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Die Formel oben ist die Aussage des Satzes von Gauf-Bonnet in der globalen Version. Es wird dort die GaufS-Krimmung K
iber eine zweidimensionale, orientierbare und kompakte Fliche M ohne Rand im dreidimensionalen Raum integriert. Dabei

gibt das Integral Auskunft iber die Anzahl g der Lécher in der betrachteten Mannigfaltigkeit M.
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Der Satz von Gauf3-Bonnet

[Zuriick zur Liste]

Lemma (Richtungs- und kovariante Ableitung). Seien X und Y Vektorfelder lings eines Flichenstiicks f, dann seit die Rich-
tungsableitung definiert durch (DxY)(p) = lim < (¥ (p + 1+ X(p) = Y(1)) = d¥p(X(p)) = LY (e(t)lemo = Jim +(¥(e(0)) -
Y (c(0))), wobei ¢ eine Kurve in f sei mit c(0) = p sowie ¢’(0) = X(p), und die kovariante Ableitung durch (VxY)(p) :=
(DxY)(p) — ((DxY)(p),vp) - vp € Tpf mit p, Punkt auf der Fliche f, und v, € Npf. Es gelten dann folgende Rechenregeln:

1P Dy x14/9-X,Y = f1 - Dx, Y + f2 - Dx, Y 1YV Vi Xi4f2-X2Y = f1 - Vx, Y + f2- Vx, Y

2P Dx(A1-Yi+X2-Y2) = A1 DxYi+ X2 DxYa 2V Vx(A1-Yi+ X2 Y2)=A1-VxYi+ X2 VxYa
3P Dx(g-Y)=Xg-Y+g-DxY 3V Vx(g-Y)=Xg-Y+g-VxY

4P X (v1,Y2) = (DxY1,Ys) + (Y1, Dx Y1) 4V X (Y1,Y2) = (VxY1,Ya) + (Y1,VxY1)

Dabei seien A1, A2 € R und g, f1, fa reellwertige Funktionen, definiert auf der Fliche f, sowie X,Y, X1, Xa,Y1,Y> Vektorfelder

lings f. Im Fall 3V muss Y tangential sein, und im Fall 4¥ miissen Y1 und Ys tangential sein.

Beweis. Zunichst wird bewiesen, dass die verschiedenen Darstellungen der Richtungsableitung D x Y auch alle gleich sind: (DxY)(p) =

d d
Jim (V04 £ X (1) = Y(0) = Y (04 - XG0 = WVpirox (040X ) | = Vo (X)) mo = ¥, (X () =
dY,(0y(c'(0)) = dY.(4)(c'(£))|¢=0 = %Y(c(t))\tzo = tlgr}) %(Y(c(t)) — Y (c(0))). Jetzt wird der Beweis der Rechenregeln fiir alle 8

Fille vollzogen:

Zu1P:

Dy Xq+f0-XY =dY (f1- X1+ f2-X2) = f1 dY (X1) + f2-dY (X2) = f1 - Dx,Y + f2 - Dx,Y, denn Differentiale sind, was aus
der Analysis ndmlich bekannt ist, linear.

Zu 1V

Vi1 X1t e XY = Dpyxyt e xsY — (Dfy Xyt fe XaViv) - v = f1 - Dx,Y + fo - Dx,Y — (f1 - Dx,Y + fa - Dx,Y,v) - v =
f1-Dx, Y+ f2:-Dx,Y — f1-(Dx,Y,v) - v—fo-(Dx,Y,v) - v=(f1-Dx;Y = f1- (Dx,Y,v) - v)+(f2- Dx,Y — f2 - (Dx,Y,v) -v) =
[fi - (Dx,Y —(Dx,Y,v) - v)| + [f2 - (Dx,Y = (Dx,Y,v) - V)] = f1 - Vx; Y + fo- Vx, Y.

Zu 27

Dx(A1- Y1+ Az Y2) =d(A1- Y1+ Az Y2)(X) = A1 - dY1(X) + A2 - dYa(X) = A1 - DxY1 + Az - DxYa, denn fiir Differentiale gilt
die Faktor- und Summenregel.

Zu 2V

V(A1 Y1+ X Ya) = D(A1- Y1 + Az ¥2)(X) — (DA - Y1 + Ao - Ya)(X),v) - v = A1 - DY1(X) + Az - DY2(X) — (A1 - DY (X) +
Ao DYa(X),v) - v = [A1 - DY1(X) = A1 - (DY41(X),v) - v] + [A2 - DYa(X) — As - (DY2(X),v) - v] = [A1 - (DY (X) — (DY1(X), V) -
V4 Pz - (DY2(X) = (DY2(X),v) - v)] = A1 - VX Y1 + Az - Vx V2.

Zu 3°:

Dx(g-Y)=dg(X) Y +g-dY(X)=Xg Y +g-DxY, denn fiir Differentiale gilt die Produktregel.

Zu3Y:

Vx(g'Y)=Dx(9Y)—(Dx(g:Y),v)v=XgY+9gDxY—(XgY+g DxY,v)ov=XgY+g-DxY—-Xg(Y,v)v—g(DxY,v) v =
Xg-Y+g-DxY—-Xg-0-v—g-(DxY,v) - v=[Xg-Y—-0]+[¢g-(DxY —(DxY,v) - v)|]=Xg-Y+g-VxY, denn Y wurde in

diesem Fall als tangential vorausgesetzt, also (Y, v) = 0.

Zu 47:

In diesem Beweis hier geht man etwas anders vor: (X (Y1, Ya))(p) — %wl(c(t)),n(c(t)))\t:o - <%Y1(c(t))7Y2(c(t))> Lt

(Vo). Zrale®lizo) | = (YO0 Ya0) )+ (Vo). Za(e®)lim0 ) = (DX V@), Valp) +Vi (0). (DxVa)0)-

Beweis von %(A(t),B(t)) - <%A(t), B(t)> " <A(t), %B(t)>: Man beschréinkt sich hier exemplarisch auf den hier wichtigen
ay(t) b1 (t)

3-dimensionalen Fall, denn der allgemeine Fall geht vollig analog: A(t) = | az(t) |, B(H) = | ba(t) |, also = (A(), B(®) =
az(t) ba (1)

Produﬁtregel [

%[a1<t)~b1(t>+az(t) b2 (t)+as(t)-bs (t)] ay (#)-bu(t)+a(t)-by ()] +las(t)-ba (t) +-az(t)-by ()] +[as (t)-bs () +as (t)-b3 (¢)]

und das ist gleich zu: [a](t) - b1(t) + a5 (t) - ba(t) + a5 (t) - b3(t)] + [a1(2) - b)(t) + a2(t) - by (£) + as(t) - bs(t)] = <%A(t), B(t)> +
<A(t), %B(t)>7 fertig!

Zu 4V:

X(Y1,Y2) = (DxY1,Y2) + (Y1,DxY2) = (VxY1 + (DxY1,v) - v,Y2) + (Y1, VxYs + (DxYa,v) - v) = (VxY1,Ys) + ((DxYi,v) -



v, Y2) + (Y1, VxY2) + (Y1,(DxYa,v) - v) = (VxY1,Ya) + (DxY1,v) - (v,Ya) + (Y1, VxYa2) + (Y1,v) - (DxYa,v) = (VxY1,Ya) +
(DxY1,v) -0+ (Y1,VxY2)+0-(DxYa,v) = (VxY1,Ys) + (Y1, VxYi), denn es wurde in diesem Fall vorausgesetzt, dass Y7 und
Y> tangential sind, sodass also gilt: (v, Y2) = (Y1,v) = 0. O

Lemma (Kovariante Ableitung lings Kurven). Sei «, definiert auf I C R, eine Kurve, die in der Fliche f verliuft. Fir ein
Vektorfeld X, definiert auf I C R auf f lings o gelte X(t) € To(r)f fiir alle t € I. Die kovariante Ableitung lings « ist dann
v d d
definiert als EX(t) = EX(t) — <EX(t), u(a(t))> cv(a(t)) € To(r)f, wobei gelte: v(a(t)) € No(r) f. Folgende Rechenregeln:
1. —( M- X4+ X Y)=XA  —X+ Xy —Y
dt( 1 + A2 ) L + A2 i

v d v
2 g x)=2g. X+g-2x
w9 X =g Xte g

d v \Y
3. —(X,)V)=(—=X,Y)+(X,—-Y
dt dt dt
Dabei gelte X (t),Y (t) € To) f fiir alle t € I und es sei g eine Funktion g : I — R, auflerdem: X € R.

Beweis. Es werden nun alle 3 Rechenregeln bewiesen:
Zul.:
. v d d d
Es gilt dann also: E(}q X+ Y)(t) = E(Al X))+ A2 Y(t))— E(Al X () F A2 - Y(t), v(a(t)) )y via(t) = A1 - EX(t)+/\2~

YO = (M SXW.(a0)) vla®) - (3 TYOM@) ) @) = 2+ X0 =21 (FXO (@) ) - wlal)] +

d d v v
[)\2 . EY(t) — A2 - <EY(25)7 V(a(t))> . u(oz(t))} =X EX(t) + A2 - EY(t), denn es gilt die Faktor- und Summenregel.
Zu 2.:

Nach der Produktregel gilt: %(g - X)(t) = %(g(t) - X(t) — <%(g(t) - X (t)), V(a(t))> -v(a(t)) = %g(t) S X(t) 4+ g(t) - %X(t) -

(5590 X +9(0) - TXO (@) ) - w(al) = La(®) - X0) + 9(0) - TX(W) = S9(0) - (X(W.v(a(0)) - va®) - a(0) -

( X O Yvla(®) = Za(0):X (0 Fal0r0+e(0)-| 5 X(0) - <%X(t>,u<a<t>>> vla(®)] = L0 X (W) +9(0)- X (1),

denn es gilt (X (), v(a(t))) = 0 wegen X (t) € To () f und v(a(t)) € Ny f-

Zu 3.:

cllit< Y)(t) = <X(t) Y () = <%X(t),Y(t)> + <X(t) iY(t)> Warum das gilt, wurde im Lemma (Richtungs- und ko-
XY@ )+ (X0, Y 0) =

<Z ()+< X(t u(a(t))> v(a(t)), Y(t)>+<X(t) zy(t)+ <%Y(t) V(a(t))> -V(a(t))> und das ist gleich zum Folgendem:

)
(Fx@.v0 > (% X(t)ma<t>)>-u<a<t>>7Y<t>>+<X<t>,—Y<t>>+< O (Y @.v(a(®)) - va)) = (FXO.Y(0) )+
+0

0+ (X0, 37 ) +0= (X0 Y0 ) + (X0, 3¥(0) ), denn: << X(0), u(a(t))> a(). Y (1)) = { X W vla®))

(), Y () =0 = (X (1), w(a®) - { Sy (@), u(a<t>>> <X(t), < Y (1), u(a(t>>> : u(a(t>)>, denn wegen X (1), Y (£) € Ta(o) f
und v(a(t) € Nao f gilt (w(a(), Y (1)) = 0 = (X(8), w(a())- 0

d
variante Ableitung) oben unter 4” bewiesen. Weiter gilt dann schlieBlich: E<X’ Y)(t) = <

Lemma (Bogenlingenparametrisierung). Sei c: I — R3 eine regulire (fir alle t sei ¢’ (t) # 0) Raumkurve. Die Geschwindigkeit

dieser nach Bogenldinge parametrisierten Kurve ist gleich 1.

Beweis. Sei die Kurve c(t) gegeben. Sei s(t) = /t ll¢'(w)|| du die Bogenlingenfunktion. Wegen s’(t) = ||¢/(t)|| > 0 ist s(t)
to

umkehrbar mit Umkehrfunktion #(s). Ein Parameterwechsel ist dann &(s) = c(¢(s)). Dann gilt: &’'(s) = %c(t(s)) = c/(t(s)) - t'(s).

Es gilt s(t(s)) = s, also s'(t(s)) - t'(s) = 1 = t/(s) = m Daraus folgt dann ||&'(s)|| = %c(t( = ||/ (t(s)) - t'(s)]| =

’ s ; =
= I e =+ D

Lemma (Geoditische Kriimmung). Die geoddtische Kriimmung einer reguliren Raumkurve v : I — R3, die in einer Fliche f

¢ (t(s)) - ¢ (t(s)) -

wal = |« foawml

verlduft, berechnet sich folgendermaflen:

_ 1 /v Y v () 7"
ka0 = ol <dt o () >

Beweis. Sei v : I — R® eine Raumkurve. Die Kriitmmung dieser Kurve berechnet man, indem man diese Raumkurve nach Bo-

genldnge parametrisert und dann den Beschleunigungsvektor ausrechnet, dessen Betrag die Kriimmung ist. Weil diese Raumkurve
die Geschwindigkeit 1 hat, hat nur die Form der Kurve Einfluss auf den Beschleunigungsvektor (also auf die Kriimmung) und
nicht die Geschwindigkeit. Man rechnet: 7"/ (s) = (y o t)"(s) = (Y (t(s)) - t'(s)) = (¥ (t(s)) - t'(s)) - t'(s) + ' (t(s)) - t”(s) =
~(t(s)) - t'(s)% + 4" (t(s)) - t”(s). Nun gilt nach dem Lemma (Bogenlingenparametrisierung) oben t'(s) = ,
(t(S)) Iy (sl

Lol - e Ly
0-s'(1(s)) — 1 (s'(1())) _ () #'(s) _ at'” GOl _ g )
(s (1()))? (s (1)) ()2 RRCOIE

also t''(s) =

. Daraus folgt dann:



(8) e () (1) - () — D) ) I EEDI 7w - I G = 7 (1) - Tl W)
¥(s) =7 s))-t (s ¥ s))- s) = — )

FGIE e RRIOIE
4 () 4 ACe0) 4 A
L IO L e denms 5ty = ECOOIL _ BIVDI o der Stell
PO~ I ep] 0 B e ) = Ty T Ty e denn die Krimmung an der Sell

t darstellt. Es verlaufe nun ~ in einer Fliche im Raum, die durch f dargestellt sei, mit Einheitsnormale v. Es gilt 3'(s(t)) =

ot) (s = ~'(t(s - t'(s = & also fo ann: ('(s v (s = v () i0) = also 0 = i =
(7.0 0/(6(0) = 5/ (o() -/ (50) = Gy, ol dao {7'(:(0), 7 ((0) (oo Tor) = b a0 = S

F'(s(1) - 8"(£), 7" (s(1))) + (F' (s(£)), 7" (s()) - 8’ (1)), also 0 = 2 8"(t) - (F" (s()), 7' (s(1))) (s'(t) # 0)7 also (3 (s(t)), 7' (s(t))) =
d (1) 7' (1)

dt ||y’ @I,
I ()l

dt [ ()l ¥ (@)

) n der Ebene befin-
v @n vl

Umgeschrieben gilt also < > = 0. Das bedeutet, dass sich der Kriimmungsvektor

. V() O\t . - ¥ () \* V() S
det, die durch | ~——— und v aufgespannt wird. Dabei meint | ———— den von ————=- in T}, f um 90° in positiver Richtung
I ()l lIv' (D)l Iy (@)l
d ~'(t) d (1) d (1)
o 7 T N (¢ L (¢ L rn 7
gedrehten Vektor. Daraus folgt also 7'/ (s(t)) = dt H;Y Wl = dt ”7 @l s ( ’Y/( ) > . ( ’y/( ) ) + wy’/ "V,
I ()l [l (@)l [l (@)l Iy (@)l [l (@)l
-4
=kg(t) =kn(t)

t 1
n ( v (®) ) und v sind orthonormal. k4 heifit die geodétische Kriimmung und k, Normalkriimmung. Es gilt dann kg4 (t) =

Ol
1 ) i ' (t) ~'(t) + - 1 . X 7' (1) i 7' () v ‘v 7' (1) L> araus folgt:
EROL <dt e () > = ol <dt o G T 0®) v, (o)) paras ol

_ 1 Y Am [ Aw Nt . i (4 YW (B N\ YO VN
5O = <dt e (o) >’de““sgﬂtd“hnam1mh'<<d o () > o (reon) >7

4w (A NN/ ' (t) L>_ s war os -
<dt o (o) > <”(t))’(u7'<t>n) =00 '

=0

Lemma (Hilfssatz iiber Richtungsableitungen). Seien X, Y und Z Vektorfelder im R®. Dann gilt:

Dx(DyZ) — Dy(Dx Z) = Dix v\ 2

chwa 3. .
Beweis. Zunichst gilt De;e; = 0 und DeiDejZ = 0;0;Z Schwarz 0;0;Z = Dej D, Z fiir alle i, j. Seien nun X = > e,
i=1
3 .
Y = > n’e; gegeben. AuBerdem sei definiert: [X,Y] = DxY — Dy X Also:
j=1
Dx(Dr2) - y(Dx2) =360, (YD, 2) - YD, (Sen.2)
i=1 j=1 j=1 i=1
3.3 ] 3 3 )
=2 2 €'De,(n'De;Z) =3 3 ' De(§ De; Z)
i=1j=1 i=1j=1
3 3 . . . 3 3 . . .
=D > & W De;De;Z+ Doy’ De; 2) =Y > 0’ (§'De; Do, Z + De € D, Z)
i=1j=1 i=1j=1
3. 3 3 3 ) 3. 3 )
5 SPITICNNPEPIFIPIES 35 SIS ITAPES 50 ST
i=1j=1 i=1j=1 i=1j=1
3 3 3 3
=0+> Y ¢’ D., 7~ ZZnasﬂDez S5 (o’ —n'oie’) Doy z
i=1j=1 i=1j=1 i=1j=1
=Ds g . Z=Dg
X [(6%9;mI —nto €7 e ] Z Z [€8((De;mI)ej+0)—n?((De,; €9)e;+0)]
i=15=1 i=15=1
=D 3 ) ) 33 . ; Z
> Y €8 ((DegmId)ej+nIDejej)— 3 3 n*((De;é9)ej+69 Dejej)
i=15=1 i=15=1
=D, Z =Dpyvy-pyxZ =Dixy1Z
El Z ¢iDe; (Tﬂe])* Z E 79 D (Ete;)
i Jj=1
Und das ist das, was zu beweisen war. O

Satz (GauB- und Codazzi-Mainardi-Gleichung). Seien X, Y und Z tangentiale Vektorfelder lings eines Flichenstiicks, welches
durch f dargestellt sei. Dann gilt die Gauf$-Gleichung:

R(X,Y)Z :=VxVyZ~-VyVxZ~-Vixy|Z=(LY,Z)LX — (LX,Z)LY
Dabei ist R(X,Y)Z der sogenannte Riemann’sche Krimmungstensor. Und es gilt die Gleichung von Codazzi-Mainardi:

Vx(LY) = Vy (LX) = L(X,Y]) = 0



Beweis. Wegen (Y,v) = 0 folgt (DxY,v) = —(Y,Dxv) = —(—LX,Y) = (LX,Y). Es gilt: VxY = DxY — (DxY,v) - v, also
DxY =VxY +(DxY,v) - v =VxY + (LX,Y) - v. Man zerlegt nun in Tangential- und Normalteil. Wegen des Hilfssatzes iiber
Richtungsableitungen gilt doch:

0= Dx(DyZ) — Dy(DxZ) — Dixyv1Z
=Dx(VyZ+(LY,Z)-v) — Dy(VxZ+ (LX,Z) - v) — Dixyv|Z
=DxVyZ+Dx({(LY,Z)-v) — DyVxZ—Dy((LX,Z) -v) — Dix,y|Z
=DxVyZ+ X(LY,Z) v+ (LY, Z)Dxv — DyVxZ —Y(LX,Z) v —(LX,Z)Dyv — Dx y|Z

=DxVyZ+ X(LY,Z) -v—(LY,Z)LX — DyVxZ —Y(LX,Z) -v+ (LX,Z)LY — Dix,y|Z
Und das ist dann dquivalent zu:

0=[VxVyZ+(LX,VyZ) v]+ X(LY,Z) v—(LY,Z)LX — [VyVxZ+ (LY,VxZ) - v]—
Y(LX,Z) v+ (LX,Z)LY — [Vix yv1Z + (L([X,Y]), Z) - V]

Fiir den Tangentialanteil gilt:
0=VxVyZ—VyVxZ—Vixy)Z— (LY, Z)LX + (LX, Z)LY
Also ist die GauB-Gleichung bewiesen. Und der Normalanteil ist folglich:
0= ((LX,VyZ)+ X(LY, Z) — (LY, Vx Z) — Y(LX, Z) — (L([X, Y]), Z))v
Wegen X(LY,Z) = —(Vx(LY),Z) — (LY,VxZ) (fir Y(LX, Z) analog) folgt:
(Vx(LY), Z) — (Vv (LX), Z) — (L(X, Y]), Z)v = 0
und das impliziert (Vx (LY) — Vy (LX) — L([X,Y]), Z) = 0 fiir beliebige tangentiale Z, also:
Vx(LY) — Vy (LX) — L([X,Y]) = 0
Damit ist der Beweis schlieilich beendet. a

Definition (Differentialformen). FEine Pfaffsche Form (oder 1-Form) auf einem Flichenstiick, das durch f gegeben ist, ist

eine Zuordnung p — wp € (Tpf)*. Nun seien X1, X2, X3 gegeben. Dabei seien X1, X2 eine Orthonormalbasis von Tpf und

X3 = v sei dann die Einheitsnormale auf der Fliche f. Man definiert dann dazu wh w? w? als die zugehorige Dualbasis, d.h.
) . 1, i=j

es gilt: w'(X;) = 6'} = ” J mit i,j = 1,2,3. Das Dachprodukt zweier 1-Formen ist eine 2-Form und folgendermafien
0, i#j

definiert: w A (X,Y) = w(X) - n(Y) — n(X) - w(Y). Der Pullback einer Differentialform sieht am Beispiel einer 2-Form

so aus: @ w(X,Y) = w(dp(X),dp(Y)). Die dufere Ableitung einer 1-Form w(X) ist die 2-Form definiert durch dw(X,Y) =

Xw(Y)—Yw(X)—w([X,Y]). Es gilt der Satz von Stokes: w = / dw. Es sei nun vorausgesetzt, dass die Differentialformen

oM M
stetig differenzierbar sind. Das war es hier auch schon!

Lemma (Zusammenhangsformen). Seien X1 und Xa orthonormal und tangential, X3 = v normal an der Fliche f. Man definiert
eine 1-Form w; durch wj- (X) = w'(Dx X;). wj- heifst dann Zusammenhangsform. Dann gilt eben:
3 2

DxX; = Zw;(X) - X und Vx X = Zw;(X) - X; sowie w; = 70.){

i=1 i=1

Gebraucht wird spiter das Folgende: w; (X) =(VxX;,X;) (1,7 =1,2), falls die X; tangential an f sind.

3 . .
Beweis. Weil X1, X2 und X3 eine Orthonormalbasis bilden, gilt: DxX; = > (DxXj, Xx) - Xi, also w; (X) = w'"(DxX;) =
k=1

. 3 3 . 3 .
w® (Z (DxXj, Xk) - Xk> = > (DxXj, Xk) - w'(Xr) = (Dx X, X;), also gilt dann Dx X; = 3> w;(X) - X;. Weiter gilt dann
k

k=1 =1 i=1
wi = —wl. Beweis: 0 = X(X;,X;) = (DxX;, X;) + (X;, DxX;) = w}(X) + wi(X). Nach Voraussetzung sind X; und X
orthonormal und tangential sowie X3 = v normal an der Fliche f. Dann gilt: w; (X) =w'(DxX;) = (DxX;,X:) = (Vx X;, Xi)
3
(i,j=1,2), denn der Normalanteil von D x X; hebt sich wegen des tangentialen X; raus. Es gilt weiter Vx X; = > (Vx X, Xp)- X =
k=1

2 ) /2 2
Z<VXXj;Xk>'Xk wegen <Vij,X3> = <Vxxj,ll> :0, also wl(VXX]') :wl<Z<VXXj,Xk>'Xk) = Z(VXXj,Xk)~
k=1 k=1 k=1

wi(Xy) = (VxXj, X;). Daraus folgt dann also: w;(X) = w'(DxX;) = w(VxX;). Nochmal schén aufgeschrieben gilt noch:

2 .
VxX;= > w;(X) X;. Und das war es auch schon! O

i=1



Satz (Maurer-Cartan-Strukturgleichungen). Es gelten die folgenden Gleichungen:
. 3 ) &
(i) dwj +k21w;€ Awi =0 firij=1,2
. 2 . k
(it) dws + > wp Aws =0 fliri=1,2
k=1
Beweis. Wegen Dx Dy X; — Dy Dx X; — D[x,y)X; = 0 (Hilfssatz iiber Richtungsableitungen) folgt:

0= (X;,0) =(X;, Dx Dy X; — Dy DxX; — Dix v1X;)

=<X1;,Dx (gwf(Y)'Xk) Dy <Z‘“ (X) - X") <§: (YD Xk)>

k=1 k=1

(o () o (0 ) - (e )

3 3 3
w ((Z Xwf (V) X +wh(Y) DXXk> - (Z Ywl(X) - X +wf(X)-Dka) - <wa([x,y]).xk)>
k=1 k=1 k=1

HM&’

3 3
Xwi (V) w'(Xp) = D Ywh (X) -0’ (Xe) — D wf (1X,Y]) - w' (Xe)+
k=1 k k=1

3
WF (V) w (DxXi) = Y wh(X) - w'(Dy Xi)

M

k=1 k=1
= Xwi(Y) — Ywh(X) — wi([X, Y])+Zw (Y) - (Dx Xy, X; Zw (X) - (Dy X, X;)
k=1
— i (X, Y) + 30w (V) wh () = 3D wh(X) - wh (V) = dwt (X, Y) + 30 wh(X) - wk (V) — 0! (X) - wi (V)
k=1 k=1 k=1
= (dw; + Zwi /\w?) (X,Y)
k=1
Zum Beweis von (i): Ist einfach der Fall ¢, = 1,2. Und (i¢) entspricht dem Fall ¢ = 1,2 und j = 3. Also gilt dann die folgende
) 3 ) 2 ) 2 ) .
Rechnung: dws + > wy, A w;f = dwy + (E wp, A wé) + w; A wg = > wp A w§, denn aus der bekannten Identitit w;- = 7wg
k=1 k=1 —— k=1
=wiA0=0
(siehe Lemma (Zusammenhangsformen) oben) folgt deswegen also wg = —wg’, also wg = 0. O

Satz (Kriimmungsformen). Fiir eine gegebene Orthonormalbasis X1, X2, X3 (X1, X2, orthonormal und tangential an f sowie
X3 = v Einheitsnormale) auf einem Flichenstiick f seien die Kriimmungsformen Q; definiert durch Q; (X,Y) =(R(X,Y)X,, Xi).
Dabei gilt Q;- = —Qz sowte die Gleichung:
2
i i i K
Q5 (X,Y) = dw; + Zwk A wj
k=1

In Verbindung mit (i) in dem Satz (Maurer-Cartan-Strukturgleichungen) gilt: Qj = —wg A w?
Beweis. Nach der GauB-Gleichung (s.o.) gilt: Q;(X, Y) = (R(X,Y)X;,X;) = ((LY,X;)LX — (LX,X;)LY, X;) = (LY, X;) -
(LX, Xi) = (LX, X;) - (LY, Xi) = f (V) - wi(X) = w}(X) - wi(Y) = —(—eP(X) -« (Y) + w(X) - w(¥V)) = —(w5(X) -} (V) -
WHX) - wh(Y)) = —wi Aw?(X,Y), denn es gilt w}(Z) = (Dz X1, Xs) = —(X;, Dz X3) = —(XL, Dzv)y = —(X;,—LZ) = (X, LZ) =

. . 2 . 3 .
(LZ, X;). Also folgt daraus: Q) = —wz A w?’ = kzl wy, A w? - kzl wp A w dw + Z wi A w;“ (siehe Satz (Maurer-Cartan-
Strukturgleichungen) unter (i)). Nun noch der Beweis fiir Q; = 793,:: Es gilt Q; (X,Y) = <LY, X;)(LX, X;)—(LX, X;)- (LY, X;) =
—((LY, X;) - (LX, X;) — (LX, X;) - (LY, X3)) = 7Qg(X,Y). Also ist damit der Beweis vollbracht. a
Satz (Volumenform). Es gilt: / K -w'Aw?= KdA.
F(B) F(B)

Beweis. Zunichst einmal gilt f*(w Aw?)(u,v) = h(u,v) duAdv, also f*(w! Aw?)(e1, e2)(u,v) = h(u,v), denn: duAdv(er, ez) =1,
wobei er,es die Standardbasis sei. Nun ist aber folglich h(u,v) = f*(w' A w?)(e1,e2)(u,v) = w' A W?(df(e1), df (e2))(u,v) =
Wl A w?(01 f(u, ), D2 f(u, v)). Weil 81 f,d2f € Ty f gibt es die folgende Darstellung:

01 f(u,v) = a11(u,v) - X1(f(u,v)) + az1(u,v) - X2(f(u,v)) und 92 f(u,v) = a12(u,v) - X1(f(u,v)) + a22(u,v) - X2(f(u,v))

Denn: X1, X2 ist nach Voraussetzung (siche oben) eine Orthonormalbasis von T}, f. Damit gilt dann: w! Aw? (81 f(u, v), 82 f (u,v)) =
W01 f(u, ) - w2 (B2 f(u, v)) — w2 (81 f(u,v)) - w (B2 f(u,v)) = a11(u,v) - azz(u, v) — az1(u, v) - a12(u,v), denn es gilt doch, dass w’
(i = 1,2) als 1-Form im Argument linear ist, und es gilt, wie oben, w*(X;) = 5; (i,5 =1,2). Also:

a11(u,v) az2(u, v)

w' Aw?(01 f(u,v), 82 f(u,v)) = det =: det(A)(u,v)

az1(u,v) a22(u,v)

Nun gelten die folgenden Identitéiten:



1. E(u,v) = (01f(u,v),01f(u,v)) = {a11 - X1 + a1 - X2, a11 - X1 + a1 - X2)(u,v) = a?l(u,v) + agl(u,v)
2. F(u,v) = (01 f(u,v),02f(u,v)) = (a11 - X1 +a21 - X2,a12 - X1 + a2z - X2)(u,v) = a11(u,v) - a12(u, v) + a21 (u,v) - azz(u, v)
3. G(u,v) = (02 f(u,v), 82 f(u,v)) = (a2 - X1 + as2 - Xo2,a12 - X1 + as2 - Xo2)(u,v) = a%z(u,v) + a§2(u,v)

Man verifiziert ganz leicht, dass dann gilt:

E(u,v) F(u,v) _ a1 (u,v)  ai2(u,v) g } a1 (u,v)  ai2(u,v)
F(u,v) G(u,v) az1(u,v)  as2(u,v) az1(u,v)  as2(u,v)
Daraus folgt also:

E(u,v) F(u,v)

_ g2 —
(E-G—F°)(u,v) det( Fluv) Glu,v)

) =det(A” - A)(u,v) = det(AT)(u, v) - det(A)(u, v)

= det(A)* (u,v) = [w" A w’ (01 f(u,v), 2 f(u,v))]?
Schlussendlich erhilt man also:
h(u,v) = w! Aw? (@1 f(u,v), 02 f(u,v)) = VE - G = F2(u,v)
Damit erhélt man also das gewiinschte Resultat, dass dann gilt:
/ K- w' Aw? :/ FHK - Wt Aw?) :/ (Ko f) f*(w'Aw?) :/ (Kof) - VE G- deu/\dv—/ KdA
£(B) B B £(B)
a

Satz (GauB-Bonnet, lokale Version). Sei B C R? ein abgeschlossenes Gebiet. Durch f : B — R® (injektiv) sei ein Flichenstiick
im Raum dargestellt, wobei der Rand 8f(B) durch die Kurve v : [0,L] — R® dargestellt sei. Diese zusammenhingende und
reguldre Kurve sei dann stiickweise stetig differenzierbar. Denn: An den endlich vielen Ecken v(t;) (i=1,...,n+ 1), wo der
Tangentialvektor um den Winkel a; (i = 1,...,n), auch orintierter Auflenwinkel genannt, springt, ist v dann nicht stetig
differenzierbar, nur stetig. Dabei gilt —m < a; < 7® (i = 1,...,n). v verlaufe so, dass f(B) zur Linken liegt. Desweiteren ist

klar, dass v geschlossen ist, also v(0) = v(t1) = Y(tn+1) = v(L). Es wird unten bewiesen:
n n
KdA+/kgdl+ ai:/ KdA+/ kodi+ S a; =2n

/f(B) v ; £(B) of(B) ;

Dabei ist K die Gaupkrimmung auf der Fliche f(B) und kg die geodditische Kriimmung von 7.
17}
Beweis. Seien X1 = a—f und Xs = a—f Vektorfelder lings f, also eine Orthonormalbasis von T} f. Dann sei X3 = v die Einheits-
u v

normale auf f. Man betrachtet nun X; und X3 auf dem Rand 9f(B), also X;(v(t)) = X;(¢t) (« = 1,2). Es gibt ein a(t), sodass
folgende Darstellung gilt:

7' (1)
v O

¥ (1)
[l (@)1l

Es wird jetzt die geodétische Kriitmmung k, ausgerechnet:

L X 'y'(t) ’Yl(t) B = ! . Ycosa . sin « . —sina . cos « .
ko) = ol <dt e (o) >‘ @ st X1+ sima(®)  Xa), —sina(t) - X + cosa(t) X )

(
! VXl — o/ (t) - sina(t) - X1 + sin a(t) - ZXQ +a'(t) - cosa(t) - Xo, —sina(t) - X1 + cosa(t) - Xa)
I @l (t)H dt

- m . [cos2 a(t) - <%X1, X2> — sin? a(t) - <%X2, x1> 4 sin? a(t) - o () + cos? a(t) - a/(t)]

L
= cos a(t) - X1(t) + sina(t) - X2(t) und ( ) = —sina(t) - X1(t) + cos a(t) - Xa(t)

- (cos a(t) -

v v d
Es wurde hier verwendet: (X1, X2) = (X2, X1) = <%X1,X1> = <EX27X2> =0, denn: (X;,X;) =1, also 0 = E<X“Xi> =

v v v v v v
<th1,X >+<X,i, EXZ> = 2~<EX“XZ->, also <£X“Xi> =0 (i =1,2). Es gilt nun <EX2’X1> = <th1,X2>, denn:

d v v v v
0= (X1,X>2), also 0 = E(X],X2> = <EX1’X2> -+ <X1, EX2>7 also <EX2,X1> = <th1,X2> Daraus folgt dann also:

k- I Ol = (X0, )+ 0’0 = = (T X0, )+ ()

dt

Nun: 2 X(1) = 3 (X 07)(0) = (X 01)(0) = ( (X 00(O:6(0) ) - #(1(0) = A 07" (1) = (4% (0. 6(0)) - (2 (1)) =

(D (yX)(v(1)) — <(D7/<t>X)(7(t)),u(’y(t))> cv(v(t) = (V.Y/(t)X) (v(t)). Dies rechtfertigt folgende Notation: <%X2,X1> =

<V,Y/(t)X2, X1>. Jetzt folgt insgesamt also:

g (8) - 7 ()] = <thx> +al(t)=— <dvtxx> + ol (1) = — (Vo Xan Xa ) +0'(1) = —wh (7' (1) + o (1)
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Letztes Gleichheitszeichen: sieche Lemma (Zusammenhangsformen). Man kann also in Zukunft benutzen:
1
kg (8) - I ()] + wh (v (1)) = o’ (1)

Wegen der Gau-Gleichung (s.0.) R(X,Y)Z = VxVyZ—~VyVxZ -V xy|Z=(LY,Z)LX —(LX,Z)LY gilt also: Qé(Xl7 X5) =
(R(X1, X2)X2, X1) = ((LX2, X2)LX1 — (LX1, X2)LX2, X1) = (LX2, Xa) - (LX1, X1) — (LX1, X2) - (LX2, X1). Also folgt daraus
dann:

(LX1,X1) (LX1,X2)

03(X1, X2) = det
(LX2,X1) (LX2,X2)

=det(L) = K

Nun gilt damit: Q% (X1,X2)=K=K-1= K-w'Aw? (X1, X2), und weil X1, X5 eine Orthonormalbasis ist, folgt also QL = K-w'Aw?.
Weiter gilt wegen des Satzes (Kriimmungsformen): Q; = dw% + wi A w% + w% A wg = dw% +0A w; + w; ANO = dw% +0+4+0= dw;.
Mit kg (t) - |7/ ()| + wi (¥ (t)) = &' (¢) folgt damit:

n

Z/ kg (t) - Hw(tHdtJrZ/ wa (v (1)) dt = Z/ o (t)dt = a(tiys — 0) — a(ti +0) 2ﬂ72a1

i=1 i=1 1=1 i=1

:/kgdl
.

Wegen Z/ wé(’y'(t)) dt 2 /w; = / ws Stgkes / dw) *2 / Q) = / K- w'Anw? 2 / K dA folgt also
i=1 ¥ 2f(B) £(B) f(B) f(B) £(B)

die Behauptung des Satzes. Noch die Begriindung von *;: / w / w = / ~ w. Nun ist v*w(t) = h(t) dt, also v*w(1)(t) = h(t)
v (1)

wegen dt(1) = 1, also h(t) = w(dy(1))(t) = w(v'(t)), also: /w / w(7'(t)) dt. Zu *2: siehe Satz (Volumenform). Es wurde also
¥
insgesamt bewiesen:
n
KdA+/k dl + aiz/ KdA+ kg dl + o =27
/f(B) Z; (®) orm) ;

Und damit ist der Satz von Gauf3-Bonnet in der lokalen Version bewiesen! O

Satz (GauB-Bonnet, erweiterte Version). Es sei R C S ein regulires abgeschlossenes Gebiet einer orientierten Fliche und
Ci,...,C, die geschlossenen, einfachen, stickweise reguliren Kurven, die den Rand OR von R bilden. Man nehme an, alle C;

sind positiv orientiert, und sei {01,...,0,} die Menge der Aufenwinkel der Kurven Ci,...,Cy. Dann gilt:

Z/ fegdl—&-/ KdA+Z@l =27 - x(R)
=1
Beweis. Sei das abgeschlossene Gebiet R trianguliert und der Rand eines jeden Dreiecks positiv orientiert. Man beachte, dass bei
Dreiecken, die eine Kante gemeinsam haben, die entgegengesetzten Orientierungen dafiir sorgen, dass die Integrale iiber diese Kante
sich herausheben. Es gilt bereits der lokale Satz von Gauf-Bonnet insbesondere fiir Dreiecke. Man beachte, dass alle inneren Seiten
zweimal in entgegengesetzter Orientierung durchlaufen werden. Nun addiert man die Ergebnisse fiir die Dreiecke der Triangulierung
auf und erhélt:
Z/ ngdl—&-/ KdA + Z 0 = 27 F
J, k=1
Dabei sei F' die Anzahl der Dreiecke der Triangulierung und 6;1,0;2,0;3 die AuBlenwinkel des Dreiecks T;. Man fithrt nun die

Innenwinkel des Dreiecks T ein, gegeben durch ¢ = 7 — 0;. Also:

F.3 F.3
Zgjk:ZW—ZWJk—3F W—Z%k
k=1 k= k=1 k=1

Sei K, die Anzahl der dufleren Kanten, K; die der inneren und sei E, die Anzahl der duleren Eckpunkte, und E; die der inneren. Da
die Kurven C; geschlossen sind, gilt K, = E,. Dariiber hinaus kann man mit vollstéindiger Induktion zeigen, dass 3F = 2K,; + K,
gilt. Also gilt deshalb:

F.3 F,3
Z 9j)€227TK1+7TKa7 Z Pik
Gik=1 k=1

Man bemerkt nun, dass die dufleren Ecken entweder Ecken einer Kurve C; sind, oder Ecken, die durch Triangulierung entstanden
sind. Man setzt dann: E, = E4. + Eq4¢, wobei E,. die Anzahl der Ecken der Kurve C; ist, und E,; die Anzahl der dufleren Ecken
der Triangulierung, die nicht gleichzeitig Ecken einer Kurve C; sind. Da die Summe der Winkel um jede innere Ecke gleich 27 ist,

erhélt man:

F,3 P P
> 0k =2nK; + 7Ka — (27rE7¢ + 7Eqt + <7rEac -3 9l>> =21K; + Ko — 27E; — ©Bac — TEat + Y _ 01
=1

Gk=1 =1
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Nun wird zum obigen Ausdruck mK, addiert und wieder subtrahiert. Also folgt unter Beachtung von K, = E,:

F.,3 P P
> 0k =2nK; +2nK, — 2nE; — 7Eq — 7Eae — mEa1 + »_ 0, =27K —27E +» 6,
j,k=1 =1 =1

Zusammengefasst gilt also folgendes:

n p
Z/ ngdl+/KdAJrZGZ:27r~(F7K+E):27r-X(R)
c; R

i=1 =1

Damit ist die Behauptung des Satzes also bewiesen. |

Satz (GaufB-Bonnet, globale Version). Sei M C R? eine kompakte 2-dimensionale Untermannigfaltigkeit ohne Rand, die also

orientierbar ist. Dann gilt die folgende Identitdt:
KdA =2r - x(M)
M

Dabei ist x(M) € Z die Euler-Charakteristik von M.

Beweis. Wegen der Kompaktheit kann M durch endlich viele Teilmengen iiberdeckt werden, die sich als Bild eines Fldchenstiicks
beschreiben lassen. Daher kann M in endlich viele Teile My, ..., M,, zerlegt werden, so dass dann folgendes gilt:

1. M= M;

i=1
2. M; N Mj enthélt fiir ¢ # j keine inneren Punkte, sondern héchstens Randpunkte von M; oder M;

3. Jedes M; ist ein Kompaktum mit stiickweise glattem und zusammenhéngendem Rand (sowie mit endlich vielen Ecken und

Kanten mit zugehdrigen AuBlenwinkeln o ;)

Wegen der existierenden Orientierung der kompakten Untermannigfaltigkeit ohne Rand gilt fiir jedes i = 1,...,m:
g
/ KdA + Kgdl =21 — > iy
M, OM; j=1

m
Dabei heben sich bei der Summe iiber alle ¢ die Randteile auf, d.h. es gilt Z/ kg dl = 0. Man erhilt dann:
i=170M;

m. g m. My
/ K dA =2mm — Z Z oy = 2Tm — Z Z(?T — Bij) = 27 - (Zahl der Ecken — Zahl der Kanten + m) =: 27 - x(M)
M i=1j=1 i=1j=1

Die vorletzte Gleichung gilt, weil in jeder Ecke die Innenwinkelsumme gleich 27 und folglich 7 3;; gleich der Anzahl der Ecken,
@7
multipliziert mit 27, ist. Die Anzahl aller Summanden in der Summe ist gleich dem Doppelten der Zahl der Kanten, denn jede
Kante kommt in genau zwei der M; vor und jedes M; hat genauso viele Ecken wie Kanten, also ist > m gleich der Anzahl der
7
Kanten, multipliziert mit 2. O

Korollar (1). Eine kompakte Fliche positiver Kriimmung (K > 0) ohne Rand ist homdomorph zu einer Sphdre.

1
Beweis. Es gilt o / KdA = x(M) =2—2-g (g sei die Anzahl der Lécher der geschlossenen Fliche). Ist K > 0, dann folgt
™ M

1
o / KdA > 0, also g = 0, denn nur dann ist o K dA > 0. Also hat man es topologisch mit einer Sphére, die die
u M ™ M

Euler-Charakteristik 2 hat, zu tun. O

Korollar (2). Wenn es zwei einfache geschlossene Geoditische I'y und I's auf einer kompakten zusammenhingenden Fldche S

ohne Rand mit positiver Krimmung (K > 0) gibt, so schneiden sich I'y und I's.

Beweis. Zunichst ist unter den Voraussetzungen fiir S festzustellen, dass S nach Korollar 1 homdomorph zu einer Sphére ist.
Wiirden sich I'y und I's nicht schneiden, so wire die aus I'y und I's gebildete Menge der Rand eines abgeschlossenen Gebietes R,

dessen Euler-Charakteristik 0 = x(R) ist. Nun gilt nach Gauf3-Bonnet (erweiterte Version): / KdA +/ Kgdl+0 =27 -x(R) &
R R

/ KdA+ 040 =2r-0, also / K dA = 0, im Widerpruch dazu, dass K > 0 gilt. |
R R

Korollar (3). Es sei S eine orientierbare Fliche mit Krimmung kleiner oder gleich Null. Dann kénnen sich zwei Geoddtische
Y1 und 2, die an einem Punkt p € S beginnen, nicht in einem solchen Punkt q € S treffen, dass die Spuren von y1 und 2 den

Rand eines einfachen abgeschlossenen Gebiets R von S bilden.
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Beweis. Man nimmt das Gegenteil an. Nach dem Satz von GaufBi-Bonnet in der lokalen Version gilt (R ist einfach):
/KdA+/ /-cgdl+01+92:/KdA+0+61+02:27r
R 9R R

Denn Geodétische haben die geoditische Kriimmung Null. #; und 62 seien die Auflenwinkel des abgeschlossenen Gebietes R. Da
die Geoditischen ;1 und ~2 nicht tangential sein kénnen, gilt 6§, < « (¢ = 1,2). Nun ist aber K < 0, also / K dA < 0, aber
2w — 61 — 02 > 0, also ein Widerspruch! Gilt §; = 63 = 0, so bilden die Spuren der Geoditischen ~; undR'yg eine einfache
geschlossene Geodiitische von S. Aus 0; = 62 = 0 folgt ein Widerspruch: KdA <0, aber 27 — 61 — 03 = 27 — 0 — 0 = 27.
Das heiflt, dass es auf einer Flidche nicht positiver Kriitmmung keine einfache geschlossene Geoditische geben kann, die Rand eines

einfachen abgeschlossenen Gebietes ist. O

Korollar (4). Auf einem Zylindermantel S mit Gaufl’scher Krimmung K < 0, gibt es héchstens eine einfache geschlossene

Kurve, die in jedem Punkt die geoddtische Kriimmung 0 hat.

Beweis. Sei eine einfach geschlossene Geodétische I' auf einem Zylindermantel S mit GauB-Krimmung K < 0 gegeben. Nach
Korollar 3 folgt, dass es auf einem Zylindermantel wegen K < 0 keine einfach geschlossene Geodétische geben kann, die ein einfach
geschlossenes Gebiet begrenzt. Also muss eine einfach geschlossene Geoditische auf dem Zylindermantel einmal geschlossen um
den Zylindermantel herum verlaufen. Sei eine weitere einfach geschlossene Geodatische I'" auf S gegeben. Auch I' lduft einmal
um S herum. Nun diirfen sich I' und I in S nicht schneiden, denn sonst wiirden I und I als Geoditische ein geoditisches
Zweieck begrenzen, was nach Korollar 3 wegen K < 0 nicht geht. Weil sich I" und I’ auf S nicht schneiden, begrenzen sie einen

Zylindermantel R mit x(R) = 0. Es folgt dann: / KdA = / KdA+0+4+0= / K dA +/ kgdl4+0=27-x(R)=27-0=0,
R R R OR

also / K dA = 0, im Widerspruch zu K < 0. |
R

Korollar (Theorema Elegantissimum). Es sei D ein geoddtisches Dreieck (d.h. die Seiten von D sind Geoddtische) in einer

orientierten Fliche S. 01,02, 03 seien die Aufenwinkel von D und ¢1 = 7 — 01,92 = 7 — 02, 03 = ™ — 03 die Innenwinkel. Dann

gilt also die folgende Formel:
/ KdA = (p1+p2+@3)—7
D

1
Es folgt dann also insbesondere das Folgende: Fiir ein sphdrisches Dreieck (K = —2) gilt: Agphirisches D. = / 1dA =
T sD

1
[(p1 + @2 + @3) — 7] - Tz; fiir ein hyperbolisches Dreieck (K = 77“—2) gilt: — Apyperbolisches D. = / —1dA = [(p1 + @2 + p3) — 7] -
hD

7‘2 ad Ahyperbolisches D. = [7r - (991 + p2 + 903)] . rz'
Beweis. Nach dem Satz von Gaufl-Bonnet in der lokalen Version gilt / KdA + / Kgdl + 01 + 02 + 03 = / KdA+0+ (7 —
D aD D

P1) + (7= p2) & (m = pa) =2m & [ KdA=(p1+¢2+pa) . O
D

Der allgemeine Satz von Stokes

[Zuriick zur Liste]

Satz. Sei M eine n-dimensionale glatte Mannigfaltigkeit mit Rand OM . Es sei auf M eine Orientierung gegeben. OM sei mit

der induzierten Orientierung versehen. Weiter sei w eine (n — 1)-Form auf M mit kompaktem Trdger und dw ihre dufSere

/ dw:/ wlonm
M oM

Beweis. Sei I, = (ak, br) ein offenes Intervall fiir k = 1,2, ..., n. Setze:

Ableitung. Dann gilt die folgende Formel:

L=LN(-0,0,Q=[][L Q@=QNR" =N xIa X ... xI,,, 0@ = QNAR™ = (I1 N {0}) x Ia X ... x I,
k=1
Dabei sei R" = {(z1,22,...,2,) € R" : 21 < 0}. Dann ist @ eine orientierte n-dimensionale Mannigfaltigkeit mit Rand 8@. Nun
wird der Satz von Stokes fiir eine n-Form w zunichst auf Q mit kompaktem Triger bewiesen: Fall 1: a; < 0 < by. Die (n — 1)-Form

w hat die folgende Darstellung:

n
w:Zf,i~dw1/\.../\daci/\.../\d$n
i=1

Und die duflere Ableitung davon lautet:

n ) a i
dw = (Z(*I)H—l : i) sdzy A Adzy,

i=1 Oz;
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Nach dem Satz von Fubini gilt dann:

n ) afi
dw = -1 IJr1-/ —— dz;...dz
/@ ;( ) T xI, O0T; ! "

Iy xIgx..

09 n ) or
= Ot ) daa e+ 30 [ i
Iox...x1In 0z = N

ay TixTgx...xI; 1 xIjqX...xIn ( 1, 0;

=T =:Zq

Als néchstes wird der Hauptsatz der Differential- und Integralrechnung angewandt:
I, = / f1(0,22, ..., 2n) — fi(ay, @2, ..., 2n) dz2. .. dzy
IoX...XIn
und

n

z : i+1 -

Ig: (71) ﬁ fi(ml,...,zi_l,bi,mi+1,...,mn)ffi(zl,...,mi_l,ai,mi+1,...,mn)dm1...dm,;..
i=2 11><I2><---><Ii—1><1i+1><---><In

Da der Trager Tr(w) = m C @ kompakt ist, folgt:
fi(ar,z2,...,2,) =0

und fiir alle ¢ > 2:
fi(me, .., @ic1,bi,Tiga, . T0) = fi(@1, .00, i1, 04, Tig1, ..., Tn) =0

Daraus folgt:

/dw:/ f1(0,22,...,zp)das ... day = w
Q IoX...X1Ip 8@

Fall 2: 0 < a;. In diesem Fall sind @ und 6@ leer und die Integrale auf beiden Seiten gleich 0. Fall 3: b; < 0. Dann tritt b; in den
obigen Ausdriicken an die Stelle von 0. Also gilt:

/ dw:/ fi(bi,z2, ..., zn)dee ... dey
Q IgX...x1Ip

Wieder ist fi(bi,zs2,...,2,) = 0. Da 6@ = 0 ist, sind auch in diesem Fall beide Integrale gleich 0. Damit ist der Satz fiir
M = @ bewiesen. Nun wird der allgemeine Fall der n-dimensionalen glatten orientierten Mannigfaltigkeit M mit Rand 0 M und
einer (n — 1)-Form w mit kompakten Triger betrachtet. Wihle nun einen der Orientierung entsprechenden orientierten Atlas
A = {h; : Uy — V; : ¢ € I} mit der Eigenschaft, dass alle V; von der Gestalt @1 fiir einen geeigneten offenen Quader Q C R™
sind. Sei {e; : i € I} eine der offenen Uberdeckung {U; : i € I} von M untergeordnete Teilung der Eins. Das bedeutet, dass es fiir
jedes x € M eine Umgebung U gibt, so dass auf dieser fiir alle ¢ € I bis auf endlich viele Ausnahmen e;(z) = 0 ist. AuBlerdem gilt
Z e; = 1 und fiir jedes i € I ist der Tréger Tr(e;) in U; enthalten. Es ist 0.4 = {hi|UimaM :U;NOM — V;NOR™ } ein der auf OM
;Eéuzicrtcn Orientierung entsprechender orientierter Atlas fiir 9M und {e;|anr : 5 € I} ist eine der Uberdeckung {U; NOM : 4 € I}
untergeordnete Teilung der Eins auf OM. Mit diesem Riistzeug kann man den allgemeinen Fall nun durch Riickfithrung auf den

eben bewiesenen Spezialfall beweisen:

dw= [ d
Iww /M Ze ¢

i€l
= g/M des - w)
=3 [, dter el
= ;Li(hfl)*d(ei ),
:§/V A((hy )" (e - @)lo,)
- ;/avi((h;l)*(ei - @)lus)lov;

:Z/ (hilu,non) ™) (eilu;mon - wlu,non)
av;

i€l

:Z/ (eilu;nom - wlu;non)
U;noM

i€l

:Z/aM(eilaM “wlon)

i€l

= Zei‘aM'WBJM

oM iel

=/ wlom
oM

Und damit ist der Beweis des Satzes auch schon fertig. O
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Der Satz von de Rham

[Zuriick zur Liste]

Es wird nun die de Rham-Kohomologie definiert:
Sei M eine glatte Mannigfaltigkeit der Dimension n und Qk(M) die Menge der k-Formen auf M. Der de Rham-Komplex (Qk (M), dk)

ist der Kokettenkomplex
gn—1

0 1
d QI(M)L>~~4>Q"(M)4>O

0 QO (M)

Dabei ist d* : QF (M) — QFF1 (M) die Cartan-Ableitung. Es gilt die Komplexeigenschaft d*+t! o d* = 0, d.h. es gilt:
bild(d* ™) C kern(d*)

1. Eine k-Form w € QF (M) heifit geschlossen, falls d*w = 0, also w € kern(d*).
2. Eine k-Form w € QF (M) heiBt exakt, falls es ein n € Q¥ 71 (M) gibt mit d*~1n = w, also w € bild(d*~1).

_ kern(d*) _ {geschlossene k-Formen auf M}
"~ bild(dk—1) = {exakte k-Formen auf M}

HYp(M)

Diesen Quotientenraum kann man némlich definieren wegen der oben geltenden Teilmengenrelation. HgR(M) heifit die k-te de
o

Rham-Kohomologiegruppe von M. Nun heiit Hjp(M) = @ H’ch(M) die de Rham-Kohomologie von M.
k=0

W] = w+d" 1 (M) € Hip(M)

heilt die Kohomologieklasse von der geschlossenen k-Form w € Qk(M)

Es wird nun die glatte Singulire Homologie definiert:
Sei fiir R® nun ej,es,e3,... die Standardbasis und ey = 0. M sei wieder n-dimensional. Dann ist ein Standard k-Simplex
folgendermaflen definiert durch:
Ap = {I:ZR:,\iei P> A =1,0< M < 1}
i=0 i=0
Weiterhin sei definiert:

fik :=[e0, - €iy.oyer] t A1 = Ay

Man nennt f; 5 auch die i-te Seite von Ay. Ein glattes singulédres k-Simplex ist dann eine glatte Abbildung o : A — M. Sei
S22 (M) die Menge der glatten singuldren k-Simplices. Dann ist C;°(M) definiert als der freie R-Modul mit der Menge S;°(M)

(k > 0) als Basis. Also ist ein Element aus C;° (M) eine formale Summe > rs - 0, wobei nur endlich viele der Koeffizienten
UES,SC(M)

ro von Null verschieden sind. Sie heifit glatte singulidre k-Kette. Der Rand von o ist:

k
Ok : SPP(M) = S2 (M), 0 9k(0) =D (=1)" - (00 fik)
i=0
Fiir ein Element ¢ € Cg°(M) setzt man dann:
O 1 CZ(M) = O ((M),c= > ro-0 Y 15-0k(0)
aesg"(M) aeng(M)

Mit O erhilt man folglich:

k41 3
S O (M) ——> O (M) — O (M) —— -

Dabei gilt 9x—1 0 9, = 0. AuBerdem erhilt man daraus:

Sp— S
- — hom(C2 (M), R) B hom(C° (M), R) ks hom(Cp, (M), R) ——— ---

Man definiert damit dann folgendes (6x 0 6x—1 = 0):

kern(dy)

HE R
bild(65_1)

sing,

oo(MvR) =

Dies ist die k-te glatte singuldre Kohomologiegruppe von M.

oo
Hs*ing,oo(M! R) = @ Hsking,oo(M! R)
k=0
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heifit die glatte singuldre Homologie von M.

Es wird nun die de Rham-Abbildung definiert:
Man definiert hier die folgende Abbildung:
T : QF (M) - hom(C® (M), R),w — <CH /w =>"ro- / w=> "1, / a*w)
< o o o A
Es gilt dann, dass das folgende Diagramm mit der Kettenabbildung ¥ kommutiert:

k-1 k
. QF =1 (M) d Q* (M) d = QF (A1) ...

-+« — hom(Cp2 (M), R) - hom(C° (M), R) —> hom(Cpe, (M), R) ——— ---
k—1 k

X heifit de Rham, falls HsR(X) — H: (X, R) fiir k > 0 ein Isomorphismus ist.

sing,co

Lemma (1). Wenn F : X — Y ein Diffeomorphismus ist, dann, wenn X de Rham ist, ist auch Y de Rham.

Beweis. Sei F: X — Y eine glatte Abbildung, dann kommutiert das folgende Diagramm:
k L k
Hir(Y) ——— Hjr(X)
o o

Hk

sing,

(Y, R) —— HY (X, R)
P

sing,oco

*

Weil F ein Diffeomorphismus ist, ist die induzierte Abbildung F* ein Isomorphismus und da X de Rham ist, ist U ebenfalls
ein Isomorphismus. Nun ist ¥} = (F*)~! o % o F* als Verkettung von Isomorphismen ein Isomorphismus von H%.(Y) nach

H* (Y,R), also Y ist de Rham. O

Es folgt nun der Beweis des Satzes von de Rham:
Sei {U;} eine offene Uberdeckung der n-dimensionalen Mannigfaltigkeit M. Diese Uberdeckung heiit de Rham-Uberdeckung, wenn
alle U; de Rham sind und alle endliche Schnitte der U; ebenfalls de Rham sind. Eine de Rham-Uberdeckung, die zusitzlich eine

Basis der Topologie von M ist, wird dann de Rham-Basis genannt.
Lemma (2). Jede konveze offene Menge des R™ ist de Rham.

Beweis. Sei U diese konvexe offene Menge aus dem R™. Weil diese Menge nullhomotop ist und wegen der Homotopieinvarianz
der Homologien, gilt also H(I;R(U) = H!icR({°}) = 0 und H;"ingym(U7 R) = Hsking)oo({o},]R) = 0 fiir & > 0, nach dem Dimen-

sionsaxiom fiir Homologien. Also hat man in diesem Fall trivialerweise eine Isomorphie mittels ¥*. Wenn allerdings k = 0 ist,

dann gilt bekanntermaBen HY,({e}) = R und HY ({e},R) = R. Man hat nun die Abbildung ¥* : {konstante Funktionen} =

sing, o0
Hip({e}) — H;’mgm({.},k), also (f 2 co): W*[f] = [¥(f)] = [ew [, f] = |:c'—> Yre- [, f} = [c.—> Z"U'IAO o*f| =
o o
c— > re - (fo U)(O)] = [c —co Y. TU:| = [c+— co - 0] & [co - 0], also hat man auch hier ein Isomorphismus. Damit ist folglich
bewiesen, dass U de Rham ist. O
Lemma (3). Wenn M eine endliche de Rham-Uberdeckung hat, dann ist M de Rham.

Beweis. Man zeigt diese Behauptung mit vollstindiger Induktion iiber die endliche Anzahl k der Mengen der de Rham-Uberde-
ckung. Fir k = 1 ist der Fall klar und den Fall £ = 2 zeigt man so: Sei also M = U UV mit: U,V,U NV sind de Rham. Man

benotigt hier die Mayer-Vietoris-Sequenz:
whotayerhot vy ———— vhD Wwov) ——— #h (M) ————— Hh (el (v) ————— B (wnv)
k—

1
Hsing,cc (UR)®H

k—1
sing,co

k—1

—1 _(wnv,R) —— HE (M,R) ——> HE (UR)y®HE (V,R) ——> HE (UNV,R)
sing, 00

(V,R) H sing, 0o sing, o0 sing, 0o sing, 0o

Weil also U,V und U NV de Rham sind, sind der 1., 2., 4. und 5. senkrechte Pfeil Isomorphismen. Aus dem Fiinferlemma folgt,
dass dann auch der senkrechte Pfeil in der Mitte, also der 3., ein Isomorphismus darstellt. Das bedeutet also, dass M de Rham
ist. Gelte nun die Behauptung fiir ein k& > 1. Setze U = Uy U ... U U, und V = Ug41. Nach Induktions-Voraussetzung sind U
und V de Rham. UNV = (Uy NUky1)U...U (Ug N Ugt1) ist de Rham, weil die Schnitte de Rham sind (Eigenschaften einer de
Rham-Uberdeckung) und man iiber k& Mengen vereinigt (I.-V.). Also: UUV = U; U...U Uy U Uk, ist de Rham. a
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Lemma (4). Ist {X;} eine abzihlbare disjunkte Sammlung von Mannigfaltigkeiten, die de Rham sind, dann ist thre disjunkte

Vereinigung de Rham. Der Beweis dafiir wird jetzt erbracht:

Beweis. Sei X =[] X und seien die Inklusionsabbildungen i; : X; — X gegeben. Die Abbildung i = (i1, 92, 13, .. .) induziert die
J

Isomorphismen (¢ und ¢’) zwischen @ H%,(X;) und Hygr(X) sowie zwischen @ HE (Xj,R) und HE (X,R). Weil nach
J Jj

sing, o0 sing,co

k
sing,co

Voraussetzung die X; de Rham sind, hat man die Isomorphismen ¥} : HEo(X;) — H, (X;,R). Man benutzt im folgenden

Verlauf, dass das folgende Diagramm kommutiert:

@ Hir(X;) _— Hr(X)

@t .
P >

@ HE (X5, R) —— HJ; (X,R)
J

sing, oo sing,co
@

k

Da das Diagramm kommutiert gilt: ® = ¢’ o [ @ T7) o ot HE (X)) — Hhg 0o (X, R). Nun ist ® als Verkettung von Isomor-
J

phismen selbst ein Isomorphismus, also folgt daraus, dass X de Rham ist. O

Proposition. Auf jeder glatten n-dimensionalen Mannigfaltigkeit M existiert eine positive glatte Funktion f mit der Eigen-

schaft ffl((—oo7 c|) ist kompakt fir jedes c € R.

Beweis. M hat eine abzihlbare Uberdeckung {V;} von offenen Mengen, deren Abschluss kompakt ist. Dies realisiert man durch die
Urbilder mittels der Kartendiffeomorphismen von offenen Billen des R™ mit rationalen Mittelpunkten und Radien aus den rationalen
Zahlen. Sei dann {f;} (glatte Funktionen) eine der Uberdeckung untergeordnete Partition der Eins. Es gilt also 0 < f; < 1,
Z fi = 1 und supp(f;) C V; sowie: Fiir jeden Punkt in M gibt es eine Umgebung, in der nur endlich viele f; von Null verschieden

o0
sind. Man definiert nun f : M — R durch f(z) = Y i fi(z). f ist dann auch glatt, den es wird nur iiber endlich viele f;(x)
i=1
oo N __
summiert. f(x) ist positiv, denn: f(z) > > fi(z) = 1. Sei N € N”°, dann wird gezeigt: f(z) < N = z € |J V;. Beweis:
i=1 =1

N __ _ oo
Sei z ¢ |J Vj, dann ist f;(z) = 0 fiir 1 < j < N, weil doch supp(f;) C V; gilt. Man erhilt dann: f(z) = > j- fj(z) >
i=1 J=N+1

o0 o0
> N-fj(x)=N- Y fij(z) = N. Also gilt f(z) > N. Sei jetzt ¢ € R. Es gibt nun ein N € N> so, dass ¢ < N. Nun gilt
J=N+1 J=N+1

N

N _ —
FH(=o0,¢]) € f7H((~o0,N]) € U V. Weil f~*((—o0,¢]) als abgeschlossene Menge Teilmenge der kompakten Menge |J V

j=1 Jj=1
ist, ist auch f~1((—o0, ¢]) kompakt. O

Lemma (5). Wenn M eine de Rham Basis hat, dann ist M de Rham.

Beweis. Sei {Uy} eine de Rham-Basis von M. Sei f : M — R wie in der Proposition. Fiir jede natiirliche Zahl m seien dann
folgende Teilmengen von M definiert: A, ={g€ M :m < f(g) <m+1} und A/, ={qg€ M : m — % < flgg <m+1+ %} Nun
gilt A,, C Al . A,, ist eine abgeschlossene Teilmenge der kompakten Menge f~Y((=o0, m + 1)), also ist auch A,, kompakt. Fiir
jedes x € A, gibt es ein Element der de Rham-Basis UZ, so, dass = € U, C A’ . {UZ} ist also eine offene de Rham-Uberdeckung
von An,. Da A,, kompakt ist, iiberdecken schon endlich viele der U, die Menge A,,. Es gilt also A, C l:l Zx{fn =: B,,. Man hat
nun eine endliche de Rham-Uberdeckung von B,, und nach Lemma (3) ist dann B,, de Rham. Zur Erinnér_ling: A, C B, C Ain,
daraus folgt nach Konstruktion, dass sich B,, mit B nur dann schneiden, wenn m = m + 1, m,m — 1 ist. Es folgt also, dass

U= U By, und V = U B,,, abzihlbare disjunkte Vereinigungen von Mannigfaltigkeiten sind, die de Rham sind. Also

m ungerade m gerade

sind U und V de Rham, nach Lemma (4). Auch U NV ist de Rham, denn man schneidet hier iiber Mengen, die aus einer de
Rham-Basis stammen. Es ist jetzt M = U UV und weil U U V eine endliche de Rham-Uberdeckung von M ist, ist M de Rham
nach Lemma (3). a

Satz. Jede glatte Mannigfaltigkeit ist de Rham, d.h. U* : HgR(M) — HF (M, R) ist ein Isomorphismus.

sing, 0o

Beweis. Jede glatte Mannigfaltigkeit besitzt einen Atlas, deren Koordinatenumgebungen eine Basis der Topologie von M darstellen.
Beweis: {(Us, i)} sei ein Atlas von M. Seien offene Bille (sind konvex) B,.(z) mit z € Q und r € Q. Nun sei B; = {ga;l(Br(w)) :
gofl(Br(x)) C U;}, also ist U Bi eine Uberdeckung von M durch abzihlbar viele neue Koordinatenumgebungen, die eine Basis der
Topologie von M darstellen.lDiese neuen Koordinatenumgebungen erben nun die Diffeomorphismen des alten Atlas: Ist das Urbild
eines offenen Balles in U;, so iibernimmt es den Diffeomorphismus ¢;. Alle endliche Schnitte aus den neuen Koordinatenumgebungen
sind diffeomorph zu Schnitte endlich vieler Bélle, die konvex sind, denn der Schnitt endlich vieler konvexer Mengen ist wieder konvex.
Es folgt also, dass endliche Schnitte aus den neuen Koordinatenumgebungen und die Koordinatenumgebungen selbst de Rham sind,
weil sie diffeomorph zu konvexen Mengen sind (Lemma (1)), die ja de Rham sind (nach Lemma (2)). Also hat man damit eine de
Rham-Uberdeckung gefunden und weil die neuen Koordinatenumgebungen sogar eine Basis der Topologie darstellen, hat man eine

de Rham-Basis von M erhalten, also folgt nach Lemma (5), das M de Rham ist. a
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Satz (de Rham). Es gilt Hjp(M) = HZ,, (M;R).

sing

(M, R). Es gilt C2°(M) C C58(M). Sei dann iy, : CF° (M) — CSP8(M) die

(M) = Hg;,,,(M;R). Dass diese Abbildung ein Isomorphismus
ist, zeigt man genauso wie im Beweis fiir die Isomorphie von HgR(M) nach Hskingﬂoo(M, R). Zusammengefasst gilt also: Hjp (M) 2
H*

sing,oo(MVIR’) = H;ing(M§]R)~ O

Beweis. Bereits beweisen wurde Hjyp(M) = HZ,\,

Inklusionsabbildung. Diese induziert dann die Abbildung i}, : HE

sing, o0

Der Satz von Borsuk-Ulam

[Zuriick zur Liste]

Definition (Abbildungsgrad). Zu Q@ C R" sei f € A%(Q) := C*(Q,R™) N C°(Q, R™) und mit supp(w) := {z € R : w(z) # 0}
bezeichnet man den Triger der Funktion w: R — R. Es sei f € A%2(Q) eine Funktion mit |f(z)| > e > 0 fir alle x € Q. Eine

stetige Funktion w € C°(R,R) nennt man zulissig fir f, wenn sie die Eigenschaften supp(w) C (0,&) und / w(ly)dy =1
RN

hat. Fiir eine solche Testfunktion w erklart man den Abbildungsgrad von f beziglich 0 als

dex(£.9.0) = [ w(f(@)]) - Js(@) do
<
Dabei ist J¢(x) die Jacobi-Determinante an der Stelle x. Der Abbildungsgrad ist unabhdngig von der Wahl einer Testfunktion.

Lemma (Nullstellen-Lemma). Sei Q C R™ beschrinkt und f € C°(Q, R™) mit |f(z)| > ¢ > 0 fir € 8Q. Besitzt f in Q keine
Nullstelle, so folgt: deg(f,2) = 0.

Beweis. Bewiesen wird diese Aussage nur fiir Funktionen f € Co(ﬁ, R™) N C2(Q,]R") =: AZ(Q). Approximiert man nur stetige
f mit Funktionen aus A2(Q), dann gilt die Aussage auch fiir f € C°. Besitzt f in Q keine Nullstelle, so existiert ein ¢ > 0 mit
|f(x)| > e > 0 fiir € Q. Man wihle dann eine zulédssige Testfunktion w € C°(R, R) mit supp(w) C (0, ¢). Dann folgt:

deg(f,) = [ w(lf@))- Js(e) do =0
Q ——
=0
Und das war auch schon alles. |
h
Lemma (Wichtige Abschitzung). Zu a € R"™ und h > 0 sei W := {z € R" : |z; — a;] < E} ein Wiirfel der Kantenlinge h.
Weiter sei eine C2-Funktion f : W — R™ gegeben mit |f(z) — f(y)| < L-|x —y|, |Df(z) — Df(y)| < L- |z —y| fir alle z,y € W.

Schlieflich existiere ein z € W mit J;(z) = 0. Dann gilt f(W) < C(L,n)-h" !, wobei mit | f(W)| das Lebesgue-Mafi der Menge
f(W) gemeint ist.

Beweis. Da W kompakt und f stetig ist, ist f(W) kompakt und somit auch Lebesgue-messbar. Wegen Jy(z) = 0 existiert ein
Vektor v; € R™, |v1| = 1 mit 7 - Df(z) = 0. Beweis: Weil die Determinante von D f(z) gleich Null ist, ist ihr Zeilenrang kleiner n,
also sind die Zeilen linear abhéngig, d.h. es gibt eine nichttriviale Linearkombination von diesen Zeilen so, dass die Summe gleich
0 ist. Die Koeffizienten seien durch den Vektor v; gegeben, wobei die Linearkombination = 0 noch durch den Skalar der Linge von
v1 auf beiden Seiten geteilt wird; die Linearkombination ist dann immer noch Null. v; - D f(z) ist dann die Linearkombination der

Zeilen von D f(z), also gleich 0. v1 wird nun durch Vektoren va, ..., v, zu einer Orthonormalbasis von R" ergénzt. Es gilt dann:
T T td T ! T !
o U@ - f@) =l [ Li@rtmadt =] [ Dt ca)dt-—a) =0 [ DAA-0)-2tt2)d (- )
0 0 0
Und das ist dann gleich folgendes:
1 1 1
vlT-/ Df(t-z+(1—t)-2)dt - (z—x) = le-/ Df(z4t-(x—2))dt-(z—2) = vf./ (Df(z+t-(z—2)) — Df(2)) dt-(z —z)
0 0 0
Mit der Voraussetzung |Df(z) — Df(y)| < L - | — y| fiir alle z,y € W folgt dann die folgende Abschitzung:
1 1
o] - (f(2) — f(z))] gLv\z—z|2-/ tdt <L-((z1 —w1)2+.‘.+(zn—wn)2)-5 <L-(n-h%)-1<L-n” R
0

Es gilt nach Voraussetzung |f(z) — f(y)| < L - |z — y| fir alle z,y € W, also gilt:

Wl (f(2) = F@) SLle—al <L /(21 —21)2 + ...+ (20 —22)? SL-Van A2 < L-n-h
Wobei hier i = 2,...,n sei. Insgesamt folgt somit also:

FOV) C{y €R™: o] - (F(2) — f@)| < L-n® % ol - (f(z) — f@)| S L-n-hfiri=2,...,n}
Unter Verwendung der Invarianz des Lebesgue-Mafles gegeniiber Rotationen ergibt sich:

FOV) < (L -n2-h%) - (L-n-h)" L =L" " g = o(L,n) - A

Und damit ist dann die Behauptung bewiesen. O
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Lemma (Sard’sches Lemma). Zu Q C R" offen sei f € C2(Q, R™) gegeben. Fir eine kompakte Menge K C Q sei M := {z €
K : Jf(x) = 0} die Menge der singuldren Punkte. Dann ist f(M) = {f(z):x € K, J¢(x) = 0} eine Nullmenge.

Beweis. Da Q offen und K C Q kompakt ist, existieren endlich viele Wiirfel W; C ©Q (¢ = 1,...,N), welche K iiberdecken,
also K C Wiy U...U Wy. Es sei nun W, einer dieser Wiirfel. Es wird nun gezeigt: f(W, N M) ist eine Nullmenge. Wegen
f(M)C f(WiNnM)U...Uf(Wx N M) ist dann auch f(M) eine Nullmenge. Es sei also W, := {ac ER" : |z, —a;| < ?} C Qein
solcher Wiirfel mit Mittelpunkt a € R™ und Kantenlinge R > 0. Wegen f € C?(W., R™) gibt es zunichst eine Konstante L < oo mit
[f(@)—f(y)| < L-lz—yl|, |Df(z)—=Df(y)| < L-|lz—y| fiir z,y € W.. Nun wird W, von k™ achsenparallelen Wiirfeln W;, i = 1,..., k"
der Kantenldnge h := % iiberdeckt. Es sei nun I := {i € {1,...,k™}: W, M # 0} die Indexmenge aller derjenigen Wiirfel, welche

R R n+1
singuléire Punkte von f enthalten. Fiir jedes ¢ € I liefert Lemma (Wichtige Abschétzung) dann |f(W;)| < C(L,n) - <?> .

R Rn+l

. . nt1
Beachtet man f(W,. N M) C | f(W;), so folgt dann |f(W,., NM)| < > |f(W;)| < C(L,n)- (E) -k =C(L,n)- . Fiir
i€l i€l

k — oo folgt also |f(W, N M)| = 0, wie behauptet. a

Lemma (7e-Lemma). Gegeben seien zwei Funktionen fo, fi € A2(Q) := CO(Q, R™) NC%(, R™) mit |fs(x) — fi(x)] < e firz € Q
sowie |fs(x)| > Te und |fe(x)| > Te fir x € Q. Dann folgt:

deg(fs, ) = deg(ft, )

Beweis. Man wihle zunichst eine Funktion A € C2(R, [0, 1]) mit A(r) = 1 fiir 7 < 3¢ und A\(r) = 0 fiir r > 4e. Es wird dann die
folgende Funktion erklirt:
2(2) := fo(@) + A(| fs (@)]) - (fe(2) = fo(2)) € A*(Q)

Sie hat die folgende Eigenschaft:
|z(2)] = |fs@)] = A(|fs (@)]) - [fe () — fs(@)] > Te — e = 6¢ fir v € OQ

Zusitzlich gelten die Abschétzungen:

[fs(x) — z(@)] < A(|fs(@)]) - 1o (2) — fs(@®)] < e
Und es gilt:
[fe(@) = 2(x)] < (A= A(fs(@)]) - |fe(x) — fs ()] < e

Daraus iiberlegt man sich leicht:
fs(@), |fs(z)| > 4e

D= f@n i) <2

Man wihle dann zwei zuldssige Testfunktionen wi,ws € C°(R,R) mit supp(wi) C (5¢, 6¢) und supp(wz) C (0,¢). Insbesondere
folgt dann daraus: wi (|fs(z)]) - Iy, (z) = wi(|z(x)]) - J=(x) und wa(|z(x)]) - I (x) = wa(|fe(x)]) - Ty, (x). Wegen |fs(x)], |fe(x)| > Te
sowie |z(xz)| > 6e sind die beiden Testfunktionen wi und ws zuldssig zur Berechnung des Abbildungsgrades von fs, f; und z. Es

folgt somit also:

deg(fs,m:/nwlufs(m)\)~st<x)dm:/0w1<\z<z>|>-L(z)dzzdcg(z,m

Und es gilt auch:
deg(f,, Q) = /Q wallfo@)) - Ip, (2) dw = /szuzmn T (2) do = deg(z, Q)

Daraus folgt dann unmittelbar die Behauptung des Satzes. |

Satz (Immer reguldr). Fir ein f € CO(Q,R™) gelte |f(x)] > & > 0 fir @ € Q. Dann existiert eine Funktion f. € C°(Q2,R™) N
C2(Q, R™) mit folgenden Eigenschaften:

1. Es gilt die Abschitzung |f-(z) — f(z)| < e fiir x € Q.
2. Null ist regulirer Wert von f, insbesondere also deg(fe,Q2) € Z.
8. Fiir die Abbildungsgrade gilt: deg(f, Q) = deg(fe, ).

Wenn fiir eine Funktion f also Null nicht ein reguldrer Wert ist, dann kann man f durch Funktionen approximieren, die diese

Eigenschaft aber haben.
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Beweis. Zu gegebenem f € C°(€2, R™) und &€ > 0 wihlt man zunichst g € C°(2, R")NC? (2, R™) mit der Eigenschaft |g(x)— f(z)] <
g fir z € Q. Die Menge K := {z € Q : |g(z)| < g} C Q ist abgeschlossen und beschrénkt, also kompakt. Nach dem Sard’schen

€
Lemma ist die Menge N := {g(z) : x € K, J4(x) = 0} eine Lebesgue-Nullmenge. Folglich existiert ein Vektor y € R™ mit |y| < 5

sowie y ¢ N. Dann setzt man f.(z) := g(z) — y mit:
|fe(@) = F(@)] < |fe(@) = 9(@)| + l9(@) = f@)| < S + 5 ==

Und zwar gilt das fiir alle 2 € 9€2. Es sei nun = € Q eine Nullstelle von f., also g(z) = y. Wegen y ¢ N gilt dann 0 # Jy(z) = Jy,_ ().
Somit ist 0 ein reguldrer Wert von f.. Es gilt nun auch deg(f, ) = deg(f-, 2). Beweis: Es gilt erstmal |f(z) — f-(z)| < e < |f(z)|
fiir alle x € 9. Betrachte nun fiir ¢ € [0,1] die Homotopie f:(x) := f(z) +t - (fe(x) — f(x)). Wegen |z + y| > |z| — |y| gilt
also |fe(z)| > |f(@)] —t - |fe(z) — f(2)] > |f(x)] —t-|f(x)] > O fir x € 82 und t € [0,1]. Man w&hlt dann ein € > 0 so
klein, dass |fi(x)| > 7e fiir x € 9Q, t € [0,1] gilt. Da nun f auf der kompakten Menge Q x [0, 1] gleichmiBig stetig ist, existiert
ein § = §(¢) > 0 mit der Eigenschaft |fs(z) — fi(z)| < ¢ fir x € Q, s,t € [0,1], |s — t| < §. Man approximiert dann fs und
f+ gleichmiBig durch zwei Folgen von Funktionen f¥, fF aus A%(Q) := C°(Q,R™) N C?(2, R™). Nach dem 7e-Lemma ist dann
deg(fs, Q) = deg(fe, Q) fiir s,t € [0,1], |s — t| < §. Ein Uberdeckungsargument liefert dann deg(fs,Q) = deg(f:, Q) fiir alle
s,t € [0,1]. Also gilt deg(f,2) = deg(fo, Q) = deg(f1,2) = deg(f-, Q). a

Satz (Indexsummenformel). Fir ein beschrinktes Gebiet Q@ C R™ sei f € C°(B™,R™) N C3(B"™,R"™) =: A*(B") und f(x) # 0
fiir alle x € 0. Ferner sei 0 ein regulidrer Wert von f. Dann gibt es nur endlich viele Lésungen © € Q von f(x) = 0, welche

man mit x1,...,cny € Q (N € NU{0}) bezeichnet. Es gilt dann:

N
deg(f,Q) = > ind(f, z:) € Z

i=1

.  Jyp(=e) o ) ) ) ) .
Dabei sei ind(f, ;) € {—1,1}, wobei hier Js(x) die Jacobi-Determinante von f in x sei.

BREACH]
Beweis. Man zeigt zunéchst, dass f(z) = 0 nur endlich viele Lésungen hat. Andernfalls gebe es eine Folge =, € Q, k € IN mit
f(zx) = 0. Nach Auswahl einer Teilfolge konvergiert diese gegen ein x, € Q mit f(z.) = 0. Nach Voraussetzung ist 0 ein reguldrer
Wert f, also Jg(xz+) # 0. Nach dem Satz iiber die inverse Abbildung ist f lokal um z, injektiv, im Widerspruch zu f(zy) = 0
und zp — . fiir kK — oco. Die Indexsummenformel beweist man nun durch Induktion iiber die Anzahl N der Nullstellen von f:
Induktionsanfang N = 0, also f(z) = 0 hat keine Losung, also folgt deg(f,2) = 0 (Nullstellen-Lemma) und der Induktionsanfang
gilt. Induktionsschritt: Es gebe N + 1 Losungen x1,...,zn41 € Q. Wegen Jg(z1) # 0 ist f lokal um z; € Q ein Diffeomorphismus
(Satz iiber die inverse Abbildung). Genauer gibt es eine offene Menge U mit U C Q, 1 € U und V := f(U), so dass f eingeschrinkt
auf U ein Diffeomorphismus auf V ist. Durch eventuelle Verkleinerung von U kann man annehmen, dass entweder J¢(x) > 0 oder
Jg(x) < 0 fiir alle ¢ € U gilt. Wegen 0 = f(z1) € V und V offen existiert ein & > 0 mit Bz, (0) C V. Weil f ein Diffeomorphismus
ist, gilt f(OU) = OV, insbesondere gilt dann |f(x)| > 2e > ¢ fiir alle € OU. Man setzt nun o := ind(f, z1) mit der Eigenschaft
o - Jg(z) > 0 fiir alle ¢ € U. Es sei nun w € C°(R, R) eine zulissige Testfunktion, also supp(w) C (0,¢) und Jgn w(|z]) dz = 1. Die

Transformationsformel fiir Mehrfachintegrale liefert:

dee(1.0) = [ wllf@)- Iy @ds = [ @) 1@l =o- [ wlphdy=c- [ wly)dy=o=ind(s.o)

Im letzten Schritt wurde w(|y|) = 0 fiir y ¢ V verwendet. Zusammen mit der Induktionsvoraussetzung ergibt sich dann:

N+1 N+1
deg(f, Q) = deg(f,U) + deg(f, 2\ U) = ind(f, 1) + > _ ind(f,2;) = > ind(f,2:)
i=2 i=1
Damit ist also der Induktionsschritt bewiesen und der Beweis ist damit beendet. O

Satz (Borsuk). Auf der offenen Kugel B"™ = {x € R" : |z| < 1} sei eine Funktion f € Co(ﬁ7 R™) mit f(z) # 0 fiir x € OB

gegeben. Ferner sei f ungerade, d.h. f(—x) = —f(z). Dann ist deg(f, B") eine ungerade, ganze Zahl.

Beweis. Sei zunichst f € C°(B™,R™) N C%(B™,R") =: A%(B™). Und sei Null ein reguliirer Wert, d.h. die Jacobi-Determinate
Jy(x) ist fiir die Lésungen = von f(x) = 0 ungleich Null. Es gilt f(—0) = —f(0), also 2- f(0) = 0 = f(0) = 0, also 0 ist eine

Nullstelle von f. Nach der Indexsummenformel gilt:

deg(f,B")= > ind(f,2) =ind(f,0)+ > ind(f, 2)
Z€B™, f(2)=0 ST seBM\{0hi()=0
Ist z € B eine Nullstelle von f, dann ist wegen 0 = —f(z) = f(—z) auch —z eine Nullstelle. Aus f(—z) = —f(z) folgt
1%} 1%} 9]
—f(—z) = —f(—z) - (=1) = —=——(»), also: ——(—z) = ——(z) und deswegen ind(f,z) = ind(f, —z). Es folgt also, dass
821, 627; 821' Zi Bz,-

ind(f, z) eine gerade Zahl ist, also ist deg(f, B™) ungerade. Sei nun f € cO (B™,R™) eine ungerade Funktion. Es wird
z€B™\{0},f(2)=0
nun gezeigt, dass f sich beliebig gut von einer ungeraden Funktion g € AZ(B") approximieren lésst, fiir welche Null ein regulérer
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1

Wert ist. Zu € > 0 withle man ein hg € A%(B™) mit |f(x) — ho(x)] < e in B™. Dann ist die Funktion hy(z) := 5 (ho(z) — ho(—z))
h — ho(—
ungerade und erfiillt ebenfalls |hy(z) — f(z)| < & in B™, denn: |h1(z) — f(z)| = % — @ + M - M < %Jr g —e.

Sei nun § € (0,¢) mit h(xz) := hi(xz) — éx (ungerade Funktion) so, dass ¢ kein Eigenwert der JacobiQ—MatriX Dh(0) ist. Dann gilt
némlich Jp, (0) # 0 und es gilt die Abschitzung |f(z) — h(z)| < 2¢ in B™. Man wiihlt nun eine Funktion ¢ € C2(R, [—1,1]) mit
den folgenden Eigenschaften: p(—t) = —¢(t) fir t € R, p(t) = 0 = ¢t = 0 und ¢’(0) = 0. Es wird gesetzt: Qp = {z € B™ :
x; # 0 fiireini € {1,...,k}}. Also gilt dann 2; C Q2 C ... C Q, und Q, = B™ \ {0}. Man konstruiert nun induktiv Vektoren
Y1,...,Yn € R™ mit |yx| < € sowie ungerade Funktionen gi(z) := h(z) — p(z1) - y1 — ... — ¢(xk) - yr mit folgender Eigenschaft:

Null ist ein reguldrer Wert von g auf der Menge Q. Es seien die Vektoren y1,...,yr—1 € R™ bereits entsprechend gewihlt. Man
gr—1(x)
e(zr)

man ein yr mit |yi| < e so, dass yj ein reguldrer Wert von g in Q ist. Beweis: K := {z € Q lg(z)] < e} C Q ist kompakt

konstruiert nun den Vektor yj. Dazu sei g(z) = fir ¢ € Q := {& € B" : z, # 0}. Mithilfe des Sard’schen Lemmas findet

und N := {g(z) : © € K, Jz(z) = 0} ist nach dem Lemma eine Nullmenge. Also gibt es ein y, mit |yx| < € so, dass yp ¢ N
gilt, also: 2’ € g '(yx) = Jgz(z’) # 0. Alle Losungen = € Q der Gleichung §(z) = yy erfiillen also Jg(x) # 0. Man setzt nun
gr(2) := gr_1(x) — p(zr) - yr = p(zx) - (G(x) — yx). Es sei nun z € Q mit g (z) = 0. Daraus folgt §(z) = y. sowie Jg(z) # 0. Man
berechnet nun das folgende:

Ogk (x) o 9g(=)

9 = 2 (olon) @) — ) = Bun o (o) (310) = i) + o) - oD = () - 22

=0

Es gilt also Jg, () = @(xx)" - Jz(x) # 0. Somit ist also Null ein regulidrer Wert von gi in der Menge Q= {z € B™ : z;, # 0}.
Jetzt wird noch gezeigt: Null ist auch ein regulidrer Wert in der Menge Qj \ Q. Ist © € Q \ﬁ, dann folgt * € Q1 und = = 0.

7] Ogk— 7] Ogk— Ogr—
Folglich: 9k (2) = M — 0 fiir © # k, ist jedoch i = k, so ist M = M — ¢ (0) -y = Ll(w) Damit gilt
Ox; Ox; Ow; Oz; oz ~
also Jg, () = Jg, _, (x) sowie nach Voraussetzung J,, ,(z) # 0. Somit ist Null reguldrer Wert von g in Qi = QU (Q \ Q). Mit
g(z) = gn(z) = h(z) —p(z1)-y1 —...—@(Tn) - yn erhilt man schlieBlich eine ungerade Funktion, fiir welche Null ein regulérer Wert
in (B™ \ {0}) U {0} ist, denn es gilt doch Dg(0) = Dh(0) und also J4(0) = J,(0) # O (siehe oben). Es gilt noch die Abschétzung
|f(z) — g(z)| = |f(z) — h(z)] + |h(z) — g(z)| < 26 + ne = (24 n) - &, d.h. g liegt beliebig nahe an f. a

Satz (Borsuk-Ulam). Sei f: {z € R" : |z| = 1} = S"~! — R"~! eine stetige Funktion. Dann ezistiert ein © € S™~' mit der

Eigenschaft f(x) = f(—=z).

Beweis. Angenommen, es gilt f(z) # f(—=x) fir alle z € S™~1. Man setzt nun f auf B™ fort zu einer stetigen Abbildung
f:B" - R" ! Dann sei G : B® — R", G(z) := (f(z) — f(—x),0) definiert. G ist eine ungerade und stetige Funktion. Weil
G(z) # 0 fiir alle z € 9B™ = S™~ ! gilt, ist demnach der Abbildungsgrad deg(G, B"®) anwendbar. Nach dem Satz von Borsuk ist
deg(G,B™,0) # 0, weil G ungerade ist. Also gibt es eine hinreichend kleine offene Umgebung K (0) C R™ von 0 so, dass auch
noch deg(G, B™,y) # 0 fiir alle y € K™(0) gilt. Nach dem Losungskriterium (Nullstellen-Lemma) gibt es also fiir jedes y € K (0)
eine Losung z € B™ der Gleichung G(z) = y, woraus folgt: K(0) C G(B™). Das ist aber ein Widerspruch, weil in G(B™) die n-te

Koordinate 0 ist. Also ist der Satz bewiesen. O

Satz (Ham Sandwich). Gegeben seien n beschrinkte, messbare Mengen Ay, ..., A, C R™. Dann existiert ein (n—1)-dimensionaler,

affiner Raum E C R", welcher jede der n Mengen in volumengleiche Teile zerlegt.

Beweis. 1. Fall: Alle A; sind Nullmengen. Dann besitzt jeder Hyperraum im R™ die gesuchte Eigenschaft. 2. Fall: Es existiert ein
k€ {1,...,n} mit u(Ag) > 0 (u ist das MaB). Fiir einen Vektor p € S™ C R"™™! betrachte nun die Menge H, := {x € R" :
Z1-P1+ ...+ Tn  Pn + Ppny1 > 0} CR™. Man beachte, dass H, U H_, = R" gilt. Ferner ist H, N H_, ein (n — 1)-dimensionaler
affiner Raum im R", falls p € S™ und p # tep4+1 = (0,...,0,£1) ist. Fiir ¢ = 1, ..., n betrachtet man die Abbildung ¢; : S™ — R,
@i(p) := n(HpNA;). Nach dem Satz von Borsuk-Ulam existiert also fiir die stetige Funktion ¢(p) := (¢1(p),...,¢n(p)) : S™ = R"
ein ¢ € S™ mit ¢(q) = ¢(—q). Aus p(Ag) > 0 wei man dann q; # 0. Der Hyperraum Hg, N H_, besitzt nun die gesuchte
Eigenschaft. |

Der Indexsatz von Poincaré-Hopf

[Zuriick zur Liste]

Nach dem Einbettungssatz von Whitney kann jede n-dimensionale differenzierbare Mannigfaltigkeit M in den R2nt! eingebettet

werden. Man betrachtet deswegen nur noch Untermannigfaltigkeiten im R"™.

Definition (Abbildungsgrad). Zu Q@ C R™ sei f € A%(Q) := C*(Q,R™) N C°(Q, R") und mit supp(w) := {z € R : w(z) # 0}
bezeichnet man den Triger der Funktion w: R — R. Es sei f € A%(Q) eine Funktion mit |f(z)| > e > 0 fir alle € Q. Eine
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stetige Funktion w € C°(R,R) nennt man zuldssig fir f, wenn sie die Eigenschaften supp(w) C (0,¢) und / w(ly)dy =1
RN
hat. Fiir eine solche Testfunktion w erkldrt man den Abbildungsgrad von f beziiglich 0 als

deg(£.9.0) = [ w(f(@)]) - Jy(@)do
Dabei ist Jy(x) die Jacobi-Determinante an der Stelle x. Der Abbildungsgrad ist unabhdngig von der Wahl einer Testfunktion.

Lemma (Nullstellen-Lemma). Sei Q C R™ beschrinkt und f € CO(Q, R™) mit |f(x)| > ¢ > 0 fir x € 0Q. Besitzt f in Q keine
Nullstelle, so folgt: deg(f,) = 0.

Beweis. Bewiesen wird diese Aussage nur fiir Funktionen f € C°(©2,R™) N C2(Q, R™) =: A%(Q). Approximiert man nur stetige
f mit Funktionen aus A?(Q), dann gilt die Aussage auch fiir f € C°. Besitzt f in Q keine Nullstelle, so existiert ein € > 0 mit
[f(z)] > e > 0 fiir z € Q. Man wihle dann eine zuliissige Testfunktion w € C°(R, R) mit supp(w) C (0, ). Dann folgt:

deg(f, Q) = /ﬂw(lf(w)l) Tp(x)dz =0

=0

Und das war auch schon alles. O

Lemma (7e-Lemma). Gegeben seien zwei Funktionen fs, fr € AQ(Q) = Co(ﬁ, R"™) OCQ(Q, R™) mit |fs(x) — fe(z)| < € firz € Q
sowie |fs(x)| > Te und |fe(x)| > Te fir x € Q. Dann folgt:

deg(fs, Q) = deg(f1, Q)

Beweis. Man wihle zunichst eine Funktion A € C2(R, [0, 1]) mit A(r) = 1 fiir 7 < 3¢ und A\(r) = 0 fiir » > 4e. Es wird dann die
folgende Funktion erklért:
2(@) = fo (@) + A fs(@)]) - (fe (@) — fs(@)) € A*(Q)

Sie hat die folgende Eigenschaft:
lz(2)] = |fs(@)] = A(|fs(@)]) - [fe(2) — fs(@)] > Te — & = 6¢ fiir v € OQ
Zusétzlich gelten die Abschitzungen:
[fs(z) = z(@)] < A(|fs(@)]) - [ fe(2) — fs(@)] < e

Und es gilt:
[fe(@) = 2(x)] < (1= A(fs(2)]) - |fe(x) — fs(@)] < e

Daraus iiberlegt man sich leicht:

o {fm), |fa(@)] 2 4e

fe(x),  |fe(@)] < 2

Man wihle dann zwei zuldssige Testfunktionen wi,ws € C°(R,R) mit supp(wi) C (5¢, 6¢) und supp(ws) C (0,¢). Insbesondere
folgt dann daraus: wi(|fs(2)]) - Jr, (@) = wi(|z(2)]) - J= (@) und wa(|z(2)]) - J= () = wa(|fe(2)]) - T5, (x). Wegen |fs(@)], | fe(x)| > Te
sowie |z(z)| > 6e sind die beiden Testfunktionen wi und ws zuldssig zur Berechnung des Abbildungsgrades von fs, f; und z. Es

folgt somit also:

deg(fs, Q) = / w1 (1fo(@)]) - g, (x) dx = / w1(12(@)]) - J= (z) dz = deg(z, Q)

Und es gilt auch:
deg(f,, ) = /Q wallfe@)) - Ty, (2) do = /szuz(m)n . (2) do = deg(=, Q)

Daraus folgt dann unmittelbar die Behauptung des Satzes. O

Satz (Immer reguldr). Fiir ein f € Cco(Q,R™) gelte [f(x)] > e >0 firaxz € Q. Dann existiert eine Funktion f. € coq, R™) N
C2(Q, R™) mit folgenden Eigenschaften:

1. Es gilt die Abschitzung |fe(x) — f(z)| < e fiir z € Q.
2. Null ist regulirer Wert von f-, insbesondere also deg(f-,§) € Z.
8. Fiir die Abbildungsgrade gilt: deg(f, ) = deg(fe, ).

Wenn fiir eine Funktion f also Null nicht ein regulirer Wert ist, dann kann man f durch Funktionen approxzimieren, die diese

FEigenschaft aber haben.
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Beweis. Zu gegebenem f € C°(€2, R™) und &€ > 0 wihlt man zunichst g € C°(2, R")NC? (2, R™) mit der Eigenschaft |g(x)— f(z)] <
g fir z € Q. Die Menge K := {z € Q : |g(z)| < g} C Q ist abgeschlossen und beschrénkt, also kompakt. Nach dem Sard’schen

€
Lemma ist die Menge N := {g(z) : x € K, J4(x) = 0} eine Lebesgue-Nullmenge. Folglich existiert ein Vektor y € R™ mit |y| < 5

sowie y ¢ N. Dann setzt man f.(z) := g(z) — y mit:
|fe(@) = £(@)] < |fe(@) = 9(@)| + l9(e) = f@@)| < S + 2 =

Und zwar gilt das fiir alle z € 9€2. Es sei nun « € Q eine Nullstelle von f., also g(z) = y. Wegen y ¢ N gilt dann 0 # Jy(z) = Jy,_ ().
Somit ist 0 ein reguldrer Wert von f.. Es gilt nun auch deg(f, ) = deg(f-, ). Beweis: Es gilt erstmal |f(z) — f:(z)| < e < |f(z)]
fir alle x € 99Q. Betrachte nun fiir ¢ € [0, 1] die Homotopie f¢(x) := f(x) +t - (fe(x) — f(x)). Wegen |z + y| > |z| — |y| gilt
also |fe(z)| > |f(x)] =t |fe(z) — f(z)] > |f(z)] —t-|f(x)] > O fir x € OQ und t € [0,1]. Man wihlt dann ein &€ > 0 so
klein, dass |fi(z)| > 7e fiir ¢ € 99, t € [0, 1] gilt. Da nun f auf der kompakten Menge Q x [0, 1] gleichmiBig stetig ist, existiert
ein § = §(¢) > 0 mit der Eigenschaft |fs(z) — fi(z)| < ¢ fir x € Q, s,t € [0,1], |s — t| < §. Man approximiert dann fs und
ft+ gleichmiBig durch zwei Folgen von Funktionen f¥, fF aus A2(Q) := C°(Q,R™) N C?(Q,R™). Nach dem 7e-Lemma ist dann
deg(fs, Q) = deg(fe, Q) fiir s,t € [0,1], |s — t| < §. Ein Uberdeckungsargument liefert dann deg(fs,Q) = deg(f:, Q) fiir alle
s,t € [0,1]. Also gilt deg(f, Q) = deg(fo, Q) = deg(f1,Q) = deg(fe, Q). O

Satz (Indexsummenformel). Fir ein beschrinktes Gebiet Q@ C R™ sei f € C°(B™,R™) N C3(B™,R"™) =: A%(B") und f(z) # 0
fiir alle x € 0. Ferner sei 0 ein regulidrer Wert von f. Dann gibt es nur endlich viele Lésungen © € Q von f(x) = 0, welche

man mit x1,...,eny € Q (N € NU{0}) bezeichnet. Es gilt dann:
N
deg(f,Q) = ind(f,z:) € Z
i=1

S  Jyp(=xe) R ) ) ) ) )
Dabei sei ind(f, ;) € {—1,1}, wobei hier Js(x) die Jacobi-Determinante von f in x sei.

(@)l

Beweis. Man zeigt zunéchst, dass f(z) = 0 nur endlich viele Lésungen hat. Andernfalls gebe es eine Folge =, € Q, k € IN mit
f(zk) = 0. Nach Auswahl einer Teilfolge konvergiert diese gegen ein x, € Q mit f(z.) = 0. Nach Voraussetzung ist 0 ein reguldrer
Wert f, also J¢(z+) 7# 0. Nach dem Satz iiber die inverse Abbildung ist f lokal um xz, injektiv, im Widerspruch zu f(zy) = 0
und zp — z. fiir kK — oco. Die Indexsummenformel beweist man nun durch Induktion iiber die Anzahl N der Nullstellen von f:
Induktionsanfang N = 0, also f(z) = 0 hat keine Losung, also folgt deg(f,2) = 0 (Nullstellen-Lemma) und der Induktionsanfang
gilt. Induktionsschritt: Es gebe N + 1 Losungen x1,...,zny4+1 € Q. Wegen Jg(z1) # 0 ist f lokal um z; € Q ein Diffeomorphismus
(Satz iiber die inverse Abbildung). Genauer gibt es eine offene Menge U mit U C Q, 1 € U und V := f(U), so dass f eingeschrinkt
auf U ein Diffeomorphismus auf V ist. Durch eventuelle Verkleinerung von U kann man annehmen, dass entweder J¢(x) > 0 oder
Jg(x) < 0 fiir alle z € U gilt. Wegen 0 = f(z1) € V und V offen existiert ein & > 0 mit Bz, (0) C V. Weil f ein Diffeomorphismus
ist, gilt f(OU) = OV, insbesondere gilt dann |f(x)| > 2e > ¢ fiir alle € OU. Man setzt nun o := ind(f, 1) mit der Eigenschaft
o - Jg(z) > 0 fiir alle z € U. Es sei nun w € C°(R, R) eine zulissige Testfunktion, also supp(w) C (0,¢) und Jgn w(|z]) dz = 1. Die

Transformationsformel fiir Mehrfachintegrale liefert:

dea(£.0) = [ w(lf@) - Js@ds=o- [ wlf@)- 1@l =o- [ wlahdy=c- [ wlly)dy=o=nd(f.on)

Im letzten Schritt wurde w(|y|) = 0 fiir y ¢ V verwendet. Zusammen mit der Induktionsvoraussetzung ergibt sich dann:

N+1 N+1
deg(f, Q) = deg(f,U) + deg(f, 2\ U) = ind(f, 1) + > _ ind(f,2;) = > ind(f,x:)
i=2 i=1
Damit ist also der Induktionsschritt bewiesen und der Beweis ist damit beendet. O

Lemma (7e-Lemma fiir stetige Funktionen). Gegeben seien zwei Funktionen f1, f2 € CO(QR™) mit | f1(z) — f2(x)] < € fir z € Q
sowie fr(x) > Te fiir x € Q. Dann folgt: deg(f1,2) = deg(f2,).

Beweis. Man approximiert f; und fa gleichméfig durch zwei Folgen von Funktionen fl’€ und fZ’C in AZ(Q) = C”‘(Q7 R™)NCO (Q,R™)

und wendet das Lemma (7e-Lemma) s.o. an. |

Satz (Invarianz unter Homotopien). Es sei fi(z) = f(z,t) € C°(Q x [a,b],R") eine Familie von Funktionen zum Parameter

t € [a,b]. Ferner gelte f(x,t) # 0 fir alle x € 9Q, t € [a,b]. Dann gilt deg(fs, ) = deg(ft, Q) fir alle s,t € [a, b].

Beweis. Man wihlt zunichst ein € > 0 so klein, dass |f(z,t)| > 7e fiir x € 99, t € [a,b] gilt. Da nun f auf der kompakten Menge
Q x [a, b] gleichmiBig stetig ist, existiert ein § = §(¢) > 0 mit der Eigenschaft |f(z,s) — f(=z,t)| < € fir z € Q, s,t € [a,b] mit
|s —t] < 4. Nach dem Lemma (7e-Lemma fiir stetige Funktionen) ist dann deg(fs, ) = deg(f:, Q) fiir s,t € [a,b], |s — t| < §. Ein
Uberdeckungsargument liefert dann deg(fs, Q) = deg(f:, Q) fiir alle s,t € [a, b]. O
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Satz (Rouché). Es seien f,g € C°(Q,R™) zwei Funktionen mit |f(z) — g(z)| < |f(z)| fir z € dQ, dann folgt deg(f,Q) =
deg(g, Q). Insbesondere gilt fir f(x) = g(x) fir x € 0Q dann deg(f,2) = deg(g, ). Das bedeutet, dass der Abbildungsgrad

bereits durch die Randwerte fapq eindeutig bestimmt ist.

Beweis. Betrachte zu t € [0, 1] die Homotopie f¢(z) := f(z)+t-(g(x)— f(x)) mit der Eigenschaft | f;(z)| > | f(z)|—t-|g(z)— f(x)| >
|f(z)| =t |f(z)] > 0 fiir z € 99, t € [0,1]. Der Satz (Invarianz unter Homotopien) s.o., sagt dann deg(f, Q) = deg(fo,Q) =
deg(f1, ) = deg(g, Q). O

Lemma (Wichtige Abschitzung). Zu a € R"™ und h > 0 sei W := {z € R" : |z; — a;] < g} ein Wiirfel der Kantenlinge h.
Weiter sei eine C2-Funktion f : W — R™ gegeben mit |f(z) — f(y)| < L-|x —y|, |Df(z) — Df(y)| < L- |z —y| fir alle z,y € W.
Schlieflich existiere ein z € W mit J;(z) = 0. Dann gilt f(W) < C(L,n)-h"*!, wobei mit | f(W)| das Lebesgue-Mafi der Menge
f(W) gemeint ist.

Beweis. Da W kompakt und f stetig ist, ist f(W) kompakt und somit auch Lebesgue-messbar. Wegen J¢(z) = 0 existiert ein
Vektor v; € R™, |v1| = 1 mit v] - Df(z) = 0. Beweis: Weil die Determinante von D f(z) gleich Null ist, ist ihr Zeilenrang kleiner n,
also sind die Zeilen linear abhéngig, d.h. es gibt eine nichttriviale Linearkombination von diesen Zeilen so, dass die Summe gleich
0 ist. Die Koeffizienten seien durch den Vektor v; gegeben, wobei die Linearkombination = 0 noch durch den Skalar der Lidnge von
v1 auf beiden Seiten geteilt wird; die Linearkombination ist dann immer noch Null. v; - D f(z) ist dann die Linearkombination der

Zeilen von D f(z), also gleich 0. v; wird nun durch Vektoren v, ..., v, zu einer Orthonormalbasis von R™ ergénzt. Es gilt dann:

14 1 1
oI @ - fa@) =0l [ Sp@itoa)dt=of - [ Df@rtmadt-z-a)=of - [ DAtttz 0)
0 0 0

Und das ist dann gleich folgendes:

T ! T ! T !

h / Df(t-z+(1—t)-2)dt-(z—x) = vy / Df(z+t-(x—=z))dt-(z—x) = v, / (Df(z+t-(x—2)) — Df(z)) dt-(z —x)
0 0 0

Mit der Voraussetzung |Df(z) — Df(y)| < L - |x — y| fiir alle z,y € W folgt dann die folgende Abschitzung:

<L-(n-h*-1<L-n*> n°

(@) = S S Lolz— ol [ et S Lo ((er =22 4ok (on = m)) 5 <
0

Es gilt nach Voraussetzung |f(z) — f(y)| < L - |z — y| fiir alle z,y € W, also gilt:

o] - (f(z) = f@)| < L-|z — x| SL-\/(zl—m1)2+...+(zn—acn)2 <L Vn-h2<L-n-h
Wobei hier i = 2,...,n sei. Insgesamt folgt somit also:
FOV) C{y €R™: o] - (f(2) — f@)| < L-n® % ol - (f(z) — f@)| S L-n-hfiri=2,...,n}
Unter Verwendung der Invarianz des Lebesgue-Mafles gegeniiber Rotationen ergibt sich:
lFOW)| < (L-n?-h%) - (L-n-h)" "t =L" . n"T . p" " = c@,n) - n"
Und damit ist dann die Behauptung bewiesen. |

Lemma (Sard’sches Lemma). Zu Q C R™ offen sei f € C2(Q, R"™) gegeben. Fiir eine kompakte Menge K C Q sei M := {x €
K : Jy(x) = 0} die Menge der singuliren Punkte. Dann ist f(M) = {f(z): z € K, Jy(x) = 0} eine Nullmenge.

Beweis. Da Q offen und K C Q kompakt ist, existieren endlich viele Wiirfel W; C € (i = 1,...,N), welche K iiberdecken,

also K C Wi U...U Wx. Es sei nun W, einer dieser Wiirfel. Es wird nun gezeigt: f(W, N M) ist eine Nullmenge. Wegen
R

f(M) C f(WinM)U...Uf(Wy N M) ist dann auch f(M) eine Nullmenge. Es sei also W, := {z ER" :|x; —a;| < 5} C Q ein

solcher Wiirfel mit Mittelpunkt a € R™ und Kantenlinge R > 0. Wegen f € C2(W,, R™) gibt es zunichst eine Konstante L < oo mit

[f(z)=f(y)| < L-|z—y]|, |Df(x)—=Df(y)| < L-|x—y| fiir ,y € W.. Nun wird W, von k™ achsenparallelen Wiirfeln W, i = 1,..., k"™
der Kantenléinge h := % iiberdeckt. Es sei nun I := {i € {1,...,k"} : W;N M # 0} die Indexmenge aller derjenigen Wiirfel, welche

. R n+1
singuldre Punkte von f enthalten. Fiir jedes ¢ € I liefert Lemma (Wichtige Abschitzung) dann |f(W;)| < C(L,n) - <?> .

. X R nt1 nt1
Beachtet man f(W, N M) C U f(W;), so folgt dann |f(W. NM)| < > |f(W;)] < C(L,n) - (;) -kE™ =C(L,n) - P Fiir
icl ier

k — oo folgt also | f(W, N M)| = 0, wie behauptet. |

8B(p,s)> o

X
Definition (Index eines Vektorfeldes). Der Index eines Vektorfeldes X mit X (p) = 0 um p ist definiert als deg <m

ix (p). Weitere Informationen findet man unten, Lemma (Anschauung von deg < ) im 2-dimensionalen Fall)

X
X1
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Satz (Morse). Sei f: U — R 2-mal stetig differenzierbar, p € U mit f(p) = 0, (df)p = 0 und (Hf), ist nicht entartet. Dann
existiert ein V. C R™ offen, ¢ : V — (V) C U ein Diffeomorphismus mit ¢(0) = p. Es gibt dann ein r € N so, dass gilt:

(fow)(ml,.,.,zm)zfxf7157...7zi+zi+1+...+:vfn
) ) i, ) ) _ Jvslp) _ -
Ein solcher Punkt p heif$t kritischer Punkt vom Index r. Es gilt also ind(V f,p) = m =(=1)".
vilp
Beweis. Sei f so, wie in der Voraussetzung und wie im Lemma (Separation der Variablen, s.u.). Also existiert ein o = =1,
g:V =R, :V = (V) CU so, dass gilt (f o) (@1,...,2Tm) =027+ g(z2,...,2m). Es gilt:
2.0 0 0
0
(H(fo4))o =
Hg

0

Also gilt (Hf), nicht-entartet => Hg ist nicht-entartet. Wende nun dasselbe Lemma auf g|y (s, =0} an. O

Lemma (Separation der Variablen). Sei f wie im Satz von Morse, aber (Hf), # 0. Dann existiert ein V. C R™ offen, ¢ : V —
(V) ein Diffeomorphismus mit ¢ (0) = p und es ewxistiert ein o = 1 so, dass o - ;c% + g(x2,...,xm) gilt, wobei g : V — R

2-mal stetig differenzierbar ist.

Beweis. Sei also f : U — R glatt, p € U: f(p) =0, (df)p, =0, (Hf)p # 0. Ist M := (Hf),, dann existieren nach Voraussetzung

i,j mit M;; # 0. Seien die Koordinaten einer Karte von der Mannigfaltigkeit durch X1, ..., X, gegeben, also f o ¢(X1,...,X,):
R™ — R. Man fiihrt nun eine Koordinatentransformation zu den Koordinaten z1,...,z, durch so, dass 2 = =41 gilt in der
1

Hessematrix an der Position (1,1) mit den neuen Koordinaten. Sei H¢(p) die Hessematrix in den Koordinaten X1,..., X, und
Hy(p) die fir x1,...,%,. Genauer hat man also:

8X1 8X1 8)(1

ox oz ox

0Xy  0Xs oX5

ox Ox ox

J = - 2 I () - M) - T (p) = Hy(p)
0X, 00X, 0Xn
Oz Oz 8.”1:7,,

7]
Das wird mit der Kettenregel bewiesen, unter Beriicksichtigung von a—f(p) = 0. Damit man eine Koordinatentransformation hat,
.

muss die Determinante von J(p) ungleich Null sein, also ist J(p) invertierbar. Wihlt man die Eintrége in J(p) geschickt, dann hat
2

o 19}
man in den neuen Koordinaten a—]zc(p) = +1. Wichtig ist, dass mindestens ein Eintrag in M ungleich Null ist, sonst gilt 8—]; =0.
x T

Setze zur Vereinfachung der Rechnung p = 0; denn das Verschieben in ein p # 0 dndert die differenzierbare Struktur nicht. Es
gilt f(0) = 0, (df)o = 0 und %(O) = £1. Annahme: +1. Folglich ist f|z;-Achse lokal um 0 strikt konvex (4-1) oder konkav
(—1). Weiterhin hat f|;; acnse bei O ein lokal eindeutiges Minimum. Wegen der Stetigkeit von f, df und Hf existiert ein 6 > 0, so
dass fiir alle z2,...,®, mit |z;] < 6 gilt: foy, .z, : W = R, 21 = f(x1,22,...,2,) mit W C R offen. Diese Funktion ist dort
strikt konvex und hat ein eindeutiges Minimum Z; = T1(z2,...,%y). T1 ist durch die Gleichung ;—wfl(il,a:z, ..., xy) = 0 implizit
definiert. Nach dem Satz iiber implizite Funktione lisst sich Z; eindeutig als Funktion in z2, ..., z, ausdriicken. T (x2,...,z,) ist

eine glatte Funktion in xa, ..., x,. Der Satz {iber implizite Funktionen lédsst sich anwenden, da W(O) # 0 gilt. Schreibe nun neue
x
1
Koordinaten:

y1 = sign(z1 —71) - \/f($1,~~~,$n) — f(@1,z2,...,2n)

Y2 = T2

Yn = Tn
Daraus folgt dann also f(yl,‘.‘,yn)fyf = f(x1,.. . xn)—f(z1,...,2n)+f(T1,22,...,20) = f(T1,T2,...,2Txn),also: f(y1,...,Yn)—
yf = f(T1,22,...,2n) = g(x2,...,2n) = g(y2,...,Yn). Nun wird noch gezeigt, dass R" — R", z; — y;(z;) (glatt) die

8 .
Bedingung fiir eine Koordinatentransformation erfiillt. Es muss also gelten: det <8ﬁ) # 0. Man untersucht y; auf der zi-

T4

Achse: y; = sign(z1) - \/f(#1,0,...,0) — £(0,0,...,0). Bs gilt £(0,0,...,0) = 0 und es gilt f(z1,0,...,0) = z? 4+ O(z3)
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nach Taylor (f(0) = 0, f'(0) = 0, f”(O = . Also gilt f(z1, ,...,O) = 22 4+ h(z;) mit h(z1) € O(«9). Folglich: y; =

sign(z1) - |z1| -4 /14 wl 1oy /14 ist glatt und es gilt —(O) = +1. Also:

1 * * *
1 0
@
ox;i /¢
0
1
Wie man sieht, ist die Determinante ungleich Null. |

Satz (Hopf). Sei X ein Vektorfeld mit isolierten Nullstellen auf der n-dimensionalen Mannigfaltigkeit M mit Rand, so, dass X

auf OM nach auflen zeigt. Dann gilt > ix(p) = deg(g: M — S™ "1 g — ny), wobei g die GauPabbildung sei. Dabei sei
peX —1(0)
ng senkrecht auf dem Rand, habe die Linge 1 und zeige nach auflen. Insbesondere ist die Summe der Indizes eines Vektorfeldes

unabhingig von der Wahl des Vektorfeldes.

Beweis. Seien pi,...,p) die isolierten Nullstellen von M und B(p;,e) Kugeln um die p;, so dass alle B; disjunkt sind und

k
ganz in M liegen ohne den Rand zu beriihren. Definiere: M’ := M \ |J B°(p;,¢e). Definiere X’ durch Sei h := X'|gpn ¢
i=1

X
M.
OM’' — S™ 1. Weil in der Menge, die von M’ eingegrenzt wird, keine Nullstellen sind, folgt nach dem Lemma (Nullstellen-
Lemma) deg(h) = 0, denn der Abbildungsgrad héngt nur von den Werten auf dem Rand ab (siehe Satz von Rouché). Weiter gilt:
0 = deg(h) = deg(hlom) + deg(h|aM/\3M). Es gilt h|pn ist homotop zu g durch punktweise Drehung. Also deg(h|sn) = deg(g).

Weiter: deg(hlap(p;,c)) = —ix (pi), da 0B(pi, ) als Rand von M’ die umgekehrte Orientierung trigt. Also: 0 = deg(h) = deg(g) +
k k

> —ix(pi), also: deg(g) = > ix(pi). Damit ist dann der Beweis vollstindig erbracht. a

i=1 i=1

Satz. Sei M C R"™ eine n-dimensionale kompakte Mannigfaltigkeit ohne Rand und X ein glattes Vektorfeld auf M mit isolierten

Nullstellen, die alle nicht-degeneriert sind (siehe Satz (Ersatzvektorfeld)). Sei € > 0 hinreichend klein, so dass N. := {y €

Rt .3peM:|p—y| < e} C R"™T! eine glatte (n + 1)-Mannigfaltigkeit diesmal mit Rand ist. Dann gilt: > ix(p) =
peX—1(0)
deg(G), wobei G : ON. — S™ die Gaufabbildung sei. Wieder ist die Summe der Indizes eines Vektorfeldes unabhdingig vom

Vektorfeld. Der Beweis geht dann, wie folgt:

Beweis. Idee: Verwendung des Satzes von Hopf fiir eine geeignete Fortsetzung von X nach N.. Definiere r : No — M, y — r(y)
so, dass |ly — r(y)|| = ;reli]\r} [ly — pl|. Insbesondere ist r glatt und es gilt y — 7(y) L T,y M fiir alle y. Definiere W : N. — R
y — X(r(y)) +y — r(y) glatt mit W(y) € T, N, fiir alle y € N.. W zeigt nach auBlen auf ON.. W hat ausschlieBlich nicht-
degenerierte Nullstellen. W hat die gleichen Nullstellen wie X, denn: W(y) = 0 ist dquivalent zu X (r(y)) = 0 und r(y) = y, weil
doch gilt y — r(y) L X (r(y)) € Ty M, also #quivalent zu X (y) = 0. Weiter gilt fiir p € M mit X (p) = 0: dW,(§) = dX,(§)
fiir alle £ € T, M und dWp(n) = 7 fiir alle T,Ne mit n L Tp M, denn: dWp(n) = dV,(,y - ' (p) - n +n — v’ (p) - n und weil
r’(p) L n und r'(p) € TpM gilt, folgt die Behauptung. Da X nur nicht-degenerierte Nullstellen hat, ist dW,, invertierbar und
es gilt ind(W, p) = sign(det(dWp)) = sign(det(dX,)) = ind(X, p). Weil die Nullstellen von W und X nicht degeneriert sind, gilt
iw (p) = ind(W, p) und ix(p) = ind(X, p) fiir p mit W(p) = X (p) = 0, Begriindung: Siche im Beweis des Satzes (Poincaré-Hopf)
unten. Es folgt dann nach dem Satz (Hopf): deg(G) = > iw (p) = > ix(p). a

peW —1(0) peX—1(0)

Satz (Poincaré-Hopf). Sei X ein glattes Vektorfeld auf M mit isolierten Nullstellen, dann gilt: > ix(p) = x(M).
peX—1(0)

Beweis. Da die Summe der Indizes eines Vektorfeldes unabhéngig von der Wahl des Vektorfeldes ist, wird nun ein spezielles

Vektorfeld konstruiert, so dass die Summe der Indizes gleich der Euler-Charakteristik ist. Das Vektorfeld V f sei so konstruiert, dass

sich in der triangulierten Mannigfaltigkeit in jeder i-Zelle ein kritischer Punkt von f mit Index i befindet. Weiter seien die Nullstellen

des Vektorfeldes V f alle nicht entartet, also det(d(V f),) = det(Hys(p)) # 0, wie in der Voraussetzung des Satzes (Morse). Es gilt

I - . Vi
fiir einen kritischen Punkt von Vf (V f(p) = 0) dann iv(p) = HVfH ok (p)) Homotopic deg(V flok. (p)) Indexsummenformel
ind(Vf,p), weil 0K.(p) eine einzige Nullstelle von V f, ndmlich p, umrundet, wobei diese Nullstelle nicht entartet ist, also die
Indexsummenformel anwendbar ist. Seien alle kritische Punkte mit p1, ..., p; bezeichnet. Es gilt also V f(p;) = 0 fiir alle i. Daraus
dim (M)
folgt dann also folgendes: > ive(p) = > ind(Vf,p) = Z (=1)% - #{kritische Punkte von f mit Index i} =
PE(V)~1(0) PE(V)~1(0)
dim (M) )
S (—1)" - #{i-Zellen in der Triangulierung von M} = x(M). |
i=0

Satz (Ersatzvektorfeld). Fiir jedes Vektorfeld X gibt es ein Ersatzvektorfeld X so, dass alle Nullstellen nicht entartet sind und
die Summe der Indizes des Vektorfeldes den gleichen Wert hat.
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Beweis. Sei das Vektorfeld X definiert auf M. Man legt nun um alle Nullstellen von X eine 2e-Umgebung so, dass alle diese
Umgebungen disjunkt sind und den Rand OM nicht schneiden. Sei f : M — R eine stetige Funktion, die den Wert 1 auf den
e-Béllen in den 2e-Béllen um den Nullstellen hat. Auflerhalb der 2e-Bille sei f dann 0. Man betrachtet dann das Vektorfeld
X(p) = X(p) — f(p) - y mit einem reguliren Wert y des Vektorfeldes X, das existiert nach dem Lemma (Sard’sches Lemma).
Es gilt, dass [[X(p)|| > ¢ fiir alle p auBerhalb der e-Bille und innerhalb der 2e-Bélle. Wihlt man das y so, dass ||y|| < 6 gilt,
dann befinden sich alle Nullstellen des neuen Vektorfeldes X innerhalb der e-Bille. Sei z eine Nullstelle des neuen Vektorfeldes:
X(2) =0 & X(2) = y. Weil y regulir ist, gilt det(dX (z)) # 0. Wegen X (p) = X(p) — f(p) -y und f = 1 fiir z als Nullstelle des
neuen Vektorfeldes, also dX (z) = dX(z), also det(dX(z)) = det(dX(z)) # 0. D.h. die Nullstellen des neuen Vektorfeldes X sind
nicht entartet. Nach dem Satz von Hopf sind die Summen der Indizes beider Vektorfelder gleich deg(g), wobei g die GauBlabbildung

auf dem Rand von M sei. Also gilt > ix (p) = deg(g) = > i (p). Lokal kann man also das Vektorfeld X abéndern,
PEX—1(0) peX—1(0)
ohne, dass sich die Summe der Indizes dndert. Also ist man hier fertig! O

Lemma (Anschauung von dcg( ) im 2-dimensionalen Fall). Sei X : M — T M ein Vektorfeld auf einer 2-dimensionalen

X
(Rl

Mannigfaltigkeit. Sei dann p € M mit X (p) = 0. deg ( > zihlt die Anzahl der Windungen von X um p mit X (p) = 0.

(Rl

X(q)

Beweis. Es wird nun die Abbildung 8K;(0) — S, q — m betrachtet, wobei 4 so klein sei, dass p die einzige Nullstelle
q

des Vektorfeldes um das Bild von 8Ks(0) (Karte) sei. Durch Einfithrung von Polarkoordinaten kann man die Abbildung von eben

auffassen als K5(0) — S*, ¢ — (). Also gilt dann unter Beriicksichtigung der Indexsummenformel:

' (p)

X 2 ' _ n -
deg(— aK5<o>,wo):/0 wb(e) = b - ¥ de = 3 mdwe) = X o

X
(1 X1] pey—1(ypg) pep—L(pg)

”Zz/i?:;” € {—1,1}. Sei ¥o # ¥(0) und ¥’ (p) # 0 fiir alle ¢ € 1~ (1pg). Wenn fiir ein @o € [0,27] gilt ¥ (po) = o

und 9’ (¢o) > 0, dann hat man eine Umrundung in positiver Richtung. Ist hingegen 1’(¢0) < 0, dann hat man eine Umrundung
’
in negativer Drehrichtung. Es folgt also, dass > M die Anzahl der Umrundungen zihlt, die den Zeiger 1o passieren.
pep—1(pg) I ()l

Dabei gilt

Es wurde also gezeigt, dass deg ( ) die Anzahl der Windungen des Vektorfeldes um die Nullstelle p mit X (p) = 0 ldngs einer

X
11
geschlossenen Kurve um p zihlt. O

Der Einbettungssatz von Whitney

[Zuriick zur Liste]

Definition (Untergeordnete Partition der Eins). FEs sei M eine glatte n-Mannigfaltigkeit mit U = {Uy} eine offene Uberdeckung
von M durch Kartenumgebungen. Dann ist eine zu U untergeordnete Partition der Eins gegeben durch eine Familie {9;} glatter

Funktionen ¢¥; : M — R mait den folgenden Eigenschaften:
1. Vie NVz € M: 9,(z) € [0,1].
2. Yz € M sind nur endlich viele 9;(x) von Null verschieden.
3. Vi €N ezistiert ein Kompaktum K; und ein a mit Tr(9;) := {x € X : 9;(z) # 0} C K; C Ug.
4. Vo€ M: iojlm(z) = 1. Diese Summe ist wegen 2. wohldefiniert.
i=

Definition (Guter Atlas). Ist M eine glatte n-Mannigfaltigkeit, dann gilt: U = {Us} sei eine offene Uberdeckung von M durch

Kartenumgebungen. Es wird dann ein sogenannter guter Atlas {V;} zu U mit den folgenden Eigenschaften konstruiert:
1. {V;} (abzihlbar) iberdeckt M mit Koordinatensystemen hj : V; — B3(0) := {z € R* : ||z| < 3}.
2. {V;} ist lokal endlich, d.h. jedes x € M liegt in nur endlich vielen V.
8. Fir jedes j existiert ein o so, dass Vj C Uy . Durch Umnummerierung der Kartengebiete erhdlt man o = j.
4. Die h;l(Bl (0)) tberdecken M immer noch.

Satz (Eigentliche Abbildung). Es sei M eine glatte n-Mannigfaltigkeit. Dann existiert eine eigentliche, glatte Abbildung x :

M — R. Die Existenz einer solchen Funktion wird im Beweis gezeigt.
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Beweis. Es sei U irgendeine offene Uberdeckung von M durch Kartenumgebungen und {0;} eine untergeordnete Partition der Eins.
x(z) := > j-9Y;(x) ist wohldefiniert, da nur endlich viele ¥;(x) # 0, und x ist glatt. Sei K C R kompakt, dann gibt es ein n € IN
j=1
mit [-n,n] O K. Esgilt x(z) = Y 7 -9,(z) > Y 9(z) =1.Ist z ¢ |J Tr(9;), dann gilt x(z) = > j-9(z) = > j-9,(z) > n.
j=1 j=1 ji=1 Jj=1 i>n
Also gilt x ' ([=n,n]) € U Tr(9;). Die Vereinigung ist eine Vereinigung von kompakten Mengen, ist also kompakt. Es gilt folglich
j=1
x HK) C )(71([—n7 n]) C Kompaktum. Da das Urbild (unter einer stetigen Funktion) abgeschlossener Mengen abgeschlossen ist,
ist also Xfl(K) abgeschlossen. Weil eine abgeschlossene Menge als Teilmenge einer kompakten Menge kompakt ist, ist folglich

X~ }(K) kompakt, und damit ist x eigentlich. O

Satz (Immersion). Es sei M eine glatte n-Mannigfaltigkeit und f : M — R™ glatt mit m > 2n. Dann gilt: Fir alle e > 0 gibt

es eine Immersion F : M — R™ mit sup ||[F(z) — f(z)] < e.
xeM

Beweis. Es sei U eine Uberdeckung von M durch Kartengebiete und {V;} ein untergeordneter guter Atlas. Seien h; : V; — Bs(0)
und W; = h;l(Bl (0)) Uberdeckungen von M. Sei weiter p; : M — R glatt mit bild(p;) C [0,1], p;j(z) = 1 Vo € W; und p;(z) =0
Vo ¢ h;l(BQ(O)). Es werden nun rekursiv glatte F; : M — R™ mit den folgenden Eigenschaften konstruiert:

(i) sup [|Fj(z) — f(2)]l <e.
xeM
(i) Vo &Vj: Fj(z) = Fj_1(2).

J
(iii) FHM]. ist eine Immersion, wobei gilt: M; = |J W;.
i=1

Seien nun fiir j = 1, ...,k — 1 die Eigenschaften (i)-(iii) erfiillt, dann konstruiert man daraus F} mit denselben Eigenschaften. Man
setzt Fy = f. Man setzt weiter Fy(z) := Fr_1(z) + pr(z) - Ax(x). Dabei sei z die Koordinaten aus dem R"™ mittels der Karten
von M. Ag(xz) = Ay - mit Ay, € Matr(m X n) ist noch zu bestimmen. Ist ¢ Vi, = h;l(Bg(O)), dann ist auch = ¢ h;l(Bz(O)),
also pr(z) = 0 und deswegen Fy(x) = Fr_1(xz) + 0 Ap(xz) = Fr_1(x), d.h. es gilt (ii). Nach Induktionsvoraussetzung gilt (i)
fiir j = k — 1, also sg];\)/[ |[Fr—1(z) — f(z)|| < eo. Weiter gilt Sélllf\)/l [|Fr(z) — Fr—1(x)|]] = sup )Hpk(ac) - Ap(z)]| < € — €0, wenn

z€Tr(py,
[Aklloc < 6 mit einem hinreichend kleinem §, denn pi(xz) € [0,1]. Daraus folgt dann: sup |[Fr(xz) — f(z)|| < sup ||Fr(z) —
rxeM zeM
Fr_1(2)|| + sup ||Fr—1(z) — f(2)|| < (¢ — €0) + €0 = &, also gilt (i). Nun wird ein Ay mit ||Ax|lcc < & so konstruiert, dass Fj
xeM
auf M), eine Immersion ist: Es gilt dFy = dFji_1 + Ay, denn fiir z € W, gilt pip(z) = 1, also Fy(x) = Fr_1(x) + Ay - . Man

konstruiert also Ay so, dass dFy vollen Rang hat, also n linear unabhiingige Spalten besitzt, und es soll weiterhin ||Ag|lcc < &
T—1 OF_1

gelten. Es werden nun induktiv geeignete Spalten von Ay gefunden: Angenommen, sind linear unabhéngig auf

Wy, dann beachte:

611 U Ty

A1
l
OF),— OF)
R x Ve R™: ([ 0 [Lo)e (DN @) ) - ()
. = dx; Oz 41
Al
Wihle nun a;41 € R™ \ bild(®) und setze Fy, (z) :== Fr—1(z) + ai41 - 1+1. Dann gilt:
OF), OF), OF)_1 OF,_1 OFh_1
yeees = yeees ) + aj41
8361 8IL‘L+1 82?1 83?[ 8$l+1
., OFk_1 OF_1 . . - OF,_1 . . . L
Dabei gilt: ey sind linear unabhéngig und auch ——— + a;41 ist keine Linearkombination von den vorausgegan-
Ox1 Oz, Oxy41

genen. Nun ist folgendes festzustellen:
dim(bild(®)) <14+ n < (n—1)4+n =2n —1 < m (nach Voraussetzung)

Es folgt also, dass bild(®) C R™ eine Nullmenge ist. Daraus folgt, dass man ein a;4+1 € R™ \ bild(®) mit ||a;+1|lcc < § wihlen
kann. Man setzt schlielich:
Ve € M : F(z):= lim Fj(z) auf Moo = M
Jj—oo

Der Grenzwert ist wohldefiniert, denn: Es existiert ein J € N so, dass F;(z) = Fy(z) fiir alle j > J, da {V}} lokal endlich ist. F ist

somit die gesuchte Immersion. O

Satz (Injektive Immersion). Sei M eine glatte n-Mannigfaltigkeit und f : M — R™ eine Immersion mit m > 2n+ 1. Dann gilt:

Fiir alle e > 0 exzistiert eine injektive Immersion F : M — R™ so, dass gilt sup ||F(z) — f(z)| < e.
zeEM

Beweis. Sei U = {Ua} eine Uberdeckung von M so, dass Vo : f|y, ist injektiv (moglich, da f eine Immersion ist). {V;} sei ein
untergeordneter guter Atlas. Also gilt Vi : f\Vi ist injektiv, denn: V; C U;. Seien hj;, W;, p; und M; genauso, wie im vorherigen

Satz. Es werden induktiv glatte F; : M — R™ konstruiert, die die folgenden Bedingungen erfiillen:

(i) Fj ist eine Immersion.
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(i) sup, 155 (=) = f(@)] <e.

(ili) Vo ¢ Vj: Fj(z) = Fj-1().
(iv) Fj ist injektiv auf M;.

(v) Fj ist injektiv auf V; fiir alle 4.

Seien fiir j = 1,...,k — 1 die Bedingungen (i)-(v) erfiillt. Man setzt dann Fy(z) = Fy_1(z) + pr(x) - by, wobei b, € R™

noch zu bestimmen ist, und Fy = f. Ist ¢ ¢ Vi = h;l(Bg(O)), dann ist auch z ¢ h;l(BQ(O)), also pr(z) = 0 und deswegen

Fi(z) = Fr—1(z) + 0 - by, = Fr_1(x), d.h. es gilt (iii). Nach Induktionsvoraussetzung gilt sup ||Fr_1(z) — f(z)|| < e0. Weiter gilt
zeM

sup ||Fr(z) — Fr—1(2)]| = sup |lpr(x) - bi|| < € — €0, wenn ||bg|lec < é mit einem hinreichend kleinem §, denn py(z) € [0, 1].

xeM z€Tr(pg)

Daraus folgt dann: sup ||Fx(z) — f(z)|| < sup ||Fx(z) — Fr—1(2)|| + sup [|Fr—1(z) — f(2)|| < (e — e0) + €0 = &, also gilt (ii).
xeM rEM reEM

Nun zu Eigenschaft (i): Sei also Fi(z) = Fr—1(z) + pr(z) - bi. Dabei gilt: pr(z) = 1 filr z € W, = h;l(Bl(O)), pr(x) = 0 fiir

z ¢ hy, ' (B2(0)) und es gilt 0 < py(z) < 1 fiir £ € hy, ' (B2(0)) \ hy, '(B1(0)). Ist also px(z) gleich 0 oder 1 auf den entsprechenden

Mengen, dann gilt dFy = dFx_1 + 0 = dF;_1. Nach Induktionsvoraussetzung ist Fj_; immersiv, also auch F}. Sei also von nun

an z € h; '(B2(0)) \ hy '(B1(0)) =: T'. Nun gilt:

8pk 9py,
b cee b -
w1 o @) w1 @)
dFy,(x) = dFy_1(2) + by, - pj,(z) = dFy_1 () +
apk Opy,
bre.m coe bpm
k, 8w1( ) ko ()
OF OF)_ 9, OF OF
Setze: k (z) = k-1 () + by - ﬂ(z) Seien bereits ko, =L linear unabhingig auf I'. Nun folgende Abbildung:
oz Oz, ox1 oz ox;
A1
l
. 1 OFy, OF)_1
‘R'XT 5 R™: . S L) ————— - A - —
| ey (G5 - S
AL x4
Nun ist wieder R' X' (I =1,...,n — 1) eine m-dimensionale Nullmenge (wegen dim(R! xT) =l4+n < (n—1)+n =2n—1< m),

n—1 n—1
also auch bild(£2;). Man wiihle nun by € R™ \ U bild(€2;) mit [|bg|lec < 8. Das geht, weil U bild(€2;) eine endliche Vereinigung

BF 1} OFy

von Nullmengen ist. Nach Wahl von by, mit [|bg|lec < 6 gilt also Z N =2 ale (z) = 3 (z) fiir alle I €
xr A 141

{1,...,n—1}, fiir alle A1, ..., A\; und fiir alle z € T". Es folgt also dass bk ) gewahlt wurde dass Fj, mit F () = Fr_1(2)+bk-pr(x)

eine Immersion ist, weil das Differential aus Fy_1(x) + by - pr (z) aus n linear unabhéingigen Spalten besteht. Ein anderes Argument
dafiir, dass (i) gilt, geht so: Es gilt zunéichst sup || Fi(z)— Fr—1(z)| = ||pr(z)-bk|| < €, wenn ||by|| < ¢ hinreichend klein ist. Nun ist
nach Induktionsvoraussetzung dFy_1 injektiff Ilil/fat also den Rang n. Es befindet sich F}, in einem e-Schlauch um das immersive Fj_1.
Aus der (m xn)-Matrix dF)_1 mit n Spalten kann man wegen Spaltenrang gleich Zeilenrang n linear unabhingige Zeilen auswéhlen,
so dass man die (n X n)-Matrix (dF%_1)n erhélt. Dann gilt: rang(dFi_1) = n < rang((dFx—1)n) = n < det((dFx—1)n) # 0. Wenn
man nun Fj_; stetig zu einem Fj im e-Schlauch um Fj_; dndert, dann dndert sich auch stetig die Determinante aus dem zur
quadratischen Matrix geschnittenem Differential der verformten Funktion. Ist § > 0 klein genug, also auch ¢ > 0, dann &ndert
sich aus Stetigkeitgriinden auch nichts daran, dass auch det((dF%),) # 0 gilt; d.h, weil der e-Schlauch diinn genug ist, ist auch
rang(dFy) = n, und also ist Fj, immersiv. Es gilt also (i) fiir j = (k — 1) + 1 = k. Als néchstes wird das b, € R™ festgelegt:

Fj_ F_
Sei U C M x M definiert durch U = {(z,y) : pr(z) # pr(y)} und sei ¥ : U — R™ mit ¥(z,y) = —M. Nun

gilt dim(bild(¥)) < dim(U) < 2-dim(M) = 2n < m (nach Voraussetzung). Daraus folgt, dass bild(¥) ei)ilil(:%\fullprl;xgi)ge in R™
ist. Folglich existiert ein by € R™ \ bild(¥) mit ||bx|lec < 5. by sei dabei gleich dem by von oben, so dass Fj weiter immersiv
bleibt. Mit diesem by, gilt also immer pi(z) = pr(y) und (i)-(iii). Sei Fi(z) = Fr(y) mit z,y € V;. Weil pi(z) = pr(y) gilt, folgt
Fi_1(xz) = Fr_1(y) auf V;; also gilt nach Induktionsvoraussetzung = y. Es ist also (v) gezeigt fiir k. Jetzt wird (iv) nachgewiesen:
Sei also Fy(z) = Fi(y) auf My, dann gelten 2 Fille: 1. Fall: pi(z) # pr(y), 2. Fall: pr(x) = pir(y). Fall 1 gilt nicht, nach Wahl
von by. Sei also von nun an pg(z) = pr(y). Wieder gibt es 2 Fille: pi(z) = pr(y) = 0 oder pi(x) = pr(y) # 0. Sei also zunéchst
pr(xz) = pr(y) = 0. Dann gilt =,y ¢ h;l(Bz(O)) = z,y ¢ Wi, = h;l(Bl(O))7 also x,y € My_1, weil xz,y € M} vorausgesetzt
wurde. Nach I.V. gilt wegen (iv) x = y, da z,y € Mi_1 und Fj_1 injektiv auf My _. Sei diesmal der Fall py () = pr(y) # 0. Dann
gilt z,y € Vi, (denn: = ¢ Vi, = pi(z) = 0). Weil Fr_1(x) = Fr—1(y) gilt, folgt nach Induktionsvoraussetzung = y, denn Fj_1 ist
injektiv auf Vi nach (v). Damit ist also (iv) nachgewiesen. Es gelten also (iv) und (v) fur k. Man definiert nun F(z) := lim Fj(z)
auf Mo = M. Wieder ist der Grenzwert wohldefiniert, da {V;} lokal endlich ist. o a
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Satz (Einbettungssatz von Whitney). Jede glatte n-Mannigfaltigkeit M erlaubt eine Einbettung M — R27HL,

Beweis. Sei x : M — R glatt und eigentlich (siche Satz (Eigentliche Abbildung)). Dann ist auch f : M — R2"*! mit f(z) =

IN

(x(x),0,...,0) glatt und eigentlich. Nach dem Satz (Immersion) gibt es eine Immersion Fy : M — R**T! mit sup ||Fi(z)— f(z)||
e zeEM

2n-mal
1. Und nach dem Satz (Injektive Immersion) gibt es eine injektive Immersion Fp : M — R2"*! mit sup ||Fa(z) — Fi(2)] < 1.
reM

Sei K C R?"*! cine kompakte Menge, die in einem Ball Br(0) enthalten ist. Ist also Fa(p) € K, dann hat man |f(p)]
|f(p) — Fi(p)| + |F1(p) — F2(p)| + |F2(p)| < 1+ 1+ R. Es wurde also gezeigt: Fa(p) € K C Br(0) = f(p) € B24+r(0). Daraus
folgt dann, dass F;l(K) als abgeschlossene Menge (denn das Urbild abgeschlossener Mengen unter einer stetigen Abbildung sind

IN

ebenfalls abgeschlossen) eine Teilmenge von f ! (B2t r(0)) (kompakt, weil f eigentlich ist) ist. Folglich ist F;l(K) kompakt. Also

ist F2 eine eigentliche injektive Immersion und darum also eine Einbettung. O
Der Einbettungssatz von Whitney gilt sogar fiir R2": Jede glatte n-Mannigfaltigkeit M erlaubt eine Einbettung M — R2".

Korollar. Die Klein’sche Flasche (siehe Bild unten) lisst sich als 2-dimensionale Mannigfaltigkeit in den R??2 = R* einbetten,

so dass die Klein’sche Flasche dort also keine Selbstdurchdringung oder -berihrung mehr hat.

Das Theorema Egregium

[Zuriick zur Liste]

Satz. Die Gaufl’sche Krimmung K einer Fliche ist invariant unter lokalen Isometrien.

Beweis. Seix:U C R? — S, (u,v) = x(u,v) € R? eine Parametrisierung einer reguldren, orientierbaren und orientierten Fliache

S. N bezeichne den Einheitsnormalenvektor auf S. Es sei nun definiert:
E = (zu,zu), F = (@u,zv), G = (T, T0)
Das sind die Koeffizienten der 1. Fundamentalform.
e=—(Nu,zu), f = —(Nu,zy) = =(No, Zu), g = —(No, Tv)
Das sind die Koeffizienten der 2. Fundamentalform.

Beweis von —(Ny, Zy) = —(Ny, Ty ): Es gilt (N, z,) = (N, z,) =0, also (Ny, Zy) + (N, Tuv) € —(Ny, 2u) = (N, Zyv) = (N, Tyu).
Wieder gilt (Ny,2y) + (N, Zyu) = 0, also (N, zyy) = —(Ny, z,). Daraus folgt —(Ny,zy) = (N, Zyu) = —(Nuy, ). Man mochte

nun die Ableitungen von z,, ©, und N in der Basis {z,,z,, N} darstellen, was, wie folgt, aussieht:

Touu :F11~w,u+F§1»zv+L1~
xw:I‘12~ru+Ff2~zv+L2<

Tpu =gy a4y + 5y -y + Lo -

zZ =z =z z

Ty =Ty 3y + T3y - @y + Ly -
Ny = a11 - Ty +a21 - Ty
Ny = a12 - Ty + a22 - Ty

Die GauBlkriimmung ist als die Determinante des Differentials der Gauibbildung dN, : T, (S) — T, (.S) definiert. Es sollen zunéchst

die a;; bestimmt werden: x(u,v) sei wieder die Parametrisierung von S bei p € S. Sei weiter {z,z,} die zugehérige Basis von

Tp(S). Ist a(t) = z(u(t), v(t)) eine parametrisierte Kurve in S mit a(0) = p, dann gilt dN,(a’(0)) = dN,(zw - u'(0) + 2, - v’ (0)) =

30



d
aN(u(t),’u(t)) = Ny -u' (0)+ N, -0 (0) = (a11 Ty +a21-Ty) - u'(0) + (a12 - Ty +a22 - 24) -0 (0) = (a11 -’ (0) +aiz-v'(0)) xqy +
t=0
(0 (0
(a21 -u'(0) + asz - v'(0)) - z4, also gilt AN, u/( ) = a2 . u/( ) . Das zeigt, dass dN,, in der Basis {2y, 2o}
v'(0) a1 a2z v'(0)
durch die Matrix (ai;), %,j = 1,2 dargestellt wird. Die Determinante aus dieser Matrix ist dann gleich der GauBlkriimmung. Aus

der Darstellung von N,, und N, folgt:

—f=(Nu,zy) =a11-F+az -G
—f=(Ny,zu) =a12- E+az - F
—e=(Ny,zy) =a11-E+az - F
—g = (Ny,xzy) =a12 - F+az -G
In Matrixschreibweise hat man also:
-1
e f _ a1l a1z E F N ail a2 o e f E F
f g az1  azz F G a1 asz f g F G
Damit ist also hergeleitet:
f-F—e-G g-F—f.-G e F—f-E f.F—g-E
ail = , ai1a = , an] = , Qo =
U"TE G- " T EG-F2 T EG-F2 """ E.G-F?
) i e-g—f? ot .
AuBerdem weifl man jetzt: K = det(a;;) = T Aus (N,z,) = (N, z,) = 0 ldsst sich herleiten: e = (N, zyu), f = (N, Tyo)

und g = (N, z,y). Daraus folgt dann mit den Darstellungen von Zyu, Tyv, Tyw und Ty, in der Basis {zy, z,, N}, dass gilt: L1 = e,
Ly = Lo = f und L3 = g. Nun zu den Christoffel-Symbolen: Wegen .., = Ty, gilt F%z = Fél und F?z = Fgl‘ Es gilt nun fiir die
Christoffel-Symbole:

1
Fil'E+F?1'F=<xu1uxu>=i'Eu
1
F}1~F+Ff1~G:<zuu,mv>:Fu7§~Ev
1
F}Q'E+F?2'F=<xuv1x1t>=§'EU
1
r}2-F+r§2-G:<zw,zv>:5-cu
1 2 _ _ 1
F22'E+F22'F—(-'L‘va-Tu)—Fv_E'Gu
1
r;2-F+r§2-G:<mw,xv):§-cv

Man weifl nun, dass die Christoffel-Symbole sich als Terme aus Koeffizienten der ersten Fundamentalform und ihren Ableitungen

darstellen lisst. Es gilt (Zyw)v — (Zuw)w = 0. Daraus folgt dann:

(F}l~zu+rfl»zv+L1~N) = (Tl 2w+ T 20+ Lo - N)
v u
& (Ml 2w +Th au+e N) = (Tlp-ou+ T3 20+ /- N)

Tl 2uw 4Tz e No+ () o+ (T3)) czute, N =

v v
1 2 1 2

Tlo - @uu + Ty @ou + - Nu+ (Tha) cou+ (T32) @0+ fu- N
Alsogiltdannfolgendes:F%l-(F%Q-a:quF%Z-a:v+f~N)+Ff1v(l—é2-zu+F§2-a:v+g~N)+e-(a12-a:u+a22-zv)+(Fil)U~
a;u+(Ff1),u-wq,+eru-N:Fh-(r‘h '$“+F?1 'fD'U""e'N)"'F?z'(Fél '93u+F§1 '$v+f'N)+f'(a11'1u+‘121 'wv)‘*‘(rb), .

u

T, + (F%z)u -y + fu - N. Koeffizientenvergleich bei z, (denn z,, =, und N sind linear unabhingig) liefert:
ry, 'F?2 +Ff1 'ng +e-az+ (Ffl)u =T}, 'Ffl +F?2 ‘Fg1 + fra2 + (Fi’z)u
Und das ist gleich zu:
1 2 2 2 2 1 2 2 2 2
Py Ty +T7; - Top +e-an + (Fu)v =T T + T T+ fram + (P12)u

Daraus folgt dann also das folgende:

2 2 1 2 2 2 1 2 2 2 f-F—g-E e F—f-E
(Flz)u*(Fll)v+r12'rl1+rlz'F12*F11'F12*F11'F22:e'“22*f'a21:e' E-G_F2 - E-G— F2?
Also gilt folglich:
2 2 1 2 2 2 1 2 2 2 e-g—f*
(Fm)u—(Fu)v""rm'F11+F12‘F12—F11'F12—F11'F22:_E'E_g,pz:_E‘K
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Man sieht also, dass die GauBkriimmung K aus Termen von Koeffizienten der 1. Fundamentalform und ihren Ableitungen dar-
stellbar ist. K ist also aus Informationen nur aus der Fliche, ohne den Raum drumherum, bestimmt. Sei z : U C R?> — S eine
Parametrisierung bei p € Sund ¢ : V C S — S, wobei V C x(U) eine Umgebung von p € S ist, eine lokale Isometrie bei p. Dann
ist y = pox eine Parametrisierung von S’ bei ¢(p). Da ¢ eine Isometrie ist, stimmen die Koeffizienten der 1. Fundamentalform und
deren Ableitungen in den Parametrisierungen z und y an den entsprechenden Punkten g und ¢(q), ¢ € V iiberein; also stimmen die
entsprechenden Christoffel-Symbole ebenfalls iiberein. Weil K in einem Punkt als Funktion der Christoffel-Symbole und Koeffizien-
ten der 1. Fundamentalform und ihren Ableitungen darstellbar ist, folgt also K(q) = K(¢(q)) fiir alle ¢ € V. Es wurde damit also
gezeigt, dass K (GauBkriimmung) nur von der metrischen Struktur der Flidche abhingt und die Informationen auerhalb der Fliche,
im Raum, nicht benétigt. Es wird jetzt an Beispielen gezeigt, warum die Koeffizienten der 1. Fundamentalform und ihre Ableitungen
unter der Isometrie ¢ invariant bleiben: E,(py = (Yu, yu) = (¢ 0 x)u, (pox)u) = ((dpox) - zy, (dpox) - xy) = (Tu, zu) = Ep und

(Ev)pp) = (T, @u) = (Ey)p. Damit ist der Beweis also vollsténdig und endlich abgeschlossen. a

7]
%(ymyu) = %

Der Brouwer’sche Fixpunktsatz

[Zuriick zur Liste]

Satz. Jede stetig-differenzierbare Abbildung f : B™ — B" der n-dimensionalen Kugel in sich besitzt mindestens einen Fizpunkt,

d.h. es existiert etin x € B" = {x € R" : ||z|2 < 1} mit f(z) = =.

Beweis. Angenommen, f : B™ — B" hat keine Fixpunkte. Weil dann fiir alle « € B" gilt f(z) # z, kann man eine eindeutig
definierte Halbgerade von x durch f(z) konstruieren, die den Rand von B™, also die Menge S™ ™!, in einem Punkt schneidet. Sei

dieser Schnittpunkt mit F(x) bezeichnet. F : B™ — S™~! hat dann folgende Gestalt:

) Calza e B @ NP @ f@ \\ | o f@)
st \/1 13+ (0 7o) i) ) T ron

Diese Funktion ist ebenfalls stetig-differenzierbar. Auf dem Rand der Kugel wirkt F als Identitét, also: F(z) = « fiir alle x € S™~

Da F(z) € S"~! ist fiir alle € B™, gilt fiir diese z: Z(FI (x))? = 1. Differenziert man das, erhélt man:
i—1

Q-Xn:Fi-dFi:Ii: Fi(m)~w da? =0
i=1 awj

i,j=1

Wenn diese Differentialform gleich 0 ist, dann gilt fiir jeden Index j:

BF
S rw- 2 =0
Deshalb hat das Gleichungssystem
° (9F7 (z)
‘ =0,j=1,
o OxI i=
die nichttriviale Losung (o', ..., a™) = (F!(z), . x)) # ., 0). Demmnach ist das Gleichungssystem linear abhéngig und
somit verschwindet die Determinante der Matrix 6“ ) , d.h. also: det (M = 0. Diese Tatsache wendet man auf
ij=1,..
die folgende Differentialform an: w = F* dF? A ... AdF™. Es gilt darm:
OF"
dw = dF' ANdF? A ... A dF" dt(%) dz* A ... Ada™ =0
-

Mithilfe des Satzes von Stokes folgt dann:

0= dw = w = w
Bn aB™ sn—1

Weil F auf S"~! als Identitit wirkt, gilt deswegen Wlgn-1 = ztdax? A ... Adz™, woraus folgt:
0= Ildmz/\“./\da:":/ dwl/\dw2/\.../\dw":/ lda'...da™ = vol(B™) # 0
sn—1 Bn JBn

Also hat man damit einen Widerspruch erzeugt, der zeigt, dass es einen Fixpunkt geben muss. O
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Der Igelsatz

[Zuriick zur Liste]

Satz. FEs gilt nun folgendes: Jedes stetig-differenzierbare tangentiale Vektorfeld auf einer gerade-dimensionalen Sphdre hat

mindestens eine Nullstelle.

Beweis. Angenommen, es gibt ein nirgends verschwindenes tangentiales Vektorfeld auf S™ = {z € R"™' : ||z|| = 1}, wobei n
gerade sei, das stetig-differenzierbar ist. Dann sind die Identitit id : S™ — S™,  — x = id(z) und die antipodische Involution

7:8" — S", z— —z = 7(z) homotop. Denn folgende Abbildung

v(z)
lo(@)l

h(t,z) := cos(wt) - x + sin(wt) -

ist wegen v(x) # 0 fiir alle z € S™ eine stetig-differenzierbare Homotopie h : [0,1] x S™ — S™ zwischen diesen beiden Abbildungen
id(z) = h(0,z) und 7(z) = h(l,z). S™ ist kompakt und es gilt S™ = 0, also ist S™ eine geschlossene Mannigfaltigkeit der
Dimension n. Sei dann w eine n-Form mit w # 0 und dw = 0. Die (n + 1)-dimensionale Mannigfaltigkeit [0,1] x S™ mit
dem Rand 9([0,1] x S™) = 9[0,1] x S™ U [(inl] x 08™ = {0,1} x S" U [0,1] x @ = {0,1} x S™ erbt von S™ und [0, 1] mit
der Standardorientierung eine Orientierung, die auch eine fiir ihren Rand induziert. Dann gilt wegen des Satzes von Stokes fiir

Mannigfaltigkeiten also:

/ ‘r*w—/ id*w = h;w—/ how = hw = h*wla((0,1]xsm) = / d(h"w) :/ h* (dw)
n n sm n {0,1} xS™ 2([0,1]x S™) [0,1]xS™ [0,1]xS™

Nun gilt doch dw = 0, also folgt:

/ T*UJ—/ id*w:/ h*0=0= T'w = id*w:/ w#0
sn sn [0,1]x 8™ sn sn sn

Es gilt nun auch:

/ o= (wl,_‘_mOT)-T*(dyl/\..‘/\dy"):/
gn gn

sn

art 1 n
(w1,....no07) -det| — ) dz” A...Adzx
8a:j

Und das ist nach der Transformationsformel (7 ist ein Diffeomorphismus) gleich zu:

art , art ,
/ wi,...n(T(z)) - det T ) azt .. da” =—/ wi,... n(T(z)) - |det o dxl.“dac'bz—/ wi, oY) dyt .. dy"
sn axj sn 8$j T(S™)

Das gilt wegen det<gTT_i_) = (—1)"*t! = —1 (n ist gerade, also n + 1 ungerade). Zusammengefasst gilt also:
J
/ w:/ ‘r*wzf/ wl.m’ndyl/\.../\dynzf/ w#0
sn sn T(S™) : sn
Denn es gilt 7(S™) = S™. Es folgt also 1 = —1 und das ist ein Widerspruch. Folglich kann es das angenommene Vektorfeld nicht
geben und der Beweis des Satzes ist erbracht. O

Das Shannon’sche Abtasttheorem

[Zuriick zur Liste]

Satz. Eine Funktion f € Li(R), die bandbeschrinkt ist mit Bandbreite T, d.h. es gilt dann f(0) = 0 fir 0 ¢ [-T,T], ist

diskret rekonstruierbar abtastbar, falls die dquidistante Abtastschrittweite h echt kleiner als % ist.

Beweis. Zunichst gilt fiir j, k € Z folgendes:

ks L X K 2, Jj=
/ e it ikt gy / eik=0t gy L iyt ]™ .
- - [i(k—j)t e ]4 =0 gk

Dabei sei ¢ die imagindre Einheit. Dann gilt fiir ¢ € £1(Z):

o(k) = 3 e(h) - <% ‘/jw e“’“*f)fdt) = % : /:; Se() et ettt ar = % ‘/:T M) - et dt = ()Y (k)

JEZ JEZ
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Sei £1(Z) > Shf(k) := f(h - k) der Abtastoperator. Es folgt dann:
- AV gy — L i A ikt
S k) = (1)) (0 = o=+ [T (500 @) a
™ -7

Es gilt aber auch:

Snf ) = £ 1) = () k) = oo [T e

27
1 1r+27rj
ihkt
E -e dt
1 n2m) B ) B
:72/ L
2m S —wong

1 /” App—1 . ikt
= —" E (R (4 27g)) et dt
27h e R

:i./j Zf (h™r - (t+2mj)) | - et dt

27
Jj€z

=:F(t)

Es wurde also folgende Gleichung gezeigt (auf beiden Seiten wird noch mit v/27 multipliziert):

1 ) 1 ™ ) 1 ™ . 1 )
SN (¢ ,—»e““>:—‘/ S )™ (¢ .e““dt:—~/ F(t ~e““dt:<Ft ,—.e”“>
(0" 0. 7= = [ snto [ ro 0. —=
Weil die eg(t) := \/;7 L S Z, ein vollstiandiges Orthonormalsystem bilden, gilt: g = Z(g,ek) - eg. Folglich gilt dann:
kEZ
F(t) = (Snf)"(t). Ist nun h so klein, dass [-T - h,T -h] C [-7, 7| & T -h <7 & h < % gilt, dann erhélt man fiir j > 0 und
t € [—m, ), dass k™1 (t4+27j) > L ( m427j) = T-(—1+25) > T ist. Analog erhélt man fiir j < 0, dass gilt: h~1 - (t+27j) < —T.

Wegen der Bandbeschrianktheit von f ist also in der Summe in F hochstens der Summand fiir 5 = 0 ungleich 0. Das heif3t also:

N ) = F) = (Saf)N(#) = > f(h-§) - e” 7. Ersetzt man t durch h -6, hat man f*(0) =h- > f(h-j)-e " Da
JEZ JEZ
T < 7 gilt und f nun T—bandbeschr'ankt ist, gilt:

1 o . 1 T . 1 % . L
f(x) = — / fA(G) . eme do = — / fA(G) . eme do = — . h f/\(a) . ezme 4o = - /i Zf h ]) 1($ jh)6 4o
27 oo 27 _T 27 - -5z
Und das ist gleich zu:
o eilz—ime | pile=im) - _ —i(z—ih)F 1
SR DFIGERIE / TN dg = 37 f(h ) - { - ] =3 f(h-j)- 5 s -
JEZ = A —Jh) ™ jez g m (z—jh)

Es wurde nun gezeigt:
z

= s % > fhg)- BmC(g*J>

JEZ JEZ
Dabei sei sinc(z) = 5"’7577;1), der sogenannte ,,Sinus Cardinalis“. Es ist also eine Rekonstruierung von f aus einer diskreten Abtas-
tungsmenge angegeben und der Satz damit bewiesen. O

Der Satz von Stone-Weierstrafl

[Zuriick zur Liste]

Definition (Funktionenalgebra). Sei M ein kompakter metrischer Raum und C°(M,R) der vollstindige reelle Raum der iiber
M stetigen reellwertigen Funktionen. Man bezeichnet A C C’O(M7 R) als Funktionenalgebra, wenn A beztiglich Addition, skalarer
Multiplikation und der Multiplikation von Funktionen abgeschlossen ist. Das heifit: Seien f,g € A und c eine reelle Konstante,

dann gilt: f+g€ A, c-fE€ Aund f-g€ A.
Definition. Sei A C C°(M,R) eine Funktionenalgebra.
1. PEine Funktionenalgebra verschwindet in einem Punkt p € M, wenn f(p) = 0 fir alle f € A gilt.

2. Eine Funktionenalgebra A heifit punktetrennend, wenn zu jedem Paar xi,x2 € M mit x1 # x2 ein f € A existiert mait

f(@1) # f(z2).
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Z) ~z® . (1 —=2)" "% mit k,n € N und =z € R Bernsteinpolynome. Damit gilt dann: a) Z rp(z) =1
k=0

und b) Zn:(k—n~x)2~'rk(a:)=n‘9c~(1—a:).
k=0

Lemma. Es heiffen ry := (

n
Beweis. Zu a): Es ist bekannt der Binomische Lehrsatz mit z,y € R: (z + y)" = Z <n) Sz y"_k. Ersetzt man y durch

k
k=0
1 — z, dann folgt a). Zu b): Die Formel des binomischen Lehrsatzes leitet man auf beiden Seiten erst einmal, dann noch einmal ab:

n n
n-(z+y)" "t = Z (Z) k2" oy F und n-(n—1)-(z+y)" "2 = Z (:) k-(k—1)-2"72.y" "% In beiden Formeln ersetzt man nun
k=0 k=0

n
y durch 1—2 und multipliziert die erste Ableitung mit = und die zweite mit z2: n-z = - Z (Z) Y € ) e Z k-r®(z)
k=0

k=0
n n n
und n - (n — 1) - 22 :xz-z (n) ke(k—1) -2 2. 1 —a)"F = Zk-(k*l)#”k(z). Es folgt dann Y k- (k—1) - ri(z) =
o Nk k=0 k=0
n n n n
> k% -rp(z) — > k- ri(x). Daraus folgt dann 3 k% -rp(z) =n-(n—1)-22 4+ 3 k-rp(z) =n-(n—1) - 2% + n - z. Jetzt weifl
k=0 k=0 k=0 k=0

i re(@)=n-(n—1)-224+n-z—-2-(n-x)’+(n-z)? =

man: i(k—n»x)2-7‘k(z) = i k2 rp(z)—2-n-x- i k-rg(z)+ (n-xz)?-
k=0 k=0 k=0 k=0

—n-z>4+n-z=n-z-(1—2z).

Satz (Approximationssatz von Weierstrafl). Die Menge der Polynome ist dicht in C’O([a, b],R) mit a,b € R und a < b. Das heifit
fiir jedes f € C°([a, b], R) und jedes € > 0 gibt es ein Polynom p so, dass fiir alle x € [a,b] gilt:

If(z) —p(z)] <e

Beweis. O.B.d.A. untersuche man hier das Intervall [0, 1] statt [a,b]. Da das Intervall kompakt ist, ist eine stetige Funktion
auf diesem Intervall sogar gleichméfBig stetig. AuBlerdem weifl man, dass eine Folge stetiger Funktionen auf einem kompakten
Intervall gleichmiBig gegen eine stetige Funktion konvergiert. Auch das Maximum der Funktion auf dem Intervall [0, 1] ldsst sich
bestimmen, weil es ein kompaktes Intervall ist. Zu jeder stetigen Funktion f : [0,1] — R betrachte man die Funktion p,(z) =

n k
>0 -f <7) ~z® . (1 —2)""* mit n € N und = € [0, 1]. Es wird nun gezeigt, dass die Folge der Bernsteinpolynome (p,, ())nen
k=0 n

n k
gleichmiBig gegen f konvergiert fiir n — oco. Auf dem Intervall [0, 1] ist 7% (z) immer positiv. Es gilt p,(z) = > f (7) cri(z)
k=0 n

n

n k
und f(z) = Y f(z)-ri(xz). Daraus folgt dann p, — f = > (f (7) - f) - T Jetzt fehlt nur noch zu zeigen, dass diese Differenz
k=0 k=0 n

kleiner ist als jedes € > 0. Da f auf [0, 1] gleichméBig stetig ist, gilt also: Zu jedem € > 0 gibt es ein § > 0 so, dass |f (i) — f(j)]| <

IN v o

€
re(z) < -+ X2
2 kEK,

-1 (z), weil

re(T) = 3

kEK]

re(@)+ >

kKEKg

k

fiir alle |t — j| < §. Sei dann K; = {k ENg: |— —z| < 6} und K3 = N \ K;. Dann geht es so weiter: |p,(z) — f(x)]
n

>

k=0

7 (2) =@ 7 (2) =@ (2)-r@ 7 (5) =@

n
> rr(x) = 1 gilt und die k aus K7 sind. Es gilt nun: n-z-(1—z) = 3 (k—n-z)%-rp(z) > 3 (k—n-z)?ri(z) > 3 (0:6)%ri(z).
k=0 kEKg kEK

= 2
. n-x-(1-x) . . I 1 .
Daraus folgt jetzt: > ri(z) < — Weil z - (1 — z) auf [0, 1] kleiner-gleich - ist, folgt > ri(z) < — Sei
KEKo (n-0) 4 kEKq 4.-n-6
k
£l = max_|f(¢t)|, dann gilt |f [ — ) — f(z)| < 2 || f||. Also gilt dann |p,(z) — f(z)| < E«Fﬁ.Nun gibt es ein N € N so,
te[0,1] n 2 2-n-62
dass % < g fiir alle n > N. Also hat man endlich |p,(z) — f(2)| < e. Damit ist man hier fertig! a
‘n-

Lemma. Sei A C CO(M, R) eine punktetrennende und nirgendsverschwindende Funktionenalgebra. Seien weiter p1 und pa

verschiedene Punkte und die Konstanten c¢1 und c2 in R. Dann existiert eine Funktion f € A mit f(p1) = c¢1 und f(p2) = ca.

Beweis. Wihle g1, g2 € A so, dass g1(p1) # 0 # g2(p2). Dann ist g = g% + gg € A und g(p1) # 0 # g(p2). Wihle dann ein h € A

so, dass die Punkte p; und p2 trennt und betrachte die Matrix

g [ @ et ) _ [ 9 g(p)-hp)

c c-d g(p2)  g(p2) - h(p2)

Nach Konstruktion sind a, ¢ # 0 und b # d. Da die Determinante von H nun det(H) =a-c-d—c-a-b=a-c-(d—0b) # 0 ist, hat
H den Rang 2 und das lineare Gleichungssystem

a-£+a-b-n=ciNc-&E+c-d-n=ca
hat eine eindeutige Lésung (€,7). Dannist f =&-g+n-g-h € Aund f(p1) = c1, f(p2) = co. |

Lemma. Der Abschluss einer Funktionenalgebra in C°(M,R) ist wieder eine Funktionenalgebra.

35



Beweis. Sei A eine Funktionenalgebra in C°(M,R) und f,g € A. Das bedeutet dann also, dass f,g € {h € C°(M,R) :
h ist Beriihrungspunkt von A}. Ist f ein Beriihrpunkt von A, dann gibt es in jeder Umgebung um f ein Element aus A. Es
existieren deswegen Folgen (fp)nen und (gn)nen in A so, dass f, — f und g, — g bzgl. der gleichméiBigen Konvergenz. Da
(fn + gn)nen ebenfalls eine Folge in A ist und f,, + gn — f + g bzgl. gleichmiBiger Konvergenz, folgt f + g € A. Die Nachweise
der Abgeschlossenheit bzgl. der skalaren Multiplikation und der Multiplikation laufen analog. |

Proposition. Sie A eine Funktionenalgebra, dann ist A = A.

Beweis. Ist f € A, dann gibt es fiir alle ¢ > 0 ein g € A so, dass gilt: ||f — g|| < e. Es gilt dann A C A. Beweis: Seien f € A
und € > 0 beliebig. Es folgt: ||f — f|| =0 < e = f € A. Also gilt auch: A C A. Es muss also nur noch A C

= f— 15 — [
e > 0 und f € A, daraus folgt, es existiert ein g € A mit ||g — f] < 5 Da g € A ist, existiert ein h € A mit ||g — k|| < 5 Es folgt

€ € = —
Ih=fll=lh—g+g—fll<Ih—gll+llg=-fll <5+ =c alsoACA O

A gezeigt werden: Sei

Lemma. Sei A eine Funktionenalgebra in CO(M, R), die in keinem Punkt verschwindet und punktetrennend ist. Sei f € A,

dann ist auch |f| € A.

Beweis. Sei € > 0 gegeben. Nach dem Weierstrafl’schen Approximationssatz existiert ein Polynom p so, dass gilt sup{|p(y) —

€
lyll =yl < IIFIIT < 5 (*). |y| ist eine stetige Funktion, welche auf dem Intervall [—| f||, | f||]] definiert ist. Der konstante Term

von p ist kleiner-gleich ;, da |p(0) — |0]] < % Sei ¢q(y) = p(y) — p(0). Dann ist wegen (*) also |q(y) — |y|| < e. Setze nun
qy)=a1-y+as-y>+... fan-y"undg=ay-f4+as-f2+...+an - f*. Da A eine Algebra ist, ist g € A wegen f € A (nach
Voraussetzung). Sei nun y = f(x) mit € M. Dann ist |g(z) — |f(x)|| = |¢(y) — |y|| < e. Daher ist |f| € A = A. a

Lemma. Sei A eine punktetrennende Funktionenalgebra, die in keinem Punkt verschwindet und seien f,g € A. Dann sind

max{f, g} und min{f, g} auch Funktionen in A.

Beweis. Das Maximum und das Minimum zweier Funktionen kann, wie folgt, ausgedriickt werden:

f+tg If—4l

und min{f, g} = 2 5

ftg  If—4d

max{ f, = — 4+ —
{f, g} 5 5

Da A eine Algebra ist, folgt also die Behauptung. Wenn man z.B. das Maximum von mehreren Funktionen haben méchte, dann:

max{f, g, h} = max{f, max{g, h}} ist wieder ein Term mit Betragsausdriicken. |

Satz (Stone-WeierstraB). Sei M kompakt und A eine Funktionsalgebra in C°(M,R), die in keinem Punkt verschwindet und
punktetrennend ist. Dann liegt A dicht in C°(M,R): Zu gegebenen F € C°(M,R) und ¢ > 0 ist ein G € A gesucht, so dass fiir
alle x € M gilt: F(z) —e < G(z) < F(z) +e.

Beweis. Sei F € CO(M, R) und & > 0 gegeben. Es wird nun ein G € A gesucht so, dass der Graph von G im e-Schlauch von F
liegt. Man hélt nun alle unterschiedlichen Punkte p,q € M fest. Nach einem Lemma oben kann man eine Funktion H,, € A finden
mit gegebenen Werten fiir p, g, so dass also die folgende Bedingung erfiillt ist: Hpq(p) = F(p) und Hpq(q) = F(g). Nun hélt man
p fest und ldsst q variieren. Aus der Stetigkeit von Hp, folgt, dass jedes ¢ € M eine Umgebung U, hat, so dass aus = € U, folgt,
dass F(z) —e < Hpq(x) ist. Hpq 16st das Problem schonmal lokal. Die Kompaktheit von M impliziert, dass nur endlich viele dieser
Umgebungen U, notwendig sind, um die Menge M zu iiberdecken. Seien diese Umgebungen Uy, ..., Uy, . Definiere G, wie folgt:
Gp(z) = max{Hpq,, ..., Hpgy }

Dann ist G, € A nach einem Lemma oben und es gilt G, (p) = F(p) und F(z) — e < Gp(z) fiir alle z € M. Stetigkeit impliziert
diesmal, das jedes p eine Umgebung V), hat, so dass aus x € V}, folgt, dass G () < F(x) + ¢ gilt. Da M kompakt ist, iiberdecken
endlich viele dieser Umgebungen die Menge M; seien diese V..., Vp,, genannt. Setze nun:

G(x) = min{Gp,,...,Gp,, }

> S Pm

Es gilt also G € A und nach Konstruktion F(z) — e < G(z) < F(z) + ¢ fiir alle z € M. a
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Der Satz von Tychonoft

[Zuriick zur Liste]

Definition (Filter). Eine nichtleere Familie F von Teilmengen von einer Menge M ist ein Filter auf M, falls sie die folgenden

drei Bedingungen erfiillt:

1.0¢ F
22A€eFund BEF=ANBEF

3. Ac Fund ACBCM=Be€F

Ein Filter F konvergiert gegen ein x, wenn alle Umgebungen von x in F enthalten sind. Man nennt einen Filter U auf M

Ultrafilter, falls fiir jede Menge A C M entweder A € U oder M\ A € U gilt.

Satz. Sei U ein Filter auf M. Folgende Bedingungen sind dann dquivalent:

1. U ist ein Ultrafilter.
2. Wenn F ein Filter auf M ist und U C F, dann gilt U = F.

3. Wenn A1 U Az € U, dann gilt A1 € U oder As € U.

Beweis. 1. = 2.: Gebe es ein Element A € F, das nicht in U wire, so wire M \ A in & und somit auch in F. Aber dann gelte
AN(M\ A) =0 € F und das ist ein Widerspruch. 2. = 1.: Wire U kein Ultrafilter, dann wire fiir alle A C M weder A € U noch
M\ A € U. Und dann wire {BNU : U € U, A C B C M} ein Filter auf M, der A enthilt und U umfasst. Diese Menge ist aber eine
echte Obermenge und das ist ein Widerspruch zur Voraussetzung. 1. = 3.: Es gilt A1 € U und wenn nicht, dann gilt M \ A; € U
(Ultrafilter-Definition). Damit folgt (M \ A1) N (A1 U Az) C Ay C M = Ay € U. 3. = 1.: Man setzt Ap = M \ A1, also ist dann
A1 UAs =M €U, also A1 oder Az in U enthalten, d.h. U ist ein Ultrafilter. O

Satz. Jeder Filter wird von einem Ultrafilter auf der selben Menge umfasst.

Beweis. Sei F ein Filter auf M. Die Menge {G O F : G ist ein Filter auf M} wird durch die Teilmengenrelation C geordnet.
Wenn K eine Kette in dieser Menge ist, so ist |J K wieder ein Filter, der F umfasst, und eine obere Schranke von K. Damit ist
die Voraussetzung fiir das Zorn’sche Lemma gegeben und es existiert ein C-maximales Element 4. Weil F D U nunmal F = U

impliziert, ist U ein Ultrafilter. |
Satz. FEin topologischer Raum X ist genau dann kompakt, wenn alle Ultrafilter auf X konvergieren.

Beweis. ,,=“: Angenommen, X ist kompakt, aber ein Ultrafilter ¢/ auf X konvergiert nicht. Damit gibt es fiir jedes z € X eine
offene Umgebung von z, die nicht in U enthalten ist. Sei dann O = {O : O offen, O ¢ U} mit [JO = X und da X kompakt ist,
existiert eine endliche Menge £ C O mit J& = X. Weil & = X € U gilt, folgt, dass ein Element von £ in U enthalten ist, was
der Konstruktion von O widerspricht. Die andere Implikation, ,<“: Angenommen, jeder Ultrafilter konvergiert, aber X ist nicht
kompakt. Sei O eine Menge von offenen Mengen mit [JO = X so, dass fiir keine endliche Menge £ C O gilt |J€ = X. Dann ist
{X\UE : E C O, E endlich} ein Filter, der von einem konvergenten Ultrafilter umfasst wird. Dieser Filter konvergiert gemif
der Annahme gegen ein x. Dieses x ist in einem U, € O enthalten. Da der Ultrafilter U gegen x konvergiert, gilt U, € U. Aber es
gilt auch X \ U, € U, also 0 € U und das ist ein Widerspruch dazu, dass ein Filter die leere Menge nicht enthélt und der Satz ist

bewiesen. O

Satz. Wenn fir alle i € I der Filter p;|F| gegen z; € X; konvergiert, dann konvergiert F auf X = H X, gegen x.
iel
Beweis. Sei U eine Umgebung von z. Es gibt eine endliche Menge E C I mit U; als Umgebung von z; so, dass gilt m pi_l(Ui) cU.
i€l
Dann gibt es wegen der Konvergenz p;[F] — z; = p;i(z) ein A € F mit p;(A) C U; (i € E). Daraus folgt: A C pi_l(pi(A)) C
pi '(Ui) = AC [\ p; " (U:) CU. Also gilt F 3 AC U C X, folglich U € F und das bedeutet F — . O

i€E

Satz. Die Menge X = HXi ist genau dann kompakt, wenn fir alle i € I die Menge X; kompakt ist. Insbesondere ist der
i€l

unendlich-dimensionale Wiirfel [0,1]°° (Hilbertwiirfel) kompakt.

Beweis. ,=“: Wenn X kompakt ist, dann auch X; = p;(X) fiir alle ¢ € I als Bild einer kompakten Menge unter einer stetigen

Abbildung. Die andere Richtung, ,,<=%: Sei U ein Ultrafilter auf X. Da X; kompakt ist, konvergiert der Ultrafilter p; () gegen ein

xz; € X,;. Dann konvergiert U gegen x = (z;);cs und das bedeutet, dass X kompakt ist. O
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Das Brachistochrone-Problem

[Zuriick zur Liste]

Satz. Durchduft ein Kérper ohne Reibung eine Bahnkurve von einem oberen Anfangspunkt A in der Ebene zu einem wetter

rechts liegenden Endpunkt B in minimaler Zeit, dann ist die Kurve ein Teil einer Zykloide von A nach B.

Beweis. Sei A = (0,0) und B = (b1, b2). Zuerst wird die Zeit berechnet, die der Kérper fiir den Durchlauf der Bahnkurve braucht:
Sei m die Masse des Kérpers und g die Erdbeschleunigung und die Kurve werde beschrieben durch eine Funktion y(z). Ist die
Kurve an der Stelle  von A um y(z) nach unten gefallen, dann hat der Kérper die potentielle Energie Epor = —mgy(z) (y(x) ist

negativ) verloren, welche in kinetische Energie Ej;,, = %mv2 umgewandelt wird. Es gilt deswegen:

1
5mv2 = —mgy(z) = v =/ —2g9y(x)

Nun braucht man noch die Lange der Kurve bis zur Stelle z, die sich folgendermaflen berechnet:

s(z) = /01 \/de
Sei t die Zeit, die Kérper von A = (0, 0) nach (z, y(z)) braucht. Dann gilt nach der Kettenregel:
v(t) = *S(I(t)) = *S(r(t)) *z(t)
Wegen v(t) = v/—2gy(2(t)) und L s(z(t)) = /1+y'(z(t))? folgt:

i 2w
@ =\ Ty )

Da z(t) streng monoton steigend ist, existiert die Umkehrfunktion. Fiir die Ableitung dieser Umkehrfunktion gilt die Formel

d _ [+ y()? 1+y(z)2
o= Togy(@) Hw) = / V' —29y(z)

Man kann nun die Gesamtzeit ausrechnen:

d 1 ; .
et@) = d{/m(t(z)), also gilt dann:

11y (@)

S L(y(2).y' (@) da

T = t(b1) — £(0) = t(by) — 0 = /obl
Gesucht wird nun eine Kurve y so, dass die Gesamtzeit T" minimal ist. Sei yo diese Funktion, fiir die das Integral /bl L(y, y/) dx
das Extremum annimmt. Man betrachtet dann zu beliebige u(z) mit u(0) = u(b1) = 0 die Funktionenschar yo(z) -(ij- e - u(z) und
dazu das folgende Integral: .
T(E):/0 L(yo +e-u,yy +e-u')d

T'(e) muss an der Stelle ¢ = 0 ein Extremum haben, weil yo das Integral ja minimiert. Es gilt also 7”(0) = 0. Durch Vertauschung

von Differentiation und Integration und mit der verallgemeinerten Kettenregel erhilt man dann:

U d bl !’ !’ bl d ’ !
T (e) = — L(yo +e-u,yg+e-u)de = —L(yo+e-u,y,+e-u)de

de Jo o de
Und das ist gleich zu: .

1

/ Ly(yo+e-uyg+e-u) u+Ly(yo+e uyy+e-u) ude
0

Um v ausklammern zu kénnen, wird der zweite Summand im Integral partiell integriert:

blL / / "de = [L ’ ’ by b1 dL ’ ’ d
. g (Wote uyyt+e-u) uwdr=I[Ly(yo+e uyy+e-u) ulp — ) T o (Yo t+e uyyt+e-u)) ude

=0
Insgesamt gilt also:

by d
T (¢) :/ (Ly(yo +e-u,yp+e-u')— —dmLyz(yo+€-u,y6+s<u'))-udm
0

Als néchstes wird € = 0 gesetzt. Dabei gilt:

d
(@Ly/(yo +e-uyyte- ul)) =(Lyy(yot+e-uyg+e-uw) (yo+e-u)+Lyy(yote uyy+e-uw) (yg+e-u")) _,
e=0

’

Ly (W0, 95) - 46 + Lyryr (o, 90) - vo

d !/
ELy’(yﬂvyO)
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Das notwendige Kriterium fiir die Extremaleigenschaft von yo lautet also:

/ hl ’ d ’
T°(0) = Ly(y07yo)_%[/y/(y07yo) cudr =0
0]

Da dieses Integral fiir beliebige u verschwindet, folgt Ly (yo, yg) — di

= Ly/(yo, y4) = 0. Diese Erkenntnis benutzt man nun, um eine

einfachere Gleichung herzuleiten:

d d
=7 (Lo, 90) = yo - Ly (y0,90)) = Ly (o, ¥0) - ¥o + Ly (40, 90) - o' — ¥ Ly (W0, 90) — W+ 5= Loy (0, v0)

’

d
= Ly(y0,95) - Yo — Yo - ==Ly (v0,95)

dx
’ d ’ ’
= Ly(yo,yo)*aby/(yo,yo) Yo
=0

=0
Eine Kurve y, die die Gesamtzeit minimiert, erfiillt also die Gleichung L(y,y’) — v’ - L, (y, y') = C (C € R). Nun gilt:

1+y/2
—2gy

Ly,y') =

Setzt man dies in die Gleichung oben ein, erhélt man:

1 2 1 ’ 1= 2 2 1 2 —1\2 1 2 1
[1+y - N v ¥ . +y :>< ) 2 LY —C? (147
—29y 2 /1+2y’2 -9y 29y 29y —29y 29y —29y 29y
—<g9Y

Es muss also folgende Differentialgleichung erfiillt sein:

1

L2
Zg?:‘k

—y(@)- 1+ (2)*) =
Die Losung dieser Differentialgleichung wird im Folgenden nicht durch y(x) gegeben, sondern durch eine Parametrisierung (x(t), y(t)).
Soll dafiir der Graph der Funktion y(z) gleich dem Graphen der Parametrisierung (x(t),y(t)) sein, dann muss y(x(t)) = y(t)
gelten. Aus der Differentialgleichung da oben: —y(z) - (1 + v/ (x)?) = k?, folgt dann: —y(z(t)) - (1 + v’ (z(t))?) = k?. Wegen
d d Ly(x(t Lyt Lyt
—y(z(t)) = ¥/ (z(t)) - —x(t), also y'(z(t)) = ay=®) = dr Yl ), muss also —y(¢)- | 1+ ddty( )
dt dt S5x(t)

dea(t) dea(t)
nun gezeigt, dass z(t) = % - (t —sin(t)), y(t) = % - (cos(t) — 1) eine Losung dieser DGL ist, die sogar (x(0),y(0)) = (0,0) = A

2
) ) = k2 erfiillt sein. Es wird

erfiillt. Der Nachweis also:

Fv0)\*) _# ‘ 2 (=sin) \7) _# , (1 — cos(1))® + (sin(1))?
—y(t) - <1 + (%x(t)) > =5 (I —cos(t)) - [1+ (% (1~ cos(t)) =5 (1 — cos(t)) - (1= cos(0))2

Und das ist gleich zu:

k2 ) (1 — 2 cos(t) + (cos(t))? + (sin(t))2> kiz ) <2 -2 cos(t)) _ ) g2
2

2 1 — cos(t) ) 1 — cos(t)

Als letztes muss das k nur noch so angepasst werden, dass die Kurve (z(¢), y(¢)) von A auch durch B = (b1, b2) mit b3 > 0 und
bz < 0 lduft. Somit ist die Bahnkurve, die die Laufzeit von A nach B (rechts und unterhalb von A) minimiert, als Teil einer Zykloide

von A nach B gefunden und der Satz bewiesen. |

Das isoperimetrische Problem

[Zuriick zur Liste]

Satz. Das isoperimetrische Problem besteht darin, unter allen geschlossenen ebenen Kurven gleichen Umfangs diejenige zu

finden, die den grifiten Fldcheninhalt umschliefst. Die Lisung dieses Problems ist ein Kreis.

Beweis. Es sei die Losungskurve in parametrisierter Form (z(t), y(t)) dargestellt. Da die Kurve geschlossen ist, miissen « und y
eine gewisse Periodizitdt haben. O.B.d.A. wihlt man die Periodizitit so, dass die Kurve die Periode 27 betrigt, d.h. z und y sind
Funktionen [0, 27] — R. Dann kann man z und y in eine Fourier-Reihe entwickeln. Man erhilt also:

co

oo oo
z(t) = %] + T; an - cos(nt) + by, - sin(nt), y(t) = > + Z Cp, - cos(nt) + dy, - sin(nt)

n=1
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Der Flidcheninhalt der von (z(t), y(¢)) umschlossenen Fliche berechnet sich mit der Leibniz’schen Sektorformel:

1

A= o /027 z(t)y(t) — @ (t)y(t) dt

Der Umfang dieser Kurve ist dabei gegeben durch:

L= /:W V) + 9(0)2 dt

Fiir die Ableitungen von z(¢) und y(t) gilt:

&(t) = i n - (by - cos(nt) — ayp, - sin(nt)), y(t) = i n - (dn - cos(nt) — ¢y, - sin(nt))

n=1 n=1

‘Weiter gilt nun wegen der Konvergenz der Fourierreihen:

z(t)y(t) = %0 + D an - cos(nt) + by sin(nt) [ - | D n-(dn - cos(nt) — ¢, - sin(nt))
=1 =1
" =:an (t) " =:Bn(t)
a
== Z B (t) + Z Z O (1) B (t
n=1 m=1n=1
und
z(t)y(t) = Z n - (by, - cos(nt) — a, - sin(nt)) | - %) + Z ¢p - cos(nt) + dy, - sin(nt)
=1 =1
" —n () " =5 (0)

= Z Tn(t) + Z Z Y ()65 (t)

m=1n=1

Also gilt dann:

z(D)y(t) —2(t)y(t) = 5 Z(ao Bn(t) — co - n(t)) + Z Z Am (8)Bn (t) — Ym (£)6n.(2)

m=1n=1

Nun ist E E A (8) B (t) — Ym (t) 6y, (t) gleich A(t) + B(t), wobei gilt:

A(t) := (n - amdn — m - bycy) - cos(mt) - cos(nt) + (m - bydy,, — n - amey) - cos(mt) - sin(nt)
und
B(t) := (n - bmdp + m - amen) - sin(mt) - cos(nt) + (m - amdy, — n - bycy) - sin(mt) - sin(nt)

Nun gelten folgende Relationen:

27 27 0
/ cos(mt) - cos(nt) dt = / sin(mt) - sin(nt) dt = » m#En
o 0

und

27 27
/ cos(mt) - sin(nt) dt = / sin(mt) - cos(nt) dt = 0
o o

Daraus folgt dann:

27r 0
/ ZZngn77m5 dt = 27 - Zn andy, —bpen)

m=1n=1

Desweiteren gilt:

27 1 el
/ Z ag - Bn(t) —co - vn(t)dt = / Z(n apd, — n - coby) - cos(nt) + (n - coan —n - apcy) - sin(nt) dt =0
27 27
Denn es gilt / cos(nt) dt = / sin(nt) dt = 0. Zusammengefasst gilt also:
0 0

1 oo oo
A=—. |27 n-(andn — bncn =7- n-(and, — bpcn
(o B )= T )

O.B.d.A. wird nun weiter verlangt, dass :i:(t)2 + y(t)2 = konst. gilt, was bedeutet, dass die Kurve mit konstanter Geschwindigkeit
durchlaufen wird. Jeder mégliche Graph der Kurve kann so durchlaufen werden, dass die Geschwindigkeit konstant ist, deswegen

hat man hier keine Einschriankung. Aus der Formel fiir die Lange der parametrisierten Kurve folgt dann:

2

L=2m /()2 +§(t)2 — 0 = &(t)> + §(t)* = 4%
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Nun gilt folgendes:
Ry — — . . . .
z(t)” = Z Z m - n - (byby, - cos(mt) - cos(nt) — by, ap - cos(mt) - sin(nt) — amby, - sin(mt) - cos(nt) + amay, - sin(mt) - sin(nt))
m=1n=1
‘Wegen der oben gezeigten Relationen impliziert das:
27 °© il
/ @) dt =Y n® - (w-b 4 woan) =7 > 0’ (a, +b})

0 n=1 n=1

Analog zeigt man:

27 sl
[Taera=n 3wt )
0 n=1

Daraus folgt:

oo P 27 1,2 L? L?
Zn2-(ai+bi+ci+di):/ a':(t)2+y(t)2dt:/ —Sdt=2r- 5 —0=
= 0 o 4w 472 2

Damit hat man insgesamt:
oo oo
L —am-A=2r-> 0" (al +bl +c2 +d2) —4n® - > n (andn — bncn)
n=1 =1
=21" > (n-an —dn)?+ (n by +cn)® + (0® 1) (] +d2) >0
n=1

Somit hat man die isoperimetrische Ungleichung 47 - A < L? erhalten. Wenn man nun die Koeffizienten so wihlt, dass 47 - A = L?
ist, dann hat A den groBtmoglichen Wert. Es soll also gelten:

oo

Snan—dn)?+ (nbnten)?+ (n® = 1) (2 +d3)=0

n=1

Das ist genau dann der Fall, wenn alle Summanden in der unendlichen Summe verschwinden. Im Fall n = 1 bedeutet das a1 = d;
und by = —c¢1. Und im Fall n > 1 muss zunichst ci + di = 0 gelten, also ¢, = d,, = 0. Damit folgt dann auch a,, = b, = 0. Die

parametrisierte Kurve ist nun also bestimmt:
ag . Co . C€o .
z(t) = o + a1 - cos(t) + by - sin(t), y(t) = > + c1 - cos(t) + dy - sin(t) = 5~ by - cos(t) + a1 - sin(t)

Nun gilt:
2 2
(s0-2) + (s -2) =at+i

Das bedeutet, es handelt sich bei der Parametrisierung (x(t), y(t)) tatséchlich um einen Kreis mit dem Mittelpunkt (%2, <¢) und
dem Radius r = y/a? + b?. Der Beweis ist damit beendet. a

Das Verfolgungsproblem

[Zuriick zur Liste]

Satz. Sei y(z) die Funktion, die die Verfolgungskurve zum sich entlang der x-Achse mit der konstanten Geschwindigkeit v
bewegenden Objekt darstellt, wobei dieser im Punkt (a,0) auf der x-Achse starte. Der Verfolger hingegen bewege sich konstant
mit der Geschwindigkeit w und starte auf der y-Achse im Punkt (0,b). Die Tangente an der Kurve y(z) lduft dabei stets durch

den Punkt des verfolgten Objektes mit den Koordinaten (a+ v -t,0). Die Kurve hat dann in einem z-y-Koordinatensystem die

folgende Gestalt:
w . a?
z(y) = —5— | y-v-cosh(h(y)) + y-w-sinh(h(y)) —w-a—v-b- /- +1
v2 —w b

Dabei ist h(y) := 2 - (In(b) — In(y)) + asinh ().

Beweis. Es gilt erstens:

-y(z) L y@)
TTvi—s Y@eatvt-z=—ro

Zweitens gilt nach Voraussetzung:

: ; _ N2 N2 2 Z'/(t)2_ , 2 w? 1N w?
Va2 +yt)2=w=zt)  +y{t)  =w $1+a_:(t)2—1+y(ac(t)) 7W:>1+y(a:) 7W
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Weiter gilt:

t(x(t)) =t = t' (x(t) - &(t) = t'(z) = i(tix))
Daraus folgt dann:
Vity'(@)?

1+ (2)? =w® /' (2)° = t'(z) = -

Die oberste Gleichung wird nun einmal nach z abgeleitet:

Y (@) —y(@) -y (=)
y'(x)?

vot'(z) —1=

Es gilt dann also:

"(x "(x)? —y(z) -y (z v
L, V1i+ty'@? Y@ —y(@) -y (2) éy/(:v)2<a-\/mfy'(mfzfy/(m)2+y(x)-y”(x)
y/

w y'(z)?
T 2 v
S Ve

Da die Funktion y(z) unter Umsténden nicht wohldefiniert ist, da sie einem z in bestimmten Fillen zwei verschiedene y(z) zuordnet,

=1y (x) =

vertauscht man z und y und geht zur Funktion z(y) {iber, die dann auch eine Funktion ist. Es gilt:

—1-2"(y(z)) ' (=)
=’ (y(x))?

VAR z’(ly)i = 17<y1)3iy " V@' (y)* + 1. Daraus

ya) =z =y (x) = =y (z) =

_r
=’ (y(@))

2
Bereits gezeigt wurde y"/ (z(y)) = y,(z# c2 /14y (2(y)? = m .

folgt dann mit den anderen Gleichungen:

gle

~ a:”(y) _ _xu(y) . y’(I(y)) _ y”(m(y)) _ # v /I,(y)z 41 = Z//(y) _ v o2 1+ 2/(y)?
=’ (y)? =’ (y)? ' (y)? -y w w
Weiter umgeformt hat man also:
z'(y) v 1 , z" (y) v 1 v
————— = —— + — = asinh(x = —_——dy = —— - —dy+Cy=——"-1n +C
e vy (=" (y)) e YT T gt o ) + G

D.h., dass folgendes gilt:

Ci.y~w —eC1.yw
:v'(y) :Sinh(cl _ Eln(y)> _ € Yy w e yw

w 2
Das gilt wegen sinh(z) = % Nach unbestimmter Integration ergibt sich:
1C_CIA 'yl_% - 61:_(;1 'y1+’%
z(y) = w 5 w +Cy

Dieses Ergebnis wird noch ein bisschen umgeformt:

Cuw bt i
z(y) = 3 + C2
<51 =C1 —
e cw - (w4 v _v e sw - (w v KN
@ty e O wwen) a
2 (w? —v?) 2 (w2 —v?)
. wry c, wHwv _ v —cy; wW—vw X
=g (R e T b ) v
w-y v . v
= —— - (v-cosh(Cy — — -In(y) ) + w-sinh( C; — — - In(y) + Ca
w2 — v? w w

Es wurde hier neben sinh(z) noch cosh(z) = % benutzt. Mithilfe der beiden Anfangsbedingungen werden die Konstanten Cy

und Cy bestimmt. Im Startpunkt des Verfolgers (0, b) hat die Steigung der Kurventangente an z(y) den Wert ¢, also:

2y =2 = sinh(Cl i -1n(b)> =01 =2 () +asinh<3>
b w w b

Das setzt man schon mal ein:

o(y) = Y. <v - cosh(% - In(b) +asinh<%> - % ~ln(y)> +w- sinh( ~In(b) +asinh<%> - % - ln(y)>) 1 Co

v
w2 — v2 w

w-y

=" (v . cosh(% - (In(b) — In(y)) + asinh(%)) +w- sinh(% - (In(b) — In(y)) + asinh(%))) +C2
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Weil der Verfolgerstartpunkt (0, b) auf der Kurve z(y) liegt, muss z(b) = 0 gelten, also:

w2 — 2

_ b h(asinh( =) ) + w - sinh asinh ( +C

= w2 — v2 v+ COS asin b w - S1n asin b 2
w-b a? a

=r |V b—2+1+w-g + Ca

=0

Also muss dann gelten:

a2
Cg=m~ —w-a—v-b- b—2+1

Setzt man auch Cs in die Darstellung von z(y) ein, so ergibt sich fast die behauptete Kurve. Zu Beginn wurde die Differentialglei-

—y(z) _ y(x)
chung o570 = — o=

= y’(x) aufgestellt. Das Minuszeichen vor y(z) miisste eigentlich ein Pluszeichen sein. Um Rechen-
vorteile zu bekommen, wurde dennoch das Minuszeichen gewidhlt. Die Losungskurve ist nun natiirlich eine andere als gewiinscht,
ndmlich die an der y-Achse gespiegelte Kurve, denn y’(z) bekommt in jedem Punkt den mit —1 multiplizierten Steigungswert.
bi i o S ligd ; w_ s w
y(x) an der y-Achse zu spiegeln heifit z(y) mit —1 zu multiplizieren. Dazu wird der Faktor ¥ in x(y) ersetzt durch b

Dadurch erhélt man dann die gewiinschte Lésungskurve. |

Das Konigsberger Briickenproblem

[Zuriick zur Liste]

o
&

Satz. Das Konigsberger Briickenproblem kann man auf den oben abgebildeten Graphen abstrahieren. Es ist dort nicht méglich
von einem Knoten angefangen einen Weg durch den Graphen so zu gehen, dass jede Kante genau einmal benutzt wird und man
sich am Ende des Weges wieder im Anfangsknoten befindet. In diesem Graphen existiert somit kein sogenannter Eulerkreis.
Denn es gilt: Es existiert in einem zusammenhingenden Graphen ein Eulerkreis genau dann, wenn jeder Knoten dort geraden
Grad besitzt, d.h., wenn an jedem Knoten eine gerade Anzahl an Kanten hingt. In dem damaligen Konigsberg ist es deswegen
unmdglich von einem Gebiet angefangen iiber alle sich dort befindlichen Flussbriicken genau einmal so zu gehen, dass man zum

Schluss wieder im Ausgangsgebiet landet, denn der Grad von z.B. Knoten B ist ungerade.

Beweis. Sei der Graph zusammenhingend, d.h. von jedem Knoten gibt es zu jeden anderen Knoten einen Kantenweg. ,,=“: Sei
also ein Eulerkreis im Graphen existent. Das bedeutet, es gibt eine Knotenfolge (v1,va,...,v;,v1), in der aufler dem Startknoten
vy jeder andere Knoten genau einmal vorkommt. In diesem Kreis wird jeder Knoten k-mal durchlaufen, d.h. jeweils iiber eine Kante
erreicht und iiber eine weitere verlassen, denn man endet nur im Anfangsknoten. Daraus folgt, dass jeder Knoten einen geraden
Grad besitzen muss. Da der Graph zusammenhingend ist und der Eulerkreis alle Knoten des Graphen umfasst, haben folglich
alle Knoten des Graphen einen geraden Grad. Die andere Richtung ,,<=“: Alle Knoten im Graphen besitzen geraden Grad. Man
startet dann von einem Knoten v; und benutzt solange eine Kante zum néichsten Knoten bis keine Kante mehr rausfithrt. Man
erhilt also eine Kantenfolge (ki1,...ky), wobei jede Kante des Graphen in dieser héchstens einmal vorkommt. Der Endknoten
sei mit v,, bezeichnet. Da alle Knoten geraden Grad haben, muss vi = v, gelten, denn jeder andere Knoten ist jeweils [-mal
passierbar, weil der Grad dieser Knoten ja gerade ist. Von v; wurde bereits eine ungerade Anzahl an Kanten benutzt (man kann
dabei nédmlich v; noch mehrmals passiert haben). Endet man, dann deswegen nur in dem Knoten v;. Hat man nun den gesamten
Graphen durchlaufen, ist man fertig. Existiert jedoch an einem Knoten noch eine unbenutzte Kante, dann fiihrt aus diesem Knoten
wieder ein Kantenweg heraus, der in demselben Knoten aufgrund der Geradzahligkeit der Grade endet; die zugehorige Kantenfolge
(k7,...,k.). Die zusammengelegten Wege (k1,k2,...,k;, ki, kb, ..., kI kj+1,...,k,) bilden dann wieder einen geschlossenen

Weg. Hat man diesmal alle Kanten benutzt, dann ist man fertig. Ansonsten gibt es wieder einen geschlossenen Kantenzug in die
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bisher zusammengelegte Kantenfolge einzufiigen. Das wiederholt man bis es keine unbenutzte Kante mehr gibt. Als Ergebnis erhilt
man einen Kantenweg, der jede Kante des Graphen mindestens und hoéchstens einmal benutzt und der im Startknoten endet. Und

das ist eben ein Eulerkreis. O

Satz. In diesem Satz verlangt man nun nicht mehr, anders als im vorigen Satz, dass man bei einem Weg, der jede Kante
des zusammenhingenden Graphen genau einmal benutzt, am Ende wieder im Ausgangsknoten landet. Man spricht dann nicht
mehr von einem FEulerkreis, sondern von einem FEulerweg. Es gilt: Es existiert in einem zusammenhdngenden Graphen ein
Eulerweg genau dann, wenn genau zwet Knoten ungeraden Grad besitzen. Im damaligen Koénigsberg konnte man also auch

keinen Eulerweg finden, denn alle vier Knoten haben ungeraden Grad und nicht genau zwes.

Beweis. ,,=“: Sei ein Eulerweg im zusammenhéngenden Graphen existent. Man starte dann vom Anfangsknoten, den man vielleicht
noch mehrmals durchlduft (rein und raus), in dem man aber nicht endet. Weil man nur im Start- und Endknoten startet bzw.
endet, werden die anderen Knoten k-mal durchlaufen. Das bedeutet, weil der Graph zusammenhéngend ist und der Eulerweg alle
Kanten des Graphen umfasst, dass diese anderen Knoten geraden Grad haben, anders als der Anfangs- und der Endkonten, die
ungeraden Grad haben, da man diese vielleicht mehrere Male durchliuft (gerade), aber man dort startet bzw. endet (41). Nun zur
anderen Richtung ,,<=“: Der zusammenhéngende Graph habe also genau zwei Knoten v; und v2 ungeraden Grades. Man macht nun
folgenden Trick: Es wird der Knoten v; mit dem Knoten va durch eine Hilfskante k* verbunden. Der daraus entstandene neue Graph

ist dann zusammenhédngend und hat nur Knoten geraden Grades. Nach dem vorherigen Satz existiert dann ein Eulerkreis in diesem

neuen Graphen. In diesem Kreis muss irgendwo die Kante k™ vorkommen. Sei (k1, k2, ..., ki, k", kit2, ..., km) die Kantenfolge des
Eulerkreises, dann ist (kit2,...,km,k1,k2,...,k;) ein Eulerweg des urspriinglichen Graphens (ohne die Hilfskante k™), womit die
Existenz des sogenannten Eulerweges gezeigt ist und damit auch dieser Satz bewiesen ist. O

Das Kettenlinienproblem

[Zuriick zur Liste]

Satz. Fine Kette, die unter der Wirkung des eigenen Gewichts in der Luft aufgehdangt wird, formt sich nicht zu einem Halbkreis

oder einer Parabel, sondern man bekommt als Lésung: y(z) = P cosh(k - (x — A)) + B mit noch zu bestimmenden Konstanten.

Dabesi gilt speziell k = Lsg, wobei ¢ die Dichte der Kette (pro Lingeneinheit), g die Erdbeschleunigung (welche den ungefihren
m

Zahlenwert 9, 81—2 hat) und S die horizontale Spannungskraft in der Kette ist, die sich aus der Beschaffenheit einer konkreten
s

w w
Kurve ergibt. Wird die Kettenkurve der Ldange | an den beiden Punkten (—5, h> und (5, h) aufgehingt, dann ist die Kurve

1 1
gegeben durch y(xz) = . - cosh (k; - x) + <h e - cosh (kl . %)), wobei k; eine positive reelle Zahl (griofer Null) so sei, dass
i !

2 w
— - sinh (kl iy =1 gilt, mit | > w, weil die Kette mindestens so lang sein muss, wie der Abstand zwischen den beiden

1
Aufhingepunkten. Dass die Kettenkurve so aussieht, wird nun bewiesen.

Beweis. Zuerst mal eine Zeichnung, die die Physik klar macht:
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Die beiden zur Kettenkurve tangentialen Spannungskrifte 7?(5) und ?(erAs), parametrisiert nach Bogenlédnge, heben zusammen
die Gewichtskraft, die zwischen den beiden Spannungskriften wirkt, auf, damit also die Summe aller Krifte Null ist, was auch so

sein muss, denn sonst wire die Kette in Bewegung. Sei ¢ die Dichte der Kette pro Lingeneinheit, g die Erdbeschleunigung und

0 0

As die Liange der Kette zwischen den beiden Spannungskriften. Dann gilt 8 = = . Wie oben

—mas - g —0-As-g

T(s+as)—T 0
erwihnt, muss also gelten: —?(s) + ?(s + As) = T = W = . Daraus folgt dann also mit As — 0:
8 09

T . . . . . T C1 . .

(s) = . Jetzt integriert man beide Seiten und erhilt dann T (s) = mit den Integrationskonstanten
e-g 0 g-s+Cs

C1 und C2. Man sieht somit, dass die Horizontalkomponente C; = S der Spannungskraft an jedem Punkt der Kurve gleich
ist, wohingegen ihre Vertikalkomponente von der Position auf der Kurve abhédngt. Sie muss am tiefsten Punkt der Kettenkurve
verschwinden, da die Kurve dort eine horizontale Tangente hat. Vereinbart man, dass die Bogenlidnge von diesem Minimum aus
S
gemessen wird, so verschwindet die zweite Integrationskonstante, Cs = 0, und man erhilt dann ?(s) = . Der Vektor
e-g-s
? zeigt an jedem Punkt der Kettenkurve in Richtung ihrer Tangente. Was man hier sucht, ist aber eine Beschreibung der Form

y(x), also die Abhéngigkeit der Ordinate y als Funktion der Abszisse z. Man legt den Ursprung dieses Koordinatensystems in

@’ (s)

das Minimum der Kettenkurve und parametrisiert « und y als Funktion der Bogenlinge s, so dass also gilt s = 1.
y'(s
. . QC(S) . ’ . . t / ’ ’ .
Beweis: Sei c¢(s) = . Bs wird nun [[¢(s)|| = 1 gezeigt: Es gilt s(t) = [[¢"(T)|| dr, also s'(t) = ||¢'(t)]. Nun gilt
y(s) to
d d 1 1
s(t(s)) = s, also — (s(t(s))) = s'(t)-t'(s) = 1 = —s, folglich: t'(s) = = . Daraus folgt dann ||c/(s)|| = ||c/(t) -t/ (s)| =
ds ds s'(t) e/ ()]
z'(s) S /
e O - 11E ()] = Nl (£)]] - ST || = 1 B wette also T(s) = ||? s)” - , also dann: H?(S)H (s) =
lle t)” y'(s) 0-g-s
? / . . ’ S . ’
und H (S)H -y’ (s) = o-g-s. Damit gilt also: z'(s) = ||? || und y’( Nun gilt doch y'(z) = d—y(s(x)) =
(s) v

" [Fell
e-g-s
1 _Izel

705 = x’(s) e g ® Also gilt nun y’(z) - ng = s(x). Weil s(z) = /Ow v/ 1+ y (2)%dz,
||7 )]

y'(s) - s'(x) = y'(s) -

folgt daraus s’(z) = /1 + y/(z)2. Jetzt wird bei y'(z) - —— = s(z) auf beiden Seiten nach z abgeleitet, woraus man dann
e-g
s
endlich die Differentialgleichung y’’(z) - —— = s’(z) = /1 + y/(x)2 erhilt. Anders aufgeschrieben: y”/(z) = k- /1 + /()2 mit
0-9g
k= 29 Diese DGL wird jetst gelost: Substituiere z(z) = y'(z), d i1t 2@y, /kd k-z+ A N
:= =—=. Diese wird jetzt gelst: Substituiere z(z) = y'(z), dann gi ————dz = =k -x . Nun muss
S jetat g y g o

1 2 (x)
V14 22 V14 z(x)?
d ~ 1 ~
Diesmal muss man wissen: T cosh(z) = sinh(z). Also folgt y(z) = /y/(a:) dr = /sinh(k: x4+ A)dr = P cosh(k-xz+ A)+ B =
x

d ~ ~
man wissen, dass d—asinh(z) = gilt, also dx = asinh(z(z)) = k -z + A = z(z) = y'(x) = sinh(k - = + A).
z

1 1 ~
% -cosh(k-z—k-A)+B = % -cosh(k-(z—A))+B mit A = —k-A. Nun werden die Konstanten fiir eine konkrete Losungskurve bestimmt:
Es sei die Kurve befestigt an zwei Pfosten mit Abstand w in der Hohe h: Die Pfosten seien dabei die Senkrechten bei z = _v und
T = %, die die Kettenlinie in der Hohe h schneiden, also ist A = 0. Es muss also gelten y <7%) =h=y ( 5 > Also: y (1;) =
! h (k-2 +B=h=B=h ! sh (k-2 ). Also hat sch 1()—1 sh(k-xz) + | h ! h (k-
Pl 5 = = 5 o8 5 )+ Also hat man schonmal y(x) = - cos T 5 o8 5

w

Als weitere Bedingung hat man, dass die Kurve die Lénge I haben soll, woraus k ermittelt wird: | = /2w \1+y' (z)2de =
T2

/ \/ -k - sinh(k - at)+0> dx */ \/1+ sinh(k - z)2 dz _/ \/cosh(k - x)2 dx */wcosh (k - x) dz und wegen

d'h() h(z) gilt also I 1'h(k)E L inh (B2 L inn (& v LIS
— smn(x) = cosh(x 1 als = — + Sin - = — :+ 8ln o — — + Sln A = — -+ Ssln . — —
de © © & © kS w =y 0F 2 kS 2 [ 2 k

2 2
sinh (k . %) = % sinh (k . %) Sei k; eine positive reelle Zahl (groBer Null) so, dass o sinh <kl . g) =1 gilt, dann sieht die
1

N R 1 1 w
Losungskurve also, wie folgt, aus: y(z) = Pl cosh (k; -z) + [ h — o cosh | k; - 5)) Ende. d
1 1
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Die Konstruierbarkeit mit Zirkel und Lineal

[Zuriick zur Liste]

FRAGE: Sei eine Strecke der Liange 1 gegeben. Fiir welche Werte a € R kann man nach endlich vielen Konstruktionsschritten mit

Zirkel und Lineal eine Strecke der Lange a konstruieren?

WAS KANN MAN MIT ZIRKEL UND LINEAL TUN?:

Was macht man mit Zirkel und Lineal?

1. Mit dem Lineal kann man die Strecke zwischen zwei Punkten zeichnen
2. Mit dem Lineal kann man durch zwei schon konstruierte Punkte eine Gerade konstruieren
3. Mit dem Zirkel kann man einen Kreis mit bekanntem Radius um einen bekannten Punkt schlagen
Wie bekommt man neue konstruierbare Punkte?
1. Bestimmen des Schnittpunktes zweier nicht paralleler Geraden, die jeweils durch zwei bereits konstruierte Punkte gehen

2. Die Schnittpunkte eines Kreises mit gegebenem Radius, als Linge zwischen zwei schon konstruierten Punkten, um einen

bereits konstruierten Punkt, mit einer Geraden, die durch zwei bekannte Punkte lduft, ermitteln

3. Konstruktion der Schnittpunkte zweier Kreise, wobei sich die Mittelpunkte und Radien dieser beiden Kreise aus bereits

konstruierten Punkten ergeben

Nur mit diesen Konstruktionsschritten erhilt man neue konstruierbare Punkte. Dabei fingt man die Konstruktion neuer konstru-

ierbarer Punkte immer mit einer gegebenen Einheitsstrecke an.

Es werden zunichst wichtige Hilfsséitze bewiesen:

Satz (Thales). Sei T ein Punkt auf einem Halbkreis mit Mittelpunkt Z, und seien X und Y die Schnittpunkte des Durchmessers

durch Z mit dem Halbkreis, also

X Z Y

Dann ist der Winkel v = <Y TX ein rechter Winkel.

Beweis. Die Strecken X Z, TZ und ZY haben dieselbe Linge, also sind die Dreiecke AXZT und ATZY gleichschenklig.

X .I 7 Y
Es folgt <T'XZ = <ZTX = fund <YTZ = <ZYT = «. Weil die Innenwinkelsumme eines Dreiecks 180° ist, folgt daraus:
180° =200+ 28 =90° =a + 8
Der Beweis ist damit vollstdndig vollbracht. O

Satz (Pythagoras). In einem rechtwinkligen Dreieck ist die Summe der Kathetenquadrate gleich dem Hypotenusenquadrat.

Beweis. Man kann ein rechtwinkliges Dreieck mit den Katheten a und b und der Hypotenuse ¢, wie folgt, anordnen:
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Dabei gilt a + 8 = 90°, weil das Dreieck mit den Seitenléngen a, b, ¢ ein rechtwinkliges Dreieck ist. Also ist das Quadrat mit der

a
Seitenldnge ¢ auch tatséichlich ein Quadrat. Der Flicheninhalt des groflen Quadrates ist (a + b)2, der der vier Dreiecke und
der des kleinen Quadrates ist ¢2, also gilt damit dann das folgende:
2 2 a-b _ 2 2 _ 2 2
¢ =(a+b)"—4- - =a“ +2ab+b"—2ab=a" +0b
Und das war es auch schon. O
Satz (Hohensatz). Gegeben sei ein rechtwinkliges Dreieck mit der Hohe h.
Dann gilt 2 =p - q.
Beweis. Man wendet den Satz von Pythagoras auf alle Dreiecke an: Es gilt:
a®?+6* = =(p+9)° =p>+2pq+¢*
Dann gilt auch:
a2 :h2+p2 und b2 :h2+q2
Einsetzen liefert:
(h® +p%) + (B* +¢*) =p® + 2pg + ¢°
Daraus folgt dann also:
2h2:2pq:>h2:p~q
Und damit ist man hier fertig! O

Satz (1. Strahlensatz). Sei im folgendem Bild die Gerade durch B und A parallel zu der Geraden, die durch B’ und A’ geht.

Es gilt dann die Formel des 1. Strahlensatzes:

|SA7|  |SB
54| _ |5B




Beweis. Fiir den Beweis dieses Satzes braucht man die folgende Zeichnung:

2 /B D /B'

Die Dreiecke A ABA’ und A\ ABB’ besitzen zur gemeinsamen Grundseite AB die gleiche Hohe (gestrichelte Linien). Sie haben also

die gleiche Fliche, die man hier mit dem Betrag der Dreiecke bezeichnet:
INABA'| = |\ ABB'|
Dann kann man aber auch auf beiden Seiten dieser Gleichung die Flidche des Dreiecks /A SBA dazuaddieren:
INABA' |+ |\ SBA| = | AABB'|+| A\ SBA| & | \ SBA'| = | \ SB'A]
Daraus folgt dann also:
IASBA'| | ASB'A|
IASBA| — | ASBA|

Die Fldche eines Dreiecks ist genau die Hélfte des Produktes aus einer Grundseite und der zugehorigen Hohe. Als Hohen dienen

hier die gepunkteten Linien. Damit ergibt sich (|AB]| heifit die Lange der Strecke AB):

1 A
5-|SA’|‘|BC| 5‘\SB’|~|AD|
1 =1 p—
— - |SA| - |BC| — - |SB|-|AD|
2 2
Durch Kiirzen ergibt sich die behauptete Formel:
[SA’]  |SB’|
[SA| |SB|
Damit ist man hier fertig! |

Lemma (Konstruierbare Zahlen). Wenn die Einheitslinge 1 festgegelegt ist, dann gilt: n € N, z € Z und q € Q sind konstru-
ierbar. Denn es gilt: Wenn a und b konstruierbar sind, dann auch a +b, a —b, a-b, a/b (b #0) und v/a (a > 0).

Beweis. Zu aller erst definiert man einen Punkt als eine Strecke der Liange 0. D.h. auch 0 ist konstruierbar. Aber zunichst muss

man die Einheitsldnge definieren:

| /1 ¥
S
Damit kann man dann a € IN konstruieren:
NN N NN
\ \ \ \ \
i I I I I -
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Danach kann man zu a € IN auch —a € Z konstruieren:

- [
Wenn a und b konstruierbar sind, dann auch a + b:
a b a+b
Wenn a und b konstruierbar sind, dann auch a — b:

Bevor man die Multiplikation und die Division behandelt, muss man wissen, wie man zu einer Geraden eine Parallele konstruiert,

die durch einen Punkt auflerhalb der Geraden lduft. Es geht folgendermafen:

S

8

Wenn a und b konstruierbar sind, dann wegen des 1. Strahlensatzes (s.0.) auch a - b:
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I =
b a-b
Wenn a und b # 0 konstruierbar sind, dann wegen des 1. Strahlensatzes (s.0.) auch a/b:

F !
b —
1

I i

alb a

Zur Konstruktion der Wurzel aus einer konstruierbaren Zahl, muss man wissen, wie man die Senkrechte zu einer Geraden konstru-

iert, die durch einen Punkt auf der Geraden verlduft. Das geht so:

ey

o
NN

Wenn a > 0 konstruierbar ist, dann wegen des Satzes von Thales (s.o0.) und wegen des Hohensatzes (s.0.) auch /a:



Man hat hier also gezeigt, dass aus der Einheitsldnge aufbauend die Zahlen n € IN konstruierbar sind, also auch —n € Z; daraus

m m
folgt, dass — mit m € IN und n € IN\ {0} sowie —— konstruierbar sind, also sind alle Zahlen in Q konstruierbar. |
n n

Satz (Eigenschaften neu konstruierter Punkte). Ganz oben wurde verstanden, wie man neue Punkte mindestens und hdchstens
konstruieren kann. Sie entstehen durch Schnitt zweier Geraden, durch Schnitt zwischen Gerade und Kreis und durch Schnitt
zweier Kreise. Dabei werden die Parameter der Geraden und Kreise durch bereits konstruierte Daten aus einem Koérper K
bestimmt. Man wird hier zeigen, dass mit diesen Konstruktionsschritten die neuen Punkte entweder im Korper K bleiben oder

allenfalls in einer reell-quadratischen Erweiterung von K, ndmlich K(\/E), liegen.

Beweis. Der Beweis betrachtet also die 3 Fille:
1. Gerade schneidet Gerade: Die Gerade g; laufe durch (ai,b1) € K? und durch (z1,91) € K? und gy durch (az,b2) € K? und
durch (z2,y2) € K2. Man erhilt dann:

{(z,y) €R?*:a-x+b-y+c=0mit (a,b,¢) = (1,0, —a1)}, a1 =z
g1 =

{(,y) ER?:a-z+b-y+c=0mit (a,b,c) = (y1 —b1,a1 — @1,b1 - @1 —a1-y1)}, a1 #m

{(z,y) €eR?:a’ -z +b -y+c¢ =0mit (a/,b,¢) = (1,0, —az)}, as = T
g2 =

{(z,y) ER?:a’ -z +b -y+c =0mit (a/,b/,¢') = (y2 — b2, a2 — T2, bz -T2 —az - y2)}, as # x2

Weil K ein Korper ist, gilt also a, b, c,a’,b’, ¢’ € K. Es wird nun also g; N g2 bestimmt. Weil g; eine Gerade ist, sind a@ und b in der

Geradengleichung von g; nicht beide gleich 0. Sei O.B.d.A. a # 0 (Der Fall b # 0 lduft analog: Man 16st dann nach y statt nach x

. b c . , b c , , a'c — ac
auf.),dann gilta-z+b-y+¢c=0< = —— -y — —. Einsetzungsverfahren: ¢’ - | —— -y — — | +b  y+c' =0 y= ——.
a a a a ab’ —a’b
’ U ’ /
a'c— ac bc' —bc i i ) . i
Und deswegen: a -z +b- ——— +¢c =0 & z = — . Weil g; und g2 nicht parallel sein sollen, damit man auch einen
ab’ —a’b ab’ —a’b
X . i a a' , , . . b’ —bec a'c—ac i
Schnittpunkt erhilt, gilt 0 # det = ab’ — a’b. Man hat also gezeigt, dass gilt: g1 Ngo = | ——, —— ]. Weil
b v ab’ —a’b ab’ —a’b

a,b,c,a’ b, ¢ € K gilt, folgt g1 N g2 € K2. Die Koordinaten des Schnittpunktes der beiden Geraden bleiben also im Kérper K.
2. Gerade schneidet Kreis: Die Gerade g laufe durch (z1,y1) € K2 und durch (z2,y2) € K2. Der Kreis k habe den Mittelpunkt
(Zm,Ym) € K? und den Radius r € K. Man erhélt diesmal:

{(2,9) €R? a-w+b-y+ec=0mit (a,bc) = (1,0, —z1)}, 21 = 22
g=
{(z,y) ER?*:a-z+b-y+c=0mit (a,b,¢) = (y2 — y1,T1 — Ta,y1 - T2 — T1 - Y2)}, T1 # T2

k={(z,y) eR* :a’ +¢° +a' -a+b -y+c =0mit (a',b,¢) = (—sz,—Qym,xfn +yfn — )}

Weil K ein Korper ist, gilt also a, b, c,a’,b’, ¢’ € K. Man setzt voraus, dass sich die Gerade g und der Kreis k schneiden, weil man
ja neue Punkte konstruieren will. Wie im ersten Fall, kann in der Geradengleichung a -z + by + ¢ = 0 nicht a = 0 A b = 0 gelten,

da man sonst keine Gerade beschreiben wiirde. O.B.d.A. sei b # 0 (Ist a # 0, dann 18st man eben nach z statt nach y auf.), dann

2
. a c . . R . . . 2 a c , , a c
gilt y = -3 ST — . Diese y setzt man nun in die Kreisgleichung ein: z* + <7E Sx— E) +a -x+0b - (7E ST — E) +c=
a? 2 , ab’ ac , Ve c? a? N i a? . X
0 & 1-|—b—2 st 4+ a—7+2~b—2 -x+ C—T—&-b—Q =O.We11b—2_Ounddeswegenl+b—27éOg11t,kannmand1e
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2
Gleichung auf beiden Seiten durch 1+ Z—Z teilen:

, ab’ ac , e c?
N ) "5 e
z° + 5 -z oz =0
't G

Weil K ein Koérper ist, gilt u,v € K. Man hat also die quadratische Gleichung 22 + uz + v = 0 zu lésen: Es gilt:

2 P . . . u a u c au — 2¢
Setze d :=u —4v.WeIISIChgundkschnelden,glltd2O.ImFa11d:Ogllt:z:—5eKundy:—E- -3 —EZTGK_

Ist also d = 0, dann liegen die Koordinaten des Schnittpunktes in K. Im Fall d > 0 und v/d ¢ K liegen beide x in K(v/d), und
c
wegen y = 7% -y liegen auch die zugehorigen y in K (v/d). Gilt hingegen v/d € K, dann gilt K(+/d) = K und die beiden z sind
a c
aus K, und wegen y = —— - ¢z — — sind dann auch die zugehoérigen y aus K. Man sieht also, dass in diesem Fall die Koordinaten
der Schnittpunkte entweder alle aus K oder alle aus K(v/d) sind.
3. Kreis schneidet Kreis: Der Kreis k1 habe den Mittelpunkt (z1,y1) € K? und den Radius r1 € K und der Kreis k2 habe den

Mittelpunkt (zs2,y2) € K? und den Radius ro € K. Man hat dann:

ki={(z,y) ER*: 2’ +y* +a-z+b-y+c=0mit (a,bc) = (~2z1, —2y1, 2} +y; — 1)}

ke ={(z,y) eR*: 2> +y° +a’ - x+b -y+c =0mit (a',b,¢) = (—2w2, —2y2, z2 + y3 — 2)}

Weil K ein Kérper ist, gilt also a,b,c,a’,b’, ¢’ € K. Nun wird k1 N ka bestimmt: Man zieht nun die zweite Kreisgleichung von der
ersten Kreisgleichung ab, so dass man erhilt: (a —a’)-z+ (b—b") -y + (c—c’) = 0. Falls a = @’ und b = b/, dann folgt c = ¢/, also
sind die beiden Kreise gleich, was man ausschlieBen mochte, weil man neue Punkte will. Also gilt a — a’ # 0 oder b — b’ # 0. Sei
a:=a—a’, =b—b und v = c—¢’. Man sucht hier also Punkte die «- 2+ 8-y+~ =0 (a, 8,7 € K und: o # 0 oder 3 # 0) und
22+ y?+a -x+b - y+c =0 erfiillen. Diese Situation entspricht algebraisch der Situation, die man im Fall 2 (Gerade schneidet
Kreis) zu diskutieren hatte. Also folgt, wie dort, dass entweder alle Koordinaten der Schnittpunkte der beiden Kreise in K liegen

oder, dass alle aus K(v/d’) sind. Der Beweis ist hiermit beendet. d

Satz (Hauptsatz iiber konstruierbare Zahlen). FEine reelle Zahl a € R ist genau dann mit Zirkel und Lineal konstruierbar, wenn
es eine endliche Kette
Q=Ko CK; C...CK, CR (Reell-quadratischer Kérperturm)

von Zwischenkérpern gibt mit K; = Ki—l(\/di—l) = {ai_l +bi—1-/di—1 ai—1,bi—1,di—1 € Ki—1,+y/di—1 ¢ Ki—l} (Reell-
quadratischer Erweiterungskérper von K;_1) so, dass a € K,, gilt. Dabei heifft K = K,, iterierte reell-quadratische Erweiterung

von Q. Es ist klar, dass die K; Kdrper sind, d.h. sie sind insbesondere beziiglich der Verkniipfungen abgeschlossen.

Beweis. <: Sei also der Korperturm Q = Ko C K17 C ... C K,, C R mit a € K,, gegeben. Behauptung: a ist konstruierbar.
Nach dem Lemma (Konstruierbare Zahlen) sind alle Zahlen in Q@ = K konstruierbar. Nun gilt K1 = Ko(v/do) = Q(v/do) =
{ao + bo - Vdo : ag,bo,do € Q,v/do ¢ Q}. Nun sind alle Zahlen in K; konstruierbar, denn: ag,bo,do € Q mit v/dyg ¢ Q sind
also konstruierbar, also nach dem Lemma (Konstruierbare Zahlen) auch v/dy (Wurzel), also auch bg - v/dop (Multiplikation), also
auch ag & bg - v/do (Addition, Subtraktion). Weil also alle Zahlen in K; konstruierbar sind, sind es auch die in Ky = K1(1/d1) =
{a1+b1-Vd1 :a1,b1,d1 € K1,v/d1 ¢ K1}. Dann sind die Zahlen von K3 wegen aa, ba,ds € K2 und v/d2 ¢ K> konstruierbar, also
auch die von Ky, usw. Macht man so weiter, dann erh&lt man schliellich, dass auch alle Zahlen von K, konstruierbar sind, also
insbesondere auch das a € K,,.

=: Sei a € R konstruierbar. Behauptung: Es gibt einen reell-quadratischen Kérperturm Q = Ko C K; C ... C K,, mit a € K,,
wobei nochmal gilt: K; = Ki,l(\/ﬁ) = {ai—1 + bi—1 - \/di—1 : a;—1,bi—1,di—1 € Ki,l,\/ﬁ ¢ K;_1}. Dann gibt es
eine Strecke der Linge a, deren Randpunkte aus einer Strecke der Linge 1 mit Hilfe von endlich vielen Schritten mit Zirkel und
Lineal konstruiert werden kénnen. Seien Py, Py, ..., P, die Punkte, die bei dieser Konstruktion benotigt werden, aufgelistet in der
Reihenfolge ihrer Konstruktion. Der erste Konstruktionsschritt ist vorgegeben: Man zeichnet eine Strecke der Lange 1. Man kann
annehmen, dass P, im Koordinatenursprung liegt, also Py = (0,0), und man kann annehmen, dass P; = (0, 1) ist. Die Punkte
Py und P; liegen mit ihren Koordinaten in Q, womit der Korperturm also startet. Der Punkt P, ist der letzte Punkt, der fiir die
Konstruktion der Strecke der Lénge a verwendet wird. Nun kommt man zum Koérperturm: Py und P; liegen in Q = Ko = K.
Als néchstes wird der Punkt P, konstruiert, wobei dieser durch eines der drei bekannten Konstruktionsmoglichkeiten (Schnitt:
Gerade-Gerade, Gerade-Kreis, Kreis-Kreis) entsteht. Die Parameter der Geraden (2 verschiedene Punkte) und Kreise (Mittelpunkt
und Radius) liegen in K; (Alle bisher bekannte Konstruktionen stehen fiir die nichsten Konstruktionen zur Verfiigung). Nach
dem Satz (Eigenschaften neu konstruierter Punkte) liegen die Koordinaten des Schnittpunktes P> dann entweder in Ko = K

oder in Ky = K;(v/dy). Fiir die Konstruktion des nédchsten Punktes Ps3 sind die Parameter der Geraden und Kreise aus K»
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(Wieder: Alle bisher bekannte Konstruktionen stehen fiir die néchsten Konstruktionen zur Verfiigung). Wieder gilt nach dem
Satz (Eigenschaften neu konstruierter Punkte), dass K3 = K3 oder K3 = K>(v/d2) gilt. Als nichstes kommt P;: Die Parameter
der Geraden und Kreise sind nun aus K3, also sind die Koordinaten des Schnittpunktes P4 nach dem Satz (Eigenschaften neu
konstruierter Punkte) aus K4 = K3 oder K4y = K3(1/d3). Jetzt kommt Ps, usw. Macht man so weiter, so erhdlt man schlieBlich
eine Inklusionskette von Koérpern: Ko C K1 C ... C K,.. Der Korper K; enthélt dabei die Koordinaten aller Punkte P; mit j < i.
Streicht man nun in der Folge Ko C K; C ... C K, alle diejenigen K; mit K; = K; 1, so erhdlt man einen reell-quadratischen
Korperturm Q € K; € ... C K, und die Koordinaten der Punkte Pp,..., P, liegen in K . Im letzten Konstruktionsschritt

zeichnet man die Strecke der Linge a zwischen einem Punkt P, 0 < k < r und P, (denn: a ist konstruierbar). Sei P, = (z,y)

und P, = (c¢,d), wobei z,y,c,d € K, gilt. Dann ist a = y/(z —¢)?2 + (y — d)? € K, (@ —c)® 4 (y —d)? |. Also liegt a in
N—_—

EKs
K, (falls \/(z —¢)? + (y — d)? € K;) oder in einer reell-quadratischen Erweiterung von K. In beiden Fillen erhilt man einen

reell-quadratischen Kérperturm (mit n = s oder n = s 4+ 1). Und das war es endlich. |

Lemma (Fiir Algebraizitit). Sei K ein Unterkdrper von R und K(V/d) eine reell-quadratische Erweiterung von K. Sei ¢ eine
Nullstelle eines Polynoms p aus K(v/d)[z] vom Grad n. Dann ist ¢ eine Nullstelle eines Polynoms vom Grad 2n in K[z]. Der

Beweis geht dann folgendermaflen:

Beweis. Sei ¢ Nullstelle des Polynoms:

p=(ao+bo-Vd)+ (a1 +b1 - Vd)-z+ ...+ (an—1 +bp_1-Vd) """ + (an + by - Vd) -2
Dabei gilt a;,b; € K fiir alle 0 < 4 < n, und a, und b,, sind nicht beide 0. Dann gilt:

(ao +bo - Vd) + (a1 +by-Vd) - c+ ...+ (an—1+ba1-Vd) "7+ (an +bn - Vd) - " =0

Ausmultiplizieren und Umsortieren liefert:

n

ao+ai-cH...dan1-¢" Tda,-c"=—Vd - (bo+bicH...4+by1-c"""+b,-c")

Nun quadriert man beide Seiten und erhilt:

2

ag+51-c+...+52n_1-62n71+an~c2":d»(bg+’51-c+...+’52n_1 'c2"71+bi<c2n)

Wie die Koeffizienten a; und Ei, 1 < i< 2n — 1, genau aussehen ist nicht wichtig. Wichtig ist nur, dass sie aus K sind, wegen der

Abgeschlossenheit eines Koérpers. Es folgt:

(ag = bod) + (@ —bid) -+ ...+ (@, _y — bap_1d) - ™"+ (ap —bhd) - =0
Somit ist ¢ Nullstelle von:

g = (ag —bgd) + @y —byd) -w+ ...+ (@3, — b3y 1d) 2"+ (a], = ]d) - 2"

Es bleibt zu zeigen, dass g aus K[z] den Grad 2n hat: Wére nédmlich ai — bid = 0, dann folgt a,, = +b, - V/d, also Widerspruch,

1
denn es ist a,, € K, aber b, - Vd ¢ K, denn wire b,, - Vd € K, dann auch o (by, - \/g) = /d, Widerspruch. O
n

Satz (Algebraizitit konstruierbarer Zahlen). Sei ¢ konstruierbar. Dann ist ¢ eine Nullstelle eines Polynoms vom Grad 2" aus

Q[z]. Dann ist ¢ auch eine Nullstelle eines Polynoms vom Grad 2" aus Z[z], c ist also algebraisch.

Beweis. Weil ¢ eine konstruierbare Zahl ist, gilt nach dem Satz (Hauptsatz iiber konstruierbare Zahlen), dass es einen reell-
quadratischen Koérperturm

Q=Ko CK:C...CK,CR

von Zwischenkérpern gibt mit K; = Kz,l(\/ﬁ) = {aj—1 +bi—1 - \/ﬁ tai—1,bi—1,di—1 € K;i_1, \/ﬁ ¢ K;_1} so, dass
c € K, ist. Das ¢ € K,, ist Nullstelle des Polynoms z — ¢ aus K, [z] vom Grad 1. Nach dem Lemma (Fiir Algebraizitit) gilt, dass ¢
eine Nullstelle eines Polynoms vom Grad 2 -1 = 2 in K, _1[z] ist. Wiederholtes Anwenden von Lemma (Fiir Algebraizitit) liefert
dann, dass ¢ Nullstelle eines Polynoms vom Grad 2™ -1 = 2" in Q[z] ist. Wenn man das Polynom gleich Null fiir ¢ eingesetzt mit
dem kgV aller Koeffizienten auf beiden Seiten multipliziert, dann ist ¢ sogar Nullstelle eines Polynoms aus Z[z] vom Grad 2", ist

also algebraisch, was genau das ist, was man hier zu zeigen hatte. O

Satz (Quadratur des Kreises). Ein Kreis mit dem konstruierbaren Radius r hat bekanntlich den Fldcheninhalt 7 - 2. Es ist

nicht maéglich mit Zirkel und Lineal das Quadrat mit dem gleichen Fldcheninhalt zu konstruieren.
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1
Beweis. Es muss also das Quadrat mit der Seitenlinge /7 - r konstruiert werden. Weil r konstruierbar ist, ist auch — konstruierbar.
r

1

Wire /7 - r konstruierbar, wire auch (ﬁ ’l“) - — = /7 konstruierbar, also auch /7 - /7 = 7. Nach dem Satz (Algebraizitit
r

konstruierbarer Zahlen) wére m dann algebraisch. Das ist aber ein Widerspruch, denn 7 ist bekanntlich transzendent, also nicht

algebraisch. O

Satz (Wiirfelverdopplung). Sei ein Wiirfel mit der konstruierbaren Kantenlinge a gegeben. Dann ist das Volumen dieses Wiirfels

gleich a®. Man kann nun mit Zirkel und Lineal nicht den Wiirfel mit doppelten Volumen konstruieren.

. 1
Beweis. Der Wiirfel doppelten Volumens héitte dann die Kantenléange {2 - a. Weil a konstruierbar ist, ist auch — konstruierbar.
a

Wire also ¥/2 - a konstruierbar, dann auch (\3/5 . a) . 1 = J°. Angenommen, V2 ist konstruierbar, so gédbe es nach dem Satz
(Hauptsatz iiber konstruierbare Zahlen) einen Kérper K:,, der durch sukzessive quadratische Koérpererweiterungen aus Q entsteht,
in dem z = 9/5 lage:

Q=Ko CKi1C...CK,

Wenn also z = ¥/2 € K, wire, so gibe es offenbar ein z € K,, mit 2z = 2. Es wird nun gezeigt:
JreKWd):z°=2=>3yeK:y° =2 (%)

Der Beweis geht dann folgendermafien: Angenommen, es gibt ein z € K(\/a) mit 2% = 2, also (a+b- \/E)?’ —2=0mit a,b,d € K,
d >0, \/E ¢ K. Daraus erhilt man dann:

0=2a"+3ab’d — 2 +b(3a® +b%d) - Vd=u+v-Vd

=:u =

3 2
3ab“d — 2
Wiire v = b(Sa2 + de), der Koeffizient von v/d, ungleich Null, so wire v/d = —% = _ab(—;a;ﬁ

muss also v = 0 sein. Wegen d > 0 wiire fiir b # 0 mit Sicherheit v # 0. Weil aber v = 0 ist, folgt b = 0. Da (a +b-Vd)> =2 =0

€ K, Widerpruch. Daher

gilt, folgt wegen b = 0 also (a + 0)3 —2=0% a® =2 mit a € K. Mit der bewiesenen Aussage (*) bekommt man: Wenn es in einem
Korper K,, eine Zahl z mit 2 =2 gébe, so gibe es auch so eine Zahl in K, _;1. Dann gibt es auch so eine in K, _2, usw. Macht
man so weiter, folgt am Ende, dass es in Q = Ky eine Zahl z € Q gibt mit 2% = 2. Das heifit, dass dann aber /2 eine rationale

Zahl ist, Widerspruch. Also: ¥2 . a ist nicht konstruierbar. O
Lemma (1). Ein Winkel a ist genau dann konstruierbar, wenn die Zahl cos(a) konstruierbar ist.

Beweis. =>: Sei also der Winkel o konstruiert. Es wird nun gezeigt, wie man daraus cos(c) konstruieren kann.

cos(ex) Q

O ist der Scheitel des Winkels «, der durch die Strahlen g und h eingeschlossen wird. Man schligt nun um O einen Kreis vom
Radius 1. Dieser schneidet g im Punkt P. Dann fillt man das Lot von P auf h. Dieses schneidet h im Punkt Q. Die Strecke OQ
hat dann die Lénge cos(a). Es wird hier fiir die Vollstdndigkeit des Beweises nachtréiglich noch gezeigt, wie man das Lot von einem

Punkt auf eine Gerade konstruiert: Das geht so:

SN
N

v
=
N

<«: Sei nun die Zahl cos(a) gegeben. Nun zeigt man, wie man daraus den Winkel o konstruiert.
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A cos( () | B

Die Strecke von Scheitelpunkt A nach Kreuz B habe die Linge cos(a), die man z.B. mit einem Zirkel zeichnen kann. Man zeichnet
dann die Senkrechte zur Gerade, die durch A und B verlduft, die durch das Kreuz bei B geht. Danach schligt man einen Kreis um
A mit dem Radius 1. Der Kreis schneidet dabei die Senkrechte durch B in einem Punkt C. Dann gilt <CAB = «. Damit ist der

Beweis auch beendet! O
Lemma (2). Wenn cos(20°) konstruierbar ist, dann ist eine Nullstelle des Polynoms p = x® — 3z — 1 konstruierbar.

Beweis. Es werden hier die folgenden bekannten Additionstheoreme benutzt:

cos(a + B) = cos(a) - cos(B) — sin(a) - sin(B3)
sin(a 4+ B) = cos(a) - sin(B) + sin(a) - cos(B)

1 1
Weiter gilt: sin(a)? 4 cos(a)? = 1 und cos(60°) = 3 Einschub: Beweis von cos(60°) = 3

™

. ) o Ankathete
Es gilt also nach der Zeichnung: cos(60°) = Mvootenuse —
ypotenuse

o ole

1
= 3 Ende des Einschubs. Sei v = 20°. Dann gilt:

% = cos(37) = cos(2v + v) = cos(27) - cos(y) — sin(27) - sin(vy) = cos(y + ) - cos(vy) — sin(y + 7) - sin(vy)

= [cos(y) - cos(y) — sin(7) - sin(y)] - cos(v) — [cos() - sin(y) + sin(y) - cos(+)] - sin(y)

= cos(7)® — sin(y)? - cos(y) — cos(7) - sin(y)* — sin(y)* - cos(v)

cos(y)® — 3 -sin(y)? - cos(y) = cos(7)® — 3 - (1 — cos(y)?) - cos(v)

= cos('y)3 —3-cos(y)+3- cos('y)3 =4 COS(’Y)S — 3 - cos(y)
1
Es folgt daraus 4 - cos(v)® — 3 - cos(y) — 5= 0 < 8- cos(y)® —6-cos(y) — 1 =0 und also
(2-cos(y))® —3-(2-cos(y)) —1=0

Somit ist 2 - cos(y) eine Nullstelle von p = 2® — 3z — 1. Nach Voraussetzung ist cos(y) = cos(20°) konstruierbar, also ist auch

2 - cos(7y) konstruierbar. Daraus folgt dann, dass eine Nullstelle von p = 2% — 3z — 1 konstruierbar ist. a

Lemma (3). Sei K ein Unterkorper von R, und sei K(vd) eine reell-quadratische Erweiterung von K. Sei ¢ eine Nullstelle

vonp=a>—3z—1. Wenn c € K(\/&) liegt, dann gibt es eine Nullstelle ¢’ von p in K.

Beweis. Sei c eine Nullstelle von p und sei ¢ € K(\/&) Dann gibt es a,b € K mit ¢ = a+b-v/d. Ist b = 0, dann ist ¢/ = ¢ aus K und
eine Nullstelle von p, und man ist hier fertig. Man kann also b # 0 annehmen. Nach Annahme gilt: (a+b-vVd)®> =3 -(a+b-vVd)—1 =
0& (a3 + 3ab%d — 3a — 1) + (3a2b +b3d — 3b) - Vd = 0. Wire 3a’b + b3d — 3b # 0, so kénnte man nach V/d auflésen und erhielte
\/E € K, ein Widerspruch. Es gilt also 3a2b+b3d73b =0 < 3a? +b2d73 =0 und a® +3ab2d73a7 1 = 0. Also gilt: b2d = 3 —3a?
und a® + 3a - b?d — 3a — 1 = 0. Setzt man b?d in die andere Gleichung ein, erhélt man a® + 3a - (3 — 3a2) —3a—1=0<
a®+9a—-9°-3a-1=0& —8a°+6a—1=0%¢ (-2a)® —3-(—2a) — 1 = 0. Somit ist ¢’ = —2a eine Nullstelle von p mit
¢’ = —2a € K. Der Beweis ist damit beendet. a
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Lemma (4). Sei c eine Nullstelle des Polynoms p = x®> — 3z — 1. Dann gilt ¢ ¢ Q.

Beweis. Angenommen, es gibt a,b € Z mit b # 0, so dass ¢ = % eine Nullstelle von p ist. Da 0 keine Nullstelle von p = z® — 3z — 1

3
a 3a
ist, gilt @ # 0. Man nimmt an, dass a und b ausgekiirzt sind. Dann gilt: W 1 =0, also a® — 3ab? — b = 0. Es gilt also:
a®=b- (3ab + b2) und b =a - (a2 — 3b2), Aus der ersten Gleichung folgt: Wenn es eine Primzahl ¢ gibt, die b teilt, so teilt ¢ auch

a® und damit auch a (denn q ist eine Primzahl). Weil angenommen wurde, dass gilt ggT(a,b) = 1, folgt, dass es keine Primzahl

geben kann, die b teilt, also: b = 1V b = —1. Analog folgt aus der zweiten Gleichung, dass gilt a = 1V a = —1. Damit ist % =1
a

oder 3 = —1. Das ist ein Widerspruch, denn weder 1 noch —1 ist eine Nullstelle von p = > — 3z — 1. Also ist das Lemma hier

bewiesen. O

Satz (Dreiteilung beliebiger Winkel). Die Dreiteilung eines 60°-Winkels ist mit Zirkel und Lineal nicht mdglich. D.h. die

Winkeldrittelung ist im Allgemeinen nicht mit Zirkel und Lineal konstruierbar.

Beweis. Angenommen, eine solche Konstruktion ist méglich. Dann wire der 20°-Winkel konstruierbar. Nach dem Lemma (1) ist
dann cos(20°) konstruierbar. Nach Lemma (2) ist dann also eine Nullstelle ¢ von p = #® — 3z — 1 konstruierbar. Nach dem Satz
(Hauptsatz iiber konstruierbare Zahlen) gibt es dann einen reell-quadratischen Kérperturm Q = Ko C K; C ... C K,, mit ¢ € K,,.

3

Wendet man das Lemma (3) wiederholt an, dann folgt, dass ¢ eine Nullstelle von p = z° — 3z — 1 aus Q ist. Das ist aber ein

Widerspruch zu Lemma (4), denn nach diesem Lemma gilt, dass eine Nullstelle von p nicht aus Q sein kann. Der Widerspruch zeigt,

dass man einen 60°-Winkel mit Zirkel und Lineal nicht dreiteilen kann. Also: Fertig! |
Korollar (RegelmiBiges 18-Eck). Das regelmidfige 18-Eck ist mit Zirkel und Lineal nicht konstruierbar.

Beweis. In dem Satz (Dreiteilung beliebiger Winkel) wurde gezeigt, dass ein Winkel von 20° mit Zirkel und Lineal nicht konstru-

ierbar ist. Wegen 18 - 20° = 360° ist dann also auch das 18-Eck nicht konstruierbar. O

Es wurde eben also gezeigt, dass man nicht alle Winkel mit Zirkel und Lineal dritteln kann. D.h. aber nicht, dass das immer nicht

geht, wie der folgende Satz zeigt:
Satz (Dreiteilung des 90°-Winkels). Den 90°-Winkel kann man mit Zirkel und Lineal dritteln.

Beweis. Man braucht hier die folgende Zeichnung:

. o Ankathete h . 2 a2 2 2 3 2 V3
Der Zeichnung kann man entnehmen: cos(30°) = ——— = —. Nun gilt: h* + | = =a"=>h"=-"-a"=h=—"a.
Hypotenuse a 2 4 2
Daraus folgt also cos(30°) = 5 Nach dem Lemma (Konstruierbare Zahlen) ist — konstruierbar und nach Lemma (1) ist also
auch der Winkel 30° konstruierbar. O

Korollar (RegelmiBiges 12-Eck). Das regelmdfige 12-Eck ist mit Zirkel und Lineal konstruierbar.

Beweis. In dem Satz (Dreiteilung des 90°-Winkels) wurde gezeigt, dass ein Winkel von 30° mit Zirkel und Lineal konstruierbar

ist. Wegen 12 - 30° = 360° ist dann also auch das 12-Eck konstruierbar. O

Lemma (5). Sei K ein Unterkérper von R, und sei K(\/a) eine reell-quadratische Erweiterung von K. Sei ¢ eine Nullstelle

von p =y +y? — 2y — 1. Wenn ¢ € K(v/d) liegt, dann gibt es eine Nullstelle ¢ von p in K.

Beweis. Sei c eine Nullstelle von p und sei ¢ € K(\/a) Dann gibt es a,b € K mit c = a+b- Vd. Ist b = 0, dann ist ¢’ = ¢ aus K und
eine Nullstelle von p, und man ist hier fertig. Man kann also b # 0 annehmen. Nach Annahme gilt: (a +b- Va2 +(a+b-Vd)2—2-
(a+b- \/3) —1=0& (a3 +a?—2a+3ab’d+b%d— 1) +(3a2b+2ab—2b+b3d) -v/d = 0. Wire 3a%b+2ab—2b+b3d # 0, so kénnte man
nach \/E auflésen und erhielte \/E € K, ein Widerspruch. Es gilt also 3a2b+2ab72b+b3d =0 und a® +a2 72a+3ab2d+b2d7 1=0.
Dann ist auch € = a — b - V/d eine Nullstelle von p = y° + y? — 2y — 1, denn: (a —b-Vd)> +(a —b-Vd)? —=2-(a—b-Vd) -1 =
(a3 + a? — 2a + 3abd + b3d — 1) — (3a2b + 2ab — 2b + bsd) .vd=0—-0-+vd = 0. Fiir die beiden Nullstellen y1 =a+b- Vd
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und y2 = a —b-+/d von p = y3 + y2 — 2y — 1 gilt wegen b # 0 also y1 # y2. Einschub: Wurzelsatz von Vieta: Seien z1, z2, z3

die Nullstellen eines kubischen Polynoms 2% + rz? + sz + t, also gilt 22 +ra2 sz +t = (x —z1) - (z — z2) - (x — x3) =
3 — (z1 + z2 + x3) - 22+ (x1 - 22 + 1 - x3 + T2 - x3) - & — x1 - x2 - x3. Durch Koeffizientenvergleich erhilt man insbesondere also:
r=—(x; + a2+ x3) © 23 = —r — (1 + 2), Einschubende. Daraus folgt fiir die dritte Nullstelle von p = 3> + y? — 2y — 1 also
ys = =1 —(y1 +y2) = =1 — ((a +b-+vd) + (a —b-+d) = —1 — 2a. Also hat man hier eine Nullstelle ¢’ von p gefunden mit
¢’ = —1 — 2a € K. Der Beweis ist damit fertig! O

Satz (RegelmiBiges 7-Eck). FEin regelmdfliges T-Eck ist mit Zirkel und Lineal nicht konstruierbar.

Beweis. Die Ecken eines regelméfiigen 7-Ecks sind gegeben durch die komplexen Lésungen der Gleichung 2" —1 = 0. Die Zahl

-1
z = 1 ist eine Losung dieser Gleichung. Es gilt dann =20 2t 2 23 2t 25 1 20 =0 fiirzmit 27 —1 =0 und 2 # 1.

1 1 1
Dividiert man diese Gleichung durch 22 # 0, so erhiilt man 2 + - T 22+ - tz+ -+ 1 = 0. Ferner gilt:
z z z

13 1)2 1
z+ — +z+ - —2-lz4+—-)—-1=0
z z z
1
Dabei sei z = cos(p) + i - sin(g), also z + — = 2 - cos(¢) =: y. Damit ist klar: z € € mit 27 —1 = 0 und z # 1 ist genau dann
z

konstruierbar, wenn y oder cos(yp) es ist. Es gilt also:
v+t -2 —-1=0

Wenn y als Nullstelle von p = y3 + y2 — 2y — 1 konstruierbar ist, dann gibt es nach dem Satz (Hauptsatz iiber konstruierbare
Zahlen) einen reell-quadratischen Kérperturm Q = Ko C K7 C ... C K,, mit y € K,,. Wendet man das Lemma (5) wiederholt an,
dann folgt, dass es eine Nullstelle ¥ von p = y> 4+ y2 — 2y — 1 aus Q gibt. Das ist aber ein Widerspruch, denn wire § = m e (m
und n seien gekiirzt) eine Lésung von y3 +y? — 2y — 1 = 0, dann folgt m® + m?n — 2mn? — n® = 0. Also: Jeder Primteﬁer von m
wére auch einer von n und umgekehrt. Wegen ggT(m,n) = 1 diirfen m und n keine Primteiler haben, d.h. m =1V m = —1 und
n=1Vn = —1, folglich § = £1. Aber das ist keine Lésung von p = y* +y? — 2y — 1 = 0, Widerspruch. Es gibt also keine Nullstelle

von p, die aus Q ist. Also ist man somit fertig. O
Satz (RegelméBiges 17-Eck nach GauB). Ein regelmdfiges 17-Eck ist mit Zirkel und Lineal konstruierbar.

Beweis. Zunichst gilt das folgende:
1
it U R RS L IR [

2 27

il — ok 2
Sei ¢ := e 17. Also gilt wegen ¢ — 1 # 0 folglich: ¢% + ¢t 4+ ¢2 + ...+ ¢*® 4+ ¢1% = 0. Nun gilt: ¢* = e 177 = cos <1—: »k:) +i-

. 27 16 27 . 27 16 i
sin [ — - k| fiir k=0,1,...,16. Daraus folgt dann: > cos | — -k ) = 0. Sei a := —, also > cos (o - k) = 0. Es gilt cos(0-a) =
17 k=0 17 17 k=0

cos(0) = 1 und: cos(16a) = cos(la), cos(15a) = cos(2a), cos(lda) = cos(3a), ..., cos(10a) = cos(Tar), cos(9a) = cos(8a). Beweis:
2m k 17—k — 17—k
cos(k-a) = cos|k-— ) = cos|— 27| = cos 1-— 227 ) = cos (2mr — ——— - 27w ) = cos | — 27 ) =
17 17 17 17 17
17—k 2
cos T 27 ) =cos ( (17 — k) - )= cos((17 — k) - «) fiir k = 1,2,...,16. Daraus folgt:
16 8 8 1
k) = 0 2. k- =0 k- =—=
Z cos (a - k) = cos(0) + Z cos(k - o) & Z cos(k - ) 5
k=0 k=1 k=1
1
Sei nun p = cos(la) + cos(2a) + cos(4a) + cos(8a) und p’ = cos(3a) + cos(5ar) + cos(6a) + cos(7a). Es gilt also p +p’ = -3 Nun

wird p - p’ berechnet:
p-p = cos(la) - cos(3a) 4 cos(la) - cos(5a) + cos(la) - cos(6a) + cos(la) - cos(Tar)
+ cos(2a) - cos(3ar) + cos(2a) - cos(bar) + cos(2a) - cos(6a) 4 cos(2a) - cos(Tar)
+ cos(4a) - cos(3ar) 4 cos(4ar) - cos(5a) + cos(4dar) - cos(6a) + cos(4a) - cos(Tar)
+ cos(8a) - cos(3a) + cos(8a) - cos(5ar) + cos(8a) - cos(6ar) + cos(8a) - cos(Ta)

cos(z + y) + cos(z — y)

Nun gilt das Additionstheorem cos(z) - cos(y) = 5 , also:
, cos(4a) + cos(2a)  cos(6a) + cos(4a)  cos(7a) 4 cos(ba)  cos(8a) + cos(6ar)
p-p =

2 2 2 2

cos(ba) + cos(la)  cos(Ta) + cos(3a)  cos(8a) + cos(4a)  cos(9a) + cos(ba)
2 2 2 2

cos(7a) + cos(la) = cos(9a) 4 cos(lar)  cos(10a) + cos(2a)  cos(1lar) + cos(3ar)

+ +

2 2 2 2

cos(1la) + cos(bar) = cos(13a) + cos(3a)  cos(14a) + cos(2a) + cos(15a) + cos(lar)
2 2 2 2
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Desweiteren gilt dann:

,  cos(4a) + cos(2ar) n cos(6a) + cos(4a) n cos(7a) + cos(bax) n cos(8a) + cos(6a)
P =

2 2 2 2
cos(ba) + cos(la)  cos(Ta) + cos(3a)  cos(8a) + cos(4a)  cos(8a) + cos(ba)
+ + +
2 2 2 2
cos(7a) + cos(la) = cos(8a) 4+ cos(lar)  cos(7a) + cos(2a)  cos(6a) + cos(3a)
2 2 2 2
cos(6a) + cos(ba)  cos(4a) + cos(3a)  cos(3a) + cos(2a)  cos(2a) + cos(la)
2 2 2 2
~ 4-cos(la) +4 - cos(2a) +4 - cos(3ar) + 4 - cos(4a) + 4 - cos(5ar) + 4 - cos(6a) + 4 - cos(Tar) + 4 - cos(8a)
- 2
1
-4
-2 _
2
1 1 » 1 1 T
Es gilt al '=—-undpp =-1Also:p-(—=—p)=-1&p’+--1=0¢& =—-= =——xy/—+1=
s gilt also p+p 5 undpp so:p(=5—P) Pty P12 1 1 ot
1 17 -1+ V17 1 2 —1+£V17 24+ 1F V17 —1F V17
——+4/— = —"—""— alsogiltip| y = —=—p=—=— = +1F = i . Es wird die Probe gemacht: Es
4 16 4 ! 2 4 4 4 4
-1 - V17 14+ V17 -1+ V17
gilt — # cos(la)+cos(2a) +cos(4a) +cos(8a) = p = —Z . Und: —Z # cos(3a)+cos(5a)+cos(6a) +cos(Ta) =
, -1 - V17 . . L.
p’ = ————— . Sei nun q := cos(la) + cos(4a) und r := cos(2a) 4 cos(8c). Dann gilt: ¢+ = p und g - r wird jetzt ausgerechnet:

q-r = cos(la) - cos(2a) + cos(lar) - cos(8ar) + cos(4a) - cos(2a) + cos(4a) - cos(8c) und mithilfe des oben benutzten Additionstheorems

folgt dann also:

cos(3) 4+ cos(1) = cos(9) 4+ cos(7)  cos(6) 4+ cos(2)  cos(12) + cos(4)
2 + 2 + 2 + 4
cos(3) + cos(1)  cos(8) + cos(7)  cos(6) + cos(2)  cos(5) + cos(4)
2 + 2 + 2 + 4
cos(3) 4 cos(1) + cos(8) + cos(7) + cos(6) + cos(2) + cos(5) + cos(4)
2

4

1
-3 1
2

1 1 1
Es gilt also: ¢ +r = p und ¢ - r = L also g - (p — q) = ~1 = q2 — pq — 1 = 0. Jetzt nach ¢ auflésen: q1 2 = g +

[ 2
1 +Vp2+1 + p2+1 2p — Vp?+1 vVp?+1
%—Q—Z:%.Nunkannmanrausrechnen:m)g:p—q:p—(p 2p + ): i p:F2 P+ :p:F 2;0 + .

—p2 1 + /p?2+1
Es wird wieder die Probe gemacht: % # cos(la) + cos(4a) = ¢ = % Sei jetzt ¢/ := cos(3a) + cos(b5a)
1
und 7’ := cos(6a) + cos(7a). Genau, wie bei der Berechnung von ¢ und r, berechnet man analog, dass gilt ¢’ - ' = 1 und
L/ (p)2 +1 / /()2 +1
¢ +r' = p'. Man erhilt, wie eben, dass gilt: q; , = %, also gilt fiir r': v/ = % Wieder Probe:

Pov@)rtlt # cos(3a)+cos(5a) = ¢’ =

5 3 !
cos(5a) + cos(3a) =L Setzea:= cos(a) und b := cos(4a). Man hat also a+b = qund a-b = 9 Also: a-(g—a) = 4 & a-(a—q) =

! 72 1
@_ Und weiter geht es: Es gilt: cos(a)+cos(4a) = g und cos(«)-cos(4da) =
4 ’

2 2 2 2
’ ’ 2 ’
+ /g2 — 2q’ — /a2 — 2q’ 2 _ 92qg/
7%<:>a27qa+%,also: a1,2:%i1l%7%:%.wwder Probe: W;ﬁcos(a):a:q“#‘

Es gilt also:

VP p VEET P JOPEL  S14VIT 1T
2 b - 2 il - 2 b b

a = cos(a) =

4 4
. . . . 27 360° .
Nach dem Satz (Konstruierbare Zahlen) ist also cos(a) und somit nach Lemma (1) der Winkel a = I = e konstruierbar.
Damit ist man hier also endlich fertig! |

Satz (Abzihlbarkeit algebraischer Zahlen). Die Menge der algebraischen Zahlen ist abzihlbar. Und die Menge der transzendenten

Zahlen, also der nicht algebraischen Zahlen, ist tiberabzdhlbar.

Beweis. Algebraische Zahlen sind definiert als Nullstellen von Polynomen (ungleich Nullpolynom) mit ganzzahligen Koeffizienten.
Ein Polynom n-ten Grades hat nach dem Fundamentalsatz der Algebra hochstens n Nullstellen. Es wird gezeigt, dass die Menge
der Polynome (ungleich Nullpolynom) mit ganzzahligen Koeffizienten abzihlbar ist. Weil jedes solche Polynom nur endlich viele
Nullstellen hat, folgt dauraus77 dass die Menge der Nullstellen von Polynomen mit ganzzahligen Koeffizienten ebenfalls abzidhlbar

v
ist. Dazu: Sei also p(z) = > ak - z® mit a, € Z fir k = 0,...,n und a, # O ein Polynom n-ten Grades mit ganzzahligen

Koeffizienten. Jedem solchen Polynom kann man die Zahl h(p) = n 4+ > |ax| zuordnen. Es gilt dann folgendes: Die Menge
k=0
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G {p € Z[z] : h(p) = k} ist eine abzihlbare Vereinigung von endlichen Mengen, ist also eine abzidhlbare Menge. Weil jedes
lkz’?)llynom p einen Wert h(p) hat und die Polynome diesen Wert von 1 bis co annehmen (nicht 0, da ungleich Nullpolynom), gilt
{p € Z[z] : ap # 0} = G {p € Z[z] : h(p) = k}. Beweis der Endlichkeit: h(p) = k bedeutet, dass der Grad eines Polynoms in
{p € Z[z] : h(p) = k} nikcii grofer sein kann als k und es gilt auch, dass die Betrige der Koeffizienten ebenfalls héchstens k sein
konnen. Also ist die Menge {p € Z[z] : h(p) = k} eine endliche Menge. Es folgt also, dass die Menge der Polynome mit ganzzahligen
Koeffizienten (ungleich Nullpolynom) tatséchlich abzdhlbar ist. Sei A die Menge der algebraischen Zahlen und T die Menge der
transzendenten Zahlen. Es gilt dann: R = AUT mit ANT = (. Da A, wie eben gezeigt, abzihlbar ist, muss T iiberabzihlbar sein,
denn sonst wire T abzéhlbar, also auch R, Widerspruch. Also ist der Beweis damit vollstéindig vollbracht. |

Korollar (Anzahl konstruierbarer und nicht konstruierbarer Zahlen). Die Menge der konstruierbaren Zahlen ist abzdihlbar und

die Menge der nicht konstruierbaren Zahlen ist iiberabzdihlbar.

Beweis. Nach dem Satz (Algebraizitéit konstruierbarer Zahlen) sind alle konstruierbaren Zahlen algebraisch. Weil algebraische
Zahlen abzihlbar sind nach dem Satz (Abzdhlbarkeit algebraischer Zahlen), folgt, dass die Menge der konstruierbaren Zahlen

ebenfalls abzahlbar ist. Es folgt weiter, dass {iberabzéhlbar viele Zahlen nicht konstruierbar sind. |

Der Residuensatz

[Zuriick zur Liste]

Satz (Residuensatz). Sei G ein Elementargebiet, es seien z1,...,zr € G (z; # 2z fir j # 1) und es sei dann noch f €
H(G\ {z1,...,2k}), heifst: f ist holomorph auf dem angegebenen Gebiet. Jedes z; ist also eine isolierte Singularitit von f.
Weiter sei v ein geschlossener, stiickweise glatter Weg mit {z1,...,2z5} & v. Dann gilt:

1 k
pyri [y f(z)dz = Zind.y(zj) “Res;, f

=1
Beweis. Vj € {1,...,k} existiert ein R; > 0: Kry (z;) € G und Kr; (z;) N KRy (z1) = 0 (j # 1); dabei sei Ky (z;) eine offene
Kreisscheibe vom Radius R; mit Mittelpunkt z;. Sei j € {1,...,k}, dann hat f auf KRJ, (z;) die Laurententwicklung
oo oo .
f(z) = Z N LR B R
n=0 n=1 .
=0 (2)
Nach dem Satz iiber die Laurentzerlegung gilt dabei ¢; € H(C \ {z;}). Man definiert nun g € H(G \ {z1,...,2x}) durch
k
g(z) = f(z) — > ¢;(z). Dann hat g in z; (j = 1,...,k) eine hebbare Singularitéit, d.h., dass in der Laurententwicklung von
j=1
) .
g die Koeffizienten vor den (z — z;)~" (n > 0) alle gleich 0 sind. Beweis: Sei g(z) = Z gﬁf) - (z — z;)", dann werden die
; 1 1
Koeffizienten berechnet durch gff) = — - / Ll dz, also gilt fiir n < 0: g(J) = — / Ll dz —
2 KR (=) (z — zj)nt 27 KR (=) (z — z;)nt+

Zw(Z) Z vi(2)

i=1
1 j 1 i£j ) ) 1
7/ %(Z)n+fd2—‘ / - n+1dzzagf)*a§f)77‘4/ - apr d2 =0-0=0,
27 KRj(zj) (z — z5)" 27 KR]-(zj) (z — z5) 27 KRj(zj) (z — z5)
k
Z:lw(z)

1 ..

denn es gilt — - / Ldz = 0 nach dem Cauchy’schen Integralsatz fiir Sterngebiete (siehe unter der Uber-
2mi Jkp (s (2= 2z)"T!

J

k
> pi(2)

i=1
schrift: Die Cauchy’sche Integralformel), weil (l#ﬁ holomorph auf Kr; (z5) ist, denn fiir ¢ € {1,...,k} \ {j} gilt z; ¢
zZ—Zzj
Kr; (z;) und wegen n < 0 ist ﬁ = (2 — 2;)7""! holomorph auf Kr; (z5). Also ist g € H(G). G ist ein Elemen-
zZ—ZzZj

targebiet, was nach Definition bedeutet, dass g als holomorphe Funktion eine Stammfunktion Q auf G hat, also ist deswegen
/g(z) dz = Q(y(b)) — Q(y(a)) = 0 = /f z)dz = Z/ ¢;j(z)dz, denn es gilt v(b) = ~(a) (v ist geschlossen). Jetzt muss
j=1

nur noch / i(z)dz = 27t - indy (25) - a(Ji mit j = 1,...,k gezeigt werden. Die Reihe fiir ¢; konvergiert lokal gleichméBig, also
v

koénnen Integration und Summation vertauscht werden: j(z)dz = a - [ (2 — z;) " dz. Da die Funktion ——L1—5 fiir
7 (z—z5)
W

(z—zp) "t

n € {2,3,4,...} auf G\ {z;} die Stammfunktion ——

hat, folgt daraus fiir diese n: /(z — zj)fn dz = 0, denn es gilt
¥
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1

z—Zzj

dz. Nun gibt es fiir die Kurve v : [a,b] = G \ {#21,..., 2} mit dem

{z1,...,2k} ¢ . Es gilt also / pi(z)dz = a(_ji /
v ¥

Umlaufpunkt z; € G ein ¢ : [a,b] = R so, dass v(t) = z; + [v(t) — z;] - e ?(1) gilt. Also gilt dann das Folgende:

1 1 1 b 1 d ;
— . dz = — - _ Ry t) — 2] - "M at
27 /y z — zj 7 om /a zj + |y(t) — zj| - et oD — z;  dt (ZJ () —zle )

1 b 1 d 0!
=/ — = (|y®) -z dt
2mi /a () — 2] - e ?® " dt () =21 74)

_ 1 /h [v/ (®)] - "M 4 |y (t) = 2] - (- ¢'(1)) - €D
i Ja Iy(8) = 2] - et #®

R O] Lo
) @t

dt

1 b d $(b) — ¢(a)
=— [ Zn() — 2 de + 22— 2Y
o |l =D
_ . . L _ o 90 —¢(a) . o
Wegen «v(b) = v(a) ist das Integral gleich 0, folglich gilt dz = 2mi - e = 27i - ind~ (2z;). Nach Definition gilt
y Z— 2 T
a(ji = Rcszjf, woraus die Behauptung des Satzes folgt. |

Die Cauchy’sche Integralformel

[Zuriick zur Liste]

Satz (Goursat). Sei G C C ein Gebiet und f : G — C eine holomorphe Funktion sowie AN C G ein abgeschlossenes Dreiecksge-
biet. Dann gilt die folgende Identitdt:
/ f(z)dz=0
an

Beweis. Man schreibt A = A(®) | Indem man die Seiten von A halbiert, unterteilt man A in 4 kongruente Teildreiecke Agl), RN Ail) .

Das ist im folgendem Bild zu sehen:

Sei v = 9AM + 0480 + oA + 04, dann gilt:

[yf(z)dz = ’;/E)AS) f(2) dz:AA(U) f(z)dz

Denn die Integrale iiber die Strecken im Innern des Dreiecks heben sich gegenseitig auf, da die Strecken jeweils doppelt mit

entgegengesetztem Vorzeichen durchlaufen werden. Also ist:

/;A(O) f(z)dz Lf(z) dz /E)A;Cl) f(z)dz

Nun wihlt man unter den Dreiecken Ail), cey AA(LU dasjenige aus, bei dem der Betrag des Integrals am grofiten ist, und nennt es

AM | Dann ist:
z)dz| < 4- / z)dz
[ o @] <a|[ e

Wiederholt man diese Prozedur, so erhilt man eine Folge von Dreiecken A = A© B) A ) AP ) A®) D ... mit

‘/(;Af(z)dz <4 "/BA(M f(z)dz
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Da alle A(? kompakt und nicht leer sind, enthilt ﬂ A™ einen Punkt z0, und da der Durchmesser der Dreiecke beliebig klein
n>0
wird, kann es auch nur einen solchen Punkt geben. Weil f komplex-differenzierbar in zg ist, gibt es eine in zo stetige Funktion A,

so dass gilt: 1. f(2) = f(20) + (2 —20) - (f'(20) + A(2)) und 2. A(20) = 0. Die affin-lineare Funktion \(z) := f(20) + (2 — z0) - f'(20)

7
M - 22, also folgt dann / ) A(z) dz = 0 fiir alle

hat auf G eine Stammfunktion, ndmlich: A(2) := (f(20) — 20 - f'(20)) - 2 + 5 (
onmn

n. Daraus folgt dann:

/OA(”) ) dz‘ = /GA(") (2 — 20) - A(z) dz

Setzt man alles zusammen, so erhdlt man:

< LA™Y max (|z -zl |A(2)]) < (L(@AM™))? . max |A(2)]
zean(n) zean(n)

\/ FEde <an| [ pede] <47 (LOAM)? - max JAG)] = (LOA)7 max [A(:)] < (LOA)? max |A)
an an(n) zean(n) zean(n) zea(n)
Fiir n — oo strebt die rechte Seite gegen 0 = |A(zg)|. Das beweist den Satz! |

Satz (Cauchy’scher Integralsatz fiir Sterngebiete). Es sei G ein Sterngebiet mit Zentrum z1 und f : G — C holomorph auf G,
dann gilt die folgende Identitdt:
/ f(2)dz =0 fiir jeden geschlossenen Weg v in G
.

Beweis. Da G ein Sterngebiet mit Zentrum z; ist, gilt also [21, 2] C G fiir alle z € G. Daher ist F(z) := f(¢) d¢ wohldefiniert.

Z1Z

Sei ¢ € G fixiert und beliebig. Wird z nahe genug bei ¢ gewihlt, so liegt das Dreieck A mit den Eckpunkten z1, ¢, z in G. Das sieht

man im Bild hier:

Nach dem Satz von Goursat oben gilt also 0 = / f(¢)d¢ = /
an Zictez+zz]

f(¢) d¢, woraus also 0 = F(c) — F(z) + /7f(C) d¢ =
F(c) — F(z) + /: fle+t-(z—2¢)): (z—c)dt = F(c) — F(z) + h(z) - (z — ¢) fiir z € G nahe bei ¢, wobei hier gesetzt sei:

1
h(z) := / f(e+t- (2 —c))dt. Offensichtlich ist h(c) = f(c). Es folgt dann:
0

Ih(z) — he)| = '/Olf(cht (= — &) dt — f()

- ‘/Olf(cjtt'(zfc))*f(c)dt Sorélfgllf(cjtt»(z—c))ff(c)‘

Weil f stetig in c ist, lduft die rechte Seite fiir z — ¢ gegen 0, also h(z) — h(c), d.h. h ist stetig in c. Daraus folgt, dass der Limes
. . . . . FR)-F@ . . I , .
des Differenzenquotienten in h(c) = lim h(z) = lim ——————= existiert. Da h(c) = f(c) gilt, gilt also F'(c) = f(c). Weil c € G
z—c z

—c z—c
beliebig war, folgt also, dass F' eine Stammfunktion von f ist, also gilt

1 14
[1@az= [ rom)-y®a= [ Lraw)a=rem) - Fao) =0
5
Denn die Kurve « ist nach Voraussetzung geschlossen, also (1) = «(0). Fertig! O

Satz (Zentrierungslemma). Sei g eine Funktion, die in einem Bereich D mit eventueller Ausnahme eines festen Punktes z € D

holomorph ist. Sei dann B = K, (c) eine offene Kreisscheibe vom Radius r mit Mittelpunkt ¢, wobei gelte: z € B und B C D.
Sei S = 0K¢(z) und S C B, dann gilt:
/ gdz = / gdz
oB S

Beweis. Zuerst kommt ein Bild:
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Es gibt eine Scheibe B* D B U B um ¢, so dass g in B* \ {z} holomorph ist. Es werden nun folgende geschlossene Hilfswege
betrachtet: v := y1 +a+v3+ 8 und 7' := y2 — B+~4 — « (siehe Bild). Da B*\ [a, z] ein Sterngebiet ist, folgt nach dem Cauchy’schen

Integralsatz fiir Sterngebiete also: / gdz = 0. Analog ergibt sich dann gdz = 0. Mit 8B = 1 + v2 und S = —~v3 — 4 folgt
’Y/

5
0=/gdz+/ gdz:/ gdz—/gdz:>/ gdz:/gdz
¥ 5 B s B s

Und das war es dann auch! O

also:

Satz (Cauchy’sche Integralformel fiir Kreisscheiben). Sei K = K,(c) (Radius r, Mittelpunkt c) eine offene Kreisscheibe in C
und f eine holomorphe Funktion auf K. Fir jedes z € K gilt dann die folgende wichtige Identitdt:

£(2) 1 /3 ¢ dc

:27ri K (—=z

1 1

Beweis. Sei z € K fixiert. Aus dem Beweis des Residuensatzes weifl man bereits, dass i / c d¢ = 1 gilt. Also folgt
L) ok C— =z

daraus dann das Folgende:

1 1) o (0 1 L1 O -1
—/d aC— f(z) = 5 dC—f(Z)‘Tmn/BK dc = Q)= 2) 4

271 Kk C—=z i oK C— 2 (—=z 271 Jox (—=z

_ Q-5
= =< fii
¢—=z o
Stetigkeit von ¢ um z gibt es ein § > 0 und ein M > 0 so, dass gilt |¢(¢)] < M fiir alle ¢ € Ks(z). Aus dem Zentrierungslemma
folgt: / @(¢)d¢ = @(¢) d¢ fiir ein € > 0 mit OK.(z) C K. Mit der Standardabschétzung folgt dann:
oK

e(z

Die Funktion ¢(¢) r ¢ € K\ {z} mit p(z) := f'(z) ist holomorph auf K \ {z} und stetig auf K. Wegen der

[ e@dc=[  p@rac<ame sup 1p(Q)] < 2mM e
oK o z e<d

Ke(z) CEOK(2)
— 1
Dabei muss bei ¢ — 0 dann € < § gelten. Also folgt: M d¢ = / @(¢)d¢ =0, also — - / Q) d¢ — f(z) =0.
ok (—z oK 2mi Jox (— 2
Damit ist der Beweis also vollbracht!
Das Noether-Theorem
[Zuriick zur Liste]
Satz. Sei die Lagrange-Funktion £ (x(t),&(t),t) mit x(t) = (z1,...,2f)(t) und &(t) = (£1,...,2f)(t) (Ort und Geschwindig-

keit), wobei f die Anzahl der Freiheitsgrade ist, fiir ein mechanisches System gegeben. Man méchte dann das Wirkungsfunktional
2
Slz] = ZL(x(t), z(t),t) dt minimieren, gemdf dem Prinzip der kleinsten Wirkung fiir eine Bewegung von Massepunkten.
t
Setzt man z.B. L (x,&,t) = Egin — FEpot, dann soll die Minimierung von S[y] bedeuten, dass man eine Bahn, von einem Punkt zu

eitnem anderen, mdochte, die minimal viel Energie verbraucht. Nach Variationsrechnung ist S[y] genau dann extremal, wenn die

Euler-Lagrange-Gleichungen gelten: — —— —
und t — t* =t+e- oz, &, t)+0(?) = t"(z1,... ,xf,t,€) die sehr allgemeinen kontinuierlichen Koordinatentransformationen

= 0. Seien nun durch ; v a} = z;+e-;(x, &, t)+0(e?) =: x} (x1,...,25,t,¢€)

gegeben. Ist eine Transformation so gegeben, dass das Wirkungsfunktional S[z] unverdndert bleibt, dann hat das nach Noether

eine Erhaltungsgrifle zur Folge. Solche Transformationen heiffen Symmetrietransformationen.
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Beweis. Es wird zunichst untersucht unter welchen Bedingungen fiir eine Transformation das Wirkungsfunktional unveridndert

. ‘3 oodzt LN t2
bleibt: Sei also S™ = / < <:n s E,t ) dt” = ZL(x,z,t)dt = S. Es gilt:
ty tq
X dx* to +*
S* =/ 2$<x*,i,t*> dt” =/ (x (t), (t) t (t)> dt
¥ dt* t
1 1
dx 0 (0 (0
Sei f(e) := & (w (t) (t) t*(t )) . Dann gilt nach Taylor: f(e)—%veo+f1(’) € +f ( ) ce2 4 ... = f(0) + £'(0) -
i d ' dz* ¢
e + O(c?). Es gilt W =1+¢- Eap(z,i,t) + O(£?). Also folgt: f(e) = 3( *(t) w —— (1), t" (t)) — = L (z(t),z(t),t) - 1+
d dt”
= <$ ( *(t) (t) *(t )) = ) - €. Daraus folgt also, dass die Koordinatentransformation genau dann symmetrisch (also
€ 0
L d = £+ ) _ _ dt* de
S = S*) ist, wenn = (t)7 (t) t*(t) = 0 (Invarianzbedingung) gilt. Man rechnet nun: e l1+e- s =
e=0
dt 1 d 1 S da} dxy  dt dux; dip;
—7z175-i, denn: —— = Z(fa:)k,we(fl,l). Es folgt: T 2% = (IZJre- w1>~
dt* dp dt 14+ = dt* dt  dt* dt dt
1+e-—
d dx; dip; dz; d dipi d dx; dyp; dz; d dz; dip; dz; d
1-e- ) =% 6_1/’75.570.790782411’ L _ 6-¢764$4¢+O(2)% J)Jrs-wfs-m-—ip
dt dt dt dt  dt dt  dt dt dt dt dt dt dt  dt
Diese Ergebnisse setzt man nun in die Invarianzbedingung ein:
d da:l dy; dz; de de
0=— (2 i . —e- st 1 -
ds( (m tev AT T Lp) <+5 a ) ).,
-
d dx; dw1 dx; de . d@
0=— (% i cYi, —— . —€- . 14+ Lz, x4, t) - —
ds( (z tevn g e Ty Tt ”))ﬂo + L@ b t) - 5
4
f
dy;  dz; d 2 . ) d
0= (;m,mm uwz i) (- T 22 +8t(m,wi,tw> Ll t)
<~
f I
0% dp; 0% . dz; d 0% d
=3 P @b ¢z+z ~ (i) —;%m,xi,w(dt )+ G o+ Landi ) 5

i=1

0L f 0¥ dz[;, fod o f 0 dllh‘ f 0L
b | = . il = == Ly d
A= w) o a T Zaios VT E T2 G, Wi wesen der
. . d 0% 0L
giiltigen Euler-Lagrange-Gleichungen — —— =
dt Ox; ox

f
Eine kurze Unterbrechung; es gilt: — <Z

. Also gilt weiter:

i

f f
d o oL de;\ do 0%
—dt<zax w) (f > a dt>'dt+at'*"

i=1
d 08 S 0% 5o 0% I dog ;o 0% d (4. oz
Unterbrechung: — 2 (z;,&;,t) = Ty — &y = —— — T — & = —+ — - &
nterbrechung: .2/ (2i, &1, 8) = -+ 3, Fdit 2 Hmdio = ety g Bt N e T g (; Y9 z)

wieder wegen der Euler—Lagrange—Glelchungen. Weiter:

s 5 5
d 0% 0% dzx; dep d d 0% .
O_ch<i§:18ii 'wi>+ (‘g_Zag‘ci' dt)'dt+ (dt‘g—dt (2% x’)) e

i=1 0%

i=1
=
0 @ Xf: 02 N[y Xf: 0%
=— i — - &
dt \ & i, dt 2 i, ?
=
f £
d 0L 0L
0=— — s L — i
dt(z;am w+< ;aL )“’)
f 0% f 0¥
Es wurde also eine Erhaltungsgréfie > — - ¢; + (.2’ - > Frol T > ¢ = konst. hergeleitet
i=1 0T;

Korollar. Aus dem Noether-Theorem oben folgt:

1. Zeittranslations-Invarianz = Energieerhaltung
2. Rdumliche Translations-Invarianz = Impulserhaltung

3. Drehinvarianz = Drehimpulserhaltung
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z(t) 1 0 0
Beweis. Zu 1.: Sei Z(t) := y(t) = x(t) - 0 + y(t) - 1 + z(t) - 0 =x2(t) - ez +y(t) - ey + z(t) - e.. Dann ist
z(t) 0 0 1
. 1
ZL(Z,Z,t) = 5 me (2% + 9% + %) — V(x, vy, 2). Sei weiter z* = &, y* = y und 2* = z, aber t* =t + ¢ (Zeittranslation). Also gilt
f 0L 1 1
;i = 0, aber ¢ = 1. Dann gilt: £ — > a—u =3 cm - (8% 4+ 9% 4 22) — V(z,y,2) — 3 m-(2-d-2+2-9-94+2-2-2) =
i=1 OT;
1
5 m - (m'2 + .1;2 + 2'2) —V(x,9,2) = —FEkin — Epot = —(Fkin + Epot) = —E (negative Gesamtenergie) ist die Erhaltungsgrofe.
Nun zu 2.: Sei diesmal also z* = x + ¢ (Réumliche Translation in z-Richtung), mit y* = y und z* = z sowie t* = ¢, also
I 0L
Y1 = 1 sowie 9o = 3 = 0, und ¢ = 0. Damit erhidlt man nach dem Theorem oben, dass ey -; = m -z (Impuls in
i=1 0T;
cos(¢)
z-Richtung) eine Erhaltungsgréfie ist. Jetzt kommt 3.: Man wéhlt hier Zylinderkoordinaten: Es gilt zunéchst e, = sin(¢) s
0
— sin(¢) 0
ey = cos(¢) und e}, = 0 |.In Zylinderkoordinaten ist ein Punkt schon dargestellt durch Z(t) = r(t)-e,(t)+h(t)-en(t).
0 1

Alsofolgt:Ln‘:f-er+r<ér+h-eh+h-éh :7'”<er+r-¢')-e¢+f.z~eh,+h<0:7’“~er+r-¢}-e¢+h-eh,alsogiltdann: 72 =
72 (er-er) 41232 (ep-eg)+h2-(en-en) = #24+12-$24+h2. Dann ist also L (%, &, t) = L(r, ¢, h, t) = 5-m~(7'"2+7‘2-¢'>2+i12)7l/(7‘, ¢, h).

Sei nun also r* = r, ¢* = ¢ + & (Drehung um z-Achse) und h* = h, sowie: t* = t. Also gilt nach dem Theorem von Noether mit
f 0L
1 = 13 = 0, aber 92 = 1, und noch ¢ = 0, dass > —

Yo i =m - 72 . ¢ (Drehimpuls) eine ErhaltungsgroBe ist. O
i=1 O&;

Korollar (Schwerpunktsatz). Der Schwerpunkt eines n-Teilchensystems bewegt sich geradlinig und mit konstanter Geschwin-

digkeit. Der Beweis geht dann folgendermafen:

n

. no1 . 1
Beweis. Fiir die Lagrangefunktion gilt also Z(&;,Z;,t) = > 5 M V(. & -, =2 5 mi (2 + 92 + 23) —
i=1 i=1
V(...,1Z — Zl,...). Sei dann z} = z; + € und y; = y; sowie 2 = 2; als auch t* = t. Also gilt ¢, = 1, ¥, =0, ¥, = 0 und
n 9L n
¢ = 0. Nach dem Noether-Theorem folgt daraus, dass >, —— - s, = > m; - &; = konst. (Gesamtimpuls in z-Richtung) eine
i=1 OT; . i=1
n ! ‘ n ‘ n
Erhaltungsgréfle ist. Genauso zeigt man, dass Y. m;-¢; = konst. und > m; -2, = konst. gelten. Sei M := > m,; die Gesamtmasse
i=1 i=1 i=1
. 1 =n
(eine konstante Grofie), dann ist S = w > m; - & der Schwerpunkt des n-Teilchensystems. Dann folgt:
i=1
n
S my -y konst.q
, i= M
d 4 1 - - 1 i X konst.o N
ES:M-Zmi~zi:M< 1§1m1y1 = 7 = Ukonst.
=1 i . konst.3
my o 3 iy
= M
Das ist also die gewiinschte Behauptung. Das war es! O

Das Euler-Produkt

[Zuriick zur Liste]

= 1 1
Satz. Es gilt die Formel ((s) = Z — = H — firs e {z € C: RN(z) > 1}.
= p prim 1-p7¢

Beweis. Zunichst wird die absolute Konvergenz der Zetafunktion gezeigt. Es gilt mit s = a + b - i:

—s

n

_ ‘e(fafb-i)-ln(n)

_ |efa-1n(n)‘ . |efb-i-1n(n)| _ |e—a-1n(n)

- |cos(—=b - In(n)) + i - sin(—b - In(n))|

Wegen |cos(—b - In(n)) + i - sin(—b - In(n))| = \/cos(—b - In(n))2 + -sin(—b - In(n))2 = 1 folgt also

—s
|n

_ )e—a,-ln(n)| — e

0 0
Nach dem Cauchy’schen Verdichtungskriterium konvergiert eine Reihe > a, genau dann, wenn die Reihe > 2k - a,k konvergiert.
n=1 k=0

2.3} 1
Damit folgt dann also: Y ’—
n=1|n°

=
= > |n_9| konvergiert genau dann, wenn
=1

oo oo

o= S () =5 ()T 5 ()

k=0 k=0 k=0
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(e o
konvergiert. Nun konvergiert > (21_0’)k als geometrische Reihe genau dann, wenn 2' 7% < 1 & log,(2'7%) < log,(1) © 1 —a <
k=0

0 < a > 1 gilt. Weil nun ((s) fiir R(s) = a > 1 definiert ist, folgt, dass die Reihe auf dem Definitonsbereich auch konvergiert, denn

aus absoluter Konvergenz der Reihe folgt die normale Konvergenz, weil die absolute Reihe eine konvergente Majorante der normalen

Reihe darstellt. Sei nun P, := {p1, ..., pn} die Menge der ersten n Primzahlen und N(P,,) :={N € N: N = p]fl epR (B, > 0)).
Es wird behauptet:
> o= I i
I T A=
Das wird mit vollstdndiger Induktion gezeigt: I.A.: Also n = 1:
1 1 > S\ v > 1 1
pgl 1—p->s = 1— (p1)—* = UZ:O ((p1) ) = UZ:O (pf)s = NP Ns

Jetzt kommt der Induktionsschluss (I.S.: n = n + 1):

1 1 1 I.v. 1Y) (< 1 B 1
I === == AU et R Y

—p—s ’ _ —s s
pePpyy L TP PEPR 1= (Prt1) Nenr ¥ v=0 (Pii+1) NEN(Pp41)
1
Wegen absoluter Konvergenz sind die gliedweisen Multiplikationen und die Umordnungen erlaubt. Es gilt also > e =
NeN(Pn)

1 1
-. Jetzt ldsst man auf beiden Seiten n gegen oo laufen. Nun gilt lim > — = > —. Weil diese Reihe, wie

pEPp L —p7° n—=o0 NeN(Pp) N° n=17n°
schon nachgewiesen, konvergiert, folgt also die Behauptung des Satzes. O

Das Gauf3-Integral

[Zuriick zur Liste]

o0 2
Satz. Es gilt/ e dr = /.

— oo

Beweis. T'(z) = / t*71 . e7" dt heift Gammafunktion. Es wird I'(3) auf zwei Arten berechnet:

0
1 o 1,
(- :/ t72.e " dt
2 0
NS
= [T
V0
:/‘meiw
0
o _ o
2~/ e ¥ dx
0

[N

2
-e T . 2xdx

2 1
- — - 2xdx
T

Il Il
‘\ N | N

3 .
’ ® I\
g 8

HK\J o
SN

&

8

Als niéchstes wird die Gaufi’sche Produktdarstellung der Gammafunktion hergeleitet:

" ) 2 \" . nooa £\"™
e’ = lim (14 — = I'(z) = lim t 1= = dt
n— oo n n—oo fq n

Nun wird mehrfach partiell integriert:
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C +\"]"™ ntz
RCOIES
n 0 0 xr
1 n t n—1
0+7-/t1~<177) dt
T 0 n
1 tz+1 t\n—1 n n tz+1
—. 1= = —
( n) o /0 z+1

t
.(1,,
n

rx+1

8

~(n71)~<17£

I

1 n—1 n g+l t\"—2
=—-(0+ / 1= = dt
n o z+1 n
:;."71./%”1.(1—5)”_2 dt
z-(z+1) n 0 n
1 n—1 72 t\"2]" nogrt? t\" 3 1
= . . 1= = - (n—2)-(1-— == dt
z-(z+1) n T+ 2 n o 0o T+2 n n
1 n—1 n—2 [nt°t? t\"?
= . o+ / 1= = dt
z-(z+1) n n 0o T+2 n
_ 1 (n-1)-(n-2) "ate l_infsdt
z-(z+1) (x+2) n2 n
Nach weiteren n — 3 partiellen Integrationen hat man:
/”tgky PR 1 S (n-1-(n—2)- ~1‘/'”tm+(n71)dt
0 n z-(z+1)-...-(z+(n—1)) nn—1 0
_ 1 (n—1) [e=tn]"
7w-(m+1)~...~(w+n—1) nn—1 x—i—no
-~ 1 (n—1)! n*tn
Tz-(z+1)-...-(x+n—1) nn-1 z+n
_ 1 . n! CpEtnel
z-(x+1)-...-(x+n) nn1
_ n!-n®
Tz-(x+1)-...-(x+n)
Zusammengefasst wurde also gezeigt:
I(z) I n!-n”
z) = lim
nooco - (x+1)-...-(z+mn)
Mit dieser Darstellung kann man nun F(%) auf andere Weise bestimmen:
1
F(1> i n!-n2
— ) = lim
2 nooo L (2 41)-(34+2)-...-(3+n)
X n! %
=0m s (2
22 2
n!~n% cgntl
= lim
n-ro0 1 - S(2n+1)
| n 2
= lim 2- n2 (nh)? - (2%)
n—00 (1-3-5-...-(2n+1))?
. 2(22-22).(32-22)....-(n%2-22)
= lim 2. n2
n—ro0 12 32.52. - (2n+1)2
[n | 2 - 2i
= lim 2- H - : 14
n—oo 2n + 1 o (20-1)-(20+1)
[ ﬁ (29)2
nﬂoc 2n+1 g (20—1)-(20+1)

ff

=7
Durch Gleichsetzen der beiden Darstellungen fiir F(%) folgt die Behauptung.
Es geht aber auch sehr viel kiirzer:

Beweis.

N | =

oo 2 oo oo 2 oo 2
/ e " dr=2- / e = (4 . / e " du- / e " dv )
—oo 0 0 0
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Und das ist dann gleich zu:

T us
r : 2 r 2
44/2 /°° o= ((rcos(@) 4 (rsin()?) | gop [ CO8(0) resinGe) ) g S 4./2 /°° e rdrde

0 0 sin(¢) r - cos(g) 0 0

Und weiter gleich zu:

T e
72-/2 / e " - (=2-7r)drdy =
o Jo

Also folgt daraus:

N | =
|
N
S~
N
S~
3
mr&
U
=
Is¥
©
N | =
Il
o
S—
N
I
8
mr»
U
=
U
©
N =
Il
N
S—
N
©,
G
3
Is¥
©
o

1
™ 3 1
oo Py - T\ &
/ e " dx = 2-/21d<p —<2 [cp]02>2=\/;
— oo 9
|
L]
Das Wallis-Produkt
[Zuriick zur Liste]
oo 2m)2
Satz. FEs gilt T H $
2 45 @n—-1)-(2n+1)
Beweis. Man untersucht die Folge i) := /2 sin(w)k dr mit k € INg. Je zwei Glieder von 7j sind rekursiv verkniipft durch
0
igpto = % - i mit den Anfangsbedingungen ig = % und 43 = 1. Man erhélt dies durch partielle Integration:
. 5 k42
tht2 =/ sin(x) dx
0
= /2 sin(gc)kJrl -sin(z) dx
0
- [sin(x)’““ . (—cos(x))]f —/2 ((k 4+ 1) - sin(2)" - cos(x)) - (= cos(x)) dx
0
=(k+1)- / 2 sin(ac)k - cos(z)? dx
0
=(k+1)- / 2 sin(2)* - (1 = sin(z)?) da
0
=(k+1)- / 2 sin(z)® — sin(2)"*? da
0
=(k+1)- (/ sin(z)* do — / sin(z)" 2 dz)
0 0
=(k+1) - (ix —ixt2)
Eine Umordnung des Resultates ig42 = (kK + 1) - (i — ip42) ergibt igpo = % - 4. Nun kann man die Quotientenfolge 1;_’?_1
. i 1 . . O iy . o . .
abschétzen durch 1 < i1 < 1+ 537 Das ist gleichbedeutend mit kl;rréo Tt 1. Denvn sei x E [0; Z], dann gilt 0 < sin(z) < 1.
Also folgt sin(z)**? < sin(x)* sowie sin(z)**2 < sin(x)**! und daraus 1 < ’klfrl und %Zil < ’kli2 Wegen der Rekursionsformel
; ik k+2 _ 1 ; s s ik ik 1 S o s sichli i ik
gilt Teiz = FHL = 14+ e Zusammenfassend hat man also 1 < Tyl < iz = 1+ I Es gilt also tatsdchlich khﬂmoo rw 1.

iok

Es wird nun die Wallis-Folge definiert: wy := Tt

. Nun gilt:

Wk (1) = o f2(k—1)+1 G2k d2k—1 _ d2k—1 G2k <i2k+1 )71 iy, (2k—1)+2 (2k—2)+1
= wg - (Wk—1 = - - = = - ‘- - ‘- =1 o = :
Wr—1 12k+1  l2(k—1) i2k+1 f2k—2  2k+1  i2k—2 i2k—1 iok—2  (2k—1)+1 (2k—2)+2
Also gilt wwf = (2’9*21’2:(2?*1) = (2k=1)-@k+1) _. . Die Rekursionsgleichung wy = wy_1 - 7% wird nun niher betrachtet:

(2k)2

W2 = W1 *T2 =W *T1 T2

W3 = W2 T3 = Wo "T1"T2"T3



) ) . )
Es folgt lim -2 = -L . [ (7’n)_1 mit wg = 9 = Z.. Die Erkenntnis iiber den Quotienten ; 'k Jiefert lim wy = lim —2&E —
k—oco Wk wo oy ‘1 k41 k— oo k—oo 2k+1

lim - “k_ — 1. Daraus folgt wegen lim u% = ﬁ
k—oo 'k+1 k—oco Yk koo Uk

N p—

oy (2n— 1 -(2n+1)
Und das ist die Behauptung des Satzes. O

Die divergente harmonische Reihe

[Zuriick zur Liste]

1 1 1 1
Satz (Divergenz der harmonischen Reihe). FEs gilt E —==-+4+= + 3 + 1 +-+...=o00.
. " . t 1ot t 1t 1 1 ¢ In(x) 1 ’ 1

Beweis. Zunéchst gilt In(e’) =t = In'(e") - " =1 = 1In'(e’) = — = In'(e ) = oy In’(z) = —. Daraus folgt dann

1 1 1\’ 1 ‘ e i
In(z) = / 7 dt. Weil — wegen <7) = —— <0 fiir alle z € [1, 00) also streng monoton fallend ist, folgt, dass fiir alle n € Nt

x x x
1

x
1 1 1 =1 =1
auf [n,n + 1] gilt — < —. Also folgt damit: In(z) = /7 dt < Z — 1= Z —. Nun ist aber In(z) auf [1, co) stetig und wegen
t n n n

1 n=1 n=1
1

In’(z) = = > 0 streng monoton steigend. Desweiteren ist In(x) nach oben unbeschrinkt, denn wire In(z) < C fiir alle = € [1, c0),
z

dann gibt es aber ein 2’ € [1,00) mit &’ = e“T!, so dass also folgt In(z’) = In (ec+1) = C + 1 > C, Widerspruch. Also ist In(z)

1 =1
nach oben unbeschriankt. Zusammengefasst ist also bewiesen, dass le In(x) = co. Wegen In(z) = /Z dt < g — hat man fir
z 00 n
n=1

1
oo

1
Z — also eine divergente Minorante gefunden, also gilt die Behauptung des Satzes. O
n

n=1

N
1
Satz (Euler-Mascheroni-Konstante). Es gibt ein v € [0, 1] mit v = lim < § — - 1n(N)>.
N — oo n

n=1
) G (1Y 1 o 1
Beweis. Weil | — =-= <0 fiir alle z € [1,00) gilt, ist also — dort streng monoton fallend. Daraus folgt dann, dass fiir
T T T
o , 1 11 =
alle n € IN=" gilt: Auf [n,n + 1] ist < = —. Daraus folgt dann also: Z - < - dr =In(N) < Z — und daraus
n+1 x n - n
1 = Pt 1 1 N1 1 1
folgt d — < In(N) — —<1=-1< ——In(N) L —— = -1 1+—) < — —In(N) < —— 14+ — |,
olg damn < In(N) = 30 5 ST -1 3 -l < - +(+N)f,;n w) < -+ (14 )
1 N1 1
also gilt — < yn = Z — — In(N) < 1. Es folgt daraus, dass yn fiir N — oo nach unten durch lim — = 0 beschrénkt
N —n N—oo N
ist. Nun gilt Nijll In(N — 1) Zle In(N) L la(v — 1) + () /N LIPS
ist. Nun gilt: 1 - = — — In(N — — — —1In = —— —1ln — n = —dr — — =
g YN -1 YN 25 20 N N1 T N

N1 1
/ 2 N dx > 0, also gilt damit yy_1 > yn fiir alle N € ]NZl7 d.h. yn ist monoton fallend. Weil x nach unten durch
N-17T
0 beschridnkt ist und monoton fallend ist, folgt, dass vy fiir N — oo konvergiert. D.h. dann, dass der folgende Limes existiert:
N
1
v = lim yy = lim g — —In(N) |, wobei gilt: v € [0, 1]. Also: Fertig! |
N — o0 N — o0 fogut n

1
Satz (Konvergenz der alternierenden harmonischen Reihe). Obwohl Z = oo gilt, ist aber:
=1

> 1 1 1 1 1 1
—)Tl . L= o o s - =In(2
nz::l( ) n 1 2+3 4+5 )
Beweis. Zu Beginn gilt erstmal folgendes:
2N 2N N 2N N
1 1 1 1 1
[ B . —_9. [ - -
D P PE R PE TP DR

2N N
1
Aus dem vorherigen Satz folgt, dass an = ( E - - 1n(2N)> — v und a’N = ( E - - 111(N)> — v Nullfolgen sind. Daraus folgt
n n

n=1 n=1
2N N o
dann: Z . =In(2N) + v+ any und Z o =1In(N) +~v +a;\,. Also:
n=1 n=1
N - A | 2N
2EDT =30~ =3 — = (In@2N) +y+an) — (In(N) +y+aly) = In(2N) = In(N) + (ay —aly) = In (W) +(an —aly)
n= n=1 n=1
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Man hat also schlieilich:

1 2N
. n—1 _ . _ 7 — . _ . [ _ —
Nh_r}noo E (-1) o= In (—N ) + ]\]lgnm(aN ay) =In(2) + Nh_1:noo an Nh_r)noo any =1In(2) +0—0=1In(2)

Damit ist also bewiesen, dass Z( )"t 2 =In(2) gilt. Ende. a

n=1

Der Riemann’sche Umordnungssatz

[Zuriick zur Liste]

o0
Satz (Riemann’scher Umordnungssatz). Ist die Reihe ). aj konvergent, aber micht absolut konvergent, so findet man zu jeder
k=0

beliebigen Zahl s € R U {—o00, 00} eine Umordnung n : N — IN der Glieder mit Y ap(k) = s.
k=0

Beweis. Sei zunéchst s ¢ {—o00,00}. Sei > aj konvergent, aber Y |ai| = co. O.B.d.A. kann man annehmen, dass aj # 0 fiir alle
k=0 k=0

o0 o0
k gilt, denn das Streichen der Nullen in > aj und Y |ag| &ndert nichts an der Konvergenz und den Grenzwert dieser Reihen. Sei

k=0 k=0
nun:
ai| +a _ ag| —a
a;r = m% = max(ay,0) und a, := ‘k‘#k = max(—ag, 0)

Es ist ersichtlich, dass die Zahlen aI, a, alle nichtnegativ sind, und es gilt dann: aj 2 az —a, und |ag| 2 a;r + a, . Wire eine

der beiden Reihen Z ak s Z a,. konvergent, so wiirde aus *; folgen, dass auch die andere konvergiert. Aus %2 wiirde dann folgen,
k=0 =0

dass auch E |ak| konvergiert, Widerspruch zur Voraussetzung. Z ak R Z a,, sind also beide divergent. Nun:
k=0 k=0 k=0

{+pr} := Teilfolge aller positiven Glieder von {aj} (entsteht durch Streichung der Nullen in {a,:r})
{—qxr} := Teilfolge aller negativen Glieder von {a} (entsteht durch Streichung der Nullen in {a, })
Also sind auch die Reihen Z Pk Z qr divergent. Da aj # 0 fiir alle k gilt, tritt jedes Glied der Folge {aj} in nur genau einer

k=0 k=0
der beiden Teilfolgen {py} und {—qr} auf. Daraus folgt:

ng
Es existiert ein kleinster Index ng mit Z Pk > S,
dann ein kleinster Index n; mit Z Pr + Z ) < s,
ng
und wieder ein kleinster Index no mit Z pr + Z(qu) + Z pr > s
k k

k=ng+1

no nq no ng3
und dann wieder ein kleinster Index nz mit Z P+ E(—qk) + Z P+ Z (—pr) < s, usw.
K k=ng+1 k=n1+1

Die so entstandene Reihe
Po 4+ Png +(=90) + -+ (=qny) FPng+1 + - F Py + (—ang+1) + oo+ (=Gng) + -

ist offensichtlich eine Umordnung der Ausgangsreihe und wird mit Z an(k) bezeichnet. Mithilfe der Minimaleigenschaft der Indizes

ng,n1,N2,Nn3,... kann man die Differenz zwischen s und den Tellzaummen betragsméBig durch png,gnq,Pny, dng, - - - nach oben

abschéitzen:

[s —[po +p1+ D2+ ...+ Pngll < png
[s = [po+ .. +Png +(=q0) + ..+ (=qn )]l < qny
[s = [po+ .. +Png +(=q0) + .-+ (=qny) + Prg+1 + - + Pnyll < pny

[s —[po+ ... +Png +(=q0) + ...+ (=qny) +Png+1 + -+ Dy + (=qny+1) + ..+ (=@n3)ll < gng

Das sieht man so: po + p1 +p2 + ...+ Pnyg > 8 = po+p1+p2+ ...+ Pny—1, also: 0 > s — [po + p1 +p2+...+pn0] > —Pngs
also 0 < [po +p1 +p2+ ...+ pno] — 5 < pn. Bei den anderen zeigt man das analog. Da aber die Folgen (q"1 1 Gng s dng s - - .) und
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0 o
(Pno’pnz,p,m, ...) aufgrund der notwendigen Bedingung fiir die Konvergenz von Y~ aj gegen 0 streben, folgt > a,) = s. Sei
k=0 k=0

nun s € {—o0,0c0}. Man wihle

my so groB, dass p1 +p2 + ... +pmy > 1+4q1,
dann mgz so, dass p1 +p2 + ... +Pm; + ...+ Pmy > 2+ q1 + g2,
und allgemein: p1 +p2 + ... +Pm, >v+q +q+ ...+ qo

Dann gilt also:

Pr+p2+ ...+ Pmy — @ FPmi+1+ - FDPmy — @2+ o+ Pmy, — Qo >V

o o
Die Partialsummen dieser umgeordneten Reihe 37 a,, () sind unbeschriankt, also divergiert Y a,) gegen +o0o = s. Analog kann
k=0 k=0

man eine Umordnung konstruieren, dass die umgeordnete Reihe gegen —oco = s divergiert. O

Der Fundamentalsatz der Algebra

[Zuriick zur Liste]

Satz. Jedes nicht konstante Polynom besitzt 1m Bereich der komplexen Zahlen mindestens eine Nullstelle.

Beweis. Ein nicht-konstantes komplexes Polynom P(z) € C[z] vom Grad n € N lisst sich darstellen in der Form P(z) = Q(z)-z+ao
mit ag € C, Q(z) € C[z]. Nimmt man nun an, P(z) sei ohne Nullstelle, so ldsst sich fiir z € C\{0} stets schreiben:

1 _ P> 7Q(Z)+ ao

z  z-P(z) P(z)  z P(2)

Nun bildet man fiir jedes r € IN das Wegintegral der auf C\{0} gebildeten Kehrfunktion z — 1 iiber den Kreislinienweg v, (t) = r-ett
(t € [0,27]) und erhélt:

2'7/1(17 Q) 4. 4 /71 d
[ S A R Sy P

Aufgrund der angenommenen Nullstellenfreiheit von P(z) ist z — ggj)) holomorph, womit sich infolge des Cauchy’schen Integral-

satzes weiter ergibt:

1
275 =0 . ——d
T + ao /;T,Z'P(Z) z
und daraus:
27 < Jaol - L(v) ! Jaol - 2 : Jaol - 2 !
s a . r) s Max —————— = |Q, 2T - Mmax ——————— = |a s 27 - max ———
R N N TO TR si=r 2] - [P)] ~ ° l=l=r [P(2)]

Dies gilt fiir beliebige » € IN. Nun ist jedoch ‘ llim |P(z)| = oo und damit folgt aus der letzten Ungleichung unmittelbar 2w < 0, was
zZ|—o0

sicher falsch ist. Damit ist die angenommene Nullstellenfreiheit von P(z) zum Widerspruch gefiihrt und P(z) muss eine Nullstelle

haben. Also ist man hier fertig! O

Der RSA-Algorithmus

[Zuriick zur Liste]

Satz (Euler-Fermat). Unter der Bedingung ggT(a,n) = 1 gilt a®™ modn = 1.

Beweis. Sei {r1,...,7,(n)} die Menge der Zahlen (kleiner als n), die teilerfremd sind zu n. Diese Zahlen sind multiplikativ modulo
n invertierbar, denn fiir alle x € Z/nZ ist z - r; modn € Z/nZ. Diese sind fiir diese z paarweise verschieden, denn ansonsten gelte
fir ¢ # 2t - r;modn = 2’ - r; modn < (z —2’) - r; modn = 0, also folgt n | = — 2’ wegen ggT(r;,n) = 1. Das ist aber ein
Widerspruch, weil |z — 2’| < n gilt. Folglich gibt es also ein = € Z/nZ so, dass gilt -r; modn = 1, also sind die r; invertierbar. Fiir
jedes a mit ggT(a,n) =1 ist r — a - r eine Permutation von (Z/nZ)* :={r1,...,r,(s)}, denn wegen ggT(a,n) = ggT(r;,n) =1
ist auch a - r; teilerfremd zu n, d.h. a - r; € (Z/nZ)*, also ist die Abbildung schon mal wohldefiniert. Sie ist auch injektiv: Ist
a-rmodn = a-r’ modn, dann gibt es ein ganze Zahl k so, dass gilt a - (r — ') = k - n. Wegen ggT(a,n) = 1 folgt n | r — r’, also
r—r'modn = 0 < rmodn = 7’ modn. Aus der Injektivitit von r — a - r folgt also |a - (Z/nZ)*| > [(Z/nZ)*|. AuBerdem gilt
wegen a-r € (Z/nZ)* fir r € (Z/nZ)* auch !a (Z/nZ)* ! < |(Z/nZ)* |, folglich ist die Abbildung bijektiv. Da die Multiplikation

kommutativ ist, folgt:

P (n) P (n) P (n)
H r; |modn = H (a-7r;) |modn = H ri | - a®?™ | modn
i=1 i=1 i=1
Aufgrund der Invertierbarkeit der r; modulo n, folgt daraus 1 = a?(™) mod n. O
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Satz. Zundchst hat man einen Klartext m, der durch Potenzieren mit einem dffentlichen Schliissel ¢ verschliisselt wird. Poten-
ziert man diesen verschliisselten Text m© mit dem privaten Schliissel d, so erhilt man wieder den Klartext m. Der Algorithmus
arbeitet also korrekt. Dabei gelten folgende Voraussetzungen: m = p - q mit p,q € P, m € Z/nZ und d sei so gewdhlt, dass
c-dmod p(n) =1 ist, wobei ¢,d € Z/p(n)Z gilt.

Beweis. Es gilt (mc)d modp —mmodp =0 & (mc'd — m)mod p = 0, denn es gilt ¢-dmod ¢(n) = 1, also gibt es eine ganze Zahl
k so, dass ¢c-d =1+ k- ¢(n) gilt. Nun wird der Satz von Euler-Fermat angewandt. Dafiir miissen aber m und p teilerfremd sein.
Sind sie es nicht, dann gilt p | m, weil p € P ist, also folgt mmodp = 0. Wenn p ein Teiler von m ist, dann auch von m® <. In

c-d

diesem Fall gilt also (m®? — m)modp = 0. Sei nun also ggT(m,p) = 1. Dann gilt wegen des Satzes oben m¥® modp = 1. Fiir

@(p) = p — 1 ergibt sich daraus:

me? modp = mitre() mod p
=m - mPFem mod p
—m . mr @D (@1 mod p
=m- (mpil)k'(qfl) mod p
= (mmodp - (mp_l)k'(q_l) mod p) mod p
= (mmodp - (mP™! modp)k'(q*1> mod p) mod p
= (mmodp - 1k(a=1) mod p) mod p
= mmodp
Also auch in diesem Fall gilt (m® % —m) mod p = 0. Ganz genauso zeigt man (m® % —m) mod ¢ = 0. Da die beiden Primzahlen p und

q die Zahl m®® —m teilen, teilt auch ihr Produkt n = p-q diese Zahl. Es folgt dann (m® % —m)modn = 0 < m*%modn = m mod n,
die Behauptung des Satzes. O

Das Rauber-Beute-Modell

[Zuriick zur Liste]

Definition. Unter einem Ersten Integral zu einem C'-Vektorfeld v auf Q@ C R™ versteht man eine C'-Funktion E : Q — R, die
auf der Spur jeder Integralkurve einen konstanten Wert hat. Anders formuliert: Eine Funktion E derart, dass jede Integralkurve

von v in einer Niveaumenge von E verldauft.

Lemma (Erstes Integral). Eine Cl-Funktion E : Q — R ist genau dann ein Erstes Integral zum Vektorfeld v, wenn die Ableitung
n

Oy E ldngs v verschwindet. D.h. es gilt: 0, E(z) = E'(z) - v(z) = > 8; E(z) - vi(z) = 0.
i=1

Beweis. Sei 9,E = 0 und ¢ : I — Q eine Integralkurve. Dann gilt E(¢(t))(t) = E'(p(t)) - $(t) = E'(¢(t)) - v(p(t)) = 0. E ist
also konstant auf der Spur von ¢. Sei umgekehrt E konstant auf jeder Integralkurve. Man wihle dann zu x € Q eine Integralkurve
mit ¢(0) = z. Da E auf der Spur von ¢ konstant ist, folgt 8, E(z) = E(¢(t)) = 0. Da E(¢(t)) konstant ist, reicht es z = »(0) zu

setzen. |

Lemma (Gronwall). Es sei g : I — R eine stetige Funktion auf einem Intervall I mit g > 0. Fiir ein to und alle t € I erfiille

/t; g(s)ds

Beweis. Man betrachtet wegen der Betragsstriche in der zu zeigenden Ungleichung ¢ > t¢. Ist ndmlich ¢t = ¢o, dann folgt aus der

g die Ungleichung g(t) < A - + B mit Konstanten A, B > 0. Dann gilt fir allet € I: g(t) < B - e lt—tol

vorausgesetzten Ungleichung g(to) < B. Das beweist die Behauptung fiir ¢ = ¢o. Sei von nun an also t > to. Es ist nur etwas zu
zeigen fiir ¢, wo g(t) > 0 ist fiir mindestens einem Wert auf (¢o,t], dann ist wegen der Stetigkeit sogar eine ganze Umgebung um

diesen Wert ungleich Null. Denn ist g(t) = 0 fiir alle Werte aus (to, t], dann ist die Behauptung trivialerweise erfiillt. Bezeichne

G(t) == A - / g(s)ds + B. Dann gilt G(t) = A - g(t) < A- G(t), also G(t) <A=1In < G(®) ) = In(G(t)) — In(G(to)) =

G(t) G(to)
G(t) 1 G(t
/ = / dt < / Adt =A-(t—tp), also folgt: () < eAr(t—to) folglich: G(t) < G(to) - eA(t=to) = p.eA (t—to)
G(tg) T G(t) G(to)
also folgt damit g(t) g G(t) < B-e? (t=%0) _ die Behauptung. O

Satz (Eindeutigkeitssatz). Das dynamische System F : U — R"™, U C R x R", sei lokal Lipschitz-stetig beziiglich x. Stimmen
zwei Integralkurven p1,p2 : I — R™ von F in einem Punkt to € I tberein, so gilt p1 = @2 auf ganz I. F ist ein zeitabhdngiges
Vektorfeld, fiir das man ihre Integralkurven betrachtet. Unten braucht man nur die Aussage iber Integralkurven zu einem nicht

zeitabhingigen Vektorfeld. Dieser spezielle Fall ist mit diesem Satz bewiesen.
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Beweis. Es sei I’ C I die Menge der Punkte t € I mit ¢1(t) = @2(t). Aus Stetigkeitsgriinden ist I’ abgeschlossen in I, denn
sei (tn)nen eine Folge in I’ mit t, — t € I. Dann gilt ¥ (tn) = ©1(tn) — p2(tn) = O fiir alle n € N. Wegen der Stetigkeit
von 1 gilt dann (t) = nlemw(t) = 0, also t € I’, d.h. I’ ist tatsiéichlich abgeschlossen in I. Man zeigt nun, dass I’ auch
offen in I ist. Sei tg € I’ und J x V C U eine Umgebung von (tg, p1(to)), in der F Lipschitz-stetig beziiglich = ist, etwa

mit der Konstanten L. Es sei wieder ¢ := @2 — ¢1. Es gilt 9(to) = 0. Nach Voraussetzung gilt ¢1,2(t) = F(¢,¢1,2(t)) mit
t t

#1,2(to) = 0, also: p1,2(t) = ¢1,2(t0) +/ F(s,1,2(s)) ds, folglich: ¢(t) = p2(t) — p1(t) = p2(to) — ¢1(to) + / F(s,p2(s)) —
to v to

<

<L- =L

t t
F(s,p1(s))ds = / F(s,p2(s)) — F(s,¢1(s))ds. Wegen der Lipschitz-Stetigkeit: [[¢(¢)| = H/ F(s,p2(s)) — F(s,p1(s))ds
to to
t
/ |1 F (s, p2(s)) — F(s,¢1(s))|l ds . Nach dem Lemma von Gronwall ist ¢ = 0

‘ s) — s)|| ds ‘ P(s)|| ds
/,,0““"2” o1(9)] /,,(,” oY

in J NI, also umfasst I’ die Menge J N I. Es wurde also gezeigt: Fiir tog € I’ existiert eine Umgebung J von to mit JNI C I’,

d.h. I’ ist offen. Weil I’ offen und abgeschlossen in I und ungleich der leeren Menge und I zusammenhingend ist, folgt I = I’.
I zusammenhingend braucht man: Wire a < b < ¢ < d und I = [a,b] U [¢,d] (I nicht zusammenhingend), dann wire I’ = [a, b]
nicht-leer, offen und abgeschlossen in I, aber I’ # I. Ist also I zusammenhingend, dann gibt es keine nicht-leere, offene und

abgeschlossene echte Teilmenge von I. O

Satz. Fiir den Bestand von Rédubern und Beutetieren tn einem biologisch abgeschlossenen System gelten die folgenden gekop-

pelten Differentialgleichungen, die die Wechselwirkung zwischen den beiden Populationen modelliert:
t=a(y)-zAny=—b=) -y

@ .

Man sieht also, dass die Wachstumsraten — und Y vom momentanen Potential des Partners abhdingen. Unter gewissen An-
€z Yy

nahmen an a und b stellt sich heraus, dass die Lisungen ¢ des Systems in ]Ri_ verlaufen, wenn nur ¢(0) € ]Ri gilt. Die Lésung

bleibt in diesem Quadranten und ist periodisch. Dieses Differentialgleichungssystem ist auch bekannt als die sogenannten Lotka-

Volterra-Gleichungen.

Beweis. Man macht zunéchst mal die Voraussetzung, dass a,b : R — R streng monoton fallende C!-Funktionen sind mit je einer
positiven Nullstelle: a(n) = 0, b(§) = 0 mit £,n € R. Die kritischen Punkte des Systems sind (0,0) und (&,7n) € ]Ri, denn, wenn
man diese Werte als Losung einsetzt, hat man @ = 0 und y = 0. Es sind also triviale Lésungen des Differentialgleichungssystems.
Weitere Losungen sind (c-ea(o)":7 0) und (0, c-efb(ﬂ)'t) mit ¢ € R, welche auf der z- bzw. y-Achse verlaufen. Diese beiden Lésungen
sind Integralkurven zu dem nicht zeitabhingigen Vektorfeld v(z,y) = (a(y) - , —b(z) - y). Nach dem Eindeutigkeitssatz (s.o.) iiber
Integralkurven gilt: Wenn eine Losung ¢ des Differentialgleichungssystems mit ¢(0) € ]Ri die z- oder y-Achse schneiden wiirde,
dann wire ¢ gleich den Integralkurven auf den Achsen, was aber nicht sein kann, weil ¢(0) € ]R2Jr gilt. Fazit: Ist eine Integralkurve
einmal im positiven Quadranten, dann bleibt sie da auch. Auf ]Ri gibt es ein Erstes Integral der Bauart E(z,y) = F(x) + G(y).
Nach dem Lemma (Erstes Integral) ist E genau dann ein Erstes Integral, wenn %E(z, y) -vi(z,y) + aiE(a:, y) - va(z,y) = 0, also
b(z)
x

und G’ (y) = _® gilt. Daher definiert
)

W)t Ry mit G(n) = 0.

Y
Man sieht leicht, dass F in (0, £] streng monoton féllt und in [, co0) streng monoton wéchst. G hat die analoge Eigenschaft mit n

F'(z)-(a(y)-z)+ G’ (y)  (—=b(x)-y) = 0. Diese Bedingung wird erfiillt, falls F’(z) = —
b(z)

man: F sei die Stammfunktion zu — auf Ry mit F(£§) = 0 und G sei die Stammfunktion zu —
anstelle von £. Ferner gilt F'(u), G(u) — oo sowohl fiir u — 0 als auch u — co. Konsequenz: E hat in (£, ) ein isoliertes Minimum

mit E(&,n) = 0. Jede Niveaumenge Eil(a), a > 0, ist eine kompakte Teilmenge des Quadranten ]R%r und enthilt auf jeder der

beiden Geraden = = £ und y = n genau zwei Punkte (siche Zeichnung unten).
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Es sei nun ¢ = (z,y) die maximale Integralkurve mit ¢(0) = Ao, Ag € E~1(a), a > 0. ¢ verliuft dann in E~'(a), also in einem
Kompaktum (das Urbild kompakter Mengen unter stetigen Funktionen ist kompakt!), und ist daher fiir alle t € R definiert, denn eine
maximale Integralkurve endlicher Lebensdauer verlédsst jedes Kompaktum. Beweis: Sei ¢ : (o, 8) — R? eine maximale Integralkurve
des beziiglich x lokal Lipschitz-stetigen dynamischen Systems F : U — R2 (zeitabhéngiges Vektorfeld; man braucht hier nur nicht
zeitabhéngiges Vektorfeld!) Im Fall 8 < oo gibt es zu jeder kompakten Menge K C U in jedem Intervall (v, 8) ein 7 € (v, 3) mit

(1,¢(7)) ¢ K. Eine analoge Aussage gilt im Fall « > —oo. Angenommen, fiir alle ¢ € (v, 8) gilt (¢, ¢(t)) € K. Man behauptet dann

zunichst, dass ¢ auf («a, 8] stetig fortgesetzt werden kann. Dazu geniigt es zu zeigen, dass ¢ auf («, 8] gleichméBig stetig ist, was

to to
p(s)ds F(s,¢(s
/tl $(s) / 1F (s, o(s)

folgt. Die stetige Fortsetzung von ¢ auf («, 8] werde mit ¢ bezeichnet. Es wird jetzt gezeigt, dass auch ¢ eine Integralkurve von F'

ist. Da K abgeschlossen ist, liegt (8, ¢(8)) in K, also in U. Ferner gilt fiir beliebige ¢,t9 € (a, 8): ¢(t) = @(to) + / F(s,¢(s))ds
to

aber aus der fiir alle t1,t2 € (7, B) giiltigen Abschétzung |[¢(t2) — @(t1)] = < < |IF|lk - |tz — t1]

(*). Wegen der Stetigkeit von @ auf (o, ] gilt (*) auch noch in t = 8. Damit folgt, dass @ : (a, 8] — R? die Differentialgleichung
& = F(t,z) 16st im Widerspruch zur Maximalitéit der Losung ¢ : (a, 8) — R2. Man zeigt nun: Es gibt ein t; € (0, o0) so, dass gilt:
(i) = fallt streng monoton in [0, ¢1] und y wichst dort streng monoton; (ii) ¢(t1) = A1. Beweis: Sei t1 := sup{t : * > £ in ganz [0, t]}.
Nach der zweiten Differentialgleichung ist dann y > 0 in [0, ¢1), y also streng monoton wachsend. Es folgt y > y(0) = n in (0,¢1).
Nach der ersten Differentialgleichung ist somit # < 0 in (0, ¢1), = also streng monoton fallend. Es wird nun gezeigt: t;1 < oo. Dazu
wihle man irgendein € € (0,t1). Fiir t € (g,t1) gilt dann y(t) > y(e) > n und damit a(y(t)) < a(y(e)) =: A < 0. Nach der ersten

Differentialgleichung ergibt sich fiir diese ¢ weiter z(t) < ert=e) .

z(e). Denn: & = a(y) - < a(y(e)) = X - . Hiernach und wegen
x(t) > & > 0 fiir alle t € [0,¢1) muss t; < oo sein, denn wire t; = oo, dann folgte aus z(t) < e 7% . z(e) wegen A < 0, dass
gilt z(t1) = 0, im Widerspruch zu z(t) > £ > 0 fiir alle t € [0,¢1). Aus der Definition von ¢; folgt nun sofort z(t1) = £ und damit
@(t1) = A;. Wie eben, zeigt man die Existenz von Parameterstellen ¢t; < t3 < t3 < t4 mit @(ty) = Ay, k = 2, 3,4. Insbesondere
gilt mit T = t4: o(T) = As = Ag = ¢(0). Also ist der Satz bewiesen: Jede maximale Integralkurve ¢ mit ¢(0) € ]RzJr verlduft fiir

alle Zeit in diesem Quadranten und ist periodisch. Es zeigt sich, dass keine Riduber oder Beutetiere aussterben. Bevor man z.B.

viele Rduber und viele Beutetiere hat, muss man bis dahin erst bestimmte andere Populationsverhiltnisse durchlaufen. O

73



Der Satz von Schroder-Bernstein

[Zuriick zur Liste]

Satz. Seien A und B Mengen mit einer Injektion f: A — B und einer Injektion g : B — A. Dann sind A und B bijektiv.

Beweis. Sei zundchst Cp := A\ g(B) und fiir n > 0: Cy,41 := g(f(Cy)). Definiere dann C := U Cy. Fiir jedes © € A definiert

n=0

f(z), zeC

h(z) :=
@) g Hx), z¢C

eine wohldefinierte bijektive Abbildung von A nach B. Die Wohldefiniertheit sieht man so: Ein z € A ist entweder in C oder in
C, also A= CUC. Fiir alle z € C C A ist f(z) natiirlich definiert, aber auch g~'(z) fiir € C, denn aus = ¢ C = U C,, folgt
z ¢ Co = A\ g(B), d.h., weil z € A ist, folgt = € g(B); dieses = wird also von einem Abbildungspfeil der Abbilfur:lgzz von der
Menge B aus getroffen, also existiert g_l(x). Die Abbildung h ist injektiv, denn: Weil f nach Voraussetzung injektiv ist, ist fiir
zwei verschiedene z,y € C dann f(z) # f(y). Und da g eine wohldefinierte Abbildung ist, also jedem Element aus B genau ein
Element aus A zuordnet, kann es nicht sein, dass es zwei verschiedene x,y € C gibt mit g~7'(z) = ¢~ '(y). Auch kann es nicht
ein ¢ € C und ein y € C geben so, dass f(z) = g~ (y) gilt, denn sonst wire (g o f)(x) wegen & € C ein Element aus C, aber
es gilt (go f)(z) =y ¢ C, also ein Widerspruch. Die Surjektivitiit von h: Es soll also B = f(C) U g~ (C) gezeigt werden. Sei
b € B beliebig. Dann gibt es zwei Fille. 1. Fall: Vo € A : f(z) # b. Das heifit also b ¢ f(C). Es muss gezeigt werden, dass gilt
beg YO & g(b) € C. Wiire g(b) € C, dann gebe es ein i € N \ {0} so, dass fiir ein ¢ € Cy gilt: g(b) = (g o f)i(c), daraus folgt
b= f((go f)""1(c)), also b € f(A) und das ist ein Widerspruch zu Fall 1. Nun der 2. Fall: 3z € A : f(z) = b und weil f injektiv
ist, gilt sogar Ilz € A : f(z) = b. Sei also zo das eindeutige Element aus A mit f(zo) = b. Entweder ist 29 € C oder xo € C. Ist
zo € C, dann ist b € f(C). Ist 9 € C, dann gilt o ¢ C = U Cp=CoU U (go f)(Cr). Also ist zg ¢ Cy, fiir alle n > 0. Es gilt
schon mal (go f)(zo) = g(b) ¢ Co = A\ g(B). Dago f als Verkettung 1n_]ek7twer Abbildung ebenfalls injektiv ist, folgt aus zg ¢ C),
dann (g o f)(zo) ¢ (9o f)(Crn), denn ansonsten folgte aus (g o f)(zg) = (g o f)(c) mit einem ¢ € C,, wegen der Injektivitit von
go f, dass gilt 290 = ¢ € Cp,, Widerspruch. Insgesamt wurde also (g o f)(xo) ¢ C geschlossen, also g(b) € C, d.h. b € g~ (C). In
jedem Fall gilt also B C f(C) U g~ *(C) und sowieso gilt f(C) U g~ *(C) C B. Damit ist also auch die Surjektivitit bewiesen. [J

Die Summe der reziproken Quadratzahlen

[Zuriick zur Liste]

. . s > 1 7T2
Satz. Es gilt die folgende Identitit: Zl 2 = 5
Beweis. Zunichst gilt:
> > 1 =1 i 1 1 i 1
D e T Me R o
—n? o o (2n—1)2 ‘ (2n)? ‘(2n—1)2 4 fZn?
Daraus folgt dann:
4 03 n? a1 (2n— 1)? "o (2n+ 1)?
2n41
Weil / 22" dz = = gilt, folgt
0 2n + 1 2n

P iR () R e [ a3 [ [l

n=1 n=0 n=0 n=0 n=0
gt -1 > 0-1 1
‘Wegen q - Z q Z q = — 1, also Z " = fl und deswegen Z q" = 11771 = ﬁ, wenn |g| < 1 gilt, kann
n=0

man dann folgendermaﬁen fortfahren:

3 =1 = /1/1 2 2\n R R 1
2. — = (z%-y°) dacdy:/ / (= - ) dmdy_/ / dzdy_ ——d(z,y)
4 ;”2 7;) o Jo o Jo n;) 17m2 O)x (0.1 1 — a2 - y?

Nun muss nur noch ein Integral ausgewertet werden, was mithilfe der Transformationsformel geschieht:

sin(u) sin(v)

cos(v)’ v= cos(u)
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Das ist eine Substitution der Variablen, fiir die gilt:

P :D:= {(u,v):u,v >0 Au+v< g} —{(z,y) : 0 < z,y < 1} =: Q ist ein Diffeomorphismus.

Also gilt folgendes:
dw(u,v)  Ay(u,v)
9

3 1 / 1 1 5
- — = ——d(z,y) = / - |det “ ou d(u,v)
4 ngl n? Ql—a2-y2 D1_ (sin(u) 2 (sin(v) )2 Bméu,v) By((;z,w

cos(v) cos(u) v

Die Funktionaldeterminante lautet:

Az (u, Ay (u, cos(u) i sin(u) . .
mgiv} yg; = _ co:(:) sin(v) - (Cz:(,,j))z _ sin(u) \ 2/ sin(v) \ 2
det| 5 luw)  ou(ue) = det in(u) - —=n) cos(v) =1- cos(v) )\ cos(u)
R v SIU) - os(0))2 cos(u)
Weil D ein Dreieck mit den Eckpunkten (0,0), (5,0) und (0, 5) ist, gilt dann:
3 1 1 (7 o« =1 4 72 72
- — = ld(u,v) == (= =) = — == = —
4Zn2/ﬂ,(’)2(22) Zn2386
n=1 n=1
Damit ist die Behauptung also bewiesen. O
Die transzendenten Zahlen
[Zuriick zur Liste]
Lemma (Gruppenweise Symmetrie). Sei J(ai, @z, ..., an) symmetrisch in an,41,...,0n,; (6 €{0,...,7 —1}) mit 0 =no <
ny < ... < n, = n. Dann gibt es fir J € Z[an0+1» ce Qg |y 1, Qg | ‘anr,ﬁ—l’ ...,Qanp,.] also ein Polynom P €
Zleii, ..., enl,n071|el,2, cosengonyp2looer s, enr,nril,r], wobet e1,¢41,. .., €ny g —ng.t+l die elementarsymmetrischen
Polynome in cnyt1,. ., Qny iy mit t € {0,...,r — 1} seien, so, dass gilt:
J(at,az, ..o yan) = J(@ngt1s- s Qnglang 41500y ang| oo fam, 41,000 Q)
=P(e1,1,--+r€ny—ng,11€1,25+ s €ng—ny,2| - l€1,r s enpn,_q,r)
Und das wird jetzt bewiesen:
Beweis. Sei P(ai,...,an,b1,...,bm) € Zlay,...,an,b1,...,by] symmetrisch in a1,...,a, und by,...,b, seien irgendwelche
Variablen. Dann kann man P auffassen als P’(a1,...,an) aus (Z[b1,...,bm])[a1,...,as]. Nach dem Hauptsatz iiber elementar-
symmetrische Polynome gibt es dann ein Polynom Q' € (Z[b1,...,bm])[e1,.-.,en], wobei e1, ..., e, die elementarsymmetrischen
Polynome in a, ..., a, seien, so, dass gilt P'(a1,...,a,) = Q'(e1,...,en). Nun gilt P'(a1,...,an) = P(ai,...,an,b1,...,bm)
und Q’(e1,...,en) kann man auffassen als Q(e1,...,€n,b1,...,bm) € Zle1,...,€n,b1,...,bn], wenn man die Koeffizienten aus
Z[b1,...,by] in P’ und Q' mit den anderen Variablen ausmultipliziert. Also gilt dann:
Plai,...,an,b1,...,bm) =Q(e1,...,en,b1,...,bm) =Qer(ar,...,an),...,en(a,...,an),b1,...,bm)
Das wird im Folgenden gebraucht: Weil J(an0+1, e Qg |y 1y Qg | ‘a"r—1+1’ ..., Qp,.) symmetrisch in Qngtlse- ey Qny
ist, gibt es ein Polynom P; mit:
J(Qng41s- s Wny|[Qny 1y Qng| v |@n, 41,00 Qny) =
Pl(el,l, ceey enl—n0,1|aw/1+1v ey an2| - |O¢n7.71+1, P 70‘"7‘)
Da P1, genauso wie J, symmetrisch in apn; 41, ..., @n, ist, gibt es ein Polynom P mit:
Pi(e1,1,-+s€ny—ng,1|Qni+15- s Qno| o |Qn, 41,5 an,) =
Py(e1,1,- - eny—ng,1l€1,2,- s €ng—ny,2 - |@n, 141,00 an,)
Das macht man so weiter, bis: Da P,._1, genauso wie J, symmetrisch in oy, +1,...,an,. ist, gibt es ein Polynom P, mit:
Pr_1(e1,1,---,eny—ng,1l€1,2,- s €ng—ny 2| o [Qnp_ 41,0500, ) =
Pr(e1,1,-+s€ny—ng,1l€1,2, -+ s €ng—ny,2l - €1,r s €npmn,_1,r)
Man hat also J(...) = Pi(...) = P2(...) = P3(...) = ... = Pr_1(...) = P.(...). Setzt man P := P,, dann folgt die Behauptung
dieses Lemmas! O
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Lemma (Rational und ganz-algebraisch). FEine rationale Zahl, die ganz-algebraisch ist, ist eine ganze Zahl.

u

Beweis. Sei o € Q, dann gibt es ein © € Z und ein v € IN\ {0} mit = —. Insbesondere kann man v und v so wéhlen, dass v und
v

v teilerfremd sind, ansonsten kiirze den Bruch. Weil a nach Voraussetzung ganz-algebraisch ist, gibt es ein normiertes Polynom

h(z) = 2" + an_1-2" "t +...+a1-z' + ao € Z[z] mit h(a) = 0. Es gilt also:

u\" u\ "t u\?! n n n—1_ 1 1, n-1 n
h(a) =0 = b + an—1 - > +...4+a1- > +a0=>0-v" =u +apn_1-u ‘v 4. 4ar-u v +ag-v

Daraus folgt dann: —u” = v - (an_1-u" ' Han_2-u" 20  +.. . 4a1-u 0" "2 4a0-v"""). Wire v # 1, dann gibe es eine
€Z
Primzahl ¢ # 1 mit ¢ | v. Weil v | u™ gilt, folgt ¢ | u™, also q | u (denn: ¢t u = gt u™). Man hat also ¢ | v und ¢ | v (¢ # 1), also
u u
sind v und v nicht teilerfremd, Widerspruch. Also muss v = 1 sein, also a = — = 1 =u € Z. |
Satz (Lindemann-Weierstra8). Seien A1,..., A, algebraische Zahlen ungleich 0 und w1, ...,w., paarweise verschiedene alge-

braische Zahlen, dann gilt:

Ar-e“l oA, e £ 0

Der etwas aufwendige Beweis geht, wie im Folgenden:

Beweis. Annahme: A1 - e“l 4+ ... 4+ X\, - €™ = 0. Der Beweis wird in mehreren Schritten vollzogen:

Annahme 1:

Da A1,...,An algebraische Zahlen sind, ist A; (¢ = 1,..., m) Nullstelle eines normierten Polynoms mit rationalen Koeffizienten.
Sei A; = A1 und dann A1, A2, .., Aq@),; alle Nullstellen dieses Polynoms. Also sind A1, X245 Aqe),s (0 = 1,...,m)
vollstdndige Nullstellensysteme eines normierten Polynoms mit rationalen Koeffizienten. Sei dann S die Menge aller Funktionen 7,
die aus jeder der Sequenzen (1,...,d(1)),(1,...,d(2)),...,(1,...,d(m)) ein Element auswihlt, so dass also fiir alle 1 < i < m

dann 7(%) eine Zahl von 1 bis d(4) ist. Definiere nun:

Q1,5 Aay 1l Ay Adgmymlets e = T Ay - et + Ar@2 - €2 4o 4 Ay um - €9™) =0
TeS
Es ist gleich 0, weil fiir ein Faktor gilt 7(i) = 1 fiir alle ¢ = 1,..., m. Und das bedeutet dann némlich:

Ary,1 et A2y 2 €24+ A ym e = A e X0 €2 A e = A e A e Ay e =0

Es gilt nun das Folgende:

d(i)

TTO-ma et + o+ Armym ™) =TT TTOryn -t 4o+ X € 4o 4 Ay - €9™)
TES j=1T1€S

Man sieht daran, dass Q symmetrisch in A1 ,i, ..., Age), (4 =1,...,m) ist. Wie im Beweis von Lemma (Gruppenweise Symmetrie)

folgt dann, dass es ein Polynom Q' gibt mit:

wWm )

Q115 Aay, 1l Amos o Aaimy,m e, e ™) = Q (11, -y €q1y1l - - l€1my s €a(m)y,mleXT, e

Dabei sind e1,4, ..., €q(s),; die elementarsymmetrischen Polynome in A1 ,...,Aq(:),s (¢ = 1,...,m). Nun gilt (s.0.):
(= A1,0) oo (= Xag),e) = 24 (-1t €1,i* 4O 4 (—1)?. €2,; T2 (—)) €d(i),i -2 € Q[z]

Also sind alle elementarsymmetrische Polynome e1 i, ..., eq(),; (¢ = 1,...,m) aus Q. Daraus folgt, dass in

d(1) d(m)
o Aamymlet e ™y = T o T igr - et + Xig 2 €2 o Xigym - €9)
i1=1  im=1
. . l 7
Z >\(j17 . 7j7n) . eJl‘W1+-~+Jm'Wm = B;’ ce®l 44 B;’/ L e%n!
1t im=S=d(1)-...-d(m)
(41 imeNZ0)

0=Q(A1,1,---,Aa1),1

die Koeffizienten A(j1,...,jm) € Z[A1,1,--.,Aa1),1l- - [A1,m, - -1 Ad(m),m] alle aus @ sind. Dabei seien o, ...,/ , die verschie-
denen Zahlen aus den ji - w1 + ... + jm * Wm. Also sind af, ..., a;L, paarweise verschiedene algebraische Zahlen. Weiterhin sind
B (i=1,...,n) Summen von einigen A(j1,...,Jm) € Q, also B € Q fiir alle i € {1,...,n'}. Weil esein l € N70 gibt, so, dass

1By =B1s- .-, lﬁg, = ,8;1, € Z gilt, kann man von nun an annehmen, dass die Widerspruchsannahme so aussieht:

/ 7
By-e*t+ ...+ B, e =1-0=0mit By,...,B,, € Z\ {0} und af,...,al, paarweise verschiedene algebraische Zahlen
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Es wird noch gezeigt, dass es mindestens ein 3, # 0 (i € {1,...,n’}) gibt und dass die Summe S - el + ...+ ,B;L, . ea;ﬂ nicht
trivial 0 ist. Es wird eine lexikographische Ordnung fiir komplexe Zahlen definiert: Fiir ¢1,c2 € C gilt ¢1 3 c2 genau dann, wenn
Re(c1) < Re(cz) oder Re(e1) = Re(cz), aber Im(c1) < Im(cz). Da wi,...,w,, paarweise verschiedene algebraische Zahlen aus C
sind, existiert 0.B.d.A. die Ordnung w1 X ... 3 wy, (sonst nummeriere um). Daraus folgt j1 « w1 4 ... + jm - Wm 3 |S]+ wm =
(d(1) - ... d(m)) - wm fiir alle (Ji,...,4m) # (0,...,0,]S]) mit j1 + ... 4+ jm = |S| = d(1) - ...-d(m) und ji,...,jm € NZ°,

’ ’ : ’ ’ : B : . !’ .
Ist 0.B.d.A. oy Z ... 3 a/, (sonst nummeriere um) (aj,...,al, sind paarweise verschieden), dann gilt o/, = |S| - wm, also ist

IS]
d(m) d(m) d(m)

Bg, =X(0,...,0,|8]) = < IT Xy € Q ungleich 0, weil [] i, ,m # 0 ist. Nochmal: Die 3] (i = 1,...,n’) sind Sum-
im=1 im=1

men von einigen A(j1, - .., jm), aber wegen j1-wi+...+jm wm 3 |S|-wm gilt B/, = A(0,...,0,]S])+0. Also ist auch 8/, = 1-8//, # 0.

Damit ist dann gezeigt, dass es mindestens ein 8] # 0 (i € {1,...,n’}) gibt. Wegen j1 - w1 + ... + jm - wm 3 |S| - wm, kann

A0,...,0,]S]) - e!S"“m von keinem der anderen Summanden A(j1, - . ., jim) - €11 FImCm it Gy G0) # A0, ..., 0,]S])
wegsubtrahiert werden, also ist die Summe B{ . e”‘,l + ...+ ,8;, . ea:w’ nicht trivial. dil[n) Xiyp,m # 0, Beweis: A
im = 1,...,d(m) ein vollstindiges Nullstellensystem eines normierten Polynoms p mitwrnz’augilonalen Koeffizienten. A1 ;m = Ay, ist
also Nullstelle von p. Ware 0 nun n-fach konjugiert zu \,,, dann betrachte LO)" =: q(z). q(x) ist immer noch ein normiertes
Polynom mit rationalen Koeffizienten, das A1 ,, = An, als Nullstelle hat, abeIr ;icht mehr die 0. Man kann also davon ausgehen,
m # 0 fiir alle 4., = 1,...,d(m) gilt, also _dilf) Xipy,m # 0, Beweis-Ende. Das war es hier!

im=1

im,m ist fiir

dass Ai,,,
Annahme 2:
Zuerst kommt Folgendes: Ein Minimalpolynom m, einer algebraischen Zahl a € C ist das Polynom ungleich zum Nullpolynom

kleinsten Grades mit rationalen Koeffizienten und Leitkoeffizent 1, dass « als Nullstelle hat. Es gilt dann:
1.) Ein Minimalpolynom hat keine mehrfachen Nullstellen.

2.) Das Minimalpolynom m, teil jedes Polynom mit rationalen Koeffizienten, das « als Nullstelle hat.
3.) Das Minimalpolynom einer algebraischen Zahl ist eindeutig.

4.) Zwei verschiedene Minimalpolynome haben keine gemeinsamen Nullstellen.

Beweis: 1.): Angenommen, m, hat eine mehrfache Nullstelle 8, dann kann man schreiben: mq () = (x — 8)™ - p(x), wobei p(x) ein
Polynom mit rationalen Koeffizienten ist und m > 2 gleich der Vielfachheit von S ist. Leitet man m, () nach der Produktregel ab,
so0 erhilt man ein Polynom kleineren Grades als m (), nimlich: m - (z — 8)™ "' - p(x) + (x — B)™ - p’ (). Also hat man ein Polynom
kleineren Grades als m, gefunden, dass « als Nullstelle hat, Widerspruch zur Minimalitdt von m. Also kann ein Minimalpolynom
keine mehrfachen Nullstellen haben. 2.): Sei m, das Minimalpolynom von « und p(z) ein Polynom mit rationalen Koeffizienten und
mit p(a) = 0. Wegen der Minimalitéit von m, gilt grad(ms) < grad(p). Dann gilt: mq | p, denn: Man macht eine Polynomdivision:
p(z) = g(z)-mq(z)+7r(xz) mit ¢, r € Q[z] und grad(r) < grad(meq). Also folgt: 0 = p(a) = g(@) mao(a)+r(a) = g(a)-0+r(a) = r(a).
Es muss dann r = 0 gelten, denn sonst hétte man mit r ein Polynom kleineren Grades als m, gefunden, das « als Nullstelle hat.
Also ist die Polynomdivision ohne Rest, also gilt m, | p. 3.): Seien zwei Minimalpolynome m, und m:x einer algebraischen Zahl
a gegeben, dann folgt wegen 2.) dann mg | m,, und m/, | ma, also, weil die Leitkoeffizienten von m, und m/, gleich 1 sind, folgt
dann mq = m,,. Zu 4.): Seien m, und m,s zwei Minimalpolynome, die eine gemeinsame Nullstelle 8 haben, also mg | m, und
mg | mgs, nach 2.) oben. Daraus folgt dann grad(mg) < grad(m,) und grad(mg) < grad(m,s). Zunichst werden mg und m,
behandelt. Fallunterscheidung: 1. Fall (grad(mg) = grad(mg,)): Man macht dann eine Polynomdivision: mq(z) = p(x)-mg(z)+r(x)
mit p,r € Q[z] und grad(r) < grad(mg). Wegen mg|m, folgt r = 0. Wegen grad(mg) = grad(m,) folgt grad(p) = 0, also ist
p eine Konstante. Wére p # 1, dann wére wegen der Normiertheit von mg dann m, nicht normiert, Widerspruch, also muss
mg = 1-mg+0 = mg gelten. Analog zeigt man m,, = mg, also m, = m,. 2. Fall (grad(mg) < grad(m,)): Wegen mg|m, gibt es
ein p mit p(x) - mg(x) = mq(x). Weil grad(mpg) < grad(mg) gilt, muss dann gelten grad(p) > 0. Als Minimalpolynom gilt fiir mg
dann grad(mg) > 0. Weil grad(mg) > 0 gilt, folgt grad(p) < grad(mg). Insgesamt hat man also: 0 < grad(p), grad(mg) < grad(m,).
Nun gilt: p(a) - mg(a) = mq(a) = 0 = p(a) = 0V mg(a) = 0. In jedem Fall hat man also ein Polynom kleineren Grades als von
grad(m,) gefunden, dass a als Nullstelle hat, Widerspruch. Genauso schlieft man den Fall grad(mg) < grad(m,s) aus. Der 2.
Fall ist also ausgeschlossen, es gilt nur der 1. Fall. Es wurde also bewiesen: Seien mq und m,s zwei Minimalpolynome, die eine
gemeinsame Nullstelle 8 haben, dann gilt m, = m,/. Die Kontraposition dieser Aussage ist dann die Aussage, die man beweisen
wollte. Jetzt geht es los mit der Annahme 2: Die Widerspruchsannahme aus Annahme 1 sieht doch so aus:

o

’
By el 4 ...+ Bl e =0mit B1,...,0. € Z\ {0} und o}, ..., al, paarweise verschiedene algebraische Zahlen

Man multipliziert: m := Mgt dann m := ma (7n0/2 Vv 1), falls Mol ungleich ist zu Mgl s ansonsten multipliziert man mit

a
2
gleich ist zu den bisherigen dranmultiplizierten Minimalpolynomen, ansonsten multipliziert man mit 1. Nach Konstruktion sind

1. Dann kommt m = m,s - (my, V1) (m,s V 1), usw., bis als letztes m_, dranmultipliziert wird, falls wieder m_, un-
1 3 v v

oc'l, ey a;, Nullstellen von m, wobei m nach Konstruktion ein Polynom mit rationalen Koeffizienten mit Leitkoeffizient 1 ist. Seien

O‘;n’+1)’ ey oz;v, die iibrigen Nullstellen von m. Weil m ein Produkt von paarweise verschiedenen Minimalpolynomen ist und ein
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’ ’
n”o‘(n’+1)""

(@—af)-...-(x—al,) (x— a;,Jrl) <.+ (z — aly,) € Q[x] gilt. Daraus folgt, dass die elementarsymmetrischen Polynome in

Minimalpolynom keine mehrfachen Nullstellen hat, folgt, dass o/l, JRNYeY ,a'N, paarweise verschieden sind und, dass

ay, .. '7‘1;/70‘2”/+1)»"-70‘;\r/ aus Q sind, also: e;(a'l,...,a;/,azn/_'_l), ...,al) €Qfiirallei € {1,..., N'}. Man betrachtet nun

das folgende wichtige Produkt:

CX/ Q, Q/ C!’
Qal, .ok = 1 (,e; O g Bl e Bl T ) Bl e a(N’))
aESN/

’ ’
s e ’ _ _ar . N e . ’ . , al g , al ,
S == =0. = e
Dabei soll gelten 3, By = 0. Bei (i) =i fiir alle i € {1 N’} gilt dann 1 -e oM + ... 4+ 8], e oD + 87,
’ ’ / ’ ’ ’
R{CE S DT R =B e b 4B, e 40 £ 40N =8 e 4. 4B, e =0, nac
e o(n/+1) Bl (N) = B] e Bl -en +0 +1 0-e*N' =p]-e” Bl -en’ =0 h

Annahme 1, also gilt dann:

41/ (1,
H <B§-e o) 4. 4 By e 0'(N’)>:Omitﬁ;/_*_l:_“:ﬂ;v,zo

O‘ESN/

’ ’
Dieses Produkt hat N’! Faktoren und ausmultipliziert ist es eine Summe von Summanden der Form B;Ll g Ll ety

iiber alle (ha, ..., hys) € (No)™ mit hy+...+hys = N, wobei 8,  ausZist, weil ],

s 2US Summen, Produkte oder

N/
Summen von Produkten von Elementen aus {31, ..., B;V,} C Z besteht. Es wird nun gezeigt, dass bei festem (h1,...,hys) € (]NU)N/
die Menge {A; := hy - a;(l) + ...+ hys- a:_(N,) : 7 € Sys} ein vollstindiges Nullstellensystem bildet, also ist es eine Menge aller

Nullstellen eines Polynoms mit rationalen Koeffizienten. Beweis: Es gilt zunichst das Folgende:

(@—Ar)-(@—Ary,) = NV +er(Ar, . Ary,)) N1 +.tenn(Ar, . Ary,) -z’
Dabei sind die e; (i = 1,..., N’!) die elementarsymmetrischen Polynome in Arpyen, A"N’!' Nun gilt doch offensichtlicherweise
E;(a), ..., 04\,,) = ei(Ar, ..., A"N’!) € Z[a, ..., a;\,,] fiir alle i € {1,..., N'!}. Eine Tauschung der of,..., D‘;\r/ bewirkt
eine Tauschung der A, ,..., A.,.N,!, und weil die e; symmmetrisch in Ar,..., ATN’! sind, folgt, dass die E;(af,..., a'N,) IS
Z[a'l, .. ‘,oz;v,] symmetrisch sind in 0/1, .. .,a;v,. Nach dem Hauptsatz iiber elementarsymmetrische Polynome, gibt es also ein
Polynom Q; aus Zlej,...,ey\,] mit Ei(aj,..., o) = Qi(e],...,eys). Weil oben gezeigt wurde, dass ej(a],...,ay/) € Q
(j=1,...,N') ist, folgt Ei(a],...,a\) €Q,also (x— Az ) ... (x— Azryi) € Q[z], was zu beweisen war. Es wurde also gezeigt,
dass hi -0/7(1) 4+ ...+ hys -O/T(N,) fiir alle 7 € S/ konjugiert sind bzgl. eines Polynoms mit rationalen Koeffizienten. Als néchstes
wird gezeigt, dass in Q(af,...,ay,) = > ﬁ;n,m,hN/ CeheteFhy el e ehl-a;(l)Jr“‘JrhN"&;(N’) (r € Sy7)
Ry+...4+h =N
gleiche Vorfaktoren haben. Es gilt {h1-aj +...4+hys-ay, : hi4...+hy = N'1} = U {hrqy-al+. A ho Nyl

h1+...+h,N,:N/!
hi1<...<hyy
TESN}= U {h1~af,_(1)+...+hN/-a:_(N,):TESN/}. Weiter gilt mit ﬁ;/+1:'~~:5;\]/:0?
hi+...+hy/=N"t
h1<...Shy

O(, (1, ’
Q (aiu), . .,a;(N/)) = ]I (61 cefer) 4 By e a<r<N'>>> = 1 (51 (O IRy [ >)
oceS N y=ooT:TES N/
’
=TI (81 @+ 48 @) = 0o, o)
YES N1
Wegen Q(af,...,aly,) =Q (04:—(1)7 e a:_(N,)> folgt also:
hi-al+...4+h ol hy-al y+thysal
Z B;Ll,...,hN, Cehieltthys ety Z 521,..4,hN/ e (1) NNy
hi+...4+hy =Nt hi+...4h =Nt

Umgeschrieben gilt dann also das Folgende

’ ’ _ ’ hy hynr ’ hy hr . _
AR E D DR SRR D DI W RPRIP (SO
h1+...+hN,:N’! h1+...+hN,:N/!
. . . . . h h .
Wegen des Identitdtssatzes fiir Polynome in mehreren Unbestimmten folgt, dass die Summanden B,’Il,””hN/ ~x7(11) o ng\I[\;,) mit
. . h h . .
gleichen Vorfaktoren auch in > B;Llwth/ TR .'acNJy/ zu finden sind, sonst gelte nicht > B;Lly_'_th/ .
hi+...4h /=Nt hi+...4+h s =N"1
h NG h h o . A . . . h h o
z zNIY = > Bibl’-“’h]\]/ - a:ﬂ_%l) s a:T(NN,) mit z; = e%i. Wichtig dabei ist, dass dort z;! - NI,V
Ri+...4hp =Nt
h
und z:f(ll) el zTéV]\;,) den gleichen Vorfaktor ﬁ;q,-»-,hN/ haben, und das gilt fiir alle 7 € Spy/. Daraus folgt also, dass die

hi-al  H.dhay ol A . . .
e VT N"%T(N') in Q(af, .,a;v,) fir alle 7 € Spys gleiche Vorfaktoren haben. Um einen Widerpruch fiir den Be-
’ ’
weis dieses Satzes zu erreichen, muss noch wichtigerweise bewiesen werden, dass in  [] <,81 cefe ) 4y B;\], . eaU(N'>> =
€SN

0 mit B; =...= B;V, = 0 die linke Seite nicht trivial 0 ist. Wie in Annahme 1 braucht man hier die lexikographische Ord-

/+1
nung fiir komplexe Zahlen. Weil a'l, ey o/N, paarweise verschieden sind, gilt 0.B.d.A. o/l é S ; a'N, (sonst nummeriere um). In
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! ’
I <B£ cefe() 4 4 By - ea"(N/)> wihlt man aus jeder Klammer eine e-Funktion mit einem von Null ungleichen Vorfaktor
aESN/

dessen Exponent in der Klammer lexikographisch am groten ist. Sei @i ,mas der in der i-ten Klammer gréfite Exponent dessen

e-Funktion einen von Null verschiedenen Vorfaktor hat. a; bezeichne einen Exponenten aus der i-ten Klammer dessen e-Funktion
einen von Null verschiedenen Vorfaktor hat. Dann gilt

N1 N1
Z a; 3 Z @i maz = Amaz fir alle (a1, ...,ann) # (@1, mazs -+ AN/ maz)
i=1 i=1
Daraus folgt, dass b - €™ mit b # 0 (ein Produkt von Elementen aus {81,...,8,,} C Z\ {0}) durch keine andere e-Funktion

von der Form b* - e®1 - Fon (p* ist Summe, Produkt oder Summe von Produkten von Elementen aus {f], .. LBy € ZN\{0})

&/ &/
aus der Summe, die durch Ausmultiplizierung des Produktes T[] <ﬂ£ e o) 4 4 ﬁ;v, -e "(N/)) entsteht, wegsubtrahiert
GGSN/

! !
werden kann. Also ist  [] (ﬁi et +...+ B;\,/ . eaU(Nl)) nicht trivial 0, was man zeigen wollte. Man setzt nun Folgendes:
oGSN/

’ ’ ’ ’ n
I1 (/31 cetM By e 0o D L t0. eQ"‘””) =D Bi-e* =0
cES N i=1

Beim Ausmultiplizieren des Produktes links seien e-Funktionen mit gleichem Exponenten maximal zusammengefasst. Man hat damit
bisher bewiesen, dasses 0 = ng < n1 < --- < n, = n gibt, so dass fiir alle t mit 0 <t < n gilt: an, +1,..., Qngyy ist ein vollstindiges

Nullstellensystem eines Polynoms mit rationalen Koeffizienten und Leitkoeffizient 1, wobei zusétzlich Sn, 41 = Bny42 = ... = Bn,

(alle aus Z) gilt. Es wird nun bewiesen, dass alle in Z”: Bi - €%t auftretende Exponenten als paarweise verschieden angenommen
werden konnen. Dabei gibt es dann 4 Fille: =

Fall 1:

Sei k-e*l +...+k-e“!l. Alle e-Funktionen haben den gleichen Vorfaktor k € Z. Es sei w1, ..., w; ein vollstindiges Nullstellensystem
eines Polynoms mit rationalen Koeflizienten und Leitkoeffizient 1, bezeichnet als w. Wenn w1, ...,w; paarweise verschieden sind,
dann ist man fertig. Trete also w;, (i1 € {1,...,1}) dann genau 2 < Aj-fach als Nullstelle in w auf. Dann gilt (rnwi1 | w (ani1
sei das Minimalpolynom von w;, ). Das bedeutet, dass die Konjugierten von w;, bzgl. des Minimalpolynoms von w;, vom Grad g;
ebenfalls mindestens Aj-fach als Nullstelle in w auftauchen, und zwar genau Aj-mal, denn kidme eine Konjugierte von w;, bzgl.
des Minimalpolynoms von w;,, bezeichnet als wi; ; (j = 2,...,91) mit wi; 1 = wiy, A-fach (A > A1) als Nullstelle in w vor,

dann wiirde folgen: (mwi1 7,)>‘, | w. Da Moy, 5 = My, gilt, weil My, und M, die gemeinsame Nullstelle w;, ; haben, folgt

3
(mwi1 )>‘, | w, was bedeuten wiirde, dass w;, mehr als Aj-fach als Nullstelle in w auftaucht, Widerpruch, denn w;, taucht nach

Voraussetzung genau Ai-fach als Nullstelle in w auf. Man kann dann also das Folgende aufschreiben:

kel . 4+k-e’l=(k-eT+...+k-e“l = M)+ | (A1 k) el +.. .+ (A1 - k) e¥101

=:M;

In M; sind die Exponenten w;,,1,...,wi,,g; als vollstdndiges Nullstellensystem des Minimalpolynoms Moy, paarweise verschieden
und jede e-Funktion hat den gleichen Vorfaktor A1 -k € Z. In k- e“1 + ...+ k- el — M, sind die iibrigbleibenden Exponenten der

w
e-Funktionen ein vollstdndiges Nullstellensystem des Polynoms ﬁ mit rationalen Koeffizienten und Leitkoeffizient 1. Mal
me,
1

angenommen, die Exponenten in k-e“! 4+ ...+ k-e”! — M; sind jetzt paarweise verschieden. Die e-Funktionen haben dann alle den
gleichen Vorfaktor, ndmlich k € Z. Es muss noch gezeigt werden, dass die Exponenten-Vorkommen in k-e“1+. . .+k-e“l —M; disjunkt
sind zu den Exponenten-Vorkommen wj, 1, ...,wi;,g; - Keine der Exponenten w;, 1, ...,wi;,g; tauchen in k-e“l4+.. . +k-e¥l — M,
auf, weil diese Exponenten-Vorkommen in k- e“! 4+ ...+ k - e*! — M; mittels —M; vollstindig raussubtrahiert wurden. Keine der
Exponenten aus k- e“1 + ...+ k-e“l — M; tauchen in wj; 1,...,wi;,g; auf, denn: Ist ein Exponent in w;i; 1,...,wi;,g; zu finden,
dann ist dieser Exponent nicht in k-e“1 + ...+ k-e“l — My, weil dort mittels —M; das Exponenten-Vorkommen Wi, 1y -5 Wip,gq
vollstdndig rausubtrahiert ist. Heifit im Umkehrschluss: Ist ein Exponent in k-e“! +...+k-e“l — M7, dann nicht in wiy 1, ..., Wiy, gq-
Sollte es in k-e“1 4. ..+ k-e“l — M jedoch immer noch Exponenten geben, die mehrfach vorkommen, dann wende man den Vorgang

von eben nochmal an. Es wird noch einmal ausgefiihrt: Sei der Exponent w;, genau 2 > Az-fach als Nullstelle in v zu

(mwil ))\1

finden, also gilt dann (mwi . Seien wiy 1, .., Wiy, g5 Mit wiy,1 = w;, alle Konjugierte bzgl. des Minimalpolynoms

Y2 | v
2 (mwi1 )M

Mgy dann kann man genauso, wie es oben getan wurde, wieder schreiben:

ket +. . +k-e“l =(k-e“t +...+k-e“l — My — M) +

A -k)-eind (A - k) et [ 4| (Ao -k) ezl L (Mg - k) - eViio2

=M =:My
Man wiederholt diesen Vorgang bis ein d erreicht ist, wo k-e“1 +...4+k-e“l — My — M3 —...— My nur noch paarweise verschiedene
Exponenten hat, also bis w +— keine mehrfache Nullstellen mehr hat. Man hat dann also:
me, )M - (M, )N
1 iq
(k-e*t+.. . +k-e"t =My — My —...— Mg)+ My + Mz +...+ Mgy
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Was hat man damit erreicht?: Die Exponenten in k-e“l + ...+ k-e*l — My — M — ... — My sind paarweise verschieden und ein
w

(mwil A (m“”id )Ad
e-Funktionen in k-e*1 +...+k-e¥l — My — My —...— M, haben immer den Vorfaktor k € Z. Die Exponenten in M,. (r =1,...,d)

vollstdndiges Nullstellensystem des Polynoms , was rationale Koeffizienten und Leitkoeffizient 1 hat. Die

bilden ein vollstdndiges Nullstellensystem des Minimalpolynoms My sind also paarweise verschieden. Die e-Funktionen in M,
haben immer den gleichen Vorfaktor A, - k € Z. Das Wichtigste ist nun, dass in (k-e*! + ...+ k-e“l — My — Mz — ... — My) +

My + Mz + ...+ Mg alle auftretenden Exponenten paarweise verschieden sind, was jetzt gezeigt wird: Nach Voraussetzung ist wj,.
w

fir alle r € {1,...,d} nun genau A,-fache Nullstelle von o also gilt dann folglich (mwiT)AT |

e

. Héatten M, und M, (u,v = 1,...,d und u # v) einen Exponenten gemeinsam, dann gelte

A
(muil) 1., (WLWT_1
w

A
(mwil )RS SR (m“’iT,l) r—1

= m.,; und das kann nicht sein, denn: Sei r € {2,...,d} und =z € {1,...,r — 1}. Gelte My, = My, - Aus (mwir)k"' |
w - (m“im+1 )%$+1 R (mmiT71 )Mq w

folgt dann (m., YA = , al-
‘ D e T )=t (M M (g, )P

me,

w
by
(M I (M, )L

1
A A
m)z+r|

i
w

50 (M, , also ist w;, mehr als A;-fache Nullstelle, denn A\, > 2, von dem folgenden:

X Ag—
(m“"il) e (mwim—l) L
w < , Widerpruch, denn w;, ist genau A;-fache Nullstelle von w <
(mwi1 )M (g, 1) z—1 (mwi1 )M (T, 1) @ —
@ — z—
fiir alle r € {2,...,d} und fiir alle z € {1,...,r — 1}: M, # M, Also kann oben nicht gelten M, = M, also haben M,

T also gilt

und M, keine gemeinsame Exponenten. Es muss jetzt noch gezeigt werden, dass alle M, (r = 1,...,d, Erinnerung: Die Exponenten
in M, sind schonmal paarweise verschieden!) keine gemeinsame Exponenten mit k-e“1 +...+k-e“l — M; — My — ... — My haben:
Fiir alle r € {1,...,d} gilt: Keine der Exponenten in M, sind in k-e*1 + ...+ k-e“l — M; — My — ... — My zu finden, weil diese
Exponenten-Vorkommen mittels —M,. in k-e“l 4+ ...+ k-e“l — My — My — ... — My vollstindig raussubtrahiert sind. Keine der
Exponenten aus k-e“1 + ...+ k-e“l — M; — My — ... — Mg sind in M,. zu finden, denn ist ein Exponent in M, zu finden, dann
nicht mehr in k-e“l +...+k-e*l — M; — My — ... — Mg, weil dort mittels —M, das Exponenten-Vorkommen aus M,. vollstindig
rausubtrahiert ist. Heifft im Umkehrschluss: Ist ein Exponent in k-e“l + ...+ k-e“l — My — My — ... — My zu finden, dann nicht
in M,.. Soviel also dazu!

Fall 2:

Seien k-e“l 4. ..+ k-e“l (immer Vorfaktor k € Z und wi, ..., w; ist ein vollstindiges Nullstellensystem bzgl. des Polynoms wj mit
rationalen Koeffizienten und Leitkoeffizient 1) und &k’ Aewll +.. .+ kK e“’;l (immer Vorfaktor k/ € Z und w'l, e, w;,' ist ein vollstandi-
ges Nullstellensystem bzgl. des Polynoms ws mit rationalen Koeffizienten und Leitkoeffizient 1) gegeben. Haben k-e“1 4... 4+ k-e“l
und k' - e“’i + . 4K ew;t keine Exponenten gemeinsam, dann ist man fertig! Man nimmt also an, dass k-e“l + ...+ k- e“l und
k- e“’ll 4+ 4K e“’i, mindestens einen Exponenten gemeinsam haben. Sei dieser Exponent mit 21 bezeichnet. mq, sei vom Grad
G'1. Die Nullstellen von moy seien 21 1,..., QI,G17 mit Q1,1 = Q1. Q; tauche in k - e¥l + ...+ k-e“l genau 1 > py-mal auf und

in kel +.o. + K e“’;l genau 1 > pf-mal auf. Dann kann man, wie im Fall 1, das Folgende schreiben:

(keet otk et) b (K et o ke eh ) = (ke el ket = Ny (e Lk eh - Ny )

(1 k) - Dl o (k) MO | | (k) T L (] R - e

=:Ny =N

1/

Und das ist gleich zu:
(k-ew1+...+k-ewl7N1)+(k/-ewi+...+k/-ew;b7N1/>+((,u1~k+p/1-k')~691v1+...+(,u1~k+,u/1<k')-enlvcl>

Diesen Vorgang wiederholt man bis k-e“1 +...4+k-e“l —N; — Ny —...— Ny und k’ ~e“’l1 +.. .+k/-e“’/h — Ny — Ny —...— Ny keine
gemeinsame Exponenten mehr haben. Dabei gilt ;1 = Q; und Q;,1,...,8; g, sind alle Konjugierte bzgl. des Minimalpolynoms
mgq,. Und es gilt N; = (u; - k) - e 4 (k) - 4G5 und N;=(p} - k')~ el 44 (uf - k') - G Weil N; und N,/

(i=1,...,d) identische Exponenten haben, kann man die beiden zusammenfassen. Man hat nun also:

(k-e®t k) b (K et ke eh ) = (ke el 4 ket = Ny = Na— o — Na) +

i i
(k/-ewl+...+k/-ewh7N1/7N2/7...7Nd/)+(N1+N1/)+(N2+N2/)+...+(Nd+Nd/)

Was hat man damit erreicht?: Die Exponenten in k-e*! +...4+k-e“l — N; — Ny —...— Ny bilden ein vollstindiges Nullstellensystem
w1

(ma, )1 - ... (ma,)*d

...+ k" -e“t — N;y — Nyy — ... — Ny bilden ein vollstindiges Nullstellensystem eines Polynoms mit rationalen Koeffizienten

wa

eines Polynoms mit rationalen Koeffizienten und Leitkoeffizient 1, ndmlich: , Die Exponenten in k" - e*1 +

und Leitkoeffizient 1, némlich: , —. Die Exponenten in N; + N;; (i = 1,...,d) bilden ein vollstéindiges
(mQ1)M1 et (de)Hd

Nullstellensystem bzgl. des Minimalpolynoms mgq, (d.h. sie sind paarweise verschieden), und alle Vorfaktoren in N; + N,/ sind
gleich p; - k + p; -k’ € Z. Wie in Fall 1 zeigt man, dass fiir alle 4 € {1,...,d} die Exponentenmenge von N; + N,/ disjunkt ist zu
der von k-e“l +...+k-e*l — N; — N2 —...— Ny und zu der von k'wf:‘“’i +.‘.+k:'-ew;z — N/ — Nyr — ... — Ny, und man zeigt,
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wie in Fall 1, dass die N; + N,;, (¢ = 1,...,d) disjunkte Exponentenmengen haben. Erinnerung: Nach Konstruktion gilt auch, dass

die Exponentenmengen von k-e“! +...+k-e“l — N; — Ny —...— Ng und k' - e“’/l +. 4K ew;L — Ny — Nyr — ... — Ny disjunkt
sind. Das war es also auch schon!

Fall 3:

Seien k-e“l +...4+k-e“l (immer Vorfaktor k € Z und w1, . ..,w; ist ein vollstdndiges Nullstellensystem bzgl. des Minimalpolynoms
m, also sind w1, . . ., w; paarweise verschieden) und k'-ewll +.. ‘+k'-e‘”;z (immer Vorfaktor k¥’ € Z und wi, ey w;l ist ein vollstdndiges
Nullstellensystem bzgl. des Minimalpolynoms m’, also sind w/, ..., w} paarweise verschieden) gegeben. Mal angenommen, k- e“1 +

/7 /
...+ k-e“l und k' -e“1 4+ ...+ k- e“h haben keinen Exponenten gemeinsam, dann ist man fertig. Haben also k-e“1 + ...+ k-e“l

’ ’
und k' - e¥1 + ... + k' - ek mindestens einen Exponenten, bezeichnet als v, gemeinsam, dann gilt m = my = m/ (denn: m~ und
m, m’ haben die gemeinsame Nullstelle v), also m = m’. Daraus folgt also I = h und w1 = W}, ..., w; = wl/. Also kann man dann
schreiben:

(kee“t 4.t ke t) 4 (K et 4. 4K e“h)=(k-e“t + ... +k-el) + (k-1 4. +k - el)

=(k+k')-e’T+.. .+ (k+k') e

Was hat man damit erreicht?: In (k + k:') ce¥l o+ (k+ k:') - €“l sind alle Vorfaktoren gleich k + k’ € Z und wy, ..., w; bilden
ein vollstdndiges Nullstellensystem bzgl. des Minimalpolynoms m, also sind wq, ..., w; insbesondere paarweise verschieden.

Fall 4:

Seien k - e“l + ...+ k- e“l (immer Vorfaktor k¥ € Z und w1, ...,w; ist ein vollstindiges Nullstellensystem bzgl. des Polynoms
w mit rationalen Koeffizienten und Leitkoeffizient 1) und k’ - e“’ll + ...+ K e“’;t (immer Vorfaktor k' € Z und wi, .. ,w;l
ist ein vollstindiges Nullstellensystem bzgl. des Minimalpolynoms m’, also sind w/,...,w} paarweise verschieden) gegeben. Mal

angenommen, k- el 4+ ...+ k-e“l und k- el + ...+ K e“";vr haben keinen Exponenten gemeinsam, dann ist man fertig. Haben
also k- e“l + ...+ k-e“l und k' - el + ..+ k- e“’ib mindestens einen Exponenten, bezeichnet als v, gemeinsam, dann sei A die
Vielfachheit der Nullstelle v von w, dann gilt (m,Y)A | w, wobei m~ das Minimalpolynom von ~ sei. Weil m’ und m~, die Nullstelle
~ gemeinsam haben, folgt m’ = m.,. Seien die Nullstellen von m., bezeichnet als Q1,...,Qy mit Q1 = v. Wegen m’ = m.,, folgt

also g = h und 1 = wy,...,Qy = w;. Man kann also schreiben:

(keeL 4.tk e) + (K el 4. +k eh)y= (ke +.. . +k-el —A) + | (A k)- e+ + (k) | +

=:A
(et . K eh) = (kel 4. kel —A) 4 (Ak) e 4+ (Ak)e®) 4 (K e b ke =

(k-e“L 4. .t k-e®t —A) + ((A-k+k) e+ +A-k+k) %)

Was hat man damit erreicht?: Die Exponenten in k- e*1 + ... 4+ k- e“l — A bilden ein vollstindiges Nullstellensystem bzgl. eines
Polynomes mit rationalen Koeffizienten und Leitkoeffizient 1, ndmlich ﬁ = ﬁ In(A-k+k)- e 4. .+ (N -k+k') e
hat man immer den gleichen Vorfaktor A -k + k' € Z und Qq, ..., 4 bilden ein vollstindiges Nullstellensystem bzgl. des Minimal-
polynoms m, = mgq,, also sind diese Exponenten auch paarweise verschieden. Wie in Fall 1 zeigt man, dass die Exponentenmenge
{Q1,...,Q4} disjunkt ist zur Exponentenmenge von k- el 4+ ... + k- e®l — A.

Allgemeiner Fall:

Zunichst macht man sich klar, dass sich il Bi-e%i als Summe von Termen der Form k-e*l +...4+k-e“! (k € Zund w1, ...,w; ist

i=

ein vollstdndiges Nullstellensystem bzgl. eines Polynoms mit rationalen Koeffizienten und Leitkoeffizient 1) darstellt. Es werden hier
Bezeichnungen eingefiihrt: Ein Term der Form k-e“! +. ..+ k-e“!, dessen Exponenten ein vollstéindiges Nullstellensystem bzgl. eines
Polynoms mit rationalen Koeffizienten und Leitkoeefizient 1, welches kein Minimalpolynom ist, bezeichnet als w, darstellen, nenne
man W-Term. Ein Term der Form k-e“! +...4+k-e“l, dessen Exponenten ein vollstindiges Nullstellensystem bzgl. eines Minimalpo-
lynoms, bezeichnet als m, darstellen, nenne man M-Term. Fall 1 sorgt dafiir, dass jeder W-Term paarweise verschiedene Exponenten
hat. Dabei entstehen M-Terme. Fall 2 wendet man solange an (endlich oft!), bis alle W-Terme disjunkte Exponentenmengen haben.
Dabei entstehen wieder M-Terme. Wegen Fall 1 haben im Beweis von Fall 2 nun k-e“! +...+k-e“l und k' - e“’i + ...+ K- e‘”;z
paarweise verschiedene Exponenten, was offensichtlicherweise auch weiterhin fiir k - e“! + ...+ k-e“l — Ny — Ny — ... — Ng und
K el 4. 4K - e¥h — Ny/ — Ny —...— Ny gilt. Dabei gilt, dass die Vorfaktoren der e-Funktionen in k-e“1 +...+k-e“!l immer
k € Z und in k/-e“’i +.. .+k'~e“’ll'1 immer k' € Z sind. Im Beweis von Fall 2 gilt, weil k-e“1 +...4+k-e“! und k:/-ewi +.. .+k'~e“’;t
wegen Fall 1 paarweise verschiedene Exponenten haben, dass sogar p; = ,u; =1 fir alle s = 1,...,d gilt. Mit Fall 3 erreicht man,
dass zwei M-Terme, dessen Exponenten paarweise verschieden sind, disjunkte Exponentenmengen haben, denn ansonsten kann
man sie zusammenfassen. Mithilfe von Fall 4 sorgt man dann dafiir, dass die Exponentenmenge jedes M-Terms, dessen Exponenten
paarweise verschieden sind, disjunkt ist zu jeder Exponentenmenge eines W-Terms. Also ist die Exponentenmenge jedes W-Terms
disjunkt zu allen Exponentenmengen eines M-Terms, denn sonst gibe es eine Exponentenmenge eines M-Term, welches nicht dis-
junkt ist zur Exponentenmenge eines W-Terms, Widerspruch. Im Beweis von Fall 4 hat k-e*! +...+ k- e*! wegen Fall 1 paarweise
verschiedene Exponenten, was dann auch fiir k- e“! + ...+ k-e“l — A gilt. In k-e“1 + ...+ k-e“l — A sind die Vorfaktoren der
e-Funktionen dort alle gleich k € Z. Also ist bewiesen: Es gibt 0 = ng < n1 < --- < n, = n, so dass fiir alle t mit 0 < ¢t < n gilt:

Qnyt1s--05Qnyyy ist ein vollstindiges Nullstellensystem eines Polynoms mit rationalen Koeffizienten und Leitkoeffizient 1, wobei
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zusitzlich Bn, 11 = Bny42 = ... = B"t+1 (alle aus Z) gilt. Zusammen mit dieser Eigenschaft gilt zusétzlich: Alle in >~ 8; - e

i=1
auftretende Exponenten kénnen als paarweise verschieden angenommen werden! Das war es.
Vorbereitungen:
ai,...,a, € C sind algebraisch. Es gibt dann eine natiirliche Zahl £ so, dass £ay, . .., Lo, ganz-algebraisch sind. Beweis: Sei a € C

algebraisch, dann gibt es ein normiertes Polynom h(z) = 2" + an—1 2"l 4 4ay -zt tap € Q[z] mit h(a) = 0. Da alle a; aus

Q sind, gibt es ein m € N\ {0} so, dass m - a; € Z fiir alle i = 0,...,n — 1 gilt. Es gilt also

n n n—1 n

h(a):O:an+an_1~a"71+...+a1-o¢1+a0ém"<0:m ot +m" an_1 -« +...4+m -al-a1+m"~ao

Und die rechte Seite ist dann gleich zu:

O=(m-a)"+m" an_1-m-a)" " 4+m® an_s-(m-a)" Z+...+m" " ar-(m-a) +m" - ag
S — (S — ———
€z ez €z €z

Man hat also ein normiertes Polynom mit ganzzahligen Koeffizienten gefunden, das m - a als Nullstelle hat. Also ist m - a ganz-

algebraisch. Wéhle nun fiir alle ¢ = 1,...,n zu «; ein £; € IN\ {0} so, dass ¢;«; ganz-algebraisch ist. Sei dann ¢ := kgV (¢1,...,4,).
Es gibt dann k1,...,k, € N so, dass gilt £ = k1 - €1 = ko -l = ... = kyp, - £y. Also gilt dann la; = k; - (Cia;) (i =1,...,n). Weil
k; € N und ¢;«; ganz-algebraisch sind, so ist es auch k; - (¢;;) = (ki - 4;) - «; = Lo;, Beweis-Ende. Es sei fiir ¢ = 1, ..., n folgende
Hilfsfunktion definiert: ]
R Y ety
Tr — g

Wie man leicht nachweist, gilt: £ (ay) = 0 fir j < p— 1 und p! | £ (ay) fiir j > p— 1. Fir j = p— 1 und k # i ist
k) = £ (ar) = 0. Fir j = p—1und k = iist £V (ax) = £ (@) = £ - (p— D!+ I] (o — am)?. Nach
m=1
(m#i)
) 1 () - _
Konstruktion von f;(z) ist f;”’ () und sogar ﬁ ganz-algebraisch. Sei I;(c) = / e - fi(u) du. Dabei sei Oc ein Weg in
p—1) Oc
der Gauf’schen Zahlenebene, der bei 0 beginnt und bei ¢ endet. Da der Integrand e“~" - f; (u) des Kurvenintegrals holomorph ist,
ist das Kurvenintegral wegunabéngig. Man kann also den speziellen Weg Oc (Strecke von 0 nach c) wihlen, ohne, dass sich der Wert

des Kurvenintegrals dndert. Also:

ne) = [ e pwan= [ e puwyan

Oc
Weiterhin sei J; = 81 - Ii(a1) + ...+ Bn - Ii(ay) und J = J1 - ... Jp.

Die algebraische Abschitzung von |J| nach unten:

Es wird mehrfach die partielle Integration ausgefiihrt:

Ii(c) = AN e fi(u)du = /Oiecfu - fi(u) du = /(;1 e fi(te)- (te) dt = Al e (171, fi(t-c)-cadt

—C

1 1 11 1
= [— cee -t -fi(t~c)-c] —/ [ k) ~fi(1>(t-c)-cAcdt: [—ec'(lft) -fi(t-c)]l +/ s (17 -f,i(l)(t<c)-cdt
—-c¢ 0 0 0 0

1 ! 1
(=fi(e) +e°- f:(0)) + — s -fi(l)(t-c)~c:| 7/ — e -ffz)(t~c)»c-cdt
S o

0 —C

= (~fil0) + ¢ £i(0 () + e 110 () +/1 S P (RO R
]

+

—cC

( —
1
= (~fi)+e* - £10) + (=@ + e 1D @) + [i et (1) - } - / — e (O () e cdr
s A
( —

0+
)+ (
)+ (
= (—fi@ +e - £i10) + (=P @ + e 1) + (=12 () + e £P(0) + / e i) cdt = ...

[=S) oo

Macht man so weiter, so erhélt man: I;(c) = e - Z fi(k)(O) — Z f;k)(c). Weil f; ein Polynom vom Grad np — 1 ist, gilt also sogar:
k=0 k=0
np—1 np—1
Ii(c) = e° - Z f[.(k)(O) — Z fi(k)(c). Dann gilt also:
k=0 k=0
n n np—1 . np—1 . n np—1 ) n np—1 .
Ji= B Ti(ow) =D B (e > 71P0) = S V%) | =D (Br-e - S 0 ) =S [ 8e D P (ar)
k=1 k=1 =0 =0 k=1 j=0 k=1 j=0
np—1 ) n np—1 n . np—1 n .
DO <Zﬁk ‘eak> =3 ST B £ e == D0 D B £ ()
j=0 k=1 j=0 k=1 7=0 k=1
=0

n .
Denn: Y Bj-e“k = 0 ist die Widerspruchsannahme. Aus Vorbereitungen oben, weifl man, dass die Primzahl p alle f,i<]> (ag) teilt (es
k=1

gilt ndmlich: p | 0), also auch By -fi(” (g ), nur fi(pfl)(ai) nicht. Sei p echt gréBer als 3;, dann gilt p 1 8;, also auch p 1 8; -fi(pfl)(ai).
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np—1 n .
Weil nun aber J; = — > > By - fi(])(ozk) ist, folgt also p t J;, also J; # 0, denn gelte J; = 0, dann wiirde p | J; gelten. Beweis
j=0 k=1
n
von p f[.(p_l)(ai): Mal angenommen, die ganz-algebraische Zahl fi(p_l)(a,-) =P . (p—1) [I (i —am)? wird von der ganz-
algebraischen Zahl p € Z geteilt, dann gibt es also eine ganz-algebraische Zahl X so, dass £™? - (p —1)!- ] (as —am)P =A-p=
m=1
(m#£i)
L2 (p—1)!- 67 mit §; := H (La; — Lovy,). Weil die Summe und das Produkt ganz-algebraischer Zahlen nun ganz-algebraisch ist,
(m;n)
ist §; also ganz-algebraisch. §; ist also Nullstelle eines Polynoms mit ganzzahligen Koeffizienten und Leitkoeffizient 1. Sei §; = 5

L
und 6,63 .. 51 alle anderen Nullstellen dieses Polynoms. Wegen ]_[ (z—8W) e Zz] folgt dann d; := s .. s ez

Dann gilt: A-p-A = X-p- (6@ .63 .. 502 = . (p—1)1. (6D .6 .. [s<m))P =P (p—1)!-dP, wobei A := (6(.6®) . . .5(m))P
(ganz-algebraisch) sei, und es war £, p,d; € Z, alle ungleich 0. Es gibt dann also eine ganz-algebraische Zahl A’ = X\ - A so, dass
gilt X' -p =7 - (p— 1)! - d?. Weil X' ganz-algebraisch ist und A\’ = w € Q gilt, folgt nach Lemma (Rational und
ganz-algebraisch) oben: A’ = k(p) € Z, also teilt p € Z die Zahl ¢” - (p — 1§)! -d? = (p—1)!'- (4d;)? € Z. Der Primfaktor p ist
nicht in (p — 1)! enthalten. Macht man p echt groBer als die ganze Zahl ¢d;, dann ist der Primfaktor p auch nicht in ¢d; enthalten,
also auch nicht in (¢d;)?, und das ist ein Widerpruch, denn es gilt doch A" - p = ¢7 - (p — 1)! - d¥, also miisste der Primfaktor p in

(p — 1)!- (¢d;)P aber enthalten sein. Beweis-Ende. Festzuhalten ist also:

Ji 0= |Ji| - |Inl=J1- - dn = |J]#0
Nach Annahme 2 oben gilt 81 - el + ...+ By -e“™ =0 (B1,...,Bn € Z), wobei es natiirliche Zahlen 0 = ng <n1 < ... <n, =n
gibt so, dass fiir t € {0,...,r — 1} gilt, dass an,41,..., Qnyy g ein vollstdndiges Nullstellensystem eines normierten Polynoms mit
rationalen Koeffizienten ist. Weiter gilt 8n,4+1 = Bny42 = ... = ,Bnt+1 . Daraus folgt:
np—1 np—1r—1 )
-3 Z B £ (an) = = D0 S Bugsr £ (angs1) + oo By £ ()
j=0 k=1 j=0 t=0

Und das ist gleich zu:

Brgir - (F (amy1) + o+ £ (amy 1))

P>

HM\

Sei o eine Permutation, die n; + 1,...,n¢41 tauscht und die anderen festhilt. Dann gilt:
n np—1r—1 )
T=Joy Jo@ o Tomy = [T | = 22 D2 Brytr (ff,iﬁ)(ag(mﬂ)) +. +fg( 3 (@ (nyy1)))
i=1 j=0 t=0
D.h. J ist symmetrisch in o, 41,.. S Qny (t € {0,...,7 —1}). Man hat also eine gruppenweise Symmetrie. Nach dem Lem-
ma (Gruppenweise Symmetrie) gibt es nun fiir J € Z[ang+1,---, nqg [Qng+1,5 -+ Qngl o [Qn, 41, .., an,] also ein Polynom
P € Zlei,1,. .., en;—ng,1le1,2,- - eng—ny2l. . letr, ..o €npon_y,r], wobei e1441,. .., €n, y—nge41 die elementarsymmetri-
schen Polynome in ap,+1,-- ., Oy mit ¢t € {0,...,r — 1} seien, so, dass gilt:
J(ar, a2, ., an) = J(@ng+1s -5 Ong [Qng 41, s Qng | am, 41500 )
= P(e1,1,--s€ny—ng,1l€1,2,- -, ety enp—ng_q,r)
Weil die elementarsymmetrischen Polynome aus Q sind (denn: an,t1,... » Ony g ist fiir alle t = 0,...,r — 1 ein vollstédndiges
Nullstellensystem eines normierten Polynoms mit rationalen Koeffizienten, d.h. (z — any41) .. - (@ — any ) = ZMtH1TIE 4
(=) veq pq - @™ T ()2 ey g ™ML T T2 o (—) LT €nyyq—ngt+l z0 € Qz)]), folgt J € Q. Weil
np—1 n ) R
Ji=—= > > Bk- fi(J)(ak) ganz-algebraisch ist (denn nach Vorbereitungen oben sind S € Z und fi(J)(ak) ganz-algebraisch),
j=0 k=1
J
ist es auch J = Jy - J2 - ...+ J,. Nach dem Lemma (Rational und ganz-algebraisch) ist also J € Z. Nun ist Q > W =
p—1)!
w [ ap—1i m 9 (an) £ (o)
TImTl- > > Bk- ﬁ ganz-algebraisch (denn nach Vorbereitungen oben sind SBr € Z und ﬁ ganz-algebraisch),
i=1 =0 k=1 p—1)! P2

also gilt nach Lemma (Rational und ganz-algebraisch) dann € Z, also (p — D! | |J|, also (p — 1)! | |J], also folgt die

J
(p—D"
wichtige Abschéitzung:

(p—DI< I 0

Das ist dann die algebraische Abschédtzung von |J| nach unten.

Die analytische Abschétzung von |J| nach oben:

\I(c>|—‘/ "~fi<u>du]=]/(Jle”*t*%fi(rc)A<t-c>/dt's/ol e

! |
s/ Afit o)l dt-|e |:/ [fi(t- )| dt - |c| €'l < sup |fi(t )| (1—0)|c|-el® = sup |fi(u)] - |e| - !
0 0 te[

€[0,1] u€0c

1
filte o)l Jel dt s/o el el fi(t - )] dt - |el
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k
= z = |z ,
Denn es gilt: |e*| = | > 7l = > |k|' = ¢!?l und e® ist streng monoton steigend auf R. Es gilt hier nochmal: f;(u) =
k=0 k! k=0
u—oar)? o (u—an)?  nell — np—1
e . ( 1) ( n) = ag,i - u®, dann definiere f;(u) = Y. |ag,:|-u®, dann gilt:
U — o k=0 k=0

np—1 np—1 np—1

[fi)] =] > ag:-u®| < Z lak,i| - Z lak,il - le[* = Ti(lel)
k=0

— np—1 —
Denn es wird f;(u) fiir w € Oc betrachtet und > |a,;| - " ist streng monoton steigend auf RZ°. Also: sup |fi(u)| < Fi(|c]).
k=0 L

u€0c

Also gilt dann: |I;(¢)| < sup |fi(w)] - |e| - elel < le] - el - fi(le]). Daraus folgt:
u€le

|Jil = 1B1 - Ti(an) + o 4 B - Ti(an)| = D Bkl - i) < 3 Brl - ok - €' R Fi(| ok )
k=1 k=1

Sei ¢/ := 1max (18k| - lag| - el¥kl), also: |J;| < € - Z fi(Jag|). Die Koeffizienten von f;(x) sind sicher kleiner-gleich als die
(x+]a1])? - (w+|an|)

T+ |az‘\
bei den entsprechenden Koeffizienten die Dreiecksungleichung anwendet. Also gilt dann: f; (Jax|) < fi(lak|). Fiir alle z € R gelten

Koeffizienten von f;(z) = £"7 - , was man so sieht, wenn man f;(z) und f;(z) ausmultipliziert und

dann die folgenden Abschéitzungen:
Fil@) <7 (@ +max(laal, .. o) = Fillar]) < fillar]) < €07 (lak| + max(jaal, ..., lan]) 7!

Definiere: C"’ := £™? und C}, := |ak| + max(|ail,. .., |an|), also gilt:
n o n n
|7l < ¢ YTl < €737 C" Pt = (000" Yo opr!
k=1 k=1 k=1
Sei K’ :=C’-C" und K := max(C,...,Cy), also:

|7:| < K’ - Z Pl gl (n - Knpfl) — (K -n). Fnp—l
k=1

Sei L' := K’ -n und L := K, also: |J;| < L' - L™P~'. Mit M := max(L’, L) folgt dann: |J;| < M™P = (M™)P. Sei Cy = M", also

n n P n
|J:] < Cf'i), also: |[J| = |J1 ... Jn| = |J1] ... |Jn] < 1:[1 C(pi) = (]:[1 C(,;)) . Mit C := 1:[1 C(y) folgt dann daraus die wichtige
Abschitzung:

0 # |7 <C”

Das ist dann die analytische Abschitzung von |J| nach oben. Dabei galt hier immer: C’,C",Cy, K', K, L', L, M, Cwy,C € R>°.

Der Widerspruch:
Man weil nun also (p — 1)! < |J| und |J| < C?, also (p — 1)! < CP. Und das ist ein Widerspruch. Denn: Man wéhle ein N € IN

IC|

1
hinreichend grof so, dass gilt: ~ < 3 Fiir p > N gilt dann:

o _ el et 1 ool et _ 1 e LS (< A S Rl
0< = — < - . < = <...< . =— - —— — 0
p! p (p-—1)! 2 p—1 (p—2) 22 (p—2)! 2r—N NI 2P N!  p—oo
< ler |C1P 1
Denn N ist fest. Es folgt also: |— — 0| < —— — 0. Also gibt es ein K € N so, dass fiir alle p > K gilt: - < —, also
p! p: p

(p—1)! > |C|?P = CP, denn fiir das C von oben (analytische Abschiitzung) gilt: |C| = C wegen C € R”°. Und deswegen hat man
den Widerspruch zu (p — 1)! < CP. Das ist der Beweis des Satzes. d

Korollar. Es gelten folgende Behauptungen:
1. Wenn eine Zahl transzendent ist, dann ist sie auch irrational.
2. Die Euler’sche Zahl e und 7 sind transzendent.
3. Sei 0 # « algebraisch, dann sind e”, sin(a) und cos(a) transzendent.
4. Wenn 0,1 # a algebraisch ist, dann ist In(a) transzendent.

Beweis. Zu 1.: Sei eine Zahl « rational, also a € Q, dann ist  — « ein Polynom mit rationalen Koeffizienten und Leitkoeffzient
1, welches « als Nullstelle hat. Also ist a algebraisch. Umkehrschluss: Ist « transzendent, also nicht algebraisch, dann ist «
nicht rational, also irrational. Nach dem Satz von Lindemann-Weierstraf3 gilt: Seien A1, Ao algebraische Zahlen ungleich 0 und

w1, w2 verschiedene algebraische Zahlen, dann gilt: A1 - el + Ay - %2 # 0. Zu 2.: Sei also e algebraisch, dann setze A\; = e,
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A2 = —1, wy = 0, wy = 1, dann gilt: A1 - e¥1 + Ay - e¥2 = e - e + (1) - e! = e — e = 0, im Widerpruch zum Lindemann-
Weierstraf3-Theorem. Also muss e transzendent sein. Angenommen, 7 ist algebraisch. Weil die imaginédre Einheit ¢ und die Zahl 2

algebraisch sind, folgt, dass auch 7 - w und 2 - ¢ - 7w algebraisch sind. Setze dann: Ay =1, Ao =1, w1 =4 -7, wag = 2-4¢-m, dann

gilt: Ap - e“l +Xg-e¥2 =1-¢e"™ +1.e2"" = —1 4+ 1 = 0 und das ist ein Widerpruch zum Lindemann-Weierstraf-Theorem,
also ist 7 transzendent. Zu 3.: Angenommen, e ist algebraisch, dann setze: \1 = —1, Ao = %, w1 = «, we = 0, dann gilt:
A - e¥l 4+ dg - e¥2 = —1-e¥ 4+ e e = —e® 4% = 0, im Widerspruch zum Lindemann-Weierstraf3-Theorem. Also ist e®

transzendent. Angenommen, cos(a) ist algebraisch, dann ist wegen sin?(a) + cos®(a) = 1, also |sin(a)| = /1 — cos?(«), auch
sin(a) algebraisch, denn die Wurzel einer algebraischen Zahl ist algebraisch, was man so sieht: Sei a algebraisch, dann gibt es
ein Polynom p(z) mit rationalen Koeffizienten und Leitkoeffizient 1 so, dass gilt p(a) = 0. Dann ist p*(z) := p(z?) ein Polynom
mit rationalen Koeffizienten und Leitkoeffizient 1 mit p*(y/a) = 0, also ist \/a algebraisch. Ist sin(a) algebraisch, dann ist wegen
| cos(a)| = 4/1 — sin?(a) auch cos(c) algebraisch. Also: Ist einer von beiden, cos(«) oder sin(a), algebraisch, dann sind es beide,
also ist auch cos(a) 4 - sin(a) = e*'® e

algebraisch, denn 7 ist algebraisch. Das ist ein Widerspruch, denn e ist transzendent, weil

i -« # 0 algebraisch ist. Also miissen beide, cos(a) und sin(«), transzendent sein. Zu 4.: Mal angenommen, In(a) ist algebraisch,

dann setze a = In(a) # 0. Weil a # 0 algebraisch ist, so ist nach 3. dann e® = e™(®) = o transzendent, Widerspruch, weil o nach
Voraussetzung algebraisch ist. Also ist In(«) transzendent. Ende! |
Satz (Abgeschlossenheitssatz fiir die algebraischen Zahlen). Seien ag,...,ar—1 algebraische Zahlen. Sei x € C derart, dass

k—1

:ck+ak,1~9c +..4+a1~x1+a0=0

gilt. Dann ist x eine algebraische Zahl.

Beweis. Dadie a; (¢ =0,...,k — 1) nach Voraussetzung algebraisch sind, gibt es n; € IN und b; ; € Q mit 0 < j < n; so, dass gilt
ng; n;—1 . . "
a;LZ +bin;—1- a;” + ...+ bi1- a} 4+ bi 0. Seidann p =k -ng-ny ... nk_1 und 21, 22, ..., 2p eine Aufzihlung aller Produkte
€k — . . .s . . .
der Form z° - ag® - aj! ~...~akk_11 mit 0 <e<k,0<ey <ng,...,0<er_1 <mng_1. Dann gilt fiir alle 1 <4 < p: (§) = - 2; ist eine
Linearkombination von 21, 22, ..., zp mit rationalen Koeffizienten, d.h. es gibt ¢; 1,...,¢i,p €EQmit x-2; =cj1-21+...+Ci,p-2p-
Beweis von (#): Sei z; = z° - ago - ail B a;’i}l fiir gewisse e, eq,...,ex—1. Gilt e +1 < k, so ist x - z; sogar gleich ein z;/,
also ¢ - z; = 1-2zy mit 1 € Q. Sei also e + 1 = k. Man ersetzt nun in x - z; = zk . ago - afl e ai’i_ll die Potenz z* durch
—ap_q1 -zt — . —ay -2t — ao(= zk) und multipliziert aus. Also:
— _1+1 _ —
zz = —z" 1~a80 -afl -‘.‘-azkill 7...7zl~a80 -af1+1~...~ailill 7z0~a80+1 -ail ~...~azlill
Gilt in dieser S firall™ (1=0 k—1),d 1 ilt, d ilt —a!-al0 ertt k1
ilt in dieser Summe fiir a, (1=0,...,k=1),dass e;+1 < ng gilt, dann gilt —z"-a,?-.. .-q, cooca € {—z1,—22,...,—2p}
. . . 1 -1
mit —1 € Q. Gilt aber ¢; + 1 = n;, dann wird alelJr :a;” (I=0,...,k—1) durch 7blm,l_1-a?l 7.‘.7bzyl<allfblyo(: a?l)
ersetzt. Also hat man dann das Folgende:
1 n €k—1 i np—1 1 €k—1
7z-ago~...~all-.‘.-ak71 :71’-ago-...-(fblm,l_l-all 7..‘7bl‘1~al7b1,,0)-...-ak71
Und das ist also gleich zu:
l e ny;—1 €k—1 l e 1 €r—1 l e 0 €k—1
bin—1-m cal® -t e T b a el ey e T o g e e
€Q €Q €
€{z1,22,...,2p} €{z1,22,.-.,2p} €{z1,22,...,2p}

Also ist (#) bewiesen. Seien ¢;,; € Q, wie in (f), und sei C = (ci,j)1<i,j<p die zugehdrige Matrix. Sei E, (p x p-Matrix) die
Einheitsmatrix und es gelte Z = (21, ..., 2p)7. Nach (#) gilt (C —x-E,)-Z = 0. Da Z nicht der Nullvektor ist (denn: z°-a3-a-...-
a271 = 1), folgt, dass die Spalten der Matrix C — - E,, linear abhéngig sind, also folgt det(C' —x- E},) = 0. Aus der Entwicklung der
Determinante folgt, dass « eine Losung von ? +r,_1 Pl 4ozt 4o = 0 mit gewissen rationalen Koeffizienten r,_1,..., 70

ist (Dass det(C — z - Ep) € Q[z] vom Grad p ist, macht man sich mit der Determinantenformel det(A) = > sign(o) - [] as,0(s)
E i=1

oESn

D
klar, ndmlich so: det(C —x - Ep) = 3 sign(o) - [](¢i,a(:) — 0s,0(:) - ) mit §; ; = 1 fiir ¢ = j und §;,; = 0 fiir ¢ # j). Also ist
5p i=1

o€

algebraisch, was zu zeigen war. O

Korollar. Mindestens eine der Zahlen e + m und e - 7 ist transzendent.

Beweis. Angenommen, e + m und e - 7 sind beide algebraisch, dann auch a := —(e + w) und b := e - w. Man betrachtet dann
das Polynom P(z) := (z —e) - (z —7) = 22 — (e + w)z + e - m = x? + ax + b, welches also algebraische Koeffizienten hat. Also
sind nach dem Satz (Abgeschlossenheitssatz fiir die algebraischen Zahlen) oben die Nullstellen von P algebraisch. Nun gilt aber
P(e) = P(w) = 0, also wiren e und 7 algebraisch, Widerpruch, denn e und = sind transzendent. Folglich kénnen e + 7 und e - 7

nicht beide algebraisch sein. O

Satz (Liouville). Sei a eine algebraische Zahl vom Grad n > 2. Dann gibt es ein K > 0 so, dass fir alle p € Z und fiir alle
g € N\ {0} mit L # o dann das Folgende gilt:
q



Beweis. Ist a € €\ R (also |[Im(a)| > 0), dann gilt ‘a - g‘ = ‘(Re(a) - §> +i-Im(a)' = \/<Re(a) - §>2 1 (Im(a))? >
Hm(a)]

(Im(@))? = |Im(a)| > ——, denn wegen ¢ € IN \ {0} gilt doch ¢™ > 1. Also ist man hier fertig. Sei also von nun an « € R.
s

qn

Falls a — B' >r > , also
q

afg' > L,wegenq € IN\ {0}.
q

qm

a— g‘ > r fiir ein 7 > 0 gilt, dann ist man fertig, denn

Sei also von nun an |a — L < r. Da « eine algebraische Zahl vom Grad n > 2 ist, gibt es ein Minimalpolynom fy € Q[z]

von «, ndmlich: fo(z) = 2" + bp_1 - 2" 4 . 4 by -t +bo mit by_1,...,b1,bp € Q und grad(fo) > 2, also fo(a) = 0.

Angenommen, es gilt fo L 0, dann kann man wegen grad(fo) > 2 schreiben: fo(z) = |z — Py, h(z) mit z — g, h € Q[x]
q q

und grad <w — B) ,grad(h) < grad(fo). Also wiirde folgen 0 = fo(a) = (a — B) - h(a). Wegen P # « folgt h(a) = 0, also
q q q
hat man ein Polynom kleineren Grades als das des Minimalpolynoms fo gefunden, welches « als Nullstelle hat, Widerspruch.
Also gilt fo <£> # 0. Durch Multiplikation von fo mit dem Hauptnenner der b; (¢ = 1,...,n — 1) erhélt man ein Polynom
q
f@)=an -z +an_1 -z 14+ ... 4+ a1 - x! 4 ap mit Koeffizienten aus Z, wobei weiterhin grad(f) = grad(fo) > 2 und f(a) =0
P
q

sowie 0 gilt. Wegen « p folgt aus dem Mittelwertsatz der Differentialrechnung:
g g g g
q

/()1 () -01(3) 0= (-2) 10

fiir eine Stelle &, die sich zwischen ? und o befindet. Zusammen mit |a — B‘ < r folgt fiir £ dann | — a| < r,also € € [ —7, o+ 7).
q q

Da f’ als Polynom stetig ist, folgt, dass f’ auf [« — r, @ + 7] beschrinkt ist, also f'(¢§) < M (M > 0). Nun gilt ¢" - f (E) =
q

. p\" p\"! p\*! _ n 1 n—1 n-1 .1 :
q" | an - 7 +an—1- 4 +...+a1- 4 +ao | =an -p " +an—1-q -p +...4+a1-¢q -p- +ap € Z. Weil
1 1
f<g>7é0gilt, folgt also qn-f(£>‘21, also‘gfa‘-MZ’27(1‘-“"(5)\:’]” <g>’2—,a150 afg‘zﬂ.lnsgcsamt
q q q q q q" q qn
) p r Pl ) 1 . ) p|_ K
gilt also | — =| > — oder |a — =| > =-. Setzt man K := min< r, ¥ (K > 0), dann gilt im Allgemeinen: |« — =| > — . Das
qn q q qr
war es dann auch schon! O

oo
1
Korollar. Die Liouville-Konstante », — ist transzendent.

i=0 10
. . & 1 Pk k 1 . k! k kt . . Pk
Beweis. Sei a = 3}, —. Setze dann — := 3 — € Q mit g := 10" € N\ {0}, also pp = > — € Z. Weiter gilt a # —
i=o0 10 qk i=o0 10 i=o 10 qk

fiir alle k. Angenommen, « ist eine algebraische Zahl vom Grad n > 2, dann gibt es nach dem Satz (Liouville) oben ein K > 0 so,
Pk

K
> ——. Nun gilt aber das Folgende:
qk

Z o
=1 1 1 k+2 1 (k+2)-(k+3)
= Z 10 | T 100k+D)! + (10(k+1)!> + (10(k+1)!> +
i=k+1

< 1 <1+ 1 . 1 n )_ S
k>0 10(k+1)! 102 1103 T )T gt

dass fiir alle k gilt: ‘a —

LI |

pr| = 1
’“‘E*'E)W‘Zm

gilt S e 1 1 (=1 1 1 191 ‘
Dabei gilt .71+E+ﬁ+...7 igo o0 7@717%7W7%‘Insgesamt olgt also:

S K 1\ k+1-n n K
k—ﬂz'afpi 27z><—) =t > =0>0
qy, qk 9 qk 4y, S
1\ k+tl-n 1\ kt+tl—m o ]
Weil (—) — 0 fur £ — oo gilt, gibt es ein k gro genug so, dass (*) < C gilt, Widerspruch. Also ist > ot
ax @ 2 107
transzendent oder eine algebraische Zahl vom Grad n = 1, welche also rational ist. Weil > Tof aber weder abbrechend noch
i=0 ’
periodisch ist, also nicht rational ist, folgt also, dass die Liouville-Konstante transzendent ist. |

Der Satz von Fermat-Wiles fiir Kuben

[Zuriick zur Liste]

Lemma (Schliissellemma). Sei s ungerade mit 2 =a? 4 3b% und ggT(a,b) = 1. Dann gibt es u,v € Z mit

s:u2+3v2

a=u-(u’ -9

=

=30 (u® —0?)

Dabei gilt ggT(u,v) =1, 3tu und u Z vmod 2.
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Satz (Euler). Die Gleichung X° + Y3 = Z® besitzt keine ganzzahlige Lésung (X,Y,Z) mit X -Y - Z # 0.

Beweis. Sei A := ggT(X,Y). Dann gilt (A - X")3 + (A-Y")® = A3 . ((X)% + (Y)?) = Z3, also gilt A® | Z3. Es wird gezeigt,

A Z 3 Z\3
dass dann X\ | Z gilt: Sei o := ggT(A, Z), dann gilt ggT <77 7> = 1, also folgt ggT ((7> s <7) > = 1, denn: Sei p # 1
a’ « @ @

>

. . X by 3 A 3 . by 3 A 3 . by z .
ein gemeinsamer Primfaktor von  — und (| — ) ,dh.esgiltp| [ — und p | ( — ) , also gilt p | — und p | —, denn die
« « @ o @ «
3 A 3
Kontraposition davon gilt. Weil ggT (7, — ) =1 gilt, ist also p = 1, Widerspruch, also muss ggT — s (—) ) = 1 gelten
o
AN PR Z\?2 A\ 2 Z\3 A\ 2
Nun gilt Z% = k- A%, denn: \° | 73, also <a~7> =k- (a.,) s ad <7 =k-ao®. (7> & <—> = <7> k. Es
« « « « @ a
3

A\? s A\3 A\ 3 Z\3 z A\ 3
folgt ggT — ) k) =1, weil: Wire ggT — ,k) =8 >1, dann folgt 8| | — und 8| [ — wegen | — = - -k
« « @ « « «
by 3 VA 3 by 3 VA 3 z 3 by 3
mit B | k, also wire ggT <<7) , <—> ) > B > 1, also Widerspruch zu ggT <<7> s (7> > = 1. Aus (—) = (7> -k
« o @ « @ @
3

by 3
und ggT ( — ,k) =1 folgt, dass es ein ¢ € Z gibt mit ¢°> = k, denn wegen ggT — ,k ) =1 liegen die Primfaktoren von
a a
3

z 3
(—) mit durch 3 teilbaren Exponenten mit ganzem Exponenten entweder in der Primfaktorzerlegung von <7) oder in der von
«a «a

Z\3 A\ 3 A\
k. Daraus folgt dann (—) = (7> k= (7> g8
o o o
3

A A
wollte. Es gilt also (X')3 + (Y)? = ) = (") mit 3 € Z, wobei man nun erreicht hat, dass X’ und Y teilerfremd sind. Was

man mit X und Y gemacht hat, kann man auch mit den Paaren X', Z’ und Y'', Z” machen, ohne die bisherige Teilerfremdheit

A 3 Z A . .
—-q) ,also — = —.qg<& Z = X q, folglich A | Z, was man zeigen
@ @ a

anderer neuer Paare zu verlieren, so dass man also paarweise teilerfremde Zahlen ,y,z € Z mit > +y> + 2% =0 (x-y-2z#0)
erhilt. Die drei Zahlen miissen paarweise verschieden sein, denn wire z.B. z = y, dann folgt aus z® + y° 4+ 2% = 0, dass gilt
223 = (7z)3, also —z = V2 -z ¢ 7, also Widerspruch. Keine zwei Variablen aus z,y, z kénnen gerade sein, wegen der paarweisen
Teilerfremdheit. ungerade® + ungerade® = gerade, gerade® + ungerade® = ungerade® + gerade® = ungerade und es geht nicht:
gerade® + gerade® = gerade. Es gilt: 2° = gerade < z = gerade, denn: gerade® = gerade und ungerade® = ungerade. Es ist also so,
dass immer genau zwei Variablen ungerade sind und genau eine gerade. Durch Umbenennung der Variablen kann man also 0.B.d.A
annehmen, dass bei 2 4 y® 4 2% = 0 dann 2 und y ungerade sind und z gerade ist. Von allen solchen Lésungen, die 2% +4°% +2% =0
erfiillen, mit -y - z # 0 und z, y ungerade und z gerade sowie z, y, z paarweise verschieden, sucht man sich die Losung heraus, die
mit minimalem |z| gegeben ist. Es wird dann gefunden, dass es von Null verschiedene, paarweise teilerfremde ganze Zahlen I, m,n
gibt mit n gerade, so dass gilt I3 + m® + n® = 0, ABER: |n| < |z|, was ein Widerspruch zur Minimalitit von |z| darstellt, der die
Behauptung des Satzes beweist. Also los: Da x + y und = — y gerade sind, weil z und y ungerade sind, gibt es also ganze Zahlen a, b
so, dass 2a = z + y und 2b = z — y. Somit ist dann z = a + b und y = @ — b und demnach ist a # 0, b # 0, ggT(a,b) =1 und a, b
sind von verschiedener Paritdt. Denn: Wére b = 0, so folgt 0 = 2-0 = = — y, also z = y, Widerspruch, da z und y verschieden sind.
Wire a = 0, so folgt aus 2a = x + y, dass gilt x = —vy, also z% 4+ y3 + 2% = (71/)3 + y3 +2% = 7y3 +y3 +22=2%=0,also z =0,
Widerspruch. Wire ggT(a, b) # 1, dann folgt, dass es eine ganze Zahl v > 1 gibt mit v | a und v | b, also folgt daraus v | a + b und
y|a—b(x=a+bund y = a—b), also wire schlieBlich ggT(z, y) # 1, Widerspruch. Wiren a und b nicht von verschiedener Paritiit,
so wiiren beide gerade oder beide ungerade. Wiren beide gerade, dann wéire ggT(a, b) > 2, also ggT(a, b) # 1, Widerspruch. Wéiren
beide ungerade, dann wire a + b = x gerade und a — b = y gerade, also ggT(z,y) > 2, also: ggT(z, y) # 1, Widerspruch. Folglich
gilt jetzt also das Folgende:

P g
(a+0)°+ (a—b)°
=a° Jr3a2b+3ab2 +b3 + a® — 3a2b+ 3ab? — b°

= 2a3 + Gab2

=2a - (a® + 3b%)
Nun ist —z° gerade, weil z gerade ist. Also folgt 8 | 2. a® 4+ 3b? ist ungerade, denn: Ist a gerade und b ungerade, dann ist a® gerade
und b2 ungerade, also 3b% ungerade. Also ist a? 4+ 3b? = gerade + ungerade = ungerade. Ist a ungerade und b gerade, dann ist a?
ungerade und 3b? gerade, also auch in diesem Fall ist a? + 3b% ungerade. Aus —z% = 2a - (a2 + 3b2) und a? + 3b% = ungerade, folgt
wegen 8 | 23, dass gilt 8 | 2a, also 4 | a. Folglich ist a gerade und damit b ungerade. Es wird nun gezeigt, dass ggT(2a, a® + 3b?)
entweder 1 oder 3 ist. Wenn pk (k > 1) die Potenz einer Primzahl p > 1 ist, die 2a und a? + 3b2 teilt, dann ist p # 2, denn a? +3b?
ist ungerade, hat also nicht den Primfaktor 2 in seiner Primfaktorzerlegung. Es folgt p® | a, denn p* t 2. Also gilt auch p* | a?.
Wegen p® | a® und p* | a® + 3b? folgt p* | 3b2. Nun gilt p t b, denn sonst gilt p | @ und p | b mit 2 # p > 1, also ggT(a,b) # 1,
Widerspruch. Wegen p 1 b folgt aus p* | 3b2, dass p* | 3 gilt. Ist p ein Primfaktor, also ungleich 1, so folgt k = 1 und p = 3, also
ggT(2a, a’® + 3b2) = 3. Ist p # 3, dann folgt k = 1 und p = 1, Widerspruch dazu, dass p ein gemeinsamer Primfaktor von 2a und
a® + 3b? ist, d.h. es gilt in diesem Fall ggT(2a, a? 4+ 3b%) = 1. Also: 1. Fall: ggT(2a, a? + 3b%) = 1: Es gilt dann 3 { a, denn sonst
folgt 3 | 2a und wegen 3 | @ auch 3 | a?; weil 3 | 3b? gilt, folgt also ggT(2a, a? 4+ 3b2) # 1, Widerspruch. Aus —z® = 2a - (a? + 3b?)
folgt mit ggT(2a, a? 4 3b2) = 1, dass 2a und a? + 3b? dritte Potenzen sind, denn die Primfaktoren von —z% mit durch 3 teilbaren

Exponenten liegen mit ihren gesamten Exponenten entweder in der Primfaktorzerlegung von 2a oder in der von a? + 3b2, sonst
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wére ggT(Za,a2 + 3b2) # 1, Widerspruch. Also hat man jetzt: 2a = r® und a? + 3b% = 5%, wobei s ungerade ist, weil a? + 3b2
ungerade ist. Nach dem Schliissellemma (oben) gibt es u,v € Z mit s = u? + 3v%, a = u - (u? — 9v?) und b = 3v - (u® — v?). Dann
ist v ungerade (und also ungleich Null), weil b = v - [3 - (u? — v?)] sonst gerade wiire, im Widerspruch dazu, dass b ungerade ist.
Weiter ist u gerade, denn sonst folgt s = u? + 3v2 = ungerade 4+ ungerade = gerade, aber s ist ungerade. Es gilt u # 0, sonst
wire a = 0. Es gilt weiter 3 t u, sonst folgt mit a = u - (u® — 9v?), dass auch 3 | a gilt, Widerspruch. Wichtig ist: ggT(u,v) = 1.
Denn wire § > 1 eine Zahl mit § | w und § | v, dann folgt § | a wegen @ = u - [u? — 9v?] und § | b wegen b = v - [3 - (u? — v?)],
also ggT(a,b) # 1, Widerspruch. Jetzt wird gezeigt, dass 2u, u + 3v und v — 3v paarweise teilerfremd sind: Mal angenommen,
p > 1 ist ein gemeinsamer Primfaktor von u + 3v und u — 3v, daraus folgt p | 2u und p | 6v, alsop |2Vp |uund p |6V p | v.
Angenommen: p = 2, dann folgt 2 | u + 3v, aber u + 3v ist ungerade, weil u gerade ist und v ungerade, also p # 2, also p | u (denn:
p|2Vp|u), dann gilt also p ¥ v, sonst wire ggT(u,v) # 1. Folglich: p | 6 (denn: p | 6 Vp | v), also p = 2 oder p = 3. p = 2
wurde bereits ausgeschlossen. Sei p = 3; es gilt, wie oben gezeigt, dass gilt p | u, aber es gilt 3 t u. Es gilt also, dass u + 3v und
u — 3v keine gemeinsamen Primfaktoren haben, sie sind also teilerfremd. Angenommen, p > 1 ist ein gemeinsamer Primfaktor von
2u und uw + 3v. Also: p |2V p | wund p | u+ 3v. p = 2 kann nicht sein, weil v + 3v ungerade ist, also p | w (denn: p | 2V p | u).
Wegen p | u + 3v und p | u folgt dann p | 3v; es folgt p | 3V p | v. Es gilt p { v, denn sonst gelte p | u A p | v, also ggT(u,v) # 1.
Daraus folgt p | 3, also p = 3. Es kann p = 3 auch nicht sein, weil 3 { u gilt, Widerspruch zu p | u, also haben 2u und u + 3v
keine gemeinsamen Primteiler (> 1), sind also teilerfremd. Die Teilerfremdheit von 2u und w — 3v, zeigt man véllig analog zur
Teilerfremdheit von 2u und u + 3v. Es sind also die ganzen Zahlen 2u, u 4+ 3v und u — 3v paarweise teilerfremd, und zusammen mit
r® =2 =2u- (u+3v) - (u—3v) folgt, dass 2u, u+ 3v und u — 3v dritte Potenzen sind, also: 2u = —n3, u—3v =13 u+3v = m® mit
I, m, n verschieden von Null (wegen 3 t u) und paarweise teilerfremd, denn: 1 = ggT (2u, u — 3v) = ggT ((—n)3, ls). Angenommen,
p > 1 ist ein gemeinsamer Primteiler von —n und I, dann folgt p | (—n)2 und p | 12. Wegen ggT ((—n)S, 13) =1 folgt also p = 1,
Widerspruch dazu, dass p ein Primteiler ist. —n und ! haben also keinen gemeinsamen Primteiler, sind also teilerfremd. Wegen
ggT (2u, u + 3v) = ggT ((711)37 m3) =1 und ggT (u — 3v,u + 3v) = ggT (l3, m3) =1 folgt, wie eben: ggT (—n,m) = ggT (n,m) =
1 =ggT (I,m). Nun ist 1> + m® + n® = (u — 3v) + (u + 3v) + (—2u) = 0, wobei n gerade ist. Nun wird gezeigt, dass |n| < |z| gilt:
Folgende Rechnung liefert den Widerspruch fiir den Fall ggT(2a, a® + 3b%) = 1:

21> = |2a - (a® + 3b7)|
= |2a| - (a® + 3b%)
=12 [u- (u® = 90%)]| - (a® + 3b")
= [2u- (u? — 90%)| - (a® + 3b%)
=|-n® (@® - 90?)|- (a® + 3b%)
>|—n® (u?—90%)-3
>|-n%3

> |nf

Denn es gilt Z > u? + 90? = (u — 3v) - (u + 3v) = 13- m> # 0 und b # 0, weil b ungerade ist, also a® 4+ 3b% > 3. Nun: 2. Fall:
geT(2a, a? 4 3b%) = 3: Man setzt zunichst a := 3¢, denn 3 | 2a = 3 | a. Weil a gerade ist, ist ¢ gerade. Wegen 8 | 2a = 4 | a und
a = 3c folgt 4 | c. Wegen 3 | a darf nicht 3 | b gelten, denn sonst wire ggT(a,b) # 1, also: 3 1b. Demnach gilt:

3 3 3
—z"=x" 4+ =z

(a+b)°% 4+ (a—0b)?°

= (3c+b)® + (3¢ —b)®

=% + 9b%c + 27bc? + 27¢% — b3 4 9b% ¢ — 27bc? + 2763
54¢ 4 18b%¢

18¢ - (3¢% + b?)

Dabei gilt ggT(18¢c, 3c2 + bz) = 1. Beweis: Oben wurde gezeigt, dass c gerade ist. Weil b ungerade ist und c gerade, folgt, dass
3¢? 4 b2 ungerade ist. Man findet wegen 3 tb= 3¢t b? heraus: 3 t 3¢2 + b2, denn es gilt 3 | 3c2, aber 3 t b2. Es gilt weiter
ggT(a,b) =1, also auch ggT(b,c) =1, denn: ¢ = g; sei p ein gemeinsamer Primteiler von b und ¢ = %, also p | bund p | %, daraus
folgt p | b und p | a, also p = 1 (wegen ggT(a,b) = 1), Widerspruch, also haben b und c¢ keine gemeinsamen Primteiler, sind also
teilerfremd. Nun zum Beweis von ggT(18c, 3c% + b2) = 1: Sei p ein gemeinsamer Primteiler von 18¢ und 3¢? + b2. Es gilt p # 2, weil
2 ¢ 3c2 + b2, weil 3¢ + b? ungerade ist, und es gilt p # 3, denn 3 t 3¢? + b2 (siehe oben). Da p | 18¢, folgt p | 18 V p | c. Weil p # 2
und p # 3 gilt, folgt pt 18 = 2.32 also p le=p| 3¢?. Aus p | 3¢? und p | 3¢ + b2 folgt p | b2 = p | b, also ggT(b,c) > p > 1,
Widerspruch. Damit ist ggT(18¢, 3¢? 4+ b?) = 1 bewiesen. Deswegen und weil —z% = 18¢- (302 + b2) gilt, gilt, wie oben, der Schluss,
dass 18c und 3c? + b2 dritte Potenzen sind: 18¢ = 72 und 3¢? + b? = s3, wobei s ungerade ist und 3 | 7, weil 3 | 73 (3 ist eine
Primzahl). Nach dem Schliissellemma gibt es u,v € Z mit: s = u? + 3v%, b = u - (u? — 9v?) und ¢ = 3v - (u? — v?). Dann ist u
ungerade, sonst wire b gerade. Also ist auch u # 0. Weiter ist v # 0, da ¢ # 0. v ist gerade, sonst wire b gerade. Es gilt vor allem

ggT(u,v) = 1, sonst wire ggT(b,c) # 1. Es wird nun bewiesen, dass 2v, u + v und u — v paarweise teilerfremd sind: Sei p ein
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gemeinsamer Primteiler von u 4+ v und u — v. Es folgt p | 2u A p | 2v. Weil p # 2 ist (denn p | u + v, und u + v ist ungerade), folgt
pluAp|wv, also ggT(u,v) # 1, Widerspruch. Also haben u + v und u — v keine gemeinsamen Primteiler, sind also teilerfremd. Sei
nun p ein gemeinsamer Primteiler von 2v und u + v, also p | 2v und p | u + v, es folgt dann p # 2, weil u + v ungerade ist. Also
gilt p | v. Weil p | v und p | u + v gilt, folgt p | u, also ggT(u,v) # 1, Widerspruch. 2v und u + v sind teilerfremd. Genauso, wie

eben, zeigt man die Teilerfremdheit von 2v und u — v. Aus 7® = 18¢ = 18 - 3v - (u? — v?) =54 - v - (u 4+ v) - (u — v) leitet man ab,
3

dass <g> =20 - (u+v) - (u—v) gilt. Daraus folgt, dass 2v, u + v und u — v dritte Potenzen sind: 2v = —n?, v + v = [ und

u—v = —m?3. Folglich ist 12 + m® + n3 = (u + v) — (u —v) —2v = 0 mit [, m,n von Null verschieden und n ist gerade. Jetzt wird

gezeigt, dass |n| < |z| gilt: Folgende Rechnung liefert den Widerspruch fiir den Fall ggT(2a, a? + 3b%) = 3:

|2]® =18 - |c| - (3c* + b?)
=18 |3v - (u® — v?)| - (3¢ +b)
=54-|v- (u® —0v?)|- (3% +b?)
=27 20| - [u? — 02| - (3% 4+ b%)
=27 = n®|- |u® — %] (38" +b7)
=27 |nf® - |u® = v?| - (3¢ +b°)

> |n?

Denn es gilt Z 3 u? —v? = (u4v) - (u—v) =13 (=m?) = =13 -m> # 0 und wegen b # 0 (denn: b ist ungerade) folgt 3¢ +b% > 1.

Damit ist der Satz also vollstéindig bewiesen. O
Als néchstes wird das Schliissellemma bewiesen!

Lemma (Menge S). Sei S die Menge der ganzen Zahlen der Form a® + 3b% (a,b € 7). Dann ist S beziiglich der Multiplikation

abgeschlossen, was spdter gebraucht wird.

Beweis.
(a2 + 3b2) . (02 + 3d2) = a2c? + 3a2d? + 3p2¢c? + 9p2d?
= (a®c® £ 6abed 4 9b2d?) T 6abed + 3 - (a®d® + b2 c?)
= (ac £ 3bd)? + 3 - (a®d® F 2abed + b2
= (ac + 3bd)® + 3 - (ad F be)?
Damit ist der Beweis abgeschlossen. O

Lemma (1). Sei p eine Primzahl > 5, dann gilt:
p=1mod3 & Jw €N : 732w2modp

Beweis. =: Nach Voraussetzung gibt es also ein n € IN mit p—1 = 3n. Wegen p > 5 ist 2 < n < p— 1. Die Kongruenz " = 1 mod p
hat in Z/pZ genau n Loésungen. Also existiert ein y € IN, y Z Omod p mit y™ # 1 mod p. Nach dem kleinen Satz von Fermat gilt:
y?~! = 1mod p. Setze = y", dann gilt: £ # 1modp und 2° = ()% =" = P! = 1modp,d.h.p| 2> -1 = (z—1)-(z®+z+1),
aber ptx — 1. Also gilt p | 22 + 2 + 1. Setze nun w = 2x + 1:

w?4+3=02c+1)>+3
=4x2+4x+4
=4-@>+a+1)

=0modp

D.h., es gilt —3 = w? mod p.

«: Sei also ein w € N mit —3 = w? modp gegeben. Wegen ggT(2,p) = 1 gibt es z,y € Z mit w — 1 = 2z + py. Es folgt
also w = (2z 4+ 1) mod p, und daher gilt auBlerdem 4 - (x2 +z+1) =2z + 1)2 +3=w?+3= 0 mod p, nach Voraussetzung.
Wegen p # 2 ist 224+ 2+ 1 = 0modp. Angenommen, es gilt 22 = 1mod p, dann gilt ferner 2?2 — 1 = 0mod p und damit ist auch
(z+1)-(z—1) = 0mod p. Daher muss entweder z+1 = 0 mod p oder x —1 = O mod p gelten. Fall 1: z+1 = Omodp < =z = —1mod p.
Einsetzen ergibt: 22 + 2 4+ 1 = 1 mod p, ferner gilt 22 + 2+ 1 = 0 mod p und daher muss p = 1 gelten. Dies ist aber ein Widerspruch
zur Voraussetzung p > 5. Fall 2:  — 1 = Omod p < z = 1 mod p. Einsetzen ergibt: 22 +2+1 = 3mod p und da 22 +z+1 = Omod p
gilt, muss p = 3 gelten. Dies ist aber ebenfalls ein Widerspruch zu p > 5. Die Annahme ist also falsch und es gilt z? Z 1modp,
und damit auch  Z 1 mod p. Dividiert man p — 1 durch 3 mit Rest, so erhélt man: p — 1 =3¢+ r mit ¢ > 0 und 0 < r < 3. Nun

gilt 2% — 1 = (z — 1) - (12 +x+1) = 0modp, also 22 = 1 mod p. Nach dem kleinen Satz von Fermat gilt zP~! = 1 mod p, wenn
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ggT(z, p) = 1. Man muss also ausschliefien, dass z mod p = 0 gilt. Wére also £ = k- p mit einem k € Z, dann folgt w — 1 = 2kp+ py,
also w — 1 = O0mod p, also w = 1 mod p, also w? = 1 mod p. Weil —3 = w? mod p gilt, folgt p = 4, aber 4 ist keine Primzahl. Es gilt
also: 1 = 2P~ = 237" = (2®)7 . 2" = 2" mod p, weil 2> = 1 mod p gilt. Wegen 22 # 1modp und z # 1 mod p, wie oben gezeigt

wurde, folgt also » = 0 und daher gilt 3 | p — 1, d.h. p = 1 mod 3. Der Beweis ist damit beendet. |

Lemma (2). Wenn k eine von Null verschiedene ganze Zahl ist, p eine Primzahl mit p = c2+3d2 € S und pk=a?+3b2 €5,
. ac & 3bd\ ? ad F be ?
dann gilt p | ac£3bd und p | ad Fbc und k= ——— ) +3 - ——— €s.
p P

Beweis. Es gilt zunéchst das Folgende:

pk

p

a? + 3b?

c2 4 3d2

(a® + 3b%) - (c® + 3d?)
(c2 + 3d2)2

_ (aci3bd>2+3 <ad:|:bc>2
T\ e2 + 342 c2 4 3d?

Die letzte Gleichung folgt ndmlich aus Lemma (Menge S). Weiter gilt:

(ac + 3bd) - (ac — 3bd) = a®c* — 9b*d?
= a3 + 3a%d? — 3a%d® — 9b3d?

a® - (? +3d%) — 3 (a® 4 3b%) - d*

=a?c® + a®3d* — 3pkd2
= a3c? + 3a%d% — 3. (02 + 3d2) - kd?
= a®c® 4 3a%d® — 3kc?d® — 9kd*

(a® — 3kd?) - (¢ 4 3d?)

Wegen p = ¢? + 3d? gilt also p | (ac + 3bd) - (ac — 3bd). Und weil p eine Primzahl ist, folgt: p | ac + 3bd V p | ac — 3bd.

. ac+ 3bd . ad — be 2 ac + 3bd "\ 2 . ad — be
Im ersten Fall ist ———— € Z, folglich auch 3 - [ ——— =k—-— | — € Z. Demnach ist auch ——— € Z und
p p p p
ac + 3bd\ ? ad — be 2 . . ad — be . ad — be 2 ac + 3bd\ ?
_ +3 | — € S. Einschub: Beweis von ——— € Z: Es gilt nochmal 3. | ——— =k—| — ] ,also
p p p p
ac + 3bd\ ? ad — be 2 . . a . .
3| k— | —— € Z, also | — € Z. Sei o :=ad —bc € Z und B :=p € Z. Es gilt also E € Z, also gibt es eine
p p

positive ganze Zahl ¢ (denn: o? und 82 sind positiv) mit a® = ¢- 82, also |a| = V4|8, also % = /¢. Man kann annehmen, dass
o
der Bruch % vollsténdig gekiirzt ist, also ggT(|al,|8]) = 1. Es gilt nun a® = 8- (¢ - ), also B | o = ggT(a?,8) = B. Weil aber
1 =ggT(a,B) = ggT(lal,|8]) = ggT(az,B) = [ gilt, gilt also 8 = 1. Es gibt nun zwei Fille: 8 = 1 oder 8 # 1. Ist 8 = 1, dann ist
a
/4 ganzzahlig, also || | |a], folglich 3 € Z. Ist § # 1, dann ist /g irrational, also auch |a| = |3] - /g € R\ Q, demnach gilt auch

a € R\ Q, Widerspruch. Also tritt dieser Fall nicht ein - Einschubende. Im Fall p | ac — 3bd schlieft man analog. |
Lemma (3). Wenn p eine Primzahl ist, dann ist p € S genau dann, wenn p = 3 oder p = 1 mod 3.

Beweis. =-: Sei p eine Primzahl mit p € S. Offensichtlich ist p =3 € S und auch p =1 € S mit 1 = p = 1 mod 3. Sei also von nun
ana? 4302 =p#3undp #1,2 ¢ S; sei also a? +3b% = p > 5. Es muss dann b # 0 gelten, sonst wire p = a? und weil p # 1 gilt,
gilt auch a # 1, also wire a ein echter Teiler von p, Widerspruch. Klarerweise gilt p = a? mod 3 wegen 3 | 3b%. Es muss 3 t a gelten,
sonst folgt 3 | a? und daraus p = 0mod 3, Widerspruch dazu, dass p eine Primzahl ist. Wegen 3 { a ist amod3 =1V amod3 = 2,
also p = a? = 1 mod 3. Damit ist die eine Richtung gezeigt.

«<:Ist p=3,dann ist p € S, auch: p=1€ S (p = 1 mod 3). Sei also p # 3 und p # 1, also p > 5. Sei dann p = 1 mod 3. Nach dem
Lemma (1) gibt es ein ¢t € IN so, dass —3 = t?> mod p gilt. Man wiithle nun dass ¢ so klein, dass gilt p | t2 + 3, aber p { u? + 3 fiir
alle 0 < u < t. Zunachst gilt: 0 < tmodp < p, und dabei > 0, weil sonst —3 = O0mod p gelten wiirde, also p = 3; das wurde aber
ausgeschlossen. Gilt nicht 0 < ¢t < g, dann gilt g < t < p, also 72 > —t > —p, also p — g >p—t>p—p,also0<p—t< g
Man wihlt also in diesem Fall t* = p — ¢t und weil t* = p — t = —t mod p gilt, ist dann immer noch —3 = (t*)2 mod p erfiillt. Fiir
t* gilt also nochmal 0 < t* < g und p | (t*)% + 3. Weil t minimal ist mit p | t2 4+ 3, folgt 0 < t < t* < g Es gibt also ein m € IN

2
mitm-p=t>4+3< (g) +3 < p?, also 0 < m < p. Es wird nun gezeigt, dass fiir jedes T' > 1 (T # 0, sonst —3 = 0 mod p, also

p = 3, Widerspruch) hichstens eine Primzahl p # 1,2, 3 (also p > 5) existiert so, dass gilt p | 7% 4 3, aber p  u? 4 3 fiir jedes u mit
1 < w < T: Mal angenommen, es gibt ein 7" > 1 mit p # p’ so, dass gilt: p | T2 + 3 und p’ | T? + 3, sowie p t u? + 3 und p’ t u? 43
fiir jedes u mit 1 < u < T. Dann gilt T2 +3 = m -p = m/ - p’. Wegen der Minimalitét von T fiir p und p’ gilt dann 0 < m < p und
0 < m/ < p’ (siehe oben). Aus m-p = m’ - p’ folgt: p | m’ (denn p kann nicht p’ teilen und p ist eine Primzahl), also p < m’ < p/,
und es folgt: p’ | m (wie eben), also p’ < m < p. Es folgt insgesamt also p < p’ und p > p’, Widerspruch. Es kann also so ein T
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nicht geben mit p # p’, also muss, wenn es so ein T gibt, sein: p = p’. Nun geht es weiter: Angenommen, es existiert eine Primzahl
p mit p = 1mod 3 so, dass p ¢ S gilt. Man nimmt das kleinstmégliche p (mit p = 1 mod 3), das diese Bedingung erfiillt. Sei ¢t > 1
die kleinstmégliche ganze Zahl, so dass p | t? 4+ 3 gilt. Weil ja p = 1mod 3 und p > 5 vorausgesetzt ist, gibt es also iiberhaupt ein
t > 1 mit p | t? 4+ 3; man kann sich also unter allen mdglichen ¢t € IN>! das kleinste mit jener Eigenschaft auswihlen. Sei also ¢
minimal fiir p, also p | t? + 3 und p t u? + 3 fiir alle u < t. Dann gilt wegen der Eindeutigkeitsaussage: ¢ | t? + 3 und q t u? 4 3 fiir
alle u < t folgt ¢ = p. Es gilt also: 0 < t < g und t2 +3=m- p mit 0 < m < p. Wenn p’ irgendeine Primzahl ist, die m teilt, also
m =p -m’ (also 0 < m’ < m), dann gilt t?+3=p-m=p- (p'-m')=p" - (p-m), also =3 = t? mod p’, also nach Lemma (1):
p’ = 1 mod 3. Desweiteren gilt dann p’ < m < p und somit gilt p’ € S, denn p mit p = 1 mod 3 ist das kleinste p mit p = 1 mod 3 so,
dass p ¢ S gilt. Wegen p’ - (p-m/) =p-m =t>+3 =12 4+3-12 € S folgt nach Lemma (2), dass wegen p’ € S dann p-m’ € S gilt.
Wenn m’ = 1 ist, dann ist p- 1 = p € S, was man zeigen wollte. Ansonsten sei p’’ eine Primzahl, die m’ teilt, also m’ = m/’ - p”’
(folglich 0 < m”” < m/ < m). Alsogilt t?+3=p-m=p-(p'-m)=p-(p -(m”-p”)) =(@-p’ -m”) p’, also —3 = t> mod p”’, also
nach Lemma (1): p”’ = 1 mod 3. Weiter gilt p’/ < m’ < m < p und also p”’ € S. Und es gilt: p’’ - (p- m'’) = p-m’ € S und wegen

p'" € S folgt also p-m/’’ € S. Falls m’’ = 1, dann folgt das ersehnte p € S. Ansonsten sei p’”’

eine Primzahl, die m”’ teilt, usw. Weil
diese m(™ immer kleiner werden, aber immer > 0, dann muss irgendwann fiir ein n* gelten m™™) = 1l,also 1-p = m) -p€ES.

Und das war auch schon alles. O

Lemma (4). Sei m = u? + 302 (also m € S), mit u,v # 0 und ggT(u,v) = 1. Wenn p eine ungerade Primzahl ist (also gilt:
p#2) undp|m gilt, dann ist p € S.

Beweis. Sei also u,v # 0. Wegen p | m folgt m = Omodp und somit gilt u? = —3v%2 modp. Weil klarerweise 1 € S und

3 € S und p = 2 ausgeschlossen ist, sei nun also p > 5. Ferner gilt wegen p | m auch noch p { v, denn sonst wiirde auch

p | u gelten und dies wére ein Widerspruch zur Voraussetzung ggT(u,v) = 1. Da wegen p { v (v # 0) gilt ggT(v,p) = 1, folgt

nach dem Satz von Euler-Fermat: vP~! = 1modp. Setzt man nun v’ := vP~2, dann gilt (v - v’) = 1modp. Daher ist dann
(u-v)2=u? 0?2 =-302 02 =-3-(v-v')? = —3mod p. Nach dem Lemma (1) gilt deswegen p = 1 mod 3, und nach Lemma, (3)
folgt dann also p € S, was namlich hier zu beweisen war. |

Lemma (5). Wenn p eine Primzahl ist und p € S gilt, dann ist die Darstellung von p in der Form p = a® + 3b2 (mit der

wichtigen Bedingung, dass gilt: a > 0 und b > 0) eindeutig.

Beweis. Man verwendet hier das Lemma (2) mit k& = 1: Es gilt demnach p = a? 4+ 3b? = ¢? 4 3d?, wobei gilt: a,¢ > 0 und b,d > 0.
=+ 3bd\ 2 dF bc\?2 d F b + 3bd
Folglich gilt: 1 = <L + 3 - gdFoe , also geFbe _ 0 und ae=20d 1. daraus folgt damit: p = ac £ 3bd und
p p

p p
ad F bc = 0 < ad = Fbc. Daraus ergibt sich dann folgendes:

pd = acd + 3bd>

+bc? + 3bd?

= +b- (c? +3d%)
= +bp

Also gilt pd = +bp, also d = +b, also: ad = +bc = +b- ¢ = dc < a = c. Es gilt schonmal p = a? + 3b? = ¢? + 3d® = a? + 3d?, also

3b2 = 3d? < b2 = d?. Wegen b,d > 0 folgt also auch b = d. O

Lemma (6). Sei m = u? 4 3v2 > 3 und ggT(u,v) = 1. Wenn m ungerade ist und m = [] pf’ (wobei p1,...,pn Primzahlen
i=1

sind mit e; > 1), dann existieren ganze Zahlen a; und b; (i =1,...,n) so, dass gilt: p; = af + Sbf und

u+tv-vV=3=[](ai+b - vV=3)"
i=1
Beweis. Der Beweis lduft durch Induktion iiber ungerade m: Induktionsanfang m = 3: 3 ist ungerade und es gilt fiir 3 = m =
u? +3v2 > 3, dass u = 0 und v = 1 ist; dann ist auch 1 = ggT(0,1) = ggT(u,v). Weiter: m = 3 = 3l = pfl . Setzt man nun a; = 0
und by = 1, dann gilt: py :a%+3bf =02 +3-1%2=3, und: u+v-\/—73:0+1-\/—73:(0+1»\/—73)1 = (a1 + b1 - vV/=3)°1. Der
Induktionsanfang gilt also schonmal. Sei also von nun an m > 3 und m ungerade. Induktionsannahme: Es gelte die Behauptung
fiir alle ungeraden Zahlen, die kleiner sind als das ungerade m und die > 3 sind. Sei ggT(u,v) = 1. Dann ist u # 0 oder v # 0,
sonst wire ggT(u,v) # 1. Ist u # 0 und v = 0, dann darf nicht w > 1 sein, sonst ist ggT(u,v) # 1, also u = 1 und v = 0, also
m =12+ 3-0% = 1, also m < 3, Widerspruch. Also: Ist u # 0, dann auch v # 0. Ist v # 0 und v = 0, dann muss v < 1 sein,
sonst ggT(u,v) # 1. Also v = 1 und v = 0, also m = 02 +3-12 = 3, man hat aber m > 3 vorausgesetzt. Also gilt: v # 0, dann
ist auch u % 0. Weil gilt: u # 0 oder v # 0, folgt u,v # 0. Sei also m > 3 mit m = u? + 3v?, sowie ggT(u,v) = 1 und w, v # 0.
Sei dann p eine Primzahl, die m teilt, also gilt m = pk. Weil m ungerade ist, kann also p = 2 nicht sein, d.h. p ist eine ungerade
Primzahl, die m teilt. Nach Lemma (4) ist dann p € S, hat also die Form p = a? 4+ 3b%, wobei nach Lemma (5) die positiven Zahlen
|a| und |b] eindeutig festgelegt sind. Nun kann man sagen, dass alle ungeraden Primzahlen ¢ € S die Behauptung dieses Lemmas

erfiillen, denn: Ist ¢ = 1 € S, dann ist 1 = ¢ = u? + 3v2 = 12 + 302 und ggT(u,v) = ggT(1,0) = 1, und 1 ist ungerade. Nun:
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12 4+3-02 :aerSbf = p1 :pi =qund man hat: 14+0-vV=3 =u+v-v=3 = (a1 + b1 - V/=3)°1 = (1 +0-/=3)'. Man weiB:
g =2 ¢ S und 2 ist keine ungerade Primzahl. Sei also ¢ > 3, also g eine ungerade Primzahl, und ¢ € S. Weil 3 < ¢ € S, gilt also
q = u?+3v? (Ju] und |v| sind dabei eindeutig festgelegt) und ggT(u,v) = 1, sonst wiire ¢ keine Primzahl. ¢ ist ungerade und es gilt
q= p%, sowie: ¢ = p; = af + 3b% = u? 4 302, wobei also wegen der Eindeutigkeit nach Lemma (5) gilt: |a1| = |u| und |az| = |v].
Es gilt dann: w4+ v - /=3 = (a1 + b1 - vV=3)'. Wegen S 3 m = u? 4+ 3v2, m = pk € S und p = a® + 3b> € S, folgt nach Lemma, (2):
k= c?43d? € S, wobei ¢ @ und d = @ gilt. Man wei nun: (a£b-v/=3)-(cFd-/—3) = (ac+3bd) % (bc—ad) - /=3,

wobei dann auch gilt:

e+ 3bd — a - (ua + 3vb) +l’»b‘(ub:F'ua)
p p
1
= = . (ua® + 3vab + 3ub® F 3vab)
p
_ 1 2 2
=u-—-(a”+3b%)
p
1
=u-—-p
p
=u

Desweiteren gilt auch das folgende:

b- (ua £ 3vb) a-(ub:Fva))

:I:(bcfad)::l:< . ~

1
+— . (uab £ 3vb> — uab £ va®)
p

1
=v-— (3% +d?)
p
1
=v-=-p
P
=v

Man hat also herausgefunden, dass gilt:
(axtb-vV/=-3)-(cFd-vV=-3)=u+v-v-3

Es gilt nochmal m = pk. Ist k = 1, dann gilt 3 < m = p, und fiir Primzahlen gilt ja die Behauptung dieses Lemmas hier; es ist
hier also nichts weiter zu zeigen. Im Fall k # 1 ist also k # 2, sonst wire m eine gerade Zahl, Widerspruch. Also gilt in diesem
Fall 3 < k < m. Nun gilt £ = c? + 3d?%, k ist ungerade, sonst wire wegen m = pk das m gerade. Und es gilt ggT(c,d) = 1,
weil sonst wegen u = ac + 3bd und v = £(bc — ad) dann also auch ggT(u,v) # 1 wire. Nach der Induktionsannahme gilt
die Behauptung dieses Lemmas fiir £ mit 3 < k < m. Also ldsst sich ¢ F d - /=3 in der angegebenen Form ausdriicken. Da
(axb-v/=3) (cFd-v/=3)=u+v- /=3 gilt, folgt, dass sich auch m so darstellen lidsst. Ende. O

Lemma (Beweis des Schliissellemmas). Sei E die Menge aller Tripel (u,v,s) so, dass: s ist ungerade, ggT(u,v) = 1 und
s% = u? 4+ 3v2. Sei F die Menge aller Paare (t,w) so, dass: ggT(t,w) =1, 34t und ¢t Z wmod2. Dann hat die Abbildung
¢ : F — 73, gegeben durch ¢(t,w) = (u,v,s) mit

w=t-(t* - 9w?)
v=3uw-(t* — w?)

s = t2 —+ 3w2
das Bild E, d.h. es gilt dann bild(¢) = E.

Beweis. D: Sei also die Menge F' gegeben. Es gilt also ggT(¢,w) = 1, 31t und t Z wmod 2. Es wird jetzt gezeigt, dass ¢(F) C E
gilt: Es gilt zunéchst das folgende:

uw? 4+ 307 =t (2 — 9w?))> +3- Bw - (t2 — w?)]?
=1t —18t*w? 4 81t2w* + 27t w? — 54t w* + 27w°
=15 + 9t*w? + 2762w + 270"
= (£* + 3w°)®

3
=s

Wegen t # wmod2 sind ¢ und w nicht beide gerade und nicht beide ungerade. Daraus folgt wegen s° = (t2 + 311)2)37 dass s°
ungerade ist, denn 52 st ungerade < s ist ungerade. Es muss jetzt nur noch ggT(u, v) = 1 gezeigt werden. Zunéchst: Angenommen,

ggT(t2 —9w?,¢% — w2) # 1, dann gibt es eine Primzahl 1 # p mit p | t> — 9w? und p | t? — w?, also auch p | 9t2 — 9w? und wegen
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p | t? — 9w? folgt damit p | 8t2. Es gilt p | t? — w?, und wenn p | t, also auch p | t2, dann folgt p | w?, also p | w, also hat man
p|tund p | w, also ggT(¢t, w) # 1, Widerspruch. Also muss gelten p t ¢, und wegen p | 8t2, folgt also p = 2. Nun kann aber p = 2

auch nicht sein, denn es gilt ja p | t?> — w? und weil t und w nach Voraussetzung unterschiedliche Paritét haben, ist also t2 — w?

ungerade, also kann p = 2 die Zahl t?> — w? nicht teilen, Widerspruch. Also gilt jetzt: ggT(t?> — 9w?,t?> — w?) = 1. Nun kann man
ggT(u,v) = 1 zeigen: Sei 1 # ¢ eine Primzahl von der Primfaktorzerlegung von w. Wegen u = ¢ - (t2 — 9w2) gilt also: ¢ | t oder
q | t?* — 9w?. Nun gibt es 2 Fille: q | t oder g f t. Fall 1: ¢ | t: Dann ist ¢ # 3, weil nach Voraussetzung 3 { ¢ gilt. Weiter gilt
g 1 w, denn sonst gilt ¢ | t und ¢ | w, also ggT(t,w) # 1, Widerspruch. Weil also g | t, aber ¢ { w, folgt also q | t2, aber ¢ t w?
und daraus ergibt sich damit g { t2 — w?. Weil also q # 3, ¢ tw und g ¢ t2 — w? gilt, folgt also wegen v = 3w - (t2 — w2), dass
g t v gilt. Fall 2: ¢ { t, also, weil ¢ | t oder ¢ | t? — 9w? gilt, folgt ¢ | t* — 9w?. Dann muss aber ¢ { 3w = ¢ f 9w? gelten, denn
sonst folgt mit q | t?2 — 9w?, dass ¢ | t? = ¢ | t, aber q | t ist ein Widerspruch zur Annahme dieses Falles. Es gilt also g { 3w. Da
geT(t? — 9w?,t? — w?) = 1 gilt, folgt zusammen mit ¢ | t? — 9w?, dass gilt q { t? — w?, sonst wire ggT(t* — 9w?,t> — w?) # 1.
Wegen ¢ t 3w und q 1 t> — w? folgt also g f v. Man hat also insgesamt gezeigt: (¢ |t = gfv) A (¢t = q{v). Also gilt immer g } v.
Es folgt schlieBSlich ggT (u,v) = 1, was man zeigen wollte. Es gilt also ¢(t,w) = (u, v, s) € E fiir alle (t,w) € F.

C: Es wird also die entgegengesetzte Inklusion gezeigt, namlich E C bild(¢). Gegeben sei nun also ein Tripel (u,v,s) € E.

Man hat als Voraussetzung: s ist ungerade, ggT(u,v) = 1 und s% = u? + 3v2. Um zu zeigen, dass E C bild(¢) gilt, muss man

fiir alle y € E ein € F finden, so dass ¢(z) = y gilt. Wenn man also ein z = (t,w) € F definiert hat, muss man zeigen,

dass auch = € F ist, und dass ¢(z) = y = (u,v,s) ist. Sei zuerst u? + 3v? = s® mit s® ungerade (da s ungerade ist, nach
n

Voraussetzung) und 3 = I1 pf'i, also gilt e; = 3 - e,. Nach dem Lemma (6) existieren a;,b; mit i« = 1,...,n so, dass gilt
i=1

pi = a? +3b? und: u + v - =3 = [](a; + b; - vV/=3)%. Nun wird (t,w) € Z? definiert: ¢t und w seien definiert durch die
i=1

Beziehung: [] (a; + b; - \/—3)62 = t+4+ w-+/—3. Also gilt dann: u + v - /=3 = (t + w - v/=3)3. Es wird nun ausgerechnet:
i=1

i=

(t+w-v/=3)% =3 + 3t2wv/—=3 — 9tw? — 3v/=3w® = (t* — 9tw?) + (3t?w — 3w?) - v/=3. Man hat also:
w+v-V/=3=[t (> — 9w+ [Bw - (t* — w?)]- V=3

Nach Koeffizientenvergleich ergibt sich also: v = t - (t> — 9w?) und v = 3w - (t2 — w?). Denn: a + 8- vV/—3 = a+b- /=3 =
a=aund 8 = b mit o, 3,a,b € Z. Beweis: Angenommen, es gilt « —a # 0 oder b — 3 # 0. Wegen a — a = (b — ) - /=3 gilt:
a—a#0< b—pF #0. Gilt also: a—a # 0 oder b— 3 # 0, dann folgt « —a,b— 8 # 0, und daraus folgt Q > Z:; =+4/-3€eC\Q,
Widerspruch. Nun muss man was wissen iiber komplexe Zahlen: Sind z,y € Rund z =2 +y -7 € C, so heiit Z:=x — y - ¢ die zu z

konjugierte komplexe Zahl. Es gilt da Vz,w € C : z-w = z - W, also auch z™ = z". Daraus folgt dann:

s% = u? 4+ 30°
(utv-V=B) - (u—v-vV=3)
= (utv-V=3)-(u+v-v=3)
=(t+w-v=3)" (t+w V=3)7
=(t+w VBt w V)
= [(t+w-V=3)- (t+w- V=3
=[t+w vV=3) (t—w- V=3

]3

= [* + 3w?

Es folgt somit s = t? 4+ 3w?. Weil s ungerade ist (nach Voraussetzung), ergibt sich aus s = t? 4+ 3w?, dass t und w nicht die
gleiche Paritdt haben, d.h. es sind nicht beide gerade und nicht beide ungerade. Dann gilt noch 3 { ¢, denn, wenn 3 | ¢ gilt, folgt
3)t-(t? —9w?) =wund 3| 3-w(t? — w?) = v, also ggT(u,v) > 3, Widerspruch zur Voraussetzung, dass gilt: ggT(u,v) = 1. Es
fehlt noch ggT(¢t,w) = 1 zu zeigen: Wire ggT(¢,w) # 1, dann gébe es ein einen Primfaktor p # 1, der ¢t und w teilt. Dann gilt:
pluwegenu=t-(...)und p | v wegen w - 3(...), also wire ggT'(u,v) # 1, Widerspruch, also gilt dann tatsichlich ggT(¢, w) = 1.
Man hat also ¢(t, w) = (u, v, s) gezeigt. Ende. |

Aus diesem, letzten Lemma folgt also insbesondere: Ist s ungerade und s® = u? + 3v? mit 99T (u,v) = 1. Dann schreibt sich s in
der Form s = t? 4 3w? mit u = ¢t - (t> — 9w?) und v = 3w - (t* — w?). Dabei gilt fiir t,w € Z: ggT(t, w) =1, 31t und ¢t Z w mod 2.

Das Schliissellemma ist damit also bewiesen.
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Die Darstellung als Summe zweier Quadrate

[Zuriick zur Liste]

Lemma. Fiir Primzahlen p = 4m + 1 hat die Gleichung s> = —1 in I, zwei Losungen, fir p = 2 gibt es genau eine solche

Lésung, wihrend es fiir p = 4m + 3 keine Ldsung gibt.

Beweis. Eine Primzahl p # 2 hat entweder die Darstellung p = 4m + 1 oder p = 4m + 3, denn bei p = 4m + 0 und p = 4m + 2 wire

die Primzahl durch 4 bzw. 2 teilbar, was nicht sein kann. Fiir p = 2 ist s = 1 die einzige Lésung. Fiir ungerades p betrachten wir die

Aquivalenzrelation auf I}, die durch die Aquivalenzklassen [z] = {z, —x, !, —z '} gegeben ist. Man betrachtet dann die Fille, in
denen die Aquivalenzklassen nicht 4 Elemente haben: 1. Maglichkeit: # = —z. Wegen & = —x ist dann 2z = z + (—z)=0 p§>2 xz =0,

1

was kein Element aus ]F; ist, also kann dieser Fall nicht auftreten. 2. Moglichkeit: 2 = 27!, Wegen z = 2! © 2> =1 & ¢ =

1V = p— 1 erhilt man in diesem Fall mit {1,p — 1} eine Aquivalenzklasse der Grole 2, die auf alle Fille auftritt. 3. Moglichkeit:

! & 22 = —1. Diese Gleichung ist entweder unlésbar oder besitzt die Lésungen zo und p — zo,

x = —z~'. Hier ist # = —x
die verschieden sind, denn sonst gelte x9 = p — 9 = p = 2xzo, was wegen p # 2 nicht sein kann. Damit hat man nun ]F; in
Aquivalenzklassen der GréBe 4 und in ein oder zwei Aquivalenzklassen der Gréfle 2 partitioniert. Da IF; gerade p — 1 Elemente hat,
gibt es im Fall p = 4m + 3, also p — 1 = 4m + 2, nur eine zweielementige Aquivalenzklasse, ndmlich {1,p — 1}, womit die dritte
Moglichkeit nicht eintreten kann und damit s2 = —1 keine Losung hat. Ist p=4m+ 1< p—1=4m = 4(m — 1) + 2 + 2, so gibt
es zwei Aquivalenzklassen der Grofe 2, also tritt die dritte Moglichkeit ein und zo und p — xo sind gerade die zwei verschiedenen

Losungen von s2 = —1, |
Satz. Jede Primzahl der Form p = 4m+ 1 ist Summe zweier Quadratzahlen, das heifit, es existieren z,y € Ng mit p = 2% +y>.

Beweis. Sei s eine Losung von s2 = —1 mod p, die nach dem Lemma existiert. Es werden dann die Paare (z',y’) € {0, ..., [vP] 12 =
D, von denen es (| /p] +1)? gibt, betrachtet. Wegen |z] +1 > z mit = = /P sieht man, dass |D| > p gilt. Damit kann f : D — I,
(z',y") = 2’ — sy’ nicht injektiv sein, womit es zwei verschiedene Paare (z’,y’) und (z’/,y"") gibt mit 2’ — sy’ = 2’’ — sy’ (mod p) &

z' —z” = s(y’ — y"") (mod p). Sei nun z := |z’ — 2’| und y := |y’ — y"’|. Es folgt damit aus der obigen Gleichung z = +sy (mod p)
und weiter 22 = s2y% = —y? (mod p), was 22 + y? = 0 (mod p) impliziert. Da (z’,y’) und (z/,y"") verschieden waren, kénnen nicht
sowohl z als auch y gleich 0 sein, also ist z2 + y? > 0. Wegen z,y € {0,...,[vP]} und damit 22, y? < |_\/17J2 < p erhilt man
zuletzt 22 + y2 < 2p, was wegen 2 + y2 =0 (mod p) bedeutet, dass 22 4+ y? gleich p sein muss, womit die Behauptung des Satzes

bewiesen ist. O

Satz. Eine natirliche Zahl n ist genau dann Summe zweier Quadratzahlen, wenn die Primfaktoren p = 4m + 3 von n mit

geradem Exponenten auftreten.

Beweis. Eine Zahl heifle darstellbar, wenn sie die Summe zweier Quadrate ist. ,,<=“: Seien also die Primfaktoren p = 4m + 3 von
n mit geradem Exponenten auftretend. Die Primfaktoren p = 4m + 1 der natiirlichen Zahl n sind nach dem vorangegangenen
Satz darstellbar, genauso wie 1 = 02 + 12 und 2 = 12 4+ 12. Wegen (w2 +9?) - (a2 + b2) = z2a® + 2% + 22b? + y%a? =
(z2a? + 2zayb + y2b%) + (z%b? — 2zbya + y2a?) = (za + yb)? + (xb — ya)? ist auch das Produkt darstellbarer Zahlen darstellbar
und nach (z? 4 y?) - a? = (za)? + (ya)? sind auch quadratische Vielfache darstellbarer Zahlen darstellbar. Da die Primfaktoren p
der Form (4m + 3) mit geradem Exponenten auftreten, sind sie also quadratisch. Es folgt also, dass die Primfaktorzerlegung von n
darstellbar ist. ,=*: Sei also n = 2 +y2 darstellbar. Fiir einen Primteiler p = 4m + 3 von n sei zunichst z mod p # 0 angenommen.
Dann kénnte man ein z’ finden mit zz’ = 1 (modp). Dann wiirde gelten z2 + y? = 0(modp) = 1 + 22 +y? = 1 + (2'y)? =
0 (mod p) = (2'y)?> = —1 (mod p), was nach dem Lemma nicht moglich ist, also muss p ein Teiler von z (und analogerweise auch
von y) sein. Damit folgt p? | n und p% = (5)2 + (%)2 ist darstellbar. Also gilt entweder p t p% oder p? | p%. Rekursiv erhalt

P
man, dass p in der Primfaktorzerlegung von n mit geradem Exponenten auftauchen muss. O

Die Partition von Zahlen

[Zuriick zur Liste]

Definition (Partitionsfunktion). Man betrachtet die Partitionsfunktion p(n), die angibt, wieviele Mdglichkeiten es gibt, ein
n € N als Summe von Zahlen aus {1,...,n} darzustellen. Dabei soll gelten: 1. Die Reihenfolge der Summanden wird nicht

beachtet, 2. Die Anzahl der Summanden ist nicht festgelegt und 3. Summanden diirfen mehrfach vorkommen.

0
Satz (Umordnungssatz). Sei > aj eine absolut konvergente Reihe mit Grenzwert A. Dann konvergiert jede Umordnung der

k=0
o0 o0

Reihe Y ay, also jede Reihe Y. ar (k) fur jede bijektive Abbildung T : No — Wo, ebenfalls gegen A.
k=0 k=0
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m o
Beweis. Sei T :INg — INo bijektiv. Es muss gezeigt werden: lim 37 a,(x) = A. Sei nun € > 0 vorgegeben. Da 3~ |ax| konvergiert,
MO0 =0 k=0

oo e ng—1 oo oo e
gibt es zu € ein ng € Ng so, dass >, |ax| < = gilt. Daraus folgt |[A — > ar| =] > ar| < > |ax| < =. Da 7 bijektiv ist,
k=ng 2 k=0 k=ng k=ng 2
kann man N € INg so wahlen, dass {0,1,...,n9 — 1} C {7(0),7(1),...,7(N)} gilt. Dann gilt fiir alle m > N: ‘ D0 Ar(k) — A‘ =
k=0
m ng—1 ng—1
S ary — X ar|+| X ar—A| <L E|ak|+7<€ Das war es! |
k=0 = k=0 k=ng
o
Satz (Produktsatz). Seien . ajp (i = 1,...,m) m absolut konvergente Reihen und ¢ : N — IN™ eine bijektive Abbildung.
k=1
Dann ist Z avn(k) iz(k) cooomag gy eine absolut konvergente Reihe, wobei p(k) = (¢1(k), ..., pm(k)) fir alle k sei. Es gilt

dann die folgende Identitdt:

oo oo oo oo
1 2 m _ 1 2 m
k=1 k=1 k=1 k=1

Man darf also unter den gegebenen Voraussetzungen gliedweise ausmultiplizieren!

Beweis. Man wihlt eine Bijektion ¢ : N — IN™ zunéchst so, dass gilt {¢(1),...,o(n™)} = {1,2,...,n}™ fiir alle n € N. Es
nm n n n nm
gilt dann fiir jedes n nun Y \a;l(k)\ . |aiz(1€)| el ol = <Z \ai\) . (Z |ai|> e (Z |a;”|>, also > |a;1(k)| .
k=1 k=1 k=1 k=1 k=1
o0 o0 o0 TLm
|ai2(,€)| el ol < (kgl \ai\) . (1;:31 |ai|> e (kgl |a;"\>, also hat das monoton wachsende kgl |a1¥;1(,€)| . |a2¥;2(,€)| .
o0
. |a$m(k)‘ eine konvergente Majorante, konvergiert also absolut, also konvergiert k§1 a<1/>1(’€) . aiz(k) . a:;m(k). Wegen
nm n n n
a‘pl(,c) 'aiz(k) e azlm(k,) = (Z ai) . (Z ai) s <Z aZ”) folgt mithilfe des Grenzwertiibergangs n — oo dann:
k=1 = k=1 k=1
f) a? o = (3 al > a2 S a" ). Man hat oben die Bijekti i hrinkt. D
>0 Gy (k) Gpn(k) T B (k) = k21 aj, | - k¥1 ap ) .. kgl ap' ). Man hat oben die Bijektion ¢ eingeschrinkt. Das

1

Wll‘d jetzt in Ordnung gebracht: Sei p : N — IN™ eine beliebige Bijektion, so ist auch ¢~ " o 1 eine Bijektion von IN nach N.
o0 o0

o 1 - . Lom _ 1 . a? . . a™ i

Dann gilt: 30 @y (o=1ow)k) * Toalle=low () " Yoo low)(k) = 25 Qi) T Fa(k) T T Wy Die Summanden

a;l(k) . a?m(k) et a::’m(k) (k € ]N?ﬁo) wurden also umgeordnet, und nach dem Umordnungssatz dndert sich der Grenzwert der
o0 oo o0 o0

unendlichen Reihe nicht, also gilt auch kzl allpl(k) . aiz(k‘) . 'a:ﬁm(k) = (kz;l ai) . (kzl ai) e (;;1 a;f”). d

Satz (Vertauschung von Limes und Summe). FEs sei (ag))n,iew eine Doppelfolge mit 0 < an) < 4oo fir n,i € N so, dass fir

alle i € IN die Folge (a&f))ngm monoton steigt. Es gelte lim ag’) € R fiir alle i € N. Dann folgt:
n— oo
S ) N (i)
i= i=

Beweis. Weil agf) in n monoton steigt, gilt aiz’) < lim ag) fiir alle n, i € IN, also Z (” < Z hm a( D fiir alle n, m € IN. Folglich
i=o i=0
gilt dann auch Z P < Z llm a( D fiir alle n € IN. SchlieBlich gilt dann hm Z al? < Z llm al?. Sei z < Z lim o,

i=0 i=0 i=0 =0 n—o°
) *2
dann gibt es ein m € N mit x < Z lim aS;) 2 lim Z a( < lim Z a , wobei %7 gilt, weil die Summe endlich ist, und *2 gilt
i=omn—roo

n—oo /= n—oo /=0

m . o0 - ’ . o0 . o0 .
wegen E agf) < Z a;‘). Es wurde benutzt, dass aﬁb‘) > 0 gilt. Wire lim Z Uw(«f) =z < Z lim ’15:)7 dann folgt lim Z aﬁlﬂ

lim Z al?), Widerspruch, also muss gelten: 11m Z ald > E hm al)). Zusammen mit hm Z o) < Z hm a{?) folgt also

n—o0 /=0 i—on—

die Behauptung des Satzes und man ist hier fertig! O

oo
Lemma (Quotientenkriterium). Es sei Y. ap eine Reihe mit ap # 0 fiir fast alle k, dann gilt:
k=0

. ekl
lim ———
k— 00 ‘ak‘

oo
<1l= Z ay, konvergiert absolut.
k=0

a a
Beweis. Sei a := lim M < 1. Man kann also ein € > 0 wihlen, dass auch noch ¢ := a 4+ ¢ < 1 gilt. Wegen lim M B
k—oo |ag| k—oo |ag|
a
gibt es ein ko9 € IN so, dass LA < a+ e = g fiir alle k > ko, und damit |ax4+1]| < ¢ - |ak|. Daraus ergibt sich fiir alle k& > ko:
a
k o oo

lar| < q-lar_1] < ¢® - lan_2| < ... < g" k0. laky|. Also ist die Reihe 37 gf—ko . lak, | eine konvergente Majorante von 3 |ak|,

k=0 k=0
o o _ o] _ 1
denn 35 " 740 - Jag| = 470 - Jaky |- 3 a* = a0 Jaxy| - g wegen g < 1. O

Satz (Satz von Euler). Es gilt fir alle x € R mit |z| <1: [T ——— =11 X () = 3 p(k) -z, mit p(0) =1
k=1 1—z k=11=0 E=0
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o
1
Beweis. Zunichst wird ein informaler Beweis gegeben: Bekanntermafien gilt: > zt = 1= fiir alle z € [0, 1). Man betrachtet nun
=0 -z

= 1 > @M

p=1 1 —axF gD =0

> 1

[[ == I[12EY

oo 1 oo
k=1 k=11=0

_ (1+z1 Gt gtFE | i Fo

(14 22 4 2242 4 o2T242 g p2deded2 |y

(1 + 373 + $3+3 + $3+3+3 + x3+3+3+3 4. )

=> plk)-a"
k=0

Hier darf man aber nicht einfach gliedweise ausmultplizieren. Jetzt kommt der formale Beweis, der dieses Problem 1st: Sei

also z € [0,1), dann betrachtet man Fp(z) = [][ —— und F(z) = ][] = lim F,,(z). Es gilt, dass F(z) =
m—r o0

k=11—= k=1 1—axF
o 1 o] o)
IT 1% und [] 1 — 2" auch wirklich konvergieren. Beweis: Es konvergiert Y. In(1 — z*) absolut fiir € [0,1) nach dem
k=1 — T k=1 k=1
d ® k+1
_ _ gkttt d -In(x)
. o U V€I | RN 7S G SN I . vy
Quotientenkriterium (sieche Lemma oben), denn es gilt: lim ———> = lim | —— | = lim |—/———| =
—oo [In(1 — z*)] L x k—oo | zFn(z)
o @ —2k) k1
. b -1 Lo (@ =) ; .
lim |2 —— | =|z- —| = |z]| =2 < 1, weil in ———————= fiir k — oo Zidhler und Nenner gegen 0 laufen. Also konvergiert
k— o0 zhtl — 1 -1 [1In(1 — 2*)]
oo ~ ¥ -2k - z’j In(1—ak) zlj 0—In(1—xk)
S° In(1 — zF) absolut, also konvergiert es auch. Jetzt folgt: go = e *=1 = lim e k=1 = lim ek=1 =
k=1 l— o0 l— o0
. L 1 o0
> In(1)—In(1—=zF) > In 1=k ! 1 oo 1 S In(1—gak) o
lim ek=1 = lim e*=! z = lim [] =TI . Wegen g, = ek=1 =[] 1— " folgt
l— o0 l— oo l—oo -7 1 — xk k=1 1 — xk ke1

o
auch die Konvergenz von [] 1 — z*. Weiter: (Fy,(x))men ist eine monotone Folge, denn wegen 0 < = < 1 folgt 1 — z™+! < 1,
k=1

1 1
also ————— > 1 und damit: Fp,41(x) = ———— - Fi () > Fpn(z). Daraus folgt: F,,(z) < F(z) fir alle m € IN und fiir
1 — zm+1 1— mm+1
festes € [0,1). Sei pm(n) die Anzahl der Partitionen von n, wobei die Summanden alle kleiner-gleich m sind. Es gilt dann

Fp(z) =1+ kzl pm (k) - ¢*. Siehe dazu folgende Rechnung hier:

o no
I =112GY
k=1 k=11=0
(4 at 4ot T g gt TP gt .
(1+JZ2+$2+2+ZE2+2+2+12+2+2+2+...)'

(14 % 4 a0 4 04343 4 g3434343 L,

(1 + JC”L + x?rl+ﬂL + an+m+1n + x1n+vn+7n+7n + . )
oo
k
= Z pm(k) - @
k=0

o0
Hier hingegen darf man nach dem Produktsatz oben gliedweise ausmultiplizieren und damit sehen, dass Fy, (z) = 14+ > pm(k)-z* =
k=1
S pm(k) - 2® (pm(0) = 1) gilt. Denn man hat endlich viele unendliche Reihen, die fiir € [0,1) absolut konvergieren. Weiter:
k=0

Fiir m > k gilt nach Definition der Partitionsfunktion p,,(k) = p(k). AuBerdem: p,, (k) < p(k) fiir alle m < k. D.h. es gilt
o0
pm(k) - 2"+ > pm(k) - 2* =
1

k=m+

lim p,, (k) = p(k). Nun teilt man F,, als Reihe in zwei Summanden auf: F,,(z) =
m— 00

kol
I

m oo m ™m
Z p(k) - 2" + Z pm (k) - a", denn p,, (k) = p(k) fiir m > k. Es folgt: > p(k) - z* < Fp,(z) < F(z), also ist > p(k) - z*
=0 k=m+1 k=0 k=0

=

>0 >0

m
als beschrinkte Reihe mit positiven Summanden absolut konvergent. Daraus folgt, dass auch lim > p(k) - zk < F(z) gilt, also
m—00 ;=

S p(k) - z* < F(z). Es gilt nun:
k=0

oo oo oo
o o ok . ok Lk
F(z) = lim Fpn(z)= lim » pm(k) 2" =3 lim pm(k) 2" =Y p(k) 2" < F(z)
k=0 k=0 k=0
oo 1 oo
Gezeigt ist also: F(z) = T[] n = = > plk) - z* Es muss noch begriindet werden, warum man eben Limes und Summe
k=11—1T k=0

tauschen durfte: Sei a{®) := p,, (k) - z* fiir festes € [0,1). Es gilt 0 < a{®) < 400 und a{*) wiichst monoton in m wegen
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pm (k) - 2% < prug1(k) - 2® fiir alle m € IN. Dann gilt llm a®) = p(k) - z*. Es existiert der Grenzwert 3 al®) = 3= p,. (k) - 2",
k=0 k=0

o0
denn 3" p(k) - 2" ist eine konvergente Majorante. Man wende nun das aﬁ,’f) auf den Satz (Vertauschung von Limes und Summe)
k=0
an. Das ist das Ende des Beweises hier. O
Satz (Euler’s Pentagonalzahlensatz). Es gilt fir alle z € R mit |z| <1: [[ 1—a® =14+ 3 (=1)* - (@*® + 2R wobei hier
k=1

k=1

3k — k 3k* + k
gilt: w(k) = — also w(—k) = T—i_ (Pentagonalzahlen).

oo oo
Beweis. Man schreibt zunéchst ]_[ 1—2F =14 3 a(l)-z'. Die Konvergenz von [ 1— " fiir z € [0, 1) wurde im Satz von Euler
=1 =1 k=1

oben bewiesen. a(l) entsteht (:lau:lurch7 dass eine Partition von [ in ungleiche Teile einen Koeffizienten +1 oder —1 vor dem Term z!
bewirkt. Der Koeffizient ist +1, wenn z' das Produkt einer geraden Anzahl von Faktoren ist, und —1, wenn z! das Produkt einer
ungeraden Anzahl von Faktoren ist. Es gilt also a(l) = pg (1) —p. (1), wobei py(I) die Anzahl von Partitionen von ! in ungleiche Teile
gerader Anzahl und p, (1) die Anzahl von Partitionen von [ in ungleiche Teile ungerader Anzahl ist. Im Folgenden wird gezeigt, dass
pg(n) = pu(n) fiir alle n € IN gilt, auBer, wenn n eine Pentagonalzahl ist. Es gilt also H 1—z™ =1+ E (pg(n) —pu(n))-z™. Es
wird jetzt gezeigt, dass pg(n) = py(n) gilt, auer wenn n eine Pentagonalzahl ist. Dazu bctrachtct man dcn Graphen einer Partition
von n in ungleiche Teile. Man sagt, dass der Graph in Standardform ist, wenn die Zeilen in absteigender Reihenfolge sortiert sind,
so wie in Abbildung 1 unten. Die lidngste Verbindung zwischen Punkten in der letzten Reihe wird Basis genannt, die Anzahl der
Punkte wird mit b bezeichnet. Es gilt also b > 1. Die ldngste Verbindung im 45°-Winkel, die am Ende der ersten Reihe beginnt,
wird Schrige genannt, die Anzahl der Punkte wird mit s bezeichnet. Es gilt s > 1. In Abbildung 1 unten ist b = 2 und s = 4.

"= = = = = @8

L] - = L] L]
<——Schriige (s = 4)

\~Ba~3i5 (b=2)

Abbildung 1

Jetzt werden zwei Operationen A und B auf dem Graphen definiert. Operation A verschiebt die Basis so, dass sie parallel zur

Schriige liegt. Operation B verschiebt die Schrige unter die Basis. Illustriert ist das in Abbildung 2 und 3:

.- & =
- = = = ® @ » .- & &
'

@ ® @ @ @ L - @& @

L]
L]
L]
L]
L]
L]
L]

A

— -—-.— -

Abbildung 2 Abbildung 3

Man nennt eine solche Operation zulédssig, wenn der neu entstandene Graph wieder in Standardform ist, also aus ungleichen Teilen
besteht, die in absteigender Reihenfolge sortiert sind. Wenn A zulédssig ist, erhélt man eine neue Partition von n in ungleiche Teile,
es gibt aber ein Teil weniger als vorher. Wenn B zulissig ist, erhilt man ebenfalls eine neue Partition von n in ungleiche Teile, es
gibt ein Teil mehr als zuvor. Wenn also fiir jede Partition von n entweder A oder B zuléssig ist, dann sind jeweils zwei Partitionen
iitber A und B verbunden. Es folgt p,(n) = p,(n), da eine ungerade Partition durch A oder B in eine gerade Partition iibergeht

und umgekehrt. Um zu bestimmen, ob A oder B zulissig ist, betrachtet man drei Félle:

1. Fall Wenn b < s ist, gilt b < s — 1. Operation A ist zulidssig, Operation B nicht, denn B zerstoért die Standardform. Siehe dazu
die Abbildung 2 und 3 oben.
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2. Fall Wenn b = s ist, ist Operation B nicht zuléssig, da der entstandene Graph nicht in Standardform ist. Operation A ist
erlaubt, aufler in den Féllen, in denen Basis und Schrige iiberlappen. Siehe Abbildung 4.

3. Fall Wenn b > s ist, ist Operation A nicht zuldssig. B hingegen wohl, auler in dem Fall, dass b = s 4+ 1 gilt, und Basis und
Schrage iiberlappen. Diese Situation ist in Abbildung 5 zu sehen.

Abbildung 4 Abbildung 5

Es folgt also, dass entweder A oder B zuléssig ist, aufler in den beiden Ausnahmefillen. Man betrachtet nun den ersten Ausnahmefall,

wie er in Abbildung 4 gezeigt ist. Sei k die Anzahl der Reihen im Graph, also k = s = b. Demnach ldsst sich n folgendermafBen
k=1 3k? — k

berechnen: n = > k+i = — = w(k). Fiir dieses n gibt es also genau eine Extrapartition, die sich nicht paaren lisst,
i=0

die anderen Partitionen mit der gleichen Anzahl an Punkten n = w(k) lassen sich paaren (Eine Partition in ungleiche Teile mit
ungerader Anzahl an Zeilen mit einer Partition in ungleiche Teile mit gerader Anzahl an Zeilen und umgekehrt), seien dies p Paare.
Ist k gerade, dann gilt: pg(n) — pu(n) = pg(w(k)) — pu(w(k)) = (p + 1) — p, und wenn k ungerade ist, dann gilt py(n) — pu(n) =

pg(w(k))—pu(w(k)) = p—(p+1) = —1, also gilt py (w(k))—pu(w(k)) = (—1)*. Im anderen Ausnahmefall (siche Abbildung 5) hat man
3k* — k 3k + k

wegen b = s+ 1 und k = s, also b = k+ 1, in jeder Reihe einen zusétzlichen Punkt, also n = 5 + k= 5 = w(—k), also
oo o0 o0

folgt analog zu eben: p, (w(—k)) —pu (w(—k)) = (—1)*. Damit ist bewiesen, dass [[ 1—z* = 14+ 3 (=1)* -2 £ > (—1)F. g« (=)
k=1 k=1 k=1

gilt. |

o0
Satz (Euler’s Rekursionsformel fiir p(n)). Es gilt die folgende Formel: p(n) = > (=1)*T1 . (p(n — w(k)) + p(n — w(—k))) fir alle
k=1
n > 1. Dabei sei p(0) = 1 und p(n) = 0 fir alle n < 0.

Beweis. Es folgt aus den Sdtzen oben:

(B (B (oS ) (Eos) -

m= m=1 k=0
==> pk) "+ <Zp<k> : z’“> : (Z(—l)k S +xw<*k>>>
k=0 k=0 k=0
== )2+ 3 3 (DF @ 2R pm— k) 2™
k=0 m=0 k=0
= 3 p) 2 30 SR @) 0 ) pm - y w
k=0 m=1k=1

Man sammelt nun die Koeffizienten von z": Da fiir m > n die Potenzen von z in der Doppelsumme echt gréBer als n sind, reicht

es die folgende Reihe zu betrachten:

m

3 S DR plm = Ry a8 g )

m=1k=1

m=mn: m=n-—1: m=n—2:
(D' b= 12"t @) () p(n—2) 2" @ a?) (-1 (e —3) e (@t a?)
(1) pn—2)-2"" 2 (@ +2") (-1)?-p(n—3)-2""* @ +a") (~1)? - pn—4)-2""" (" +a")

(=17 pn = 3) 2" @7 0% (<17 pn = 4) 2" @7 40" (-1 p(n - 5) 2" 0 @1 )

m=mn-—3: m=n-—4: m=n-—>5:
(1" pn—4)-2" @ +2®) (~1)'pn—5)-2" " (@' +2®)  (~1)'p(n—6)-2""° (@' +2°)

(D% pn=5)-z"° (@®+2") (-D)>pn-6) 2" @ +2") (1> pn-7) 2" " (2" +z")

(1) p(n—6) - 2" % @2 +2%) (1% pn—7)-2" 7 (@2 + %) (=1)® - p(n—8) - 2" (@' + 2'F)
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0
Und immer so weiter! Das Muster da oben ist wohl klar geworden. Aus einem Koeffizientenvergleich folgt wegen 1 = >~ p(k) - zF 4+
k=0

§ f: (=) - (@) 4 xR p(m — k) - 2™ F, dass der Koeffizient von ™ (n > 1) gleich 0 ist, also:
m=1k=1
0=p(n)+ (=)' -pn—1)+(-1)" - p(n - 2)
+ (=1 p(n = 5) + (=1)* - p(n = 7)
+ (=1 p(n = 12) + (=1)* - p(n — 15)
+(=1)*p(n —22) + (—1)* - p(n — 26) + ...

Dabei sei oben immer gewesen: w(1) = 1,w(—1) = 2,w(2) = 5,w(—2) = 7,w(3) = 12,w(—3) = 15,w(4) = 22,w(—4) = 26, ..., also
gilt wirklich: p(n) = 3 (=1)**1 . (p(n — w(k)) + p(n — w(—k))), p(0) =1 und p(n) = 0Vn < 0. O
k=1

Die Summe von Potenzen

[Zuriick zur Liste]

T
Satz. Die Taylorreihe zu f(z) = 1 hat um den Entwicklungspunkt 0 den Konvergenzradius 27.
eT —

Beweis. Man betrachte f als komplexe Funktion f(z) = o1 f:C — C. z = 0 ist eine hebbare Singularitéit, denn: Weil fiir
e

d
z — 0 Z#hler und Nenner von f gegen 0 gehen, ist die Regel von I’'Hospital anwendbar, also: lim0 ~ z n = lim0 a dz =
z— - z—
© —(e* —1)
1 dz
lirr}) — = 1. Weil z und e® — 1 holomorph sind, ist es auch fir z # k- 2mi (k € Z7°). Weiter ist f in z = 0 sogar
z—0 e _
z z 1 z)— f(O0
holomorph, was man folgendermafen einsehen kann: f(z) = = o = z = = = , also f(z) = 1(0) =
e —1 1+E fz fz’l z—0
K=o k! =1 k! k=1 k!
k—1 k—2 k—2
oo o o 1
-3 - - —— -
1 1 1 k=1 K! k=2 k! . f(z) = f(0) . k=2 k! 2! 0
-1t === = = =1 also: lim = lim = = Nun
> o ZF- > o LR o 5 250 2—0 20 oo k-1 140 2
k=1 k! kz::1 k! kz::1 k! kz::1 k!

ist K-(0) :={z € C: |z —0| < r} fir r =27 die grofte offene Kreisscheibe um 0, die die néchsten nicht hebbaren Singularitéiten
von f ndmlich £1 - 274 nicht beinhaltet. f ist auf K2,(0) holomorph. Es gilt dann bekanntermafBen fiir » < 27 die Cauchy’sche

1 1 > "
Integralformel: f(z) = — / Jw) dw mit |z] < r. Jetzt gilt dann: fw) = fw) — = fw) - <i> =
27d |w|=r W — 2 w—z w 1-= w n=0 \ W
& fw) . . _
> - 2" (konvergent fiir |—| < 1, also |z| < |w| = r). Man hat also:
n=o wnt! w

B fw) . & fw) N .
f(Z)_%./‘w‘:T;w"Jrl z dw_nX::O(zﬂ_i /‘w‘:T ppr dw) z

Denn aus der Analysis weil man, dass man, weil die Reihe unter dem Integral gleichmiBig konvergiert, Integral und Summe

™0 1 1
vertauschen darf. Es wird jetzt gezeigt, dass gilt: fi() = — - / J(w) dw, denn: f(z) = — - / M dw =
n! 274 Jw|=r w1 274 Jw]=r W — 2

1 d"™  f(w) 1 / n! 1 f(w) .
My = —. dw = — - T dw= ™M) = 17/ _ I qw, also d
£ 27mi /\w\:r Az w—2""7 2m |w|=r Flw) (w — z)nt1 w Froy=n 270 Jjw|=r (w —0)nF1L w, aso die

1 n!
Behauptung. Dass — = gilt, zeigt man leicht mit vollstdndiger Induktion. Es wurde also gezeigt, dass fiir alle
dz" w— z (w — z)nt1

)
n!

z mit |z| < 27 gilt: Z z™ konvergiert gegen f(z). Da der reelle Fall im komplexen Fall enthalten ist, folgt die Behauptung

des Satzes und der Bewels ist damit beendet. O

Definition (Bernoulli-Zahlen). Wegen des Satzes oben kann man in einer Umgebung der 0 die Taylor- Entwicklung von f(z) =

(reell) betrachten. Man setzt dafiir an:
et —

>, B,
f(z) :;T

Die Koeffizienten B, heiffen dann Bernoulli-Zahlen.

m

Satz. Fiir die Benoulli-Zahlen gilt die folgende Rekursionsgleichung: Z (

m+ 1

) By = 0. Es gilt fir allen > 1: Bapyq = 0.
n

99



Beweis. Bekannt ist, dass gilt e” = Z % Man rechnet nun
k=0 :
-1
T T 1 1 e z®
xTr) = = — = -
s Sy s V)
r=o k! =1 k! =1 k! (k} + 1)'
Daraus folgt dann also, dass gilt
1 > Bn >
1= =
o 5= (S5 ) (Eatw)
Dieses Produkt kann man ausmultiplizieren:
= B n = - Bn n+k o B m
Ex=) Eam) L. e S e
. . . . a a!
Mit dem Binomialkoeffizienten ( ) = ——  bekommt man also:
b b (a—0b)!
m
o | 2 (") Bn
n=0 2™ =1
= (m + 1)!
m
> (™) Ba
. . . . . n=0 m+1 Lo .
nmittelbar folgt By = 1. Ein Koeffizientenvergleich liefert nun —— = also »n = 0. Dies ist eine
Unmittelbar folgt Bo = 1. Ein Koeffizient leich liefert 012( ) - Bu = 0. Dies ist
(m + 1)! n

rekursive Gleichung zur Bestimmung von B,, aus der Kenntnis von By bis B,,_1. Es wird nun beWIesen dass Bap41 = 0 fiir alle

k > 1: Sei dazu definiert:

x x

e” +e”

—x

cosh(z) = und sinh(z) = %
sh(z/2
Offenbar gilt cosh(—z) = cosh(z) und sinh(—z) = —sinh(z). Folglich ist h(z) = g % mit h(—z) = h(z), also ist h eine
sinh(z
gerade Funktion. Es gilt dann:
xz cosh(z/2) = em/2+e_m/27m 1+e z 24" -1 2z +x - (e” — 1) z T oz iB
2 sinh(z/2) 2 e®/2—e-%/2 2 ez —1 2 e*—1 2. (e — 1) 173273 = n!
Daraus folgt dann:
x cosh(z/2) T 1 B, o, B, o,
h [ Sl A A 1— = —zx =1
@ 2 sinh(z/2) 2 + 2" +nZ:2 P +7§ "
1
Denn man berechnet leicht Bo = 1 und B; = 5 Aus h(—z) = h(z) folgt:
n > Bn =~ Ban - _Banyi1 22t = Ban 227 o~ Bant1 2n41
S =i T s S D LD YT Sy
= on! = (271)‘ (2n + 1)1 = (@2n)! (2n+ 1)!
< B, ’ B
Also gilt dann: 2 - Z _Z2mdl g2l 0, woraus leicht 22t 0 fiir alle n > 1 folgt, also Bant+1 = 0. O
= @2n+ 1)l (2n +1)!
N l+1 —m+1 . >1
Satz (Summe von Potenzen). Es gilt: Z k e Z ( ) n+ 1) - By, firl e N=".
k=1 L+1 =
n 1— e(n+1)-z e(n+1)-z 1 T
. s . ka
Beweis. Mithilfe der bekannten geometrischen Summenformel hat man: Z e = = - =
= 1—e® T er —1
(nt1)-z _ 4
R - f(x). Nun gilt:
T
(§ M) L, = (@ (1)
(nt1)-x _ — k! 1 oo k-1 oo k41
e 1 k=0 : — k! X n +1
- = D e e
T T T = = (k+ 1)!
Also gilt dann:
k=0 = k1! =0 ™ 1=0 kfm=1 (k+1)!-m!
l
i+1 l—m+1
oo - oo c(n+1 - Bm
:Zi(n+1)l 771+1.Bm’.$l:Z mZ:O(m) ( ) ~$l

(I—m+ 1! ml
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Andererseits gilt aber:

n n oo 1 oo
kz S (k;ﬁ) - k:llg .zl
—o

k=01=0 : =0

Aus einem Koeffizientenvergleich folgt dann also:
n f 1 !
>k > Y e+ttt B,
k=1 m=0

o 1+ 1)

Durch Multiplikation mit I! auf beiden Seiten folgt die Behauptung des Satzes hier! O

Der Banach’sche Fixpunktsatz

[Zuriick zur Liste]

Satz. Sei f : M — M eine kontrahierende Abbildung eines wvollstindigen metrischen Raumes in sich. Das heif$t, es gilt fiir
den metrischen Raum (M,d): Es gibt ein C € R mit 0 < C < 1 so, dass fir alle z,y € M gilt d(f(z), f(y)) < C -d(z,y). Dann

besitzt f genau einen Fizpunkt, also ein x € M mit f(z) = x.

Beweis. Zunéchst zur Existenz: Man wéhlt ein g € M beliebig und definiert durch z,4+1 = f(z,) (n € IN) rekursiv ei-
ne Folge. Es wird nun gezeigt, dass (z,) eine Cauchy-Folge ist: Man schitzt ab: d(z;,zi+1) = d(f(zi—1), f(zi—2)) < C -
d(xzij—1,2;—2) und nach nochmaliger Anwendung: d(z;,z;—1) < c? . d(xzi—2,x;—3). Mittels vollstindiger Induktion kann man

dann zeigen: d(z;,x;—1) < i d(xy,me) = CTTL d(f(zo), o). Nach mehrmaliger Anwendung der Dreiecksungleichung er-

n+tk ntk ntk—1
gibt sich d(xpik,on) < S d(zi,®i—1), also gilt dann: d(zpik,n) < > C71 - d(f(z0),z0) = d(f(m0),x0) - >, C' <
i=nt1 i=nt1 i=n

1 cn—1+1 _ 4
— ok Dieser Ausdruck wird in Abhingigkeit

d(f(za), zo) - 1207 = d(f(=0), o) - (1 —= o1 ) = d(f(z0), o) - T

von n beliebig klein, weswegen es sich bei (z,) um eine Cauchy-Folge handelt, die konvergiert, da M vollstdndig ist. Sei nun

z = lim z,, der Grenzwert der Folge. Wegen der Definition der Folge (z,) gilt sicher lim z, = lim z,4+1 = lim f(z,). Die
n—oo n— oo n— 0o n— oo

Kontraktionsbedingung von f impliziert Lipschitz-Stetigkeit mit der Lipschitzkonstanten C' < 1. Daher ist f damit auch stetig, also

lim f(z,)=f| lim z, | = f(z). Weil lim f(z,)= lim =z, = z gilt, folgt f(x) = = und z ist der gesuchte Fixpunkt. Nun zur
n-—oo n-—roo n-—roo n-— oo

Eindeutigkeit: Seien z und y Fixpunkte von f. Dann gilt d(z,y) = d(f(z), f(y)) < C - d(x,y). Also gilt dann (1 — C) - d(z,y) < 0.
Weil 1 — C > 0 und d(z,y) > 0 gilt, folgt d(z,y) = 0, also z = y. |

Der Satz von Bolzano-Weierstraifl

[Zuriick zur Liste]

Satz. Jede beschrinkte Folge reeller Zahlen besitzt eine konvergente Teilfolge.

Beweis. Sei (ay) eine Folge reeller Zahlen. Wegen der Beschrénktheit der Folge gibt es reelle Zahlen ¢ < d mit a,, € [c, d] fiir alle
n. Man konstruiert nun induktiv eine Intervallschachtelung (Ix)ren so, dass I, = [ci, di] unendlich viele Folgenglieder a,, enthélt,
sowie eine zugehérige Folge (ny)ren natiirlicher Zahlen mit ng41 > njg und @n,, € Ii. Induktionsanfang: Wihle Ip = [co, do] mit
co := c und do := d sowie ein an, € Io. Induktionsschritt: Sei I, = [cg, dy] bereits konstruiert und mj := % - (ck + di) der
Mittelpunkt. Da I unendlich viele Folgenglieder enthélt, kénnen nicht beide Teilintervalle [c, my] und [my, di] nur endlich viele
Folgenglieder enthalten. Setze Iy41 := [Cr41, dk41] mit cpy1 := ¢k und dr41 := my, falls [cx, my] unendlich viele Folgenglieder

enthiilt, ansonsten I41 := [Cky1, dk+1] Mit cpy1 := my und di41 := di. Offenbar gilt I11 C I, und [Ix41| = 5|I,c| = | To|.

ok+1
Da die Menge {n € N : a,, € I}+1} unendlich ist, enthélt sie ein Element m > ny. Setze ng41 := m, d.h. es gilt Ay € Ip4+1 und
ng4+1 > ny. Nach dem Intervallschachtelungsprinzip gibt es eine eindeutig bestimmte Zahl h € R mit h € I fiir alle k € IN. Dann
gibt es zu jedem € > 0 ein N € N mit I}, C [h — e, h + €] fiir alle k > N, d.h. \ank — h| < e fiir alle k > N. Das bedeutet also

lim Qny = h. Schlussendlich ist der Satz damit bewiesen. O
— 00
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Die Stirling’sche Nidherungsformel

[Zuriick zur Liste]

Satz. Es gilt die folgende Formel:
n
n! ~V2mn - (2)
e

Beweis. Bereits bekannt ist die Wallis’sche Produktformel:

T (24)* = (25)* . 2% - (n)?
5 = H - : = H - - - - = lim
2 ey @y @0 @) @) @) e (@n))2 - @t D)
Daraus folgt also nach Ziehen der Wurzel:
221 ()2
V7= lim (n)
n— oo 1
@)y /n+ =
2
n!-e”
Man betrachtet nun die Folge z,, := fi Diese Folge ist offenbar durch 0 nach unten beschriankt. Es wird nun gezeigt, dass
n-n"

=, monoton fillt, womit dann die Konvergenz gezeigt ist. Man betrachtet dazu den folgenden Quotienten:

Tp41 Vn - nn ’ (n+ 1)l entl e

1 1
ln(ﬁn ):71+(n+7)-ln(n+ )
Tni1 2 n

1
Ty n!-e™ \/n—i-1~(n-‘,-1)"Jrl 1 (n—&-l)"*g

n

Logarithmieren liefert dann:

Nun gilt fiir |z| < 1 die Reihenentwicklung

14z >0, 2k A1 2., 25 24
1 =2. =2 — — —
n<1—z> ]§)Qk+1 Fhge s At

Fiir positives z folgt somit:

1 3 - .
2z§ln< +Z)§2~ z+z—'(1+z2+z4+zﬁ+...) =2 z+i-2(z2)k
1—=z 3 3 o

Also gilt dann:

1
Mit z := ergibt sich dann:
2n +1

1 1 1 2 1
1sm("+ )s +2

n+% 3 @n+1)-((2n+1)2-1)

Man erhélt also:

1< Jr1 i n+1><1+1 1 1Jr1 1 e0< 14 +1 i n+1><1 1
n4+=)-ln e . — n4+ =) ln .-
- 2 n - 3 2n+1)2-1 3 4n2 +4n - 2 n — 3 4n?2 +4n
Daraus folgt dann:
Tn 1 1
0<In ( ) < — —
- Tnt1/) — 12 n-(n+4+1)
. . . . . . . 1 1 1 .

Aus der linken Ungleichung ergibt sich die Monotonie und aus der rechten Ungleichung folgt wegen die

n-(n+1) “n n+1
wichtige Abschétzung:
1

n(@n) — —— < In(zng1) — B (ntm)

1
12n = 12-(n+1)

Ty 1 1 1
In < —- ==
Tntm 12 n n+m

Lésst man m gegen oo laufen, bekommt man (x sei der Limes von z,):

1
= In(z,) — Ton < In(Tntm) —

Also hat man dann:

T 1 x -
0§1n<—"> <—=1< 2 <el2n

T 12n x
Insgesamt hat man also gezeigt:

1
1. on _
ISLenﬁwel?n

Vnon
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1

n+ -
Tp N
Jetzt muss nur noch x berechnet werden. Es gilt ja n! = ”771 und also:
e
. 227 . (n1)?2 . 221 . g2 L pIntl . g2n . z2 n z
i e A ko il R ETES R,
. = n -
2n)!-4/n+ 2 €2n - zg, - (2n) 2. /n+ 3
Es ist also = V27 und es gilt schlief8lich:
1
nl-e” -
V2 < ﬁ < V2m-el2n
n - n"
Damit ist also die Behauptung des Satzes bewiesen. O

Die Fouriertransformation

[Zuriick zur Liste]

Satz. Sei f € L*(R) mit f € L*(R). Dann gilt fiir fast alle t € R:

1 0o v
t) = — - z) - e da
~ 1 o -
Gleichheit besteht in jedem Punkt t, in dem f stetig ist. Es ist hier f(z) = \/? / f(t) - e "t dt die Fouriertransformierte
us —oo

von f. f(:c) gibt Auskunft dariber, wie stark eine Schwingung der Frequenz x an der Uberlagerung von Schwingungen zur

Funktion f amplitudenmdfig beteiligt ist.

Beweis. Eine Folge 6 € L'(R) heiit Diracfolge, wenn sie folgende drei Eigenschaften hat: (D1) Fiir alle k gilt 6, > 0, (D2)
Fiir alle k gilt 0r(t)dt = 1 und (D3) Fiir alle K,.(0) := {t € R: |t — 0] < r} gilt lim 0r(t) dt = 0. Sei definiert:
R k—oo JR\ K,.(0)

t2
61(t) = ‘e 2 und 6k(t) =k-081(k-t), k € N. Klarerweise ist (D1) erfiillt. Aber es gilt auch (D2), denn:

1
V2
k2. t?

) k 0o — 1 oo 2
6k(t)dt:—~/ e 2 dt:—~/ e ds=1
/;oo V2 — oo \/E — oo

k-t - o0
Es wurde hier die Koordinatentransformation s := —— benutzt. Nun zu (D3): / O (t)dt = / O (t) dt + / Ok (t) dt.
V2 R\ K (0) —oo "

oo 1 oo

Weil §, symmetrisch zur y-Achse ist, folgt: / Sp(t)dt = 2 / Sp(t)dt = 2 — - / e
- VT bz
2

R\ K- (0)
kr
:2
g _/\/E 2 VT
0

2

ds. Wegen r > 0 folgt

k-r . . . 0 _s2 2 k\/g —s2
Tz oo fiir k& — oo. Also gilt: Fiir & — oo folgt /k e ds = / e ds —/ e ds
kr 0 0
V2

2
2
e 2 N 1 -5
/ e ¥ = ﬁ - ﬁ = 0, also (D3) gezeigt. Es gilt 61 = J1, Beweis dieser Aussage: Es gilt nochmal §;(t) ;== —— -e 2,
’ ? 2 V2
2 z? t2 22
t -— | —tizt——
B 1 ® TS —iwt e 2 e 2 2 . N
also: 61 (z) = — - e 2 -e dt = . e dt. Jetzt benutzt man die Substitutionsregel und verkettet
27 — oo 27 —oo
2 2
T ( t i )2 _z
2 e |\ Bt 2 e o
mit t(s) := s - V2 — iz, also t'(s) = v/2, und man erhilt dann: 62 . / e \V2 V2] g - ET / e %" . V2ds =
I oo ™ P
.2 2
712 7% 1 i
oo 2 _Z
627r ~/7oce_S ds- V2= 6271_ -ﬁ-ﬁ:E~e 2 = 61(x). Weiter:
2 52
I k ® -5 —ikxt 1 < o2 —ixs
Sp(x)=k-61(k-2)=k-01(k-z)= — - e 2 .e dt = — - e 2k% .e ds
27 oo 2m 0o
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Die Faltung von f mit &) ergibt unter Beriicksichtigung von 65 (t — z) = & (z — ¢):
(Fro = [ ft o) o) ds
oo
:/ f(z) 0k(t —z)dx

- /jo F(@) - On(z — 1) do

2
oo 1 oo 787 i (w—t)-
:/ f(z)- 2*/ e 2k? .77 ds | da
oo T Jooo
1 i
=5 / / f(x)-e 2k2 e @S g | da
a —oo —oo

2
Der messbare Integrand dieses Doppelintegrals hat als Funktion von (s, z) € R X R die integrierbare Majorante |f(z)|-e™° . Folglich
kann nach dem Satz von Fubini die Reihenfolge der Integrationen vertauscht werden und man erhélt durch Auswertung des inneren

Integrals:

2
S

(f * 6x) (1) = o /oo /OO fla)-e 2k% e gy | s

27 oo

2
/°° ( 1 e F(x) —iws g T ok2 its 4
. e z)-e z ) -e -e s
—oo \ V2T /’—oo
2
s

/ f(s)-eiw ce' ds

—oo

I
Bl Bl

s

Fiir kK — oo konvergieren die Integranden punktweise gegen f(s) - €'** und werden durch die integrierbare Funktion f majorisiert.

Nach dem Satz iiber die majorisierte Konvergenz (Satz von Lebesgue) konvergiert also:
(f *0p)(t) — i/oo f(s)-eds, te R
k—oo /27 e ’

Es wird nun gezeigt, dass gilt || f * dx — f|[1 — O fiir Kk — oo. Wenn das gilt, dann folgt, dass es eine Teilfolge (f * 0,/),/cn gibt,
welche fast iiberall gegen f konvergiert. Beweis dieser Aussage: Sei zunéichst f x 8, =: fr. Weil || fr — f|l1 — O fiir k — oo gilt, ist
(fx)ren eine L'-Cauchyfolge. Also gibt es fiir alle € > 0 ein ng € IN, so dass || fm — fnll1 < € fiir alle m,n > ng. Daher existiert
auch eine Teilfolge (fk, )nen von (fix)ren so, dass ||fr,, — fmll1 < o fir alle m > kj. Definiert man g, := fr, — fk‘n+17 so

i Dreiecksungl. 1 kpy12kn 1 1 1 oo
< > llgnlla < > — < 1. Weil Y |gn| monoton gegen > |gn]| lauft,
1 n=1 n=1

gilt fiir alle 1 < 1 < oo:
n=1 2"

[gn|
1

n=

1

=
oo

gilt nach dem Satz der monotonen Konvergenz || > |gn\‘

n=1

] w1 !
< lim Y |lgnll1 £ Y. — = 1. Das bedeutet, dass die Reihe > gy,
y  looon=1 n=1 2" n=1

fast tiberall absolut konvergent ist, also konvergent ist. Es gilt fx; — fx, = > g; (Teleskopsumme). Daraus folgt direkt, dass
j=1

o0
Sy flir n — oo fast iiberall gegen fr, — >° gn =: g konvergiert. Man hat also eine konvergente Teilfolge gefunden. Es wird jetzt
n=1
gezeigt, dass g € L*(R) (||g]l1 < oo) ist und, dass || fr — gll1 — O fiir & — oo gilt. Dazu sei ¢ > 0. Es gibt dann ein no € NN,
so dass ||fr,, — fmll1 < € fir alle kn,, m > ng. Man wendet nun das Lemma von Fatou auf die Folge (|fx,, — fm|)nen an und
erhilt fur alle m > ng: lg — fm|dp = /1iminf|fkn — fmldp < linl)inf/ [ fhy — fmldp = lirgianfkn — fmll1 < lirginfs = €.
n— oo n oo n oo n (o)

Also gilt auch ||g — fk|l1 — 0 fiir & — oo. Wegen ||g|l1 < |lg — frqll1 + [ fy [l1 ist also [[g|l1 < oo (also: g € L'(R)), denn wegen

fr, € L' (R) (denn: fx, = f % 6k, mit f € L'(R) und &, € L'(R)) ist schonmal || fx, 1 < co. Weiter: ||fu; —gll1 = || 3 gn|| <
n=1 1
! l < 1]
lim || > gn|| < lim > |lgnlli < X — =1 < oo. Weil ||fr — fll1 — 0 und ||fx — gll1 — O fiir k — oo gilt, folgt, dass fast
=00 |lp=1 l—oo =1 n—1 2n

iiberall gilt f = g, also gibt es eine Teilfolge (fk,, Jnen von (fr)ren, so dass gilt: fi, konvergiert fiir n — oo fast iiberall gegen
f (Ende des Beweises der Aussage oben). Jetzt wird aber auch gezeigt, dass gilt ||f * §x — f|[1 — O fiir K — oo: Die Behauptung
S

wird zunéchst fiir Treppenfunktionen f = > 7 - 1z, (rr € R) gezeigt. Aus Linearitéitsgriinden geniigt es hierzu sie fiir f = 11

(I ist ein Intervall) zu zeigen: Es wird |17 — 1 * |1 abgeschitzt. Wegen der Eigenschaft (D2) von §; gilt 1;(z) = / 17(x) -
R

oo oo oo oo
Ok (y) dy. Es gilt dann |17 — 11 * &1 :/ \1117]11*6;6|dz:/ ’/ ﬂj(z)-ﬁk(y)dyf/ ]lI(xfy)~5k(y)dy‘ dr =

/j; '/j:o 0k (y) - (Lr(z) — 17 (z —y)) dy’ dz < /j; </j:o O (y) - |11 (zx) — 1 (z — y)| dy) dx, wobei §; > 0 benutzt wurde. Das

Vertauschen der Integrationsreihenfolge ergibt mit g, (z) := |1;(x) — 17(z — y)| dann ||[1;—17*0k]1 < / Ok (y)- (/ qy () dw) dy.
oo — o0

Dabei ist g, die charakteristische Funktion der Menge I, U+ D\[IN(y+I) Essei nun € > 0 gegeben. Man
oo

wihlt dann ein 7 > 0 so, dass v(Iy) < € fiir alle y € K := K,.(0) = {t € R : [t — 0] < r}. Dann gilt / qy(z)dx < €
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fir y € K. Nun gilt /:: Su(y) - (/:; qy(m)da:> dy = /K Su(y) - (/jc qy(z)dw> dy—i—/[;\Kék(y)' (/:; qy(z)da:> dy <

€ / Sp(y)dy +2-v(I) - / 61 (y) dy wegen / qy(x)dx = v(l,) < 2-v(I). Weil / 0k (y) dy < 1 gilt, folgt zusammen mit
K R\ K oo K

der Eigenschaft (D3) von 8y, dass gilt: |17 — 17 * 6|1 < 2 - e fiir alle hinreichend groBie k. Sei jetzt f € L'(R) beliebig. Sei
wieder € > 0 vorgegeben. Man wéhle dann eine Treppenfunktion ¢ mit ||f — |1 < € und ein N derart, dass fiir alle & > N gilt
le — @ *0kll1 < e. Fiir diese k gilt dann: ||f — f*dklls < If —@lls + 1o —@x*dells +1[(e = f) * 0kl <2 e+l = fllr- 5kl <
2.e+4¢e-1 = 3e, wobei hier ||0k]||1 0k (t) dt = 1 benutzt wurde. Da € > 0 beliebig gewihlt ist, folgt die behauptete Kon-

R
vergenzaussage, dass ||f — f * dgll1 = ||f * 6 — fll1 — O fiir & — oo gilt. Wegen dieser Konvergenz gibt es also eine Teilfolge
oo

(f * 97 )1 en, die fast iiberall gegen f konvergiert. Weil (f * dx)(t) W f(s) - e"ds, t € R, gilt, folgt, dass auch

1

—oo /27 ’ /700
(f % 6,)(t) ! /wf() its 4s, t € R, gilt. Daraus folgt dann, dass fast iberall gilt f(t) — — /ocf() its g

* — —_— S)-e€e S, , gUT. araus 10 ann, ass Iast ubera. 1 S a—— J(s)- € S.

A D Var e & & & Vor Joe

1 el it
_— / f(z) - "™ da fast iiberall gilt, gibt es eine Folge (tx)ren mit tp — b
Vor s

(k — 00), so dass in allen tj jene Gleichung gilt. Ferner definiert das Integral in jener Gleichung als parameterabhéngiges Integral

Sei f stetig in t. € R. Da die Gleichung f(t) =

1 N .
eine in t, stetige Funktion. Es folgt also die Giiltigkeit von f(t) = \/? / f(x)- e dz in t*, denn wegen der Stetigkeit beider
us —oo
1 N ) 1 N i lim ty @
i in t* fol li = lim — - L etk il li = — . e k—oo 1
Seiten in t* folgt aus k;rr;of(tk) Jim oL /700 f(z)-e dx, dass gilt f(kirr;otk) oL -/700 f(z)-e dx, also
1 oo it *
t") = — - z) - €' © dz. Das war es auch schon! d
o AL
Das Gesetz der grofien Zahlen
[Zuriick zur Liste]
Satz. Seien X1, Xa,...:Q — R stochastisch unabhingige Zufallsvariablen mit EX; = p und VarX; = o2 fir alle i € N. Dann
gilt die folgende Formel:
Xt A Xn 22
n n—oo
Das arithmetische der Zufallsvariablen X1, ..., X, konvergiert in L? und in Wahrscheinlichkeit gegen den Erwartungswert.
Beweis. Sei S,, = X1 + ...+ X,, die Summe der ersten n Zufallsvariablen. Dann gilt fiir den Erwartungswert und die Varianz der

Summe ES,, = nyg und VarS,, = no?, wobei im Fall der Varianz die stochastische Unabhingigkeit der Zufallsvariablen benutzt

wurde. Die Konvergenz in L?:
Sn 2 Sp —ES, 2 2 1 VarS, no? o
E|(2%—u) | =g|(22" 2 :E[(snf]Esn)].jz M- S o0
n n n n n n n—oo

S 2 EZ
Damit ist also -2 %5 1 gezeigt. Stochastische Konvergenz: Fiir eine Zufallsvariable Z > 0 gilt fiir alle a > 0: P[Z > a] < —.
n n— oo a

M)

) . a, Z(w)>a . N .
Beweis: Es gilt Z(w) > . BEsgilt also Z > a - 1{z>q). Fiir den Erwartungswert gilt daher:
0, Zw)<a -

EZ 2 ]E[a . ]l{ZZa}] =a- IE[]I{ZZ(L}] =a- IP[Z 2 a]

Sei f eine monoton steigende Funktion, dann gilt:

PIZ > o] = P[f(2) > f(a)] < 2]

f(a)

Sei nun f(z) = 22, dann gilt unter der Voraussetzung von ILm E[(Z, — Z)z] = 0, dass gilt

E[(Z, — 2)?
]P[|Zn—Z|Z€]§H 0
e n— oo
Damit also ist gezeigt:
Sn

lim]PH —H'ZE]ZO

n— oo n
Der Beweis des Satzes ist hiermit beendet. |
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Die AGH-Ungleichung

[Zuriick zur Liste]

Satz. Das arithmetische, geometrische und harmonische Mittel erfiillen folgende Ungleichung:

1
1 “ - n n
Ta=—-Y x;>F¢:= | [[= 2TH =
"= i=1 > —
j=1%j
Dabei gilt, dass die x; positive reelle Zahlen sind.
1
Beweis. Es wird nun gesetzt: y; := — (j =1,...,n). Es gilt:
T
1 1
n n
_ _ n n 1 1 n -~ _
Tn<Te e w1 < ([[#z] & —< re—2u>([lu| ©v.a>7
X v 2 Ui 0 \n
j=17Tj i=1 I v n
j=1

Es bleibt also zu zeigen, dass T4 > Tg gilt: Beweis durch vollstdndige Induktion iiber n: I.A.: Fiir n = 1 ist die Sache klar. Sei

1 2 1
n = 2, dann gilt |:§ (1 + 12)j| — T - To = 1 (z1 — 932)2 > 0. Sei nun also die Behauptung fiir n richtig. O.B.d.A. sei z,41
das maximale Element von x1,...,Zy,Zp4+1 und T4 das arithmetische Mittel von z1,...,x,. Dann gilt ,,41 — T4 > 0. Aus der

Benoulli’schen Ungleichung ((1 4+ z)™ > 1+ nz, n > 0 und = > —1) folgt:

<m1+...+xn+1>"+1_(n~m+zn+1>"+l_<(n+1)-m+xn+17m>"+1_( . mn+17m>”+1
(n+1)-Ta "\ (n4+1)-Ta - (n+1)-Ta B (n+1)-Ta

Nun wird die Bernoulli’sche Ungleichung angewendet:

T -z n+l T - T -z T T - T
< 4 Ent 7A> S 14 (nt1) nt1 7A gy Tl A _ ; 4 Tnil A _ 1
(n+1)-Ta (n+1)-Ta TaA Ta Ta Ta

Man hat nun also:

(m +...+wn+1)"+1 S Ta+l
(n+1)~§A T Ta

Jetzt multipliziert man auf beiden Seiten mit x"+1

<11+-<-+In+1
n-+1

a1 v
) >Ty Tpgr 2> (T1-... Tp) Tyl

Wenn man nun auf beiden Seiten die n-te Wurzel zieht, folgt die Behauptung. O

Die Tschebyscheft’sche Ungleichung

[Zuriick zur Liste]

Satz. Sei E(X) der Erwartungswert und Var(X) die Varianz einer Zufallsvariablen X. Dann gilt:

X
P(IX — B(X)| > a) < Y20
a
Beweis. Es gilt ndmlich:
oo
Var(X) = / E(X))? - P(X =y)dy
/ (y — B(X))? - P(X = ) dy + (y— E(X))® - P(X =) dy

ly—E(X)|<a ly—E(X)[>a

> [ (y — B(X))? - P(X = y) dy
ly—BE(X)[>a

/ P(X =y)dy
Iy E(X)\>a

a? / P(X =y)dy
ly—E(X)[>a

P(IX - E(X)| 2 a)

v

Also gilt doch:

Va0 > p(X ~ B(X)| 2 0)

und der Beweis ist erbracht. O
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Die Anzahl der k-Partitionen

[Zuriick zur Liste]

k
1 )
Satz. Die Anzahl der k-Partitionen einer n-elementigen Menge ist gleich S(n, k) = e E (=1)" - (
) 0

Beweis. Die Zahlen S(n, k) nennt man auch Stirling-Zahlen zweiter Art. Zunéchst wird die Anzahl der surjektiven Abbildungen
von einer n-elementigen Menge M in eine k-elementige Menge N ermittelt, denn das Urbild einer solchen Abbildung reprisentiert
eine Partition von M in k Teilmengen, wobei die Reihenfolge der k Mengen jedoch beriicksichtigt wird. Denn behélt man die
Abbildungspfeile bei und permutiert nur die k Elemente in N, dann hat man zwar eine andere surjektive Abbildung, aber dieselbe
Partition in k& Mengen. Deswegen muss man noch durch k! teilen, um die Anzahl der k-Partitionen von N zu erhalten. Die Anzahl

der surjektiven Abbildungen von M nach N wird mit der Siebformel von Sylvester berechnet, die folgendermaflen aussieht:

Ual- ¥ o na
i=1

0£IC{1,...,m} iel

Diese Formel beweist man ganz einfach mit vollstdndiger Induktion iiber m. O.B.d.A. sei die Menge N fest aufsteigend durch-
nummiert. Sei dann A; die Menge aller Abbildungen f von M nach N = {ny,...,nx}, die n; nicht treffen, d.h. fiir kein Element
m € M ist f(m) = n;. A; hat so viele Elemente, wie es Abbildungen von M nach N \ {n;} gibt, also (k —1)™. Fiir » Durchschnitte
solcher Mengen gilt {Ail n...N AiT| = (k — r)™, da ja bestimmte r Elemente in N nicht getroffen werden. Jede nicht surjektive
Abbildung f von M nach N ist in mindestens einer der A; enthalten, denn mindestens ein Element in N wird nicht getroffen. Und
die Vereinigung der A; (¢ = 1, ..., k) besteht aus nicht surjektiven Abbildungen. Um die Anzahl der nicht surjektiven Abbildungen
zu berechnen, muss man beriicksichtigen, dass die A; nicht disjunkt sind. Es muss also die Siebformel von Sylvester benutzt werden.
Nun ist die Anzahl aller Abbildungen von M nach N abziiglich aller nicht surjektiven Abbildungen gleich der Anzahl der surjektiven
Abbildungen f : M — N. Fiir die Anzahl aller surjektiven Abbildungen gilt also die Formel:

k k k
k i [k
ol = |UJAi| =k" = 3 (DI A =k 4 Y (U (( ) A(k—r)") =30 (0) k="
i=1 0AIC{L,....k} iel r=1 r i=0 L
Denn die Anzahl aller Abbildungen von M nach N ist k™ und wenn man |I| = r Mengen der A; mit ¢ € {1,...,k} also aus k

A;-Mengen auswihlt, um sie zu schneiden, dann gibt es dafiir (I:) Moglichkeiten. Jeder dieser Schnitte, bestehend aus » Mengen,
hat die Méchtigkeit (k—r)™. Teilt man die Anzahl der surjektiven Abbildungen f : M — N durch k!, so erhilt man die Behauptung
des Satzes. O

Die n-dimensionale Kugel

[Zuriick zur Liste]

wf3

n
T2 2.

N -r™ und der Oberflicheninhalt O, (r) = N
'f—+1 (=
( 2" ) < 2 )
n—1

r . Fiir n — oo konvergiert das Volumen mit gegebenen Radius r gegen 0. Das gleiche gilt fiir die Oberfliche. Mit I' wird

Satz. Das Volumen einer n-dimensionalen Kugel betrdgt V, (r) =

hier die sogenannte Gammafunktion bezeichnet, die die Fakultdt interpoliert und hier als bekannt vorausgesetzt wird.

Beweis. Die Formel fiir das Volumen einer n-dimensionalen Kugel wird mittels vollstiandiger Induktion gezeigt. Induktionsanfang:

T2

r ! +1
2
1
bekannt, dass I (1 + 5) = g gilt, also Vi(r) = % -r = 2-7. Also O.K.! Zur Sicherheit wird noch der Fall n = 2 betrachtet: In
T

2
diesem Fall betrachtet man das Volumen eines Kreises mit dem Radius r. Das Volumen ist bekanntlich gleich 7 - r2. Betrachte nun

n = 1: Man betrachtet dort das Volumen des Intervalls [—r,r]; es hat das Volumen 2 - r. Es gilt Vi (r) = -rl. Es ist

2
m2

fiir n — 1. Dann wird gezeigt, dass die Behauptung auch fiir n gilt. Klarerweise gilt V,,(r) = V,, (1) - »™, weswegen man sich auf

die Formel: Va(r) = .72 = .72, denn es gilt I'(2) = 1. Der Induktionsanfang ist also erfiillt. Nun gelte die Behauptung

die Volumina mit dem Radius 1 beschrinken kann. Die Einheitskugel im R" liegt zwischen z,, = —1 und z,, = 1. Die Ebenen

n
zn = konst. schneiden sich daher im Bereich —1 < z, < 1 mit K, (1) = {(acl, coxp) ER™ Y 22 < 12} in einer (n — 1)-
k=1

dimensionalen Kugel mit dem Radius /1 — z2. Das Volumen dieser Kugel ist nach Induktionsvoraussetzung: V,,_1(y/1 — z2) =

n—1 n—1
1 1

(/T —22)"" ' Es gilt jetzt: V,(1) = / Vac1(y/1—22)de, = / (/1 —22)"" " day,.
1 -1

2

F(n—1+1>
2

™

2
F(n—l+1)
2
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n—+1

+

r

1
Es wird hier benutzt, dass gilt / (4/1— aci)"*l dx, = /7 - , was spiter noch bewiesen wird. Also: V, (1) =
—1

r(24+1
2
"T_l r <n J2r 1 ) s r (n ;r 1) s
T T I
RVZE = - = . Also gilt der Induktionsschluss. Nun zum Beweis
(=1, r(Z41 r(PE) (a0} (2
2 2 2 2 2
N T nt 1) N L n—1 o n—1
von / (V1—22)"""dz, = V7~ 2 /g gilt: / (/1 —22)" " da, = / (1-22) 2 dz, = / (1—cos(t)®) 2
-1 r n +1 -1 —1 ™
2
n—1
0 2T 5 0 n—1 0 n 7' n Z n
(—sin(t)) dt = / (sin(t)®) 2 -(—sin(t))dt = / sin(t) -(—sin(t)) dt = 7/ sin(t)" dt = / sin(t)™ dt = 2~/ sin(t)™ dt.
n ™ ™ 0 0
il 1 ™
Mittels partieller Integration findet man die folgende Rekursionsformel: /2 sin(t)" dt = - / 2 sin(t)" "2 dt. Weiter ist be-
0 n 0

™

e T L4
kannt: /2 sin(t)® dt = g und /2 sin(t)* dt = 1. Daraus lisst sich fiir n = 2 - k ableiten: /2 sin(t)" dt = /2 sin(t)®* dt =
0 0 0 0

k . ™ k
25 —1 2 2 :
. I | J — und fiir n = 2k + 1: /2 sin(¢)" dt = /2 sin(¢)2* Tt dt = I |
j=1 0

27 0 j=1

2j

- . Es gelten die folgenden Formeln:
25+ 1

NIE]

jemtS
| &

n+1 25 —1 n n
ngerade:>F< 5 ):ﬁn 3 undl“(§+1):<§>!:

<
Il
=
<,
Il
_

Und es gilt noch:

n—1 n4l
n+1 n—1 2j n 2 2j-1
nungeradeér( 5 ):( 5 )I:U?undf‘(5+1>:\/§-[{ 5
j=1 j=1
1 2 2j—1 0+1
Zunéchst wird T’ (n; ) = 7 11 ]2 fiir gerades n bewiesen: Vollstandige Induktion: n = 0: T’ <%) = 71
=1

241 1 1 2—-1
n=27T (%) =5 r <5> = g = V7 - —5 denn es gilt die Funktionalgleichung I'(xz + 1) = z - I'(z). Also ist

. ) n-+1 n—1 n—1 n—1
der Induktionsanfang gegeben. Es gelte die Behauptung fiir n — 2. I.S.: T’ 3 =T 3 +1) = 5 r 5 =
1 (n—2)+1 1 5195 5 o051 L,
n - n - _ n-1 . J— 1 . J — . n _ . J — .
5 r ( 5 ) T V£ o 5 = VT jl;[l 5 Die Behauptung I (2 + 1> =T jl;[l 5 fiir
i i . 1 1 1 VT 1 . i
ungerades n wird jetzt bewiesen: LA.: n =1: T 5 +1) = 5 - 5)= 5 = Ve 5 also O.K., und zur Sicherheit noch n = 3:
3 3 3 3 1 3 1 1 3 1 3
r <§ + 1> =5 r <5> =5 r <§ + 1> =53 r <5> =7 VT =T 53 also ist der Induktionsanfang giiltig. Gelte die
2 "o 1 a1
n n n n n— n 2 25 — 2 25 — .
Behaupt fii —-2.Is:T'{-+1)]==--T(=)|=—=-T 1) = —- . - = . . Al t
ehauptung fiir n (2 + ) 5 <2> 3 ( 5 + > T3 vz jl;Il 3 V&3 jl;[l 5 so is
der Beweis durch vollstindige Induktion erbracht. Aus den bewiesenen Formeln oben, folgt folgendes:
1 2 2j—1 , 1
r(2* v 11 z r(2* £
2 j=1 2 2j —1 VT 2 ™ 2j -1
n gerade = = :\/EH e A H
n 5 9; - 27 2 n 2 - 27
r(=+1 J i=1 r(=+1 j=1
2 I1 o
j=1
Und es gilt:
n—1 9 n—1 9
1 22 2 2 _ 1 _
r(oE = = r(f gt
j=1 2 j=1 2 2 2j VT 2 25
n ungerade = - = ) = T :7'H2j+1©7' n =H2j+1
n n— s
'f—-—+1 2 25—1 2 27541 j=1 'f—+1 j=1
G+) = h o At (5+1)
=1 2 2 = 2
Daraus folgt dann also:
1 1
JE T <n-2~_ ) L4 I r (n; ) Ed
n gerade = o Tm N T / 2 sin(t)™ dt und n ungerade = o TN T /2 sin(t)™ dt
r(-+1 0 r(-+1 0
(5+1) ()
Wie schon behauptet, gilt dann:
1 1
: : e ) ()
/ ( 17x2b)"_1dxn:2-/2sin(t)"dt:Z-T — =Vr—
-t 0 F(5+1> F<§+1>
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i
Nun kiimmert man sich um den Oberflicheninhalt: Klarerweise gilt der Zusammenhang V,,(r) = / O,,(r) dr, daraus folgt dann
0

n
4] o 2 2.
— V(1) = On(r). Also gilt: Oy, (1) = — T =T = 22T no1 Al nichstes wird gezeigt,

or or p<ﬁ+1) E_p(ﬁ> F(z
2 2 2 2

dass das Volumen einer n-dimensionalen Kugel fiir n — oo gegen 0 konvergiert: Es wird nun gezeigt: lim V,, (1) = 0. Es ist bekannt
n— oo

N——

die Stirling-Formel: n! =T'(n 4+ 1) ~ V27 - n - <ﬁ> . Es gilt also:
e

n n n n n n n n+1
V(1) = T2 w2 T2 .<2>57 (mr-2-€)2 <(4~2-3)2 < 2472 <(%)T
n(l) = n YR RN i = T )

~ = = .

r (ﬁ + 1> e () 2 vVren
2 2. ¢

24\ " . 24\ " 24\ " . 24 . 24\ "

— ) . Furn > 24 gilt ( — < (=) . Weil — < 1 gilt, folgt, dass | — fiir n — oo gegen 0

n n 25 25 n

Daraus folgt also V,,(1) < (
konvergiert, also lim V(1) = 0. Nun zum Beweis von lim O,(1) =
n—oo n— oo

n n

n n n n —2 n n
2.2 2-m2 2.2 2.2 (2-e) 2 2.2 -(2-€)2

n72)nT_27\/77"‘\/"_2 V=22~ m—2n !

Also gilt weiter:

n n n—1 no1
2. .2.¢e)2 2. .2.e)2 -2.e) 2 4.2-3\ 2 24 n
on 2T 2o 2 (2o :2»¢w-2-e-%g2-\/4-2-3-( ) : 52-\/24( )
Vn —2 (n—2)"2 (n—2)"2 n—2 n—2
) § 24 \" 24\ ™ o 24 ) ) )
Es gilt nun fiir n — 2 > 24: pr—t < 5 ) also, weil wieder 55 < 1 ist, folgt demnach 7Ill)moo 0,,(1) = 0. Fertig! O

Die Heisenberg’sche Unschérferelation

[Zuriick zur Liste]

Die Heisenberg’sche Unschérferelation ist ein Ergebnis der Quantentheorie. Es wird sich hier beim Aufbau dieser Theorie, die nétig
ist fiir den Beweis der Heisenberg’schen Unschérferelation, auf die quantenmechanischen Eigenschaften der Dynamik einzelner
Teilchen (Massepunkte) in einer Dimension, beschrieben durch die Ortskoordinate z und den Impuls p, beschrinkt. Dabei soll
jedoch darauf hingewiesen werden, dass die Theorie auch fiir drei Dimensionen gilt. Es sei noch erwiahnt, dass der Welle-Teilchen-

Dualismus dafiir verantwortlich ist, dass man sich mit Quantentheorie beschiftigen muss.

Definition. FEine Funktion f(z,t) heifit quadratisch integrabel, falls gilt

/°° |f(z,t)\2dz:/jo F@ D) - fla, ) do < oo

— oo

Dabei sei f(x,t) die komplex konjugierte Funktion von f(z,t).

Postulat. Zu einem Teilchen (Massepunkt) gehort eine eindeutige, quadratisch integrable, im Allgemeinen komplexe Wel-
lenfunktion Y (x,t). Sie beschreibt den Zustand des Teilchens. Da die Wellenfunktion quadratisch integrabel ist, kann sie
normiert werden. Dazu zieht man die Bedingung heran, dass die Wahrscheinlichkeit, das Teilchen zur Zeit t irgendwo auf

oo
der z-Achse anzutreffen 100 Prozent ist. Daher lautet die Normierungsbedingung: / P(x,t) - Y(z,t)de = 1. Dabei gibt

P(x,t) - P(x,t) = |P(x, t)|2 die Wahrscheinlichkeit an, das Teilchen zur Zeit t am Ort x auf der x-Achse anzutreffen. Die Gréfie
[ (x, t)|? wird daher als Wahrscheinlichkeitsdichte bezeichnet. Es sind somit alle Informationen diber die quantenmechanischen

Eigenschaften eines Teilchens in ¢ (x,t) enthalten.

Experimentell erfassbare Gréflen werden in der Quantenmechanik durch Erwartungswerte charakterisiert. Nach der Wahrschein-

lichkeitsrechnung gilt folgende Definition:

Definition. Der Erwartungswert einer Funktion f(x,t), die eine gegebene physikalische Messgrifie beschreibt, ist fiir einen
bestimmten Zeitpunkt t gegeben durch:

oo oo
)= [T @0 S vand = [T fan o D@D el do
—oo —00 N — | —
Funktionswert Wahrscheinlichkeit fiir das
Auftreten des Funktionswertes

Dabeti ist zu beachten, dass der Ausdruck nach dem zweiten Gleichheitszeichen nur dann gilt, wenn die Funktion f(x,t) reelle
oder komplere Werte annimmt. Hat man anstelle der Funktion f(z,t) einen sogenannten Operator, der also auf ¢(xz,t) an-
gewendet wird, so muss man sich auf den Ausdruck nach dem ersten Gleichheitszeichen beschrinken. Operatoren werden hier
spiter nidmlich eingefiihrt. Beispiele fir Funktionen f(z,t) sind die Ortskoordinate x(t) des Teilchens oder seine potentielle

Energie V(z,t).
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Bisher hat man die Wellenfunktion als eine Funktion der Ortsvariablen z betrachtet. Man hat damit also die sogenannte Orts-
raumdarstellung gewéhlt. Anstelle der Ortskoordinate z kann jedoch auch der entsprechende Impuls p als Variable eingefiihrt
werden. Man postuliert dann eine weitere, ebenfalls eindeutige, quadratisch integrable, im Allgemeinen komplexe Wellenfunk-

tion ¢(p,t), die den Zustand des Teilchens im folgenden Sinn beschreibt: ¢(p,t) - ¢(p,t) = |@(p,t)|? ist die Wahrscheinlich-

keit, dass das Teilchen zur Zeit ¢ den Impuls p besitzt. Wieder gilt auch in der Impulsraumdarstellung die Normierungsbedin-

oo
gung / ¢(p,t) - ¢(p,t)dp = 1 und der Erwartungswert einer Funktion g(p,t) sieht analog zur Ortsraumdarstellung so aus:
—oo

(g(p, 1)) = / #(p,t) - g(p,t) - p(p,t) dp = / g(p,t) - #(p, t) - ¢(p, 1) dp. Wieder: Hat man anstelle der Funk-
— oo — o0 N—— ———
Funktionswert Wahrscheinlichkeit fiir das

Auftreten des Funktionswertes
tion g(p, t) einen sogenannten Operator, der also auf ¢(p, t) angewendet wird, so muss man sich auf den Ausdruck nach dem ersten

Gleichheitszeichen beschrinken. Beispiele fiir die Funktion g(p, t) sind der Impuls p(¢) des Teilchens oder seine kinetische Energie
2

D
Ekin = py
Nun wird untersucht, welcher Zusammenhang zwischen der Wellenfunktion % (z, ¢) im Ortsraum und der Wellenfunktion ¢(p, ¢) im
Impulsraum besteht. Man betrachtet dazu ein Teilchen mit konstanter Gesamtenergie E = h - w, z.B. ein Teilchen, das sich mit
konstanter kinetischer Energie in einem konstanten Potential V (z) bewegt. Der Zustand wird durch ein entsprechendes Wellenpaket

beschrieben, man setzt dafiir an:

1 —iwt P(x,t) 1 oo

)= mAk_i,(szwmdk:e ./OQAk-“”dkc» _ _ A(K) - % dk
Vi@, t) V2T /_oc (k) -e V2T —oo (k) -e e—iwt V2 —o0 (k) -
Nach Fouriertransformation gilt dann mit der de Broglie-Beziehung p = h - k:
1 o Pz, t) ik 1 —iwt 1 /°° —ika
Ak) = — - - e Yder & — - A(k) e " = - z,t)-e Y dx
(k) V2T /700 e iwt Vh (k) V2rh J-c (@ 1)
p
1 P) —iwt 1 /°° —ipw
S —-A(=)-e = - z,t)-e h dzx
Vh (h V2rh —oo w )
— ———
=:0(p,t)

Es gilt aber auch das folgende:
1 e i(ke—wt) 5, 1 e —iwt ik
T [ Aw et G [ (a0 et

p p

1 e p —iwt ize 1 1 /°° ( 1 (P) —wt) T
= — . Al Z) . « e h - —dp= ——. —.A(Z). e h d
Vor /,oo< (h) ‘ ) N RTPT Ve S \Va k) C o

=¢(p,t)

Y(,1)

Zusammengefasst gilt also, dass die Wellenfunktionen im Orts- bzw. Impulsraum v (z, ¢) und ¢(p, t) durch eine Fouriertransformation

miteinander verbunden sind:

p p
1 oo i—ax 1 oo —i—x
= . e h = —. . h
¥(z, 1) / ¢(p,t) - e h dpund ¢(p,?) o /7 Y(z,t) e du

2mh — oo

Jetzt wird diskutiert, wie sich der Erwartungswert des Impulses in der Ortsraumdarstellung berechnen ldsst: Wenn man den

Zustand des Teilchens durch die Wellenfunktion ¢(p,¢) im Impulsraum beschreibt, so ldsst sich der Erwartungswert des Impulses

(p) einfach als Mittelwert von p zur Wellenfunktion ¢(p,t) so berechnen: (p) = / ¢(p,t) - p - ¢(p,t)dp. Wenn der Zustand
—oo

des Teilchens aber durch die Wellenfunktion ¢ (z,t) im Ortsraum beschrieben wird, so muss folgender Erwartungswert berechnet

oo
werden: (p) = / P(x,t) - p-Y(x,t)de. Hier stellt sich nun die Frage in welchem Zusammenhang der Impuls p des Teilchens mit

der Wellenfunktion ¢ (z,t) steht. Zur Losung dieses Problems geht man von der Impulsraumdarstellung aus und geht durch die

Fouriertransformation auf die Ortsraumdarstellung iiber. Man setzt nun fiir ¢(p,t) die Fouriertransformierte ein: (p) =

2mh '

P
/ ¢(x,t) - p- / P(z,t) - e R dx dp. Mittels partieller Integration erhilt man:

= s i o dp(z,t) h —ive
/ Y(z,t)-e h de=|—t(z,t)- —-e h + 2. —.e h dz
oo ip s ox ip

—oo

=0

Der erste Summand verschwindet, da v (z,t) quadratisch integrabel (normierbar) ist und deswegen insbesondere im Unendlichen
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gegen 0 strebt. Also gilt dann:

P
L[ [ g e e
(p>f\/ﬁ /7w/7w¢(p,t) ; Py e dz dp

p
oo 1 co it I3 a¢(x,t) o hoa
= — e Rap. oY L h

/,OO Vanh /7@¢UW) e dp: — — = du [ww(w,t) T 5y V) da

%@

Man kommt damit zu folgendem Schluss: In der Ortsraumdarstellung, in der der Zustand eines Teilchens durch die Wellenfunktion

oo
1 (x,t) beschrieben ist, wird der Erwartungswert des Impulses p berechnet, indem man in (p) = / YP(x,t) - p-YP(x,t)de den
—oo

o

Impuls p durch den Impulsoperator p = e ersetzt. Analog kann man auch den Erwartungswert der Ortskoordinate z in der
i Ox

Impulsraumdarstellung berechnen. Man geht hier dann von der Ortsraumdarstellung aus und wechselt mittels Fouriertransformation

in die Impulsraumdarstellung:

.Bm
T D e [T s R dpde

@ = [ D@D o vt do = — [

Wieder liefert eine partielle Integration iiber p:

p /4 s
oo it A iT= < A¢(p,t A iTa
/ #(p,t)-e b dp= |d(p,t) - —-eh —/ M‘f'eh dp
oo i oo op i
hlle )

=0

Der erste Summand verschwindet wieder, da auch ¢(p,t) quadratisch integrabel (normierbar) ist und somit insbesondere im Un-

endlichen gegen 0 strebt. Es folgt dann:

.ET o
=" = [T w0 R (—?)~%’;”dp:/_wmp,wm%mp,t)dp

=¢(p,t)

Man fasst zusammen: In der Impulsraumdarstellung, in der der Zustand eines Teilchens durch die Wellenfunktion ¢(p, t) beschrieben

ist, wird der Erwartungswert der Ortskoordinate = berechnet, indem man die Ortskoordinate z in (z) = o(p,t) -z p(p,t)dp

o
durch den Ortsoperator & = iha— ersetzt.
P

Definition (Unschirfe). Entsprechend den Gesetzen der Wahrscheinlichkeitsrechnung ist die Unschirfe Af einer Gréfie f

bestimmt durch die Standardabweichung, also folgendermaflen:

A =\(F =2 = U2 =2

Satz. Die allgemeine Heisenberg’sche Unschdrferelation fiir zwei beliebige hermitesche Operatoren A und B und einen belie-
bigen Zustand v (z,t) ist gegeben durch

(AA)y - (AB)y 2> 5 - [{[A, Byl

N =

Dass A hermitesch ist, soll heifien, dass gilt /7 . Aga = /Ty @. Es wurde benutzt: [A, B] = AB - BA (Kommutator).

Beweis. Fiir zwei beliebige Wellenfunktionen ¢(z,t) und v (z, t) gilt die Schwarz’sche Ungleichung:

2 oo oo
< [T eord [T o d

]/jom‘w(m,t)dx

Beweis: Fiir (z,t) mit ¢(z,t) = 0 ist die Gleichung trivial und schonmal richtig. Fiir (z,t) mit ¢(z,t) # 0 wihlt man den Ansatz
P(z,t) = w- p(z,t) + &(z, t) mit w € C, wobei &(z, t) folgende Eigenschaft besitzt: / p(z,t) - &(z,t) dz = 0. Damit ergibt sich:

— oo

/ p(z,t) - Y(z,t)de = w - / lo(z, 15)\2 dx +/ @(x,t) - &(x, t) de. Daraus folgt fiir die Konstante w der folgende Ausdruck:
— o — oo —oo

=0

[ e v

w = . Mit dem bisherigen Wissen folgt dann:

[ e o a

[T w@ord= [T @ @0 €@ - (we e ) + € 0) do
oo 2

. - . P D) (o, t) de
wo- [ e ol det [T le@ndez o [T je o) do = '/“” -
C oo —o0 —oo / |<p(m,t)|2dx
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Und daraus folgt dann durch Multiplikation die Behauptung. Nun weiter: Nach Definition ist das Unschérfeprodukt (AA)y - (AB)y,
gegeben durch:

[N
[T

@ @By = ([T @ - @ v o) ([T @ B - @ e i)

Also gilt dann allgemeiner:

1

@ayy- @By = ([T 9@ (A= @) v dw)% ([T B B0t e )

Nun fithrt man ein: Xl = A— (A)y und X2 = B B)y. Dann sind X1 und X2 immer noch hermitesch, Beweis fiir X1

/7)3190: /V'(A—<A>w)w:/7~A<ﬁ—/7 Yo wf/Av o— / (A)y vp = /(Av—m)w = /(Av— (A)y - 7)p =
reell

/(A w)'y @ = /ny @, Beweis-Ende. Also gilt dann:

(BAYy - (DB), = (/ @D - X2, t)dx)% (/ @0 X2, t)dx)%

Aus der Schwarz’schen Ungleichung folgt jetzt:

2

[T %o [T Rav o) de > ‘/x’ (@, 1) - Ko, 1) da

Etwas umgeformt erhilt man dann:

2

[ Xt K de- [T Rab(e,0) Xev(e o) de > |/°° X106 1) - Ko, 1) do

Unter Ausnutzung der Hermitezitit der Operatoren X1 und X, folgt dann:

[ s R nde [T 0G0 Kb de > V“’ @D X Xav(a, 6) dal|

Daraus folgt dann also:

@y, @B = ([~ 9@n- K dw)% YAECOR T dw)% > ]/j@mx)‘czw(w,t) da

‘Wenn man {Xth} = X1 X + XX (Antikommutator) und [Xl,Xg} = X1 X5 — Xg,Xl (Kommutator) definiert, dann gilt:
PN 1 ~ ~ ~ ~
X1X2 = 5 {X1, X2} + 5 [X1, X2]. Daraus folgt dann:

[

’/m D@, 1) - X1 Xoth(x, ) de

— 5|/ s (o e [T UG K Salve 0 de

Also gilt dann:

(AA)y - (AB)y X1 X by + (X, X))yl

1
2
Der Erwartungswert des Antikommutators ist reell und derjenige des Kommutators rein imaginir, Beweis: <{X17 X2})w = /E .
(X1X2 + XQXI)U) = /E . X1X2’¢' + /E . X2X1¢J = /Xlw . Xﬂl) + /sz . Xﬂl& also: ({X17X2}>¢ = /XNP . Xﬂﬁ +

Xotp - X19p = ({X1, Xa2})y, also ist wegen ({X1, X2}y = ({X1, X2})y dann: ({X1, X2})y ist reell. Nun zum Kommutator:

<[X1,X2] /’l,[) (X1X2 - XQXl)w /’(LY X1X2'¢J /d) X2X1'¢J /Xﬂb XQ’LZ) /Xg’l[) Xl’dl, also <[X1,X2]> =
/Xlw - Xotp — /ng X = —([X17X2]>w7 also ist ([Xl, Xz]),,J imaginér. Also folgt daraus:
1

(AA)y - (AB)y > = - |[({X1, Xo )y + (X1, Xa])y| =

1
>3 (IR Xad)uP + (%, KD ul?) 2 2

1
2
Es wird jetzt gezeigt, dass ([X1, X2])y = ([A, B])y gilt. Beweis: ([X1, X2])y = ([A—(A)y, B—(B)y])y = (A= (A)y) - (B—(B)y) -
(B=(B)y) (A= (A)y) = AB—A-(B)y —(A)y B+ (A)y - (B)y —(BA—B-(A)y —(B)y A+ (B)y-(A)y) = AB— BA = [A, B,

Beweis-Ende. Es wurde also bewiesen:

(DAY (AB)y > 5 (X, Kbyl = 5 114, Byl

Das war es dann auch! O

h
Korollar (Heisenberg’sche Unschirferelation). Es gilt Az - Apy > 3
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h 0 h o
Beweis. Sei(z,t) eine Wellenfunktion in Ortsraumdarstellung. Also gilt dann & =  und p, = — B Es gilt dann: $p,p = - — .
i Oz

h o h 13} i o
und p,Ep = n a(z cp) = 7 <gp +x- 6—?) , also (ZPy — Pa)p = &Pz — PaZp = ihe. Weil diese Gleichung unabhingig von ¢ gilt,

folgt &Py —Pa® = [&, Px) = ih. & = x ist reell und hermitesch: / y(z,t) - Tp(x,t)de = / y(x,t) - x-p(x, t)de = / z-y(x,t)-
oo oo oo

o ho - o © ____ hop(et
ez, t)dr = / Zy(z,t) - p(z,t) de. Auch p, = P ist hermitesch: / Y(z,t) « pop(z,t)de = / y(z, t) - % dx =
oo i Oz oo z

oo _ B

—— h o > 9 t) h > K t R
['y(z,t) C— Lp(z,t)i| - (. t) =z, t)de =0+ / fﬂ cp(z,t)de = / pzy(z,t) « p(z,t) dz. Setze im
% oo oo Oz 4 oot Oz oo

obigen Satz: A=4&=gxund B = p,. Dann gilt:

1 L 1 © e
(AI)V) . (Ap:c)w > 5 . ‘<[x7 p:c]>1/1| = 5 . / ’L/J(I,t) . [Iv Pz]w(w,t) dz
1 o 1 o
— 5|/ @D in v de| = 5 pinl | [T 0G0 w0 de| = 51 =2

2 |/ 2 e 2 2

Es kommt also die Behauptung des Korollars heraus! O

Die gedampfte Schwingung

[Zuriick zur Liste]

Satz. Es gilt die Differentialgleichung m- -z’ (t) = —d-z’(t) — k- x(t) mit der Dimpfungskonstante d > 0 und der Federkonstante
k > 0, denn: Der Beschleunigungskraft des Federpendels m - z''(t) wirkt entgegen die Ddmpfungskraft, die proportional zur
Geschwindigkeit ist, also d -z’ (t), und es wirkt entgegen die Spannkraft der Feder, die proportional zur Linge der Auslenkung

ist, also k - x(t). Die Anfangswertbedingungen seien x(0) = so und z'(0) = vo. Man l6se nun diese DGL.

Beweis. Sei £ der Lésungsraum der homogenen linearen Differentialgleichung 2. Ordnung =’/ (t) + 26 - &(t) + w2 - z(t) = 0 mit

6 = % und wo = \/g Die lineare Abbildung A : £ — R", A(z) := (x(0),2’(0)) heit Anfangswerthomomorphismus. Nach
dem Eindeutigkeitssatz gilt, dass die Lésung der Differentialgleichung oben eindeutig ist, wenn alle Anfangswertbedingungen erfiillt
sein miissen. Daraus folgt, dass der Anfangswerthomomorphismus injektiv ist, also gilt dim £ < dimR? = 2. Man macht nun
den Ansatz z(t) = e*t. Setzt man das in die DGL oben ein erhilt man: (>\2 +25- A +w(2]) - e*' = 0. Es muss also gelten
A2 425-A+ wg =0& A2 =—-0%,4/62%— w%. Nun wird zunichst der Fall §2 — wg > 0 (Starke Dampfung) betrachtet: In diesem
Fall hat man zwei verschiedene negative reelle Losungen. Man hat also die Lésungen et und €2t daraus folgt, dass auch die
Linearkombination aus diesen beiden Lsungen eine Losung ist: z(t) = c¢1 ceMtpey . e*2t Weil et und e*2°? linear unabhnngig
sind und dim £ < 2 gilt, bilden diese beiden Funktionen eine Basis des Losungsraumes £. Man hat also alle Losungen gefunden. Die

Konstanten c¢; und c» werden aus den Anfangswertbedingungen bestimmt: 2(0) = ¢; + c2 = so und 2’ (0) = ¢1 - A1 + c2 - A2 = vg.

Ao - — A -
Es ergibt sich: ¢; = Yo T A2 S0 und c2 = M In diesem Fall gilt also:
)\1 — )\2 )\1 - )\2
Vo —A2-80  xje VO —A1-S0 apet 2 2 2 2 .‘
z(t) = ———— e - e mit Ay 2 = =6 + /62 — wd und §° — wgy > 0 (Starke Dampfung)
A1 — Ao A1 — A2 !

Nun wird der Fall §% — wg < 0 (Schwache Diampfung) behandelt. Es gilt dann X\1 2 = —6 + i - ‘/wg — 02 mit wy = 4 /wg — 52,
Wieder bilden e*'t und e*2't eine Basis des Lésungsraumes. Es gilt z(t) = c1 - eM ooy M2t = o (oWt 4 o)
e(TOTtwa)t = o=t (o) L e wdt ey e @A) = 70t (¢p - (cos(wa r t) + i - sin(wg 1)) + ez - (cos(—wq - t) + i - sin(—wgq - 1)) =

e %t (cy - cos(wq - t) 4 ca - cos(wg - t) + 4 - c1 - sin(wg - t) — i - ca - sin(wgq - t)). Und das ist dann schlussendlich gleich folgender Iden-

titidt e 7%t . ((c1 + ca) - cos(wq - t) 4+ i - (¢1 — c2) - sin(wg - t)). Nun ist der Real- und der Imaginirteil eine Lésung der DGL, also
auch die Summe aus den beiden: z(t) = e7%* . (c-cos(wg - t) 4+ ¢ - sin(wg - t)) mit ¢ :=c1 4+ c2 und ¢’ := ¢1 — c2. Diese allgemeine
Losung hat die Loésungsraumdimension 2, damit sind dann also alle Losungen gegeben. Nun werden die Konstanten bestimmt:
)
so=x(0)=1-(c-1+c-0)=cundvg=2"(0)=c" - wqg—c-5,alsoc=s0und ¢’ = w. Es gilt also:
wq
—o-t vo+so-6 . 2 52 2 2 .
z(t) =e - | so - cos(wg - t) + ————— - sin(wq - t) | mit wg = \/wd — 62 und §° — wy < 0 (Schwache Dampfung)
Wd
Zum Schluss wird noch der Fall §2 — wg = 0 (Kritische Ddmpfung) untersucht. Dann gilt A = A1 = A2 = —d. Es ist also e~ 4t cine

Losung der DGL dieses Satzes. Man hat hier eine doppelte Nullstelle. Nun betrachtet man eine doppelte Nullstelle als Grenzlage

-t (A+AN)-t

zweier benachbarter Nullstellen A und A + A\. Es sind also e und e zwei Losungen, also auch die Linearkombination
1

A (eo‘*AM’t — ek't). Fiir A\ — 0 geht dieser Ausdruck gegen t~e>"t7 was dann auch eine Lésung darstellt. Man hat jetzt also,

dass die allgemeine Lésung x(t) = ¢1 - et 4 cg -t et ist. Aus Dimensionsgriinden sind das auch alle Lésungen. Nun muss man

noch die Konstanten bestimmen: sp = x(0) = ¢; und vo = 2’(0) = ¢1 - A + c2, also ¢; = s und ca = vg — 8o - A. Man hat also:

d-t

z(t) = so - e 4ty (vo+s0-d)-t-e ¥ mit 6% — wg = 0 (Kritische Dampfung)

Der Satz ist damit also bewiesen. O
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Das Freundschaftstheorem

[Zuriick zur Liste]

Satz. Gibt es in einer Menschenmenge von n Personen zwischen zwei Personen immer genau einen gemeinsamen Freund,

dann gibt es eine Person, die mit allen anderen befreundet ist.

Beweis. Man benutzt fiir den Beweis sogenannte Graphen G = (E, K), die endlich und einfach sind: In der Ebene gibt es Ecken
E (Personen) mit |E| = n und Kanten K (befreundet sein). Graphentheoretisch formuliert hat man also die folgende Aussage als
Voraussetzung:

(V) Vu,v € E3w € E : {u,w} € KA {v,w} € K
In dieser Sprache ist dann folgende Aussage zu zeigen:
(A) Ja € EVu € E\ {a} : {u,a} € K

Sei d(u) mit v € E die Anzahl der Kanten an der Ecke u. Die Widerspruchsannahme ist also: Vu € E : d(u) < n — 1. Aus der
Vorausstzung (V) folgt, dass es im Graphen G keine Kreise der Linge 4 geben darf. Sei diese Behauptung mit (K4) bezeichnet. Es
wird jetzt zunéchst gezeigt, dass G ein reguldrer Graph ist, d.h. d(u) = d(v) fiir alle u,v € E: Seien u,v € E zwei nicht adjazente
Ecken, d.h. v und v sind nicht durch genau eine Kante verbunden, und es gelte d(u) = k und wy, ..., wy seien die Nachbarn von
u. Aufgrund von Eigenschaft (V') ist v zu genau einem der w; benachbart, 0.B.d.A. sei dies w2. w2 muss ebenfalls zu genau einem

der anderen Nachbarn von w adjazent sein, 0.B.d.A. sei dies w;. Situation also:

(]

1

v hat nun mit w; den gemeinsamen Nachbarn ws =: z7. Fiir « > 2 hat v mit w; genau einen gemeinsamen Nachbarn z;. Die z; aufler
z1 sind nicht benachbart zu w, denn sonst wiirde der Kreispfad u, 21, v, z;, u existieren, der nach (K4) aber nicht existieren darf.
Weiter sind die z; (¢ > 2) alle verschieden, denn sonst gibe es den Kreis der Lénge 4: u, w;, z; = z;, w;, u, welcher (K4) verletzt.
z1 darf nicht mit zo zusammenfallen, sonst haben v und z; keinen gemeinsamen Nachbarn mehr. z; fillt aber auch nicht mit z;
(i > 3) zusammen, sonst wiirde u, w1, z1 = z;, w;, u die Bedingung (K4) verletzen. Also sind alle z1, ..., 2z, paarweise verschieden.

Situation:
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Man kann also schlieBen: k' = d(v) > k d(u). Vertauscht man in diesen Uberlegungen die Rollen von u und v, so folgt
k =d(u) > k" = d(v), also folgt dann: d(u) = d(v) = k fiir nicht adjazente w,v. Nun gilt, dass alle Ecken, auler wz, im Graphen
(auch die, die nicht eingezeichnet sind) entweder zu u oder v nicht adjazent sind, denn gibe es eine Ecke w’ # wz, die zu u
und v adjazent ist, dann hitten u und v mehr als einen gemeinsamen Nachbarn, nimlich w’ und ws, was wegen (V) nicht sein
kann. Also haben alle Ecken, ungleich wz, den Grad k (Grad k einer Ecke heifit, dass die Ecke k Kanten hat). Weil w2 wegen der
Widerspruchsannahme d(w) < n — 1 fiir alle w € E auch einen Nicht-Nachbarn hat, folgt mit den Uberlegungen von oben, dass
auch wg den Grad k hat. Es wurde also bewiesen, dass G ein reguldrer Graph ist. Es wird nun die Anzahl aller Personen n in

Abhéingigkeit von k bestimmt: Man zdhlt die Anzahl aller Wege der Linge 2 auf zweierlei Art. Zu je 2 Ecken kann man wegen (V')

n

genau einen Weg der Linge 2 bestimmen. Auf (2) Weisen kann man aus n Ecken 2 Ecken auswéhlen, die Anzahl aller Wege der
k

Lange 2 also: <72l> Andererseits gibt es zu jeder der n Ecken e € E genau k Nachbarn, und daher (2) ‘Wege der Léange 2, die e in

k
der Mitte haben. Weil jeder Weg der Liange 2 genau eine Ecke in der Mitte hat, zidhlt also n - (2) ebenfalls alle Wege der Linge 2.

n-(n—1) (’VL) (k) k-(k—1)
—_— = =n - =n:+: ———
2 2 2 2
also hat man genau einen Punkt, der mit genau einer Kante mit sich selbst verbunden ist. Diesen Fall schliefft man aus, weil man

Also gilt: ,woraus m — 1 =k - (k — 1), alson = k2 — k + 1, folgt. k = 1 heifit n = 1,

nur zu jemand anderes befreundet sein kann. Ist jedoch k = 2, dann gilt n = 3, d.h. man hat ein Dreieck mit 3 Eckpunkten und
3 Kanten. Dort ist aber jeder mit allen anderen befreundet, was aber der Widerspruchsannahme hier widerspricht. Es muss also
k > 3 gelten. Nach der Kombinatorik hier kommt nun lineare Algebra: Man betrachtet die n x n-Adjazenzmatrix A = (a;;) zum

Graphen G mit a;; = 1, wenn Ecke ¢ mit Ecke j verbunden ist, und 0 sonst. Diese Matrix A hat folgende Eigenschaften:

e A ist symmetrisch (A = A7), da G ein ungerichteter Graph ist.
e a;; =0 fiir alle s € {1,...,n}, da keine Ecke mit sich selber verbunden ist.

e In jeder Zeile, und damit auch in jeder Spalte, stehen genau k Einsen und sonst 0,

weil jede Ecke genau k£ Nachbarn hat.

e Zu zwei beliebigen Zeilen gibt es genau eine Spalte, in der beide eine 1 haben. In
allen anderen Spalten ist in einer der Zeilen eine 0, denn zwei Ecken haben

genau einen Nachbarn gemeinsam.

Dabei bezeichne AT die transponierte Matrix zu A. Durch diese Beobachtungen ergibt sich dann:

ko1 1
k 1

A’=4A4-A=A-AT =
1 1k

Man kann leicht herausfinden, dass A% den Eigenwert k — 1 mit (n — 1)-facher Vielfachheit und den Eigenwert n + k — 1 = k2 mit
1-facher Vielfachheit besitzt. Dabei gilt das letzte Gleichheitszeichen, weil doch schon bewiesen wurde, dass gilt n = k? — k4 1. Sei
M € R™*"™ dann gilt: M-v=X-v= M?-v=X%.v, Beweis: A2-v=A-(A-v) = A-(A-v) =X-(A-v) = X-(A-v) = A?-v. Also
existieren r,s € Ng mit » + s = n — 1 so, dass gilt ++vk — 1 ist r-facher und —v/k — 1 ist s-facher Eigenwert von A. Die Wurzeln
sind wegen k > 3 reell. Nun ist V2 entweder gleich +k oder —k. Es stellt sich heraus, dass nur +k dann 1-facher Eigenwert
von A ist. Die Spur einer quadratischen Matrix M, bezeichnet als Spur(M), ist die Summe ihrer Diagonalelemente. Man beweist
leicht, dass gilt Spur(M - M') = Spur(M’ - M) fiir alle M € K™*" M’ € K"*", wobei K ein beliebiger Kérper sei. Sei nun
M € K"*™ und T € GL,(K) (T also eine invertierbare n x n-Matrix), dann folgt Spur(7 - M - T~ ') = Spur((T'- M) - T~ ') =
Spur(T~! - (T - M)) = Spur(E, - M) = Spur(M). Wenn M € R™X"™ symmetrisch ist, dann gibt es ein T € GL,(R) und ein
D € R™*™, wobei D eine Diagonalmatrix mit allen Eigenwerten (o;) von M auf der Diagonalen ist, so, dass gilt: M =T - D -T~*!
und deswegen Spur(M) = Spur(T - D - Tfl) = Spur(D) = i a;; dabei seien die «; die n Eigenwerte von M. Es folgt dann, weil
:'r»(-‘r\/m)-l-s-(—:/iklfl)-&-l»k:k+(r—s)-\/ﬁ. Nun ist » — s # 0, sonst folgt
k = 0, also gilt dann: vk — 1 = er € Q. Sei in P = % € Q der Bruch % maximal gekiirzt, also ggT'(a,b) = 1. Es folgt aus
VE—1= % dann: Z—z =k —1,also a? = (k—1) - b2, also a® = ((k — 1) - b) - b, also b|a?, also b|a, denn, wenn b das a nicht teilt,

A symmetrisch ist: 0 = Spur(A)

cz#0
dann auch nicht a?. Ware b # 1, dann wiirde mit b|a folgen ggT'(a,b) = b # 1. Weil aber ggT(a,b) = 1 gilt, folgt dann b = 1, also

k
=2 _ % e Z Alsogibtesecinh € Z mit VE—1= —h=h?=k—1=k=nh2+1esgitauch k= (s — 7) - h,

s—r b 1 s—r
also h- (s — 1) = h2 +1 = h|(h? 4 1). Weil auch h|h? gilt, folgt also h|((h? 4+ 1) — h?), also h|1, also h = 1. Daraus folgt dann:

k=h?+1=1241=2, aber k = 2 wurde bereits ausgeschlossen. Dieser Widerspruch zeigt, dass die Widerspruchsannahme, dass

es keine Ecke gibt, die zu allen anderen Ecken benachbart ist, fallen gelassen werden muss. Der Beweis ist damit also beendet! [
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Der Satz von Vitali

[Zuriick zur Liste]

Satz. Fiir alle n > 1 gibt es im R™ eine nicht messbare Menge.

Beweis. Auf der Menge der reellen Zahlen R wird eine Aquivalenzrelation definiert: ¢ ~ y < = —y € Q. Zu jedem z € R
gibt es ein ¢ € Q so, dass  — g € [0;1] gilt. Es gibt also ein z € [0;1] mit [z] = [z]. Nach dem Auswahlaxiom ist es also
moglich, jeder Aquivalenzklasse einen Reprisentanten aus [0;1] zuzuordnen. Sei X C [0;1] die Menge dieser Repriisentanten.
Sei nun = € [0;1], dann gibt es ein 2 € X mit € [z], was dquivalent ist zu z — z € Q. Weil z,z € [0;1] gilt, folgt also
z —z € QN [—1;1]. Anders formuliert hat man jetzt: Fiir € [0; 1] existiert ein ¢ € Q N [—1;1] mit z € (¢ + X). Daraus folgt

dann: [0;1] C U (g + X) =: A, wobei Q N [—1;1] abzihlbar ist. Die Vereinigung ist disjunkt, denn wire ¢ + z = ¢’ + 2’
q€QN[—151]
(¢ # ¢ = x # 2'), dann gilt * — 2’ € Q, also * ~ z’, was ein Widerspruch ist, denn nach Konstruktion ist jedes Element aus
X Repréasentant genau einer Aquivalenzklasse, also gilt fiir z,2" € X: x # 2’ = x ~ 2’. A ist nach Konstruktion beschrinkt.
Angenommen, A ist messbar, dann gilt: v(A) = > v(gr +X) = > v(X) < oo, da A beschrénkt ist. Also folgt v(X) = 0 und also
k=1 k=1
v(A) = 0. Aber es gilt doch [0;1] C A, also v(A) > 1. Das ist ein Widerspruch, welcher zeigt, dass A C R nicht messbar sein kann.

Wegen v1(A) = v1(A) - 1" = v, (A x [0,1]" 1) folgt dann die Behauptung. Das war es! d

Der Satz von Wilson

[Zuriick zur Liste]

Satz. m € N>, ist genau dann eine Primzahl, wenn gilt (m — 1)! = —1 (mod m).

Beweis. Sei also p € P>5. Man betrachtet dann die multiplikative Gruppe (Z/p)*. Zu jedem a € (Z/p)* gibt es genau ein Inverses.

In dem Produkt Il  asortiert man die Elemente mit ihren Inversen als Paare, die sich zu dem neutralen Element [1] aufheben.
a€(Z/p)*
Dabei seien diese Elemente nicht selbstinvers. Es gilt also: I a = I a.Nunista=a" ' o d®-1=0<«
a€(z/p)* a€(z/p)* a=a=1

(a—1)-(a+1) =0« a=1Va=—1 (wegen Nullteilerfreiheit). Also sind [—1],[1] € (Z/p)* alle selbstinversen Elemente. Daraus
p—1

folgt: T1 a = [1]-[-1] = [-1]. Es wurde nun bewiesen, dass gilt T1 a= J] [k] = —-1(modp) & ((p—1)!+1)modp = 0.
a€e(z/p)* ac(z/p) % k=1

Gelte nun umgekehrt (m — 1)! = —1 (mod m). Angenommen, m ist keine Primzahl, dann gibt es natiirliche Zahlen z,y € IN mit

1< z,y < m,sodass m =z -y gilt. Also folgt z|m. Wegen 1 < z < m gilt also z|(m — 1)!. Wegen z|m und m|((m — 1)! + 1) (nach
Annahme) folgt also z|((m — 1)! + 1). Aus z|(m — 1)! und z|((m — 1)! + 1) folgt z|1 = ((m — 1)! + 1) — (m — 1), also z = 1, was

ein Widerspruch zur Konstruktion von x darstellt. Fertig! O

Satz. Die n-te Primzahl p, ldisst sich, wie folgt, darstellen:

on
n
=13 |
m=1 11 + Z 0((k—1)!4+1) mod k
k=1

Beweis. Die Formel w(m) = 3 0((F= D!+ modk j4pit die Anzahl der Primzahlen kleiner-gleich m. Sei p,, die n-te Primzahl, dann
k=1

gilt w(pn) = n, also gilt dann ;(m) > n fiir m > p,,. Ist allerdings m < p,, dann ist 7(m) < n. Nun ldsst sich einfach nachweisen,

dass gilt:

An(a)::{" n J: 1, a<n

1+a 0, a>n
Man betrachtet nun A, (w(m)). Aus dem Bertrand’schen Postulat folgt p, < 2", Beweis: Nach diesem Postulat gilt ohne Beweis,
dass es fiir alle n > 1 mindestens eine Primzahl p gibt mit n < p < 2n. Also gibt es zwischen 2! und 22, zwischen 22 und 23,
zwischen 2% und 24, ... und zwischen 2"~ ' und 2" immer mindestens eine Primzahl. Weil 1 und 2 auch Primzahlen sind, hat man
insgesamt mindestens 2+ (n — 1) = n+ 1 Primzahlen, die kleiner als 2" sind, also folgt p,, < 2". Fiir m =1,...,p, — 1 ist der Wert
des Summanden A,,(7(m)) in der Summe immer gleich 1. Ist m = p,,,...,2", dann ist der Summand gleich Null. Addiert man 1

zur Summe, dann hat man fiir m = 1, ..., p, jeweils in der Summe 1 addiert. Damit ist also der Nachweis vollstandig erbracht. [
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Der Satz von Cantor

[Zuriick zur Liste]

Satz. Eine Menge M ist weniger mdchtig als ihre Potenzmenge P(M), also: |M| < |P(M)].

Beweis. Sei erstmal M = (), dann gilt |[M| = |[0] = 0 < 1 = [{0}| = [P(M)], also |M]| < |P(M)|. Sei von nun an also M # .
Zunéchst mal gilt schon |[M| < |P(M)|, da  — {z} eine injektive Abbildung M — P (M) ist. Nun wird gezeigt, dass Gleichheit nicht
herrschen kann: Angenommen, es gibt eine surjektive Abbildung f : M — P(M), dann sei definiert: A:={x € M : 2 ¢ f(x)} C M.
A ist nun eine Menge und es gilt dann A € P(M). Wegen der Annahme, dass f surjektiv ist, gibt es ein m € M mit f(m) = A.
Dann gibt es 2 Félle: m € f(m) oder m ¢ f(m). Ist m € f(m), dann ist m € A, also m ¢ f(m), Widerspruch. Ist m ¢ f(m), dann
ist m ¢ A, also m € f(m), Widerspruch. In jedem Fall hat man also einen Widerspruch, also gibt es keine surjektive Abbildung
M — P(M), also insbesondere keine bijektive, d.h. der Fall [M| = |P(M)] ist ausgeschlossen und also weil man, dass tatséchlich
|M| < |P(M)] gilt. Damit ist der Beweis endlich vollbracht. a

Korollar (1). Es gibt keine Menge, deren Mdéchtigkeit am gréften ist.

Beweis. Angenommen, es gibt eine Menge Mpyax, deren Michtigkeit am grofiten ist. Nun ist nach dem Satz von Cantor aber

|P(Mmax)| > |Mmax|, also ist |Myax| doch nicht maximal, Widerspruch. O
Korollar (2). Die Menge, die aus allen Mengen, die es gibt, als ihre Elemente besteht, gibt es nicht.

Beweis. Angenommen, es existiert die Menge Maiie, die aus allen Mengen, die es gibt, besteht. Dann gilt also P(Maie) C Maie,
also |P(Maie)| < |Maite|, im Widerpruch zum Satz von Cantor, wonach |P(Maiie)| > |Maiie| gelten muss. O

Der Satz von Lagrange

[Zuriick zur Liste]

Satz. Es sei G eine Gruppe und H eine Untergruppe von G. Dann ist (G : H] der Index von H in G, also die Anzahl der
Nebenklassen von H in G. Dann gilt fir die Gruppenordnungen: |G| = [G : H]-|H|. Insbesondere sind fiir |G| < oo sowohl [G : H]
als auch |H| ein Teiler von |G|. Es gilt damit: Da die Gruppe, die von einem Element in G erzeugt wird, eine Untergruppe von

G ist, folgt, dass die Ordnung eines Gruppenelements stets die Gruppenordnung tetlt.

Beweis. Betrachtet wird fiir jedes g € G die Linksnebenklasse gH = {gh : h € H}. Es ist h — gh eine Bijektion zwischen H und
gH, denn die Abbildung ist nach Definition der Linksnebenklasse surjektiv und wegen ghi = gho = h1 = h2 auch injektiv. Somit
haben alle Linksnebenklassen die gleiche Méchtigkeit wie H. Da die Nebenklassen als Aquivalenzklassen der Aquivalenrelation
a ~ b < a b € H definiert werden kénnen, liefern sie eine Partition von G. Wihlt man mithilfe des Auswahlaxioms ein
Reprisentantensystem R der Nebenklassen, so hat man also eine Bijektion zwischen R X H und G durch die Abbildung (7, h) —
rh, denn es gibt eine Einteilung von G in |R| gleichgrofie Nebenklassen der Michtigkeit |H|. Nach Definition von Index und
Reprisentantensystem gilt [G : H] = R und man erhélt: |G| = |[R X H| = |R|- |H| =[G : H] - |H|, genau das, was man hier auch

beweisen wollte. O

Der Satz von Cayley

[Zuriick zur Liste]

Satz. Sei S(X) := {f : X — X bijektiv} die symmetrische Gruppe von X. Dann ist (S(X),0) mit (f o g)(z) := f(g(x)) fir
f,9 € S(X) und x € X eine Gruppe. Sei (G, *) eine Gruppe. Dann ist

®:G— S(Q),g— P(9)

mit ®(g)(h) = g h fir alle h € G ein injektiver Gruppenhomomorphismus. Das bedeutet: Man kann (G, x), wegen G isomorph
zur Gruppe ®(G) C S(G), immer als eine Untergruppe einer symmetrischen Gruppe auffassen. Folgerung: Ist ord(G) = n < oo,

dann kann man G als eine Untergruppe von S, = {f : {1,2,...,n} — {1,2,...,n} bijektiv} auffassen.
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Beweis. Wohldefiniertheit: Es gilt fiir g € G auch ®(g) € S(G), denn ®(g) : G — G, ®(g)(h) — g * h hat die inverse Abbildung
®(g~1)(h) — g~ % h, ist also eine bijektive Abbildung von G nach G, also Element von S(G). Durch & wird ein Gruppenhomo-
morphismus definiert: Seien g,¢" € G, dann gilt: @(g* ¢')(h) = (g* g') xh = g (¢' x h) = 2(9)(2(9")(h)) = (2(9) o 2(9))(R).
Nun zur Injektivitit: ®(g) =id & g*xh = h Vh € G < g = e. Also gilt kern(®) = {e}, also ist ® injektiv. Weil & ein injektiver
Gruppenhomomorphismus ist und da G — ®(G) eine Surjektion ist, folgt, dass G zu ®(G) isomorph ist. Es wird noch explizit
gezeigt, dass ®(G) eine Untergruppe von S(G) ist: Es gilt klarerweise ®(G) C S(G), denn fiir alle g € G hat ®(g) € ®(G) die zu ihr
inverse Abbildung ®(g~') € ®(G), also ist ®(g) eine bijektive Abbildung von G nach G, also Element von S(G). Und es gilt, dass
®(e) € ®(G), wobei e das neutrale Element in G ist, das neutrale Element in ®(G) ist. Das zu ®(g) € ®(G) (g € G) inverse Element
ist ®(g~') € ®(G) (9~ € G). Nun zur Abgeschlossenheit von ®(G): Fiir ®(g), ®(g’) € ®(G) gilt: ®(g) 0o ®(g') = ®(g*g’) € B(G),
denn es gilt wegen g, g’ € G niamlich g* g’ € G, da G eine Gruppe ist. Zum Schluss soll hier noch die Folgerung geklirt werden: Ist
ord(G) = n < oo, dann ist S(G) isomorph zu S, = {f :{1,2,...,n} — {1,2,...,n} bijektiv}. Ersetze also S(G) durch S,, dann
folgt die Behauptung. O

Der Satz von Ptoleméaus

[Zuriick zur Liste]

Lemma (Sehnenviereck). FEin Viereck ist genau dann ein Sehnenviereck, wenn sich gegeniiberliegende Winkel zu 180° erginzen.
Da die Innenwinkelsumme im Viereck 360° betrdgt, reicht es, wenn sich 2 gegeniiberliegende Winkel zu 180° erginzen, da dies

dann fir das andere Winkelpaar automatisch folgt.

Beweis. Zuerst kommt ein Bild:

Beweis von =: Sei das Sehnenviereck ABCD in obenstehender Grafik dadurch in Teildreiecke zerlegt, dass die einzelnen Ecken
mit dem Mittelpunkt des Kreises M verbunden sind. Das Dreieck AABM ist gleichschenklig, damit sind die Winkel <ABM und
<M AB gleich grof8. Dieser Winkel ist mit a bezeichnet. Analoge Schliisse gelten fiir die anderen Teildreiecke und Winkel in der
obenstehenden Grafik. Fiir die Innenwinkelsumme des Vierecks ergibt sich dann: 2a+28+2v+26+26 = 2- (a+B8+~v+J) = 360°,
also a+ B+ + & = 180°. Gegeniiberliegende Winkel ergénzen sich zu 180°: (a+ ) + (v + ) = 180° und (a+6) + (8 + ) = 180°.
Nun zu <=: Wieder ein Bild:
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3 Punkte liegen immer auf einem Kreis, sei also der vierte nicht auf dem Kreis. Nach Voraussetzung gilt a + v = 180°. Man bildet
den Umkreis zum Dreieck AABD und es wird gezeigt, dass auch C auf diesem Kreis liegt. Angenommen, C' liegt nicht auf dem
Kreis. Dann gibt es einen Punkt E auf der Geraden durch D und C, der auf dem Kreis liegt. Fiir das Sehnenviereck ABED gilt
nach dem oben Bewiesenen o + ¢ = 180°, und mit der Voraussetzung « + v = 180° folgt dann v = &. Im Dreieck ABCE gilt nach
dem Innenwinkelsatz fiir Dreiecke 8 4+ v + ¢ = 180° und auflerdem § + ¢ = 180°. Also folgt 8 + v = €. Da 8 > 0 ist, ist dies ein
Widerspruch zu v = €. Damit ist auch C auf dem Kreis. O

Satz (Satz von Ptolemius). In einem Viereck gilt: Die Summe der Produkte gegeniiberliegender Seiten ist gréfSer-gleich dem

Produkt der Diagonalen. Gleichheit gilt genau dann, wenn das Viereck ein Sehnenviereck ist.

Beweis. Zuerst kommt wieder ein Bild:

Mittels zweier geschickt gewihlter Drehstreckungen des Dreiecks AABC um A, so dass C’ = D ist, und des Dreiecks AACD um
A, so dass C” = B ist, erhilt man aufgrund der Ahnlichkeit der jeweiligen Dreiecke die Entsprechungen |[IDB’| =b =b-— und
e

- - d -

|[B'B|=¢' =c- E; auBlerdem gilt <AB'D = 8 und <BB’A = §. Es gilt B’ = D", weil |AB|=a-— =d- - |[AD"| gilt und die
e e e

Winkel al und a2 sich tauschen. Nun gilt fiir das Dreieck ADB’B die Dreiecksungleichung, also: f = |DB| < |DB’| + |B’B| =

a
b-—+4c-—,alsoe-f <a-c+b-d. Das ist dann die erste Behauptung des Satzes. Aus der Geometrie erkennt man nun, dass
e

e
Gleichheit genau dann gilt, wenn B’ auf BD liegt, d.h. <AB'D+ <BB’A = 3+ = 180°, also nach dem Lemma oben genau dann,

wenn ABCD ein Sehnenviereck ist. Das war es! O

119



Die Euler’sche Identitit

[Zuriick zur Liste]

Satz. Es gilt e™ +1=0.

Beweis. Zunichst werden die Taylorreihenentwicklungen fiir e”, cos(z) und sin(z) hergeleitet. Es gilt:

m o p(n) _ m+1
f@)y=3" f n('zo) (& = 0)" + Rmy1(x) mit [ Ry i1 (2)] < max P ()] - la — ol

Dabei sei I das Intervall zwischen xo und z. Es wird fiir die Reihenentwicklungen nach Taylor der Entwicklungspunkt zo =
gewihlt. Fiir e* gilt dann:
m41
2\ (n) Lz - max{0,z} %]
(™) = (om0 =1und [Rmir()| S e m T o
Nun zu cos(z):
Z1)EHL . sin(a), —2k+1 0, =2k +1 ot
((cos(m))(")) _ (-1) sin(z), n + _ n +1 4 Ro1(2)] < 1- e[ N
=0 (71))c - cos(x), n = 2k o (71)’“, n =2k (m 4+ 1)! m—oo
Und schlieBlich sin(z):
—1)k. , =2k+1 —1)*, =2k+1 m+1
((sin(z))(n)) _ (=1)* - cos(z), n + _) =D n +1o IR 1 (2)] < 1- l=™
z=0 (=1D)F -sin(z), n =2k o 0, n =2k (m + 1)l m—co
Insgesamt folgt also:
. ook (- (—1)kg2k+1
¢ = Z T cos(@) = kz; T’ sin(e) = kz:o (2k + 1)
Fiir die imagindre Einheit der Menge der komplexen Zahlen gilt:
. (1%,  n=2k
P
(-, n=2k+4+1
Wegen der Konvergenz samtlicher hier auftretendender Reihen folgt:
(w)n oo ngn io: <( 1)k g2 . (_1)kx2k+1) o (_1)kx2k (—1)kg2k+1 o
Z +i- = Z Z = cos(x) + 7 - sin(z)
= = (2k)! (2k +1)! = (2k)! = (2k +1)!
Es folgt also ™ = cos(w) 4+ i -sin(nr) = —1+4-0= —1, also ™ + 1 = 0.

Die Euler’sche Polyederformel

[Zuriick zur Liste]

Satz. Es gilt E — K + F = 2 fiir die Anzahl der Ecken E, Kanten K und Flichen F eines konvexen Polyeders.

0

O

Beweis. Man entfernt zunichst eine Fliche des konvexen Polyeders und zieht den Rest wie eine Gummihaut in die Ebene aus-

einander. Dabei bleibt die Struktur des Kantennetzes erhalten. Fiir den erhaltenen ebenen Graphen muss man also zeigen, dass

E — K+ F =1 ist, denn eine Fliche wurde ja entfernt. Dazu entfernt man aus dem ebenen Kantengraphen nacheinander eine Kante

so, dass der Restgraph zusammenhéingend bleibt. Dabei treten zwei Fille auf. 1. Fall: Die entfernte Kante war eine Diagonale. Dann
nimmt die Anzahl der Flichen und Kanten um 1 ab. Die Anzahl der Ecken bleibt gleich. Der Wert E — K + F bleibt dabei also

invariant. 2. Fall: Die entfernte Kante war keine Diagonale. Dann nimmt die Anzahl der Ecken und Kanten um 1 ab und die Anzahl

der Fldchen bleibt erhalten. Somit bleibt auch in diesem Fall E — K + F invariant. Zum Schluss bleibt eine einzige Kante mit zwei

Ecken ohne Fliche iibrig. Es gilt dann offenbar E — K + F =2 —-1+0=1.

Satz. Fir einen Polyeder vom Geschlecht g, also einem Polyeder mit g Lichern, gilt X(g']I‘2) =FE-K+F=2-2.g
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Beweis. Einen Polyeder vom Geschlecht g kann man sich bis auf Homdmorphie aus einem ,sphirischen“ Polyeder mit zwei fehlenden
Flachen, g —1 ,zylindrischen® Polyedern mit fehlenden Fliachen an den Enden des Schlauches und zwei andere woanders sowie einem
»zylindrischen“ Polyeder mit nur zwei fehlenden Flichen an den beiden Grundflichen ohne Uberschneidung zusammengeklebt
vorstellen. Dem ,,sphérischen“ Polyeder fehlen zwei Flachen, also £ — K + F = 2 — 2 = 0, dasselbe gilt fiir den ,zylindrischen*
Polyeder mit nur zwei fehlenden Flichen. Den anderen ,zylindrischen“ Polyedern fehlen vier Flidchen, also E — K+ F =2—4 = —2.
Beim Wiederzusammenkleben der Teile an den Klebstellen verliert man dieselbe Anzahl an Kanten wie die der Ecken. An dem Wert
E — K + F des gesamten Gebildes dndert sich also beim Zusammenkleben nichts. Ansonsten addiert sich der (E — K + F')-Wert
des wieder zusammengeklebten Gebildes aus den jeweiligen (E — K + F)-Werten der Einzelteile. Man erhilt also E — K + F =
0+(g—-1)-(-2)+0=2-2-g. O

Die 5 platonischen Korper

[Zuriick zur Liste]

Satz. Es gibt nur finf reguldre Polyeder, die Platonischen Kérper.

Beweis. Ein reguldres Polyeder habe F' Flichen, die also regulidre n-Ecke sind. Desweiteren treffen in einem reguldren Polyeder an
jeder Ecke r Kanten aufeinander. Zu jeder Fliche gehéren also n Kanten. Da jede Kante zu zwei Flichen gehért, ist die Anzahl
der Kanten K gleich %, also 2K = n - F. Nochmal: Zu jeder Ecke gehoren » Kanten. Weil jede Kante zu zwei Ecken gehort, gibt
es % Kanten K, also 2K = r - E. Nun setzt man E = % und F = % in die Euler’sche Polyederformel E — K 4+ F = 2 ein und
erhilt also: 25X + 2K _ g -2 (1 +1 1) . K=14 1+ 1 =141 Einregulires n-Eck muss mindestens drei Seiten haben,
also gilt » > 3. Und da an jeder Ecke nicht weniger als drei Kanten zusammentreffen, gilt » > 3. % + % muss grofler als % sein,
weil K sonst negativ wére. Daraus folgt: » und n kénnen nicht beide gréfer sein als 3. Da r,n > 3 gilt, muss also r oder n gleich
3 sein. Sei zunédchst n = 3, dann gilt % + % = % + % = % — % = % r kann dann nicht grofer als 6 sein, sonst wire % negativ.
r = 6 kann auch nicht sein, weil K ansonsten nicht aus IN wire. Es bleiben nur noch » = 3,4, 5. Fiir diese Werte erhilt man fiir K
Werte aus IN, ndmlich K =6 fiwr r =3, K = 12 fir r =4 und K = 30 fiir »r = 5. Aus E = % erhélt man die Anzahl der Ecken

und mit F' = 2 — E 4+ K die Anzahl der Flidchen. Die Mdoglichkeiten:

26
n:3,r:3,K:6:>E:T:4$F:2—4+6:4(Tetraeder)
2.

12
n:3,r:4,K:12:>E:T:6:>F:276+12:8(Oktacdcr)
230
n:3,r:5,K:30:>E:T:12:>F:2—12+30:2O (Tkosaeder)
Die Werte sind also alle natiirliche Zahlen. Sei nun » = 3. Genau wie eben schlieit man aus % — é = %, dass nur n = 3,4,5

moglich ist. Und wieder erhdlt man K = 6,12,30. Aus F = % erhélt man dann die Anzahl der Flachen und mit E =2+ K — F
die Anzahl der Ecken. Die Méglichkeiten also:

26
r:37n:37K:6¢F:T:4$E:2+6—4:4(Tetraeder)
2.

12
r:S,n:4,K:12:>F:T:6:>E:2+12—6:8(chacdcr)

230
r=3n=5K=30=F = — = 12 = E = 2+ 30 — 12 = 20 (Dodekaeder)
Auch hier sind die Werte wieder natiirliche Zahlen. Damit sind alle sich aus der Euler’schen Polyederformel ergebenden Méglichkeiten

ausgeschopft, mehr gibt es nicht. Insgesamt wurden also fiinf verschiedene regulidre Polyeder gefunden. O

Die Limesdarstellung der Euler’schen Zahl

[Zuriick zur Liste]

1 n
Satz. FEs gilt e = lim <1 + 7> .
n—oo n

. z+h _ P . h_
= lim &——— = ¢” - lim = 1 —¢
h—0

folgt. Es wird nun die stetige Funktion f(x) = e* — x untersucht: Wegen f'(z) = e* —1 = 0 = x = 0 hat f bei x = 0 ein

eh—1 x x

Beweis. Die Zahl e sei definiert als die Zahl, fiir die gilt &imo = 1, so dass %e
—

Extremum. Da f”/(0) = e° = 1 > 0 gilt, handelt es sich dabei um ein lokales Minimum mit dem Wert f(0) = e’ —0=1—-0= 1.

Es existiert ein € so, dass der Wert 1 auf (0 — &,0 + €) das absolute Minimum ist. f'(xz) = e® — 1 ist kleiner als 0 fiir alle z < 0

und groBer als 0 fiir alle z > 0, also ist f auf (—oo, €] streng monoton fallend und auf [e, c0) streng monoton steigend. Daraus
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folgt dann, dass an der Stelle z = 0 ein globales Minimum von f mit dem Wert 1 vorliegt. Also gilt f(z) > 1 fiir alle z € R
1
und f(z) > 1 & €® > 14z fir z # 0. Nun ist £ > 0 fiir alle n € N>3. Also gilt en > 14+ L = e > (1+ 1) Fiir

1 1
m € Ny ist —% < 0,alsoe m >1— % =>em < 1,1; =y =>e< (m%)m Ersetzt man m durch n + 1, dann gilt also
m
bl
e < ("T“)n = (1 + %)n+1‘ Also gilt zusammengefasst (1 + %)n <e< (1 + %)"+1 =1< ﬁ <14+ % (n € N>1), was
n
schlieBlich (1 + %)n — e impliziert. O
n— oo

Die Irrationalitit der Wurzel aus 2

[Zuriick zur Liste]

Satz. FEs gilt: \/2 ist eine irrationale Zahl.

Beweis. Angenommen, die Quadratwurzel aus 2 ist rational. Dann 1dsst sich diese Zahl als Bruch % darstellen. Weiter nimmt man
an, dass p und gq teilerfremde natiirliche Zahlen sind, der Bruch also in maximal gekiirzter Form vorliegt. Ist er nicht maximal
gekiirzt, dann kiirze ihn maximal. Aus v/2 = % folgt dann 2 = (%)2 = 5—2, also p2 = 2q2‘ Also ist p2 eine gerade Zahl. Folglich ist
auch p gerade, denn wire p ungerade, dann folgte, dass p? ungerade ist, im Widerspuch dazu, dass p? gerade ist, weil eine ungerade
Zahl, multipliziert mit einer ungeraden Zahl, wieder ungerade ist, denn: (2n+1)- 2m+1) =2-2mn+n+m)+1 (m,n € N). p
liasst sich also darstellen als p = 27, wobei r € IN sei. Deswegen gilt dann p? = (27")2 = 4r? = 2¢® & 2r? = ¢2. Es ist also auch ¢>
gerade. Mit der gleichen Argumentation, wie oben, folgt, dass auch g eine gerade Zahl ist. Da p und ¢ also beide durch 2 teilbar
sind, erhélt man einen Widerspruch zur Teilerfremdheit von p und g. Dieser Widerspruch zeigt, dass die Annahme, die Wurzel aus

2 sei eine rationale Zahl, falsch ist und daher das Gegenteil gelten muss. Dass v/2 irrational ist, ist also vollstindig bewiesen. [

Die Unendlichkeit der Primzahlenanzahl

[Zuriick zur Liste]

Satz. FEs gibt unendlich viele Primzahlen.

Beweis. Sei F,, = 22" + 1 fiir n > 0 die Folge der Fermat-Zahlen. Es gilt F,,, —2 = Fo - F1 - ... Fp,—1. Beweis durch vollstindige
Induktion iiber m: Induktionsanfang: m = 1: F; —2 = (221 +1)—2=3= 220 + 1 = Fp, also richtig. Induktionsvoraussetzung: Die
Behauptung gelte fiir m > 1. Induktionsschritt: Fy1 —2 = (2277 +1)—2= 222" 1= (22" )2 -1 = (22" +1)-2)+1)2 -1 =
(Fo =2+ 121" By F - Fppoa +1)2 1= (Fo-Fy ... Frae1)24+2-Fy-Fy ... - Fp_1-1+12 -1 =
Fo - Fi-...:Fp_1-(Fo-Fy-...-Fp_1+2) v Fo-F1-...-Fyp_1-F,. Damit ist die Behauptung bewiesen. Es folgt daraus,
dass F,, fir n < m die Zahl F,, — 2 teilt. Einschub: b | ¢ = ggT(a,b) = ggT(a — ¢, b). Beweis dieser Aussage: Sei g = ggT(a,b),
also g maximal mit g | a A g | b, gegeben. Aus g | b und b | ¢ folgt g | ¢. Nun gilt auch g [ a Ag | ¢ = g | a — c. Also gilt
zusammengefasst g | a —c A g | b, also g < ggT(a — ¢,b) =: g’. ¢’ teilt @ — ¢ und b und ist maximal groB mit dieser Eigenschaft.
Weil b | ¢ gilt, folgt aus ¢’ | b dann g’ | c. Wegen ¢’ | a — c und ¢’ | c gibt es ganze Zahlen k,k’ mit ¢’ - k = a — ¢ und
g kK =calsog - k=a—-9g -k &g - (k+k)=a,dh g | a Ausg | ang | bfolgt ¢ < gegT(a,b) = g. Gezeigt
wurde g < g’ und ¢’ < g, also gilt g = g’, d.h. es gilt ggT(a,b) = ggT(a — ¢, b). Diese bewiesene Behauptung wird nun benutzt:
ggT(Fp,, Fy) = ggT(F, — (Frn — 2), Fy) = ggT(2, F,,). Da F, fiir alle n > 0 eine ungerade Zahl ist, gilt ggT(2, F,,) = 1, also sind
die beiden Primfaktorzerlegungen von F,, und F, (n < m) disjunkt. D.h. mit F,, (n > 0), streng monoton steigend, listet man
unendlich viele paarweise disjunkte Primfaktorzerlegungen auf. Daraus folgt, dass es unendlich viele Primzahlen geben muss, wie

schon bereits behauptet. |
Es gibt aber auch noch einen kurzen Beweis:

Beweis. Mal angenommen, es gibt nur endlich viele Primzahlen: Seien diese p1,p2,...,pn. Es ist dann m = 1 + ﬁ pr eine
Zahl, die nicht durch pi,pa2,...,pn, teilbar ist. Weil man m als Produkt von Primzahlpotenzen darstellen kann (E];(i_sli;enz der
Primfaktorzerlegung), gibt es eine Primzahl g, die m teilt. Wegen p1, p2, ..., pn 1 m, ist also die Primzahl ¢ zu allen p1,p2,...,pn
verschieden, d.h. man hat eine neue Primzahl gefunden, Widerspruch, denn mit pi,p2,...,p, hatte man doch alle Primzahlen

aufgelistet. Das ist dann das Ende des Beweises! O
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