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1 Einleitung

1 Einleitung

Primzahlen faszinieren die Menschen schon seit Jahrtausenden. Sie sind denkbar ein-

fach definiert: Es sind natürliche Zahlen größer als Eins, die nur Eins und sich selbst

als natürliche Teiler besitzen. Bereits Euklid (ca. 360–280 v.Chr.) definierte die Prim-

zahlen im siebten Band seines Werkes Die Elemente und untersuchte sie auf ihre

strukturellen Eigenschaften. Im neunten Band bewies er beispielsweise, dass es un-

endlich viele Primzahlen gibt.1 Im Laufe der Geschichte wurden viele Eigenschaften

der Primzahlen gezeigt, aber auch viele Fragen blieben offen. Godfrey Harold Hardy

(1877-1947) und Edward Maitland Wright (1906-2005) stellten eine Liste von soge-

nannten natürlichen Fragen die Primzahlen betreffend zusammen.2 Hierzu gehört die

Frage nach der Existenz einer allgemeinen Formel zur Berechnung der n-ten Primzahl

pn, genauso wie die Suche nach einer Möglichkeit aus einer gegebenen Primzahl p wei-

tere größere Primzahlen zu konstruieren. Keines dieser Probleme konnte bisher gelöst

werden und die Existenz einer Lösung ist nach bisheriger Erkenntnis unwahrschein-

lich. Die Suche nach einer Möglichkeit zur Bestimmung der Anzahl der Primzahlen

bis zu einer bestimmten Zahl x war dagegen nicht so erfolglos, zumindest wenn man

die Frage etwas unschärfer formuliert und nur die ungefähre Anzahl bestimmen will.

Die genaue Anzahl der Primzahlen bis zu einer Zahl x bezeichnen wir fortan als π(x).

Anders formuliert suchen wir nach einer einfachen Funktion f(x), die ein ähnliches

asymptotisches Verhalten wie π(x) aufweist. Und tatsächlich konnte im letzten Jahr-

hundert gezeigt werden, dass gilt

π(x) ∼
x

log x
.

Dieser Satz ist als Primzahlsatz bekannt, eine alternative Formulierung lautet

lim
x→∞

π(x)

x/ log(x)
= 1. (1.1)

Die Geschichte der Entdeckung dieser Aussage ist lang, im Laufe der Jahrhunderte

beschäftigten sich viele Mathematiker mit diesem Problem, viele maßen ihm beson-

dere Bedeutung zu. Edmund Landau (1877-1938) bezeichnete den Primzahlsatz gar

als das wichtigste Theorem der Zahlentheorie.3

In dieser Arbeit soll zum einen ein elementarer Beweis des Primzahlsatzes durch-

geführt werden, dessen Existenz lange angezweifelt wurde, zum anderen soll aber

auch eine historische Einordnung dieses Theorems erfolgen. Der Primzahlsatz ist ei-

nes der großen mathematischen Probleme der Neuzeit, mit dem sich Generationen von

Mathematikern beschäftigten. Eine Berücksichtigung dessen historischer Entwicklung

ist nicht nur spannend, sie lässt den Leser auch viel über das Wesen der Mathematik

und auch das von Mathematikern erfahren.

1[Nar1], Seite 1.
2[Ha-Wr1], Seite 6.
3[Lan1], Seite VIII.
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2 Historische Perspektive

x 102 104 106 108 1010 1014

π(x) 25 1 229 78 498 5 761 455 455 052 511 3 204 941 750 802
⌊x/ log x⌋ 21 1 085 72 382 5 428 681 434 294 481 3 102 103 442 166
Relative

Abweichung
0.160 0.117 0.078 0.058 0.046 0.032

Tabelle 1: Vergleich verschiedener Werte von π(x) und x/ log x, sowie die relative
Abweichung

2 Historische Perspektive

2.1 Vermutung und erster Beweis

Die Vermutung über die Richtigkeit des Primzahlsatzes wurde bereits im 18. Jahrhun-

dert geäußert, diese begründete sich aber mit mehr oder weniger guten Argumenten

nur auf die Betrachtung von ausgedehnten Tafelwerken und Tabellen. Eine kurze Ta-

belle (Tabelle 1) sei hier angegeben, um auch dem Leser einen intuitiveren Zugang zu

ermöglichen. Man erkennt deutlich die Annäherung von π(x) an die Funktion x/ log x

für große x. Die frühen Tabellen listeten aufgrund der begrenzteren Möglichkeiten

natürlich nicht so große Zahlen, wie die hier mit Wolfram Mathematica R© errechnete.

Umso höher ist die Erkenntnis der frühen Mathematiker zu bewerten, die Einträge

von deren Tabellen überstiegen die Größenordnung 106 nicht.4 Abbildung 1 zeigt noch

einmal den kleiner werdenden Fehler für wachsende x durch eine grafische Visualisie-

rung der Funktionen π(x) und x/ log x.

Adrien-Marie Legendre (1752-1833) glaubte durch Untersuchung von Folgen des Quo-

tienten π(x)/x den Zusammenhang

π(x) =
x

A log x+B

beobachtet zu haben, wobei A und B noch unbestimmende Konstanten waren.5 Seine

Überlegungen veröffentlichte er 1798. In einer Neuauflage seiner Veröffentlichung von

1808 ergänzte er seine Aussage und vermutete

π(x) =
x

log x−A(x)
. (2.1)

Hierbei ist A(x) entsprechend seinen Beobachtungen eine Funktion, die für x → ∞

einen Grenzwert erreicht, dessen erste Dezimalstellen mit 1.08366 übereinstimmen.6

4[Apo1], Seite 23.
5[Leg1], Seite 18-19.
6[Leg2], Seite 394-395.
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Abbildung 1: Die vier Darstellungen der Funktionen π(x) und x/ log x zeigen deutlich
die relative Annäherung der Funktionen für größer werdende x.

Mit (2.1) erhält man

π(x)

x/ log(x)
=
π(x) log x

x

=
1

1−A(x)/ log x
.

Für x→ ∞ würde der Primzahlsatz folgen.

Auch Carl Friedrich Gauß (1777-1855) beschäftigte sich mit dem Primzahlsatz, Ed-

mund Landau (1877-1938) berichtet Näheres.7 Gauß publizierte selbst nichts über den

Primzahlsatz, aber ein Briefwechsel mit seinem Schüler Johann Franz Encke (1791-

1865) von 1849 gibt Aufschluss über seine Gedanken hinsichtlich dieses Themas. So

hat Gauß wohl schon mit 15 Jahren darüber nachgedacht, ob und wie π(x) in einer

Beziehung zu einer elementaren Funktion f(x) steht und kam zu dem Schluss, dass

der Quotient π(x)/x ungefähr umgekehrt proportional zum Logarithmus ist. Der beim

Briefwechsel bereits über 70jährige Gauß teilte die Ansicht der Richtigkeit von (2.1),

hinsichtlich des tatsächlichen Grenzwertes von A(x) war er sich nicht sicher. Bewiesen

hat aber auch Gauß bezüglich des Primzahlsatzes niemals etwas.

Weiterführende Erkenntnisse konnten von Pafnuti Lwowitsch Tschebyschow8 (1821-

1894) und von James Joseph Sylvester (1814-1897) erarbeitet werden. Auf Tscheby-

7[Lan1], Seite 37-41.
8Im mathematischen Kontext ist die ältere Transkription Tschebyscheff üblicher. Diese soll im

Folgenden verwendet werden.
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2 Historische Perspektive

scheff geht das wichtige Resultat

∑

p≤x

log p

p
∼ log x (2.2)

zurück, woraus man ableiten kann, dass π(x) von Ordnung x
log x ist. Wir werden später

mit Lemma 4.4 zu diesem Ergebnis gelangen. Sylvester hingegen konnte zeigen, dass

für hinreichend große x gilt

0.956 <
π(x)

x/ log x
< 1.045.9 (2.3)

Bernhard Riemann (1826-1866) gelang es eine Verbindung des Primzahlsatzes zur

Zetafunktion

ζ(s) =

∞∑

n=1

n−s, s ∈ C, ℜ(s) > 1

in der komplexen Ebene herzustellen.10 Er setzte die Zetafunktion auf die ganze kom-

plexe Zahlenebene analytisch fort und zeigte, dass ihre Nullstellen mit dem Primzahl-

satz in Beziehung stehen. Er konnte beweisen, dass der Primzahlsatz eine Folgerung

wäre, wenn man zeigen könnte, dass die Zetafunktion auf der Geraden der Zahlen

mit ℜ(s) = 1 nicht Null wird. Er schuf damit eine Art Anleitung zum Beweis des

Primzahlsatzes. Eine Veröffentlichung erfolgte 1859 in einem zehnseitigen Aufsatz

([Rie1]), der im Übrigen Riemanns einzige Veröffentlichung im Bereich Zahlentheo-

rie war. Bemerkenswert ist nicht nur der geringe Umfang der Arbeit, sondern auch

die außergewöhnliche Kreativität. Trotz großer Anstrengungen gelang es Riemann in

seinen wenigen verbleibenden Lebensjahren nicht diesen letzten Schritt des Beweises

auszuführen. Er hatte außerdem eine weitaus stärkere Vermutung, nämlich dass alle

nichttrivialen Nullstellen auf der Geraden ℜ(s) = 1
2 liegen, was natürlich die erste For-

derung implizieren würde. Dieses Problem ist als Riemannsche Vermutung bekannt

und bis heute ungelöst.11

Inspiriert durch diese Erkenntnisse arbeiteten viele Mathematiker in den Jahren nach

dem Tode Riemanns an einer Vervollständigung seines Beweises. Hans von Mangoldt

(1854-1925) und Jacques Hadamard (1865-1963) lieferten schließlich die notwendigen

Mittel für einen Beweis. Im Jahr 1896 wurde der Primzahlsatz dann sogar zweimal

unabhängig voneinander mit jeweils unterschiedlichem Vorgehen bewiesen und zwar

von Hadamard und von Charles-Jean de La Valle Poussin (1866-1962). Beide konnten

zeigen, dass die Zetafunktion auf der Geraden der Zahlen mit ℜ(s) = 1 keine Null-

stelle besitzt.12

In den folgenden Jahren wurde der Beweis des Primzahlsatzes immer wieder verein-

facht. Besonders Landau und Norbert Wiener (1894-1964) sind hier zu nennen. Der

9[Gol1], Seite 179-180.
10[Apo1], Seite 26-27.
11[Apo1], Seite 25-26.
12[Apo1], Seite 27.
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2 Historische Perspektive

Abbildung 2: Atle Selberg (1917-2007) Abbildung 3: Paul Erdős (1913-1996)

Kerngedanke der Verbindung mit den Nullstellen der Zetafunktion blieb aber und

damit auch der Weg über die komplexe Analysis.13

2.2 Ein elementarer Beweis

Lange Zeit wurde die Existenz eines elementaren Beweises des Primzahlsatzes ange-

zweifelt. Eine Passage eines Vortrags, den Hardy 1921 in Kopenhagen hielt, macht

dies deutlich und beschreibt sehr anschaulich die Problematik:

No elementary proof of the prime number theorem is known, and one

may ask whether it is reasonable to expect one. Now we know that the

theorem is roughly equivalent to a theorem about an analytic function,

the theorem that Riemann’s zeta function has no roots on a certain line.

A proof of such a theorem, not fundamentally dependent upon the ideas

of the theory of functions, seems to me extraordinarily unlikely. It is rash

to assert that a mathematical theorem cannot be proved in a particular

way; but one thing seems quite clear. We have certain views about the

logic of the theory; we think that some theorems, as we say ’lie deep’ and

others nearer to the surface. If anyone produces an elementary proof of the

prime number theorem, he will show that these views are wrong, that the

subject does not hang together in the way we have supposed, and that it

is time for the books to be cast aside and for the theory to be rewritten.14

13[Boh1], Seite 129.
14[Boh1], Seite 129.
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2 Historische Perspektive

Hardy sollte zu seinen Lebzeiten Recht behalten. Ein Jahr nach seinem Tod im Jahr

1948 aber vermeldete Paul Erdős (1913-1996), dass er zusammen mit Atle Selberg

(1917-2007) einen elementaren Beweis des Primzahlsatzes gefunden habe. Selberg

wurde als Anerkennung für die Entdeckung 1950 an der Harvard University beim

elften Internationalen Mathematikerkongress die Fields-Medaille verliehen15, Erdős

wurde 1951 beim achtundfünfzigsten Jahrestreffen der American Mathematical So-

ciety für seinen wichtigen Beitrag zu Selbergs Beweis an der Brown University mit

dem Colepreis ausgezeichnet16.

So bedeutend diese Entdeckung war, so groß war aber auch der Streit, der zwischen

den beiden Mathematikern entbrannte. Das Problem war, dass beide nicht von An-

fang an zusammenarbeiteten. Selberg suchte lange Zeit alleine nach dem Beweis, der

entscheidende Schritt gelang allerdings erst mit Erkenntnissen von Erdős. Der Streit

entwickelte sich schließlich über der Frage, ob man gemeinsam veröffentlichen solle

oder jeder seine eigenen Beiträge niederschreibe. Die nachfolgenden Darstellungen

folgen, sofern nicht anders referenziert, im Wesentlichen den Ausführungen Dorian

Goldfelds (∗1947) in seinem Aufsatz [Gol1]. Goldfeld war nach eigenen Angaben eng

mit beiden Autoren befreundet und beruft sich bei der Darstellung auf zahlreiche

Gespräche, ihm vorliegende Briefe und andere Dokumente.

Zunächst soll etwas näher auf die genauen Beiträge der beiden eingegangen werden.

Selberg bewies im März 1948 die wichtige Ungleichung

ψ(x) log x+
∑

p≤x

log pψ

(
x

p

)

= 2x log x+O(x).

Diese entspricht im später ausgeführten Beweis Ungleichung (4.38), die Überführung

ineinander ist einfach und erfolgt beispielsweise mit Gleichung (4.6). Dabei ist ψ(x)

eine Hilfsfunktion, Definition und Bedeutung sind in (4.4) und (4.5) zu finden. Es

kann die Äquivalenz des Primzahlsatzes und

lim
x→∞

ψ(x)

x
= 1

gezeigt werden, uns wird dies in Lemma 4.5 gelingen. Die Ungleichung kann als ei-

gentlicher Kern des Beweises verstanden werden und wird deshalb auch Fundamen-

talformel genannt.

Definiert man

a = lim inf
x→∞

ψ(x)

x
und A = lim sup

x→∞

ψ(x)

x
,

so folgt mit Sylvesters Erkenntnis (2.3)

0.956 ≤ a ≤ A ≤ 1.045.

15[Boh1], Seite 127.
16[Coh1], Seite 157-160.
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2 Historische Perspektive

Selberg konnte nun mit Hilfe des Resultates von Tschebyscheff (2.2) und der Fun-

damentalformel beweisen, dass gilt a + A = 2. Im war sehr wohl bewusst, dass der

Primzahlsatz eine unmittelbare Folge wäre, könnte er nur zeigen, dass gilt a = A = 1.

Erdős kam mit der Fundamentalformel in einem Seminar in Kontakt, welches er be-

suchte. Das Seminar wurde von Pál Turán (1910-1976) gehalten, welcher im Vorfeld

von Selberg persönlich unterwiesen wurde. Allerding wusste er nur um die Existenz

der Formel, den Beweis behielt Selberg vorerst für sich. Erdős gelang es schließlich in

relativ kurzer Zeit aus der Fundamentalformel

lim
n→∞

pn+1

pn
= 1 (2.4)

abzuleiten. Eigentlich bewies er sogar ein etwas stärkeres Ergebnis, nämlich dass zu

jedem c ein positives δ(c) existiert, sodass für hinreichend große x gilt

π(x(1 + c))− π(x) > δ(c)x/ log x.17 (2.5)

Die Beweise dazu im Einzelnen sind in chronologischer Reihenfolge in Erdős’ Veröffent-

lichung [Erd1] nachzulesen.

Kurz darauf teilte Erdős Selberg seine Entdeckung mit. Selberg wollte das Ergebnis

zunächst nicht glauben und behauptete sogar dies durch Gegenbeispiele beweisen zu

können. Er war sich darüber im Klaren, dass dieser einfache Grenzwert den Beweis des

Primzahlsatzes bedeuten würden, denn man kann damit zeigen, dass gilt a = A = 1.

Selberg war mit diesem Verlauf überhaupt nicht zufrieden. Er schrieb in einem Brief

an Hermann Weyl (1885-1955):
”
Actually, I didn’t like that somebody else started

working on my unpublished results before I considered myself through with them.“18

Selberg machte sich umgehend an die Arbeit und konnte mit Hilfe von (2.4) und (2.5)

wirklich innerhalb von zwei Tagen eine erste Version des Beweises fertigstellen. Durch

gemeinsame Arbeit von Erdős und Selberg konnte diese erste Version in den folgenden

Tagen noch vereinfacht und verbessert werden.19 Eine Skizze der ersten Beweisversi-

on, die mit Hilfe von (2.4) und (2.5) zeigt, dass a = A = 1, kann in [Sel1] nachgelesen

werden.

Trotz der gemeinsamen Arbeit herschte über die Art der Veröffentlichung Uneinig-

keit.

Selberg setzte sich für eine getrennte Veröffentlichung der jeweils eigenen Leistung

ein. In einem Brief vom 20. August 1948 schrieb er an Erdős:

What I propose is the only fair thing: each of us can publish what he has

actually done and get the credit for that, and not for what the other has

done. [...] I am going to publish my proof as it now is. I have the opinion,

[...] that I do you full justice by telling in the paper that my original proof

17[Erd1], Seite 375.
18[Gol1], Seite 185.
19[Erd1], Seite 375.
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2 Historische Perspektive

depended on your result. In addition to this I offered you to withhold my

proof so your theorem could be published earlier [...]. I still offer you this

[...]. If you don’t accept this I publish my proof anyway.20

In Briefen an Weyl und Goldfeld wird deutlich, dass Selberg befürchtet Erdős wer-

de alleine oder zu einem ungerechtfertigt großen Teil Anerkennung für den Beweis

des Primzahlsatzes bekommen; Selberg war sehr besorgt um die Anerkennung. Er

bot Erdős schließlich in einem zweiten Brief vom 20. September 1948 an in seiner

Veröffentlichung eine Skizze des ersten Beweises mitzuliefern und dabei auf seine Er-

gebnisse zu verweisen.21 Diese Skizze ist im Übrigen auch die erste Beweisversion in

[Sel1], auf die weiter oben bereits hingewiesen wurde.

Erdős wiederum fühlte sich von Selberg betrogen. Er ergriff Partei für eine gemein-

same Veröffentlichung. Er antwortet auf Selbergs Briefe am 27. September 1948. Er

stellt zum einen fest, dass Selberg am Anfang die Möglichkeit seines Beweises be-

zweifelte und ihm sogar sagte er könne zeigen, dass die Fundamentalformel nicht

den Primzahlsatz impliziert. Zum anderen kritisiert er, dass er ihm wichtiges Wissen

vorenthielt:

If you would have told me about what you know about a und A, I would

have finished the proof [...] on the spot. [...] Then your share [...] would have

only been the beautiful Fundamental Lemma. [...] I feel just as strongly

as before that I am fully entitled to a joint paper. So if you insist on

publishing your new proof all I can do is to publish our simplified proof,

giving you of course full credit for your share [...].22

Was die Publikation von Erdős angeht, so machte er wahr, was er angekündigt hatte.

Er veröffentlichte den gemeinsam erarbeiteten Beweis mit Verweis auf Selbergs Leis-

tung. Die Publikation [Erd1] wurde weiter oben bereits erwähnt.

Der Disput beschränkte sich nicht nur auf Erdős und Selberg. Einige Mathemati-

ker ergriffen ebenfalls Partei. Selberg fand vorallem in Weyl einen Befürworter. Aus

dessen Schriftwechsel mit Nathan Jacobson (1910-1999) stammt folgendes Zitat:

I had questioned whether Erdős has the right to publish things which

are admittedly Selberg’s [...]. I really think that Erdős’s behavior is quite

unreasonable, and if I were the responsible editor I think I would not be

afraid of rejecting his paper in this form.23

Laut Ernst Gabor Straus (1922-1983) war es auch Weyl, der dafür sorgte, dass die

Annals of Mathematics schließlich Erdős Aufsatz zurückwiesen und nur Selbergs Bei-

trag veröffentlichten.24 Erdős musste auf die Proceedings of the National Academy of

Sciences of the United States of America ausweichen.

20[Gol1], Seite 187.
21[Gol1], Seite 188.
22[Gol1], Seite 189.
23[Gol1], Seite 190.
24[Gol1], Seite 189.

9



3 Definitionen

Straus war es auch, der sich mehr für Erdős einsetzte. Er war es, der verlauten ließ,

dass Selbergs Bedenken hinsichtlich mangelnder Anerkennung jeglicher Grundlage

entbehrten. Er war ebenfalls in Turáns Seminar anwesend und deshalb Zeuge der Er-

eignisse der nächsten Tage. Nach seiner Wahrnehmung wurde niemals nur Erdős mit

dem Beweis in Verbindung gebracht, sondern immer auch Selberg.25

Der Disput zwischen Erdős und Selberg endete mit den jeweiligen Veröffentlichungen,

eine Versöhnung sollte aber nie stattfinden. Die Reaktion der beiden in den folgenden

Jahren war durchaus unterschiedlich. Selberg nahm weitgehend Abstand vom elemen-

taren Beweis des Primzahlsatzes und sollte ihn niemals in seine Lehrveranstaltungen

einbeziehen. Erdős hingegen soll ausgedehnte Vorträge in ganz Europa über dieses

Thema gehalten haben.26

Wer in welchem Ausmaß Unrecht hatte lässt sich heute schwer beurteilen. Tatsache

ist, dass beide ihren Beitrag zum Beweis geleistet haben. Selberg hat sicherlich einen

Großteil eigenständig erarbeitet, was es nur verständlich macht, dass er dafür auch

Anerkennung erhalten wollte. Allerdings bleibt es fraglich, ob er wirklich alleine einen

Beweis hätte bewerkstelligen können, glaubte er doch wirklich daran, dass die Funda-

mentalformel nicht ausreicht. So schmälert es keinen der beiden Beiträge. Zusammen-

genommen ergeben sie den elementaren Beweis einer jahrhundertealten Vermutung

und sollten auch so gewürdigt werden.

Kommen wir aber nun zum eigentlichen Beweis. Der Beweis folgt in wesentlichen

Punkten den Ausführungen von Norman Levinson (1912-1975) in [Lev1], die 1969

publiziert wurden. Übrigens stammt von Levinson auch das bis heute stärkste Re-

sultat hinsichtlich der Riemannschen Vermutung.27 Sein Beweis (oder vielmehr seine

Zusammenstellung des Beweises) des Primzahlsatzes stammt aus den 1960er Jahren

und damit aus einer Zeit, in der die Aufregung um den Beweis bereits abgeebbt war.

Dennoch hielt er es seinerzeit für sinnvoll einen in sich geschlossenen elementaren

Beweis des Primzahlsatzes zu liefern, da die Mathematik eine rasante Ausdehnung

erfuhr, viele neue Fachbereiche entstanden und sich viele Mathematiker nicht mehr

mit der Zahlentheorie beschäftigten.28

3 Definitionen

Die Defintionen können beispielsweise in [Ha-Wr1] nachgeschlagen werden.

Eine Primzahl werde mit p ∈ P bezeichnet, P ist die Menge aller Primzahlen.

Man nennt

π(x) =
∑

p≤x

1

25[Gol1], Seite 188.
26[Gol1], Seite 190-191.
27[Mar1], Seite XXXIV.
28[Lev1], Seite 225.
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4 Grundlagen

die Primzahlfunktion. Sie gibt die Anzahl der Primzahlen kleiner oder gleich x an.

Zwei Funktionen f(x) und g(x) heißen asymptotisch gleich (in Zeichen: f(x) ∼ g(x)),

wenn

lim
x→∞

f(x)

g(x)
= 1

gilt. Nach dem Primzahlsatz gilt also, dass π(x) und x
log(x) asymptotisch gleich sind.

Die von-Mangoldt-Funktion für ein n ∈ N ist definiert als

Λ(n) =







log p, fallsn = pj , j ∈ N

0, sonst
.

Die Gaußklammer für eine reelle Zahl x ist

⌊x⌋ = max
k∈Z, k≤x

k

und somit die größte ganze Zahl, die nicht größer ist als x.

Seien f(x) und g(x) Funktionen und c > 0 eine Konstante. Gibt es zudem ein x0,

sodass für alle x > x0 gilt

|f(x)| ≤ c|g(x)|,

so nennen wir g(x) eine asymptotische obere Schranke von f(x), d.h. f(x) wächst

nicht wesentlich schneller als g(x). In Zeichen schreiben wir

f(x) = O(g(x))

und benutzen dabei das Landau-Symbol O(·).

4 Grundlagen

4.1 Die Tschebyscheff-Identität und deren Inversion

Wir wissen, dass wir jede natürliche Zahl n ∈ N \ {1} in ein Produkt aus m ∈ N

disjunkten Primzahlpotenzen zerlegen können, welches bis auf die Reihenfolge der

Faktoren eindeutig bestimmt ist:

n = pk11 p
k2
2 · . . . · pkmm , pi ∈ P, pi 6= pj für i 6= j, ki ∈ N.

Durch die Anwendung des Logarithmus erhalten wir eine Zerlegung von log n in eine

Summe aus m Summanden:

log n = log
(

pk11 p
k2
2 · . . . · pkmm

)

= k1 log p1 + k2 log p2 + . . .+ km log pm. (4.1)

11



4 Grundlagen

Außerdem können wir schreiben

log n =
∑

k|n

Λ(k). (4.2)

Dies folgt unmittelbar aus der Definition der von-Mangoldt-Funktion. Betrachtet man

die rechte Seite von (4.2), so sind die einzigen Summanden ungleich Null gerade

log pj für j ∈ {1, . . . ,m}, denn ist ein Teiler k von n keine reine Primzahlpotenz,

so ist Λ(k) = 0. Darüber hinaus gilt Λ(k) = log pj für alle k = prj , r ∈ {1, . . . , kj},

deswegen kommt log pj genau kj-mal vor und Gleichung (4.2) stimmt mit Gleichung

(4.1) überein.

Zu Gleichung (4.2) ist überdies

log n =
∑

jk=n

Λ(k) (4.3)

äquivalent. Der Parameter j ∈ N nimmt hier alle möglichen Werte an, sodass jk = n

erfüllt ist, weswegen k tatsächlich alle möglichen Teiler von n durchläuft.

Nun definieren wir eine zu Gleichung (4.3) ähnliche Funktion ψ(x) als

ψ(x) =
∑

n≤x

Λ(n), n ∈ N. (4.4)

Wir werden später beweisen, dass der Primzahlsatz äquivalent ist zu

lim
x→∞

ψ(x)

x
= 1 (4.5)

und der eigentliche Beweis des Primzahlsatzes wird durch den Beweis von Gleichung

(4.5) erfolgen. Im Folgenden wollen wir ersteinmal mehr über ψ(x) herausfinden.

Wir stellen zunächst mit (4.3) für n ∈ N fest:

∑

n≤x

log n =
∑

n≤x

∑

jk=n

Λ(k)

=
∑

jk=1

Λ(k) +
∑

jk=2

Λ(k) + . . .+
∑

jk=⌊x⌋

Λ(k) =
∑

jk≤x

Λ(k). (4.6)

Damit definieren wir eine Funktion

T (x) =
∑

n≤x

log n =
∑

jk≤x

Λ(k). (4.7)

Die Funktion T (x) ist also eine Summe über alle ganzzahligen Gitterpunkte (j, k),

welche unter oder auf der Hyperbel jk = x liegen und gleichzeitig in beiden Kompo-

nenten j und k positiv sind. Wir erreichen dementsprechend genauso alle genannten

12
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æ

æ

æ

æ

æ

æ

0 1 2 3 4 5 6 7 8 9 10 11 12
j0

1

2

3

4

5

6

7

8

9

10

11

12

k

Abbildung 4: Veranschaulichung der
Zählweise der Gitterpunkte im Git-
ter für jk ≤ 12 mit j, k ∈ N: Auf-
summieren aller Punkte zu einem
j und anschließendes Addieren aller
Senkrechten.
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Abbildung 5: Veranschaulichung der
Zählweise der Gitterpunkte im Git-
ter für jk ≤ 12 mit j, k ∈ N: Auf-
summieren aller Punkte auf einer
Hyperbel und anschließendes Addie-
ren aller Hyperbeln.

Gitterpunkte, wenn wir schreiben

T (x) =
∑

j≤x

∑

k≤ x
j

Λ(k) =
∑

k≤x

Λ(k)

(j=1)

+
∑

k≤ x
2

Λ(k)

(j=2)

+ . . .+
∑

k≤ x
⌊x⌋

Λ(k)

(j=⌊x⌋)

,

denn wir summieren hier zuerst zum jeweiligen Wert von j in den entsprechenden

Summen alle Punkte unter oder auf der Hyperbel zusammen und addieren sie an-

schließend. Abbildung 4 zeigt bespielhaft für x = 12 die entsprechende Hyperbel und

angedeutet durch die vertikal verbundenen Gitterpunkte die Zählweise.

Schlussendlich erhalten wir aus diesen Überlegungen und mit der Definition der Funk-

tion ψ(x) aus (4.4):

T (x) =
∑

n≤x

ψ
(x

n

)

(4.8)

Die Funktion T (x) in dieser Darstellung bezeichnet man als Tschebyscheff-Identität.

Diese Identität wollen wir nun umkehren und untersuchen hierfür eine allgemeine

Funktion G(x), die statt dem ψ(x) eine Funktion F (x) enthält. Es gilt auch hier

x ≥ 1, also

G(x) =
∑

n≤x

F
(x

n

)

= F (x) + F
(x

2

)

+ . . .+ F

(
x

⌊x⌋

)

. (4.9)

Wollen wir nun erreichen, dass F (x) durch seine Anteile von G(x) ausgedrückt wird,

13



4 Grundlagen

substituieren wir in (4.9) x jeweils durch x
i , i ∈ {1, . . . , x

⌊x⌋}:

G (x) =F (x)+F
(x

2

)

+F
(x

3

)

+F
(x

4

)

+F
(x

5

)

+F
(x

6

)

+ . . .

G
(x

2

)

= F
(x

2

)

+F
(x

4

)

+F
(x

6

)

+ . . .

G
(x

3

)

= F
(x

3

)

+F
(x

6

)

+ . . .

G
(x

4

)

= F
(x

4

)

+ . . .

G
(x

5

)

= F
(x

5

)

+ . . .

G
(x

6

)

= F
(x

6

)

+ . . .

...

Subtrahieren oder addieren wir jeweils die Gleichungen von oder zu G(x), die benötigt

werden, um nach F (x) aufzulösen, so erhalten wir

F (x) = G(x)−G
(x

2

)

−G
(x

3

)

−G
(x

5

)

+G
(x

6

)

+ . . . .

Die Vermutung liegt also nahe, dass sich F (x) als

F (x) =
∑

k≤x

µ(k)G
(x

k

)

(4.10)

darstellen lässt, wobei µ(k) für alle k ∈ N die Vorfaktoren der G
(
x
k

)
festlegt, die hier

aber noch unbestimmt sind.

Ein Beweis der Vermutung gelingt beispielsweise mit Methoden der Linearen Algebra.

Hierzu identifizieren wir jeden Funktionswert G
(
x
i

)
mit einem Vektor ei ∈ R

⌊x⌋:

G
(x

1

)

∼=
(

1 1 1 1 1 1 . . .
)T

= e1

G
(x

2

)

∼=
(

0 1 0 1 0 1 . . .
)T

= e2

G
(x

3

)

∼=
(

0 0 1 0 0 1 . . .
)T

= e3

...

G

(
x

⌊x⌋

)

∼=
(

0 0 0 0 . . . 0 1
)T

= e⌊x⌋

Jedem Summanden von G
(
x
i

)
, der ungleich Null ist, wird eine 1 zugeordnet, sonst

eine 0. Die Matrix A =
(

e1 e2 . . . e⌊x⌋

)

ist eine untere Dreiecksmatrix mit lauter

Einsen auf der Diagonalen. Damit folgt für die Determinante detA = 1 6= 0, weswegen

die ei alle voneinander linear unabhängig sind. Daher bilden die ei eine Basis des R
⌊x⌋

14



4 Grundlagen

und es gibt eine Linearkombination

∑

k≤x

µ(k)ek =
(

1 0 . . . 0
)

.

Dies ist äquivalent mit
∑

k≤x

µ(k)G
(x

k

)

= F (x).

Bestimmen wir also als nächstes die Vorfaktoren µ(k). Diese sind nach Konstruktion

eindeutig.

Mit (4.9) gilt

G
(x

k

)

=
∑

j≤ x
k

F

(
x

jk

)

und damit folgt mit (4.10) und der gleichen Argumentation wie bei der Herleitung

der Tschebyscheff-Identität (4.8)

F (x) =
∑

k≤x

µ(k)
∑

j≤ x
k

F

(
x

jk

)

=
∑

jk≤x

µ(k)F

(
x

jk

)

.

Die Summe summiert wieder über alle Gitterpunkte (j, k) unterhalb der Hyperbel

jk = x, wobei j, k ∈ N. Diese Punkte erreicht man auch alle, wenn man zuerst

die Punkte auf der Hyperbel jk = n aufsummiert und anschließend n mit 1 ≤ n ≤ x

durchlaufen lässt. Man zählt also nacheinander die Punkte von ⌊x⌋ Hyperbeln zusam-

men. Angenommen man würde einen Punkt (j⋆, k⋆) mit j⋆k⋆ ≤ x durch diese Me-

thode nicht treffen, so würde man auch nicht über die Hyperbel jk = j⋆k⋆ = n⋆ ≤ x

summieren. Abbildung 5 zeigt für x = 12 die entsprechende Hyperbel und angedeutet

durch die drei Hyperbeln die Zählweise.

Die beiden Summendarstellungen aus Abbildung 4 und Abbildung 5 werden im wei-

teren Verlauf noch häufig benutzt werden, weswegen sie auch besonders genau ein-

geführt wurden. Es wird im Folgenden nicht mehr gesondert auf deren Anwendung

hingewiesen.

Es folgt also die Darstellung:

F (x) =
∑

n≤x

F
(x

n

) ∑

jk=n

µ(k). (4.11)

Wir erkennen, dass diese Gleichung zur Identität wird, wenn wir setzen

∑

jk=n

µ(k) =







1, für n = 1

0, für 2 ≤ n ≤ x
. (4.12)

Im Falle von n = 1 gilt natürlich µ(1) = 1. Setzen wir n = p mit p ∈ P, so kann k nur

1 oder p sein, da j ∈ N und wir erhalten µ(1)+µ(p) = 0, woraus folgt µ(p) = −1. Sei

im Folgenden pi 6= pj für i 6= j, i, j ∈ N. Wählen wir n = p1p2, kann k die Werte 1,
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4 Grundlagen

p1, p2 und p1p2 annehmen, also

µ(1) + µ(p1) + µ(p2) + µ(p1p2) = 0.

Wir schließen µ(p1p2) = 1. Durch weiteres Festlegen von n durch Primzahlpotenzen

findet man heraus, dass µ(p1p2p3) = −1 und µ(p2) = µ(p3) = . . . = µ(p21p2) = 0. Wir

vermuten daher, dass gilt:

µ(n) =







1, für n = 1

(−1)m, für n = p1p2 . . . pm

0, für p2 | n

. (4.13)

Diese Funktion nennt man Möbiusfunktion. Es verbleibt noch zu beweisen, dass µ(n)

die Gleichung (4.12) wirklich erfüllt, die Eindeutigkeit wurde bereits gezeigt. Für

n = pk11 p
k2
2 . . . pkmm gilt

∑

jk=n

µ(k) =
∑

k|n

µ(k) =
∑

k|p
k1
1 p

k2
2 ...pkm

m

µ(k) =
∑

k|p1p2...pm

µ(k), (4.14)

da alle µ(p2a), a ∈ N nach Voraussetzung Null sind. Es genügt also den Beweis für

diejenigen n zu führen, die in paarweise disjunkte Primfaktoren zerfallen. Ist m = 1,

so ist die Aussage nach dem eben Gezeigten wegen µ(1) + µ(p) = 1 − 1 = 0 richtig.

Um eine Aussage für den den Fall m ≥ 2 zu erzielen, wird (4.14) umgeschrieben:

∑

k|p1p2...pm

µ(k) =
∑

k|p1p2...pm−1

(µ(k) + µ(kpm)) . (4.15)

Dass dies geht ist letzlich klar: durch den zusätzlichen Summanden µ(kpm) inner-

halb der Summe werden alle möglichen Kombinationen eines Produkts von pm und

k | p1p2 . . . pm−1 hinzugefügt, die durch die Reduzierung von n um den Primfaktor

pm nicht durch die eigentliche Summationsvorschrift erzeugt werden. Sei nun k aus

r ∈ {1, . . . ,m − 1} quadratfreien Primfaktoren zusammengesetzt. Dann gilt mit der

Möbiusfunktion (4.13)

µ(kpm) = (−1)r+1 = −(−1)r = −µ(k)

und die Summe aus (4.15) wird Null. Dies zeigt die Gültigkeit von (4.12) für die Möbi-

usfunktion und wir haben die Vorfaktoren für Gleichung (4.10) eindeutig bestimmt.

Bezüglich dieser Vorfaktoren stellen wir an dieser Stelle fest, dass gilt

|µ(n)| ≤ 1 für alle n ∈ N. (4.16)

Von dieser Eigenschaft werden wir später noch Gebrauch machen.

Nachdem wir nun die Inversion (4.10) konstruiert und genauer bestimmt haben, wen-
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4 Grundlagen

den wir sie auf die Tschebyscheff-Identität (4.8) an und erhalten deren Inversion:

ψ(x) =
∑

k≤x

µ(k)T
(x

k

)

. (4.17)

Mit dem bisher Erarbeiteten können wir auch Gleichung (4.2) invertieren und somit

die von-Mangoldt-Funktion durch eine Summe von Logarithmen und der Möbius-

funktion darstellen. Dafür setzen wir zunächst die Definitionen von ψ(x) und T (x)

(zu finden in (4.4) und (4.7)) in (4.17) ein:

∑

n≤x

Λ(n) =
∑

k≤x

µ(k)
∑

j≤ x
k

log j

=
∑

jk≤x

µ(k) log j

=
∑

n≤x

∑

jk=n

µ(k) log j

=
∑

n≤x

∑

k|n

µ(k) log
n

k
.

Mit sukzessivem Durchlauf von x beginnend bei x = 1 begründet sich, dass gilt

Λ(n) =
∑

k|n

µ(k) log
n

k
, n ≥ 1. (4.18)

Dies ist genau die Invertierung von Gleichung (4.2).

4.2 Einige wichtige Sätze

Lemma 4.1 (Abelsche Teilsummation)

Sei f(t) für t ≥ 1 stetig differenzierbar, seien cn, n ∈ N Konstanten und sei C(u) =
∑

n≤u cn. Dann gilt

∑

n≤x

cnf(n) = f(x)C(x)−

∫ x

1

f ′(t)C(t)dt. (4.19)

Beweis: Aus der Definition von C(u) folgt direkt

C(n)− C(n− 1) = cn

und

C(u) = C(⌊u⌋),

denn C(u) ist eine Treppenfunktion und auf dem Intervall [⌊u⌋, u] konstant. Mit dieser

Konstanz folgt auch

∫ x

⌊x⌋

C(t)f ′(t)dt = C(x)

∫ x

⌊x⌋

f ′(t)dt = C(x)(f(x)− f(⌊x⌋)),

17



4 Grundlagen

also

C(x)f(⌊x⌋) = −

∫ x

⌊x⌋

C(t)f ′(t)dt+ C(x)f(x).

Mit diesen Überlegungen können wir bereits (4.19) beweisen:

∑

n≤x

cnf(n) =
∑

n≤x

(C(n)− C(n− 1))f(n)

=




∑

n≤x−1

(C(n)− C(n− 1))f(n)− C(⌊x− 1⌋)f(⌊x⌋)



+ C(⌊x⌋)f(⌊x⌋)

=
∑

n≤x−1

C(n)(f(n)− f(n+ 1)) + C(x)f(⌊x⌋)

= −
∑

n≤x−1

∫ n+1

n

C(n)f ′(t)dt+ C(x)f(⌊x⌋)

= −
∑

n≤x−1

∫ n+1

n

C(t)f ′(t)dt+ C(x)f(⌊x⌋)

= −

∫ ⌊x⌋

1

C(t)f ′(t)dt−

∫ x

⌊x⌋

C(t)f ′(t)dt+ C(x)f(x)

= −

∫ x

1

C(t)f ′(t)dt+ C(x)f(x)

�

Lemma 4.2 (Eulersche Summenformel)

Sei f(t) für t ≥ 1 stetig differenzierbar. Dann gilt

∑

n≤x

f(n) =

∫ x

1

f(t)dt+

∫ x

1

(t− ⌊t⌋)f ′(t)dt+ f(1)− (x− ⌊x⌋)f(x). (4.20)

Beweis: Setzen wir in (4.19) cn = 1 für alle n ∈ N, ist mit der partiellen Integration

∫ x

1

f ′(t)t dt = f(t)t
∣
∣
∣

x

1
−

∫ x

1

f(t)dt = f(x)x− f(1)−

∫ x

1

f(t)dt

schon die Gleichung (4.20) bewiesen:

∑

n≤x

f(n) = f(x)
∑

n≤x

1−

∫ x

1

f ′(t)⌊t⌋dt

= f(x)⌊x⌋ −

∫ x

1

f ′(t)t dt+

∫ x

1

f ′(t)t dt−

∫ x

1

f ′(t)⌊t⌋dt

=

∫ x

1

f(t)dt+

∫ x

1

(t− ⌊t⌋)f ′(t)dt+ f(1)− (x− ⌊x⌋)f(x).

�
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Setzen wir f(t) = log t, schreiben wir mit (4.20) und
∫
log t dt = x log x−x+d, d ∈ R:

T (x) =
∑

n≤x

log n

= x log x− x+ 1 +

∫ x

1

(t− ⌊t⌋)
d

dt
log t dt− (x− ⌊x⌋) log x. (4.21)

Für den hinteren Teil gilt mit 0 ≤ t− ⌊t⌋ < 1 und log t > 0 für t > 1:

|1 +

∫ x

1

(t− ⌊t⌋)
d

dt
log t dt− (x− ⌊x⌋) log x| ≤ |1 +

∫ x

1

d

dt
log t dt− (x− ⌊x⌋) log x|

= |1 + (1− (x− ⌊x⌋))
︸ ︷︷ ︸

≤1

log x|

≤ |1 + log x|

= O(1 + log x)

= O(log x).

Der hintere Teil von (4.21) wächst also logarithmisch, d.h. er wächst ungefähr um

einen konstanten Betrag, wenn sich das Argument verdoppelt.

Wir erhalten also:

T (x) = x log x− x+O(log x). (4.22)

Lemma 4.3

Für hinreichend große x gilt

ψ(x) <
3

2
x.

Beweis: Zuerst sei darauf hingewiesen, dass ψ(x) =
∑

j≤x Λ(j) monoton wachsend ist,

denn die von-Mangoldt-Funktion Λ(j) kann gemäß Definition nicht negativ werden.

Also folgt

ψ

(
x

2n− 1

)

− ψ
( x

2n

)

≥ 0, n ∈ N.

Mit dieser Beobachtung und der Tschebyscheff-Identität (4.8) erhalten wir

T (x)− 2T
(x

2

)

= ψ(x)− ψ
(x

2

)

+ ψ
(x

3

)

− ψ
(x

4

)

+ . . . ≥ ψ (x)− ψ
(x

2

)

und mit (4.22) folgt für x ≥ 2 und mit einer Konstanten c

ψ (x)− ψ
(x

2

)

≤ x log x− x− 2
(x

2
log

x

2
−
x

2

)

+O(log x)

= x log 2 +O(log x) ≤ x log 2 + c log x.

Ersetzen wir x durch x
2j und gilt x

2j ≥ 2 ergibt sich

ψ
( x

2j

)

− ψ
( x

2j+1

)

≤
x

2j
log 2 + c log x. (4.23)
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Aus x
2j ≥ 2 folgt weiterhin j log 2 ≤ log x

2 , also j ≤ log x
log 2 − 1 < log x

log 2 . Bilden wir nun

die Summe
∑

0≤j< log x
log 2

(

ψ
( x

2j

)

− ψ
( x

2j+1

))

.

Diese ist mit ψ(x) identisch. Man erkennt das durch einfaches Ausschreiben der Sum-

me und

ψ
( x

2⌊log x/ log 2⌋+1

)

= 0

wegen ψ(t) = 0 für t < 2. Mit (4.23) erhalten wir:

ψ(x) ≤ x log 2
∑

0≤j< log x
log 2

1

2j
+ c

log2 x

log 2

< 2x log 2 + c
log2 x

log 2
.

Weil gilt log 2 < 7
10 und der zweite Term aufgrund des langsamen Wachstums des

Logarithmus für hinreichend große x kleiner ist als 1
10x ist die Behauptung bewiesen.

�

Lemma 4.4

Für hinreichend große x gilt

∑

n≤x

Λ(n)

n
= log x+O(1).

Beweis: Es gilt

T (x) =
∑

ij≤x

Λ(j) =
∑

j≤x

∑

i≤ x
j

Λ(j)

=
∑

j≤x

Λ(j)
∑

i≤ x
j

1 =
∑

j≤x

⌊x

j

⌋

=
∑

j≤x

(
xΛ(j)

j
−
xΛ(j)

j
+
⌊x

j

⌋)

= x
∑

j≤x

Λ(j)

j
−

∑

j≤x

Λ(j)

(
x

j
−
⌊x

j

⌋)

. (4.24)

Für den hinteren Term gilt mit Lemma 4.3:

0 ≤
∑

j≤x

Λ(j)

(
x

j
−
⌊x

j

⌋)

<
∑

j≤x

Λ(j) = ψ(x) = O(x).
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Insgesamt ergibt sich mit 4.22

T (x) = x log x− x+O(log x) = x
∑

j≤x

Λ(j)

j
+O(x),

also

∑

j≤x

Λ(j)

j
= log x+O(1).

�

Lemma 4.5

Für hinreichend große x gilt

ψ(x) = π(x) log x+O

(
x log log x

log x

)

.

Mit dieser Aussage zeigen wir die Äquivalenz von limx→∞
ψ(x)
x = 1 und dem Prim-

zahlsatz, die bereits in (4.5) angekündigt wurde.

Beweis: Der Beweis erfolgt durch Abschätzen in zwei Richtungen.

Mit Definition (4.4) und der Definition der von-Mangoldt-Funktion kann ψ(x) folgen-

dermaßen dargestellt werden:

ψ(x) =
∑

p≤x

log p+
∑

p2≤x

log p+
∑

p3≤x

log p+ . . .

=
∑

p≤x

log p+
∑

p≤x1/2

log p+
∑

p≤x1/3

log p+ . . . . (4.25)

Dabei muss natürlich mit j ∈ N gelten, dass x
1
j ≥ 2, da p = 2 die kleinste Primzahl

ist. Damit folgt j ≤ log x
log 2 . Also erhalten wir:

ψ(x) =
∑

p≤x

log p+
∑

p≤x1/2

log p+ . . .+
∑

p≤x⌊log 2/ log x⌋

log p

≤
∑

p≤x

log p+
log x

log 2

∑

p≤x1/2

log p.

Mit log x ≥ log p für x ≥ p, der Definition der Primzahlfunktion π(x) und der Eigen-
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schaft π(x) ≤ x wird ψ(x) weiter abgeschätzt:

ψ(x) ≤ log x
∑

p≤x

1 +
log x

log 2
log

(

x
1
2

) ∑

p≤x1/2

1

≤ π(x) log x+
x

1
2 log2 x

2 log 2
.

Es folgt die Abschätzung in anderer Richtung:

Für hinreichend große y gilt wegen des stärkeren Wachstums der Exponentialfunktion

y3

2 log 2 log y
< e

y
2 .

Substituieren wir y = log x erhalten wir daraus

x
1
2 log2 x

2 log 2
<
x log log x

log x

für hinreichend große x. Wir können also schreiben

ψ(x) ≤ π(x) log x+O

(
x log log x

log x

)

. (4.26)

Mit Darstellung (4.25) gelingt durch Weglassen einiger Terme und wieder mit der

Monotonie des Logarithmus eine Abschätzung in die andere Richtung:

ψ(x) ≥
∑

x/ log2 x<p≤x

log p

≥ log

(
x

log2 x

)
∑

x/ log2 x<p≤x

1

= log

(
x

log2 x

)(

π(x)− π

(
x

log2 x

))

≥ log

(
x

log2 x

)(

π(x)−
x

log2 x

)

Dies ist äquivalent zu
ψ(x)

log
(

x
log2 x

) ≥ π(x)−
x

log2 x

und dies wiederum zu

π(x) log x ≤ ψ(x)
log x

log x− 2 log log x
+

x

log x

= ψ(x) + ψ(x)
2 log log x

log x− 2 log log x
+

x

log x
.

Weil log log x langsamer wächst als log x und beide Funktionen streng monoton wach-
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sen, gilt für hinreichend große x

2 log log x <
1

4
log x

und wir erhalten mit Lemma 4.3

ψ(x)
2 log log x

log x− 2 log log x
≤

3

2
x
2 log log x

3
4 log x

=
4x log log x

log x
,

also insgesamt

π(x) log x ≤ ψ(x) +
4x log log x

log x
+

x

log x
.

Es wächst 4x log log x
log x schneller als x

log x . Also folgt

ψ(x) ≥ π(x) log x+O

(
x log log x

log x

)

.

Mit (4.26) folgt die Behauptung.

�

Lemma 4.6

Es gilt
∑

n≤x

1

n
= log x+ γ +O

(
1

x

)

,

wobei γ eine Konstante mit 0 < γ < 1 ist. Die Konstante γ ist als Euler-Mascheroni-

Konstante bekannt.

Beweis: Mit der Eulerschen Summenformel aus Lemma 4.2 folgt für f(t) = 1
t

∑

n≤x

1

n
=

∫ x

1

1

t
dt−

∫ x

1

t− ⌊t⌋

t2
dt+ 1−

x− ⌊x⌋

x

= log x+ 1−

∫ ∞

1

t− ⌊t⌋

t2
dt+

∫ ∞

x

t− ⌊t⌋

t2
dt−

x− ⌊x⌋

x
.

Dabei ist 1
x wegen 0 ≤ t−⌊t⌋ < 1 asymptotische obere Schranke des hinteren Integrals

und γ definiert sich gerade als γ = 1−
∫∞

1
t−⌊t⌋
t2 dt.

Es gilt γ < 1 wegen 0 <
∫∞

1
t−⌊t⌋
t2 dt und es gilt γ > 1 −

∫∞

1
1
t2 dt = 0. Damit folgt

0 < γ < 1. �

4.3 Die Fundamentalformel

Wir wollen nun versuchen, die Inversion der Tschebyscheff-Identität (4.17) ψ(x) =
∑

k≤x µ(k)T
(
x
k

)
zu benutzen, um das Verhalten von ψ(x) für große x zu bestimmen.

Dies soll durch den Vergleich mit einer anderen Funktion F̃ (x) geschehen. Wir de-

finieren hierfür eine Funktion G̃(x) in der Darstellung G̃(x) =
∑

n≤x F̃
(
x
n

)
. Diese
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Gleichung können wir gemäß (4.10) invertieren, sodass wir F̃ (x) =
∑

k≤x µ(k)G̃
(
x
k

)

erhalten. Subtrahiert man F̃ (x) von ψ(x), erhält man

ψ(x)− F̃ (x) =
∑

k≤x

µ(k)
(

T
(x

k

)

− G̃
(x

k

))

. (4.27)

Wird die rechte Seite klein, dann liegt F̃ (x) nah bei ψ(x) und beide zeigen ein ähnli-

ches Wachstumsverhalten. Wir benötigen demnach ein passendes F̃ (x).

Wenn der Primzahlsatz wahr ist, dann folgt aus Lemma 4.5, dass ψ(x)x → 1 für x→ ∞.

Dies ist mit der Nähe von x zu ψ(x) für große x gleichbedeutend. Versuchen wir also

F̃ (x) = F0(x) = x. Damit ist G0(x) = x
∑

n≤x
1
n . Aus Lemma 4.6 resultiert aber

G0(x) = x log x + xγ + O(1). Durch den Vergleich mit T (x) aus Darstellung (4.22)

erkennt man, dass T (x) und G0(x) für große x nicht sehr nahe beieinander liegen,

es gilt nur T (x) − G0(x) = O(x). Damit erhält man für die Differenz ψ(x) − F0(x)

ebenfalls lineares Wachstum.

Versuchen wir eine asymptotische obere Schranke mit geringerem Wachstum zu erhal-

ten, indem wir eine Konstante C von F̃ (x) subtrahieren, also F̃ (x) = F1(x) = x−C.

Für G1 ergibt sich dann

G1(x) = x
∑

n≤x

1

n
− C

∑

n≤x

1

= x log x+ xγ +O(1)− C⌊x⌋

= x log x− (C − γ)x+O(1).

Wählt man C = 1 + γ, dann erhält man wieder mit Darstellung (4.22)

T (x)−G1(x) = O(log x). (4.28)

Das logarithmische Wachstum schränkt das Wachstum der Differenz bereits stärker

ein als im vorhergehenden Fall.

Setzen wir F̃ (x) = x− C in (4.27) ein, erhalten wir

ψ(x)− x+ C =
∑

k≤x

µ(k)
(

T
(x

k

)

−G1

(x

k

))

. (4.29)

Wir werden nun zeigen, dass man mit (4.28) und (4.29) nur das Ergebnis

ψ(x) = O(x) (4.30)

erreichen kann.

Da der Logarithmus bekanntlich langsamer wächst, als jede Potenz, gilt log x =

O(x1/2). Damit können wir (4.28) zu

T (x)−G1(x) = O(x1/2) (4.31)
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vergröbern. Wieder mit |µ(k)| ≤ 1 aus (4.16) und der Vergröberung gelingt es (4.29)

abzuschätzen:

∑

k≤x

µ(k)
(

T
(x

k

)

−G1

(x

k

))

≤
∑

k≤x

K
x1/2

k1/2
.

Dabei ist K eine Konstante aus der Definition des Landau-Symbols. Die Funktion

x−1/2 ist stets größer als Null und streng monoton fallend:

∑

k≤x

K
x1/2

k1/2
< Kx1/2



1 +
∑

2≤k≤x

∫ k

k−1

u−1/2du





≤ Kx1/2
(

1 +

∫ x

1

u−1/2du

)

(4.32)

= Kx1/2
(

2x1/2 − 1
)

= O(x).

Damit haben wir (4.30) gezeigt.

Mit F1(x) haben wir zwar eine Hilfsfunktion F̃ (x) gefunden, über die eine bessere

Abschätzung für T (x) − G̃(x) gelingt, das Wachstum der eigentlich wichtigen Dif-

ferenz ψ(x) − F̃ (x) konnte aber durch die vorhergehende Abschätzung nicht weiter

eingeschränkt werden.

Die Frage ist, ob unsere Abschätzung vielleicht zu grob war. Nehmen wir aber an, dass

wir in (4.28) das Wachstum noch stärker einschränken können, nämlich mit O(1), so

würde man selbst mit dieser verstärkenden Annahme wieder lediglich ψ(x)− F̃ (x) =

O(x) ableiten können.

Das Ergebnis (4.30) haben wir eigentlich auch schon in Lemma (4.3) wesentlich schnel-

ler zeigen können. Die Aussage über das Wachstum ist insofern interessant, dass man

sie als schwächere Aussage des Primzahlsatzes bezeichnen könnte. Wir leiten daraus

immerhin ab, dass ψ(x)
x beschränkt ist. Mehr aber auch nicht.

Die Beweisidee ist dennoch nützlich, wir haben nämlich herausgefunden, dass die be-

nutzte Vergröberung in (4.31) nicht das Wachstumsverhalten von ψ(x) verändert hat.

Der Ansatz ist also nun, T (x) − G1(x) in (4.29) so zu modifizieren, dass sich an der

Abschätzung O(x) nichts verändert, man aber gleichzeitig die angepasste linke Seite

von (4.29) verwenden kann, um stärkere Aussagen abzuleiten.

Wir schreiben im Folgenden abkürzend statt (4.29)

F (x) =
∑

k≤x

µ(k)G
(x

k

)

. (4.33)

Ersetzen wir also die rechte Seite durch

J(x) =
∑

k≤x

µ(k) log
x

k
G
(x

k

)

. (4.34)

25



4 Grundlagen

Es gilt dann für diese Seite immer noch J(x) ≤ O(x), denn mit (4.32) folgt

J(x) ≤
∑

k≤x

log
x

k
G
(x

k

)

≤
∑

k≤x

K
x1/2

k1/2
= O(x). (4.35)

Um die linke Seite zu erhalten, drückt man J(x) durch F (x) aus. Hierbei benutzen

wir log x
k = log x

n + log n
k und die Erkenntnisse aus (4.12) und (4.18):

J(x) =
∑

k≤x

µ(k) log
x

k
G
(x

k

)

=
∑

k≤x

µ(k) log
x

k

∑

j≤ x
k

F

(
x

kj

)

=
∑

jk≤x

µ(k) log
x

k
F

(
x

kj

)

=
∑

n≤x

F
(x

n

) ∑

jk=n

µ(k) log
x

k

=
∑

n≤x

F
(x

n

)∑

k|n

µ(k) log
x

k

=
∑

n≤x

F
(x

n

)

log
x

n

∑

k|n

µ(k) +
∑

n≤x

F
(x

n

)∑

k|n

µ(k) log
n

k

= F (x) log x+
∑

n≤x

F
(x

n

)

Λ(n).

Die Gleichung

F (x) log x+
∑

n≤x

F
(x

n

)

Λ(n) =
∑

k≤x

µ(k) log
x

k
G
(x

k

)

(4.36)

ist die sogenannte Tatuzawa-Iseki-Identität.

In (4.35) wurde bereits das lineare Wachstum der rechten Seite der Gleichung gezeigt.

Wir erhalten deshalb mit F (x) = ψ(x)− x+ C und Lemma 4.4

(ψ(x)− x+ C) log x+
∑

n≤x

(

ψ
(x

n

)

−
x

n
+ C

)

Λ(n) = O(x).

Mit ψ(x) = O(x) resultiert damit

(ψ(x)− x) log x+
∑

n≤x

(

ψ
(x

n

)

−
x

n

)

Λ(n) = O(x) (4.37)

und dies führt wiederum zur Ungleichung

ψ(x) log x+
∑

n≤x

Λ(n)ψ
(x

n

)

= 2x log x+O(x). (4.38)
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Die Ungleichung (4.37) ist dabei die berühmte Fundamentalformel, welche von Atle

Selberg gefunden wurde.

Weiterhin folgt mit Lemma 4.1, wobei wir cn = Λ(n) und f(n) = log n setzen:

∑

n≤x

Λ(n) log n = log x
∑

n≤x

Λ(n)

︸ ︷︷ ︸

=ψ(x)

−

∫ x

1

1

t
ψ(t)
︸︷︷︸

=O(t)

dt = ψ(x) log x+O(x). (4.39)

Überdies gilt

∑

j≤x

Λ(j)ψ

(
x

j

)

=
∑

j≤x

Λ(j)
∑

k≤ x
j

Λ(k) =
∑

jk≤x

Λ(j)Λ(k). (4.40)

Definieren wir außerdem

Λ2(n) = Λ(n) log n+
∑

jk=n

Λ(j)Λ(k). (4.41)

Aus Einsetzen von (4.39) und (4.40) in (4.38) resultiert:

∑

n≤x

Λ(n) log n+
∑

jk≤x

Λ(j)Λ(k) =
∑

n≤x

Λ(n) log n+
∑

n≤x

∑

jk=n

Λ(j)Λ(k)

=
∑

n≤x



Λ(n) log n+
∑

jk=n

Λ(j)Λ(k)





=
∑

n≤x

Λ2(n) = 2x log x+O(x). (4.42)

Durch Kombination von (4.42) mit der Darstellung T (x) =
∑

n≤x log n = x log x +

O(x) aus (4.22) definieren wir Q(n) =
∑

k≤n (Λ2(k)− 2 log k) und erhalten als zen-

trales Ergebnis unserer Überlegungen dieses Kapitels

Q(n) =







∑

k≤n (Λ2(k)− 2 log k) = O(n), für n ≥ 2

0, für n = 1
. (4.43)

5 Der Beweis des Primzahlsatzes

Wir definieren

R(x) =







ψ(x)− x, für x ≥ 2

0, für x < 2

und erhalten aus (4.37)

R(x) log x+
∑

n≤x

Λ(n)R
(x

n

)

= O(x). (5.1)
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Im Folgenden wollen wir aus (5.1)

lim
x→∞

R(x)

x
= 0 (5.2)

herleiten. Gleichung (5.2) ist äquivalent zu (4.5), also gelingt mit deren Beweis der

Beweis des Primzahlsatzes.

Zunächst betrachten wir die Glättungsfunktion

S(y) =

∫ y

2

R(x)

x
dx, y ≥ 2, (5.3)

für y < 2 gelte S(y) = 0. Wir leiten einige Eigenschaften dieses Hilfsmittels her.

Lemma 5.1

Es gibt eine Konstante c, sodass für y ≥ 2 gilt

|S(y)| ≤ cy, (5.4)

außerdem

|S(y2)− S(y1)| ≤ c|y1 − y2| (5.5)

und

||S(y2)| − |S(y1)|| ≤ c|y1 − y2|. (5.6)

Überdies gilt

S(y) log y +
∑

j≤y

Λ(j)S

(
y

j

)

= O(y). (5.7)

Beweis: Mit ψ(x) ≥ 0 und Lemma 4.3 folgt für große x

−x ≤ ψ(x)− x ≤
1

2
x ≤ x.

Mit der Kompaktheit des Intervalls [−x, x] folgt

lim sup
x→∞

|R(x)|

x
≤ 1. (5.8)

Da natürlich |R(x)| für jedes x <∞ beschränkt ist, existiert eine Konstante c, so dass

wir schreiben können

|R(x)| ≤ cx, x ≥ 2. (5.9)

Für die Ableitung von (5.3) gilt S′(y) = R(y)
y , allerdings nur für y 6= pj , j ∈ N, denn

R(y) ist an diesen Stellen aufgrund der Sprungstellen von ψ(x) nicht stetig. (Die

Unstetigkeitsstellen bilden aber immerhin eine Nullmenge, weshalb S(y) stetig ist.)

Es folgt mit (5.9)

|S′(y)| ≤ c, y 6= pj . (5.10)
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Gilt pj /∈ (y1, y2), so ist (5.5) gezeigt, denn

|S(y2)− S(y1)| =

∣
∣
∣
∣

∫ y2

y1

S′(y)dy

∣
∣
∣
∣
≤

∣
∣
∣
∣

∫ y2

y1

c dy

∣
∣
∣
∣
= c|y2 − y1|.

Es sei darauf hingewiesen, dass es nichts ausmacht, wenn y1 den Wert pj annimmt,

denn S′ ist integrierbar auf [pj + ǫ, y2] für alle 0 < ǫ < y2 − pj und damit folgt

∫ y2

pj
S′(y)dy = lim

ǫ→0

∫ y2

pj+ǫ

S′(y)dy = S(y2)− S(pj).

Der Grenzwert S(pj) existiert, da S(y) stetig ist und damit konvergiert das Integral.

Gleiches gilt natürlich, falls y2 eine Unstetigkeitsstelle ist.

Betrachten wir nun allgemeine y1 und y2, wobei sich n Unstetigkeitsstellen ui im In-

tervall (y1, y2) befinden. Dann gilt mit eben Gezeigtem und Konstanten {c1, . . . , cn+1}

und c̃ = max
i
ci

|S(y2)− S(y2)| =

∣
∣
∣
∣

∫ y2

y1

S′(y)dy

∣
∣
∣
∣
≤

∣
∣
∣
∣

∫ u1

y1

S′(y)dy

∣
∣
∣
∣
+ . . .+

∣
∣
∣
∣

∫ un

y1

S′(y)dy

∣
∣
∣
∣

≤ c1|y1 − u1|+ . . .+ cn+1|un − y2|

≤ c̃|y1 − y2|.

Damit ist (5.5) endgültig gezeigt. Aussage (5.4) folgt direkt mit y1 = 2.

Mit der Dreiecksungleichung gilt |a+b| ≤ |a|+ |b|, also |a+b|−|b| ≤ |a|. Substituieren

wir einmal a = x− y, b = y und einmal a = x− y, b = −x, so ergibt sich ||x| − |y|| ≤

|x− y|. Deswegen gilt

||S(y2)| − |S(y1)|| ≤ |S(y2)− S(y1)| ≤ c|y2 − y1|,

(5.6) ist gezeigt.

Multiplizieren wir die Ungleichung (5.1) mit 1
x und integrieren anschließend. Das

Summenzeichen lässt sich aus dem zweiten Integral herausziehen, die dabei hinzu-

kommende Fläche ist ebenfalls O(y). Dabei haben wir benutzt, dass für die Summe

einer Funktionenfolge fn(x) gilt
∫ y

2

∑

n≤x fn(x)dx =
∑

n≤y

∫ y

n
fn(x)dx = O(y), sowie

∑

n≤y

∫ n

2
fn(x)dx = O(y). Wir erhalten

∫ y

2

R(x) log x

x
dx+

∑

n≤y

Λ(n)

∫ y

2

R
(
x
n

)

x
dx = O(y). (5.11)

Für das erste Integral erhält man mit partieller Integration und S(x) = O(x) aus

(5.4)

∫ y

2

R(x) log x

x
dx = S(x) log x

∣
∣
∣

y

2
−

∫ y

2

S(x)

x
dx = S(y) log y +O(y). (5.12)
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Für das zweite Integral aus (5.11) gilt mit ξ = x
n

∫ y

2

R
(
x
n

)

x
dx =

∫ y
n

2
n

R(ξ)

ξ
dξ =

∫ y
n

2

R(ξ)

ξ
dξ = S

( y

n

)

. (5.13)

Das Einsetzen von (5.12) und (5.13) in (5.11) liefert (5.7). �

Lemma 5.2

Es sei Λ2(n) = Λ(n) log n +
∑

jk=n Λ(j)Λ(k) wie in (4.41) definiert und K1 eine

Konstante. Dann gilt

log2 y|S(y)| ≤
∑

m≤y

Λ2(m)
∣
∣
∣S

( y

m

)∣
∣
∣+K1y log y.

Beweis: Zunächst substituieren wir in Ungleichung (5.7) y durch y
k , multiplizieren

mit Λ(k), summieren über k ≤ y und erhalten daraus

∑

k≤y

S
(y

k

)

log
y

k
Λ(k) +

∑

k≤y

∑

j≤ y
k

Λ(k)Λ(j)S

(
y

kj

)

= O(y)
∑

k≤y

Λ(k)

k
.

Dies ist äquivalent zu

∑

k≤y

Λ(k)S
(y

k

)

log y−
∑

m≤y

Λ(m)S
( y

m

)

logm+
∑

kj≤y

Λ(k)Λ(j)S

(
y

kj

)

= O(y)
∑

k≤y

Λ(k)

k
.

Mit m = kj und Lemma 4.4 resultiert

∑

k≤y

Λ(k)S
(y

k

)

log y −
∑

m≤y

S
( y

m

)



Λ(m) logm−
∑

kj=m

Λ(k)Λ(j)



 = O(y log y).

Schließlich liefert die Anwendnung von (5.7) auf die erste Summe

S(y) log2 y = −
∑

m≤y

S
( y

m

)



Λ(m) logm−
∑

kj=m

Λ(k)Λ(j)



+O(y log y).

Die Anwendung des Absolutbetrages ergibt

log2 y|S(y)| ≤
∑

m≤y

∣
∣
∣S

( y

m

)∣
∣
∣

∣
∣
∣
∣
∣
∣

Λ(m) logm−
∑

kj=m

Λ(k)Λ(j)

∣
∣
∣
∣
∣
∣

+K1y log y

≤
∑

m≤y

Λ2(m)
∣
∣
∣S

( y

m

)∣
∣
∣+K1y log y.

�
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Lemma 5.3

Es gibt eine Konstante K2, sodass gilt

log2 y|S(y)| ≤ 2
∑

m≤y

∣
∣
∣S

( y

m

)∣
∣
∣ logm+K2y log y.

Beweis: Definiere

J(y) =
∑

m≤y

(Λ2(m)− 2 logm)
∣
∣
∣S

( y

m

)∣
∣
∣ .

Daraus folgt die Gleichung

∑

m≤y

∣
∣
∣S

( y

m

)∣
∣
∣Λ2(m) = 2

∑

m≤y

∣
∣
∣S

( y

m

)∣
∣
∣ logm+ J(y). (5.14)

Mit der Definition (4.43) der Funktion Q(m) gilt

Λ2(m)− 2 logm = Q(m)−Q(m− 1), m ≥ 2,

und damit resultiert

J(y) =
∑

2≤m≤y

(Q(m)−Q(m− 1))
∣
∣
∣S

( y

m

)∣
∣
∣

=
∑

2≤m≤y

Q(m)
∣
∣
∣S

( y

m

)∣
∣
∣−

∑

2≤m≤y

Q(m)

∣
∣
∣
∣
S

(
y

m+ 1

)∣
∣
∣
∣
.

Die Umschreibung der letzten Summe ist richtig, da S(y) = 0 für y < 2 und Q(1) = 0.

Also folgt

J(y) =
∑

2≤m≤y

Q(m)

(∣
∣
∣S

( y

m

)∣
∣
∣−

∣
∣
∣
∣
S

(
y

m+ 1

)∣
∣
∣
∣

)

.

Die Anwendung von (4.43) und (5.6) liefert nun mit einer Konstante K3

J(y) ≤ K3

∑

2≤m≤y

m

(
y

m
−

y

m+ 1

)

= K3y
∑

2≤m≤y

1

m+ 1

< K3y

∫ y

1

1

v
dv = K2y log y. (5.15)

Mit Lemma 5.2, der Gleichung (5.14) und der letzten Erkenntnis (5.15) erhalten wir

den Beweis:

log2 y|S(y)| ≤ 2
∑

m≤y

∣
∣
∣S

( y

m

)∣
∣
∣ logm+ J(y) +K1y log y

≤ 2
∑

m≤y

∣
∣
∣S

( y

m

)∣
∣
∣ logm+K2y log y.
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�

Lemma 5.4

Es gibt eine Konstante K4, sodass gilt

log2 y|S(y)| ≤ 2

∫ y

2

∣
∣
∣S

(y

u

)∣
∣
∣ log u du+K4y log y.

Beweis: Da der Logarithmus monoton wächst, gilt

logm
∣
∣
∣S

( y

m

)∣
∣
∣ ≤

∫ m+1

m

log u
∣
∣
∣S

( y

m

)∣
∣
∣ du. (5.16)

Mit der Dreiecksungleichung gilt nun zunächst |a+ b| ≤ |a|+ |b|. Setzen wir a = x− y

und b = y, so ergibt sich die Ungleichung |x| ≤ |y|+ |x− y|. Also haben wir

∣
∣
∣S

( y

m

)∣
∣
∣ ≤

∣
∣
∣S

(y

u

)∣
∣
∣+

∣
∣
∣S

( y

m

)

− S
(y

u

)∣
∣
∣

und erhalten durch Anwendung auf (5.16)

logm
∣
∣
∣S

( y

m

)∣
∣
∣ ≤

∫ m+1

m

log u
∣
∣
∣S

(y

u

)∣
∣
∣ du+ Jm (5.17)

mit

Jm =

∫ m+1

m

log u
∣
∣
∣S

( y

m

)

− S
(y

u

)∣
∣
∣ du.

Wieder mit der Monotonie des Logarithmus, Ungleichung (5.5) und der Eigenschaft

log(m+ 1) ≤ m können wir Jm abschätzen:

Jm ≤ c

∫ m+1

m

log u
∣
∣
∣
y

m
−
y

u

∣
∣
∣ du

≤ c

∣
∣
∣
∣

y

m
−

y

m+ 1

∣
∣
∣
∣

∫ m+1

m

log u du

≤
cy log(m+ 1)

m(m+ 1)

≤
cy

m+ 1
.

Daher bekommen wir mit (5.17) also

logm
∣
∣
∣S

( y

m

)∣
∣
∣ ≤

∫ m+1

m

log u
∣
∣
∣S

(y

u

)∣
∣
∣ du+

cy

m+ 1
.
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Dieses Ergebnis liefert mit Lemma 5.3:

log2 y|S(y)| ≤ 2
∑

2≤m≤y

(∫ m+1

m

log u
∣
∣
∣S

(y

u

)∣
∣
∣ du+

cy

m+ 1

)

+K2y log y

= 2

∫ y+1

2

log u
∣
∣
∣S

(y

u

)∣
∣
∣ du+ 2cy

∑

2≤m≤y

1

m+ 1
+K2y log y. (5.18)

Es gilt mit S(y) = 0 für y < 2

∫ y+1

y

log u
∣
∣
∣S

(y

u

)∣
∣
∣ du ≤

∣
∣
∣
∣
S

(
y

y + 1

)∣
∣
∣
∣

∫ y+1

y

log u du = 0

und die verbleibende Summe aus (5.18) kann wieder mit dem Logarithmus abgeschätzt

werden:
∑

2≤m≤y

1

m+ 1
≤

∫ y

1

1

v
dv = log y.

Wenden wir dies schließlich auf (5.18) an, erhalten wir die gewünschte Aussage. Es

gilt hierbei K4 = 2c+K2. �

Durch die Substitution v = log y
u und x = log y in Lemma (5.4) ergibt sich die

Ungleichung

x2 |S (ex)| ≤ 2

∫ x−log 2

0

|S (ev)| (x− v)ex−vdv +K4xe
x

≤ 2

∫ x

0

|S (ev)| (x− v)ex−vdv +K4xe
x. (5.19)

Definieren wir

W (x) = e−xS(ex), (5.20)

folgt mit (5.19)

|W (x)| ≤
2

x2

∫ x

0

|W (v)| (x− v) dv +
K4

x
. (5.21)

Im Folgenden wird die Funktion W (x) näher betrachtet.

Lemma 5.5

Es seien

α = lim sup
x→∞

|W (x)|

und

δ = lim sup
x→∞

1

x

∫ x

0

|W (ξ)| dξ.

Dann gilt α ≤ 1 und

α ≤ δ. (5.22)
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Beweis: Mit der Definition von S(y) (5.3) und der Erkenntnis (5.8) können wir folgern:

lim sup
y→∞

|S(y)|

y
= lim sup

y→∞

∣
∣
∣

∫ y

2
R(x)
x dx

∣
∣
∣

y

≤ lim sup
y→∞

y supx∈[2,y]

∣
∣
∣
R(x)
x

∣
∣
∣

y

= sup
x∈[2,y]

∣
∣
∣
∣

R(x)

x

∣
∣
∣
∣
≤ 1.

Mit der Defintion von W (x) (5.20) folgt direkt α ≤ 1.

Nach (5.21) gilt

|W (x)| ≤
2

x2

∫ x

0

|W (v)| (x− v) dv +
K4

x

=
2

x2

∫ x

0

|W (v)|

∫ x

v

1 dw dv +
K4

x
.

Durch das Vertauschen der Integrationen erhalten wir

|W (x)| ≤
2

x2

∫ x

0

∫ w

0

|W (v)| dv dw +
K4

x

=
2

x2

∫ x

0

w

(
1

w

∫ w

0

|W (v)| dv

)

dw +
K4

x
. (5.23)

Der erste Summand mit dem Doppelintegral werde mit I(x) bezeichnet.

Mit (5.4) erkennt man, dass die Klammer durch eine Konstante abgeschätzt werden

kann:

1

w

∫ w

0

|W (v)| dv =
1

w

∫ w

0

e−v |S (ev)| dv

≤
1

w

∫ w

0

e−vcev dv = c.

Insbesondere folgt hiermit δ <∞.

Für ein festes x1 < x gilt mit dieser Abschätzung

I(x) =
2

x2

∫ x

0

w

(
1

w

∫ w

0

|W (v)| dv

)

dw

=
2

x2

∫ x1

0

w

(
1

w

∫ w

0

|W (v)| dv

)

dw +
2

x2

∫ x

x1

w

(
1

w

∫ w

0

|W (v)| dv

)

dw

≤
cx21
x2

+
2

x2

∫ x

x1

w

(
1

w

∫ w

0

|W (v)| dv

)

dw. (5.24)

Mit der Definition des δ und einem ε > 0 gilt weiterhin für hinreichend große x1

1

w

∫ w

0

|W (v)| dv < δ + ε, u ≥ x1.
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5 Der Beweis des Primzahlsatzes

Durch Anwendung dieser Abschätzung auf (5.24) resultiert schließlich

I(x) ≤
cx21
x2

+ (δ + ε)

(

1−
x21
x2

)

und (5.23) ergibt für große x

|W (x)| ≤ δ + ε+
(c− δ − ε)x21

x2
+
K4

x
.

Mit x→ ∞ erhalten wir damit α ≤ δ+ ε und weil dies für alle ε > 0 wahr ist, ist das

Lemma vollständig bewiesen. �

Können wir nun zeigen, dass α = 0, so folgt limx→∞ |W (x)| = limx→∞
|S(ex)|
ex =

limx→∞
|S(x)|
x = 0. Später werden wir beweisen, dass dies gerade äquivalent zu (5.2)

ist und damit den Primzahlsatz beweist. Zunächst widmen wir uns aber dem α.

Lemma 5.6

Es gilt mit k = 2c

|W (x2)−W (x1)| ≤ k|x2 − x1| (5.25)

und

||W (x2)| − |W (x1)|| ≤ k|x2 − x1|. (5.26)

Beweis: Es gilt W (x) = e−xS(ex), also W ′(x) = −e−xS(ex) + S′(ex). Es folgt

|W ′(x)| ≤ e−x|S(ex)|+ |S′(ex)|.

Dabei gilt x 6= j log p, da S′(y) bei y = pj nicht stetig ist. Aus (5.4) und (5.10)

erhalten wir damit

|W ′(x)| ≤ 2c = k, x 6= j log p.

Aussagen (5.25) und (5.26) werden nun analog zu den Aussagen (5.5) und (5.6) aus

Lemma 5.1 bewiesen. �

Lemma 5.7

Es sei W (v) 6= 0 für v1 < v < v2. Dann gibt es eine Konstante M , sodass gilt

∫ v2

v1

|W (v)| dv ≤M.

Beweis: Es sei cn = Λ(n) und f(n) = 1
n . Aus Lemma 4.1, Lemma 4.4 und ψ(x) =

O(x) folgt

log x+O(1) =

∫ x

2

ψ(t)

t2
dt.
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a
b-a

2
+ a b

x0

h

ÈWHxLÈ

Abbildung 6: Abschätzung des Inte-
grals von |W (x)| über dem Intervall
[a, b] durch den Flächeninhalt eines
Dreiecks.

a a +
Β

k

b-a

2
+ a b -

Β

k
b

x0

Β

ÈWHxLÈ

Abbildung 7: Abschätzung des Inte-
grals von |W (x)| über dem Intervall
[a, b] durch den Flächeninhalt eines
Trapezes.

Mit R(t) = ψ(t)− t erhalten wir überdies

∫ x

2

R(t)

t2
dt = O(1). (5.27)

Mit Hilfe der Vertauschung der Integrationen errechnen wir:

∫ x

2

S(y)

y2
dy =

∫ x

2

∫ y

2

R(t)

t

1

y2
dt dy

=

∫ x

2

R(t)

t

∫ x

t

1

y2
dy dt

=

∫ x

2

R(t)

t2
dt−

1

x

∫ x

2

R(t)

t
dt.

Mit (5.4) und (5.27) resultiert damit
∫ x

2
S(y)
y2 dy = O(1). Substituieren wir nun y = eu

und x = ev, erhalten wir demnach

∫ v

log 2

W (u) du = O(1).

Für zwei verschiedene Integrationsgrenzen v1 und v2 gibt es aufgrund der Beschränkt-

heit des Integrals eine Konstante M , sodass mit Subtraktion der beiden Integrale

voneinander gilt ∣
∣
∣
∣

∫ v2

v1

W (u) du

∣
∣
∣
∣
≤M.

Fordern wir nun v1 < u < v2 und W (u) 6= 0, können wir ebenso schreiben

∫ v2

v1

|W (u)| du ≤M.

�
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5 Der Beweis des Primzahlsatzes

Lemma 5.8

Die FunktionW (x) genügt den Eigenschaften (5.22) und (5.26) und Lemma 5.7. Dann

gilt

α = lim sup
x→∞

|W (x)| = 0.

Beweis: Wählen wir zunächst ein β > α. Für später wählen wirM außerdem so, dass

gilt Mk > 1. Nach der Definition von α gibt es ein xβ , sodass

|W (x)| ≤ β, x ≥ xβ . (5.28)

Angenommen W (x) 6= 0 für alle x ≥ xβ , so gilt mit der Definition von δ und Lemma

5.7 δ = 0 und deshalb nach (5.22) auch α = 0.

Nehmen wir also an es gibt beliebig viele Nullstellen im Bereich x ≥ xβ . Seien a und

b zwei Nullstellen mit xβ < a < b.

Fall 1: Wenn gilt b − a ≥ 2Mβ , dann folgt wegen W (x) 6= 0 für a < x < b mit

Lemma 5.7
∫ b

a

|W (x)| ≤M ≤
1

2
(b− a)β.

Fall 2: Sei nun b− a ≤ 2βk . Wenn wir eine der Variablen in (5.26) gleich a oder b

setzen, können wir den Verlauf von |W (x)| durch Geraden abschätzen, denn

|W (x)| ≤ k(x− a)

und

|W (x)| ≤ k(−x+ b).

Die beiden Geraden schneiden sich im Punkt x = a+ b−a
2 = b− b−a

2 . Deswegen wird

der Verlauf von |W (x)| auf dem Intervall [a, b] durch ein gleichschenkeliges Dreieck mit

Höhe h = k b−a2 beschränkt. Nach Voraussetzung gilt damit h ≤ β. Das Integral über

|W (x)| lässt sich so über den Flächeninhalt des Dreiecks abschätzen (siehe Abbildung

6) und wir erhalten
∫ b

a

|W (x)| dx ≤
1

2
(b− a)β.

Fall 3: Betrachten wir nun noch den Fall 2βk < b − a < 2Mβ . Eine Abschätzung

gelingt ähnlich wie in Fall 2, wieder benutzen wir die obigen Geraden. Da aber gilt

|W (a+ β/k)| ≤ β und |W (b− β/k)| ≤ β, nutzen wir die Form des Dreiecks nur

in den Intervallen [a, a + β/k] und [b − β/k, b] zur Abschätzung und wenden auf

dem Intervall [a + β/k, b − β/k] die Ungleichung (5.28) an, was einem Abschneiden

der Dreiecksspitze durch die Gerade β gleichkommt und eine genauere Abschätzung

ermöglicht. Das Integral über |W (x)| lässt sich also über den Flächeninhalt dieses

Trapezes abschätzen (siehe Abbildung 7) und es ergibt sich mit den Voraussetzungen
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5 Der Beweis des Primzahlsatzes

dieses Falls

∫ b

a

|W (x)| dx ≤
β2

k
+

(

b− a− 2
β

k

)

β

= (b− a)β

(

1−
β

k(b− a)

)

≤ (b− a)β

(

1−
β2

2Mk

)

< (b− a)β

(

1−
α2

2Mk

)

, (5.29)

denn nach Voraussetzung des Beweises ist β > α.

Es gilt Mk > 1 und α ≤ 1. Deshalb ist (1− α2/(2MK)) > 1/2 und die Abschätzung

gilt ebenso für Fall 1 und Fall 2.

Sei nun x1 die kleinste Nullstelle mit xβ ≤ x1 und x̃ die größte Nullstelle mit x̃ ≤ y,

wobei natürlich auch xβ < y gilt. Dann folgt mit (5.29) und Lemma 5.7

∫ y

0

|W (x)| dx =

∫ x1

0

|W (x)| dx+

∫ x̃

x1

|W (x)| dx+

∫ y

x̃

|W (x)| dx

≤

∫ x1

0

|W (x)| dx+ (x̃− x1)β

(

1−
α2

2Mk

)

+M.

Wenn wir durch y teilen erhalten wir mit x̃−x1

y ≤ 1

1

y

∫ y

0

|W (x)| dx ≤
1

y

∫ x1

0

|W (x)| dx+ β

(

1−
α2

2Mk

)

+
M

y
.

Hieraus folgt mit y → ∞ der Zusammenhang δ ≤ β
(

1− α2

2Mk

)

und wegen α ≤ β

schließlich

α ≤ β

(

1−
α2

2Mk

)

.

Diese Ungleichung gilt für alle β > α und stimmt deswegen als Grenzwert auch für

β = α. Damit folgt α3 ≤ 0. Da aber auch gilt α ≥ 0 schließen wir α = 0. �

Mit Lemma 5.8 und der Definition |W (x)| = e−xS(ex) folgern wir sofort

lim
y→∞

|S(y)|

y
= 0.

Für ein hinreichend großes y und ein ε > 0 gilt daher

|S(y)| ≤
1

3
ε2y,

oder auch

S(y(1 + ε))− S(y) ≤
1

3
ε2(y(1 + ε) + y) < ε2y.
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6 Schlusswort

Mit der Definition von S(y) schreiben wir

∫ y(1+ε)

y

R(u)

u
du ≤ ǫ2y

und mit R(u) = ψ(u)− u und dem monotonen Wachstum von ψ(u) folgt

ψ(y(1 + ε))

y(1 + ε)

∫ y(1+ε)

y

du−

∫ y(1+ε)

y

du ≤ ǫ2y.

Wieder mit dem Argument der Monotonie können wir schreiben

ψ(y)

y
≤ (1 + ε)2.

Auf gleiche Weise gelangt man zu S(y)− S(y(1− ε)) ≥ −ε2y für hinreichend große y

und damit zu
ψ(y)

y
≥ (1− ε)2.

Dies zeigt schlussendlich Aussage (4.5) und damit ist der Primzahlsatz bewiesen.

6 Schlusswort

Obwohl der elementare Beweis des Primzahlsatzes für einige Aufregung sorgte, waren

seine Auswirkung vielleicht nicht so groß, wie man vielleicht denken könnte. Schon

Straus stellte fest, dass der elementare Beweis keine neuen und innovativen Methoden

für die Zahlentheorie bereitgestellt hätte und dessen Entdeckung zwar brilliant, den-

noch eher beiläufig und scheinbar ohne historische Signifikanz wäre. Auch Goldfeld

selbst stellt fest, dass bisher keine Ergenisse aus dem Beweis abgeleitet werden konn-

ten, die nicht in stärkerer Form aus anderen Verfahrensweisen resultierten. Andere

elementare Methoden, unter anderem auch von Erdős und Selberg eingeführt, waren

da weitaus erfolgreicher.29

Es mag außerdem interessant sein sich den Disput zwischen Erdős und Selberg auf

einer abstrakteren Ebene anzusehen. Als Grund des Streits einzig die Borniertheit

beider Männer zu nennen greift sicherlich etwas zu kurz. Die eigene mathematische

Philosophie mag ebenfalls wichtig sein. Timothy Gowers (∗1963) nennt zwei verschie-

dene mathematische Denkansätze, er bezeichnet sie als
”
Two cultures“30:

1. Probleme zu lösen hilft dabei die Mathematik besser zu verstehen

2. Verständnis der Mathematik hilft dabei Probleme zu lösen

Die Frage ist also, ob man sich eher damit beschäftigt Probleme zu lösen oder eher

damit Theorien zu entwickeln, um zu verstehen. Eine genaue Zuordnung ist nicht

29[Gol1], Seite 190.
30[Gow1], Seite 65.
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immer möglich, die meisten Mathematiker liegen wohl irgendwo dazwischen und eine

solche Einteilung bietet immer die Gefahr einer Stereotypisierung. Erdős und Sel-

berg unterscheiden sich aber durchaus stark in ihren Ansichten. Erdős betrachtete

Mathematik als gemeinschaftliche Aktivität. Er betrieb in höchstem Maße kollabo-

ratives Schreiben, seine Texte entstanden in Zusammenarbeit mit schätzungsweise

fünfhundert Autoren; damit übertrifft er sämtliche Mathematiker vor ihm. Selberg

hingegen bevorzugte die Einzelarbeit und die Ausarbeitung im Stillen. Er kann allein

eine einzige gemeinschaftliche Veröffentlichung vorweisen und sagt dazu selbst, dass

auch diese nicht seine Idee war.31 Erdős kann eher den problemlösungsorientierten,

kooperativen Denkern zugeordnet werden, Selberg eher den zurückgezogenen Theore-

tikern. Die Einteilung bestätigt zumindest den Verlauf der Auseinandersetzung und

indentifiziert vielleicht die unterschiedliche grundlegende Philosophie beider Mathe-

matiker als Hauptgrund für den nicht zu Stande kommenden Konsens. Gowers stellt

zwar fest, dass sich heute das theorieorientierte Denken etwas mehr an Beliebtheit

erfreue, er bekräftigt aber auch, dass die Mathematik dringend beider
”
Kulturen“

bedarf.32 Zumindest der elementare Beweis des Primzahlsatzes konnte durch (mehr

oder weniger freiwillige) Zusammenarbeit zweier Mathematiker mit sehr unterschied-

lichen Standpunkten erbracht werden. Vielleicht war gerade diese Kombination die

Ursache des Erfolgs.

Nicht zuletzt zeigt die Geschichte des Primzahlsatzes aber auch, dass, obwohl die

Mathematik eine sehr logisch konstruierte und in sich strukturierte Wissenschaft ist,

die Lösung eines Problems am Ende doch stark von Intuition, Kreativität und nicht

zuletzt vom Zufall abhängen kann.

31[Sp-Gr1], Seite 20.
32[Gow1], Seite 66-67.
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