und v = 3w · (t2 −w2). Dabei gilt für t, w ∈ Z: ggT(t, w) = 1, 3 - t und t 6≡ wmod 2.

Das Schlüssellemma ist damit also bewiesen.
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Die Darstellung als Summe zweier Quadrate
[Zurück zur Liste]

Lemma. Für Primzahlen p = 4m + 1 hat die Gleichung s2 = −1 in Fp zwei Lösungen, für p = 2 gibt es genau eine solche

Lösung, während es für p = 4m+ 3 keine Lösung gibt.

Beweis. Eine Primzahl p 6= 2 hat entweder die Darstellung p = 4m+ 1 oder p = 4m+ 3, denn bei p = 4m+ 0 und p = 4m+ 2 wäre

die Primzahl durch 4 bzw. 2 teilbar, was nicht sein kann. Für p = 2 ist s = 1 die einzige Lösung. Für ungerades p betrachten wir die

Äquivalenzrelation auf F∗p, die durch die Äquivalenzklassen [x] = {x,−x, x−1,−x−1} gegeben ist. Man betrachtet dann die Fälle, in

denen die Äquivalenzklassen nicht 4 Elemente haben: 1. Möglichkeit: x = −x. Wegen x = −x ist dann 2x = x+(−x) = 0
p 6=2⇒ x = 0,

was kein Element aus F∗p ist, also kann dieser Fall nicht auftreten. 2. Möglichkeit: x = x−1. Wegen x = x−1 ⇔ x2 = 1 ⇔ x =

1∨ x = p− 1 erhält man in diesem Fall mit {1, p− 1} eine Äquivalenzklasse der Größe 2, die auf alle Fälle auftritt. 3. Möglichkeit:

x = −x−1. Hier ist x = −x−1 ⇔ x2 = −1. Diese Gleichung ist entweder unlösbar oder besitzt die Lösungen x0 und p − x0,

die verschieden sind, denn sonst gelte x0 = p − x0 ⇒ p = 2x0, was wegen p 6= 2 nicht sein kann. Damit hat man nun F∗p in

Äquivalenzklassen der Größe 4 und in ein oder zwei Äquivalenzklassen der Größe 2 partitioniert. Da F∗p gerade p− 1 Elemente hat,

gibt es im Fall p = 4m + 3, also p − 1 = 4m + 2, nur eine zweielementige Äquivalenzklasse, nämlich {1, p − 1}, womit die dritte

Möglichkeit nicht eintreten kann und damit s2 = −1 keine Lösung hat. Ist p = 4m + 1⇔ p− 1 = 4m = 4(m− 1) + 2 + 2, so gibt

es zwei Äquivalenzklassen der Größe 2, also tritt die dritte Möglichkeit ein und x0 und p − x0 sind gerade die zwei verschiedenen

Lösungen von s2 = −1.

Satz. Jede Primzahl der Form p = 4m+ 1 ist Summe zweier Quadratzahlen, das heißt, es existieren x, y ∈ N0 mit p = x2 + y2.

Beweis. Sei s eine Lösung von s2 = −1 mod p, die nach dem Lemma existiert. Es werden dann die Paare (x′, y′) ∈ {0, . . . , b√pc}2 =:

D, von denen es (b√pc+1)2 gibt, betrachtet. Wegen bxc+1 > x mit x =
√
p sieht man, dass |D| > p gilt. Damit kann f : D → Fp,

(x′, y′) 7→ x′−sy′ nicht injektiv sein, womit es zwei verschiedene Paare (x′, y′) und (x′′, y′′) gibt mit x′−sy′ ≡ x′′−sy′′ (mod p)⇔

x′ − x′′ ≡ s(y′ − y′′) (mod p). Sei nun x := |x′ − x′′| und y := |y′ − y′′|. Es folgt damit aus der obigen Gleichung x ≡ ±sy (mod p)

und weiter x2 ≡ s2y2 ≡ −y2 (mod p), was x2 + y2 ≡ 0 (mod p) impliziert. Da (x′, y′) und (x′′, y′′) verschieden waren, können nicht

sowohl x als auch y gleich 0 sein, also ist x2 + y2 > 0. Wegen x, y ∈ {0, . . . , b√pc} und damit x2, y2 ≤ b√pc2 < p erhält man

zuletzt x2 + y2 < 2p, was wegen x2 + y2 ≡ 0 (mod p) bedeutet, dass x2 + y2 gleich p sein muss, womit die Behauptung des Satzes

bewiesen ist.

Satz. Eine natürliche Zahl n ist genau dann Summe zweier Quadratzahlen, wenn die Primfaktoren p = 4m + 3 von n mit

geradem Exponenten auftreten.

Beweis. Eine Zahl heiße darstellbar, wenn sie die Summe zweier Quadrate ist.
”
⇐“: Seien also die Primfaktoren p = 4m + 3 von

n mit geradem Exponenten auftretend. Die Primfaktoren p = 4m + 1 der natürlichen Zahl n sind nach dem vorangegangenen

Satz darstellbar, genauso wie 1 = 02 + 12 und 2 = 12 + 12. Wegen (x2 + y2) · (a2 + b2) = x2a2 + y2b2 + x2b2 + y2a2 =

(x2a2 + 2xayb + y2b2) + (x2b2 − 2xbya + y2a2) = (xa + yb)2 + (xb − ya)2 ist auch das Produkt darstellbarer Zahlen darstellbar

und nach (x2 + y2) · a2 = (xa)2 + (ya)2 sind auch quadratische Vielfache darstellbarer Zahlen darstellbar. Da die Primfaktoren p

der Form (4m+ 3) mit geradem Exponenten auftreten, sind sie also quadratisch. Es folgt also, dass die Primfaktorzerlegung von n

darstellbar ist.
”
⇒“: Sei also n = x2 +y2 darstellbar. Für einen Primteiler p = 4m+3 von n sei zunächst xmod p 6= 0 angenommen.

Dann könnte man ein x′ finden mit xx′ ≡ 1 (mod p). Dann würde gelten x2 + y2 ≡ 0 (mod p) ⇒ 1 + x′2 + y2 = 1 + (x′y)2 ≡

0 (mod p) ⇒ (x′y)2 ≡ −1 (mod p), was nach dem Lemma nicht möglich ist, also muss p ein Teiler von x (und analogerweise auch

von y) sein. Damit folgt p2 | n und n
p2 =

(
x
p

)2
+
(
y
p

)2
ist darstellbar. Also gilt entweder p - n

p2 oder p2 | n
p2 . Rekursiv erhält

man, dass p in der Primfaktorzerlegung von n mit geradem Exponenten auftauchen muss.

Die Partition von Zahlen
[Zurück zur Liste]

Definition (Partitionsfunktion). Man betrachtet die Partitionsfunktion p(n), die angibt, wieviele Möglichkeiten es gibt, ein

n ∈ N als Summe von Zahlen aus {1, . . . , n} darzustellen. Dabei soll gelten: 1. Die Reihenfolge der Summanden wird nicht

beachtet, 2. Die Anzahl der Summanden ist nicht festgelegt und 3. Summanden dürfen mehrfach vorkommen.

Satz (Umordnungssatz). Sei
∞∑
k=0

ak eine absolut konvergente Reihe mit Grenzwert A. Dann konvergiert jede Umordnung der

Reihe
∞∑
k=0

ak, also jede Reihe
∞∑
k=0

aτ(k) für jede bijektive Abbildung τ : N0 → N0, ebenfalls gegen A.
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Beweis. Sei τ : N0 → N0 bijektiv. Es muss gezeigt werden: lim
m→∞

m∑
k=0

aτ(k) = A. Sei nun ε > 0 vorgegeben. Da
∞∑
k=0

|ak| konvergiert,

gibt es zu ε ein n0 ∈ N0 so, dass
∞∑

k=n0

|ak| <
ε

2
gilt. Daraus folgt

∣∣∣∣∣A− n0−1∑
k=0

ak

∣∣∣∣∣ =

∣∣∣∣∣ ∞∑k=n0

ak

∣∣∣∣∣ ≤ ∞∑
k=n0

|ak| <
ε

2
. Da τ bijektiv ist,

kann man N ∈ N0 so wählen, dass {0, 1, . . . , n0 − 1} ⊆ {τ(0), τ(1), . . . , τ(N)} gilt. Dann gilt für alle m ≥ N :

∣∣∣∣ m∑
k=0

aτ(k) − A
∣∣∣∣ =∣∣∣∣∣ m∑k=0

aτ(k) −
n0−1∑
k=0

ak

∣∣∣∣∣+

∣∣∣∣∣n0−1∑
k=0

ak − A

∣∣∣∣∣ ≤ ∞∑
k=n0

|ak|+
ε

2
< ε. Das war es!

Satz (Produktsatz). Seien
∞∑
k=1

aik (i = 1, . . . ,m) m absolut konvergente Reihen und ϕ : N → Nm eine bijektive Abbildung.

Dann ist
∞∑
k=1

a1
ϕ1(k) · a

2
ϕ2(k) · . . . · a

m
ϕm(k) eine absolut konvergente Reihe, wobei ϕ(k) = (ϕ1(k), . . . , ϕm(k)) für alle k sei. Es gilt

dann die folgende Identität:

∞∑
k=1

a
1
ϕ1(k) · a

2
ϕ2(k) · . . . · a

m
ϕm(k) =

( ∞∑
k=1

a
1
k

)
·
( ∞∑
k=1

a
2
k

)
· . . . ·

( ∞∑
k=1

a
m
k

)

Man darf also unter den gegebenen Voraussetzungen gliedweise ausmultiplizieren!

Beweis. Man wählt eine Bijektion ϕ : N → Nm zunächst so, dass gilt {ϕ(1), . . . , ϕ(nm)} = {1, 2, . . . , n}m für alle n ∈ N. Es

gilt dann für jedes n nun
nm∑
k=1

|a1
ϕ1(k)| · |a

2
ϕ2(k)| · . . . · |a

m
ϕm(k)| =

(
n∑
k=1

|a1
k|
)
·
(

n∑
k=1

|a2
k|
)
· . . . ·

(
n∑
k=1

|amk |
)

, also
nm∑
k=1

|a1
ϕ1(k)| ·

|a2
ϕ2(k)| · . . . · |a

m
ϕm(k)| ≤

( ∞∑
k=1

|a1
k|
)
·
( ∞∑
k=1

|a2
k|
)
· . . . ·

( ∞∑
k=1

|amk |
)

, also hat das monoton wachsende
nm∑
k=1

|a1
ϕ1(k)| · |a

2
ϕ2(k)| ·

. . . · |amϕm(k)| eine konvergente Majorante, konvergiert also absolut, also konvergiert
∞∑
k=1

a1
ϕ1(k) · a

2
ϕ2(k) · . . . · a

m
ϕm(k). Wegen

nm∑
k=1

a1
ϕ1(k) · a

2
ϕ2(k) · . . . · a

m
ϕm(k) =

(
n∑
k=1

a1
k

)
·
(

n∑
k=1

a2
k

)
· . . . ·

(
n∑
k=1

amk

)
folgt mithilfe des Grenzwertübergangs n → ∞ dann:

∞∑
k=1

a1
ϕ1(k) · a

2
ϕ2(k) · . . . · a

m
ϕm(k) =

( ∞∑
k=1

a1
k

)
·
( ∞∑
k=1

a2
k

)
· . . . ·

( ∞∑
k=1

amk

)
. Man hat oben die Bijektion ϕ eingeschränkt. Das

wird jetzt in Ordnung gebracht: Sei ψ : N → Nm eine beliebige Bijektion, so ist auch ϕ−1 ◦ ψ eine Bijektion von N nach N.

Dann gilt:
∞∑
k=1

a1
ϕ1((ϕ−1◦ψ)(k))

· a2
ϕ2((ϕ−1◦ψ)(k))

· . . . · am
ϕm((ϕ−1◦ψ)(k))

=
∞∑
k=1

a1
ψ1(k) · a

2
ψ2(k) · . . . · a

m
ψm(k). Die Summanden

a1
ϕ1(k) · a

2
ϕ2(k) · . . . · a

m
ϕm(k) (k ∈ N6=0) wurden also umgeordnet, und nach dem Umordnungssatz ändert sich der Grenzwert der

unendlichen Reihe nicht, also gilt auch
∞∑
k=1

a1
ψ1(k) · a

2
ψ2(k) · . . . · a

m
ψm(k) =

( ∞∑
k=1

a1
k

)
·
( ∞∑
k=1

a2
k

)
· . . . ·

( ∞∑
k=1

amk

)
.

Satz (Vertauschung von Limes und Summe). Es sei (a(i)
n )n,i∈N eine Doppelfolge mit 0 ≤ a(i)

n < +∞ für n, i ∈ N so, dass für

alle i ∈ N die Folge (a(i)
n )n∈N monoton steigt. Es gelte lim

n→∞
a(i)
n ∈ R für alle i ∈ N. Dann folgt:

lim
n→∞

∞∑
i=0

a
(i)
n =

∞∑
i=0

lim
n→∞

a
(i)
n

Beweis. Weil a(i)
n in n monoton steigt, gilt a(i)

n ≤ lim
k→∞

a
(i)
k für alle n, i ∈ N, also

m∑
i=0

a(i)
n ≤

m∑
i=0

lim
k→∞

a
(i)
k für alle n,m ∈ N. Folglich

gilt dann auch
∞∑
i=0

a(i)
n ≤

∞∑
i=0

lim
k→∞

a
(i)
k für alle n ∈ N. Schließlich gilt dann lim

n→∞

∞∑
i=0

a(i)
n ≤

∞∑
i=0

lim
n→∞

a(i)
n . Sei x <

∞∑
i=0

lim
n→∞

a(i)
n ,

dann gibt es ein m ∈ N mit x <
m∑
i=0

lim
n→∞

a(i)
n

∗1= lim
n→∞

m∑
i=0

a(i)
n

∗2
≤ lim
n→∞

∞∑
i=0

a(i)
n , wobei ∗1 gilt, weil die Summe endlich ist, und ∗2 gilt

wegen
m∑
i=0

a(i)
n ≤

∞∑
i=0

a(i)
n . Es wurde benutzt, dass a(i)

n ≥ 0 gilt. Wäre lim
n→∞

∞∑
i=0

a(i)
n = x <

∞∑
i=0

lim
n→∞

a(i)
n , dann folgt lim

n→∞

∞∑
i=0

a(i)
n <

lim
n→∞

∞∑
i=0

a(i)
n , Widerspruch, also muss gelten: lim

n→∞

∞∑
i=0

a(i)
n ≥

∞∑
i=0

lim
n→∞

a(i)
n . Zusammen mit lim

n→∞

∞∑
i=0

a(i)
n ≤

∞∑
i=0

lim
n→∞

a(i)
n folgt also

die Behauptung des Satzes und man ist hier fertig!

Lemma (Quotientenkriterium). Es sei
∞∑
k=0

ak eine Reihe mit ak 6= 0 für fast alle k, dann gilt:

lim
k→∞

|ak+1|
|ak|

< 1⇒
∞∑
k=0

ak konvergiert absolut.

Beweis. Sei a := lim
k→∞

|ak+1|
|ak|

< 1. Man kann also ein ε > 0 wählen, dass auch noch q := a + ε < 1 gilt. Wegen lim
k→∞

|ak+1|
|ak|

= a

gibt es ein k0 ∈ N so, dass

∣∣∣∣ak+1

ak

∣∣∣∣ < a + ε = q für alle k ≥ k0, und damit |ak+1| < q · |ak|. Daraus ergibt sich für alle k ≥ k0:

|ak| < q · |ak−1| < q2 · |ak−2| < . . . < qk−k0 · |ak0
|. Also ist die Reihe

∞∑
k=0

qk−k0 · |ak0
| eine konvergente Majorante von

∞∑
k=0

|ak|,

denn
∞∑
k=0

qk−k0 · |ak0
| = q−k0 · |ak0

| ·
∞∑
k=0

qk = q−k0 · |ak0
| ·

1

1− q
wegen q < 1.

Satz (Satz von Euler). Es gilt für alle x ∈ R mit |x| < 1:
∞∏
k=1

1

1− xk
=
∞∏
k=1

∞∑
l=0

(xk)l =
∞∑
k=0

p(k) · xk, mit p(0) = 1.
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Beweis. Zunächst wird ein informaler Beweis gegeben: Bekanntermaßen gilt:
∞∑
l=0

xl =
1

1− x
für alle x ∈ [0, 1). Man betrachtet nun

∞∏
k=1

1

1− xk
=
∞∏
k=1

∞∑
l=0

(xk)l:

∞∏
k=1

1

1− xk
=

∞∏
k=1

∞∑
l=0

(x
k
)
l

= (1 + x
1

+ x
1+1

+ x
1+1+1

+ x
1+1+1+1

+ . . .)·

(1 + x
2

+ x
2+2

+ x
2+2+2

+ x
2+2+2+2

+ . . .)·

(1 + x
3

+ x
3+3

+ x
3+3+3

+ x
3+3+3+3

+ . . .)·

· · ·

=

∞∑
k=0

p(k) · xk

Hier darf man aber nicht einfach gliedweise ausmultplizieren. Jetzt kommt der formale Beweis, der dieses Problem löst: Sei

also x ∈ [0, 1), dann betrachtet man Fm(x) =
m∏
k=1

1

1− xk
und F (x) =

∞∏
k=1

1

1− xk
= lim

m→∞
Fm(x). Es gilt, dass F (x) =

∞∏
k=1

1

1− xk
und

∞∏
k=1

1 − xk auch wirklich konvergieren. Beweis: Es konvergiert
∞∑
k=1

ln(1 − xk) absolut für x ∈ [0, 1) nach dem

Quotientenkriterium (siehe Lemma oben), denn es gilt: lim
k→∞

| ln(1− xk+1)|
| ln(1− xk)|

= lim
k→∞

∣∣∣∣∣∣∣∣
d

dk
ln(1− xk+1)

d

dk
ln(1− xk)

∣∣∣∣∣∣∣∣ = lim
k→∞

∣∣∣∣∣∣∣
xk+1·ln(x)

xk+1−1

xk·ln(x)

xk−1

∣∣∣∣∣∣∣ =

lim
k→∞

∣∣∣∣∣x · xk − 1

xk+1 − 1

∣∣∣∣∣ =

∣∣∣∣x · −1

−1

∣∣∣∣ = |x| = x < 1, weil in
| ln(1− xk+1)|
| ln(1− xk)|

für k →∞ Zähler und Nenner gegen 0 laufen. Also konvergiert

∞∑
k=1

ln(1− xk) absolut, also konvergiert es auch. Jetzt folgt: g0 = e
−
∞∑
k=1

ln(1−xk)

= lim
l→∞

e
−

l∑
k=1

ln(1−xk)

= lim
l→∞

e

l∑
k=1

0−ln(1−xk)

=

lim
l→∞

e

l∑
k=1

ln(1)−ln(1−xk)

= lim
l→∞

e

l∑
k=1

ln

 1

1− xk


= lim
l→∞

l∏
k=1

1

1− xk
=
∞∏
k=1

1

1− xk
. Wegen g′0 = e

∞∑
k=1

ln(1−xk)

=
∞∏
k=1

1 − xk folgt

auch die Konvergenz von
∞∏
k=1

1 − xk. Weiter: (Fm(x))m∈N ist eine monotone Folge, denn wegen 0 ≤ x < 1 folgt 1 − xm+1 ≤ 1,

also
1

1− xm+1
≥ 1 und damit: Fm+1(x) =

1

1− xm+1
· Fm(x) ≥ Fm(x). Daraus folgt: Fm(x) ≤ F (x) für alle m ∈ N und für

festes x ∈ [0, 1). Sei pm(n) die Anzahl der Partitionen von n, wobei die Summanden alle kleiner-gleich m sind. Es gilt dann

Fm(x) = 1 +
∞∑
k=1

pm(k) · xk. Siehe dazu folgende Rechnung hier:

m∏
k=1

1

1− xk
=

m∏
k=1

∞∑
l=0

(x
k
)
l

(1 + x
1

+ x
1+1

+ x
1+1+1

+ x
1+1+1+1

+ . . .)·

(1 + x
2

+ x
2+2

+ x
2+2+2

+ x
2+2+2+2

+ . . .)·

(1 + x
3

+ x
3+3

+ x
3+3+3

+ x
3+3+3+3

+ . . .)·

· · ·

(1 + x
m

+ x
m+m

+ x
m+m+m

+ x
m+m+m+m

+ . . .)

=
∞∑
k=0

pm(k) · xk

Hier hingegen darf man nach dem Produktsatz oben gliedweise ausmultiplizieren und damit sehen, dass Fm(x) = 1+
∞∑
k=1

pm(k)·xk =

∞∑
k=0

pm(k) · xk (pm(0) = 1) gilt. Denn man hat endlich viele unendliche Reihen, die für x ∈ [0, 1) absolut konvergieren. Weiter:

Für m ≥ k gilt nach Definition der Partitionsfunktion pm(k) = p(k). Außerdem: pm(k) ≤ p(k) für alle m < k. D.h. es gilt

lim
m→∞

pm(k) = p(k). Nun teilt man Fm als Reihe in zwei Summanden auf: Fm(x) =
m∑
k=0

pm(k) · xk +
∞∑

k=m+1

pm(k) · xk =

m∑
k=0

p(k) · xk

︸ ︷︷ ︸
≥0

+
∞∑

k=m+1

pm(k) · xk

︸ ︷︷ ︸
≥0

, denn pm(k) = p(k) für m ≥ k. Es folgt:
m∑
k=0

p(k) · xk ≤ Fm(x) ≤ F (x), also ist
m∑
k=0

p(k) · xk

als beschränkte Reihe mit positiven Summanden absolut konvergent. Daraus folgt, dass auch lim
m→∞

m∑
k=0

p(k) · xk ≤ F (x) gilt, also

∞∑
k=0

p(k) · xk ≤ F (x). Es gilt nun:

F (x) = lim
m→∞

Fm(x) = lim
m→∞

∞∑
k=0

pm(k) · xk =

∞∑
k=0

lim
m→∞

pm(k) · xk =

∞∑
k=0

p(k) · xk ≤ F (x)

Gezeigt ist also: F (x) =
∞∏
k=1

1

1− xk
=
∞∑
k=0

p(k) · xk Es muss noch begründet werden, warum man eben Limes und Summe

tauschen durfte: Sei a(k)
m := pm(k) · xk für festes x ∈ [0, 1). Es gilt 0 ≤ a(k)

m < +∞ und a(k)
m wächst monoton in m wegen
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pm(k) · xk ≤ pm+1(k) · xk für alle m ∈ N. Dann gilt lim
m→∞

a(k)
m = p(k) · xk. Es existiert der Grenzwert

∞∑
k=0

a(k)
m =

∞∑
k=0

pm(k) · xk,

denn
∞∑
k=0

p(k) · xk ist eine konvergente Majorante. Man wende nun das a(k)
m auf den Satz (Vertauschung von Limes und Summe)

an. Das ist das Ende des Beweises hier.

Satz (Euler’s Pentagonalzahlensatz). Es gilt für alle x ∈ R mit |x| < 1:
∞∏
k=1

1− xk = 1 +
∞∑
k=1

(−1)k · (xω(k) + xω(−k)), wobei hier

gilt: ω(k) =
3k2 − k

2
, also ω(−k) =

3k2 + k

2
(Pentagonalzahlen).

Beweis. Man schreibt zunächst
∞∏
k=1

1−xk = 1 +
∞∑
l=1

a(l) ·xl. Die Konvergenz von
∞∏
k=1

1−xk für x ∈ [0, 1) wurde im Satz von Euler

oben bewiesen. a(l) entsteht dadurch, dass eine Partition von l in ungleiche Teile einen Koeffizienten +1 oder −1 vor dem Term xl

bewirkt. Der Koeffizient ist +1, wenn xl das Produkt einer geraden Anzahl von Faktoren ist, und −1, wenn xl das Produkt einer

ungeraden Anzahl von Faktoren ist. Es gilt also a(l) = pg(l)−pu(l), wobei pg(l) die Anzahl von Partitionen von l in ungleiche Teile

gerader Anzahl und pu(l) die Anzahl von Partitionen von l in ungleiche Teile ungerader Anzahl ist. Im Folgenden wird gezeigt, dass

pg(n) = pu(n) für alle n ∈ N gilt, außer, wenn n eine Pentagonalzahl ist. Es gilt also
∞∏
m=1

1−xm = 1 +
∞∑
n=1

(pg(n)− pu(n)) ·xn. Es

wird jetzt gezeigt, dass pg(n) = pu(n) gilt, außer wenn n eine Pentagonalzahl ist. Dazu betrachtet man den Graphen einer Partition

von n in ungleiche Teile. Man sagt, dass der Graph in Standardform ist, wenn die Zeilen in absteigender Reihenfolge sortiert sind,

so wie in Abbildung 1 unten. Die längste Verbindung zwischen Punkten in der letzten Reihe wird Basis genannt, die Anzahl der

Punkte wird mit b bezeichnet. Es gilt also b ≥ 1. Die längste Verbindung im 45◦-Winkel, die am Ende der ersten Reihe beginnt,

wird Schräge genannt, die Anzahl der Punkte wird mit s bezeichnet. Es gilt s ≥ 1. In Abbildung 1 unten ist b = 2 und s = 4.

Jetzt werden zwei Operationen A und B auf dem Graphen definiert. Operation A verschiebt die Basis so, dass sie parallel zur

Schräge liegt. Operation B verschiebt die Schräge unter die Basis. Illustriert ist das in Abbildung 2 und 3:

Man nennt eine solche Operation zulässig, wenn der neu entstandene Graph wieder in Standardform ist, also aus ungleichen Teilen

besteht, die in absteigender Reihenfolge sortiert sind. Wenn A zulässig ist, erhält man eine neue Partition von n in ungleiche Teile,

es gibt aber ein Teil weniger als vorher. Wenn B zulässig ist, erhält man ebenfalls eine neue Partition von n in ungleiche Teile, es

gibt ein Teil mehr als zuvor. Wenn also für jede Partition von n entweder A oder B zulässig ist, dann sind jeweils zwei Partitionen

über A und B verbunden. Es folgt pg(n) = pu(n), da eine ungerade Partition durch A oder B in eine gerade Partition übergeht

und umgekehrt. Um zu bestimmen, ob A oder B zulässig ist, betrachtet man drei Fälle:

1. Fall Wenn b < s ist, gilt b ≤ s− 1. Operation A ist zulässig, Operation B nicht, denn B zerstört die Standardform. Siehe dazu

die Abbildung 2 und 3 oben.
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2. Fall Wenn b = s ist, ist Operation B nicht zulässig, da der entstandene Graph nicht in Standardform ist. Operation A ist

erlaubt, außer in den Fällen, in denen Basis und Schräge überlappen. Siehe Abbildung 4.

3. Fall Wenn b > s ist, ist Operation A nicht zulässig. B hingegen wohl, außer in dem Fall, dass b = s + 1 gilt, und Basis und

Schräge überlappen. Diese Situation ist in Abbildung 5 zu sehen.

Es folgt also, dass entweder A oder B zulässig ist, außer in den beiden Ausnahmefällen. Man betrachtet nun den ersten Ausnahmefall,

wie er in Abbildung 4 gezeigt ist. Sei k die Anzahl der Reihen im Graph, also k = s = b. Demnach lässt sich n folgendermaßen

berechnen: n =
k−1∑
i=0

k + i =
3k2 − k

2
= ω(k). Für dieses n gibt es also genau eine Extrapartition, die sich nicht paaren lässt,

die anderen Partitionen mit der gleichen Anzahl an Punkten n = ω(k) lassen sich paaren (Eine Partition in ungleiche Teile mit

ungerader Anzahl an Zeilen mit einer Partition in ungleiche Teile mit gerader Anzahl an Zeilen und umgekehrt), seien dies p Paare.

Ist k gerade, dann gilt: pg(n) − pu(n) = pg(ω(k)) − pu(ω(k)) = (p + 1) − p, und wenn k ungerade ist, dann gilt pg(n) − pu(n) =

pg(ω(k))−pu(ω(k)) = p−(p+1) = −1, also gilt pg(ω(k))−pu(ω(k)) = (−1)k. Im anderen Ausnahmefall (siehe Abbildung 5) hat man

wegen b = s+ 1 und k = s, also b = k+ 1, in jeder Reihe einen zusätzlichen Punkt, also n =
3k2 − k

2
+ k =

3k2 + k

2
= ω(−k), also

folgt analog zu eben: pg(ω(−k))−pu(ω(−k)) = (−1)k. Damit ist bewiesen, dass
∞∏
k=1

1−xk = 1+
∞∑
k=1

(−1)k ·xω(k)+
∞∑
k=1

(−1)k ·xω(−k)

gilt.

Satz (Euler’s Rekursionsformel für p(n)). Es gilt die folgende Formel: p(n) =
∞∑
k=1

(−1)k+1 · (p(n−ω(k)) + p(n−ω(−k))) für alle

n ≥ 1. Dabei sei p(0) = 1 und p(n) = 0 für alle n < 0.

Beweis. Es folgt aus den Sätzen oben:

1 =

( ∞∏
m=1

1− xm
)
·
( ∞∏
m=1

1

1− xm

)
=

(
−1 +

∞∑
k=0

(−1)
k · (xω(k)

+ x
ω(−k)

)

)
·
( ∞∑
k=0

p(k) · xk
)

=

= −
∞∑
k=0

p(k) · xk +

( ∞∑
k=0

p(k) · xk
)
·
( ∞∑
k=0

(−1)
k · (xω(k)

+ x
ω(−k)

)

)

= −
∞∑
k=0

p(k) · xk +

∞∑
m=0

m∑
k=0

(−1)
k · (xω(k)

+ x
ω(−k)

) · p(m− k) · xm−k

=
∞∑
k=0

p(k) · xk +
∞∑
m=1

m∑
k=1

(−1)
k · (xω(k)

+ x
ω(−k)

) · p(m− k) · xm−k

Man sammelt nun die Koeffizienten von xn: Da für m > n die Potenzen von x in der Doppelsumme echt größer als n sind, reicht

es die folgende Reihe zu betrachten:

n∑
m=1

m∑
k=1

(−1)
k · p(m− k) · xm−k · (xω(k)

+ x
ω(−k)

)

m = n :

(−1)
1 · p(n− 1) · xn−1 · (x1

+ x
2
)

(−1)
2 · p(n− 2) · xn−2 · (x5

+ x
7
)

(−1)
3 · p(n− 3) · xn−3 · (x12

+ x
15

)

.

.

.

m = n− 1 :

(−1)
1 · p(n− 2) · xn−2 · (x1

+ x
2
)

(−1)
2 · p(n− 3) · xn−3 · (x5

+ x
7
)

(−1)
3 · p(n− 4) · xn−4 · (x12

+ x
15

)

.

.

.

m = n− 2 :

(−1)
1 · p(n− 3) · xn−3 · (x1

+ x
2
)

(−1)
2 · p(n− 4) · xn−4 · (x5

+ x
7
)

(−1)
3 · p(n− 5) · xn−5 · (x12

+ x
15

)

.

.

.

m = n− 3 :

(−1)
1 · p(n− 4) · xn−4 · (x1

+ x
2
)

(−1)
2 · p(n− 5) · xn−5 · (x5

+ x
7
)

(−1)
3 · p(n− 6) · xn−6 · (x12

+ x
15

)

.

.

.

m = n− 4 :

(−1)
1 · p(n− 5) · xn−5 · (x1

+ x
2
)

(−1)
2 · p(n− 6) · xn−6 · (x5

+ x
7
)

(−1)
3 · p(n− 7) · xn−7 · (x12

+ x
15

)

.

.

.

m = n− 5 :

(−1)
1 · p(n− 6) · xn−6 · (x1

+ x
2
)

(−1)
2 · p(n− 7) · xn−7 · (x5

+ x
7
)

(−1)
3 · p(n− 8) · xn−8 · (x12

+ x
15

)

.

.

.
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Und immer so weiter! Das Muster da oben ist wohl klar geworden. Aus einem Koeffizientenvergleich folgt wegen 1 =
∞∑
k=0

p(k) ·xk +

∞∑
m=1

m∑
k=1

(−1)k · (xω(k) + xω(−k)) · p(m− k) · xm−k, dass der Koeffizient von xn (n ≥ 1) gleich 0 ist, also:

0 = p(n) + (−1)
1 · p(n− 1) + (−1)

1 · p(n− 2)

+ (−1)
2 · p(n− 5) + (−1)

2 · p(n− 7)

+ (−1)
3 · p(n− 12) + (−1)

3 · p(n− 15)

+ (−1)
4 · p(n− 22) + (−1)

4 · p(n− 26) + . . .

Dabei sei oben immer gewesen: ω(1) = 1, ω(−1) = 2, ω(2) = 5, ω(−2) = 7, ω(3) = 12, ω(−3) = 15, ω(4) = 22, ω(−4) = 26, . . ., also

gilt wirklich: p(n) =
∞∑
k=1

(−1)k+1 · (p(n− ω(k)) + p(n− ω(−k))), p(0) = 1 und p(n) = 0 ∀n < 0.

Die Summe von Potenzen
[Zurück zur Liste]

Satz. Die Taylorreihe zu f(x) =
x

ex − 1
hat um den Entwicklungspunkt 0 den Konvergenzradius 2π.

Beweis. Man betrachte f als komplexe Funktion f(z) =
z

ez − 1
, f : C → C. z = 0 ist eine hebbare Singularität, denn: Weil für

z → 0 Zähler und Nenner von f gegen 0 gehen, ist die Regel von l’Hospital anwendbar, also: lim
z→0

z

ez − 1
= lim

z→0

d

dz
z

d

dz
(ez − 1)

=

lim
z→0

1

ez
= 1. Weil z und ez − 1 holomorph sind, ist es auch

z

ez − 1
für z 6= k · 2πi (k ∈ Z6=0). Weiter ist f in z = 0 sogar

holomorph, was man folgendermaßen einsehen kann: f(z) =
z

ez − 1
=

z

−1 +
∞∑
k=0

zk

k!

=
z

∞∑
k=1

zk

k!

=
1

∞∑
k=1

zk−1

k!

, also
f(z)− f(0)

z − 0
=

1

z
·

−1 +
1

∞∑
k=1

zk−1

k!

 =
1

z
·


1−

∞∑
k=1

zk−1

k!

∞∑
k=1

zk−1

k!

 =

−
∞∑
k=2

zk−2

k!

∞∑
k=1

zk−1

k!

, also: lim
z→0

f(z)− f(0)

z − 0
= lim
z→0

−
∞∑
k=2

zk−2

k!

∞∑
k=1

zk−1

k!

=
−

1

2!
− 0

1 + 0
= −

1

2
. Nun

ist Kr(0) := {z ∈ C : |z − 0| < r} für r = 2π die größte offene Kreisscheibe um 0, die die nächsten nicht hebbaren Singularitäten

von f nämlich ±1 · 2πi nicht beinhaltet. f ist auf K2π(0) holomorph. Es gilt dann bekanntermaßen für r < 2π die Cauchy’sche

Integralformel: f(z) =
1

2πi
·
∫
|w|=r

f(w)

w − z
dw mit |z| < r. Jetzt gilt dann:

f(w)

w − z
=

f(w)

w
·

1

1− z
w

=
f(w)

w
·
∞∑
n=0

(
z

w

)n
=

∞∑
n=0

f(w)

wn+1
· zn (konvergent für

∣∣∣∣ zw
∣∣∣∣ < 1, also |z| < |w| = r). Man hat also:

f(z) =
1

2πi
·
∫
|w|=r

∞∑
n=0

f(w)

wn+1
· zn dw =

∞∑
n=0

(
1

2πi
·
∫
|w|=r

f(w)

wn+1
dw

)
· zn

Denn aus der Analysis weiß man, dass man, weil die Reihe unter dem Integral gleichmäßig konvergiert, Integral und Summe

vertauschen darf. Es wird jetzt gezeigt, dass gilt:
f(n)(0)

n!
=

1

2πi
·
∫
|w|=r

f(w)

wn+1
dw, denn: f(z) =

1

2πi
·
∫
|w|=r

f(w)

w − z
dw ⇒

f
(n)

(z) =
1

2πi
·
∫
|w|=r

dn

dzn
f(w)

w − z
dw =

1

2πi
·
∫
|w|=r

f(w) ·
n!

(w − z)n+1
dw ⇒ f

(n)
(0) = n! ·

1

2πi
·
∫
|w|=r

f(w)

(w − 0)n+1
dw, also die

Behauptung. Dass
dn

dzn
1

w − z
=

n!

(w − z)n+1
gilt, zeigt man leicht mit vollständiger Induktion. Es wurde also gezeigt, dass für alle

z mit |z| < 2π gilt:
∞∑
n=0

f(n)(0)

n!
·zn konvergiert gegen f(z). Da der reelle Fall im komplexen Fall enthalten ist, folgt die Behauptung

des Satzes und der Beweis ist damit beendet.

Definition (Bernoulli-Zahlen). Wegen des Satzes oben kann man in einer Umgebung der 0 die Taylor-Entwicklung von f(x) =
x

ex − 1
(reell) betrachten. Man setzt dafür an:

f(x) =
∞∑
n=0

Bn

n!
· xn

Die Koeffizienten Bn heißen dann Bernoulli-Zahlen.

Satz. Für die Benoulli-Zahlen gilt die folgende Rekursionsgleichung:
m∑
n=0

(m+ 1

n

)
·Bn = 0. Es gilt für alle n ≥ 1: B2n+1 = 0.
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Beweis. Bekannt ist, dass gilt e
x

=

∞∑
k=0

xk

k!
. Man rechnet nun:

f(x) =
x

∞∑
k=0

xk

k!
− 1

=
x

∞∑
k=1

xk

k!

=
1

∞∑
k=1

xk−1

k!

=
1

∞∑
k=0

xk

(k + 1)!

=

( ∞∑
k=0

xk

(k + 1)!

)−1

Daraus folgt dann also, dass gilt:

1 = f(x) ·
1

f(x)
=

( ∞∑
n=0

Bn

n!
· xn

)
·
( ∞∑
k=0

xk

(k + 1)!

)

Dieses Produkt kann man ausmultiplizieren:( ∞∑
n=0

Bn

n!
· xn

)
·
( ∞∑
k=0

xk

(k + 1)!

)
=
∞∑
m=0

∑
n+k=m

Bn

n! · (k + 1)!
· xn+k

=
∞∑
m=0

m∑
n=0

Bn

n! · (m− n+ 1)
· xm

Mit dem Binomialkoeffizienten
(a
b

)
=

a!

b! · (a− b)!
bekommt man also:

∞∑
m=0


m∑
n=0

(m+1
n

)
· Bn

(m+ 1)!

 · xm = 1

Unmittelbar folgt B0 = 1. Ein Koeffizientenvergleich liefert nun

m∑
n=0

(m+1
n

)
· Bn

(m+ 1)!
= 0, also

m∑
n=0

(m+ 1

n

)
· Bn = 0. Dies ist eine

rekursive Gleichung zur Bestimmung von Bm aus der Kenntnis von B0 bis Bm−1. Es wird nun bewiesen, dass B2k+1 = 0 für alle

k ≥ 1: Sei dazu definiert:

cosh(x) =
ex + e−x

2
und sinh(x) =

ex − e−x

2

Offenbar gilt cosh(−x) = cosh(x) und sinh(−x) = − sinh(x). Folglich ist h(x) =
x

2
·

cosh(x/2)

sinh(x/2)
mit h(−x) = h(x), also ist h eine

gerade Funktion. Es gilt dann:

x

2
·

cosh(x/2)

sinh(x/2)
=
x

2
·
ex/2 + e−x/2

ex/2 − e−x/2
=
x

2
·

1 + ex

ex − 1
=
x

2
·

2 + ex − 1

ex − 1
=

2x+ x · (ex − 1)

2 · (ex − 1)
=

x

ex − 1
+
x

2
=
x

2
+

∞∑
n=0

Bn

n!
· xn

Daraus folgt dann:

h(x) =
x

2
·

cosh(x/2)

sinh(x/2)
=
x

2
+

(
1−

1

2
x

)
+

∞∑
n=2

Bn

n!
· xn = 1 +

∞∑
n=2

Bn

n!
· xn

Denn man berechnet leicht B0 = 1 und B1 = −
1

2
. Aus h(−x) = h(x) folgt:

1 +
∞∑
n=2

Bn

n!
· (−x)

n
= 1 +

∞∑
n=2

Bn

n!
· xn ⇒

∞∑
n=1

B2n

(2n)!
· x2n −

∞∑
n=1

B2n+1

(2n+ 1)!
· x2n+1

=
∞∑
n=1

B2n

(2n)!
· x2n

+
∞∑
n=1

B2n+1

(2n+ 1)!
· x2n+1

Also gilt dann: 2 ·
∞∑
n=1

B2n+1

(2n+ 1)!
· x2n+1

= 0, woraus leicht
B2n+1

(2n+ 1)!
= 0 für alle n ≥ 1 folgt, also B2n+1 = 0.

Satz (Summe von Potenzen). Es gilt:
n∑
k=1

k
l

=
1

l + 1
·

l∑
m=0

(l + 1

m

)
· (n+ 1)

l−m+1 · Bm für l ∈ N≥1.

Beweis. Mithilfe der bekannten geometrischen Summenformel hat man:
n∑
k=0

e
kx

=
1− e(n+1)·x

1− ex
=

e(n+1)·x − 1

x
·

x

ex − 1
=

e(n+1)·x − 1

x
· f(x). Nun gilt:

e(n+1)·x − 1

x
=

(
∞∑
k=0

(x · (n+ 1))k

k!

)
− 1

x
=

∞∑
k=1

(x · (n+ 1))k

k!

x
=
∞∑
k=1

(n+ 1)
k ·

xk−1

k!
=
∞∑
k=0

(n+ 1)k+1

(k + 1)!
· xk

Also gilt dann:

n∑
k=0

e
kx

=

( ∞∑
k=0

(n+ 1)k+1

(k + 1)!
· xk

)
·
( ∞∑
m=0

Bm

m!
· xm

)
=
∞∑
l=0

∑
k+m=l

(n+ 1)k+1 · Bm
(k + 1)! ·m!

· xk+m

=

∞∑
l=0

l∑
m=0

(n+ 1)l−m+1 · Bm
(l−m+ 1)! ·m!

· xl =

∞∑
l=0


l∑

m=0

(l+1
m

)
· (n+ 1)l−m+1 · Bm

(l + 1)!

 · xl
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Andererseits gilt aber:

n∑
k=0

e
kx

=

n∑
k=0

∞∑
l=0

(kx)l

l!
=

∞∑
l=0


n∑
k=1

kl

l!

 · xl
Aus einem Koeffizientenvergleich folgt dann also:

n∑
k=1

kl

l!
=

l∑
m=0

(l+1
m

)
· (n+ 1)l−m+1 · Bm

(l + 1)!

Durch Multiplikation mit l! auf beiden Seiten folgt die Behauptung des Satzes hier!

Der Banach’sche Fixpunktsatz
[Zurück zur Liste]

Satz. Sei f : M → M eine kontrahierende Abbildung eines vollständigen metrischen Raumes in sich. Das heißt, es gilt für

den metrischen Raum (M,d): Es gibt ein C ∈ R mit 0 ≤ C < 1 so, dass für alle x, y ∈M gilt d(f(x), f(y)) ≤ C · d(x, y). Dann

besitzt f genau einen Fixpunkt, also ein x ∈M mit f(x) = x.

Beweis. Zunächst zur Existenz: Man wählt ein x0 ∈ M beliebig und definiert durch xn+1 = f(xn) (n ∈ N) rekursiv ei-

ne Folge. Es wird nun gezeigt, dass (xn) eine Cauchy-Folge ist: Man schätzt ab: d(xi, xi+1) = d(f(xi−1), f(xi−2)) ≤ C ·

d(xi−1, xi−2) und nach nochmaliger Anwendung: d(xi, xi−1) ≤ C2 · d(xi−2, xi−3). Mittels vollständiger Induktion kann man

dann zeigen: d(xi, xi−1) ≤ Ci−1 · d(x1, x0) = Ci−1 · d(f(x0), x0). Nach mehrmaliger Anwendung der Dreiecksungleichung er-

gibt sich d(xn+k, xn) ≤
n+k∑
i=n+1

d(xi, xi−1), also gilt dann: d(xn+k, xn) ≤
n+k∑
i=n+1

Ci−1 · d(f(x0), x0) = d(f(x0), x0) ·
n+k−1∑
i=n

Ci ≤

d(f(x0), x0) ·
∞∑
i=n

Ci = d(f(x0), x0) ·
(

1

1− C
−
C(n−1)+1 − 1

C − 1

)
= d(f(x0), x0) ·

Cn

1− C
. Dieser Ausdruck wird in Abhängigkeit

von n beliebig klein, weswegen es sich bei (xn) um eine Cauchy-Folge handelt, die konvergiert, da M vollständig ist. Sei nun

x = lim
n→∞

xn der Grenzwert der Folge. Wegen der Definition der Folge (xn) gilt sicher lim
n→∞

xn = lim
n→∞

xn+1 = lim
n→∞

f(xn). Die

Kontraktionsbedingung von f impliziert Lipschitz-Stetigkeit mit der Lipschitzkonstanten C < 1. Daher ist f damit auch stetig, also

lim
n→∞

f(xn) = f

(
lim
n→∞

xn

)
= f(x). Weil lim

n→∞
f(xn) = lim

n→∞
xn = x gilt, folgt f(x) = x und x ist der gesuchte Fixpunkt. Nun zur

Eindeutigkeit: Seien x und y Fixpunkte von f . Dann gilt d(x, y) = d(f(x), f(y)) ≤ C · d(x, y). Also gilt dann (1− C) · d(x, y) ≤ 0.

Weil 1− C > 0 und d(x, y) ≥ 0 gilt, folgt d(x, y) = 0, also x = y.

Der Satz von Bolzano-Weierstraß
[Zurück zur Liste]

Satz. Jede beschränkte Folge reeller Zahlen besitzt eine konvergente Teilfolge.

Beweis. Sei (an) eine Folge reeller Zahlen. Wegen der Beschränktheit der Folge gibt es reelle Zahlen c < d mit an ∈ [c, d] für alle

n. Man konstruiert nun induktiv eine Intervallschachtelung (Ik)k∈N so, dass Ik = [ck, dk] unendlich viele Folgenglieder an enthält,

sowie eine zugehörige Folge (nk)k∈N natürlicher Zahlen mit nk+1 > nk und ank ∈ Ik. Induktionsanfang: Wähle I0 = [c0, d0] mit

c0 := c und d0 := d sowie ein an0 ∈ I0. Induktionsschritt: Sei Ik = [ck, dk] bereits konstruiert und mk :=
1

2
· (ck + dk) der

Mittelpunkt. Da Ik unendlich viele Folgenglieder enthält, können nicht beide Teilintervalle [ck,mk] und [mk, dk] nur endlich viele

Folgenglieder enthalten. Setze Ik+1 := [ck+1, dk+1] mit ck+1 := ck und dk+1 := mk, falls [ck,mk] unendlich viele Folgenglieder

enthält, ansonsten Ik+1 := [ck+1, dk+1] mit ck+1 := mk und dk+1 := dk. Offenbar gilt Ik+1 ⊆ Ik und |Ik+1| =
1

2
·|Ik| =

1

2k+1
·|I0|.

Da die Menge {n ∈ N : an ∈ Ik+1} unendlich ist, enthält sie ein Element m > nk. Setze nk+1 := m, d.h. es gilt ank+1
∈ Ik+1 und

nk+1 > nk. Nach dem Intervallschachtelungsprinzip gibt es eine eindeutig bestimmte Zahl h ∈ R mit h ∈ Ik für alle k ∈ N. Dann

gibt es zu jedem ε > 0 ein N ∈ N mit Ik ⊆ [h − ε, h + ε] für alle k ≥ N , d.h. |ank − h| ≤ ε für alle k ≥ N . Das bedeutet also

lim
k→∞

ank = h. Schlussendlich ist der Satz damit bewiesen.
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Die Stirling’sche Näherungsformel
[Zurück zur Liste]

Satz. Es gilt die folgende Formel:

n! ∼
√

2πn ·
(
n

e

)n
Beweis. Bereits bekannt ist die Wallis’sche Produktformel:

π

2
=
∞∏
j=1

(2j)2

(2j − 1) · (2j + 1)
=
∞∏
j=1

(2j)4

(2j − 1) · (2j) · (2j) · (2j + 1)
= lim
n→∞

24n · (n!)4

((2n)!)2 · (2n+ 1)

Daraus folgt also nach Ziehen der Wurzel:
√
π = lim

n→∞

22n · (n!)2

(2n)! ·
√
n+

1

2

Man betrachtet nun die Folge xn :=
n! · en
√
n · nn

. Diese Folge ist offenbar durch 0 nach unten beschränkt. Es wird nun gezeigt, dass

xn monoton fällt, womit dann die Konvergenz gezeigt ist. Man betrachtet dazu den folgenden Quotienten:

xn

xn+1

=
n! · en
√
n · nn

·
√
n+ 1 · (n+ 1)n+1

(n+ 1)! · en+1
=

1

e
·
(
n+ 1

n

)n+
1

2

Logarithmieren liefert dann:

ln

(
xn

xn+1

)
= −1 + (n+

1

2
) · ln

(
n+ 1

n

)
Nun gilt für |z| < 1 die Reihenentwicklung

ln

(
1 + z

1− z

)
= 2 ·

∞∑
k=0

z2k+1

2k + 1
= 2z +

2

3
z

3
+

2

5
z

5
+

2

7
z

7
+ . . .

Für positives z folgt somit:

2z ≤ ln

(
1 + z

1− z

)
≤ 2 ·

(
z +

z3

3
· (1 + z

2
+ z

4
+ z

6
+ . . .)

)
= 2 ·

(
z +

z3

3
·
∞∑
k=0

(z
2
)
k

)

Also gilt dann:

2z ≤ ln

(
1 + z

1− z

)
≤ 2 ·

(
z +

z3

3
·

1

1− z2

)
= 2z +

2

3
·

z3

1− z2

Mit z :=
1

2n+ 1
ergibt sich dann:

1

n+
1

2

≤ ln

(
n+ 1

n

)
≤

1

n+
1

2

+
2

3
·

1

(2n+ 1) · ((2n+ 1)2 − 1)

Man erhält also:

1 ≤
(
n+

1

2

)
· ln
(
n+ 1

n

)
≤ 1 +

1

3
·

1

(2n+ 1)2 − 1
= 1 +

1

3
·

1

4n2 + 4n
⇔ 0 ≤ −1 +

(
n+

1

2

)
· ln
(
n+ 1

n

)
≤

1

3
·

1

4n2 + 4n

Daraus folgt dann:

0 ≤ ln

(
xn

xn+1

)
≤

1

12
·

1

n · (n+ 1)

Aus der linken Ungleichung ergibt sich die Monotonie und aus der rechten Ungleichung folgt wegen
1

n · (n+ 1)
=

1

n
−

1

n+ 1
die

wichtige Abschätzung:

ln(xn)−
1

12n
≤ ln(xn+1)−

1

12 · (n+ 1)
⇒ ln(xn)−

1

12n
≤ ln(xn+m)−

1

12 · (n+m)

Also hat man dann:

ln

(
xn

xn+m

)
≤

1

12
·
(

1

n
−

1

n+m

)
Lässt man m gegen ∞ laufen, bekommt man (x sei der Limes von xn):

0 ≤ ln

(
xn

x

)
≤

1

12n
⇒ 1 ≤

xn

x
≤ e

1

12n

Insgesamt hat man also gezeigt:

x ≤
n! · en
√
n · nn

≤ x · e
1

12n

102



Jetzt muss nur noch x berechnet werden. Es gilt ja n! =
xn · n

n+
1

2

en
und also:

√
π = lim

n→∞

22n · (n!)2

(2n)! ·
√
n+

1

2

= lim
n→∞

22n · x2
n · n

2n+1 · e2n

e2n · x2n · (2n)
2n+

1

2 ·
√
n+

1

2

= lim
n→∞

x2
n

x2n

·
√

n

2n+ 1
=

x
√

2

Es ist also x =
√

2π und es gilt schließlich:

√
2π ≤

n! · en
√
n · nn

≤
√

2π · e
1

12n

Damit ist also die Behauptung des Satzes bewiesen.

Die Fouriertransformation
[Zurück zur Liste]

Satz. Sei f ∈ L1(R) mit f̂ ∈ L1(R). Dann gilt für fast alle t ∈ R:

f(t) =
1
√

2π
·
∫ ∞
−∞

f̂(x) · eitx dx

Gleichheit besteht in jedem Punkt t, in dem f stetig ist. Es ist hier f̂(x) =
1
√

2π
·
∫ ∞
−∞

f(t) · e−ixt dt die Fouriertransformierte

von f . f̂(x) gibt Auskunft darüber, wie stark eine Schwingung der Frequenz x an der Überlagerung von Schwingungen zur

Funktion f amplitudenmäßig beteiligt ist.

Beweis. Eine Folge δk ∈ L1(R) heißt Diracfolge, wenn sie folgende drei Eigenschaften hat: (D1) Für alle k gilt δk ≥ 0, (D2)

Für alle k gilt

∫
R

δk(t) dt = 1 und (D3) Für alle Kr(0) := {t ∈ R : |t − 0| < r} gilt lim
k→∞

∫
R\Kr(0)

δk(t) dt = 0. Sei definiert:

δ1(t) :=
1
√

2π
· e
−
t2

2 und δk(t) = k · δ1(k · t), k ∈ N. Klarerweise ist (D1) erfüllt. Aber es gilt auch (D2), denn:

∫ ∞
−∞

δk(t) dt =
k
√

2π
·
∫ ∞
−∞

e
−
k2 · t2

2 dt =
1
√
π
·
∫ ∞
−∞

e
−s2

ds = 1

Es wurde hier die Koordinatentransformation s :=
k · t
√

2
benutzt. Nun zu (D3):

∫
R\Kr(0)

δk(t) dt =

∫ −r
−∞

δk(t) dt +

∫ ∞
r

δk(t) dt.

Weil δk symmetrisch zur y-Achse ist, folgt:

∫
R\Kr(0)

δk(t) dt = 2 ·
∫ ∞
r

δk(t) dt = 2 ·
1
√
π
·
∫ ∞
k·r√

2

e
−s2

ds. Wegen r > 0 folgt

k·r√
2
→ ∞ für k → ∞. Also gilt: Für k → ∞ folgt

∫ ∞
k·r√

2

e
−s2

ds =

∫ ∞
0

e
−s2

ds −
∫ k·r√

2

0

e
−s2

ds =

√
π

2
−
∫ k·r√

2

0

e
−s2 →

√
π

2
−

∫ ∞
0

e
−s2

=

√
π

2
−
√
π

2
= 0, also (D3) gezeigt. Es gilt δ̂1 = δ1, Beweis dieser Aussage: Es gilt nochmal δ1(t) :=

1
√

2π
· e
−
t2

2 ,

also: δ̂1(x) =
1

2π
·
∫ ∞
−∞

e
−
t2

2 · e−ixt dt =
e
−
x2

2

2π
·
∫ ∞
−∞

e

−

 t2
2

+ixt−
x2

2


dt. Jetzt benutzt man die Substitutionsregel und verkettet

mit t(s) := s ·
√

2 − ix, also t′(s) =
√

2, und man erhält dann:
e
−
x2

2

2π
·
∫ ∞
−∞

e
−

 t
√

2
+
ix
√

2

2

dt =
e
−
x2

2

2π
·
∫ ∞
−∞

e
−s2 ·

√
2 ds =

e
−
x2

2

2π
·
∫ ∞
−∞

e
−s2

ds ·
√

2 =
e
−
x2

2

2π
·
√
π ·
√

2 =
1
√

2π
· e
−
x2

2 = δ1(x). Weiter:

δk(x) = k · δ1(k · x) = k · δ̂1(k · x) =
k

2π
·
∫ ∞
−∞

e
−
t2

2 · e−ikxt dt =
1

2π
·
∫ ∞
−∞

e
−
s2

2k2 · e−ixs ds
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Die Faltung von f mit δk ergibt unter Berücksichtigung von δk(t− x) = δk(x− t):

(f ∗ δk)(t) :=

∫ ∞
−∞

f(t− x) · δk(x) dx

=

∫ ∞
−∞

f(x) · δk(t− x) dx

=

∫ ∞
−∞

f(x) · δk(x− t) dx

=

∫ ∞
−∞

f(x) ·

 1

2π
·
∫ ∞
−∞

e
−
s2

2k2 · e−i·(x−t)·s ds

 dx

=
1

2π
·
∫ ∞
−∞

∫ ∞
−∞

f(x) · e
−
s2

2k2 · e−i·(x−t)·s ds

 dx

Der messbare Integrand dieses Doppelintegrals hat als Funktion von (s, x) ∈ R×R die integrierbare Majorante |f(x)|·e−s
2
. Folglich

kann nach dem Satz von Fubini die Reihenfolge der Integrationen vertauscht werden und man erhält durch Auswertung des inneren

Integrals:

(f ∗ δk)(t) =
1

2π
·
∫ ∞
−∞

∫ ∞
−∞

f(x) · e
−
s2

2k2 · e−i·(x−t)·s dx

 ds

=
1
√

2π
·
∫ ∞
−∞

(
1
√

2π
·
∫ ∞
−∞

f(x) · e−ixs dx
)
· e
−
s2

2k2 · eits ds

=
1
√

2π
·
∫ ∞
−∞

f̂(s) · e
−
s2

2k2 · eits ds

Für k → ∞ konvergieren die Integranden punktweise gegen f̂(s) · eits und werden durch die integrierbare Funktion f̂ majorisiert.

Nach dem Satz über die majorisierte Konvergenz (Satz von Lebesgue) konvergiert also:

(f ∗ δk)(t) →
k→∞

1
√

2π
·
∫ ∞
−∞

f̂(s) · eits ds, t ∈ R

Es wird nun gezeigt, dass gilt ‖f ∗ δk − f‖1 → 0 für k → ∞. Wenn das gilt, dann folgt, dass es eine Teilfolge (f ∗ δk′ )k′∈N gibt,

welche fast überall gegen f konvergiert. Beweis dieser Aussage: Sei zunächst f ∗ δk =: fk. Weil ‖fk − f‖1 → 0 für k →∞ gilt, ist

(fk)k∈N eine L1-Cauchyfolge. Also gibt es für alle ε > 0 ein n0 ∈ N, so dass ‖fm − fn‖1 < ε für alle m,n ≥ n0. Daher existiert

auch eine Teilfolge (fkn )n∈N von (fk)k∈N so, dass ‖fkn − fm‖1 <
1

2n
für alle m ≥ kn. Definiert man gn := fkn − fkn+1

, so

gilt für alle 1 ≤ l < ∞:

∥∥∥∥∥ l∑
n=1
|gn|

∥∥∥∥∥
1

Dreiecksungl.

≤
l∑

n=1
‖gn‖1

kn+1≥kn
≤

l∑
n=1

1

2n
< 1. Weil

l∑
n=1
|gn| monoton gegen

∞∑
n=1
|gn| läuft,

gilt nach dem Satz der monotonen Konvergenz

∥∥∥∥ ∞∑
n=1
|gn|

∥∥∥∥
1

≤ lim
l→∞

l∑
n=1
‖gn‖1 ≤

∞∑
n=1

1

2n
= 1. Das bedeutet, dass die Reihe

l∑
n=1

gn

fast überall absolut konvergent ist, also konvergent ist. Es gilt fk1
− fkn =

n−1∑
j=1

gj (Teleskopsumme). Daraus folgt direkt, dass

fkn für n → ∞ fast überall gegen fk1
−
∞∑
n=1

gn =: g konvergiert. Man hat also eine konvergente Teilfolge gefunden. Es wird jetzt

gezeigt, dass g ∈ L1(R) (‖g‖1 < ∞) ist und, dass ‖fk − g‖1 → 0 für k → ∞ gilt. Dazu sei ε > 0. Es gibt dann ein n0 ∈ N,

so dass ‖fkn − fm‖1 < ε für alle kn,m ≥ n0. Man wendet nun das Lemma von Fatou auf die Folge (|fkn − fm|)n∈N an und

erhält für alle m ≥ n0:

∫
|g − fm| dµ =

∫
lim inf
n→∞

|fkn − fm| dµ ≤ lim inf
n→∞

∫
|fkn − fm| dµ = lim inf

n→∞
‖fkn − fm‖1 ≤ lim inf

n→∞
ε = ε.

Also gilt auch ‖g − fk‖1 → 0 für k → ∞. Wegen ‖g‖1 ≤ ‖g − fk1
‖1 + ‖fk1

‖1 ist also ‖g‖1 < ∞ (also: g ∈ L1(R)), denn wegen

fk1
∈ L1(R) (denn: fk1

= f ∗ δk1
mit f ∈ L1(R) und δk1

∈ L1(R)) ist schonmal ‖fk1
‖1 <∞. Weiter: ‖fk1

− g‖1 =

∥∥∥∥ ∞∑
n=1

gn

∥∥∥∥
1

≤

lim
l→∞

∥∥∥∥∥ l∑
n=1

gn

∥∥∥∥∥
1

≤ lim
l→∞

l∑
n=1
‖gn‖1 ≤

∞∑
n=1

1

2n
= 1 < ∞. Weil ‖fk − f‖1 → 0 und ‖fk − g‖1 → 0 für k → ∞ gilt, folgt, dass fast

überall gilt f = g, also gibt es eine Teilfolge (fkn )n∈N von (fk)k∈N, so dass gilt: fkn konvergiert für n → ∞ fast überall gegen

f (Ende des Beweises der Aussage oben). Jetzt wird aber auch gezeigt, dass gilt ‖f ∗ δk − f‖1 → 0 für k → ∞: Die Behauptung

wird zunächst für Treppenfunktionen f =
s∑
k=1

rk · 1Ik (rk ∈ R) gezeigt. Aus Linearitätsgründen genügt es hierzu sie für f = 1I

(I ist ein Intervall) zu zeigen: Es wird ‖1I − 1I ∗ δk‖1 abgeschätzt. Wegen der Eigenschaft (D2) von δk gilt 1I(x) =

∫
R

1I(x) ·

δk(y) dy. Es gilt dann ‖1I − 1I ∗ δk‖1 =

∫ ∞
−∞
|1I − 1I ∗ δk| dx =

∫ ∞
−∞

∣∣∣∣∫ ∞
−∞

1I(x) · δk(y) dy −
∫ ∞
−∞

1I(x− y) · δk(y) dy

∣∣∣∣ dx =∫ ∞
−∞

∣∣∣∣∫ ∞
−∞

δk(y) · (1I(x)− 1I(x− y)) dy

∣∣∣∣ dx ≤ ∫ ∞
−∞

(∫ ∞
−∞

δk(y) · |1I(x)− 1I(x− y)| dy
)
dx, wobei δk ≥ 0 benutzt wurde. Das

Vertauschen der Integrationsreihenfolge ergibt mit qy(x) := |1I(x)− 1I(x− y)| dann ‖1I−1I∗δk‖1 ≤
∫ ∞
−∞

δk(y)·
(∫ ∞
−∞

qy(x) dx

)
dy.

Dabei ist qy die charakteristische Funktion der Menge Iy := [I ∪ (y + I)] \ [I ∩ (y + I)]. Es sei nun ε > 0 gegeben. Man

wählt dann ein r > 0 so, dass v(Iy) < ε für alle y ∈ K := Kr(0) = {t ∈ R : |t − 0| < r}. Dann gilt

∫ ∞
−∞

qy(x) dx < ε
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für y ∈ K. Nun gilt

∫ ∞
−∞

δk(y) ·
(∫ ∞
−∞

qy(x) dx

)
dy =

∫
K

δk(y) ·
(∫ ∞
−∞

qy(x) dx

)
dy +

∫
R\K

δk(y) ·
(∫ ∞
−∞

qy(x) dx

)
dy ≤

ε ·
∫
K

δk(y) dy + 2 · v(I) ·
∫
R\K

δk(y) dy wegen

∫ ∞
−∞

qy(x) dx = v(Iy) ≤ 2 · v(I). Weil

∫
K

δk(y) dy ≤ 1 gilt, folgt zusammen mit

der Eigenschaft (D3) von δk, dass gilt: ‖1I − 1I ∗ δk‖1 ≤ 2 · ε für alle hinreichend große k. Sei jetzt f ∈ L1(R) beliebig. Sei

wieder ε > 0 vorgegeben. Man wähle dann eine Treppenfunktion ϕ mit ‖f − ϕ‖1 < ε und ein N derart, dass für alle k ≥ N gilt

‖ϕ− ϕ ∗ δk‖1 < ε. Für diese k gilt dann: ‖f − f ∗ δk‖1 ≤ ‖f − ϕ‖1 + ‖ϕ− ϕ ∗ δk‖1 + ‖(ϕ− f) ∗ δk‖1 ≤ 2 · ε+ ‖ϕ− f‖1 · ‖δk‖1 ≤

2 · ε + ε · 1 = 3ε, wobei hier ‖δk‖1 =

∫
R

δk(t) dt = 1 benutzt wurde. Da ε > 0 beliebig gewählt ist, folgt die behauptete Kon-

vergenzaussage, dass ‖f − f ∗ δk‖1 = ‖f ∗ δk − f‖1 → 0 für k → ∞ gilt. Wegen dieser Konvergenz gibt es also eine Teilfolge

(f ∗ δk′ )k′∈N, die fast überall gegen f konvergiert. Weil (f ∗ δk)(t) →
k→∞

1
√

2π
·
∫ ∞
−∞

f̂(s) · eits ds, t ∈ R, gilt, folgt, dass auch

(f ∗ δk′ )(t) →
k′→∞

1
√

2π
·
∫ ∞
−∞

f̂(s) · eits ds, t ∈ R, gilt. Daraus folgt dann, dass fast überall gilt f(t) =
1
√

2π
·
∫ ∞
−∞

f̂(s) · eits ds.

Sei f stetig in t∗ ∈ R. Da die Gleichung f(t) =
1
√

2π
·
∫ ∞
−∞

f̂(x) · eitx dx fast überall gilt, gibt es eine Folge (tk)k∈N mit tk → t∗

(k →∞), so dass in allen tk jene Gleichung gilt. Ferner definiert das Integral in jener Gleichung als parameterabhängiges Integral

eine in t∗ stetige Funktion. Es folgt also die Gültigkeit von f(t) =
1
√

2π
·
∫ ∞
−∞

f̂(x) · eitx dx in t∗, denn wegen der Stetigkeit beider

Seiten in t∗ folgt aus lim
k→∞

f(tk) = lim
k→∞

1
√

2π
·
∫ ∞
−∞

f̂(x) · eitkx dx, dass gilt f( lim
k→∞

tk) =
1
√

2π
·
∫ ∞
−∞

f̂(x) · e
i· lim
k→∞

tk·x
dx, also

f(t
∗
) =

1
√

2π
·
∫ ∞
−∞

f̂(x) · eit
∗x
dx. Das war es auch schon!

Das Gesetz der großen Zahlen
[Zurück zur Liste]

Satz. Seien X1, X2, . . . : Ω→ R stochastisch unabhängige Zufallsvariablen mit EXi = µ und VarXi = σ2 für alle i ∈ N. Dann

gilt die folgende Formel:
X1 + . . .+Xn

n

L2,P→
n→∞

µ

Das arithmetische der Zufallsvariablen X1, . . . , Xn konvergiert in L2 und in Wahrscheinlichkeit gegen den Erwartungswert.

Beweis. Sei Sn = X1 + . . .+Xn die Summe der ersten n Zufallsvariablen. Dann gilt für den Erwartungswert und die Varianz der

Summe ESn = nµ und VarSn = nσ2, wobei im Fall der Varianz die stochastische Unabhängigkeit der Zufallsvariablen benutzt

wurde. Die Konvergenz in L2:

E

[(
Sn

n
− µ

)2]
= E

[(
Sn − ESn

n

)2]
= E

[
(Sn − ESn)

2
]
·

1

n2
=

VarSn

n2
=
nσ2

n2
=
σ2

n
→

n→∞
0

Damit ist also
Sn

n

L2
→

n→∞
µ gezeigt. Stochastische Konvergenz: Für eine Zufallsvariable Z ≥ 0 gilt für alle a > 0: P[Z ≥ a] ≤

EZ

a
.

Beweis: Es gilt Z(ω) ≥

 a, Z(ω) ≥ a

0, Z(ω) < a
. Es gilt also Z ≥ a · 1{Z≥a}. Für den Erwartungswert gilt daher:

EZ ≥ E[a · 1{Z≥a}] = a · E[1{Z≥a}] = a · P[Z ≥ a]

Sei f eine monoton steigende Funktion, dann gilt:

P[Z ≥ a] = P[f(Z) ≥ f(a)] ≤
E[f(Z)]

f(a)

Sei nun f(x) = x2, dann gilt unter der Voraussetzung von lim
n→∞

E[(Zn − Z)2] →
n→∞

0, dass gilt

P[|Zn − Z| ≥ ε] ≤
E[(Zn − Z)2]

ε2
→

n→∞
0

Damit also ist gezeigt:

lim
n→∞

P

[∣∣∣∣Snn − µ
∣∣∣∣ ≥ ε] = 0

Der Beweis des Satzes ist hiermit beendet.

105



Die AGH-Ungleichung
[Zurück zur Liste]

Satz. Das arithmetische, geometrische und harmonische Mittel erfüllen folgende Ungleichung:

xA :=
1

n
·
n∑
j=1

xj ≥ xG :=

 n∏
j=1

xj


1

n
≥ xH :=

n
n∑
j=1

1

xj

Dabei gilt, dass die xj positive reelle Zahlen sind.

Beweis. Es wird nun gesetzt: yj :=
1

xj
(j = 1, . . . , n). Es gilt:

xH ≤ xG ⇔
n

n∑
j=1

1

xj

≤

 n∏
j=1

xj


1

n
⇔

n
n∑
j=1

yj

≤
1(

n∏
j=1

yj

) 1

n

⇔
1

n
·
n∑
j=1

yj ≥

 n∏
j=1

yj


1

n
⇔ yA ≥ yG

Es bleibt also zu zeigen, dass xA ≥ xG gilt: Beweis durch vollständige Induktion über n: I.A.: Für n = 1 ist die Sache klar. Sei

n = 2, dann gilt

[
1

2
· (x1 + x2)

]2

− x1 · x2 =
1

4
· (x1 − x2)2 ≥ 0. Sei nun also die Behauptung für n richtig. O.B.d.A. sei xn+1

das maximale Element von x1, . . . , xn, xn+1 und xA das arithmetische Mittel von x1, . . . , xn. Dann gilt xn+1 − xA ≥ 0. Aus der

Benoulli’schen Ungleichung ((1 + x)n ≥ 1 + nx, n ≥ 0 und x ≥ −1) folgt:(
x1 + . . .+ xn+1

(n+ 1) · xA

)n+1

=

(
n · xA + xn+1

(n+ 1) · xA

)n+1

=

(
(n+ 1) · xA + xn+1 − xA

(n+ 1) · xA

)n+1

=

(
1 +

xn+1 − xA
(n+ 1) · xA

)n+1

Nun wird die Bernoulli’sche Ungleichung angewendet:(
1 +

xn+1 − xA
(n+ 1) · xA

)n+1

≥ 1 + (n+ 1) ·
xn+1 − xA
(n+ 1) · xA

= 1 +
xn+1 − xA

xA
=
xA

xA
+
xn+1 − xA

xA
=
xn+1

xA

Man hat nun also: (
x1 + . . .+ xn+1

(n+ 1) · xA

)n+1

≥
xn+1

xA

Jetzt multipliziert man auf beiden Seiten mit xn+1
A :(

x1 + . . .+ xn+1

n+ 1

)n+1

≥ xnA · xn+1

I.V.
≥ (x1 · . . . · xn) · xn+1

Wenn man nun auf beiden Seiten die n-te Wurzel zieht, folgt die Behauptung.

Die Tschebyscheff’sche Ungleichung
[Zurück zur Liste]

Satz. Sei E(X) der Erwartungswert und Var(X) die Varianz einer Zufallsvariablen X. Dann gilt:

P (|X − E(X)| ≥ a) ≤
Var(X)

a2

Beweis. Es gilt nämlich:

Var(X) =

∫ ∞
−∞

(y − E(X))
2 · P (X = y) dy

=

∫
|y−E(X)|<a

(y − E(X))
2 · P (X = y) dy +

∫
|y−E(X)|≥a

(y − E(X))
2 · P (X = y) dy

≥
∫
|y−E(X)|≥a

(y − E(X))
2 · P (X = y) dy

≥
∫
|y−E(X)|≥a

a
2 · P (X = y) dy

= a
2 ·
∫
|y−E(X)|≥a

P (X = y) dy

= a
2 · P (|X − E(X)| ≥ a)

Also gilt doch:
Var(X)

a2
≥ P (|X − E(X)| ≥ a)

und der Beweis ist erbracht.
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Die Anzahl der k-Partitionen
[Zurück zur Liste]

Satz. Die Anzahl der k-Partitionen einer n-elementigen Menge ist gleich S(n, k) =
1

k!
·
k∑
i=0

(−1)
i ·
(k
i

)
· (k − i)n.

Beweis. Die Zahlen S(n, k) nennt man auch Stirling-Zahlen zweiter Art. Zunächst wird die Anzahl der surjektiven Abbildungen

von einer n-elementigen Menge M in eine k-elementige Menge N ermittelt, denn das Urbild einer solchen Abbildung repräsentiert

eine Partition von M in k Teilmengen, wobei die Reihenfolge der k Mengen jedoch berücksichtigt wird. Denn behält man die

Abbildungspfeile bei und permutiert nur die k Elemente in N , dann hat man zwar eine andere surjektive Abbildung, aber dieselbe

Partition in k Mengen. Deswegen muss man noch durch k! teilen, um die Anzahl der k-Partitionen von N zu erhalten. Die Anzahl

der surjektiven Abbildungen von M nach N wird mit der Siebformel von Sylvester berechnet, die folgendermaßen aussieht:∣∣∣∣∣
m⋃
i=1

Ai

∣∣∣∣∣ =
∑

∅6=I⊆{1,...,m}

(−1)
|I|+1 ·

∣∣∣∣∣∣
⋂
i∈I

Ai

∣∣∣∣∣∣
Diese Formel beweist man ganz einfach mit vollständiger Induktion über m. O.B.d.A. sei die Menge N fest aufsteigend durch-

nummiert. Sei dann Ai die Menge aller Abbildungen f von M nach N = {n1, . . . , nk}, die ni nicht treffen, d.h. für kein Element

m ∈M ist f(m) = ni. Ai hat so viele Elemente, wie es Abbildungen von M nach N \ {ni} gibt, also (k− 1)n. Für r Durchschnitte

solcher Mengen gilt
∣∣Ai1 ∩ . . . ∩ Air ∣∣ = (k − r)n, da ja bestimmte r Elemente in N nicht getroffen werden. Jede nicht surjektive

Abbildung f von M nach N ist in mindestens einer der Ai enthalten, denn mindestens ein Element in N wird nicht getroffen. Und

die Vereinigung der Ai (i = 1, . . . , k) besteht aus nicht surjektiven Abbildungen. Um die Anzahl der nicht surjektiven Abbildungen

zu berechnen, muss man berücksichtigen, dass die Ai nicht disjunkt sind. Es muss also die Siebformel von Sylvester benutzt werden.

Nun ist die Anzahl aller Abbildungen von M nach N abzüglich aller nicht surjektiven Abbildungen gleich der Anzahl der surjektiven

Abbildungen f : M → N . Für die Anzahl aller surjektiven Abbildungen gilt also die Formel:

|A0| −

∣∣∣∣∣
k⋃
i=1

Ai

∣∣∣∣∣ = k
n −

∑
∅6=I⊆{1,...,k}

(−1)
|I|+1 ·

∣∣∣∣∣∣
⋂
i∈I

Ai

∣∣∣∣∣∣ = k
n

+

k∑
r=1

(−1)
(r+1)−1 ·

((k
r

)
· (k − r)n

)
=

k∑
i=0

(−1)
i ·
(k
i

)
· (k − i)n

Denn die Anzahl aller Abbildungen von M nach N ist kn und wenn man |I| = r Mengen der Ai mit i ∈ {1, . . . , k} also aus k

Ai-Mengen auswählt, um sie zu schneiden, dann gibt es dafür
(k
r

)
Möglichkeiten. Jeder dieser Schnitte, bestehend aus r Mengen,

hat die Mächtigkeit (k−r)n. Teilt man die Anzahl der surjektiven Abbildungen f : M → N durch k!, so erhält man die Behauptung

des Satzes.

Die n-dimensionale Kugel
[Zurück zur Liste]

Satz. Das Volumen einer n-dimensionalen Kugel beträgt Vn(r) =
π
n
2

Γ

(
n

2
+ 1

) ·rn und der Oberflächeninhalt On(r) =
2 · π

n
2

Γ

(
n

2

) ·
rn−1. Für n → ∞ konvergiert das Volumen mit gegebenen Radius r gegen 0. Das gleiche gilt für die Oberfläche. Mit Γ wird

hier die sogenannte Gammafunktion bezeichnet, die die Fakultät interpoliert und hier als bekannt vorausgesetzt wird.

Beweis. Die Formel für das Volumen einer n-dimensionalen Kugel wird mittels vollständiger Induktion gezeigt. Induktionsanfang:

n = 1: Man betrachtet dort das Volumen des Intervalls [−r, r]; es hat das Volumen 2 · r. Es gilt V1(r) =
π

1
2

Γ

(
1

2
+ 1

) · r1. Es ist

bekannt, dass Γ

(
1 +

1

2

)
=

√
π

2
gilt, also V1(r) =

√
π
√
π

2

· r = 2 · r. Also O.K.! Zur Sicherheit wird noch der Fall n = 2 betrachtet: In

diesem Fall betrachtet man das Volumen eines Kreises mit dem Radius r. Das Volumen ist bekanntlich gleich π · r2. Betrachte nun

die Formel: V2(r) =
π

2
2

Γ

(
2

2
+ 1

) · r2 = π · r2, denn es gilt Γ(2) = 1. Der Induktionsanfang ist also erfüllt. Nun gelte die Behauptung

für n − 1. Dann wird gezeigt, dass die Behauptung auch für n gilt. Klarerweise gilt Vn(r) = Vn(1) · rn, weswegen man sich auf

die Volumina mit dem Radius 1 beschränken kann. Die Einheitskugel im Rn liegt zwischen xn = −1 und xn = 1. Die Ebenen

xn = konst. schneiden sich daher im Bereich −1 < xn < 1 mit Kn(1) =

{
(x1, . . . , xn) ∈ Rn :

n∑
k=1

x2
k ≤ 12

}
in einer (n − 1)-

dimensionalen Kugel mit dem Radius
√

1− x2
n. Das Volumen dieser Kugel ist nach Induktionsvoraussetzung: Vn−1(

√
1− x2

n) =

π
n−1

2

Γ

(
n− 1

2
+ 1

) · (
√

1− x2
n)n−1. Es gilt jetzt: Vn(1) =

∫ 1

−1

Vn−1(
√

1− x2
n) dxn =

π
n−1

2

Γ

(
n− 1

2
+ 1

) · ∫ 1

−1

(
√

1− x2
n)
n−1

dxn.
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Es wird hier benutzt, dass gilt

∫ 1

−1

(
√

1− x2
n)
n−1

dxn =
√
π ·

Γ

(
n+ 1

2

)
Γ

(
n

2
+ 1

) , was später noch bewiesen wird. Also: Vn(1) =

π
n−1

2

Γ

(
n− 1

2
+ 1

) · √π · Γ

(
n+ 1

2

)
Γ

(
n

2
+ 1

) =
π
n
2

Γ

(
n+ 1

2

) · Γ

(
n+ 1

2

)
Γ

(
n

2
+ 1

) =
π
n
2

Γ

(
n

2
+ 1

) . Also gilt der Induktionsschluss. Nun zum Beweis

von

∫ 1

−1

(
√

1− x2
n)
n−1

dxn =
√
π ·

Γ

(
n+ 1

2

)
Γ

(
n

2
+ 1

) : Es gilt:

∫ 1

−1

(
√

1− x2
n)
n−1

dxn =

∫ 1

−1

(1−x2
n)

n− 1

2 dxn =

∫ 0

π

(1− cos(t)
2
)

n− 1

2 ·

(− sin(t)) dt =

∫ 0

π

(sin(t)
2
)

n− 1

2 ·(− sin(t)) dt =

∫ 0

π

sin(t)
n−1 ·(− sin(t)) dt = −

∫ 0

π

sin(t)
n
dt =

∫ π

0

sin(t)
n
dt = 2 ·

∫ π
2

0

sin(t)
n
dt.

Mittels partieller Integration findet man die folgende Rekursionsformel:

∫ π
2

0

sin(t)
n
dt =

n− 1

n
·
∫ π

2

0

sin(t)
n−2

dt. Weiter ist be-

kannt:

∫ π
2

0

sin(t)
0
dt =

π

2
und

∫ π
2

0

sin(t)
1
dt = 1. Daraus lässt sich für n = 2 · k ableiten:

∫ π
2

0

sin(t)
n
dt =

∫ π
2

0

sin(t)
2k
dt =

π

2
·
k∏
j=1

2j − 1

2j
und für n = 2k + 1:

∫ π
2

0

sin(t)
n
dt =

∫ π
2

0

sin(t)
2k+1

dt =
k∏
j=1

2j

2j + 1
. Es gelten die folgenden Formeln:

n gerade⇒ Γ

(
n+ 1

2

)
=
√
π ·

n
2∏
j=1

2j − 1

2
und Γ

(
n

2
+ 1

)
=

(
n

2

)
! =

n
2∏
j=1

2j

2

Und es gilt noch:

n ungerade⇒ Γ

(
n+ 1

2

)
=

(
n− 1

2

)
! =

n−1
2∏
j=1

2j

2
und Γ

(
n

2
+ 1

)
=
√
π ·

n+1
2∏
j=1

2j − 1

2

Zunächst wird Γ

(
n+ 1

2

)
=
√
π ·

n
2∏
j=1

2j − 1

2
für gerades n bewiesen: Vollständige Induktion: n = 0: Γ

(
0 + 1

2

)
=
√
π · 1.

n = 2: Γ

(
2 + 1

2

)
=

1

2
· Γ

(
1

2

)
=

√
π

2
=
√
π ·

2− 1

2
, denn es gilt die Funktionalgleichung Γ(x + 1) = x · Γ(x). Also ist

der Induktionsanfang gegeben. Es gelte die Behauptung für n − 2. I.S.: Γ

(
n+ 1

2

)
= Γ

(
n− 1

2
+ 1

)
=

n− 1

2
· Γ
(
n− 1

2

)
=

n− 1

2
· Γ
(

(n− 2) + 1

2

)
=
I.V.

n− 1

2
·
√
π ·

n
2
−1∏

j=1

2j − 1

2
=
√
π ·

n
2∏
j=1

2j − 1

2
. Die Behauptung Γ

(
n

2
+ 1

)
=
√
π ·

n+1
2∏
j=1

2j − 1

2
für

ungerades n wird jetzt bewiesen: I.A.: n = 1: Γ

(
1

2
+ 1

)
=

1

2
· Γ
(

1

2

)
=

√
π

2
=
√
π ·

1

2
, also O.K., und zur Sicherheit noch n = 3:

Γ

(
3

2
+ 1

)
=

3

2
· Γ
(

3

2

)
=

3

2
· Γ
(

1

2
+ 1

)
=

3

2
·

1

2
· Γ
(

1

2

)
=

3

4
·
√
π =
√
π ·

1

2
·

3

2
, also ist der Induktionsanfang gültig. Gelte die

Behauptung für n− 2. I.S.: Γ

(
n

2
+ 1

)
=
n

2
· Γ
(
n

2

)
=
n

2
· Γ
(
n− 2

2
+ 1

)
=
I.V.

n

2
·
√
π ·

n−1
2∏
j=1

2j − 1

2
=
√
π ·

n+1
2∏
j=1

2j − 1

2
. Also ist

der Beweis durch vollständige Induktion erbracht. Aus den bewiesenen Formeln oben, folgt folgendes:

n gerade⇒
Γ

(
n+ 1

2

)
Γ

(
n

2
+ 1

) =

√
π ·

n
2∏
j=1

2j − 1

2
n
2∏
j=1

2j

2

=
√
π ·

n
2∏
j=1

2j − 1

2j
⇔
√
π

2
·

Γ

(
n+ 1

2

)
Γ

(
n

2
+ 1

) =
π

2
·

n
2∏
j=1

2j − 1

2j

Und es gilt:

n ungerade⇒
Γ

(
n+ 1

2

)
Γ

(
n

2
+ 1

) =

n−1
2∏
j=1

2j

2

√
π ·

n+1
2∏
j=1

2j − 1

2

=

n−1
2∏
j=1

2j

2

√
π

2
·
n−1

2∏
j=1

2j + 1

2

=
2
√
π
·

n−1
2∏
j=1

2j

2j + 1
⇔
√
π

2
·

Γ

(
n+ 1

2

)
Γ

(
n

2
+ 1

) =

n−1
2∏
j=1

2j

2j + 1

Daraus folgt dann also:

n gerade⇒
√
π

2
·

Γ

(
n+ 1

2

)
Γ

(
n

2
+ 1

) =

∫ π
2

0

sin(t)
n
dt und n ungerade⇒

√
π

2
·

Γ

(
n+ 1

2

)
Γ

(
n

2
+ 1

) =

∫ π
2

0

sin(t)
n
dt

Wie schon behauptet, gilt dann:

∫ 1

−1

(
√

1− x2
n)
n−1

dxn = 2 ·
∫ π

2

0

sin(t)
n
dt = 2 ·

√
π

2
·

Γ

(
n+ 1

2

)
Γ

(
n

2
+ 1

) =
√
π ·

Γ

(
n+ 1

2

)
Γ

(
n

2
+ 1

)
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Nun kümmert man sich um den Oberflächeninhalt: Klarerweise gilt der Zusammenhang Vn(r) =

∫ r

0

On(r) dr, daraus folgt dann

∂

∂r
Vn(r) = On(r). Also gilt: On(r) =

∂

∂r

 π
n
2

Γ

(
n

2
+ 1

) · rn
 =

π
n
2

n

2
· Γ
(
n

2

) ·n · rn−1 =
2 · π

n
2

Γ

(
n

2

) · rn−1. Als nächstes wird gezeigt,

dass das Volumen einer n-dimensionalen Kugel für n→∞ gegen 0 konvergiert: Es wird nun gezeigt: lim
n→∞

Vn(1) = 0. Es ist bekannt

die Stirling-Formel: n! = Γ(n+ 1) ∼
√

2π · n ·
(
n

e

)n
. Es gilt also:

Vn(1) =
π
n
2

Γ

(
n

2
+ 1

) ∼ π
n
2

√
π · n ·

(
n

2 · e

)n
2

=
π
n
2

√
π · n

·
(

2 · e
n

)n
2

=
(π · 2 · e)

n
2

√
π ·
√
n ·
√
nn
≤

(4 · 2 · 3)
n
2

√
nn+1

≤
24
n
2

n
n+1

2

≤
(

24

n

)n+1
2

Daraus folgt also Vn(1) ≤
(

24

n

)n
. Für n > 24 gilt

(
24

n

)n
≤
(

24

25

)n
. Weil

24

25
< 1 gilt, folgt, dass

(
24

n

)n
für n → ∞ gegen 0

konvergiert, also lim
n→∞

Vn(1) = 0. Nun zum Beweis von lim
n→∞

On(1) = 0:

On(1) =
2 · π

n
2

Γ

(
n

2

) =
2 · π

n
2

Γ

(
n− 2

2
+ 1

) =
2 · π

n
2√

π · (n− 2) ·
(
n− 2

2 · e

)n−2
2

=
2 · π

n
2

√
π ·
√
n− 2

·
(2 · e)

n−2
2

√
n− 2

n−2
≤

2 · π
n
2 · (2 · e)

n
2

√
n− 2

n−1

Also gilt weiter:

On(1) ≤
2 · (π · 2 · e)

n
2

√
n− 2

n−1
=

2 · (π · 2 · e)
n
2

(n− 2)
n−1

2

= 2 ·
√
π · 2 · e ·

(π · 2 · e)
n−1

2

(n− 2)
n−1

2

≤ 2 ·
√

4 · 2 · 3 ·
(

4 · 2 · 3
n− 2

)n−1
2
≤ 2 ·

√
24 ·

(
24

n− 2

)n

Es gilt nun für n− 2 > 24:

(
24

n− 2

)n
≤
(

24

25

)n
, also, weil wieder

24

25
< 1 ist, folgt demnach lim

n→∞
On(1) = 0. Fertig!

Die Heisenberg’sche Unschärferelation
[Zurück zur Liste]

Die Heisenberg’sche Unschärferelation ist ein Ergebnis der Quantentheorie. Es wird sich hier beim Aufbau dieser Theorie, die nötig

ist für den Beweis der Heisenberg’schen Unschärferelation, auf die quantenmechanischen Eigenschaften der Dynamik einzelner

Teilchen (Massepunkte) in einer Dimension, beschrieben durch die Ortskoordinate x und den Impuls p, beschränkt. Dabei soll

jedoch darauf hingewiesen werden, dass die Theorie auch für drei Dimensionen gilt. Es sei noch erwähnt, dass der Welle-Teilchen-

Dualismus dafür verantwortlich ist, dass man sich mit Quantentheorie beschäftigen muss.

Definition. Eine Funktion f(x, t) heißt quadratisch integrabel, falls gilt∫ ∞
−∞
|f(x, t)|2 dx =

∫ ∞
−∞

f(x, t) · f(x, t) dx <∞

Dabei sei f(x, t) die komplex konjugierte Funktion von f(x, t).

Postulat. Zu einem Teilchen (Massepunkt) gehört eine eindeutige, quadratisch integrable, im Allgemeinen komplexe Wel-

lenfunktion ψ(x, t). Sie beschreibt den Zustand des Teilchens. Da die Wellenfunktion quadratisch integrabel ist, kann sie

normiert werden. Dazu zieht man die Bedingung heran, dass die Wahrscheinlichkeit, das Teilchen zur Zeit t irgendwo auf

der x-Achse anzutreffen 100 Prozent ist. Daher lautet die Normierungsbedingung:

∫ ∞
−∞

ψ(x, t) · ψ(x, t) dx = 1. Dabei gibt

ψ(x, t) ·ψ(x, t) = |ψ(x, t)|2 die Wahrscheinlichkeit an, das Teilchen zur Zeit t am Ort x auf der x-Achse anzutreffen. Die Größe

|ψ(x, t)|2 wird daher als Wahrscheinlichkeitsdichte bezeichnet. Es sind somit alle Informationen über die quantenmechanischen

Eigenschaften eines Teilchens in ψ(x, t) enthalten.

Experimentell erfassbare Größen werden in der Quantenmechanik durch Erwartungswerte charakterisiert. Nach der Wahrschein-

lichkeitsrechnung gilt folgende Definition:

Definition. Der Erwartungswert einer Funktion f(x, t), die eine gegebene physikalische Messgröße beschreibt, ist für einen

bestimmten Zeitpunkt t gegeben durch:

〈f(x, t)〉 =

∫ ∞
−∞

ψ(x, t) · f(x, t) · ψ(x, t) dx =

∫ ∞
−∞

f(x, t)︸ ︷︷ ︸
Funktionswert

· ψ(x, t) · ψ(x, t)︸ ︷︷ ︸
Wahrscheinlichkeit für das

Auftreten des Funktionswertes

dx

Dabei ist zu beachten, dass der Ausdruck nach dem zweiten Gleichheitszeichen nur dann gilt, wenn die Funktion f(x, t) reelle

oder komplexe Werte annimmt. Hat man anstelle der Funktion f(x, t) einen sogenannten Operator, der also auf ψ(x, t) an-

gewendet wird, so muss man sich auf den Ausdruck nach dem ersten Gleichheitszeichen beschränken. Operatoren werden hier

später nämlich eingeführt. Beispiele für Funktionen f(x, t) sind die Ortskoordinate x(t) des Teilchens oder seine potentielle

Energie V (x, t).
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Bisher hat man die Wellenfunktion als eine Funktion der Ortsvariablen x betrachtet. Man hat damit also die sogenannte Orts-

raumdarstellung gewählt. Anstelle der Ortskoordinate x kann jedoch auch der entsprechende Impuls p als Variable eingeführt

werden. Man postuliert dann eine weitere, ebenfalls eindeutige, quadratisch integrable, im Allgemeinen komplexe Wellenfunk-

tion φ(p, t), die den Zustand des Teilchens im folgenden Sinn beschreibt: φ(p, t) · φ(p, t) = |φ(p, t)|2 ist die Wahrscheinlich-

keit, dass das Teilchen zur Zeit t den Impuls p besitzt. Wieder gilt auch in der Impulsraumdarstellung die Normierungsbedin-

gung

∫ ∞
−∞

φ(p, t) · φ(p, t) dp = 1 und der Erwartungswert einer Funktion g(p, t) sieht analog zur Ortsraumdarstellung so aus:

〈g(p, t)〉 =

∫ ∞
−∞

φ(p, t) · g(p, t) · φ(p, t) dp =

∫ ∞
−∞

g(p, t)︸ ︷︷ ︸
Funktionswert

· φ(p, t) · φ(p, t)︸ ︷︷ ︸
Wahrscheinlichkeit für das

Auftreten des Funktionswertes

dp. Wieder: Hat man anstelle der Funk-

tion g(p, t) einen sogenannten Operator, der also auf φ(p, t) angewendet wird, so muss man sich auf den Ausdruck nach dem ersten

Gleichheitszeichen beschränken. Beispiele für die Funktion g(p, t) sind der Impuls p(t) des Teilchens oder seine kinetische Energie

Ekin =
p2

2m
.

Nun wird untersucht, welcher Zusammenhang zwischen der Wellenfunktion ψ(x, t) im Ortsraum und der Wellenfunktion φ(p, t) im

Impulsraum besteht. Man betrachtet dazu ein Teilchen mit konstanter Gesamtenergie E = ~ · ω, z.B. ein Teilchen, das sich mit

konstanter kinetischer Energie in einem konstanten Potential V (x) bewegt. Der Zustand wird durch ein entsprechendes Wellenpaket

beschrieben, man setzt dafür an:

ψ(x, t) =
1
√

2π
·
∫ ∞
−∞

A(k) · ei·(kx−ωt) dk =
e−iωt
√

2π
·
∫ ∞
−∞

A(k) · eikx dk ⇔
ψ(x, t)

e−iωt
=

1
√

2π
·
∫ ∞
−∞

A(k) · eikx dk

Nach Fouriertransformation gilt dann mit der de Broglie-Beziehung p = ~ · k:

A(k) =
1
√

2π
·
∫ ∞
−∞

ψ(x, t)

e−iωt
· e−ikx dx⇔

1
√
~
· A(k) · e−iωt =

1
√

2π~
·
∫ ∞
−∞

ψ(x, t) · e−ikx dx

⇔
1
√
~
· A
(
p

~

)
· e−iωt︸ ︷︷ ︸

=:φ(p,t)

=
1
√

2π~
·
∫ ∞
−∞

ψ(x, t) · e
−i
p

~
x
dx

Es gilt aber auch das folgende:

ψ(x, t) =
1
√

2π
·
∫ ∞
−∞

A(k) · ei·(kx−ωt) dk =
1
√

2π
·
∫ ∞
−∞

(
A(k) · e−iωt

)
· eikx dk

=
1
√

2π
·
∫ ∞
−∞

(
A

(
p

~

)
· e−iωt

)
· e
i
p

~
x
·

1

~
dp =

1
√

2π~
·
∫ ∞
−∞

(
1
√
~
· A
(
p

~

)
· e−iωt

)
︸ ︷︷ ︸

=φ(p,t)

· e
i
p

~
x
dp

Zusammengefasst gilt also, dass die Wellenfunktionen im Orts- bzw. Impulsraum ψ(x, t) und φ(p, t) durch eine Fouriertransformation

miteinander verbunden sind:

ψ(x, t) =
1
√

2π~
·
∫ ∞
−∞

φ(p, t) · e
i
p

~
x
dp und φ(p, t) =

1
√

2π~
·
∫ ∞
−∞

ψ(x, t) · e
−i
p

~
x
dx

Jetzt wird diskutiert, wie sich der Erwartungswert des Impulses in der Ortsraumdarstellung berechnen lässt: Wenn man den

Zustand des Teilchens durch die Wellenfunktion φ(p, t) im Impulsraum beschreibt, so lässt sich der Erwartungswert des Impulses

〈p〉 einfach als Mittelwert von p zur Wellenfunktion φ(p, t) so berechnen: 〈p〉 =

∫ ∞
−∞

φ(p, t) · p · φ(p, t) dp. Wenn der Zustand

des Teilchens aber durch die Wellenfunktion ψ(x, t) im Ortsraum beschrieben wird, so muss folgender Erwartungswert berechnet

werden: 〈p〉 =

∫ ∞
−∞

ψ(x, t) · p · ψ(x, t) dx. Hier stellt sich nun die Frage in welchem Zusammenhang der Impuls p des Teilchens mit

der Wellenfunktion ψ(x, t) steht. Zur Lösung dieses Problems geht man von der Impulsraumdarstellung aus und geht durch die

Fouriertransformation auf die Ortsraumdarstellung über. Man setzt nun für φ(p, t) die Fouriertransformierte ein: 〈p〉 =
1
√

2π~
·∫ ∞

−∞
φ(x, t) · p ·

∫ ∞
−∞

ψ(x, t) · e
−i
p

~
x
dx dp. Mittels partieller Integration erhält man:

∫ ∞
−∞

ψ(x, t) · e
−i
p

~
x
dx =

−ψ(x, t) ·
~
ip
· e
−i
p

~
x

∞
−∞︸ ︷︷ ︸

=0

+

∫ ∞
−∞

∂ψ(x, t)

∂x
·
~
ip
· e
−i
p

~
x
dx

Der erste Summand verschwindet, da ψ(x, t) quadratisch integrabel (normierbar) ist und deswegen insbesondere im Unendlichen

110



gegen 0 strebt. Also gilt dann:

〈p〉 =
1
√

2π~
·
∫ ∞
−∞

∫ ∞
−∞

φ(p, t) ·
~
i
·
∂ψ(x, t)

∂x
· e
−i
p

~
x
dx dp

=

∫ ∞
−∞

1
√

2π~
·
∫ ∞
−∞

φ(p, t) · e
−i
p

~
x
dp︸ ︷︷ ︸

=ψ(x,t)

·
~
i
·
∂ψ(x, t)

∂x
dx =

∫ ∞
−∞

ψ(x, t) ·
~
i

∂

∂x
ψ(x, t) dx

Man kommt damit zu folgendem Schluss: In der Ortsraumdarstellung, in der der Zustand eines Teilchens durch die Wellenfunktion

ψ(x, t) beschrieben ist, wird der Erwartungswert des Impulses p berechnet, indem man in 〈p〉 =

∫ ∞
−∞

ψ(x, t) · p · ψ(x, t) dx den

Impuls p durch den Impulsoperator p̂ =
~
i

∂

∂x
ersetzt. Analog kann man auch den Erwartungswert der Ortskoordinate x in der

Impulsraumdarstellung berechnen. Man geht hier dann von der Ortsraumdarstellung aus und wechselt mittels Fouriertransformation

in die Impulsraumdarstellung:

〈x〉 =

∫ ∞
−∞

ψ(x, t) · x · ψ(x, t) dx =
1
√

2π~
·
∫ ∞
−∞

ψ(x, t) · x ·
∫ ∞
−∞

φ(p, t) · e
i
p

~
x
dp dx

Wieder liefert eine partielle Integration über p:

∫ ∞
−∞

φ(p, t) · e
i
p

~
x
dp =

φ(p, t) ·
~
ix
· e
i
p

~
x

∞
−∞︸ ︷︷ ︸

=0

−
∫ ∞
−∞

∂φ(p, t)

∂p
·
~
ix
· e
i
p

~
x
dp

Der erste Summand verschwindet wieder, da auch φ(p, t) quadratisch integrabel (normierbar) ist und somit insbesondere im Un-

endlichen gegen 0 strebt. Es folgt dann:

〈x〉 =

∫ ∞
−∞

1
√

2π~
·
∫ ∞
−∞

ψ(x, t) · e
i
p

~
x
dx︸ ︷︷ ︸

=φ(p,t)

·
(
−
~
i

)
·
∂φ(p, t)

∂p
dp =

∫ ∞
−∞

φ(p, t) · i~
∂

∂p
φ(p, t) dp

Man fasst zusammen: In der Impulsraumdarstellung, in der der Zustand eines Teilchens durch die Wellenfunktion φ(p, t) beschrieben

ist, wird der Erwartungswert der Ortskoordinate x berechnet, indem man die Ortskoordinate x in 〈x〉 =

∫ ∞
−∞

φ(p, t) · x · φ(p, t) dp

durch den Ortsoperator x̂ = i~
∂

∂p
ersetzt.

Definition (Unschärfe). Entsprechend den Gesetzen der Wahrscheinlichkeitsrechnung ist die Unschärfe 4f einer Größe f

bestimmt durch die Standardabweichung, also folgendermaßen:

4f =
√
〈(f − 〈f〉)2〉 =

√
〈f2〉 − 〈f〉2

Satz. Die allgemeine Heisenberg’sche Unschärferelation für zwei beliebige hermitesche Operatoren Â und B̂ und einen belie-

bigen Zustand ψ(x, t) ist gegeben durch

(4A)ψ · (4B)ψ ≥
1

2
· |〈[Â, B̂]〉ψ|

Dass Â hermitesch ist, soll heißen, dass gilt

∫
γ · Âϕ =

∫
Âγ · ϕ. Es wurde benutzt: [Â, B̂] = ÂB̂ − B̂Â (Kommutator).

Beweis. Für zwei beliebige Wellenfunktionen ϕ(x, t) und ψ(x, t) gilt die Schwarz’sche Ungleichung:∣∣∣∣∫ ∞
−∞

ϕ(x, t) · ψ(x, t) dx

∣∣∣∣2 ≤ ∫ ∞
−∞
|ϕ(x, t)|2 dx ·

∫ ∞
−∞
|ψ(x, t)|2 dx

Beweis: Für (x, t) mit ϕ(x, t) = 0 ist die Gleichung trivial und schonmal richtig. Für (x, t) mit ϕ(x, t) 6= 0 wählt man den Ansatz

ψ(x, t) = w · ϕ(x, t) + ξ(x, t) mit w ∈ C, wobei ξ(x, t) folgende Eigenschaft besitzt:

∫ ∞
−∞

ϕ(x, t) · ξ(x, t) dx = 0. Damit ergibt sich:∫ ∞
−∞

ϕ(x, t) · ψ(x, t) dx = w ·
∫ ∞
−∞
|ϕ(x, t)|2 dx+

∫ ∞
−∞

ϕ(x, t) · ξ(x, t) dx︸ ︷︷ ︸
=0

. Daraus folgt für die Konstante w der folgende Ausdruck:

w =

∫ ∞
−∞

ϕ(x, t) · ψ(x, t) dx∫ ∞
−∞
|ϕ(x, t)|2 dx

. Mit dem bisherigen Wissen folgt dann:

∫ ∞
−∞
|ψ(x, t)|2 dx =

∫ ∞
−∞

(w · ϕ(x, t) + ξ(x, t)) · (w · ϕ(x, t) + ξ(x, t)) dx

= ww ·
∫ ∞
−∞
|ϕ(x, t)|2 dx+

∫ ∞
−∞
|ξ(x, t)|2 dx ≥ ww ·

∫ ∞
−∞
|ϕ(x, t)|2 dx =

∣∣∣∣∫ ∞
−∞

ϕ(x, t) · ψ(x, t) dx

∣∣∣∣2∫ ∞
−∞
|ϕ(x, t)|2 dx
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Und daraus folgt dann durch Multiplikation die Behauptung. Nun weiter: Nach Definition ist das Unschärfeprodukt (4A)ψ ·(4B)ψ

gegeben durch:

(4A)ψ · (4B)ψ =

(∫ ∞
−∞

ψ(x, t) · (A− 〈A〉ψ)
2 · ψ(x, t) dx

) 1
2
·
(∫ ∞
−∞

ψ(x, t) · (B − 〈B〉ψ)
2 · ψ(x, t) dx

) 1
2

Also gilt dann allgemeiner:

(4A)ψ · (4B)ψ =

(∫ ∞
−∞

ψ(x, t) · (Â− 〈A〉ψ)
2 · ψ(x, t) dx

) 1
2
·
(∫ ∞
−∞

ψ(x, t) · (B̂ − 〈B〉ψ)
2 · ψ(x, t) dx

) 1
2

Nun führt man ein: X̂1 = Â − 〈A〉ψ und X̂2 = B̂ − 〈B〉ψ. Dann sind X̂1 und X̂2 immer noch hermitesch, Beweis für X̂1:∫
γ ·X̂1ϕ =

∫
γ ·(Â−〈A〉ψ)ϕ =

∫
γ ·Âϕ−

∫
γ ·〈A〉ψ︸ ︷︷ ︸

reell

·ϕ =

∫
Âγ ·ϕ−

∫
〈A〉ψ · γ ·ϕ =

∫
(Âγ−〈A〉ψ · γ)·ϕ =

∫
(Âγ − 〈A〉ψ · γ)·ϕ =

∫
(Â− 〈A〉ψ)γ · ϕ =

∫
X̂1γ · ϕ, Beweis-Ende. Also gilt dann:

(4A)ψ · (4B)ψ =

(∫ ∞
−∞

ψ(x, t) · X̂2
1ψ(x, t) dx

) 1
2
·
(∫ ∞
−∞

ψ(x, t) · X̂2
2ψ(x, t) dx

) 1
2

Aus der Schwarz’schen Ungleichung folgt jetzt:

∫ ∞
−∞
|X̂1ψ(x, t)|2 dx ·

∫ ∞
−∞
|X̂2ψ(x, t)|2 dx ≥

∣∣∣∣∫ ∞
−∞

X̂1ψ(x, t) · X̂2ψ(x, t) dx

∣∣∣∣2
Etwas umgeformt erhält man dann:

∫ ∞
−∞

X̂1ψ(x, t) · X̂1ψ(x, t) dx ·
∫ ∞
−∞

X̂2ψ(x, t) · X̂2ψ(x, t) dx ≥
∣∣∣∣∫ ∞
−∞

X̂1ψ(x, t) · X̂2ψ(x, t) dx

∣∣∣∣2
Unter Ausnutzung der Hermitezität der Operatoren X̂1 und X̂2 folgt dann:

∫ ∞
−∞

ψ(x, t) · X̂2
1ψ(x, t) dx ·

∫ ∞
−∞

ψ(x, t) · X̂2
2ψ(x, t) dx ≥

∣∣∣∣∫ ∞
−∞

ψ(x, t) · X̂1X̂2ψ(x, t) dx

∣∣∣∣2
Daraus folgt dann also:

(4A)ψ · (4B)ψ =

(∫ ∞
−∞

ψ(x, t) · X̂2
1ψ(x, t) dx

) 1
2
·
(∫ ∞
−∞

ψ(x, t) · X̂2
2ψ(x, t) dx

) 1
2
≥
∣∣∣∣∫ ∞
−∞

ψ(x, t) · X̂1X̂2ψ(x, t) dx

∣∣∣∣
Wenn man {X̂1, X̂2} = X̂1X̂2 + X̂2X̂1 (Antikommutator) und [X̂1, X̂2] = X̂1X̂2 − X̂2, X̂1 (Kommutator) definiert, dann gilt:

X̂1X̂2 =
1

2
· {X̂1, X̂2}+

1

2
· [X̂1, X̂2]. Daraus folgt dann:

∣∣∣∣∫ ∞
−∞

ψ(x, t) · X̂1X̂2ψ(x, t) dx

∣∣∣∣ =
1

2
·
∣∣∣∣∫ ∞
−∞

ψ(x, t) · {X̂1, X̂2}ψ(x, t) dx+

∫ ∞
−∞

ψ(x, t) · [X̂1, X̂2]ψ(x, t) dx

∣∣∣∣
Also gilt dann:

(4A)ψ · (4B)ψ ≥
1

2
· |〈{X̂1, X̂2}〉ψ + 〈[X̂1, X̂2]〉ψ|

Der Erwartungswert des Antikommutators ist reell und derjenige des Kommutators rein imaginär, Beweis: 〈{X̂1, X̂2}〉ψ =

∫
ψ ·

(X̂1X̂2 + X̂2X̂1)ψ =

∫
ψ · X̂1X̂2ψ +

∫
ψ · X̂2X̂1ψ =

∫
X̂1ψ · X̂2ψ +

∫
X̂2ψ · X̂1ψ, also: 〈{X̂1, X̂2}〉ψ =

∫
X̂1ψ · X̂2ψ +∫

X̂2ψ · X̂1ψ = 〈{X̂1, X̂2}〉ψ , also ist wegen 〈{X̂1, X̂2}〉ψ = 〈{X̂1, X̂2}〉ψ dann: 〈{X̂1, X̂2}〉ψ ist reell. Nun zum Kommutator:

〈[X̂1, X̂2]〉ψ =

∫
ψ · (X̂1X̂2 − X̂2X̂1)ψ =

∫
ψ · X̂1X̂2ψ −

∫
ψ · X̂2X̂1ψ =

∫
X̂1ψ · X̂2ψ −

∫
X̂2ψ · X̂1ψ, also 〈[X̂1, X̂2]〉ψ =∫

X̂1ψ · X̂2ψ −
∫
X̂2ψ · X̂1ψ = −〈[X̂1, X̂2]〉ψ , also ist 〈[X̂1, X̂2]〉ψ imaginär. Also folgt daraus:

(4A)ψ · (4B)ψ ≥
1

2
· |〈{X̂1, X̂2}〉ψ + 〈[X̂1, X̂2]〉ψ| =

1

2
·
(
|〈{X̂1, X̂2}〉ψ|2 + |〈[X̂1, X̂2]〉ψ|2

) 1
2 ≥

1

2
· |〈[X̂1, X̂2]〉ψ|

Es wird jetzt gezeigt, dass 〈[X̂1, X̂2]〉ψ = 〈[Â, B̂]〉ψ gilt. Beweis: 〈[X̂1, X̂2]〉ψ = 〈[Â−〈A〉ψ, B̂−〈B〉ψ]〉ψ = (Â−〈A〉ψ)·(B̂−〈B〉ψ)−

(B̂−〈B〉ψ) · (Â−〈A〉ψ) = ÂB̂− Â · 〈B〉ψ−〈A〉ψ · B̂+ 〈A〉ψ · 〈B〉ψ− (B̂Â− B̂ · 〈A〉ψ−〈B〉ψ · Â+ 〈B〉ψ · 〈A〉ψ) = ÂB̂− B̂Â = [Â, B̂],

Beweis-Ende. Es wurde also bewiesen:

(4A)ψ · (4B)ψ ≥
1

2
· |〈[X̂1, X̂2]〉ψ| =

1

2
· |〈[Â, B̂]〉ψ|

Das war es dann auch!

Korollar (Heisenberg’sche Unschärferelation). Es gilt 4x · 4px ≥
~
2

.
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Beweis. Sei ψ(x, t) eine Wellenfunktion in Ortsraumdarstellung. Also gilt dann x̂ = x und p̂x =
~
i

∂

∂x
. Es gilt dann: x̂p̂xϕ = x·

~
i

∂ϕ

∂x

und p̂xx̂ϕ =
~
i

∂

∂x
(x ·ϕ) =

~
i

(
ϕ+ x ·

∂ϕ

∂x

)
, also (x̂p̂x− p̂xx̂)ϕ = x̂p̂xϕ− p̂xx̂ϕ = i~ϕ. Weil diese Gleichung unabhängig von ϕ gilt,

folgt x̂p̂x−p̂xx̂ = [x̂, p̂x] = i~. x̂ = x ist reell und hermitesch:

∫ ∞
−∞

γ(x, t)·x̂ϕ(x, t) dx =

∫ ∞
−∞

γ(x, t)·x·ϕ(x, t) dx =

∫ ∞
−∞

x · γ(x, t)·

ϕ(x, t) dx =

∫ ∞
−∞

x̂γ(x, t) · ϕ(x, t) dx. Auch p̂x =
~
i

∂

∂x
ist hermitesch:

∫ ∞
−∞

γ(x, t) · p̂xϕ(x, t) dx =

∫ ∞
−∞

γ(x, t) ·
~
i

∂ϕ(x, t)

∂x
dx =[

γ(x, t) ·
~
i
· ϕ(x, t)

]∞
−∞
−
∫ ∞
−∞

∂γ(x, t)

∂x
·
~
i
· ϕ(x, t) dx = 0 +

∫ ∞
−∞

~
i

∂γ(x, t)

∂x
· ϕ(x, t) dx =

∫ ∞
−∞

p̂xγ(x, t) · ϕ(x, t) dx. Setze im

obigen Satz: Â = x̂ = x und B̂ = p̂x. Dann gilt:

(4x)ψ · (4px)ψ ≥
1

2
· |〈[x̂, p̂x]〉ψ| =

1

2
·
∣∣∣∣∫ ∞
−∞

ψ(x, t) · [x̂, p̂x]ψ(x, t) dx

∣∣∣∣
=

1

2
·
∣∣∣∣∫ ∞
−∞

ψ(x, t) · i~ · ψ(x, t) dx

∣∣∣∣ =
1

2
· |i~| ·

∣∣∣∣∫ ∞
−∞

ψ(x, t) · ψ(x, t) dx

∣∣∣∣ =
~
2
· 1 =

~
2

Es kommt also die Behauptung des Korollars heraus!

Die gedämpfte Schwingung
[Zurück zur Liste]

Satz. Es gilt die Differentialgleichung m ·x′′(t) = −d ·x′(t)−k ·x(t) mit der Dämpfungskonstante d ≥ 0 und der Federkonstante

k > 0, denn: Der Beschleunigungskraft des Federpendels m · x′′(t) wirkt entgegen die Dämpfungskraft, die proportional zur

Geschwindigkeit ist, also d · x′(t), und es wirkt entgegen die Spannkraft der Feder, die proportional zur Länge der Auslenkung

ist, also k · x(t). Die Anfangswertbedingungen seien x(0) = s0 und x′(0) = v0. Man löse nun diese DGL.

Beweis. Sei L der Lösungsraum der homogenen linearen Differentialgleichung 2. Ordnung x′′(t) + 2δ · x′(t) + ω2
0 · x(t) = 0 mit

δ =
d

2m
und ω0 =

√
k

m
. Die lineare Abbildung A : L → Rn, A(x) := (x(0), x′(0)) heißt Anfangswerthomomorphismus. Nach

dem Eindeutigkeitssatz gilt, dass die Lösung der Differentialgleichung oben eindeutig ist, wenn alle Anfangswertbedingungen erfüllt

sein müssen. Daraus folgt, dass der Anfangswerthomomorphismus injektiv ist, also gilt dimL ≤ dimR2 = 2. Man macht nun

den Ansatz x(t) = eλ·t. Setzt man das in die DGL oben ein erhält man:
(
λ2 + 2δ · λ+ ω2

0

)
· eλ·t = 0. Es muss also gelten

λ2 + 2δ · λ+ ω2
0 = 0⇔ λ1,2 = −δ ±

√
δ2 − ω2

0 . Nun wird zunächst der Fall δ2 − ω2
0 > 0 (Starke Dämpfung) betrachtet: In diesem

Fall hat man zwei verschiedene negative reelle Lösungen. Man hat also die Lösungen eλ1·t und eλ2·t, daraus folgt, dass auch die

Linearkombination aus diesen beiden Lösungen eine Lösung ist: x(t) = c1 ·eλ1·t+ c2 ·eλ2·t. Weil eλ1·t und eλ2·t linear unabhnngig

sind und dimL ≤ 2 gilt, bilden diese beiden Funktionen eine Basis des Lösungsraumes L. Man hat also alle Lösungen gefunden. Die

Konstanten c1 und c2 werden aus den Anfangswertbedingungen bestimmt: x(0) = c1 + c2 = s0 und x′(0) = c1 · λ1 + c2 · λ2 = v0.

Es ergibt sich: c1 =
v0 − λ2 · s0
λ1 − λ2

und c2 =
−v0 + λ1 · s0
λ1 − λ2

. In diesem Fall gilt also:

x(t) =
v0 − λ2 · s0
λ1 − λ2

· eλ1·t −
v0 − λ1 · s0
λ1 − λ2

· eλ2·t mit λ1,2 = −δ ±
√
δ2 − ω2

0 und δ
2 − ω2

0 > 0 (Starke Dämpfung)

Nun wird der Fall δ2 − ω2
0 < 0 (Schwache Dämpfung) behandelt. Es gilt dann λ1,2 = −δ ± i ·

√
ω2

0 − δ2 mit ωd :=
√
ω2

0 − δ2.

Wieder bilden eλ1·t und eλ2·t eine Basis des Lösungsraumes. Es gilt x(t) = c1 · eλ1·t + c2 · eλ2·t = c1 · e(−δ+i·ωd)·t + c2 ·

e(−δ−i·ωd)·t = e−δ·t ·
(
c1 · ei·ωd·t + c2 · e−i·ωd·t

)
= e−δ·t ·(c1 · (cos(ωd · t) + i · sin(ωd · t)) + c2 · (cos(−ωd · t) + i · sin(−ωd · t))) =

e−δ·t·(c1 · cos(ωd · t) + c2 · cos(ωd · t) + i · c1 · sin(ωd · t)− i · c2 · sin(ωd · t)). Und das ist dann schlussendlich gleich folgender Iden-

tität e−δ·t · ((c1 + c2) · cos(ωd · t) + i · (c1 − c2) · sin(ωd · t)). Nun ist der Real- und der Imaginärteil eine Lösung der DGL, also

auch die Summe aus den beiden: x(t) = e−δ·t ·
(
c · cos(ωd · t) + c′ · sin(ωd · t)

)
mit c := c1 + c2 und c′ := c1 − c2. Diese allgemeine

Lösung hat die Lösungsraumdimension 2, damit sind dann also alle Lösungen gegeben. Nun werden die Konstanten bestimmt:

s0 = x(0) = 1 · (c · 1 + c′ · 0) = c und v0 = x′(0) = c′ · ωd − c · δ, also c = s0 und c′ =
v0 + s0 · δ

ωd
. Es gilt also:

x(t) = e
−δ·t ·

(
s0 · cos(ωd · t) +

v0 + s0 · δ
ωd

· sin(ωd · t)
)

mit ωd =
√
ω2

0 − δ2 und δ
2 − ω2

0 < 0 (Schwache Dämpfung)

Zum Schluss wird noch der Fall δ2 − ω2
0 = 0 (Kritische Dämpfung) untersucht. Dann gilt λ = λ1 = λ2 = −d. Es ist also e−d·t eine

Lösung der DGL dieses Satzes. Man hat hier eine doppelte Nullstelle. Nun betrachtet man eine doppelte Nullstelle als Grenzlage

zweier benachbarter Nullstellen λ und λ + ∆λ. Es sind also eλ·t und e(λ+∆λ)·t zwei Lösungen, also auch die Linearkombination
1

∆λ
·
(
e(λ+∆λ)·t − eλ·t

)
. Für ∆λ→ 0 geht dieser Ausdruck gegen t · eλ·t, was dann auch eine Lösung darstellt. Man hat jetzt also,

dass die allgemeine Lösung x(t) = c1 · eλ·t + c2 · t · eλ·t ist. Aus Dimensionsgründen sind das auch alle Lösungen. Nun muss man

noch die Konstanten bestimmen: s0 = x(0) = c1 und v0 = x′(0) = c1 · λ+ c2, also c1 = s0 und c2 = v0 − s0 · λ. Man hat also:

x(t) = s0 · e−d·t + (v0 + s0 · d) · t · e−d·t mit δ
2 − ω2

0 = 0 (Kritische Dämpfung)

Der Satz ist damit also bewiesen.
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Das Freundschaftstheorem
[Zurück zur Liste]

Satz. Gibt es in einer Menschenmenge von n Personen zwischen zwei Personen immer genau einen gemeinsamen Freund,

dann gibt es eine Person, die mit allen anderen befreundet ist.

Beweis. Man benutzt für den Beweis sogenannte Graphen G = (E,K), die endlich und einfach sind: In der Ebene gibt es Ecken

E (Personen) mit |E| = n und Kanten K (befreundet sein). Graphentheoretisch formuliert hat man also die folgende Aussage als

Voraussetzung:

(V ) ∀u, v ∈ E ∃!w ∈ E : {u,w} ∈ K ∧ {v, w} ∈ K

In dieser Sprache ist dann folgende Aussage zu zeigen:

(A) ∃a ∈ E ∀u ∈ E \ {a} : {u, a} ∈ K

Sei d(u) mit u ∈ E die Anzahl der Kanten an der Ecke u. Die Widerspruchsannahme ist also: ∀u ∈ E : d(u) < n − 1. Aus der

Vorausstzung (V ) folgt, dass es im Graphen G keine Kreise der Länge 4 geben darf. Sei diese Behauptung mit (K4) bezeichnet. Es

wird jetzt zunächst gezeigt, dass G ein regulärer Graph ist, d.h. d(u) = d(v) für alle u, v ∈ E: Seien u, v ∈ E zwei nicht adjazente

Ecken, d.h. u und v sind nicht durch genau eine Kante verbunden, und es gelte d(u) = k und w1, . . . , wk seien die Nachbarn von

u. Aufgrund von Eigenschaft (V ) ist v zu genau einem der wi benachbart, o.B.d.A. sei dies w2. w2 muss ebenfalls zu genau einem

der anderen Nachbarn von u adjazent sein, o.B.d.A. sei dies w1. Situation also:

v hat nun mit w1 den gemeinsamen Nachbarn w2 =: z1. Für i ≥ 2 hat v mit wi genau einen gemeinsamen Nachbarn zi. Die zi außer

z1 sind nicht benachbart zu u, denn sonst würde der Kreispfad u, z1, v, zi, u existieren, der nach (K4) aber nicht existieren darf.

Weiter sind die zi (i ≥ 2) alle verschieden, denn sonst gäbe es den Kreis der Länge 4: u,wi, zi = zj , wj , u, welcher (K4) verletzt.

z1 darf nicht mit z2 zusammenfallen, sonst haben v und z1 keinen gemeinsamen Nachbarn mehr. z1 fällt aber auch nicht mit zi

(i ≥ 3) zusammen, sonst würde u,w1, z1 = zi, wi, u die Bedingung (K4) verletzen. Also sind alle z1, . . . , zk paarweise verschieden.

Situation:
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Man kann also schließen: k′ = d(v) ≥ k = d(u). Vertauscht man in diesen Überlegungen die Rollen von u und v, so folgt

k = d(u) ≥ k′ = d(v), also folgt dann: d(u) = d(v) = k für nicht adjazente u, v. Nun gilt, dass alle Ecken, außer w2, im Graphen

(auch die, die nicht eingezeichnet sind) entweder zu u oder v nicht adjazent sind, denn gäbe es eine Ecke w′ 6= w2, die zu u

und v adjazent ist, dann hätten u und v mehr als einen gemeinsamen Nachbarn, nämlich w′ und w2, was wegen (V ) nicht sein

kann. Also haben alle Ecken, ungleich w2, den Grad k (Grad k einer Ecke heißt, dass die Ecke k Kanten hat). Weil w2 wegen der

Widerspruchsannahme d(w) < n − 1 für alle w ∈ E auch einen Nicht-Nachbarn hat, folgt mit den Überlegungen von oben, dass

auch w2 den Grad k hat. Es wurde also bewiesen, dass G ein regulärer Graph ist. Es wird nun die Anzahl aller Personen n in

Abhängigkeit von k bestimmt: Man zählt die Anzahl aller Wege der Länge 2 auf zweierlei Art. Zu je 2 Ecken kann man wegen (V )

genau einen Weg der Länge 2 bestimmen. Auf
(n

2

)
Weisen kann man aus n Ecken 2 Ecken auswählen, die Anzahl aller Wege der

Länge 2 also:
(n

2

)
. Andererseits gibt es zu jeder der n Ecken e ∈ E genau k Nachbarn, und daher

(k
2

)
Wege der Länge 2, die e in

der Mitte haben. Weil jeder Weg der Länge 2 genau eine Ecke in der Mitte hat, zählt also n ·
(k

2

)
ebenfalls alle Wege der Länge 2.

Also gilt:
n · (n− 1)

2
=
(n

2

)
= n ·

(k
2

)
= n ·

k · (k − 1)

2
, woraus n− 1 = k · (k − 1), also n = k2 − k + 1, folgt. k = 1 heißt n = 1,

also hat man genau einen Punkt, der mit genau einer Kante mit sich selbst verbunden ist. Diesen Fall schließt man aus, weil man

nur zu jemand anderes befreundet sein kann. Ist jedoch k = 2, dann gilt n = 3, d.h. man hat ein Dreieck mit 3 Eckpunkten und

3 Kanten. Dort ist aber jeder mit allen anderen befreundet, was aber der Widerspruchsannahme hier widerspricht. Es muss also

k ≥ 3 gelten. Nach der Kombinatorik hier kommt nun lineare Algebra: Man betrachtet die n × n-Adjazenzmatrix A = (aij) zum

Graphen G mit aij = 1, wenn Ecke i mit Ecke j verbunden ist, und 0 sonst. Diese Matrix A hat folgende Eigenschaften:

• A ist symmetrisch (A = AT ), da G ein ungerichteter Graph ist.

• aii = 0 für alle i ∈ {1, . . . , n}, da keine Ecke mit sich selber verbunden ist.

• In jeder Zeile, und damit auch in jeder Spalte, stehen genau k Einsen und sonst 0,

weil jede Ecke genau k Nachbarn hat.

• Zu zwei beliebigen Zeilen gibt es genau eine Spalte, in der beide eine 1 haben. In

allen anderen Spalten ist in einer der Zeilen eine 0, denn zwei Ecken haben

genau einen Nachbarn gemeinsam.

Dabei bezeichne AT die transponierte Matrix zu A. Durch diese Beobachtungen ergibt sich dann:

A
2

= A · A = A · AT =


k 1 · · · 1

1 k · · · 1

.

.

.
. . .

.

.

.

1 · · · 1 k


Man kann leicht herausfinden, dass A2 den Eigenwert k − 1 mit (n− 1)-facher Vielfachheit und den Eigenwert n+ k − 1 = k2 mit

1-facher Vielfachheit besitzt. Dabei gilt das letzte Gleichheitszeichen, weil doch schon bewiesen wurde, dass gilt n = k2− k+ 1. Sei

M ∈ Rn×n, dann gilt: M · v = λ · v ⇒M2 · v = λ2 · v, Beweis: A2 · v = A · (A · v) = A · (λ · v) = λ · (A · v) = λ · (λ · v) = λ2 · v. Also

existieren r, s ∈ N0 mit r + s = n − 1 so, dass gilt +
√
k − 1 ist r-facher und −

√
k − 1 ist s-facher Eigenwert von A. Die Wurzeln

sind wegen k ≥ 3 reell. Nun ist
√
k2 entweder gleich +k oder −k. Es stellt sich heraus, dass nur +k dann 1-facher Eigenwert

von A ist. Die Spur einer quadratischen Matrix M , bezeichnet als Spur(M), ist die Summe ihrer Diagonalelemente. Man beweist

leicht, dass gilt Spur(M · M ′) = Spur(M ′ · M) für alle M ∈ Km×n, M ′ ∈ Kn×m, wobei K ein beliebiger Körper sei. Sei nun

M ∈ Kn×n und T ∈ GLn(K) (T also eine invertierbare n × n-Matrix), dann folgt Spur(T ·M · T−1) = Spur((T ·M) · T−1) =

Spur(T−1 · (T · M)) = Spur(En · M) = Spur(M). Wenn M ∈ Rn×n symmetrisch ist, dann gibt es ein T ∈ GLn(R) und ein

D ∈ Rn×n, wobei D eine Diagonalmatrix mit allen Eigenwerten (αi) von M auf der Diagonalen ist, so, dass gilt: M = T ·D · T−1

und deswegen Spur(M) = Spur(T ·D · T−1) = Spur(D) =
n∑
i=1

αi; dabei seien die αi die n Eigenwerte von M . Es folgt dann, weil

A symmetrisch ist: 0 = Spur(A) = r · (+
√
k − 1) + s · (−

√
k − 1) + 1 · k = k + (r − s) ·

√
k − 1. Nun ist r − s 6= 0, sonst folgt

k = 0, also gilt dann:
√
k − 1 =

k

s− r
∈ Q. Sei in

k

s− r
=
a

b
∈ Q der Bruch

a

b
maximal gekürzt, also ggT (a, b) = 1. Es folgt aus

√
k − 1 =

a

b
dann:

a2

b2
= k − 1, also a2 = (k − 1) · b2, also a2 = ((k − 1) · b)︸ ︷︷ ︸

∈Z6=0

· b, also b|a2, also b|a, denn, wenn b das a nicht teilt,

dann auch nicht a2. Wäre b 6= 1, dann würde mit b|a folgen ggT (a, b) = b 6= 1. Weil aber ggT (a, b) = 1 gilt, folgt dann b = 1, also
k

s− r
=
a

b
=
a

1
= a ∈ Z. Also gibt es ein h ∈ Z mit

√
k − 1 =

k

s− r
= h⇒ h2 = k − 1⇒ k = h2 + 1; es gilt auch k = (s− r) · h,

also h · (s − r) = h2 + 1 ⇒ h|(h2 + 1). Weil auch h|h2 gilt, folgt also h|((h2 + 1) − h2), also h|1, also h = 1. Daraus folgt dann:

k = h2 + 1 = 12 + 1 = 2, aber k = 2 wurde bereits ausgeschlossen. Dieser Widerspruch zeigt, dass die Widerspruchsannahme, dass

es keine Ecke gibt, die zu allen anderen Ecken benachbart ist, fallen gelassen werden muss. Der Beweis ist damit also beendet!
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Der Satz von Vitali
[Zurück zur Liste]

Satz. Für alle n ≥ 1 gibt es im Rn eine nicht messbare Menge.

Beweis. Auf der Menge der reellen Zahlen R wird eine Äquivalenzrelation definiert: x ∼ y ⇔ x − y ∈ Q. Zu jedem x ∈ R

gibt es ein q ∈ Q so, dass x − q ∈ [0; 1] gilt. Es gibt also ein z ∈ [0; 1] mit [z] = [x]. Nach dem Auswahlaxiom ist es also

möglich, jeder Äquivalenzklasse einen Repräsentanten aus [0;1] zuzuordnen. Sei X ⊆ [0; 1] die Menge dieser Repräsentanten.

Sei nun x ∈ [0; 1], dann gibt es ein z ∈ X mit x ∈ [z], was äquivalent ist zu x − z ∈ Q. Weil x, z ∈ [0; 1] gilt, folgt also

x − z ∈ Q ∩ [−1; 1]. Anders formuliert hat man jetzt: Für x ∈ [0; 1] existiert ein q ∈ Q ∩ [−1; 1] mit x ∈ (q + X). Daraus folgt

dann: [0; 1] ⊆
⋃

q∈Q∩[−1;1]

(q + X) =: A, wobei Q ∩ [−1; 1] abzählbar ist. Die Vereinigung ist disjunkt, denn wäre q + x = q′ + x′

(q 6= q′ ⇒ x 6= x′), dann gilt x − x′ ∈ Q, also x ∼ x′, was ein Widerspruch ist, denn nach Konstruktion ist jedes Element aus

X Repräsentant genau einer Äquivalenzklasse, also gilt für x, x′ ∈ X: x 6= x′ ⇒ x � x′. A ist nach Konstruktion beschränkt.

Angenommen, A ist messbar, dann gilt: v(A) =
∞∑
k=1

v(qk +X) =
∞∑
k=1

v(X) <∞, da A beschränkt ist. Also folgt v(X) = 0 und also

v(A) = 0. Aber es gilt doch [0; 1] ⊆ A, also v(A) ≥ 1. Das ist ein Widerspruch, welcher zeigt, dass A ⊆ R nicht messbar sein kann.

Wegen v1(A) = v1(A) · 1n−1 = vn(A× [0, 1]n−1) folgt dann die Behauptung. Das war es!

Der Satz von Wilson
[Zurück zur Liste]

Satz. m ∈ N≥2 ist genau dann eine Primzahl, wenn gilt (m− 1)! ≡ −1 (modm).

Beweis. Sei also p ∈ P≥2. Man betrachtet dann die multiplikative Gruppe (Z/p)×. Zu jedem a ∈ (Z/p)× gibt es genau ein Inverses.

In dem Produkt
∏

a∈(Z/p)×
a sortiert man die Elemente mit ihren Inversen als Paare, die sich zu dem neutralen Element [1] aufheben.

Dabei seien diese Elemente nicht selbstinvers. Es gilt also:
∏

a∈(Z/p)×
a =

∏
a∈(Z/p)×,a=a−1

a. Nun ist a = a−1 ⇔ a2 − 1 = 0 ⇔

(a− 1) · (a+ 1) = 0⇔ a = 1∨ a = −1 (wegen Nullteilerfreiheit). Also sind [−1], [1] ∈ (Z/p)× alle selbstinversen Elemente. Daraus

folgt:
∏

a∈(Z/p)×
a = [1] · [−1] = [−1]. Es wurde nun bewiesen, dass gilt

∏
a∈(Z/p)×

a =
p−1∏
k=1

[k] ≡ −1 (mod p)⇔ ((p−1)!+1) mod p = 0.

Gelte nun umgekehrt (m − 1)! ≡ −1 (modm). Angenommen, m ist keine Primzahl, dann gibt es natürliche Zahlen x, y ∈ N mit

1 < x, y < m, so dass m = x · y gilt. Also folgt x|m. Wegen 1 < x < m gilt also x|(m− 1)!. Wegen x|m und m|((m− 1)! + 1) (nach

Annahme) folgt also x|((m − 1)! + 1). Aus x|(m − 1)! und x|((m − 1)! + 1) folgt x|1 = ((m − 1)! + 1) − (m − 1)!, also x = 1, was

ein Widerspruch zur Konstruktion von x darstellt. Fertig!

Satz. Die n-te Primzahl pn lässt sich, wie folgt, darstellen:

pn = 1 +

2n∑
m=1

 n

√√√√√ n

1 +
m∑
k=1

0((k−1)!+1) mod k



Beweis. Die Formel π(m) =
m∑
k=1

0((k−1)!+1) mod k zählt die Anzahl der Primzahlen kleiner-gleich m. Sei pn die n-te Primzahl, dann

gilt π(pn) = n, also gilt dann π(m) ≥ n für m ≥ pn. Ist allerdings m < pn, dann ist π(m) < n. Nun lässt sich einfach nachweisen,

dass gilt:

An(a) :=

⌊
n

√
n

1 + a

⌋
=

 1, a < n

0, a ≥ n

Man betrachtet nun An(π(m)). Aus dem Bertrand’schen Postulat folgt pn < 2n, Beweis: Nach diesem Postulat gilt ohne Beweis,

dass es für alle n > 1 mindestens eine Primzahl p gibt mit n < p < 2n. Also gibt es zwischen 21 und 22, zwischen 22 und 23,

zwischen 23 und 24, ... und zwischen 2n−1 und 2n immer mindestens eine Primzahl. Weil 1 und 2 auch Primzahlen sind, hat man

insgesamt mindestens 2+(n−1) = n+1 Primzahlen, die kleiner als 2n sind, also folgt pn < 2n. Für m = 1, . . . , pn−1 ist der Wert

des Summanden An(π(m)) in der Summe immer gleich 1. Ist m = pn, . . . , 2
n, dann ist der Summand gleich Null. Addiert man 1

zur Summe, dann hat man für m = 1, . . . , pn jeweils in der Summe 1 addiert. Damit ist also der Nachweis vollständig erbracht.
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Der Satz von Cantor
[Zurück zur Liste]

Satz. Eine Menge M ist weniger mächtig als ihre Potenzmenge P(M), also: |M | < |P(M)|.

Beweis. Sei erstmal M = ∅, dann gilt |M | = |∅| = 0 < 1 = |{∅}| = |P(M)|, also |M | < |P(M)|. Sei von nun an also M 6= ∅.

Zunächst mal gilt schon |M | ≤ |P(M)|, da x 7→ {x} eine injektive Abbildung M → P(M) ist. Nun wird gezeigt, dass Gleichheit nicht

herrschen kann: Angenommen, es gibt eine surjektive Abbildung f : M → P(M), dann sei definiert: A := {x ∈M : x /∈ f(x)} ⊆M .

A ist nun eine Menge und es gilt dann A ∈ P(M). Wegen der Annahme, dass f surjektiv ist, gibt es ein m ∈ M mit f(m) = A.

Dann gibt es 2 Fälle: m ∈ f(m) oder m /∈ f(m). Ist m ∈ f(m), dann ist m ∈ A, also m /∈ f(m), Widerspruch. Ist m /∈ f(m), dann

ist m /∈ A, also m ∈ f(m), Widerspruch. In jedem Fall hat man also einen Widerspruch, also gibt es keine surjektive Abbildung

M → P(M), also insbesondere keine bijektive, d.h. der Fall |M | = |P(M)| ist ausgeschlossen und also weiß man, dass tatsächlich

|M | < |P(M)| gilt. Damit ist der Beweis endlich vollbracht.

Korollar (1). Es gibt keine Menge, deren Mächtigkeit am größten ist.

Beweis. Angenommen, es gibt eine Menge Mmax, deren Mächtigkeit am größten ist. Nun ist nach dem Satz von Cantor aber

|P(Mmax)| > |Mmax|, also ist |Mmax| doch nicht maximal, Widerspruch.

Korollar (2). Die Menge, die aus allen Mengen, die es gibt, als ihre Elemente besteht, gibt es nicht.

Beweis. Angenommen, es existiert die Menge Malle, die aus allen Mengen, die es gibt, besteht. Dann gilt also P(Malle) ⊆ Malle,

also |P(Malle)| ≤ |Malle|, im Widerpruch zum Satz von Cantor, wonach |P(Malle)| > |Malle| gelten muss.

Der Satz von Lagrange
[Zurück zur Liste]

Satz. Es sei G eine Gruppe und H eine Untergruppe von G. Dann ist [G : H] der Index von H in G, also die Anzahl der

Nebenklassen von H in G. Dann gilt für die Gruppenordnungen: |G| = [G : H]·|H|. Insbesondere sind für |G| <∞ sowohl [G : H]

als auch |H| ein Teiler von |G|. Es gilt damit: Da die Gruppe, die von einem Element in G erzeugt wird, eine Untergruppe von

G ist, folgt, dass die Ordnung eines Gruppenelements stets die Gruppenordnung teilt.

Beweis. Betrachtet wird für jedes g ∈ G die Linksnebenklasse gH = {gh : h ∈ H}. Es ist h 7→ gh eine Bijektion zwischen H und

gH, denn die Abbildung ist nach Definition der Linksnebenklasse surjektiv und wegen gh1 = gh2 ⇒ h1 = h2 auch injektiv. Somit

haben alle Linksnebenklassen die gleiche Mächtigkeit wie H. Da die Nebenklassen als Äquivalenzklassen der Äquivalenrelation

a ∼ b ⇔ a−1b ∈ H definiert werden können, liefern sie eine Partition von G. Wählt man mithilfe des Auswahlaxioms ein

Repräsentantensystem R der Nebenklassen, so hat man also eine Bijektion zwischen R × H und G durch die Abbildung (r, h) 7→

rh, denn es gibt eine Einteilung von G in |R| gleichgroße Nebenklassen der Mächtigkeit |H|. Nach Definition von Index und

Repräsentantensystem gilt [G : H] = R und man erhält: |G| = |R ×H| = |R| · |H| = [G : H] · |H|, genau das, was man hier auch

beweisen wollte.

Der Satz von Cayley
[Zurück zur Liste]

Satz. Sei S(X) := {f : X → X bijektiv} die symmetrische Gruppe von X. Dann ist (S(X), ◦) mit (f ◦ g)(x) := f(g(x)) für

f, g ∈ S(X) und x ∈ X eine Gruppe. Sei (G, ∗) eine Gruppe. Dann ist

Φ : G→ S(G), g 7→ Φ(g)

mit Φ(g)(h) = g ∗ h für alle h ∈ G ein injektiver Gruppenhomomorphismus. Das bedeutet: Man kann (G, ∗), wegen G isomorph

zur Gruppe Φ(G) ⊆ S(G), immer als eine Untergruppe einer symmetrischen Gruppe auffassen. Folgerung: Ist ord(G) = n <∞,

dann kann man G als eine Untergruppe von Sn = {f : {1, 2, . . . , n} → {1, 2, . . . , n} bijektiv} auffassen.
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Beweis. Wohldefiniertheit: Es gilt für g ∈ G auch Φ(g) ∈ S(G), denn Φ(g) : G → G,Φ(g)(h) 7→ g ∗ h hat die inverse Abbildung

Φ(g−1)(h) 7→ g−1 ∗ h, ist also eine bijektive Abbildung von G nach G, also Element von S(G). Durch Φ wird ein Gruppenhomo-

morphismus definiert: Seien g, g′ ∈ G, dann gilt: Φ(g ∗ g′)(h) = (g ∗ g′) ∗ h = g ∗ (g′ ∗ h) = Φ(g)(Φ(g′)(h)) = (Φ(g) ◦ Φ(g′))(h).

Nun zur Injektivität: Φ(g) = id ⇔ g ∗ h = h ∀h ∈ G ⇔ g = e. Also gilt kern(Φ) = {e}, also ist Φ injektiv. Weil Φ ein injektiver

Gruppenhomomorphismus ist und da G → Φ(G) eine Surjektion ist, folgt, dass G zu Φ(G) isomorph ist. Es wird noch explizit

gezeigt, dass Φ(G) eine Untergruppe von S(G) ist: Es gilt klarerweise Φ(G) ⊆ S(G), denn für alle g ∈ G hat Φ(g) ∈ Φ(G) die zu ihr

inverse Abbildung Φ(g−1) ∈ Φ(G), also ist Φ(g) eine bijektive Abbildung von G nach G, also Element von S(G). Und es gilt, dass

Φ(e) ∈ Φ(G), wobei e das neutrale Element in G ist, das neutrale Element in Φ(G) ist. Das zu Φ(g) ∈ Φ(G) (g ∈ G) inverse Element

ist Φ(g−1) ∈ Φ(G) (g−1 ∈ G). Nun zur Abgeschlossenheit von Φ(G): Für Φ(g),Φ(g′) ∈ Φ(G) gilt: Φ(g) ◦Φ(g′) = Φ(g ∗ g′) ∈ Φ(G),

denn es gilt wegen g, g′ ∈ G nämlich g ∗ g′ ∈ G, da G eine Gruppe ist. Zum Schluss soll hier noch die Folgerung geklärt werden: Ist

ord(G) = n <∞, dann ist S(G) isomorph zu Sn = {f : {1, 2, . . . , n} → {1, 2, . . . , n} bijektiv}. Ersetze also S(G) durch Sn, dann

folgt die Behauptung.

Der Satz von Ptolemäus
[Zurück zur Liste]

Lemma (Sehnenviereck). Ein Viereck ist genau dann ein Sehnenviereck, wenn sich gegenüberliegende Winkel zu 180◦ ergänzen.

Da die Innenwinkelsumme im Viereck 360◦ beträgt, reicht es, wenn sich 2 gegenüberliegende Winkel zu 180◦ ergänzen, da dies

dann für das andere Winkelpaar automatisch folgt.

Beweis. Zuerst kommt ein Bild:

Beweis von ⇒: Sei das Sehnenviereck ABCD in obenstehender Grafik dadurch in Teildreiecke zerlegt, dass die einzelnen Ecken

mit dem Mittelpunkt des Kreises M verbunden sind. Das Dreieck 4ABM ist gleichschenklig, damit sind die Winkel ^ABM und

^MAB gleich groß. Dieser Winkel ist mit α bezeichnet. Analoge Schlüsse gelten für die anderen Teildreiecke und Winkel in der

obenstehenden Grafik. Für die Innenwinkelsumme des Vierecks ergibt sich dann: 2α+2β+2γ+2δ+2δ = 2 · (α+β+γ+ δ) = 360◦,

also α+β+ γ+ δ = 180◦. Gegenüberliegende Winkel ergänzen sich zu 180◦: (α+β) + (γ+ δ) = 180◦ und (α+ δ) + (β+ γ) = 180◦.

Nun zu ⇐: Wieder ein Bild:
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3 Punkte liegen immer auf einem Kreis, sei also der vierte nicht auf dem Kreis. Nach Voraussetzung gilt α+ γ = 180◦. Man bildet

den Umkreis zum Dreieck 4ABD und es wird gezeigt, dass auch C auf diesem Kreis liegt. Angenommen, C liegt nicht auf dem

Kreis. Dann gibt es einen Punkt E auf der Geraden durch D und C, der auf dem Kreis liegt. Für das Sehnenviereck ABED gilt

nach dem oben Bewiesenen α+ ε = 180◦, und mit der Voraussetzung α+ γ = 180◦ folgt dann γ = ε. Im Dreieck 4BCE gilt nach

dem Innenwinkelsatz für Dreiecke β + γ + δ = 180◦ und außerdem δ + ε = 180◦. Also folgt β + γ = ε. Da β > 0 ist, ist dies ein

Widerspruch zu γ = ε. Damit ist auch C auf dem Kreis.

Satz (Satz von Ptolemäus). In einem Viereck gilt: Die Summe der Produkte gegenüberliegender Seiten ist größer-gleich dem

Produkt der Diagonalen. Gleichheit gilt genau dann, wenn das Viereck ein Sehnenviereck ist.

Beweis. Zuerst kommt wieder ein Bild:

Mittels zweier geschickt gewählter Drehstreckungen des Dreiecks 4ABC um A, so dass C′ = D ist, und des Dreiecks 4ACD um

A, so dass C′′ = B ist, erhält man aufgrund der Ähnlichkeit der jeweiligen Dreiecke die Entsprechungen |DB′| = b′ = b ·
d

e
und

|B′B| = c′ = c ·
a

e
; außerdem gilt ^AB′D = β und ^BB′A = δ. Es gilt B′ = D′′, weil |AB′| = a ·

d

e
= d ·

a

e
= |AD′′| gilt und die

Winkel α1 und α2 sich tauschen. Nun gilt für das Dreieck 4DB′B die Dreiecksungleichung, also: f = |DB| ≤ |DB′| + |B′B| =

b ·
d

e
+ c ·

a

e
, also e · f ≤ a · c + b · d. Das ist dann die erste Behauptung des Satzes. Aus der Geometrie erkennt man nun, dass

Gleichheit genau dann gilt, wenn B′ auf BD liegt, d.h. ^AB′D+^BB′A = β+ δ = 180◦, also nach dem Lemma oben genau dann,

wenn ABCD ein Sehnenviereck ist. Das war es!
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Die Euler’sche Identität
[Zurück zur Liste]

Satz. Es gilt eπi + 1 = 0.

Beweis. Zunächst werden die Taylorreihenentwicklungen für ex, cos(x) und sin(x) hergeleitet. Es gilt:

f(x) =
m∑
n=0

f(n)(x0)

n!
· (x− x0)

n
+ Rm+1(x) mit |Rm+1(x)| ≤ max

t∈[x0,x]
|f(m+1)

(t)| ·
|x− x0|m+1

(m+ 1)!

Dabei sei I das Intervall zwischen x0 und x. Es wird für die Reihenentwicklungen nach Taylor der Entwicklungspunkt x0 = 0

gewählt. Für ex gilt dann:

(
(e
x
)
(n)
)
x=0

= (e
x
)x=0 = 1 und |Rm+1(x)| ≤ emax{0,x} ·

|x|m+1

(m+ 1)!
−→
m→∞

0

Nun zu cos(x):

(
(cos(x))

(n)
)
x=0

=

 (−1)k+1 · sin(x), n = 2k + 1

(−1)k · cos(x), n = 2k


x=0

=

 0, n = 2k + 1

(−1)k, n = 2k
und |Rm+1(x)| ≤ 1 ·

|x|m+1

(m+ 1)!
−→
m→∞

0

Und schließlich sin(x):

(
(sin(x))

(n)
)
x=0

=

 (−1)k · cos(x), n = 2k + 1

(−1)k · sin(x), n = 2k


x=0

=

 (−1)k, n = 2k + 1

0, n = 2k
und |Rm+1(x)| ≤ 1 ·

|x|m+1

(m+ 1)!
−→
m→∞

0

Insgesamt folgt also:

e
x

=

∞∑
k=0

xk

k!
, cos(x) =

∞∑
k=0

(−1)kx2k

(2k)!
, sin(x) =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!

Für die imaginäre Einheit der Menge der komplexen Zahlen gilt:

i
n

=

 (−1)k, n = 2k

(−1)ki, n = 2k + 1

Wegen der Konvergenz sämtlicher hier auftretendender Reihen folgt:

e
ix

=

∞∑
n=0

(ix)n

n!
=

∞∑
n=0

inxn

n!
=

∞∑
k=0

(
(−1)kx2k

(2k)!
+ i ·

(−1)kx2k+1

(2k + 1)!

)
=

∞∑
k=0

(−1)kx2k

(2k)!
+ i ·

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
= cos(x) + i · sin(x)

Es folgt also eπi = cos(π) + i · sin(π) = −1 + i · 0 = −1, also eπi + 1 = 0.

Die Euler’sche Polyederformel
[Zurück zur Liste]

Satz. Es gilt E −K + F = 2 für die Anzahl der Ecken E, Kanten K und Flächen F eines konvexen Polyeders.

Beweis. Man entfernt zunächst eine Fläche des konvexen Polyeders und zieht den Rest wie eine Gummihaut in die Ebene aus-

einander. Dabei bleibt die Struktur des Kantennetzes erhalten. Für den erhaltenen ebenen Graphen muss man also zeigen, dass

E−K+F = 1 ist, denn eine Fläche wurde ja entfernt. Dazu entfernt man aus dem ebenen Kantengraphen nacheinander eine Kante

so, dass der Restgraph zusammenhängend bleibt. Dabei treten zwei Fälle auf. 1. Fall: Die entfernte Kante war eine Diagonale. Dann

nimmt die Anzahl der Flächen und Kanten um 1 ab. Die Anzahl der Ecken bleibt gleich. Der Wert E − K + F bleibt dabei also

invariant. 2. Fall: Die entfernte Kante war keine Diagonale. Dann nimmt die Anzahl der Ecken und Kanten um 1 ab und die Anzahl

der Flächen bleibt erhalten. Somit bleibt auch in diesem Fall E −K + F invariant. Zum Schluss bleibt eine einzige Kante mit zwei

Ecken ohne Fläche übrig. Es gilt dann offenbar E −K + F = 2− 1 + 0 = 1.

Satz. Für einen Polyeder vom Geschlecht g, also einem Polyeder mit g Löchern, gilt χ(gT2) = E −K + F = 2− 2 · g
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Beweis. Einen Polyeder vom Geschlecht g kann man sich bis auf Homömorphie aus einem
”
sphärischen“ Polyeder mit zwei fehlenden

Flächen, g−1
”
zylindrischen“ Polyedern mit fehlenden Flächen an den Enden des Schlauches und zwei andere woanders sowie einem

”
zylindrischen“ Polyeder mit nur zwei fehlenden Flächen an den beiden Grundflächen ohne Überschneidung zusammengeklebt

vorstellen. Dem
”
sphärischen“ Polyeder fehlen zwei Flächen, also E − K + F = 2 − 2 = 0, dasselbe gilt für den

”
zylindrischen“

Polyeder mit nur zwei fehlenden Flächen. Den anderen
”
zylindrischen“ Polyedern fehlen vier Flächen, also E−K+F = 2−4 = −2.

Beim Wiederzusammenkleben der Teile an den Klebstellen verliert man dieselbe Anzahl an Kanten wie die der Ecken. An dem Wert

E −K + F des gesamten Gebildes ändert sich also beim Zusammenkleben nichts. Ansonsten addiert sich der (E −K + F )-Wert

des wieder zusammengeklebten Gebildes aus den jeweiligen (E − K + F )-Werten der Einzelteile. Man erhält also E − K + F =

0 + (g − 1) · (−2) + 0 = 2− 2 · g.

Die 5 platonischen Körper
[Zurück zur Liste]

Satz. Es gibt nur fünf reguläre Polyeder, die Platonischen Körper.

Beweis. Ein reguläres Polyeder habe F Flächen, die also reguläre n-Ecke sind. Desweiteren treffen in einem regulären Polyeder an

jeder Ecke r Kanten aufeinander. Zu jeder Fläche gehören also n Kanten. Da jede Kante zu zwei Flächen gehört, ist die Anzahl

der Kanten K gleich F ·n
2 , also 2K = n · F . Nochmal: Zu jeder Ecke gehören r Kanten. Weil jede Kante zu zwei Ecken gehört, gibt

es E·r
2 Kanten K, also 2K = r ·E. Nun setzt man E = 2K

r und F = 2K
n in die Euler’sche Polyederformel E −K + F = 2 ein und

erhält also: 2K
r + 2K

n −K = 2⇔ ( 1
r + 1

n −
1
2 ) ·K = 1⇔ 1

r + 1
n = 1

K + 1
2 . Ein reguläres n-Eck muss mindestens drei Seiten haben,

also gilt n ≥ 3. Und da an jeder Ecke nicht weniger als drei Kanten zusammentreffen, gilt r ≥ 3. 1
r + 1

n muss größer als 1
2 sein,

weil K sonst negativ wäre. Daraus folgt: r und n können nicht beide größer sein als 3. Da r, n ≥ 3 gilt, muss also r oder n gleich

3 sein. Sei zunächst n = 3, dann gilt 1
r + 1

3 = 1
K + 1

2 ⇔
1
r −

1
6 = 1

K . r kann dann nicht größer als 6 sein, sonst wäre 1
K negativ.

r = 6 kann auch nicht sein, weil K ansonsten nicht aus N wäre. Es bleiben nur noch r = 3, 4, 5. Für diese Werte erhält man für K

Werte aus N, nämlich K = 6 für r = 3, K = 12 für r = 4 und K = 30 für r = 5. Aus E = 2K
r erhält man die Anzahl der Ecken

und mit F = 2− E +K die Anzahl der Flächen. Die Möglichkeiten:

n = 3, r = 3, K = 6⇒ E =
2 · 6

3
= 4⇒ F = 2− 4 + 6 = 4 (Tetraeder)

n = 3, r = 4, K = 12⇒ E =
2 · 12

4
= 6⇒ F = 2− 6 + 12 = 8 (Oktaeder)

n = 3, r = 5, K = 30⇒ E =
2 · 30

5
= 12⇒ F = 2− 12 + 30 = 20 (Ikosaeder)

Die Werte sind also alle natürliche Zahlen. Sei nun r = 3. Genau wie eben schließt man aus 1
n −

1
6 = 1

K , dass nur n = 3, 4, 5

möglich ist. Und wieder erhält man K = 6, 12, 30. Aus F = 2K
n erhält man dann die Anzahl der Flächen und mit E = 2 +K − F

die Anzahl der Ecken. Die Möglichkeiten also:

r = 3, n = 3, K = 6⇒ F =
2 · 6

3
= 4⇒ E = 2 + 6− 4 = 4 (Tetraeder)

r = 3, n = 4, K = 12⇒ F =
2 · 12

4
= 6⇒ E = 2 + 12− 6 = 8 (Hexaeder)

r = 3, n = 5, K = 30⇒ F =
2 · 30

5
= 12⇒ E = 2 + 30− 12 = 20 (Dodekaeder)

Auch hier sind die Werte wieder natürliche Zahlen. Damit sind alle sich aus der Euler’schen Polyederformel ergebenden Möglichkeiten

ausgeschöpft, mehr gibt es nicht. Insgesamt wurden also fünf verschiedene reguläre Polyeder gefunden.

Die Limesdarstellung der Euler’schen Zahl
[Zurück zur Liste]

Satz. Es gilt e = lim
n→∞

(
1 +

1

n

)n
.

Beweis. Die Zahl e sei definiert als die Zahl, für die gilt lim
h→0

eh−1
h = 1, so dass d

dx e
x = lim

h→0

ex+h−ex
h = ex · lim

h→0

eh−1
h = ex

folgt. Es wird nun die stetige Funktion f(x) = ex − x untersucht: Wegen f ′(x) = ex − 1 = 0 ⇒ x = 0 hat f bei x = 0 ein

Extremum. Da f ′′(0) = e0 = 1 > 0 gilt, handelt es sich dabei um ein lokales Minimum mit dem Wert f(0) = e0 − 0 = 1 − 0 = 1.

Es existiert ein ε so, dass der Wert 1 auf (0 − ε, 0 + ε) das absolute Minimum ist. f ′(x) = ex − 1 ist kleiner als 0 für alle x < 0

und größer als 0 für alle x > 0, also ist f auf (−∞, ε] streng monoton fallend und auf [ε,∞) streng monoton steigend. Daraus
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folgt dann, dass an der Stelle x = 0 ein globales Minimum von f mit dem Wert 1 vorliegt. Also gilt f(x) ≥ 1 für alle x ∈ R

und f(x) > 1 ⇔ ex > 1 + x für x 6= 0. Nun ist 1
n > 0 für alle n ∈ N>1. Also gilt e

1
n > 1 + 1

n ⇒ e >
(
1 + 1

n

)n. Für

m ∈ N>1 ist − 1
m < 0, also e−

1
m > 1 − 1

m ⇒ e
1
m < 1

1− 1
m

= m
m−1 ⇒ e <

(
m
m−1

)m
. Ersetzt man m durch n + 1, dann gilt also

e <
(
n+1
n

)n+1
=
(
1 + 1

n

)n+1. Also gilt zusammengefasst
(
1 + 1

n

)n < e <
(
1 + 1

n

)n+1 ⇒ 1 < e(
1+ 1

n

)n < 1 + 1
n (n ∈ N>1), was

schließlich
(
1 + 1

n

)n −→
n→∞

e impliziert.

Die Irrationalität der Wurzel aus 2
[Zurück zur Liste]

Satz. Es gilt:
√

2 ist eine irrationale Zahl.

Beweis. Angenommen, die Quadratwurzel aus 2 ist rational. Dann lässt sich diese Zahl als Bruch p
q darstellen. Weiter nimmt man

an, dass p und q teilerfremde natürliche Zahlen sind, der Bruch also in maximal gekürzter Form vorliegt. Ist er nicht maximal

gekürzt, dann kürze ihn maximal. Aus
√

2 = p
q folgt dann 2 =

(
p
q

)2
= p2

q2
, also p2 = 2q2. Also ist p2 eine gerade Zahl. Folglich ist

auch p gerade, denn wäre p ungerade, dann folgte, dass p2 ungerade ist, im Widerspuch dazu, dass p2 gerade ist, weil eine ungerade

Zahl, multipliziert mit einer ungeraden Zahl, wieder ungerade ist, denn: (2n+ 1) · (2m+ 1) = 2 · (2mn+ n+m) + 1 (m,n ∈ N). p

lässt sich also darstellen als p = 2r, wobei r ∈ N sei. Deswegen gilt dann p2 = (2r)2 = 4r2 = 2q2 ⇔ 2r2 = q2. Es ist also auch q2

gerade. Mit der gleichen Argumentation, wie oben, folgt, dass auch q eine gerade Zahl ist. Da p und q also beide durch 2 teilbar

sind, erhält man einen Widerspruch zur Teilerfremdheit von p und q. Dieser Widerspruch zeigt, dass die Annahme, die Wurzel aus

2 sei eine rationale Zahl, falsch ist und daher das Gegenteil gelten muss. Dass
√

2 irrational ist, ist also vollständig bewiesen.

Die Unendlichkeit der Primzahlenanzahl
[Zurück zur Liste]

Satz. Es gibt unendlich viele Primzahlen.

Beweis. Sei Fn = 22n + 1 für n ≥ 0 die Folge der Fermat-Zahlen. Es gilt Fm − 2 = F0 · F1 · . . . · Fm−1. Beweis durch vollständige

Induktion über m: Induktionsanfang: m = 1: F1− 2 = (221
+ 1)− 2 = 3 = 220

+ 1 = F0, also richtig. Induktionsvoraussetzung: Die

Behauptung gelte für m ≥ 1. Induktionsschritt: Fm+1−2 = (22m+1
+1)−2 = 22·2m−1 = (22m )2−1 = (((22m +1)−2)+1)2−1 =

((Fm − 2) + 1)2 − 1
I.V.
= (F0 · F1 · . . . · Fm−1 + 1)2 − 1 = (F0 · F1 · . . . · Fm−1)2 + 2 · F0 · F1 · . . . · Fm−1 · 1 + 12 − 1 =

F0 · F1 · . . . · Fm−1 · (F0 · F1 · . . . · Fm−1 + 2)
I.V.
= F0 · F1 · . . . · Fm−1 · Fm. Damit ist die Behauptung bewiesen. Es folgt daraus,

dass Fn für n < m die Zahl Fm − 2 teilt. Einschub: b | c ⇒ ggT(a, b) = ggT(a − c, b). Beweis dieser Aussage: Sei g = ggT(a, b),

also g maximal mit g | a ∧ g | b, gegeben. Aus g | b und b | c folgt g | c. Nun gilt auch g | a ∧ g | c ⇒ g | a − c. Also gilt

zusammengefasst g | a − c ∧ g | b, also g ≤ ggT(a − c, b) =: g′. g′ teilt a − c und b und ist maximal groß mit dieser Eigenschaft.

Weil b | c gilt, folgt aus g′ | b dann g′ | c. Wegen g′ | a − c und g′ | c gibt es ganze Zahlen k, k′ mit g′ · k = a − c und

g′ · k′ = c, also g′ · k = a − g′ · k′ ⇔ g′ · (k + k′) = a, d.h. g′ | a. Aus g′ | a ∧ g′ | b folgt g′ ≤ ggT(a, b) = g. Gezeigt

wurde g ≤ g′ und g′ ≤ g, also gilt g = g′, d.h. es gilt ggT(a, b) = ggT(a − c, b). Diese bewiesene Behauptung wird nun benutzt:

ggT(Fm, Fn) = ggT(Fm − (Fm − 2), Fn) = ggT(2, Fn). Da Fn für alle n ≥ 0 eine ungerade Zahl ist, gilt ggT(2, Fn) = 1, also sind

die beiden Primfaktorzerlegungen von Fm und Fn (n < m) disjunkt. D.h. mit Fn (n ≥ 0), streng monoton steigend, listet man

unendlich viele paarweise disjunkte Primfaktorzerlegungen auf. Daraus folgt, dass es unendlich viele Primzahlen geben muss, wie

schon bereits behauptet.

Es gibt aber auch noch einen kurzen Beweis:

Beweis. Mal angenommen, es gibt nur endlich viele Primzahlen: Seien diese p1, p2, . . . , pn. Es ist dann m := 1 +
n∏
k=1

pk eine

Zahl, die nicht durch p1, p2, . . . , pn teilbar ist. Weil man m als Produkt von Primzahlpotenzen darstellen kann (Existenz der

Primfaktorzerlegung), gibt es eine Primzahl q, die m teilt. Wegen p1, p2, . . . , pn - m, ist also die Primzahl q zu allen p1, p2, . . . , pn

verschieden, d.h. man hat eine neue Primzahl gefunden, Widerspruch, denn mit p1, p2, . . . , pn hatte man doch alle Primzahlen

aufgelistet. Das ist dann das Ende des Beweises!
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