Julius-Maximilians-Universitiat Wiirzburg
Fakultét fiir Mathematik und Informatik

Ein elementarer Beweis des Primzahlsatzes

Ausfithrung und historische Perspektive

Bachelorthesis

von

Jonas Oechsner

Betreuer

Prof. Dr. Jérn Steuding

Wiirzburg, August 2011



INHALTSVERZEICHNIS

Inhaltsverzeichnis
1 Einleitung 2
2 Historische Perspektive 3

2.1 Vermutung und erster Beweis . . . . . . . ... ... L.

2.2 Ein elementarer Beweis . . . . . . . . ... .. oL

3 Definitionen 10
4 Grundlagen 11

4.1 Die Tschebyscheff-Identitéit und deren Inversion . . . . . . . .. .. .. 11

4.2 FEinige wichtige Sétze . . . . . . . ..o o 17

4.3 Die Fundamentalformel . . . . . . .. .. ... . ... ... ...... 23
5 Der Beweis des Primzahlsatzes 27
6 Schlusswort 39
Literatur 41
Abbildungsverzeichnis 43
Tabellenverzeichnis 43



1 EINLEITUNG

1 Einleitung

Primzahlen faszinieren die Menschen schon seit Jahrtausenden. Sie sind denkbar ein-
fach definiert: Es sind natiirliche Zahlen grofier als Eins, die nur Eins und sich selbst
als natiirliche Teiler besitzen. Bereits Euklid (ca. 360-280 v.Chr.) definierte die Prim-
zahlen im siebten Band seines Werkes Die Elemente und untersuchte sie auf ihre
strukturellen Eigenschaften. Im neunten Band bewies er beispielsweise, dass es un-
endlich viele Primzahlen gibt.! Im Laufe der Geschichte wurden viele Eigenschaften
der Primzahlen gezeigt, aber auch viele Fragen blieben offen. Godfrey Harold Hardy
(1877-1947) und Edward Maitland Wright (1906-2005) stellten eine Liste von soge-
nannten natiirlichen Fragen die Primzahlen betreffend zusammen.? Hierzu gehort die
Frage nach der Existenz einer allgemeinen Formel zur Berechnung der n-ten Primzahl
Pn, genauso wie die Suche nach einer Moglichkeit aus einer gegebenen Primzahl p wei-
tere groflere Primzahlen zu konstruieren. Keines dieser Probleme konnte bisher geltst
werden und die Existenz einer Losung ist nach bisheriger Erkenntnis unwahrschein-
lich. Die Suche nach einer Moglichkeit zur Bestimmung der Anzahl der Primzahlen
bis zu einer bestimmten Zahl x war dagegen nicht so erfolglos, zumindest wenn man
die Frage etwas unschéirfer formuliert und nur die ungefdhre Anzahl bestimmen will.
Die genaue Anzahl der Primzahlen bis zu einer Zahl x bezeichnen wir fortan als m(x).
Anders formuliert suchen wir nach einer einfachen Funktion f(z), die ein dhnliches
asymptotisches Verhalten wie m(x) aufweist. Und tatséchlich konnte im letzten Jahr-

hundert gezeigt werden, dass gilt

T

m(x)

- logz’

Dieser Satz ist als Primzahlsatz bekannt, eine alternative Formulierung lautet

m(x

Jim m/l(()gzw) =1. (1.1)
Die Geschichte der Entdeckung dieser Aussage ist lang, im Laufe der Jahrhunderte
beschiftigten sich viele Mathematiker mit diesem Problem, viele maflen ihm beson-
dere Bedeutung zu. Edmund Landau (1877-1938) bezeichnete den Primzahlsatz gar
als das wichtigste Theorem der Zahlentheorie.?
In dieser Arbeit soll zum einen ein elementarer Beweis des Primzahlsatzes durch-
gefiihrt werden, dessen Existenz lange angezweifelt wurde, zum anderen soll aber
auch eine historische Einordnung dieses Theorems erfolgen. Der Primzahlsatz ist ei-
nes der groflen mathematischen Probleme der Neuzeit, mit dem sich Generationen von
Mathematikern beschéftigten. Eine Beriicksichtigung dessen historischer Entwicklung

ist nicht nur spannend, sie ldsst den Leser auch viel iiber das Wesen der Mathematik

und auch das von Mathematikern erfahren.

I[Narl], Seite 1.
2[Ha-Wrl1], Seite 6.
3[Lanl], Seite VIII.
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:c 102 10* 106 108 1010 1014

(z) 95 1220 78498 5761455 455052511 3 204 941 750 802
2/ log 2 91 1085 72382 5428681 434204 481 3 102 103 442 166
Relative 0.160 0117 0078  0.058 0.046 0.032
Abweichung

Tabelle 1: Vergleich verschiedener Werte von w(z) und z/logx, sowie die relative
Abweichung

2 Historische Perspektive

2.1 Vermutung und erster Beweis

Die Vermutung iiber die Richtigkeit des Primzahlsatzes wurde bereits im 18. Jahrhun-
dert geduflert, diese begriindete sich aber mit mehr oder weniger guten Argumenten
nur auf die Betrachtung von ausgedehnten Tafelwerken und Tabellen. Eine kurze Ta-
belle (Tabelle 1) sei hier angegeben, um auch dem Leser einen intuitiveren Zugang zu
ermoglichen. Man erkennt deutlich die Annéherung von 7(z) an die Funktion =/ log x
fiir groBe x. Die frithen Tabellen listeten aufgrund der begrenzteren Moglichkeiten
natiirlich nicht so groe Zahlen, wie die hier mit Wolfram Mathematica® errechnete.
Umso hoher ist die Erkenntnis der frithen Mathematiker zu bewerten, die Eintrige
von deren Tabellen iiberstiegen die GréBenordnung 10 nicht.* Abbildung 1 zeigt noch
einmal den kleiner werdenden Fehler fiir wachsende x durch eine grafische Visualisie-
rung der Funktionen 7(z) und z/logz.

Adrien-Marie Legendre (1752-1833) glaubte durch Untersuchung von Folgen des Quo-

tienten 7 (z)/z den Zusammenhang

X

m(@) = Alogx + B

beobachtet zu haben, wobei A und B noch unbestimmende Konstanten waren.® Seine
Uberlegungen verdffentlichte er 1798. In einer Neuauflage seiner Versffentlichung von

1808 ergénzte er seine Aussage und vermutete

T

m(x) = Tog — A()’ (2.1)

Hierbei ist A(x) entsprechend seinen Beobachtungen eine Funktion, die fiir z — oo

einen Grenzwert erreicht, dessen erste Dezimalstellen mit 1.08366 {ibereinstimmen.%

4[Apol], Seite 23.
5[Legl], Seite 18-19.
6[Leg2], Seite 394-395.
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Abbildung 1: Die vier Darstellungen der Funktionen 7(x) und z/log x zeigen deutlich
die relative Annéherung der Funktionen fiir grofer werdende z.

Mit (2.1) erhédlt man

m(x) _ m(z)logx

x/log(x) x

_ 1
11— A(z)/logx’

Fiir x — oo wiirde der Primzahlsatz folgen.

Auch Carl Friedrich Gaufl (1777-1855) beschiiftigte sich mit dem Primzahlsatz, Ed-
mund Landau (1877-1938) berichtet Nitheres.” Gauf} publizierte selbst nichts iiber den
Primzahlsatz, aber ein Briefwechsel mit seinem Schiiler Johann Franz Encke (1791-
1865) von 1849 gibt Aufschluss iiber seine Gedanken hinsichtlich dieses Themas. So
hat Gauf§ wohl schon mit 15 Jahren dariiber nachgedacht, ob und wie 7(z) in einer
Beziehung zu einer elementaren Funktion f(z) steht und kam zu dem Schluss, dass
der Quotient 7 (z)/x ungefihr umgekehrt proportional zum Logarithmus ist. Der beim
Briefwechsel bereits iiber 70jahrige Gaufl teilte die Ansicht der Richtigkeit von (2.1),
hinsichtlich des tatséichlichen Grenzwertes von A(z) war er sich nicht sicher. Bewiesen
hat aber auch Gauf beziiglich des Primzahlsatzes niemals etwas.

Weiterfithrende Erkenntnisse konnten von Pafnuti Lwowitsch Tschebyschow® (1821-
1894) und von James Joseph Sylvester (1814-1897) erarbeitet werden. Auf Tscheby-

7[Lan1], Seite 37-41.
8Im mathematischen Kontext ist die dltere Transkription Tschebyscheff iiblicher. Diese soll im
Folgenden verwendet werden.
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scheff geht das wichtige Resultat

1
Z 8P log = (2.2)

p<z

X
log z

zuriick, woraus man ableiten kann, dass 7 (x) von Ordnung ist. Wir werden spéter
mit Lemma 4.4 zu diesem Ergebnis gelangen. Sylvester hingegen konnte zeigen, dass

fiir hinreichend grofle x gilt

0.956 < &) 10459 (2.3)
x/logx
Bernhard Riemann (1826-1866) gelang es eine Verbindung des Primzahlsatzes zur

Zetafunktion
o0

¢(s) = Zn_s7 seC, R(s)>1

n=1
in der komplexen Ebene herzustellen.'? Er setzte die Zetafunktion auf die ganze kom-
plexe Zahlenebene analytisch fort und zeigte, dass ihre Nullstellen mit dem Primzahl-
satz in Beziehung stehen. Er konnte beweisen, dass der Primzahlsatz eine Folgerung
wire, wenn man zeigen konnte, dass die Zetafunktion auf der Geraden der Zahlen
mit R(s) = 1 nicht Null wird. Er schuf damit eine Art Anleitung zum Beweis des
Primzahlsatzes. Eine Veroffentlichung erfolgte 1859 in einem zehnseitigen Aufsatz
([Riel]), der im Ubrigen Riemanns einzige Verdffentlichung im Bereich Zahlentheo-
rie war. Bemerkenswert ist nicht nur der geringe Umfang der Arbeit, sondern auch
die aulergewohnliche Kreativitdt. Trotz grofler Anstrengungen gelang es Riemann in
seinen wenigen verbleibenden Lebensjahren nicht diesen letzten Schritt des Beweises
auszufithren. Er hatte auflerdem eine weitaus stirkere Vermutung, ndmlich dass alle
nichttrivialen Nullstellen auf der Geraden R(s) = % liegen, was natiirlich die erste For-
derung implizieren wiirde. Dieses Problem ist als Riemannsche Vermutung bekannt
und bis heute ungelost.!!

Inspiriert durch diese Erkenntnisse arbeiteten viele Mathematiker in den Jahren nach
dem Tode Riemanns an einer Vervollstdndigung seines Beweises. Hans von Mangoldt
(1854-1925) und Jacques Hadamard (1865-1963) lieferten schlieBlich die notwendigen
Mittel fiir einen Beweis. Im Jahr 1896 wurde der Primzahlsatz dann sogar zweimal
unabhéngig voneinander mit jeweils unterschiedlichem Vorgehen bewiesen und zwar
von Hadamard und von Charles-Jean de La Valle Poussin (1866-1962). Beide konnten
zeigen, dass die Zetafunktion auf der Geraden der Zahlen mit R(s) = 1 keine Null-
stelle besitzt.!?

In den folgenden Jahren wurde der Beweis des Primzahlsatzes immer wieder verein-

facht. Besonders Landau und Norbert Wiener (1894-1964) sind hier zu nennen. Der

9[Goll], Seite 179-180.
10[Apol], Seite 26-27.
1[Apol], Seite 25-26.
12[Apol], Seite 27.
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Abbildung 2: Atle Selberg (1917-2007)  Abbildung 3: Paul Erdés (1913-1996)

Kerngedanke der Verbindung mit den Nullstellen der Zetafunktion blieb aber und

damit auch der Weg iiber die komplexe Analysis.!?

2.2 Ein elementarer Beweis

Lange Zeit wurde die Existenz eines elementaren Beweises des Primzahlsatzes ange-
zweifelt. Eine Passage eines Vortrags, den Hardy 1921 in Kopenhagen hielt, macht

dies deutlich und beschreibt sehr anschaulich die Problematik:

No elementary proof of the prime number theorem is known, and one
may ask whether it is reasonable to expect one. Now we know that the
theorem is roughly equivalent to a theorem about an analytic function,
the theorem that Riemann’s zeta function has no roots on a certain line.
A proof of such a theorem, not fundamentally dependent upon the ideas
of the theory of functions, seems to me extraordinarily unlikely. It is rash
to assert that a mathematical theorem cannot be proved in a particular
way; but one thing seems quite clear. We have certain views about the
logic of the theory; we think that some theorems, as we say ’lie deep’ and
others nearer to the surface. If anyone produces an elementary proof of the
prime number theorem, he will show that these views are wrong, that the
subject does not hang together in the way we have supposed, and that it

is time for the books to be cast aside and for the theory to be rewritten.'*

13[Bohl1], Seite 129.
14[Boh1], Seite 129.
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Hardy sollte zu seinen Lebzeiten Recht behalten. Ein Jahr nach seinem Tod im Jahr
1948 aber vermeldete Paul Erdds (1913-1996), dass er zusammen mit Atle Selberg
(1917-2007) einen elementaren Beweis des Primzahlsatzes gefunden habe. Selberg
wurde als Anerkennung fiir die Entdeckung 1950 an der Harvard University beim
elften Internationalen Mathematikerkongress die Fields-Medaille verliechen!®, Erdds
wurde 1951 beim achtundfiinfzigsten Jahrestreffen der American Mathematical So-
ciety fiir seinen wichtigen Beitrag zu Selbergs Beweis an der Brown University mit
dem Colepreis ausgezeichnet!6.

So bedeutend diese Entdeckung war, so grofl war aber auch der Streit, der zwischen
den beiden Mathematikern entbrannte. Das Problem war, dass beide nicht von An-
fang an zusammenarbeiteten. Selberg suchte lange Zeit alleine nach dem Beweis, der
entscheidende Schritt gelang allerdings erst mit Erkenntnissen von Erdés. Der Streit
entwickelte sich schlielich iiber der Frage, ob man gemeinsam verdffentlichen solle
oder jeder seine eigenen Beitrége niederschreibe. Die nachfolgenden Darstellungen
folgen, sofern nicht anders referenziert, im Wesentlichen den Ausfithrungen Dorian
Goldfelds (x¥1947) in seinem Aufsatz [Goll]. Goldfeld war nach eigenen Angaben eng
mit beiden Autoren befreundet und beruft sich bei der Darstellung auf zahlreiche
Gespriche, ihm vorliegende Briefe und andere Dokumente.

Zunéchst soll etwas naher auf die genauen Beitrage der beiden eingegangen werden.

Selberg bewies im Mérz 1948 die wichtige Ungleichung

P(x)logx + Zlogpw <§> =2zlogx + O(x).

p<z

Diese entspricht im spiiter ausgefiithrten Beweis Ungleichung (4.38), die Uberfithrung
ineinander ist einfach und erfolgt beispielsweise mit Gleichung (4.6). Dabei ist ¢ (z)
eine Hilfsfunktion, Definition und Bedeutung sind in (4.4) und (4.5) zu finden. Es

kann die Aquivalenz des Primzahlsatzes und

lim M

T—o0 I

=1

gezeigt werden, uns wird dies in Lemma 4.5 gelingen. Die Ungleichung kann als ei-
gentlicher Kern des Beweises verstanden werden und wird deshalb auch Fundamen-
talformel genannt.

Definiert man

U(z)

a = liminf ¥(@) und A = limsup —=,
T—00 X T—00 X

so folgt mit Sylvesters Erkenntnis (2.3)

0.956 < a < A <1.045.

15[Boh1], Seite 127.
16[Coh1], Seite 157-160.
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Selberg konnte nun mit Hilfe des Resultates von Tschebyscheff (2.2) und der Fun-
damentalformel beweisen, dass gilt a + A = 2. Im war sehr wohl bewusst, dass der
Primzahlsatz eine unmittelbare Folge wére, konnte er nur zeigen, dass gilt a = A = 1.
Erdds kam mit der Fundamentalformel in einem Seminar in Kontakt, welches er be-
suchte. Das Seminar wurde von P4l Turdn (1910-1976) gehalten, welcher im Vorfeld
von Selberg personlich unterwiesen wurde. Allerding wusste er nur um die Existenz
der Formel, den Beweis behielt Selberg vorerst fiir sich. Erdés gelang es schlielich in
relativ kurzer Zeit aus der Fundamentalformel

lim 20+ — 1 (2.4)

n—oo  Pp

abzuleiten. Eigentlich bewies er sogar ein etwas stédrkeres Ergebnis, ndmlich dass zu

jedem c ein positives d(c) existiert, sodass fiir hinreichend grofie = gilt
m(x(1+¢)) — n(x) > §(c)x/log x.17 (2.5)

Die Beweise dazu im Einzelnen sind in chronologischer Reihenfolge in Erdés’ Versffent-
lichung [Erd1] nachzulesen.

Kurz darauf teilte Erd6s Selberg seine Entdeckung mit. Selberg wollte das Ergebnis
zunéchst nicht glauben und behauptete sogar dies durch Gegenbeispiele beweisen zu
konnen. Er war sich dariiber im Klaren, dass dieser einfache Grenzwert den Beweis des
Primzahlsatzes bedeuten wiirden, denn man kann damit zeigen, dass gilt a = A = 1.
Selberg war mit diesem Verlauf iiberhaupt nicht zufrieden. Er schrieb in einem Brief
an Hermann Weyl (1885-1955): ,, Actually, I didn’t like that somebody else started
working on my unpublished results before I considered myself through with them.“!8
Selberg machte sich umgehend an die Arbeit und konnte mit Hilfe von (2.4) und (2.5)
wirklich innerhalb von zwei Tagen eine erste Version des Beweises fertigstellen. Durch
gemeinsame Arbeit von Erdds und Selberg konnte diese erste Version in den folgenden
Tagen noch vereinfacht und verbessert werden.!? Eine Skizze der ersten Beweisversi-
on, die mit Hilfe von (2.4) und (2.5) zeigt, dass a = A = 1, kann in [Sell] nachgelesen
werden.

Trotz der gemeinsamen Arbeit herschte iiber die Art der Verdffentlichung Uneinig-
keit.

Selberg setzte sich fiir eine getrennte Veroffentlichung der jeweils eigenen Leistung

ein. In einem Brief vom 20. August 1948 schrieb er an Erdés:

What I propose is the only fair thing: each of us can publish what he has
actually done and get the credit for that, and not for what the other has
done. [...] T am going to publish my proof as it now is. I have the opinion,

[...] that I do you full justice by telling in the paper that my original proof

17[Erd1], Seite 375.
18[Goll], Seite 185.
19[Erd1], Seite 375.
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depended on your result. In addition to this I offered you to withhold my
proof so your theorem could be published earlier [...]. I still offer you this

[...]. If you don’t accept this I publish my proof anyway.?"

In Briefen an Weyl und Goldfeld wird deutlich, dass Selberg befiirchtet Erdés wer-
de alleine oder zu einem ungerechtfertigt grofien Teil Anerkennung fiir den Beweis
des Primzahlsatzes bekommen; Selberg war sehr besorgt um die Anerkennung. Er
bot Erd6s schliellich in einem zweiten Brief vom 20. September 1948 an in seiner
Veroffentlichung eine Skizze des ersten Beweises mitzuliefern und dabei auf seine Er-
gebnisse zu verweisen.?! Diese Skizze ist im Ubrigen auch die erste Beweisversion in
[Sell], auf die weiter oben bereits hingewiesen wurde.

Erdés wiederum fiihlte sich von Selberg betrogen. Er ergriff Partei fiir eine gemein-
same Veroffentlichung. Er antwortet auf Selbergs Briefe am 27. September 1948. Er
stellt zum einen fest, dass Selberg am Anfang die Moglichkeit seines Beweises be-
zweifelte und ihm sogar sagte er konne zeigen, dass die Fundamentalformel nicht
den Primzahlsatz impliziert. Zum anderen kritisiert er, dass er ihm wichtiges Wissen

vorenthielt:

If you would have told me about what you know about a¢ und A, I would
have finished the proof [...] on the spot. [...] Then your share [...] would have
only been the beautiful Fundamental Lemma. [...] T feel just as strongly
as before that I am fully entitled to a joint paper. So if you insist on
publishing your new proof all I can do is to publish our simplified proof,

giving you of course full credit for your share [...].22

Was die Publikation von Erdos angeht, so machte er wahr, was er angekiindigt hatte.
Er veroffentlichte den gemeinsam erarbeiteten Beweis mit Verweis auf Selbergs Leis-
tung. Die Publikation [Erd1] wurde weiter oben bereits erwihnt.

Der Disput beschréankte sich nicht nur auf Erdds und Selberg. Einige Mathemati-
ker ergriffen ebenfalls Partei. Selberg fand vorallem in Weyl einen Beflirworter. Aus
dessen Schriftwechsel mit Nathan Jacobson (1910-1999) stammt folgendes Zitat:

I had questioned whether Erdés has the right to publish things which
are admittedly Selberg’s [...]. I really think that Erdés’s behavior is quite
unreasonable, and if I were the responsible editor I think I would not be

afraid of rejecting his paper in this form.2?

Laut Ernst Gabor Straus (1922-1983) war es auch Weyl, der dafiir sorgte, dass die
Annals of Mathematics schlieBlich Erdés Aufsatz zuriickwiesen und nur Selbergs Bei-
trag veroffentlichten.?* Erdés musste auf die Proceedings of the National Academy of

Sciences of the United States of America ausweichen.

20[Gol1], Seite 187.
21[Goll], Seite 188.
22[Gol1], Seite 189.
23[Goll], Seite 190.
24[Gol1], Seite 189.
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Straus war es auch, der sich mehr fiir Erdés einsetzte. Er war es, der verlauten lief3,
dass Selbergs Bedenken hinsichtlich mangelnder Anerkennung jeglicher Grundlage
entbehrten. Er war ebenfalls in Turdns Seminar anwesend und deshalb Zeuge der Fr-
eignisse der nichsten Tage. Nach seiner Wahrnehmung wurde niemals nur Erd6s mit
dem Beweis in Verbindung gebracht, sondern immer auch Selberg.2’

Der Disput zwischen Erdés und Selberg endete mit den jeweiligen Verdffentlichungen,
eine Verschnung sollte aber nie stattfinden. Die Reaktion der beiden in den folgenden
Jahren war durchaus unterschiedlich. Selberg nahm weitgehend Abstand vom elemen-
taren Beweis des Primzahlsatzes und sollte ihn niemals in seine Lehrveranstaltungen
einbeziehen. Erdés hingegen soll ausgedehnte Vortriage in ganz Europa iiber dieses
Thema gehalten haben.26

Wer in welchem Ausmafl Unrecht hatte ldsst sich heute schwer beurteilen. Tatsache
ist, dass beide ihren Beitrag zum Beweis geleistet haben. Selberg hat sicherlich einen
Grofteil eigenstindig erarbeitet, was es nur versténdlich macht, dass er dafiir auch
Anerkennung erhalten wollte. Allerdings bleibt es fraglich, ob er wirklich alleine einen
Beweis hétte bewerkstelligen konnen, glaubte er doch wirklich daran, dass die Funda-
mentalformel nicht ausreicht. So schmélert es keinen der beiden Beitrige. Zusammen-
genommen ergeben sie den elementaren Beweis einer jahrhundertealten Vermutung
und sollten auch so gewiirdigt werden.

Kommen wir aber nun zum eigentlichen Beweis. Der Beweis folgt in wesentlichen
Punkten den Ausfithrungen von Norman Levinson (1912-1975) in [Levl], die 1969
publiziert wurden. Ubrigens stammt von Levinson auch das bis heute stirkste Re-
sultat hinsichtlich der Riemannschen Vermutung.?” Sein Beweis (oder vielmehr seine
Zusammenstellung des Beweises) des Primzahlsatzes stammt aus den 1960er Jahren
und damit aus einer Zeit, in der die Aufregung um den Beweis bereits abgeebbt war.
Dennoch hielt er es seinerzeit fiir sinnvoll einen in sich geschlossenen elementaren
Beweis des Primzahlsatzes zu liefern, da die Mathematik eine rasante Ausdehnung
erfuhr, viele neue Fachbereiche entstanden und sich viele Mathematiker nicht mehr

mit der Zahlentheorie beschiftigten.??

3 Definitionen

Die Defintionen kénnen beispielsweise in [Ha-Wrl] nachgeschlagen werden.

Eine Primzahl werde mit p € P bezeichnet, P ist die Menge aller Primzahlen.

m(x) = Zl

p<z

Man nennt

25[Goll], Seite 188.
26[Gol1], Seite 190-191.
27[Marl], Seite XXXIV.
28[Levl], Seite 225.

10
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die Primzahlfunktion. Sie gibt die Anzahl der Primzahlen kleiner oder gleich = an.
Zwei Funktionen f(z) und g(z) heien asymptotisch gleich (in Zeichen: f(x) ~ g(x)),

wenn

TEAC
gilt. Nach dem Primzahlsatz gilt also, dass 7(z) und —2— asymptotisch gleich sind.

log(x)
Die von-Mangoldt- Funktion fiir ein n € N ist definiert als

logp, fallsn=p’,j€N
Ay = 31087 P.ieN

0, sonst
Die Gaufklammer fiir eine reelle Zahl x ist

|z] = max k
k€Z, k<z

und somit die gréfite ganze Zahl, die nicht grofler ist als x.
Seien f(z) und g(z) Funktionen und ¢ > 0 eine Konstante. Gibt es zudem ein zg,

sodass fiir alle x > z( gilt

|f ()] < clg(z)],

so nennen wir g(x) eine asymptotische obere Schranke von f(x), d.h. f(x) wichst

nicht wesentlich schneller als g(x). In Zeichen schreiben wir

und benutzen dabei das Landau-Symbol O(-).

4 Grundlagen

4.1 Die Tschebyscheff-Identitit und deren Inversion

Wir wissen, dass wir jede natiirliche Zahl n € N\ {1} in ein Produkt aus m € N
disjunkten Primzahlpotenzen zerlegen konnen, welches bis auf die Reihenfolge der

Faktoren eindeutig bestimmt ist:

n=rpkiphr. .pkm p, € P, p; # pjfiici # j, ki € N

Durch die Anwendung des Logarithmus erhalten wir eine Zerlegung von logn in eine

Summe aus m Summanden:

logn = log (p]flpgz . opfnm) =kilogpy + kologps + ... + kp, log pm,. (4.1)

11
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AuBlerdem konnen wir schreiben

logn =Y A(k). (4.2)

k|n

Dies folgt unmittelbar aus der Definition der von-Mangoldt-Funktion. Betrachtet man
die rechte Seite von (4.2), so sind die einzigen Summanden ungleich Null gerade
logp; fur j € {1,...,m}, denn ist ein Teiler k von n keine reine Primzahlpotenz,
so ist A(k) = 0. Dariiber hinaus gilt A(k) = logp; fiir alle k = p7, v € {1,...,k;},
deswegen kommt logp; genau k;-mal vor und Gleichung (4.2) stimmt mit Gleichung
(4.1) tiberein.

Zu Gleichung (4.2) ist iiberdies

logn =Y A(k) (4.3)
jk=n
dquivalent. Der Parameter j € N nimmt hier alle moglichen Werte an, sodass jk =n
erfiillt ist, weswegen k tatséichlich alle moglichen Teiler von n durchlauft.

Nun definieren wir eine zu Gleichung (4.3) &hnliche Funktion ¢(z) als
P(x) = Z A(n), meN. (4.4)
n<z

Wir werden spéter beweisen, dass der Primzahlsatz dquivalent ist zu

lim M

=00 I

=1 (4.5)

und der eigentliche Beweis des Primzahlsatzes wird durch den Beweis von Gleichung
(4.5) erfolgen. Im Folgenden wollen wir ersteinmal mehr iiber ¢ (x) herausfinden.
Wir stellen zunéchst mit (4.3) fir n € N fest:

Zlogn: Z Z A(k)

n<x n<x jk=n
=Y AR+ D AR 4.+ Y Ak) =D Ak). (46)
jk=1 jk=2 jk=|x] jk<z

Damit definieren wir eine Funktion

T(z) = logn= Y A(k). (4.7)

n<x Jjk<Zx

Die Funktion T'(x) ist also eine Summe iiber alle ganzzahligen Gitterpunkte (j, k),
welche unter oder auf der Hyperbel jk = z liegen und gleichzeitig in beiden Kompo-

nenten j und k positiv sind. Wir erreichen dementsprechend genauso alle genannten

12



4 GRUNDLAGEN

12+

11+

10+

9 9

8 8

7+ 7

6 6

5 5

4t 4

3r 3

2F 2

1 1

C'O 1 2 3 4 5 6 7 8 9 10 11 12 i 00 ‘1 ‘2 3 “‘ ;77‘577;77‘877;771‘07 7127;2 77777 i
Abbildung 4: Veranschaulichung der Abbildung 5: Veranschaulichung der
Zshlweise der Gitterpunkte im Git- Zshlweise der Gitterpunkte im Git-
ter fiir jk < 12 mit j,k € N: Auf- ter fiir jk < 12 mit j,k € N: Auf-
summieren aller Punkte zu einem summieren aller Punkte auf einer
j und anschlieendes Addieren aller Hyperbel und anschlieBendes Addie-
Senkrechten. ren aller Hyperbeln.

Gitterpunkte, wenn wir schreiben

T(x)=> > Ak)=> Ak)+ D Ak)+...+ > Ak),

j<wk<t k<z K<z k<2

G=1 (=2) (=L=))
denn wir summieren hier zuerst zum jeweiligen Wert von j in den entsprechenden
Summen alle Punkte unter oder auf der Hyperbel zusammen und addieren sie an-
schliefend. Abbildung 4 zeigt bespielhaft fiir x = 12 die entsprechende Hyperbel und
angedeutet durch die vertikal verbundenen Gitterpunkte die Zéhlweise.

Schlussendlich erhalten wir aus diesen Uberlegungen und mit der Definition der Funk-

tion ¥(x) aus (4.4):
T =Y v(5) (4.8)

n<x

Die Funktion T'(x) in dieser Darstellung bezeichnet man als T'schebyscheff-Identitit.
Diese Identitdt wollen wir nun umkehren und untersuchen hierfiir eine allgemeine
Funktion G(z), die statt dem ¢ (z) eine Funktion F(x) enthilt. Es gilt auch hier

x > 1, also
G(x)ZF(Z)F(x)+F(§)+...+F(§J>. (4.9)

Wollen wir nun erreichen, dass F(z) durch seine Anteile von G(z) ausgedriickt wird,

13



4 GRUNDLAGEN

substituieren wir in (4.9) x jeweils durch 2, i € {1,..., %1}:
ate) ~rioyer (5)+7 (3)or (5)7 () o7 (5)+
c@- r@) (D) (s
- ) (@)
o (3)- (3 :
o (2)- @)
o (3)- (3)s

Subtrahieren oder addieren wir jeweils die Gleichungen von oder zu G(z), die benétigt

werden, um nach F'(x) aufzuldsen, so erhalten wir

F(:c)zG(:c)—G(%)—G(%)—G<§)+G(%)+....

Die Vermutung liegt also nahe, dass sich F(z) als

F(z) =3 u(k)G (%) (4.10)

k<x
darstellen lisst, wobei u(k) fiir alle k € N die Vorfaktoren der G (%) festlegt, die hier
aber noch unbestimmt sind.

Ein Beweis der Vermutung gelingt beispielsweise mit Methoden der Linearen Algebra.

Hierzu identifizieren wir jeden Funktionswert G (%) mit einem Vektor e; € RL#:

G(%)%(l 11111 ...)T:e1

G(%)%(O 1010 1 ...)T:e2

G(%)%(O 0100 1 ..‘)Tzeg

G<LL)2(0 000 ...0 1)T:em

Jedem Summanden von G (%), der ungleich Null ist, wird eine 1 zugeordnet, sonst
eine 0. Die Matrix A = (61 er ... eLwJ) ist eine untere Dreiecksmatrix mit lauter
Einsen auf der Diagonalen. Damit folgt fiir die Determinante det A = 1 # 0, weswegen

die e; alle voneinander linear unabhingig sind. Daher bilden die e; eine Basis des RL*]

14



4 GRUNDLAGEN

und es gibt eine Linearkombination

S uer=(1 0 ... 0).

k<z

Dies ist dquivalent mit

> uk)G (T) = Fla).
k<z

Bestimmen wir also als néchstes die Vorfaktoren p(k). Diese sind nach Konstruktion
eindeutig.
Mit (4.9) gilt

“(1)-2 ()

J<%

und damit folgt mit (4.10) und der gleichen Argumentation wie bei der Herleitung
der Tschebyscheff-Identitét (4.8)

P =0 S (5) = X ur ().

k<w j<z jk<az

8

Die Summe summiert wieder iiber alle Gitterpunkte (j, k) unterhalb der Hyperbel
jk = x, wobei j,k € N. Diese Punkte erreicht man auch alle, wenn man zuerst
die Punkte auf der Hyperbel jk = n aufsummiert und anschliefend n mit 1 <n <z
durchlaufen ldsst. Man z&hlt also nacheinander die Punkte von |z | Hyperbeln zusam-
men. Angenommen man wiirde einen Punkt (j*,k*) mit j*k* < 2 durch diese Me-
thode nicht treffen, so wiirde man auch nicht iiber die Hyperbel jk = j*k* =n* <z
summieren. Abbildung 5 zeigt fiir x = 12 die entsprechende Hyperbel und angedeutet
durch die drei Hyperbeln die Zahlweise.

Die beiden Summendarstellungen aus Abbildung 4 und Abbildung 5 werden im wei-
teren Verlauf noch hiufig benutzt werden, weswegen sie auch besonders genau ein-
gefithrt wurden. Es wird im Folgenden nicht mehr gesondert auf deren Anwendung
hingewiesen.

Es folgt also die Darstellung;:

Fz)=Y F (%) S ulk). (4.11)

n<x Jjk=n

Wir erkennen, dass diese Gleichung zur Identitdt wird, wenn wir setzen

1, firn=1
S k) = (1.12)

jk=n 0, fir2<n<z

Im Falle von n = 1 gilt natiirlich u(1) = 1. Setzen wir n = p mit p € P, so kann k nur
1 oder p sein, da j € N und wir erhalten p(1) + p(p) = 0, woraus folgt pu(p) = —1. Sei
im Folgenden p; # p; fiir ¢ # j,4,j € N. Wahlen wir n = pips, kann £k die Werte 1,

15
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p1, p2 und pyps annehmen, also

(1) + pu(pr) + p(p2) + p(pip2) = 0.

Wir schliefen p(p1p2) = 1. Durch weiteres Festlegen von n durch Primzahlpotenzen
findet man heraus, dass p(pi1peps) = —1 und p(p?) = u(p?) = ... = u(p?p2) = 0. Wir

vermuten daher, dass gilt:

1, firn=1
n(n) = (=)™, fiir n=pips...pm - (4.13)
0, fiir p? | n

Diese Funktion nennt man Mdébiusfunktion. Es verbleibt noch zu beweisen, dass u(n)

die Gleichung (4.12) wirklich erfiillt, die Eindeutigkeit wurde bereits gezeigt. Fiir
n=phiph? . pkm gilt

Souk) = uk)y= > pk) = > k), (4.14)

jk=n k|n k\pflpl;r"-..pf;zm klpip2...pm

da alle u(p?a),a € N nach Voraussetzung Null sind. Es geniigt also den Beweis fiir
diejenigen n zu fithren, die in paarweise disjunkte Primfaktoren zerfallen. Ist m = 1,
so ist die Aussage nach dem eben Gezeigten wegen (1) + pu(p) = 1 — 1 = 0 richtig.

Um eine Aussage fiir den den Fall m > 2 zu erzielen, wird (4.14) umgeschrieben:

Soouk)y= > (k) + pkpm)) - (4.15)

Elp1p2...pm Elpip2..-pm—1

Dass dies geht ist letzlich klar: durch den zusitzlichen Summanden p(kp,,) inner-
halb der Summe werden alle moglichen Kombinationen eines Produkts von p,, und
k| p1p2...pm—1 hinzugefiigt, die durch die Reduzierung von n um den Primfaktor
Pm nicht durch die eigentliche Summationsvorschrift erzeugt werden. Sei nun k aus
r € {1,...,m — 1} quadratfreien Primfaktoren zusammengesetzt. Dann gilt mit der
Mébiusfunktion (4.13)

plkpm) = (=1)"" = —(=1)" = —pu(k)

und die Summe aus (4.15) wird Null. Dies zeigt die Giiltigkeit von (4.12) fiir die Mobi-
usfunktion und wir haben die Vorfaktoren fiir Gleichung (4.10) eindeutig bestimmt.

Beziiglich dieser Vorfaktoren stellen wir an dieser Stelle fest, dass gilt
lu(n)| <1 fiir allen € N. (4.16)

Von dieser Eigenschaft werden wir spédter noch Gebrauch machen.

Nachdem wir nun die Inversion (4.10) konstruiert und genauer bestimmt haben, wen-
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den wir sie auf die Tschebyscheff-Identitéit (4.8) an und erhalten deren Inversion:

vi@) =Y wl)T (7)) (4.17)

k<z

Mit dem bisher Erarbeiteten konnen wir auch Gleichung (4.2) invertieren und somit
die von-Mangoldt-Funktion durch eine Summe von Logarithmen und der M6bius-
funktion darstellen. Dafiir setzen wir zunéchst die Definitionen von v (z) und T'(z)
(zu finden in (4.4) und (4.7)) in (4.17) ein:

S Am) =3 uk) Y log

n<z k< j<t%

= > u(k)log

Jjk<z

=Y > ulk)log

n<lz jk=n

= > > ulk)log 7.

n<z kln

Mit sukzessivem Durchlauf von x beginnend bei z = 1 begriindet sich, dass gilt

A(n) = Zu(k‘) log %, n > 1. (4.18)
k|n

Dies ist genau die Invertierung von Gleichung (4.2).

4.2 Einige wichtige Sitze

LEMMA 4.1 (Abelsche Teilsummation)
Sei f(t) fiir t > 1 stetig differenzierbar, seien ¢,,n € N Konstanten und sei C(u) =

Engu ¢n. Dann gilt

> eufln) = F@C@) - [ 1C. (4.19)

n<lx
Beweis: Aus der Definition von C(u) folgt direkt
Cn)—C(n—1)=c¢,

und

denn C(u) ist eine Treppenfunktion und auf dem Intervall [|u], u] konstant. Mit dieser
Konstanz folgt auch

" C)f(t)dt = C(x) sz f)dt = C(x)(f(x) — f([x])),

17
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also
T

Cl@)f(lz]) = - " C(t)f'(t)dt + C(a) f ().
Mit diesen Uberlegungen kénnen wir bereits (4.19) beweisen:

Y caf(n) =) (Cln) = Cln—1))f(n)

n<zx n<z

Il
~
—~
Q
—~
S
I
2
S
|
=
=
—~
2
I
2
—
8
I
—_
[
—~
—
8
(I
~—
SN———
—~
[
~
—~
—
8
[

- Z/ Cln)f ()t + C(x) (L))

n<x—1Y"

-y [T ewrwan cwise)

n<z—17"
L] £

- C)f/(t)dt — L JC(t)f'(t)dtJrC(x)f(w)

= /c t)dt + C(z) f ()

LEMMA 4.2 (Eulersche Summenformel)
Sei f(t) fiir t > 1 stetig differenzierbar. Dann gilt

/ F()dt + / (t— )@t + f(1) — (& — [2))f(@).  (4.20)

n<m

Beweis: Setzen wir in (4.19) ¢, = 1 fiir alle n € N, ist mit der partiellen Integration

[ roear=sr], - [ s =@ - s - [ s

schon die Gleichung (4.20) bewiesen:

S f(n) = Zl—/ e

n<zx n<zx

= f(x)|x] 7/1 f/(t)tdt+/1 f’(t)tdt/lw f(@)|t]dt

-/ " f(nar+ / “— ) F Ot FQ) — (o 2)) ().
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Setzen wir f(t) = logt, schreiben wir mit (4.20) und [logtdt = zlogz —z+d,d € R:

T(x) = Zlogn
:xlogw—x—&—l—i—/lx(t— Ltj)%logtdt— (x — |z])log z. (4.21)

Fiir den hinteren Teil gilt mit 0 < ¢ — |¢] < 1 und logt > 0 fiir ¢ > 1:

1 [ (e 1) g ostdt — o Lal)ogal < |1+ [ G logedt — (o = Lo ogs

=1+ (1 - (z—|z]))logz|
<1

< |1+ log x|

=O(1+logx)

= O(log x).

Der hintere Teil von (4.21) wiichst also logarithmisch, d.h. er wichst ungefihr um
einen konstanten Betrag, wenn sich das Argument verdoppelt.
Wir erhalten also:

T(x) =xlogx —x + O(log x). (4.22)

LEMMA 4.3
Fiir hinreichend grofle x gilt

Y(x) < gx

Beweis: Zuerst sei darauf hingewiesen, dass ¢(z) = 3_; ., A(j) monoton wachsend ist,

denn die von-Mangoldt-Funktion A(j) kann gemifl Definition nicht negativ werden.

Also folgt
x x
— — ] > .
w(2n1> w(?n)_o’ nel

Mit dieser Beobachtung und der Tschebyscheff-Identitét (4.8) erhalten wir

x x x x x
o1 (3) =00 5) 0 (3) 6 () 2000 )
@21 (2) =v@ v (D) +u (D) v (E) 4. 2o v

und mit (4.22) folgt fiir > 2 und mit einer Konstanten ¢

x T,z

_ ) < _r_9o(Z z_Z

¥ (z) 1/}(2)7x10g:v T 2(210g2 2)+(9(10gw)
=zlog2+ O(logz) < zlog2+ clogx.
Ersetzen wir x durch 7 und gilt 5> > 2 ergibt sich
x x x
) (2—]) — (ﬁ) < o log2 + clog z. (4.23)
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Aus 5 > 2 folgt weiterhin jlog2 <log &, also j < o2 _ 1 < 187 Bilden wir nun

log2 — log2"
die Summe
T T
> (e(z)-v(em)
0<i<1e%

Diese ist mit 9 (x) identisch. Man erkennt das durch einfaches Ausschreiben der Sum-

me und

x
1/] (2[logx/log2j+1> =0

wegen (t) = 0 fiir t < 2. Mit (4.23) erhalten wir:

1 log? x
< zlog2 —
PR . -
0<i< 1%
log2 T
<2zlog2+c .
log 2
Weil gilt log2 < % und der zweite Term aufgrund des langsamen Wachstums des
Logarithmus fiir hinreichend grofie = kleiner ist als %z ist die Behauptung bewiesen.

LEMMA 4.4
Fiir hinreichend grofle x gilt

Beweis: Es gilt

Ay x|z
— o5 A0 sy (.— [J) . (4.24)
Fiir den hinteren Term gilt mit Lemma 4.3:

0= A0 (5-[2]) < X a0) = vie) - 000)

i<x J
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Insgesamt ergibt sich mit 4.22
Al
T(x) =xlogz —xz+ O(logx) = xz ﬂ + O(x),
Jj<z
also

ZAEJ) =logz + O(1).

LEMMA 4.5
Fiir hinreichend grofle x gilt

Y(x) =w(z)logz + O (J:l()gl()gx) .

log

1 und dem Prim-

Mit dieser Aussage zeigen wir die Aquivalenz von limg_, oo @ =

zahlsatz, die bereits in (4.5) angekiindigt wurde.

Beweis: Der Beweis erfolgt durch Abschétzen in zwei Richtungen.
Mit Definition (4.4) und der Definition der von-Mangoldt-Funktion kann v (z) folgen-

dermaflen dargestellt werden:

¢($)=Zlogp+ Z logp + Z logp+ ...

p<z p?<z p*<z
:Zlogp—i— Z logp + Z logp+.... (4.25)
p<z p<zxl/2 p<xzl/3

Dabei muss natiirlich mit j € N gelten, dass zi > 2, da p = 2 die kleinste Primzahl

ist. Damit folgt j < }(C))g;;. Also erhalten wir:
g

w(x):Zbgp—i— Z logp+...+ Z log p

p<lx pSIl/z prLlog 2/ log x]
log x
< logp+ —— log p.
<> logp Tog 2 > logp
p<z p<zl/2

Mit log x > log p fiir « > p, der Definition der Primzahlfunktion 7(z) und der Eigen-
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schaft 7(z) < x wird ¢ (x) weiter abgeschétzt:

Y(x) < 10ga;Zl+ %log (x%> Z 1

p<z p§x1/2
1 2
x2 log” x

< 1
< m(x)logz + 2Tog?

Es folgt die Abschitzung in anderer Richtung:

Fiir hinreichend grofle y gilt wegen des stéirkeren Wachstums der Exponentialfunktion

3
y 3

2log2logy e

Substituieren wir y = log x erhalten wir daraus

22 log?z  xzloglogx

2log 2 log x

fiir hinreichend grofie . Wir kénnen also schreiben

(4.26)

W(x) < 7(x)logz + O (””logl‘)gx) .

log x

Mit Darstellung (4.25) gelingt durch Weglassen einiger Terme und wieder mit der

Monotonie des Logarithmus eine Abschétzung in die andere Richtung:

d@)> > logp

z/log? z<p<z

x
> lo 1
h g<log2x> Z

z/log? z<p<z

~ s <1ogx2x) (”(”3) o7 (ngzx))
) ()

Dies ist dquivalent zu

und dies wiederum zu

log z T

1 <
71'(3,‘) 0gr = ¢(x) logx — QIOgIngﬂ IOgSﬂ

= () + () 2loglog x x

logx — 2loglogz  logx’

Weil log log « langsamer wichst als log x und beide Funktionen streng monoton wach-
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sen, gilt fiir hinreichend grofle z
1
2loglogx < ilogz

und wir erhalten mit Lemma 4.3

2loglogx 2loglogz  4wloglogx

¥(=) logx — 2loglogx

b

3
<= =
=327 3logx log

also insgesamt
4z loglog x

m(z)logz < Y(x) +

log = logx’
Es wichst % schneller als 12— Also folgt
z loglog x
Y(x) > 7w(x)loge + O | ————— | .
log

Mit (4.26) folgt die Behauptung.

LEMMA 4.6
Es gilt

1 1
Zzlogw+7+(’)(>,
n x

n<x

wobei 7y eine Konstante mit 0 < v < 1 ist. Die Konstante v ist als FEuler-Mascheroni-

Konstante bekannt.

Beweis: Mit der Eulerschen Summenformel aus Lemma 4.2 folgt fiir f(t) = %

t
1 1 Tt — -
Sae [ qa- [ a2l
—n IR 1 t z

:logx+1—/ t_tzwdwr/ ity == lz],
1 T

t x

Dabei ist  wegen 0 < t—[¢| < 1 asymptotische obere Schranke des hinteren Integrals
und ~y definiert sich gerade als v =1 — [~ =1t g,

12
oo

Es gilt v < 1 wegen 0 < [ tftzm dt und es gilt v > 1 — [ %dt = 0. Damit folgt

0<y<l. |

4.3 Die Fundamentalformel

Wir wollen nun versuchen, die Inversion der Tschebyscheff-Identitdt (4.17) (x) =
D k<e ME)T (%) zu benutzen, um das Verhalten von ¢ (z) fiir grofie  zu bestimmen.
Dies soll durch den Vergleich mit einer anderen Funktion F(z) geschehen. Wir de-

finieren hierfiir eine Funktion G(z) in der Darstellung G(z) = anzﬁ' (£). Diese
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Gleichung kénnen wir geméB (4.10) invertieren, sodass wir F(z) = D k<a w(k)G (%)

erhalten. Subtrahiert man F(z) von t(z), erhélt man

Yla) — Fe) =3 u(k) (T (%) -G (%)) . (4.27)

k<z

Wird die rechte Seite klein, dann liegt ﬁ'(m) nah bei ¢(x) und beide zeigen ein dhnli-
ches Wachstumsverhalten. Wir bendtigen demnach ein passendes F' ().

Wenn der Primzahlsatz wahr ist, dann folgt aus Lemma 4.5, dass @ — 1 fiir x — oo.
Dies ist mit der Niihe von x zu ¢ () fiir grole = gleichbedeutend. Versuchen wir also
F(z) = Fy(z) = 2. Damit ist Go(z) = 23, -, 1 Aus Lemma 4.6 resultiert aber
Go(z) = xlogz 4+ zy + O(1). Durch den Vergl_eich mit T'(x) aus Darstellung (4.22)
erkennt man, dass T'(x) und Go(z) fiir grofie « nicht sehr nahe beieinander liegen,
es gilt nur T'(x) — Go(z) = O(z). Damit erhélt man fiir die Differenz ¢(z) — Fy(z)
ebenfalls lineares Wachstum.

Versuchen wir eine asymptotische obere Schranke mit geringerem Wachstum zu erhal-
ten, indem wir eine Konstante C' von F(x) subtrahieren, also F(z) = F)(z) = z — C.

Fiir G; ergibt sich dann

Gl(x):xZ%—CZI

n<x n<lx
=zlogz + a2y +0(1) - C|x]
=zlogz — (C — )z + O(1).

Wihlt man C = 1 4 ~, dann erhélt man wieder mit Darstellung (4.22)
T(xz) — Gi(z) = O(log z). (4.28)

Das logarithmische Wachstum schrénkt das Wachstum der Differenz bereits stérker
ein als im vorhergehenden Fall.

Setzen wir F(z) = x — C in (4.27) ein, erhalten wir

Y@)—a+C =" ulk) (T (%) -~ G (%)) (4.29)

k<x

Wir werden nun zeigen, dass man mit (4.28) und (4.29) nur das Ergebnis
b(z) = O(x) (4:30)

erreichen kann.
Da der Logarithmus bekanntlich langsamer wichst, als jede Potenz, gilt logz =
O(z'/?). Damit kénnen wir (4.28) zu

T(z) — Gi(z) = O(z/?) (4.31)
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vergrobern. Wieder mit |u(k)| < 1 aus (4.16) und der Vergroberung gelingt es (4.29)

abzuschétzen:

St (1 (7)1 (5)) < Ko

Dabei ist K eine Konstante aus der Definition des Landau-Symbols. Die Funktion

x~1/2 ist stets groBer als Null und streng monoton fallend:

21/2

k
1/2 —-1/2
E K—k1/2<Ka: 1+ E /k_lu du

k<z 2<k<x

x

< Kg'/? (1 +/ u_l/Qdu> (4.32)
1

= Ka'/? (2331/2 — 1)

= O(z).

Damit haben wir (4.30) gezeigt.

Mit Fj(z) haben wir zwar eine Hilfsfunktion F(z) gefunden, iiber die eine bessere
Abschiitzung fiir T'(z) — G(x) gelingt, das Wachstum der eigentlich wichtigen Dif-
ferenz v (z) — F(z) konnte aber durch die vorhergehende Abschiitzung nicht weiter
eingeschrinkt werden.

Die Frage ist, ob unsere Abschéitzung vielleicht zu grob war. Nehmen wir aber an, dass
wir in (4.28) das Wachstum noch stérker einschrinken kénnen, ndmlich mit O(1), so
wiirde man selbst mit dieser verstiirkenden Annahme wieder lediglich (z) — F(x) =
O(z) ableiten koénnen.

Das Ergebnis (4.30) haben wir eigentlich auch schon in Lemma (4.3) wesentlich schnel-
ler zeigen konnen. Die Aussage {iber das Wachstum ist insofern interessant, dass man
sie als schwéchere Aussage des Primzahlsatzes bezeichnen kénnte. Wir leiten daraus
immerhin ab, dass @ beschrinkt ist. Mehr aber auch nicht.

Die Beweisidee ist dennoch niitzlich, wir haben nidmlich herausgefunden, dass die be-
nutzte Vergroberung in (4.31) nicht das Wachstumsverhalten von ¢ (z) verdndert hat.
Der Ansatz ist also nun, T'(z) — G1(z) in (4.29) so zu modifizieren, dass sich an der
Abschétzung O(x) nichts verdndert, man aber gleichzeitig die angepasste linke Seite
von (4.29) verwenden kann, um stérkere Aussagen abzuleiten.

Wir schreiben im Folgenden abkiirzend statt (4.29)

F(z) =Y u(k)G (%) . (4.33)

k<z

Ersetzen wir also die rechte Seite durch

J(z) = Z (k) log %G (%) . (4.34)

k<zx
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Es gilt dann fiir diese Seite immer noch J(z) < O(x), denn mit (4.32) folgt

k<z
2172
<> Ko = 0(). (4.35)
k<z

Um die linke Seite zu erhalten, driickt man J(x) durch F(z) aus. Hierbei benutzen

wir log £ = log £ 4-log # und die Erkenntnisse aus (4.12) und (4.18):

J(x)

I
=,
>
~—
<}
09
8
Q
~—
8
N—

I
E
ol
N—
5
09
> 8
Yy
VRS
T =
N———

I
]
&y
~—~
318
N—
(]
=
=
g
Nl

n<lx n<lz

5P ()0 w4 3 P (2) Kty
k|n kln
= F(z)logz+ > F (%) A(n).

n<zx

Die Gleichung

F(z)logz + Y F (%) A(n) =3 ulk)log %G (%) (4.36)

n<lz k<z

ist die sogenannte Tatuzawa-Iseki-Identitdt.
In (4.35) wurde bereits das lineare Wachstum der rechten Seite der Gleichung gezeigt.
Wir erhalten deshalb mit F(x) = ¢(z) — v + C und Lemma 4.4

((x) =+ C) logz + ; (v (%) -2 +0) Aw) = O(@).
Mit (x) = O(x) resultiert damit _
(V) = a)logar + 3 (v (%) -2)am = ow) (4.37)
b(a)loga+ Y Am)y (T) = 2zlogz + O(a). (4.38)

n<x
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5 DER BEWEIS DES PRIMZAHLSATZES

Die Ungleichung (4.37) ist dabei die berithmte Fundamentalformel, welche von Atle
Selberg gefunden wurde.

Weiterhin folgt mit Lemma 4.1, wobei wir ¢, = A(n) und f(n) = logn setzen:

S A(n)logn = logz 3" A(n) — /m L) dt = p(@)logz + O@).  (4.39)
n<x n<x 1 L ~
- N =0(t)
=(z)
Uberdies gilt
ST AG) () —STAG) YDA = 3D AGIAG. (4.40)
i< AT =T jh<e
Definieren wir auflerdem
Ag(n) = A(n)logn + Y A()A(K). (4.41)
jk=n

Aus Einsetzen von (4.39) und (4.40) in (4.38) resultiert:

> Am)logn+ > AGAMR) =Y An)logn+ Y > A()A(k)

n<z Jjk<z n<x n<z jk=n
=Y [ Am)logn+ > AG)A(K)
n<x Jjk=n
=Y As(n) =2zlogx + O(x). (4.42)
n<x

Durch Kombination von (4.42) mit der Darstellung 7'(z) = >, ., logn = zlogz +
O(z) aus (4.22) definieren wir Q(n) = >, -, (A2(k) — 2logk) und erhalten als zen-

trales Ergebnis unserer Uberlegungen dieses Kapitels

o — {zkén (Aa(k) = 210gh) = O(n), firn>2 )
0, firn=1
5 Der Beweis des Primzahlsatzes
Wir definieren
R(x) = {w(m) -z, firz>2
0, fir x < 2
und erhalten aus (4.37)
R(z)logz + 3 A(m)R (%) = O(z). (5.1)

n<x
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Im Folgenden wollen wir aus (5.1)

lim R(z)

T—00 I

=0 (5.2)

herleiten. Gleichung (5.2) ist dquivalent zu (4.5), also gelingt mit deren Beweis der
Beweis des Primzahlsatzes.

Zunéchst betrachten wir die Glattungsfunktion

S(y) = /; @dx, y>2, (5.3)

fiir y < 2 gelte S(y) = 0. Wir leiten einige Eigenschaften dieses Hilfsmittels her.

LEMMA 5.1

Es gibt eine Konstante ¢, sodass fiir y > 2 gilt

1S(y)| < ey, (5.4)
auBerdem
1S(y2) — S(y1)| < clyr — vz (5.5)
und
1S (y2)| = [S(yo)|] < elyr — v2l- (5.6)
Uberdies gilt
Sw)losy + 4GS (2)=ow. (5.7)

Beweis: Mit ¢(z) > 0 und Lemma 4.3 folgt fiir grofie
—z<Y(z)—z<

Mit der Kompaktheit des Intervalls [—x, x] folgt

lim sup |R(z)

T—00 x

<1. (5.8)

Da natiirlich |R(z)| fiir jedes x < oo beschrénkt ist, existiert eine Konstante ¢, so dass
wir schreiben kénnen

|R(z)| < cx, x>2. (5.9)

Fiir die Ableitung von (5.3) gilt S’(y) = %, allerdings nur fiir y # p’, j € N, denn
R(y) ist an diesen Stellen aufgrund der Sprungstellen von (z) nicht stetig. (Die
Unstetigkeitsstellen bilden aber immerhin eine Nullmenge, weshalb S(y) stetig ist.)

Es folgt mit (5.9)
1S (y)l <e, y#p. (5.10)
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Gilt p/ ¢ (y1,92), so ist (5.5) gezeigt, denn

Y2
/ S’(y)dy‘ <
Yy

1

|S(y2) - S(y1)| =

Y2
/ Cdy’ = cly2 — y1]-
Y1

Es sei darauf hingewiesen, dass es nichts ausmacht, wenn y; den Wert p/ annimmt,

denn S’ ist integrierbar auf [p’ + ¢, y5] fiir alle 0 < € < yo — p’ und damit folgt

Y2

[ s W=t [* 5wy = () - 507
I <=0 Jpite

Der Grenzwert S(p’) existiert, da S(y) stetig ist und damit konvergiert das Integral.
Gleiches gilt natiirlich, falls yo eine Unstetigkeitsstelle ist.

Betrachten wir nun allgemeine y; und ys, wobei sich n Unstetigkeitsstellen u; im In-
tervall (y1,y2) befinden. Dann gilt mit eben Gezeigtem und Konstanten {ci,...,¢p41}

und ¢ = maxc;
K2

|S(y2) - S(y2)| =

/w S’(y)dy’ <

1

/ S’(y)dy‘ +...+
Y1

/ 5’(y)dy‘
Y1

<calyr —ui| + .o A e fun — 2|

<&y — y2l

Damit ist (5.5) endgiiltig gezeigt. Aussage (5.4) folgt direkt mit y; = 2.
Mit der Dreiecksungleichung gilt |a+b| < |a|+|b|, also |a+b| —|b] < |a|. Substituieren
wir einmal @« = x — y,b = y und einmal a = z — y,b = —=z, so ergibt sich ||z]| — |y|| <

|z — y|. Deswegen gilt
15(y2)] = 1Syl < [5(y2) = Syl < clya — wl,

(5.6) ist gezeigt.

Multiplizieren wir die Ungleichung (5.1) mit I und integrieren anschliefend. Das
Summenzeichen ldsst sich aus dem zweiten Integral herausziehen, die dabei hinzu-
kommende Fléche ist ebenfalls O(y). Dabei haben wir benutzt, dass fiir die Summe
einer Funktionenfolge f, () gilt [} >, , fu(x)dz =2, o, [V fu(z)dz = O(y), sowie
Y on<y J5 fa(z)dz = O(y). Wir erhalten

/ PRI 4, 4 5 Am) / ' @m =0(y). (5.11)

n<y

Fiir das erste Integral erhélt man mit partieller Integration und S(x) = O(x) aus
(5.4)

T T

/j de = S(x) logaz‘z - /: Mdm = S5(y)logy + O(y). (5.12)
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Fiir das zweite Integral aus (5.11) gilt mit § = £

/ /R dé = / R g — 5() (5.13)

Das Einsetzen von (5.12) und (5.13) in (5.11) liefert (5.7). |

LEMMA 5.2
Es sei Aa(n) = A(n)logn + >, A(j)A(k) wie in (4.41) definiert und K eine
Konstante. Dann gilt

log? y[S(y)| < 3 Ag(m ’5( )‘—&—Klylogy

m<y

Beweis: Zunichst substituieren wir in Ungleichung (5.7) y durch ¥, multiplizieren

mit A(k), summieren iiber k¥ < y und erhalten daraus

és(z)bg% )+ 33T Ak)A (kj>—(’)(y)]§!/\§f).

k<yj<y

Dies ist dquivalent zu

S 498 () s 32 A 5 (£ togme 30 A0AGS () =0m X M.

m<y kj<y

Mit m = kj und Lemma 4.4 resultiert

ZA ( )logy - Z S (%) (A(m) logm — Z A(k)A(j)) = O(ylogy).

k<y m<y kj=m

Schliefilich liefert die Anwendnung von (5.7) auf die erste Summe

m<y kj=m

S(y)log®y = — ZS( ) ( )logm — Z Ak )+(9(ylogy)

Die Anwendung des Absolutbetrages ergibt

log?ylS(y)| < Y |5 ()| |AGm)logm — >~ ARIAG)| + Krylogy
m<y kj=m

<3 Mo(m) s (%)\ + Kyylogy.

m<y

30
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LEMMA 5.3
Es gibt eine Konstante K5, sodass gilt

log? y|S(y |<QZ‘S( )’logm—i—szlogy

m<y

Beweis: Definiere

) = Y (Aa(m) —210gm) S (£ )]

m<y

Daraus folgt die Gleichung

> [8(L)] Astm) =2 Z 15 (L) [1ogm + J(y). (5.14)

m<y

Mit der Definition (4.43) der Funktion Q(m) gilt
Aa(m) — 2logm = Q(m) — Q(m — 1), m > 2,

und damit resultiert

- £ am s (3)] - = ams (547)]

2<m<y 2<m<y

Die Umschreibung der letzten Summe ist richtig, da S(y) = 0 fiir y < 2 und Q(1) =
Also folgt
_ LAY Yy
= 3 e (|s(2)]-Js (4)])
2<m<y

Die Anwendung von (4.43) und (5.6) liefert nun mit einer Konstante K3

s <K 3 m(;_$)

= Ksy Z

2<m<y

y
< Kgy/ ;dv = Kyylogy. (5.15)
1

Mit Lemma 5.2, der Gleichung (5.14) und der letzten Erkenntnis (5.15) erhalten wir

den Beweis:

log?y|S(y)| <2 ‘S<

m<y

<> s

m<y

)‘logm—&- J(y) + Kiylogy

Sle 3=

)‘ logm + Koylogy.
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|
LEMMA 5.4
Es gibt eine Konstante K4, sodass gilt
log? y|S(y)| < 2/ ‘S ’10gudu+K4ylogy.
Beweis: Da der Logarithmus monoton wéchst, gilt
y e y
logm‘S (—)‘ < / logu‘S (—)‘du. (5.16)
m m m

Mit der Dreiecksungleichung gilt nun zunéchst |a +b| < |a|+|b|. Setzen wir a =z —y
und b = y, so ergibt sich die Ungleichung |z| < |y| + |z — y|. Also haben wir

s Gol=ls Gl +ls () =5 Gl

und erhalten durch Anwendung auf (5.16)

ogms (L] [ toguls ()| au+ g .17
mit _
Jm:/ 10gu‘5(%>75(%>’du.

Wieder mit der Monotonie des Logarithmus, Ungleichung (5.5) und der Eigenschaft

log(m + 1) < m kénnen wir J,,, abschitzen:

m—+1
ngc/ logu——f‘du

m
m—+1

<c log udu

m m+1
cylog(m +1)

m(m+ 1)
< Y .
“m+1

Daher bekommen wir mit (5.17) also

s ()] |

m

m+1
log u ’S (g) ’ du + i
U

m+1
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Dieses Ergebnis liefert mit Lemma 5.3:

m+1
log® y|S(y)| < 2 Z (/ logu‘S(z)‘du+cy)+K2ylogy

m—+1
2<m<y MM +

y+1
_ Y 3 1

2<m<y

Es gilt mit S(y) = 0 fiir y < 2

y+1 y+1
/ logu‘S(y)‘du<‘S (y)‘/ logudu =0
v u y+1/1Jy

und die verbleibende Summe aus (5.18) kann wieder mit dem Logarithmus abgeschétzt

1 Y1
Z 7§/ —dv = logy.
m+1 1 v

2<m<y

werden:

Wenden wir dies schliefllich auf (5.18) an, erhalten wir die gewiinschte Aussage. Es
gilt hierbei K4 = 2c¢ + K. [ |

Durch die Substitution v = log £ und z = logy in LEMMA (5.4) ergibt sich die
Ungleichung

x—log 2
2218 (e%)] < 2/ 1S ()] (2 — v)e™*dv + Kyze®
0

<9 / 1S ()] (2 — v)e™dv + Kyze™. (5.19)
0
Definieren wir
W(z) =e "5(e"), (5.20)
folgt mit (5.19)
2 ® Ky
W ()| < P/ W ()] (&~ v)dv+ (5.21)
0

Im Folgenden wird die Funktion W (x) nidher betrachtet.

LEMMA 5.5
Es seien
a = limsup |W(x)|
T—r00
und

5 —timsup = [ [W(e)de.

z—o0o L Jg
Dann gilt a <1 und
a < 4. (5.22)
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Beweis: Mit der Definition von S(y) (5.3) und der Erkenntnis (5.8) kénnen wir folgern:

ZJ R(x)
e W _ o # da dx\
lim sup —== = limsu
y—00 Yy yﬁoo
R(z)
YSUPge2,y] ’
< lim sup
y—00 )
R
= sup (m)‘ <1
zel2y] | T

Mit der Defintion von W(x) (5.20) folgt direkt o < 1.
Nach (5.21) gilt

Durch das Vertauschen der Integrationen erhalten wir

<—// |W (v |dvdw+f

=5 w{~ \ (v)] dv dw+£ (5.23)
= Jo w Jo

Der erste Summand mit dem Doppelintegral werde mit I(x) bezeichnet.

Mit (5.4) erkennt man, dass die Klammer durch eine Konstante abgeschétzt werden

1 w 1 w

7/ W ()| dv = f/ =18 ()] dv
w Jo w Jo

1 w

—/ e Yce’dv =c.
w Jo

Fiir ein festes 1 < x gilt mit dieser Abschitzung

I(z) = % Oxw(;/oww(v) dv) dw
:;/jlw(;/owwwdv>dw+;/:w<;/ow|vv(v)|dv>dw

2 x w
<@y 3 w (1/ W) dv) dw, (5.24)
0

2
T 21 w

kann:

IN

Insbesondere folgt hiermit § < co.

Mit der Definition des § und einem ¢ > 0 gilt weiterhin fiir hinreichend grofie x;

—/ v)|dv<d4e, u>ux.
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Durch Anwendung dieser Abschétzung auf (5.24) resultiert schliefilich
2 2
cry x]

und (5.23) ergibt fiir grofie =

(c—é—s)x%+g

[W(z)| <d+e+ =

T

Mit x — oo erhalten wir damit o < § + ¢ und weil dies fiir alle € > 0 wahr ist, ist das

Lemma vollsténdig bewiesen. |
Konnen wir nun zeigen, dass o = 0, so folgt lim, o |[W(2)| = limy_ e wiﬂ =
lim, 00 |S§7:L’)\ = 0. Spéter werden wir beweisen, dass dies gerade fiquivalent zu (5.2)

ist und damit den Primzahlsatz beweist. Zunichst widmen wir uns aber dem .

LEMMA 5.6
Es gilt mit £ = 2¢
(W () = W(21)| < klzg — 1] (5.25)

und

(W (z2)| = [W(z1)|| < klzz = 21]. (5.26)

Beweis: Es gilt W(x) = e *S(e"), also W/ (z) = —e~*S(e”) + S'(e"). Es folgt
(W' ()] < e7"[S(e”)| + 15" ().

Dabei gilt 2 # jlogp, da S’(y) bei y = p’ nicht stetig ist. Aus (5.4) und (5.10)
erhalten wir damit
(W'(z)| <2c=k, x# jlogp.

Aussagen (5.25) und (5.26) werden nun analog zu den Aussagen (5.5) und (5.6) aus

Lemma 5.1 bewiesen. [ ]

LEMMA 5.7
Es sei W(v) # 0 fiir v1 < v < va. Dann gibt es eine Konstante M, sodass gilt

/v2 |W(v)|dv < M.

U1

Beweis: Es sei ¢, = A(n) und f(n) = % Aus Lemma 4.1, Lemma 4.4 und ¢(x) =

O(z) folgt

T ap(t)
t2

logz +O(1) = dt.

2
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IWeol

o

a
5 ta b

Abbildung 6: Abschitzung des Inte-
grals von |W(z)| iiber dem Intervall
[a,b] durch den Flicheninhalt eines
Dreiecks.

IW)!

Abbildung 7: Abschitzung des Inte-
grals von |W(x)| iiber dem Intervall
[a,b] durch den Flidcheninhalt eines
Trapezes.

Mit R(t) = ¢(t) — t erhalten wir iberdies

/; % dt = O(1). (5.27)

Mit Hilfe der Vertauschung der Integrationen errechnen wir:

o[ [
:/%/iddt

R(t / R 4,

t2

Mit (5.4) und (5.27) resultiert damit [ S(y)dy = O(1). Substituieren wir nun y = e“

und z = e, erhalten wir demnach

v
W(u)du = O(1).
log 2
Fiir zwei verschiedene Integrationsgrenzen vy und v gibt es aufgrund der Beschrankt-
heit des Integrals eine Konstante M, sodass mit Subtraktion der beiden Integrale
voneinander gilt

u)du| < M.

Fordern wir nun v; < u < vy und W(u) # 0, kénnen wir ebenso schreiben

/ W (u)|du < M.
v1
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LEMMA 5.8
Die Funktion W (x) geniigt den Eigenschaften (5.22) und (5.26) und LEMMA 5.7. Dann
gilt

a = limsup |W(z)| = 0.

Tr—r0o0

Beweis: Wihlen wir zunéchst ein 8 > «. Fiir spiter wiahlen wir M auflerdem so, dass
gilt Mk > 1. Nach der Definition von «a gibt es ein z3, sodass

[W(z)| <8, x>z (5.28)
Angenommen W (z) # 0 fiir alle x > x4, so gilt mit der Definition von ¢ und Lemma
5.7 6 = 0 und deshalb nach (5.22) auch o = 0.
Nehmen wir also an es gibt beliebig viele Nullstellen im Bereich > z3. Seien a und

b zwei Nullstellen mit g < a <b.

Fall 1: Wenn gilt b — a > 2%, dann folgt wegen W(z) # 0 fiir ¢ < < b mit

Lemma 5.7 X
[ W< < 50-as.

Fall 2: Seinunb—a < 2% Wenn wir eine der Variablen in (5.26) gleich a oder b

setzen, konnen wir den Verlauf von |W (x)| durch Geraden abschéitzen, denn
(W ()| < k(z —a)

und

[W(x)| < k(—z +b).

Die beiden Geraden schneiden sich im Punkt z = a + b_?“ =b— 17_7“ Deswegen wird
der Verlauf von |W (z)| auf dem Intervall [a, b] durch ein gleichschenkeliges Dreieck mit
Hohe h = k:b*Ta beschrénkt. Nach Voraussetzung gilt damit h < . Das Integral iiber
|W (x)] ldsst sich so iiber den Fléicheninhalt des Dreiecks abschiitzen (siehe Abbildung

6) und wir erhalten
b
1
[ w@lds < j0-ap

Fall 3: Betrachten wir nun noch den Fall 2% <b—-a< 2%. Eine Abschitzung
gelingt dhnlich wie in Fall 2, wieder benutzen wir die obigen Geraden. Da aber gilt
[W(a+p/k)| < 8 und |W (b— 5/k)| < 8, nutzen wir die Form des Dreiecks nur
in den Intervallen [a,a + /K] und [b — B/k,b] zur Abschitzung und wenden auf
dem Intervall [a + 8/k,b — B/k] die Ungleichung (5.28) an, was einem Abschneiden
der Dreiecksspitze durch die Gerade 8 gleichkommt und eine genauere Abschitzung
ermoglicht. Das Integral iiber |W(x)| ldsst sich also iiber den Fldcheninhalt dieses

Trapezes abschiitzen (siche Abbildung 7) und es ergibt sich mit den Voraussetzungen
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dieses Falls

[tz (s-a-2)
S ()

<(b—a)B (1 - 2;;) , (5.29)

denn nach Voraussetzung des Beweises ist 8 > a.
Es gilt Mk > 1 und « < 1. Deshalb ist (1 — a?/(2M K)) > 1/2 und die Abschiitzung
gilt ebenso fiir Fall 1 und Fall 2.

Sei nun z; die kleinste Nullstelle mit zg < x; und Z die grofite Nullstelle mit £ < y,

wobei natiirlich auch zg < y gilt. Dann folgt mit (5.29) und Lemma 5.7

/OyW(:v)ldx:/owl|W(x)|dx+/j|W(x)dx+/;|W(x)|dx
< /O W (@) dz + (& — 21)8 (1 _ 2;;}{) L

Wenn wir durch y teilen erhalten wir mit j_f L <1

1 (Y 1 [ a? M
— Wiz dng/ W(x)|dx + (1—)—1—.
s w@iar< s [ w@lde s (1- i) + 2

Hieraus folgt mit y — oo der Zusammenhang 6 < (1 — %) und wegen a < (8

schlief3lich
Oé2
< 1-— .
a<h ( 2Mk>

Diese Ungleichung gilt fiir alle 5 > « und stimmt deswegen als Grenzwert auch fiir
B = a. Damit folgt a® < 0. Da aber auch gilt a > 0 schlielen wir a = 0. |

Mit Lemma 5.8 und der Definition |W (z)| = e~*S(e*) folgern wir sofort

lim ——— =0.
Y—>0o0 y

Fiir ein hinreichend grofles y und ein € > 0 gilt daher

S ()|<*Ey,

oder auch .
S(y(L+¢)) = S(y) < 3e%(y(L +¢) +y) <.

38



6 SCHLUSSWORT

Mit der Definition von S(y) schreiben wir

y(1+e)
/ R(u) du < €2y
y U

und mit R(u) = ¥(u) — v und dem monotonen Wachstum von ¢ (u) folgt

1 y(1+e) y(1+e)
Y € y Y

Wieder mit dem Argument der Monotonie kénnen wir schreiben

Yy
Auf gleiche Weise gelangt man zu S(y) — S(y(1 —¢€)) > —¢&2y fiir hinreichend grofe y
und damit zu
Yy 2

Dies zeigt schlussendlich Aussage (4.5) und damit ist der Primzahlsatz bewiesen.

6 Schlusswort

Obwohl der elementare Beweis des Primzahlsatzes fiir einige Aufregung sorgte, waren
seine Auswirkung vielleicht nicht so grof}, wie man vielleicht denken kénnte. Schon
Straus stellte fest, dass der elementare Beweis keine neuen und innovativen Methoden
fiir die Zahlentheorie bereitgestellt héitte und dessen Entdeckung zwar brilliant, den-
noch eher beildufig und scheinbar ohne historische Signifikanz wire. Auch Goldfeld
selbst stellt fest, dass bisher keine Ergenisse aus dem Beweis abgeleitet werden konn-
ten, die nicht in stérkerer Form aus anderen Verfahrensweisen resultierten. Andere
elementare Methoden, unter anderem auch von Erdés und Selberg eingefiihrt, waren
da weitaus erfolgreicher.??

Es mag aulerdem interessant sein sich den Disput zwischen Erdés und Selberg auf
einer abstrakteren Ebene anzusehen. Als Grund des Streits einzig die Borniertheit
beider Méanner zu nennen greift sicherlich etwas zu kurz. Die eigene mathematische
Philosophie mag ebenfalls wichtig sein. Timothy Gowers (¥1963) nennt zwei verschie-

dene mathematische Denkansitze, er bezeichnet sie als , Two cultures“3°:

1. Probleme zu losen hilft dabei die Mathematik besser zu verstehen
2. Verstandnis der Mathematik hilft dabei Probleme zu 1osen

Die Frage ist also, ob man sich eher damit beschiftigt Probleme zu l6sen oder eher

damit Theorien zu entwickeln, um zu verstehen. Eine genaue Zuordnung ist nicht

29[Goll], Seite 190.
30[Gow1], Seite 65.
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immer moglich, die meisten Mathematiker liegen wohl irgendwo dazwischen und eine
solche Einteilung bietet immer die Gefahr einer Stereotypisierung. Erd6s und Sel-
berg unterscheiden sich aber durchaus stark in ihren Ansichten. Erdds betrachtete
Mathematik als gemeinschaftliche Aktivitéit. Er betrieb in hochstem Mafle kollabo-
ratives Schreiben, seine Texte entstanden in Zusammenarbeit mit schitzungsweise
fiinfhundert Autoren; damit tibertrifft er sdmtliche Mathematiker vor ihm. Selberg
hingegen bevorzugte die Einzelarbeit und die Ausarbeitung im Stillen. Er kann allein
eine einzige gemeinschaftliche Veroffentlichung vorweisen und sagt dazu selbst, dass
auch diese nicht seine Idee war.?! Erdés kann eher den problemlésungsorientierten,
kooperativen Denkern zugeordnet werden, Selberg eher den zuriickgezogenen Theore-
tikern. Die Einteilung bestéitigt zumindest den Verlauf der Auseinandersetzung und
indentifiziert vielleicht die unterschiedliche grundlegende Philosophie beider Mathe-
matiker als Hauptgrund fiir den nicht zu Stande kommenden Konsens. Gowers stellt
zwar fest, dass sich heute das theorieorientierte Denken etwas mehr an Beliebtheit
erfreue, er bekriftigt aber auch, dass die Mathematik dringend beider ,, Kulturen®
bedarf.??> Zumindest der elementare Beweis des Primzahlsatzes konnte durch (mehr
oder weniger freiwillige) Zusammenarbeit zweier Mathematiker mit sehr unterschied-
lichen Standpunkten erbracht werden. Vielleicht war gerade diese Kombination die
Ursache des Erfolgs.

Nicht zuletzt zeigt die Geschichte des Primzahlsatzes aber auch, dass, obwohl die
Mathematik eine sehr logisch konstruierte und in sich strukturierte Wissenschaft ist,
die Losung eines Problems am Ende doch stark von Intuition, Kreativitat und nicht

zuletzt vom Zufall abhédngen kann.

31[Sp-Grl], Seite 20.
32[Gowl], Seite 66-67.
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