Algebraische Topologie

W. Ebeling und K. Hulek

Einleitung

Grundziige der algebraischen Topologie sieht man bereits in den Vorlesun-
gen ” Analysis” und ”Funktionentheorie”. Dort stellt sich beispielsweise die
Frage, ob ein Integral der Form [ f(z)dz iiber einen geschlossenen Weg Null

ist. Die Antwort ist im allgemeinen nein, wie etwa

1
/—dz = 273
z

S1
zeigt. Andererseits ist [ f(z)dz = 0, wenn sich v im Holomorphiegebiet von
gl

f 7zusammenziehen” 1a8t, anders ausgedriickt, wenn f ”nullhomotop” (bes-
ser noch "nullhomolog” ist).

Typische Fragen der Topologie sind etwa: Wann sind zwei Sphéren S™
und S™ homoomorph? (Die Antwort ist, dafl dies genau fiir n = m der Fall
ist). Welche kompakte, orientierbare, zusammenhingende Mannigfaltigkei-
ten der Dimension 2 gibt es? Dies sind genau die Flichen mit g-Loéchern
(oder dquivalent die Sphéiren mit g Henkeln), also

9=0 g=1 g=2

Die Idee der algebraischen Topologie besteht darin, topologischen Rdum-
en algebraische Objekte zuzuordnen (Gruppen, Ringe, ...). Dies soll in ”natiir-
licher” (d.h. funktorieller) Weise geschehen. Insbesondere sollen Abbildun-
gen f: X — Y Morphismen der algebraischen Objekte zugeordnet werden.
Sind dann die X und Y zugeordneten Objekte verschieden, so kénnen X
und Y nicht homdomorph gewesen sein.



Zur Wiederholung sei erwéhnt

Definition Ein topologischer Raum ist eine Menge X zusammen mit einem
System T offener Mengen, so daf3 gilt:

i) 0,XeT
i) U,VeT=UnNVeT
(ili) Uy eT firie I = Y, U; €T.

Beispiele (i) Auf R” sei die euklidische Metrik

d(w,y) = (Zm - y>>

i=1
gegeben. Dann erhélt man eine Topologie auf R™, wenn man U offen nennt,
falls mit jedem Punkt z € U auch eine e-Kugel B:(x) = {y;d(z,y) < €} in
U liegt.
(ii) Dieselbe Topologie auf R™ erhélt man auch fiir die Metriken

dp(z,y) = <§)(xi—yi)p>%, p=>2

i=1
doo(x,y) = max|z; — yil.

(iii) Auf jeder Menge M kann man die diskrete Topologie betrachten. In
dieser Topologie ist jede Teilmenge von M offen.

Eine Abbildung f : X — Y zwischen topologischen Rdumen heifit ste-
tig, falls das Urbild jeder offenen Menge offen ist. Die Abbildung f ist ein
Homdomorphismus, falls es eine stetige Umkehrabbildung g : Y — X gibt.

I Homotopietheorie

1 Die Fundamentalgruppe

Ein Weg in einem topologischen Raum X ist eine stetige Abbildung o : I =
[0,1] — X. Wir betrachten nun zwei Wege o,7 : I — X mit demselben
Anfangs- und Endpunkt, d.h. ¢(0) = 7(0) = zg,0(1) = 7(1) = ;.

Definition Die Wege o und 7 heiflen homotop (relativ {0,1}) falls es eine
stetige Abbildung F': I x I — X gibt, mit

(i) F(s,0) =0(s) firse I
(ii) F(s,1)=7(s) fursel

(iii) F(0,t) =axo furt e I



(iv) F(l,t) ==z firt e I
Fiir festes t € I erhalten wir stets einen Weg

Fo:I1—X
Ft(S) :F(S,t)

Fiir homotope Wege o, 7 ist die Bezeichnung o ~ 7 gebrduchlich. Man kann
auch eine Homotopie wie folgt versinnbildlichen.

p
g I
F
xo r
i) T
g
IxI

Man iiberpriift sofort, dafl gilt:
(1) o~0o
(2) o~T=>T~0
3) o7, T~p=0~np.

Definiert man ferner das Produkt von zwei Wegen ¢ und 7 mit o(1) = 7(0)
durch
or : I — X
[ o(29) 0<
o(s) = { T(2s—1) 1<

so gilt ferner

(4) o~o ,1~17 =01 ~o7.

Alle Aussagen sind leicht zu zeigen. Im Fall von (4) geht man wie folgt
vor: Ist F' : I x I — X eine Homotopie von o und ¢/, und G : I x [ — X
eine Homotopie von 7 und 7’ erhilt man eine Homotopie von o7 und o’'7’

durch
FG :IxI —X

[ F(2s,1) 0<s<3
FG(S’t)_{ G2s—1,1) L<s<l.



Man beachte, dafl F'(1,t) = o(1) = 7(0) = G(0,t). Symbolisch kann man
dies wie folgt darstellen:

Zo x x2

g T

Damit haben wir auf der Menge aller Wege eine Aquivalenzrelation definiert,
die mit dem Produkt von Wegen vertriglich ist.

Wir betrachten nun einen festen Punkt xg € X und geschlossene Wege
o : I — X mit Anfangs- und Endpunkt xg.

Theorem 1.1.1 Es sei m1(X, zg) die Menge der Homotopieklassen von ge-
schlossenen Wegen mit Anfangs- und Endpunkt xo. Beziiglich dem Produkt
von Wegen ist m1(X,xo) eine Gruppe, dessen neutrales Element durch den
konstanten Weg xo gegeben wird und in der das zu einer Klasse [o] inverse
Element durch [c7'] gegeben wird, wobei 0~ '(s) = o(1 — s) ist.

Beweis. Alle Gruppeneigenschaften sind leicht nachzupriifen. Wir zeigen hier
oo~! ~ xy. Eine Homotopie zwischen dem konstanten Weg x¢ und oo~

kann konkret wie folgt angegeben werden

o(2s) 0<2s<t
F(s,t) = o(t) t<2s<2—t
o125 1) 2—-t<2s<2

Symbolisch kann dies so dargestellt werden

o o1

o To

o

F ist offensichtlich auf den eingezeichneten Dreiecken stetig. Da F' wohlde-
finiert ist, d.h. daf3 die verschiedenen Definitionen auf den Durchschnitten



dieser Dreiecke iibereinstimmen, ist F' auf ganz I x I stetig. Klarerweise
liefert F' die gewiinschte Homotopie. O

Die niéchste, offensichtliche, Frage ist, inwieweit die Fundamentalgruppe
m1(X, o) vom Basispunkt xo abhéngt.

Satz 1.1.2 Ist a ein Weg von xg nach x1, so wird durch o, : m (X, x9) —
(X, 21), [0] = [a~toa] ein Gruppenisomorphismus definiert.

Beweis. Offensichtlich ist «, wohldefiniert und ein Gruppenhomomorphis-
mus. Das Inverse wird durch (a~!), gegeben. O

Bekanntlich heifit ein topologischer Raum X wegzusammenhdngend, wenn
je zwei Punkte zg, z; in X durch einen Weg verbunden werden kénnen.

Korollar 1.1.3 Die Fundamentalgruppe eines wegzusammenhdngenden to-
pologischen Raums X hdngt nicht vom Basispunkt ab.

Wir betrachten schliellich eine Abbildung von punktierten topologischen
Raumen:

[ (X, o) = (Y, 90)
d.h. eine stetige Abbildung f: X — Y mit f(x¢) = yo. Dann wird durch

formi(X,20) — m(Y,90)
[o] = [foo]

ein Gruppenhomomorphismus gegeben. Dabei gilt

(1) (idy)s =idr (X, x0)
(2) (fog)= fiouyx

fiir Abbildungen f : (X, z9) — (Y,y0) und g : (Y,y0) — (Z, z0). Insbesonde-
re folgt hieraus: Ist f : X — Y ein Homdomorphismus mit f(xg) = yo, so ist
fe s m(X,20) — m1(Y,y0) ein Isomorphismus, d.h. homéomorphe, wegzu-
sammenhingende Rdume haben isomorphe Fundamentalgruppen. Auf diese
Weise haben wir einen Funktor von der Kategorie der punktierten topologi-
schen Raume in die Kategorie der Gruppen definiert.

2 Homotopie von Abbildungen

Wir betrachten Abbildungen f, g :Y — X zwischen topologischen Rdumen.
Es sei A eine Teilmenge von Y mit fj4 = gja.

Definition Die Abbildungen f und g heiflen homotop relativ der Teilmenge
A (f ~ g rel A) falls es eine stetige Abbildung F : Y x I — X gibt, mit



(i) F(y,0)=fly) firyeY
(i) F(y,1) =g(y) firyeY
(ili) F(y.t) = fly) =g(y) firye A tel

Ist A die leere Menge, so heiflen f und g homotope Abbildungen.

Bemerkung Die Homotopie von zwei Wegen o, 7, wie sie im obigen Ab-
schnitt eingefiihrt wurde, ist ein Spezialfall der obigen Definition, wenn wir
fir A die Menge {0,1} wahlen. Wir bleiben allerdings bei unserer (mif3-
brauchlichen) Notation o ~ 7.

Beispiel Essei X eine konvexe Teilmenge des R™. Dann sind je zwei stetige
Abbildungen f,g: Y — X homotop. Eine Homotopie wird gegeben durch

F(y,t) = (1 —=t)f(y) +tg(y).

Definition Ein topologischer Raum X heiflt zusammenziehbar, wenn die
Identitdt zu einer konstanten Abbildung auf einen Punkt z¢y € X homotop
ist.

Auf Grund des obigen Beispiels sind alle konvexen Teilmengen des R"
zusammengziehbar. Zusammenziehbare Rdume sind insbesondere wegzusam-
menhéngend.

Lemma 1.2.1 Ist X zusammenziehbar, so sind je zwei Abbildungen f,g :
Y — X homotop.

Beweis. Es geniigt zu zeigen, dafl eine gegebene Abbildung f : ¥ — X
homotop zur konstanten Abbildung xg ist. Es sei F' : Y x I — X eine
Homotopie zwischen idyx und zg, d.h. also F/(z,0) = z, F(x,1) = xo. Wir
bekommen dann eine Homotopie zwischen f und zg durch

F': YxI—-X
Fl(y,t) = F(f(y),t).

O

Definition Ein topologischer Raum X heifit einfach zusammenhdingend,
wenn er wegzusammenhéngend und die Fundamentalgruppe trivial ist.

Satz 1.2.2 FEin zusammenziehbarer Raum ist einfach zusammenhdngend.

Beweis. Es sei o ein geschlossener Weg mit Anfangs- und Endpunkt .
Dann ist o homotop (beziiglich der leeren Menge) zu dem konstanten Weg
xo. Wir miissen zeigen, daf} es auch eine Homotopie relativ {0, 1} gibt. Hierzu
beweisen wir das folgende



Lemma 1.2.3 Es sei F: [ x I — X eine stetige Abbildung. Es sei a(t) =
F(0,t),8(t) = F(1,t),~(s) = F(s,0),8(s) = F(s,1). Dann gilt 6 ~ o~y
(im Sinn von Abschnitt (1.1))

Beweis. Wir erhalten die gesuchte Homotopie der Wege a3 und § durch
Zusammenfiigen der folgenden drei Homotopien

Tg 0 x1
xo E A a @ A F A ﬁ /6 A G :L‘l
« v

wobei g = 6(0) = a(1), 21 = 0(1) = (1) sowie

o s <

E(s,t) = {a(l—i—t—s) s>t
B Bt+s) 1—s>t
Gls,t) = { 1 1—s5<t.
U

Ende des Beweises von Satz (1.1.2): Der geschlossene Weg o liefert eine
stetige Abbildung o : S' — X. Da ¢ zu dem konstanten Weg g homotop
ist, gibt es eine entsprechende Homotopie

F:S'xT—X.
Dies liefert eine Abbildung
F':IxI—X.

wie in Lemma (1.2.3 )mit § = 0,7 = zg, a = 3, d.h. [0] = [a"Y[xo][a] = [20],
da [z¢] das neutrale Element ist. O

Lemma 1.2.4 (i) Es seien f,g : Y — X homotope Abbildungen. Die Ho-
motopie sei gegeben durch F 'Y x I — X. Fir einen Punkt yo € Y
sei xo = f(yo),z1 = g(yo). Es sei a der Weg von xog nach 1, der durch
a(t) = F(yo,t) gegeben wird. Dann kommutiert das Diagramm

I+
T (Y, 90) — m1(X, 20)

TP

T (X, z1)

(ii) f« ist genau dann ein Isomorphismus, wenn g. ein Isomorphismus ist.



Beweis. (i) Es sei o ein geschlossener Weg mit Anfangs- und Endpunkt yo.
Dann folgt die Behauptung sofort aus der Homotopie

geo

(ii) Dies folgt sofort aus (i).
(]

Definition (i) Eine Abbildung f : Y — X heifit eine Homotopiedquiva-
lenz, falls es eine Abbildung g : X — Y gibt mit fog~ idx,go f ~idy.
(ii) Die Rdume X und Y heilen homotopie-dquivalent, falls es eine Homo-
topiequivalenz f : X — Y gibt.

Schreibweise: Sind zwei Rdume X und Y homotopie-quivalent, so schreibt
man X ~Y.

Beispiel Ist X eine konvexe Teilmenge des R™ und p ein Punkt, so sind
X und p homotopie-dquivalent.

Satz 1.2.5 Ist f : (Y,yo) — (X,x0) eine Homotopieiquivalenz, so ist fy :
m1(Y,y0) — m1 (X, xo) ein Isomorphismus.

Beweis. Es gibt eine Abbildung g : X — Y mit fog ~ idx und go f ~ idy.
Nach Lemma (I1.2.4 ) sind dann (f o g)x = frogs und (go f)« = g« 0 fu
Isomorphismen, also auch f, und g,. O

Obiges Beispiel zeigt, dafl etwa eine Kreisscheibe und ein einpunktiger
Raum homotop &dquivalent sind und daher isomorphe Fundamentalgruppe
besitzen. Andererseits sind diese Réume nicht homéomorph (sie sind nicht
einmal bijektiv aufeinander abbildbar). Homotopiegruppen eignen sich da-
her nicht so sehr, um Homdomorphieklassen, wohl aber um Homotopieklas-
sen, zu unterscheiden.

3 Die Fundamentalgruppe des Kreises

Wir wollen hier die Fundamentalgruppe des Einheitskreises

S'={zeC;lz| =1}



berechnen. Hierzu verwenden wir die Exponentialabbildung

d:R — St

T esz .

Die Einschrinkung dieser Abbildung auf das offene Intervall (—5, 5) lie-
fert einen Homdomorphismus dieses Intervalls mit S'\{—1}. Es sei ¥ die

Umkehrabbildung.

Lemma 1.3.1 (i) Es sei o : [ — S' ein Weg mit 0(0) = 1. Dann gibt es
genau einen Weg 6 : I — R mit 6(0) =0 und Po s =o.
(i) Es sei T : I — St ein weiterer Weg mit 7(0) =1 und F : I x I — St eine
Homotopie von o und 7 relativ {0,1}. Dann gibt es genau eine Homotopie
F:IxI—Rwoné und7 relativ {0,1} mit ®o F = F.

Beweis. Wir zeigen (i) und (ii) zugleich und setzen hierfiir Y = I oder
Y =1x1.Mit0 €Y seider Punkt 0, bzw. (0,0) gemeint. Die Abbildung
f:Y — S! sei entweder o oder F. Da Y kompakt ist, ist f gleichmiifig
stetig. Also gibt es ein § > 0, so daB fiir |y — /| < 0 gilt |f(y) — f(¥)] < 1,
also insbesondere f(y) # —f(y'). Daher ist W(f(y)/f(y’)) definiert. Wir
konnen N so grofl wéhlen, dafl |y| < Ne fiir alle Punkte y € Y. Nach dieser
Voriiberlegung ist die Abbildung f : Y — R, die durch

flw) =¥(f)/f (55 ) + v (f (%) /f (5FPy))
+.. U (f(Fy) /£(0)

gegeben wird, wohldefiniert, stetig mit f(0) = N¥(1) = 0, und es gilt $o f =
I

Als néchstes wollen wir zeigen, dafl f eindeutig bestimmt ist. Es sei
1Y — R eine weitere stetige Abildung mit f'(0) =0, ®o f' = f. Dann
ist U(f—f)=1,dh f— f liegt in ker® = Z. Da f— f stetig ist, ist die
Abbildung konstant. Mit f(0) = f'(0 )) = 0 folgt hiermit schlieBlich f=f.

Es sei nun Y = I x I. Dann ist F = f eine Homotopie von ¢ und 7. Es
bleibt zu zeigen, daf} dies eine Homotopie relativ {0, 1} ist, d.h. F (0x1I)=0
und F(IXI) = konstant. Da ®o F(0x I) = F(0x I) = 1 ist und F(0,0) = 0
gilt, folgt F (0 x I) = 0 wie im obigen Argument. Analog schlieBt man im
Fall F(1 x I). O

Korollar 1.3.2 Der Endpunkt (1) hingt nur von der Homotopieklasse von
o ab.

Damit kénnen wir zeigen:

Theorem 1.3.3 m(S!) = Z.



Beweis. Nach Korollar (I1.3.2) ist die Abbildung

x: m(SL1) —Z

x([o]) = a(1)
wohldefiniert. Die Abbildung x ist ein Homomorphismus. Fiir [o],[r] €
m1(SY, 1) gilt nidmlich folgendes: Es seien 7,7 die Liftungen von o, 7 nach
Lemma (I1.3.1). Es sei m = (1), n = 7(1). Der Weg 7 sei durch 7 =7+ m
definiert. Dann ist 67 die Liftung von o7 mit 67(0) = 0. Also gilt
x([o7]) = a7(1) = m+n = x([o]) + x([7])-

Die Abbildung x ist surjektiv: Es sei (s) = ns. Dann gilt x([o]) = n fir
o = ® o . SchlieBlich bleibt zu zeigen, dafl x injektiv ist. Sei x([o]) = 0.
Dann ist ¢ ein geschlossener Weg mit 6(0) = (1) = 0. Da R kontrahierbar
ist, ist R einfach zusammenhéingend. Also gibt es eine Homotopie F von &
mit dem konstanten Weg 0 (relativ {0,1}). Dann liefert F = ® o F eine
Homotopie von ¢ mit dem konstanten Weg 1. (]

Die Zahl x([o]) heifit auch Windungszahl des Weges o. Diese Zahl kann
auf vielfache Weise definiert werden.

Wir wollen nun noch eine Anwendung dieses Theorems diskutieren. Ein
Torus T ist homéomorph zu dem Produkt S x S

Satz 1.3.4 7 (T) = 7Z x Z.

Der Beweis dieses Satzes, ebenso wie seine Verallgemeinerung in hohere
Dimensionen, folgt sofort aus:

Satz 1.3.5 Es seien (X, x0), (Y,yo) punktierte Riume. Dann gibt es einen
natiirlichen Isomorphismus

(X x Y, (z0,90)) = T (X, x0) x (Y, yo)

Beweis. Mit Hilfe der Projektionen
(X XY, (0, 40))
/ \
(X7 $0) (Y7 yO)
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erhélt man einen Homomorphismus

(Ps, @+) = T (X X Y, (z0,90)) — 71(X, 20) X 71(Y, 90).

Hierzu kann man sofort ein Inverses angeben: Fiir Wege ¢ in X mit o(0) =
(1) =zp und 7 in Y mit 7(0) = 7(1) = yo betrachten wir den Weg

(0,7)(s) = (0(s),7(s)).
Es ist klar, dafl dies eine Abbildung
@i (X, 20) X T (Y y0) — (X XY, (20,90))

liefert mit (px, g«) © p« = id. Dies zeigt insbesondere, dafl (ps, ¢«) surjektiv
ist und ¢, injektiv ist. Die Abbildung ¢, ist auch surjektiv, da jeder Weg
o' : 1 — X xY von der Form ¢'(s) = (o(s),7(s)) ist. O

4 Uberlagerungstheorie

Es sei p: F — X eine stetige Abbildung topologischer Raume.

Definition p: E — X ist eine Uberlagerung, falls jeder Punkt = € X eine
Umgebung U besitzt mit der Eigenschaft:

() p~1(U) ist eine disjunkte Vereinigung offener Mengen S; in E, so daf
pls, : Si — U ein Homéomorphismus ist.

Die S; heiflen dann die Bldtter iiber U.

Beispiel Die Abbildung ® : R — S, ®(z) = ¢>™* ist eine Uberlagerung.

Analog zu diesem Beispiel kann man nun nach der ” Liftung” von Wegen,
Homotopien oder Abbildungen von X nach F fragen.

Definition Ist f : ¥ — X eine Abbildung, so ist eine Liftung von f

beziiglich p : E — X eine Abbildung f : ¥ — E mit po f = f, d.h.
dal das Diagramm

kommutiert.

Satz 1.4.1 Esseip: (E,eq) — (X,x0) eine Uberlagerung und f : (Y,yo) —
(X, o) eine Abbildung. Falls' Y zusammenhdngend ist, gibt es héchstens eine
Liftung f: (Y,y0) — (E, o) von f.

11



Beweis. Es sei f': (Y,y0) — (E, eg) eine weitere solche Liftung. Wir setzen

A={yeY; fly) =W}
Dann ist A nicht leer, da f(yo) = f'(y0) = eo, also yo € A. Ist

B={yeY, fy)# f )}

so ist Y die disjunkte Vereinigung von A und B. Offensichtlich ist B of-
fen. Wenn wir nun zeigen koénnen, dafl A offen ist, so folgt, da Y zusam-
menhéngend ist, dafl A =Y gilt. Es sei nun a € A, und S das Blatt iiber
einer geeigneten Umgebung U von f(a) mit f(a) = f'(a) € S. Dann ist
F7HS) N (f")~1(S) eine offene Umgebung von a in A. O

Theorem 1.4.2 Es sei p : (E,eq) — (X,zq) eine Uberlagerung und o ein
Weg in X mit 0(0) = 9. Dann gibt es genau eine Liftung & von o mit
5’(0) = €.

Beweis. Die Eindeutigkeit von & folgt sofort aus dem obigen Satz. Um die
Existenz von & zu zeigen, unterteilen wir das Intervall I = [0, 1] in Teilin-
tervalle [tg,tgy1] mit 0 = top < t1 < -+ < t, = 1, so daB o([t,tx+1]) in
einer Menge Uy, enthalten ist, fiir die die Eigenschaft (x) gilt. Wir betrach-
ten zunéchst Uy sowie das Blatt Sy iiber Uy mit ey € Sp. Dann gibt es eine
eindeutige Liftung & von ol ;) mit 60(0) = ep. Angenommen wir haben
nun eine Liftung ; : [0,¢;11] — E von oljgy, ] mit 5;(0) = eg. Dann gibt es
eine Liftung o}, : [tiy1,tipe] — E mit o] (tiy1) = 6i(tiy1). Durch Zusam-
mensetzen von &; und oj, ; erhalten wir eine Liftung &;11 von oljy, ., mit
Gi+1(0) = eo. O

Theorem 1.4.3 Es seip: (F,eq) — (X,z0) eine Uberlagerung. Die Abbil-
dung f: (Y,y0) — (X,x0) besitze eine Liftung f : (Y,y0) — (E,eq) (d.h.
pof=f). Ferner sei F : Y x I — X eine Homotopie mit F(y,0) = f(y)
fiiry € Y. Dann kann man F eindeutig zu einer Homotopie F : Y x I — E

mit F(y,0) = f(y) liften.

Beweis. Die Eindeutigkeit der Liftung folgt, da die Wege F (Yo, s) fiir festes
yo € Y durch die Bedingung F(y0,0) = f(yo) eindeutig bestimmt sind. Es
bleibt also die Existenz zu zeigen. Hat X selbst die Eigenschaft (x), so ist
dies klar. Ansonsten konnen wir X mit Umgebungen U, iiberdecken, die
diese Eigenschaften besitzen. Wir kénnen ferner zu jedem y € Y eine offene
Umgebung N, von y finden, sowie eine Partition 0 =ty < t; < ... <t, =1,
so dafl F(Ny x [t;,ti+1]) in einer solchen Menge U, enthalten ist. Wie im
Beweis von Theorem (I.4.2) finden wir dann eine Liftung von F|n,xs. Es
bleibt zu iiberlegen, dafl diese Liftungen zusammenkleben. Dazu sei y; €
Ny N Ny. Da I zusammenhéngend ist, stimmen die beiden Liftungen auf
y1 x I iiberein, und damit auf (N, N N,/) x I. O

12



Korollar 1.4.4 Es seien o,7 Wege in X mit 0(0) = 7(0) = z¢. Fer-
ner sei o ~ 1 rel{0,1}. Die eindeutig bestimmten Liftungen von o und T
mit Anfangspunkt eq seien mit G, Te, bezeichnet. Dann gilt auch G, =~
Teo Tel {0,1}.

Korollar 1.4.5 Die Abbildung p. : m1(F,eq) — m1 (X, xo) ist injektiv.

Beweis. Es sei ¢’ ein Weg in F mit ¢/(0) = /(1) = eq. Ist pi[o’] = 1, so
gibt es also eine Homotopie von p o ¢/ mit dem konstanten Weg xy. Nach
Korollar (I.4.4) kann diese Homotopie zu einer Homotopie (relativ {0,1})
der Wege o’ und e geliftet werden. U

Im allgemeinen ist jedoch folgendes zu beachten: Ist ¢ ein geschlossener
Weg in X mit 0(0) = o(1) = =, so ist dessen Liftung &, die durch .,(0) =
eg eindeutig bestimmt wird, im allgemeinen kein geschlossener Weg. Man
kann lediglich sagen, dafl der Endpunkt &, (1) in der Faser p~!(z¢) enthalten
ist. Dieser héangt nur von der Homotopieklasse von ¢ ab. Man erhélt also
eine wohldefinierte Abbildung

pH(wo) x m(X, @) —  p(wo)
(e, [o]) —  ef[o] == Ge(1).

Damit operiert die Gruppe 71 (X, ) auf der Menge p~!(z0). Allgemein sagt
man, eine Gruppe G operiert auf einer Menge X (von rechts), wenn es eine
Abbildung

XxG@ — X

(v.9) — g

mit folgenden Eigenschaften gibt

wl=uw, (x9)g =x(99).

Der Stabilisator von x beziiglich der Operation von G auf z ist dann die
Untergruppe
Gy ={9€G; zg =1z}

Man sagt ferner, dafl G transitiv auf X operiert, falls es zu je zwei Elementen
z,2', € X ein Gruppenelement g € G gibt mit xg = x’.

In unserem Fall ist der Stabilisator eines Punktes e € p~!(z) die Un-
tergruppe p.mi(E,e) von 71(X, zp). Ist E bogenweise zusammenhéingend,
so operiert 71 (X, xg) transitiv auf p~!(zg). Es sei nimlich o’ ein Weg von
e nach €’. Dann ist 0 = p o ¢’ ein geschlossenener Weg in X und e[o] = ¢’
Damit ergibt sich auch sofort

psm(E, 6/) = [o]pmi(E,¢€) [0']71'

Das heiBt, die Untergruppen p.m1(E, e),e € p~(xg) von 71(X, xg) sind alle
zueinander konjugiert.
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Definition Eine Decktransformationen der Uberlagerung p : E — X ist
ein Homdomorphismus @ : £ — FE, so daf} das Diagramm

NS

E

kommutiert, d.h. po ® = p.

Offensichtlich bilden die Decktransformationen eine Gruppe.

Definition Ein topologischer Raum X heifit lokal bogenweise zusammen-
hingend, bzw. lokal einfach zusammenhdingend, falls es zu jedem Punkt x
und jeder Umgebung U von x eine Umgebung V von x mit V C U gibt, die
bogenweise zusammenhingend, bzw. einfach zusammenhéngend ist.

Theorem 1.4.6 Es sei p : (F,eq) — (X,x0) eine Uberlagerung. Falls E
einfach zusammenhdngend und lokal bogenweise zusammenhdngend ist, gibt
es einen natirlichen Isomorphismus von der Gruppe G der Decktransforma-
tionen in die Fundamentalgruppe m1(X, xo).

Beweis. Wir konstruieren zunéchst einen Gruppenhomomorphismus x : G —
m1(X,zp). Es sei dazu ® eine Decktransformation. Da F einfach zusam-
menhéingend ist, sind alle Wege ¢’ in E von ey nach ®(ep) homotop rela-
tiv {0,1}. D.h. hierdurch wird eine wohlbestimmte Klasse [o] = [po o’] €
m1(X, o) definiert und die so bestimmte Abbildung x : G — w1 (X, zo) ist
ein Homomorphismus. Nach Konstruktion gilt

D (ep) = eox(P) = eplo].

X ist injektiv, denn falls x(®) = 1 gilt, folgt ®(ep) = eg. Da E zusam-
menhéngend ist, folgt hieraus wegen Satz (1.4.1), dafl ® = id g.

Um zu zeigen, dafl y surjektiv ist, starten wir mit einem Element [o] €
m1(X, o). Wir konstruieren ® wie folgt. Es sei e € F und wir wihlen einen
Weg 7/ von eg nach e. Es sei 7 = po7/. Dann ist 7~ 'o7 ein geschlossener
Weg um = = p(e). Wir setzen

®(e) = e[t~ or] € p~(p(e)).

Da E einfach zusammenhéngend ist, héngt ®(e) nur von [o] nicht aber von
der Wahl von 7" ab. Es gilt po ® = p. Die Abbildung ® ist bijektiv, da
dieselbe Konstruktion, angewandt auf o' eine Umkehrabbildung liefert.
Ebenso ist klar, dafl p o ® = p ist. Nach Konstruktion ist X (¢) = [0], wenn
wir gezeigt haben, dal ® eine Decktransformation ist. Um die Stetigkeit von
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® zu zeigen, gehen wir wie folgt vor: Es sei e; € E. Ferner sei 7 ein Weg
von e nach e;. Dann gilt nach Konstruktion von ®:

Bey) = <p o Tﬂ)q)(e) (1).

Nun gibt es nach Voraussetzung an E, da p : E — X eine Uberlagerung
ist, eine Umgebung U; von z1 = p(e1) in X, die sowohl die Eigenschaft (x)
erfiillt, als auch lokal bogenweise zusammenhéngend ist. Es seien nun Si,
bzw. S| die Blitter von E iiber U; in denen ep, bzw. ®(e;) liegt. Da S; und
S} bogenweise zusammenhéngend ist, folgt sofort, dafl

Dlg, = (p)) top1: 51— 5

ist, wobei p; = plg, : S1 — Uy und (p}))~! die Umkehrung von pls; + 51 —
U, ist. Dies ist offensichtlich stetig. Dasselbe Argument zeigt die Stetigkeit
von &1 (]

Fiir die Uberlagerung p : (E,eq) — (X, 79) kann man nun allgemein nach
der Existenz von Liftung von Abbildungen fragen, d.h. gibt es zu vorgegebe-
ner Abbildung f : (Y,yo) — (X, z0) eine Abbildung f : (Y,yo) — (E,ep) so
dafl das Diagramm

(E, 60)
;o7
2
i
(Y, y0) — (X, 20)

kommutiert?

Theorem 1.4.7 Die Riume E, X undY seien zusammenhdingend und lokal

bogenweise zusammenhdngend. Dann existiert genau dann eine Liftung f :
(Y,yo) — (E,ep) der Abbildung f : (Y,yo) — (X, x0) wenn

f*7T1(Y, yo) C p*Trl(E, 60).

Beweis. Daff obige Bedingung notwendig ist folgt, da p, o fu = f. gilt.
Wir gehen nun davon aus, dafy diese Bedingung erfiillt ist, und konstruieren
zuniichst f mengentheoretisch. Es sei y € Y. Wir wiihlen einen Weg o in Y
von gy nach y und setzen

Fy) = (fo)e, (1).

Auf Grund der Voraussetzung ist diese Definition unabhéngig von der Wahl
von o. Wir konnen auch die Abhéngigkeit von yo beseitigen. Es sei y; € Y

beliebig und 7 ein Weg von y; nach y. Wir behaupten, daf§ fir e; = f(y1)
gilt:



Um dies zu sehen sei o1 ein Weg von gy nach y;. Dann ist

F@) = (F(017))e0 (1) = [(Fo1)eo (FT)er)(1) = (FT)ey (1)

Um die Stetigkeit von f zu beweisen, wihlen wir zunéchst zu jedem Punkt
y € Y eine Umgebung U,, die bogenweise zusammenhéngend ist, und so
daB f(Uy) in einer offenen Menge V' C X liegt, fiir die Eigenschaft (x) gilt.
Dies geht nach Voraussetzung. Der Rest des Beweises verlauft analog zum
Beweis von Theorem (1.4.6) O

Korollar 1.4.8 Ist Y einfach zusammenhdngend, so ist jede Abbildung f :
Y — X liftbar.

Definition Eine universelle Uberlagerung von X ist eine Uberlagerung p :
E — X mit einem einfach zusammenhéngenden Raum F.

Bemerkung Ist ¢ : F — X eine beliebige Uberlagerung und X lokal
bogenweise zusammenhéngend, so gibt es nach Korollar (1.4.8) stets ein
kommutatives Diagram

N

X

In diesem Sinn ist die universelle Uberlagerung die ”gréfite” Uberlagerung
von X.

Definition Zwei Uberlagerungen p : (E,eo) — (X, 2) und q : (F, fo) —
(X, o) heiBen dquivalent, falls es einen Homdomorphismus @ : (E,ey) —
(F, fo) gibt, so dafl das Diagramm

(B, eo) 2 (F, fo)

A

(X y L 0)
kommutiert.

Korollar 1.4.9 FEs sei X lokal bogenweise zusammenhdngend. Dann sind je
zwei universelle Uberlagerungen von X dquivalent.
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Beweis. Fiir zwei universelle Uberlagerungen p : (E,ep) — (X, z0) und
q: (F, fo) — (X, o) gibt es ein Diagramm

P
(E’ 60) (F’ fO)

(X, CCQ)

Da ®'®(ep) = ep und wegen der Eindeutigkeit der Liftung folgt ®'® =
idg und analog ®®' = idp. O

Es soll schlieflich noch die Frage nach der Existenz der universellen Uber-
lagerung beantwortet werden.

Definition Ein Raum X heif3t semi-lokal einfach zusammenhdngend, wenn
jeder Punkt x € X eine Umgebung U besitzt, so dafl jeder geschlossene Weg
um z in U in X zusammenziehbar ist.

Ein Raum X, der eine universelle Uberlagerung besitzt, hat notwen-
digerweise diese Eigenschaft. Beispiele fiir solche Rdume sind topologische
Mannigfaltigkeiten.

Definition Eine topologische Mannigfaltigkeit M ist ein Hausdorffraum,
so dafl jeder Punkt € M eine Umgebung U besitzt, die homdomorph zu
einer offenen Menge des R" ist.

Theorem 1.4.10 FEin zusammenhdngender, lokal bogenweise zusammen -
hingender, semi-lokal einfach zusammenhdingender Raum X besitzt stets ei-
ne universelle Uberlagerung.

Beweis. Wir wahlen einen festen Punkt zg € X. Auf der Menge der Wege
in X mit Anfangspunkt xy betrachten wir die Aquivalenzrelation, die durch
Homotopie relativ {0, 1} gegeben ist. Insbesondere gilt fiir zwei dquivalente
Wege o und 3, daB8 (1) = B(1). Die Aquivalenzklassen dieser Wege seien
mit < a > bezeichnet, und wir definieren F als die Menge all dieser Aqui-
valenzklassen. Durch p(< o >) = (1) erhalten wir eine Abbildung nach X.
Da X bogenweise zusammenhéngend ist, ist die Abbildung surjektiv.

Wir miissen nun F mit einer geeigneten Topologie versetzen. Dies tun
wir durch Angabe einer Basis: Es sei a ein Weg in X mit «(0) = zg, a(1) =p
und V eine offene Umgebung von p. Dann definieren wir

<o,V >={< af >; §ist ein Weg inV mit 5(0) = p}.

Um zu zeigen, daf3 dies die Basis einer Topologie ist, miissen wir zeigen, dafl
jeder Durchschnitt < o,V > N < o/, V' > wieder als Vereinigung solcher
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Mengen geschrieben werden kann. Es sei o/ €< a,V > N < a/,V’' >. Dann
gilt < o’V >=<a,V>und < ", VNV >C<a,V >n<d,V >.
Die Abbildung p ist stetig, und da p(< «,V >) die Bogenzusammenhangs-
komponente von V ist, die p enthélt, auch offen. Wir zeigen als n#chstes,
daB p eine Uberdeckung ist. Es sei dazu V eine Umgebung von p die bo-
genweise zusammenhédngend ist, und so daf} jeder geschlossene Weg in V/
in X kontrahierbar ist. Fiir zwei offene Mengen < o,V > und < o/,V >
gilt dann, daf} sie gleich oder disjunkt sind. Die Einschrénkung von p auf
< a,V > ist surjektiv auf V. Es bleibt zu zeigen, daf} sie injektiv ist.
Gilt aber p(< af >) = p(< af’ >), so haben § und 3’ denselben End-
punkt. Nach Wahl von V' bedeutet dies, dafi § ~ ' relativ {0,1} also
< aff >=< afff >. Schliellich bleibt zu zeigen, dafi E bogenweise zusam-
menhéngend und einfach zusammenhéingend ist. Es sei 9 € F die Klasse
des konstanten Weges xg. Ist < @ >€ E so kénnen wir £y und « in E wie
folgt durch einen Weg verbinden:

as(t) = ast) s, t el

Dann ist ap(t) = xo und «;(t) = a. Man zeigt leicht, dal die Abbildung
a: 1 — E,s+—< ag > stetig ist. Also ist F bogenweise zusammenhingend.
Es gilt nach Konstruktion auch, dal po & = «, d.h. @ ist eine Liftung von «
nach E. Es sei nun 7 ein Weg in E' mit 7(0) = 7(1) = Zo. Dann ist « = po 7
ein geschlossener Weg in X mit «(0) = a(l) = x¢. Der oben konstruierte
Weg @ ist eine Liftung von a mit &(0) = Zp. Wegen der Eindeutigkeit der
Liftung folgt & = 7. Insbesondere ist & geschlossen, d.h. @(0) = &(1). Damit
folgt aber, dafl g = @(0) = @(1) =< a >. D.h. a ist homotop zum trivialen
Weg und nach Theorem (I1.4.3) 1&8t sich diese Homotopie liften, d.h. & = 7
ist homotop trivial. O

Schliefllich sei noch darauf hingewiesen, dal man auch héhere Homoto-
piegruppen definieren kann. Die Fundamentalgruppe kann man als die Menge
der Homotopieklassen von Abbildungen (S, 1) — (X, z) auffassen. Be-
trachtet man statt dessen Homotopieklassen von Abbildungen (S",sp) —
(X, xp), so wird man auf die n-te Homotopiegruppe m, (X, z¢) gefiihrt. Die
Berechnung der hoheren Homotopiegruppen ist im allgemeinen schwierig.
So sind immer noch nicht alle Homotopiegruppen m,(S™, sg) von Sphiren
bekannt.
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II Singuldre Homologiegruppen

1 Affine Simplizes
Sind z,y € R”, so ist die Verbindungsstrecke zwischen x und y die Menge
{QA-t)z+ty; 0<t <1}

Fine Menge C' C R™ heifit konver, wenn mit je zwei Punkten z,y € C auch
die Verbindungsstrecke in C' liegt. Ist A C R"™ eine Teilmenge, so ist die
konvexe Hiille von A definiert durch

C(4) = N C.
CDA
C ist konvex

Die konvexe Hiille von A ist die kleinste konvexe Menge, die A enthélt.

Definition Ein affines ¢-Simplex ist die konvexe Hiille von g + 1 Punkten

zo,-..,Tq € R" in allgemeiner Lage, d.h. w1 — x¢,..., 24 — 2o sind linear
unabhéngig.
Man beachte, daf8 es fiir die Frage, ob zo,...,z, in allgemeiner Lage

sind, unerheblich ist, welchen Punkt man ausgezeichnet hat.

T2 L3
T1 o
) X0 r1 350 I
qg=1 q=2 q=3
Satz IL.1.1 Fir Punkte o, ...,z in R" sind dquivalent:
(i) 1 — xo,...,xq — xo sind linear unabhdingig.

q q q q
(i) Aus > ajx; =Y bix; und Y a; = > b; folgt a; = b; firi=0,...,q.
i i=0 i=0 =

1=0 =0
q q q q
Beweis. (1) = (i1). Essel > a;x; = > bjz; und Y a; = ) b;. Dann folgt
i=0 i=0 i=0 i=0
q q q
0 = > (ai—bi)zi =3 (ai —bi)zi — > (ai — bi)zo
i=0 i=0 i=0
q
= > (ai —b;)(zi — z0)



Da z1 — o, ..., 2y — xo linear unabhingig sind, folgt a; = b; fiiri =1,...,¢
und mit > a; = > b; folgt auch noch ag = by.
q

(7i) = (7). Es sei Y a;(x; — x9) = 0. Dies kann man auch schreiben als

i=1
q q q
Z a;z; + 0z = Z Ox; + (Z ai> Zo.
i=1 i=1 i=1
Nach (ii) folgt hieraus a; =0 fir i =1,...,q. O
Sind zg,...,z, € R™ Punkte in allgemeiner Lage, so iiberlegt man sich

leicht (vgl. den Fall der Verbindungsstrecke), dafl das zugehérige Simplex S

die Menge
q q
S:{Zti$i; Ztizl, Ogtigl}
i=0 i=0

ist. Nach Satz (I1.1.1) besitzt jeder Punkt x € S eine eindeutige Darstellung

q q
$:Zti$imit Ztizl,Ogtigl.
i=0 i=0
Die Zahlen to,...,t; heiBen die baryzentrischen Koordinaten von S. Der
Punkt mit tg = ... =1, = q% ist der Schwerpunkt von S. (Ordnet man den

q
Punkten z; die Massen ¢; zu, so wird x = ) t;z; zum Schwerpunkt).
i=0

Definition Ein geordnetes q—Simplex ist ein ¢-Simplex zusammen mit ei-
ner Ordnung der Eckpunkte.

Essei eg, . . ., ¢4 die Standardbasis des R4, Dann heifit das durch eg, . . ., eq
bestimmte Simplex A? das (geordnete) Standard-g-Simplex . Es gilt

q
AT ={(to,...,ty) ERT; Y "t =1, 0<t; <1}
=0

€9 ¢ e1

€0
q=2
Ist S ein weiteres ¢-Simplex, so ist die Abbildung
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f:A1T — S
q
(to, ... ,tq> — Z tiz;
i=0
eine stetige bijektive Abbildung zwischen kompakten Mengen, also ein Homéo-
morphismus.

2 Definition der Homologiegruppen

Es sei X ein topologischer Raum.

Definition Ein singuldres ¢-Simplex in X ist eine stetige Abbildung o :
Al — X,

Ein 0-Simplex ist also ein Punkt, ein 1-Simplex ein stetiger Weg.

Wir betrachten nun die freie abelsche Gruppe, die durch die Menge der
singuléren ¢-Simplizes erzeugt wird, d.h. die Menge der (formalen) endlichen
Summen

c= E n,o; , n; €7,
endlich

wobei die o; (verschiedene) singulére ¢-Simplizes sind. Diese Summen bilden
in offensichtlicher Weise eine abelsche Gruppe, die wir mit S;(X) bezeich-
nen. Die Elemente von S;(X) heien die singuliren g-Ketten.

Etwas formaler kann man die von einer Menge A erzeugte freie abelsche
Gruppe F(A) wie folgt definieren:

F(A)={f:A—Z; f(a) # 0 nur fiir endlich viele a}.

Identifiziert man dann ein Element a € A mit der Abbildung

faiA — Z
. 1 fallsx =a
v 0 falls 2 # a,

so erhélt man fiir jedes Element f € F'(A) eine Darstellung
f= Z Ngd.
endlich

Fiir ¢ > 0 und ¢ mit 0 < ¢ < ¢ definieren wir nun die Abbildung

Fl . ATl A9

2

(to, ce atq—l) = (t(), cen ,ti_l,O,ti, ce atq—l)-
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Geometrisch bedeutet dies, daB man das Simplex A9~! auf das der Ecke e;
gegeniiberliegende Untersimplex von A? abbildet:

Fy
el /Z e1
F? e
\_/ ‘W
6-() F22 -60

Ist 0 : A? — X ein singuléres Simplex, so wird die i-te Seite von o definiert
durch A
oD =go Fl:ATh X,

Definition Der Rand des singuldren Simplex ¢ ist definiert durch

Durch lineare Fortsetzung erhalten wir den sogenannten Randoperator
9 ¢ SyX) — Si(X)
o nio;) = > ni0(oy).
Satz I1.2.1 000 =0.
Beweis. Unmittelbar aus der Definition folgt
FIFIT =FIFD! fallsj <.
Es geniigt zu zeigen, daf fiir ein Simplex o gilt 0 o d(o) = 0. Es gilt:

000) = S (=1)i 9o

.
[e=]

q q—1
= L (oo R ok
1= 7=
q . 4 g1 q—1 L 4 -1
= Y (D)oo (FIFL )+ X (~1)Hao (FIF™)
J<i=1 0=:<jy
= 0.

Die letzte Gleichheit folgt, wenn man im ersten Summanden i/ = j und
7 =1—1 setzt. O
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Definition (i) Eine ¢g-Kette ¢ heifit ein ¢-Zykel, falls 9(c) = 0 gilt.
(ii) Eine g-Kette ¢ heifit ein ¢- Rand, falls es eine (¢+ 1)-Kette ¢’ gibt, so daB
c=0(cd).

Wir setzen nun
Zy(X) = {c;cist g-Zykel} =ker (9 : Sg(X) — Sg—1(X))
By(X) = {ecist ¢-Rand} =im (0 : Sq1(X) — y(X)).

Nach Satz (I1.2.1) gilt
By(X) C Zy(X).

Definition Zwei g-Ketten c¢1,cz € Sy(X) heiflen homolog (¢1 ~ c2) falls
c1 — ¢y ein g-Rand ist.

Definition Die g-te (singulire) Homologiegruppe von X ist definiert als
Hy(X) = Zy(X)/Bg(X).

Die durch einen ¢-Zykel ¢ definierte Homologieklasse wird im folgenden mit
[c] bezeichnet.

Die oben auftretende Situation ist eine Standardsituation in vielen ma-
thematischen Theorien. Hieraus hat sich die homologische Algebra entwickelt.

Definition (i) Eine graduierte (abelsche) Gruppe ist eine Familie (G;)iez
abelscher Gruppen mit komponentenweiser Addition.

(ii) Sind G und G’ graduierte abelsche Gruppen, so besteht ein Homomor-
phismus vom Grad r aus einer Familie von Homomorphismen f; : G; —
Gitr.

(iii) Eine graduierte Untergruppe von G ist eine graduierte Gruppe (H;)icz,
so dafl H; Untergruppe von G; ist. Der Quotient G/H wird definiert durch
(G/H); = G;/H;.

Ist f : G — G’ ein Homomorphismus graduierter Gruppen, so kann man
in offensichtlicher Weise das Bild im f und den Kern ker f definieren. Dies
sind Untergruppen von G’, bzw. G.

Definition Ein Kettenkomplez (C,0) ist eine graduierte Gruppe (C;)iez
zusammen mit einem Homomorphismus 0 : ¢ — C vom Grad —1 fiir den
0? = 0 gilt.

Ist (C,0) ein Kettenkomplex, so haben wir also eine Sequenz von Ho-
momorphismen

8+1 8 8—1
...4_>0q_q>cq_1q_>cq_2_>...

mit 8q8q+1 =0.
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Definition (i) Ist (C,0) ein Kettenkomplex so definiert man
Z.(C) =kerd, B,(C)= im 0.

(ii) Die Homologie des Kettenkomplexes (C, 0) ist
H.(C) = Z.(C)/B.(C).

Nach Konstruktion ist die Homologie H.(C) eine graduierte Gruppe H,(C) =
(Hq(C))qgez mit

Hy(C) = Z4(C)/By(C) = ker 9,/ im 9y

Definition Ein Homomorphismus ® : (C,9) — (C’,9") von Kettenkomple-
zen (oder auch eine Kettenabbildung) ist ein Homomorphismus ® : C' — C’
vom Grad 0 mit ®od =9 o P.

Analog definiert man auch Kettenabbildungen beliebigen Grades. Eine
Kettenabbildung @ : (C,0) — (C’, ') liefert ein kommutatives Diagramm

811
Cq q—1
%i l%l
8/
/ q
c 1

und man sieht sofort, dafl
O(Z.(C)) C Z(C), ®(B«(C)) C B(C).
Insbesondere induziert ® daher einen Homomorphismus
P, : H,(C) — H.(C)

graduierter Gruppen vom Grad 0.

Ist X ein topologischer Raum, so haben wir zuvor eine graduierte Grup-
pe Si(X) = (S¢4(X))gez definiert (wir setzen So(X) = 0 fur ¢ < —1).
Zusammen mit dem Randoperator O erhalten wir einen Kettenkomplex
(S«(X),0) und die zugehérigen Homologiegruppen sind die singuléiren Ho-
mologiegruppen des Raumes X. Ist f : X — Y eine stetige Abbildung und
o: A7 — X ein singulires ¢g-Simplex, so ist

Julo)=foo: A1 =Y

ein singuléres ¢g-Simplex von Y. Durch lineare Fortsetzung erhalten wir einen
Homomorphismus vom Grad 0:

Sy 0 Se(X) = S, (Y).
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Dies ist sogar eine Kettenabbildung, da d0fx (o) = f#(00). Letztere Gleich-
heit folgt sofort aus

(foo)oF!= fo(coF}).
Damit induziert fu einen Homomorphismus
fo: Ho(X) — H(Y).
Unmittelbar aus der Konstruktion folgt, daf3

(1) (idx)« = idm,(x)
(2) (fog)s = f«o g fiir stetige Abbildungen g: X — Y, f:Y — Z.

Das heifit, dafl wir einen Funktor konstruiert haben von der Katego-
rie bestehend aus topologischen Rdumen und stetigen Abbildungen in die
Kategorie der Kettenkomplexe und Kettenabbildungen. Als unmittelbare
Anwendung ergibt sich

Satz I1.2.2 Ist f : X — Y ein Homdomorphismus, so ist fi. : Hi(X) —
H.(Y) ein Isomorphismus.

Beispiel Wir berechnen die Homologie des einpunktigen Raums X = {z}.
Fiir jedes ¢ > 0 gibt es genau ein Simplex o, : A? — X, némlich die
konstante Abbildung. Also ist

- Z fir ¢>0
Se(X) = {0 fir ¢ <DO.

Fiir ¢ > 0 gilt O'C(Ii) = 04-1, also

q q
by =3 (1) o) = 3 (~1) 04y
i=0 i=0
d.h.
9 _ og—1 fiir g gerade ¢ >0
% = 0 fiir ¢ sonst.

Damit wird der Kettenkomplex

-2 S ({2)) - Si({x)) — So({a}) — 0

zu

0 zid 7 0 7214,2 972 %y,

also
Z fir ¢g=0
Hy({z}) = { 0 fir ¢#0.
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Satz I1.2.3 Ist X ein nicht-leerer, wegzusammenhdngender topologischer
Raum, so gilt Hy(X) = Z.

Beweis. Wir betrachten
$1(X) =% Sp(X) — 0.

Es gilt So(X) = Zp(X) = F(X) die freie abelsche Gruppe, die durch die
Punkte von X erzeugt wird, d.h. die Elemente in Zy(X) sind von der Form

z= Z ngxr, fast alle n, = 0.
zeX

Die Gruppe S1(X) ist die freie abelsche Gruppe, die von den Wegen o :
I — X erzeugt wird. Ist o7 ein Weg von zg nach x1, so gilt

do1 = x1 — xo.
Wir betrachten nun den Augmentionshomomorphismus
e:5X) — Z

zeX zeX
Da X # (), ist € surjektiv.
Behauptung By(X) = kere.
(i) Bo(X) C kere folgt sofort, da edo; = e(x1 — xp) = 0.
(ii) Es sei ¢ =) ngz mit (c) = > ng, = 0. Dann gilt

c= anx — anxo = an(x —xzp) =0 (anax) € By(X)

wobei 0, ein Weg von xy nach x ist.

Damit folgt sofort
Hy(X) = Zy(X)/By(X) =Z.

Man kann nun den Kettenkomplex

-2 85 (x) L s1(xX) -2 Se(X) L0

abandern zu
08 (X) L s1(x) L Sp(X) S Z — 0

und erhélt immer noch einen Kettenkomplex (da €0 = 0 fir alle Riume X
gilt). Man spricht dann vom augmentierten singuldren Kettenkomplex.
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Definition Die Homologiegruppen ﬁq(X ) des augmentierten singuléiren
Kettenkomplexes heiflen die reduzierten singuldren Homologiegruppen von
X.

Bemerkung Es gilt H,(X) = Hy(X) fiir ¢ > 0. Ist X wegzusammen-
héngend, so gilt Hyo(X) = 0.

Man kann jeden topologischen Raum in seine Wegzusammenhangskom-
ponenten zerlegen: Nennt man zwei Punkte x,y € X #quivalent (z ~ y),
wenn es einen Weg von x nach y gibt, so definiert dies eine Aquivalenz-

relation, und damit eine disjunkte Zerlegung X = |J X, in wegzusam-
acA
menhingende Komponenten X,,. Da die Simplizes A? wegzusammenhéngend

sind, ist jedes singulére Simplex o : A — X in einer Komponente X, ent-
halten. Es ergibt sich sofort, da8 H,(X) die direkte Summe der Homologie-
gruppen H,(X,) ist, d.h.

Hy(X) = D Hy(Xa).
acA

Ist die Anzahl der Wegzusammenhangskomponenten r, so gilt insbesondere

Ho(X) = 7Z", Ho(X) =2z "

3 Homotopieinvarianz der singulidren Homologiegruppen

Wir hatten jeder stetigen Abbildung f : X — Y Homomorphismen f, :
H,(X) — Hy(Y) zugeordnet. Ziel dieses Abschnitts ist der Beweis von fol-
gendem wichtigen

Satz I1.3.1 Sind f,g: X — Y homotope Abbildungen, so gilt f. = gx.

Daraus ergeben sich unmittelbar:

Korollar 11.3.2 Sind X und Y homotopie-dquivalent, so sind die Homolo-
giegruppen isomorph, d.h. Hy(X) = Hy(Y') fir alle q.

Beweis. Es gibt Abbildungen f: X — Y, g:Y — X mit go f ~idyx, fog ~
idy also idy,(x) = (g0 f)« = g« 0 fu sowie idy, vy = (f o g)x = faogs. O

Korollar I1.3.3 Ist X zusammenziehbar, so gilt Hy(X) =0 fir ¢ > 0 und
Ho(X) = Z.

Beweis. X ist homotopie-dquivalent zu einem Punkt z. O

Vor dem Beweis von Satz (I1.3.1) benttigen wir noch einige Vorberei-
tungen.
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Definition Es seien (C,9) und (C’,9") Kettenkomplexe. Zwei Kettenab-
bildungen f,g : C — C’ heiflen kettenhomotop, wenn es einen Homomor-
phismus K : C — C’ vom Grad 1 gibt, mit @ K + K0 = f — g. Man nennt
K dann eine Kettenhomotopie von f und g.

Lemma I1.3.4 Fiir zwei kettenhomotope Abbildungen f,g : C — C' gilt
fx = gx.

Beweis. Wegen

fi—ge=(f—9)x= (a/K"‘Ka)*
geniigt es zu zeigen, daf ('K + K9), = 0 ist. Dies folgt, da fiir z € Z,(C')
gilt

('K + K0)(z) = 0'K(z) € B,(C").

0

Es ist an dieser Stelle sinnvoll, zunéchst den Spezialfall zu behandeln,
dafl X eine konvexe Teilmenge des R™ ist.

Satz I1.3.5 Ist X eine konvexe Teilmenge des R", so gilt Hy(X) = 0 fiir
q >0 und Hy(X) =Z.

Beweis. Da X zusammenhéngend ist, gilt Ho(X) = Z nach Satz (11.2.3). Es
geniigt nun, fiir ¢ > 1 eine Abbildung K : Sy(X) — Sg41(X) mit 0K+ K90 =
idsq( X) 71 konstruieren. Es gilt dann némlich id, = (0K + K0), = 0. Wir
wihlen zg € X fest.

Ist 0 : A7 — X ein singulires ¢-Simplex, so definieren wir K (o) :
AT — X wie folgt:

t t .
K(o)(to, .- tgr1) = (1=to)o (ﬁ""’ flj&)) oo firto <1
o fiir tog = 1.

X

€9 (&) 0(0)

€0
o

28



Die Abbildung K (o) ist stetig, moglicherweise mit Ausnahme des Punk-
tes (1,0,...,0). Die Stetigkeit in diesem Punkt folgt, da

lim ||K(O‘)(t0,...,tq+1)—$0”:

to—1
. t
= Jim (L= to)o (25, {255 ) = (1= to)ao
: t tg+1
< im0 —to) (llo (o 5252) 1+ ool
= 0,

wobel wir im letzten Schritt verwenden, dafl der Ausdruck in der Klammer

beschrénkt ist.

Damit ist K (o) : A9t! — X ein singuliires (g+1)-Simplex mit K (0)(©) =
o (nach Konstruktion). Durch lineare Fortsetzung erhalten wir einen Homo-
morphismus

K S4(X) = Sy (X).
Firg>1und 1 <7< g+ 1 gilt nun
(1) K(0)® = K(c(1),
Dies rechnet man sofort nach:

K@) D(to,...,t)) = K(0)(tos--- ti1,0,ti, ... tq)

= (1 - tO)J (1?1507' ) {«z:t10707 1?1}07' SR 1iqt0> + tozo
bzw.
K@) D(ty,..ot) = (1= to)o (e £5) + oo
= (1_t0)0 (ﬁ—ltoa afz:t10707 1Et0,...,131t0)+t0$0.
Daraus folgt
q+1 ) )
K(o) = > (-1)'K(a)®
T’ q+1 . ) q+1 ) )
= [£@0+ T vme0] - [E e
i=1 i=1
q ) .
(~1) K (o)
§=0
= o— K(0o)

wobei wir beim letzten Gleichheitszeichen Formel (1) verwendet haben. Ins-

gesamt erhalten wir
0K + K0 =id.
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Beweis von Satz (11.3.1): Nach Lemma (I1.3.4) geniigt es zu zeigen, daf die
Kettenabbildungen f4, g4 : S(X) — S(Y) kettenhomotop sind.
Hierzu betrachten wir fiir t € I die Abbildung

hy: X — XxI1
x — (x,t).

Durch {h;} wird eine Homotopie zwischen hg und h; gegeben.

Behauptung Es geniigt zu zeigen, dafl (hg)x und (hi)4 kettenhomotop
sind.

Die Behauptung zeigt man wie folgt: Es sei F' : X x I — Y eine Ho-
motopie zwischen f und g. Dann ist F o hg = f und F o hy = g. Falls die
Abbildungen (ho), (h1)g : S«(X) — S«(X x I) kettenhomotop sind, gibt
es eine Kettenhomotopie K : S, (X) — S.«(X x I), d.h.

OK + KO = (ho)# — (h1)#-
Anwendung von Fl ergibt
Fy(OK + K0) = Fy(ho) — Fy(h)y
und damit
O(FuK)+ (FK)0 = fu — g4,

d.h. Fix K ist eine Kettenhomotopie zwischen fix und gx. Dies ergibt die
Behauptung.

Unser Ziel ist es nun, zu jedem Raum X und jedem ¢ > 0 ein K = Kx :
Sq¢(X) — Sg41(X x I) zu konstruieren, so daf gilt:

(a) OK + K0 = (ho)# — (h1)%
(b) Ist ¢ : W — X eine stetige Abbildung, so ist das folgende Diagramm

kommutativ:

Si (W) -2 g (W x )

¢#l l(s@xid)#

Si(X) 52 8 (X x I).

Wir konstruieren Kx induktiv.
Induktionsschnitt Wir nehmen an, daf fiir alle Rdume X und alle i < ¢

ein Homomorphismus Kx : S;(X) — S;4+1(X x I) mit den Eigenschaften (a)
und (b) existiert.
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Zunéchst geniigt es, Kx auf den singuldren ¢—Simplizes zu definieren.
Es sei 0 : A? — X ein solches g—Simplex. Ist ¢, das ¢—Simplex auf A?, das
durch die Identitdt id : A? — A? gegeben wird, so ist o4(dy) = 0. Wenden
wir nun die Eigenschaft (b) auf die Abbildung ¢ : A — X an, so muf
gelten:

(2) Kx(0) = Kx(04(3)) = (0 x id)4(Kad(d9)).

D.h. also, da§ Kx durch Kaqs und (b) bereits festgelegt ist. Es sei nun 7 ein
singuldres ¢—Simplex auf AY. Nach Induktionsannahme ist Kaq(O7) erklért.
Wir betrachten nun

(3) ¢ = (ho)#(1) — (h)4(7) — Kaa(97) € Sy(AT < 1),

wobei hg und h; beziiglich A? zu verstehen sind. Dann gilt

dc = 0(ho)y(7) = O(h1)4(7) — OKaa(O7)
= (h0)#(97) = (h1)%(07) = [(h0)(97) — (h1)%(07) — Kaa(9(97))]
— KAq(a )

= 0.

Also ist ¢ ein ¢-Zykel in der konvexen Teilmenge A4 x I C R9+2. Nach Satz
(IL.3.5) ist ¢ € B4(AY x I), d.h. es gibt ein b € Sy41(A? x I) mit 9b = c. Wir
setzen nun

Kpaa(T) :=b.
Dann gilt nach obiger Definition und wegen (3) dafl
OKna(T) + Kaa(0T) = (ho)#(7) — (h1) (7).

Es bleibt nun noch, Ko zu definieren. Dann haben wir Kaq¢ und somit auch
Kx festgelegt. Zu der Kette

¢ = (ho)#(d0) — (h1)#(do)
betrachten wir ein singulires 1-Simplex in A® x I mit 9b = ¢ und definieren
Kpo(dp) = 0.

Damit kénnen wir Kaq fiir alle ¢ und auch Kx fiir alle Rdume X erkléren.
(Beachte, daf§ die Abbildungen Ka¢ und damit auch Kx nicht eindeutig
bestimmt sind.)

Wir miissen nun noch zeigen, dafl die Eigenschaften (a) und (b) erfiillt
sind. Um (a) zu beweisen, betrachten wir ein singulires ¢—Simplex o : A? —
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X. Es gilt

0Kx(0) +Kx(00)=0Kx (o4
= 0(o x id)xKaa(dq
= (O‘ X id)#aKAq(

= (0 xid) (0K ad(dq) + Knad(dg))
= (0 % id) (o) (6g) — (1) (65)
= ( a)

= (

(9g)) + Kx (004(3,))
+ Kx (04(06q))
(O‘ X 1d)#KAq(85q)

\_/\_/

ho)#(0#(dq)) — (h1)#(o%(dq))
ho)#(0) = (h1) (o).
Die Eigenschaft (b) gilt, da wegen (2) fiir ¢ : W — X und jedes ¢—Simplex
o: AT —W:
Kx(pgo) = Kx(poo)=(poo xid)yKad(d,)
((p xid)% o (o x id)4) Kaa(dq)
= (pxid)xKw(o).

Wir schlielen diesen Abschnitt mit einem weiteren Korollar ab.

Definition (i) Eine Teilmenge A C X heifit ein Retrakt von X, falls es
eine stetige Abbildung r : X — A mit r o ¢ = id4 gibt, wobei i : A — X die
natiirliche Inklusion ist. Die Abbildung r heifit dann eine Retraktion von X
auf A.

(ii) A heifit Deformationsretrakt von X, wenn zusétzlich i o r ~ idx gilt.

Korollar I1.3.6 Ist A ein Deformationsretrakt von X, so gilt Hy(A) =
Hy(X) fir alle q.

Beweis. Dies folgt aus Satz (11.3.4), da i : A — X eine Homotopiediquivalenz
ist. U

An dieser Stelle soll noch kurz auf den Zusammenhang zwischen er-
ster Homologiegruppe und Fundamentalgruppe eingegangen werden. Ein
Weg 0 : I — X mit 0(0) = o(1) = z¢ definiert eine Homotopieklasse
[o] € m1 (X, zp), kann aber auch als singuldrer 1-Zykel auf X aufgefafit wer-
den. Die zugehérige Homologieklasse sei mit (o) € Hy(X) bezeichnet.

Ist G eine Gruppe, so wird der Kommutator G’ von G wie folgt definiert:

= ({ghg”'h™Y; g,h € G}).

Man sieht leicht, dal G’ ein Normalteiler von G, und dafi G/G’ abelsch ist.
Man kann G’ auch dadurch charakterisieren, daf es der kleinste Normalteiler
von G ist, fiir den G/G’ abelsch ist.
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Satz I1.3.7 Die Abbildung
h: m(X,20) — H1(X),[o] — (o)

st wohldefiniert und ein Homomorphismus. Ist X wegzusammenhdngend, so
ist h surjektiv und der Kern von h ist genau der Kommutator von m (X, zg).

Man nennt h den Hurewicz-Homomorphismus. (Es gibt auch dhnliche
Vergleichssiitze fr die hoheren Homotopie- und Homologiegruppen.) Ist X
wegzusammenhéngend, so ist die erste Homologiegruppe H;(X) gerade die
abelsch gemachte Fundamentalgruppe 71 (X, xg).

4 Relative Homologiegruppen

Wir betrachten nun Paare (X, A), wobei A ein Unterraum von X ist (d.h.
A C X ist mit der Relativtopologie versehen). Dann kénnen wir ein sin-
gulires g—Simplex o : A7 — A auch als ein ¢—Simplex in X auffassen. Da
dann auch do eine Summe von (¢ — 1)-Simplizes in A ist, erhalten wir ein
kommutatives Diagramm

> S,(4) O 8y1(4)
) Sy 1(X)

2 Sq(lX
|

|

e S4(X)/Sg(A) —L S1(X)/Sgo1(A) —> -

wobei & der induzierte Homomorphismus ist, also &'(¢) = (dc). Es gilt
(0")? = 0, also kénnen wir auch von dem unteren Komplex die Homologie
betrachten.

Definition Die Homologiegruppe
Hy(X, A) i= Hy(5:(X)/5(4))

heifit die g—te relative singulire Homologiegruppe von X beziiglich A (bzw.
mod A).

Man kann diese Homologiegruppe auch anders definieren. Dazu betrach-
ten wir nochmals das Diagramm



wobei 7 die Projektion ist. Ist ¢ € Sy(X), so da8 J'(¢) = 0, so gilt auch
(0c) =0, also Oc € Sq—1(A). Dies fithrt auf die Gruppe

Zy(X,A) :=={ce Sy(X); dc e S4_1(A)}.

Wir nennen die Elemente von Z,(X, A) relative g-Zykeln von X beziiglich A.
Andererseits gilt fir ¢ € S;(X), daB ¢ € imd' genau dann, wenn es ein
d € 54(A) gibt, mit ¢ — ¢ € im0 = By(X). Wir betrachten also

By(X,A) :={c€ Sy(X);c— € By(X) fiir ein ¢ € S,(A)}
Die Elemente in B, (X, A) heilen relative g-Rdnder von X beziglich A.
Lemma IL4.1 H,(X,A) = Z,(X, A)/B,(X, A).
Beweis. Es gilt nach obigem

kerd = Z,(X
B,

imd =
Damit ergibt sich
Hy(X,A) =kerd'/imd = Z,(X, A)/By(X, A).
O
Beispiel Wir betrachten den Zylinder X = I x S' mit A = {0} x STU{1} x
S1. Ein relativer 1-Zykel ist ein Weg mit Anfangs- und Endpunkt in A, also

etwa eine Mantellinie. Beispiele fiir relative 1-Rénder sind alle horizontalen
Kreise.

Ist A =0, so hat man offensichtlich S;(A) = 0, also H,(X) = Hy(X,0).

Definition Eine Abbildung f : (X, A) — (Y, B) von Paaren ist eine stetige
Abbildung f: X — Y mit f(A) C B.

Eine solche Abbildung induziert Homomorphismen

fi 2 Sq(X) = 54(Y), f(Se(A)) € 54(B)
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und damit auch Homomorphismen
f* : Hq(X7 A) - HQ(Y7 B)
wobei wieder
ide =id, (go f)x=g«o fs
gilt.

Definition Zwei Abbildungen f, g : (X, A) — (Y, B) heiflen homotop (als
Abbildungen von Paaren), wenn es eine Abbildung

F:(XxI,AxI)— (Y,B)
gibt mit F(z,0) = f(x), F(z,1) = g(x).

Aus der Definition folgt, daf fiir festes ¢ fiir die Abbildung f;(z) = F(x,t)
gilt, daB8 fi(A) C B, d.h. f; : (X, A) — (Y, B) eine Abbildung von Paaren
ist.

Satz I1.4.2 Sind die Abbildungen f,g : (X, A) — (Y, B) homotop als Ab-
bildung von Paaren, so gilt f, = g, : Hy(X, A) — Hy(Y, B).

Beweis. Dies folgt im wesentlichen aus dem Beweis von Satz (I1.3.1). Die
dort betrachteten Abbildungen hg, hy : X — X x I kénnen als Abbildungen
von Paaren ho,h; : (X, A) — (X x I, A x I) aufgefait werden. Fiir die
Homomorphismen

K Sy(X) = Sp1(X x I)

folgt nach Konstruktion, da8 K(S;(A)) C Sy4+1(AxTI) gilt. Deshalb induziert
K eine Kettenhomotopie

K ¢ 5,(X)/S4(A) = Syur(X x 1)/ Sqia(A x I).
O

Beispiel Den Unterschied zwischen Homotopie von Abbildungen und Ho-
motopie von Abbildungen von Paaren kann man an folgendem Beispiel ver-
anschaulichen: Sei X = [0,1], 4 = {0,1},Y = S, B = {1}. Die Abbildungen

f:(X,A) — (V,B), z +— €2
g:(X,4) — (V\B), z — 1

sind absolut homotop, nicht aber homotop als Abbildungen von Paaren.
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5 Die lange exakte Homologiesequenz

FEine Sequenz von abelschen Gruppen

fi—1

'—>Gi—1—>Gii’ il —

heifit exakt, falls im f;_1 = ker f;, fiir alle ¢ gilt. Eine exakte Sequenz der
Form
0—C L D2 E—0

heifit auch eine kurze exakte Sequenz. Dies ist dquivalent dazu, dafl f injek-
tiv, g surjektiv und im f = ker g ist.

Eine kurze exakte Sequenz von Kettenkomplexen ist eine Sequenz von
Kettenkomplexen

0—C L D2 E 0
so daf} fiir alle ¢ die Sequenz
f g
0 —Cy—Dy — E;—0
eine kurze exakte Sequenz von Gruppen ist.

Satz 11.5.1 FEine kurze exakte Sequenz 0 — C — D — E — 0 von Ketten-
komplezen induziert eine lange exakte Sequenz von Homologiegruppen

* x O« *
Lo Hy(D) 25 Hy(B) 2 Hy o (C) L5 Hya(D) = -
Definition Man nennt 0, die Verbindungshomomorphismen.
Beweis. Durch die Abbildungen f und g erhalten wir Homomorphismen
H,(C) L H,(D) 2 H,(E)
1. Schritt: Wir zeigen zunéchst, dafl dieses Tripel exakt ist. Da g, o f, =

(go f)« = 0 folgt im f, C kerg,. Um ker g, C im f, zu zeigen, betrachten
wir das kommutative Diagramm
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0 Cot1 ! Dyi1 —2> Ege1 —=0
P P P

0—>Cq—t>Dy 2 Ey—0
P P P

0 Cq—1 ! Dy 1 —FE;1——0

dessen Zeilen exakt sind. Es sei nun d € Z,(D) mit g.[d] = 0. D.h. es gibt
e € Eyp1 mit e = g(d). Da g surjektiv ist, gibt es ein d' € Dgyq mit
g(d') = e. Dann gilt:

g9(d —ad') = g(d) — g(dd') = g(d) — dg(d') = de — e = 0.

Also finden wir ein ¢ € Cy mit f(¢) = d — dd'. Wir behaupten, daf§ ¢ €
Z4-1(C). Dies folgt, da f(dc) = 9(f(c)) = 0d — 0(9d') = 0. Damit definiert
c eine Homologieklasse [c] € Hy(C') und es gilt:

filel =1d - od'] = [d].

2. Schritt: Wir konstruieren nun den Verbindungshomomorphismus. Dazu
betrachten wir ein Element [z] € H,(E) représentiert durch einen ¢-Zykel
2 € Zy¢(E). Da g surjektiv ist, gibt es ein d € D, mit g(d) = z. Es gilt

g9(0d) = 0g(d) =0z =10
d.h. wir kénnen ein ¢ € Cy_; finden mit f(c) = 9(d). Wir behaupten, daf ¢
sogar ein (¢ — 1)—Zykel ist, d.h. dc = 0 gilt. Dies folgt aus
f(0c) =0f(c) =0(dd) =0

und der Injektivitdt von f. Der Verbindungshomomorphismus soll dann de-
finiert werden durch

0. HyE) — Hya(O).
[2] = [d]
Dazu mufl man zeigen, dafl die obige Konstruktion wohldefiniert ist auf
dem Niveau der Homologieklassen. Es seien z,z € Z,;(E) homolog, d.h.
z — 2z’ = Oe fiir ein e € Egy;. Ferner seien d,d’ € D, mit g(d) = z,9(d') = 2/
und ¢, € Cy—1 mit f(c) = dd, f(c') = ad.
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Behauptung ¢~ ¢.

Da g surjektiv ist, gibt es ein a € Dy4q mit g(a) = e. Damit gilt

g(d—d' —0a) = g(d) = g(d') — g(da)
= z—2'—0g(a)
= 2—2' —0e=0.

Also gibt es ein b € Cy mit f(b) =d — d' — da. Nun gilt

F(Ob) = Of(b) =0d — od'
= fle) = f(d)
= fle=2).

Wiederum aus der Injektivitit von f folgt ¢ — ¢’ = 9b, also ¢ ~ (.

Die Homomorphismeneigenschaft folgt unmittelbar aus der Konstruk-
tion. Wir haben also nun die lange Homologiesequenz konstruiert. Es bleibt,
ihre Exaktheit nachzupriifen.

3. Schritt: Wir haben noch die Exaktheit an den Stellen H,(E) und H,—1(C)
zu iiberpriifen.

(1) Exaktheit bei Hy(E) :

(la) im g, C ker Ox: Es sei d € Zy(D). Dann wird 0,g+[d] durch ein ¢ € Cy_;
mit f(c) = 0d = 0 représentiert. Da f injektiv ist, folgt ¢ = 0.

(1b) ker 0, C im g, : Wir betrachten z € Z,(E) mit 0,[z] = 0. Es sei d € D,
mit g(d) = z und ¢ € Cy—1 mit f(c) = dd, also [c] = Oi[z] = 0. Also
gibt es a € Cy mit da = c. Dann gilt:

o(d — f(a)) = 0d — f(9a) = (c) — f(c) = .
D.h. d — f(a) € Z4(D). Andererseits gilt:
g(d = f(a)) = g(d) = g(f(a)) = =

dh. g.[d - f(a)] = [2):

(2) Exaktheit bei H,—;(C): Dies wird mit vollig analogen Argumenten
bewiesen.

O

Satz I1.5.2 Der Verbindungshomomorphismus ist natirlich in folgendem
Sinn: Ist
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0—>Cc—tsptop oy

LA
/ f/ / g, /
0 C D E 0
ein kommutatives und exaktes Diagramm von Kettenkomplexen, so ist auch
das Diagramm

(I(D/) - Hq(E/) — qfl(C”) i> qfl(D/) o ...

kommutativ.

Beweis. Dies folgt aus der Konstruktion des verbindenden Homomorphis-
mus. U

Ein Unterkomplex eines Kettenkomplexes (C, 0) ist eine graduierte Un-
tergruppe D von C mit (D) C D. Dann ist D zusammen mit der Ein-
schrankung von 9 auf D selbst ein Kettenkomplex. Wir schreiben (D, ) C
(C,0). In dieser Situation erhalten wir in natiirlicher Weise auch einen Quo-
tientenkomplex (C/D,d') mit (C/D), = Cy/D, und d'¢ = Jc. Dies liefert
eine kurze exakte Sequenz von Kettenkomplexen

0—D-5C-5C/D—0

wobei ¢ die Inklusion und 7 die Projektion bezeichnet. Dies wiederum liefert
eine lange exakte Homologiesequenz

. — Hy(D) - H,(C) = H,(C/D) 25 H,_1(D) — -

wobei

a,[e] = [9¢].

Wir kénnen diese Uberlegungen nun speziell in der Situation anwenden,
wenn (X, A) ein Raumpaar ist. Die exakte Sequenz

0 — S.(A) £ 5,(X) 25 §.(X)/Su(A) — 0
liefert eine lange Homologiesequenz

D Hy(A) 25 Hy(X) 25 Hy (X, A) 25 Hyy(A) — -
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Dabei ist der Verbindungshomomorphismus wie folgt definiert: Fiir z €
Zy(X, A) gilt 0,[z] = [0z].

Ebenfalls aus der langen exakten Homologiesequenz liest man ab, dafl
ix 1 Hi(A) — H,(X) genau dann ein Isomorphismus ist, wenn H, (X, A) =0
ist.

Insbesondere folgt:

Satz I1.5.3 Ist A ein Deformationsretrakt von X, so ist H. (X, A) = 0.

Die lange exakte Homologiesequenz von Paaren ist natiirlich in folgen-
dem Sinn: Ist f : (X, A) — (Y, B) eine stetige Abbildung von Paaren, so
kommutiert das folgende Diagramm:

——>Hy(A) —= Hy(X) ——= Hy(X,A) —=H; 1(A) ——---

L |

> Hy(B) — Hy(Y) —— Hy(Y, B) — Hy-1(B) — -
Ist (X, A, B) ein Tripel von Réumen, so definiert die exakte Sequenz
0 — 5.(A)/5:(B) = 5.(X)/S5:(B) — 5.(X)/5.(A) = 0
eine lange exakte Homologiesequenz
= Hy(A, B) = Hy(X, B) — Hy(X, A) = Hy—1(A, B) — -+,
die in der naheliegenden Weise natiirlich ist.

Wir schlieflen diesen Abschnitt mit folgendem Beispiel, welches spter bei
der Berechnung der Homologiegruppen der Sphéren niitzlich sein wird. Sei

X = Dt={xeR" 23+...+22<1}
A = Sv1=9D".

Da D" konvex ist, folgt nach Satz (IL1.3.5), dal Hy(D") = 0 fiir ¢ > 1. Also
folgt aus der langen Homologiesequenz des Paares (D", S"1), daf

O : Hy(D™, 8" 1) = H, 1(S™!) fiir ¢ > 2.
Fiir ¢ = 1 erhalten wir aus der langen Homologiesequenz

0 — Hy(D", 8" ) 2 Hy(S™1) 2 Ho(D™) — 0.
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Fiir n > 2 ist S"~! zusammenhiingend und daher ist i, : Ho(S" 1) —
Hy(D"™) ein Isomorphismus. Damit folgt

H{ (D", 8" ) =0 fiirn>2.
Fiir n = 1 ist S° = {1, -1}, also
Ho(S°) = 2°
und
Hy (D', 8% = keri, = Z.
6 Der Ausschneidungssatz

Der Ausschneidungssatz ist ein wesentliches Hilfsmittel bei der Berechnung
von Homologiegruppen. In dieser Form gilt der Ausschneidungssatz nur in
der Homologie -, nicht jedoch der Homotopietheorie.

Definition Essei (X, A) ein Paar topologischer Rdume. Man sagt, ein Un-
terraum U C A kann ausgeschnitten werden, wenn die natiirliche Inklusion
i:(X—-UA-U)— (X,A) einen Isomorphismus

i HY(X —U,A—-U) — Hy(X, A) fiir alleq
induziert. Man nennt dann ¢ : (X —U,A—U) — (X, A) auch eine Aus-

schnetdunyg.
()

Theorem I1.6.1 (Ausschneidungssatz) Ist (X, A) ein Paar topologischer

— [e]
Réaume, und gilt U CA, so kann U ausgeschnitten werden.

Wir werden den Beweis dieses Satzes zuriickstellen und zunéchst Anwen-
dungen diskutieren. Wir nennen ein Paar (Y, B) C (X, A) einen Deforma-
tionsretrakt, falls es eine stetige Abbildung r : (X, A) — (Y, B) gibt mit
roi=idy,p) und ior =~ id x 4). Dann induziert die Inklusion i : (Y, BF —
(X, A) Isomorphismen ¢ : H,(Y,B) = H.(X, A).

Satz I1.6.2 Es sei V C U C A. Kann V ausgeschnitten werden, und ist
(X —U,A—-U) ein Deformationsretrakt von (X —V, A—V), so kann auch
U ausgeschnitten werden.
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Beweis. Wir betrachten die Inklusion
i (X -UA-U)— (X-V,A-V)
Da (X — U, A — U) Deformationsretrakt von (X — V, A — V) ist, gilt
ih Hy(X —U,A-U) 2 H, (X -V,A-V) fiir alle q.
Da V' ausgeschnitten werden kann, ist
Hy(X -V,A-V)= Hy(X,A) fir alle q.

Hintereinanderschaltung der beiden Isomorphismen liefert die Behauptung.
O

Wir wollen nun die Homologiegruppen der Sphéren berechnen, und be-
trachten dazu

Sto= {zeR" o4+ 422, =1}
EY = {rx eS8 xp41 >0}
E" = {ze8" zp41 <0}

Dann ist
_ on—1
EYNE" =8"

wobei S”1 als ” Aquator” von S™ interpretiert werden kann. Die Teilmenge

STL

By

U:=E" = {z € 8" zpp1 <0}

ist die ”siidliche Hemisphire” (ohne Aquator). Es gilt

E}=8"-U,S"'=E"-U.

Lemma I1.6.3 f?’i kann ausgeschnitten werden, d.h.
it (E7,8" 1) — (", E")

induziert einen Isomorphismus der Homologiegruppen.
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_ (o]
Beweis. Da U = E™ ¢ E™ koénnen wir den Ausschneidungssatz nicht un-
mittelbar anwenden. Deshalb betrachten wir

1
V = {m €S, xp4 < —5}

Da V C lo?ﬁ, konnen wir den Ausschneidungssatz auf V' anwenden. Ferner
ist (S™ — U, E"™ — U) ein Deformationsretrakt von (S™ — V, E™ — V). Nun
folgt die Behauptung aus Satz (11.6.2). O

Die Projektionen auf die ersten n Koordinaten liefern Homdomorphis-
men

p+ . (ESLHSTL—I) N (Dn,Sn_l)
p~: (E™,S" Y — (D" S,
Da D™ C R"™ konvex ist, folgt
Hy(E") = Hy(EY) = Hy(Dy,) = 0 fiir alle ¢ > 1.

Die lange exakte Homologiesequenz des Paares (S™, E™) ist

= Hy(EL) — Hy(S") — Hy(S", E2) — Hya(EL) — -+
und liefert daher
H,(S™) =2 Hy(S",E™) fiir ¢ > 1.
Andererseits gilt
H,(S", E™)

I

Hy(E%, 5" 1) ( nach Lemma (I1.6.3))
H, (D™, S™ 1) ( mittels p;)
Hy(S"71)  (fiir g > 2).

I

1%

wobei der letzte Isomorphismus aus dem im vorigen Abschnitt behandelten
Beispiel folgt, wo wir auch gezeigt haben, dafl

. >
Hl(D”,Sn_l):{O fir n>2

Z fir n=1.
Damit folgt sofort, dafl
0 fir n>1
Hi(S")=4q Z fir n=1
0 fir n=0.

Fiir ¢ > 2,n > 1 folgt ferner

Hy(S") 2 Hy—1(S"7)
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und daher gilt mittels Induktion fiir ¢ > 2

0 fir g#n,qg>2
Z fir q=n.

Hq(Sn) = {
Zusammenfassend erhalten wir:

Satz I1.6.4 (i) Firn > 1 gilt

m o~ ) 2 fir q=0,n
Hy(S") = { 0 sonst
(ii) firn =0 gilt
72 fiir =0
0\ ~v q
Hy(57) = { 0 sonst.

Korollar 11.6.5 Fir n # m haben S™ und S™ wverschiedenen Homotopie-
typ.

Korollar I1.6.6 Es gibt keine Retraktion von D™ auf S™~!.

Beweis. Fiir n = 1 folgt dies, da D' zusammenhiingend ist, aber SY nicht.
Es sein > 1 und r: D™ — S™~! eine Retraktionsabbildung, d.h. eine stetige
Abbildung mit 7 o4 = idgn-1, wobei i : S"~! — D" die Inklusion ist. Dann
erhalten wir ein kommutatives Diagramm

Z=H, 1(5"1h id

und damit offensichtlich einen Widerspruch. O

Korollar 11.6.7 Jede stetige Abbildung f : D™ — D" hat einen Fixpunkt,
d.h. es gibt einen Punkt x mit f(z) = x.

Beweis. Es sei f : D™ — D™ eine Abbildung ohne Fixpunkt. Wir wollen
zeigen, daf es dann eine Retraktion g : D" — S™~! gibt. Die Abbildung
g kann wie folgt definiert werden: Fiir x € D" sei g(z) € S™ ! derjenige
Punkt, an dem der Strahl von f(z) durch x die Sphire S™ ! schneidet
(ziehe Abbildung auf der nchsten Seite).

Da f stetig ist, ist auch g stetig, und es gilt, dafl g eingeschrinkt auf
S7~1 die Identitét ist. O
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Esseinun m > 1 und f : S — S™ eine stetige Abbildung. Ist a €
H,(S™) 2 Z ein Erzeuger, so ist

fela) = ma

fiir ein m € Z. Die Zahl m ist unabhéngig von der Wahl des erzeugenden
Elements «a, da f.(—a) = —ma = m(—a).

Definition Die Zahl m heifit der Grad von f.

Ist n = 1, so kann man f : S' — S! als geschlossenen Weg in S' auffas-
sen. Dann stimmt m mit der Umlaufzahl iiberein.

Um Satz (I1.6.1) zu beweisen, benétigen wir einige Vorbereitungen. Wir
betrachten hierzu eine Uberdeckung il = (U;)ier von X. Ein singuléres g-
Simplex o : A? — X heiit klein von der Ordnung Y, wenn o(AY) C U;
fiir ein ¢ € I gilt. Wir betrachten die Untergruppe Sél(X) von Sg(X), die
von allen g¢-Simplizes erzeugt wird, die klein von der Ordnung i sind. Ist
o klein von der Ordnung i, so ist do € Sé‘_l(X ). Wir erhalten also einen

Unterkomplex S¥(X) von S,(X) mit einer Inklusion
i SHX) — S.(X).

Die Zuordnung, die 4 den Komplex S¥*(X) zuordnet, ist in folgendem
Sinn natiirlich. Es sei U = (V});es eine Uberdeckung eines topologischen
Raums Y und f : Y — X eine stetige Abbildung, so dafl es zu jedem j € J
ein i(j) € I gibt mit f(V;) C Uj(;). Dann gibt es einen Homomorphismus
Fi - ST(Y) — SH(X), so dab

ST(y) £ suix)
(iy #l l(ix)#
S.(Y) —— Si(X)

ein kommutatives Diagramm von Kettenabbildungen ist.

Das wesentliche Hilfsmittel beim Beweis von Satz (I1.6.1) ist der folgende
Satz.
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Satz I1.6.8 Es sei il = (U;);er eine Familie von Teilmengen von X, so dafs

= (l;i)iej eine Uberdeckung von X ist. Dann ist
i+ Hy(S5(X)) — Hy(X)
ein Isomorphismus fiir alle q.

Wir werden dann diesen Satz auf die Uberdeckung {X — U, fi} anwen-
den, und so den Ausschneidungssatz beweisen. Um Satz (I1.6.8) zu beweisen,
benétigen wir noch weitere Vorbereitungen.

Es seien C C R™ und C’ C R™ konvexe Mengen.

Definition Eine Abbildung f : C — C’ heifit affin, wenn fiir alle z,y € C
und 0 <t <1 gilt

fA =tz +ty) = (1 =t)f(x) +1f(y).

Beispiele solcher Abbildungen sind die Einschrankungen affiner Abbil-
dungen F : R® — R™ mit der Eigenschaft, da§ F(C) C C’. In der Tat
kommt jede affine Abbildung f : C' — C’ auf diese Weise zustande, wenn
auch im allgemeinen F' nicht eindeutig bestimmt ist.

Ist f eine affine Abbildung, und ist z,...,z, € C,to,...,t, mit > t; =

1, so gilt
FO tiw) =) tif (w2),

Insbesondere bildet f Simplizes auf Simplizes ab.

Es sei nun C' C R" eine konvexe Teilmenge. Mit A,(C) C S,4(C) bezeich-
nen wir diejenige Untergruppe, die von den affinen singuldren g-Simplizes
o : A? — C erzeugt wird. Die Ecken von A? sind ep,...,e, € RITL. Ein
affines singuléres ¢-Simplex o : A? — C' ist durch die Eckpunkte z; = o(e;)
vollsténdig bestimmt. Wir bezeichnen es mit (xo, ..., z,). In dieser Notation
gilt dann

(zo, ..., zq)(i) = (20, .+, Tie1, Tit1,- - -5 Tq)-
Insbesondere gilt d(A4(C)) C Ay—1(C) und wir kénnen A, (C) als Unter-
komplex von S, (C') auffassen.

Ist o0 = (z0,...,2z4) ein affines singuléres ¢-Simplex in C' und b € C, so
definieren wir ein affines singuléres (¢ + 1)-Simplex durch

Co(o) = (b, z0, 21, ..., %q).

Man nennt Cp(o) den Kegel iiber o (mit Spitze b).
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Cy

Durch lineare Fortsetzung erhalten wir einen Homomorphismus
Gy A4(C) = Ag1(C).
Als néchsten Schritt definieren wir nun eine Kettenabbildung
S Ag(C) — Aq(C)

wobei &’ fiir ”simplicial division” steht. (Wir werden spiéiter noch fiir belie-
bige Rédume X Abbildungen S : S4(X) — S4(X) konstruieren). Die Kon-
struktion geschieht durch Induktion nach ¢. Zunéchst setzen wir &’ = id fiir
¢ = 0. Es sei nun &’ in jeder Dimension < ¢ definiert. Ist o = (x¢, x1, ..., z4)
ein affines singuldres ¢-Simplex in C, so ist der Schwerpunkt von o definiert

durch
To+ T+ ...+ g

qg+1

b=>b(o) =

Damit definieren wir

S'(0) := Cy()(S'(90)).

Diese Konstruktion 148t sich wie folgt veranschaulichen:

Wir zeigen nun, dafl &’ eine Kettenabbildung ist.

Lemma I1.6.9 FEs gilt
S'00=008.

Beweis. Wir machen Induktion nach ¢. Fiir ¢ = 0 ist die Aussage trivial.
Um den Induktionsschritt von ¢ — 1 nach ¢ durchzufiihren, geniigt es, die
Aussage fiir ein affines singuléres ¢-Simplex zu beweisen. Es gilt

08'(o) = 0(Cy(S'(00)))
_ 50(0) — C(8(5'(00))).
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Dabei kommt die Summe dadurch zustande, dal man alle (¢ — 1)-Simplizes
zusammenfafit, die b nicht enthalten, bzw. b enthalten. Das Vorzeichen kommt
dadurch zustande, dafl b jeweils der erste Punkt in einem Simplex der Form
Cp(7) ist. Nach Induktionsannahme gilt nun

dS'(00) = S'(9%*0) = 0.
(]

Da Unterteilung von Simplizes die Homologie nicht verdndern sollte,
kann man erwarten, daf3 S’ kettenhomotop zur Identitét ist. Wir konstruie-
ren im folgenden eine solche Kettenhomotopie, d.h. eine Abbildung

K': Ay(C) — Ag1(C)
mit

OK'+ K'o0=8—id .
Dagzu fithren wir wiederum eine Konstruktion mittels Induktion durch. Fiir
q = 0sei K’ = 0. Wir nehmen nun an, daf§ K’ auf allen Ketten der Dimension
< q bereits definiert ist. Fiir ein affines singuléires ¢—Simplex definieren wir

dann
K'(0) := Cy)(S'0c — 0 — K'00).

Lemma I1.6.10 FEs gilt
OK'+ K'o=8"—id.

Beweis. Wir machen erneut Induktion nach ¢, wobei der Induktionsanfang
q = 0 offensichtlich ist. Um den Induktionsschritt von ¢ — 1 nach ¢ durch-
zufithren, betrachten wir ein affines singulédres ¢—Simplex mit Schwerpunkt
b = b(o). Entsprechend wie im Beweis von Lemma (I1.6.9) gilt:

OK'(o0) = 9Cy(S'oc —0 — K'0o)
= So—0—-K'do—C,d(S'oc—0—K'o).

Unter Zuhilfenahme der Induktionsvoraussetzung folgt
I(S'c—0—K'00) =800 — 9o + K'000 — §'dc + 0o = 0.
O

Wir wollen nun die obigen Konstruktionen auf beliebige topologische
Réume iibertragen. Das Ziel ist es, Homomorphismen S : S, (X) — S4(X)
und K : Sg(X) — Sg41(X) zu konstruieren, die funktoriell sind. Dies heifit
folgendes: Ist f : X — Y eine stetige Abbildung, so sind die folgenden
Abbildungen kommutativ:
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sowie

| |

S(Y) —E Sga(Y),

Hierdurch wird auch klar, wie Sd und K fiir einen Raum X zu definieren
sind (vgl. auch den Beweis von Satz (II1.3.1).) Es sei dazu o : A? — X
ein singuléres ¢g-Simplex. Dann ist o = o04(d,), wobei ¢, : A? — A? die
Identitéat ist. Wir erhalten dann aus obigen Diagrammen:

S(o) = Sou(d) = 04(S(6)) = ox(5'(4)),
K(o) = Koy(dy) = op(K()) = o4(K'(5))-

Lemma II.6.11 (i) 9S = S0
(ii) 0K + K0 = Sd —id.
Beweis. Unmittelbar aus Lemma (I1.6.9) und Lemma (I1.6.10). O

Wir benétigen noch weitere Hilfssétze aus der konvexen Geometrie.

Definition Ist C' C R” eine beschrinkte, abgeschlossene konvexe Menge,
so ist der Durchmesser von C' definiert als

d(C):= sup |z —vyll|
z,yeC
Lemma I1.6.12 Ist o ein q-Simplex mit Ecken xq, ..., x4, so gilt
d(o) = max ||l — a4
0<i,j<gq

Beweis. Es sei © = ) t;x;, sowie 2’ = )" t;x;. Wir lassen x fest und variieren
2’. Dann gilt

|z — /]|

e =2zl = |2t — )l
2t i —agll = Yt — ]

Yotimax||lzr — x| = max||z — x|

IAIA
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Indem wir die Abschétzung wiederholen, nun aber x variieren, erhalten wir
/
||z — 2'|| < max|[[z; — |-
O

Lemma I1.6.13 Es sei o ein affines q—Simplez in R™. Dann hat jedes affine
singuldre Simplex in der q—Kette S'c als Durchmesser héichstens den Wert

qd(o)/q+ 1.

Beweis. Wir machen wieder Induktion nach ¢. Fiir ¢ = 0 ist §’(s) = s und
d(o) = 0. Wir nehmen nun an, daf§ die Behauptung fiir (¢ — 1)-Simplizes
gilt.

Ist 7 ein affines singulires ¢—Simplex in §'(0), so gilt

7= (b(o),u0,. .., Ug—1)

wobei b(o) der Schwerpunkt von o und ug, u1, . .., ug—1 die Ecken eines (g —
1)-Simplex w in &’'(9s) sind. Es sei ¢’ das (¢ — 1)-Simplex in do, das w
enthilt:

Nach Lemma (II.6.11) gilt
d(7) = max{fu; —uy|; [[ui = b(o)][}-

Nach Induktionsannahme gilt

~ (") _ gd(o)

(q
u; — ui|| < dw) <
s = ] < d(w) < L1 < 4207

wobei wir bei der letzten Abschéitzung (¢—1)/q < q/(¢+1) und d(¢’) < d(o)
verwenden.
Ist 0 = (z9,x1,...,%4), so gilt



Nun gilt
[|u; — b(o)|| < ||zj —b(o)]| fur ein j.

Letzteres 1483t sich wie folgt abschéitzen

llz; — b(o)]| = ||xj—q+%:ioxir|
= I (- a0/ + 1)l
i#£]
<

ﬁ 2 g — il
i#j

7y max |[z; — x|

Td(o).

IN

O

Lemma I1.6.14 Es sei X ein topologischer Raum, S0 = (V;);ec1 eine offene
Uberdeckung von X und o ein singulires Simplex in X. Dann gibt es ein
m > 0, so daff S™o eine Linearkombination von singuldren Simplizes ist,
die klein von Ordnung U sind.

Beweis. Es sei 0 : A? — X ein singulidres ¢—Simplex. Dann ist 20 =
{071 (V;)}ier eine offene Uberdeckung von AY. Da A9 kompakt ist, gibt
es ein € > 0, so daf es fiir jeden Punkt 2 € A? einen Index i(x) € I gibt mit
Be(z) C 0~ 'Vj(,). Wegen Lemma (11.6.12) und wegen

lim <L> ~0
m—00 q—|—1

gibt es ein m > 0, so dafl die affinen singuldren g—Simplizes in der ¢—Kette
86, einen Durchmesser < ¢ haben. Daraus folgt

S§"o = 04 (8™5,) € ST(X).

Beweis von Satz (11.6.8): Ziel ist es, eine Kettenabbildung
¢ Su(X) = S(X)

zu konstruieren mit ¢ o ¢ = id und ¢ o ¢ kettenhomotop zur Identitét.

Nach Lemma (I1.6.13) angewandt auf die Uberdeckung = {(}i}z’el gibt
es fiir jedes singulére ¢—Simplex o in X eine Zahl m(o) > 0, so daf} gilt

§™)g e SH(X).

Wir nehmen an, daB m(c) jeweils minimal gewihlt ist. Es gilt m(c®) <
m(o). Nach Lemma (I1.6.11) gilt

(1) OK+Kd=8—id.
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Da § eine Kettenabbildung ist, folgt, dafl fiir alle k > 1 gilt:
(2) OKSF 14 KSF1o=8F— sk
Durch Addition ergibt sich
(3) OK(id+...+S™ )+ K(Gid+...+S8™ Ho=8m —id.
Wir setzen nun fiir beliebiges o
(4) K(o):=KGid+S + ...+ 8™ 1)(0).
Dann gilt:
(K +Kd)(o) = OK(d+...+ 8™~ (o)
+ io (C1PEGd+ ... + S -1)50)

= SMg—0o—K(@id+...4+ 8™ oo
+ 3 (—1)K G+ . .. + SMED)=1) 50
1=0
= S5 —0¢

q . ; ,
— S (1K (8™ 4 smlo) 150,
=0

Dies fithrt uns auf die folgende Definition:

q _ ‘
$(0) == 8o — 3 (~1)K (8™ 4. 4 8™ 1)),
=0

Nach Wahl von von m(o) gilt
(o) € S3(X).
Nach Konstruktion von ¢ gilt
OK+Kd=iop—id

also ist i o ¢ kettenhomotop zur Identitét. Ist andererseits o € Sf]'[(X ), dann
gilt m(o) = 0 und daher ¢poi =id. O
Wir benétigen im folgenden noch das

Lemma I1.6.15 (Fiinferlemma) Es sei

aq a2 a3 Q4

Cl C 2 C 3 04 05

NN

Dy =Dy —22- Dy 2o D, Ds

ein kommutatives Diagramm abelscher Gruppen mit exakten Zeilen. Sind
f1, fo, f4 und fs Isomorphismen, dann ist auch fs ein Isomorphismus.
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Beweis. Ubungsaufgabe O
Schliellich kénnen wir nun den Ausschneidungssatz beweisen.

Beweis von Satz (I1.6.1). Wir betrachten die Uberdeckung {4 = (X — U, fcl))

_ o — _
von X. Wegen U C A iiberdecken auch die offenen Mengen (X —U) = X -U

und A den Raum X. Analog ist Y = (A — U, ;1) eine Uberdeckung von A.
Nach Satz (II.6.8) induzieren die Inklusionen

it SH(X) = 5,(X), i':S¥(A) = S.(A)
Isomorphismen
it Hy(SH00) = Hy(X), i Hy(SY(4)) — Hy(A).

fiir alle q.
Da wir S¥(A) als Unterkomplex von S¥(X) betrachten kénnen, haben
wir eine Kettenabbildung

j: SHX)/SE(A) = Su(X)/S.(A).
Die Kettenabbildungen ¢,¢ und j induzieren nun das folgende kommutative

Diagramm:

to = Hy (S (A)) —= Hy(SH(X)) — Hy(SH(X)/SH (A) —

H,(4) H,(X) H,(X, 4)

—— Hy 1(S¥(A)) — Hy 1 (SH(X)) —>

——=Hy1(4) Hy 1 (X) ———---

Da i, und 7, fiir alle ¢ Isomorphismen sind, ist auch j, nach dem Fiinfer-
lemma ein Isomorphismus.
Nach Definition von 4 und ' haben wir

SUX) = SU(X-U) + S.(4)

SH(A) = S(A-U) + S.(4)
wobei die Summe nicht notwendig exakt ist. Also folgt

SH(X)/S¥(A) = S.(X —U)/S.(A - D).
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Damit gilt
Hy(SH(X)/S¥ (A)) = Hy(X — U, A—1U) fiir alle q.
Hintereinanderschaltung mit j, zeigt, dafl
i Hy(X —U,A-U) — Hy(X, A)
fiir alle ¢ ein Isomorphismus ist. O

7 Die Mayer-Vietoris-Sequenz

Wir betrachten einen topologischen Raum X zusammen mit einer Uber-

deckung Y = {U,V} von der wir annehmen, da§ auch 101: {ﬁ ,I;} eine
Uberdeckung von X ist. Dann haben wir natiirliche Inklusionen

Satz I1.7.1 (Mayer-Vietoris-Sequenz) Fs gibt eine lange exakte Sequenz

o H(UAY) LS  H(U) B H (V) 25 Hy(X) 25 Hy 1 (UNV) — -

mit gs = (ls, —Jsx), B = ks + L.

Beweis. Wir betrachten

A" = {o;0: A7 = U ist ein singulires ¢-Simplex in U}
A" = {o;0: A% — V ist ein singulires ¢-Simplex in V'}.
Dann ist

Sq(U) = F(A"),S4(V) = F(A")
S (UNV) = F(A'nA"), S4X) = F(A'UA"),

Wir betrachten die Sequenz
0— F(ANA") S F(A) e F(A") 2 F(A'uA”) -0
mit

g(o) = (0,—0), h(d',0") =o'+ 0"
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und behaupten, dafl diese Sequenz exakt ist. Offensichtlich ist g injektiv, h
surjektiv und h o g = 0. Es bleibt zu zeigen, dafl ker h C im g ist. Es sei also

0=nh (Z niU;, ij09/> = ZTLZU; + ij(fé-/

wobei die o] paarweise verschieden sind, und dasselbe fiir die o7/ gilt. Dann
muf es zu jedem n; # 0 ein j geben mit m; = —n; und o} = o/, d.h. also

j
- ija}' =z = Zniog e F(A nA"
und damit (3 n;o5, > mjo7) = (z,—x) = g(x). DaBl heiBit, wir haben eine
kurze exakte Sequenz von Kettenkomplexen
0—S.UNV)S S,U) & S.(V) L s4X)—o.
Auf Grund von Satz (I1.5.1) liefert dies eine lange exakte Homologiesequenz

N H,(UNV) LS H(U) @ Hy(V) LN H,y(SH(X)) —

O, 1(UNV) — ..

Da nach Satz (11.6.8) gilt, daB H,(S¥(X)) = H,(X) folgt die Behauptung.
(]

Bemerkung Der Verbindungshomomorphismus 0, kann wie folgt beschrie-
ben werden. Jede Homologieklasse [w] € Hy(X) besitzt eine Darstellung
(w] = [c+d] mit ¢ € S4(U), d € S4(V). Wegen 0w = dc + 0d = 0 ist
Jc=—-0d € Sq—1(UNV) und (dc,0d) = (Oc, —0c) = g(Oc). Dann gilt

OxJw] = Ox[c + d] = [O¢].
Bemerkung Die Mayer-Vietoris Sequenz ist in folgendem Sinn natiirlich.
Es sei X' ein weiterer topologischer Raum und {U’, V'} eine Uberdeckung

von X' mit U’ U V'= X. Es sei f : X — X’ eine stetige Abbildung mit
f(U) cU und f(V) C V'. Dann kommutiert das folgende Diagramm:

L HUNV) L H(U) @ H(V) — Hy(X)

o/ ’ h;
B HU AV —E s HyUY @ Hy(V') —— Hy(X')

O, e 1(UNV) — ...

r|
2.

— q_l(U/mV,)_>...

Dies folgt unmittelbar aus der Konstruktion.
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8 Das Anheften von Riumen

Es sei X ein topologischer Raum und ~ eine Aquivalenzrelation auf X. Die
Menge der Aquivalenzklassen wird mit X/ ~ bezeichnet und die natiirli-
che Projektion mit 7 : X — X/ ~. Die Quotiententopologie ist die feinste
Topologie auf X/ ~, so da} die natiirliche Projektion 7 stetig ist. Es gilt

UcC X/~ offen < 7~ 1(U) offen in X.

Wir wollen zunéchst untersuchen, wann X/ ~ ein Hausdorffraum ist.
Die Diagonale von X ist die Menge

D={(z,x) e X x X;z e X} C X xX.
Aus der mengentheoretischen Topologie kennt man den

Satz 11.8.1 X ist genau dann ein Hausdorffraum, wenn die Diagonale D
abgeschlossen in X x X ist.

Wir betrachten nun die stetige Abbildung
TxT: XXX = (X/~)x(X/~)
und bezeichnen die Diagonale in (X/ ~) x (X/ ~) mit A. Die Menge
Dim (r % 7)(A) = {(@,9) € X x X3a~y)

heifit Graph der Relation ~. Die Relation ~ heifit abgeschlossen, falls der
Graph T' abgeschlossen in X x X ist. Ist X/ ~ Hausdorffraum, so ist T’
offensichtlich abgeschlossen. Falls X kompakt ist, gilt auch die Umkehrung.

Satz I1.8.2 FEs sei X ein kompakter Hausdorffraum. Dann ist X/ ~ genau
dann ein Hausdorffraum, wenn ~ abgeschlossen ist.

Beweis. Wir hatten bereits gesehen, daf} fiir jeden Raum X aus der Haus-
dorffeigenschaft von X/ ~ die Abgeschlossenheit von ~ folgt. Wir nehmen
nun an, dal ~ abgeschlossen ist. Da X kompakt und Hausdorff ist, ist eine
Teilmenge A C X genau dann abgeschlossen, wenn sie kompakt ist. Wir zei-
gen nun, daf} das Bild 7(A) einer abgeschlossenen Menge A in X ebenfalls
abgeschlossen ist. Es seien dazu p; und po die Projektion auf den ersten und
den zweiten Faktor von X x X. Dann gilt

pa(pyH(A)NT) = {y € X;y ~ x fiir ein x € A} = 7' (7(A)).

Da I' abgeschlossen ist, ist auch 7 L(4) N T abgeschlossen und somit kom-
pakt. Damit gilt dasselbe fiir pa(p;'(ANT)) = 71 (7(A)). Aus der Kon-
struktion der Quotientenopologie folgt, dafl dann auch 7(A) abgeschlossen
ist. Ist z € X ein Punkt, so ist x kompakt, also abgeschlossen. Damit gilt
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dasselbe fiir # = 7(x) und 7! (7(x)). Ist  # 9, so sind 7~ 1(z) und 7~ 1(3)
disjunkte abgeschlossene Mengen. Da X kompakt und Hausdorff ist, ist X
auch normal, also gibt es offene Umgebungen U,V von 77 1(Z), bzw. 7~ 1(7)
mit UNV = (. Wir setzen U' = X — U,V' = X — V. Dann sind U’,V’
abgeschlossen und nach obiger Bemerkung sind auch 7 (U’) und 7(V’) abge-
schlossen. Also sind U = (X/ ~) —a(U’) und V = (X/ ~) — (V") offen. Da
TeU,je Vund UNV = 0 haben wir gezeigt, da sich Z und 7 in X/ ~
durch offene Umgebungen trennen lassen. U

Ist ~' eine Relation auf X , so kénnen wir daraus stets eine Aquivalenz-
relation machen, indem wir setzen:

x ~ 1y < es gibt eine Folge zg, z1,...,2, € X mit zg ==
und z, =y, so daf

(i) @41 = z; oder
(il) xj41 ~ x; oder
(iii) @ ~ @iy

Dann heifit ~ die durch ~/ erzeugte Aquivalenzrelation.

Beispiele (1) Es sei X = S™",n > 1 und ~ die durch x ~ —z erzeugte
Aquivalenzrelation. Dann ist

P*"(R) = S"/ ~
der n-dimensionale reelle projektive Raum. Fiir den Graphen T" gilt
r=DuUD, D ={(x —x);xzeS"},

also ist ~ abgeschlossen. Daher ist P"(R) ein kompakter Hausdorffraum. In
der Tat ist P"(R) eine topologische (und auch differenzierbare) Mannigfal-
tigkeit. Wir hitten P"(R) auch auf folgende Art einfiithren kénnen:

P"(R) = (R"" — {0})/ ~

wobei
x ~y < esgibt A € R* mit x = \y.

Geometrisch ist P*(R) also die Menge der Geraden in R™*! durch den Ur-
sprung.
(2) Wir identifizieren

R2"F2 = €™ = {(2,...,2,); 2 € C}.

Dann wird die Einheitssphire $?"*t! ¢ C"*! gegeben durch

S2HL = L(z0,...,2n) € CPE 2P+ + |z = 1)
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Wir definieren hierauf eine Aquivalenzrelation durch
z~ 2 e esgibt A€ C, |\ =1mit z= M\

Der Quotient
]P)n((c) —_ S2n+1/ ~

ist wiederum ein kompakter Hausdorffraum (und sogar eine komplexe Man-
nigfaltigkeit). Analog hitten wir definieren kénnen:

P"(C) = (C™*' - {0})/ ~
mit
2z~ 2 & esgibt A € C* mit z = N\,
Also ist P*(C) der Raum der (komplexen) Geraden in C**! durch den Ur-

sprung.

Wir betrachten nun folgende Situation: Es seien X, Y disjunkte topolo-
gische Rdume, A ein Unterraum von X. Auf der Vereinigung X UY fiihren
wir die Summentopologie ein (d.h. die offenen Mengen sind die Vereinigun-
gen U UV, wobei U und V offen in X bzw. Y sind; insbesondere sind X,Y
offene und abgeschlossene Teilmengen). Ferner sei f : A — Y eine stetige
Abbildung. Es sei ~ die Aquivalenzrelation, die durch

x~ f(x) firzeA
auf X UY erzeugt wird.
Definition (i) Der Raum

XUpY = XUY/~

heifit der aus Y durch Anheften von X an Y mittels f : A — Y entstandene
Raum.
(ii) Ist speziell X = D™ und A = 9D" = S~ ! so heifit

Yf = D" Uy Y
der durch Anheften einer n-Zelle an 'Y mittels f entstandene Raum.

Satz I1.8.3 Sind X undY kompakte Hausdorffriume und ist A abgeschlos-
sen in X, dann ist X Uy Y ein kompakter Hausdorffraum.

Beweis. Da X und Y kompakt sind, gilt dasselbe fiir X UY und also fiir
X Uy Y. Nach Satz (I1.8.2) geniigt es dann zu zeigen, dafl ~ abgeschlossen
ist. Der Graph I' von ~ ist

I'=Dxuy UFf Ul“’f @] (f X f)il(Dy)
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wobei Dxyy die Diagonale von X UY, und

Ly ={(a,f(a));a € A}, T's = {(f(a),a);a € A}

ist. Ferner ist Dy die Diagonale von Y. Da X und Y kompakte Haus-
dorffraume sind, sind alle diese Rd&ume ebenfalls kompakt und abgeschlossen.
O

Bemerkung Wir halten an dieser Stelle noch fest, daf} in dieser Situa-

tion die Inklusion 7 : Y — X U; Y einen Homdomorphismus von Y auf das
Bild i(Y) liefert.

Um diesen Prozefl zu illustrieren, betrachten wir nochmals die reelle
projektive Ebene P?(R). Man kann P?(R) aus E? durch Identifizieren von
Diametralpunkten auf dem Rand OEZ = S' erhalten:

Wir erhalten damit
P*(R) =X U;Y

mit X = D? (man erinnere sich daran, da D? homéomorph zu E? ist),
A= 8'=0D? Y ecine weitere Kopie von S! und

f:A— S e e,

Dies wollen wir benutzen, um im folgenden die Homologie von projektiven
R&umen zu berechnen. Wir kehren jedoch zunéchst zum allgemeinen Prozef3
des Anheftens von n—Zellen zuriick.

Satz I1.8.4 Ist f : S" ! =Y eine stetige Abbildung und Yy der Raum, der
aus Y durch Anheften einer n—Zelle entsteht, so gibt es eine exakte Sequenz

o Hy (5" B H(Y) B H(Y)) S Hy (S — -
- — Ho(S"1) — Ho(Y) ® Z — Ho(Yy) — 0.

Beweis. Es sei U die offene Kugel in D™ vom Radius % um den Nullpunkt

0, sowie V = Y; — {0}. Dann definieren U,V eine offene Uberdeckung von
Yy, auf die die Mayer-Vietoris-Sequenz angewendet werden kann:
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unv

= Hy(UNV) S Hy(U) @ Hy(V) 2 Hy(vp) & H i (UNV) — -

Nun hat U NV den Homotopietyp von S™ 1. Die Menge U ist konvex and
Y ist ein Deformationsretrakt von V. Dabei kann man die Retraktion auf
V —Y durch for definieren, wobei r eine Retraktion von D" — {0} auf S"~!
ist. Zusammen ergibt dies die Behauptung. O

Wir wollen dies nun benutzen, um die Homologie von P?(R) zu berechnen

Satz 11.8.5 Fiir die reelle projektive Ebene gilt

0 fir g>2
Hy(P*(R)) = § Z» fir q=1
Z fir q=0.

Beweis. Wir benutzen die Darstellung P?(R) = Y} aus unserem fritheren
Beispiel, wobei Y = S' und f : S' — S durch f(e’?) = 2% gegeben ist.
Aus dem Teil ‘ 5

Hy(S") = Hy(P*(R)) = Hq-1(S")

der in Satz I1.8.4 bewiesenen Sequenz folgt H,(P?(R)) = 0 fiir ¢ > 3. Der
Rest der Sequenz lautet

Hy(SY) o Hy(P2(R)) 2 Hi(SY) L% Hy(SY) — Hi(PX(R)) —

I | I
0 Z Z
— Ho(SY) 25 Ho(SY) @ Z = Hy(P2(R)) — 0.

Dabei ist
g*(O') = (0-7 _0)7 h*(O'/, Oﬂ) = OJ + Oﬂ'

Fiir die Abbildung f, gilt
fela) = 20
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Damit folgt
H,(P*(R)) = Z/27 = Zs.

Die Behauptung fiir Ho(IP2(R)) folgt ebenfalls aus der obigen Sequenz, aber
auch direkt daraus, dafl P?(R) wegzusammenhingend ist. O

Wir beweisen nun ein Kriterium, wie man beweisen kann, dafl ein Raum
aus dem Ankleben eines Raums an einen anderen entstanden ist.

Satz I1.8.6 Es seien X,Y und W kompakte Hausdorffriaume, A C X ab-
geschlossen und f : A — Y stetig. Existiert eine stetige surjektive Abbil-
dung g : X UY — W mut der Figenschaft, daf$ fiir jedes w € W entweder
g Y (w)={z},z € X — A oder g *(w) = f~Hy)U{y},y €Y gilt, so ist W
homéomorph zu X Uy Y.

Beweis. Es sei m: X UY — X Uy Y die Restklassenabbildung. Dann haben
wir ein kommutatives Diagramm

XUY W
S A
XUfY

wobei h durch g induziert wird. Nach den Voraussetzungen ist h bijektiv.
Da g stetig ist, und h eine Faktorisierung von g iiber den Quotienten, so
ist auch h stetig. Nach Voraussetzung ist h bijektiv. Da X Uy Y und W
kompakt und Hausdorffsch sind (fiir X Uy Y folgt dies aus Satz (I1.8.3)), ist
h sogar ein Homoomorphismus. O

Wir kehren nun nochmals zu unserem Beispiel P*(R) = S™/ ~ zuriick.
Dabei ist 7 : S™ — P"(R) die Quotientenabbildung. Wir kénnen nun 7 dazu
benutzen, um an P"(R) eine n—Zelle anzuheften. Wir behaupten, dafi dann
gilt:

Pn+1(R) — Dn+1 Uy, PR(R).

Hierzu betrachten wir die Einbettung

Sn _ Sn+1

(1,...,Tpt1) +—  (T1,...,Tp4+1,0)
die S™ als Aquator von S™*! darstellt. Dies induziert eine Einbettung
i: P*(R) — P""Y(R).
Wir erinnern an die Zerlegung

S = B U BT BV N BT = 5
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Die Projektion p4 liefert einen Homéomorphismus pjrl : Dl Ef‘rﬂ. Ist
7’2 S — PHL(R) die Quotientenabbildung, so definieren wir
g1: D" 7 BTt c gntt = P(R).
Schliellich definieren wir
g: D" UPY(R) — P"TH(R)

[ qi(z) fir xe D"
9(x) = { zg(:r) fir x € P"(R).

Die Abbildung g ist surjektiv, da schon g; surjektiv ist. Fiir w € P""}(R)
gilt
g Hw) = {z} ¢ D" — 8™ fiir w € P"TH(R) — i(P"(R))

oder
g (w) = {z, -z} U {i Y (w)} fir w e P*(R).

Da g offensichtlich stetig ist, konnen wir Satz (I1.8.6) anwenden.

Analog kénnen wir im Fall des komplexen projektiven Raums argumen-

tieren. Es sei
f . 52n+1 N SZnJrl/ ~— Pn(C)

die Quotientenabbildung. Dann gilt genau wie oben
P"(C) = D*"*2 u; P*(C).
Wir kénnen nun die Homologie von P"(C) berechnen.
Satz 11.8.7 Es gilt

Z firg=0,2,...,2n
0 sonst.

() = {

Beweis. Wir machen einen Induktionsbeweis nach n. Die Behauptung ist
richtig fiir n = 0, da P°(C) = {pt}, und n = 1, da P} (C) = S? gilt. (Letzteres
sieht man z.B. daran, dal P!(C) aus P°(C) durch Anheften einer 2-Zelle
entsteht). Aus Satz (I1.8.4) erhalten wir eine exakte Sequenz

o Hy($) 55 Hy(B(€)) 5 Hy(B™(C)) 5 Hymr (57 = -
fiir ¢ > 0. Nun gilt
H,(S* ™) =0 fir ¢ #0, 2n+ 1
und auf Grund der Induktionsvoraussetzung

H,(P"(C)) = 0 fiir ¢ ungerade.
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Also ist
fa Hq(SQnH) - Hq(Pn(C))

die Nullabbildung fiir alle ¢ > 0. Damit erhalten wir fiir ¢ > 1 eine kurze
exakte Sequenz

0 — Hy(B"(C)) ™ Hy(B"™+(€)) % Hyoa (S™) — 0
und damit die Behauptung in diesem Bereich. Fiir ¢ = 1 erhalten wir
0— H(P"(C)) — Hi(P""(C)) — 0.
\(l
Die Surjektivitédt folgt dabei aus der Tatsache, dafl die Abbildung
Hy(S*" 1) — Ho(P"(C)) & Z

injektiv ist. SchlieBlich ist Ho(P"*!(C)) = Z, da P"*!(C) wegzusammenhingend
ist. (]

Mit derselben Methode, aber etwas mehr Aufwand, beweist man fiir die
reellen projektiven Rdume

Satz 11.8.8 FEs gilt

Z  fir ¢q=0 und ¢ =n falls n ungerade
Hy(P"(R)) =4 Zo firl<qg<n-—1,q ungerade
0 sonst.

9 Zellenkomplexe

Zellenkomplexe sind topologische Raume, die durch sukzessives Anheften
von n-Zellen an eine endliche Menge von Punkten entstehen.

Definition Es sei (X, A) ein Paar von Riumen und ~ die Aquivalenzre-
lation, die durch x ~ y fiir alle x,y € A erzeugt wird. Der Quotientenraum
X/ ~ wird mit X /A bezeichnet, und heifit der aus X durch Zusammenschla-
gen von A auf einen Punkt entstandene Raum.

Bemerkungen (i) Ist f: A — {pt} die konstante Abbildung, so ist X/A =

X Uy {pt}.
(ii) Ist X kompakter Hausdorffraum und A C X abgeschlossen, so ist auch
X/A ein kompakter Hausdorffraum.

Definition Ein Unterraum A von X heif3t ein starker Deformationsretrakt
von X, wenn es eine stetige Abbildung F': X x I — X gibt, mit
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(i) F(z,0) =2 furallex € X,
(ii) F(z,1) € A firallez € X,
(iii) F(a,t) =a firalleae A,tel.

Bemerkung Ein starker Deformationsretrakt ist insbesondere ein Defor-
mationsretrakt mit Retraktionsabbildung r(z) = F(z,1).

Lemma I1.9.1 FEs sei X ein topologischer Raum, A C X abgeschlossen, T :
X — X/A die Identifizierungsabbildung, y := w(A) € X/A. Ist A ein starker
Deformationsretrakt von X, dann ist {y} starker Deformationsretrakt von
X/A.

Beweis. Es sei F' : X x I — X die starke Deformationsretraktion von X auf
A. Wir betrachten das Diagramm

F

X x1I X

| |

(X/A) x I F-~ x/A
Wir setzen y
F(Z,t)=mo Fo(mx id)}(z,1).
Wegen (iii) ist dies wohldefiniert. Aus (i), (ii) folgt

F(z,0)=7,F(z,1) =y fir 7€ X/A.

Ferner liefert (iii)

F(y,t)=y furtel.

Es bleibt zu zeigen, daB F stetig ist. Dies folgt aber sofort aus der Stetigkeit
von F' und der Definition der Quotiententopologie. O

Satz I1.9.2 FEs sei X ein kompakter Hausdorffraum und A C X abgeschlos-
sen. Ferner sei A starker Deformationsretrakt einer abgeschlossenen Umge-
bung von A in X. Dann induziert die Quotientenabbildung 7w : X — X/(A)
einen Isomorphismus

et Ho(X, A) — H(X/A,y).

Beweis. Es sei A starker Deformationsretrakt der kompakten Umgebung U
von A in X.
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Da A starker Deformationsretrakt von U ist, folgt aus der langen Homolo-
giesequenz des Tripels (X, U, A):

+— Hy(UA) — Hy(X,A) - Hy(X,U)— Hye1(UA) —0

| |
0 0
daf3

H.(X,A) = H,(X,U).

Nach Lemma (I1.9.1) ist {y} starker Deformationsretrakt von 7(U), also
folgt analog
H.(X/A{y}) = H(X/A,=(U))

Da X kompakter Hausdorffraum ist, ist X normal, d.h. es gibt eine offene

Menge V mit ACV CV C[j' . Der Ausschneidungssatz liefert dann einen

Isomorphismus
H.(X-V,U-V)2H(X,U)

und analog
H.(X/A—n(V),n(U) —m(V)) = H(X/A,7(U)).

Wegen A C V liefert die Einschrankung von 7 einen Hombomorphismus von
Paaren

T (X-VU-V)— (X/A—n(V),n(U) —n(V))
und daher einen Isomorphismus
H(X-VU-V)2H(X/A—=n(V),7n(U) — w(V)).
Zusammen ergeben diese Isomorphismen die Behauptung. U

Definition Eine Abbildung f : (X,A) — (Y, B) von Paaren heifit ein
relativer Homdéomorphismus, wenn f die Menge X — A bijektiv auf Y — B
abbildet.
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Satz 11.9.3 Ist f : (X, A) — (Y, B) ein relativer Homdomorphismus zwi-
schen kompakten Hausdorffriumen, wobei A (bzw. B) abgeschlossen und
starker Deformationsretrakt einer abgeschlossenen Umgebung in X (bzw.
Y ) ist, ist

fe : H(X,A) — H.(Y, B)

etn Isomorphismus.

Beweis. Wie im Beweis von Lemma I1.9.1 erhalten wir ein kommutatives
Diagramm steiger Abbildungen

x 1. vy

Wl l“'
x/A L y/B.

Da f ein relativer Homomorphismus ist, ist f’ bijektiv und daher ein
Homo6omorphismus, da X/A und Y/B kompakt sind. Es sei zg = 7(A), yo :=
7m(B). Zusammen mit Satz (I1.9.2) erhalten wir ein kommutatives Diagramm
von Isomorphismen

H(X,A) —L—~ H,(Y,B)

.| I+

H.(X/A, 29 —2— H.(Y/B,y).

Wir kénnen nun Zellenkomplexe definieren.

Definition Ein (endlicher) Zellenkomplex (oder ein endlicher CW —~Komplex)
ist ein kompakter Hausdorfilraum X, der eine endliche Zerlegung {el;q =
0,1,...,n, i=1,...,ry} in disjunkte Teilmengen mit den folgenden Eigen-
schaften besitzt. Es sei

q._ p -1._
x= |y & x'=0
P<q
1<j<rp
Dann soll gelten:

(i) Jedes z € X ist in genau einem e enthalten.

(ii) Zu jedem i und ¢ existiert ein relativer Homéomomorphismus

@ (D187 — (efu Xt X171,

66



Dann heifit e! eine (offene) g—Zelle von X, ¢ heifit charakteristische Abbil-
dung von e, und der Unterraum X heifit das ¢—Geriist von X.

Die Bezeichnung CW-Komplex stammt von J.H.C. Whitehead, der auch
unendliche Zellkomplexe untersucht hat, und dabei die CW—-Bedingungen
formuliert hat. Die ¢—Gertiste X? sind abgeschlossen. Wir erhalten den
Raum XY, indem wir eine g—Zelle mittels der Abbildung f = ¢|g-1 an
X7 — ¢! anheften.

Definition Ist X"~ ! # X, aber X" = X, so heifit n die Dimension des
CW—-Komplexes X.

Beispiele Wir haben folgende Beispiele kennengelernt

P*(R) =eUelUe?U...Uue”
P(C)=c'UeUetu...ue™
Sn=edUen
T=8xSt=e"Ueluelue?

Die Homologie von C'W-Komplexen 148t sich in vielen Fiéllen schrittweise
iiber die Homologie der ¢—Geriiste ausrechnen. Hierzu benétigen wir den
Begriff des Unterkomplexes.

Definition Es sei X ein Zellenkomplex mit Zellen {e{}. Eine Teilmenge A
von X heifit ein Unterkomplez, falls fiir alle 4, q gilt: Ist ANe! # 0, so ist
1

e, C A.

Bemerkung Ist A ein Unterkomplex von X, so ist A abgeschlossen und
mit der von X induzierten Zellenzerlegung selbst wieder ein Zellenkomplex.

Unser néchstes Ziel ist nun der

Satz 11.9.4 Ist A ein Unterkomplex eines Zellenkomplexes X, so ist A star-
ker Deformationsretrakt einer kompakten Umgebung von A in X.

Als Vorbereitung hierzu zeigen wir zuerst:

Lemma I1.9.5 Es sei Y ein kompakter Hausdorffraum, f : S"~1 —Y eine
stetige Abbildung und Yy der durch Anheften einer n—Zelle an 'Y mittels f
entstandene Raum. Dann ist Y ein starker Deformationsretrakt einer kom-
pakten Umgebung von Y in Yy.

Beweis. Es sei

1
U:= {x e D"; ||z|| > 5}
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Dann ist U eine kompakte Umgebung von S™~! in D™. Definiere

F:(UUY)xI — UUY

. z fallsx € Y
(z,1) I B G R o titr fallsz € U.

Dann gilt: F ist stetig, F(z,0) = 2, F(x,1) C S"~LUY fiir alle z, F(z,t) =
fiir alle z € S* 1 UY und alle t. Also ist F eine starke Deformationsretrak-
tion von U UY auf S*1UY.

Nun sei 7 : D" UY — Y} die Quotientenabbildung. Wie zuvor erhalten
wir ein kommutatives Diagramm stetiger Abbildungen

UuY)xI —2~ UuYy

| id ~ |~
TUUY)x I —2— n(UUY).

Die Abbildung F liefert dann eine starke Deformationsretraktion der kom-
pakten Umgebung (U UY') von 7(Y) auf (V). O

Beweis von Satz (11.9.4): Wir fiithren einen Induktionsbeweis nach der Anzahl
der Zellen N in X — A. Fiir N = 0 ist die Aussage trivial, fiir N = 1 folgt
sie aus obigem Lemma (I1.9.5). Um den Induktionsschritt durchzufiihren,
nehmen wir an, dafl die Aussage fiir jedes Paar (Y, B), wobei Y — B hochstens
N — 1 Zellen enthélt, richtig ist.

Es sei e/ eine Zelle maximaler Dimension in X — A. Setze

X1:X—€;n.

Dann ist X; Unterkomplex von X und A ist Unterkomplex von X;. Wen-
den wir die Induktionsannahme auf X; — A an, so folgt die Existenz einer
abgeschlossenen Umgebung U; von A in X7, so daf§ A starker Deformati-
onsretrakt von Uy ist.

Nach Definition des Zellenkomplexes gibt es einen relativen Homéomor-
phismus

P (Dm,Smfl) — (e Umel,mel) C (e UXy, Xq).
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Dm
>
X Ui

Es sei r : D™ — {0} — S™~! die durch r(z) = x/||z|| gegebene radiale
Projektion. Wir definieren

V= o)z € D™ |loll > 3, rl@) € 7 O},

U:=U,UV.

Dann ist U eine kompakte Umgebung von A in X. Zusammen mit der nach
der Induktionsannahme existierenden Retraktion von U; nach A erhalten
wir dann, dafl A ein starker Deformationsretrakt von U ist. U

Satz I1.9.6 FEs sei X ein Zellenkomplex mit r q—Zellen. Dann gilt

iy~ ) O fir j#4q
Hj(Xq7Xq 1):{ 7T fiir j:q.

Beweis. X971 ist ein Unterkomplex von X9, und damit nach Satz (I1.9.4)
starker Deformationsretrakt einer Umgebung von X9-1. Auf Grund der De-
finition eines Zellenkomplexes gibt es einen relativen Homéomorphismus

@:(D'U...UDL ST UL USITY) (X9, X7,
Nach Satz (I1.9.3) ist ¢, ein Isomorphismus, also

Hj(X9, XY = Hy(D!u...uDL ST u...usi

I

fir j#gq
fir j=gq.

I

@ HJ'(Diq’ quil)
=1
{ 0

Z
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Wir wollen an dieser Stelle noch kurz auf die Begriffe Bettizahl und Eu-
lercharakteristik eingehen. Dazu sei an folgenden algebraischen Sachverhalt
erinnert. Jede endlich erzeugte abelsche Gruppe ist von der Form

A=7"qT

wobei T' die Torsionsuntergruppe von A ist. Die Zahl r ist eindeutig be-
stimmt, und heifit der Rang von A.

Wir betrachten im folgenden nur Réume X, deren Homologie H,(X)
endlich erzeugt ist.

Definition (i) Die i—te Bettizahl von X ist definiert durch
bl(X) = rang Hl(X)

(ii) Die Eulerzahl von X ist definiert durch

Nach Voraussetzung ist diese Summe endlich.

Beispiel Fiir X = P*(C) gilt by = by = ... = by, = 1 und b; = 0 sonst.
Also gilt
x(P*(C)) =n+1.

Satz I1.9.7 Ist X ein Zellenkomplex der Dimension n, so gilt:
(i) Hj(X) =0 firj > n.
(il) H.(X) ist endlich erzeugt.

Beweis. Wir fiihren einen Induktionsbeweis nach n. Fiir n = 0 besteht X aus
endlich vielen Punkten und die Aussage ist klar. Fiir den Induktionsschnitt
betrachten wir die Sequenz des Paares (X", X"~ 1):

= Hj (X" — Hj(X") — Hy (X", X1 —
— Hj (X" — -

Die Aussage folgt dann aus der Induktionsvoraussetzung und Satz (I1.9.6).
O

Schliefflich halten wir noch fest:

Satz I1.9.8 Ist X ein CW -Komplex mit a; Zellen der Dimension i, so gilt
X(X) =) (D

Beweis. Ubungsaufgabe. O
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IIT Poincare-Dualitt

In diesem Abschnitt beweisen wir den Satz iiber die Poincare-Dualitit.

1 Orientierung auf Mannigfaltigkeiten

Im folgenden sei X stets eine Mannigfaltigkeit der Dimension n > 1 (d.h. X
ist ein Hausdorffraum und jeder Punkt x € X besitzt eine Umgebung, die
homo6omorph zu einer Kugel im R™ ist).

Lemma III.1.1 Fvir jeden Punkt x € X gilt
H,(X,X —{z}) =2 Z.

Beweis. Es sei U eine ”Koordinatenumgebung” von z, d.h. U sei homdomorph
zu einer offenen Kugel in R™. Dann kann man die abgeschlossene Menge
X — U aus X — {z} ausschneiden und der Ausschneidungssatz liefert einen
Isomorphismus

H,(U,U —{x}) = H,(X, X — {z}).

Da U konvex ist, liefert die Sequenz des Paares (U,U — {z}) einen Isomor-
phismus

H,(U,U —{z}) 2 H,_1(U — {z}).
Da schlielich U — {x} homotop #quivalent zu S™~! ist, folgt
H, (U—-{z}) =7
und daher die Behauptung. U

Ist n = 2, so entsprechen die beiden Erzeugenden von H, (X, X — {z})
den beiden Homologieklassen, die durch die einfach geschlossenen Wege um z
definiert werden. Sie unterscheiden sich um die Orientierung. Im allgemeinen
Fall kann man S”! mit dem Rand des n-Simplex A" identifizieren. Ist
0n : A" — A™ das singulidre n-Simplex, das durch die Identitit gegeben ist,
so entsprechen die beiden Erzeugenden gerade +06,,.

Definition Eine Orientierung im Punkt x ist die Wahl eines Erzeugers von
Hp(X, X — {x}).

Wir wollen nun untersuchen, inwieweit man Orientierungen global wahlen
kann.

Lemma II1.1.2 (Fortsetzungslemma): Es sei o, € H, (X, X —{z}). Dann
gibt es eine Umgebung U von x und ein Element o € H, (X, X —U), so dafs
oz = jY(a), wobei

iV HL (X, X —U) — Hy(X, X — {z})
die durch die Inklusion definierte Abbildung ist.
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Beweis. Es sei a € Z,(X, X — {x}) ein relativer Zykel, der «, représentiert.
Dann ist der Tréger |Oa| eine kompakte Menge in X — {z}. Also ist U =
X —|0a| eine offene Umgebung von z und a € Z,(X, X — U). Wir kénnen
flir « die durch a représentierte Homologieklasse wéhlen. U

Satz 111.1.3 Jede Umgebung W von x enthdlt eine Umgebung U von x, so
daf$ fiir alle y € U die Abbildung jg ein Isomorphismus ist.

Beweis. Wir wihlen eine Koordinatenumgebung V von z in W. Sei U C V
eine Untermenge, die einer in V' enthaltenen Kugel entspricht. Dann haben
wir fiir jedes y € U ein kommutatives Diagramm

Hy(X,X -U) «—— H,(V,V -U)
s
Hn(XvX - {y}) — Hn(vvv_ {y})

Dabei sind die horizontalen Pfeile Ausschneidungsisomorphismen. Da (V,V —
U) und (V,V —{y}) homotop dquivalent sind, ist auch der rechte senkrechte
Pfeil ein Isomorphismus, und damit auch jg . U

Ein Element o € H, (X, X — U) mit j7(a) = a, heiBt eine Fortsetzung
von ay. Fir y € U setzen wir

Korollar IT1.1.4 Ist a, € H,(X,X — {z}), so gibt es eine Umgebung U
von x mit:

(i) ag kann eindeutig zu o € Hyp (X, X — U) fortgesetzt werden.

(ii) Ist ap Erzeuger, dann auch oy firy e U.

Bemerkung Der Beweis von Satz (I11.1.3) zeigt, dal man in diesem Beweis
die offene Menge U auch durch einen Quader der Dimension d < n ersetzen
kann.

oder
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Definition Eine Orientierung von X entlang U ist ein Element o €
H,(X,X —U), so da8 o fiir alle y € U ein Erzeuger ist.

Ist V' C U so haben wir einen natiirlichen Homomorphismus
GV Hy (X, X —U) — Hy(X, X = V)
so daf} fiir alle y € V gilt
3 (i(@) = 1 (@),
Definition (i) Ein globales Orientierungssystem von X ist eine Familie
(Ui, ai)ier wobei

(a) (Ui)ier ist eine offene Uberdeckung von X,
(b) a; € Hp(X, X — U;) ist eine Orientierung entlang Uy,
(c) ist x € U; N Uy, so gilt jVi(a;) = 0% (ap) =: .
(i) Zwei Orientierungssysteme (U;, o;) und (Vj, 3;) heien dquivalent, falls

stets a; = B,.

Definition Eine Mannigfaltigkeit X heifit orientierbar, falls es ein globales
Orientierungssystem auf X gibt. Eine Orientierung ist eine Aquivalenzklasse
von Orientierungssystemen.

Bemerkung Die folgenden Aussagen sind im wesentlichen offensichtlich:
(i) Ist X orientierbar und V' C X offen, so ist auch V orientierbar.

(ii) X ist genau dann orientierbar, wenn jede Zusammenhangskomponente
von X orientierbar ist.

Satz IT1.1.5 (i) X sei zusammenhdngend. Dann stimmen zwei Orientie-
rungen, die in einem Punkt tbereinstimmen, tberall iberein.

(ii) Eine zusammenhdingende orientierbare Mannigfaltigkeit besitzt genau
zwet Orientierungen.

Beweis. Es geniigt (i) zu zeigen. Es sei A die Menge der Punkte, in denen
die beiden Orientierungen iibereinstimmen. Nach Satz (III.1.3) sind sowohl
A als auch X — A offen. O

Beispiel (i) Fur X = S™ gilt H,(S™, S" — {z}) = H,(S") = Z. Al-
so kann man ein Orientierungssystem wéhlen, das aus einer einzigen
offenen Menge und einem der beiden Erzeuger besteht.

(ii) Das Mobiusband und P?(R) sind nicht orientierbar.
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Es sei X eine Mannigfaltigkeit. Dann definieren wir die Menge
Xz ={(z,ap);z € X,ap € Ho(X, X — {z})}.
Wir haben eine natiirliche Abbildung
p:Xz— X, (z,a5)—uz,

deren Fasern bijektiv zu Z sind. Wir wollen nun Xy zu einem topologischen
Raum machen. Eine Basis der Topologie soll aus folgenden Mengen bestehen:

<U7aU> = {(maam);x S Uaax = JCCU(aU>}

wobei U C X offen und ay € H,(X,X — U) ist. Wir miissen zeigen, dafl
dies tatsédchlich die Basis einer Topologie definiert. Sei dazu

(z,ap) € (U, ay) N (U ay).

Dann gibt es nach Satz (II1.1.3) eine Umgebung U” C U N U’ und ein
Element agn € Hy(X, X — U") mit 55, (o) = agr = jn(arr), d.h. also

<U”,04UN> C <U, aU> N <U/, an>.
Mit dieser Topologie wird p : Xz — X eine Uberlagerung.

Wir kénnen nun eine Abbildung

(T, r) = oyl

betrachten, da fir o, € H,, (X, X —{z}) = Z der Absolutbetrag wohldefiniert
ist. Dann besteht
Xi=v1(1)c Xy

aus allen Paaren (x, ), wobei a, ein Erzeuger ist. Mittels p ist
p: Xy — X

eine zweifache Uberlagerung. X ist genau dann orientierbar, wenn diese
Uberlagerung einen Schnitt hat, d.h. wenn es eine stetige Abbildung

s: X — X4 mit pos= idyx

gibt. Dies ist genau dann der Fall, wenn X4 in zwei Zusammenhangskompo-
nenten zerfillt. Insbesondere ist jede Mannigfaltigkeit, deren Fundamental-
gruppe keine Untergruppe vom Index 2 hat, orientierbar. Dies gilt speziell
fiir einfach-zusammenhéngende Mannigfaltigkeiten. Dies fiihrt uns auf fol-
gende
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Definition Ist A ein Unterraum von X, so ist ein Schnitt iiber A eine ste-
tige Abbildung s : A — Xz mit pos = idy. Die Menge der Schnitte wird
mit 'A bezeichnet.

Jeder Schnitt s € T'A lit sich in der Form

s(z) = (z,5'(z)), s'(z) € Hn(X, X — {z})

darstellen. Zwei Schnitte s1, so € I'A lassen sich addieren durch
(s1 4 82)(2) := (x, 1 (x) + s5())
sowie mit einer Zahl n € Z multiplizieren:
(ns)(z) = (2,ns'(x)).
Damit wird I'A zu einer abelschen Gruppe, bzw. einem Z-Modul.
Definition (i) Xz heiit die Orientierungsgarbe von X.
(ii) Schnitte, die iiber ganz X definiert sind, heiflen globale Schnitte.

Definition Wir sagen, dafl X orientierbar entlang eines Unterraums A ist,
wenn es einen Schnitt s € T'A gibt mit s(a) € X4 fir alle a € A (d.h.
§'(a) € Ho(X,X — {a}) ist Erzeuger).

Satz III1.1.6 X ist genau dann orientierbar entlang A, wenn es einen Homdo-

morphismus ® : p~1(A) — AXZ gibt (hierbei trigt Z. die diskrete Topologie),
so daf$ das Diagramm

AXZ

kommutiert. Ist X orientierbar entlang A und hat A genau k Zusammen-
hangskomponenten, so gilt TA = 7ZF.

Beweis. Ist X orientierbar entlang A, so gibt es einen Schnitt s : A — v~1(1).
Insbesondere ist §'(x) € H, (X, X —{z}) ein Erzeuger. Also gibt es zu jedem
(7,0,) € p~H(A) ein A\, € Z mit a, = \,s'(x). Wir definieren

O:pHA) - AXZ, (z,00)— (x,)\).
Ist U eine offene Menge, so dal «, eine eindeutig bestimmte Fortsetzung

ay € Hy (X, X—U) besitzt, so bildet ® die offene Menge (U, ayy) auf Ux{\;}
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ab. Da @ offensichtlich bijektiv ist, ist es ein HomG6omorphismus. Ist umge-
kehrt @ gegeben, so erhilt man eine Orientierung durch s(x) := ®~1(z,1).
O

Wir betrachten nun den kanonischen Homomorphismus

ja:Hy(X, X —A) — TA
jal@)(x) = (x5} (a)).

(Die Stetigkeit der Abbildung j4(a) folgt sofort aus der Konstruktion der
Topologie auf Xz). Ist B C A, so haben wir ein kommutatives Diagramm

Ho(X,X —A) 24, 14

jél l

H,(X,X -B) -2 B

wobei r die Einschrinkung von Schnitten bedeutet.

Definition Wir sagen, dafl s € T'A kompakten Trdger hat, falls es eine
kompakte Menge K in A gibt, mit s(z) = (z,0) fir z € K.

Die Menge der Schnitte mit kompaktem Tréger wird mit I'. A bezeichnet.
I'.A ist ein Untermodul von I"A. Ist A kompakt, so ist I'A =T'A.

Theorem II1.1.7 Es sei X eine Mannigfaltigkeit der Dimension n und A
etne abgeschlossene Teilmenge von X. Dann gilt:

(i) Hy(X,X —A) =0 firqg>n
(ii) ja ist injektiv mit Bild ' A, d.h.

ja: Ho(X, X — A) ST.A.

Insbesondere gilt jx : Hp(X) S T.X und H,(X) =0 fir ¢ > n.

Bevor wir diesen Satz beweisen, wollen wir einige Folgerungen festhalten.

Korollar I11.1.8 Ist A abgeschlossen, zusammenhdingend und nicht kom-
pakt, dann ist H,(X,X — A) = 0. Insbesondere ist H,(X) = 0, falls X
zusammenhdngend und nicht kompakt ist.

Beweis. Es sei « € H, (X, X — A). Da A zusammenhéingend ist, ist v(j4(«))
konstant. Da j4(a) kompakten Triiger hat, und A nicht kompakt ist, folgt
v(ja(a)) =0, d.h. ja(a) =0 und da j4 injektiv ist, auch oo = 0. O

Korollar I11.1.9 A sei kompakt und habe k Zusammenhangskomponenten.
Ist X orientierbar entlang A, so gilt H,(X, X — A) = ZF.
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Beweis. Aus Satz (I11.1.6) folgt, da A kompakt ist, T.A = T'A = ZF. O

Korollar I11.1.10 FEs sei A eine kompakte Teilmenge von R™, n > 2, mit
k Zusammenhangskomponenten. Dann ist b,—1(R" — A) = k.

Beweis. Es gilt
H, | (R" — A) = H,(R",R" — A) = 7k
nach Korollar (I11.1.9), da R™ orientierbar ist. O

Korollar I11.1.11 Es sei X eine kompakte zusammenhdngende Mannigfal-
tigkeit. Dann gilt

| Z falls X orientierbar ist
Hn(X) = { 0 sonst.
Beweis. Falls X orientierbar ist, gilt nach Satz (I11.1.6), da I'. X =T'X = Z.
Sei umgekehrt s € I'’X mit s # 0. Dann ist v(s(z)) konstant, und von 0
verschieden. Also erhilt man eine Orientierung durch s(z) = (z,s'(z)/a)
mit a = v(s(x)), O

Bemerkung Dies zeigt, dafl P?(R) nicht orientierbar ist.

Ist X kompakt, zusammenhéngend und orientierbar, so entspricht eine
Orientierung einem Erzeuger ¢ € H,(X). Die lokale Orientierung im Punkt
x ist dann gegeben durch jX (p) € H, (X, X — {z}).

Definition Die Klasse ¢ heifit die Fundamentalklasse der orientierten Man-
nigfaltigkeit X.

Bevor wir Theorem (II1.1.7) beweisen kénnen, benoétigen wir noch fol-
genden

Satz I11.1.12 FEs sei X ein topologischer Raum, A1, Ao seien abgeschlosse-
ne Teilmengen von X und A = A1 U As. Dann gibt es eine Mayer-Vietoris
Sequenz

o Hy(X,X — A) = Hy(X, X — A1) ® Hy(X, X — As)
— Hq(X,X—AlﬂAQ)—) q_l(X,X—A)—>~~-

Beweis. Analog zum Beweis der Mayer-Vietoris Sequenz. U

Beweis von Theorem (II1.1.7): Wir gehen in mehreren Schritten vor.
0. Schritt: A = (). Hier ist die Aussage trivial.
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1. Schritt: Falls die Aussage fiir A1, A3 und A; N As gilt, dann auch fiir
A = A1UAs. Die Mayer-Vietoris Sequenz von Satz (I11.1.12) liefert zunéchst
Hy(X,X —A) =0 fir ¢ > n und weiter ein kommutatives Diagramm:

0— Hpy(X, X —A) — > H, (X, X — A1) ® Ho (X, X — Ap) — > H, (X, X — A1 N A)

le :lelnAz
(r1,—7r2) r14r2

0 T .A T'cA1 @T Ao FC(Al n Ag)

:lel Diay

wobei 71,7y die Einschriankungsabbildungen sind. (Die Bilder unter j4 ha-
ben kompakten Triger, da dies fiir j4, und j4, gilt.) Aus dem Fiinferlemma
folgt dann, dafl j4 ein Isomorphismus ist.

2. Schritt: Wir nehmen an, dafl A kompakt und zusammenhéngend und in
einer Koordinatenumgebung enthalten ist. Mittels Ausschneidung kénnen
wir X durch D" ersetzen, d.h. Hy(X, X — A) = H,(D", D" — A).

Fall 1: A ist ein Quader der Dimension < n. Dann gilt H,(D", D" — A) =
H, (D" — A) = H, 1(S™1). Insbesondere ist Hy(D", D" — A) = 0 fiir
q > n. Dies zeigt (i). Die Aussage (ii) folgt, da H,_1(S""!) = Z = T'A4,
wobei wir bei der letzten Gleichheit die Orientierbarkeit von D™ und Satz
(II1.1.6) verwenden.

Fall2: A = A, U...U A,, wobei die A; Quader sind, deren Seiten paral-
lel zu Koordinatenebenen sind. Wegen Fall 1 kénnen wir schon annehmen,
daBl m > 2 ist. Wir machen Induktion nach m. Sei A’ = A; U ... U A,,_1.
Dann ist A’N A,,, vom selben Typ und besteht aus hochstens m —1 Quadern
(moglicherweise kleinerer Dimension). Also kénnen wir die Induktionsvor-
aussetzung auf A’ und A’ N A,,, anwenden und dann mit Schritt 1 schliefSen.

Fall 3: A kompakt.

Wir beweisen zunéchst die Surjektivitédt von j4. Es sei also s € 'A gegeben.
Auf Grund von Satz (II1.1.6) gibt es s* € I'X mit s*|A = s (beachte, daf§
s(A) wegen des Zusammenhangs der Menge a das Bild in einer Komponente
von p~!'X liegen mufl). Wir wihlen nun zu jedem z € A einen Quader in
X der Dimension n, der X in seinem Inneren enthilt, und dessen Seiten
parallel zu den Koordinatenebenen liegen. Es sei A’ die Vereinigung endlich
vieler solcher Quader, die A umfafit. Dann haben wir ein Diagramm

Hy(X, X — A) —— TA' > s*|A

Jar

! !

H,(X,X-A) —— TA>s

JA
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wobei ja nach Fall 2 ein Isomorphismus ist. Also ist
s=ia (74 (G2 (s"149) ) -

Es sei nun o € H, (X, X — A) mit ja(«) = 0. Wir miissen zeigen, dafl o = 0.
Es sei z ein relativer Zykel, der « représentiert. Dann ist V' = X — |0z|
eine offene Menge, die A enthilt. Es sei o/ die Homologieklasse von z in
H,(X,X — V). Es gilt j¥(a/) = j2(a) = 0 fiir alle 2 € A. Also gibt es
nach Korollar (II1.1.4) eine offene Umgebung V' mit A C V/ C V| so dal
§¥(a') = 0 fiir alle x € V’. Wir konstruieren nun ein A’ wie oben mit
A c A c V' Dann gilt ja(a)(z) = 7Y (') = 0 fiir alle x € A’. Mit Hilfe
von Fall 2 schliefen wir dann, dal o/ = 0 ist und damit auch o = 0. Ein
analoges Argument zeigt auch, da8 Hy(X, X \ A) =0 fiir ¢ > n.

3. Schritt: A ist kompakt.

Dann ist A endliche Vereinigung von kompakten, zusammenhéngenden Men-
gen Aq,..., A, die in Koordinatenumgebungen liegen. Wir machen dann
unter Verwendung von Schritt 1 und Schritt 2 einen Induktionsbeweis.

4. Schritt: A C U,U offen, aber U kompakt. Dann gilt der Satz fiir das
Paar (U, A).
Wir betrachten das Tripel

(X,UU(X-0U),(U—-A)U(X-0)).
Mit Hilfe des Ausschneidungssatzes folgt
H,(U,U—-A) 2 H,(UU(X-0U),(U—-A)U(X-0)).
Dann liefert uns die exakte Homologiesequenz des obigen Tripels
= Hopt (X, UU(X=0)) = Hy(U,U=A) — Hy(X, (U=A)U(X-T)) = -

Wir koénnen Schritt 3 fiir die Mannigfaltigkeit X und die kompakten
Mengen U — U und A U (U — U) anwenden. Daraus ergibt sich, daf die
beiden dufleren Terme der obigen Sequenz und damit auch der mittlere fiir
g > n gleich 0 sind. Fiir ¢ = n haben wir ein kommutatives Diagramm

00— Ho(U,U - A) —— Hp(X,(U- AU (X -0)) — H,(X,UU (X = 1))

A |

0 r.A Le(Au (U -0))

1R
<~
1R

Dabei ist r die Einschrinkung und ¢ ist wie folgt definiert: Es sei s € ' A.
Dann ist s = 0 auflerhalb einer kompakten Menge K C A und wir setzen

{saqu

i(s) = 0 auflerhalb von K.
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Dies ist wohldefiniert und stetig. Die Abbildung 7 ist injektiv und das Dia-
gramm zeigt, dafl j4 ein Isomorphismus ist (es zeigt insbesondere auch, daf
das Bild von j4 in I':A enthalten ist).

5. Schritt: Der allgemeine Fall. Wir stellen zunéchst fest, dafl alle Elemente
im Bild von j4 kompakten Triger haben: Ist « € H, (X, X — A), so wihle
man einen reprisentierenden Zykel z von a. Dann ist der Triger |z| von z
kompakt, und wegen des Diagramms

Hy(|z],]z2] — A) —— Hyp(X, X —A)

! !

Hy(lz]; |2 = {z}) —— Ha(X, X —{z})

folgt ja(a)(x) =0 falls x ¢ |z|.

Wir zeigen als néchstes, dal das Bild von j4 ganz ' A ist. Es sei dazu
s €l Aund K C A kompakt mit s = 0 auflerhalb von K. Dann kénnen wir
eine offene Umgebung U von K wihlen mit U kompakt. Wir betrachten A’ =
ANU und den Schnitt s’ = s| 4. Wir haben ein kommutatives Diagramm

Ho(U, U — A') —— H,(X,X — A)

%le/ JjA
el Al —— T.A>s.
Hierbei ist ja auf Grund von Schritt 4 ein Isomorphismus. Damit ist die
Surjektivitit gezeigt.

Es sei nun o € Hy(X, X — A) mit ¢ > n oder es sei ¢ =n und ja(a) = 0.
Wir miissen zeigen, dafl o = 0. Wir wéhlen eine offene Menge U mit |z| C U
und U kompakt, wobei z wieder a reprisentiert. Es sei wieder A’ = ANU.
Fiir ¢ = n folgt die Aussage aus obigem Diagramm. Fiir ¢ > n verwenden
wir wieder Schritt 4 (ist z homolog zu einem Zykel in U — A’, dann erst recht
in X —A). O

2 Kohomologie

In diesem Abschnitt fithren wir die Kohomologiegruppen ein. Diese spielen
bei den Dualitdtssdtzen auf Mannigfaltigkeiten eine entscheidende Rolle.

Sind A und G abelsche Gruppen, so ist die Menge der Gruppenhomo-
morphismen von A nach G

Hom(A,G) = {p;¢ : A — G ist Homomorphismus}
selbst wieder eine Gruppe, wobei die Verkniipfung gegeben wird durch
(o +¥)(a) == ¢(a) + ¢(a).
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Wir halten nun die abelsche Gruppe G fest. Zu jedem Gruppenhomomor-
phismus f : A — B gibt es einen G-dualen Homomorphismus

f* :Hom(B,G) — Hom(A4,G)
p = [Fe)=¢of

Es gilt id # = id. Ist ¢ : B — C ein weiterer Homomorphismus, so ist
(go f)# = f# o g*. Damit wird die Zuordnung A — Hom(A,G), f — f#
zu einem kontravarianten Funktor.

Definition Man sagt, die kurze exakte Sequenz

0—>Ai>B£>C—>0

spaltet, wenn g ein Rechtsinverses besitzt, d.h. es gibt einen Homomorphis-
mus r: C' — B mit gor = ide.

Man driickt dies meist mit folgender Notation aus:

0-A4LB % oo

r
Satz II1.2.1 Fs sei 0 — A 4, B 4 C — 0 eine kurze exakte Sequenz.
Dann sind die folgenden Aussagen dquivalent:

(i) Die Sequenz spaltet.

(ii) Es gibt zu f ein Linksinverses, d.h. einen Homomorphismusl: B — A
mitlo f =idy4.

(iii) Es gibt einen Isomorphismus ¢ : A® C — B mit ¢(a,0) = f(a) und
gop(ae) =c.

Beweis. (i)=-(iii). Wir definieren ¢(a,c) = f(a) + r(c). Dann kommutiert
das Diagramm

iA

0—=A—2>A0C %0 —>0
l lidA l‘P lidc
0 A1l .p_2 . 0

und das Fiinferlemma zeigt, dafl ¢ ein Isomorphismus ist.
(iii)=(i). Setze r(c) = ¢(0, ¢).

(ii)=-(iii). Wir erhalten einen Isomorphismus ¢ : B — A @ C durch ¢(b) =
I(b) + g(b) und setzen dann ¢ = ¢p~L.
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(iii)=-(ii). Es sei v = ¢ 1. Dann erhalten wir [ durch I(b) = (74 0 9)(b).
(]

Daf} nicht jede kurze exakte Sequenz von Gruppen spaltet, zeigt das
Beispiel
0757 —17Z/n—0.

Andererseits gilt der

Satz I11.2.2 Ist0 — A 4, B4 C — 0 eine kurze exakte Sequenz abelscher
Gruppen und C' eine freie abelsche Gruppe, so spaltet die Sequenz.

Beweis. Es sei (¢;)icr eine Basis von C. Da g surjektiv ist, kénnen wir b; € B
wéhlen mit g(b;) = ¢;. Dann wird durch r(¢;) = b; ein Gruppenhomomor-
phismus r : C' — B definiert, fiir den g or = id¢ gilt. O

Satz I11.2.3 (i) Ist0 — A L, B L 0 = 0 eine kurze exakte Sequenz, so
ist auch die Sequenz

g% f#
0 — Hom(C, G) = Hom(B,G) — Hom(A4, G)
exakt.

(ii) Ist 0 — A Lps C — 0 eine kurze exakte spaltende Sequenz, so gilt
dasselbe fiir

0 — Hom(C, G) i Hom(B, G) . Hom(A,G) — 0.

Beweis. (i) g7 ist injektiv: 0 = g7 () = pog impliziert ¢ = 0, da g surjektiv
ist. Die Aussage im g” C ker f# folgt wegen f7 o g7 = (go f)¥ = 0% =
0. Es bleibt ker f# C im g7 zu zeigen. Es sei dazu ¢ € Hom(B,G) mit
0= f#(p) = pof. Also ist ¢|im f=kerg = 0. Damit ist 1 (c) = p(g~{c})
fiir ¢ € C wohldefiniert und liefert einen Homomorphismus ¢ : C' — G mit
@ =1og=g" (), dh. esist ¢ € im g¥.

(ii) Dies folgt aus Satz (I1.2.1): Ist [ : B — A ein Linksinverses von f,
d.h. gilt lo f = idy, so folgt f#ol# = idom(a,q), d.-h. I# ist Rechtsinverses
von f# und insbesondere ist f# surjektiv.

O

Das Beipiel vor Satz (I1.2.2) zeigt auch, daB f im allgemeinen nicht
surjektiv ist. Man sagt auch, dal Hom (—, G) ein linksexakter Funktor ist.
Wir wollen nun messen, inwieweit f# nicht surjektiv ist.

Definition Eine freie Aufiésung von A ist eine kurze exakte Sequenz
0-R—-F—-A—0

wobei F' eine freie abelsche Gruppe ist.
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Beispiele (1) Die exakte Sequenz
0—-Z57Z—7Z/n—0
ist eine freie Auflésung von Z/n.

(2) Jede abelsche Gruppe A besitzt eine freie Auflésung. Wir betrachten
hierzu die durch die Menge A erzeugte freie abelsche Gruppe

FA)={¢: A—1Z; ¢(a)=0 fiir fast alle a € A}.

Die Abbildung
p: F(A)

— A
e = > pla)a
a€A

ist surjektiv. Ist R = ker p, so ist
0—-R—FA)—-A—-0

eine freie Auflosung von A. Wir nennen dies die Standardauflésung.

Definition Essei0 — R 5 F 2 A — 0 eine freie Auflésung der abelschen
Gruppe A. Definiere

Ext(A4,G) = Hom(R, G)/ im(i%).

Satz IT11.2.4 Ext(A, G) hdngt nur von den Gruppen A und G, nicht jedoch
von der Wahl der freien Aufliésung ab.

Beweis.

-/

(a) Essei 0 - R' & F' 2, A = 0 eine weitere freie Auflésung der Gruppe
A. Wir definieren zunichst Homomorphismen f : F — F’ und f': R — R’
so dafl das Diagramm

0—>=R—>F
s ! A—>0

0—=R —=F

kommutiert. Dies geschieht wie folgt: Es sei B eine Basis von F'. Zu jedem
b € B wihlen wir ein Element zj € F' mit p/(2};) = p(b) und definieren
f+F — F' durch f(b) = z}. Dann gilt p’ o f = p. Daher gilt auch p’o foi =
poi=0,dh. im (foi)Ckerp = im . Wir koénnen also

f/:i/_lofoi
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setzen (wobei /' auf im i’ wohldefiniert ist).
(b) Sind nun f; : F — F’ und f] : R — R’ weitere solche Homomorphismen,
so gibt es einen Homomorphismus a : F — R mit f — f; = i/ o @ und

= fl=aoi:

0—>R——>F

N

f'=f o |f-A A——0

/

0—=R ——F
Fiir x € F ist ndmlich f(z)— f1(z) € kerp’ = im ¢/, d.h. man kann definieren
a=i"o(f=f)
Damit folgt sofort, dafl i o« = f — f; und weiterhin
fo(f = f)=(f— f)oi=ioaoi
Da 4/ injektiv ist, ergibt dies
f'—fl=aoi.

(c¢) Das duale Diagramm sieht nun wie folgt aus

Hom(F, Q) —~ Hom(R, G)

=
0 — Hom(4, G) * (f)*
m (’i/)#
Hom(F’, G) —— Hom(R/, G).

Wegen der Kommutativitdt des Diagramms bildet (f')# insbesondere das
Bild im(#)# nach im i# ab, d.h. (f’)” induziert einen Isomorphismus

¢ : Hom(R',G)/im(i')* — Hom(R, G)/imi?.

Dieser Homomorphismus héngt nicht von der Wahl von f und f’ ab: Ist
nidmlich ¢’ € Hom (R, @), dann gilt

(7 = (D#) () = (@i (¢) = i#(a*y) € im i,

(d) Durch Vertauschen der Rollen der beiden Auflésungen erhilt man um-
gekehrt einen Homomorphismus

¢’ : Hom(R,G)/ im i* — Hom(R',G)/ im (i')¥.
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Aus (c) folgt 1 o)’ =id und ¢’ 0 ¢ = id und damit die Behauptung,.
O

Satz II1.2.5 FEs gelten folgende Aussagen:

(i) Ist A eine freie abelsche Gruppe, so gilt Ext(A,G) = 0 fiir jede Gruppe
G.

(ii) Ext(Z/n,G) = G/nG fir n > 0 wobei nG = {ng;g € G}.
(i) Ext(A; @ Aa, G) = Ext(A41,G) ® Ext(Az, G).

Beweis.
(i) Ist A eine freie abelsche Gruppe, so ist

0—0 N A id A—0
eine freie Auflésung von A.

(ii) Dualisiert man die freie Auflésung
025722 7/n—0
so erhédlt man
0 — Hom(Z/n,G) % Hom(Z, G) = G % Hom(Z,G) = G.
(iii) Sind 0 — R; — F; — A; — 0 freie Auflésungen von A; fir i = 1,2, so
h 0—=Ri @R —F®F — A $A—0
eine freie Auflésung von A; @ As. O

Es sei nun (Cy, 0) ein Kettenkomplex. Anwendung des Funktors Hom(—, G)
ergibt
C? = Hom(Cy,G)
61 = OF 0ot
mit 6, 0 §g—1 = 8?:_1 0O = (04 0 g41)% = 0. Dies fithrt auf die folgende
Definition.

Definition Ein Kokettenkomplez (C*,0) ist eine Sequenz von abelschen
Gruppen und Homomorphismen
LLcr b et S

mit §2 = 0.
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Definition (i) Ist (C*, ) ein Kokettenkomplex so heifit
Z9(C) = ker(6 : C71 — €7
die Gruppe der ¢-Kozykel.

(ii) Die Gruppe der g-Korinder ist definiert durch
BY(C) =im (§ : CT71 — C9).
(iii) Die ¢-te Kohomologiegruppe von (C*,d) ist
HY(C)=Z1C)/BYC).

Beispiel Es sei U ein Gebiet in R”, und Q¢(U) der Vektorraum der ¢-
Formen. Zusammen mit der dufleren Ableitung d : Q4(U) — QIt1(U) erhal-
ten wir einen Kokettenkomplex (2*(U), d). Die g-te de Rhamsche Kohomo-
logiegruppe ist definiert durch

Hip(U) = Z7(Q(U)) /B (" (U)).

Die Elemente in Z9(Q2*(U)) heiflen die geschlossenen Formen, die Elemente
in BY(Q*(U)) die exakten Formen. Das Poincarsche Lemma besagt dann fiir
konvexe Mengen, daf} jede geschlossene Form exakt ist, d.h., dafl HgR(U )=0
ist fiir ¢ > 0, falls U konvex ist.

Definition (i) Sind (C*,§) und (D*, ') Kokettenkomplexe, so ist eine Ko-
kettenabbildung f : C* — D* eine Familie von Homomorphismen f?: C9 —
D?mit fod=0 o f.
(i) Zwei Kokettenabbildungen f und g heiflen kokettenhomotop, falls es eine
Familie von Homomorphismen K9 : C? — D! gibt mit 0’ K + K6 = f —g.
Wir betrachten nun wieder den Fall, dafl C' = (C, ) ein Kettenkomplex
ist, und definieren (C*, §) durch C? = Hom(C,, G) und § = 9%, wobei wir die
Gruppe G fest gewahlt haben. In diesem Fall benutzen wir die Bezeichnung

HY(C,G) = HI(C).

Ist f: (Ck,0) — (D, d) eine Kettenabbildung, so ist f# : (D*§') —
(C*, ) eine Kokettenabbildung und definiert daher einen Homomorphismus

f*+H*(D,G) — H*(C,Q).

Sind f und g kettenhomotop, so sind f# und ¢g# kokettenhomotop und es
gilt f* = g*.
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Ist ¢ € C?= Hom (Cy,G) und c € Cy, so setzen wir

(0, 0) == (c).
Hierdurch erhalten wir eine bilineare Abbildung
(,):C1xCy—G

d.h. es gilt
(p1+p2,0) = (p1,0) + (p2,0)
(pe1+ca) = (p,c1)+ (p,ca).

Ferner gilt
(0p,c) = (p,0¢c). (1)
Beispiel Ist C1 = Q%(U), so haben wir eine Bilinearform
(,):QIU) x Se(U) =R
(w,e) = [w.
C
Man kann zeigen, dafl diese Bilinearform nicht ausgeartet ist und damit

Q9(U) mit Hom(S,(U), R) identifizieren. Dann entspricht Formel (1) gerade
dem Satz von Stokes.

Es gilt nun
peZi(C) & (0p,d) = 0 firdeCup
< (p,0d) = 0 firdeCe
< ¢l = 0.

Andererseits gilt

€ BIC) & ¢=74d¢ fiirein o € 0971
= (p,c) = (0¢',c) = (¢, 0c) fiir ¢ € Z,(C)
= ¢lz,0) =0.

Hieraus folgt, daf8 die Bilinearform ( , ) eine Bilinearform

(,):HYC,G) x Hy(C) — G
([l [e]) = {p, )

definiert.

Definition Man nennt die Bilinearform ( , ) das Kroneckerprodukt.
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Dieses Produkt bestimmt wiederum einen Homomorphismus

k: HY(C,G) — Hom (H,(C),G)
k() () = (d/, a)

fir o/ € H1(C,G) und a € Hy(C).
Wir wollen nun die Eigenschaften des Homomorphismus s untersuchen.

Definition Ein Kettenkomplex C' = (Cy, 0) heifit frei, wenn alle C; freie
abelsche Gruppen sind.

Nach einem nichttrivialen Satz der Algebra ist jede Untergruppe einer
freien abelschen Gruppe wieder frei. Also sind insbesondere die Untergrup-
pen Z; = kerJ; und B; = im Oy frei, falls C' ein freier Komplex ist. Nach
Satz (II1.2.2) spaltet die kurze exakte Sequenz

j )
O—>Zqﬁ>cq—q>Bq_1—>O,

wobei j, die Inklusion und 9, (z) = 8,(z) ist. Nach Satz (I11.2.3) ist die duale
Sequenz

0 — Hom(By—1,G) é—q># Hom(Cy, G) jz Hom(Z,,G) — 0
ebenfalls exakt und spaltet.
AuBerdem hat man die kurze exakte Sequenz
0— Byt 'S5 Zy 1 P5" Hy 1 (C) — 0.
Dies ist eine freie Auflssung von H,_1(C). Nach Satz (II1.2.4) gilt dann
Ext(H,—1(C),G) = Hom(By_1,G)/ im i},

Lemma II1.2.6 Der Homomorphismus 5?1# bildet Hom(B,—1,G) nach Z4
und im z'q#_l nach B? ab, induziert also einen Homomorphismus

§: Ext(H,—1(C),G) — HY(C,G).
Beweis. a) Es sei ¢ € Hom(B;—1,G). Dann gilt
0407 (¢)) = 84(00y) = B} (90y) = 9D Dy1 = 0.

Also gilt 97 (¢) € Z1.
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b) Es sei ¢ € im if_l. Dann gibt es einen Homomorphismus ¢’ €

Hom(Z,-1,G) mit ¢ = ¢'|p,_,. Da die Sequenz

Jg—1 Dg—1
0— Zg—1 L Cy—1 = By2—0

spaltet, gibt es einen Homomorphismus [ : Cy—1 — Z;_1 mit [ 0 j,_1 = id.
Definiere
Y =¢'l € Hom(Cy_1,G).

Dann ist 1 € C9! und Y|, , = . Also gilt
Sq-1(1) = 98y = 0y = I (),
d.h. 9F (o) € B, O

Theorem II1.2.7 (Universelles Koeffiziententheorem:) Ist C ein frei-
er Kettenkomplex, so ist fiir jedes q € Z die Sequenz

0 — Ext(H, 1(C),G) > HY(C,G) % Hom(H,(C),G) — 0

exakt und spaltet. Insbesondere gibt es daher einen (nichtkanonischen) Iso-
morphismus

HY(C,G) 2 Hom(H,(C), G) & Bxt(H,_1(C), G).

Bewess.
a) 0 is injektiv. Es sei ¢ € Hom(B;-1, G) mit 5(¢) = 0in HY(C,G). Dann

gibt es ein y € Hom(Cy—1, G) mit (¢ ) 00y = dg—1X = XO0q = XJgq—1iq—10q.
Da 0, surjektiv ist, folgt daraus

= Xda-1 g1 = iy (Xfg—1) € im0y,
d.h. ¢ =0 1in Ext(H,—1(C),G).
b) im § C ker « : Es sei ¢ € Hom(B,—1,G). Fiir alle [2] € H,(C) gilt:
R(6(9))[2] = (7 (), 2) = (9, 04(2)) = (0,0) = 0.
Also ist 0(¢) € ker k.

c) ker k C im §: Es sei [¢] € HY(C,G) mit x([p]) = 0. Dann gilt fiir alle
2 € Ly

r(leD)([2]) = (¢, 2) = 0.
Alsoist 0= o jg = jg # (). Also folgt

@ € ker(jf): 1m(5;¢)
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und daher [¢] € im 4.

d) k hat ein Rechtsinverses x’: Wir definieren
k' :Hom(H,(C),G) — HIC,G)
¢ = lp o pgoly

wobei [, : Cy — Z,; wie im Beweis von Lemma (II1.2.6) gewihlt ist. Dies ist
wohldefiniert, da

dq(popgoly) =¢ o pgolyodyr1 =0

d.h. popgol, € Z9(C,G). Nach Konstruktion ist ko k' = id. Insbesondere
ist k surjektiv und die Sequenz spaltet. O

Wir kénnen nun die singuldren Kohomologiegruppen von topologischen
Réaumen einfithren. Es sei (X, A) ein Paar von Raumen. Wir hatten bereits
die Gruppen

Sq(X, A) = 5¢(X)/54(A)

eingefiihrt. Dies ist ein freier Kettenkomplex, da man S;(X, A) mit der freien
abelschen Gruppe identifizieren kann, die durch singulére Simplizes, deren
Tréger nicht in A enthalten ist, identifizieren kann.

Definition (i) Die Elemente der Gruppen
Sq(Xv A) = Hom(Sq(X, A)a Z)
heilen ¢—Koketten in X mod A.

(ii) Die Gruppe H?(X, A) heifit die g—te singulire Kohomologiegruppe von
(X, A) (mit Werten in Z).

Bemerkungen (i) Definiert man fiir eine beliebige abelsche Gruppe G den
Komplex
Sq(Xa A7 G) = HOHl(Sq(X, A)? G)

so fithrt dies auf die singuldren Kohomologiegruppen mit Werten in G.

(ii) Analog kann man den Komplex
S(X,4,G)=5X,4) G

betrachten und erhélt auf diese Weise die singuldren Homologiegruppen
Hy(X, A; G) mit Werten in G.
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Bemerkung Der Satz von de Rham besagt, daf fiir jede differenzierbare
Mannigfaltigkeit M gilt

HY, (M) = HY(M,R).

Das universelle Koeffiziententheorem gibt uns einen Zusammenhang zwi-
schen Homologie- und Kohomologiegruppen.

Satz II1.2.8 Es sei X ein topologischer Raum, so dafi H.(X) endlich er-
zeugt ist. Es sei Ty die Torsionsuntergruppe von Hy_1(X) und F, der
Quotient von Hy(X) nach T,. Dann gilt

HY(X)=T,1 & F,.
Beweis. Das universelle Koeffiziententheorem liefert einen Isomorphismus
HY(X) = Ext(Hy—1(X),Z) ® Hom(H,(X),Z).
Die Behauptung folgt dann aus folgenden Aussagen:

Ext(Z,Z) =0, Ext(Zy,Z)~7Z,
Hom(Z,7Z) = 7, Hom(Zy,,Z) = 0.

Da S,(X, A) ein freier Kettenkomplex ist, ist
0— Si(A) = Su(X) = Si(X,A4) —0
eine kurze exakte, spaltende Sequenz. Nach Satz (II1.2.3) gilt dies auch fiir
0—S*(X,A) - S*(X) — S*(A) — 0.
Die zugehorige lange Homologiesequenz lautet dann
= HY(X, A) — HU(X) — HY(A) S HPY (X, A) — -

Ist schlieflich f : (X, A) — (Y, B) eine stetige Abbildung von Paaren, so
induziert dies einen Homomorphismus:

£*: H*(Y, B) — H*(X, A).

Wir kénnen nun die Eigenschaften der Kohomologiegruppen in folgen-
dem Satz zusammenfassen.

Satz 111.2.9 Die singuldren Kohomologiegruppen haben die folgenden Ei-
genschaften:

(1) Kontravarianter Funktor
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(i) Sind f: (X,A) — (Y,B) und g : (Y,B) — (Z,C) stetige Abbil-
dungen von Paaren, so gilt (go f)* = f*og*.

(il) Firid: (X, A) — (X, A) gt id* = id.

(2) Ezakte Kohomologiesequenz
Man hat eine exakte Kohomologiesequenz

s HYX, A) — HUX) — HI(A) S HPY(X, A) — -

(3) Kommutative Diagramme
Ist f : (X, A) — (Y, B) eine stetige Abbildung von Paaren, so kommu-
tiert das Diagramm

HI(A) -2 HI(X, A)

[t [r
HY(B) —~— HI\(Y,B).

(4) Homotopieinvarianz
Sind f,g: (X,A) — (Y, B) homotop als Abbildungen von Paaren, so

gilt f*=g*.

(5) Ausschneidung

Ist (X, A) ein Paar von Riumen und U C A mit U le, so induziert
die Inklusioni: (X —U,A—U) — (X, A) einen Isomorphismus

i H*(X,A) —» H(X —U,A-U).

(6) Kohomologie eines Punktes

mom {5 120

Beweis. Man kann dies aus den entsprechenden Aussagen fiir die Homolo-
giegruppen ableiten. O

Die obigen Aussagen (1)-(6) sind die Axiome von Eilenberg-Steenrod
fiir eine Kohomologietheorie. Man kann zeigen, dafl es fiir Paare von Zell-
komplexen bis auf Isomorphie nur eine Kohomologietheorie gibt, die diesen
Aussagen geniigt.
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3 Cup- und Cap-Produkt

FEin Vorteil der Kohomologietheorie gegeniiber der Homologietheorie besteht
darin, dafl auf der graduierten Kohomologiegruppe eine natiirliche Multipli-
kation, das Cup-Produkt besteht. Dieses Produkt und das davon abgeleitete
Cap-Produkt zwischen Kohomologieklassen und Homologieklassen soll hier
eingefiithrt werden.

Es sei X ein topologischer Raum und S*(X) die Gruppe der Koketten.
Wir wollen zunéchst eine bilineare Abbildung

U: SP(X) x SU(X) — SPH(X)
() = pUY

einfithren. Hierzu geniigt es (o U, o) fiir jedes singulére (p + ¢)-Simplex o
zu definieren. Dazu betrachten wir die folgenden affinen Simplizes

N = (€0,.--5€p) : AP — APt
pg = (epsepiiy. . €prq) : AL — APTE
wobel e, . .., ep1q die Ecken des (p + ¢)-Standardsimplex AP sind.

Definition Ist o : APT? — X ein singuliires (p+q)-Simplex, so heiit oo\,
die p-dimensionale Vorderseite und o o p, die ¢—dimensionale Riickseite von
.

Definition Fiir ¢ € SP(X) und ¢ € S9(X) ist p Uy € SPT(X) definiert
durch
(P U, 0) = (p,0Ap) (1), 0pq)

fiir o € Sp1q(X).
Satz II1.3.1 Fir ¢ € SP(X) und ¢ € S9(X) gilt
S(pU) =dp Ut + (=1)Pp Ui

Beweis. Es sei o : APT9+tl — X ein singuldres (p + ¢ + 1)-Simplex. Dann
gilt:
<5SO U 1/}7 U> = <5907 O-Ap-i-l) : <w7 qu>
= (0, 0(0Ap41)) - (¥, 0pq)

p+1 ) )
= ;)(_1)l<907 (UAp+1)(Z)><¢7 apg)
= i(—l)i@o, U(i))‘p><¢a‘70q> + (_1)p+1<€0: o) (¥, apg).
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Analog gilt:

<S0 U 51/]7 U) = <S07 U)‘p> <1/]7 8(‘7Pq+1)>
ptq+1

= X (=17 p, o) (¥, (0pg1) )
i=p
ptg+1 ) )
= (@, o) (¥, 0pq) + (=1)P Zﬂ(—l)%,0/\p><1/1,0“)pq>-
i=p
Zusammen ergibt dies

(6pUY + (=1)PpUdp,0) =
prg+1 , , ‘
= Z: (_1)l<90> U(l)/\p><wa U(Z)Pq>

— (pUy,d0)
— (3pUD), o).

(Hierbei beachte man, dafl fiir alle ¢ > p + 1 gilt J(i))\p = o), und analog
o®)p, = op, fiir k < p.). O

Korollar IT1.3.2 (i) Fiir p € ZP(X), € Z9(X) gilt o Utp € ZPTI(X).

(ii) Ist ¢ € ZP(X),p € BYUX) oder p € BP(X),v € Z1X), so gilt
p U1 € BPH(X).

Beweis. (i) Aus d¢ = 0, §p = 0 folgt sofort aus Satz (II1.3.1), dafl auch
d(eU) =0.
(ii) Ist ¢ = 6’ mit ¢’ € SP~HX) und §v» = 0, so folgt
pUY =d¢ U =d(¢' Uy) € BP(X)

wobei die letzte Gleichung ebenfalls wieder aus Satz (I11.3.1) folgt. Die erste

Aussage beweist man analog.
(]

Damit iibertréagt sich das Cup-Produkt auf Kohomologieklassen.

Definition Fiir a = [p] € HP(X) und § € [¢] € HY(X) wird das Cup-
Produkt definiert durch

aUp:=[pUy] € HI(X),
Dies liefert eine bilineare Abbildung
U: HP(X) x HY(X) — HPTI(X).

Der Vollstéindigkeit halber notieren wir hier den folgenden Satz, den wir
jedoch im folgenden nicht benutzen werden.

94



Theorem 111.3.3 Das Cup-Produkt ist schiefsymmetrisch, d.h. es gilt
aUb=(—-1)PbUa
fira e HP(X),b € HY(X).

Beweis. Der Beweis ist erstaunlich aufwendig und fiihrt auf die Theorie der
azyklischen Modelle. Der Leser wird hierzu auf [GH, section 24] oder [V,
chapter 4] verwiesen. O

Bemerkung Stellt man mittels der de-Rham-Kohomologie Kohomologie-
klassen durch Differentialformen dar, dann entspricht das Cup-Produkt dem
A-Produkt und der obige Satz folgt sofort.

Wir untersuchen nun das Verhalten des Cup-Produkts unter Abbildun-
gen.

Satz I11.3.4 (i) Ist f : X — Y eine stetige Abbildung, so gilt 7 (pUy)) =
FEp) U f#(y) fir o € SP(Y) und ¢ € SU(Y).

(i) ff(aUp) = f"(a)U f*(B) firaec HP(Y) und B € HI(Y), d.h. f* ist

ein Ringhomomorphismus.

Beweis. (i) Es sei 0 : APT4 — X ein singuliires (p + ¢)-Simplex. Dann gilt:

(fflpUv),0) =

fFp.on ><f#¢, opq)
fFeu f#w o).

(ii) folgt sofort aus (i). O

(
2% fG)\ (¥, fopg)
(

Wir betrachten nun die zu dem Cup-Produkt assoziierte Operation, das
Cap-Produkt. Ziel ist es zuniichst, eine bilineare Abbildung

N2 S9X) X Spiq(X) — Sp(X)

zu definieren, die zu dem Cup-Produkt adjungiert ist, d.h. fiir ¢ € S%(X)
und ¢ € Sp44(X) soll ¢ N ¢ die eindeutig bestimmte p-Kette sein mit

(p,Ne) = (pU,c) fiir alle p € SP(X).

Definition (i) Fiir ein ¢ € S%(X) und ein singuléres (p + ¢)-Simplex
o: APTT — X sei
Y No=(,opg)oN.
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(ii) Fiir eine (p + q)-Kette ¢ = > n,o definieren wir ¢ N ¢ durch lineare
Fortsetzung

YNe= Z neW N o.
Satz II1.3.5 Fiir ¢ € SP(X),¢ € SUX) und ¢ € Spiq(X) gilt
(9 ne) = (pUy,c).
Beweis. Es geniigt, dies fiir ein (p 4+ ¢)-Simplex o zu beweisen. Dann gilt:

(U, a) = (0,0 M) (Y, 0p4) = (s NO).

Satz II1.3.6 Fir ¢ € S1(X),c € Sp1q(X) gilt
oNe)=vyYNaoc— (—1)Pspne.
Beweis. Wir betrachten das Kroneckerprodukt mit Elementen ¢ € SP~(X) :
{p, 0 Ne)) = (bp, 9 Ne) = (bp U, )

wobei das zweite Gleichheitszeichen nach Satz (I11.3.5) gilt. Weiter gilt nach
Satz (II1.3.1) und Satz (IIL.3.5):

(0pUt,c) = (6(eUy) —(—1)PeUdy,c)
- <§0 U 1/1, 66) - (_1)p<()0 U 61/}7 C>
= (¥ Nc) = (=1)F{p, 00 Nc)
= (g, N0c—(=1)Ps¢Ne).
Da dies fiir alle ¢ € SP~1(X) gilt, folgt hieraus die Behauptung. O

Korollar ITL.3.7 (i) Fir ¢y € Z9X),c € Zp4(X) gilt Y Nc € Z,(X).

(ii) Fir ¢ € BIX), ¢ € Zyprq¢(X) oder ¢ € ZU(X), ¢ € Bprq(X) gilt
Y Nce By(X).

Beweis. Dies folgt aus Satz (II1.3.6), vgl. den Beweis von Korollar (II1.3.2).
(]

Damit 148t sich das Cap-Produkt auf Kohomologie- und Homologieklas-
sen iibertragen.

Definition Fiir § = [¢)] € HI(X),vy = [c] € Hp4(X) definieren wir das
Cap-Produkt
BNy:=[YNc e Hy(X).
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Wir erhalten auf diese Weise eine bilineare Abbildung
N: HY(X) x Hyq(X) — Hp(X).
Satz II1.3.8 Fir eine stetige Abbildung f: X — Y gilt:
(i) fa(fF@)Ne) =4 fy(e) firp € SIY),c € Spiqg(X).
(i) fe(f*(B)Ny) = B0 fi(y) fir B € HY(Y),7 € Hpq(X).
Beweis. (i) Fiir alle p € SP(Y) gilt:
(o, fe(fF)ne)) = ([P, f# () Ne)
= (fFlpuv),0)
(U, fu(c))
(P, N fre(c)).
(ii) Folgt sofort aus (i). O

Es sei ¢ die 0-Kokette mit (e,x) = 1 fiir alle z € X. Dann ist € ein 0
Kozykel, da fiir jedes 1-Simplex o gilt (de,0) = (¢,00) = (¢,0(1) — 0 (0)) =
0.

Definition Wir setzen 1y := [¢] € H(X).

Satz I11.3.9 (i) Es gilt 1x U = U 1lx = 3 fir alle § € HP(X), d.h.
1x ist Einselement des Kohomologierings H*(X).

(ii) Es gilt 1x N~y = fir alle v € Hy(X).
Beweis. (i) Nach Definition des Cup-Produkts gilt
eV, 0) = {e,0h0){0,00p) =1-(p,0)
fiir alle singuléren p-Simplizes o.
(ii) Folgt sofort aus (i) und Satz (IIL.3.5). O

Beispiel X sei wegzusammenhéingend. Dann gilt Hyo(X) = Z und Hyp(X)
wird erzeugt von der Klasse [x] eines Punktes z € X. Nach dem universellen
Koeffiziententheorem ist auch H%(X) = Z und wird durch 1x = [¢] erzeugt.
Fir 8 € HP(X) und v € Hp(X) gilt

BNy =(B,7)z].

Dies folgt, da (¢,8N7) = (€U B,7) = (8,7).
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Man kann auch eine relative Version des Cap-Produkts definieren. Es
gibt Abbildungen

N: HI(X,A) X Hp(X,A) — Hy(X)
N: HYX) % HyoX,A) — Hy(X,A).

Wir begriinden dies im ersten Fall: Es sei ¢ € Z9(X,A) C Z9(X) und
z2 € Zptq(X, A). Wir zeigen zunéchst, da8 ¢ N z wohldefiniert ist. Hierzu sei
w singulédres p 4+ ¢-Simplex in A. Dann gilt fiir ¢ € SP(X):

(e nw) = (pUe,w) = (p,why) e, wpg) = 0

da wpq € S4(A). SchlieBlich ist noch zu zeigen, dafl ¢N z ein p-Zykel ist auf
X. Nach Satz (II1.3.6) gilt

d(cNz)=cNoz—(—=1)PocN z.

Es gilt 6c = 0 und 0z € Sp4¢—1(A). Dann folgt wie oben, dal cNdz = 0 ist,
also d(cN z) = 0. Die zweite Paarung behandelt man analog.

4 Algebraische Limiten

Um Kohomologie mit kompakten Tréager einzufiihren, benétigen wir noch
einige algebraische Vorbereitungen.

Definition Ein gerichtetes System ist eine Menge I zusammen mit einer
Teilordnung <, so daf} es fiir je zwei Elemente 7,4’ € I ein ¢” gibt mit 7 < ¢’
und i <",

Beispiele (1) Essei I =N ={1,2,...}. Dann sei j < j’ genau dann wenn
jl7’. In diesem Fall kénnen wir fiir i das kleinste gemeinsame Vielfache von
i und ¢ wihlen.

(2) Es sei X eine Menge und K C X eine Teilmenge. Sei I das System
aller Mengen, die K enthalten. Die Teilordnung sei dadurch definiert, dafl
V < V' genau dann, wenn V' C V. Dann koénnen wir fiir V” den Durch-
schnitt V' NV’ nehmen.

Definition Essei I ein gerichtetes System. Ein gerichtetes (induktives) Sy-
stem von abelschen Gruppen ist eine Familie (G;);c; von abelschen Gruppen
zusammen mit Homomorphismen ¢ ; : G; — Gy fiir i < ¢, so daB gilt:

(1) i 0 i i = pim; fiir @ < i" <.

(2) ¢ii=idg,.
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Definition Es sei (G;);cr ein induktives System von abelschen Gruppen.
Ein direkter (induktiver) Limes dieses Systems ist eine abelsche Gruppe G,
zusammen mit Homomorphismen ¢; : G; — G, so daf} gilt:

(i) pir 0 wir; = ; fiir i <7, d.h. das Diagramm

P

il i Gi’
G

G;

kommutiert.

(ii) G erfiillt folgende universelle Eigenschaft: Ist G’ eine weitere abelsche
Gruppe, zusammen mit Homomorphismen ¢; : G; — G’ mit ¢yop; ; =
1; fiir © < 7/, so gibt es genau einen Homomorphismus ¢ : G — G’ mit
1y = Y o ;, d.h. das Diagramm

kommutiert fiir alle 7 € I.

Beispiel Es sei p € R” und [ sei das System der offenen Umgebungen von
p. Wir betrachten die Gruppen

FU) :={f;f:U — R ist differenzierbar}.

Fir U C V sei
invi]:(V) —>f(U)

die Einschrankungsabbildung. Dies definiert ein induktives System abelscher
Gruppen. Der induktive Limes ist der Halm der differenzierbaren Funktio-
nen im Punkt p, der aus den Keimen der differenzierbaren Funktionen in p
besteht.

Satz 111.4.1 Der induktive Limes existiert und ist eindeutig bestimmt.

Beweis. Die Findeutigkeit folgt wie iiblich aus der universellen Eigenschaft.
Es seien G,G zwei induktive Limiten. Dann gibt es eindeutig bestimmte
Homomorphismen

v:G—G, ¢:G —G

Nochmalige Anwendung der universellen Eigenschaften liefert weiterhin ¢ o
1 =idg und 9 o ¢ = id¢y.
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Um die Ezxistenz zu zeigen, betrachten wir die direkte Summe
G=pa;
i€l
zusammen mit den offensichtlichen Inklusionen
goj .G — G.
In G betrachten wir die Untergruppe H, die erzeugt wird von den Elementen
o (pii(x) —of (z); i <i',x e,

Es sei .
G=G/H
und
pi=mopf :G;— G,

wobei m die Projektion ist. Die Gruppe G erfiillt die Eigenschaften eines
induktiven Limes: Es seien nimlich 1; : G; — G’ Homomorphismen mit
Vi 0 @i ; = 1, dann erhilt man ¢ : G — G’ durch ([ ()]) = ¥i(z) fiir
x € G;. Dies ist auch die einzige Moglichkeit, um ¢ zu definieren. U

Bemerkungen (i) Sind alle G; Untergruppen einer Gruppe G, so kann
man fiir den induktiven Limes wéhlen

G=JaG
iel
und die ¢; als die natiirlichen Inklusionen. Dafl G tatséichlich eine Unter-

gruppe ist, folgt aus den Eigenschaften eines gerichteten Systems.

(ii) Es gilt fiir einen induktiven Limes, daf
G=Jw(G)
icl

Die Begriindung ist wie folgt. Offensichtlich ist die rechte Seite ein induktiver
Limes G'. Dann sei i : G’ — G die Abbildung, die auf Grund der universellen
Eigenschaft von G’ existiert. Andererseits gibt es auf Grund der universellen
Eigenschaft von G auch eine Abbildung p : G — G’ mit poi = idg, und
iop=idg. Also ist G' = G.

Bezeichnung Wir verwenden die Notation
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Lemma II1.4.2 (Additivitét) Es sei G; = H; ® U; fir alle i € I, so dafs
fir i < 4" der Homomorphismus @ ; eine direkte Summe ©y; = Ni; +
pir; ist. Es set H = lim H; und U = limU;. Dann erhalten wir induzierte

Homomorphismen A : H — G,p : U — G mit A\, = ilu,,ppi = @ilu,-
Diese definieren einen Isomorphismus

Nep:HaUSG.

Beweis. Wir konstruieren eine zu A@® p inverse Abbildung. Es sei dazu z € G.
Dann wihlen wir ¢ € I und z; € G; mit x = @;(x;). Fiir 2; haben wir eine
(eindeutige) Darstellung x; = y; + z; mit y; € H;, z; € U;. Sei

O(z) = (Niyi, pizi) € HB U.

Dann priift man leicht nach, dal ©(z) unabhingig ist von der Wahl von z;,
und es gilt @ = (A @ p)~ L. O

In manchen Féllen ist es nicht notwendig, alle Gruppen G; zu betrachten,
um den induktiven Limes zu bestimmen.

Definition Eine Teilmenge J C I heifit ein finales System, falls J mit der
induzierten Ordnung ein gerichtetes System ist, und falls es zu jedem i € I
ein 5 € J gibt mit ¢ < j.

Ist J C I ein finales System, so liefert uns die universelle Eigenschaft
einen Homomorphismus

A:lim G — lim G;.
Satz 111.4.3 ) ist ein Isomorphismus.

Beweis. Es sei G = lim G, G’ = lim G;. Ferner sei ¢, : G; — G’ der kanoni-

sche Homomorphismus. Es gilt dann Ay} = ¢;.

Surjektivitit von \: Es sei € G. Dann ist © = p;(x;) fir ein ¢ € I. Da J
final ist, gibt es j > 4. Es sei x; = ¢;;(x;). Dann gilt

v = @j(x5) = Apj(x;).

Injektivitét von A: Es sei 2’ € G' mit A(z') = 0. Wir kénnen 2’ = ¢’ (z;)
schreiben fiir ein x; € G;. Dann gilt also ¢;(x;) = 0.

Behauptung Ist ¢;(z;) = 0, so gibt es ¢’ mit ¢ <4’, so daB ¢y ;(x;) = 0.
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Wir nehmen zunéchst an, dafl diese Behauptung gilt. Dann gibt es ¢/ € T
mit j < ¢ und ¢y j(x;) = 0. Da J final ist, gibt es ein j' € J mit ' < j.
Dann gilt ‘10]"7j($j) = cpj/,i/gpi/,j(xj) =0. Also ist 2’ = (p;»/QOj/J(l‘j) =0.

Beweis der Behauptung: Wir verwenden die Konstruktion von G von Satz
(II1.4.1). Da @;(z;) = 0 ist, ist ¢; (z;) endliche Summe von Elementen der
Form:

o (o ke k) —of e ) (yw i € Gr).
Nach Definition von gpj gilt
wi= Y ow k(U k) = D Uk k (1)
k'=i k=1
und
0= Z O ke (Yrr k) — Z Y i fir h # 1. (2)
k'=h k=h

Wir wahlen nun ein ¢ mit ¢ > k' fiir alle auftretenden Elemente k'.
Wir wenden ¢ ; auf Gleichung (1) und ¢y 5 auf alle Gleichungen (2) an.
Addition ergibt

pii(Ti) = Z Pir kP k(Y k) — Pir k(Y k) =0
(K ,k)

wobei die letzte Gleichheit aus den Eigenschaften des induktiven Systems
folgt. (]

Folgerung Falls es ein Element m € I gibt, so da3 i < m fiir alle ¢ € I,
so ist
om:Gm — G

ein Isomorphismus.

Induktive Limiten sind kompatibel mit exakten Sequenzen. Es sei hierzu
fiir jedes ¢ € I eine exakte Sequenz

e eyel
gegeben, so daf} fiir 7 < ¢/ das Diagramm

i pi ~
Gr Gl

SOZ/,il ‘Pi’,il @if,il

A7 Pl ~
G;!(/ ﬁl Gi/ ! > Gi/
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kommutiert. Dann induziert dies eine Sequenz
cAala

mit Ap} = i\, ppi = @ip; fiir i € 1.

Lemma II1.4.4 Die Sequenz G* A G2 G st exakt.

Beweis. Es sei * € G*. Wihle z} € G} mit 2* = ¢} (z]). Dann gilt p\a* =
@ipidi(z;) = 0.

Sei ferner € G mit p(x) = 0. Wir schreiben x = @;(x;) fiir ein x; € G;.
Da @zpz(ﬂfz) =0 glbt es ein 7' mit ¢ < ’i,, so dafl 0 = @z’,zpz(xz) = pi/goi/7i(xi).
Wegen der Exaktheit der urspriinglichen Sequenzen gibt es ein 7, € G, mit
piri(i) = Ay (@) Dann gilt Apj (27,) = i dir(2]) = @i i(2:) = (@) =
z. U

Schliellich betrachten wir noch iterierte Limiten. Es seien nun I, J ge-
richtet Systeme. Ferner nehmen wir an, dafl es zu jedem j € J eine gerichtete
Teilmenge I; C I gibt, so daf8 fir j < j’ gilt I; C I;;. Wir setzen ferner vor-

aus, daf
=1
J

Zunéchst konnen wir fiir jedes j den induktiven Limes

G;k = hi)n GZ
iG]j

bilden. Ist j < j/, so kénnen wir nun Homomorphismen 1)j ; : G; — G}
wie folgt definieren. Es sei x € G;-‘. Wiéhle dann ¢ € I; und z; € G; mit
r = ¢;(z;), wobei ¢; : G; — G der kanonische Homomorphismus ist.
Wiéhle i' € Iy mit ¢ <4’ und setze ¢jr ;(x) = @l i(x;) (dies ist unabhéngig
von den getroffenen Wahlen). Die Homomorphismen 1) ; definieren auch ein
induktives System. Wir betrachten dessen induktiven Limes

G* =lim Gj.
Jje€J
Schlieflich sei G = lim G;. Dann gibt es eindeutige, zueinander inverse

el
Homomorphismen ¢ : G* — G,0 : G — G*, so dafl das Diagramm

A

G

fiir alle j € J und ¢ € I; kommutativ ist.
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5 Poincar-Dualitit

In diesem Abschnitt wollen wir den Satz iiber die Poincar-Dualitét beweisen.
Im folgenden sei X stets eine orientierte Mannigfaltigkeit der Dimension n
mit fest gewédhlter Orientierung. Der Isomorphismus H, (X, X — K) 2 T'K
von Theorem (II1.1.7) (hierbei ist K eine kompakte Teilmenge von X) und
die Orientierung definieren dann eine Fundamentalklasse

pk € Ho(X, X — K).

Die kompakten Mengen auf X bilden, zusammen mit der Inklusion, ein
gerichtetes System (K < K’ bedeutet hier K C K'). Ist K C K’, so induziert
die Inklusion (X, X — K') C (X, X — K) einen Homomorphismus

HY(X,X -K)— H{(X,X - K').
Auf diese Weise erhalten wir ein induktives System von abelschen Gruppen.

Definition Der induktive Limes

HI(X)=lmHY(X,X - K)
K
heifit die g—te Kohomologiegruppe von X mit kompaktem Trdger.

Bemerkungen (i) Ist X kompakt, so ist X ein finales Objekt und es gilt
HI(X)=HYX).

(ii) Eine Kohomologieklasse in H{(X) wird durch einen Kozykel re-
prasentiert, der alle Ketten mit Triger in X — K annuliert. Dies erklért
die Bezeichnung ”Kohomologie mit kompaktem Trager”.

Es sei nun U eine offene Teilmenge von X. Ist K C U, so definiert
die Inklusion (U,U — K) C (X,X — K) auf Grund des Ausschneidungs-
satzes einen Isomorphismus HY(X,X — K) — HY(U,U — K) mit Inversem
HY(U,U—-K) — H%X,X — K). Diese Abbildungen sind mit Einschrénkun-
gen vertréiglich und wir erhalten ein kommutatives Diagramm

HYU,U - K) —— HY(X,X — K)

! |

HU) ——  H{X)
wobei die Abbildung HZ(U) — H#(X) als Limesabbildung definiert ist.

Beispiel Es sei X = R™. Wir erhalten ein finales System von kompakten
Mengen durch
K., ={x € R"||z|]| < m} (m € N).
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Die K,, sind zusammenziehbar und R"™ — K, ist homotopiedquivalent zur
Sphire S"~1. Also gilt

HIR",R" — K,,) =2 HIHR™ — K,,,) = HTH(S" ).

Also gilt
~ Zfirq=mn
q(mn\ ~ qg—1/gon—1\ __ q
He(R") = HT(5") = { 0 sonst.

Es sei nun K C X kompakt. Wir hatten am Ende von Abschnitt (III.3)
gesehen, dafl das Cap-Produkt eine Abbildung

Npk : HI(X, X — K) — H,_4(X)
v = yNpK

definiert. Ist K C K’, so kommutiert das Diagramm

H1(X,X — K)
NpK
Hy_o(X).
%
HY(X,X — K')

Der Ubergang zum induktiven Limes definiert dann einen Homomorphis-
mus

D:HI(X) — Hy,—¢(X).
Ist U eine offene Teilmenge von X, so kommutiert das Diagram

HI{U) —2— H,_,(U)

! l

HI(X) —2— H,_,(X).

Theorem IIL.5.1 FEs sei X eine orientierte n-dimensionale Mannigfaltig-
keit. Dann ist der Homomorphismus

D:H}(X)— Hy,—¢(X)
ein Isomorphismus fir alle q.

Bevor wir den Beweis dieses Satzes geben koénnen, benétigen wir noch
einige Vorbereitungen. Es seien C' und C’" Kettenkomplexe.

Definition Eine Kettenabbildung f : C — C’ ist eine Kettenhomoto-
piedquivalenz, falls es eine Kettenabbildung g : ¢/ — C gibt mit fg ~ id¢
und gf ~ idg.
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In diesem Fall induziert f einen Isomorphismus f, : Hy.(C) — H,(C").
Fiir freie Kettenkomplexe gilt auch die Umkehrung:

Satz I11.5.2 Seien C und C' freie Kettenkomplexe. Falls die Kettenabbil-
dung [ : C — C" einen Isomorphismus f, : H(C) — H,(C") definiert, so ist
f eine Kettenhomotopiedquivalenz.

Beispiel Ist { = (U;);cr eine offene Uberdeckung, so induziert i : S*(X) —
S.(X) einen Isomorphismus H,(S*(X)) — H.(X), ist also eine Ketten-
homotopiedquivalenz. Wir werden dies dann auch auf die Mayer-Vietoris-
Sequenz anwenden.

Um obigen Satz zu beweisen, fithren wir den Begriff des Abbildungskegels
einer Kettenabbildung f : C' — C’ ein.

Definition Der Abbildungskegel (C'f,df) von f : C — C' ist wie folgt

definiert:
(Cf)g = Cq®Cq

Dies ist wieder ein Komplex, da

(0 (x,y)) = 0Nz + f(y),—0y)
= (00x+0'f(y) — fOy), %)

= (0,0).
Wir kénnen daher folgende exakte Sequenz von Kettenkomplexen betrachten
0o Loflot—o
wobei
(C+)q = Cy
of = 041, i(x)=(2,0), jz,y)=vy.

Die zugehorige lange Homologiesequenz lautet dann
= Hy(C') ™5 Hy(Cf) & Hy(CT) & Hya(C) — -

Dabei kann der verbindende Homomorphismus 0 wie folgt beschrieben wer-
den: Es sei y € C mit 07 (y) = 0. Dann ist 0/ (z,y) = (0'z + f(y),0). Also
gilt

9y = f(y)
und wir erhalten also, dafl 0 = f, ist, d.h. wir haben

Lo B ) B H(C B H () -

Damit ergibt sich unmittelbar
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Lemma II1.5.3 Ist f. ein Isomorphismus, so gilt H.(C'f) = 0.

Lemma II1.5.4 Ist C ein freier Kettenkomplex mit H,(C) = 0, so ist die
Identitdt id : C' — C kettenhomotop zur Nullabbildung.

Beweis. Nach Voraussetzung gilt Z, = B, fiir alle ¢, d.h. wir haben eine

exakte Sequenz
Ie]

0—B,—Cy =2 By1—0.
k
Da C freier Kettenkomplex ist, ist auch B,_; frei und die obige Sequenz
spaltet nach Satz (II1.2.2), d.h. es gibt einen Homomorphismus k : B;_1 —
Cy mit Ok = id. Also ist
Cy= By ® By

und 0 : Cy — Cy—1 ist von der Form 0(z,y) = (y,0). Wir definieren Homo-
morphismen

Dq . Cq — Cq_l,_l

Dy(z,y) = (0,x).
Dies definiert eine Abbildung D : C' — C. Es gilt

(0D + DO)(z,y) = 0(0,z)+ D(y,0)

(,0) +(0,y)
(z,9).

Also ist id ~ 0. O

Lemma II1.5.5 FEs sei f : C — C' eine Kettenabbildung zwischen freien
Kettenkomplexen, fir die H.(C'f) =0 gilt. Dann ist f eine Kettenhomoto-
piedquivalenz.

Beweis. Nach Lemma (I11.5.4) gibt es eine Kettenhomotopie D : Cf — C'f
mit &/ D + DT = id. Die Abbildung

Dy:ChdCy1 — Chyy 8 Cy
definiert vier Abbildungen

Sq:Cq— Coiy,s 9q:Cy — Cy
Ey1:Cp1 — </1+17 Ty1:Cy—1 — G

so daf gilt
Dq(m»y) = (Sq(m) + qul(y)a gq(x) + qul(y))'
Nach Definition von 9/ gilt

87 D(z,y) = (9'S(z) + I E(y) + fg(z) + fT(y), —g(z) — OT(y)).
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Ebenso gilt

Daf(:E?y) = D(al‘r + f(y)7 _ay)
= (S0'(x)+ Sf(y) — EO(y), 90 (x) + gf(y) — TO(y)).

Addition beider Formeln fiir den Spezialfall (z,0) gibt
(z,0) = (9'S(x) + fg(x) + S0'(x), —0g(x) + g0 (z)).
Die erste Komponente dieser Gleichung zeigt
id —fg=0S+ 859

Die zweite Komponente zeigt zudem, daf g eine Kettenabbildung ist. Schlie3-
lich ergibt Addition der beiden obigen Gleichungen im Spezialfall (0,y) in
der zweiten Komponente die Beziehung

y=—0T(y) +gf(y) —To(y)

also

id —gf =9(-T) + (-T)0.
0

Beweis von Satz (I11.5.2) Da f, ein Isomorphismus ist, folgt nach Lemma
(I11.5.3), daBl H.(C'f) = 0. Dann folgt aus obigem Lemma (IIL.5.5), da} f
eine Kettenhomotopiedquivalenz ist. O

Fiir das folgende benétigen wir die relative Version der Mayer-Vietoris-
Sequenz fiir die Kohomologie

Satz I11.5.6 Es sei X ein topologischer Raum und Ay, As seien abgeschlos-
sene Zeilmengen von X . Es sei A = A1 UAs. Dann gibt es eine lange exakte
Kohomologiesequenz

S HIX, X — (A1 NAy)) —» HI(X,X —A)) @ HY(X, X — Ay) —
— HI(X,X —A) - H" (X, X — (A1 NAy)) — ...

Beweis. Der Beweis ist eine direkte Ubertragung des Beweises fiir die gewhn-
liche Mayer-Vietoris-Sequenz. (]

Beweis von Theorem (II1.5.1) Wir gehen in mehreren Schritten vor.

Schritt 1: Gilt das Theorem fiir die offenen Mengen U,V und B =U NV,
dann gilt es auch fir Y =U U V.
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Es seien K (bzw. L) kompakt in U (bzw.V). Wir betrachten das Dia-
gramm

— H"YB,B—(KNL)) «—— HIYY,Y — (KUL)) +——
ﬂCKr‘]LJ/ mCKuLJ(
Hyq-1(B) — Hyg(Y) o

— H{U,U—-K)® HYV,V —-L) «—— HYB,B—(KnNL))
ﬂCKGBWCLl mCKOLJ/
— Hpg(U) & Hng(V) — Hp—4(B)

Dabei ist die untere Zeile eine gewohnliche Mayer-Vietoris-Sequenz. Die obe-
re Zeile ist die relative Version der Mayer-Vietoris-Sequenz fiir die Kohomo-
logie zusammen mit Ausschneidungsabbildungen der Form (W, W — S) C
(Y,Y —S). Die beiden rechten Quadrate in diesem Diagramm kommutieren
auf Grund der Natiirlichkeit des Cap-Produkts (Satz (I11.3.8)). Der wesent-
liche Schritt ist nun der Beweis der

Behauptung Das folgende Diagramm kommutiert bis auf (—1)4%!:

HPY(Y,Y — (KN L)) <— HY(Y,Y — (KUL))

lg

H™(B, B — (K N L)) Cxor
lmCKmL
Ho g s(B) < Hoy(Y).

Hierbei sind ~,I" Korandabbildungen der Mayer-Vietoris-Sequenz und
der senkrechte Isomorphismus ist eine Ausschneidungsabbildung.

Beweis der Behauptung: Wir miissen v und I' auf dem Niveau der Korénder,
bzw. Rénder berechnen. Hierzu betrachten wir folgendes Diagramm
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(1) (4) (6)

S*(Y,Y — (K UL)) S*(Y,Y — K) S*(Y,Y — (KN L))
(5) S*(U, U/;K/) (8) *(B, B — (f{
S*(X, X — (K UL)) \S*(X,X—K) VE}(—(KN))
(2) (3) (7)

Hierbei sind alle Abbildungen durch Inklusionen induziert. Im folgenden
verwenden wir folgende Notation: Ist R C S € X und j : (X, X — 5) —
(X, X — R) die Inklusion, so gilt fiir x € S*(X, X — R):

0 Cr = jx(i7 (@) 0 Cs).
in S,(X) (wegen Satz (II1.3.8)). Wir schreiben hierfiir abkiirzend

rzNCg=xNC(g.

Es sei nun ¢ in (1) mit dc = 0. Sei ag in (2) das Bild von ¢ unter einer Ket-
tenabbildung, die ein Inverses (modulo Kettenhomotopie) zur Ausschnei-
dungsabbildung ist (vgl. Satz (II.5.2)). Dann ist dag = 0. Es sei a3 ein
Element in (3), so daf das in (7) ein Reprisentant des Bildes von as unter
dem Randoperator der Mayer-Vietoris-Sequenz ist (vgl. die Konstruktion
des Randoperators in der Mayer-Vietoris-Sequenz). Es seien a4 und as die
Bilder von a3 in (4) und (5). Dann ist das Bild von a4 in (1) gleich ¢+ 6 De,
wobei D eine Kettenhomotopie ist. Also wird y(c) in (6) durch day repréisen-
tiert. Auf Grund der Kommutativitit des obigen Diagramms sind die Bilder
von day und das in (8) gleich. Es gilt

v(¢) N Crnr = das N (kL = dag N (kL
in S,(X). (Dies ist ein Element im Bild von S, (B)). Ferner gilt

dagNCrnr = dagNCx = (—1)71d(as N (k)
= (=1)"9(as N ¢k)
= (=1)"8(as N k)

wobei das zweite Gleichheitszeichen aus Satz (I11.3.6) folgt. Andererseits gilt

as NCx = as NCrur = (c+8Dc) N CrurL
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— ¢ Crur + (—1)70(De N Creur)

(wiederum mit Satz (II1.3.6)). Also wird, nach Konstruktion des Korand-
operators in der Mayer-Vietoris-Sequenz, das Bild I'(¢N {xyr) durch d(aqN
(k) = 0(as N (k) reprisentiert (wobei wir Sy(B) C S(U) C S«(Y) ver-
wenden.). Das heifit also, wir erhalten, wenn wir das Diagramm auf ver-
schiedene Weise durchlaufen, Elemente in S, (B), welche in S,(X) bis auf
(—1)4*! gleich sind. Da S, (B) — S.(X) injektiv ist, folgt die Behauptung.[J

Jede kompakte Menge in Y ist von der Form K U L mit K C U und
L C V. Ubergang zum Limes gibt ein Diagramm, das bis auf Vorzeichen
kommutativ ist:

— HIY\(B) HI(Y) HY(U)® HI(V) HI(B)
Is Is Jovs Is
Hyp—q-1(B) Hpq(Y) «——— Hpn—q(U) ® Hn—q(V) «———— Hn—q(B)

Die Zeilen dieses Diagramms sind exakt. Die senkrechten Pfeile sind Iso-
morphismen, aufler moglicherweise in den Féllen, in denen der Raum Y
vorkommt. Die Behauptung folgt damit auf dem Fiinferlemma.

Schritt 2: Es sei (U;)ier ein (beziiglich der Inklusion) total geordnetes Sy-
stem offener Mengen und U die Vereinigung dieser offenen Mengen. Gilt der
Satz fiir alle U;, dann auch fiir U.

Um dies zu zeigen, geniigt es zu sehen, dafl die Abbildungen

G I Hg(U) — HaoylU)
do  LmHYU)  — HYU)

Isomorphismen sind. Dies gilt aus folgendem Grund: Ist K C U eine kom-
pakte Menge, so ist, da das System der (U;);cs total geordnet ist, K C U;
fiir ein ¢ € I. Dies zeigt, dafl ¢; ein Isomorphismus ist (jede singulére Kette
hat ndmlich kompakten Tréiger). Die Behauptung fiir ¢9 schlieft man ana-
log, wobei man noch die Aussage iiber iterierte Limiten zu Ende des letzten
Abschnitts verwenden muf.

Schritt 3: U ist in einer Koordinatenumgebung enthalten (d.h. wir kénnen
U als offene Teilmenge des R™ auffassen).

Fall 1: U ist konvex. Dann ist U homoéomorph zur offenen Kugel D". Um
lim H9(D™, D™ —K) zu berechnen, geniigt es K ein finales System abge-

schlossener Kugeln um den Ursprung durchlaufen zu lassen (Satz (II1.4.3)).
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Fiir eine solche Menge gilt dann H?(D"™, D™ —K) = 0 fiir ¢ # n. Auflerdem
ist

NCx : H"(D", D" —~K) — Ho(D") = Z
ein Isomorphismus (da v N {x = ((x,7) und (x erzeugendes Element ist).
Also ist auch der Limeshomomorphismus D ein Isomorphismus.

Fall 2: U sei beliebig. Die Menge der Punkte in U mit rationalen Koeffizi-
enten ist abzdhlbar. Wie wéhlen eine solche Abzéhlung. Es sei V; C U eine
offene konvexe Menge um den j-ten Punkt. Sei

U=V, U;=U;_1UYV; (i>1).

Ein Induktionsbeweis, zusammen mit Schritt 1 zeigt dann, da das Theorem
fiir alle U; gilt (der Induktionsanfang ist Schritt 3, Fall 1). Mit Schritt 2 gilt
es auch fiir U.

Schritt 4: Das Theorem gilt fiir X. Das Zornsche Lemma (zusammen mit
Schritt 2) zeigt, dafl es eine maximale Menge U C X gibt, fiir die das Theo-
rem gilt. Ist U # X, so erhélt man mit Hilfe von Schritt 1 und 3 sofort einen
Widerspruch. O

~

Korollar IT1.5.7 Ist X zusammenhdngend und orientierbar, so ist H'(X) =
Z.

Die Voraussetzung orientierbar ist notwendig, wie etwa das Beispiel X =

P2(R) zeigt, da H2(P?(R)) = H?(P%(R)) = Z, gilt.

Im folgenden setzen wir stets voraus, daf die Bettizahlen 3; = rang H;(X)
endlich sind. Wir notieren aber:

Theorem II1.5.8 Ist X eine kompakte Mannigfaltigkeit der Dimension n,
so gilt

(i) X kann in den R®™ eingebettet werden.
(ii) X hat die Struktur eines endlichen CW-Komplexes.

(iii) Die Homologie von X ist endlich erzeugt.

Korollar II1.5.9 Ist X eine kompakte, orientierbare Mannigfaltigkeit der
Dimension n, so gilt 3;(X) = Bn—i(X).

Beweis. Nach dem universellen Koeffiziententheorem bzw. Satz (II1.2.8) gilt

rang (H'(X,Z)) = rang (H;(X,Z)). Dann folgt die Behauptung aus der
Poincar-Dualitét. 0

112



Wir erhalten auch eine Aussage iiber die Torsionsuntergruppen. Es sei
T, die Torsionsuntergruppe von Hy(X). Dann gilt

Korollar II1.5.10 7, =T, _,_1.
Beweis. Ebenfalls aus Satz (I11.2.8) und Satz (I11.3.5). O

Korollar I11.5.11 Ist X eine kompakte, orientierbare Mannigfaltigkeit un-
gerader Dimension, so gilt fiir die FEulerzahl x(X) = 0.

Korollar I11.5.12 Ist X kompakt, orientierbar mit gerader Dimension, die
aber nicht durch 4 teilbar ist, so ist x(X) gerade.

Beweis. Es sei n = 4k + 2. Es ist zu zeigen, dafy Bor11(X) gerade ist. Das
Cup-Produkt liefert eine nicht-ausgeartete Bilinearform

H* M (X)@Qx H*(X)2Q — Q.

Diese Form ist nach Theorem (I11.3.3) schiefsymmetrisch, also ist [ax+1 ge-
rade. O

Poincar-Dualitdt kann man auch benutzen, um den Kohomologiering

H*(X) = @ H*(X) von Mannigfaltigkeiten zu bestimmen. Es sei etwa X =
k>0

P2(C) und {4 € H4(X) = Z eine Fundamentalklasse. Es sei h € H?(P?(C))

ein Erzeuger. Dann folgt aus der Poincar-Dualitiit, dal h N ¢4 € Ho(P?(C))

ein Erzeuger ist. Da das Kroneckerprodukt

H*(P?(C)) x Hz(P*(C)) — Z
nicht ausgeartet ist, erzeugt
th 01 Ca) = (RU R, Ca)

die Gruppe Z. Also ist h U h ein Erzeuger von H*(P?(C)) = Z. Da h3 =
hUhUhR € H5(P?(C)) = 0 ist, gilt

H*(P*(C)) = Z[n)/(h?).
Durch Induktion erhélt man
Satz I11.5.13 H*(P*(C)) = Z[h]/(h"T1).
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