
Algebraische Topologie

W. Ebeling und K. Hulek

Einleitung

Grundzüge der algebraischen Topologie sieht man bereits in den Vorlesun-
gen ”Analysis” und ”Funktionentheorie”. Dort stellt sich beispielsweise die
Frage, ob ein Integral der Form

∫
γ
f(z)dz über einen geschlossenen Weg Null

ist. Die Antwort ist im allgemeinen nein, wie etwa∫
S1

1
z
dz = 2πi

zeigt. Andererseits ist
∫
γ
f(z)dz = 0, wenn sich γ im Holomorphiegebiet von

f ”zusammenziehen” läßt, anders ausgedrückt, wenn f ”nullhomotop” (bes-
ser noch ”nullhomolog” ist).

Typische Fragen der Topologie sind etwa: Wann sind zwei Sphären Sn

und Sm homöomorph? (Die Antwort ist, daß dies genau für n = m der Fall
ist). Welche kompakte, orientierbare, zusammenhängende Mannigfaltigkei-
ten der Dimension 2 gibt es? Dies sind genau die Flächen mit g-Löchern
(oder äquivalent die Sphären mit g Henkeln), also

g = 0 g = 1 g = 2

Die Idee der algebraischen Topologie besteht darin, topologischen Räum-
en algebraische Objekte zuzuordnen (Gruppen, Ringe, ...). Dies soll in ”natür-
licher” (d.h. funktorieller) Weise geschehen. Insbesondere sollen Abbildun-
gen f : X → Y Morphismen der algebraischen Objekte zugeordnet werden.
Sind dann die X und Y zugeordneten Objekte verschieden, so können X
und Y nicht homöomorph gewesen sein.

1



Zur Wiederholung sei erwähnt

Definition Ein topologischer Raum ist eine Menge X zusammen mit einem
System T offener Mengen, so daß gilt:

(i) ∅, X ∈ T

(ii) U, V ∈ T ⇒ U ∩ V ∈ T

(iii) Ui ∈ T für i ∈ I ⇒
⋃
i Ui ∈ T .

Beispiele (i) Auf Rn sei die euklidische Metrik

d(x, y) =

(
n∑
i=1

(xi − yi)2

) 1
2

gegeben. Dann erhält man eine Topologie auf Rn, wenn man U offen nennt,
falls mit jedem Punkt x ∈ U auch eine ε-Kugel Bε(x) = {y; d(x, y) < ε} in
U liegt.
(ii) Dieselbe Topologie auf Rn erhält man auch für die Metriken

dp(x, y) : =
(

n∑
i=1

(xi − yi)p
) 1
p

, p ≥ 2

d∞(x, y) : = max |xi − yi|.

(iii) Auf jeder Menge M kann man die diskrete Topologie betrachten. In
dieser Topologie ist jede Teilmenge von M offen.

Eine Abbildung f : X → Y zwischen topologischen Räumen heißt ste-
tig, falls das Urbild jeder offenen Menge offen ist. Die Abbildung f ist ein
Homöomorphismus, falls es eine stetige Umkehrabbildung g : Y → X gibt.

I Homotopietheorie

1 Die Fundamentalgruppe

Ein Weg in einem topologischen Raum X ist eine stetige Abbildung σ : I =
[0, 1] → X. Wir betrachten nun zwei Wege σ, τ : I → X mit demselben
Anfangs- und Endpunkt, d.h. σ(0) = τ(0) = x0, σ(1) = τ(1) = x1.

Definition Die Wege σ und τ heißen homotop (relativ {0,1}) falls es eine
stetige Abbildung F : I × I → X gibt, mit

(i) F (s, 0) = σ(s) für s ∈ I

(ii) F (s, 1) = τ(s) für s ∈ I

(iii) F (0, t) = x0 für t ∈ I
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(iv) F (1, t) = x1 für t ∈ I

Für festes t ∈ I erhalten wir stets einen Weg

Ft : I −→ X
Ft(s) = F (s, t).

Für homotope Wege σ, τ ist die Bezeichnung σ ' τ gebräuchlich. Man kann
auch eine Homotopie wie folgt versinnbildlichen.

I × I

x0

τ

x1

σ

F

x0

x1σ

Ft

τ

Man überprüft sofort, daß gilt:

(1) σ ' σ

(2) σ ' τ ⇒ τ ' σ

(3) σ ' τ, τ ' ρ⇒ σ ' ρ.

Definiert man ferner das Produkt von zwei Wegen σ und τ mit σ(1) = τ(0)
durch

στ : I −→ X

στ(s) =
{
σ(2s) 0 ≤ s ≤ 1

2
τ(2s− 1) 1

2 ≤ s ≤ 1

so gilt ferner
(4) σ ' σ′, τ ' τ ′ ⇒ στ ' σ′τ ′.

Alle Aussagen sind leicht zu zeigen. Im Fall von (4) geht man wie folgt
vor: Ist F : I × I → X eine Homotopie von σ und σ′, und G : I × I → X
eine Homotopie von τ und τ ′ erhält man eine Homotopie von στ und σ′τ ′

durch
FG : I × I −→ X

FG(s, t) =
{
F (2s, t) 0 ≤ s ≤ 1

2
G(2s− 1, t) 1

2 ≤ s ≤ 1.
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Man beachte, daß F (1, t) = σ(1) = τ(0) = G(0, t). Symbolisch kann man
dies wie folgt darstellen:

x0 x2

σ

σ′

τ

τ ′

x1

Damit haben wir auf der Menge aller Wege eine Äquivalenzrelation definiert,
die mit dem Produkt von Wegen verträglich ist.

Wir betrachten nun einen festen Punkt x0 ∈ X und geschlossene Wege
σ : I → X mit Anfangs- und Endpunkt x0.

Theorem I.1.1 Es sei π1(X,x0) die Menge der Homotopieklassen von ge-
schlossenen Wegen mit Anfangs- und Endpunkt x0. Bezüglich dem Produkt
von Wegen ist π1(X,x0) eine Gruppe, dessen neutrales Element durch den
konstanten Weg x0 gegeben wird und in der das zu einer Klasse [σ] inverse
Element durch [σ−1] gegeben wird, wobei σ−1(s) = σ(1− s) ist.

Beweis. Alle Gruppeneigenschaften sind leicht nachzuprüfen. Wir zeigen hier
σσ−1 ' x0. Eine Homotopie zwischen dem konstanten Weg x0 und σσ−1

kann konkret wie folgt angegeben werden

F (s, t) =


σ(2s) 0 ≤ 2s ≤ t
σ(t) t ≤ 2s ≤ 2− t

σ−1(2s− 1) 2− t ≤ 2s ≤ 2

Symbolisch kann dies so dargestellt werden

x0 x0

x0

σ σ−1

F ist offensichtlich auf den eingezeichneten Dreiecken stetig. Da F wohlde-
finiert ist, d.h. daß die verschiedenen Definitionen auf den Durchschnitten
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dieser Dreiecke übereinstimmen, ist F auf ganz I × I stetig. Klarerweise
liefert F die gewünschte Homotopie. �

Die nächste, offensichtliche, Frage ist, inwieweit die Fundamentalgruppe
π1(X,x0) vom Basispunkt x0 abhängt.

Satz I.1.2 Ist α ein Weg von x0 nach x1, so wird durch α∗ : π1(X,x0) →
π1(X,x1), [σ] 7→ [α−1σα] ein Gruppenisomorphismus definiert.

Beweis. Offensichtlich ist α∗ wohldefiniert und ein Gruppenhomomorphis-
mus. Das Inverse wird durch (α−1)∗ gegeben. �

Bekanntlich heißt ein topologischer RaumX wegzusammenhängend, wenn
je zwei Punkte x0, x1 in X durch einen Weg verbunden werden können.

Korollar I.1.3 Die Fundamentalgruppe eines wegzusammenhängenden to-
pologischen Raums X hängt nicht vom Basispunkt ab.

Wir betrachten schließlich eine Abbildung von punktierten topologischen
Räumen:

f : (X,x0)→ (Y, y0)

d.h. eine stetige Abbildung f : X → Y mit f(x0) = y0. Dann wird durch

f∗ : π1(X,x0) → π1(Y, y0)
[σ] 7→ [f ◦ σ]

ein Gruppenhomomorphismus gegeben. Dabei gilt

(1) (idx)∗ = idτ1(X,x◦)
(2) (f ◦ g)∗ = f∗ ◦ g∗

für Abbildungen f : (X,x0)→ (Y, y0) und g : (Y, y0)→ (Z, z0). Insbesonde-
re folgt hieraus: Ist f : X → Y ein Homöomorphismus mit f(x0) = y0, so ist
f∗ : π1(X,x0) → π1(Y, y0) ein Isomorphismus, d.h. homöomorphe, wegzu-
sammenhängende Räume haben isomorphe Fundamentalgruppen. Auf diese
Weise haben wir einen Funktor von der Kategorie der punktierten topologi-
schen Räume in die Kategorie der Gruppen definiert.

2 Homotopie von Abbildungen

Wir betrachten Abbildungen f, g : Y → X zwischen topologischen Räumen.
Es sei A eine Teilmenge von Y mit f|A = g|A.

Definition Die Abbildungen f und g heißen homotop relativ der Teilmenge
A (f ' g rel A) falls es eine stetige Abbildung F : Y × I → X gibt, mit
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(i) F (y, 0) = f(y) für y ∈ Y

(ii) F (y, 1) = g(y) für y ∈ Y

(iii) F (y, t) = f(y) = g(y) für y ∈ A, t ∈ I.

Ist A die leere Menge, so heißen f und g homotope Abbildungen.

Bemerkung Die Homotopie von zwei Wegen σ, τ , wie sie im obigen Ab-
schnitt eingeführt wurde, ist ein Spezialfall der obigen Definition, wenn wir
für A die Menge {0, 1} wählen. Wir bleiben allerdings bei unserer (miß-
bräuchlichen) Notation σ ' τ .

Beispiel Es sei X eine konvexe Teilmenge des Rn. Dann sind je zwei stetige
Abbildungen f, g : Y → X homotop. Eine Homotopie wird gegeben durch

F (y, t) = (1− t)f(y) + tg(y).

Definition Ein topologischer Raum X heißt zusammenziehbar, wenn die
Identität zu einer konstanten Abbildung auf einen Punkt x0 ∈ X homotop
ist.

Auf Grund des obigen Beispiels sind alle konvexen Teilmengen des Rn

zusammenziehbar. Zusammenziehbare Räume sind insbesondere wegzusam-
menhängend.

Lemma I.2.1 Ist X zusammenziehbar, so sind je zwei Abbildungen f, g :
Y → X homotop.

Beweis. Es genügt zu zeigen, daß eine gegebene Abbildung f : Y → X
homotop zur konstanten Abbildung x0 ist. Es sei F : Y × I → X eine
Homotopie zwischen idX und x0, d.h. also F (x, 0) = x, F (x, 1) = x0. Wir
bekommen dann eine Homotopie zwischen f und x0 durch

F ′ : Y × I → X
F ′(y, t) = F (f(y), t).

�

Definition Ein topologischer Raum X heißt einfach zusammenhängend,
wenn er wegzusammenhängend und die Fundamentalgruppe trivial ist.

Satz I.2.2 Ein zusammenziehbarer Raum ist einfach zusammenhängend.

Beweis. Es sei σ ein geschlossener Weg mit Anfangs- und Endpunkt x0.
Dann ist σ homotop (bezüglich der leeren Menge) zu dem konstanten Weg
x0. Wir müssen zeigen, daß es auch eine Homotopie relativ {0, 1} gibt. Hierzu
beweisen wir das folgende
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Lemma I.2.3 Es sei F : I × I → X eine stetige Abbildung. Es sei α(t) =
F (0, t), β(t) = F (1, t), γ(s) = F (s, 0), δ(s) = F (s, 1). Dann gilt δ ' α−1γβ
(im Sinn von Abschnitt (I.1))

Beweis. Wir erhalten die gesuchte Homotopie der Wege α−1γβ und δ durch
Zusammenfügen der folgenden drei Homotopien

x0

α

α

x0

E α

γ

β

δ

F β

β

x1

x1

G

wobei x0 = δ(0) = α(1), x1 = δ(1) = β(1) sowie

E(s, t) =
{

x0 s ≤ t
α(1 + t− s) s ≥ t

G(s, t) =
{
β(t+ s) 1− s ≥ t
x1 1− s ≤ t.

�

Ende des Beweises von Satz (I.1.2): Der geschlossene Weg σ liefert eine
stetige Abbildung σ : S1 → X. Da σ zu dem konstanten Weg x0 homotop
ist, gibt es eine entsprechende Homotopie

F : S1 × I → X.

Dies liefert eine Abbildung

F ′ : I × I → X.

wie in Lemma (I.2.3 )mit δ = σ, γ = x0, α = β, d.h. [σ] = [α−1][x0][α] = [x0],
da [x0] das neutrale Element ist. �

Lemma I.2.4 (i) Es seien f, g : Y → X homotope Abbildungen. Die Ho-
motopie sei gegeben durch F : Y × I → X. Für einen Punkt y0 ∈ Y
sei x0 = f(y0), x1 = g(y0). Es sei α der Weg von x0 nach x1, der durch
α(t) = F (y0, t) gegeben wird. Dann kommutiert das Diagramm

π1(Y, y0)
f∗ //

g∗ &&MMMMMMMMMM
π1(X,x0)

α∗
��

π1(X,x1)

(ii) f∗ ist genau dann ein Isomorphismus, wenn g∗ ein Isomorphismus ist.
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Beweis. (i) Es sei σ ein geschlossener Weg mit Anfangs- und Endpunkt y0.
Dann folgt die Behauptung sofort aus der Homotopie

α

f ◦ σ

α

g ◦ σ

F (σ(s), t)

(ii) Dies folgt sofort aus (i).
�

Definition (i) Eine Abbildung f : Y → X heißt eine Homotopieäquiva-
lenz, falls es eine Abbildung g : X → Y gibt mit f ◦ g ' idX , g ◦ f ' idY .
(ii) Die Räume X und Y heißen homotopie-äquivalent, falls es eine Homo-
topiequivalenz f : X → Y gibt.

Schreibweise: Sind zwei Räume X und Y homotopie-quivalent, so schreibt
man X ' Y.

Beispiel Ist X eine konvexe Teilmenge des Rn und p ein Punkt, so sind
X und p homotopie-äquivalent.

Satz I.2.5 Ist f : (Y, y0) → (X,x0) eine Homotopieäquivalenz, so ist f∗ :
π1(Y, y0)→ π1(X,x0) ein Isomorphismus.

Beweis. Es gibt eine Abbildung g : X → Y mit f ◦g ' idX und g◦f ' idY .
Nach Lemma (I.2.4 ) sind dann (f ◦ g)∗ = f∗ ◦ g∗ und (g ◦ f)∗ = g∗ ◦ f∗
Isomorphismen, also auch f∗ und g∗. �

Obiges Beispiel zeigt, daß etwa eine Kreisscheibe und ein einpunktiger
Raum homotop äquivalent sind und daher isomorphe Fundamentalgruppe
besitzen. Andererseits sind diese Räume nicht homöomorph (sie sind nicht
einmal bijektiv aufeinander abbildbar). Homotopiegruppen eignen sich da-
her nicht so sehr, um Homöomorphieklassen, wohl aber um Homotopieklas-
sen, zu unterscheiden.

3 Die Fundamentalgruppe des Kreises

Wir wollen hier die Fundamentalgruppe des Einheitskreises

S1 = {z ∈ C; |z| = 1}
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berechnen. Hierzu verwenden wir die Exponentialabbildung

Φ : R −→ S1

x 7−→ e2πix.

Die Einschränkung dieser Abbildung auf das offene Intervall
(
−1

2 ,
1
2

)
lie-

fert einen Homöomorphismus dieses Intervalls mit S1\{−1}. Es sei Ψ die
Umkehrabbildung.

Lemma I.3.1 (i) Es sei σ : I → S1 ein Weg mit σ(0) = 1. Dann gibt es
genau einen Weg σ̃ : I → R mit σ̃(0) = 0 und Φ ◦ σ̃ = σ.
(ii) Es sei τ : I → S1 ein weiterer Weg mit τ(0) = 1 und F : I×I → S1 eine
Homotopie von σ und τ relativ {0, 1}. Dann gibt es genau eine Homotopie
F̃ : I × I → R von σ̃ und τ̃ relativ {0, 1} mit Φ ◦ F̃ = F .

Beweis. Wir zeigen (i) und (ii) zugleich und setzen hierfür Y = I oder
Y = I × I. Mit 0 ∈ Y sei der Punkt 0, bzw. (0, 0) gemeint. Die Abbildung
f : Y → S1 sei entweder σ oder F . Da Y kompakt ist, ist f gleichmäßig
stetig. Also gibt es ein δ > 0, so daß für |y − y′| < δ gilt |f(y)− f(y′)| < 1,
also insbesondere f(y) 6= −f(y′). Daher ist Ψ(f(y)/f(y′)) definiert. Wir
können N so groß wählen, daß |y| < Nε für alle Punkte y ∈ Y . Nach dieser
Vorüberlegung ist die Abbildung f̃ : Y → R, die durch

f̃(y) = Ψ(f(y)/f
(
N−1
N y)

)
+ Ψ

(
f
(
N−1
N y

)
/f
(
N−2
N y

))
+ . . .+ Ψ

(
f
(

1
N y
)
/f(0)

)
gegeben wird, wohldefiniert, stetig mit f̃(0) = NΨ(1) = 0, und es gilt Φ◦f̃ =
f .

Als nächstes wollen wir zeigen, daß f̃ eindeutig bestimmt ist. Es sei
f̃ ′ : Y → R eine weitere stetige Abildung mit f̃ ′(0) = 0, Φ ◦ f̃ ′ = f . Dann
ist Ψ(f̃ − f̃ ′) = 1, d.h. f̃ − f̃ ′ liegt in kerΦ = Z. Da f̃ − f̃ ′ stetig ist, ist die
Abbildung konstant. Mit f̃(0) = f̃ ′(0) = 0 folgt hiermit schließlich f̃ = f̃ ′.

Es sei nun Y = I × I. Dann ist F̃ = f̃ eine Homotopie von σ̃ und τ̃ . Es
bleibt zu zeigen, daß dies eine Homotopie relativ {0, 1} ist, d.h. F̃ (0×I) = 0
und F̃ (1×I) = konstant. Da Φ◦ F̃ (0×I) = F (0×I) = 1 ist und F̃ (0, 0) = 0
gilt, folgt F̃ (0 × I) = 0 wie im obigen Argument. Analog schließt man im
Fall F̃ (1× I). �

Korollar I.3.2 Der Endpunkt σ̃(1) hängt nur von der Homotopieklasse von
σ ab.

Damit können wir zeigen:

Theorem I.3.3 π1(S1) ∼= Z.
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Beweis. Nach Korollar (I.3.2) ist die Abbildung

χ : π1(S1, 1)→ Z

χ([σ]) = σ̃(1)

wohldefiniert. Die Abbildung χ ist ein Homomorphismus. Für [σ], [τ ] ∈
π1(S1, 1) gilt nämlich folgendes: Es seien σ̃, τ̃ die Liftungen von σ, τ nach
Lemma (I.3.1). Es sei m = σ̃(1), n = τ̃(1). Der Weg τ̂ sei durch τ̂ = τ̃ +m
definiert. Dann ist σ̃τ̂ die Liftung von στ mit σ̃τ̂(0) = 0. Also gilt

χ([στ ]) = σ̃τ̂(1) = m+ n = χ([σ]) + χ([τ ]).

Die Abbildung χ ist surjektiv: Es sei σ̃(s) = ns. Dann gilt χ([σ]) = n für
σ = Φ ◦ σ̃. Schließlich bleibt zu zeigen, daß χ injektiv ist. Sei χ([σ]) = 0.
Dann ist σ̃ ein geschlossener Weg mit σ̃(0) = σ̃(1) = 0. Da R kontrahierbar
ist, ist R einfach zusammenhängend. Also gibt es eine Homotopie F̃ von σ̃
mit dem konstanten Weg 0 (relativ {0, 1}). Dann liefert F = Φ ◦ F̃ eine
Homotopie von σ mit dem konstanten Weg 1. �

Die Zahl χ([σ]) heißt auch Windungszahl des Weges σ. Diese Zahl kann
auf vielfache Weise definiert werden.

Wir wollen nun noch eine Anwendung dieses Theorems diskutieren. Ein
Torus T ist homöomorph zu dem Produkt S1 × S1:

T

Satz I.3.4 π1(T ) ∼= Z× Z.

Der Beweis dieses Satzes, ebenso wie seine Verallgemeinerung in höhere
Dimensionen, folgt sofort aus:

Satz I.3.5 Es seien (X,x0), (Y, y0) punktierte Räume. Dann gibt es einen
natürlichen Isomorphismus

π1(X × Y, (x0, y0))
∼=−→ π1(X,x0)× π1(Y, y0)

Beweis. Mit Hilfe der Projektionen

(X × Y, (x0, y0))
p

wwnnnnnnnnnnnn
q

''OOOOOOOOOOOO

(X,x0) (Y, y0)
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erhält man einen Homomorphismus

(p∗, q∗) : π1(X × Y, (x0, y0))→ π1(X,x0)× π1(Y, y0).

Hierzu kann man sofort ein Inverses angeben: Für Wege σ in X mit σ(0) =
σ(1) = x0 und τ in Y mit τ(0) = τ(1) = y0 betrachten wir den Weg

(σ, τ)(s) = (σ(s), τ(s)).

Es ist klar, daß dies eine Abbildung

ϕ∗ : π1(X,x0)× π1(Y, y0)→ π1(X × Y, (x0, y0))

liefert mit (p∗, q∗) ◦ ϕ∗ = id. Dies zeigt insbesondere, daß (p∗, q∗) surjektiv
ist und ϕ∗ injektiv ist. Die Abbildung ϕ∗ ist auch surjektiv, da jeder Weg
σ′ : I → X × Y von der Form σ′(s) = (σ(s), τ(s)) ist. �

4 Überlagerungstheorie

Es sei p : E → X eine stetige Abbildung topologischer Räume.

Definition p : E → X ist eine Überlagerung, falls jeder Punkt x ∈ X eine
Umgebung U besitzt mit der Eigenschaft:
(∗) p−1(U) ist eine disjunkte Vereinigung offener Mengen Si in E, so daß
p|Si : Si → U ein Homöomorphismus ist.
Die Si heißen dann die Blätter über U .

Beispiel Die Abbildung Φ : R→ S1,Φ(x) = e2πix ist eine Überlagerung.

Analog zu diesem Beispiel kann man nun nach der ”Liftung” von Wegen,
Homotopien oder Abbildungen von X nach E fragen.

Definition Ist f : Y → X eine Abbildung, so ist eine Liftung von f
bezüglich p : E → X eine Abbildung f̃ : Y → E mit p ◦ f̃ = f , d.h.
daß das Diagramm

E

p

��
Y

f̃
>>}}}}}}} f // X

kommutiert.

Satz I.4.1 Es sei p : (E, e0)→ (X,x0) eine Überlagerung und f : (Y, y0)→
(X,x0) eine Abbildung. Falls Y zusammenhängend ist, gibt es höchstens eine
Liftung f̃ : (Y, y0)→ (E, e0) von f .
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Beweis. Es sei f̃ ′ : (Y, y0)→ (E, e0) eine weitere solche Liftung. Wir setzen

A = {y ∈ Y ; f̃(y) = f̃ ′(y)}.

Dann ist A nicht leer, da f̃(y0) = f̃ ′(y0) = e0, also y0 ∈ A. Ist

B = {y ∈ Y, f̃(y) 6= f̃ ′(y)}

so ist Y die disjunkte Vereinigung von A und B. Offensichtlich ist B of-
fen. Wenn wir nun zeigen können, daß A offen ist, so folgt, da Y zusam-
menhängend ist, daß A = Y gilt. Es sei nun a ∈ A, und S das Blatt über
einer geeigneten Umgebung U von f(a) mit f̃(a) = f̃ ′(a) ∈ S. Dann ist
f̃−1(S) ∩ (f̃ ′)−1(S) eine offene Umgebung von a in A. �

Theorem I.4.2 Es sei p : (E, e0) → (X,x0) eine Überlagerung und σ ein
Weg in X mit σ(0) = x0. Dann gibt es genau eine Liftung σ̃ von σ mit
σ̃(0) = e0.

Beweis. Die Eindeutigkeit von σ̃ folgt sofort aus dem obigen Satz. Um die
Existenz von σ̃ zu zeigen, unterteilen wir das Intervall I = [0, 1] in Teilin-
tervalle [tk, tk+1] mit 0 = t0 < t1 < · · · < tn = 1, so daß σ([tk, tk+1]) in
einer Menge Uk enthalten ist, für die die Eigenschaft (∗) gilt. Wir betrach-
ten zunächst U0 sowie das Blatt S0 über U0 mit e0 ∈ S0. Dann gibt es eine
eindeutige Liftung σ̃ von σ|[t0,t1] mit σ̃0(0) = e0. Angenommen wir haben
nun eine Liftung σ̃i : [0, ti+1]→ E von σ|[0,ti+1] mit σ̃i(0) = e0. Dann gibt es
eine Liftung σ′i+1 : [ti+1, ti+2]→ E mit σ′i+1(ti+1) = σ̃i(ti+1). Durch Zusam-
mensetzen von σ̃i und σ′i+1 erhalten wir eine Liftung σ̃i+1 von σ|[0,ti+2] mit
σ̃i+1(0) = e0. �

Theorem I.4.3 Es sei p : (E, e0)→ (X,x0) eine Überlagerung. Die Abbil-
dung f : (Y, y0) → (X,x0) besitze eine Liftung f̃ : (Y, y0) → (E, e0) (d.h.
p ◦ f̃ = f). Ferner sei F : Y × I → X eine Homotopie mit F (y, 0) = f(y)
für y ∈ Y . Dann kann man F eindeutig zu einer Homotopie F̃ : Y × I → E
mit F̃ (y, 0) = f̃(y) liften.

Beweis. Die Eindeutigkeit der Liftung folgt, da die Wege F̃ (y0, s) für festes
y0 ∈ Y durch die Bedingung F̃ (y0, 0) = f̃(y0) eindeutig bestimmt sind. Es
bleibt also die Existenz zu zeigen. Hat X selbst die Eigenschaft (∗), so ist
dies klar. Ansonsten können wir X mit Umgebungen Uν überdecken, die
diese Eigenschaften besitzen. Wir können ferner zu jedem y ∈ Y eine offene
Umgebung Ny von y finden, sowie eine Partition 0 = t0 < t1 < . . . < tn = 1,
so daß F (Ny × [ti, ti+1]) in einer solchen Menge Uγ enthalten ist. Wie im
Beweis von Theorem (I.4.2) finden wir dann eine Liftung von F |Ny×I . Es
bleibt zu überlegen, daß diese Liftungen zusammenkleben. Dazu sei y1 ∈
Ny ∩ Ny′ . Da I zusammenhängend ist, stimmen die beiden Liftungen auf
y1 × I überein, und damit auf (Ny ∩Ny′)× I. �
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Korollar I.4.4 Es seien σ, τ Wege in X mit σ(0) = τ(0) = x0. Fer-
ner sei σ ' τ rel{0, 1}. Die eindeutig bestimmten Liftungen von σ und τ
mit Anfangspunkt e0 seien mit σ̃e0 , τ̃e0 bezeichnet. Dann gilt auch σ̃e0 '
τ̃e0 rel {0, 1}.

Korollar I.4.5 Die Abbildung p∗ : π1(E, e0)→ π1(X,x0) ist injektiv.

Beweis. Es sei σ′ ein Weg in E mit σ′(0) = σ′(1) = e0. Ist p∗[σ′] = 1, so
gibt es also eine Homotopie von p ◦ σ′ mit dem konstanten Weg x0. Nach
Korollar (I.4.4) kann diese Homotopie zu einer Homotopie (relativ {0, 1})
der Wege σ′ und e0 geliftet werden. �

Im allgemeinen ist jedoch folgendes zu beachten: Ist σ ein geschlossener
Weg in X mit σ(0) = σ(1) = x0, so ist dessen Liftung σ̃e0 , die durch σ̃e0(0) =
e0 eindeutig bestimmt wird, im allgemeinen kein geschlossener Weg. Man
kann lediglich sagen, daß der Endpunkt σ̃e0(1) in der Faser p−1(x0) enthalten
ist. Dieser hängt nur von der Homotopieklasse von σ ab. Man erhält also
eine wohldefinierte Abbildung

p−1(x0)× π1(X,x0) −→ p−1(x0)
(e, [σ]) 7−→ e[σ] := σ̃e(1).

Damit operiert die Gruppe π1(X,x0) auf der Menge p−1(x0). Allgemein sagt
man, eine Gruppe G operiert auf einer Menge X (von rechts), wenn es eine
Abbildung

X ×G −→ X
(x, g) 7−→ xg

mit folgenden Eigenschaften gibt

x1 = x, (xg)g′ = x(gg′).

Der Stabilisator von x bezüglich der Operation von G auf x ist dann die
Untergruppe

Gx = {g ∈ G; xg = x}.
Man sagt ferner, daß G transitiv auf X operiert, falls es zu je zwei Elementen
x, x′,∈ X ein Gruppenelement g ∈ G gibt mit xg = x′.

In unserem Fall ist der Stabilisator eines Punktes e ∈ p−1(x0) die Un-
tergruppe p∗π1(E, e) von π1(X,x0). Ist E bogenweise zusammenhängend,
so operiert π1(X,x0) transitiv auf p−1(x0). Es sei nämlich σ′ ein Weg von
e nach e′. Dann ist σ = p ◦ σ′ ein geschlossenener Weg in X und e[σ] = e′.
Damit ergibt sich auch sofort

p∗π1(E, e′) = [σ]p∗π1(E, e)[σ]−1.

Das heißt, die Untergruppen p∗π1(E, e), e ∈ p−1(x0) von π1(X,x0) sind alle
zueinander konjugiert.
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Definition Eine Decktransformationen der Überlagerung p : E → X ist
ein Homöomorphismus Φ : E → E, so daß das Diagramm

E
Φ //

p
  AAAAAAA E

p
~~~~~~~~~~

X

kommutiert, d.h. p ◦ Φ = p.

Offensichtlich bilden die Decktransformationen eine Gruppe.

Definition Ein topologischer Raum X heißt lokal bogenweise zusammen-
hängend, bzw. lokal einfach zusammenhängend, falls es zu jedem Punkt x
und jeder Umgebung U von x eine Umgebung V von x mit V ⊂ U gibt, die
bogenweise zusammenhängend, bzw. einfach zusammenhängend ist.

Theorem I.4.6 Es sei p : (E, e0) → (X,x0) eine Überlagerung. Falls E
einfach zusammenhängend und lokal bogenweise zusammenhängend ist, gibt
es einen natürlichen Isomorphismus von der Gruppe G der Decktransforma-
tionen in die Fundamentalgruppe π1(X,x0).

Beweis. Wir konstruieren zunächst einen Gruppenhomomorphismus χ : G→
π1(X,x0). Es sei dazu Φ eine Decktransformation. Da E einfach zusam-
menhängend ist, sind alle Wege σ′ in E von e0 nach Φ(e0) homotop rela-
tiv {0, 1}. D.h. hierdurch wird eine wohlbestimmte Klasse [σ] = [p ◦ σ′] ∈
π1(X,x0) definiert und die so bestimmte Abbildung χ : G → π1(X,x0) ist
ein Homomorphismus. Nach Konstruktion gilt

Φ(e0) = e0χ(Φ) = e0[σ].

χ ist injektiv, denn falls χ(Φ) = 1 gilt, folgt Φ(e0) = e0. Da E zusam-
menhängend ist, folgt hieraus wegen Satz (I.4.1), daß Φ = id E .
Um zu zeigen, daß χ surjektiv ist, starten wir mit einem Element [σ] ∈
π1(X,x0). Wir konstruieren Φ wie folgt. Es sei e ∈ E und wir wählen einen
Weg τ ′ von e0 nach e. Es sei τ = p ◦ τ ′. Dann ist τ−1στ ein geschlossener
Weg um x = p(e). Wir setzen

Φ(e) = e[τ−1στ ] ∈ p−1(p(e)).

Da E einfach zusammenhängend ist, hängt Φ(e) nur von [σ] nicht aber von
der Wahl von τ ′ ab. Es gilt p ◦ Φ = p. Die Abbildung Φ ist bijektiv, da
dieselbe Konstruktion, angewandt auf σ−1 eine Umkehrabbildung liefert.
Ebenso ist klar, daß p ◦ Φ = p ist. Nach Konstruktion ist X(φ) = [σ], wenn
wir gezeigt haben, daß Φ eine Decktransformation ist. Um die Stetigkeit von
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Φ zu zeigen, gehen wir wie folgt vor: Es sei e1 ∈ E. Ferner sei τ ′′ ein Weg
von e nach e1. Dann gilt nach Konstruktion von Φ:

Φ(e1) =
(
p̃ ◦ τ ′′

)
Φ(e)

(1).

Nun gibt es nach Voraussetzung an E, da p : E → X eine Überlagerung
ist, eine Umgebung U1 von x1 = p(e1) in X, die sowohl die Eigenschaft (∗)
erfüllt, als auch lokal bogenweise zusammenhängend ist. Es seien nun S1,
bzw. S′1 die Blätter von E über U1 in denen e1, bzw. Φ(e1) liegt. Da S1 und
S′1 bogenweise zusammenhängend ist, folgt sofort, daß

Φ|S1 = (p′1)−1 ◦ p1 : S1 → S′1

ist, wobei p1 = p|S1 : S1 → U1 und (p′1))−1 die Umkehrung von p|S′1 : S′1 →
U1 ist. Dies ist offensichtlich stetig. Dasselbe Argument zeigt die Stetigkeit
von Φ−1. �

Für die Überlagerung p : (E, e0)→ (X,x0) kann man nun allgemein nach
der Existenz von Liftung von Abbildungen fragen, d.h. gibt es zu vorgegebe-
ner Abbildung f : (Y, y0)→ (X,x0) eine Abbildung f̃ : (Y, y0)→ (E, e0) so
daß das Diagramm

(E, e0)

p

��
(Y, y0)

::t
t

t
t

t

f̃

f // (X,x0)

kommutiert?

Theorem I.4.7 Die Räume E,X und Y seien zusammenhängend und lokal
bogenweise zusammenhängend. Dann existiert genau dann eine Liftung f̃ :
(Y, y0)→ (E, e0) der Abbildung f : (Y, y0)→ (X,x0) wenn

f∗π1(Y, y0) ⊂ p∗π1(E, e0).

Beweis. Daß obige Bedingung notwendig ist folgt, da p∗ ◦ f̃∗ = f∗ gilt.
Wir gehen nun davon aus, daß diese Bedingung erfüllt ist, und konstruieren
zunächst f̃ mengentheoretisch. Es sei y ∈ Y . Wir wählen einen Weg σ in Y
von y0 nach y und setzen

f̃(y) = (̃fσ)e0(1).

Auf Grund der Voraussetzung ist diese Definition unabhängig von der Wahl
von σ. Wir können auch die Abhängigkeit von y0 beseitigen. Es sei y1 ∈ Y
beliebig und τ ein Weg von y1 nach y. Wir behaupten, daß für e1 = f̃(y1)
gilt:

f̃(y) = (̃fτ)e1(1).
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Um dies zu sehen sei σ1 ein Weg von y0 nach y1. Dann ist

f̃(y) = ( ˜f(σ1τ))e0(1) = [(f̃σ1)e0(f̃ τ)e1 ](1) = (f̃ τ)e1(1).

Um die Stetigkeit von f̃ zu beweisen, wählen wir zunächst zu jedem Punkt
y ∈ Y eine Umgebung Uy, die bogenweise zusammenhängend ist, und so
daß f(Uy) in einer offenen Menge V ⊂ X liegt, für die Eigenschaft (∗) gilt.
Dies geht nach Voraussetzung. Der Rest des Beweises verläuft analog zum
Beweis von Theorem (I.4.6) �

Korollar I.4.8 Ist Y einfach zusammenhängend, so ist jede Abbildung f :
Y → X liftbar.

Definition Eine universelle Überlagerung von X ist eine Überlagerung p :
E → X mit einem einfach zusammenhängenden Raum E.

Bemerkung Ist q : F → X eine beliebige Überlagerung und X lokal
bogenweise zusammenhängend, so gibt es nach Korollar (I.4.8) stets ein
kommutatives Diagram

E
Φ //

p
  AAAAAAA F

q
~~~~~~~~~

X

In diesem Sinn ist die universelle Überlagerung die ”größte” Überlagerung
von X.

Definition Zwei Überlagerungen p : (E, e0) → (X,x0) und q : (F, f0) →
(X,x0) heißen äquivalent, falls es einen Homöomorphismus Φ : (E, e0) →
(F, f0) gibt, so daß das Diagramm

(E, e0) Φ //

p
%%JJJJJJJJJ

(F, f0)

q
zzttttttttt

(X,x0)

kommutiert.

Korollar I.4.9 Es sei X lokal bogenweise zusammenhängend. Dann sind je
zwei universelle Überlagerungen von X äquivalent.
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Beweis. Für zwei universelle Überlagerungen p : (E, e0) → (X,x0) und
q : (F, f0)→ (X,x0) gibt es ein Diagramm

(E, e0)
Φ //

p
%%JJJJJJJJJ

(F, f0)
Φ′

oo

q
zzttttttttt

(X,x0)

Da Φ′Φ(e0) = e0 und wegen der Eindeutigkeit der Liftung folgt Φ′Φ =
idE und analog ΦΦ′ = idF . �

Es soll schließlich noch die Frage nach der Existenz der universellen Über-
lagerung beantwortet werden.

Definition Ein Raum X heißt semi-lokal einfach zusammenhängend, wenn
jeder Punkt x ∈ X eine Umgebung U besitzt, so daß jeder geschlossene Weg
um x in U in X zusammenziehbar ist.

Ein Raum X, der eine universelle Überlagerung besitzt, hat notwen-
digerweise diese Eigenschaft. Beispiele für solche Räume sind topologische
Mannigfaltigkeiten.

Definition Eine topologische Mannigfaltigkeit M ist ein Hausdorffraum,
so daß jeder Punkt x ∈ M eine Umgebung U besitzt, die homöomorph zu
einer offenen Menge des Rn ist.

Theorem I.4.10 Ein zusammenhängender, lokal bogenweise zusammen -
hängender, semi-lokal einfach zusammenhängender Raum X besitzt stets ei-
ne universelle Überlagerung.

Beweis. Wir wählen einen festen Punkt x0 ∈ X. Auf der Menge der Wege
in X mit Anfangspunkt x0 betrachten wir die Äquivalenzrelation, die durch
Homotopie relativ {0, 1} gegeben ist. Insbesondere gilt für zwei äquivalente
Wege α und β, daß α(1) = β(1). Die Äquivalenzklassen dieser Wege seien
mit < α > bezeichnet, und wir definieren E als die Menge all dieser Äqui-
valenzklassen. Durch p(< α >) = α(1) erhalten wir eine Abbildung nach X.
Da X bogenweise zusammenhängend ist, ist die Abbildung surjektiv.

Wir müssen nun E mit einer geeigneten Topologie versetzen. Dies tun
wir durch Angabe einer Basis: Es sei α ein Weg in X mit α(0) = x0, α(1) = p
und V eine offene Umgebung von p. Dann definieren wir

< α, V >= {< αβ >; β ist ein Weg inV mit β(0) = p}.

Um zu zeigen, daß dies die Basis einer Topologie ist, müssen wir zeigen, daß
jeder Durchschnitt < α, V > ∩ < α′, V ′ > wieder als Vereinigung solcher
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Mengen geschrieben werden kann. Es sei α′′ ∈< α, V > ∩ < α′, V ′ >. Dann
gilt < α′′, V >=< α, V > und < α′′, V ∩ V ′ >⊂< α, V > ∩ < α′, V ′ >.
Die Abbildung p ist stetig, und da p(< α, V >) die Bogenzusammenhangs-
komponente von V ist, die p enthält, auch offen. Wir zeigen als nächstes,
daß p eine Überdeckung ist. Es sei dazu V eine Umgebung von p die bo-
genweise zusammenhängend ist, und so daß jeder geschlossene Weg in V
in X kontrahierbar ist. Für zwei offene Mengen < α, V > und < α′, V >
gilt dann, daß sie gleich oder disjunkt sind. Die Einschränkung von p auf
< α, V > ist surjektiv auf V . Es bleibt zu zeigen, daß sie injektiv ist.
Gilt aber p(< αβ >) = p(< αβ′ >), so haben β und β′ denselben End-
punkt. Nach Wahl von V bedeutet dies, daß β ' β′ relativ {0, 1} also
< αβ >=< αβ′ >. Schließlich bleibt zu zeigen, daß E bogenweise zusam-
menhängend und einfach zusammenhängend ist. Es sei x̃0 ∈ E die Klasse
des konstanten Weges x0. Ist < α >∈ E so können wir x̃0 und α in E wie
folgt durch einen Weg verbinden:

αs(t) = α(st) s, t ∈ I.

Dann ist α0(t) = x0 und α1(t) = α. Man zeigt leicht, daß die Abbildung
α̃ : I → E, s 7→< αs > stetig ist. Also ist E bogenweise zusammenhängend.
Es gilt nach Konstruktion auch, daß p ◦ α̃ = α, d.h. α̃ ist eine Liftung von α
nach E. Es sei nun τ̃ ein Weg in E mit τ̃(0) = τ̃(1) = x̃0. Dann ist α = p ◦ τ̃
ein geschlossener Weg in X mit α(0) = α(1) = x0. Der oben konstruierte
Weg α̃ ist eine Liftung von α mit α̃(0) = x̃0. Wegen der Eindeutigkeit der
Liftung folgt α̃ = τ̃ . Insbesondere ist α̃ geschlossen, d.h. α̃(0) = α̃(1). Damit
folgt aber, daß x̃0 = α̃(0) = α̃(1) =< α >. D.h. α ist homotop zum trivialen
Weg und nach Theorem (I.4.3) läßt sich diese Homotopie liften, d.h. α̃ = τ̃
ist homotop trivial. �

Schließlich sei noch darauf hingewiesen, daß man auch höhere Homoto-
piegruppen definieren kann. Die Fundamentalgruppe kann man als die Menge
der Homotopieklassen von Abbildungen (S1, 1) → (X,x0) auffassen. Be-
trachtet man statt dessen Homotopieklassen von Abbildungen (Sn, s0) →
(X,x0), so wird man auf die n-te Homotopiegruppe πn(X,x0) geführt. Die
Berechnung der höheren Homotopiegruppen ist im allgemeinen schwierig.
So sind immer noch nicht alle Homotopiegruppen πn(Sm, s0) von Sphären
bekannt.
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II Singuläre Homologiegruppen

1 Affine Simplizes

Sind x, y ∈ Rn, so ist die Verbindungsstrecke zwischen x und y die Menge

{(1− t)x+ ty; 0 ≤ t ≤ 1}.

Eine Menge C ⊂ Rn heißt konvex, wenn mit je zwei Punkten x, y ∈ C auch
die Verbindungsstrecke in C liegt. Ist A ⊂ R

n eine Teilmenge, so ist die
konvexe Hülle von A definiert durch

C(A) =
⋂

C.
C ⊃ A

C ist konvex

Die konvexe Hülle von A ist die kleinste konvexe Menge, die A enthält.

Definition Ein affines q-Simplex ist die konvexe Hülle von q + 1 Punkten
x0, . . . , xq ∈ Rn in allgemeiner Lage, d.h. x1 − x0, . . . , xq − x0 sind linear
unabhängig.

Man beachte, daß es für die Frage, ob x0, . . . , xq in allgemeiner Lage
sind, unerheblich ist, welchen Punkt man ausgezeichnet hat.

x0

x1

x0 x1

x2

x0 x1

x2

x3

q = 1 q = 2 q = 3

Satz II.1.1 Für Punkte x0, . . . , xq in Rn sind äquivalent:

(i) x1 − x0, . . . , xq − x0 sind linear unabhängig.

(ii) Aus
q∑
i=0

aixi =
q∑
i=0

bixi und
q∑
i=0

ai =
q∑
i=0

bi folgt ai = bi für i = 0, . . . , q.

Beweis. (i)⇒ (ii). Es sei
q∑
i=0

aixi =
q∑
i=0

bixi und
q∑
i=0

ai =
q∑
i=0

bi. Dann folgt

0 =
q∑
i=0

(ai − bi)xi =
q∑
i=0

(ai − bi)xi −
q∑
i=0

(ai − bi)x0

=
q∑
i=1

(ai − bi)(xi − x0).
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Da x1− x0, . . . , xq − x0 linear unabhängig sind, folgt ai = bi für i = 1, . . . , q
und mit

∑
ai =

∑
bi folgt auch noch a0 = b0.

(ii)⇒ (i). Es sei
q∑
i=1

ai(xi − x0) = 0. Dies kann man auch schreiben als

q∑
i=1

aixi + 0x0 =
q∑
i=1

0xi +

(
q∑
i=1

ai

)
x0.

Nach (ii) folgt hieraus ai = 0 für i = 1, . . . , q. �

Sind x0, . . . , xq ∈ Rn Punkte in allgemeiner Lage, so überlegt man sich
leicht (vgl. den Fall der Verbindungsstrecke), daß das zugehörige Simplex S
die Menge

S =

{
q∑
i=0

tixi;
q∑
i=0

ti = 1, 0 ≤ ti ≤ 1

}
ist. Nach Satz (II.1.1) besitzt jeder Punkt x ∈ S eine eindeutige Darstellung

x =
q∑
i=0

tixi mit
q∑
i=0

ti = 1, 0 ≤ ti ≤ 1.

Die Zahlen t0, . . . , tq heißen die baryzentrischen Koordinaten von S. Der
Punkt mit t0 = . . . = tq = 1

q+1 ist der Schwerpunkt von S. (Ordnet man den

Punkten xi die Massen ti zu, so wird x =
q∑
i=0

tixi zum Schwerpunkt).

Definition Ein geordnetes q–Simplex ist ein q-Simplex zusammen mit ei-
ner Ordnung der Eckpunkte.

Es sei e0, . . . , eq die Standardbasis des Rq+1. Dann heißt das durch e0, . . . , eq
bestimmte Simplex ∆q das (geordnete) Standard-q-Simplex . Es gilt

∆q = {(t0, . . . , tq) ∈ Rq+1;
q∑
i=0

ti = 1, 0 ≤ ti ≤ 1}.

e2

e0

e1

q = 2

Ist S ein weiteres q-Simplex, so ist die Abbildung
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f : ∆q → S

(t0, . . . , tq) 7→
q∑
i=0

tixi

eine stetige bijektive Abbildung zwischen kompakten Mengen, also ein Homöo-
morphismus.

2 Definition der Homologiegruppen

Es sei X ein topologischer Raum.

Definition Ein singuläres q-Simplex in X ist eine stetige Abbildung σ :
∆q → X.

Ein 0-Simplex ist also ein Punkt, ein 1-Simplex ein stetiger Weg.

Wir betrachten nun die freie abelsche Gruppe, die durch die Menge der
singulären q-Simplizes erzeugt wird, d.h. die Menge der (formalen) endlichen
Summen

c =
∑

endlich

niσi , ni ∈ Z,

wobei die σi (verschiedene) singuläre q-Simplizes sind. Diese Summen bilden
in offensichtlicher Weise eine abelsche Gruppe, die wir mit Sq(X) bezeich-
nen. Die Elemente von Sq(X) heißen die singulären q-Ketten.

Etwas formaler kann man die von einer Menge A erzeugte freie abelsche
Gruppe F (A) wie folgt definieren:

F (A) = {f : A→ Z; f(a) 6= 0 nur für endlich viele a}.

Identifiziert man dann ein Element a ∈ A mit der Abbildung

fa : A → Z

x 7→
{

1 falls x = a
0 falls x 6= a,

so erhält man für jedes Element f ∈ F (A) eine Darstellung

f =
∑

endlich

naa.

Für q > 0 und i mit 0 ≤ i ≤ q definieren wir nun die Abbildung

F qi : ∆q−1 → ∆q

(t0, . . . , tq−1) 7→ (t0, . . . , ti−1, 0, ti, . . . , tq−1).
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Geometrisch bedeutet dies, daß man das Simplex ∆q−1 auf das der Ecke ei
gegenüberliegende Untersimplex von ∆q abbildet:

e1

e0

F 2
0

F 2
1

F 2
2

e2

e0

e1

Ist σ : ∆q → X ein singuläres Simplex, so wird die i-te Seite von σ definiert
durch

σ(i) = σ ◦ F qi : ∆q−1 → X.

Definition Der Rand des singulären Simplex σ ist definiert durch

∂(σ) =
q∑
i=0

(−1)iσ(i).

Durch lineare Fortsetzung erhalten wir den sogenannten Randoperator

∂ : Sq(X) → Sq−1(X)

∂(
∑
niσi) =

∑
ni∂(σi).

Satz II.2.1 ∂ ◦ ∂ = 0.

Beweis. Unmittelbar aus der Definition folgt

F qi F
q−1
j = F qj F

q−1
i−1 falls j < i.

Es genügt zu zeigen, daß für ein Simplex σ gilt ∂ ◦ ∂(σ) = 0. Es gilt:

∂(∂σ) =
q∑
i=0

(−1)i ∂σ(i)

=
q∑
i=0

(−1)i
q−1∑
j=0

(−1)j(σ ◦ F qi ) ◦ F q−1
j

=
q∑

j<i=1
(−1)i+jσ ◦

(
F qj F

q−1
i−1

)
+

q−1∑
0=i≤j

(−1)i+jσ ◦ (F qi F
q−1
j )

= 0.

Die letzte Gleichheit folgt, wenn man im ersten Summanden i′ = j und
j′ = i− 1 setzt. �
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Definition (i) Eine q-Kette c heißt ein q-Zykel, falls ∂(c) = 0 gilt.
(ii) Eine q-Kette c heißt ein q-Rand, falls es eine (q+1)-Kette c′ gibt, so daß
c = ∂(c′).

Wir setzen nun

Zq(X) = {c; c ist q-Zykel} = ker (∂ : Sq(X)→ Sq−1(X))

Bq(X) = {c; c ist q-Rand} = im (∂ : Sq+1(X)→ Sq(X)).

Nach Satz (II.2.1) gilt
Bq(X) ⊂ Zq(X).

Definition Zwei q-Ketten c1, c2 ∈ Sq(X) heißen homolog (c1 ∼ c2) falls
c1 − c2 ein q-Rand ist.

Definition Die q-te (singuläre) Homologiegruppe von X ist definiert als

Hq(X) = Zq(X)/Bq(X).

Die durch einen q-Zykel c definierte Homologieklasse wird im folgenden mit
[c] bezeichnet.

Die oben auftretende Situation ist eine Standardsituation in vielen ma-
thematischen Theorien. Hieraus hat sich die homologische Algebra entwickelt.

Definition (i) Eine graduierte (abelsche) Gruppe ist eine Familie (Gi)i∈Z
abelscher Gruppen mit komponentenweiser Addition.
(ii) Sind G und G′ graduierte abelsche Gruppen, so besteht ein Homomor-
phismus vom Grad r aus einer Familie von Homomorphismen fi : Gi →
Gi+r.
(iii) Eine graduierte Untergruppe von G ist eine graduierte Gruppe (Hi)i∈Z,
so daß Hi Untergruppe von Gi ist. Der Quotient G/H wird definiert durch
(G/H)i = Gi/Hi.

Ist f : G→ G′ ein Homomorphismus graduierter Gruppen, so kann man
in offensichtlicher Weise das Bild im f und den Kern ker f definieren. Dies
sind Untergruppen von G′, bzw. G.

Definition Ein Kettenkomplex (C, ∂) ist eine graduierte Gruppe (Ci)i∈Z
zusammen mit einem Homomorphismus ∂ : C → C vom Grad −1 für den
∂2 = 0 gilt.

Ist (C, ∂) ein Kettenkomplex, so haben wir also eine Sequenz von Ho-
momorphismen

· · ·
∂q+1−→ Cq

∂q−→ Cq−1
∂q−1−→ Cq−2 → · · ·

mit ∂q∂q+1 = 0.
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Definition (i) Ist (C, ∂) ein Kettenkomplex so definiert man

Z∗(C) = ker ∂, B∗(C) = im ∂.

(ii) Die Homologie des Kettenkomplexes (C, ∂) ist

H∗(C) = Z∗(C)/B∗(C).

Nach Konstruktion ist die HomologieH∗(C) eine graduierte GruppeH∗(C) =
(Hq(C))q∈Z mit

Hq(C) = Zq(C)/Bq(C) = ker ∂q/ im ∂q+1.

Definition Ein Homomorphismus Φ : (C, ∂)→ (C ′, ∂′) von Kettenkomple-
xen (oder auch eine Kettenabbildung) ist ein Homomorphismus Φ : C → C ′

vom Grad 0 mit Φ ◦ ∂ = ∂′ ◦ Φ.

Analog definiert man auch Kettenabbildungen beliebigen Grades. Eine
Kettenabbildung Φ : (C, ∂)→ (C ′, ∂′) liefert ein kommutatives Diagramm

· · · // Cq

Φq
��

∂q // Cq−1

Φq−1

��

// · · ·

· · · // C ′q
∂′q // Cq−1 // · · ·

und man sieht sofort, daß

Φ(Z∗(C)) ⊂ Z∗(C ′), Φ(B∗(C)) ⊂ B∗(C ′).

Insbesondere induziert Φ daher einen Homomorphismus

Φ∗ : H∗(C)→ H∗(C ′)

graduierter Gruppen vom Grad 0.

Ist X ein topologischer Raum, so haben wir zuvor eine graduierte Grup-
pe S∗(X) = (Sq(X))q∈Z definiert (wir setzen Sq(X) = 0 für q ≤ −1).
Zusammen mit dem Randoperator ∂ erhalten wir einen Kettenkomplex
(S∗(X), ∂) und die zugehörigen Homologiegruppen sind die singulären Ho-
mologiegruppen des Raumes X. Ist f : X −→ Y eine stetige Abbildung und
σ : ∆q −→ X ein singuläres q-Simplex, so ist

f#(σ) = f ◦ σ : ∆q → Y

ein singuläres q-Simplex von Y . Durch lineare Fortsetzung erhalten wir einen
Homomorphismus vom Grad 0:

f# : S∗(X)→ S∗(Y ).
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Dies ist sogar eine Kettenabbildung, da ∂f#(σ) = f#(∂σ). Letztere Gleich-
heit folgt sofort aus

(f ◦ σ) ◦ F qi = f ◦ (σ ◦ F qi ).

Damit induziert f# einen Homomorphismus

f∗ : H∗(X)→ H∗(Y ).

Unmittelbar aus der Konstruktion folgt, daß

(1) (idX)∗ = idH∗(X)

(2) (f ◦ g)∗ = f∗ ◦ g∗ für stetige Abbildungen g : X → Y, f : Y → Z.

Das heißt, daß wir einen Funktor konstruiert haben von der Katego-
rie bestehend aus topologischen Räumen und stetigen Abbildungen in die
Kategorie der Kettenkomplexe und Kettenabbildungen. Als unmittelbare
Anwendung ergibt sich

Satz II.2.2 Ist f : X → Y ein Homöomorphismus, so ist f∗ : H∗(X) →
H∗(Y ) ein Isomorphismus.

Beispiel Wir berechnen die Homologie des einpunktigen Raums X = {x}.
Für jedes q ≥ 0 gibt es genau ein Simplex σq : ∆q → X, nämlich die
konstante Abbildung. Also ist

Sq(X) =
{
Z für q ≥ 0
0 für q < 0.

Für q > 0 gilt σ(i)
q = σq−1, also

∂σq =
q∑
i=0

(−1)i σ(i)
q =

q∑
i=0

(−1)i σq−1

d.h.

∂σq =
{
σq−1 für q gerade , q > 0
0 für q sonst.

Damit wird der Kettenkomplex

· · · ∂−→ S2({x}) ∂−→ S1({x})→ S0({x})→ 0

zu
· · · 0−→ Z

id−→ Z
0−→ Z

id−→ Z
0−→ Z

0−→ 0,

also

Hq({x}) =
{
Z für q = 0
0 für q 6= 0.
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Satz II.2.3 Ist X ein nicht-leerer, wegzusammenhängender topologischer
Raum, so gilt H0(X) = Z.

Beweis. Wir betrachten

S1(X) ∂−→ S0(X) −→ 0.

Es gilt S0(X) = Z0(X) = F (X) die freie abelsche Gruppe, die durch die
Punkte von X erzeugt wird, d.h. die Elemente in Z0(X) sind von der Form

z =
∑
x∈X

nxx, fast alle nx = 0.

Die Gruppe S1(X) ist die freie abelsche Gruppe, die von den Wegen σ1 :
I → X erzeugt wird. Ist σ1 ein Weg von x0 nach x1, so gilt

∂σ1 = x1 − x0.

Wir betrachten nun den Augmentionshomomorphismus

ε : S0(X) → Z∑
x∈X

nxx 7→
∑
x∈X

nx.

Da X 6= ∅, ist ε surjektiv.

Behauptung B0(X) = ker ε.

(i) B0(X) ⊂ ker ε folgt sofort, da ε∂σ1 = ε(x1 − x0) = 0.

(ii) Es sei c =
∑
nxx mit ε(c) =

∑
nx = 0. Dann gilt

c =
∑

nxx−
∑

nxx0 =
∑

nx(x− x0) = ∂
(∑

nxσx

)
∈ B0(X)

wobei σx ein Weg von x0 nach x ist.

Damit folgt sofort
H0(X) = Z0(X)/B0(X) = Z.

�

Man kann nun den Kettenkomplex

· · · ∂−→ S2(X) ∂−→ S1(X) ∂−→ S0(X) 0−→ 0

abändern zu

· · · ∂−→ S2(X) ∂−→ S1(X) ∂−→ S0(X) ε−→ Z −→ 0

und erhält immer noch einen Kettenkomplex (da ε∂ = 0 für alle Räume X
gilt). Man spricht dann vom augmentierten singulären Kettenkomplex.
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Definition Die Homologiegruppen H̃q(X) des augmentierten singulären
Kettenkomplexes heißen die reduzierten singulären Homologiegruppen von
X.

Bemerkung Es gilt H̃q(X) = Hq(X) für q > 0. Ist X wegzusammen-
hängend, so gilt H̃0(X) = 0.

Man kann jeden topologischen Raum in seine Wegzusammenhangskom-
ponenten zerlegen: Nennt man zwei Punkte x, y ∈ X äquivalent (x ∼ y),
wenn es einen Weg von x nach y gibt, so definiert dies eine Äquivalenz-
relation, und damit eine disjunkte Zerlegung X =

⋃
α∈A

Xα in wegzusam-

menhängende KomponentenXα. Da die Simplizes ∆q wegzusammenhängend
sind, ist jedes singuläre Simplex σ : ∆q → X in einer Komponente Xα ent-
halten. Es ergibt sich sofort, daß Hq(X) die direkte Summe der Homologie-
gruppen Hq(Xα) ist, d.h.

Hq(X) =
⊕
α∈A

Hq(Xα).

Ist die Anzahl der Wegzusammenhangskomponenten r, so gilt insbesondere

H0(X) ∼= Z
r, H̃0(X) ∼= Z

r−1.

3 Homotopieinvarianz der singulären Homologiegruppen

Wir hatten jeder stetigen Abbildung f : X → Y Homomorphismen f∗ :
Hq(X) → Hq(Y ) zugeordnet. Ziel dieses Abschnitts ist der Beweis von fol-
gendem wichtigen

Satz II.3.1 Sind f, g : X → Y homotope Abbildungen, so gilt f∗ = g∗.

Daraus ergeben sich unmittelbar:

Korollar II.3.2 Sind X und Y homotopie-äquivalent, so sind die Homolo-
giegruppen isomorph, d.h. Hq(X) ∼= Hq(Y ) für alle q.

Beweis. Es gibt Abbildungen f : X → Y, g : Y → X mit g ◦ f ' idX , f ◦ g '
idY also idHq(X) = (g ◦ f)∗ = g∗ ◦ f∗ sowie idHq(Y ) = (f ◦ g)∗ = f∗ ◦ g∗. �

Korollar II.3.3 Ist X zusammenziehbar, so gilt Hq(X) = 0 für q > 0 und
H0(X) = Z.

Beweis. X ist homotopie-äquivalent zu einem Punkt x0. �

Vor dem Beweis von Satz (II.3.1) benötigen wir noch einige Vorberei-
tungen.
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Definition Es seien (C, ∂) und (C ′, ∂′) Kettenkomplexe. Zwei Kettenab-
bildungen f, g : C → C ′ heißen kettenhomotop, wenn es einen Homomor-
phismus K : C → C ′ vom Grad 1 gibt, mit ∂′K +K∂ = f − g. Man nennt
K dann eine Kettenhomotopie von f und g.

Lemma II.3.4 Für zwei kettenhomotope Abbildungen f, g : C → C ′ gilt
f∗ = g∗.

Beweis. Wegen
f∗ − g∗ = (f − g)∗ = (∂′K +K∂)∗

genügt es zu zeigen, daß (∂′K +K∂)∗ = 0 ist. Dies folgt, da für z ∈ Zq(C)
gilt

(∂′K +K∂)(z) = ∂′K(z) ∈ Bq(C ′).

�

Es ist an dieser Stelle sinnvoll, zunächst den Spezialfall zu behandeln,
daß X eine konvexe Teilmenge des Rn ist.

Satz II.3.5 Ist X eine konvexe Teilmenge des Rn, so gilt Hq(X) = 0 für
q > 0 und H0(X) = Z.

Beweis. Da X zusammenhängend ist, gilt H0(X) = Z nach Satz (II.2.3). Es
genügt nun, für q ≥ 1 eine Abbildung K : Sq(X)→ Sq+1(X) mit ∂K+K∂ =
idSq(X) zu konstruieren. Es gilt dann nämlich id∗ = (∂K + K∂)∗ = 0. Wir
wählen x0 ∈ X fest.

Ist σ : ∆q → X ein singuläres q-Simplex, so definieren wir K(σ) :
∆q+1 → X wie folgt:

K(σ)(t0, . . . , tq+1) =

{
(1− t0)σ

(
t1

1−t0 , . . . ,
tq+1

1−t0

)
+ t0x0 für t0 < 1

x0 für t0 = 1.

e2 e1

e0

K(σ) σ(1)
σ(0)

x0

X
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Die Abbildung K(σ) ist stetig, möglicherweise mit Ausnahme des Punk-
tes (1, 0, . . . , 0). Die Stetigkeit in diesem Punkt folgt, da

lim
t0→1

||K(σ)(t0, . . . , tq+1)− x0|| =

= lim
t0→1
||(1− t0)σ

(
t1

1−t0 , . . . ,
tq+1

1−t0

)
− (1− t0)x0||

≤ lim
t0→1

(1− t0)
(
||σ
(

t1
1−t0 , . . . ,

tq+1
1−t0

)
||+ ||x0||

)
= 0,

wobei wir im letzten Schritt verwenden, daß der Ausdruck in der Klammer
beschränkt ist.

Damit ist K(σ) : ∆q+1 → X ein singuläres (q+1)-Simplex mit K(σ)(0) =
σ (nach Konstruktion). Durch lineare Fortsetzung erhalten wir einen Homo-
morphismus

K : Sq(X)→ Sq+1(X).

Für q ≥ 1 und 1 ≤ i ≤ q + 1 gilt nun

(1) K(σ)(i) = K(σ(i−1)).

Dies rechnet man sofort nach:

K(σ)(i)(t0, . . . , tq) = K(σ)(t0, . . . , ti−1, 0, ti, . . . , tq)
= (1− t0)σ

(
t1

1−t0 , · · · ,
ti−1

1−t0 , 0,
ti

1−t0 , . . . ,
tq

1−t0

)
+ t0x0

bzw.

K(σ)(i−1)(t0, . . . , tq) = (1− t0)σ(i−1)
(

t1
1−t0 , . . . ,

tq
1−t0

)
+ t0x0

= (1− t0)σ
(

t1
1−t0 , · · · ,

ti−1

1−t0 , 0,
ti

1−t0 , . . . ,
tq

1−t0

)
+ t0x0.

Daraus folgt

∂K(σ) =
q+1∑
i=0

(−1)iK(σ)(i)

=
[
K(σ)(0) +

q+1∑
i=1

(−1)iK(σ)(i)

]
−
[
q+1∑
i=1

(−1)iK(σ(i−1))+

q∑
j=0

(−1)jK(σ(j))

]
= σ −K(∂σ)

wobei wir beim letzten Gleichheitszeichen Formel (1) verwendet haben. Ins-
gesamt erhalten wir

∂K +K∂ = id.

�
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Beweis von Satz (II.3.1): Nach Lemma (II.3.4) genügt es zu zeigen, daß die
Kettenabbildungen f#, g# : S(X)→ S(Y ) kettenhomotop sind.

Hierzu betrachten wir für t ∈ I die Abbildung

ht : X → X × I
x 7→ (x, t).

Durch {ht} wird eine Homotopie zwischen h0 und h1 gegeben.

Behauptung Es genügt zu zeigen, daß (h0)# und (h1)# kettenhomotop
sind.

Die Behauptung zeigt man wie folgt: Es sei F : X × I → Y eine Ho-
motopie zwischen f und g. Dann ist F ◦ h0 = f und F ◦ h1 = g. Falls die
Abbildungen (h0)#, (h1)# : S∗(X) → S∗(X × I) kettenhomotop sind, gibt
es eine Kettenhomotopie K : S∗(X)→ S∗(X × I), d.h.

∂K +K∂ = (h0)# − (h1)#.

Anwendung von F# ergibt

F#(∂K +K∂) = F#(h0)# − F#(h1)#

und damit
∂(F#K) + (F#K)∂ = f# − g#,

d.h. F#K ist eine Kettenhomotopie zwischen f# und g#. Dies ergibt die
Behauptung.

Unser Ziel ist es nun, zu jedem Raum X und jedem q ≥ 0 ein K = KX :
Sq(X)→ Sq+1(X × I) zu konstruieren, so daß gilt:

(a) ∂K +K∂ = (h0)# − (h1)#

(b) Ist ϕ : W → X eine stetige Abbildung, so ist das folgende Diagramm
kommutativ:

Si(W ) KW−−−−→ Si+1(W × I)

ϕ#

y y(ϕ×id)#

Si(X) KX−−−−→ Si+1(X × I).

Wir konstruieren KX induktiv.

Induktionsschnitt Wir nehmen an, daß für alle Räume X und alle i < q
ein Homomorphismus KX : Si(X)→ Si+1(X×I) mit den Eigenschaften (a)
und (b) existiert.
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Zunächst genügt es, KX auf den singulären q–Simplizes zu definieren.
Es sei σ : ∆q → X ein solches q–Simplex. Ist δq das q–Simplex auf ∆q, das
durch die Identität id : ∆q → ∆q gegeben wird, so ist σ#(δq) = σ. Wenden
wir nun die Eigenschaft (b) auf die Abbildung σ : ∆q → X an, so muß
gelten:

(2) KX(σ) = KX(σ#(δq)) = (σ × id)#(K∆q(δq)).

D.h. also, daß KX durch K∆q und (b) bereits festgelegt ist. Es sei nun τ ein
singuläres q–Simplex auf ∆q. Nach Induktionsannahme ist K∆q(∂τ) erklärt.
Wir betrachten nun

(3) c = (h0)#(τ)− (h1)#(τ)−K∆q(∂τ) ∈ Sq(∆q × I),

wobei h0 und h1 bezüglich ∆q zu verstehen sind. Dann gilt

∂c = ∂(h0)#(τ)− ∂(h1)#(τ)− ∂K∆q(∂τ)
= (h0)#(∂τ)− (h1)#(∂τ)− [(h0)#(∂τ)− (h1)#(∂τ)−K∆q(∂(∂τ))]
= K∆q(∂2τ)
= 0.

Also ist c ein q–Zykel in der konvexen Teilmenge ∆q × I ⊂ Rq+2. Nach Satz
(II.3.5) ist c ∈ Bq(∆q× I), d.h. es gibt ein b ∈ Sq+1(∆q× I) mit ∂b = c. Wir
setzen nun

K∆q(τ) := b.

Dann gilt nach obiger Definition und wegen (3) daß

∂K∆q(τ) +K∆q(∂τ) = (h0)#(τ)− (h1)#(τ).

Es bleibt nun noch, K∆0 zu definieren. Dann haben wir K∆q und somit auch
KX festgelegt. Zu der Kette

c = (h0)#(δ0)− (h1)#(δ0)

betrachten wir ein singuläres 1–Simplex in ∆0× I mit ∂b = c und definieren

K∆0(δ0) = b.

Damit können wir K∆q für alle q und auch KX für alle Räume X erklären.
(Beachte, daß die Abbildungen K∆q und damit auch KX nicht eindeutig
bestimmt sind.)

Wir müssen nun noch zeigen, daß die Eigenschaften (a) und (b) erfüllt
sind. Um (a) zu beweisen, betrachten wir ein singuläres q–Simplex σ : ∆q →
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X. Es gilt

∂KX(σ) +KX(∂σ) = ∂KX(σ#(δq)) +KX(∂σ#(δq))
= ∂(σ × id)#K∆q(δq) +KX(σ#(∂δq))
= (σ × id)#∂K∆q(δq) + (σ × id)#K∆q(∂δq)
= (σ × id)#(∂K∆q(δq) +K∆q∂(δq))
= (σ × id)#((h0)#(δq)− (h1)#(δq))
= (h0)#(σ#(δq))− (h1)#(σ#(δq))
= (h0)#(σ)− (h1)#(σ).

Die Eigenschaft (b) gilt, da wegen (2) für ϕ : W → X und jedes q–Simplex
σ : ∆q →W :

KX(ϕ#σ) = KX(ϕ ◦ σ) = (ϕ ◦ σ × id)#K∆q(δq)
= ((ϕ× id)# ◦ (σ × id)#)K∆q(δq)
= (ϕ× id)#KW (σ).

�
Wir schließen diesen Abschnitt mit einem weiteren Korollar ab.

Definition (i) Eine Teilmenge A ⊂ X heißt ein Retrakt von X, falls es
eine stetige Abbildung r : X → A mit r ◦ i = idA gibt, wobei i : A→ X die
natürliche Inklusion ist. Die Abbildung r heißt dann eine Retraktion von X
auf A.
(ii) A heißt Deformationsretrakt von X, wenn zusätzlich i ◦ r ' idX gilt.

Korollar II.3.6 Ist A ein Deformationsretrakt von X, so gilt Hq(A) ∼=
Hq(X) für alle q.

Beweis. Dies folgt aus Satz (II.3.4), da i : A→ X eine Homotopieäquivalenz
ist. �

An dieser Stelle soll noch kurz auf den Zusammenhang zwischen er-
ster Homologiegruppe und Fundamentalgruppe eingegangen werden. Ein
Weg σ : I → X mit σ(0) = σ(1) = x0 definiert eine Homotopieklasse
[σ] ∈ π1(X,x0), kann aber auch als singulärer 1–Zykel auf X aufgefaßt wer-
den. Die zugehörige Homologieklasse sei mit 〈σ〉 ∈ H1(X) bezeichnet.

Ist G eine Gruppe, so wird der Kommutator G′ von G wie folgt definiert:

G′ = 〈{ghg−1h−1; g, h ∈ G}〉.

Man sieht leicht, daß G′ ein Normalteiler von G, und daß G/G′ abelsch ist.
Man kann G′ auch dadurch charakterisieren, daß es der kleinste Normalteiler
von G ist, für den G/G′ abelsch ist.
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Satz II.3.7 Die Abbildung

h : π1(X,x0)→ H1(X), [σ] 7→ 〈σ〉

ist wohldefiniert und ein Homomorphismus. Ist X wegzusammenhängend, so
ist h surjektiv und der Kern von h ist genau der Kommutator von π1(X,x0).

Man nennt h den Hurewicz-Homomorphismus. (Es gibt auch ähnliche
Vergleichssätze fr die höheren Homotopie- und Homologiegruppen.) Ist X
wegzusammenhängend, so ist die erste Homologiegruppe H1(X) gerade die
abelsch gemachte Fundamentalgruppe π1(X,x0).

4 Relative Homologiegruppen

Wir betrachten nun Paare (X,A), wobei A ein Unterraum von X ist (d.h.
A ⊂ X ist mit der Relativtopologie versehen). Dann können wir ein sin-
guläres q–Simplex σ : ∆q → A auch als ein q–Simplex in X auffassen. Da
dann auch ∂σ eine Summe von (q − 1)–Simplizes in A ist, erhalten wir ein
kommutatives Diagramm

· · · ∂ // Sq(A) ∂ //

��

Sq−1(A) //

��

· · ·

· · · ∂ // Sq(X) ∂ //

��

Sq−1(X) //

��

· · ·

· · · ∂′ // Sq(X)/Sq(A) ∂′ // Sq−1(X)/Sq−1(A) // · · ·

wobei ∂′ der induzierte Homomorphismus ist, also ∂′(c) = (∂c). Es gilt
(∂′)2 = 0, also können wir auch von dem unteren Komplex die Homologie
betrachten.

Definition Die Homologiegruppe

Hq(X,A) := Hq(S∗(X)/S∗(A))

heißt die q–te relative singuläre Homologiegruppe von X bezüglich A (bzw.
mod A).

Man kann diese Homologiegruppe auch anders definieren. Dazu betrach-
ten wir nochmals das Diagramm

Sq(X) ∂−−−−→ Sq−1(X)

π

y yπ
Sq(X)/Sq(A) ∂′−−−−→ Sq−1(X)/Sq−1(A),
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wobei π die Projektion ist. Ist c ∈ Sq(X), so daß ∂′(c) = 0, so gilt auch
(∂c) = 0, also ∂c ∈ Sq−1(A). Dies führt auf die Gruppe

Zq(X,A) := {c ∈ Sq(X); ∂c ∈ Sq−1(A)}.

Wir nennen die Elemente von Zq(X,A) relative q-Zykeln von X bezüglich A.
Andererseits gilt für c ∈ Sq(X), daß c̄ ∈ im ∂′ genau dann, wenn es ein
c′ ∈ Sq(A) gibt, mit c− c′ ∈ im ∂ = Bq(X). Wir betrachten also

Bq(X,A) := {c ∈ Sq(X); c− c′ ∈ Bq(X) für ein c′ ∈ Sq(A)}

Die Elemente in Bq(X,A) heißen relative q–Ränder von X bezüglich A.

Lemma II.4.1 Hq(X,A) ∼= Zq(X,A)/Bq(X,A).

Beweis. Es gilt nach obigem

ker ∂′ = Zq(X,A)/Sq(A)
im ∂′ = Bq(X,A)/Sq(A).

Damit ergibt sich

Hq(X,A) = ker ∂′/ im ∂′ ∼= Zq(X,A)/Bq(X,A).

�

Beispiel Wir betrachten den Zylinder X = I×S1 mit A = {0}×S1∪{1}×
S1. Ein relativer 1-Zykel ist ein Weg mit Anfangs- und Endpunkt in A, also
etwa eine Mantellinie. Beispiele für relative 1-Ränder sind alle horizontalen
Kreise.

Ist A = ∅, so hat man offensichtlich Sq(A) = 0, also Hq(X) = Hq(X, ∅).

Definition Eine Abbildung f : (X,A)→ (Y,B) von Paaren ist eine stetige
Abbildung f : X → Y mit f(A) ⊂ B.

Eine solche Abbildung induziert Homomorphismen

f# : Sq(X)→ Sq(Y ), f#(Sq(A)) ⊂ Sq(B)
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und damit auch Homomorphismen

f∗ : Hq(X,A)→ Hq(Y,B)

wobei wieder
id∗ = id, (g ◦ f)∗ = g∗ ◦ f∗

gilt.

Definition Zwei Abbildungen f, g : (X,A) → (Y,B) heißen homotop (als
Abbildungen von Paaren), wenn es eine Abbildung

F : (X × I, A× I)→ (Y,B)

gibt mit F (x, 0) = f(x), F (x, 1) = g(x).

Aus der Definition folgt, daß für festes t für die Abbildung ft(x) = F (x, t)
gilt, daß ft(A) ⊂ B, d.h. ft : (X,A) → (Y,B) eine Abbildung von Paaren
ist.

Satz II.4.2 Sind die Abbildungen f, g : (X,A) → (Y,B) homotop als Ab-
bildung von Paaren, so gilt f∗ = g∗ : Hq(X,A)→ Hq(Y,B).

Beweis. Dies folgt im wesentlichen aus dem Beweis von Satz (II.3.1). Die
dort betrachteten Abbildungen h0, h1 : X → X × I können als Abbildungen
von Paaren h0, h1 : (X,A) → (X × I,A × I) aufgefaßt werden. Für die
Homomorphismen

K : Sq(X)→ Sq+1(X × I)

folgt nach Konstruktion, daß K(Sq(A)) ⊂ Sq+1(A×I) gilt. Deshalb induziert
K eine Kettenhomotopie

K : Sq(X)/Sq(A)→ Sq+1(X × I)/Sq+1(A× I).

�

Beispiel Den Unterschied zwischen Homotopie von Abbildungen und Ho-
motopie von Abbildungen von Paaren kann man an folgendem Beispiel ver-
anschaulichen: Sei X = [0, 1], A = {0, 1}, Y = S1, B = {1}. Die Abbildungen

f : (X,A) → (Y,B), x 7→ e2πix

g : (X,A) → (Y,B), x 7→ 1

sind absolut homotop, nicht aber homotop als Abbildungen von Paaren.
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5 Die lange exakte Homologiesequenz

Eine Sequenz von abelschen Gruppen

· · · −→ Gi−1
fi−1−→ Gi

fi−→ Gi+1 −→ · · ·

heißt exakt, falls im fi−1 = ker fi, für alle i gilt. Eine exakte Sequenz der
Form

0 −→ C
f−→ D

g−→ E → 0

heißt auch eine kurze exakte Sequenz. Dies ist äquivalent dazu, daß f injek-
tiv, g surjektiv und im f = ker g ist.

Eine kurze exakte Sequenz von Kettenkomplexen ist eine Sequenz von
Kettenkomplexen

0 −→ C
f−→ D

g−→ E → 0

so daß für alle q die Sequenz

0 −→ Cq
f−→ Dq

g−→ Eq → 0

eine kurze exakte Sequenz von Gruppen ist.

Satz II.5.1 Eine kurze exakte Sequenz 0→ C → D → E → 0 von Ketten-
komplexen induziert eine lange exakte Sequenz von Homologiegruppen

· · · f∗−→ Hq(D)
g∗−→ Hq(E) ∂∗−→ Hq−1(C)

f∗−→ Hq−1(D)→ · · ·

Definition Man nennt ∂∗ die Verbindungshomomorphismen.

Beweis. Durch die Abbildungen f und g erhalten wir Homomorphismen

Hq(C)
f∗−→ Hq(D)

g∗−→ Hq(E)

1. Schritt: Wir zeigen zunächst, daß dieses Tripel exakt ist. Da g∗ ◦ f∗ =
(g ◦ f)∗ = 0 folgt im f∗ ⊂ ker g∗. Um ker g∗ ⊂ im f∗ zu zeigen, betrachten
wir das kommutative Diagramm
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...

��

...

��

...

��
0 // Cq+1

f //

∂
��

Dq+1
g //

∂
��

Eq+1 //

∂
��

0

0 // Cq
f //

∂
��

Dq
g //

∂
��

Eq //

∂
��

0

0 // Cq−1
f //

��

Dq−1
g //

��

Eq−1 //

��

0

...
...

...

dessen Zeilen exakt sind. Es sei nun d ∈ Zq(D) mit g∗[d] = 0. D.h. es gibt
e ∈ Eq+1 mit ∂e = g(d). Da g surjektiv ist, gibt es ein d′ ∈ Dq+1 mit
g(d′) = e. Dann gilt:

g(d− ∂d′) = g(d)− g(∂d′) = g(d)− ∂g(d′) = ∂e− ∂e = 0.

Also finden wir ein c ∈ Cq mit f(c) = d − ∂d′. Wir behaupten, daß c ∈
Zq−1(C). Dies folgt, da f(∂c) = ∂(f(c)) = ∂d− ∂(∂d′) = 0. Damit definiert
c eine Homologieklasse [c] ∈ Hq(C) und es gilt:

f∗[c] = [d− ∂d′] = [d].

2. Schritt: Wir konstruieren nun den Verbindungshomomorphismus. Dazu
betrachten wir ein Element [z] ∈ Hq(E) repräsentiert durch einen q-Zykel
z ∈ Zq(E). Da g surjektiv ist, gibt es ein d ∈ Dq mit g(d) = z. Es gilt

g(∂d) = ∂g(d) = ∂z = 0

d.h. wir können ein c ∈ Cq−1 finden mit f(c) = ∂(d). Wir behaupten, daß c
sogar ein (q − 1)–Zykel ist, d.h. ∂c = 0 gilt. Dies folgt aus

f(∂c) = ∂f(c) = ∂(∂d) = 0

und der Injektivität von f . Der Verbindungshomomorphismus soll dann de-
finiert werden durch

∂∗ : Hq(E) → Hq−1(C).
[z] 7→ [c]

Dazu muß man zeigen, daß die obige Konstruktion wohldefiniert ist auf
dem Niveau der Homologieklassen. Es seien z, z′ ∈ Zq(E) homolog, d.h.
z− z′ = ∂e für ein e ∈ Eq+1. Ferner seien d, d′ ∈ Dq mit g(d) = z, g(d′) = z′

und c, c′ ∈ Cq−1 mit f(c) = ∂d, f(c′) = ∂d′.
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Behauptung c ∼ c′.

Da g surjektiv ist, gibt es ein a ∈ Dq+1 mit g(a) = e. Damit gilt

g(d− d′ − ∂a) = g(d)− g(d′)− g(∂a)
= z − z′ − ∂g(a)
= z − z′ − ∂e = 0.

Also gibt es ein b ∈ Cq mit f(b) = d− d′ − ∂a. Nun gilt

f(∂b) = ∂f(b) = ∂d− ∂d′
= f(c)− f(c′)
= f(c− c′).

Wiederum aus der Injektivität von f folgt c− c′ = ∂b, also c ∼ c′.

Die Homomorphismeneigenschaft folgt unmittelbar aus der Konstruk-
tion. Wir haben also nun die lange Homologiesequenz konstruiert. Es bleibt,
ihre Exaktheit nachzuprüfen.

3. Schritt: Wir haben noch die Exaktheit an den Stellen Hq(E) und Hq−1(C)
zu überprüfen.

(1) Exaktheit bei Hq(E) :

(1a) im g∗ ⊂ ker ∂∗: Es sei d ∈ Zq(D). Dann wird ∂∗g∗[d] durch ein c ∈ Cq−1

mit f(c) = ∂d = 0 repräsentiert. Da f injektiv ist, folgt c = 0.

(1b) ker ∂∗ ⊂ im g∗ : Wir betrachten z ∈ Zq(E) mit ∂∗[z] = 0. Es sei d ∈ Dq

mit g(d) = z und c ∈ Cq−1 mit f(c) = ∂d, also [c] = ∂∗[z] = 0. Also
gibt es a ∈ Cq mit ∂a = c. Dann gilt:

∂(d− f(a)) = ∂d− f(∂a) = f(c)− f(c) = 0.

D.h. d− f(a) ∈ Zq(D). Andererseits gilt:

g(d− f(a)) = g(d)− g(f(a)) = z

d.h. g∗[d− f(a)] = [z].

(2) Exaktheit bei Hq−1(C): Dies wird mit völlig analogen Argumenten
bewiesen.

�

Satz II.5.2 Der Verbindungshomomorphismus ist natürlich in folgendem
Sinn: Ist
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0 // C
f //

α

��

D
g //

β
��

E //

γ

��

0

0 // C ′
f ′ // D′

g′ // E′ // 0

ein kommutatives und exaktes Diagramm von Kettenkomplexen, so ist auch
das Diagramm

· · · // Hq(D)
g∗ //

β∗
��

Hq(E) ∂∗ //

γ∗
��

Hq−1(C)
f∗ //

α∗
��

Hq−1(D) //

β∗
��

· · ·

· · · // Hq(D′)
g′∗ // Hq(E′)

∂∗ // Hq−1(C ′)
f ′∗ // Hq−1(D′) // · · ·

kommutativ.

Beweis. Dies folgt aus der Konstruktion des verbindenden Homomorphis-
mus. �

Ein Unterkomplex eines Kettenkomplexes (C, ∂) ist eine graduierte Un-
tergruppe D von C mit ∂(D) ⊂ D. Dann ist D zusammen mit der Ein-
schränkung von ∂ auf D selbst ein Kettenkomplex. Wir schreiben (D, ∂) ⊂
(C, ∂). In dieser Situation erhalten wir in natürlicher Weise auch einen Quo-
tientenkomplex (C/D, ∂′) mit (C/D)q = Cq/Dq und ∂′c̄ = ∂c. Dies liefert
eine kurze exakte Sequenz von Kettenkomplexen

0 −→ D
i−→ C

π−→ C/D −→ 0

wobei i die Inklusion und π die Projektion bezeichnet. Dies wiederum liefert
eine lange exakte Homologiesequenz

· · · −→ Hq(D) i∗−→ Hq(C) π∗−→ Hq(C/D) ∂∗−→ Hq−1(D) −→ · · ·

wobei
∂∗[c̄] = [∂c].

Wir können diese Überlegungen nun speziell in der Situation anwenden,
wenn (X,A) ein Raumpaar ist. Die exakte Sequenz

0 −→ S∗(A)
i#−→ S∗(X)

j#−→ S∗(X)/S∗(A) −→ 0

liefert eine lange Homologiesequenz

· · · −→ Hq(A) i∗−→ Hq(X)
j∗−→ Hq(X,A) ∂∗−→ Hq−1(A) −→ · · · .
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Dabei ist der Verbindungshomomorphismus wie folgt definiert: Für z ∈
Zq(X,A) gilt ∂∗[z] = [∂z].

Ebenfalls aus der langen exakten Homologiesequenz liest man ab, daß
i∗ : H∗(A)→ H∗(X) genau dann ein Isomorphismus ist, wenn H∗(X,A) = 0
ist.

Insbesondere folgt:

Satz II.5.3 Ist A ein Deformationsretrakt von X, so ist H∗(X,A) = 0.

Die lange exakte Homologiesequenz von Paaren ist natürlich in folgen-
dem Sinn: Ist f : (X,A) → (Y,B) eine stetige Abbildung von Paaren, so
kommutiert das folgende Diagramm:

· · · // Hq(A) //

��

Hq(X) //

��

Hq(X,A) //

��

Hq−1(A) //

��

· · ·

· · · // Hq(B) // Hq(Y ) // Hq(Y,B) // Hq−1(B) // · · · .

Ist (X,A,B) ein Tripel von Räumen, so definiert die exakte Sequenz

0→ S∗(A)/S∗(B)→ S∗(X)/S∗(B)→ S∗(X)/S∗(A)→ 0

eine lange exakte Homologiesequenz

· · · → Hq(A,B)→ Hq(X,B)→ Hq(X,A)→ Hq−1(A,B)→ · · · ,

die in der naheliegenden Weise natürlich ist.

Wir schließen diesen Abschnitt mit folgendem Beispiel, welches spter bei
der Berechnung der Homologiegruppen der Sphären nützlich sein wird. Sei

X = Dn = {x ∈ Rn; x2
1 + . . .+ x2

n ≤ 1}
A = Sn−1 = ∂Dn.

Da Dn konvex ist, folgt nach Satz (II.3.5), daß Hq(Dn) = 0 für q ≥ 1. Also
folgt aus der langen Homologiesequenz des Paares (Dn, Sn−1), daß

∂∗ : Hq(Dn, Sn−1) ∼= Hq−1(Sn−1) für q ≥ 2.

Für q = 1 erhalten wir aus der langen Homologiesequenz

0→ H1(Dn, Sn−1) ∂∗−→ H0(Sn−1) i∗−→ H0(Dn)→ 0.
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Für n ≥ 2 ist Sn−1 zusammenhängend und daher ist i∗ : H0(Sn−1) →
H0(Dn) ein Isomorphismus. Damit folgt

H1(Dn, Sn−1) = 0 für n ≥ 2.

Für n = 1 ist S0 = {1,−1}, also

H0(S0) ∼= Z
2

und
H1(D1, S0) ∼= ker i∗ ∼= Z.

6 Der Ausschneidungssatz

Der Ausschneidungssatz ist ein wesentliches Hilfsmittel bei der Berechnung
von Homologiegruppen. In dieser Form gilt der Ausschneidungssatz nur in
der Homologie -, nicht jedoch der Homotopietheorie.

Definition Es sei (X,A) ein Paar topologischer Räume. Man sagt, ein Un-
terraum U ⊂ A kann ausgeschnitten werden, wenn die natürliche Inklusion
i : (X − U,A− U)→ (X,A) einen Isomorphismus

i∗ : Hq(X − U,A− U)→ Hq(X,A) für alleq

induziert. Man nennt dann i : (X − U,A − U) → (X,A) auch eine Aus-
schneidung.

XAU

Theorem II.6.1 (Ausschneidungssatz) Ist (X,A) ein Paar topologischer

Räume, und gilt Ū ⊂
◦
A, so kann U ausgeschnitten werden.

Wir werden den Beweis dieses Satzes zurückstellen und zunächst Anwen-
dungen diskutieren. Wir nennen ein Paar (Y,B) ⊂ (X,A) einen Deforma-
tionsretrakt, falls es eine stetige Abbildung r : (X,A) → (Y,B) gibt mit
r ◦ i = id(Y,B) und i ◦ r ' id(X,A). Dann induziert die Inklusion i : (Y,BF →
(X,A) Isomorphismen i : H∗(Y,B) ∼= H∗(X,A).

Satz II.6.2 Es sei V ⊂ U ⊂ A. Kann V ausgeschnitten werden, und ist
(X − U,A− U) ein Deformationsretrakt von (X − V,A− V ), so kann auch
U ausgeschnitten werden.
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Beweis. Wir betrachten die Inklusion

i′ : (X − U,A− U)→ (X − V,A− V )

Da (X − U,A− U) Deformationsretrakt von (X − V,A− V ) ist, gilt

i′∗ : Hq(X − U,A− U) ∼= Hq(X − V,A− V ) für alle q.

Da V ausgeschnitten werden kann, ist

Hq(X − V,A− V ) ∼= Hq(X,A) für alle q.

Hintereinanderschaltung der beiden Isomorphismen liefert die Behauptung.
�

Wir wollen nun die Homologiegruppen der Sphären berechnen, und be-
trachten dazu

Sn = {x ∈ Rn+1; x2
1 + . . .+ x2

n+1 = 1}
En+ = {x ∈ Sn; xn+1 ≥ 0}
En− = {x ∈ Sn; xn+1 ≤ 0}.

Dann ist
En+ ∩ En− = Sn−1

wobei Sn−1 als ”Äquator” von Sn interpretiert werden kann. Die Teilmenge

En+ ↘

En− ↗

Sn

Sn−1

V

U :=
◦
E
n
− = {x ∈ Sn; xn+1 < 0}.

ist die ”südliche Hemisphäre” (ohne Äquator). Es gilt

En+ = Sn − U , Sn−1 = En− − U.

Lemma II.6.3
◦
En− kann ausgeschnitten werden, d.h.

i : (En+, S
n−1)→ (Sn, En−)

induziert einen Isomorphismus der Homologiegruppen.
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Beweis. Da Ū = En− 6⊂
◦
En− können wir den Ausschneidungssatz nicht un-

mittelbar anwenden. Deshalb betrachten wir

V =
{
x ∈ Sn; xn+1 < −

1
2

}
Da V̄ ⊂

◦
En−, können wir den Ausschneidungssatz auf V anwenden. Ferner

ist (Sn − U,En− − U) ein Deformationsretrakt von (Sn − V,En− − V ). Nun
folgt die Behauptung aus Satz (II.6.2). �

Die Projektionen auf die ersten n Koordinaten liefern Homöomorphis-
men

p+ : (En+, S
n−1) → (Dn, Sn−1)

p− : (En−, S
n−1) → (Dn, Sn−1).

Da Dn ⊂ Rn konvex ist, folgt

Hq(En−) = Hq(En+) = Hq(Dn) = 0 für alle q ≥ 1.

Die lange exakte Homologiesequenz des Paares (Sn, En−) ist

· · · → Hq(En−)→ Hq(Sn)→ Hq(Sn, En−)→ Hq−1(En−)→ · · ·

und liefert daher

Hq(Sn) ∼= Hq(Sn, En−) für q ≥ 1.

Andererseits gilt

Hq(Sn, En−) ∼= Hq(En+, S
n−1) ( nach Lemma (II.6.3))

∼= Hq(Dn, Sn−1) ( mittels p+
∗ )

∼= Hq−1(Sn−1) ( für q ≥ 2).

wobei der letzte Isomorphismus aus dem im vorigen Abschnitt behandelten
Beispiel folgt, wo wir auch gezeigt haben, daß

H1(Dn, Sn−1) =
{

0 für n ≥ 2
Z für n = 1.

Damit folgt sofort, daß

H1(Sn) =


0 für n > 1
Z für n = 1
0 für n = 0.

Für q ≥ 2, n ≥ 1 folgt ferner

Hq(Sn) ∼= Hq−1(Sn−1)
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und daher gilt mittels Induktion für q ≥ 2

Hq(Sn) =
{

0 für q 6= n, q ≥ 2
Z für q = n.

Zusammenfassend erhalten wir:

Satz II.6.4 (i) Für n ≥ 1 gilt

Hq(Sn) ∼=
{
Z für q = 0, n
0 sonst

(ii) für n = 0 gilt

Hq(S0) ∼=
{
Z

2 für q = 0
0 sonst.

Korollar II.6.5 Für n 6= m haben Sn und Sm verschiedenen Homotopie-
typ.

Korollar II.6.6 Es gibt keine Retraktion von Dn auf Sn−1.

Beweis. Für n = 1 folgt dies, da D1 zusammenhängend ist, aber S0 nicht.
Es sei n > 1 und r: Dn → Sn−1 eine Retraktionsabbildung, d.h. eine stetige
Abbildung mit r ◦ i = idSn−1 , wobei i : Sn−1 → Dn die Inklusion ist. Dann
erhalten wir ein kommutatives Diagramm

Z = Hn−1(Sn−1) id //

i∗ &&MMMMMMMMMMMM
Hn−1(Sn−1) = Z

Hn−1(Dn)
||
0

r∗

88qqqqqqqqqqqq

und damit offensichtlich einen Widerspruch. �

Korollar II.6.7 Jede stetige Abbildung f : Dn → Dn hat einen Fixpunkt,
d.h. es gibt einen Punkt x mit f(x) = x.

Beweis. Es sei f : Dn → Dn eine Abbildung ohne Fixpunkt. Wir wollen
zeigen, daß es dann eine Retraktion g : Dn → Sn−1 gibt. Die Abbildung
g kann wie folgt definiert werden: Für x ∈ Dn sei g(x) ∈ Sn−1 derjenige
Punkt, an dem der Strahl von f(x) durch x die Sphäre Sn−1 schneidet
(ziehe Abbildung auf der nchsten Seite).

Da f stetig ist, ist auch g stetig, und es gilt, daß g eingeschränkt auf
Sn−1 die Identität ist. �
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�

g(x)

x

f(x)

Es sei nun n ≥ 1 und f : Sn → Sn eine stetige Abbildung. Ist α ∈
Hn(Sn) ∼= Z ein Erzeuger, so ist

f∗(α) = mα

für ein m ∈ Z. Die Zahl m ist unabhängig von der Wahl des erzeugenden
Elements α, da f∗(−α) = −mα = m(−α).

Definition Die Zahl m heißt der Grad von f .

Ist n = 1, so kann man f : S1 → S1 als geschlossenen Weg in S1 auffas-
sen. Dann stimmt m mit der Umlaufzahl überein.

Um Satz (II.6.1) zu beweisen, benötigen wir einige Vorbereitungen. Wir
betrachten hierzu eine Überdeckung U = (Ui)i∈I von X. Ein singuläres q-
Simplex σ : ∆q → X heißt klein von der Ordnung U, wenn σ(∆q) ⊂ Ui
für ein i ∈ I gilt. Wir betrachten die Untergruppe SU

q (X) von Sq(X), die
von allen q-Simplizes erzeugt wird, die klein von der Ordnung U sind. Ist
σ klein von der Ordnung U, so ist ∂σ ∈ SU

q−1(X). Wir erhalten also einen
Unterkomplex SU

∗ (X) von S∗(X) mit einer Inklusion

i : SU
∗ (X)→ S∗(X).

Die Zuordnung, die U den Komplex SU
∗ (X) zuordnet, ist in folgendem

Sinn natürlich. Es sei V = (Vj)j∈J eine Überdeckung eines topologischen
Raums Y und f : Y → X eine stetige Abbildung, so daß es zu jedem j ∈ J
ein i(j) ∈ I gibt mit f(Vj) ⊂ Ui(j). Dann gibt es einen Homomorphismus
f# : SV

∗ (Y )→ SU
∗ (X), so daß

SV
∗ (Y )

f#−−−−→ SU
∗ (X)

(iY )#

y y(iX)#

S∗(Y )
f#−−−−→ S∗(X)

ein kommutatives Diagramm von Kettenabbildungen ist.

Das wesentliche Hilfsmittel beim Beweis von Satz (II.6.1) ist der folgende
Satz.
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Satz II.6.8 Es sei U = (Ui)i∈I eine Familie von Teilmengen von X, so daß
◦
U= (

◦
U i)i∈I eine Überdeckung von X ist. Dann ist

i∗ : Hq(SU
∗ (X))→ Hq(X)

ein Isomorphismus für alle q.

Wir werden dann diesen Satz auf die Überdeckung {X − U,
◦
A} anwen-

den, und so den Ausschneidungssatz beweisen. Um Satz (II.6.8) zu beweisen,
benötigen wir noch weitere Vorbereitungen.

Es seien C ⊂ Rn und C ′ ⊂ Rm konvexe Mengen.

Definition Eine Abbildung f : C → C ′ heißt affin, wenn für alle x, y ∈ C
und 0 ≤ t ≤ 1 gilt

f((1− t)x+ ty) = (1− t)f(x) + tf(y).

Beispiele solcher Abbildungen sind die Einschränkungen affiner Abbil-
dungen F : Rn → R

m mit der Eigenschaft, daß F (C) ⊂ C ′. In der Tat
kommt jede affine Abbildung f : C → C ′ auf diese Weise zustande, wenn
auch im allgemeinen F nicht eindeutig bestimmt ist.

Ist f eine affine Abbildung, und ist x0, . . . , xp ∈ C, t0, . . . , tp mit
∑
ti =

1, so gilt
f(
∑

tixi) =
∑

tif(xi).

Insbesondere bildet f Simplizes auf Simplizes ab.

Es sei nun C ⊂ Rn eine konvexe Teilmenge. Mit Aq(C) ⊂ Sq(C) bezeich-
nen wir diejenige Untergruppe, die von den affinen singulären q-Simplizes
σ : ∆q → C erzeugt wird. Die Ecken von ∆q sind e0, . . . , eq ∈ Rq+1. Ein
affines singuläres q-Simplex σ : ∆q → C ist durch die Eckpunkte xi = σ(ei)
vollständig bestimmt. Wir bezeichnen es mit (x0, . . . , xq). In dieser Notation
gilt dann

(x0, . . . , xq)(i) = (x0, . . . , xi−1, xi+1, . . . , xq).

Insbesondere gilt ∂(Aq(C)) ⊂ Aq−1(C) und wir können A∗(C) als Unter-
komplex von S∗(C) auffassen.

Ist σ = (x0, . . . , xq) ein affines singuläres q-Simplex in C und b ∈ C, so
definieren wir ein affines singuläres (q + 1)-Simplex durch

Cb(σ) = (b, x0, x1, . . . , xq).

Man nennt Cb(σ) den Kegel über σ (mit Spitze b).
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� �

�
x0

σ

x1b

Cb

Durch lineare Fortsetzung erhalten wir einen Homomorphismus

Cb : Aq(C)→ Aq+1(C).

Als nächsten Schritt definieren wir nun eine Kettenabbildung

S ′ : Aq(C)→ Aq(C)

wobei S ′ für ”simplicial division” steht. (Wir werden später noch für belie-
bige Räume X Abbildungen S : Sq(X) → Sq(X) konstruieren). Die Kon-
struktion geschieht durch Induktion nach q. Zunächst setzen wir S ′ = id für
q = 0. Es sei nun S ′ in jeder Dimension < q definiert. Ist σ = (x0, x1, . . . , xq)
ein affines singuläres q-Simplex in C, so ist der Schwerpunkt von σ definiert
durch

b = b(σ) =
x0 + x1 + . . .+ xq

q + 1
Damit definieren wir

S ′(σ) := Cb(σ)(S ′(∂σ)).

Diese Konstruktion läßt sich wie folgt veranschaulichen:

� �

�

� �

�

� ��

σ S ′(∂σ) Cb(σ)(S ′(∂σ))

Wir zeigen nun, daß S ′ eine Kettenabbildung ist.

Lemma II.6.9 Es gilt
S ′ ◦ ∂ = ∂ ◦ S ′.

Beweis. Wir machen Induktion nach q. Für q = 0 ist die Aussage trivial.
Um den Induktionsschritt von q − 1 nach q durchzuführen, genügt es, die
Aussage für ein affines singuläres q-Simplex zu beweisen. Es gilt

∂S ′(σ) = ∂(Cb(S ′(∂σ)))
= S ′∂(σ)− Cb(∂(S′(∂σ))).
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Dabei kommt die Summe dadurch zustande, daß man alle (q− 1)–Simplizes
zusammenfaßt, die b nicht enthalten, bzw. b enthalten. Das Vorzeichen kommt
dadurch zustande, daß b jeweils der erste Punkt in einem Simplex der Form
Cb(τ) ist. Nach Induktionsannahme gilt nun

∂S ′(∂σ) = S ′(∂2σ) = 0.

�

Da Unterteilung von Simplizes die Homologie nicht verändern sollte,
kann man erwarten, daß S ′ kettenhomotop zur Identität ist. Wir konstruie-
ren im folgenden eine solche Kettenhomotopie, d.h. eine Abbildung

K ′ : Aq(C)→ Aq+1(C)

mit
∂K ′ +K ′∂ = S ′ − id .

Dazu führen wir wiederum eine Konstruktion mittels Induktion durch. Für
q = 0 seiK ′ = 0. Wir nehmen nun an, daßK ′ auf allen Ketten der Dimension
< q bereits definiert ist. Für ein affines singuläres q–Simplex definieren wir
dann

K ′(σ) := Cb(σ)(S ′σ − σ −K ′∂σ).

Lemma II.6.10 Es gilt

∂K ′ +K ′∂ = S ′ − id .

Beweis. Wir machen erneut Induktion nach q, wobei der Induktionsanfang
q = 0 offensichtlich ist. Um den Induktionsschritt von q − 1 nach q durch-
zuführen, betrachten wir ein affines singuläres q–Simplex mit Schwerpunkt
b = b(σ). Entsprechend wie im Beweis von Lemma (II.6.9) gilt:

∂K ′(σ) = ∂Cb(S ′σ − σ −K ′∂σ)
= S ′σ − σ −K ′∂σ − Cb∂(S ′σ − σ −K ′∂σ).

Unter Zuhilfenahme der Induktionsvoraussetzung folgt

∂(S ′σ − σ −K ′∂σ) = S ′∂σ − ∂σ +K ′∂∂σ − S ′∂σ + ∂σ = 0.

�

Wir wollen nun die obigen Konstruktionen auf beliebige topologische
Räume übertragen. Das Ziel ist es, Homomorphismen S : Sq(X) → Sq(X)
und K : Sq(X) → Sq+1(X) zu konstruieren, die funktoriell sind. Dies heißt
folgendes: Ist f : X → Y eine stetige Abbildung, so sind die folgenden
Abbildungen kommutativ:

48



Sq(X) S−−−−→ Sq(X)

f#

y yf#

Sq(Y ) S−−−−→ Sq(Y )

sowie

Sq(X) K−−−−→ Sq+1(X)

f#

y yf#

Sq(Y ) K−−−−→ Sq+1(Y ).

Hierdurch wird auch klar, wie Sd und K für einen Raum X zu definieren
sind (vgl. auch den Beweis von Satz (II.3.1).) Es sei dazu σ : ∆q → X
ein singuläres q–Simplex. Dann ist σ = σ#(δq), wobei δq : ∆q → ∆q die
Identität ist. Wir erhalten dann aus obigen Diagrammen:

S(σ) = Sσ#(δq) = σ#(S(δq)) := σ#(S ′(δq)),
K(σ) = Kσ#(δq) = σ#(K(δq)) := σ#(K′(δq)).

Lemma II.6.11 (i) ∂S = S∂

(ii) ∂K +K∂ = Sd− id.

Beweis. Unmittelbar aus Lemma (II.6.9) und Lemma (II.6.10). �

Wir benötigen noch weitere Hilfssätze aus der konvexen Geometrie.

Definition Ist C ⊂ Rn eine beschränkte, abgeschlossene konvexe Menge,
so ist der Durchmesser von C definiert als

d(C) := sup
x, y ∈ C

||x− y||.

Lemma II.6.12 Ist σ ein q–Simplex mit Ecken x0, . . . , xq, so gilt

d(σ) = max
0 ≤ i, j ≤ q

||xi − xj ||.

Beweis. Es sei x =
∑
tixi, sowie x′ =

∑
t′ixi. Wir lassen x fest und variieren

x′. Dann gilt

||x− x′|| = ||x−
∑
t′ixi|| = ||

∑
t′i(x− x′i)||

≤
∑
|t′i| ||xi − x′i|| =

∑
t′i||x− xi||

≤
∑
t′i max ||x− xi|| = max ||x− xi||.
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Indem wir die Abschätzung wiederholen, nun aber x variieren, erhalten wir

||x− x′|| ≤ max ||xj − xi||.

�

Lemma II.6.13 Es sei σ ein affines q–Simplex in Rn. Dann hat jedes affine
singuläre Simplex in der q–Kette S ′σ als Durchmesser höchstens den Wert
qd(σ)/q + 1.

Beweis. Wir machen wieder Induktion nach q. Für q = 0 ist S ′(s) = s und
d(σ) = 0. Wir nehmen nun an, daß die Behauptung für (q − 1)–Simplizes
gilt.

Ist τ ein affines singuläres q–Simplex in S ′(σ), so gilt

τ = (b(σ), u0, . . . , uq−1)

wobei b(σ) der Schwerpunkt von σ und u0, u1, . . . , uq−1 die Ecken eines (q−
1)–Simplex ω in S ′(∂s) sind. Es sei σ′ das (q − 1)–Simplex in ∂σ, das ω
enthält:

�

�

u0

σσ′

u1

ω
τ b(σ)

Nach Lemma (II.6.11) gilt

d(τ) = max{||ui − uj ||; ||ui − b(σ)||}.

Nach Induktionsannahme gilt

||ui − uj || ≤ d(ω) ≤ (q − 1)d(σ′)
q

≤ qd(σ)
q + 1

wobei wir bei der letzten Abschätzung (q−1)/q ≤ q/(q+1) und d(σ′) ≤ d(σ)
verwenden.

Ist σ = (x0, x1, . . . , xq), so gilt

b(σ) =
1

q + 1

q∑
i=0

xi.
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Nun gilt
||ui − b(σ)|| ≤ ||xj − b(σ)|| für ein j.

Letzteres läßt sich wie folgt abschätzen

||xj − b(σ)|| = ||xj − 1
q+1

q∑
i=0

xi||

= ||
∑
i6=j

(xj − xi)/(q + 1)||

≤ 1
(q+1)

∑
i6=j
||xj − xi||

≤ q
q+1 max ||xj − xi||

= q
q+1d(σ).

�

Lemma II.6.14 Es sei X ein topologischer Raum, V = (Vi)i∈I eine offene
Überdeckung von X und σ ein singuläres Simplex in X. Dann gibt es ein
m > 0, so daß Smσ eine Linearkombination von singulären Simplizes ist,
die klein von Ordnung V sind.

Beweis. Es sei σ : ∆q → X ein singuläres q–Simplex. Dann ist W =
{σ−1(Vi)}i∈I eine offene Überdeckung von ∆q. Da ∆q kompakt ist, gibt
es ein ε > 0, so daß es für jeden Punkt x ∈ ∆q einen Index i(x) ∈ I gibt mit
Bε(x) ⊂ σ−1Vi(x). Wegen Lemma (II.6.12) und wegen

lim
m→∞

(
q

q + 1

)m
= 0

gibt es ein m > 0, so daß die affinen singulären q–Simplizes in der q–Kette
Smδq einen Durchmesser < ε haben. Daraus folgt

Smσ = σ#(Smδq) ∈ SV
q (X).

�

Beweis von Satz (II.6.8): Ziel ist es, eine Kettenabbildung

φ : S∗(X)→ SU
∗ (X)

zu konstruieren mit φ ◦ i = id und i ◦ φ kettenhomotop zur Identität.
Nach Lemma (II.6.13) angewandt auf die Überdeckung

◦
U = {

◦
U i}i∈I gibt

es für jedes singuläre q–Simplex σ in X eine Zahl m(σ) ≥ 0, so daß gilt

Sm(σ)σ ∈ SU
q (X).

Wir nehmen an, daß m(σ) jeweils minimal gewählt ist. Es gilt m(σ(i)) ≤
m(σ). Nach Lemma (II.6.11) gilt

(1) ∂K +K∂ = S − id .
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Da S eine Kettenabbildung ist, folgt, daß für alle k ≥ 1 gilt:

(2) ∂KSk−1 +KSk−1∂ = Sk − Sk−1.

Durch Addition ergibt sich

(3) ∂K(id + . . .+ Sm−1) +K(id + . . .+ Sm−1)∂ = Sm − id .

Wir setzen nun für beliebiges σ:

(4) K(σ) := K(id +S + . . .+ Sm(σ)−1)(σ).

Dann gilt:

(∂K +K∂)(σ) = ∂K(id + . . .+ Sm(σ)−1)(σ)

+
q∑
i=0

(−1)iK(id + . . .+ Sm(σ(i))−1)σ(i)

(3)
= Sm(σ)σ − σ −K(id + . . .+ Sm(σ)−1)∂σ

+
q∑
i=0

(−1)iK(id + . . .+ Sm(σ(i))−1)σ(i)

= Sm(σ)σ − σ

−
q∑
i=0

(−1)iK(Sm(σ(i)) + . . .+ Sm(σ)−1)σ(i).

Dies führt uns auf die folgende Definition:

φ(σ) := Sm(σ)σ −
q∑
i=0

(−1)iK(Sm(σ(i)) + . . .+ Sm(σ)−1)σ(i).

Nach Wahl von von m(σ) gilt

φ(σ) ∈ SU
q (X).

Nach Konstruktion von φ gilt

∂K +K∂ = i ◦ φ− id

also ist i ◦φ kettenhomotop zur Identität. Ist andererseits σ ∈ SU
q (X), dann

gilt m(σ) = 0 und daher φ ◦ i = id . �
Wir benötigen im folgenden noch das

Lemma II.6.15 (Fünferlemma) Es sei

C1
α1 //

f1

��

C2
α2 //

f2

��

C3
α3 //

f3

��

C4
α4 //

f4

��

C5

f5

��
D1

β1 // D2
β2 // D3

β3 // D4
β4 // D5

ein kommutatives Diagramm abelscher Gruppen mit exakten Zeilen. Sind
f1, f2, f4 und f5 Isomorphismen, dann ist auch f3 ein Isomorphismus.
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Beweis. Übungsaufgabe �

Schließlich können wir nun den Ausschneidungssatz beweisen.
Beweis von Satz (II.6.1). Wir betrachten die Überdeckung U = (X − U,

◦
A)

von X. Wegen Ū ⊂
◦
A überdecken auch die offenen Mengen (

◦︷ ︸︸ ︷
X − U) = X−Ū

und
◦
A den Raum X. Analog ist U′ = (A − U,

◦
A) eine Überdeckung von A.

Nach Satz (II.6.8) induzieren die Inklusionen

i : SU
∗ (X)→ S∗(X), i′ : SU′

∗ (A)→ S∗(A)

Isomorphismen

i∗ : Hq(SU
∗ (X))→ Hq(X), i′∗ : Hq(SU′

∗ (A))→ Hq(A).

für alle q.
Da wir SU′

∗ (A) als Unterkomplex von SU
∗ (X) betrachten können, haben

wir eine Kettenabbildung

j : SU
∗ (X)/SU′

∗ (A)→ S∗(X)/S∗(A).

Die Kettenabbildungen i, i′ und j induzieren nun das folgende kommutative
Diagramm:

· · · // Hq(SU′
∗ (A))

i′∗
��

// Hq(SU
∗ (X)) //

i∗
��

Hq(SU
∗ (X)/SU′

∗ (A)) //

j∗
��

· · · // Hq(A) // Hq(X) // Hq(X,A) //

// Hq−1(SU′
∗ (A))

i′∗
��

// Hq−1(SU
∗ (X))

i∗
��

// · · ·

// Hq−1(A) // Hq−1(X) // · · ·

Da i∗ und i′∗ für alle q Isomorphismen sind, ist auch j∗ nach dem Fünfer-
lemma ein Isomorphismus.

Nach Definition von U und U′ haben wir

SU
∗ (X) = S∗(X − U) + S∗(

◦
A)

SU′
∗ (A) = S∗(A− U) + S∗(

◦
A)

wobei die Summe nicht notwendig exakt ist. Also folgt

SU
∗ (X)/SU′

∗ (A) ∼= S∗(X − U)/S∗(A− U).
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Damit gilt

Hq(SU
∗ (X)/SU′

∗ (A)) ∼= Hq(X − U,A− U) für alle q.

Hintereinanderschaltung mit j∗ zeigt, daß

i∗ : Hq(X − U,A− U)→ Hq(X,A)

für alle q ein Isomorphismus ist. �

7 Die Mayer-Vietoris-Sequenz

Wir betrachten einen topologischen Raum X zusammen mit einer Über-
deckung U = {U, V } von der wir annehmen, daß auch

◦
U= {

◦
U,

◦
V } eine

Überdeckung von X ist. Dann haben wir natürliche Inklusionen

U
k

%%LLLLLLLLLLL

U ∩ V

i

;;wwwwwwwww

j ##GGGGGGGGG U ∪ V = X.

V

l

99rrrrrrrrrrr

Satz II.7.1 (Mayer-Vietoris-Sequenz) Es gibt eine lange exakte Sequenz

· · · ∂∗−→ Hq(U ∩V )
g∗−→ Hq(U)⊕Hq(V ) h∗−→ Hq(X) ∂∗−→ Hq−1(U ∩V ) −→ · · ·

mit g∗ = (i∗,−j∗), h∗ = k∗ + l∗.

Beweis. Wir betrachten

A′ = {σ;σ : ∆q → U ist ein singuläres q-Simplex in U}
A′′ = {σ;σ : ∆q → V ist ein singuläres q-Simplex in V }.

Dann ist

Sq(U) = F (A′), Sq(V ) = F (A′′)
Sq(U ∩ V ) = F (A′ ∩A′′), SU

q (X) = F (A′ ∪A′′).

Wir betrachten die Sequenz

0→ F (A′ ∩A′′) g→ F (A′)⊕ F (A′′) h→ F (A′ ∪A′′)→ 0

mit
g(σ) = (σ,−σ), h(σ′, σ′′) = σ′ + σ′′
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und behaupten, daß diese Sequenz exakt ist. Offensichtlich ist g injektiv, h
surjektiv und h ◦ g = 0. Es bleibt zu zeigen, daß kerh ⊂ im g ist. Es sei also

0 = h
(∑

niσ
′
i,
∑

mjσ
′′
j

)
=
∑

niσ
′
i +
∑

mjσ
′′
j

wobei die σ′i paarweise verschieden sind, und dasselbe für die σ′′j gilt. Dann
muß es zu jedem ni 6= 0 ein j geben mit mj = −ni und σ′i = σ′′j , d.h. also

−
∑

mjσ
′′
j = x =

∑
niσ
′
i ∈ F (A′ ∩A′′)

und damit (
∑
niσ
′
i,
∑
mjσ

′′
j ) = (x,−x) = g(x). Daß heißt, wir haben eine

kurze exakte Sequenz von Kettenkomplexen

0→ S∗(U ∩ V )
g→ S∗(U)⊕ S∗(V ) h→ SU

∗ (X)→ 0.

Auf Grund von Satz (II.5.1) liefert dies eine lange exakte Homologiesequenz

· · · ∂∗−→ Hq(U ∩ V )
g∗−→ Hq(U)⊕Hq(V ) h∗−→ Hq(SU

∗ (X)) −→
∂∗−→ Hq−1(U ∩ V ) −→ · · ·

Da nach Satz (II.6.8) gilt, daß Hq(SU
∗ (X)) = Hq(X) folgt die Behauptung.

�

Bemerkung Der Verbindungshomomorphismus ∂∗ kann wie folgt beschrie-
ben werden. Jede Homologieklasse [w] ∈ Hq(X) besitzt eine Darstellung
[w] = [c + d] mit c ∈ Sq(U), d ∈ Sq(V ). Wegen ∂w = ∂c + ∂d = 0 ist
∂c = −∂d ∈ Sq−1(U ∩ V ) und (∂c, ∂d) = (∂c,−∂c) = g(∂c). Dann gilt

∂∗[w] = ∂∗[c+ d] = [∂c].

Bemerkung Die Mayer-Vietoris Sequenz ist in folgendem Sinn natürlich.
Es sei X ′ ein weiterer topologischer Raum und {U ′, V ′} eine Überdeckung

von X ′ mit
◦
U ′ ∪

◦
V ′= X. Es sei f : X → X ′ eine stetige Abbildung mit

f(U) ⊂ U ′ und f(V ) ⊂ V ′. Dann kommutiert das folgende Diagramm:

· · · ∂∗−→ Hq(U ∩ V )
g∗−−−−→ Hq(U)⊕Hq(V ) h∗−−−−→ Hq(X)

f∗

y f∗⊕f∗
y f∗

y
· · · ∂′∗−→ Hq(U ′ ∩ V ′)

g′∗−−−−→ Hq(U ′)⊕Hq(V ′)
h′∗−−−−→ Hq(X ′)

∂∗−→ Hq−1(U ∩ V ) −→ · · ·

f∗

y
∂′∗−→ Hq−1(U ′ ∩ V ′) −→ · · ·

Dies folgt unmittelbar aus der Konstruktion.
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8 Das Anheften von Räumen

Es sei X ein topologischer Raum und ∼ eine Äquivalenzrelation auf X. Die
Menge der Äquivalenzklassen wird mit X/ ∼ bezeichnet und die natürli-
che Projektion mit π : X → X/ ∼. Die Quotiententopologie ist die feinste
Topologie auf X/ ∼, so daß die natürliche Projektion π stetig ist. Es gilt

U ⊂ X/ ∼ offen ⇔ π−1(U) offen in X.

Wir wollen zunächst untersuchen, wann X/ ∼ ein Hausdorffraum ist.
Die Diagonale von X ist die Menge

D = {(x, x) ∈ X ×X;x ∈ X} ⊂ X ×X.

Aus der mengentheoretischen Topologie kennt man den

Satz II.8.1 X ist genau dann ein Hausdorffraum, wenn die Diagonale D
abgeschlossen in X ×X ist.

Wir betrachten nun die stetige Abbildung

π × π : X ×X → (X/ ∼)× (X/ ∼)

und bezeichnen die Diagonale in (X/ ∼)× (X/ ∼) mit ∆. Die Menge

Γ := (π × π)−1(∆) = {(x, y) ∈ X ×X;x ∼ y}

heißt Graph der Relation ∼. Die Relation ∼ heißt abgeschlossen, falls der
Graph Γ abgeschlossen in X × X ist. Ist X/ ∼ Hausdorffraum, so ist Γ
offensichtlich abgeschlossen. Falls X kompakt ist, gilt auch die Umkehrung.

Satz II.8.2 Es sei X ein kompakter Hausdorffraum. Dann ist X/ ∼ genau
dann ein Hausdorffraum, wenn ∼ abgeschlossen ist.

Beweis. Wir hatten bereits gesehen, daß für jeden Raum X aus der Haus-
dorffeigenschaft von X/ ∼ die Abgeschlossenheit von ∼ folgt. Wir nehmen
nun an, daß ∼ abgeschlossen ist. Da X kompakt und Hausdorff ist, ist eine
Teilmenge A ⊂ X genau dann abgeschlossen, wenn sie kompakt ist. Wir zei-
gen nun, daß das Bild π(A) einer abgeschlossenen Menge A in X ebenfalls
abgeschlossen ist. Es seien dazu p1 und p2 die Projektion auf den ersten und
den zweiten Faktor von X ×X. Dann gilt

p2(p−1
1 (A) ∩ Γ) = {y ∈ X; y ∼ x für ein x ∈ A} = π−1(π(A)).

Da Γ abgeschlossen ist, ist auch π−1
1 (A) ∩ Γ abgeschlossen und somit kom-

pakt. Damit gilt dasselbe für p2(p−1
1 (A ∩ Γ)) = π−1(π(A)). Aus der Kon-

struktion der Quotientenopologie folgt, daß dann auch π(A) abgeschlossen
ist. Ist x ∈ X ein Punkt, so ist x kompakt, also abgeschlossen. Damit gilt
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dasselbe für x̄ = π(x) und π−1(π(x)). Ist x̄ 6= ȳ, so sind π−1(x̄) und π−1(ȳ)
disjunkte abgeschlossene Mengen. Da X kompakt und Hausdorff ist, ist X
auch normal, also gibt es offene Umgebungen U, V von π−1(x̄), bzw. π−1(ȳ)
mit U ∩ V = ∅. Wir setzen U ′ = X − U, V ′ = X − V . Dann sind U ′, V ′

abgeschlossen und nach obiger Bemerkung sind auch π(U ′) und π(V ′) abge-
schlossen. Also sind Ũ = (X/ ∼)−π(U ′) und Ṽ = (X/ ∼)−π(V ′) offen. Da
x̄ ∈ Ũ , ȳ ∈ Ṽ und Ũ ∩ Ṽ = ∅ haben wir gezeigt, daß sich x̄ und ȳ in X/ ∼
durch offene Umgebungen trennen lassen. �

Ist ∼′ eine Relation auf X , so können wir daraus stets eine Äquivalenz-
relation machen, indem wir setzen:

x ∼ y ⇔ es gibt eine Folge x0, x1, . . . , xn ∈ X mit x0 = x
und xn = y, so daß

(i) xi+1 = xi oder
(ii) xi+1 ∼′ xi oder
(iii) xi ∼′ xi+1.

Dann heißt ∼ die durch ∼′ erzeugte Äquivalenzrelation.

Beispiele (1) Es sei X = Sn, n ≥ 1 und ∼ die durch x ∼ −x erzeugte
Äquivalenzrelation. Dann ist

P
n(R) = Sn/ ∼

der n-dimensionale reelle projektive Raum. Für den Graphen Γ gilt

Γ = D ∪D′, D′ = {(x,−x);x ∈ Sn},

also ist ∼ abgeschlossen. Daher ist Pn(R) ein kompakter Hausdorffraum. In
der Tat ist Pn(R) eine topologische (und auch differenzierbare) Mannigfal-
tigkeit. Wir hätten Pn(R) auch auf folgende Art einführen können:

P
n(R) = (Rn+1 − {0})/ ∼

wobei
x ∼ y :⇔ es gibt λ ∈ R∗ mit x = λy.

Geometrisch ist Pn(R) also die Menge der Geraden in Rn+1 durch den Ur-
sprung.
(2) Wir identifizieren

R
2n+2 = C

n+1 = {(z0, . . . , zn); zi ∈ C}.

Dann wird die Einheitssphäre S2n+1 ⊂ Cn+1 gegeben durch

S2n+1 = {(z0, . . . , zn) ∈ Cn+1; |z0|2 + · · ·+ |zn|2 = 1}.
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Wir definieren hierauf eine Äquivalenzrelation durch

z ∼ z′ :⇔ es gibt λ ∈ C, |λ| = 1 mit z = λz′.

Der Quotient
P
n(C) = S2n+1/ ∼

ist wiederum ein kompakter Hausdorffraum (und sogar eine komplexe Man-
nigfaltigkeit). Analog hätten wir definieren können:

P
n(C) = (Cn+1 − {0})/ ∼

mit
z ∼ z′ :⇔ es gibt λ ∈ C∗ mit z = λz′.

Also ist Pn(C) der Raum der (komplexen) Geraden in Cn+1 durch den Ur-
sprung.

Wir betrachten nun folgende Situation: Es seien X,Y disjunkte topolo-
gische Räume, A ein Unterraum von X. Auf der Vereinigung X ∪ Y führen
wir die Summentopologie ein (d.h. die offenen Mengen sind die Vereinigun-
gen U ∪ V , wobei U und V offen in X bzw. Y sind; insbesondere sind X,Y
offene und abgeschlossene Teilmengen). Ferner sei f : A → Y eine stetige
Abbildung. Es sei ∼ die Äquivalenzrelation, die durch

x ∼ f(x) für x ∈ A

auf X ∪ Y erzeugt wird.

Definition (i) Der Raum

X ∪f Y := X ∪ Y/ ∼

heißt der aus Y durch Anheften von X an Y mittels f : A→ Y entstandene
Raum.
(ii) Ist speziell X = Dn und A = ∂Dn = Sn−1, so heißt

Yf := Dn ∪f Y

der durch Anheften einer n-Zelle an Y mittels f entstandene Raum.

Satz II.8.3 Sind X und Y kompakte Hausdorffräume und ist A abgeschlos-
sen in X, dann ist X ∪f Y ein kompakter Hausdorffraum.

Beweis. Da X und Y kompakt sind, gilt dasselbe für X ∪ Y und also für
X ∪f Y . Nach Satz (II.8.2) genügt es dann zu zeigen, daß ∼ abgeschlossen
ist. Der Graph Γ von ∼ ist

Γ = DX∪Y ∪ Γf ∪ Γ′f ∪ (f × f)−1(DY )
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wobei DX∪Y die Diagonale von X ∪ Y , und

Γf = {(a, f(a)); a ∈ A}, Γ′f = {(f(a), a); a ∈ A}

ist. Ferner ist DY die Diagonale von Y . Da X und Y kompakte Haus-
dorffräume sind, sind alle diese Räume ebenfalls kompakt und abgeschlossen.
�

Bemerkung Wir halten an dieser Stelle noch fest, daß in dieser Situa-
tion die Inklusion i : Y → X ∪f Y einen Homöomorphismus von Y auf das
Bild i(Y ) liefert.

Um diesen Prozeß zu illustrieren, betrachten wir nochmals die reelle
projektive Ebene P2(R). Man kann P2(R) aus E2

+ durch Identifizieren von
Diametralpunkten auf dem Rand ∂E2

+ = S1 erhalten:

�

�

Wir erhalten damit
P

2(R) = X ∪f Y

mit X = D2 (man erinnere sich daran, daß D2 homöomorph zu E2
+ ist),

A = S1 = ∂D2, Y eine weitere Kopie von S1 und

f : A→ S1, eiϕ 7→ e2iϕ.

Dies wollen wir benutzen, um im folgenden die Homologie von projektiven
Räumen zu berechnen. Wir kehren jedoch zunächst zum allgemeinen Prozeß
des Anheftens von n–Zellen zurück.

Satz II.8.4 Ist f : Sn−1 → Y eine stetige Abbildung und Yf der Raum, der
aus Y durch Anheften einer n–Zelle entsteht, so gibt es eine exakte Sequenz

· · · → Hq(Sn−1)
f∗→ Hq(Y ) i∗→ Hq(Yf ) ∂∗→ Hq−1(Sn−1)→ · · ·

· · · → H0(Sn−1)→ H0(Y )⊕ Z→ H0(Yf )→ 0.

Beweis. Es sei U die offene Kugel in Dn vom Radius 1
2 um den Nullpunkt

0, sowie V = Yf − {0}. Dann definieren U, V eine offene Überdeckung von
Yf , auf die die Mayer-Vietoris-Sequenz angewendet werden kann:
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�� U•

Dn

U ∩ V

· · · → Hq(U ∩ V )
g∗→ Hq(U)⊕Hq(V ) h∗→ Hq(Yf ) ∂∗→ Hq−1(U ∩ V )→ · · ·

Nun hat U ∩ V den Homotopietyp von Sn−1. Die Menge U ist konvex and
Y ist ein Deformationsretrakt von V . Dabei kann man die Retraktion auf
V −Y durch f ◦r definieren, wobei r eine Retraktion von Dn−{0} auf Sn−1

ist. Zusammen ergibt dies die Behauptung. �

Wir wollen dies nun benutzen, um die Homologie von P2(R) zu berechnen

Satz II.8.5 Für die reelle projektive Ebene gilt

Hq(P2(R)) =


0 für q ≥ 2
Z2 für q = 1
Z für q = 0.

Beweis. Wir benutzen die Darstellung P2(R) = Yf aus unserem früheren
Beispiel, wobei Y = S1 und f : S1 → S1 durch f(eiϕ) = e2iϕ gegeben ist.
Aus dem Teil

Hq(S1) i∗→ Hq(P2(R)) ∂∗→ Hq−1(S1)

der in Satz II.8.4 bewiesenen Sequenz folgt Hq(P2(R)) = 0 für q ≥ 3. Der
Rest der Sequenz lautet

H2(S1)
||
0

i∗−→ H2(P2(R)) ∂∗−→ H1(S1)
||
Z

f∗−→ H1(S1)
||
Z

−→ H1(P2(R)) −→

−→ H0(S1)
g∗−→ H0(S1)⊕ Z h∗−→ H0(P2(R)) −→ 0.

Dabei ist
g∗(σ) = (σ,−σ), h∗(σ′, σ′′) = σ′ + σ′′.

Für die Abbildung f∗ gilt
f∗(α) = 2α.
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Damit folgt
H1(P2(R)) = Z/2Z = Z2.

Die Behauptung für H0(P2(R)) folgt ebenfalls aus der obigen Sequenz, aber
auch direkt daraus, daß P2(R) wegzusammenhängend ist. �

Wir beweisen nun ein Kriterium, wie man beweisen kann, daß ein Raum
aus dem Ankleben eines Raums an einen anderen entstanden ist.

Satz II.8.6 Es seien X,Y und W kompakte Hausdorffräume, A ⊂ X ab-
geschlossen und f : A → Y stetig. Existiert eine stetige surjektive Abbil-
dung g : X ∪ Y → W mit der Eigenschaft, daß für jedes w ∈ W entweder
g−1(w) = {x}, x ∈ X −A oder g−1(w) = f−1(y) ∪ {y}, y ∈ Y gilt, so ist W
homöomorph zu X ∪f Y .

Beweis. Es sei π : X ∪ Y → X ∪f Y die Restklassenabbildung. Dann haben
wir ein kommutatives Diagramm

X ∪ Y
g //

π %%KKKKKKKKKK W

X ∪f Y
h

;;vvvvvvvvv

wobei h durch g induziert wird. Nach den Voraussetzungen ist h bijektiv.
Da g stetig ist, und h eine Faktorisierung von g über den Quotienten, so
ist auch h stetig. Nach Voraussetzung ist h bijektiv. Da X ∪f Y und W
kompakt und Hausdorffsch sind (für X ∪f Y folgt dies aus Satz (II.8.3)), ist
h sogar ein Homöomorphismus. �

Wir kehren nun nochmals zu unserem Beispiel Pn(R) = Sn/ ∼ zurück.
Dabei ist π : Sn → P

n(R) die Quotientenabbildung. Wir können nun π dazu
benutzen, um an Pn(R) eine n–Zelle anzuheften. Wir behaupten, daß dann
gilt:

P
n+1(R) = Dn+1 ∪π Pn(R).

Hierzu betrachten wir die Einbettung

Sn −→ Sn+1

(x1, . . . , xn+1) 7→ (x1, . . . , xn+1, 0)

die Sn als Äquator von Sn+1 darstellt. Dies induziert eine Einbettung

i : Pn(R)→ P
n+1(R).

Wir erinnern an die Zerlegung

Sn+1 = En+1
+ ∪ En+1

− , En+1
+ ∩ En+1

− = Sn.
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Die Projektion p+ liefert einen Homöomorphismus p−1
+ : Dn+1 → En+1

+ . Ist
π′ : Sn+1 → P

n+1(R) die Quotientenabbildung, so definieren wir

g1 : Dn+1
p−1

+→ En+1
+ ⊂ Sn+1 π′→ P

n+1(R).

Schließlich definieren wir

g : Dn+1 ∪ Pn(R)→ P
n+1(R)

g(x) =
{
g1(x) für x ∈ Dn+1

i(x) für x ∈ Pn(R).

Die Abbildung g ist surjektiv, da schon g1 surjektiv ist. Für w ∈ Pn+1(R)
gilt

g−1(w) = {x} ⊂ Dn+1 − Sn für w ∈ Pn+1(R)− i(Pn(R))

oder
g−1(w) = {x,−x} ∪ {i−1(w)} für w ∈ Pn(R).

Da g offensichtlich stetig ist, können wir Satz (II.8.6) anwenden.

Analog können wir im Fall des komplexen projektiven Raums argumen-
tieren. Es sei

f : S2n+1 → S2n+1/ ∼= P
n(C)

die Quotientenabbildung. Dann gilt genau wie oben

P
n+1(C) = D2n+2 ∪f Pn(C).

Wir können nun die Homologie von Pn(C) berechnen.

Satz II.8.7 Es gilt

Hq(Pn(C)) =
{
Z für q = 0, 2, . . . , 2n
0 sonst.

Beweis. Wir machen einen Induktionsbeweis nach n. Die Behauptung ist
richtig für n = 0, da P0(C) = {pt}, und n = 1, da P1(C) = S2 gilt. (Letzteres
sieht man z.B. daran, daß P1(C) aus P0(C) durch Anheften einer 2–Zelle
entsteht). Aus Satz (II.8.4) erhalten wir eine exakte Sequenz

· · · → Hq(S2n+1)
f∗→ Hq(Pn(C)) i∗→ Hq(Pn+1(C)) ∂∗→ Hq−1(S2n+1)→ · · ·

für q > 0. Nun gilt

Hq(S2n+1) = 0 für q 6= 0, 2n+ 1

und auf Grund der Induktionsvoraussetzung

Hq(Pn(C)) = 0 für q ungerade.
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Also ist
f∗ : Hq(S2n+1)→ Hq(Pn(C))

die Nullabbildung für alle q > 0. Damit erhalten wir für q > 1 eine kurze
exakte Sequenz

0→ Hq(Pn(C)) i∗→ Hq(Pn+1(C)) ∂∗→ Hq−1(S2n+1)→ 0

und damit die Behauptung in diesem Bereich. Für q = 1 erhalten wir

0→ H1(Pn(C))
||
0

→ H1(Pn+1(C))→ 0.

Die Surjektivität folgt dabei aus der Tatsache, daß die Abbildung

H0(S2n+1)→ H0(Pn(C))⊕ Z

injektiv ist. Schließlich istH0(Pn+1(C)) = Z, da Pn+1(C) wegzusammenhängend
ist. �

Mit derselben Methode, aber etwas mehr Aufwand, beweist man für die
reellen projektiven Räume

Satz II.8.8 Es gilt

Hq(Pn(R)) =


Z für q = 0 und q = n falls n ungerade
Z2 für 1 ≤ q ≤ n− 1, q ungerade
0 sonst.

9 Zellenkomplexe

Zellenkomplexe sind topologische Räume, die durch sukzessives Anheften
von n-Zellen an eine endliche Menge von Punkten entstehen.

Definition Es sei (X,A) ein Paar von Räumen und ∼ die Äquivalenzre-
lation, die durch x ∼ y für alle x, y ∈ A erzeugt wird. Der Quotientenraum
X/ ∼ wird mit X/A bezeichnet, und heißt der aus X durch Zusammenschla-
gen von A auf einen Punkt entstandene Raum.

Bemerkungen (i) Ist f : A→ {pt} die konstante Abbildung, so ist X/A =
X ∪f {pt}.
(ii) Ist X kompakter Hausdorffraum und A ⊂ X abgeschlossen, so ist auch
X/A ein kompakter Hausdorffraum.

Definition Ein Unterraum A von X heißt ein starker Deformationsretrakt
von X, wenn es eine stetige Abbildung F : X × I → X gibt, mit
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(i) F (x, 0) = x für alle x ∈ X,

(ii) F (x, 1) ∈ A für alle x ∈ X,

(iii) F (a, t) = a für alle a ∈ A, t ∈ I.

Bemerkung Ein starker Deformationsretrakt ist insbesondere ein Defor-
mationsretrakt mit Retraktionsabbildung r(x) = F (x, 1).

Lemma II.9.1 Es sei X ein topologischer Raum, A ⊂ X abgeschlossen, π :
X → X/A die Identifizierungsabbildung, y := π(A) ∈ X/A. Ist A ein starker
Deformationsretrakt von X, dann ist {y} starker Deformationsretrakt von
X/A.

Beweis. Es sei F : X × I → X die starke Deformationsretraktion von X auf
A. Wir betrachten das Diagramm

X × I F //

π×id
��

X

π
��

(X/A)× I //___F̃ X/A

Wir setzen
F̃ (x̄, t) = π ◦ F ◦ (π × id)−1(x̄, t).

Wegen (iii) ist dies wohldefiniert. Aus (i), (ii) folgt

F̃ (x̄, 0) = x̄, F̃ (x̄, 1) = y für x̄ ∈ X/A.

Ferner liefert (iii)
F̃ (y, t) = y für t ∈ I.

Es bleibt zu zeigen, daß F̃ stetig ist. Dies folgt aber sofort aus der Stetigkeit
von F und der Definition der Quotiententopologie. �

Satz II.9.2 Es sei X ein kompakter Hausdorffraum und A ⊂ X abgeschlos-
sen. Ferner sei A starker Deformationsretrakt einer abgeschlossenen Umge-
bung von A in X. Dann induziert die Quotientenabbildung π : X → X/(A)
einen Isomorphismus

π∗ : H∗(X,A)→ H∗(X/A, y).

Beweis. Es sei A starker Deformationsretrakt der kompakten Umgebung U
von A in X.
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V

A

X

U

Da A starker Deformationsretrakt von U ist, folgt aus der langen Homolo-
giesequenz des Tripels (X,U,A):

· · · → Hq(U,A)
||
0

→ Hq(X,A)→ Hq(X,U)→ Hq−1(U,A)
||
0

→ 0

daß
H∗(X,A) ∼= H∗(X,U).

Nach Lemma (II.9.1) ist {y} starker Deformationsretrakt von π(U), also
folgt analog

H∗(X/A, {y}) ∼= H∗(X/A, π(U))

Da X kompakter Hausdorffraum ist, ist X normal, d.h. es gibt eine offene
Menge V mit A ⊂ V ⊂ V̄ ⊂

◦
U . Der Ausschneidungssatz liefert dann einen

Isomorphismus
H∗(X − V,U − V ) ∼= H∗(X,U)

und analog

H∗(X/A− π(V ), π(U)− π(V )) ∼= H∗(X/A, π(U)).

Wegen A ⊂ V liefert die Einschränkung von π einen Homöomorphismus von
Paaren

π : (X − V,U − V )→ (X/A− π(V ), π(U)− π(V ))

und daher einen Isomorphismus

H∗(X − V,U − V ) ∼= H∗(X/A− π(V ), π(U)− π(V )).

Zusammen ergeben diese Isomorphismen die Behauptung. �

Definition Eine Abbildung f : (X,A) → (Y,B) von Paaren heißt ein
relativer Homöomorphismus, wenn f die Menge X − A bijektiv auf Y − B
abbildet.
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Satz II.9.3 Ist f : (X,A) → (Y,B) ein relativer Homöomorphismus zwi-
schen kompakten Hausdorffräumen, wobei A (bzw. B) abgeschlossen und
starker Deformationsretrakt einer abgeschlossenen Umgebung in X (bzw.
Y ) ist, ist

f∗ : H∗(X,A)→ H∗(Y,B)

ein Isomorphismus.

Beweis. Wie im Beweis von Lemma II.9.1 erhalten wir ein kommutatives
Diagramm steiger Abbildungen

X
f−−−−→ Y

π

y yπ′
X/A

f ′−−−−→ Y/B.

Da f ein relativer Homöomorphismus ist, ist f ′ bijektiv und daher ein
Homöomorphismus, da X/A und Y/B kompakt sind. Es sei x0 = π(A), y0 :=
π(B). Zusammen mit Satz (II.9.2) erhalten wir ein kommutatives Diagramm
von Isomorphismen

H∗(X,A)
f∗−−−−→ H∗(Y,B)

π∗

y yπ′∗
H∗(X/A, x0

f ′∗−−−−→ H∗(Y/B, y0).

�

Wir können nun Zellenkomplexe definieren.

Definition Ein (endlicher) Zellenkomplex (oder ein endlicher CW–Komplex)
ist ein kompakter Hausdorffraum X, der eine endliche Zerlegung {eqi ; q =
0, 1, . . . , n, i = 1, . . . , rq} in disjunkte Teilmengen mit den folgenden Eigen-
schaften besitzt. Es sei

Xq :=
⋃
p ≤ q

1 ≤ j ≤ rp

epj , X−1 := ∅.

Dann soll gelten:

(i) Jedes x ∈ X ist in genau einem eqi enthalten.

(ii) Zu jedem i und q existiert ein relativer Homöomomorphismus

ϕ : (Dq, Sq−1)→ (eqi ∪X
q−1, Xq−1).
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Dann heißt eqi eine (offene) q–Zelle von X, ϕ heißt charakteristische Abbil-
dung von eqi , und der Unterraum Xq heißt das q–Gerüst von X.

Die Bezeichnung CW–Komplex stammt von J.H.C. Whitehead, der auch
unendliche Zellkomplexe untersucht hat, und dabei die CW–Bedingungen
formuliert hat. Die q–Gerüste Xq sind abgeschlossen. Wir erhalten den
Raum Xq, indem wir eine q–Zelle mittels der Abbildung f = ϕ|Sq−1 an
Xq − eqi anheften.

Definition Ist Xn−1 6= X, aber Xn = X, so heißt n die Dimension des
CW–Komplexes X.

Beispiele Wir haben folgende Beispiele kennengelernt

P
n(R) = e0 ∪ e1 ∪ e2 ∪ . . . ∪ en
P
n(C) = e0 ∪ e2 ∪ e4 ∪ . . . ∪ e2n

Sn = e0 ∪ en
T = S1 × S1 = e0 ∪ e1

1 ∪ e1
2 ∪ e2.

Die Homologie von CW -Komplexen läßt sich in vielen Fällen schrittweise
über die Homologie der q–Gerüste ausrechnen. Hierzu benötigen wir den
Begriff des Unterkomplexes.

Definition Es sei X ein Zellenkomplex mit Zellen {eqi }. Eine Teilmenge A
von X heißt ein Unterkomplex, falls für alle i, q gilt: Ist A ∩ eqi 6= ∅, so ist
ēqi ⊂ A.

Bemerkung Ist A ein Unterkomplex von X, so ist A abgeschlossen und
mit der von X induzierten Zellenzerlegung selbst wieder ein Zellenkomplex.

Unser nächstes Ziel ist nun der

Satz II.9.4 Ist A ein Unterkomplex eines Zellenkomplexes X, so ist A star-
ker Deformationsretrakt einer kompakten Umgebung von A in X.

Als Vorbereitung hierzu zeigen wir zuerst:

Lemma II.9.5 Es sei Y ein kompakter Hausdorffraum, f : Sn−1 → Y eine
stetige Abbildung und Yf der durch Anheften einer n–Zelle an Y mittels f
entstandene Raum. Dann ist Y ein starker Deformationsretrakt einer kom-
pakten Umgebung von Y in Yf .

Beweis. Es sei

U :=
{
x ∈ Dn; ||x|| ≥ 1

2

}
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Dann ist U eine kompakte Umgebung von Sn−1 in Dn. Definiere

F : (U ∪ Y )× I → U ∪ Y

(x, t) 7→
{
x falls x ∈ Y
(1− t)x+ t x

||x|| falls x ∈ U.

Dann gilt: F ist stetig, F (x, 0) = x, F (x, 1) ⊂ Sn−1∪Y für alle x, F (x, t) = x
für alle x ∈ Sn−1 ∪ Y und alle t. Also ist F eine starke Deformationsretrak-
tion von U ∪ Y auf Sn−1 ∪ Y .

Nun sei π : Dn ∪ Y → Yf die Quotientenabbildung. Wie zuvor erhalten
wir ein kommutatives Diagramm stetiger Abbildungen

(U ∪ Y )× I F−−−−→ U ∪ Yyπ× id
yπ

π(U ∪ Y )× I F̃−−−−→ π(U ∪ Y ).

Die Abbildung F̃ liefert dann eine starke Deformationsretraktion der kom-
pakten Umgebung π(U ∪ Y ) von π(Y ) auf π(Y ). �

Beweis von Satz (II.9.4): Wir führen einen Induktionsbeweis nach der Anzahl
der Zellen N in X − A. Für N = 0 ist die Aussage trivial, für N = 1 folgt
sie aus obigem Lemma (II.9.5). Um den Induktionsschritt durchzuführen,
nehmen wir an, daß die Aussage für jedes Paar (Y,B), wobei Y −B höchstens
N − 1 Zellen enthält, richtig ist.
Es sei emi eine Zelle maximaler Dimension in X −A. Setze

X1 = X − emi .

Dann ist X1 Unterkomplex von X und A ist Unterkomplex von X1. Wen-
den wir die Induktionsannahme auf X1 − A an, so folgt die Existenz einer
abgeschlossenen Umgebung U1 von A in X1, so daß A starker Deformati-
onsretrakt von U1 ist.

Nach Definition des Zellenkomplexes gibt es einen relativen Homöomor-
phismus

ϕ : (Dm, Sm−1)→ (emi ∪Xm−1, Xm−1) ⊂ (emi ∪X1, X1).
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Dm

emi
ϕ

X

X1 A

U1

Es sei r : Dm − {0} → Sm−1 die durch r(x) = x/||x|| gegebene radiale
Projektion. Wir definieren

V := {ϕ(x);x ∈ Dm, ||x|| ≥ 1
2
, r(x) ∈ ϕ−1(U1)},

U := U1 ∪ V.

Dann ist U eine kompakte Umgebung von A in X. Zusammen mit der nach
der Induktionsannahme existierenden Retraktion von U1 nach A erhalten
wir dann, daß A ein starker Deformationsretrakt von U ist. �

Satz II.9.6 Es sei X ein Zellenkomplex mit r q–Zellen. Dann gilt

Hj(Xq, Xq−1) ∼=
{

0 für j 6= q
Z
r für j = q.

Beweis. Xq−1 ist ein Unterkomplex von Xq, und damit nach Satz (II.9.4)
starker Deformationsretrakt einer Umgebung von Xq−1. Auf Grund der De-
finition eines Zellenkomplexes gibt es einen relativen Homöomorphismus

ϕ : (Dq
1 ∪ . . . ∪D

q
r , S

q−1
1 ∪ . . . ∪ Sq−1

r )→ (Xq, Xq−1).

Nach Satz (II.9.3) ist ϕ∗ ein Isomorphismus, also

Hj(Xq, Xq−1) ∼= Hj(D
q
1 ∪ . . . ∪D

q
r , S

q−1
1 ,∪ . . . ∪ Sq−1

r )

∼=
r⊕
i=1

Hj(D
q
i , S

q−1
i )

∼=
{

0 für j 6= q
Z
r für j = q.

�
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Wir wollen an dieser Stelle noch kurz auf die Begriffe Bettizahl und Eu-
lercharakteristik eingehen. Dazu sei an folgenden algebraischen Sachverhalt
erinnert. Jede endlich erzeugte abelsche Gruppe ist von der Form

A = Z
r ⊕ T

wobei T die Torsionsuntergruppe von A ist. Die Zahl r ist eindeutig be-
stimmt, und heißt der Rang von A.

Wir betrachten im folgenden nur Räume X, deren Homologie H∗(X)
endlich erzeugt ist.

Definition (i) Die i–te Bettizahl von X ist definiert durch

bi(X) = rang Hi(X).

(ii) Die Eulerzahl von X ist definiert durch

χ(X) :=
∑
i

(−1)ibi.

Nach Voraussetzung ist diese Summe endlich.

Beispiel Für X = P
n(C) gilt b0 = b2 = . . . = b2n = 1 und bi = 0 sonst.

Also gilt
χ(Pn(C)) = n+ 1.

Satz II.9.7 Ist X ein Zellenkomplex der Dimension n, so gilt:

(i) Hj(X) = 0 für j > n.

(ii) H∗(X) ist endlich erzeugt.

Beweis. Wir führen einen Induktionsbeweis nach n. Für n = 0 besteht X aus
endlich vielen Punkten und die Aussage ist klar. Für den Induktionsschnitt
betrachten wir die Sequenz des Paares (Xn, Xn−1):

· · · → Hj(Xn−1)→ Hj(Xn)→ Hj(Xn, Xn−1)→
→ Hj−1(Xn−1)→ · · ·

Die Aussage folgt dann aus der Induktionsvoraussetzung und Satz (II.9.6).
�

Schließlich halten wir noch fest:

Satz II.9.8 Ist X ein CW–Komplex mit αi Zellen der Dimension i, so gilt

χ(X) =
∑

(−1)iαi.

Beweis. Übungsaufgabe. �
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III Poincare-Dualitt

In diesem Abschnitt beweisen wir den Satz über die Poincare-Dualität.

1 Orientierung auf Mannigfaltigkeiten

Im folgenden sei X stets eine Mannigfaltigkeit der Dimension n ≥ 1 (d.h. X
ist ein Hausdorffraum und jeder Punkt x ∈ X besitzt eine Umgebung, die
homöomorph zu einer Kugel im R

n ist).

Lemma III.1.1 Für jeden Punkt x ∈ X gilt

Hn(X,X − {x}) ∼= Z.

Beweis. Es sei U eine ”Koordinatenumgebung” von x, d.h. U sei homöomorph
zu einer offenen Kugel in Rn. Dann kann man die abgeschlossene Menge
X − U aus X − {x} ausschneiden und der Ausschneidungssatz liefert einen
Isomorphismus

Hn(U,U − {x}) ∼= Hn(X,X − {x}).
Da U konvex ist, liefert die Sequenz des Paares (U,U − {x}) einen Isomor-
phismus

Hn(U,U − {x}) ∼= H̃n−1(U − {x}).
Da schließlich U − {x} homotop äquivalent zu Sn−1 ist, folgt

H̃n−1(U − {x}) ∼= Z

und daher die Behauptung. �

Ist n = 2, so entsprechen die beiden Erzeugenden von Hn(X,X − {x})
den beiden Homologieklassen, die durch die einfach geschlossenen Wege um x
definiert werden. Sie unterscheiden sich um die Orientierung. Im allgemeinen
Fall kann man Sn−1 mit dem Rand des n-Simplex ∆n identifizieren. Ist
δn : ∆n → ∆n das singuläre n-Simplex, das durch die Identität gegeben ist,
so entsprechen die beiden Erzeugenden gerade ±∂δn.

Definition Eine Orientierung im Punkt x ist die Wahl eines Erzeugers von
Hn(X,X − {x}).

Wir wollen nun untersuchen, inwieweit man Orientierungen global wählen
kann.

Lemma III.1.2 (Fortsetzungslemma): Es sei αx ∈ Hn(X,X −{x}). Dann
gibt es eine Umgebung U von x und ein Element α ∈ Hn(X,X−U), so daß
αx = jUx (α), wobei

jUx : Hn(X,X − U)→ Hn(X,X − {x})

die durch die Inklusion definierte Abbildung ist.
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Beweis. Es sei a ∈ Zn(X,X −{x}) ein relativer Zykel, der αx repräsentiert.
Dann ist der Träger |∂a| eine kompakte Menge in X − {x}. Also ist U =
X − |∂a| eine offene Umgebung von x und a ∈ Zn(X,X − U). Wir können
für α die durch a repräsentierte Homologieklasse wählen. �

Satz III.1.3 Jede Umgebung W von x enthält eine Umgebung U von x, so
daß für alle y ∈ U die Abbildung jUy ein Isomorphismus ist.

Beweis. Wir wählen eine Koordinatenumgebung V von x in W . Sei U ⊂ V
eine Untermenge, die einer in V enthaltenen Kugel entspricht. Dann haben
wir für jedes y ∈ U ein kommutatives Diagramm

Hn(X,X − U)
∼=←−−−− Hn(V, V − U)

jUy

y y
Hn(X,X − {y})

∼=←−−−− Hn(V, V − {y})

Dabei sind die horizontalen Pfeile Ausschneidungsisomorphismen. Da (V, V−
U) und (V, V −{y}) homotop äquivalent sind, ist auch der rechte senkrechte
Pfeil ein Isomorphismus, und damit auch jUy . �

Ein Element α ∈ Hn(X,X − U) mit jUx (α) = αx heißt eine Fortsetzung
von αx. Für y ∈ U setzen wir

αy := jUy (α).

Korollar III.1.4 Ist αx ∈ Hn(X,X − {x}), so gibt es eine Umgebung U
von x mit:

(i) αx kann eindeutig zu α ∈ Hn(X,X − U) fortgesetzt werden.

(ii) Ist αx Erzeuger, dann auch αy für y ∈ U .

Bemerkung Der Beweis von Satz (III.1.3) zeigt, daß man in diesem Beweis
die offene Menge U auch durch einen Quader der Dimension d ≤ n ersetzen
kann.

�oderU

V

U

.
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Definition Eine Orientierung von X entlang U ist ein Element α ∈
Hn(X,X − U), so daß αy für alle y ∈ U ein Erzeuger ist.

Ist V ⊂ U so haben wir einen natürlichen Homomorphismus

jUV : Hn(X,X − U)→ Hn(X,X − V )

so daß für alle y ∈ V gilt

jVy (jUV (α)) = jUy (α).

Definition (i) Ein globales Orientierungssystem von X ist eine Familie
(Ui, αi)i∈I wobei

(a) (Ui)i∈I ist eine offene Überdeckung von X,

(b) αi ∈ Hn(X,X − Ui) ist eine Orientierung entlang Ui,

(c) ist x ∈ Ui ∩ Uk, so gilt jUix (αi) = jUkx (αk) =: αx.

(ii) Zwei Orientierungssysteme (Ui, αi) und (Vj , βj) heißen äquivalent, falls
stets αx = βx.

Definition Eine Mannigfaltigkeit X heißt orientierbar, falls es ein globales
Orientierungssystem auf X gibt. Eine Orientierung ist eine Äquivalenzklasse
von Orientierungssystemen.

Bemerkung Die folgenden Aussagen sind im wesentlichen offensichtlich:

(i) Ist X orientierbar und V ⊂ X offen, so ist auch V orientierbar.

(ii) X ist genau dann orientierbar, wenn jede Zusammenhangskomponente
von X orientierbar ist.

Satz III.1.5 (i) X sei zusammenhängend. Dann stimmen zwei Orientie-
rungen, die in einem Punkt übereinstimmen, überall überein.

(ii) Eine zusammenhängende orientierbare Mannigfaltigkeit besitzt genau
zwei Orientierungen.

Beweis. Es genügt (i) zu zeigen. Es sei A die Menge der Punkte, in denen
die beiden Orientierungen übereinstimmen. Nach Satz (III.1.3) sind sowohl
A als auch X −A offen. �

Beispiel (i) Für X = Sn gilt Hn(Sn, Sn − {x}) ∼= Hn(Sn) = Z. Al-
so kann man ein Orientierungssystem wählen, das aus einer einzigen
offenen Menge und einem der beiden Erzeuger besteht.

(ii) Das Möbiusband und P2(R) sind nicht orientierbar.
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Es sei X eine Mannigfaltigkeit. Dann definieren wir die Menge

XZ := {(x, αx);x ∈ X,αx ∈ Hn(X,X − {x})}.

Wir haben eine natürliche Abbildung

p : XZ → X, (x, αx) 7→ x,

deren Fasern bijektiv zu Z sind. Wir wollen nun XZ zu einem topologischen
Raum machen. Eine Basis der Topologie soll aus folgenden Mengen bestehen:

〈U,αU 〉 = {(x, αx);x ∈ U,αx = jUx (αU )}

wobei U ⊂ X offen und αU ∈ Hn(X,X − U) ist. Wir müssen zeigen, daß
dies tatsächlich die Basis einer Topologie definiert. Sei dazu

(x, αx) ∈ 〈U,αU 〉 ∩ 〈U ′, αU ′〉.

Dann gibt es nach Satz (III.1.3) eine Umgebung U ′′ ⊂ U ∩ U ′ und ein
Element αU ′′ ∈ Hn(X,X − U ′′) mit jUU ′′(αU ) = αU ′′ = jU

′
U ′′(αU ′), d.h. also

〈U ′′, αU ′′〉 ⊂ 〈U,αU 〉 ∩ 〈U ′, αU ′〉.

Mit dieser Topologie wird p : XZ → X eine Überlagerung.

Wir können nun eine Abbildung

v : XZ → N0

v(x, αx) = |αx|

betrachten, da für αx ∈ Hn(X,X−{x}) ∼= Z der Absolutbetrag wohldefiniert
ist. Dann besteht

X± := v−1(1) ⊂ XZ
aus allen Paaren (x, αx), wobei αx ein Erzeuger ist. Mittels p ist

p : X± → X

eine zweifache Überlagerung. X ist genau dann orientierbar, wenn diese
Überlagerung einen Schnitt hat, d.h. wenn es eine stetige Abbildung

s : X → X± mit p ◦ s = idX

gibt. Dies ist genau dann der Fall, wenn X± in zwei Zusammenhangskompo-
nenten zerfällt. Insbesondere ist jede Mannigfaltigkeit, deren Fundamental-
gruppe keine Untergruppe vom Index 2 hat, orientierbar. Dies gilt speziell
für einfach-zusammenhängende Mannigfaltigkeiten. Dies führt uns auf fol-
gende
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Definition Ist A ein Unterraum von X, so ist ein Schnitt über A eine ste-
tige Abbildung s : A → XZ mit p ◦ s = idA. Die Menge der Schnitte wird
mit ΓA bezeichnet.

Jeder Schnitt s ∈ ΓA lät sich in der Form

s(x) = (x, s′(x)), s′(x) ∈ Hn(X,X − {x})

darstellen. Zwei Schnitte s1, s2 ∈ ΓA lassen sich addieren durch

(s1 + s2)(x) := (x, s′1(x) + s′2(x))

sowie mit einer Zahl n ∈ Z multiplizieren:

(ns)(x) := (x, ns′(x)).

Damit wird ΓA zu einer abelschen Gruppe, bzw. einem Z-Modul.

Definition (i) XZ heißt die Orientierungsgarbe von X.

(ii) Schnitte, die über ganz X definiert sind, heißen globale Schnitte.

Definition Wir sagen, daß X orientierbar entlang eines Unterraums A ist,
wenn es einen Schnitt s ∈ ΓA gibt mit s(a) ∈ X± für alle a ∈ A (d.h.
s′(a) ∈ Hn(X,X − {a}) ist Erzeuger).

Satz III.1.6 X ist genau dann orientierbar entlang A, wenn es einen Homöo-
morphismus Φ : p−1(A)→ A×Z gibt (hierbei trägt Z die diskrete Topologie),
so daß das Diagramm

p−1(A) Φ //

p
##FFFFFFFFF

A× Z

pr1
||yyyyyyyyy

A

kommutiert. Ist X orientierbar entlang A und hat A genau k Zusammen-
hangskomponenten, so gilt ΓA = Z

k.

Beweis. Ist X orientierbar entlang A, so gibt es einen Schnitt s : A→ v−1(1).
Insbesondere ist s′(x) ∈ Hn(X,X−{x}) ein Erzeuger. Also gibt es zu jedem
(x, αx) ∈ p−1(A) ein λx ∈ Z mit αx = λxs

′(x). Wir definieren

Φ : p−1(A)→ A× Z, (x, αx) 7→ (x, λx).

Ist U eine offene Menge, so daß αx eine eindeutig bestimmte Fortsetzung
αU ∈ Hn(X,X−U) besitzt, so bildet Φ die offene Menge 〈U,αU 〉 auf U×{λx}
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ab. Da Φ offensichtlich bijektiv ist, ist es ein Homöomorphismus. Ist umge-
kehrt Φ gegeben, so erhält man eine Orientierung durch s(x) := Φ−1(x, 1).
�

Wir betrachten nun den kanonischen Homomorphismus

jA : Hn(X,X −A) → ΓA
jA(α)(x) := (x, jAx (α)).

(Die Stetigkeit der Abbildung jA(α) folgt sofort aus der Konstruktion der
Topologie auf XZ). Ist B ⊂ A, so haben wir ein kommutatives Diagramm

Hn(X,X −A)
jA−−−−→ ΓA

jAB

y yr
Hn(X,X −B)

jB−−−−→ ΓB

wobei r die Einschränkung von Schnitten bedeutet.

Definition Wir sagen, daß s ∈ ΓA kompakten Träger hat, falls es eine
kompakte Menge K in A gibt, mit s(x) = (x, 0) für x 6∈ K.

Die Menge der Schnitte mit kompaktem Träger wird mit ΓcA bezeichnet.
ΓcA ist ein Untermodul von ΓA. Ist A kompakt, so ist ΓcA = ΓA.

Theorem III.1.7 Es sei X eine Mannigfaltigkeit der Dimension n und A
eine abgeschlossene Teilmenge von X. Dann gilt:

(i) Hq(X,X −A) = 0 für q > n

(ii) jA ist injektiv mit Bild ΓcA, d.h.

jA : Hn(X,X −A)
∼=→ ΓcA.

Insbesondere gilt jX : Hn(X)
∼=→ ΓcX und Hq(X) = 0 für q > n.

Bevor wir diesen Satz beweisen, wollen wir einige Folgerungen festhalten.

Korollar III.1.8 Ist A abgeschlossen, zusammenhängend und nicht kom-
pakt, dann ist Hn(X,X − A) = 0. Insbesondere ist Hn(X) = 0, falls X
zusammenhängend und nicht kompakt ist.

Beweis. Es sei α ∈ Hn(X,X−A). Da A zusammenhängend ist, ist v(jA(α))
konstant. Da jA(α) kompakten Träger hat, und A nicht kompakt ist, folgt
v(jA(α)) = 0, d.h. jA(α) = 0 und da jA injektiv ist, auch α = 0. �

Korollar III.1.9 A sei kompakt und habe k Zusammenhangskomponenten.
Ist X orientierbar entlang A, so gilt Hn(X,X −A) ∼= Z

k.
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Beweis. Aus Satz (III.1.6) folgt, da A kompakt ist, ΓcA = ΓA ∼= Z
k. �

Korollar III.1.10 Es sei A eine kompakte Teilmenge von Rn, n ≥ 2, mit
k Zusammenhangskomponenten. Dann ist bn−1(Rn −A) = k.

Beweis. Es gilt

Hn−1(Rn −A) ∼= Hn(Rn,Rn −A) ∼= Z
k

nach Korollar (III.1.9), da Rn orientierbar ist. �

Korollar III.1.11 Es sei X eine kompakte zusammenhängende Mannigfal-
tigkeit. Dann gilt

Hn(X) ∼=
{
Z falls X orientierbar ist
0 sonst.

Beweis. Falls X orientierbar ist, gilt nach Satz (III.1.6), daß ΓcX = ΓX = Z.
Sei umgekehrt s ∈ ΓX mit s 6= 0. Dann ist v(s(x)) konstant, und von 0
verschieden. Also erhält man eine Orientierung durch s(x) = (x, s′(x)/a)
mit a = v(s(x)), �

Bemerkung Dies zeigt, daß P2(R) nicht orientierbar ist.

Ist X kompakt, zusammenhängend und orientierbar, so entspricht eine
Orientierung einem Erzeuger ϕ ∈ Hn(X). Die lokale Orientierung im Punkt
x ist dann gegeben durch jXx (ϕ) ∈ Hn(X,X − {x}).

Definition Die Klasse ϕ heißt die Fundamentalklasse der orientierten Man-
nigfaltigkeit X.

Bevor wir Theorem (III.1.7) beweisen können, benötigen wir noch fol-
genden

Satz III.1.12 Es sei X ein topologischer Raum, A1, A2 seien abgeschlosse-
ne Teilmengen von X und A = A1 ∪ A2. Dann gibt es eine Mayer-Vietoris
Sequenz

· · · → Hq(X,X −A)→ Hq(X,X −A1)⊕Hq(X,X −A2)
→ Hq(X,X −A1 ∩A2)→ Hq−1(X,X −A)→ · · ·

Beweis. Analog zum Beweis der Mayer-Vietoris Sequenz. �

Beweis von Theorem (III.1.7): Wir gehen in mehreren Schritten vor.
0. Schritt: A = ∅. Hier ist die Aussage trivial.
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1. Schritt: Falls die Aussage für A1, A2 und A1 ∩ A2 gilt, dann auch für
A = A1∪A2. Die Mayer-Vietoris Sequenz von Satz (III.1.12) liefert zunächst
Hq(X,X −A) = 0 für q > n und weiter ein kommutatives Diagramm:

0 // Hn(X,X −A)

jA

��

// Hn(X,X −A1)⊕Hn(X,X −A2) //

∼= jA1⊕jA2

��

Hn(X,X −A1 ∩A2)

∼= jA1∩A2

��
0 // ΓcA

(r1,−r2) // ΓcA1 ⊕ ΓcA2
r1+r2 // Γc(A1 ∩A2)

wobei r1, r2 die Einschränkungsabbildungen sind. (Die Bilder unter jA ha-
ben kompakten Träger, da dies für jA1 und jA2 gilt.) Aus dem Fünferlemma
folgt dann, daß jA ein Isomorphismus ist.

2. Schritt: Wir nehmen an, daß A kompakt und zusammenhängend und in
einer Koordinatenumgebung enthalten ist. Mittels Ausschneidung können
wir X durch Dn ersetzen, d.h. Hq(X,X −A) = Hq(Dn, Dn −A).

Fall 1: A ist ein Quader der Dimension ≤ n. Dann gilt Hq(Dn, Dn − A) ∼=
H̃q−1(Dn − A) ∼= H̃q−1(Sn−1). Insbesondere ist Hq(Dn, Dn − A) = 0 für
q > n. Dies zeigt (i). Die Aussage (ii) folgt, da H̃n−1(Sn−1) = Z = ΓA,
wobei wir bei der letzten Gleichheit die Orientierbarkeit von Dn und Satz
(III.1.6) verwenden.

Fall 2: A = A1 ∪ . . . ∪ Am wobei die Ai Quader sind, deren Seiten paral-
lel zu Koordinatenebenen sind. Wegen Fall 1 können wir schon annehmen,
daß m ≥ 2 ist. Wir machen Induktion nach m. Sei A′ = A1 ∪ . . . ∪ Am−1.
Dann ist A′∩Am vom selben Typ und besteht aus höchstens m−1 Quadern
(möglicherweise kleinerer Dimension). Also können wir die Induktionsvor-
aussetzung auf A′ und A′ ∩Am anwenden und dann mit Schritt 1 schließen.

Fall 3: A kompakt.
Wir beweisen zunächst die Surjektivität von jA. Es sei also s ∈ ΓA gegeben.
Auf Grund von Satz (III.1.6) gibt es s∗ ∈ ΓX mit s∗|A = s (beachte, daß
s(A) wegen des Zusammenhangs der Menge a das Bild in einer Komponente
von p−1X liegen muß). Wir wählen nun zu jedem x ∈ A einen Quader in
X der Dimension n, der X in seinem Inneren enthält, und dessen Seiten
parallel zu den Koordinatenebenen liegen. Es sei A′ die Vereinigung endlich
vieler solcher Quader, die A umfaßt. Dann haben wir ein Diagramm

Hn(X,X −A′)
∼=−−−−→
jA′

ΓA′ 3 s∗|A′

jA
′

A

y y
Hn(X,X −A) −−−−→

jA
ΓA 3 s
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wobei jA′ nach Fall 2 ein Isomorphismus ist. Also ist

s = jA

(
jA
′

A

(
j−1
A′ (s

∗|A′)
))
.

Es sei nun α ∈ Hn(X,X−A) mit jA(α) = 0. Wir müssen zeigen, daß α = 0.
Es sei z ein relativer Zykel, der α repräsentiert. Dann ist V = X − |∂z|
eine offene Menge, die A enthält. Es sei α′ die Homologieklasse von z in
Hn(X,X − V ). Es gilt jVx (α′) = jAx (α) = 0 für alle x ∈ A. Also gibt es
nach Korollar (III.1.4) eine offene Umgebung V ′ mit A ⊂ V ′ ⊂ V , so daß
jVx (α′) = 0 für alle x ∈ V ′. Wir konstruieren nun ein A′ wie oben mit
A ⊂ A′ ⊂ V ′. Dann gilt jA′(α)(x) = jVx (α′) = 0 für alle x ∈ A′. Mit Hilfe
von Fall 2 schließen wir dann, daß α′ = 0 ist und damit auch α = 0. Ein
analoges Argument zeigt auch, daß Hq(X,X \A) = 0 für q > n.

3. Schritt: A ist kompakt.
Dann ist A endliche Vereinigung von kompakten, zusammenhängenden Men-
gen A1, . . . , Am, die in Koordinatenumgebungen liegen. Wir machen dann
unter Verwendung von Schritt 1 und Schritt 2 einen Induktionsbeweis.

4. Schritt: A ⊂ U,U offen, aber Ū kompakt. Dann gilt der Satz für das
Paar (U,A).
Wir betrachten das Tripel

(X,U ∪ (X − Ū), (U −A) ∪ (X − Ū)).

Mit Hilfe des Ausschneidungssatzes folgt

Hq(U,U −A) ∼= Hq(U ∪ (X − Ū), (U −A) ∪ (X − Ū)).

Dann liefert uns die exakte Homologiesequenz des obigen Tripels

· · · → Hq+1(X,U∪(X−Ū))→ Hq(U,U−A)→ Hq(X, (U−A)∪(X−Ū))→ · · ·

Wir können Schritt 3 für die Mannigfaltigkeit X und die kompakten
Mengen Ū − U und Ā ∪ (Ū − U) anwenden. Daraus ergibt sich, daß die
beiden äußeren Terme der obigen Sequenz und damit auch der mittlere für
q > n gleich 0 sind. Für q = n haben wir ein kommutatives Diagramm

0 // Hn(U,U −A)

jA

��

// Hn(X, (U −A) ∪ (X − Ū)) //

∼=
��

Hn(X,U ∪ (X − Ū))

∼=
��

0 // ΓcA
i // Γc(Ā ∪ (Ū − U))

r // Γc(Ū − U).

Dabei ist r die Einschränkung und i ist wie folgt definiert: Es sei s ∈ ΓcA.
Dann ist s = 0 außerhalb einer kompakten Menge K ⊂ A und wir setzen

i(s) =
{
s auf A
0 außerhalb von K.
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Dies ist wohldefiniert und stetig. Die Abbildung i ist injektiv und das Dia-
gramm zeigt, daß jA ein Isomorphismus ist (es zeigt insbesondere auch, daß
das Bild von jA in ΓcA enthalten ist).

5. Schritt: Der allgemeine Fall. Wir stellen zunächst fest, daß alle Elemente
im Bild von jA kompakten Träger haben: Ist α ∈ Hn(X,X − A), so wähle
man einen repräsentierenden Zykel z von α. Dann ist der Träger |z| von z
kompakt, und wegen des Diagramms

Hn(|z|, |z| −A) −−−−→ Hn(X,X −A)y y
Hn(|z|, |z| − {x}) −−−−→ Hn(X,X − {x})

folgt jA(α)(x) = 0 falls x 6∈ |z|.
Wir zeigen als nächstes, daß das Bild von jA ganz ΓcA ist. Es sei dazu

s ∈ ΓcA und K ⊂ A kompakt mit s = 0 außerhalb von K. Dann können wir
eine offene Umgebung U von K wählen mit Ū kompakt. Wir betrachten A′ =
A ∩ U und den Schnitt s′ = s|A′ . Wir haben ein kommutatives Diagramm

Hn(U,U −A′) −−−−→ Hn(X,X −A)

∼=
yjA′ yjA

s′ ∈ ΓcA′
i−−−−→ ΓcA 3 s.

Hierbei ist jA′ auf Grund von Schritt 4 ein Isomorphismus. Damit ist die
Surjektivität gezeigt.

Es sei nun α ∈ Hq(X,X−A) mit q > n oder es sei q = n und jA(α) = 0.
Wir müssen zeigen, daß α = 0. Wir wählen eine offene Menge U mit |z| ⊂ U
und Ū kompakt, wobei z wieder α repräsentiert. Es sei wieder A′ = A ∩ U .
Für q = n folgt die Aussage aus obigem Diagramm. Für q > n verwenden
wir wieder Schritt 4 (ist z homolog zu einem Zykel in U−A′, dann erst recht
in X −A). �

2 Kohomologie

In diesem Abschnitt führen wir die Kohomologiegruppen ein. Diese spielen
bei den Dualitätssätzen auf Mannigfaltigkeiten eine entscheidende Rolle.

Sind A und G abelsche Gruppen, so ist die Menge der Gruppenhomo-
morphismen von A nach G

Hom(A,G) = {ϕ;ϕ : A→ G ist Homomorphismus}

selbst wieder eine Gruppe, wobei die Verknüpfung gegeben wird durch

(ϕ+ ψ)(a) := ϕ(a) + ψ(a).
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Wir halten nun die abelsche Gruppe G fest. Zu jedem Gruppenhomomor-
phismus f : A→ B gibt es einen G-dualen Homomorphismus

f# : Hom(B,G) → Hom(A,G)
ϕ 7→ f#(ϕ) = ϕ ◦ f.

Es gilt id # = id. Ist g : B → C ein weiterer Homomorphismus, so ist
(g ◦ f)# = f# ◦ g#. Damit wird die Zuordnung A 7→ Hom(A,G), f 7→ f#

zu einem kontravarianten Funktor.

Definition Man sagt, die kurze exakte Sequenz

0→ A
f→ B

g→ C → 0

spaltet, wenn g ein Rechtsinverses besitzt, d.h. es gibt einen Homomorphis-
mus r : C → B mit g ◦ r = idC .

Man drückt dies meist mit folgender Notation aus:

0→ A
f→ B

g→
L99
r

C → 0.

Satz III.2.1 Es sei 0 → A
f→ B

g→ C → 0 eine kurze exakte Sequenz.
Dann sind die folgenden Aussagen äquivalent:

(i) Die Sequenz spaltet.

(ii) Es gibt zu f ein Linksinverses, d.h. einen Homomorphismus l : B → A
mit l ◦ f = idA.

(iii) Es gibt einen Isomorphismus ϕ : A ⊕ C → B mit ϕ(a, 0) = f(a) und
g ◦ ϕ(a, c) = c.

Beweis. (i)⇒(iii). Wir definieren ϕ(a, c) = f(a) + r(c). Dann kommutiert
das Diagramm

0 //

��

A
iA //

idA
��

A⊕ C
πC //

ϕ

��

C //

idC
��

0

��
0 // A

f // B
g // C // 0

und das Fünferlemma zeigt, daß ϕ ein Isomorphismus ist.
(iii)⇒(i). Setze r(c) = ϕ(0, c).

(ii)⇒(iii). Wir erhalten einen Isomorphismus ψ : B → A⊕ C durch ψ(b) =
l(b) + g(b) und setzen dann ϕ = ψ−1.
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(iii)⇒(ii). Es sei ψ = ϕ−1. Dann erhalten wir l durch l(b) = (πA ◦ ψ)(b).
�

Daß nicht jede kurze exakte Sequenz von Gruppen spaltet, zeigt das
Beispiel

0→ Z
n→ Z→ Z/n→ 0.

Andererseits gilt der

Satz III.2.2 Ist 0→ A
f→ B

g→ C → 0 eine kurze exakte Sequenz abelscher
Gruppen und C eine freie abelsche Gruppe, so spaltet die Sequenz.

Beweis. Es sei (ci)i∈I eine Basis von C. Da g surjektiv ist, können wir bi ∈ B
wählen mit g(bi) = ci. Dann wird durch r(ci) = bi ein Gruppenhomomor-
phismus r : C → B definiert, für den g ◦ r = idC gilt. �

Satz III.2.3 (i) Ist 0→ A
f→ B

g→ C → 0 eine kurze exakte Sequenz, so
ist auch die Sequenz

0→ Hom(C,G)
g#

→ Hom(B,G)
f#

→ Hom(A,G)

exakt.

(ii) Ist 0→ A
f→ B

g→ C → 0 eine kurze exakte spaltende Sequenz, so gilt
dasselbe für

0→ Hom(C,G)
g#

→ Hom(B,G)
f#

→ Hom(A,G)→ 0.

Beweis. (i) g# ist injektiv: 0 = g#(ϕ) = ϕ◦g impliziert ϕ = 0, da g surjektiv
ist. Die Aussage im g# ⊂ ker f# folgt wegen f# ◦ g# = (g ◦ f)# = 0# =
0. Es bleibt ker f# ⊂ im g# zu zeigen. Es sei dazu ϕ ∈ Hom(B,G) mit
0 = f#(ϕ) = ϕ ◦ f . Also ist ϕ|im f=ker g = 0. Damit ist ψ(c) = ϕ(g−1{c})
für c ∈ C wohldefiniert und liefert einen Homomorphismus ψ : C → G mit
ϕ = ψ ◦ g = g#(ψ), d.h. es ist ϕ ∈ im g#.

(ii) Dies folgt aus Satz (II.2.1): Ist l : B → A ein Linksinverses von f ,
d.h. gilt l ◦f = idA, so folgt f# ◦ l# = idHom(A,G), d.h. l# ist Rechtsinverses
von f# und insbesondere ist f# surjektiv.

�

Das Beipiel vor Satz (II.2.2) zeigt auch, daß f# im allgemeinen nicht
surjektiv ist. Man sagt auch, daß Hom (−, G) ein linksexakter Funktor ist.
Wir wollen nun messen, inwieweit f# nicht surjektiv ist.

Definition Eine freie Auflösung von A ist eine kurze exakte Sequenz

0→ R→ F → A→ 0

wobei F eine freie abelsche Gruppe ist.
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Beispiele (1) Die exakte Sequenz

0→ Z
n→ Z→ Z/n→ 0

ist eine freie Auflösung von Z/n.

(2) Jede abelsche Gruppe A besitzt eine freie Auflösung. Wir betrachten
hierzu die durch die Menge A erzeugte freie abelsche Gruppe

F (A) = {ϕ : A→ Z; ϕ(a) = 0 für fast alle a ∈ A}.

Die Abbildung
p : F (A) → A

ϕ 7→
∑
a∈A

ϕ(a)a

ist surjektiv. Ist R = ker p, so ist

0→ R→ F (A)→ A→ 0

eine freie Auflösung von A. Wir nennen dies die Standardauflösung.

Definition Es sei 0→ R
i→ F

p→ A→ 0 eine freie Auflösung der abelschen
Gruppe A. Definiere

Ext(A,G) = Hom(R,G)/ im(i#).

Satz III.2.4 Ext(A,G) hängt nur von den Gruppen A und G, nicht jedoch
von der Wahl der freien Auflösung ab.

Beweis.
(a) Es sei 0 → R′

i′→ F ′
p′→ A → 0 eine weitere freie Auflösung der Gruppe

A. Wir definieren zunächst Homomorphismen f : F → F ′ und f ′ : R → R′

so daß das Diagramm

0 // R
i //

f ′

��

F

f

��

p

  AAAAAAAA

A // 0

0 // R′
i′ // F ′

p′

>>~~~~~~~~

kommutiert. Dies geschieht wie folgt: Es sei B eine Basis von F . Zu jedem
b ∈ B wählen wir ein Element x′b ∈ F ′ mit p′(x′b) = p(b) und definieren
f : F → F ′ durch f(b) = x′b. Dann gilt p′ ◦ f = p. Daher gilt auch p′ ◦ f ◦ i =
p ◦ i = 0, d.h. im (f ◦ i) ⊂ ker p′ = im i′. Wir können also

f ′ = i′
−1 ◦ f ◦ i
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setzen (wobei i′−1 auf im i′ wohldefiniert ist).
(b) Sind nun f1 : F → F ′ und f ′1 : R→ R′ weitere solche Homomorphismen,
so gibt es einen Homomorphismus α : F → R′ mit f − f1 = i′ ◦ α und
f ′ − f ′1 = α ◦ i:

0 // R
i //

f ′−f ′1

��

F

α

����������������

f−f1

��

p

  AAAAAAAA

A // 0

0 // R′
i′ // F ′

p′

>>~~~~~~~~

Für x ∈ F ist nämlich f(x)−f1(x) ∈ ker p′ = im i′, d.h. man kann definieren

α = i
′−1 ◦ (f − f1).

Damit folgt sofort, daß i′ ◦ α = f − f1 und weiterhin

i′ ◦ (f ′ − f ′1) = (f − f1) ◦ i = i′ ◦ α ◦ i.

Da i′ injektiv ist, ergibt dies

f ′ − f ′1 = α ◦ i.

(c) Das duale Diagramm sieht nun wie folgt aus

Hom(F,G) i# // Hom(R,G)

0 // Hom(A,G)

p#
77oooooooooooo

(p′)# ''OOOOOOOOOOOO

Hom(F ′, G)

f#

OO

(i′)#

// Hom(R′, G).

(f ′)#

OO

Wegen der Kommutativität des Diagramms bildet (f ′)# insbesondere das
Bild im(i′)# nach im i# ab, d.h. (f ′)# induziert einen Isomorphismus

ψ : Hom(R′, G)/ im(i′)# → Hom(R,G)/ im i#.

Dieser Homomorphismus hängt nicht von der Wahl von f und f ′ ab: Ist
nämlich ϕ′ ∈ Hom (R′, G), dann gilt(

(f ′)# − (f ′1)#
)

(ϕ′) = (αi)#(ϕ′) = i#(α#ϕ′) ∈ im i#.

(d) Durch Vertauschen der Rollen der beiden Auflösungen erhält man um-
gekehrt einen Homomorphismus

ψ′ : Hom(R,G)/ im i# → Hom(R′, G)/ im (i′)#.
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Aus (c) folgt ψ ◦ ψ′ = id und ψ′ ◦ ψ = id und damit die Behauptung.
�

Satz III.2.5 Es gelten folgende Aussagen:

(i) Ist A eine freie abelsche Gruppe, so gilt Ext(A,G) = 0 für jede Gruppe
G.

(ii) Ext(Z/n,G) ∼= G/nG für n > 0 wobei nG = {ng; g ∈ G}.

(iii) Ext(A1 ⊕A2, G) ∼= Ext(A1, G)⊕ Ext(A2, G).

Beweis.
(i) Ist A eine freie abelsche Gruppe, so ist

0→ 0 i→ A
id→ A→ 0

eine freie Auflösung von A.

(ii) Dualisiert man die freie Auflösung

0→ Z
n→ Z

p→ Z/n→ 0

so erhält man

0→ Hom(Z/n,G)
p#

→ Hom(Z, G) ∼= G
n→ Hom(Z, G) ∼= G.

(iii) Sind 0 → Ri → Fi → Ai → 0 freie Auflösungen von Ai für i = 1, 2, so
ist

0→ R1 ⊕R2 → F1 ⊕ F2 → A1 ⊕A2 → 0

eine freie Auflösung von A1 ⊕A2. �

Es sei nun (C∗, ∂) ein Kettenkomplex. Anwendung des Funktors Hom(−, G)
ergibt

Cq := Hom(Cq, G)
δq−1 := ∂#

q : Cq−1 → Cq

mit δq ◦ δq−1 = ∂#
q+1 ◦ ∂

#
q = (∂q ◦ ∂q+1)# = 0. Dies führt auf die folgende

Definition.

Definition Ein Kokettenkomplex (C∗, δ) ist eine Sequenz von abelschen
Gruppen und Homomorphismen

. . .
δ→ Cq

δ→ Cq+1 δ→ . . .

mit δ2 = 0.
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Definition (i) Ist (C∗, δ) ein Kokettenkomplex so heißt

Zq(C) = ker(δ : Cq → Cq+1)

die Gruppe der q-Kozykel.

(ii) Die Gruppe der q-Koränder ist definiert durch

Bq(C) = im (δ : Cq−1 → Cq).

(iii) Die q-te Kohomologiegruppe von (C∗, δ) ist

Hq(C) = Zq(C)/Bq(C).

Beispiel Es sei U ein Gebiet in Rn, und Ωq(U) der Vektorraum der q-
Formen. Zusammen mit der äußeren Ableitung d : Ωq(U)→ Ωq+1(U) erhal-
ten wir einen Kokettenkomplex (Ω∗(U), d). Die q-te de Rhamsche Kohomo-
logiegruppe ist definiert durch

Hq
dR(U) = Zq(Ω∗(U))/Bq(Ω∗(U)).

Die Elemente in Zq(Ω∗(U)) heißen die geschlossenen Formen, die Elemente
in Bq(Ω∗(U)) die exakten Formen. Das Poincarsche Lemma besagt dann für
konvexe Mengen, daß jede geschlossene Form exakt ist, d.h., daßHq

dR(U) = 0
ist für q > 0, falls U konvex ist.

Definition (i) Sind (C∗, δ) und (D∗, δ′) Kokettenkomplexe, so ist eine Ko-
kettenabbildung f : C∗ → D∗ eine Familie von Homomorphismen f q : Cq →
Dq mit f ◦ δ = δ′ ◦ f .
(ii) Zwei Kokettenabbildungen f und g heißen kokettenhomotop, falls es eine
Familie von Homomorphismen Kq : Cq → Dq−1 gibt mit δ′K+Kδ = f − g.

Wir betrachten nun wieder den Fall, daß C = (C∗, ∂) ein Kettenkomplex
ist, und definieren (C∗, δ) durch Cq = Hom(Cq, G) und δ = ∂#, wobei wir die
Gruppe G fest gewählt haben. In diesem Fall benutzen wir die Bezeichnung

Hq(C,G) = Hq(C∗).

Ist f : (C∗, ∂) → (D∗, ∂′) eine Kettenabbildung, so ist f# : (D∗, δ′) →
(C∗, δ) eine Kokettenabbildung und definiert daher einen Homomorphismus

f∗ : H∗(D,G)→ H∗(C,G).

Sind f und g kettenhomotop, so sind f# und g# kokettenhomotop und es
gilt f∗ = g∗.
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Ist ϕ ∈ Cq = Hom (Cq, G) und c ∈ Cq, so setzen wir

〈ϕ, c〉 := ϕ(c).

Hierdurch erhalten wir eine bilineare Abbildung

〈 , 〉 : Cq × Cq → G

d.h. es gilt
〈ϕ1 + ϕ2, c〉 = 〈ϕ1, c〉+ 〈ϕ2, c〉
〈ϕ, c1 + c2〉 = 〈ϕ, c1〉+ 〈ϕ, c2〉.

Ferner gilt

〈δϕ, c〉 = 〈ϕ, ∂c〉. (1)

Beispiel Ist Cq = Ωq(U), so haben wir eine Bilinearform

〈 , 〉 : Ωq(U)× Sq(U)→ R

〈ω, c〉 =
∫
c
ω.

Man kann zeigen, daß diese Bilinearform nicht ausgeartet ist und damit
Ωq(U) mit Hom(Sq(U),R) identifizieren. Dann entspricht Formel (1) gerade
dem Satz von Stokes.

Es gilt nun

ϕ ∈ Zq(C) ⇔ 〈δϕ, c′〉 = 0 für c′ ∈ Cq+1

⇔ 〈ϕ, ∂c′〉 = 0 für c′ ∈ Cq+1

⇔ ϕ|Bq(C) ≡ 0.

Andererseits gilt

ϕ ∈ Bq(C) ⇔ ϕ = δϕ′ für ein ϕ′ ∈ Cq−1

⇒ 〈ϕ, c〉 = 〈δϕ′, c〉 = 〈ϕ′, ∂c〉 für c ∈ Zq(C)
⇒ ϕ|Zq(C) ≡ 0.

Hieraus folgt, daß die Bilinearform 〈 , 〉 eine Bilinearform

〈 , 〉 : Hq(C,G)×Hq(C)→ G
〈[ϕ], [c]〉 = 〈ϕ, c〉

definiert.

Definition Man nennt die Bilinearform 〈 , 〉 das Kroneckerprodukt.
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Dieses Produkt bestimmt wiederum einen Homomorphismus

κ : Hq(C,G)→ Hom (Hq(C), G)
κ(α′)(α) := 〈α′, α〉

für α′ ∈ Hq(C,G) und α ∈ Hq(C).

Wir wollen nun die Eigenschaften des Homomorphismus κ untersuchen.

Definition Ein Kettenkomplex C = (C∗, ∂) heißt frei, wenn alle Cq freie
abelsche Gruppen sind.

Nach einem nichttrivialen Satz der Algebra ist jede Untergruppe einer
freien abelschen Gruppe wieder frei. Also sind insbesondere die Untergrup-
pen Zq = ker ∂q und Bq = im ∂q+1 frei, falls C ein freier Komplex ist. Nach
Satz (III.2.2) spaltet die kurze exakte Sequenz

0→ Zq
jq→ Cq

∂̃q→ Bq−1 → 0,

wobei jq die Inklusion und ∂̃q(x) = ∂q(x) ist. Nach Satz (III.2.3) ist die duale
Sequenz

0→ Hom(Bq−1, G)
∂̃#
q→ Hom(Cq, G)

j#q→ Hom(Zq, G)→ 0

ebenfalls exakt und spaltet.

Außerdem hat man die kurze exakte Sequenz

0→ Bq−1
iq−1→ Zq−1

pq−1→ Hq−1(C)→ 0.

Dies ist eine freie Auflösung von Hq−1(C). Nach Satz (III.2.4) gilt dann

Ext(Hq−1(C), G) = Hom(Bq−1, G)/ im i#q−1.

Lemma III.2.6 Der Homomorphismus ∂̃#
q bildet Hom(Bq−1, G) nach Zq

und im i#q−1 nach Bq ab, induziert also einen Homomorphismus

δ̄ : Ext(Hq−1(C), G)→ Hq(C,G).

Beweis. a) Es sei ϕ ∈ Hom(Bq−1, G). Dann gilt

δq(∂̃#
q (ϕ)) = δq(ϕ∂̃q) = ∂#

q+1(ϕ∂̃q) = ϕ∂̃q∂q+1 = 0.

Also gilt ∂̃#
q (ϕ) ∈ Zq.
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b) Es sei ϕ ∈ im i#q−1. Dann gibt es einen Homomorphismus ϕ′ ∈
Hom(Zq−1, G) mit ϕ = ϕ′|Bq−1 . Da die Sequenz

0→ Zq−1
jq−1→ Cq−1

∂̃q−1→ Bq−2 → 0

spaltet, gibt es einen Homomorphismus l : Cq−1 → Zq−1 mit l ◦ jq−1 = id .
Definiere

ψ = ϕ′l ∈ Hom(Cq−1, G).

Dann ist ψ ∈ Cq−1 und ψ|Bq−1 = ϕ. Also gilt

δq−1(ψ) = ψ∂q = ϕ∂̃q = ∂̃#
q (ϕ),

d.h. ∂̃#
q (ϕ) ∈ Bq. �

Theorem III.2.7 (Universelles Koeffiziententheorem:) Ist C ein frei-
er Kettenkomplex, so ist für jedes q ∈ Z die Sequenz

0→ Ext(Hq−1(C), G) δ̄→ Hq(C,G) κ→ Hom(Hq(C), G)→ 0

exakt und spaltet. Insbesondere gibt es daher einen (nichtkanonischen) Iso-
morphismus

Hq(C,G) ∼= Hom(Hq(C), G)⊕ Ext(Hq−1(C), G).

Beweis.
a) δ̄ is injektiv. Es sei ϕ ∈ Hom(Bq−1, G) mit δ̄(ϕ) = 0 in Hq(C,G). Dann

gibt es ein χ ∈ Hom(Cq−1, G) mit δ̄(ϕ) = ϕ∂̃q = δq−1χ = χ∂q = χjq−1iq−1∂̃q.
Da ∂̃q surjektiv ist, folgt daraus

ϕ = χjq−1 iq−1 = i#q−1(χjq−1) ∈ im i#q−1,

d.h. ϕ = 0 in Ext(Hq−1(C), G).

b) im δ̄ ⊂ ker κ : Es sei ϕ ∈ Hom(Bq−1, G). Für alle [z] ∈ Hq(C) gilt:

κ(δ̄(ϕ))[z] = 〈∂̃#
q (ϕ), z〉 = 〈ϕ, ∂̃q(z)〉 = 〈ϕ, 0〉 = 0.

Also ist δ̄(ϕ) ∈ ker κ.

c) ker κ ⊂ im δ̄: Es sei [ϕ] ∈ Hq(C,G) mit κ([ϕ]) = 0. Dann gilt für alle
z ∈ Zq:

κ([ϕ])([z]) = 〈ϕ, z〉 = 0.

Also ist 0 = ϕ ◦ jq = j#
q (ϕ). Also folgt

ϕ ∈ ker (j#
q ) = im (∂̃#

q )
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und daher [ϕ] ∈ im δ̄.

d) κ hat ein Rechtsinverses κ′: Wir definieren

κ′ : Hom(Hq(C), G) → Hq(C,G)
ϕ 7→ [ϕ ◦ pq ◦ lq]

wobei lq : Cq → Zq wie im Beweis von Lemma (III.2.6) gewählt ist. Dies ist
wohldefiniert, da

δq(ϕ ◦ pq ◦ lq) = ϕ ◦ pq ◦ lq ◦ ∂q+1 = 0

d.h. ϕ ◦ pq ◦ lq ∈ Zq(C,G). Nach Konstruktion ist κ ◦ κ′ = id. Insbesondere
ist κ surjektiv und die Sequenz spaltet. �

Wir können nun die singulären Kohomologiegruppen von topologischen
Räumen einführen. Es sei (X,A) ein Paar von Räumen. Wir hatten bereits
die Gruppen

Sq(X,A) = Sq(X)/Sq(A)

eingeführt. Dies ist ein freier Kettenkomplex, da man Sq(X,A) mit der freien
abelschen Gruppe identifizieren kann, die durch singuläre Simplizes, deren
Träger nicht in A enthalten ist, identifizieren kann.

Definition (i) Die Elemente der Gruppen

Sq(X,A) = Hom(Sq(X,A),Z)

heißen q–Koketten in X mod A.

(ii) Die Gruppe Hq(X,A) heißt die q–te singuläre Kohomologiegruppe von
(X,A) (mit Werten in Z).

Bemerkungen (i) Definiert man für eine beliebige abelsche Gruppe G den
Komplex

Sq(X,A;G) = Hom(Sq(X,A), G)

so führt dies auf die singulären Kohomologiegruppen mit Werten in G.

(ii) Analog kann man den Komplex

S(X,A;G) = S(X,A)⊗G

betrachten und erhält auf diese Weise die singulären Homologiegruppen
Hq(X,A;G) mit Werten in G.

90



Bemerkung Der Satz von de Rham besagt, daß für jede differenzierbare
Mannigfaltigkeit M gilt

Hq
dR(M) ∼= Hq(M,R).

Das universelle Koeffiziententheorem gibt uns einen Zusammenhang zwi-
schen Homologie- und Kohomologiegruppen.

Satz III.2.8 Es sei X ein topologischer Raum, so daß H∗(X) endlich er-
zeugt ist. Es sei Tq−1 die Torsionsuntergruppe von Hq−1(X) und Fq der
Quotient von Hq(X) nach Tq. Dann gilt

Hq(X) ∼= Tq−1 ⊕ Fq.

Beweis. Das universelle Koeffiziententheorem liefert einen Isomorphismus

Hq(X) ∼= Ext(Hq−1(X),Z)⊕Hom(Hq(X),Z).

Die Behauptung folgt dann aus folgenden Aussagen:

Ext(Z,Z) = 0, Ext(Zn,Z) ∼= Zn

Hom(Z,Z) ∼= Z, Hom(Zn,Z) = 0.

�

Da S∗(X,A) ein freier Kettenkomplex ist, ist

0→ S∗(A)→ S∗(X)→ S∗(X,A)→ 0

eine kurze exakte, spaltende Sequenz. Nach Satz (III.2.3) gilt dies auch für

0→ S∗(X,A)→ S∗(X)→ S∗(A)→ 0.

Die zugehörige lange Homologiesequenz lautet dann

· · · → Hq(X,A)→ Hq(X)→ Hq(A) δ∗→ Hq+1(X,A)→ · · · .

Ist schließlich f : (X,A)→ (Y,B) eine stetige Abbildung von Paaren, so
induziert dies einen Homomorphismus:

f∗ : H∗(Y,B)→ H∗(X,A).

Wir können nun die Eigenschaften der Kohomologiegruppen in folgen-
dem Satz zusammenfassen.

Satz III.2.9 Die singulären Kohomologiegruppen haben die folgenden Ei-
genschaften:

(1) Kontravarianter Funktor
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(i) Sind f : (X,A) → (Y,B) und g : (Y,B) → (Z,C) stetige Abbil-
dungen von Paaren, so gilt (g ◦ f)∗ = f∗ ◦ g∗.

(ii) Für id : (X,A)→ (X,A) gilt id∗ = id.

(2) Exakte Kohomologiesequenz
Man hat eine exakte Kohomologiesequenz

· · · → Hq(X,A)→ Hq(X)→ Hq(A) δ∗→ Hq+1(X,A)→ · · ·

(3) Kommutative Diagramme
Ist f : (X,A)→ (Y,B) eine stetige Abbildung von Paaren, so kommu-
tiert das Diagramm

Hq(A) δ∗−−−−→ Hq+1(X,A)x(f |A)∗
xf∗

Hq(B) δ∗−−−−→ Hq+1(Y,B).

(4) Homotopieinvarianz
Sind f, g : (X,A) → (Y,B) homotop als Abbildungen von Paaren, so
gilt f∗ = g∗.

(5) Ausschneidung

Ist (X,A) ein Paar von Räumen und U ⊂ A mit Ū ⊂
◦
A, so induziert

die Inklusion i : (X − U,A− U)→ (X,A) einen Isomorphismus

i∗ : H∗(X,A)→ H∗(X − U,A− U).

(6) Kohomologie eines Punktes

Hq({pt}) ∼=
{
Z für q = 0
0 für q 6= 0.

Beweis. Man kann dies aus den entsprechenden Aussagen für die Homolo-
giegruppen ableiten. �

Die obigen Aussagen (1)-(6) sind die Axiome von Eilenberg-Steenrod
für eine Kohomologietheorie. Man kann zeigen, daß es für Paare von Zell-
komplexen bis auf Isomorphie nur eine Kohomologietheorie gibt, die diesen
Aussagen genügt.
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3 Cup- und Cap-Produkt

Ein Vorteil der Kohomologietheorie gegenüber der Homologietheorie besteht
darin, daß auf der graduierten Kohomologiegruppe eine natürliche Multipli-
kation, das Cup-Produkt besteht. Dieses Produkt und das davon abgeleitete
Cap-Produkt zwischen Kohomologieklassen und Homologieklassen soll hier
eingeführt werden.

Es sei X ein topologischer Raum und S∗(X) die Gruppe der Koketten.
Wir wollen zunächst eine bilineare Abbildung

∪ : Sp(X)× Sq(X) → Sp+q(X)
(ϕ,ψ) 7→ ϕ ∪ ψ

einführen. Hierzu genügt es 〈ϕ ∪ ψ, σ〉 für jedes singuläre (p+ q)-Simplex σ
zu definieren. Dazu betrachten wir die folgenden affinen Simplizes

λp = (e0, . . . , ep) : ∆p → ∆p+q

ρq = (ep, ep+1, . . . , ep+q) : ∆q → ∆p+q

wobei e0, . . . , ep+q die Ecken des (p+ q)-Standardsimplex ∆p+q sind.

Definition Ist σ : ∆p+q → X ein singuläres (p+q)–Simplex, so heißt σ◦λp
die p-dimensionale Vorderseite und σ ◦ ρq die q–dimensionale Rückseite von
σ.

Definition Für ϕ ∈ Sp(X) und ψ ∈ Sq(X) ist ϕ ∪ ψ ∈ Sp+q(X) definiert
durch

〈ϕ ∪ ψ, σ〉 = 〈ϕ, σλp〉〈ψ, σρq〉

für σ ∈ Sp+q(X).

Satz III.3.1 Für ϕ ∈ Sp(X) und ψ ∈ Sq(X) gilt

δ(ϕ ∪ ψ) = δϕ ∪ ψ + (−1)pϕ ∪ δψ.

Beweis. Es sei σ : ∆p+q+1 → X ein singuläres (p + q + 1)–Simplex. Dann
gilt:

〈δϕ ∪ ψ, σ〉 = 〈δϕ, σλp+1〉 · 〈ψ, σρq〉

= 〈ϕ, ∂(σλp+1)〉 · 〈ψ, σρq〉

=
p+1∑
i=0

(−1)i〈ϕ, (σλp+1)(i)〉〈ψ, σρq〉

=
p∑
i=0

(−1)i〈ϕ, σ(i)λp〉〈ψ, σρq〉+ (−1)p+1〈ϕ, σλp〉〈ψ, σρq〉.
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Analog gilt:

〈ϕ ∪ δψ, σ〉 = 〈ϕ, σλp〉〈ψ, ∂(σρq+1)〉

=
p+q+1∑
i=p

(−1)i−p〈ϕ, σλp〉〈ψ, (σρq+1)(i−p)〉

= 〈ϕ, σλp〉〈ψ, σρq〉+ (−1)p
p+q+1∑
i=p+1

(−1)i〈ϕ, σλp〉〈ψ, σ(i)ρq〉.

Zusammen ergibt dies

〈δϕ ∪ ψ + (−1)pϕ ∪ δψ, σ〉 =

=
p+q+1∑
i=0

(−1)i〈ϕ, σ(i)λp〉〈ψ, σ(i)ρq〉

= 〈ϕ ∪ ψ, ∂σ〉
= 〈δ(ϕ ∪ ψ), σ〉.

(Hierbei beachte man, daß für alle i ≥ p + 1 gilt σ(i)λp = σλp und analog
σ(k)ρq = σρq für k ≤ p.). �

Korollar III.3.2 (i) Für ϕ ∈ Zp(X), ψ ∈ Zq(X) gilt ϕ ∪ ψ ∈ Zp+q(X).

(ii) Ist ϕ ∈ Zp(X), ψ ∈ Bq(X) oder ϕ ∈ Bp(X), ψ ∈ Zq(X), so gilt
ϕ ∪ ψ ∈ Bp+q(X).

Beweis. (i) Aus δϕ = 0, δψ = 0 folgt sofort aus Satz (III.3.1), daß auch
δ(ϕ ∪ ψ) = 0.

(ii) Ist ϕ = δϕ′ mit ϕ′ ∈ Sp−1(X) und δψ = 0, so folgt

ϕ ∪ ψ = δϕ′ ∪ ψ = δ(ϕ′ ∪ ψ) ∈ Bp+q(X)

wobei die letzte Gleichung ebenfalls wieder aus Satz (III.3.1) folgt. Die erste
Aussage beweist man analog.

�

Damit überträgt sich das Cup-Produkt auf Kohomologieklassen.

Definition Für α = [ϕ] ∈ Hp(X) und β ∈ [ψ] ∈ Hq(X) wird das Cup-
Produkt definiert durch

α ∪ β := [ϕ ∪ ψ] ∈ Hp+q(X).

Dies liefert eine bilineare Abbildung

∪ : Hp(X)×Hq(X)→ Hp+q(X).

Der Vollständigkeit halber notieren wir hier den folgenden Satz, den wir
jedoch im folgenden nicht benutzen werden.
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Theorem III.3.3 Das Cup-Produkt ist schiefsymmetrisch, d.h. es gilt

a ∪ b = (−1)pqb ∪ a

für a ∈ Hp(X), b ∈ Hq(X).

Beweis. Der Beweis ist erstaunlich aufwendig und führt auf die Theorie der
azyklischen Modelle. Der Leser wird hierzu auf [GH, section 24] oder [V,
chapter 4] verwiesen. �

Bemerkung Stellt man mittels der de-Rham-Kohomologie Kohomologie-
klassen durch Differentialformen dar, dann entspricht das Cup-Produkt dem
∧-Produkt und der obige Satz folgt sofort.

Wir untersuchen nun das Verhalten des Cup-Produkts unter Abbildun-
gen.

Satz III.3.4 (i) Ist f : X → Y eine stetige Abbildung, so gilt f#(ϕ∪ψ) =
f#(ϕ) ∪ f#(ψ) für ϕ ∈ Sp(Y ) und ψ ∈ Sq(Y ).

(ii) f∗(α ∪ β) = f∗(α) ∪ f∗(β) für α ∈ Hp(Y ) und β ∈ Hq(Y ), d.h. f∗ ist
ein Ringhomomorphismus.

Beweis. (i) Es sei σ : ∆p+q → X ein singuläres (p+ q)–Simplex. Dann gilt:

〈f#(ϕ ∪ ψ), σ〉 = 〈ϕ ∪ ψ, fσ〉
= 〈ϕ, fσλp〉〈ψ, fσρq〉
= 〈f#ϕ, σλp〉〈f#ψ, σρq〉
= 〈f#ϕ ∪ f#ψ, σ〉.

(ii) folgt sofort aus (i). �

Wir betrachten nun die zu dem Cup-Produkt assoziierte Operation, das
Cap-Produkt. Ziel ist es zunächst, eine bilineare Abbildung

∩ : Sq(X)× Sp+q(X)→ Sp(X)

zu definieren, die zu dem Cup-Produkt adjungiert ist, d.h. für ψ ∈ Sq(X)
und c ∈ Sp+q(X) soll ψ ∩ c die eindeutig bestimmte p-Kette sein mit

〈ϕ,ψ ∩ c〉 = 〈ϕ ∪ ψ, c〉 für alle ϕ ∈ Sp(X).

Definition (i) Für ein ψ ∈ Sq(X) und ein singuläres (p + q)–Simplex
σ : ∆p+q → X sei

ψ ∩ σ = 〈ψ, σρq〉σλp.

95



(ii) Für eine (p + q)–Kette c =
∑
nσσ definieren wir ψ ∩ c durch lineare

Fortsetzung
ψ ∩ c =

∑
nσψ ∩ σ.

Satz III.3.5 Für ϕ ∈ Sp(X), ψ ∈ Sq(X) und c ∈ Sp+q(X) gilt

〈ϕ,ψ ∩ c〉 = 〈ϕ ∪ ψ, c〉.

Beweis. Es genügt, dies für ein (p+ q)–Simplex σ zu beweisen. Dann gilt:

〈ϕ ∪ ψ, σ〉 = 〈ϕ, σλp〉〈ψ, σρq〉 = 〈ϕ,ψ ∩ σ〉.

�

Satz III.3.6 Für ψ ∈ Sq(X), c ∈ Sp+q(X) gilt

∂(ψ ∩ c) = ψ ∩ ∂c− (−1)pδψ ∩ c.

Beweis. Wir betrachten das Kroneckerprodukt mit Elementen ϕ ∈ Sp−1(X) :

〈ϕ, ∂(ψ ∩ c)〉 = 〈δϕ, ψ ∩ c〉 = 〈δϕ ∪ ψ, c〉

wobei das zweite Gleichheitszeichen nach Satz (III.3.5) gilt. Weiter gilt nach
Satz (III.3.1) und Satz (III.3.5):

〈δϕ ∪ ψ, c〉 = 〈δ(ϕ ∪ ψ)− (−1)pϕ ∪ δψ, c〉
= 〈ϕ ∪ ψ, ∂c〉 − (−1)p〈ϕ ∪ δψ, c〉
= 〈ϕ,ψ ∩ ∂c〉 − (−1)p〈ϕ, δψ ∩ c〉
= 〈ϕ,ψ ∩ ∂c− (−1)pδψ ∩ c〉.

Da dies für alle ϕ ∈ Sp−1(X) gilt, folgt hieraus die Behauptung. �

Korollar III.3.7 (i) Für ψ ∈ Zq(X), c ∈ Zp+q(X) gilt ψ ∩ c ∈ Zp(X).

(ii) Für ψ ∈ Bq(X), c ∈ Zp+q(X) oder ψ ∈ Zq(X), c ∈ Bp+q(X) gilt
ψ ∩ c ∈ Bp(X).

Beweis. Dies folgt aus Satz (III.3.6), vgl. den Beweis von Korollar (III.3.2).
�

Damit läßt sich das Cap-Produkt auf Kohomologie- und Homologieklas-
sen übertragen.

Definition Für β = [ψ] ∈ Hq(X), γ = [c] ∈ Hp+q(X) definieren wir das
Cap-Produkt

β ∩ γ := [ψ ∩ c] ∈ Hp(X).
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Wir erhalten auf diese Weise eine bilineare Abbildung

∩ : Hq(X)×Hp+q(X)→ Hp(X).

Satz III.3.8 Für eine stetige Abbildung f : X → Y gilt:

(i) f#(f#(ψ) ∩ c) = ψ ∩ f#(c) für ψ ∈ Sq(Y ), c ∈ Sp+q(X).

(ii) f∗(f∗(β) ∩ γ) = β ∩ f∗(γ) für β ∈ Hq(Y ), γ ∈ Hp+q(X).

Beweis. (i) Für alle ϕ ∈ Sp(Y ) gilt:

〈ϕ, f#(f#(ψ) ∩ c)〉 = 〈f#ϕ, f#(ψ) ∩ c〉
= 〈f#(ϕ ∪ ψ), c〉
= 〈ϕ ∪ ψ, f#(c)〉
= 〈ϕ,ψ ∩ f#(c)〉.

(ii) Folgt sofort aus (i). �

Es sei ε die 0–Kokette mit 〈ε, x〉 = 1 für alle x ∈ X. Dann ist ε ein 0–
Kozykel, da für jedes 1–Simplex σ gilt 〈δε, σ〉 = 〈ε, ∂σ〉 = 〈ε, σ(1)− σ(0)〉 =
0.

Definition Wir setzen 1X := [ε] ∈ H0(X).

Satz III.3.9 (i) Es gilt 1X ∪ β = β ∪ 1X = β für alle β ∈ Hp(X), d.h.
1X ist Einselement des Kohomologierings H∗(X).

(ii) Es gilt 1X ∩ γ = γ für alle γ ∈ Hp(X).

Beweis. (i) Nach Definition des Cup-Produkts gilt

〈ε ∪ ϕ, σ〉 = 〈ε, σλ0〉〈ϕ, σρp〉 = 1 · 〈ϕ, σ〉

für alle singulären p-Simplizes σ.

(ii) Folgt sofort aus (i) und Satz (III.3.5). �

Beispiel X sei wegzusammenhängend. Dann gilt H0(X) ∼= Z und H0(X)
wird erzeugt von der Klasse [x] eines Punktes x ∈ X. Nach dem universellen
Koeffiziententheorem ist auch H0(X) ∼= Z und wird durch 1X = [ε] erzeugt.
Für β ∈ Hp(X) und γ ∈ Hp(X) gilt

β ∩ γ = 〈β, γ〉[x].

Dies folgt, da 〈ε, β ∩ γ〉 = 〈ε ∪ β, γ〉 = 〈β, γ〉.

97



Man kann auch eine relative Version des Cap-Produkts definieren. Es
gibt Abbildungen

∩ : Hq(X,A) × Hp+q(X,A) → Hp(X)
∩ : Hq(X) × Hp+q(X,A) → Hp(X,A).

Wir begründen dies im ersten Fall: Es sei c ∈ Zq(X,A) ⊂ Zq(X) und
z ∈ Zp+q(X,A). Wir zeigen zunächst, daß c ∩ z wohldefiniert ist. Hierzu sei
w singuläres p+ q-Simplex in A. Dann gilt für ϕ ∈ Sp(X):

〈ϕ, c ∩ w〉 = 〈ϕ ∪ c, w〉 = 〈ϕ,wλp〉〈c, wρq〉 = 0

da wρq ∈ Sq(A). Schließlich ist noch zu zeigen, daß c∩ z ein p–Zykel ist auf
X. Nach Satz (III.3.6) gilt

∂(c ∩ z) = c ∩ ∂z − (−1)pδc ∩ z.

Es gilt δc = 0 und ∂z ∈ Sp+q−1(A). Dann folgt wie oben, daß c∩ ∂z = 0 ist,
also ∂(c ∩ z) = 0. Die zweite Paarung behandelt man analog.

4 Algebraische Limiten

Um Kohomologie mit kompakten Träger einzuführen, benötigen wir noch
einige algebraische Vorbereitungen.

Definition Ein gerichtetes System ist eine Menge I zusammen mit einer
Teilordnung ≤, so daß es für je zwei Elemente i, i′ ∈ I ein i′′ gibt mit i ≤ i′′
und i′ ≤ i′′.

Beispiele (1) Es sei I = N = {1, 2, . . .}. Dann sei j ≤ j′ genau dann wenn
j|j′. In diesem Fall können wir für i′′ das kleinste gemeinsame Vielfache von
i und i′ wählen.

(2) Es sei X eine Menge und K ⊂ X eine Teilmenge. Sei I das System
aller Mengen, die K enthalten. Die Teilordnung sei dadurch definiert, daß
V ≤ V ′ genau dann, wenn V ′ ⊂ V . Dann können wir für V ′′ den Durch-
schnitt V ∩ V ′ nehmen.

Definition Es sei I ein gerichtetes System. Ein gerichtetes (induktives) Sy-
stem von abelschen Gruppen ist eine Familie (Gi)i∈I von abelschen Gruppen
zusammen mit Homomorphismen ϕi′,i : Gi → Gi′ für i ≤ i′, so daß gilt:

(1) ϕi′′,i′ ◦ ϕi′,i = ϕi′′,i für i ≤ i′, i′ ≤ i′′.

(2) ϕi,i = idGi .
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Definition Es sei (Gi)i∈I ein induktives System von abelschen Gruppen.
Ein direkter (induktiver) Limes dieses Systems ist eine abelsche Gruppe G,
zusammen mit Homomorphismen ϕi : Gi → G, so daß gilt:

(i) ϕi′ ◦ ϕi′,i = ϕi für i ≤ i′, d.h. das Diagramm

Gi
ϕi′,i //

ϕi   AAAAAAA Gi′

ϕi′~~}}}}}}}}

G

kommutiert.

(ii) G erfüllt folgende universelle Eigenschaft: Ist G′ eine weitere abelsche
Gruppe, zusammen mit Homomorphismen ψi : Gi → G′ mit ψi′◦ϕi′,i =
ψi für i ≤ i′, so gibt es genau einen Homomorphismus ψ : G→ G′ mit
ψi = ψ ◦ ϕi, d.h. das Diagramm

Gi
ϕi //

ψi   AAAAAAAA G

ψ

��
G′

kommutiert für alle i ∈ I.

Beispiel Es sei p ∈ Rn und I sei das System der offenen Umgebungen von
p. Wir betrachten die Gruppen

F(U) := {f ; f : U → R ist differenzierbar}.

Für U ⊂ V sei
iU,V : F(V )→ F(U)

die Einschränkungsabbildung. Dies definiert ein induktives System abelscher
Gruppen. Der induktive Limes ist der Halm der differenzierbaren Funktio-
nen im Punkt p, der aus den Keimen der differenzierbaren Funktionen in p
besteht.

Satz III.4.1 Der induktive Limes existiert und ist eindeutig bestimmt.

Beweis. Die Eindeutigkeit folgt wie üblich aus der universellen Eigenschaft.
Es seien G,G′ zwei induktive Limiten. Dann gibt es eindeutig bestimmte
Homomorphismen

ψ : G→ G′, ϕ : G′ → G

Nochmalige Anwendung der universellen Eigenschaften liefert weiterhin ϕ ◦
ψ = idG und ψ ◦ ϕ = idG′ .
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Um die Existenz zu zeigen, betrachten wir die direkte Summe

G̃ =
⊕
i∈I

Gi

zusammen mit den offensichtlichen Inklusionen

ϕ+
i : Gi → G̃.

In G̃ betrachten wir die Untergruppe H, die erzeugt wird von den Elementen

ϕ+
i′ (ϕi′,i(x))− ϕ+

i (x); i ≤ i′, x ∈ Gi.

Es sei
G = G̃/H

und
ϕi := π ◦ ϕ+

i : Gi → G,

wobei π die Projektion ist. Die Gruppe G erfüllt die Eigenschaften eines
induktiven Limes: Es seien nämlich ψi : Gi → G′ Homomorphismen mit
ψi′ ◦ ϕi′,i = ψi, dann erhält man ψ : G → G′ durch ψ([ϕ+

i (x)]) = ψi(x) für
x ∈ Gi. Dies ist auch die einzige Möglichkeit, um ψ zu definieren. �

Bemerkungen (i) Sind alle Gi Untergruppen einer Gruppe G̃, so kann
man für den induktiven Limes wählen

G =
⋃
i∈I

Gi

und die ϕi als die natürlichen Inklusionen. Daß G tatsächlich eine Unter-
gruppe ist, folgt aus den Eigenschaften eines gerichteten Systems.

(ii) Es gilt für einen induktiven Limes, daß

G =
⋃
i∈I

ϕi(G).

Die Begründung ist wie folgt. Offensichtlich ist die rechte Seite ein induktiver
Limes G′. Dann sei i : G′ → G die Abbildung, die auf Grund der universellen
Eigenschaft von G′ existiert. Andererseits gibt es auf Grund der universellen
Eigenschaft von G auch eine Abbildung p : G → G′ mit p ◦ i = idG′ , und
i ◦ p = idG. Also ist G′ ∼= G.

Bezeichnung Wir verwenden die Notation

G = lim
−→

Gi, ψ = lim
−→

ψi.
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Lemma III.4.2 (Additivität) Es sei Gi = Hi ⊕ Ui für alle i ∈ I, so daß
für i ≤ i′ der Homomorphismus ϕi′,i eine direkte Summe ϕi′,i = λi′,i +
ρi′,i ist. Es sei H = lim

−→
Hi und U = lim

−→
Ui. Dann erhalten wir induzierte

Homomorphismen λ : H → G, ρ : U → G mit λλi = ϕi|Hi , ρρi = ϕi|Ui.
Diese definieren einen Isomorphismus

λ⊕ ρ : H ⊕ U
∼=→ G.

Beweis. Wir konstruieren eine zu λ⊕ρ inverse Abbildung. Es sei dazu x ∈ G.
Dann wählen wir i ∈ I und xi ∈ Gi mit x = ϕi(xi). Für xi haben wir eine
(eindeutige) Darstellung xi = yi + zi mit yi ∈ Hi, zi ∈ Ui. Sei

Θ(x) = (λiyi, ρizi) ∈ H ⊕ U.

Dann prüft man leicht nach, daß Θ(x) unabhängig ist von der Wahl von xi,
und es gilt Θ = (λ⊕ ρ)−1. �

In manchen Fällen ist es nicht notwendig, alle Gruppen Gi zu betrachten,
um den induktiven Limes zu bestimmen.

Definition Eine Teilmenge J ⊂ I heißt ein finales System, falls J mit der
induzierten Ordnung ein gerichtetes System ist, und falls es zu jedem i ∈ I
ein j ∈ J gibt mit i ≤ j.

Ist J ⊂ I ein finales System, so liefert uns die universelle Eigenschaft
einen Homomorphismus

λ : lim
−→

Gj → lim
−→

Gi.

Satz III.4.3 λ ist ein Isomorphismus.

Beweis. Es sei G = lim
−→

Gi, G
′ = lim

−→
Gj . Ferner sei ϕ′j : Gj → G′ der kanoni-

sche Homomorphismus. Es gilt dann λϕ′j = ϕj .

Surjektivität von λ: Es sei x ∈ G. Dann ist x = ϕi(xi) für ein i ∈ I. Da J
final ist, gibt es j ≥ i. Es sei xj = ϕj,i(xi). Dann gilt

x = ϕj(xj) = λϕ′j(xj).

Injektivität von λ: Es sei x′ ∈ G′ mit λ(x′) = 0. Wir können x′ = ϕ′j(xj)
schreiben für ein xj ∈ Gj . Dann gilt also ϕj(xj) = 0.

Behauptung Ist ϕi(xi) = 0, so gibt es i′ mit i ≤ i′, so daß ϕi′,i(xi) = 0.
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Wir nehmen zunächst an, daß diese Behauptung gilt. Dann gibt es i′ ∈ I
mit j ≤ i′ und ϕi′,j(xj) = 0. Da J final ist, gibt es ein j′ ∈ J mit i′ ≤ j′.
Dann gilt ϕj′,j(xj) = ϕj′,i′ϕi′,j(xj) = 0. Also ist x′ = ϕ′j′ϕj′,j(xj) = 0.

Beweis der Behauptung: Wir verwenden die Konstruktion von G von Satz
(III.4.1). Da ϕi(xi) = 0 ist, ist ϕ+

i (xi) endliche Summe von Elementen der
Form:

ϕ+
k′(ϕk′,k(yk′,k))− ϕ

+
k (yk′,k) (yk′,k ∈ Gk).

Nach Definition von ϕ+
i gilt

xi =
∑
k′=i

ϕk′,k(yk′,k)−
∑
k=i

yk′,k (1)

und

0 =
∑
k′=h

ϕk′,k(yk′,k)−
∑
k=h

yk′,k für h 6= i. (2)

Wir wählen nun ein i′ mit i′ ≥ k′ für alle auftretenden Elemente k′.
Wir wenden ϕi′,i auf Gleichung (1) und ϕi′,h auf alle Gleichungen (2) an.
Addition ergibt

ϕi′,i(xi) =
∑

(k′,k)

ϕi′,k′ϕk′,k(yk′,k)− ϕi′,k(yk′,k) = 0

wobei die letzte Gleichheit aus den Eigenschaften des induktiven Systems
folgt. �

Folgerung Falls es ein Element m ∈ I gibt, so daß i ≤ m für alle i ∈ I,
so ist

ϕm : Gm → G

ein Isomorphismus.

Induktive Limiten sind kompatibel mit exakten Sequenzen. Es sei hierzu
für jedes i ∈ I eine exakte Sequenz

G∗i
λi→ Gi

ρi→ Ĝi

gegeben, so daß für i ≤ i′ das Diagramm

G∗i
λi //

ϕ∗
i′,i
��

Gi
ρi //

ϕi′,i

��

Ĝi

ϕ̂i′,i
��

G∗i′
λi′ // Gi′

ρi′ // Ĝi′
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kommutiert. Dann induziert dies eine Sequenz

G∗
λ→ G

ρ→ Ĝ

mit λϕ∗i = ϕiλi, ρϕi = ϕ̂iρi für i ∈ I.

Lemma III.4.4 Die Sequenz G∗ λ→ G
ρ→ Ĝ ist exakt.

Beweis. Es sei x∗ ∈ G∗. Wähle x∗i ∈ G∗i mit x∗ = ϕ∗i (x
∗
i ). Dann gilt ρλx∗ =

ϕ̂iρiλi(x∗i ) = 0.
Sei ferner x ∈ G mit ρ(x) = 0. Wir schreiben x = ϕi(xi) für ein xi ∈ Gi.

Da ϕ̂iρi(xi) = 0 gibt es ein i′ mit i ≤ i′, so daß 0 = ϕ̂i′,iρi(xi) = ρi′ϕi′,i(xi).
Wegen der Exaktheit der ursprünglichen Sequenzen gibt es ein x∗i′ ∈ G∗i′ mit
ϕi′,i(xi) = λi′(x∗i′). Dann gilt λϕ∗i′(x

∗
i′) = ϕi′λi′(x∗i′) = ϕi′ϕi′,i(xi) = ϕi(xi) =

x. �

Schließlich betrachten wir noch iterierte Limiten. Es seien nun I, J ge-
richtet Systeme. Ferner nehmen wir an, daß es zu jedem j ∈ J eine gerichtete
Teilmenge Ij ⊂ I gibt, so daß für j ≤ j′ gilt Ij ⊂ Ij′ . Wir setzen ferner vor-
aus, daß

I =
⋃
j

Ij .

Zunächst können wir für jedes j den induktiven Limes

G∗j = lim
−→
i∈Ij

Gi

bilden. Ist j ≤ j′, so können wir nun Homomorphismen ψj′,j : G∗j → G∗j′
wie folgt definieren. Es sei x ∈ G∗j . Wähle dann i ∈ Ij und xi ∈ Gi mit
x = ϕ∗i (xi), wobei ϕ∗i : Gi → G∗j der kanonische Homomorphismus ist.
Wähle i′ ∈ Ij′ mit i ≤ i′ und setze ψj′,j(x) = ϕ∗i′ϕi′,i(xi) (dies ist unabhängig
von den getroffenen Wahlen). Die Homomorphismen ψj′,j definieren auch ein
induktives System. Wir betrachten dessen induktiven Limes

G∗ = lim
−→
j∈J

G∗i .

Schließlich sei G = lim
−→
i∈I

Gi. Dann gibt es eindeutige, zueinander inverse

Homomorphismen ψ : G∗ → G,Θ : G→ G∗, so daß das Diagramm

Gi //

  AAAAAAAA
G∗j //

��

G∗

ψ

~~||||||||

G

Θ

>>||||||||

für alle j ∈ J und i ∈ Ij kommutativ ist.
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5 Poincar-Dualität

In diesem Abschnitt wollen wir den Satz über die Poincar-Dualität beweisen.
Im folgenden sei X stets eine orientierte Mannigfaltigkeit der Dimension n
mit fest gewählter Orientierung. Der Isomorphismus Hn(X,X −K) ∼= ΓK
von Theorem (III.1.7) (hierbei ist K eine kompakte Teilmenge von X) und
die Orientierung definieren dann eine Fundamentalklasse

ρK ∈ Hn(X,X −K).

Die kompakten Mengen auf X bilden, zusammen mit der Inklusion, ein
gerichtetes System (K ≤ K ′ bedeutet hierK ⊂ K ′). IstK ⊂ K ′, so induziert
die Inklusion (X,X −K ′) ⊂ (X,X −K) einen Homomorphismus

Hq(X,X −K)→ Hq(X,X −K ′).

Auf diese Weise erhalten wir ein induktives System von abelschen Gruppen.

Definition Der induktive Limes

Hq
c (X) = lim

−→
K

Hq(X,X −K)

heißt die q–te Kohomologiegruppe von X mit kompaktem Träger.

Bemerkungen (i) Ist X kompakt, so ist X ein finales Objekt und es gilt
Hq
c (X) = Hq(X).

(ii) Eine Kohomologieklasse in Hq
c (X) wird durch einen Kozykel re-

präsentiert, der alle Ketten mit Träger in X − K annuliert. Dies erklärt
die Bezeichnung ”Kohomologie mit kompaktem Träger”.

Es sei nun U eine offene Teilmenge von X. Ist K ⊂ U , so definiert
die Inklusion (U,U − K) ⊂ (X,X − K) auf Grund des Ausschneidungs-
satzes einen Isomorphismus Hq(X,X −K) → Hq(U,U −K) mit Inversem
Hq(U,U−K)→ Hq(X,X−K). Diese Abbildungen sind mit Einschränkun-
gen verträglich und wir erhalten ein kommutatives Diagramm

Hq(U,U −K) −−−−→ Hq(X,X −K)y y
Hq
c (U) −−−−→ Hq

c (X)

wobei die Abbildung Hq
c (U)→ Hq

c (X) als Limesabbildung definiert ist.

Beispiel Es sei X = R
n. Wir erhalten ein finales System von kompakten

Mengen durch
Km = {x ∈ Rn; ||x|| ≤ m} (m ∈ N).
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Die Km sind zusammenziehbar und Rn − Km ist homotopieäquivalent zur
Sphäre Sn−1. Also gilt

Hq(Rn,Rn −Km) ∼= H̃q−1(Rn −Km) ∼= H̃q−1(Sn−1).

Also gilt

Hq
c (Rn) ∼= H̃q−1(Sn−1) =

{
Z für q = n
0 sonst.

Es sei nun K ⊂ X kompakt. Wir hatten am Ende von Abschnitt (III.3)
gesehen, daß das Cap-Produkt eine Abbildung

∩ρK : Hq(X,X −K) → Hn−q(X)
γ 7→ γ ∩ ρK

definiert. Ist K ⊂ K ′, so kommutiert das Diagramm

Hq(X,X −K)

��

∩ρK

((PPPPPPPPPPPP

Hn−q(X).

Hq(X,X −K ′)
∩ρK′

66nnnnnnnnnnnn

Der Übergang zum induktiven Limes definiert dann einen Homomorphis-
mus

D : Hq
c (X)→ Hn−q(X).

Ist U eine offene Teilmenge von X, so kommutiert das Diagram

Hq
c (U) D−−−−→ Hn−q(U)y y

Hq
c (X) D−−−−→ Hn−q(X).

Theorem III.5.1 Es sei X eine orientierte n-dimensionale Mannigfaltig-
keit. Dann ist der Homomorphismus

D : Hq
c (X)→ Hn−q(X)

ein Isomorphismus für alle q.

Bevor wir den Beweis dieses Satzes geben können, benötigen wir noch
einige Vorbereitungen. Es seien C und C ′ Kettenkomplexe.

Definition Eine Kettenabbildung f : C → C ′ ist eine Kettenhomoto-
pieäquivalenz, falls es eine Kettenabbildung g : C ′ → C gibt mit fg ' idC′
und gf ' idC .
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In diesem Fall induziert f einen Isomorphismus f∗ : H∗(C) → H∗(C ′).
Für freie Kettenkomplexe gilt auch die Umkehrung:

Satz III.5.2 Seien C und C ′ freie Kettenkomplexe. Falls die Kettenabbil-
dung f : C → C ′ einen Isomorphismus f∗ : H(C)→ H∗(C ′) definiert, so ist
f eine Kettenhomotopieäquivalenz.

Beispiel Ist U = (Ui)i∈I eine offene Überdeckung, so induziert i : SU
∗ (X)→

S∗(X) einen Isomorphismus H∗(SU
∗ (X)) → H∗(X), ist also eine Ketten-

homotopieäquivalenz. Wir werden dies dann auch auf die Mayer-Vietoris-
Sequenz anwenden.

Um obigen Satz zu beweisen, führen wir den Begriff des Abbildungskegels
einer Kettenabbildung f : C → C ′ ein.

Definition Der Abbildungskegel (Cf, ∂f ) von f : C → C ′ ist wie folgt
definiert:

(Cf)q = C ′q ⊕ Cq−1

∂f (x, y) = (∂′x+ f(y),−∂y).

Dies ist wieder ein Komplex, da

∂f (∂f (x, y)) = ∂f (∂′x+ f(y),−∂y)
= (∂′∂′x+ ∂′f(y)− f∂(y), ∂2y)
= (0, 0).

Wir können daher folgende exakte Sequenz von Kettenkomplexen betrachten

0→ C ′
i→ Cf

j→ C+ → 0

wobei
(C+)q = Cq−1

∂+
q = ∂q−1, i(x) = (x, 0), j(x, y) = y.

Die zugehörige lange Homologiesequenz lautet dann

→ Hq(C ′)
i∗→ Hq(Cf)

j∗→ Hq(C+) ∂→ Hq−1(C ′)→ · · ·

Dabei kann der verbindende Homomorphismus ∂ wie folgt beschrieben wer-
den: Es sei y ∈ C+ mit ∂+(y) = 0. Dann ist ∂f (x, y) = (∂′x+ f(y), 0). Also
gilt

∂ȳ = f(y)

und wir erhalten also, daß ∂ = f∗ ist, d.h. wir haben

· · · f∗→ Hq(C ′)
i∗→ Hq(Cf)

j∗→ Hq(C+)
f∗→ Hq−1(C ′)→ · · · .

Damit ergibt sich unmittelbar
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Lemma III.5.3 Ist f∗ ein Isomorphismus, so gilt H∗(Cf) = 0.

Lemma III.5.4 Ist C ein freier Kettenkomplex mit H∗(C) = 0, so ist die
Identität id : C → C kettenhomotop zur Nullabbildung.

Beweis. Nach Voraussetzung gilt Zq = Bq für alle q, d.h. wir haben eine
exakte Sequenz

0→ Bq → Cq
∂

�
k

Bq−1 → 0.

Da C freier Kettenkomplex ist, ist auch Bq−1 frei und die obige Sequenz
spaltet nach Satz (III.2.2), d.h. es gibt einen Homomorphismus k : Bq−1 →
Cq mit ∂k = id. Also ist

Cq ∼= Bq ⊕Bq−1

und ∂ : Cq → Cq−1 ist von der Form ∂(x, y) = (y, 0). Wir definieren Homo-
morphismen

Dq : Cq → Cq+1

Dq(x, y) = (0, x).

Dies definiert eine Abbildung D : C → C. Es gilt

(∂D +D∂)(x, y) = ∂(0, x) +D(y, 0)
= (x, 0) + (0, y)
= (x, y).

Also ist id ' 0. �

Lemma III.5.5 Es sei f : C → C ′ eine Kettenabbildung zwischen freien
Kettenkomplexen, für die H∗(Cf) = 0 gilt. Dann ist f eine Kettenhomoto-
pieäquivalenz.

Beweis. Nach Lemma (III.5.4) gibt es eine Kettenhomotopie D : Cf → Cf
mit ∂fD +D∂f = id. Die Abbildung

Dq : C ′q ⊕ Cq−1 → C ′q+1 ⊕ Cq

definiert vier Abbildungen

Sq : C ′q → C ′q+1, gq : C ′q → Cq
Eq−1 : Cq−1 → C ′q+1, Tq−1 : Cq−1 → Cq

so daß gilt

Dq(x, y) = (Sq(x) + Eq−1(y), gq(x) + Tq−1(y)).

Nach Definition von ∂f gilt

∂fD(x, y) = (∂′S(x) + ∂′E(y) + fg(x) + fT (y),−∂g(x)− ∂T (y)).
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Ebenso gilt

D∂f (x, y) = D(∂′x+ f(y),−∂y)
= (S∂′(x) + Sf(y)− E∂(y), g∂′(x) + gf(y)− T∂(y)).

Addition beider Formeln für den Spezialfall (x, 0) gibt

(x, 0) = (∂′S(x) + fg(x) + S∂′(x),−∂g(x) + g∂′(x)).

Die erste Komponente dieser Gleichung zeigt

id − fg = ∂′S + S∂′.

Die zweite Komponente zeigt zudem, daß g eine Kettenabbildung ist. Schließ-
lich ergibt Addition der beiden obigen Gleichungen im Spezialfall (0, y) in
der zweiten Komponente die Beziehung

y = −∂T (y) + gf(y)− T∂(y)

also
id − gf = ∂(−T ) + (−T )∂.

�

Beweis von Satz (III.5.2) Da f∗ ein Isomorphismus ist, folgt nach Lemma
(III.5.3), daß H∗(Cf) = 0. Dann folgt aus obigem Lemma (III.5.5), daß f
eine Kettenhomotopieäquivalenz ist. �

Für das folgende benötigen wir die relative Version der Mayer-Vietoris-
Sequenz für die Kohomologie

Satz III.5.6 Es sei X ein topologischer Raum und A1, A2 seien abgeschlos-
sene Zeilmengen von X. Es sei A = A1∪A2. Dann gibt es eine lange exakte
Kohomologiesequenz

· · · → Hq(X,X − (A1 ∩A2))→ Hq(X,X −A1)⊕Hq(X,X −A2)→

→ Hq(X,X −A)→ Hq+1(X,X − (A1 ∩A2))→ . . .

Beweis. Der Beweis ist eine direkte Übertragung des Beweises für die gewöhn-
liche Mayer-Vietoris-Sequenz. �

Beweis von Theorem (III.5.1) Wir gehen in mehreren Schritten vor.

Schritt 1: Gilt das Theorem für die offenen Mengen U, V und B = U ∩ V ,
dann gilt es auch für Y = U ∪ V .
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Es seien K (bzw. L) kompakt in U (bzw.V ). Wir betrachten das Dia-
gramm

← Hq+1(B,B − (K ∩ L)) ←−−−− Hq(Y, Y − (K ∪ L)) ←−−−−

∩ζK∩L
y ∩ζK∪L

y
Hn−q−1(B) ←−−−− Hn−q(Y ) ←−−−−

← Hq(U,U −K)⊕Hq(V, V − L) ←−−−− Hq(B,B − (K ∩ L))

∩ζK⊕∩ζL
y ∩ζK∩L

y
← Hn−q(U)⊕Hn−q(V ) ←−−−− Hn−q(B)

Dabei ist die untere Zeile eine gewöhnliche Mayer-Vietoris-Sequenz. Die obe-
re Zeile ist die relative Version der Mayer-Vietoris-Sequenz für die Kohomo-
logie zusammen mit Ausschneidungsabbildungen der Form (W,W − S) ⊂
(Y, Y −S). Die beiden rechten Quadrate in diesem Diagramm kommutieren
auf Grund der Natürlichkeit des Cap-Produkts (Satz (III.3.8)). Der wesent-
liche Schritt ist nun der Beweis der

Behauptung Das folgende Diagramm kommutiert bis auf (−1)q+1:

Hq+1(Y, Y − (K ∩ L))

∼=
��

Hq(Y, Y − (K ∪ L))γ
oo

∩ζK∪L

��

Hq+1(B,B − (K ∩ L))

∩ζK∩L
��

Hn−q−1(B) Hn−q(Y ).
Γ

oo

Hierbei sind γ,Γ Korandabbildungen der Mayer-Vietoris-Sequenz und
der senkrechte Isomorphismus ist eine Ausschneidungsabbildung.

Beweis der Behauptung: Wir müssen γ und Γ auf dem Niveau der Koränder,
bzw. Ränder berechnen. Hierzu betrachten wir folgendes Diagramm
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(1) (4) (6)

S∗(Y, Y − (K ∪ L)) S∗(Y, Y −K)oo

yyttttttttt
S∗(Y, Y − (K ∩ L))

vvmmmmmmmmmmmm
oo

(5) S∗(U,U −K) (8) S∗(B,B − (K ∩ L))

S∗(X,X − (K ∪ L))

OO

S∗(X,X −K)

OO

eeJJJJJJJJJ
oo S∗(X,X − (K ∩ L))

OO

oo

hhQQQQQQQQQQQQ

(2) (3) (7)

Hierbei sind alle Abbildungen durch Inklusionen induziert. Im folgenden
verwenden wir folgende Notation: Ist R ⊂ S ⊂ X und j : (X,X − S) →
(X,X −R) die Inklusion, so gilt für x ∈ S∗(X,X −R):

x ∩ ζR = j#(j#(x) ∩ ζS).

in S∗(X) (wegen Satz (III.3.8)). Wir schreiben hierfür abkürzend

x ∩ ζR = x ∩ ζS .

Es sei nun c in (1) mit δc = 0. Sei a2 in (2) das Bild von c unter einer Ket-
tenabbildung, die ein Inverses (modulo Kettenhomotopie) zur Ausschnei-
dungsabbildung ist (vgl. Satz (III.5.2)). Dann ist δa2 = 0. Es sei a3 ein
Element in (3), so daß δa3 in (7) ein Repräsentant des Bildes von a2 unter
dem Randoperator der Mayer-Vietoris-Sequenz ist (vgl. die Konstruktion
des Randoperators in der Mayer-Vietoris-Sequenz). Es seien a4 und a5 die
Bilder von a3 in (4) und (5). Dann ist das Bild von a4 in (1) gleich c+ δDc,
wobei D eine Kettenhomotopie ist. Also wird γ(c) in (6) durch δa4 repräsen-
tiert. Auf Grund der Kommutativität des obigen Diagramms sind die Bilder
von δa4 und δa3 in (8) gleich. Es gilt

γ(c) ∩ ζK∩L = δa4 ∩ ζK∩L = δa3 ∩ ζK∩L

in S∗(X). (Dies ist ein Element im Bild von S∗(B)). Ferner gilt

δa3 ∩ ζK∩L = δa3 ∩ ζK = (−1)q+1∂(a3 ∩ ζK)
= (−1)q+1∂(a4 ∩ ζK)
= (−1)q+1∂(a5 ∩ ζK)

wobei das zweite Gleichheitszeichen aus Satz (III.3.6) folgt. Andererseits gilt

a4 ∩ ζK = a4 ∩ ζK∪L = (c+ δDc) ∩ ζK∪L
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= c ∩ ζK∪L + (−1)q∂(Dc ∩ ζK∪L)

(wiederum mit Satz (III.3.6)). Also wird, nach Konstruktion des Korand-
operators in der Mayer-Vietoris-Sequenz, das Bild Γ(c∩ ζK∪L) durch ∂(a4∩
ζK) = ∂(a5 ∩ ζK) repräsentiert (wobei wir S∗(B) ⊂ S∗(U) ⊂ S∗(Y ) ver-
wenden.). Das heißt also, wir erhalten, wenn wir das Diagramm auf ver-
schiedene Weise durchlaufen, Elemente in S∗(B), welche in S∗(X) bis auf
(−1)q+1 gleich sind. Da S∗(B)→ S∗(X) injektiv ist, folgt die Behauptung.�

Jede kompakte Menge in Y ist von der Form K ∪ L mit K ⊂ U und
L ⊂ V . Übergang zum Limes gibt ein Diagramm, das bis auf Vorzeichen
kommutativ ist:

←− Hq+1
c (B) ←−−−−− Hq

c (Y ) ←−−−−− Hq
c (U)⊕Hq

c (V ) ←−−−−− Hq
c (B) ←−−−−−yD yD yD+D

yD
Hn−q−1(B) ←−−−−− Hn−q(Y ) ←−−−−− Hn−q(U)⊕Hn−q(V ) ←−−−−− Hn−q(B) ←−−−−−

Die Zeilen dieses Diagramms sind exakt. Die senkrechten Pfeile sind Iso-
morphismen, außer möglicherweise in den Fällen, in denen der Raum Y
vorkommt. Die Behauptung folgt damit auf dem Fünferlemma.

Schritt 2: Es sei (Ui)i∈I ein (bezüglich der Inklusion) total geordnetes Sy-
stem offener Mengen und U die Vereinigung dieser offenen Mengen. Gilt der
Satz für alle Ui, dann auch für U .

Um dies zu zeigen, genügt es zu sehen, daß die Abbildungen

ψ1 : lim
→
Hn−q(Ui) → Hn−q(U)

ψ2 : lim
→
Hq
c (Ui) → Hq

c (U)

Isomorphismen sind. Dies gilt aus folgendem Grund: Ist K ⊂ U eine kom-
pakte Menge, so ist, da das System der (Ui)i∈I total geordnet ist, K ⊂ Ui
für ein i ∈ I. Dies zeigt, daß ψ1 ein Isomorphismus ist (jede singuläre Kette
hat nämlich kompakten Träger). Die Behauptung für ψ2 schließt man ana-
log, wobei man noch die Aussage über iterierte Limiten zu Ende des letzten
Abschnitts verwenden muß.

Schritt 3: U ist in einer Koordinatenumgebung enthalten (d.h. wir können
U als offene Teilmenge des Rn auffassen).

Fall 1: U ist konvex. Dann ist U homöomorph zur offenen Kugel
◦
Dn. Um

lim
→
Hq(

◦
Dn,

◦
Dn −K) zu berechnen, genügt es K ein finales System abge-

schlossener Kugeln um den Ursprung durchlaufen zu lassen (Satz (III.4.3)).
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Für eine solche Menge gilt dann Hq(
◦
Dn,

◦
Dn −K) = 0 für q 6= n. Außerdem

ist
∩ζK : Hn(

◦
Dn,

◦
Dn −K)→ H0(

◦
Dn) ∼= Z

ein Isomorphismus (da γ ∩ ζK = 〈ζK , γ〉 und ζK erzeugendes Element ist).
Also ist auch der Limeshomomorphismus D ein Isomorphismus.

Fall 2: U sei beliebig. Die Menge der Punkte in U mit rationalen Koeffizi-
enten ist abzählbar. Wie wählen eine solche Abzählung. Es sei Vj ⊂ U eine
offene konvexe Menge um den j-ten Punkt. Sei

U1 = V1, Ui = Ui−1 ∪ Vi (i > 1).

Ein Induktionsbeweis, zusammen mit Schritt 1 zeigt dann, da das Theorem
für alle Ui gilt (der Induktionsanfang ist Schritt 3, Fall 1). Mit Schritt 2 gilt
es auch für U .

Schritt 4: Das Theorem gilt für X. Das Zornsche Lemma (zusammen mit
Schritt 2) zeigt, daß es eine maximale Menge U ⊂ X gibt, für die das Theo-
rem gilt. Ist U 6= X, so erhält man mit Hilfe von Schritt 1 und 3 sofort einen
Widerspruch. �

Korollar III.5.7 Ist X zusammenhängend und orientierbar, so ist Hn
c (X) ∼=

Z.

Die Voraussetzung orientierbar ist notwendig, wie etwa das Beispiel X =
P

2(R) zeigt, da H2
c (P2(R)) = H2(P2(R)) = Z2 gilt.

Im folgenden setzen wir stets voraus, daß die Bettizahlen βi = rang Hi(X)
endlich sind. Wir notieren aber:

Theorem III.5.8 Ist X eine kompakte Mannigfaltigkeit der Dimension n,
so gilt

(i) X kann in den R2n eingebettet werden.

(ii) X hat die Struktur eines endlichen CW-Komplexes.

(iii) Die Homologie von X ist endlich erzeugt.

Korollar III.5.9 Ist X eine kompakte, orientierbare Mannigfaltigkeit der
Dimension n, so gilt βi(X) = βn−i(X).

Beweis. Nach dem universellen Koeffiziententheorem bzw. Satz (III.2.8) gilt
rang (H i(X,Z)) = rang (Hi(X,Z)). Dann folgt die Behauptung aus der
Poincar-Dualität. �
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Wir erhalten auch eine Aussage über die Torsionsuntergruppen. Es sei
Tq die Torsionsuntergruppe von Hq(X). Dann gilt

Korollar III.5.10 Tq ∼= Tn−q−1.

Beweis. Ebenfalls aus Satz (III.2.8) und Satz (III.3.5). �

Korollar III.5.11 Ist X eine kompakte, orientierbare Mannigfaltigkeit un-
gerader Dimension, so gilt für die Eulerzahl χ(X) = 0.

Korollar III.5.12 Ist X kompakt, orientierbar mit gerader Dimension, die
aber nicht durch 4 teilbar ist, so ist χ(X) gerade.

Beweis. Es sei n = 4k + 2. Es ist zu zeigen, daß β2k+1(X) gerade ist. Das
Cup-Produkt liefert eine nicht-ausgeartete Bilinearform

H2k+1(X)⊗Q×H2k+1(X)⊗Q→ Q.

Diese Form ist nach Theorem (III.3.3) schiefsymmetrisch, also ist β2k+1 ge-
rade. �

Poincar-Dualität kann man auch benutzen, um den Kohomologiering
H∗(X) =

⊕
k≥0

Hk(X) von Mannigfaltigkeiten zu bestimmen. Es sei etwa X =

P
2(C) und ζ4 ∈ H4(X) ∼= Z eine Fundamentalklasse. Es sei h ∈ H2(P2(C))

ein Erzeuger. Dann folgt aus der Poincar-Dualität, daß h ∩ ζ4 ∈ H2(P2(C))
ein Erzeuger ist. Da das Kroneckerprodukt

H2(P2(C))×H2(P2(C))→ Z

nicht ausgeartet ist, erzeugt

〈h, h ∩ ζ4〉 = 〈h ∪ h, ζ4〉

die Gruppe Z. Also ist h ∪ h ein Erzeuger von H4(P2(C)) ∼= Z. Da h3 =
h ∪ h ∪ h ∈ H6(P2(C)) = 0 ist, gilt

H∗(P2(C)) = Z[h]/(h3).

Durch Induktion erhält man

Satz III.5.13 H∗(Pn(C)) = Z[h]/(hn+1).
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