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1. Einleitung 3

1 Einleitung

Ziel der Vorlesung ist es, Studenten der Mathematik mit den Grundgleichungen der
Fliissigkeits- und Gasdynamik vertraut zu machen. Dazu werden die Kontinuitétsglei-
chung, die Impulsgleichung und die Energiegleichung aus den entsprechenden Erhaltungs-
sitzen hergeleitet und einige einfache Umformungen vorgenommen. Die resultierenden
partiellen Differentialgleichungen miissen durch thermodynamische Zustandgleichungen
ergidnzt werden. (Dies sind eigentlich thermostatische Zustandsgleichungen, da man zu
jedem Zeitpunkt und an jedem Ort thermodynamisches Gleichgewicht annimmt.)
Die hergeleiteten Differentialgleichungssysteme beschreiben eine grofe Vielfalt physikali-
scher Phédnomene und spielen eine entsprechend grofie Rolle fiir technische Anwendungen.
Ich hoffe, eine fiir Studenten der angewandten Mathematik akzeptable Einfiihrung in
dieses umfangreiche Gebiet gefunden zu haben.
Herrn Dipl.-Math. Volker Reichelt danke ich sehr fiir die sorgfiltige Ausarbeitung der
Vorlesung.

Aachen, im Oktober 1994

Jens Lorenz

2 Bezeichnungen

Es bezeichne 2 C IR? das von der Fliissigkeit ausgefiillte Gebiet. Der Einfachheit halber
nehmen wir 2 als zeitunabhéngig an. Weiterhin ist x € €2 der Vektor der Raumkoordinaten
und t € [0,00) die Zeit. Es treten die folgenden Variablen auf, welche im allgemeinen
Funktionen von (z,t) sind:

Geschwindigkeit

Dichte

Druck

Spannungstensor

viskoser Spannungstensor

aulere Kraft pro Masseneinheit
innere Energie pro Masseneinheit
absolute Temperatur
Wiérmeleitungsvektor

Quellterm fiir Wéarmeerzeugung

OR N I AT D

Weiter arbeitet man mit den folgenden Transportkoeffizienten:

W 1. Viskositéatskoeffizient (dynamische Viskositét)
A 2. Viskositatskoeffizient
koo Wirmeleitungskoeffizient

Die Groen F' = F(xz,t), Q@ = Q(z,t) werden wir als gegeben ansehen. Von den vier
thermodynamischen Variablen p, p, e, T sind nur zwei unabhéngig. Die anderen sind durch
sie iiber thermodynamische Zustandsgleichungen bestimmt. (Es wird zu jedem Zeitpunkt
t und an jedem Ort z thermodynamisches Gleichgewicht angenommen.)
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3 Eulersche Beschreibung der Bewegung

Die Trajektorien von idealisierten Fliissigkeitsteilchen (Punkten) werden durch eine Flu8-
funktion Q x [0, 50) 0
x |0,00) —
S R ) W
mit ®(x,0) = x beschrieben. Es ist ®(z,t) die Raumkoordinate zur Zeit ¢ des Teilchens,
welches zur Zeit ¢ = 0 am Ort = war.

Oy(x,t)

O(x,t)

x = d(x,0)
Dies ist die Eulersche Beschreibung der Bewegung in raumfesten Koordinaten. Daraus
ergibt sich die Geschwindigkeit u als zeitliche Ableitung des Ortes der Teilchen:
CI)t(.Z',t) :u(@(x,t),t) (2>

Ist das Geschwindigkeitsfeld u = wu(z,t) gegeben, so kann ¢ aus (2) durch Losen von
gewohnlichen Anfangswertaufgaben gefunden werden. Ist umgekehrt & = ®(z,t) bekannt,
so 1aBit sich u wie folgt bestimmen: Zu gegebenem (y,t) bestimme = mit ®(x,t) = y, also
x =& 1(y,t), wobei ®(-,t) fiir festes t als bijektive Funktion von 2 nach € vorausgesetzt
wird. Dann ist

u(y7 t) = u((I)(x, t)? t) = q)t(x’ t) = (I)t(@_l(ya t)7 t)'

4 Massenerhaltung und Kontinuitéitsgleichung

Sei Wy C 2 ein beschranktes Teilgebiet, und sei
W(t) = @(, t)(Wo) = { ®(z,1) [ 2 € Wy }
das Bild von Wy unter der Abbildung ®(-, ). Dann ist
M) = [ pla,t)av (3)
W (t)

die Masse in W(t) zur Zeit t. Die Massenerhaltung besagt, daB8 M (t) konstant ist und
daher dM/dt = 0 gilt. Um die Ableitung des Integrals auszurechnen, bendtigen wir den
folgenden Satz:

Satz: (Transportsatz)
Seien u, ®, Wy, W (t) wie oben, und sei f(z,t) eine C'~Funktion. Dann gilt

i /W(t) fla,t)dV = /W(t){ft + V- (fu)}(z,t)dV. (4)
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Hierbei ist

3

V-v=divv=>_ Dju; mit D; = ai
j=1 K

die Divergenz eines Vektorfeldes v = (v1, vg, v3).

Der Beweis beruht auf folgendem Lemma.

Lemma: (Wronski-Determinante)
Seien A(t) und Y (t) quadratische Matrizen mit

Ly (1) = A@t) Y (1), (5)
Dann gilt

A det Y (t) = tr A(t) det Y (1).
Hierbei bezeichnet detY die Determinante der Matrix Y und tr A = ayqy +agss + ... + apn

die Spur der Matrix A.
Beweis:
Es bezeichne

}/i = (yila s 7yin>
die i-te Zeile von Y. Wegen (5) gilt dann

%Yizzaijyj, i=1,..n. (6)
j=1
a b
Y= <c d) ’

/ /
aclltdety:a'd—b’chad’—bc’:det(a b>+det<af b).
c d C

Diese Formel 1a3t sich auf beliebige n verallgemeinern: Aus

detY = Y sgnoyio, - Yno,
O'GSn

Im Falle n = 2 sei

also detY = ad — be. Dann ist

folgt mit der Produktregel

%detY:Z Z sgnaylgl"'yggi“'ymn :Zdet dY;/dt

i=1 0€S, i=1

Hierbei ist die i—te Zeile ausgezeichnet. Die mit ,,...“ bezeichneten Zeilen sind dieselben
wie in Y. Wegen (6) folgt mit der Multilinearitdt der Determinantenabbildung

LdetY = 3 agdet | Y,

ij=1
Die Determinante in der letzten Formel verschwindet fiir 7 # j, und die Behauptung folgt.
O
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Zum Beweis des Transportsatzes wird das Lemma wie folgt angewendet: Aus
Oy(x,t) = u(P(z,1),t)
folgt mit der Kettenregel
Dyy(z,t) = up(P(x, ), t) Pp(z, t).

Nun sei

J(z,t) = det D, (z,1).

Dann impliziert das Lemma:

%J(w,t) = tru,(P(z,t),t) J(z,t) = (V- u)(P(z,1),t) J(z,1). (7)

Beweis: (Transportsatz)
Nach der Transformationsformel gilt fiir jedes ¢

/W(t) fwyav = [ (@G0, J(.t)av. (8)

0

Die Skizze stellt die verschiedenen Abbildungen und Gebiete dar, die bei der Transforma-
tion eine Rolle spielen:

Differentiation nach ¢ unter dem Integralzeichen auf der rechten Seite von (8) liefert

4 /W(t) fly,t)av
- /WO G @, 0.0 T dV + [ f(@(,0),0) G (1) dV
= / {fi +Vf -up(P(x,t),t) J(x,t)dV + / {f(V-u)}(D(x,t),t) J(x,t)dV
Wo Wo
_ /W {4V ut f(V-u)HD(x,t),t) J(z,t)dV
= [ Uit V- ()} (@(e.1).0) S 1)V,
wobei (7) verwendet wurde. Erneute Anwendung der Transformationsformel ergibt

Gt Jo @0V = [ G+ V- (F)} 1)V

und die Behauptung ist gezeigt. a
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Aus der Massenerhaltung folgert man durch Anwendung des Transportsatzes mit f = p:
d
0= v = / +V- av.
at Jw” ol (pu)} dV

Da W(t) ein beliebiges beschréanktes Teilgebiet sein kann, folgt bei angenommener Glatt-
heit von p (Lokalisierung):

pr+ V- (pu) =0. (9)

Dies ist die Kontinuitéitsgleichung.

5 Impulsgleichung

Es seien u, ®, Wy, W (t), p wie oben definiert. Dann ist
Im(t) = [ (pu)(y.t)dv (10)
W(t)

der Impuls der Masse in W (t). Nach Newtons Gesetz
Anderung des Impulses = Kraft

ist £Im(t) gleich der Kraft K(t), welche auf die Masse in W (t) einwirkt. Wir nehmen
an, dafl sich K(t) in eine Volumenkraft (wie Gravitation) und eine auf den Rand oW (t)
einwirkende Kraft zerlegen 148t. Die Volumenkraft sei von der Form

Ki(t) = /W(t) p(y,t) F(y,t)dV.

Dabei ist F(y,t) ein gegebenes Feld, z. B. die Schwerebeschleunigung. Da pdV die Di-
mension einer Masse hat, ergibt sich fiir /' die Dimension einer Beschleunigung. Fiir die
Randkraft nehmen wir die Form an

Ka(t) = /(9 i 70 O(5,1)dS.

Dies ist ein Oberflachenintegral. Hierbei ist n(y,t) die duflere Einheitsnormale zu OW (t)
im Punkt y, und o(y,t) € IR**® ist der Spannungstensor. Wir werden unten beschreiben,
in welcher Beziehung ¢ zum Druck p und zum Deformationstensor def u steht. Da dS die
Dimension einer Fliache hat, ergibt sich fiir die Dimension von o

o] = [ﬁéi}ffe} = [Druck].

Bemerkung:
Aus dem Drehimpulssatz 148t sich begriinden, dal ¢ symmetrisch ist. a
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Das Newtonsche Gesetz ergibt damit

% o PU D AV = /W(t)(/)F)(y,t) dv + /a NCOULEE (11)

Nach dem Stokesschen Satz gilt fiir (hinreichend glatte) f : R® — IR

/Djde:/ fn;dS firj=1,2,3;
w ow

dabei ist D; = 0/0x;, und n; ist die j-te Komponente von n. Daraus ergibt sich fiir ein
Vektorfeld f : IR® — IR?® der Gaufische Satz:

/WV-de:/awf-ndS.

Die j—te Komponente von (11) lautet

i/ ~dV:/ Fdv / ndS
dt W(t)pu] W(t)p vt W (1) gimnas.

(Dabei ist o; die j—te Zeile von o.) Das Randintegral [y, 0jndS formen wir mit dem
Gauflschen Satz in ein Volumenintegral um:

[ omds=[ V.g;av.
oW (t) W (t)
Auf die linke Seite der vorletzten Gleichung wenden wir den Transportsatz an:

da AV = A A ows

G Lo stV = [ (0wt V- (pugu)yav
Dies impliziert die Gleichung

[ Alpu)i+ V- (pusw}aV = [ {pF;+ V- o5}V,
W (t) W(t)

aus der man mittels Lokalisierung die folgende Gleichung gewinnt:

(pu;)e +V - (puju) = pF; +V - 0;. (12)

Wir wollen die drei Gleichungen fiir j = 1,2, 3 in einer Vektorgleichung zusammenfassen.
Sind a,b € IR, so bezeichnen wir mit

a1
aob=ab" = | ay | (by,bs,b3) € R
as

ihr dyadisches Produkt.
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Die Gleichungen (12) sind dann die Komponenten der Impulsgleichung
(pu)e+V-(puou)=pF +V-o. (13)

Hierbei gilt folgende Vereinbarung: Ist
A= A4, | e R¥?

eine Matrix mit Zeilen A; = A;(x), so sei

VA
V- A

Der Spannungstensor ¢ ist nicht von den anderen Variablen unabhéngig. Wie er von u
und p abhéngt, wird im néchsten Abschnitt erldutert.

6 Beziehung von ¢ zu v und p

Es ist iiblich, fiir den Spannungstensor ¢ die Form
o=-pl+T1 (14)

anzunehmen. Hierbei ist p = p(x, t) der thermodynamische Druck und 7 der viskose Span-
nungstensor. Es bezeichne def u den sogenannten Deformationstensor, welcher definiert ist
durch

(def u)ij = Di'LLj + Djuz- fiir ’L,j = 1, 2, 3

oder in anderer Notation:

def u = u, + (ug)".
Die fundamentale Annahme fiir die Navier—Stokes—Gleichungen ist die Beziehung
T=XNV-u)l+ pdefu (15)

mit Konstanten A, p. (Im allgemeinen héngen A und g von thermodynamischen Variablen
wie p und T ab, sind aber unabhéngig von w.)

Setzen wir die Beziehungen 0 = —pI+7 und 7 = A\(V-u) I+ p def w in die Impulsgleichung
(13) ein, so ergibt sich

(pu)i+V-(puou)+Vp=pF+V(AV-u)+ V. (udefu). (16)
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Bemerkung: (Die Bezichung o = —pl + 1)
a) Um den Anteil —pI in o zu veranschaulichen, betrachten wir folgendes Gebiet:

ZT3 2

€

An der Flache S; herrsche der Druck p; und an der Fliache Sy der Druck p, < p;. Es ist
n = —e; auf S; und n = e; auf Sy. Wenn S; und Sy die Grofie AS haben, so wird

/ —pndS =AS{—pi(—e1) —pae1} = AS (p1 — p2) €1.
S1US2
Das Druckgefille fithrt also zu einer Kraft in e;—Richtung.

b) Zur Illustration von 7 diene das folgende Geschwindigkeitsfeld:

1)

D D D T
Platte

uy (1, o, x3) = kxy, Uz =uz =0 mit k> 0.

Auf die Platte mit der Normalen n = ey wirkt eine Kraft in Richtung e; (Reibungskraft
durch die Bewegung der Teilchen entlang der Platte). Es gilt

0 k O 0 kK O
Du=10 0 0], also defu=[k 0 0
0 0 0 0 0 O

Wegen V- u = 0 und n = ey wird Tn = AV - u)n + pdefun = pke;. Dies stimmt
mit der Anschauung iiberein, dafl auf die Platte eine Kraft in Richtung e; wirkt. Die
Proportionalitat der Kraft zu k ist experimentell bestétigt. a
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7 Umformungen der Impulsgleichung
Die Impulsgleichung (16)
(pu)i+V-(puou)+Vp=pF+VAV-u)+ V- (udefu)

soll noch weiter vereinfacht werden. Die linke Seite der Gleichung enthélt noch einen
Anteil, der direkt aus der Kontinuitétsgleichung folgt und daher eliminiert werden soll.
Auf der rechten Seite sollen die zweiten Ableitungen von u umgeschrieben werden.

Der Term (pu); = pyu + puy auf der linken Seite der Impulsgleichung beinhaltet noch den
Ausdruck p;. Es liegt nahe, ihn mit Hilfe der Kontinuitatsgleichung umzuschreiben. Dazu
betrachten wir zunichst den Term

V- (puou).
Die i—te Komponente ist
3
V- (puiu) =Y Di(puiug) =Y Dilpus)u; + p ) uj Dju;.
j=1 j=1 j=1

Zur Abkiirzung der zweiten Summe benutzt man den Differentialausdruck
3
u-V=> u;Dj,
j=1

welcher auf die skalare Funktion u; bzw. komponentenweise auf u angewendet wird. Damit
ergibt sich fiir die i—te Komponente

V(puiu) =V - (pu)ui+p(u-V)u
bzw. fiir den gesamten Vektor

V-(puou)=V-(pu)u+p(u-V)u.
Daraus folgt

(pu)i+V-(puou) = pu+pu+V-(pu)u+p(u-V)u
= (e +V-(pw)u+p(u+(u-V)u).

Der erste Term verschwindet aufgrund der Kontinuitdtsgleichung. Mit dieser Identitét
nimmt die Impulsgleichung folgende Gestalt an, wenn man durch p dividiert:

w+ (- V)u+ 5Vp=F+ VOV )+ LV (ndefu). (17)

Wenden wir uns nun der rechten Seite der Impulsgleichung zu. Folgende formale Rechnung
148t sich leicht rechtfertigen. Wir setzen

D1 (51
D= D2 ;U= | U2
D3 us
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Dann ist

defu = w,+ (u,)" =uD? +Du’,
V-defu = (defu)D =uD"D+Du'D.

Hierbei ist Du'D = V(V - u), und D'D = D} + D3 + D? = A ist der Laplaceoperator.
Damit wird

V.defu=V(V-u)+ Au.

Mit Konstanten A, p erhélt man dann die folgende Form der Impulsgleichung:

wit (- V)u+ 59p = F 4 ATIEG(V ) 4 LA (18)

8 Navier—Stokes—Gleichungen
fiir inkompressible Stromungen

In den Gleichungen

pe+V-(pu) = 0

19
F—l—/\——;ﬂV(VW)%—%Au (19)

ut+(u~V)u+%Vp

sehen wir F' = F(z,t) als gegebenes Feld und pu, A als bekannte Materialkonstanten an. Die
vier Gleichungen fiir die fiinf Unbekannten p, p, u = (uq, ug, u3) sind noch unterbestimmt.
In vielen Fillen (z.B. in der Hydrodynamik) ist es angebracht, die Dichte p als eine
bekannte Konstante p, anzusehen. Dann vereinfacht sich die Kontinuitatsgleichung zu
der Nebenbedingung

V-u=0.

Das heifit, das Geschwindigkeitsfeld ist zu jedem Zeitpunkt divergenzfrei. Damit entf&llt
auch der mittlere Term auf der rechten Seite der Impulsgleichung. Im Falle p = pg =
konstant erhélt man also

ut+(u-V)u—l—%Vp = F+%Au

(20)
Veu = 0.
Man nennt
v =it/ po
die kinematische Viskositidt. Normiert man py = 1, so ergibt sich
uw+(u-Vyu+Vp = vAu+F 1)

V-u = 0.
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Dies ist das System der inkompressiblen Navier—Stokes—Gleichungen, falls v > 0. Fiir
v = 0 spricht man von den inkompressiblen Eulergleichungen. Fiir v > 0 ist das Sy-
stem in einem geeigneten Sinn , abstrakt parabolisch®“. Der Druck p spielt die Rolle eines
Lagrangeschen Multiplikators zur Nebenbedingung V - « = 0. Unter geeigneten Anfangs-
und Randbedingungen ist bekannt, daf lokal (in der Zeit) eine eindeutige Losung existiert.
In zwei Raumdimensionen (2D) ist in vielen Fillen sogar globale eindeutige Losbarkeit
bekannt (Existenz einer glatten Losung fiir alle Zeiten). Die globale Losbarkeit in drei
Raumdimensionen (3D) ist ein wichtiges offenes Problem.

9 Navier—Stokes—(Gleichungen mit
einer Zustandsgleichung p = p(p)

Bisher haben wir die Gleichungen
pe+ V- (pu) = 0

22
ut-l—(u-V)u-i—%Vp = F+)\+TMV(V-U)+%AU (22)

hergeleitet. Wenn Temperatureffekte keine Rolle spielen, aber Kompressibilitéit nicht ver-
nachléssigt werden kann, kénnen sie durch eine Zustandsgleichung

p=p(p)
mit bekannter Funktion p vervollstandigt werden. Eine oft benutzte Zustandsgleichung
ist .
- L
pP="no (Po)
mit Konstanten pg, pg, 7. Aus der Thermodynamik 148t sich die Beziehung

C
A
T=1q,

begriinden, wobei ¢, bzw. ¢, die spezifische Wérme bei konstantem Druck bzw. bei kon-
stantem Volumen ist. Aus der statistischen Mechanik 1483t sich die Beziehung

7:n;li—Z

begriinden, wobei n die Anzahl von Rotations- und Vibrationsfreiheitsgraden der Molekiile
ist. Dabei ist Gleichverteilung der Energie auf alle Freiheitsgrade angenommen. Wegen

3<n<oo

ergibt sich

]
3

<y <
Fiir Luft wird der Wert v ~ 1,4 = I angegeben.
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Sei p = p(p), also p, = p’(p)p.. Damit ergibt sich fiir p, u das System
pe+V-(pu) = 0
wt (- Ve 20, = p e ATRG(9 ) 4 B
Die Gleichung p; + V - (pu) = 0 ist skalar hyperbolisch fiir p bei bekanntem u. Unter der

Annahme
w>0, 2u+A>0

ist die zweite Gleichung ein parabolisches System zweiter Ordnung fiir u bei bekanntem p.
Insgesamt erhélt man ein gekoppelt parabolisch—hyperbolisches System. Haufig sind p und
A klein. Wenn man g = A = 0 setzt, erhéilt man fiir p, u ein sogenanntes hyperbolisches
System erster Ordnung; eine Form der kompressiblen Eulergleichungen.

10 Energiegleichung

Es bezeichne e = e(x,t) die innere Energie pro Masseneinheit, so dafl

/W plx,t)e(z,t)dV

die innere Energie zur Zeit ¢ in W ist. (Die innere Energie ist ein Maf fiir die Wérmebe-
wegung und innermolekulare Schwingungen.) Weiter ist

/ %p|u|2 av
w
die kinetische Energie, wenn wir mit
Jul = (uf + 3 +u3)?

die Euklidische Norm bezeichnen. Insgesamt ist
E(t) = / Lolul? + av 23
(t) © {2p|u| pe} (23)

die Energie in W (t). Die Anderung 4 F(t) der Energie wird durch Volumenkrifte, durch
Randkrifte, durch Wérmeerzeugung (oder -vernichtung) in W (t¢) und durch Warmefluf3
iiber den Rand W (t) hervorgerufen. Die Anderung der Energie durch die Volumenkraft
pF fiithrt zu dem Term

/ pF - udV.
W (t)

Dies illustriert die folgende Skizze:

s = uldt Das Gebiet mit Volumen AV enthilt die Masse pAV'.
4‘ Auf diese Masse wirkt die Volumenkraft K = pFAV.
AV Im Zeitintervall At legt die Masse den Weg As = uAt zuriick.
Die Energie nimmt dadurch um den Betrag

AE =K - As = pF - uAtAV zu.
Die Energiednderung ist folglich AA—IZJ = pF - uAV.
K = pFAV
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Die Anderung der Energie durch Oberflichenkrifte fiihrt in analoger Weise zu dem Term

/aw(t)(an) ~udS.

Wegen der Symmetrie von o (o = o1) gilt
(on)-u=u"on = (ou) - n.

Es sei ¢ = q(x,t) der Wérmeleitungsvektor. Bezeichnet AS ein Flichenstiick mit der
Einheitsnormalen n, so ist

q-nASAt

die Warmeenergie, welche in der Zeit At durch AS flieft. Damit erhélt man fiir die
Energiednderung den Term

— q-ndS.
oW (t)
Schlieflich sei @ = Q(x,t) ein als bekannt angenommener Quellterm fiir die Wérmeerzeu-
gung oder -vernichtung. (Q kann benutzt werden, um Wirmeerzeugung durch chemische
Reaktionen oder Warmeverlust durch elektromagnetische Strahlung zu modellieren.) Wir
erhalten fiir die Energieinderung den Term

[ pav.
W (t)
Insgesamt liefert dies die Gleichung
da 12
at Jyo {Qp]u\ + pe} av "
:/ pF - udV + (ou) -ndS — q~ndS+/ pQdV.
W (t) oW (t) oW (t) W (t)

Auf die linke Seite wenden wir den Transportsatz an, auf der rechten Seite verwenden wir
den Gaufischen Satz, um die Randintegrale in Volumenintegrale umzuschreiben. Lokali-
sierung ergibt schliellich die Energiegleichung

(plul® + pe)e+ V- (Aplul® + peyu) = pF - u+ V- (ou) = V - ¢+ pQ.

Es sei k der Wiarmeleitungskoeffizient des Materials. (Im allgemeinen héngt x vom ther-
modynamischen Zustand ab.) Zwischen der absoluten Temperatur 7' = T'(x,t) und dem
Wiérmeleitungsvektor ¢ besteht die Beziehung

q=—krVT
(Fouriersches Gesetz). Dies fithrt zu der folgenden Form der Energiegleichung:
Rplul + pe)e + V- (Splul® + pe)u) = pF - u+ pQ + V - (ou) + V- (kVT).  (25)

Setzen wir
o=-pl+7, 7T=ANV-u)l+ pdefu
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in die Energiegleichung ein, so erhalten wir (zusammen mit der Kontinuitétsgleichung und
den drei Komponenten der Impulsgleichung) fiinf Gleichungen fiir die Unbekannten

p, u, p, e, T.

Die Variablen p, p, e, T sind thermodynamische Zustandsvariable. (Es wird angenom-
men, daf} sich das Material zu jedem Zeitpunkt und an jedem Ort im thermodynamischen
Gleichgewicht befindet, so daf§ die Benutzung dieser Variablen sinnvoll ist.) Dann folgt aus
thermodynamischen Grundsétzen, dafl nur zwei der Variablen unabhéngig sind, wahrend
sich die iibrigen aufgrund von Zustandsgleichungen daraus ergeben. Diese Zustandsglei-
chungen sehen wir — fiir ein gegebenes Material — als bekannt an und erhalten dann
fiinf Gleichungen fiir fiinf unbekannte Funktionen. Einfache Beispiele solcher Zustands-
gleichungen sind
p=pRT und e=c¢,T.

Hierbei sind R und ¢, (vom Material abhéngige) Konstanten.

11 Umformungen der Energiegleichung

Die Energiegleichung enthélt einen rein mechanischen Teil, welcher aus der Kontinuitéts-
und Impulsgleichung folgt.

Bezeichnung;:
Fiir eine skalare Funktion g = g(x,t) setze
D
ﬁg =g+ (u-V)g.

Bemerkung: (Interpretation von L)
Sei g(z,t) eine glatte Funktion der Ortskoordinate x und der Zeit t. Dann entspricht

g(@,t) = g(®(, 1), 1)
der Funktion g in Materialkoordinaten (oder Lagrangeschen Koordinaten). Dies bedeutet,
daf g(x,t) den Funktionswert von g zur Zeit t des Teilchens angibt, welches zur Zeit ty = 0
am Ort x war. Das Koordinatensystem wandert gewissermafien mit dem Teilchen mit. Es
gilt
ge(x,t) = ( ( t), t)@t(:v,t) ( (z,1), t)
= {gt + (u V)g} (‘D(w, t) )
= ( (I7 t)v Zf),

also
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Lemma:
Sei g = g(z,t) eine skalare Funktion. Es gelte die Kontinuitétsgleichung

pt+ V- (pu) = 0.

Dann folgt
D
p5f = (P9)e +V - (pgu).

Beweis:

(pg)e + V- (pgu) = pig+ pge + gV - (pu) + Vg - (pu)
= glpu+ V- (pu)) + plge + (u- V)g) = p2L.

O

Die Energiegleichung (25) liBt sich durch Anwendung des Lemmas mit g = L|u* + e
umformulieren:

pDQt (%|u\2—|—e):pF-u+pQ+V-(au)+V-(KVT). (26)

Das Lemma kénnen wir auch auf die j—te Komponente der Impulsgleichung (j = 1,2, 3),
also auf (12) anwenden:

Du;
i = (pus)e + V- (puju) = pFj +V - 0;.

In Vektorschreibweise heif3t das:
p%?:pF—i-V-a. (27)

Ferner 148t sich die Kontinuitéitsgleichung wegen

pt+V-(pu):pt+Vp-u+pV~u:%§+pV'u

schreiben als D
ﬁmv-u:o. (28)
Fiir weitere Umformungen der Energiegleichung benétigen wir die folgenden Vektoriden-

titaten.

Lemma:
Seien v = v(x), w = w(x) Vektorfelder. Dann gilt

D1U1 D2U1 D3U1
(rotv) x w = (Dv — (Dv)")w, wobei Dv =1v, = | Divy Dyvy Dsv,
D1U3 DQ’Ug D3U3
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Beweis:
Es gilt:
€1 €2 €3 Dyvz — D3vy
rotv = D1 D2 D3 = ngl — D1U3
U1 V2 U3 Dyvy — Dyvy

Dies impliziert die Behauptung:

€1 €2 €3
(I‘Ot ’U) Xw = D2U3 — D3U2 D31)1 — D1U3 D1U2 — D2U1
w1 W9 ws
0 ngl - D1U2 D3U1 — D1U3 w1
= Dva — DQUl 0 D3’U2 — D2’U3 Wo
Dlvg — D3’U1 DQUg — D3U2 0 W3

= (Dv— (Dv)"w.

Lemma:
Seien v = v(x), w = w(x) Vektorfelder. Dann gilt

V(v-w) = (Dv)'w+ (Dw) v.

Beweis:
Die j—te Komponente der linken Seite ist

D; (; vkwk> = Z(Djvk)wk + Z(Djwk)vk = (Djfu)Tw + (Djw)Tv.

k=1 k=1

Das Ergebnis ist die j—te Komponente der rechten Seite. a

Wendet man das letzte Lemma mit u = v = w an, so ergibt sich
SV (u-u) = (Du)"u.
Damit folgt

(u-V)u = (Du)u = %V(u ) + (Du — (Du)"u = 5V (u - u) + (rot u) x u.

DO|—

Wir fassen dies zusammen im folgenden Lemma:

Lemma:
Fiir jedes Vektorfeld u = u(x) gilt
2

(u-V)u=V <|u2> + (rotu) X wu. (29)
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Die Gleichung (27)

p%zpF%—V-a

wurde aus der Impuls- und der Kontinuitéatsgleichung gefolgert. Betrachte das innere

Produkt mit u. Weil (rotu) x u orthogonal zu rotwu und w ist, gilt ((rotu) x u)-u =0
und folglich

2
pll))?'u_p{utJr(u'v)“}'“_P{“t-u+v<|u2|)iu}_PF-qu(V-U)'u.

Dies ergibt wegen (|u|?); = us - u +u - up = 2uy - u

pDQt <|u2’2> :P{(luj)t—F(U'V) <|u2|2>}:pF-u+(V-a)-u.

Man beachte, daf} sich diese Gleichung als rein mathematische Folgerung aus der Konti-
nuitatsgleichung und der Impulsgleichung ergibt. Ziehen wir dies von der Energiegleichung
in der Form (26) ab, so ergibt sich

p%:PQ‘f‘V'(KVT)+V'<UU)—(V-U)'U.

Bezeichnung:
Fiir A, B € IR**? sei

3
A:B= Z aijbij

ij=1

Lemma:

V:(ou)—(V-0)-u=0:Du

Dabei wird benutzt, dafi ¢ symmetrisch ist (o = o7).
Beweis:

3 3
oiuj = Y 0Dy + Y (Dioyj)u;

4,j=1 i,j=1

V'(JU>:ZD1"

3 3
=1 7j=1

Nun ist (Du);; = Dju;, so daf3 die erste Doppelsumme gleich o : Du ist. Weiter gilt wegen
der Symmetrie von o

3

(V-o)ju; = Z(Z Dioji)u; = Y (Dioij)uy,

1 j=1 i=1 ij=1

(V-o)-u

3
Jj=

und die Behauptung folgt. a
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Die Energiegleichung erhélt damit die Form
pBC = pQ+V - (5VT) + 0 Du (30)

Die Gréfle o : Du ist ein Quellterm fiir innere Energie. Dieser Quellterm ist rein mecha-
nischen Ursprungs und riithrt von inneren Spannungskréften her. Wir haben

o=—-pl+7,
wobei p der Druck und 7 der viskose Spannungstensor ist. Wegen
pl : Du=pV -u

folgt

pBC +pV u=pQ+ V- (5VT) +7: Du. (31)

Der Ausdruck ¥ = 7 : Du wird als Dissipationsterm bezeichnet. Es ist
VAV At

die mechanische Energie, welche im Zeitintervall At und im Volumen AV durch viskose
Reibungskréfte in innere Energie umgewandelt wird.
Der Dissipationsterm soll nun niher betrachtet werden: Fiir zwei Matrizen S,T € IR3*®
gilt S : 7T = 8T :T7, also insbesondere S : T =S : T7, falls S symmetrisch ist. Daher
folgt

defu : Du = defu : (Du)?,

also

defu: Du = defu: (Du + (Du)") =
Mit 7 = A(V - w)I + pdef u folgt daraus

(defu) : (def u).

[\:Jh—t

3 3
U=7:Du=\V-u)? %(def u) : (defu) = AD_ Dju;)* + % > (Dju; + Dyuy)?.

Jj=1 1,j7=1

Lemma:

Aus p > 0 und 3\ + 2u > 0 folgt ¥ > 0.

Beweis:

Wir kénnen A\ < 0 annehmen, denn fiir A > 0 ist ¥ > 0 klar.

Fiir a,b, c € IR gilt aufgrund von 2ab < 2ab + (a — b)* = a® + b? etc. die Ungleichung

(a+b+ec)? = a®+ b+ + 2ab+ 2ac + 2be
< 4P+ +EC P+ P+ A+ +
= 3(a®+V* + ).

Mit a = Dyuy, b = Dous, ¢ = D3us ergibt dies

ZDu] =Ma+b+c)* >3X\a®+ b+ ).
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Auflerdem ist

3 3
Z (Dju; + Diu] Z (Dju; + Dyug)? = 4(a® + b + ).
ij=1 i=1
Daher folgt:
U > 3\ +2u)(a® + b* + %) > 0.

O
12 Zusammenfassung der Gleichungen
Wir haben die folgenden Gleichungen hergeleitet:
Dp P
D T pV - u 0
pgltL—FVp = pF+V.r1 (32)
p%?%—pV-u = pQ+ V- (kVT)+7: Du.

Dabei ist
=NV -u)l + pdefu.

Hierbei treten die thermodynamischen Variablen

p7p767T

auf. Da diese Variablen voneinander abhéngig sind, miissen die Gleichungen durch Zu-
standsgleichungen vervollstandigt werden, wie etwa

= pRT, e=c¢,T.

13 Vereinfachung zu einem hyperbolischen System

Fir F=Q =0, A = p =k = 0 lauten die Gleichungen:

Dp _
Dt+pV u = 0
pPU vy = 0 (33)
De . _
th+pV u = 0.

Wir wollen mit den thermodynamischen Variablen p, e arbeiten und nehmen an, dafl eine
Zustandsgleichung

p=rp(p,e)
bekannt ist. Z. B. kénnte man p = pRT, e = ¢, T, also p = £ pe verwenden. Die Ableitun-
gen ergeben sich mit Hilfe der Kettenregel, wie z. B. p, = p,ps + D€y, also

Vp=p,Vp+p.Ve.
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Die Gleichungen haben dann die Form

Du _
P Dy +p,Vp+p.Ve = 0
Dp _
ﬁt + pV cu = 0
p& +pV.u = 0
Dt '
Wir multiplizieren die beiden letzten Gleichungen mit p,/p bzw. p./p und erhalten
Du _
P Dy +p,Vp+pVe = 0
Py D
PPe De . —
P Di + 0.V - u 0.
u
Firw= | p | sei
e
ple peDl
p[ 0 0 0 ppDQ peDQ
Ag(w)=10 p,/p 0 , P(w,D)= ppDs  peDs
0 0 ppe/p p,D1 p,Dy p,Ds 0 0
peDl peDZ peD3 0 0

Auf diese Weise lassen sich die Gleichungen umformulieren zu

Ao(w)% + P(w, D)w = 0.

Dabei 1a83t sich P(w, D) zerlegen als

P(w, D) =Y B;(w)D;

J=1

mit symmetrischen Matrizen B;j(w), j = 1,2, 3. Ferner ist Ap(w) symmetrisch und fiir
verniinftige Funktionen p = p(p, e) positiv definit. Weiter gilt

3
= W¢ + (U . V)w = Wt + Z'LL]'DJ'U}.
j=1

Duw
Dt

Durch die Zusammenfassung
Aj(w) = Bj(w) + u; Ao (w)
erhélt man das System

Ap(w)wy + 23: A;(w)Djw = 0. (34)

Hierbei sind die Matrizen A;(w) symmetrisch fir j = 0,1, 2, 3, und Ag(w) ist positiv definit
fiir physikalisch relevante w. Ein System der obigen Form heifit symmetrisch hyperbolisch.
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14 Linearisierung an einem konstanten Zustand

Sei W eine konstante Funktion, unabhéngig von z, ¢t. Fiir eine Losung w von (34) machen
wir einen Ansatz
w(z,t) =W + ev(x, t).

Dann gilt A;(w) = A;(W) + O(e). Damit erhdlt man fiir v die Beziehung:
3
Ao(W>Ut + Z Aj(W)DjU = O,
=1

wenn man die O(e)-Terme vernachlissigt. Diese lineare Gleichung mit konstanten Koef-
fizienten beschreibt die Ausbreitung von kleinen Storungen in der Néhe eines konstanten
Zustandes W. Gleichungen mit konstanten Koeffizienten lassen sich im Prinzip durch
Fouriertransformation 16sen. Wir betrachten dazu allgemein

N
A(ﬂ)t + Z AijU = O,
j=1

wobel Ag, A; € IR™" symmetrische Matrizen sind und A, auBerdem positiv definit ist
(Ag > 0). Weil Ay positiv definit ist, existiert eine Matrix H = H' > 0 mit Ay = H*.
Fiir v = Hv ergibt sich das System

N N
Ho,+Y A;H'Djo=0, also o+ » C;D;jo=0
j=1 j=1
mit C; = H'A;H'. Wegen der Symmetrie von A; gilt C] = C;. Man kann sich also
auf Gleichungen der Form
N
(s Z CijU = O, Cj = C]T (35)
j=1

beschréanken. Wir untersuchen jetzt verschiedene Félle:

a) skalare Gleichung, 1 Raumdimension:
v+ cv, =0, v(x,0) = e** (36)

Mit dem Ansatz '
v(z,t) = q(t)e™

erhilt man durch Einsetzen in (36) eine gewohnliche Differentialgleichung fiir ¢:
q'(t) +cikq(t) =0, q(0)=1.

Folglich gilt ' '
q(t) = e also  w(x,t) = FE),

Die Welle e*** pflanzt sich demnach mit der Geschwindigkeit ¢ fort.
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b) System, 1 Raumdimension:
v+ Cuv, =0, mit C =CT e R™".

Wegen der Symmetrie von C gibt es eine Matrix S mit SST = I, so da A = S~!CS
diagonal ist. Fiir © = S~1v erhélt man das System

675 —’—Aﬁm == 0,

dessen einzelne Komponenten sich wie in a) verhalten. Mit dem vorgegebenen Anfangs-
zustand
v(z,0) =e*p, pe "

und ¢ = Sl ergibt sich das System
O+ A, =0, (x,0) = **g.
Eine Zerlegung von ¢ in die einzelnen Komponenten entspricht einer Zerlegung von ¢ in

Eigenvektoren von C"

Die Komponenten von ©(x,0) breiten sich mit den Geschwindigkeiten A; aus, wobei \; =
Aj; der j-te Eigenwert von C' ist:

j(x,t) = oAt

Fiir das urspriingliche System bedeutet dies, dafl sich der Anfangszustand

v(@,0) = ™o =3 Fe'rS; (37)
j=1
wie folgt ausbreitet:
v(z,t) = So(x,t) = > @A g, (38)
j=1

c) System, N Raumdimensionen:

N
v+ > CiDjw=0, v(z,0)= e* o mit C; = C'jT e RV ¢ e C",

j=1

dabei ist k- o = kijz; + ... + kyxy. Mit dem Ansatz

v(z,t) =" 7q(t), q(0) =
erhélt man ein System gewdhnlicher Differentialgleichungen fiir ¢:

q(t) + P(k)q(t) =0 mit p(k) = z% k;C;.

j=1

Dies hat die Losung )
q(t) = e "Wy,
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und es folgt
’U(:L‘, t) — eik-xefP(k)tgp.

Pkt

Um den Term e~ genauer zu untersuchen, schreiben wir

k= k| mit [k] = (K +...+ k)2, K =k/k], K| =1
Dann gilt
. N
P(k) = ilk|C(K°) mit C(K°) = S K2C;.
j=1

Weil C(k°) — wie alle C; — reell symmetrisch ist, gibt es eine orthogonale Matrix S =
S(kY), so daB A = A(K°) = S7IC(k?)S eine Diagonalmatrix ist. Aus der Darstellung

P(k) = i|k|C (k%) = i|k|SAS™?

folgt dann
efp(k:)t — Sefi\k\tl\sfl.

Sei nun
0 =56=3 ¢S,
j=1
die Zerlegung von ¢ nach Eigenvektoren von C'(k°). Dann ergibt sich

zk-xefP(k)tSO — ezk-xSefdk\tA ~

v(x,t) = e )

_ ezk-xS e—i|k|t>\j (15j

7j=1,..,n
n~i-m7i ; n~i 02—\
j=1 j=1
Ein gegebener Anfangszustand
o(x,0) = 7 = G = 37 5w, (39)
j=1
breitet sich also aus als
/U(x, t) — Z gﬁjei‘k‘{ko.x—)\jt}sj. (40)

J=1

Hierbei sind A;, S; die Eigenwerte und Eigenvektoren von

N
7j=1
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Interpretation:

1. Ausbreitungsrichtung:

Fiir 7 mit £°- 2 =0 gilt k° -2 = k% (z + ).
X2

T+ E°
x

Daher folgt fiir diese 7:

v(z,t) =v(x+ 7,t).
Also ist v zu jeder Zeit konstant entlang jeder Hyperebene, die senkrecht auf k° steht. Es
liegt nahe, k° als Ausbreitungsrichtung der Welle anzusehen.

2. Phasengeschwindigkeit:
Wegen |£°] =1 gilt
KO-z — Nt + At) = k0 - (z — N\EPAt) — A\t
Fiir
Vj(l’, t) _ €i|k|{k0-zf)\jt}
gilt daher
Vi(z,t + At) = Vj(z — \jEP At 1).
Dies bedeutet, dafl am Ort x zur Zeit t + At derselbe Funktionswert vorliegt, welcher zur

Zeit t am Ort @ — A\;jk°At vorlag.
)

kO
Z Der V;—Wert bei  — )\jk‘OAt zur Zeit t =0
ywandert“ zur Zeit t = At nach .

33—)\]' OAt

\ X1
Diese Interpretation legt es nahe,
Vi, ) = el a-20

als eine Wellenbewegung in k°-Richtung mit Geschwindigkeit \; zu deuten.

Weil V;(z + 1k°,t) = Vj(x,t) genau fiir | = %m mit m € 7Z gilt, ist die Wellenldnge

2m
L Ik
Man beachte jedoch, dafl die obige Interpretation (Bewegung mit Geschwindigkeitsvektor
A\;k%) nicht zwingend ist. Da V; zu jeder Zeit entlang jeder Hyperebene senkrecht zu k°
konstant ist, kénnte eine Bewegung senkrecht zu kY iiberlagert sein. Dies ist zu beach-
ten, wenn man keinen Widerspruch zum Begriff , Gruppengeschwindigkeit“ erhalten will.
Korrekterweise bezeichnet man £°); als Phasengeschwindigkeit von

‘/j(x, t) _ 6’l‘|k“{k/‘0'$_)\jt}‘
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15 Beispiel: Die Eulergleichungen mit p = p(p)

Die Eulergleichungen lauten
Dp

Dt;upv'“ =0 (41)

Um diese Gleichungen zu vervollstédndigen, wéhlen wir eine Zustandsgleichung

p="p(p),

zum Beispiel p = po(p/po)” mit v > 1. Insbesondere gilt dann p, > 0. Beschrianken wir
uns auf eine Raumdimension, so lautet das System

p(ut + uux) + ppp:c -

Die erste Gleichung schreiben wir um:

%(pt + up:p) +ppuz =0.

=) w5 0) (4 %)

dann wird das System zu

Setzen wir

0 = Ag(w){w; + vw, } + B(w)w, = Ag(w)wy + (uAg(w) + B(w)) w,

Al(w)

mit

aw = (0 12).
P

Linearisiert man diese Gleichung in einem konstanten Zustand W = (Zg) und setzt au-
Berdem u = uy + €, p = po + €p, so erhélt man

o) () -

Wegen p, > 0 ist Ag(W) positiv definit (Ay(1V) hat iiberdies schon Diagonalgestalt) und
148t sich daher als Ayg(W) = H? darstellen. Dies fiihrt zu der Gleichung

H(ﬁ)t +{H A (W)H" }H(ﬁ) = 0.

xT

Die Eigenwerte von H~'A;(W)H~! sind die Ausbreitungsgeschwindigkeiten von Stérun-
gen des Grundflusses W. Es ist

H P A WYH™ = H H{ugAg(W) + BW)YH ' = ugl + H*B(W)H ™.
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P U
a 0 (Pplggo))_§ )
Mit ¢? = p,(po) wird dann

o= (0 82 DO 2D

Die Eigenwerte dieser Matrix sind +c. Die Eigenwerte von H ' A;(W)H ! sind daher

Hierbei ist

/\172 = Ug +c.

Die Storungen breiten sich also mit der Geschwindigkeit ¢ relativ zur Grundstrémung mit
der Geschwindigkeit ug aus. Damit ist

C= pp(pO) (42>

die Ausbreitungsgeschwindigkeit von Schallwellen. Dieser Sachverhalt soll noch néher be-
leuchtet werden: Die bei W = (;’;g) linearisierten Gleichungen lauten (wenn wir die Schlan-

ge in unserer Notation weglassen)

) ol -

mit Ao(W) = (poo Cz?p()) , A(W) =upAg(W) + <002 %2) .

Im Fall ug = 0 heifit das
Pol + Cpr = 0
2
£ otitu, = 0
bzw.

2
Uy + %px =
Pt + poly = 0.

Daraus folgt
2

_ —C _ 2 _ 2
U = 0o Pzt = C Ugy, Pit = —PolUgzt = C Prg-

Die Storterme p und u geniigen daher Wellengleichungen mit £c¢ als Ausbreitungsge-
schwindigkeit. Fiir ¢ gilt:

!

wio) - ()"

9}
|
ks
=
e
o
S~—
I
S
=
/N
S
N—
2
i
|
g
o
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Fiir Luft bei 0°C gilt etwa (siche Anhang)

oo ~ 1293 kg

P 1,0132bar:1,0132-105£—§2 (1bar = 10° 1N—1kgm)
v A 1,402,

Q

so daf sich fiir die Schallgeschwindigkeit ¢ der Wert

oY o, [L0132-1,402 |5 k

_ g m
c=\/"po ~ 1.293 27 kg S

ergibt.

16 Nichtlineare hyperbolische Gleichungen:
Burgers’ Gleichung als Beispiel

Betrachte die AWA (Burgers’ Gleichung)
up + uu, =0 mit u(x,0) = f(x). (43)

Sei u(z,t) eine fir x € IR, 0 < ¢ < T definierte glatte Losung. Betrachte die Linie (x(t),t)
fir 0 <t <T, die der gewohnlichen Differentialgleichung

dr — u(a(t),1), 2(0) = (44)

geniigt, und definiere

Dann gilt wegen (43)
h'(t) =

Daher ist h konstant mit h(t)

~—

U (t) + uy = ugu + ug = 0.
h(0) = u(zo,0) = f(zo), und aus (44) folgt

5
S
S~—

1

f(xg), also z(t) = xo + tf(xo).

Die Linie (z(t),t) fir 0 < ¢t < T ist eine Charakteristik der Gleichung u; + uu, = 0
beziiglich der ins Auge gefaiten Losung u = u(x,t). Wir haben gezeigt, dafl jede Charak-
teristik eine gerade Linie ist und dafl u entlang jeder Charakteristik konstant ist.

Nehmen wir nun an, daf§ zo,z; € IR existieren mit xy < 1, aber f(zg) > f(x;). Die
Charakteristik durch (x¢,0) hat die Geschwindigkeit f(x), wihrend die Charakteristik
durch (x1,0) die kleinere Geschwindigkeit f(z1) hat. Zur Zeit

t*_ )

— fwo) — f(x1)
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schneiden sich die beiden Charakteristiken. Da die u—Werte entlang beider Charakteristi-
ken verschieden sind, kann eine glatte Losung nicht bis zur Zeit ¢* existieren. Vor der Zeit
t* entsteht ein Schock.

Im vorliegenden Fall kann man folgendes zeigen (unter schwachen Annahmen die An-
fangsfunktion f): Fiir alle € > 0 hat die parabolische AWA

U + Uy = EUy,  mit u(z,0) = f(z) (45)
eine eindeutige klassische Losung u.(z,t), fiir die gilt

u. € C°(—oc0 <z <00, 0<t<00).
Fiir e — 0 konvergiert u. punktweise fast iiberall gegen eine Grenzfunktion u(z,t) fiir

x € IR, t > 0. Diese Grenzfunktion ist per Definition die physikalisch relevante schwache
Losung von (43).

17 Viskositidtsterme in den
Navier—Stokes—Gleichungen

Betrachten wir wieder der Einfachheit halber den Fall p = p(p). Die Navier—Stokes—
Gleichungen lauten dann bei F' = 0 und Konstanten A und u:

Du 1y = L{+p)V(V - u) + i}
Dp _
D T pV-u = 0.
Betrachte nun die Hilfsgleichung
w = = { (A + p)V(V - u) + pAu} . (46)

Pou:=

Bei einer Anfangsbedingung
u(z,0) = e* 7y
machen wir den Ansatz
u(z,t) = e q(t).

Dies liefert
Pou(z,t) = e*" Py(k)q(t)
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mit dem sogenannten Symbol Py(k) € €%, Das Symbol Ps(k) entsteht aus P, indem
man D; formal durch ik; ersetzt. Man erhilt fiir P, aus (46)

Po(k) = = o A\ + kK" + ul K1},
Fiir v € IR? beliebig mit |v| = 1 folgt daraus
o Py(k)o = — AL+ i) (TR + pul
Sei
¢ :=min{p,2u + A} > 0.
1. Fall: p >2pu+ A =c,also0> p+ A
Nach Cauchy—Schwarz gilt
(v k)* < [k*|v]* = |k [,
also
(1o + M) (k) > (e + )
und schliefllich
A+ ) (0T k) + plk* > (2 + N)[E* = clk[”.
2. Fall: 2u+ A >pu=c,alsopu+ A >0
Dann gilt ebenfalls
(A + ) (0" k)* + plk[* > plk]* = c[k]*.

Dies beweist das folgende Lemma:

Lemma: X
Sei ¢ = min{y, 2+ A} > 0. Dann gilt fiir alle k € IR?, k # 0: Die Matrix P (k) ist negativ
definit mit R

v Py(k)v < —p—co\k‘|2|v|2

fiir alle v € R®. O

Fiir die Gleichung A
u = Pyu, u(x,0)= e’k'xgo
fiihrt unser Ansatz .
u(z,t) = eZk'mq(t)

auf die gewohnliche Differentialgleichung

¢(t) = Pa(k)q(t), q(0) = .
Da Py(k) fiir k # 0 negativ definit ist, folgt ¢(t) — 0 fiir ¢t — oo. Damit liBt sich zeigen,
daB sich die Losungen von

u = Pou

dghnlich verhalten wie die Losungen der Wéarmeleitungsgleichung u; = Awu. Man nennt
u; = Pau ein parabolisches System.
Eine unbewiesene Vorstellung ist, dafl bei den Navier—Stokes—Gleichungen (im Gegen-
satz zu den Eulergleichungen) keine Schocks auftreten, daf also die Viskositdtsterme das
Herausbilden von Unstetigkeiten verhindern.
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A Thermodynamische Materialkonstanten

Die folgende Tabelle enthélt Mewerte der benotigten thermodynamischen Konstanten fiir
eine Auswahl verschiedener Gase und Fliissigkeiten. Die Angaben beziehen sich auf den
Druck p = 1,0132bar (bzw. p = 0,981 bar fiir die mit ,** gekennzeichneten Werte) und
die Temperatur 7' = 20°C (bzw. T} = 0°C und Ty = 100°C, falls zwei Werte vorliegen).!

p Cp R y K v 1
kg/m3 | kJ/kg K | kJ/kg K W/m K | 107%m?/s | 10%Pa s
Lt 1,293 1,005 | 0287]1,402| 0,024*] 1328 17,13
uft 0,95 1,01%* — | — | 0,031% 23,04 21,89
W, toff 0,090 14,249 4,124 | 1,409 | 0,176* 97* 8,4%*
assersto 0,064* 14,44* — — | 0,229% | 162* 10,4*
W 999,8 4,220 0,549 1,789 | 1789
asser 958 4,216 T | 0,681 0,294 282
Benzol 879 1,738 — — | 0,154 0,740 650
Quecksilber | 13546 0,139 — — | 9,304 0,115 | 1558
Dichte

spezifische Warmekapazitat (bei konstantem Druck)
spezifische Gaskonstante

Isentropenexponent

Wiérmeleitungskoeffizient

kinematische Viskositét

dynamische Viskositét

TR I pgHD

Es gelten die Beziehungen:
v = ¢p/cy mit ¢, = ¢, — R,
v =p/p.

Der 2. Viskositétskoeffizient A mit [\]=Pas ist weniger gut untersucht. Man nennt up :=
A + 2 Kompressions-Viskositét (Volumen-Viskositit, Druck-Viskositét) bzw. bulk vis-
cosity. Fiir einatomige ideale Gase gilt up = 0, also A = —2pu. Fiir Stickstoff (Ny) bei
mittlerer Temperatur ergeben Messungen pp ~ 0,81, so dafl hier A ~ 0,13 gilt.?

'Quelle: Dubbel — Taschenbuch fiir den Maschinenbau, 16. Auflage
Hrsg.: W. Beitz, K.-H. Kiittner
Springer-Verlag, Berlin 1987
2Quelle: Introduction to Physical Gas Dynamics
W. G. Vincenti, Ch. H. Kruger, Jr.
Wiley, New York 1975



