
Skript

zur Vorlesung

Die Navier–Stokes–Gleichungen
für kompressible Flüssigkeiten

3. Juni — 8. Juli 1994

Prof. Dr. J. Lorenz
Dipl.–Math. V. Reichelt

Institut für Geometrie und Praktische Mathematik
Lehrstuhl für Numerische Mathematik

RWTH–Aachen



Inhaltsverzeichnis

1 Einleitung 3

2 Bezeichnungen 3

3 Eulersche Beschreibung der Bewegung 4

4 Massenerhaltung und Kontinuitätsgleichung 4
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1. Einleitung 3

1 Einleitung

Ziel der Vorlesung ist es, Studenten der Mathematik mit den Grundgleichungen der
Flüssigkeits- und Gasdynamik vertraut zu machen. Dazu werden die Kontinuitätsglei-
chung, die Impulsgleichung und die Energiegleichung aus den entsprechenden Erhaltungs-
sätzen hergeleitet und einige einfache Umformungen vorgenommen. Die resultierenden
partiellen Differentialgleichungen müssen durch thermodynamische Zustandgleichungen
ergänzt werden. (Dies sind eigentlich thermostatische Zustandsgleichungen, da man zu
jedem Zeitpunkt und an jedem Ort thermodynamisches Gleichgewicht annimmt.)
Die hergeleiteten Differentialgleichungssysteme beschreiben eine große Vielfalt physikali-
scher Phänomene und spielen eine entsprechend große Rolle für technische Anwendungen.
Ich hoffe, eine für Studenten der angewandten Mathematik akzeptable Einführung in
dieses umfangreiche Gebiet gefunden zu haben.
Herrn Dipl.–Math. Volker Reichelt danke ich sehr für die sorgfältige Ausarbeitung der
Vorlesung.

Aachen, im Oktober 1994
Jens Lorenz

2 Bezeichnungen

Es bezeichne Ω ⊂ IR3 das von der Flüssigkeit ausgefüllte Gebiet. Der Einfachheit halber
nehmen wir Ω als zeitunabhängig an. Weiterhin ist x ∈ Ω der Vektor der Raumkoordinaten
und t ∈ [0,∞) die Zeit. Es treten die folgenden Variablen auf, welche im allgemeinen
Funktionen von (x, t) sind:

u : Geschwindigkeit
ρ : Dichte
p : Druck
σ : Spannungstensor
τ : viskoser Spannungstensor
F : äußere Kraft pro Masseneinheit
e : innere Energie pro Masseneinheit
T : absolute Temperatur
q : Wärmeleitungsvektor
Q : Quellterm für Wärmeerzeugung

Weiter arbeitet man mit den folgenden Transportkoeffizienten:

µ : 1. Viskositätskoeffizient (dynamische Viskosität)
λ : 2. Viskositätskoeffizient
κ : Wärmeleitungskoeffizient

Die Größen F = F (x, t), Q = Q(x, t) werden wir als gegeben ansehen. Von den vier
thermodynamischen Variablen ρ, p, e, T sind nur zwei unabhängig. Die anderen sind durch
sie über thermodynamische Zustandsgleichungen bestimmt. (Es wird zu jedem Zeitpunkt
t und an jedem Ort x thermodynamisches Gleichgewicht angenommen.)
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3 Eulersche Beschreibung der Bewegung

Die Trajektorien von idealisierten Flüssigkeitsteilchen (Punkten) werden durch eine Fluß-
funktion

Φ :
{

Ω × [0,∞) → Ω
(x, t) → Φ(x, t)

(1)

mit Φ(x, 0) = x beschrieben. Es ist Φ(x, t) die Raumkoordinate zur Zeit t des Teilchens,
welches zur Zeit t = 0 am Ort x war.
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Dies ist die Eulersche Beschreibung der Bewegung in raumfesten Koordinaten. Daraus
ergibt sich die Geschwindigkeit u als zeitliche Ableitung des Ortes der Teilchen:

Φt(x, t) = u(Φ(x, t), t). (2)

Ist das Geschwindigkeitsfeld u = u(x, t) gegeben, so kann Φ aus (2) durch Lösen von
gewöhnlichen Anfangswertaufgaben gefunden werden. Ist umgekehrt Φ = Φ(x, t) bekannt,
so läßt sich u wie folgt bestimmen: Zu gegebenem (y, t) bestimme x mit Φ(x, t) = y, also
x = Φ−1(y, t), wobei Φ(·, t) für festes t als bijektive Funktion von Ω nach Ω vorausgesetzt
wird. Dann ist

u(y, t) = u(Φ(x, t), t) = Φt(x, t) = Φt(Φ
−1(y, t), t).

4 Massenerhaltung und Kontinuitätsgleichung

Sei W0 ⊂ Ω ein beschränktes Teilgebiet, und sei

W (t) = Φ(·, t)(W0) = {Φ(x, t) | x ∈ W0 }

das Bild von W0 unter der Abbildung Φ(·, t). Dann ist

M(t) =
∫

W (t)
ρ(x, t) dV (3)

die Masse in W (t) zur Zeit t. Die Massenerhaltung besagt, daß M(t) konstant ist und
daher dM/dt = 0 gilt. Um die Ableitung des Integrals auszurechnen, benötigen wir den
folgenden Satz:

Satz: (Transportsatz)
Seien u, Φ, W0, W (t) wie oben, und sei f(x, t) eine C1–Funktion. Dann gilt

d
dt

∫

W (t)
f(x, t) dV =

∫

W (t)
{ft + ∇ · (fu)}(x, t) dV. (4)

2
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Hierbei ist

∇ · v = div v =
3∑

j=1

Djvj mit Dj = ∂
∂xj

die Divergenz eines Vektorfeldes v = (v1, v2, v3).
Der Beweis beruht auf folgendem Lemma.

Lemma: (Wronski–Determinante)
Seien A(t) und Y (t) quadratische Matrizen mit

d
dt

Y (t) = A(t) Y (t). (5)

Dann gilt
d
dt

det Y (t) = tr A(t) det Y (t).

Hierbei bezeichnet det Y die Determinante der Matrix Y und tr A = a11 + a22 + . . . + ann

die Spur der Matrix A.
Beweis:
Es bezeichne

Yi = (yi1, . . . , yin)

die i–te Zeile von Y . Wegen (5) gilt dann

d
dt

Yi =
n∑

j=1

aijYj, i = 1,..., n. (6)

Im Falle n = 2 sei

Y =
(

a b
c d

)
,

also det Y = ad − bc. Dann ist

d
dt

det Y = a′d − b′c + ad′ − bc′ = det
(

a′ b′

c d

)
+ det

(
a b
c′ d′

)
.

Diese Formel läßt sich auf beliebige n verallgemeinern: Aus

det Y =
∑

σ∈Sn

sgn σ y1σ1
· · · ynσn

folgt mit der Produktregel

d
dt

det Y =
n∑

i=1

∑

σ∈Sn

sgn σ y1σ1
· · · y′

iσi
· · · ynσn

=
n∑

i=1

det




· · ·
dYi/dt
· · ·


 .

Hierbei ist die i–te Zeile ausgezeichnet. Die mit
”
. . .“ bezeichneten Zeilen sind dieselben

wie in Y . Wegen (6) folgt mit der Multilinearität der Determinantenabbildung

d
dt

det Y =
n∑

i,j=1

aij det



· · ·
Yj

· · ·


 .

Die Determinante in der letzten Formel verschwindet für i 6= j, und die Behauptung folgt.
2
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Zum Beweis des Transportsatzes wird das Lemma wie folgt angewendet: Aus

Φt(x, t) = u(Φ(x, t), t)

folgt mit der Kettenregel

Φxt(x, t) = ux(Φ(x, t), t) Φx(x, t).

Nun sei
J(x, t) = det Φx(x, t).

Dann impliziert das Lemma:

∂
∂t

J(x, t) = tr ux(Φ(x, t), t) J(x, t) = (∇ · u)(Φ(x, t), t) J(x, t). (7)

Beweis: (Transportsatz)
Nach der Transformationsformel gilt für jedes t

∫

W (t)
f(y, t) dV =

∫

W0

f(Φ(x, t), t) J(x, t) dV. (8)

Die Skizze stellt die verschiedenen Abbildungen und Gebiete dar, die bei der Transforma-
tion eine Rolle spielen:
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f(·, t)
IR

Differentiation nach t unter dem Integralzeichen auf der rechten Seite von (8) liefert

d
dt

∫

W (t)
f(y, t) dV

=
∫

W0

∂
∂t

f(Φ(x, t), t) J(x, t) dV +
∫

W0

f(Φ(x, t), t) ∂
∂t

J(x, t) dV

=
∫

W0

{ft + ∇f · u}(Φ(x, t), t) J(x, t) dV +
∫

W0

{f (∇ · u)}(Φ(x, t), t) J(x, t) dV

=
∫

W0

{ft + ∇f · u + f (∇ · u)}(Φ(x, t), t) J(x, t) dV

=
∫

W0

{ft + ∇ · (fu)}(Φ(x, t), t) J(x, t) dV,

wobei (7) verwendet wurde. Erneute Anwendung der Transformationsformel ergibt

d
dt

∫

W (t)
f(y, t) dV =

∫

W (t)
{ft + ∇ · (fu)}(y, t) dV,

und die Behauptung ist gezeigt. 2
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Aus der Massenerhaltung folgert man durch Anwendung des Transportsatzes mit f = ρ:

0 = d
dt

∫

W (t)
ρ dV =

∫

W (t)
{ρt + ∇ · (ρu)} dV.

Da W(t) ein beliebiges beschränktes Teilgebiet sein kann, folgt bei angenommener Glatt-
heit von ρ (Lokalisierung):

ρt + ∇ · (ρu) = 0. (9)

Dies ist die Kontinuitätsgleichung.

5 Impulsgleichung

Es seien u, Φ, W0, W (t), ρ wie oben definiert. Dann ist

Im(t) =
∫

W (t)
(ρu)(y, t) dV (10)

der Impuls der Masse in W (t). Nach Newtons Gesetz

Änderung des Impulses = Kraft

ist d
dt

Im(t) gleich der Kraft K(t), welche auf die Masse in W (t) einwirkt. Wir nehmen
an, daß sich K(t) in eine Volumenkraft (wie Gravitation) und eine auf den Rand ∂W (t)
einwirkende Kraft zerlegen läßt. Die Volumenkraft sei von der Form

K1(t) =
∫

W (t)
ρ(y, t) F (y, t) dV.

Dabei ist F (y, t) ein gegebenes Feld, z. B. die Schwerebeschleunigung. Da ρ dV die Di-
mension einer Masse hat, ergibt sich für F die Dimension einer Beschleunigung. Für die
Randkraft nehmen wir die Form an

K2(t) =
∫

∂W (t)
σ(y, t) n(y, t) dS.

Dies ist ein Oberflächenintegral. Hierbei ist n(y, t) die äußere Einheitsnormale zu ∂W (t)
im Punkt y, und σ(y, t) ∈ IR3×3 ist der Spannungstensor. Wir werden unten beschreiben,
in welcher Beziehung σ zum Druck p und zum Deformationstensor def u steht. Da dS die
Dimension einer Fläche hat, ergibt sich für die Dimension von σ:

[σ] =
[

Kraft
Fläche

]
= [Druck].

Bemerkung:

Aus dem Drehimpulssatz läßt sich begründen, daß σ symmetrisch ist. 2



8 Die Navier–Stokes–Gleichungen für kompressible Flüssigkeiten

Das Newtonsche Gesetz ergibt damit

d
dt

∫

W (t)
(ρu)(y, t) dV =

∫

W (t)
(ρF )(y, t) dV +

∫

∂W (t)
(σn)(y, t) dS. (11)

Nach dem Stokesschen Satz gilt für (hinreichend glatte) f : IR3 → IR

∫

W
Djf dV =

∫

∂W
f nj dS für j = 1, 2, 3;

dabei ist Dj = ∂/∂xj, und nj ist die j–te Komponente von n. Daraus ergibt sich für ein
Vektorfeld f̃ : IR3 → IR3 der Gaußsche Satz:

∫

W
∇ · f̃ dV =

∫

∂W
f̃ · n dS.

Die j–te Komponente von (11) lautet

d
dt

∫

W (t)
ρ uj dV =

∫

W (t)
ρFj dV +

∫

∂W (t)
σj n dS.

(Dabei ist σj die j–te Zeile von σ.) Das Randintegral
∫
∂W (t) σj n dS formen wir mit dem

Gaußschen Satz in ein Volumenintegral um:

∫

∂W (t)
σj n dS =

∫

W (t)
∇ · σj dV.

Auf die linke Seite der vorletzten Gleichung wenden wir den Transportsatz an:

d
dt

∫

W (t)
ρ uj dV =

∫

W (t)
{(ρ uj)t + ∇ · (ρ uj u)} dV.

Dies impliziert die Gleichung

∫

W (t)
{(ρ uj)t + ∇ · (ρ uj u)} dV =

∫

W (t)
{ρFj + ∇ · σj} dV,

aus der man mittels Lokalisierung die folgende Gleichung gewinnt:

(ρ uj)t + ∇ · (ρ uj u) = ρFj + ∇ · σj. (12)

Wir wollen die drei Gleichungen für j = 1, 2, 3 in einer Vektorgleichung zusammenfassen.
Sind a, b ∈ IR3, so bezeichnen wir mit

a ◦ b = abT =




a1

a2

a3


 (b1, b2, b3) ∈ IR3×3

ihr dyadisches Produkt.
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Die Gleichungen (12) sind dann die Komponenten der Impulsgleichung

(ρ u)t + ∇ · (ρ u ◦ u) = ρF + ∇ · σ. (13)

Hierbei gilt folgende Vereinbarung: Ist

A =




A1

A2

A3


 ∈ IR3×3

eine Matrix mit Zeilen Aj = Aj(x), so sei

∇ · A =



∇ · A1

∇ · A2

∇ · A3


 .

Der Spannungstensor σ ist nicht von den anderen Variablen unabhängig. Wie er von u
und p abhängt, wird im nächsten Abschnitt erläutert.

6 Beziehung von σ zu u und p

Es ist üblich, für den Spannungstensor σ die Form

σ = −pI + τ (14)

anzunehmen. Hierbei ist p = p(x, t) der thermodynamische Druck und τ der viskose Span-
nungstensor. Es bezeichne def u den sogenannten Deformationstensor, welcher definiert ist
durch

(def u)ij = Diuj + Djui für i, j = 1, 2, 3

oder in anderer Notation:

def u = ux + (ux)
T .

Die fundamentale Annahme für die Navier–Stokes–Gleichungen ist die Beziehung

τ = λ(∇ · u)I + µ def u (15)

mit Konstanten λ, µ. (Im allgemeinen hängen λ und µ von thermodynamischen Variablen
wie ρ und T ab, sind aber unabhängig von u.)

Setzen wir die Beziehungen σ = −pI+τ und τ = λ(∇·u)I+µ def u in die Impulsgleichung
(13) ein, so ergibt sich

(ρ u)t + ∇ · (ρ u ◦ u) + ∇p = ρF + ∇(λ∇ · u) + ∇ · (µ def u). (16)
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Bemerkung: (Die Beziehung σ = −pI + τ)

a) Um den Anteil −pI in σ zu veranschaulichen, betrachten wir folgendes Gebiet:
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−e1 •

S2

................................................................................................................................................................................................................................................................................

......
.....
....
....
....
...
...
..

e1•S1

An der Fläche S1 herrsche der Druck p1 und an der Fläche S2 der Druck p2 < p1. Es ist
n = −e1 auf S1 und n = e1 auf S2. Wenn S1 und S2 die Größe ∆S haben, so wird

∫

S1∪S2

−p n dS = ∆S {−p1 (−e1) − p2 e1} = ∆S (p1 − p2) e1.

Das Druckgefälle führt also zu einer Kraft in e1–Richtung.

b) Zur Illustration von τ diene das folgende Geschwindigkeitsfeld:
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Platte

u1(x1, x2, x3) = kx2, u2 = u3 = 0 mit k > 0.

Auf die Platte mit der Normalen n = e2 wirkt eine Kraft in Richtung e1 (Reibungskraft
durch die Bewegung der Teilchen entlang der Platte). Es gilt

Du =




0 k 0
0 0 0
0 0 0


 , also def u =




0 k 0
k 0 0
0 0 0


 .

Wegen ∇ · u = 0 und n = e2 wird τn = λ(∇ · u)n + µ def un = µke1. Dies stimmt
mit der Anschauung überein, daß auf die Platte eine Kraft in Richtung e1 wirkt. Die
Proportionalität der Kraft zu k ist experimentell bestätigt. 2
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7 Umformungen der Impulsgleichung

Die Impulsgleichung (16)

(ρ u)t + ∇ · (ρ u ◦ u) + ∇p = ρF + ∇(λ∇ · u) + ∇ · (µ def u)

soll noch weiter vereinfacht werden. Die linke Seite der Gleichung enthält noch einen
Anteil, der direkt aus der Kontinuitätsgleichung folgt und daher eliminiert werden soll.
Auf der rechten Seite sollen die zweiten Ableitungen von u umgeschrieben werden.
Der Term (ρu)t = ρtu + ρut auf der linken Seite der Impulsgleichung beinhaltet noch den
Ausdruck ρt. Es liegt nahe, ihn mit Hilfe der Kontinuitätsgleichung umzuschreiben. Dazu
betrachten wir zunächst den Term

∇ · (ρ u ◦ u).

Die i–te Komponente ist

∇ · (ρ ui u) =
3∑

j=1

Dj(ρ ui uj) =
3∑

j=1

Dj(ρ uj) ui + ρ
3∑

j=1

uj Djui.

Zur Abkürzung der zweiten Summe benutzt man den Differentialausdruck

u · ∇ =
3∑

j=1

uj Dj,

welcher auf die skalare Funktion ui bzw. komponentenweise auf u angewendet wird. Damit
ergibt sich für die i–te Komponente

∇ · (ρ ui u) = ∇ · (ρ u) ui + ρ (u · ∇) ui

bzw. für den gesamten Vektor

∇ · (ρ u ◦ u) = ∇ · (ρ u) u + ρ (u · ∇) u.

Daraus folgt

(ρ u)t + ∇ · (ρ u ◦ u) = ρt u + ρ ut + ∇ · (ρ u) u + ρ (u · ∇) u

= (ρt + ∇ · (ρ u)) u + ρ (ut + (u · ∇) u).

Der erste Term verschwindet aufgrund der Kontinuitätsgleichung. Mit dieser Identität
nimmt die Impulsgleichung folgende Gestalt an, wenn man durch ρ dividiert:

ut + (u · ∇) u + 1
ρ∇p = F + 1

ρ∇(λ∇ · u) + 1
ρ∇ · (µ def u). (17)

Wenden wir uns nun der rechten Seite der Impulsgleichung zu. Folgende formale Rechnung
läßt sich leicht rechtfertigen. Wir setzen

D =




D1

D2

D3


 , u =




u1

u2

u3


 .
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Dann ist

ux = uDT ,

(ux)
T = DuT ,

def u = ux + (ux)
T = uDT + DuT ,

∇ · def u = (def u)D = uDTD + DuTD.

Hierbei ist DuTD = ∇(∇ · u), und DTD = D2
1 + D2

2 + D2
3 = ∆ ist der Laplaceoperator.

Damit wird

∇ · def u = ∇(∇ · u) + ∆u.

Mit Konstanten λ, µ erhält man dann die folgende Form der Impulsgleichung:

ut + (u · ∇) u + 1
ρ∇p = F + λ + µ

ρ ∇(∇ · u) + µ
ρ∆u. (18)

8 Navier–Stokes–Gleichungen

für inkompressible Strömungen

In den Gleichungen

ρt + ∇ · (ρ u) = 0

ut + (u · ∇) u + 1
ρ∇p = F + λ + µ

ρ ∇(∇ · u) + µ
ρ∆u

(19)

sehen wir F = F (x, t) als gegebenes Feld und µ, λ als bekannte Materialkonstanten an. Die
vier Gleichungen für die fünf Unbekannten ρ, p, u = (u1, u2, u3) sind noch unterbestimmt.
In vielen Fällen (z. B. in der Hydrodynamik) ist es angebracht, die Dichte ρ als eine
bekannte Konstante ρ0 anzusehen. Dann vereinfacht sich die Kontinuitätsgleichung zu
der Nebenbedingung

∇ · u = 0.

Das heißt, das Geschwindigkeitsfeld ist zu jedem Zeitpunkt divergenzfrei. Damit entfällt
auch der mittlere Term auf der rechten Seite der Impulsgleichung. Im Falle ρ ≡ ρ0 =
konstant erhält man also

ut + (u · ∇) u + 1
ρ0

∇p = F + µ
ρ0

∆u

∇ · u = 0.
(20)

Man nennt

ν = µ/ρ0

die kinematische Viskosität. Normiert man ρ0 = 1, so ergibt sich

ut + (u · ∇) u + ∇p = ν∆u + F

∇ · u = 0.
(21)
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Dies ist das System der inkompressiblen Navier–Stokes–Gleichungen, falls ν > 0. Für
ν = 0 spricht man von den inkompressiblen Eulergleichungen. Für ν > 0 ist das Sy-
stem in einem geeigneten Sinn

”
abstrakt parabolisch“. Der Druck p spielt die Rolle eines

Lagrangeschen Multiplikators zur Nebenbedingung ∇ · u = 0. Unter geeigneten Anfangs-
und Randbedingungen ist bekannt, daß lokal (in der Zeit) eine eindeutige Lösung existiert.
In zwei Raumdimensionen (2D) ist in vielen Fällen sogar globale eindeutige Lösbarkeit
bekannt (Existenz einer glatten Lösung für alle Zeiten). Die globale Lösbarkeit in drei
Raumdimensionen (3D) ist ein wichtiges offenes Problem.

9 Navier–Stokes–Gleichungen mit

einer Zustandsgleichung p = p̄(ρ)

Bisher haben wir die Gleichungen

ρt + ∇ · (ρu) = 0

ut + (u · ∇)u + 1
ρ∇p = F + λ + µ

ρ ∇(∇ · u) + µ
ρ∆u

(22)

hergeleitet. Wenn Temperatureffekte keine Rolle spielen, aber Kompressibilität nicht ver-
nachlässigt werden kann, können sie durch eine Zustandsgleichung

p = p̄(ρ)

mit bekannter Funktion p̄ vervollständigt werden. Eine oft benutzte Zustandsgleichung
ist

p = p0

( ρ
ρ0

)γ

mit Konstanten p0, ρ0, γ. Aus der Thermodynamik läßt sich die Beziehung

γ =
cp
cv

begründen, wobei cp bzw. cv die spezifische Wärme bei konstantem Druck bzw. bei kon-
stantem Volumen ist. Aus der statistischen Mechanik läßt sich die Beziehung

γ = n + 2
n

begründen, wobei n die Anzahl von Rotations- und Vibrationsfreiheitsgraden der Moleküle
ist. Dabei ist Gleichverteilung der Energie auf alle Freiheitsgrade angenommen. Wegen

3 ≤ n < ∞

ergibt sich

1 < γ ≤ 5
3
.

Für Luft wird der Wert γ ≈ 1,4 = 7
5

angegeben.
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Sei p = p̄(ρ), also px = p̄ ′(ρ)ρx. Damit ergibt sich für ρ, u das System

ρt + ∇ · (ρu) = 0

ut + (u · ∇)u +
p̄ ′(ρ)

ρ ∇ρ = F + λ + µ
ρ ∇(∇ · u) + µ

ρ∆u.

Die Gleichung ρt + ∇ · (ρu) = 0 ist skalar hyperbolisch für ρ bei bekanntem u. Unter der
Annahme

µ > 0, 2µ + λ > 0

ist die zweite Gleichung ein parabolisches System zweiter Ordnung für u bei bekanntem ρ.
Insgesamt erhält man ein gekoppelt parabolisch–hyperbolisches System. Häufig sind µ und
λ klein. Wenn man µ = λ = 0 setzt, erhält man für ρ, u ein sogenanntes hyperbolisches
System erster Ordnung; eine Form der kompressiblen Eulergleichungen.

10 Energiegleichung

Es bezeichne e = e(x, t) die innere Energie pro Masseneinheit, so daß
∫

W
ρ(x, t) e(x, t) dV

die innere Energie zur Zeit t in W ist. (Die innere Energie ist ein Maß für die Wärmebe-
wegung und innermolekulare Schwingungen.) Weiter ist

∫

W

1
2
ρ|u|2 dV

die kinetische Energie, wenn wir mit

|u| = (u2
1 + u2

2 + u2
3)

1

2

die Euklidische Norm bezeichnen. Insgesamt ist

E(t) =
∫

W (t)

{
1
2
ρ|u|2 + ρe

}
dV (23)

die Energie in W (t). Die Änderung d
dt

E(t) der Energie wird durch Volumenkräfte, durch
Randkräfte, durch Wärmeerzeugung (oder -vernichtung) in W (t) und durch Wärmefluß
über den Rand ∂W (t) hervorgerufen. Die Änderung der Energie durch die Volumenkraft
ρF führt zu dem Term ∫

W (t)
ρF · u dV.

Dies illustriert die folgende Skizze:
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∆s = u∆t
Das Gebiet mit Volumen ∆V enthält die Masse ρ∆V .
Auf diese Masse wirkt die Volumenkraft K = ρF∆V .
Im Zeitintervall ∆t legt die Masse den Weg ∆s = u∆t zurück.
Die Energie nimmt dadurch um den Betrag
∆E = K · ∆s = ρF · u∆t∆V zu.
Die Energieänderung ist folglich ∆E

∆t
= ρF · u∆V .
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Die Änderung der Energie durch Oberflächenkräfte führt in analoger Weise zu dem Term
∫

∂W (t)
(σn) · u dS.

Wegen der Symmetrie von σ (σ = σT ) gilt

(σn) · u = uT σn = (σu) · n.

Es sei q = q(x, t) der Wärmeleitungsvektor. Bezeichnet ∆S ein Flächenstück mit der
Einheitsnormalen n, so ist

q · n ∆S ∆t

die Wärmeenergie, welche in der Zeit ∆t durch ∆S fließt. Damit erhält man für die
Energieänderung den Term

−
∫

∂W (t)
q · n dS.

Schließlich sei Q = Q(x, t) ein als bekannt angenommener Quellterm für die Wärmeerzeu-
gung oder -vernichtung. (Q kann benutzt werden, um Wärmeerzeugung durch chemische
Reaktionen oder Wärmeverlust durch elektromagnetische Strahlung zu modellieren.) Wir
erhalten für die Energieänderung den Term

∫

W (t)
ρQdV.

Insgesamt liefert dies die Gleichung

d
dt

∫

W (t)

{
1
2
ρ|u|2 + ρe

}
dV

=
∫

W (t)
ρF · u dV +

∫

∂W (t)
(σu) · n dS −

∫

∂W (t)
q · n dS +

∫

W (t)
ρQdV.

(24)

Auf die linke Seite wenden wir den Transportsatz an, auf der rechten Seite verwenden wir
den Gaußschen Satz, um die Randintegrale in Volumenintegrale umzuschreiben. Lokali-
sierung ergibt schließlich die Energiegleichung

(1
2
ρ|u|2 + ρe)t + ∇ · ((1

2
ρ|u|2 + ρe)u) = ρF · u + ∇ · (σu) −∇ · q + ρQ.

Es sei κ der Wärmeleitungskoeffizient des Materials. (Im allgemeinen hängt κ vom ther-
modynamischen Zustand ab.) Zwischen der absoluten Temperatur T = T (x, t) und dem
Wärmeleitungsvektor q besteht die Beziehung

q = −κ∇T

(Fouriersches Gesetz). Dies führt zu der folgenden Form der Energiegleichung:

(1
2
ρ|u|2 + ρe)t + ∇ · ((1

2
ρ|u|2 + ρe)u) = ρF · u + ρQ + ∇ · (σu) + ∇ · (κ∇T ). (25)

Setzen wir
σ = −pI + τ, τ = λ(∇ · u)I + µ def u
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in die Energiegleichung ein, so erhalten wir (zusammen mit der Kontinuitätsgleichung und
den drei Komponenten der Impulsgleichung) fünf Gleichungen für die Unbekannten

ρ, u, p, e, T.

Die Variablen ρ, p, e, T sind thermodynamische Zustandsvariable. (Es wird angenom-
men, daß sich das Material zu jedem Zeitpunkt und an jedem Ort im thermodynamischen
Gleichgewicht befindet, so daß die Benutzung dieser Variablen sinnvoll ist.) Dann folgt aus
thermodynamischen Grundsätzen, daß nur zwei der Variablen unabhängig sind, während
sich die übrigen aufgrund von Zustandsgleichungen daraus ergeben. Diese Zustandsglei-
chungen sehen wir — für ein gegebenes Material — als bekannt an und erhalten dann
fünf Gleichungen für fünf unbekannte Funktionen. Einfache Beispiele solcher Zustands-
gleichungen sind

p = ρRT und e = cvT.

Hierbei sind R und cv (vom Material abhängige) Konstanten.

11 Umformungen der Energiegleichung

Die Energiegleichung enthält einen rein mechanischen Teil, welcher aus der Kontinuitäts-
und Impulsgleichung folgt.

Bezeichnung:
Für eine skalare Funktion g = g(x, t) setze

Dg
Dt

= gt + (u · ∇)g.

2

Bemerkung: (Interpretation von D
Dt

)
Sei g(x, t) eine glatte Funktion der Ortskoordinate x und der Zeit t. Dann entspricht

g̃(x, t) = g(Φ(x, t), t)

der Funktion g in Materialkoordinaten (oder Lagrangeschen Koordinaten). Dies bedeutet,
daß g̃(x, t) den Funktionswert von g zur Zeit t des Teilchens angibt, welches zur Zeit t0 = 0
am Ort x war. Das Koordinatensystem wandert gewissermaßen mit dem Teilchen mit. Es
gilt

g̃t(x, t) = gx(Φ(x, t), t)Φt(x, t) + gt(Φ(x, t), t)

= ∇g(Φ(x, t), t) · u(Φ(x, t), t) + gt(Φ(x, t), t)

= {gt + (u · ∇)g} (Φ(x, t), t)

= Dg
Dt

(Φ(x, t), t),

also

g̃t = D̃g
Dt

.

2
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Lemma:
Sei g = g(x, t) eine skalare Funktion. Es gelte die Kontinuitätsgleichung

ρt + ∇ · (ρu) = 0.

Dann folgt

ρDg
Dt

= (ρg)t + ∇ · (ρgu).

Beweis:

(ρg)t + ∇ · (ρgu) = ρtg + ρgt + g∇ · (ρu) + ∇g · (ρu)

= g(ρt + ∇ · (ρu)) + ρ(gt + (u · ∇)g) = ρDg
Dt

.

2

Die Energiegleichung (25) läßt sich durch Anwendung des Lemmas mit g = 1
2
|u|2 + e

umformulieren:

ρ D
Dt

(
1
2
|u|2 + e

)
= ρF · u + ρQ + ∇ · (σu) + ∇ · (κ∇T ). (26)

Das Lemma können wir auch auf die j–te Komponente der Impulsgleichung (j = 1, 2, 3),
also auf (12) anwenden:

ρ
Duj

Dt
= (ρuj)t + ∇ · (ρuju) = ρFj + ∇ · σj.

In Vektorschreibweise heißt das:

ρDu
Dt

= ρF + ∇ · σ. (27)

Ferner läßt sich die Kontinuitätsgleichung wegen

ρt + ∇ · (ρu) = ρt + ∇ρ · u + ρ∇ · u = Dρ
Dt

+ ρ∇ · u

schreiben als
Dρ
Dt

+ ρ∇ · u = 0. (28)

Für weitere Umformungen der Energiegleichung benötigen wir die folgenden Vektoriden-
titäten.

Lemma:
Seien v = v(x), w = w(x) Vektorfelder. Dann gilt

(rot v) × w = (Dv − (Dv)T )w, wobei Dv = vx =




D1v1 D2v1 D3v1

D1v2 D2v2 D3v2

D1v3 D2v3 D3v3


 .
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Beweis:
Es gilt:

rot v =

∣∣∣∣∣∣∣

e1 e2 e3

D1 D2 D3

v1 v2 v3

∣∣∣∣∣∣∣
=




D2v3 − D3v2

D3v1 − D1v3

D1v2 − D2v1


 .

Dies impliziert die Behauptung:

(rot v) × w =

∣∣∣∣∣∣∣

e1 e2 e3

D2v3 − D3v2 D3v1 − D1v3 D1v2 − D2v1

w1 w2 w3

∣∣∣∣∣∣∣

=




0 D2v1 − D1v2 D3v1 − D1v3

D1v2 − D2v1 0 D3v2 − D2v3

D1v3 − D3v1 D2v3 − D3v2 0







w1

w2

w3




= (Dv − (Dv)T )w.

2

Lemma:
Seien v = v(x), w = w(x) Vektorfelder. Dann gilt

∇(v · w) = (Dv)T w + (Dw)T v.

Beweis:
Die j–te Komponente der linken Seite ist

Dj

(
3∑

k=1

vkwk

)
=

3∑

k=1

(Djvk)wk +
3∑

k=1

(Djwk)vk = (Djv)T w + (Djw)T v.

Das Ergebnis ist die j–te Komponente der rechten Seite. 2

Wendet man das letzte Lemma mit u = v = w an, so ergibt sich

1
2
∇(u · u) = (Du)T u.

Damit folgt

(u · ∇)u = (Du)u = 1
2
∇(u · u) + (Du − (Du)T )u = 1

2
∇(u · u) + (rot u) × u.

Wir fassen dies zusammen im folgenden Lemma:

Lemma:
Für jedes Vektorfeld u = u(x) gilt

(u · ∇)u = ∇
( |u|2

2

)
+ (rot u) × u. (29)

2
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Die Gleichung (27)

ρDu
Dt

= ρF + ∇ · σ

wurde aus der Impuls- und der Kontinuitätsgleichung gefolgert. Betrachte das innere
Produkt mit u. Weil (rot u) × u orthogonal zu rotu und u ist, gilt ((rotu) × u) · u = 0
und folglich

ρDu
Dt

· u = ρ {ut + (u · ∇)u} · u = ρ
{
ut · u + ∇

( |u|2
2

)
· u
}

= ρF · u + (∇ · σ) · u.

Dies ergibt wegen (|u|2)t = ut · u + u · ut = 2ut · u

ρ D
Dt

( |u|2
2

)
= ρ

{( |u|2
2

)

t

+ (u · ∇)
( |u|2

2

)}
= ρF · u + (∇ · σ) · u.

Man beachte, daß sich diese Gleichung als rein mathematische Folgerung aus der Konti-
nuitätsgleichung und der Impulsgleichung ergibt. Ziehen wir dies von der Energiegleichung
in der Form (26) ab, so ergibt sich

ρDe
Dt

= ρQ + ∇ · (κ∇T ) + ∇ · (σu) − (∇ · σ) · u.

Bezeichnung:

Für A,B ∈ IR3×3 sei

A : B =
3∑

i,j=1

aijbij

2

Lemma:

∇ · (σu) − (∇ · σ) · u = σ : Du

Dabei wird benutzt, daß σ symmetrisch ist (σ = σT ).

Beweis:

∇ · (σu) =
3∑

i=1

Di

3∑

j=1

σijuj =
3∑

i,j=1

σijDiuj +
3∑

i,j=1

(Diσij)uj

Nun ist (Du)ij = Djui, so daß die erste Doppelsumme gleich σ : Du ist. Weiter gilt wegen
der Symmetrie von σ

(∇ · σ) · u =
3∑

j=1

(∇ · σ)juj =
3∑

j=1

(
3∑

i=1

Diσji)uj =
3∑

i,j=1

(Diσij)uj,

und die Behauptung folgt. 2
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Die Energiegleichung erhält damit die Form

ρDe
Dt

= ρQ + ∇ · (κ∇T ) + σ : Du. (30)

Die Größe σ : Du ist ein Quellterm für innere Energie. Dieser Quellterm ist rein mecha-
nischen Ursprungs und rührt von inneren Spannungskräften her. Wir haben

σ = −pI + τ,

wobei p der Druck und τ der viskose Spannungstensor ist. Wegen

pI : Du = p∇ · u

folgt

ρDe
Dt

+ p∇ · u = ρQ + ∇ · (κ∇T ) + τ : Du. (31)

Der Ausdruck Ψ = τ : Du wird als Dissipationsterm bezeichnet. Es ist

Ψ∆V ∆t

die mechanische Energie, welche im Zeitintervall ∆t und im Volumen ∆V durch viskose
Reibungskräfte in innere Energie umgewandelt wird.
Der Dissipationsterm soll nun näher betrachtet werden: Für zwei Matrizen S, T ∈ IR3×3

gilt S : T = ST : T T , also insbesondere S : T = S : T T , falls S symmetrisch ist. Daher
folgt

def u : Du = def u : (Du)T ,

also
def u : Du = def u : 1

2
(Du + (Du)T ) = 1

2
(def u) : (def u).

Mit τ = λ(∇ · u)I + µ def u folgt daraus

Ψ = τ : Du = λ(∇ · u)2 + µ
2
(def u) : (def u) = λ(

3∑

j=1

Djuj)
2 + µ

2

3∑

i,j=1

(Djui + Diuj)
2.

Lemma:
Aus µ ≥ 0 und 3λ + 2µ ≥ 0 folgt Ψ ≥ 0.
Beweis:
Wir können λ < 0 annehmen, denn für λ ≥ 0 ist Ψ ≥ 0 klar.
Für a, b, c ∈ IR gilt aufgrund von 2ab ≤ 2ab + (a − b)2 = a2 + b2 etc. die Ungleichung

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc

≤ a2 + b2 + c2 + a2 + b2 + a2 + c2 + b2 + c2

= 3(a2 + b2 + c2).

Mit a = D1u1, b = D2u2, c = D3u3 ergibt dies

λ(
3∑

j=1

Djuj)
2 = λ(a + b + c)2 ≥ 3λ(a2 + b2 + c2).
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Außerdem ist

3∑

i,j=1

(Djui + Diuj)
2 ≥

3∑

i=1

(Diui + Diui)
2 = 4(a2 + b2 + c2).

Daher folgt:
Ψ ≥ (3λ + 2µ)(a2 + b2 + c2) ≥ 0.

2

12 Zusammenfassung der Gleichungen

Wir haben die folgenden Gleichungen hergeleitet:

Dρ
Dt

+ ρ∇ · u = 0

ρDu
Dt

+ ∇p = ρF + ∇ · τ (32)

ρDe
Dt

+ p∇ · u = ρQ + ∇ · (κ∇T ) + τ : Du.

Dabei ist
τ = λ(∇ · u)I + µ def u.

Hierbei treten die thermodynamischen Variablen

ρ, p, e, T

auf. Da diese Variablen voneinander abhängig sind, müssen die Gleichungen durch Zu-
standsgleichungen vervollständigt werden, wie etwa

p = ρRT, e = cvT.

13 Vereinfachung zu einem hyperbolischen System

Für F = Q = 0, λ = µ = κ = 0 lauten die Gleichungen:

Dρ
Dt

+ ρ∇ · u = 0

ρDu
Dt

+ ∇p = 0 (33)

ρDe
Dt

+ p∇ · u = 0.

Wir wollen mit den thermodynamischen Variablen ρ, e arbeiten und nehmen an, daß eine
Zustandsgleichung

p = p(ρ, e)

bekannt ist. Z. B. könnte man p = ρRT , e = cvT , also p = R
cv

ρe verwenden. Die Ableitun-
gen ergeben sich mit Hilfe der Kettenregel, wie z. B. px = pρρx + peex, also

∇p = pρ∇ρ + pe∇e.
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Die Gleichungen haben dann die Form

ρDu
Dt

+ pρ∇ρ + pe∇e = 0

Dρ
Dt

+ ρ∇ · u = 0

ρDe
Dt

+ p∇ · u = 0.

Wir multiplizieren die beiden letzten Gleichungen mit pρ/ρ bzw. pe/p und erhalten

ρDu
Dt

+ pρ∇ρ + pe∇e = 0

pρ
ρ

Dρ
Dt

+ pρ∇ · u = 0

ρpe
p

De
Dt

+ pe∇ · u = 0.

Für w =




u
ρ
e


 sei

A0(w) =




ρI 0 0
0 pρ/ρ 0
0 0 ρpe/p


 , P (w,D) =




pρD1 peD1

0 pρD2 peD2

pρD3 peD3

pρD1 pρD2 pρD3 0 0
peD1 peD2 peD3 0 0




.

Auf diese Weise lassen sich die Gleichungen umformulieren zu

A0(w)Dw
Dt

+ P (w,D)w = 0.

Dabei läßt sich P (w,D) zerlegen als

P (w,D) =
3∑

j=1

Bj(w)Dj

mit symmetrischen Matrizen Bj(w), j = 1, 2, 3. Ferner ist A0(w) symmetrisch und für
vernünftige Funktionen p = p(ρ, e) positiv definit. Weiter gilt

Dw
Dt

= wt + (u · ∇)w = wt +
3∑

j=1

ujDjw.

Durch die Zusammenfassung

Aj(w) = Bj(w) + ujA0(w)

erhält man das System

A0(w)wt +
3∑

j=1

Aj(w)Djw = 0. (34)

Hierbei sind die Matrizen Aj(w) symmetrisch für j = 0, 1, 2, 3, und A0(w) ist positiv definit
für physikalisch relevante w. Ein System der obigen Form heißt symmetrisch hyperbolisch.
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14 Linearisierung an einem konstanten Zustand

Sei W eine konstante Funktion, unabhängig von x, t. Für eine Lösung w von (34) machen
wir einen Ansatz

w(x, t) = W + εv(x, t).

Dann gilt Aj(w) = Aj(W ) + O(ε). Damit erhält man für v die Beziehung:

A0(W )vt +
3∑

j=1

Aj(W )Djv = 0,

wenn man die O(ε)–Terme vernachlässigt. Diese lineare Gleichung mit konstanten Koef-
fizienten beschreibt die Ausbreitung von kleinen Störungen in der Nähe eines konstanten
Zustandes W . Gleichungen mit konstanten Koeffizienten lassen sich im Prinzip durch
Fouriertransformation lösen. Wir betrachten dazu allgemein

A0vt +
N∑

j=1

AjDjv = 0,

wobei A0, Aj ∈ IRn×n symmetrische Matrizen sind und A0 außerdem positiv definit ist
(A0 > 0). Weil A0 positiv definit ist, existiert eine Matrix H = HT > 0 mit A0 = H2.
Für ṽ = Hv ergibt sich das System

Hṽt +
N∑

j=1

AjH
−1Dj ṽ = 0, also ṽt +

N∑

j=1

CjDj ṽ = 0

mit Cj = H−1AjH
−1. Wegen der Symmetrie von Aj gilt CT

j = Cj. Man kann sich also
auf Gleichungen der Form

vt +
N∑

j=1

CjDjv = 0, Cj = CT
j (35)

beschränken. Wir untersuchen jetzt verschiedene Fälle:

a) skalare Gleichung, 1 Raumdimension:

vt + cvx = 0, v(x, 0) = eikx (36)

Mit dem Ansatz
v(x, t) = q(t)eikx

erhält man durch Einsetzen in (36) eine gewöhnliche Differentialgleichung für q:

q′(t) + cik q(t) = 0, q(0) = 1.

Folglich gilt
q(t) = e−cikt, also v(x, t) = eik(x−ct).

Die Welle eikx pflanzt sich demnach mit der Geschwindigkeit c fort.
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b) System, 1 Raumdimension:

vt + Cvx = 0, mit C = CT ∈ IRn×n.

Wegen der Symmetrie von C gibt es eine Matrix S mit SST = I, so daß Λ = S−1CS
diagonal ist. Für ṽ = S−1v erhält man das System

ṽt + Λṽx = 0,

dessen einzelne Komponenten sich wie in a) verhalten. Mit dem vorgegebenen Anfangs-
zustand

v(x, 0) = eikxϕ, ϕ ∈ Cn

und ϕ̃ = S−1ϕ ergibt sich das System

ṽt + Λṽx = 0, ṽ(x, 0) = eikxϕ̃.

Eine Zerlegung von ϕ̃ in die einzelnen Komponenten entspricht einer Zerlegung von ϕ in
Eigenvektoren von C:

ϕ = Sϕ̃ = ϕ̃1S1 + . . . + ϕ̃nSn.

Die Komponenten von ṽ(x, 0) breiten sich mit den Geschwindigkeiten λj aus, wobei λj =
Λjj der j–te Eigenwert von C ist:

ṽj(x, t) = eik(x−λjt)ϕ̃j.

Für das ursprüngliche System bedeutet dies, daß sich der Anfangszustand

v(x, 0) = eikxϕ =
n∑

j=1

ϕ̃je
ikxSj (37)

wie folgt ausbreitet:

v(x, t) = Sṽ(x, t) =
n∑

j=1

ϕ̃je
ik(x−λjt)Sj. (38)

c) System, N Raumdimensionen:

vt +
N∑

j=1

CjDjv = 0, v(x, 0) = eik·xϕ mit Cj = CT
j ∈ IRn×n, ϕ ∈ Cn,

dabei ist k · x = k1x1 + . . . + kNxN . Mit dem Ansatz

v(x, t) = eik·xq(t), q(0) = ϕ

erhält man ein System gewöhnlicher Differentialgleichungen für q:

q′(t) + P̂ (k)q(t) = 0 mit P̂ (k) = i
N∑

j=1

kjCj.

Dies hat die Lösung

q(t) = e−P̂ (k)tϕ,
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und es folgt

v(x, t) = eik·xe−P̂ (k)tϕ.

Um den Term e−P̂ (k)t genauer zu untersuchen, schreiben wir

k = |k|k0 mit |k| = (k2
1 + . . . + k2

N)
1

2 , k0 = k/|k|, |k0| = 1.

Dann gilt

P̂ (k) = i|k|C(k0) mit C(k0) =
N∑

j=1

k0
j Cj.

Weil C(k0) — wie alle Cj — reell symmetrisch ist, gibt es eine orthogonale Matrix S =
S(k0), so daß Λ = Λ(k0) = S−1C(k0)S eine Diagonalmatrix ist. Aus der Darstellung

P̂ (k) = i|k|C(k0) = i|k|SΛS−1

folgt dann

e−P̂ (k)t = Se−i|k|tΛS−1.

Sei nun

ϕ = Sϕ̃ =
n∑

j=1

ϕ̃jSj

die Zerlegung von ϕ nach Eigenvektoren von C(k0). Dann ergibt sich

v(x, t) = eik·xe−P̂ (k)tϕ = eik·xSe−i|k|tΛϕ̃

= eik·xS




...
e−i|k|tλj ϕ̃j

...




j=1,...,n

=
n∑

j=1

ϕ̃je
ik·xe−i|k|λjtSj =

n∑

j=1

ϕ̃je
i|k|{k0·x−λjt}Sj.

Ein gegebener Anfangszustand

v(x, 0) = eik·xϕ = ei|k|k0·xϕ =
n∑

j=1

ϕ̃je
i|k|k0·xSj (39)

breitet sich also aus als

v(x, t) =
n∑

j=1

ϕ̃je
i|k|{k0·x−λjt}Sj. (40)

Hierbei sind λj, Sj die Eigenwerte und Eigenvektoren von

C(k0) =
N∑

j=1

k0
j Cj.
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Interpretation:
1. Ausbreitungsrichtung:
Für x̃ mit k0 · x̃ = 0 gilt k0 · x = k0 · (x + x̃).

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

................................

...............................

x2



........
......
.....
....
....
...
.

x1
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
...................................

............................... k0

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.....................................................

.
•x
•x + x̃

Daher folgt für diese x̃:
v(x, t) = v(x + x̃, t).

Also ist v zu jeder Zeit konstant entlang jeder Hyperebene, die senkrecht auf k0 steht. Es
liegt nahe, k0 als Ausbreitungsrichtung der Welle anzusehen.

2. Phasengeschwindigkeit:
Wegen |k0| = 1 gilt

k0 · x − λj(t + ∆t) = k0 · (x − λjk
0∆t) − λjt.

Für
Vj(x, t) = ei|k|{k0·x−λjt}

gilt daher
Vj(x, t + ∆t) = Vj(x − λjk

0∆t, t).

Dies bedeutet, daß am Ort x zur Zeit t + ∆t derselbe Funktionswert vorliegt, welcher zur
Zeit t am Ort x − λjk

0∆t vorlag.
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.
• x

•x − λjk
0∆t ....

....
....
....
....
....
....
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....
..................................

...............................

....
....
....
....
....
....
....
....
....
....
....
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....
....
....
....
....
....
....
....
....
....
....
....
....
....
....

Der Vj–Wert bei x−λjk
0∆t zur Zeit t = 0

”
wandert“ zur Zeit t = ∆t nach x.

Diese Interpretation legt es nahe,

Vj(x, t) = ei|k|{k0·x−λjt}

als eine Wellenbewegung in k0–Richtung mit Geschwindigkeit λj zu deuten.
Weil Vj(x + lk0, t) ≡ Vj(x, t) genau für l = 2π

|k|
m mit m ∈ ZZ gilt, ist die Wellenlänge

L = 2π
|k| .

Man beachte jedoch, daß die obige Interpretation (Bewegung mit Geschwindigkeitsvektor
λjk

0) nicht zwingend ist. Da Vj zu jeder Zeit entlang jeder Hyperebene senkrecht zu k0

konstant ist, könnte eine Bewegung senkrecht zu k0 überlagert sein. Dies ist zu beach-
ten, wenn man keinen Widerspruch zum Begriff

”
Gruppengeschwindigkeit“ erhalten will.

Korrekterweise bezeichnet man k0λj als Phasengeschwindigkeit von

Vj(x, t) = ei|k|{k0·x−λjt}.
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15 Beispiel: Die Eulergleichungen mit p = p̄(ρ)

Die Eulergleichungen lauten
Dρ
Dt

+ ρ∇ · u = 0

ρDu
Dt

+ ∇p = 0.
(41)

Um diese Gleichungen zu vervollständigen, wählen wir eine Zustandsgleichung

p = p̄(ρ),

zum Beispiel p = p0(ρ/ρ0)
γ mit γ > 1. Insbesondere gilt dann pρ > 0. Beschränken wir

uns auf eine Raumdimension, so lautet das System

ρt + uρx + ρux = 0

ρ(ut + uux) + pρρx = 0.

Die erste Gleichung schreiben wir um:

pρ
ρ (ρt + uρx) + pρux = 0.

Setzen wir

w =

(
u

ρ

)
, A0(w) =

(
ρ 0
0 pρ/ρ

)
, B(w) =

(
0 pρ

pρ 0

)
,

dann wird das System zu

0 = A0(w){wt + uwx} + B(w)wx = A0(w)wt + (uA0(w) + B(w))︸ ︷︷ ︸
A1(w)

wx

mit

A1(w) =
(

ρu pρ

pρ
pρu
ρ

)
.

Linearisiert man diese Gleichung in einem konstanten Zustand W =
(

u0

ρ0

)
und setzt au-

ßerdem u = u0 + εũ, ρ = ρ0 + ερ̃, so erhält man

A0(W )

(
ũ

ρ̃

)

t

+ A1(W )

(
ũ

ρ̃

)

x

= 0.

Wegen pρ > 0 ist A0(W ) positiv definit (A0(W ) hat überdies schon Diagonalgestalt) und
läßt sich daher als A0(W ) = H2 darstellen. Dies führt zu der Gleichung

H

(
ũ

ρ̃

)

t

+ {H−1A1(W )H−1}H
(
ũ

ρ̃

)

x

= 0.

Die Eigenwerte von H−1A1(W )H−1 sind die Ausbreitungsgeschwindigkeiten von Störun-
gen des Grundflusses W . Es ist

H−1A1(W )H−1 = H−1{u0A0(W ) + B(W )}H−1 = u0I + H−1B(W )H−1.
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Hierbei ist

H−1 =


 ρ

− 1

2

0 0

0
(

pρ(ρ0)
ρ0

)− 1

2


 .

Mit c2 = pρ(ρ0) wird dann

H−1B(W )H−1 =
(

1/
√

ρ0 0
0

√
ρ0/c

)(
0 c2

c2 0

)(
1/
√

ρ0 0
0

√
ρ0/c

)
=
(

0 c
c 0

)
.

Die Eigenwerte dieser Matrix sind ±c. Die Eigenwerte von H−1A1(W )H−1 sind daher

λ1,2 = u0 ± c.

Die Störungen breiten sich also mit der Geschwindigkeit c relativ zur Grundströmung mit
der Geschwindigkeit u0 aus. Damit ist

c =
√

pρ(ρ0) (42)

die Ausbreitungsgeschwindigkeit von Schallwellen. Dieser Sachverhalt soll noch näher be-
leuchtet werden: Die bei W =

(
u0

ρ0

)
linearisierten Gleichungen lauten (wenn wir die Schlan-

ge in unserer Notation weglassen)

A0(W )

(
u

ρ

)

t

+ A1(W )

(
u

ρ

)

x

= 0

mit

A0(W ) =
(

ρ0 0
0 c2/ρ0

)
, A1(W ) = u0A0(W ) +

(
0 c2

c2 0

)
.

Im Fall u0 = 0 heißt das

ρ0ut + c2ρx = 0

c2

ρ0
ρt + c2ux = 0

bzw.

ut + c2

ρ0
ρx = 0

ρt + ρ0ux = 0.

Daraus folgt

utt = −c2

ρ0
ρxt = c2uxx, ρtt = −ρ0uxt = c2ρxx.

Die Störterme ρ und u genügen daher Wellengleichungen mit ±c als Ausbreitungsge-
schwindigkeit. Für c gilt:

p = p0

( ρ
ρ0

)γ

=⇒ pρ(ρ) = p0γ
ρ0

( ρ
ρ0

)γ−1

=⇒ c =
√

pρ(ρ0) =

√
p0γ
ρ0

(ρ0
ρ0

)γ−1
=

√
p0γ
ρ0

.
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Für Luft bei 0◦C gilt etwa (siehe Anhang)

ρ0 ≈ 1,293 kg
m3

p0 ≈ 1,0132 bar = 1,0132 · 105 kg
m s2 (1 bar = 105 N

m2 , 1 N = 1 kg m
s2 )

γ ≈ 1,402,

so daß sich für die Schallgeschwindigkeit c der Wert

c =

√
p0γ
ρ0

≈
√

1,0132 · 1,402
1,293

· 105 kg
m s2

m3

kg
≈ 331 m

s

ergibt.

16 Nichtlineare hyperbolische Gleichungen:

Burgers’ Gleichung als Beispiel

Betrachte die AWA (Burgers’ Gleichung)

ut + uux = 0 mit u(x, 0) = f(x). (43)

Sei u(x, t) eine für x ∈ IR, 0 ≤ t ≤ T definierte glatte Lösung. Betrachte die Linie (x(t), t)
für 0 ≤ t ≤ T , die der gewöhnlichen Differentialgleichung

dx
dt

= u(x(t), t), x(0) = x0 (44)

genügt, und definiere

h(t) = u(x(t), t).

Dann gilt wegen (43)

h′(t) = uxx
′(t) + ut = uxu + ut = 0.

Daher ist h konstant mit h(t) ≡ h(0) = u(x0, 0) = f(x0), und aus (44) folgt

dx
dt

(t) ≡ f(x0), also x(t) = x0 + tf(x0).

Die Linie (x(t), t) für 0 ≤ t ≤ T ist eine Charakteristik der Gleichung ut + uux = 0
bezüglich der ins Auge gefaßten Lösung u = u(x, t). Wir haben gezeigt, daß jede Charak-
teristik eine gerade Linie ist und daß u entlang jeder Charakteristik konstant ist.

Nehmen wir nun an, daß x0, x1 ∈ IR existieren mit x0 < x1, aber f(x0) > f(x1). Die
Charakteristik durch (x0, 0) hat die Geschwindigkeit f(x0), während die Charakteristik
durch (x1, 0) die kleinere Geschwindigkeit f(x1) hat. Zur Zeit

t∗ = x1 − x0

f(x0) − f(x1)
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schneiden sich die beiden Charakteristiken. Da die u–Werte entlang beider Charakteristi-
ken verschieden sind, kann eine glatte Lösung nicht bis zur Zeit t∗ existieren. Vor der Zeit
t∗ entsteht ein Schock.
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f(x) = u(x, 0)

Im vorliegenden Fall kann man folgendes zeigen (unter schwachen Annahmen die An-
fangsfunktion f): Für alle ε > 0 hat die parabolische AWA

ut + uux = εuxx mit u(x, 0) = f(x) (45)

eine eindeutige klassische Lösung uε(x, t), für die gilt

uε ∈ C∞(−∞ < x < ∞, 0 < t < ∞).

Für ε → 0 konvergiert uε punktweise fast überall gegen eine Grenzfunktion u(x, t) für
x ∈ IR, t ≥ 0. Diese Grenzfunktion ist per Definition die physikalisch relevante schwache
Lösung von (43).

17 Viskositätsterme in den

Navier–Stokes–Gleichungen

Betrachten wir wieder der Einfachheit halber den Fall p = p̄(ρ). Die Navier–Stokes–
Gleichungen lauten dann bei F = 0 und Konstanten λ und µ:

Du
Dt

+ 1
ρ∇p = 1

ρ{(λ + µ)∇(∇ · u) + µ∆u}
Dρ
Dt

+ ρ∇ · u = 0.

Betrachte nun die Hilfsgleichung

ut = 1
ρ0

{(λ + µ)∇(∇ · u) + µ∆u}
︸ ︷︷ ︸

P2u:=

. (46)

Bei einer Anfangsbedingung

u(x, 0) = eik·xϕ

machen wir den Ansatz

u(x, t) = eik·xq(t).

Dies liefert

P2u(x, t) = eik·xP̂2(k)q(t)
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mit dem sogenannten Symbol P̂2(k) ∈ C3×3. Das Symbol P̂2(k) entsteht aus P2, indem
man Dj formal durch ikj ersetzt. Man erhält für P2 aus (46)

P̂2(k) = − 1
ρ0

{(λ + µ)kkT + µ|k|2I}.

Für v ∈ IR3 beliebig mit |v| = 1 folgt daraus

vT P̂2(k)v = − 1
ρ0

{(λ + µ)(vTk)2 + µ|k|2}.
Sei

c := min{µ, 2µ + λ} > 0.

1. Fall: µ ≥ 2µ + λ = c, also 0 ≥ µ + λ
Nach Cauchy–Schwarz gilt

(vT k)2 ≤ |k|2|v|2 = |k|2,
also

(µ + λ)(vT k)2 ≥ (µ + λ)|k|2

und schließlich
(λ + µ)(vT k)2 + µ|k|2 ≥ (2µ + λ)|k|2 = c|k|2.

2. Fall: 2µ + λ > µ = c, also µ + λ > 0
Dann gilt ebenfalls

(λ + µ)(vTk)2 + µ|k|2 ≥ µ|k|2 = c|k|2.
Dies beweist das folgende Lemma:

Lemma:
Sei c = min{µ, 2µ+λ} > 0. Dann gilt für alle k ∈ IR3, k 6= 0: Die Matrix P̂2(k) ist negativ
definit mit

vT P̂2(k)v ≤ − c
ρ0

|k|2|v|2

für alle v ∈ IR3. 2

Für die Gleichung
ut = P2u, u(x, 0) = eik·xϕ

führt unser Ansatz
u(x, t) = eik·xq(t)

auf die gewöhnliche Differentialgleichung

q′(t) = P̂2(k)q(t), q(0) = ϕ.

Da P̂2(k) für k 6= 0 negativ definit ist, folgt q(t) → 0 für t → ∞. Damit läßt sich zeigen,
daß sich die Lösungen von

ut = P2u

ähnlich verhalten wie die Lösungen der Wärmeleitungsgleichung ut = ∆u. Man nennt
ut = P2u ein parabolisches System.
Eine unbewiesene Vorstellung ist, daß bei den Navier–Stokes–Gleichungen (im Gegen-
satz zu den Eulergleichungen) keine Schocks auftreten, daß also die Viskositätsterme das
Herausbilden von Unstetigkeiten verhindern.
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A Thermodynamische Materialkonstanten

Die folgende Tabelle enthält Meßwerte der benötigten thermodynamischen Konstanten für
eine Auswahl verschiedener Gase und Flüssigkeiten. Die Angaben beziehen sich auf den
Druck p = 1,0132 bar (bzw. p = 0,981 bar für die mit

”
*“ gekennzeichneten Werte) und

die Temperatur T = 20◦C (bzw. T1 = 0◦C und T2 = 100◦C, falls zwei Werte vorliegen).1

ρ cp R γ κ ν µ

kg/m3 kJ/kg K kJ/kg K W/m K 10−6m2/s 10−6Pa s

Luft
1,293
0,95

1,005
1,01*

0,287
—

1,402
—

0,024*
0,031*

13,28
23,04

17,13
21,89

Wasserstoff
0,090
0,064*

14,249
14,44*

4,124
—

1,409
—

0,176*
0,229*

97*
162*

8,4*
10,4*

Wasser
999,8
958

4,220
4,216 — —

0,549
0,681

1,789
0,294

1789
282

Benzol 879 1,738 — — 0,154 0,740 650

Quecksilber 13546 0,139 — — 9,304 0,115 1558

ρ : Dichte
cp : spezifische Wärmekapazität (bei konstantem Druck)
R : spezifische Gaskonstante
γ : Isentropenexponent
κ : Wärmeleitungskoeffizient
ν : kinematische Viskosität
µ : dynamische Viskosität

Es gelten die Beziehungen:
γ = cp/cv mit cv = cp − R,
ν = µ/ρ.

Der 2. Viskositätskoeffizient λ mit [λ]=Pa s ist weniger gut untersucht. Man nennt µB :=
λ + 2

3
µ Kompressions-Viskosität (Volumen-Viskosität, Druck-Viskosität) bzw. bulk vis-

cosity. Für einatomige ideale Gase gilt µB = 0, also λ = −2
3
µ. Für Stickstoff (N2) bei

mittlerer Temperatur ergeben Messungen µB ≈ 0,8µ, so daß hier λ ≈ 0,13µ gilt.2

1Quelle: Dubbel — Taschenbuch für den Maschinenbau, 16. Auflage
Hrsg.: W.Beitz, K.-H. Küttner
Springer-Verlag, Berlin 1987

2Quelle: Introduction to Physical Gas Dynamics
W. G.Vincenti, Ch. H. Kruger, Jr.
Wiley, New York 1975


