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1 Die reellen Zahlen

Wir setzen die reellen Zahlen als gegeben voraus und schreiben zunéchst auf, welche ihrer
Eigenschaften wir (ausschlieflich) benutzen werden. Wir tun das in Form von ,, Axiomen*,
die wir in drei Gruppen zusammenfassen:

1. Die Rechenregeln fiir Addition und Multiplikation (Kérperaxiome).
2. Die Rechenregeln fiir Ungleichungen (Anordnungsaxiome).

3. Die Vollstiandigkeit. Diese Gruppe enthiilt nur ein Axiom, das wir bis zum Abschnitt
zuriickstellen. Es unterscheidet die reellen von den rationalen Zahlen und wird noétig,
wenn wir iiber Grenzwerte sprechen wollen.

Man kann auf einem sehr viel niedrigeren Niveau ansetzen, mit den sogenannten Peano-
Axiomen fiir die natirlichen Zahlen und aus diesen die ganzen, rationalen und reellen Zah-
len konstruieren und ihre Eigenschaften beweisen; aber das kostet mehr Zeit, als wir zur
Verfiigung haben. Vergleichen Sie dazu das hiibsche Biichlein von Edmund Landau.



1.1 Die Korperaxiome

Wir bezeichnen die Menge der reellen Zahlen mit R. Wir setzen voraus, dass darin eine
Addition und eine Multiplikation gegeben sind, die je zwei reellen Zahlen a,b € R eine neue
reelle Zahl a + b bzw. ab zuordnen und folgende Eigenschaften haben:

1. Axiome fiir die Addition
(A1) Fiir alle a,b,c € R gilt
a+(b+c)=(a+b)+ec (Assoziativgesetz)

(A2) Es gibt eine eindeutig bestimmte Zahl 0 € R, so dass fiir alle a € R gilt:
(i) a+0=a. (Neutrales Element der Addition)

(ii) Es gibt genau ein b € R mit a +b = 0. (Additives Inverses)
(A3) Fiir alle a,b € R ist

a+b=>b+a. (Kommutativgesetz)

2. Axiome fiir die Multiplikation
(M1) Fiir alle a,b,c € R gilt
a(be) = (ab)e.  (Assoziativgesetz)

(M2) Es gibt eine eindeutig bestimmte Zahl 1 € R\{0}, so dass fiir alle a € R gilt:
(i) al =a. (Neutrales Element der Multiplikation)

(ii) Falls a # 0, gibt genau ein b € R mit ab = 1. (Multiplikatives Inverses)
(M3) Fir alle a,b € R ist

ab = ba. (Kommutativgesetz)

3. Distributivgesetz

(D) Fiir alle a,b,c € R gilt
(a+b)e = ac+ be.

Das additive Inverse von a bezeichnen wir mit —a, das multiplikative Inverse mit % oder
a~'. Beachten Sie, dass nur fiir a # 0 ein multiplikatives Inverses existiert, so dass % nicht
erklért ist.

Statt der Menge der reellen Zahlen hitten wir zum Beispiel auch die Menge Q der rationalen
Zahlen oder die Menge C der komplexen Zahlen nehmen konnen, auch dafiir gelten die
vorstehenden Axiome. Allgemein nennt man eine Menge, in der eine ,,Addition“ und eine
»Multiplikation* mit den obigen Axiomen erklirt sind, einen Kdrper.

Aus diesen Axiomen folgen die IThnen vertrauten Rechenregeln fiir die beiden Grundrechen-
arten. Wir geben zwei Beispiele

Beispiel 1. Zunéchst gilt
Oc 5 (O—l—O)cE 0Oc + Oc. (1)
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Jetzt ,,ziehen wir auf beiden Seiten Oc ab“.

0 = 0c+ (—(0c))

o (0c + 0c) + (—(0c)) = 0c + (0c + (—(0c))) o Oc+0 o Oc

Also haben wir bewiesen, dass fiir alle ¢c € R

0c = 0. (2)

Beispiel 2.
ab+ (—a)b > (a+(—a))b A2.di 0050
Andrerseits ist
ab+ (~(ab)) = 0.

Aus der Eindeutigkeit im Axiom A2.ii folgt daher fiir alle a,b € R

(—a)b = —(ab).

Weiter kann man beweisen, dass die Gleichung

ar=1"b

fiir a # 0 und beliebiges b genau eine Losung @ hat, ndmlich z = b(a™!), wofiir wir auch b

schreiben. ‘
Ebenso schreiben wir a — b fiir a 4+ (—b).
Weitere Beispiele fiir Rechenregeln, die aus den Axiomen folgen:

_(_a’) =a,

c ad + bc

b d  bd ’
ab=0 = a=0o0der b=0,

(—a)+ (=b) = —(a+0).

a




1.2 Die Anordnungsaxiome

Die Anordnungsaxiome regeln das Rechnen mit Ungleichungen. Wir setzen voraus, dass fiir
je zwei reelle Zahlen a,b € R die Aussage ,,a ist kleiner als b“, geschrieben a < b entweder
wahr oder falsch ist, und dass die folgenden Axiome gelten:

Anordnungsaxiome
(O1) Fiir alle a,b € R ist genau eine der folgenden Aussagen wahr:

a<b, b<a, a="b. (Trichotomie)
(02) Fiir alle a,b,c € R gilt

a<bund b<c = a<c (Transitivitdt)
(03) Fiir alle a,b,c € R gilt

a<b = a+c<b+c (Additive Monotonie)

(O4) Fiir alle a,b,c € R mit 0 < ¢ gilt

a<b = ac<be. (Multiplikative Monotonie)

Reelle Zahlen a mit 0 < a heiflen positiv, solche mit a < 0 negativ.
Statt a < b schreibt man auch b > a und sagt ,,b ist grofler als a“.

Man schreibt a < b, gelesen ,a kleiner (oder) gleich b“, falls a < b oder a = b. Entsprechend
ist a > b erklart.

Wieder folgt aus diesen Axiomen eine Fiille weiterer mehr oder weniger bekannter Regeln.

Beispiel 3. Wir zeigen
a>0 = —a<0.

Nach (O3) folgt nédmlich aus der Voraussetzung 0 < a, dass
0+ (_a’) <a+ (_a)7

also —a < 0. Ebenso zeigt man
a<0 = —a>0.

Beispiel 4. Bei Multiplikation mit negativen Zahlen kehren Ungleichungen sich um:
z<yund a <0 = azx > ay.
Nach dem letzten Beispiel ist —a > 0 und daher nach (O4)
(—a)x < (—a)y, d.h. —ax < —ay.
Nach (O3) koénnen wir dazu ax + ay addieren und erhalten
—ar + ax +ay < —ay + ax + ay,

also ay < ax wie behauptet.
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Beispiel 5. Sei a € R. Ist a > 0, so folgt aus (04)

0=0a < aa =: a®.

Ist andrerseits a < 0, so folgt aus dem letzten Beispiel
a’? =aa > 0a =0.

Damit haben wir gezeigt:

a#0 = a®>>0.

Insbesondere ist 1 =1-1 > 0 und daher —1 < 0.
O

Beispiel 6. Nur nicht-negative Zahlen b > 0 kénnen nach dem vorstehenden Beispiel eine
Quadratwurzel in R besitzen. Genauer: Die Gleichung

2?2 =0 (3)

hat allenfalls fiir b > 0 Losungen. Wieviele? Ist a? = b, so ist natiirlich auch (—a)? = b, und
wir behaupten, dass das alle méglichen Losungen sind, d.h. dass die Gleichung hochstens
2 Losungen hat. Ist ndmlich

a? =bund ¢ = b,

so folgt
0=a’>—-c®=(a+c)(a—rc).

Also ist ¢ = a oder ¢ = —a. Insbesondere hat die Gleichung fiir nicht-negatives b hochstens
eine nicht-negative Losung a > 0. Gegebenenfalls nennt man die dann die (Quadrat) Wurzel
Vb aus b. Dass wirklich jedes reelle b > 0 eine Quadratwurzel besitzt, werden wir spiter
sehen.

O

Ein Korper, in dem eine ,,<“-Beziechung mit den obigen Axiomen gegeben ist, nennt man
einen angeordneten Koérper. In den rationalen Zahlen Q hat man ,dieselbe“ Anordnung
wie in den reellen Zahlen gegeben. Aber im Korper C der komplexen Zahlen gibt es keine
Anordnung mit den obigen Axiomen. Sonst wire ndmlich nach dem eben Bewiesenen 0 >
—1 =42 > 0. Widerspruch!

Mittels ,,<“ kann man den Betrag reeller Zahlen definieren:
Definition 7 (Betrag). Fiir a € R sei

la] = a falls a > 0,
" ]-a fallsa<0.

|a| liest man ,a absolut“ oder ,Betrag a“.
Offenbar ist
| —al = |al.
Ist a < 0, so ist —a > 0, also
a<0< —a=lal

Ist andrerseits a > 0, so ist a < |a|, in Wahrheit nédmlich a = |a|. Also gilt fiir alle a, dass
a < |a|. Ebenso zeigt man —|a| < a fiir alle . Damit gilt fiir alle a € R

—laf <a <|al.
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Wir fithren einige weitere Eigenschaften des Betrags als Satz auf:

Satz 8 (Betrag). Fir alle a,b € R gilt

la| > 0 mit |a| =0 genau dann, wenn a =0,
|ab| = lal [0],
la 4+ 0] <la| +|b|. (Dreiecksungleichung)

Beweis. Wir zeigen nur die Dreiecksungleichung, der Beweis der beiden anderen Aussagen
ist sehr leicht.

Aus a < |a| (und b < |b]) folgt
a+b<la|+ b,

und aus —a < |a| (und —b < |b]) folgt
—(a+b) < af + 8],

Eine der beiden linken Seiten ist aber = |a + b|, und damit ist die Dreiecksungleichung
bewiesen. O

Fiir das Abschétzen von Differenzen ist folgende Ungleichung niitzlich:
Korollar 9. Fir alle a,b € R gilt

1] = lal| <'[b—al.

Beweis. Nach der Dreiecksungleichung gilt
o] = |a+ (b—a)| <a| +[b—al,

also
b = |a] < |b—al.

Daraus folgt unter Vertauschung von a und b
—([bl = lal) = la] = |b| < a = b = [b—al.

Wieder ist ||b| — |a|| = (|b] — |a]) oder ||b| — |a|| = —(|b] — |a]), und aus einer der beiden
letzten Ungleichungen ergibt sich die Behauptung. O

Mit der Anordnungsbeziehung definiert man wichtige Teilmengen von R:

Definition 10 (Intervalle). Eine Teilmenge J C R heiit ein Intervall, wenn sie mit je
zwei ,Punkten® auch alle dazwischen liegenden enthélt:

J Intervall <= VY, ser(u <z <vundueJundveJ = z€lJ).

Beispiel 11. Seien a,b € R und

[a,b] :={z e Rla <z <b}.

12



Ist b = a, so besteht [a,b] nur aus dem Punkt a, ist b < a, so ist [a, ] die leere Menge 0.
In jedem Fall ist [a,b] ein Intervall. Sind ndmlich u,z,v € R mit v € [a,b],v € [a,b] und
u <z < v so folgt

a<u<zxr<ov<b,

also a < x < b nach der Transitivitat.

Ebenso sieht man, dass die Mengen

[
]
[
oo
[a,00[ :={z € R|a <z},
[
]
[

| —oo,b[:={z €R|z < b},
| —o00,b]:={z € R|z < b},
]| — 00,00 :=R

Intervalle sind.
Man nennt [a, b] das abgeschlossene oder kompakte Intervall zwischen a und b.
Intervalle der Form |.,.[ heiflen offen, Intervalle der Form [.,.[ oder |.,.] halboffen.

Es ist wahr, aber aus den bisher angefithrten Axiomen noch nicht beweisbar, dass jedes
Intervall in R von einem dieser Typen ist.

O

Ubungsaufgabe. Finden Sie die Mathematische Fachbibliothek und in dieser das Analysis-
Buch von S. Hildebrandt. Lesen Sie darin Seite 1-8.
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1.3 Natiirliche Zahlen und vollstindige Induktion

Eine wichtige Teilmenge der reellen Zahlen bilden die natiirlichen Zahlen, die wir jetzt
definieren wollen.

Definition 12. Eine Teilmenge N C R heifit induktiv, wenn fiir sie gilt:

1.0eN
2. Ist a € N,soist aucha+1€ N.
Beispiel 13. Die Menge N = R ist trivialerweise induktiv.
Weil 0 < 1, ist a < a + 1 fiir alle a € R. Daher ist N = [0, +00] eine induktive Menge.
O

Es ist klar, dass eine induktive Menge mindestens die reellen Zahlen 0,1,1+1,1+1+1,...
enthalten muss: Eben die natiirlichen Zahlen nach unserem naiven Verstindnis.

Lemma 14. Der Durchschnitt von beliebig vielen induktiven Mengen ist wieder induktiv.

Beweis. Sei I eine Menge und (N;);e; eine Familie von induktiven Mengen und
N:=(N;:={z € R|z € N; fiir alle i € I}.
iel
Weil 0 € N; fiir allei € I, ist 0 € N.

Ist weiter a € N,also a € N; fiir alle ¢ € I, so ist auch a + 1 in N; fiir alle ¢ € I, also
a+1€N. U

Definition 15 (Natiirliche Zahlen). Die Menge der natiirlichen Zahlen ist definiert als
Durchschnitt aller induktiven Teilmengen von R:

N:= ﬂ N.
RDN induktiv

Sie ist also die kleinste induktive Menge. Insbesondere ist n > 0 fiir alle n € N, weil [0, co[
induktiv ist.

Bemerkung. Die Literatur ist sich nicht einig, ob N die 0 einschlie§t oder nicht. Die DIN-
Norm DIN 5473 oder der Forster meinen ”ja”, und das wollen wir hier iibernehmen. Der
Barner/Flohr bezeichnet diese Menge mit Ny.

Definition 16. Die Menge
Z:=NU{-n|neN}

heiflt die Menge der ganzen Zahlen.

Die Menge
Q:={7[peZAgEN{0})

heifit die Menge der rationalen Zahlen.

14



Satz 17 (Vollstéindige Induktion). Sei W C N eine Teilmenge mit folgenden FEigen-
schaften:

1.0ew
2. Istae W, soist aucha+1eW.

Dann gilt W = N.

Beweis. Der Beweis ist trivial: Offenbar ist W eine induktive Menge. Weil N nach Definition
in jeder induktiven Menge enthalten ist, ist daher N C W. Nach Voraussetzung ist aber
W CN, also W = N. O

Dieser Satz ist ein wichtiges Beweismittel, er ermoglicht Beweise iiber Aussagen fiir natiirliche
Zahlen durch die sogenannnte

Vollstindige Induktion: Fiir jedes n € N sei A(n) eine Aussage. Kann man zeigen, dass sie

1. fiir n = 0 wahr ist und

2. fiir n 4+ 1 wahr ist, falls sie fiir n wahr ist,

so folgt, dass sie fiir alle n € N wahr ist: Man setze einfach
W :={n € N| A(n) ist wahr}.
Dann ist W C N induktiv, also W = N nach Satz [T7}

Fiir Beispiele zur vollstdndigen Induktion ist es hilfreich, Addition und Multiplikation in
den reellen Zahlen nicht nur fiir zwei, sondern fiir eine beliebige Anzahl n € N von Sum-
manden bzw. Faktoren zu habenﬂ Die offensichtlichen Verallgemeinerungen von Assoziativ-
gesetz, Kommutativgesetz und Distributivgesetz auf diese Fille beweist man ebenfalls mit
vollstédndiger Induktion.

Wir stellen hier die Eigenschaften des Summen- und Produktzeichens zusammen:

Seien m < n ganze Zahlen und fiir jedes k € Z mit m < k < n sei aj, eine reelle Zahl. Dann
setzt man

n

Zak =yt Q1 T A,

k=m
n

H Qg = Qmlmi] - - - O
k=m

Ist m > n, so vereinbart man

1 Die exakte Definiton dieser Operationen iiber den sogenannten Rekursionssatz benutzt selbst die
vollstédndige Induktion. Wir gehen darauf nicht ein, vgl. Barner/Flohr, §2.3
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Insbesondere setzt man fir n € Nund a € R

und erhélt

Zuriick zur vollstédndigen Induktion. Wir geben Beispiele:
Beispiel 18. Fiir alle n € N gilt

n(n—i—l).

k= 2

k=1
Beweis. Durch vollstdndige Induktion.
Induktionsanfang: n = 0. Nach Definition ist

S

k=1

Andrerseits ist
0(0+1)

=0.
2

Also ist die Aussage fiir n = 0 wahr.

Induktionsschritt: n — (n 4 1). Wir nehmen an, dass die Aussage fiir n wahr sei, dass also
gilt
1

Zu zeigen: Dann ist sie auch fiir n + 1 gﬁltlg, d.h. es gilt auch

n+1

_(n+1)(n+2)
2=

Das zeigen wir so:
n+1
Z k= (Z k) (n+1).
Nach unserer Induktionsannnahme konnen wir den ersten Summanden rechts ersetzen:
n+1

Zk— n+1 (n+1):n(n+1)—2|—2(n+1):(n+1)2(n+2).

Beispiel 19 (Bernoullische Ungleichung). Fiir alle z > —1 und n € N ist

(I4+x)">1+nz.

Beweis durch vollstindige Induktion.
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n = 0. Dann ist
1+2)°=1,
1+0-z=1.

Also stimmt die Behauptung.

n — (n+ 1). Es gelte bereits
(1+2)">1+nz.

Dann folgt durch Multiplikation mit der (positiven!) Zahl 1 4 x

1+2)" P =0+2)"(1+2)> A +n2)(1+2)=1+n+Dz+nz®>1+ (n+ 1)
U

Als néchstes Beipiel wollen wir die allgemeine Binomialformel beweisen. Dafiir noch zwei
Definitionen:

Definition 20 (Fakultéit). Wir definieren n Fakultat durch

n!::1~2-...-n:Hk (n € N).
k=1

Insbesondere ist 0! = szl k = 1. Durch vollstdndige Induktion(!) kann man zeigen, dass
man n! interpretieren kann als die Anzahl der Mdoglichkeiten, n Dinge linear anzuordnen
(=Anzahl der Permutationen von n Elementen).

Definition 21 (Binomialkoeffizienten). Fiir n,k € N, 1 < k < n definieren wir

(n) nn—1)-....(n—k+1)

k) 1-2-... -k

Das hat im Ziahler wie im Nenner ein Produkt von k Faktoren. Wir setzen weiter
n) 1 fir k=0,
k)" |0 firkeZ\N.

Offenbar gilt

Weiter ist fiir allen e Nk € Z

Fir 1 < k <n ist ndmlich

(Z) _a(n—1)-... .;;En__kg!1)(n_k)...1 _ k!(nni - (ﬂk)

und das beweist in diesem Fall. Die Félle ¥ = 0,k < 0,k > n kann man im Kopf
nachpriifen.

17



Die Formel beweist man dhnlich: zunéchst mit Hilfe von fiir 2 < k < n, und dann die

Falle k=1,k=0,k<0und k=n+ 1,k > n+ 1 im Kopf.

Die Formel ist eine ,, Rekursionformel“: Wenn man alle (Z) fiir ein gewisses n schon hat,

n+1

so kann man daraus sehr einfach die ( . ) berechnen, namlich gerade so, wie man es beim

Pascalschen Dreieck tut:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 ) 10 10 )

Das liefert also gerade die Binomialkoeffizienten.

Satz 22 (Binomialsatz). Firn € N und a,b € R gilt

(a+0b)" = zn: (Z) a" vk,

k=0

Beweis. Wir beweisen den Satz durch vollstandige Induktion:

n =0.

(a+b)°

=1
0
Z (n) a” k= <0) a’t? = 1.
— k 0

k
Also gilt die Formel fiir n = 0.

n — (n+ 1). Wir nehmen also an, dass

(a+b)" = ki_o <Z) a" Pk

fiir ein bestimmtes n gilt, und wollen zeigen, dass dann

n+1
(a+b)" =3 ("Z 1) am Rk,

k=0
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Nun ist

n (Z) an+l—kbk + zn: (Z) an—kbk+1
k=0 k=0
n n n+1 n
_ n+l—kirk n—k+11k
@>Z<k>a ’ +Z(k—1)a '
k=1
n nt! n
— n—i—l—kbk n—k—i—lbk
2 ) ()

2 (1) ()

@ =\ k
n+1
_ nt 1 ke
N .
k=0

Daraus folgt @ Uberlegen Sie sich, dass bei der mit (*) gekennzeichneten Gleichung die
zweiten Summen auf beiden Seiten gleich sind, dass also die ,, Indexverschiebung® den Wert
der Summe nicht dndert. Bei der Gleichheit (xx) haben wir benutzt, dass (nil) =0=(").

Beispiel 23. Die Anzahl der k-elementigen Teilmengen einer n-elementigen Menge ist (Z)
Beweis. Beim Ausmultiplizieren von

(a+b)"=(a+b)(a+d)...(a+b)

n Faktoren

erhilt man die Summe von allen Produkten, die aus k& Klammern den Faktor b und aus

(n — k) Klammern den Faktor a auswéhlen. Fiir festes k liefert das gerade (})-mal das

Monom a™ *b*. So viele Moglichkeiten gibt es also zur Auswahl von & ,,b-Klammern*.

O

Eine ganze Reihe von Eigenschaften der natiirlichen Zahlen, die Ihnen selbstverstindlich
vorkommen, sind auf dem Hintergrund unserer Definition gar nicht selbstverstandlich:

e Warum sind die Summe oder das Produkt von zwei natiirlichen Zahlen wieder eine
solche?

e Warum folgt aus m,n € N und m < n, dass n —m € N?

Diese Aussagen lassen sich aber (mit vollstdndiger Induktion) aus unseren Axiomen bewei-
sen, vgl. Barner/Flohr.

Als Konsequenz ergibt sich, dass fiir jedes ng € N

{n€N|nZno}={m—|—no |m€N}.
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Hieraus folgt ziemlich leicht eine 6fter benutzte

Variante der vollstéindige Induktion: Sei ny € N und sei B(n) eine Aussage, die fiir
jede natiirliche Zahl n > ng wahr oder falsch ist. Kann man zeigen, dass sie

1. fiir n = ng wahr ist und

2. fiir n + 1 wahr ist (n > ng), falls sie fiir n wahr ist,

so folgt, dass sie fiir alle natiirlichen Zahlen n > ng wahr ist.

Etwas kniffliger, aber ebenfalls mit der Methode der vollstandigen Induktion, zeigt man:

Satz 24 (Wohlordnungsprinzip). Jede nichtleere Menge natirlicher Zahlen besitzt ein
kleinstes Element.

Beweis. Vgl. Barner /Flohr. O

Dagegen 18t sich der folgende Satz aus den bisherigen Axiomen fiir die reellen Zahlen nicht
beweisen, der Korper der hyperreellen Zahlen der Nonstandard-Analysis ist ein angeordneter,
aber nicht archimedisch-angeordneter Korper. Wir fithren den Satz hier an, weil er manchmal
als weiteres Anordnungsaxiom fungiert. Vergleichen Sie den Abschnitt

Satz 25 (Archimedisches Prinzip). Zu jeder reellen Zahl x € R gibt es ein n € N mit

T <n.

Fiir den Beweis vergleiche Satz

Wir sind also mit der Axiomatik der reellen Zahlen noch nicht fertig, aber fiirs erste ist das
nicht weiter schlimm: Uber weite Strecken scheint es, als kénnten wir mit den bisherigen
Axiomen schon alles tun, was wir mit den reellen Zahlen vorhaben. Also machen wir erst
einmal unbeschwert weiter.

Im Kapitel [5| werden wir dann allerdings mit der dringenden Notwendigkeit konfrontiert,
unser Axiomensystem durch das Vollstindigkeitsaxiom zu vervollstdndigen.
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2 Die komplexen Zahlen

Weil wir bewiesen haben, dass das Quadrat einer reellen Zahl immer > 0 ist, gibt es kein

z € R mit 2 = —1. Die komplexen Zahlen erhilt man durch ,Erweiterung® der reellen
Zahlen um Ausdriicke der Form z + iy, wobei z,y € R und ¢ eine Zahl(?) mit

2

17 =—1

ist. Das klingt mysterits, wenn nicht gar unsinnig. Woher soll denn dieses ¢ kommen?

Seit dem 16. Jahrhundert benutzten Mathematiker die komplexen Zahlen und zwar nicht

um z2 = —1 l6sen zu konnen, das wire ihnen wirklich als unsinnig erschienen. Vielmehr

traten die ,imagindren”, also ,(nur) eingebildeten Zahlen® zunéchst als Hilfskonstruktion
bei der Losung von Gleichungen dritten Grades der Form a® + pz + ¢ = 0 auf. Dafiir hatte
man folgende Formel gefunden: Man bildet D = (§)% + (£)? und daraus

2
U4 1= & —gﬂ:\/ﬁ.

Dann gibt 1 = uy + u_ eine Losung. Sie wissen aus der Schule, dass man dann durch
Division mit (x — z1) auf eine quadratische Gleichung kommt, die ,im allgemeinen® zwei
weitere Nullstellen der Gleichung liefert.

Beispiel 26 (Kubische Gleichungen und komplexe Zahlen). Wir betrachten
23— 150 —4 =23+ pr+q=0.
Nach den Cardanischen Formeln bildet man zunéchst

D= (5 +(3) = (=5)" + (-2 = -121

und
Uy = 7 —%i\/ﬁz 2E1Ti=2+1.
Daraus erhalten wir eine makellos reelle Nullstelle
T1 =Uuy +u_ =4.
O

Auch Leonhard Euler (1707-1783) benutzte komplexe Zahlen auf diese Weise und fand seine berithmte Formel

e'" = cosx + isin .

Die hat wiederum sehr praktische Konsequenzen: Wegen
cos(x + y) + isin(z + y) = ! (FTY) = ¢iTety
= (cosz + isinz)(cosy + isiny) = (cosz cosy — sinx siny) + i¢(cos x siny + sin z cos y)
sind die etwas komplizierten Additionstheoreme
cos(z +y) = cosxzcosy —sinzsiny, sin(z+y) = coszsiny + sinzcosy
nichts anderes als die simple (allerdings komplexe) Formel
T — iy,

Vergleichen Sie dazu die Abschnitte @ und

Seit Mitte des 19. Jahrhunderts gibt es komplexe Zahlen nun aber doch! Sie sind ebenso
real wie die reellen Zahlen (— oder ebenso nur ein Produkt des menschlichen Geistes wie die
letzteren). C.F. Gaufl hat klargestellt, dass, wenn man sich die reellen Zahlen als Punkte
auf dem Zahlenstrahl vorstellt, die komplexen Zahlen einfach die Punkte einer Ebene sind,
die die reelle Zahlengerade enthélt. Die ,Zahl“ x + iy ist dann einfach der Punkt mit den
Koordinaten (x,y). Man muss nur erkldren, wie man Punkte in der Ebene addiert und
multipliziert (so wie man das friiher fiir Punkte auf der Zahlengeraden tun musste).
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Definition 27 (Der Koérper C). Sei

C:={(z,y)|z,y eR}

die Menge der geordneten Paare reeller Zahlen. Wir definieren in C eine Addition, also eine
Abbildung
.4+.:CxC—=C

vermoge
(x1,91) + (z2,92) := (21 + 22, Y1 + Y2)

und eine Multiplikation vermoge

(1, 11) (22, Y2) == (T1Z2 — Y1Y2, T1Y2 + T2Y1).

Dann rechnet man nach, dass die Kérperaxiome (Al) - (A3), (M1) - (M3) und (D) gelten.
Insbesondere ist (0,0) das neutrale Element der Addition, (1,0) das neutrale Element der
Multiplikation und fiir (x,y) # (0,0) ist das multiplikative Inverse gegeben durch

-1 _ €z Y
(‘ray) _($2+y23$2+y2)'
C mit diesen Operationen heif3t der Korper der komplexen Zahlen.

Die Einbettung der reellen Zahlen in die komplexen Zahlen. Nach der bisherigen
Definition ist RN C = (). Aber man hat

(11,0) =+ (1’2,0) = (SCl + LEQ,O), (1’1,0)(1‘2,0) = (I1I2,0).

Schreibt man also einfach z; statt (z1,0), so fallen reelle und komplexe Rechenoperatio-
nen zusammen. Wir kénnen daher die reellen Zahlen als Teilmenge der komplexen Zahlen
interpretieren, indem wir zwischen x und (x,0) nicht mehr unterscheiden. Dann gilt fiir
x1,Yy1,22 € R zum Beispiel

(T1,y1)72 = (71,y1)(22,0) = (2172, T2Y2).

Setzen wir weiter

i=(0,1),
so gilt

’(m,y) = (2,0)+ (0,y) =z + (0, )y = x + 1y.

Jede komplexe Zahl z € C 148t sich also eindeutig in der Form
z=x+ 1y

mit reellen(!) z und y schreiben. Man nennt
r=Rez

den Realteil und
y:=Imz

den Imagindrteil von z. Der Imaginérteil ist also reell. Zahlen der Form iy mit y € R heilen
auch (rein) imgindr.

Wunderbarer Weise ist nun nach der Definition der Multiplikation

i =(0,1)(0,1) = (0> =12,0-1+1-0) = (-1,0) = —1.
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Der Betrag einer komplexen Zahl. Fiir komplexe Zahlen gibt es keine Anordnung mit
den Axiomen (O1) - (O4), denn dann wiire i > 0. Aber man definiert fiir 2 € C (im Vorgriff
auf die spéter zu definierende Wurzelfunktion) den Betrag als

|z| :== v/(Re 2)2 + (Im 2)2.

Weil der Betrag reell ist, machen Ungleichungen iiber den Betrag komplexer Zahlen Sinn
und werden viel benutzt. Fiir den Betrag kann man die Eigenschaften aus Satz[§ nachweisen:

Satz 28. Fir alle z,21,29 € C gilt

|z| > 0 mit Gleichheit nur fir z =0,
|z122| = |21] |22],
|21 + 22| < |z1] + |22].

Wir kommen darauf spéter zuriick und schlieffen mit einem Bild der sogenannten Gaufschen
Zahlenebene:

A

Z=X+iy

Y
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3 Mengen und Abbildungen

Wir setzen den (naiven) Mengenbegriff und die elementaren Begriffe und Bezeichnungswei-
sen der Mengenlehre voraus. Sie sollten die in dem folgenden Beispiel zusammengestellten
Aussagen verstehen kénnen.

Beispiel 29. Seien X,Y, Z Mengen.

1.
2.
3.
4.

® N>

10.
11.
12.

13.

XCY < Vyexx €Y.
XcYnYyczZ — Xc/Zz.
XCY < YDOX.

X CcX.
So wollen wir das Symbol ,,C* verwenden, es schlieft mogliche Gleichheit ein.
Andernorts finden Sie dafiir ,,C*.

XCYNX#Y << X CY.
XNY#4£) «— J,zcXNzeY.
XUY ={z|jlzeXVzeY}

Ist A eine Menge und fiir jedes a € A eine Menge X, gegeben, so nennt man (X, )aca
auch eine Familie von Mengen mit Indexmenge A.

UXao = {2|Facaz € Xo}.
A

P(X):={Y|Y C X} heifit die Potenzmenge von X.
P({1,2}) = {0,{1},{2},{1,2}}.
reX <= {zr} C X < {z} € P(X).

X XY :={(z,y)|xz € X ANy € Y} heifit das kartesische Produkt der Mengen X und
Y. Seine Elemente sind die geordneten Paare (x,y) mit x € X und y € Y.

Analog definiert man das kartesische Produkt von mehr als zwei Mengen:

X1 x ..o x Xy ={(x1,...,2p) |z € X, fir allei € {1,...,n}}.

Mit #X bezeichnen wir die Anzahl der Elemente oder die Mdchtigkeit von X. Zum
Beispiel ist #{1,...,n} = n oder #N = cc.

Eine Abbildung

f: X—=Y

von der Menge X in die Menge Y ist eine Vorschrift, die jedem Element z € X genau ein
Element f(x) € Y zuordnet. Wir schreiben auch

[ X =Y,z f(o),

weil das die Moglichkeit gibt, die Wirkung von f zu beschreiben, etwa

fR-R, z~ 22
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Eine formalere Definition sieht so aus:

Seien X,Y Mengen. Eine Abbildung von X mach Y ist eine Teilmenge I' C X X Y mit
folgender Eigenschaft: Zu jedem x € X gibt es ein und nur ein y € Y, so dass

(z,y) €T.

Dieses y bezeichnet man dann als fr(z) und erhilt eine ,, Abbildungsvorschrift“. Umgekehrt
liefert jede ,,Abbildungsvorschrift® f : X — Y eine Teilmenge

Ty i={(z,9)|z € X Ay=f(z) EY}C X xY,
mit obiger Eigenschaft, den sogenannten Graphen von f.
Beispiel 30. (i) f:R—> R, z+— 25
(ii) Fir X,Y beliebig und y € Y hat man die konstante Abbildung vom Wert y:

f:X-=Y zxz—uy.

(iii) Fiir X beliebig hat man die identische Abbildung

dy : X =X, xz— .

Definition 31. Sei f : X — Y eine Abbildung.

(i) Die Menge X heifit der Definitionsbereich, die Menge Y der Zielbereich oder Wertebe-
reich von f.

(ii) Fir « € X heifit f(z) das Bild von x unter f, kurz das f-Bild oder, wenn f klar ist,
einfach das Bild von x. Es heifit auch der Wert von f auf x oder an der Stelle x.

(iii) Die Menge
{fz) |[zeX}CY
heiflt die Wertemenge von f.

(iv) Fur A C X heifit
f(A) :={f(z)|x € A}
das Bild von A unter f.

(v) Fiir B CY heif}t
f7'B):={z|f(xr)e By Cc X

das Urbild von B unter f. (Es kann = ) sein.)

Zwei Abbildungen f und g heilen gleich, wenn sie denselben Definitionsbereich X besitzen
und fiir alle x € X

gilt.

Definition 32 (Einschrinkung). Seien f : X — Y eine Abbildung und A € X. Dann
bezeichnen wir mit
fla:A—=Y

die Abbildung, die jedem z € A den Wert f(x) € Y zuordnet. Also
flatA=Y, ze f(z).
fla heiBit die Einschrinkung (oder Restriktion) von f auf A. Ist A # X, so gelten f und

fla also als verschiedene Abbildungen, obwohl sie mit jedem z € A ,dasselbe machen.
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Definition 33 (Injektiv, surjektiv, bijektiv). Sei f : X — Y eine Abbildung.

(i) f heiit injektiv, wenn eine der folgenden, dquivalenten Bedingungen erfiillt ist:

Vi mex (21 # 12 = f(21) # f(22)),
Var mex (f(21) = f(22) = 21 = 12),

Vyey #f_l({y}) <L
(ii) f heiBt surjektiv beziiglich B C Y oder surjektiv auf B, wenn
J(X) = B.

(iii) f heifit bijektiv beziiglich B C Y oder bijektiv auf B, wenn es injektiv und surjektiv
beziiglich B ist, d.h. wenn jedes y € B das Bild genau eines z € X ist.

Beispiel 34. Die Abbildung f : R — R, x> 22 ist

nicht injektiv, weil z.B. f(—3) = f(3) ist,

nicht surjektiv beziiglich R, weil z.B. —13 € R kein Wert von f ist,

surjektiv beziiglich [0, 4+o0].

Weiter ist f|o, o0 injektiv.

Definition 35 (Umkehrabbildung). Ist f : X — Y injektiv und setzt man B := f(X
so ist f bijektiv beziiglich B. Zu jedem y € B gibt es also genau ein z € X mit f(z) =
Wir bezeichnen dieses x mit f~!(y) und haben damit eine Abbildung

O
);

ff1:B—X
definiert, die die Umkehrabbildung von f heifit.

Die Umkehrabbildung existiert also nur fiir injektive Abbildungen f : X — Y, und ihr
Definitionsbereich ist f(X).

Die definierende Gleichung fiir f=! (bei injektivem f) ist also

=1 = y=f().] (8)

Man hat dann fiir alle v € X

@) =] (9)

Beachten Sie: Das Symbol f~! kommt in zwei verschiedenen Bedeutungen vor:

e Bei der Urbildmenge f~!(B). Dann ist das Argument eine Teilmenge von Y.

e Bei der Umkehrabbildung einer injektiven Abbildung f. Dann ist das Argument ein
Element aus f(X) CY.

Im zweiten Fall gilt fiir alle y € f(X)
v =)}
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Lemma 36. Sei f: X — Y eine Abbildung. Dann gilt (natiirlich!)
X)) = X.
Ist f injektiv, so ist auch f~1: f(X) — X injektiv und

(7 =F:X = f(X).

Beweis. Seien y1,y2 € f(X) und f~Y(y;) = ; fiir i = 1,2. Nach ist dann f(x;) = y;.
Daher gilt

T ) =) = w1 =20 = y1 = f(a1) = f(a2) = 2.
Daher ist f~! injektiv. Weiter gilt nach
(S M) = fl2) = o= (f(2)),
aber die rechte Seite ist wahr nach @D O

Definition 37 (Komposition von Abbildungen). Seien
fiX—=Uundg:Y -V
zwei Abbildungen. Dann ist die Komposition von f mit g die folgende Abbildung

gof:fHY) =V, zw g(f(x))

Das ist nur interessant, wenn f~}(Y) # 0 (sonst erhiilt man die leere Abbildung), und
insbesondere im Fall U = Y. Dann ist nimlich f~1(Y) = X.

Beispiel 38. Sei f: X — Y injektiv. Dann gilt

flof=idx, foft=idyx)-

Lemma 39. Seien f: X - Y und g:Y — X zwei Abbildungen mit
gof=idx und fog=idy.

Dann ist f bijektiv beziiglich Y und g die Umkehrabbildung von f, also g = f~ 1.

Beweis. Tst f(z1) = f(x2), so folgt
z1 = (go f)(z1) = g(f(21)) = g(f(22)) = (g0 f)(22) = 2.
Also ist f injektiv. Ist y € Y und setzt man z = g(y) € X, so ist
f(x) = Fg(y)) = v.

Also ist f(X) =Y und f surjektiv beziiglich Y. Damit ist f bijektiv beziiglich Y. Aus der
letzten Gleichung folgt zusammen mit der Definition der Umkehrabbildung sofort g = f~1.
O
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Definition 40 (Abzihlbare Mengen). Eine Menge X heifit (hichstens) abzihlbar, wenn
X = ) oder es eine surjektive Abbildung

N—-X
von N auf X gibt. Andernfalls heiflt sie berabzdhlbar.

Beispiel 41. Die Menge Q der rationalen Zahlen ist abzéhlbar.

Beweis. Mit dem sogenannten Cantorschen Diagonalverfahren beweisen wir zunéchst, dass
die nicht-negativen rationalen Zahlen abzihlbar sind. Dazu betrachten wir folgendes Schema:

1/1 2/1 3/1 4/1
1/2 2/2 3/2 ...
1/3 2/3 3/3

2/4 3/4

1/4

und definieren eine Abbildung f : N — Q, indem wir den Diagonalen in diesem Schema
folgen: Wir setzen

f(0):=0

f):=1/1

f2):=1/2, f(3):=2/1

f4):=1/3, f(5):=2/2, [f(6):=3/1

[N =1/4, f(8):=2/3, [f(9):=3/2, f(10)=4/1

Das definiert offensichtlich eine surjektive Abbildung von N auf die nicht-negativen ratio-
nalen Zahlen. Ebenso beweist man, dass die Menge der nicht-positiven rationalen Zahlen
abzahlbar ist. Nun miisste man noch wissen, dass die Vereinigung zweier abzdhlbarer Men-
gen abzahlbar ist. Wir zeigen allgemeiner, dass die Vereinigung

Ux
iel

abzéhlbarer Mengen X; abzéhlbar ist, wenn auch die Indexmenge I abzihlbar ist. Das
geht ebenfalls mit dem Cantorschen Diagonalverfahren: Ist g : N — I surjektiv und sind
fr : N — X fiir alle k € N surjektive Abbildungen, so erhilt man eine surjektive Abbildung

ﬁNHU&

icl

durch ,, Verfolgen“ der Diagonalen in dem Schema

Fo@(0)  fo)(1)  fe0)(2)  fg(0)(3)
Fo () foy(D) fo)(2)  fo)(3)
fo2)(3)

o2 (0)  foy(1)  fo2)(2)

Ein dhnliches Verfahren liefert spdter auch einen Beweis dafiir, dass die Menge der reellen
Zahlen iiberabzéhlbar ist.

O
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4 Elementares iiber Funktionen

Funktionen sind eigentlich nichts anderes als Abbildungen, aber wir verwenden diesen Na-
men vor allem dann, wenn der Zielbereich ein Zahlbereich ist. Wir werden es in diesem
Semester vor allem mit Funktionen zu tun haben, deren Zielbereich R und deren Defini-
tionsbereich I eine Teilmenge von R ist. Solche Funktionen nennen wir reelle Funktionen.
Daneben betrachten wir auch komplexe Funktionen, deren Werte in C liegen, und deren
Definitionsbereich eine Teilmenge von C ist. Wir geben nun eine Reihe konkreter Beispiele
fiir einfache Funktionen und deren Eigenschaften.

4.1 Polynome

Definition 42. Fin reelles Polynom oder eine reelle ganzrationale Funktion ist eine Funktion

f:R — R, die sich in der Form
x Z apz® (10)
k=0

schreiben 148t, wobei die Koeffizienten a, Zahlen aus R sind. Ersetzt man hier iiberall R
durch C, so erhilt man ein komplexes Polynom. Fiir diese bezeichnet man die Variable gern
mit z statt mit z.

Beispiel 43. Die Funktion f: R — R mit
f@)=(z—-3)"+12(x —3)* -9

ist ein Polynom, wie man durch Ausmultiplizieren zeigt.

Satz 44 (Identitiitssatz fiir Polynome). Seien
n
f:C—C, ZHZaka.
k=0

und
m

g:C—C, ZHZbkzk.
k=0

zwei Polynome mit a, # 0 und by, # 0. Es gelte f(x) = g(x) fir alle x € R.
Dann folgt m = n und
ay = by fir alle k € {1,...,n}.

Beweis. Die Differenz h = f — g ist wieder ein Polynom

max(m,n)

h:C—C, z+— Z ez,

wobei ¢, = ap — bg, und nicht definierte Koeffizienten einfach = 0 gesetzt sind. Nach Vor-
aussetzung ist h(z) = 0 fiir alle 2 € R. Es geniigt also zu zeigen:

h(x):chxk:OﬁiraﬂexGR - cp=...=c¢cp=0. (11)
k=0
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Gibt es einen Koeffizienten ¢, # 0, so gibt es einen hochsten Koeffizienten # 0 und wir
kénnen annehmen, dass ¢, # 0.

Fiir [2| > 1 und 0 < k < n — 1ist |2|* < |2/”~! und daher nach der Dreiecksungleichung

n—1 n—1 n—1

chzk < Z |ckzk’ < <Z ck|> |z|"7 =: Oz

k=0 k=0 k=0

Nach Korollar |§| ist daher fiir |z| > 1

|h(2)] > |en|l2]™ = Cl2[*7" = |2" " (|enl]2] = C). (12)
C

Ist ¢, # 0, so ist die rechte Seite fiir |z] > max(1, =) positiv. Insbesondere ist also

Icnl

h(@)| = 2" N (ealz — C) > 0

fiir reelles z > max(1, |C—C|) im Widerspruch zur Voraussetzung. Also ist ¢,, = 0. Daraus folgt

die Behauptung . O

Bemerkung. Die Voraussetzung des Satzes 148t sich erheblich abschwichen. Fiir den Beweis
geniigt offenbar, dass f(x) = g(z) fiir alle hinreichend grofien z € R, d.h. die Existenz eines
Zo € R, so dass f(x) = g(z) fir alle z > xo.

Aber es geht noch besser: Die Koeffizienten ag, ..., a, von f sind bereits durch die Funkti-
onswerte f(29),..., f(zn) an (n+ 1) paarweise verschiedenen reellen oder komplexen Stellen
z; eindeutig bestimmt, wie Sie in der Linearen Algebra lernen kénnen: Die Bedingungen
f(z;) = w; bilden ein lineares Gleichungssystem fiir die Koeffizienten, dessen Matrix die
sogenannte Vandermondesche Matrix ist. Die ist reguldr, und daher hat das System genau
eine Losung.

Definition 45. Ist N
f:C—-C, ZHZaka
k=0

ein Polynom mit a,, # 0, so heifit n der Grad von f. (Analog fiir reelle Polynome). Wie wir
gleich sehen werden, ist es praktisch, dem Nullpolynom f = 0 den Grad —oo zu verpassen.
Dann ist also

Grad f =0 < f konstant # 0.

Beachten Sie: Diese Definition macht nur Sinn, weil durch die Funktion f die Koeffizienten
ar und damit auch der grofite Index n eines nicht verschwindenden Koeffizienten nach dem
vorausgehenden Satz eindeutig bestimmt sind!

Man sieht leicht, dass fiir zwei Polynome f # 0 # g
Grad(fg) = Grad f 4+ Grad g,

und wenn man grofziigig und suggestiv —oco = n + (—o0) fiir jedes n € N rechnet, gilt diese
Formel sogar, wenn f =0 oder g = 0.

Der Divisionsalgorithmus fiir Polynome ist Thnen ja wohl aus der Schule bekannt:

Satz 46 (Polynomdivision mit Rest). Seien f, g zwei reelle oder komplexe Polnome und
Grad g > 0. Dann gibt es eindeutig bestimmte Polynome q,r mit

f=q9+7r wund Gradr < Gradg.

Sind f und g reell, so auch q und r.
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Beweis. Zur Existenz: Die Menge
{ f—aqg ’ q reelles bzw. komplexes Polynom}
enthilt (nach dem Wohlordnungsprinzip) ein Polynom r kleinsten Grades, so dass
f—ag=r
fiir ein geeignetes Polynom gq.

Annahme: Gradr > Grad g, also etwa r(z) = Y _, 72", g(2) = D1t gx2"® mit n > m und

rn # 0 # gy Dann wére
7z) = r(z) —
Im

ein Polynom vom Grad kleiner als Grad r und

Z""g(2) (13)

#z) = £(2) — a(2)a(z) — 2 (z) = f(z) — (q<z> n znm) o(2)

Im

im Widerspruch zur Wahl von r. Also ist
Gradr < Gradg.

Zur Eindeutigkeit: Aus

1+ qg=f=r2+qg
mit r1, 79 von minimalem Grad folgt
o — T2 = (QQ - Q1)g

und daraus
Grad g > Grad(ry — r2) = Grad(¢2 — ¢1) + Grad g,

was nur moglich ist, wenn Grad(r; — ry) = —oco = Grad(gs — ¢1), also r1 = ro und g1 = go.

Also sind ¢ und r eindeutig bestimmt. O

Korollar 47. Ist f : C — C ein Polynom # 0, und ist a € C eine Nullstelle von f, so gibt
es ein eindeutig bestimmtes Polynom q : C — C mit

f(z) = (z — a)q(z) fir alle z € C.
Entsprechendes gilt fiir reelle Polynome und reelle Nullstellen.
Die vorstehenden Sétze und das Korollar galten gleichermaflen fiir reelle wie komplexe Po-

lynome. Der folgende, hier nicht bewiesene sogenannte Fundamentalsatz der Algebra gilt
dagegen nur, wenn (ungeachtet der Koeffizienten) das Argument komplex ist:

Satz 48. Jedes nicht-konstante komplexe Polynom hat mindestens eine komplexe Nullstelle.

Natiirlich hat damit auch jedes nicht-konstante Polynom mit reellen Koeflizienten eine kom-
plexe Nullstelle, aber eben nicht unbedingt eine reelle, wie 22 + 1 zeigt.

Aus dem Korollar zum Satz iiber die Division mit Rest folgt unmittelbar, dass jedes komplexe
Polynom vom Grad n dann genau n Nullstellen hat, wenn man sie mit “Vielfachheiten” z&hlt.
Insbesondere ist ein Polynom mit unendlich vielen Nullstellen das Nullpolynom. Genauer:
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Jedes komplexe Polynom vom Grad n > 0 hat eine bis auf die Reihenfolge eindeutige
Darstellung

f(2) =an(z —20)" .. (2 — z.)kr (14)

mit a, € C\ {0}, paarweise verschiedenen z1,..., 2. € C und positiven natiirlichen Zahlen
k.. k., fiir die

k1++k'r:n

Man kann , aber ebenso auch 7 als eine Normalform des Polynoms f ansehen. Die
letztere gilt allerdings nur bei Einbeziehung der komplexen Nullstellen fiir alle reellen oder
komplexen Polynome und ist der eigentliche Grund, warum man bei der Untersuchung von
Polynomen lieber komplex als reell arbeitet.

32



4.2 Rationale Funktionen

Definition 49 (Rationale Funktionen). Sind f und g # 0 zwei Polynome und ist N(g)
die Menge der Nullstellen von g, so heifit die auf dem Komplement von N(g) definierte
Funktion

(x

(x

~

g:R\N(g)—JR7 T —

~

)

bzw.

~

(2)

=:C\N(g) —C, z~ e

~—

eine (gebrochen-)rationale Funktion.

Nach dem Divisionsalgorithmus fiir Polynome ist jede rationale Funktion h darstellbar als

h=q+i
g

mit Polynomen f, g, q, wobei der Grad von g echt grofler als der von f ist.

Auch fiir die rationalen Funktionen wollen wir Normalformen untersuchen. Dabei ist es
wieder einfacher, kompleze rationale Funktionen, also die Quotienten zweier komplexer Po-
lynome, zu betrachten. Dann ist eine mogliche Normalform

h(z) = A(z - wl): (2wl
(z—z1)F o (2 — z)Fr
mit A € C, positiven Exponenten k1, ..., k., l1,...,ls € N\ {0} und paarweise verschiedenen
Zlyevey Zpy W1y ..., W € C.

Eine weitere Normalform rationaler Funktionen wird insbesondere in der Integrationstheorie
niitzlich sein. Der Einfachheit halber nehmen wir an, dass der Zéhlergrad kleiner ist als der
Nennergrad, so dass kein polynomialer Summand ¢ auftritt.

f(z)

Satz 50 (Partialbruchzerlegung). Sei 9

0 < Grad f < Grad g. Sei

eine komplexe rationale Funktion fir die

g(z) = (z — Zl)kl (2= zr)kr

mit paarweise verschiedenen z1, ..., z., die keine Nullstellen des Zihlers sind (ausgekiirzter
Bruch), und positiven Exponenten ki,..., k. € N.
Dann gibt es eindeutig bestimmte A;; € C fir 1 <i<r und1<j<k;, so dass

r k;
f(z) ~_ Ay
= — (15)
R I em:
fiir alle z ¢ {z1,...,2:}.
Ist £2) cine reelle rationale Funktion, und sind alle Nullstellen z1,...,z. von g reell, so

g(z)
sind auch die Aj; reell.

Beweis. Vollstandige Induktion iiber den Nennergrad n := ki + ... + k,.
n = 1. Dann ist Grad f < 1, also f konstant und

1) S
9(z) z—2z1

33



Die Darstellung ist eindeutig.

Induktionsschritt. Sei der Satz fiir Nennerpolynome vom Grad < n bereits bewiesen. Wir
schreiben g(2) = ¢(2)(z — z.)*", wobei dann q(z,) # 0. Wir setzen

.7 _ f(=)
A= Ay, = (16)

Dann ist
A

f(Z) - (Z — Zr>krg(2) = f(Z) - AQ(Z)
ein Polynom mit z, als Nullstelle, also von der Form f(z)(z — ), und

f(2) A f(2)

9(2)  (z—z)k  q(2)(z = 2)kr 71
hat nach Induktionsvoraussetzung eine eindeutig bestimmte Darstellung

f(2) — LA,
9(z)  (z— 2 ZZ (z —zi) Z(z—zT)j'

i=1 j=1 j=1

Damit ist die Existenz der Partialbruchzerlegung bewiesen.

Es fehlt noch der Nachweis, dass der Koeffizient A, in eindeutig bestimmt ist. Dann
liefert der Induktionsbeweis auch die Eindeutigkeit im Satz. Aber aus folgt

r—1 k;

Ak, = (2= z)kr %*ZZ (z — 2)) Z:: (2 — 2.)7

=1 j=1
fiir alle z ¢ {z1,..., 2} und damit die Eindeutigkeit.
Die Aussage iiber reelle Polynome mit reellen Nullstellen ist klar. O

“Zuhaltemethode”. Der Beweis des Satzes, konkret die Formel , gibt Informationen,

wie man die A;; finden kann: Ist (2721),{ .(.%()zfzr)kr ausgekiirzt und der Z&dhlergrad kleiner
als der Nennergrad, so erhilt man die “Top-Koeffizienten” A;i,, indem man im Nenner den
Term (2 — 2;)* “zuhilt” und z = 2; einsetzt. Sind alle Nullstellen einfach, so ist man dann
fertig. Andernfalls ermittelt man die anderen Koeffizienten durch Multiplikation von

mit dem Hauptnenner und Koeflizientenvergleich oder Einsetzen von Werten.

Beispiel 51. Bestimme A, B, C in der Partialbruchzerlegung
z A B C
GCoDGE+1Z -1 41 Gy 2
Mit der “Zuhaltemethode” findet man

1 1 -1 1
A=p=p =573
Aus
P _1/4 B 1/2
(z—=1D(z+1)2 2z—1 z+1 (2+1)2
folgt

1 1
z=(z+ D2+ B(z-1)(z+1)+ S(z=1).
Fiir z = 0 ergibt sich

_ 1
oder B = -1
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4.3 Eine Buckelfunktion

Dieser Abschnitt verfolgt zwei Ziele: Einmal soll er Thre Vorstellungskraft durch die Umset-
zung analytischer (= formelmifliger) Sachverhalte in anschauliche Eigenschaften des Gra-
phen fordern. Zum andern werden die hier konstruierten ,,Buckelfunktionen“ in verschiede-
nen Bereichen der Analysis als wichtiges Hilfsmittel eingesetzt.

Seien 1 : R — R eine Funktion mit

P(z) =0 fir z <0,
Y(x) > 0 fir x > 0,

etwa

0 firz<o0
=z + d = -
Y(@)i=atfal oder () {x” fiir x > 0.

und seien a1 < as < by < by.

In den folgenden Abbildungen verwenden wir

Y(@)=z+|z|und a1 =1, ag =2, b =4, by = 5.

1. Die Funktion 15
1/)(% - al)’(/J(bl - {E) 12,5
verschwindet fiir ¢ < a; oder x > by 10
und ist auf ]ay, by [ positiv. 75
5
25
1 2 3 4 5 6
2. Die Funktion ¢
Y(x —ba) +P(az — ) s
verschwindet fiir z < by und & > a9 und
ist auBerhalb von [ag, bs] positiv. 2
1
1 2 3 4 5 6

3. Die Funktion

Y(z —ay)p(by — )

A ot — ) + 9w — ) + o~ 7)

1

hat folgende Eigenschaften:

0<o(z) <1, ::
¢|[a2,b2] =1, 0.4
¢(z) > 0 fiir z €]ay, b,
o(z) =0 fiir z €]

0.2

al,bl[.

[N
)
~
o
-
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Beispiel 52 (Zerlegung der Eins). Sei (Ja;, b;[)icr eine Familie von offenen Intervallen
mit folgenden Eigenschaften:
1. R = J;c/]ai, bi[, d.h. die Intervallfamilie ist eine offene Uberdeckung von R.

2. Zu jedem x € R gibt es ein € > 0, so dass
|z — €,z + €[N]a;, bi[ # O nur fiir endlich viele i € I.

In diesem Fall nennt man die Uberdeckung lokal endlich.

Dann gibt es nach dem ersten Schritt der obigen Uberlegungen zu jedem i € I eine Funktion

¢i >0 auf Jag, b, & =0 auf R\]a;, b;.
Weil die Uberdeckung lokal endlich ist, kann man fiir z € R
o(w) =Y i)
il

definieren, denn in der Summe rechts sind nur endlich viele Glieder # 0. Mindestens eines
ist aber > 0, und daher ist die Funktion ¢ : R — R tiberall positiv. Setzt man

¢’i = (52/0-3
so erhélt man eine Familie von Funktionen mit
@; > 0 auf Ja;, by, @; = 0 auf R\]ay, b;],

und

Z@' =1

iel
Eine solche Familie nennt man eine Zerlegung (oder auch Partition) der Eins zu der gege-
benen Uberdeckung.

Man benutzt diese Uberlegungen zum Beispiel zum Zweck der ,, Lokalisation“: Ist f : R — R
eine stetige Funktion und benutzt man zur Konstruktion der Buckelfunktion ebenfalls eine
stetige Funktion, so ist

F=Y 1o

iel
eine Summe stetiger Funktionen, die jeweils auflerhalb des Intervalls ]a;, b;[ verschwinden,
also in Ja;, b;[ ,lokalisiert” sind.

O
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4.4 Zwei wichtige Eigenschaften von Funktionen
Definition 53 (Monotonie). Eine reelle Funktion f : R D D — R heifit

e monoton wachsend, wenn fiir alle x,y € D gilt
v<y = flz) < f(y),
(Zum Beispiel sind konstante Funktionen monoton wachsend.)
e streng monoton wachsend, wenn fiir alle z,y € D gilt
<y = [f(z) < fy)
Entsprechend definiert man (streng) monoton fallend. Eine Funktion heifit (streng) monoton,
wenn sie (streng) monoton wachsend oder (streng) monoton fallend ist.
Fiir komplexwertige Funktionen macht Monotonie keinen Sinn.

Beispiel 54. Die Funktion f: R — R, x +— z2 ist streng monoton wachsend. Zum Beweis
beachte, dass

y' =2’ = (y— )y +ay +2%) = (y — 2) ((y+§)2+ixz>-

Fiir < y ist deshalb offensichtlich 2® < 3.
U

Definition 55 (Beschrinktheit von Funktionen). Eine reelle Funktion f: R > D — R
heiflt nach oben beschrinkt, wenn es ein M € R gibt, so dass

f(z) < M fiir alle z € D.
M heiflit dann eine obere Schranke fiir f.
Entsprechend definiert man nach unten beschrdinkt und untere Schranke.

Eine Funktion heif3t beschrdnkt, wenn sie sowohl nach oben wie nach unten beschriankt ist,
d.h. wenn es ein M € R gibt, so dass

|f(z)] < M fiir alle z € D.

Diese letzte Bedingung benutzt man, um Beschrianktheit auch fiir komplexe Funktionen
f:C DD — C zu definieren.

Beispiel 56. Die Funktion f : R - R, x + 2™ mit n > 0 ist nicht beschréankt. Das ist
klar fiir n = 1. Und fiir n > 1 folgt aus = > 1, dass

2V >a" N> >

und damit die Behauptung.

Beispiel 57. Allgemeiner ist ein Polynom
flx)=ap+ a1z + ...+ apz"”

vom Grad n > 0 nicht beschrankt. Das folgt aus der Gleichung im Beweis des Iden-
titédtssatzes zusammen mit dem letzten Beispiel.

O
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5 Zahlenfolgen und Konvergenz

5.1 Konvergenz und Vollstindigkeit

Definition 58 (Folge). Eine reelle Folge ist eine Abbildung der natiirlichen Zahlen N in

die reellen Zahlen:
N — R,

nt— Ty

Jedem n € N wird also die reelle Zahl x,, zugeordnet.

Notationen: (z,,) oder (2, )nen. Oft schreibt man auch die ersten Werte der Folge:

($0,$1,$2, .. )

Manchmal beginnt man die Numerierung der Folge mit 1 statt mit 0, gelegentlich auch mit

einer anderen Zahl.

Reelle Folgen sind also reelle Funktionen, so dass zum Beispiel Begriffe wie ,,Monotonie*

oder ,,Beschrinktheit* fiir Folgen bereits definiert sind.

Beispiel 59.

1 111
on /N 1a PEERE
(et La
(Z’n = 1)71€N 1, 1, .
1 11
)n 1a a9’
(vt 1303
(=)™ n?),en: 0,1,-4,9,-25, ...

<

Hiufig kommen sogenannte rekursive Folgen vor: Man gibt einen (oder mehrere) Anfangs-
werte und eine Vorschrift, wie sich die Folgenglieder aus den vorangehenden Gliedern ,,ent-

wickeln*“:

Beispiel 60. Seien xg,b > 0 gegeben. Setze

1
Tptl = §($n +—).

Fiir b = 2 und zog = 1 liefert das

:1771,

1 = 1.5000000
T2 = 1.4166667
T3 = 1.4142157
T4 = 1.4142136
r5 = 1.4142136

Beispiel 61. Die Fibonacci-Folge ist gegeben durch

apg=a1 =1, apny2=an+ any1.
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Das ergibt
(1,1,2,3,5,8,13,21,...).

Diese Folge hat zu tun mit der Vermehrung von Kaninchen. Sie besitzt eine eigene Zeitschrift.

O

Beispiel 62. Eine weitere rekursiv definierte Folge ist ,,die“ Collatz-Folge: Man beginnt mit
einer beliebigen natiirlichen Zahl ¢y und definiert

3¢, +1 falls ¢, ungerade und # 1,
Cnt1 =1 (¢n)/2  falls ¢, gerade,
1 falls ¢, = 1.

Also etwa
9,28,14,7,22,11,34,17,52, 26, 13,40, 20, 10,5, 16,8,4,2,1,1,1,...

Es gibt also unendlich viele Collatz-Folgen: eine zu jedem Anfangswert ¢g. Und wenn eine
Collatz-Folge den Wert 1 annimmt, sind alle weiteren Folgenglieder auch 1.

O

Die Differentialrechnung wurde im 17. Jahrhundert von Newton und Leibniz erfunden und
Grenzwertbetrachtungen fiir die Flachenberechnung sind noch viel élter. Aber fiir die Kon-
vergenz einer Folge gegen eine reelle Zahl gibt es erst seit Anfang des 19. Jahrhunderts eine
prézise

Definition 63 (Konvergenz und Divergenz). Die Folge (x,) heifit konvergent gegen
a € R, wenn es zu jedem € > 0 eine natiirliche Zahl N gibt, so dass

|z, — a] < € fiir alle n > N.
Man schreibt dann x,, — a oder lim,, ., x,, = a, auch kurz
lim x,, = a.

Die Zahl a heiit der Grenzwert oder Limes der Folge. Man nennt die Folge (z,,) konvergent,
wenn es ein a gibt, gegen das sie konvergiert. Andernfalls nennt man sie divergent.

Sprachlich kann man das so formulieren:

Jede — noch so kleine! — Toleranz € fiir die Abweichung vom Grenzwert a wird nur von
endlich vielen Folgegliedern (nimlich héchstens denen mit n < N) {iberschritten.

Lemma 64 (Eindeutigkeit des Grenzwerts). Aus
limz, =a und limx,, =b

folgt a = b. Der Grenzwert einer konvergenten Folge ist eindeutig bestimmt, so dass der
bestimmte Artikel gerechifertigt ist.

Beweis. Andernfalls ist € := @ > 0. Dann gilt
Anyen Vo>, |2n —al < eund In,enVasn, |2, — b < e
Fiir N = max{N;, Na} findet man also

lzny —al <, ey —b] < e.
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Dann ist aber nach der Dreiecksungleichung
b—a| <|b—an|+|zny —a] <2e=|b—al.
Widerspruch! O

Beispiel 65 (DAS fundamentale Beispiel fiir Konvergenz). Die Folge (%)n>0 kon-
vergiert gegen 0.

Beweis. Sei € > 0. Dann gibt es eine natiirliche Zahl N mit N > % Wir wéhlen eine solche
und erhalten fiir alle n > N ebenfalls n > % und daher

1 1
|——0]=—<e
n n

HALT! Der vorstehende Beweis enthilt eine wesentliche Liicke.

Er verwendt némlich das Archimedische Prinzip: Zu jedem z € R (im Beweis hief} es 1/¢)
gibt es eine natiirliche Zahl N > =z.

Wir haben frither festgestellt, dass genau dieses sich aber nicht aus den bisherigen Axiomen
fiir die reellen Zahlen beweisen 1afit. Jedenfalls haben wir es nicht bewiesen.

Wir fordern nun ein weiteres Axiom fiir die reellen Zahlen, das

Vollsténdigkeitsaxiom:
(V) Jede monotone und beschrinkte reelle Folge ist konvergent.

Beispiel 66. Die Folge (%)n>0 ist monoton fallend und beschrénkt: 0 < % < 1. Also ist sie
nach dem Axiom konvergent: Da ist nichts mehr zu beweisen, aufler dass der Grenzwert 0
ist. Das folgt wie oben aus dem Archimedischen Prinzip, das wir jetzt beweisen.

O

Satz 67 (Archimedisches Prinzip). Zu jeder reellen Zahl x € R gibt es ein n € N mit

T <n.

Beweis. Die Folge (n), ist monoton wachsend. Gébe es ein € R mit n < x fiir alle n € N,
so wire sie auch beschrénkt, also (hier verwenden wir unser neues Axiom!) konvergent gegen
ein a € R. Daher gibt es ein N € N mit |n — a| < 3 fiir alle n > N. Das gilt insbesondere
firn=Nundn=N+1:

1 1
|N—a|<§ und |(N+1)—a|<§.

Daraus folgt
1 1
1:|(N+1)7N|:\N+17a+af]\f\S\(N+1)fa|+\Nfa\<§+§:1.

Aber 1 < 1 ist ein Widerspruch! O
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Beispiel 68. Wir wollen zeigen, dass
nh_}n;o 2" =0 fur |z| < 1.
Falls x = 0, ist ™ = 0 fiir alle n > 1 und die Behauptung klar.
Sei also x # 0 und sei € > 0. Wir suchen ein N € N mit
€> |z — 0| =|z|" fiir alle n > N. (22)
Die letzte Ungleichung ist aber dquivalent zu

1 1 n

<<> =(14+a)" fiir alle n > N.
¢ \lz]

mit positivem o := |71‘ — 1. (Hier benutzen wir |z| < 1.)

Nach der Bernoullischen Ungleichung (Beispiel ist dann aber (1 + a)™ = 1+ na. Wihlt
man also N > - was nach dem Archimedischen Axiom ja méglich ist, so folgt fiir n > N

ea’?

1 1
l1+a)*>14na>1+Na>1+-> -
e €

und damit .

O
Ende gut, alles gut! Fiir die Konvergenz einer Folge sind nach Definition nur die , hinteren
Glieder* verantwortlich, was am Anfang passiert ist egal. Das bedeutet zum Beispiel, dass

eine beschrinkte Folge auch dann konvergent ist, wenn sie erst vom 37. Glied an monoton
wachsend ist. Davon machen wir gleich Gebrauch.

Wir zeigen, dass die Folge konvergent ist gegen ein a > 0 mit
a’ =b.

Also besitzt wirklich jede positive Zahl b eine (positive) Quadratwurzel a = Vb, vergleiche
Beispiel [f] Wir zeigen sogar einen allgemeineren Sachverhalt:

Satz 69 (Existenz von Wurzeln). Seien b und o > 0 und k € N,k > 2.
Dann konvergiert die mit xo beginnende rekursiv definierte Folge

1/
s = (14 (35 1))

gegen die einzige positive Lisung der Gleichung
zF =b.

Fiir den Grenzwert schreiben wir /b und nennen ihn die k-te Wurzel aus a. Wir setzen

Vb= Vb.

Bemerkung: Fiir £ = 2 erhalten wir gerade die Folge . Wie man auf die merkwiirdige
Folge fiir beliebiges k gekommen ist, erkléiren wir im Beispiel

Beweis. Zur Eindeutigkeit. Beachte, dass

k k

yr—af = (y—a2) "+

T R N L )

41



Sind also x,y > 0 mit 2% = y*, so folgt z = y.

Zur Existenz. Wir beweisen nun, dass die obige Folge konvergent gegen ein a € R ist und
zeigen dann, dass a® = b gilt.

Zunichst ist fiir positives x,, jedenfalls l(z% —1) > —¢ > —1. Daher sind mit zo und b

offensichtlich alle x,, positiv.

Weiter gilt

1/5b b
k k k k
xn+1 - xn(l + % (xk a 1>) Beriulli xn(l * Z‘T B 1) =t
|
>—1

mit moglicher Ausnahme von xg.
Daher ist %(% —1) <0, also
Tpy1 < x, fiir alle n > 1.

Die Folge ist also jedenfalls vom zweiten Glied an monoton fallend und beschrinkt (weil
positiv). Nach dem Vollstdndigkeitsaxiom ist sie also konvergent: Es gibt ein a € R mit

lim x, = a.
n—oo

Um zu zeigen, dass

benutzen wir die Rechenregeln fiir konvergente Folgen, die wir weiter unten zusammenstellen.
Aus z, — a folgt x’,ﬁ — a* und aus x,’i > b folgt dann ak* > b > 0. Also ist a # 0. Weil
xy, > 0 fiir alle n ist @ = lima,, > 0, also a > 0. Weil (x,1) dieselbe Folge ist wie (z,)
mit einer um eins verschobenen Numerierung, ist auch x,,+1 — a. Schlielich folgt aus der

Rekursionsgleichung
1,0
aza(l—l—k(cﬁ—l))

a® =1b.

und daraus

Anmerkung: Irrationalitit von Quadratwurzeln Sei n € N eine natiirliche Zahl,
aber keine Quadratzahl, d.h. es sei v/n ¢ N. Dann ist /n ¢ Q, also irrational. Weil die
Axiome der reellen Zahlen ohne das Vollstandigkeitsaxiom auch fiir Q gelten, kann man
daraus allein also nicht die Konvergenz der obigen ,, Quadratwurzelfolge* beweisen.

Fiir die Irrationalitét, insbesondere von /2, gibt es einen h#ufig angefithrten Beweis
mittels Primfaktorzerlegung. Der folgende Beweis, der wohl auf Dedekind zuriickgeht,
kommt ohne dieses zahlentheoretische Hilfsmittel aus:

Annahme: \/n = £ mit z,y € N\{0}, x minimal.

Ty
Dann gibt es ganzzahliges k mit

E—1<Z <k
Yy
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Definiere

Dann
x T
*/:*— n.
Y Y
Aber ) )
o =kr - =k - Y

und y’ = ky — x sind beide ganzzahlig und > 0.SchlieBlich ist k — % < 1 und deshalb
2’ < x im Widerspruch zur Wahl von x.

Beispiel 70. Fiir x € R gilt

Zum Beweis wihlen wir eine Zahl k € N mit k£ > 2|z| und betrachten nur Werte n > k.

Dann ist
e e e R o B |z

n! 1 2 7 kk+l o0’
Das Produkt der ersten k Faktoren hat einen festen Wert, das Produkt der letzten n — k
Faktoren ist < (%)n_k, und das geht fiir n — oo gegen 0.

O
Beispiel 71. Wir betrachten die Folge (xn =1+ %)")nx. Fiir sie gilt
1\" & /n\ 1 “1nn-1)...(n—k+1)
1 —_ e _— = —_
< +n) Z(k:)nk k! nk
k=0 k=0
1 1 2 k—1
S N 6 Rt Y R B
L1 (1= -2y - (24)
k=0
"1 1 1 1—(1/2)”
< — <14 —=+... =14+ ——7—7<3. 25
_kz:;)k!_ Tt tam Tt s (25)

Aus ersieht man, dass die Folge monoton wachsend ist, und nach ist sie beschrinkt.
Thr Grenzwert ist die Eulersche Zahl e.

O

Eine notwendige Bedingung fiir die Konvergenz ist die Beschréinktheit:

Lemma 72. Jede konvergente Folge ist beschrankt.

Beweis. Sei lim x,, = a. Dann gibt es N € N mit
VnzN |.Tn — a| < 1,

d.h.
VnZNCL—l <z, <a-+l.

Dann gilt erst recht
anN —|a\—1<scn< |a|+1

Dann gilt zum Beispiel fiir alle n € N

—lxo| — ... — |an] —|a| = 1 < @y <|zo| + ...+ |TN]| + |a| + 1.
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O

Die Folge 0,1,2,3,... ist also divergent. Aber auch beschrinkte Folgen kénnen divergent
sein:

Beispiel 73. Die Folge (—1)™ ist divergent. Wiire sie ndmlich gegen a konvergent, so wiirde

insbesondere fiir ¢ = 1 ein N existieren, so dass |z, —a| < 1 fiir alle n > N. Dann wére

insbesondere |zx —a| < 1 und |xy4+1 — a| < 1. Daraus folgt mit der Dreiecksungleichung
ey —zng1] =@y —a) — (ayt1 —a)| < |y —al+ |z —a| <1+ 1=2.

Aber das widerspricht xn — zn4+1 = £(1 — (—1)) = £2. Daher gibt es zu € = 1 kein solches

N, und die Folge ist nicht konvergent.

O

Bestimmte Divergenz. Die Folgen ((—1)") und (n?) sind beide divergent, aber auf unter-
schiedliche Weise: Die erste kann sich nicht entscheiden, wohin, die zweite strebt unbeirrt
gegen +o00. Man sagt, die Folge (z,,) ist bestimmt divergent gegen +oo oder auch konvergent
gegen +o00, wenn es zu jedem (noch so grofien) € > 0 ein n € N gibt, so dass

€ < x, fir alle n > N.

Man schreibt dann auch
lim z,, = 400 oder z,, — +o00.

Entsprechend definiert man bestimmt divergent gegen —oo (konvergent gegen —oo).

Wir wollen aber bei folgender Konvention bleiben:

Eine reelle Folge (z,,) heifit konvergent (ohne Angabe eines Grenzwertes), wenn sie gegen ein
a € R konvergiert. Andernfalls, heifit sie divergent — auch wenn sie gegen oo konvergiert.

Beispiel 74 (Ein offenes Problem). Die Collatz-Folge ist konvergent gegen 1 fiir jedes
xg, fiir das man sie getestet hat: Sie landet irgendwann bei 1 und bleibt dann 1. Es ist bis
heute unbekannt, ob sie wirklich fiir jedes ¢y konvergiert.

O

Fiir das Konvergenzverhalten einer Folge ist ihr ,, Anfang“ ganz ohne Bedeutung, siche ,,Ende
gut, alles gut“. Konvergenz spielt sich ,,ganz hinten“ ab. Darum kénnen Konvergenztests mit
dem Computer vielleicht Hinweise geben, sie sind aber alles andere als verlafilich.

Beispiel 75. Wir untersuchen die rekursive Folge

—1 5.
To=1,11 = (pT)Qk7 Tpi1 = (228/@, — 2/Tn_1)*

fiir £ = 6,p = 100 mit Mathematica.

In[1]:= k=6; p=100;
a=1; myc=1;
Print[”0: 7 ,1]

Print["1: ”,N[b=((p-1)/p)"(2 k)]]
Dofz=(2 Abs[b]"(1/(2k))- Abslal"(1/(2K)))" (2K);
a=b ;b=z; myc=myc+1; Print[myc,”: 7 ,N[z]],{101}]
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Hier der Output:

o

©

10 :
11:
12
13 :
14 :
15:
16 :
17 :

Sieht konvergent aus, ist es aber nicht. Die néichsten beiden Glieder sind

0~ O U W N

1
0.886385
0.784717
0.693842

0.61271
0.54036
0.47592
0.418596
0.367666
0.322475
0.28243
0.24699
0.215671
0.188032
0.163675
0.142242
0.12341
0.10689

60 :
61 :
62 :
63 :
64 :
65 :
66 :
67 :
68 :
69 :
70 :
71 :
72 :
73 :
74 -
75 :
76 :
77 -

101 :
102 :

Tatséchlich kann man zeigen, dass

0.0000167772
0.0000123816
9.06574 10~°
6.58295 10~°
4.73838 10~°
3.37922 107¢
2.38642 10~
1.66789 10~
1.15292 1076
7.87663 1077
5.31441 10~ "
3.53815 10~
2.32218 10"
1.50095 10~ 7

9.5429 108
5.96046 108
3.65203 1078
2.19146 1078

1. 107
4.096 1072,
P—"nok
Tp = ( )
" p

und diese Folge ist offensichtlich divergent.

83 :
84 :
85 :
86 :
87 :
88 :
89 :
90 :
91 :
92 :
93 :
94 :
95 :
96 :
97 :
98 :
99 :
100 :

5.82622 10710
2.81475 10710
1.29746 10710
5.66939 10711
2.32981 10~
8.9161 10712
3.13843 10712
1.10712
2.8243 10713
6.87195 10714
1.38413 10714
2.17678 10715
2.44141 10716
1.67772 10717
5.31441 107°
4.096 10~
1.10~%

0

O

Trotzdem kann der Rechner niitzliche Hinweise geben (z.B. auf ein bestimmtes Monotonie-
verhalten), denen man dann aber rigoros nachgehen muss: Der Rechner liefert Vermutungen,
keine Beweise.
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Schlussbemerkung: Sprache und Verstindnis. Der Begriff der Konvergenz unendli-
cher Folgen ist nicht so einfach, und eine falsche sprachliche Formulierung erschwert sein
Verstédndnis oder dokumentiert fehlende gedankliche Bewéltigung. Hier einige (6fter anzu-
treffende) Beispiele falscher Behauptungen:

Die Folge (z,,) konvergiert gegen a, wenn

... sie @ immer néher kommt. FALSCH: lim,, oo (1 + 2) # 0.
.. sie a beliebig nah kommt. FALSCH: limy, oo ((—1)" + 1) # 1.

... sie a beliebig nah kommt, es aber nie erreicht. Erst recht FALSCH.

Der Grenzwert der Folge (%) geht nicht gegen 0, er ist 0. Grenzwerte sind bereits angekom-
men!
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5.2 Rechenregeln fiir konvergente Folgen

Der Nachweis der Konvergenz einer Folge ist oft miithsam. Insbesondere deshalb ist es
niitzlich zu sehen, wie sich Folgen verhalten, die aus ,einfacheren“ konvergenten Folgen
zusammengesetzt sind.

Satz 76. Seien (r,) und (yn) konvergente Folgen mit den Grenzwerten
limz, = a, limy, =b.
Dann gilt:
(i) Die Folge (xy, + yn) ist konvergent und

lim(x, +yn) = a+b.

(i) Die Folge (xnyn) ist konvergent und
lim(z,y,) = ab.
Insbesondere gilt das fiir konstante Folgen y, = ¢ € R:
lim(cz,) = ca.

(iii) Ist b # 0 und y, # 0 fir alle n, so ist die Folge (x,,/yn) konvergent und

. Tnp
lim — =
Yn

Sl S

(iv) Ist limxz, =0 und (z,) eine beschrankte Folge, so gilt
limz,,z, = 0.

“Nullfolge mal beschrankte Folge ergibt eine Nullfolge.”

Beweis. Zu (i) Selbst.

Zu (ii) Zunéchst ist (y,) nach dem Lemma beschriinkt. Sei etwa
lyn| < M fiir alle n € N.
Sei € > 0 gegeben. Dann gibt es ein N € N, so dass fiir alle n > N gleichzeitig
|z, —al < eund |y, —b|] <e.
Dann gilt fiir alle n > N

|Znyn — abl = |(zn = a)yn + a(yn = b)| < |20 — al [yn] + lal [yn — b] < (M + |al).

Zu (iii) Sei € > 0 und dazu N € N so gewéhlt, dass fiir alle n > N

b
|z, —al <€, |y, —b <e und |yn—b|<|—2|.
Dann ist
VS Y A Y ¥ L i
[l = b+ — b1 2 b1 — g — 8] > ] — 1 =
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und

Tn a| _ |Tub—yna| |(zy, —a)b+ a(b — y,)]
Yn b Ynb |ynb|
< lon —allbl +lallyn — b _ »[b +al
[6]2/2 [b]?
O
Bemerkung. Bei der Quotientenformel hatten wir vorausgesetzt, dass
yn # 0 fur alle n, (26)

weil sonst die Folge (x,,/y,) gar nicht definiert ist. Weil aber b = limy,, # 0, ist y,, # 0 fiir
alle hinreichend groflen n, d.h. fiir alle n von einem gewissen N an. Die Behauptung bleibt
ohne die Voraussetzung richtig, wenn man (z,,/yy) als (Zn/yn)n>n interpretiert.

Wir erinnern daran, dass fiir die Konvergenz der Anfang der Folge keine Rolle spielt.

Definition 77. Wir sagen, dass eine Eigenschaft fiir fast alle Folgenglieder gilt, wenn es
nur endlich viele Ausnahmen gibt, d.h. wenn die Eigenschaft fiir alle n von einem gewissen
N an richtig ist. Man sagt dann auch, die Eigenschaft sei richtig fiir alle hinreichend grofen
n.

Satz 78. Seien (r,) und (yn) konvergente Folgen mit den Grenzwerten
limz,, = a, limy, =b.
Es gelte fiir fast alle n:
Tn < Yn
Dann folgt
a<b

Beachten Sie: Wenn z,, < y,, fiir alle n, so folgt nicht notwendig a < b. Finden Sie dafiir ein
Beispiel.

Beweis. Seien € > 0 und N € N, so dass fiir alle n > N gilt:

Tn < Yn

und
|z, —a| < eund |y, — b| < e.

Die beiden letzten Ungleichungen bedeuten
a—e<xp<at+eundb—e<y, <b+e

Es folgt
a—e<xp <y, <b+te

Also haben wir
a—e<b+e,

d.h. a < b+ 2e fiir jedes € > 0. Daher ist a < b. O
Ein wichtiger Begriff ist der der Teilfolge:
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Definition 79. Sei (z,) eine Folge. Eine Teilfolge von (z,,) ist eine Folge (yx)ken, fir die
es eine streng monoton wachsende Folge (ny)ren natirlicher Zahlen gibt, so dass

Yr = Tp, fur alle k € N.

Man sagt oft einfach: Sei (z,, )ren eine Teilfolge von (). Die Teilfolge entsteht aus der
Originalfolge durch Weglassen von Gliedern, so dass aber noch eine unendliche Folge ver-
bleibt.

Beispiel 80. Die Folge (1/2n) ist eine Teilfolge der Folge (%)nzl.

O
Satz 81. Ist lim, o 2, = a, S0 gilt limy_,o0 T, = a fiir jede Teilfolge (xn,) von (2,).
Beweis. Selbst. O

Beispiel 82 (Fibonacci-Quotienten). Die Fibonacci-Folge ist offenbar divergent (konver-

gent gegen +00). Wir betrachten die Folge der Quotienten x,, = > aufeinander folgender

Fibonacci-Zahlen ¢

1235813

Ist diese Folge konvergent? Ja, aber der Beweis ist knifflig; zum Beispiel ist die Folge nicht
monoton. Sieht man sich die von Rechner gelieferten ersten 20 Glieder an, so kann man aber
vermuten, dass

To<aa <2y <...<2 (27)
Ty > a3 > T85> ... > 1. (28)
Das beweisen wir: Dividiert man die Rekursion a,4+1 = a,, + an—1 durch a,, so folgt
1
Tn =1+ . (29)
Tn—1

Also erfiillen die Fibonacciquotienten eine eigene Rekursionsformel. Aus dieser ergibt sich
mit g = 1,21 = 2 leicht
1<z, <2 fir allen.

Weiter ist

1 - 1 _ 1 Zpg— T
LTn+1 Tn—1 Tn+1 Tn—1 Tn—1Tn+1

Aus 2o — 29 = 0.5 > 0 folgt also z3 — 1 < 0 usw. und damit , . Nach dem
Vollstiandigkeitsaxiom sind die Teilfolgen (z2) und (x2x+1) konvergent gegen Grenzwerte
zwischen 1 und 2. Aber aus z,, = 1+ 1/z,,_; folgt

xn+2_xn:1+

1 Tp—2
Tp=14 —— =14 "=
" 1+ 1/mp o 1+,

oder
($n — 1)(In_2 + 1) = Tpn—2.

Ist a = lim 9y, so folgt wie im Beweis von Satz

(a—1)(a+1)=a.
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Auflssen der quadratischen Gleichung liefert (wegen 1 < a < 2)

1++5
2 b

und dasselbe gilt fiir lim 254 1. Schlieflen Sie daraus, dass limx,, = a ist.

Ubrigens ist a wunderbarer Weise gerade das Verhiltnis beim Goldenen Schnitt (Ganze
Strecke:Grofle Strecke=Grofle Strecke:Kleine Strecke). Wer hitte den Karnickeln das zuge-
traut!

O

Satz 83 (Existenz monotoner Teilfolgen). Jede reelle Folge besitzt eine monotone Teil-

folge.

Beweis. Sei (z,,) eine reelle Folge. Das Problem beim Beweis ist es zu entscheiden, ob man
nach einer monoton wachsenden oder nach einer monoton fallenden Teilfolge suchen soll.
Dazu wollen wir fiir den Augenblick ein x,, dominant nennen, wenn es mindestens so grof3
ist, wie alle folgenden Glieder:

xp > x; fiir alle j > n.

1. Fall: Es gibt unendlich viele dominante z,,. Dann lassen wir alle andern weg und bekom-
men eine (nicht notwendig streng) monoton fallende Folge.

2. Fall: Es gibt nur endlich viele dominante z,,. Dann lassen wir zunéchst den Anfang der
Folge bis zum letzten dominanten weg. Die verbleibende Folge enthilt dann kein dominantes
Glied mehr, d.h. zu jedem Glied gibt es ein grofleres nachfolgendes. Also kénnen wir eine
(streng) monoton wachsende unendliche Teilfolge auswéhlen. O
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5.3 Noch einmal Vollstindigkeit

Wie entscheidet man, ob eine gegebene Folge konvergent ist, wenn man den Grenzwert
nicht kennt? Monotonie und Beschranktheit ist ein hinreichendes, aber offensichtlich kein
notwendiges Kriterium. Ein solches wollen wir jetzt angeben:

Definition 84 (Cauchyfolge). Eine Folge (x,) heifit eine Cauchyfolge, wenn es zu jedem
e > 0ein N € N gibt, so dass

|zn, — Zm| < € fiir alle m,n > N.

Beispiel 85. Jede konvergente Folge ist eine Cauchyfolge. Ist ndmlich (z,,) konvergent gegen
a und € > 0, so gibt es ein N € N, so dass

|zn, — a| < €/2 fiir alle n > N.

Dann ist aber
T — T| < |Tp — a| + |a — x| < € fir alle m,n > N.

Beispiel 86. Die Folge ((—1)")nen ist keine Cauchyfolge, also auch nicht konvergent.

In den reellen Zahlen(!) sind nun umgekehrt Cauchyfolgen immer konvergent.

Satz 87. Jede Cauchyfolge in R ist konvergent.

Beweis. Sei (x,) eine Cauchyfolge. Zunéchst ist (x,) beschrinkt. Es gibt némlich nach
Voraussetzung ein N € N, so dass fiir alle n > N

zy— 1<z, <zxzny+1.

Also ist die Folge (z,,)n>n beschriinkt, und die endlich vielen Glieder xg,...,zn—_1 dndern
daran nichts.

Als néichstes withlen wir nach Satz|83| eine monotone Teilfolge (2, )xen von (z,) aus. Diese
ist natiirlich wieder beschriankt, also nach dem Vollstédndigkeitsaxiom konvergent gegen ein
a € R. An dieser Stelle benutzen wir, dass wir es mit R zu tun haben!

Schliellich zeigen wir lim z,, = a. Sei also € > 0. Dann gibt es K € N, so dass
|zn, —al <€/2 fir alle k > K

und N € N, so dass
|Tpn — | < €/2 fiir alle m,n > N.

Waihle ein k > K mit ng > N. Dann folgt
|zn — al <|xp — Tn, |+ |20, —a] <€/2 + €/2 =¢.
O

Definition 88 (Hiufungspunkt). Ein a € R heifit ein Hiufungspunkt der reellen Folge
(z,,), wenn diese eine gegen a konvergente Teilfolge besitzt.
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Beispiel 89. Ist limz,, = a, so ist a ein Hiufungspunkt, und zwar der einzige, vgl. Satz[81]
Die Folge ((—1)™) hat die Haufungspunkte +1 und —1.
Die Folge (n?) hat keinen Hiufungspunkt.

Satz 90 (Bolzano-Weierstraf3). Jede beschrinkte reelle Folge hat mindestens einen
Hiufungspunkt.

Beweis. Sie enthélt eine monotone Teilfolge. Die ist wieder beschréinkt, also konvergent. [

Definition 91 (Supremum und Infimum). Sei A C R eine Teilmenge.

(i) S € R heifit eine obere Schranke fiir A, wenn

a < S fiir alle a € A.

(ii) M € R heifit das Supremum von A, wenn M eine obere Schranke von A ist, und es
keine kleinere obere Schranke von A gibt. Man schreibt

M =sup A.

(iii) Entsprechend definiert man untere Schranke und das Infimum inf A von A.

(iv) Ist sup A € A, so nennt man sup A auch das Mazimum von A, geschrieben max A.
(v) Entsprechend definiert man das Minimum von A.
)

(vi) A heifit nach oben (unten) beschrinkt, wenn es eine obere (untere) Schranke besitzt.

Ist A = (, so ist jede reelle Zahl eine obere und untere Schranke fiir A. Das fiihrt zu der
Konvention, dass man
supf) = —oo, inf@ = +oo

schreibt. Ist andrerseits A nach oben bzw. unten unbeschréinkt, so schreibt man
sup A = 400

bzw.
inf A = —oo0.

Beispiel 92. Fiir A := [0,1] gilt:

e 5 ist eine obere Schranke von A.
e supA=1.
e max A existiert nicht!

e infA=minA =0.
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Es ist nicht so klar, ob es unter allen oberen Schranken einer Menge wirklich eine kleinste
gibt, ob also jede Menge A C R ein Supremum besitzt. Wenn man Q statt R nimmt, hat
die Menge M = {z € Q|2 < 2} zwar obere Schranken, unter denen gibt es in Q aber keine
kleinste. In R ist das anders, aber man muss die Vollstdndigkeit bemiihen. Das zeigt der
folgende

Satz 93. Sei A C R nicht leer. Dann gilt:

(i) Es gibt in A eine monoton fallende Folge (a,) und eine monoton wachsende Folge (b,)
mit
lima, =inf A, limb, = sup A.

Dabei sind die Fille sup A = 400 und inf A = —oo eingeschlossen. Insbesondere
ezistieren inf A und sup A in RU {400, —o0}.

(i) Ist A nach oben bzw. unten beschrinkt, so existiert sup A € R bzw. inf A € R.

Beweis. Zu (i). 1. Fall: A nicht nach oben beschriinkt. Wir definieren die Folge (b,,) rekur-
siv. Weil 0 keine obere Schranke von A ist, gibt es ein by € A mit by > 0. Sind by, ..., b,
bereits definiert, so ist n + b,, keine obere Schranke fiir A, und deshalb gibt es ein b,,1; € A
mit

bn+1 >n+ bn

Die so konstruierte Folge (b, liegt in A, ist monoton wachsend und erfiillt

limb,, = 400 = sup A.

2. Fall: A nach oben beschrinkt. Wir wihlen eine obere Schranke Sy. Weil A # (), gibt es
by € A, und wir wihlen ein solches. Offenbar ist

by < Sp.
Wir definieren nun rekursiv zwei Folgen (b,,) und (5,,) wie folgt: Wir bilden

. by +Sn
"9

und definieren

3 ~_Jzn falls z,, eine obere Schranke von A ist
e S, sonst.

Im ersten Fall setzen wir
bn-‘,—l = bn

Im zweiten Fall gibt es ein @ € A mit x,, < a < .5, und wir wihlen ein solches als b, 41:
Ty < bn+1 < Sn

Dann sind alle b, € A und alle S,, obere Schranken von A. Nach Konstruktion ist (b,)
monoton wachsend und (.5,,) monoton fallend. Wegen

by, < So, bp < S,

sind die Folgen beschriinkt, also konvergent gegen ein b* bzw. S*. Weil aber

1 1
|Sn41 — bng1] < §\Sn by <... < 27'*90 — bo,
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ist
b* = S* =: M.
Wir behaupten M = sup A. Wére M keine obere Schranke von A, so gébe es ein a € A mit

a > M. Weil aber die oberen Schranken S,, gegen M konvergieren, gibe es dann ein .S, < a.
Widerspruch. Also ist M eine obere Schranke.

Wire M nicht die kleinste obere Schranke, so gébe es eine obere Schranke S < M. Weil
die b, € A gegen M konvergieren, gébe es dann ein b, > S. Widerspruch. Also ist M die
kleinste obere Schranke.

Die Existenz der Folge (a,,) zeigt man ebenso.

Zu (). Klar. O

Satz 94 (Intervalle). Sei I C R ein nicht leeres Intervall, d.h. fir alle x1,22,23 € R folgt
aus v1 < o9 < x3 und xr1,x3 € I, dass auch o € I. Seien

a=infl e RU{-o00}, b=supl e RU{+o0}.
Dann ist I eine der folgenden Mengen
[CL, b]’ [av b[> ]a, b]7 ]aa b[a

wobei die nicht definierten Fille [a, +00] ete. ausgenommen sind.

Beweis. Wir betrachten zunéchst den Fall, dass a und b reelle Zahlen sind. Offenbar ist
IC[a,b].

Es geniigt also zu zeigen, dass
la,b[C I.

Nach Satz 93] gibt es aber in I eine monoton fallende Folge a,, € I mit lima,, = a und eine
monoton wachsende Folge b,, € I mit limb,, =b. Ist a < x < b, so gibt es also ein n mit

ap < T < by,

und nach Voraussetzung ist = € I. Also ist a, b[C I.

a =inf I = —oo und b € R, so ist zu zeigen, dass
| —o0,b[C I C]—00,b].

In diesem Fall gibt es eine Folge a,, in I mit lima, = —oo. Dasselbe Argument wie oben
zeigt dann | — oo, b[C I.

Entsprechend schliet man fiir die verbleibenden Félle a € R, b = 400 und a = —00,b = +00.
O

Definition 95 (Limes superior und inferior). Sei (z,,) eine reelle Folge. Wir setzen
sp = sup{xy |k > n} € RU{+o0}.

Dann gibt es zwei Félle:

e Entweder ist s = 400 und dann s,, = 400 fiir alle n, oder
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e die Folge (sy,)nen ist eine Folge in R und zwar, weil sich mit wachsendem n die ,,Kon-
kurrenzmenge® {k > n} verkleinert, eine monoton fallende.

Den Limes superior der Folge (x) definieren wir im letzteren Fall durch
limsup ,, :=lim s, = lim sup{zy |k > n} € RU{—o0}.
n—oo

Im ersten Fall setzen wir
limsup x,, := 400

Also existiert limsup z,, € RU {+00, —oo} fiir jede reelle Folge (zy,).

Entsprechend definiert man

liminf z,, ;== lim inf{xy |k > n}.

Satz 96. Sei (x)ren eine reelle Folge. Dann gilt

(i) Ist limsupxy € R, so ist dies der grifite Hiufungspunkt der Folge (xy)ren.
Analog fiir liminf.

(#i) (xk)nen ist genau dann konvergent gegen a € R, wenn

liminf x; = a = lim sup x.

Beweis. Zu (i). Sei b:=limsup xy und sei
Sn :zsup{xk ‘k: > n}

Wir definieren nun rekursiv eine Teilfolge (2, )men mit lim,, o zx,, = b. Wir setze ko = 0.
Sind kg < ... < ky, schon definiert, so gibt es ein N € N, so dass

1 1
<8, <b+—— fiirallen > N.
m—+1 m+1

Wir wihlen ein solches n, welches aulerdem > k,;, ist. In {xk | k> n} gibt es eine Folge,
die gegen s,, konvergiert. Daher gibt es einen Index k,,+1 > n > k,, mit

Die so konstruierte Teilfolge (zt,,)men konvergiert offenbar gegen b. Deshalb ist b ein
Haufungspunkt der Folge. Gidbe es einen Haufungspunkt b > b, so gébe es eine gegen b
konvergente Teilfolge (z,, )men. Dann ist aber

5 < T
fiir alle bis auf endlich viele m. Daher gilt fiir alle n

b+b
sn:sup{mk|k2n}2%

im Widerspruch zu lim,,_ s, = b. Also ist b der grofite Hiufungspunkt von (zy).
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Zu (ii). Es gilt
inf{ac;C |k‘2n}§xn§sup{xk ’kzn}

Aus liminf zp = a = limsup zy, folgt also limz; = a. Ist umgekehrt lim x, = a, so ist jede
Teilfolge auch konvergent gegen a, d.h. a ist der einzige Hiufngspunkt der Folge. Aus (i)
folgt dann lim inf x; = a = limsup xy. O

Lemma 97. Seien (z,) eine nicht-negative Folge und a € R. Dann gilt

limz, =a = lim 2, = Va.

Beweis. Aus den Anordnungsaxiomen folgt fiir nicht negative a, b
a<b <= a*®<b? (30)

also 0 <a<b = a<Vb.

1. Fall: @ = 0. Sei € > 0. Dann gibt es ein N € N mit 0 < z,, < €2 fiir alle n > N. Dann ist
|\/Tn — V0| = /Zn, < € fiir alle n > N. Daraus folgt die Behauptung.

2. Fall: ¢ > 0. Dann gilt

wa—al _ [ra—d
VZIn++va ~  Wa

Daraus folgt die Behauptung. O

[V — vl =

Schlussbemerkung zur Axiomatik der reellen Zahlen. Man kann zeigen, dass die
reellen Zahlen durch die Axiome

(A1) — (A3), (M1) — (M3), (D), (01) — (O4) und (V)

eindeutig bestimmt sind. Je zwei Mengen mit diesen Strukturen sind isomorph: Es gibt eine
bijektive Abbildung zwischen ihnen, die alle Strukturen erhiilt. Und man kann (auf der Basis
einfacherer Axiome) ein Modell fiir die reellen Zahlen konstruieren.

Fiir das Vollstandigkeitsaxiom finden Sie viele alternative dquivalente Formulierungen. Statt
(V) kann man auch die Sétze[67 und[87 oder den Satz[93] (vgl. Barner-Flohr) oder die Sétze[67]
und [90] als Axiome wéhlen.
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5.4 Konvergenz in C

Komplexe Folgen (z,), also Abbildungen N — C, n — z, spielen eine wichtige Rolle in
der Analysis. Wir behandeln hier kurz die Konvergenz komplexer Folgen. Wir erinnern an
die Konjugierte

Z:=Rez—iImz

und den Betrag

2] := V2% = \/(Re 2)2 + (Im 2)2.

Beachten Sie, dass wir jetzt die Existenz einer eindeutigen Quadratwurzel aus nicht-negativen
reellen Zahlen zur Verfiigung haben.

Satz 98 (Rechenregeln fiir die Konjugation). Fiir z, 21,29 € C gilt

21+ 29 = 21 + Z2,

Z122 = 21 Z2,

21/ 20 =71/ Za,
zZ=z,

2Z = (Re2)? + (Im 2)?,

1 1
Rez = §(z+2), Imz= 2—2(272)

Beweis. Einfach. O

Satz 99 (Rechenregeln fiir den Betrag). Fiir z, 21,29 € C gilt
|z| = V22,
|z122| = |21][22],

|21/ 22| = |21]/]22],

|21 + 22| < |21| + |22|.  (Dreiecksungleichung)

Beweis. Die ersten beiden Gleichung kénnen Sie direkt nachrechnen. Wir beweisen die Drei-
ecksungleichung. Wenn z; + z2 = 0, brauchen wir nichts zu zeigen. Wir nehmen daher an,
dass z1 + z2 # 0. Dann gilt

z21 + 22 21 Z2

1 =Re—— =Re + Re
21+ 29 21+ 29 z1 + 29
<A 2 | _ |l |22]
- 21+ 29 21+ 29 |Zl+22| ‘Zl+22‘.
Nach Multiplikation dieser Ungleichung mit |z; + 22| > 0 folgt die Behauptung. O

Wenn man die auf die komplexen Zahlen erweiterte Bedeutung des Absolutbetrags zugrunde
legt, kann man die Konvegenz komplexer Folgen genauso wie im Reellen definieren:
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Definition 100. Sei (z,) eine komplexe Folge.

(1) (zn) heifit konvergent gegen a € C, wenn es zu jedem € > 0 ein N € N gibt, so dass
|z, — a] < € fiir alle n > N,
d.h. wenn die (relle!) Folge (|z, — a|) gegen 0 konvergiert:
lim |z, —a| = 0.
(ii) (2zy) heiBt eine Cauchyfolge, wenn es zu jedem € > 0 ein N € N gibt, so dass
|2r, — 2m| < € fiir alle m,n > N.
(iii) (zy) heiBt beschrinkt, wenn es ein M € R gibt, so dass

|zn| < M fiir alle n € N.

Monotonie hingegen macht fiir komplexe Folgen keinen Sinn.

Satz 101. Die komplexe Folge (z,) ist konvergent gegen a € C genau dann, wenn
(Re z,,) konvergent gegen Rea

und
(Im z,,) konvergent gegen Ima.

(zn) ist eine Cauchyfolge genau dann, wenn (Re z,) und (Im z,) Cauchyfolgen sind.

Damit ist die Konvergenz komplexer Folgen auf die reeller Folgen zuriickgefiihrt.

Beweis. Es gilt

|Rez —Rea| < |z —a] = /(Rez —Rea)? + (Im z — Im a)?

31
|Imz —Imal < |z —a| = v/(Rez — Rea)? + (Im z — Im a)2. B

Aus z, — a, also |z, — a] — 0 folgt daher |Re z, — Rea| — 0, also
Re z, — Rea.
Entsprechend schlief3t man fiir den Imaginérteil.

Umgekehrt folgt mit der rechten Gleichung von aus Rez, — Rea und Im z,, — Ima,
dass

(Rez, —Rea)? + (Im z, — Ima)? — 0.
Aus Lemma [97] folgt dann

|Z” - a‘ - 07
also z, — a. Die Aussage tiber Cauchyfolgen ergibt sich dhnlich aus . O

Damit zeigt man zum Beispiel:

e Fiir komplexe Folgen bleiben die Rechenregeln des Satzes [76| richtig.
e Konvergente komplexe Folgen sind beschrankt.
e In C ist jede Cauchyfolge konvergent.

e Jede beschrinkte komplexe Folge besitzt (mindestens) einen Haufungspunkt.
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6 Stetigkeit

6.1 Grenzwerte von Funktionen

Definition 102 (Umgebung, offen, abgeschlossen). Sei K € {R, C}.
(i) Fiir e > 0 und p € K sei

Ue(p) :=={q € Kllg —p| <e}.
Wir nennen das die e-Umgebung von p. Fiir K =R ist
Ue(p) =lp — e, p+ €

ein offenes, um p symmetrisches Intervall. Fiir K = C ist U.(p) die sogenannte offene
Kreisscheibe vom Radius € um p.

p
l /us(p)

(ii) Eine Teilmenge D C K heifit offen, wenn es zu jedem p € D eine e-Umgebung von p
gibt, die ganz in D liegt.

(iii) Eine Teilmenge D C K heifit abgeschlossen, wenn K\ D offen ist.

(iv) Ein Punkt p € D C K heifit ein innerer Punkt von D, wenn es ein € > 0 gibt, so dass
Us(p) C D.

(v) p € R heiit ein Randpunkt von D C K, wenn p weder innerer Punkt von D noch von
K\D ist.

Beispiel 103. Die offene Kreisscheibe
Up(20) ={2 € C||z — 2| <7}

um zg vom Radius r > 0 ist offen im Sinne dieser Definition.

Beweis. Sei z1 € U,(z9), d.h.
|21 — zo] < 7.

Dann ist € :=r — |21 — 20| > 0 und fiir z € Uc(21) gilt
|z — 20| < |z—z1|+ |21 — 20| <€+ |21 — 20| =7
Also ist Ue(z1) C Uyp(20).
O

Beispiel 104. Ebenso zeigt man, dass offene Intervalle in R auch im Sinne dieser Definition
offen sind.

O
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Definition 105. Sei wieder K € {R,C}.

(i) Fir pe Kund ¢ > 0 sei
Us (p) == Us(p)\{p}-

Man nennt das die punktierte §-Umgebung von p.

(ii) Seien D C K und p € K. p heifit ein Hiufungspunkt von D, wenn in jeder punktierten
Umgebung von p Punkte von D liegen, d.h. wenn gilt:

Vs>o Us (p) N D # 0.

Definition 106 (Grenzwert von Funktionen). Seien K € {R,C} und f: K> D — K
eine Funktion. Seien p ein Haufungspunkt von D und a € R. Wir sagen a ist der Grenzwert
von f(x) fiir x — p, wenn folgendes gilt:

Veso03s>0 f(Us(p) N D) C Ue(a). (32)
Diese Bedingung kann man auch so schreiben:
Ve>03550Veen (0 < |z —p[ <6 = [f(z) —a| <¢).

Man schreibt dann

lim f(z) =a
Tr—p
oder
f(x) — a fir z — p.
Bemerkungen.

1. Der Punkt p muss nicht im Definitionbereich D von f liegen, aber weil er ein Haufungspunkt
von D ist, kann x wirklich ,,in D gegen p gehen*.

2. Die Bedingung besagt, dass man die Abweichung des Funktionswertes f(x) von
a kontrollieren kann, indem man die Abweichung des Arguments von p kontrolliert.

Beispiel 107. Wir betrachten fiir k£ > 1 die Funktion f : C — C, 2z — z*. Wir behaupten

lim z* = 1.
z—1
Weil D = C ist, ist fiir alle § > 0
Us(1)n D # (. (33)

Weiter gilt fiir |z] < 2
|28 =1 =z =12+ 1 < |z -1 k2R

Sei nun € > 0. Wihle 6 = min(1, 5z5r;). Ist dann [z — 1| < 4, so ist insbesondere |2| < 2.
Aus der vorstehenden Abschitzung folgt deshalb fiir alle z € C:

lz—1]<d = |F—1|<dk2" ! <e
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Beispiel 108. Betrachten Sie die beiden nachstehenden Funktionen sehr sorgfiltig, um die
Grenzwertdefinition genau zu verstehen:

fi]—00,0[U{l} = R
flz)=—1firz <0, f(1):=1

Hier liegt 0 nicht im Definitionsbereich, aber lim, o f(x) = —1. Anderseits ist 1 kein
Hiaufungspunkt des Definitionsbereichs, so dass lim,_,; f(z) nicht erklirt ist.

fR—=R
f(z) =22 fir z #0, f(0)=1.

Hier ist lim,_,¢ f(z) = 0.
O

Bei Funktionen einer reellen Variablen (und nur bei diesen) kommen 6fter auch einseitige
Grenzwerte vor:

Definition 109 (Einseitige Grenzwerte). Sei f : R D D — R eine Funktion. Seien
p,a € R und p ein ,linksseitiger Hiufungspunkt“ von D, d.h . DN]p — 4, p[# O fiir alle § > 0.
Wir sagen a ist der linksseitige Grenzwert von f(x) fir x — p, wenn folgendes gilt:

Zu jedem e > 0 gibt es ein 6 > 0, so dass fiir alle z € D

p—dé<z<p = |f(z)—a|l<e

Man schreibt dann

lim f(2) = a

oder
f(x) — a fiic z /p.
Auch die Notation
f(p—0)=aoder f(p—) =a

ist gebréuchlich. Entsprechend definiert man den rechtsseitigen Grenzwert limg~ , f(x).

Beispiel 110. Fiir die Funktion f: R\{0} — R mit

gilt
lim =-1 lim f =1
11/0 f(.’l?) ’ wl\,O (SU)

aber lim,_.o f(x) exisitiert nicht.
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Lemma 111. Seien f: R D D — R eine Funktion, p € R und fiir ein 6 > 0 sei
Ip—é,p+d[c DU{p}.

Dann gilt: Der Grenzwert lim,_,,, f(x) existiert genau dann, wenn in p der linksseitige und
der rechtsseitige Grenzwert existieren und beide gleich sind. In diesem Fall ist

lim f(z) = lim f(a) = lim /(o).

Beweis. Selbst O

Das néchste Lemma bietet die Moglichkeit, den Grenzwertbegriff fiir Funktionen auf den fiir
Folgen zuriickzufiihren.

Lemma 112. Seien f: R D D — R eine Funktion, a € R und p ein Haufungspunkt von
D.Dann ist lim,_., f(z) = a genau dann, wenn gilt:
Fiir jede Folge (xp)nen in D\{p} mit lim, o x, = p gilt

lim f(x,) = a.

n—oo
Entsprechende Aussage gelten auch fiir komplexe Funktionen oder fiir einseitige Grenzwerte
reeller Funktionen.

Beweis. Zu (=). Es gelte lim,_,, f(x) = a. Sei (z,,)nen eine Folge in D\{p} mit lim,,_,oc ,, =
p, und sei € > 0. Dann gibt es ein § > 0 mit f(U;(p) N D) C Ue(a). Weil lim,,_,oc z, = p,
gibt es ein N € N mit =, € Uj(p) und daher f(z,) € Uc(a) fir alle n > N. Also gilt
lim, o f(zn) = a.

Zu («<). Nun gelte umgekehrt lim,,_,o f(z,) = a fiir jede Folge (zy)nen in D\{p} mit
lim,,_,o0 ,, = p. Annahme: Es gilt nicht lim,_,, f(z) = a. Dann gibt es ein € > 0, so dass
fiir kein § > 0 gilt f(U;(p) N D) C Uc(a). Dann gibt es zu § = L also ein z,, € Uj(p) N
D, fiir das f(z,) ¢ Ue(a). Die Folge f(z,) konvergiert also nicht gegen a, obwohl wegen
|z, —p| < % natiirlich lim z,, = p. Widerspruch! Also war die Annahme falsch und es gilt
doch lim,_,, f(z) = a. O

Dieses Lemma gibt die Moglichkeit, die bestimmte Divergenz (Konvergenz gegen +o0) von
Folgen auf Funktionen zu iibertragen.

Definition 113 (Unendliche Grenzwerte und Grenzwerte in Unendlich). Seien
f:R D D — R eine Funktion und p,a € RU {—00,+00}. Wir definieren:

lim f(x) = aq,

T—p
wenn es wenigstens eine Folge (z,,) in D\{p} gibt, fir die limx,, = p ist, und wenn fiir jede

solche Folge
lim f(z,)=a

n—oo

gilt. Fiir reelle p und a stimmt das nach dem Lemma mit der bisherigen Definition iiberein.

Im Komplexen machen ,,+00* oder ,,—oo“ keinen Sinn, aber es gibt eine sinnvolle Definition
fir lim, . f(2) = a € C und fiir lim,_,, f(z) = co. Welche?

Beispiel 114. Fiir k € N\ {0} ist

lim =z

= +OO7
T— 00
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denn es gibt Folgen (x,) in R, die gegen +o0o gehen, und fiir jede solche Folge geht auch
Yn = T, — 1 gegen +oo und

Satz 115 (Rechenregeln fiir Grenzwerte). Seien f,g: R D> D — R und c € R. (Statt
R auch iiberall C.) Dann gilt

lim (f + ¢)(z) = lim f(z) + lim g(z),

T—p T—p
lim (fg)(z) = lim f(z) lim g(z),
T—p T—p T—p
lim (¢f)(x) = ¢ lim f(x),

T—p T—p

falls die Grenzwerte auf der rechten Seite existieren. Weiter gilt

1 1
lim f(zr) =a#0 = lim —— = —
und 1
ilir;|f(x)| =00 < }}E;,m =0.
Beweis. Selbst. O

Definition 116 (Stetigkeit). Sei f eine reclle oder komplexe Funktion auf D.
f heiit stetig in p € D, wenn gilt:

Ves035>0Veen (2 —pl <8 = |f(z) - f(p)] <¢).

f heifit stetig (auf D), wenn es in allen p € D stetig ist.

Lemma 117. Seien f eine reelle oder komplexe Funktion auf D undp € D ein Haufungspunkt
von D. Dann sind die folgenden Aussagen dquivalent:

(i) [ ist stetig in p.
(i1) Ye>03s>0 [(Us(p) N D) C Uc(f(p)).
(iii) Fiir jede Folge (x,,) in D gilt

lim z, =p = nlLH;o f(xn) = f(p).

n—oo

(iv)
lim f(x) = f(p).

r—p

Beweis. Folgt aus den dquivalenten Formulierungen fiir Grenzwerte von Funktionen. 0
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Beispiel 118. Konstante Abbildungen sind stetig. Die identische Abbildung
id:D—-D, x—=

ist stetig.

Beispiel 119. Die Abbildung
f:C—=C, ze]|z2|

ist stetig. Dasselbe gilt fiir die reelle Funktion R — R, x> |z|.
Beweis. Wir zeigen die Stetigkeit in einem beliebigen Punkt zg € C.

Fiir alle z € C gilt nach dem Korollar [J] das genauso wie im reellen Fall auch im komplexen
Fall aus der Dreiecksungleichung folgt,

[£(z) = F(z0)| = [I2] = [20l| < [z = 2.
Ist also € > 0 gegeben und setzt man 6 = ¢, so folgt aus |z — zg| < 0, dass |f(z) — f(20)] < €.
O

Beispiel 120 (Eine unstetige Funktion). Die Funktion f: R — R mit

+1 fiir x >0,
fa) = {—1 fiir 2 < 0,

ist in 0 nicht stetig. Fiir die Folge (z,, = (—%)") gilt limz,, = 0, aber lim f(x,,) = lim(—1)"
existiert nicht und ist deshalb nicht = f(0).

O

Beispiel 121 (Noch eine unstetige Funktion). Fiir dieses Beispiel greifen wir vor auf
die Sinusfunktion, die erst spéter ,offiziell eingefiihrt wird. Die Funktion f : R — R mit

Fa) = {0 fir x =0,

1 .
sin - fiir x # 0,

ist an der Stelle 0 unstetig. Die Folge (a:k = ﬁ)k konvergiert ndmlich gegen 0, aber
2/ keN

(f(zx) = sin(km 4 §) = (=1)¥), _; ist divergent. Dieses Beispiel zeigt, dass Unstetigkeiten
nicht unbedingt ,,Spriinge“ sein miissen. begincenter figurdcmunstetig endcenter

Das vorstehende Bild des Graphen wurde mit dem Plot-Befehl von Mathematica erzeugt.
Das Programm wertet die Funktion an bestimmten Stellen aus, die es selbst wéhlt. Die Stel-
len liegen enger zusammen, wenn die Funktionswerte heftig schwanken, aber das Programm

erwischt im allgemeinen natiirlich nicht automatisch die Maximal- und Minimalstellen. Des-
halb sehen die Spitzen des Graphen so ,,angenibbelt“ aus.

O

Lemma 122. Sei f: R D D — R stetig in einem Punkt in x € D mit f(z) # 0. Dann gibt
es d >0, so dass

f(Us(z) N D) # 0.

Das gilt auch fiir komplexe Funktionen.
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Beweis. Nach Definition der Stetigkeit gibt es zu € := | f(x)| ein § > 0, so dass gilt
Vy(y € Us(x) N D = |f(y) — f(z)] <e).

Insbesondere also f(y) # 0. O

Aus den Rechenregeln fiir Grenzwerte ergibt sich unmittelbar:

Satz 123 (Rechenregeln fiir stetige Funktionen). Seien f,g : R D D — R stetig in
p € D. Dann sind auch f+g und fg stetig in p. Ist g(p) # 0, so ist die auf {x € D|g(z) # 0}
definierte Funktion f/g in p stetig.

Ist f:RD> D — G CR stetiginp und g : R D G — R stetig in f(p), so ist die Komposition
go f: D — R stetig in p.

Entsprechendes gilt fir komplexe Funktionen.

Beispiel 124. Weil die Funktion = +— x stetig ist, sind auch die Potenzen 2 — z* stetig.
Weil konstante Funktionen stetig sind, sind dann auch Produkte z — azz® und Summen
von solchen Funktionen stetig. Kurzum: Polynome sind stetig. Rationale Funktionen sind
stetig auf ihrem natiirlichen Definitionsbereich.

O

Lemma 125. Stetigkeit ist eine lokale Figenschaft: f : D — R ist stetig in p € D, wenn es
ein & > 0 gibt, so dass f|pnu,(p) stetig ist.
Entsprechendes gilt fir komplexre Funktionen.

Beweis. Triviale Folge der Definition: Ist (x,) eine Folge in D, die gegen p konvergiert, so
liegen fast alle Folgenglieder in Us(p). Weil f|y, () stetig ist, folgt lim f(z,) = f(p). O

Dies Lemma wird héufig so benutzt:

Korollar 126. Seien R D G = (J,c; U; die Vereinigung von offenen Mengen U; und f eine
Funktion auf G. Ist flu, stetig fiir alle i € I, so ist f stetig auf G.

Beweis. Wir zeigen die Stetigkeit fiir p € G. Nach Voraussetzung gibt es ein ¢ € I, so
dass p € U;. Insbesondere gibt es ein § > 0 mit Us(p) C U;. Aus dem Lemma folgt die
Behauptung. O

Satz 127 (Stetigkeit von Umkehrfunktionen). Sei f : R D J — R streng monoton
wachsend (fallend) auf einem Intervall J C R. Dann ist f injektiv und die Umkehrfunktion

L) - R

ist streng monoton wachsend (fallend) und stetig.
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—

f(J)

Beweis. Wie nehmen an, dass f streng monoton wachsend ist. Offenbar ist es dann injektiv
und es gilt fiir 1,20 € J
1 < a3 = f(21) < f(22).

Die Umkehrfunktion g := f~! ist also auch streng monoton steigend.

Wir zeigen die Stetigkeit von g in yo = f(z0) € f(J). Sei also € > 0. Wir suchen ein § > 0
mit
9 (Jyo = 6,50 + 0[N f(J)) C o — €70 + €[. (34)

Wir zeigen zunéchst

35,509 (lyo = 01, 0] N f(J)) C Jzo — € z0]. (35)

1. Fall: Es gibt 21 €]zg — €, 29[ NJ. In diesem Fall withlen wir ein solches z; und setzen

y1 = f(x1), 01:=yo—y1-

Dann ist y; = yg — d1 und fiir
y = f(x) €y, y0] N f(J)

gilt
z1=g(y1) < 9(y) < g(yo) = xo
Damit ist
9(Jyo — 01,30] N f(J)) Clxo — €, T0].

2. Fall: Jxg — €, 29[ NJ = (). Weil J ein Intervall(!) ist, ist dann 2y = inf J der linke Eckpunkt
von J, und es gilt f(z) > f(xo) fiir alle z € J. Setzen wir also d; := 1, so ist

1y0 — 01, 90] N f(J) = {yo}

und daher
9(lyo — d1,90] N f(J)) = {zo} Clwo — €, 20].

Damit ist gezeigt. Ebenso zeigt man:

35,509 ([yo, Yo + 02[N f(J)) C [0, T0 + €[. (36)
Aus und folgt mit ¢ := min{dy, da2}. O

Beispiel 128. Aus den Rechenregeln fiir Ungleichungen folgt, dass fiir alle k£ € N\{0}

[0,+00[—= R, x> 2"
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streng monoton wachsend ist. Daher ist
[0,+cc[— R, z+ {x

ebenfalls streng monoton wachsend und stetig. Als Konsequenz ergibt sich fiir positive Folgen

(zn)
lim z, =0 = lim ¥z, =0,
n—oo

n—oo

vgl. Lemma [97]
O
Der folgende Satz gibt eine Charakterisierung stetiger Funktionen auf offenen Mengen, die

fundamental fiir Verallgemeinerungen des Stetigkeitsbegriffs in der sogenannten Topologie
ist.

Satz 129. Sei f : K D G — K definiert auf der offenen Menge G C K, wobei K wieder fiir
R oder C steht. Dann gilt:

f ist stetig genau dann, wenn fir jede offene Menge U C K das Urbild f~1(U) offen ist.
Entsprechendes gilt auch fiir komplexe Funktionen.

Beweis. Sei zunichst f stetig. Sei U C K offen und sei x € f~1(U), d.h. f(z) =1y € U. Wir
miissen zeigen, dass es dann ein § > 0 gibt, so dass Us(x) C f~1(U) ist. Weil U offen ist,
gibt es ein € > 0 mit U.(y) C U. Weil f in z stetig ist, gibt es dazu ein § > 0, so dass

f(Us(x)NG) C Ue(y) C U,
d.h.
Us(x)NG C f~1(U).
Weil G offen ist, kann man § so klein withlen, dass iiberdies Us(z) C G, also Us(x) C f~1(U).

Seien nun die Urbilder offener Menge offen. Sei € G. Wir wollen zeigen, dass f in z stetig
ist. Sei dazu € > 0 gegeben. Dann ist f~1(U.(f(z))) offen und enthilt z. Also gibt es ein
§ > 0 mit Us(x) C f~H(U(f(z))), d.h. fiir alle y gilt

ly—z| <0 = [f(y) - f(z)] <e

67



6.2 Drei bedeutende Sitze iiber stetige Funktionen

Wir beweisen in diesem Abschnitt

e den Zwischenwertsatz,
e den Satz vom Maximum und
e den Satz iiber gleichméfige Stetigkeit.
Ein Intervall J C R ist eine Menge, die mit je zwei Punkten auch alle Punkte dazwischen

enthélt. Ist © < z < y, und gilt x € J und y € J, so gilt auch z € J. Vergleichen Sie
Definition Stetige Funktionen erhalten diese Eigenschaft:

Satz 130 (Zwischenwertsatz, B. Bolzano 1817). Sei f : R D J — R stetig auf dem
Intervall J. Dann ist die Bildmenge f(J) ein Intervall. D.h. sind f(x) und f(y) zwei Funk-
tionswerte von f, so sind auch alle reellen Zahlen dazwischen Funktionswerte von f. Daher
der Name Zwischenwertsatz.

Beweis. Seien also z,y € J und A

f(2) < e < £(y). 00

f(y)

Wir miissen ein z € J finden, fiir das f(z) = c. f(J)
Wir nehmen an, dass = < y, den Fall z > y beweist man J
analog. Xy >
Wir setzen zg := x,yp := y und bilden rekursiv definierte z
Folgen (z,), (yn) wie folgt:

Wir bilden den Mittelpunkt von z,, und y,

_ Tp t+Yn
Zpn 1= 5

Weil J ein Intervall ist(!), ist z,, € J, und wir kénnen f(z,) betrachten.
Ist f(zn) = ¢, so setzen wir z = z,, und sind fertig.
Ist f(z,) < ¢, so setzen wir

Tn+l = Zn, Yn+1 = Yn-

Ist f(z,) > ¢, so setzen wir
Tn+1l = Tny  Yn+1l = Zn-

Wenn diese Konstruktion nicht abbricht, weil fiir ein n € N schon f(z,) = ¢ gilt, erhalten
wir auf diese Weise zwei monotone Folgen

ro<x1 <2< ...<y2 < y1 < Yo

mit 1 1
0<ynt1 —Tpg1 < §(yn—$n) <...< ﬁ(yo—iﬁo) (37)
und
f(xn) <c< f(yn)- (38)
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fiir alle n. Als monotone beschrénkte Folgen sind (z,) und (y,) konvergent. Wegen (37))
konvergieren sie gegen denselben Wert z € [x,y] C J, und weil f stetig ist, folgt aus (38]),
dass f(z) < ¢ < f(2), also f(z) =c. O

Korollar 131. Ist f: R D J — R stetig auf dem Intervall J und sind x,y € J mit

(@) f(y) <0,

d.h. hat f an diesen Stellen verschiedenes Vorzeichen, so gibt es zwischen x und y eine
Nullstelle von f.

Beweis. Sei etwa x < y. Der Zwischenwertsatz angewendet auf f|, ,j sagt dann, dass f([z,y])
ein Intervall ist. Weil es positive und negative Zahlen enthilt, enthélt es dann auch die 0.
O

Korollar 132 (Monotonie und Injektivitit). Seien J C R ein Intervall und f: J — R
eine stetige Funktion. Dann gilt:

f ingektiv < f streng monoton.

Beweis. “<”. Trivial.

“=". Das beweisen wir indirekt: Wir nehmen an, dass f injektiv ist, aber weder streng
monoton wachsend noch streng monoton fallend.

Wenn f nicht streng monoton fallend ist, gibt es x1,x2 € J mit
z1 < zgund f(z1) < f(z2).

Weil f injektiv ist, gilt dann auch rechts eine echte Ungleichung, also

x1 < zg und f(x1) — f(z2) < 0.
Wenn f nicht streng monoton wachsend ist, gibt es ebenso y1,y2 € J mit

y1 <yz und f(y1) — f(y2) > 0.
Betrachte die Funktion g : [0,1] — R mit

g(t) = F((1 =D+ tys) — F((L = t)as + tye).
Diese Funktion ist als Komposition stetiger Funktionen stetig auf dem Intervall [0, 1]. Weiter
ist
9(0) = f(z1) — f(2) <0, g(1) = f(y1) = f(y2) > 0.

Also gibt es nach dem Zwischenwertsatz ein ¢ €]0, 1] mit g(¢) = 0, also mit
S =)z +ty1) = f((L = t)az + tys).
Aber nach den Rechenregeln fiir Ungleichungen gilt
(1 =t)zy 4+ tyr < (1 —t)xe + tys.

Das ist ein Widerspruch zur Injektivitiat von f. O
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Satz 133 (vom Maximum, K. Weierstrafl 1861). Eine stetige Funktion f : [a,b] — R
auf einem nicht leeren kompakten (=abgeschlossenen und beschrinkten) Intervall nimmt thr
Mazimum und Minimum an. D.h. es gibt x*,y* € [a,b] mit

f@®) < fle) < f(y7)

fiir alle x € [a,b]. Insbesondere ist die Funktion f beschrinkt.

Fiir komplexwertige Funktionen machen die Begriffe Mazimum und Minimum keinen Sinn.
Allerdings 148t sich der Satz erheblich erweitern, vgl. néchstes Semester.

Beweis. Sei M := sup f([a,b]) € RU {400}. Dann gibt es eine Folge (y,) in [a, b] mit
lim () = M.

Nach dem Satz von Bolzano-Weierstrafl konnen wir o.E. annehmen, dass die Folge (y.)
konvergent ist gegen ein y* € [a,b]. Weil f stetig ist, folgt

f(y*) = f(limy,) = lim f(y,) = M.
Insbesondere ist M < +o0. O

Fiir das dritte wichtige Resultat iiber stetige Funktionen brauchen wir noch einen neuen
Begriff.

Wir erinnern an die e-d-Definition der Stetigkeit: Die Funktion f war stetig auf D, wenn
galt

VaenVes03s>0Vyen(ly — 2| <6 = [f(y) — f(z)] <e).
Stetigkeit bedeutete namlich Stetigkeit in jedem Punkt z. Die ,,Qualitéit der Stetigkeit* kann
man als , schlecht” bezeichnen, wenn man ein relativ zum vorgegebenen € > 0 sehr kleines
0 bendtigt, und als gut, wenn man mit einem relativ grofien § auskommt. Im allgemeinen
wird die Qualitit vom Punkt x abhéngen. Der Begriff , gleichmiiflige Stetigkeit* impliziert,

dass das im speziellen Fall eben nicht so ist, sondern dass man bei gegebenem ¢ > 0 fiir alle
x € D dasselbe § > 0 nehmen kann:

Definition 134 (Gleichmiflige Stetigkeit). Sei K € {R,C}. Die Funktion f: K> D —
K heifit gleichmdflig stetig auf D, wenn gilt:

Ve>035>0Yzyen(ly — 2| <6 = [f(y) = f(2)| <€)

Beachten Sie: f ist gleichméfig stetig immer nur auf einer bestimmten Menge. ,Gleichméfig
stetig in einem Punkt® oder ,an einer Stelle“ macht keinen Sinn.

Beispiel 135. Fiir a > 0 betrachten wir die Funktion

1
frila,+o[—= R, z— —.
T
Dann ist fiir x,y > a
ly—=f _ 1
[f(y) = f(@)] = < —ly—al.

Ty a

Zu gegebenem € > 0 withle man § = a?¢, und aus |y — x| < 6 folgt |f(y) — f(x)| < e. Man
sieht hier, dass der Wert a mafligeblich fiir die Wahl von § ist. Je kleiner a ist, umso kleiner
muss man (relativ zu €) das § wihlen. Tatséchlich ist

1

10,4+c[—= R, z+— —
T

70



zwar stetig, aber nicht gleichméflig stetig. Beweisen Sie das!

Satz 136 (GleichmiBige Stetigkeit, E. Heine 1872). Sei f : [a,b] — R stetig auf dem
kompakten Intervall [a,b]. Dann ist f gleichmdfig stetig auf [a, b].

Beweis. Annahme: f ist nicht gleichméflig stetig. Dann gibt es ein € > 0, zu dem kein
einheitliches § > 0 existiert. Wir wéhlen ein solches € > 0. Dann sind auch die Zahlen % flir
k € N\{0} kein einheitliches ¢, d.h. es gibt Folgen (z), (yx) in [a, b] mit

1
[y = xl < . aber [£(y) = f@)] e

Nach dem Satz von Bolzano-Weierstraf} gibt es eine konvergente Teilfolge (xk, )ien mit dem
Grenzwert z* = lim; o x,. Weil a < xp < fiir alle k, ist auch z* € [a, b]. Weil

1
‘yki — T, < k‘i — 0,

7

ist auch lim; .o yx, = «*. Daher ist
Das widerspricht aber der Ungleichung

> ¢ firallei € N.

Bemerkungen.

1. Der Definitionsbereich D muss bei den beiden letzten Sitzen nicht unbedingt ein Inter-

vall und auch keine Teilmenge von R sein. In den Beweisen war nur folgende Eigenschaft
wichtig:
Jede Folge (zk)ken in D besitzt eine konvergente Teilfolge mit Grenzwert in D. Solche
Teilmengen D von R oder C nennt man kompakt. Die Sétze gelten also fiir stetige Funk-
tionen mit kompaktem Definitionsbereich D. Beim Satz iiber das Maximum miissen die
Funktionswerte offenbar reell sein, beim Satz {iber die gleichméflige Stetigkeit konnen
sie auch komplex sein.

2. Wihrend die Bedeutung von Zwischenwertsatz und Satz vom Maximum ziemlich ein-
leuchtend ist, ist die des Satz von der Gleichméfiigen Konvergenz weniger naheliegend.
Er kommt erst im Satz und dann wieder in der Integrationstheorie (im Beispiel

“zum Einsatz”.
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7 Differentiation

7.1 Die Ableitung

Wir kommen nun zur Differentialrechnung, die fiir die moderne Naturwissenschaft von fun-
damentaler Bedeutung ist. Warum? Unsere Modelle von der Natur sind weitgehend de-
terministisch: Wir sind iiberzeugt, dass die zukiinftigen Zusténde eines Systems bestimmt
sind, durch die Anderungen, die dieses System erfihrt, und dass diese Anderungen durch
(duBere und innere) Einwirkungen verursacht und gesteuert werden (Kausalitéit). Nach dem
Newtonschen Gesetz bewirkt zum Beispiel die auf einen Massenpunkt wirkende Kraft eine
Anderung von dessen Geschwindigkeit.

Mit Anderung meinen wir ein momentanes Geschehen, die Anderung in jedem Augen-
blick, und die Ableitung einer zeitabhingigen Funktion beschreibt eben gerade dies. Des-
halb formulieren wir die Naturgesetze meistens als Differentialgleichungen: von Schwin-
gungsphinomenen bis zur Reibung von Zahnrédern, von der Wérmeleitung bis zur Stromungs-
mechanik, von der Beschreibung elektrischer Netzwerke bis zur Steuerung chemischer Pro-
zesse bieten Differentialgleichungen die wichtigsten Modelle, so wichtige, dass in der ma-
thematischen Physik das Wort ,,Modell* oft synonym fiir ,, Differentialgleichung® verwendet
wird. Und die Differentialrechnung legt hier die Grundlagen.

Generalvoraussetzung. In diesem Abschnitt sei f : R D J — R eine Funktion auf einem
Intervall mit mehr als einem Punkt oder auf einer nichtleeren offenen Teilmenge J C R.
Als Wertebereich der Funktion nehmen wir meist die reellen Zahlen, die folgende Definition
und viele Aussagen machen aber auch Sinn und bleiben richtig, wenn die Werte von f
komplex sind. Dagegen soll das Argument einstweilen reell sein, die Differentialrechnung
fiir Funktionen von C nach C ist iiberraschenderweise eine ganz andere Theorie (Komplexe
Analysis).

Definition 137. f:R D J — R heifit in x¢ € J differenzierbar, wenn
f(@) — f(zo)

T—TQ Xr — Xo

in R existiert. f'(zg) heifit dann die Ableitung von f in xy. Man nennt f differenzierbar auf
J, wenn es in allen xg € J differenzierbar ist.

Zur Notation. Statt f’ schreibt man auch %. Das ist einerseits etwas inkonsequent, weil
der Name der Variablen beliebig ist, so dass man nicht x auszeichnen sollte. Andrerseits ist
es sehr bequem, zum Beispiel Potenzfunktionen einfach als x™ zu schreiben. Dafiir erhilt
man dann, wie Sie aus der Schule wissen und wir gleich beweisen werden,

da"
dx

_ nxn—l

Wir werden zum Beispiel
sin’ = cos

oder )

dsinz d .
= —sinx = cosx
dx dx

nebeneinander verwenden.

Wenn das Argument von f die Zeit bezeichnet, schreibt man dafiir gern ¢ statt z, und
bezeichnet die Ableitung mit einem Punkt statt mit einem Strich:

;o df
f'_dt'
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Wie die Stetigkeit ist auch die Differenzierbarkeit eine lokale Eigenschaft einer Funktion.
Ob f in z( differenzierbar ist, hingt nur von den Werten von f in einer beliebig kleinen
Umgebung von zg ab. Wie fiir stetige Funktionen gilt daher: Ist f auf einer offenen Menge
J definiert, ist (U;);cr eine Familie offener Mengen mit J = |JU; und ist f|y, fiir jedes i
differenzierbar, so ist f : J — R differenzierbar. Vgl. Lemma [I25] und das folgende Korollar.

Bemerkung. Es ist wichtig, verschiedene Umformulierungen der Differenzierbarkeits-Defi-

nition zur Verfiigung zu haben.

1. Man kann x — zg als neue Variable einfithren, die man zum Beispiel Az oder h nennt,
und z statt zy schreiben. Dann ist also f in x differenzierbar, wenn

f(z+ Ax) — f(z) flz+h) - f(z)

! _ . _ .
fa) = Jim, Az = fm h
in R existiert.
2. Fir h # 0 kann man die Funktion
flx+h)— f(x
a(h) = XD ZIE gy (39)

h

definieren, und falls f in z differenzierbar ist, findet man

flx+h)= f(z)+ f(x)h+ a(h)h, lim a(h)=0.

h—0

Gibt es umgekehrt b € R und eine Funktion « mit

flx+h) = f(x) +bh+ a(h)h, lim a(h)=0,

h—0

so folgt fiir h # 0
flx+h)—f(=z)
h
und f ist in z differenzierbar mit Ableitung b.

—b=alh) — 0,

3. Verwendet man statt a die Funktion R(z+h) = «(h)h, so findet man nach riickgéngig
gemachter Variablensubstitution:
f ist genau dann in z¢ differenzierbar, wenn es b € R und eine Funktion R : J — R
gibt, so dass

R(x)

f(z) = f(zo) + b(x — z9) + R(z) und lim

T—To T — T

=0.

In diesem Fall ist f’(zg) = b.

Beispiel 138. Seien n € Nund f: R — R, x + 2™ Dann ist f differenzierbar mit der
Ableitung
() =na" "

Es ist ndmlich

i (x+h)" — 2" i 2"+ na"th+ (5)a"2h P + .+ AT — "
im ~—~——— = lim
h—0 h h—0 h
= lim (nz" ' + (n) 2" 2h4 . A =g
h—0 2
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Beispiel 139. Sei f : R — R, z+ |z|. Dann ist f in 0 nicht differenzierbar, denn

f(O4+h)—f(0) |h] J+1fir h>0
h h

h “1firh<0

Der Grenzwert fiir h — 0 existiert nicht. Andrerseits war diese Funktion auch in 0 stetig.

O

Ein Beispiel fiir eine stetige Funktion, die nirgends differenzierbar ist, finden Sie in Barner-
Flohr, § 8.1.

Hingegen gilt:

Satz 140. Differenzierbare Funktionen sind stetig.

Beweis.

f(@) = f(zo)

— ! -0=0 fi .
pra— (x —x0) = f'(20) ir © — xo

f(@) = flxo) =

Geometrische Interpretation: Die Tangente.

%ﬁx“) ist die Steigung der Sekante durch
die Punkte (zg,f(z9)) und (z, f(z)). Der
Grenzwert f'(xg) gibt die Steigung der Tan- "
gente an den Graphen an. L~

Die Gleichung der Tangente durch den Ax
Punkt (xo, f(zo)) ist also gegeben durch

[y = (@) (@ — x0) + f(0). |

Differenzierbarkeit kann man auch auffassen als die Eigenschaft einer Funktion, eine Tan-
gente an den Graphen zu besitzen. Vergleichen Sie insbesondere das obige (Gegen)beispiel
der Funktion |z|.

Beispiel 141 (Newtonverfahren). Beim Newtonverfahren zur Bestimmung der Nullstel-
len einer Funktion f beginnt man mit einem Wert x; moglichst nah an einer vermuteten
Nullstelle. Dann ermittelt man den Schnittpunkt zo der Tangente an den Graphen in diesem
Punkt mit der z-Achse. Oft ist dies eine bessere Approximation fiir die Nullstelle. Iteration
dieses Verfahrens liefert eine Folge, die unter gewissen, hier nicht diskutierten Vorausset-
zungen gegen eine Nullstelle £* von f konvergiert. Die Formel fiir die Iteration erhilt man
durch Auflésen der Gleichung

fzn) + f/(xn)(xmrl —Z,) =0.

Es ergibt sich
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Wihlt man etwa f(z) = 2 — b, so findet man die bekannte Iteration

zk —b 1.0
Tpy1 = Ty — P =z, (1+ E(E - 1)>7

vgl. Satz
O

Analytische Interpretation: Lineare Approximation. Die einfachsten Funktionen (nach
den Konstanten) sind sicherlich die linearen Funktionen a + bz mit konstanten a, b. Die Tan-
gente ist der Graph einer solchen Funktion und die Umformulierung [3| der Differenzierbar-
keitsdefinition liefert:

FEine Funktion ist an der Stelle z differenzierbar genau dann, wenn sie sich dort durch eine
lineare Funktion approximieren 14t, so dass der Fehler schneller als linear verschwindet:

f(x+h)= f(x)+bh+ R(h) mit lim@

hoo B 0.

Alternativ: Eine Funktion ist an der Stelle zy differenzierbar genau dann, wenn sie sich
dort durch eine lineare Funktion approximieren lat, so dass der Fehler schneller als linear
verschwindet:

f(z) = f(zo) + b(x — z9) + R(z) mit lim R(z)

T—xo T — T

=0.

Physikalische Interpretation: Die Geschwindigkeit. Bewegt sich ein Punkt auf einer
Geraden mit konstanter Geschwindigkeit v, so legt er in der Zeit At die Strecke

As = vAt

zuriick. Umgekehrt kann man aus der Strecken- und Zeitdifferenz die Geschwindigkeit er-
mitteln:
_As

V= —.
At
Bewegt sich der Punkt mit variabler Geschwindigkeit, und hat er zur Zeit ¢ die Strecke s(t)

zuriickgelegt, so kann man annehmen, dass wenigstens im kleinen Zeitabschnitt von ¢ bis
t + At die Geschwindigkeit v(t) annidhernd konstant ist, also

_As  s(t+ At) —s(t)

U v e VR

Durch Grenziibergang At — 0 erhélt man die Momentangeschwindigkeit v(t) zur Zeit ¢:

. s(t+ At) — s(t
() = fim NI
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Satz 142 (Rechenregeln fiir die Ableitung). Seien f,g : J — R differenzierbar in
z € J und set c € R.

Dann sind auch die Funktionen f + g,cf, fg:J — R in x differenzierbar.

Hat g keine Nullstellen in J so ist auch f/g:J — R in x differenzierbar.

In diesem Fall gilt:

Beweis. Nicht schwer. O
Beispiel 143. Fiir n € N ist die Abildung

f:R\{0} >R, z—a"=—

differenzierbar mit der Ableitung

-n
/ _ —n—1 __
fl(xz)=—nax =
Dazu kann man die Quotientenregel benutzen:
! —
1 —nz"t —n
:Ein - xQn - In+1 :

Satz 144 (Kettenregel). Seien g : R D I — Jinxz € I und f : J — R in g(x)
differenzierbar. Dann ist f o g in x differenzierbar und es gilt

(fog)(x)=(fog)(x)d(x)= f'(g(x))d ().

Beweis. Wir setzen y := g(z). Es sei

g(z + Azx) = g(z) + ¢' () Ax + a(Ax)Ax, lim a(Az) =0

T—

Iy +A8y) = F) + WAy +5(Ay)Ay,  lim §(Ay) =0.

Dann ist
fg(z + Az)) = f(g(x) + ¢'(x) Az + a(Az)Ax)
=:Ay
= fl9(x)) + f'(y)Ay  + B(Ay)Ay
= f(g(2)) + f'(9(x))g' (z) A
+[f'(y)a(Az) + B(¢' (x) Az + a(Az)Az) (¢’ (z) + a(Az))] Az.

=y(Azx)
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Offenbar gilt
dm,(82) =
und daraus folgt die Behauptung. O

Beispiel 145 (Ableitung der Umkehrfunktion). Sei f : J — I C R differenzierbar und
umkehrbar mit der differenzierbaren Umkehrfunktion ¢ = f~!: I — J. Aus

z = f(g())

folgt dann durch Differentiation und Anwendung der Kettenregel:

L= f'(g(x))g (x),

also

O

In diesem Beispiel folgt f'(y) # 0, weil f/(y)g'(f(y)) =1 # 0. Wir wollen zeigen, dass diese
Bedingung umgekehrt auch hinreichend fiir die Differenzierbarkeit der Umkehrfunktion ist.

Satz 146 (Ableitung der Umkehrfunktion). Sei f : J — R auf dem Intervall J streng
monoton und stetig. Dann existiert die Umkehrfunktion f=1: f(J) — R auf dem Intervall
fI). Sei f differenzierbar in xg € J und

f'(xo) # 0.

Dann ist f~1 in yo = f(wo) differenzierbar und

—1y/
= . 40
Beweis. Wir schreiben g := f~1. Dann gilt fiir y # yo € f(J)
9Ww) —9o) 9@ —g(w) 1 _ (41)
Y— Yo flg() — flglyo))  Llaw)=f(zo)
9(y)—zo
WEeil f in z differenzierbar ist, ist die Funktion
f@=f@o)  fir £z
da) =4 00 ’
f'(zo) fiir x =z
stetig in xy. Weil g nach Satz in yo stetig und g(yo) = ¢ ist, folgt
Tim 0(g(s) = 6(z0) = I'(z0). 42)
Weil f/(z9) # 0, folgt aus und die Behauptung. O

Beispiel 147. Die Funktion f: R — R, 2+ 23 ist differenzierbar und umkehrbar, aber
f'(0) = 0. Die Umkehrfunktion z +— /z ist in 0 nicht differenzierbar. Das ist anschaulich
klar, weil die Tangente an den Graphen Steigung = oo hat. Wie sieht ein exakter Beweis
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dafiir aus? In allen x # 0 ist die dritte Wurzel nach dem Satz aber differenzierbar und fiir
die Ableitung gilt

und daher

O

Beispiel 148. Die Funktion f: R D J — ]0,00] sei differenzierbar mit f* = f. Dann ist
/' > 0 und, wie wir im néichsten Abschnitt sehen werden, f streng monoton wachsend. Es
besitzt also eine differenzierbare Umkehrfunktion f=!: f(J) — R. Fiir diese gilt
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7.2 Der Mittelwertsatz

Wir kommen nun zum wichtigsten Satz der Differentialrechnung, dem Mittelwertsatz. Zur
Vorbereitung stellen wir fest:

Wenn die Funktion f : R D [a,b] — R in einem
inneren Punkt xq ihres Definitionsbereiches ihr Ma-
ximum annimmt, dann haben die Sekanten links da-
von eine Steigung > 0 und die Sekanten rechts davon

eine Steigung < 0.

Ist f in 2 differenzierbar, so ist die Ableitung f’(xg) als Grenzwert der Sekantensteigungen
einerseits > 0, andrerseits aber < 0 und deshalb = 0.

Satz 149 (Notwendiges Extremwertkriterium). Nimmt die Funktion f : J — R ihr
Maximum (oder Minimum) in einem inneren Punkt xo des Intervalls J an, und ist sie dort
differenzierbar, so ist f'(x¢) = 0.

In Randpunkten muss das natiirlich nicht so sein. Ist f : R D [a,b] — R differenzierbar, so
sind die einzigen Stellen, die fiir Extremwerte von f in Frage kommen die Endpunkte a,b
und die Punkte, wo die Ableitung f’(z) verschwindet. Typischerweise sind das endlich viele
Punkte, und man kann dann nachrechnen, wo f am gréfiten bzw. kleinsten ist. Das ist dann
wirklich das Maximum oder Minimum, weil f stetig auf einem kompakten Intervall ist.

Nun zum angekiindigten

Satz 150 (Mittelwertsatz, Lagrange 1797). Sei f : R D [a,b] — R stetig und auf ]a, b|
differenzierbar. Dann gibt es ein & €la,b| mit

f(b) — f(a)

=) (43)

Anschaulich bedeutet das, dass es irgendwo eine Tangente gibt, die parallel zur Sekante
durch (a, f(a)) und (b, f(b)) ist:

\
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Beweis. Die Sekante ist der Graph von

f(0) = f(a)

s(2) = fla) + T2

(x —a).

Wenn man die Parallelen zur Sekante betrachtet, erkennt man, dass £ ein guter Kandidat
ist, wenn (&, f(£)) am weitesten von der Sekante entfernt ist. Der Abstand eines Punktes
von der Sekante (versehen mit Vorzeichen) ist aber proportional zu seiner Hohe iiber der
Sekante. Deshalb suchen wir nach einem Extremwert von h(z) = f(z) — s(z) im Inneren
]a, b] des Intervalls. Fiir die entsprechende Stelle £ ist dann

0= ()= e W1

—a
und wir sind fertig.

Weil h stetig auf dem kompakten Intervall [a, b] ist, nimmt es sein Maximum und Minimum
an. Sind beide gleich, so ist h konstant und h’(£) = 0 fiir alle .

Andernfalls wird wegen h(a) = h(b) wenigstens eines der beiden in einem inneren Punkt £
angenommen, und wir sind auch fertig. U

Warum ist der Mittelwertsatz wichtig? Zunéchst sagt der Mittelwertsatz nichts dariiber
aus, wo £ eigentlich liegt. Vielleicht gibt es ja auch mehrere solche Stellen, vgl. Abbildung.
Die wichtigen Anwendungen des Mittelwertsatzes ,, laufen andersherum®: Sie betreffen Situa-
tionen, wo man das Verhalten der Ableitung (iiberall!) sehr gut kennt, und daraus Schliisse
auf die Funktion zieht.

Der Mittelwertsatz ist die Briicke von Ableitungsinformationen zu
Informationen iiber die Funktion selbst.

Satz 151 (Schrankensatz). Ist f : [a,b] — R stetig und auf |a, b[ differenzierbar und sind
m, M € R mit m < f'(x) < M fir alle z €a,b[, so ist

m(b—a) < f(b) - f(a) < M(b— a).

Beweis. Es gibt ein ¢ €]a, b[ mit

f(0) = fla) = f'(§)(b - a),
und daraus folgt wegen b —a > 0 und m < f/(£) < M die Behauptung. O

Wichtig ist, dass man den Mittelwertsatz natiirlich auch auf jedes Teilintervall [z1, z2] C [a, b]
anwenden kann, wie im Beweis des folgenden Satzes:

Satz 152 (Monotoniekriterium). Sei f : R D J — R stetig auf dem Intervall J und
differenzierbar mit f'(x) > 0 in allen inneren Punkten x von J. Dann ist f streng monoton
steigend (wachsend):

1 < Ty — f(;vl) < f(.’EQ)

Hat man nur f'(x) > 0, so folgt die schwache Monotonie: f(x1) < f(x2).
Entsprechendes gilt fiir f' <0 bzw. f" <0.
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Beweis. Seien x1,x9 € J mit 7 < x3. Dann ist nach dem Mittelwertsatz fiir ein ¢ zwischen
z1 und o

f(x2) = f(x1) = f1(€) (w2 —x1) >0,
0 %

also f(x1) < f(x3). Entsprechend fiir die anderen Fille. O

Eine ganz wichtige Konsequenz des Mittelwertsatzes kombiniert die Monotonieaussagen:
Funktionen, die gleichzeitig monoton wachsen und fallen, sind konstant.

Satz 153 (Konstanzkriterium). Ist f : R D J — R stetig auf dem Intervall J und
differenzierbar mit f' =0 im Inneren von J, so ist f konstant auf J.

Beachten Sie: Aus der Definition der Ableitung folgt trivial, dass konstante Funktionen die
Ableitung 0 haben. Hier wird aber die Umkehrung behauptet und aus dem Mittelwertsatz
bewiesen. Es ist eben nicht so klar, dass alle Sekanten die Steigung null haben, wenn die
Grenzwerte der Sekantensteigungen alle null sind. Wenn der Grenzwert einer Folge null ist,
konnen die Folgenglieder ja durchaus positiv sein!

Haben zwei differenzierbare Funktionen auf einem Intervall dieselbe Ableitung, so unter-
scheiden sie sich nur um eine additive Konstante. Dies ist eine oft benutzte Umformulierung
des Konstanzkriteriums.
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7.3 Exponentialfunktion, Logarithmus und Potenzen
Exponentialfunktion

Viele Wachstums- und Zerfallsprozesse folgen —wenigstens iiber gewisse Stadien hin— dem
Gesetz, dass das Wachstum, also die zeitliche Anderung f’ (t) proportional zur vorhandenen
Menge f ist:

f'=af (44)
mit einer Konstanten a, deren Vorzeichen {iber Wachstum bzw. Abnahme entscheidet.
Dieses Gesetz findet man von der Zinseszinsrechnung iiber den radioaktiven Zerfall, den
Waérmeausgleich zwischen Medien verschiedener Temperatur, die Kinematik von Brems-
vorgingen, chemische oder elektrostatische Séttigungsvorgiinge etc. bis hin zur Populations-
dynamik oder Modellen fiir die Ausbreitung von Seuchen.

Die Gleichung ist eine sogenannte Differentialgleichung fiir eine gesuchte Funktion f,
die in der Theorie der Differentialgleichungen auch gern mit y bezeichnet wird. Wir wollen
den Spezialfall a = 1 betrachten, also die Gleichung

Y =y.

Ist y eine Losung, so auch jedes Vielfache von y. Wir fordern deshalb zusiitzlich eine Nor-
mierung, ndmlich y(0) = 1.

Satz 154 (und Definition: Exponentialfunktion). Es gibt genau eine differenzierbare
Funktion y : R — R mit
Yy =y, y(0) = 1. (45)

Diese Funktion heifit die Exponentialfunktion. Sie wird mit exp : R — R oder auch mit
T +— e” bezeichnet.

! _
Beweis. 1. Existenz: Fiir k > 1 gilt (’”k—]:) = % Setzt man nun y,(z) :== >} _, ‘Ck—]:, so ist
also y,(0) = %—? =1 und ¥}, = yn—1. Man kann zeigen, dass

li
(Iim yn> = lim ¢, = lim y, 1 = lim y,
n—oo n—oo

n—oo n—oo

gilt, genauer, dass y(x) := lim, - yn(z) eine differenzierbare Funktion mit den gewiinschten
Eigenschaften liefert. Der Beweis ist ad hoc miihsam, und wir geben ihn spéter in einem
natiirlicheren Zusammenhang, vgl. Abschnitt Einen anderen Beweis geben wir in Bei-
spiel Es ist aber logisch kein Problem, wenn wir im weiteren Gang der Vorlesung die
Existenz einfach als gegeben hinnehmen: Wir werden die Exponentialfunktion bei der Ent-
wicklung der Differential- und Integralrechnung nur als Beispiel, nicht als konstituierendes
Element benétigen und benutzen.

2. Einzigkeit: Dazu zeigen wir zunéchst folgendes
Lemma 155. Sind y1,y2 : R — R zwei Funktionen, die (45)) erfillen, so gilt
y1(x)y2(—x) =1 fir alle x € R. (46)
Insbesondere hat keine der beiden Funktionen eine Nullstelle.

Das ist klar fiir z = 0. AuBlerdem gilt fiir die Funktion

g: 2=y (e)ya(=2),
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dass
g'(x) = vy (@)ya(—2) + y1(2)ys (=) (1) = y1(2)y2(—2) — y1(2)ya(—x) = 0.

Also ist g konstant und das Lemma bewiesen.

Nun zum Beweis der Einzigkeit. Wenden wir das Lemma an auf y; = y2 = y, so folgt
y(x) # 0 fiir alle  und

1
y(—z) = —. 47
() = o (47)
Wenden wir nun das Lemma an auf zwei Losungen y1, y2, so folgt
() = — (@)
x = — xZ).
- w(-2) @ "

Also sind je zwei Losungen von gleich. O

Wir wollen nun die wesentlichen Eigenschaften der Exponentialfunktion aus der definieren-
den Differentialgleichung herleiten.

Trivialerweise ist

exp’ = exp,
exp0=1.
dem vorstehenden Beweis folgt
1
exp(—z) = s

Und weil exp differenzierbar, also stetig auf R ist und keine Nullstellen hat, folgt aus
exp0 =1 > 0 und dem Zwischenwertsatz

exp > 0.
Dann ist aber auch exp’ = exp > 0, d.h.
exp ist streng monoton wachsend.
Aus dem Schrankensatz folgt fiir z > 0

exp(z) —exp(0) > x %r;% exp’(§) =z exp(0) =z

und daraus

lim expx = 400, lim expz = lim =0
T—+00 r— —00 T—+00 eXp T

Noch einmal bemiihen wir den Zwischenwertsatz und erhalten
exp(R) =)0, +o0].
Die Abbildung exp : R —]0, +00] ist eine Bijektion.

Eine weitere sehr wichtige Eigenschaft der Exponentialfunktion formulieren wir als

Satz 156 (Additionstheorem der Exponentialfunktion). Es gilt fiir alle z1,25 € R

exp(z1 + x2) = (exp z1)(exp x2).
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Beweis. Geht nach dem nun schon langweilig werdenden Muster: Betrachte die Funktion
g(x) := exp(z1 + x) exp(—2x).

Rechne nach, dass ¢'(z) = 0, also g(z) = g(0) = expx1. Mit exp(—z) = 1/ expx folgt die
Behauptung. O

Graph. Damit haben wir wesentliche qualitative Charakteristika der Exponentialfunktion
bewiesen. Wie man quantiative Informationen iiber expx bekommt, erfahren Sie im Ab-
schnitt {iber die Taylorapproximation Mit den dort erarbeiteten Methoden kann man
Funktionswerte von exp berechnen und findet fiir den Graphen folgendes Bild:
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Logarithmus

Definition 157 (Logarithmus). Die Exponentialfunktion exp : R —]0, 00| ist eine Bi-
jektion. Die Umkehrfunktion heifit der (natirliche) Logarithmus

In :]0, +oo[— R.

Statt In finden Sie auch log.

Die Logarithmusfunktion ist wieder streng monoton und nach Satz differenzierbar. Nach
Beispiel gilt

1
I’z == fiir alle z > 0.
x

Aus den Eigenschaften der Exponentialfunktion folgen weitere Eigenschaften des Logarith-
mus, zum Beispiel
lim Inz =400, limlnz=-oc0
0

r——+00

und die fundamentale Gleichung

Satz 158.
In(zy) =Inz + Iny.

Die letztere Gleichung (Reduktion der Multiplikation auf die Addition) hat den Logarith-
men vor der Erfindung elektronischer Rechenmaschinen eine prominente Bedeutung bei al-
len schwierigeren praktischen Rechenaufgaben (z.B. in der Astronomie oder Navigation)
verschafft.

Den Graphen der Umkehrfunktion erhélt man durch Spiegelung an der Winkelhalbierenden.
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Allgemeine Potenz

Definition 159 (Allgemeine Potenzen). Wir definieren a® (“a hoch z7) fiir reelles a > 0
und z € R durch
a® = exp(zlna).

Satz 160 (Rechenregeln fiir die allgemeine Potenz). Fiir a,b > 0 und z,y € R gilt
Y = g%a¥
(ab)® = a™b”,
- 1
a =
aw
(@) = a™,
a’ =1
Beweis. Ergibt sich sofort aus den Regeln fiir exp und In. O

Bemerkung. Aus dem Satz folgt durch vollsténdige Induktion fiir natiirliches n:

Das heif3t, die Definition von a” stimmt fiir natiirliches n mit der alten Definition iiberein.

Weiter ergibt sich aus dem obigen Satz

(a%)” =a' =a.
Also ist aw = {/a.
Definieren wir schliefflich die Eulersche Zahl e durch

so folgt
e’ = exp(zlnexpl) = expw.

Als Komposition differenzierbarer Funktionen sind die Funktionen
T—a

und
b

T—x
differenzierbare Funktionen auf ihrem Definitionsbereich. Nach der Kettenregel ist

(@®) =Inaexp(zlna) = (Ina)a®.
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Die Graphen der Funktionen in diesem Abschnitt sind mit Mathematica erzeugt. Der Befehl
fiir die vorstehende Figur lautet

Plot[{0.5°x,2°x}, {x,-4,4},AspectRatio— >1/1]
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7.4 Hyperbelfunktionen, Areafunktionen

Die Hyperbelfunktionen sind gegeben durch
e’ +e7 " e’ —e™®

coshz = — sinhx = 5

Sie heiflen Cosinus hyperbolicus und Sinus hyperbolicus. Fiir sie gilt
cosh? z — sinh? z = 1,
denn 1
cosh? z — sinh? z = 7 ((em + e_’”)2 — (e® — e_g”)Q) =1.

Das bedeutet aber, dass der Punkt (cosh z,sinh z) auf der Einheitshyperbel

{(z,y) |2* —y* =1} (48)

liegt, daher der Name.

Hier sind die Graphen der beiden Funktionen mit den Graphen von %eiw zum Vergleich:

sinh x
cosh x

Auch fiir die Hyperbelfunktionen gibt es eine Menge Identititen (wie Additionstheoreme
u.a.), auf die wir hier aber nicht eingehen wollen.

Offenbar sind diese Funktionen differenzierbar und es gilt

. / 12 .
sinh’ = cosh, cosh’ = sinh.

Man definiert die hyperbolischen Cotangens- und Tangensfunktionen durch

cosh x sinh x
- , tanhz = .
sinh « cosh x

cothx =

Der Tangens hyperbolicus bildet die reelle Achse bijektiv auf das Intervall | — 1, 4+1[ ab.

Fiir die Ableitung gilt

tanh’ = =1 — tanh?.

cosh?
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Beispiel 161. [Ein Beispiel aus der Mechanik] In diesem Beispiel greifen wir ein wenig vor:
Auf hohere Ableitungen und auf die Theorie der Differentialgleichungen.

Frei hidngende Seile oder Ketten (etwa Hochspannungsleitungen) haben eine ganz charak-
teristische FormE] Anhand der auftretenden Krifte eines solchen statischen Systems leitet
man in der Mechanik dafiir die Differentialgleichung

V' = e/ TT WP

her. Weil cosh? z = 14sinh? z liefert y(z) = cosh z im Falle ¢ = 1 eine Losung, und mit etwas
Probieren findet man y(z) = < cosh(cz) fiir den Fall von beliebigem ¢ > 0. In der Theorie
der Differentialgleichungen lernen Sie, dass die allgemeine Losung dieser Differentialgleichung
zwei beliebige Parameter enthalten muss. Weil nur 3’ und y” vorkommen, ist y(x) + h fiir
beliebiges h natiirlich auch eine Losung: die Form der Kette ist unabhéngig davon, wie
hoch man sie aufhidngt. Und natiirlich kann man sie nach rechts oder links verschieben,
d.h. y(x — x0) ist auch eine Losung. Die sogenannte Kettenlinie ist daher gegeben durch die
Funktion

y(x) = % cosh (¢(x — x0)) + h.
O

Areafunktionen. Die Funktionen sinh und tanh sind injektiv und besitzen daher globale
Umkehrfunktionen. Diese werden Area sinus hyperbolicus bzw. Area tangens hyperbolicus
genannt und so bezeichnet:

sinh™' = Arsinh : R — R, tanh~' = Artanh :] — 1, +1[— R.

Den Beweis des folgenden Lemmas kann der Leser leicht selbst machen:

Lemma 162. FEs gilt

1
Arsinhz = In(z + V22 + 1), Artanhx:ln\/ler.
-z

Der Name Area-Funktionen rithrt daher, dass man die Werte als Flacheninhalt an der Hy-
perbel interpretieren kann:

sinh t

F=t

X —y2=1

2Q@alilei hatte behauptet, die Form einer hingenden Kette sei eine Parabel. Christian Huygens hat das
im zarten Alter von 16 Jahren widerlegt, aber erst Leibniz und Johann Bernoulli fanden die richtige Diffe-
rentialgleichung und deren Lésung.
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Es sei angemerkt, dass man eine ganz analoge Interpretation fiir die inversen trigonometri-
schen Funktionen geben kann:

x2+y2=1

sin t

F=t
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7.5 Die Regel von Bernoulli - de L’Hospital

Lemma 163 (Verallgemeinerter Mittelwertsatz). Seien f, g : [a,b] — R stetig und auf
la, b] differenzierbar. Es gelte ¢'(§) # 0 fir alle & €]a,b[. Dann ist g(a) # g(b) und es gibt
ein & €]a, b mit

Beweis. Wire g(a) = g(b) , so giibe es nach dem Mittelwertsatz dazwischen eine Nullstelle
von ¢’ im Widerspruch zur Voraussetzung. Definiere

h(t) = (f(b) = f(a)g(t) — (g(b) — g(a)) ().
Dann ist h(a) = h(b), also /() = 0 fiir ein £ €]a, b[, und daraus folgt die Behauptung. [

Satz 164 (Johann Bernoulli, G. de L’ Hospital). Seien J C R ein Intervall,
p € JU {inf J,sup J},

und seien f,g: J\{p} — R differenzierbar. Es gelte

lim f(z) = lim g(x) =0 (49)
T—Dp z—p
oder
Jim g(x) € {0, oc}. (50)

Weiter sei g'(x) # 0 fiir alleﬁ x € J\{p}, und es ezistiere

. f(x)
aljll}r;) 7 () = AeRU{—o0,00}. (51)
Dann existiert auch fa)
T
lim —= 52
2 o) 52

und hat den Wert A.

Falls p € R und gilt, kann man f(p) := 0 =: g(p) setzen und erhilt in p stetige
Funktionen. Nach dem Lemma ist dann fiir ein £ zwischen z und p

f@) _ f@) = i) _ [

g(x)  glx)—glp) &)’

Daraus folgt mit z — p der Satz in diesem Fall. Der folgende Beweis ist etwas komplizierter,
schliefit dafiir aber alle Fille ein.

Beweis. Wir beschrianken uns auf den Fall p = inf J. Der Fall p = sup J geht analog. Wenn
aber p ein innerer Punkt von J ist, wendet man diese Fille auf JN]p, +o00[ und JN] — oo, p[
an und benutzt Lemma iiber Grenzwert und einseitige Grenzwerte.

Zwischen zwei Nullstellen von g in einem Intervall aus J \ {p} ldge nach dem Mittelwertsatz
eine Nullstellle von ¢’ im Widerspruch zur Voraussetzung. Also gibt es in jeder Komponente

3Weil es um den Grenzwert fiir z — p geht, geniigt es stattdessen, wenn p kein Haufungspunkt von
Nullstellen von g’ ist.
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von J\ {p} hochstens eine Nullstelle von g in J\{p}. Wir konnen daher nach eventueller
Verkleinerung von J o.E. annehmen, dass

g(x) # 0 fiir alle x € J\{p}. (53)

Es geniigt nun, folgendes zu zeigen:

(2)

Vaca 3 Ve < =,

<A JgelJ, p<q Va€lp,ql @ 9(2)
f(@)

Vo>a e, p<q v:ce]zw[ g(z) = b.

(Falls z.B. A = 400, gibt es kein b > A und wir brauchen nichts zu zeigen. Falls A € R
stellen Sie sich vor, esseia =A—eund b= A +e¢.)

Wir beweisen nur die zweite Behauptung, die erste geht genauso. Sei also b > A. Nach
Voraussetzung gibt es § € J, p < ¢ mit

J;:Eg < b fiir alle ¢ €]p, 4.
Nach dem Lemma folgt daraus fiir alle z,y €]p, q[,x # v,
f(@) = f(y)
= <b
9(@) —gly) ~

1. Fall: lim f(y) = limg(y) = 0 fiir y \, p. Setzt man dann g = ¢, so gilt fiir alle = €]p, ¢|
f@) o F@0 =10 _,

= lim
9(x)  w\p g(x) —g(y)

Beachte, dass g(x) # 0 nach (53).

2. Fall: lim g(z) € {400, —o0}. Sei p < y < §. Nach Voraussetzung gibt es dann ein ¢ €]p, §[,

so dass fiir alle z €]p, q|

_9)
1 ek 0
Dann gilt fiir solche x
fx) _ f@) = fy) gl@) —g(y)  f)
g(x)  g(@)—gly) g@) g9(z)
_ @) —fw,, 9, fly
=@ —ew " 9@t )
9wy, fly)
<t g(z ) g(z

Fiir z \, p geht die rechte Seite gegen b. Also gibt es g €]p, ¢[ mit

F@) 4 fie alle €lp, ql.
g(x)
0

Beispiel 165. Gesucht ist lim,_, IHT“T Die Voraussetzungen sind erfiillt, insbesondere

hat die Ableitung des Nenners keine Nullstellen. Der Grenzwert fiir den Quotienten der
Ableitungen

1
im M g

r—+oco 1
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existiert, also gilt

Beispiel 166. Wir wollen zeigen, dass fiir a > 0

: Ak _
klirilo(l + k) = exp(a).

Nun ist

(1+ 2)F = exp(kIn(1 + 7)),

und weil exp stetig ist, miissen wir nur zeigen, dass
lim kln(l+ )
im kln —) =a.
k—oo k
Dazu ersetzen wir % durch die kontinuierliche Variable x und betrachten

lim In(1+ xa).
z\,0 x

Nach der Regel von Bernoulli-de L’Hospital ist das

1

a
lim 22— — ¢
z\,0
und wir sind fertig.
Beispiel 167. Was ist limy,_,oc Vk?
. k . 1 . Ink
klggo Vi = klggo exp(% k) = exp (klggo k) Beispi_elexpo =1
Beispiel 168. Fiir f(z) = 22%,g(z) = 1 + 2% ist
x? . 2z . 1
= = +00.

lim —— = lim —; = lim —
z—01 + x4 25043 -0 222

Was halten Sie davon?
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7.6 Die Stetigkeit der Ableitung
Es ist nicht so einfach, ein Beispiel einer differenzierbaren Funktion zu finden, deren Ablei-
tung unstetig ist. Hier ist eines, das allerdings auf die trigonometrischen Funktionen vorgreift.
Beispiel 169 (Eine Funktion mit unstetiger Ableitung). Die Funktion f : R — R
mit

0 fir x =0,

f(:C) = 2 1 .

x“cos fir x # 0,

ist differenzierbar. Das ist klar fiir  # 0. Und in 0 findet man

h2cos%—0

1
/ = 1i = 1i —_ =
f(O)_}lLLIIlO h _ilLli%hCOSh 0
Die Ableitung
0 firz=0
’ _ s
f(x) = {Qx cos % + Sin% sonst,

ist in O nicht stetig, vgl. Beispiel

Der Grund, warum man keine wesentlich einfacheren Beispiele findet, ist der folgende

Satz 170 (Zwischenwertsatz fiir die Ableitung: Satz von Dini). Sei f : J — R
differenzierbar auf dem Intervall J. Dann ist f'(J) ein Intervall.

Die Sprungfunktion mit g(0) = 0 und g(z) := r7 fir z 7 0 ist also zum Beispiel nicht die
Ableitung einer differenzierbaren Funktion f: R — R.

Beweis. Seien a,b € J mit f'(a) < f/(b), und sei

flla) <X < f'(b).

Wir miissen zeigen, dass es ein £ € J mit f/(£) = X gibt. Sei I = [a,b], falls a < b und
I = [b,a] andernfalls. Wir konstruieren eine stetige Funktion g : I — I mit folgenden
Eigenschaften:

(i) g(a) = f'(a) und g(b) = f'(b).
(ii) Fiir alle t € T\ {a,b} ist g(t) ein Differenzenquotient:

f(B@)) = fla(®)
B(t) = a(t)

g(t) =
mit a(t), B(t) € I, a(t) # B(t).

Dann existiert nach dem Zwischenwertsatz ein 7 € I'\ {a,b} mit

f(B(7)) = f(e(7))
B(r)—alr)
Und nach dem Mittelwertsatz existiert ein & zwischen a(7) und G(7) mit

f(B(7)) = fla(7))
B(r) —al7)

A=g(r)=

= f'(9)-
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Damit ist der Satz dann bewiesen. Es bleibt die Konstruktion von g.
Wir setzen

b

g9(a) == f'(a), g(b) := f'(b)
und fiir ¢ € I'\ {a, b} !

f(B@)) = fla(t)
pt) —at) a

wobei «, 3 : I — I stetige Funktionen mit den abge-
bildeten Graphen sein sollen. (In der Abbildung ist

g(t) =

a < b. Ist a > b so muss man a und b sowie « und (3 . I b
vertauschen.)

Offenbar ist g dann stetig im Inneren von I. Weil aber nach Konstruktion a(t) = a, 5(t) =t
fiir ¢ nah bei a und a(t) =t,3(t) = b fiir t nah bei b ist, folgt

. . f(t) — f(a) /
1 t) = ]. e .
lim g(t) = lim ——— f'(a)
Ebenso folgt lim; ~, g(t) = f’(b). Daher ist g auch stetig in den Endpunkten. O

Definition 171. Eine Funktion f heifit stetig differenzierbar, wenn sie differenzierbar und
ihre Ableitung f’ stetig ist.

Bemerkung. Die gelegentlich zitierte Voraussetzung
»oei f differenzierbar und stetig!“

dokumentiert vor allem mangelnde Grundkenntnisse. Der Beweis des folgenden Satzes hin-
gegen erfordert deren eine ganze Menge. Den Satz selbst kann man als eine Vertiefung des
Konstanzkriteriums ansehen. Seine Verallgemeinerung auf hoher-dimensionale Abbildungen,
der sogenannte Satz von Sard, ist ein wichtiges Werkzeug in der Differentialtopologie.

Satz 172 (Mini-Sard). Sei f : [a,b] — R stetig differenzierbar und sei

S={z|f(z)=0}

die Menge der sogenannten kritischen Punkte von f. Dann gibt es zu jedem € > 0 ein k € N
und Intervalle J;, i = 1,...k, der Lingen |J;|, so dass gilt:

k k
FS)c | und Y || <
=1 i=1

Man sagt: Die Menge f(S) der kritischen Werte ist eine Nullmenge.

Beweis. Sei L :== b — a und sei € > 0. Nach Satz ist f’: [a,b] — R gleichméfig stetig.
Also gibt es 6 > 0, so dass fiir alle z,y

w9l <0 = |f (@)~ FWI < 57

Wiihle eine Zerlegung
a=rp<r1<...<2,=0b
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von [a,b], so dass ;41 — x; = £ < 6 fiir alle i.

Ist 2; < o < w1 und f'(z) = 0, so gilt |f'(y)| < 53 fiir alle y €]2;, z441[. Nach dem
Schrankensatz gilt also fiir alle y € [x;, 2;11]

)~ f@)| < g7ly—al < 57

Nach dem Zwischenwertsatz ist f([x;, ;+1]) ein Intervall, und nach der vorstehenen Abschitzung
ist seine Linge

|f([xs, zipa])| < p

3n
Seien nun Ji, ..., Ji diejenigen der Intervalle f([x;,z;+1]), in denen f’ eine Nullstelle hat.
Dann ist
k
F8) <Y
i=1

und weil £ < n und |J;] < 32—;, ist

k 2€
S i<k <e
P 3n
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8 Hohere Ableitungen

Wenn nichts anderes gesagt ist, bezeichne J wieder ein Intervall oder eine offene Teilmenge
von R.

8.1 Hohere Ableitungen

Definition 173.

(i) Die reell- oder komplexwertige Funktion f sei differenzierbar auf J. Dann ist die Ablei-
tung f/ wiederum eine Funktion auf J, die differenzierbar sein kann oder auch nicht.
Ist sie differenzierbar, so bezeichnet man ihre Ableitung mit f” und nennt sie die
2. Ableitung von f. In diesem Fall sagt man f sei zweimal differenzierbar. Rekursiv
definiert man auf diese Weise k-malige Differenzierbarkeit und die k-te Ableitung an
der Stelle x 2

M@ = @)
fir ke Nk > 0.

(ii) Ist f k-mal differenzierbar und f*) iiberdies stetig, so nennt man f k-mal stetig diffe-
renzierbar. Die Menge der k-mal stetig differenzierbaren Funktionen auf J bezeichnet
man mit

C* ()
oder auch mit C*(J,R) bzw. C*(J,C).
(iii) Die Menge der beliebig oft differenzierbaren Funktionen auf J bezeichnet man mit
c=(J),
und nennt solche Funktionen auch C*°-Funktionen.

Beispiel 174. Polynome oder rationale Funktionen sind C*°-Funktionen.

Beispiel 175. Die Funktion

3 fir z > 0,

3

fiR=R, zw|z)*=
—z° fir x <0,

ist zweimal stetig differenzierbar: f € C%(R). Das ist klar auf R\ {0}. Wir untersuchen die
Differenzierbarkeit im Punkt 0:

_ 3 _ 13 .
i L0V =S B0 0 ) = (0)
h™\0 h h\0 h h, 0 h k0 h

Also ist f in 0 differenzierbar und f’(0) = 0. Insgesamt gilt

32 firx >0
’ _ Z Y,
Fa) = {—3x2 fiir z < 0.

Insbesondere ist f’ in 0 stetig, aber wir wollen zeigen, dass es dort sogar differenzierbar ist:

/ ot 2 ap2 , o
limwzhm 3" —0 = i M_i f'(h) = 1'(0)
h\0 h AN\.0 h h,70 h b0 h
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Also ist f in 0 zweimal differenzierbar und f”(0) = 0. Wir finden:

£(z) = { 6x fir x > 0} — 6],

—6z firxz <0

Insbesondere ist f” stetig in 0. Mit |z| ist auch f”(z) = 6]z| in 0 nicht differenzierbar. Also
ist f in 0 nicht dreimal differenzierbar.

O
Beispiel 176 (Wichtig). Fiir k € N gilt

Zeigen Sie das durch vollstdndige Induktion iiber £ mit der Regel von Bernoulli-L’Hospital
und folgern Sie daraus

_1
. e’ =
lim T
I\O X

~0. (54)

Zeigen Sie ebenfalls durch vollstandige Induktion, dass

L) =pdet @0 (55)
dx¥ R

mit einem Polynom p.

Aus und folgt, dass die Funktion

e x fir z > 0,

0 fir z <0,
auf ganz R beliebig oft differenzierbar ist. Fiir z # 0 ist das klar, und es ist auch klar, dass
alle Ableitungen in 0, falls sie existieren, den Wert 0 haben.
Die Existenz folgt wieder durch Induktion: Existiert f*) auf ganz R und ist

1
p(f)efi fiir x > 0,
x

=
z

®

S~—"
I

so folgt

Die Funktion f ist also auf der negativen Halb-
achse = 0, auf der positiven positiv und sie
ist C*°-differenzierbar. Wegen dieser Eigen- . Hier () asymptotisch -1
schaften spielt sie in vielen Konstruktionen ei-

ne wichtige Rolle. Die aus ihr konstruierten Hier f(x)=0

Buckelfunktionen oder Zerlegungen der Eins
sind ebenfalls C>°, vgl. Abschnitt [£.3]

O

Definition 177. Seien J C R ein Intervall und f : J — R. Dann heifit f konvez, wenn fiir
alle z,y,z € J mit ¢ < z < y gilt

(z — x). (56)



Das bedeutet, dass die Kurve zwischen je zwei Punk- /%
X

ten unterhalb der entsprechenden Sekanten liegt. ‘ <

Satz 178 (Konvexitéatskriterium). Seien J C R ein Intervall und f : J — R differen-
zierbar. Dann gilt

(i) f konvex <= f' monoton wachsend.
(ii) Ist f sogar zweimal differenzierbar, so gilt

f konvexr <= f" >0.

Beweis. Die zweite Behauptung folgt mit dem Monotoniesatz unmittelbar aus der ersten.

(i) =. Fiir z < z < y aus J folgt aus der Konvexitét

) = 1) _ f) -~ f@)

Z—T B Yy—
und daher

y—x
Aber wegen
o)+ L= oy g+ LT oy
folgt aus auch
fG) = 1) o fly) = @)

zZ—1 B Yy—x
und damit

> =1

Daher ist f/'(z) < f'(y), also ist f' monoton wachsend.

(1) <=. Seien = < z < y aus J. Dann gibt es €]z, z [ und 1 €]z, y [ mit

also
(f(2) = f(@))(y — 2) < (f(y) = F(2)(z — 2).
Addition von (f(z) — f(z))(z — x) liefert

(f(2) = f(@))(y — =) < (f(y) = f(2)(z — ),
und daraus folgt . O
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Wir wollen noch eine andere Version der Konvexitédtsbedingung herleiten. Fiir reelle

x # y lassen sich die Punkte zwischen x und y schreiben in der Form tx + (1 — ¢)y mit
1

0 <t <1 oder, wenn man p =: % und q := 1= setzt, in der Form

1 1
Eer, p,qg>1mit — + - =1.
P q p q

Die rechte Seite von fiir die Punkte x < % + % <y bzw. y < % + % < x ist dann

() + fly) — f(=) <x+y_x) - fly) — f(=) (y_(l_l)x)

y—x P q y—x q p
_ f@)+ f(y):f(a?)y—x
y—x q
1 f(y)
=g (1-7)+ s
@), 1)
p q

Damit erhalten wir

Satz 179. Die Funktion f : J — R auf dem Intervall J ist genau dann konvex, wenn fiir
alle x,y € J und alle p,q > 1 mat % + % =1 gilt:

Die in der Voriiberlegung gemachte Voraussetzung = # y kann man dabei offenbar streichen.

Beispiel 180 (Anwendung der Konvexitéit: Holdersche Ungleichung). Wir wenden
den letzten Satz an auf die konvexe Funktion exp : R — R. Seien a,b > 0 und p,q > 1 mit
L4 11 Wir setzen
pa

x=1InaP, z=Inb9,

und erhalten

In bq) < exp(ln aP) n exp(Inb?) a? b9
B p q P g

q )

In a?
ab:eXp(lna—i—lnb):exp(na +
p

also
aP  b?

ab < — 4+ — (57)
p q

Mit p = ¢ = 2 und a = VA,b = /B folgt die Ungleichung zwischen geometrischem und
arithmetischem Mittel:

VaB <4 ; B (58)

Fiir eine weitere Folgerung aus (57) seien a1, ..., an,b1,...,b, € R mit

> lak| >0, [bk| > 0. (59)

Dann ist fiir alle ¢ € {1,...,n}

|ai] b3 1 ag|? L1 |b]?
(O lanP) /P (X (be|9) e = p 3 larlP g 32 |be|?

100



Durch Summation iiber ¢ erhalt man

b 1 1
> lakbe| <11y

(X larlP) P (S 1oele) /e = p g

oder

3 larbil < (Z |ak|p>1/p (Z \bk|q)1/q

Das ist die sogenannte Héldersche Ungleichung. Sie gilt offenbar auch ohne die Voraussetzung
(59). Der Spezialfall p = g = 2 liefert die Cauchy-Schwarzsche Ungleichung:

|Zakbk|§\/2ai1/2bi. (60)

O

101



8.2 Die Taylorapproximation

Vorbemerkung. Sei
n
fla) =2 ar(z —ao)*
k=0

ein Polynom vom Grad n. Welil fiir 0 < j <k

dd%(x — $0)’f =k(k—-1)...(k—j+1)(z— xo)k_j7

sind diese Ableitungen an der Stelle g alle = 0, nur die k-te ist konstant = k!. Die hoheren
Ableitungen (j > k) verschwinden wieder alle. Daher folgt fiir alle k € {0,...,n}

f(k) ([L’o) = k!ak.

Man kann die Koeffizienten von f also aus den hoheren Ableitungen von f berechnen und

findet "
fy =3 0

k=0

Ist nun f eine beliebige geniigend oft differenzierbare Funktion, so liefert die rechte Seite ein
Polynom, das an der Stelle xq bis zur Ordnung n dieselben Ableitungen hat wie f, das sich
also vermutlich in der Ndhe von zg gut an f ,, anschmiegt®.

Satz 181 (Taylorapproximation). Seien J C R ein Intervall, zg € J und n > 1.
Sei f: J — R n-mal differenzierbar. Dann gilt:

(i) Fiir die durch
"ok (g
f(z) = <Z fT(,O)(l“ - xo)k) + R(z)
k=0 ’
definierte Funktion R :J — R gilt

lim R(z)

T—xTo (;[; — {L‘O)n

=0.

Wir nennen

DR (g
Z fi(o)(x — o)k

|
P k!
das Taylorpolynom n-ten Grades von f an der Stelle zy und R das zugehorige Rest-

glied.

(i1) Ist f sogar (n+ 1)-mal differenzierbar, so gibt es zu jedem x € J\{zo} ein & zwischen
ro und z, so dass
Fr©)

R(z) = W(m —x)" T

(Lagrangesche Form des Restglieds.)

Beweis. Zu (i). Wir bezeichnen das Taylorpolynom n-ter Ordnung mit 7"
— f* (o)
T(z) := Z T(x — x0)".
k=0
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Dann gilt
R@) _ f) - T)

(r—20)"  (z—x0)"

Wir zeigen mit der Regel von Bernoulli-de L’Hospital, dass lim,_., 0 R(m)) = 0 und damit

die Behauptung (i).

Beachte zunéchst, dass auf J\ {zo} die Ableitungen von (z — x¢)™ bis zur n-ten stets # 0
sind und dass nach Konstruktion

T(x0) = f(x0), T'(x0) = f'(x0), ..., T™ (o) = f™ (o).

Wir finden
LR@) L f@-T@ . f@-T@ [ =T )
z—wo (T — ()" (x — zg)™ n(x —xo)?=t 7 nl(z — xo)
o (£~ f0 D) TOD ()~ T g
=1 < nl(z — xo) nl(z — xo) )

(Der letzte Limes existiert, und deshalb nach Bernoulli-L’Hospital auch der davor etc.)

Beachte: Man hitte die obige Reduktion auch fortsetzen kénnen bis lim w Aber
wir wissen nichts {iber lim, ., ™ (z), weil f(®) nicht notwendig stetig ist.

Zu (ii). Wir betrachten die Funktion

_ @) -=T@) n (t — o)™
h(t) - (n ¥+ 1)| (:L' - l‘o) i R(IL’) (TL +01)|
Weil T+ = 0 ist, ist
pr ) = D00 it - ),

(n+1)!
und es geniigt zu zeigen, dass das zwischen xg und x eine Nullstelle £ besitzt.
Trivialerweise ist h(xg) = A’ (29) = ... = h{™(x) = 0. AuBerdem ist

(v — xp)"H!

(n+ 1! =0

W) = (f(z) = T(x) - R(z))

Daher gibt es &; zwischen xg und x mit h'(£;) = 0.
Daher gibt es & zwischen zy und & mit h”(£3) = 0.
Und so weiter ...

SchlieBlich gibt es ¢ = &, zwischen z und x mit ("1 (¢) = 0. Daraus folgt die Behaup-
tung. O

Beispiel 182. Wir betrachten den Satz von Taylor fiir die Exponentialabbildung in zg = 0.
Weil exp®) (0) = exp(0) = 1, ist das n-te Taylorpolynom

n

=D ue

k=0

2 "

LI +§+ S+

k“p—\
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und das Restglied

exp(f) zn+1
(n+1)!

mit & zwischen 0 und =z,

R, (z) = exp(x) — T, (z) =

WEeil die Exponentialfunktion streng monoton wachsend ist, ist

n+1
und
0< (-1)"MR,(z) < ™ falls z < 0 (62)
" (n+ 1)V '

$n+1

Nach Beispiel [70| gilt lim,, . gy = 0, also

lim T, (x) = exp(x)

fir alle x € R.

Will man das Restglied quantitativ abschétzen, so braucht man in der Formel Werte
von exp(x) fiir > 0, die wir aber noch nicht haben. Immerhin liefert aber die Formel
eine solche Abschétzung bei negativem x, insbesondere

1
Mt To(-1)=1-1+ % = % folgt daraus

<

DO =

1

Wl =

und fiir die Reziproken
2 <e=-exp(+1) < 3.

Fiir £ > 0 erhalten wir exp(z) = €” < 3% und damit die Restgliedabschitzung

- anrl
WEeil die rechte Seite fiir n — oo sehr schnell gegen 0 geht, ist das eine gute Methode zur
Berechnung der Funktionswerte von exp und damit auch zur Ermittlung des Graphen.

Fiir x = 1 folgt

3

n+1’

und diese Ungleichung liefert einen ganz einfachen Beweis fiir die Irratonalitit der Eulerzahl

e. Wire nimlich e rational, also e = “* mit positiven natiirlichen Zahlen m,n, so wire n > 2,
weil e nicht ganzzahlig ist. Es folgte

0<nlle—T,(1)) <

3
n+1

0 <nlle—T,(1)) < <1.

Aber n!™ und n!T, (1) sind ganzzahlig! Das ist ein Widerspruch, und e deshalb irratio-
nal. Viel schwieriger ist der Beweis, dass e sogar transzendent, also nicht Nullstelle eines
Polynoms mit rationalen Koeffizienten ist.

O
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8.3 Lokale Extrema, Diskretisierung

Wir behandeln noch zwei Beispiele fiir die Anwendungen der Taylorapproximation.
Definition 183 (Lokale und globale Extremwerte). Seien f : R D D — R eine

reellwertige Funktion und xg € D. Teile der folgenden Definition kennen Sie schon:

(i) f hat in z¢ ein Mazimum, wenn
f(z) < f(zo) fir alle x € D.

Entsprechend definiert man Minimum.

(ii) f hat in x( ein strenges (oder eigentliches) Mazimum, wenn
f(z) < f(xo) fiir alle x € D\ {zo}.
Entsprechend definiert man strenges Minimum.

(iii) f hat in 2 ein lokales Mazimum, wenn es ein € > 0 gibt, so dass f|pnye(z,) in To ein
Maximum hat.

(iv) Analog definiert man die Begriffe lokales Minimum, strenges lokales Mazimum, stren-
ges lokales Minimum.

(v) f hat in z( ein lokales Fxtremum, wenn es dort ein lokales Maximum oder Minimum
hat.

(vi) Im Kontrast zu lokalen Extrema bezeichnet man das Maximum bzw. Minimum von
f : D — R — wenn es denn angenommen wird — auch als das globale oder, etwas
irrefithrend, als das absolute Maximum bzw. Minimum.

Satz 184 (Lokale Extremwerte). Seien f : R D J — R eine k-mal differenzierbare
Funktion und xo ein innerer Punkt von J. Es gelte:

f'(wo) = f"(wo) = ... = f¥5 V(@) =0,
F® (o) #0.
Dann gilt:
(i) Ist k ungerade, so hat f in xq kein lokales Extremum.

(ii) Ist k gerade, so hat f in xq ein strenges lokales Extremum, und zwar ein Mazimum,
falls f*)(zq) < 0, und ein Minimum, falls f*)(z¢) > 0.

Beweis. Die Beweisidee ist einfach: In der Niéhe von g sieht f ungefihr so aus wie sein
Taylorpolynom

Flao) + 7 f ¥ o) @ — 20)F = flwo) + Cla = 20)f, € #0.

Bei ungeradem k wechselt das in xy das Vorzeichen, bei geradem k ist es eine nach oben
oder unten gedffnete Parabel k-ter Ordnung mit Scheitel in (2o, f(20)), je nach Vorzeichen
von C' also von der k-ten Ableitung. Das Problem ist das Wortchen “ungefihr”. Wir miissen
zeigen, dass der Restterm die vorstehende Argumentation nicht kaputt macht.

105



Nach Voraussetzung und dem Satz iiber die Taylorapproximation gilt

1 . R(x)
- — f(k) —20)* lim ——72 _ —
F(@) = flao) + g Owo)(w —20)* + Rla), lim T =0
Also kénnen wir ein € > 0 so wihlen, dass
Ue(xo) cJ
(hier wird benutzt, dass xo innerer Punkt von .J ist) und
R 1
@ —(z))k < |Hf(k)(;v0)| fiir alle x € U} (zo),
das heif3t )
|R(z)| < |Ef(k)(mo)(x — x0)"] fiir alle z € U (x).
Dann ist in U (xg) das Vorzeichen von
1 R(x)
_ — [ = £® N PR
) = flo0) = (50 + 20 ) (o= o)
gleich dem von
1
Hf(k) (wo)(x — wo)".
Wir konnen daher den Restterm “vergessen” und schlieen, wie oben erklért. O

Die zweite Anwendung der Taylorapproximation behandelt das folgende

Beispiel 185 (Diskretisierung). Aus der Taylorformel folgt, wenn h ,klein® ist,

Fla+h) & f@) + F @)t o fn?,

Fla—h) = f(@) = f@h+ 3" @)

Addition der beiden Gleichungen liefert
fle+h)+ flz—h) —2f(z)

f//(a;‘) ~ h2 . (63)
Und natiirlich hat man

Viele physikalische Gesetze sind durch Differentialgleichungen gegeben, und viele dieser Dif-
ferentialgleichungen lassen sich nicht explizit 16sen. Ein wichtiges Hilfsmittel zur praktischen
Losung dieses Problems ist die Diskretisierung der Differentialgleichung. Die gesuchte Funk-
tion y(z) wird dabei durch eine diskrete Folge von Zahlen yy, ersetzt, die die Funktionswerte
an den Stellen

zy=x9+kh, k=12,...

approximieren sollen. Dabei ist i die sogenannte Diskretisierungskonstante, und man hofft,
fiir sehr kleines h eine gute Approximation yi &~ y(zx) zu bekommen.

Um eine Differentialgleichung zweiter Ordnung zu diskretisieren, also in eine sogenannte
Differenzengleichung fiir die y;, umzuschreiben, benutzt man die Approximationen und
(63). Konkret wird aus

y' +6y" +9y =0, y(0) =0, ¥'(0)=0.5
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mit zg = 0,z = xr = kh nach Einsetzen

Y41 T Ye—1 — 2k Yk+1 —
6
h2 T

Yk + gyk: = 07 Yo = 07 Y1 = 05h7

letzteres, weil y'(z1) ~ #5% = ¥ = 0.5. Nach Auflosen

Y1 = (yr(2+6h — 9h?) —yi_1) /(1 + 6R), yo =0, w1 =0.5h.

Mathematica liefert fiir fir o = 0.01 das folgende Bild fiir die N&herungslosung (rot) im
Vergleich mit der — in diesem Fall leicht zu berechnenden — exakten Losung y(x) = 0.5z e=3%:

0.07

0.05
0.04
0.03
0.02

0.01
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8.4 Trigonometrische Funktionen

Nach dem Newtonschen Bewegungsgesetz ist Kraft=Masse x Beschleunigung. Bei einer an
einer Feder aufgehéingten Masse ist die Kraft (mit einem negativen Faktor) proportional zur
Auslenkung y(z) aus der Ruhelage, und man erhilt die Schwingungsgleichung

—ky = my".

Der Schwingungsvorgang ist erfahrungsgeméfl eindeutig festgelegt, wenn man zu einer An-
fangszeit, etwa t = 0, die Anfangsauslenkung y(0) und den Anfangsimpuls my’(0) kennt.

Wir haben also wieder eine Situation wie bei der Exponentialfunktion: eine (physikalisch mo-
tivierte) Differentialgleichung, deren Losungen diesmal Schwingungsvorgéinge beschreiben.
Wir beschrénken uns auf die Normierung kK = m = 1 und zeigen

Satz 186 (und Definition: Sinus und Cosinus). Es ¢ibt genau eine zweimal differen-
zierbare Funktion y: R — R mit

y'+y=0, y(0)=0undy'(0)=1. (65)
Diese Funktion heifit Sinus, ihre Ableitung Cosinus.
Bezeichnungen:
sin: R — R,
cos: R — R.

Die Differentialgleichung in heifit auch die Schwingungsgleichung.

Beweis. 1. Existenz. Das verschieben wir wieder auf die Potenzreihen, vgl. Beispiel

2. Eindeutigkeit. Dazu beweisen wir zunéchst ein

Lemma 187. Gegeben seien zwei Funktionen y1,y2 : R — R mit
yi +yi=0,

d.h. beide Funktionen erfillen die Differentialgleichung , aber wir fordern
die Anfangsbedingungen nur fir y; :

y1(0) =0, 3;(0)=1.
Mit
y2(0) =:a, y5(0) =:b

gilt dann
Y2 = by1 + ay; (66)

Beweis des Lemmas. Wir definieren zwei Funktionen
/ !
g = Y192 — Y1y,
h = y1y2 + Y1 5.
Wir finden mit der Differentialgleichung
9 = yy2 +v1ys — y1ys — 11ys = 0,
W = yiy2 +y1ys + yiys + yiys = 0.
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Also sind g und h konstant. Auswerten an der Stelle 0 liefert, dass die Konstanten
g = a bzw. h = b sind:

/ r
Y1Y2 y/ly/2 = a, (67)
Y1Y2 +y1yp = b.

Betrachten wir den Fall yo = y1, so folgt aus der zweiten Gleichung
y1(x)? + 9y (x)* = 1 fiir alle 2 € R. (68)

Multiplizieren wir die beiden Gleichungen von @ mit ¢} bzw. y; und addieren

sie, so folgt . O

Die Eindeutigkeit folgt nun sofort: Erfiillt auch yo die Anfangsbedingungen, so ist also a =
0,b=1und y3 = y;. O

Wie bei der Exponentialfunktion wollen wir nun die wesentlichen Eigenschaften der Losung
der Differentialgleichung, also der Sinusfunktion, und ihrer Ableitung herleiten.

Aus folgt die ,,Kreisbeziehung*
sinz +cos’z =1 fiir alle z € R.

Insbesondere liegen die Werte von Sinus und Cosinus im Intervall [—1, +1].

Klar ist, dass der Sinus und damit der Cosinus beliebig oft differenzierbar sind. Man hat
sin’ = cos, cos’ =sin” = —sin.

Auch der Cosinus 16st die Schwingungsgleichung, allerdings mit den Anfangsbedingungen
y(0) =1, 4'(0) = 0.

Wir wenden das Lemma noch auf zwei Funktionen ys an:

1. Die Funktion yo(x) = sin(—z) lost die Schwingungsgleichung mit den Anfangsbedin-
gungen a = 0,b = —1. Das Lemma liefert

sin(—x) = —sinzx.

Differentiation liefert daraus
cos(—z) = cosx.

2. Anwendung auf yo := sin(x; + ) liefert das Additionstheorem
sin(zq + x) = coszy sinx + sinzq cos
und durch Differentiation
cos(x1 + ) = cosxp cosx — sinxy sinx.
Definition 188. Eine Funktion f : R — R heiflt ungerade, wenn
f(=t) = —f(t) fir alle ¢t € R.

Sie heifit gerade, wenn
f(=t) =—f(t) fur alle t € R.

Der Sinus ist also eine ungerade, der Cosinus eine gerade Funktion. Beachten Sie, das Funk-
tionen f : R — R im allgemeinen weder gerade noch ungerade sind.

109



Periodizitét. Als néichstes wollen wir zeigen, dass Sinus und Cosinus 27-periodische Funk-
tionen sind. Um das {iberhaupt formulieren zu kénnen, miissen wir zunéchst die Zahl =
definieren.

Satz 189 (und Definition: Die Zahl 7). Die Menge
{a: |33>0 und cosa:zO}
ist nicht leer und besitzt ein kleinstes Element . Wir definieren w := 2£. Also haben wir

T ist die kleinste positive Nullstelle der Funktion cos.

Bewets. Wir setzen

N::{:L' |x>0und cosx:O}.
Zunichst zeigen wir, dass N # (). Wir benutzen dazu den Zwischenwertsatz fiir die differen-
zierbare und darum stetige Funktion cos. Wir wissen schon, dass cos0 > 0. Also brauchen
wir noch eine Stelle, an der der Cosinus negativ ist. Dazu benutzen wir die Taylorapproxi-
mation. Die Ableitungen des Cosinus sind

3)

cos®) = 1, cos’ = —sin, cos® = — cos, cos®) = sin, cos™ = cos.

Nach dem Satz von Taylor ist also

- 0 -1, 0 5 cosWe¢ ,
cosx—l—l—ﬂx%—jx —|—§x +Tas
Weil | cos™® ¢| = |cos €| < 1 fiir alle &, ist
32 3
31— —+—=-0.125< 0.
cos o < 5 —|—4! <

Damit ist N # @) und 0 < £ := inf N < 3. Nach Satz [93] gibt es eine Folge (z,)neny in N
mit lim,, .. x, = £ Weil der Cosinus stetig ist, ist cos¢ = lim,,_.o, cosx, = 0. Und weil
cos0 =1, ist £ #0, also £ > 0. O

Nun zur Periodizitit. Auf dem Intervall |0, 5[ ist der Cosinus positiv, der Sinus also monoton
wachsend und damit ebenfalls positiv. Es folgt

in— =+,/1—cos? = = +1.
Sin B) COS 5

. m . s .
sin(x 4+ 5) = sinz cos o + coszsin o = cosz,

Damit finden wir

. e ™ . . T :
sin(x 4+ 7) = cos(z + 5) = coszcos o —singsin g = —sinz,
und schliellich
sin(z + 27) = —sin(x + 7) = sinx.
Durch Differenzieren finden wir cos(x + 27) = cos z.
Wir merken noch an: Aus sin g /2) > 0 folgt wegen sin(z + 5) = sinz, dass sin |jg [ > 0.
Spezielle Werte. Es gilt

0= cos(ZZ) = cos? % — sin? % = 2cos? % -1
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also

T 1 . 1 1
cos— = —, sin— = - =
4 /2 4 2
Aus den Additionstheoremen folgt

cos3x = cos2x cosx — sin2x sinx

2

= (cos? 2 —sin? x) cos z — 2sinx cos xsin

= cos x(cos® x — 3sin® ) = cos x(4 cos® x — 3).

Einsetzen von x = % liefert 4 cos? Z = 3 oder

us
6

T 1
—_ = = 3
cos 5 Z\f

T 3 1
sin— =4/1——=~.
6 4 2

Mit cos(§ — x) = sinx erhalten wir schlieBlich folgende spezielle Werte fiir die Funktionen

Sinus und Cosinus:

und daraus

x 0 w/6 | w/4 | w/3 | 7/2
0° 30° 45° 60° 90°
cosz | V4/2 | V3/2 | V2/2 | V1/2 | V0/2
sinz || V0/2 | V1/2]v2/2 | V3/2 | V4/2

Dabei ist ..° : R = R, x> 155 m die Winkelgradfunktion.

Wir stellen die gefundenen Eigenschaften von Sinus und Cosinus noch einmal zusammen.

Satz 190 (Eigenschaften von Sinus und Cosinus). Die Funktionen sin : R — R und
cos : R — R sind 2w-periodisch, und es gilt fir alle x,x1, x5 € R:

. !/ ! .
S r = CoS T, COS T = —SInx

sin?z 4+ cos?z =1

sin(—x) = —sinx, cos(—x) = cosx
. 7T m .
sin(z + 5) =cosz, cos(x+ 5) = —sinzx

sin(zq + x2) = sinxy cos xy + coszy sin g

cos(r1 + x2) = cosxy cosxe — sinxy sin .

Auf dem Intervall |0, [ ist der Sinus positiv, also cos||o ] streng monoton fallend.

Berechnung von Funktionswerten, Graphen. Die Werte der Sinus- und Cosinusfunkti-
on lassen sich mit der Taylorformel berechnen. Weil die hoheren Ableitungen in 0 periodisch
die Werte 0,1,0, —1 annehmen, findet man

) n $2771-‘,—1
sinx = mzz:o(—l)mm + R n(x),
n m x2m
cosx = mZ:O(—l) @m)i + Ren(x),
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mit

|z|2n+3 |x|2n+2
Rsn(®)| < o= IR < o
Run(@) € rgy Ren@)] < oy
Natiirlich kénnte man auch |R; ,,(z)| < % und eine entsprechende Restgliedabschétzung

fiir den Cosinus angeben. Beachten Sie aber, dass das Taylorpolynom vom Sinus bis 2n + 1
dasselbe ist wie bis 2n + 2, weil sin®"*2) 0 = 0. Dann liefert aber fiir grofie n die angegebene
Abschitzung bessere Werte.

Wie bei der Exponentialfunktion sieht man, dass man fiir festes x durch Wahl hinreichend
groer n diese Fehler beliebig klein machen kann. Die Fehlerschranken lassen sich noch
verbessern, und fiir die Berechnung fiir grofieres || kann man die Periodizitéit ausnutzen.

Man erhilt folgende Graphen:

Wir bezeichnen mit
Sti={(z,y) eRxR |z*+y* =1}

den sogenannten Finheitskreis, genauer die Finheits-
kreislinie. Nach liegt jeder Punkt (cost, sint) auf
S1, und der folgende Satz wird zeigen, dass sich um- !

gekehrt jeder Punkt von S' in dieser Form schrei- sint
ben lasst. Dabei ist ¢ wegen der 27-Periodizitéit der x cost 0

Funktionen naiirlich nicht eindeutig bestimmt, aber
in [0, 27| gibt es genau ein solches ¢.

Deshalb heiflen cos und sin auch Kreisfunktionen.
Die nebenstehende Abbildung erklirt, wie sie mit
den Dreiecksverhéltnissen zusammenhéngen:

x = cost und y = sint sind die Katheten eines recht-
winkligen Dreiecks mit dem Kreisradius 1 als Hypo-
thenuse. Daher kommt der Name trigonometrische
oder Kreis-Funktionen.

Allerdings bleibt es einstweilen offen, ob ¢ wirklich die Lénge des Winkelsegments auf dem
Kreisbogen ist. Das stimmt, aber wir konnen es erst im Rahmen der Integralrechnung be-
weisen. Da man in der , klassischen“ Trigonometrie, etwa in der nautischen Navigation, den
Kreis in 360 gleiche Teile geteilt hat, erklart sich dann auch die Herkunft der Winkelgrad-
funktion.

Satz 191 (Kreisparametrisierung). Die Abbildung
f it (cost,sint)

bildet das Intervall [0, 27| bijektiv auf ST ab.
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Beweis. Folgern Sie aus Satz Sind s,t € [0, 27| mit

t < sund cost = coss,

so folgt
0<t<mund s =21 —t. (69)

Injektivitdt. Annahme: 0 <t < s < 27 mit cost = cos s,sint = sin s. Dann folgt und
insbesondere
sint = sins = sin(2r — t) = —sint.

Dann wére sint = 0 im Widerspruch zu 0 < t < 7.

Surjektivitit. Sei (x,y) € St. Ist = 41, so folgt y = 0 und (z,y) = (cos0,sin0) bzw.
(x,y) = (cosm,sinn). Ist andrerseits « €] — 1, +1], also

cosT < x < cos0,
so gibt es nach dem Zwischenwertsatz ein ¢ €]0, 7[ mit cost = x. Dann ist auch
s=2r —t€[0,2r] und coss =cost =x

und
sins = —sint.

Weil 42 =1 — 22 =1 — cos®t = sin’t, ist y = sint oder y = —sint = sin s und

(z,y) = (cost,sint) oder (z,y) = (cos s,sin s).

Zum Schluss definieren wir zwei weitere trigonometrische Funktionen:

Tangens und Cotangens. Wir definieren

i 1

tanz := smx7 x#(k+2)m keZ,
cosx 2

cot x := C9S$7 x # kw, k € Z.
sinx

Diese Funktionen sind in ihrem Definitionsbereich differenzierbar und 7w-periodisch, weil
Zahler und Nenner gerade ihr Vorzeichen wechseln, wenn man x durch x + 7 ersetzt. Die
Ableitung des Tangens berechnet sich wie folgt:

sin coszcosx —sinz(—sinz)  cos?z 4 sin’
ta / = —_— / = =
(tan)'(z) (cos) () cos? x cos? x
1
=1+tan’z = 5
cos? x

4 4

3 3

2 2

1 1

PO\

Aus den Rechenregeln fiir Sinus und Cosinus folgen zum Beispiel leicht die Formeln

tanx +t 1
ﬂ7 1+ tan2z = _
1 —tanz tany cos? x

tan(z +y) =
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8.5 Arcus-Funktionen

Keine der Funktionen cosx,sin x, tan x, cot x ist injektiv, sie sind vielmehr ,;im Gegenteil*
alle periodisch. Aber wir konnen sie auf Teilintervalle einschranken, wo sie injektiv sind, und
dann gibt es zu den so eingeschrinkten Funktionen eine Umkehrfunktion. Diese Funktionen
nennt man Arcus-Funktionen (=Bogenfunktionen), weil sie zu einem gegebenen Wert (z.B.
y = cosz) die zugehorige Bogenlinge x liefern.

Konkreter: Auf dem Intervall [0, 7] ist der Cosinus streng monoton fallend und besitzt eine
Umkehrfunktion arccos : [—1, 1] — [0, 7], Arcus cosinus genannt:

1 3

0.5

0.5 1 15 2 25 3

-0.5

-1
Die Auswahl des Intervalls [0, 7] ist willkiirlich, man
kann z.B. auch das Intervall [m, 27| oder allgemein '
[km, (k+1)7] nehmen und erhilt Umkehrfunktionen,
deren Werte jeweils in diesem Intervall liegen. Die an- 0s
fangs definierte Funktion nennt man auch den Haupt-
wert des Arcuscosinus.

Entsprechend definiert man den Hauptwert des Arcus sinus arcsin : [—1,1] — [—7/2,7/2]

15

0.5

0.5

-0.5
-05
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und des Arcus tangens arctan : R —| — 7 /2,7 /2].

Nach dem Satz [146] sind die Arcusfunktionen im Inneren ihres Definitionsbereiches differen-
zierbar und man erhélt (nachrechnen)
. 1 , -1 , 1
arcsin’' t = ———, arccos' t = ———, arctan’ x =

V1=22 V1—22’ 1422
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8.6 Die Eulersche Formel

Seien a € R\ {0} und y : R — R eine differenzierbare Funktion mit
Y =ay, y(0)=1

Definieren wir §(z) := y(x/a), so folgt
=9, 90)=1

Nach Satz ist also y = exp und damit

ax

y(r) =e

Wir betrachten nun komplezwertige Funktionen und beweisen:

Satz 192 (und Definition). Fs gibt genau eine differenzierbare Funktion y : R — C mit
y =iy, y(0)=1. (70)

Diese Funktion bezeichnen wir mit y : x — exp(ix) = e'®.

Beachten Sie, dass e* = exp x bisher nur fiir reelles Argument definiert war.

Beweis. 1. Eindeutigkeit. Wir nehmen an, dass y die Bedingungen des Satzes erfiillt. Wir
zerlegen y(z) € C in Real- und Imaginérteil:

y(x) = u(z) + iv(z).

Dann sind u,v : R — R differenzierbare Funktionen mit

Diese sogenannten Cauchy-Riemannschen Differentialgleichungen werden Thnen in der Funk-
tionentheorie wieder begegnen. Aus ihnen sieht man, dass u und v sogar beliebig oft diffe-
renzierbar sind, und dass

V' +o=u —u =0, v(0)=0,(0)=u0)=1.
Aus Satz folgt v = sin und u = v’ = cos. Wir haben also gefunden, dass y = cos+isin
und damit eindeutig bestimmt ist.

2. Existenz. Nach dem ersten Teil des Beweises ist die einzige Chance, zu erfiillen, die
Funktion mit
Y 1= cos +isin.
Fiir die gilt aber y(0) =1 und
/

y' = —sin+icos = i(cos +isin) = iy.

Also leistet sie wirklich das Gewdiinschte. O
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Die Bezeichnung exp(iz) oder e** scheint in Anlehnung an den reellen Fall sehr plausibel.
Die resultierende Formel, die sogenannte Fulerformel

e = cosx+z'sinx‘ (71)

kommt dann allerdings iiberraschend! Zum Beispiel liefert sie fiir + = 7 die Beziehung

e = —1.

Immerhin wird die Notation mit der Exponentialfunktion auch durch andere Eigenschaften
dieser Funktion gestiitzt: Aus den Additionstheoremen fiir Sinus und Cosinus finden wir

) = cos(x + ) + isin(z + y)
=cosxcosy — sinzsiny + i(cos x siny + sin x cos y)

= (cosx +isinx)(cosy + isiny) = ee'

Die Funktion e’® bietet die Moglichkeit, Sinus und Cosinus gleichzeitig zu behandeln, und
zwar auf eine sehr einfache Weise. Zum Beispiel kann man sich e(*+%) = ¢i@ ¢ leicht mer-
ken, und die Additionstheorem fiir Sinus und Cosinus durch Umkehrung der vorstehenden
Rechnung daraus ableiten.

Allgemeiner definiert man die komplexe Exponentialfunktion exp : C — C durch

exp(z 4 iy) := e* T := e®(cosy + isiny), x,y € R.

Den tieferen Zusammenhang zwischen Exponentialfunktion und den trigonometrischen Funk-
tionen werden wir spéter mittels der Reihendarstellungen aufkliren, vgl. Abschnitt
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9 Integration

9.1 Das Regelintegral

Das Integral hat mit der Berechnung vom
Flacheninhalt zu tun. Wir betrachten eine
Funktion f : [a,b] — R auf einem kompakten
Intervall. Wir fragen, wie grof3 der Flichenin-
halt unter dem Graphen der Funktion ist:

Wenn die Funktion auch negative Werte an-
nimmt, wollen wir Flichenbereiche unterhalb + +
der Abszisse negativ rechnen:

Dabei muss f nicht unbedingt stetig sein.

Fiir den Fall einer sogenannten Treppenfunktion wie auf der Abbildung unten ist es ganz
klar, wie grof§ der Fldcheninhalt ist: Er ist einfach die Summe von positiv bzw. negativ
gezihlten Rechteckflichen.

Definition 193. Eine Funktion ¢ : [a,b] — R heif8t Treppenfunktion, wenn es eine Zerlegung
Zia=x9g<x1<...<xp,=0b

gibt, so dass
¢

Offenbar sind Treppenfunktionen beschréankt.

Joi 1,2, konstant fiir alle 4 € {1,...,n}.

Es ist klar, dass eine solche Zerlegung Z nicht eindeutig ist, man kann zusétzliche Punkte
einfithren. Wir wollen fiir den Augenblick jede solche Zerlegung eine Treppenzerlegung von
¢ nennen.

Ist & €]xi_1,2;] ein beliebiger Zwischenpunkt, so
ist die i-te Rechteckflache

d(&) (g — xi-1) |

und der gesamte Flicheninhalt ist

n

F=>" (&) (x; — 1)

i=1

Die Differenz x; — ;1 bezeichnet man gern auch mit Ax;. Den Wert F' nennen wir das
(bestimmte) Integral der Treppenfunktion ¢ iiber dem Intervall [a,b]:

/ab 0= /ab“”dx = E 6(:) A
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Bemerkungen.
1. In der Definition des Integrals kommen nur die Funktionswerte ¢(&;) an Stellen
T <& <

zwischen den Teilpunkten x; vor; die Werte an den endlich vielen (potentiellen) Sprung-
stellen x; selbst sind vollig ohne Bedeutung. Offensichtlich ist es egal, wie man die
6 E]!Ez‘,l,.’ti[ wahlt.

2. In die Definition geht nicht nur die Funktion ¢, sondern auch eine Treppenzerlegung
von ¢ ein. Wir miissen zeigen, dass die Definition unabhéngig von der gewé#hlten
Treppenzerlegung ist. Das ist anschaulich ziemlich klar, ein exakter Beweis ist aber
lastig, und wir beschrinken uns auf eine Skizze:

(a) Das Integral dndert sich nicht, wenn man der Zerlegung einen weiteren Punkt
hinzufiigt.

(b) Das Integral éndert sich nicht, wenn man der Zerlegung endlich viele weitere
Punkte hinzufiigt.

(c) Hat man zwei Treppenzerlegungen derselben Funktion, so gibt es eine gemeinsame
Verfeinerung, d.h. Zerlegung, die aus jeder der beiden durch Hinzufiigung von
endlich vielen Punkten hervorgeht.

Daraus ergibt sich dann die Unabhéingigkeit von der Zerlegung.

Die Argumentation beim Unabhingigkeitsnachweis braucht man auch beim Beweis fiir das
folgende

Lemma 194 (Rechenregeln). Die Menge T ([a,b]) der Treppenfunktionen auf [a,b] ist
beziiglich wertweiser Addition und Skalarmultiplikation ein Vektorraum und

/ab:7<[a7b]>w

ist linear. D.h. Summen und skalare Vielfache von Treppenfunktionen auf [a,b] sind wieder
Treppenfunktionen, und es gilt

/ab(mw):/abm/:w,

/ab(cgb):c/abd) fir c € R.

Weiter gilt fir ¢, € T ([a,b])
b b
o< = [o< [

Wegen —|o| < ¢ < |¢| folgt daraus
b b
[ol< [l

LC¢=/ab¢+/bc¢.
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Wie bestimmt man nun den Fldcheninhalt bei ,beliebigen“ Funktionen? Wir betrachten
nur solche, die sich durch Treppenfunktionen gleichmiiflig approximieren lassen. (Den da-
bei auftretenden Begriff der gleichmdfigen Konvergenz von Funktionenfolgen werden wir
im n#chsten Semester ausfithrlicher untersuchen, hier kénnen wir auf eine systematische
Behandlung verzichten.)

Definition 195 (Regelfunktion). (i) Eine Funktion f : [a,b] — R auf einem kompak-

ten Intervall heifit eine Regelfunktion, wenn gilt:

Zu jedem e > 0 gibt es eine Treppenfunktion ¢ : [a,b] — R, die nirgends mehr als ¢
von f abweicht, fiir die also

|f(z) — ¢(x)] < e fiir alle © € [a,b]

oder, anders gesagt,

sup |f(z) — ¢(z)| <€

a<z<b

Insbesondere sind Regelfunktionen wie Treppenfunktionen beschréankt.

Sei f : [a,b] — R eine Regelfunktion. Dann gibt es eine Folge (¢x)ren von Treppen-
funktionen mit

lim sup |f(z)— ¢r(x)] =0.

k_*”agmgb

Die Folge (¢ )ren konvergiert also gleichméBig gegen f. Jede solche Folge nennen wir
eine approximierende Folge von Treppenfunktionen fiir f.

Wir wollen nun das Integral von Regelfunktionen definieren als Grenzwert der Integrale einer
approximierenden Folge von Treppenfunktionen. Dazu beweisen wir:

Lemma 196 (und Definition). Sei f : [a,b] — R eine Regelfunktion und (¢r) eine
approximierende Folge von Treppenfunktionen dazu. Dann ist die Integralfolge

(/ab ¢k($)d$>

keN

konvergent, und der Grenzwert ist unabhdngig von der gewdhlten approximierenden Folge.
Wir bezeichnen thn mit

Lvmmzlﬂ

und nennen ihn das (Regel-)Integral von f iiber [a, b].

Beweis. Sei

€r = sup |f(z) — or(z)].

a<z<b

Dann gilt fiir alle z € [a, b]

|px(7) — d1(2)| < [or(z) — f(2)| + [f(2) — di(2)| < e + &

und daher

b
_ g/ (6 — 1] < (ex + ) (b — a).

/ab¢k—/ab¢l /:(Cbk—(bz)

Nach Voraussetzung ist aber limy_, o €, = 0. Daher gibt es zu jedem € > 0 ein n € N, so
dass fiir alle k,l > N

<(ex+e)b—a)<e

b b
/¢k*/¢z
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Die Integralfolge ist also eine Cauchyfolge und daher konvergent.

Hat man zwei approximierende Folgen (¢x) und (¢)g, so ist auch die Folge (px) mit

P2k = Pk, Pkl = Vi

eine approximierende Folge von Treppenfunktionen. Weil nach dem bereits Bewiesenen
( ff px) konvergent ist, konvergieren auch die Teilfolgen ( f; o) und ( fab 1) gegen denselben
Grenzwert. Das beweist die Unabhéngigkeit. O

Das Integral, das wir hier eingefiihrt haben, das sogenannte Regelintegral, ist einfacher (und
etwas spezieller) als das gebriuchlichere Riemannsche Integral. Es geniigt aber fiir alle prak-
tischen Belange. Und fiir die wichtigen theoretischen Belange braucht man das kompliziertere
Lebesgueintegral. Alle diese Integralbegriffe unterscheiden sich nur durch die Klasse der bei
ihnen integrierbaren Funktionen, und auf dem Durchschnitt dieser Klassen stimmen die
Integrale tiberein.

Die Definition des Integrals durch die Approximation mit stiickweise konstanten Funktionen
ist nicht nur eine mathematische Methode, sie entspricht vielmehr genau der Vorstellung, die
man bei der Modellbildung in vielen Anwendungen hat. Oft ist das Problem dabei genuin
eindimensional und die geometrische Interpretation des Integral als Fliache ganz abwegig.

Beispiel 197 (Von der Summe zum Integral). Bewegt sich ein Punkt entlang einer
Geraden mit konstanter Geschwindigkeit v, so legt er zwischen den Zeitpunkten ¢, und .
die Strecke

s=v-(te — tq)

zuriick. Ist die Geschwindigkeit v = v(t) variabel, so ist die zuriickgelegte Strecke annidhernd

s~ Zv(ti) - At.
i=1
Dabei ist

te — g _ At

to =10 <t1 <... <ty =1, t; —ti—1 =
Den exakten Wert erhilt man, indem man mit immer gréflerem n zum Integral iibergeht:

s = /tte v(t)dt.

a

Dabei haben wir allerdings vorausgesetzt, dass v eine Regelfunktion ist, die durch die Trep-
penfunktionen mit den Werten v(t;) fiir n — oo approximiert werden. Das untersuchen wir
spater genauer.

O
Beispiel 198. Wir berechnen fiir a < b

b
/ exp .
Fiir j,k € Nmit £ > 0 und 0 < j < k definieren wir
n J
T = a+ E(b_ a)

und

exp(wry) fiir ap; <o <apjy1,5 <k,
Or(x) = "
exp(b) fir = b,
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Weil die stetige Funktion exp auf dem kompakten Intervall [a, b] gleichmiiflig stetig ist, gibt
es zu jedem € > 0 ein k € N, so dass fiir alle z,y € [a, b] gilt

b—a
lv —y| < — = |exp(r) —exp(y)| < e.

Also gilt dann fiir alle [ > k
|exp —¢y| < e.

Die ¢y, bilden also eine Folge von Treppenfunktionen, die exp auf [a, b] approximiert. Daher
ist

b b
/ exp(z)dz zlim/ or(x)dx.

Es ist aber

b S b—a b-—ai=

[ ontarin =3 explany) % = 20 S expla+ 70— a)

a ]:0 =0
_b-a kl( b—a)j_b—a 1—(GXP(ZFTG))]€

hon X (en7h) = 5t ente) 0
b—a

_ Tk ) —
_exp(a)exp(b*Ta)—l(eXp(b a)—1)

— exp(a)(exp(b —a) — 1) = exp(b) — exp(a).
O

Die Definition des Regelintegrals fiihrt zu der Frage, wie man denn eine Folge von appro-
ximierenden Treppenfunktionen bekommt. Im vorstehenden Beispiel wurde eine solche auf
einfache Weise konstruiert. Die dabei benutzte Idee 148t sich verallgemeinern, wie wir jetzt
ausfithren.

Definition 199 (Riemannnsche Summen). Sei f : [a,b] — R eine Funktion. Unter einer

Zerlegung Z von [a, b] versteht man {iblicherweise wie oben eine endliche Menge {zg, ..., %, }
mit

a=x0<...<zp=>0 (72)
Wir wollen fiir den Moment darunter aber eine endliche Menge {zg, ..., 2, &1, .., &} ver-

stehen, die aufler den z; mit der Eigenschaft noch Zwischenpunkte &; mit
i € [rio1, i

enthélt. Dann nennen wir
0(Z):= ma T — Ti_
(2) ie{l,.f{,n}( i i—1)
die Maschenweite der Zerlegung und

n

S(f,2) = Zf(fi)(l“i —@i-1)

i=1

die Riemannsche Summe von f zur Zerlegung Z. Sie ist offenbar das Integral einer Trep-
penfunktion.

Wir geben nun ein Verfahren zur Berechnung von Regelintegralen an:
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Satz 200 (Regelfunktionen und Riemannsche Summen). Sei f : [a,b] — R eine
Regelfunktion. Dann gibt es zu jedem € > 0 ein § > 0 mit folgender Eigenschaft: Ist

Z:{an"'axnvgla""gn}

eine Zerlegung mit Maschenweite §(Z) < 6, so ist

b
fl@)de — S(f,2)| <e

Die Riemannschen Summen einer Zerlequngsfolge mit gegen 0 konvergierender Maschenwei-
te konvergieren also gegen das Regelintegral.

Bemerkung. Ist f stetig, so approximieren die mittels der Zerlegung konstruierten Trep-
penfunktionen

(&) firx € [z, @],
¢z(@) = {f(b) fiir = b

f gleichmiiBlig, wenn 6(Z) — 0. Fiir eine allgemeine Regelfunktion f muss das nicht so sein,
wie man an der Funktion mit f(z) := 0 fir 0 < z < 1 und f(1) = 1 sieht, wenn man
immer &, = b = 1 wahlt. Trotzdem konvergieren die Riemannschen Summen gegen das
Regelintegral.

Beweis von Satz|200, Sei ¢ : [a,b] — R eine Treppenfunktion mit Zerlegung
a=39<...< Ty =",

so dass

|f(x) — d(z)| < fiir alle 2 € [a, b] (73)

_°
3(b—a)
und sel &hwi—l;ﬁi[ =g

Sei nun Z eine Zerlegung wie im Satz mit Maschenweite < d, wobei wir iiber § noch verfiigen
werden. Wir setzen

o(x) = f(&) fir o1 < <5,  @(b) = f(b)

und

b(x) == ¢(&) fiir mi_y <z <23, G(b) = f(b).
Dann gilt

x)dx — S(f, 2

™

(74)

Wl m

Zur Abschitzung des verbleibenden Terms ‘ ff(q@ - é)‘ nehmen wir an, dass
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Dann gibt es zu jedem i € {1,...,n} ein j € {0,...,m}, so dass

[zio1,2i] C]Zj-1, %51 (76)
oder
(i1, @] Claj—1, T5] U 25, %] (77)
wobel wir |Z_1,Zo] := 0 =: [T, Tymp1[ setzen.

Im Fall gilt fiir alle z € [x;_1, 2]
3(z) = $(&) = ¢; = d(x)
und _
| wé-a=0 (73)
Im Fall gilt (mit co := c1, Cmy1 ::Ilc:) fiir z € [z;_1, 2]
¢(x) € {cj, b(x;), cj1}

und ebenso R ~ ~
o(x) = (&) € {cj, p(x5), i1}
Also ist dann : R ~
[6(z) — ¢(@)| < 2(1p(x;)| + |ej| + [¢j41]) =: 0.
Wir erhalten | f ¢ $)] < ;6 und mit (78) folgt

b m
/ G-d)<[So]e (79)
a =0

Wihlen wir nun § > 0 so klein, dass gilt und die rechte Seite von kleiner als §
wird, so folgt aus die Behauptung. O

Lemma 201 (Rechenregeln). Die Menge R([a,b]) der Regelfunktionen auf [a, b] ist beziiglich
wertweiser Addition und Skalarmultiplikation ein Vektorraum und

/ab:wa?b])w

ist linear. D.h. Summen und skalare Vielfache von Treppenfunktionen auf [a,b] sind wieder

Treppenfunktionen, und es gilt
/ (f+9) / f+ / 2

/cf —c/f fir c € R.

Weiter gilt fir f,g € R([a,b])

b b
f<g = / fg/ g. (Monotonie)

Ist f € R([a,b]), so auch |f| € R([a,b]) und

<[
Schlieflich gilt fir a < b <c

c b c
/ f =/ f+/ f. (Intervall-Additivitit)
a a b
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Beweis. Wir zeigen nur die Monotonie des Integrals. Die anderen Eigenschaften folgen fast
trivial aus den entsprechenden Aussagen im Lemma [194

Seien (¢r) und (%) Folgen von Treppenfunktionen auf [a, b] mit
1 1
[f=orl <2 lg—tul <.
Dann folgt
2
k7

und mit der Linearitét und Monotonie fiir Treppenfunktionen

/abéka/abilkar/abi/ab¢k+2(bk_a).

Fiir £ — oo konvergieren die linke Seite gegen fab f, die rechte gegen fab g. O

1 1
¢k<f+%§g+g<¢k+

Eine einfache Folgerung ist das

Korollar 202 (Integralschranken). Seien f :[a,b] — R eine Regelfunktion und
m< f(z) <M

fiir alle x € [a,b]. Dann gilt

m(b—a) < / F@)dz < M(b— a).

Beweis. Man betrachtet die Treppenfunktion mit g(x) := m fur alle  und erhélt aus g < f
die linke Ungleichung:

m(b—a):/abg(a:)dxS/abf(x)dx.

Die andere folgt ebenso. O

Korollar 203 (Mittelwertsatz der Integralrechnung). Sei f : [a,b] — R eine stetige
Funktion. Dann gibt es ein & € [a, b] mit

b
16 = 5 [ T,

Beweis. Ist m := min,<,<p f(x) und M := max,<z<p f(x), so gilt nach dem vorstechenden

Korollar .
1
m < b—a/a fl@x)dx < M.

Nach dem Zwischenwertsatz gibt es daher ein ¢ mit

b
1€)== [ fa)da.
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9.2 Regelfunktionen

In diesem Abschnitt sehen wir uns genauer an, welche Funktionen Regelfunktionen sind,
und welche nicht. Zunéchst halten wir noch einmal fest, dass nach unserer Definition Regel-
funktionen

e stets beschrdnkt und

e stets auf einem kompakten Intervall [a, b] definiert

sind.
Definition 204. Fiir eine beliebige Teilmenge M C R nennt man die Funktion
1 firxeM

)=
Xau () {0 sonst

die charakteristische Funktion von M.

Beispiel 205. Die Funktion XQ|[O 1] ist keine Regelfunktion, weil jede Treppenfunktion von
ihr irgendwo einen Abstand > % hat.

O

Das folgende Beispiel zeigt, dass man das Integral von Treppenfunktionen nicht einfach auf
Grenzwerte von Treppenfunktionen erweitern kann. Die gleichmdf$ige Approximation, die
Forderung also, dass es bei beliebig vorgegebenem ¢ > 0 eine Treppenfunktion ¢ gibt, die
nirgends mehr als € von f abweicht, ist sehr wesentlich.

Beispiel 206.

Sei f:[0,2] — R definiert wie folgt:

f..r _ A
f@) = {0 . irx =0, N

(=2)7 fir & <z < 5t

_ _9\J
f—zo( 27X 8, - .
=

Beachten Sie, dass f nicht beschrinkt, also
keine Regelfunktion ist. Sei

k

o = Z(*Q)jx]jy{l]-

=0

Dann gilt

2 N L U e A
| ontorte = Y29 (g - ) - Do =

j=0 J

Deshalb existiert limy_, o f02 ¢ (z)dz nicht. Beschrinkt man sich hingegen auf die Teilfolgen
mit geradem oder ungeradem Index, so existieren die Grenzwerte und sind 1 bzw. 0.

Das ist keine gute Basis fiir die Definition eines Integrals fab f(z)dz.
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Satz 207 (Charakterisierung von Regelfunktionen). Die Funktion f : [a,b] — R ist
eine Regelfunktion genau dann, wenn gilt:

(i) Fir alle x € [a,b] existiert limy 5 f(t) € R und
(i1) fir alle x €la,b] existiert lim; ~, f(t) € R.

Grob gesprochen sind Regelfunktionen also gerade die Funktionen, die an jeder Stelle einen
rechtsseitigen und einen linksseitigen Limes besitzen.

Beweis. Zu (,—>“). Wir zeigen nur (i), der Beweis fiir (ii) geht genauso. Seien x € [a, b]
und (¢,,) und (s,) Folgen in |z, b[ mit

limt, =z =lims,.

Es geniigt zu zeigen, dass dann (f(t,)) und (f(s,)) gegen denselben Grenzwert konvergieren.
Nach Lemma existiert dann limy , f(¢).

Sei also € > 0. Dann gibt es eine Treppenfunktion ¢ mit Treppenzerlegung
a=x9g<x1<...<Tpy =Db,

so dass
|f(z) — ¢(z)] < € fiir alle z.

Sei nun
i1 <z <ux

und sei N € N so gro8, dass fiir alle n > N
r<t,<z;und x < s, < x;.
Dann gilt fiir m,n > N, dass t,, $p €]Ti—1, [, also ¢(t,m) = ¢(s,) und
[f(tm) = f(sn)| < |F(tm) = &(tm)| + | f(sn) — &(tﬁ)j < 2
=(sn)

Wéhlt man zunéchst (¢,) = (sn), so folgt, dass (f(¢,)) eine Cauchyfolge, also konvergent
ist. Dasselbe gilt dann fiir (f(s,)), und die Grenzwerte unterscheiden sich um weniger als
ein beliebiges € > 0, sind also gleich.

Zu (,<=*). Wir beweisen das indirekt. Sei ¢ > 0. Wir nehmen an, dass es keine Treppen-
funktion ¢ gibt, fiir die
|f(z) — ¢(2)] < € fur alle x € [a, b].

Wir wollen das zum Widerspruch fithren. Wir halbieren das Intervall [a, b] und finden, dass
es auf (mindestens) einer der beiden Hélften, wir nennen sie [a1, b;1], keine Treppenfunktion
¢ gibt, fiir die

|f(z) — ¢(x)] < € fiir alle x € [aq, by].

Durch Fortsetzen dieses Verfahrens erhalten wir eine Intervallfolge
[a,b] D [a1,b1] D [az,b2] O ...,
so dass fiir keine Treppenfunktion ¢ und kein n

|f(z) — ¢(x)] < e fiir alle © € [ay, by].
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Weil ay, € [an, by] fiir m > n, ist |a, — am| < %52 und (a,) deshalb eine Cauchyfolge. Diese

ist konvergent gegen ein x € [a,b]. Offenbar gilt auch b,, — x. Wir wollen annehmen, dass
x €la,bl.
Die Fille x = a oder x = b gehen analog.

Wir setzen
J-(@) = lm f(1),  fi(2) = lim f(2).
Dann gibt es § > 0, so dass
]xié»m+6[c [aab]v

und

|f(t) — f-(x)] <€ fir alle t €]z — §, 2],
[f(t) = f+(z)] <€ fir alle t €]z, z + ]
Sei n € N so grof3, dass
[an, by] Clz — 6,2+ 0].
Definiere eine Treppenfunktion ¢ : [ay,, b,] — R durch

f-(x) fallst € [an,by]N] — oo, 2],
o) =1 f(z) fallst =z € [an, by,
fi(z) fallst € [an, by])N]|z, +00[.

Dann gilt auf [a,, b,]
[f(t) = o(t)] <
Widerspruch! O

Beispiel 208. Stetige Funktionen sind Regelfunktionen.
O

Beispiel 209. Monotone Funktionen sind Regelfunktionen. Sei n#mlich ¢ : [a,] — R
monoton, etwa monoton wachsend, und sei z €]a,b]. Dann ist die fiir hinreichend grofie k
definierte Folge (g(z — 1)) ey monoton wachsend und durch g(a) bzw. g(b) beschrénkt. Sie
ist also konvergent gegen einen Wert L. Seien ¢ > 0 und (¢,) eine Folge in [a, z[ mit ¢, " z.
Dann gibt es ein k mit

1
L*E<Q(IL‘*E)§L

unddazueinNQNmitx7%<tn<xﬁirallen2N.

Fir alle n > N ist dann .
L—-e<g(x— %) < g(tn).

Andrerseits gibt es zu jedem n ein m € N mit ¢, < z — %, also

g(tn) <g(r— E) < L.

Das zeigt lim,, .o g(t,) = L. Daraus folgt lim; -, g(t) = L.

Ebenso zeigt man fiir € [a,b] die Existenz des rechtsseitigen Grenzwertes. Aus Satz
folgt dann, dass g eine Regelfunktion ist.

O
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Definition 210 (Stiickweise Stetigkeit und Monotonie). Wir nennen f : [a,b] — R
stiickweise stetig bzw. stiickweise monoton, wenn gilt: Es gibt eine Zerlegung

a=x0<x <...<x, =0,
und stetige bzw. monotone Funktionen
fitlwic, ] >R, ie{l,...,n}
so dass fiir alle i € {1,...,n} gilt

f|]xi_1,zi[ = fil]xi_l,zi [»

/1 AN _—

X

i l
_ X
a=x, \\ 3 b 4

Bemerkung. Die Definition ist subtil: Wenn man verlangt, dass f|[;,_, ] fiir alle 4 stetig
ist, dann ist f auf ganz [a, b] stetig. Verlangt man nur, dass f|j,, , o, fiir alle 4 stetig ist,
so treten auch unbeschrinkte Funktionen wie tan : [0, 7] — R (mit beliebigem Wert in 7/2)
auf. Beides ist nicht in unserem Sinne.

| I
x

Satz 211 (Bequemes Integrierbarkeitskriterium). Stickweise stetige und stickweise
monotone beschrinkte Funktionen sind Regelfunktionen.

Beweis. Das folgt aus den Beispielen und denn unmittelbar aus der Definition der
Regelfunktion ergibt sich:

e Ist f|[z,_, .z, fiir jedes der endlich vielen Intervalle [z;_1, x;] eine Regelfunktion, so ist
f eine Regelfunktion.

e Sind f, f; : [x;—1,2;] — R zwei Funktionen, die auf dem offenen Intervall |z;_1, ;[
iibereinstimmen, und ist f; : [x;—1, 2;] — R eine Regelfunktion, so ist auch die Funktion
f i [®i—1, 2] — R eine Regelfunktion.

O

Die meisten beschrinkten Funktionen, die man iiber ein kompaktes Intervall integrieren
,mochte, fallen unter diesen Satz.
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9.3 Numerische Integration

Wir werfen in diesem Abschnitt einen kurzen Blick auf numerische Integrationsverfahren.
Im Prinzip ist die Approximation durch Treppenfunktionen ein brauchbares numerisches
Verfahren, das im Grenzwert ja sogar gegen den genauen Wert konvergiert. Aber dafiir muss
man natiirlich (unenendlich) viele Treppenfunktionen berechnen und summieren. Fiir die
schnelle nidherungsweise Berechnung bestimmter Integrale verwendet man die Approximati-
on durch andere, ,,genauere“ Funktionen, die sich aber auch noch gut beherrschen lassen:

Trapezregel. Eine erste Niaherung fiir f; f(z)dx ist

b
b
/ flz)dz ~ M (b—a).
Der Ausdruck rechts ist gerade der Flicheninhalt des Trapezes, welches entsteht, wenn
wir den Graphen der Funktion durch die Sekante zwischen den Endpunkten (a, f(a)) und
(b, f(b)) ersetzen.

Diese Regel kann man auch mehrfach anwenden, in- Die Fiéche der zwei roten Trapeze
. . . . ist gleich der der vier Rechtecke.

dem man [a,b] in n gleiche Teilintervalle der Linge

h = b_Ta unterteilt, fiir jedes Teilintervall die Trapez-

regel anwendet und summiert. Man erhélt

b n—1
/a f(x)dx zg (f(a)+f(b) +2Zlf(a+z‘h)> )

Simpsonregel. Statt den Graphen von f : [a,b] — R durch eine Gerade, nimlich die
Sekante zu ersetzen, kann man ihn auch ersetzen durch einen Parabelbogen durch die Gra-
phenpunkte zu a, ‘”2'(’ und b. Die entstehende Flache, die die gesuchte vermutlich besser
approximiert als das Trapez, 148t sich explizit berechnen. Wie, geht aus dem néchsten Ab-

schnitt hervor. Es folgt

[ e~ (s s+ a5 Y).

Auch diese Regel kann man mehrfach anwenden. Man unterteilt [a,b] in eine gerade Anzahl

2n von Teilintervallen gleicher Lange h = 1’2_71 2 und wendet auf jedes ungerade Teilintervall

und das folgende gerade die Simpsonregel an. Man erhélt

b n n—1
/a flx)da ~ g (f(a) + f(b) + 4; fla+ (2 —1)h) +2 Zl fla+ 2m)> .

Fiir subtilere Verfahren der numerischen Integration, z.B. fiir das Romberg-Verfahren,
schauen Sie in bessere Formelsammlungen.

Mathematische Software wie Mathematica, Maple oder Derive haben Programme zur sym-
bolischen Integration wie zur numerischen Integration. Die letzteren beruhen auf solchen
Verfahren. Mathematica liefert zum Beispiel

O 1 .
/ e 2 dr = 0.47725.
—2 21
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9.4 Das unbestimmte Integral

Wir kommen nun zum Zusammenhang zwischen Integration und Differentiation, der fiir die
explizite Berechnung von vielen Integralen iiberaus niitzlich ist.

Wir betrachten dazu eine Regelfunktion f : [a,b] — R und fiir eine variable obere Grenze
x € [a,b] das Integral

P = [ f= / " feyat. (30)

In Abhéngigkeit von = definiert das also eine neue Funktion F': [a,b] — R, die man auch
das unbestimmte Integral oder die Integralfunktion von f nennt. Wir versuchen F' zu diffe-

. B " z+h z
F( +h})b Fr) _ % (/a f(t)dtf/a f(t)dt>

(/ F(t)dt+ /zm F(t)dt /x f(t)dt)
’héﬂhf@Mt

Bemerkung. Diese Rechnung gilt zunéchst nur, wenn i > 0. Offenbar ist es hilfreich, auch

1
h
1

Integrale fab f(z)dz zuzulassen, bei denen nicht a < b ist.

Definition 212. Seien b < a und f : [b,a] — R eine Regelfunktion. Dann definieren wir

/aa f(x)dz =0 und /abf(x)dx = /baf(x)d;z:.

Mit dieser Definition bleibt die vorstehende Rechnung auch mit h < 0 richtig. Sie bleibt auch
richtig, wenn f : J — R auf einem Intervall oder einer offenen Teilmenge von R definiert ist
und a,z,x + h € I beliebig sind.

Zur Vereinfachung der Notation nehmen wir im weiteren aber an, dass h > 0 ist.

Wenn wir voraussetzen, dass f stetig ist, so gibt es nach dem Mittelwertsatz fiir Integrale
Korollar ein £ €]z, x + h[ mit

Uber ¢ wissen wir zwar nichts Genaueres, aber fiir h — 0 geht es jedenfalls gegen x. Daher
ist fiir stetiges f das unbestimmte Integral F' differenzierbar und hat f als Ableitung:

P = I Flz + hf)L — F(x)

= f().

Definition 213 (Stammfunktion). Seien J C R ein nicht-triviales Intervall oder eine
offene Teilmenge und f, F': J — R zwei Funktionen. Dann heifit F' eine Stammfunktion von
f, wenn F : J — R differenzierbar ist und F’ = f gilt.

Jede stetige Funktion f :J — R auf einem Intervall hat also eine Stammfunktion, ndmlich

F(x):= /$ ft)de.

Das bedeutet aber nicht, dass Sie immer eine Stammfunktion ,,explizit“ hinschreiben kénnen.
Und es gibt Funktionen, die keine Stammfunktion besitzen:
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Beispiel 214. Die sogenannte Heaviside-Funktion f =Y : R — R mit Y (z) := 0 fiir < 0
und Y (z) := 1 fiir > 0 hat keine Stammfunktion. Sonst miisste sie nach dem Satz von
Dini ndmlich den Zwischenwertsatz erfiillen, was sie offenbar nicht tut.

O

Den folgenden Satz haben wir damit im wesentlichen schon bewiesen:

Satz 215 (Hauptsatz der Differential- und Integralrechnung). Sei f : J — R stetig
auf dem Intervall J und sei a € J. Dann gilt

(i) Die Funktion F :J — R mit )
F(z):= /l flt)de
ist eine Stammfunktion von f. D.h. F ist differenzierbar und
F'(z) = f(z).
Insbesondere besitzt jede stetige Funktion auf einem Intervall eine Stammfunktion.

(i) Die Funktion G : JJ — R ist genau dann eine Stammfunktion von f, wenn

G(z) = /x f(&)dt 4 const. = /91 f@®)dt + G(a).

Insbesondere ist dann also fir a,b e J

b
/ FO)dt = Gb) — Gla) = Ga)1.

(Beachten Sie, dass das auch fir b < a gilt.)

Beweis. Zu (i). Bereits bewiesen.

Zu (ii). Ist G eine Stammfunktion, so ist
(G-F) =G -F'=f-f=0,
also nach dem Konstanzkriterium G = F + const.

Umgekehrt ist F' 4 ¢ fiir jede Konstante ¢ natiirlich eine Stammfunktion. O

Der Satz hat phantastische Konsequenzen: Nehmen Sie an, Sie sollen foﬂ sin zdx berechnen.
Dann miissen Sie den Sinus immer feiner durch Treppenfunktionen approximieren, die In-
tegrale der Treppenfunktionen ausrechnen und fiir diese den Grenzwert bei , beliebig guter
Approximation* berechnen.

Oder Sie erinnern sich daran, dass cos’ x = —sinz, also G(x) = — cos « eine Stammfunktion
von f(z) = sinz ist. Daher ist nach dem Hauptsatz

/ sinzdr = —cosm — (—cos0) =1+1=2.
0

Keine Unterteilungen, keine Riemannsche Summen, keine Grenzwerte! Und es funktioniert
fiir alle stetigen Funktionen, fiir die wir Stammfunktionen kennen!
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Bemerkung zur Notation. Aus den nun ersichtlichen Griinden schreibt man oft

G(z) = /f(x)dx + const.,

wenn G eine Stammfunktion von f ist. Es ist hilfreich, dabei immer eine Integrationskonstan-
te zu notieren. Sonst erhilt man z.B. —cosz = [ sinzdz = 23 — cosz, weil G(z) = —cosx
aber genauso gut auch H(x) = 23 — cosz Stammfunktionen von sinz sind.

Beispiele.
b 5 dr
/ e®dr = e*|b = b —e?, — =In5—-Inl=1In5,
a 1
b booq
/ sinzdr = — cosz|® = cosa — cosb, / 1522 dx = arctan b — arctan 0 = arctan b,
a 0 T

ZL,oHrl b
(e . .
/x dx = o + const. fir a # —1, dx = arcsin x|,

|
/a V1— 2

2 anrl

2 n L
dr = —+...
/(ao+a1x+a2x +...+apz)dx aox +ar— + +ann+1

—+ const.

Mathematische Software mit der Féhigkeit zum symbolischen Rechnen bietet auch die
Moglichkeit, unbestimmte Integrale zu berechnen. Hier ein paar Zeilen Mathematica

In[1]:= [ 2® sin® zdz
Out[l}:% — 1z cos(2z) — L(2® — 1)sin(22)

In[2]:= [ sin(z”) dz

Out[2]=/F FresnelS(\/gm)

Wiihrend das erste Ergebnis sofort verstéindlich ist, bedarf das zweite einer Erklirung: Die
Funktion sin(z?) besitzt keine Stammfunktion, die sich mit ,,elementaren“ Funktionen aus-
driicken ld8t. Das Ergebnis ist vielmehr ein sogenanntes Fresnelintegral, eine Funktion, die
definiert ist durch die Gleichung

mt?

FresnelS(z) :/ sin(—)dt.
0 2

Das zweite Ergebnis ist also mehr oder weniger nur eine Umformung mittels der Substitu-
tionsregel, die wir im néchsten Abschnitt kennenlernen.

Das Fresnelintegral spielt eine Rolle in der geometrischen Optik. Die Werte bekommt man
wie die Werte des Sinus (fiir die man eigentlich auch den Grenzwert einer Potenzreihe be-
rechnen muss) zum Beispiel vom Rechner geliefert:

N{FresnelS[1.5],7] o
0.697505 .
Plot[FresnelS[x],{x,0,4}] 02

Ein wesentlicher Unterschied zwischen der Sinusfunktion und dem Fresnelintegral ist, dass
viele Eigenschaften des Sinus einfacher zu beschreiben sind, zum Beispiel die Lage der lokalen
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Maxima. Auch hat man eine Fiille von Identitéiten, die den Sinus mit anderen Funktionen
verbinden.

Beispiel 216. Die Funktion % besitzt auf ]0, +oo[ die Stammfunktion Inz. Und auf dem
Intervall | — 00, 0] ist offenbar In(—=x) eine Stammfunktion, denn die Ableitung ist nach der
Kettenregel - (—1) = 1. Also ist In || eine Stammfunktion von 1 auf R\ {0}:

1
In|z|) = .
(Ina)’ =

O

Beispiel 217 (Ein Existenzbeweis fiir die Exponentialfunktion). Die Funktion %
besitzt auf |0, +o0o[ die Stammfunktion

T dt
€T — —_—.
1 t
Wir definieren
T dt
AMz) = —.
1 t

Weil A differenzierbar, insbesondere also stetig ist, ist A(]0, +00[) ein Intervall. Aus

2 1 1
a ok+1l _gky _ 1
/Qk |2 2k+1( ) 2’

folgt

ARM) = A28 + %

und daraus lim, o, A(z) = +00. Ebenso schlieft man aus
Fodt 1 1 1
2> [ W
/# t =2 (Qk 2k+1) 2’
SFF1

dass limg\ o A(z) = —oo und damit A(]0, +oo]) = R.
Die Umkehrfunktion f := A~ : R —]0, +oo[ ist differenzierbar und es gilt

PN SRS B
f(l’) )\’(f(:c)) - f(1z) f( )

SchlieBlich ist A(1) = 0 und deshalb f(0) = 1. Also erfiillt die Umkehrfunktion f von A die
definierenden Gleichungen fiir exp, vgl. Satz[154]

O

Bemerkungen. 1. Die Untersuchungen in diesem Abschnitt betreffen die Integration steti-
ger Funktionen. Auch unstetige Funktionen kdnnen Stammfunktionen besitzen, aber es ist
nicht klar, dass man die dann zur Berechnung des Integrals benutzen kann!

2. Wie beim Beispiel des Fresnelintegrals angedeutet, lassen sich die Stammfunktionen auch

. . . . . 22 1 sin ¢ . .
relativ einfacher Funktionen (zum Beispiel e=*" T und andere) nicht mit den aus

x
der Schule bekannten elementaren Funktionen ausdriicken. Eine prazise Formulierung dieses

Sachverhaltes und ein Beweis dafiir stammen von Joseph Liouville1834/35. Wir sollten dieses
Ergebnis positiv sehen: Die Integralrechnung liefert uns Wege zur Gewinnung vollig neuer
Funktionen.

134



9.5 Integrationsregeln

Der Hauptsatz der Differential- und Integralrechnung erméglicht die Berechnung von Inte-
gralen stetiger Funktionen mittels Stammfunktionen auf sehr elegante Weise, wenn man
eine Stammfunktion kennt. Und weil wir frither eine Menge Funktionen differenziert haben,
kennen wir fiir eine Menge von Funktionen auch die Stammfunktionen. Aber leider fiir viele
Funktionen auch nicht: Was ist [ " dz oder [ V1 —x2da?

Wir wollen im folgenden einige Regeln kennen lernen, die uns helfen koénnen, Integrale
komplizierterer Funktionen auf einfachere zuriickzufithren. So wie einem die Rechenregeln
der Differentialrechnung, insbesondere die Produktregel und die Kettenregel geholfen haben,
kompliziertere Funktionen zu differenzieren, ohne jedesmal wieder Grenzwerte von Differen-
zenquotienten auszurechnen.

Allerdings ist die Situation bei der Integration nicht so angenehm, wie bei der Differentia-
tion, weil es eben fiir die Integration von Produkten und geschachtelten Funktionen keine
oder keine einfachen Formeln gibt. Wenn man eine Stammfunktion von e® und eine von 2
kennt, kann man leider keine von e®” hinschreiben, vgl. die Bemerkung am Ende des letzten
Abschnitts..

Die hier zu besprechenden Integrationsregeln kommen von der Kettenregel und Produktregel
der Differentialrechnung, sie sind aber keine ,,Integral-Ketten-“ oder ,,-Produktregel .

Substitutionsregel. Seien f : [a,b] — R stetig und ¢ : [, 3] — [a, b] stetig differenzierbar.
Die Funktion F' sei eine Stammfunktion von f. Dann gilt nach der Kettenregel

d

Fle®)p(t) = F'p(t)e(t) = -

F(e(t))-
Aus dem Hauptsatz der Differential- und Integralrechnung folgt deshalb
ﬁ .
/ fle(®)@)dt = F(p(B)) — Flp(a))

Andrerseits ist wieder nach dem Hauptsatz F(o(3)) — F(¢(a)) = f;’}(f)) f(z)dx. Zusammen-
gefafit ergibt sich:

Satz 218 (Substitutionsregel). Seien f : [a,b] — R stetig und ¢ : [, f] — [a,b] stetig
differenzierbar. Dann gilt

5] »(8)
/ Fo(t)p(t)dt = / f(z)dz. (s1)
e! p(a)

Die Anwendung geschieht oft so: Gesucht ist das Integral f: f(z)dz, wobei einem fiir f keine
Stammfunktion einfillt. Dann versucht man, eine Funktion ¢ : [o, 3] — [a,b] mit ¢p(a) =a
und ¢(8) = b (oder () = b und p(F) = a) zu finden, so dass man fiir die (oft nur scheinbar
schwierigere) Funktion f(¢(t))¢(t) eine Stammfunktion raten kann.
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Beispiel 219. Gesucht ist f_ll V1 — 22dz. Wir wihlen ¢ =sin : [-5, 5] — [-1,1]:

1 3
/ \/1—x2dx:/ \/1—sin2tcostdt:/ cos? tdt
1 _ _

(M)

[ME)

£ 1.1 B
:/,1 §(C082t+1)dt: 5 (isin2t+t) .
2 2

1 T

Beachten Sie, dass im Intervall | — 7, 7 [ wirklich /1 — sin?t = + cost, weil der Cosinus dort
nicht-negativ ist.

Geometrisch haben wir die halbe Fliche des Einheitkreises berechnet.

Fiir r > 0 erhélt man mi 90(15) = rsint ebenso
/ 1 2
7"2 - $2d$ = r

und findet 72 fiir die Kreisfliche.

O

Man setzt also fiir  eine Funktion ¢(¢) ein. Daher der Name ,,Substitutionsregel“. Dabei
muss man die Grenzen des Integrals natiirlich auf ¢ umrechnen. Die Kunst ist es, ,die
richtige* Funktion ¢ zu finden. Aber natiirlich gibt es nicht immer eine solche Funktion, die
einem wirklich weiterhilft.

Wenn man voraussetzt, dass ¢(a) = a und ¢(8) = b ist, und wenn man ¢(t) = z(f) und

P = (fi—f schreibt, sieht die Substitutionsregel so aus:

/ ' fla)r = / " pat) ™ ae.

Abgesehen von den Grenzen sieht das so aus, als héitte man einfach mit % erweitert”, und

so kann man sich die Regel auch merken. Es steckt eben die Kettenregel dahinter, die man
ja auch vereinfacht schreiben kann als % = % ‘fl—f.

Héaufig sieht die Anwendung der Substitutionsregel in der Praxis etwas anders aus. Wir
erlautern das im nédchsten Beispiel:

Beispiel 220. Gesucht ist fol (5;%)3. Wir versuchen, den komplizierten Term (5z + 2)% im
Nenner durch ¢2 zu ersetzen, wobei ¢ dann natiirlich von 5-0 4+ 2 = 2 bis 5+ 2 = 7 lduft:

/1 dr _ /7 dﬁ
o Gz +2)3  Jp 37

Der Ausdruck rechts ist etwas konfus, weil er x und ¢ enthélt. Die Integralgrenzen beziehen
sich auf ¢, darum haben wir das an der unteren Grenze vermerkt.

Durch Differenzieren von ¢ = 5z + 2 erhélt man

dt dt
%:57 alsodx:€, (82)
und daher
1 "1 17 1 -1 1,1 1
/dix:/ fﬂ:,/ @:,7 = —(5— ). (83)
o Gz+2P® ), 85 5 ), 8 5 22|, 104 49
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Warum darf man so rechnen? Insbesondere die Gleichung scheint fragwiirdig. Aber mit
der richtigen Interpretation ist die Sache vollkommen in Ordnung: Die Substitution

t=25r+3
bedeutet, dass wir nicht ¢, sondern erst einmal ~! definieren
t=¢ Yz)=5x+3.

Wichtig ist, dass dies eine tnvertierbare Funktion ist, so dass es ¢ wirklich gibt. Nach der

Substitutionsregel muss man dann noch dz ersetzen durch d‘p dt. Aber nach dem Satz {iber
die Ableitung der Umkehrfunktion ist
1
./
Y =T
(1)
an den entsprechenden Stellen. Wenn wir also ¢ = 22 und (o~

dt
wir (52), (53).

by = j—; schreiben, erhalten

O

Wenn man in einem Integranden einen z-Term, den man loswerden will, durch ¢ ersetzt
verbleibt dz, das man wie oben ersetzt Dazu benutzt man die Formel fiir die Ableitung der
Umkehrfunktlon braucht also nur <¢. Aber oft verbleiben noch weitere z-Terme. Um auch
diese durch t auszudriicken, muss man im allgemeinen ¥ (z) = t doch noch explizit nach
auflésen. Manchmal aber hat man Gliick, und x kiirzt sich ,,von selbst“ heraus.

Beispiel 221.
/4 /4 s V2/2
/ tan xdx = / S de = / S dx
0 0 COsS T [t=cosz] Ji—1 t

Beachten Sie die Grenzen. Nun ist

di sinx
— = —si
dx ’
und daher
e V22 sing 1 v/ gy n2
/ tanxdw:/ L dt:f/ —dt = +1nt|1ﬁ/2:n—.
0 =1 t sinx =1 t 2

Man kann aber auch Pech haben:

Beispiel 222.
1
/em2dx = / —dt /e—dt
0 [z2=t]

Damit hat man leider nichts gewonnen, und in der Tat ist dieses Integral mit elementaren
Funktionen nicht zu l6sen.

O

Beispiel 223. Wir berechnen foﬂ sinzdx = 2 nicht direkt, sondern mit der Substitution
sinz = t, also j—; =cosz =1 —t%

/ﬂ inzd /Ot L _gi=o0
sinzdr = ——dt =0,
0 [sinz=t] Jq v1-— 12

weil die obere und untere Integrationsgrenze gleich sind. Wo steckt der Fehler?
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Man kann die Substitutionsregel auch zur Berechnung unbestimmter Integrale (= Stamm-
funktionen) benutzen. Sucht man eine Stammfunktion fiir f(x) und findet eine, ndmlich
G(t), fir f(e(t))@(t), und ist G(t) = F(p(t)), so ist F' eine Stammfunktion von f. Man
kann also substituieren, das unbestimmte Integral berechnen und muss dann anschliefend
die Transformation z — ¢ wieder riickgéingig machen, d.h. ¢t wieder durch x ausdriicken.
(Dabei sollte ¢ eine eineindeutige Funktion sein.)

Beispiel 224. Zur Berechnung von [ v/1 — 22 dz substituieren wir x = sint:
/\/1 —22dx = / V1 —sin*tcostdt = /COSQtdt
1 1.1 .
= 5(008 2t + 1)dt = 5(5 sin 2t + t) 4 const.
1, . 1 .
= i(smt cost +t) + const. = §(x 1 — 22 + arcsin x) + const.

Die Rechnung scheint ein wenig ,groBziigig®. Ist wirklich v/1 —sin?¢t = cost? Oder ist es

= —cost? Wenn wir davon ausgehen, dass —1 < z < 1, weil sonst der Integrand nicht reell

ist, konnen wir fiir den Sinus das Definitionsintervall —7 < ¢ < 7 nehmen. Dort ist der

Cosinus dann positiv und der Arcussinus ist auch definiert. Zur Probe (und zur Ubung)
kann man natiirlich die rechte Seite differenzieren.

O
Partielle Integration. Seien u, v : [a,b] — R differenzierbar mit stetigen Ableitungen. Aus

der Produktregel
(uwv) = v'v + ur’

und dem Hauptsatz der Differential- und Integralrechnung folgt dann

()|t = / @yl + / " ) (2)d.

Das schreiben wir in der Form

/ab o (x)v(z)de = (uw)|® — /abU(x)v’(x)da;,

und nennen es die Regel der partiellen Integration (= Integration nach Teilen). Natiirlich
hat man wieder eine entsprechende Formel fiir die unbestimmten Integrale

/u'(a:)v(x)da: =uv — /u(m)v'(w)daz + const.

Beispiel 225. Wir wollen f: xe®dx berechnen. Wir versuchen den Ansatz

U =zx,0=ce".

Dann ist u = %xQ, v’ = e” und die partielle Integration liefert

b

/b vdp = (La2en) /1“d
al‘e X = 2:66 a 21‘6 Z.

a

Das hat nichts gebracht! Wir versuchen nun



Dann bekommen wir u = ¢%,v’ = 1 und
b b
/ ze®dr = (ze®)|® —/ e’ = ((z — 1)ex)|z

O

Beispiel 226. Mit einem hiibschen Trick kann man das Integral von Inx berechnen: Wir

setzen v’ = 1,v = Inz und erhalten mit u = x,v’ = %:

/lnxdx:xlnw—/1d:r:x(1n:v—1)—|—const.
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9.6 Erginzungen zur Integration

Die geschickte Anwendung der Integrationsregeln zum ,,Knacken“ von Integralen ist eine

Kunst, es gibt dafiir keine Rezepte. Mittlerweile sind aber die Computerprogramme kaum

noch zu schlagen, siehe nachstehendes Beispiel. Wenn man erfolglos ist, kann das verschie-

dene Griinde haben: Moglicherweise findet man nicht den richtigen Trick, moglicherweise ist

aber das Integral auch nicht durch eine elementare Funktion 16sbar, sondern definiert eine

neue Funktion, wie wir es oben beim Fresnelintegral gesehen haben. Andere Beipiele sind
T T

die elliptischen Integrale. Auf ] — 7, 7 [ hat man

/ V1—sin’zdr = /COS xdxr = sinx + const.

Das ist einfach. Aber fiir k2 # 1 liefert
/ 1 — k2sin® z de

ein sogenanntes elliptische Integral, das eben nicht durch die elementaren Funktionen zu
beschreiben ist.

Beispiel 227 (Integrale mit dem Rechner). Hier sind die meisten der obigen Beispiele
noch einmal vom symbolischen Integrationsprogramm gelGst:

In[1] := Integrate[Lm z]
. (1 + Cos[z]?)’ In[7] := Integrate[\/1 — 2, z]
1 .
Out[2] = —Log[Cos|[z]] + §Log[3 + Cos[2z]] Out8] = %x a4 %m[x]
In[3] := Integrate[ﬁ, ] In[9] = Integrate[zExp[z], x]
z—
1 Out[10] = E* (-1 + )
Outid] = —————
(10(—2 + 5z)?
In[5] := Integrate[Cos[z]?, z, 0, 7/2] In[11] = Integrate[Log[z], z]
Out[12] = — L
Out[6] = ™ ut[12] x + zLog[z]
4
0.6
0.4
In[13] = Integrate[y/1 — k2Sin[z]?, z] 0.2
Out[14] = E(z|k?)
06 04 02 02 04 06
In[15] := Plot[EllipticE[z, 2], {, _7” g}}; 02
0.4
0.6
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9.6.1 Elliptische Integrale
Wir gehen in diesem Abschnitt kurz auf die schon angesprochenen elliptischen Integrale ein.
Beispiel 228 (Elliptisches Integral und Ellipse). Die Abbildung

(z,y) : [a,0] = R%, t e (a(t), y(1))

beschreibt eine Kurve in der Ebene. Zum Beispiel liefert x(t) = asint,y(t) = bcost mit
a > b > 0 eine Ellipse mit den Halbachsen a und b. Die Lange der Kurve ist approximativ

S| (i) - Gl =] Gl a) - Gl
=Y V@t + Aty) — x(6:)? + (y(ts + Ati) — y(t:))?
¥ \/ k80 ) (uCek B0yl o,

(At;)?
- / NEIOESHOMN

wenn man voraussetzt, dass x und y stetig differenzierbar sind. Unter dieser Vorausetzung
ist also

b
L:= / V(L) + 93(t)

eine verniinftige Definition fiir die Lange der Kurve. Fiir die Ellipse ergibt sich ein Integral
von der im obigen Beispiel aufgetretenen Form:

2 2 2m a2 —
\/a26082t+bzsin2tdt:/ \/@2—(a2—b2)sin2tdt:a/ \/1—
0 0

b2
5 sin® ¢ dt.

0

O
Definition 229. Fiir 0 < k£ < 1 definieren wir

e das vollstandige elliptische Integral 1. Art als

/2 dt
Ko = [ =
0 vV1—k%sin“t

e das vollstédndige elliptische Integral 2. Art als
/2
k) = / V1 — Ek2sin® t dt.
0
Fiir reelles ¢ definieren wir weiter

e das unvollsténdige elliptische Integral 1. Art als

) _/¢ dt
0 1— k2sint

e das unvollstéindige elliptische Integral 2. Art als

¢
) :/ V1 — k2sin? ¢ dt.
0
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Der Umfang der Ellipse mit Halbachsen a > b > 0 ist also gegeben durch

a2 — b2

a2

L=4aE(k), k:=

k heiflt die Fzzentrizitit der Ellipse.

Das elliptische Integral K (k) ist schwieriger geometrisch zu interpretieren, physikalisch ist

T = 4ﬁK(Sin %)

die Schwingungsdauer eines Pendels mit Amplitude «.

K (k) ist sehr gut numerisch zu berechnen und hilfreich bei der numerischen Berechnung von
E(k). Darauf gehen wir jetzt noch ein, weil die Rechnung noch mehrmals die Substitutions-
regel demonstriert und das Ergebnis so iiberraschend und hiibsch ist.

Fiir a,b > 0 definieren wir

/2 dt
F(a,b) = / .
0 \/a2 cos2t + b2sin? ¢

Mit der Substitution ¢ = § — 7 zeigt man

F(a,b) = F(b,a) (84)

und mit der Substitution t = 7w — 7, dass

g dt
Fa)= [ __
/2 \/(12 cos?t + b%sin”t

also

1 /" dt
F(a,b) := - / .
2 Jo va2cos?t + b2sint
Weiter folgt sofort
K(k) = F(1,7/1—k2), (86)

so dass ein Berechnungsverfahren fiir F' auch eines fiir K liefert.

Wir mochten in der Formel fiir F' die Substitution

a
tant = \/7 tanwu
b
s

machen. Auf [0, 5[ ist der Tangens streng monoton, also injektiv, und wenn wir uns an
1

/I __ 2 _
tan —1—|-tan = os?

1 dt a 1 a cos’t
—— =y — d dt = /- ——du.
cos?t du \/;coszu oder \/;COSQU b

Weil der Tangens in 7 nicht definiert ist, wéhlen wir ¢ €]0, 5[ und definieren ¢ €0, 5[ durch

tan ¢ = \/g tan .

erinnern, finden wir
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Dann liefert die Substitutionsregel:

/¢
0 acosty/1 2tan2t

/w cos“ t du
0 abcostcos?u 1—|—7tan U

/w costdu
0 bcosQUQ/l—i—btan U

[ et
0 VaZcos?t + b2sin®t

_/ du
0 \/@COSQu\/l—l-gtanQu\/lﬁ—%tanzu
du

\/acoszu—l-bsinQu\/bcos2u—|—asin2u

Nun sind die Tangens-Terme wieder verschwunden, und wir kénnen den Limes fiir ¢ — 5

bilden. Weil das unbestimmte Integral einer stetigen Funktion differenzierbar, insbesondere
also stetig ist, und weil

b
lim = lim arctan \/>tan ==
p—m/2 w p—m/2 ( a QS)
ist, folgt
d
a,b) = / Y
0 \/ bcos? u + asin® u)(acos?u+b sin? u)

/ du
\/ab cost u + sin u) + (a2 4 b2) cos? usin® u

/ du
\/ .2\ 9 . 9

ab(cos? u — sin” u)? 4 (a + b)? cos? usin® u
du 1dt

/0 \/abCOS22u+(a;) sin? 2u "~ t/ \/abcosgt—i— a1b)2 gin? ¢

:/ 3 . :F(\/%,%) :F(a; ,\Vab).
0 \/\/@ cos2t + (2£2)2sin’ ¢ ()

Also haben wir

Lemma 230.

F(a,b):F<“;rb,\/%>.

F(a,b) dndert sich nicht, wenn man a und b durch das arithmetische bzw. geometrische
Mittel von a und b ersetzt.

Nun gilt, vgl. ,
b<vab< T <4
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Definieren wir also rekursive Folgen ag := a,bg := b

ay, + by,
b1 == Varby, apy1:= ,

2
so ist
b<bp <bpy1 <agt1<ar<a
und
0 <apy1 —bpy1 < apg1 — b = %Q;bk.

Also existieren A :=limay und B := lim by und es gilt

\/AB:AJ;B.

Daraus folgt unmittelbar A = B. Diesen Wert nennt man das arithmetisch-geometrische
Mittel AGM (a,b) von a und b.

Schliefllich gilt

/2 dt /2 gt
lim Fag,by) = F(A,B) = F(A, A) :/ :/ at_ 7
k=00 (%) 0 VAZcos2t + A2sin®t o A 24

Den Beweis fiir die Limes-Aussage (*) (d.h. den Beweis fiir die Stetigkeit von F') unterschla-
gen wir; er ist nicht schwer, wenn man Methoden der Analysis II zur Verfiigung hat. Also

finden wir
T

Fla,b) = —————.
(@.5) = 3G an)

Die AGM-Folgen konvergieren auflerordentlich schnell und liefern wegen der Monotonie auch

Fehlerschranken. Fiir a = 6 und b = 2 erhilt man

b ay

2 6
3.4641016151 | 4.0
3.7224194364 | 3.7320508076
3.7272320109 | 3.7272351220
3.7272335665 | 3.7272335665

=W N = O R

Aus F(1,v1 — k?) = K(k) ergibt sich

K(k)

m
C2AGM(1,V1—k2)

Das vollsténdige elliptische Integral 2. Art erhédlt man mit der Formel
B(k) = =~ 2- k= 2} —a}) |,
j=1

wobei ag = 1 und by = V1 — k2.

Zu dieser Formel und einer Fiille weiterer Informationen zu den elliptischen Integralen vgl.
Spanier/Oldham: An Atlas of Functions.
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9.6.2 Integration komplexwertiger Funktionen

Fiir komplexwertige Funktionen f : [a,b] — C einer reellen Variablen definiert man das
Integral durch Zerlegung in Real- und Imaginérteil: Ist f = v + v mit u,v : [a,b] — R, so

B /ab flz)dx = /ab u(z)dz —I—i/abv(x)dx.

Dabei ist natiirlich vorausgesetzt, dass v und v Regelfunktionen sind, und dann nennen wir
f eine (komplexwertige) Regelfunktion.

Substitutionsregel und partielle Integration, die elementaren Integrationsregeln, die keine
Monotonie-Aussagen benutzen, der Begriff der Stammfunktion sowie der Hauptsatz der
Differential- und Integralrechnung tibertragen sich “wortlich” auf diese Situation.

Die Integralabschitzung in Korollar 202 und der daraus folgende Mittelwertsatz der Inte-
gralrechnung gelten nicht fiir komplexwertiges f. Dagegen bleibt die Ungleichung

/ab f(z)dx

richtig, folgt aber nicht mehr einfach aus der Monotonie f < |f|. Beweisen kann man sie mit
einem hiibschen Trick:

Falls I := f: f(x)dx = 0, ist die Behauptung klar. Wir nehmen daher an, dass I # 0. Dann
gilt

b b b b
1=Refaf(j_x)dx:Re/a f(Ix)dx:/a Ref(]x)dmg/a

< / @)l

f(x)

1 b
: dx:m/a 1 ()| de

Durch Multiplikation mit |I| folgt die Behauptung. Die Ungleichung im Beweis benutzt die
Monotonie des Integrals fiir reellwertige Funktionen.

Beispiel 231. Wir berechnen

/1 de -1
o (x—9)2 x—i

Dabei haben wir benutzt, dass auch fiir komplexes a und fiir k£ € Z die Ableitungsregel

1
-1 -1 1 1

= - — - = — - = ——(1—14).
0 1—7 0—2 1+ 2

%(m +a)* = k(z 4 a)*!

gilt. Beweisen Sie das!
O
Vorsicht bei der Integration von 1/(x — z) mit komplexem z = a + ¢ mit 3 # 0. Die

Funktion In|z — 2| ist keine Stammfunktion. Ihre Ableitung ist, wie sie selbst, nédmlich
reellwertig, also sicher nicht gleich 1/(x — z). Wir untersuchen das genauer:

Beispiel 232. Sei z = a4 i mit reellen «, 8 und 3 # 0. Dann gilt
/ dx _/ dx _/ r—a+if d
r—z ) (z—a)—if ) (z—a)2+32 v
1/(2(xa)dx+i/,,1/ﬂdx

2) (z—a)?+p2 (552 +1
1 —
=3 In ((z — a)® 4+ %) + iarctan T2 1 const.
, r—a«
=lIn|z — z| + {arctan + const.
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Beispiel 233. Es gilt nach der Regel iiber die partielle Integration

; 1, 1, [ 1,
Wt — x%ezwz _ fezwz = —p—_eT | 76’“‘)1 &+ const.
w w w w

Nun benutzen wir die Eulersche Formel e?“* = coswz + i sinwz zur Zerlegung in Real- und
Imaginérteil:

/;U coswzdx + 1 / rsinwzdr = —r—(coswr +isinwz) + — (coswz + isinwzx) + const.
w w

x . 1 ) T 1
=—|——smwx—|——2coswx+z ——coswx+—2smwx + const.
w w w w

Beide Anséatze zusammen liefern

/xcos wxdx =
/zsin wrdr =

Beispiel 234. Seien m,n € Z. Weil die komplexe Exponentialfunktion die Periode 2mi hat,
ist e?(m+mz2m — (. Daher gilt

/277 eimxe—inxdx — {27( firm —n= 0, (87)
0

1
(x sinwx + — cos wm) + const.
w

€l— &

1
(x coswx + — sin w:c) + const.
w

O

0 sonst.

Definiert man fiir Regelfunktionen f, g : [0,27] — C

1 27

T or 0
so sind die Funktionen e!™® beziiglich dieses Skalarprodukts also orthonormal.

Benutzt man die Eulerschen Formeln, so erhéilt man

27 ) ) 27 2
/ e dy = / cos mx cos nxdr + / sin ma sin nxdx
0 0 0

27 27
+1 (/ cosmx sinnxdr — / sin mx cos mcdx) .
0 0

Mittels folgen daraus sehr leicht die sogenannten Orthogonalitéitsrelationen fiir die
trigonometrischen Funktionen, die in der Theorie der Fourieranalyse wichtig sind:

2
/ cosmxsinnxdr =0 fiir alle m,n € N,
0
27 27
/ cos mx cos nxdx = / sinmaxsinnzdr =0 fir alle m,n € N,m # n,
0 0

2m 2
/ cos? madr = / sinmade =7 fiir m € N\ {0}.
0 0
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9.6.3 Integration rationaler Funktionen

Rationale Funktionen lassen elementar integrieren, wenn im Integrationsintervall keine Null-
stellen des Nenners liegerﬂ

Zunéchst kann man jede solche Funktion schreiben als ein Polynom (das kann jeder elementar
integrieren) plus eine rationale Funktion mit Z&hlergrad<Nennergrad, und die kann man
erst einmal in Partialbriiche zerlegen. Also muss man nur noch iiberlegen, wie man die
“Partialbruchteile” integriert. Dafiir kennen wir aber Stammfunktionen:

e Firk>1und z € Cist

dx B 1 y
/(m—z)’“ = (1—k‘)(x—z)k*1 -+ const.

e Fiir a € R ist

r—a

dx
=In|x — a| + const.

e Fiir z = a+ i mit 8 # 0 ist

—

d
/ Y | — z| + i arctan z + const. (88)
z

T —

vergleiche Beispiel 232

Wenn die rationale Funktion reell ist, fiihrt die Methode der Partialbruchzerlegung moglicher-
weise durchs Komplexe, aber natiirlich ist das Endergebnis wieder reell. Dafiir ein

Beispiel 235. Sei
p(x)
flw) =24
) q(x)
mit reellen p und g und mit Grad p < Grad g = 2. Der Nenner habe eine nicht-reelle Nullstelle
z = a+1i0. Dann ist also auch z = a — i eine Nullstelle, und 0.E. ¢(z) = (z — 2)(z — 2).
Wir erhalten fiir die Partialbruchzerlegung

Die Zuhaltemethode liefert B
A=p(z) = z) =B.

p reell!

Wir benutzen nun (88), und beachten, dass In |z — z| = In|z — 2| und arctan eine ungerade
Funktion ist. Wir finden
T —

B

—

/f(x)dx =(A+A)ln|zr — z| +i(A — A) arctan + const.

= 2Re(A4)In|z — z| — 2Im(A) arctan a + const.

O

Nicht immer ist es giinstig, die Partialbruchzerlegung vollstéindig durchzufithren, wie das
folgende Beispiel zeigt:

4Das wollen wir im folgenden immer voraussetzen: Die angegebenen Stammfunktionen sind nur auf dem
Komplement der Nullstellen des Nenners definiert.
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Beispiel 236. Es gilt

/ Ac+B 7/ Aw@=2) +/ B+24
@—22+57" ") @-22+5"") @-22+5"

A B+2A 1

= Sinj(z—2)?+5 + E /1_22 dz
()7 +1

A B+2A z—2

=ZIn|(z—2)*+5|+ arctan + const.

3l =2 5+ = 7=

Beispiel 237. Gesucht [ %. Die Partialbruchzerlegung ist von der Form

T A B C

@-D@-22 z-1 z-2 (@_2°

Die Zuhaltemethode liefert

A=1, C=2
Mit « = 0 folgt dann
gl B2
-1 -2 2%’
also
B=-1
Also ist
/ xdx _/ 1 n 2 d
(x—1)(z—2)2 x—1 -2 (z—2)2
2 —1
=njz—1]—Iln|z —2| - —In|Z — + const
z—2 z—2 T —
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9.7 Uneigentliche Integrale

Wir haben die Integration bisher nur iiber kompakte Intervalle [a,b] definiert. Auch haben
integrierbare Funktionen nach unserer Definition die Eigenschaft, sich durch Treppenfunk-
tionen, d.h. durch Funktionen mit nur endlich vielen Werten, approximieren zu lassen. Sie
sind deshalb notwendigerweise selbst immer beschriankt. In diesem Abschnitt wollen wir In-
tegrale fiir den Fall definieren, dass der Integrationsbereich oder die Funktion unbeschriankt
ist.

Definition 238. Sei f : [a, 00[— R eine Funktion, die iiber jedes Intervall [a, b] integrierbar
ist. Dann definieren wir das uneigentliche Integral

oo b
/ fla)dx := blirn f(z)dzx,

falls der Grenzwert exisitiert.

Beispiel 239.

0 g b
/ < 5 = lim —— dx = lim arctanz|} = lim (arctanb — arctan 0) = T
0 1+ b—oo 0 1+ .132 b—oo b—oo 2
O
Beispiel 240.
* dx b
/ — = lim Inz|] = lim Inb,
1 X b—oo b—o0
und das existiert nicht.
O
Beispiel 241. Fiir o # 1 ist
—a+1 (b 1 .
/Oodi:hm pat _ -1 L 1 lim potl = a1 fir o > 1,
1 2% b—oo —a+1l|; 1-a 1-abowo nicht existent fiira < 1.
O

Offenbar ist es niitzlich, ein Kriterium fiir die Existenz von lim,_,., F(z) zu haben. Das
folgende Kriterium ist eine Variante des Cauchy-Kriteriums fiir Folgen.

Lemma 242. Fiir eine Funktion F : [a, 00— R existiert der Grenzwert limp_, o F(b) genau
dann, wenn gilt:

Zu jedem € > 0 gibt es ein b* > a, so dass
|F'(z) — F(y)| < € fiir alle z,y > b*".

Beweis. Zeigen Sie selbst, dass die Bedingung notwendig ist.

Sie ist auch hinreichend: Seien € > 0 und b* dazu wie im Kriterium gewéhlt. Ist (b)) eine
Folge in [a, co[ mit limb,, = oo, so gibt es ein N € N mit b, > b* fiir alle n > N. Dann
ist fiir m,n > N aber |F(by,) — F(b,)| < €, d.h. (F(x,)) ist eine Cauchyfolge und damit
konvergent gegen einen Wert A. Ist (¢,,,) eine weitere gegen oo konvergente Folge, so gibt es
ein M mit ¢, > b* fir alle m > M und damit

[F(em) — Al < |F(em) — F()] + [F(0*) — A] < 2¢.

Also konvergiert auch F(c¢,,) gegen A. Daraus folgt die Existenz von limy_, o, F(b). O
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Beispiel 243. Weil e~ keine elementare Stammfunktion besitzt, kann man die Existenz

von -
/ e~ dx (89)
0
nicht wie bei den vorstehenden Beispielen nachweisen. Aber fir F(b) := f; e=*"dz und
1 <a<bgilt

b b
|F'(b) — F(a)| = / e dx < / e fdr=e%—e b <e @
a a

Wegen lim,_., e7® = 0 folgt daraus mit dem Lemma die Existenz des uneigentlichen In-

tegrals. Seinen Wert kénnen wir mit unseren bisherigen Methoden nicht berechnen. Der
Computer liefert \/7/2, und das werden wir in der Analysis IT bestétigen.

O

Beispiel 244 (Elektronenkonzentration und Fermi-Integral). Bei der Berechnung
der Elektronenkonzentration in einem Leitungsband tritt das Integral

VWL
wr l+e ZTF

auf. Dabei sind die Energieniveaus Wy, und Wg ebenso konstant, wie & (=Boltzmannkon-
stante) und T (=Temperatur). Das uneigentliche Integral existiert. Es ist ndmlich fiir b > Wp,

b W-Wp
VW WL = Vi —
w14 et wr l4+e FT T
Wir substituieren n = W;;fv L und setzen zur Abkiirzung s = % Wir erhalten
bW T R
N AW = \/kT/ L kT dny = (kT)? / Vi dn.
wrl+e kTF 1+ ents 0 1 +ents

Beachten Sie, dass nach der Substitution statt der vier Parameter k,T, W, Wg nur noch
einer, namlich s, wesentlich im Integral auftritt. Wir miissen zeigen, dass

Fl(S)': OOL

200 Jo 14ents i

existiert. Fiir n > 1 ist aber

\/7] —Spe= M.

1+ ents Se e
Deshalb ist fiir 1 <a <b

’ il dn < ' e dn = —e7° (1 -n|> < (1 % — 0 fi
amn* a77€ e *dn=—e* (1+n)e ", <e*(1+a)e”® — 0 fiir a — oo.

Aus dem Lemma[242)folgt die Existenz des Integrals. Die 0s
Funktion F1 heiflt Fermiintegral. Mathematica liefert 0s
nach numerischer Integration den nebenstehenden Plot -
des Graphen. z‘
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Das uneigentliche Integral ffoo f(x)dx definiert man analog zum obigen, und man setzt

/O; f(x)dx_/ooo f(x)dx+/ooo f(z)de,

falls die beiden rechten Integrale existieren. Das ist eine stirkere Forderung als die Bedin-
gung, dass limy_, ffb f(z)dz existiert, wie man z.B. an [~ _xdu sieht.

Wir kommen nun zur Integration unbeschrinkter Funktionen.

Definition 245. Sei f :]a,b] — R eine Funktion, so dass fiir alle ¢ €]a,b] das Integral
fcb f(x)dx existiert. Dann definieren wir das uneigentliche Integral

/ab f(z)dz = 51{2 /cb f(x)dx

falls der Grenzwert existiert. Weil lim._glnc = —oo, existiert zum Beispiel fol % nicht,
vgl. die Rechnung im analogen Beispiel oben.

Beispiel 246. Sei a > 0, # 1.

Uda o wmett ! 1 1 lim g—1+o — nicht existent, falls o >1
o 2@ a0—atl|, l-a Il-aaw"  |&, falls o < 1.
4
Fiir die Integrale [, 22 und [ 92 jst 35 "
also a = 1 der kritische Parameterwert:
fiir « = 1 existieren die uneigentlichen 2
Integrale beide nicht. Ist die Funktion :
aber < %, so existieren sie. Das ist in o 1/
10,1] fiir « < 1 und in [1, 00 fiir @ > 1 '
der Fall. 0-®
1 2 3 4
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10 Unendliche Reihen

10.1 Konvergenz von Reihen, geometrische Reihe
Definition 247. Sei (ai)ren eine (reelle oder komplexe) Folge.

(i) Durch
n
sn:a0+a1+a2+...+an:2ak
k=0

definieren wir eine neue Folge (s;,), die wir mit
oo
D
k=0
bezeichnen. Folgen dieser Form heiflen unendliche Reihen.

(ii) Man nennt s,, auch die n-te Partialsumme der unendlichen Reihe.

(iii) Die unendliche Reihe heifit konvergent gegen a, wenn die Folge (s,) konvergent gegen
a ist. In diesem Fall schreiben wir auch ) ;- ai statt a und nennen diesen Grenzwert
die Summe der unendlichen Reihe.

Bemerkungen.
1. Das Symbol >"77, ax hat also zwei Bedeutungen: Es bezeichnet eine Folge (die Parti-

alsummenfolge) und ggf. deren Grenzwert.

2. Man schreibt

o0
E ar =ap+ay +....
k=0

3. Statt N betrachtet man auch andere Summationsbereiche. >°.°  ay ist die Folge

().

4. Ist der Summationsbereich klar oder irrelevant, so schreibt man auch einfach

D

ohne Angabe der Summationsgrenzen.

Beispiel 248 (Die geometrische Reihe). Sei z € R und sei a;, = z*. Die zugehorige
Reihe

ka:1+m+x2+x3+...
k=0

heifit die geometrische Reihe. Sie ist die wichtigste Reihe iiberhaupt. Die Partialsummen

sind gegeben durch
n
n+1, falls z =1,
Sp = Z.ﬁk = {1wn+l
k=0

P sonst.
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Fiir x = 1 ist das klar. Fiir  # 1 kann man es durch vollstdndige Induktion beweisen. Oder
man bemerkt, dass

(1—a)sp=1+x+a®+.. . +a" —(r+22+.. . +2")=1-2"""
Die unendliche Reihe ist fiir @ = 1 also bestimmt divergent (konvergent gegen +00), fiir

x = —1 ist sie divergent.

1_Zn+l

Fiir || > 1 ist (z"™!) und daher auch die Partialsummenfolge s,, = divergent.

1—x

Die geometrische Reihe ist also fiir alle  mit || > 1 divergent.

Andrerseits ist lim 2™ = 0 fiir || < 1, und deshalb erhalten wir

= 1

g o= ——  fiir |z < 1.
11—z

k=0

Beispiel 249. Die Dezimaldarstellung © = n,, ...ng,n_1n_sn_s... mit den Ziffern
ng € {0,...,9} ist definiert als

> nk107F =np10™ 4 4 nel0° + 0107 4L

k=—m

Spéter werden wir leicht einsehen, dass diese Reihe fiir jede Ziffernfolgen (nj) konvergent
ist, also eine reelle Zahl darstellt. Direkt aus den Rechenregeln fiir konvergente Folgen ergibt
sich aber jetzt schon

R 1y 9v—, 1, 9 1
0,999...=>"9 (10) _102(10) == =!
k=1 k=0 10

O

Eine wichtige Anwendung konvergenter Reihen ist die Approximation des Grenzwertes durch
einen einfacher tiberschaubaren Teil der Reihe, wie Sie es von der Taylorapproximation schon
kennen.

Beispiel 250 (Dopplereffekt). Eine ruhende Quelle sendet Wellen mit der Frequenz v
und der Ausbreitungsgeschwindigkeit ¢ aus. Die Wellenléinge ist dann A = ¢/v.

Bewegt sich der Empfanger mit der Geschwindigkeit v << ¢
auf die ruhende Quelle zu, so erhcht sich die empfangene

Frequenz auf .
ﬁ:C—i—v:V(Li_E)_ Q v
A c Q
Bewegt sich andrereits die Quelle mit der Geschwindigkeit
C
A

v auf den Empfénger zu, so verkiirzt sich die Wellenldnge ¢,
auf A = (¢ —v)/v = ¢/, die empfangene Frequenz ist
\2
1 v v v v
= =v(l+-+(=)2+..)=v(l+-+(=)). Q
P vy =Y L O ) R D () )
A=(c-v)T

In diesem Fall ist die Frequenz also hoher als bei bewegtem
Empfinger.
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Satz 251 (Rechenregeln fiir konvergente unendliche Reihen). Sind Y ;- ar = A
und Y3~ o br = B konvergente unendliche Reihen, so konvergiert - (ar+by) gegen A+ B:

S (ak+br) =D ar+> b
- k=0 k=0

k=0

Ist weiter ¢ € R so folgt

oo

Z(cak) = CZ ak.
- k=0

k=0

Beweis. Folgt unmittelbar aus den Regeln fiir konvergente Folgen, weil unendliche Reihen
ja Folgen sind. O

Mit Produkten unendlicher Reihen ist es komplizierter. Man muss jedes Glied der einen Reihe
mit jedem Glied der anderen Reihe malnehmen, was bei unendlich vielen Gliedern Probleme
macht. Eine einleuchtende Anordnung der Produkte gibt die sogenannte Produktformel von
Cauchy:

(Z ai)(z b;) z ch, wobei ¢, 1= agby, + a1bp—1 + ... + apbo. (90)
i=0 j=0 k=0

Diese Formel gilt allerdings nur unter zusétzlichen Voraussetzungen, wir kommen darauf
zuriick.

Bemerkung: Der Reihenrest. Als m-ten Reihenrest der Reihe Y7 ai bezeichnen wir
die Reihe Z;O:mﬂ ay. Die Partialsummen dieser Reihe sind

n

Tmn 1= E A = Sp — Sm-

k=m+1

Also ist die Reihe genau dann konvergent gegen s, wenn alle Reihenreste konvergent sind,
T = 1My 00 Tyn,n = 8§ — S, und die 7, gegen 0 konvergieren.
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10.2 Konvergenzkriterien fiir unendliche Reihen 1

Wie priift man, ob eine Reihe konvergiert? Notwendig und hinreichend ist, dass die Folge
der Partialsummen eine Cauchyfolge ist. Weil

n
sn—sm,1:Zak O<m<n

k=m

bedeutet das:

Satz 252 (Cauchy-Kriterium). Die Reihe Z,;“;O ay, st genau dann konvergent, wenn es
zu jedem € > 0 ein N € N gibt, so dass fiir alle m,n € N gilt

n
S
k=m

N<m<n = < €.

Wihlt man m = n so ergibt sich als einfaches notwendiges Kriterium:

Satz 253 (Notwendiges Kriterium). Die Glieder einer konvergenten Reihe bilden eine
Nullfolge
Zak konvergent =—> limag = 0.

Aber eine Reihe, deren Glieder gegen 0 gehen, muss nicht konvergent sein.

Zitat: Vom Nutzen, den die Mathematik einem Bel Esprit bringen kann: Grifite und
Kleinste. Dieses Capitel in der Rechnung des Unendlichen ist iberhaupt sehr lehrreich
fiir viele Leute, die es verstehen konnten, aber nicht verstehen. Denn ich wiisste nicht,
ob es einen Stand in der Welt geben kann, worin es unniitz sey zu wissen, dass bey
immer zunehmenden Bemiihungen zu einem Endzweck zu gelangen, der Endzweck
zuweilen ginzlich verfehlt wird. (G. Chr. Lichtenberg)

Ein Beispiel ist das sehr beriihmte ,,Gegenstiick® zur geometrischen Reihe:

Beispiel 254 (Die harmonische Reihe). Die harmonische Reihe

ist divergent. Das kann man so einsehen: Fiir n > 2F ist

S R FIL UL VU R U S L AL
L e T S e T e S S =
2 3 4 5 6 7 8 2k—1 41 2k 2
—_— ———
>3 >3 >1

Daraus folgt s,, — oo, die Reihe ist divergent.
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Die Divergenz der harmonischen Reihe hat folgende ,,praktische Anwendung*:

Wir bauen einen Turm aus Ziegelsteinen der
Lénge 1 ,,von oben nach unten“, indem wir
den bereits gebauten Turm so auf den néchsten
Stein setzen, dass sein Schwerpunkt gerade
iiber der Kante des neuen untersten Steins
liegt, der Turm also gerade eben nicht um-
kippt. Ist S,—1 die z-Koordinate des Schwer-
punktes der ersten n — 1 Steine, so liegt der
Schwerpunkt des n-ten Steins also bei S,,—1 +
%, und der Schwerpunkt des erweiterten Turms
bei

] 1 1
1 Sp=—((n—=1)Sn—1+ (Sn—1+ 7))
n 2
1 n
5 1 1 1
2 =S, _—= = —.
4 k=1

6 Wegen der Divergenz der harmonischen Rei-
he kann man also den Uberhang beliebig grof3
machen. Zum Beispiel ist % Zi:l % = 1.04,
mit fiinf Steinen kann man einen Uberhang von
mehr als einem Stein und mit 32 Steinen einen
von mehr als zwei Steinen realisieren.

n+1 « 2n

Wir wollen nun hinreichende Kriterien fiir die Konvergenz einer unendlichen Reihe geben.

Zunichst vergleichen wir zwei reelle Reihen > aj und Y bg. Von der zweiten Reihe sei schon
bekannt, dass sie konvergiert, und wir wollen annehmen, dass

0<ap<b, firallek (91)

gilt. Weil die Summanden > 0 sind, sind die Folgen der Partialsummen monoton wachsend
und

Die Partialsummenfolge der Reihe Y ay ist also monoton und beschriankt, und daher nach
dem Vollstandigkeitsaxiom konvergent.

Wir wollen dieses Kriterium noch verallgemeinern: Hat man statt die allgemeinere
Bedingung
lak| < by fiir alle &,

so ergibt sich die Konvergenz der Reihe Y |a]|.

Definition 255 (Absolute Konvergenz). Eine (reelle oder komplexe) Reihe 3 ay, heifit
absolut konvergent, wenn die Reihe > |ay| konvergiert.

Zunichst scheint das unmotiviert. Wir interessieren uns doch fiir die Reihe > as und nicht
fiir die Reihe > |ag|. Aber es gilt der

Satz 256. Jede absolut konvergente Reihe ist konvergent.

1. Beweis (fiir reelle oder komplexe Reihen). Wir zeigen die Konvergenz von > aj mit dem
Cauchy-Kriterium Satz Sei also € > 0. Weil Y |ay| konvergent ist, gibt es nach diesem
Kriterium ein N € N, so dass gilt

n
N<m<n — Z|ak|<e.
k=m
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Dann gilt nach der Dreiecksungleichung aber

n
<> ak| <,

k=m

N<m<n =

n
D> a
k=m

und damit wiederum nach dem Cauchy-Kriterium die Konvergenz von > a. O

2. Beweis (nur fir reelle Reihen). Sei wieder ) |aj| konvergent. Dann ist nach den Rechen-
regeln fiir konvergente Folgen auch Y 2|ay| konvergent. Weil

0<ap+ |ak| < 2\ak|,

ist deshalb nach dem obigen Argument auch die Reihe > (aj + |ax|) konvergent. Dann ist
wieder nach den Rechenregeln fiir konvergente Reihen auch

doan =y (ar+lar]) = Y la]

konvergent. O

Bemerkung. Reihen, die zwar konvergent, aber nicht absolut konvergent sind, nennt man
bedingt konvergent. Wir werden spéter sehen, dass absolut konvergente Reihen angenehmere
FEigenschaften haben, als bedingt konvergente. Daher ist es sinnvoll bei den Konvergenzkri-
terien, die absolute Konvergenz liefern, dies auch zu vermerken.

Wir erinnern an folgenden Sprachgebrauch:

Eine Eigenschaft der Glieder einer Folge (k) ren gilt fir fast alle k, wenn sie fir alle bis auf
endlich viele Ausnahmen gilt, d.h. wenn es ein K € N gibt, so dass die Eigenschaft auf alle
zp mit k > K zutrifft.

Satz 257 (Vergleichskriterium=Majorantenkriterium). Gegeben seien eine reelle
oder kompleze Reihe Y p o aj und eine konvergente reelle Reihe Y oo by,. Es gelte

lak| < by fiir fast alle k.

Dann ist auch die Rethe Z?;O ay, absolut konvergent, also konvergent.

Beweis. Sei |ay| < by, fiir alle k& > n. Die Partialsummenfolge der Reihe Y |ax| ist monoton
wachsend und beschrénkt durch

oo
laol + .+ lanl + D br,
k=n-+1

also konvergent. O
Beispiel 258. Die Reihe

— 1

D

k=1
ist konvergent nach dem Vergleichskriterium. Es ist ndmlich fiir £ > 1

Tk T k(k—1) k-1 k ¢

1
k2
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Die Konvergenz der Reihe Y77, by kann man aber leicht einsehen, weil man ihre Partial-
summen explizit bestimmen kann:

Y- =G G P o m ) =1 L
k=2

Das konvergiert gegen 1, also ist die Reihe Y b, konvergent. Nach dem Majorantenkriterium
ist daher auch > k% konvergent. Schwieriger ist, den Grenzwert der Reihe zu bestimmen.
Erist ) 75 = n2/6.

O

Der Nachteil beim Vergleichskriterium ist, dass man schon eine konvergente Majorante > by,
haben muss. Die folgenden Kriterien benutzen (oberflichlich betrachtet) nur die zu untersu-
chende Reihe und sind deshalb meistens die erste Wahl, wenn man eine Reihe auf Konvergenz
untersuchen will.

Satz 259 (Wurzelkriterium). Gegeben sei die (kompleze oder reelle) Reihe Y oo ax.
Dann gilt:

(i) Gibt es ein , so dass fiir fast alle k € N
Vlarl < g,

so ist die Reihe Y - ai, absolut konvergent.

(i) Ist fiir unendlich viele k € N
Vlak| 2 1,

so ist die Reihe Y ;- ay divergent.

Beweis. Zu (i). Man hat |ay| < ¢* fiir fast alle Folgenglieder. Vergleich mit der konvergenten
Reihe Y ¢* liefert die Behauptung. (Hier braucht man ¢ < 1!)

Zu (4). Hier ist |ag| > 1 fur unendlich viele k . Also konvergieren die Glieder nicht gegen
Null, und die Reihe ist divergent. O

Bemerkungen.

1. Fiir die Anwendung des Wurzel- und des folgenden Quotientenkriteriums ist es hilf-
reich, sich folgendes klar zu machen:

Sei (xk)ken eine reelle Folge. Dann gilt:

limz, <1 = limsupzx, <1
limsupz, <1 <= Jg<1InenVa>nTn < g,

limz, >1 = limsupzx, > 1
limsupz, >1 <= Vyendn>nzn > 1.

Das Wurzelkriterium liefert also zum Beispiel Konvergenz, wenn

lim {/]ax| <1 oder limsup v/]ax| <1

und Divergenz, wenn

lim sup v/]ax| > 1.
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2. Das ¢ < 1 im Wurzelkriterium beschrénkt die {/|ay| weg von Eins. Es reicht nicht,
wenn {/]ag| < 1 fiir alle k.
Beispiel 260. Fiir nj € {0,...,9} ist die Dezimaldarstellung
o
10k
k=0

nach dem Wurzelkriterium eine konvergente Reihe. Es ist namlich fiir k£ > 2

% o] Tk g w 3
Yag| = £ —= = <X <2 o
k| 0F - 10 =10 =10 ©

O
Beispiel 261. Sei 0 < x < 1 und sei
zF=1  fiir ungerades k,
ap =
F Pt fiir gerades k.
Dann ist
1 ..
r += fiir ungerades k,
ar = TS
x¥/x  fiir gerades k.
Weil (vgl. Ubungen)
klim Vx =1,
folgt
klim Yar =x < 1.
Also ist die Reihe Y a;, nach dem Wurzelkriterium konvergent.
O

Satz 262 (Quotientenkriterium). Gegeben sei die (komplexe oder reelle) Reihe Y o o ay.
Fiir fast alle k set ay, # 0. Dann gilt:

(i) Gibt es ein , so dass fir fast alle k € N

Ak+1
ag

<q

— )

so ist die Rethe Y - ai, absolut konvergent.

(i) Ist fir fast alle k € N
Ak+1
ar

> 1,

so ist die Reihe Yy, ay divergent.

Beweis. Zu (i). Sei
|ak+1
ar

| <g<1firalle k> K.
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Daraus folgt fiir k£ > K:

_ aK
ag| S q|0k—1| > q |Ag—2| >~ ... S ¢ A | = — ¢ =: 0.
lax] < glax—1] < ¢lax_s| < <kK||'qK'kb

Weil |¢| < 1 (HIER wird das benutzt!) ist die geometrische Reihe
o0 o0
S o=l
k=0 k=0
konvergent. Aus dem Vergleichssatz folgt die absolute Konvergenz von Y ag.

Bemerkung. Stattdessen kann man auch so schlieflen:

lak|

mgq "'TK — g < 1 fiir k — oo.
——
—1

Also ist die Reihe nach dem Wurzelkriterium konvergent.

Zu (). Aus
IEL] > fiir alle & > K
Qg
folgt |ag+1| > |ak| > |ax| > 0 fiir & > K. Darum konvergieren die ay, sicher nicht gegen null,
die Reihe ist divergent. O
Bemerkungen.

1. Wie im Beweis deutlich wird, ist das Wurzelkriterium fiir Konvergenz stérker als das
Quotientenkriterium. Letzteres ist in der Regel angenehmer anzuwenden. Aber wenn
es keine Auskunft gibt, macht es Sinn, auch das Wurzelkriterium zu versuchen. Vgl.
auch das Beispiel

2. Die Bemerkungen iiber die Anwendungen des Wurzeklkriteriums gelten analog fiir das
Quotientenkriterium.

Beispiel 263. Die Reihe
oo
1
P
k=0
ist konvergent nach dem Quotientenkriterium: Es ist ndmlich

CYE+D K1
_’ S S

Q41
ag

Beispiel 264. Fiir die beiden Reihen

k2

M2
e
o
2.
M2
.

k=1 k=1

ist der Limes des Quotienten aufeinander folgender Glieder beide Male = 1. Das Quotien-
tenkriterium macht in diesen Fillen keine Aussage. Aber wie wir gesehen haben, ist die erste
Reihe divergent, die zweite nach dem Vergleichskriterium konvergent.

O
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Beispiel 265. Fiir die Reihe aus Beispiel [261] finden wir

ak

agy1 23 <1  fiir ungerades k,
o lzTt> 1 fir gerades k.

Daher hilft das Quotientenkriterium nicht weiter, aber das Wurzelkriterium liefert Konver-
genz.

O

Wenn Sie die nebenstehende Figur studieren,
liefert die ,,Divergenz“ des Integrals aus Bei-
spiel Thnen einen neuen Beweis fiir die Di-
vergenz der harmonischen Reihe

=1
>
k=1

Vergleiche Beispiel
Diese Uberlegung kann man ausbauen zu ei- \
nem Satz, der eine Beziehung zwischen unei-

gentlichen Integralen und unendlichen Reihen %ﬁ-

herstellt: 1 2 3 4 5

Satz 266 (Reihen-Integral-Kriterium). Sei f: [m,o0[— R, m € N, eine monoton fal-
lende Funktion mit f(x) > 0 fir alle x € [m, 00|, die dber jedes Intervall [m,b] integrier-
bar ist. Dann existiert das uneigentliche Integral f;o f(x)dz genau dann, wenn die Reihe
S22 f(i) konvergiert.

i=m

Beweis. Aus f(i) > f(xz) > f(i+1) fir i <z <i+1 folgt f(i) > f;“ f(z)dr > f(i+1).
Durch Summation folgt

n+1 n n
> )< [ sy 0.
i=m-+1 m i=m

Man beachte, dass das Integral wegen der Monotonie von f existiert.

Weil f > 0, sind die Partialsummen s, = >.;_  f(k) und die Funktion b ~— f:L f(x)dx
monoton wachsend. Existiert das Integral, so folgt

sMJ—fmws[jf@st%ffuww

Also ist die Folge (sp)n>m auch beschrénkt und daher konvergent.

Ist umgekehrt die Reihe konvergent, so folgt fiir m < b <nmit b€ Rund n € N

L?wmsﬁﬁwws%siﬂw

k=m

Dabher ist J := sup f::L f(z)dx < co. Ist € > 0, so gibt es ein B > m mit
B
J—e</ fz)dx < J.
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Wegen der Monotonie des Integrals gilt die entsprechende Ungleichung dann auch fiir alle
b > B. Daher exisitiert limj_, fb f(x)dz. O

m

Beispiel 267. Sei a > 0, a # 1. Dann ist

/°° de _ . 1 ’ . 1 1
_ = llm —F = l1im -
1 2% b= (I—a)zo t|] oo \(I—a)pe™t 1—-a

{1 falls a > 1,

a—1"
nicht existent, falls o < 1.

Aus Beispiel 240] wissen wir, dass das uneigentliche Integral fiir v = 1 ebenfalls nicht existiert.
Durch Anwendung des Satzes auf f(x) = 1/x erhilt man:

Die Reihe Y 7, 1/n® konvergiert fiir & > 1 und divergiert fiir o < 1.
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10.3 Konvergenzkriterien fiir unendliche Reihen 11

Die sogenannte alternierende harmonische Reihe

> 1 1 1 1
) Ly, [ =
kzzo( )k+1 5371

ist konvergent, aber das kénnen wir gewifl nicht mit den bisherigen Verfahren beweisen, denn
die Reihe ist nicht absolut konvergent, weil eben die harmonische Reihe divergiert.

Die Tatsache der Konvergenz kann man dennoch relativ leicht einsehen.

e Durch das wechselnde Vorzeichen wird abwechselnd die Partialsumme erhoht oder

erniedrigt.
o Weil n%rl < % werden die absoluten Differenzen monoton immer kleiner. Die geraden
Partialsummen:
so=1
si=1-(3-3) - (7 3)

sind daher eine monoton fallende, die ungeraden

1
81:1_5
1 1 1
=1—- = R
S3 2+(3 4)

eine monoton wachsende Folge. Natiirlich sind sie beschréinkt:
51 < S25—1 < S2k < So-

Also sind die Folgen (sor) und (sg41) konvergent.

e Weil lim% = 0, geht die Differenz zweier aufeinander folgender Partialsummen gegen
Null: ,,Obere“ und ,,untere“ Partialsummenfolgen konvergieren daher gegen denselben
Wert und deshalb konvergiert auch (s,,) gegen diesen Wert, vgl. den Beweis von Satz

Der Grenzwert der alternierenden harmonischen Reihe ist In 2, wie wir spéter zeigen werden.

Diese vorstehende Argumentation 148t sich unmittelbar zu einem Beweis fiir folgendes Kon-
vergenzkriterium erweitern.
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Satz 268 (Leibniz-Kriterium). Fir die Reihe Y o (—1)*ay, gelte
(i) Die Folge (ay) ist monoton fallend:

ap 2 a1 2 az 2 ... 20,

(i) limp— oo a, = 0.

Dann ist die Reihe konvergent. Ihre Summe liegt zwischen je zwei aufeinanderfolgenden
Partialsummen: Fir jedes m € N ist

M8

Som—1 < Y (—1)*ar < sop,
k=0
und -
Som+1 < Z(—l)kak < Som,.
k=0
Beispiel 269. Wir setzen fiir £ > 1
1 1
ap = — + (=1)F .

NG k

Dann sind die ax > 0 und konvergieren gegen 0, aber die Folge ist nicht monoton. Die Reihe

oo
> (—Dfar
k=1

ist nicht konvergent, denn sonst wére auch die Reihe

> (D= (-1 ) = 3D = Y

k=1 k=1 k=1

e

konvergent. Ist sie aber nicht.

O

An der alternierenden harmonischen Reihe kann man noch ein wichtiges Phanomen deutlich
machen: Bei unendlichen Reihen ist die Reihenfolge der Glieder im allgemeinen nicht mehr
gleichgiiltig, es gilt kein ,, Kommutativgesetz‘. Das liegt daran, dass eine Umordnung von
(unendlich vielen) Gliedern die Partialsummenfolge vollig veréindert. Bei der alternierenden
harmonischen Reihe sind ndmlich die Reihen der positiven bzw. negativen Glieder

R U
sTst

1 1 1

3 + 1 + 5 +...
beide divergent. (Die zweite ist einfach die halbe harmonischen Reihe und deshalb divergent;
die Glieder und darum die Partialsummen der ersten Reihe sind aber offensichtlich gréfler
als die der zweiten, weshalb auch die erste Reihe divergent ist.) Darum kann man von der
alternierenden Reihe zunichst so viele positive Glieder (der Reihe nach) addieren, bis man
z.B. iiber 27 ist. Dann addiert man das erste negative Glieder und ist wieder unter 27.
Dann addiert man weiter positive Glieder, bis man wieder iiber 27 ist und dann das zweite
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negative Glied.Auf diese Weise erwischt man schliellich alle Glieder der Reihe und hat sie
so umgeordnet, dass die neue Reihe nun gegen 27 konvergiert. Es ist offensichtlich, dass man
auf diese Weise statt 27 auch jeden anderen Grenzwert einschliellich bestimmter Divergenz
gegen 400 oder —oco durch geeignete Umordnung erzielen kann.

Diese Zauberei funktionierte, weil man Glieder verschiedenen Vorzeichens hat, die fiir sich
genommen divergente Reihen bilden. Wenn nicht nur die Reihe 3 ag, sondern auch die Reihe
> |ag| konvergiert, kann das wohl nicht mehr passieren. Das ist unser néichstes Thema.
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10.4 Die Segnungen absoluter Konvergenz

Absolut konvergente Reihen haben Eigenschaften, die bei bedingt konvergenten (eventuell)
fehlen, und die sie den endlichen Summen néherbringen: Man kann sie beliebig umordnen
ohne das Konvergenzverhalten zu verdndern, und man kann sie auf die naheliegende Weise
miteinander multiplizieren. Das wollen wir in diesem Abschnitt zeigen.

Definition 270. Die Reihe )~ jaj heiBt eine Umordnung der Reihe Y7 jax, wenn es
eine bijektive Abbildung o : N — N,k n; gibt, so dass fiir alle k gilt a), = a ).

Satz 271 (Umordnungssatz). Sei Y ;- a eine Umordnung der Reihe Y7~ a. Ist die
Reihe Y -, ar absolut konvergent, so ist die Reihe Y, a}, ebenfalls absolut konvergent
und beide Reihen haben dieselbe Summe:

oo

oo
E ap = E aj.
k=0 k=0

Beweis. 1. Es geniigt zu zeigen, dass die umgeordnete Reihe ebenfalls konvergent mit dem-
selben Grenzwert wie das Original ist. Wendet man den Satz dann auf Y- ; |ax| an, so folgt
auch die absolute Konvergenz.

2. Wir bezeichnen die Partialsummen mit s,, bzw. s/ und setzen S := S o . ax.
n k=0

Es geniigt zu zeigen:
ve>OEINEan2N |3n - S’/n| < €. (92)

Ohne Einschréinkung ist ndmlich fiir n > N auch |s,, — S| < € und daher
|st, — S| < |sh, — sp| + |sn — S| < 2e.
Also konvergiert ) aj gegen S.

3. Zum Beweis von . Sei o : N — N, k= ny eine bijektive Abbildung, a}, := ay) und
sei € > 0.

Wir betrachten ein N; € N und dazu ein N € N so grof}, dass
{c(0),...,0(N)} D{0,..., N1 }.
Dann gilt fiir alle n > N

n n

n n N n n
Sp =S =D Qo) — DGk = ) Aa(r) i:ak - D = D wwm— Y
k=0 k=0 k=0

k=0 k=N1+1 k=0 k=N1+1
o(k)>N1
Es folgt
n n o0
Isn = sul < D0 ol + D0 el <20 ) Jal.
k=0 k=N;+1 k=Ni+1
o(k)>Ny

Weil Y77 |ax| konvergent ist, kénnen wir ein Ny € N so wihlen, dass

o0

€
Do larl < 7 (93)

k=Nq+1
Zu diesem Ny wihlen wir N wie oben und erhalten (92). O
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Wir zeigen die Umkehrung des Umordnungssatzes:

Satz 272. Ist die Reihe Zzio ar konvergent, aber nicht absolut konvergent, so ldsst sie sich
so umordnen, dass sie konvergent gegen einen beliebig vorgegebenen Wert aus RU{—o0, +00}
15t.

Beweis. Seien (Py)ren bzw. (Qr)ren die Folgen der positiven bzw. der Absolutbetriige der
negativen Reihenglieder in ihrer natiirlichen Reihenfolge. Beide sind unendlich, sonst wére
die Reihe absolut konvergent, und es gilt

lim P. = 1l .= 0.
dim P = lim Q) =0

Wenn wir zeigen kénnen, dass Y, Pr und > .-, Qr beide divergent sind, folgt die Be-
hauptung mit demselben Trick, mit dem wir im vorangegangenen Abschnitt die alternierende
harmonische Reihe umgeordnet hatten.

Wir setzen

_ lak| + ak _ lak| —ax

2 o2
Also ist py, = ay, falls ax > 0 und p;, = 0, wenn aj, < 0. Daher habe die Reihen > -, p
und ), P bis auf Wiederholungen dieselbe Partialsummenfolge. Gleiches gilt fiir Z?;O qk
und Y, Q. Also miissen wir zeigen, dass >~ pr und Y- g beide divergent sind. Wire

eine konvergent, so wegen

n n n n
dar=> k—a) =Y Pk~ Y
k=0 k=0 k=0 k=0
auch die andere. Dann wire aber auch
o0 o0
Z(pk +qi) = Z |ak|
k=0 k=0
konvergent im Widerspruch zur Voraussetzung. Also sind beide divergent. O

Satz 273 (Cauchyprodukt). Seien Y ;- ar und > ;°, b konvergente Reihen und eine
der beiden absolut konvergent. Setze

m
Cm 1= z apbm—_r.
k=0
Dann ist die Reihe Y °_ ¢y konvergent, und fir die Summen gilt

) (55

m=0

Bemerkung. Wir zeigen spéter, dass auch gilt, wenn alle drei Reihen konvergent sind,
vgl. Korollar 288

Beweis. Wir bezeichnen die Summen der beiden gegebenen Reihen mit A bzw. B und setzen

A, = iak, B, = ibl, C, = i Cm-
k=0 1=0

m=0
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Wir nehmen an, dass > _ a,, absolut konvergiert und setzen
Bn = B, — B.
Dann ist

Cy, = agbo + (agby + arbg) + ... + (agbn + a1bp—1 + ... + anbo)
=ayB,+a1B,_1+...+a,By
=ao(B+ Bn) + a1(B+ Bn-1) + ...+ an(B+ Bo)
=A,B+ayfbn+...+a,00.

Tn

Wir zeigen v, — 0. Dann ist lim C,, = lim A,,B = AB. Sei
o= Z |ak|.
k=0

Sei € > 0. Weil 8, — 0, konnen wir N7 € N wihlen mit

€
200+ 1

[Bk| < fiir alle k > Ny.
Fiir diese n > Ny ist dann

IVl < 1Boan + ... BNy @n—Ny | + BNy +1Gn—Ny—1] + - .. + | Brao]

€ n—N1—1

< |Boan + ... 0N, Gn-nN, | + Yot 1 ];) |a].
€

< ol + .+ By | +

Weil ay, — 0, kénnen wir ein Ny so wéhlen, dass fiir alle kK > N := N; + Ny

€

(IBo] + ...+ 18w ) +1°

<
|ak| 5

Dann ist fiir alle n > N

Y| <e.
O
Beispiel 274. Die Reihe "7, E/_% ist nach dem Leibnizkriterium konvergent. Das Cauchy-
produkt dieser Reihe mit sich selbst hat die Glieder ¢,,, mit
N (—L)kE(—1)mk - 1 1
em] =[S (=D"(=1) -y L m+ .
= VE+IVm—k+1| SVE+FIYm—k+1 Vm+1vym+1
Also ist > °_ ¢, nicht konvergent.
O

Wie Sie sich an der Reihe 1 —14+1—141—14 ... klarmachen koénnen, gilt fiir unend-
liche Reihen auch kein “verallgemeinertes Assoziativgesetz”: Durch Setzen von geeigneten
Klammern wird die vorstehende Reihe konvergent, weil man nur noch eine Teilfolge der Par-
tialsummenfolge betrachtet. Man kann zeigen, aber wir verzichten darauf, dass man absolut
konvergente Reihen auch beliebig klammern darf, ohne die Konvergenz und den Limes zu
dndern.
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10.5 Potenzreihen

Die wichtigsten Funktionen erhélt man durch eine Verallgemeinerung der Polynome auf
unendliche Summen:

Definition 275. Eine Potenzreihe ist eine unendliche Reihe der Form

oo
Z ar(z — zo)".
k=0

Wir wollen diese Reihen gleich im Komplexen betrachten und nehmen deshalb an, dass die
Koeffizienten a; und der Entwicklungspunkt z, komplexe Zahlen sind. Weiter ist z eine
komplexe Variable.

Auf der Menge D C C aller z, fiir die die Reihe konvergiert, liefert f(z) := Y2 ax(z — 20)*
also eine Funktion

f:D—C.

Wir untersuchen nun die Frage, fiir welche Werte von z die Reihe konvergiert. Es ist ein-
leuchtend, dass sie konvergiert, wenn |z — 2| ,klein®“ ist, und divergiert, wenn diese Zahl
»grof3“ ist. Dabei hiangt die Bedeutung von , klein“ und ,,gro8“ vermutlich von den a; ab.

Nach dem Wurzelkriterium ist die Reihe konvergent, wenn

|z — zo|limsup {/|ax| = limsup 1/ |ax||z — 20|k < 1,

und divergent, wenn

|z — 20| limsup /|ax| = limsup {/|ax||z — z0|* > 1.

Definition 276 (Konvergenzradius). Zur Potenzreihe Y ;2 ay(z — z0)* heifit
1

R=———
limsup {/|ax]

der Konvergenzradius. Er ist 400, wenn der Limes superior = 0 ist und 0, wenn der Limes
superior = oo ist.

Damit ergibt sich der

Satz 277 (Konvergenz von Potenzreihen). Sei R € [0, +oo[U{+o00} der Konvergenz-
radius der Potenzreihe Y o ay(z — z0)*. Dann gilt fiir alle z € C:

|z — 20| < R = die Reihe Z ar(z — 20)* ist absolut konvergent,

|z — 20| > R = die Reihe Zak(z — 20)" ist divergent.

Die Menge {z € C||z— 20| < R} ist ein ,offener® Kreis vom Radius R um den Mittelpunkt
zo, der sogenannte Konvergenzkreis der Reihe.
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Bemerkungen.

1. Ein offener Kreis ist eine Kreis- Im Komplexen

fliche ohne die begrenzende
Kreislinie. Will man die letztere
dazurechnen, so spricht man von divergent

einem abgeschlossenen Kreis.
abs. konvergent

2. Uber die Konvergenz fiir z-Werte 2
auf dem Rand des Konvergenz-
kreises (|z—zo| = R) gibt der Satz ~—
keine Auskunft.

0

3. Ist die Reihe reell, also alle ay
sowie z und zy reell, so ist der
,Konvergenzkreis“ ein symmetri-

?
sches Intervall Im Reellen
z0 — R < z< 20 + R divergent absolut k(l)nvergem divergent
O-R X, X0+R

X

um 2zg.

4. Fir R = oo konvergiert die Reihe fiir alle z € C bzw. z € R.

5. Ein Wort zur Sprache: Sagen Sie nicht, die Reihe sei innerhalb des Konvergenzradius
konvergent. Der Konvergenzradius ist eine Zahl, z.B. 7. Was soll es bedeuten, dass die
Reihe innerhalb von 7 konvergiert?

Beispiel 278. Die geometrische Reihe Y z* ist eine Potenzreihe mit Konvergenzradius

1

R = —— =
lim sup +/1

1.

Es gilt

- 1
flz)= sz =1 fiir 2] < 1.
k=0

O

Beispiel 279. Die Reihe Z,?;O kz—f:l hat ebenfalls Konvergenzradius 1, wie man bequem mit
dem Quotientenkriterium sieht. Noch einfacher: Wie wir wissen, ist sie

o fiir 2 = 1 divergent (harmonische Reihe),

e fiir z = —1 konvergent (alternierende harmonische Reihe).

Also muss der Konvergenzradius 1 sein.

Beispiel 280. Die Reihe

z" (95)
Pt k+1
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ist komplizierter: Der Konvergenzradius nicht etwa gegeben durch

x| 5k
1/R = limsup PR

{ "2 falls k gerade,
ap =

Es ist ndmlich

0, falls k ungerade.

Weil die geraden Terme positiv sind, ist also

1/R = limsup “k:—&—l = im VET T = 5.

Dabei haben wir benutzt, dass lim */k + 1 = 1. Warum gilt das?

Eine andere Moglichkeit, den Konvergenzradius dieser Reihe zu bestimmen, ist die direkte
Anwendung des Quotientenkriteriums:

sk+1,2k+2

k+2 2 k41 2
=5|z|* —— — 5|z|°.
5k 2k
BT k2
Also konvergiert die Reihe fiir alle z mit |2%| < i; sie divergiert fiir alle mit |z|> > 1. Der
Konvergenzradius ist also %
O
Beispiel 281. Auch fiir die Reihe
>4
|
— k!
findet man den Konvergenzbereich am einfachsten mit dem Quotientenkriterium:
Zk+1
= RIEENE
—| = = .
z (k+1)! kE+1
Also ist die Reihe fiir alle z absolut konvergent.
O

Fiir Partialsummen von Reihen gilt natiirlich die Dreiecksungleichung. Deshalb gilt fiir ab-

solut konvergente Reihen
o0 o0
> x| < laxl.
k=0 k=0

Insbesondere gilt deshalb fiir z im Inneren des Konvergenzkreises einer Potenzreihe

o0 o0
Zak(zfzo)k §Z|ak|\zfzo|k.
k=0 k=0

Davon werden wir im folgenden wiederholt Gebrauch machen.
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10.6 Differentiation von Potenzreihen

Wir betrachten im folgenden wieder reelle Potenzreihen, weil wir Funktionen mit komplexem
Argument noch nicht differenzieren kénnen.

Satz 282 (Differentiation von Potenzreihen). Die Funktion f sei durch eine Potenz-
reihe mit Konvergenzradius R gegeben:

z) = Zak(a: —xz0)k, |z —20| < R.

Dann gilt
(i) f ist auf {z||x — xo| < R} differenzierbar und

Zkak x—mo Z k+ Dags1( gc—aco)k. (96)
k=0

(#i) Die Potenzreihe hat ebenfalls den Konvergenzradius R.

Kurz: Potenzreihen darf man gliedweise differenzieren. Der Konvergenzradius dndert sich
dabei nicht.

Beweis. Zu (ii). Die Reihe Y ;2 (k + 1)agi1(z — 20)* konvergiert genau dann, wenn die
Reihe

oo

(x—xo)Z(k—l-l)ak_H x —x0)k Zkak x —x0)F

k=0
konvergiert. Wegen limj_.., ¥k = 1 ist der Konvergenzradius der letzteren Reihe

1

1
limsup ¢/klax]  limsup {/]ax]

= R.

Zu (i). Seinun |p — xo| < R. Wir wollen zeigen:
Zu jedem ¢ > 0 gibt es ein § > 0, so dass fiir alle z aus dem Konvergenzintervall mit
O<|z—p|<d

x) — > _
f(@) f(p)—zk'ak(p—ﬂfo)k < (97)
r=p k=1
=:(%)
Das beweist dann die Differenzierbarkeit in p.
Zunichst ist nach dem Mittelwertsatz
f - x—xok—(]?—ﬂfo)k k—1
k — —k —
Z ak(p — x0)" kZ:O ak P ar(p — o)
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fiir & zwischen x und p.

Sei also € > 0. Wir wihlen ein r mit [p — 29| < 7 < R. Dann ist Y - | k|ag|r*~! konvergent,
und daher gibt es ein N € N mit

oo

_ €
Z Elag|r*1 < 3

k=N+1

Dann ist fiir z mit |z — x| < r

(%) <

M=

klak| [(&k — 20)"" = (p — 20)* 7|

k=0
oo oo
+ Z kla| |& — 20l *71 + Z klag| |p— x| *7!
k=N+1 — k=N-+1 —

<r <r

WE

_ _ 2
< kag (& — 20)" Tt = (p — 20)" 1‘+§6

el
I
o

In der ersten Summe stehen nur endlich viele Terme. Daher gibt es ein 6 > 0, so dass
Ip—0,p + 6[Claxo — r,x0 + r[ und fiir alle x €]p — 6, p + [ (also & €lp — d,p + 4[) gilt
€

N
kZ:ok’ak (& —20)* ™ = (p—20)* 1| < 3

Daraus folgt . O

Wir kommen nun dazu, die noch ausstehenden Existenzbeweise fiir exp und sin zu fiihren,

vgl Satz [154] und Satz [I80]

Beispiel 283 (Exponentialreihe). Wir haben im Abschnitt iiber die Exponentialfunktion
gesehen: Wenn es eine Losung y = exp des Anfangswertproblems

y =y, y0)=1

gibt, muss nach dem Satz von Taylor gelten

o0 xk
expx = Z R
k=0

Das ist aber einer Potenzreihe mit R = oco. Die Reihe definiert also eine differenzierbare
Funktion auf R, fiir deren Ableitung gilt:

e k$k71 e kmkfl e k—1

d = zF > d zF T > xk
O IE T B b i Dh T D vk D DY s s By g
k=0 k=0 k=1 k=0

k=0 k=1

Damit ist die Existenz der Exponentialfunktion bewiesen.

Beispiel 284. Ebenso zeigt man, dass die Potenzreihe

o x2m+1
Z(_1)m(2m+ !
m=0 :

auf ganz R eine zweimal differenzierbar Funktion y mit

y'=-y, y(0)=0,9(0)=1

173



definiert. Das liefert den Existenzbeweis fiir die Sinusfunktion. Man findet fiir alle x € R

oo x2m+1 oo 1,2m
sIx = Tnz::()(—l) m, COST = n;(—l) (2m)' .

O

Bemerkung. Viele Funktionen sind durch Potenzreihen, aber auch durch andere unendliche
Reihen von Funktionen gegeben, zum Beispiel periodische Funktionen durch die sogenannten
Fourierreihen. Eine naheliegende Frage ist dann diese:

Gegeben Funktionen fj : J — R auf einem Intervall J, so dass

fiir alle z € J definiert (die Reihe also konvergent) ist. Unter welchen Voraussetzungen
iibertragen sich Eigenschaften wie Stetigkeit oder Differenzierbarkeit der f; dann auf die
Funktion f?

Dieses Thema gehort zum iiblichen Standardrepertoire der Analysis I, aber wir vertagen es
aus Zeitgriinden in die Analysis II, wo man es in einem allgemeineren Rahmen behandeln
kann.
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10.7 Abelscher Grenzwertsatz

Reelle Potenzreihen definieren im inneren ihres Konvergenzintervalles differenzierbare und
deshalb stetige Funktionen. Gelegentlich liegt auch in einem oder beiden Randpunkten des
Konvergenzintervalls noch Konvergenz vor. Wie steht es dort dann mit der Stetigkeit? Weil
die Randpunkte offenbar besonders ausgezeichnet sind, ist diese Frage von einigem Interesse,
vergleichen Sie die Beispiele unten.

Satz 285 (Abelscher Grenzwertsatz). Die reelle Potenzreihe Y oo ar(z — x0)* sei auf
dem Intervall J C R konvergent. Dann ist die durch

f(z) = Zak(x — x0)F
k=0

definierte Funktion stetig auf J.

Bemerkungen. 1. Sei R der Konvergenzradius der Reihe. Auf {:r ||x — x| < R} ist f
dann sogar differenzierbar, also erst recht stetig. Der Satz ist also nur interessant fiir die
Randpunkte (=Grenzwerte) des offenen Konvergenzintervalls.

2. Auch komplexe Potenzreihen sind im Inneren ihres Konvergenzkreises “komplex differen-
zierbar” (was auch immer das bedeuten mag) und deshalb stetig. Der Abelsche Grenzwert-
satz 148t sich aber nicht auf den komplexen Fall verallgemeinern, vgl. Beispiel [302]

Beweis. Wir beschranken uns beim Beweis auf den Fall o5 = 0, R = 1 und nehmen an, dass
die Reihe auch noch fiir x = 1 konvergiert. Der allgemeine Fall folgt daraus leicht: Betrachte
die Reihe Y ap(£R)*x".

Wir setzen

n (oo}
Sp 1= Zak, s:= f(1) =lims, = Zak.
k=0 k=0

Dann ist s_; = 0. Wir beschranken uns auf 0 < z < 1 und erhalten:

n n n—1
Zakxk = Z(Sk —sp_1)zt = (1 —x) (Z skxk> + spa™.
k=0

k=0

Die Folge (s;,) ist konvergent, also beschrinkt, und aus lim, . 2™ = 0 folgt deshalb
lim, o $px™ = 0. Damit ergibt sich

flz)=(01-2) iskxk, |z < 1.
k=0

Andrerseits folgt aus _p” ) #* = 11—, dass

oo
s=(1 —x)stk.
k=0

Sei € > 0. Wir wollen zeigen, dass es dazu ein ¢ €]0, 1] gibt, so dass

l-d<zx<l = |f(x)—s|<e (98)
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Wir wéhlen ein NV € N, iiber das wir spéter verfiigen wollen, und erhalten fiir 0 < z < 1

@) = sl =1 =) (sp = s)a*| < (L—a) ) |sp — s
k=0 k=0
N oo
S(lfx)Z\skfﬂkar(l—x) Z |sp — s| 2.
k=0 k=N-+1

Durch Wahl von N kénnen wir erreichen, dass in der zweiten Summe alle |s; — s| < €/2, so

dass der ganze zweite Summand < (1 — 2)§ 1 = £ ist.
Der erste Summand geht fiir x /1 gegen 0, es gibt also ein ¢ mit . O

Die beiden folgenden Beispiele liefern insbesondere interessante Reihen-Grenzwerte.
Beispiel 286 (Logarithmische Reihe). Die Potenzreihe
ok+1

2571 (%)

k=0

hat den Konvergenzradius 1 (Beweis?) und definiert deshalb eine differenzierbare Funktion
f:]—1,41]— R. Fiir ihre Ableitung gilt

Also ist nach dem Konstanzkriterium
1 el l,kJrl
1 - =c.
" 20: kr1 €

FEinsetzen von = = 0 zeigt, dass die Konstante ¢ = 0 ist. Man erhélt die sogenannte Loga-
rithmusreihe

1 e karl
1 = , < 1.
nl—x kz::ok—i—l ]

Die Potenzreihe rechts ist auch fiir x = —1 noch konvergent. Nach dem Satz von Abel
ist der Grenzwert = lim,\ —1 In ﬁ = ln% = —In 2. Wir benutzen

& (_1)k+1 1 1 e (_l)k—l
I R Bt Rt P
k1 2 3 — k&

und erhalten den Grenzwert der alternierenden harmonischen Reihe:

= ()t

1n2:Z

1 1 1
= 2+3 +....
k=1

Beispiel 287 (Leibnizreihe). Fiir |z] < 1 liefert die geometrische Reihe

1 o0
Ty -

k=0
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Damit erhilt man wie oben aus

1 o0
I _ k,.2k

arctan’ x = 52— E (-D)%z

k=0
die arctan-Reihe
o0 2k+1
x
t = —1)k , <1,
arctan kg_o( ) 1 ||

und fiir x = 1 aus dem Abelschen Grenzwertsatz die Leibnizsche Reihe

T o= (=1)F 11
- = =1—- - —+....
4 kz::OQIH—l 3Tt

Korollar 288 (Cauchyprodukt). Gegeben seien die drei konvergenten reellen Reihen

o0 o0 o0
E ag, § by, E Ck
k=0 k=0 k=0

mit
m
Cmp = Zakbm,k.
k=0
Dann gilt
oo o0 o0
S ) =
k=0 k=0 k=0

Bemerkung: Vergleichen Sie das mit Satz 273}

Beweis. Die Potenzreihen
o0 o0 o0
g apzh, E bz, g cpz®
k=0 k=0 k=0

haben offenbar Konvergenzradien > 1. Fiir |z| < 1 sind sie absolut konvergent, und Y - ; cxa”
ist das Cauchyprodukt der beiden anderen! Deshalb gilt nach Satz fir |z < 1

oo oo oo
E akxk E bkxk = E ckxk.
k=0 k=0 k=0

Nach dem Satz von Abel sind die durch die Reihen definierten Funktionen in = 1 linksseitig
stetig, und daraus folgt die Behauptung. O
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10.8 Die Taylorreihe

Ist f: J — R beliebig oft differenzierbar, also eine sogenannte C'*°-Funktion, so bildet die
Folge der Taylorpolynome (7,)nen von f in xg € J eine Potenzreihe

pREALUIEEINT
k=0 ’

die sogenannte Taylorreihe von f in xy. Es ist aber nicht klar, ob diese Reihe fiir x # z¢
iiberhaupt konvergiert oder sogar gegen f(x) konvergiert. Anders gesagt: Es ist unklar ob
die Restglieder

Ru(@) = f(2) — Tu(a)
fiir n — oo (nicht fiir x — x¢) konvergieren oder sogar gegen 0 konvergieren. Wenn das so
ist, erhdlt man also eine Darstellung von f als eine Potenzreihe:

0 £(k) (1
o=

Fiir viele Funktionen ist das wenigstens lokal der Fall, und solche Funktionen nennt man
auch reell-analytisch.

Beispiel 289. Konvergente Potenzreihen sind gleichzeitig die Taylorreihe der durch sie

dargestellten Funktionen im Entwicklungspunkt. Das ist klar, weil man Potenzreihen wie
)

Polynome gliedweise differenzieren darf. Also folgt wie fiir Polynome a; = fki(,wo) Damit

sind die Reihen fiir sin, cos oder exp die Taylorreihen dieser Funktionen in O.

O

Aber im allgemeinen ist die Situation komplizierter.
Beispiel 290. Das Beispiel zeigt

0 2k+1
LT

arctanx = Z(fl) fir —1<z<1,
— 2k +1

aber fiir |z| > 1 ist zwar der arctan wunderbar definiert, die Potenzreihe hingegen divergent.
O
Beispiel 291. Die Funktion

f@) = {e_l/””2 fir z # 0

0 firz=0
ist auf R beliebig oft differenzierbar und alle Ableitungen in 0 sind 0. Das folgt mit der

Kettenregel aus Beispiel Also ist die Taylorreihe =0 und damit konvergent. Aber sie
konvergiert nur fiir z = 0 gegen f(z).

O
Ein Satz von Emil Borel besagt, dass es zu jeder Potenzreihe Y apz* (auch solchen mit

Konvergenzradius R = 0) eine C*°-Funktion f : R — R gibt, deren Taylorreihe im Entwick-
lungspunkt 0 gerade die vorgegebene Reihe ist.

Satz 292 (E. Borel). Jede Folge reeller Zahlen ist die Folge der Taylorkoeffizienten einer
geeigneten C'°-Funktion im Entwicklungspunkt 0.
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Vorweg formulieren wir die durch vollstdndige Induktion leicht zu beweisende

Ho6here Produktregel. Fiir n > 0 und n-mal differenzierbare Funktionen gilt

(un)™) = 3 <Z)“(nk)”(k)'
k=0

Beweis zum Satz von Borel. Wir wollen nun zu einer gegebenen Folge reller Zahlen (a,) eine C*°-
Funktion f auf R konstruieren, fiir die

£(0)

n!

= Qn

gilt. Als Ansatz wihlen wir eine Modifikation der Taylorreihe:
f(z) = Z and(gnz)z™. (100)
n=0

Dabei sei ¢ eine C*°(R)-Funktion mit folgenden Eigenschaften:
¢ >0,
1 1
=1 fir ——<z<-=
o(x) =1 fiir 5 ST <5,
$(z) =0 <= < —1oderl<z.

Eine solche Funktion konstruiert man wie im Abschnitt unter Benutzung der C'*°-Funktion aus
L6l

Weiter sei (g ) eine Folge reeller Zahlen > 1, iiber deren Wahl wir spéter verfiigen wollen. Zunéchst
gilt fir r <n

T

dx”

an (b(qnm)l’n <

- r (r—k) r—k n! n—k
any <k> ¢ (qn)qr, (CEI

k=0

r n—k

Z r e qn 1
=il <k) ‘¢( k)(q"x)’ | q"L (n—k)!

k=0

n

n 55

Fiir |gnz| > 1 ist ¢ "% (goz) = 0, und damit verschwindet auch die Summe rechts. Andernfalls,
d.h. fiir |gnz| < 1, ist mit
Ap = max{|¢p"® (z)|; z € R,k < n}

dr

- <
dx” -

an Qb(qnx)xn

! an| e [T T, n!|an| .n
el 5 (1) ot ] < 2l v,
KL

Bei vorgegebener Folge (a,) wihlen wir nun

Ggn =1+ n> 2"n!|an|An.

Dann folgt fiir alle n > r

-
dx”

Das liefert fiir jedes r € N eine konstante konvergente Majoranten (ab Glied r + 1) fiir

an $(gnw)a"| <

1
<ﬁ'

oo dr .
> T (and(gnz)z").
n=0
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Aus dem Satz folgt durch vollsténdige Induktion, dass (100) beliebig oft (gliedweise) differen-
zierbar ist. Weil ¢(gnx) = 1 auf einer kleinen Umgebung von 0, ergibt sich weiter

d"and(gnz)a™ (0) = nla, firr=n
dx” 0 sonst.

Daher ist
£ (0)

n!

= an.

O

Beispiel 293 (Bernoullizahlen). Mit der Regel von Bernoulli-de L'Hospital zeigt man
leicht, dass

- firx#0
o e®—1
f@): 1 firx=0

eine auf ganz R stetige Funktion darstellt. In Wahrheit ist diese Funktion sogar beliebig oft
differenzierbar und wird fiir |z| < 27 durch ihre Taylorreihe dargestelltﬂ Die Ableitungen

F8(0) =: By
heiflen die Bernoullizahlen.

Schreibt man @ = (e — 1) f(z), so folgt aus dem Cauchyproduktsatz

o) 1 oo Bk 00 m—1 Bk
_ -0 Kk Kk _ m
r=\2 e )= Zk!(m—k)! T
1=1 k=0 m=1 \ k=0
Aus der Eindeutigkeit der Taylorkoeffizienten folgt
m—1 m—1
By, 1 m .
k=0 k=0
und das liefert eine Rekursionsformel zur Berechnung der By, aus By = f(0) = 1.
1 1 1 691
Bi=——=,By==-,B3=0,By=——, ..., Bo=———, ...
1 2 y D2 6 s 3 y D4 30 ) y D12 2730 )

»Heute treten die Bernoulli-Zahlen an vielen Stellen in der Zahlentheorie, aber auch in anderen Gebieten,
zum Beispiel der algebraischen Topologie, in Erscheinung, und man hat den Eindruck, dass sie mit ganz
besonders tiefliegenden und zentralen Fragestellungen zusammenhédngen“ (W. Scharlau/ H. Opolka: Von
Fermat bis Minkowski, Springer 1980). In dem angegebenen Buch finden Sie sehr gut versténdlich auch
Herleitungen fiir eher ,einfache“ Eigenschaften der Bernoullizahlen:

n 1 &K m+1 e 1—j )
K= > ( )BjN 9, (J. Bernoulli 1713)

J
s 1 2 2n
S = CGm)™ gyl (Buler 1736).
mn).

5Das ist mit den uns zur Verfiigung stehenden Mitteln vermutlich nur sehr mithsam zu beweisen, in der
komplexen Funktionentheorie ergeben sich diese Behauptungen aber ohne jede Rechnung ganz von selbst.
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10.9 Die komplexe Exponentialfunktion

Vergleichen Sie hierzu den Abschnitt
Die komplexe Potenzreihe
k=0

ist offenbar (?7) fiir alle z € C absolut konvergent und definiert deshalb eine Funktion
exp: C — C, Z'_)ZE’
k=0

deren Einschriankung auf die reelle Achse R die “alte” Exponentialfunktion ist, vgl. Beispiel

283!

Fiir rein-imaginéres iy erhélt man

i)k = (y)*™ | (iy)*
exp(iy) Z k! Z((2771)!+(2m+1)!>'

k=0 m=0

Machen Sie sich anhand der Partialsummen klar, warum die letzte Gleichung gilt, sie ist
nicht ganz trivial! Weil auch die Reihen nur iiber die geraden bzw. nur iiber die ungeraden
k-Werte konvergent sind, ergibt sich weiter

2m+1 e 2m 2m+1

explin) = 3 {3 +ng+1 => (1) “2 A

m=0 =0 m=0

=cosy +¢siny.

Fiir y = 7 liefert das insbesondere die berithmte Eulersche Identitiit ™ = —1.

Mit dem Satz iiber das Cauchyprodukt ergibt sich fiir z,w € C

Xk 2l o Mk m—k
exp(z) exp(w) = Z EZ i Z Z W=
k=0 " 1=0 m=0 k=0
_ Sl m! I > (z+w)™
—T;)mkz:oik!(m_k)!z w —n;)im! = exp(z + w).

Das ist also ein neuer Beweis fiir das Additiontheorem der Exponentialfunktion, und einer
im Komplexen dazu. Insbesondere hat man also fiir reelle x,y

exp(z +iy) = e”(cosy + isiny).
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11 Ein Ausblick auf die Fourierreihen

Fiir eine moderne Theorie der Fourierreihen braucht man eine solide (Lebesguesche) Integra-
tionstheorie. Die kommt in diesem Analysiszyklus aber erst im dritten Semester. Andrerseits
ist die Fouriertheorie so wichtig in vielen Anwendungen und bietet so hiibsche Aspekte, dass
ich Thnen davon gern noch etwas zeigen mochte. Die schwierigen Beweise lasse ich fiir die
Analysis III, und auch sonst bin ich etwas groflziigig: Zum Beispiel werden gegen Ende des
Abschnittes Fourierreihen gliedweise differenziert, was gerade bei Fourierreihen im allgemeinen

nicht erlaubt ist ...

Die Taylorapproximation liefert zu einer gegebenen Funktion f lokal ein approximierendes
Polynom, sagen wir T, ,. Wie wéhlt man dieses Polynom? Die Formel fiir die Taylorkoefi-

. ()
zienten aj = fTW

i war gerade so gemacht, dass T, = f, falls f selbst schon ein Polynom
vom Grad < n ist.

Wenn man periodische Funktionen f : R — R untersuchen will, kann man versuchen, diese
durch einfache periodische Funktionen wie Sinus und Cosinus zu approximieren. Genauer
wollen wir eine Funktion f mit der Periode T" > 0, also mit

fE+T)=f(t) firalleteR,

approximieren durch eine Linearkombination der (ebenfalls T-periodischen!) Funktionen
cos(k%”t) und sin(k%’rt). Der Quotient w = %’T heifit die zu T gehorige Kreisfrequenz. Wir
nennen eine Funktion der Form

F(t) = (ax cos(kwt) + by, sin(kwt)) (101)
k=0
mit ag, by € R ein trigonometrisches Polynom vom Grad n.

Gibt es (wie bei der Taylorapproximation) ein allgemeines Verfahren zur Berechnung der
Koeffizienten ay, by, so dass F(t) sich reproduziert, wenn es bereits ein trigonometrisches
Polynom ist?

Dazu erinnern wir an die frither hergeleiteten sogenannten Orthogonalititsrelationen fiir die trigonometri-
schen Funktionen:

27
/ cosmtsinntdt =0 fiir alle m,n € N|
0
27T 21
/ cos mt cos ntdt = / sinmtsinntdt =0 fiir alle m,n € Nym # n,
0 0

27 27
/ cos? mtdt = / sin? mtdt = fiir m € N\ {0}.
0 0

Mit Hilfe der Substitutionsregel ergibt sich daraus fiir 7> 0 und w = 2?’7:

T
/ cosmwtsinnwtdt =0 fiir alle m,n € N,
0
T T
/ cos mwt cos nwtdt = / sinmwtsinnwtdt = 0 fiir alle m,n € Nym # n,
0 0

T T
/ cos? mwtdt = / sin? mwtdt = T/2  fiir m € N\ {0}.
0 0

Wir multiplizieren nun (101)) mit sin(lwt), wobei [ € N, und integrieren iiber [0, T]. Nach
den Orthogonalitatsrelationen fallen in der Summe fast alle Terme weg, und es bleibt

r T
/ F(t)sin(lwt)dt = gbl
0
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fur I > 0, also

o (T

-2 / F(t)sin(hwt)dt, k€ N\ {0}.
0

Ebenso finden wir

= / ) cos(kwt)dt, ke N\ {0}. (102)
Der Koeflizient by interessiert nicht, weil sin(0wt) = 0.
Der Koeffizienten ag ist hat wegen fOT cos?(0wt)dt = T eine Sonderrolle. Damit (102) auch

fiir £ = 0 gilt, &ndert man die Notation ab und schreibt trigonometrische Polynome als

F(t) := % + 3 (ar cos(kwt) + by sin(ket)) (103)
k=1

Ist nun f:[0,7] — R eine Regelfunktion, so nennen wir

T T
= %/0 f(#) cos(kwt)dt, by, = %/0 f(¢) sin(kwt)dt

die Fourierkoeffizienten und

Fyn(t) = 50 + kZ:l ay, cos(kwt) + by, sin(kwt)) (104)

das n-Fourierpolynom von f.

Damit haben wir ein Verfahren gefunden, welches

1. Jeder Regelfunktion f : [0,7] — R eine Folge von trigonometrischen Polynomen
(F'.n) Nen zuordnet, so dass

Ff,n:fv

falls f ein trigonometrisches Polynom vom Grad < n ist.

3. Diese Folge bezeichnet man als die Fourierreihe

o
2

+ Z ay, cos(kwt) + by, sin(kwt)) (105)
k=1

von f.

Ist f: R — R eine T-periodische Funktion, die auf [0, 7] eine Regelfunktion ist, so definiert
man die Fourierreihe von f als die Fourierreihe von f|i 77.

Bevor wir Beispiele rechnen, stellen wir fest:

e Ist f : R — R eine T-periodische Funktion und f[j 7] eine Regelfunktion, so ist
flia,a+1 fiir jedes a € R eine Regelfunktion, und es gilt

/GHT Ft)dt = /OT Ft)dt
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Eine Regelfunktion f : [-Z,Z] — R mit f(—t) = f(¢) fiir alle ¢ heiBt gerade. Fiir
solche gilt

[ sy =2 /ff@dt.

Eine Regelfunktion f : [—%, %] — R mit f(—t)
solche gilt

S

S

—f(t) fir alle ¢ heift ungerade. Fiir

* p(ydt = o

T
2

Fiir gerade Funktionen verschwinden die Fourierkoeffizienten b, und es gilt

4
ap =

T/2
= f/o f(¢t) cos(kwt)dt.

Fiir ungerade Funktionen verschwinden die Fourierkoeffizienten a; und es gilt

4 [T/2
b, =

T/ f(t) sin(kwt)dt.

Beispiel 294. Sei f: R — R die 2-periodische Funktion mit f(¢t) = 1 — 2|¢| fiir ¢ € [-1,1].
Dann ist f gerade, und die Fourierkoeffizienten sind b, = 0 und

ap = =

! ] _4—4cos(km) O
5 /0 (1 —2t)cos(knt)dt = ——————= = {

fiir k gerade,

k2m2 > fiir k ungerade.

Daraus folgt

8 n
Fpont1(t) = = Z mcos(@m + 1)7t)
m=0

Die nebenstehende Figur zeigt f und Ff 3, also den \ /P\ /
Fall n = 1. ’ '

O
Beispiel 295. Sei f : R — R die 2-periodische Funktion mit f(¢) = ¢ fiir ¢ € [-1,1[. Dann
ist f ungerade, und dhnlich wie im vorangehenden Beispiel findet man

2 n

sin((k + 1)7t) o
oy 2 qyesn((h+ ) ﬂ M
f7n+1(t) = Z( 1) ]
k=0 4 ‘ 2
Die Figur zeigt f und Fyg. M M
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Wann konvergiert die Fourierreihe F(t) gegen die Funktion f(¢)?

In der Analysis 3 werden wir beweisen:

Satz 296. Die Funktion f sei T-periodisch und auf [0,T] stickweise monoton. Firt € R
sei f(t+) bzw. f(t—) der rechts- bzw. linksseitige Grenzwert von f an der Stelle t. Dann gilt

Ft+) + f(t-)

Fy(t) = 5

In den Punkten t, in denen f stetig ist, konvergiert die Fourierreihe also gegen f(t), an
Sprungstellen gegen das arithmetische Mittel von rechtsseitigem und linksseitigem Limes.

Vorsicht: Die Fourierreihe einer stetigen Funktion f muss nicht gegen f(t) konvergieren. Die
stiickweise Monotonie ist eine zusétzliche Voraussetzung.

Aus Beispiel folgt mit dem Satz fiir alle ¢ € [—1, +1]

8 1
m=0

Insbesondere ergibt sich fiir t = 0

Aus
o0 o0 o0 o0 o0
1 1 1 1 1 1
;ﬁ _7;(2771—#1)2 +mz::1 @m)? _m; @m 1 1)? +Z;W’
folgt
3o 1 72
12w %
k=1
und

1 72
2 ET G

[\~

Wenn auch die Fourierreihen wie fiir periodische Funktionen gemacht erscheinen, braucht
man fiir die Definition nur eine Regelfunktion auf [0, 7] und kann diese dann unter der sehr
schwachen stiickweisen Monotonievoraussetzung durch eine Fourierreihe darstellen. Das lie-
fert eine “analytische” Darstellung auch fiir ganz “willkiirliche” Funktionen. Diese Erkennt-
nis hat die Mathematiker zu Fouriers Zeiten sehr fasziniert und wesentlich zur Entstehung
des modernen Funktionsbegriffes beigetragen.

Tatséchlich kann man verschiedene Fourier-Darstellungen fiir f : [0,7] — R finden: Man
kann f ndmlich durch f(¢) = f(—t) oder f(¢t) = — f(—t) auf [-T, +T] erweitern und dann die
Fourierreihe (einer 27T -periodischen geraden oder ungeraden Funktion) bilden: Man erhélt
Darstellungen nur mit cos-Termen oder nur mit sin-Termen. Das spielt eine Rolle in einer
wichtigen Anwendung der Fourierreihen, ndmlich auf sogenannte Anfangswertprobleme fiir
partielle Differentialgleichungen.

Wir geben ein einfaches
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Beispiel 297. Wir betrachten eine schwingende Saite der Lange 1. Die Auslenkung an der
Stelle x zur Zeit t sei u(z,t).
d*u 3*u

Maogliche Losungen der Schwingungsgleichungen ;7 = 5.7 sind Funktionen

u(x,t) = _(ax cos(kt) + By sin(kmt)) sin(kmz).
k

Beachten Sie, dass u(0,t) = u(1,t) = 0 zu jeder Zeit t.
Die Anfangsgestalt der Saite

u(z,0) = Z oy, sin(kmx)
k

bestimmt die Koeffizienten ay. Ist etwa u(z,0) von
der Gestalt 0 a !

so setzt man diese Funktion zu einer 2-periodischen ungeraden Funktion fort:

Deren Fourierkoeffizienten sind dann gerade die «. Befindet sich die Saite zur Zeit ¢ = 0 in
Ruhe, so sind die By = 0 und

u(z,t) = Z oy cos(kmt) sin(kmx).
k=1

Die ay, geben die Amplituden der Oberténe, und durch Wahl von ¢ und b kann man darauf
Einfluss nehmen, und so die Tonqualitdt beeinflussen.

Hier sind die Betrige der Fourierkoeffizienten fiir b = 1 und zwei Werte von a:
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Anhang 1: Darstellung reeller Zahlen

In diesem Abschnitt wollen wir zeigen, dass jede reelle Zahl sich als unendlicher Dezimal-
bruch darstellen 148t, und dass diese Darstellung eindeutig ist, wenn man 9-periodische
Dezimalbriiche ausschliet. Dabei ist die Wahl der Zahl 10 vom mathematischen Stand-
punkt aus willkiirlich, jede natiirliche Zahl > 2 leistet denselben Dienst. Zum Beispiel sind
binére oder Hexadezimaldarstellungen durchaus gebréuchlich. Deshalb wéhlen wir allgemein
im folgenden eine Basiszahl

be N\{0,1}.

Eine b-adische Darstellung einer nicht-negativen rellen Zahl x ist dann gegeben durch eine
Zahlenfolge (ax)rez mit folgenden Eigenschaften:

(i) Fiir alle k € Z ist ay, € {0,1,2,...,b—1}.
(ii) Es gibt ein n € N mit a = 0 fiir alle k > n.
(iii) Es gilt

+oo +oo n
T = Z akbk = Z a,kb_k + Zakbk.
k=—o00 k=1 k=0

Es ist unmittelbar klar, dass (ax)rez genau dann eine b-adische Darstellung von z ist, wenn
(ak+m)kez eine solche von b~ ™z ist. Deshalb beschriinken wir uns in folgenden auf Zahlen

x € [0,1].

In der Darstellung kommen dann keine positiven Potenzen von b mehr vor, und um iibersicht-
lichere Formeln zu bekommen schreiben wir a_j, statt aj, d.h. wir suchen Darstellungen der

Form
—+oo
T = E akb_k.
k=1

Satz 298 (b-adische Darstellung). Zu jeder reellen Zahl x € [0, 1] gibt es eine eindeutig
bestimmte Folge (ax)ren\ {0} mit folgenden Eigenschaften:

(i) ar € {0,1,2,...,b— 1} fiir alle k € N\ {0}.
(i) Fir alle n € N\ {0} ist

0<z— Zakb*k <b "
k=1

Dann gilt also
+oo
T = Z akb*k.
k=1
Man schreibt dann auch x mit den (b-adischen) Ziffern ay, in der Form
r = 0.a1a2a3 .. .p

mit einem unteren Index b.

Beweis. Zur Existenz. Sei
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Dann ist
0 <bxg<hb.

Setzen wir also
ay :=max{n € N|n < bxg} und 1 = bxg — aq,

S0 ist
a1 €40,...,b—1} und 0<x <1.

Allgemein definieren wir rekursiv
ak+1 = max{n € N|n < bxy} und Tpt1 i= b — Qg1
und erhalten fiir alle k&
ap+1 €90,...,b—1} und 0<axpp <1
Damit ist offenbar (¢) erfiillt. Und aus
0<z,=bxp_1—a,<1
folgt mit
by 1 — ap = b(bxy — Gp_1) —Qp = ... =b"2o —b""tay —... —ba,_1 — ay,
nach Division durch b", dass

0<z— Zakb_k <b "™
k=1

Also gilt (44).

Zur Eindeutigkeit. Sei (ax)ren 03 eine b-adische Darstellungen fiir 2 und sei n € N\ {0}.
Dann gilt

0<x— Zakbfk <b™",
k=1

also
n—1

0<bd'x — Z apb” % —a, < 1.
k=1

=y

Dabei ist y eine reelle Zahl mit
y—1<a, <y.

Im halboffenen Intervall Jy — 1, y] liegt aber nur eine ganze Zahl, und daher ist a,, eindeutig
bestimmt. Das gilt fiir alle n € N\ {0}. O

Beispiel 299. Wir betrachten den Fall b = 10. Mit dem vorstehenden Satz haben wir jeder
reellen Zahl z € [0, 1] eine Potenzreihe mit ganzzahligen Koeffizienten aj, zwischen 0 und 9

zugeordnet, so dass
+oo

r=Y apl07F =0.a105... (106)

k=1
gilt, und diese Reihe war unter der im Satz gemachten Bedingung (ii) eindeutig bestimmt.
Natiirlich ist jede Reihe der Form (106|) mit Koeffizienten a, € {0,...,9} konvergent und
liefert eine reelle Zahl z. Liefert der Satz fiir dieses z die originale Reihe zuriick? Anders
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gefragt: Ist die Abbildung, die jedem z seine Dezimaldarstellung zuordnet surjektiv auf die
Reihen mit Koeffizienten zwischen 0 und 97 Das ist nicht so: Es gilt

+oo
29 2107 = 0.09999 .. .. = 0.10000. .. ..
k=2

Das beschreibt aber auch den einzig moglichen Problemfall: Wenn man 9-Perioden (oder im
allgemeinen (b — 1)-Perioden) ausschlieft, entspricht jedem z € [0, 1] genau ein unendlicher
Dezimalbruch 0.a; ... und umgekehrt. Das beweisen wir im folgenden

O

Lemma 300. Gegeben seien zwei Folgen (ar)reny {03 und (ax)ren\ {0} mit
ag,ax € {0,...,b—1},
so dass
“+o0 “+o0
k=1 k=1
Dann gilt: Es gibt ein n € N\ {0} mit
a1 =Q1yeeeyQn_1 = Qn_1, UNd Gy > 0y
genau dann, wenn
an=an—1 undar=0b—1,a, =0 fiir alle k > n.
In diesem Fall gilt
n
x> dp=0b" (107)
k=1

Deshalb ist nach der Bedingung (i) des Satzes die b-adische Darstellung von x nicht gegeben
durch die Folge (ax)ren\ {0}, sondern notwendig dann durch die Folge (ar)ren {o}- Die
Folgen mit (b — 1)-Periode kommen nicht als b-adische Darstellungen vor.

Beweis. Es gilt

+oo +oo
0= Zakbik — Z &kbik
k=1 k=1

n—1
:Z(ak_ak)b_k'i‘( )b+ Z ax — ag)b
k=1 Sp-n k=n-+1
=0
p—(n+1)
>pn o k _ n o — T _
>b —(b—1)) Zb ="+ (b= 1) = b 0
k=n-+1
mit Gleichheit nur fiir den Fall
an = an + 1,
ap —ar =—(b—1) firallek>n+1.
Das beweist den ersten Teil des Satzes. In diesem Fall ist also
xr = Zakb_k = Z dkb_k +b7 ",
k=1 k=1
und daraus folgt (107)). O
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Anhang 2: Subtileres iiber die Stetigkeit
Beispiel 301. Definiere f :]0,1[— R durch

57

f() L falls ¢ = % mit teilerfremden natiirlichen Zahlen p, ¢
T) =
0  sonst.

Dann ist f genau in ]0,1[NQ unstetig.

Beweis. Jede rationale Zahl ist Limes irrationaler Zahlen. Daher ist die Funktion in den
rationalen Zahlen unstetig. Andrerseits gibt es zu ¢ € N hochstens ¢ rationale Zahlen der

Form % in ]0,1[. Ist daher (’;—) eine Folge, die gegen eine Irrationalzahl x konvergiert, so ist

lim % = 0 und damit f in x stetig.

Setzt man f(0) = 1 und erweitert f auf R periodisch mit Periode 1, so ist die erweiterte
Funktion genau in den rationalen Punkten unstetig.

O

Im Gegensatz dazu gilt:

Es gibt keine Funktion f : R — R, die genau in den rationalen Zahlen stetig ist.

Beweis. a) Die Menge A der Stetigkeitspunkte ist ein abzéhlbarer Durchschnitt offener Men-
gen (Gs-Menge).

Um z € A gibt es zu jedem n € N ein offenes Intervall I, (z) mit
L.
If(y) = fx)] < - fir alle y € I, (z).
Die Menge

Gn=J In(2)

z€A

A:ﬂGn.

Offenbar ist ndmlich A C (G,,. Aber fiir y € (G, gibt es zu jedem n ein z, € A, so dass
y € I,(x,). Dann ist aber

ist offen und

If(zn) — f(2)] < % fiir alle z € I,(zy,),

und deshalb 5
lf(z) — f(y)] < - fiir alle z € I, (xy,).

Daher ist y € A.

b) Aus dem Baireschen Kategoriensatz folgt, dass Q keine Gs-Menge ist. (Vgl. z.B. Hewitt-
Stromberg S. 68.) O
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Beispiel 302 (U. Brehm). Dieses Beispiel zeigt, dass der Abelsche Grenzwertsatz m
nicht fiir komplexe Potenzreihen gilt.

Fiir n € N sei p(n) := 3+( D%1.3.5. .+ (2n 4+ 1). Dann ist die komplexe Potenzreihe
N (=D
=3
n=1

in z = 1 konvergent, aber dort nicht stetig.

Beweis. Wir zeigen die Existenz einer Folge (r,,) mit 0 < 7, < 1 und limr,, =1, so dass

lim ‘f(rmeﬁll) = oo0.

Nach Konstruktion ist p(n) = n mod(2) und fiir n > m ist (2m + 1)|u(n). Daher gilt

o'} n o'} m—1
Z P gim £ | > S ‘ S ‘
n=1 n=m n=1
oo () m—1
) i)Y ‘
n=m %’_/ n=1
=1
> Zpp(n) | —1
> (3 ) 1)
Also bleibt zu zeigen, dass man 7, so wahlen kann, dass z.B.
v L) :
Z -k >2m—1 und limr,, = 1.
n

wegen der Divergenz der harmonischen Reihe gibt es aber IV, > m mit
N
E — > 2m,
n
n=m

und aus Stetigkeitsgriinden findet man r,, €]1 — %, 1[ mit

N

S L) > 0 1,
n
n=m
Es folgt
oo
) grﬁf”) >2m —1
n=m
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Anhang 3: Nullstellen von C*-Funktionen

Ist f € C**1(J) auf einem offenen Intervall J um 0 und ist f(0) = f/(0) = ... = f*(0) =0,
so gilt nach dem Satz von Taylor fiir z # 0
_ N0 f*10) | R(x)

f(z) = o 1)!$k+1 + R(z) = ((k 1 + xk+1) 2 = p(z)2h

Der Satz von Taylor sagt weiter, das

R(z)
z—0 ghtl =0
(k+1)
Setzen wir h(0) := %, so ist h in O also stetig.

Damit haben wir eine Information iiber das Verhalten einer C**!'-Funktion in der Nihe
einer k-fachen Nullstelle. Ist f sogar ein Polynom, so wissen wir aus dem Satz iiber die
Polynomdivision, dass h(z) wieder ein Polynom ist.

Unter den eingangs gemachten Voraussetzungen fiir f gibt uns der Satz von Taylor aber
iiber die Regularitdt von h in 0 auler der Stetigkeit keine weiteren Informationen. Wenn f
noch 6fter differenzierbar ist, so kann man vermuten, dass auch h in 0 differenzierbar ist.
Fiir C*°-Funktionen ist das richtig, wie der folgende Satz zeigt, aber der Beweis ist nicht so
simpel.

Satz 303 (Lemma von Bohnenblust). Sei f : J — R eine C*°-Funktion auf einem
offenen Intervall J um 0 und seien

FO) =70 =...fF0)=0
fiir ein k € N. Dann gibt es eine C°*°-Funktion h : J — R mit
f(z) = "1 h(z).

Fiir diese gilt
(k+1)
noy=1_——19
(k+ 1)

Fiir den Beweis benttigen wir folgendes

Lemma 304. Seien a <0 < b und g € C*([a,b]). Dann gilt fiir jedes m € N: Die Funktion
¢ : la,b] — R mit

1
o(x) ::/ t"g(at)dt
0
ist differenzierbar und
1
@' (x) :z/ t™ g (xt)dt.
0

Ist g € C*([a,b]), so folgt also auch ¢ € C*([a,b]).
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Beweis. Sei € > 0. Es gilt
dla+ Az) — ¢(2) f/ g (at)dt :/ 9@+ A)t) —g(xt) g (at) ) dt
A.’E 0 0 AJL‘

B / o (g((m + A0 —glat) tg/m)) "

Fiir festes ¢ € [0, 1] gibt es nach dem Mittelwertsatz ein § = &, zwischen = und = + Az, so
e ((a + Ar)t) — (ot
g((z + Az)t) — g(x /
=t t).
Az g'(&t)
Nach Voraussetzung ist ¢’ stetig, also gleichmifig stetig auf [a,b]. Zu dem gewihlten € > 0
gibt es daher ein 6 > 0, so dass fiir alle &,z € [a, b] gilt

E—zl<d = |9'(§) - g () <e
Dann gilt aber auch fiir jedes t € [0, 1]
€ —a|l<d = ["T(g'(€t) — g (at))| < e

Fiir 0 < |Az| < § ist daher
_ 1
@+ Az) — 9(2) —/ tm+lg/(xt)dt‘ <e
0

Ax
Daraus folgt die Behauptung. O

Beweis zum Lemma von Bohnenblust. Durch vollstindige Induktion iiber k

k = 0. Sei also f(0) = 0. Definiere

h(x) ::/O I (xt)dt.

Nach dem Lemma ist h € C*°([a, b]). Weiter gilt
1 1
, d
eh(z) = /0 af (at)dt = /O %dt = f(at)|io = f ().

k — (k4 1). Sei der Satz fiir k£ bewiesen und sei

FO) = f(0) =...= f&V(0) = 0.
Dann ist nach Induktionsvoraussetzung
f() = 2 i(x)

mit einer C*°-Funktion }~l, fiir die

~ 1
h(0) = F(0) = 0.
0= GO
Also gibt es eine C*°-Funktion h mit
h(z) = xh(z).
Dann ist f(x) = 2**2h(x), und aus der wiederholt angewendeten Produktregel folgt
1
*+2)(0) = h(0).
G0 = h0)
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Anhang 4: Differentiation von Reihen

Hier geben wir eine Verallgemeinerung des Satzes iiber die Differentiation von Potenzreihen
an:

Satz 305 (Differenzierbarkeit von Reihen). Auf dem offenen Intervall J seien diffe-
renzierbare Funktionen fi : J — R gegeben, so dass

> fulx) (108)
k=0

fiir alle x € J konvergent ist. Sei f: JJ — R die dadurch gegebene Summenfunktion.
Die Reihe Y fi.(x) besitze eine von = unabhingige konvergente Majorante: Es gebe eine
konvergente Reihe > ¢y, reeller Zahlen mit

|fl/c| < ¢

fir fast alle k. Dann ist f differenzierbar und es gilt
=X 1
k=0

Die Reihe (108|) darf man also gliedweise differenzieren.

Beweis. Sei € > 0. Dann gibt es N € N mit
(o]
> a<e (109)
k=N+1

und wir wihlen ein solches. Nach dem Vergleichskriterium ist die Reihe ) f;.(x) fiir jedes =
konvergent.

Seien nun « € J und h € R mit | — h,x + h[C J. Nach den Rechenregeln fiir konvergente
Reihen erhalten wir

M S i) ‘
(fk<x+h2—fk(x>_, ) ; “h -y AW

E=N+1
Je(x+h) — fr(z) /
( Y - ) kENka k) — E fr(x

= 1= 1M~ -

k=N+1
< |3 (BEEAEAE p) |+ S s+ | X A
k=N+1 k=N+1

=

(x+h) = fi(z)

5 — filx)| + 2¢

AN

=
Il
o

Weil die fi differenzierbar sind, gibt es zu jedem k € {1,...,N} ein d; > 0, so dass fiir

|h| < 5k
Bt W56 )

£
¥
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Ist daher |h| < 6 = min{dp, ..., dx}, so folgt

< 3e.

Anhang 5: Eine stetige, nirgends differenzierbare Funk-
tion
Schon Riemann und Weierstra3 haben nach Funktionen gesucht, die zwar stetig, aber nir-

gends differenzierbar sind. Weierstrafl hat wohl die erste solche Funktion gefunden. Hier
geben wir ein einfacheres Beispiel an, dass von T. Takagi (1903) stammt.

Sei K : R — R die stetige Funktion mit K (2 + 1) = K(x) und

T fir0<z <1,
K(z) := o 2
1—=x fur§§x§1

(110)
k=0

Nach dem Weierstraf-Kriterium aus Beispiel 77 ist f stetig. Wir wollen nun zeigen, dass
es nirgends differenzierbar ist. Der Beweis stammt von de Rham (1957). Wir betrachten
20 € R, n € N\ {0} und i € Z so, dass

—

1+ 1
2n

Q= 2—n§x0<ﬂn._

Weil K(z) = K(0) = 0 fiir ganzzahliges x, erhalten wir

SEp B

k=

i

=]
=
H
=
Il
o

Dabher ist

Aber die Funktion

ist ein Polygonzug und 7, dessen Steigung auf dem Intervall |a,, 5, [ Nach Konstruktion
ist Jang1, Bnt1[Clan, Bn] und 741 = r, £ 1, so dass die Folge (r,,) divergiert. Aber mit
An 1= 52220 il

_ Aﬂf(ﬁn) B f(-TO) + (1 _ )\n)f<x0) B f(an)7

Bn — 0 Ty — Qn

wobei der erste Summand verschwindet, wenn x¢ = a, (was dann iibrigens xg = a,, fiir alle
m > n nach sich zieht). Wire f in z¢ differenzierbar, so wiire (r,) konvergent gegen gegen
die Ableitung an dieser Stelle. Widerspruch!
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1 Grundlagen der Topologie

1.1 Topologie in metrischen Ridumen

e Bevor wir mit der Analysis von Funktionen mehrerer Variabler beginnen koénnen,
miissen wir deren Definitionsbereiche, also hoher-dimensionale Rdume genauer ken-
nenlernen.

e Wir legen die Grundlagen fiir die Definition von Konvergenz in solchen Réumen und
damit fiir die Definitionen von Stetigkeit und Differenzierbarkeit von Funktionen auf
solchen Rdumen.

Metrische Riaume

e Wir lernen, was eine Metrik zur Abstandsmessung von Punkten in einem Raum (d.h.
in einer Menge) ist

e und betrachten dafiir viele sehr verschiedene Beispiele. Das verdeutlicht gleichzeitig
die “Universalitéit” abstrakter mathematischer Begriffsbildungen.

Definition 1. Ein metrischer Raum ist ein Paar (X,d)
bestehend aus einer Menge X und einer Abbildung (der
Metrik)

d: XxX—-R

mit folgenden Eigenschaften fiir alle z,y,z € X:
d(z,y) 20und d(z,y) =0z =y (1)

d(z,y) =d(y,z) (Symmetrie) (2)
d(z,z) <d(z,y)+d(y,z) (Dreiecksungleichung) (3)

Beispiel 2. X =R, d(z,y) = |z — y|.

Beispiel 3 (Standardmetrik auf R™). Wichtigstes Beispiel fiir dieses Semester:
Seien n € N\ {0},
X =R":={(z1,...,2,) |z € R}

und fir ¢ = (x1,...,20), y = (Y1,---,Yn) €ER"

Wir nennen diese Metrik die Fuklidische Metrik oder die Standardmetrik auf R™. Nur die
Dreiecksungleichung d(z, z) < d(z,y)+d(y, z) bedarf eines Beweises. Wir verschieben ihn auf
das néchste Beispiel. Aber dort ist die Situation etwas allgemeiner und damit komplizierter.
Versuchen Sie einen einfacheren Beweis zu finden.

O



Beispiel 4 (IP-Metrik). Fiir den R™ gibt es nicht nur die im letzten Beispiel angegebene
Metrik, sondern viele mehr. Zum Beispiel fiir p > 1 die sogenannte [P-Metrik:

dP(z,y) = {/Zm —yilP

Fiir p = 1 konnen Sie die Dreiecksungleichung selbst beweisen, fiir p > 1 ist das etwas
komplizierter. An der Stelle (x) benutzen wir die Holdersche Ungleichung aus der Analysis I:

Es gilt mit ¢ := p%l fiir a;,b; € R

n n

n n
D ai b3l =" a; + bl lai + b:lP7H <Y Jaal [ + bilPTH > bl lag + by

i=1 i=1 =1 i=1

1 1
(SStor) " (S masr=s)
i=1 =1

= (Zai|p> + <Z|bip> < |ai+bi|p>
i=1 i=1 i=1

1
Division mit (337, |a; + b;[?)* liefert wegen 1 — ¢ = &

(ilaﬁbﬂ); < (Z |ai|P); ¥ (iw)é,

i=1 i=1 i=1

A
>IN

s =
Q=

falls >0 | a; +b;|P > 0. Aber die Ungleichung gilt natiirlich auch, wenn >, |a; +b;|? = 0.
Mit
@i =Y — T, b=z — Y.

ergibt sich die Dreiecksungleichung fiir dP.

O
Beispiel 5 (I°°-Metrik). Die sogenannte [*°-Metrik
d>(z,y) :=sup{|z; —yi| |1 <i<n}.
ist eine weitere Metrik auf dem R"™. Beweisen Sie die Dreiecksungleichung und
. » s
zur Rechtfertigung der Bezeichnung d*°.
O

Ein exotischeres Beispiel:

Beispiel 6 (U-Bahn). Sei X die Menge der Berliner U-Bahnstationen und d(z, y) fiir z,y €
X die Léange der kiirzesten Schienenverbindung zwischen x und y.

O

Beispiel 7 (Spurmetrik). Ist (X, d) ein metrischer Raum, so ist jede Teilmenge A C X auf
natiirliche Weise ein metrischer Raum mit der von d induzierten Metrik oder Spurmetrik

dA(x7y) = d(l‘,y)
fir x,y € A.



Beispiel 8 (Diskrete Metrik). Ist X eine Menge, so liefert
0 firz=y
d(z,y) =
(@y) {1 sonst
eine Metrik auf X, die sogenannte diskrete Metrik. Beweisen Sie die Dreiecksungleichung.
O
Definition 9 (Beschridnktheit). Sei (Y, d) ein metrischer Raum.

(i) A CY heiBt beschrinkt, wenn gilt:
e Zujedem y € Y gibt es ein M € R mit d(y,y’) < M fiir alle 3 € A.
Ist Y # (), so ist das dquivalent zu folgender Bedingung:
e Es gibt ein y € Y und ein M € R mit d(y,y’) < M fiir alle y € A.
(ii) Fiir @ # A C Y heifit
diam A == sup {d(y',y") |v'.y" € A}
der Durchmesser von A. Wir setzen diam () := 0.

(iii) Eine Abbildung f : X — Y einer Menge X heiit beschrinkt, wenn f(X) C Y be-
schrankt ist.

Lemma 10. Eine Teilmenge A des metrischen Raumes (Y,d) ist genau dann beschrinkt,
wenn sie endlichen Durchmesser hat.

Beweis. Sie 0.E. A # (). Ist A beschréinkt, so gibt es M € Rund y € Y mit d(y,y’) < M fiir
alle 4’ € A. Also gilt fiir alle v/, 3" € A

d(y',y") < d(y',y) +d(y, y") < 2M.
Damit ist diam A < 2M.
Ist umgekehrt M := diam A < oo und y € A, so gilt fiir alle y’ € A
d(y.y') < M,
also ist A beschrankt. O

Funktionenrdume. Wir nehmen nun eine ganz wesentliche Erweiterung unseres Horizontes
vor: Neben den Raumen, auf denen unsere Funktionen definiert sind, betrachten wir auch
Réume, deren Elemente (Punkte?!) selbst Funktionen sind, sogenannte Funktionenrdume.
Denn wie zum Beispiel die Theorie der Potenzreihen zeigt, sind wir auch an der Konvergenz
von Funktionenfolgen interessiert.

Satz 11 (Supremumsmetrik). Seien (Y, d) ein metrischer Raum und X eine beliebige Menge,
beide # ). Sei
B(X,Y) := {f X =Y |f beschrdnkt}

die Menge der beschrinkten Abbildungen von X in'Y . Dann definiert
d*'P(f, g) := sup {d(f(z), g(z)) |z € X }

eine Metrik auf B(X,Y), die sogenannte Supremumsmetrik.




Beweis. Sei zg € X. Dann gibt es zu f,g € B(X,Y)
ein M mit

d(f(xo), f(x)) <M und d(g(zo),g(z)) <M
fir alle x € X. Daher ist fir alle x Y=R

d(f(x), g(x)) < 2M + d(f(x0), 9(x0)),

und sup,¢c x d(f(x),g(x)) € R. X=[a,b]
Also ist d*¥P : B(X,Y) x B(X,Y) — R definiert.

(1), (2) sind trivial. Zur Dreiecksungleichung:
d**(f,h) = sup d(f(2), h(x))
< sup (d(f(2), g()) + d(g(x), h(x)))
< supd(f(2), 9(x)) +sup d(g(z), h(z))
= d™(f,g) +d™"(g,h).
m

Bemerkung: Fir X = {1,...,n}, Y = R sind (B(X,Y),d**?) und (R", d*°) isometrisch
isomorph:
(B(X,Y),d*"?) = (R",d*).

Das heifit, es gibt eine Bijektion ¢ : B(X,Y) — R™, nidmlich
¢ f=(fQ1),.... f(n)),

fir die

d>(o(f), #(g)) = d>**(f, 9)-
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Topologie in metrischen Riumen

e Wir erkliaren, was Umgebungen und was offene Mengen in einem metrischen Raum
sind und lernen deren wesentliche Eigenschaften kennen.

e Begriffe wie Konvergenz oder Stetigkeit lassen sich allein mit dem Offenheitsbegriff
ohne weiteren Riickgriff auf die Metrik definieren. Das ist der Ausgangspunkt der Ver-
allgemeinerung metrischer Rdume zu sogenannten topologischen Rdaumen, aber darauf
gehen wir in diesem Semester nicht niher ein.

Sei (X, d) ein metrischer Raum.

Definition 12 (Umgebung, offen, abgeschlossen). Sei a € X.

(i) Fiir € > 0 heift
Ue(a) :={z € X| d(z,a) < €}

die offene Kugel vom Radius € um a oder die (offene) e- Umgebung von a.
(ii) U C X heift eine Umgebung von a, wenn es € > 0 gibt, so dass U.(a) C U.
(iii) Y C X heift offen, wenn Y eine Umgebung jedes seiner Punkte x € Y ist.
(iv) Y C X heiit abgeschlossen, wenn X \'Y offen ist.

Beispiel 13. Fiir die Standardmetrik bzw. die Metrik d*° auf R? findet man:

O

Beispiel 14. Fiir die Supremumsmetrik auf B(X,Y") besteht U.(f) aus allen Funktionen
g: X — Y mit
sup{d(f(z),g(z)) [z € X} <.

O
Beispiel 15. Sei (X, d) = R mit der Standardmetrik.
10,1, J1l,00[, ]—o00,00[ sind offen
[0,1], [l,00[, ]—o00,00] sind abgeschlossen,
[0,1] ist weder offen noch abgeschlossen.
O
Beispiel 16. In jedem (X, d) sind X und () sowohl offen als auch abgeschlossen.
O
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Beispiel 17. Beziiglich der diskreten Metrik sind alle Teilmengen offen, also alle Teilmengen
auch abgeschlossen.

O

Beispiel 18. Die offenen Kugeln U, (a) sind offen (Dreiecksungleichung).

Satz 19. Die Menge der stetigen Funktionen
C%([a,b]) == {f : [a,b] = R | f stetig}

ist eine abgeschlossene Teilmenge von (B([a,b],R), d"P).

Beweis. Zunichst sind stetige Funktionen auf einem kompakten Intervall beschrinkt. Also
ist wirklich C°([a,b]) C B([a,b],R).

Sei f € B([a,b],R) unstetig an der Stelle zy € [a, b]. Dann gibt es ein € > 0, so dass fiir alle
0 > 0 gilt:
Es gibt ein = € [a,b] mit |x — x| < ¢ und |f(z) — f(xo)| > €.

Sei nun g € Uc/3(f), dh. g € B([a,b],R) und sup [f — g| < ¢/3.
Dann gibt es zu jedem ¢ > 0 also ein = € [a, b] mit |x — x| < § und
e < [f(x) = f(wo)| < |f(2) — g(@)| +]g(x) — g(xo)| + |g(x0) — f(20)]-
——— —_————
<e/3 <e/3

Also gibt es zu jedem ¢ > 0 ein = € [a, b] mit

|z — @0l < 0 und |g(x) — g(zo)| >

WLl

Also ist g unstetig und U, 3(f) besteht nur aus unstetigen Funktionen. Daher ist die Menge
der unstetigen Funktionen in B([a, b], R) offen und das Komplement C°([a, b]) abgeschlossen.
O

Satz 20 (Metrische Rdume sind Hausdorffsche Rdume). Sind z,y € X zwei verschiedene
Punkte eines metrischen Raumes, so gibt es Umgebungen U von x und V von y, die disjunkt
sind.

Beweis. Sei € := d(x,y). Wir setzen
U:=Ug(x), V:i=Ueg(y).
Wire z € U NV, so wire
d(z,y) < d(z,z) +d(z,y) <e/2+€/2=¢.

Das ist ein Widerspruch zur Definition von €. Also gibt es kein z € U NV Der Durchschnitt
ist leer. 0

12



Satz 21 (Vereinigung und Durchschnitt offener Mengen). Die Vereinigung von beliebig
vielen und der Durchschnitt von endlich vielen offenen Teilmengen eines metrischen Raumes
sind wieder offen.

Beweis. Sei (U;)ier eine Familie offener Mengen in X. Ist z €
mit x € U;. Weil U; offen ist, gibt es dazu ein € > 0 mit

el U;, so gibt es ein i €

Ue(z) c U | JUs.
el

Also ist | J;c; Us offen.

Ist andrerseits « € (), .; U, so gibt es zu jedem i € I ein €; > 0 mit

iel
U, (z) CUj.
Wir wéhlen zu jedem ¢ ein solches ¢; > 0. Ist die Indexmenge I endlich, so ist
e:=min{e; |i € [}
positiv, und es gilt fiir jedes i € T
Uc(zx) C U, (x) C U;.

Daher ist
Ue(z) € (Ui
i€l
]

Fiir unendliches I klappt das letzte Argument des Beweises nicht und ist die Aussage auch
nicht richtig:

Beispiel 22. Der Durchschnitt der unendlich vielen offenen Intervalle | —
also nicht offen beziiglich der Standardmetrik auf R.

[C Rist {0},

11
n’n

Korollar 23. Der Durchschnitt von beliebig vielen und die Vereinigung von endlich vielen
abgeschlossenen Mengen sind wieder abgeschlossen.

Beweis. Der Beweis geschieht durch ,Dualisieren“. Man benutzt folgende Tatsache: Ist
(4;)ier eine beliebige Familie von Teilmengen von X, so gilt fiir z € X:

e (A = z¢ | J(X\4)

icl i€l

Das heifit

A= x\ [JX\4)

i€l i€l

und ebenso

UAi=x\(x\4)|

icl el

Daraus ergibt sich mit dem vorstehenden Satz die Behauptung. O
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Bemerkung. Sei X eine Menge und 7 C P(X) eine Teilmenge der Potenzmenge von
X. Sind die Vereinigung beliebig vieler und der Durchschnitt endlich vieler Mengen aus T
wieder in 7, so nennt man 7 eine Topologie fiir X und (X, T) einen topologischen Raumﬂ
Die Mengen aus 7 nennt man dann die offenen Mengen von (X, T). Ein beliebiges U C X
heifit eine Umgebung von x € X, wenn es eine offene Menge V' € T gibt, so dass

zeV cU.

Topologische Rdume sind eine Verallgemeinerung der metrischen Rdume. In ihnen kann man
Begriffe wie Konvergenz, Stetigkeit usw. einfithren.

O

Satz 24 (Spurtopologie). Seien (X,d) ein metrischer Raum und A C X eine beliebige
Teilmenge versehen mit der induzierten Metrik da. Dann sind die offenen Teilmengen von
(A,da) genau die Durchschnitte offener Teilmengen von (X,d) mit A:

B C A ist offen in (A,da) <= Es gibt eine offene Teilmenge Y in (X,d) mit B=ANY.

Der Satz gilt auch mit “abgeschlossen” statt “offen”.

Beweis. Zu (<). Selbst.
Zu (=). Sei B C A offen. Dann gibt es zu jedem 2z € B ein ¢(x) > 0 mit

BDU(m _{yeA‘dAxy)—d(ny<€ } AQUE(I)()
wobei
Ul (@) = {y € X |da(z,y) = d(z,y) < e(z)}.
Die Menge
Y= UL,
rEB

ist als Vereinigung offener Teilmengen von X offen in X und es gilt B = ANY. Damit ist
,=* fiir offene Mengen gezeigt.

Ist B C A abgeschlossen in A, so ist A\ B offen in A. Also gibt es nach dem eben Bewiesenen
eine offene Teilmenge Y C X mit A\ B=ANX und B = AN (X \Y)ist der Durchschnitt
von A mit der abgeschlossenen Teilmenge X \' Y von X. O

Beispiel 25. Sei X =0, 3] mit der Standardmetrik d(z,y) = |z — y|. Uberlegen Sie, welche
Attribute auf welche Teilmengen von X zutreffen, welche nicht:

10,1] | ]2,3] | ]11,2] | ]0,3]

offen

abgeschlossen

O

1 Dabei definiert man den “leeren Durchschnitt” als X und die “leere Vereinigung” als ). Will man diese
logische Spitzfindigkeit vermeiden, so fordert man noch, dass X € 7 und 0 € T.
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Definition 26 (Inneres, abgeschlossene Hiille, Rand). Seien (X, d) ein metrischer Raum
und Y C X. Wir definieren:

(i) Das Innere von Y oder der offene Kern von Y ist die Menge
Y =Y = {y €Y |TsoUdcly) C V).

(o)
Die Punkte von Y heiflen innere Punkte von Y.

(ii) Die abgeschlossene Hiille von Y ist die Menge

Y =X\ (X\Y)"

(iii) Der Rand von Y ist die Menge
oY ==Y\ Y.

Satz 27. Sei Y C X. Dann gilt

(i) )?’ ist die grifste offene Menge in'Y :

v= U @

U offen,UCY

Insbesondere ist )3 als Vereinigung offener Mengen selber offen.
(i) Y ist die kleinste abgeschlossene Menge, die Y enthilt:
Y = N A.
A abgeschlossen, ADY

Insbesondere ist Y als Durchschnitt abgeschlossener Mengen selber abgeschlossen.

(iii) Die Randpunkte von'Y sind charakterisiert dadurch, dass jede ihrer Umgebungen Punk-
te von' Y und Punkte von X \'Y enthilt:

Y ={z € X [Veso Uc(z) NY # 0 und Uc(z) N (X\Y) #0}.

dY ist abgeschlossen.

Beweis. Zu (i). Sei

v= |J ©

U offen, UCY

Zunichst gilt }g C V. Ist ndmlich y € }?', so gibt es € > 0 mit U := U.(y) C Y, und U ist
offen. Also ist y € V.

Weiter ist )3 D V. Ist ndmlich y € V, so gibt es ein offenes U C Y mit y € U. Da U offen

ist, gibt es ein € > 0 mit U (y) CU C Y. Also ist y € Y.

Damit ist }g =V.
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Zu (#). Das beweisen wir durch ,,Dualisieren®.

vexvxe=x\ [ U ul= N @xw
(X\Y)DU offen (X\Y)DU offen
= N (X\U) = N A
YC(X\U),U offen Y CA, A abgeschlossen

Zu (i1). Nach Definition ist
YAY? = (X\X\Y))\Y? =X\ (X\Y)°UY?).

In (X \Y)? liegen alle Punkte, die eine ganz in X \ Y liegende Umgebung besitzen. In Y
liegen alle Punkte, die eine ganz in Y liegende Umgebung besitzen. Also besteht Y \ Y
genau aus den Punkten, deren sdmtliche Umgebungen sowohl ¥ wie X \ Y treffen. Daraus
folgt Y =Y \ Y? und auch die Abgeschlossenheit von 9Y .

O
Beispiel 28. Seien
U:={(z,y,0) eR® |2 +y*> <1} CR?
E = {(z,y,0) € R3 |:c,m €eR} C R3
Wir betrachten den R3 mit der Standardmetrik d. Dann ist das Innere (} = und
OU =U = {(z,y,0) €eR® |2® +¢y* < 1}.
Betrachtet man hingegen U als Teilmenge von
(E,dg), so ist
U="0, :
U={(zy,0)eR® |2® +y> <1}, £
oU = {(z,y,0) eR® |2® +y*> =1}.
O
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1.2 Konvergenz

e Wir definieren Konvergenz in metrischen Réumen.
e Wir konkretisieren das an sehr verschiedenen Beispielen.

e Wir untersuchen den Zusammenhang mit der Offenheit und Abgeschlossenheit von
Mengen.

e Als wichtige Sétze lernen wir das Schachtelungsprinzip und den Banachschen Fix-

punktsatz kennen.

Sei (X, d) ein metrischer Raum.

Definition 29 (Konvergente Folgen). Sei (zx)ren eine Folge in (X, d). Die Folge heifit
konvergent gegen a € X, und wir schreiben

lim xy =a oder zp — a,
k—o0

wenn limy_, o0 d(2,a) = 0.
Dann heilt a der Limes oder Grenzwert der Folge.
Die Folge heifit konvergent, wenn es ein a € X gibt, so dass (z1) gegen a konvergiert.

FEine nicht konvergente Folge heifit divergent.

Sei E eine Eigenschaft, die fiir alle Glieder einer Folge () wahr oder falsch ist.
Wie im letzten Semester vereinbaren wir folgende dquivalente Sprechweisen:

e Es gibt ein ky € N, so dass E wahr ist fiir alle x; mit k£ > k.

e E gilt fiir fast alle Folgenglieder (oder fiir fast alle k).

o F gilt fiir alle hinreichend grofien k.
Dann ist limg_yo0 2 = a, wenn in jeder Umgebung von a fast alle Glieder der Folge (zj)
liegen oder, dquivalent, wenn in jedem U,(a) mit € > 0 fast alle Glieder der Folge (x) liegen.

Nach der Hausdorff-Eigenschaft ist der Grenzwert einer konvergenten Folge eindeutig be-
stimmt.

Beispiel 30. Fiir R mit der Standardmetrik ist diese Konvergenz die iibliche aus Analysis 1.
O

Satz 31 (Koordinatenweise Konvergenz). Wir betrachten eine Folge (xk)gen @m R™ mit der
Standardmetrik und schreiben x = (g1, ..., Tkn). Weiter sei a = (a1,...,a,) € R™. Dann
gilt

lim z, =a < lim xy; = a; fir alle j.
k— o0 k—o0

Dasselbe gilt auch fiir R™ mit der dP-Metrik, 1 < p < oo beliebig.

Beweis. Sei 1 < p < oo Fiir alle k € Nund j € {1,...,n} gilt

n 1/p
|z — aj| < (Z | Tk — aﬁ’) <nMP sup |wg — ayl.

] 1<i<n

d(zk,a)

17



Daraus folgt die Behauptung. Wie argumentiert man fiir p = co? 0
Bemerkung. Die Ungleichung im letzten Beispiel hat als einfache Konsequenz die Abschétzung
d®(z,y) < d”(z,y) < n'/Pd™(z,y). (4)

Schlieflen Sie daraus, dass die offenen Mengen in (R™, dP) fiir jedes p € [1,+oo| dieselben
sind wie in (R™, d*).

Satz 32 (Folgen-Abgeschlossenheit). Sei A eine Teilmenge des metrischen Raumes (X, d).
Dann sind die beiden folgenden Aussagen dquivalent:

(i) A ist abgeschlossen.
(i) Fir jede konvergente Folge (ry)keny mit limxy = x gilt:

(VkﬁkEA) — x €A

A ist also genau dann abgeschlossen, wenn es beziiglich der Grenzwertbildung abgeschlossen
15t.

Beweis. Zu (i) = (ii). Sei A abgeschlossen. Sei () eine Folge in A und limxy, =z € X.
Zu zeigen: x € A. Wire x ¢ A, so ldge a also in der offenen Menge X \ A, und diese wire
eine Umgebung von z. Dann ligen fast alle 25 in X \ A. Es liegt aber kein xj in dieser
Menge.

Zu (1i) <= (i). Der Grenzwert jeder konvergenten Folge in A liege wieder in A. Wir zeigen
X \ A ist offen. Andernfalls gibt es némlich einen Punkt = ¢ A, so dass kein U(x) ganz
in X\ A liegt. Dann gibt es zu jedem k£ € N ein x, € A mit z, € Uk%l(m) Offenbar

konvergieren die xj, gegen x € X \ A. Widerspruch! O

Beispiel 33 (Produktmengen). Seien Ai,..., A, C R abgeschlossen. Dann ist auch A; x
... x A, C R"™ abgeschlossen. Das folgt unmittelbar aus dem vorstehenden Satz in Verbin-
dung mit Satz

O
Definition 34 (Gleichmiflige Konvergenz). Eine Folge (fx)reny von Abbildungen
fk X =Y

der Menge X # ) in den metrischen Raum (Y, d) heifit gleichmifig konvergent gegen f :
X — Y, wenn gilt:

Ves0 TroeN Visk, Vaex d(fr(z), f(x)) < e

Das ist dquivalent zu

Ves0 TroeN Visk, sup d(fr(z), f(z)) <e.
xe

Beispiel 35. Eine Folge (fx) in B(X,Y) ist beziiglich der sup-Metrik konvergent gegen
f € B(X,Y) genau dann, wenn sie gleichmdfig gegen f konvergiert.

Der Begriff der gleichméfigen Konvergenz macht allerdings auch fiir Folgen unbeschrinkter
Funktionen einen Sinn.

O
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Beispiel 36 (UngleichmiBige Konvergenz). Sei f : [0,1] — [0, 1],z — 2* und sei

F@) = {1 fir z =1,

0 sonst.

Dann konvergiert fiir jedes = € [0,1] die Folge 1

(fi(2))ren gegen f(z).
Man sagt, die Funktionenfolge (fx) konvergiert

punktweise gegen f. Aber fiir jedes k ist

0.8

sup |fk(x) - f(.’L')| = 17 04
0<z<1

0.2

und daher ist die Konvergenz nicht gleichméfig.

0.2 0.4 0.6 0.8 1

Satz 37. Sei (fx : [a,b] = R)ren eine Folge stetiger Funktionen. Ist diese Folge gleichmifiig
konvergent gegen f : [a,b] = R, so ist f stetig.

Beweis. Als stetige Funktionen auf einem kompakten Intervall sind die fi beschrénkt. Also
liegt die Folge in B([a,b],R). Auch die Grenzfunktion liegt in diesem Raum, weil sie sich
von fi fiir grofles k nur wenig, zum Beispiel weniger als 1 unterscheidet. Also ist sie auch
beschrénkt. Die Folge (fj) konvergiert also in B([a, b], R) gegen f. Nach Satzist C%([a, b))
abgeschlossen, und nach Satz 32| liegt der Grenzwert f dann auch in C°([a, b]). O

Definition 38 (Cauchyfolge). Eine Folge (zy) in (X, d) heiit Cauchyfolge, wenn gilt:
Ves0 FhoeN Vi ik ATk, 21) < €
Ist jede Cauchyfolge in (X, d) konvergent, so heifit (X, d) vollstindig.

Beispiel 39. Jede konvergente Folge ist eine Cauchyfolge. Das beweist man wie in der
Analysis 1.

O

Beispiel 40. Der R™ mit jeder der Metriken dP,1 < p ist vollsténdig. Ist ndmlich (zy)ren
eine Cauchyfolge, so ist wegen

1/p

ki — wul < | Y |y — 25l = d"(zy, 1)
J

fiir alle ¢ auch (x;) inn eine Cauchyfolge, also konvergent. Aber koordinatenweise Konver-
genz bedeutet Konvergenz im (R"™, dP).

0
Beispiel 41. (B(X,Y),d®"?) ist vollstindig, falls (Y, d) vollstindig ist. (Beweis selbst).
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Satz 42. Ist (X,d) vollstindig und A C X versehen mit der induzierten Metrik da, so gilt

(A,da) vollstindig < A abgeschlossen.

Beweis. Zu (= ). Sei (A, d4) vollstindig und sei (ag)ren eine Folge in A, die gegen © € X
konvergiert. Wir miissen zeigen, dass x € A.

Als konvergente Folge ist (a) eine d-Cauchyfolge. Damit ist sie aber wegen d(ag,a;) =
da(ar,a;) auch eine d4-Cauchyfolge und nach Voraussetzung konvergent gegen ein a € A.
Das bedeutet limda(ag,a) = limd(ag,a) = 0. Also konvergiert (ai) auch in X gegen a.
Dann ist aber wegen der Eindeutigkeit des Grenzwertes z = a € A.

Zu (<=). Seien nun A abgeschlossen und (aj) eine Cauchyfolge in (A,d4). Das ist dann
auch eine Cauchyfolge in (X, d), also konvergent gegen ein « € X. Weil A abgeschlossen ist,
liegt = in A und ist der Grenzwert von (ax) in (A,d4). O

Satz 43 (Schachtelungsprinzip). Sei (X, d) vollstindig und
AgD A1 D ... (5)

eine ,absteigende® Folge von abgeschlossenen Mengen # 0. Es gelte limy_, o, diam Ay = 0.
Dann gibt es genau ein x* € X, das in allen Ay, liegt:

{z*} =[] 4.
k=0

Beweis. Eindeutigkeit. Sind z§, 27 € (e, Ak, so gilt
x5, x] € A fur alle k € N,
und daher
d(xf, z7) < diam Ayg.
Daher ist d(zf, z7) = 0, also x§ = z7.

Existenz. Wéhle aus jedem Ay ein ai. Wir wollen zunéichst zeigen, dass die Folge (ay) eine
Cauchyfolge ist. Sei also € > 0. Da diam Ay, — 0 gibt es ein kg € N mit

diam A, < e fir alle & > k.
Sind k,l > kg, so sind nach
ar,a; € Ak0~

Damit ist aber
dlag,a;) < e

und (ay,) ist eine Cauchyfolge. Weil (X, d) vollsténdig ist, ist sie konvergent gegen ein z* € X,
und es bleibt zu zeigen, dass z* € Ay, fiir alle k. Aber die Folge (a;);> ist, wiederum wegen
, eine Folge in der abgeschlossenen Menge Ay, und deshalb liegt ihr Grenzwert in Ay.

O

Lemma 44 (Cauchyfolgenkriterium). Sei (zx)ren eine Folge im metrischen Raum (X, d).
Setze ay, := d(zg, xp41). Ist Y g ar konvergent, so ist (zy)ren eine Cauchyfolge.
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Die Umkehrung gilt aber nicht, finden Sie ein Gegenbeispiel.

Beweis. Nach der Dreiecksungleichung ist

k-1 k-1
d(wp, wen) < Y d(zj,zim) = > a; = |spp-1 — sk,
=k =k

wenn s die k-te Partialsumme der Reihe Zzio ay bezeichnet. Die bilden aber nach Vor-
aussetzung eine Cauchyfolge. O

Definition 45. Eine Abbildung f : X — Y zwischen metrischen Riumen (X, dx), (Y, dy)
heifit kontrahierend, wenn es ein A €)0, 1] gibt, so dass fiir alle x1, 2 € X

dy (f(w1), f(22)) < Adx (z1,72).

Wichtig ist die echte Ungleichung A < 1. Die Zahl A heifit dann auch ein Kontraktionsmodul
von f.

Satz 46 (Banachscher Fixpunktsatz). Seien (X, d) ein nicht-leerer, vollstindiger metrischer
Raum und f : X — X eine kontrahierende Abbildung. Dann hat f genau einen Fizpunkt:
Es gibt genau ein z* € X mit f(z*) = a*.

Ist g € X und definiert man rekursiv xx1 = f(xy) fir alle k € N, so ist die Iterationsfolge
(zk)ken konvergent gegen x*.

Beweis. Zur Einzigkeit. Aus f(z7) = =7 und f(x3) = x5 folgt
d(a1,3) = d(f(x1), f(23)) < Ad(z7, 25) < d(a7,23).
Daraus folgt d(z3,x3) =0, also x7 = x3.

Existenz. Seien o € X und dazu (zy)ren definiert wie im Satz. Wir zeigen, dass (zx)ken
eine Cauchyfolge ist. Zunéchst ist

d(zg, Tpy1) < M(wp—1,28) < Nd(xp—2,25-1) < ... < Nd(20,21)

Weil die Reihe Y72 ) A¥d(z¢, 21) konvergiert, ist nach dem Cauchyfolgenkriterium () also
eine Cauchyfolge und wegen der Vollstéindigkeit konvergent gegen ein z* € X.

Es bleibt zu zeigen, dass x* ein Fixpunkt von f ist. Beachten Sie dazu, dass fiir alle k
d(f(z),2") < d(f(z"), 2h41) + d(@ps1,27) < d(f(27), f(ar)) + d(@py1,27)
< Ad(z*, xg) +d(xpg1,27) .
—_——— — ———
—0 —0
Es folgt d(f(x*),z*) =0, also f(z*) = x*. O

Bemerkung. Die Behauptung des Satzes gilt auch unter der schwiicheren(!) Voraussetzung,
dass nicht f, aber fiir ein m € N die m-te Iteration f™ := fo...o f kontrahierend ist. Beweis
als Ubung.
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1.3 Kompaktheit

e Mit der Kompaktheit lernen wir einen zentralen Begriff der Topologie, der Analysis
und der Geometrie kennen.

e Die Definition mittels offener Uberdeckungen ist logisch nicht ganz einfach, dafiir aber
an die vielfdltigen Verwendungen der Kompaktheit angepasst. Da miissen Sie also
durch ....

e Im R” gibt es eine einfache Charakterisierung kompakter Mengen (Satz von Heine-
Borel), die aber in unendlich-dimensionalen (und vielen anderen) Réumen nicht greift.

e Mit der Hausdorffmetrik sprechen wir kurz den Themenkreis der fraktalen Geometrie
an.

Definition 47 (Kompaktheit). Seien (X, d) ein metrischer Raum und A C X.

(i) Eine offene Uberdeckung von A ist eine Familie (U;);cr von offenen Teilmengen U; C X,
so dass A C ¢, Us.

(ii) A heiBt kompakt, wenn jede offene Uberdeckung von A eine endliche Uberdeckung von
A enthilt, d.h. wenn gilt: Ist (U;);cr eine offene Uberdeckung von A, so gibt es eine
endliche Teilmenge K C I, so dass A C UiEK U;. Man nennt (U;);cx dann auch eine
endliche Teilu’berdeckunﬂ von A.

Beispiel 48. Sei (a,,) eine gegen a € X konvergente Folge in einem metrischen Raum. Dann
ist A := {a} U{a, |n € N} kompakt. Hat man nimlich eine offenen Uberdeckung (U;)icr
gegeben, so liegt a in einer der offenen Mengen. In dieser liegen dann aber fast alle ay, und
man braucht nur noch endlich viele weitere U;, um den Rest ,,einzufangen*.

O
Beispiel 49. Eine Teilmenge A eines metrischen Raumes (X, d) ist genau dann kompakt,
wenn sie als (triviale) Teilmenge von (A, d4) kompakt ist. Beweisen Sie das!

O

Verallgemeinerung auf topologische Riaume. Da die vorstehende Definition nur den Begriff offener
Mengen, nicht aber explizit die Metrik benutzt, iibertragt sie sich unmittelbar auf topologische Riaume.

Auch die vorstehenden Beispiele iibertragen sich.

Satz 50. Seien Iy,...,I, abgeschlossene und beschrinkte Intervalle in R, Iy = [ak,bg].
Dann ist der abgeschlossene Quader

Q:=5ILx...x1I,

kompakt.

Beweis. Sei (Uy)ier eine offene Uberdeckung von Q.

Annahme: Keine endliche Teilfamilie von (U;);¢s iiberdeckt ganz Q.

2Der Name ist etwas problematisch: ,, Teil“ heiBt nicht, dass nur ein Teil von A iiberdeckt wird, sondern,
dass man nur einen Teil der Familie offener Mengen — genauer: eine Teilmenge der Indizes — benutzt.
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Wir zerlegen ) durch Halbieren aller Seiten in 2™ abgeschlossene Teilquader vom halben
Durchmesser. Dann gibt es wenigstens eines dieser Teilquader, wir nennen es )1, welches
nicht durch endlich viele der U; zu iiberdecken ist. Wir zerlegen (1 durch Halbieren aller Sei-
ten in 2™ abgeschlossene Teilquader vom halben Durchmesser. Dann gibt es wenigstens einen
dieser Teilquader, wir nennen es ()2, welches nicht durch endlich viele der U; zu iiberdecken
ist. Durch Fortsetzung dieses Verfahrens finden wir eine Folge von abgeschlossenen Quadern

QDOQ1DQaD...

mit diam @ — 0, deren keines sich durch endlich viele der U; iiberdecken 14ft. Nach dem
Schachtelungsprinzip gibt es « € (| Qr C Q. Nach Voraussetzung gibt es ein ig mit « € U;,.
Weil U;, offen ist, gibt ein € > 0 mit U.(z) C U;,. Dann liegt aber jeder Quader Q) vom
Durchmesser < € ganz in U;,. Widerspruch! O

Fir n = 1 liefert der Satz:

Korollar 51. Intervalle [a,b] mit —oo < a < b < +oo sind kompakt in R.

Satz 52. FEine kompakte Teilmenge eines metrischen Raumes ist abgeschlossen und be-
schrankt.

Beweis. Sei A C X kompakt. Zum Beweis miissen wir geeignete offene Uberdeckungen von
A konstruieren und ausnutzen, dass sie endliche Teiliiberdeckungen besitzen.

Zur Beschriinktheit. Ist X = () so ist nichts zu zeigen. Andernfalls sei x € X und fiir k € N
sei

Uk = Uk+1($).

Jedes a € A liegt dann in Uy, sobald k + 1 > d(a,x). Also bildet (Uy,)nen eine offene
Uberdeckung von A, und wegen der Kompaktheit gibt es ein n € N mit

AC O U, =U,.
k=0

Daher ist A beschrénkt mit einem Durchmesser < 2(n + 1).

Zur Abgeschlossenheit. Sei z € X\ A. Zu jedem a € A sei U, eine offene Kugel um a

mit Radius % d(a,z). Offenbar bildet (U,)qca eine offene Uberdeckung von A, und nach
Voraussetzung gibt es also ein n € N und ag, ..., a,, so dass

Ac CJ Ua,
k=0

Sei )
€= min{d(z,ar) |0 < k < n}

Dann ist € > 0 und fiir alle k£ € {0,...,n}
Ue(z)NU,, =0.

Daher ist Uc(x) C X \ 4, also X \ A offen und A abgeschlossen.
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Satz 53. Eine abgeschlossene Teilmenge einer kompakten Teilmenge ist kompakt.

Beweis. Seien A C X kompakt und B C A eine abgeschlossene Teilmenge. Sei (U;);cr eine
offene Uberdeckung von B. Wir suchen eine endliche Teiliiberdeckung.

Durch Hinzunahme der offenen Menge U := X \ B erhilt man eine offene Uberdeckung von
A. Weil A kompakt ist, gibt es eine endliche Teilmenge K C I mit

AcUu | Uk
keK
Wegen BNU = () ist dann aber
Bc | U,
keK
und wir haben fiir B eine endliche Teiliiberdeckung von (U;);c; gefunden. O

Satz 54 (Heine-Borel). Fine Teilmenge A des R™ mit der Standardmetrik ist kompakt genau
dann, wenn sie abgeschlossen und beschrinkt ist.

Beweis. Trivial nach den Sétzen und O

Dieser Satz ist falsch in allgemeinen metrischen Rdumen.

Beispiel 55. Sei M eine unendliche Menge und (X,d) = (B(M,R),d*"?). Fiir m € M sei
fm € B(M,R) definiert durch

() = {1 fir m = n,

0 sonst.
Dann gilt
sup 0 fiir m =mn,
1 sonst.
Die Menge

A= { fm | me M }
hat daher den Durchmesser diam(M) = 1 und ist beschrinkt.

Betrachtet man A als Teilmenge von A mit der durch d**? induzierten Metrik, so ist A trivia-
lerweise auch abgeschlossen. Nach (6 ist U 1(fm) N A= {fn}, und die offene Uberdeckung

(U% ( fm)) von A besitzt deshalb keine endliche Teiliitbderdeckung. Also ist A als Teil-

meM
menge von (A, d%") nicht kompakt, wohl aber abgeschlossen und beschréinkt.

Derselbe Beweis klappt fiir jede unendliche Menge mit der diskreten Metrik.

Nach Satz ist A auch als Teilmenge von (B(M,R),d**?) nicht kompakt. Es ist aber
beschréinkt, s. oben, und auch abgeschlossen, wie wir mittels Satz [32] noch zeigen wollen.
Eine konvergente Folge in A ist eine Cauchyfolge. Nach @ und dem Cauchykriterium mit
€ < 1 sind dann aber fast alle Folgenglieder gleich, also gleich dem Limes, der damit ebenfalls
in A liegt.

O
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Satz 56 (Bolzano-Weierstrafl). Sei (X,d) ein metrischer Raum, A C X kompakt und
(zn)nen eine Folge in A. Dann besitzt (x,,) eine konvergente Teilfolge.
Bemerkung: Weil A abgeschlossen ist, liegt der Limes dann in A.

Umgekehrt ist eine Teilmenge A eines metrischen Raumes kompakt, wenn in ihr jede Folge
eine konvergente Teilfolge besitzt. Der Beweis ist etwas trickreich (Vgl. zum Beispiel Klaus
Janich, Topologie, Springer Hochschultext, 2. Aufl. p.97). Wir verzichten darauf.

Beweis. Falls es ein a € A gibt, so dass # {k |xk € U} = oo fiir jede offene Umgebung U
von a, so ist dieses a Grenzwert einer konvergenten Teilfolge: Wihle namlich ng € N beliebig
und zu jedem k € N\ {0} ein ny € N fiir das

Tn,, € Ui (a) und
ng > Nk—1.
Unter den gemachten Voraussetzungen ist das moglich und liefert die gesuchte Teilfolge.

Gibt es kein solches a, so besitzt andererseits jedes a eine offene Umgebung U, fiir die
#{k |xk eUa} < 00.

Die Familie (U,)qca ist eine offene Uberdeckung des kompakten A, also gibt es ein n € N
und ag,...,a, € A, so dass
ACUzU...UU,,.

Dann ist aber # {k: |[L’k € A} < oo im Widerspruch dazu, dass die Folge (x,)nen eine
unendliche Folge ist. Dieser Fall kann also nicht auftreten. O

Korollar 57. Jeder kompakte metrische Raum ist vollstindig.

Beweis. Ist (X, d) kompakt und (zy)r eine Cauchyfolge in X, so hat diese nach Bolzano-
Weierstrafl eine gegen z* € X konvergente Teilfolge (zx,);jen. Beweisen Sie mit der Drei-
ecksungleichung, dass dann die ganze Folge (z1)r gegen x* konvergiert. O

Korollar 58 (Lebesguesche Zahl). Seien (X,d) ein metrischer Raum, A C X kompakt und
(Us)ier eine offene Uberdeckung von A. Dann gibt es eine positive Zahl §, so dass gilt:

Fiir alle a € A gibt es ein i € I mit Us(a) C Uj.

Jedes solche § nennt man eine Lebesquesche Zahl der Uberdeckung (Ui)ier von A.

Beweis. Andernfalls gibt es zu jedem 6 > 0 ein a € A, so dass Us(a) in keinem einzelnen der
U; enthalten ist. Wir wihlen eine Nullfolge (0x )reny und zu jedem dj, ein solches aj, € A. Weil
A kompakt ist, gibt es nach dem Satz von Bolzano-Weierstrafl eine konvergente Teilfolge der
(ar) mit Limes a* € A. Wir kénnen o.E. annehmen, dass limy_, o, ax = a*. Dann gibt es ein
ip € I mit a* € Uig~

Weil U, offen ist, gibt es ein € > 0 mit Uc(a*) C U;,. Wihle k& € N so groB, dass dx < §
und d(ag,a*) < §. Dann ist nach der Dreiecksungleichung Us, (ax) C U;, im Widerspruch
zur Wahl von ay.

25



Beispiel 59 (Cantorsches Diskontinuum). Fiir ein kompaktes Intervall [a,b] definieren wir

2 b 2b
a+ Ua—i— b

c([a,b]) = [a, 3 } [ 3 ]

Die Menge c([a,b]) erhédlt man also aus [a,b], indem man das mittlere Drittel aus dem
Intervall herausnimmt.

2a+b a+2b
3 3

Sie besteht aus zwei kompakten Intervallen der Lénge b*T". Fiir die Vereinigung endlich

vieler disjunkter kompakter Intervalle Iy U ... U I,, definieren wir
c(IiU...Ul,) =c(l)U...Uc(l,).

Dann ist also ¢(I; U ... U I,) wieder die Vereinigung disjunkter kompakter Intervalle. Ist
L := maxj<i<n( Lénge von I), so ist das langste Teilintervall aus ¢(I; U...U I,) von der
Lénge L/3. Wir beginnen nun mit Cy := [0, 1] und definieren induktiv

Ck+1 = C(Ck).

Die Menge C := (), Ci, heifit das Cantorsche Diskontinuum. Als Durchschnitt abgeschlosse-
ner Mengen ist C' abgeschlossen und offenbar beschrinkt, also kompakt und offenbar nicht
leer (0 € C).

Sind z und y zwei Punkte von C' mit Abstand d > 0, so liegen sie in jedem CY, insbesondere
in einem CY, dessen Intervall alle kiirzer als d sind. Zwischen je zwei verschiedenen Punkten
x,y € C gibt es also einen Punkt aus R\ C. Daher riihrt der Name Diskontinuum.

O

Beispiel 60 (von Kochsche Kurve).

Wir beginnen mit einem gleich-
seitigen Dreieck K, das in der
Figur getont ist. Auf das mitt-
lere Drittel jeder Seite setzen wir
ein (gefiilltes) gleichseitiges Drei-
eck und erhalten einen ,,Stern“

K. Offenbar liegt K7 in der ab-
geschlossenen Umkreisscheibe U
von Kj.

Auf das mittlere Drittel jeder Seitenkante von K7 setzen wir wieder ein gleichseitiges Dreieck
und erhalten K,. Weil jede Seitenkante auch Seitenkante eines gleichseitigen Dreiecks in
U ist, liegen die angesetzten Dreiecke in U. Fortsetzung des Verfahrens liefert eine Folge
(K;)jen von Teilmengen von U. In der obigen Abbildung ist diese Konstruktion nur lokal
durchgefiihrt. Wir setzen

K =] K;.

JjEN
Den Rand 0K nennt man die von Kochsche Kurve oder die von Kochsche Schneeflocke. Als

Rand einer Menge ist sie abgeschlossen, und weil sie in der kompakten Menge U liegt, ist
sie kompakt.
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Weil die Lénge von 0Kj41 das %—fache der Linge von 0K ist, ist es plausibel, der von
Kochschen Kurve eine unendliche Lénge zuzusprechen. Die von ihr eingeschlossene Fliche
K ist hingegen offensichtlich von endlichem Fliacheninhalt. Allerdings fehlen uns einstweilen
exakte Definitionen fiir Linge (von was?) und Flicheninhalt.

O

Beispiel 61 (Hausdorffmetrik). Sei FX die Menge der nicht-leeren kompakten Teilmengen
eines vollstdndigen (kompakten) metrischen Raumes (X, d). Definiere fur A, B € FX

(i) d(z, B) :=inf{d(z,y) |y € B} fiir x € A,

(ii) d(A, B) :=sup{d(x, B) |z € A}, (wohldefiniert, weil d(., B) stetig auf der kompakten
Menge A),

(ii) 7(A, B) := sup{d(A, B),d(B, A)}.

Dann ist (FX,h) ein vollstdndiger (kompakter) metrischer Raum, der Raum der Fraktale.
h heiBt die Hausdorffmetrik. Vgl. [M. Barnsley, Fractals everywhere, Academic Press 1988].

Die nebenstehende Abbildung d(AB)
zeigt, dass d(A, B) nicht symme- .
trisch ist.

BCA = d(BA)=0

Nachweis der Metrik-FEigenschaften.
Die Symmetrie ist klar.
Es gilt
h(A,B) =0 < d(A,B) =0 und d(B, A) = 0.
Weiter ist
d(A,B)=0 < d(z,B)=0firallezre A <— AC B.

Also h(A, B) =0 genau dann, wenn A = B.
Dreiecksungleichung. Seien a € A,b € B,c € C.

d(a,c) <d(a,b) +d(b,¢c) = d(a,C) < d(a,b)+d(b,C)
= d(a,C) < d(a,b) +d(B,C)
= d(a,C) <d(a,B)+d(B,C)
= d(A,C) <d(A,B)+d(B,C)
— d(A,C) < h(A, B) + h(B,C)

Die rechte Seite ist in A und C' symmetrisch, und deshalb folgt auch
d(C,A) < h(A,B) + h(B,C),

also h(A,C) < h(A, B) + h(B, ().
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Beispiel 62 (Noch einmal die von Kochsche Kurve). Seien A = 0Ky und B = 0K, die
beiden ersten Randkurven der von Kochschen Konstruktion:

Sei a die Seitenléinge des Dreiecks A. Dann ist (vgl. Abbildung) beziiglich der Standardmetrik
des R?

d(A, B) < %
d(B, A) = %Jﬁ
h(A, B) = %\/3

Allgemeiner ist fiir die Randfolge (0K;) der von Kochschen Konstruktion h(0Ky, 0Kjy1) =
(v/3/6)F+1a. Also ist (OK})ren eine Cauchyfolge in FR? und man kann zeigen, dass die von
Kochsche Kurve ihr Grenzwert ist.

O

Bemerkung. In Dugundji, Topology findet man fiir kompaktes X dazu noch folgende
Ubungsaufgaben:

(i) Fiir beliebiges E C X ist
{Ae FX|ECA}

abgeschlossen.
(ii) Setze fur beliebiges £ C X
I(E)={Ae€ FX|ACE}
J(E)={Ae FX|ANE #0}.
Dann sind I(E) und J(F) mit E offen bzw. abgeschlossen.
(iii) Die Abbildung FX — R, A — diam(A) ist stetig.
(iv) Die Abbildung FX x FX — R, (4, B) — d(A, B) ist stetig.
(v) FX ist kompakt.
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1.4 Zusammenhang

e Die Rolle der Intervalle in R wird in metrischen Rdumen iibernommen von den soge-
nannten zusammenhdngenden Mengen, die wir jetzt kennenlernen.

Jede Menge X mit mindestens zwei Elementen 148t sich trivialerweise schreiben als Vereini-
gung zweier nicht-leerer disjunkter Teilmengen. Aber nicht jeder metrische Raum 148t sich
schreiben als Vereinigung zweier nicht-leerer disjunkter offener Mengen.

Definition 63 (Zusammenhang). Sei (X, d) ein metrischer Raum.

(i) X heiBit zusammenhdngend, wenn es nicht die Vereinigung zweier nicht-leerer disjunk-
ter offener Mengen ist:

Fiir alle offenen U,V C X mit

UNV=0 und UUV =X

gilt
U=0 oder V =10.

Das ist dquivalent zur Forderung, dass () und X die einzigen zugleich offen und abge-
schlossen Teilmengen sind.

(ii) Eine Teilmenge A C X heifit zusammenhdngend, wenn (A, d4) zusammenhéngend ist.

(iii) X heifit wegzusammenhingend, falls es zu je zwei Punkten p,q € X einen Weg von p
nach ¢, d.h. eine stetige Abbildung c¢: [0,1] — X mit ¢(0) = p und ¢(1) = ¢ gith|

Satz 64 (Zusammenhingende Teilmengen). Seien (X, d) ein metrischer Raum und A C X.

Dann ist A genau dann zusammenhdngend, wenn gilt:
Fiir alle offenen U, VC X mit

UNV=0 und UUV DA

gilt
UNA=0 oder VNA=J.

Beweis. Zu (= ). Sei (A,d4) zusammenhingend und seien U,V C X wie im Satz. Dann
sind U N A und V N A offene Teilmengen von (A, d ) mit leerem Durchschnitt, deren Verei-
nigung A ist. Alsoist UN A =0 oder VN A=0.

Zu (<=). Wir wollen zeigen, dass (A,d,) zusammenhéngend ist. Seien also U,V C A
offen in A mit UNV =0 und U UV = A. Dann gibt es offene Mengen U,V von X mit

UNA=U, VNA=V.

Aber um die Vorausetzungen anwenden zu kénnen, miissen U und V disjunkt sein. Deshalb
miissen wir die Erweiterungen U und V von U und V sorgfiltig konstruieren.

Wir wéhlen zu jedem x € U ein e(z) > 0 mit U,y () N A C U. Das geht, weil U offen ist
in A. Wir definieren ~

zeU

3 Allerdings haben wir noch gar nicht definiert, was stetige Abbildungen sind. Das ist also eine Definition
»auf Vorrat®.
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Entsprechend definieren wir f/~ Natiirlich sind das offene Teilmengen von (X,d), und sie
sind auch disjunkt: Wére z € UNV, so gdbe es z € U und y € V mit

z € Uée(w)(ﬂf) n U%e(y) (¥)-

Sei etwa €(y) < e(x). Dann ist aber

d(w,y) < d(w, )+ d(z,9) < 3e(w) + 5ely) < e(2)

Dann wiire aber y € U im Widerspruch zur Voraussetzung. Also ist U NV = 0.

Jetzt konnen wir die Voraussetzungen auf U und V anwenden und erhalten UNA =U = ()
oder VNA=V=1. O

Zeigen Sie (spéter) entsprechend: Fiir A C X ist (A, d4) wegzusammenhingend genau dann,
wenn es zu allen p,q € A eine stetige Abbildung ¢ : [0,1] — X mit ¢(0) = p und ¢(1) = ¢
mit ¢([a,b]) C A gibt.

Bemerkung zur Verallgemeinerung auf topologische Riume. Die obige Definition des Begriffs
zusammenhdngend benutzt nur offene Mengen, nicht explizit die Metrik. Daher 148t sich die Definition
ohne Modifikation auf topologische Rdume erweitern. Die schwierige Richtung von Satz @ gilt allerdings
nicht fiir topologische Rdume. Ein Gegenbeispiel findet man so: Man nimmt eine Menge X, die wenigstens
drei verschiedene Punkte O, P, Q enthalt. Man definiert

T={0tu{YyCcX|OeY}

als System der offenen Menge. T ist abgeschlossen gegeniiber Durchschnitt und Vereinigung, definiert also
wirklich eine Topologie auf X . Die Teilmenge A = {P, Q} enthilt die in A offenen disjunkten Teilmengen
U = {P} und V = {Q}. Aber diese lassen sich nicht zu disjunkten in X offenen Teilmengen erweitern,
weil jede solche den Punkt O enthilt.

Satz 65. Sei AC BC AC X und sei A zusammenhdngend. Dann ist auch B zusam-
menhdngend. Insbesondere ist auch A zusammenhdngend.

Beweis. Seien U,V C X offen und disjunkt mit B C U U V. Wir miissen zeigen, dass
UNB=0oder VNB=(. Weil A zusammenhéngend ist, gilt UN A =0 oder VN A=10.
Sei etwa UN A = 0. Wire U N B # (), so giibe es also ein b € U N B und, weil U offen ist,
dazu ein € > 0 mit U(b) C U. Natiirlich ist b € A. Also liegen in U, (b) auch Punkte von A.
Die liegen dann aber in U. Widerspruch zur Annahme U N A = (! O

Satz 66. Die zusammenhdingenden Teilmengen von R sind genau die Intervalle.

Beweis. Sei J ein Intervall. Seien U,V C R offen mit UNV =0 und J CU U V.
Annahme: p € UNJ, r € VN J und o.E. p < r. Wir miissen zeigen, dass dies zum
Widerspruch fiihrt. Sei

q :=sup{t|[p,t] CU}.

Dann gilt nach Voraussetzung ¢ < r < co. Offenbar ist ¢ ¢ U, denn andernfalls wiire wegen
der Offenheit von U auch [p,q+ €] C U fiir kleines € > 0 im Widerspruch zur Wahl von q.

Andrerseits ist ¢ ¢ V', weil sonst wegen der Offenheit von V auch ¢ —e € V fiir kleines € > 0
im Widerspruch zur Wahl von q.

Damit ist ¢ ¢ U UV. Widerspruch zu g€ J CUUV.
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Sei J C R zusammenhéngend. Seien p < ¢ < r mit p,r € J. Wire q ¢ J, so wiire

J C] —oo,q[U]q,oo[,

also J C ] —o00,q[ oder J C ]g,o00[ im Widerspruch dazu, dass p in der einen, ¢ in der
anderen dieser Mengen liegt. O
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1.5 Stetige Abbildungen

e Nachdem der Konvergenzbegriff in metrischen Rdumen erklért ist, ist es leicht, auch
die Stetigkeit von Abbildungen solcher Rdume zu erkléren.

e Wir machen uns mit der Bedeutung dieses Begriffes in verschiedenen einfachen Situa-
tionen vertraut und formulieren Rechenregeln fiir stetige Abbildungen.

e Etwas abstrakter ist die Charakterisierung der Stetigkeit mittels offener oder abge-
schlossener Mengen.

Definition 67 (Stetigkeit). Seien (X, dx) und (Y, dy) metrische Riume, G C X eine Teil-
menge und f: X O G — Y eine Abbildung.

(i) f heiBt stetig in p € G, wenn lim,_,, f(z) = f(p) ist, d.h. wenn fiir jede gegen p
konvergente Folge (zy)ren in G auch limg_,o f(zr) = f(p) ist.

(ii) f heiBt stetig in oder auf G, wenn es stetig in jedem Punkt p € G ist.

(iii) Offenbar ist f : X D G — Y im Sinne dieser Definition stetig (in p € G), genau dann,
wenn es (in p) stetig ist als Abbildung des metrischen Raumes (G, dg) nach Y.

Beispiel 68 (Komponentenweise Stetigkeit). Ist (X, dx) beliebig und (Y, dy) = R™, so ist
f=1(f1,..., fm) genau dann stetig in p, wenn alle Komponentenfunktionen f; : X — R in
p stetig sind. Das folgt unmittelbar aus der Definition und Satz [31]

O

Partielle Stetigkeit. Bei einer Abbildung f : X — R™ kann man also die Stetigkeit
einfach an den (reellwertigen) Komponentenfunktionen untersuchen. R™ oder R auf der
rechten Seite macht also ,keinen groflen Unterschied®. Jetzt betrachten wir umgekehrt eine
Funktion f : R® D G — Y. Dann kénnen wir f(z) = f(z1,...,2,) als Funktion jeder
einzelnen Variablen betrachten, indem wir uns vorstellen, dass die anderen festbleiben. Es
stellt sich die naheliegende Frage, ob f in p stetig ist, wenn alle die Funktionen

Ty = f(xlap%pfia"'vpn)
T — f(pl,IQaPSa"'apn)
T3 = f(p17p27$3a"'apn)

Ty f(p1»P2»P3»~-axn)

stetig sind. Man nennt das partielle Stetigkeit, weil man immer nur einen Teil der Variablen
- némlich eine - als variabel betrachtet. Folgt aus partieller Stetigkeit die Stetigkeit? Das ist
nicht so:

Partielle Stetigkeit impliziert NICHT Stetigkeit.
Beispiel 69. Sei f:R? — R gegeben durch f(0,0) := 0 und

flay) = 5 fiir (a.9) # (0,0).

Fiir A € R geht namlich die Folge (4, %) gegen (0,0), aber es ist

1A A A

f<%’%):k2($+ﬁ) BEESE
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Fiir A # 0 und k¥ — oo geht das also nicht gegen 0 = f(0,0). Andererseits ist f in (0,0)
wegen f(z,0) =0 = f(0,y) aber partiell stetig.

Dieses Beispiel zeigt genauer, warum partielle Stetigkeit viel schwécher ist als , totale“ Ste-
tigkeit: Die Variable x muf} sich der Stelle p auf beliebige Weise nidhern diirfen. Bei der
partiellen Stetigkeit schrinkt man sich aber auf achsenparallele Anniherung ein.

NS

In unserem Beispiel ist die Funktion auf allen Geraden durch den Nullpunkt jeweils kon-
stant (Wert A/(1+ A?)), nur im Nullpunkt hat sie definitionsgemif8 den Wert 0. Der kommt
heraus, wenn man auf der z-Achse (A = 0) oder auf der y-Achse (A = o0) an den Nullpunkt
heranlauft, aber eben nur dann.

Selbst wenn f(z) — f(p) bei Anndherung auf allen

Geraden durch p gilt, folgt daraus nicht die Stetigkeit \ /
in p. Ein Gegenbeispiel liefert die Funktion g mit
g(z,y) = 1, falls y = 22 # 0, und g(z,y) = 0 sonst. /[\

Wie sieht der Graph dieser Funktion aus?

Beispiel 70. Die Abbildungen

a:R? =5 R, (21, 20) = o1 + 29
p:R? 5 R, (21, 12) — z120
x
0RO {(w1,22) |02 £ 0} > R, (a1,09) >
2
sind stetig.

Wir zeigen das fiir a. Seien p = (p1,p2) € R? und (2 = (Th1, Tr2)) ey €ine Folge mit
lim x; = p. Dann ist
d(a(rg), a(p)) = [(zk1 +Tr2) — (p1 +p2)| < [2x1 — pr] + [2r2 — pal-

Aber nach Satz [31] folgt aus lim ), = p, dass limxy; = p; fiir i = 1, 2. Daher geht die rechte
Seite gegen Null und lim a(zx) = a(p).

Beweis flir g und 7 selbst. Fiir den letzteren Fall benutzt man die Abschétzung

TP

T2 b2

T1p2 — T2p1
Z2P2

|1 — pilp2| + [p1llp2 — 22

<
|$2P2|
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Beispiel 71. Dieselben Argumente wie im vorstehenden Beispiel zeigen die Stetigkeit der
Determinante

det : M(n X n, R) — R, (JZZ]) — Zsignamlg(l) < Tpo(n),
wenn man den Raum M (n x n,R) der quadratischen n-reihigen Matrizen auf die offensicht-

liche Weise mit dem R™” identifiziert und eine der IP-Metriken verwendet. Auch die mit der
Transponierten (z;;)7 gebildete Abbildung

M(nxn,R) = M(nxn,R), (zi)— (i) (wi;)"

gebildete Abbildung ist stetig.

O
Beispiel 72. Seien (X, d) metrischer Raum und ¢ € X. Dann ist
d(.,a): X - Rz~ d(z,a)
stetig.
O
Beispiel 73. Sei (X,d) = (C°([a,b],R),d**?). Dann ist die Abbildung
b b
/ :X—>R,f»—>/ f(z)dx
stetig, denn es gilt
b b b
[ t@ide~ [ gwiis| = | [ (@) - o)
b
< [ 17 - gla)ido
b
< [ sw |f@) - g(o)lds
a a<z<b
= [b—ald™*(f,9).
O

Satz 74. Seien (X;,d;), i = 1,2,3 metrische Riume und f; : X; D G; — X, 41 firi=1,2
Abbildungen mit f1(G1) C Ga. Es sei fi stetig in p1 € G1 und fa stetig in pa := f1(p1).
Dann ist foo f1: X1 D Gy — X3 stetig in p;.

Kurz: Die Komposition stetiger Abbildungen ist stetig.

Beweis. Leicht. O

Korollar 75. Ist (X,d) ein metrischer Raum, und sind f,g: X D G — R stetig in p € G,
ist ferner X € R, so sind auch die Abbildungen

f+a.f-9fe \f: XDGC—=R
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in p stetig. Insbesondere ist also der Vektorraum
COUX,R):={f: X = R|f stetig}

ein reeller Vektorraum.

Ist g(p) # 0, so ist%:XD{xeG ‘g(m)#O}%Rmp stetig.

Beweis. Die Abbildungen sind vom Typ

v (f(2),9(2) = (@) +g(x),

wobei die erste stetige Komponentenfunktionen besitzt. O

Satz 76 (e-0-Kriterium fur Stetigkeit). Seien (X,dx),(Y,dy) metrische Riume und f :
X DG =Y. Seip e G. Dann ist f in p genau dann stetig, wenn es zu jedem € > 0 ein
0 > 0 gibt, so dass

dy (f(p), f(x)) <€ fiir alle x € G mit dx(p,x) < 4.

Die letzte Bedingung ist dquivalent zu

fUs(p) NG) C Uc(f(p))-

Beweis. Zu (= ). Sei € > 0. Gébe es kein § wie angegeben, so giibe es insbesondere zu
jedem k € N ein z € G mit

dx(p,xr) < aber dy (f(p), f(zx)) > €.

1
k+1’
Dann wiire aber limzy = p und lim f(zy) # f(p). Widerspruch!

Zu (<=). Sei (z1)ren eine gegen p konvergente Folge. Wir miissen zeigen, dass lim f(zg) =
f(p). Sei also € > 0 beliebig. Sei 6 > 0 dazu gewihlt wie im Satz. Dann gibt es ein ky € N
mit dx (xg,p) < 6 fiir alle k > ko. Dann ist aber dy (f(xg), f(p)) < € fiir alle k > ko. O

Satz 77. (i) Seien (X,dx),(Y,dy) metrische Riume und f : X — Y. Dann ist [ stetig
genau dann, wenn fir jede offene Teilmenge V C'Y das Urbild f~1(V) C X offen ist.
D.h. fist genau dann stetig, wenn das Urbild aller offenen Mengen offen ist.

(i) Die Aussage bleibt richtig, wenn man iberall ,offen durch ,abgeschlossen® ersetzt.

(iii) Ist f nicht auf ganz X definiert, sondern nur
fXDG—=Y

stetig, so sind die Urbilder offener Mengen offen in (G,dg), aber nicht unbedingt in
X.

Oft wird dieser Satz etwas grofziigig zitiert als:

Stetige Urbilder(?) offener Mengen sind offen.
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Finden Sie Beispiele, die zeigen, dass die Bilder offener Mengen unter stetigen Abbildungen
im allgemeinen nicht offen sind.

Beweis. Zu (i == ). Seien also f stetig und V C Y offen. Wir wollen zeigen, dass f~1(V)
offen ist. Sei dazu x € f~1(V). Zu f(z) € V gibt es dann ein € > 0 mit

Ue(f(z)) C V.
Dazu gibt es dann ein § > 0 mit
f(Us(x)) C Uc(f(x)) C V.
Das bedeutet aber Us(x) C f~1(V).
Zu (i <=). Sei das Urbild jeder offenen Menge offen und sei p € X.

Sei weiter ¢ > 0. Dann ist U.(f(p)) offen, also ist f=1(U.(f(p))) offen und damit eine
Umgebung von p. Daher gibt es ein § > 0 mit Us(p) C f~1(U(f(p))), d.h. mit

f(Us(p)) € Ue(f(p))-
Das war aber zu zeigen.

Zu (ii). Die Aussage iiber abgeschlossene Mengen folgt, weil A C Y genau dann abgeschlos-
sen ist, wenn Y \ A offen ist, und weil andrerseits

FHY\A) =X\ f7H(A).
Zu (iii). Die Offenheit in (G, dg) ist klar nach (i). O
Beispiel 78. Die Einheitssphire
S = {x e R"!| fo =1}
ist das Urbild von {1} € R unter der stetigen Abbildung

xHfo

Also ist S™ abgeschlossen und, weil beschrinkt, auch kompakt.

Beispiel 79 (Matrizengruppen). Wir erinnern an Beispiel Daraus folgt:

(i) Die allgemeine linearer Gruppe GL(n,R), gebildet aus den invertierbaren Matrizen,
ist offen in M (n x n,R):

GL(n,R) = det *(R\ {0}).

(ii) Die spezielle lineare Gruppe SL(n,R), gebildet aus allen Matrizen der Determinanten
= 1, ist abgeschlossen in M (n x n,R):

SL(n,R) = det™*({1}).
(iii) Die Gruppe der orthogonalen Matrizen O(n), gebildet aus allen Matrizen mit
(z:;)(z:;)" = E(= Einheitsmatrix)
ist abgeschlossen in M (n x n,R). Weil alle ihre Komponenten z;; maximal vom Betrag

1 sind, ist sie auch beschrinkt und damit kompakt in M(n x n, R) = R™".
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Die angegebenen Teilmengen von M (n x n,R) sind tatséchlich Gruppen beziiglich der Ma-
trixmultiplikation. Sie haben auBlerdem eine von M(n x n,R) geerbte Metrik, in der die
Gruppenoperationen stetig sind. Damit sind sie (die wichtigsten) Beispiele sogenannter Lie-
gruppen.

O
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1.6 Fiinf wichtige Sitze iiber stetige Abbildungen

e Die Sdtze und Definitionen in diesem Abschnitt verallgemeinern Sétze und Definitio-
nen, die wir (mit Ausnahme des letzten Satzes) aus der Analysis I fiir reelle Funktionen
schon kennen.

e Die Beweise sind sehr einfach, weil die Definitionen bereits die wesentlichen Eigen-
schaften erfassen.

Seien (X, dx), (Y, dy) metrische Rdume.

Satz 80 (vom Zusammenhang). Seien A C X zusammenhingend und f : A — Y stetig.
Dann ist auch f(A) CY zusammenhdngend.

Bemerkung. Das verallgemeinert den Zwischenwertsatz!

Beweis. Seien U,V C Y offen und disjunkt mit f(A) C UUV. Zu zeigen: UN f(A) = 0 oder
VN f(A) =0.

Nach Satz [77]sind f~1(U) und f=1(V) offen in (A4,d4). Sie sind weiter disjunkt mit
A= O UV,
Weil A zusammenhéngend ist, folgt
fHU) =0 oder f~H(V) =0,
und entsprechend ist U N f(A) = 0 oder V N f(A) = 0.
O

Satz 81 (Kompaktheitssatz). Seien A C X kompakt und f : A =Y stetig. Dann ist auch
f(A) CY kompakt.

Beweis. Sei (U;)ier eine offene Uberdeckung von f(A). Dann ist (f~'(U;))ser eine offene
Uberdeckung von A. Also gibt es eine endliche Teilmenge J C I, so dass

A= .
ieJ
Aber dann ist
fA) c o

icJ

Beispiel 82. Untersuchen Sie die Funktion

Inx

— 0, 00[— R
x

um zu zeigen, dass stetige Abbildungen im allgemeinen weder beschrinkte Mengen in be-
schrinkte Mengen noch abgeschlossene Mengen in abgeschlossene Mengen abbilden.

O
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Satz 83 (vom Maximum). Seien A C X kompakt # 0 und f : A — R stetig. Dann nimmt
f sein Mazimum und Minimum an.

Beweis. Nach dem Kompaktheitssatz ist f(A) C R kompakt, also insbesondere beschriinkt.
Daher ist die Funktion f : A — R beschrinkt. Dann gibt es eine Folge (xg)geny in A mit
lim f(zx) = sup f. Nach dem Satz von Bolzano-Weierstra$l hat (x)) in dem metrischen Raum
(A,d4) eine konvergente Teilfolge (zx;) en. Ist 2* := limxy; € A, so folgt

f(&®) = lim f(zx;) = lim f(zx) = sup f.
Also wird das Supremum angenommen und ist das Maximum von f.
Analog fiir das Minimum. O

Definition 84. Sei f: X D G — Y. f heifit gleichmdf$ig stetig auf G, wenn gilt

Ves03s5>0Veea f(Us(x) NG) C Uc(f(2)).

f ist genau dann gleichméfig stetig auf der Teilmenge G C X in diesem Sinne, wenn es auf
(G, dg) gleichméiBig stetig ist.

Offenbar impliziert gleichméfige Stetigkeit die gewthnliche Stetigkeit. Die Umkehrung ist
nicht richtig:

Beispiel 85. Die Funktion f = 22 ist auf [0, 2] gleichmiBig stetig. Auf R ist sie stetig, aber
nicht gleichm#fig stetig.

O

Satz 86 (von der gleichméBigen Stetigkeit). Seien f: X D A — Y stetig und A kompakt.
Dann ist f gleichmdfig stetig.

Beweis. Sei € > 0. Dann gibt es zu jedem x € A ein §, > 0 mit

J(Us, () N A) C Uy, (f(2)).

Wir setzen
U, :=Us, (z).

Dann ist (U, )zea eine offene Uberdeckung von A. Sei § > 0 eine Lebesgue-Zahl dazu. Dann
gilt fiir alle z € A: Es gibt ein y € A mit Us(z) C U,. Also ist

J(Us() N A) € (U, N A) € Uy (£(1)
Insbesondere ist dann f(z) € Uy (f(y)) und deshalb
fUs(z) N A) CUL(f(y) € Ue(f(2)).

O

Beispiel 87. Sei f : [a,b] — R stetig auf dem kompakten Intervall. Dann ist f gleichméflig
stetig, und es gibt zu € > 0 ein § > 0 mit |f(x) — f(y)| < € fir alle z,y € [a,b] mit
|x —y| < 6. Wéhle eine Zerlegung a = ¢ < 21 < ... < &, = b mit |x; —x;_1| < § und wiihle
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& € [wi—1,x;] beliebig. Setze dann ¢(x) := f(&) fiir alle x € [z;_1,2;[ und ¢(b) = f(b).
Dann ist ¢ also eine Treppenfunktion, und es gilt fiir alle « € [z;_1, z;[

[f(x) = ¢(x)] = | f(z) — f(&)] <e

und
F(b) = 6(b)] = 0 <.

Die Treppenfunktion approximiert die stetige Funktion f also besser als e.

Auch andere Approximationsresultate fiir stetige Abbildungen benutzen die gleichméBige
Stetigkeit, vgl. Ubungen und den Weierstraischen Approximationssatz z.B. in S. Hilde-
brandt, Analysis I

O

Der in der Definition [34] eingefiihrte Begriff der gleichméBigen Konvergenz einer Funktio-
nenfolge hat mit der gleichméfBigen Stetigkeit nichts zu tun. Im Raum der beschrankten
Funktionen bedeutete gleichméfiige Konvergenz einfach die Konvergenz beziiglich der Su-
premumsmetrik, und in dem Zusammenhang haben wir einen Spezialfall des folgenden Satzes
schon kennengelernt,vgl. Satz

Satz 88 (von der gleichmifBigen Konvergenz). Sei die Folge (f; : G — Y)eny auf G C X
gleichmdfig konvergent gegen f : G — Y. Sind alle f; stetig, so ist auch [ stetig.

Beweis. Wir zeigen die Stetigkeit in p € G. Sei () ;en eine Folge in G mit Grenzwert p. Zu
zeigen:

lim f(z;) = f(p)-
Sei dazu € > 0. Dann gibt es ein ky € N, so dass fiir alle k > kg und alle z € G
dy (fr(x), f(x)) <€/3.
Weil fi, in p stetig ist, gibt es ein jp mit
dy (fro(5)s fro(P)) < €/3

fiir alle j > jo. Dann ist aber fiir j > jg

dy(f($]>,f(p)) < dY(f(xj)7fk0(xj)> + dY(fko(‘rj>7fk0(p)) + dY(fko(p)7f(p)) <e
O

Beispiel 89 (von der konstanten Majorante, Weierstral). Sei (fr : G — R)pen eine Folge
von Funktionen. Sei (¢ )ren eine Folge reeller Zahlen, so dass

oo

| fx(x)| < ¢ fiir alle undz ¢; konvergent.
=0

Dann ist die Partialsummenfolge
n
Sp 1= Z In
n=0

auf G gleichméfig konvergent. Zum Beweis setzen wir
n o0
Tn izzck, ’Yizzck~
k=0 k=0

40



Zu € > 0 gibt es dann ein N mit |y — ;| < € fiir alle m > N. Dann ist aber fiir alle z und
m,n mit N <m <n

n

< 3 @)

|sn (@) = sm(z)] =

> filw)

k=m+1 k=m+1
<) a=mom <Y m<e (7)
k=m+1

Also ist (sk(x))ken fiir jedes € G eine Cauchyfolge in R und deshalb konvergent. Der
Grenzwert sei s(z) = > ;- fi(z). Bildet man in (7)) den Grenzwert fiir n — oo, so folgt

|s(z) — sm(x)| < € fiir alle z € G und m > N,

also die gleichméflige Konvergenz. Nach dem letzten Satz ist s : G — R stetig, wenn alle f
stetig sind.

Insbesondere kann man das anwenden auf Potenzreihen Y.~ ax(z — zo)". Ist R > 0 der
Konvergenzradius dieser Reihe, und 0 < r < R, so ist

o0
ai|r* konvergent
|a| g
k=0

und
lax(x — x0)*| < |ag|r® fir alle z € [zg — 7,20 + 7].

Also ist die Potenzreihe auf [xg — r, 2o + r] gleichméBig konvergent und ihre Grenzfunktion
auf jedem solchen Intervall stetig. Also ist sie auf |xg — R, 2o+ R] stetig, aber das wussten wir
schon. Man sagt auch, Potenzreihen seien gleichméfig konvergent auf jedem Kompaktum
im Inneren ihres Konvergenzbereichs.

O
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1.7 Normierte Vektorriume

e Wir lernen normierte Vektorrdume kennen, die in der mehrdimensionalen Analysis als
Definitions- und Zielbereiche der Funktionen dienen.

e Endlich-dimensionale normierte Vektorrdume sind insbesondere vollstindige metrische
Raume, und auf ihnen ist jede lineare Abbildung stetig.

Differentialrechnung beschéftigt sich mit der linearen Approximation von Funktionen. In
einem allgemeinen metrischen Raum macht das keinen Sinn, weil man keine lineare Struktur
hat. Zum Beispiel kann man die U-Bahnstationen aus Beispiel[6|nicht addieren. Den richtigen
Rahmen fiir Linearitdt bieten Vektorrdume. Und wenn man auflerdem iiber Konvergenz
reden will, braucht man in den Vektorrdumen eine Metrik, die sich mit der linearen Struktur
vertrigt. Das fiihrt zur Klasse der normierten Vektorrdume, mit denen wir uns jetzt befassen
wollen.

Ausblick: Man kann nicht nur in normierten Vektorrdumen Differentialrechnung betreiben,
sondern auch in Raumen, die sich selber durch lineare Rdume approximieren lassen: wie
Flachen durch ihre Tangentialrdume. Das fiihrt zur Analysis auf sogenannten differenzier-
baren Mannigfaltigkeiten.

’,,Vektorraum“ heifit hier immer reeller Vektorraum. ‘

Definition 90. Sei V ein Vektorraum. Eine Norm fiir V ist eine Abbildung
Il : V = Rv— v,

so dass fiir alle u,v € V und A € R gilt:

(i) [lvll = 0 und (fjof} =0 <= v =0),
(i) [|Aoll = [A[oll,

(iii) Jlu+ vl < |lul| + ||v].

Ein normierter Vektorraum (V, ||.||) ist ein Vektorraum V' zusammen mit einer Norm ||.|| auf
V. Durch die Definition
d(u,v) = Jlu = v (8)

wird daraus ein metrischer Raum, und alle Begriffe, die wir fiir metrische Réume erklart
haben, sind auch fiir normierte Vektorrraume erklart. Wenn wir in normierten Vektorrdumen
von Konvergenz, Stetigkeit, offenen Mengen etc. sprechen, beziehen wir uns immer auf die
Metrik . Normierte Vektorrdume sind also spezielle metrische Raume.

Beispiel 91 (Der R™ mit der Standardnorm). Der Vektorraum V = R”™ besitzt eine Norm
llz|| == /> a?, die wir als die Standardnorm oder Euklidische Norm des R"™ bezeichnen
wollen. Die Axiome (i) und (ii) sind klar, die Dreiecksungleichung folgt, wenn wir beachten,

dass
n

Z(xk —yr)? = d(z,y)

k=1

l —yll =

die Standardmetrik aus Beispiel [3] ist. Damit folgt

[z +yll = d(z, —y) < d(z,0) + d(—y,0) = |lz = 0] + || —y = Ol = [l=]| + lly|.
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Wenn wir vom R” als normiertem Vektorraum sprechen, beziehen wir uns immer auf die
vorstehende Norm, obwohl es sehr viele andere gibt. Die Metriken dP aus Beispiel 4| wie die
Metrik d*° kommen alle von einer Norm

”x”p = dp(mao)a
der sogenannten [P-Norm.
O

Beispiel 92. Der Vektorraum der beschrinkten Funktionen V' = B(X,R) gestattet die
Norm || f|| = || f|lsup = sup{|f(z)| |z € X}, die zur Supremumsmetrik fithrt.

O

Beispiel 93. Nicht jede Metrik kommt von einer Norm, schon weil metrische Rdume im all-
gemeinen eben keine Vektorrdume sind: Beliebige Teilmengen von normierten Vektorrdumen
sind als Teilmengen von metrischen Rdumen wieder metrische Rdume, im allgemeinen aber
keine normierten Vektorrdume.

Aber auch auf ,kompletten Vektorrdumen gibt es Metriken, die nicht von einer Norm
kommen. Zum Beispiel kommt die diskrete Metrik auf dem R™ nicht von einer Norm. Warum
nicht?

O

Bemerkung. In der linearen Algebra haben Sie die Norm in einem Euklidischen Vektorraum
kennengelernt. Jedes positiv definite Skalarprodukt (.,.) induziert eine Norm vermoge

]| == v/ (2, z).

Aber nicht jede Norm auf einem reellen Vektorraum kommt von einem Skalarprodukt. Not-
wendig und hinreichend ist die sogenannte Parallelogrammgleichung

2(lll” + llyl*) = llz + yl1* + |z - yl*.

Das die Bedingung notwendig ist, rechnen Sie leicht nach. Dass sie auch hinreichend ist, ist
schwieriger zu zeigen. Man definiert

1
(@) = (e +yll* = = = yll*)

und muss dann vor allem die Bilinearitit zeigen. Einen Beweis finden Sie zum Beispiel in
W. Klingenberg, Lineare Algebra und Analytische Geometrie, Springer 1984, p. 117.

Lemma 94. In einem normierten Vektorraum (V. ||..||) gilt fir alle u,v € V

Hlwll = [loll | < flw— |-

Beweis. Es gilt nach der Dreiecksungleichung

[ull = l[(u —v) + ol < flu— vl + v,
und daher
l[ull = vl < flu = vl].
Aus Symmetriegriinden ist dann aber auch ||v]| — |jul| < ||u — v||, und daraus folgt die
Behauptung. O

Als Folgerung ergibt sich, dass die Funktion
[:V =Rz |z

stetig ist.
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Definition 95. Mit L(V, W) bezeichnen wir den Vektorraum der linearen Abbildungen
F:V=W

vom Vektorraum V in den Vektorraum W.

Satz 96. Seien (V,||..|lv) und (W, ||..|lw) normierte Vektorriume, und sei F' : V. — W
linear. Dann ist F' genau dann stetig, wenn es ein C € R gibt, so dass fir allev eV

1E@)llw < Cllollv.

Beweis. Zu (= ). Wenn F stetig ist, ist es insbesondere in 0 stetig. Also gibt es zu e = 1
ein 0 > 0 mit
F(Us(0)) C Uc(F(0)) = Up(0).

Mit anderen Worten:
[vllv <6 = |F(v)|w <1

Dann gilt aber fiir alle v # 0

0

1)
1> [[F(5—v)llw = W

ST 1E()w-
Das impliziert

1P < 2 oy
auch fiir v = 0. Also kénnen wir C' = % wiéhlen.

Zu (<=). Gibt es ein C wie im Satz, so ist fiir alle v1,v3 € V.

[1F(v1) = F(v2)llw = [|F(v1 = v2)[w < Cllor = wallv-
Daraus folgt die (gleichméBige) Stetigkeit von F. O
Wir verzichten im weiteren auf den Index am Normsymbol.

Definition 97. Sie n € N. Ein (reeller) Vektorraum V heiit n-dimensional, wenn es einen
Isomorphismus

P:R" >V
gibt. Dabei ist ein Isomorphismus eine bijektive Abbildung ®, so dass ® und ® ! linear sind.
Ein Vektorraum heifit endlich-dimensional, wenn er n-dimensional fiir ein n € N ist.

Satz 98. Seien V,W normierte Vektorrdume und V endlich-dimensional. Dann ist jede
lineare Abbildung F :' V — W stetig.

Beweis. 1. Fall: V.= R™. Zunéchst gilt fir z € R™:
n
x=(x1,...,2,) = ijej,
i=1

wobei e; = (0,...,0,1,0,...,0) den j-ten Vektor der sogenannten Standardbasis des R"
bezeichnet, der in der j-ten Komponente eine 1 und sonst lauter 0 hat. Daher ist

IF@ = IFasenl = I3 aFenll < 3Lyl IF (el <M 3
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mit M := max; ||[F(e;)||. Wegen [z;| < /xF + ...+ a2 folgt Y37, |;] < ny/af + ... + a2,

also
I1F(z)]| < Mnllz|,
und F' ist stetig.

2. Fall: V beliebig, endlich-dimensional. Sei & : R” — V ein Isomorphismus. Dann ist &
nach dem 1. Fall stetig, und es gibt ein C' € R mit ||®(x)| < C|z| fiir alle . Wir zeigen,
dass es auch ein B > 0 gibt, so dass

B|lz|| < ||®(x)]| < C||z|| fur alle z € R™. 9)

Die Funktion ||®] : R™ — R ist als Komposition stetiger Funktionen stetig und nimmt
deshalb auf der kompakten Menge

Sli={x e R"|||z|| = 1}
ihr Minimum B in einem Punkt z* € S"~! an. Weil 2* # 0 und ® ein Isomorphismus ist,
ist
B :=||®(z*)] > 0.
Fiir alle x # 0 gilt

o = el 20| = et [oZ0)] = Bl

und die Ungleichung ||®(z)|| > B||z|| gilt offenbar auch fiir z = 0. Damit ist (9)) bewiesen.
Es folgt

@ ()| < %Hv” fir alle v € V.
Schliellich ist nach dem 1. Fall die lineare Abbildung F o ® : R™ — W stetig mit
|Fo®(z)| < A|x| fir alle z € R™.
Damit erhalten wir
IF (@)l = [[F o @@ ()] < A2~ (v)]| < AB|lv]l.

O

Korollar 99 (Die Operatornorm auf L(V,W)). Seien V und W normierte Vektorrdume
und V' # {0} endlich-dimensional. Dann definiert

F(v
IE|| = 81;1618 L ”q(]”)” fir F e L(V,W)

eine Norm auf dem Vektorraum L(V,W).

Beweis. Nach dem Satz gibt es ein C' € R, so dass fiir alle v # 0

o]

Daher ist || F'|| € R. Die Norm-Eigenschaften sind leicht zu verifizieren. O

Korollar 100. Sei V' ein endlich-dimensionaler normierter Vektorraum mit zwei Normen
-1, -ll2- Dann g
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(i) Es gibt ¢,C > 0, so dass fiir alle v € V gilt
cllvlly < vl < Clvlh-

Man sagt: Je zwei Normen auf einem endlich-dimensionalen Vektorraum sind dquiva-
lent.

(#i) Eine Menge G C V ist genau dann beziiglich ||..||1 offen, wenn sie beziiglich ||..||2 offen
ist. Daher sind auch Begriffe wie Konvergenz, Kompaktheit, Stetigkeit usw. unabhdingig
von der in V verwendeten Norm.

(iii) ||..||1-Cauchyfolgen sind auch ||..||2-Cauchyfolgen. Also ist auch der Begriff Cauchyfolge
unabhdngig von der in V verwendeten Norm.

Beweis. Zu (i). Weil die Identitét id : (V,].||2) — (V; ||.]l1) linear, also stetig ist, gibt es ein
M > 0 mit

ol < M [[o]a,
also

Lol < ol

M 1 > 2

fiir alle v. Die Stetigkeit von id in der anderen Richtung liefert die zweite Ungleichung.

Zu (i1). Ist G offen beziiglich ||.||; und betrachtet man wieder id als stetige Abbildung von

(V,]].]l2) nach (V,]].]]1), so ist auch
G =id (G)
offen. Die umgekehrte Richtung folgt aus Symmetriegriinden.
Zu (iii). Folgt leicht aus (). O

Beispiel 101. Fiir die /P-Normen auf R™ aus Beispiel 0] gilt: Ist 1 < p < ¢ < +00 und
x € R”, so ist
11
zllg < [lellp <nve™allzl, (10)

s 1L
wobel T = 0.

Beweis: Sei zuniichst ¢ < +00. Die linke Abschétzung ist leicht: Man kann o.E. annehmen,
dass
1= (el ) = 3 faile.
i

Insbesondere sind dann alle |z;| < 1 und daher |z;|P > |2;|?. Damit ist ), [2;|? > 1 und

1/p
lzllp = (Z |$i|p> > 1= ||zl

Die rechte Ungleichung beweisen wir spéter im Beispiel
Fiir den Fall ¢ = +o00 vergleiche .

Definition 102. Ein vollstédndiger normierter Vektorraum heiflt ein Banachraum.

Satz 103. Jeder endlich-dimensionale normierte Vektorraum (V,||.||) ist ein Banachraum.
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Beweis. 1. Fall: V. = R™ mit der Standardnorm. Das haben wir bereits im Beispiel 0] ge-
zeigt.

2. Fall: V beliebiger endlich-dimensionaler R-Vektorraum. Sie (vg)ren eine Cauchyfolge in
V. Nach unserer Definition (oder nach Linearer Algebra) gibt es einen Isomorphismus ® :
R™ — V. Dann ist auch ®~! : V — R" linear, also stetig, und es gibt ein C' € R mit

1@~ (v;) — @ (ve) | = |97 (v — vl < Cllvy — vkl

fiir alle j, k € N. Also ist auch (2 = ®!(vx))ren eine Cauchyfolge in R™. Sie ist nach dem
1. Fall konvergent gegen ein x* € R™. Wegen der Stetigkeit von ® ist deshalb

lim v = lim ®(xx) = (x™).
k—o0 k—o0

O

Beispiel 104. Vergleiche Beispiele [71]und[79] Sei (V, |.||) ein n-dimensionaler Banachraum.
Die Wahl einer Basis von V liefert nach linearer Algebra einen Isomorphismus

®:L(V,V)— M(n xn,R)

zwischen dem Raum der linearen Abbildungen von V in sich und dem Raum der (n x n)-
Matrizen. Wenn wir L(V, V') mit der Operatornorm und M (n x n, R) zum Beispiel mit dem
R(™*) identifizieren und mit der entsprechenden Norm ausstatten, ist ® nach Satz ein
Homoomorphismus. Die Determinanten ist nach Beispiel stetig auf M(n x n,R), und
weil die Determinante der linearen Abbildung F € L(V,V) nach linearer Algebra gerade
die Determinante der Matrix ®(F) ist, ist auch die Determinantenfunktion auf L(V,V)
stetig. Damit ist das Urbild von R\ {0}, also die invertierbaren Endomorphismen von V,
eine offene Teilmenge GL(V'), die unter ® der Menge der invertierbaren Matrizen GL(n,R)
entspricht. Fiir invertierbare Matrizen sind die Komponenten der Inversen durch gebrochen-
rationale Funktionen der originalen Komponenten gegeben, also insbesondere stetig. Daher
ist die Inversenbildung auf GL(n, R) und wegen der ®-Invarianz auch auf GL(V) eine stetige
Abbildung.

O

Wir halten noch einmal das Ergebnis aus dem Korollar fest:

Ein (abstrakter) endlich-dimensionaler R-Vektorraum hat unendlich viele Basen, aber keine
von diesen ist besonders ausgezeichnet. Ebenso besitzt er unendlich viele Normen, aber
keine von diesen ist besonders ausgezeichnet. Allerdings sind sie alle dquivalent: Die durch
sie definierten Metriken liefern alle dieselben offenen Mengen, dieselben konvergenten Folgen,
dieselben stetigen Abbildungen. Um iiber Offenheit, Konvergenz oder Stetigkeit in endlich-
dimensionalen R-Vektorrdumen zu sprechen, kann man eine beliebige Norm wihlen. Weil es
aber egal ist, welche man wéahlt, kann man eben unabhéngig von einer solchen Wahl iiber
Offenheit, Konvergenz oder Stetigkeit reden.

Der R” besitzt eine Standardbasis und eine Standardnorm, die die Standardmetrik d? liefert.
Natiirlich kann man davon Gebrauch machen, oft muss man aber nicht ...

Mehr zu diesem Thema gleich in der Vorbemerkung zum néchsten Abschnitt und im Ab-
schnitt iiber die klassische Vektoranalysis.
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2 Grundlagen der mehrdimensionalen Differentiation

Wir werden die Differentialrechnung in endlich-dimensionalen Banachridumen entwickeln.
Nach dem vorangehenden Abschnitt sind diese isomorph zu einem R™, und man koénnte sich
auch auf die letzteren beschréinken.

Der Vorteil wire, dass man im R™ eine ausgezeichnete Basis und damit ausgezeichnete
Koordinaten hat. Dadurch wird die Theorie konkreter. Man koénnte die Differentialrechung
auf dem Begriff der partiellen Ableitung, also der Ableitung nach einer einzelnen Variablen,
aufbauen.

Der Nachteil wire, dass man im R" eine ausgezeichnete Basis und damit ausgezeichnete
Koordinaten hat. Diese verschleiern die Tatsache, dass die Konzepte der Differentialrechung
geometrischer Natur sind und mit speziellen Koordinaten nichts zu tun haben, vielleicht
aber sehr viel mit anderen Strukturen, die auf dem R"™ auch noch so selbstverstindlich
vorkommen, dass wir sie gar nicht bemerken.

Zum Beispiel ist V := {(z,y,2) € R*|z + y + 2 = 0} ein zweidimensionaler Untervektor-
raum des R®. Hat man darauf eine differenzierbare Funktion f : V' — R gegeben, so ist
es zunédchst unklar, was ihre partiellen Ableitungen sein sollen. Erst wenn man in V eine
Basis gewihlt hat und damit eine Isomorphie von V' auf R?, macht der Begriff der partiellen
Ableitungen von f einen Sinn. Allerdings fiir jede Basiswahl einen anderen. Und es gibt
keine , kanonische“ Weise, eine Basis zu wéhlen. Hingegen kann man den viel wichtigeren
Begriff des Gradienten ohne partielle Ableitungen definieren, braucht dafiir aber ein Ska-
larprodukt. Und das Skalarprodukt des R? liefert auf ganz kanonische Weise eines fiir den
Untervektorraum V. (Vgl. Abschnitt 2.7.1] )

2.1 Die Ableitung
e Wir lernen die Ableitung als lineare Approximation einer Abbildung in der Néhe eines
Punktes kennen.
e Wir berechne die Ableitung in einfachsten Féllen.

Im folgenden seien V, W endlich-dimensionale Banachréiumeﬁ und G eine offene Teilmenge
von V.

Definition 105. Sei f: V O G — W eine Abbildung der offenen Menge G.

(i) f heiBt differenzierbar in p € G, wenn es eine lineare Abbildung F' : V — W gibt, so
dass fiir die durch

f(x) = f(p)+ F(z —p) + R(z) (11)
definierte ,,Restfunktion* R : G — W gilt
lim ) (12)

v |z —p||
F ist dann eindeutig bestimmt, vgl. Lemma[106] und wir nennen es die Ableitung oder
das Differential von f in p.
Notation:

F=D,f=d,f.

(ii) f heiBt differenzierbar (auf G), falls f in allen p € G differenzierbar ist.

4Im folgenden geniigt es, wenn V endlich-dimensional ist. Aber da wir keine konkreten Anwendungen fiir
unendlich-dimensionales W im Sinn haben, sei der Einfachheit halber auch W endlich-dimensional.
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Bemerkungen.

o Analytisch gesprochen ist D, f die lineare Approximation von f in der Néhe von p.
Schreibt man « statt p und Ax fiir x — p, so erhdlt man

Af:= f(z+ Az) — f(z) = D, f(Ax).

e Die Notation f’(p) fiir die Ableitung finde ich weniger empfehlenswert, weil die Ab-
leitung eine lineare Abbildung ist, so dass man dann f’(p)(v) schreiben miiite. Wir
heben uns diese Schreibweise daher auf fiir den Fall, wo D, f auf kanonische Weise
durch eine Matriz gegeben ist, vgl. Beispiel

Lemma 106. Ist f in p differenzierbar und F wie in der Definition, so gilt fir alle v in V:

t—0 t

Beachten Sie: Weil der Definitionsbereich G von f offen ist, liegt fiir jedes v € V und hin-
reichend kleines |t| der Punkt p+ tv in G. Deshalb ist der Limes sinnvoll. Die Definition der
Differenzierbarkeit kann man auch fiir Abbildungen von nicht-offenen Teilmengen hinschrei-
ben, aber die Ableitung ist dann im allgemeinen nicht mehr eindeutig.

Beweis. Ist F' wie in der Definition, so folgt

fptt0) = fp) _ flp) + F(tv) + Rip+to) = f(0) _ pyy, Blp 1)
¢ t :
Aber
Rlp+tv)  Rlp+tv) [t ||v||.
t lp+ tvo—pll \:;\TJ

O

Differenzierbarkeit und das Differential hingen wegen Korollar [T00] nicht ab von den gewéhl-
ten Normen auf V' und W. Wir werden deshalb die Norm oft auch nicht spezifizieren. Wenn
man eine braucht, nimmt man eine.

Beispiel 107 (Der Fall R — R). Wie hiingt die neue Ableitungsdefinition mit der aus dem
letzten Semester zusammen?

Die einzigen linearen Abbildungen von R nach R sind die Abbildungen x +— az mit einem
festen a € R. Eine Abbildung f : R D G — R ist deshalb differenzierbar im Sinne der
Analysis I genau dann, wenn sie auch nach der neuen Definition differenzierbar ist. Dann
gilt firpe Gund v € R

Dpf(v) = f'(p)v,
d.h.

/() = Dy f (V)] (13)

oder verbal:

Neue Ableitung = Multiplikation mit der alten Ableitung.
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Beispiel 108. Sei f : R? — R, (z,y) — 1+3z+4y+5xy?. Dann ist f in (0, 0) differenzierbar
mit
D,0)f(u,v) = 3u + 4v.

Es ist ndmlich
f(x,y) =1+3(x —0) +4(y — 0) + bay?,

und weil 5252 in (z — 0) und (y — 0) ,kubisch ist“, geht der Rest fiir (z,y) — (0,0) gegen

null:
2

< 5y%.

— 2

Durch Nachrechnen kénnen Sie bestétigen, dass

‘ Sy ‘ T

flz,y) =32+23(x — 1) +24(y — 2) +20(x — 1)(y — 2) +5(y — 2)* +5(x — 1)(y — 2)%.

=:R(z,y)

Der Rest dividiert durch /(z — 1)2 + (y — 2)2 geht fiir (z,y) — (1,2) wieder gegen null.
Damit ist f auch in (x,y) = (1,2) differenzierbar und

D(l_rg)f(u, U) = 23u + 24’[}
(Die Umrechnung von f auf den Punkt (z,y) = (1,2) geschieht erst fiir © und dann fir y
mit der Taylorformel aus Analysis I. Vgl. auch Satz [148)).
O

Geometrische Interpretation.

Die geometrische Interpretation ist am ein-
fachsten im Fall f : R2 D G — R. Dann ist
der Graph von

x> f(p) + Dpf(z —p)

eine Ebene im R3, die Tangentialebene an den y
Graphen von f.

Beispiel 109. Die (offene) obere Einheits-Halbkugel ist gegeben durch den Graphen von

flay) =v1—a?—y?
iiber der offenen Menge {(z,y) |2? + y? < 1}.

Die Tangentialebene im Punkt (zq,yo, /1 — 23 — y3) ist gegeben durch den Graphen der
affinen Abbildung

f(x07y0) + D(xo,yo)f : RQ — Rv

falls f differenzierbar ist. Aber das wissen wir noch nicht, und wir wissen auch noch nicht,
wie wir D4, o). berechnen sollen.

O
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Berechnung von Ableitungen. Das ist offenbar ein wichtiges Problem, dem wir
noch langer nachgehen werden. Wir beginnen mit zwei ganz trivialen Fallen:

Beispiel 110 (Konstante Abbildungen). Sei f : V O G — W konstant. Dann ist D, f = 0
fiir alle p € G.

O
Beispiel 111 (Lineare Abbildungen). Sei f : V — W linear. Dann ist
f(@) = f(p) + f(z—p)+0.

Also ist f in jedem Punkt p € V differenzierbar und D, f = f. Zum Beispiel ist die Additi-
onsabbildung
a:VxV oV (ey —alzy =x+y

vom Vektorraum V x V der Paare in den Vektorraum V linear:

a(A (w1, y1) + A2(T2,92)) = a((Mz1 + Aaw2, Miy1 + Aay2))
= M1+ A2Z2 + Ay1 + Aoy
= Az, Y1) + Aoa(x2, Y2).

Also ist « differenzierbar, und fiir alle (z,y) und (u,v) in V x V ist

Dy ypya(u,v) = u+v.

Nun ein etwas anspruchsvolleres Beispiel.

Beispiel 112 (Skalarmultiplikation). Die Abbildung der Skalarmultiplikation
pRxV =SV, (\zx)— Az
ist differenzierbar in jedem (Mg, o) € R x V. Es ist némlich

whz)=dx = XNzo + (A= Ao)zo + Moz — x0) + (A — Ao)(x — z0) .

#(Xoszo0) =:F(A—Xo,z—x0) =:R(\z)

Diese Gleichung rechnet man leicht nach. Es bleibt zu zeigen, dass

) R(\ x)
lim =
(A2)=(xo.20) [[(A; @) = (Ao, zo) |

Dazu braucht man eine Norm auf R x V. Wir nehmen an, dass auf V' eine Norm ||.|| gegeben
ist, und definieren
1A @) = [A] + [

Rechnen Sie nach, dass das wirklich eine Norm definiert. Damit gilt dann:

RO A= ol — o
[0ne) — Ga.ao)l Aol + [z — o]

|§||ac—m0H—>0

fiir (A, ) = (Ao, zo). Daraus folgt die Behauptung. Wir halten fest:

’ D(x,z0) (A, ) = Aoz + Azo. ‘

Das ist eine Art Produktregel, auf die wir noch zuriickkommen.
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Die beiden folgenden Beispiele sind iiberaus wichtig! Sie stellen einen ersten Schritt zur
expliziten praktischen Berechnung von Ableitungen dar.

Beispiel 113 (Komponentenweise Differentiation). Sei
f=0U1,- s fm): VDOG—=R™

mit Komponentenfunktionen f; : G — R. Dann ist f genau dann in p differenzierbar, wenn
alle f; in p differenzierbar sind. In diesem Fall gilt

D,f(v) = (Dpfi(v),...,Dpfm(v)) fir alle v € V. (14)

Beweis. In Komponenten sieht die Gleichung SO aus:

fi(z) = fi(p) + Fi(z — p) + Ri(x).

Nun ist F' linear genau dann, wenn alle Komponenten F; linear sind. Und weil Konvergenz

im R” einfach komponentenweise Konvergenz ist, folgt die Behauptung durch Betrachtung
R;i(z) R(z)
llz—pll lz—pll*

der Komponenten von

Dieses Beispiel gestattet eine Verallgemeinerung auf folgende Situation:
Seien V und Wy, ..., W,, endlich-dimensionale Banachrdume, G C V offen und seien

fi VoG =W
fiir ¢ € {1,...,m} Abbildungen. Wir definieren

VDG ->Wy x...x Wy,
x H(fl(x)ﬂufm(x))

Dann ist f genau dann differenzierbar in p, wenn alle f; in p differenzierbar sind, und es gilt
wieder die Gleichung (14)).

O

Beispiel 114 (Funktionalmatrix). f : R™ O G — R™ sei differenzierbar in p € G. Dann
ist Dpf : R® — R™ eine lineare Abbildung, und eine solche wird nach Linearer Alge-
bra dargestellt durch eine Matrix, die wir mit f’(p) bezeichnen und die Jacobimatriz oder
Funktionalmatriz von f in p nennen. Die Spalten sind gerade die Bilder der Basisvektoren
€1,...,En:

Dpfl (61) e Dpfl (en)

f'(p) = (Dpf(er) ... Dpflen)) = (Dpfile;)) = : :
Dypfm(er) ... Dpfm(en)

Die Formel im Lemma liefert eine Moglichkeit, die D), fi, (e;) zu berechnen. Wir kommen
im Abschnitt darauf zuriick.

O

Beispiel 115 (Kurven). Eine Abbildung f : R D]a,b[— W nennt man eine Kurve in W.
Ist f in ¢ €]a, b[ differenzierbar, so ist fiir alle A € R

Dif(X) = AD¢ f(1),

Also ist D, f : R — W durch den Tangentialvektor f(t) := D, f(1) eindeutig bestimmt.
Ist W=R™und f = (f1,..., fm), so ist

i&) = (AW, Jul®).
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Dabei ist nach Lemma

i) = Dy fi(1) = lim L1 ED = fit),

7—0 T

fi (t) ist also die gewShnliche Ableitung der Analysis I. Ins-
besondere kénnen wir die Definition von f auch auf den
Fall kompakter Intervalle [a,b] ausdehnen.

.

Konkret: Die Kurve f : R — R3, t ~ (cost,sint,t) ist
eine Spiralkurve. Sie hat den Geschwindigkeitsvektor

f(t) = (—sint, cost, 1).

14

Und es gilt zum Beispiel

Dy f(—5) = (5sin2, —5cos 2, —5).

93
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2.2 Rechenregeln fiir differenzierbare Abbildungen

Differenzierbare Abbildungen sind stetig.

Die wichtigsten Hilfsmittel zur Berechnung von Ableitungen sind wie in der Analysis I
die Kettenregel und die Produktregel, die wir hier kennenlernen.

Wir betrachten viele Beispiele fiir multilineare Abbildungen (Produkte) und sehr wich-
tige Beispiele von Ableitungen.

Es lohnt sich, die Formeln , , und auswendig zu wissen.

Satz 116. Seien V.W endlich-dimensionale Banachrdume. Ist f : V DO G —- W inp € G
differenzierbar, so ist es dort auch stetig.

Beweis. Die Behauptung folgt aus

f(x) = f(p) + Dpf(x —p) + R(x),

weil fiir £ — p das Restglied gegen 0 geht, und weil die lineare Abbildung D, f auf einem
endlich-dimensionalen Banachraum stetig ist. O

Satz 117 (Kettenregel). Seien U, V,W endlich-dimensionale Banachriume, G C U und
HCV offen, g: G =V und f : H— W Abbildungen mit g(G) C H. Sei g differenzierbar
in p € G und f differenzierbar in ¢ = g(p) € H. Dann ist die Abbildung fog: G — W
differenzierbar in p, und es gilt:

Dp(fog) :Dg(p)fong-

Beweis. Die definierenden Gleichungen

g9(z) = g(p) + Dpg(z — p) + R(x)
fy) = 1@+ Dyf(y—q) + Sy)

implizieren

f(g(z)) = f(g(p)) + Dy f(9(z) — g(p)) + S(g(x))
= f(9(p)) + Dy f(Dpg(x —p)) + Do f(R(z)) + S(g(x)) -

=:T(x)

Es bleibt zu zeigen, dass
T
lim T _ 0. (15)

wp o —pll
Im folgenden benutzen wir die im Korollar (99| definierte Operatornorm.

Zunéchst gilt
|1Dgf (R(z))|
|z —pl

[R(@)]
[l = pll

<Dy fll —0 (16)

fir z — p.
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Schwieriger ist der zweite Summand von T'(z). Die Behauptung
S
lim 7@) =
v=a [y — |

ist dquivalent zur Behauptung:

VesoTs>o(lly —all <6 = IS < elly —ql)-

Sei € > 0 und sei § > 0 dazu wie vorstehend gew#hlt. Weil g stetig ist in p, gibt es ein n > 0,
so dass

[z =pll <n = llg(z) = g()|l < 0.
Fiir [ — p|| < n ist dann also

15(g(2))| < ellg(x) — 9(p)|| = €l Dpg(z — p) + R(@)[| < e([|Dpgll |z — pll + [[R()]])-

Weil lim,_,,, Hf(xp)\l 0, kann man annehmen, dass 1 > 0 so klein ist, dass
R
| E()Il <1 fir0<|z—p|<n.
|z — pll

Dann folgt

15(g(@)l < ([ Dpgll lz = pll + |z = pll) = e([|Dpgll + V[l = pl.

Wir haben also zu jedem e > 0 ein n > 0 gefunden, so dass

IIS( ( ))H

Das bedeutet aber g
o ISG@l an
wp [z —pll

Aus und folgt und damit die Behauptung. O

Die Skalarmultiplikation R x V' — V, (A, v) — Av eines Vektorraums ist in jedem der beiden
Argument linear, man nennt das bilinear. Eine Verallgemeinerung sind die multilinearen oder
k-linearen Abbildungen, zum Beispiel die Determinante. Der folgende Satz verallgemeinert
das Beispiel auf multilineare Abbildungen.

Satz 118 (Produktregel). Seien Vi,..., Vi, W endlich-dimensionale Banachriume und
pwVix. .. xVey—->W

eine k-lineare Abbildung, d.h. p ist in jedem seiner k Argumente linear. Dann ist p diffe-
renzierbar und es gilt

k
Dipy,..ppyp(vis - vg) = Zu(ph e Pim 15 Vi Did s - - -5 DE)-
i=1
Bemerkung: Der erste Summand ist zu interpretieren als (v, pa,...,pr), der letzte ent-

sprechend.

Beweis. A. Wir zeigen zunéchst die Stetigkeit von p, genauer: Es gibt C' mit
(e, x)|| < Cllza|| - - - ||z fiie alle z; € V. (18)
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Ist €1, ..., e, eine Basis von V, so sind die Koordinatenabbildungen
xTr = E ZTj€; = X;
J

linear, also stetig, und es gibt zu jedem i eine Konstante C; mit |x;| < C;||z|| fiir alle .

Wir wéhlen nun Basen e;1,...,e;,, fiir V; und schreiben z; = Zj xijei; € Vi Aus der
Multilinearitét folgt dann

[z, ..z = | Z L1jy ""xkjkﬂ(elj17"'vek»jk)||
J1se-sdk
< > Culal - Cugllaell - lltersys - ers)|
J1yeesdke
= Y Cui-Crjllutenss el | lzall - .
J1se-Jk
=:C

B. Nun zum eigentlichen Beweis. Dazu miissen wir den Restterm

k
R(x17""mk) :u(xl""7xk) _M(pl""7pk) _Zu(pl7"'7pi717mi _pi7p7;+1""7pk)
i=1
berechnen. Dann miissen wir eine Norm ||.|| auf V3 x ... x V}, wihlen und zeigen, dass
R(z1,. ..,
lim (1'17 xk) = 0.
@1 @)= (1) [[(@1, - 2k) = (P1o - pi)|

Eigentlich miissen wir den Restterm natiirlich gar nicht berechnen, sondern wir miissen ihn
in einer Form schreiben, die es ermoglicht, den Grenzwert zu berechnen. Dazu fithren wir
folgende Schreibweise ein:

Z Mjl-ujm(p’x) = Z /’[’(plv"'axjd —Pjiy-- 5 Ty, _pjma"'apk)7 (19)
1<j1<...<jm <k 1<1 <. <jm <k
wobei iiber alle Produkte summiert wird, die aus pu(p1, ..., px) entstehen, indem man die pj,

ersetzt durch z;, — p;,. Der Restterm ist dann also

R(xla"'»xk):N’(xlw"vmk)_M(plv"'vpk)_ Z /“Lj1(pax)'
1<5:1<k

Wir zeigen gleich in einem Lemma, dass dann
k
R(zy,...,2x) = z Z [y ..o (P ) (20)
m=21<j1 <...<jm <k

Jeder Summand der rechten Seite enthélt also mindestens zwei “Faktoren” der Form (z;—p;)
und geht deshalb fur (z1,...,zx) = (p1,-..,pr) mindestens quadratisch gegen 0.

Genauer: Ist ||.||; eine Norm auf V;, so definiert

Gz, = flaafl 4+ s

o6



eine Norm auf V3 x ... x Vi, und weil nach

lee(p1, - Tjy —Djyse s Tjy — Pigs -« PE)||
(@1, k) = (P1, - i) |
5, — Pl
el 4+l =il ol

< Cllpafl - o e 2 e VB
—_———

—0

<1

geht das Restglied gegen 0. O
Die Restgliedformel folgt aus

Lemma 119. Fir jede k-lineare Abbildung p: Vi x ... x Vi, — W und alle (z1,...,zx) und
(p1,.--ypk) € VI X ... XV}, gilt unter der Verwendung von

k
:u’(xlu"'?xk) :/i(ph»pk) + Z Z Mj1...jm(pax)

m=11<j;<...<jm<k

Die p-Terme auf der rechten Seite heben sich also weg.

Beweis. Wir zeigen das durch vollstandige Induktion iiber k.
k =1. Die Formel
p(z) = p(pr) + plxs — p1)

folgt aus der 1-Linearitét.
k—k+1. Seialso p:Vyx...x Vi — W eine k-lineare Abbildung. Dann ist

k+1

(*) i=p(p1, - PRp1) + Y >, Mg .gim (P> T)

m=11<j;<...<jm <k+1
k+1

:M(p17-‘-7pk+1)+ Z Z /'L.jl-“jnL(p’m)

m=11<j1 <...<jm <k
k+1

+ Z Z /”'le---jWL(p"I:)'

m=11<j;<...<jm=k+1
Im mittleren Term kann m = k + 1 nicht vorkommen. Deshalb konnen wir fortfahren

k
(*) = H(p1,~-~,pk+1)+ Z Z /"le~»~jm(p7x)

m=11<j;<...<jm <k
k+1
+ pu(P1y -+, Phs Thg1 — Prot1) + Z Z [ .. (D> )
M=21<j1 <...<jm=h+1
Wir definieren nun zwei k-lineare Abbildungen auf V; x ... x Vi durch
/LO([L'l,..., ) = N(xla"'axkvpk+1)v
= U

Ty
@1,y ) = (@, T )
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Wir erhalten

() = 1°(p1, . Dr +Z > W)

m=11<j1<...<jm<k

+M1(p17"'7pk) _/’(’O(plr" apk:)

k+1 k41
0
+ Z Z “11 g (D2 Z Z Wiy o (5 T)
m=21<j1<..<jm-1<k m=21<j1<...<jm-1<k

k
= Z Z Mgl“‘jm($7p)+/1‘1(p17"'7pk)

m=11<j1<...<jm<k

k
+ Z Z 'qu g (D5 T Z Z ﬂ?l...jm (p, )

m=11<j1<...<jm <k m=11<j1<...<jm <k

k
:ul(pl,...,pk)++z Z u;l,”jm(pgr)

m=11<j; <...<jm <k

Ind?/or. ‘ul(‘rla ce 7xk) = ‘LL(l’l, . "xk'f‘l)‘

O

Die Produktregel aus der Analysis I ist eine Kombination aus der vorstehenden Produktregel
mit der Kettenregel. Das erklaren wir genauer:

Beispiel 120 (Alte Produktregel). Seien J C R ein offenes Intervall, p € J und seien f, g
J — R differenzierbare Funktionen. Sei weiter p : R x R — R die Multiplikationsabbildung
(z,y) — xy und sei

(f;9): J = RxR, t (f(t),9(1))-

Wir betrachten die Komposition

hi=po(f,g):te ft)g(t).
Dann gilt

B (p) = D,h(1
(p) &> (1)
= D) gmnko Dp(f,9)(1)

Kettenregel

D(f(p),g(p))/‘ o (Dpf(1), Dpg(1))

D(f(p),g(p))u o(f'(p),d' (p))

= u(f'(p),9p)+u(f(p),d ()

Produktregel

=f'()g(p) + f(p)g ().

O

Beispiel 121. Hier sind wichtige multilineare Produkte. Uberlegen Sie, was in jedem ein-
zelnen Fall die Produktregel besagt.

(i) Das normale Produkt reeller Zahlen hatten wir gerade

RxR =R, (z,y) = ay.
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(ii) Matrix mal Vektor: Sei M(m x n,R) der Vektorraum der reellen (m x n)-Matrizen.

M(m x n,R) x R" = R™, (A, z) — Azx.

(iii) Allgemeiner
LV, W) xV =W, (f,v) = f(v)

(iv) Das kanonische Skalarprodukt im R”
R" x R™ — Ra (‘Tvy) = <‘Tay> = leyz
i=1

(v) Allgemeiner jedes Skalarprodukt
VXV =R, (z,y) = (z,y)

auf einem Euklidischen Vektorraum V, oder noch allgemeiner jede Bilinearform.

(vi) Das Kreuzprodukt
R?® x R® — R?, (2,9) — 2 xy

auf dem R3.

(vii) Die Determinante als Funktion der Spalten:
R X ...xR" =5 R, (1,...,2,) — det(x1,...,2,).

Dieses fithren wir in einem Beispiel weiter unten aus.

O

Beispiel 122. Wir betrachten einen Euklidischen Vektorraum (V,{.,.)) und dazu:
die Produktabbildung
p:VxV =R, (zy) = (z,y),

die lineare “Diagonal-Abbildung”
0:V=>VXV, zw (x,x),
und die “Norm-Abbildung”
r:V-oR, x|z =+(z,z)

Dann ist

r=+v opuod.

Seien z,p € V und p # 0. Wir wollen zeigen, dass r in p differenzierbar ist und das Differential
ausrechnen.

e J ist als lineare Abbildung differenzierbar und

Dyé(z) = 6(z) = (z, ).
e 4 ist nach der Produktregel differenzierbar und

Dy, x) = p(z, p) + p(p, x) = 2u(z, p).
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e Die Wurzel va ist nach Analysis I differenzierbar und

Das bedeutet )
DV (t) = —=t.

Nimmt man die vorstehenden Ergebnisse zusammen, so sieht man, dass r in p nach der
Kettenregel differenzierbar ist und

1 (z,p)
Dyr(x) = 2pu(x, p) = (21)
' 2/ 1(p, p) r(p)
O
Beispiel 123. Fiir Vektoren zq,...,z, € R™ schreiben wir
X = (x1,...,2n)
fiir die Matrix mit den Spalten z;. Ist (e1,...,e,) die kanonische Basis des R”, so ist also

E:=(e1,...,en)

die n-reihige Einheitsmatrix. So identifizieren wir den Raum R" x ... x R™ mit dem Raum
M(n x n,R) der quadratischen n-reihigen Matrizen. Die Determinante — nehmen Sie das
als Definition, wenn Sie in der Linearen Algebra noch nicht so weit sind — ist mit dieser
Identifikation eine n-lineare Abbildung

det : R" x ...R" > R, (x1,...,2,) — det(x1,...,2,)
mit folgenden zusétzlichen Eigenschaften:
det(z1,...,z,) = 0, falls zwei der z; gleich sind,

det(ey,...,e,) = 1.

(22)
Damit gilt fir A = (a1,...,a,) € M(n xn,R) und entsprechendes B nach der Produktregel

Dadet(B) = det(as,...,a;-1,bj,a;41, ..., an)
j=1

n n
= E det(a1,...,a;_1, g brjCk, Gjt1,-- -, 0n)
=1

k=1
n n
= E E bkjdet(al,...,aj_l,ek,aj+1,...,an)
k=1j=1 -
n n
— E § v
— bk;]a/jk.
k=1 j—1

Definiert man also die Adjungte adj(A) der Matrix A durch

adJ(A) = (a}’k)j’kzlwﬁn = (det(al, ey aj,l, €k, a]‘+1, ey an))j’k:L“"n,

so ist D4 det(B) gerade die Summe der Diagonalelemente der Matrix Badj(A), die soge-
nannte Spur dieser Matrix:

D 4 det(B) = Spur(Badj(A)).

Wir merken noch an:
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1. Ist A = E, so ist nach (22)
e}’k =det(er,...,€j_1,€k,€j41,...,€n) = Ok,

also adj(F) = E und

| Dip det(B) = Spur(B). |

2. Allgemein gilt nach

n

n
v
E ajar; = det(ay,...,a;-1, g AkjChy Git1s - - -, On,)
k=1 k=1

= det(al, ey A1,y Qi 1y - ey (ln) = 5ij det(A),
also adj(A)A = det(A)E. Ist det A # 0, so ist A also invertierbar und
adj(A) = det(A)A™ .

In diesem Fall ist

| Dy det(B) = det(A) Spur(BA™).

Beispiel 124. Sei V ein endlich-dimensionaler Banachraum. Wir wollen zeigen

o GL(V):={A € L(V,V) | A invertierbar } ist offen in L(V,V),

e die Abbildung
inv: GL(V) = L(V,V), A~ A"

ist differenzierbar und

e ihre Ableitung ist

\DA inv(B) = —A‘lBA‘l.‘

Beachten Sie: Fiir V =R ist
Mz™H = Dp(27H(N) = —z a7 = A(—27?)
genau die aus der Schule bekannte Formel fiir die Ableitung von %
Wir benutzen auf L(V, V') die Operatornorm und die Ungleichung
IAB| < [|A[l]|B]
fiir die Norm der Komposition von A und B (Beweis?).

Sei A € GL(V) und B € L(V,V) mit

1
|A— Bl < ——73-
A=l

Aus folgt dann also
|A(A-B)| < 1.

Nun benutzen wir

B=A—(A—B)=A(E—-A"'(A-B)),
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wobei E die identische Abbildung von V ist, und denken an die geometrische Reihe. Wir

definieren
S, 1= (Z (AH(A - B))k> A1
k=0
Aus
n+m X n+m
1usm — Sull = H( (A~ (A-B)) )A1 < ( S [aia-B) >||A1||
k= n+1 k=n-+1

folgt mit (28)), dass die S, eine Cauchyfolge bilden. Weil L(V, V) endlich-dimensional, also
ein Banachraum ist, existiert S :=lim S,,. Aus
SyA=E+A Y A-B)+...+ (A {(A-DB))"
S, A(A™Y (A - B)) = A A-B)+...+ (A (A-B)"+ (A YA - B)"!
folgt durch Subtraktion:
S,B=F—(AY(A—- B))".
Der letzte Term geht fiir n — oo gegen Null, also ist SB = E, d.h. S = B~!. Verschérft

man zu
1
A= Bl < 57— (29)
2l A=H|

so folgt mit der Dreiecksungleichung und

1S ||<Z||A (A-B)|*A™" < A= = 2]l A7)

1
1*5

Aus folgt also [|[B~|| < 2||A7!|| und damit
B = A7Y| = |BTHA-B)AT < | BTH|IA - B|l|A7Y| < 2] A7H* A - Bl
Das impliziert die Stetigkeit von inv. Schlieffilich untersuchen wir den Restterm

R(B) =inv(B) —inv(A) + A (B-A)A ' =B 1 - A1+ A Y(B-A4)A"!
=AY B-AB '+ A B-A)AT=A"TY(B-A)(A-B).

Dann ist nach

IRB _ oyt gt
TE—Ap < 147 A= =57,

Wegen der Stetigkeit von inv geht das fiir B — A gegen 0 und inv ist differenzierbar mit
der angegebenen Ableitung.

O

Im vorstehenden Beispiel haben wir eigentlich nur benutzt, dass L(V, V') ein Banachraum
mit einer “Multiplikation” AB ist, fiir die gilt, eine sogenannte Banachalgebra. Dass
es sich bei den Elementen um lineare Abbildungen handelt, spielte keine Rolle: Wir haben
einen Satz aus der Theorie der Banachalgebren bewiesen.
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2.3 Richtungsableitungen, partielle Ableitungen

e Nun endlich die Differentiation fiir bescheidenere Anspriiche!

e Richtungs- und insbesondere partielle Ableitungen kann man mit Methoden der Ana-
lysis I ausrechnen.

e Aber der Zusammenhang mit der (totalen) Differenzierbarkeit ist nicht ganz trivial.

Seien V, W endlich-dimensionale Banachrdume, G C V offen, p € Gund f:V DG —- W
eine Abbildung.

Definition 125. (i) Fiir v € V definiere die Richtungsableitung von f in p in Richtung

v durch £ o) — £(p)
T p+itv)— fp
0o f(p) := lim =,
falls dieser Limes existiert.
(ii) Ist V = R"™ mit der kanonischen Basis ey, ..., e,, so nennt man die Richtungsableitun-

gen O, (p) die partiellen Ableitungen von f in p.
Notation:

L) =000) = 0..50)

Statt x; auch andere Variablennamen.

Es gilt also

, vees Dt ) = F(D1, - P
aif(p):%l_%f(m p tp) fp1,-- - pn)

Das ist (fir W = R) die Ableitung von f nach der i-ten Variablen im Sinne der
Analysis 1.

Beispiel 126. Ist f in p differenzierbar, so existieren dort alle Richtungsableitungen und
es gilt

9uf(p) = DyJ (v).

Speziell gilt also im Fall V = R"

0:f (p) = Dy (e

Beispiel 127 (Funktionalmatrix zu Fu}). Ist weiter
f:R"DG—R™,

differenzierbar, so ist nach Beispiel [[T4] die Darstellungsmatrix von D, f, also die Funktio-
nalmatrix, mit Methoden der Analysis I zu berechnen:

F0) = @50, -y = (50)
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Beispiel 128. Vgl. Beispiel [69}

Existieren in p alle Richtungsableitungen, so mufl f
in p nicht differenzierbar, ja nicht einmal stetig sein,
wie man an

1 fallsy=22>0
0 sonst.

sieht.

Satz 129 (Differenzierbarkeit und partielle Differenzierbarkeit). FEuzistieren auf ganz G alle
Richtungsableitungen (oder im Fall V = R"™ auch nur alle partiellen Ableitungen) und sind
diese stetig, so ist f in G differenzierbar.

Dieser Satz ist ein {iberaus niitzliches Kriterium, weil oft die Berechnung von partiellen
Ableitungen nach Analysis I sehr einfach und die Stetigkeit der Ableitungen offensichtlich
ist.

Beweis. Wir fithren den Beweis nur fiir V= R"™ W = R. Mittels komponentenweiser Diffe-
rentiation bzw. partieller Differentiation folgt daraus der Satz fiir V = R", W = R™. Sind
schliefflich @ : R™ — V und ¥ : R™ — W Isomorphismen und setzt man f =Vofod !,
so ist f genau dann differenzierbar bzw. partiell differenzierbar, wenn das entsprechende fiir

f gilt. Daraus folgt der Satz dann fiir beliebige V, W.
Seien also V = R™, W = R. Fiir p € GG definiere

Fp(z1,...,2p) := ijajf(p).
j=0

Dann ist F}, : R™ — R linear und der offensichtliche Kandidat fiir die Ableitung an der Stelle
p. Wir betrachten eine offene e-Kugel U = U.(p), die ganz in der offenen Menge G liegt,
und beschrinken uns im folgenden auf z € U. Beachten Sie, dass dann auch die Punkte
(P1s---,PjsTjt1,- .-, Zy) in U und damit im Definitionsbereich von f liegen. Fiir z € U gilt
daher

f(@) = f(p) = f(@1,....20) — f(p1,-- - Pn)
= f(x1,.. . mn) — flp1, 22, ... 20)
+f(plax27"'7xn) 7f(p17p27x3,"'7xn)

+f(p1a-~'apn—1;$n) - f(p17~--ap7z)-

Wir wenden auf jede Zeile den Mittelwertsatz an.

f(i[) - f(p) = alf(flvx% .. 'axn)(ml 7p1)
+ 0o f(p1,&2,- .., xn) (T2 — D2)

+ anf(pla e 7pn71>£n)(xn _pn>
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mit & zwischen x; und p;. Daraus folgt

f(.i?) — f(p) - Zi — Pi
8f(p1a" '7§i7"'axn) - alf(p))
| —pll ; |z —pl
~— —0
beschrankt
und mit der Stetigkeit der partiellen Ableitungen die Behauptung. O

Beispiel 130. Die Abbildung f : R? — R3 mit
f(x,y) = (sinz cosy, sin x sin y, cos y)

hat die folgende Matrix partieller Ableitungen:

cosrcosy —sinzsiny
(0jfi(z,y)) = | coszsiny sinzcosy
0 —siny

Die partiellen Ableitungen sind offensichtlich stetig. Daher ist die Funktion differenzierbar
und das Differential D, ) f : R? — R? wird durch die obige Matrix f’(z,y) reprisentiert.

O

Beispiel 131 (Das ,totale Differential“). Die Koordinaten-Abbildungen
i :R" =5 R (v1,...,0,) — v,
sind linear. Deshalb ist fiir alle p in R™
Dyzi = ;.
Jedes v € R™ 148t sich schreiben als

v = in(v)ei = ZDpxi(v)e

Ist f in p € G C R™ differenzierbar, so folgt

=Dypf(Y_ Dypwi(v)e:) =Y Dywi(v)Dyf(ei) = > i f(p) Dyi(v).

Das schreibt man auch so:

Df = Z 0; fDx; (30)

oder - gebrauchlicher -

af = gi, dz;.

Man nennt diesen Ausdruck das ,totale Differential“ von f im Gegensatz zu den einzelnen
partiellen Differentialen %{i. Bei Lichte besehen ist das totale Differential an der Stelle p
aber einfach nur die Ableitung D, f.

O

Beispiel 132 (Kettenregel in partiellen Ableitungen). Fiir differenzierbare Abbildungen
zwischen den Standardriumen sieht die Kettenregel in partiellen Ableitungen folgenderma-
Ben aus:

Aus D, (f 0 g) = Dy(p) f o Dpg folgt nach linearer Algebra

(fog)(p)=f(9(p)d (p),
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wobei rechts das Produkt der Matrizen steht. Also, wenn wir die Variablen im Definitions-
raum von f mit y; und im Definitionsraum von g mit ) bezeichnen,

(E)(g:j)i(p)) = (g; (9(29))) (ggi(p))

oder

Abgekiirzte Notation:

Ofi _~—~ 0fi 0y;
drr ; dy; Oy,
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2.4 Hohere Ableitungen

e Die Ableitung einer Funktion von mehreren Variablen ist nicht eine Zahl, sondern eine
Lineare Abbildung. Entsprechend werden erst recht die hoheren Ableitungen solcher
Funktionen kompliziertere Gebilde, ndmlich multilineare Abbildungen.

e Wir lernen, wie man sie “trotzdem” effektiv berechnen kann.

e Wir lernen den Satz von Schwarz {iber die Symmetrie hoherer Ableitungen, der manche
Rechnung vereinfacht, aber auch wichtige Anwendungen auf Differentialgleichungen
hat.

Vorbemerkung. Wir erinnern daran, dass L(V, W) den Vektorraum aller linearen Abbil-
dungen von V nach W bezeichnet. Sind V' und W endlich-dimensional, so ist auch L(V, W)
endlich-dimensional und es gilt dim L(V, W) = (dim V')(dim W), vgl. Lineare Algebra.

Definition 133 (Zweite Ableitung). Sei f: V C G — W auf G differenzierbar. Dann ist
Df:G— L(V,W),p— Dyf.

Ist diese Abbildung differenzierbar in p € G, so heifit f in p zweimal differenzierbar und
Dyf = Dp(Df): V = L(V, W)

die zweite Ableitung von f in p.

Wir haben also fiir vi,v9 € V

Dy f(v1) € L(V,W),
Df)f(vl)(vg) e W.

Beispiel 134. Sei (V,({.,.)) ein Euklidischer Vektorraum und sei r : V'\ {0} — R gegeben
durch r(z) = /< z,z >. Wir haben im Beispiel ausgerechnet, dass

1
D,r(v) = — < p,v >,

7(p)

also

1
Dr:xw Dyr = — <uz,. > L(V,R).
r(z)

Das ist das Produkt der Abbildung % : V'\ {0} — R mit der Abbildung
g:V — L(V,R)
T = (x,.)
1. Faktor: Weil r differenzierbar ist, ist nach der Kettenregel auch % differenzierbar, und es
ist

Dp%(”) = *T%(MDH‘(U) = *r%(m <p,v>.

2. Faktor: Die Abbildung g : V' — L(V,R) ist linear, also auch differenzierbar und

Dpg(v) = g(v) = (v,.) -
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Produktregel: Daher ist Dr nach der Produktregel differenzierbar, und es gilt

1 1
Dyp(Dr)(v) = ———~ <pv><p,. > +— <v,.>
p(Dr)(v) ) o
1
- 3(p) (7‘2(27) <v,.>—<pv><p,. >)
1
:r3(p) (Kp,p><wv,.>—<puv><p,.>),
also .
Dir(v)(w) = ) (<pp><v,w>—<p,v><pw>).

O

Es ist klar, wie man hohere als 2. Ableitungen definiert. Dabei entsteht allerdings ein
kleines Problem: Wir erhalten D3 f € L(V, L(V, L(V,W))), und den Zielraum der 7. Ablei-
tung mag man nicht mehr hinschreiben. Dieses Problem vermeiden wir folgendermaflen:

Wir definieren
D3 f(v,w) := Dy f?(v)(w).

Dann ist
Dyf:VxV =W

eine bilineare Abbildung von V nach W. Im obigen Beispiel ist also

1
Df)r(v,w) = ) (Kp,p><v,w>— < puv>Ipw>). (31)

Bezeichnen wir mit L*(V, W) den Vektorraum der k-linearen Abbildungen von V nach W,
so haben wir allgemeiner einen kanonischen Isomorphismus

Je : LV, L1V, W) — LE(V, W)
mit
Je(@)(v1, .. vg) = P(v1) (v, ..., V).

(Beweisen Sie das! Es folgt, dass dim L*¥(V, W) = (dim V)*(dim W) < oo, wenn V und W
endlich-dimensional sind.)

Damit definieren wir induktiv die k-Ableitung D’; f einer Funktion an der Stelle p wir folgt:

Definition 135 (Hohere Ableitungen). Ist f : V O G — W bereits (k — 1) mal differen-
zierbar und ist die (k — 1)-te Ableitung

DF1f .G — LFY(V, W),z DE1f

in p € G differenzierbar, so heifit f in p k-mal differenzierbar und die k-te Ableitung in p ist
gegeben durch

D];f(vl, cey V) = jk(Dp(Dkflf))(vl, Ce V) = Dp(Dkflf)(vl)(vg, Ce V)

Die k-te Ableitung einer k-mal differenzierbaren Abbildung f: V O G — W an einer Stelle
p ist also eine k-lineare Abbildung

k k
DEf e LRV, W).
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Lemma 136. Ist f in p k-mal differenzierbar so gilt fir vy, ...,y € V

DY f(v1,...,vk) = Ou, ... 0u, f(p).

Insbesondere existiert die rechie Seite.

Beweis. Durch Induktion iiber k.
k=1. D,f(v) = 0,f(p) wissen wir schon.
(k— 1) — k. Die Abbildung
g: LF-L(V, W) — w
i = (v, ..., V).
ist linear. Nach Kettenregel und Voraussetzung ist daher g o D*~1 f differenzierbar mit
Dy(go DF71f)(v1) = g (Dp(D* 1 f)(01)) = Dyp(D* 1 f)(v1) (w2, - vk)
= DX (v, o).
Andrerseits ist nach Induktionsvoraussetzung
goDk_lf = Dk_lf(v% s ,Uk) = avz . aka
und deshalb nach dem Fall £k =1

D,(go D* 1 f)(v1) = By, ... Oy, f-
O

Dieses Lemma impliziert insbesondere folgende Vereinfachung: Um DIQ) f(v1,v9) zu berech-
nen, muf} ich nicht die schwerer vorzustellende Abbildung Df : G — L(V, W) differenzieren,
sondern ich kann Df(ve) : G — W in Richtung v; differenzieren: Ich darf vor der zweiten
Ableitung den Vektor vy einsetzen.

D3 f(v1,v2) = 0,00, f(p) = Dp(Df(v2))(v1)-

Dabei mufl man auf die Reihenfolge der Vektoren achten — bis wir gleich gezeigt haben, dass
sie keine Rolle spielt!

Beispiel 137 (Hohere Ableitungen auf dem R™). Ist f : R® D G — W in p € G k-mal
differenzierbar, und hat man k& Vektoren

vj = (V1j,...,0n5) €R", je{l,...,k},

gegeben, so gilt

DEf(or,...;ve) = D 0i e 05 f()Viy1 - Vi (32)

i1, in=1

Also 148t sich die k-te Ableitung von f mittels k-facher partieller Ableitungen ausrechnen.
Konkret betrachen wir die Normfunktion r(z) = /Y _;_, 7 auf R"\ {0}. Wir finden

T oy — ;21
J J Jr 2
6jr = 7, 8i8j7‘ = 77'2 = 7‘73 (T (Sij - xixj)
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und damit

1 n n n
Dir(v,w) = =0 r2(p) D viw; — (ZW’Z) > _pjw
i=1 i=1 j=1

Vergleichen Sie das mit .

Fiir spitere Verwendung zeigen wir hier noch das folgende

Lemma 138. Fiir k-mal differenzierbares f : V O G — W, p € G und vy,...,vx € V gilt

DY f(vr,...,vk) = Dy N (Df)(ve, .., vp—1)(vk).

Beweis. Ich beweise das fiir V' = R™ mit den Koordinatenprojektionen x; : R” — R. Der
allgemeine Fall geht nach Wahl einer Basis genauso, nur treten an die Stelle der x; dann die
dualen Basisvektoren. Es ist

n

DENDf) (v, vk-1)(ok) = DETLO (@05 ) i) (v, - vk—1) (0k)

j=1

= Z é)il e 8ik718jf(p)vi11 .. -Uik,lk—lxj (Uk)

= Z Bil --~8ik_15jf(P)Ui11 ---’Uik_lkflvjh

U yeenyil—1,J=1
Vergleich mit liefert die Behauptung. O
Fiir die Frage, ob f zweimal differenzierbar ist, gibt es ebenfalls ein gutes Kriterium
mittels partieller Ableitungen: Sei f differenzierbar (z.B. weil es iiberall stetige partielle
Ableitungen besitzt). Nach ist D f wegen der Konstanz der Abbildungen p — D,z; = z;
genau dann differenzierbar, wenn die partiellen Ableitungen 9; f alle differenzierbar sind. Das

148t sich wieder mittels partieller Ableitungen testen, und man erhélt: Existieren alle zweiten
partiellen Ableitungen von f auf G und sind sie dort stetig, so ist f zweimal differenzierbar.

Entsprechendes gilt fiir hohere Ableitungen.

Definition 139 (C*-Funktionen). Ist f : V O G — W k-mal differenzierbar und die
Abbildung
DVf:G—LF(V,W), p—Dif

stetig, so heiflt f k-mal stetig differenzierbar. Nach der vorstehenden Bemerkung ist das fiir
V = R"™ dquivalent dazu, dass alle partiellen Ableitungen k-ter Ordnung von f existieren
und stetig sind. Wir schreiben dafiir

f e C*(G,W) oder kurz f € C*.

Schliefllich soll f € C'*° bedeuten, dass f beliebig oft differenzierbar ist — die Stetigkeit der
Ableitungen folgt dann natiirlich von selbst.

Ist f in p zweimal differenzierbar und sind wu, v ,,hinreichend kleine*“ Vektoren, so gilt

fo+utv) = fp+u) = f(p+0) + f() ® Dysuf(v) = Dpf(v) = Dy f(u,0).

Die linke Seite ist also eine Approximation fiir die 2. Ableitung, die zum Beispiel in der
diskreten Mathematik wichtig ist. Wir berechnen damit die 2. Ableitung:
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Lemma 140. Sei f : V O G — W differenzierbar und in p € G zweimal differenzierbar.
Dann gilt fir alle u,v €'V

D2f(u,v) = lim flp+tu+tv)— f(p +t2tu) " fp+to) + f(p)

WEeil der Zahler rechts in v und v symmetrisch ist, folgt daraus der wichtige

Satz 141 (H.A. Schwarz). Sei f : V O G — W in G 2-mal differenzierbar. Dann gilt fiir
alleu,v eV undp € G
2 _ P2
Dpf(u,v) - Dpf(vvu)'

Beweis des Lemmas[1f0 1. Schritt. Es geniigt der Beweis fiir den Fall W = R, weil f =
> fiei, wo die e; eine Basis von W und die f; reellwertige Funktionen sind.

2. Schritt. In Anlehnung an die heuristische Betrachtung oben definieren wir eine Funktion
F(t):= f(p+u+tv) — f(p+tv).

Dabei seien ||u|| und ||v|| hinreichend klein, so dass p+u+tv und p+tv fir 0 <t <1in G
liegen. Dann ist nach dem Mittelwertsatz fiir ein 7 €]0,1

fo+u+v)—flp+u) - flp+v)+ f(p) = F(1) - F(0)
- F'(7)
= Dptutrof(v) = Dpirof(v)
= (Dp+u+rvf - Dpf)(v) - (Dp+7'vf - Dpf)(v)
— (4)

Wir wenden jetzt auf die Funktion D f die Definition der Differenzierbarkeit an der Stelle p
an, und erhalten fir x = p+u+ 7v bazw. x = p+ TV

(¥) = = Dy f(u+70)(v) + R(p+u + 70)(v)
= Dy f(rv)(v) = R(p + 7v)(v)
= D2 f(u,v) + (R(p+ u+ 7v) = R(p+ 7v))(v).

Zu gegebenem € > 0 gibt es ein § > 0, so dass
[R(z)|| < ellz —pll, falls ||z —p|| <. (33)

Beachten Sie, dass R(x) € L(V,W). Fiir die Norm von R(z) verwenden wir daher wie iiblich
die Operatornorm auf L(V,W).

Fiir [Ju|l + ||v]] < ¢ ist dann

[1B(p +u+ 7o)|| < ellu+ 7o]| < e[lull + [|v]]),
17(p + To)|| < ellroll < e(llull + (o],

also

1G) = Do f(w,0)ll = [(R(p + w+ 70) = R(p+ 70) (0)l| < 2e([full + [[o[)]v]l-
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Nun seien u,v € V beliebig und ¢ty > 0 bei vorgegebenem e > 0 so klein gewéhlt, dass
[toull + [[tov]| < 6 ist, vgl. (33). Dann folgt fiir alle ¢ mit |t| < to

Hf(pﬁuﬂv) —flp J;Ztu) —fp+tv)+flp) D2 (u,v)
B | Fp+tu+tv) — f(p+tu) — f(p+tv) + f(p) — D2f(tu, tv)
_ 2
< 2 I TODIN _ o+ oy o
Daraus folgt die Behauptung. O

Korollar 142 (zum Satz von Schwarz). Ist f : R" D G — W in G 2-mal differenzierbar
(oder 2-mal partiell differenzierbar mit stetigen zweiten partiellen Ableitungen), so gilt fiir
alle i, j

0:0;f = 0;0,f.

Beispiel 143 (Wichtige Anwendung: Integrabilitdtskriterium). Seien fi,...,f, : R" D
G — R. Die elementarste Frage der Theorie der partiellen Differentialgleichungen ist die, ob
es eine Funktion y : G — R gibt, so dass fiir alle ¢ gilt:

diy = fi. (34)

Haben die f; stetige partielle Ableitungen, so hat ein solches y, falls es existiert, stetige par-
tielle Ableitungen bis zur Ordnung 2. Also ist eine notwendige Bedingung fiir die Losbarkeit

von , dass
9;fi = 0;0y = 0i0;y = 0; f;,

d.h.
8jfi = 8¢fj fir alle Z,]
O

Aus dem Satz von Schwarz in Verbindung mit dem Lemma [136] ergibt sich unmittelbar die
folgende Verallgemeinerung;:

Korollar 144 (zum Satz von Schwarz). Ist f : V D G — W k-mal differenzierbar in G, so
gilt fiir jede Permutation (i1, ...,ix) von (1,...,k) und fir allep € G und vy,...,0p €V

D];f(vl,...,vk) = D’;f(vil,...,vik)

bzw.

Doy -+ 00 f (D) = o, .- Dy, (D).

Bemerkungen. In der Literatur (z.B. im Buch von Rudin) findet man den Satz von Schwarz
hiufig in folgender Form: Ezistieren alle partiellen Ableitungen 2. Ordnung von f und sind
sie stetig, so gilt

0:0;f = 0;0:f.

Aus dem Vergleich mit unserer Version ergeben sich zwei Fragen:
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1. Gibt es Funktionen, die zweimal differenzierbar, aber nicht zweimal stetig differenzier-
bar sind? Dann ist die Version des Satzes starker als die oben zitierte.

Antwort: Ja. Die Funktion
4.1
g:R—>R, z— x"sin—
T

ist auf R zweimal differenzierbar, aber die 2. Ableitung ist in 0 nicht stetig. Entspre-
chendes gilt dann auch fiir die durch f(z,y) := g(z) definierte Funktion auf R2.

2. Gibt es Funktionen mit (nicht stetigen) partiellen Ableitungen 2. Ordnung, fiir die der
Satz von Schwarz nicht gilt?

Antwort: Ja. Die Funktion f : R? — R mit

0 fire=y=0
flz,y) = 22—y?
TY T sonst

besitzt iiberall stetige 1. partielle Ableitungen und (in 0 unstetige) 2. partielle Ablei-
tungen. Fiir sie gilt

0102£(0,0) = 1 # —1 = 8,01 £(0,0).

Beweise als Ubung.
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2.5 Schrankensatz, Satz von Taylor

e Schrankensatz und Satz von Taylor kann man auch fiir Funktionen mehrerer Variablen
formulieren.

In hoherdimensionalen Rdumen wird die naive Verallgemeinerung des Mittelwertsatzes
F(b) = f(a) = Def(b — a) fiir geeignetes ¢ zwischen(?) a und b
falsch. Zum Beispiel gilt fiir die Funktion f : [0,27] — R3 mit f(t) = (cost,sint,t), dass
f(2m) = £(0) = (0,0,2m).

Aber fiir alle € €]0,2n[ ist D¢ f(2m — 0) = 2w(—sint, cost, 1) # (0, 0, 2m).

Der Schrankensatz, den wir jetzt beweisen, liefert einen Ersatz fiir den Mittelwertsatz.

Satz 145 (Schrankensatz). Seien V,W endlich-dimensionale Banachriume und sei
f:VoG—->W
eine differenzierbare Abbildung. Seien a,b € G, so dass die Strecke
ab:={a+tlb—a)|0<t <1}
in G enthalten ist. Dann gilt
1£0) = F@I| < sup [ Do 16— all.

rE€ab

Zusatz. Wenn f in den Endpunkten von ab nicht differenzierbar, aber stetig ist, gilt dieselbe
Behauptung, wobei das Supremum iber alle Punkte von ab\ {a,b} zu nehmen ist.

Beweis. Sei K := sup_ ;|| Dy f]| und sei € > 0. Sei 0.E. K < oo, sonst ist nichts zu zeigen.
Wir definieren

A= {t € [0,1][[If(a+t(b—a)) = fla)l < UK +€)l[b—all}.

Weil beide Seiten der Ungleichung in der Definition von A in ¢ € [0, 1] stetig sind, ist A
abgeschlossen. Wegen 0 € A ist A # (. Insbesondere gilt

supA=:s€ AC|[0,1].

Wir zeigen s = 1, d.h.
1£() = F@) < (K + O)llb— al.
Weil das fiir alle € > 0 gilt, folgt daraus die Behauptung.

Annahme: s < 1. Die Funktion f ist in p = a + s(b — a) differenzierbar, und wir haben

fla+tlb—a)) = fla+s(b—a))+D,f((t—s)(b—a))+ R(a+1t(b—a))

R(z) _
Ta—pl

R(a+t(b—a)) —0.

0, also limt_)s m

mit limg_,,

(Beachten Sie [|(a + t(b — a)) — (a+ s(b — a))|| = [I(t = s)(b — a)l| = |¢ — s|[}b - al.)
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Dabher gibt es § > 0, so dass fiir s <t < s+ 9§ gilt
[R(a+t(b—a))| <e(t—s)-[Ib—al.
Aus der Dreiecksungleichung folgt fiir s <t < s+ 4
| Fa+ 10— a) = Fa+ 56— a)l| < Dy (¢ =) b~ all + et = 5) - b —al
<(t=s)(K+¢€)|b—all.
und weiter
[f(a+1t(b—a)) = fla)| <lfla+tb—a)) - fla+sb—a))|+|flatsb—a))—fla)ll

< (t—s)(K+e)|b—al +s(K+e€)b—a
=t(K +¢€)||b — al|.

Das ist ein Widerspruch zur Definition von s. Also ist s = 1 und (%) bewiesen.

Zum Zusatz. Ist f nur im ,Inneren® der Strecke ab differenzierbar, so gilt nach dem Bewei-
senen fir alle 0 < t1 <ty <1

[f(a+t2(b—a)) = fla+ti(b—a))l < JSup, [Datto—a) fll [[(@+t2(b—a)) = (a+t1(b—a))l
= sup [[Datrp—a)fll (t2 —t1)[[b—al.
0<t<1

Durch Grenziibergang t; N\, 0 und t3 " 1 folgt mit der Stetigkeit von f die Behauptung.
O

Berechnung der Operatornorm. Bisher hatte die Operatornorm nur eine Hilfsfunktion.
Der Schrankensatz macht es wiinschenswert, sie explizit zu berechnen. Das ist ein Problem
der linearen Algebra. Wir geben die Resultate fiir zwei einfache Fiille.

1. F: R™ — R sei beziiglich der Standardbasen gegeben durch die m x 1-Matrix A =
(a1,...,ay). Dann ist die Operatornorm beziiglich der Euklidischen Norm von R™ und
dem Betrag |.| auf R gegeben durch

1Al =

n

E 2
a;'.

i=1

Im Falle des Schrankensatzes, ist F' = D f gegeben durch die Matrix
fl = (alfvvanf)

und

IDfl = | S (@)

i=1

2. f:R™ — R™ sei beziiglich der Standardbasen gegeben durch die m x n-Matrix A. Die
Normen auf R” und R™ seien die iiblichen Euklidischen Normen. Mit A” bezeichnen
wir die transponierte Matrix. Dann ist A7 A eine symmetrische (=selbstadjungierte)
n x n-Matrix und || A]| ist die Wurzel aus dem Maximum der Eigenwerte von AT A.

Korollar 146. Sei G C V offen und zusammenhdngend und sei f : G — R differenzierbar
mit Dpf =0 fiir alle p € G. Dann ist f konstant.
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Beweis. Sei p € G und

U:={zeG|f(z)=fp)}
Ist @ € U, so gibt es r > 0 mit U.(a) C G. Aus dem Schrankensatz folgt dann fiir alle
beU(a)

1£(6) — f()l = [1f(b) = f(a)]| <O [|b—al,
also b € U. Deshalb ist U offen. Andrerseits ist
G\U = 7' R\ {f(p)})

ebenfalls offen. Weil G zusammenhéngend ist, folgt dass entweder U = () oder G\ U = 0.
Wegen p € U folgt U = G. O

Fiir spitere Verwendung “verfeinern” wir dieses Korollar noch etwas:

Korollar 147. Seien G C V; x Va offen und f : G — W differenzierbar. Es gelte fiir alle
(plap2) € G; dass
0= D(P1,P2)f(07 ) : VQ — W.

Offenbar gibt es zu jedem (p1,p2) € G ein € > 0 mit
Ue(p1) x Ue(p2) C G.
Dafiir gilt dann
flq1,q2) = f(q1,r2) fir alle @ € Uc(p1) und qa2,7r2 € Uc(p2).

Mit andern Worten: Ist die Vo-Ableitung von f Null, so hingt f lokal nicht von der Vs-
Variablen ab.

Beweis. Betrachte die Funktion
g:Va D Uc(p2) = Wit — flqu,t).
Fiir diese gilt nach der Kettenregel angewendet auf t — (q1,t) — f(q1,t)
Dig(v2) = Dg, 1) f(0,v2) =0,
und aus dem Schrankensatz angewendet auf g folgt g(g2) = g(r2) und damit die Behauptung.

O
Satz 148 (Taylorformel). Sei f : V O G — W n-mal differenzierbar.
Dann laft sich f darstellen als
1
f@)=| > 5 Dpf@—p o —p) | + Rla), (35)
k=0

k—mal
wobei fir die dadurch definierte Restfunktion R gilt
R(x)

lim ——2, =
e=p |lz —p|"

Zusatz: Ist f sogar (n+ 1)-mal differenzierbar und reellwertig(!) und ist px C G, so gibt es
q € px, so dass

1
(n+1)!

R(zx) =

n+1
Dq f(x_p77x_p)

(n+1)—mal

76



Beweis. Der Zusatz folgt direkt aus dem 1-dimensionalen Fall: Wir setzen v := z — p und
g:10,1] = Rt — g(t) := f(p + tv).

Dann gibt es 7 € [0, 1], so dass

Il
N N
NE

=
{9

1 1
_ (n+1)
AT >+(n+1)!g (7)

1 1
il Dy f(p) er Oy...0p f(p+TV)
k—mal (n+1)—mal

1 1
_ +1
= Dpf(x ...,w—p)+(n+1)!D2 flx—=p,...,z—p)

k—mal (n+1)—mal

mit ¢ = p+ Tv.

Nun zum Beweis der ersten Taylorformel. Die kann man nicht einfach auf den eindimen-
sionalen Fall zuriickfithren. Die Mehrdimensionalitdt von W ist dabei sekundér. Aber ein

Ansatz wie oben fiithrt nur zu Informationen {iber lim;_,q R‘l(f;”tnv), und das ist eine deutlich

eingeschriankte Aussage.
Beweis durch vollstdndige Induktion iiber n.
n = 1. Das ist einfach die Definition der Differenzierbarkeit.

(n — 1) — n. Die Induktionsvoraussetzung angewendet auf die (n — 1)-mal differenzierbare
Funktion D f liefert

;= (Z SDEDNG = pe p)) + R(a) (30)
k=0 "

mit -
R(z)

m ——- =
w250 Jlo = pl*=

Nun berechnen wir die Ableitung von

Der erste Term unter dem Summenzeichen ist f(p), fillt bei der Differentiation also weg.
Unter Benutzung der Produktregel, des Satzes von Schwarz und des Lemmas [138

DmR(v):Dwf(v)—Z%kaf(x—p,...w—p,v)
k=1
:Dmf(v)—z(k_ll)'Dlgfl(Df)(x—p,,x—p)(v)
k=1 ’
Also ist _—
n— 1 ~

D$R:Dwf—ZED’;(Df)(x—p,...,m—p) = R(x).
k=0 "



Zu jedem € > 0 gibt es ein § > 0 mit Us(p) C G, so dass fiir alle x € Us(p)

IR@)] < ellz = pl"~*

Wegen R(p) = 0 folgt aus dem Schrankensatz dann fiir alle 2 € Us(p)

[R(@)]| = [R(x) = R(p)| < sup [|DyR| |z —pl < ellz—p",

y€Us(p)

also R
lim 7@) =
z=p [lz — pl|”
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2.6 Lokale Extrema

e Wir wenden die Taylorformel auf Extremalprobleme an.

Definition 149. Seil € L*(V,R) eine k-lineare Abbildung. Wenn der Zielraum R ist, nennt
man solche Abbildungen auch k-Linearformen, insbesondere fiir k = 2 Bilinearformen.

[ heifit

(i) positiv definit, wenn I(v,...,v) > 0 fiir alle v # 0.
(ii) positiv-semidefinit, wenn (v, ..., v) > 0 fiir alle v.
(iii) negativ definit, wenn (v, ...,v) < 0 fiir alle v # 0.
(iv) negativ-semidefinit, wenn (v, ...,v) < 0 fiir alle v.
)

(v

indefinit, wenn v — [(v,...,v) das Vorzeichen wechselt.

Lemma 150. Seil € L*(V,R) eine symmetrische k-Linearform, d.h. es gelte

l(’Ul,...,’Uk) = l(vi17"'7vik)

fiir jede Permutation (iy,...,i,) von (1,...,k). Dann gilt:

(i) Ist l(v,...,v) =0 fir allev eV, soistl=0.

(i) Ist k ungerade, so ist | =0 oder | indefinit.

Beweis. Zu (i). Vollstdndige Induktion iiber k.
k =1. Trivial.
(k—1) — k. Dann gilt

k
E\
= (,)tll(v,...,v,w,...
im0 \' v

i—mal

,W).

Ein Polynom verschwindet aber nur dann identisch, wenn alle Koeffizienten=0 sind. Daher

ist insbesondere [(v,...,v,w) = 0 fiir alle v, w. Bei festem w ist I(.,...,.,w) symmetrisch
und (k — 1)-linear. Deshalb ist nach Induktionsvoraussetzung I(v1, ..., vg—1,w) = 0 fiir alle
Vi, W.

Zu (11). Gibt es ein v mit I(v,...,v) # 0, etwa > 0, so ist [(—v, ..., —v) < 0 und [ indefinit.

Andernfalls ist I = 0 nach (i).

O

Definition 151. Die Funktion f : V O G — R hat in p ein strenges lokales Mazimum,

wenn es ein € > 0 gibt, so dass

Voea (0 <z —pll <e = f(z) < f(p)).
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Analog erkliart man strenge lokale Minima.

Satz 152 (Lokale Extrema). Sei f: V D G — R k-mal differenzierbar, k > 1, p € G und
Dyf =0,...,Di ' f =0,
Dif 0.
Dann gilt:
(i) Ist D;ff negativ definit, so hat f in p ein strenges lokales Maximum.
(ii) Ist D’;f positiv definit, so hat f in p ein strenges lokales Minimum.

(i) Ist D’[ff indefinit, insbesondere k ungerade, so hat f in p kein lokales Extremum, son-
dern einen sogenannten Sattelpunkt.

Im semidefiniten Fall wird keine Aussage gemacht.

Aus (i) folgt insbesondere die wichtige notwendige Bedingung:

’Hat f in p ein lokales Extremum, so ist D, f = 0. ‘

Beweis des Satzes. Die Idee des Beweises ergibt sich aus der Taylorformel. Es gilt

1

F@) - 1) =

DEf(@ ~p.....w —p) + R(a), (39)

mit R
lim ()

b S/ — 40
el (40)

Also haben f(z) — f(p) und D]’,ff(a: —p,...,x — p) dasselbe Vorzeichen, vorausgesetzt, man
kann das Restglied vernachléssigen. Letzteres zu zeigen, ist das technisches Problem des
Beweises.

Die Einheitssphire S := {v € V | ||v|| = 1} ist abgeschlossen und beschréinkt, nach dem Satz
von Heine-Borel (der in endlich-dimensionalen Banachrdumen ebenso gilt wie im Standard-
R™. Warum?) also kompakt. Daher existieren

JU k o k
m = E}IIGIngpf(U7...,U) und M := ng{Dpf(v,...7v).

Fiir beliebiges v € V folgt daraus

mlol|* < Dy f(v,....v) < Mljv||*.
Ist D% f positiv definit, negativ definit oder indefinit, so ist € := 5 min(|m/,[M]) > 0.
Wegen gibt es ein 6 > 0 mit Us(p) C G und

|R(z)| < €|l — p||* fiir alle 2 € Us(p).

Zu (i). Tst D’;f negativ definit, also M < 0, so folgt fiir = € Us(p)

M
2k

M
lz = pl* = 5 lle —p]* <0

1 . M L
aDpf(@=p. oz —p) + R(z) < 7 llz = pll" — =50

kP
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mit Gleichheit nur fiir z = p. Aus folgt die Behauptung (7).
Zu (ii). Analog.
Zu (i11). Im indefiniten Fall ist m < 0 < M, und es gibt vy, ve € S mit

D];f(vl,...,vl) =m, D];f(vg,...,vg) =M.

Dann ist z; :=p + gvj € Us(p) und es gilt

3

k k k k
HD P —p, =)+ R(2) < s — I}~ eyl = 2,{,nacl ol <0,
M M
k k k_ k
LDk f(es — .2 — )+ R(2) 2 bl — pllC — s — pllF = o[l — I > 0.
Aus (39) folgt die Behauptung (iii). O

Bemerkung. Die Frage, wann eine symmetrische k-Linearform zum Beispiel positiv definit
ist, ist eine Frage an die (multi)lineare Algebra. Ein hiufiger Spezialfall ist k = 2. Wir wollen
iiberdies annehmen, dass V' = R" ist. Dann ist

= Z ai(')jf(p)uivj.

i,j=1
Die (symmetrische) Matrix
0of(p) ... 010.f(p)
H-| z

der zweiten partiellen Ableitungen heifit auch die Hessesche Matriz von f. Fiir sie gilt also
2 _
Dy, f(u,v) = (Hu,v)

mit dem kanonischen Skalarprodukt (u,v) = """, u;v;. Es ist also eine interessante Frage,
wann die durch eine symmetrische Matrix A gegebene Bilinearform (Au,v) positiv definit
ist. In der Linearen Algebra lernt man (z.B. im Zusammenhang mit der Hauptachsentrans-
formation), dass dies genau dann gilt, wenn alle Eigenwerte von A positiv sind. Dann nennt
man auch A positiv definit. In der linearen Algebra lernt man auch, wie man die Eigenwerte
bestimmt, und hat damit eine Methode, um im Fall & = 2 positive Definitheit nachzupriifen.

FEin anderes Kriterium ist das folgende:

Lemma 153 (Hauptminorenkriterium). FEine symmetrische (n x n)-Matriz

ist genau dann positiv definit, wenn alle Hauptminoren positiv sind. Dabei sind Hauptmi-
noren oder Hauptabschnittsdeterminanten die Determinanten der Matrizen

Ap = (aig)ij=1....k
A ist genau dann negativ definit, wenn die Hauptminoren wechselndes Vorzeichen beginnend

mit a11 < 0 haben.

Man findet dieses Kriterium oft in der Literatur zitiert (als Kriterium von Sylvester oder
Hurwitz), aber selten bewiesen. Wir geben deshalb einen Beweis im Anhang.
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Im Falle n = 2 ist die Hessematrix gegeben durch

O2f  0,0.f
0.0,f O2f

und wir erhalten folgendes Kriterium fiir lokale Extremas:

Satz 154. Sei f : R2 D G — R zweimal differenzierbar auf der offenen Menge G und sei
p € G. Dann gilt:

(i) Hat f in p ein lokales Extremum, so ist D, f = 0.

(i1) Ist Dpf =0 und gilt
93f ()9, f(p) — (920, f(p))* > 0,
so hat f in p ein strenges lokales Extremum, und zwar
e cin Mazimum, falls 9% f(p) <0,
e cin Minimum, falls 02 f(p) > 0.
(iii) Ist
93f ()9, f(p) — (920, f(p))* <0,
so hat f in p kein lokales Extremum. (Sattelpunkt)

Wir geben dafiir noch einen direkten Beweis ohne weiteren Bezug auf die lineare Algebra:

Beweis. Wir bezeichnen die Hessematrix kurz mit
a b
= (5 2)

) ; @)) = az’® + 2bzy + cy® =: P(z,y).

Dann ist
T

D2
(;
Wahlt man y = 0, so sieht man, dass a > 0 bzw. a < 0 notwendig fiir die positive bzw.
negative Definitheit ist. Die ist in diesem Fall dann aber dquivalent dazu, dass

b c b \? ¢ b2 b \? ac—b?
<t b aieys ot = (e ) 0 Gt = (e o) 4G

Wihlt man nun y # 0 und « = ,g% so ergibt sich ac—b? als weitere notwendige Bedingung.
Diese ist aber auch hinreichend: Die rechte Seite ist dann > 0, und verschwindet nur fiir
y=0und z = 0. O
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2.7 Differentialoperatoren der klassischen Vektoranalysis

e Wir interpretieren Abbildungen - wie in der Physik - als Vektor- oder Skalarenfelder.

e Gradient, Divergenz, Rotation und Laplaceableitung sind Felder, die mit Hilfe von
Differentiationsprozessen aus anderen Feldern entstehen. Diese Operationen haben sich
in der Physik als wichtig erwiesen.

e Wir lernen elementare Definitionen dieser Operationen im R™, bemiihen uns aber
auch um Definitionen in abstrakten Vektorrdumen um zu kldren, welche zusétzlichen
Strukturen ggf. noch erforderlich sind.

Definition 155. Sei G C V eine offene Teilmenge des endlich-dimensionalen Banachraums
V. Fiir diese Vorlesung vereinbaren wir folgende Sprechweisen:

e Ein Vektorfeld auf G ist eine Abbildung X : G — V.

e Ein skalares Feld auf G ist eine reellwertige Funktion f: G — R.

Wir wollen im folgenden eine kurze Einfithrung der klassischen Differentialoperatoren geben.
Wir geben jeweils zwei Definitionen, eine elementare im R™ und eine abstrakte, die etwas
mehr lineare Algebra voraussetzt und die aufzeigt, welche , Hintergrundstrukturen® in die
Definition einflielen.

2.7.1 Gradient

e Naiv. Mit (z,y) = D1, z;y; bezeichnen wir das kanonische Skalarprodukt auf R™.
Der Gradient eines differenzierbaren skalaren Feldes f : R™ D G — R ist das folgende
Vektorfeld:

grad f : G — R",p > grad, f := (01f(p), ., 0nf(p)).

Fundamentale Eigenschaften:

(i) (grad, f,v) = Dpf(v) fiir alle v e V.

(ii) Der Gradient steht senkrecht auf den Niveaus von f. Genauer gilt fiir eine diffe-
renzierbare Kurve ¢ :]a, b[— G

fockonstant <= <gradc(t) fs é(t)> = 0 fiir alle ¢. (41)

Das folgt aus der Kettenregel, weil <gradc(t) 7 c'(t)> = Dy f(&(t)) = %(f o).

(iii) Der Gradient ist ein linearer Differentialoperator:
Fir a,f € Rund f,g: G — R ist

grad(af + fg) = agrad f + Segradg.

(iv) Der Gradient gibt die Richtung und Gréfie des stérksten Wachstums der Funktion
f an:

Ist ||v|| = 1 und ¢ der Winkel zwischen dem Gradienten und der Richtung v, so
ist

9y f(p) = | grad,, f| cos ¢.
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e Fiir Fortgeschrittene. Ist [ : V x V — R eine (nicht notwendig symmetrische)
Bilinearform, so liefert

g1 V—=V*=LIV,R),v—I(v,.)

eine lineare Abbildung von V in V*. Ist diese Abbildung ein Isomorphismus, so heif3t
l nicht-degeneriert. Ist | nicht-degeneriert, so kann man den [-Gradienten eines diffe-
renzierbaren skalaren Feldes f : G — R definieren durch

grad,, f == ji ! (Dyf),
d.h. durch die Gleichung

I(grad), f,v) = Dpf(v) firalleve V.

Er ist ebenfalls ein linearer Differentialoperator und die obigen Eigenschaften (i), (ii)
gelten mit [ statt (.,.).

Beispiel 156 (Euklidischer Gradient). Seien V = R™ und l(z,y) = (z,y) = >_ a;y; das
iibliche Skalarprodukt. Das liefert den ,naiven“ Gradienten wie oben. Allgemeiner gibt es
in jedem Fuklidischen Vektorraum einen kanonischen Gradienten.

O
Beispiel 157 (Vierergradient). Sei V = R* und
L(z,y) = z1y1 + ®2y2 + 23Y3 — Tays

das sogenannte Lorentzprodukt. Der zugehorigen Gradient, der sogenannte Vierergradient ist
gegeben durch

grad” f = (D1 f,daf, D3 f, —0sf).

Er spielt — wie das Lorentzprodukt — eine grofle Rolle in der Relativitdtstheorie.

Beispiel 158 (Symplektischer Gradient). Sei V = R?" und

U(J}, y) =Tp41¥1 + -+ TopYn — T1Yn+1 — -+ — TnlY2n

das sogenannte symplektische Skalarprodukt. Der entsprechende symplektische Gradient ist
gegeben durch

grad” f = (78n+1f, ey 762"]07 alf, ey 87lf).

Er spielt eine wichtige Rolle in der Hamilton-Jacobi-Theorie der klassischen Mechanik, vgl.

Beispiel
O

2.7.2 Divergenz

e Naiv. Sei V =R" und X = (Xy,...,X,) : G — R" ein differenzierbares Vektorfeld.
Dann ist die Divergenz von X das folgende skalare Feld:

divX : G = R,pr> div, X := Y 9, Xi(p).

i=1

Beachte: div X ist gerade die Summe der Diagonalelemente der Jacobimatrix (9;X;)
von X.
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e Fir Fortgeschrittene. Ist V ein beliebiger endlich-dimensionaler Vektorraum und
X : G — V ein differenzierbares Vektorfeld, so ist fiir p in G das Differential D, X ein
Endomorphismus von V. Man definiert

’divX = Spur(D, X). \

Der Satz von Gauf} (Spezialfall des in der Analysis III zu beweisenden Stokesschen
Integralsatzes) gibt eine Interpretation des Divergenz als ”Quellstirke'“ des Feldes
X. Das hat damit zu tun, dass die Spur die Ableitung der Determinante ist und die
Determinante Volumina misst.

2.7.3 Rotation

e Naiv. Sei V =R3 und X : G — R? ein differenzierbares Vektorfeld. Die Rotation von
X ist das folgende Vektorfeld:
rot X : G — R3
mit
92 X5(p) — 03 X2(p)
rot, X := | 05 X1(p) — 01 X3(p)
A Xa(p) — 02X1(p)

e Fiir Fortgeschrittene. Fiir zwei Vektoren a,b € R? ist das Vektorprodukt a x b
charakterisiert durch die Bedingungen
(i) a x b =0, falls a,b linear abhiingig,
und andernfalls
(i) [la > bl = [lallllb]| sin £(a,b),
(iii) (a x b,a) = (a x b,b) = 0 und (a, b, a x b) ist eine positiv orientierte Basis des R3.

Durch diese Bedingungen lédsst sich ein Vektorprodukt in jedem orientierten 3-dimensionalen
Euklidischen Vektorraum definieren.

Wir erkldren nun zwei Methoden, um Achsrotatio- u
nen in einem orientierten 3-dimensionalen Euklidi-
sche Vektorraum V' zu beschreiben. Die Achse sei ge- < ouxx
geben durch einen Einheitsvektor u. Das Geschwin-

digkeitsfeld der Drehung in einem Punkt z € V' muss

dann senkrecht zu z und v stehen und mit dem Ab-
stand von der Achse linear anwachsen.

Das wird geleistet

1. durch ein Feld
T = wu X T,
wo w € R die sogenannte Winkelgeschwindigkeit bezeichnet, oder
2. durch ein Feld
T Az,

wobei A ein schiefadjungierter (=schiefsymmetrischer) Endomorphismus von V
mit Kern(A) = Ru ist. (Jeder schiefadjungierte Endomorphismus # 0 eines drei-
dimensionalen Raumes hat einen 1-dimensionalen Kern. Warum?)
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Der Zusammenhang zwischen diesen beiden Methoden ist einfach: Fiir a € V ist
A : x+— a X x schiefadjungiert, weil

<a><x,y>=—<x,a><y>,

und die Abbildung
ar—ax...

liefert eine Isomorphismus(!) von V auf den Vektorraum der schiefadjungierten Endo-
morphismen von V.

Das Differential D, X eines differenzierbaren Vektorfeldes an der Stelle p ist im allge-
meinen weder schiefsymmetrisch noch symmetrisch, aber man kann es in einen schief-
symmetrischen Anteil (= Rotationsanteil) und in einen symmetrischen Anteil zerlegen:

1 sy, L .
D,X = §(DPX - D, X")+ §(DPX + D, X").
(Der * bezeichnet die Adjungierte oder transponierte Matrix.) Dann gilt (Nachrech-
nen!)

[rot, X x ... = D,X — D,X".

In diesem Sinne ist die Rotation rot X der doppelte Rotationsanteil von DX.

Es gibt eine Verallgemeinerung der Rotation auf Vektorrdume beliebiger Dimension, aber nicht mehr
fiir Vektorfelder, sondern fiir kompliziertere Objekte, die sogenannten Differentialformen vgl. (Analysis
I11).

Satz 159. Fiir zweimal differenzierbare Felder gilt

rot grad f =0,
divrot X =0.

Das gibt also notwendige Bedingungen dafiir, dass sich ein differenzierbares Vektorfeld als
Gradient (eines Potentials) oder Rotation (eines Vektorpotentials) schreiben lifit: die Ro-
tation bzw. Divergenz mufl verschwinden. Lokal, nicht aber global, sind diese Bedingungen
auch hinreichend, vgl. Analysis I11.

Beweis. Stures Nachrechnen unter Benutzung des Satzes von Schwarz tiber die Vertausch-
barkeit der zweiten partiellen Ableitungen. O

2.7.4 Laplaceoperator

Fiir zweimal differenzierbare skalare Felder auf G C R™ (oder in einem Euklidischen Vek-
torraum) ist der Laplaceoperator definiert durch

’Af = divgradf.‘

In Koordinaten bedeutet das

Apf =Y 9 f(p).
=1

Funktionen mit Af = 0 heiflen harmonische Funktionen.
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Der Laplaceoperator spielt eine fundamentale Rolle fiir die Beschreibung sehr vieler physika-
lischer Phénomene (Wéirmeleitungsgleichung, Wellengleichung, Schrodingergleichung). Zum
Beispiel ist die Amplitude f einer Welle in einem homogenen 3-dimensionalen Medium eine
Funktion der Raumkoordinaten z; und der Zeit ¢t und geniigt der Gleichung

3
32f 1 62
Mof=3 52~ zap
=1 ?

Normiert man die Ausbreitungsgeschwindigkeit auf ¢ = 1 und verwendet im R* den Vierer-
gradienten, so schreibt man den entsprechenden Laplaceoperator auch als Of := div grad f,
und die Wellengleichung wird einfach

Of = 0.
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2.8 Ein Kapitel Newtonsche Mechanik

Die Differentialrechnung verdankt ihre Entstehung ganz wesentlich den Bemiihungen um das
Verstédndnis der Gesetze der Mechanik. Daher ist es (auch fiir angehende Finanzmathema-
tikerinnen) nicht unangemessen, ein wenig iiber die mathematischen Modelle der Mechanik
zu lernen.

e Wir lernen die Newtonschen Bewegungsgleichungen und zeigen die Erhaltungssétze
fiir Energie und Drehimpluls.
e Wir leiten die Keplerschen Planetengesetze aus Newtons Graviatitonsgesetz und Be-

wegungsgesetz her.

Die Bewegung eines Massenpunktes der Masse m im 3-dimensionalen Euklidischen Raum
wird beschrieben durch eine Kurve

z:RDJ =Rt a(t),

wobei wir die in der Physik iibliche Bezeichnungsweise verwenden. Die Geschwindigkeit der
Punktes ist

d
j:z(%zDac(l):J—)R3
und seine Beschleunigung gegeben durch
. d’z 3

Das Newtonsche Bewegungsgesetzt besagt nun, dass diese Bewegung bestimmt wird durch
die Kraft, die auf den Massenpunkt wirkt, und zwar durch die Formel “Kraft = Masse mal
Beschleunigung”:

mi = F(z).

Dabei ist die Kraft gegeben durch ein Vektorfeld F : R? — R3, wenn wir uns auf den Fall
beschrinken, dass die Kraft nur vom Ort und nicht auch von der Zeit abhéngt (auf autonome
Systeme wiirde der Physiker sagen). In der Physik ist es iiblich, den Impuls p := ma als
“dummy-Variable” einzufithren und die Bewegung des Massenpunktes als eine Kurve im
6-dimensionalen sogenannten Phasenraum zu verstehen. Ein Vorteil dieser Beschreibung ist,
dass bei bekannter Kraft F' die Bewegung des Punktes bekannt ist, wenn man weif}, wo im
Phasenraum er sich zu einem Zeitpunkt ty befindet. Die Newtonsche Bewegungsgleichung
im Phasenraum ist dann das folgende Differentialgleichungssystem:

T = m_lp7

p = F(z).

(42)

Losungen t — (x(t), p(t)) heiflen auch Phasenkurven. Thre ersten 3 Komponenten liefern also
die Bahn des Massenpunktes im Ortsraum, die zweiten 3 dagegen den Impuls.

Beispiel 160 (Energieerhaltungssatz). Wir nehmen an, dass die Kraft F' ein Potential
U : R? — R besitzt, d.h. dass
F(z) = —grad, U.

Wir definieren dann eine Funktion H : R3 x R3 — R auf dem Phasenraum durch

1

H(z,p) =U(z) + 5 (p,p) -
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H ist die Summe aus potentieller und kinetischer Energie und heifit auch die Hamiltonfunk-
tion. Die Bewegungsgleichungen lauten dann

_OH . OH

_6p17 pl__axl7

x;
oder, unter Verwendung des symplektischen Gradienten aus Beispiel
(z,p) = — grad‘(’m’p) H.
Weil fiir die symplektische Bilinearform aber o (v,v) = 0 fiir alle v € R?", folgt daraus

o(gradfy (o) p(ey H(£(t), 5(1))) = 0.

Nach ist also H auf den Phasenkurven (z(t), y(t)) konstant. Wir haben den Energieer-
haltungssatz bewiesen.

O

Beispiel 161 (Drehimpulserhaltung). Wir nehmen nun an, dass F' ein zentrales Feld ist,
d.h. dass fiir alle x # 0

Wir definieren eine Funktion
J:R¥x R 5 R3  z(z,p)— z X p,

die der Drehimpuls heifit. Fiir eine Phasenkurve ¢ — (x(t), p(t)) erhalten wir
d . . -1
aJ(m,p):xxp—i—xxp:—m pxp— f(z)rxax=0.

Also ist der Drehimpuls J auf jeder Phasenkurve konstant. Wegen J L z liegt die zugehorige
Ortskurve in einer Ebene senkrecht zum konstanten J.

O

Das letzte Beispiel dieses Abschnitts dokumentiert eine der ganz grofien Leistungen in der
Geschichte der Naturwissenschaften und einen phantastischen frithen Erfolg der neu ent-
deckten Differentiallrechnung.

Beispiel 162 (Keplersche Gesetze als Konsequenz der Newtonschen Bewegungsgleichung
und des Gravitationsgesetzes). Die Keplerschen Gesetze fiir die Bewegung der Planeten in
einem Zentralfeld besagen:

1. Die Planetenbahnen sind Ellipsen mit der Sonne im Brennpunkt.
2. Der Fahrstrahl tiberstreicht in gleichen Zeiten gleiche Flichen.

3. Die Quadrate der Umlaufzeiten verhalten sich wie die Kuben der groflen Halbachsen.

Kepler (1571-1630) hatte diese Gesetze aus umfassenden astronomischen Beobachtungen
(von Tycho Brahe und ihm selbst) errechnet. Das ist eine staunenswerte Leistung experi-
menteller Naturwissenschaft, vor allem, wenn man bedenkt, dass Kepler eines der ersten
Fernrohre konstruierte. Eine Generation spéter fithrten sie Newton zur Entdeckung seines
Gravitationsgesetzes

x
F(z) = —'ymMr—37 r= |z, (43)
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aus dem sich in Verbindung mit den Bewegungsgleichungen die Keplerschen Gesetze herlei-
ten, wie wir nun zeigen wollen.

Die Bewegungsgleichung sieht so aus:
t=mp (44)
) x
p=—ymM e (45)

Weil das Gravitationsfeld zentralsymmetrisch ist, ist der Drehimpuls J = x x p ldngs jeder
Losungskurve (x, p) konstant, und die Bewegung verlduft in einer Ebene senkrecht zu J.

Zwischenrechnung. Wir betrachten eine Losung t — (z(t), p(t)) der Bewegungsgleichungen
und erhalten

%(J xp)=Jxp=(zxp) xp=(,p)p— (p,p)x = —ym*M <f - <i7:3z>x> :

Wenn man Erfahrung im Differenzieren von Vektorfeldern hat, kommt einem der Klammer-
ausdruck bekannt vor, vgl. auch Beispiel Nach ist namlich

dz & 1dr & (x,z) dr

- == T = —.
dtr r 12 dt r r3 dt

Wir definieren deshalb
Jxp x
A(z,p) =

ym2M
Dann ist auch der sogenannte Lenzsche Vektor A eine Erhaltungsgrofe, d.h. ¢ — A(x(¢),p(t))
ist ldngs jeder Phasenkurve konstant.

Wir nehmen jetzt an, dass J in Richtung der z-Achse zeigt. Dann liegen J X p und z in der
zy-Ebene. Also liegt auch A in der zy-Ebene, und wir nehmen an, dass das konstante(!) A
in Richtung der positiven z-Achse zeigt. Wir schreiben = = r(cos ¢, sin ¢, 0) in Zylinderko-
ordinaten. Mit || A|| =: € ist dann

(A, z) = ercos¢.

Andrerseits ist

_Uxpo _ Gexp) )
() = ym2M = ym2M = 'ym2M+r

——

=:n

Aus den beiden Gleichungen folgt
r(l —ecosp) = . (46)

Das ist die Polarkoordinaten-Gleichung eines Kegelschnitts mit Brennpunkt im Ursprung
und fiir € < 1 eine Ellipse mit den Halbachsen

CL:L27 b=ay1-—¢€2. (47)
—€

1

Das findet man in jeder besseren Formeltafel. Wir geben eine kurze Herleitung:

Hier sollen z = r cos ¢ und y = rsin ¢ die kartesischen Koordinaten des Punktes z(t) bezeich-

nen. Aus folgt
r=exr+mn,
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und nach Quadrieren
z? + y2 =2z 4+ 2enx + 772

22(1 — ) — 2enz + y? = n?
2

n Y n
227261762934’1762 =172 =na=(1-¢€*)a?
N——
=:a
y2
(z —ea)? + T =(1—e)a? +%a? = a?
—¢

Nach Division mit a? folgt schlieBlich — falls ¢ < 1 — die Gleichung fiir eine in Richtung der
z-Achse verschobene Ellipse mit den Halbachsen a und b = av/1 — €2:

(z — ea)® y?

=1.
a? a?(1 — €2)

Damit ist das 1. Keplersche Gesetz bewiesen.

Der Flicheninhalt des Dreieck zwischen x(¢) und & (¢) o

[T
ist gegeben durch ’

1 1 1
- P = — =—|J]|.
Sllox il = sz x pll = 5|1

In einem kleinen Zeitintervall At iiberstreicht der Fahrstrahl in erster Naherung die Fliche
1|z x Ati||, zwischen to und ¢; also die Fliche

tq . t1 —tg
/ gl x dlldt = == J].
to m

Das ist das 2. Keplersche Gesetz.

Ist T' die Umlaufzeit, so ist die Fliche der Ellipse F =T % Andrerseits gilt fiir Ellipsen,
dass F' = mab. Daher erhalten wir

T2 112
W”JW =721 - €)= ra’n = 7r2a3'me”]W-
Also 2
2_ A 3
yM

Das ist das 3. Keplersche Gesetz.
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3 Mehrdimensionale Differentialrechnung: Die grofien
Satze

3.1 Der Umkehrsatz

e Weil die Ableitung einer differenzierbaren Abbildung diese lokal sehr gut approximiert,
gibt sie zum Beispiel Auskunft auf die Frage nach der lokalen Umkehrbarkeit der
Funktion.

Lemma 163. Fliir endlich-dimensionale Banachriume V, W gleicher Dimension sei

Iso(V,W):= {A € L(V,W) | A invertierbar} .
Dann gilt:

(i) Iso(V, W) ist offen in L(V,W).
(#i) Die Inversenabbildung
inv : Iso(V,W) — L(W,V),A— A~!

ist differenzierbar mit

Djinv(B) = —A"'BA™!
(i1i) Fir A € Iso(V,W) undv € V gilt

4@ = =yl (45)

wobei ||A™Y|| die Operatornorm bezeichnet.

Beweis. Die Behauptungen (i), (ii) folgen aus dem Beispiel [124] mit Hilfe eines Isomorphimus
eV W.

Zu (iii). Es ist
o]l = A7 (A@)] < AT - A@)]-
Daraus folgt . O

Satz 164 (Umkehrsatz). Seien G C V offen und f : V O G — W stetig differenzierbar,
d.h. Df ezistiert und ist stetig. Sei p € G und sei

Dyf: V=W invertierbar.

Dann ist f bei p lokal invertierbar mit stetig differenzierbarem Inversen.
Genauer: Es gibt eine offene Umgebung U von p in G, so dass gilt

(i) flu ist injektiv,
(i) f(U) ist offen in W,
(i) (flu)~t: f(U) =V ist stetig differenzierbar und fiir alle x € U gilt

Dy (flo) ™ = (Do f) ™"
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Bemerkung. Aus der letzten Formel folgt: Ist f sogar k-mal stetig differenzierbar, so ist
auch die lokale Umkehrung k-mal stetig differenzierbar.

Definition 165. Eine k-mal stetig differenzierbare Abbildung mit einem k-mal stetig dif-
ferenzierbaren Inversen heifit ein C*-Diffeomeorphismus.

Eine stetig differenzierbare Abbildung mit invertierbarem Differential ist also lokal ein C'!-
Diffeomorphismus.

Beweis des Umkehrsatzes. Zu (i). Lokale Injektivitdt von f bei p.

Wir setzen F':= D, f und 8 := ﬁ

Idee: Seien z,y nah bei p. Dann ist
1f () = f@) = I(f(y) = f(p)) = (f (=) = F(p)

~|Dpf(y —p) = Dpf(z —p)ll = [Fly =)l = Blly — ]|

(49)

Aus y # x ,folgt“ dann also f(y) # f(x).

Um das zu prézisieren, miissen wir das ~-Zeichen quantitativ kontrollieren. Der Approxi-
mationsfehler ist

1f(y) = f(z) = Fly —2)ll = [|[(f(y) = F(y)) = (f(z) = F(2))]| = llo(y) — o(2)]l
mit
¢(z) == f(z) — F(z).
Offenbar ist ¢ stetig differenzierbar und D,¢ = D, f — F = 0. Also gibt es ein § > 0, so dass

U=Us(p) CcqG

und
| Deoll < g fiir alle £ € U.

(Hier geniigte im Augenblick auch || D¢o|| < S, aber im Hinblick auf den Beweis von (ii)
fordern wir die schirfere Abschiitzung.) Dann ist nach dem Schrankensatz

B
I¢(y) = ¢(@)]| < sup [|Def — Fll ly — 2]l < Slly — =l
geu
Der Approximationsfehler in (49)) ist also maximal % der rechten Seite. Also ist

2
1£ () = f@)ll = 5 Blly — =l (50)
und f|y injektiv. Nach dem Lemma ist weiter

D, f invertierbar fiir x € U. (51)

Zu (ii). Offenheit von f(U).

Seien U wie oben und x € U. Wir miissen zeigen, dass es ein € > 0 gibt, so dass

Ue(f(z)) C f(U).
Wihle zunéchst » > 0 mit

K={yeV]||ly—z| <r}cU.
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Nach gilt
2
ly =zl =r = |f(y) = fl@)ll = 3567, (52)

d.h. die Randpunkte von K werden durch f auf Punkte abgebildet, die mindestens den
Abstand % Br von f(x) haben. Wir wollen zeigen, dass

U, (f(2)) C f(K) C f(U). (53)

Sei also z € Uém(f(x)). Sei y* € K ein Punkt, in dem die stetige Funktion || f(y) — z|| auf
dem kompakten K ihr Minimum annimmt. Wir wollen zeigen, dass f(y*) = z; dann ist
bewiesen.

Zunéchst ist
ly* =z <. (54)

Sonst wire nach Definition von K némlich |ly* — z|| = r, und nach folgte mit der
Dreiecksungleichung

1767 =21 > 36n

Aber das steht wegen ||z — f(z)|| < §8r im Widerspruch zur Wahl von y*.

Wir nehmen nun an, dass

fy*) # 2. (55)

Wegen der Invertierbarkeit von Dy« f gibt es dann
ein v # 0 mit

Dy f(v) =z f(y") #0.

Geht man von y* in Richtung v, so bleibt man fiir
eine Weile in K, und das f-Bild bewegt sich in Rich-
tung z— f(y*), also in Richtung auf z zu. Daher liegt
fiir kleine positive ¢ der Punkt f(y* + tv) niher an
z als f(y*), und wir erhalten einen Widerspruch zur
Wahl von y*.

Wir prézisieren das:
Wihle 07 > 0 so klein, dass y* + tv € K fiir alle ¢ € [0,61]. Dann ist
fy"+tv) —z2= f(y") — 2+ 1Dy f(v) + R(y" + tv)
= (f(y") = 2)(1 — 1) + R(y" + tv).
Es gibt ein ¢ €]0, 61[, so dass

Iz = F&l

I t
< [tvll = 5 Iz = fOIl,
2|l 2

[R(y™ + to)]| <

also

1f(y" +tv) =zl < (1L =B)[[f(y") — =] + % Iz = FI)I < I1f(y") = 2|
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im Widerspruch zur Wahl von y*. Damit war die Annahme falsch, und es gilt f(y*) = z,
also Ui, (f(2)) CU.

Zu (#i). Stetige Differenzierbarkeit der lokalen Umkehrabbildung.

Sei g == (fly)~': f(U) = V. Seien z,w € f(U) und x := g(z). Dann haben wir

flg(w)) = F(9(2)) +Dx f(g(w) = g(2)) + R(g(w))
——— N——

=w =z

oder
D f(g(w) = 9(2)) = (w = 2) = —=R(g(w)).
mit lim,_,, ”yR(_iym)H = 0. Wegen ist D, f invertierbar. Es folgt

g(w) = g(2) + (Do /)~ (w = 2) =(Da f) "' (R(g(w))).

=:R(w)

Wir wollen zeigen, dass

Insbesondere ist g stetig, und aus

Rw) | R | e - g2
fwo—21 = PN | gtw) —9@N |~ w2l
—0 fiir w—z Si

folgt die Behauptung . Also ist g differenzierbar und

Df(z)g =D.g= (D:vf)_l'

SchlieBlich ist z — g(z) = Dy f — (Dg)f)~" als Komposition stetiger Abbildungen
wieder stetig. Damit haben wir die stetige Differenzierbarkeit der Umkehrabbildung gezeigt.
O

Bemerkung. Die Formel fiir die Ableitung folgt auch aus
(flo) ™o flv =id

mit der Kettenregel:
Dy@y(flv) ™" o Do(flv) = Dyid = id.

Beispiel 166. Die Abbildung f : R?\ {0} — R? mit f(x,y) = (2% — y?, 22y) hat die
Funktionalmatrix
/ 2z -2y
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Sie ist deshalb stetig differenzierbar und Dy, f ist fiir alle (z,y) € R?\ {0} invertierbar.
Also besitzt f um jeden Punkt lokal ein stetig differenzierbares Inverses. Aber f ist nicht
global invertierbar, weil z.B. f(1,1) = f(—1,—1). Es ist

f{(z,y) |z >0und y > 0}) = {(z,y) |y > 0}

und

g(u,v)—\%(\/ u2+v2+u,\/\/u2+v2—u>, v>0

ist das Inverse von f|{(zy)|2>0 und y>0}- Die Formel fiir die Ableitung der Inversen liefert

/ _ / - _¥ z Yy
g (f(z,9) = (f'(z,y) " = 2(2% + 42 < -y T >

Zum Beispiel ergibt sich fiir = y = 1, also (u,v) = (0,2),

g/(O’Q):i( o 1)

O

Beispiel 167 (Stetige Polarkoordinaten). Die Polarkoordinaten in der Ebene sind nicht
eindeutig, die Winkelkoordinate ist nur bis auf ein ganzzahliges Vielfaches von 27 bestimmt.
Und wenn man die Eindeutigkeit mit “Gewalt” erzwingt, indem man zum Beispielverlangt,
dass ¢ € [—m, 7|, so wird die Winkelkoordinate auf der negativen z-Achse unstetig,.

Wir wollen aber iiberlegen: Eine stetige Kurve ¢ : [a,b] — R?*\ {0} kann man auch in
Polarkoordinaten mit stetiger Winkelfunktion beschreiben: Ist c¢(a) = ||c(a)]|(cos ¢o, sin ¢g),
so gibt es genau eine stetige Funktion ® : [a,b] — R mit ®(a) = ¢¢ und

c(t) = ||e(t)]| (cos @(t), sin ®(t)) (57)

= |le(t)]|e'*® in komplexer Notation.

Wir betrachten die Abbildung

[R*DG:={(r,¢)|r>0} =R\ {0}
(r, @) — (rcos ¢, rsin @)

Dann ist
, __[cos¢ —rsing
Firé) = (simb T COS @ ) ’

Rechnen Sie nach, dass das fiir alle (r, ¢) € G invertierbar ist. Also ist f nach dem Umkehr-
satz lokal invertierbar. Wir wissen natiirlich mehr: Die Abbildung f ist surjektiv auf R? \ {0},
und mittels Arcus-Funktionen lassen sich lokale Umkehrabbildungen explizit hinschreiben. Weil
das wegen der erforderlichen Fallunterscheidungen miithsam ist, wédhlen wir nun zu jedem
p = (r,¢) € G eine offene Umgebung U, die von f diffeomorph auf eine offene Menge
V,, := f(Up) C R*\ {0} abgebildet wird. Dann ist (V}),ec eine offene Ubderdeckung von
R?\ {0}, und wegen der Stetigkeit von cist (¢7!(V},)) eine offene Uberdeckung von [a, b].

Nach dem Lebesgue-Lemma gibt es eine Zerlegung

peEG

a=ty<t1 <...<t,=0b,

so dass jedes [t;_1,t;] in einem der ¢! (V})) enthalten ist. Wir wihlen zu jedem j ein solches
p, und schreiben f; := f|y, .
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Wir definieren nun rekursiv

®(a) := do
O(t) := (f;H(e(1))), = (f5 H(eltj=1))), + ®(tj—1) fiir ¢ €)t;1,t].

Dabei bedeutet der untere Index (.)2 die 2. Komponente (eben die ¢-Komponente). Offenbar
ist dann @[, ;1 stetig, und weil auBerdem

(i ®(t) = ®(tj-1),

ist ® : [a,b] — R stetig. Wir zeigen, dass gilt. Nehmen wir an, dass das bereits fiir
t <tj_; erfullt ist. Dann folgt fiir t;_; <t <t;:

e = Jlete)lfexp (i (7 (e(6)), = (7 Helt1), + @(t51) ) )

_ (1 le(tj—1) ] exp (i@ (t;-1))
- el (Z U (C(t))Z) lle(tj—1)ll exp (Z (f7 (e(tj—1)) )

c(tj—1)
c(tj-1)

Zur Eindeutigkeit von ®. Wir nehmen an, dass

=c(t) = ¢(t).

le@®))|e*® = e(t) = |je(t) ]| fiir alle ¢ € [a, b].

Dann folgt i
e ®O=2M) — 1 fiir alle ¢ € [a, D],

also
O(t) — O(t) € {2kn |k € Z} fiir alle t € [a,b].

Wenn ® und & stetig sind mit ®(a) = ¢o = ®(a), so folgt daraus & = ®.
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3.2 Implizite Funktionen

e Ist F linear, so ist F'(x,y) = F((x,0)+(0,y)) = F(z,0)+ F(0,y) und die Frage, ob sich
die Gleichung F(z,y) = 0 nach y = y(z) auflésen ldsst, ist einfach die Frage nach der
Umkehbarkeit von F(0,.). Wir lernen im Satz iiber implizite Funktionen die Antwort
auf die entsprechende Frage fiir differenzierbares F'.

Problem: Seien Vy, V1, W endlich-dimensionale Banachrdume und f: Vy x V3 — W. Unter
welchen Voraussetzungen hat die Gleichung

fla,y) =0 (58)
fiir jedes x € Vi genau eine Lésungy € V1 ¢

Unter diesen Umsténden gibt es dann eine eindeutig bestimmte Funktion g : Vo — Vi, fiir
die fiir alle x € V; gilt

f(z,9(z)) =0. (59)

Man sagt dann auch, dass sich nach einer Funktion y = g(x) eindeutig auflosen 148t
oder dass g durch implizit definiert wird.

Geometrisch bedeutet das, dass man das Niveau Vo x Y
f =0 als Graphen {(z,g(z)) |z € V; } einer Funkti- v
on g : Vo — Vi beschreibt, also durch Vy parametri-

siert: Jeder Punkt auf dem 0-Niveau liegt {iber genau

einem Punkt von V.

{1=0 } = Graph

@ %> V)

Im Fall W = R™ hat f die Komponentenfunktionen f1, ..., f,,. Man hat also m Gleichungen,
die Dimension von W ist die Anzahl der gegebenen Gleichungen. Ebenso kann man die
Dimension von V; als die Anzahl der gesuchten Unbekannten y; ansehen. Es ist also wohl
verniinftig, dim V3 = dim W zu wéhlen.

Beispiel 168. Sei f = F : V) x V; = W linear und sei dim V; = dim W. Dann hat man
F(z,y) = F((2,0) + (0,y)) = F(z,0) + F(0,y),
d.h. F liefert zwei lineare Abbildungen

F(,0): Vo — W,
F(0,): Vi - W.

Dann ist genau dann fiir jedes x € V{ eindeutig l6sbar, wenn die lineare Abbildung
F(0,.) : Vi — W invertierbar ist. Die Gleichung

0= F(z,y) = F(z,0) + F(0,y)

ist ndmlich dquivalent zu
F(an) = 7F(:L',O)

Das ist hochstens dann eindeutig 16sbar, wenn F(0,.) injektiv ist. Nach der Dimensionsvor-
aussetzung ist in diesem Fall aber F'(0,.) bijektiv und die Gleichung tatséichlich fiir jedes x
eindeutig losbar. Man findet

g9(x) = —F(0,.)"(F(,0)).
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Im Fall Vo = R” und V; = W = R™ ist F' gegeben durch eine m x (n 4+ m)—Matrix der
Form

( U | F(2))
~ =~
und F(0,.) wird repriisentiert durch die quadratische m x m—Matrix F®) die also inver-

tierbar sein muf.

O

Wenn wir dieses Ergebnis von linearen Abbildungen auf differenzierbare Abbildungen ver-
allgemeinern wollen, ist es plausibel, dass wir nur ein lokales Ergebnis erhalten. Experimen-
tieren Sie ein bifichen mit dem Fall V5 = V; = W = R und

flay) =z -y

Satz 169 (iiber implizite Funktionen). Seien Vi, Vi, W endlich-dimensionale Banachriume,
G C Vo x V1 offen und f: Vo x Vi D G — W stetig differenzierbar.
Sei (p,q) € G mit

f(p,q) =0, (60)
Doy f(0,.) : Vi = W invertierbar. (61)
Beachte, dass damit dimV; = dim W.
Dann laft sich
flz,y) =0 (62)

in einer Umgebung von (p, q) eindeutig nach einer stetig differenzierbaren Abbildungy = g(x)
auflésen.

Genauer:
Es gibt offene Umgebungen Uy von p in Vi und Uy von q in Vi mit folgenden Figenschaften:

(i) Uy x Uy C G, und zu jedem x € Uy gibt es genau ein y € Uy mit
fz,y) = 0.
(i) Die nach (i) eindeutig bestimmte Funktion g : Uy — Uy mit
[z, g(x)) =0
ist stetig differenzierbar.

(iii) Fir alle x € Uy ist Dz g(2))f(0,.) : Vi = W invertierbar und fiir v € Vy ist

Dmg(v) = - (D(m,g(m))f(07 )) ' © D(m,g(m))f(va O) (63)

Bemerkung. Im Fall 1 = R", V; = W = R™ werden die linearen Abbildungen
D(ac,y)f(ov ) R™ = R™ bzw D(%y)f(., O) (R* - R™

repréasentiert durch die Matrizen
ofi ofi
(, y)> bzw. < (2,y)
<ay.7 i,j=1,....m ax] i=1,...,m;j=1,....n
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Beweis zum Satz iiber implizite Funktionen.

Die Idee. Die Gleichung f(x,y) = 0 ist genau dann eindeutig nach y auflésbar, wenn dasselbe
fiir die Gleichung
h(z,y) := (z, f(z,y)) = (x,0)
gilt. h erweist sich nach dem Umkehrsatz als lokal invertierbar, und die gesuchte Losungsfunktion
g ist dann gegeben durch
(z,9(x)) = h

“H,0),
also durch die zweite Komponente von h~1(.,0).

A. Vorbemerkung. Da V) x V; endlich-dimensional
ist, sind alle Normen &dquivalent, und wir verwenden

der Einfachheit halber die Norm ug:;
[[(v, w)| = sup([|v[], [Jw]))- e
Das hat den Vorteil, dass
Ue((p,q)) = Ue(p)xUc(q) fiir (p,q) € Vo x V1 und € > 0. R

Analog verfahren wir gleich mit dem Raum Vg x W.

B. Reduktion auf den Umkehrsatz. Wir setzen die obige Beweisidee um und definieren die
Abbildung

h: VO X ‘/1 OG— VO X M/,(ﬂf,y) = ('r7f(m7y))

zwischen gleich-dimensionalen Vektorrdumen. Es gilt

Dz yyh(v,w) = (v, D(z ) f(v,w)), (64)
und deshalb ist mit f auch h stetig differenzierbar. Weiter ist

Dy gy h invertierbar, (65)
denn
0=Dpph <~ v=0und D =0
(p.y (v, w) v und Dy, q) f (v, w)
<= v=0und D, ,f(0,w) =0 <= v=0und w=0

nach Voraussetzung.

C. Anwendung des Umkehrsatzes. Nach dem Umkehrsatz gibt es € > 0, so dass

U:=Up) x Uc(q) C G,
h|U injektiv,
h(U) offen,
(h|U)™! stetig differenzierbar.

Da h(U) offen und

(.0) = (p, f(p, @) = h(p,q) € R(U) C Vo x W,
gibt es 6 > 0 mit § < € und

Us(p) x Us(0) = Us((p,0)) C h(U) C Vo x W.
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a<<

Wir setzen nun U,
q — w
Up = Us(p), Uy :="U.(q), e .
Uo .

und behaupten, dass diese das .y 0 ]
Gewtiinschte leisten. ’

Us

P v
Zu (i). Zunichst ist

Uy x Uy CUc(p) xUcq) =U CG. (66)

Ist € Up, so ist (z,0) € Us((p,0)) C h(U). Darum gibt es nach dem Umkehrsatz genau ein
(Z,y) € U mit h(Z,y) = (,0).

Offenbar ist

e I =u,
e y € Uy nach Definition von U und Uy, und

e f(x,y) = 0 nach Definition von h.

Also gibt es zu jedem x € Uy ein y € Uy mit f(z,y) = 0. Wir bezeichnen dieses y mit g(z).

Sind y1,y2 € Uy mit f(z,11) = 0 = f(x,y2), so folgt h(x,y1) = (2,0) = h(z,y2), also
Y1 = Y2.

Damit ist (i) bewiesen.
M Fiir z € Uy haben wir eben gezeigt, dass
B, g(@)) = (&, £z, 9(x))) = (,0).
Bezeichnen wir also mit 7 : Vo x Vi — Vi, (v, w) — w die Projektion, so ist
g(x) =mo (hU)"!(z,0).
Dabher ist g stetig differenzierbar.
Zu (#i). Nach ist Dy 4)h fiir (z,y) € U invertierbar. Nach haben wir dann
Dz h(0,w) = (0, D(g 4 f(0,w)) =0 <= w =0.

Daraus folgt, dass fiir (z,y) € U auch D, f(0,.) injektiv und damit invertierbar ist.
Insbesondere ist also fiir alle x € Uy

D (z,4(2))f(0,.) invertierbar. (67)

Nun differenzieren wir

¢:Uo 3z (2,9(x)) = f(z,g(x))
nach der Kettenregel. Wir erhalten

Dz(b(v) = D(m,g(a:))f(Daca(U))

= D(m,g(m))f(va ng(’l)»

= D(m,g(m))f(vv 0) =+ D(x,g(x))f(ov ng(’l))) (68)
Andererseit ist ¢ = 0, also D¢ = 0. Damit folgt aus (67) und die Formel in (iii). O
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Beispiel 170. Seien Vo =Vi =W =Rund f: Vo x Vi1 =G = R, (x,y) — = — 3% Dann
ist
Do) f(v,w) = v —2quw.

In (p,q) = (0,0) ist die Voraussetzung iiber die Inver- T e -y
tierbarkeit der Ableitung also nicht erfiillt, wohl aber [ ‘ ‘

in allen Punkten (¢2, ¢) mit ¢ # 0. In der Nihe dieser .
Punkte 148t sich f=*({0}) = {(z,y) |z —y?* = 0} also M‘LL
lokal als Graph schreiben. P
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3.3 Der Rangsatz

e Der Rangsatz beinhaltet in gewisser Weise die Quintessenz der linearen Approximation
differenzierbarer Abbildungen.

In der Linearen Algebra betrachtet man folgendes Problem: Eine lineare Abbildung
F:vV-W

zwischen zwei R-Vektorrdumen der Dimensionen n und m kann man durch eine (m x n)-
Matrix darstellen, nachdem man in V und W Basen gewdhlt hat. Die Darstellungsmatrix
héngt wesentlich von den gewéhlten Basen ab, und man kann fragen, ob man sie durch
geschickte Wahl der Basen besonders einfach gestalten kann. Tatséchlich kann man immer
die folgende Form erreichen

1 0 0 0
0 10 0
0 0 0 0
O ... 00 ... ...0

Die Zahl der Einsen ist dabei der Rang r der linearen Abbildung, d.h. die Dimension von
F (V). Dieses Resultat kann man auch so formulieren:

Ist F: V — W wie oben, so gibt es Isomorphismen ® : V' — R™ und ¥ : W — R™, so dass

VoFod :R* 5 R™

gegeben ist durch
VoFod Yxy,...,x,) = (1,...,2,,0...,0).

Die Isomorphismen ® und ¥ nennt man auch Koordinaten. In geeigneten Koordinaten sieht
also jede lineare Abbildung vom Rang r aus wie

(x1,...,xn) = (21,...,2,0...,0).

Wir iibertragen das nun lokal auf C*-Abbildungen, vgl. Definition An die Stelle der
linearen Koordinatenabbildung ® : V' — R™ tritt jetzt ein C*-Diffeomorphismus

®:VoOU—UCR"”

(also eine bijektive C*-Abbildung mit C*-Inversem) zwischen offenen Umgebungen und U
von p € G und U von ®(p) = 0 in R™ und analog fiir ¥. Diese Diffeomorphismen nennt man
ebenfalls (krummlinige) Koordinaten.
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Satz 171 (Rangsatz). Seien V,W Banachriume der Dimensionen n und m, G C 'V offen,
und
f:VDOG—>W  k-mal stetig differenzierbar, 1 < k < +o00.

f sei von konstantem Rang r, d.h. der Rang von D,f : V — W sei = r unabhingig von
x € G. Dann gilt: Zu jedem p € G gibt es C*-Diffeomorphismen

(I):V:)Ul—>U1CRn

und ~
v:W>o>U; — Uy CR™

offener Umgebungen von p bzw. f(p) auf offene Umgebungen von 0 = ®(p) in R™ bzw. von
U(f(p) =0€R™, so dass
f(Ul) C Uy

und R
Vofod Yxy,...,2,) = (21,...,2,,0,...,0) fir alle x € U;.

C*-Abbildungen von konstantem Rang r sind also in geeigneten C*-Koordinaten von der
Form

(1, zn) — (21,...,2-,0...,0).

]
. o i
\
f

W

n
<«
T
3

Y

o ¢

q g
Konvention. Um die Notation iibersichtlich zu halten, schreiben wir zum Beispiel:

Sei g: V. — W ein lokaler Diffeomorphismus bei p,

wenn g auf einer offenen Umgebung von p € V' (nicht notwendig aber auf ganz V') definiert
und C*-differenzierbar ist, und eine (eventuell kleinere) offene Umgebung von p diffeomorph
auf eine offene Umgebung von ¢(p) in W abbildet.

Wegen des zu Beginn dieses Abschnittes angefiihrten Satzes aus der linearen Algebra geniigt
es, folgende Version des Rangsatzes zu beweisen:
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Satz 172 (Rangsatz, 2. Version). Seien V, W endlich-dimensionale Banachriume, sei G C
V offen, p € G und sei

f:VOG—=WeC* wundwvon konstantem Rang r.
Dann gibt es lokale C*-Diffeomorphismen

¢V =V bei p mit ¢(p) = p,
W — W bei f(p) mit (f(p)) = f(p),

fir die auf einer offenen Umgebung von 0 € V
pofopt=Dyf

gilt. In geeigneten lokalen Koordinaten um p und f(p) sieht f also aus wie seine Ableitung,
d.h. wie eine lineare Abbildung vom Rang r.

Beweis. Vorbereitung. Durch Translationen (also C'*°-Diffeomorphismen) in V' und W
kénnen wir erreichen, dass p = 0 und f(p)=0. Das setzen wir im folgenden voraus. Um
den Beweis iibersichtlich zu halten, benutzen wir die obige Konvention und verzichten auf
die explizite Kontrolle der Definitionsbereiche.

Wir definieren
‘/2 := Kern Dof, W1 := Bild Dof = Dof(V),

und wahlen zu Vo und W; komplementire Unterrdume, so dass also
V=VieoV, W=W, oW,

Das Differential Dy f bildet dann also den r-dimensionalen Raum V; isomorph auf Wi ab.
Entsprechend der Zerlegung bezeichnen wir fiir x € V' die Komponenten in Vi bzw. V5 mit
1 bzw. x9 und entsprechend fiir y € W. Insbesondere ist f = f1 + fo mit f; : G — W;.

1. Schritt: Konstruktion von ¢. Die Komponentenabbildungen sind linear, und deshalb ist

F = Do(filv,) = (Doflvi)r: Vi = W,
ein Isomorphismus. Daher ist nach dem Umkehrsatz
f1|\/1 V=W,

ein lokaler Diffeomorphismusﬂ Dann ist auch F~'o f; : Vi = V; ein lokaler Diffeomorphis-
mus. Wir definieren ¢ : V' — V durch

é(x) := F7H(f1(x)) + 2o fiir 2 = 21 + 2.

Dann ist
Do (v + ) = F~H (Do f1(v1 + v2)) + vg = v1 + v2,

also
Do = idy, (69)

und deshalb ist ¢ ein lokaler Diffeomorphismus.

5 Genauer: “.. ein lokaler C*-Diffeomorphismus bei 0.”, aber das unterdriicken wir in Zukunft: Alle
unsere lokalen Diffeomorphismen und Abbildungen sind “bei 0” und k-mal stetig differenzierbar.
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Aus der Definition folgt fiir die V;3-Komponente ¢1(x) = F~!o fi(z), also ¢1(¢p~1(z)) =
F~1lo fi(¢~(x)) und
A6 (@) = Flaw). (70)

2. Schritt: Konstruktion von . Nun definieren wir ¢ : W — W durch

Vi +y2) =y1+y2— faod o F (y1).

Dafiir gilt
Dol/)(u)l + U)Q) = w1 + wo — Do(fg o ¢_1 o F_l)(wl) =0 <~ wy; =0 und wy = 0.

EWs
Also Dyt injektiv und damit bijektiv, und ) ist ein lokaler Diffeomorphismus. Wir erhalten
Yo fog Ha)=v(foo T (2))
Y(F (1) + fao ¢~ (2))

=F(z1)+ f200 ' (z) = fao ¢ o F71(F(21))
= F(z1)+ fao g ' (x) = fao ¢~ (z1)

Wir sind also fertig, wenn wir zeigen kénnen, dass fiir x € V' nah bei 0

faod ™ Na) = fao ™ (an). (71)

Bl

3. Schritt: Nachweis von . Das ist das eigentliche Herzstiick des Beweises. Aus folgt

Dy f (Dya)d ™" (01 +v2)) = Dy(ay(f 0 ¢~ 1) (v1 +v2)
=Dy (frod™ + fa007 ) (v1 +v2)
= F(v1) 4+ Dg(a) f2(v1 + v2). (72)

Wir betrachten nun die Projektion m : W — Wi,y — y1. Aus der letzten Gleichung folgt
m1 (Do f(V)) D w1 (Do f(Dgyd™ (V1)) = F(V1) = Wy,
Damit ist Rang(D, f) > dim W; = r fiir alle Punkte 2 nah bei p = 0.

Gibe es vo € Vo mit D) (f2 0 ¢ ) (vg) = wa # 0, s0 wiire

Y2 & Dy f(Dy(y¢~ ' (v2)) € Do f (V) und  mi(wz) = Dy(ay(m1 0 fao ¢7)(v2) = 0.

Also wiire wo € Kernmy|p, s(v) und nach Linearer Algebra
dim D, f(V) = dimKern(m ) + dimBild(7y) > r + 1

im Widerspruch zur Rangvoraussetzung iiber f, die wir hier zu ersten Mal benutzen. Es
folgt
Da(f20¢™ v, =0,
d.h. fo 0 ¢~ ist nach Korollar lokal unabhéngig von der Vo-Komponenten und
fao ™ (@) = fa0 ¢ ! (a).
O

Wir halten noch ein Ergebnis aus diesem Beweis fest: Im letzten Schritt haben wir — ohne
Benutzung der Konstanz des Ranges — gezeigt, dass fiir alle Punkte x nah bei p

D,f(V) =W Cm(D.f(V)),

Also ist der Rang von D f in Nachbarpunkten von p mindestens so grofl wie in p. Man sagt,
er ist unterhalb-stetig. Damit erhalten wir:
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Lemma 173. Fir jede stetig differenzierbare Funktion ist der Rang unterhalb-stetig.

Beispiel 174. Auf der Menge der reellen invertierbaren n x n Matrizen betrachten wir die
Abbildung
f:M(nxn,R) D GL(n,R) - M(n x n,R)

mit f(A) = AAT, wobei AT die transponierte Matrix bezeichnet. Dafiir gilt
Daf(B) = BAT + AB”,

und diese Matrix ist symmetrisch(=selbstadjungiert)! Ist andererseits C' € M(n x n,R)
symmetrisch, so folgt

Daf (;C(AI)T) = JC(A)TAT £ AT =

Also ist fiir alle A € GL(n,R) das Bild von D4 f der @—dimensionale Raum aller

symmetrischen Matrizen und f ist von konstantem Rang %

O

Korollar 175. Sei f : V C G — W stetig differenzierbar.

(1) Ist f eine Immersion, d.h. D, f fiir alle p injektiv, so ist f lokal injektiv.

(i1) Ist f eine Submersion, d.h. D,f fir alle p surjektiv, so ist f eine offene Abbildung,
d.h. f bildet offene Mengen in offene Mengen ab.

Beweis. Selbst. O
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4 Mannigfaltigkeiten

e Wir lernen mit den Mannigfaltigkeiten eine Verallgemeinerung des Flichenbegriffs auf
beliebige Dimension (und Kodimension) kennen.

e Beispiele sind vor allem die “Niveaus” von Abbildungen, wie die hoherdimensionalen
Sphéren, aber auch viel abstraktere Rdume, wie etwa die orthogonalen Matrizen.

e Der Tangentialraum ist eine lineare Approximation der Mannigfaltigkeit und ermoglicht,
auch fiir Funktionen auf Mannigfaltigkeiten die Ableitung als lineare Abbildung zu de-
finieren.

e Als Anwendung behandeln wir Extrema unter Nebenbedingungen.

Eine m-dimensionale Mannigfaltigkeit im Banachraums V ist eine Teilmenge M C V, die
in geeigneten krummlinigen Koordinaten (fiir V'!) lokal so aussieht wie ein m-dimensionaler
Untervektorraum:

Definition 176. Seien m,k € N, k > 0. Eine Teilmenge M C V eines n-dimensionalen Ba-
nachraums heifit eine m-dimensionale C*-(Unter)mannigfaltigkeit, wenn es zu jedem Punkt
p € M eine offene Umgebung U von p in V und einen C*-Diffeomorphismus ¢ : U — ¢(U)
auf eine offene Teilmenge ¢(U) C R™ gibt, so dass gilt:

MU =¢  R™N(U)),

d.h.
MNU={z€U |pmt1(z) =...=¢n(x)=0}. (73)

Dabei betrachten wir also R™ C R™ als den Unterraum aller Punkte, deren letzte n — m
Koordinaten verschwinden.

Eine grofle Klasse von Beispielen liefert der folgende

Satz 177 (Gleichungsdefinierte Untermannigfaltigkeiten). Seien V und W Banachriume
endlicher Dimension. Seien G C V offen und g : G — W € C*, k > 0, vom konstanten
Rangr, 0 <r <n:=dimV und q € g(G). Dann ist

M =g '({q})

eine n — r-dimensionale C*-Mannigfaltigkeit.
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Im Fall g : R? — R bzw. g : R® — R ist M also eine Niveaukurve bzw. -fliiche. Glei-
chungsdefinierte Untermannigfaltigkeiten kann man also auch als Niveaumannigfaltigkeiten
bezeichnen.

Beweis. Sei p € M. Nach dem Rangsatz gibt es C*-Diffeomorphismen
®:VoU — U cR"
und R
UV:W>oU; - Uy CR™ (m=dimW)

offener Umgebungen von p bzw. ¢ = g(p) auf offene Umgebungen von ®(p) = 0 in R™ bzw.
von ¥(g) =0 in R™, so dass
g(Ul) c Uy

und
Vogod Yay,...,z,) = (x1,...,2,,0,...,0) fiir allex € U;. (74)

Dann gilt fiir p’ €e U := U3

peM = g(p)=q
= Y(g(p) =0
<= \I/ogo(b_lofl)(p/):()

Di(p)=...=d.(p)

0.
Bis auf die Nummerierung der Koordinatenfunktionen ist das die Definitionsgleichung ([73]).
O
Beispiel 178. Die Abbildung
n+1

g:Rn+l_>Rv (wl,"'axnle)'_)(Zx?)_l
i=1

hat die Funktionalmatrix

g (@1, 1) = 2(21, .., Tng),

und weil R eindimensional ist, ist D, g surjektiv fiir alle  # 0. Daher ist die Einheitssphére

S"={x|gz)=0} = {($17...7xn+1) ‘ Zx?:l}

eine n-dimensionale C°°-Untermannigfaltigkeit des R™*1.

O

Beispiel 179. Wir betrachten im n?-dimensionalen Vektorraum der quadratischen n-reihigen
Matrizen die Menge
O(n)={A € M(nxn)|AA' = E}

der orthogonalen Matrizen. Nach Beispiel [[74] ist das eine C'°°-Untermannigfaltigkeit der
Dimension n? — w = @ Die orthogonalen Matrizen bilden auflerdem beziiglich der
Matrixmultiplikation eine Gruppe. Die Gruppenoperationen sind offenbar differenzierbar
und O(n) ist eine sogenannte Liegruppe.

O

109



Definition 180 (Tangentialraum). Sei M eine m-dimensionale Mannigfaltigkeit im n-
dimensionalen Banachraum V', sei p € M und ¢ : U — R” ein Koordinatensystem dazu
wie in der Definition 76l Dann ist also

MU = ¢ R™N(U)),

und wir definieren den Tangentialraum 7, M an M in p durch

T,M = Dy,¢~ " (R™).

Das ist also ein m-dimensionaler Vektorraum und eine lineare Approximation fiir M in der
Nahe von p.

Auf dem nebenstehenden Bild ist ei-
gentlich nicht T,M dargestellt, son-
dern der nach p verschobene Tangenti-
alraum, weil das unserer anschaulichen
Vorstellung eher entspricht. Zum Rech-
nen ist natiirlich der Vektorunterraum o R"
T,M angenehmer als der parallele affi-

ne Unterrraum. \

Damit der Tangentialraum wohldefiniert ist, miissen wir zeigen, dass er nicht vom gewéhlten
Koordinatensystem abhéngt. Sei also ¢ : U — R™ ein weiteres Koordinatensystem um p
wie in der Definition Wir kénnen o.E. annehmen, dass U = U. Weil ¢ und ¢ lokale
Diffeomorphismen sind, folgt aus ¢~ *(R™ N@(U)) = M NU = ¢~ L (R™ N ¢(U)), dass

G0 ¢~ (R™ N 9(U)) C R™
und deshalb ~

Dy o Dypyd™ (R™) C R™,
also

D¢~ (R™) C (ng?s) TR = D (@ HR™).

Durch Vertauschen von ¢ und q~5 ergibt sich die umgekehrte Inklusion, also Gleichheit der
Réume.

Beispiel 181. Ist M = g~ !({g}) C V eine gleichungsdefinierte Untermannnigfaltigkeit
wie im Satz [I77] so gilt fiir p € M und ein Koordinatensystem ¢ : U — R™ um p, dass
MNU=¢ " R™N¢(U)), also go ¢ H(R™ N¢(U)) = {q} und daher

ng(T:DM) = ng(qu(p)(bil(Rm)) =0.

Weil der Rang von g aber gerade dim V' — dim M ist, folgt

T,M = Kern D,g = (D,g)"*({0}).

Das ist die linearisierte Version von

M =g"'({q}).
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Auf Mannigfaltigkeiten kann man “Analysis treiben”, insbesondere die Differenzierbarkeit-
von Funktionen erkliren. Das Differential an einer Stelle p € M ist dann eine lineare Abbil-
dung auf dem Tangentialraum T, M.

Wir betrachten dazu nur ein

Beispiel 182 (Extrema auf Mannigfaltigkeiten). Seien G C V offen und M C G ein
Mannigfaltigkeit. Sei f : G — R eine differenzierbare Funktion. Wir suchen lokale Extrema
der Funktion f|a; : M — R. Sei p € M und ¢ : U — R" ein Koordinatensystem um p wie
in der Mannigfaltigkeitsdefinition, ¢(p) = 0. Dann ist M NU = ¢~ (R™). Hat also f|ys in
p ein lokales Extremum, so hat fo ¢! rmnew) i 0 ein lokales Extremum. Deshalb ist

Do(f 0 ¢~ ")(R™) = D, f(T,M) = 0. (75)

Notwendig fiir lokale Extrema der Einschrinkung f|p von f ist also das Verschwinden der
Einschrinkung der Ableitung auf den Tangentialraum an M.

Ist M = g~ 1({q}) gleichungsdefiniert, so bedeutet , dass
Kern D,g C Kern D, f. (76)

O

Die im Beispiel zuletzt betrachtete Situation ist unter dem Namen FExtremwerte unter Ne-
benbedingungen berithmt. Sei g : V' O G — W stetig differenzierbar und sei ¢ € g(G). Sei
weiter f : G — R differenzierbar. Wir suchen lokale Extrema der Funktion f unter der
Nebenbedingung g = ¢, d.h. lokale Extrema von f|;-1({4}). Die Menge

G:= {p ed ‘ng ist surjektiv}

ist nach Lemma eine offene Teilmenge und ¢~ ({¢}) N G eine Mannigfaltigkeit M der
Dimension dim V' — dim W. Hat f|,-1(4}) ein lokales Extremum in p € M, so gilt dort
also die notwendige Bedingung . Typischerweise ist in den Anwendungen die Menge
9 '({q}) \ M der sogenannten singuliiren Punkte eine endliche Punktmenge, die man dann
noch gesondert untersuchen muss.

Wir geben noch eine Variante von (76)), die fiir die explizite Berechnung lokaler Extrema
unter Nebenbedingungen hilfreich ist:

Es ist ein Standardproblem der lineare Algebra, den Kern einer linearen Abbildung zu be-
stimmen, also zu priifen, ob gilt. Aber meistens kennt man p gar nicht, sondern will
die Extremalstellen erst finden. Das fithrt in der Regel auf nicht-lineare Gleichungssysteme,
die schwer zu 16sen sind. Bei der Bestimmung der Punkte vom zweiten Typ ist aber das
folgende Lemma hilfreich:

Lemma 183 (Lagrange-Multiplikatoren). Sei G offen in V- =R"™ und seien f: G — R und
g=1(91,--.,9m) : G = R™ differenzierbar bzw. stetig differenzierbar.

Dann ist dquivalent dazu, dass es reelle Zahlen A1,..., Ay € R gibt (sog. Lagrange-
Multiplikatoren), so dass fir alle j € {1,...,n}

9;f(p) = Z Ai0;gi(p)- (77)

Beweis. Bezeichnen wir die Funktionalmatrizen mit f/(p) bzw. ¢'(p), die Transposition mit
(..)T und setzen wir A := (Ay,...,\,), so ist (77) dquivalent zu

F'(p)=Ad(p) oder f(p)" =g'(p)"A".
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Dieses lineare Gleichungssystem ist genau dann l6sbar, wenn die erweiterte Matrix (¢'(p)T, f/(p)T)

!/
denselben Rang wie ¢/(p)” hat, wenn also die Matrix (ch,((g %) denselben Rang wie die Ma-
trix ¢’(p) hat. Weil beide dieselbe Anzahl von Spalten haben, ist das genau dann der Fall,
wenn die Kerne dieser beiden Matrizen gleiche Dimension haben. Weil aber

Kerng'(p) > Kern (?%) = Kerng'(p) N Kern f'(p),

ist das genau dann der Fall, wenn Kern D, g C Kern D, f. O

Rezept. Zur Bestimmung der Kandidaten p fiir Stellen lokaler Extrema von
fR"DG—R
unter der Nebenbedingungen g = 0 mit g : G — R™ sucht man
1. alle Punkte p mit g(p) = 0, in denen D,g(R™) # R™ (singuldre Punkte),
2. alle Losungen p, A von
91(p) = 0,...,9m(p) =0,
m
0;f(p) = Z Xidigi(p), j=1,...,m.
i=1

Das sind m + n Gleichungen fiir die n + m Variablen p1,...,pn, A1, .., Am.

Die XN’s kann man wieder vergessen.

In typischen Problemen ist m < n, und die so gefundene Kandidatenmenge diskret oder
sogar endlich.

Beispiel 184. Wir betrachten das Problem,

f(x,y,2) = zyz

unter der Nebenbedingung

2y 422 <1
zu maximieren, also das grofite achsenparallele Quader in der Einheitskugel B zu finden.
(Dessen Volumen ist dann 8|zyz|, vgl. Abbildung.)

Beachten Sie, dass hier die Nebenbedingung durch
eine Ungleichung gegeben ist. Die Kugel B ist kom-
pakt, und weil f stetig ist, nimmt es auf B sein Ma-
ximum an. Das kann nicht in einem inneren Punkt
geschehen, weil wir sonst alle Seiten des Quaders ein
wenig vergroflern konnen und immer noch in der Ku-
gel B bleiben:

Wenn 22 + % + 22 < 1, ist auch |z|? + |y|? + |2|*> < 1 und es gibt € > 0 mit
(2] + €)%+ (lyl + €)* + (2] + )* < 1.
Dafiir ist aber

flzl + eyl + e |z[ + €) = (Jz| + )|y + )(|2] + €) > [ayz| > zyz = f(2,y, 2).
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Ein anderes Argument liefert dasselbe Ergebnis: Lige das Maximum in einem inneren Punkt
(z,y, z) so wire
fl(@,y,2) = (yz vz 2y) = (000).

Dann wiire aber f(z,y,z) = 0 das Maximum. Jedoch nimmt f offenbar auch positive Werte
an.

Also wird das Maximum auf dem Rand angenommen, ist also ein Maximum unter der
Nebenbedingung
glx,y,2) =2+ +22-1=0.
Die Funktionalmatrix
9'(z,y,2) = (22 2y 22)

ist # (0 0 0) fiir alle Punkte, die die Nebenbedingung erfiillen. Daher gibt es keine singuléiren
Punkte.

Wir 16sen nach dem Rezept:
P HyP 422 -1=0,

und
yz = A2z,
Tz = A2y,
Yy = A\2z.

Multipliziert man diese letzteren Gleichungen mit z,y, z, addiert und verwendet die Neben-
bedingung, so hat man
3xyz = 2.

FEinsetzen von A in die obigen Gleichungen liefert

1
===

oder zwei Koordinaten sind 0, die dritte dann wegen der Nebenbedingung +1. Die letzteren
Punkte liefern aber f = 0 und scheiden daher fiir ein Extremum aus. Mogliche Extrema

liegen also in den Punkten
1 1 1

e
( V3T V3T VB )
mit voneinander unabhéngigen Vorzeichen. Die entsprechenden Funktionswerte sind
4 1
3v3

Die positiven sind die Maxima, die negativen die Minima.

f=

O

Als eine weiteres Anwendung fiir die Methode der Lagrange-Multiplikatoren beweisen wir
im néchsten Beispiel die frither behauptete Abschitzung der [P-Normen gegeneinander, vgl.

Beispiel

Beispiel 185. Wir erinnern an die Definition der {P-Norm auf R™:

n 5
ol = (z mv’)
=1
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Wir zeigen: Fiir 1 < p < q und alle x € R™ gilt

1_1
lzllq < llzll, < nve™aljz]l,. (78)

Wir zeigen das durch vollsténdige Induktion iiber n.
n = 1. Trivial.

n—1 = n. Es geniigt zu zeigen: Fiir alle x = (1, ...,2,) gilt

1 1

n
Slnlt=1 = 1< |all, <nt i
i=1

Die Voraussetzung impliziert |z;| < 1 und deshalb |z;|? < |x;|P fiir alle 4. Also folgt die linke
Ungleichung, wir miissen nur noch die rechte beweisen. Offenbar kénnen wir uns dabei auf
die kompakte Menge

{x: (X1, 2n)

Zw?:lmit xz; > 0 fiir allei}
i=1

beschrinken. Ist wenigstens ein x; = 0, so liegt = in einem R™~!. Nach Induktionsvoraus-
setzung gilt fiir solche z also

=
Q=

|zll, < (n—1)7"7 <n

Daher geniigt es zu zeigen, dass die differenzierbare Funktion f(z) := Z?:l ¥ auf der Menge
{x = (z1,...,2Tn) | T > O} unter der Nebenbedingung

g(x) := ixf =1
i=1

P
das Maximum (n%7%> besitzt. Die notwendige Bedingung fiir ein Extremum ist die Exi-

stenz eines A mit

af p—1 ag —1
8:rj px] 8xj QZ‘J
oder q
a7 ==
p
fiir alle j. Daraus folgt x1 = ... = x,, nach der Nebenbedingung also 1 = ... =z, = ﬁ
Der Funktionswert an dieser Stelle ist
1 1—2 1_1\P
f(x):nm:n q:(nzz q)
und damit das (eindeutig bestimmte) Maximum von f.
O
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5 Differentialgleichungen

5.1 Existenz- und Eindeutigkeit

e Was ist eine Differentialgleichung? Was ist eine Losung einer Differentialgleichung?

e Die Differentialgleichung ' = f hat fiir stetiges f auf einem Intervall viele Losungen,
némlich die Stammfunktionen von f. Durch Vorgabe des Funktionswertes y(a) an einer
Stelle wird daraus eine eindeutige Losung ausgewéhlt. Der Satz von Picard-Lindelof
verallgemeinert das zu einem Existenz- und Eindeutigkeitssatz fiir eine grofle Klasse
von Differentialgleichungen.

Definition 186. Seien V ein endlich-dimensionaler Banachraum, G C R x V offen, und
f:G=V (tz)— f(t,x)

eine Abbildung.
(i) Die Gleichung

= f(t,x), (79)

heifit eine gewdhnliche Differentialgleichung erster Ordnung in expliziter Form, (kurz
eine Differentialgleichung) oder ein dynamisches System. In physikalischen Anwendun-
gen ist t oft eine Zeitvariable, daher die Namenswahl und die Verwendung des Punktes’
anstelle des Strichs ’.

(ii) Ist f in der ersten Variablen konstant, so kann man f auffassen als eine Abbildung
f:V DO G — V. In diesem Fall nennt man

i = f(z) (80)
eine autonome Differentialgleichung oder ein autonomes System.

(iii) Eine auf einem Intervall J C R mit nicht-leerem Inneren f]J # () definierte differenzier-
bare Funktion = : J — V heif}t eine Lisung von , wenn fir alle t € J

(t,x(t)) € G und &(t) = f(¢t,z(t)).
(iv) Sei (tg, o) € G. Das Gleichungssystem
= f(t,x), z(to) =m0 (81)

heifit ein Anfangswertproblem.

(v) Eine Losung = : J — V von heiit eine Losung des Anfangswertproblems ,
wenn auflerdem ¢y € J und x(tg) = zo ist.

(vi) Das Anfangswertproblem heifit eindeutig ldsbar, wenn es eine Losung gibt, und
wenn je zwei Losungen x7 : J; — V und x5 : Jo — V auf J; N Jy {ibereinstimmen.

Beispiel 187. Die Bahn z(t) eines Punktes der Masse m in einem zeit-, raum- und geschwin-
digkeitsabhingigen Kraftfeld im 3-dimensionalen Raum ist gegeben durch das Newtonsche
Bewegungsgesetz

mi = F(t,z, ).
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Nach Einfithrung des Impulses p = ma als zusétzlicher Variabler nimmt dieses mit V' =
R3 x R? = RS die Form an:

t=m"1p

p= F(t,x, m_lp).
O

Im einfachsten Fall hingt f nicht von x ab, sondern ist nur eine Funktion von ¢. Dann ist
das Problem, die Differentialgleichung

&= f(t)

zu losen, einfach(?) das Problem, f zu integrieren. In der Theorie der Differentialgleichungen
betrachtet man dieses Problem als ,trivial®.

Jenseits von diesem einfachsten Fall gibt es aber nur noch in sehr speziellen Fallen Verfahren
zur Losung einer Differentialgleichung im naiven Sinne. Das bedeutet, dass man im Einzel-
fall allenfalls mit speziellen Tricks Lésungen finden und/oder mit numerischen Verfahren
berechnen kann. In anderen Féllen kann man sich eventuell wichtige Informationen iiber die
Losungen verschaffen, ohne diese explizit zu kennen. Zum Beispiel sind sicher alle Lésungen
von & = 1 4+ 22 + z'* streng monoton wachsend.

Gerade in dieser Situation ist es wichtig zu wissen, ob eine Differentialgleichung Losungen
hat und wieviele sie gegebenenfalls hat: Dann weil man wenigstens, wonach man sucht.
Eine weitere Hilfe konnen Informationen iiber die Struktur der Losungsmenge liefern. Zum
Beispiel kann man bei manchen Differentialgleichungen schon gefundene Losungen benutzen,
um weitere zu finden.

Diese Uberlegungen unterstreichen die Bedeutung des folgenden Satzes:

Satz 188 (Existenz- und Eindeutigkeitssatz). Sei f: RxV D G — V stetig auf der offenen
Menge G, und sei (to,x0) € G. Dann ist das Anfangswertproblem

= f(t,x), x(to) =g (82)

losbar. Ist f nach x stetig differenzierbar, so ist die Lisung eindeutig.
Insbesondere gibt es eine Lisung auf einem Intervall der Form J =tg — €,to + €.

Bemerkung. Der Existenzsatz bei stetiger rechter Seite stammt von Peano, der Existenz-
und Eindeutigkeitssatz bei zusétzlicher lokaler Lipschitz-Stetigkeit der rechten Seite beziiglich
2 von Picard und Lindelof. Die hier gemachten Voraussetzungen sind etwas zu scharf, dafiir
bequem zu formulieren. Die Beweisidee werden wir im néchsten Abschnitt fiir den Spezial-
fall linearer Differentialgleichungen kennenlernen, den allgemeinen Fall und andere Details
iiberlassen wir der Vorlesung iiber Gewchnliche Differentialgleichungen.

(Gegen)beispiele. Die folgenden Beispiele sollen die Voraussetzungen des Satzes von Picard-
Lindel6f illustrieren.

Beispiel 189. Fiir stetiges f besitzt immer Losungen (Satz von Peano), aber die sind
nicht unbedingt eindeutig.
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Das Anfangswertproblem

i= Va2, z(0)=0
hat unendlich viele Losungen, z.B. x = 0 oder, %
fiir b > 0, die Losungen
b X
) 0 fiirt <b
€T =
’ L(t—b)3 fir t > b,

O
Beispiel 190. Fiir unstetige rechte Seite muf3 keine Losung haben. Ist G = R x R und

0firt<o
t, = - ,
f(t,o) {1fﬁrt>0

so hat mit der Anfangsbedingung x(0) = 0 keine Losung, weil die Ableitung einer
differenzierbaren Funktion keine Sprungstellen hat (Satz von Dini).

O

Der Satz macht keine Ausage iiber die maximale Grofle des Definitonsbereichs einer
Losung.

Beispiel 191. Die Funktion f(t,x) := 1 + 2?2 ist auf ganz R x R definiert. Die Losung von
t=1+2% =2(0)=0
existiert aber auf keinem grofieren Intervall als | — 7, Z[, wo sie durch 2 = tan gegeben ist.

O
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5.2 Lineare Differentialgleichungen.

e Lineare Differentialgleichungen sind einfach lineare Gleichungssysteme, wenn auch auf
Vektorrdumen aus Funktionen. Darum kennen wir die Struktur des Losungsraumes aus
der linearen Algebra: er ist ein affiner Raum, gegeben durch eine konkrete Losung, plus
die Losung des zugehorigen homogenen Systems, also den Kern der linearen Abbildung,
die dem System zugrunde liegt.

e Weil die beteiligten Funktionenrdume aber unendliche Dimension haben, sind die Exi-
stenz von Losungen und die Dimension des Kerns nicht so klar. Wir kldren das im
néchsten Abschnitt.

Definition 192. Eine lineare Differentialgleichung 1. Ordnung auf einem offenen Intervall
J C R ist eine Differentialgleichung der Form
i = F(t)z + g(b), (83)

wobei F': J >t~ F(t) € L(V,V) und g : J — V stetig sind. Jede Losung z ist dann
offenbar stetig differenzierbar. Wir bezeichnen mit C*(.J,V) den Vektorraum der k-mal
stetig differenzierbaren Abbildungen von J nach V und definieren

L:CYJ, V)= CYJ,V),z— i — F(t)z.

Dann ist L eine lineare Abbildung. Die auf J definierten Losungen der zugehdrigen homo-
genen linearen Differentialgleichung

&= F(t)z (84)

bilden deshalb einen Vektorraum Kern(L), und alle Losungen von auf J erhilt man,
indem man zu einer Lésung T von alle Losungen der homogenen Gleichung addiert.

Beispiel 193. Wir betrachten das Gleichungssystem

i1 = x+ 3zt 2cos?t
fo = 3w+ x4+ 2sin’t

d () _ (1 3\ (1 n 2cos?t
dt \z2) ~\3 1) \a» 2sin’ ¢

Das zugehorige homogene System

d (x1\ _ (1 3\ (m
dt \za) \3 1) \a2
z it o2t
(z;) =qa (e‘“) + ag (—62t> , a1, a2 € R.

(Nachrechnen! Im Abschnitt wird erklirt, wie man die finden kann.) Wir zeigen gleich,
dass das alle Losungen sind. Fine Losung fiir das inhomogene System werden wir weiter
unten konstruieren, ndmlich

oder

hat Losungen:

1 < sin 2t + cos 2t — 1 )

4 \—sin2t —cos2t — 1

Die ,, allgemeine Losung” der inhomogenen Gleichung ist daher

z1\ 1 [ sin2t+cos2t —1 ett e~ 2
(a:z) T4 (— sin 2t — cos 2t — 1) Ta <e4t T a2 —e72t ) a1,a2 €R.
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5.2.1 Der Hauptsatz iiber lineare Differentialgleichungen

e Wir lernen, wie man eine Differentialgleichung in eine Integralgleichung umschreibt
und diese mit Hilfe des Banachschen Fixpunktsatzes 16st.

Satz 194 (Hauptsatz iiber lineare Differentialgleichungen). Sein := dim V. Mit den obigen
Bezeichnungen gilt firty € J,zg € V:

(i) Das Anfangswertproblem

&= F(t)z + g(t)

85
#(to) = & e
hat genau eine auf ganz J definierte Lisung.
(i) Der Lésungsraum Kern(L) der zugehdrigen homogenen Gleichung
t = F(t
ist n-dimensional.
Funktionen x1, ..., x, € Kern(L) sind genau dann linear unabhdngig, wenn ihre Werte
z1(t),...,zn(t) € V an einer (und dann an jeder) Stelle t € J linear unabhingig sind.

In diesem Full ist jede Lisung der homogenen Gleichung von der Form

n

o(t) =Y cxilt), c€R, (87)

i=1
und fiir jedes n-Tupel (c1,...,cp) reeller Zahlen ist das eine Lisung.

(iii) Ist (x1,...,x,) eine Basis von KernL, so ist jede Ldsung von von der Form

n

x(t) = Z ci(t)x;(t), (88)
i=1
mit geeigneten Funktionen cy,...,c, € CY(J,R).

Die Funktion ist genau dann eine Ldsung von , wenn die ¢; die folgende
Differentialgleichung erfillen:

n

3 éit)ai(t) = g(t). (89)

i=1

Variation der Konstanten. Ist x1,...,x, eine Basis von Kern(L), so erhdlt man durch
Losen des gewohnlichen linearen Gleichungssystems die ¢;(t). Anschlieflende Integration
liefert die c¢;(t) und damit eine Lésung von in der Form . Diese Methode nennt
man Variation der Konstanten.

119




Beweis. Die Idee. Ist x : J — V eine Losung des Anfangswertproblems, so gilt nach Inte-
gration der Differentialgleichung;:

£(t) = € + / (F(r)a(r) + g(r))dr (90)

to

—:®(2)(t)

Die Losung x ist also ein Fixpunkt von ®. Umgekehrt folgt aus © = ®(x) mit stetigem x
sofort die (sogar stetige) Differenzierbarkeit von x, die Anfangsbedingung x(ty) = & und
durch Differenzieren
o(t) = F(t)z(t) + g(t).

Wir wollen deshalb @ als Abbildung auf einem metrischen Raum stetiger Funktionen z
auffassen und mit dem Banachschen Fixpunktsatz zeigen, dass ® genau einen Fixpunkt hat.
Dann ist das Anfangswertproblem eindeutig losbar. Uberdies liefert der Fixpunktsatz ein
Tterationsverfahren zur Berechnung der Losung.

Dabei braucht man allerdings offenbar das Integral von Funktionen mit Werten in einem
Banachraum V' mit Norm |||y, das ich hier ebenso wenig erklidren will, wie die Formel

die wir im Beweis benotigen. (Die Absolutstriche auf der rechten Seite braucht man, wenn
man auch t < to zulassen will.) Sie konnen sich einfach vorstellen, dass V' = R™ und kom-
ponentenweise integrieren, oder im Anhang Genaueres dariiber finden.

t F(o)dt

to

<
1%

||f<t>||vdt| ,

to

Der Standardbeweis des Existenz- und Eindeutigkeitssatzes von Picard und Lindel6f benutzt
dieselbe Idee.

Zu (i). 1. Schritt: Existenz und Eindeutigkeit fiir kompaktes J. Wir nehmen zunéchst an,
dass J ein kompaktes Intervall ist. Wir wihlen ein o > 0, {iber das wir spéter verfiigen
wollen, und erkliren auf dem Vektorraum C°(J,V) der auf J stetigen Abbildungen nach
(V,]].]]) eine Norm durch

2]l = sup ||z (¢)]|e~ 1",
teJ

Offenbar ist ||z[|o die normale Supremumsnorm. Uberlegen Sie, dass man auch fiir o > 0
eine Norm erhélt, fiir die

min (=101} oo < flalla < max (=01 oo

Die a-Normen sind also zur Supremumsnorm dquivalent, und (C°(J, V), ||.|l«) ist mit jeder
a-Norm vollstindig. Fiir z € CY(J, V) definieren wir nun ® : C(J,V) — C°(J, V) durch

t

B@)(t) =+ [ (F(r)a(r) + g(r)ir
to

Weil F stetig ist, ist C' := sup,c; |F ()| < oo. Damit gilt fiir z,y € C°(J,V), t € J und

positives a

<

/ F(r)(a(r) - y(r)dr

to

[8(2)(1) — B(y) (1)) = \

/t VF(r) (a(r) — y(r))]| dr

t
<| [ Cli@) -y eeirtolealr=iolgr
to
t elt—tol
< Cllz — ylla / el dr| < Ol — ylla
to
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Die letzte Ungleichung ergibt sich im Fall ¢t < ¢ty wie folgt:

t
/ ealT—t(JldT
to

Den Fall ¢ty <t kénnen Sie selbst machen. Wir erhalten

—ar |to ot e—at _ e—ato ea|t—t0|
= e 0

t

— o [0}

t
’ a(to—T) atg €
= e dr=e
t

() (1) — 2) ()l < ey

und damit c
12(z) = 2(W)lla < Zllz = ylla-

Wiéhlen wir also a > C'. so ist ® kontrahierend und besitzt nach dem Bachnachschen Fix-
punktsatz genau einen Fixpunkt x € C°(J,V). Also besitzt das Anfangswertproblem
genau eine Losung auf J.

2. Schritt: Existenz und Eindeutigkeit fiir nicht-kompaktes J. Ist J nicht kompakt, so gibt
es eine Folge kompakter Intervalle (J;);en mit

toeJgCJi C...
und

=0

Dazu gibt es eine Folge eindeutig bestimmter Losungen z; : J; — V des Anfangswertpro-
blems, fiir die also gilt x;1|s, = x;. Setzt man deshalb x(t) := z;(t), falls ¢ € J;, so definiert
das eine Funktion z : J — V| die das Anfangswertproblem 16st.

Sind schlieBlich @1, z2 : J — V zwei Losungen des Anfangswertproblems und ist ¢t € J \ {to},
so sei I das kompakte Intervall mit Endpunkten ¢y und ¢. Dann sind x1|; und z2|; Lésungen
des Anfangswertproblems, nach dem 1. Schritt ist also 1|; = 22|r und insbesondere x;(t) =
x2(t). Daraus folgt die Eindeutigkeit.

Zu (ii). Seity € J. Die Abbildung
Kern(L) — Vo — x(t1)

ist linear. Weil das Anfangswertproblem mit der Anfangsbedingung z(¢;) = x; genau eine
Losung hat, ist diese Abbildung also ein Isomorphismus. Daraus folgt die Behauptung.

Zu (iii). Sei z1,...,x, eine Basis von Kern(L) und seien cy,...,c, € C1(J,V). Wir setzen

o(t) = ci(t)zi(t).

Dann gilt

i — F(t)z(t) = % > elait) = Ft) Y ei(t)zi(t)
= Z CZ.”L'Z + Z Ci(t)(j?i — F(t)l‘z(t))

Also ist x genau dann eine Lésung von & = F(t)z + g(t), wenn fiir alle t € J

> eit)ai(t) = g(t).
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Umgekehrt sind fiir jedes ¢ € J die Vektoren z1(t),...,z,(t) € V linear unabhéngig, und
daher gibt es eindeutig bestimmte ¢;, die dieses inhomogene lineare Gleichungssystem l6sen.
Schreibt man das Gleichungssystem in Koordinaten aus, so ist die Losung eine rationa-
le Funktion in den Koeffizienten. Die sind aber stetig, und daher sind auch die ¢; stetige
Funktionen. Durch Integration findet man C!-Funktionen ¢; und damit eine Losung der
inhomogenen Gleichung. Jede andere unterscheidet sich davon nur durch eine Linearkombi-
nation der z; mit konstanten Koeffizienten, ist also auch von der Form xz(t) = > ¢;(¢)x;(t).

O

Bemerkung. Nach dem Hauptsatz ist das Problem, eine lineare Differentialgleichung zu
losen, reduziert auf den homogenen Fall. Wenn F(t) = A € L(V,V) unabhiingig von ¢ ist,
spricht man von einer linearen Differentialgleichung mit konstanten Koeffizienten. In diesem
Fall kann man eine Losungsbasis fiir die homogene Gleichung mit Methoden der linearen
Algebra bestimmen, vgl. den nichsten Abschnitt

Beispiel 195. Wir kommen zuriick auf das Beispiel Die Losungen

oA o2t
(c) o (o)

der homogenen Gleichung sind linear unabhéngig, weil sie an der Stelle 0 linear unabhéngig
sind. Sie bilden also eine Losungsbasis fiir die homogene Differentialgleichung.

Variation der Konstanten mit dem Ansatz
xs(t) = c1(t)z1(t) + ca(t)z2(t)
fiihrt auf das Gleichungssystem
et 2 é1 2cos?t
(e <o) () = Gemel):

ér(t) = e éo(t) = (cos? t — sin? wt)e? = cos 2t e,

Losen liefert

und Integration
—4¢ 1 . 2t
c(t)=—-e ™, co(t) = Z(sm 2t + cos 2t)e*".

Damit erhalten wir die frither schon angegebene Losung
1 _ e4t 1, . e—2t
zs(t) = —1¢ 4t (e‘“) + Z(Sm 2t + cos 2t)e?! (_ o
_ 1 sin2t+cos2t —1
4 \—sin2t —cos2t — 1

der inhomogenen Gleichung.
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5.2.2 Lineare Differentialgleichungen mit konstanten Koeffizienten

e Homogene lineare Differentialgleichungen mit von ¢ unabhéngiger rechter Seite kann
man explizit 16sen.

e Wir lernen im Voriibergehen die Matrix-Exponential-Lésung kennen und betrachten
dann genauer die Eigenwertmethode zur Losung.

e Diese ist besonders einfach fiir diagonalisierbare Endomorphismen, aber wir diskutie-
ren auch, wie man den allgemeinen Fall bewéltigt.

Nach dem vorangehenden Abschnitt gibt es mit der Variation der Konstanten eine Methode
zur Losung inhomogener linearer Differentialgleichungen, wenn man die zugehdrige homogene
Differentialgleichung & = F(¢)x vollstindig gelost hat. Fiir das letztere Problem aber gibt
es keine allgemeines Verfahren. Nur im Fall konstanter Funktion F' kann man eine Losung
explizit hinschreiben. Das wollen wir jetzt erlautern.

Im Fall V =R hat die Differentialgleichung
T =ax

die Losungen z(t) = x(0)exp(ta). Ist nun V ein endlich-dimensionaler Banachraum und
F(t) = A eine konstante lineare Abbildung von V in sich, so kann man entsprechend den
Ansatz x(t) = exp(tA) machen. Aber was soll exp(tA) iiberhaupt bedeuten?

Nun, Endomorphismen (quadratische Matrizen) kann man miteinander multiplizieren und
damit sind die Potenzen A* definiert. Dann ist fiir jedes ¢ € R die Folge (Z?:o E.—J,Aj ) .

: ne

wohldefiniert und konvergent im Banachraum L(V,V), eine konvergente Potenzreihe in
L(V,V) gewissermaﬁerﬁ Sie definiert eine differenzierbare Funktion

X :R—= L(V,V),t — exp(tA)
mit X = AX. Und fiir jeden Vektor v € V ist dann nach der Produktregel
z:t— X(t)v =exp(tA)v

eine Lsung von
T = Ax. (91)

Mit einer Basis vy, ...,v, von V erhélt man eine Basis
x1(t) = exp(tA)vy, ..., x,(t) = exp(tA)v,
fiir den Losungsraum von 7 weil die Funktionswerte fiir ¢ = 0 linear unabhéngig sind.

Die Berechnung der verallgemeinerten Exponentialfunktion ist natiirlich nicht so leicht ist,
aber die Lineare Algebra bietet Hilfe. Wir bezeichnen mit F : V' — V im folgenden die
Identitét bzw. die Einheitsmatrix. Wenn das charakteristische Polynom det(A — AE) von A
in Linearfaktoren zerfillt, besitzt A eine Jordansche Normalform, was in anderen Worten
bedeutet: Es gibt eine Basis Basis vy,...,v, von V aus Hauptvektoren von A. Zu jedem
1€ {1l,...,n} gibt es einen Eigenwert \; und ein k; € N\ {0}, so dass

(A= NE)riy; =0.

Im Idealfall ist k; = 1 fiir alle 4, d.h. A ist diagonalisierbar und die v; bilden eine Basis aus
Eigenvektoren.

6Diese Konstruktion ist nicht ganz ohne: Weil die Matrixmultiplikation nicht kommutativ ist, ist zum
Beispiel meistens exp(A + B) # exp(A) exp(B). Gleichheit gilt allerdings, wenn AB = BA.
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Nun kann man zeigen:

L4 )
exp(tA) = exp(tAE 4 t(A — AE)) = exp(t\E) exp(t(A — AE)) = & Z %(A — AE)’.
j=0""
Insbesondere ist also

ki—1 j )
z;(t) = exp(tA)v; = eMit Z t—(A — AE) v,

|
j=0 J:

und man bekommt eine Losungsbasis mittels endlicher Summen. Ist A diagonalisierbar und
v1,...,0, eine Basis aus Eigenvektoren mit zugehotrigen Eigenwerten Ay, ..., \,, so ist also

x1(t) = e)\lt’l)l’ . ,xn(t) _ e)\"t’vn

eine Losungsbasis fiir £ = Ax.

In den vorstehenden Uberlegungen sind wir mit vektorwertigen Potenzreihen relativ grofziigig
umgegangen. Wir geben nun einen strengen Beweis fiir den folgenden

Satz 196. Seien A € L(V,V) ein Endomorphismus, k € N\ {0} und v € V ein Hauptvektor
der Stufe k von A zum FEigenwert A\ € R, d.h. es gelte

(A= \E)rv = 0.
Dann ist

=l 4
z(t) :== eM Z F(A — AE)v
j=0""

eine Losung von & = Ax. Diese Lisung ist also von der Form e

in t mit vektoriellen Koeffizienten ist.

v(t), wobei v(t) ein Polynom

Beweis. Nach Voraussetzung ist

ki
2(t) = MY %(A _\E),

Jj=0

wobei wir jetzt bis & summieren. Das macht ja keinen Unterschied. Wir finden

k .
t v j
i(t) = Ax(t) 4 & ; G0 (A—\E)v
k .
t ! j—1
= Mx(t) +eM(A AE); G- 1)!(A —AEY 1y
k—1 4
=z(t) + (A= AE)eN Y = (A= AE)v
j=0""
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Korollar 197. Besitzt V eine Basis v1,...,v, aus Hauptvektoren von A € L(V,V) der

Stufen kq, ..., k, und zugehorigen Eigenwerten Ay, ..., A\, so liefern die Funktionen
kiml g _
xl(t) = erit Z f(A—/\iE)jUi i iE{l,...,n}
— j!
j:

eine Losungsbasis von & = Ax.

Nach linearer Algebra ist die Voraussetzung dieses Satzes genau dann erfiillt, wenn A eine
Jordansche Normalform besitzt, d.h. wenn das charakteristische Polynom von A in Linear-
faktoren zerfillt.

Beweis. Nach dem Satz sind die z; Losungen, und wegen z;(0) = v; sind sie linear un-
abhéngig. U

Beispiel 198. Vgl. Beispiel Die Matrix der homogenen Differentialgleichung
i 1\ 1 3 T
dt \za) \3 1) \as

hat die Eigenwerte 4 und —2 mit Eigenvektoren <}> bzw. <_11) Deshalb ist

eine Losungsbasis.

O

In diesem Beispiel hat man eine Basis aus Eigenvektoren. Braucht man aber Hauptvektoren
hoherer Stufe, so wird die Sache miithsam, denn man muf} die Matrixpotenzen bis (A — AE)*
bilden. Einfacher geht es bei doppelten Nullstellen des charakteristischen Polynoms, d.h. bei
Eigenwerten der algebraischen Vielfachheit 2 und der geometrischen Vielfachheit 1:

Beispiel 199. Wir betrachten & = Az. Sei A ein Eigenwert von A mit der algebraischen
Vielfachheit 2 und der geometrischen Vielfachheit 1, d.h. A ist eine doppelte Nullstelle des
charakteristischen Polynoms, aber dim Kern(A — AE) = 1. Sei v; einen Eigenvektor zu .
Dann gibt es zu A einen von v linear unabhéngigen Hauptvektor vo. Fiir den gilt

0= (A—AE)*vy = (A= AE)((A — AE)vy) = A(A — AE)vg — M(A — AE)vs.

Das heifit, (A — AE)vs ist ein Eigenvektor zum Eigenwert A. (Beachte (A — AFE)vy # 0, sonst
wére vg ja ein von vp linear unabhingiger Eigenvektor.) Damit ist (A — AE)vy = avy mit
a # 0 und

(A — )\E)(é’vg) = V1.

WEeil es auf Vielfache # 0 bei Eigen- und Hauptvektoren nicht ankommt, kénnen wir den
Faktor 1/a vergessen.

Fazit: Das Gleichungssystem
(A — )\E)vg =1

ist 16sbar und liefert uns ,den®“ fehlenden Hauptvektor zum Eigenwert A. Die zugehorige
Losung ist dann
z(t) = eM(vg + tvy).
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Beispiel 200. Wir betrachten

0 1 -1
A=|-2 3 -1
-1 1 1

Diese Matrix hat die Eigenwerte Ay = Ay = 1 und A3 = 2. Die Gleichung

-1 1 -1 T 0
(A-1Epw=[-2 2 -1 y| =10
-1 1 0 z 0
1
liefert einen linear unabhingigen Eigenvektor | 1 | zum Eigenwert 1. Daher liefert
0
-1 1 -1 x 1
-2 2 1] |y| =11
-1 1 0 z 0
0
einen Hauptvektor | O | zum Eigenwert 1, der offenbar von dem Eigenvektor linear un-
-1
abhéngig ist. Das Differentialgleichungssystem
#(t) = Az
hat in diesem Fall eine Losungsbasis aus
1 0 1
zi(t)=¢e"[1], mt)=e' (| 0 | +t[1])
0 -1 0
0
und einer weiteren Losung x3(t) = €2 [ 1 | zum Eigenwert 2.
1

O

Beispiel 201. Die Voraussetzungen des Beispiels [I99]sind nétig: Wir betrachten die Matrix

1 1 1
A=10 2 1
0 -1 0

Das charakteristische Polynom ist
det(A—AXE)=| 0 2—-X 1|=—-A-1)>3

Also ist A = 1 ein Eigenwert der algebraischen Vielfachheit 3. Die zugehorige Eigenvektor-
gleichung

0 1 1 T
0 1 1 y| =0
0o -1 -1 z
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hat Rang 1. Sie liefert also zwei linear unabhéngige Eigenvektoren, zum Beispiel

1 0
v = 0 s Vo = 1
0 -1
Aber keines der beiden Gleichungssysteme
0 1 1 x 1 0 1 1 x 0
0 1 1 yl =101, 0 1 1 yl =11
0 -1 -1 z 0 0o -1 -1 z -1

ist 1osbar! Um den fehlenden Hauptvektor zu finden muss man also eine von v; und vy
unabhingige Losung vz von (A — 1E)?v = 0 finden. In diesem Fall ist das trivial, weil die
algebraische Vielfachheit 3 ist, die Hauptvektoren also den ganzen R? aufspannen. Man kann
0
deshalb ¢rgendeinen von vy und ve unabhéngigen Vektor vs wéahlen, z.B. v3 = | 1
0

Eine Losungsbasis von & = Ax ist in diesem Fall also

1 0 0 1
ri(t)=e" [0, za(t) =€ | 1 |,23(t) =¢ 11+t 1
0 -1 0 -1

O

Komplexe Eigenwerte. Um Probleme mit der abstrakten Komplexifizierung reeller Vek-
torrdume zu vermeiden, beschrianken wir uns im folgenden auf V' = R" und Matrizen A.

Bekanntlich hat nicht jede reelle Matrix eine reelle Jordansche Normalform, d.h. der R"
besitzt moglicherweise keine Basis aus Hauptvektoren. Wie kommt man dann zu einer
Losungsbasis von & = Ax?

Zunichst kann man die obigen Uberlegungen ohne wesentliche Anderung auf komplexwer-
tige Losungen x : R — C™ verallgemeinern. Man stellt fest, dass das Anfangswertproblem
eindeutig 16sbar und der Losungsraum von & = Az ein n-dimensionaler C-Vektorraum ist.
Und weil iiber C jede Matrix eine Jordansche Normalform besitzt, liefert die obige Theo-
rie also eine Methode zur Gewinnung einer Lésungsbasis fiir komplexe homogene lineare
Differentialgleichungssysteme mit konstanten Koeffizienten.

Wenn man aber von einem reellen Problem ausgeht, mdche man gern eine reelle Lésungsbasis
haben. Seien also die Matrix A reell und z : R — C" eine komplexe Losung. Wir bezeichnen
mit ~ die komponentenweise komplexe Konjugation als Abbildung von C"™ nach C™. Weil
diese Abbildung reell linear ist, folgt aus @(t) = Ax(t), dass

Z(t) = @(t) = Ax(t) = AZ(t)

ist. Mit jeder komplexen Losung ist also auch die dazu konjugierte Funktion eine Losung.
WEeil Linearkombinationen von Losungen wieder Losungen sind, erhélt man aus jeder kom-
plexen Losung = : R — C™ zwei reelle

rrelt) = () 20, Tt =

= - (a(t) — a(1).

Die komplexen Losungen z(t) und Z(¢) liefern natiirlich dieselben reellen Losungen, deshalb

kann man von jedem konjugiert-komplexen Paar eine Losung ignorieren. Ist schlielich z(t)
eine komplexe Losung mit reellem Anfangswert z(tg) = &p, so ist x,. eine reelle Losung
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mit demselben Anfangswert, x;,, eine mit Anfangswert x;,(to) = 0, also x;, = 0. Daher
ist x = z,. iberhaupt reell, und man bekommt auf diese Weise Losungen fiir alle reellen
Anfangswerte, also alle reellen Losungen.

Wir betrachten das noch genauer. Ist uq,...,u, eine Basis des C"™ und uy = v + jwy mit
ug, wr € R™ und ist weiter £ € R", so gibt es ai = B + iy, mit Bg, vk € R, so dass
n n n n
€= apup =Y (Brox — yewr) +i Y (Brwk +yeve) = Y (Brow — ywn)-
k=1 k=1 k=1 k=1
Die Real- und Imaginérteile der ug bilden also ein Erzeugendensystem von R™. Berechnet
man nun die Eigenwerte des reellen A und dazu mittels Hauptvektoren eine Losungsbasis
Z1,...,T, fir den Raum der komplexen Lésungen von & = Az, so kann man sich bei
konjugiert-komplexen Eigenwerten jeweils auf einen beschrénken und fiir den dazu konjugier-
ten die konjugierten Losungen verwenden. Spaltet man diese in Real- und Imaginérteil und
148t die doppelt auftretenden Losungen fort, so erhilt man n reelle Losungen x,1, ..., Zmn,
deren Werte z,1(0), ..., 2,,(0) nach der vorstehenden Uberlegung den R™ erzeugen und die
deshalb linear unabhéingig sind.

Wir fassen zusammen:

Gesucht eine reelle Losungsbasis fiir £ = Ax mit reeller n x n-Matrix A.

1. Berechne die Eigenwerte von A, also die reellen und komplexen Nullstellen des charak-
teristischen Polynoms det(A—AF). Von den Paaren konjugiert-komplexer Eigenwerten
lasse jeweils einen weg.

2. Zu jedem der verbleibenden Eigenwerte A der algebraischen Vielfachheit k& berechne &
linear unabhingige Hauptvektoren vy, ..., v, € C™ als Losungen von (A — AE)*v = 0.
Sie liefern k£ Losungen

J .
man®) =S (A= ABY v, ke {1, k).

3. Die entstehenden nicht-reellen Losungen zerlege in Real- und Imaginérteil. Das liefert
insgesamt n linear unabhéangige reelle Losungen und damit eine reelle Losungsbasis.

Wir schlieffen mit einem einfachen
Beispiel 202. Wir betrachten & = Az mit A = (_02 g) .
Das charakteristische Polynom ist

- )

5 9. = A2 =22+ 10 = (A — (1 +3d)) (A — (1 — 34)).

Berechnung eines Eigenvektors zu A = 1 + 3i:

(5560 = ()2

Das liefert die komplexe Losung

(1430t 5
z(t) =e (1 + 31)

- . 5
= e'(cos 3t + isin 3t) <1 43

et 5cos 3t 4 et Hsin 3t
- cos 3t — 3sin 3t 3cos 3t + sin 3t
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und die reellen Lésungen

5 cos 3t 5sin 3t
_ ot ot
nit) =e (cos 3t — 3sin 3t) , z2t)=e (3 cos 3t + sin 3t) ’

die offenbar linear unabhéngig sind.
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5.2.3 Skalare lineare Differentialgleichungen héherer Ordnung.

e Skalare lineare Differentialgleichungen hoéherer Ordnung treten sehr hiufig auf, zum
Beispiel in vielen grundlegenden Problemen der Mechanik oder Elektrotechnik.

e Wir wissen schon, wie man sie umschreiben kann in ein lineares System erster Ordnung,
aber hier lernen wir, wie man diesen Aufwand vermeiden und direkt Losungen finden
kann.

Problem: Sei J C R ein offenes Intervall und seien fi,..., f,,g: J — R stetige Funktionen.
Wir suchen Losungen der linearen Differentialgleichung

2™+ fi®e" Y o fam (D + f(D)T = g(8), (92)
gegebenenfalls mit den Anfangsbedingungen in ¢y € J

(to) = &, -, 2"V (to) = &nr. (93)

Wir haben in der Einleitung zu den gewohnlichen Differentialgleichungen schon am Bei-
spiel der Newtonschen Bewegungsgleichung demonstriert, wie man die Differentialgleichung
héherer Ordnung auf eine erster Ordnung in einem hoher-dimensionalen Raum {ibersetzt.
Wir wenden das auf das vorstehende Problem an.

Ist x eine Losung von , , und setzt man y; = &, ys = &, ..., yn = 2"V, so folgt mit

Y1
yi=|
Yn
oo ’ o
2 I D N O I (94)
0 0 1 0
fu —fur o —h a(t) $n-1

Ist umgekehrt y : J — R™ eine Losung von (94), so ist = := y; eine solche von (92), (93).
Damit folgt aus dem Hauptsatz iiber lineare Differentialgleichungen:

Satz 203. Gegeben sei das Anfangswertproblem

2™ 02D+ i (0)E + fa(Dz = g(0), (95)
x(t()) = 507 ey (E(n_l)(t()) = gnfl. (96)
mit stetigen Funktionen f1,..., fn,g:J — R auf einem Intervall J um ty und &y,...&n—1 €
R
Dann gilt

(i) Das Anfangswertproblem hat genau eine auf ganz J definierte Lisung.

(i) Der Lisungsraum der zugehdrigen homogenen linearen Differentialgleichung n-ter Ord-
nung
a4 i)z 4+ fan1(B)E A+ fu(t)z =0 (97)

ist ein n-dimensionaler Untervektorraum von C™(J,R).
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Satz 203 (Fortsetzung). (4ii) Lisungen x1,...,T, von sind genau dann linear un-
abhdngig, wenn die Spaltenvektoren der sogenannten Wronskimatrix

x1(t) 2 (t)
%1(t) Tn(t)

W(t) = )
x(ln_'l)(t) .. x%n._l)

an einer Stelle (und dann an allen Stellen) t € J linear unabhdingig sind.

(iv) (Variation der Konstanten) Hat man eine Lésungsbasis 1, ...,y fir die homogene
Gleichung , so erhdlt man alle Losungen der inhomogenen Gleichung in der Form

n

x(t) = Z ci(t)x;(t),

=1

wo die Funktionen ¢; € C1(J,R) bis auf Konstanten bestimmt sind durch ein lineares
Gleichungssystem fiir ihre Ableitungen:

é1(t) 0

Beispiel 204. Lose das Anfangswertproblem
i — 6@ + 8z = 64>
z(0) =5,%(0)=0

mit den geschenkten Losungen z;(t) = €%, x5(t) = e fiir die zugehorige homogene Glei-
chung.

0. Schritt. Die Wronskimatrix der beiden Losungen in t=0 ist

th e4t 1 1
W(O) = <2€2t 4€4t> = <2 4> .
t=0

Offenbar sind die Spalten linear unabhéngig und x1,z2 bilden daher eine Basis fiir den
Losungsraum der homogenen Gleichung.

1. Schritt. Losen des linearen Gleichungssystems
e?t et A (0
2e%t 4ett ) \éo(t)) — \64t2

é1(t) = =32t%e 72t ¢y(t) = 32t%e .

liefert

2. Schritt. Integrieren mit partieller Integration oder http://integrals.wolfram.com/ liefert

c1(t) = 8e 2 (1 + 2t + 2t%), cot) = —e (1 + 4t + 8t?).

3. Schritt. Die allgemeine Losung der gegebenen Differentialgleichung ist also

x(t) = 8(1 + 2t + 2t%) — (1 4 4t + 8t2) + are?® + age = (7 + 12t + 8t2) + are? + age™
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mit beliebigen Konstanten a1, as € R.
4. Schritt. Um die Anfangsbedingungen zu erfiillen, berechnen wir

z(0)=7T+a1+a2=5
#(0) = 12 + 2a; + 4ay = 0

und erhalten aus diesem linearen Gleichungssystem a; = 2, a2 = —4. Damit ist die gesuchte
Losung
x(t) = 7+ 12t + 812 + 2 — 4e™.

Bemerkung. Variation der Konstanten ein Algorithmus zur Ermittlung einer Losung fiir die
inhomogene Gleichung. Er erfordert Losen eines linearen Gleichungssystems und Integratio-
nen. Nicht selten kann man durch genaues Hinsehen (oder Erfahrung) auch eine Losung fiir
die inhomogene Gleichung leichter finden, eventuell sogar einfach hinschreiben. Im obigen
Fall liefert die linke Seite der Differentialgleichung, weil die Koeflizienten konstant sind, fiir
jedes eingesetzte Polynom xz(t) wieder ein Polynom, und zwar vom gleichen Grad. Weil aber
auch die rechte Seite ein Polynom von zweiten Grad ist, kann man versuchen, einfach

z(t) = A+ Bt + Ct?

anzusetzen und die Koeffizienten (durch Koeffizientenvergleich) so zu bestimmen, dass t2
herauskommt. Das ist im obigen Fall wesentlich einfacher als die Variation der Konstanten.
Probieren Sie es!

O

Wir wollen nun zeigen, wie man eine Losungsbasis fiir eine lineare homogene Differential-
gleichung finden kann, wenn ihre Koeffizienten konstant sind. Wie im Fall der Systeme ist
es glinstig, dabei auch komplexwertige Losungen = : R — C zuzulassen und sich spéter zu
iiberlegen, wie man daraus wieder reellwertige gewinnen kann.

Satz 205. Wir betrachten also auf J = R die homogene lineare Differentialgleichung
2 faz™ Y 4+ tap1i+ax=0 (98)
mit aq,...,a, € R.

(i) Eine Basis fir den Unterraum aller komplexwertigen Lésungen von in C™"(R,C)
ist gegeben durch die Funktionen

25(t) = t7 e 1<i<m, 0<j<k —1

Dabei sind M\, ..., Ay € C die verschiedenen Nullstellen des sogenannten charakteri-
stischen Polynoms

xX(A) = A"+ a A" an N+ an,
der Differentialgleichung und k; ist die Vielfachheit der Nullstelle \;.

(i) Sind die a; reell und besitzt x(\) nicht-reelle Nullstellen, so treten diese in konjugierten
Paaren gleicher Multiplizitat auf. Ist A = a £ iw ein solches Paar mit Multiplizitdt k,
so erhdlt man daraus reelle linear unabhdngige Lisungen

t9 e cos(wt) und t7 e sin(wt), 0<j<k—1.

Auf diese Weise erhdlt man eine Basis des reellen Ldsungsraumes von .

132



Wir brauchen einige Vorbereitungen fiir den Beweis. Wenn der Satz richtig ist, sind alle
Losungen beliebig oft differenzierbar. Wir suchen unsere Losungen deshalb gleich im Raum

C®:=C*(R,C)
und schreiben DF zur Abkiirzung fiir ;TZ' Fiir ein Polynom
dN) = apA" + e\ a1 N+ a,
mit moglicherweise komplexen Koeffizienten a; definieren wir
¢(D) € L(C*™,C*)
durch

é(D)x = agD"x +a D" 'z + ...+ ap_ 1D+ a,x

=apz™ + a1z Y + ...+ ai + a,z.

Lemma 206. (i) Die “Einsetzung” ¢ — ¢(D) ist ein Algebra-Homomorphismus von der
Algebra der Polynome in die Algebra L(C*°,C°). Insbesondere gilt fiir Polynome

P(A), (A) und p(A) = ¢(N)P(X), dass
p(D) = (D)i(D) : C = C.
Daher ist ¢(D)yp(D) = (D)o(D).

(ii) Seien p # 0 ein Polynom, k € N und u,v € C.
Wir setzen D in das Polynom ¢()\) := (A — u)¥ ein. Dann ist

(D — )" (p(t)e") = q(t)e”
mit einem Polynom q, fir das gilt:

w#v = Gradq = Gradp,
uw=v = Gradq = (Gradp) — k,

Dabei soll Grad g < 0 bedeuten, dass g = 0.

Beweis des Lemmas. M Seien ¢(A) = Zai/\i7 P(A) = bj)\j. Dann ist
¢(D)p(D)x = ¢(D) Z bzl = Z b; Z a; 2.

Zu (i1). Vollstindige Induktion iiber k. Fiir k = 0 ist nichts zu zeigen.

k — (k4 1). Nach Induktionsvoraussetzung ist

(D — w)* (p(t)e") = q(t)e”*

mit einem Polynom ¢(t) vom im Satz beschriebenen Grad. Dann gilt aber

(D — ) (p(t)er") = (D — p)q(t)e”t = (4(t) + va(t) — uq(t))e”".

Ist ;1 = v, so verkleinert sich der Grad des Polynom-Faktors vor e** um 1, andernfalls bleibt
er gleich. 0
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Beweis des Satzes. Zu (i). Ist x(\) das im Satz definierte charakteristische Polynom, so ist
die Differentialgleichung gegeben durch

x(D)z = 0.
Andrerseits ist nach dem Lemma fiir j < k;
X(D)zi;(t) = (D — )" .. (D = Ap)Pm (HeMh)
=(D=M)" .. (D= XN_)F (D = Xp) (D = Ap)P (D = )R (M)
0.

Daher sind die angegebenen Funktionen n Losungen der Differentialgleichung. Wir zeigen
ihre lineare Unabhéngigkeit. Sei

0= aywy(t) =Y pi(t)eM’
i i

fiir alle t. Dabei sind die p;(t) Polynome vom Grad < k; — 1, und wir miissen zeigen, dass
sie alle 0 sind. Aber nach dem Lemma ist

0=(D—=X)* ... (D—\,)k* (Zpi(t)ek"’t> = q(t)eM!

mit einem Polynom ¢; vom selben Grad wie p;. Also folgt p; = 0, und entsprechend fiir die
anderen p;(t).

Zu (ii). Nach der Eulerschen Identitit ist
1 + 1 . . 1 . w
e coswt = itje(“"””)t + §tje(a uu)t7

ti e ginwt = ltje(o“HWV _ ltje(a—iw)t_
24 2

Daher sind die cos — sin —Losungen als Linearkombination (mit komplexen Koeffizienten)
von Losungen der homogenen linearen Differentialgleichung auch Losungen. Weil man aus
ihnen die komplexe Losungsbasis linear kombinieren kann, bilden sie ein Erzeugendensystem
fiir den komplexen Losungsraum mit n Elementen. Daher sind sie linear unabhéngig iiber
den komplexen Zahlen, also erst recht iiber den reellen Zahlen. O

Beispiel 207. Die charakteristische Gleichung von
T—6x+ar=0

hat die Losungen A\; 2 = 3 £ /9 — a. Fiir a = 8,9, 10 erhélt man als Losungsbasen also

bzw.

bzw.
xl(t) — e(3+i)t’ Ty = G(S_i)t.

Im letzteren Fall ist eine reelle Losungsbasis gegeben durch

3

z1(t) = e cost, xo = e sint.
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6 Anhang

6.1 Hauptminorenkriterium

Wir geben einen Beweis (von Udo Jeromin) fiir dieses Kriterium. Vgl. auch M. Kécher,
Lineare Algebra und analytische Geometrie, Springer.

Hauptminorenkriterium. Eine symmetrische (n x n)-Matriz A = (aij)i j=1,...n st genau
dann positiv definit, wenn alle Hauptminoren positiv sind. Dabei sind Hauptminoren die
Determinanten der Matrizen

A = ()i =1,k
A ist genau dann negativ definit, wenn die Hauptminoren wechselndes Vorzeichen beginnend
mit a11 < 0 haben.
Beweis. Die Behauptung iiber negative Definitheit folgt aus der iiber positive Definitheit

durch Betrachtung von —A. Wir beweisen also nur den ersten Teil des Kriteriums.

Mit (., .) bezeichnen wir das kanonische Skalarprodukt der Euklidischen Réume. A ist positiv
definit, wenn gilt
Voern(x #0 = (Az,z) > 0).

Wir benutzen das obige Zitat aus der linearen Algebra
A positiv definit = alle Eigenwerte positiv = det A > 0
und kommen zum Beweis des Lemmas:

Beweis von =-.

Z1
Iy :
Firz = | : e RF mit k < n sei 2/ := (g) = %k c R™.
Tk
0

Ist A positiv definit, so gilt fiir alle k € {1,...,n} und = € R¥\ {0}:
0 < (Ax',2")y = (Agz,x) .
Also sind alle Ay ebenfalls positiv definit und haben daher positive Determinante.

Beweis von <. Seien nun umgekehrt alle det Ay positiv. Wir zeigen durch vollsténdige
Induktion iiber n, dass A positiv definit ist.

Der Beweis benutzt folgende Idee, um die Determinante der ganzen Matrix mit der eines
Hauptminors in Verbindung zu bringen:

Ist (é g) eine Blockmatrix mit quadratischem A und D, und ist A invertierbar, so
A BY (A 0 E A'B
C D) \C FE 0 D—-CA™'B)"

Das kann man im Kopf nachrechnen. Insbesondere ist dann

A B _
det (c D) = det A det(D — CA™'B).
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n = 1. Nichts zu zeigen.

(n —1) — n. Wir nehmen also an, der Satz sei fiir n — 1 bereits bewiesen. Dann ist A,,_;
positiv definit und insbesondere invertierbar.

1. Schritt. Fiir y € R*~1\ {0} ist nach Voraussetzung

(a(8).(3)) = v >0

2. Schritt. Es geniigt zu zeigen, dass

fly) = <A <31/> , (31’>> > 0 fiir alle y € R"1.

Wegen (A(tx),tz) = t? (Ax, z) folgt dann
(Az,z) > 0 fur alle z mit x,, # 0,

und mit dem ersten Schritt ergibt sich daraus die Behauptung. Schreiben wir
An—l a
= )

mit a = : und a = ay,y,, so wird

A1n

(pn—1n

fy) = (An1y,y) +2(a,y) + .

3. Schritt. Ist A > 0 der kleinste Eigenwert von A,,_1, so gilt

<An—1ya y> Z A <ya y> )
also
(An—1y,y) + 2 (a,y) + a2 Alyl* = 2lla]l 9]l — ol = [ly(Alyll - lla]l) — ol
Das wird grof, wenn ||y|| gro§ wird: AuBerhalb einer hinreichend grofien Kugel im R"~1 ist

daher f(y) > f(0). Deshalb nimmt die stetige Funktion f auf R"~! ihr globales Minimum
an. An dieser Stelle verschwindet ihre Ableitung, die wir jetzt berechnen:

Dyf(v) = <An—1ya v> + <An—1va y> +2 <a7 ’U> =2 <An—1y +a, 'U> .
Das Minimum wird also angenommen an der Stelle y, = —A- ' a. Sein Wert ist
fly) =(a, A a) —2(a, A  ja) +a=a—(a, A, 1a).
4. Schritt. Nach der Voriiberlegung ist
det A, = det A,—1 (o — (a, A1 a)).

Mit det A,, und det A,,_; ist also auch f(y*) = a — <a,A;11a> positiv. O
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6.2 Vektorwertige Integrale
Wir definieren das Integral fiir stetige Funktionen g : [a,b] — V mit Werten in einem
endlich-dimensionalen Banachraum V so:

Ist by, ..., b, eine Basis von V, so schreibt sich g als

9=">_9ibi

mit stetigen reellwertigen Funktionen g;. Wir setzen

/abg(t)dt = Z (/abgi(t)dt> b;.

K2

Man zeigt, dass das von der gewéhlten Basis unabhéngig ist. Falls V' = R™, bedeutet das
einfach komponentenweise Integration.

Fiir das so verallgemeinerte Integral gelten die folgenden vom R-wertigen Fall vertrauten
Regeln:

b
< / lgt)dt. (101)

b b b b b
/ (g + h)(t)dt = / g(t)dt +/ h(t)dt, / Ag(t)dt = )\/ g(t)dt, (99)
= [ aiar = g) (100)
Die beiden ersten Gleichungen folgen trivial aus der Definition. Die dritte beweise ich nur
fiir den Fall V' = R"™ und die Norm zum iiblichen Skalarprodukt (z,y) = > ;y;.

d [* '
a
b
/ g(t)dt
a
Aus folgt fiir v € R

b b b b
/ <w,g(t) >dt = / O vigi(t)dt = Zvi/ gi(t)dt =< v,/ g(t)dt > .
Setzt man .
vi= M € R", (102)
I [, a(t)dt|

so wird

|| / g(t)dt] =< v, / g(t)dt >= / <vglt) > di < / lg(t)llde.
(Cauchy—Schwarz)

Ebenso beweist man den allgemeinen Fall, nachdem man zuvor gezeigt hat, dass es zu jedem
v €V (bei uns v = [ g) ein w € L(V,R) gibt, fiir das ||w|| <1 und w(v) = |jv] ist.)
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1 Definition des Lebesgueintegrals

Wir haben in der Analysis I das Regelintegral fiir reell- (oder komplex-)wertige Funktionen
auf einem Intervall kennen gelernt. Es diente unter anderem zur Flichenberechnung. Will
man auch Volumina berechnen, so scheint eine Erweiterung der Integration auf Funktionen
von mehreren Variablen wiinschenswert. Das werden wir jetzt in Angriff nehmen, gleichzeitig
aber das Regelintegral verallgemeinern.

Es gibt verschiedene Integralbegriffe,

e eben das Regelintegral, welches Sie im ersten Semester kennengelernt haben,

e das Riemannsche Integral, das lange Zeit in den Lehrbiichern der Analysis Standard
war, und

e das Lebesguesche Integral, das wir in diesem Semester betrachten wollen.

Fiir Treppenfunktionen, ja fiir alle ,,anstindigen“ Funktionen, liefern diese Integrale densel-
ben Wert. Sie unterscheiden sich aber hinsichtlich der jeweiligen Menge der ,,integrierbaren
Funktionen; diese Menge vergroflert sich bei den obigen drei Integralbegriffen in der ange-
gebenen Reihenfolge.

Aber es ist nicht das Ziel, moglichst ,,exotische* Funktionen auch noch integrieren zu kénnen,
es geht um andere Vorteile: In vielen Anwendungen der Analysis moéchte man Grenzwertpro-
zesse in Funktionenrdumen, zum Beispiel im Raum der integrierbaren Funktionen, durch-
fiihren. Ein Beispiel aus der Theorie der Differentialgleichungen haben Sie im letzten Seme-
ster beim Beweis des Satzes von Picard-Lindelof gesehen, andere Beispiele im Zusammen-
hang mit der Fourier-Entwicklung von Funktionen gaben Lebesgue (um 1900) den Anlass
zur Entwicklung seiner Integrationstheorie. Ziel ist, dass unter méglichst allgemeinen Vor-
aussetzungen

n—oo n—o0

lim [ f, = / lim f,
gilt, und hier gewinnt das Lebesgueintegral um Léngen!

Der wesentliche Unterschied in den Definitionen kommt (jedenfalls bei unserem Zugang)
folgendermaflen zustande:

Zunéchst definiert man das Integral fiir Treppenfunktionen auf die offensichtliche Weise.
Dann erweitert man es auf Funktionen, die sich durch Treppenfunktionen ,,gut approximie-
ren“ lassen. Der Unterschied liegt in der Definition von ,,gut approximieren®.

e Bei den Regelfunktionen betrachtet man Grenzwerte von Folgen von Treppenfunktio-
nen im Sinne gleichmdf$iger Konvergenz.

e In der Riemannschen Theorie betrachtet man Funktionen, die sich zwischen zwei
Treppenfunktionen mit beliebig klein vorgegebener Integraldifferenz einsperren lassen
(Sandwiching).

e In der Lebesgueschen Theorie schliellich betrachtet man Grenzwerte von monotonen
Folgen von Treppenfunktionen.

Es gibt verschiedene Zugénge zum Lebesgueintegral. Der hier gewéahlte basierend auf Hir-
zebruch/Scharlauw und Weir geht zuriick auf Riesz-Nagy (vgl. Literaturliste). Er zielt direkt
auf das Integral im R™ und stellt die Monotonie in den Vordergrund. Das ist jedenfalls fiir
die Analysis angemessen und nach meiner Meinung versténdlicher als der (sehr elegante)
Zugang tiber eine axiomatische Maftheorie.



1.1 Intervalle und Mafle

e Wir lernen ein Axiomensystem fiir Mafle auf der Menge aller Intervalle des R™ kennen.
Diese Definition hat allerdings nur provisorischen Charakter. Spéter werden wir den
MafBbegriff auf eine viel grofiere Familie von Teilmengen des R™ erweitern.

e Schon im eindimensionalen Fall war die Definition des Integrals fiir Treppenfunktio-
nen nicht ganz einfach, weil man die Unabhéngigkeit von der Darstellung der Trep-
penfunktion zeigen musste. Den Beweis haben wir damals nur skizziert. In hoheren
Dimensionen ist das noch viel komplizierter. Wir formulieren und beweisen mit dem
Zerlegungslemma ein fundamentales Hilfsmittel fiir solche Probleme.

Wir beschranken uns nicht auf Fldchen- oder Volumenberechnung, sondern betrachten allge-
meinere Mafle. Stellen Sie sich etwa vor, dass Sie fiir einen Kérper im R? nicht das Volumen,
sondern durch Integration einer Dichte seine Masse ermitteln mochte.

Definition 1.
(i) Wir bezeichnen mit

I(R™) := {I Cc R" ’I =1 x...x I,, I beschrinktes Intervall in R}

die Menge der beschrdinkten Intervalle im R™. Dabei lassen wir auch leere Intervall zu.

Bemerkung: Der Durchschnitt zweier beschréinkter Intervalle ist wieder ein beschrénktes
Intervall.

(ii) Eine Abbildung ¢ : I(R™) — R heifit ein Maf, wenn sie additiv, monoton und regulir
ist, d.h. folgende drei Eigenschaften besitzt:

o Additivitit: Fiir alle I, I1, I, € I(R™) gilt
I=5LUI = ¢(I)=¢(h)+ ¢(l2).

Dabei bezeichnet U die disjunkte Vereinigung.
e Monotonie: Fiir alle I, J € I(R"™) gilt

IcJ = o) <o(J).
° Regularitéitﬂ
Vieirn) Ves0 Jyerrn) (J offen) A (I C J) A (¢(J) < o(1) +¢).
Aus der Additivitét folgt ¢(@) = 0 und mit der Monotonie dann ¢ > 0.

Beispiel 2 (Lebesguemafl). Das Lebesguemafl auf R ist definiert durch

0 fiir I = 0,

w1 IR) — R, I (1) := {sup(f) —inf(I) fiir T #0 '

Jedem Intervall wird also seine ,,Linge“ zugeordnet.

O

1Der Begriff der Regularitét stellt eine Verbindung zur Topologie des R™ her, der fiir die Analysis sehr
bedeutsam, in der abstrakteren Mafitheorie aber nicht erwiinscht ist und dort deshalb nicht auftritt.




Beispiel 3 (Produktmaf). Sind ¢, ¢ Mafle auf RP und R?, so definiert

(11 x I2) := ¢1(I1)¢2(12)
fir I x Iy € I(RP*T7) = [(RP) x [(RY) ein MaB, das Produktmafs ¢ = ¢1 X pa.
Insbesondere erhélt man das n-dimensionale Lebesquemaf i, rekursiv durch g, = prp—1 X 1.

Beweis der Majeigenschaften. Wir zeigen nur die Additivitdt, die beiden anderen FEigen-
schaften sind sehr einfach.

Sei I = JU K mit I = I x I, und entsprechend fiir J, K. Wir setzen voraus, dass J # 0 # K.
Dann gilt insbesondere
JUK,=I, q=12 (1)

1. Fall: Sei J; N K1 # (. Wir zeigen zuniichst, dass dann

Ji =K. (2)

Aus Symmetriegriinden geniigt der Nachweis, dass J; C K. Sei also xy € J; C I;. Nach
Voraussetzung gibt es y; € J1NK7, und dazu ein yo € Ky C I, so dass also (y1,y2) € K C I.
Nun ist (z1,y42) € [ = JUK. Wire (z1,y2) € J, so also y2 € Jy und (y1,y2) € J im
Widerspruch zu J N K = (. Also ist (z1,y2) € K und daher z; € K; und bewiesen.

Nun folgt wegen J N K = (), dass Jo N K3 = (). Damit ist

o(I) = ¢1(11)d2(I2) = ¢1(11) (P2(J2) + P2(K2))
= ¢1(J1)p2(J2) + ¢1(K1)p2(Ka) = ¢(J) + ¢(K).

2. Fall: Jo N Ky # 0. Beweist man wie den ersten Fall.

3. Fall: 1N K; =0=JyN K. Seien x1 € Jy,y2 € Ks.
Nach ist dann (z1,y2) € I, also z.B. (z1,y2) € J. Dann ist aber yo € Jo. Widerspruch!
Dieser Fall kommt nicht vor.

O

Beispiel 4 (Diracmafl). Sei M C R” eine diskrete Teilmenge, d.h. #(M N K) < oo fiir
jedes kompakte K C R™. Dann definiert

op(I) :=#(MNI)

ein MaB. Fiir M = {0} heifit § := d5; das Diracmaf in 0.

Satz 5 (Additivititssatz fiir Intervalle). Seien I, 1,...,I;; € I(R") und I,..., I}
paarweise disjunkt. Dann gilt:

I= U L = )= Y o).

j=1,...k j=1,...k

Das Problem beim Beweis verdeutlicht die folgende Vereinigung von 5(!) Intervallen:



Keine zwei dieser Intervalle bilden vereinigt ein Intervall. Deshalb kann man nicht einfach
das Additivitdtsaxiom mehrfach anwenden.

Die Losung bietet eine Zerlegung in
kleinere ,,atomare” disjunkte Interval-
le, in der Abbildung die vier Ecken, die l l
vier offenen Seiten und die offene Recht- :
eckfliche. Daraus kann man erst ver-
tikale ,Spalten“ und daraus dann das
ganze Intervall so aufbauen, dass man
jedesmal das Additivitdtsaxiom anwen- dann Uber der rechten unteren Ecke einen "Turm" aufbauen.

den kann. Das Mafl des ganzen Inter- l [
valls, aber auch das Maf} jedes der obi-
gen fiinf Teilintervalle ist jeweils die
Summe der Mafle der beteiligten ,, Ato-

“

me”.

Erst Uber der linken unteren Ecke,

dann Gber dem offenen mittleren Intervall,

SchlieBlich die Tirme zusammensetzen.

Wir nennen eine Familie (J,)1<,<m von paarweise disjunkten Intervallen aus I(R™) eine
Intervallkette, wenn
T
U7
p=1

fiir jedes r € {1,...,m} ein Intervall ist. Nach vollstindiger Induktion ist dann fiir jedes
Maf ¢
m m
Qb(U Jp) = Z¢('Jﬂ)
p=1 p=1

Der Beweis des obigen Satzes wird im wesentlichen reduziert auf das folgende

Lemma 6 (Zerlegungslemma). Seien I',... I™ € I(R™). Dann gibt es eine Familie

(Jp1...pn)1<pi <dm—1

von (dm—1)" (zum Teil vielleicht leeren) Intervallen in I(R™) mit folgenden Figenschaften:

(i) Die J,, .. ,, sind paarweise disjunkt.

(i) Fir alle q ist

I = U JP1-~Pn .
anJm---ﬂn?é@

10



(#ii) Definiere fir g € {1,...,m}

S =10 Ty

(Nach (i), (ii) ist das leer oder = J,, ,,.) Definiere weiter fir 1 < j < n und
]-Spla"'apj §4m*1

4m—1

q — q
Jp1-~ﬂj - U Jp1~~pjpj+17...,pn'

Pjt15sPn=1

Dann ist fir alle1 < j <n und alle1 < py,...,pj—1 <4m —1 die Familie

Tirs,)

( PLPi ) 1<p;<am—1
eine Intervallkette.

(iv) Ist ¢ ein Maf auf R™, so gilt

4m—1

oI = > (T,

P1ypn=1

Beweis. Wir beweisen (i) - (i) durch vollstdndige Induktion iiber die Dimension n.
n = 1. Seien a4 :=inf 19, b, := sup I? und

{CLq |q€{1,,m}}U{bq |q€{1,...,m}}:{Jl,Jg,...,Jgr_l}

Ji < J3 < ... < Jor_g.

Das sind r < 2m Punkte, weil ja Endpunkte der Intervalle zusammenfallen kénnen. Wir
bezeichnen die r — 1 offenen Intervalle dazwischen mit Jo; =]Jo;—1, Jo;+1[- Wenn wir die
Joi—1 als einpunktige Intervalle verstehen, haben wir also eine Folge von 2r —1 < 4m — 1
aneinander anschliessenden disjunkten Intervallen. Wenn es weniger als 4m — 1 sind, fiillen

wir durch leere Intervalle auf, setzen also Jo, = ... = Jym—_1 = 0.
m=3, n=1 .J10,J11 =ﬂ
yo o oy, b Js Y5 o Jg Jg
—_— - - - ——
|2 |3

Dann ist offenbar (J,)1<,<am—1 eine Intervallkette, und es gelten (4) und (ii). Fiir jedes ¢
ist weiter (Jg)1§p§4mf1 eine Intervallkette, die in der Regel mit einigen leeren Intervallen
beginnt (und endet), und es ist

4m—1
= J g
p=1
Damit gilt ().
n —n+ 1. Sei
17 =1719xJ4

mit 79 € I(R”) und 19 € I(R). Wir wihlen dazu

11



o J geméaf der Induktionsvoraussetzung und
~p1-pn

° jp wie im Fall n = 1.

Damit setzen wir

Jorecpnpnir = X Jpis
~p1-.pn

Diese Intervalle erfiillen die Behauptung: Sie sind paarweise disjunkt, weil ihre Faktoren
disjunkt sind. Es gilt

If=1I"x iq - U J X U jpn+1
IqﬁJpl pn7é® P1---Pn fqmjpn+1¢@
- U AJJ x Jp"+1 = U Jl)1~~-f)n+1'
Iq n J 7& @ P1---Pn Iqm‘]91~-~ﬁn+17£®
I n JP +1 7& @

Die Kettenbedingung (7i4) folgt fiir den letzten Index p,y; aus dem Fall n = 1 und fiir die
anderen aus der Induktionsvoraussetzung, weil eine Intervallkette eine Intervallkette bleibt,
wenn man das Kartesische Produkt ihrer Glieder mit einem festen Intervall bildet.

Damit sind (%) - (i) bewiesen.

Schlieflich gilt (vi) wegen

“o(Un) - Semege () e g Dot

Pn

O
Beweis des Additivititssatzes. Wahle zu I, 11, ..., I; eine Familie (J,,. ,,) wie im Zerle-
gungslemma. Weil I = JI;, ist ohne Einschrénkung
I= U Jﬂlu-Pn'
1<p1,.,pn<4k—1
Dann gilt
k
S o)=Y X 6k )=o)
Jj=1 J=1p15050n
O

Wir formulieren die Ergebnisse aus Zerlegungslemma und Additionssatz noch einmal in einer
“griffigen” Kurzform:

Lemma 7 (Zerlegungslemma, Version 2). Zu I,..., Iy € I(R™) gibt es paarweise
disjunkte Jy, ..., J. € I(R™) mit folgenden Eigenschaften:

Fiir alle j € {1,...,k} und Mafle ¢ : I(R™) — R ist

Uqund¢ Zfb

I;NJ,#0 I;NJ,#0

12



Bemerkung. Fiir [(R") gilt

(i) 0 e I(R™).
(i) I1, I, € [(R") = I, NI, € I(R).
(iii) Sind I,J € I(R™) mit J C I, so gibt es (nach dem Zerlegungslemma) paarweise
disjunkte Menge Jy, ..., Jy € [(R™) mit 1\.J = J>_, Jj.

In der Mafitheorie nennt man I(R™) dann einen Semiring und fragt, unter welchen Voraus-
setzungen sich eine additive und monotone Funktion auf einem solchen fortsetzen ldsst zu
einem Maf auf der von dem Semiring erzeugten o-Algebra - was auch immer das genau
bedeuten mag. Vergleiche dazu den Abschnitt [5

13



1.2 Treppenfunktionen. Nullmengen
e Die Definition fiir das Integral von Treppenfunktionen beziiglich eines gegebenen Ma-
Bes ist nun kanonisch.

e Mit den Nullmengen eines Mafes lernen wir einen zentralen Begriff der Lebesgueschen
Integrationstheorie kennen.

e Wir beweisen ein erstes Lemma iiber die Integration monotoner Folgen.

Sei ¢ ein Maf} auf R”™.

Definition 8 (Charakteristische Funktion und Treppenfunktion).
(i) Fiir eine Teilmenge A C R™ bezeichne

X4 R*"—R
die charakteristische Funktion mit

(2) 1 firx e A,
T) =
Xa 0 sonst.

Beachten Sie:
XAuB=XaTXp~XanB
und insbesondere

XauB = XA T Xp:

(ii) Eine Funktion der Form

[= Z auX[u (3)
pu=1
mit a, € R, I, € I(R™) heifit Treppenfunktion.

Bemerkungen:

e Die Darstellung ist nicht eindeutig!

e Nach dem Zerlegungslemma [6] gibt es immer eine Darstellung mit paarweise dis-
junkten I,,.

e Treppenfunktionen sind beschrinkt und haben kompakten Triger. (Der Triger
einer reellwertigen Funktion ist die abgeschlossene Hiille der Punktmenge, auf der
die Funktion # 0 ist.)

(iii) Das ¢-Integral von f wie in (3]) definiert man als

[ do=3" w001,
p=1

Unabhdngigkeit von der Darstellung. Sei

m n
f= Z uXyp, = Zb”XKV'
p=1 v=1
Nach dem Zerlegungslemma existiert eine Familie disjunkter Intervalle J,, so dass

L= 7 K= J.

JpNI, #0 JoNK, #0

14



Es folgt

m
IEDIUED SRV S I ST PR SY D SEN % FYRENC)
w=1l " J,NI,#0 P \JpNI,#0 P \J,NK,#0

und nach Satz [l

)= Y o), oK)= Y ()

JpNI,#0 JpNK, #0

Weil die J, paarweise disjunkt sind, sind die Koeflizienten von x ;. in den beiden letzten
P
Termen von (4)) gleich. Es folgt

m m

Z%@(IM):ZCLM Z ¢(JP):Z Z ap | ¢(Jp)

=1 J,NI,#0 P JoNI 70

=30 D0 b o) =D bo(K,).

p JoNK,#0

Satz 9. Die Treppenfunktionen auf R™ bilden einen Vektorraum T (R™). Das Integral
T®) =R o [ 1o

ist linear und monoton: [ fd¢ < [gde, falls f < g.

Beweis. Die Vektorraumeigenschaft und die Linearitéit sind klar nach der Definition.

Zur Monotonie: Sind f und g zwei Treppenfunktionen, so gibt es nach dem Zerlegungssatz
eine endliche Menge beschrinkter, paarweise disjunkter(!) Intervalle I, ..., I,,, so dass sich
f und g schreiben lassen als

m m
fzzaiX[iv g:ZﬁiX]i-
=0 =0

aus f < g folgt a; < 3; fiir alle ¢ und daraus [ fd¢ < [ gdée. O
Definition 10 (Nullmengen). N C R" heiit ¢-Nullmenge, wenn es zu jedem € > 0 eine
Folge (1)) in I(R™) gibt, so dass
NclJI wd Y o) <e
k=0 k=0
Bemerkung: Wegen der Regularitéitseigenschaft gibt es dann auch immer eine solche Folge
(Ix) von offenen Intervallen. (Beweis?)
Beispiele 11. (i) Einpunktige Mengen sind p,,-Nullmengen.
(if) R™\ {0} ist eine 6 -Nullmenge, aber {0} ist keine § -Nullmenge.

15



Beispiel 12 (Cantormenge) Die Cantormenge C entsteht aus dem Intervall [0, 1], indem
man das mittlere Drittel ]3, 3[ herausnimmt, aus jedem verbleibenden Intervall wieder das
mittlere Drittel herausnimmt usw. Durch die Konstruktion ergeben sich endliche Folgen von
Intervallen der Gesamtlinge

1,2, ...

[SCI )
O =~

Zu gegebenem € > 0 148t sich C also sogar durch nur endlich viele Intervalle einer Ge-
samtlinge = (%)k < e iiberdecken. Die Cantormenge ist daher eine p1-Nullmenge.

O

Satz 13. Abzdhlbare Vereinigungen von Nullmengen sind Nullmengen.

Beweis. Seien (N;);en eine Folge von ¢-Nullmengen und N = [J N;. Sei € > 0. Dann gibt es

zu jedem i € N eine Folge (I;;)jen, fir die N; C UjeN I;; und
Z ¢ 2z+1
7=0

Wir bezeichnen mit (Ji)ren die “Diagonalfolge”

Ioo, 1o, o1, 120, In1, lo2, 130, 121, 112, Io3, - . .

N:UNiC U Iij:UJk-

ieN i,jEN keN

Dann ist

Andrerseits ist
m

kz:od)']k SZZ 1] <22l+1

i=0 j=0
Also ist Y7o o d(Jg) < e O

Beispiele 14. 1. Weil einpunktige Mengen p1-Nullmengen sind, ist die abzidhlbare Menge
Q C R eine p1-Nullmenge.

2. Die Cantormenge ist eine iiberabzihlbare p;-Nullmenge. Stellt man nédmlich die Zahlen
in C im ,, Trialsystem® dar, so erhélt man genau die Zahlen der Form 0.a1a2a3 ... mit a; # 1
fiir alle j. Diese Menge ist aber offensichtlich gleichméchtig zur Menge [0,1] C R dargestellt
im Dualsystem, also iiberabzéhlbar.

O
Definition 15. Sei ¢ ein Mafl auf R™.

(i) Zwei Funktionen f, g : R™ — R heiflen ¢-gleich, wenn es eine ¢-Nullmenge N gibt, so
dass

f|]R"\N = 9|R"\N~
Wir schreiben das als
f=e9
Analog definiert man f <4 g etc.
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(ii) Eine Folge (f;) von Funktionen heifit ¢-konvergent gegen eine Funktion f, wenn es
eine ¢-Nullmenge N gibt, so dass lim f;(x) = f(x) fiir alle x ¢ N. Wir schreiben das
als

hHLﬂ1:¢ f.

(iii) Man sagt f : R™ — R ist eine ¢-definierte Funktion, wenn f auf dem Komplement
einer ¢-Nullmenge N definiert ist, eigentlich also eine Abbildung f : R" \ N — R ist.

Wenn klar ist, von welchem Mafl die Rede ist, sagt man auch einfach ,, f und g sind fast-
iiberall gleich®, (f;) ist ,fast-iiberall konvergent‘“, f ist ,fast-iiberall definiert“ etc.

In unserem Aufbau der Lebesgueschen Integrationstheorie spielen monotone Funktionen-
folgen eine wichtige Rolle. Eine einfache Situation beschreibt das folgende Lemma, dessen
Beweis erstaunlich schwierig ist.

Lemma 16 (Monotone Nullfolgen von Treppenfunktionen). Sei (h,,)men eine Folge
von Treppenfunktionen mit

(i) hpm >0 fiir alle m € N,

(ii) hpm(x) > hpyr(x) fir alle m € N und © € R™,

(i) 1My — o0 i =g 0.

Dann gilt
lim [ h,d¢=0.

m—00

Beweis. Wegen der Monotonie geniigt es zu zeigen: Zu jedem € > 0 gibt es ein mg mit

/hmodgb <e.

Sei also € > 0. Wir withlen ein kompaktes Intervall K € I(R"), auf dessen Komplement hg
und damit jedes h,, verschwinden, und ein M > 0 mit hg < M.

Zu jedem h,,, wihlen wir endlich viele paarweise disjunkte Intervalle J,,,, C K (1 < p < ry,),
so dass

T'm
hy, = Z amprmp
p=1

und U;;’”l Jmp = K. Das ist moglich nach dem Zerlegungslemma angewendet auf K und die
Konstanzintervalle von h,,.

Damit definieren wir
Si={(m,p) |amp <e€}.

Sei N eine ¢-Nullmenge, auf deren Komplement lim,, oo Ay, = 0 ist, und sei dazu (Ji)ren
eine Folge offener Intervalle mit

N cC U Jj, und qu(jk) <e.

keN k=0
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Wir wollen auch die J,,, durch offene Intervalle ersetzen, um die Kompakheit von K aus-
nutzen zu kénnen. Wir wihlen dazu fur jedes (m, p) eine Zahl €,,, > 0 mit

oo Tm
g g €mp < 1,
m=0 p=1
etwa €, = 2+71,1+1, und ein offenes Intervall J,, mit

jmp D Jpmp und ¢(jmp) — O(Jmp) < €mpe.

Ist lim Ay, (xz) = 0, so gibt es ein m mit hp,(z) < €, d.h ein (m,p) € S mit z € Jpp,),.
Andernfalls ist x € N, also enthalten in einem J. Daher ist

we (i) o (Us)

Weil K kompakt ist, gibt es eine endliche Teilmenge Sy O S und ein [ € N, so dass

KC(Ujmp>U U :(LSJJmp>u<ngp\Jmp>u Uil ®

So k<l k<l

Sei mg das grofite der in Sy vorkommenden m’s und sei z € K.

o Gibt es (m, p) € Sp mit & € Jy,p, 50 ist hypy () < hin(2) = iy < €.

e Ist z in einer der beiden letzten Teilmengen von (B]), so ist jedenfalls hy,, (z) < M.

Also ist
hmg <€) x5, MY X5 g TMY X,
So So k<l
——
SXK

Mit der Monotonie des Integrals erhalten wir

/hmodqb < ed(K) + MY €mp)e+ Me < ($(K) + 2M)e.

Als Folgerung erhalten wir

Lemma 17. Fir I € I(R™) gilt

I ist ¢-Nullmenge <= ¢(I)=0.

Beweis. Zu (<). Trivial: Uberdecke I durch sich selbst und eine Folge leerer Intervalle.

Zu (== ). Die Folge (h, := X[)men ist eine monoton fallende Folge nicht-negativer Trep-
penfunktionen, die fiir alle z ¢ I gegen 0 konvergiert. Nach Voraussetzung ist sie also
¢-konvergent gegen 0. Daher gilt

o(I) = / B dp — 0.
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Lemma 18. Sind f,g € T(R™) mit f =4 g, so ist fir jedes Maf ¢
[ tdo= [ gao.

Beweis. Ohne Einschriankung kénnen wir annehmen, dass
f= Z%Xw 9= Zbﬂxlu
I p
mit denselben paarweise disjunkten Intervallen. Dann ist

[ 0= 0,00, [ gdo =3 b0,

Aus a, # b, folgt nach Voraussetzung, dass I, eine ¢-Nullmenge ist, nach dem vorstehenden
Lemma also ¢(I,,) = 0 gilt. Damit folgt die Behauptung.

O

Im Zusammenhang mit der Monotonie werden wir es im folgenden h#ufig zu tun haben mit
dem Supremum von zwei (oder mehr) Funktionen:

Definition 19. Wir definieren

sup(f, 9)(x) := sup(f (), g(x)).

(Man konnte das auch das Mazimum nennen, ist aber nicht iiblich).
Machen Sie sich klar, dass fiir reelle Zahlen(folgen) gilt
a>0 = sup(a+b,0) <a+sup(d,0),

sup(a, b) < sup(a,0) + sup(b, 0),
lima; =aund limb; =b = limsup(a,,b;) = sup(a,b).

,_\AA
x® 3 D
NN

Lemma 20. Das Lemma[16 gilt auch ohne die Voraussetzung (i).

Beweis. Definiere g,,, := sup(h,, 0). Die Treppenfunktion g,, entsteht also aus der Treppen-
funktion h,,, indem man auf den Konstanzintervallen mit negativem Funktionswert diesen
durch 0 ersetzt. Ist h,, < 0 auf einem Intervall I € I(R"), so konvergiert h,,(x) wegen der
Monotonie fiir kein x € I gegen Null. Weil aber lim h,,, =¢ 0, ist I eine ¢-Nullmenge, d.h.

Im =¢ hom,

/ gmdd = / hundo.

Dann erfiillt (g, )men die Voraussetzungen (i)-(iii) des Lemma [16] und daher ist

und

m—0o0 m—00

0= lim gmde = lim /hmdgb.
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1.3 Das Integral auf £ (¢)

e Wir erweitern nun den Integralbegriff auf Grenzwerte monoton wachsender Folgen von
Treppenfunktionen. Weil die Integralfolge dann ebenfalls monoton wachsend ist, muss
sie beschrénkt sein um zu konvergieren.

e Die so erhaltene Klasse £}r(qb) von Funktionen ist sehr grof}, sie umfasst insbesondere
alle stetigen Funktionen mit kompaktem Tréger und im Fall vo ¢ = u alle Regelfunk-
tionen.

e Wir untersuchen die elementaren Eigenschaften des Integrals auf der Klasse £} (¢).

Sei ¢ ein Maf} auf R”™.

Definition 21. Wir bezeichnen mit £} (¢) die Menge aller Funktionen f : R" — R mit
folgender Eigenschaft:

Es gibt eine monoton wachsende Folge von Treppenfunktionen (f;);en (9)
mit beschréinkter Integralfolge ([ fi d¢)ien, so dass lim f; =4 f.

Wegen der Monotonie des Integrals auf Treppenfunktionen ist die beschréinkte Folge ( [ f; d)ien
konvergent. Wir zeigen, dass der Limes nur von f abhéngt und bezeichnen ihn mit

/fd¢.

Wir nennen der Einfachheit halber (f;);en eine (integral)definierende Treppenfunktionsfolge
zu f.

Lemma 22. Seien (f;), (g;) monoton wachsende, ¢-konvergente Folgen von Treppenfunk-
tionen mit beschrankten Integralfolgen und

f=1m f; <4 lim g; =: g.
11— 00 11— 00

Dann gilt
lim [ f;d¢ < lim / g; do.

Steht links Gleichheit, so auch rechts, und daraus folgt die gewiinschte Unabhéngigkeit der
Integraldefinition von der Wahl der definierenden Treppenfunktionsfolge.

Beweis. Wegen der Monotonie der Folgen ist
fi<¢ [ 9i <4 9,
Wir wéhlen ¢ € N und definieren
hj =sup(0, f; — g;).

Dann ist (h;j)jen eine monoton fallende Folge nicht negativer Treppenfunktionen, und weil
fi S¢ f §¢ 9, ISt
lim hj =4 sup(fi —¢,0) =4 0. (10)
j—oo

Nach Lemma [16] ist daher

0=t [ o> lim [ (7~ gp)do= [ fido~ i [ g0

J—00

20



Also ist fiir alle ¢
[ fito <t [ g0
j—o0
Daraus folgt mit ¢ — oo die Behauptung. O

Weiter gilt folgendes

Lemma 23. Ist f € L1(¢) und g =4 f, so ist g € LY (¢) und
Jodo= [ ras

Beweis. Ist (f;) eine definierende Treppenfunktionsfolge fiir f, so ist es auch eine solche fiir
g. Daraus folgt die Behauptung. O

Beispiel 24. Weil Q eine p1-Nullmenge ist, gilt fiir die charakteristische Funktion
f= XQ Tm 0¢€ £}§—(U1)-

Also ist f € L4 (p1) und [ fduy = 0. Dagegen ist f|j,1) keine Regelfunktion und nicht
Riemann-integrierbar.

O

Satz 25. Seien f,g € L} (¢) und a > 0. Dann gilt
(i) f+g€LL(¢) und [(f +g)dd = [ fdo+ [ gd.
(ii) af € LY(¢) und [afdp =a [ fdp.

(iii) f <o g = [ fdd < [ gdo.

(iv) sup(f,g) € LL(9).

Beweis. Zu (i) und (ii). Folgen sofort aus der Definition des Integrals fiir £} (¢) und den
entsprechenden Aussagen fiir Treppenfunktionen.

Zu (iii). Das ist Lemma

Zu (). Sind (f;); und (g;); definierende Folgen von Treppenfunktionen zu f und g, so ist
sup(fo, 90) < sup(fi,g1) < ...

eine monoton wachsende Folge von Treppenfunktionen(!) mit

lilm(sup(fi,gi)) =4 sup(f, g)-

Ist die Integralfolge beschrinkt?
sup(fi, gi;) < sup(fi,0) +sup(0, g;) = sup(fi — fo +fo,0) + sup(0, g — go +9o0)
7D — —
>0 >0

— fo +sup(fo,0) + g; — go + sup(0, go)

I @A

fi
fi+9i — (fo+ g0 — sup(fo,0) —sup(0,90)) = fi + gi — ho-

:Zho
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Daher gilt nach der Monotonie des Integrals fiir Treppenfunktionen

[suwtsignis < [ sao+ [ado— [ nodo,

und mit ([ f;d¢);, ([ gid$); ist auch diese Integralfolge beschriinkt. O

Beispiel 26. L (¢) ist kein Vektorraum:

Sei I := [+, 4. Dann definiert
k 8
fi = Z /Xy, ’
Jj=0 s f,
eine monoton wachsende Folge von Treppen- 4
funktionen mit beschréankter p-Integralfolge s
2
k 1
o3 3
/fkdﬂl = 22] FrES] < 3 0.2 0.4 06 0.8 1
j=0

Also ist -
f=lmfi = 2x; €LY ().
j=0

Dagegen ist —f ¢ £ (1), weil jede Treppenfunktion nach unten beschréinkt und deshalb
auf einem Intervall ]0, 4%[ grofler als f ist. Daher gibt es keine monoton wachsende Folge

von Treppenfunktionen, die p;-fast-iiberall gegen f konvergiert.

O

Satz 27. Sei f : R™ — R beschrinkt mit kompaktem Trdgeﬂ. Ist die Menge der Unstetig-
keitsstellen von f eine ¢-Nullmenge, so ist f € E}r(qﬁ). Insbesondere sind stetige Funktionen
[ :R™ — R mit kompaktem Triger in LY (¢) fir jedes Maf ¢.

Beweis. Sei K = [-R, R]"] € I(R™) ein kompakter Wiirfel, der den Triger von f enthilt,
und sei diam(K) der Durchmesser von K.

Durch i-fache Halbierung in jeder Koordinatenrichtung erhilt man 2™ Intervalle vom Durch-

messer )
1 i

die sich an den Réndern iiberlappen. Durch Anwendung des Zerlegungslemmas auf die In-
tervalle der i-ten Stufe erhilt man paarweise disjunkte Intervalle

Jioy - Jir,

mit folgenden Eigenschaften

2Der Triger einer Funktion f ist die abgeschlossene Hiille der Punktmenge {xz ‘ f(z) #0}.
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L
K=JJ; . . o
j=0
(ii) Fiir alle j ist
. 1\ .
diam J;; < (2> diam K.

(iii) Jedes Jj11); ist enthalten
in einem J; ;.

Wir setzen

ogj =1inf {f(z) |z € J;; } und f; == ZainJij'
=

Dann ist (f;) eine Folge von Treppenfunktionen. Wegen (i) und (iii) ist die Folge monoton
wachsend. Weiter gilt fiir alle 4

fi <sup f(z) X -
Deshalb ist die Integralfolge ([ f; d¢) beschriinkt durch sup,, f(z) ¢(K).

Aus der e-0-Definition der Stetigkeit folgt schlielich mit (i), (ii), dass lim; . fi(z) = f(2)
in allen Stetigkeitspunkten « von f. Also ist nach Voraussetzung lim; . fi =¢ f und (fi)ien
eine definierende Treppenfunktionsfolge fiir f. O

Beispiel 28. Der Rand eines Intervalls I € I(R™) ist die Vereinigung von endlich vielen
(n — 1)-dimensionalen Intervallen, also eine u,-Nullmenge. Ist daher f : I — R stetig und
beschrankt, und setzt man

0 sonst,

{f(m) firzel

so ist nach dem vorstehenden Satz f € £} (un).

In diesem Sinne sind also stetige Funktionen auf kompakten Intervallen in £1+ (t4n). Vergleiche
auch Beispiel

O

Satz 29 (Regel- und Lebesgueintegral). Sei f : [a,b] — R eine Regelfunktion. Wir
setzen f(x) =0 fir x ¢ [a,b]. Dann gilt f € L (p1) und

[ i = /  fla)de.

Beweis. Sei (€;)ien eine positive Nullfolge. Nach Definition der Regelfunktionen gibt es dazu
eine Folge (f;)ien von Treppenfunktionen, so dass

fi— €iX[a,b] sf=fi+ €iXa,b]’
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Wir definieren Treppenfunktionen

gi = fi— EiX[a,b}’

hi = Sup(QOv ) )gl)
Dann ist (h;);eny monoton wachsend, und offenbar
gi < hi < f <sup(|fDx, 4
Fiir alle x € R ist
lim g;(z) = lim f;(2) — lim €iX[q,b] = f(x)

und daher

lim h;(z) = f(z).

11— 00

Die Integralfolge der h; ist durch sup(|f])(b— a) beschréinkt. Also ist f € £ (p1), und nach
Definition des Regel- und des Lebesgueintegrals ist

[ i = / ' fla)a.
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1.4 Das Integral auf £!(¢)

e Die Klasse £1+ (¢) ist zwar sehr grof, aber noch nicht grof§ genug: Sie ist, wie das Bei-
spiel 26| gezeigt hat, nicht abgeschlossen beziiglich Differenzbildung. Dieses Manko ist
leicht zu beheben. Damit ist dann die Definition des Lebesgueintegrals abgeschlossen.

Sei ¢ ein Maf} auf R”™.

Definition 30. (i) Wir nennen
LY¢):={f—g|f,.9€ Li(9)}
die Menge der beziiglich ¢ (Lebesque-)integrierbaren Funktionen.

(ii) Fiir h € £LY(¢) und f,g € L1 (¢) mit h = f — g definieren wir das Integral von h als

/ hdg = / fdo - / gdg.

Es ist leicht zu sehen, dass diese Definition unabhiingig von der Wahl von (f, g) ist:
Sind f,g,f,j € L% (¢) und gilt )
f=F<49—3:
so folgt f +§ <4 f + g. Nach Satz [25{ist dann [ fdp + [ gde < [ fdp + [ gd¢ und daher

/fd¢—/gd¢g/fd¢—/gd¢.

¢-Gleichheit der Funktionen impliziert die Gleichheit der Integrale.

Satz 31. (i) L1(¢) ist ein R-Vektorraum und

/ do: L1(¢) — R
ist linear.

(ii) Fir f,g € LY (¢) gilt
f<og — /fd¢s/gd¢>.

(iii) Fiir f,g € LY(¢) gilt
sup(f, ), inf(f, g) € L(¢).

(iv) Mit f € LY(p) ist auch |f| € L(p), und es gilt

[ sas1 < [ 15146

Beweis. Zu (i). dass £L1(¢) ein Vektorraum ist, ist klar. Die Linearitit ergibt sich leicht
aus Satz

Zu (ii). Siehe oben

25



Zu (iii). Fir f = fi — fo mit f1, fo € L1 (¢) zeigt man durch Fallunterscheidung nach dem
Vorzeichen von fi; — fa:

sup(f,0) = sup(f1, f2) = J2,
eLi(9)  Li(9)

Also ist sup(f,0) € L1(¢). Daraus folgt fiir f,g € L(¢)

sup(f,g) = sup(f —g,0) + € L'(¢).

g
—_——— ~~

LY (9)  eLY(9)

Weiter folgt
inf(f, g) = —sup(—f, —g) € L(¢).

Zu (w). Aus (i) und
|| = sup(f,0) + sup(—£,0)
folgt | f] € L1(¢). Aber —|f| < f < |f|, und die Monotonie liefert

- [1nias < [ sa0 < [ 11140

O

Korollar 32. Seien f € L'(¢) und g =, f. Dann gilt g € L'(¢) und

[ tdo= [ gao.
Beweis. Sei f = f1 — fo mit f; € LY (¢). Dann folgt
fi=g+fo= f+fa=F
Nach Lemma [23|ist f; € £} (¢) und daher
g=FH—fae L)
Die Gleichheit der Integrale folgt dann aus Punkt (4) im vorstehenden Satz. O
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2 Die Konvergenzsitze

Die meisten ,in der Praxis“ vorkommenden Funktionen sind integrierbar beziiglich aller
giangigen Integralbegriffe. Der Vorteil des Lebesgueschen Integrals gegeniiber dem Riemann-
schen oder dem Regelintegral ist sein angenehmes Verhalten bei Grenzwertprozessen im In-
tegranden. Das ist zum Beispiel wichtig, wenn es um die Konvergenz von Approximations-
oder Iterationsverfahren geht.

2.1 Der Konvergenzsatz von Beppo Levi

e Der Satz von Beppo Levi iiber die Integration monotoner Funktionenfolgen ist die
erste “Belohnung” fiir die miihevolle Integraldefinition.

e Als Anwendungen erhalten wir ein Kriterium fiir Integrabiltit und den Beweis, dass
alle Riemann-integrierbaren Funktionen auch Lebesgue-integrierbar sind.

e Das Lemma von Fatou ist ein Grenzwertsatz ohne Monotonievoraussetzung.

Sei ¢ ein Maf} auf R”™.

Das folgende Lemma besagt, dass £!(¢) und £} (¢) ,nicht so stark von einander abweichen®.
Wir werden spéter beweisen, dass beziiglich einer sehr natiirlichen Norm auf dem Vektorraum
L(¢) der Unterraum L4 (¢) dicht ist: die abgeschlossene Hiille von £ (¢) ist £'(¢). Im
Augenblick bendtigen wir das Lemma, um Eigenschaft von £ (¢) auf £!(¢) zu iibertragen.

Lemma 33. Seien f € LY(¢) und e > 0. Dann gibt es g,h € L1 (¢) mit folgenden Eigen-
schaften:

(Z) f:gfhﬂ
(i) h >0,
(i) [hdg <.

Beweis. Nach Definition von £!(¢) gibt es g1, € L1 (¢) mit
f=g91—hi.

Sei (s;) eine definierende Folge von Treppenfunktionen zu hy und k € N, so dass fiir das im

Lemma vorgegebene e gilt:
0§/h1d¢>—/skd¢<e.

Dann gilt mit hy = hy — s, g2 = g1 — Sk:
ha, g2 € LL(®), [ =g2— ha, /hz do < e.
Weil die Folge (s;) monoton wachsend und lims; =g hq, ist

ho Z¢ 0.

Das ist fast die Behauptung des Lemmas, nur ist he moglicherweise auf einer ¢-Nullmenge
negativ. Wir setzen daher h := sup(hs,0) € L1 (¢) und g := f + h. Da diese Funktionen nur
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auf einer ¢-Nullmenge von ks und g, abweichen, sind sie ebenfalls in £} (¢) und erfiillen die
Behauptung. O

Satz 34 (von Beppo Levi iiber monotone Konvergenz). Sei

fo<o 1 <o f2 <o ..o,

eine ¢—monoton wachsende Folge in L'(¢p) mit beschrinkter Integralfolge: Es gibt A € R
mit

/fid¢ < A fir alle i € N.
Dann gibt es f € L(¢) mit

/ fdo = lim / fido.

Analoges gilt fiir ¢-monoton fallende Folgen: Betrachte (— f;)ien.

Beweis. Ohne Einschrénkung kénnen wir annehmen, dass

O=fH<fi<fa< ..

mit iiberall geltenden Ungleichungen. Die Folge

fi =sup(fo — fo. fr = fo. fo = fos- - fi = fo)
hat ndmlich diese Eigenschaften, und es gilt fz =4 fi — fo fiir alle 4.
Den Beweis fithren wir entsprechend der Definition des Integrals in drei Schritten.

1. Schritt. Seien die f; Treppenfunktionen. Weil monotone beschrinkte Folgen konvergent
sind, miissen wir nur zeigen:

N :={z ‘ (fi(x)); unbeschrénkt } ist eine ¢-Nullmenge. (11)

Dann ist (f;)ien ¢-konvergent, und aus der Definition von £ (¢) folgt der Rest der Behaup-
tung.

Sei € > 0. Wir suchen eine Intervallfolge (I;), die N iiberdeckt und fiir die Z;io o(I;) <e.

Mit der oberen Schranke A fiir die Integralfolge setzen wir

E; = {x filx) > QA}

€
Weil fo =0, ist Ey = 0. Wegen der Monotonie von (f;) ist

E; C Eitq,

und nach Definition von N ist -
N C U E;.
i=0
Nun ist f; eine Treppenfunktionen, und E; deshalb Vereinigung endlich vieler disjunkter
Intervalle. Also sind die y B und damit die Funktionen x BA\E_1 = XE, ~ XE,_, Treppen-
funktionen. Daher gibt es eine monoton wachsende Folge natiirlicher Zahlen (r;);en und eine
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Folge paarweise disjunkter Intervalle (I;);en in I(R™), so dass

T
XEN\Eioy — Z XI]-'

j=ri—1+1
Es folgt

E; = UUSJ,S”IJ- und N C L%Ij.
J

Weil f; > 0, ist nach Definition von E;

24 24
fi>  XB, T o Zoxlf
J:

i

und daher
oder

Damit ist bewiesen.

2. Schritt. Seien nun die f; € £ (¢) mit f; < fi41. Nach Definition von £} (¢) gibt es dann
zu jedem 7 eine monoton wachsende Folge von Treppenfunktionen (s;;) en mit

lim s;; =4 f; und lim /sij do = /fZ do.
j—o0 j—oo

Die Funktionen
Sk ‘= Sup Sjj.
i,j<k
sind Treppenfunktion. Offenbar gilt
Sk < Sk41-
Aus der Monotonie und ¢-Konvergenz von (s;;);en sowie der Monotonie von (f;);en folgt
sij <¢ fi < fx fir alle i,j <k,
und daher
v <o fuund [sdo< [ frdo<a (12)

Nach dem 1. Schritt ist die Folge (s3) daher ¢-konvergent gegen eine Funktion f € £(¢)
und lim [ s d¢ = [ f d¢. Es bleibt zu zeigen, dass

Ik <s [, (13)
dann folgt aus die Behauptung. Fiir ¢ < k ist
Sik < Sk <¢ [
Fiir £ — oo geht die linke Seite aber fast iiberall gegen f;, und damit folgt .
3. Schritt. Seien nun die f; € £(¢). Wir schreiben mit Hilfe von Lemma

F=Y (fi=fim)=> (g —h)=> g =Y hj.

Jj=1 Jj=1 Jj=1 Jj=1
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Dabei seien g;, h; € L1 (¢) mit

1
fi—fi-=1=9; —hj, h; >0, /hjqugﬁ.

Weil die f; — fj—1 wegen der vorausgesetzten Monotonie nicht negativ sind, sind mit den

h; auch die g; > 0. Dann sind aber (g;);en und (h;);eny monoton wachsende Folgen von
L (¢)-Funktionen mit beschréinkten Integralfolgen

/Bid¢<§:2jl+1 =1, /gid¢:/ﬁid¢+/fid¢< 14+ A
j=1

Nach dem 2. Schritt sind sie ¢-konvergent gegen g € £1(¢) bzw. h € L!(¢), und die Integrale
konvergieren gegen [ gd¢ bzw. [ hdg.

Damit ist f; = §; — h; fiir i — oo fast iiberall konvergent gegen f := g — h € L'(¢) und die
Integrale konvergieren gegen [ fde. O

Korollar 35 (Integrierbarkeitskriterium). Seien f : R" — R und (I;)jen eine Folge
von Intervallen mit folgenden Eigenschaften

(i) f>40.
(i) I C I CIa C... und UjeNIj = R".

(iii) Fiir alle j € N ist
Fxy, € £1(0).

(iv) Die Integralfolge ( [ fXde¢)jeN ist beschrinkt.

Dann gilt f € L1(¢) und

[ o=t [ 1, do.
Zusatz: Ist die Integralfolge unbeschrinkt, so ist f ¢ LY(¢).

Beweis. Die Folge (fx I-) jen erfiillt die Voraussetzungen des Beppo Levi, und sie konvergiert
J

iiberall gegen f. Daraus folgt die Behauptung. Den Zusatz beweisen Sie selbst. O

Beispiel 36. Konkret betrachten wir

1
J= X, R R

beziiglich ¢ = p1 und die Intervallfolge I; := [—j, j]. Dann ist fx, eine Regelfunktion und
J
nach Satz 29 ist

7 dx 1
/fxfj:/I 2z

Es folgt f € £(py) und
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Korollar 37. Sei f € LY(¢), f >4 0 und [ fdp = 0. Dann ist f =4 0.

Beweis. Die Folge (if); ist wegen f >, 0 monoton wachsend und hat eine beschrénkte
Integralfolge: [(if)d¢ =i [(f)d¢ = 0. Also ist (if) fast-iiberall konvergent. Das ist aber
nur der Fall, wenn f =, 0. O

Beispiel 38 (Lebesgueintegral und Riemannintegral). Sei f : R — R. Zu jedem € > 0
gebe es Treppenfunktionen g, h, so dass

g<f<h und /(h—g)du1<e.

Dann hat f kompakten Tréger in einem Intervall [a,b], und die vorstehende Bedingung
bedeutet gerade, dass f dber [a,b] im Sinne von Riemann integrierbar ist.

Man findet (mittels sup- und inf-Bildung) Folgen (g;), (h;) von Treppenfunktionen mit
1
9i < git1 < f<hiy1 <h; und /(h1 —gi)duy < T
Diese sind nach dem Satz von B. Levi u;-konvergent gegen g, h € £!(p1) mit

g Slh f SMI h  und /(h_g) d,ul =0.

Nach dem Korollar ist g =, h, also f =,, g und daher f € L£'(uy). Weiter folgt

/fdul :/gdul zlim/gidm /abf(:v)dm

Folgerung: Ist f : [a,b] — R integrierbar im Sinne von Riemann, so ist die auBierhalb von
[a, b] mit O fortgesetzte Funktion f integrierbar beziiglich pq. Kurz: Riemann-integrierbare
Funktionen sind Lebesgue-integrierbar und ihr Riemannsches Integral ist gleich dem Lebes-
gueschen.

Das gilt mit derselben Argumentation auch auf dem R™.

O
Aber das Grenzwertverhalten fiir Folgen integrierbarer Funktionen ist in der Lebesgueschen
Theorie viel besser als beim Regel- oder Riemannintegral:

Beispiel 39. Wir betrachten die Folge (f;)ien mit
fi=X0,11n 1z

Also ist fi(z) =1, wenn 0 < x < 1 und ilz € Z, und sonst = 0. Offenbar gilt
fi = firn < X q)

und
fi=tm fi =Xp 1 no

Die f; sind Treppenfunktionen, insbesondere also Regel- und Riemann-integrierbar. Ihr
Grenzwert f ist zwar beschréinkt, aber keine Regelfunktion und nicht Riemann-integrierbar.
Nach dem Satz von Beppo Levi (oder weil f =,, 0) ist f aber beziiglich p; Lebesgue-
integrierbar und [ fdpy = lim [ f;dus = 0.

O
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Wenn man im Satz von Beppo Levi auf die Voraussetzung der Monotonie verzichtet, wird
die Behauptung falsch, wie das Beispiel der Folge f; = (fl)ix[(x 1])i€N in £1(uy) zeigt. Setzt
man aber schon voraus, dass die Folge (f;)ien von L!(¢$)-Funktionen fast iiberall gegen eine
Funktion f konvergiert, so kann man fragen, unter welchen Voraussetzungen f € L£1(¢) ist
und was man iiber | fd¢ wei. Eine Antwort darauf gibt das folgende Lemma von Fatou,
eine andere der Konvergenzsatz von Lebesgue im néchsten Abschnitt.

Um diesen Themenkreis aber wirklich gut zu verstehen, miiffite man Beispiele haben, in
denen die Grenzfunktion nicht integrierbar ist. Nichtintegrierbarkeit kann grob gesprochen
drei Ursachen haben:

e Die Funktion ist “zu unbeschréankt”, ihre Werte werden zu grofl.
e Die Funktionswerte fiir groles ||z| gehen nicht schnell genug gegen 0.

e Die Funktion ist zu “zappelig”, zu irregulér.

Die Folgen (% X )ien oder (X[,iyi])ieN liefern Grenzfunktionen, die aus dem ersten oder

1]
1417

zweiten Grund nicht p-integriebar sind. Nicht integrierbare Funktionen der dritten Art, also
nicht integrierbare beschrdnkte reelle Funktionen mit kompaktem Trdiger sind auflerordentlich

schwierig zu finden. Vergleichen Sie dazu Beispiel

Satz 40 (Lemma von Fatou). Sei (f;)ien eine Folge nicht negativer Funktionen in
LY(p) mit beschrinkter Integralfolge

/fid¢§A-

Sie sei ¢-konvergent gegen f : R™ — R. Dann ist f € L*(¢) und

/qusg liminf/fid(bSA.

Beweis. Zunéchst ist die Folge

9i ‘= inf(anflw"?fi)

monoton fallend und g; >4 0. Also ist die Integralfolge beschrankt, und nach dem Satz von
Beppo Levi ist die Folge ¢-konvergent gegen die integrierbare Funktion

hO = inf(anf17"') € £1(¢)

Nach demselben Argument sind die Funktionen

hi = mf(fl, fi+17 .. )

integrierbar, und sie bilden eine monoton wachsende Folge. Wegen h; < f; ist die Inte-
gralfolge der h; durch A nach oben beschrinkt, und nach dem Satz von Beppo Levi ist h;
¢-konvergent gegen eine Funktion h € £1(¢) mit [ hdp < A. Andrerseits ist auBerhalb einer
¢-Nullmenge

f(z) =lim f;(x) = liminf f;(z) = h(x).
Also ist f € LY(¢) und [ fd¢p < A.
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Ist weiter B := liminf [ f; d¢, so gibt es eine Teilfolge (f;,), fiir die B = limy, [ f;, d¢.
Also gibt es zu jedem e > 0 eine Teilfolge (f;,) mit [ f;, d¢ < B + € fiir alle k. Weil auch
limy, f;, =¢ f, folgt nach dem oben Bewiesenen

/fd¢§B+e

fiir jedes € > 0 und daraus

/fd(b <B= hminf/fi do.

Beispiel 41. Betrachten Sie (f; = X ien beziiglich ;.

z‘,i+1])
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2.2 Der Konvergenzsatz von Lebesgue
e Dieses ist neben Beppo Levi und Fatou der dritte wichtige Konvergenzsatz der Lebes-
gueschen Theorie.

e Als Anwendung erhalten wir einen oft benutzen Satz iiber die Differentiation von Inte-
gralen nach einem Parameter im Integranden. Wir untersuchen auch die Notwendigkeit
der dabei gemachten Voraussetzungen.

e Fine Anwendung des Differentiationssatzes ist die “Gliattung” stetiger Funktionen
durch Faltung mit einer geeigneten “Kernfunktion”. (Gleitender Mittelwert)

Sei ¢ ein Maf} auf R™.

Satz 42 (von Lebesgue iiber dominierte Konvergenz). Sei (f;)ien eine Folge in
LY(¢), die durch eine Funktion g € L1(¢) dominiert wird:

|fil <o g fir alle .
Weiter sei die Folge ¢-konvergent gegen eine Funktion f:R"™ — R:
[ =¢ lim f;.
11— 00

Dann folgt
ferl(¢) und /f@w;@g/fﬂ&

Beweis. Die Folgen (g + f;)ien und (g — fi)ien in L£(¢) erfiillen die Voraussetzungen des
Lemmas 40| von Fatou (mit A =2 [ gdg).

Nach dem Lemma ist g £ f € L1(¢), also auch f € £!(¢), und es gilt
twin [(g+ f)do> [(g+ £)do und timint [(g £)do> [(g- do

Daher ist
liminf/fi do > /fd(b (14)
und
—limsup/fi do = liminf/(—fi) d¢ > —/fd¢.
oder

mmw/ﬂws/&w. (15)

lim/fid¢:/fd¢.

Auf die Majorante kann man nicht verzichten:

Aus und folgt

Beispiel 43. Die Funktionenfolge ((i + 1)2X]0 1 })ieN von pi-integrierbaren Funktionen
]

konvergiert iiberall gegen 0, die Grenzfunktion ist integrierbar, aber die Integralfolge kon-
vergiert nicht. Die Funktionenfolge ist nicht £!(j1)-dominiert.

O
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Satz 44 (Differentiation unter dem Integral). Sei
FiR ] a,b[o R, (@,8) — £, ) = (@),
Es gelte:
(i) Fir allet €] a,b[ ist f; € L1().
(i) Fir alle x € R™ ist t — f(x,t) differenzierbar.

(iii) Es gibt g € L1($), so dass |%{ (,t)] <¢ g fiir alle t €] a,b[

Dann ist
F:la,b[—> R, t — /ftdd) differenzierbar,
g—{(.,t) € LY(¢) fiir jedest €] a,b]
und

& [ o= [ i oo

Beweis. Wir setzen

F(t) = /ft dg.
Sei (t;) eine gegen ¢ konvergente Folge in |a, b[\ {¢}. Dann ist
1 o
L (F() - F) = [T g (16)
(2 7
eL(¢)
Nun ist fiir fast alle «
Je. — fi flx, ti) — f(z,1) of .
- = | = e~ . <
L=t t—t wiws 3 @] < 9(@)
Also ist nach dem Satz von Lebesgue
mqm_ﬁ—fﬁgﬂeﬁw)

i—oo t; —t Ot

und

d =
éﬁpmm @_fw:/%@mw

i—00

Konvention. Wir schreiben

J P = | s,

falls die linke Seite existiert. Das ist sinnvoll, weil das Lebesgueintegral das Regelintegral
erweitert.

3Das ist zum Beispiel erfiillt, wenn |%| < My fiir ein M € R und kompaktes K € I(R™).

35



Beispiel 45. Wichtige Beispiele, in denen die Differentiation nach einem Parameter unter
dem Integral eine Rolle spielen, liefern

e die Gammafunktion I'(z) := foo

o t"letdt, x> 0,

e die Laplacetransformation F(s) := [;° f(t)e™*!dt.

(Beachten Sie hier die (traditionelle) Namensgebung fiir die Variablen.)
O

Aber nicht immer kann man die Ableitung nach einem Parameter in das Integral hineinzie-
hen:

Beispiel 46 (Boris Springborn).
Wir betrachten eine stetig differenzierbare

nicht negative Funktion h : R — R mit kom-
paktem Tréiger und ¢ := [ hdp; > 0. Dazu be-

trachten wir die “von rechts kommende Welle” h
1 X
flz,t) :==th(z — ¥)7 f(z,0):=0.

Dann existieren

/f(.,t)dul = tc fir alle t € R

und

of h(z — 3+ in/(x — 1) fiir t #0,
O R

ot 0 fir t = 0.

Fiir den zweiten Fall beachte, dass

aof . flzt) =0 I
ot @ 0) = i == = lim Al = 5) =0,

weil h kompakten Triager hat. Die partielle Ableitung ist fiir alle ¢ beziiglich x integrierbar,
und es ist
of

d
Lo = [odu =0 =5 [ st0du.

Also kann man die t-Ableitung nicht in das Integral hineinziehen.

O

Beispiel 47 (Gliattungsoperator, Faltung). Sei p : R — R nicht-negativ, stetig diffe-
renzierbar mit Tréiger in einem (kleinen) Intervall [—4,d] und [ pdu, = 1. (Vergleichen Sie
den Abschnitt 4.3 im Skriptum zur Analysis I. Zum Beispiel kann man definieren

plz) = fof(x)

oo T
wobei 7(z) 1= exp(szr5z) fiir 22 < 6% und 7(z) = 0 sonst.)

Der besseren Ubersicht wegen benutzen wir im folgenden die oben gemachte Konvention

/abf(l“)dx = /f(x)x[mb]dm-

36



Fiir f € £(p1) definieren wir dann die Faltung mit p als

. t+6
f(t) = f*p(t) / f()p(t —z)dr = f(@)p(t — z) da.

t—4&

Wir erhalten also f aus f durch gleitende, gewichtete Mittelung der Funktionswerte um jede
Stelle t.

Das setzt natiirlich voraus, dass x — f(x)p(t —x) € L' (u1). Wir werden spiter sehen, dass
das wahr ist, vgl. Beispiel [51] und Satz

Offenbar ist ¢ — f(x)p(t — x) fiir jedes x differenzierbar und es gilt

0

o (@)t — )

ot < (suplp (ONIf (@) € L£Gm)-

Daher ist f nach dem Satz differenzierbar und

/ F@)pl(t - w) da

Bemerkung: Ist f gleichmiiflig stetig und € > 0, so gibt es ein § > 0 mit |f(x) — f(t)] < €,
falls |t — x| < 6. Wéhle zu § ein entsprechendes p. Dann hat man fiir alle ¢

/Oop(t—x)dac—l also f(t) / f)p(t — z)dx

— 00

Weil p(t — ) = 0 fiir [t — x| > § gilt weiter, dass

| f( |‘/ f(t) tfzdxf/ f(x)p(t — x)dx

< / () — F@)lplt — z)de

t+6
< / () — F@)lo(t — 2)da

—d
< €.

Gleichméfig stetige Funktionen lassen sich also gleichmé8ig durch differenzierbare Funktio-
nen approximieren.

O

37



3 Messbare Funktionen

e Wir lernen mit den messbaren Funktionen eine Klasse von Funktionen kennen, die
gegeniiber algebraischen Operationen wie gegeniiber der ¢-Konvergenz abgeschlossen
ist, in der man also erstaunlich sorglos rechnen kann, die andererseits aber ganz nah
an der Klasse der integrierbaren Funktionen liegt:

e Die Nichtintegrierbarkeit einer Funktion kann zwei Griinde haben: Die Funktion ist
“zu grof}”, so dass das “Integral” unendlich wird. Oder die Funktion ist so “zappelig”,
dass das “Integral” vollig sinnlos ist. Messbare Funktionen sind solche, die nur aus
dem ersten Grund nicht integrierbar sind. Wenn man sie geeignet “kupiert”, werden
sie integrierbar, vgl. Satz

Definition 48. f : R™ — R heif3t ¢-messbar, wenn es eine Folge von Treppenfunktionen
gibt, die ¢-konvergent gegen f ist.
Beispiel 49. £!(¢)-Funktionen sind ¢-messbar.

Im Gegensatz zur Integrierbarkeit ist Messbarkeit eine ,lokale* Eigenschaft:

Satz 50. Sei f:R™ — R. Dann gilt

J messbar <= Viciwn) f x; messbar.

Beweis. Zu (=). Ist lims; =4 f, so folgt lims;x; =4 fx; fiir jedes I € I[(R").

Zu (). Sei (I;)jen eine Folge disjunkter beschrinkter Intervalle mit R™ = (J;Z, ;. Weil
J X, messbar ist, gibt es eine Folge (sjk)ken von Treppenfunktionen und eine ¢-Nullmenge
J

kli_)nolo sjk(a:)xlj(x) = f(a:)xlj(a:) fir alle ¢ N;.
Definiere die ¢-Nullmenge N :=[J N; und

k
Sk «— Z SijIj.
3=0

Ist x € ;\ N und k >, so ist
skp(x) = si(x) — f(x).
Damit ist f ¢-mef3bar. O

Beispiel 51. Ist f : R — R auf dem Komplement einer ¢-Nullmenge stetig, so ist f
¢-messbar.

Beuweis. Sei W € I(RR™) ein beschréinktes Inervall vom Durchmesser A. Nach Satz[50|miissen
wir nur zeigen, dass fx - ¢-messbar ist. Wir zerlegen W durch sukzessive Seitenhalbierung
und Anwendung des Zerlegungslemmas in paarweise disjunkte Intervalle Iy1, ..., Ix,, vom
Durchmesser < QA,C und wéhlen z; € Ij;. Dann definiert

fi= ) Flawg)xy,

j=1
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eine Folge von Treppenfunktionen, die in allen Stetigkeitspunkten von f gegen f konvergiert.
O

Beispiel 52. Ist f : R — R monoton, so existieren in jedem Punkt der links- und der rechts-
seitige Funktionslimes, d.h. alle Unstetigkeitsstellen sind Sprungstellen. In dem kompakten
Intervall [a,b] hat f hochstens n Sprungstellen mit Sprung > W, also in dem kom-
pakten Intervall und dann auch auf ganz R hochstens abzéhlbare viele Unstetigkeitsstellen.
Also sind monotone Funktionen f: R — R beziiglich ;11 messbar.

O

Die folgenden Sitze 53| und [56] zeigen, dass der Begriff der Messbarkeit flexibler ist als der der
Integrierbarkeit. Weil andrerseits diese Begriff aber eng zusammenhéngen (vgl. Séitze und
57), sind die messbaren Funktionen ein hilfreiches Instrument in der Integrationstheorie.

Satz 53. (i) Die ¢p-messbaren Funktionen bilden einen R-Vektorraum.

(i) Der Raum der ¢-messbaren Funktionen ist abgeschlossen beziiglich endlicher Produkte
und endlicher inf- bzw. sup-Bildung.

(iii) Der Quotient von ¢-messbaren Funktionen ist ¢p-messbar, wenn der Nenner nur auf
einer ¢-Nullmenge verschwindet.

(iv) Ist f : R™ — R ¢-messbar und h : J — R stetig auf dem Intervall J mit f(R™) C J,
so ist h o f ebenfalls ¢p-messbar.

Beweis. Zu (i) und (ii). Esist klar, dass die Treppenfunktionen einen gegen Multiplikation,
inf und sup abgeschlossenen Vektorraum bilden. Daraus folgt unmittelbar dasselbe fiir die
¢-messbaren Funktionen.

Zu (iii). Sei f : R™ — R fast-iiberall # 0. Sei (s;) eine Folge von Treppenfunktionen, die
fast-iiberall gegen f konvergiert. Definiere

() = {S%I), falls s;(z) # 0, .
0 sonst.

Dann ist (¢;);en eine Folge von Treppenfunktionen, die fast-iiberall gegen % konvergiert.
Zu (iv). Ich fithre den Beweis nur fiir den Spezialfall
J =[a,b[ mit a,b € R, a < b.

Es ist dann klar, wie die anderen Félle gehen. Sei also (s;) eine Folge von Treppenfunktionen,
die auf dem Komplement der ¢-Nullmenge N gegen f konvergiert. Beachten Sie, dass zu
jedem x ¢ N ein ig existiert, so dass s;(x) < b fiir alle ¢ > ig. Wir wihlen ein b’ €]a, b[ und
definieren
si(z), falls s;(z) € J
Si(x) ==V, falls s;(z) > b
a, falls s;(z) < a.

Das liefert eine Funktionsfolge, die ebenfalls auf R™\ N gegen f konvergiert, und deren
Werte in J liegen. Die Funktionen h o §; konvergieren wegen der Stetigkeit von h dann auf
dem Komplement von N gegen ho f, und sie sind ,, beinahe“ Treppenfunktionen, nur haben
sie im allgemeinen keinen kompakten Triiger. Aber die Funktionen

fi = X[-Li}” ho 51
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bilden eine Folge von Treppenfunktionen, die iiberall dort gegen ho f konvergiert, wo (s;)ien
gegen f konvergiert. O

Satz 54 (Messbarkeit und Integrierbarkeit 1). Seien f,g: R™ — R Funktionen.
f sei g-messbar und g € L1 (¢). Dann gilt

(i) 1fl <o 9 = f€LYP).
(ii) f beschrinkt = fg € LY().

Beweis. Zu (i). Wir nehmen zunéchst an, dass f > 0. Sei f =, lims; fiir eine Folge von
Treppenfunktionen (s;). Wir kénnen o.E. annehmen, dass die s; > 0. Dann ist

f ¢ hm(lnf(slag))a
mit inf(s;,g) € L1(¢),0 < inf(s;, g) < g. Also ist nach dem Satz von Lebesgue f € L1(¢).
Ist f beliebig, so gilt

f = sup(f,0) = sup(-f£,0),

wobei beide Summanden durch g dominiert werden. Weil sup(f,0), sup(—f,0) > 0 sind sie
nach dem vorstehenden Beweis in £1(¢), also ist auch ihre Differenz ¢-integrierbar.

Zu (ii). fg ist messbar und |fg| < sup|f] |g|. Mit g ist auch |g| € £!(¢), und deshalb folgt
—_— ——

<oo

die Behauptung aus Teil (7). O

Beispiel 55. Die Aussage (ii) liefert ein hinreichendes Kriterium fiir die Integrierbarkeit
des Produktes zweier integrierbarer Funktionen.

Beachten Sie dagegen, dass f(x) := ﬁx]o’ 1 € LY (1), aber f2(x) = %X]o, K LY ().

O
Satz 56. Seien (f;) eine Folge ¢-messbarer Funktionen und f : R™ — R. Dann gilt
(i)
f=¢limf; = f ist p-messbar.
(i)
f=sup(fo, f1,...) = [ ist p-messbar.
(iii)
f=1if(fo, f1,...) = [ ist p-messbar.
Beweis. Es geniigt, die Behauptung (i) zu beweisen, weil z.B.
inf(fo, f1,...) = klingoinf(fov ooy fi)
Das Infimum endlich vieler messbarer Funktionen fy, ..., fx ist aber nach Satz [53| messbar.

1. Fall: | f;| <1 fiir alle i. Wegen Satzmiissen wir nur zeigen, dass fx fiir jedes I € I(R")
messbar ist.
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Sei also I € I(R™). Nach Satz |54] (ii) gilt fiir alle 4

fiX]€£1(¢) und |fiX[|§X[€£1(¢)-

Nach dem Satz von Lebesgue ist daher
Fxp=o lim (fix;) € £1(9)-

Insbesondere ist fx; messbar.

2.Fall: f; beliebig. Nach Satz[53|ist (tanh f;) eine Folge messbarer Funktionen, die ¢-konver-
gent ist gegen tanh f. Nach dem 1. Fall ist tanh f messbar. Dann ist aber auch f =
tanh ™! o tanh o f messbar. O

Bemerkung. Langsam sehnt man sich nach einem Beispiel einer nicht messbaren Funktion.
Solche sind sehr schwer anzugeben, vgl. Beispiel[74] Alle “halbwegs anstéindigen” Funktionen
sind messbar.

f

Durch ,vertikales und horizontales Stutzen* : / 5 \

wird aus einer messbaren Funktion f eine in-
tegrierbare Funktion f, und das ist charakte-
ristisch fiir messbare Funktionen:

NS

Satz 57 (Messbarkeit und Integrierbarkeit 2). f: R" — R ist genau dann ¢-messbar,
wenn fir jedes A > 0 und jedes K € I(R™) die “gestutzte” Funktion

f=inf(sup(f, —Ax ), +Axx)

in L1(¢) ist.

Beweis. Zu (=). Nach Satzist f ¢-messbar. Weiter gilt

fl < Axy € £1(9),

und daher ist f € £'(¢) nach dem Satz

Zu (<). Es gilt
= kli»nolo inf(sup(f, *k'X[_k, k}n)a JF'Z‘?X[_k7 k]")

Die Behauptung folgt daher aus Satz [56] O
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4 Sukzessive Integration: Fubini und Tonelli

e In diesem Abschnitt lernen wir, wie man mehrdimensionale Integrale auf niedriger-
dimensionale reduzieren kann. Das ist insbesondere von Bedeutung fiir die Integration
beziiglich des Lebesguemafles p, = p1 X ... X pyq.

Satz 58 (Fubini). Seien ¢1 und ¢2 Mafe auf R™ bzw. R™, und sei ¢ = ¢1 X ¢o das
Produktmap auf R™+72. Sei f € L1(¢).
Dann gilt:

(i) Fiir ¢1-fast alle x1 ist f(x1,.) € L (¢2).
(i) Die (fiir ¢1-fast-alle x1 definierte) Funktion

F:a H/f(l”l»-)d%

/ Fdg, = / fdo.

Die Rollen von ¢1 und ¢2 lassen sich dabei vertauschen.

ist in L' (¢1) und

Kurzform:
/qub = / (/ qubg) do, = / (/ fd¢1) doo, falls die linke Seite existiert.
Beweis. Vorbemerkung. Gilt der Satz fiir Funktionen fi,..., fx, so auch fiir deren Linear-

kombinationen. Das folgt unmittelbar aus der Linearitédt des Integrals.

Teil 1: Der Satz gilt fiir Treppenfunktionen.

Nach der Vorbemerkung kénnen wir uns auf den Fall f = x, mit / € I(R") beschréinken.
Sei I = I; x I, die offensichtliche Zerlegung. Dann ist also fiir alle (x1,z2) € R™ x R™2

flar,m2) = xp, (21)xp, (22).

Es folgt
f(21,.) = X]l(xl)X[Q € £1(¢2)
und

Fan) = [ (o007, 02 = 62(Ta)y o).

Damit ist F eine Treppenfunktion und € £'(¢;). SchlieBlich ist
[ Fdor=oa(ta) [y, don = eatyon(t) =60 = [ o,

Teil 2: Kin Lemma. Zum weiteren Beweis brauchen wir das folgende

Lemma 59. Unter den Voraussetzungen des Satzes sei M eine ¢-Nullmenge. Dann ist fir
¢1-fast alle ©1 die Menge
]\4'951 = {1’2 | (1’1,1'2) c M}

eine ¢o-Nullmenge.
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Beweis des Lemmas. Fiir k € N sei (Iy;); eine Folge von Intervallen mit

= 1
M C Uy und > ¢(Ii)) < ST (17)
j=0
Definiere
@= X1,
k,j<l

Offenbar ist (g;);en eine monoton wachsende Folge von Treppenfunktionen, und nach
ist die Integralfolge beschrinkt:

l

/gl dp=> oI;) <Y leﬂ <1

ki<l k=0

Fiir 1 € R™ definieren wir
Gi(z1) == /gl(l‘l,-)dQﬁz

Dann ist (G));en eine monoton wachsende Folge von Treppenfunktionen auf dem R™*, und
nach dem Teil 1 unseres Beweises ist die Integralfolge beschrankt:

/Gld@ - /gldqs <1.

Nach dem Satz von Beppo Levi gibt es daher eine ¢1-Nullmenge Ny, so dass (G(21))en fiir
alle 21 ¢ Ny konvergiert. Wir wollen zeigen, dass M, fiir z1 ¢ N; eine ¢o-Nullmenge ist.

Sei also 21 ¢ N;. Wir betrachten eine weitere monoton wachsende Folge von Treppenfunk-
tionen, nimlich (g;(x1,.))en. Die zugehorige Integralfolge ist wegen

/91(3317 Jdp2 = Gi(x1)
konvergent und damit beschrinkt. Nach dem Satz von Beppo Levi gibt es also eine ¢o-
Nullmenge Na, so dass (gi(w1,22)),cy fiir alle x5 ¢ Ny konvergiert.

Aber: Fiir (z1,22) € M, d.h. fur 9 € M,,, gibt es zu jedem k ein j mit (1, 22) € Iy;. Daher
liegt (21, x2) in unendlich vielen der Iy; und (g;(21,22))en ist divergent. Ist also z; ¢ Ny,
so ist My, C Ny und damit eine ¢o-Nullmenge. O

Teil 3: Der Satz gilt fiir f € £ (¢). Fiir welche z; ist f(21,.) € L' (¢2)?

Sei (8;)ien eine monoton wachsende Folge von Treppenfunktionen mit

lim s; =¢ f, lim /si dop = /fd(b
71— 00 71— 00
Dann haben wir also eine ¢-Nullmenge
M := {(z1,32) | (si(21,22))ien konvergiert nicht gegen f(z1,22) }.

Nach dem Lemma aus Teil 2 gibt es eine ¢1-Nullmenge Ny, so dass M,, fiir alle 1 ¢ Ny
eine ¢o-Nullmenge ist. Das heiflt, fiir alle z; ¢ Ny gilt

Zlgglo Si(xla ) =2 f(xla )

Nun ist (s;(x1,.)):en eine monoton wachsende Treppenfunktionsfolge. Wir untersuchen fiir
x1 ¢ Ny die Integralfolge

i) = [ sitor, o,

43



Das ist aber (fiir beliebiges 27 € R™) eine monoton wachsende Folge von Treppenfunktionen,

fiir die nach Teil 1

Die (S;)ien bilden also eine “Beppo-Levi-Folge”: Es gibt eine ¢;-Nullmenge Ny, so dass
(Si(x1))ien fur alle 1 ¢ N1 U Ny konvergiert, also beschriinkt ist.

Dann ist auch (s;(x1,.));en eine “Beppo Levi-Folge”, ihr ¢o-Grenzwert ist ¢o-integrierbar
und die Integrale konvergieren:

11{{.10 si(w1,.) =g, f(x1,.) € L1 (P2)

K3

und

hm Si(llil) = hm Sz'(l‘l, )d¢2 = /f($17 ) = F(.Tl)

1— 00 1— 00

Weiter liefert Beppo Levi fiir die Folge (S;);en, dass F' € £(¢1) und

/ Fdg, = lim / S;den / fdo.

Teil 4: Schluss des Beweises: f € El(gb). Die Behauptung folgt in diesem Falle aus Teil 3 und
der Vorbemerkung. O

Beispiel 60. Die Funktion f : R?2 — R mit

f(.’IJ, y) = (12 + yQ)X[()7 1]2($7 y)
ist stetig auf einem kompakten Intervall, also nach Beispiel 28| uo-integrierbar. Nach Fubini

gilt
/fduz = / (/ f(%y)dm) dp = / (/(x2 +yQ)X[O,1](y)x[0,1}($)du1> dp.

Die pq-Integrale sind aber nach Satz[29) dasselbe wie die entsprechenden Regelintegrale. Wir
erhalten

[ sae= [ ([ @i} ar= [ a2+ )

1 1

1 2
da::/ (2% + Z)dz = <.
0 0 3

O

Bemerkung. Oft ist es nicht so schwer, die Existenz eines oder beider iterierter Integrale
J ([ fdor)deo und [([ fdpa)dpy zu zeigen. Leider folgt daraus im allgemeinen aber nicht,
dass f € L' (¢ X $2), so dass man den Satz von Fubini nicht anwenden kann. (Ein Beispiel
konnen Sie in den Ubungen konstruieren.) Man mufl dazu etwas mehr verlangen:

Satz 61 (Tonmelli). Seien ¢1 und ¢o Mafle auf R™ bzw. R™2, und sei ¢ = ¢y X ¢o das
Produktmaf auf R"T72. Sei f : RMT"2 — R ¢-messbar. Ferner existiere eines der beiden

folgenden Integrale:
/ </ |f|d¢>2> d¢y  oder / (/ |f|d¢1> dos.

Dann ist f € LY(¢), also nach dem Satz von Fubini

s (s = ()
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Beweis. Sei Iy, := [—k, k]™ und
hi == inf (| f|x; , kxp,)-

Mit f sind nach Satz auch |f| und die hy messbar. Die Funktion hj wird durch die
integrierbare Funktion ky I dominiert und ist deshalb nach Satzintegrierbar. Also kénnen
wir den Satz von Fubini darauf anwenden:

o= (fe) = (i)

Wir nehmen o.E. an, dass [([ |f|dp2)dpy existiert. Weil 0 < hg(21,.) < |f|(z1,.) und nach
Voraussetzung | f|(x1,.) € L' (¢2) fiir ¢1-fast alle x1, erhalten wir

/hkd¢§/(/f|d¢2) dos. (19)

Die hy, bilden eine monoton wachsende Folge integrierbarer Funktionen, die iiberall gegen
| f| konvergieren. Die Integralfolge ist nach beschrénkt. Also ist | f| nach dem Satz von
B. Levi integrierbar. Nach Satz |54]ist damit auch f integrierbar. O

Beispiel 62.

Die Funktion g := inf(1, 2) ist z;-integrierbar (Satz
von Beppo Levi und Regelintegral mit Stammfunk-
tion). Sie dominiert die stetige und deshalb pu;-
messbare Funktion e*“"z, die daher nach Satz
ebenfalls in £ (u;) liegt.

Daher existiert das iterierte Integral

(S (o e
(fera) () ()

(Wir haben dz und dy anstelle von du; geschrieben um anzudeuten, auf welche Variable
sich die Integration bezieht.) Weiter ist e~ (@ +v?) stetig, also po-messbar. Damit folgt aus
dem Satz von Tonelli, dass
2 2
e~ (@ +y7) ¢ L (12)

2
/6*(m2+y2)dﬂ2 _ </ ez2dx>

Wir werden spéter sehen, dass mit Hilfe mehrdimensionaler Integration die linke Seite leicht
zu berechnen ist. Das gibt dann eine Auswertung des in der Wahrscheinlizchkeitstheorie
wichtigen und eindimensional nicht so leicht zu berechnenden Integrals [ e™* dy,.

und

ist.

O
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5 Messbare und integrierbare Mengen

Wir betrachten messbare Mengen und ihr Maf}, und damit ein fundamentales Pro-
blem der Geometrie: Was 4st eigentlich der Flicheninhalt einer Teilmenge des R?, die
“krummlinig begrenzt” oder noch komplizierter ist? Was das Volumen eines Korpers
im R3? Und wie berechnet man das? (Beim axiomatischen Aufbau der Ma$- und Inte-
grationstheorie steht der Begriff messbare Menge ganz am Anfang.)

Wir kldren Zusammenhénge zwischen Messbarkeit und Topologie.
e Wir berechnen das Volumen der n-dimensionalen Vollkugel.

e Wir lernen ein Beispiel einer nicht-messbaren Menge kennen.

Sei ¢ ein Maf} auf R”™.
Definition 63. Sei A C R".

(i) A heiit ¢p-messbar bzw. ¢-integrierbar, wenn die charakteristische Funktion x 4 von A
¢-messbar bzw. ¢-integrierbar ist. Im letzteren Fall definiert man das Maf} von A als

o) i= [ x o

(ii) Fiir f : R® D B — R bezeichnen wir mit f : R" — R die triviale Erweiterung von f
durch f(z):=0 fiir z ¢ B.

Ist A C B ¢-messbar, so nennen wir f ¢-messbar auf A bzw. ¢-integrierbar diber A,
wenn fx 4 ¢-messbar bzw. ¢-integrierbar ist. Im letzteren Fall schreibt man

feLl(A9)

/A fdo = / fx 49,

Beispiel 64. Jedes I € I(R") ist ¢-integrierbar, und die neue Definition von ¢(I) ist mit
der Maf3-Definition vertréglich.

und

O

Satz 65 (Die o-Algebra der messbaren Mengen).

(i) Komplement, abzihlbare Vereinigungen und abzihlbare Durchschnitte messbarer Men-
gen sind messbar. Die messbaren Mengen bilden eine sogenannte o-Algebra oder ein
Borelsystem.

(ii) (o-Additivitit) Ist (A;); eine Folge ¢-integrierbarer, paarweise disjunkter Mengen, so
gilt
A= UAi ist p-integrierbar <~ Z d(4;) < 0.
i=0

In diesem Fall ist

B(A) =D d(Ay).
=0
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Beweis. Zu (i). Fiir das Komplement CA := R™\ A ist x4 = 1 — x 4. Die 1-Funktion ist
¢-messbar. Deshalb ist C' A mit A messbar.

Weiter hat man fiir U :=J A;, D :=[) 4;
Xy =SUPX4, Xp =iy,
1

WEeil inf und sup abzéhlbar vieler messbarer Funktionen messbar sind, sind mit den A; auch
U und D messbar.

Zu (4). Sei fr:= Zf:o X 4,- Dann ist (fx)ren eine monoton wachsende Folge in £'(¢) mit
k
tin o= [ fuds = 3" 0(4).
§=0
Ist x4 € L), so gilt wegen |fi| < X 4 nach dem Satz von Lebesgue

o) = [ xydo=tim [ fudo =3 o(4))
=0

Ist umgekehrt die Reihe konvergent, so folgt aus dem Satz von Beppo Levi, dass x 4, € L(9).
O

Beispiel 66 (Messbarkeit von Borelmengen). Sei A C R™ offen. Um zu zeigen, dass
A beziiglich eines jeden Mafles ¢ messbar ist, geniigt nach Satz [50| der Nachweis, dass AN [
fiir jedes I € I(R™) messbar ist. Durch fortgesetzte Halbierung in jeder Koordinatenrichtung
erhilt man zu jedem k € N eine Familie (Ij;)o<j<on beschrénkter Intervalle mit

> diam(T
Uy =1 dMHKLﬂ):—l%;Ll.
j=0

Zuxz € ANI gibt es ein k € N mit Usims (z) C A und ein j mit « € Ii;. Dann ist aber
3k
I; C A, und wir haben gezeigt, dass

ANI = U I
ijCA

die Vereinigung von abzihlbar vielen beschréankten Intervallen ist. Also ist A beziiglich eines
jeden Mafles ¢ messbar. Das gilt dann auch fiir alle Mengen, die man aus den offenen durch
Komplementbildung, abzihlbare Vereinigung und abzihlbare Durchschnitte erhilt, also fiir
die sogenannten Borelmengen.

O

Beispiel 67 (Kompakte Mengen). Kompakte Mengen sind integrierbar beziiglich ei-
nes jeden Mafles: Als abgeschlossene Mengen sind sie messbar, und ihre charakteristische
Funktion wird dominiert durch eine Treppenfunktion.

Ist K C R™ kompakt und f : K — R stetig, so gibt es nach einem Satz der Topologie
(Tietzescher Erweiterungssatz) eine stetige und beschrinkte Erweiterung f : R" — R von f.
Nach Satz [54ist dann fx . € L1(¢), also f € L' (P, ¢) fiir jedes MaB ¢, stetige Funktionen
auf kompakten Mengen sind integrierbar beziiglich eines jeden Mafes.

O
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Satz 68. Sei f: R"™ — R ¢-messbar. Dann sind die Mengen
A= {z|f(z)>0}

und

B:={z|f(z)>0}

¢-messbar.

Beweis. Zunichst ist g := sup(f,0) messbar. Weiter sind die Funktionen
hj(x) := inf(jg(z),1)
messbar und konvergent gegen x 4. Also ist A messbar. Folglich ist auch die Menge
{z| - f(z)>0}

messbar. Schliefflich ist dann aber auch B als deren Komplement messbar. O

Satz 69. Fine Menge N C R" ist genau dann eine ¢-Nullmenge, wenn sie ¢-integrierbar
und ¢(N) =0 ist.

Beweis. Ist N eine ¢-Nullmenge, so ist x, =¢ 0. Daher ist N nach dem Korollar
integrierbar und ¢(N) = [ x yd¢ = [0d¢ = 0.

Ist umgekehrt x 5, ¢-integrierbar mit Integral = 0, so folgt aus dem Korollar @ zum Satz
von B. Levi, dass x ;y =¢ 0, also N eine ¢-Nullmenge. O

Satz 70. Firi = 1,2 seien ¢; ein Maf auf R™ und f; : R™ — R nicht negativ. Wir
definieren ¢ := ¢1 X ¢g und f: R" = R™T"2 - R durch

f(z1,22) i= fi(21) f2(22).

Dann gilt
(i) Ist fi € LY(¢;) fiiri=1,2, so ist f € LY(¢) und

[ 0= [ ndon [ fadon.

(ii) Sind die f; beziglich ¢; messbar, so ist f beziglich ¢ messbar.

Beweis. Vgl. Hausaufgaben.
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Korollar 71. Seien ¢1,¢2 und ¢ wie im Satz. Dann gilt

(i) Fiir ¢;-integrierbare Mengen A; C R™ ist A; x Ag ¢-integrierbar und
P(Ar X Az) = ¢1(A1)¢2(A2).

(ii) Fiir ¢;-messbare Mengen A; C R™ ist A} X Ay ¢-messbar.

(iii) Ist Ny eine ¢1-Nullmenge, so ist Ny x R™ eine ¢-Nullmenge.

Beweis. Vgl. Hausaufgaben. O

Satz 72. Sei f : R™ — R eine nicht-negative integrierbare Funktion und
G = {(a:l, ey Tpat) ‘ 0<zpy1 < f(xl,...,xn)} c Rt
die Menge unter dem Graphen von f. Dann gilt
feltp) <= Xa € L (png1)-

In diesem Falle gilt
Nn+1(G) = /fd,un

Beweis. Zwei Vorbemerkungen: Setzen wir

g(@1, .. xng) = T (f(T1, .0, 20) — Tpygr)

S0 ist

G:{x |g(x)20}.
Nach den Sitzen [70] und [68]ist G daher messbar beziiglich pi,41 = i X p1.

Zum anderen ist

1 fiir 0 <api1 < fz,. .., %)

T1yenyTny & =
XG( ! m Tn+1) {O sonst

= X0, f(a1, .., xn)](xn—i-l)

und
/X[O,f(:vl,...,z‘n)]d’ul = f(xla cee 7xn)‘

Zu (<). Tst x € L' (pny1), s0 liefert der Satz von Fubini

tnt1(G) = /XGdMn+1 = / (/X[O,f(ml,...,:En)](x"Jrl)d'ul) dpn = /fdﬂn- (20)

Zu (=). Ist f € LY(uy), so existiert die rechte Seite von (20). Wir kénnen den Satz von
Tonelli anwenden und erhalten die Integrierbarkeit von x.. O
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Beispiel 73 (Das Volumen der n-dimensionalen Vollkugel). Sei

Dr = {xeR"

foﬁrQ}.

die n-dimensionale Vollkugel vom Radius r. D) ist als kompakte Menge p,-integrierbar
Der Fall n =1 ist trivial:

pn(Dy) = pa([=r, +1]) = 2r.
Fiir hoheres n versuchen wir nun,

Vn(r) = l‘n(Df)

mit dem Satz von Fubini zu berechnen, indem wir die Identitét

XD?(xl, R XD:L/:)_W(Q, . ,xn,l)x[_n +r](x")
benutzen. Wir schreiben wieder
dpin = d(pn—1 X p1), dpy =: dzy,
und erhalten:

Vn(T) = /XD;L dpiy,

— [ [ o

/r2 2
L =

d:un—l)dxn
:/X[,nr](xn)vn—l( 7"2_33%) dx,,.

Wir nehmen nun an, wir hiitten schon gezeigt, dass das Volumen der (n — 1)-Kugel propor-
tional zur (n — 1)-ten Potenz des Radius ist, also V,_1(r) = vp_17r"~

L mit
vg = V(1) fur alle k.
Fiir n = 1 stimmt das ja. Dann folgt weiter

Va(r) = /X[,T r}(mn)vnfl V2 — x%nil dr, = vp_1 /X[_r T](xn)\/TQ — a2 " dx,

r n—1 r n—1
= vn,l/ V2 —t2 dt = vn,l/ /1 — (t)r)? dt
—r —r

" -11 1 -1
= s [T L= [T ar
. r 1

Also ist dann V,,(r) proportional zu r"

Vo (r) = vr™.
Setzen wir

VB

1 n—1
I, = / V1—-72  dr = / cos™ t dt,
_1 Substitution

so haben wir weiter gefunden, dass

INE

Up = Up_1lp = Vp_olpnln_1.
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Durch partielle Integration folgt

-1
L,="""1,, firn>2,
n
mit I; = 5, I = 2. Dann ist aber
—1)(n—2 -2
I, 1= wln72ln73 = n I, oI, 3=...
n(n —1) n
2 .
B LY fiir gerades n on
%Ilfo fiir ungerades n.
Damit gilt
T 2m+1ﬂ.m
Yam = P T g T 2mt 1)

Mit Hilfe der Gammafunktion (vgl. Beispiel kann man das einheitlich so schreiben:

(vm)"
r(g+1)

Unp =

Es ergeben sich die folgenden Volumina der Kugeln und daraus durch Differentiation die
(n — 1)-dimensionalen Volumina der zugehorigen Sphéren:

n 1 2 3 4 ) 6 7
Volumen(D?) || 2v | wr? | gwr® | In?rt | Sxr® | dxdeb | AoqdpT
Oberfléche(D}) 277 | dmr? | 2n%r3 | Sart | w3pS | 036

Nicht-messbare Mengen sind auflerordentlich schwer zu finden:

Beispiel 74 (Nicht-messbare Menge). Durch  ~ y <= z —y € Q wird auf ]0,1]
eine Aquivalenzrelation definiert. Sei M C]0,1[ eine Menge, die aus jeder Aquivalenzklasse
genau ein Element enthélt. Dann ist M nicht p-messbar.

Beweis. Ist x €]0,1][, so gibt es ein dazu dquivalentes y € M. Dann ist r := x — y rational
und liegt offenbar in | — 1,1[. Also ist

jo1[cM:= |J @+M)c]-12[
reQn]—1,1]

Weil M aus jeder Aquivalenzklasse nur ein Element enthilt, sind die r + M paarweise
disjunkt.

Annahme: M ist pu;-messbar.

Wegen 0 < x;, < X 1,9 ist M dann sogar p;-integrierbar und (Beweis ?) auch r + M fiir
jedes r € QN] — 1,1] integrierbar mit

pa(r+ M) = pn (M).
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e Wire py (M) = 0, d.h. M eine p;-Nullmenge, so wire auch die abzéhlbare Vereinigung
M eine pq-Nullmenge im Widerspruch zu 10,1 [C M.

o Wire p1 (M) > 0, so wire nach der o-Additivitét

p(=1,2) > (M) = pn(r + M) = 0.
Widerspruch!

Also war die Annahme der Messbarkeit falsch.
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6 Der Transformationssatz

e Hiufig hat man Integrationsprobleme mit gewissen Symmetrieeigenschaften des Inte-
grationsbereiches. Dann sind andere als die Euklidischen Koordinaten sehr hilfreich.
Wir lernen in den folgenden Abschnitten, wie man dafiir die Integrale umschreibt. Der
Kernpunkt ist die Volumenverzerrung durch die Koordinatenabbildung.

Wir betrachten in diesem Kapitel

das Lebesguemaf ., auf R".

Integrierbarkeit, Messbarkeit und Nullmengen beziehen sich stets darauf. Wir wollen folgen-
de Frage untersuchen:

Seien A C R™ integrierbar und h : R™ — R™. Wie verhalten sich u,(A4) und p,(h(4))
zueinander? Wie wird also das n-dimensionale Volumen einer Menge durch eine Abbildung
h verzerrt?

6.1 Nullmengen und Verzerrung durch lineare Abbildungen

e Was passiert mit Nullmengen unter C'*-Abbildungen?

e Lineare Abbildungen bilden Wiirfel oder Quader in Parallelotope ab. Die elementar-
geometrische Volumenverzerrung wird dabei durch die Determinante beschrieben. Wir
lernen, dass das auch fiir die Volumenverzerrung messbarer Mengen zutrifft.

Zwei Vorbemerkungen:

1. Fast-disjunkte Intervalle. Der Rand eines Intervalls aus I(R™) ist die Vereinigung von
endlich vielen niedriger-dimensionalen Intervallen und deshalb eine p,-Nullmenge. Darum
ist u, additiv (sogar o-additiv) auch fiir nicht notwendig paarweise disjunkte Intervalle,
wenn sie sich allenfalls an den Réndern iiberlappen. Das ist sehr angenehm zum Beispiel
bei Argumenten mit Intervall-Halbierung. Wir geben dieser Situation der Einfachheit einen
Namen:

Definition 75. Eine Familie (I;);cs beschrankter Intervalle, die sich allenfalls am Rande
iiberlappen, d.h. deren offene Kerne I JQ paarweise disjunkt sind, nennen wir fast-disjunkt.

Ist also (I;);en eine fast-disjunkte Folge in I(R™) und |J I; beschrénkt, so gilt

pn(J 1) =Y i (T).
jeN jEN
2. Wiirfel. Der Schrankensatz
[A(y) — h(z)|| < (sup || DA|) ly — =||

gibt eine Abschétzung fiir die lineare Verzerrung und damit fiir die Verzerrung von Kugeln.
Wenn wir

statt der iiblichen Euklidischen Norm auf dem R™ die sup-Norm ||.||« verwenden,
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sind die Kugeln achsenparallele Wiirfel, d.h. spezielle beschrénkte Intervalle in I(R™). Die
Methoden der Analysis II werden damit auch fiir unseren Aufbau der Integrationstheorie
verfiighar.

Allerdings miissen wir uns erst noch klarmachen, dass es an vielen Stellen der Integrations-
theorie gentigt, mit Wiirfeln statt mit Intervallen zu argumentieren. Dem ist ein Teil dieses
Abschnittes gewidmet.

Definition 76. Fiir p € R™ und r > 0 sei

W(p,r) = {(ml,...,xn)

o= plle = sup s pi <7

1<i<n
die abgeschlossene Vollkugel um p vom Radius r in der sup-Norm.

Lemma 77 (Ausschopfungslemma). Seien G C R™ offen und r > 0. Dann gibt es eine
Folge fast-disjunkter, kompakter Wiirfel (W;);en mit Kantenlingen < r und

G=Jw.

ieN

Beweis. Fiir k € N sei

T 2m; + 1)r .
Wk:{W((ilil,,:En),QkH) ‘l‘i_(2k+1)m1t miEZ}.

Die Wiirfel aus Wj, bilden dann eine Zerlegung des
R"™ in fast-disjunkte Wiirfel der Kantenlénge 5, und
zu jedem W € Wiy gibt es ein W € W, mit
W c W. Die Wiirfel von W1 erhélt man, wenn

man die Wiirfel von Wj, in jeder Koordinatenrich- H

tung halbiert. T
Sei W& :=0) und sei W fiir k € N die Menge aller

W € Wy, die ganz in G liegen und die nicht schon in

einem Wiirfel aus W,?_l enthalten sind.

Dann ist WY := (J;2, Wy, abzihlbar, die W € W¢
sind fast-disjunkt und Uy, cyye W = G.

Lemma 78 (Nullmengen und Wiirfel). Seien r > 0 und N C R™.

N st genau dann eine Nullmenge, wenn es zu jedem € > 0 eine Folge (W; = W (ps,7i))ien
von kompakten Wiirfeln gibt, so dass

N C U W, Z,un(Wi) <e, und firalei r;<r.
iEN iEN

Beweis. Die Bedingung ist offenbar hinreichend.
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Ist andrerseits N eine p,,-Nullmenge, so gibt es zu jedem ¢ > 0 eine Folge (I;);jen offener
Intervalle aus I(R™), die N iiberdeckt, und fiir die

Zﬂn(-rj) <€

jEN

Zu jedem I; gibt es nach Lemma [77| eine Folge fast-disjunkter kompakter Wiirfel (WZJ )ieN
mit Kantenldngen < r und Vereinigung I;. Fiir diese gilt

> (W) = pn(I).

i€EN

Die als Folge numerierten WZJ iiberdecken dann N und haben ein Gesamtmaf < e. O

Lemma 79 (C!-Bilder von Nullmengen). Seien G C R™ offen, h : G — R" stetig
differenzierbar und N C G eine Nullmenge. Dann ist auch h(N) eine Nullmenge.

Bemerkung. Das gilt nicht fiir stetige Abbildungen. Peano hat 1890 ein Beispiel fiir eine
stetige Abbildung der Nullmenge {(LO) ’0 <z < 1} C R? in den R? gegeben, deren Bild
das Einheitsquadrat ist. Vgl. z.B. Barner-Flohr, Analysis II, p. 40.

Beweis. Nach dem Ausschopfungslemma gibt es eine Folge kompakter Wiirfel (W}) en mit
G={ jeN W;. Weil die abzéhlbare Vereinigung von Nullmengen eine Nullmenge ist, geniigt
daher der Nachweis, dass h(N N W) fiir jeden kompakten Wiirfel W C G eine Nullmenge
ist. Zu einem solchen W = W (p, ) gibt es ein R > r mit W = W (p, R) C G (Beweis?). Weil

f stetig auf dem kompakten W ist, existiert

M = max{||Dmh|| ‘x c W}.

Sei nun € > 0. Nach Lemma [78] gibt es eine Folge von Wiirfeln W; = W (p;, r;) der Kan-
tenlinge < R —r mit NNW C UW; und > p,(W;) < e. Wir kénnen o.E. annehmen,
dass (NN W)NW; # 0 fiir alle i € N. Dann liegen alle W; in W. Daher ist nach dem
Schrankensatz

h(Wl) = h(W(pz, 7’1)) C W(h(pl), MTl)

Damit ist
h(N W) C W (h(p:), Mry) and > pin (W (h(ps), Mri) = M™> " i (W;) < M.

Also ist h(N N W) eine p,-Nullmenge. O

Wir betrachten jetzt das oben angesprochene Problem der Volumenverzerrung zunéchst fiir
(lineare) Isomorphismen h : R” — R"™.

Nach linearer Algebra (vgl. Fischer, p.94, Satz 2.7.3) ist jeder Automorphismus von R” das
Produkt endlich-vieler elementarer Automorphismen. Dabei heifit ein Automorphismus h
elementar, wenn er von einem der folgenden drei Typen ist:

e h multipliziert eine Komponente mit A\ # 0.
e h vertauscht zwei Komponenten

o h(z1,...,on) = (1 + X2, 22,...,2,).
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Lemma 80 (Verzerrung durch elementare Isomorphismen). Sei h : R" — R" ein
elementarer Automorphismus und W ein kompakter Wiirfel. Dann ist h(W) kompakt, also
integrierbar, und es gilt

Ha(h(W)) = | det h | o (W). (21)

Beweis. Fiir die beiden ersten Typen elementarer Isomorphismen ist die Behauptung klar,
weil h(W) ein Intervall ist, dessen Volumen sich elementar errechnet.

Sei also h vom dritten Typ und
W=W; x...xW,.

Dann gilt
Xh(W)(Ih R ,Z‘n) = X(:ch + Wl)(xl)XWQ X ... X Wn(xg, ce ,xn).

Dabei bezeichnet zo + W7 das um xzo verschobene Intervall W7, fiir das offenbar

pi(re + Wi) = i (Wh).

Nach dem Satz von Fubini existiert

/X(:cg +W1)(')XWQ x .”Wn(lﬂQa oy @) dpn = pa (22 + VVl)X{/V2 > ”.Wn(x% ey Tp)

= ,U/I(WI)XW2 % .. .Wn(:EZa ce. 7xn)7

und es gilt
Nn(h(W)) = /Xh(W)dMn = /:Ul(VVI)XVV2 « “,Wndﬂnfl
= ,ul(Wl)un_l(Wg X ... X Wn) = ILLTL(W).
Aus det(h) = 1 folgt die Behauptung. O

Weil Xp(w) © h = Xy, ist, kann man die Formel auch so schreiben:

Wir wollen diese Formel nun schrittweise verallgemeinern auf beliebige Automorphismen h
und integrierbare Funktionen f anstelle von Xp(w):

1. Schritt. Seien h ein elementarer Automorphismus und f = x 4 fiir eine offene und be-
schrinkte Teilmenge A C R™. Dann ist auch h~1(A) offen und nach dem Ausschépfungslemma
die Vereinigung abzihlbar vieler fast-disjunkter kompakter Wiirfel: h=1(A) = Uien Wi
Weil h injektiv und nullmengentreu ist, ist dann A = |, .y h(W;) mit fast-disjunkten h(W;),
also

ieN

o0
XA =tn Z Xh(W;):
1=0

Weil A beschrénkt ist, ist x 4, € LY (11,,), und wie im Beweis der o-Additivitit folgt mit

/XAd,Un = Z/Xh(Wi)d'u” = Z /(Xh(Wl) o h)| det h|dp,
=0 =0

= /(XUieN h(Wi) © h)| det h|du, = /(XAO h)| det h|dy,.
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2. Schritt. Sei h; ein beliebiger Automorphismus des R™, ho ein elementarer Automorphis-
mus, A C R" offen und beschrénkt, und fiir f = x , gelte

[ = [0l dethnldp,

Dann gilt nach dem 1. Schritt
/fdpn = /(f o hy)|det hy|du, = /thl(A)|det hi|dpy, = | det hq| /thl(A)d/Jn
= \det h1| /(Xhl_l(A) @) hg)‘ det h2|d,u,n = /(f @) (hl @) hQ))‘ det(h1 (@) h2)|d,uln

Weil aber jeder Automorphismus das endliche Produkt elementarer Automorphismen ist,
erhalten wir mit den 1. Schritt: Ist f = x , fiir ein offenes und beschrénktes A C R", so gilt
fiir jeden Automorphismus A : R* — R"

[ faun= [(ron)detn|du,. (23)

3. Schritt. Ist f € T(R"), so ist f =, 2521

AjX ;. mit offenen beschrinkten Intervallen
J
I;. Wegen der Linearitét des Integrals gilt (23|) daher auch fiir Treppenfunktionen f.

4. Schritt. Ist & : R" — R" ein Automorphismus, ist f € £ (11,) und ist (f;);en eine mono-
ton wachsende Folge von Treppenfunktionen mit f = lim,,, also [ fdu, = lim;_ [ fidpn,
so ist ((fi o h)|det h|),cy nach dem 3. Schritt eine offenbar monoton wachsende Folge inte-
grierbarer Funktionen mit beschrinkter Integralfolge

( [tomidechidn, = [ fidun)ieN

Nach Beppo Levi ist (f o h)|det h| =, lim;_.(f; o h)|det h| € L' (u,,) und gilt auch
fir f € L3 ().

Schlieflich gilt die Behauptung wegen der Linearitiit des Integrals dann auch fiir f € £(u.,),
und wir erhalten den folgenden Satz:

Satz 81 (Transformationssatz fiir lineare Isomorphismen). Seien h : R" — R" ein
Automorphismus und f € LY (). Dann ist auch foh € LY (uy,) und es gilt

[ faun= [(ron)detn|du,. (24)

Beispiel 82 (Ellipsenfldche). Der Isomorphismus h : (z,y) — (az, by) mit a,b > 0 bildet
den Einheitkreis D auf die Ellipse mit den Halbachsen a und b ab. Deren Fliche ist deshalb
gleich der Fliche 7 des Einheitskreises mal | det h | = ab:

F= /Xh(D)dHQ = /(Xh(D) o h)abdug = ab/XDd/Lg = abm.
O

Wenn h kein Automorphismus, sondern ein Diffeomorphismus, also eine stetig differenzierba-
re Abbildung mit stetig differenzierbarem Inversen ist, liefert die allgemeine Philosophie der
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Differentialrechnung sofort eine Vermutung, wie man diese Formel verallgemeinern sollte:
Statt der Determinante von h sollte wohl die Determinante der Ableitung von h auftreten:

/fdun :/(foh)\dech|dun.

Der Beweis dieser Formel ist unser Ziel in den folgenden Abschnitten. Wenn wir f nur {iber
einen Bereich h(G) integrieren wollen, miissen wir f ersetzen durch f Xn(G): Es ergibt sich

[ Py = [ (P o)l det Dl dn = [ (@ bixldet Dhldi,

oder, nach Seitenvertauschung,

/(th)|det Dh|dun:/ fdun.
el h(@)

Fiir das Verstédndnis des Transformationssatzes ist es iiberaus hilfreich, sich diese Formel
an der folgenden Skizze klarzumachen. Die Determinante liefert die Verzerrung der Grund-
fliche, wihrend die Ordinaten, also die Funktionswerte, bei der Transformation f +— foh
unveréndert bleiben.

Graph (fO h) Graph ( f )

S A ey

G -~ T\ h(G)

v

Y
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6.2 Verzerrung durch C'-Diffeomorphismen

e Die infinitesimale Volumenverzerrung eines Diffeomorphismus wird durch lineare Ap-
proximation berechnet und ist deshalb gegeben durch die Determinante der Funktio-
nalmatrix.

e Die globale Volumenverzerrung eines Diffeomorphismus ergibt sich durch Integration
der infinitesimalen Verzerrung.

Die beiden folgenden Lemmata beschreiben infinitesimal und global die Volumenverzerrung
von Wiirfeln durch C 1—Diffe0morphismerﬁ

Lemma 83 (Infinitesimale Wiirfelverzerrung). Seien G C R" offen, h : G — R" stetig
differenzierbar, p € G und D,h bijektiv. Sei (W;) eine Folge kompakter, nicht entarteteﬂ
Wiirfel in G mit

lim diam W; =0 und p e[ |Wi

71— 00

Dann sind die h(W;) kompakt, also integrierbar, und

im = |det D,h|.

Beweis. 1. Schritt. Wir kénnen o.E. annehmen, dass D,h = id.
Sonst setzen wir g := (Dph)~!. Dann ist

P (h(W3)) — pa(M(W3))  pin(g o h(W3))

_ _ fin(g © h(W:))
pn(Wi) (g o h(Wi))  pn(Wi)  LemmaEO

ﬂn(Wl)

| det Dyyh |

und D,(go h) = id.

2. Schritt. Sei also D h = id. Dann folgt aus der stetigen Differenzierbarkeit und dem
Schrankensatz, dass es zu jedem e €]0,1[ eine Umgebung U von p gibt, so dass fiir alle
7.q €U

[h(q) = (]l < (1 +€)llg — |-

Mit dem Umkehrsatz erhilt man ebenso eine Umgebung, auf der

1

——ln(a) — A&

lg—d'll <
Nach eventueller Verkleinerung von U erhalten wir fiir alle q,q¢' € U

(1 =allg—d'l < lh(g) = () < A +)llg — ¢l

Weil wir mit der Supremumsnorm arbeiten, bedeutet das aber fiir alle Wiirfel W (g, r) C U,
dass

W (h(q),(1 = €)r)) C (W (g, 7)) C W(h(q), (1 +€)r).

4 Zur Erinnerung: C'-Diffeomorphismen sind bijektive, stetig differenzierbare Abbildungen mit stetig
differenzierbarem Inversen.
5D.h. mit positiver Kantenlinge, also p, (W;) > 0.
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Also ist

A - A\ W(h(q),(1+€e)r)
(1= @) < pn(B(W (g, 1) < (1402 (E)
&

und deshalb an W(h(@).(1-2)

n ILLn(h(W(p’ T))) n g g

l—e)" < ——= < (1+¢€)".

O W) =0
Daraus folgt die Behauptung. O

Lemma 84 (Globale Wiirfelverzerrung). Seien G C R™ offen und h : G — R" ein
C'-Diffeomorphismus. Sei W ein kompakter Wiirfel in G. Dann ist h(W) kompakt, also
integrierbar, |det Dh| € LY(W, pp) und

(W) = [ [det D (25)

Vergleichen Sie das mit Lemma
Die Gleichung konnen wir auch schreiben als

dnz/ h)|det Dh | duy,. 26
/h(G)xh(W) = [ Capy ol det DA | d (26)

Beweis von Lemmal[84 Sei L die Kantenlinge von W. Wir unterteilen W durch fortgesetzte
Halbierung. Zu jedem k erhalten wir so 2" kompakte fast-disjunkte Wiirfel (Wj)i<j<orn
der Kantenlinge L/2*, so dass fiir jedes k € N

2kn 2kn
W = U Wi und Xy =u, Z Xi,,-
j=1

Weil h injektiv und nach Lemma [79 nullmengentreu ist, folgt

2kn

W) ~Hn Z Xn(Wi)'
j=1

Wir definieren eine Folge von Treppenfunktionen

2km

z MWhy)
=1 Nn Wk ij .

Zunichst wollen wir zeigen, dass diese Folge u.,,-konvergent ist. Die Vereinigung der Rénder
aller Wi; bildet eine Nullmenge N. Fiir « € W\ N gibt es zu jedem k genau ein j(k) mit
T € Wi,(x)- Dann ist also

i (MWiiy))
fk(x) - ,u'n(Wk](k)) .

Fiir € W\ N folgt aus Lemma[83] dass lim f;(2) = |det D,h|, also

kli—>rgo fk =, Xy |det Dh|.
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Weiter ist

2 kn

[ i = 311, (H0W) = e BOV)) = [ i

Die Behauptung ergibt sich daher aus dem Satz von Lebesgue, falls die fi von einer inte-
grierbaren Funktion dominiert werden. Mit M := sup,cy ||[Dzh| liegt aber jedes h(Wy;)
nach dem Schrankensatz in einem Wiirfel der M-fachen Kantenlénge, also des M"-fachen
Volumens, und es folgt

0<fi, <M"xy, € L (pin).

O

Beispiel 85. Wie man einen Isomorphismus von R" auf einen Vektorraum deuten kann
als ein Koordinatensystem in diesem Vektorraum, so kann man allgemeiner auch Diffeomor-
phismen als (sogenannte “krummlinige”) Koordinaten interpretieren. Wir betrachten ebene
Polarkoordinaten.

Sei h : R? D)0, 00[x]0, 2r[— R? der Diffeomorphismus
h(p,9) := (pcos ¢, psin g).
p und ¢ heiflen die Polarkoordinaten des Punktes h(p, ¢). Die Funktionalmatrix im Punkt

(p, @) ist
’ __(cos¢p —psing
W (p, ) = <sin¢ pcosqS)

Die Funktionaldeterminante ist
|det D(p7¢)h| = det D(p,@h = p.

Nach Lemma [83| wird also ein kleines Quadrat an der Stelle (p, ¢) durch h abgebildet auf
eine Menge vom ann#éhernd p-fachen Flécheninhalt.

Fiir grofle Quadrate erhélt man die Flichenverzerrung nach Lemma durch Integration,
und mit dem Satz von Fubini ergibt sich fiir 0 < pg < p; und 0 < ¢g < 1 < 27

b1 rp1
p2(h([po, p1] x [po, #1])) = / / pdpdp = %(% — ¢0) (Pt — Pp)-

A A

h(W)

A 4
Y

o
—0

Schreibt man die linke Seite als po-Integral und (in Anlehnung an den Satz von Fubini)

duo = dx dy, so ergibt sich
/ d:z:dy:/ pdpdo.
h(W) w
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Das kodiert man gern in der Formel
drdy = pdpde.

Man sagt das Flachenelement in Polarkoordinaten sei p dp de¢.

Beachten Sie: h ist kein Diffeomorphismus auf der abgeschlossenen Menge [0, co[X [0, 27],

und deshalb kénnen wir nicht pg = ¢9g = 0 und ¢; = 27 setzen, um die Kreisfliche zu
errechnen. Das ist drgerlich und muss noch “repariert” werden. Vergleichen sie dazu den

Zusatz in der folgenden endgiiltigen Version des Transformationssatzes und das Beispiel

O

Beispiel 86 (Allgemeine Kugelkoordinaten). Fiir die Funktionaldeterminante der ver-

allgemeinerten Kugelkoordinaten

by : R™ D [0,00[x[0,7]" "2 x [0,27] — R"
mit
ha(r,¢) := r(cos ¢,sin @),
hs(r, 01, ) := r(cos ¢sin by, sin ¢ sin fy, cos b;)
= r(ha(1, $)sin 0, cos 61),
hn+1(T, 917 s 59n—1a ¢) = T(hn(lv 917 LR 9n—23 ¢) sin on—la Ccos en—l)
gilt

|det Dh,,| = 7" 1(sin 0y ...sin" 726, _5).
Insbesondere gilt fiir die 3-dimensionalen Kugelkoordinaten hs(r, 6, ¢)

|det Dhs| = 72 sin 6.

Beweis. Durch Induktion.
Induktionsanfang klar.
Induktionsschritt. Es ist

Dhni1 = hn(l,...)sin0p_1 7 56, sin 0y, _1
cosBOp_1 0

Ohy(1,...)

—r sinf,_1

Beachten Sie, dass in der ersten Zeile n-reihige Vektoren stehen, so dass diese Matrix “ordnungsgeméafl” vom

Format (n + 1) x (n+ 1) ist. Damit folgt

. Ohn(l,...) Ohn(1,...)
|det Dhpi1| = £rsinn=1g, hn(1,...)sin0p_1 e hn(l,....) cos Oy _1 BT
cosBp_1 0 — sinf,_1 0
_ msin" 20, 1 |hy(1,.. ) sin? 6,y %}1) (L, ...) cos® 61 L;)
cos B, 1 cosBOp_18inb,_1 0 — sin@,_1cosf,_1 0
o rsin™ 01 Ry (1, .. ) sin6, %011’) . ha(1,..) %;’)
cos b1 cosOp_1 0 0 0
s O (L) Zalle) L Ol SO
= £r"(sin® "1 0,,_1)| det Dhp (1,01, ...,0n_2,0)|

=r"(sin® 1 0,_1)...(sin! 6).
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6.3 Der Transformationssatz

e Wir haben frither die Volumenverzerrung durch lineare Isomorphismen berechnet und
daraus den Transformationssatz [81] fiir Integrale gewonnen.

e Nachdem die Volumenverzerrung durch Diffeomorphismen geklért ist, konnen wir dar-
aus ebenso den Transformationssatz fiir Integrale gewinnen, also Integrale in andere
Koordinatensysteme umschreiben.

Wir verallgemeinern auf beliebige Funktionen f € £!(u,) anstelle von Xn(w):

Satz 87 (Transformationssatz). Sei h : G — R" injektiv und stetig differenzierbar auf
der offenen Menge G C R™. Dann gilt:

(i) h(G) ist p,-messbar.
(ii) Ist f € LY(W(G), jun), so ist (f o h)|det Dh| € LG, py) und

fdun, :/(foh)|dech|d,un.
h(G) G

Zusatz: Die Injektivititsforderung darf h auf einer Nullmenge auch verletzen:
Ist h stetig differenzierbar auf einer offenen Umgebung der p,-messbaren (aber nicht not-
wendig offenen) Menge G, und ist N C G eine u,-Nullmenge, so dass

G\ N offen und h|g\ y injektiv,

so gelten ebenfalls die obigen Behauptungen.

Beispiel 88. Eine typische Situation, in der sich der Zusatz als niitzlich erweist, sind die
Polarkoordinaten, vgl. Beispiel

h(p, ) = (pcos ¢, psin ¢) fiir (p, ) € R?,
G = [0, R] x [0, 27]
N=0G =G\ (0, R[x]0,2r ).

h ist auf dem Inneren von G ein Diffeomorphismus, nicht aber auf ganz G. Aber wenn man
mit der Idee aus Beispiel [85] die Kreisfliche berechnen will, méchte man pg = ¢g =0, p1 = R
und ¢; = 27 setzen. Darf man auch, weil die Injektivitdt nur auf einer Nullmenge, nédmlich
dem Rand 9G, verletzt ist.

O

Der Beweis des Transformationssatzes gliedert sich entsprechend den Voraussetzungen iiber
h in drei Teile

Teil A: h ist ein C*-Diffeomorphismus der offenen Menge G.
Teil B: h ist eine injektive C'-Abbildung der offenen Menge G.

Teil C: h ist wie im Zusatz.
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Beweis des Transformationssatzes: Teil A. Sei also G offen und
h:R">G— h(G) CR"

ein C'-Diffeomorphismus. Wir stellen zunéchst fest, dass dann h(G) offen und damit p,,-
messbar ist.

A.1 Sei f = x , fiir ein beschréinktes, offenes A C h(G). Dann 1dBt sich die offene Menge
h='(A) C G schreiben als Vereinigung einer fast-disjunkten Folge kompakter Wiirfel W; in
G. Dann gilt also

(oo}
Xp=1(A) Thn > Xw;
j=0
und, weil h nullmengentreu ist,

o0
XA Thn Z Xn(w;):
§=0

Nach Lemma [84] gilt fiir die Partialsummen

k k
[\ ) e = [ 0y o 0121 | e
J= =

J

und weil Z?:o Xh(w,) < x4 fiir jedes k € N, ist diese Integralfolge beschrinkt. Anwendung
J
des Satzes von Beppo Levi auf beide Seiten liefert daher

[ = [ (£ 0wl det DI,

und das ist dasselbe(!) wie

fdun = [ (7] det Db | dp
h(G) a

.2 Nun sei f = Xn(c) 9 fiir eine Treppenfunktion g = Zf:o ¢; Xp.- Dann ist

F = Z CiX19 N (@)
und die Behauptung folgt aus A.1 und der Linearitéit des Integrals.

A3 Sei f = Xn(c)9 mit g € £ (), und sei (g;);en eine monoton wachsende Folge von
Treppenfunktionen mit ji,,-Limes g. Dann ist f =, lim Xn(G)95s und wegen der Nullmen-
gentreue von h=! auch foh =, lim(Xh(G)gj) o h. Nach A.3 gilt fiir jedes j € N

/Xh(G)gjd,Un = /((Xh(g)gj) o h)| det Dh|d,.
Weil Xh(G)9i <un. Xn(G)9 c L’l(un), ist diese Integralfolge beschrinkt, und nach Beppo Levi
gilt

/Xh(G’)gd,un = /((Xh(G’)g) o h)|det Dh|dup,

also

Fdpo = [ (F o 1)|det DI | .
h(G) G
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A4 Tst schlieBlich f € £(u,) beliebig, so folgt die Behauptung aus A.3 und der Linearitét
des Integrals. O

Beweis des Transformationssatzes: Teil B. Wir verlangen nun nicht mehr, dass h ein Diffeo-
morphismus ist, sondern nur eine injektive C''-Abbildung. Sei

K :={x | Dyh nicht bijektiv } .

K ist abgeschlossen, also G\ K offen und damit messbar. Wir zeigen spiiter im Satz
(Lemma von Sard), dass
h(K) eine p,-Nullmenge

ist. Wegen h(G\ K) C h(G) C h(G\ K) U h(K) ist dann

Xn(G\ K) ~hn Xp(GQ)

Ist also f € LY(h(G), un), so auch f € LY (h(G\ K, p1,,) und

/ Jdun =/ fdpn
h(G) h(G\ K)

:/ (f o h)| det Dh |dys,
G\ K

:/ (foh)\dech|d,un—|—/(foh)\dech|dun
G\ K K

=0

= / (f o h)|det Dh|dp,.
G
Beim letzten Schritt haben wir verwendet, dass XG\ K +Xi = X O

Beweis des Transformationssatzes: Teil C. Wir beweisen nun den Zusatz.
G\ N ist offen, also messbar, und damit ist auch G messbar. Weiter ist
h(G\N) C h(G) C h(G\ N) Uh(N),

und h(N) ist nach Lemma[79)eine Nullmenge. Nach Teil A und B ist (G \ N) messbar, also
ist auch h(G) messbar. Weiter ist

/ fdun:/ fdu, = / (th)|dech|d,un:/(foh)|dech|dun.
h(G) R(G\ N) Teil B Jo\ N G

O

Beispiel 89. Fiir einen Diffeomorphismus « : [a,b] — z([a,b]) C R und eine Regelfunktion
f:x([a,b]) — R besagt die Substitutionsregel:

z(b) b
x)dr = z(t)) 2’ (t) dt.
/x(@ f(x) /af(()) (1)

Vergleichen Sie das mit dem Transformationssatz. Warum steht hier 2/(t) statt |2’ (¢)|?
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Beispiel 90 (Bewegungsinvarianz). Translationen und orthogonale Abbildungen des R™
sind Diffeomorphismen mit Funktionaldeterminante vom Absolutbetrag 1. Also erhalten sie
das Lebesguemaf integrierbarer Mengen. Das Lebesguemaf ist bewegunsinvariant.

O

Beispiel 91 (GauBsches Fehlerintegral). Die Funktion f : R2 — R, (z,y) — e~ @ ")
ist stetig, und daher fiir jedes R > 0 integrierbar iiber den abgeschlossenen Kreis Br vom
Radius R. Anwendung des Transformationssatzes mit Polarkoordinaten liefert

2 2
/ Fps = / e pduy = / e’ pdpds.
Br [0,R] x[0,27] [0,R] x[0,27]

Darauf wenden wir den Fubini an und schreiben die 1-dimensionalen Lebesgueintegrale in
Regelintegrale um

27 R , 1 e*RQ
fdus = / / e Ppdpldp=2n|=— .
Br 0 0 2 2

Wir betrachten nun den Fall R = n € N und wenden auf die Folge (XB f)nen den Satz von

Beppo Levi an. Er liefert

2

/fd/JQ = lim / fd/_j,2 = lim 7T(1 _e ) -
n—oo B, n—oo

Andrerseits wissen wir aus Beispiel [62]

)

und finden

o0 2
/ e Udt = /7.

— 00

Dies ist das in der Statistik sehr wichtige

Integral der Gaufischen Verteilung. Es 1483t

sich ,eindimensional® nicht leicht finden,
42 . .

e~ " hat keine elementare Stammfunktion.

O

Beispiel 92 (Trigheitsmoment der homogenen Hohlkugel). Die Kugelkoordinaten
oder sphirischen Polarkoordinaten A : [0, 0o[x [0, 7] x [0, 27r] — R? mit

h(r, 0, @) := (rsinf cos ¢, rsin 0 sin ¢, r cos 6)

sind ein Diffeomorphismus auf ]0, co[x]0, 7[x]0, 27[, und die Funktionaldeterminante ist nach
Beispiel [86] gegeben durch 72 sin 6.
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rsin 6 do

rde

Wir berechnen damit das Tréagheitsmoment einer homogenen Hohlkugel K mit Radien a < b
und der Massendichte m beziiglich der z—Achse durch den Mittelpunkt, welches definiert
ist durch

o= / m(z? + y?)dus.
K
Anwendung des Transformationssatzes auf sphérische Polarkoordinaten und Fubini ergibt:
b T 27 b T 2
0= / / mr?sin? 012 sin dpdodr = / / mr*sin® 0 dpdfdr
a JO 0 a JO 0

5_ .5 o7
:27rmb 5a /0 sin39d9:8;n—5ﬂ(b5—a5).

Unter Verwendung der Gesamtmasse M = m %ﬂ(b3 — a®) erhilt man

2 —

O=sMp—o

Rollt die Kugel auf einer schiefen Ebene der Neigung «, und bezeichnet i) den Rota-
tionswinkel, so ergibt sich die Bewegungsgleichung aus dem Energieerhaltungssatz:

M, .5 ©.5 . _ Mgbsina ,
5 (b)) + 21[) = Mgbysina = ()= )]

Die Laufzeit T fiir die Strecke S = by)(T') erfiillt dann
25 C)
1

T? = —).
gsina< + Mb2)

Durch ein Laufzeit-Experiment lassen sich also das Tragheitsmoment © und damit der innere
Radius a aus den leicht zu messenden Hohlkugel-Parametern M und b bestimmen.

O
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6.4 Das Lemma von Sard

e Es scheint plausibel, dass Mengen, auf denen der Rang einer differenzierbaren Ab-
bildung < n ist, auf Mengen einer Dimension < n abgebildet werden, aber es ist
natiirlich gar nicht klar, was das eigentlich bedeuten soll. Das Lemma von Sard gibt
eine Prézisierung, die wir im Beweis zum Transformationssatz bereits benutzt haben.

Satz 93 (Lemma von Sard). Seien G C R™ offen und h : G — R™ stetig differenzierbar.
Sei
K = {x ’ det D, h = 0}.

Dann ist die Menge der kritischen Werte h(K) von h eine u,-Nullmenge.

Beweis. Wir verwenden die Euklidische Norm auf R”, weil wir die Bewegungsinvarianz von
Ly brauchen werden.

Weil die Vereinigung abzihlbar vieler Nullmengen eine Nullmenge ist, geniigt es nach dem
Ausschdpfungslemmazu zeigen, dass h(K NW) fiir jeden kompakten Wiirfel W C G eine
n-Nullmenge ist. Sei W also ein solcher Wiirfel, sei

M := sup ||D,h||,
zeW

und sei
e > 0.

Die Funktion ||Dh]| ist stetig auf der kompakten Menge W, also gleichméflig stetig. Daher
gibt es zu dem gegebenen € eine Zerlegung von W in k™ kompakte Wirfel W, 5 € {1,...,k"},

mit
n

. diam W
W = U Wy, diamW; = ——
Jj=1
so dass fiir alle j gilt
z,ye W, = ||Dyh—D,h|| <e. (27)

Fiir alle Komponentenfunktionen h; von h, alle j € {1,...,k"} und alle x,y in W} gilt nach
dem Schrankensatz

ha(y) ~ ha(a)| < (o) — ()| < My — ] < T2 (28)

Nun sei z € K N W, also Dyh(R™) # R™, und wir nechmen zunéchst an, dass

D.h(R™) c R"! x {0}. (29)
Dann gilt fiir die letzte Komponenten h,, und y € W;

|hn(y) = ha(2)| = [hn(y) — hn(2) = Doha(y — ) |
=0

< |Ih(y) = h(x) = Dah(y — )|

= [[(h(y) = Dzh(y)) — (h(z) — Dah(x))]| -
Der Schrankensatz angewendet auf die Funktion y — h(y) — D,h(y) liefert dann

diam W
|hn(y) — hn(2)] < sup [[Dgh — Dahll||ly — 2| <€ : (30)

geTY k
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Nach und ist die kompakte Menge h(W¥;) also enthalten in einem Intervall vom
Volumen

k k kn

Ohne die Voraussetzung ist D,h(R™) enthalten in einer anderen Hyperebene des R™,
die man aus R"~! x {0} durch eine Drehung erhalten kann. Wegen der Bewegungsinvarianz
von f,, vergleiche Beispiel gilt dann auch in diesem Fall

di W n—1 di w
(M 1 ) 2¢ T — 9 S M (diam W)™

€

M (diam W)™,

Das gilt fiir alle j mit K NW; # 0, insgesamt aber fiir hochstens k™ Indizes.
Weil (K N W) C Ugnw, o 1(W;) und alle diese Mengen integrierbar sind, folgt

pn(MEOW)) <p [ | BOWG) | < 2eM" ! (diam W)"
KOW]‘#Q

fiir jedes € > 0. Also ist p, (R(K NW)) = 0 und die Behauptung bewiesen. O

Bemerkung. Fiir differenzierbare Abbildungen auch zwischen Rdumen verschiedener Di-
mension
fR"DG—-R™

heiflen Punkte, in denen das Differential nicht surjektiv ist, kritische Punkte und ihre Bil-
der kritische Werte. Das Lemma von Sard (1942) in seiner vollen Form besagt, dass auch
in diesem Fall die Menge der kritischen Werte eine Lebesgue-Nullmenge ist, wobei man
(merkwiirdiger Weise) voraussetzen muss, dass die Abbildung f mehr als max(0, n —m)-mal
stetig differenzierbar ist. (Vgl. z.B. Brocker/Jénich, Einfiihrung in die Differentialtopologie,
Springer-Verlag).

Es gibt ein Beispiel (von H. Whitney 1935) fiir eine C!'-Funktion von R? nach R, deren
kritische Wertemenge ein nicht-degeneriertes Intervall enthilt. Fiir C2-Funktionen ist das
unmoglich.

Beispiel 94 (Transversalitit). Das Lemma von Sard spielt im Zusammenhang mit dem
Begriff der Transversalitit eine wichtige Rolle in der Differentialtopologie. Wir geben dafiir
ein einfachstes Beispiel.

Sei f : [a,b] — R stetig differenzierbar mit
f(a) < f(b). Nach dem Lemma von Sard ist Graph {

fK) = {f() ‘f’(t) =0} eine p1-Nullmenge g R

in R und deshalb ist [f(a), f(b)]\ f(K) # 0.
Liegt yo in dieser Menge, so schneidet die Ge-
rade y = yo den Graphen von f transversal: In
keinem Schnittpunkt ist die Gerade tangential
an den Graphen. Das Lemma von Sard liefert a b

also die Existenz transversaler (horizontaler)
Geraden.

o<
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7 Ré&aume integrierbarer Funktionen

e Wir machen einen Ausflug in die Funktionalanalysis.

7.1 Die LP-Riume

e Konvergenz von Folgen hatten wir in der Analysis II mittels Metrik, Topologie oder
Norm erkliart. Die in den Konvergenzsitzen benutzte punktweise Konvergenz fast
iiberall ist von etwas anderer Natur, nur die gleichméfBige Konvergenz lief sich als
Konvergenz in der Supremumsnorm verstehen.

e Wir definieren deshalb auf verschiedenen Réumen integrierbarer Funktionen, die fiir
die Praxis der numerischen Mathematik oder der partiellen Differentialgleichungen von
grofler Wichtigkeit sind, auch Normen und damit neue Konvergenzbegriffe.

e Wir werden diese Konvergenz im Zusammenhang mit den Fourierreihen im néchsten
Kapitel noch benétigen.

Im folgenden sei ¢ wieder ein beliebiges Maf§ auf R™. Weiter seien A C R™ eine ¢-messbare
Menge und p > 1.

Definition 95. (i) Wir setzen

LP(A, @) := {f tA—-R | f ist ¢-messbar und |f|? ist ¢-integrierbar iiber A} .

(ii) Fir f € LP(A, ¢) definieren wir

1/p
1l = ( / fl”dcb> |

Die Definition stimmt fiir p = 1 mit der bisherigen iiberein: f ist genau dann integrierbar,
wenn es messbar und | f| integrierbar ist.

Die Menge LP(A, ¢) ist ein Vektorunterraum vom Raum aller Abbildungen von A nach R.
Natiirlich ist sie abgeschlossen unter der Multiplikation mit reellen Zahlen, also muss man
nur zeigen, dass mit f,g € LP(A,¢) auch f+ g € LP(A, p). Aber f + g und |f + g|P sind
¢-messbar, und weil

| +gl” < 2sup(|fl, 19]))? = 27 sup(| |7, |g]") € L' (4, ¢)
ist |f + g|P nach Satz [54 auch ¢-integrierbar.

Wir erinnern an ein Resultat aus der Analysis I:

Fﬁra,bZOundp,q>1mit%—F%:lgilt

p q
<Y (31)
p q

Mit Hilfe dieser Ungleichung haben wir den folgenden Satz in einer diskreten Version bereits
in der Analysis I bewiesen:
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Satz 96 (Holdersche Ungleichung). Seien p,q > 1 mit

Seien f € LP(A,¢) und g € LI(A, $). Dann ist fg € L(A, ¢) und

gl < [ Flpllgllq-

Beweis. Ist || f|l, =0, so folgt [|f|Pd$ =0, also f =4 0. Entsprechend fiir g.
Also 0.E. || f|lp # 0 # ||g|lq- Fiir z € A gilt nach

F@Ie@)| _ 1 (1f@1N 1 (lg@)]°
17T lgla <p<||f||p> +q<||g||q> |

¢-messbar ¢-integrierbar

Nach Satz [54] folgt daraus fg € £'(A, ¢). Durch Integration ergibt sich

! 1 1 11
T e 19l < 7/|f\”d¢+—/\g\qd¢: L
£l lglls ™ = plI£1E allgllg P

O
Satz 97 (Minkowskische Ungleichung). Firp > 1 und f,g € LP(A, ¢) gilt
1f +gllp < 1fllp + llgllp
Beweis. Fiir p = 1 ist das trivial.
Sei also p > 1 und sei g = 1_11 = 1%, so dass %—f—% = 1. Beachten Sie, dass dann p—1 = %.

Also gilt
fecLr = |flPtec

Fir f,g € LP folgt

\f+glP =1f+allf +glP < |f1 [f+ 9P+ gl |f+glP"
~N N N
ell el eLl” el?
und nach der Holderschen Ungleichung

/A [ +glPde < 1 1S + 9P~ )llq + lgllp 11 + g~

— (Ifllp + llgl) ( s+ g|pd¢>; .

Falls |f + g| =¢4 O ist, ist die Behauptung trivial. Andernfalls folgt nach Division durch

(falf+ glpd¢)% die Behauptung. ¥
Es sieht so aus, als sei || ... ||, fiir p > 1 eine Norm auf dem Vektorraum £F(A, ¢). Offenbar
gilt

IAfllp = AL Nl
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und nach dem letzten Satz gilt die Dreiecksungleichung. Allerdings folgt aus || f||, = 0 nach
dem Korollar zum Satz von Beppo Levi nur f =4 0 und nicht f = 0, wie sich das fiir eine
Norm gehéren wiirde. ||.||, ist also nur eine sogenannte Halbnorm.

Definition 98. Die Menge
N(A, @) := {f:AHR |f:¢0}

ist fiir jedes p > 0 ein Untervektorraum von LP(A, ¢). Wir bezeichnen den Quotientenvek-
torraum nach diesem Unterraum mit

LP(A, ¢) := LY(A, 9) /N (4, ¢).

Fiir p > 1 induziert dann || ... ||, auf LP(A, ¢) eine Norm.

Bemerkung. In der Praxis wird die Unterscheidung zwischen £P und LP sehr grofziigig
gehandhabt. Man sagt oft ,Sei f € LP“ wenn man eigentlich meint ,Sei f € £P“, wenn also
f eine Funktion und nicht eine Aquivalenzklasse von Funktionen sein soll. Wir werden uns
dieser (Un)sitte anschlieBen.

Beispiel 99 (Hilbertraum). Fiir p = 2 wird die Norm auf £2(A, ¢) durch ein positiv
definites Skalarprodukt

(1.9) = [ foas

geliefert. Der Raum £? (A, ¢) heiBBt auch der Hilbertraum der quadrat-integrierbaren Funk-
tionen.

Die Cauchy-Schwarz-Ungleichung | (f,g)| < ||fll2llgll2 ist in diesem Fall &quivalent zur
Holderschen Ungleichung.

Fiir ¢ = éy erhélt man den Raum der quadrat-summierbaren Folgen, der iiblicherweise mit
1?2 bezeichnet und ,, Klein-l-zwei“ genannt wird.

O

Bemerkung zur Integration komplexwertiger Funktionen. Komplexwertige Funktio-
nen f:R™ D A — C sind Paare reellwertiger Funktionen:

f=u+ivmitu=Ref,v=Imf:R" DA —R.

Man definiert
LE(A ¢) ={u+iv |u,ve LA )}

und fiir f = u + v € LE(A, @)

/Afdgb::/Aud¢+i/Avd¢.

Dafiir gelten die elementaren Rechenregeln der Integration. Insbesondere hat man fiir f wie
oben

LA .
flefi(A6) und ’/Afchb’S/Afldqﬁ

Beweis. Sind u,v € L*(A, ¢), so ist vuZ + v2 messbar, und wegen

[l = Vu? + 0% < V2sup(|ul, v]) € £1(A, ¢)
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sogar integrierbar. Sei nun I := [, fd$ # 0. Dann folgt mit einem schon aus der Analysis 1
bekannten Trick I o Jl
f f
1 =Re=4 :/Re—dqbg “—dg,
I a1 a ]
also [I| < [, |f|dg. O

Man definiert £f. als Menge der komplexwertigen Funktionen mit messbarem Real- und
Imaginérteil, fiir die |f|? integrierbar ist. Dazu definiert man analog L. und insbesondere
LZ. Auf diesem Raum liefert

()= [ fado.

ein unitires Skalarprodukt (=positiv definite Sesquilinearform).
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7.2 Die Vollstindigkeit der LP-Riume

e Wir beweisen die Vollstéandigkeit der LP-Raume.

e In diesem Zusammenhang beschéiftigen wir uns noch einmal mit den verschiedenen
Konvergenzbegriffen fiir Funktionenfolgen und mit den Unterschieden zwischen endlich-
dimensionalen und unendlich-dimensionalen Banachrdumen.

Im folgenden seien ¢ ein Maf§ auf R™ und A C R™ eine ¢-messbare Menge.

Satz 100 (Fischer-Riesz). Fiirp > 1 ist (LP(A,$),] ... |l,) vollstindig, also ein Banach
raum.

Beweis. Ich schreibe £ statt L7(A, ¢) und beschrinke mich auf den Fall p > 1. Der Fall
p = 1 geht sehr dhnlich, aber es ist eine gute Ubung, sich die ntigen Anderungen klar zu
machen.

Sei (fx) eine Cauchyfolge in £P. Wir wollen zeigen, dass diese Folge konvergent ist, d.h. dass
es eine Limesfunktion f € LP gibt, so dass

lim || fi — fII = 0.
1. Schritt. Wir konstruieren zunéchst einen Kandidaten fiir f.

Wegen der Cauchy-Eigenschaft gibt es eine streng monoton wachsende Folge (my) mit
1 .
I fi = frellp < Y=} fiir alle I > my,. (32)

Wir wollen zeigen, dass (fm, )ren ¢-konvergent ist. Dazu schreiben wir

k
fm;C = fmo +Z(fmj - fm]‘—l)'

Jj=1

Es geniigt zu zeigen, dass die Reihe Z;il( fm; — fm,_,) fast iiberall absolut konvergent ist,
es geniigt sogar, das auf jedem beschriankten Intervall I € I(R™) zu zeigen. Dazu benutzen
wir den Satz von Beppo Levi.

Weil x, € L7 fiir ¢ := % ist, ist nach der Holderschen Ungleichung
|fmj - fm]-71|X] € ‘Cl-

und
k k k
m; —Jmji_1 d¢ = my; — Jmj_a < m; —Jmj_1 < .
J O s =t = 3, = sl DW= el g Bl

Nach dem Satz von Beppo Levi ist also die Reihe fast iiberall absolut konvergent, und
(fmi )ken konvergiert fast iiberall gegen eine Funktion f.

2. Schritt. Wir zeigen nun, dass f € £?.
Als Grenzwert messbarer Funktionen ist f messbar, und die Folge (| fm, |P)ren konvergiert
fast-iiberall gegen |f|?. Wir wenden auf diese Folge das Lemma von Fatou (Lemma an.
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Zunichst ist offenbar |f,,, [P > 0. Weil (f,,, Jken eine Cauchyfolge ist, ist auch (|| fin, ||lp)ken
eine Cauchyfolge in R und damit konvergent. Also ist

(/ | frm |Pd) ken beschrankt.

Damit sind die Voraussetzungen des Lemmas von Fatou erfiillt, und es folgt

7P = lim |, |7 € £V

Also ist f € LP.

3. Schritt. Wir wissen nun, dass (fm, )ren fast-iiberall konvergent gegen ein f € L7 ist. Wir
zeigen, dass (fm, )ken auch beziiglich || ... ||, gegen f konvergiert.

Dazu sei k € N. Wir betrachten die Folge
(Ifmi = e[ iz
und wenden wieder das Lemma von Fatou an. Es gilt
|foni = fmi [P =0,
[ 1= P 46 = U = Fsl3 < 75
B U = Sl =6 1 = F |
Aus dem Lemma von Fatou folgt

1
[17 =t do < s

Daraus folgt aber die Behauptung.

4. Schritt. Konvergiert eine Teilfolge einer Cauchyfolge, so konvergiert die ganze Folge gegen
denselben Grenzwert. Darum konvergiert auch die Folge (f;) en gegen f. O

Bemerkung: Konvergenzbegriffe fiir Funktionenfolgen. Der vorstehende Beweis hat
uns darauf aufmerksam gemacht, dass es fiir Funktionenfolgen sehr verschiedene Konver-
genzbegriffe gibt:

e Gleichméfige Konvergenz auf dem Definitionsbereich

e Punktweise Konvergenz

e Punktweise Konvergenz ¢-fast iiberall

e Konvergenz im p-Mittel, d.h. lim || fx, — |, = 0.
Die Beziehungen zwischen den drei ersten Begriffen sollten ziemlich klar sein, deren Bezie-
hungen zum vierten sind allerdings nicht so einfach, wie die folgenden Beispiele zeigen.

Beispiel 101. Dass selbst gleichméflige Konvergenz nicht die Konvergenz im p-Mittel im-
pliziert, zeigt die Folge
(lﬂil/p)([o7 k])kEN

fir ¢ = p.
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Im Beweis des Fischer-Riesz haben wir gezeigt:

Satz 102. FEine im p-Mittel konvergente Folge in LP besitzt eine fast-tiberall konvergente
Teilfolge.

Die Folge selbst braucht aber nirgends punktweise konvergent zu sein:
Beispiel 103. Fiir k € N sei n(k) € N die eindeutig bestimmt Zahl mit

2n(k) S k< 2n(/€)+1.

Definiere
k —2n(k) 1
= gy b ::ak—i—W
und
Tk = Xay by

Lauft & von 27(*) bis 27+l _ 1 50 lduft a; von 0 bis 1 — w7 und

1
pallaw, be]) = oo

Die Folge (f(x)) konvergiert fiir kein 2 € [0,1]. Andrerseits liegt sie in £'(R, y1), und
[ felli = 555, d-h. (fi) konvergiert in £'(R, 1) gegen 0.

O

Bemerkung. Die LP-Réume sind (fiir die meisten Mafle) unendlich-dimensionale Banach-
réume, die L?- und L%—Réume vollstdndige Rdume mit positiv-definitem Skalarprodukt,
sog. Hilbertrdume. Fiir solche gelten natiirlich alle Ergebnisse der linearen Algebra, die nicht
auf die Dimension Bezug nehmen, und alle Aussagen iiber (vollstindige) metrische Réume.
Insbesondere kann man von (endlichen) Linearkombinationen sprechen, und im L? hat man
die Begriffe orthogonal, orthonormal etc. Man kann z.B. das Schmidtsche Orthonormalisie-
rungsverfahren anwenden, wohingegen die Frage nach der Existenz von Orthonormalbasen
auf die Dimension Bezug nimmt und deshalb nicht a priori klar ist.

Auch manche der Thnen bisher bekannten topologischen Aussagen iiber Banachriume be-
ziehen sich vor allem auf den endlich-dimensionalen Fall und tibertragen sich nicht auf den
unendlich-dimensionalen.

e Untervektorrdume sind zum Beispiel nicht notwendig abgeschlossen.

So ist C°([0,1]) C L*([0,1]) ein echter Untervektorraum, aber, wie wir spiiter sehen
werden, dicht in L', d.h. die abgeschlossene Hiille von C°([0,1]) ist L' ([0, 1]).

e Die abgeschlossenen Kugeln sind nicht linger kompakt, vgl. Beispiel
e Lineare Abbildungen sind nicht unbedingt stetig.

Beispiel 104 (Nicht-kompakte Einheitskugel). Die Funktionen fj := Xk, k4 1] liegen
fiir jedes p > 1 im £P(u1) und erfiillen || fx||, = 1. Sie liegen also in der Einheitskugel des
LP(p1). Weiter rechnet man sofort nach, dass ||fx — fill, = ¥/2 fiir k # [. Deshalb ist keine
Teilfolge von (fx)ren eine Cauchyfolge und erst recht keine Teilfolge konvergent. Darum ist
die Einheitskugel im LP(p;) nicht kompakt.

O
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Beispiel 105. Der Raum 2 aus dem Beispiel [99| der quadrat-summierbaren Folgen enthilt
den Unterraum E aller Folgen mit nur endlich vielen von 0 verschiedenen Gliedern. Dieser
wird aufgespannt von den Folgen ey := (d,1);en, die lauter Nullen und eine 1 haben. Durch

al(z))jen) =Y jz;
7=0

wird eine lineare Abbildung « : ' — R definiert, die nicht stetig ist, weil
la(er)| =k = kllex][2,

d.h. weil « nicht beschrinkt ist. E ist ein dichter Teilraum von [2.

Eine unstetige lineare Funktion auf dem ganzen Banachraum /2 findet man, indem man einen
Unterraum F C 2 wihlt, so dass 2 = E @ F ist. Fiir den Beweis der Existenz eines solchen
algebraischen Komplements benétigt man das Auswahlaxiom oder das Zornsche Lemma,
also ein mengentheoretisches Argument. Dann definiert man eine Erweiterung & : {2 — R
von « auf den ganzen Raum durch éa(e + f) := afe) fire € E, f € F.

O
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8 Fourierreihen

Fourierreihen sind das Mittel zur Analyse periodischer Funktionen. Eine Funktion f : R — R
heifit T'-periodisch, wenn

Voer f(z+T) = f(z).
In diesem Fall heifit w := 2T die zugehérige (Kreis-)frequen.

Musterbeispiele sind die Funktionen cos(kwz) und sin(kwz) fiir beliebiges & € N. Ein Ziel
der Fourierschen Theorie ist es, beliebige T-periodische Funktionen als (unendliche) Line-
arkombination von diesen Musterfunktionen zu schreiben, also zum Beispiel - fiir gerade
T-periodische Funktionen -, eine Darstellung der Form

fx) = Z ay, cos(kwz)
k=1

zu finden. Die Amplituden a; geben dann an, mit welchem Gewicht der Baustein cos(kwt)
an f(t) beteiligt ist. Wir untersuchen, fiir welche Funktionen f eine solche Darstellung
existiert, in welchem Sinne die Konvergenz der unendlichen Reihe gemeint ist und wann die
Koeffizienten aj eindeutig sind. Die Abbildung

f = (ar)ren

bezeichnet man auch als Fouriertransformation oder Spektralanalyse. Sie analysiert, welche
Frequenzen kw mit welchem Gewicht an f beteiligt sind.

Im menschlichen Ohr sind die Haarzellen des Cortischen Organs jeweils fiir bestimmte Fre-
quenzen empfindlich. Das Ohr iibermittelt dem Gehirn also die Fouriertransformierten der
von ihm aufgenommenen akustischen Signale.

Rauschunterdriickungs- oder Kompressionsverfahren (etwa fiir MP3) zerlegen Signale mit
der Fouriertransformation in ihr Frequenzspektrum, filtern die unerwiinschten oder {iber-
fliissigen Frequenzen heraus und setzen das Signal dann wieder zusammen.

Wesentliche Anwendungen der Fourieranalyse etwa auf Randwertprobleme partieller Diffe-
rentialgleichungen betreffen die Darstellung von Funktionen f : [a,b] — R auf kompakten
Intervallen, die also sicher nicht periodisch sind, durch trigonometrische Funktionen. Dazu
setzt man f einfach mit der Periode b — a auf ganz R fort. (Das klappt natiirlich nur wenn
fla) = f(b). Wenn pi-Nullmengen keine Rolle spielen, ist das kein Problem, andernfalls
muss man sich was anderes einfallen lassen. Was, zum Beispiel?)
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8.1 Lineare Algebra und Geometrie im Hilbertraum

e Wir beginnen mit abstrakter Hilbertraumtheorie. Dabei haben wir den L? als Beispiel
im Hinterkopf, er wird fiir uns das Beispiel eines Hilbertraums werden. Aber in diesem
Abschnitt geht es nur um lineare Algebra und Geometrie, nicht um Analysis und
Integralrechung.

Wir verwenden folgende Definitionen fiir den Begriff Skalarprodukt. Vergleichen Sie dazu das
Lineare-Algebra-Skriptum von Mehrmann.

(i) Ein Skalarprodukt auf einem R-Vektorraum V ist eine positiv-definite symmetrische
Bilinearform. Ein endlich-dimensionaler R-Vektorraum mit einem Skalarprodukt heif3t
ein Fuklidischer Vektorraum.

(ii) Ein Skalarprodukt auf einem C-Vektorraum V ist eine positiv-definite hermitesche Bi-
linearform. Ein C-Vektorraum mit einem Skalarprodukt heifit ein unitirer Vektorraum.

Beispiele 106.

(o) = 3 vy auf R, g i= [ fods ant 12(4,0),
(v,w) := kawk auf C™. (f,9) = / fgde auf LE(A, ).
A
k=1
O
Zur Erinnerung: Ist (e, ..., e,) eine Basis des (endlich-dimensionalen) Vektorraumes V', so

a8t sich jeder Vektor f € V eindeutig schreiben als

F=Y fiej
=0

Die Bestimmung der Entwicklungskoeffizienten f; erfordert in der Regel das Losen eines
linearen Gleichungssystems und kann sehr aufwendig sein. Ist V' aber ein Euklidischer oder

unitdrer Vektorraum mit Skalarprodukt (.,.) und ist (eo,...,ey,) eine Orthonormalbasis, so
berechnen sich die Entwicklungskoeffizienten v; ganz einfach als
fj = <f7 €j> :

Fiir die Norm von f gilt dann (nach Pythagoras)
n
IFIP = () =D 1 Fres) I
§=0

Eine gebriuchliche Alternative bieten orthogonale Basen, fir die also ¢; := (e, e;) nicht
notwendig 1 ist. Dann gilt ebenfalls

n
f= ij ej, jetzt aber mit f; =
§=0

{fre5) (33)

1
Cj

Was passiert, wenn die e; zwar orthonormal sind, aber keine Basis bilden?
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Lemma 107. Seien ey, ..., e, orthonormale Vektoren in einem reellen oder komplexen Vek-
torraum (V,{.,.)) mit Skalarprodukt und sei W der davon aufgespannte Untervektorraum.
Definiere die Orthogonalprojektion auf W durch

n

PW(f)::Z<faej>ej7 fev

Jj=0

Dann gilt fir alle f € V

(i) f—Pw(f) LW, dh {f — Pw(f),g) firalegeW.

(ii) ||f = Pw (f)| = min {||f — gl| |g € W } und Py (f) ist der einzige Punkt in W, in dem
dieses Minimum angenommen wird.

Beweis. Zu (i). Das folgt unmittelbar aus <f . Z;'L:o (f.e5) ej,ek> = (f,er) — (f,ex) = 0.
Zu (i1). Fir g e W gilt
f=9=f—-Pw()+Pw(f)—g.

ew-t ew

Also gilt
1 —=gll> = I1f = Pw (DI + 1 Pw(f) — gll*.

Daraus folgt die Behauptung. O

Beachten Sie, dass in diesem Lemma zwar die Endlichkeit von n nicht aber die der Dimension
von V eine Rolle spielt.

Fiir den Rest dieses Abschnitts sei (V,(.,.)) ein Hilbertraum, d.h. ein Vektorraum iiber R
oder C mit einem Skalarprodukt (.,.) und davon induzierter Norm ||...||, der beziiglich
d(z,y) := ||z — yl| vollsténdig ist.

Die Objekte unseres Interesses sind eigentlich die konkreten Hilbertriumen L?(A,$) und
L%(A, ¢) mit dem oben eingefithren Skalarprodukt. Aber die bei den Untersuchungen ver-
wendete Sprache lehnt sich bewusst an die Situation im Euklidischen oder unitdren Raum
der linearen Algebra an, um die geometrische Anschauung (zum Beispiel den Begriff Ortho-
gonalprojektion) zu provozieren und zu iibertragen.

Definition 108. Seien J eine Indexmenge und (e;);e; eine Familie in V. Die Familie heifit

orthonormal oder ein Orthonormalsystem, wenn fiir alle ¢, j € J gilt
1 fiiri =y,
0  sonst.

(ei €5) = 0ij = {

Beispiel 109 (Gram-Schmidt). Wir betrachten in einem Hilbertraum eine Folge (fi)ken
linear unabhéingiger Vektoren. Dann zeigt man leicht, dass

k—1

fka gj
90 = fo, gk = fkfz < ;> 9
2 g
eine Folge orthogonaler Vektoren definiert und dass daher { Jr = ||glk.H gk | ke N} ein Or-

thonormalsystem liefert.

Dieses Verfahren nennt man das Orthonormalisierungsverfahren von Gram-Schmidt.
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Konvention fiir Doppelreihen. Insbesondere im Hinblick auf den komplexen Hilbertraum
L(% ist es niitzlich, Orthonormalsysteme mit Indexmenge Z zu betrachten, vgl. Beispiel
im néchsten Abschnitt. In diesem Zusammenhang treten unendliche Reihen der Form

+oo
Se= > o &2
JEZ Jj=—00

auf, und man muss erkliren, was das sein soll und vor allem, wann eine solche Reihe kon-
vergent heiflen soll. Eine iibliche Bedingung ist, dass die Reihen

—+oo —+oo
g c; und E C_j
=0 =1

beide konvergent sein sollen. Der Grenzwert der Reihe ist dann die Summe der beiden
Grenzwerte. Wir vereinbaren aber fiir unsere Untersuchungen der Fourierreihen, dass
einfach die Folge

n

Yo

J€L J=mn neN

sein soll und nennen die Folgenglieder wie bei “normalen” unendlichen Reihen die Partial-
summen. Konvergenz der Reihe heifit Konvergenz der Folge der Partialsummen. Fiir die in
diesem Abschnitt untersuchte (Norm-)Konvergenz von Fourierreihen im Hilbertraum (spéter
ist das Konvergenz im quadratischen Mittel) liefern beide Konventionen dasselbe, aber bei
der punktweisen Konvergenz im Abschnitt ist das nicht klar.

Definition 110 (Fourierreihe). Sei (e;);jcs ein Orthonormalsystem im Hilbertraum V
mit Indexmenge J = N bzw. J = Z. Fiir f € V definiert man die Fourierreihe von f
beziiglich (e;);es durch
F(£) =) _(F.ei)es
jeJ
Die (f,e;) heilen die Fourierkoeffizienten von f. Im Falle der Konvergenz schreiben wir, wie

bei unendlichen Reihen iiblich, F(f) auch fiir den Grenzwert. Die Partialsummen bezeichnen
wir mit F,(f).

Satz 111 (Besselsche Ungleichung und Parsevalsche Gleichung). Seien J € {N,Z}
und (e;)cs ein ON-System im Hilbertraum (V,(.,.)). Fir f € V gilt dann

(i) Besselsche Ungleichung:
oL P < AP

jeJ
(ii) Die Fourierreihe F(f) =3_.c;(f.e;j)e;j istin (V,(.,.)) konvergent.

(iii) Die Parsevalsche Gleichung

Y Hfed P= 1117

jeJ
gilt genau dann, wenn

F(H) =Y _(fej)e;=F,

jeJ

d.h. wenn die Fourierreihe von f in (V,{.,.)) gegen f konvergiert.
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Beweis. Zu (i). Das folgt aus Lemmam Ist némlich W = Spann {e; |j € J,[j| <n},so
ist P (f] = (/) und

I£IZ = 1Fn (DI + 1 = Fu(HI (35)

Daher ist fiir jedes n
n

ST e P=IFLOIP < IR

JEJ|j|<n

Zu (it). Nach (i) ist >.c ;| (f.€5) |2 konvergent. Das Cauchykriterium liefert daher zu vor-
gegebenem € > 0 ein N € N, so dass fiir allen >m > N

e> 3 e P =IFalf) = Ful DI

m<|j|<n

Die Partialsummen der Fourierreihe bilden also eine Cauchyfolge in V', und die ist wegen
der Vollstindigkeit des Hilbertraums konvergent.

Zu (#i). Folgt aus (35). O

Definition 112. Sei (e;);cs ein Orthonormalsystem in (V,(.,.)). Nach Linearer Algebra
ist

Spann{ej |j € J}
der Vektorunterraum bestehend aus allen endlichen(!) Linearkombinationen von Vektoren
e;. Das Orthonormalsystem heifit vollstandig oder eine ON-Basis des Hilbertraums (V, (., .)),
wenn dieser Raum dicht in (V (.,.)) ist, d.h. wenn seine abgeschlossene Hiille ganz V ist:

V= Spann{ej |j € J}.
Das bedeutet, dass es zu jedem f € V und zu jedem € > 0 eine endliche Indexmenge Jy C J

gibt, fiir die
IF=> Nell<e

Jj€Jo

Satz 113. Ist J € {N,Z} und ist (e;)icy eine ON-Basis von (V,{(.,.)), so konvergiert fiir
jedes f € V die Fourierreihe gegen f:

= (fie)e;
=0

J

Beweis. Sei € > 0. Weil die e; eine Basis bilden, gibt es eine natiirliche Zahl n € N und ein
g € Spann {e; ’j € Jljl <n} mit ||f — g|| < e Nach Lemmafolgt dann aber

If = FulHI < NIf —gll <e
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8.2 Orthonormalsysteme und Fourierreihen im L2

e Wir kommen jetzt zur Analysis zuriick und betrachten die L2-Riume als konkrete
Beispiele von Hilbertrdumen.

e Wir geben darin drei Orthonormalsysteme an, von denen wir allerdings erst spéter
zeigen konnen, dass sie sogar Orthonormalbasen sind.

e Und wir konkretisieren fiir diese Systeme die Berechnung der Fourierkoeffizienten.

Beispiel 114 ( Legendrepolynome). Wir betrachten den Hilbertraum L?([—1, +1], u11).
Die auf [—1,+1] eingeschrinkten Monome 1,z,2% 22,... sind linear unabhiingig. Durch

Orthonormalisieren erhiilt man die normierten Legendrepolynome Py(x). Die ersten dieser

Polynome sind
V1/2, \/3/22, \/5/8 (3z% — 1), \/7/8 (52® — 3x).

In den Anwendungen (vor allem in der Theorie physikalisch wichtiger partieller Differenti-
algleichungen wie der Wellengleichung oder der Diffusionsgleichung) benutzt man gern die
nicht normierten Legendrepolynome

Pk(ﬂf) = “ 2k’2+ 1 Z-:’k(:z:)

Fiir sie gibt es eine Fiille von Identitdten. Zum Beispiel ist

1 dr

Prl) = o

Damit schreibt sich die sogenannte Fourier-Legendre-Reihe einer Funktion f € L2([—1,+1], u1)
als

(z? — 1)

F(f)=> arPe, ay:= 2k L[ f ) Pa(a)da,
k=0

2/,

vergleiche ([33)).
O

Beispiel 115 (Das komplexe trigonometrische System). Seien 7' > 0 und w := 2%

Wir betrachten den komplexen Hilbertraum L2 ([0, T], 1) mit dem unitéren Skalarprodukt

T
(f.9) = ;/[07T] fgdu = %/0 f(z)g(z)dz.

und darin die Familie

ikwx
(€™ ez
Wegen
T T pilk—Dwa T . .
l/ €ikwm€7ilwzdl‘ _ l/ ei(kfl)wzdx _ Ti(k—Dw 0 =0 fiir k ;é l
T Jo T Jo 1 sonst.

ist dies ein orthonormales System, das kompleze trigonometrische System zur Periode T .
Die Fourierreihe eines f € L([0,T], % p1) = L&([0,T], j11) ist gegeben durch

+oo

) 1 [T .
F(f) = Z cpe™T o = f/ f(z)e *z g,
0

k=—o0
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Beispiel 116 (Das reelle trigonometrische Orthonormalsystem). Aus dem letzten
Beispiel folgt fiir k,1 > 1

1 . ) 1 . )
<sin kwx,sinlwx) _ <2i(ezkww _ efzkw:c)’ 272'(ezlcua: _ ezlwz)>

1 1 . . . .
<ezkwx —e thwx ezlwx —e zlwm>

)

2i —2i
7 1 <eikwm7eikw:p> + <e—ikwm’ e—ik:ww> =9 fiir k = l,
40 sonst.

Das bedeutet
9 (T
—/ sin kwzx sin lwz dr = ;.
T Jo

Analoges findet man fiir den Cosinus, wihrend gemischte Skalarprodukte von Sinus und
Cosinus 0 ergeben. Zusammen erhilt man fir 7 > 0 und w = 2% im reellen Hilbertraum

T
L2([0,T], 2 p11) mit dem Skalarprodukt

T
=7 [ J@ut

ein Orthonormalsystem

1
—, coswz, sinwx, cos 2wz, sin 2wx, cos 3w, ...,
V2
das man als das reelle trigonometrische Orthonormalsystem zur Periode T bezeichnet. Die
zugehorige Fourierreihe von f € L%([0,T], % 1) bezeichnet man auch als klassische Fourier-
reihe. Man notiert sie in der Form

aop
F() =3

+ Z ay, cos(kwx) + by, sin(kwx))
k=1

mit

T T
— %/O f(z) cos(kwx)dx, by = %/0 () sin(kwz)dz

Dabei betrachtet man also eigentlich nur die geraden Partialsummen der Fourierreihe, aber
das macht keinen Unterschied, wie man mit Hilfe der Besselschen Ungleichung nachweisen
kann.

Der Term “70 kommt so zustande:

<fa\[> ( / f(z 12 )\}522 <;/0Tf(sc)cos(0wx)d:c).

O

Alle in den letzten drei Beispielen vorgestellten ONSysteme sind vollstindig, d.h. die ent-
sprechenden Fourierreihen F(f) konvergieren im quadratischen Mittel(!) gegen f:

T [|Fa(f) = flls = 0. (36)

Das ist aber keine Aussage iiber punktweise Konvergenz, vergleichen Sie Beispiel @
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Wenn man schreibt

= ao Z (ag, cos(kx) + by sin(kx)),
k=1

so suggeriert das diese Gleichung fiir alle oder doch fast alle x. Das ist aber nicht gemeint
und im allgemeinen nicht richtig. Deshalb schreibt man gern etwas nebulos als

ap
Ni

5 + Z ag, cos(kzx) + by sin(kx)).

k=1

Periode T oder Periode 277 Hiufig beschrinkt man sich beim Studium klassischer Fou-

rierreihen auf den Fall 2m-periodischer Funktionen, weil dann w = 2% = 1 ist und die Formeln

etwas einfacher werden. Die Perioden lassen sich aber einfach umrechnen:

Mith:ReR,xH%xgilt

e Ist g : R — R periodisch mit Periode T, so ist § = g o h periodisch mit Periode 27 und
umgekehrt. Insbesondere wird zum Beispiel aus g = cos kwz die Funktion g = cos kzx.

e Sind f,g € £%([0,T], 1), so sind nach dem Transformationssatz f.g¢e L£2([0,T], p1)
und umgekehrt. Es gilt

2 T 1 2’71' ~
[ sedm =1 [ Faam.
0 ™ Jo
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8.3 Punktweise Konvergenz

e Wir betrachten in diesem und dem folgenden Abschnitt die Frage nach der punktweisen
Konvergenz der L?-Fourierreihen. Das ist eine v6llig andere Fragestellung, als die nach
der Konvergenz im quadratischen Mittel.

e Trotzdem werden gerade diese Untersuchungen letztlich auch den noch ausstehenden
Beweis fiir die Vollstindigkeit der im letzten Abschnitt betrachteten L?-Orthonormal-
systeme ermoglichen.

Wir betrachten hier klassische reelle Fourierreihen fiir periodische Funktionen, wobei wir
der Einfachheit halber den Fall T' = 27, also w = 1 wihlen. Die Funktionen seien quadrat-
integrierbar in dem Sinne, dass ihre Einschrinkungen in 52([—7r, 7], u1) liegen. Wir fragen
nach punktweiser Konvergenz der Fourierreihe.

Wir bezeichnen die (geraden) Partialsummen der Fourierreihe mit
Sn(x) := % + Z(ak cos kx + by, sin kx),
k=1
wobei die Fourierkoeffizienten ag, by gegeben sind durch

1 (" 1 [7
a = — f(x)coskxdx, by := f/ f(z)sinkx dz.

T T ) .

Lemma 117 (Dirichlet-Kern). Fiir den Dirichlet-Kern
Dy(z)=1/2+ Zcoskx
k=1

gilt:

(i) Dy(x) = Dn(-2),
D, (z + 27) = D,(x).

(ii) X [T Dy(x)dz = 1.

sin(n+1)z
(iii) Dy () = T3t AAL AN
falls der Nenner # 0. ? \/4\/ \/1 Ve ’

(Die Abbildung suggeriert vielleicht, dass D,, eine geddmpfte Schwingung ist. Aber D,, ist
periodisch! In Wirklichkeit interessiert uns D,, auch nur aufl—m, 7|, und da ist die Funktion
,bei 0 konzentriert®.)

Beweis. (i) und (i) sind trivial.
Zu (#i). Durch Induktion. Der Induktionsanfang n = 0 ist ebenfalls trivial.
Fiir den Induktionsschritt verwendet man die Formel

r—y T4y
cos —5—

sinx —siny = 2sin
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Diese liefert
sin(n+ $)z  sin(n — )

: - = cosSnx.
2sin 2sin 5
O
Lemma 118. Sei f: R — R 2w-periodisch und quadrat-integrierbar. Dann gilt
() . X
sl@) =~ [ Jla 40Dy dt =T f@+);f@ ).y, (37)

—T —T

(i) Sind n,z € R, so gilt

lim s,(x) =n < lim E/W{f(x—i—t)—&-f(x—t) —n} Dy(t)dt = 0.

n—oo n—oo T 2

Die Behauptung des Lemmas ist interessant: Bei der Berechnung der Fourierkoeffizienten
geht der Funktionsverlauf von f iiber die ganze Periode ein. Die Formel zeigt zusammen
mit einem Blick auf den Graphen von D,,, dass die (Partialsummen der) Fourierreihe in der
Néihe von x im wesentlichen nur vom Verhalten von f in der Nahe von x abhéngen.

Beweis. Zu (i).

™ 1 n
sn(z) = 7/ < + ZCOS kt cos kx + sin kt sin km) f(t)dt

2
- k=1

_ %/ﬂ <;+]§cosk(tx)> f(t)dt

—T

_1 D, (t—2x)f(t)dt = l/ D, (u)f(z+u)du
- T J—r—z

1 s
=— D, (u)f(x +u)du (Integrand 27-periodisch).

—T

Das beweist die erste Gleichung. Mit der Substitution ¢t — —t ergibt sich

@ =1 [ punse - =1 [ Do
also auch L g . .
nl) = — f@+);fm_)DJﬂﬁ

—Tr

Zu (ii). Nach dem vorangehenden Lemma ist

1 ™
=— D, (t)dt
n=1 [ abuto

Damit folgt () unmittelbar aus (3). O

Definition 119. Ist f eine reelle Funktion und existiert der rechtsseitige Limes

flzy) = lim f(z +1),
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so kann man
o FE ) = fla)
t\.0 t

betrachten. Wenn dieser Grenzwert existiert, heifit er die rechtsseitige Ableitung von f in x
und wird mit f'(z4) bezeichnet.

Entsprechend definiert man die linksseitige Ableitung f/(z_) .

Satz 120 (Punktweise Konvergenz). Sei f : R — R T-periodisch und auf [0,T]
quadrat-integrierbar. Seix € R. Existieren der rechtsseitige und linksseitige Grenzwert f ()

bzw. f(x_) und die rechtsseitige und linksseitige Ableitung von f an der Stelle x, so folgt

flag) + flz-)
5 :

lim s, (z) =
Ist f in x auferdem stetig, so gilt also

lim s, (z) = f(x).

Beweis. Wir beschrianken uns auf den Fall T = 27. Wir setzen

M (9L (G Y AL R Gl

und wollen Lemma [[18 anwenden. Wir haben

& i sin(n + L
L otopanar =1 [ o™ 2

7 T 2sin £
1 (7 cos &
— / o(t) <cos nt + sin nt—=2 ) dt
2 J_, sin 5
1 B 1 g t .
=— o(t) cosntdt + — @(t) cot = sinnt dt. (38)
2 J_, 2 J_, 2

Mit f ist auch ¢ € L?([-m, 7], %m), und das ist die einzige Eigenschaft von ¢, die wir
hier brauchen. Nach der Besselschen Ungleichung konvergieren dann die Fourierkoeffizienten
L [T ¢(t) cosntdt von ¢ gegen 0.

Dasselbe Argument gilt fiir das zweite Integral in , wenn wir gezeigt haben, dass

W(t) = (t) cot % € £2([—m, 7, % ). (39)

Das Problem beim Nachweis von ist der Pol von cot % in 0, und erst hier kommt die
spezielle Definition von ¢ zum Tragen. Es gilt ndmlich

oy JE D E e =2t

QSin% 2
[+t + fla—t) = (flay) + flz-)) cos &
N 2sin £ 2

2

| fern—te) femn-se)| 5 1
t t sin 5 2
—f'(z4) —f(z-) e

= flas) + fl(x=)  fir t\0.
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Weil ¢ eine ungerade Funktion ist, existiert auch ¥ (¢_). Also gibt es ein kompaktes Inter-
vall [—6,6] C [—m, +n], auf dem ¢ messbar und beschréinkt ist. Daher ist x;_5 5 € L2
Andrerseits ist mit ¢ auch ¢ auf [, +7]\ [, §] quadrat-integrierbar und bewiesen.

O

Im Beweis haben wir gesehen, dass das Verhalten der Funktion v in der Ndhe von 0, also
das Verhalten von f in der Ndhe von x entscheidend ist fiir das Konvegenzverhalten von
F(f)(z). Das ergibt das

Korollar 121 (Riemannscher Lokalisationssatz). Das (punktweise) Konvergenzverhal-
ten und der Grenzwert der Fourierreihe einer quadrat-integrierbaren periodischen Funktion

an der Stelle x hingt nur vom Verhalten von f auf einer beliebig kleinen Umgebung von x
ab.

Definition 122. Eine T-periodische Funktion f : R — R heif3t stickweise differenzierbar,
wenn es 0 = 29 < 21 < ... < x, = T und differenzierbare Funktionen fy : [z5—1,21] — R
gibt, so dass

f|]ﬂ7k—17$k[ = fk|]wk717$k[ fiir alle k € {1, Ce ,TL}.

Korollar 123. Ist f 2mw-periodisch und stiickweise differenzierbar, so gilt fir alle x

Jw)+ )

F(f)w) = 2

Bemerkungen.

1. Es gibt stetige 27-periodische Funktionen, fiir die die Fourierreihe in iiberabzihlbar
vielen Punkten divergiert (Du Bois-Reymond 1873). Andrerseits hat man bei quadrat-
integrierbaren Funktionen puq- fast-iiberall Konvergenz gegen f (Carleson 1966).

2. Ist f eine gerade Funktion, d.h. gilt f(—x) = f(z) fiir alle z, so gilt fiir alle k

4 [T/

ar = — f(¢) cos kwt dt,
T Jo

b, = 0.

3. Ist f eine ungerade Funktion, so gilt fiir alle k

ap = 0,
4 [T/2

by = f(t) sin kwt dt.
T Jo

Die Bemerkungen 2 und 3 vereinfachen in den folgenden Beispielen (und auch sonst gele-
gentlich) die Berechnung der Fourierkoeffizienten.

Beispiel 124. Sei f: R — R 27-periodisch mit f(z) = § — |z| fir —7 <2 < 7.




Dann ist f gerade, also treten nur Cosinusterme auf. Es gilt

2 [T 2 fir k d
ag = f/ (I —x)cos(kx)dr = ... = F7 1}r rnserade.
0o 2 0 fiir k gerade

Die Fourierreihe konvergiert nach dem Satz punktweise gegen f. Also ist

4 3 5
flz)= ;{cosx—l— CO§2 Ty CO; i +...}

Daraus folgt mit z =0
2 2

> 1 T 1 T
Lo s 2E 6

In der Abbildung sind f und F1o(f) dargestellt.

Beispiel 125. Sei f : R — R 27-periodisch mit f(z) = z/2 fir —7 <z < 7.

Dann gilt
sin2x  sin3z

2+3

f(z) = {sinz — —+...}

fiir x # (2k + 1).

In der Abbildung sind f und Fg(f) dargestellt.

Fiir = m/2 erhélt man die Leibnizsche Reihe

i(—l)k o7
> 2%k +1 4

Durch gliedweise Differentiation obiger Fourierreihe erhilt man die Reihe
cosz —cos2x +cos3x —+....

Die Glieder dieser Reihe gehen fiir kein x gegen 0. Ist ndmlich x = 27T§ mit p,q € Z,q > 0,
so ist fir k € N
cos(kgx) = cos(2pm) = 1.

Ist andrerseits x = 27y mit irrationalem y, so sind die Reste modulo 27 von {ka: ’ ke N}
dicht in [0, 27] und die Folge (cos(2kz))ren divergent. Also ist die differenzierte Reihe fiir
kein x konvergent. Fourierreihen darf man i.a. nicht gliedweise differenzieren.

O
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Die Fourierentwicklung von Funktionen in einem Raum L?(A, ¢) betrifft zunéichst Funktio-
nen, die eben auf der Menge A definiert sind. Weil aber das trigonometrische Orthonormal-
system eine natiirliche periodische Erweiterung auf ganz R besitzt, taugt die Fourieranalyse
im L?([0, 2], 2 11) zur Behandlung periodischer Funktionen auf R, und ist historisch dar-
aus entstanden. Aber auch die Fourieranalyse von Funktionen, die nur auf dem Intervall
[0,27] (oder einem anderen kompakten Intervall) sinnvoll gegeben sind, ist ein wichtiges
Anwendungsgebiet. Das demonstrieren wir im folgenden Beispiel.

Beispiel 126. Die Bewegung einer schwingenden Saite der Lénge m wird gegeben durch die
Gleichung

oo
u(z,t) = Z{ak cos wit + by, sinwyt} sin kz,
1
wobei wy, = kw; die k-te Oberschwingung ist. Beachten Sie, dass die Schwingung zwar in ¢
periodisch ist, die Ortskoordinate x aber natiirlich nur in dem Intervall [0, 7] eine sinnvolle
Bedeutung hat! Die Grundschwingung w; wird durch die Physik der Saite bestimmt. Die
Koeffizienten ag, by, hingegen sind durch die Anfangsbedingungen

ou

U(JZ,O) ZUO(J?), a(x70) :1,1,1(33‘)
bestimmt:
2 [T 2 g
ay = —/ uo(z) sinkx de, by =—— up (z) sin kz dx.
T Jo TWE Jo
Gezupfte Saite:
u; = 0
u(z,t) = a(fﬁa) Sigf“ cos wyt sin kz.
uo = b
0 a kg
Angeschlagene Saite:
ug = 0
ﬂ u(z,t) = %15 > sm(ka):% sin wyt sin kz.
0 a n

Durch die Wahl der Stelle a kann man unerwiinschte Oberténe minimieren, z.B. den 7. und
13. (Sexte+3/8 bzw. Sexte-1/4 Ton).

O
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8.4 Cesaro-Konvergenz

e Die Fourierreihe selbst einer stetigen 27-periodischen Funktion f ist im allgemeinen
nicht punktweise gegen f konvergentﬁ Jetzt werden wir diesen Mifistand mit dem
Cesaroschen Summierungsverfahren ,reparieren*.

e Wir erhalten fiir die Cesaro-Mittel der Fourierreihe bei stetigen Funktionen sogar
gleichméflige Konvergenz und damit einen einfachen Beweis fiir den Weierstra3schen
Approximationssatz: Jede stetige Funktion auf einem kompakten Intervall ldfit sich
gleichméflig durch Polynome approximieren.

e Die Vollstandigkeit trigonometrischer und anderer ON-Systeme ist eine einfache Fol-
gerung.

Definition 127. Eine Folge (ax)gen reeller Zahlen heifit Cesaro-konvergent gegen a, wenn

die Folge ihrer arithmetischen Mittel (%_J“")n@; gegen a konvergiert.

Ist limay = a, so ist die Folge auch Cesaro-konvergent gegen a, aber die Umkehrung gilt
nicht, wie die Folge a,, = (—1)" zeigt.

Lemma 128. Fiir den Fejér-Kern

F,(t) :=
n(®) n+1
gilt:
. . sin?(n+1)t/2 4

(Z) Fn(t) - 2(711+1) sin? t/)2/ ’

(i) L [T F.(t)dt =1, ,

(i1i) Fo(t) < st ‘

fir0<d<|t| <. B e

Beweis. Zu (i). Es gilt
.t . 1. .t
(2sin 5) Dy (t) = 2sin(k + §)t sin 5 = cos kt — cos(k + 1)t.

Aufsummieren liefert

t 1 2 t
(2sin 5)2Fn(t) = o (1 —cos(n+1)t) = e sin?(n + 1)5.

Zu (ii). Aus Lemma folgt L [T Dy(t)dt = 1. Damit ergibt sich (ii).
Zu (i11). Das ist nach (%) trivial. O

6 Ein erstes Beispiel dafiir stammt von du Bois-Reymond 1873
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Satz 129 (Fejér). Sei f: R — R stetig und T-periodisch. Dann konvergieren die arithme-
tischen Mittel
so(x) 4+ ...+ sp(x)

n+1
der Fourier-Partialsummen si(x) von f gleichmdfig gegen f. Die Fourierreihe ist also ins-
besondere tberall Cesaro-konvergent gegen f.

on(x) :=

Beweis. Sei o.E. T' = 27. Zunéchst ist die stetige Funktion f auf dem kompakten Intervall
[—7, ] beschrinkt und gleichmifig stetig. Wegen der Periodizitét gibt es daher ein M € R
und zu jedem € > 0 ein § > 0, so dass fiir alle z,y € R

|f(z)| < M,
2 -yl < = [f(x) = fly) <e

Sei 0.E. § < . Dann erhalten wir nach dem Lemma und dem vorstehenden Lemma

oa(e) = (@) = —5 Y sula) - (@)
k=0
- % _: Fla+ ) F,(t)dt — % _: F(@)Fo(t) dt
— = [ Gern - ranr.o
Dabher ist
oula) = f(a)| < 5 [ 1+ 0) = )| Fat)dt
5
— [ e - s@ R0 [ fert) - @) B d
™ _5\_2:—/ ™ 5<|t‘<ﬂ.\—<2,]w_z
1 [" 1 1
<e = /_ﬂ F,(t) dt—l—; 2M27r2(n T 1)2sn2(0/2) < 2
=1
fiir hinreichend grofie n. U

Als erste Konsequenz erhalten wir:

Satz 130 (Weierstrafischer Approximationssatz). Fir jedes kompakte Intervall [a,b]
liegen die Polynome dicht in (C°[a, b], d*“P).

Wir halten noch einmal fest: Eine Teilmenge A eines metrischen Raumes X heifit dicht in
X, wenn ihre abgeschlossene Hiille gleich X ist:

A=X,
d.h. wenn es zu jedem € > 0 und jedem x € X ein a € A gibt, fir das d(z,a) < e.

Beweis. Sei f : [a,b] — R eine stetige Funktion auf dem kompakten Intervall [a, b] und sei
€ > 0. Wir suchen ein Polynom p mit |f(z) — p(z)| < € fiir alle z € [a,b]. Wir setzen f auf
ganz R stetig mit Periode T'= 2(b — a) fort:
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Y

Die Cesaromittel der Fortsetzung seien mit o,, bezeichnet. Dann gibt es nach dem Satz von
Fejér ein n mit
lon(z) — f2)] <€/2

fir alle x € R.

Nun ist 0, eine reelle Linearkombination von Termen cos kwzx,sin kwx. Die Taylorreihen
dieser Funktionen konvergieren auf [0,T] gleichméflig gegen cos kwz, sin kwz. Also gibt es
ein Polynom p mit

lon(z) — p(z)| < €/2 fiir alle z € [0,T].
Dann ist aber nach der Dreiecksungleichung
[f(x) = p(a)] <€
fiir alle z € [0, 7]. O

Wo wir gerade bei dichten Teilrdumen sind, beweisen wir noch einen Satz dariiber:

Satz 131. Seip > 1. Dann gilt:

(i) Ist ¢ ein Maf auf R™, so gibt es zu jedem f € LP(R™, ¢) und jedem ¢ > 0 eine
Treppenfunktion s mit
If—=slp <e.

(i) Zu jedem f € LP(R™, py) und jedem € > 0 gibt es eine stetige Funktion g : R™ — R
mit kompaktem Triger und

If —gllp <e
Mit anderen Worten:
e Die Treppenfunktionen sind dicht in (LP(R™, ¢),||...]|p) und
e die stetigen Funktionen mit kompaktem Trager sind dicht in (LP(R"™, tn), || .- ||p)-

(Gemeint sind dabei natiirlich die Mengen der Restklassen in LP, welche wenigstens eine
Treppenfunktion bzw. eine stetige Funktion mit kompaktem Triger enthalten.)

Beweis des Satzes. Zu (i). A. Wir betrachten zunichst den Fall, dass | f| beschrinkt durch
M € R ist, und sein Trager in einem kompakten Intervall K liegt.

Weil f messbar ist, gibt es eine Folge von Treppenfunktionen (s;);jen mit
lim s; =4 f.
j—oo

Ohne Einschriankung kénnen wir annehmen, dass fiir alle j € N gilt

|sj| < M, Trégers; C K.
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Dann gilt
s = 17 < (Isj] + )P < (2M)Px € L1
und
lim |s; — f[? =4 0.
J—00

Nach dem Satz von Lebesgue gilt daher

Iss = £l = [ 1s; = 76 — 0.
Zu jedem beschriankten f € LP mit kompakten Trager und jedem e > 0 gibt es also eine
Treppenfunktion s mit ||s — fl|, < e.
B. Nun sei f € LP beliebig. Zu k € N definieren wir

.fk = inf(sup(f, _k)a +k)X[,k7 +E]"
Dann ist fi messbar und beschrinkt mit kompaktem Triger, also in £P. Weiter gilt
|f = felP < |fIP e £
und
T [f — fif? =4 0

Nach dem Satz von Lebesgue gilt daher

I~ il :/|f—fkwpd¢ Y

Zu jeder LP-Funktion f und jedem e > 0 gibt es also eine beschrinkte £P-Funktion g mit
kompaktem Triger, so dass

1f = glly <e
Aus A. und B. folgt damit die Behauptung (7).

Zu (ii). Nach Teil (i) geniigt es zu zeigen: Zu jeder Treppenfunktion s und jedem € > 0
gibt es eine stetige Funktion g mit kompaktem Tréger, so dass ||s — g||2 < € ist. Wegen der
Dreiecksungleichung kann man sich dabei beschréinken auf den Fall s = x fiir ein I € I(R").
Und weil Intervalle mit leeren Inneren p,-Nullmengen sind, kann man sich weiterhin auf

den Fall | # () beschrinken.

Sei also I € I(R™) ein solches Intervall und sei e > 0. Weil ju,,(I) = u,(I) ist, gibt es nach

L i
dem Regularitétsaxiom eine offenes Intervall J € I(R™) mit I C J und
pn(J) < pn(I) + €.

Wir behaupten nun, dass es eine stetige Funktion g : R — R mit folgenden Eigenschaften
gibt:
glr=1, glgn\s=0, 0<g—x,; <1
Fiir eine solche Funktion gilt
0<g—x;<Xx;—X;
und wegen |g — x;|” < g — x; dann

lg - x,IE < / (x,—xp) <6

und (1) ist bewiesen.
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Die Existenz einer Funktion g mit den angegebenen Eigenschaften sieht man vielleicht am
einfachsten so ein: Man wihlt eine lineare Transformation F' : R® — R”, die I auf den
Wiirfel

W.=[-1,41]" = {x eR" | l] sup < 1}

abbildet. F'(J) ist dann eine offene Umgebung von W, und es gibt ein § > 1 mit

{2 eR" |||2|lsup <0} C F(J).

Mit
A
1 fir0<t<1, ]
At):=q1—-45 fir1 <¢<9, A
0 fir t > 4.
1 8 >
leistet dann
9(z) == A(||F(@)]] sup)

das Gewdlinschte. O

Damit kénnen wir nun eine Liicke aus dem letzten Abschnitt schlieffen:

Satz 132 (Vollstindigkeit des trigonometrischen ON-Systems). Seien T > 0 und

w= 2% Dann ist das Orthonormalsystem

——, COs W, Sinw, cos 2wz, sin 2w, . . .

V2
in L*([0, T, Zp1) vollstindig.

Beweis. Seien f € £*([0,T], Zp1) und € > 0. Wir setzen f(z) := 0 fiir # € R\ [0, 7] fort.
Nach Satz gibt es dann eine stetige Funktion g mit kompaktem Trager, so dass

\//If—9|2du1 <e.
R

Durch Einschrinkung erhalten wir eine stetige Funktion g : [0,7] — R mit

||f —9H2 <e. (40)

wobei | ... |2 die Norm von L2([0,T], Z41) bezeichnet.

Wir kénnen ¢ stetig so abédndern, dass sich
die £2-Norm nicht wesentlich éndert, also
erhalten bleibt, und zusétzlich ¢g(0) = g¢(T)
gilt. Dann kann man g mit Periode T stetig

fortsetzen. T o

Wir bezeichnen die Cesaromittel der Partialsummen von g mit o,,. Nach dem Satz von Fejér
gibt es ein n mit

lon(z) — g(z)| < - fir allez € R.

V2
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Also ist

2 T
o =gl =7 [ low = slPdur <
0

If —onlle <IIf —gllz2 + llg — onll2 < 26

und

WEeil o, in dem vom trigonometrischen ONSystem aufgespannten Unterraum liegt, folgt die
Behauptung. O

Korollar 133. Das Orthonormalsystem

(eikwx)kez

ist in LE([0,T], 1) vollstindig.

Beweis. Die Orthonormalitéit haben wir frither schon gesehen. Sei f € L£Z([0,T], 41). Dann
folgt

u=Re(f) € L0, 7], Zp), v =Tm(f) € L0, 7], Zp)

Beachten Sie, dass der Faktor % oder % fiir die Integrierbarkeit keine Rolle spielt. Allerdings
macht er sich bei der Norm bemerkbar. Zum Beispiel ist

lull 2 = V2llul| L2,-

Nach dem letzten Korollar gibt es zu jedem e > 0 Linearkombinationen ¢ und 7 von
cos(kwx), sin(kwx), so dass

lu—ollp2 <€ |lv—"lr <e.

Dann ist
If=(o+ir)le < llu—ollze + v

€ €
~ 7y < —=+ —=.

Schlieflich sind aber cos(kwz) und sin(kwz) Linearkombinationen von e?*w*

—ikwz

O

und e

Korollar 134. Die Polynome liegen fiir jedes p > 1 dicht in LP([a,b], p1). Insbesondere
sind die normierten Legendrepolynome eine ON-Basis von L*([—1,41], u1).

Beweis. Jedes f € LP([a,b], 1) a8t sich beziiglich der LP-Norm durch stetige Funktionen
auf [a, b] approximieren. Stetige Funktionen lassen sich nach dem Satz von Weierstrafl durch
Polynome beziiglich d*“P approximieren. Dann lassen sie sich aber auch beziiglich der LP-
Norm approximieren, denn fiir stetiges f und g ist

b P
If = gll, = (/ |/ () —g(iv)lpdiv> < d*(f,9) Vb - a.
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8.5 Riickblick auf das Lebesgueintegral

e Wir untersuchen, in wieweit das Lebesgueintegral die einzig sinnvolle Erweiterung des
Integrals fiir Treppenfunktionen ist.

Fiir Treppenfunktionen gibt es zu unserer Definition des Integrals wohl kaum verniinftige Al-
ternativen. Von dieser Definition ausgehend haben wir durch Approximation mit monotenen
Folgen etc. das Integral zu einer linearen Abbildung auf £' erweitert. Weil

[ o [gdel < [1r-glas=If gl

ist die induzierte lineare Abbildung [ : L' — R auch stetig.

Nun gibt es (zum Beipiel im Forster oder Barner/Flohr) andere Konstruktionen fiir Inte-
grale, die von den Autoren ebenfalls Lebesgueintegral genannt werden. Ist das Ergebnis mit
dem unseren identisch?

Um das zu kliren beweisen wir, dass sich ein normierter Vektorraum X

e c.g. der Raum T'(R™) der Restklassen von Treppenfunktionen mit der 1-Norm
auf hochstens eine Weise zu einem wvollstindigen normierten Vektorraum Y

o cg (LY]...]h)

ergédnzen 1a8t, in dem X dicht liegt. Genauer ist Y bis auf normtreue Isomorphie eindeutig
bestimmt und heifit eine Vervollstindigung von X. Wir zeigen auch (und das zuerst), dass
sich eine stetige lineare Abbildung f: X — R

e c.g. das Treppenfunktionsintegral

auf genau eine Weise zu einer stetigen linearen Abbildung F' : Y — R fortsetzen l4ft.
Also sind alle stetigen linearen Erweiterungen des Treppenfunktionsintegrals auf Vervoll-
stindigungen von T'(R™) eindeutig bis auf Isomorphie.

Satz 135. Seien (Y,||...|ly) und (Z,]|...|lz) Banachriume und X C Y ein dichter Un-
terraum. Sei f : X — Z linear und stetig. Dann gibt es genau eine lineare stetige Abbildung
F:Y—>ZmitFlx=Ff.

Beweis. FEinzigkeit von F. Ist F' : Y — Z linear und stetig mit F|x = f und ist y € Y,
so gibt es wegen der Dichtheit von X eine Folge (x;);eny in X mit limz; = y. Wegen der
Stetigkeit folgt F(y) = lim F'(x;) = lim f(z;). Also ist F'(y) eindeutig bestimmt.

Konstruktion von F. Seien wieder y € Y und (z;);en eine Folge in X mit limz; = y. Dann
ist

lim ||z — y|ly = 0.

Also ist (z) eine Cauchyfolge in Y. Wegen ||f(z:) — f(z;)|lz < | fIl llzi — ;] z ist (f(x:))ien
dann eine Cauchyfolge in Z und daher konvergent gegen ein z € Z. Wir zeigen, dass z nicht
von der Cauchyfolge (x;) abhéngt, und kénnen dann definieren:

F(y) := z. (41)
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Ist nidmlich (&;);en eine weitere gegen y konvergente Folge in X C Y, so definiert
G = x; fir i gerade
e & fir i ungerade

ebenfalls eine gegen y konvergente Cauchyfolge. Und weil Teilfolgen einer konvergenten Folge
denselben Limes haben wie die Originalfolge, ist lim f(&;) = lim f({;) = lim f(z;).

Eigenschaften von F. Ist y € X, so kann man fiir (x}) die konstante Folge withlen. Also ist
Flx = f.

Der Nachweis der Linearitét ist einfach (selber machen!). SchlieBlich ist mit den obigen
Bezeichnungen

I1EW)llz = lim || f(z:)]z < Lo [[f] |zl x = £ lylly
Daher ist F' stetig und ||F|| < || f]- O

Definition 136. Seien (X, ||...||x) ein normierter R-Vektorraum und (Y, | ...||y) ein Ba-
nachraum. Es gelte

e X ist Untervektorraum von Y,
o |lzlly = [z x fiir alle z € X,

e X ist dicht in Y.

Dann heifit (Y, ]|...||y) eine Vervollstindigung von (X,]...|x)-
Bis auf normtreue Isomorphie gibt es zu gegebenem (X, || ... ||) hochstens eine Vervollstindigung:
Korollar 137. Seien (Y1, || ... |l1) und (Ya, || ... ||2) zwei Vervollstandigungen von (X, || ... ||x)-
Dann gibt es genau einen stetigen Isomorphismus F : Yy — Yy mit F|x =id. Es gilt

1E ()ll2 = llyallx (42)

fiir alle y1 € Y7.

Beweis. Der Beweis ist eine rein formale Konsequenz des Satzes Wir wenden diesen
Satz viermal an:

1.Y=V,Z=Y, f: X > Zzw— x.
Das liefert eine eindeutig bestimmte stetige lineare Abbildung F; : Y7 — Y5 mit
Fi|x =id.

2.Y =Y, 2=, f: X —>Z
Das liefert eine eindeutig bestimmte stetige lineare Abbildung F : Y5 — Y; mit
Fyx =id.

3.Y=N,Z2=Y%,f: X —Z x— x.
Das liefert eine eindeutig bestimmite stetige lineare Abbildung E : Y7 — Y7 mit

Elx =id.

Wir kennen aber zwei Abbildungen, die dies leisten: E = FroF; und F =id : Y] — Y7.
Wegen der Eindeutigkeit ist also

FyoF, =id.
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4. Analog finden wir F} o Fy =id : Y5 — Ys.

Damit erhalten wir die Existenz und Eindeutigkeit des stetigen Isomorphismus F' = F;. Aus
F|x = id folgt mit der Stetigkeit auch . O

Zu einem normierten R-Vektorraum (X, || .. .||) konstruiert man eine Vervollstindigung ganz
dhnlich, wie man die reellen Zahlen aus den rationalen konstruiert: Die Menge der Cauchy-
folgen in X bildet einen Vektorraum Y. Der Quotient von Y nach den Nullfolgen ist ein
Vektorraum Y, der X in Gestalt der konstanten Folgen enthélt. Wird y € Y représentiert
durch die Cauchyfolge (z;), so ist (||z;]|) konvergent und man definiert ||y|| := lim ||z;||. Das
liefert dann eine Vervollstandigung von (X, ||...]).

Diese Konstruktionsverfahren kann man natiirlich konkret auf die Integration anwenden.
Man beginnt mit dem Raum der Treppenfunktionen 7 (R™) und dem darauf definierten
Integral. Dann zeigt man, dass

1l = / fldo

eine Norm definiert, wenn man den Raum der ¢-fast iiberall verschwindenden Treppenfunk-
tionen herausdividiert. Das liefert einen normierten Vektorraum (T'(R™),]||...[). Den ver-
vollstéindigt man durch Adjunktion der Cauchyfolgen und erhilt (L' (¢), ||...]1). Das klingt
einfach, die Probleme kommen aber beim Umgang mit konkreten Funktionen. Wir haben
zum Beispiel gesehen, dass L'-Konvergenz ziemlich kompliziert mit punktweiser Konvergenz
zusammenhéngt.
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9 Der Satz von Stokes

Der Fundamentalsatz der Differential- und Integralrechnung sagt, dass fiir eine stetig diffe-
renzierbare Funktion f : [a,b] — R gilt

fldus = flg.
[a,b]
Der Satz von Stokes ist eine in jeder Beziehung sehr starke Verallgemeinerung des Funda-
mentalsatzes. An die Stelle des Intervalls und seiner Endpunkte treten eine k-dimensionale
kompakte Mannnigfaltigkeit M und ihr Rand OM, der eine (k — 1)-dimensionale Mannigfal-
tigkeit ist. Stellen Sie sich M als Fliche im R3 (zum Beispiel als Halbsphire) und M als
deren Randkurve vor. Man bekommt also

[r=]
M oM

Aber was wird da integriert? Die n-reihige Determinante dient in der Linearen Algebra zur
Berechnung n-dimensionaler Volumina, sie ist so etwas wie ein n-dimensionales Maf3. Dif-
ferentialformen von Grad k sind Verallgemeinerungen der Determinante und so etwas wie
k-dimensionale Mafle. Sie sind die “natiirlichen” Integranden auf k-dimensionalen Mannig-
faltigkeiten. Fiir sie gibt es eine Verallgemeinerung der Ableitung, die sogenannte Cartansche
Ableitung. Sie macht aus einer Differentialform w vom Grad k — 1 eine Differentialform dw
vom Grad k. Funktionen sind 0-Formen, die Cartansche Ableitung der Funktion f ist die
Differentialform vom Grad 1 gegeben durch Df = f'dx.

Der Satz von Stokes besagt dann, dass

/ dw:/ w.
M oM

Dieser Satz hat viele Anwendungen und Facetten, deren wichtigste sicher seine Funktion
als Bindeglied zwischen Analysis (Integration, Ableitung) und Geometrie (Mannigfaltigkeit,
Rand) ist. In dieser Gestalt spielt der Satz eine zentrale Rolle fiir die Entwicklung der
Differentialtopologie und der algebraischen Topologie.

Er hat aber auch viele physikalische Anwendungen: Er erklért zum Beispiel das Phdnomen
der Induktion in einem zeitlich veranderlichen Magnetfeld. Oder er besagt, dass die Flussbi-
lanz einer physikalischen Grofie durch die Oberfliche eines Gebietes gerade das Integral {iber
die Quelldichte dieser Gréfle im Inneren liefert. Damit spielt er unter verschiedenen Namen
und in sehr verschiedenen Schreibweisen eine zentrale Rolle in der Elektrodynamik, in der
Hydrodynamik, in der Warmelehre, in der Verfahrenstechnik usw. usw.

Um den Satz richtig verstehen zu kénnen, miissen wir mit berandeten Mannigfaltigkeiten
und mit Differentialformen umgehen kénnen. Wir beginnnen mit den letzteren. Dazu bedarf
es einer gewissen Vorbereitung in linearer Algebra, mit der wir jetzt anfangen.
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9.1 Alternierende multilineare Algebra

e Wir definieren alternierende k-Formen in einem n-dimensionalen Vektorraum und ler-
nen verschiedene Beispiele dafiir kennen, die sich spéter als die typischen Beispiele
herausstellen werden.

e Wir lernen, warum alternierende Formen so heiflen.
e Wir bestimmen die Dimension des Raumes der k-Formen.
e Wir definieren das Zuriickholen von Formen mit linearen Abbildungen und und benut-

zen n-Formen im n-dimensionalen Raum zur Definition einer Orientierung.

Zur Bezeichnung: Wir werden haufiger Permutationen benotigen. Wir bezeichnen mit S,
die Gruppe der Permutationen von {1,...,n} und mit

sign(o) = H M = det(ea(l), ey eo(n))

1<icj<n  J T
das Signum der Permutation o € S,,.
Sei V ein n-dimensionaler R-Vektorraum und V* sein Dualraum.

Definition 138. Sei k € N.

Eine alternierende k-Form auf V ist eine k-lineare Abbildung

w:Vx...xV—->R
~————
k
mit
w(vy,...,v) = 0, falls zwei der v; gleich sind.

Der Vektorraum der alternierenden k-Formen wird mit A¥V* bezeichnet. Wir setzen

AV* =R,

Das typische Beispiel einer alternierenden Form ist die Determinante.

Beispiel 139 (Determinantenform). Fiir V = R" definiert
W(vy, ... vp) :=det(vy, ..., v,)

eine alternierende n-Form, und Sie wissen aus der linearen Algebra, dass die Determinan-
ten bis auf einen skalaren Faktor die einzige alternierende n-Form auf dem R™ ist, d.h.
dim A" (R™)* = 1.

O

Beispiel 140 (1-Formen). Es gilt A'V* = V*. Alternierende 1-Formen sind also einfach
Linearformen. In einem Euklidischen Vektorraum oder allgemeiner in einem reellen Vektor-
raum mit einem nicht degenerierten inneren Produkt (.,.) hat man einen Isomorphismus

V= AV v w’ = ().
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Satz 141. Fiir w € A¥V* und jede Permutation o € S,, gilt

WV (1ys - - > Vo(ry) = sign(o)w(v, ..., vg).

Darum heiflen die alternierenden Formen alternierend.

Beweis. Vgl. Determinantentheorie in der linearen Algebra. Die Idee ist diese:

0 = w(vy + va,v1 + V2, V3, ..., Uk)
= w(vy,v1,0s,...,0) fw(v1, v2,v3,...,0%) + w(ve, v1, 03, ...,0k) + w(ve, V2, Vs, ..., V)
=0 =0
= w(v1,v2,V3,...,0) + w(va,v1, V3, ..., 0k).

O

Aus der Determinantenform auf dem R™ kann man neue Formen gewinnen, wie wir in den
beiden néchsten Beispielen zeigen:

Beispiel 142 (Flussform). Fiir v € R™ ist
*w” = det(v,...)
eine alternierende (n — 1)-Form, und
V — AL RY* v xw?

ist ein Isomorphismus. (Beweis?) Den Namen “Flussform” erklidren wir spéter.

O
Beispiel 143. Seien k € {1,...,n} und 1 <4; < ... <ix <n. Dann definiert
71 1k
i1k —d 1 !
w (v1,...,05) :==det(er,...,01,. .., V..., €p)
eine alternierende k-Form auf dem R™. Zum Beispiel ist w? ™ = w®!.
Anschaulich kann man sich w? - (v1,...,vg) so vorstellen: Die Vektoren vy, . .. , vy spannnen
im R™ ein k-dimensionales Parallelotop IT auf. w* " (vy,...,v;) ist bis aufs Vorzeichen
das k-dimensionale Volumen der orthogonalen Projektion von II in den von e;,...,e;,
aufgespannten Unterraum.
. n ..
Schreibt man v; = Zi:l v3;€4, S0 erhélt man
il ik
i h
n n
W (vy, o) =det | eq, .., g Umgls -« E Umpks - -+ » €n
my=1 mr=1
n ’il ik
i h
= E Uyl - Umgk det(€1, .o €myy e vy €my -5 En)-
mi,...,mp=1
Nur die Summanden sind # 0, fiir die (mq,...,mg) eine Permutation von (iy,...,4x) ist.

Fiir diese liefert die Determinante gerade das Signum der Permutation:

W vy, o) = ) SIg()Vi, )1 - Vi ke
oESy
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Wir halten fest, dass fiir 1 < j; <... < jr <ngilt

1 falls (jl, “ee ,jk-) = (il, ‘e .,ik),

wil"'ik(ejﬁ'“’ejk) = {0 (43)

sonst.

O

Die Rechnung aus dem vorstehenden Beispiel angewendet nicht auf auf w? % sondern auf
ein beliebiges w € A¥V*, liefert mit Satz

Satz 144. Fiir w € AFV*, eine Basis (e1,...,e,) von V und v; = > 1 vije; gilt

wvg, ..., vE) = Z w(€g ... ei) Z Sign(o)vi, 1)1 - - Vi gy k-

1<ii<..<ig<n o€Sy

Insbesondere ist w durch seine Werte auf den (monotonen k-tupeln von) Basisvektoren ein-
deutig bestimmdt.

Satz 145. Sein :=dimV. Dann ist

dim ARV = (7).
im <k>

Beweis. Wir beweisen das zunéchst nur fiir V= R", den allgemeinen Fall erledigen wir im
Anschluss an die Definition [147]

Fiir £ > n sind je k Vektoren im R”™ linear abhéngig, und deshalb ist jede alternierende
k-Form w = O:

dim AF(R?)* = 0 = <Z> falls k > .
Sei nun k£ < n. Nach Beispiel und Satz gilt fiir jedes w € A*(R™)*

w(vg,...,v5) = Z w(€iyy.--s€i) Z Sign(o)vi, )1 - - Vi, ok

1<i1<.. <, <n gESk

= Z W,y ooy eq )Wt (v, ... o),

1<iy<...<ip<n

also o
W= Z W(€iyy.eny ey )w
1<y <...<ip<n
Nach sind die w®* linear unabhingig, und daraus folgt die Behauptung. O

Beispiel 146. Mit dem Euklidischen Raum R"™ kommen zwei weitere Rdume, die nachdem
vorstehenden Satz auf kanonische Weise isomorph zu R” sind:

R” — AL(R™)*, u > w®:= (., u),
R" — A" YR")*, u— *xw" = det(u,...).
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Es stellt sich heraus, dass manche physikalische Grofien (zum Beispiel Impuls oder Magnet-
feld), die iiblicherweise als Vektoren interpretiert werden, mathematisch besser zu ,,verste-
hen® sind, wenn man sie als 1-Formen oder (n— 1)-Form interpretiert. Vgl. die Beispiele m

und 255
O

Definition 147 (Zuriickholen von Formen). Ist f : W — V eine lineare Abbildung und
w € A*V*, so definiert

fro(wr, .. we) == w(f(wi),. .., f(we))
eine alternierende k-Form auf W, die mit f zuriickgeholte Form. Die Abbildung
oAV S AR W frw
ist linear.
Das Zuriickholen von Formen erfiillt offenbar
(ho f)* = f*oh™ und id* =id.
Deshalb liefert ein Isomorphismus f : V — W fiir jedes k eine Isomorphie AFW* = ARV *,
Das beweist den Satz [I45)] fiir beliebiges V.

Satz 148. Fir f € End(V) und p € A"V* mit n = dimV ist

fr = (det f)p.

Beweis. Falls o = 0 ist nichts zu zeigen.

Andernfalls ist p eine Basis des (Z) = 1-dimensionalen Vektorraums A™V*, und
ffu=cp
fiir eine Konstante ¢, die wir nun bestimmen. Sei (e;) eine Basis von V und f(e;) = >, fije;.
Dann ist
cpler, - en) = fuler, - en)
Z fir - finnp(eiys - - €i,)

11ye005tn

Z fo1 - fommb(€o()s - -+ €o(n))

oceS,
= Z Sign(a)fa(l)l s fo‘(n)nu(eh ceey en)
o€S,
= (det f)/’[’(ela s aen)
Weil (e, ..., en) # 0 folgt die Behauptung. O
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Definition 149 (Orientierung, Volumenform). Sei V ein n-dimensionaler reeller Vek-
torraum.

(i)

A"V* ist ein 1-dimensionaler Vektorraum, A”V*\ {0} besteht also aus zwei Zusam-
menhangskomponenten. Jede von diesen heiflt eine Orientierung von V und V zusam-
men mit einer solchen ein orientierter Vektorraum. Eine Orientierung ist also gegeben
durch eine alternierende n-Form g % 0, und Ap mit A # 0 liefert dieselbe Orientierung
genau dann, wenn A > 0.

Eine Basis (v1,...,v,) in einem orientierten Vektorraum V heifit positiv orientiert,
wenn fiir ein und dann fiir alle 4 aus der Orientierung

w(vy, ..., v,) > 0.

Umgekehrt bestimmt jede Basis (v1,...,v,) eine Orientierung

{MEA”V* |‘u(U17...7’Un) >0}

Ist V ein orientierter Fuklidischer Vektorraum, so gibt es in der Orientierung genau ein
u € A"V* welches auf einer und nach Satz dann auf jeder positiv orientierten Or-
thonormalbasis den Wert 1 annimmt. Dieses p heifit die Volumenform des orientierten
Euklidischen Vektorraums V.

Bemerkungen. 1. In der Linearen Algebra definiert man die Orientierung eines endlich-
dimensionalen reellen Vektorrraumes hiufig als eine Aquivalenzklasse von Basen, wobei zwei
Basen dquivalent oder gleich-orientiert heiflen, wenn sie durch einen Automorphismus mit
positiver Determinante ineinander iiberfithrt werden. Uberlegen Sie, dass das mit der obigen
Definition iibereinstimmt.

2. Fiir V = {0} ist nach Definition A°V* = R. Die beiden Komponenten von R\ {0} lassen
sich charakterisieren durch die Zahlen +1 und —1, und unter einer Orientierung von V' = {0}
versteht man die Wahl einer dieser Zahlen.
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9.1.1 AuBeres Produkt

e Wir definieren ein assoziatives Produkt zwischen alternierenden Formen und benutzen
dieses, um k-Formen mit Hilfe von 1-Formen darzustellen.
Multilinearformen, die nicht alternieren, kann man mit Gewalt dazu bringen:
Definition 150 (Alternierung). Ist 7: V x ... x V — R eine k-lineare Abbildung, so ist
Alt(T) mit
1 .
Al(T) (v1, ..., 0) := o Z sign(o)T (Vo (1), -+ - » Vo (k)
gESy

eine alternierende k-Form, die Alternierung von T.

Ist T bereits alternierend, so ist Alt(T) = T.

Beweis, dass Alt(T) alternierend ist. Sei 7 € Sk. Dann gilt

1 .
A(T) (vrays - 0m() = 35 > sign(o)T (Va(r(1))s - - > Vo(r(k)))
T oeSy

1 . -
=4 Z sign(pT )T (Vp(1)s - - -+ Vp(i))
PESK

= sign(7) Alt(T)(vy,. .., vE).

Wir benutzen das, um fiir alternierende Formen ein Produkt zu erklaren.

Definition 151. Seien w € AFV*, 6 € AlV*.
(i) Das Tensorprodukt w ® 6 von w und 6 ist definiert durch
(W) (v1,. ., Vk41) == w(v1, .o, VE)O(Vkg1s v oy Vkpl)-

(i) Das duBere Produkt w A0 € A**'V* von w und 6 ist definiert durch

(k+1)!

wAO=

Alt(w ® 0).

Satz 152. Seien w,w; € AKV*, 0 € AlV*, n € A™V* und f: W — V linear. Dann gelten
folgende Regeln

(Wi +w) AN =wi ANO+wy A0,
(aw) A0 = a(w A 6),
@A) = fwn 0,

wAl=(—D"9Aw,
(WA An=wA(0AD).

Beweis. Bis auf die letzten zwei Aussagen ist das leicht zu beweisen. Fiir diese vgl. Spivak
p. 80/81 oder Agricola/Friedrich p. 2. O
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Beispiel 153. Fiir ¢ € A°V* = R und w € A*V* ist offenbar ¢ ® w = ¢w, und weil das
eine alternierende k-Form ist, folgt

ONw = pw.
O
Beispiel 154. Fiir wi,ws € A'V* und vy, vy € V ist
211
(Wi Awz)(vi,v2) = 77 o (@i (vn)wa(v2) — wi(v2)wz(v1))
= w1 (’Ul)wg(’Ug) — W1 (Ug)wg(’vl).
O

Beispiel 155. Vgl. Beispiel Fiir u,v € R? findet man mit der Formel aus dem letzten
Beispiel wegen w"(e;) = (e;,u) = u;

(WY Aw?)(es, e5) = uivj; — u;v;

Das sieht so aus, wie die Komponenten des Vektorproduktes u x v. Zeigen Sie

uXv

’w“/\w”:*w

Das Dachprodukt kann man also auffassen als eine Verallgemeinerung des Vektorproduk-
tes auf beliebig-dimensionale Ridume. Die spezielle Situation im dreidimensionalen kommt
dadurch zustande, dass 1 +1 =3 — 1 ist.

O
Lemma 156. Seien w € A*=1V* 0 € A'V* und vy, ..., v € V. Dann gilt
k
(WAO) (01, 00) =D (=) Tw(vr,..., 55, .., vk)0(v;). (44)
j=1
Beweis. Nach Definition ist
k! 1 .
(WAO)(v1,... %) = m 7 Z Slgn(ff)w(va(1)7 . ,Ua(k—n)g(%(k))
T eSSy
Ist j := o(k), so ist der w-Term in der Summe
Fw(vi, .. Ugy e, Uk),
wobei 0 bedeutet, dass v; ausgelassen wird.
Das Vorzeichen bestimmt sich durch die Permutation, die vy (1), ..., Vs(r—1) in die monotone
Reihenfolge v1, ..., 75, ..., v bringt:
(Vo(1)s -+ > Va(k=1)> Vo(k)) Sig:zg) (V1y.e V4,0, k) (71—);7]_ (V1,3 0y e, Uk, V)
Also folgt
1 k
(WA O) (01, ..., v) = Y Yo Y sign(0)(—D)Fw(vr, . G 0)0(0;).
=l e S, =1
o(k)=j



Weil es in Sy, gerade (k — 1)! Permutationen mit o(k) = j gibt, erhalten wir daraus ([44).
O

Sfcatt (—1)¥=7 kann man in natiirlich auch (—1)**J schreiben. Dann hat die Formel
Ahnlichkeit mit dem Laplaceschen Determinantenentwicklungssatz. Das ist kein Zufall, wie
der Beweis zum néchsten Satz zeigt.

Satz 157. Seien vy,...,vx €V und wy,...,w; € A'V* = V*. Dann gilt

(Wi A Awg) (01, .0, o) = det(w;(V5))ij=1,... k- (45)

Die Formel ist der Grund fiir den merkwiirdigen Koeffizienten bei der Definition von A.

Beweis. Vollstandige Induktion iiber k.
Der Fall £ = 1 ist trivial.

(k—1) — k.
(w1 VAN /\wk_l) /\wk(vl, ... ,Uk)
k
;(—l)k“wl A Awp 1 (V1 Ty e )Wk (V)
k wl(vl) wl(vj) wl(vk)
= (~1)k : : wk(v))
— o
! wi—1(v1) ... wro1(v) oo wie—1(vk)
= det(w;(v;)),
wobei der Entwicklungssatz von Laplace nach der letzten Zeile benutzt wurde. O
Satz 158. Seien (e1,...,e,) eine Basis von V und (w1, ...,wy) die duale Basis von V*.
Dann gilt fiir w € A*V*:
w= Z W(€iyy.ensCify)Wig A v Awi, .
1<i1 <. <ip<n
(Wiy Ao Awiy)1<iy<.. <ip<n ist eine Basis fir A*V*, und die w(e;,, ... e;,) € R sind die
Entwicklungskoeffizienten von w beziiglich dieser Basis.

Dieser Satz erklirt die Notation A*V*: Das ist der Raum der von den k-fachen Produkten
von Formen aus V* erzeugt wird, die k-te “d4uflere Potenz” von V*.

Beweis. Sei j; < ... < ji. Dann gilt

Z W€y s os i) Wiy Ao Awig )€y, -5 €5,)

1<ii <...<ig<n

= Z w(€iyy---s€i) det(w;, (€j,))
ISh< <isn =0, famzk)

=w(ej,. - )€ )-

Aus dem Satz folgt daher die Behauptung. O
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Beispiel 159 (Basisdarstellung in A*(R")*). Sei V = R". Die duale Basis zur Standard-
basis bezeichnen wir mit xq,...,x,. Das sind gerade die Projektionen auf die Koordinaten-
achsen. Dann gilt also

w= E W(€iyyvns€ify) Tiy Aot ATy, .
1<i1<...<ix<n

In diesem Fall ist @;, A ... Ax;, = wi ¥ vgl. Beispiel

O
Beispiel 160. Seien etwa w = > a; x;, 0 = >_ b; x;. Dann ist
wANO= Z(aibj —ajbi)xi/\xj.
i<j
O

Bemerkung. Man bezeichnet die Réume AFV* mit dem #uBeren Produkt, oder, formal
genauer, die direkte Vektorraumsumme

AV = é/\kv*
k=0

mit der darauf durch A induzierten Multiplikation als die Graf$mannalgebra von V*D

Hermann Grafimann (1809-1877) war nicht nur der Erfinder dieser Operation, man kann
ihn als den Erfinder der abstrakten Linearen Algebra im heutigen Sinne ansehen. Er war
seinen Zeitgenossen damit weit voraus, konnte sich aber als Autodidakt kaum verstdndlich
machen und wurde deshalb lange Zeit seines Lebens von der etablierten Mathematik nicht
gewiirdigt, ja kaum wahrgenommen. Aufler zur Mathematik hat er bedeutende Beitréige
auch zur Physik und zur Sprachwissenschaft geleistet.

Zum Wirken und zur Person von Hermann Grafimann sei der entsprechende Abschnitt in
Felix Kleins “Mathematik im 19. Jahrhundert” empfohlen.

7 Die Gramannalgebra A*V des endlich-dimensionalen R-Vektorraumes V “selbst”, also ohne Sternchen,
kann man im Rahmen unserer Behandlung mit Hilfe der kanonischen Isomorphie (V*)* 2 V definieren.
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9.2 Differentialformen

e Fin Vektorfeld ist eine Abbildung
X: VOG-V,

die jedem Punkt p € G einen Vektor X (p) zuordnet.

Ebenso ist eine Differentialform vom Grad k ein Feld alternierender k-Formen, also
eine Abbildung
w:V DG — AV,

die jedem Punkt p € G eine alternierende k-Form w, zuordnet.
e Wir iibertragen unsere Kenntnisse der alternierenden k-Formen auf k-Formenfelder.

e Insbesondere lernen wir die Basisdarstellung von Differentialformen kennen. Eine Klip-
pe ist dabei die géingige Praxis, konstante Abbildungen mit demselben Symbol zu
bezeichnen wie ihren Wert.

Seien V ein endlich-dimensionaler normierter R-Vektorraum, G C V eine offene Menge und
keN.

Definition 161. Eine C°°-Abbildung
w: G— AV pw,.
heifit eine Differentialform vom Grad (oder Rang) k auf G.

Die Addition und Skalarmultiplikation sowie das Dachprodukt von alternierenden Multili-
nearformen iibertragen sich ,wertweise“ auf Differentialformen. Aulerdem kann man Diffe-
rentialformen wertweise mit reellwertigen C'°°-Funktionen multiplizieren.

Auf diese Weise bilden die Differentialformen vom Grad k einen Modul
Q8 (@) == C>=(G, AFV*)
iiber dem Ring C*°(G,R) der reellwertigen C'*°-Funktionen.

Bemerkung. Natiirlich kann man auch Differentialformen mit niedrigerer Differenzierbar-
keitsordnung definieren. Aber bei der Differentiation von Differentialformen endlicher Diffe-
renzierbarkeitsordnung verliert man jeweils eine Ordnung. Das fithrt dazu, dass man neben
dem Grad sténdig auch noch die Differenzierbarkeitsordnung kontrollieren muss. Wir ver-
meiden dieses Problem, indem wir uns auf den C*°-Fall beschrinken.

Beispiel 162. Q°(G) = C*(G,R) sind die C*°-Funktionen auf G.

Beispiel 163. Ist f: G — R eine C'*°-Funktion, so ist
Df:G— L(V,R) =V* € QY(G).

Im Zusammenhang mit Differentialformen schreiben wir meistens df statt Df, vgl. Ab-
schnitt 0.3

O

Beispiel 164. Alternierende k-Formen kann man als konstante Differentialformen auffassen.

Dann ist also
ARV C QR (V).
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Beispiel 165 (Zur anschaulichen Vorstellung). Eine alternierende 2-Form w € A?(R3)*
kann man sich als Stromung einer Fliissigkeit im R3 vorstellen: w(v,w) gibt an, wieviel
davon pro Zeiteinheit durch das von den Vektoren v und w aufgespannte Parallelogramm
hindurchflieBt ]

Dabei ist kommentarlos unterstellt, dass die

Stromung stationér ist, d.h. dass es nicht darauf an- ///
kommt, wann die Zeiteinheit gewahlt ist, und es ist —
unterstellt, dass die Stromung homogen ist, d.h. dass //

es nicht darauf ankommt, wo im R3 das Parallelo- "

/'

gramm liegt (Translationsinvarianz).

Differentialformen ermoglichen es, wenigstens die
zweite Spezialisierung aufzugeben, also eine stati-

/ / — onére inhomogene Strémung zu modelieren und zwar
\ 67 durch eine Differentialform w € Q?(R?). Fiir (hinrei-
v chend kleine) Vektoren v, w € R? gibt

} / wp (v, w)
/

an, wieviel Fliissigkeit pro Zeiteinheit durch das von
v und w an der Stelle p € R? aufgespannte Paralle-
logramm flief3t.

P

\ A

Genauer liefert

/
B

Fluss durch das von (hv, hw) aufgespannte Parallelogramm

wp(v,w) = }lll\mo B2

die Flussdichte durch das von v und w bestimmte infinitesimal kleine Parallelogramm im
Punkte p.

O
Beispiel 166 (Die Flussform). Sei F': R™ D G — R" ein C*°-Vektorfeld. Dann definiert

*wi(vla s avn—l) = det(F(p)avla s avn—l) (46)

eine Differentialform *w! € Q"~1(@), die den ,,Fluss“ des Vektorfeldes F' durch die von n—1
Vektoren aufgespannten infinitesimalen Hyperflichenstiicke misst, und die wir die Flussform
zu F nennen.

Ist V' nicht der R™, sondern ein orientierter Euklidischer Vektorraum und p € A™V™* seine
Volumenform, vgl. die Definition [I49] so kann man auch in diesem Fall zu jedem Vektorfeld
F:V DG — V eine Flussform

definieren.

O

Definition 167. Ist h : G — H C W eine C*°-Abbildung in die offene Teilmenge H des
Vektorraumes W, und ist w € QF(H), so definiert

(W w)p(v1,...,vk) = Whpy (Dph(vi), ..., Dph(vy))

eine k-Form h*w € QF(Q), die mit h zuriickgeholte Form.

8 Ist u der Geschwindigkeitsvektor der Strémung, so ist w = *w®. Das ist ein Beispiel dafiir, dass man
Stromungen bequem durch 2-Formen modeliert.
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Beispiel 168. Sind V ein n-dimensionaler R-Vektorraum, u € Q" }(V)und h: VO G -V
eine C*°-Abbildung, so gilt nach Satz

h* = det(Dh)p.

O
Satz 169. Fir die Komposition f o g von C*°-Abbildungen gilt
(fog)w=g"(f'w). (47)
Beweis.
(9" (f*w))p(v1,-..) = (f*w)g(p) (Dpg(v1), - - .) = W (o)) Dy (p) f(Dpg(v1)), .. -).
O

Die Formel ist also im wesentlichen die Kettenregel. Direkt aus der Definition folgt

Satz 170. Es gilt
fflwnl)=ffun f o

und

fr(dw) = (¢o f)f w.

Basisdarstellung von Differentialformen. Fiir das weitere Verstdndnis ist es ungeheuer
wichtig, dass Sie sich folgende Sachverhalte klarmachen:

1. Eine (beliebige) Abbildung f : V. O G — W in einen Vektorraum W mit Basis
(wy, ..., wy,) kann man nach dieser Basis entwickeln:

f= Z Jiw;.
i—1

Die f; sind die Komponentenfunktionen.

Insbesondere ist f € C'"° genau dann, wenn alle f; € C™.

Die duale Basis (w1, ...,w,) zu einer Basis (e, ..., e,) von V liefert eine Basis
(wil AN Wik)1§i1<4..<ik§n

fiir den Vektorraum A*V*. Infolgedessen hat man fiir w € QF(G) eine Darstellung

w = Z d)ll'bk wil VANPRAAN wik (48)

1<i1 <. <t <n

mit C°°-Funktionen ¢;, ;. Fir p € G ist

Wp = Z (i)zllk(p)w“ /\.../\wik c AkV*

1<i1<...<ig<n

Nach Satz sind die Funktionen ¢;,. ;, gegeben durch

¢i1~-ik (p) = wp(eiu SRR eik)'
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2. Ist V=R" k=1 und w = df, so hat man in A'(R")* die kanonische duale Basis
(z1,...,2,) und zum Beispiel

df = E:% (49)

Aber so schreibt man das nicht. Stattdessen finden Sie

n

Z

(50)

Der Unterschied (besser: der fehlende Unterschied) zwischen beiden Notationen ist
folgender. Sind f eine reellwertige Abbildung und g eine konstante Abbildung in den
Vektorraum Wmit Wert w, so beschreiben

fw:p— flpuw

und
fg:p— f(p)g(p) = f(p)w

dieselbe Abbildung. Wegen der Linearitét der x; ist nun dx; : p — dpx; = x; eine
konstante Abbildung. Die rechte Seite von ist also zu lesen als:

_n af . 1 n\*
pHZa )y =3 g ()0 € A RY)"

Die vorstehenden Uberlegungen gelten nicht nur fiir 1-Formen und die kanonische Basis
des R™, sondern ganz allgemein. Wir formulieren das noch einmal als Satz.

Satz 171. Sei (w1,...,w,) die duale Basis zu (ey,...,en).

(i) Sind ¢;,. i, : G — R gegebene C™°-Funktionen, so ist

w = Z Qﬁ“lk dwil VAN dwik S Qk(G>

1<ir<...<ip<n
(ii) Jedes w € QF(Q) lapt sich eindeutig so darstellen, ndamlich mit
Giyoiy = W(€igyeen, €4y )e
(iii) Insbesondere ist jede Differentialform vom Grad k auf dem R™ von der Form

W= Z @iy iy ATy N AN dxy, .

1<i1<...<ix<n

mit C*°-Funktionen ¢, .. i, .

Beispiel 172. Fiir die Determinantenform des R"™ gilt
det =dxy A ... Adx, € Q"(R"™).

Vergleiche Satz
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Beispiel 173. Fiir die Flussform *w! € Q"~1(G) zu einem F : R® D G — R" findet man

*wF(e17...7é}7...,en)dm1/\.../\d/a;i/\.../\dxn

£
|
I

©
Il
=

det(F,el,...,é},...,en)d:cl/\.../\d/a?i/\.../\dzn

-

«
I
A

(1)L det(er,....F,...,ex)dzy A... Adzi A... Adey

|

«
Il
-

(—1)i_1Fidl‘1 VANPIAN d/ZE\Z VAN da?n

|

o
Il
N
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9.3 Die Cartansche oder duflere Ableitung

e Eine Differentialform w vom Grad k ist insbesondere eine differenzierbare Abbildung
w:V DG — LE(V,R). Thre Ableitung an einer Stelle p € G ist deshalb eine lineare
Abbildung in L(V,L*(V,R)) = L**1(V,R), die aber im allgemeinen nicht alternie-
rend ist. Wir machen sie “mit Gewalt” alternierend und erhalten auf diese Weise die
Cartansche Ableitung.

e Wir lernen Rechenregeln fiir die Cartansche Ableitung kennen. Weil nach dem Schwarz-
schen Lemma die hoheren Ableitungen symmetrisch sind, iiberrascht es nicht sehr, dass
die zweifache Cartansche Ableitung verschwindet: Man macht sie ja gerade antisym-
metrisch.

Definition 174 (Cartansche oder duflere Ableitung). Sei w € QF(G).
Fiir jedes j € {1,...,k+ 1} und fiir vq,...,v541 € V ist dann

pr;D(vlw"a@a"'avk-O—l)

eine C°-Funktion auf G (der Vektor v; ausgelassen). Die Richtungsableitung dieser Funktion
nach v; sei mit

P O, w(Vi, .., 0y, Ukg1)|p
bezeichnet. Dann definiert
k+1
dpw(v1, ., vp1) = Y (1) 0y w(vr, o Dy Uk -
j=1

eine Differentialform dw € Q*T1(G). Sie heit die Cartansche oder dufere Ableitung von w.

(Man schreibt d,w statt (dw),. Die Formeln gewinnen an Ubersichtlichkeit, wenn man das
Argument p iiberhaupt unterdriickt, wie in den folgenden Beispielen.)

Dass dpw wirklich alternierend ist, ergibt sich aus dem nachstehenden Lemma.

Fir w € QF(Q) = C®(G,A*V*) und p € G ist Dyw € L(V,A*V*) C L*1(V,R) eine
(k + 1)-Linearform auf V'

Dpw(vl, ey Uk+1) = DPW(Ul)(UQ, e ,’l)k+1) = 8vlw(v2, e 7Uk+1)|p-

Das ist wegen der asymmetrischen Rolle des ersten Arguments nicht alternierend. Aber wir
kénnen darauf die Alternierung aus Definition [I50| anwenden und erhalten:

Lemma 175. Firw € QF(G) und p € G ist

dpw = (k+ 1) Alt Dpw.

Beweis. Fir j € {1,...,k 4+ 1} bezeichne 7; € Si41 die Transposition von 1 und j. Dann
gilt fiir vy,..., 0541 €V
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(k+1)Alt Dpw(vi, ..., vp41) =

Z sign(o) Dpw(Va(1ys - - > Vo (k1))

|
(k + 1)' 0ESKt1
1 .
= Z sign(0) 9y, 1, W (Vo(2)s - - - 5 Vo(kt1))lp
L 0E€ESkt1
1 k+1
= Z sign(7; o J)@UTjoa(l)w(vTjoa(g), e Vrioa (k1)) |p

Tj=1 oesuy
o(1) =1

1 .
ﬁz > sign(r; 0 0)0,w(Vr 002 - Vrjoo (k1) lp

j=1 o €S8k

o(l) =1
1 .
=1 Z sign(71 0 0)0y, W(Vo(2)s - - - > Vo (kt1))|p
T o €Sk
o(1) =1
1 Rl
T Z Sign(O')anw(’U.,—jog(g), S av‘rjoo'(kﬂ»l))‘p
T j=2 oesuy
o(1) =1
1k
= Oy, w(v2, .., Vky1)]p — T Z Z Oy, W(Vr,(2)5 - - 5 Ury (k1)) |p
J=2 o €Spy
o(1) =1
k+1 le
= Oy, w(va, ... kaJrl)';D - Zaij(Um ey Uj—1, V1, V541, 7Uk+1)|p
j=2
k+1
- 81)10'}(’02’ 7v1€+1)|p _Z( 1)J 281}](“)(1}17 avja"'7v/€+1)|17
j=2
k+1
= ( 1)J 81) W(’Ul, 7Uj7"'>vk+1)|p'
j=1
O
Beispiel 176.
we NG = dw(v,w) = dyw(w) — Dpw(v).
O
Beispiel 177. Fiir die Flussform sw! = det(F,...) € Q""1(G) auf dem R"™ ergibt sich
d*wh(eq en) = i(fl)jfla det(F, eq €; en) = i or; _ div F.
yeees€n . e, I T T 7z, )
j=1 ] j=1
=(=1)7~1F};
Also
d*wf = (div F)det = (div F)dx; A ... Ad,.
O

Lemma 178. Seien ¢ : G — R eine C*®-Abbildung auf der offenen Menge G C V' und
wo € A*V*. Dann gilt
d ((i)&)o) = dgi) AN wo-
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Beweis. Nach Lemma und der vorletzten Formel aus Satz gilt fiir § € A'V*,
wo € AFV* und vy, ..., vpp1 €V

k+1
(O Awo)(WL,- s vhr1) = 3 (—17 10w (vrs oy -, Vi),

=1
Daher ist
k+1

((d(b) A\ wo)(’Ul, o aUkJrl) = Z(—l)j_1d¢(vj)w0(v1, - 7’&;, - ,’l}k+1)
=1
et

= Z(*l)jilangbwo(vlv o 517}7 ceey Uk-‘rl)
j=1

= d((bwo)(m, .. -7Uk+1)-

O
Lemma 179. Die Cartansche Ableitung
d: Q%G — Q@)
ist R-linear.
Beweis. Trivial O
Satz 180. Mit den Bezeichnungen von Satz[I71] sei
w = Z ¢i1.4.ik dwil VANAN dwik S Qk(G)
1<i1<...<ip<n
Dann gilt
dw = Z d¢111k /\d(,c)i1 /\.../\dwik
1<i1<...<ip<n
= Z Z@ej@l,_,ik dwj /\dwil VAN /\dwlk
1<ir <...<ip<n j=1
Im Fall der kanonischen Basis des R™ hat man fiir
w = Z (;Silmik d.’Eil VANPAN d.’Elk
1<ir<...<ip<n
also N
du — 0pi, .. i, J J J
w = Z Z Dz T; Nazg, N...N\dx;,.
1<i <...<ip<n j=1 J
Beweis. Triviale Folge aus den Lemmas und in Verbindung mit
dp =" 0e, ¢ dw.
J
Beachten Sie, dass die dw;, A ... A dw;, konstante Differentialformen sind. O
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Beispiel 181. Bezeichnen wir die Koordinatenfunktionen auf dem R? mit x,y statt mit
T1, X2, SO ist
w:=xdy —ydr € Q' (R?)

und

dw=dx Ndy — dy \Ndx = 2dz A dy.

O

Beispiel 182. Wir berechnen noch einmal, und zwar jetzt in Koordinaten, die Cartansche
Ableitung der Flussform

swl =3 (<1 T Fyday AL A dz AL A da,.
=1

Wir erhalten wie frither

d*‘*’F:Z(_Uz_lzaz, dzj A dey Ao ANdzi A ... N day,
i=1 j=1 "7

=0 fiir j#i

:ngl dxy A ... ANdx, = (div F)dzy A ... Adx,.

Satz 183. Fiir die Cartansche Ableitung gelten die folgenden Rechenregeln:
(i) d: QF(GQ) — QF1(G) ist R-linear.
(ii) d(w A 0) = (dw) A0+ (=1)kw A (dB), wenn w € QF(Q),0 € QYG).
(i11) d(dw) = 0.
(iv) d(f*w) = f*(dw), wenn (f: VDO G — HCW) € C®(G,W) und w € Q*(H).

Beweis. Zu (i). Das war Lemma m

M Weil d linear ist, konnen wir o.E. annehmen, dass
w=¢wy, 6O=10.

mit ¢, € C®(G,R) und wy € A¥V* 6y € A'V*. Dann gilt

wAl= ¢y wy A by
——

konstant

und nach Lemma ist

d(w A B) = d(¢y) A (wo A bo) = (d@)yp A (wo A bo) + ¢(dip) Awo A bo
= (dop A wo) A by + (=1)*(pwo) A (dip A ) = dw A+ (—1)*w A db.

Zu (iii). Wieder geniigt es, den Fall
w = pwo
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mit ¢ und wy wie oben zu betrachten. Dafiir gilt dw = d¢ A wy und nach (i)
d*w = (d*¢) A wo.
Also geniigt es zu zeigen, dass d?¢ = 0 fiir C*°-Funktionen ¢. Aber
d(dg) (v, w) = dydd(w) — Dwdp(v) = OuOuwd — Duw0sd =0

nach dem Satz von Schwarz.
Zu (iv). Fiir Funktionen ¢ € O (H,R) = Q°(H) gilt

d(f*¢) =d(¢o f) =dpoDf = f*do.
Fiir eine konstante 1-Form wy € A'W* und u,v € V gilt

d(f*wo)(u,v) = Ouwo(Df(v)) — owo(D f(u)) = wo(9u0y f) — wo(Fuuf) =0
nach dem Satz von Schwarz. Nach (7) ist dann aber auch
d(f*(wr Ao Awg)) =0
fiir beliebige w1, ...,w; € A'W*, also ist
d(f*wo) =0

fiir jede konstante k-Form wy € AFW*.
SchlieBlich folgt fiir w = ¢ wg mit ¢ € C*°(H,R) und wy € AFW*

d(f*w) = d(f*(¢wo)) = d((f*¢) f*wo) = (d(f"¢)) A (f*wo)
= f*(do) A (f*wo) = f*(d(dwo)) = f*(dw).
Mit der Linearitdt von d und f* folgt daraus die Behauptung. O

Ein Rétsel. Im obigen Beweis haben wir gezeigt, dass fiir C°°-Abbildungen f : V — W
und wo € ATW*
d(f*wo) =0.

Andrerseits ist fiir die lineare Abbildung wy : W — R doch
dpwo = wy, fiir alle p € W,
und nach Teil (%v) des vorstehenden Satzes ist daher
d(f*wo) = f*(dwo) = fwo.
Aber sicher ist das fiir “die meisten” Abbildungen f und wy € A'W* nicht = 0.

Was ist da los?
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9.4 Potentiale von Differentialformen

e Ein Potential einer Differentialform w ist eine “Stammfunktion”, genauer eine Diffe-
rentialform 6 mit w = df.

e Im Gegensatz zum Hauptsatz der Differential- und Integralrechnung besitzt aber nicht
jede Differentialform ein Potential. dw = 0 ist eine offensichtlich notwendige Bedin-
gung, und Sie finden leicht Formen, die das nicht erfiillen.

e Wir lernen, dass diese Bedingung im allgemeinen nicht hinreichend ist, und finden im
Lemma von Poincaré eine hinreichende Zusatzbedingung.

e Das Lemma kann man in der Sprache der Kohomologietheorie formulieren, und wir
lernen bei der Gelegenheit, was die Kohomologiegruppen einer offenen Mengen G C V'
sind, und was man sich darunter vorstellen soll.

Sei G eine offene Teilmenge eines endlich-dimensionalen R-Vektorraums V.

Definition 184. Sei w € Q%(G).

(i) w heiit geschlossen, wenn dw = 0.
(ii) w heiBt ezakt, wenn es ein § € Q¥~1(G) gibt, fiir das
df = w.
Jedes solche 6 heifit ein Potential fiir w.

Beispiel 185. Im Fall w € Q!(G) ist ein Potential also eine Funktion § mit df = w. Fiir
V=R"und w =3, ¢idx; bedeutet das

00
833,‘ N

bi-

In der Physik bezeichnet man iiblicherweise —f und nicht 6 als das Potential von ¢.

Eine 0-Form w € Q°(G), d.h. eine Funktion w € C*°(G,R), kann zwar geschlossen sein (was
bedeutet das?), sie kann aber nicht exakt sein, weil Q~!(G) nicht definiert ist.

O

Satz 186. Notwendig fiir die Ezistenz eines Potentials zu w € QF(G) ist dw = 0. Nur
geschlossene Formen konnen ein Potential besitzen.

Miissen sie aber nicht. Wir zeigen gleich, dass die Geschlossenheit im allgemeinen nicht hin-
reichend ist. Zuvor betrachten wir noch kurz die Frage der Eindeutigkeit von Potentialen.

Wenn 0 € QF¥1(G) ein Potential von w € Q¥(G) und 6y € QF¥1(G) ist, dann ist § + 6
genau dann ebenfalls ein Potential von w, wenn dfy = 0. Das ist sicher der Fall, wenn 6,
selber ein Potential € QF~2(G) besitzt, aber weil die Exaktheit von 6y im allgemeinen
nicht notwendig fiir die Geschlossenheit ist, gibt es vielleicht noch mehr Potentiale zu w.
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Beispiel 187 (Wichtig: Sphirenvolumenform). Mit r : R"\ {0} — R,z — /> 22
definieren wir das Vektorfeld X : R™\ {0} — R™ durch

und betrachten die zugehorige Flussform #wX. Diese Form, also

T

X
xw” = det(——,
]|

) € QTHR™\{0}),

nennen wir aus spéter erlauterten Griinden die Sphdrenvolumenform des R™.

Fiir sie gilt nach den Beispielen und
dxwX =divXdri A... Ndzp =0,

weil

. SN = 1 n; n  nd a?
i=1 i=1
Also ist *wX geschlossen.
Fiir n = 2 ist
X € Y

xS = dy —
x2+y2 Y $2+y2

dx.

Gibt es dazu ein Potential, also eine Funktion 6 : R?\ {0} — R mit

00 —y 00 x

T ErE Oy B
Offenbar hat arccot % die richtigen partiellen Ableitungen, ist aber nur auf dem Komplement

der z-Achse definiert und nicht auf R?\ {0}. Das Grenzwertverhalten bei Annitherung an
die Achse ist hier dargestellt:

= .|
T T

Die Winkelfunktion

arccot 5 fiir y > 0,
d(x,y) =40 fir > 0 und y =0, G
—7 + arccot % fir y < 0,

ist dann ein C*°-Funktion (Beweis?) auf dem
»Schlitzgebiet

G={(z,y) ER® |z >0o0dery #0},
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also auf der Ebene ohne die nicht-positive z-Achse. Dort hat sie einen Sprung der Grofe 27.

Giibe es ein Potential @ fiir xw™ auf R?\ {0}, so wiire auf dem Schlitzgebiet d(§ — ¢) = 0,
die Differenz also konstant. Dann wére aber auch 6 auf der negativen z-Achse unstetig.
Widerspruch!

Daher besitzt die geschlossene 1-Form *wX kein Potential auf R?\ {0}. Wir werden spiter
sehen, dass die Spéarenvolumenform auch in héheren Dimensionen kein Potential besitzt.

Physikalisch 1i8t sich *w™ fiir n = 2 interpretieren als zweidimensionaler Schnitt durch das Ma-
gnetfeld eines geraden Leiters oder fiir n = 3 als das elektrisches Feld einer Punktladung. Formen
mit dw = 0, die kein Potential besitzen, sind also nicht besonders exotisch.

O

Wir wollen nun zeigen:

Satz 188 (Poincarésches Lemma). Fir k,n € N\ {0} ist jede auf dem ganzen R™ defi-
nierte geschlossene k-Form w € QF(R™) exakt.

Beweis. Der Beweis erfolgt durch vollstindige Induktion iiber n.

Fiir n = 1 verschwindet jede k-Form mit k > 1, hat also 0 € QF~1(R) als Potential. Jede
1-Form ist von der Gestalt w = ¢ dz mit ¢ € C*°(R,R), und jede Stammfunktion von ¢ ist
ein Potential von w.

Der Induktionsschritt ergibt sich aus dem folgenden

Lemma 189. Sei G C R"™ offen. Wir definieren
m:GxR— G, (z,t) — x,
$:G—GxR,z~ (2,0).
Dann gibt es eine Familie linearer Abbildung

(K : QF(G x R) — QF (G x R)) sy s

so dass fiir alle k > 1 und w € QF(G x R)
w—r*s*'w = (=1)*""YdK} — Kpy1d)w. (51)

(Wir lassen im weiteren den unteren Index bei K weg: Der Grad der eingesetzten Form
definiert, um welches k es sich handelt.)

Ist der Satz nun schon bewiesen fiir den R™, so wenden wir das Lemma auf G = R™ an.
Ist w € QF(R™*!) geschlossen, so ist d(s*w) = s*(dw) = 0, die Form s*w € QF(R") nach
Induktionsvoraussetzung also exakt: s*w = df. Daher ist

* % k— * k— * k—
w=m"s"w+ (-1) 1 (dKw - K dw ) =7*d0 + (—1)" 'dKw = d (7*0 + (-1)" ' Kw) .
=0
Also ist w exakt, und der Satz bewiesen. O

Der schwierige Teil ist der
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Beweis des Lemmas[189 Fiir die Konstruktion der Ky benutzen wir auf G x R C R™ x R

die Koordinaten x1,...,x,,t und definieren die lineare Abbildung K auf den Basisformen
der Typen
¢dxi1 A A dl‘ik71 A dt (53)

mit ¢ € C°(G x R,R), ¢ = ¢(z,t) wie folgt:
K(¢pdziy A...Ndx;,) =0,

K(pdzi A ... Ndx;,_, Ndt) ( o(x T)dT) dxi, Ao o Ndag,

Dafiir miissen wir nun (51)) nachrechnen.

Formen vom Typ .
Wegen m*s*dx; = (som)*dx; = d(x; o s om) = dx; ergibt sich fiir w = ¢pdx;, A... Adx;,

w—7"s"w = (d(z,t) — p(x,0))dx;, A... Adx;, .
Andrerseits ist
dKw — Kdw =O—K(d¢)/\dazi1 cooNdxgy)
=0-K <( )’“ 5 @i A+ Adwi A dt + Terme ohne dt)
= (=D Yp(x,t) — ¢(x,0))dzi, A... Adx, .
Daraus folgt .

Formen vom Typ .
Wegen 7*s*dt = 70 = 0 gilt flir w = ¢dxs, A... Adx;,_, Ndi

s (pdxiy Ao Ndxy_, NdE) =

also
w—m"s*w =w.

Andrerseits ist

dKw — Kdw = (—=1)"'¢(z,t) dzyy, A... Adai,_, Adt

+ Z (/ d7> dej Adzg, A .. Ada,

k
9¢
- K Za— dry Adai, A... Ndxg, | Ndt

(=D Yp(x, t) day, Ao .. Adaxg,  Ndt

= (—l)k_lw.

Daraus folgt . O

Korollar 190. Ist die offene Teilmenge G C V' im n-dimensionalen Vektorraum V zum R"
C>-diffeomorph und ist k > 1, so ist jedes geschlossene w € QF(G) exakt.
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Beweis. Ist f : R® — G C V ein C*°-Diffeomorphismus auf G und dw = 0 so ist df*w =
f*dw = 0, also nach dem Lemma von Poincaré f*w = df fiir ein 6 € Q*~1(R"). Dann ist
aber

d(f~1) 0= (f"1)'do = () fw=w.
O

Beispiel 191. Eine offene Menge im R" enthélt um jeden ihrer Punkte p einen offenen
Wiirfel W = {q € R" | |gi — pi| < €}, der durch die Abbildung

q— | tan 77r(q1 — pl) ,...,tan 77?(% — pn)
2e 2e

C*>°-diffeomorph auf den R™ abgebildet wird. Deshalb besitzt jede geschlossene k-Form um
jeden Punkt ein lokales Potential.

O

Beispiel 192. Das Schlitzgebiet
G={(z,y) |z>0o0dery#0}

aus Beispielist diffeomorph zum R2. Die Abbildung (,y) — (2%2—y?, 2zy) bildet ndmlich
die offene rechte Halbebene = > 0 diffeomorph auf G akﬂ jene ist selbst aber diffeomorph
zum R2. Also besitzt jede geschlossene 1-Form auf G ein Potential.

O
Bemerkungen.

1. In vielen Analysisbiichern finden Sie das Lemma von Poincaré formuliert und bewiesen
fiir sogenannte Sterngebiete, also offene Mengen, in denen man sémtliche Punkte mit
einem festen sogenannten Sternpunkt verbinden kann. Das sieht, weil der R™ natiirlich
ein Sterngebiet ist, auf den ersten Blick allgemeiner aus als unsere Version, ist es aber
nicht, weil jedes Sterngebiete im R™ zum ganzen R™ diffeomorph ist. Diese Tatsache
habe ich in der Literatur nicht gefunden, obwohl sie vermutlich bekannt ist. Einen
Beweis von Stefan Born finden Sie im Anhang.

2. Das im Beweis benutzte Lemma liefert mehr Information, als der iibliche Beweis
fiir sternférmige Mengen, vgl. Satz [I96] unten.

Wenn ein mathematischer Satz notwendige Bedingungen fiir eine Aussage formuliert (z.B.
“Notwendig fiir die Konvergenz von Y ay ist limag = 07), so ist die Frage, warum diese
Bedingung nicht auch hinreichend ist, oftmals mit einem Gegenbeispiel abgetan.

Hier ist das nicht so. Im Gegenteil: Die Beobachtung, dass geschlossene Formen nicht im-
mer exakt sind, bietet den Einstieg in einen der schonsten und reichhaltigsten Bereiche der
Mathematik, in dem Analysis, Algebra und Geometrie auf wunderbare Weise ineinander-
greifen. Ich moéchte Thnen im Rest dieses Abschnittes und der gesamten Vorlesung davon
einen Eindruck vermitteln.

9Die Abbildung ist nimlich gegeben durch r(cos ¢, sin ¢) + r2(cos 2¢, sin 2¢).

125



Das Diffeomorphieproblem. Wann sind zwei offene Teilmengen von endlich-dimensionalen
Banachrdumen diffeomorph?

Ist f: G — H eine C*°-Abbildung zwischen offenen Mengen, so ist die ,,Zuriickholung*
[ QR (H) - OFG)

eine lineare Abbildung von Vektorrdumen. Ist f ein Diffeomorphismus, so ist f* ein Isomor-
phismus. (Beweis?) Wenn also QF(H) und QF(G) als R-Vektorrdume nicht isomorph sind,
sind G und H nicht diffeomorph.

Damit hat man ein geometrisches Problem auf eines der linearen Algebra zuriickgefiihrt,
indem man jedem G algebraische ,, Invarianten®, némlich die Vektorriume Q*(G) zuordnet.
Leider sind aber diese Vektorrdume unendlich-dimensional, so dass sie fiir die Isomorphie-
frage kaum brauchbare Antworten liefern. Deshalb mufl man die hier skizzierte Idee noch
etwas verfeinern:

Definition 193. In Q*(G) hat man zwei Vektorunterriume, gebildet von den geschlossenen
bzw. exakten Differentialformen:

ZHG) = {w]dw=0},
B¥(@) = {do |0 € Q1 (G)}, BYG):={0}.
Man nennt diese Rdume auch die k-Kozykeln bzw. k-Kordnder.
Wegen d? = 0 ist B*(G) € Z*(G). Der Quotientenvektorraum
H*(G) := Z(G)/B*(G)

heif}t die k-te De Rhamsche Kohomologiegruppe, wobei sich ,, Gruppe“ auf die additive Vek-
torraumstruktur bezieht.

Wegen f*dw = d(f*w) bildet f* Kozykeln in Kozykeln und Kordnder in Kordnder ab,
induziert also fiir jedes k eine lineare Abbildung

f*: H*(H) — H*(G),
Beachten Sie:

e Ein Diffeomorphismus f liefert auch einen Isomorphismus der Kohomologiegruppen:
Diffeomorphe offene Mengen haben isomorphe Kohomologiegruppen.

e H¥(G) = 0 bedeutet, jede geschlossene k-Form auf G besitzt ein Potential.
Die Kohomologiegruppen sind nun oft endlich-dimensionale Vektorrdume und die Isomor-

phiefrage ist dann einfach durch die Dimension zu beantworten. Allerdings mufl man sie erst
einmal haben!

Hier ist ein triviales

Beispiel 194. Machen Sie sich klar, dass

HO(G) _ RAnzahl der Zusammenhangskomponenten von G

Offene Mengen mit endlich- aber verschieden vielen Zusammenhangskomponenten sind des-
halb nicht diffeomorph. Aber das sieht man auch ohne Kohomologie ...

O
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Beispiel 195 (Die Kohomologiegruppen des R™). Weil R" zusammenhiingend ist, ist
H°(R™) = R. Und nach dem Poincareschen Lemma ist

H*R™) = 0 fiir alle k& > 1.

Diese Formel ist dqivalent zum Lemma von Poincaré.

Das Lemma [I89] liefert den

Satz 196. Fiir jedes offene G C R™ und jedes k € N induziert die Projektion m : GXxR — G
einen Isomorphismus
7 H*(G) — H*(G x R).

Beweis. Surjektivitiit: Fiir geschlossenes w € Q%(G) ist ds*w = s*dw = 0 und

w=7*(s*w) + (-1)" dKw.
—_—
Korand
Also wird die Kohomologieklasse von s*w durch 7* auf die von w abgebildet.

Injektivitit: Ist w € QF(G) geschlossen und 7*w in H*(G x R) trivial, d.h. 7*w = df exakt,
so ist
w=s"t"w = s*df = ds™0.

Also ist w ein Korand und reprisentiert 0 € H*(G). O

Beispiel 197. Wir haben im Beispiel gezeigt, dass

H' B2\ {0}) # 0.

Nach dem Poincaréschen Lemma ist H!(R?) = 0, also sind R? und R? \ {0} nicht zueinander
diffeomorph.

Man kann beweisen, dass allgemeiner fiir k verschiedene Punkte py,...,p; € R"
H" 'R\ {p1,...,m}) = R".

Die (n — 1)-te Kohomologie misst also die Anzahl der ,,0-dimensionalen Locher®.

Aus Satz [196] folgt durch Induktion fiir k& verschiedene parallele r-dimensionale Ebenen
FEq,...,Er CR", dass

H" "N RUA\{E, . B ) 2 H T R\ {prs- ok }) 2 RE
Die (n — r — 1)-te Kohomologie misst also die Anzahl der ,,r-dimensionalen Lécher*.

O

Definitionsgemif ist H*(G) ein Objekt der Analysis. Nun stellt sich heraus, dass es eine
Bedeutung fiir die Geometrie besitzt. Und tatséchlich befinden wir uns hier an einer der
wichtigsten Schnittstellen zwischen diesen beiden Gebieten der Mathematik. Der Satz von
Stokes vertieft die Kenntnis dieser Zusammenhéinge noch weiter.
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9.5 Integration von Differentialformen iiber Ketten

e Nach dem Studium der Differentialformen, also der natiirlichen “k-dimensionalen In-
tegranden” wenden wir uns nun den Integrationsbereichen zu. Dafiir gibt es zwei Va-
rianten:

e Spiter werden wir die Integration von k-Formen iiber k-dimensionale Mannigfaltigkei-
ten wie zum Beispiel (k = 2) die Sphére definieren.

e Zunéchst aber betrachten wir die Integration von k-Formen iiber k-dimensionale Ket-
ten. Damit kann man zum Beispiel 2-Formen iiber die Oberfliche eines Wiirfels in-
tegrieren, die wegen ihrer Ecken und Kanten keine differenzierbare Mannigfaltigkeit
ist.

In diesem Abschnitt seien V, W endlich-dimensionale Banachriume.

Vorbemerkung. Bei der Definition differenzierbarer Funktionen hatten wir stets einen
offenen Definitionsbereich vorausgesetzt. Eine Abbildung f : V D A — W einer beliebigen
Teilmenge A C V heifit C°°-differenzierbar, wenn es eine offene Umgebung U von A in
V und eine C'*°-Abbildung f : U — W gibt, fiir die f|A = f ist. Im allgemeinen ist die
Fortsetzung f natiirlich nicht eindeutig bestimmt, aber das Differential

pr= Dpf
ist eine wohldefinierte C'°°-Abbildung auf der abgeschlossenen Hiille des Inneren von A.

Im Sinne dieser Bemerkung bedeutet ,w € QF(A)“ fiir ein beliebiges A € V, dass es eine
offene Umgebung G von A und ein @ € QF(G) gibt, so dass w = @|4. Fiir die Definition
des Integrals kiime man natiirlich mit viel weniger Regularitit aus: Stetiges oder lebesgue-
integrierbares w : A — AFV* wire ausreichend. Wir bleiben trotzdem in der C*°-Kategorie.

Definition 198. Seien A C R* yy-meBbar und w € Q¥(A). Dann definieren wir:

[ ——
A A

falls das Integral existiert, falls also w(ey,...,ex) € L1 (A, ug).

Bemerkungen.

1. Beachten Sie, dass w € Q2%(A) auf dem R*(!) von der Form ¢ dxy A ... Adzy ist. Damit

gilt also
/d)dxl/\.../\dwk:/géduk.
A A

2. Es kommen zwei Standardsituationen vor, in denen die Existenz des Integrals klar ist.
In dieser Vorlesung werden wir es vor allem mit kompaktem A, ndmlich mit kompak-
ten Intervallen A, zu tun haben. Bei der Definition der Integration von Formen iiber
Mannigfaltigkeiten (vgl. Anhang) ist hingegen A offen und der Triiger von w kom-
pakt. In beiden Féllen hat man ein Lebesgueintegral einer stetigen Funktion iiber eine
kompakte Menge.

Lemma 199 (Transformationsformel). Sei A C R* jj-messbar und sei h : A — RF

eine C*°-Abbildung. Der Rand 0A sei eine p-Nullmenge und h auf dem Inneren ;1 injektiv
und

det Dyh > 0 fiir alle x € A.
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Exzistiert dann fh(A) w, so auch fA h*w und es gilt
/ hw= / w.
A h(A)

Beweis. Folgt unmittelbar aus dem Transformationssatz:
/ Bwler, .. ex) duy = / wn(Dh(er), .., Dh(ex)) djux = / det(Dh)wn (e, -, ex)
A A A

_ /A(w(el, .. ex) o h) | det(Dh)| dpu

:/ w(ey,...,eg)du.
h(A)

O

Fiir Differentialformen ist die Transformationsformel also besonders einfach, weil sie die
Determinante schon , eingebaut“ haben.

Definition 200. Seien G C V offen,
c:RF A= @

eine C°°-Abbildung einer y;,-messbaren Menge A C R* und w € QF(G). Fiir k > 0 definieren
wir

/Cw::/Ac*w:/A%(Dc(el),...,Dc(ek))d,uk:/wc(alc,...,akc)duk, (54)

A

falls die rechte Seite existiert.

Im Fall k = 0 ist R* = {0} und w € Q°(G) eine Funktion auf G. Fiir () # A C R, also fiir
A = {0}, definieren wir [ w als den Funktionswert von w an der Stelle ¢(0):

/w = We(0)- (55)
Beispiel 201 (Kurvenintegral). Mit c: [a,b] — G und w € Q'(G) ist

/c ©T /a b we(r) (E(t))dt.

e Hat w ein Potential 6, so ist nach der Kettenregel
b b
/w = / dey0(é(t))dt = / (B ocydt =06(c(b)) —b(c(a))
die Potentialdifferenz zwischen den Endpunkten der Kurve.

e Ist FF: V O G — V ein Vektorfeld und V euklidisch, so definiert man

/C<F’ ds) = /C“’F Z/Gb (F(e(t), é(t) dt.

Integriert wird also die tangentiale Komponente des Feldes F'. Interpretiert man F' als
Kraft, so nennt man dieses Integral auch das Arbeitsintegral.
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Beispiel 202 (Argumentfunktion und Umlaufzahl). Sei

7y — de) € 91 (R2\{0})

die Sphirenvolumenform und sei ¢ : [a,b] — R?\ {0} eine C*-Kurve. Wir identifizieren R?
mit C und halten schon mal fest, dass

wo(é) = #(czey —oyis) = é (&, ic) (56)

Sei ¢g € R eine der bis auf ganzzahlige Vielfache von 27 bestimmten Zahlen mit
c(a) = |c(a)|e™®. (57)

Wir definieren eine Funktion ¢ : [a,b] — R durch

oy=out [ w=on | o (e

Cl[a,t]

und berechnen

dfc o) _ (& _{edc) s, € i —is
dt<C|e )_(Ic EE )e +‘C|( ip)e
e ) <C, C>C . .

o) |cl (C_ BE _lcwc(t)(c(t))>

e~i® ( < c> c < ic>z’c>
= c—(é,— )= — (¢ — ) —
€ lel /el lic| / |ic|

=0

Also ist die Funktion konstant, und die Konstante ist nach gleich 1. Also ist
c(t) = |e(t)]e®® fiir alle ¢.

Jede C*°-Kurve in R%\ {0} besitzt also eine Polarkoordinatendarstellung mit einer Argu-
mentfunktion ¢ die stetig, ja sogar C* ist. Zeigen Sie, dass ¢ durch die Anfangsbedingung
eindeutig bestimmt ist.

Ist nun ¢ : [a,b] — R?\ {0} geschlossen, so ist e!?() = ¢¥*(@) also

1

n(c,0) := 5 (4(b) — ¢(a))

eine ganze Zahl, die man die Umlaufzahl von ¢ um 0 nennt.

Ist schlieflich ¢ : [a, b] — R? geschlossen und p € R?\ c[a, b], so heif}t
n(c,p) = ’I’L(C - D 0)

die Umlaufzahl von ¢ um p.
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Beispiel 203 (Hyperflichenintegral, Flussintegral). Seien

e F: G — R"™ ein Vektorfeld auf der offenen Menge G C R™,
e A C R* ! kompakt und

e c:R" 1 5 A — G eine C*°-Abbildung.
Man stellt sich vor, dass ¢ eine Hyperfliche im R™ parametrisiert, und nennt

/(F,dO} ::/*wF :/det (Foc,01¢,...,0n1¢)dpin_1.
c c I

das Flussintegral von F' tber c.
O

Beispiel 204 (Sphérenvolumen). Seien r > 0, xw™ € Q?(R3)\ {0} die Sphérenvolumen-

form und
7 sin 6 cos ¢

c:[0,7] x [0,27] — R*\ {0}, (Z>H 7 sin @ sin ¢

rcos

die Parametrisierung der Sphére vom Radius r. Wir berechnen

dc Oc
*wX=/ *wi (7, =) du
/c [0,7]x[0,27] 90 9’ "
T p2m 1 rsinf cos ¢ 7 cos f cos ¢ —rsinfsin ¢
:/ / det(—3 rsinfsing |, | rcosfsing |, | rsinfcos¢ |)dopdl
o Jo r . :
rcos —rsinf 0

™ 27
= / / sin 0 d¢pdf = 4.
o Jo

Das ist das Volumen (=die Oberfliiche!) der Einheitssphire im R3. Allgemein kann man
zeigen, dass das Integral fc +wX das Volumen der Einheits(hyper)sphire im R” liefert, wenn
¢ eine (Hyper-)Sphére um 0 im R™ parametrisiert. Das Volumen der Sphére vom Radius r
ist dann r"7t [ sw ™.

O
Beispiel 205. Wir betrachten die Sphérenvolumenform im R™\ {0}, also

wy = det <H;|| N ) € Q" LR\ {0}).

Wir wihlen i € {1,...,n} und € € {0, +1} und wollen w integrieren iiber folgende Abbildung

) ) 1 11 1 1
c:[O,l]n 1 LR \{0}’ (I1,.--,$n—1)'—>(x1_§v'"’z1—1_§’6_§’xi_§""7x"_1_§)'
Dafiir ist
Bjc: K fur]<Z7
ej+1 fur j >
und
; e 1
_ c _ 2
we(Brcy- -3 On-16) = (=1 THdet | exyos s en | = (SR
cllm c||™
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Wir verzichten auf die schwierige Integration von ||¢||~™ und halten nur fest, dass

(1) e — %) /w > 0.

Satz 206 (Parameterinvarianz). Sei h : A — R* wie im Lemma . Seien G C V
offen, w € QF(G) und c : h(A) — G eine C>°-Abbildung. Dann gilt

/ w:/w.
coh c

Beweis.

/ w:/(coh)*w:/h*c*w:/ c*uJ:/w.
coh A A h(A) c

Intermezzo: Volumina

Definition 207 (k-dimensionales Volumen). Seien V ein Euklidischer Vektorraum, A C
V kompakt und ¢: A — V eine C*°-Abbildung. Das Volumen von c ist

vol(c) :z/ \/det (< 9;¢,05¢ >) du.
A

Bemerkung. Sie wissen, dass | det f| fiir einen Endomorphismus f : V' — V die Volumen-
verzerrung durch f beschreibt. Fiir f : R™ — R"™ ist aber

| det f|? = det((f(e;), ex)) det((ex, f(e;))) = det (((f(e:), ex))({ex, f(e)))))
= det (Z (f(ei),ex) <ek,f(ej)>> = det((f(e:), f(e;)))-

k

Weil es fiir lineare Abbildungen zwischen verschiedenen, insbesondere verschieden-dimensionalen
RéAumen keine Determinante gibt, benutzt man die Gramsche Determinante

det (< f(e;), f(ej) >)
zur Definition von niedriger-dimensionalen Volumina in Rédumen gréferer Dimension.

Beispiel 208. Fiir c¢: [a,b] — V ist

b
vol(c) = / VIER), ) dt

die Léange der Kurve c.

Ende des Intermezzos
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Notation. Von nun an bezeichnen wir mit I das Einheitsintervall:

T=[0,1].
Wir setzen 19 := {0} = R’. und betrachten fiir & > 1 den k-dimensionalen Einheitswiirfel
I* C R

Definition 209 (k-Ketten und Integration iiber k-Ketten). Sei G eine offene Teil-
menge des endlich-dimensionalen Banachraumes V und sei k € N

(i) Wir bezeichnen mit

I(G) :== C=(I*, @)

die Menge der C*°-Abbildungen von I*¥ nach G. Diese Abbildungen bezeichnen wir
auch als C™-Intervalle in G. Anschaulich sind das mit I* parametrisierte k-dimen-
sionale “Fléchenstiicke” in G.

(ii) Ein ¢ € Ix(G) (k > 0) heiBt degeneriert, wenn es nur von weniger als k Variablen
abhéngt, d.h. wenn ;¢ =0 fiir ein i € {1,...,k}.

(iii) Die k-Kettengruppe in G C V ist
Ci(G) :=={C: It(G) — Z | C(c) # 0 nur fiir endlich viele ¢ } .

Thre Elemente heiflen k-Ketten in G. Die Addition in Z macht Cj(G) zu einer abelschen
Gruppe.

Man identifiziert ¢ € I (G) mit der k-Kette, die auf ¢ den Wert 1 und auf allen anderen
den Wert 0 hat. Dann ist I(G) C C,(G) und

C= ZC(C)C

k-Ketten sind also ,,formale Linearkombinationen“ von k-dimensionalen C'°°-Intervallen
mit ganzzahligen Koeflizienten.

(iv) Eine k-Kette C € Cx(G) heifit degeneriert, wenn alle an ihr beteiligten C'*°-Intervalle
degeneriert sind, d.h. wenn gilt

Veer.(@) (Cc) #0 = c degeneriert) .

(v) Fiir w € Q¥(G) und C € Cx(G) sei
/ Z Cle /w = Z Cle / we(Brc, . .., Ope)dpu. (58)
C(c)#0 C(e)#0 I
Vergleiche . Im Fall £ = 0 heifit das nach

[ = 5 come

C(c)#0

ACHTUNG: Sind ¢;,c¢p : I¥ — G C V zwei verschiedene Abbildungen, so hat ¢; + 5co jetzt
zwei Bedeutungen, ndamlich wie “frither” als wertweise gebildete neue Abbildung mit

(c1 4 5c2)(x) := c1(x) + bea (),

die allerdings nicht notwendig mehr in G landet, oder eben als die formale Linearkombination
der beiden C*°-Intervalle, d.h. als Abbildung von I (V) nach Z,die auf ¢; den Wert 1, auf
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co den Wert 5 und auf allen anderen C'*° -Intervallen ¢ Wert 0 annimmt. Ein Ausweg aus
diesem Dilemma wiiren neue Rechenzeichen fiir die Kettengruppen, also etwa ¢; @ (5 ® c2).
Das verwendet man aber nicht und muss deshalb aus dem jeweiligen Zusammenhang ablesen,
welche Interpretation gemeint ist.

Konvention. Solange wir mit der genaueren Untersuchung der Kettengruppen beschéftigt
sind, interpretieren wir Y a;¢; natiirlich immer als (“formale”) Linearkombination in Cy.
Spiéter gilt diese Interpretation jedenfalls dann, wenn die Kette als Integrationsbereich unter
einem Integral steht.

Beispiel 210. Fiir w € Q}(R?) und ¢: I — R2 ¢ — 2™ ist

/w=5/w
5¢ c

das Fiinffache des Integrals von w iiber den Einheitskreis, und eben nicht das Integral von
w iiber den Kreis vom Radius 5.

O

Lemma 211. Fiir festes w € Q%(G) ist

Jorom[o

ein Gruppenhomomorphismus von Cy(G) in die additive Gruppe von R.

Der Beweis ist trivial.

Beispiel 212 (Zur Anschauung). Der letzte Teil der Ketten-Definition erklirt die vor-
angehenden: Man mochte iiber eine Familie aus mehreren k-dimensionalen Intervallen inte-
grieren, wobei die Teilintegrale eventuell mehrfach gezéhlt werden. C(c) gibt an, mit welcher
Vielfachheit das Integral iiber ¢ gezihlt werden soll.

Wenn man den Fluss eines Vektorfeldes F
durch das vom C°°-Intervall .

/—ﬂ
c: I’ - R?
gegebene Rechteck ermitteln will, integriert
man *w’ iiber c.
Wenn man den Fluss durch die Oberfldche eines Qua-
ders ermitteln will, werden die gegeniiberliegenden /I
|

Seitenwinde bis auf eine Translation durch dasselbe
c geliefert, aber die Integrale sind mit verschiedenem
Vorzeichen zu versehen, weil der Fluss von links nach
rechts einmal positiv, einmal negativ zu zdhlen ist.
Das Vorzeichen kodiert in gewisser Weise die Orien-
tierung der Flédchen.

+1

Konkret kann man betrachten:



Dann ist ¢; — ¢ eine formale Linearkombination und

IIAA

c1 — ¢o meint nicht die wertweise gebildete Differenz der Abbildungen, also nicht etwa

(z,y) = (1,0,0).

Vergleiche dazu die obige Konvention.
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9.6 Der Satz von Stokes

e Wir lernen nun die “Ketten-Version” des Satzes von Stokes kennen.

e Dazu brauchen wir aber noch den Randoperator fiir Ketten, der zum Beispiel der
3-Kette im R?, die aus einem einzigen singuliren Intervall, nimlich der Inklusion
[0,1]> — R? des Einheitswiirfels in den R* besteht, die 2-Kette zuordnet, die von
den 6 Seitenflichen des Wiirfels gebildet wird.

Sei G offen im n-dimensionalen R-Vektorraum V' und weiterhin I = [0, 1].

Definition 213 (Randoperator).

(i) Definiere fiir i € {1,...,k} die i-te untere und obere Seite
si, st TRt Ik
von I*¥ durch
S$i(x1y. oy xp—1) = (1, -, i—1,0, T4, . ., T—1),
s (w1, mp1) = (T1, .. i1, L@y, D).
Bei si, bzw. s* steht also einfach am Schluss eine 0 oder 1.

(ii) Der Randoperator
0: Ck(G) g Ckfl(G)

ist der eindeutig bestimmte Gruppenhomomorphismus mit

k

dc:=> (1) Hcos' —cos;) (59)

i=1
fiir jedes ¢ € I (G).
Der Randoperator leistet also gerade das im Beispiel erklarte Ziel, entgegengesetzte
Seiten eines C'*°-Intervalls fiir die Integration mit entgegengesetztem Vorzeichen zu versehen.
Beispiel 214. Seien cp € I3(R3), cs € Io(R?) gegeben durch
cg(r, s, t) := (rsinmscos 2nt, r sin ws sin 27t r cos 7s)
CS(I’,ZJ) = CB(la I7y)
Dann ist
acB =Cs — K’(O,O,O) - {(Iay) = (07 Oa 71’)} + {(Ivy) = (0707 +£L’)},

WO K, die konstante Abbildung mit Wert a ist. Beachte, dass in dieser Summe die letzten
drei C'*°-Intervalle degeneriert sind, vgl. Deﬁnitionm (ii).

Beweis.

acB = CB(L%Z/) - CB(O7x7y) - CB(CC7 17y) + CB(5U>O,?J) + CB(%% 1) - CB(%ﬁUaO)
= cs(z,y) — K(0,0,0) — (0,0, —x) + (0,0, ) + (xsin 7y, 0, x cos 7y) — (z sin 7y, 0, x cos Ty).

Beachte, dass die beiden letzten Terme dieselbe Abbildung mit verschiedenem Vorzeichen
liefern, sie heben sich weg. Aber es gilt nicht, dass —(0,0, —z) + (0,0, 2) = (0,0, 2z).

O
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Bemerkung. In diesem Beispiel deutet sich an, dass das ,, Kettenkonzept“ nicht besonders
gut geeignet ist, um Integrationen iiber Bereiche wie die Sphéiire damit zu behandeln. Dazu
braucht man einen geometrischeren Zugang, der durch die Integration von Differentialformen
iiber Mannigfaltigkeiten geliefert wird. Wir gehen darauf im Kapitel ein.

Beispiel 215. Wir berechnen spafleshalber
d*cp(x) =dcs(x)
+ £(0,0,0) — £(0,0,0) — £(0,0,0) T K(0,0,0)
-(0,0,—-1) +(0,0,0) + (0,0, —x) — (0,0, —x)
+(0,0,4+1) — (0,0,0) — (0,0, 2) 4+ (0,0, z)
=0cs(z) — (0,0,—1) + (0,0, +1)
=cs(l,z) — cs(0,z) — cs(z,1) + cs(z,0) — (0,0,—1) 4+ (0,0, +1)
=(0,0,—1) — (0,0,1) — (sinwx,0,cos mzx) + (sin 7z, 0, cosz) — (0,0,—1) + (0,0, +1)
=0.

Dieses Ergebnis gilt ganz allgemein:

Lemma 216.

do0=0.

Wir zeigen zunéchst:

Lemma 217. Firi < j gilt

T j _ i—1
sjos'=s"0sj_1, s os;=s;087",

sjo08;=s508;_1, s’ os =s" osiL.

Beweis von Lemma [217

550 si(xl, s Zh—2) = S8j(T1, ., i1, L, ., T—2)
= (Il,...,Ii_l,1,l‘i,...,l’j_2,07l’j_1,...,Ik_g)
SiOSj_l(l'l,...,%k_Q) :Si(l‘l,...,CEj_Q,O,ZI?]‘_l,...,l’k_Q)
= (3}‘1,...,Jii_l,l,l‘i,...,l‘j_g,(),Ij_l,...,xk_g).

Das zeigt die erste Formel. Dabei kommt es nur darauf an, richtig abzuzihlen, an welcher
Stelle man 0 bzw. 1 einsetzen muss. Daher folgen die andere Formeln genauso. O

Beweis von Lemma [216, Wir miissen das wegen der Homomorphie von @ nur fiir C>-
Intervalle ¢ € C, zeigen.

k
J 1 J_
E (cos! —cosj)

J

k
E 1)t (cos’os' —coslos; —cosjos’+cos;jos;) (60)
i=1 j=1
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Wir betrachten

k=1 k
g g (-1)"coslos' = E (=1)"cosl os + E (-1)"*coslos
i=1 j=1 1<i<j<k 1<j<i<k
= g (1) costos?t 4 E (-1)"coslos
1<i<j<k 1<<i<k
= (1) o st os? + E (=) cosios
I i<k 1<j<i<k
=— E (=1)"ecos'os! + E (-=1)"coslos
1<i<j<k 1<j<i<k
=0.
Ebenso verschwinden die drei anderen Terme. O

Wegen 92 = 0 haben die Kettengruppen und Randoperatoren 0 : Ci(G) — Cj_; viel

Ahnlichkeit mit den Differentialformen und der Cartanschen Ableitung d : Q*(G) — QF+1(G).
Man kann ,, Zyklen“ Zj(G) und ,Rénder* By (G) definieren, die hier wirklich anschaulich et-

was mit Rédndern und mit randlosen, also geschlossenen Ketten zu tun haben.

Die entsprechenden Quotienten HV"e!(G) = Z,(G)/Bi(G) kénnte man (Wiirfel-)Homo-
logiegruppen nennen. Sie sind aber keine brauchbaren mathematische Objekte, die (etwa
im Beispiel auftretenden degenerierten Ketten erweisen sich als Stérendm Fiir eine
brauchbare Homologietheorie muss man die Kettengruppen modulo der degenerierten Ketten
betrachten, vgl. Fulton, Algebraic Topology, Springer 1995, Chapter 23.

Satz 218 (Stokes, um 1850). Seien G C V offen, k > 1, w € QF"1(GQ) und C € Ci(G).

Dann gilt
/dw:/ w.
c ac

Die hier gegebene moderne Version beruht auf dem Differentialformenkalkiil, den wir in den
vorangehenden Abschnitten erkldrt haben und der von Elie Cartan (1869-1951) entwickelt
wurde.
Beweis. 1. Schritt. Wir betrachten folgenden Spezialfall

V =R,

c=1: 1" > RF,

w=ddri A...dz; A... Ndrg € QFHG),
wobei G eine offenen Umgebung von I* ist.

Wir berechnen zunéchst
0 — .0
dw = ai dr; Ndxy N .. .dx; N ... Ndxy, = (—1)2 187;‘1
Weil ¢ eine k-Kette im RF ist, ist
- 0
/dw NI L

Ik 3%

dJEl/\.../\dJ?k.

10 Aus der Definition des Randoperators O folgt, dass konstante C*°-Intervalle immer Zyklen, aber, weil
Rénder immer aus einer geraden Anzahl von C'*°-Intervallen bestehen, niemals Rénder sind. Sie liefern also
in der Wiirfelhomologie immer eine nicht-triviale Homologieklasse. Geometrisch ist das “unerwiinscht”.
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Mit dem Satz von Fubini und dem Hauptsatz der Differential- und Integralrechnung folgt
daraus

dw— 21

c Jk—1
A A
1 l

:(_1)2'—1/%1 Sty k) — b@r e Orean) | dpe. (61)

i dptg—1

Wir berechnen nun die rechte Seite der Stokes-Formel.

[ (L[ <)

(—l)j—l (/’c Wi (815j7 ... ,8k_1sj)d,uk_1 — /k Ws;; (818j, .. .,ak_lsj)d,uk_1>
1 k-1 Tk—1

™M= H'M;r

J

Wie sehen die Integranden aus? Wir erinnern an

ji_ ) em fir m < j, _ .
Oms {em+1 fir mj > j. s,

Die Argumente 9;57,...,0;_15’ enthalten also genau dann nicht e;, wenn j = i. In allen
anderen Fillen ist w(0187,...,0k_18") = 0, weil dann

(dxl/\.../\cZa?i/\.../\dxk> (813j,...,8k_18j)20.
Fiir j = ¢ ergibt sich
wyi (0187, ... 0p_187) = (pos') (dml/\.../\(ia?i/\.../\dxk> (e1,...,€i,...,€)

t
=o(x1,. .y 1, . xk)

Entsprechendes gilt fiir s;. Also erhalten wir

/ w = (—1)i_1 (/ wsi(alsi,...,ak,lsi) d,uk,1 —/ wsi(alsi,...,aklsi)dukl)
Jdc Ik-1 Tk—1

4 i t
= (=1)"1 d(xy,... 1, o0 xk) — o1, ., 0,00y, zk) | dit—1

Jk—1

Damit und mit ist der Satz im Spezialfall bewiesen. Der Kern des Beweises ist der
Fundamentalsatz der Differential- und Integralrechnung zusammen mit dem Fubini. Alles
weitere ist Einsetzen in die Definitionen.

2. Schritt. Weil das Integral linear und jedes w € QF~1(G) eine Linearkombination von
Formen der obigen Gestalt ist, gilt der Satz damit fiir beliebiges w € QF~1(Q).

3. Schritt. Seien nun G C V offen, ¢ € I(G) und w € Q*~1(G). Wir bezeichnen mit
¢ : I* — R* die Inklusion. Dann folgt

foom [ = [ [, i
~sev ([ [ee) = ([ o) = [
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Damit gilt der Satz fiir C°°-Intervalle. Weil aber das Integral und der Randoperator Ho-
momorphismen auf der Kettengruppe Ci(G) sind, gilt er dann auch fiir beliebige Ketten.
O

Beispiel 219 (Der Fall k=1). Firc: I -G € L(G) und w =¢: G — R € Q°(Q) ist
1
[ o= /[ A dp = | #(@)dz = oe(1)) = o(cl0)).
c 0,1 0
Andererseits ist nach

/ac “T / v / W = We(s1(0)) ~ We(s1 (0)) = P(c(1)) — ¢(c(0)).

In diesem Fall ist der Stokes also (bis auf eine Substitution) gerade der Hauptsatz der
Differential- und Integralrechnung.

O
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9.7 Beispiele und Anwendungen

e Mit dem Satz von Stokes ertffnet sich eine schier uniibersehbare Fiille von Anwendun-
gen und weiteren Entwicklungen in den verschiedensten Gebieten der Mathematik.

e Eine kleine Auswahl bieten die Beispiele in den néchsten zwei Unterabschnitten.

e Weitere interessante Aspekte schreibe ich in einem Anhang auf, den wir in der Vorle-
sung nicht mehr schaffen, den ich Thnen aber als Ferienlektiire wiarmstens empfehle.

9.7.1 H" }(R™\{0}) und der Fixpunktsatz von Brouwer

Damit eine k-Form w auf einem Gebiet G ein Potential besitzt, muf sie notwendig geschlossen
sein. Dann gibt es zumindest lokal ein Potential, nicht immer aber auch global, d.h. auf
ganz G. Ob alle geschlossenen k-Formen ein globales Potential haben, ob also H*(G) =
0, hingt mit der Topologie von G zusammen. Der Satz von Stokes liefert ein wichtiges
notwendiges Kriterium fiir die Existenz eines globalen Potentials und, wenn dieses nicht
erfiillt ist, topologische Informationen {iber G.

Lemma 220. Notwendig fiir die Ezistenz eines Potentials zu w € QF(G) ist neben dw = 0,

dass
/ w=0
c

fiir jedes C € Cy(G) mit degeneriertem Rand OC, insbesondere also, falls 0C = 0.

Beweis. Aus w = df folgt nach der Definition der Degeneriertheit

/wz/d@z 0=0,
c c ac

vergleiche . O

Satz 221. Firn > 1 gilt
H" Y (R™\ {0}) #0.

Beweis. Die (n—1)-Form w := swT=T™ € Q"~1(R™\ {0}), die Sphérenvolumenform, ist nach
Beispiel geschlossen. Die Abbildung

1 1
w: " >R z—xz—|=,...,=
2 2

verschiebt den Einheitswiirfel so, dass sein Zentrum im Nullpunkt liegt. Also ist
C:=0we Cp_1(R"\{0})

eine (n — 1)-Kette in R™\ {0}, die nach Lemma geschlossen ist.

Mit erhalten wir

W= zn:(_l)ifl w- zn:(_l)ifl w.
Jorm o [y

=1
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Die Seiten von w sind aber gerade die in Beispiel 205 betrachteten Abbildungen ¢, und aus
jenem Beispiel folgt, dass alle Summanden positiv sind. Die geschlossene Form w besitzt also
kein Potential.

O

Bemerkungen. 1. Ist C := Jw wie im vorstehenden Beweis, so kann man zeigen, dass die
Abbildung

QI R™\{0}) = R, ws /Cw

einen Isomorphismus H"~1(R™\ {0}) & R induziert.

2. Im obigen Beweis kann man w ersetzen durch ew mit beliebigem € > 0. Das zeigt dann,
dass auch die Einschrinkung der Sphérenvolumenform auf das Komplement von 0 in einer
beliebigen offenen Umgebung von 0 kein Potential besitzt.

Als Folgerung von Satz [221] beweisen wir:

Satz 222 (Brouwerscher Fixpunktsatz (1912)). Jede C*°-Abbildung f : D™ — D™ der
Vollkugel D™ = {xz € R™ | ||z|| < 1} hat wenigstens einen Fizpunkt.

Beweis. Im Fall n = 1 st f : [-1,1] — [-1,1], also f(—1) — (=1) > 0 und f(1) =1 < 0.
Daher hat f(x)—x nach dem Zwischenwertsatz eine Nullstelle, und f damit einen Fixpunkt.

Fir n > 2 erfolgt der Beweis indirekt. Wir nehmen also an, es gébe eine fixpunktfreie
C*>-Abbildung f : D™ — D". Wir definieren dann eine Abbildung g : D™ — R" wie folgt:

Fiir jedes € D" schneidet die Gerade
{z+t(x— f(z)) ’t €R} durch z und f(z)
die Sphére S"7! = {z |[|z| =1} in genau
zwei Punkten, und wir bezeichnen mit

g9(z) =z +t(z)(x - f(2))

den Schnittpunkt, der niher an x als an f(x)
liegt.

Lost man die quadratische Gleichung fiir die Schnittpunkte, so findet man

D)=z Ca—f@ \' [ e @)\ z— (@)
glo)=o+ \/< ’IIx—f(x)|> Tl <’||x—f(x)ll> TN

Uberlegen Sie, dass der Radikand stets positiv ist. Nach Definition der Differenzierbarkeit
auf nicht-offenen Mengen gibt es eine offene Umgebung U von D™ und eine C'*°-Fortsetzung
von f auf U, die wir ebenfalls mit f bezeichnen wollen. Wir kénnen o. E. annehmen, dass
f(z) # x auf U und dass der Radikand in auf U positiv ist, so dass g € C°(U,R").
Wir kénnen ferner annehmen, dass U eine offene Kreisscheibe U .(0) ist, weil die stetige
Funktion z + ||z|| auf der kompakten Menge {z € R*\U ||z| <2} ein Minimum > 1
annimmt, wenn diese Menge nicht iiberhaupt leer und daher Us(0) C U ist. Beachten Sie,
dass g(U) c ™1, also
g:U—U\{0}.
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Wir definieren .
j:U\{0} = U, me.

Nach der 2. Bemerkung zum Satz[221]ist die Einschréinkung w € Q"~1(U \ {0}) der Sphiren-
volumenform geschlossen ohne Potential auf U \ {0}. Weil aber

dg*w = g*dw = 0,

besitzt g*w € Q"~1(U) nach dem Lemma von Poincaré ein Potential § € Q"~2(U). Dafiir
gilt dann

d(j*0) = j*df = j*g'w = (g o j) "w = j w. (63)
——
=
Nun ist aber
jfw=w. (64)
Beachten Sie dazu, dass dpj(v) = ot dpm(v p. Daher ist

Jrwp(vr, .. vp—1) = det ( i) dpj(v1)y ..., dpj(vn1))

Ii(p)|I™ "
~ det (P)
Il llpll o]l
= wp(v1,...,0n-1).

Nach und ist j*0 € Q"~2(U \ {0}) also ein Potential von w. Widerspruch!

Damit war die Annahme, es existiere eine fixpunktfreie C'°°-Abbildung von D" in sich, falsch.
O

Ein Ergebnis des Beweises ist: Es gibt keine C°°-Abbildung ¢g : D" — S"~1, die auf S"~!
die Identitét ist, also keine sogenannte Retraktion von D™ auf S™~ 1.

Der originale Satz von Brouwer gilt sogar fiir stetige Abbildungen. Wir beweisen das, weil
wir dabei Gelegenheit erhalten, einiges aus der Integrationstheorie zu wiederholen, und weil
es eine substantielle Verschirfung des Satzes ist.

Zunichst eine Vorbemerkung iiber die Integration R™-wertiger Funktionen.

Fir f : R® — R™ mit Komponentenfunktionen f; : R® — R definiert man das Integral
einfach komponentenweise:

/fdun = </f1dun,~~,/fmdun),

falls die rechte Seite existiert. Die meisten Rechenregeln iibertragen sich unmittelbar. Wir
brauchen aber eine nicht so evidente, ndmlich

Hj/fdun

fiir die Standardnorm im R”. Zum Beweis sei g := [ fdu,. Dann folgt mit der Ungleichung
von Cauchy-Schwarz

H/”M2</ﬂ%ﬂ>/UwWMS/wmmwnnw/me

und daraus (65)).

< / 1/l dpn (65)
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1. Schritt: Faltung mit C°°-Funktionen. Ist f : R® — R” pu,-integrierbar und be-
schrinkt und hat g € C*°(R",R) kompakten Triiger, so ist y — g(z —y) € L' (u,) fiir jedes
x € R™, also ist nach Satzauch die Funktion y — f(y)g(z—y) fiir jedes x integrierbar. Die
partiellen Ableitungen % sind stetig und haben kompakten Tréager, sind also beschrénkt
< M;, und dasselbe Argument zeigt, dass y — % (f(w)g(z —y)) € LY () fiir alle z € R™.

Tj

9 (f(y)g(x — y))“ < M;||f]l € £ (i), und nach Satz ist also die Funktion

f*g:mH/f(y)g(x—

nach allen z; partiell differenzierbar, und es gilt
a(f = g 39 9z -y,
3 fly dy
Z Ox;j

Dabei soll [ ...dy das beziiglich y genommene s,-Integral sein. Durch vollsténdige Induktion
folgt daraus unmittelbar, dass f * g € C*°(R™,R"™).

2. Schritt: Glatte Approximation. Ist f: D™ — D" stetig auf der kompakten Einheits-
kugel D™ C R"™, so ist es gleichmiiBig stetig. Zu jedem e > 0 gibt es daher ein § > 0 mit

If(z) = f(y)|| < € fur alle x,y € D™ mit ||z — y|| <. (66)
Zu § wihlen wir eine C' OO—Funktiodz| g : R™ — R mit folgenden Eigenschaften:

g=0,
g(x) =0 <= |z[| = 4,

/gdﬂn:L

Wir setzen nun f auf den ganzen R™ fort, indem wir definieren:

fz) = {f<||) fir 1 < Jzf] <2,

0 fir ||z| > 2.

Dann ist f p,-integrierbar und beschrinkt und erfiillt sogar fiir alle z,y € R™ mit
[lz]l, ly]] < 2. Damit ist f* g € C*°(R™,R™), und es gilt fiir alle x € D"

17+ 960 £ = | [ st19te = iy = [ s@rate - vy

Fiir alle z,y € D™ gilt: Ist ||z —y|| > 6, so ist g(x —y) = 0, andernfalls ist || f(y) — f(z)] < e.
Also folgt

I 9() = F@)]| < [ egler = w)dy =
Wir haben also zu einer stetigen Funktion jedem ¢ > 0 eine C*°-Funktion f g =: f

konstruiert, fiir die R
If(z) — f(z)|| < e fir alle z € D™.

I Setzen wir 7(x) = exp (W%ég) fiir ||z|| < 6 und 7(x) = O sonst, so leistet g(z) := (@) {as

Gewiinschte.
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Aus folgt weiter, dass
If =gl < /Ilf(y)llg(m —y)dy < | /g(y —z)dy = 1,

so dass f(D") c D"

3. Schritt. Ist f: D™ — D" stetig, so ist & — ||z — f(z)|| eine stetige Abbildung auf einer
kompakten Menge, nimmt also ihr Minimum =: 2¢ an. Hétte f keinen Fixpunkt, so wére
€ > 0. Konstruieren wir dann wie oben eine approximierende C'*°-Abbildung f : D" — D™
mit ||f — f|| <€, so ist fiir alle z € D

lz = @) = lle = f(@)]| = 1 f(2) = f@)] = e> 0.

Also hiitte auch f keinen Fixpunkt im Widerspruch zur bewiesenen C°°-Version des Brou-
werschen Fixpunktsatzes.

Wir halten noch einmal fest:

Satz 223 (Brouwerscher Fixpunktsatz fiir stetige Abbildungen)). Jede stetige Ab-
bildung f : D™ — D™ der Vollkugel D" = {x € R" |[|z|| < 1} hat wenigstens einen Fiz-
punkt.

Natiirlich gilt das auch, wenn man D™ durch einen dazu homéomorphen metrischen Raum
ersetzt.

Korollar 224 (Frobenius). Jede quadratische Matriz mit nur nicht-negativen Eintrdigen
hat einen nicht-negativen reellen Eigenwert.

Beweis. Wir erinnern an die [P-Normen auf dem R"™:

n 1 .
Ja '—{<zi_1 )7 i 1< p < oo,
p -

max;— _n |2 fiir p = co.

Wir setzen D)) := {z eR" ’ |z||, <1}. D% ist also die “normale” Einheitskugel, und D7,
ist ein Wiirfel der Kantenldnge 2 um 0.

Sei nun A eine (n x n)-Matrix mit nur nicht-negativen Eintréigen und o.E. A regulér, sonst
ist 0 ein Eigenwert. Wir betrachten das Simplex A := {z € R" | |lz|l; = 1 und alle ; >0}
und darauf die Abbildung

Az
frx— .
[ Az|y

Nach den Voraussetzungen iiber A bildet f das Simplex A stetig in sich ab. Wir zeigen,
dass A hom&omorph zur (n — 1)-dimensionalen Vollkugel ist. Dann hat f nach dem Satz
von Brouwer einen Fixpunkt z € A, und der ist ein Eigenvektor:

Az = || Azx|1x.

Die Homéomorphie von A zur Kugel beweist man am einfachsten iiber eine (lingere) Kette
einfacher Homdomorphien:
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Weil die [P-Normen stetig (beziiglich der Norm-
unabhiingigen Topologie des R"~!) sind, ist fiir be-
liebige 1 < p, ¢ < oo die Abbildung ﬂ‘ ®

N

Izl o Dy
z firx#0 5

-1 -1
Dy R =R x ll=flq X
/
)
q)001

0 firz=0
(x;+1)/2
jedenfalls in allen Punkten x # 0 stetig. Aber weil

\
1®pq(@)llg = ll2]l, (67) .
1-[x “
ist, gilt die Stetigkeit auch in 0. Offenbar ist ®,,, auch /x (V

bijektiv mit &' = 4, und wegen liefert ®,,
einen Hom&omorphismus von D,, auf D,.

Insbesondere ist die Standardvollkugel Dg_l vermége Pon, homdomorph zum Wiirfel D71,
Mittels Translation und Homothetie mit dem Faktor % bildet man D! homdomorph ab
auf den Wiirfel

W:=D"'n{zeR"" |allex; >0}.

Weiter geht es mit @, auf das (n — 1)-dimensionale Simplex

S=D"'n{zeR" " |allex; >0} = {I cR™!

n—1
Zziglundaﬂexiz(}}.

i=1

Das wird durch die Abbildung

n—1
n—1 n
R —R", (z1,...,Tp_1) — xl,...,xn_l,l—g T
i=1

homoomorph auf A abgebildet, und die Homomorphie zwischen der (n — 1)-dimensionalen
Vollkugel und A ist gezeigt. O
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9.7.2 Der Cauchysche Integralsatz

Wir bleiben dabei, dass unsere Abbildungen und Funktionen von der Klasse C*° sind. Die
kanonischen Koordinatenfunktionen des R? = C bezeichnen wir mit = und y.

Definition 225 (Komplexes Kurvenintegral). Seien

G C C offen,
C € C1(G) und
f: G — C eine C*°-Funktion.

Wir schreiben
f(2) = [z +iy) = u(z,y) +iv(z,y)
mit reellen u,v und definieren

/ f(z / (udx —vdy) +1 /C(vdx + udy).

FirC=c=cy +icy: 1 — Gist

/Lf(z)dz = /01 c(udr —vdy)+i

- /01 {woe(t) du(é(t)) — v o e(t) dy(é(t)} dt +1i. ..
:/Ol{uoc(t)él(t)—voc(t)ég(t)}dt—i—i...
:/OlRe{(uoc(t)+ivoc(t))(é1(t)+ié2(t))}dt+i...
= /OlRe{f(c(t))é(t)}dt+i/01 Im {f(c(t))e(t)} dt

- /O Fle(t)) é(t)ydt

Entsprechend definiert man allgemeiner das Kurvenintegral iiber Kurven ¢ : [a,b] — G mit
beliebigem Definitionsbereich [a,b] durch

[reas= | " fetnyett)

Beispiel 226. Sei c: [0,27] — C, t — €. Dann gilt

d 27
/ i / — ze”dt = 2mi.

Rechnet man dasselbe mit 1-Formen, so findet man

. 1 x . Y
flz+iy) = ey Ry
—— ——
u(z,y) v(z,y)

und

xzdr +ydy . [ydr— xzdy .
[ s = [T [Vt = [am e [

m cost —sint
:i/*wX:i/ det | . dt = 2mi.
c 0 sint cost
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Definition 227. f: C D G — C heif3it holomorph auf G, wenn fiir alle z € G das Differential
d.f = D.f:R? — R? C-linear ist.

Satz 228. Sei f =u+iv:C DG — C eine C*®-Abbildung mit reellen u und v. Dann sind
folgende Aussagen dquivalent:

(i) f ist holomorph.
(i) Es gelten die Cauchy-Riemannschen Differentialgleichungen
Oou Ov ou Ov

(iii) In allen zp € G ist f komplex differenzierbar, d.h. es existiert

f(z) = f(=0)

Z—20 zZ— 20

In diesem Fall ist D, f : C — C gegeben durch die Multiplikation mit der komplexen Zahl
f I(Zo)~

Natiirlich ist (4ii) ein sehr effektives Kriterium fiir Holomorphie, weil es aussieht wie im Reel-
len und daher die Differenzierbarkeitsbeweise aus dem Reellen sich unmittelbar iibertragen.
So sind Polynome oder Potenzreihen in z holomorph.

Dagegen ist die komplexe Konjugation f(z) := Zz nicht holomorph: Die Abbildung f ist reell

linear, also D, f = f : z — Z fiir alle zp € C. Aber z — Z ist eben nicht komplex-linear.

Beweis des Satzes. Vorbemerkung. Eine C-lineare Abbildung von C in sich ist von der Form
z=z+iy— (a+if)(z +iy) = (ax — By) +i(fr + ay),
wo z,y, @, 3 € R. Eine R-lineare Abbildung von C = R? in sich ist von der Form
T a b\ (x ax + by
— = .
Y c d) \y cx + dy

Vergleich der beiden Formeln zeigt, dass die letztere Abbildung genau dann sogar C-linear
ist, wenn

a=a=d, b=-f=-—c
gilt. Die Matrix von D f ist aber gerade die Funktionalmatrix
ou  Qu
Df=|3 &
oz Oy
Die reelle Ableitung D, f an einer Stelle zp aus G ist also genau dann komplex-linear, wenn
die Cauchy-Riemannschen Differentialgleichungen gelten.

Nun zum eigentlichen Beweis:

Zu (i) = (ii). Klar nach Vorbemerkung.

Zu (11)) = (iii). f ist reell-differenzierbar und D,, f komplex-linear, ndmlich Multiplika-
tion mit m := %(20) + i%(zo). Nach Definition der reellen Differenzierbarkeit gilt daher

f(2) = f(z0) + m(z — 20) + R(z) mit lim ()

iz [z — 20

0.
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Offenbar ist

R(z) . R(z) R(z)

lim = =0 < lim =0.
Z—20 ||Z - Z()H Z—20 |Z - Zo‘ z—20 Z — 20
Also folgt
)= fe) | RE)
zZ— 20 Z— 20
Das ist aber (i) mit f'(z9) = m.
Zu (i) = (i). Aus (iit) folgt
Lo R
f(2) = f(20) + f'(20)(z — 20) + R(2) mit lim . (Zz) =0.
Z—Z20 — 20
Also ist D, f die Multiplikation mit f’(z) und C-linear. O

Satz 229 (Integralsatz von Cauchy). Ist f holomorph in G und C € Cy(G), so gilt

f(z)dz = 0.
oC

Beweis.

/ f(z)dz = / (udz — vdy) + z/ (vdx + udy)
ac ac ac
:/(du/\dm—dv/\dy)+i/(dv/\dm+du/\dy)
c c

ou Ov . ou Ov
__/0(8344_31?) dm/\dy—i_l/c(ax_@y)dx/\dy
=0.
O

Bemerkung. Beachten Sie, dass nach unserer Generalvoraussetzung holomorphe Funktio-
nen C'* sind. In der Funktionentheorie setzt man fiir die holomorphen Funktionen nur die
einmalige komplexe Differenzierbarkeit voraus, nicht einmal die Stetigkeit der Ableitung.
Der Cauchysche Integralsatz gilt dann immer noch, der Beweis wird aber schwieriger und
lasst sich nicht einfach auf den Stokes zuriickfiihren.

Dieser unscheinbare Satz ist das Herz der komplexen Funktionentheorie mit phantastischen
Folgen. Zum Beispiel dieser:

Satz 230 (Integralformel von Cauchy). Ist f holomorph auf einer offenen Umgebung
G des abgeschlossenen Kreises K und ist ¢ der positiv durchlaufene Rand von K, so gilt fiir

alle zg E[O(

f(z0) = R iC)

= - dz.
2mi J. 2z — 2o

Die Werte von f auf dem Rand des Kreises bestimmen also alle Funktionswerte im Inneren!

Beweis. Seien R der Radius und a der Mittelpunkt von K. Dann ist also

c: I —C,t— a+ Re*
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eine positiv orientierte Parametrisierung des Kreis-
randes.
Sei weiter 0 < € < R — |29 — a.

[e]
Der abgeschlossene e-Kreis um zg liegt also in K.
Wir definieren nun ein zweidimensionales C°°-
Intervall

Ce € I(G\{z0})
durch

ce(t) := zp + ee®™
Ce(s,t) :== (1 — 8)ee(t) + se(t).

Uberlegen Sie, dass nach Konstruktion zo nicht im Bild von C' liegt!
Dafiir gilt
IC, = (a + Re¥™") — (2 + ee*™).

c =:cCe¢

Aus dem Cauchyschen Integralsatz folgt daher

o) [,
Lz—z9 z—z

Ce

weil der Integrand in G\ {#} holomorph ist.
Nun gilt aber

f 20 +6€2mt>

g 2miee? ™t dt
z — zo ee=Tt

Ce

= 27ri/ f(z0 + ee®™)dt — 2mif(z) fiir e — 0.
0

O

Bemerkung. Aus dem Satz ﬁber die Differentiation unter dem Integral (trivial erweitert
auf komplexwertige Funktionen) folgt, dass zum Beispiel fiir stetiges f die Funktion

s = [T
21 J. 2 — %

nach x und y beliebig oft partiell differenzierbar, also C*°, ist

Im Beweis der Cauchyschen Integralformel haben wir neben dem Cauchyschen Integralsatz
explizit nur die Stetigkeit von f verwendet. Wenn man den Integralsatz ohne die C'°°-
Voraussetzung bewiesen hat, folgt aus der Cauchyschen Integralformel also, dass Funktionen,
die auf einer offenen Menge G C C einmal komplex differenzierbar sind, immer beliebig oft
differenzierbar sind. Ja sie besitzen lokal sogar immer eine konvergente Taylorreihe. Darum
ist die Theorie komplex differenzierbarer Funktionen, die sogenannte Funktionentheorie oder
komplexe Analysis, sehr anders als die reell differenzierbarer Funktionen.

Als Anwendung beweisen wir noch den

Satz 231 (Fundamentalsatz der Algebra). Jedes nicht-konstante komplexe Polynom
hat mindestens eine Nullstelle. (Mit Polynomdivision folgt daraus sogar die Existenz von n
Nullstellen, wenn das Polynom vom Grad n ist.)
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Beweis. Sei p(z) = 2" + a12" "' + ... + a, ein Polynom vom Grad n > 1. (O.E. kann man
den hochsten Koeffizienten auf 1 normieren.) Dann gilt

aq a
Ip(2)] = 2|1 + = +...+ ;: |.
~—

—0 fiir |z|—o0

Also gibt es ein rg > 0, so dass fiir alle z € C mit |z| > ro gilt

> —.
Ip(2)| > 9
Nun nehmen wir an, dass p keine Nullstelle hat. Dann ist f(z) := —p(lz) eine holomorphe

Funktion auf ganz C. Aus der Cauchyschen Integralformel angewendet auf den Kreis ¢, vom
Radius r > ry folgt

1[G / flremity
=|— —d 2 Tt
0 27ri/ ' omi Jy  rezmit E
2
< / I re2“f>|dt</ 2t =
()
Daraus folgt f(0) = —) = 0. Widerspruch! O
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10 Anhang

10.1 Sternférmige Mengen

Bis auf die Vorbemerkungen stammt dieser Abschnitt von Stefan Born.

Das Lemma von Poincaré in der von uns bewiesenen Form besagt, dass in der offenen Menge
G C R jede geschlossene Differentialform ein Potential besitzt, wenn G diffeomorph zum
R™ ist. In der Literatur finden Sie diese Behauptung oft unter der Voraussetzung bewiesen,
dass G sternférmig beziiglich eines Punktes p € G ist, was bedeutet, dass p mit jedem
anderen Punkt von G durch eine Strecke in G verbunden ist. “Unser” Beweis, der dem
Buch von Bott und Tu folgt, ist geringfiigig einfacher zu formulieren als der Beweis fiir
den sternférmigen Fall, liefert gleichzeitig aber die niitzliche Information, dass H*(G) =
H*(G x R). In den praktischen Anwendungen ist die Diffeomorphie zum R™ genauso leicht
zu zeigen, wie die Sternformigkeit. Es bleibt jedoch die Frage, ob die Version fiir sternférmige
Mengen allgemeiner ist, denn offenbar ist ja der R™ sternformig. Die Frage ist, ob umgekehrt
jede sternférmige offene Menge des R™ diffeomorph zum R” ist.

Beispiel 232. Sei G C R" offen und sternférmig beziiglich 0. Sei U.(0) C Gund ¢ : R — R
eine monotone C'°°-Funktion mit
0 firt<Eg,

1 firt>e

Wir bezeichnen fir z € G\{0} mit d(z) den “Randabstand” in Richtung von z, also

d(z) := sup {t ‘t;” € G}

und definieren f : G — R™ durch

oy o= (14t (A2 7Y

Die Funktion ¢ dient vor allem dazu, die Singularitit von d(z) in 0 zu entschirfen. Wenn
d(x) auf G\ {0} eine C°°-Funktion ist, so ist f ein Diffeomorphismus von G auf den R,
und wir haben unser Ziel erreicht. Sie finden aber leicht Beispiele, bei denen die Funktion d
nicht einmal stetig ist, und dann schlégt diese Konstruktion fehl.

O

Dennoch ist es richtig, dass jede sternférmige offene Menge des R™ diffeomorph zum R”™
ist, wie die folgenden Ausfiihrungen von Stefan Born zeigen. Ich kenne dafiir sonst keinen
Beweis in der Literatur.

Definition 233 (Halbstetigkeit). Sei (X, d) ein metrischer Raum. Eine Abbildung f :
X — R heifit von unten halbstetig, wenn fiir jedes z € X und jedes € > 0 ein § > 0 existiert,
so dass fiir alle y € Us gilt: f(y) > f(z) —e.

Lemma 234. Sei (X,d) ein metrischer Raum und f : X — R eine von unten halbstetige,
nach unten durch s > 0 beschrdnkte Funktion. Dann gibt es eine monoton wachsende Folge
stetiger, nach unten durch s beschrinkter Funktionen f, : X — R, die punktweise gegen f
konvergiert.

Beweis. Definiere f, : X — R durch

fn(x) = inf {f(p) +nd(x,p) |p S X} .
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Aus der Definition folgt unmittelbar s < f,, < f und f,, < f,y1 fiir alle n € N. Seien nun
z,y € X, und sei € > 0. Dann gibt es ein p € X, so dass

Jn(x) > f(p) +nd(z,p) — e

AuBlerdem gilt nach Definition

fn(y) < f(p) +nd(y, p).
Somit
fn(y) = fulx) < nd(y, p) — nd(z,p) + € < nd(z,y) + .

Da das fiir jedes € > 0 und mit vertauschten Rollen von x und y gilt, folgt

Daher ist f, Lipschitz-stetig mit Lipschitz-Konstante n und insbesondere stetig. (Die fiir
normierte Rdume gegebene Definition von Lipschitz-Stetigkeit erweitert sich ohne weiteres
auf metrische Réume.)

Es bleibt noch die Konvergenz zu zeigen. Sei x € X,e > 0. Dann gibt es, da f in x von
unten halbstetig ist, ein § > 0, so dass

d(z,y) <0 = f(y) = f(z) — e
Waihle n so, dass nd > f(z) — €. Sei nun p € X beliebig. Falls d(p, z) < 4, gilt

f(p) +nd(x,p) > f(p) > f(z) —e
Fiir d(p,x) > 0 gilt aber

f(p) +nd(z,p) > f(p) +nd >nd > f(z) —e

Somit gilt also f(x) > ... > far1(x) > fo(z) > f(x) — ¢, d.h. f, konvergiert punktweise
gegen f.

O

Bemerkung: Wir haben jetzt also fiir jeden metrischen Raum bewiesen, dass eine von
unten halbstetige Funktion sich von unten monoton durch Lipschitz-stetige Funktionen f,
approximieren lésst, und zwar so, dass die Lipschitz-Konstante von f,, gerade n ist. Man
kann sich das genauer ansehen und sieht, dass fiir eine Lipschitz-stetige Funktion f mit
Lipschitz-Konstante L die Funktionen f, mit f identisch sind, sobald n > L.

Lemma 235. Sei M eine kompakte (mdglicherweise berandete) (Unter-) Mannigfaltigkeit
und f: M — R eine stetige Funktion. Dann gibt es fiir jedes € > 0 eine C*>-Funktion g mit
If(z) — g(x)]loo < € fiir alle x € M (d.h. f ldsst sich durch glatte Funktionen gleichmdfig
approximieren.)

Beweis. Fiir jedes x € M gibt es eine in M offene Umgebung U,, so dass |f(y) — f(x)| < €
fiir alle y € U,. Diese U, iiberdecken M, und es gibt eine endliche Teiliiberdeckung durch
Ug,;,j =1,...,1. Nach dem Satz {iber die Zerlegung der Eins gibt es eine subordinierte glatte
Zerlegung der Eins \;,i = 1,...,m. Die \; sind also C*°, nichtnegativ, addieren sich zu Eins
und supp(A;) C Uy, . Nun liefert

g = Z f(xJL)AZ

i=1

das Gewdlinschte. O
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Lemma 236. Sei M eine kompakte (mdglicherweise berandete) (Unter-) Mannigfaltigkeit
mit der (vom umgebenden Raum geerbten) Metrik d und f : M — R eine von unten
halbstetige, nach unten durch s > 0 beschrinkte Funktion. Dann gibt es eine nach unten
durch s/2 beschrinkte, punktweise streng monoton wachsende Folge von C°-Funktionen
fn: M — R, die punktweise gegen f konvergiert, und ein N € N, so dass fiir alle n > N

gilt: | fat1 = falloo = gmper

Beweis. Wir wissen schon, dass es es eine monoton wachsende, nach unten durch s be-
schrankte, gegen f konvergente Folge stetiger Funktionen f,, : M — R gibt. Wir betrachten
nun g, := f,—1/n. Wihlen wir N > 4/s, so konnen wir fiir alle n > N feststellen g,, > 3s/4.
AuBlerdem gilt

1 1 S 1
nrl n” n(n+1)

gnt1(2) = gn(@) = fria(2) = fu(z) =

Nun gibt es dem letzten Lemma zufolge fiir jedes n € N eine C'°°-Funktion h,, mit

1
Hgn - hn”OO < m
Dann gilt
o 1(2) = (@) 2 gua (8) = g~ gn(e) —
nt1 (%) = nt in+)n+2) " 4n(n +1)
1 1 1

> .
“n(n+1) dn(n+1) 2n(n+1)
AuBerdem gilt fiir alle n > N
3s 1 3s 1 3s

S

R >

s
= > o> 2=l
4 dnn+1) 4 n_ 4 42
Die Folge (hn)nen benennen wir jetzt um in (fn)nen. Diese Folge hat alle gewiinschten
Eigenschaften. O

Satz 237. Sei C' C R" eine sternformige offene Menge. Dann ist C' diffeomorph zu R™.

Beweis. Der Beweis ist etwas linglich. Wir nehmen o.E. an, dass C sternférmig beziiglich 0
ist. Der Plan des Beweises sieht nun so aus:

1. Zunéchst fithren einen Vorbereitungsschritt durch, indem wir einen Diffeomorphismus
von R™ auf Uy (0) angeben, der die Sternformigkeit beziiglich 0 erhélt. Wir kénnen also
im Weiteren davon ausgehen, dass C' C U;(0), und es geniigt, die Diffeomorphie von
C' zu Uy (0) nachzuweisen.

2. Sei S"1:= {2z € R" |||lz|l = 1}. Wir definieren eine ,Radiusfunktion*
f:S”*1—>R+,x»—>sup{)\>O |)\x€C’}.

3. Diese Funktion f ist nach unten durch ein s > 0 beschrinkt und von unten halb-
stetig. Sie ldsst sich also durch eine punktweise streng monoton wachsende Folge von
C*°-Funktionen f,, > s/2 approximieren. Ersetze fy durch die konstante Funktion
S"~1 — R,z — s/2. Das enstpricht einer Ausschépfung von C' durch sternférmige

offene Mengen
C, = {tw }xeS”‘l,Ogtgfn(x)}, n>N

mit glatten Réndern.
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4.

Jetzt

Das Ziel sieht nun so aus: Bilde durch radiale Verzerrung U;_;,5(0) auf Cy ab und
fir n > Nden ,Ring” Ui_1/(n41)\Ui—1/n auf Cp11\Cy, so dass sich alles zu einem
Diffeomorphismus ® : U;(0) — C zusammenfiigt. Zur Angabe der radialen Verzer-
rung der Ringe wihlen wir streng monotone Funktionen [1 —1/n,1 —1/(n+ 1)] —
[fn(), fus1(x)], x € S*71, die in einer Umgebung der Randpunkte linear mit Stei-
gung 1/2 sind. Indem wir diese Funktionen in einer Weise wihlen, die C* von den
Randpunkten 1 —1/n, 1 —1/(n+1), fn(z), fot1(z) abhingt, bekommen wir an den
Réndern zusammenpassende C'°°-Diffeomorphismen der ,,Ringe“. Mit einer Hilfsfunk-
tion [0,1 — 1/N] — [0, s/2], die bei Null linear mit Steigung 1 und bei 1 — 1/N linear
mit Steigung 1/2 ist, bildet man U;_;,y glatt auf Ciy ab, so dass die Abbildung am
Rand ebenfalls passt.

also zur Durchfithrung dieses Planes:

. Sei h : Rf — Ry eine C*°-Funktion, die auf einer Umgebung der Null gleich der

Identitét ist, deren Ableitung iiberall grofier als Null ist, und die lims oo h(s) = 1
erfiillt. (Man bastelt sich leicht eine solche Funktion.) h ist streng monoton und besitzt
eine C*°-Umkehrfunktion mit lims ~ h~'(s) = co. Die Abbildungen

®:R" — U1(0), z+— xh(”Hx””)
x

und

U:R" - Ui(0), z+

sind invers zueinander. Sie sind in einer Umgebung der 0 gleich der Identitdt. In
allen anderen Stellen ist z — ||z|| eine C°°-Funktion. Damit sind ® und ¥ C*°-
Diffeomorphismen. Die Abbildungen erhalten, da sie ,,radial® sind, die Sternformigkeit.
Wir kénnen also anstelle von C' die Menge ®(C') betrachten. Sei also im folgenden an-
genommen, dass C' C Uy(0).

Sei S"!:= {z € R" | ||lz[]z = 1}. Wir definieren eine ,Radiusfunktion*
f:8" T SRY z—sup{A>0| zeC}.
Wir stellen fest, dass f(S™~1) C [0, 1].

Da C offen ist, gibt es ein s > 0 so dass Us C C, folglich ist inf f > s. Weiter wird
behauptet, dass f von unten halbstetig ist: Sei z € S~ ! und € > 0, dann gibt es ein
s> f(x) — ¢, so dass sx € C. Da C offen ist, gibt es ein § > 0, so dass Us(sz) C C. Ist
nun y € S"~! mit ||z — y|| < §/s, so gilt

)
sz = syll = sllz =yl < 25 =5,

also sy € Us(sx) C C, daher f(y) > s> f(x) —e.

Nun wende ich das Lemma an und erhalte eine Folge glatter Funktionen f,, mit
den dort angegebenen Eigenschaften. Wir ersetzen fy durch die konstante Funkti-
on S"~! — R,z + s/2. Dann schopfen die C,,,n > N die Menge C durch glatt
berandete sternférmige Mengen aus, und es gilt immer noch || fr11 — fulleo > m
fir allen > N.

Um nun den gewiinschten Diffeomorphismus angeben zu konnen, brauchen wir zwei
C*°-Hilfsfunktionen.
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Die eine g : [0,1 — 1/N] — [0, /2] soll in einer Umgebung der 0 gleich der Identitét
sein, in einer Umgebung von 1 — 1/N gleich « — 1/2(x — (1 — 1/N)) + s/2 sein und
eine iiberall positive Ableitung besitzen. Es ist klar, dass es so eine Funktion gibt.

Die zweite Hilfsfunktion ist mithsamer zu bekommen. Sei
M :={(a,b,c,d) eR* |[a<b, c<d, d—c>(b—a)/2}.
Gesucht ist eine C*° Funktion i : R x M — R mit den Eigenschaften
(a) Oph(z,a,b,c,d) >0

(b) h(-,a,b,e,d)([a,b]) = [e,d]
(¢) Zu jedem a < b gibt es ein § > 0, so dass fir < a + d:

1
h(z,a,b,c,d) = E(x —a)+c

und fiir x > b—4§ )
h(z,a,b,c,d) = i(x—b)—i-d.

Wir stellen zunéchst fest, dass es eine C°°-Funktionen ¢ : R — R gibt, die monoton
fallt, und fiir die gilt
whfoo,i] =1, w|[%,oo| =0.

So eine Funktion kann man leicht angeben. Nun setzen wir

h(z,a,b,c,d) = (;(a:—a)—i-c)w(i_s) + (;(x—b)—i—d) (1_¢(§‘Z)).

Die dritte Eigenschaft ist erfiillt fiir § = Z’TT“ AuBlerdem gelten h(a,a,b,c,d) = ¢ und
h(b,a,b,c,d) = d. Wenn wir die erste Eigenschaft und damit die Monotonie bewiesen
haben, folgt die zweite. Wir miissen die erste fiir x €]a, b| zeigen:

8mh(x,a,b,c,d):...:%+ (;(ba)(dc)> biaw/ <i:z>

Da (a,b,c,d) € M, ist 1/2(b —a) — (d — ¢) < 0. Aulerdem ist ¢’ < 0, so dass folgt
Ozh(z,a,b,¢,d) > 1/2 > 0. Jetzt sind wir endlich so weit, ® definieren zu kénnen.

Setze fiir z € Ulfl/(n+1) \Ulfl/n, n > N
x
I

00 i= o (ol 1= 2 1= 2 @), fann(0)

[l

und fiir z € Uy _y/n setze

B(z) = Hj—ngumn).

® ist gleich der Identitét in einer Umgebung der Null, also dort C*° und insbesondere
differenzierbar mit umkehrbarem Differential. Im Inneren (d.h. im offenen Kern) der
»Ringe“Uy 1 /(n41) \ Ui—1/p ist ® C*°. In Polarkoordinaten (d.h. wenn wir U lopol
betrachten mit der Polarkoordinatenabbildung ¥) sieht die Jacobimatrix so aus:

Ozh *
* En—l ’
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Diese Matrix ist reguldr, da d,h > 0. Bleiben noch die problematischen Mengen
OUi_1/p =t Si_1/n- Fiir jedes n > N gibt es eine offene Teilmenge U des R", so
dass Si_1/, C U und fiir alle x € U ist

o) = 175 (5 (1ol = (1- 7)) + 5@

daher ist ® auch dort C* mit invertierbarer Ableitung (Jacobi-Matrix in Polarkoor-
dinaten wie oben, nur mit 1/2 als oberem linken Eintrag). ® ist also tiberall C*° mit
invertierbarer Ableitung.

Nach Konstruktion bildet die Abbildung Ursprungsgeraden in sich ab und ist dort
injektiv, also ist sie iiberhaupt injektiv. ® ist aber auch surjektiv, da

U 0 r@=z=c
resn—1

und [0, f(x)[C ®(U1(0)).

Daher besitzt ® eine Umkehrfunktion, die nach dem Umkehrsatz differenzierbar ist.
Diese Umkehrfunktion ist sogar C'*°.
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10.2 Homotopie und Homologie von Wegen

Definition 238. Sei G C V offen.

(i)

(iii)

(iv)

Zwei Wege co, ¢ : [a,b] — G mit gleichem Anfangspunkt co(a) = ¢1(a) und gleichem
Endpunkt ¢o(b) = ¢1(b) heiflen in G homotop, wenn es eine Abbildung

H:[a,b] x [0,1] — G
gibt, fiir die gilt:
e Fiir alle t € [a,b] ist
H(t,0) = co(t), H(t,1) = c1(t).

e Fiir alle s € [0,1] ist ¢5 := H(.,s) ein Weg von cy(a) nach ¢o(b) .

Die Abbildung H heift in diesem Fall eine Homotopie zwischen ¢y und c;.

Bemerkung. Wir setzen alle Abbildungen c¢g,c; und H als C'°°-Abbildungen voraus.
Oft finden Sie diese Definition auch fiir (nur) stetige Abbildungen.

Ein geschlossener Weg ¢ : [a,b] — G heifit in G nullhomotop, wenn es eine C°°-
Abbildung H : [a,b] x [0,1] — G gibt, so dass gilt:

e H deformiert c in einen konstanten Weg;:
H(.,0)=¢, H(.,1) konstant.
e Die Wege H(.,s) = ¢, sind alle geschlossen:
H(a,s) = H(b,s) fiir alle s € [0,1].

Bemerkung. Wir bestehen nicht darauf, dass dabei der Punkt H(a,s) = H(b, s) fest
bleibt. Allerdings macht es keinen Unterschied, ob man das verlangt oder nicht.

Zwei k-Ketten Cy, C1 € Ci(G) heifien in G homolog, wenn gilt

9C; = 9Cy und (68)
es gibt eine (k + 1)-Kette H € C41(G) mit 0H = Cy — Cy + Caey, (69)

wobei Cgeq eine degenerierte k-Kette ist, d.h. eine ganzzahlige formale Linearkombi-
nation von Intervallen ¢ : I*¥ — G, deren Differential nirgends injektiv ist. Beachte,
dass das Integral jeder k-Form iiber eine degenerierte k-Kette verschwindet.

113

Bemerkung. Man kann diese Definition auch ohne “Cg.4“ machen und erhélt dann

einen anderen Homologiebegriff.

Ketten, die homolog zu einem konstanten C'°°-Intervall sind, heiflen nullhomolog.

Beispiel 239. Wir betrachten zwei homotope Wege cg,¢; : [a,b] — G mit gleichem An-
fangspunkt cp(a) = ¢;(a) und gleichem Endpunkt cg(b) = ¢1(b). Sei H : [a,b] x [0,1] — G
eine Homotopie zwischen ihnen.

Wir betrachten die umparametrisierten Wege

und

¢i(t) :==ci(a+t(b—a)), tel0,1]

H(t,s) = H(a+t(b—a),s), (ts)€][0,1]>
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Dann ist H € Cy(G) und
OH = H(.,1) — H(.,0)— H(1,.) + H(0,.) = & — & — Kay(b) + Ko (a)-

Also sind é& und é in G homolog. In leichter Verallgemeinerung der obigen Definition
nennen wir zwei Wege ¢o und ¢; auf einem beliebigen Intervall [a, b] mit gleichen Anfangs-
und Endpunkten homolog, wenn die wie oben umparametrisierten Wege homolog sind. Dann
kann man das Ergebnis dieses Beispiels formulieren als:

Homotope Wege sind homolog.

Die Umkehrung gilt nicht, wie das folgende Beispiel zeigt.
O
Beispiel 240 (Zum Nachdenken). Hier skizziere ich ein Beispiel fiir einen Weg, der

nullhomolog, aber nicht nullhomotop ist.

Im R? betrachten wir das Komplement G von
zwei Geraden und darin den skizzierten ge-
schlossenen Weg. Nach etwas Probieren mit
einem Gummiband ist man iiberzeugt, dass
sich dieser Weg nicht in G auf einen Punkt
zusammenziehen 143t, d.h. dass er nicht null-
homotop ist. Das ist aber schwer zu beweisen.

In diesen Weg kann man nun eine Fliche ein-
spannen, die von dem Weg berandet wird. Al-
lerdings ist diese Fldache keine Kreisscheibe,
sondern ein Stiick von einer Torusfliche. Es
ist dann nicht so schwer, auf dieser Fliche ei-
ne 2-Kette zu konstruieren, deren Rand der
“gestiickelte” vorgegebene Weg ist. Schliellich
iiberlegt man sich, dass der “gestiickelte” Weg
homolog zum Originalweg ist.

>/

5\

O

Beispiel 241 (Homologe Wege und geschlossene Formen). Sind ¢, ¢; : I — G in G
homologe Wege, so gibt es also ein Co(G) mit

Cl1 —Cy — 80 — Cdeg~

Weil die degenerierten Wege zum Integral nicht beitragen, gilt also fiir jede 1-Form w

c1 co oC

und fiir jede geschlossene 1-Form w

O:/dw:/w—/w,
H co c1
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also

[w=]w
Cco C1

Das gilt wegen der Parameterinvarianz der Integrale dann auch fiir homologe und erst recht
fiir homotope Wege auf einem beliebigen Intervall [a, b].

Das Integral einer geschlossenen 1-Form ist eine Homologieinvariante und deshalb erst recht
eine Homotopieinvariante.

Benutzen Sie das fiir einen exakten Beweis, dass der Kreis ¢(¢) := (cost,sint) fiir 0 < ¢ < 27
sich in R?\ {0} nicht auf einen Punkt zusammenziehen l:if}t.

O

Potentiale von 1-Formen

Definition 242. Seien G C R" offen und wegzusammenhingend und w € Q'(G). Das
Integral von w heifit wegunabhingig, wenn gilt: Fiir je zwei C*°-Wege ¢ : [a,b] — G und
¢:la,b] — G mit )

¢(a) = ¢(a) und ¢(b) = é&(b)

Jo= )

Bemerkung. Man kann jeden stiickweise C*°-Weg zu ei-
nem C*°-Weg umparametrisieren, wobei sich das Integral
wegen der Substitutionsregel nicht d&ndert. Fiir die Umpara-
metrisierung benutzt man auf dem Intervall [a, b] eine C'*°-
Parametertransformation p : [a,b] — [a,b], die in der Nihe
eines jeden Stiickelungspunktes x; konstant ist. Ein solches
p findet man mittels Buckelfunktionen, vgl. Analysis I.

ist

a

a X, X, b

Das hat zur Folge, dass Wegunabhéingigkeit gegeniiber stiickweise C*°-Kurven gleichbedeu-
tend mit Wegunabhéngigkeit gegeniiber “echten” C*°-Kurven ist.

Satz 243 (Konstruktion von Potentialen). Seien G C R" eine offene, nicht-leere weg-
zusammenhingende Menge und w € QY (G). Das Integral von w sei wegunabhdngig. Sei p ein
fester Punkt in G. Wihle zu jedem x einen stiickweise C*°-Weg ¢ : [a,b] — G von p = ¢(a)

nach x = ¢(b) und definiere
() = /w.

Dann ist ¢ nach Voraussetzung wohldefiniert. Es ist eine C°°-Funktion und ein Potential
von w.

Beweis. Sei zg € G und ¢ : [a,b] — G ein C*°-Weg von p nach zg. Sei i € {1,...,n}. Setze
c(t) :=zo + (t — b)e;. Dann gibt es ein € > 0, so dass ¢(t) € G fir b <t < b+ € und

b+t
b(z0 + (t — b)es) = / W= / Wt / w = p(wo) + / ot (r—tye, (€1)dr.
Cla,b+t] clia,b] clip,b4t] b
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Daher existiert

0
o2 (20) = (&)
und ist offenbar stetig. Also ist ¢ differenzierbar mit d¢ = w. Dann ist ¢ aber sogar C*°.

O

Beispiel 244. In der Praxis kann man die Bestimmung eine Potentials durch Integration
oft im Kopf durchfiihren. Die Form

w = 2zydr + (2% + 32)dy + (3y + cos 2)dz

ist geschlossen auf dem R3 (nachrechnen!). Also besitzt sie nach dem Poincaréschen Lemma
ein Potential, das man schrittweise so findet:

¢(x,y,2) = %y + B(y, 2)
=2’y + 3yz +7(2)
= 2%y + 3yz + sin 2.

O

Korollar 245. Sei w € QY(G), G C R™ offen und wegzusammenhdingend. Dann sind fol-
gende Aussagen dquivalent:

(i) Das Integral von w ist wegunabhdngig.
(ii) w besitzt ein Potential.

(i11) Fiir alle C1,Cy € C1(Q) gilt

3C1:8C2:> w:/ w.
Cy Cs

(iv) Fir alle C € C1(G) gilt
C=0 = /sz.
c

(v) Fiir jede geschlossene Kurve ¢ : [a,b] — G gilt

/sz.

Fiir das Integral iber geschlossenes ¢ schreibt man suggestiv auch fc w.

Beweis. Selbst. O

Definition 246. Eine offene Menge G C R™ heifit einfach zusammenhdingend, wenn eine
der beiden folgenden dquivalenten Bedingungen erfiillt ist:

(i) Jeder geschlossene Weg in G ist in G nullhomotop.

(ii) Je zwei Wege in G mit gleichen Anfangs- und gleichem Endpunkt sind in G homotop.

Die Implikation (i) = (i¢) benutzt die C*°-Umparametrisierung des geschlossenen Weges,
der von zwei Wegen mit gleichem Anfangs- und gleichem Endpunkt gebildet wird.
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Korollar 247. Fir alle n > 3 ist R"\ {0} einfach zusammenhdngend. Daher besitzt jede
geschlossene 1-Form ein Potential:

HY(R™\ {0}) =0 fiir n > 3.

Nach Abschnitt [9.4] war hingegen H!(R?\ {0}) # 0.

Beweis. Sei ¢ : [a,b] — R™\ {0} ein geschlossener C*°-Weg. Der Doppelkegel
{sc(t) |s €R, t € [a,b] }

hat eine ,,Dimension® 2 < n und ist deshalb # R™.
Beweis: Das Differential der Abbildung
[a,0] x R*™" = R™,  (t,51,...,80—1) = s1¢(t)

hat iiberall Rang < 2 < n. Deshalb ist ihr Bild gleich der Menge ihrer kritischen
Werte und nach dem Lemma von Sard eine Nullmenge.

Wihle ein p € R”, das nicht auf diesem Kegel liegt. Dann definiert
H(t,s):= (1 —s)c(t) + sp

eine Homotopie in R™\ {0} von ¢ in die konstante Abbildung vom Wert p. O
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10.3 Klassische Integralsitze
10.3.1 Der Hodge-+-Operator

Neben dem dufleren Produkt gibt es eine weitere wichtige algebraische Operation, die wir
jetzt beschreiben wollen. Wir betrachten zunéchst wieder alternierende k-Formen. Die Ope-
ration iibertrigt sich dann problemlos wertweise auf Differentialformen.

Sei V' ein n-dimensionaler R-Vektorraum.

Wegen (Z) = (nfk) ist
Akv** ~ An—kv**.

Eine einfache Methode, einen solchen Isomorphismus explizit hinzuschreiben, ist die folgen-
de. Man wéhle eine Basis von V' und die dazu duale Basis (w1, ...,wy). Zum Basisvektor

wi, N Awg,, 1< <0 < <n
von ARV gibt es eindeutig bestimmte 1 < j; < ... < jp—k < n, so dass
{i1, -y iy J1s e oy -k}t = {1,...,n}.
Wir definieren dann eine lineare Abbildung h : A¥V*" — A"~ *V*" durch
hlwi, Ao Aw;y) ==2wj, Ao Awy, -

Die Vorzeichen kénnen wir beliebig wéahlen, zum Beispiel stets +. Wir wihlen aber statt-

dessen
1,...,k,]<;+1...,n>

€iy...5, — SIgN < . .
Uiyt J1s- -y In—k

Diese Konstruktion hidngt von der gewéhlten Basis von V' ab. Andere Basen liefern in der
Regel andere Isomorphismen h.

Ist aber (V,(.,.)) ein orientierter Euklidischer Vektorraum, und verwendet man nur positiv-
orientierte ON-Basen, so hingt h nicht von der Basiswahl ab. Um das zu zeigen, geben wir
zunéchst eine andere Definition des Isomorphismus. Sei also (V) (.,.)) wie angegeben.

Lemma 248 (und Definition). FEs gibt genau ein pu € A"V** mit

/j/(elw'wen) =1

fiir jede positiv-orientierte ON-Basis. u heifit die Volumenform von (V, (.,.)).

Beweis. Ist (eq,...,e,) eine positiv orientierte ON-Basis, so gibt es, weil dim A"V** = 1,
genau ein p € A"V**, welches die Gleichung fiir diese Basis erfiillt. Weil aber

:u’(f(el)7 EERE} f(en)) = det(f)ll’(elu BRRE) en)
ist, gilt die dann auch fiir alle andern positiv-orientierten ON-Basen. O

Definition 249 (Hodgeoperator, x-Operator). Sei (V,(.,.)) ein n-dimensionaler ori-
entierter Euklidischer Vektorraum mit Volumenform p. Fiir v € V sei w¥ := (.,v). Dann
definieren wir fiir jedes k den Hodgeoperator

w0 ARV o An—Ryt
durch
*wW(V1, . Uk i= w AW AL AwTTE, (70)
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Insbesondere ist
*1=p, *p=1.

Beachten Sie, dass wir fiir diese Definition zwar die Orientierung und das Skalarpordukt,
aber keine Basis benotigt habenE

Den Zusammenhang mit dem oben definierten Isomorphismus h gibt das folgende

Lemma 250. Seien (eq,...,e,) eine positiv-orientierte Orthonormalbasis und w1, . ..,wy
die duale Basis. Seien 1 < i1 < ... < ix < nund 1l < j1 < ... < Jp_r < n mit
{81, sy J1y e ooy Jn—k} = {1,...,n}. Dann gilt

*(wil VAN /\wik) = €4y, Wy VAN /\w]‘n_k.

Dabei ist das Vorzeichen €;, . ;, = £1 gegeben durcﬂ

. 1 n
€iq..p — SIEN | L. i .
11 % J1- In—k

Bis auf das Vorzeichen ist also *(w;, A ... Aw;,) gerade das dufere Produkt der komple-
mentdren Basisformen.

Beweis. Nach Definition ist

k(wig Ao Awi )1, Op—k) = (Wig Ao Awiy, AWP Ao AW F)(eq, ..., ep)

. . U1 Un—k . . . .
E(Wis Avo i Awipy, AW A LCAWT R )€1y vy €y €y s e v 5 €4y )

mit € = €;,..4,. Rechnet man die rechte Seite mit der Determinantenformel aus Satz
aus, so erhéilt man

*(wig A e Awy ) (U1, Unek)
wi(ei) oo wip(eqy) wiy(ej) o wi (e, )
Cedet | winlen) o wilen)  wileq) e wileg, )
w(ei) oo w(e)  wU(ej) .. w™(ey, )
wirk(e) .o wiR(e,)  w'R(eyy) ... wUmR(eg, )
1 - 0 0 . 0
1 0 0
T ) whien) wh(en) . wPel,)
w'nk(ey) .o wUnR(eq,)  winR(eg) o wR(ey, )
— € det(w" (e, )
= e det(< v,,e5, >)
= € det(wj, (vp))
= €y...04 (wjl VAR wjnfk)(vl, . ,’Un,k).

12 Aligemeiner braucht man zur Definition des *-Operators kein positiv-definites Skalarprodukt, es geniigt
ein nicht-ausgeartetes vom Index ¢. Dann steht in der Formel (70) rechts noch ein Faktor (—1)*.

13Im nicht-positiven Fall ist €iy...i, = sign (111% jl---jn—:) <e€iy,€ip > ... < ejy,eq >
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O

Wir verzichten auf die explizite Definition des Hodegeoperators fiir Differentialformen, weil
sie so selbstverstandlich ist. Wir geben nur eine Version des letzen Lemmas fiir Differential-
formen im R™.

Lemma 251. Im R™ mit dem kanonischen Skalarprodukt gilt
*(dl‘zl VANPIAN dl‘zk) = Eil.‘.ikdle VANPIAN d,’Bjn_k.

Dabei ist das Vorzeichen €;, i, = £1 gegeben durch
. 1 ... n
eil...ik = Slgn . . . . .
21+ %J1-- In—k

Beispiel 252. Im R? und w" = u1dz, + usdrs + usdrs gilt

*w" = urdre A drs — usdry N das + usdxy A dxo
O

In der Physik gibt es wichtige Anwendungen mit nicht positiv-definitem Skalarprodukt. In
der Relativitdtstheorie und Elektrodynamik stehen Minkowskische Vektorrdume im Vorder-
grund, in der Hamiltonschen Mechanik sind es symplektische Skalarprodukte. Wir schlieen
mit einem kleinen Beispiel im Minkowskiraum.

Beispiel 253. Im R* mit dem Minkowski-(oder Lorentz-)produkt
(T,y), = T1y1 + T2y + T3Y3 — TaYa
ist zum Beispiel

*d$1 = d172 A\ ddfg A dZZ?4,
xdry = —dxy N\ dxs N dxs,

und

*(dxl A dxg) == dd?3 A dI4,
*(d.ﬁg A d.]?4) = —dl‘1 A d.l?g.

Im Euklidischen R* stehen hier iiberall +-Zeichen.
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10.3.2 Klassische Differentialoperatoren und Integralsétze

Seien G offen C R", f € C*°(G,R) eine Funktion und F = (Fy,..., F,) € C*°(G,R") ein
Vektorfeld.

Unter den klassischen Differentialoperatoren verstehen wir die folgenden:

gradf := (01 f,...,0nf)
divF:=0Fi+...+ 0, F,
Af :=divgrad f
rot F := (0o F3 — O3F5, 03 F) — O1F3,01 Fy — 0o Fy), falls n = 3.

Sie spielen in vielen Anwendungen der Analysis in Physik und Ingenieurwissenschaften eine
wichtig Rolle. Wir zeigen in diesem Abschnitt, wie sie sich in das Konzept der Differential-
formen einordnen lassen.

Satz 254. Im Euklidischen Raum (R™,(.,.)) gilt:
(1)

WS = df.

(i)

div F = *d * wT.

(iii)
Af = xd * df.
(iv) Fiirn =3 ist

wrot F — *dwF

Beweis. Die Beweise erfolgen durch Einsetzen der Definitionen. Wir zeigen nur eine Glei-
chung:

Zu (4i). Esist

n
swd x w! = *d*ZFidaBi
=1
=#d Y (=1)"Fidoy A Adai A A day,
=1
n

«» (=1)! Z

i=1

r —
dej ANdxi A...Ndx; N ... \Ndx,
Lj

0
0

n n 3FZ . .
:*Zzaxj(_l) Ydz; Ndxy A ... Ndxg A ... Adzy,

j=11i=1

" OF;
*Z@xldl«l/\”’/\dm”
i=1 v

=xdivFdri A... Ndz,
=div F.
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Beispiel 255. Die Maxwellschen Gleichungen im Vakuum lauten:

rot E+B =0 rotB—c_QEzqu
div B =0 div E = ppuoc?.

(71)

Das sind Gleichungen fiir Vektorfelder E,B,J im R3, die iiberdies aber von der Zeit t
abhéingen. Der Punkt bezeichnet die Ableitung nach der Zeit. Die Gréflen ¢, p und pg sind
Konstanten.

Wir betrachten nun den (R%, (., .), ) mit dem Minkowskiprodukt, vgl. Beispiel Wir fassen
die Zeit als vierte Koordinate auf: ¢ = x4, und definieren die elektromagnetische Feldform
und die Viererstromform

Fi=cxwB +wf Adry, T:=w’ —cpduy,

wobei *w® etc. im R? gebildet und in den R* eingebettet werden. Dann schreiben sich die
Maxwellschen Gleichungen mit dem x-Operator von (R*,(.,.);) als

dF =0, =xdx*F 4+ ugcl’ =0.

Das ist nicht nur einfacher als , sondern auch offensichtlich relativistisch invariant: Li-
neare Abbildungen T : R* — R*, die das obige Skalarprodukt und die Orientierung erhalten,
heiflen (eigentliche) Lorentztransformationen. Fiir sie gilt

(T w) = T* (xw).

Ist also F' eine Losung der Maxwellschen Gleichungen, so ist auch T*F' eine solche zur
transformierten Viererstromform 77T".

O

Ist (V,{(.,.)) ein orientierter Vektorraum mit nicht-degeneriertem Skalarprodukt, so kann
man unter Verwendung des Isomorphismus v — w? die klassischen Differentialoperatoren
verallgemeinern.

Definition 256 (Nicht-Euklidische Vektorrdume). Sind (V(.,.)) ein orientierter Vek-
torraum mit nicht-degeneriertem Skalarprodukt vom Index ¢ und G C V offen, so definieren
wir

(i) den Gradienten grad f von f: G — R durch

wgradf _ df,

(ii) die Divergenz von F': G — V durch

divF = (=1) xd * w’.

Weiter definiert man das Kodifferential § : Q*(G) — QF1(G) und den Laplaceoperator
A QF(G) — QF(G) wie folgt:

6= (=) ED y dse s QF(G) —
00k — 1G.
A:=dé+6d: QF(G) — QF(G).
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Beispiel 257. Im Minkowskiraum aus Beispiel 255] heifit der Gradient der Vierergradient,
die Divergenz die Viererdivergenz und der Laplaceoperator der Wellenoperator. Zum Beispiel
ist
02f 0*f 0°f O°f
|:| = ALorentZ _ 2 J Y J ‘s vl
f ! z? + Ox2 + oz% 022

O

Fiir die hier eingefiihrten Differentialoperatoren ergeben sich nun unmittelbar die folgenden
klassischen Versionen des Stokesschen Satzes. Vergleichen Sie fiir die Integraldefinitionen

J(F.ds) und [ (F,dO) die Beispiele [201]

Satz 258 (Greenscher Satz). Seien G C R? offen, p,q: G — R und C € Co(G). Dann
gilt
dq Op

———da:/\dy:/ pdzx + qdy.
0(337 8y> acC

Insbesondere folgt (q = x oder p =y) fiir injektives ¢ € I3(R?) mit det Dc > 0

1
Fliche(c(I?)) = /da: ANdy = / xdy = —/ ydx = 5/ —ydz + zdy.
c dc Oc dc

Ein Anwendungsbeispiel fiir die Fldchenformel ist der Satz von Holditch, vgl. Abschnitt
1043

Eine diskrete Variante davon gibt die in der Geodiisie unentbehrliche

Gauflsche Flichenformel. Seien (z;,y;),i = 1,...,n die Koordinaten der Eckpunkte eines
(eingebetteten) n-Ecks. Die Numerierung laufe im mathematisch positiven Sinne. Dann gilt
fiir die Fléache

1 n
F— -3 Z;%Aix’ Air =41 — Ti1.

Dabei ist g = zp, Tpt1 = 1.

Beim Vergleich mit der Integralformel F' = — [ ydx beachte, dass A;z = x;41 —x;—1 = 2Az;.
Daher der Faktor 1/2.

Beweis:
Wir betrachten zunichst ein Dreieck: Dafiir ist
(X2,Y,)
1
F= 3 (Y22 + (y1 + y2)(z1 — @2) — y121)
1 x;y,)
= 5 (W1(zo —22) +ya(21 — 23) + y3(22 — 21)) (X50¥,)
13
i=1

Bei Vertauschung von 1 und 2 ergibt sich die negative Flidche. Die Flachenformel ist offenbar
invariant unter Translationen, weil Y. ;| A;z = 0. Daher folgt die allgemeine Formel aus
der Dreiecksformel. O
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Satz 259 (Klassischer Satz von Stokes). G C R3 offen, F : G — R3 ein differenzierbares
Vektorfeld und C € Cy(G) eine 2-Kette (Flichenstiick) in G. Dann ist

/C (rot F,dO) = /8 (F.ds).

Satz 260 (Satz von Gauf}, Divergenzsatz). G C R" offen, F' : G — R" ein differen-
zierbares Vektorfeld und C € Cy(G) eine n-Kette (Volumen) in G. Dann ist

/didexl/\.../\dzn:/ (F,dO).
C oC
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10.3.3 Harmonische Funktionen

Dieser Abschnitt erweitert den Abschnitt iiber den Cauchyschen Integralsatz.
u:R™ O G — R heiffit harmonisch, wenn Au = 0, d.h. wenn d * du = 0.

Beispiel 261. Ist f = u+iv: C C G — C holomorph, so sind v und v harmonisch.

Beispiel 262. Ist 7 : R"\ {0} — R,z — ||z||, so ist 7"~ 2 fiir n > 3 harmonisch.

Satz 263 (Integralsatz fiir harmonische Funktionen). Ist u: G — R harmonisch, so
gilt fiir jedes C € Cp(G)
/ *du =
acC

Fiir n = 2 bedeutet das

Beweis. Trivial O

Satz 264 (Mittelwertsatz fiir harmonische Funktionen). Ist u : R? D G — R har-
monisch, und liegt die abgeschlossene Kreisscheibe vom Radius R um a in G, so gilt

2m
u(a) = %/0 u(a + Re'®)dg. (72)

Beweis. Fiir holomorphe Funktionen gilt nach der Cauchyschen Integralformel (Satz [230))

27

1 . 1
f(a):/o fla+ Re*™)dt = f(a+Re’¢%)d¢.

277?:¢7 0

Also gilt die Formel fiir holomorphe Funktionen. Damit gilt sie auch fiir den Realteil einer
holomorpen Funktion. Wir zeigen nun, dass sich jedes auf G harmonische u lokal so darstellen
148¢.

Auf einem offenen Kreis U, der den R-Kreis um a enthélt und selbst in G liegt, ist

geschlossen, weil u harmonisch ist. Daher besitzt w ein Potential v : U — R. Dann ist aber
f :=u +iv auf U holomorph. O

Satz 265 (Maximumprinzip fiir harmonische Funktionen). Nimmt eine harmonische
Funktion auf einer offenen, zusammenhdingenden Menge G C R? ihr Mazimum an, so ist
sie konstant.
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Beweis. Sei a € G ein Punkt, in dem die harmonische Funktion v ihr Maximum annimmt.
Nach dem Mittelwertsatz ist u(a) der Mittelwert von w iiber den Rand jeder abgeschlossenen
Kreisscheibe um a, die in G liegt. Weil aber u(a) > u bedeutet das, dass u = u(a) auf jedem
hinreichend kleinen Kreis um a. Also ist u lokal konstant. Aus dem Zusammenhang von G
folgt die globale Konstanz. O

Wir wollen nun die Mittelwertformel fiir harmonische Funktionen auf dem Kreis so
verallgemeinern, dass sie nicht nur den Wert im Mittelpunkt sondern moglichst in einem
beliebigen Punkt liefert: wie die Cauchyformel. Sei zy ein innerer Punkt der Kreisscheibe
D% von Radius R um 0. Die gebrochen-lineare Transformation

Rz + zg
=R
f(z> R + ZZ_O
bildet die Einheitskreisscheibe auf die Kreisscheibe vom Radius R und den Punkt 0 auf zg
ab.

Ist nun u harmonisch auf D%, so ist u(f(z)) harmonisch auf D? und nach der Mittelwert-
formel gilt

1 [ ~ 1 [ Re™ + 2y
= 0) = — Dt = — R———)dt
uzo) = u(f0) = 5= [ utrtetae = 5o [ Rzt
Wir mochten
i Re't + z
e = —
R+ et
substituieren und berechnen dazu (‘i%. Wir 16sen nach et auf und erhalten:
it _ Ret? — z,
R — 6i¢50 ’
Wir differenzieren diese Gleichung nach ¢:

ieitﬁ _ Rie'(R — €'%z) — (Re™ — zp)(—ie'?zy)  R2ie™® — ie'202%

do (R — ei?z)? (R —eitz)?
und teilen durch ie®:
dt R2e — €2y % R? — 2%
dp ~ (R—e92)(Re® —z9)  (Re % — 2)(Re?® — )
R? — 2% R? — 2%

(Re™® — 29)(Re'® — z)  |Ret? — 2|2

Anwendung der Substitutionsregel liefert nun

1 2 i R2 - ZOZ_O
u(zo) = %/0 u(Re ‘f’)mdgb.

SchlieBlich ergibt sich mit zyp = re?® aus dem
Cosinussatz

|Re'® — 2| = R? — 2Rrcos(0 — ¢) + 12

und damit

Satz 266 (Poissonsche Integralformel). Sei u(z) harmonisch auf der abgeschlossenen
Kreisscheibe vom Radius R um 0. Dann gilt fir alle r mit 0 <r < R:

1

T or

27
)= [t gt aé. (73)

u(re 2 —2Rrcos(0 — ¢) + 12
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Fiir » = 0 bekommt man wieder die Mittelwertformel.

Es gibt fiir die Poisson-Formel eine sehr anschauliche geometrische Interpretation: Wir be-
trachten einen inneren Punkt zy im Kreis vom Radius R und lassen die Sekante durch
diesen Punkt um ihn rotieren. Uns interessiert das Verhiltnis der Geschwindigkeit der bei-
den Schnittpunkte der Sekante mit dem Kreis zueinander.

Nach dem Sekantensatz ist das Produkt ab der Se-
kantenabschnitte dabei konstant und zwar ist

ab=(R+7)(R—7r)=R*—1r2

wenn r der Abstand von zy vom Mittelpunkt ist.
Diesen Wert erhélt man namlich, wenn die Sekante
durch den Mittelpunkt geht. Das gesuchte Geschwin-
digkeitsverhéltnis ist daher mit den Bezeichnungen
der Abbildung

vy _ €OS B, b  ab R% — 2

ve cosPu, a a® R2+12—2Rrcos¢

Das ist genau der Kern aus der Poisson-Formel. Er beschreibt also die Langenverzerrung,
wenn man den Rand des Kreises durch zy auf die gegeniiberliegende Seite des Kreises pro-
jiziert. Randstiicke nah bei zy werden dabei gestreckt, Stiicke fern von zy entsprechend
gestaucht. Wenn man die Randwertverteilung von v zunéchst auf diese Weise durch zy pro-
jiziert, und dann iiber den Einheitskreis mittelt, erhdlt man den Wert u(zp). Im Bild der
Temperaturverteilung fiir die Kreisscheibe: Randwerte nah bei zy haben groflen Einfluss auf
die Temperatur in zy, Randwerte fern von 2y haben geringen Einfluss.

Ist w harmonisch auf der abgeschlossenen Kreisscheibe vom Radius R, so liefert die Poisson-
formel also die Werte im Inneren berechnet aus den Randwerten. Aber man kann beweisen,
dass man diese Formel auch zur Losung der Randwertaufgabe benutzen kann:

Satz 267 (Existenzsatz fiir die 1. Randwertaufgabe). Sei ug eine stetige Funktion
auf der Kreislinie vom Radius R wm 0. Dann definiert

ety = o [ ) g g (74)
e = o 0 toi e R2 — 2Rrcos(f — ¢) + r2

eine auf der abgeschlossenen Kreisscheibe stetige und im Inneren harmonische Funktion u
mit u(Re'?) = ug(Re'?).

Das analoge Verfahren mit der Cauchyschen Integralformel liefert eine analytische Funktion
im Innern, die aber i.a. keine stetige Fortsetzung der auf dem Rand vorgegebenen Funktion
ist.
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10.4 Der Satz von Stokes auf Mannigfaltigkeiten
10.4.1 Mannigfaltigkeiten

Seien V, W endlich-dimensionale Banachrédume.
Definition 268. Sei A € V.

(i) Eine Abbildung f : V > A — W heifit eine C*°-Abbildung, wenn sie sich zu einer
C°°-Abbildung auf einer offenen Umgebung von A fortsetzen 148t, d.h. wenn es eine
offene Umgebung U von A in V und eine Abbildung f: V D U — W gibt, fiir die gilt

o f ist beliebig oft differenzierbar,
o fla=1.

(ii) Eine Abbildung f : A — W heiit ein Diffeomorphismus, wenn f injektiv ist und
sowohl f wie f~1: f(A) — V C*°-Abbildungen sind.

Beispiel 269. Sei
D":={zeR" |ai+...+a2 <1}

die abgeschlossene Vollkugel im R™ und sei
A= {mED" ’xn<0}.
Sei f: A — R"™ definiert durch

f(xlw-wxn) = (ml,...,xn1,xn+\/1—($%+...+33%_1))-

Dann ist
AcU:={zeR" |x%—|—...+xi_1<1},

U offen und [ setzt sich mit derselben Formel von selbst zu einer C'*°-Abbildung auf U fort.
Uberzeugen Sie sich, dass f injektiv ist. Fiir (xq,...,2,) € A gilt

—\/1—(x%+...+xi_1)§xn<0,

und daher ist

Die Umkehrabbildung ist

F - ym) = (yly---,yn—hyn—\/1—(yf+-~-+y%_1)>~

Sie erweitert sich ebenfalls “von selbst” zu einer C'*°-Abbildung auf derselben offenen Menge
U C R™. Also ist f ein Diffeomorphismus.

O
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Beispiel 270. Weil eine C*°-Abbildung f : A — W auf einer nicht-offenen Menge A im
allgemeinen viele verschiedene Fortsetzungen auf offene Umgebungen besitzt, ist d,f : V —
W im allgemeinen nur in inneren Punkten von A eindeutig definiert. Zum Beispiel 148t sich
die Nullabbildung auf der x-Achse des R?

f:RzD{(x,O) |x€R}HR, x+—0

fortsetzen zu f(x,y) = 0 oder zu f(:r,y) = y auf ganz R?, und entsprechend sind die
Differentiale verschieden.
O

Beispiel 271 (Der Halbraum H*). Wir werden es im folgenden oft mit Abbildungen des
abgeschlossenen oberen Halbraumes

fH ={zeR |z, >0} =W
zu tun haben und gehen auf diese Situation hier etwas ausfiihrlicher ein.

Wenn wir von inneren (xj, > 0) oder von Randpunkten (x), = 0) von H* sprechen, beziehen
wir uns auf den umgebenden R¥, und wir identifizieren den Rand von H* mit RF~1,

Ist f: H* 5 U — W eine C*-Funktion auf einer offenen Teilmenge von H”, so ist im
Gegensatz zum letzten Beispiel das Differential d, f : R¥ — W auch in Randpunkten durch
f eindeutig bestimmt, weil sich die partiellen Ableitungen allein aus Funktionswerten von f
berechnen, egal wie die Fortsetzung aussieht ...

Sei nun h : H* > U — H* ein Diffeomorphismus einer offenen Teilmenge U C H* auf

eine offene Teilmenge h(U) von H*. Nach der Kettenregel angewendet auf h o h™! ist das
Differential d,h : R¥ — R* in allen Punkten invertierbar. Nach dem Umkehrsatz bildet h
deshalb innere Punkte von U auf innere Punkte ab. Und weil dasselbe Argument auch fiir
h~! gilt, bildet h Randpunkte in Randpunkte ab:

hlyare-1 : U NRE-L o RE-L

Hk

4
T

> R k-1

Ist z € U NR*~! ein Randpunkt, so gilt also

oh
81‘i

h(z+ter)—h(z)
t

(z) e RF! fiir alle i € {1,...,k — 1}

und %(m) = limy o zeigt in den oberen Halbraum. Es ist also

h
a—(sc):)\ek—kv mit A > 0 und v € RF~!
8xk
und folglich
Oh oh oh oh
det(=—,...,—) = Adet(=—, ..., — .
¢ (83617 ’axk) ¢ (8951’ ’8m;€,17ek)
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Hat also d,h : R¥ — RF positive Determinante, so gilt dasselbe fiir die auf den Rand
eingeschriinkte Abbildung d,h|yqgs—1 : RF71 — RF-L

O
Wir halten die letzten Ergebnisse noch einmal fest:
Lemma 272. Isth: H* 5 U — H* ein Diffeomorphismus einer offenen Teilmenge U C H*
auf eine offene Teilmenge h(U) von HF, so gilt
h(U NRF1) c RF1

und h|yare-1 ist ein Diffeomorphismus einer offenen Teilmenge des RF~1 auf eine offene
Teilmenge des RF~1. Ist det dh > 0 positiv auf U, so ist det d(h|ynrr—1) positiv auf UNRFL,

Definition 273 (Berandete Mannigfaltigkeit). (i) Eine Teilmenge M C V heifit ei-
ne k-dimensionale berandete Mannigfaltigkeit (oder Untermannigfaltigkeit), wenn sie
lokal diffeomorph zum abgeschlossenen Halbraum

HY = {xeRk |xk 20}
ist, d.h. wenn gilt:

Zu jedem p € M gibt es eine (in M) offene Umgebung U und einen Diffeomorphismus
u: U — R¥ auf eine offene Teilmenge u(U) von H*.

(ii) Jedes solche u : U — HF heifit eine Karte fiir M und die Umkehrung ¢ := v~ : H* O
w(U) — M heiBt eine Parametrisierung fir M.

(iii) Eine Familie von Karten, deren Definitionsbereiche ganz M iiberdecken, heifit ein Atlas
fiir M.

(iv) Sind uy : Uy — H* und uy : Uy — H* zwei Karten mit U; N Us # (), so ist
Uo oufl : Hk D) ul(Ul N UQ) — UQ(Ul N UQ) C Hk

ein Diffeomorphismus zwischen offenen Teilmengen von H*, der auch der Kartenwech-
sel der beiden Karten heifit.

Beispiel 274. Die abgeschlossene Vollkugel D" ist eine n-dimensionale berandet Mannig-
faltigkeit. Die Abbildung f aus Beispiel 269 liefert eine Karte fiir jeden Punkt von M mit
, < 0. Analog findet man Karten fiir die Punkte mit z,, > 0 oder x; < 0 bzw. z; > 0 fiir
beliebiges i. Die Abbildung

u:{z|ai+. . +al <1} > H" (21,...,2,) = (31 + 1,22, ..., 2)

liefert eine Karte um jeden inneren Punkt von D™. Ihr Bild liegt im offenen Halbraum
z, > 0.

O

Lemma 275 (und Definition: Randpunkte). Seien M eine k-dimensionale berandete
Mannigfaltigkeit und

w:U —u(U), i:U—a()
zwei Karten und p € UNU. Liegt dann u(p) auf dem Rand von H*, d.h. ist ui(p) = 0, so
ist auch 4 (p) = 0. Punkte p, die von einer und dann also von jeder Karte in den Rand von
H* abgebildet werden, heiffen Randpunkte der Mannigfaltigkeit M.

Die Menge der Randpunkte von M, der Rand von M, wird mit OM bezeichnet. Sie ist leer
oder eine (k — 1)-dimensionale Mannigfaltigkeit mit leerem Rand.
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Beweis. Folgt unmittelbar aus Lemma [272] O

Bemerkungen.

1. Die Definition des Randes kollidiert ein wenig mit der topologischen Begriffsbildung;:
Eine abgeschlossene Kreisscheibe B C R? im dreidimensionalen Raum ist eine 2-
dimensionale berandete Untermannigfaltigkeit. Als Teilmenge des metrischen Raumes
R? sind alle ihre Punkte Randpunkte, im differentialgeometrischen Sinne aber nur die
Punkte auf der Kreislinie.

2. Fiir berandete Mannigfaltigkeit M mit leerem Rand OM = () wie etwa die offene Voll-
kugel klingt der Begriff “berandete Mannigfaltigkeit” unsinnig. Wir bezeichnen des-
halb mit “Mannigfaltigkeit” in Zukunft sowohl “echt” berandete Mannigfaltigkeiten,
wie unberandete Mannigfaltigkeiten (OM = 0)).

3. In der Analysis IT hatten wir eine Teilmenge M C V eines n-dimensionalen Banachrau-
mes eine k-dimensionale Untermannigfaltigkeit genannt, wenn es zu jedem p € M eine
offene Umgebung U von p in V und einen Diffeomorphismus ¢ : V D U— (b([j ) CR™
auf eine offene Menge qb(U) des R™ gab, so dass mit der iiblichen Idenifikation R¥ C R™
galt

(M NU) =R Ne(U).
Nach Verkleinerung von U kénnen wir annehmen, dass R¥ N (b(U ) beschrankt ist. Wir
setzen U := M N U. Offenbar ist dann ély : U — RF ein Diffeomorphismus von
U auf die offene Teilmenge R¥ N ¢(U) des R¥. Und weil R* N ¢(U) beschriinkt ist,
konnen wir ein a € R* so wihlen, dass u := a + ¢|y im Inneren von H” liegt. Also
ist jede k-dimensionale Mannigfaltigkeit im Sinne der Analysis II eine k-dimensionale
Mannigfaltigkeit mit leerem Rand im Sinne der neuen Definition.
Davon gilt auch die Umkehrung: Ein Diffeomorphismus u : M D> U — u(U) C R¥
148t sich nach Definition zu einer C*°-Abbildung ¢ : U — R* einer offenen Umge-
bung U von p in V nach R*¥ ¢ R" fortsetzen. Die Umkehrabbildung v~' wird durch
w1, 2n) = u(z1,...,2x) zu einer C°-Abbildung auf der offenen Menge
u(U) x R"™F C R™ fortgesetzt.
Also sind die C'°°-Mannigfaltigkeiten im Sinne der Analysis II genau die Mannigfal-
tigkeiten mit leerem Rand im Sinne der neuen Definition.

Beispiel 276 (Zur Veranschaulichung). Eine abgeschlossene Halbsphire oder ein Mébius-
band sind berandete 2-dimensionale Untermannigfaltigkeiten des R3.

Der Rand ist in beiden Féllen eine geschlossene Kurve.

O
Beispiel 277 (Zum Nachdenken). Die Menge
M={zeD"|z,<0}
ist eine berandete n-dimensionale Mannigfaltigkeit. Was ist ihr Rand?
O
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10.4.2 Zerlegung der Eins

Sei V ein endlich-dimensionaler Banachraum.

Der folgende Satz ist ein technisches Hilfsmittel zur , Lokalisierung® globaler Objekte auf
einer Mannigfaltigkeit und umgekehrt zum ,, Verschmelzen“ lokaler Objekte zu globalen Ob-
jekten. Wir formulieren und beweisen ihn nur in einer sehr speziellen Situation fiir kompakte
Mannigfaltigkeiten, weil wir ihn allgemeiner nicht benttigen und weil dadurch der Beweis
viel einfacher wird.

Satz 278 (Zerlegung der Eins). Seien M C V eine kompakte berandete k-dimensionale
Mannigfaltigheit und (uq : Uy — H¥)qea ein Atlas fiir M.
Dann gibt es endlich-viele C°°-Funktionen

Ayevoy Am : M — [0, 1]
mit folgenden Eigenschaften:
(i) Zu jedem i € {1,...,m} gibt es ein o € A mit
Supp A; = W C U,.
supp A; heifit der Trdager von ;.
(i) Fir alle x € M ist

Die Familie (\;)1<i<m nennt man auch eine zu (Uy)aca passende Zerlegung der Eins.

Beweis. Wihle zu jedem z € M eine Karte u, : U, — H* aus dem gegebenen Atlas aus,
fiir die # € U,.. Dann ist u,(U,) eine offene Teilmenge von H¥, und es gibt (vgl. Analysis I,
4.3) eine nicht negative C*°-Funktion 1, : H* — R mit
Va(us(2)) =1,
supp ¢, C Uy (Uz).

Setze

0 sonst.

:\x(y) :: {wx(um(y)), falls y € U,

Dann ist A\, eine C*°-Funktion auf M. Das ist nach der Kettenregel klar auf der offenen
Menge U, und erst recht klar auf der offenen Menge M \ u L(supp 1, ). Diese beiden offenen
Mengen iiberdecken aber M, und daher ist A\, tiberall C*°.

(Vi := A;1(]0,00]))zens ist eine offene Uberdeckung der kompakten Mannigfaltigkeit M.
Also geniigen endlich viele dieser Mengen, um M zu iiberdecken:

M=V, U...UV,,.

Dann ist also R B
o:=MAg; +...4+ X, >0

und fiir \; := 5\11./0 gilt > \; = 1. Der Tréger von \; liegt in U,,. Aber U,, = U, fiir ein
a € A, und damit folgt die Behauptung. O
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10.4.3 Orientierung

Definition 279. Sei M eine berandete k-dimensionale Untermannigfaltigkeit von V.

(i)

Eine Differentialform vom Grad m auf M ist eine C*°-Abbildung

w:M — A"V
Beachten Sie, dass sich w nach Definition zu einer C*°-Abbildung auf einer offenen
Umgebung G von M in V erweitern lift.
Den Vektorraum der Differentialform vom Grad m auf M bezeichnen wir mit Q™ (M).
Ist ¢ : R¥ 5 U — M eine (lokale) Parametrisierung fiir M, so ist ¢*w € Q™(U).
p € M heifit eine Nullstelle von w € Q™ (M), wenn fiir eine Parametrisierung ¢ fiir M

um p

(qﬁ*w),ﬁfl(p) = 0. (75)
Hat man zwei Parametrisierungen ¢; um p, so gilt
$lw = (uz0uy ) dhw. (76)
——
Diffeo
Also gilt fiir alle Parametrisierungen, wenn es fiir eine gilt.

Eine Form n € Q™(M) = Q4mM (A1) ohne Nullstelle heifit eine Determinantenform
auf M. M heifit orientierbar, wenn es auf M eine Determinantenform gibt.

Zwei Determinantenformen 77,72 auf M heiflen dquivalent, wenn

d)*nl(el, s 7ek)

>0
o*na(er, ..., ex)

fiir jede Parametrisierung ¢. Das definiert eine Aquivalenzrelation, und jede Aquivalenz-
klasse heifit eine Orientierung von M. Jede Determinantenform auf M definiert also
eine Orientierung von M. Ein Mannigfaltigkeit mit einer Orientierung heif3t eine ori-
entierte Mannigfaltigkeit und die Determinantenformen aus der Orientierung dann
positive Determinantenformen.

Bemerkungen.

1.

Im RF ist eine Basis positiv orientiert, wenn sie genauso orientiert ist, wie die Stan-
dardbasis, das heifit, wenn die Basistransformation zwischen den beiden eine positive
Determinante hat.

Stattdessen kann man auch sagen, eine Basis im RF ist positiv orientiert, wenn die
Determinante mit den Vektoren der Basis als Argumenten positiv ist.

Ein k-dimensionaler reeller Vektorraum hat im Gegensatz zum RF keine ausgezeichnete
Orientierung. Aber man kann eine auszeichnen, indem man irgendeine Basis als positiv
orientiert deklariert.

Auf den k-tupeln von Vektoren in einem k-dimensionalen Vektorraum hat man im
Gegensatz zum R* keine ausgezeichnete Determinante. Aber man kann eine wihlen,
indem man irgendeine alternierende k-Form # 0 auszeichnet. Das liefert dann gleich-
zeitig wie in der 2. Bemerkung eine Orientierung fiir den Vektorraum.
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5. Eine Orientierung fiir eine Mannigfaltigkeit ist anschaulich eine “kohérente” Orientie-
rung fiir deren Tangentialriume. Machen Sie sich das am Zylinder, am (nicht orien-
tierbaren) Mobiusband und an der 2-Sphére klar.

6. Wie in der 4. Bemerkung kann man eine Orientierung auf einer Mannigfaltigkeit aus-
zeichnen, indem man (in “kohérenter” Weise) in jedem Tangentialraum eine alternie-
rende k-Form = 0 vorgibt, eben eine Determinantenform.

7. Wir verzichten hier der Einfachheit halber auf die Einfithrung des Tangentialraums.
Daher “akzeptieren” unsere oben definierten Differentialformen in ihren multilinearen
Argumenten beliebige Argumente aus dem umgebenden Vektorraum V', und nicht nur
Tangentialvektoren an M. Diesen ungewollten Effekt beseitigen wir dadurch, dass wir
im wesentlichen die zuriickgeholten Formen ¢*w = (u~!)*w betrachten. Beachten Sie
die definierende Gleichung

P wvr,...,vk) = we(dp(v1, ..., dp(vg)).

tangential an M

Beispiel 280. Auf RF oder H* ist n = dx; A ... A dxj, = det eine Determinantenform, die
also eine Orientierung definiert. Diese bezeichnen wir als die Standardorientierung von R¥
bzw. H*

O
Beispiel 281. Sei xwX € Q""1(R"\ {0}) wie im Beispiglund Sn=1 c R™. Wir betrach-
ten *w™ als Element von Q"~1(S"~1). Ist ¢ : R"1 D U — S"~! eine Parametrisierung, so
sind also 1, ..., 0,_1¢ iiberall linear unabhéingig. Aus (¢, ¢) = 1 folgt durch Differenzie-

ren (¢, 0;¢) = 0 fiir alle ¢ € {1,...,n — 1}. Also sind auch ¢,0:¢,...,0,_1¢ iiberall linear
unabhéngig. Daher ist

¢*(*wX)(el, . ,en_l) = det(qb, 81¢, . ,8n_1¢)

niemals 0 und *w™X ist eine Determinantenform auf S”~!. Die zugehorige Orientierung nen-
nen wir die Standardorientierung von S™1.

Das gilt natiirlich auch fiir Sphéren von beliebigem Radius > 0.

O

Definition 282. (i) Zwei Karten fiir eine Mannigfaltigkeit heilen gleichorientiert, wenn
ihr Kartenwechsel iiberall positive Funktionaldeterminante hat.

(ii) Sei M eine orientierte Mannigfaltigkeit. Eine Karte u : U — R* fiir M heifit positiv
oritentiert, wenn

(wH*n(er,...,ex) >0

fiir eine (und dann fiir jede) positive Determinantenform n € QF(M). Entsprechend
definiert man negativ orientierte Karten

Lemma 283. Sei M eine k-dimensionale kompakte berandete Untermannigfaltigkeit von V.
Dann gilt:

(i) Ist M orientiert, so sind die Kartenwechsel zwischen positiv orientierten Karten gleich-
orientiert. M besitzt einen Atlas aus gleichorientierten Karten.

(#i) Besitzt M einen Atlas aus gleichorientierten Karten, so gibt es genau eine Orientie-
rung fir M beziiglich der alle Karten aus dem Atlas positiv orientiert sind.
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Beweis. Zu (i). Die erste Behauptung ist klar nach (76)).

Wir wihlen nun fiir M eine Atlas mit zusammenh#ngenden Kartengebieten und eine posi-
tive Determinantenform 7. Dann wechselt (u=!)*n(ey, ..., ex) nicht das Vorzeichen. Ist es
negativ, so ersetzen wir die erste Komponente u; von u durch —u; und erhalten so eine posi-
tiv orientierte Karte mit demselben Kartengebiet. Das tun wir mit jeder Karte und erhalten
eine Atlas aus positiv und daher gleichorientierten Karten.

Zu (i1). Es ist klar, dass es nur eine solche Orientierung geben kann.

Sei A ein Atlas wie in (ii). Wir wéhlen dazu eine Zerlegung der Eins (A;)1<i<m und zu jedem
i eine Karte (u; : U; — R¥) € A mit
supp A; C U;.

Wir setzen

(1) = (uidzy A ... Ndxy)y firz e U;
e 0 sonst

Beachten Sie, dass die 7; im allgemeinen nicht C*° sind, wohl aber die \;n; € QF(M). Wir
definieren

n= Zmi e QF(M).
=1
Dann ist

(u;l)*n(el7 coek) = Z()‘Z o u;l) ((u;l)*u;‘dxl Ao Nday) (eq,. .., ep)

= (\iou; ") det(D(ugu; ) (dzy A... Adai)(er, ... ex)
> 0.
Nach Definition der Zerlegung der Eins bilden die supp A; und deshalb die Kartengebiete

U; eine Uberdeckung von M und 7 ist eine Determinantenform, beziiglich der alle Karten
aus dem konstruierten Atlas positiv orientiert sind. O

Ubungsaufgabe. Eine zusammenhiingende Mannigfaltigkeit besitzt keine oder genau zwei
Orientierungen.

Wir erinnern nun an Lemma Ist u: U — H* eine Karte fiir M mit U NIM # 0, so ist
ulunoa 1 UNOM — RF!

eine Karte fiir OM. Gleichorientierte Karten fiir M liefern auf diese Weise gleichorientierte
Karten fiir 0M, und ein Atlas fiir M mit gleichorientierten Karten induziert einen solchen
fir OM. Deshalb folgt aus dem letzten Lemma;:

Satz 284 (und Definition: Randorientierung). Sei M C V eine orientierte kompakte
k-dimensionale berandete Mannigfaltigkeit mit nicht-leerem Rand. Dann gibt es auf OM
genau eine Orientierung mit folgender Eigenschaft:

e [stdim M gerade, so induziert jeder Atlas aus positiv orientierten Karten fiir M einen
Atlas aus positiv orientierten Karten fiir OM.

e Ist dim M wungerade, so induziert jeder Atlas aus positiv orientierten Karten fiir M
einen Atlas aus negativ orientierten Karten fiir OM .

Diese Orientierung heifit die induzierte Randorientierung.
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Beispiel 285. Auf der Einheitsvollkugel D™ definiert die Determinantenform
det =dxy A ... Adz, € Q"(R™)

eine Orientierung und nach Beispiel ist

Wy, ..., Ty) = <$17~-~,$n+\/1—($%+~~+5f%1))

eine Karte fiir D™. Das Orientierungsverhalten dieser Karte ist gegeben durch das Vorzeichen
von

ou~1t ou~?t
Ly = =1
(u™")* det(er,...,en,) det( o o ) ,

weil 4! fast so aussieht wie u, vgl. Beispiel u ist also eine positiv orientierte Karte
fiir die berandete Mannigfaltigkeit D™. Es liefert in geraden Dimensionen n eine positive, in
ungeraden Dimensionen eine negativ orientierte Karte beziiglich der Randorientierung von
Sl =oD".

Wie verhélt sich diese Randorientierung zur Standardorientierung, vgl. Beispiel [281]
Dazu berechnen wir

((ulgn-1)")* *w(e1,...,en 1) = (u Hpn1)* *w*(e1,...,€n 1)

ul(y) ou! Ou”! >
= det ) y
(||U_1(y)|| I Oyn—
= det (Uil(y)7e17 e 7en_1)
= (_1)77,—1 det (ela - €n—1, U_1<y)) .

Weil u~!(y) negative n-te Koordinate hat, vgl. die Abbildung in Beispiel , hat der letz-
te Ausdruck also Vorzeichen (—1)". Die Orientierung von S"~! als Rand der kanonisch
orientierten Vollkugel D™ ist also die Standardorientierung von S™~!. Das mag mit der
Fallunterscheidung in der Definition im Satz [284] versshnen.

O

Bemerkung. Die Aussagen von Lemma [283| und damit der Satz gelten auch fiir nicht-
kompaktes M. Den Beweis muss man nicht &ndern, man braucht nur eine allgemeinere
Version des Satzes von der Zerlegung der Eins. Da wir im folgenden Abschnitt ohnehin aber
nur kompakte berandete Mannigfaltigkeiten betrachten, reicht unsere “Sparversion”.
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10.4.4 Integration iiber Mannigfaltigkeiten

Sei V ein endlichdimensionaler Banachraum.

Definition 286. Seien M eine k-dimensionale kompakte, orientierte berandete Unterman-
nigfaltigkeit von V und w € Q¥(M). Nach dem Satz von der Zerlegung der Eins, ins-
besondere nach der letzten Bemerkung dort, gibt es einen Atlas (u; : U; — H*)1<;<x mit
positiv orientierten Karten und dazu eine Zerlegung der Eins (\;)1<i<x mit supp A; C Uj.
Wir bezeichnen mit ¢; = u-_l die zugehorigen Parametrisierungen und definieren:

[ e

Beachten Sie, dafl supp \; abgeschlossen, also kompakt ist. Daher ist auch
x = ¢f (ANiw)z(er,...,ex)

eine C*°-Funktion mit kompaktem Tréger u;(supp A;) und die pi-Integrale existieren.

m

/ 65 () 1= Z/ 6 Oww)(er, . ex) dyin.
u;i (supp A;) i—1 v ui(supp A;)

=1 i=1

Wir miissen zeigen, dass diese Definition unabhingig von den gemachten Wahlen ist. Das
liegt im wesentlichen an diesem

Lemma 287. Seien u; : U; — HY fiir i = 1,2 zwei gleich-orientierte Karten fiir M mit
Parametrisierungen ¢; := ui_l und w € QF(M) mit kompaktem Triger

S :=suppw C Uy NUs.

[ so=[ o (77)
w1 (S) us(S)

Beweis. Nach der Transformationsformel Lemma gilt

[ o= [ (wouysw= | o= [ o
uy(S) u1(S) ugouy H(u1(S)) uz(S)

Dann gilt

Nun zum eigentlichen

Beweis der Unabhingigkeit. Sei (iij : U; — R¥)1<j<z ein weiterer Atlas wie in der Definition
und (A;) dazu eine Zerlegung der Eins . Dann gilt

m m

TAw) = HOYPPYIY
Z/ui(supp/\i)@( “) -Z/uf(supp/\-)(b(Z ! “)

i=1 =1

Z Z i (MAw)

j= i(supp Ay Nsupp A;)

1,
Z / &5 (\jAiw)
= —
jzlzv;,rh ‘/ﬁj(supp ) 6;(Aw)

=1, (supp)\ ﬁsupp/\ )

O

So elegant die Methode der Zerlegung der Eins fiir die Definition von | W auch ist, niemand
wiirde sie benutzen, um konkrete Integrale zu berechnen. Dafiir ist das folgende Lemma
hilfreich:
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Lemma 288. Seien M eine kompakte orientierte Mannigfaltigkeit, w € Q*(M), k = dim M,
und
$:RFDG—-M

eine C*°-Abbildung einer kompakten Menge G C R* mit folgenden Figenschaften:

()

suppw C ¢(Q).
(i) Es gibt eine uy-Nullmenge N C G, so dass G\ N offen in H* und
Pla\n : G\N — M

eine positiv orientierte Parametrisierung von M, d.h das Inverse einer positiv orien-

tierten Karte fiir M ist.
/ w:/ o*w.
M G

Beweis. Es geniigt, den Beweis zu fithren fiir den Fall, dass supp w enthalten ist im Defini-
tionsbereich einer positiv orientierten Karte u : U — HF. Dann ist

/w:/ (u™ ') w.
M u(supp w)

Sei G’ := {x € G | ¢(x) € U }. Dann ist
h:=uod|e : G — RF

Dann ist

auf der offenen Menge G’ \ N ein orientierungstreuer Diffeomorphismus auf eine offene Teil-
menge von H* die u(suppw) enthilt. Daher gilt

/ (w ) wler,... ex)du, = / (™ H*w(ey,...,ex)dus
(supp w) h(G")

:/ (=) wn(er,. . ex) det(Dh) dyu
’ H,—/
>0

=/ W (u) wnler, ..., ex)dux

_ * ok —1*: * o *'
—Gl¢u(u ) w Gl¢w /thw

O
Beispiel 289. Die Kugelkoordinaten
sin 6 cos ¢
[0, 7] x [0,27] — S?,(0,¢) — | sinBsin¢
cosf

erfiillen die Voraussetzungen des Lemmas, wenn man S? mit der Standardorientierung ver-
sieht. Darum ist

sinfcos¢p cosfcos¢p —sinfsing
/ swX = / / det | sinfsing cosfsing sinfcos¢ | dodh
52 [0,7] J]0,27] cos 6 —sin 6 0

= / / sin d¢df = 4.
[0,7] J[0,27]
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Beispiel 290.

Bildet ¢ : R"™! 5 G — S"! die kompakte Men-
ge G surjektiv auf die Sphire S™~! ab und ist auf
dem offenen Komplement einer Nullmenge ein orien-
tierungstreuer Diffeomorphismus, so leistet

S

¢:Gx[-m/2,7)2] — S", (2,t) — (H(z) cost,sint)

dasselbe fiir S™.
Wir berechnen die Zuriickholung q{;*(*wx ) der Flussform *wX € Q*(R"*!) mit X = 7‘|$‘ﬁ,+1 .
Dabei beachten wir, dass ||¢|| = ||¢ZH =1.

- 7 8(;5 96 09
* X
NS det(d, s
5wy fers o) = detldy 20,50, 50
qb(x) cost | ‘%(T) cost | —¢(z)sint
= det
sint | 0 | cost
1 [¢(x) costsint | ag—f) cost | —¢(x)sintcost
costsil sin? ¢ | 0 | cos? t
1 [¢(x) costsint | ad)(z) cost | 0
cosest sin? ¢ | 0 | 1
1
= ——det {gb(x) costsint | a¢(x) cos t]
costsint
n— Op(x
= cos™ 1t det [Qs(x) | )
=cos" Mt ¢t (xw¥)s(er, ..., €0 1),

wobei in der letzten Zeile die Flussform auf dem R™ steht. Durch Induktion ergibt sich
daraus, dass

/ *w™ = Volumen(S™),

vgl. Beispiel

184



10.4.5 Der Satz von Stokes auf Mannigfaltigkeiten
Sei V ein endlich-dimensionaler Banachraum.

Lemma 291. Sei w € Q¥ 1(H¥) mit kompaktem Triger S C H*. Wir betrachten R¥~1 als
Teilmenge R*~1 x {0} von RE. Dann gilt

/ dw(elv s 7ek) d/ik = (_1)k / w(elv cee 7ek71) dﬂkfb
S

SNRk—1

Beweis. Sei r > 0 so gewahlt, dass

S c |-rrFtxo, ] € [~ x [0,r] = Q.

SN

]Rk-1

Definiere
c:I* = Q, (x1,...,2p)— (r(2zy —1),...,7(2z_1 — 1), 72%).

Dann gilt nach der Transformationsformel Lemma und dem Satz von Stokes fiir Ketten
k .
/dwz/dw:/ dw:/c*dw:/dw:/w:Z(—l)i_l(/ w—/ w).
S Q c(I¥) Ik c dc i—1 cost cos;

Aber allenfalls die untere k-te Seite von ¢ trifft den Triger von w. Wir erhalten

[dsteredim = (0" [ o= [ wen e dui.
S cosy, SNRk—1
O

Beachten Sie, dass die Identitéit eine positiv orientierte Karte von H* ist. Ihre Einschrinkung
auf RF~1 ist ebenfalls positiv orientiert beziiglich der Standardorientierung von R¥~1. Aber
die Randorientierung von OH* stimmt damit nur bei geradem k iiberein. Deshalb kann man
die Formel der Lemmas auch schreiben als

dw = / w.
HF OHF

Das ist die einfachste Version des Satzes von Stokes fiir Mannigfaltigkeiten, den wir aber
nur fiir kompakte Mannigfaltigkeiten beweisen:
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Satz 292 (Stokes). Seien M eine k-dimensionale kompakte, orientierte berandete Unter-
mannigfaltigkeit von V und w € Q*~Y(M). Der Rand OM trage die induzierte Randorien-

tierung. Dann gilt
/ dw = / w.
M oM

/ dw = 0.
M

Ist insbesondere OM = 0, so gilt

Beweis. Seien (u; : U; — Hk)ie{l,...,m} ein Atlas mit positiv orientierten Karten und sei
(Xi : Ui = R)ieq,....my eine Zerlegung der Eins dazu. Dann gilt

_ Z/ (WY d(Aw)(ers .. ex)
u;i(supp ;)

i=1
m

= Z/ d((u;l)*)\iw)(eh...,ek)
i—1 7 ui(supp A;)

— —1)* / w7 ) Nwler, ... e,
(Lemma( ) ~ ’U«i(supp)\i)ﬂkal( 7 ) i ( 1, » €k 1)

[ w
oM

Beispiel 293. Fiir 0 < R # 1ist M = {z € R"™ | (1 — ||#[|)(R — ||z]|) <0} eine (n + 1)-
dimensionale Mannigfaltigkeit M deren Rand die beiden Sphéren S% und S™ vom Radius
R bzw. 1 mit entgegengesetzten Orientierungen bilden. Sei xwX wie im Beispiel Weil
d x wX = 0 folgt aus dem Satz von Stokes

W™ — / W™ ) :

O:/Md*wX:i</S

/ swX :/ swX = Volumen(S™).
S n

n
R

O

n
R

Es folgt also

Allgemeiner gilt das fiir jede kompakte Hyperfliche X C R™*!, die gemeinsam mit einer
Sphére S% eine kompakte Untermannigfaltigkeit M des R"*! berandet.

O

Beispiel 294. Ist M eine kompakte unberandete k-dimensionale orientierte Mannigfaltig-
keit, so ist M x [0,1] C V xR eine kompakte berandete (k+1)-dimensionale Mannigfaltigkeit.
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Mx[0,1]

M x {0} Mx {1}

Ein Atlas (u; : U; — RF);c; mit positiv orientierten Karten liefert einen Atlas fiir M x [0, 1]
mit folgenden Karten:

Ui1 (JJ)
uig(l‘)
ul U x [0,1]— R (z,¢) v : )
uz‘k(fﬂ)
t
—u“(ac)
uz‘2($)
u; : U;x]0,1] — RFL (2, 1) — :
1—1¢

Man rechnet nach, dass diese Karten gleich-orientiert sind. Wenn man die Randkomponenten
M x {0} und M x {1} auf die offensichtliche Weise mit M identifiziert, stimmt bei geradem
k+1 die Randorientierung auf M x {0} mit der urspriinglichen Orientierung von M {iberein,
auf M x {1} erhilt man die entgegengesetzte Orientierung. Bei ungeradem k + 1 kehrt sich
das um.

Sei nun N eine weitere k-dimensionale Mannigfaltigkeit und w € QF(N). Seien
Jo,Jr: M — N
zwei homotope Abbildungen, d.h. es gibt eine C*°-Abbildung F : M x [0,1] — N mit
F(,0)=fo, F(,1)=f1.

Weil w vom Grad k = dim NV ist, ist dw = 0. Also ist auch

O:/ F*dw:/ d(F*w):/ F*w:l:( fa‘wf/ fl*w>
Mx [0,1] Mx [0,1] oM M M

Fiir homotope Abbildungen fy, f1 : M — N gilt also

/M fow= /M fiw

O
Beispiel 295. Wir wenden das an auf den Fall M = N = S* und die Antipodenabbildung

a: S8k SF p —n.
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Weil die Form 7 := *wX € QF(R¥*1\ {0}) die Orientierung von S* definiert, ist

/ n > 0.
Sk
(@ n)p(v1,. .., v) = n_p(—v1,...,—vg) = det(—p, —v1,...,—vg) = (—1)

/ a*n <0
Sk

und die Antipodenabbildung damit nicht homotop zur Identitit id : S¥ — S*.
Sei nun 7' : S* — R*+! eine C°°-Abbildung mit

Nun ist aber

k+177p(v1, ey V)

Fiir gerades k ist also

<$7 T(x)> =0

fiir alle 2 € S*. Dann nennt man T auch ein tangentiales Vektorfeld auf der Sphire S*.

Hat T keine Nullstelle, so liefert

, T(z)
F(x,t) := cos(nt) x + sin(7t)
1T ()
eine Homotopie F : S* x [0,1] — S* zwischen ‘

der Identitit und der Antipodenabbildung.
()

Solche Abbildungen kénnen also nur fiir ungerades k existieren. (Tun sie auch!) Fiir gera-
des k, insbesondere fiir k& = 2 hat hingegen jedes tangentiale Vektorfeld auf der k-Sphére
mindestens eine Nullstelle:

Jeder glatt gekimmte Igel hat mindestens einen Glatzpunkt. ‘

188



10.4.6 Der Abbildungsgrad

In diesem Abschnitt skizzieren wir die Definition einer Homotopieinvarianten fiir Selbstab-
bildungen der (n — 1)-dimensionalen Einheitssphére

Sl = {z e R ||zf =1}.

Lemma 296. Seien f : M — N ein Diffeomorphismus zusammenhdngender kompakter
k-Mannigfaltigkeiten und w € QF(N). Dann gilt

f*w::t/ w.
M N

Wir verzichten auf den Beweis. Er benutzt die Definition des Integrals iiber Mannigfaltig-
keiten und das Lemma [199

Sei wieder X := W auf R™\ {0}. Wir versehen S™~! mit der von *w?¥ induzierten Orien-

tierung. Dann ist
Cn—1 I:/ Wp—1 > 0.
Sn—1

wn_1 = *w™ € QR™\ {0}).

(Tatséchlich ist dies das Volumen der Sphére.) Wir setzen im folgenden

1
* UJX.
Cn—1

Wp—1 =

Dann ist also [g,_ wp—1 = 1.

Satz 297 (Abbildungsgrad). Sei f: S"~! — S"~1 eine C°°-Abbildung. Dann ist

des(f) = [ Frunn

eine ganze Zahl, der sogenannte Abbildungsgrad von f.

Bemerkung. Nach Beispiel 294]ist deg(fo) = deg(f1), wenn fo und f; homotop sind.

Beweis. Sei P := e, der ,Nordpol“ von S®~! und fiir » > 0
D, = {x e st } 1P —z| < T}

die ,,Polkappe® vom Radius r.
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Wir nehmen zunéchst folgendes an:

Es gibt ein » > 0, so dass f~!(D,) die Vereinigung von endlich vielen
disjunkten Mengen B, ..., By C S~ ist, die jeweils durch f diffeomorph (%)
auf D, abgebildet werden.

k
/ f*wn—l = / f*wn—l + Z/ f*wn—l- (78)
Sn—1 Sn=1\ U B; i—1 B

Wir betrachten das erste Integral rechts. Nach dem Lemma von Poincaré besitzt w,_; auf
dem sternférmigen Komplement der Halbachse {)\P | A> 0} ein Potential 0,,_5. Damit gilt

/ s — / Af 6o — / FOn_s
Sn=1\U B: Sn=1\ U B a(Sm—1t\ UBi)
k k
= — ;/831 f 07;—2 LEmrfa_ ;i/aDr 0n—2
k
= :I:/ 0,—2 = :I:/ df,,_2

=1 Sn—l\DT

= E i/ Wp—1=m Wn—1
N Sn—l\Dr Sn—l\Dr

Dann ist

fiir ein ganzzahliges m.

Fiir r — 0 geht dies gegen m f L Wn—2 = m, wéhrend die B; jeweils auf einen Punkt
schrumpfen. Die B;-Integrale in gehen daher gegen 0 und aus folgt die Behauptung.

Wir skizzieren nun noch, warum man ohne Einschrénkung die Annahme (*) machen kann.
Wir setzen f durch f(x) := [|z[| f(q7;) auf R™ \ {0} fort und wenden darauf das Lemma von
Sard an. Man rechnet nach, dass Q € R™ genau dann ein reguldrer Wert von f ist, wenn
dasselbe fiir Q/||Q] gilt. Wir kénnen also o.E. annehmen, dass P = e,, ein regulidrer Wert
ist. Nach dem Umkehrsatz bildet f dann eine Umgebung eines jeden Punktes € f~({p})
diffeomorph ab. Weil S"~! kompakt ist, ist f~1({p}) = {p1,...,pr} endlich und eine Umge-
bung U, von p; wird diffeomorph auf eine offene Umgebung von P abgebildet. Wir kénnen
annehmen, dass die U; disjunkt sind. Wahlt man r > 0 so klein, dass

k k
D, (ﬂ f(Ui)> \F(Sm\ (00,
i=1 i=1
so folgt (x). O
Bemerkungen.
1. Der Beweis liefert eine anschauliche Interpretation des Abbildungsgrades: Dieser zéhlt

einfach die Urbilder eines reguldren Wertes von f mit Vielfachheiten £1 abhéngig
davon, ob f in diesen Punkten die Orientierung erhélt oder umkehrt.

2. Eine Standardanwendung des Abbildungsgrades ist diese: Gegeben sei eine Abbildung
f: D™ — R™ und ein y € R"™. Man mochte wissen, ob

flz) =y
eine Losung besitzt. Wenn y € f(S™~1) ist das klar. Andernfalls betrachtet man die
Abbildungen
_ _ flz)—y
g: St sl g ot T
1/ (x) =yl
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Wenn deg(g) # 0, besitzt die Gleichung eine Lésung.
Andernfalls wére ndmlich f((1 — s)z) # y fiir alle s € [0, 1] und

L J =)~y
1F(=5)@) —

eine Homotopie zwischen g und einer konstanten Abbildung, also deg(g) = 0.

G(z,s): 8"t — gn~1,

. In der Funktionentheorie spielt die Umlaufzahl eines geschlossenen Weges c : S — C
beziiglich eines Punktes zg ¢ c(S!) eine wichtige Rolle. Sie wir definiert als

1 1
n(c, zp) 1= %/z—zodz

Diese Umlaufzahl ist gerade der Abbildungsgrad von

c(z) — 2o
)= —Lt—

9= Toa) =20l
Das beweist man mittels der Identitét

1
Zdz=——
z T+ 1y

1

. T — 1y .

xdy —ydx
22 + y2 22 _|_y2 !
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10.4.7 Der Antipodensatz

Satz 298 (Antipodensatz von Borsuk-Ulam (1933)). Sei f : S"7! — 8"~ cine
ungerade C*°- Abbildung, d.h. es gelte

f(=z) = —f(x) fir allex c S™*.

Dann ist der Abbildungsgrad von f ungerade, insbesondere also # 0.

Beweis. Der Beweis benutzt vollstindige Induktion iiber n. Die topologischen Argumente
sind dhnlich denen in Beweis von Satz

Wir bezeichnen

S:=8""1  §,:=85""2cCS, S, :=abgeschlossene obere Hemisphire.

n=1. Dann ist f(—1) = —f(1), also f bijektiv und der Abbildungsgrad daher = £1.

n=2. Wir wihlen in S\ (f(So) U Sp) einen regulédren Wert N von f. Dann ist auch —N ein
regulidrer Wert. Wir bezeichnen mit 7 : R? — R! die Projektion entlang der Geraden RN
und definieren

_ mo f(x)
G S\ N ~NY) = Souz o ot
[l o f(2)l
Sei f71({N,—-N})N Sy = {p1,...,pr} mit paarweise verschiedenen p;. Das Komplement
von {p1,...,pr} in Sy \ So besteht aus r + 1 Intervallen, die durch G jeweils in einen der

zwei Punkte von Sy abgebildet werden. Weil f in den p; regulér ist, werden aufeinander
folgende Intervalle in verschiedene Punkte von Sy abgebildet. Weil G|S, wieder ungerade
ist, werden die Punkte von Sy, also auch die daran angrenzenden Intervalle (das ,erste“ und
das ,letzte®) in verschiedene Punkte von Sy abgebildet. Damit ist r ungerade, und weil f
eine ungerade Abildung ist, erhalten wir

L= = (AN, SH NS4 = S#UTHNSD) = #( (ND) = deg(s). (79)

(n—1) —n, n > 3. Nach dem Satz von Sard ist f(Sy) # S. Weil f(Sp) tiberdies kompakt
ist, gibt es wieder nach dem Satz von Sard einen reguldren Wert N von f im Komplement
von f(Sp) U Sp. Nach der Voraussetzung iiber f ist dann auch —N ein reguldrer Wert von
f im Komplement von f(Sp).

Sei f~'{{N,-N}) NSy = {p1,...,p-}. Seien Uy,..., U, C S;\ Sy paarweise disjunkte
offene Umgebungen um die p;, die durch f diffeomorph auf eine kleine offene Kugel um N
bzw. —N abgebildet werden, vgl. den Beweis zu Satz Wir bezeichnen mit

7:R* — R"!
die Projektion entlang der Achse RN und betrachten die Abbildungen

G:S+\(UBi) — Sp,x — H:Z;Ei;”, g := G|Sy.

Dann ist g wieder ungerade, hat nach Induktionsvoraussetzung also ungeraden Abbildungs-
grad. Sei w,_» € Q(R"™1) wie im Abschnitt [10.4.6| Dann gilt

/ Grwn o — / G dun_s = 0. (80)
9(S+\ (U By)) Sy \(UBs)
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Andrerseits ist aber nach Lemma [296]
G*wn_z = :t/ Wp—2 = +1
oU; So

und daher

r

G wp_g = — /SO 9 wn_o — Z( G*w) = —deg(g) — Z +1. (81)

/8(5+ \ (U Bi)) ou; 1

Nach , ist also r ungerade. Aus folgt die Behauptung. O

Korollar 299. Fiir jede stetige Abbildung f : S™ — R™ gibt es ein x € S™ mit f(x) =
f(==).

Beweis. Andernfalls wére mingegs» || f(z) — f(—2)|| =: € > 0, und man kénnte wie im Beweis
des Fixpunktsatzes von Brouwer f approximieren durch eine C*°-Abbildung f : ™ — R"
mit mingegn || f(z) — f(—x)|| > §. Dann ist

@) - f-)
M= @) = F—o)]
eine ungerade C'*°-Abbildung g : S — S"~1 C S"

Offenbar ist g(S™) # S™ und deshalb ist deg(g) = 0 im Widerspruch zum Antipodensatz.
O

Korollar 300. Man kann einen Apfel durch einen ebenen Schnitt so teilen, dass beide Teile
dieselbe Menge an Kalorien, Vitaminen und Schadstoffen enthalten.

Beweis. Wir betrachten den R? als eingebettet in den R*. Seien k,v, s : R> — R die Dichte-
verteilungen der Kalorien, Vitamine bzw. Schadstoffe. Fiir x € S® C R* setzen wir

M(z) = {ZJGR3 | (z,y) > (x,e4) } = {y |171y1 + Toys + T3ys > T4} -

Das ist also ein Halbraum im R3. Wir definieren f : S® — R? durch

f@) = (/ b, [ v, [ sdu3>
M(z) M (z) M ()

und setzen voraus, dass f € C*°. Dann gibt es ein « mit f(z) = f(—=z), d.h. von allen drei
Ingredienzien liegt genauso viel im Halbraum M (z) wie in seinem Komplement. O

193



Korollar 301. Fiir m # n ist R™ nicht homdomorph zu R™.

Beweis. Sei m < n. Dann ist die Inklusion j : S™ C R™*! C R" eine injektive Abbildung.
Gébe es einen Hom6omorophismus h : R” — R™, so wére hoj : S™ — R™ ebenfalls injektiv
im Widerspruch zu Korollar

O

Derselbe Beweis liefert: Fiir m # n sind R™ und R™ nicht einmal lokal homéomorph. Ist
G C R™ offen, nicht leer und homéomorph zu einer offenen Teilmenge von R™, so folgt
m=n.
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10.4.8 Der Satz von Holditch

Wir schlieffen mit einer ebenso ,,harmlosen®“ wie hiibschen Anwendung des Satzes von Stokes
und der Umlaufzahl auf ein geometrisches Problem in der Ebene.

Satz 302 (Holditch). A rod CC’ of a given length has its two ends in the curve of an
ellipse and moved round, having a tracing point P, at the distances ¢ and ¢’ from its ends,
tracing a curve. The area contained between the curve and the ellipse = mec', and is therefore
independent of the ellipse.

Der Satz wurde von einem in der Mathematik weiter nicht bekannten Herrn Holditch unter
dem Pseudonym , Petrarch® als ,,Prize quest XV* in , The Lady’s and Gentleman’s Diary
for the Year of Our Lord 1857“ publiziert. Im néichsten Jahrgang findet man eine ,, General
solution® des ebenfalls weiter nicht bekannten W.S.B. Woolhouse, mit folgendem Ergebnis:

Let C,C" and P denote the areas of the curves described by those points respectively. Then

In obtaining this remarkable general formula we have assumed the curves to return into
themselves and the angle the rod makes with the x-axis to revolve through 2w, but in all
other respects the reasoning obviously holds good absolutely. It is not even mecessary that
the curves described by C, C' should have any algebraic equation. They may, indeed, be any
lines drawn at random.

Ich gebe eine moderne Formulierung dieses hiibschen Satzes. Siehe auch A. Broman, Hol-
ditch’s Theorem, Mathematics Magazine 54, 1981.

Definition 303. Seien c,cy,co : [0,1] — R? geschlossene C°°-Kurven.
(i) Setze &(s,t) := sci(t) + (1 — s)ea(t) fiir (s,t) € I? und definiere
A(cy, c2) = /dx A dy.

Ist ¢ im wesentlichen injektiv und orientierungstreu, so gibt A(cy, o) die Fliche von
¢(I%) an. Deshalb nennt man ¢ die algebraische Fliche zwischen ¢; und cs.

(ii) Setze

Ale) = /zdy = %/a:dy — ydzx.

Ist ¢: [0,1] — S*, so ist also A(c) = 3 [, +w™.
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Lemma 304.
A(Cl,Cg) = A(Cl) — A(Cg).

Ist insbesondere co konstant, so gilt A(c1) = A(cy, c2), und das ist die von ¢ eingeschlossene
algebraische Fléche.

Lemma 305. Definiert man (c1 + c2)(t) := c1(t) + c2(t), so gilt
B(ei,ca) = Aler 4+ c2) — Acr) — A(co)
= [oenoaytas [ @ontwon) v
Insbesondere ist B in jedem Argument homogen:

B()\Cl, Cg) = )\B(Cl, 62) = B(Cl7 )\62).

Satz 306 (Holditch/Woolhouse). Seien c1, ca : [0,1] — R? geschlossene C*°-Kurven
und ||ca — c1|| =1 > 0 konstant. Seien ly,ly € R mit 1y + 1o =1 und sei

c3:=cC1 + *1(02 — Cl).

l

Dann gilt
l1A(CQ) + lQA(Cl)
l

wobei n(7,0) die Umlaufzahl der Kurve

= A(cs) +n(y,0)mlilz,

Coy — C1

(also der ,Stabesrichtung®) um 0 ist.
Ist insbesondere A(c1) = A(ca), z.B. weil ¢1, co (wie bei der ersten Formulierung von Herrn
Holditch) bis auf eine Parameterverschiebung dieselbe Kurve sind, so folgt

A(cr,e3) = Aler) — A(es) = n(y)wlyls.

Beweis.

Aler) = Ales + ez — 1)

= Ales) + AR (e2 = ex)) + Bles, 2ea — 1))
= Ales) + 3A(Y) + 12B(es, )

Ebenso folgt

Alc1) = Ales — 171(02 —c1))

= A(cs) +2A(y) — 1 B(cs, ),

und daraus folgt durch Elimination von B die Behauptung. O
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