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5.1 Konvergenz und Vollständigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Rechenregeln für konvergente Folgen . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
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1 Die reellen Zahlen

Wir setzen die reellen Zahlen als gegeben voraus und schreiben zunächst auf, welche ihrer
Eigenschaften wir (ausschließlich) benutzen werden. Wir tun das in Form von

”
Axiomen“,

die wir in drei Gruppen zusammenfassen:

1. Die Rechenregeln für Addition und Multiplikation (Körperaxiome).

2. Die Rechenregeln für Ungleichungen (Anordnungsaxiome).

3. Die Vollständigkeit. Diese Gruppe enthält nur ein Axiom, das wir bis zum Abschnitt 5.1
zurückstellen. Es unterscheidet die reellen von den rationalen Zahlen und wird nötig,
wenn wir über Grenzwerte sprechen wollen.

Man kann auf einem sehr viel niedrigeren Niveau ansetzen, mit den sogenannten Peano-
Axiomen für die natürlichen Zahlen und aus diesen die ganzen, rationalen und reellen Zah-
len konstruieren und ihre Eigenschaften beweisen; aber das kostet mehr Zeit, als wir zur
Verfügung haben. Vergleichen Sie dazu das hübsche Büchlein von Edmund Landau.
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1.1 Die Körperaxiome

Wir bezeichnen die Menge der reellen Zahlen mit R. Wir setzen voraus, dass darin eine
Addition und eine Multiplikation gegeben sind, die je zwei reellen Zahlen a, b ∈ R eine neue
reelle Zahl a+ b bzw. ab zuordnen und folgende Eigenschaften haben:

1. Axiome für die Addition

(A1) Für alle a, b, c ∈ R gilt

a+ (b+ c) = (a+ b) + c. (Assoziativgesetz)

(A2) Es gibt eine eindeutig bestimmte Zahl 0 ∈ R, so dass für alle a ∈ R gilt:

(i) a+ 0 = a. (Neutrales Element der Addition)

(ii) Es gibt genau ein b ∈ R mit a+ b = 0. (Additives Inverses)

(A3) Für alle a, b ∈ R ist

a+ b = b+ a. (Kommutativgesetz)

2. Axiome für die Multiplikation

(M1) Für alle a, b, c ∈ R gilt

a(bc) = (ab)c. (Assoziativgesetz)

(M2) Es gibt eine eindeutig bestimmte Zahl 1 ∈ R\{0}, so dass für alle a ∈ R gilt:

(i) a1 = a. (Neutrales Element der Multiplikation)

(ii) Falls a 6= 0, gibt genau ein b ∈ R mit ab = 1. (Multiplikatives Inverses)

(M3) Für alle a, b ∈ R ist

ab = ba. (Kommutativgesetz)

3. Distributivgesetz

(D) Für alle a, b, c ∈ R gilt
(a+ b)c = ac+ bc.

Das additive Inverse von a bezeichnen wir mit −a, das multiplikative Inverse mit 1
a oder

a−1. Beachten Sie, dass nur für a 6= 0 ein multiplikatives Inverses existiert, so dass 1
0 nicht

erklärt ist.

Statt der Menge der reellen Zahlen hätten wir zum Beispiel auch die Menge Q der rationalen
Zahlen oder die Menge C der komplexen Zahlen nehmen können, auch dafür gelten die
vorstehenden Axiome. Allgemein nennt man eine Menge, in der eine

”
Addition“ und eine

”
Multiplikation“ mit den obigen Axiomen erklärt sind, einen Körper.

Aus diesen Axiomen folgen die Ihnen vertrauten Rechenregeln für die beiden Grundrechen-
arten. Wir geben zwei Beispiele

Beispiel 1. Zunächst gilt
0c =

A2.i
(0 + 0)c =

D
0c+ 0c. (1)
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Jetzt
”
ziehen wir auf beiden Seiten 0c ab“.

0 =
A2.ii

0c+ (−(0c)) =
(1)

(0c+ 0c) + (−(0c)) =
A1

0c+ (0c+ (−(0c))) =
A2.ii

0c+ 0 =
A2.i

0c

Also haben wir bewiesen, dass für alle c ∈ R

0c = 0. (2)

Beispiel 2.
ab+ (−a)b =

D
(a+ (−a))b =

A2.ii
0b =

(2)
0.

Andrerseits ist
ab+ (−(ab)) =

A2.ii
0.

Aus der Eindeutigkeit im Axiom A2.ii folgt daher für alle a, b ∈ R

(−a)b = −(ab).

Weiter kann man beweisen, dass die Gleichung

ax = b

für a 6= 0 und beliebiges b genau eine Lösung x hat, nämlich x = b(a−1), wofür wir auch b
a

schreiben.

Ebenso schreiben wir a− b für a+ (−b).
Weitere Beispiele für Rechenregeln, die aus den Axiomen folgen:

−(−a) = a,

a

b
+
c

d
=
ad+ bc

bd
,

ab = 0 =⇒ a = 0 oder b = 0,

(−a) + (−b) = −(a+ b).
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1.2 Die Anordnungsaxiome

Die Anordnungsaxiome regeln das Rechnen mit Ungleichungen. Wir setzen voraus, dass für
je zwei reelle Zahlen a, b ∈ R die Aussage

”
a ist kleiner als b“, geschrieben a < b entweder

wahr oder falsch ist, und dass die folgenden Axiome gelten:

Anordnungsaxiome

(O1) Für alle a, b ∈ R ist genau eine der folgenden Aussagen wahr:

a < b, b < a, a = b. (Trichotomie)

(O2) Für alle a, b, c ∈ R gilt

a < b und b < c =⇒ a < c. (Transitivität)

(O3) Für alle a, b, c ∈ R gilt

a < b =⇒ a+ c < b+ c. (Additive Monotonie)

(O4) Für alle a, b, c ∈ R mit 0 < c gilt

a < b =⇒ ac < bc. (Multiplikative Monotonie)

Reelle Zahlen a mit 0 < a heißen positiv, solche mit a < 0 negativ.

Statt a < b schreibt man auch b > a und sagt
”
b ist größer als a“.

Man schreibt a ≤ b, gelesen
”
a kleiner (oder) gleich b“, falls a < b oder a = b. Entsprechend

ist a ≥ b erklärt.

Wieder folgt aus diesen Axiomen eine Fülle weiterer mehr oder weniger bekannter Regeln.

Beispiel 3. Wir zeigen
a > 0 =⇒ −a < 0.

Nach (O3) folgt nämlich aus der Voraussetzung 0 < a, dass

0 + (−a) < a+ (−a),

also −a < 0. Ebenso zeigt man
a < 0 =⇒ −a > 0.

Beispiel 4. Bei Multiplikation mit negativen Zahlen kehren Ungleichungen sich um:

x < y und a < 0 =⇒ ax > ay.

Nach dem letzten Beispiel ist −a > 0 und daher nach (O4)

(−a)x < (−a)y, d.h. − ax < −ay.

Nach (O3) können wir dazu ax+ ay addieren und erhalten

−ax+ ax+ ay < −ay + ax+ ay,

also ay < ax wie behauptet.
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Beispiel 5. Sei a ∈ R. Ist a > 0, so folgt aus (O4)

0 = 0a < aa =: a2.

Ist andrerseits a < 0, so folgt aus dem letzten Beispiel

a2 = aa > 0a = 0.

Damit haben wir gezeigt:

a 6= 0 =⇒ a2 > 0.

Insbesondere ist 1 = 1 · 1 > 0 und daher −1 < 0.

Beispiel 6. Nur nicht-negative Zahlen b ≥ 0 können nach dem vorstehenden Beispiel eine
Quadratwurzel in R besitzen. Genauer: Die Gleichung

x2 = b (3)

hat allenfalls für b ≥ 0 Lösungen. Wieviele? Ist a2 = b, so ist natürlich auch (−a)2 = b, und
wir behaupten, dass das alle möglichen Lösungen sind, d.h. dass die Gleichung (3) höchstens
2 Lösungen hat. Ist nämlich

a2 = b und c2 = b,

so folgt
0 = a2 − c2 = (a+ c)(a− c).

Also ist c = a oder c = −a. Insbesondere hat die Gleichung für nicht-negatives b höchstens
eine nicht-negative Lösung a ≥ 0. Gegebenenfalls nennt man die dann die (Quadrat)Wurzel√
b aus b. Dass wirklich jedes reelle b ≥ 0 eine Quadratwurzel besitzt, werden wir später

sehen.

Ein Körper, in dem eine
”
<“-Beziehung mit den obigen Axiomen gegeben ist, nennt man

einen angeordneten Körper. In den rationalen Zahlen Q hat man
”
dieselbe“ Anordnung

wie in den reellen Zahlen gegeben. Aber im Körper C der komplexen Zahlen gibt es keine
Anordnung mit den obigen Axiomen. Sonst wäre nämlich nach dem eben Bewiesenen 0 >
−1 = i2 > 0. Widerspruch!

Mittels
”
<“ kann man den Betrag reeller Zahlen definieren:

Definition 7 (Betrag). Für a ∈ R sei

|a| :=

{

a falls a ≥ 0,

−a falls a < 0.

|a| liest man
”
a absolut“ oder

”
Betrag a“.

Offenbar ist
| − a| = |a|.

Ist a < 0, so ist −a > 0, also
a < 0 < −a = |a|.

Ist andrerseits a ≥ 0, so ist a ≤ |a|, in Wahrheit nämlich a = |a|. Also gilt für alle a, dass
a ≤ |a|. Ebenso zeigt man −|a| ≤ a für alle a. Damit gilt für alle a ∈ R

−|a| ≤ a ≤ |a|.
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Wir führen einige weitere Eigenschaften des Betrags als Satz auf:

Satz 8 (Betrag). Für alle a, b ∈ R gilt

|a| ≥ 0 mit |a| = 0 genau dann, wenn a = 0,

|ab| = |a| |b|,
|a+ b| ≤ |a| + |b|. (Dreiecksungleichung)

Beweis. Wir zeigen nur die Dreiecksungleichung, der Beweis der beiden anderen Aussagen
ist sehr leicht.

Aus a ≤ |a| (und b ≤ |b|) folgt
a+ b ≤ |a| + |b|,

und aus −a ≤ |a| (und −b ≤ |b|) folgt

−(a+ b) ≤ |a| + |b|,

Eine der beiden linken Seiten ist aber = |a + b|, und damit ist die Dreiecksungleichung
bewiesen.

Für das Abschätzen von Differenzen ist folgende Ungleichung nützlich:

Korollar 9. Für alle a, b ∈ R gilt

||b| − |a|| ≤ |b− a|.

Beweis. Nach der Dreiecksungleichung gilt

|b| = |a+ (b− a)| ≤ |a| + |b− a|,

also
|b| − |a| ≤ |b− a|.

Daraus folgt unter Vertauschung von a und b

−(|b| − |a|) = |a| − |b| ≤ |a− b| = |b− a|.

Wieder ist ||b| − |a|| = (|b| − |a|) oder ||b| − |a|| = −(|b| − |a|), und aus einer der beiden
letzten Ungleichungen ergibt sich die Behauptung.

Mit der Anordnungsbeziehung definiert man wichtige Teilmengen von R:

Definition 10 (Intervalle). Eine Teilmenge J ⊂ R heißt ein Intervall, wenn sie mit je
zwei

”
Punkten“ auch alle dazwischen liegenden enthält:

J Intervall ⇐⇒ ∀u,v,x∈R(u < x < v und u ∈ J und v ∈ J =⇒ x ∈ J).

Beispiel 11. Seien a, b ∈ R und

[a, b] := {x ∈ R | a ≤ x ≤ b}.
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Ist b = a, so besteht [a, b] nur aus dem Punkt a, ist b < a, so ist [a, b] die leere Menge ∅.
In jedem Fall ist [a, b] ein Intervall. Sind nämlich u, x, v ∈ R mit u ∈ [a, b], v ∈ [a, b] und
u < x < v so folgt

a ≤ u < x < v ≤ b,

also a ≤ x ≤ b nach der Transitivität.

Ebenso sieht man, dass die Mengen

]a, b[ := {x ∈ R | a < x < b},
]a, b] := {x ∈ R | a < x ≤ b},
[a, b[ := {x ∈ R | a ≤ x < b},

]a,∞[ := {x ∈ R | a < x},
[a,∞[ := {x ∈ R | a ≤ x},

] −∞, b[ := {x ∈ R |x < b},
] −∞, b] := {x ∈ R |x ≤ b},

] −∞,∞[ := R

Intervalle sind.

Man nennt [a, b] das abgeschlossene oder kompakte Intervall zwischen a und b.

Intervalle der Form ]., .[ heißen offen, Intervalle der Form [., .[ oder ]., .] halboffen.

Es ist wahr, aber aus den bisher angeführten Axiomen noch nicht beweisbar, dass jedes
Intervall in R von einem dieser Typen ist.

Übungsaufgabe. Finden Sie die Mathematische Fachbibliothek und in dieser das Analysis-
Buch von S. Hildebrandt. Lesen Sie darin Seite 1-8.
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1.3 Natürliche Zahlen und vollständige Induktion

Eine wichtige Teilmenge der reellen Zahlen bilden die natürlichen Zahlen, die wir jetzt
definieren wollen.

Definition 12. Eine Teilmenge N ⊂ R heißt induktiv, wenn für sie gilt:

1. 0 ∈ N

2. Ist a ∈ N , so ist auch a+ 1 ∈ N .

Beispiel 13. Die Menge N = R ist trivialerweise induktiv.

Weil 0 < 1, ist a < a+ 1 für alle a ∈ R. Daher ist N = [0,+∞[ eine induktive Menge.

Es ist klar, dass eine induktive Menge mindestens die reellen Zahlen 0, 1, 1 + 1, 1 + 1 + 1, . . .
enthalten muss: Eben die natürlichen Zahlen nach unserem naiven Verständnis.

Lemma 14. Der Durchschnitt von beliebig vielen induktiven Mengen ist wieder induktiv.

Beweis. Sei I eine Menge und (Ni)i∈I eine Familie von induktiven Mengen und

N :=
⋂

i∈I
Ni := {x ∈ R |x ∈ Ni für alle i ∈ I}.

Weil 0 ∈ Ni für alle i ∈ I, ist 0 ∈ N .

Ist weiter a ∈ N ,also a ∈ Ni für alle i ∈ I, so ist auch a + 1 in Ni für alle i ∈ I, also
a+ 1 ∈ N .

Definition 15 (Natürliche Zahlen). Die Menge der natürlichen Zahlen ist definiert als
Durchschnitt aller induktiven Teilmengen von R:

N :=
⋂

R⊃N induktiv

N.

Sie ist also die kleinste induktive Menge. Insbesondere ist n ≥ 0 für alle n ∈ N, weil [0,∞[
induktiv ist.

Bemerkung. Die Literatur ist sich nicht einig, ob N die 0 einschließt oder nicht. Die DIN-
Norm DIN 5473 oder der Forster meinen ”ja”, und das wollen wir hier übernehmen. Der
Barner/Flohr bezeichnet diese Menge mit N0.

Definition 16. Die Menge
Z := N ∪ {−n |n ∈ N}

heißt die Menge der ganzen Zahlen.

Die Menge

Q := {p
q
| p ∈ Z ∧ q ∈ N\{0}}

heißt die Menge der rationalen Zahlen.
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Satz 17 (Vollständige Induktion). Sei W ⊂ N eine Teilmenge mit folgenden Eigen-
schaften:

1. 0 ∈W

2. Ist a ∈W , so ist auch a+ 1 ∈W .

Dann gilt W = N.

Beweis. Der Beweis ist trivial: Offenbar ist W eine induktive Menge. Weil N nach Definition
in jeder induktiven Menge enthalten ist, ist daher N ⊂ W . Nach Voraussetzung ist aber
W ⊂ N, also W = N.

Dieser Satz ist ein wichtiges Beweismittel, er ermöglicht Beweise über Aussagen für natürliche
Zahlen durch die sogenannnte

Vollständige Induktion: Für jedes n ∈ N sei A(n) eine Aussage. Kann man zeigen, dass sie

1. für n = 0 wahr ist und

2. für n+ 1 wahr ist, falls sie für n wahr ist,

so folgt, dass sie für alle n ∈ N wahr ist: Man setze einfach

W := {n ∈ N |A(n) ist wahr}.

Dann ist W ⊂ N induktiv, also W = N nach Satz 17.

Für Beispiele zur vollständigen Induktion ist es hilfreich, Addition und Multiplikation in
den reellen Zahlen nicht nur für zwei, sondern für eine beliebige Anzahl n ∈ N von Sum-
manden bzw. Faktoren zu haben.1 Die offensichtlichen Verallgemeinerungen von Assoziativ-
gesetz, Kommutativgesetz und Distributivgesetz auf diese Fälle beweist man ebenfalls mit
vollständiger Induktion.

Wir stellen hier die Eigenschaften des Summen- und Produktzeichens zusammen:

Seien m ≤ n ganze Zahlen und für jedes k ∈ Z mit m ≤ k ≤ n sei ak eine reelle Zahl. Dann
setzt man

n∑

k=m

ak := am + am+1 + . . .+ an,

n∏

k=m

ak := amam+1 . . . an.

Ist m > n, so vereinbart man

n∑

k=m

ak := 0,

n∏

k=m

ak := 1.

1 Die exakte Definiton dieser Operationen über den sogenannten Rekursionssatz benutzt selbst die
vollständige Induktion. Wir gehen darauf nicht ein, vgl. Barner/Flohr, §2.3
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Insbesondere setzt man für n ∈ N und a ∈ R

an :=
n∏

k=1

a = a · . . . · a

und erhält
a0 := 1.

Zurück zur vollständigen Induktion. Wir geben Beispiele:

Beispiel 18. Für alle n ∈ N gilt

n∑

k=1

k =
n(n+ 1)

2
.

Beweis. Durch vollständige Induktion.

Induktionsanfang: n = 0. Nach Definition ist

0∑

k=1

k = 0.

Andrerseits ist
0(0 + 1)

2
= 0.

Also ist die Aussage für n = 0 wahr.

Induktionsschritt: n→ (n+ 1). Wir nehmen an, dass die Aussage für n wahr sei, dass also
gilt

n∑

k=1

k =
n(n+ 1)

2
.

Zu zeigen: Dann ist sie auch für n+ 1 gültig, d.h. es gilt auch

n+1∑

k=1

k =
(n+ 1)(n+ 2)

2
.

Das zeigen wir so:
n+1∑

k=1

k =

(
n∑

k=1

k

)

+ (n+ 1).

Nach unserer Induktionsannnahme können wir den ersten Summanden rechts ersetzen:

n+1∑

k=1

k =
n(n+ 1)

2
+ (n+ 1) =

n(n+ 1) + 2(n+ 1)

2
=

(n+ 1)(n+ 2)

2
.

Beispiel 19 (Bernoullische Ungleichung). Für alle x > −1 und n ∈ N ist

(1 + x)n ≥ 1 + nx.

Beweis durch vollständige Induktion.

16



n = 0. Dann ist

(1 + x)0 = 1,

1 + 0 · x = 1.

Also stimmt die Behauptung.

n→ (n+ 1). Es gelte bereits
(1 + x)n ≥ 1 + nx.

Dann folgt durch Multiplikation mit der (positiven!) Zahl 1 + x

(1 + x)n+1 = (1 + x)n(1 + x) ≥ (1 + nx)(1 + x) = 1 + (n+ 1)x+ nx2 ≥ 1 + (n+ 1)x.

Als nächstes Beipiel wollen wir die allgemeine Binomialformel beweisen. Dafür noch zwei
Definitionen:

Definition 20 (Fakultät). Wir definieren n Fakultät durch

n! := 1 · 2 · . . . · n =
n∏

k=1

k (n ∈ N).

Insbesondere ist 0! =
∏0
k=1 k = 1. Durch vollständige Induktion(!) kann man zeigen, dass

man n! interpretieren kann als die Anzahl der Möglichkeiten, n Dinge linear anzuordnen
(=Anzahl der Permutationen von n Elementen).

Definition 21 (Binomialkoeffizienten). Für n, k ∈ N, 1 ≤ k ≤ n definieren wir

(
n

k

)

:=
n(n− 1) · . . . · (n− k + 1)

1 · 2 · . . . · k .

Das hat im Zähler wie im Nenner ein Produkt von k Faktoren. Wir setzen weiter

(
n

k

)

:=

{

1 für k = 0,

0 für k ∈ Z \N.

Offenbar gilt
(
n

n

)

= 1,

(
n

k

)

= 0 für k > n.

Weiter ist für alle n ∈ N, k ∈ Z

(
n

k

)

=

(
n

n− k

)

, (4)

(
n

k − 1

)

+

(
n

k

)

=

(
n+ 1

k

)

. (5)

Für 1 ≤ k ≤ n ist nämlich
(
n

k

)

=
n(n− 1) · . . . · (n− k + 1)(n− k) . . . 1

k!(n− k)!
=

n!

k!(n− k)!
=

(
n

n− k

)

,

und das beweist (4) in diesem Fall. Die Fälle k = 0, k < 0, k > n kann man im Kopf
nachprüfen.
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Die Formel (5) beweist man ähnlich: zunächst mit Hilfe von (4)für 2 ≤ k ≤ n, und dann die
Fälle k = 1, k = 0, k < 0 und k = n+ 1, k > n+ 1 im Kopf.

Die Formel (5) ist eine
”
Rekursionformel“: Wenn man alle

(
n
k

)
für ein gewisses n schon hat,

so kann man daraus sehr einfach die
(
n+1
k

)
berechnen, nämlich gerade so, wie man es beim

Pascalschen Dreieck tut:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Das liefert also gerade die Binomialkoeffizienten.

Satz 22 (Binomialsatz). Für n ∈ N und a, b ∈ R gilt

(a+ b)n =
n∑

k=0

(
n

k

)

an−kbk.

Beweis. Wir beweisen den Satz durch vollständige Induktion:

n = 0.

(a+ b)0 = 1

0∑

k=0

(
n

k

)

an−kbk =

(
0

0

)

a0b0 = 1.

Also gilt die Formel für n = 0.

n→ (n+ 1). Wir nehmen also an, dass

(a+ b)n =
n∑

k=0

(
n

k

)

an−kbk (6)

für ein bestimmtes n gilt, und wollen zeigen, dass dann

(a+ b)n+1 =
n+1∑

k=0

(
n+ 1

k

)

an+1−kbk. (7)
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Nun ist

(a+ b)n+1 =(a+ b)(a+ b)n

=
(6)

(a+ b)
n∑

k=0

(
n

k

)

an−kbk

=

n∑

k=0

(
n

k

)

an+1−kbk +
n∑

k=0

(
n

k

)

an−kbk+1

=
(∗)

n∑

k=0

(
n

k

)

an+1−kbk +
n+1∑

k=1

(
n

k − 1

)

an−k+1bk

=
(∗∗)

n+1∑

k=0

(
n

k

)

an+1−kbk +

n+1∑

k=0

(
n

k − 1

)

an−k+1bk

=
n∑

k=0

((
n

k

)

+

(
n

k − 1

))

an+1−kbk

=
(7)

+
n+1∑

k=0

(
n+ 1

k

)

an+1−kbk + bn+1

=
n+1∑

k=0

(
n+ 1

k

)

an+1−kbk.

Daraus folgt (7). Überlegen Sie sich, dass bei der mit (*) gekennzeichneten Gleichung die
zweiten Summen auf beiden Seiten gleich sind, dass also die

”
Indexverschiebung“ den Wert

der Summe nicht ändert. Bei der Gleichheit (∗∗) haben wir benutzt, dass
(
n
n+1

)
= 0 =

(
n
−1

)
.

Beispiel 23. Die Anzahl der k-elementigen Teilmengen einer n-elementigen Menge ist
(
n
k

)
.

Beweis. Beim Ausmultiplizieren von

(a+ b)n = (a+ b)(a+ b) . . . (a+ b)
︸ ︷︷ ︸

n Faktoren

erhält man die Summe von allen Produkten, die aus k Klammern den Faktor b und aus
(n − k) Klammern den Faktor a auswählen. Für festes k liefert das gerade

(
n
k

)
-mal das

Monom an−kbk. So viele Möglichkeiten gibt es also zur Auswahl von k
”
b-Klammern“.

Eine ganze Reihe von Eigenschaften der natürlichen Zahlen, die Ihnen selbstverständlich
vorkommen, sind auf dem Hintergrund unserer Definition gar nicht selbstverständlich:

• Warum sind die Summe oder das Produkt von zwei natürlichen Zahlen wieder eine
solche?

• Warum folgt aus m,n ∈ N und m ≤ n, dass n−m ∈ N?

Diese Aussagen lassen sich aber (mit vollständiger Induktion) aus unseren Axiomen bewei-
sen, vgl. Barner/Flohr.

Als Konsequenz ergibt sich, dass für jedes n0 ∈ N

{
n ∈ N

∣
∣n ≥ n0

}
=
{
m+ n0

∣
∣m ∈ N

}
.
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Hieraus folgt ziemlich leicht eine öfter benutzte

Variante der vollständige Induktion: Sei n0 ∈ N und sei B(n) eine Aussage, die für
jede natürliche Zahl n ≥ n0 wahr oder falsch ist. Kann man zeigen, dass sie

1. für n = n0 wahr ist und

2. für n+ 1 wahr ist (n ≥ n0), falls sie für n wahr ist,

so folgt, dass sie für alle natürlichen Zahlen n ≥ n0 wahr ist.

Etwas kniffliger, aber ebenfalls mit der Methode der vollständigen Induktion, zeigt man:

Satz 24 (Wohlordnungsprinzip). Jede nichtleere Menge natürlicher Zahlen besitzt ein
kleinstes Element.

Beweis. Vgl. Barner/Flohr.

Dagegen läßt sich der folgende Satz aus den bisherigen Axiomen für die reellen Zahlen nicht
beweisen, der Körper der hyperreellen Zahlen der Nonstandard-Analysis ist ein angeordneter,
aber nicht archimedisch-angeordneter Körper. Wir führen den Satz hier an, weil er manchmal
als weiteres Anordnungsaxiom fungiert. Vergleichen Sie den Abschnitt 5.1.

Satz 25 (Archimedisches Prinzip). Zu jeder reellen Zahl x ∈ R gibt es ein n ∈ N mit

x < n.

Für den Beweis vergleiche Satz 67.

Wir sind also mit der Axiomatik der reellen Zahlen noch nicht fertig, aber fürs erste ist das
nicht weiter schlimm: Über weite Strecken scheint es, als könnten wir mit den bisherigen
Axiomen schon alles tun, was wir mit den reellen Zahlen vorhaben. Also machen wir erst
einmal unbeschwert weiter.

Im Kapitel 5 werden wir dann allerdings mit der dringenden Notwendigkeit konfrontiert,
unser Axiomensystem durch das Vollständigkeitsaxiom zu vervollständigen.
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2 Die komplexen Zahlen

Weil wir bewiesen haben, dass das Quadrat einer reellen Zahl immer ≥ 0 ist, gibt es kein
x ∈ R mit x2 = −1. Die komplexen Zahlen erhält man durch

”
Erweiterung“ der reellen

Zahlen um Ausdrücke der Form x+ iy, wobei x, y ∈ R und i eine Zahl(?) mit

i2 = −1

ist. Das klingt mysteriös, wenn nicht gar unsinnig. Woher soll denn dieses i kommen?

Seit dem 16. Jahrhundert benutzten Mathematiker die komplexen Zahlen und zwar nicht
um x2 = −1 lösen zu können, das wäre ihnen wirklich als unsinnig erschienen. Vielmehr
traten die

”
imaginären“, also

”
(nur) eingebildeten Zahlen“ zunächst als Hilfskonstruktion

bei der Lösung von Gleichungen dritten Grades der Form x3 + px+ q = 0 auf. Dafür hatte
man folgende Formel gefunden: Man bildet D = (p3 )3 + ( q2 )2 und daraus

u± := 3

√

−q
2
±
√
D.

Dann gibt x1 = u+ + u− eine Lösung. Sie wissen aus der Schule, dass man dann durch
Division mit (x − x1) auf eine quadratische Gleichung kommt, die

”
im allgemeinen“ zwei

weitere Nullstellen der Gleichung liefert.

Beispiel 26 (Kubische Gleichungen und komplexe Zahlen). Wir betrachten

x3 − 15x− 4 =: x3 + px+ q = 0.

Nach den Cardanischen Formeln bildet man zunächst

D = (
p

3
)3 + (

q

2
)2 = (−5)3 + (−2)2 = −121

und

u± = 3

√

−q
2
±

√
D = 3

√
2 ± 11i = 2 ± i.

Daraus erhalten wir eine makellos reelle Nullstelle

x1 = u+ + u− = 4.

Auch Leonhard Euler (1707-1783) benutzte komplexe Zahlen auf diese Weise und fand seine berühmte Formel

eix = cos x + i sin x.

Die hat wiederum sehr praktische Konsequenzen: Wegen

cos(x + y) + i sin(x + y) = ei(x+y) = eixeiy

= (cos x + i sin x)(cos y + i sin y) = (cos x cos y − sin x sin y) + i(cos x sin y + sin x cos y)

sind die etwas komplizierten Additionstheoreme

cos(x + y) = cos x cos y − sin x sin y, sin(x + y) = cos x sin y + sin x cos y

nichts anderes als die simple (allerdings komplexe) Formel

eix+iy = eixeiy.

Vergleichen Sie dazu die Abschnitte 8.6 und 10.9.

Seit Mitte des 19. Jahrhunderts gibt es komplexe Zahlen nun aber doch! Sie sind ebenso
real wie die reellen Zahlen (– oder ebenso nur ein Produkt des menschlichen Geistes wie die
letzteren). C.F. Gauß hat klargestellt, dass, wenn man sich die reellen Zahlen als Punkte
auf dem Zahlenstrahl vorstellt, die komplexen Zahlen einfach die Punkte einer Ebene sind,
die die reelle Zahlengerade enthält. Die

”
Zahl“ x + iy ist dann einfach der Punkt mit den

Koordinaten (x, y). Man muss nur erklären, wie man Punkte in der Ebene addiert und
multipliziert (so wie man das früher für Punkte auf der Zahlengeraden tun musste).
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Definition 27 (Der Körper C). Sei

C := {(x, y) |x, y ∈ R}

die Menge der geordneten Paare reeller Zahlen. Wir definieren in C eine Addition, also eine
Abbildung

.+ . : C × C → C

vermöge
(x1, y1) + (x2, y2) := (x1 + x2, y1 + y2)

und eine Multiplikation vermöge

(x1, y1)(x2, y2) := (x1x2 − y1y2, x1y2 + x2y1).

Dann rechnet man nach, dass die Körperaxiome (A1) - (A3), (M1) - (M3) und (D) gelten.
Insbesondere ist (0, 0) das neutrale Element der Addition, (1, 0) das neutrale Element der
Multiplikation und für (x, y) 6= (0, 0) ist das multiplikative Inverse gegeben durch

(x, y)−1 = (
x

x2 + y2
,

−y
x2 + y2

).

C mit diesen Operationen heißt der Körper der komplexen Zahlen.

Die Einbettung der reellen Zahlen in die komplexen Zahlen. Nach der bisherigen
Definition ist R ∩ C = ∅. Aber man hat

(x1, 0) + (x2, 0) = (x1 + x2, 0), (x1, 0)(x2, 0) = (x1x2, 0).

Schreibt man also einfach x1 statt (x1, 0), so fallen reelle und komplexe Rechenoperatio-
nen zusammen. Wir können daher die reellen Zahlen als Teilmenge der komplexen Zahlen
interpretieren, indem wir zwischen x und (x, 0) nicht mehr unterscheiden. Dann gilt für
x1, y1, x2 ∈ R zum Beispiel

(x1, y1)x2 = (x1, y1)(x2, 0) = (x1x2, x2y2).

Setzen wir weiter
i := (0, 1),

so gilt

(x, y) = (x, 0) + (0, y) = x+ (0, 1)y = x+ iy.

Jede komplexe Zahl z ∈ C läßt sich also eindeutig in der Form

z = x+ iy

mit reellen(!) x und y schreiben. Man nennt

x = Re z

den Realteil und
y := Im z

den Imaginärteil von z. Der Imaginärteil ist also reell. Zahlen der Form iy mit y ∈ R heißen
auch (rein) imginär.

Wunderbarer Weise ist nun nach der Definition der Multiplikation

i2 = (0, 1)(0, 1) = (02 − 12, 0 · 1 + 1 · 0) = (−1, 0) = −1.
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Der Betrag einer komplexen Zahl. Für komplexe Zahlen gibt es keine Anordnung mit
den Axiomen (O1) - (O4), denn dann wäre i2 > 0. Aber man definiert für z ∈ C (im Vorgriff
auf die später zu definierende Wurzelfunktion) den Betrag als

|z| :=
√

(Re z)2 + (Im z)2.

Weil der Betrag reell ist, machen Ungleichungen über den Betrag komplexer Zahlen Sinn
und werden viel benutzt. Für den Betrag kann man die Eigenschaften aus Satz 8 nachweisen:

Satz 28. Für alle z, z1, z2 ∈ C gilt

|z| ≥ 0 mit Gleichheit nur für z = 0,

|z1z2| = |z1| |z2|,
|z1 + z2| ≤ |z1| + |z2|.

Wir kommen darauf später zurück und schließen mit einem Bild der sogenannten Gaußschen
Zahlenebene:

x

i y
z=x+iy

i

1

|z|
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3 Mengen und Abbildungen

Wir setzen den (naiven) Mengenbegriff und die elementaren Begriffe und Bezeichnungswei-
sen der Mengenlehre voraus. Sie sollten die in dem folgenden Beispiel zusammengestellten
Aussagen verstehen können.

Beispiel 29. Seien X,Y, Z Mengen.

1. X ⊂ Y ⇐⇒ ∀x∈X x ∈ Y .

2. X ⊂ Y ∧ Y ⊂ Z =⇒ X ⊂ Z.

3. X ⊂ Y ⇐⇒ Y ⊃ X.

4. X ⊂ X.
So wollen wir das Symbol

”
⊂“ verwenden, es schließt mögliche Gleichheit ein.

Andernorts finden Sie dafür
”
⊆“.

5. X ⊂ Y ∧X 6= Y ⇐⇒ X ( Y .

6. X ∩ Y 6= ∅ ⇐⇒ ∃x x ∈ X ∧ x ∈ Y .

7. X ∪ Y = {x |x ∈ X ∨ x ∈ Y }.

8. Ist A eine Menge und für jedes α ∈ A eine Menge Xα gegeben, so nennt man (Xα)α∈A
auch eine Familie von Mengen mit Indexmenge A.

⋃

A

Xα = {x | ∃α∈A x ∈ Xα}.

9. P(X) := {Y |Y ⊂ X} heißt die Potenzmenge von X.

10. P({1, 2}) = {∅, {1}, {2}, {1, 2}}.

11. x ∈ X ⇐⇒ {x} ⊂ X ⇐⇒ {x} ∈ P(X).

12. X × Y := {(x, y) |x ∈ X ∧ y ∈ Y } heißt das kartesische Produkt der Mengen X und
Y . Seine Elemente sind die geordneten Paare (x, y) mit x ∈ X und y ∈ Y .

Analog definiert man das kartesische Produkt von mehr als zwei Mengen:

X1 × . . .×Xn := {(x1, . . . , xn) |xi ∈ Xi für alle i ∈ {1, . . . , n}}.

13. Mit #X bezeichnen wir die Anzahl der Elemente oder die Mächtigkeit von X. Zum
Beispiel ist #{1, . . . , n} = n oder #N = ∞.

Eine Abbildung
f : X → Y

von der Menge X in die Menge Y ist eine Vorschrift, die jedem Element x ∈ X genau ein
Element f(x) ∈ Y zuordnet. Wir schreiben auch

f : X → Y, x 7→ f(x),

weil das die Möglichkeit gibt, die Wirkung von f zu beschreiben, etwa

f : R → R, x 7→ x2.
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Eine formalere Definition sieht so aus:

Seien X, Y Mengen. Eine Abbildung von X nach Y ist eine Teilmenge Γ ⊂ X × Y mit
folgender Eigenschaft: Zu jedem x ∈ X gibt es ein und nur ein y ∈ Y , so dass

(x, y) ∈ Γ.

Dieses y bezeichnet man dann als fΓ(x) und erhält eine
”
Abbildungsvorschrift“. Umgekehrt

liefert jede
”
Abbildungsvorschrift“ f : X → Y eine Teilmenge

Γf := {(x, y) |x ∈ X ∧ y = f(x) ∈ Y } ⊂ X × Y,

mit obiger Eigenschaft, den sogenannten Graphen von f .

Beispiel 30. (i) f : R → R, x 7→ x3.

(ii) Für X,Y beliebig und y ∈ Y hat man die konstante Abbildung vom Wert y:

f : X → Y, x 7→ y.

(iii) Für X beliebig hat man die identische Abbildung

idX : X → X, x 7→ x.

Definition 31. Sei f : X → Y eine Abbildung.

(i) Die Menge X heißt der Definitionsbereich, die Menge Y der Zielbereich oder Wertebe-
reich von f .

(ii) Für x ∈ X heißt f(x) das Bild von x unter f , kurz das f -Bild oder, wenn f klar ist,
einfach das Bild von x. Es heißt auch der Wert von f auf x oder an der Stelle x.

(iii) Die Menge
{
f(x)

∣
∣x ∈ X

}
⊂ Y

heißt die Wertemenge von f .

(iv) Für A ⊂ X heißt
f(A) := {f(x) |x ∈ A}

das Bild von A unter f .

(v) Für B ⊂ Y heißt
f−1(B) := {x | f(x) ∈ B} ⊂ X

das Urbild von B unter f . (Es kann = ∅ sein.)

Zwei Abbildungen f und g heißen gleich, wenn sie denselben Definitionsbereich X besitzen
und für alle x ∈ X

f(x) = g(x)

gilt.

Definition 32 (Einschränkung). Seien f : X → Y eine Abbildung und A ⊂ X. Dann
bezeichnen wir mit

f |A : A→ Y

die Abbildung, die jedem x ∈ A den Wert f(x) ∈ Y zuordnet. Also

f |A : A→ Y, x 7→ f(x).

f |A heißt die Einschränkung (oder Restriktion) von f auf A. Ist A 6= X, so gelten f und
f |A also als verschiedene Abbildungen, obwohl sie mit jedem x ∈ A

”
dasselbe machen“.
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Definition 33 (Injektiv, surjektiv, bijektiv). Sei f : X → Y eine Abbildung.

(i) f heißt injektiv, wenn eine der folgenden, äquivalenten Bedingungen erfüllt ist:

∀x1,x2∈X (x1 6= x2 =⇒ f(x1) 6= f(x2)) ,

∀x1,x2∈X (f(x1) = f(x2) =⇒ x1 = x2) ,

∀y∈Y #f−1({y}) ≤ 1.

(ii) f heißt surjektiv bezüglich B ⊂ Y oder surjektiv auf B, wenn

f(X) = B.

(iii) f heißt bijektiv bezüglich B ⊂ Y oder bijektiv auf B, wenn es injektiv und surjektiv
bezüglich B ist, d.h. wenn jedes y ∈ B das Bild genau eines x ∈ X ist.

Beispiel 34. Die Abbildung f : R → R, x 7→ x2 ist

• nicht injektiv, weil z.B. f(−3) = f(3) ist,

• nicht surjektiv bezüglich R, weil z.B. −13 ∈ R kein Wert von f ist,

• surjektiv bezüglich [0,+∞[.

• Weiter ist f |[0,+∞[ injektiv.

Definition 35 (Umkehrabbildung). Ist f : X → Y injektiv und setzt man B := f(X),
so ist f bijektiv bezüglich B. Zu jedem y ∈ B gibt es also genau ein x ∈ X mit f(x) = y.
Wir bezeichnen dieses x mit f−1(y) und haben damit eine Abbildung

f−1 : B → X

definiert, die die Umkehrabbildung von f heißt.

Die Umkehrabbildung existiert also nur für injektive Abbildungen f : X → Y , und ihr
Definitionsbereich ist f(X).

Die definierende Gleichung für f−1 (bei injektivem f) ist also

f−1(y) = x ⇐⇒ y = f(x). (8)

Man hat dann für alle x ∈ X

f−1(f(x)) = x. (9)

Beachten Sie: Das Symbol f−1 kommt in zwei verschiedenen Bedeutungen vor:

• Bei der Urbildmenge f−1(B). Dann ist das Argument eine Teilmenge von Y .

• Bei der Umkehrabbildung einer injektiven Abbildung f . Dann ist das Argument ein
Element aus f(X) ⊂ Y .

Im zweiten Fall gilt für alle y ∈ f(X)

f−1({y}) = {f−1(y)}.
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Lemma 36. Sei f : X → Y eine Abbildung. Dann gilt (natürlich!)

f−1(f(X)) = X.

Ist f injektiv, so ist auch f−1 : f(X) → X injektiv und

(f−1)−1 = f : X → f(X).

Beweis. Seien y1, y2 ∈ f(X) und f−1(yi) = xi für i = 1, 2. Nach (8) ist dann f(xi) = yi.
Daher gilt

f−1(y1) = f−1(y2) =⇒ x1 = x2 =⇒ y1 = f(x1) = f(x2) = y2.

Daher ist f−1 injektiv. Weiter gilt nach (8)

(f−1)−1(x) = f(x) ⇐⇒ x = f−1(f(x)),

aber die rechte Seite ist wahr nach (9).

Definition 37 (Komposition von Abbildungen). Seien

f : X → U und g : Y → V

zwei Abbildungen. Dann ist die Komposition von f mit g die folgende Abbildung

g ◦ f : f−1(Y ) → V, x 7→ g(f(x)).

Das ist nur interessant, wenn f−1(Y ) 6= ∅ (sonst erhält man die leere Abbildung), und
insbesondere im Fall U = Y . Dann ist nämlich f−1(Y ) = X.

Beispiel 38. Sei f : X → Y injektiv. Dann gilt

f−1 ◦ f = idX , f ◦ f−1 = idf(X) .

Lemma 39. Seien f : X → Y und g : Y → X zwei Abbildungen mit

g ◦ f = idX und f ◦ g = idY .

Dann ist f bijektiv bezüglich Y und g die Umkehrabbildung von f , also g = f−1.

Beweis. Ist f(x1) = f(x2), so folgt

x1 = (g ◦ f)(x1) = g(f(x1)) = g(f(x2)) = (g ◦ f)(x2) = x2.

Also ist f injektiv. Ist y ∈ Y und setzt man x = g(y) ∈ X, so ist

f(x) = f(g(y)) = y.

Also ist f(X) = Y und f surjektiv bezüglich Y . Damit ist f bijektiv bezüglich Y . Aus der
letzten Gleichung folgt zusammen mit der Definition der Umkehrabbildung sofort g = f−1.
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Definition 40 (Abzählbare Mengen). Eine Menge X heißt (höchstens) abzählbar, wenn
X = ∅ oder es eine surjektive Abbildung

N → X

von N auf X gibt. Andernfalls heißt sie überabzählbar.

Beispiel 41. Die Menge Q der rationalen Zahlen ist abzählbar.

Beweis. Mit dem sogenannten Cantorschen Diagonalverfahren beweisen wir zunächst, dass
die nicht-negativen rationalen Zahlen abzählbar sind. Dazu betrachten wir folgendes Schema:

1/1 2/1 3/1 4/1 . . .
1/2 2/2 3/2 . . .
1/3 2/3 3/3 . . .
1/4 2/4 3/4 . . .
...

und definieren eine Abbildung f : N → Q, indem wir den Diagonalen in diesem Schema
folgen: Wir setzen

f(0) := 0

f(1) := 1/1

f(2) := 1/2, f(3) := 2/1

f(4) := 1/3, f(5) := 2/2, f(6) := 3/1

f(7) := 1/4, f(8) := 2/3, f(9) := 3/2, f(10) = 4/1

. . .

Das definiert offensichtlich eine surjektive Abbildung von N auf die nicht-negativen ratio-
nalen Zahlen. Ebenso beweist man, dass die Menge der nicht-positiven rationalen Zahlen
abzählbar ist. Nun müsste man noch wissen, dass die Vereinigung zweier abzählbarer Men-
gen abzählbar ist. Wir zeigen allgemeiner, dass die Vereinigung

⋃

i∈I
Xi

abzählbarer Mengen Xi abzählbar ist, wenn auch die Indexmenge I abzählbar ist. Das
geht ebenfalls mit dem Cantorschen Diagonalverfahren: Ist g : N → I surjektiv und sind
fk : N → Xk für alle k ∈ N surjektive Abbildungen, so erhält man eine surjektive Abbildung

f : N →
⋃

i∈I
Xi

durch
”
Verfolgen“ der Diagonalen in dem Schema

fg(0)(0) fg(0)(1) fg(0)(2) fg(0)(3) . . .
fg(1)(0) fg(1)(1) fg(1)(2) fg(1)(3) . . .
fg(2)(0) fg(2)(1) fg(2)(2) fg(2)(3) . . .

...

Ein ähnliches Verfahren liefert später auch einen Beweis dafür, dass die Menge der reellen
Zahlen überabzählbar ist.
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4 Elementares über Funktionen

Funktionen sind eigentlich nichts anderes als Abbildungen, aber wir verwenden diesen Na-
men vor allem dann, wenn der Zielbereich ein Zahlbereich ist. Wir werden es in diesem
Semester vor allem mit Funktionen zu tun haben, deren Zielbereich R und deren Defini-
tionsbereich I eine Teilmenge von R ist. Solche Funktionen nennen wir reelle Funktionen.
Daneben betrachten wir auch komplexe Funktionen, deren Werte in C liegen, und deren
Definitionsbereich eine Teilmenge von C ist. Wir geben nun eine Reihe konkreter Beispiele
für einfache Funktionen und deren Eigenschaften.

4.1 Polynome

Definition 42. Ein reelles Polynom oder eine reelle ganzrationale Funktion ist eine Funktion
f : R → R, die sich in der Form

x 7→
n∑

k=0

akx
k (10)

schreiben läßt, wobei die Koeffizienten ak Zahlen aus R sind. Ersetzt man hier überall R

durch C, so erhält man ein komplexes Polynom. Für diese bezeichnet man die Variable gern
mit z statt mit x.

Beispiel 43. Die Funktion f : R → R mit

f(x) = (x− 3)7 + 12(x− 3)2 − 9

ist ein Polynom, wie man durch Ausmultiplizieren zeigt.

Satz 44 (Identitätssatz für Polynome). Seien

f : C → C, z 7→
n∑

k=0

akz
k.

und

g : C → C, z 7→
m∑

k=0

bkz
k.

zwei Polynome mit an 6= 0 und bm 6= 0. Es gelte f(x) = g(x) für alle x ∈ R.
Dann folgt m = n und

ak = bk für alle k ∈ {1, . . . , n}.

Beweis. Die Differenz h = f − g ist wieder ein Polynom

h : C → C, z 7→
max(m,n)
∑

k=0

ckz
k,

wobei ck = ak − bk, und nicht definierte Koeffizienten einfach = 0 gesetzt sind. Nach Vor-
aussetzung ist h(x) = 0 für alle x ∈ R. Es genügt also zu zeigen:

h(x) =
n∑

k=0

ckx
k = 0 für alle x ∈ R =⇒ c0 = . . . = cn = 0. (11)
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Gibt es einen Koeffizienten ck 6= 0, so gibt es einen höchsten Koeffizienten 6= 0 und wir
können annehmen, dass cn 6= 0.

Für |z| ≥ 1 und 0 ≤ k ≤ n− 1 ist |z|k ≤ |z|n−1 und daher nach der Dreiecksungleichung
∣
∣
∣
∣
∣

n−1∑

k=0

ckz
k

∣
∣
∣
∣
∣
≤
n−1∑

k=0

∣
∣ckz

k
∣
∣ ≤

(
n−1∑

k=0

|ck|
)

|z|n−1 =: C|z|n−1.

Nach Korollar 9 ist daher für |z| ≥ 1

|h(z)| ≥ |cn||z|n − C|z|n−1 = |z|n−1(|cn||z| − C). (12)

Ist cn 6= 0, so ist die rechte Seite für |z| > max(1, C
|cn| ) positiv. Insbesondere ist also

|h(x)| ≥ xn−1(|cn|x− C) > 0

für reelles x > max(1, C
|cn| ) im Widerspruch zur Voraussetzung. Also ist cn = 0. Daraus folgt

die Behauptung (11).

Bemerkung. Die Voraussetzung des Satzes läßt sich erheblich abschwächen. Für den Beweis
genügt offenbar, dass f(x) = g(x) für alle hinreichend großen x ∈ R, d.h. die Existenz eines
x0 ∈ R, so dass f(x) = g(x) für alle x > x0.

Aber es geht noch besser: Die Koeffizienten a0, . . . , an von f sind bereits durch die Funkti-
onswerte f(z0), . . . , f(zn) an (n+1) paarweise verschiedenen reellen oder komplexen Stellen
zi eindeutig bestimmt, wie Sie in der Linearen Algebra lernen können: Die Bedingungen
f(zi) = wi bilden ein lineares Gleichungssystem für die Koeffizienten, dessen Matrix die
sogenannte Vandermondesche Matrix ist. Die ist regulär, und daher hat das System genau
eine Lösung.

Definition 45. Ist

f : C → C, z 7→
n∑

k=0

akz
k

ein Polynom mit an 6= 0, so heißt n der Grad von f . (Analog für reelle Polynome). Wie wir
gleich sehen werden, ist es praktisch, dem Nullpolynom f = 0 den Grad −∞ zu verpassen.
Dann ist also

Grad f = 0 ⇐⇒ f konstant 6= 0.

Beachten Sie: Diese Definition macht nur Sinn, weil durch die Funktion f die Koeffizienten
ak und damit auch der größte Index n eines nicht verschwindenden Koeffizienten nach dem
vorausgehenden Satz eindeutig bestimmt sind!

Man sieht leicht, dass für zwei Polynome f 6= 0 6= g

Grad(fg) = Grad f + Grad g,

und wenn man großzügig und suggestiv −∞ = n+ (−∞) für jedes n ∈ N rechnet, gilt diese
Formel sogar, wenn f = 0 oder g = 0.

Der Divisionsalgorithmus für Polynome ist Ihnen ja wohl aus der Schule bekannt:

Satz 46 (Polynomdivision mit Rest). Seien f, g zwei reelle oder komplexe Polnome und
Grad g > 0. Dann gibt es eindeutig bestimmte Polynome q, r mit

f = qg + r und Grad r < Grad g.

Sind f und g reell, so auch q und r.
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Beweis. Zur Existenz: Die Menge

{
f − qg

∣
∣ q reelles bzw. komplexes Polynom

}

enthält (nach dem Wohlordnungsprinzip) ein Polynom r kleinsten Grades, so dass

f − qg = r

für ein geeignetes Polynom q.

Annahme: Grad r ≥ Grad g, also etwa r(z) =
∑n
k=0 rkz

k, g(z) =
∑m
k=0 gkz

k mit n ≥ m und
rn 6= 0 6= gm. Dann wäre

r̃(z) := r(z) − rn
gm

zn−mg(z) (13)

ein Polynom vom Grad kleiner als Grad r und

r̃(z) = f(z) − q(z)g(z) − rn
gm

zn−mg(z) = f(z) −
(

q(z) +
rn
gm

zn−m
)

︸ ︷︷ ︸

=:q̃(z)

g(z)

im Widerspruch zur Wahl von r. Also ist

Grad r < Grad g.

Zur Eindeutigkeit: Aus
r1 + q1g = f = r2 + q2g

mit r1, r2 von minimalem Grad folgt

r1 − r2 = (q2 − q1)g

und daraus
Grad g > Grad(r1 − r2) = Grad(q2 − q1) + Grad g,

was nur möglich ist, wenn Grad(r1 − r2) = −∞ = Grad(q2 − q1), also r1 = r2 und q1 = q2.
Also sind q und r eindeutig bestimmt.

Korollar 47. Ist f : C → C ein Polynom 6= 0, und ist a ∈ C eine Nullstelle von f , so gibt
es ein eindeutig bestimmtes Polynom q : C → C mit

f(z) = (z − a)q(z) für alle z ∈ C.

Entsprechendes gilt für reelle Polynome und reelle Nullstellen.

Die vorstehenden Sätze und das Korollar galten gleichermaßen für reelle wie komplexe Po-
lynome. Der folgende, hier nicht bewiesene sogenannte Fundamentalsatz der Algebra gilt
dagegen nur, wenn (ungeachtet der Koeffizienten) das Argument komplex ist:

Satz 48. Jedes nicht-konstante komplexe Polynom hat mindestens eine komplexe Nullstelle.

Natürlich hat damit auch jedes nicht-konstante Polynom mit reellen Koeffizienten eine kom-
plexe Nullstelle, aber eben nicht unbedingt eine reelle, wie x2 + 1 zeigt.

Aus dem Korollar zum Satz über die Division mit Rest folgt unmittelbar, dass jedes komplexe
Polynom vom Grad n dann genau n Nullstellen hat, wenn man sie mit “Vielfachheiten” zählt.
Insbesondere ist ein Polynom mit unendlich vielen Nullstellen das Nullpolynom. Genauer:
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Jedes komplexe Polynom vom Grad n > 0 hat eine bis auf die Reihenfolge eindeutige
Darstellung

f(z) = an(z − z1)
k1 . . . (z − zr)

kr (14)

mit an ∈ C \ {0}, paarweise verschiedenen z1, . . . , zr ∈ C und positiven natürlichen Zahlen
k1, . . . , kr, für die

k1 + . . .+ kr = n.

Man kann (10), aber ebenso auch (14), als eine Normalform des Polynoms f ansehen. Die
letztere gilt allerdings nur bei Einbeziehung der komplexen Nullstellen für alle reellen oder
komplexen Polynome und ist der eigentliche Grund, warum man bei der Untersuchung von
Polynomen lieber komplex als reell arbeitet.
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4.2 Rationale Funktionen

Definition 49 (Rationale Funktionen). Sind f und g 6= 0 zwei Polynome und ist N(g)
die Menge der Nullstellen von g, so heißt die auf dem Komplement von N(g) definierte
Funktion

f

g
: R\N(g) → R, x 7→ f(x)

g(x)

bzw.
f

g
: C\N(g) → C, z 7→ f(z)

g(z)

eine (gebrochen-)rationale Funktion.

Nach dem Divisionsalgorithmus für Polynome ist jede rationale Funktion h darstellbar als

h = q +
f

g

mit Polynomen f, g, q, wobei der Grad von g echt größer als der von f ist.

Auch für die rationalen Funktionen wollen wir Normalformen untersuchen. Dabei ist es
wieder einfacher, komplexe rationale Funktionen, also die Quotienten zweier komplexer Po-
lynome, zu betrachten. Dann ist eine mögliche Normalform

h(z) = A
(z − w1)

l1 . . . (z − ws)
ls

(z − z1)k1 . . . (z − zr)kr

mit A ∈ C, positiven Exponenten k1, . . . , kr, l1, . . . , ls ∈ N \ {0} und paarweise verschiedenen
z1, . . . , zr, w1, . . . , ws ∈ C.

Eine weitere Normalform rationaler Funktionen wird insbesondere in der Integrationstheorie
nützlich sein. Der Einfachheit halber nehmen wir an, dass der Zählergrad kleiner ist als der
Nennergrad, so dass kein polynomialer Summand q auftritt.

Satz 50 (Partialbruchzerlegung). Sei f(z)
g(z) eine komplexe rationale Funktion für die

0 ≤ Grad f < Grad g. Sei
g(z) = (z − z1)

k1 . . . (z − zr)
kr

mit paarweise verschiedenen z1, . . . , zr, die keine Nullstellen des Zählers sind (ausgekürzter
Bruch), und positiven Exponenten k1, . . . , kr ∈ N.
Dann gibt es eindeutig bestimmte Aij ∈ C für 1 ≤ i ≤ r und 1 ≤ j ≤ ki, so dass

f(z)

g(z)
=

r∑

i=1

ki∑

j=1

Aij
(z − zi)j

(15)

für alle z /∈ {z1, . . . , zr}.
Ist f(z)

g(z) eine reelle rationale Funktion, und sind alle Nullstellen z1, . . . , zr von g reell, so

sind auch die Aij reell.

Beweis. Vollständige Induktion über den Nennergrad n := k1 + . . .+ kr.

n = 1. Dann ist Grad f < 1, also f konstant und

f(z)

g(z)
=

f(z1)

z − z1
.
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Die Darstellung ist eindeutig.

Induktionsschritt. Sei der Satz für Nennerpolynome vom Grad < n bereits bewiesen. Wir
schreiben g(z) = q(z)(z − zr)

kr , wobei dann q(zr) 6= 0. Wir setzen

A := Arkr :=
f(zr)

q(zr)
. (16)

Dann ist

f(z) − A

(z − zr)kr
g(z) = f(z) −Aq(z)

ein Polynom mit zr als Nullstelle, also von der Form f̃(z)(z − zr), und

f(z)

g(z)
− A

(z − zr)kr
=

f̃(z)

q(z)(z − zr)kr−1

hat nach Induktionsvoraussetzung eine eindeutig bestimmte Darstellung

f(z)

g(z)
− A

(z − zr)kr
=

r−1∑

i=1

ki∑

j=1

Aij
(z − zi)j

+

kr−1∑

j=1

Arj
(z − zr)j

.

Damit ist die Existenz der Partialbruchzerlegung bewiesen.

Es fehlt noch der Nachweis, dass der Koeffizient Arkr
in (15) eindeutig bestimmt ist. Dann

liefert der Induktionsbeweis auch die Eindeutigkeit im Satz. Aber aus (15) folgt

Arkr = (z − zr)
kr




f(z)

g(z)
−
r−1∑

i=1

ki∑

j=1

Aij
(z − zi)j

−
kr−1∑

j=1

Arj
(z − zr)j



 ,

für alle z /∈ {z1, . . . , zr} und damit die Eindeutigkeit.

Die Aussage über reelle Polynome mit reellen Nullstellen ist klar.

“Zuhaltemethode”. Der Beweis des Satzes, konkret die Formel (16), gibt Informationen,

wie man die Aij finden kann: Ist f(z)
(z−z1)k1 ...(z−zr)kr

ausgekürzt und der Zählergrad kleiner

als der Nennergrad, so erhält man die “Top-Koeffizienten” Aiki
, indem man im Nenner den

Term (z − zi)
ki “zuhält” und z = zi einsetzt. Sind alle Nullstellen einfach, so ist man dann

fertig. Andernfalls ermittelt man die anderen Koeffizienten durch Multiplikation von (15)
mit dem Hauptnenner und Koeffizientenvergleich oder Einsetzen von Werten.

Beispiel 51. Bestimme A,B,C in der Partialbruchzerlegung

z

(z − 1)(z + 1)2
=

A

z − 1
+

B

z + 1
+

C

(z + 1)2
.

Mit der “Zuhaltemethode” findet man

A =
1

22
=

1

4
, C =

−1

−2
=

1

2
.

Aus
z

(z − 1)(z + 1)2
=

1/4

z − 1
+

B

z + 1
+

1/2

(z + 1)2

folgt

z =
1

4
(z + 1)2 +B(z − 1)(z + 1) +

1

2
(z − 1).

Für z = 0 ergibt sich

0 =
1

4
−B − 1

2

oder B = − 1
4 .
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4.3 Eine Buckelfunktion

Dieser Abschnitt verfolgt zwei Ziele: Einmal soll er Ihre Vorstellungskraft durch die Umset-
zung analytischer (= formelmäßiger) Sachverhalte in anschauliche Eigenschaften des Gra-
phen fördern. Zum andern werden die hier konstruierten

”
Buckelfunktionen“ in verschiede-

nen Bereichen der Analysis als wichtiges Hilfsmittel eingesetzt.

Seien ψ : R → R eine Funktion mit

ψ(x) = 0 für x ≤ 0,

ψ(x) > 0 für x > 0,

etwa

ψ(x) := x+ |x| oder ψ(x) :=

{

0 für x ≤ 0,

xn für x > 0.

und seien a1 < a2 < b2 < b1.

In den folgenden Abbildungen verwenden wir

ψ(x) = x+ |x| und a1 = 1, a2 = 2, b2 = 4, b1 = 5.

1. Die Funktion
ψ(x− a1)ψ(b1 − x)
verschwindet für x ≤ a1 oder x ≥ b1
und ist auf ]a1, b1[ positiv.

1 2 3 4 5 6

2.5

5

7.5

10

12.5

15

2. Die Funktion
ψ(x− b2) + ψ(a2 − x)
verschwindet für x ≤ b2 und x ≥ a2 und
ist außerhalb von [a2, b2] positiv.

1 2 3 4 5 6

1

2

3

4

3. Die Funktion

φ(x) :=
ψ(x− a1)ψ(b1 − x)

ψ(x− a1)ψ(b1 − x) + ψ(x− b2) + ψ(a2 − x)

hat folgende Eigenschaften:

0 ≤ φ(x) ≤ 1,

φ|[a2,b2] = 1,

φ(x) > 0 für x ∈]a1, b1[,

φ(x) = 0 für x /∈]a1, b1[.
1 2 3 4 5 6

0.2

0.4

0.6

0.8

1
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Beispiel 52 (Zerlegung der Eins). Sei (]ai, bi[)i∈I eine Familie von offenen Intervallen
mit folgenden Eigenschaften:

1. R =
⋃

i∈I ]ai, bi[, d.h. die Intervallfamilie ist eine offene Überdeckung von R.

2. Zu jedem x ∈ R gibt es ein ǫ > 0, so dass

]x− ǫ, x+ ǫ[∩ ]ai, bi[ 6= ∅ nur für endlich viele i ∈ I.

In diesem Fall nennt man die Überdeckung lokal endlich.

Dann gibt es nach dem ersten Schritt der obigen Überlegungen zu jedem i ∈ I eine Funktion
φ̃i mit

φ̃i > 0 auf ]ai, bi[, φ̃i = 0 auf R\]ai, bi[.

Weil die Überdeckung lokal endlich ist, kann man für x ∈ R

σ(x) :=
∑

i∈I
φ̃i(x)

definieren, denn in der Summe rechts sind nur endlich viele Glieder 6= 0. Mindestens eines
ist aber > 0, und daher ist die Funktion σ : R → R überall positiv. Setzt man

φi := φ̃i/σ,

so erhält man eine Familie von Funktionen mit

φi > 0 auf ]ai, bi[, φi = 0 auf R\]ai, bi[,

und ∑

i∈I
φi = 1.

Eine solche Familie nennt man eine Zerlegung (oder auch Partition) der Eins zu der gege-
benen Überdeckung.

Man benutzt diese Überlegungen zum Beispiel zum Zweck der
”
Lokalisation“: Ist f : R → R

eine stetige Funktion und benutzt man zur Konstruktion der Buckelfunktion ebenfalls eine
stetige Funktion, so ist

f =
∑

i∈I
fφi

eine Summe stetiger Funktionen, die jeweils außerhalb des Intervalls ]ai, bi[ verschwinden,
also in ]ai, bi[ ”

lokalisiert“ sind.
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4.4 Zwei wichtige Eigenschaften von Funktionen

Definition 53 (Monotonie). Eine reelle Funktion f : R ⊃ D → R heißt

• monoton wachsend, wenn für alle x, y ∈ D gilt

x < y =⇒ f(x) ≤ f(y),

(Zum Beispiel sind konstante Funktionen monoton wachsend.)

• streng monoton wachsend, wenn für alle x, y ∈ D gilt

x < y =⇒ f(x) < f(y).

Entsprechend definiert man (streng) monoton fallend. Eine Funktion heißt (streng) monoton,
wenn sie (streng) monoton wachsend oder (streng) monoton fallend ist.

Für komplexwertige Funktionen macht Monotonie keinen Sinn.

Beispiel 54. Die Funktion f : R → R, x 7→ x3 ist streng monoton wachsend. Zum Beweis
beachte, dass

y3 − x3 = (y − x)(y2 + xy + x2) = (y − x)

(

(y +
x

2
)2 +

3

4
x2

)

.

Für x < y ist deshalb offensichtlich x3 < y3.

Definition 55 (Beschränktheit von Funktionen). Eine reelle Funktion f : R ⊃ D → R

heißt nach oben beschränkt, wenn es ein M ∈ R gibt, so dass

f(x) ≤M für alle x ∈ D.

M heißt dann eine obere Schranke für f .

Entsprechend definiert man nach unten beschränkt und untere Schranke.

Eine Funktion heißt beschränkt, wenn sie sowohl nach oben wie nach unten beschränkt ist,
d.h. wenn es ein M ∈ R gibt, so dass

|f(x)| ≤M für alle x ∈ D.

Diese letzte Bedingung benutzt man, um Beschränktheit auch für komplexe Funktionen
f : C ⊃ D → C zu definieren.

Beispiel 56. Die Funktion f : R → R, x 7→ xn mit n > 0 ist nicht beschränkt. Das ist
klar für n = 1. Und für n > 1 folgt aus x > 1, dass

xn > xn−1 > . . . > x

und damit die Behauptung.

Beispiel 57. Allgemeiner ist ein Polynom

f(x) = a0 + a1x+ . . .+ anx
n

vom Grad n > 0 nicht beschränkt. Das folgt aus der Gleichung (12) im Beweis des Iden-
titätssatzes zusammen mit dem letzten Beispiel.
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5 Zahlenfolgen und Konvergenz

5.1 Konvergenz und Vollständigkeit

Definition 58 (Folge). Eine reelle Folge ist eine Abbildung der natürlichen Zahlen N in
die reellen Zahlen:

N → R, n 7→ xn

Jedem n ∈ N wird also die reelle Zahl xn zugeordnet.

Notationen: (xn) oder (xn)n∈N. Oft schreibt man auch die ersten Werte der Folge:

(x0, x1, x2, . . .).

Manchmal beginnt man die Numerierung der Folge mit 1 statt mit 0, gelegentlich auch mit
einer anderen Zahl.

Reelle Folgen sind also reelle Funktionen, so dass zum Beispiel Begriffe wie
”
Monotonie“

oder
”
Beschränktheit“ für Folgen bereits definiert sind.

Beispiel 59.

(
1

2n
)n∈N : 1,

1

2
,
1

4
,
1

8
, . . . (17)

(xn = 1)n∈N : 1, 1, . . . (18)

(
1

n
)n>0 : 1,

1

2
,
1

3
, . . . (19)

((−1)n+1n2)n∈N : 0, 1,−4, 9,−25, ... (20)

Häufig kommen sogenannte rekursive Folgen vor: Man gibt einen (oder mehrere) Anfangs-
werte und eine Vorschrift, wie sich die Folgenglieder aus den vorangehenden Gliedern

”
ent-

wickeln“:

Beispiel 60. Seien x0, b > 0 gegeben. Setze

xn+1 =
1

2
(xn +

b

xn
). (21)

Für b = 2 und x0 = 1 liefert das

x1 = 1.5000000

x2 = 1.4166667

x3 = 1.4142157

x4 = 1.4142136

x5 = 1.4142136

. . .

Beispiel 61. Die Fibonacci-Folge ist gegeben durch

a0 = a1 = 1, an+2 = an + an+1.
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Das ergibt
(1, 1, 2, 3, 5, 8, 13, 21, . . .).

Diese Folge hat zu tun mit der Vermehrung von Kaninchen. Sie besitzt eine eigene Zeitschrift.

Beispiel 62. Eine weitere rekursiv definierte Folge ist
”
die“ Collatz-Folge: Man beginnt mit

einer beliebigen natürlichen Zahl c0 und definiert

cn+1 :=







3cn + 1 falls cn ungerade und 6= 1,

(cn)/2 falls cn gerade,

1 falls cn = 1.

Also etwa

9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 1, 1, . . .

Es gibt also unendlich viele Collatz-Folgen: eine zu jedem Anfangswert c0. Und wenn eine
Collatz-Folge den Wert 1 annimmt, sind alle weiteren Folgenglieder auch 1.

Die Differentialrechnung wurde im 17. Jahrhundert von Newton und Leibniz erfunden und
Grenzwertbetrachtungen für die Flächenberechnung sind noch viel älter. Aber für die Kon-
vergenz einer Folge gegen eine reelle Zahl gibt es erst seit Anfang des 19. Jahrhunderts eine
präzise

Definition 63 (Konvergenz und Divergenz). Die Folge (xn) heißt konvergent gegen
a ∈ R, wenn es zu jedem ǫ > 0 eine natürliche Zahl N gibt, so dass

|xn − a| < ǫ für alle n ≥ N.

Man schreibt dann xn → a oder limn→∞ xn = a, auch kurz

limxn = a.

Die Zahl a heißt der Grenzwert oder Limes der Folge. Man nennt die Folge (xn) konvergent,
wenn es ein a gibt, gegen das sie konvergiert. Andernfalls nennt man sie divergent.

Sprachlich kann man das so formulieren:

Jede – noch so kleine! – Toleranz ǫ für die Abweichung vom Grenzwert a wird nur von
endlich vielen Folgegliedern (nämlich höchstens denen mit n < N) überschritten.

Lemma 64 (Eindeutigkeit des Grenzwerts). Aus

limxn = a und limxn = b

folgt a = b. Der Grenzwert einer konvergenten Folge ist eindeutig bestimmt, so dass der
bestimmte Artikel gerechtfertigt ist.

Beweis. Andernfalls ist ǫ := |b−a|
2 > 0. Dann gilt

∃N1∈N ∀n≥N1 |xn − a| < ǫ und ∃N2∈N ∀n≥N2 |xn − b| < ǫ.

Für N = max{N1, N2} findet man also

|xN − a| < ǫ, |xN − b| < ǫ.
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Dann ist aber nach der Dreiecksungleichung

|b− a| ≤ |b− xN | + |xN − a| < 2ǫ = |b− a|.

Widerspruch!

Beispiel 65 (DAS fundamentale Beispiel für Konvergenz). Die Folge ( 1
n )n>0 kon-

vergiert gegen 0.

lim
n→∞

1

n
= 0.

Beweis. Sei ǫ > 0. Dann gibt es eine natürliche Zahl N mit N > 1
ǫ . Wir wählen eine solche

und erhalten für alle n ≥ N ebenfalls n > 1
ǫ und daher

| 1

n
− 0 | =

1

n
< ǫ.

HALT! Der vorstehende Beweis enthält eine wesentliche Lücke.

Er verwendt nämlich das Archimedische Prinzip: Zu jedem x ∈ R (im Beweis hieß es 1/ǫ)
gibt es eine natürliche Zahl N > x.

Wir haben früher festgestellt, dass genau dieses sich aber nicht aus den bisherigen Axiomen
für die reellen Zahlen beweisen läßt. Jedenfalls haben wir es nicht bewiesen.

Wir fordern nun ein weiteres Axiom für die reellen Zahlen, das

Vollständigkeitsaxiom:
(V) Jede monotone und beschränkte reelle Folge ist konvergent.

Beispiel 66. Die Folge ( 1
n )n>0 ist monoton fallend und beschränkt: 0 < 1

n ≤ 1. Also ist sie
nach dem Axiom konvergent: Da ist nichts mehr zu beweisen, außer dass der Grenzwert 0
ist. Das folgt wie oben aus dem Archimedischen Prinzip, das wir jetzt beweisen.

Satz 67 (Archimedisches Prinzip). Zu jeder reellen Zahl x ∈ R gibt es ein n ∈ N mit

x < n.

Beweis. Die Folge (n)n ist monoton wachsend. Gäbe es ein x ∈ R mit n ≤ x für alle n ∈ N,
so wäre sie auch beschränkt, also (hier verwenden wir unser neues Axiom!) konvergent gegen
ein a ∈ R. Daher gibt es ein N ∈ N mit |n − a| < 1

2 für alle n ≥ N . Das gilt insbesondere
für n = N und n = N + 1:

|N − a| < 1

2
und |(N + 1) − a| < 1

2
.

Daraus folgt

1 = |(N + 1) −N | = |N + 1 − a+ a−N | ≤ |(N + 1) − a| + |N − a| < 1

2
+

1

2
= 1.

Aber 1 < 1 ist ein Widerspruch!
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Beispiel 68. Wir wollen zeigen, dass

lim
n→∞

xn = 0 für |x| < 1.

Falls x = 0, ist xn = 0 für alle n ≥ 1 und die Behauptung klar.

Sei also x 6= 0 und sei ǫ > 0. Wir suchen ein N ∈ N mit

ǫ > |xn − 0| = |x|n für alle n ≥ N . (22)

Die letzte Ungleichung ist aber äquivalent zu

1

ǫ
<

(
1

|x|

)n

= (1 + α)n für alle n ≥ N .

mit positivem α := 1
|x| − 1. (Hier benutzen wir |x| < 1.)

Nach der Bernoullischen Ungleichung (Beispiel 19) ist dann aber (1 + α)n = 1 + nα. Wählt
man also N > 1

ǫα , was nach dem Archimedischen Axiom ja möglich ist, so folgt für n ≥ N

(1 + α)n ≥ 1 + nα ≥ 1 +Nα > 1 +
1

ǫ
>

1

ǫ

und damit (22).

Ende gut, alles gut! Für die Konvergenz einer Folge sind nach Definition nur die
”
hinteren

Glieder“ verantwortlich, was am Anfang passiert ist egal. Das bedeutet zum Beispiel, dass
eine beschränkte Folge auch dann konvergent ist, wenn sie erst vom 37. Glied an monoton
wachsend ist. Davon machen wir gleich Gebrauch.

Wir zeigen, dass die Folge (21) konvergent ist gegen ein a > 0 mit

a2 = b.

Also besitzt wirklich jede positive Zahl b eine (positive) Quadratwurzel a =
√
b, vergleiche

Beispiel 6. Wir zeigen sogar einen allgemeineren Sachverhalt:

Satz 69 (Existenz von Wurzeln). Seien b und x0 > 0 und k ∈ N, k ≥ 2.
Dann konvergiert die mit x0 beginnende rekursiv definierte Folge

xn+1 := xn

(

1 +
1

k

(
b

xkn
− 1

))

gegen die einzige positive Lösung der Gleichung

xk = b.

Für den Grenzwert schreiben wir k
√
b und nennen ihn die k-te Wurzel aus a. Wir setzen√

b := 2
√
b.

Bemerkung: Für k = 2 erhalten wir gerade die Folge (21). Wie man auf die merkwürdige
Folge für beliebiges k gekommen ist, erklären wir im Beispiel 141.

Beweis. Zur Eindeutigkeit. Beachte, dass

yk − xk = (y − x)(yk−1 + yk−2x+ . . .+ yxk−2 + xk−1).
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Sind also x, y > 0 mit xk = yk, so folgt x = y.

Zur Existenz. Wir beweisen nun, dass die obige Folge konvergent gegen ein a ∈ R ist und
zeigen dann, dass ak = b gilt.

Zunächst ist für positives xn jedenfalls 1
k ( b

xk
n
− 1) > − 1

k > −1. Daher sind mit x0 und b

offensichtlich alle xn positiv.

Weiter gilt

xkn+1 = xkn(1 +
1

k

(
b

xkn
− 1

)

︸ ︷︷ ︸

>−1

)k ≥
Bernoulli

xkn(1 +
b

xkn
− 1) = b.

Das bedeutet, dass alle xkn+1 ≥ b, d.h.

xkn ≥ b (23)

mit möglicher Ausnahme von x0.

Daher ist 1
k ( b

xk
n
− 1) ≤ 0, also

xn+1 ≤ xn für alle n ≥ 1.

Die Folge ist also jedenfalls vom zweiten Glied an monoton fallend und beschränkt (weil
positiv). Nach dem Vollständigkeitsaxiom ist sie also konvergent: Es gibt ein a ∈ R mit

lim
n→∞

xn = a.

Um zu zeigen, dass
ak = b,

benutzen wir die Rechenregeln für konvergente Folgen, die wir weiter unten zusammenstellen.
Aus xn → a folgt xkn → ak und aus xkn ≥ b folgt dann ak ≥ b > 0. Also ist a 6= 0. Weil
xn ≥ 0 für alle n ist a = limxn ≥ 0, also a > 0. Weil (xn+1) dieselbe Folge ist wie (xn)
mit einer um eins verschobenen Numerierung, ist auch xn+1 → a. Schließlich folgt aus der
Rekursionsgleichung

a = a

(

1 +
1

k
(
b

ak
− 1)

)

und daraus
ak = b.

Anmerkung: Irrationalität von Quadratwurzeln Sei n ∈ N eine natürliche Zahl,
aber keine Quadratzahl, d.h. es sei

√
n /∈ N. Dann ist

√
n /∈ Q, also irrational. Weil die

Axiome der reellen Zahlen ohne das Vollständigkeitsaxiom auch für Q gelten, kann man
daraus allein also nicht die Konvergenz der obigen

”
Quadratwurzelfolge“ beweisen.

Für die Irrationalität, insbesondere von
√

2, gibt es einen häufig angeführten Beweis
mittels Primfaktorzerlegung. Der folgende Beweis, der wohl auf Dedekind zurückgeht,
kommt ohne dieses zahlentheoretische Hilfsmittel aus:

Annahme:
√

n = x
y

mit x, y ∈ N\{0}, x minimal.

Dann gibt es ganzzahliges k mit

k − 1 <
x

y
< k.
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Definiere

x′ :=

„

k − x

y

«

x, y′ :=

„

k − x

y

«

y.

Dann
x′

y′
=

x

y
=

√
n.

Aber

x′ = kx − x2

y
= kx − ny2

y

und y′ = ky − x sind beide ganzzahlig und > 0.Schließlich ist k − x
y

< 1 und deshalb

x′ < x im Widerspruch zur Wahl von x.

Beispiel 70. Für x ∈ R gilt

lim
n→∞

xn

n!
= 0.

Zum Beweis wählen wir eine Zahl k ∈ N mit k > 2|x| und betrachten nur Werte n > k.
Dann ist

|x|n
n!

=
|x|
1

|x|
2
. . .

|x|
k

|x|
k + 1

. . .
|x|
n
.

Das Produkt der ersten k Faktoren hat einen festen Wert, das Produkt der letzten n − k

Faktoren ist ≤
(

1
2

)n−k
, und das geht für n→ ∞ gegen 0.

Beispiel 71. Wir betrachten die Folge
(
xn = (1 + 1

n )n
)

n≥1
. Für sie gilt

(

1 +
1

n

)n

=
n∑

k=0

(
n

k

)
1

nk
=

n∑

k=0

1

k!

n(n− 1) . . . (n− k + 1)

nk

=
n∑

k=0

1

k!
1 · (1 − 1

n
)(1 − 2

n
) . . . (1 − k − 1

n
) (24)

≤
n∑

k=0

1

k!
≤ 1 +

1

20
+ . . .+

1

2n−1
= 1 +

1 − (1/2)n

1 − 1/2
< 3. (25)

Aus (24) ersieht man, dass die Folge monoton wachsend ist, und nach (25) ist sie beschränkt.
Ihr Grenzwert ist die Eulersche Zahl e.

Eine notwendige Bedingung für die Konvergenz ist die Beschränktheit:

Lemma 72. Jede konvergente Folge ist beschränkt.

Beweis. Sei limxn = a. Dann gibt es N ∈ N mit

∀n≥N |xn − a| < 1,

d.h.
∀n≥N a− 1 < xn < a+ 1.

Dann gilt erst recht
∀n≥N − |a| − 1 < xn < |a| + 1.

Dann gilt zum Beispiel für alle n ∈ N

−|x0| − . . .− |xN | − |a| − 1 < xn < |x0| + . . .+ |xN | + |a| + 1.
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Die Folge 0, 1, 2, 3, . . . ist also divergent. Aber auch beschränkte Folgen können divergent
sein:

Beispiel 73. Die Folge (−1)n ist divergent. Wäre sie nämlich gegen a konvergent, so würde
insbesondere für ǫ = 1 ein N existieren, so dass |xn − a| < 1 für alle n ≥ N . Dann wäre
insbesondere |xN − a| < 1 und |xN+1 − a| < 1. Daraus folgt mit der Dreiecksungleichung

|xN − xN+1| = |(xN − a) − (xN+1 − a)| ≤ |xN − a| + |xN+1 − a| < 1 + 1 = 2.

Aber das widerspricht xN − xN+1 = ±(1− (−1)) = ±2. Daher gibt es zu ǫ = 1 kein solches
N , und die Folge ist nicht konvergent.

Bestimmte Divergenz. Die Folgen ((−1)n) und (n2) sind beide divergent, aber auf unter-
schiedliche Weise: Die erste kann sich nicht entscheiden, wohin, die zweite strebt unbeirrt
gegen +∞. Man sagt, die Folge (xn) ist bestimmt divergent gegen +∞ oder auch konvergent
gegen +∞, wenn es zu jedem (noch so großen) ǫ > 0 ein n ∈ N gibt, so dass

ǫ < xn für alle n ≥ N.

Man schreibt dann auch
limxn = +∞ oder xn → +∞.

Entsprechend definiert man bestimmt divergent gegen −∞ (konvergent gegen −∞).

Wir wollen aber bei folgender Konvention bleiben:

Eine reelle Folge (xn) heißt konvergent (ohne Angabe eines Grenzwertes), wenn sie gegen ein
a ∈ R konvergiert. Andernfalls, heißt sie divergent – auch wenn sie gegen ±∞ konvergiert.

Beispiel 74 (Ein offenes Problem). Die Collatz-Folge ist konvergent gegen 1 für jedes
x0, für das man sie getestet hat: Sie landet irgendwann bei 1 und bleibt dann 1. Es ist bis
heute unbekannt, ob sie wirklich für jedes c0 konvergiert.

Für das Konvergenzverhalten einer Folge ist ihr
”
Anfang“ ganz ohne Bedeutung, siehe

”
Ende

gut, alles gut“. Konvergenz spielt sich
”
ganz hinten“ ab. Darum können Konvergenztests mit

dem Computer vielleicht Hinweise geben, sie sind aber alles andere als verläßlich.

Beispiel 75. Wir untersuchen die rekursive Folge

x0 = 1, x1 = (
p− 1

p
)2k, xn+1 = (2 2k

√
xn − 2k

√
xn−1)

2k

für k = 6, p = 100 mit Mathematica.

In[1]:= k=6; p=100;
a=1; myc=1;

Print[”0: ”,1]
Print[”1: ”,N[b=((p-1)/p)ˆ(2 k)]]
Do[z=(2 Abs[b]̂ (1/(2k))- Abs[a]ˆ(1/(2k)))ˆ(2k);
a=b ;b=z; myc=myc+1; Print[myc,”: ”,N[z]],{101}]
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Hier der Output:

0 : 1
1 : 0.886385
2 : 0.784717
3 : 0.693842
4 : 0.61271
5 : 0.54036
6 : 0.47592
7 : 0.418596
8 : 0.367666
9 : 0.322475

10 : 0.28243
11 : 0.24699
12 : 0.215671
13 : 0.188032
14 : 0.163675
15 : 0.142242
16 : 0.12341
17 : 0.10689

. . .

60 : 0.0000167772
61 : 0.0000123816
62 : 9.06574 10−6

63 : 6.58295 10−6

64 : 4.73838 10−6

65 : 3.37922 10−6

66 : 2.38642 10−6

67 : 1.66789 10−6

68 : 1.15292 10−6

69 : 7.87663 10−7

70 : 5.31441 10−7

71 : 3.53815 10−7

72 : 2.32218 10−7

73 : 1.50095 10−7

74 : 9.5429 10−8

75 : 5.96046 10−8

76 : 3.65203 10−8

77 : 2.19146 10−8

. . .

83 : 5.82622 10−10

84 : 2.81475 10−10

85 : 1.29746 10−10

86 : 5.66939 10−11

87 : 2.32981 10−11

88 : 8.9161 10−12

89 : 3.13843 10−12

90 : 1. 10−12

91 : 2.8243 10−13

92 : 6.87195 10−14

93 : 1.38413 10−14

94 : 2.17678 10−15

95 : 2.44141 10−16

96 : 1.67772 10−17

97 : 5.31441 10−19

98 : 4.096 10−21

99 : 1. 10−24

100 : 0

Sieht konvergent aus, ist es aber nicht. Die nächsten beiden Glieder sind

101 : 1. 10−24

102 : 4.096 10−21.

Tatsächlich kann man zeigen, dass

xn := (
p− n

p
)2k,

und diese Folge ist offensichtlich divergent.

Trotzdem kann der Rechner nützliche Hinweise geben (z.B. auf ein bestimmtes Monotonie-
verhalten), denen man dann aber rigoros nachgehen muss: Der Rechner liefert Vermutungen,
keine Beweise.
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Schlussbemerkung: Sprache und Verständnis. Der Begriff der Konvergenz unendli-
cher Folgen ist nicht so einfach, und eine falsche sprachliche Formulierung erschwert sein
Verständnis oder dokumentiert fehlende gedankliche Bewältigung. Hier einige (öfter anzu-
treffende) Beispiele falscher Behauptungen:

Die Folge (xn) konvergiert gegen a, wenn

... sie a immer näher kommt. FALSCH: limn→∞(1 + 1
n ) 6= 0.

... sie a beliebig nah kommt. FALSCH: limn→∞((−1)n + 1
n ) 6= 1.

... sie a beliebig nah kommt, es aber nie erreicht. Erst recht FALSCH.

Der Grenzwert der Folge ( 1
n ) geht nicht gegen 0, er ist 0. Grenzwerte sind bereits angekom-

men!
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5.2 Rechenregeln für konvergente Folgen

Der Nachweis der Konvergenz einer Folge ist oft mühsam. Insbesondere deshalb ist es
nützlich zu sehen, wie sich Folgen verhalten, die aus

”
einfacheren“ konvergenten Folgen

zusammengesetzt sind.

Satz 76. Seien (xn) und (yn) konvergente Folgen mit den Grenzwerten

limxn = a, lim yn = b.

Dann gilt:

(i) Die Folge (xn + yn) ist konvergent und

lim(xn + yn) = a+ b.

(ii) Die Folge (xnyn) ist konvergent und

lim(xnyn) = ab.

Insbesondere gilt das für konstante Folgen yn = c ∈ R:

lim(cxn) = ca.

(iii) Ist b 6= 0 und yn 6= 0 für alle n, so ist die Folge (xn/yn) konvergent und

lim
xn
yn

=
a

b
.

(iv) Ist limxn = 0 und (zn) eine beschränkte Folge, so gilt

limxnzn = 0.

“Nullfolge mal beschränkte Folge ergibt eine Nullfolge.”

Beweis. Zu (i) Selbst.

Zu (ii) Zunächst ist (yn) nach dem Lemma beschränkt. Sei etwa

|yn| < M für alle n ∈ N.

Sei ǫ > 0 gegeben. Dann gibt es ein N ∈ N, so dass für alle n ≥ N gleichzeitig

|xn − a| < ǫ und |yn − b| < ǫ.

Dann gilt für alle n ≥ N

|xnyn − ab| = |(xn − a)yn + a(yn − b)| ≤ |xn − a| |yn| + |a| |yn − b| < ǫ(M + |a|).

Zu (iii) Sei ǫ > 0 und dazu N ∈ N so gewählt, dass für alle n ≥ N

|xn − a| < ǫ, |yn − b| < ǫ und |yn − b| < |b|
2
.

Dann ist

|yn| = |b+ yn − b| ≥ |b| − |yn − b| ≥ |b| − |b|
2

=
|b|
2
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und
∣
∣
∣
∣

xn
yn

− a

b

∣
∣
∣
∣
=

∣
∣
∣
∣

xnb− yna

ynb

∣
∣
∣
∣
=

|(xn − a)b+ a(b− yn)|
|ynb|

≤ |xn − a||b| + |a||yn − b|
|b|2/2 ≤ 2

|b| + |a|
|b|2 ǫ.

Bemerkung. Bei der Quotientenformel hatten wir vorausgesetzt, dass

yn 6= 0 für alle n, (26)

weil sonst die Folge (xn/yn) gar nicht definiert ist. Weil aber b = lim yn 6= 0, ist yn 6= 0 für
alle hinreichend großen n, d.h. für alle n von einem gewissen N an. Die Behauptung bleibt
ohne die Voraussetzung (26) richtig, wenn man (xn/yn) als (xn/yn)n≥N interpretiert.

Wir erinnern daran, dass für die Konvergenz der Anfang der Folge keine Rolle spielt.

Definition 77. Wir sagen, dass eine Eigenschaft für fast alle Folgenglieder gilt, wenn es
nur endlich viele Ausnahmen gibt, d.h. wenn die Eigenschaft für alle n von einem gewissen
N an richtig ist. Man sagt dann auch, die Eigenschaft sei richtig für alle hinreichend großen
n.

Satz 78. Seien (xn) und (yn) konvergente Folgen mit den Grenzwerten

limxn = a, lim yn = b.

Es gelte für fast alle n:
xn ≤ yn.

Dann folgt
a ≤ b.

Beachten Sie: Wenn xn < yn für alle n, so folgt nicht notwendig a < b. Finden Sie dafür ein
Beispiel.

Beweis. Seien ǫ > 0 und N ∈ N, so dass für alle n ≥ N gilt:

xn ≤ yn

und
|xn − a| < ǫ und |yn − b| < ǫ.

Die beiden letzten Ungleichungen bedeuten

a− ǫ < xn < a+ ǫ und b− ǫ < yn < b+ ǫ.

Es folgt
a− ǫ < xn ≤ yn < b+ ǫ.

Also haben wir
a− ǫ < b+ ǫ,

d.h. a < b+ 2ǫ für jedes ǫ > 0. Daher ist a ≤ b.

Ein wichtiger Begriff ist der der Teilfolge:
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Definition 79. Sei (xn) eine Folge. Eine Teilfolge von (xn) ist eine Folge (yk)k∈N, für die
es eine streng monoton wachsende Folge (nk)k∈N natürlicher Zahlen gibt, so dass

yk = xnk
für alle k ∈ N.

Man sagt oft einfach: Sei (xnk
)k∈N eine Teilfolge von (xn). Die Teilfolge entsteht aus der

Originalfolge durch Weglassen von Gliedern, so dass aber noch eine unendliche Folge ver-
bleibt.

Beispiel 80. Die Folge (1/2n) ist eine Teilfolge der Folge ( (−1)n

n )n≥1.

Satz 81. Ist limn→∞ xn = a, so gilt limk→∞ xnk
= a für jede Teilfolge (xnk

) von (xn).

Beweis. Selbst.

Beispiel 82 (Fibonacci-Quotienten). Die Fibonacci-Folge ist offenbar divergent (konver-
gent gegen +∞). Wir betrachten die Folge der Quotienten xn = an+1

an
aufeinander folgender

Fibonacci-Zahlen
1

1
,
2

1
,
3

2
,
5

3
,
8

5
,
13

8
, . . . .

Ist diese Folge konvergent? Ja, aber der Beweis ist knifflig; zum Beispiel ist die Folge nicht
monoton. Sieht man sich die von Rechner gelieferten ersten 20 Glieder an, so kann man aber
vermuten, dass

x0 ≤ x2 ≤ x4 ≤ . . . ≤ 2 (27)

x1 ≥ x3 ≥ x5 ≥ . . . ≥ 1. (28)

Das beweisen wir: Dividiert man die Rekursion an+1 = an + an−1 durch an, so folgt

xn = 1 +
1

xn−1
. (29)

Also erfüllen die Fibonacciquotienten eine eigene Rekursionsformel. Aus dieser ergibt sich
mit x0 = 1, x1 = 2 leicht

1 ≤ xn ≤ 2 für alle n.

Weiter ist

xn+2 − xn = 1 +
1

xn+1
− 1 − 1

xn−1
=

1

xn+1
− 1

xn−1
=
xn−1 − xn+1

xn−1xn+1
.

Aus x2 − x0 = 0.5 > 0 folgt also x3 − x1 < 0 usw. und damit (27), (28). Nach dem
Vollständigkeitsaxiom sind die Teilfolgen (x2k) und (x2k+1) konvergent gegen Grenzwerte
zwischen 1 und 2. Aber aus xn = 1 + 1/xn−1 folgt

xn = 1 +
1

1 + 1/xn−2
= 1 +

xn−2

1 + xn−2

oder
(xn − 1)(xn−2 + 1) = xn−2.

Ist a = limx2k, so folgt wie im Beweis von Satz 69

(a− 1)(a+ 1) = a.
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Auflösen der quadratischen Gleichung liefert (wegen 1 ≤ a ≤ 2)

a =
1 +

√
5

2
,

und dasselbe gilt für limx2k+1. Schließen Sie daraus, dass limxn = a ist.

Übrigens ist a wunderbarer Weise gerade das Verhältnis beim Goldenen Schnitt (Ganze
Strecke:Große Strecke=Große Strecke:Kleine Strecke). Wer hätte den Karnickeln das zuge-
traut!

Satz 83 (Existenz monotoner Teilfolgen). Jede reelle Folge besitzt eine monotone Teil-
folge.

Beweis. Sei (xn) eine reelle Folge. Das Problem beim Beweis ist es zu entscheiden, ob man
nach einer monoton wachsenden oder nach einer monoton fallenden Teilfolge suchen soll.
Dazu wollen wir für den Augenblick ein xn dominant nennen, wenn es mindestens so groß
ist, wie alle folgenden Glieder:

xn ≥ xj für alle j > n.

1. Fall: Es gibt unendlich viele dominante xn. Dann lassen wir alle andern weg und bekom-
men eine (nicht notwendig streng) monoton fallende Folge.

2. Fall: Es gibt nur endlich viele dominante xn. Dann lassen wir zunächst den Anfang der
Folge bis zum letzten dominanten weg. Die verbleibende Folge enthält dann kein dominantes
Glied mehr, d.h. zu jedem Glied gibt es ein größeres nachfolgendes. Also können wir eine
(streng) monoton wachsende unendliche Teilfolge auswählen.

50



5.3 Noch einmal Vollständigkeit

Wie entscheidet man, ob eine gegebene Folge konvergent ist, wenn man den Grenzwert
nicht kennt? Monotonie und Beschränktheit ist ein hinreichendes, aber offensichtlich kein
notwendiges Kriterium. Ein solches wollen wir jetzt angeben:

Definition 84 (Cauchyfolge). Eine Folge (xn) heißt eine Cauchyfolge, wenn es zu jedem
ǫ > 0 ein N ∈ N gibt, so dass

|xn − xm| < ǫ für alle m,n ≥ N.

Beispiel 85. Jede konvergente Folge ist eine Cauchyfolge. Ist nämlich (xn) konvergent gegen
a und ǫ > 0, so gibt es ein N ∈ N, so dass

|xn − a| < ǫ/2 für alle n ≥ N.

Dann ist aber
|xn − xm| ≤ |xn − a| + |a− xm| < ǫ für alle m,n ≥ N.

Beispiel 86. Die Folge ((−1)n)n∈N ist keine Cauchyfolge, also auch nicht konvergent.

In den reellen Zahlen(!) sind nun umgekehrt Cauchyfolgen immer konvergent.

Satz 87. Jede Cauchyfolge in R ist konvergent.

Beweis. Sei (xn) eine Cauchyfolge. Zunächst ist (xn) beschränkt. Es gibt nämlich nach
Voraussetzung ein N ∈ N, so dass für alle n ≥ N

xN − 1 < xn < xN + 1.

Also ist die Folge (xn)n>N beschränkt, und die endlich vielen Glieder x0, . . . , xN−1 ändern
daran nichts.

Als nächstes wählen wir nach Satz 83 eine monotone Teilfolge (xnk
)k∈N von (xn) aus. Diese

ist natürlich wieder beschränkt, also nach dem Vollständigkeitsaxiom konvergent gegen ein
a ∈ R. An dieser Stelle benutzen wir, dass wir es mit R zu tun haben!

Schließlich zeigen wir limxn = a. Sei also ǫ > 0. Dann gibt es K ∈ N, so dass

|xnk
− a| < ǫ/2 für alle k ≥ K

und N ∈ N, so dass
|xn − xm| < ǫ/2 für alle m,n ≥ N.

Wähle ein k ≥ K mit nk ≥ N . Dann folgt

|xn − a| ≤ |xn − xnk
| + |xnk

− a| < ǫ/2 + ǫ/2 = ǫ.

Definition 88 (Häufungspunkt). Ein a ∈ R heißt ein Häufungspunkt der reellen Folge
(xn), wenn diese eine gegen a konvergente Teilfolge besitzt.
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Beispiel 89. Ist limxn = a, so ist a ein Häufungspunkt, und zwar der einzige, vgl. Satz 81.

Die Folge ((−1)n) hat die Häufungspunkte +1 und −1.

Die Folge (n2) hat keinen Häufungspunkt.

Satz 90 (Bolzano-Weierstraß). Jede beschränkte reelle Folge hat mindestens einen
Häufungspunkt.

Beweis. Sie enthält eine monotone Teilfolge. Die ist wieder beschränkt, also konvergent.

Definition 91 (Supremum und Infimum). Sei A ⊂ R eine Teilmenge.

(i) S ∈ R heißt eine obere Schranke für A, wenn

a ≤ S für alle a ∈ A.

(ii) M ∈ R heißt das Supremum von A, wenn M eine obere Schranke von A ist, und es
keine kleinere obere Schranke von A gibt. Man schreibt

M = supA.

(iii) Entsprechend definiert man untere Schranke und das Infimum inf A von A.

(iv) Ist supA ∈ A, so nennt man supA auch das Maximum von A, geschrieben maxA.

(v) Entsprechend definiert man das Minimum von A.

(vi) A heißt nach oben (unten) beschränkt, wenn es eine obere (untere) Schranke besitzt.

Ist A = ∅, so ist jede reelle Zahl eine obere und untere Schranke für A. Das führt zu der
Konvention, dass man

sup ∅ = −∞, inf ∅ = +∞
schreibt. Ist andrerseits A nach oben bzw. unten unbeschränkt, so schreibt man

supA = +∞

bzw.
inf A = −∞.

Beispiel 92. Für A := [0, 1[ gilt:

• 5 ist eine obere Schranke von A.

• supA = 1.

• maxA existiert nicht!

• inf A = minA = 0.
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Es ist nicht so klar, ob es unter allen oberen Schranken einer Menge wirklich eine kleinste
gibt, ob also jede Menge A ⊂ R ein Supremum besitzt. Wenn man Q statt R nimmt, hat
die Menge M = {x ∈ Q |x2 < 2} zwar obere Schranken, unter denen gibt es in Q aber keine
kleinste. In R ist das anders, aber man muss die Vollständigkeit bemühen. Das zeigt der
folgende

Satz 93. Sei A ⊂ R nicht leer. Dann gilt:

(i) Es gibt in A eine monoton fallende Folge (an) und eine monoton wachsende Folge (bn)
mit

lim an = inf A, lim bn = supA.

Dabei sind die Fälle supA = +∞ und inf A = −∞ eingeschlossen. Insbesondere
existieren inf A und supA in R ∪ {+∞,−∞}.

(ii) Ist A nach oben bzw. unten beschränkt, so existiert supA ∈ R bzw. inf A ∈ R.

Beweis. Zu (i). 1. Fall: A nicht nach oben beschränkt. Wir definieren die Folge (bn) rekur-
siv. Weil 0 keine obere Schranke von A ist, gibt es ein b0 ∈ A mit b0 ≥ 0. Sind b0, . . . , bn
bereits definiert, so ist n+ bn keine obere Schranke für A, und deshalb gibt es ein bn+1 ∈ A
mit

bn+1 ≥ n+ bn.

Die so konstruierte Folge (bn) liegt in A, ist monoton wachsend und erfüllt

lim bn = +∞ = supA.

2. Fall: A nach oben beschränkt. Wir wählen eine obere Schranke S0. Weil A 6= ∅, gibt es
b0 ∈ A, und wir wählen ein solches. Offenbar ist

b0 ≤ S0.

Wir definieren nun rekursiv zwei Folgen (bn) und (Sn) wie folgt: Wir bilden

xn =
bn + Sn

2

und definieren

Sn+1 :=

{

xn falls xn eine obere Schranke von A ist

Sn sonst.

Im ersten Fall setzen wir
bn+1 := bn.

Im zweiten Fall gibt es ein a ∈ A mit xn < a ≤ Sn, und wir wählen ein solches als bn+1:

xn < bn+1 ≤ Sn.

Dann sind alle bn ∈ A und alle Sn obere Schranken von A. Nach Konstruktion ist (bn)
monoton wachsend und (Sn) monoton fallend. Wegen

bn ≤ S0, b0 ≤ Sn

sind die Folgen beschränkt, also konvergent gegen ein b∗ bzw. S∗. Weil aber

|Sn+1 − bn+1| ≤
1

2
|Sn − bn| ≤ . . . ≤ 1

2n
|S0 − b0|,
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ist
b∗ = S∗ =: M.

Wir behaupten M = supA. Wäre M keine obere Schranke von A, so gäbe es ein a ∈ A mit
a > M . Weil aber die oberen Schranken Sn gegen M konvergieren, gäbe es dann ein Sn < a.
Widerspruch. Also ist M eine obere Schranke.

Wäre M nicht die kleinste obere Schranke, so gäbe es eine obere Schranke S < M . Weil
die bn ∈ A gegen M konvergieren, gäbe es dann ein bn > S. Widerspruch. Also ist M die
kleinste obere Schranke.

Die Existenz der Folge (an) zeigt man ebenso.

Zu (ii). Klar.

Satz 94 (Intervalle). Sei I ⊂ R ein nicht leeres Intervall, d.h. für alle x1, x2, x3 ∈ R folgt
aus x1 < x2 < x3 und x1, x3 ∈ I, dass auch x2 ∈ I. Seien

a = inf I ∈ R ∪ {−∞}, b = sup I ∈ R ∪ {+∞}.

Dann ist I eine der folgenden Mengen

[a, b], [a, b[, ]a, b], ]a, b[,

wobei die nicht definierten Fälle [a,+∞] etc. ausgenommen sind.

Beweis. Wir betrachten zunächst den Fall, dass a und b reelle Zahlen sind. Offenbar ist

I ⊂ [a, b].

Es genügt also zu zeigen, dass
]a, b[⊂ I.

Nach Satz 93 gibt es aber in I eine monoton fallende Folge an ∈ I mit lim an = a und eine
monoton wachsende Folge bn ∈ I mit lim bn = b. Ist a < x < b, so gibt es also ein n mit

an < x < bn,

und nach Voraussetzung ist x ∈ I. Also ist ]a, b[⊂ I.

a = inf I = −∞ und b ∈ R, so ist zu zeigen, dass

] −∞, b[⊂ I ⊂] −∞, b].

In diesem Fall gibt es eine Folge an in I mit lim an = −∞. Dasselbe Argument wie oben
zeigt dann ] −∞, b[⊂ I.

Entsprechend schließt man für die verbleibenden Fälle a ∈ R, b = +∞ und a = −∞, b = +∞.

Definition 95 (Limes superior und inferior). Sei (xn) eine reelle Folge. Wir setzen

sn := sup{xk | k ≥ n} ∈ R ∪ {+∞}.

Dann gibt es zwei Fälle:

• Entweder ist s0 = +∞ und dann sn = +∞ für alle n, oder
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• die Folge (sn)n∈N ist eine Folge in R und zwar, weil sich mit wachsendem n die
”
Kon-

kurrenzmenge“ {k ≥ n} verkleinert, eine monoton fallende.

Den Limes superior der Folge (xk) definieren wir im letzteren Fall durch

lim supxn := lim sn = lim
n→∞

sup{xk | k ≥ n} ∈ R ∪ {−∞}.

Im ersten Fall setzen wir
lim supxn := +∞

Also existiert lim supxn ∈ R ∪ {+∞,−∞} für jede reelle Folge (xn).

Entsprechend definiert man

lim inf xn := lim
n→∞

inf{xk | k ≥ n}.

Satz 96. Sei (xk)k∈N eine reelle Folge. Dann gilt

(i) Ist lim supxk ∈ R, so ist dies der größte Häufungspunkt der Folge (xk)k∈N.
Analog für lim inf.

(ii) (xk)n∈N ist genau dann konvergent gegen a ∈ R, wenn

lim inf xk = a = lim supxk.

Beweis. Zu (i). Sei b := lim supxk und sei

sn := sup
{
xk
∣
∣ k ≥ n

}
.

Wir definieren nun rekursiv eine Teilfolge (xkm
)m∈N mit limm→∞ xkm

= b. Wir setze k0 = 0.
Sind k0 < . . . < km schon definiert, so gibt es ein N ∈ N, so dass

b− 1

m+ 1
< sn < b+

1

m+ 1
für alle n ≥ N.

Wir wählen ein solches n, welches außerdem > km ist. In
{
xk
∣
∣ k ≥ n

}
gibt es eine Folge,

die gegen sn konvergiert. Daher gibt es einen Index km+1 ≥ n > km mit

b− 1

m+ 1
< xkm

< b+
1

m+ 1
.

Die so konstruierte Teilfolge (xkm
)m∈N konvergiert offenbar gegen b. Deshalb ist b ein

Häufungspunkt der Folge. Gäbe es einen Häufungspunkt b̃ > b, so gäbe es eine gegen b̃
konvergente Teilfolge (xkm

)m∈N. Dann ist aber

b+ b̃

2
< xkm

für alle bis auf endlich viele m. Daher gilt für alle n

sn = sup
{
xk
∣
∣ k ≥ n

}
≥ b+ b̃

2

im Widerspruch zu limn→∞ sn = b. Also ist b der größte Häufungspunkt von (xk).
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Zu (ii). Es gilt

inf
{
xk
∣
∣ k ≥ n

}
≤ xn ≤ sup

{
xk
∣
∣ k ≥ n

}
.

Aus lim inf xk = a = lim supxk folgt also limxk = a. Ist umgekehrt limxk = a, so ist jede
Teilfolge auch konvergent gegen a, d.h. a ist der einzige Häufngspunkt der Folge. Aus (i)
folgt dann lim inf xk = a = lim supxk.

Lemma 97. Seien (xn) eine nicht-negative Folge und a ∈ R. Dann gilt

limxn = a =⇒ lim
√
xn =

√
a.

Beweis. Aus den Anordnungsaxiomen folgt für nicht negative a, b

a < b ⇐⇒ a2 < b2, (30)

also 0 ≤ a < b =⇒ √
a <

√
b.

1. Fall: a = 0. Sei ǫ > 0. Dann gibt es ein N ∈ N mit 0 ≤ xn < ǫ2 für alle n ≥ N . Dann ist
|√xn −

√
0| =

√
xn < ǫ für alle n ≥ N . Daraus folgt die Behauptung.

2. Fall: a > 0. Dann gilt

|√xn −√
a| =

|xn − a|√
xn +

√
a
≤ |xn − a|√

a
.

Daraus folgt die Behauptung.

Schlussbemerkung zur Axiomatik der reellen Zahlen. Man kann zeigen, dass die
reellen Zahlen durch die Axiome

(A1) − (A3), (M1) − (M3), (D), (O1) − (O4) und (V )

eindeutig bestimmt sind. Je zwei Mengen mit diesen Strukturen sind isomorph: Es gibt eine
bijektive Abbildung zwischen ihnen, die alle Strukturen erhält. Und man kann (auf der Basis
einfacherer Axiome) ein Modell für die reellen Zahlen konstruieren.

Für das Vollständigkeitsaxiom finden Sie viele alternative äquivalente Formulierungen. Statt
(V) kann man auch die Sätze 67 und 87 oder den Satz 93 (vgl. Barner-Flohr) oder die Sätze 67
und 90 als Axiome wählen.
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5.4 Konvergenz in C

Komplexe Folgen (zn), also Abbildungen N → C, n 7→ zn spielen eine wichtige Rolle in
der Analysis. Wir behandeln hier kurz die Konvergenz komplexer Folgen. Wir erinnern an
die Konjugierte

z̄ := Re z − i Im z

und den Betrag
|z| :=

√
zz̄ =

√

(Re z)2 + (Im z)2.

Beachten Sie, dass wir jetzt die Existenz einer eindeutigen Quadratwurzel aus nicht-negativen
reellen Zahlen zur Verfügung haben.

Satz 98 (Rechenregeln für die Konjugation). Für z, z1, z2 ∈ C gilt

z1 + z2 = z̄1 + z̄2,

z1z2 = z̄1 z̄2,

z1 / z2 = z̄1 / z̄2,

¯̄z = z,

zz̄ = (Re z)2 + (Im z)2,

Re z =
1

2
(z + z̄), Im z =

1

2i
(z − z̄).

Beweis. Einfach.

Satz 99 (Rechenregeln für den Betrag). Für z, z1, z2 ∈ C gilt

|z| =
√
zz̄,

|z1z2| = |z1||z2|,
|z1/z2| = |z1|/|z2|,

|z1 + z2| ≤ |z1| + |z2|. (Dreiecksungleichung)

Beweis. Die ersten beiden Gleichung können Sie direkt nachrechnen. Wir beweisen die Drei-
ecksungleichung. Wenn z1 + z2 = 0, brauchen wir nichts zu zeigen. Wir nehmen daher an,
dass z1 + z2 6= 0. Dann gilt

1 = Re
z1 + z2
z1 + z2

= Re
z1

z1 + z2
+ Re

z2
z1 + z2

≤
∣
∣
∣
∣

z1
z1 + z2

∣
∣
∣
∣
+

∣
∣
∣
∣

z2
z1 + z2

∣
∣
∣
∣
=

|z1|
|z1 + z2|

+
|z2|

|z1 + z2|
.

Nach Multiplikation dieser Ungleichung mit |z1 + z2| > 0 folgt die Behauptung.

Wenn man die auf die komplexen Zahlen erweiterte Bedeutung des Absolutbetrags zugrunde
legt, kann man die Konvegenz komplexer Folgen genauso wie im Reellen definieren:

57



Definition 100. Sei (zn) eine komplexe Folge.

(i) (zn) heißt konvergent gegen a ∈ C, wenn es zu jedem ǫ > 0 ein N ∈ N gibt, so dass

|zn − a| < ǫ für alle n ≥ N,

d.h. wenn die (relle!) Folge (|zn − a|) gegen 0 konvergiert:

lim |zn − a| = 0.

(ii) (zn) heißt eine Cauchyfolge, wenn es zu jedem ǫ > 0 ein N ∈ N gibt, so dass

|zn − zm| < ǫ für alle m,n ≥ N.

(iii) (zn) heißt beschränkt, wenn es ein M ∈ R gibt, so dass

|zn| ≤M für alle n ∈ N.

Monotonie hingegen macht für komplexe Folgen keinen Sinn.

Satz 101. Die komplexe Folge (zn) ist konvergent gegen a ∈ C genau dann, wenn

(Re zn) konvergent gegen Re a

und
(Im zn) konvergent gegen Im a.

(zn) ist eine Cauchyfolge genau dann, wenn (Re zn) und (Im zn) Cauchyfolgen sind.

Damit ist die Konvergenz komplexer Folgen auf die reeller Folgen zurückgeführt.

Beweis. Es gilt

|Re z − Re a| ≤ |z − a| =
√

(Re z − Re a)2 + (Im z − Im a)2
(31)

| Im z − Im a| ≤ |z − a| =
√

(Re z − Re a)2 + (Im z − Im a)2.

Aus zn → a, also |zn − a| → 0 folgt daher |Re zn − Re a| → 0, also

Re zn → Re a.

Entsprechend schließt man für den Imaginärteil.

Umgekehrt folgt mit der rechten Gleichung von (31) aus Re zn → Re a und Im zn → Im a,
dass

(Re zn − Re a)2 + (Im zn − Im a)2 → 0.

Aus Lemma 97 folgt dann
|zn − a| → 0,

also zn → a. Die Aussage über Cauchyfolgen ergibt sich ähnlich aus (31).

Damit zeigt man zum Beispiel:

• Für komplexe Folgen bleiben die Rechenregeln des Satzes 76 richtig.

• Konvergente komplexe Folgen sind beschränkt.

• In C ist jede Cauchyfolge konvergent.

• Jede beschränkte komplexe Folge besitzt (mindestens) einen Häufungspunkt.
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6 Stetigkeit

6.1 Grenzwerte von Funktionen

Definition 102 (Umgebung, offen, abgeschlossen). Sei K ∈ {R,C}.
(i) Für ǫ > 0 und p ∈ K sei

Uǫ(p) := {q ∈ K | |q − p| < ǫ}.

Wir nennen das die ǫ-Umgebung von p. Für K = R ist

Uǫ(p) =]p− ǫ, p+ ǫ[

ein offenes, um p symmetrisches Intervall. Für K = C ist Uǫ(p) die sogenannte offene
Kreisscheibe vom Radius ǫ um p.

G

G

U  (p)

p

p

ε

U  (p)
ε

(ii) Eine Teilmenge D ⊂ K heißt offen, wenn es zu jedem p ∈ D eine ǫ-Umgebung von p
gibt, die ganz in D liegt.

(iii) Eine Teilmenge D ⊂ K heißt abgeschlossen, wenn K\D offen ist.

(iv) Ein Punkt p ∈ D ⊂ K heißt ein innerer Punkt von D, wenn es ein ǫ > 0 gibt, so dass
Uǫ(p) ⊂ D.

(v) p ∈ R heißt ein Randpunkt von D ⊂ K, wenn p weder innerer Punkt von D noch von
K\D ist.

Beispiel 103. Die offene Kreisscheibe

Ur(z0) = {z ∈ C | |z − z0| < r}

um z0 vom Radius r > 0 ist offen im Sinne dieser Definition.

Beweis. Sei z1 ∈ Ur(z0), d.h.
|z1 − z0| < r.

Dann ist ǫ := r − |z1 − z0| > 0 und für z ∈ Uǫ(z1) gilt

|z − z0| ≤ |z − z1| + |z1 − z0| < ǫ+ |z1 − z0| = r

Also ist Uǫ(z1) ⊂ Ur(z0).

Beispiel 104. Ebenso zeigt man, dass offene Intervalle in R auch im Sinne dieser Definition
offen sind.
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Definition 105. Sei wieder K ∈ {R,C}.

(i) Für p ∈ K und δ > 0 sei
U∗
δ (p) := Uδ(p)\{p}.

Man nennt das die punktierte δ-Umgebung von p.

(ii) Seien D ⊂ K und p ∈ K. p heißt ein Häufungspunkt von D, wenn in jeder punktierten
Umgebung von p Punkte von D liegen, d.h. wenn gilt:

∀δ>0 U
∗
δ (p) ∩D 6= ∅.

Definition 106 (Grenzwert von Funktionen). Seien K ∈ {R,C} und f : K ⊃ D → K

eine Funktion. Seien p ein Häufungspunkt von D und a ∈ R. Wir sagen a ist der Grenzwert
von f(x) für x→ p, wenn folgendes gilt:

∀ǫ>0∃δ>0 f(U∗
δ (p) ∩D) ⊂ Uǫ(a). (32)

Diese Bedingung kann man auch so schreiben:

∀ǫ>0∃δ>0∀x∈D (0 < |x− p| < δ =⇒ |f(x) − a| < ǫ) .

Man schreibt dann
lim
x→p

f(x) = a

oder
f(x) → a für x→ p.

Bemerkungen.

1. Der Punkt pmuss nicht im DefinitionbereichD von f liegen, aber weil er ein Häufungspunkt
von D ist, kann x wirklich

”
in D gegen p gehen“.

2. Die Bedingung (32) besagt, dass man die Abweichung des Funktionswertes f(x) von
a kontrollieren kann, indem man die Abweichung des Arguments von p kontrolliert.

Beispiel 107. Wir betrachten für k ≥ 1 die Funktion f : C → C, z 7→ zk. Wir behaupten

lim
z→1

zk = 1.

Weil D = C ist, ist für alle δ > 0

U∗
δ (1) ∩D 6= ∅. (33)

Weiter gilt für |z| < 2

|zk − 1| = |z − 1||zk−1 + . . .+ 1| ≤ |z − 1| k 2k−1.

Sei nun ǫ > 0. Wähle δ = min(1, ǫ
2k−1k

). Ist dann |z − 1| < δ, so ist insbesondere |z| < 2.
Aus der vorstehenden Abschätzung folgt deshalb für alle z ∈ C:

|z − 1| < δ =⇒ |zk − 1| < δ k 2k−1 ≤ ǫ.
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Beispiel 108. Betrachten Sie die beiden nachstehenden Funktionen sehr sorgfältig, um die
Grenzwertdefinition genau zu verstehen:

f : ] −∞, 0 [∪{1} → R

f(x) := −1 für x < 0, f(1) := 1.

Hier liegt 0 nicht im Definitionsbereich, aber limx→0 f(x) = −1. Anderseits ist 1 kein
Häufungspunkt des Definitionsbereichs, so dass limx→1 f(x) nicht erklärt ist.

f : R → R

f(x) := x2 für x 6= 0, f(0) = 1.

Hier ist limx→0 f(x) = 0.

Bei Funktionen einer reellen Variablen (und nur bei diesen) kommen öfter auch einseitige
Grenzwerte vor:

Definition 109 (Einseitige Grenzwerte). Sei f : R ⊃ D → R eine Funktion. Seien
p, a ∈ R und p ein

”
linksseitiger Häufungspunkt“ von D, d.h . D∩]p− δ, p[6= ∅ für alle δ > 0.

Wir sagen a ist der linksseitige Grenzwert von f(x) für x→ p, wenn folgendes gilt:
Zu jedem ǫ > 0 gibt es ein δ > 0, so dass für alle x ∈ D

p− δ < x < p =⇒ |f(x) − a| < ǫ.

Man schreibt dann
lim
xրp

f(x) = a

oder
f(x) → a für xր p.

Auch die Notation
f(p− 0) = a oder f(p−) = a

ist gebräuchlich. Entsprechend definiert man den rechtsseitigen Grenzwert limxցp f(x).

Beispiel 110. Für die Funktion f : R\{0} → R mit

f(x) =:
x

|x|
gilt

lim
xր0

f(x) = −1, lim
xց0

f(x) = 1

aber limx→0 f(x) exisitiert nicht.
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Lemma 111. Seien f : R ⊃ D → R eine Funktion, p ∈ R und für ein δ > 0 sei

]p− δ, p+ δ[⊂ D ∪ {p}.

Dann gilt: Der Grenzwert limx→p f(x) existiert genau dann, wenn in p der linksseitige und
der rechtsseitige Grenzwert existieren und beide gleich sind. In diesem Fall ist

lim
x→p

f(x) = lim
xրp

f(x) = lim
xցp

f(x).

Beweis. Selbst

Das nächste Lemma bietet die Möglichkeit, den Grenzwertbegriff für Funktionen auf den für
Folgen zurückzuführen.

Lemma 112. Seien f : R ⊃ D → R eine Funktion, a ∈ R und p ein Häufungspunkt von
D.Dann ist limx→p f(x) = a genau dann, wenn gilt:
Für jede Folge (xn)n∈N in D\{p} mit limn→∞ xn = p gilt

lim
n→∞

f(xn) = a.

Entsprechende Aussage gelten auch für komplexe Funktionen oder für einseitige Grenzwerte
reeller Funktionen.

Beweis. Zu (⇒). Es gelte limx→p f(x) = a. Sei (xn)n∈N eine Folge inD\{p} mit limn→∞ xn =
p, und sei ǫ > 0. Dann gibt es ein δ > 0 mit f(U∗

δ (p) ∩D) ⊂ Uǫ(a). Weil limn→∞ xn = p,
gibt es ein N ∈ N mit xn ∈ U∗

δ (p) und daher f(xn) ∈ Uǫ(a) für alle n ≥ N . Also gilt
limn→∞ f(xn) = a.

Zu (⇐). Nun gelte umgekehrt limn→∞ f(xn) = a für jede Folge (xn)n∈N in D\{p} mit
limn→∞ xn = p. Annahme: Es gilt nicht limx→p f(x) = a. Dann gibt es ein ǫ > 0, so dass

für kein δ > 0 gilt f(U∗
δ (p) ∩ D) ⊂ Uǫ(a). Dann gibt es zu δ = 1

n also ein xn ∈ U∗
δ (p) ∩

D, für das f(xn) /∈ Uǫ(a). Die Folge f(xn) konvergiert also nicht gegen a, obwohl wegen
|xn − p| < 1

n natürlich limxn = p. Widerspruch! Also war die Annahme falsch und es gilt
doch limx→p f(x) = a.

Dieses Lemma gibt die Möglichkeit, die bestimmte Divergenz (Konvergenz gegen ±∞) von
Folgen auf Funktionen zu übertragen.

Definition 113 (Unendliche Grenzwerte und Grenzwerte in Unendlich). Seien
f : R ⊃ D → R eine Funktion und p, a ∈ R ∪ {−∞,+∞}. Wir definieren:

lim
x→p

f(x) = a,

wenn es wenigstens eine Folge (xn) in D\{p} gibt, für die limxn = p ist, und wenn für jede
solche Folge

lim
n→∞

f(xn) = a

gilt. Für reelle p und a stimmt das nach dem Lemma mit der bisherigen Definition überein.

Im Komplexen machen
”
+∞“ oder

”
−∞“ keinen Sinn, aber es gibt eine sinnvolle Definition

für limz→∞ f(z) = a ∈ C und für limz→p f(z) = ∞. Welche?

Beispiel 114. Für k ∈ N \ {0} ist

lim
x→+∞

xk = +∞,
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denn es gibt Folgen (xn) in R, die gegen +∞ gehen, und für jede solche Folge geht auch
yn := xn − 1 gegen +∞ und

xkn = (1 + yn)
k ≥ 1 + kyn → ∞ für n→ ∞.

Satz 115 (Rechenregeln für Grenzwerte). Seien f, g : R ⊃ D → R und c ∈ R. (Statt
R auch überall C.) Dann gilt

lim
x→p

(f + g)(x) = lim
x→p

f(x) + lim
x→p

g(x),

lim
x→p

(fg)(x) = lim
x→p

f(x) lim
x→p

g(x),

lim
x→p

(cf)(x) = c lim
x→p

f(x),

falls die Grenzwerte auf der rechten Seite existieren. Weiter gilt

lim
x→p

f(x) = a 6= 0 =⇒ lim
x→p

1

f(x)
=

1

a

und

lim
x→p

|f(x)| = ∞ ⇐⇒ lim
x→p

1

f(x)
= 0.

Beweis. Selbst.

Definition 116 (Stetigkeit). Sei f eine reelle oder komplexe Funktion auf D.

f heißt stetig in p ∈ D, wenn gilt:

∀ǫ>0∃δ>0∀x∈D (|x− p| < δ =⇒ |f(x) − f(p)| < ǫ) .

f heißt stetig (auf D), wenn es in allen p ∈ D stetig ist.

Lemma 117. Seien f eine reelle oder komplexe Funktion aufD und p ∈ D ein Häufungspunkt
von D. Dann sind die folgenden Aussagen äquivalent:

(i) f ist stetig in p.

(ii) ∀ǫ>0∃δ>0 f(Uδ(p) ∩D) ⊂ Uǫ(f(p)).

(iii) Für jede Folge (xn) in D gilt

lim
n→∞

xn = p =⇒ lim
n→∞

f(xn) = f(p).

(iv)
lim
x→p

f(x) = f(p).

Beweis. Folgt aus den äquivalenten Formulierungen für Grenzwerte von Funktionen.
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Beispiel 118. Konstante Abbildungen sind stetig. Die identische Abbildung

id : D → D, x 7→ x

ist stetig.

Beispiel 119. Die Abbildung
f : C → C, z 7→ |z|

ist stetig. Dasselbe gilt für die reelle Funktion R → R, x 7→ |x|.
Beweis. Wir zeigen die Stetigkeit in einem beliebigen Punkt z0 ∈ C.

Für alle z ∈ C gilt nach dem Korollar 9, das genauso wie im reellen Fall auch im komplexen
Fall aus der Dreiecksungleichung folgt,

|f(z) − f(z0)| = ||z| − |z0|| ≤ |z − z0|.

Ist also ǫ > 0 gegeben und setzt man δ = ǫ, so folgt aus |z− z0| < δ, dass |f(z)− f(z0)| < ǫ.

Beispiel 120 (Eine unstetige Funktion). Die Funktion f : R → R mit

f(x) :=

{

+1 für x ≥ 0,

−1 für x < 0,

ist in 0 nicht stetig. Für die Folge (xn = (− 1
2 )n) gilt limxn = 0, aber lim f(xn) = lim(−1)n

existiert nicht und ist deshalb nicht = f(0).

Beispiel 121 (Noch eine unstetige Funktion). Für dieses Beispiel greifen wir vor auf
die Sinusfunktion, die erst später

”
offiziell“ eingeführt wird. Die Funktion f : R → R mit

f(x) :=

{

0 für x = 0,

sin 1
x für x 6= 0,

ist an der Stelle 0 unstetig. Die Folge
(

xk = 1
kπ+ π

2

)

k∈N
konvergiert nämlich gegen 0, aber

(
f(xk) = sin(kπ + π

2 ) = (−1)k
)

k∈N
ist divergent. Dieses Beispiel zeigt, dass Unstetigkeiten

nicht unbedingt
”
Sprünge“ sein müssen. begincenter figur4cmunstetig endcenter

Das vorstehende Bild des Graphen wurde mit dem Plot-Befehl von Mathematica erzeugt.
Das Programm wertet die Funktion an bestimmten Stellen aus, die es selbst wählt. Die Stel-
len liegen enger zusammen, wenn die Funktionswerte heftig schwanken, aber das Programm
erwischt im allgemeinen natürlich nicht automatisch die Maximal- und Minimalstellen. Des-
halb sehen die Spitzen des Graphen so

”
angenibbelt“ aus.

Lemma 122. Sei f : R ⊃ D → R stetig in einem Punkt in x ∈ D mit f(x) 6= 0. Dann gibt
es δ > 0, so dass

f(Uδ(x) ∩D) 6∋ 0.

Das gilt auch für komplexe Funktionen.
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Beweis. Nach Definition der Stetigkeit gibt es zu ǫ := |f(x)| ein δ > 0, so dass gilt

∀y(y ∈ Uδ(x) ∩D =⇒ |f(y) − f(x)| < ǫ).

Insbesondere also f(y) 6= 0.

Aus den Rechenregeln für Grenzwerte ergibt sich unmittelbar:

Satz 123 (Rechenregeln für stetige Funktionen). Seien f, g : R ⊃ D → R stetig in
p ∈ D. Dann sind auch f±g und fg stetig in p. Ist g(p) 6= 0, so ist die auf {x ∈ D|g(x) 6= 0}
definierte Funktion f/g in p stetig.
Ist f : R ⊃ D → G ⊂ R stetig in p und g : R ⊃ G→ R stetig in f(p), so ist die Komposition
g ◦ f : D → R stetig in p.
Entsprechendes gilt für komplexe Funktionen.

Beispiel 124. Weil die Funktion x 7→ x stetig ist, sind auch die Potenzen x 7→ xk stetig.
Weil konstante Funktionen stetig sind, sind dann auch Produkte x 7→ akx

k und Summen
von solchen Funktionen stetig. Kurzum: Polynome sind stetig. Rationale Funktionen sind
stetig auf ihrem natürlichen Definitionsbereich.

Lemma 125. Stetigkeit ist eine lokale Eigenschaft: f : D → R ist stetig in p ∈ D, wenn es
ein δ > 0 gibt, so dass f |D∩Uδ(p) stetig ist.
Entsprechendes gilt für komplexe Funktionen.

Beweis. Triviale Folge der Definition: Ist (xn) eine Folge in D, die gegen p konvergiert, so
liegen fast alle Folgenglieder in Uδ(p). Weil f |Uδ(p) stetig ist, folgt lim f(xn) = f(p).

Dies Lemma wird häufig so benutzt:

Korollar 126. Seien R ⊃ G =
⋃

i∈I Ui die Vereinigung von offenen Mengen Ui und f eine
Funktion auf G. Ist f |Ui stetig für alle i ∈ I, so ist f stetig auf G.

Beweis. Wir zeigen die Stetigkeit für p ∈ G. Nach Voraussetzung gibt es ein i ∈ I, so
dass p ∈ Ui. Insbesondere gibt es ein δ > 0 mit Uδ(p) ⊂ Ui. Aus dem Lemma folgt die
Behauptung.

Satz 127 (Stetigkeit von Umkehrfunktionen). Sei f : R ⊃ J → R streng monoton
wachsend (fallend) auf einem Intervall J ⊂ R. Dann ist f injektiv und die Umkehrfunktion

f−1 : f(J) → R

ist streng monoton wachsend (fallend) und stetig.
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f(J)

J

Beweis. Wie nehmen an, dass f streng monoton wachsend ist. Offenbar ist es dann injektiv
und es gilt für x1, x2 ∈ J

x1 < x2 ⇐⇒ f(x1) < f(x2).

Die Umkehrfunktion g := f−1 ist also auch streng monoton steigend.

Wir zeigen die Stetigkeit von g in y0 = f(x0) ∈ f(J). Sei also ǫ > 0. Wir suchen ein δ > 0
mit

g (]y0 − δ, y0 + δ[∩ f(J)) ⊂ ]x0 − ǫ, x0 + ǫ[. (34)

Wir zeigen zunächst

∃δ1>0 g (]y0 − δ1, y0] ∩ f(J)) ⊂ ]x0 − ǫ, x0]. (35)

1. Fall: Es gibt x1 ∈]x0 − ǫ, x0[∩J . In diesem Fall wählen wir ein solches x1 und setzen

y1 := f(x1), δ1 := y0 − y1.

Dann ist y1 = y0 − δ1 und für

y = f(x) ∈]y1, y0] ∩ f(J)

gilt
x1 = g(y1) < g(y) ≤ g(y0) = x0

Damit ist
g(]y0 − δ1, y0] ∩ f(J)) ⊂]x0 − ǫ, x0].

2. Fall: ]x0 − ǫ, x0[∩J = ∅. Weil J ein Intervall(!) ist, ist dann x0 = inf J der linke Eckpunkt
von J , und es gilt f(x) ≥ f(x0) für alle x ∈ J . Setzen wir also δ1 := 1, so ist

]y0 − δ1, y0] ∩ f(J) = {y0}

und daher
g(]y0 − δ1, y0] ∩ f(J)) = {x0} ⊂]x0 − ǫ, x0].

Damit ist (35) gezeigt. Ebenso zeigt man:

∃δ2>0 g ([y0, y0 + δ2[∩ f(J)) ⊂ [x0, x0 + ǫ[. (36)

Aus (35) und (36) folgt (34) mit δ := min{δ1, δ2}.

Beispiel 128. Aus den Rechenregeln für Ungleichungen folgt, dass für alle k ∈ N\{0}

[0,+∞[→ R, x 7→ xk
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streng monoton wachsend ist. Daher ist

[0,+∞[→ R, x 7→ k
√
x

ebenfalls streng monoton wachsend und stetig. Als Konsequenz ergibt sich für positive Folgen
(xn)

lim
n→∞

xn = 0 =⇒ lim
n→∞

k
√
xn = 0,

vgl. Lemma 97.

Der folgende Satz gibt eine Charakterisierung stetiger Funktionen auf offenen Mengen, die
fundamental für Verallgemeinerungen des Stetigkeitsbegriffs in der sogenannten Topologie
ist.

Satz 129. Sei f : K ⊃ G→ K definiert auf der offenen Menge G ⊂ K, wobei K wieder für
R oder C steht. Dann gilt:
f ist stetig genau dann, wenn für jede offene Menge U ⊂ K das Urbild f−1(U) offen ist.
Entsprechendes gilt auch für komplexe Funktionen.

Beweis. Sei zunächst f stetig. Sei U ⊂ K offen und sei x ∈ f−1(U), d.h. f(x) =: y ∈ U . Wir

müssen zeigen, dass es dann ein δ > 0 gibt, so dass Uδ(x) ⊂ f−1(U) ist. Weil U offen ist,
gibt es ein ǫ > 0 mit Uǫ(y) ⊂ U . Weil f in x stetig ist, gibt es dazu ein δ > 0, so dass

f(Uδ(x) ∩G) ⊂ Uǫ(y) ⊂ U,

d.h.
Uδ(x) ∩G ⊂ f−1(U).

Weil G offen ist, kann man δ so klein wählen, dass überdies Uδ(x) ⊂ G, also Uδ(x) ⊂ f−1(U).

Seien nun die Urbilder offener Menge offen. Sei x ∈ G. Wir wollen zeigen, dass f in x stetig

ist. Sei dazu ǫ > 0 gegeben. Dann ist f−1(Uǫ(f(x))) offen und enthält x. Also gibt es ein
δ > 0 mit Uδ(x) ⊂ f−1(Uǫ(f(x))), d.h. für alle y gilt

|y − x| < δ =⇒ |f(y) − f(x)| < ǫ.
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6.2 Drei bedeutende Sätze über stetige Funktionen

Wir beweisen in diesem Abschnitt

• den Zwischenwertsatz,

• den Satz vom Maximum und

• den Satz über gleichmäßige Stetigkeit.

Ein Intervall J ⊂ R ist eine Menge, die mit je zwei Punkten auch alle Punkte dazwischen
enthält. Ist x < z < y, und gilt x ∈ J und y ∈ J , so gilt auch z ∈ J . Vergleichen Sie
Definition 10. Stetige Funktionen erhalten diese Eigenschaft:

Satz 130 (Zwischenwertsatz, B. Bolzano 1817). Sei f : R ⊃ J → R stetig auf dem
Intervall J . Dann ist die Bildmenge f(J) ein Intervall. D.h. sind f(x) und f(y) zwei Funk-
tionswerte von f , so sind auch alle reellen Zahlen dazwischen Funktionswerte von f . Daher
der Name Zwischenwertsatz.

Beweis. Seien also x, y ∈ J und

f(x) < c < f(y).

Wir müssen ein z ∈ J finden, für das f(z) = c.
Wir nehmen an, dass x < y, den Fall x > y beweist man
analog.
Wir setzen x0 := x, y0 := y und bilden rekursiv definierte
Folgen (xn), (yn) wie folgt:

J

f(J)

x y

c

z

f(x)

f(y)

Wir bilden den Mittelpunkt von xn und yn

zn :=
xn + yn

2
.

Weil J ein Intervall ist(!), ist zn ∈ J , und wir können f(zn) betrachten.

Ist f(zn) = c, so setzen wir z = zn und sind fertig.

Ist f(zn) < c, so setzen wir
xn+1 = zn, yn+1 = yn.

Ist f(zn) > c, so setzen wir
xn+1 = xn, yn+1 = zn.

Wenn diese Konstruktion nicht abbricht, weil für ein n ∈ N schon f(zn) = c gilt, erhalten
wir auf diese Weise zwei monotone Folgen

x0 ≤ x1 ≤ x2 ≤ . . . ≤ y2 ≤ y1 ≤ y0

mit

0 ≤ yn+1 − xn+1 ≤ 1

2
(yn − xn) ≤ . . . ≤ 1

2n+1
(y0 − x0). (37)

und
f(xn) < c < f(yn). (38)
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für alle n. Als monotone beschränkte Folgen sind (xn) und (yn) konvergent. Wegen (37)
konvergieren sie gegen denselben Wert z ∈ [x, y] ⊂ J , und weil f stetig ist, folgt aus (38),
dass f(z) ≤ c ≤ f(z), also f(z) = c.

Korollar 131. Ist f : R ⊃ J → R stetig auf dem Intervall J und sind x, y ∈ J mit

f(x)f(y) < 0,

d.h. hat f an diesen Stellen verschiedenes Vorzeichen, so gibt es zwischen x und y eine
Nullstelle von f .

Beweis. Sei etwa x < y. Der Zwischenwertsatz angewendet auf f |[x,y] sagt dann, dass f([x, y])
ein Intervall ist. Weil es positive und negative Zahlen enthält, enthält es dann auch die 0.

Korollar 132 (Monotonie und Injektivität). Seien J ⊂ R ein Intervall und f : J → R

eine stetige Funktion. Dann gilt:

f injektiv ⇐⇒ f streng monoton.

Beweis. “⇐”. Trivial.

“⇒”. Das beweisen wir indirekt: Wir nehmen an, dass f injektiv ist, aber weder streng
monoton wachsend noch streng monoton fallend.

Wenn f nicht streng monoton fallend ist, gibt es x1, x2 ∈ J mit

x1 < x2 und f(x1) ≤ f(x2).

Weil f injektiv ist, gilt dann auch rechts eine echte Ungleichung, also

x1 < x2 und f(x1) − f(x2) < 0.

Wenn f nicht streng monoton wachsend ist, gibt es ebenso y1, y2 ∈ J mit

y1 < y2 und f(y1) − f(y2) > 0.

Betrachte die Funktion g : [0, 1] → R mit

g(t) := f((1 − t)x1 + ty1) − f((1 − t)x2 + ty2).

Diese Funktion ist als Komposition stetiger Funktionen stetig auf dem Intervall [0, 1]. Weiter
ist

g(0) = f(x1) − f(x2) < 0, g(1) = f(y1) − f(y2) > 0.

Also gibt es nach dem Zwischenwertsatz ein t ∈]0, 1[ mit g(t) = 0, also mit

f((1 − t)x1 + ty1) = f((1 − t)x2 + ty2).

Aber nach den Rechenregeln für Ungleichungen gilt

(1 − t)x1 + ty1 < (1 − t)x2 + ty2.

Das ist ein Widerspruch zur Injektivität von f .
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Satz 133 (vom Maximum, K. Weierstraß 1861). Eine stetige Funktion f : [a, b] → R

auf einem nicht leeren kompakten (=abgeschlossenen und beschränkten) Intervall nimmt ihr
Maximum und Minimum an. D.h. es gibt x∗, y∗ ∈ [a, b] mit

f(x∗) ≤ f(x) ≤ f(y∗)

für alle x ∈ [a, b]. Insbesondere ist die Funktion f beschränkt.

Für komplexwertige Funktionen machen die Begriffe Maximum und Minimum keinen Sinn.
Allerdings läßt sich der Satz erheblich erweitern, vgl. nächstes Semester.

Beweis. Sei M := sup f([a, b]) ∈ R ∪ {+∞}. Dann gibt es eine Folge (yn) in [a, b] mit

lim f(yn) = M.

Nach dem Satz von Bolzano-Weierstraß können wir o.E. annehmen, dass die Folge (yn)
konvergent ist gegen ein y∗ ∈ [a, b]. Weil f stetig ist, folgt

f(y∗) = f(lim yn) = lim f(yn) = M.

Insbesondere ist M < +∞.

Für das dritte wichtige Resultat über stetige Funktionen brauchen wir noch einen neuen
Begriff.

Wir erinnern an die ǫ-δ-Definition der Stetigkeit: Die Funktion f war stetig auf D, wenn
galt

∀x∈D∀ǫ>0∃δ>0∀y∈D(|y − x| < δ =⇒ |f(y) − f(x)| < ǫ).

Stetigkeit bedeutete nämlich Stetigkeit in jedem Punkt x. Die
”
Qualität der Stetigkeit“ kann

man als
”
schlecht“ bezeichnen, wenn man ein relativ zum vorgegebenen ǫ > 0 sehr kleines

δ benötigt, und als gut, wenn man mit einem relativ großen δ auskommt. Im allgemeinen
wird die Qualität vom Punkt x abhängen. Der Begriff

”
gleichmäßige Stetigkeit“ impliziert,

dass das im speziellen Fall eben nicht so ist, sondern dass man bei gegebenem ǫ > 0 für alle
x ∈ D dasselbe δ > 0 nehmen kann:

Definition 134 (Gleichmäßige Stetigkeit). Sei K ∈ {R,C}. Die Funktion f : K ⊃ D →
K heißt gleichmäßig stetig auf D, wenn gilt:

∀ǫ>0∃δ>0∀x,y∈D(|y − x| < δ =⇒ |f(y) − f(x)| < ǫ).

Beachten Sie: f ist gleichmäßig stetig immer nur auf einer bestimmten Menge.
”
Gleichmäßig

stetig in einem Punkt“ oder
”
an einer Stelle“ macht keinen Sinn.

Beispiel 135. Für a > 0 betrachten wir die Funktion

f : [a,+∞[→ R, x 7→ 1

x
.

Dann ist für x, y > a

|f(y) − f(x)| =
|y − x|
xy

≤ 1

a2
|y − x|.

Zu gegebenem ǫ > 0 wähle man δ = a2ǫ, und aus |y − x| < δ folgt |f(y) − f(x)| < ǫ. Man
sieht hier, dass der Wert a maßgeblich für die Wahl von δ ist. Je kleiner a ist, umso kleiner
muss man (relativ zu ǫ) das δ wählen. Tatsächlich ist

]0,+∞[→ R, x 7→ 1

x
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zwar stetig, aber nicht gleichmäßig stetig. Beweisen Sie das!

Satz 136 (Gleichmäßige Stetigkeit, E. Heine 1872). Sei f : [a, b] → R stetig auf dem
kompakten Intervall [a, b]. Dann ist f gleichmäßig stetig auf [a, b].

Beweis. Annahme: f ist nicht gleichmäßig stetig. Dann gibt es ein ǫ > 0, zu dem kein
einheitliches δ > 0 existiert. Wir wählen ein solches ǫ > 0. Dann sind auch die Zahlen 1

k für
k ∈ N\{0} kein einheitliches δ, d.h. es gibt Folgen (xk), (yk) in [a, b] mit

|yk − xk| <
1

k
, aber |f(yk) − f(xk)| ≥ ǫ.

Nach dem Satz von Bolzano-Weierstraß gibt es eine konvergente Teilfolge (xki
)i∈N mit dem

Grenzwert x∗ = limi→∞ xki
. Weil a ≤ xk ≤ b für alle k, ist auch x∗ ∈ [a, b]. Weil

|yki
− xki

| < 1

ki
→ 0,

ist auch limi→∞ yki = x∗. Daher ist

lim
i→∞

f(xki
) = f(x∗) = lim

i→∞
f(yki

).

Das widerspricht aber der Ungleichung

|f(yki
) − f(xki

)| ≥ ǫ für alle i ∈ N.

Bemerkungen.

1. Der Definitionsbereich D muss bei den beiden letzten Sätzen nicht unbedingt ein Inter-
vall und auch keine Teilmenge von R sein. In den Beweisen war nur folgende Eigenschaft
wichtig:

Jede Folge (xk)k∈N in D besitzt eine konvergente Teilfolge mit Grenzwert in D. Solche
TeilmengenD von R oder C nennt man kompakt. Die Sätze gelten also für stetige Funk-
tionen mit kompaktem DefinitionsbereichD. Beim Satz über das Maximum müssen die
Funktionswerte offenbar reell sein, beim Satz über die gleichmäßige Stetigkeit können
sie auch komplex sein.

2. Während die Bedeutung von Zwischenwertsatz und Satz vom Maximum ziemlich ein-
leuchtend ist, ist die des Satz von der Gleichmäßigen Konvergenz weniger naheliegend.
Er kommt erst im Satz 172 und dann wieder in der Integrationstheorie (im Beispiel
198) “zum Einsatz”.
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7 Differentiation

7.1 Die Ableitung

Wir kommen nun zur Differentialrechnung, die für die moderne Naturwissenschaft von fun-
damentaler Bedeutung ist. Warum? Unsere Modelle von der Natur sind weitgehend de-
terministisch: Wir sind überzeugt, dass die zukünftigen Zustände eines Systems bestimmt
sind, durch die Änderungen, die dieses System erfährt, und dass diese Änderungen durch
(äußere und innere) Einwirkungen verursacht und gesteuert werden (Kausalität). Nach dem
Newtonschen Gesetz bewirkt zum Beispiel die auf einen Massenpunkt wirkende Kraft eine
Änderung von dessen Geschwindigkeit.

Mit Änderung meinen wir ein momentanes Geschehen, die Änderung in jedem Augen-
blick, und die Ableitung einer zeitabhängigen Funktion beschreibt eben gerade dies. Des-
halb formulieren wir die Naturgesetze meistens als Differentialgleichungen: von Schwin-
gungsphänomenen bis zur Reibung von Zahnrädern, von der Wärmeleitung bis zur Strömungs-
mechanik, von der Beschreibung elektrischer Netzwerke bis zur Steuerung chemischer Pro-
zesse bieten Differentialgleichungen die wichtigsten Modelle, so wichtige, dass in der ma-
thematischen Physik das Wort

”
Modell“ oft synonym für

”
Differentialgleichung“ verwendet

wird. Und die Differentialrechnung legt hier die Grundlagen.

Generalvoraussetzung. In diesem Abschnitt sei f : R ⊃ J → R eine Funktion auf einem
Intervall mit mehr als einem Punkt oder auf einer nichtleeren offenen Teilmenge J ⊂ R.
Als Wertebereich der Funktion nehmen wir meist die reellen Zahlen, die folgende Definition
und viele Aussagen machen aber auch Sinn und bleiben richtig, wenn die Werte von f
komplex sind. Dagegen soll das Argument einstweilen reell sein, die Differentialrechnung
für Funktionen von C nach C ist überraschenderweise eine ganz andere Theorie (Komplexe
Analysis).

Definition 137. f : R ⊃ J → R heißt in x0 ∈ J differenzierbar, wenn

f ′(x0) := lim
x→x0

f(x) − f(x0)

x− x0

in R existiert. f ′(x0) heißt dann die Ableitung von f in x0. Man nennt f differenzierbar auf
J , wenn es in allen x0 ∈ J differenzierbar ist.

Zur Notation. Statt f ′ schreibt man auch df
dx . Das ist einerseits etwas inkonsequent, weil

der Name der Variablen beliebig ist, so dass man nicht x auszeichnen sollte. Andrerseits ist
es sehr bequem, zum Beispiel Potenzfunktionen einfach als xn zu schreiben. Dafür erhält
man dann, wie Sie aus der Schule wissen und wir gleich beweisen werden,

dxn

dx
= nxn−1.

Wir werden zum Beispiel
sin′ = cos

oder
d sinx

dx
=

d

dx
sinx = cosx

nebeneinander verwenden.

Wenn das Argument von f die Zeit bezeichnet, schreibt man dafür gern t statt x, und
bezeichnet die Ableitung mit einem Punkt statt mit einem Strich:

ḟ :=
df

dt
.
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Wie die Stetigkeit ist auch die Differenzierbarkeit eine lokale Eigenschaft einer Funktion.
Ob f in x0 differenzierbar ist, hängt nur von den Werten von f in einer beliebig kleinen
Umgebung von x0 ab. Wie für stetige Funktionen gilt daher: Ist f auf einer offenen Menge
J definiert, ist (Ui)i∈I eine Familie offener Mengen mit J =

⋃
Ui und ist f |Ui

für jedes i
differenzierbar, so ist f : J → R differenzierbar. Vgl. Lemma 125 und das folgende Korollar.

Bemerkung. Es ist wichtig, verschiedene Umformulierungen der Differenzierbarkeits-Defi-
nition zur Verfügung zu haben.

1. Man kann x− x0 als neue Variable einführen, die man zum Beispiel ∆x oder h nennt,
und x statt x0 schreiben. Dann ist also f in x differenzierbar, wenn

f ′(x) = lim
∆x→0

f(x+ ∆x) − f(x)

∆x
= lim
h→0

f(x+ h) − f(x)

h

in R existiert.

2. Für h 6= 0 kann man die Funktion

α(h) :=
f(x+ h) − f(x)

h
− f ′(x) (39)

definieren, und falls f in x differenzierbar ist, findet man

f(x+ h) = f(x) + f ′(x)h+ α(h)h, lim
h→0

α(h) = 0.

Gibt es umgekehrt b ∈ R und eine Funktion α mit

f(x+ h) = f(x) + bh+ α(h)h, lim
h→0

α(h) = 0,

so folgt für h 6= 0
f(x+ h) − f(x)

h
− b = α(h) → 0,

und f ist in x differenzierbar mit Ableitung b.

3. Verwendet man statt α die Funktion R(x+h) = α(h)h, so findet man nach rückgängig
gemachter Variablensubstitution:
f ist genau dann in x0 differenzierbar, wenn es b ∈ R und eine Funktion R : J → R

gibt, so dass

f(x) = f(x0) + b(x− x0) +R(x) und lim
x→x0

R(x)

x− x0
= 0.

In diesem Fall ist f ′(x0) = b.

Beispiel 138. Seien n ∈ N und f : R → R, x 7→ xn. Dann ist f differenzierbar mit der
Ableitung

f ′(x) = nxn−1.

Es ist nämlich

lim
h→0

(x+ h)n − xn

h
= lim
h→0

xn + nxn−1h+
(
n
2

)
xn−2h2 + . . .+ hn − xn

h

= lim
h→0

(nxn−1 +

(
n

2

)

xn−2h+ . . .+ hn−1) = nxn−1.
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Beispiel 139. Sei f : R → R, x 7→ |x|. Dann ist f in 0 nicht differenzierbar, denn

f(0 + h) − f(0)

h
=

|h|
h

=

{

+1 für h > 0

−1 für h < 0
.

Der Grenzwert für h→ 0 existiert nicht. Andrerseits war diese Funktion auch in 0 stetig.

Ein Beispiel für eine stetige Funktion, die nirgends differenzierbar ist, finden Sie in Barner-
Flohr, § 8.1.

Hingegen gilt:

Satz 140. Differenzierbare Funktionen sind stetig.

Beweis.

f(x) − f(x0) =
f(x) − f(x0)

x− x0
(x− x0) → f ′(x0) · 0 = 0 für x→ x0.

Geometrische Interpretation: Die Tangente.

f(x)−f(x0)
x−x0

ist die Steigung der Sekante durch
die Punkte (x0, f(x0)) und (x, f(x)). Der
Grenzwert f ′(x0) gibt die Steigung der Tan-
gente an den Graphen an.

Die Gleichung der Tangente durch den
Punkt (x0, f(x0)) ist also gegeben durch

y = f ′(x0)(x− x0) + f(x0).

∆x

∆f

x
0

x

Differenzierbarkeit kann man auch auffassen als die Eigenschaft einer Funktion, eine Tan-
gente an den Graphen zu besitzen. Vergleichen Sie insbesondere das obige (Gegen)beispiel
der Funktion |x|.

Beispiel 141 (Newtonverfahren). Beim Newtonverfahren zur Bestimmung der Nullstel-
len einer Funktion f beginnt man mit einem Wert x1 möglichst nah an einer vermuteten
Nullstelle. Dann ermittelt man den Schnittpunkt x2 der Tangente an den Graphen in diesem
Punkt mit der x-Achse. Oft ist dies eine bessere Approximation für die Nullstelle. Iteration
dieses Verfahrens liefert eine Folge, die unter gewissen, hier nicht diskutierten Vorausset-
zungen gegen eine Nullstelle x∗ von f konvergiert. Die Formel für die Iteration erhält man
durch Auflösen der Gleichung

f(xn) + f ′(xn)(xn+1 − xn) = 0.

Es ergibt sich
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xn+1 = xn − f(xn)

f ′(xn)
.

x

x

x nn+1

*

f(x)

Wählt man etwa f(x) = xk − b, so findet man die bekannte Iteration

xn+1 = xn − xkn − b

kxk−1
n

= xn

(

1 +
1

k
(
b

xkn
− 1)

)

,

vgl. Satz 69.

Analytische Interpretation: Lineare Approximation. Die einfachsten Funktionen (nach
den Konstanten) sind sicherlich die linearen Funktionen a+bx mit konstanten a, b. Die Tan-
gente ist der Graph einer solchen Funktion und die Umformulierung 3 der Differenzierbar-
keitsdefinition liefert:

Eine Funktion ist an der Stelle x differenzierbar genau dann, wenn sie sich dort durch eine
lineare Funktion approximieren läßt, so dass der Fehler schneller als linear verschwindet:

f(x+ h) = f(x) + bh+R(h) mit lim
h→0

R(h)

h
= 0.

Alternativ: Eine Funktion ist an der Stelle x0 differenzierbar genau dann, wenn sie sich
dort durch eine lineare Funktion approximieren läßt, so dass der Fehler schneller als linear
verschwindet:

f(x) = f(x0) + b(x− x0) +R(x) mit lim
x→x0

R(x)

x− x0
= 0.

Physikalische Interpretation: Die Geschwindigkeit. Bewegt sich ein Punkt auf einer
Geraden mit konstanter Geschwindigkeit v, so legt er in der Zeit ∆t die Strecke

∆s = v∆t

zurück. Umgekehrt kann man aus der Strecken- und Zeitdifferenz die Geschwindigkeit er-
mitteln:

v =
∆s

∆t
.

Bewegt sich der Punkt mit variabler Geschwindigkeit, und hat er zur Zeit t die Strecke s(t)
zurückgelegt, so kann man annehmen, dass wenigstens im kleinen Zeitabschnitt von t bis
t+ ∆t die Geschwindigkeit v(t) annähernd konstant ist, also

v(t) ≈ ∆s

∆t
:=

s(t+ ∆t) − s(t)

∆t
.

Durch Grenzübergang ∆t→ 0 erhält man die Momentangeschwindigkeit v(t) zur Zeit t:

v(t) := lim
∆t→0

s(t+ ∆t) − s(t)

∆t
.
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Satz 142 (Rechenregeln für die Ableitung). Seien f, g : J → R differenzierbar in
x ∈ J und sei c ∈ R.
Dann sind auch die Funktionen f + g, cf, fg : J → R in x differenzierbar.
Hat g keine Nullstellen in J so ist auch f/g : J → R in x differenzierbar.
In diesem Fall gilt:

(f + g)′(x) = f ′(x) + g′(x),

(cf)′(x) = cf ′(x),

(fg)′(x) = f ′(x)g(x) + f(x)g′(x),
(
f

g

)′
(x) =

f ′(x)g(x) − f(x)g′(x)

g2(x)
.

Beweis. Nicht schwer.

Beispiel 143. Für n ∈ N ist die Abildung

f : R \ {0} → R, x 7→ x−n =
1

xn

differenzierbar mit der Ableitung

f ′(x) = −nx−n−1 =
−n
xn+1

.

Dazu kann man die Quotientenregel benutzen:
(

1

xn

)′
=

−nxn−1

x2n
=

−n
xn+1

.

Satz 144 (Kettenregel). Seien g : R ⊃ I → J in x ∈ I und f : J → R in g(x)
differenzierbar. Dann ist f ◦ g in x differenzierbar und es gilt

(f ◦ g)′(x) = (f ′ ◦ g)(x)g′(x) = f ′(g(x))g′(x).

Beweis. Wir setzen y := g(x). Es sei

g(x+ ∆x) = g(x) + g′(x)∆x+ α(∆x)∆x, lim
∆x→0

α(∆x) = 0

f(y + ∆y) = f(y) + f ′(y)∆y + β(∆y)∆y, lim
∆y→0

β(∆y) = 0.

Dann ist

f(g(x+ ∆x)) = f(g(x) + g′(x)∆x+ α(∆x)∆x
︸ ︷︷ ︸

=:∆y

)

= f(g(x)) + f ′(y)∆y + β(∆y)∆y

= f(g(x)) + f ′(g(x))g′(x)∆x

+ [f ′(y)α(∆x) + β(g′(x)∆x+ α(∆x)∆x)(g′(x) + α(∆x))]
︸ ︷︷ ︸

=:γ(∆x)

∆x.

76



Offenbar gilt
lim

∆x→0
γ(∆x) = 0,

und daraus folgt die Behauptung.

Beispiel 145 (Ableitung der Umkehrfunktion). Sei f : J → I ⊂ R differenzierbar und
umkehrbar mit der differenzierbaren Umkehrfunktion g = f−1 : I → J . Aus

x = f(g(x))

folgt dann durch Differentiation und Anwendung der Kettenregel:

1 = f ′(g(x))g′(x),

also

(f−1)′(x) =
1

f ′(f−1(x))
.

In diesem Beispiel folgt f ′(y) 6= 0, weil f ′(y)g′(f(y)) = 1 6= 0. Wir wollen zeigen, dass diese
Bedingung umgekehrt auch hinreichend für die Differenzierbarkeit der Umkehrfunktion ist.

Satz 146 (Ableitung der Umkehrfunktion). Sei f : J → R auf dem Intervall J streng
monoton und stetig. Dann existiert die Umkehrfunktion f−1 : f(J) → R auf dem Intervall
f(J). Sei f differenzierbar in x0 ∈ J und

f ′(x0) 6= 0.

Dann ist f−1 in y0 = f(x0) differenzierbar und

(f−1)′(y0) =
1

f ′(x0)
. (40)

Beweis. Wir schreiben g := f−1. Dann gilt für y 6= y0 ∈ f(J)

g(y) − g(y0)

y − y0
=

g(y) − g(y0)

f(g(y)) − f(g(y0))
=

1
f(g(y))−f(x0)

g(y)−x0

. (41)

Weil f in x0 differenzierbar ist, ist die Funktion

φ(x) :=

{
f(x)−f(x0)

x−x0
für x 6= x0

f ′(x0) für x = x0

stetig in x0. Weil g nach Satz 127 in y0 stetig und g(y0) = x0 ist, folgt

lim
y→y0

φ(g(y)) = φ(x0) = f ′(x0). (42)

Weil f ′(x0) 6= 0, folgt aus (41) und (42) die Behauptung.

Beispiel 147. Die Funktion f : R → R, x 7→ x3 ist differenzierbar und umkehrbar, aber
f ′(0) = 0. Die Umkehrfunktion x 7→ 3

√
x ist in 0 nicht differenzierbar. Das ist anschaulich

klar, weil die Tangente an den Graphen Steigung = ∞ hat. Wie sieht ein exakter Beweis
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dafür aus? In allen x 6= 0 ist die dritte Wurzel nach dem Satz aber differenzierbar und für
die Ableitung gilt

( 3
√

)′(x3) =
1

3x2
=

x

3x3

und daher

( 3
√

)′(x) =
3
√
x

3x

(

=
1

3
x2/3

)

.

Beispiel 148. Die Funktion f : R ⊃ J → ]0,∞[ sei differenzierbar mit f ′ = f . Dann ist
f ′ > 0 und, wie wir im nächsten Abschnitt sehen werden, f streng monoton wachsend. Es
besitzt also eine differenzierbare Umkehrfunktion f−1 : f(J) → R. Für diese gilt

(
f−1

)′
(x) =

1

f ′(f−1(x))
=

1

f(f−1(x))
=

1

x
.
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7.2 Der Mittelwertsatz

Wir kommen nun zum wichtigsten Satz der Differentialrechnung, dem Mittelwertsatz. Zur
Vorbereitung stellen wir fest:

Wenn die Funktion f : R ⊃ [a, b] → R in einem
inneren Punkt x0 ihres Definitionsbereiches ihr Ma-
ximum annimmt, dann haben die Sekanten links da-
von eine Steigung ≥ 0 und die Sekanten rechts davon
eine Steigung ≤ 0.

a bx
0

Ist f in x0 differenzierbar, so ist die Ableitung f ′(x0) als Grenzwert der Sekantensteigungen
einerseits ≥ 0, andrerseits aber ≤ 0 und deshalb = 0.

Satz 149 (Notwendiges Extremwertkriterium). Nimmt die Funktion f : J → R ihr
Maximum (oder Minimum) in einem inneren Punkt x0 des Intervalls J an, und ist sie dort
differenzierbar, so ist f ′(x0) = 0.

In Randpunkten muss das natürlich nicht so sein. Ist f : R ⊃ [a, b] → R differenzierbar, so
sind die einzigen Stellen, die für Extremwerte von f in Frage kommen die Endpunkte a, b
und die Punkte, wo die Ableitung f ′(x) verschwindet. Typischerweise sind das endlich viele
Punkte, und man kann dann nachrechnen, wo f am größten bzw. kleinsten ist. Das ist dann
wirklich das Maximum oder Minimum, weil f stetig auf einem kompakten Intervall ist.

Nun zum angekündigten

Satz 150 (Mittelwertsatz, Lagrange 1797). Sei f : R ⊃ [a, b] → R stetig und auf ]a, b[
differenzierbar. Dann gibt es ein ξ ∈]a, b [ mit

f(b) − f(a)

b− a
= f ′(ξ). (43)

Anschaulich bedeutet das, dass es irgendwo eine Tangente gibt, die parallel zur Sekante
durch (a, f(a)) und (b, f(b)) ist:

a bξ
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Beweis. Die Sekante ist der Graph von

s(x) = f(a) +
f(b) − f(a)

b− a
(x− a).

Wenn man die Parallelen zur Sekante betrachtet, erkennt man, dass ξ ein guter Kandidat
ist, wenn (ξ, f(ξ)) am weitesten von der Sekante entfernt ist. Der Abstand eines Punktes
von der Sekante (versehen mit Vorzeichen) ist aber proportional zu seiner Höhe über der
Sekante. Deshalb suchen wir nach einem Extremwert von h(x) = f(x) − s(x) im Inneren
]a, b[ des Intervalls. Für die entsprechende Stelle ξ ist dann

0 = h′(ξ) = f ′(ξ) − f(b) − f(a)

b− a
,

und wir sind fertig.

Weil h stetig auf dem kompakten Intervall [a, b] ist, nimmt es sein Maximum und Minimum
an. Sind beide gleich, so ist h konstant und h′(ξ) = 0 für alle ξ.

Andernfalls wird wegen h(a) = h(b) wenigstens eines der beiden in einem inneren Punkt ξ
angenommen, und wir sind auch fertig.

Warum ist der Mittelwertsatz wichtig? Zunächst sagt der Mittelwertsatz nichts darüber
aus, wo ξ eigentlich liegt. Vielleicht gibt es ja auch mehrere solche Stellen, vgl. Abbildung.
Die wichtigen Anwendungen des Mittelwertsatzes

”
laufen andersherum“: Sie betreffen Situa-

tionen, wo man das Verhalten der Ableitung (überall!) sehr gut kennt, und daraus Schlüsse
auf die Funktion zieht.

Der Mittelwertsatz ist die Brücke von Ableitungsinformationen zu
Informationen über die Funktion selbst.

Satz 151 (Schrankensatz). Ist f : [a, b] → R stetig und auf ]a, b[ differenzierbar und sind
m,M ∈ R mit m ≤ f ′(x) ≤M für alle x ∈]a, b[, so ist

m(b− a) ≤ f(b) − f(a) ≤M(b− a).

Beweis. Es gibt ein ξ ∈]a, b[ mit

f(b) − f(a) = f ′(ξ)(b− a),

und daraus folgt wegen b− a > 0 und m ≤ f ′(ξ) ≤M die Behauptung.

Wichtig ist, dass man den Mittelwertsatz natürlich auch auf jedes Teilintervall [x1, x2] ⊂ [a, b]
anwenden kann, wie im Beweis des folgenden Satzes:

Satz 152 (Monotoniekriterium). Sei f : R ⊃ J → R stetig auf dem Intervall J und
differenzierbar mit f ′(x) > 0 in allen inneren Punkten x von J . Dann ist f streng monoton
steigend (wachsend):

x1 < x2 =⇒ f(x1) < f(x2).

Hat man nur f ′(x) ≥ 0, so folgt die schwache Monotonie: f(x1) ≤ f(x2).
Entsprechendes gilt für f ′ < 0 bzw. f ′ ≤ 0.
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Beweis. Seien x1, x2 ∈ J mit x1 < x2. Dann ist nach dem Mittelwertsatz für ein ξ zwischen
x1 und x2

f(x2) − f(x1) = f ′(ξ)
︸ ︷︷ ︸

>0

(x2 − x1)
︸ ︷︷ ︸

>0

> 0,

also f(x1) < f(x2). Entsprechend für die anderen Fälle.

Eine ganz wichtige Konsequenz des Mittelwertsatzes kombiniert die Monotonieaussagen:
Funktionen, die gleichzeitig monoton wachsen und fallen, sind konstant.

Satz 153 (Konstanzkriterium). Ist f : R ⊃ J → R stetig auf dem Intervall J und
differenzierbar mit f ′ = 0 im Inneren von J , so ist f konstant auf J .

Beachten Sie: Aus der Definition der Ableitung folgt trivial, dass konstante Funktionen die
Ableitung 0 haben. Hier wird aber die Umkehrung behauptet und aus dem Mittelwertsatz
bewiesen. Es ist eben nicht so klar, dass alle Sekanten die Steigung null haben, wenn die
Grenzwerte der Sekantensteigungen alle null sind. Wenn der Grenzwert einer Folge null ist,
können die Folgenglieder ja durchaus positiv sein!

Haben zwei differenzierbare Funktionen auf einem Intervall dieselbe Ableitung, so unter-
scheiden sie sich nur um eine additive Konstante. Dies ist eine oft benutzte Umformulierung
des Konstanzkriteriums.
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7.3 Exponentialfunktion, Logarithmus und Potenzen

Exponentialfunktion

Viele Wachstums- und Zerfallsprozesse folgen –wenigstens über gewisse Stadien hin– dem
Gesetz, dass das Wachstum, also die zeitliche Änderung f ′(t) proportional zur vorhandenen
Menge f ist:

f ′ = af (44)

mit einer Konstanten a, deren Vorzeichen über Wachstum bzw. Abnahme entscheidet.
Dieses Gesetz findet man von der Zinseszinsrechnung über den radioaktiven Zerfall, den
Wärmeausgleich zwischen Medien verschiedener Temperatur, die Kinematik von Brems-
vorgängen, chemische oder elektrostatische Sättigungsvorgänge etc. bis hin zur Populations-
dynamik oder Modellen für die Ausbreitung von Seuchen.

Die Gleichung (44) ist eine sogenannte Differentialgleichung für eine gesuchte Funktion f ,
die in der Theorie der Differentialgleichungen auch gern mit y bezeichnet wird. Wir wollen
den Spezialfall a = 1 betrachten, also die Gleichung

y′ = y.

Ist y eine Lösung, so auch jedes Vielfache von y. Wir fordern deshalb zusätzlich eine Nor-
mierung, nämlich y(0) = 1.

Satz 154 (und Definition: Exponentialfunktion). Es gibt genau eine differenzierbare
Funktion y : R → R mit

y′ = y, y(0) = 1. (45)

Diese Funktion heißt die Exponentialfunktion. Sie wird mit exp : R → R oder auch mit
x 7→ ex bezeichnet.

Beweis. 1. Existenz: Für k ≥ 1 gilt
(
xk

k!

)′
= xk−1

(k−1)! . Setzt man nun yn(x) :=
∑n
k=0

xk

k! , so ist

also yn(0) = 00

0! = 1 und y′n = yn−1. Man kann zeigen, dass

(

lim
n→∞

yn

)′
= lim
n→∞

y′n = lim
n→∞

yn−1 = lim
n→∞

yn

gilt, genauer, dass y(x) := limn→∞ yn(x) eine differenzierbare Funktion mit den gewünschten
Eigenschaften liefert. Der Beweis ist ad hoc mühsam, und wir geben ihn später in einem
natürlicheren Zusammenhang, vgl. Abschnitt 10.6. Einen anderen Beweis geben wir in Bei-
spiel 217. Es ist aber logisch kein Problem, wenn wir im weiteren Gang der Vorlesung die
Existenz einfach als gegeben hinnehmen: Wir werden die Exponentialfunktion bei der Ent-
wicklung der Differential- und Integralrechnung nur als Beispiel, nicht als konstituierendes
Element benötigen und benutzen.

2. Einzigkeit: Dazu zeigen wir zunächst folgendes

Lemma 155. Sind y1, y2 : R → R zwei Funktionen, die (45) erfüllen, so gilt

y1(x)y2(−x) = 1 für alle x ∈ R. (46)

Insbesondere hat keine der beiden Funktionen eine Nullstelle.

Das ist klar für x = 0. Außerdem gilt für die Funktion

g : x 7→ y1(x)y2(−x),
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dass

g′(x) = y′1(x)y2(−x) + y1(x)y
′
2(−x)(−1) = y1(x)y2(−x) − y1(x)y2(−x) = 0.

Also ist g konstant und das Lemma bewiesen.

Nun zum Beweis der Einzigkeit. Wenden wir das Lemma an auf y1 = y2 = y, so folgt
y(x) 6= 0 für alle x und

y(−x) =
1

y(x)
. (47)

Wenden wir nun das Lemma an auf zwei Lösungen y1, y2, so folgt

y1(x) =
(46)

1

y2(−x)
=

(47)
y2(x).

Also sind je zwei Lösungen von (45) gleich.

Wir wollen nun die wesentlichen Eigenschaften der Exponentialfunktion aus der definieren-
den Differentialgleichung herleiten.

Trivialerweise ist

exp′ = exp,

exp 0 = 1.

dem vorstehenden Beweis folgt

exp(−x) =
1

expx
.

Und weil exp differenzierbar, also stetig auf R ist und keine Nullstellen hat, folgt aus
exp 0 = 1 > 0 und dem Zwischenwertsatz

exp > 0.

Dann ist aber auch exp′ = exp > 0, d.h.

exp ist streng monoton wachsend.

Aus dem Schrankensatz 151 folgt für x > 0

exp(x) − exp(0) ≥ x inf
ξ>0

exp′(ξ) = x exp(0) = x

und daraus

lim
x→+∞

expx = +∞, lim
x→−∞

expx = lim
x→+∞

1

expx
= 0.

Noch einmal bemühen wir den Zwischenwertsatz und erhalten

exp(R) =]0,+∞[.

Die Abbildung exp : R →]0,+∞[ ist eine Bijektion.

Eine weitere sehr wichtige Eigenschaft der Exponentialfunktion formulieren wir als

Satz 156 (Additionstheorem der Exponentialfunktion). Es gilt für alle x1, x2 ∈ R

exp(x1 + x2) = (expx1)(expx2).
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Beweis. Geht nach dem nun schon langweilig werdenden Muster: Betrachte die Funktion

g(x) := exp(x1 + x) exp(−x).

Rechne nach, dass g′(x) = 0, also g(x) = g(0) = expx1. Mit exp(−x) = 1/ expx folgt die
Behauptung.

Graph. Damit haben wir wesentliche qualitative Charakteristika der Exponentialfunktion
bewiesen. Wie man quantiative Informationen über expx bekommt, erfahren Sie im Ab-
schnitt über die Taylorapproximation 8.2. Mit den dort erarbeiteten Methoden kann man
Funktionswerte von exp berechnen und findet für den Graphen folgendes Bild:
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Logarithmus

Definition 157 (Logarithmus). Die Exponentialfunktion exp : R →]0,+∞[ ist eine Bi-
jektion. Die Umkehrfunktion heißt der (natürliche) Logarithmus

ln : ]0,+∞[→ R.

Statt ln finden Sie auch log.

Die Logarithmusfunktion ist wieder streng monoton und nach Satz 146 differenzierbar. Nach
Beispiel 148 gilt

ln′ x =
1

x
für alle x > 0.

Aus den Eigenschaften der Exponentialfunktion folgen weitere Eigenschaften des Logarith-
mus, zum Beispiel

lim
x→+∞

lnx = +∞, lim
xց0

lnx = −∞

und die fundamentale Gleichung

Satz 158.
ln(xy) = lnx+ ln y.

Die letztere Gleichung (Reduktion der Multiplikation auf die Addition) hat den Logarith-
men vor der Erfindung elektronischer Rechenmaschinen eine prominente Bedeutung bei al-
len schwierigeren praktischen Rechenaufgaben (z.B. in der Astronomie oder Navigation)
verschafft.

Den Graphen der Umkehrfunktion erhält man durch Spiegelung an der Winkelhalbierenden.
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Allgemeine Potenz

Definition 159 (Allgemeine Potenzen). Wir definieren ax (“a hoch x”) für reelles a > 0
und x ∈ R durch

ax = exp(x ln a).

Satz 160 (Rechenregeln für die allgemeine Potenz). Für a, b > 0 und x, y ∈ R gilt

ax+y = axay

(ab)x = axbx,

a−x =
1

ax
,

(ax)y = axy,

a0 = 1.

Beweis. Ergibt sich sofort aus den Regeln für exp und ln.

Bemerkung. Aus dem Satz folgt durch vollständige Induktion für natürliches n:

an = a · . . . · a
︸ ︷︷ ︸

n

.

Das heißt, die Definition von ax stimmt für natürliches n mit der alten Definition überein.

Weiter ergibt sich aus dem obigen Satz

(a
1
n )n = a1 = a.

Also ist a
1
n = n

√
a.

Definieren wir schließlich die Eulersche Zahl e durch

e = exp 1

so folgt
ex = exp(x ln exp 1) = expx.

Als Komposition differenzierbarer Funktionen sind die Funktionen

x 7→ ax

und
x 7→ xb

differenzierbare Funktionen auf ihrem Definitionsbereich. Nach der Kettenregel ist

(ax)′ = ln a exp(x ln a) = (ln a)ax.
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Die Graphen der Funktionen in diesem Abschnitt sind mit Mathematica erzeugt. Der Befehl
für die vorstehende Figur lautet

Plot[{0.5ˆx,2ˆx}, {x,-4,4},AspectRatio− >1/1]

87



7.4 Hyperbelfunktionen, Areafunktionen

Die Hyperbelfunktionen sind gegeben durch

coshx =
ex + e−x

2
, sinhx =

ex − e−x

2
.

Sie heißen Cosinus hyperbolicus und Sinus hyperbolicus. Für sie gilt

cosh2 x− sinh2 x = 1,

denn

cosh2 x− sinh2 x =
1

4

(
(ex + e−x)2 − (ex − e−x)2

)
= 1.

Das bedeutet aber, dass der Punkt (coshx, sinhx) auf der Einheitshyperbel
{
(x, y)

∣
∣x2 − y2 = 1

}
(48)

liegt, daher der Name.

Hier sind die Graphen der beiden Funktionen mit den Graphen von 1
2e

±x zum Vergleich:
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cosh x
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cosh x

Auch für die Hyperbelfunktionen gibt es eine Menge Identitäten (wie Additionstheoreme
u.a.), auf die wir hier aber nicht eingehen wollen.

Offenbar sind diese Funktionen differenzierbar und es gilt

sinh′ = cosh, cosh′ = sinh .

Man definiert die hyperbolischen Cotangens- und Tangensfunktionen durch

cothx =
coshx

sinhx
, tanhx =

sinhx

coshx
.

Der Tangens hyperbolicus bildet die reelle Achse bijektiv auf das Intervall ] − 1,+1[ ab.

1

-1

Für die Ableitung gilt

tanh′ =
1

cosh2 = 1 − tanh2 .
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Beispiel 161. [Ein Beispiel aus der Mechanik] In diesem Beispiel greifen wir ein wenig vor:
Auf höhere Ableitungen und auf die Theorie der Differentialgleichungen.

Frei hängende Seile oder Ketten (etwa Hochspannungsleitungen) haben eine ganz charak-
teristische Form.2 Anhand der auftretenden Kräfte eines solchen statischen Systems leitet
man in der Mechanik dafür die Differentialgleichung

y′′ = c
√

1 + (y′)2

her. Weil cosh2 x = 1+sinh2 x liefert y(x) = coshx im Falle c = 1 eine Lösung, und mit etwas
Probieren findet man y(x) = 1

c cosh(cx) für den Fall von beliebigem c > 0. In der Theorie
der Differentialgleichungen lernen Sie, dass die allgemeine Lösung dieser Differentialgleichung
zwei beliebige Parameter enthalten muss. Weil nur y′ und y′′ vorkommen, ist y(x) + h für
beliebiges h natürlich auch eine Lösung: die Form der Kette ist unabhängig davon, wie
hoch man sie aufhängt. Und natürlich kann man sie nach rechts oder links verschieben,
d.h. y(x− x0) ist auch eine Lösung. Die sogenannte Kettenlinie ist daher gegeben durch die
Funktion

y(x) =
1

c
cosh (c(x− x0)) + h.

Areafunktionen. Die Funktionen sinh und tanh sind injektiv und besitzen daher globale
Umkehrfunktionen. Diese werden Area sinus hyperbolicus bzw. Area tangens hyperbolicus
genannt und so bezeichnet:

sinh−1 = Arsinh : R → R, tanh−1 = Artanh : ] − 1,+1[→ R.

Den Beweis des folgenden Lemmas kann der Leser leicht selbst machen:

Lemma 162. Es gilt

Arsinhx = ln(x+
√

x2 + 1), Artanhx = ln

√

1 + x

1 − x
.

Der Name Area-Funktionen rührt daher, dass man die Werte als Flächeninhalt an der Hy-
perbel interpretieren kann:

sinh t

F=t

x  - y  = 1
2 2

2Galilei hatte behauptet, die Form einer hängenden Kette sei eine Parabel. Christian Huygens hat das
im zarten Alter von 16 Jahren widerlegt, aber erst Leibniz und Johann Bernoulli fanden die richtige Diffe-
rentialgleichung und deren Lösung.
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Es sei angemerkt, dass man eine ganz analoge Interpretation für die inversen trigonometri-
schen Funktionen geben kann:

sin t

F=t

x  +y  =12 2
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7.5 Die Regel von Bernoulli - de L’Hospital

Lemma 163 (Verallgemeinerter Mittelwertsatz). Seien f, g : [a, b] → R stetig und auf
]a, b[ differenzierbar. Es gelte g′(ξ) 6= 0 für alle ξ ∈]a, b[. Dann ist g(a) 6= g(b) und es gibt
ein ξ ∈]a, b[ mit

f(b) − f(a)

g(b) − g(a)
=
f ′(ξ)

g′(ξ)
.

Beweis. Wäre g(a) = g(b) , so gäbe es nach dem Mittelwertsatz dazwischen eine Nullstelle
von g′ im Widerspruch zur Voraussetzung. Definiere

h(t) = (f(b) − f(a))g(t) − (g(b) − g(a))f(t).

Dann ist h(a) = h(b), also h′(ξ) = 0 für ein ξ ∈]a, b[, und daraus folgt die Behauptung.

Satz 164 (Johann Bernoulli, G. de L’ Hospital). Seien J ⊂ R ein Intervall,

p ∈ J ∪ {inf J, supJ},

und seien f, g : J \ {p} → R differenzierbar. Es gelte

lim
x→p

f(x) = lim
x→p

g(x) = 0 (49)

oder
lim
x→p

g(x) ∈ {−∞,∞}. (50)

Weiter sei g′(x) 6= 0 für alle3 x ∈ J\{p}, und es existiere

lim
x→p

f ′(x)

g′(x)
=: A ∈ R ∪ {−∞,∞}. (51)

Dann existiert auch

lim
x→p

f(x)

g(x)
(52)

und hat den Wert A.

Falls p ∈ R und (49) gilt, kann man f(p) := 0 =: g(p) setzen und erhält in p stetige
Funktionen. Nach dem Lemma ist dann für ein ξ zwischen x und p

f(x)

g(x)
=
f(x) − f(p)

g(x) − g(p)
=
f ′(ξ)

g′(ξ)
.

Daraus folgt mit x→ p der Satz in diesem Fall. Der folgende Beweis ist etwas komplizierter,
schließt dafür aber alle Fälle ein.

Beweis. Wir beschränken uns auf den Fall p = inf J . Der Fall p = supJ geht analog. Wenn
aber p ein innerer Punkt von J ist, wendet man diese Fälle auf J∩ ]p,+∞[ und J∩ ]−∞, p[
an und benutzt Lemma 111 über Grenzwert und einseitige Grenzwerte.

Zwischen zwei Nullstellen von g in einem Intervall aus J \ {p} läge nach dem Mittelwertsatz
eine Nullstellle von g′ im Widerspruch zur Voraussetzung. Also gibt es in jeder Komponente

3Weil es um den Grenzwert für x → p geht, genügt es stattdessen, wenn p kein Häufungspunkt von
Nullstellen von g′ ist.
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von J \ {p} höchstens eine Nullstelle von g in J\{p}. Wir können daher nach eventueller
Verkleinerung von J o.E. annehmen, dass

g(x) 6= 0 für alle x ∈ J\{p}. (53)

Es genügt nun, folgendes zu zeigen:

∀a<A ∃q∈J, p<q ∀x∈]p,q[ a ≤ f(x)

g(x)
,

∀b>A ∃q∈J, p<q ∀x∈]p,q[
f(x)

g(x)
≤ b.

(Falls z.B. A = +∞, gibt es kein b > A und wir brauchen nichts zu zeigen. Falls A ∈ R

stellen Sie sich vor, es sei a = A− ǫ und b = A+ ǫ.)

Wir beweisen nur die zweite Behauptung, die erste geht genauso. Sei also b > A. Nach
Voraussetzung gibt es q̃ ∈ J, p < q̃ mit

f ′(ξ)

g′(ξ)
< b für alle ξ ∈]p, q̃[.

Nach dem Lemma 163 folgt daraus für alle x, y ∈]p, q̃[, x 6= y,

f(x) − f(y)

g(x) − g(y)
< b.

1. Fall: lim f(y) = lim g(y) = 0 für y ց p. Setzt man dann q = q̃, so gilt für alle x ∈]p, q[

f(x)

g(x)
= lim
yցp

f(x) − f(y)

g(x) − g(y)
≤ b.

Beachte, dass g(x) 6= 0 nach (53).

2. Fall: lim g(x) ∈ {+∞,−∞}. Sei p < y < q̃. Nach Voraussetzung gibt es dann ein ˜̃q ∈]p, q̃[,

so dass für alle x ∈]p, ˜̃q[

1 − g(y)

g(x)
> 0.

Dann gilt für solche x

f(x)

g(x)
=
f(x) − f(y)

g(x) − g(y)

g(x) − g(y)

g(x)
+
f(y)

g(x)

=
f(x) − f(y)

g(x) − g(y)
(1 − g(y)

g(x)
) +

f(y)

g(x)

< b(1 − g(y)

g(x)
) +

f(y)

g(x)
.

Für xց p geht die rechte Seite gegen b. Also gibt es q ∈]p, ˜̃q[ mit

f(x)

g(x)
≤ b für alle x ∈]p, q[.

Beispiel 165. Gesucht ist limx→+∞
ln x
x . Die Voraussetzungen sind erfüllt, insbesondere

hat die Ableitung des Nenners keine Nullstellen. Der Grenzwert für den Quotienten der
Ableitungen

lim
x→+∞

1/x

1
= 0
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existiert, also gilt

lim
x→+∞

lnx

x
= 0.

Beispiel 166. Wir wollen zeigen, dass für a > 0

lim
k→∞

(1 +
a

k
)k = exp(a).

Nun ist
(1 +

a

k
)k = exp(k ln(1 +

a

k
)),

und weil exp stetig ist, müssen wir nur zeigen, dass

lim
k→∞

k ln(1 +
a

k
) = a.

Dazu ersetzen wir 1
k durch die kontinuierliche Variable x und betrachten

lim
xց0

ln(1 + xa)

x
.

Nach der Regel von Bernoulli-de L’Hospital ist das

lim
xց0

1
1+xa a

1
= a

und wir sind fertig.

Beispiel 167. Was ist limk→∞
k
√
k?

lim
k→∞

k
√
k = lim

k→∞
exp(

1

k
ln k) = exp

(

lim
k→∞

ln k

k

)

=
Beispiel 165

exp 0 = 1.

Beispiel 168. Für f(x) = x2, g(x) = 1 + x4 ist

lim
x→0

x2

1 + x4
= lim
x→0

2x

4x3
= lim
x→0

1

2x2
= +∞.

Was halten Sie davon?
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7.6 Die Stetigkeit der Ableitung

Es ist nicht so einfach, ein Beispiel einer differenzierbaren Funktion zu finden, deren Ablei-
tung unstetig ist. Hier ist eines, das allerdings auf die trigonometrischen Funktionen vorgreift.

Beispiel 169 (Eine Funktion mit unstetiger Ableitung). Die Funktion f : R → R

mit

f(x) :=

{

0 für x = 0,

x2 cos 1
x für x 6= 0,

ist differenzierbar. Das ist klar für x 6= 0. Und in 0 findet man

f ′(0) = lim
h→0

h2 cos 1
h − 0

h
= lim
h→0

h cos
1

h
= 0.

Die Ableitung

f ′(x) =

{

0 für x = 0,

2x cos 1
x + sin 1

x sonst,

ist in 0 nicht stetig, vgl. Beispiel 121.

Der Grund, warum man keine wesentlich einfacheren Beispiele findet, ist der folgende

Satz 170 (Zwischenwertsatz für die Ableitung: Satz von Dini). Sei f : J → R

differenzierbar auf dem Intervall J . Dann ist f ′(J) ein Intervall.

Die Sprungfunktion mit g(0) = 0 und g(x) := x
|x| für x 6= 0 ist also zum Beispiel nicht die

Ableitung einer differenzierbaren Funktion f : R → R.

Beweis. Seien a, b ∈ J mit f ′(a) < f ′(b), und sei

f ′(a) < λ < f ′(b).

Wir müssen zeigen, dass es ein ξ ∈ J mit f ′(ξ) = λ gibt. Sei I = [a, b], falls a < b und
I = [b, a] andernfalls. Wir konstruieren eine stetige Funktion g : I → I mit folgenden
Eigenschaften:

(i) g(a) = f ′(a) und g(b) = f ′(b).

(ii) Für alle t ∈ I \ {a, b} ist g(t) ein Differenzenquotient:

g(t) =
f(β(t)) − f(α(t))

β(t) − α(t)

mit α(t), β(t) ∈ I, α(t) 6= β(t).

Dann existiert nach dem Zwischenwertsatz ein τ ∈ I \ {a, b} mit

λ = g(τ) =
f(β(τ)) − f(α(τ))

β(τ) − α(τ)
.

Und nach dem Mittelwertsatz existiert ein ξ zwischen α(τ) und β(τ) mit

f(β(τ)) − f(α(τ))

β(τ) − α(τ)
= f ′(ξ).

94



Damit ist der Satz dann bewiesen. Es bleibt die Konstruktion von g.

Wir setzen

g(a) := f ′(a), g(b) := f ′(b)

und für t ∈ I \ {a, b}

g(t) :=
f(β(t)) − f(α(t))

β(t) − α(t)
,

wobei α, β : I → I stetige Funktionen mit den abge-
bildeten Graphen sein sollen. (In der Abbildung ist
a < b. Ist a > b so muss man a und b sowie α und β
vertauschen.)

α

β

I

I

a

a

b

b

Offenbar ist g dann stetig im Inneren von I. Weil aber nach Konstruktion α(t) = a, β(t) = t
für t nah bei a und α(t) = t, β(t) = b für t nah bei b ist, folgt

lim
tցa

g(t) = lim
tցa

f(t) − f(a)

t− a
= f ′(a).

Ebenso folgt limtրb g(t) = f ′(b). Daher ist g auch stetig in den Endpunkten.

Definition 171. Eine Funktion f heißt stetig differenzierbar, wenn sie differenzierbar und
ihre Ableitung f ′ stetig ist.

Bemerkung. Die gelegentlich zitierte Voraussetzung

”
Sei f differenzierbar und stetig!“

dokumentiert vor allem mangelnde Grundkenntnisse. Der Beweis des folgenden Satzes hin-
gegen erfordert deren eine ganze Menge. Den Satz selbst kann man als eine Vertiefung des
Konstanzkriteriums ansehen. Seine Verallgemeinerung auf höher-dimensionale Abbildungen,
der sogenannte Satz von Sard, ist ein wichtiges Werkzeug in der Differentialtopologie.

Satz 172 (Mini-Sard). Sei f : [a, b ] → R stetig differenzierbar und sei

S :=
{
x
∣
∣ f ′(x) = 0

}

die Menge der sogenannten kritischen Punkte von f . Dann gibt es zu jedem ǫ > 0 ein k ∈ N

und Intervalle Ji, i = 1, . . . k, der Längen |Ji|, so dass gilt:

f(S) ⊂
k⋃

i=1

J und
k∑

i=1

|Ji| < ǫ.

Man sagt: Die Menge f(S) der kritischen Werte ist eine Nullmenge.

Beweis. Sei L := b − a und sei ǫ > 0. Nach Satz 136 ist f ′ : [a, b ] → R gleichmäßig stetig.
Also gibt es δ > 0, so dass für alle x, y

|x− y| < δ =⇒ |f ′(x) − f ′(y)| < ǫ

3L
.

Wähle eine Zerlegung
a = x0 < x1 < . . . < xn = b
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von [a, b], so dass xi+1 − xi = L
n < δ für alle i.

Ist xi ≤ x ≤ xi+1 und f ′(x) = 0, so gilt |f ′(y)| < ǫ
3L für alle y ∈]xi, xi+1[. Nach dem

Schrankensatz gilt also für alle y ∈ [xi, xi+1]

|f(y) − f(x)| ≤ ǫ

3L
|y − x| ≤ ǫ

3L

L

n
=

ǫ

3n

Nach dem Zwischenwertsatz ist f([xi, xi+1]) ein Intervall, und nach der vorstehenen Abschätzung
ist seine Länge

|f([xi, xi+1])| ≤ 2
ǫ

3n
.

Seien nun J1, . . . , Jk diejenigen der Intervalle f([xi, xi+1]), in denen f ′ eine Nullstelle hat.
Dann ist

f(S) ⊂
k⋃

i=1

Ji,

und weil k ≤ n und |Ji| ≤ 2ǫ
3n , ist

k∑

i=1

|Ji| ≤ k
2ǫ

3n
< ǫ.
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8 Höhere Ableitungen

Wenn nichts anderes gesagt ist, bezeichne J wieder ein Intervall oder eine offene Teilmenge
von R.

8.1 Höhere Ableitungen

Definition 173.

(i) Die reell- oder komplexwertige Funktion f sei differenzierbar auf J . Dann ist die Ablei-
tung f ′ wiederum eine Funktion auf J , die differenzierbar sein kann oder auch nicht.
Ist sie differenzierbar, so bezeichnet man ihre Ableitung mit f ′′ und nennt sie die
2. Ableitung von f . In diesem Fall sagt man f sei zweimal differenzierbar. Rekursiv
definiert man auf diese Weise k-malige Differenzierbarkeit und die k-te Ableitung an
der Stelle x

f (k)(x) =
dkf

dxk
(x)

für k ∈ N, k > 0.

(ii) Ist f k-mal differenzierbar und f (k) überdies stetig, so nennt man f k-mal stetig diffe-
renzierbar. Die Menge der k-mal stetig differenzierbaren Funktionen auf J bezeichnet
man mit

Ck(J)

oder auch mit Ck(J,R) bzw. Ck(J,C).

(iii) Die Menge der beliebig oft differenzierbaren Funktionen auf J bezeichnet man mit

C∞(J),

und nennt solche Funktionen auch C∞-Funktionen.

Beispiel 174. Polynome oder rationale Funktionen sind C∞-Funktionen.

Beispiel 175. Die Funktion

f : R → R, x 7→ |x|3 =

{

x3 für x ≥ 0,

−x3 für x < 0,

ist zweimal stetig differenzierbar: f ∈ C2(R). Das ist klar auf R \ {0}. Wir untersuchen die
Differenzierbarkeit im Punkt 0:

lim
hց0

f(h) − f(0)

h
= lim
hց0

h3 − 0

h
= 0 = lim

hր0

−h3 − 0

h
= lim
hր0

f(h) − f(0)

h
.

Also ist f in 0 differenzierbar und f ′(0) = 0. Insgesamt gilt

f ′(x) =

{

3x2 für x ≥ 0,

−3x2 für x < 0.

Insbesondere ist f ′ in 0 stetig, aber wir wollen zeigen, dass es dort sogar differenzierbar ist:

lim
hց0

f ′(h) − f ′(0)

h
= lim
hց0

3h2 − 0

h
= 0 = lim

hր0

−3h2 − 0

h
= lim
hր0

f ′(h) − f ′(0)

h
.
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Also ist f in 0 zweimal differenzierbar und f ′′(0) = 0. Wir finden:

f ′′(x) =

{
6x für x ≥ 0
−6x für x < 0

}

= 6|x|.

Insbesondere ist f ′′ stetig in 0. Mit |x| ist auch f ′′(x) = 6|x| in 0 nicht differenzierbar. Also
ist f in 0 nicht dreimal differenzierbar.

Beispiel 176 (Wichtig). Für k ∈ N gilt

lim
x→∞

xk

ex
= 0.

Zeigen Sie das durch vollständige Induktion über k mit der Regel von Bernoulli-L’Hospital
und folgern Sie daraus

lim
xց0

e−
1
x

xk
= 0. (54)

Zeigen Sie ebenfalls durch vollständige Induktion, dass

dk

dxk

(

e−
1
x

)

= p(
1

x
)e−

1
x (x 6= 0) (55)

mit einem Polynom p.

Aus (54) und (55) folgt, dass die Funktion

f(x) :=

{

e−
1
x für x > 0,

0 für x ≤ 0,

auf ganz R beliebig oft differenzierbar ist. Für x 6= 0 ist das klar, und es ist auch klar, dass
alle Ableitungen in 0, falls sie existieren, den Wert 0 haben.

Die Existenz folgt wieder durch Induktion: Existiert f (k) auf ganz R und ist

f (k)(x) = p(
1

x
)e−

1
x für x > 0,

so folgt

f (k+1)(0) = lim
x→0

p( 1
x )e−

1
x − 0

x− 0
= lim
x→0

q(
1

x
)e−

1
x = 0.

Die Funktion f ist also auf der negativen Halb-
achse = 0, auf der positiven positiv und sie
ist C∞-differenzierbar. Wegen dieser Eigen-
schaften spielt sie in vielen Konstruktionen ei-
ne wichtige Rolle. Die aus ihr konstruierten
Buckelfunktionen oder Zerlegungen der Eins
sind ebenfalls C∞, vgl. Abschnitt 4.3.

1

Hier f(x)=0

Hier f(x) asymptotisch =1

Definition 177. Seien J ⊂ R ein Intervall und f : J → R. Dann heißt f konvex, wenn für
alle x, y, z ∈ J mit x < z < y gilt

f(z) ≤ f(x) +
f(y) − f(x)

y − x
(z − x). (56)
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Das bedeutet, dass die Kurve zwischen je zwei Punk-
ten unterhalb der entsprechenden Sekanten liegt.

x

y
z

Satz 178 (Konvexitätskriterium). Seien J ⊂ R ein Intervall und f : J → R differen-
zierbar. Dann gilt

(i) f konvex ⇐⇒ f ′ monoton wachsend.

(ii) Ist f sogar zweimal differenzierbar, so gilt

f konvex ⇐⇒ f ′′ ≥ 0.

Beweis. Die zweite Behauptung folgt mit dem Monotoniesatz unmittelbar aus der ersten.

(i) ⇒. Für x < z < y aus J folgt aus der Konvexität

f(z) − f(x)

z − x
≤ f(y) − f(x)

y − x

und daher

f ′(x) ≤ f(y) − f(x)

y − x
.

Aber wegen

f(x) +
f(y) − f(x)

y − x
(z − x) = f(y) +

f(y) − f(x)

y − x
(z − y)

folgt aus (56) auch
f(z) − f(y)

z − y
≥ f(y) − f(x)

y − x

und damit

f ′(y) ≥ f(y) − f(x)

y − x
.

Daher ist f ′(x) ≤ f ′(y), also ist f ′ monoton wachsend.

(i) ⇐. Seien x < z < y aus J . Dann gibt es ξ ∈]x, z [ und η ∈]z, y [ mit

f(z) − f(x)

z − x
= f ′(ξ) ≤ f ′(η) =

f(y) − f(z)

y − z
,

also
(f(z) − f(x))(y − z) ≤ (f(y) − f(z))(z − x).

Addition von (f(z) − f(x))(z − x) liefert

(f(z) − f(x))(y − x) ≤ (f(y) − f(x))(z − x),

und daraus folgt (56).
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Wir wollen noch eine andere Version der Konvexitätsbedingung (56) herleiten. Für reelle
x 6= y lassen sich die Punkte zwischen x und y schreiben in der Form tx + (1 − t)y mit
0 < t < 1 oder, wenn man p =: 1

t und q := 1
1−t setzt, in der Form

x

p
+
y

q
, p, q > 1 mit

1

p
+

1

q
= 1.

Die rechte Seite von (56) für die Punkte x < x
p + y

q < y bzw. y < x
p + y

q < x ist dann

f(x) +
f(y) − f(x)

y − x

(
x

p
+
y

q
− x

)

= f(x) +
f(y) − f(x)

y − x

(
y

q
− (1 − 1

p
)x

)

= f(x) +
f(y) − f(x)

y − x

y − x

q

= f(x)

(

1 − 1

q

)

+
f(y)

q

=
f(x)

p
+
f(y)

q
.

Damit erhalten wir

Satz 179. Die Funktion f : J → R auf dem Intervall J ist genau dann konvex, wenn für
alle x, y ∈ J und alle p, q > 1 mit 1

p + 1
q = 1 gilt:

f

(
x

p
+
y

q

)

≤ f(x)

p
+
f(y)

q
.

Die in der Vorüberlegung gemachte Voraussetzung x 6= y kann man dabei offenbar streichen.

Beispiel 180 (Anwendung der Konvexität: Höldersche Ungleichung). Wir wenden
den letzten Satz an auf die konvexe Funktion exp : R → R. Seien a, b > 0 und p, q > 1 mit
1
p + 1

q = 1. Wir setzen
x = ln ap, z = ln bq,

und erhalten

ab = exp(ln a+ ln b) = exp

(
ln ap

p
+

ln bq

q

)

≤ exp(ln ap)

p
+

exp(ln bq)

q
=
ap

p
+
bq

q
,

also

ab ≤ ap

p
+
bq

q
(57)

Mit p = q = 2 und a =
√
A, b =

√
B folgt die Ungleichung zwischen geometrischem und

arithmetischem Mittel: √
AB ≤ A+B

2
. (58)

Für eine weitere Folgerung aus (57) seien a1, . . . , an, b1, . . . , bn ∈ R mit

∑

|ak| > 0,
∑

|bk| > 0. (59)

Dann ist für alle i ∈ {1, . . . , n}

|ai|
(
∑ |ak|p)1/p

|bi|
(
∑ |bk|q)1/q

≤ 1

p

|ai|p
∑ |ak|p

+
1

q

|bi|q
∑ |bk|q
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Durch Summation über i erhält man
∑ |akbk|

(
∑ |ak|p)1/p(

∑ |bk|q)1/q
≤ 1

p
+

1

q
= 1

oder
∑

|akbk| ≤
(∑

|ak|p
)1/p (∑

|bk|q
)1/q

Das ist die sogenannte Höldersche Ungleichung. Sie gilt offenbar auch ohne die Voraussetzung
(59). Der Spezialfall p = q = 2 liefert die Cauchy-Schwarzsche Ungleichung:

|
∑

akbk| ≤
√∑

a2
k

√∑

b2k. (60)
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8.2 Die Taylorapproximation

Vorbemerkung. Sei

f(x) =
n∑

k=0

ak(x− x0)
k

ein Polynom vom Grad n. Weil für 0 ≤ j ≤ k

dj

dxj
(x− x0)

k = k(k − 1) . . . (k − j + 1)(x− x0)
k−j ,

sind diese Ableitungen an der Stelle x0 alle = 0, nur die k-te ist konstant = k!. Die höheren
Ableitungen (j > k) verschwinden wieder alle. Daher folgt für alle k ∈ {0, . . . , n}

f (k)(x0) = k!ak.

Man kann die Koeffizienten von f also aus den höheren Ableitungen von f berechnen und
findet

f(x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)

k.

Ist nun f eine beliebige genügend oft differenzierbare Funktion, so liefert die rechte Seite ein
Polynom, das an der Stelle x0 bis zur Ordnung n dieselben Ableitungen hat wie f , das sich
also vermutlich in der Nähe von x0 gut an f

”
anschmiegt“.

Satz 181 (Taylorapproximation). Seien J ⊂ R ein Intervall, x0 ∈ J und n ≥ 1.
Sei f : J → R n-mal differenzierbar. Dann gilt:

(i) Für die durch

f(x) =

(
n∑

k=0

f (k)(x0)

k!
(x− x0)

k

)

+R(x)

definierte Funktion R : J → R gilt

lim
x→x0

R(x)

(x− x0)n
= 0.

Wir nennen
n∑

k=0

f (k)(x0)

k!
(x− x0)

k

das Taylorpolynom n-ten Grades von f an der Stelle x0 und R das zugehörige Rest-
glied.

(ii) Ist f sogar (n+ 1)-mal differenzierbar, so gibt es zu jedem x ∈ J\{x0} ein ξ zwischen
x0 und x, so dass

R(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1.

(Lagrangesche Form des Restglieds.)

Beweis. Zu (i). Wir bezeichnen das Taylorpolynom n-ter Ordnung mit T :

T (x) :=
n∑

k=0

f (k)(x0)

k!
(x− x0)

k.
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Dann gilt
R(x)

(x− x0)n
=
f(x) − T (x)

(x− x0)n
.

Wir zeigen mit der Regel von Bernoulli-de L’Hospital, dass limx→x0

R(x)
(x−x0)n = 0 und damit

die Behauptung (i).

Beachte zunächst, dass auf J \ {x0} die Ableitungen von (x − x0)
n bis zur n-ten stets 6= 0

sind und dass nach Konstruktion

T (x0) = f(x0), T
′(x0) = f ′(x0), . . . , T

(n)(x0) = f (n)(x0).

Wir finden

lim
x→x0

R(x)

(x− x0)n
= lim

f(x) − T (x)

(x− x0)n
= lim

f ′(x) − T ′(x)

n(x− x0)n−1
= . . . = lim

f (n−1)(x) − T (n−1)(x)

n!(x− x0)

= lim

(
f (n−1)(x) − f (n−1)(x0)

n!(x− x0)
− T (n−1)(x) − T (n−1)(x0)

n!(x− x0)

)

=
1

n!

(

f (n)(x0) − T (n)(x0)
)

= 0.

(Der letzte Limes existiert, und deshalb nach Bernoulli-L’Hospital auch der davor etc.)

Beachte: Man hätte die obige Reduktion auch fortsetzen können bis lim f(n)(x)−T (n)(x)
n! . Aber

wir wissen nichts über limx→x0
f (n)(x), weil f (n) nicht notwendig stetig ist.

Zu (ii). Wir betrachten die Funktion

h(t) =
f(t) − T (t)

(n+ 1)!
(x− x0)

n+1 −R(x)
(t− x0)

n+1

(n+ 1)!

Weil T (n+1) = 0 ist, ist

h(n+1)(t) =
f (n+1)(t)

(n+ 1)!
(x− x0)

n+1 −R(x),

und es genügt zu zeigen, dass das zwischen x0 und x eine Nullstelle ξ besitzt.

Trivialerweise ist h(x0) = h′(x0) = . . . = h(n)(x0) = 0. Außerdem ist

h(x) = (f(x) − T (x) −R(x))
(x− x0)

n+1

(n+ 1)!
= 0.

Daher gibt es ξ1 zwischen x0 und x mit h′(ξ1) = 0.
Daher gibt es ξ2 zwischen x0 und ξ1 mit h′′(ξ2) = 0.
Und so weiter . . .

Schließlich gibt es ξ = ξn+1 zwischen x0 und x mit h(n+1)(ξ) = 0. Daraus folgt die Behaup-
tung.

Beispiel 182. Wir betrachten den Satz von Taylor für die Exponentialabbildung in x0 = 0.
Weil exp(k)(0) = exp(0) = 1, ist das n-te Taylorpolynom

Tn(x) =
n∑

k=0

1

k!
xk = 1 +

x

1!
+
x2

2!
+ . . .+

xn

n!
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und das Restglied

Rn(x) = exp(x) − Tn(x) =
exp(ξ)

(n+ 1)!
xn+1 mit ξ zwischen 0 und x,

Weil die Exponentialfunktion streng monoton wachsend ist, ist

0 < Rn(x) < exp(x)
xn+1

(n+ 1)!
, falls x > 0, (61)

und

0 < (−1)n+1Rn(x) <
|x|n+1

(n+ 1)!
, falls x < 0. (62)

Nach Beispiel 70 gilt limn→∞
xn+1

(n+1)! = 0, also

lim
n→∞

Tn(x) = exp(x)

für alle x ∈ R.

Will man das Restglied quantitativ abschätzen, so braucht man in der Formel (61) Werte
von exp(x) für x > 0, die wir aber noch nicht haben. Immerhin liefert aber die Formel (62)
eine solche Abschätzung bei negativem x, insbesondere

0 < −R2(−1) <
1

3!
.

Mt T2(−1) = 1 − 1 + 1
2! = 1

2 folgt daraus

1

3
<

1

2
− 1

3!
< exp(−1) <

1

2

und für die Reziproken
2 < e = exp(+1) < 3.

Für x > 0 erhalten wir exp(x) = ex < 3x und damit die Restgliedabschätzung

0 < exp(x) − Tn(x) < 3x
xn+1

(n+ 1)!
.

Weil die rechte Seite für n → ∞ sehr schnell gegen 0 geht, ist das eine gute Methode zur
Berechnung der Funktionswerte von exp und damit auch zur Ermittlung des Graphen.

Für x = 1 folgt

0 < n!(e− Tn(1)) <
3

n+ 1
,

und diese Ungleichung liefert einen ganz einfachen Beweis für die Irratonalität der Eulerzahl
e. Wäre nämlich e rational, also e = m

n mit positiven natürlichen Zahlen m,n, so wäre n ≥ 2,
weil e nicht ganzzahlig ist. Es folgte

0 < n!(e− Tn(1)) <
3

n+ 1
≤ 1.

Aber n!mn und n!Tn(1) sind ganzzahlig! Das ist ein Widerspruch, und e deshalb irratio-
nal. Viel schwieriger ist der Beweis, dass e sogar transzendent, also nicht Nullstelle eines
Polynoms mit rationalen Koeffizienten ist.
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8.3 Lokale Extrema, Diskretisierung

Wir behandeln noch zwei Beispiele für die Anwendungen der Taylorapproximation.

Definition 183 (Lokale und globale Extremwerte). Seien f : R ⊃ D → R eine
reellwertige Funktion und x0 ∈ D. Teile der folgenden Definition kennen Sie schon:

(i) f hat in x0 ein Maximum, wenn

f(x) ≤ f(x0) für alle x ∈ D.

Entsprechend definiert man Minimum.

(ii) f hat in x0 ein strenges (oder eigentliches) Maximum, wenn

f(x) < f(x0) für alle x ∈ D \ {x0}.

Entsprechend definiert man strenges Minimum.

(iii) f hat in x0 ein lokales Maximum, wenn es ein ǫ > 0 gibt, so dass f |D∩Uǫ(x0) in x0 ein
Maximum hat.

(iv) Analog definiert man die Begriffe lokales Minimum, strenges lokales Maximum, stren-
ges lokales Minimum.

(v) f hat in x0 ein lokales Extremum, wenn es dort ein lokales Maximum oder Minimum
hat.

(vi) Im Kontrast zu lokalen Extrema bezeichnet man das Maximum bzw. Minimum von
f : D → R – wenn es denn angenommen wird – auch als das globale oder, etwas
irreführend, als das absolute Maximum bzw. Minimum.

Satz 184 (Lokale Extremwerte). Seien f : R ⊃ J → R eine k-mal differenzierbare
Funktion und x0 ein innerer Punkt von J . Es gelte:

f ′(x0) = f ′′(x0) = . . . = f (k−1)(x0) = 0,

f (k)(x0) 6= 0.

Dann gilt:

(i) Ist k ungerade, so hat f in x0 kein lokales Extremum.

(ii) Ist k gerade, so hat f in x0 ein strenges lokales Extremum, und zwar ein Maximum,
falls f (k)(x0) < 0, und ein Minimum, falls f (k)(x0) > 0.

Beweis. Die Beweisidee ist einfach: In der Nähe von x0 sieht f ungefähr so aus wie sein
Taylorpolynom

f(x0) +
1

k!
f (k)(x0)(x− x0)

k = f(x0) + C(x− x0)
k, C 6= 0.

Bei ungeradem k wechselt das in x0 das Vorzeichen, bei geradem k ist es eine nach oben
oder unten geöffnete Parabel k-ter Ordnung mit Scheitel in (x0, f(x0)), je nach Vorzeichen
von C also von der k-ten Ableitung. Das Problem ist das Wörtchen “ungefähr”. Wir müssen
zeigen, dass der Restterm die vorstehende Argumentation nicht kaputt macht.
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Nach Voraussetzung und dem Satz über die Taylorapproximation gilt

f(x) = f(x0) +
1

k!
f (k)(x0)(x− x0)

k +R(x), lim
x→x0

R(x)

(x− x0)k
= 0.

Also können wir ein ǫ > 0 so wählen, dass

Uǫ(x0) ⊂ J

(hier wird benutzt, dass x0 innerer Punkt von J ist) und
∣
∣
∣
∣

R(x)

(x− x0)k

∣
∣
∣
∣
< | 1

k!
f (k)(x0)| für alle x ∈ U∗

ǫ (x0),

das heißt

|R(x)| < | 1

k!
f (k)(x0)(x− x0)

k| für alle x ∈ U∗
ǫ (x0).

Dann ist in U∗
ǫ (x0) das Vorzeichen von

f(x) − f(x0) =

(
1

k!
f (k)(x0) +

R(x)

(x− x0)k

)

(x− x0)
k

gleich dem von
1

k!
f (k)(x0)(x− x0)

k.

Wir können daher den Restterm “vergessen” und schließen, wie oben erklärt.

Die zweite Anwendung der Taylorapproximation behandelt das folgende

Beispiel 185 (Diskretisierung). Aus der Taylorformel folgt, wenn h
”
klein“ ist,

f(x+ h) ≈ f(x) + f ′(x)h+
1

2
f ′′(x)h2,

f(x− h) ≈ f(x) − f ′(x)h+
1

2
f ′′(x)h2.

Addition der beiden Gleichungen liefert

f ′′(x) ≈ f(x+ h) + f(x− h) − 2f(x)

h2
. (63)

Und natürlich hat man

f ′(x) ≈ f(x+ h) − f(x)

h
und f ′(x) ≈ f(x− h) − f(x)

−h . (64)

Viele physikalische Gesetze sind durch Differentialgleichungen gegeben, und viele dieser Dif-
ferentialgleichungen lassen sich nicht explizit lösen. Ein wichtiges Hilfsmittel zur praktischen
Lösung dieses Problems ist die Diskretisierung der Differentialgleichung. Die gesuchte Funk-
tion y(x) wird dabei durch eine diskrete Folge von Zahlen yk ersetzt, die die Funktionswerte
an den Stellen

xk = x0 + kh, k = 1, 2, . . .

approximieren sollen. Dabei ist h die sogenannte Diskretisierungskonstante, und man hofft,
für sehr kleines h eine gute Approximation yk ≈ y(xk) zu bekommen.

Um eine Differentialgleichung zweiter Ordnung zu diskretisieren, also in eine sogenannte
Differenzengleichung für die yk umzuschreiben, benutzt man die Approximationen (64) und
(63). Konkret wird aus

y′′ + 6y′ + 9y = 0, y(0) = 0, y′(0) = 0.5
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mit x0 = 0, x = xk = kh nach Einsetzen

yk+1 + yk−1 − 2yk
h2

+ 6
yk+1 − yk

h
+ 9yk = 0, y0 = 0, y1 = 0.5h,

letzteres, weil y′(x1) ≈ y1−y0
h = y1

h = 0.5. Nach Auflösen

yk+1 =
(
yk(2 + 6h− 9h2) − yk−1

)
/(1 + 6h), y0 = 0, y1 = 0.5h.

Mathematica liefert für für h = 0.01 das folgende Bild für die Näherungslösung (rot) im
Vergleich mit der – in diesem Fall leicht zu berechnenden – exakten Lösung y(x) = 0.5x e−3x:

0.5 1 1.5 2

-0.01

0.01

0.02

0.03

0.04

0.05

0.06

0.07
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8.4 Trigonometrische Funktionen

Nach dem Newtonschen Bewegungsgesetz ist Kraft=Masse × Beschleunigung. Bei einer an
einer Feder aufgehängten Masse ist die Kraft (mit einem negativen Faktor) proportional zur
Auslenkung y(x) aus der Ruhelage, und man erhält die Schwingungsgleichung

−ky = my′′.

Der Schwingungsvorgang ist erfahrungsgemäß eindeutig festgelegt, wenn man zu einer An-
fangszeit, etwa t = 0, die Anfangsauslenkung y(0) und den Anfangsimpuls my′(0) kennt.

Wir haben also wieder eine Situation wie bei der Exponentialfunktion: eine (physikalisch mo-
tivierte) Differentialgleichung, deren Lösungen diesmal Schwingungsvorgänge beschreiben.
Wir beschränken uns auf die Normierung k = m = 1 und zeigen

Satz 186 (und Definition: Sinus und Cosinus). Es gibt genau eine zweimal differen-
zierbare Funktion y : R → R mit

y′′ + y = 0, y(0) = 0 und y′(0) = 1. (65)

Diese Funktion heißt Sinus, ihre Ableitung Cosinus.
Bezeichnungen:

sin : R → R,

cos : R → R.

Die Differentialgleichung in (65) heißt auch die Schwingungsgleichung.

Beweis. 1. Existenz. Das verschieben wir wieder auf die Potenzreihen, vgl. Beispiel 284.

2. Eindeutigkeit. Dazu beweisen wir zunächst ein

Lemma 187. Gegeben seien zwei Funktionen y1, y2 : R → R mit

y′′i + yi = 0,

d.h. beide Funktionen erfüllen die Differentialgleichung (65), aber wir fordern
die Anfangsbedingungen nur für y1:

y1(0) = 0, y′1(0) = 1.

Mit
y2(0) =: a, y′2(0) =: b

gilt dann
y2 = by1 + ay′1 (66)

Beweis des Lemmas. Wir definieren zwei Funktionen

g := y′1y2 − y1y
′
2,

h := y1y2 + y′1y
′
2.

Wir finden mit der Differentialgleichung

g′ = y′′1 y2 + y′1y
′
2 − y′1y

′
2 − y1y

′′
2 = 0,

h′ = y′1y2 + y1y
′
2 + y′′1 y

′
2 + y′1y

′′
2 = 0.
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Also sind g und h konstant. Auswerten an der Stelle 0 liefert, dass die Konstanten
g = a bzw. h = b sind:

y′1y2 − y1y
′
2 = a,

(67)
y1y2 + y′1y

′
2 = b.

Betrachten wir den Fall y2 = y1, so folgt aus der zweiten Gleichung

y1(x)
2 + y′1(x)

2 = 1 für alle x ∈ R. (68)

Multiplizieren wir die beiden Gleichungen von (67) mit y′1 bzw. y1 und addieren
sie, so folgt (66).

Die Eindeutigkeit folgt nun sofort: Erfüllt auch y2 die Anfangsbedingungen, so ist also a =
0, b = 1 und y2 = y1.

Wie bei der Exponentialfunktion wollen wir nun die wesentlichen Eigenschaften der Lösung
der Differentialgleichung, also der Sinusfunktion, und ihrer Ableitung herleiten.

Aus (68) folgt die
”
Kreisbeziehung“

sin2 x+ cos2 x = 1 für alle x ∈ R.

Insbesondere liegen die Werte von Sinus und Cosinus im Intervall [−1,+1].

Klar ist, dass der Sinus und damit der Cosinus beliebig oft differenzierbar sind. Man hat

sin′ = cos, cos′ = sin′′ = − sin .

Auch der Cosinus löst die Schwingungsgleichung, allerdings mit den Anfangsbedingungen
y(0) = 1, y′(0) = 0.

Wir wenden das Lemma noch auf zwei Funktionen y2 an:

1. Die Funktion y2(x) = sin(−x) löst die Schwingungsgleichung mit den Anfangsbedin-
gungen a = 0, b = −1. Das Lemma liefert

sin(−x) = − sinx.

Differentiation liefert daraus
cos(−x) = cosx.

2. Anwendung auf y2 := sin(x1 + x) liefert das Additionstheorem

sin(x1 + x) = cosx1 sinx+ sinx1 cosx

und durch Differentiation

cos(x1 + x) = cosx1 cosx− sinx1 sinx.

Definition 188. Eine Funktion f : R → R heißt ungerade, wenn

f(−t) = −f(t) für alle t ∈ R.

Sie heißt gerade, wenn
f(−t) = −f(t) für alle t ∈ R.

Der Sinus ist also eine ungerade, der Cosinus eine gerade Funktion. Beachten Sie, das Funk-
tionen f : R → R im allgemeinen weder gerade noch ungerade sind.
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Periodizität. Als nächstes wollen wir zeigen, dass Sinus und Cosinus 2π-periodische Funk-
tionen sind. Um das überhaupt formulieren zu können, müssen wir zunächst die Zahl π
definieren.

Satz 189 (und Definition: Die Zahl π). Die Menge

{
x
∣
∣x > 0 und cosx = 0

}

ist nicht leer und besitzt ein kleinstes Element ξ. Wir definieren π := 2ξ. Also haben wir

π

2
ist die kleinste positive Nullstelle der Funktion cos.

Beweis. Wir setzen
N :=

{
x
∣
∣x > 0 und cosx = 0

}
.

Zunächst zeigen wir, dass N 6= ∅. Wir benutzen dazu den Zwischenwertsatz für die differen-
zierbare und darum stetige Funktion cos. Wir wissen schon, dass cos 0 > 0. Also brauchen
wir noch eine Stelle, an der der Cosinus negativ ist. Dazu benutzen wir die Taylorapproxi-
mation. Die Ableitungen des Cosinus sind

cos(0) = 1, cos′ = − sin, cos(2) = − cos, cos(3) = sin, cos(4) = cos .

Nach dem Satz von Taylor ist also

cosx = 1 +
0

1!
x+

−1

2!
x2 +

0

3!
x3 +

cos(4) ξ

4!
x4

Weil | cos(4) ξ| = | cos ξ| ≤ 1 für alle ξ, ist

cos 3 ≤ 1 − 32

2
+

34

4!
= −0.125 < 0.

Damit ist N 6= ∅ und 0 ≤ ξ := infN < 3. Nach Satz 93 gibt es eine Folge (xn)n∈N in N
mit limn→∞ xn = ξ. Weil der Cosinus stetig ist, ist cos ξ = limn→∞ cosxn = 0. Und weil
cos 0 = 1, ist ξ 6= 0, also ξ > 0.

Nun zur Periodizität. Auf dem Intervall ]0, π2 [ ist der Cosinus positiv, der Sinus also monoton
wachsend und damit ebenfalls positiv. Es folgt

sin
π

2
= +

√

1 − cos2
π

2
= +1.

Damit finden wir

sin(x+
π

2
) = sinx cos

π

2
+ cosx sin

π

2
= cosx,

sin(x+ π) = cos(x+
π

2
) = cosx cos

π

2
− sinx sin

π

2
= − sinx,

und schließlich
sin(x+ 2π) = − sin(x+ π) = sinx.

Durch Differenzieren finden wir cos(x+ 2π) = cosx.

Wir merken noch an: Aus sin |]0,π/2] > 0 folgt wegen sin(x+ π
2 ) = sinx, dass sin |]0,π[ > 0.

Spezielle Werte. Es gilt

0 = cos(2
π

4
) = cos2

π

4
− sin2 π

4
= 2 cos2

π

4
− 1.
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also

cos
π

4
=

1√
2
, sin

π

4
=

√

1 − 1

2
=

1√
2
.

Aus den Additionstheoremen folgt

cos 3x = cos 2x cosx− sin 2x sinx

= (cos2 x− sin2 x) cosx− 2 sinx cosx sinx

= cosx(cos2 x− 3 sin2 x) = cosx(4 cos2 x− 3).

Einsetzen von x = π
6 liefert 4 cos2 π

6 = 3 oder

cos
π

6
=

1

2

√
3

und daraus

sin
π

6
=

√

1 − 3

4
=

1

2
.

Mit cos(π2 − x) = sinx erhalten wir schließlich folgende spezielle Werte für die Funktionen
Sinus und Cosinus:

x 0 π/6 π/4 π/3 π/2
0◦ 30◦ 45◦ 60◦ 90◦

cosx
√

4/2
√

3/2
√

2/2
√

1/2
√

0/2

sinx
√

0/2
√

1/2
√

2/2
√

3/2
√

4/2

Dabei ist ..◦ : R → R, x 7→ x
180 π die Winkelgradfunktion.

Wir stellen die gefundenen Eigenschaften von Sinus und Cosinus noch einmal zusammen.

Satz 190 (Eigenschaften von Sinus und Cosinus). Die Funktionen sin : R → R und
cos : R → R sind 2π-periodisch, und es gilt für alle x, x1, x2 ∈ R:

sin′ x = cosx, cos′ x = − sinx

sin2 x+ cos2 x = 1

sin(−x) = − sinx, cos(−x) = cosx

sin(x+
π

2
) = cosx, cos(x+

π

2
) = − sinx

sin(x1 + x2) = sinx1 cosx2 + cosx1 sinx2

cos(x1 + x2) = cosx1 cosx2 − sinx1 sinx2.

Auf dem Intervall ]0, π[ ist der Sinus positiv, also cos |[0,π] streng monoton fallend.

Berechnung von Funktionswerten, Graphen. Die Werte der Sinus- und Cosinusfunkti-
on lassen sich mit der Taylorformel berechnen. Weil die höheren Ableitungen in 0 periodisch
die Werte 0, 1, 0,−1 annehmen, findet man

sinx =
n∑

m=0

(−1)m
x2m+1

(2m+ 1)!
+Rs,n(x),

cosx =
n∑

m=0

(−1)m
x2m

(2m)!
+Rc,n(x),
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mit

|Rs,n(x)| ≤
|x|2n+3

(2n+ 3)!
, |Rc,n(x)| ≤

|x|2n+2

(2n+ 2)!
.

Natürlich könnte man auch |Rs,n(x)| ≤ |x|2n+2

(2n+2)! und eine entsprechende Restgliedabschätzung

für den Cosinus angeben. Beachten Sie aber, dass das Taylorpolynom vom Sinus bis 2n+ 1
dasselbe ist wie bis 2n+2, weil sin(2n+2) 0 = 0. Dann liefert aber für große n die angegebene
Abschätzung bessere Werte.

Wie bei der Exponentialfunktion sieht man, dass man für festes x durch Wahl hinreichend
großer n diese Fehler beliebig klein machen kann. Die Fehlerschranken lassen sich noch
verbessern, und für die Berechnung für größeres |x| kann man die Periodizität ausnutzen.

Man erhält folgende Graphen:

-4 -2 2 4

-1

-0.5

0.5

1 sin x

cos x

Wir bezeichnen mit

S1 :=
{
(x, y) ∈ R × R

∣
∣x2 + y2 = 1

}

den sogenannten Einheitskreis, genauer die Einheits-
kreislinie. Nach (68) liegt jeder Punkt (cos t, sin t) auf
S1, und der folgende Satz wird zeigen, dass sich um-
gekehrt jeder Punkt von S1 in dieser Form schrei-
ben lässt. Dabei ist t wegen der 2π-Periodizität der
Funktionen naürlich nicht eindeutig bestimmt, aber
in [0, 2π[ gibt es genau ein solches t.
Deshalb heißen cos und sin auch Kreisfunktionen.
Die nebenstehende Abbildung erklärt, wie sie mit
den Dreiecksverhältnissen zusammenhängen:
x = cos t und y = sin t sind die Katheten eines recht-
winkligen Dreiecks mit dem Kreisradius 1 als Hypo-
thenuse. Daher kommt der Name trigonometrische
oder Kreis-Funktionen.

sin t

cos t

t=?
1

π/2

π

3π/2

0

2π

Allerdings bleibt es einstweilen offen, ob t wirklich die Länge des Winkelsegments auf dem
Kreisbogen ist. Das stimmt, aber wir können es erst im Rahmen der Integralrechnung be-
weisen. Da man in der

”
klassischen“ Trigonometrie, etwa in der nautischen Navigation, den

Kreis in 360 gleiche Teile geteilt hat, erklärt sich dann auch die Herkunft der Winkelgrad-
funktion.

Satz 191 (Kreisparametrisierung). Die Abbildung

f : t 7→ (cos t, sin t)

bildet das Intervall [0, 2π[ bijektiv auf S1 ab.
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Beweis. Folgern Sie aus Satz 190: Sind s, t ∈ [0, 2π[ mit

t < s und cos t = cos s,

so folgt
0 < t < π und s = 2π − t. (69)

Injektivität. Annahme: 0 ≤ t < s < 2π mit cos t = cos s, sin t = sin s. Dann folgt (69) und
insbesondere

sin t = sin s = sin(2π − t) = − sin t.

Dann wäre sin t = 0 im Widerspruch zu 0 < t < π.

Surjektivität. Sei (x, y) ∈ S1. Ist x = ±1, so folgt y = 0 und (x, y) = (cos 0, sin 0) bzw.
(x, y) = (cosπ, sinπ). Ist andrerseits x ∈] − 1,+1[, also

cosπ < x < cos 0,

so gibt es nach dem Zwischenwertsatz ein t ∈]0, π[ mit cos t = x. Dann ist auch

s = 2π − t ∈ [0, 2π[ und cos s = cos t = x

und
sin s = − sin t.

Weil y2 = 1 − x2 = 1 − cos2 t = sin2 t, ist y = sin t oder y = − sin t = sin s und

(x, y) = (cos t, sin t) oder (x, y) = (cos s, sin s).

Zum Schluss definieren wir zwei weitere trigonometrische Funktionen:

Tangens und Cotangens. Wir definieren

tanx :=
sinx

cosx
, x 6= (k +

1

2
)π, k ∈ Z,

cotx :=
cosx

sinx
, x 6= kπ, k ∈ Z.

Diese Funktionen sind in ihrem Definitionsbereich differenzierbar und π-periodisch, weil
Zähler und Nenner gerade ihr Vorzeichen wechseln, wenn man x durch x + π ersetzt. Die
Ableitung des Tangens berechnet sich wie folgt:

(tan)′(x) = (
sin

cos
)′(x) =

cosx cosx− sinx(− sinx)

cos2 x
=

cos2 x+ sin2 x

cos2 x

= 1 + tan2 x =
1

cos2 x
.
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-1

1
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-4

-3

-2

-1

1

2

3

4

Aus den Rechenregeln für Sinus und Cosinus folgen zum Beispiel leicht die Formeln

tan(x+ y) =
tanx+ tan y

1 − tanx tan y
, 1 + tan2 x =

1

cos2 x
.
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8.5 Arcus-Funktionen

Keine der Funktionen cosx, sinx, tanx, cotx ist injektiv, sie sind vielmehr
”
im Gegenteil“

alle periodisch. Aber wir können sie auf Teilintervalle einschränken, wo sie injektiv sind, und
dann gibt es zu den so eingeschränkten Funktionen eine Umkehrfunktion. Diese Funktionen
nennt man Arcus-Funktionen (=Bogenfunktionen), weil sie zu einem gegebenen Wert (z.B.
y = cosx) die zugehörige Bogenlänge x liefern.

Konkreter: Auf dem Intervall [0, π] ist der Cosinus streng monoton fallend und besitzt eine
Umkehrfunktion arccos : [−1, 1] → [0, π], Arcus cosinus genannt:

0.5 1 1.5 2 2.5 3

-1

-0.5

0.5

1

Die Auswahl des Intervalls [0, π] ist willkürlich, man
kann z.B. auch das Intervall [π, 2π] oder allgemein
[kπ, (k+1)π] nehmen und erhält Umkehrfunktionen,
deren Werte jeweils in diesem Intervall liegen. Die an-
fangs definierte Funktion nennt man auch den Haupt-
wert des Arcuscosinus.

-1 -0.5 0.5 1

0.5

1

1.5

2

2.5

3

Entsprechend definiert man den Hauptwert des Arcus sinus arcsin : [−1, 1] → [−π/2, π/2]

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

-1 -0.5 0.5 1

-1.5

-1

-0.5

0.5

1

1.5

114



und des Arcus tangens arctan : R →] − π/2, π/2[.

-1.5 -1 -0.5 0.5 1 1.5
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1
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3
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-4 -2 2 4

-1.5

-1

-0.5

0.5

1

1.5

Nach dem Satz 146 sind die Arcusfunktionen im Inneren ihres Definitionsbereiches differen-
zierbar und man erhält (nachrechnen)

arcsin′ x =
1√

1 − x2
, arccos′ x =

−1√
1 − x2

, arctan′ x =
1

1 + x2
.
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8.6 Die Eulersche Formel

Seien a ∈ R \ {0} und y : R → R eine differenzierbare Funktion mit

y′ = ay, y(0) = 1.

Definieren wir ỹ(x) := y(x/a), so folgt

ỹ′ = ỹ, ỹ(0) = 1.

Nach Satz 154 ist also ỹ = exp und damit

y(x) = eax.

Wir betrachten nun komplexwertige Funktionen und beweisen:

Satz 192 (und Definition). Es gibt genau eine differenzierbare Funktion y : R → C mit

y′ = iy, y(0) = 1. (70)

Diese Funktion bezeichnen wir mit y : x 7→ exp(ix) = eix.

Beachten Sie, dass ex = expx bisher nur für reelles Argument definiert war.

Beweis. 1. Eindeutigkeit. Wir nehmen an, dass y die Bedingungen des Satzes erfüllt. Wir
zerlegen y(x) ∈ C in Real- und Imaginärteil:

y(x) = u(x) + iv(x).

Dann sind u, v : R → R differenzierbare Funktionen mit

u(0) = 1, v(0) = 0.

Aus (70) folgt mit y′ = u′ + iv′ und iy = −v + iu, dass

u′ = −v, v′ = u.

Diese sogenannten Cauchy-Riemannschen Differentialgleichungen werden Ihnen in der Funk-
tionentheorie wieder begegnen. Aus ihnen sieht man, dass u und v sogar beliebig oft diffe-
renzierbar sind, und dass

v′′ + v = u′ − u′ = 0, v(0) = 0, v′(0) = u(0) = 1.

Aus Satz 186 folgt v = sin und u = v′ = cos. Wir haben also gefunden, dass y = cos+i sin
und damit eindeutig bestimmt ist.

2. Existenz. Nach dem ersten Teil des Beweises ist die einzige Chance, (70) zu erfüllen, die
Funktion mit

y := cos+i sin .

Für die gilt aber y(0) = 1 und

y′ = − sin +i cos = i(cos+i sin) = iy.

Also leistet sie wirklich das Gewünschte.
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Die Bezeichnung exp(ix) oder eix scheint in Anlehnung an den reellen Fall sehr plausibel.
Die resultierende Formel, die sogenannte Eulerformel

eix = cosx+ i sinx (71)

kommt dann allerdings überraschend! Zum Beispiel liefert sie für x = π die Beziehung

eiπ = −1.

Immerhin wird die Notation mit der Exponentialfunktion auch durch andere Eigenschaften
dieser Funktion gestützt: Aus den Additionstheoremen für Sinus und Cosinus finden wir

ei(x+y) = cos(x+ y) + i sin(x+ y)

= cosx cos y − sinx sin y + i(cosx sin y + sinx cos y)

= (cosx+ i sinx)(cos y + i sin y) = eixeiy

Die Funktion eix bietet die Möglichkeit, Sinus und Cosinus gleichzeitig zu behandeln, und
zwar auf eine sehr einfache Weise. Zum Beispiel kann man sich ei(x+y) = eixeiy leicht mer-
ken, und die Additionstheorem für Sinus und Cosinus durch Umkehrung der vorstehenden
Rechnung daraus ableiten.

Allgemeiner definiert man die komplexe Exponentialfunktion exp : C → C durch

exp(x+ iy) := ex+iy := ex(cos y + i sin y), x, y ∈ R.

Den tieferen Zusammenhang zwischen Exponentialfunktion und den trigonometrischen Funk-
tionen werden wir später mittels der Reihendarstellungen aufklären, vgl. Abschnitt 10.9.
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9 Integration

9.1 Das Regelintegral

Das Integral hat mit der Berechnung vom
Flächeninhalt zu tun. Wir betrachten eine
Funktion f : [a, b ] → R auf einem kompakten
Intervall. Wir fragen, wie groß der Flächenin-
halt unter dem Graphen der Funktion ist:

b

f

a

Wenn die Funktion auch negative Werte an-
nimmt, wollen wir Flächenbereiche unterhalb
der Abszisse negativ rechnen:

+
+

-

b
a

f

Dabei muss f nicht unbedingt stetig sein.

Für den Fall einer sogenannten Treppenfunktion wie auf der Abbildung unten ist es ganz
klar, wie groß der Flächeninhalt ist: Er ist einfach die Summe von positiv bzw. negativ
gezählten Rechteckflächen.

Definition 193. Eine Funktion φ : [a, b] → R heißt Treppenfunktion, wenn es eine Zerlegung

Z : a = x0 < x1 < . . . < xn = b

gibt, so dass
φ|]xi−1,xi[ konstant für alle i ∈ {1, . . . , n}.

Offenbar sind Treppenfunktionen beschränkt.

Es ist klar, dass eine solche Zerlegung Z nicht eindeutig ist, man kann zusätzliche Punkte
einführen. Wir wollen für den Augenblick jede solche Zerlegung eine Treppenzerlegung von
φ nennen.

Ist ξi ∈ ]xi−1, xi[ ein beliebiger Zwischenpunkt, so
ist die i-te Rechteckfläche

φ(ξi)(xi − xi−1)

und der gesamte Flächeninhalt ist

F =
n∑

i=1

φ(ξi)(xi − xi−1).

b
a

f

Die Differenz xi − xi−1 bezeichnet man gern auch mit ∆xi. Den Wert F nennen wir das
(bestimmte) Integral der Treppenfunktion φ über dem Intervall [a, b ]:

∫ b

a

φ =

∫ b

a

φ(x)dx =
n∑

i=1

φ(ξi)∆xi.
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Bemerkungen.

1. In der Definition des Integrals kommen nur die Funktionswerte φ(ξi) an Stellen

xi−1 < ξi < xi

zwischen den Teilpunkten xi vor; die Werte an den endlich vielen (potentiellen) Sprung-
stellen xi selbst sind völlig ohne Bedeutung. Offensichtlich ist es egal, wie man die
ξ ∈]xi−1, xi[ wählt.

2. In die Definition geht nicht nur die Funktion φ, sondern auch eine Treppenzerlegung
von φ ein. Wir müssen zeigen, dass die Definition unabhängig von der gewählten
Treppenzerlegung ist. Das ist anschaulich ziemlich klar, ein exakter Beweis ist aber
lästig, und wir beschränken uns auf eine Skizze:

(a) Das Integral ändert sich nicht, wenn man der Zerlegung einen weiteren Punkt
hinzufügt.

(b) Das Integral ändert sich nicht, wenn man der Zerlegung endlich viele weitere
Punkte hinzufügt.

(c) Hat man zwei Treppenzerlegungen derselben Funktion, so gibt es eine gemeinsame
Verfeinerung, d.h. Zerlegung, die aus jeder der beiden durch Hinzufügung von
endlich vielen Punkten hervorgeht.

Daraus ergibt sich dann die Unabhängigkeit von der Zerlegung.

Die Argumentation beim Unabhängigkeitsnachweis braucht man auch beim Beweis für das
folgende

Lemma 194 (Rechenregeln). Die Menge T ([a, b]) der Treppenfunktionen auf [a, b] ist
bezüglich wertweiser Addition und Skalarmultiplikation ein Vektorraum und

∫ b

a

: T ([a, b]) → R

ist linear. D.h. Summen und skalare Vielfache von Treppenfunktionen auf [a, b] sind wieder
Treppenfunktionen, und es gilt

∫ b

a

(φ+ ψ) =

∫ b

a

φ+

∫ b

a

ψ,

∫ b

a

(cφ) = c

∫ b

a

φ für c ∈ R.

Weiter gilt für φ, ψ ∈ T ([a, b])

φ ≤ ψ =⇒
∫ b

a

φ ≤
∫ b

a

ψ.

Wegen −|φ| ≤ φ ≤ |φ| folgt daraus

|
∫ b

a

φ| ≤
∫ b

a

|φ|.

Schließlich gilt für a < b < c
∫ c

a

φ =

∫ b

a

φ+

∫ c

b

φ.
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Wie bestimmt man nun den Flächeninhalt bei
”
beliebigen“ Funktionen? Wir betrachten

nur solche, die sich durch Treppenfunktionen gleichmäßig approximieren lassen. (Den da-
bei auftretenden Begriff der gleichmäßigen Konvergenz von Funktionenfolgen werden wir
im nächsten Semester ausführlicher untersuchen, hier können wir auf eine systematische
Behandlung verzichten.)

Definition 195 (Regelfunktion). (i) Eine Funktion f : [a, b] → R auf einem kompak-
ten Intervall heißt eine Regelfunktion, wenn gilt:

Zu jedem ǫ > 0 gibt es eine Treppenfunktion φ : [a, b] → R, die nirgends mehr als ǫ
von f abweicht, für die also

|f(x) − φ(x)| ≤ ǫ für alle x ∈ [a, b]

oder, anders gesagt,
sup
a≤x≤b

|f(x) − φ(x)| ≤ ǫ.

Insbesondere sind Regelfunktionen wie Treppenfunktionen beschränkt.

(ii) Sei f : [a, b] → R eine Regelfunktion. Dann gibt es eine Folge (φk)k∈N von Treppen-
funktionen mit

lim
k→∞

sup
a≤x≤b

|f(x) − φk(x)| = 0.

Die Folge (φk)k∈N konvergiert also gleichmäßig gegen f . Jede solche Folge nennen wir
eine approximierende Folge von Treppenfunktionen für f .

Wir wollen nun das Integral von Regelfunktionen definieren als Grenzwert der Integrale einer
approximierenden Folge von Treppenfunktionen. Dazu beweisen wir:

Lemma 196 (und Definition). Sei f : [a, b] → R eine Regelfunktion und (φk) eine
approximierende Folge von Treppenfunktionen dazu. Dann ist die Integralfolge

(
∫ b

a

φk(x)dx

)

k∈N

konvergent, und der Grenzwert ist unabhängig von der gewählten approximierenden Folge.
Wir bezeichnen ihn mit

∫ b

a

f(x)dx =

∫ b

a

f

und nennen ihn das (Regel-)Integral von f über [a, b].

Beweis. Sei
ǫk := sup

a≤x≤b
|f(x) − φk(x)|.

Dann gilt für alle x ∈ [a, b]

|φk(x) − φl(x)| ≤ |φk(x) − f(x)| + |f(x) − φl(x)| ≤ ǫk + ǫl

und daher
∣
∣
∣
∣
∣

∫ b

a

φk −
∫ b

a

φl

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∫ b

a

(φk − φl)

∣
∣
∣
∣
∣
≤
∫ b

a

|φk − φl| ≤ (ǫk + ǫl)(b− a).

Nach Voraussetzung ist aber limk→∞ ǫk = 0. Daher gibt es zu jedem ǫ > 0 ein n ∈ N, so
dass für alle k, l ≥ N ∣

∣
∣
∣
∣

∫ b

a

φk −
∫ b

a

φl

∣
∣
∣
∣
∣
≤ (ǫk + ǫl)(b− a) ≤ ǫ.
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Die Integralfolge ist also eine Cauchyfolge und daher konvergent.

Hat man zwei approximierende Folgen (φk) und (ψ)k, so ist auch die Folge (ρk) mit

ρ2k := φk, ρ2k+1 := ψk

eine approximierende Folge von Treppenfunktionen. Weil nach dem bereits Bewiesenen

(
∫ b

a
ρk) konvergent ist, konvergieren auch die Teilfolgen (

∫ b

a
φk) und (

∫ b

a
ψk) gegen denselben

Grenzwert. Das beweist die Unabhängigkeit.

Das Integral, das wir hier eingeführt haben, das sogenannte Regelintegral, ist einfacher (und
etwas spezieller) als das gebräuchlichere Riemannsche Integral. Es genügt aber für alle prak-
tischen Belange. Und für die wichtigen theoretischen Belange braucht man das kompliziertere
Lebesgueintegral. Alle diese Integralbegriffe unterscheiden sich nur durch die Klasse der bei
ihnen integrierbaren Funktionen, und auf dem Durchschnitt dieser Klassen stimmen die
Integrale überein.

Die Definition des Integrals durch die Approximation mit stückweise konstanten Funktionen
ist nicht nur eine mathematische Methode, sie entspricht vielmehr genau der Vorstellung, die
man bei der Modellbildung in vielen Anwendungen hat. Oft ist das Problem dabei genuin
eindimensional und die geometrische Interpretation des Integral als Fläche ganz abwegig.

Beispiel 197 (Von der Summe zum Integral). Bewegt sich ein Punkt entlang einer
Geraden mit konstanter Geschwindigkeit v, so legt er zwischen den Zeitpunkten ta und te
die Strecke

s = v · (te − ta)

zurück. Ist die Geschwindigkeit v = v(t) variabel, so ist die zurückgelegte Strecke annähernd

s ≈
n∑

i=1

v(ti) · ∆t.

Dabei ist

ta = t0 < t1 < . . . < tn = te, ti − ti−1 =
te − ta
n

= ∆t.

Den exakten Wert erhält man, indem man mit immer größerem n zum Integral übergeht:

s =

∫ te

ta

v(t)dt.

Dabei haben wir allerdings vorausgesetzt, dass v eine Regelfunktion ist, die durch die Trep-
penfunktionen mit den Werten v(ti) für n→ ∞ approximiert werden. Das untersuchen wir
später genauer.

Beispiel 198. Wir berechnen für a < b

∫ b

a

exp .

Für j, k ∈ N mit k > 0 und 0 ≤ j ≤ k definieren wir

xkj := a+
j

k
(b− a)

und

φk(x) :=

{

exp(xkj) für xkj ≤ x < xk j+1, j < k,

exp(b) für x = b,
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Weil die stetige Funktion exp auf dem kompakten Intervall [a, b] gleichmäßig stetig ist, gibt
es zu jedem ǫ > 0 ein k ∈ N, so dass für alle x, y ∈ [a, b] gilt

|x− y| ≤ b− a

k
=⇒ | exp(x) − exp(y)| < ǫ.

Also gilt dann für alle l ≥ k
| exp−φl| < ǫ.

Die φk bilden also eine Folge von Treppenfunktionen, die exp auf [a, b] approximiert. Daher
ist

∫ b

a

exp(x)dx = lim

∫ b

a

φk(x)dx.

Es ist aber

∫ b

a

φk(x)dx =
k−1∑

j=0

exp(xkj)
b− a

k
=
b− a

k

k−1∑

j=0

exp(a+
j

k
(b− a))

=
b− a

k
exp(a)

k−1∑

j=0

(

exp(
b− a

k
)

)j

=
b− a

k
exp(a)

1 −
(
exp( b−ak )

)k

1 − exp( b−ak )

= exp(a)
b−a
k

exp( b−ak ) − 1
(exp(b− a) − 1)

→ exp(a)(exp(b− a) − 1) = exp(b) − exp(a).

Die Definition des Regelintegrals führt zu der Frage, wie man denn eine Folge von appro-
ximierenden Treppenfunktionen bekommt. Im vorstehenden Beispiel wurde eine solche auf
einfache Weise konstruiert. Die dabei benutzte Idee läßt sich verallgemeinern, wie wir jetzt
ausführen.

Definition 199 (Riemannnsche Summen). Sei f : [a, b] → R eine Funktion. Unter einer
Zerlegung Z von [a, b] versteht man üblicherweise wie oben eine endliche Menge {x0, . . . , xn}
mit

a = x0 < . . . < xn = b. (72)

Wir wollen für den Moment darunter aber eine endliche Menge {x0, . . . , xn, ξ1, . . . , ξn} ver-
stehen, die außer den xi mit der Eigenschaft (72) noch Zwischenpunkte ξi mit

ξi ∈ [xi−1, xi]

enthält. Dann nennen wir
δ(Z) := max

i∈{1,...,n}
(xi − xi−1)

die Maschenweite der Zerlegung und

S(f,Z) :=
n∑

i=1

f(ξi)(xi − xi−1)

die Riemannsche Summe von f zur Zerlegung Z. Sie ist offenbar das Integral einer Trep-
penfunktion.

Wir geben nun ein Verfahren zur Berechnung von Regelintegralen an:
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Satz 200 (Regelfunktionen und Riemannsche Summen). Sei f : [a, b] → R eine
Regelfunktion. Dann gibt es zu jedem ǫ > 0 ein δ > 0 mit folgender Eigenschaft: Ist

Z = {x0, . . . , xn, ξ1, . . . , ξn}

eine Zerlegung mit Maschenweite δ(Z) < δ, so ist

∣
∣
∣
∣
∣

∫ b

a

f(x)dx− S(f,Z)

∣
∣
∣
∣
∣
< ǫ.

Die Riemannschen Summen einer Zerlegungsfolge mit gegen 0 konvergierender Maschenwei-
te konvergieren also gegen das Regelintegral.

Bemerkung. Ist f stetig, so approximieren die mittels der Zerlegung konstruierten Trep-
penfunktionen

φZ(x) :=

{

f(ξi) für x ∈ [xi−1, xi[,

f(b) für x = b

f gleichmäßig, wenn δ(Z) → 0. Für eine allgemeine Regelfunktion f muss das nicht so sein,
wie man an der Funktion mit f(x) := 0 für 0 ≤ x < 1 und f(1) = 1 sieht, wenn man
immer ξn = b = 1 wählt. Trotzdem konvergieren die Riemannschen Summen gegen das
Regelintegral.

Beweis von Satz 200. Sei φ̃ : [a, b] → R eine Treppenfunktion mit Zerlegung

a = x̃0 < . . . < x̃m = b,

so dass
|f(x) − φ̃(x)| < ǫ

3(b− a)
für alle x ∈ [a, b] (73)

und sei φ̃|]xi−1,xi[ = ci.

Sei nun Z eine Zerlegung wie im Satz mit Maschenweite < δ, wobei wir über δ noch verfügen
werden. Wir setzen

φ(x) := f(ξi) für xi−1 ≤ x < xi, φ(b) = f(b)

und
φ̂(x) := φ̃(ξi) für xi−1 ≤ x < xi, φ̂(b) = f(b).

Dann gilt
∣
∣
∣
∣
∣

∫ b

a

f(x)dx− S(f,Z)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∫ b

a

f −
∫ b

a

φ

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∫ b

a

f −
∫ b

a

φ̃

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫ b

a

φ̃−
∫ b

a

φ̂

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫ b

a

φ̂−
∫ b

a

φ

∣
∣
∣
∣
∣

≤
(73)

ǫ

3
+

∣
∣
∣
∣
∣

∫ b

a

φ̃−
∫ b

a

φ̂

∣
∣
∣
∣
∣
+
ǫ

3
. (74)

Zur Abschätzung des verbleibenden Terms
∣
∣
∣

∫ b

a
(φ̃− φ̂)

∣
∣
∣ nehmen wir an, dass

δ < max
i

(x̃i − x̃i−1). (75)
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Dann gibt es zu jedem i ∈ {1, . . . , n} ein j ∈ {0, . . . ,m}, so dass

[xi−1, xi] ⊂]x̃j−1, x̃j [ (76)

oder
[xi−1, xi] ⊂]x̃j−1, x̃j ] ∪ [x̃j , x̃j+1[. (77)

wobei wir ]x̃−1, x̃0] := ∅ =: [x̃m, x̃m+1[ setzen.

Im Fall (76) gilt für alle x ∈ [xi−1, xi]

φ̂(x) = φ̃(ξi) = cj = φ̃(x)

und ∫ xi

xi−1

(φ̃− φ̂) = 0. (78)

Im Fall (77) gilt (mit c0 := c1, cm+1 := cm) für x ∈ [xi−1, xi]

φ̃(x) ∈ {cj , φ̃(xj), cj+1}
und ebenso

φ̂(x) = φ̃(ξi) ∈ {cj , φ̃(xj), cj+1}.
Also ist dann

|φ̃(x) − φ̂(x)| ≤ 2(|φ̃(xj)| + |cj | + |cj+1|) =: σj .

Wir erhalten |
∫ xi

xi−1
(φ̃− φ̂)| ≤ σjδ und mit (78) folgt

∣
∣
∣
∣
∣

∫ b

a

(φ̃− φ̂)

∣
∣
∣
∣
∣
≤





m∑

j=0

σj



 δ. (79)

Wählen wir nun δ > 0 so klein, dass (75) gilt und die rechte Seite von (79) kleiner als ǫ
3

wird, so folgt aus (74) die Behauptung.

Lemma 201 (Rechenregeln). Die Menge R([a, b]) der Regelfunktionen auf [a, b] ist bezüglich
wertweiser Addition und Skalarmultiplikation ein Vektorraum und

∫ b

a

: R([a, b]) → R

ist linear. D.h. Summen und skalare Vielfache von Treppenfunktionen auf [a, b] sind wieder
Treppenfunktionen, und es gilt

∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g,

∫ b

a

(cf) = c

∫ b

a

f für c ∈ R.

Weiter gilt für f, g ∈ R([a, b])

f ≤ g =⇒
∫ b

a

f ≤
∫ b

a

g. (Monotonie)

Ist f ∈ R([a, b]), so auch |f | ∈ R([a, b]) und

|
∫ b

a

f | ≤
∫ b

a

|f |.

Schließlich gilt für a < b < c
∫ c

a

f =

∫ b

a

f +

∫ c

b

f. (Intervall-Additivität)
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Beweis. Wir zeigen nur die Monotonie des Integrals. Die anderen Eigenschaften folgen fast
trivial aus den entsprechenden Aussagen im Lemma 194.

Seien (φk) und (ψk) Folgen von Treppenfunktionen auf [a, b] mit

|f − φk| <
1

k
, |g − ψk| <

1

k
.

Dann folgt

φk < f +
1

k
≤ g +

1

k
< ψk +

2

k
,

und mit der Linearität und Monotonie für Treppenfunktionen

∫ b

a

φk ≤
∫ b

a

ψk +

∫ b

a

2

k
=

∫ b

a

ψk +
2(b− a)

k
.

Für k → ∞ konvergieren die linke Seite gegen
∫ b

a
f , die rechte gegen

∫ b

a
g.

Eine einfache Folgerung ist das

Korollar 202 (Integralschranken). Seien f : [a, b ] → R eine Regelfunktion und

m ≤ f(x) ≤M

für alle x ∈ [a, b ]. Dann gilt

m(b− a) ≤
∫ b

a

f(x)dx ≤M(b− a).

Beweis. Man betrachtet die Treppenfunktion mit g(x) := m für alle x und erhält aus g ≤ f
die linke Ungleichung:

m(b− a) =

∫ b

a

g(x)dx ≤
∫ b

a

f(x)dx.

Die andere folgt ebenso.

Korollar 203 (Mittelwertsatz der Integralrechnung). Sei f : [a, b] → R eine stetige
Funktion. Dann gibt es ein ξ ∈ [a, b] mit

f(ξ) =
1

b− a

∫ b

a

f(x)dx.

Beweis. Ist m := mina≤x≤b f(x) und M := maxa≤x≤b f(x), so gilt nach dem vorstehenden
Korollar

m ≤ 1

b− a

∫ b

a

f(x)dx ≤M.

Nach dem Zwischenwertsatz 130 gibt es daher ein ξ mit

f(ξ) =
1

b− a

∫ b

a

f(x)dx.
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9.2 Regelfunktionen

In diesem Abschnitt sehen wir uns genauer an, welche Funktionen Regelfunktionen sind,
und welche nicht. Zunächst halten wir noch einmal fest, dass nach unserer Definition Regel-
funktionen

• stets beschränkt und

• stets auf einem kompakten Intervall [a, b] definiert

sind.

Definition 204. Für eine beliebige Teilmenge M ⊂ R nennt man die Funktion

χM (x) :=

{

1 für x ∈M

0 sonst

die charakteristische Funktion von M .

Beispiel 205. Die Funktion χQ|[0,1] ist keine Regelfunktion, weil jede Treppenfunktion von

ihr irgendwo einen Abstand ≥ 1
2 hat.

Das folgende Beispiel zeigt, dass man das Integral von Treppenfunktionen nicht einfach auf
Grenzwerte von Treppenfunktionen erweitern kann. Die gleichmäßige Approximation, die
Forderung also, dass es bei beliebig vorgegebenem ǫ > 0 eine Treppenfunktion φ gibt, die
nirgends mehr als ǫ von f abweicht, ist sehr wesentlich.

Beispiel 206.

Sei f : [0, 2] → R definiert wie folgt:

f(x) :=

{

0 für x = 0,

(−2)j für 1
2j < x ≤ 1

2j−1 ,

also

f =

∞∑

j=0

(−2)jχ] 1

2j ,
1

2j−1 ].

Beachten Sie, dass f nicht beschränkt, also
keine Regelfunktion ist. Sei

φk =

k∑

j=0

(−2)jχ] 1

2j ,
1

2j−1 ].

2

1

0

Dann gilt
∫ 2

0

φk(x)dx =
k∑

j=0

(−2)j(
1

2j−1
− 1

2j
) =

k∑

j=0

(−1)j =
(−1)k + 1

2
.

Deshalb existiert limk→∞
∫ 2

0
φk(x)dx nicht. Beschränkt man sich hingegen auf die Teilfolgen

mit geradem oder ungeradem Index, so existieren die Grenzwerte und sind 1 bzw. 0.

Das ist keine gute Basis für die Definition eines Integrals
∫ b

a
f(x)dx.
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Satz 207 (Charakterisierung von Regelfunktionen). Die Funktion f : [a, b] → R ist
eine Regelfunktion genau dann, wenn gilt:

(i) Für alle x ∈ [a, b[ existiert limtցx f(t) ∈ R und

(ii) für alle x ∈ ]a, b] existiert limtրx f(t) ∈ R.

Grob gesprochen sind Regelfunktionen also gerade die Funktionen, die an jeder Stelle einen
rechtsseitigen und einen linksseitigen Limes besitzen.

Beweis. Zu (
”
=⇒“). Wir zeigen nur (i), der Beweis für (ii) geht genauso. Seien x ∈ [a, b[

und (tn) und (sn) Folgen in ]x, b[ mit

lim tn = x = lim sn.

Es genügt zu zeigen, dass dann (f(tn)) und (f(sn)) gegen denselben Grenzwert konvergieren.
Nach Lemma 112 existiert dann limtցx f(t).

Sei also ǫ > 0. Dann gibt es eine Treppenfunktion φ mit Treppenzerlegung

a = x0 < x1 < . . . < xm = b,

so dass
|f(x) − φ(x)| < ǫ für alle x.

Sei nun
xi−1 ≤ x < xi

und sei N ∈ N so groß, dass für alle n > N

x < tn < xi und x < sn < xi.

Dann gilt für m,n ≥ N , dass tm, sn ∈]xi−1, xi[, also φ(tm) = φ(sn) und

|f(tm) − f(sn)| ≤ |f(tm) − φ(tm)| + |f(sn) − φ(tm)
︸ ︷︷ ︸

=φ(sn)

| < 2ǫ.

Wählt man zunächst (tn) = (sn), so folgt, dass (f(tn)) eine Cauchyfolge, also konvergent
ist. Dasselbe gilt dann für (f(sn)), und die Grenzwerte unterscheiden sich um weniger als
ein beliebiges ǫ > 0, sind also gleich.

Zu (
”
⇐=“). Wir beweisen das indirekt. Sei ǫ > 0. Wir nehmen an, dass es keine Treppen-

funktion φ gibt, für die
|f(x) − φ(x)| < ǫ für alle x ∈ [a, b].

Wir wollen das zum Widerspruch führen. Wir halbieren das Intervall [a, b] und finden, dass
es auf (mindestens) einer der beiden Hälften, wir nennen sie [a1, b1], keine Treppenfunktion
φ gibt, für die

|f(x) − φ(x)| < ǫ für alle x ∈ [a1, b1].

Durch Fortsetzen dieses Verfahrens erhalten wir eine Intervallfolge

[a, b] ⊃ [a1, b1] ⊃ [a2, b2] ⊃ . . . ,

so dass für keine Treppenfunktion φ und kein n

|f(x) − φ(x)| < ǫ für alle x ∈ [an, bn].
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Weil am ∈ [an, bn] für m > n, ist |an − am| ≤ b−a
2n und (an) deshalb eine Cauchyfolge. Diese

ist konvergent gegen ein x ∈ [a, b]. Offenbar gilt auch bn → x. Wir wollen annehmen, dass

x ∈ ]a, b[.

Die Fälle x = a oder x = b gehen analog.

Wir setzen
f−(x) := lim

tրx
f(t), f+(x) := lim

tցx
f(t).

Dann gibt es δ > 0, so dass
]x− δ, x+ δ[⊂ [a, b],

und

|f(t) − f−(x)| < ǫ für alle t ∈]x− δ, x[,

|f(t) − f+(x)| < ǫ für alle t ∈]x, x+ δ[.

Sei n ∈ N so groß, dass
[an, bn] ⊂ ]x− δ, x+ δ[.

Definiere eine Treppenfunktion φ : [an, bn] → R durch

φ(t) :=







f−(x) falls t ∈ [an, bn]∩] −∞, x[,

f(x) falls t = x ∈ [an, bn],

f+(x) falls t ∈ [an, bn]∩]x,+∞[.

Dann gilt auf [an, bn]
|f(t) − φ(t)| < ǫ.

Widerspruch!

Beispiel 208. Stetige Funktionen sind Regelfunktionen.

Beispiel 209. Monotone Funktionen sind Regelfunktionen. Sei nämlich g : [a, b] → R

monoton, etwa monoton wachsend, und sei x ∈]a, b]. Dann ist die für hinreichend große k
definierte Folge

(
g(x− 1

k )
)

k∈N
monoton wachsend und durch g(a) bzw. g(b) beschränkt. Sie

ist also konvergent gegen einen Wert L. Seien ǫ > 0 und (tn) eine Folge in [a, x[ mit tn ր x.
Dann gibt es ein k mit

L− ǫ < g(x− 1

k
) ≤ L

und dazu ein N ∈ N mit x− 1
k < tn < x für alle n ≥ N .

Für alle n ≥ N ist dann

L− ǫ < g(x− 1

k
) ≤ g(tn).

Andrerseits gibt es zu jedem n ein m ∈ N mit tn < x− 1
m , also

g(tn) ≤ g(x− 1

m
) ≤ L.

Das zeigt limn→∞ g(tn) = L. Daraus folgt limtրx g(t) = L.

Ebenso zeigt man für x ∈ [a, b[ die Existenz des rechtsseitigen Grenzwertes. Aus Satz 207
folgt dann, dass g eine Regelfunktion ist.
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Definition 210 (Stückweise Stetigkeit und Monotonie). Wir nennen f : [a, b ] → R

stückweise stetig bzw. stückweise monoton, wenn gilt: Es gibt eine Zerlegung

a = x0 ≤ x1 ≤ . . . ≤ xn = b,

und stetige bzw. monotone Funktionen

fi : [xi−1, xi ] → R, i ∈ {1, . . . , n}

so dass für alle i ∈ {1, . . . , n} gilt

f |]xi−1,xi [ = fi|]xi−1,xi [,

a= b
||| | |

x
x x x x1 2

0
3

4
=

Bemerkung. Die Definition ist subtil: Wenn man verlangt, dass f |[xi−1,xi] für alle i stetig
ist, dann ist f auf ganz [a, b] stetig. Verlangt man nur, dass f |]xi−1,xi[ für alle i stetig ist,
so treten auch unbeschränkte Funktionen wie tan : [0, π] → R (mit beliebigem Wert in π/2)
auf. Beides ist nicht in unserem Sinne.

Satz 211 (Bequemes Integrierbarkeitskriterium). Stückweise stetige und stückweise
monotone beschränkte Funktionen sind Regelfunktionen.

Beweis. Das folgt aus den Beispielen 208 und 209, denn unmittelbar aus der Definition der
Regelfunktion ergibt sich:

• Ist f |[xi−1,xi] für jedes der endlich vielen Intervalle [xi−1, xi] eine Regelfunktion, so ist
f eine Regelfunktion.

• Sind f, fi : [xi−1, xi] → R zwei Funktionen, die auf dem offenen Intervall ]xi−1, xi[
übereinstimmen, und ist fi : [xi−1, xi] → R eine Regelfunktion, so ist auch die Funktion
f : [xi−1, xi] → R eine Regelfunktion.

Die meisten beschränkten Funktionen, die man über ein kompaktes Intervall integrieren

”
möchte“, fallen unter diesen Satz.
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9.3 Numerische Integration

Wir werfen in diesem Abschnitt einen kurzen Blick auf numerische Integrationsverfahren.
Im Prinzip ist die Approximation durch Treppenfunktionen ein brauchbares numerisches
Verfahren, das im Grenzwert ja sogar gegen den genauen Wert konvergiert. Aber dafür muss
man natürlich (unenendlich) viele Treppenfunktionen berechnen und summieren. Für die
schnelle näherungsweise Berechnung bestimmter Integrale verwendet man die Approximati-
on durch andere,

”
genauere“ Funktionen, die sich aber auch noch gut beherrschen lassen:

Trapezregel. Eine erste Näherung für
∫ b

a
f(x)dx ist

∫ b

a

f(x)dx ≈ f(a) + f(b)

2
(b− a).

Der Ausdruck rechts ist gerade der Flächeninhalt des Trapezes, welches entsteht, wenn
wir den Graphen der Funktion durch die Sekante zwischen den Endpunkten (a, f(a)) und
(b, f(b)) ersetzen.

Diese Regel kann man auch mehrfach anwenden, in-
dem man [a, b ] in n gleiche Teilintervalle der Länge
h = b−a

n unterteilt, für jedes Teilintervall die Trapez-
regel anwendet und summiert. Man erhält

∫ b

a

f(x)dx ≈ h

2

(

f(a) + f(b) + 2
n−1∑

i=1

f(a+ ih)

)

.

a b

DIe Fläche der zwei roten Trapeze 

ist gleich der der vier Rechtecke.

Simpsonregel. Statt den Graphen von f : [a, b ] → R durch eine Gerade, nämlich die
Sekante zu ersetzen, kann man ihn auch ersetzen durch einen Parabelbogen durch die Gra-
phenpunkte zu a, a+b2 und b. Die entstehende Fläche, die die gesuchte vermutlich besser
approximiert als das Trapez, läßt sich explizit berechnen. Wie, geht aus dem nächsten Ab-
schnitt hervor. Es folgt

∫ b

a

f(x)dx ≈ b− a

6

(

f(a) + f(b) + 4f(
a+ b

2
)

)

.

Auch diese Regel kann man mehrfach anwenden. Man unterteilt [a, b ] in eine gerade Anzahl
2n von Teilintervallen gleicher Länge h = b−a

2n und wendet auf jedes ungerade Teilintervall
und das folgende gerade die Simpsonregel an. Man erhält

∫ b

a

f(x)dx ≈ h

3

(

f(a) + f(b) + 4
n∑

i=1

f(a+ (2i− 1)h) + 2
n−1∑

i=1

f(a+ 2ih)

)

.

Für subtilere Verfahren der numerischen Integration, z.B. für das Romberg-Verfahren,
schauen Sie in bessere Formelsammlungen.

Mathematische Software wie Mathematica, Maple oder Derive haben Programme zur sym-
bolischen Integration wie zur numerischen Integration. Die letzteren beruhen auf solchen
Verfahren. Mathematica liefert zum Beispiel

∫ 0

−2

1√
2π
e−

x2

2 dx = 0.47725.
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9.4 Das unbestimmte Integral

Wir kommen nun zum Zusammenhang zwischen Integration und Differentiation, der für die
explizite Berechnung von vielen Integralen überaus nützlich ist.

Wir betrachten dazu eine Regelfunktion f : [a, b ] → R und für eine variable obere Grenze
x ∈ [a, b ] das Integral

F (x) :=

∫ x

a

f =

∫ b

a

f(t)dt. (80)

In Abhängigkeit von x definiert das also eine neue Funktion F : [a, b ] → R, die man auch
das unbestimmte Integral oder die Integralfunktion von f nennt. Wir versuchen F zu diffe-
renzieren:

F (x+ h) − F (x)

h
=

1

h

(
∫ x+h

a

f(t)dt−
∫ x

a

f(t)dt

)

=
1

h

(
∫ x

a

f(t)dt+

∫ x+h

x

f(t)dt−
∫ x

a

f(t)dt

)

=
1

h

∫ x+h

x

f(t)dt.

Bemerkung. Diese Rechnung gilt zunächst nur, wenn h > 0. Offenbar ist es hilfreich, auch

Integrale
∫ b

a
f(x)dx zuzulassen, bei denen nicht a < b ist.

Definition 212. Seien b < a und f : [b, a] → R eine Regelfunktion. Dann definieren wir

∫ a

a

f(x)dx = 0 und

∫ b

a

f(x)dx = −
∫ a

b

f(x)dx.

Mit dieser Definition bleibt die vorstehende Rechnung auch mit h < 0 richtig. Sie bleibt auch
richtig, wenn f : J → R auf einem Intervall oder einer offenen Teilmenge von R definiert ist
und a, x, x+ h ∈ I beliebig sind.

Zur Vereinfachung der Notation nehmen wir im weiteren aber an, dass h > 0 ist.

Wenn wir voraussetzen, dass f stetig ist, so gibt es nach dem Mittelwertsatz für Integrale
Korollar 203 ein ξ ∈]x, x+ h[ mit

1

h

∫ x+h

x

f(t)dt = f(ξ).

Über ξ wissen wir zwar nichts Genaueres, aber für h→ 0 geht es jedenfalls gegen x. Daher
ist für stetiges f das unbestimmte Integral F differenzierbar und hat f als Ableitung:

F ′(x) = lim
h→0

F (x+ h) − F (x)

h
= f(x).

Definition 213 (Stammfunktion). Seien J ⊂ R ein nicht-triviales Intervall oder eine
offene Teilmenge und f, F : J → R zwei Funktionen. Dann heißt F eine Stammfunktion von
f , wenn F : J → R differenzierbar ist und F ′ = f gilt.

Jede stetige Funktion f : J → R auf einem Intervall hat also eine Stammfunktion, nämlich

F (x) :=

∫ x

a

f(t)dt.

Das bedeutet aber nicht, dass Sie immer eine Stammfunktion
”
explizit“ hinschreiben können.

Und es gibt Funktionen, die keine Stammfunktion besitzen:
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Beispiel 214. Die sogenannte Heaviside-Funktion f = Y : R → R mit Y (x) := 0 für x < 0
und Y (x) := 1 für x ≥ 0 hat keine Stammfunktion. Sonst müsste sie nach dem Satz 170 von
Dini nämlich den Zwischenwertsatz erfüllen, was sie offenbar nicht tut.

Den folgenden Satz haben wir damit im wesentlichen schon bewiesen:

Satz 215 (Hauptsatz der Differential- und Integralrechnung). Sei f : J → R stetig
auf dem Intervall J und sei a ∈ J . Dann gilt

(i) Die Funktion F : J → R mit

F (x) :=

∫ x

a

f(t)dt

ist eine Stammfunktion von f . D.h. F ist differenzierbar und

F ′(x) = f(x).

Insbesondere besitzt jede stetige Funktion auf einem Intervall eine Stammfunktion.

(ii) Die Funktion G : J → R ist genau dann eine Stammfunktion von f , wenn

G(x) =

∫ x

a

f(t)dt+ const. =

∫ x

a

f(t)dt+G(a).

Insbesondere ist dann also für a, b ∈ J

∫ b

a

f(t)dt = G(b) −G(a) =: G(x)|ba.

(Beachten Sie, dass das auch für b ≤ a gilt.)

Beweis. Zu (i). Bereits bewiesen.

Zu (ii). Ist G eine Stammfunktion, so ist

(G− F )′ = G′ − F ′ = f − f = 0,

also nach dem Konstanzkriterium G = F + const.

Umgekehrt ist F + c für jede Konstante c natürlich eine Stammfunktion.

Der Satz hat phantastische Konsequenzen: Nehmen Sie an, Sie sollen
∫ π

0
sinxdx berechnen.

Dann müssen Sie den Sinus immer feiner durch Treppenfunktionen approximieren, die In-
tegrale der Treppenfunktionen ausrechnen und für diese den Grenzwert bei

”
beliebig guter

Approximation“ berechnen.

Oder Sie erinnern sich daran, dass cos′ x = − sinx, also G(x) = − cosx eine Stammfunktion
von f(x) = sinx ist. Daher ist nach dem Hauptsatz

∫ π

0

sinxdx = − cosπ − (− cos 0) = 1 + 1 = 2.

Keine Unterteilungen, keine Riemannsche Summen, keine Grenzwerte! Und es funktioniert
für alle stetigen Funktionen, für die wir Stammfunktionen kennen!
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Bemerkung zur Notation. Aus den nun ersichtlichen Gründen schreibt man oft

G(x) =

∫

f(x)dx+ const.,

wenn G eine Stammfunktion von f ist. Es ist hilfreich, dabei immer eine Integrationskonstan-
te zu notieren. Sonst erhält man z.B. − cosx =

∫
sinxdx = 23 − cosx, weil G(x) = − cosx

aber genauso gut auch H(x) = 23 − cosx Stammfunktionen von sinx sind.

Beispiele.

∫ b

a

exdx = ex|ba = eb − ea,

∫ b

a

sinx dx = − cosx|ba = cos a− cos b,

∫

xα dx =
xα+1

α+ 1
+ const. für α 6= −1,

∫ 5

1

dx

x
= ln 5 − ln 1 = ln 5,

∫ b

0

1

1 + x2
dx = arctan b− arctan 0 = arctan b,

∫ b

a

1√
1 − x2

dx = arcsinx|ba,

∫

(a0 + a1x+ a2x
2 + . . .+ anx

n)dx = a0x+ a1
x2

2
+ . . .+ an

xn+1

n+ 1
+ const.

Mathematische Software mit der Fähigkeit zum symbolischen Rechnen bietet auch die
Möglichkeit, unbestimmte Integrale zu berechnen. Hier ein paar Zeilen Mathematica

In[1]:=
R

x2 sin2 xdx

Out[1]=x3

6
− 1

4
x cos(2x) − 1

8
(x2 − 1) sin(2x)

In[2]:=
R

sin(x2) dx

Out[2]=
p

π
2

FresnelS(
q

2
π
x)

Während das erste Ergebnis sofort verständlich ist, bedarf das zweite einer Erklärung: Die
Funktion sin(x2) besitzt keine Stammfunktion, die sich mit

”
elementaren“ Funktionen aus-

drücken läßt. Das Ergebnis ist vielmehr ein sogenanntes Fresnelintegral, eine Funktion, die
definiert ist durch die Gleichung

FresnelS(x) =

∫ x

0

sin(
πt2

2
)dt.

Das zweite Ergebnis ist also mehr oder weniger nur eine Umformung mittels der Substitu-
tionsregel, die wir im nächsten Abschnitt kennenlernen.

Das Fresnelintegral spielt eine Rolle in der geometrischen Optik. Die Werte bekommt man
wie die Werte des Sinus (für die man eigentlich auch den Grenzwert einer Potenzreihe be-
rechnen muss) zum Beispiel vom Rechner geliefert:

N[FresnelS[1.5],7]
0.697505

Plot[FresnelS[x],{x,0,4}]

1 2 3 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ein wesentlicher Unterschied zwischen der Sinusfunktion und dem Fresnelintegral ist, dass
viele Eigenschaften des Sinus einfacher zu beschreiben sind, zum Beispiel die Lage der lokalen
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Maxima. Auch hat man eine Fülle von Identitäten, die den Sinus mit anderen Funktionen
verbinden.

Beispiel 216. Die Funktion 1
x besitzt auf ]0,+∞[ die Stammfunktion lnx. Und auf dem

Intervall ] −∞, 0[ ist offenbar ln(−x) eine Stammfunktion, denn die Ableitung ist nach der
Kettenregel 1

−x (−1) = 1
x . Also ist ln |x| eine Stammfunktion von 1

x auf R \ {0}:

(ln |x|)′ =
1

x
.

Beispiel 217 (Ein Existenzbeweis für die Exponentialfunktion). Die Funktion 1
x

besitzt auf ]0,+∞[ die Stammfunktion

x 7→
∫ x

1

dt

t
.

Wir definieren

λ(x) :=

∫ x

1

dt

t
.

Weil λ differenzierbar, insbesondere also stetig ist, ist λ(]0,+∞[) ein Intervall. Aus

∫ 2k+1

2k

dt

t
≥ 1

2k+1
(2k+1 − 2k) =

1

2
,

folgt

λ(2k+1) = λ(2k) +
1

2

und daraus limx→∞ λ(x) = +∞. Ebenso schließt man aus

∫ 1

2k

1

2k+1

dt

t
≥ 2k(

1

2k
− 1

2k+1
) =

1

2
,

dass limxց0 λ(x) = −∞ und damit λ(]0,+∞[) = R.
Die Umkehrfunktion f := λ−1 : R →]0,+∞[ ist differenzierbar und es gilt

f ′(x) =
1

λ′(f(x))
=

1
1

f(x)

= f(x).

Schließlich ist λ(1) = 0 und deshalb f(0) = 1. Also erfüllt die Umkehrfunktion f von λ die
definierenden Gleichungen für exp, vgl. Satz 154.

Bemerkungen. 1. Die Untersuchungen in diesem Abschnitt betreffen die Integration steti-
ger Funktionen. Auch unstetige Funktionen können Stammfunktionen besitzen, aber es ist
nicht klar, dass man die dann zur Berechnung des Integrals benutzen kann!

2. Wie beim Beispiel des Fresnelintegrals angedeutet, lassen sich die Stammfunktionen auch
relativ einfacher Funktionen (zum Beispiel e−x

2

, 1√
1+x4

, sin x
x und andere) nicht mit den aus

der Schule bekannten elementaren Funktionen ausdrücken. Eine präzise Formulierung dieses
Sachverhaltes und ein Beweis dafür stammen von Joseph Liouville1834/35. Wir sollten dieses
Ergebnis positiv sehen: Die Integralrechnung liefert uns Wege zur Gewinnung völlig neuer
Funktionen.
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9.5 Integrationsregeln

Der Hauptsatz der Differential- und Integralrechnung ermöglicht die Berechnung von Inte-
gralen stetiger Funktionen mittels Stammfunktionen auf sehr elegante Weise, wenn man
eine Stammfunktion kennt. Und weil wir früher eine Menge Funktionen differenziert haben,
kennen wir für eine Menge von Funktionen auch die Stammfunktionen. Aber leider für viele
Funktionen auch nicht: Was ist

∫
ex

2

dx oder
∫ √

1 − x2 dx?

Wir wollen im folgenden einige Regeln kennen lernen, die uns helfen können, Integrale
komplizierterer Funktionen auf einfachere zurückzuführen. So wie einem die Rechenregeln
der Differentialrechnung, insbesondere die Produktregel und die Kettenregel geholfen haben,
kompliziertere Funktionen zu differenzieren, ohne jedesmal wieder Grenzwerte von Differen-
zenquotienten auszurechnen.

Allerdings ist die Situation bei der Integration nicht so angenehm, wie bei der Differentia-
tion, weil es eben für die Integration von Produkten und geschachtelten Funktionen keine
oder keine einfachen Formeln gibt. Wenn man eine Stammfunktion von ex und eine von x2

kennt, kann man leider keine von ex
2

hinschreiben, vgl. die Bemerkung am Ende des letzten
Abschnitts..

Die hier zu besprechenden Integrationsregeln kommen von der Kettenregel und Produktregel
der Differentialrechnung, sie sind aber keine

”
Integral-Ketten-“ oder

”
-Produktregel“.

Substitutionsregel. Seien f : [a, b] → R stetig und ϕ : [α, β] → [a, b] stetig differenzierbar.
Die Funktion F sei eine Stammfunktion von f . Dann gilt nach der Kettenregel

f(ϕ(t))ϕ̇(t) = F ′(ϕ(t))ϕ̇(t) =
d

dt
F (ϕ(t)).

Aus dem Hauptsatz der Differential- und Integralrechnung folgt deshalb

∫ β

α

f(ϕ(t))ϕ̇(t)dt = F (ϕ(β)) − F (ϕ(α))

Andrerseits ist wieder nach dem Hauptsatz F (ϕ(β))−F (ϕ(α)) =
∫ ϕ(β)

ϕ(α)
f(x)dx. Zusammen-

gefaßt ergibt sich:

Satz 218 (Substitutionsregel). Seien f : [a, b] → R stetig und ϕ : [α, β] → [a, b] stetig
differenzierbar. Dann gilt

∫ β

α

f(ϕ(t))ϕ̇(t)dt =

∫ ϕ(β)

ϕ(α)

f(x)dx. (81)

Die Anwendung geschieht oft so: Gesucht ist das Integral
∫ b

a
f(x)dx, wobei einem für f keine

Stammfunktion einfällt. Dann versucht man, eine Funktion ϕ : [α, β ] → [a, b ] mit ϕ(α) = a
und ϕ(β) = b (oder ϕ(α) = b und ϕ(β) = a) zu finden, so dass man für die (oft nur scheinbar
schwierigere) Funktion f(ϕ(t))ϕ̇(t) eine Stammfunktion raten kann.
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Beispiel 219. Gesucht ist
∫ 1

−1

√
1 − x2dx. Wir wählen ϕ = sin : [−π

2 ,
π
2 ] → [−1, 1]:

∫ 1

−1

√

1 − x2dx =

∫ π
2

−π
2

√

1 − sin2 t cos t dt =

∫ π
2

−π
2

cos2 t dt

=

∫ π
2

−π
2

1

2
(cos 2t+ 1)dt =

1

2
(
1

2
sin 2t+ t)

∣
∣
∣
∣

π
2

−π
2

=
1

2
(0 + π) =

π

2
.

Beachten Sie, dass im Intervall ]− π
2 ,

π
2 [ wirklich

√

1 − sin2 t = + cos t, weil der Cosinus dort
nicht-negativ ist.

Geometrisch haben wir die halbe Fläche des Einheitkreises berechnet.

Für r > 0 erhält man mit ϕ(t) = r sin t ebenso
∫ r

−r

√

r2 − x2dx =
1

2
πr2

und findet πr2 für die Kreisfläche.

Man setzt also für x eine Funktion ϕ(t) ein. Daher der Name
”
Substitutionsregel“. Dabei

muss man die Grenzen des Integrals natürlich auf t umrechnen. Die Kunst ist es,
”
die

richtige“ Funktion ϕ zu finden. Aber natürlich gibt es nicht immer eine solche Funktion, die
einem wirklich weiterhilft.

Wenn man voraussetzt, dass φ(α) = a und φ(β) = b ist, und wenn man ϕ(t) = x(t) und
ϕ̇ = dx

dt schreibt, sieht die Substitutionsregel so aus:

∫ b

a

f(x)dx =

∫ β

α

f(x(t))
dx

dt
dt.

Abgesehen von den Grenzen sieht das so aus, als hätte man einfach mit dt
dt ”

erweitert“, und
so kann man sich die Regel auch merken. Es steckt eben die Kettenregel dahinter, die man
ja auch vereinfacht schreiben kann als dF

dt = dF
dx

dx
dt .

Häufig sieht die Anwendung der Substitutionsregel in der Praxis etwas anders aus. Wir
erläutern das im nächsten Beispiel:

Beispiel 220. Gesucht ist
∫ 1

0
dx

(5x+2)3 . Wir versuchen, den komplizierten Term (5x+ 2)3 im

Nenner durch t3 zu ersetzen, wobei t dann natürlich von 5 · 0 + 2 = 2 bis 5 + 2 = 7 läuft:

∫ 1

0

dx

(5x+ 2)3
=

∫ 7

t=2

dx

t3
.

Der Ausdruck rechts ist etwas konfus, weil er x und t enthält. Die Integralgrenzen beziehen
sich auf t, darum haben wir das an der unteren Grenze vermerkt.

Durch Differenzieren von t = 5x+ 2 erhält man

dt

dx
= 5, also dx =

dt

5
, (82)

und daher
∫ 1

0

dx

(5x+ 2)3
=

∫ 7

2

1

t3
dt

5
=

1

5

∫ 7

2

dt

t3
=

1

5

−1

2t2

∣
∣
∣
∣

7

2

=
1

10
(
1

4
− 1

49
). (83)
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Warum darf man so rechnen? Insbesondere die Gleichung (82) scheint fragwürdig. Aber mit
der richtigen Interpretation ist die Sache vollkommen in Ordnung: Die Substitution

t = 5x+ 3

bedeutet, dass wir nicht ϕ, sondern erst einmal ϕ−1 definieren

t = ϕ−1(x) = 5x+ 3.

Wichtig ist, dass dies eine invertierbare Funktion ist, so dass es ϕ wirklich gibt. Nach der

Substitutionsregel muss man dann noch dx ersetzen durch dϕ
dt dt. Aber nach dem Satz über

die Ableitung der Umkehrfunktion ist

ϕ̇′ =
1

(ϕ−1)′

an den entsprechenden Stellen. Wenn wir also ϕ̇ = dx
dt und (ϕ−1)′ = dt

dx schreiben, erhalten
wir (82), (83).

Wenn man in einem Integranden einen x-Term, den man loswerden will, durch t ersetzt
verbleibt dx, das man wie oben ersetzt: Dazu benutzt man die Formel für die Ableitung der
Umkehrfunktion, braucht also nur dt

dx . Aber oft verbleiben noch weitere x-Terme. Um auch
diese durch t auszudrücken, muss man im allgemeinen ψ(x) = t doch noch explizit nach x
auflösen. Manchmal aber hat man Glück, und x kürzt sich

”
von selbst“ heraus.

Beispiel 221.

∫ π/4

0

tanxdx =

∫ π/4

0

sinx

cosx
dx =

[t=cos x]

∫ √
2/2

t=1

sinx

t
dx

Beachten Sie die Grenzen. Nun ist

dt

dx
= − sinx,

und daher
∫ π/4

0

tanxdx =

∫ √
2/2

t=1

sinx

t

−1

sinx
dt = −

∫ √
2/2

t=1

dt

t
dt = + ln t|1√2/2 =

ln 2

2
.

Man kann aber auch Pech haben:

Beispiel 222.
∫ 1

0

ex
2

dx =
[x2=t]

∫ 1

0

et
1

2x
dt =

∫ 1

0

et
1

2
√
t
dt.

Damit hat man leider nichts gewonnen, und in der Tat ist dieses Integral mit elementaren
Funktionen nicht zu lösen.

Beispiel 223. Wir berechnen
∫ π

0
sinxdx = 2 nicht direkt, sondern mit der Substitution

sinx = t, also dt
dx = cosx =

√
1 − t2:

∫ π

0

sinxdx =
[sin x=t ]

∫ 0

0

t
1√

1 − t2
dt = 0,

weil die obere und untere Integrationsgrenze gleich sind. Wo steckt der Fehler?
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Man kann die Substitutionsregel auch zur Berechnung unbestimmter Integrale (= Stamm-
funktionen) benutzen. Sucht man eine Stammfunktion für f(x) und findet eine, nämlich
G(t), für f(ϕ(t))ϕ̇(t), und ist G(t) = F (ϕ(t)), so ist F eine Stammfunktion von f . Man
kann also substituieren, das unbestimmte Integral berechnen und muss dann anschließend
die Transformation x → t wieder rückgängig machen, d.h. t wieder durch x ausdrücken.
(Dabei sollte ϕ eine eineindeutige Funktion sein.)

Beispiel 224. Zur Berechnung von
∫ √

1 − x2 dx substituieren wir x = sin t:

∫
√

1 − x2dx =

∫ √

1 − sin2 t cos t dt =

∫

cos2 t dt

=

∫
1

2
(cos 2t+ 1)dt =

1

2
(
1

2
sin 2t+ t) + const.

=
1

2
(sin t cos t+ t) + const. =

1

2
(x
√

1 − x2 + arcsinx) + const.

Die Rechnung scheint ein wenig
”
großzügig“. Ist wirklich

√

1 − sin2 t = cos t? Oder ist es
= − cos t? Wenn wir davon ausgehen, dass −1 ≤ x ≤ 1, weil sonst der Integrand nicht reell
ist, können wir für den Sinus das Definitionsintervall −π

2 ≤ t ≤ π
2 nehmen. Dort ist der

Cosinus dann positiv und der Arcussinus ist auch definiert. Zur Probe (und zur Übung)
kann man natürlich die rechte Seite differenzieren.

Partielle Integration. Seien u, v : [a, b ] → R differenzierbar mit stetigen Ableitungen. Aus
der Produktregel

(uv)′ = u′v + uv′

und dem Hauptsatz der Differential- und Integralrechnung folgt dann

(uv)|ba =

∫ b

a

u′(x)v(x)dx+

∫ b

a

u(x)v′(x)dx.

Das schreiben wir in der Form

∫ b

a

u′(x)v(x)dx = (uv)|ba −
∫ b

a

u(x)v′(x)dx.

und nennen es die Regel der partiellen Integration (= Integration nach Teilen). Natürlich
hat man wieder eine entsprechende Formel für die unbestimmten Integrale

∫

u′(x)v(x)dx = uv −
∫

u(x)v′(x)dx+ const.

Beispiel 225. Wir wollen
∫ b

a
xexdx berechnen. Wir versuchen den Ansatz

u′ = x, v = ex.

Dann ist u = 1
2x

2, v′ = ex und die partielle Integration liefert

∫ b

a

xexdx = (
1

2
x2ex)|ba −

∫ b

a

1

2
x2exdx.

Das hat nichts gebracht! Wir versuchen nun

u′ = ex, v = x.
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Dann bekommen wir u = ex, v′ = 1 und

∫ b

a

xexdx = (xex)|ba −
∫ b

a

ex = ((x− 1)ex)|ba

Beispiel 226. Mit einem hübschen Trick kann man das Integral von lnx berechnen: Wir
setzen u′ = 1, v = lnx und erhalten mit u = x, v′ = 1

x :

∫

lnxdx = x lnx−
∫

1dx = x(lnx− 1) + const.
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9.6 Ergänzungen zur Integration

Die geschickte Anwendung der Integrationsregeln zum
”
Knacken“ von Integralen ist eine

Kunst, es gibt dafür keine Rezepte. Mittlerweile sind aber die Computerprogramme kaum
noch zu schlagen, siehe nachstehendes Beispiel. Wenn man erfolglos ist, kann das verschie-
dene Gründe haben: Möglicherweise findet man nicht den richtigen Trick, möglicherweise ist
aber das Integral auch nicht durch eine elementare Funktion lösbar, sondern definiert eine
neue Funktion, wie wir es oben beim Fresnelintegral gesehen haben. Andere Beipiele sind
die elliptischen Integrale. Auf ] − π

2 ,
π
2 [ hat man

∫ √

1 − sin2 x dx =

∫

cosxdx = sinx+ const.

Das ist einfach. Aber für k2 6= 1 liefert

∫ √

1 − k2 sin2 x dx

ein sogenanntes elliptische Integral, das eben nicht durch die elementaren Funktionen zu
beschreiben ist.

Beispiel 227 (Integrale mit dem Rechner). Hier sind die meisten der obigen Beispiele
noch einmal vom symbolischen Integrationsprogramm gelöst:

In[1] := Integrate[
Tan[x]

(1 + Cos[x]2)
, x]

Out[2] = −Log[Cos[x]] +
1

2
Log[3 + Cos[2x]]

In[3] := Integrate[
1

(5x − 2)3
, x]

Out[4] = − 1

(10(−2 + 5x)2

In[5] := Integrate[Cos[x]2, x, 0, π/2]

Out[6] =
π

4

In[7] := Integrate[
p

1 − x2, x]

Out[8] =
1

2
x
p

1 − x2 +
ArcSin[x]

2

In[9] = Integrate[xExp[x], x]

Out[10] = Ex(−1 + x)

In[11] = Integrate[Log[x], x]

Out[12] = −x + xLog[x]

In[13] = Integrate[
p

1 − k2Sin[x]2, x]

Out[14] = E(x|k2)

In[15] := Plot[EllipticE[x, 2], {x,
−π

2
,
π

2
}];
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9.6.1 Elliptische Integrale

Wir gehen in diesem Abschnitt kurz auf die schon angesprochenen elliptischen Integrale ein.

Beispiel 228 (Elliptisches Integral und Ellipse). Die Abbildung

(x, y) : [a, b] → R2, t 7→ (x(t), y(t))

beschreibt eine Kurve in der Ebene. Zum Beispiel liefert x(t) = a sin t, y(t) = b cos t mit
a > b > 0 eine Ellipse mit den Halbachsen a und b. Die Länge der Kurve ist approximativ

∑
∣
∣
∣
∣

(
x(ti+1)
y(ti+1)

)

−
(
x(ti)
y(ti)

)∣
∣
∣
∣
=
∑

∣
∣
∣
∣

(
x(ti + ∆ti)
y(ti + ∆ti)

)

−
(
x(ti)
y(ti)

)∣
∣
∣
∣

=
∑√

(x(ti + ∆ti) − x(ti))2 + (y(ti + ∆ti) − y(ti))2

=
∑

√

(x(ti + ∆ti) − x(ti))2

(∆ti)2
+

(y(ti + ∆ti) − y(ti))2

(∆ti)2
∆ti

→
∫ b

a

√

ẋ2(t) + ẏ2(t)dt,

wenn man voraussetzt, dass x und y stetig differenzierbar sind. Unter dieser Vorausetzung
ist also

L :=

∫ b

a

√

ẋ2(t) + ẏ2(t)

eine vernünftige Definition für die Länge der Kurve. Für die Ellipse ergibt sich ein Integral
von der im obigen Beispiel aufgetretenen Form:

∫ 2π

0

√

a2 cos2 t+ b2 sin2 t dt =

∫ 2π

0

√

a2 − (a2 − b2) sin2 t dt = a

∫ 2π

0

√

1 − a2 − b2

a2
sin2 t dt.

Definition 229. Für 0 ≤ k ≤ 1 definieren wir

• das vollständige elliptische Integral 1. Art als

K(k) :=

∫ π/2

0

dt
√

1 − k2 sin2 t
,

• das vollständige elliptische Integral 2. Art als

E(k) :=

∫ π/2

0

√

1 − k2 sin2 t dt.

Für reelles φ definieren wir weiter

• das unvollständige elliptische Integral 1. Art als

F (k;φ) :=

∫ φ

0

dt
√

1 − k2 sin2 t
,

• das unvollständige elliptische Integral 2. Art als

E(k;φ) :=

∫ φ

0

√

1 − k2 sin2 t dt.
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Der Umfang der Ellipse mit Halbachsen a > b > 0 ist also gegeben durch

L = 4aE(k), k :=

√

a2 − b2

a2
.

k heißt die Exzentrizität der Ellipse.

Das elliptische Integral K(k) ist schwieriger geometrisch zu interpretieren, physikalisch ist

T = 4

√

l

g
K(sin

α

2
)

die Schwingungsdauer eines Pendels mit Amplitude α.

K(k) ist sehr gut numerisch zu berechnen und hilfreich bei der numerischen Berechnung von
E(k). Darauf gehen wir jetzt noch ein, weil die Rechnung noch mehrmals die Substitutions-
regel demonstriert und das Ergebnis so überraschend und hübsch ist.

Für a, b > 0 definieren wir

F (a, b) :=

∫ π/2

0

dt
√

a2 cos2 t+ b2 sin2 t
.

Mit der Substitution t = π
2 − τ zeigt man

F (a, b) = F (b, a) (84)

und mit der Substitution t = π − τ , dass

F (a, b) :=

∫ π

π/2

dt
√

a2 cos2 t+ b2 sin2 t
,

also

F (a, b) :=
1

2

∫ π

0

dt
√

a2 cos2 t+ b2 sin2 t
. (85)

Weiter folgt sofort

K(k) = F (1,
√

1 − k2), (86)

so dass ein Berechnungsverfahren für F auch eines für K liefert.

Wir möchten in der Formel für F die Substitution

tan t =

√
a

b
tanu

machen. Auf [0, π2 [ ist der Tangens streng monoton, also injektiv, und wenn wir uns an
tan′ = 1 + tan2 = 1

cos2 erinnern, finden wir

1

cos2 t

dt

du
=

√
a

b

1

cos2 u
oder dt =

√
a

b

cos2 t

cos2 u
du.

Weil der Tangens in π
2 nicht definiert ist, wählen wir φ ∈]0, π2 [ und definieren ψ ∈]0, π2 [ durch

tanφ =

√
a

b
tanψ.
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Dann liefert die Substitutionsregel:

∫ φ

0

dt
√

a2 cos2 t+ b2 sin2 t
=

∫ φ

0

dt

a cos t
√

1 + b2

a2 tan2 t

=

∫ ψ

0

cos2 t du
√
ab cos t cos2 u

√

1 + b
a tan2 u

=

∫ ψ

0

cos t du
√
ab cos2 u

√

1 + b
a tan2 u

=

∫ ψ

0

du
√
ab cos2 u

√

1 + b
a tan2 u

√

1 + a
b tan2 u

=

∫ ψ

0

du
√

a cos2 u+ b sin2 u
√

b cos2 u+ a sin2 u
.

Nun sind die Tangens-Terme wieder verschwunden, und wir können den Limes für φ → π
2

bilden. Weil das unbestimmte Integral einer stetigen Funktion differenzierbar, insbesondere
also stetig ist, und weil

lim
φ→π/2

ψ = lim
φ→π/2

arctan(

√

b

a
tanφ) =

π

2

ist, folgt

F (a, b) =

∫ π/2

0

du
√

(b cos2 u+ a sin2 u)(a cos2 u+ b sin2 u)

=

∫ π/2

0

du
√

ab(cos4 u+ sin4 u) + (a2 + b2) cos2 u sin2 u

=

∫ π/2

0

du
√

ab(cos2 u− sin2 u)2 + (a+ b)2 cos2 u sin2 u

=

∫ π/2

0

du
√

ab cos2 2u+ (a+b2 )2 sin2 2u
=

2u=t

∫ π

0

1
2dt

√

ab cos2 t+ (a+b2 )2 sin2 t

=

∫ π

0

1

2

dt
√√

ab
2
cos2 t+ (a+b2 )2 sin2 t

=
(85)

F (
√
ab,

a+ b

2
) =

(84)
F (
a+ b

2
,
√
ab).

Also haben wir

Lemma 230.

F (a, b) = F

(
a+ b

2
,
√
ab

)

.

F (a, b) ändert sich nicht, wenn man a und b durch das arithmetische bzw. geometrische
Mittel von a und b ersetzt.

Nun gilt, vgl. (58),

b <
√
ab ≤ a+ b

2
< a.
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Definieren wir also rekursive Folgen a0 := a, b0 := b

bk+1 :=
√

akbk, ak+1 :=
ak + bk

2
,

so ist
b ≤ bk ≤ bk+1 ≤ ak+1 ≤ ak ≤ a

und

0 ≤ ak+1 − bk+1 ≤ ak+1 − bk =
ak − bk

2
.

Also existieren A := lim ak und B := lim bk und es gilt

√
AB =

A+B

2
.

Daraus folgt unmittelbar A = B. Diesen Wert nennt man das arithmetisch-geometrische
Mittel AGM(a, b) von a und b.

Schließlich gilt

lim
k→∞

F (ak, bk) =
(∗)

F (A,B) = F (A,A) =

∫ π/2

0

dt
√

A2 cos2 t+A2 sin2 t
=

∫ π/2

0

dt

A
=

π

2A

Den Beweis für die Limes-Aussage (*) (d.h. den Beweis für die Stetigkeit von F ) unterschla-
gen wir; er ist nicht schwer, wenn man Methoden der Analysis II zur Verfügung hat. Also
finden wir

F (a, b) =
π

2AGM(a, b)
.

Die AGM-Folgen konvergieren außerordentlich schnell und liefern wegen der Monotonie auch
Fehlerschranken. Für a = 6 und b = 2 erhält man

k bk ak
0 2 6
1 3.4641016151 4.0
2 3.7224194364 3.7320508076
3 3.7272320109 3.7272351220
4 3.7272335665 3.7272335665

Aus F (1,
√

1 − k2) = K(k) ergibt sich

K(k) =
π

2AGM(1,
√

1 − k2)
.

Das vollständige elliptische Integral 2. Art erhält man mit der Formel

E(k) =
K(k)

2



2 − k2 −
∞∑

j=1

2j(b2k − a2
k)



 ,

wobei a0 = 1 und b0 =
√

1 − k2.

Zu dieser Formel und einer Fülle weiterer Informationen zu den elliptischen Integralen vgl.
Spanier/Oldham: An Atlas of Functions.
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9.6.2 Integration komplexwertiger Funktionen

Für komplexwertige Funktionen f : [a, b ] → C einer reellen Variablen definiert man das
Integral durch Zerlegung in Real- und Imaginärteil: Ist f = u + iv mit u, v : [a, b ] → R, so
sei

∫ b

a

f(x)dx =

∫ b

a

u(x)dx+ i

∫ b

a

v(x)dx.

Dabei ist natürlich vorausgesetzt, dass u und v Regelfunktionen sind, und dann nennen wir
f eine (komplexwertige) Regelfunktion.

Substitutionsregel und partielle Integration, die elementaren Integrationsregeln, die keine
Monotonie-Aussagen benutzen, der Begriff der Stammfunktion sowie der Hauptsatz der
Differential- und Integralrechnung übertragen sich “wörtlich” auf diese Situation.

Die Integralabschätzung in Korollar 202 und der daraus folgende Mittelwertsatz der Inte-
gralrechnung gelten nicht für komplexwertiges f . Dagegen bleibt die Ungleichung

∣
∣
∣
∣
∣

∫ b

a

f(x)dx

∣
∣
∣
∣
∣
≤
∫ b

a

|f(x)|dx

richtig, folgt aber nicht mehr einfach aus der Monotonie f ≤ |f |. Beweisen kann man sie mit
einem hübschen Trick:

Falls I :=
∫ b

a
f(x)dx = 0, ist die Behauptung klar. Wir nehmen daher an, dass I 6= 0. Dann

gilt

1 = Re

∫ b

a
f(x)dx

I
= Re

∫ b

a

f(x)

I
dx =

∫ b

a

Re
f(x)

I
dx ≤

∫ b

a

∣
∣
∣
∣

f(x)

I

∣
∣
∣
∣
dx =

1

|I|

∫ b

a

|f(x)|dx.

Durch Multiplikation mit |I| folgt die Behauptung. Die Ungleichung im Beweis benutzt die
Monotonie des Integrals für reellwertige Funktionen.

Beispiel 231. Wir berechnen
∫ 1

0

dx

(x− i)2
=

−1

x− i

∣
∣
∣
∣

1

0

=
−1

1 − i
− −1

0 − i
= − 1

1 + i
= −1

2
(1 − i).

Dabei haben wir benutzt, dass auch für komplexes a und für k ∈ Z die Ableitungsregel

d

dx
(x+ a)k = k(x+ a)k−1

gilt. Beweisen Sie das!

Vorsicht bei der Integration von 1/(x − z) mit komplexem z = α + iβ mit β 6= 0. Die
Funktion ln |x − z| ist keine Stammfunktion. Ihre Ableitung ist, wie sie selbst, nämlich
reellwertig, also sicher nicht gleich 1/(x− z). Wir untersuchen das genauer:

Beispiel 232. Sei z = α+ iβ mit reellen α, β und β 6= 0. Dann gilt
∫

dx

x− z
=

∫
dx

(x− α) − iβ
=

∫
x− α+ iβ

(x− α)2 + β2
dx

=
1

2

∫
2(x− α)

(x− α)2 + β2
dx+ i

∫
1/β

(x−αβ )2 + 1
dx

=
1

2
ln
(
(x− α)2 + β2

)
+ i arctan

x− α

β
+ const.

= ln |x− z| + i arctan
x− α

β
+ const.
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Beispiel 233. Es gilt nach der Regel über die partielle Integration
∫

xeiωx = x
1

iω
eiωx −

∫
1

iω
eiωx = −x i

ω
eiωx +

1

ω2
eiωx + const.

Nun benutzen wir die Eulersche Formel eiωx = cosωx+ i sinωx zur Zerlegung in Real- und
Imaginärteil:
∫

x cosωxdx+ i

∫

x sinωxdx = −x i
ω

(cosωx+ i sinωx) +
1

ω2
(cosωx+ i sinωx) + const.

= +
x

ω
sinωx+

1

ω2
cosωx+ i

(

−x

ω
cosωx+

1

ω2
sinωx

)

+ const.

Beide Ansätze zusammen liefern
∫

x cosωxdx =
1

ω

(

x sinωx+
1

ω
cosωx

)

+ const.

∫

x sinωxdx =
1

ω

(

−x cosωx+
1

ω
sinωx

)

+ const.

Beispiel 234. Seien m,n ∈ Z. Weil die komplexe Exponentialfunktion die Periode 2πi hat,
ist ei(m+n)x|2π0 = 0. Daher gilt

∫ 2π

0

eimxe−inxdx =

{

2π für m− n = 0,

0 sonst.
(87)

Definiert man für Regelfunktionen f, g : [0, 2π] → C

〈f, g〉 :=
1

2π

∫ 2π

0

f(x)ḡ(x)dx,

so sind die Funktionen einx bezüglich dieses Skalarprodukts also orthonormal.

Benutzt man die Eulerschen Formeln, so erhält man

∫ 2π

0

eimxe−inxdx =

∫ 2π

0

cosmx cosnxdx+

∫ 2π

0

sinmx sinnxdx

+ i

(∫ 2π

0

cosmx sinnxdx−
∫ 2π

0

sinmx cosnxdx

)

.

Mittels (87) folgen daraus sehr leicht die sogenannten Orthogonalitätsrelationen für die
trigonometrischen Funktionen, die in der Theorie der Fourieranalyse wichtig sind:

∫ 2π

0

cosmx sinnxdx = 0 für alle m,n ∈ N,

∫ 2π

0

cosmx cosnxdx =

∫ 2π

0

sinmx sinnxdx = 0 für alle m,n ∈ N,m 6= n,

∫ 2π

0

cos2mxdx =

∫ 2π

0

sin2mxdx = π für m ∈ N \ {0}.
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9.6.3 Integration rationaler Funktionen

Rationale Funktionen lassen elementar integrieren, wenn im Integrationsintervall keine Null-
stellen des Nenners liegen4.

Zunächst kann man jede solche Funktion schreiben als ein Polynom (das kann jeder elementar
integrieren) plus eine rationale Funktion mit Zählergrad<Nennergrad, und die kann man
erst einmal in Partialbrüche zerlegen. Also muss man nur noch überlegen, wie man die
“Partialbruchteile” integriert. Dafür kennen wir aber Stammfunktionen:

• Für k > 1 und z ∈ C ist
∫

dx

(x− z)k
=

1

(1 − k)(x− z)k−1
+ const.

• Für a ∈ R ist ∫
dx

x− a
= ln |x− a| + const.

• Für z = α+ iβ mit β 6= 0 ist

∫
dx

x− z
= ln |x− z| + i arctan

x− α

β
+ const. (88)

vergleiche Beispiel 232.

Wenn die rationale Funktion reell ist, führt die Methode der Partialbruchzerlegung möglicher-
weise durchs Komplexe, aber natürlich ist das Endergebnis wieder reell. Dafür ein

Beispiel 235. Sei

f(x) =
p(x)

q(x)

mit reellen p und q und mit Grad p < Grad q = 2. Der Nenner habe eine nicht-reelle Nullstelle
z = α + iβ. Dann ist also auch z̄ = α − iβ eine Nullstelle, und o.E. q(x) = (x − z)(x − z̄).
Wir erhalten für die Partialbruchzerlegung

f(x) =
A

x− z
+

B

x− z̄
.

Die Zuhaltemethode liefert
A = p(z̄) =

p reell!
p(z) = B̄.

Wir benutzen nun (88), und beachten, dass ln |x− z| = ln |x− z̄| und arctan eine ungerade
Funktion ist. Wir finden

∫

f(x)dx = (A+ Ā) ln |x− z| + i(A− Ā) arctan
x− α

β
+ const.

= 2Re(A) ln |x− z| − 2 Im(A) arctan
x− α

β
+ const.

Nicht immer ist es günstig, die Partialbruchzerlegung vollständig durchzuführen, wie das
folgende Beispiel zeigt:

4Das wollen wir im folgenden immer voraussetzen: Die angegebenen Stammfunktionen sind nur auf dem
Komplement der Nullstellen des Nenners definiert.
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Beispiel 236. Es gilt

∫
Ax+B

(x− 2)2 + 5
dx =

∫
A(x− 2)

(x− 2)2 + 5
dx+

∫
B + 2A

(x− 2)2 + 5
dx

=
A

2
ln |(x− 2)2 + 5| + B + 2A

5

∫
1

(x−2√
5

)2 + 1
dx

=
A

2
ln |(x− 2)2 + 5| + B + 2A√

5
arctan

x− 2√
5

+ const.

Beispiel 237. Gesucht
∫

xdx
(x−1)(x−2)2 . Die Partialbruchzerlegung ist von der Form

x

(x− 1)(x− 2)2
=

A

x− 1
+

B

x− 2
+

C

(x− 2)2
.

Die Zuhaltemethode liefert
A = 1, C = 2.

Mit x = 0 folgt dann

0 =
1

−1
+

B

−2
+

2

22
,

also
B = −1.

Also ist
∫

xdx

(x− 1)(x− 2)2
=

∫ (
1

x− 1
− 1

x− 2
+

2

(x− 2)2

)

dx

= ln |x− 1| − ln |x− 2| − 2

x− 2
= ln

∣
∣
∣
∣

x− 1

x− 2

∣
∣
∣
∣
− 2

x− 2
+ const.
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9.7 Uneigentliche Integrale

Wir haben die Integration bisher nur über kompakte Intervalle [a, b ] definiert. Auch haben
integrierbare Funktionen nach unserer Definition die Eigenschaft, sich durch Treppenfunk-
tionen, d.h. durch Funktionen mit nur endlich vielen Werten, approximieren zu lassen. Sie
sind deshalb notwendigerweise selbst immer beschränkt. In diesem Abschnitt wollen wir In-
tegrale für den Fall definieren, dass der Integrationsbereich oder die Funktion unbeschränkt
ist.

Definition 238. Sei f : [a,∞[→ R eine Funktion, die über jedes Intervall [a, b ] integrierbar
ist. Dann definieren wir das uneigentliche Integral

∫ ∞

a

f(x)dx := lim
b→∞

∫ b

a

f(x)dx,

falls der Grenzwert exisitiert.

Beispiel 239.
∫ ∞

0

dx

1 + x2
= lim
b→∞

∫ b

0

1

1 + x2
dx = lim

b→∞
arctanx|b0 = lim

b→∞
(arctan b− arctan 0) =

π

2
.

Beispiel 240.
∫ ∞

1

dx

x
= lim
b→∞

lnx|b1 = lim
b→∞

ln b,

und das existiert nicht.

Beispiel 241. Für α 6= 1 ist

∫ ∞

1

dx

xα
= lim
b→∞

x−α+1

−α+ 1

∣
∣
∣
∣

b

1

=
−1

1 − α
+

1

1 − α
lim
b→∞

b−α+1 =

{
1

α−1 für α > 1,

nicht existent fürα < 1.

Offenbar ist es nützlich, ein Kriterium für die Existenz von limx→∞ F (x) zu haben. Das
folgende Kriterium ist eine Variante des Cauchy-Kriteriums für Folgen.

Lemma 242. Für eine Funktion F : [a,∞[→ R existiert der Grenzwert limb→∞ F (b) genau
dann, wenn gilt:

Zu jedem ǫ > 0 gibt es ein b∗ > a, so dass

|F (x) − F (y)| < ǫ für alle x, y ≥ b∗.

Beweis. Zeigen Sie selbst, dass die Bedingung notwendig ist.

Sie ist auch hinreichend: Seien ǫ > 0 und b∗ dazu wie im Kriterium gewählt. Ist (bn) eine
Folge in [a,∞[ mit lim bn = ∞, so gibt es ein N ∈ N mit bn ≥ b∗ für alle n ≥ N . Dann
ist für m,n ≥ N aber |F (bm) − F (bn)| < ǫ, d.h. (F (xn)) ist eine Cauchyfolge und damit
konvergent gegen einen Wert A. Ist (cm) eine weitere gegen ∞ konvergente Folge, so gibt es
ein M mit cm > b∗ für alle m ≥M und damit

|F (cm) −A| ≤ |F (cm) − F (b∗)| + |F (b∗) −A| < 2ǫ.

Also konvergiert auch F (cm) gegen A. Daraus folgt die Existenz von limb→∞ F (b).
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Beispiel 243. Weil e−x
2

keine elementare Stammfunktion besitzt, kann man die Existenz
von ∫ ∞

0

e−x
2

dx (89)

nicht wie bei den vorstehenden Beispielen nachweisen. Aber für F (b) :=
∫ b

0
e−x

2

dx und
1 < a < b gilt

|F (b) − F (a)| =

∫ b

a

e−x
2

dx ≤
∫ b

a

e−xdx = e−a − e−b ≤ e−a.

Wegen lima→∞ e−a = 0 folgt daraus mit dem Lemma die Existenz des uneigentlichen In-
tegrals. Seinen Wert können wir mit unseren bisherigen Methoden nicht berechnen. Der
Computer liefert

√
π/2, und das werden wir in der Analysis II bestätigen.

Beispiel 244 (Elektronenkonzentration und Fermi-Integral). Bei der Berechnung
der Elektronenkonzentration in einem Leitungsband tritt das Integral

∫ ∞

WL

√
W −WL

1 + e
W−WF

kT

dW

auf. Dabei sind die Energieniveaus WL und WF ebenso konstant, wie k (=Boltzmannkon-
stante) und T (=Temperatur). Das uneigentliche Integral existiert. Es ist nämlich für b > WL

∫ b

WL

√
W −WL

1 + e
W−WF

kT

dW =
√
kT

∫ b

WL

√
W−WL

kT

1 + e
W−WL

kT +
WL−WF

kT

dW

Wir substituieren η = W−WL

kT und setzen zur Abkürzung s = WL−WF

kT . Wir erhalten

∫ b

WL

√
W −WL

1 + e
W−WF

kT

dW =
√
kT

∫ b−WL
kT

0

√
η

1 + eη+s
kT dη = (kT )

3
2

∫ b−WL
kT

0

√
η

1 + eη+s
dη.

Beachten Sie, dass nach der Substitution statt der vier Parameter k, T,WL,WF nur noch
einer, nämlich s, wesentlich im Integral auftritt. Wir müssen zeigen, dass

F 1
2
(s) :=

∫ ∞

0

√
η

1 + eη+s
dη

existiert. Für η > 1 ist aber √
η

1 + eη+s
≤ e−sηe−η.

Deshalb ist für 1 < a < b
∫ b

a

√
η

1 + eη+s
dη ≤

∫ b

a

ηe−ηe−sdη = −e−s (1 + η)e−η
∣
∣
b

a
≤ e−s(1 + a)e−a → 0 für a→ ∞.

Aus dem Lemma 242 folgt die Existenz des Integrals. Die
Funktion F 1

2
heißt Fermiintegral. Mathematica liefert

nach numerischer Integration den nebenstehenden Plot
des Graphen.
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Das uneigentliche Integral
∫ b

−∞ f(x)dx definiert man analog zum obigen, und man setzt

∫ ∞

−∞
f(x)dx =

∫ 0

−∞
f(x)dx+

∫ ∞

0

f(x)dx,

falls die beiden rechten Integrale existieren. Das ist eine stärkere Forderung als die Bedin-

gung, dass limb→∞
∫ b

−b f(x)dx existiert, wie man z.B. an
∫∞
−∞ xdx sieht.

Wir kommen nun zur Integration unbeschränkter Funktionen.

Definition 245. Sei f : ]a, b ] → R eine Funktion, so dass für alle c ∈]a, b ] das Integral
∫ b

c
f(x)dx existiert. Dann definieren wir das uneigentliche Integral

∫ b

a

f(x)dx = lim
cցa

∫ b

c

f(x)dx

falls der Grenzwert existiert. Weil limc→0 ln c = −∞, existiert zum Beispiel
∫ 1

0
dx
x nicht,

vgl. die Rechnung im analogen Beispiel oben.

Beispiel 246. Sei α > 0, α 6= 1.

∫ 1

0

dx

xα
= lim

aց0

x−α+1

−α+ 1

∣
∣
∣
∣

1

a

=
1

1 − α
− 1

1 − α
lim
aց0

a−1+α =

{

nicht existent, falls α > 1
1

1−α , falls α < 1.

Für die Integrale
∫ 1

0
dx
xα und

∫∞
1

dx
xα ist

also α = 1 der kritische Parameterwert:
für α = 1 existieren die uneigentlichen
Integrale beide nicht. Ist die Funktion
aber < 1

x , so existieren sie. Das ist in
]0, 1 ] für α < 1 und in [1,∞ [ für α > 1
der Fall.
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10 Unendliche Reihen

10.1 Konvergenz von Reihen, geometrische Reihe

Definition 247. Sei (ak)k∈N eine (reelle oder komplexe) Folge.

(i) Durch

sn = a0 + a1 + a2 + . . .+ an =
n∑

k=0

ak

definieren wir eine neue Folge (sn), die wir mit

∞∑

k=0

ak

bezeichnen. Folgen dieser Form heißen unendliche Reihen.

(ii) Man nennt sn auch die n-te Partialsumme der unendlichen Reihe.

(iii) Die unendliche Reihe heißt konvergent gegen a, wenn die Folge (sn) konvergent gegen
a ist. In diesem Fall schreiben wir auch

∑∞
k=0 ak statt a und nennen diesen Grenzwert

die Summe der unendlichen Reihe.

Bemerkungen.

1. Das Symbol
∑∞
k=0 ak hat also zwei Bedeutungen: Es bezeichnet eine Folge (die Parti-

alsummenfolge) und ggf. deren Grenzwert.

2. Man schreibt ∞∑

k=0

ak = a0 + a1 + . . . .

3. Statt N betrachtet man auch andere Summationsbereiche.
∑∞
k=m ak ist die Folge

(
n∑

k=m

ak

)

n≥m

4. Ist der Summationsbereich klar oder irrelevant, so schreibt man auch einfach

∑

ak

ohne Angabe der Summationsgrenzen.

Beispiel 248 (Die geometrische Reihe). Sei x ∈ R und sei ak = xk. Die zugehörige
Reihe ∞∑

k=0

xk = 1 + x+ x2 + x3 + . . .

heißt die geometrische Reihe. Sie ist die wichtigste Reihe überhaupt. Die Partialsummen
sind gegeben durch

sn =
n∑

k=0

xk =

{

n+ 1, falls x = 1,
1−xn+1

1−x sonst.
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Für x = 1 ist das klar. Für x 6= 1 kann man es durch vollständige Induktion beweisen. Oder
man bemerkt, dass

(1 − x)sn = 1 + x+ x2 + . . .+ xn − (x+ x2 + . . .+ xn+1) = 1 − xn+1.

Die unendliche Reihe ist für x = 1 also bestimmt divergent (konvergent gegen +∞), für
x = −1 ist sie divergent.

Für |x| > 1 ist (xn+1) und daher auch die Partialsummenfolge sn = 1−xn+1

1−x divergent.

Die geometrische Reihe ist also für alle x mit |x| ≥ 1 divergent.

Andrerseits ist limxn = 0 für |x| < 1, und deshalb erhalten wir

∞∑

k=0

xk =
1

1 − x
für |x| < 1.

Beispiel 249. Die Dezimaldarstellung x = nm . . . n0, n−1n−2n−3 . . . mit den Ziffern
nk ∈ {0, . . . , 9} ist definiert als

∞∑

k=−m
n−k10−k = nm10m + . . .+ n0100 + n−110−1 + . . . .

Später werden wir leicht einsehen, dass diese Reihe für jede Ziffernfolgen (nk) konvergent
ist, also eine reelle Zahl darstellt. Direkt aus den Rechenregeln für konvergente Folgen ergibt
sich aber jetzt schon

0, 999 . . . =
∞∑

k=1

9 · ( 1

10
)k =

9

10

∞∑

k=0

(
1

10
)k =

9

10

1

1 − 1
10

= 1.

Eine wichtige Anwendung konvergenter Reihen ist die Approximation des Grenzwertes durch
einen einfacher überschaubaren Teil der Reihe, wie Sie es von der Taylorapproximation schon
kennen.

Beispiel 250 (Dopplereffekt). Eine ruhende Quelle sendet Wellen mit der Frequenz ν
und der Ausbreitungsgeschwindigkeit c aus. Die Wellenlänge ist dann λ = c/ν.

Bewegt sich der Empfänger mit der Geschwindigkeit v << c
auf die ruhende Quelle zu, so erhöht sich die empfangene
Frequenz auf

ν̂ =
c+ v

λ
= ν(1 +

v

c
).

Bewegt sich andrereits die Quelle mit der Geschwindigkeit
v auf den Empfänger zu, so verkürzt sich die Wellenlänge
auf λ̃ = (c− v)/ν = c/ν̃, die empfangene Frequenz ist

ν̃ = ν
1

1 − v/c
= ν(1 +

v

c
+ (

v

c
)2 + . . .) ≈ ν(1 +

v

c
+ (

v

c
)2).

In diesem Fall ist die Frequenz also höher als bei bewegtem
Empfänger.

v

c

v

λ=cT

λ=(c-v)T
~
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Satz 251 (Rechenregeln für konvergente unendliche Reihen). Sind
∑∞
k=0 ak = A

und
∑∞
k=0 bk = B konvergente unendliche Reihen, so konvergiert

∑∞
k=0(ak+bk) gegen A+B:

∞∑

k=0

(ak + bk) =

∞∑

k=0

ak +
∞∑

k=0

bk.

Ist weiter c ∈ R so folgt
∞∑

k=0

(cak) = c

∞∑

k=0

ak.

Beweis. Folgt unmittelbar aus den Regeln für konvergente Folgen, weil unendliche Reihen
ja Folgen sind.

Mit Produkten unendlicher Reihen ist es komplizierter. Man muss jedes Glied der einen Reihe
mit jedem Glied der anderen Reihe malnehmen, was bei unendlich vielen Gliedern Probleme
macht. Eine einleuchtende Anordnung der Produkte gibt die sogenannte Produktformel von
Cauchy:

(
∞∑

i=0

ai)(
∞∑

j=0

bj)
?
=

∞∑

k=0

ck, wobei ck := a0bk + a1bk−1 + . . .+ akb0. (90)

Diese Formel gilt allerdings nur unter zusätzlichen Voraussetzungen, wir kommen darauf
zurück.

Bemerkung: Der Reihenrest. Als m-ten Reihenrest der Reihe
∑∞
k=0 ak bezeichnen wir

die Reihe
∑∞
k=m+1 ak. Die Partialsummen dieser Reihe sind

rm,n :=
n∑

k=m+1

ak = sn − sm.

Also ist die Reihe genau dann konvergent gegen s, wenn alle Reihenreste konvergent sind,
rm := limn→∞ rm,n = s− sm, und die rm gegen 0 konvergieren.
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10.2 Konvergenzkriterien für unendliche Reihen I

Wie prüft man, ob eine Reihe konvergiert? Notwendig und hinreichend ist, dass die Folge
der Partialsummen eine Cauchyfolge ist. Weil

sn − sm−1 =
n∑

k=m

ak 0 < m ≤ n

bedeutet das:

Satz 252 (Cauchy-Kriterium). Die Reihe
∑∞
k=0 ak ist genau dann konvergent, wenn es

zu jedem ǫ > 0 ein N ∈ N gibt, so dass für alle m,n ∈ N gilt

N ≤ m ≤ n =⇒
∣
∣
∣
∣
∣

n∑

k=m

ak

∣
∣
∣
∣
∣
< ǫ.

Wählt man m = n so ergibt sich als einfaches notwendiges Kriterium:

Satz 253 (Notwendiges Kriterium). Die Glieder einer konvergenten Reihe bilden eine
Nullfolge

∑

ak konvergent =⇒ lim ak = 0.

Aber eine Reihe, deren Glieder gegen 0 gehen, muss nicht konvergent sein.

Zitat:Vom Nutzen, den die Mathematik einem Bel Esprit bringen kann: Größte und
Kleinste. Dieses Capitel in der Rechnung des Unendlichen ist überhaupt sehr lehrreich
für viele Leute, die es verstehen könnten, aber nicht verstehen. Denn ich wüsste nicht,
ob es einen Stand in der Welt geben kann, worin es unnütz sey zu wissen, dass bey
immer zunehmenden Bemühungen zu einem Endzweck zu gelangen, der Endzweck
zuweilen gänzlich verfehlt wird. (G. Chr. Lichtenberg)

Ein Beispiel ist das sehr berühmte
”
Gegenstück“ zur geometrischen Reihe:

Beispiel 254 (Die harmonische Reihe). Die harmonische Reihe

∞∑

k=1

1

k

ist divergent. Das kann man so einsehen: Für n ≥ 2k ist

sn ≥ 1 +
1

2
+

1

3
+

1

4
︸ ︷︷ ︸

> 1
2

+
1

5
+

1

6
+

1

7
+

1

8
︸ ︷︷ ︸

> 1
2

+ . . .+
1

2k−1 + 1
+ . . .+

1

2k
︸ ︷︷ ︸

> 1
2

> 1 +
k

2
.

Daraus folgt sn → ∞, die Reihe ist divergent.
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Die Divergenz der harmonischen Reihe hat folgende
”
praktische Anwendung“:

1

2

3

4

n

n+1

1_

2
1_

1_
4

6

1
_

2n

x

Wir bauen einen Turm aus Ziegelsteinen der
Länge 1

”
von oben nach unten“, indem wir

den bereits gebauten Turm so auf den nächsten
Stein setzen, dass sein Schwerpunkt gerade
über der Kante des neuen untersten Steins
liegt, der Turm also gerade eben nicht um-
kippt. Ist Sn−1 die x-Koordinate des Schwer-
punktes der ersten n − 1 Steine, so liegt der
Schwerpunkt des n-ten Steins also bei Sn−1 +
1
2
, und der Schwerpunkt des erweiterten Turms

bei

Sn =
1

n
((n − 1)Sn−1 + (Sn−1 +

1

2
))

= Sn−1 +
1

2n
=

1

2

n
X

k=1

1

k
.

Wegen der Divergenz der harmonischen Rei-
he kann man also den Überhang beliebig groß
machen. Zum Beispiel ist 1

2

P4
k=1

1
k

= 1.04,

mit fünf Steinen kann man einen Überhang von
mehr als einem Stein und mit 32 Steinen einen
von mehr als zwei Steinen realisieren.

Wir wollen nun hinreichende Kriterien für die Konvergenz einer unendlichen Reihe geben.

Zunächst vergleichen wir zwei reelle Reihen
∑
ak und

∑
bk. Von der zweiten Reihe sei schon

bekannt, dass sie konvergiert, und wir wollen annehmen, dass

0 ≤ ak ≤ bk für alle k (91)

gilt. Weil die Summanden ≥ 0 sind, sind die Folgen der Partialsummen monoton wachsend
und

n∑

k=0

ak ≤
n∑

k=0

bk ≤
∞∑

k=0

bk =: M.

Die Partialsummenfolge der Reihe
∑
ak ist also monoton und beschränkt, und daher nach

dem Vollständigkeitsaxiom konvergent.

Wir wollen dieses Kriterium noch verallgemeinern: Hat man statt (91) die allgemeinere
Bedingung

|ak| ≤ bk für alle k,

so ergibt sich die Konvergenz der Reihe
∑ |ak|.

Definition 255 (Absolute Konvergenz). Eine (reelle oder komplexe) Reihe
∑
ak heißt

absolut konvergent, wenn die Reihe
∑ |ak| konvergiert.

Zunächst scheint das unmotiviert. Wir interessieren uns doch für die Reihe
∑
ak und nicht

für die Reihe
∑ |ak|. Aber es gilt der

Satz 256. Jede absolut konvergente Reihe ist konvergent.

1. Beweis (für reelle oder komplexe Reihen). Wir zeigen die Konvergenz von
∑
ak mit dem

Cauchy-Kriterium Satz 252. Sei also ǫ > 0. Weil
∑ |ak| konvergent ist, gibt es nach diesem

Kriterium ein N ∈ N, so dass gilt

N ≤ m ≤ n =⇒
∣
∣
∣
∣
∣

n∑

k=m

|ak|
∣
∣
∣
∣
∣
< ǫ.
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Dann gilt nach der Dreiecksungleichung aber

N ≤ m ≤ n =⇒
∣
∣
∣
∣
∣

n∑

k=m

ak

∣
∣
∣
∣
∣
≤

n∑

k=m

|ak| < ǫ,

und damit wiederum nach dem Cauchy-Kriterium die Konvergenz von
∑
ak.

2. Beweis (nur für reelle Reihen). Sei wieder
∑ |ak| konvergent. Dann ist nach den Rechen-

regeln für konvergente Folgen auch
∑

2|ak| konvergent. Weil

0 ≤ ak + |ak| ≤ 2|ak|,

ist deshalb nach dem obigen Argument auch die Reihe
∑

(ak + |ak|) konvergent. Dann ist
wieder nach den Rechenregeln für konvergente Reihen auch

∑

ak =
∑

(ak + |ak|) −
∑

|ak|

konvergent.

Bemerkung. Reihen, die zwar konvergent, aber nicht absolut konvergent sind, nennt man
bedingt konvergent. Wir werden später sehen, dass absolut konvergente Reihen angenehmere
Eigenschaften haben, als bedingt konvergente. Daher ist es sinnvoll bei den Konvergenzkri-
terien, die absolute Konvergenz liefern, dies auch zu vermerken.

Wir erinnern an folgenden Sprachgebrauch:

Eine Eigenschaft der Glieder einer Folge (xk)k∈N gilt für fast alle k, wenn sie für alle bis auf
endlich viele Ausnahmen gilt, d.h. wenn es ein K ∈ N gibt, so dass die Eigenschaft auf alle
xk mit k ≥ K zutrifft.

Satz 257 (Vergleichskriterium=Majorantenkriterium). Gegeben seien eine reelle
oder komplexe Reihe

∑∞
k=0 ak und eine konvergente reelle Reihe

∑∞
k=0 bk. Es gelte

|ak| ≤ bk für fast alle k.

Dann ist auch die Reihe
∑∞
k=0 ak absolut konvergent, also konvergent.

Beweis. Sei |ak| ≤ bk für alle k > n. Die Partialsummenfolge der Reihe
∑ |ak| ist monoton

wachsend und beschränkt durch

|a0| + . . .+ |an| +
∞∑

k=n+1

bk,

also konvergent.

Beispiel 258. Die Reihe
∞∑

k=1

1

k2

ist konvergent nach dem Vergleichskriterium. Es ist nämlich für k > 1

∣
∣
∣
∣

1

k2

∣
∣
∣
∣
=

1

k2
<

1

k(k − 1)
=

1

k − 1
− 1

k
=: bk.
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Die Konvergenz der Reihe
∑∞
k=2 bk kann man aber leicht einsehen, weil man ihre Partial-

summen explizit bestimmen kann:

n∑

k=2

(
1

k − 1
− 1

k
) = (

1

1
− 1

2
) + (

1

2
− 1

3
) + . . . (

1

n− 1
− 1

n
) = 1 − 1

n
→ 1.

Das konvergiert gegen 1, also ist die Reihe
∑
bk konvergent. Nach dem Majorantenkriterium

ist daher auch
∑

1
k2 konvergent. Schwieriger ist, den Grenzwert der Reihe zu bestimmen.

Er ist
∑

1
k2 = π2/6.

Der Nachteil beim Vergleichskriterium ist, dass man schon eine konvergente Majorante
∑
bk

haben muss. Die folgenden Kriterien benutzen (oberflächlich betrachtet) nur die zu untersu-
chende Reihe und sind deshalb meistens die erste Wahl, wenn man eine Reihe auf Konvergenz
untersuchen will.

Satz 259 (Wurzelkriterium). Gegeben sei die (komplexe oder reelle) Reihe
∑∞
k=0 ak.

Dann gilt:

(i) Gibt es ein q < 1 , so dass für fast alle k ∈ N

k
√

|ak| ≤ q,

so ist die Reihe
∑∞
k=0 ak absolut konvergent.

(ii) Ist für unendlich viele k ∈ N
k
√

|ak| ≥ 1,

so ist die Reihe
∑∞
k=0 ak divergent.

Beweis. Zu (i). Man hat |ak| ≤ qk für fast alle Folgenglieder. Vergleich mit der konvergenten

Reihe
∑
qk liefert die Behauptung. (Hier braucht man q < 1!)

Zu (ii). Hier ist |ak| ≥ 1 für unendlich viele k . Also konvergieren die Glieder nicht gegen
Null, und die Reihe ist divergent.

Bemerkungen.

1. Für die Anwendung des Wurzel- und des folgenden Quotientenkriteriums ist es hilf-
reich, sich folgendes klar zu machen:

Sei (xk)k∈N eine reelle Folge. Dann gilt:

limxn < 1 =⇒ lim supxn < 1

lim supxn < 1 ⇐⇒ ∃q<1∃N∈N∀n≥N xn ≤ q,

limxn > 1 =⇒ lim supxn > 1

lim supxn > 1 ⇐⇒ ∀N∈N∃n≥N xn > 1.

Das Wurzelkriterium liefert also zum Beispiel Konvergenz, wenn

lim k
√

|ak| < 1 oder lim sup k
√

|ak| < 1

und Divergenz, wenn
lim sup k

√

|ak| > 1.
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2. Das q < 1 im Wurzelkriterium beschränkt die k
√

|ak| weg von Eins. Es reicht nicht,

wenn k
√

|ak| < 1 für alle k.

Beispiel 260. Für nk ∈ {0, . . . , 9} ist die Dezimaldarstellung

∞∑

k=0

nk
10k

nach dem Wurzelkriterium eine konvergente Reihe. Es ist nämlich für k ≥ 2

k
√

|ak| = k

√
nk
10k

=
k
√
nk

10
≤

k
√

9

10
≤ 3

10
< 1.

Beispiel 261. Sei 0 < x < 1 und sei

ak :=

{

xk−1 für ungerades k,

xk+1 für gerades k.

Dann ist

k
√
ak =

{

x 1
k
√
x

für ungerades k,

x k
√
x für gerades k.

Weil (vgl. Übungen)
lim
k→∞

k
√
x = 1,

folgt
lim
k→∞

k
√
ak = x < 1.

Also ist die Reihe
∑
ak nach dem Wurzelkriterium konvergent.

Satz 262 (Quotientenkriterium). Gegeben sei die (komplexe oder reelle) Reihe
∑∞
k=0 ak.

Für fast alle k sei ak 6= 0. Dann gilt:

(i) Gibt es ein q < 1 , so dass für fast alle k ∈ N

∣
∣
∣
∣

ak+1

ak

∣
∣
∣
∣
≤ q,

so ist die Reihe
∑∞
k=0 ak absolut konvergent.

(ii) Ist für fast alle k ∈ N
∣
∣
∣
∣

ak+1

ak

∣
∣
∣
∣
≥ 1,

so ist die Reihe
∑∞
k=0 ak divergent.

Beweis. Zu (i). Sei

|ak+1

ak
| ≤ q < 1 für alle k ≥ K.
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Daraus folgt für k ≥ K:

|ak| ≤ q|ak−1| ≤ q2|ak−2| ≤ . . . ≤ qk−K |aK | =
|aK |
qK

qk =: bk.

Weil |q| < 1 (HIER wird das benutzt!) ist die geometrische Reihe

∞∑

k=0

bk =
|aK |
qK

∞∑

k=0

qk

konvergent. Aus dem Vergleichssatz folgt die absolute Konvergenz von
∑
ak.

Bemerkung. Stattdessen kann man auch so schließen:

k
√

|ak| ≤ q k

√

|aK |
qK

︸ ︷︷ ︸

→1

→ q < 1 für k → ∞.

Also ist die Reihe nach dem Wurzelkriterium konvergent.

Zu (ii). Aus
∣
∣
∣
∣

ak+1

ak

∣
∣
∣
∣
≥ 1 für alle k ≥ K

folgt |ak+1| ≥ |ak| ≥ |aK | > 0 für k ≥ K. Darum konvergieren die ak sicher nicht gegen null,
die Reihe ist divergent.

Bemerkungen.

1. Wie im Beweis deutlich wird, ist das Wurzelkriterium für Konvergenz stärker als das
Quotientenkriterium. Letzteres ist in der Regel angenehmer anzuwenden. Aber wenn
es keine Auskunft gibt, macht es Sinn, auch das Wurzelkriterium zu versuchen. Vgl.
auch das Beispiel 265.

2. Die Bemerkungen über die Anwendungen des Wurzeklkriteriums gelten analog für das
Quotientenkriterium.

Beispiel 263. Die Reihe
∞∑

k=0

1

k!

ist konvergent nach dem Quotientenkriterium: Es ist nämlich
∣
∣
∣
∣

ak+1

ak

∣
∣
∣
∣
=

∣
∣
∣
∣

1/(k + 1)!

1/k!

∣
∣
∣
∣
=

k!

(k + 1)!
=

1

k + 1
→ 0 < 1.

Beispiel 264. Für die beiden Reihen

∞∑

k=1

1

k
und

∞∑

k=1

1

k2

ist der Limes des Quotienten aufeinander folgender Glieder beide Male = 1. Das Quotien-
tenkriterium macht in diesen Fällen keine Aussage. Aber wie wir gesehen haben, ist die erste
Reihe divergent, die zweite nach dem Vergleichskriterium konvergent.
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Beispiel 265. Für die Reihe aus Beispiel 261 finden wir

ak+1

ak
=

{

x3 < 1 für ungerades k,

x−1 > 1 für gerades k.

Daher hilft das Quotientenkriterium nicht weiter, aber das Wurzelkriterium liefert Konver-
genz.

Wenn Sie die nebenstehende Figur studieren,
liefert die

”
Divergenz“ des Integrals aus Bei-

spiel 240 Ihnen einen neuen Beweis für die Di-
vergenz der harmonischen Reihe

∞∑

k=1

1

k
.

Vergleiche Beispiel 254.
Diese Überlegung kann man ausbauen zu ei-
nem Satz, der eine Beziehung zwischen unei-
gentlichen Integralen und unendlichen Reihen
herstellt: 1

1

2 3 4 5

x
__

Satz 266 (Reihen-Integral-Kriterium). Sei f : [m,∞[→ R, m ∈ N, eine monoton fal-
lende Funktion mit f(x) ≥ 0 für alle x ∈ [m,∞[, die über jedes Intervall [m, b] integrier-
bar ist. Dann existiert das uneigentliche Integral

∫∞
m
f(x) dx genau dann, wenn die Reihe

∑∞
i=m f(i) konvergiert.

Beweis. Aus f(i) ≥ f(x) ≥ f(i + 1) für i ≤ x ≤ i + 1 folgt f(i) ≥
∫ i+1

i
f(x) dx ≥ f(i + 1).

Durch Summation folgt

n+1∑

i=m+1

f(i) ≤
∫ n

m

f(x)dx ≤
n∑

i=m

f(i).

Man beachte, dass das Integral wegen der Monotonie von f existiert.

Weil f ≥ 0, sind die Partialsummen sn =
∑n
k=m f(k) und die Funktion b 7→

∫ b

m
f(x)dx

monoton wachsend. Existiert das Integral, so folgt

sn+1 − f(m) ≤
∫ n

m

f(x)dx ≤
∫ ∞

m

f(x)dx.

Also ist die Folge (sn)n≥m auch beschränkt und daher konvergent.

Ist umgekehrt die Reihe konvergent, so folgt für m ≤ b ≤ n mit b ∈ R und n ∈ N

∫ b

m

f(x)dx ≤
∫ n

m

f(x)dx ≤ sn ≤
∞∑

k=m

f(k).

Daher ist J := sup
∫ b

m
f(x)dx <∞. Ist ǫ > 0, so gibt es ein B ≥ m mit

J − ǫ <

∫ B

m

f(x)dx ≤ J.
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Wegen der Monotonie des Integrals gilt die entsprechende Ungleichung dann auch für alle

b ≥ B. Daher exisitiert limb→∞
∫ b

m
f(x)dx.

Beispiel 267. Sei α > 0, α 6= 1. Dann ist

∫ ∞

1

dx

xα
= lim

b→∞

1

(1 − α)xα−1

∣
∣
∣
∣

b

1

= lim
b→∞

(
1

(1 − α)bα−1
− 1

1 − α

)

=

{
1

α−1 , falls α > 1,

nicht existent, falls α < 1.

Aus Beispiel 240 wissen wir, dass das uneigentliche Integral für α = 1 ebenfalls nicht existiert.
Durch Anwendung des Satzes 266 auf f(x) = 1/xα erhält man:

Die Reihe
∑∞
n=1 1/nα konvergiert für α > 1 und divergiert für α ≤ 1.
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10.3 Konvergenzkriterien für unendliche Reihen II

Die sogenannte alternierende harmonische Reihe

∞∑

k=0

(−1)k
1

k + 1
= 1 − 1

2
+

1

3
− 1

4
± . . .

ist konvergent, aber das können wir gewiß nicht mit den bisherigen Verfahren beweisen, denn
die Reihe ist nicht absolut konvergent, weil eben die harmonische Reihe divergiert.

Die Tatsache der Konvergenz kann man dennoch relativ leicht einsehen.

• Durch das wechselnde Vorzeichen wird abwechselnd die Partialsumme erhöht oder
erniedrigt.

• Weil 1
n+1 <

1
n werden die absoluten Differenzen monoton immer kleiner. Die geraden

Partialsummen:

s0 = 1

s2 = 1 − (
1

2
− 1

3
)

s4 = 1 − (
1

2
− 1

3
) − (

1

4
− 1

5
)

. . .

sind daher eine monoton fallende, die ungeraden

s1 = 1 − 1

2

s3 = 1 − 1

2
+ (

1

3
− 1

4
)

s5 = 1 − 1

2
+ (

1

3
− 1

4
) + (

1

5
− 1

6
)

. . .

eine monoton wachsende Folge. Natürlich sind sie beschränkt:

s1 ≤ s2k−1 ≤ s2k ≤ s0.

Also sind die Folgen (s2k) und (s2k+1) konvergent.

• Weil lim 1
n = 0, geht die Differenz zweier aufeinander folgender Partialsummen gegen

Null:
”
Obere“ und

”
untere“ Partialsummenfolgen konvergieren daher gegen denselben

Wert und deshalb konvergiert auch (sn) gegen diesen Wert, vgl. den Beweis von Satz 93.

Der Grenzwert der alternierenden harmonischen Reihe ist ln 2, wie wir später zeigen werden.

Diese vorstehende Argumentation läßt sich unmittelbar zu einem Beweis für folgendes Kon-
vergenzkriterium erweitern.
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Satz 268 (Leibniz-Kriterium). Für die Reihe
∑∞
k=0(−1)kak gelte

(i) Die Folge (ak) ist monoton fallend:

a0 ≥ a1 ≥ a2 ≥ . . . ≥ 0,

(ii) limk→∞ ak = 0.

Dann ist die Reihe konvergent. Ihre Summe liegt zwischen je zwei aufeinanderfolgenden
Partialsummen: Für jedes m ∈ N ist

s2m−1 ≤
∞∑

k=0

(−1)kak ≤ s2m

und

s2m+1 ≤
∞∑

k=0

(−1)kak ≤ s2m.

Beispiel 269. Wir setzen für k ≥ 1

ak :=
1√
k

+ (−1)k
1

k
.

Dann sind die ak ≥ 0 und konvergieren gegen 0, aber die Folge ist nicht monoton. Die Reihe

∞∑

k=1

(−1)kak

ist nicht konvergent, denn sonst wäre auch die Reihe

∞∑

k=1

((−1)kak − (−1)k
1√
k

) =
∞∑

k=1

(−1)k(−1)k
1

k
=

∞∑

k=1

1

k

konvergent. Ist sie aber nicht.

An der alternierenden harmonischen Reihe kann man noch ein wichtiges Phänomen deutlich
machen: Bei unendlichen Reihen ist die Reihenfolge der Glieder im allgemeinen nicht mehr
gleichgültig, es gilt kein

”
Kommutativgesetz“ . Das liegt daran, dass eine Umordnung von

(unendlich vielen) Gliedern die Partialsummenfolge völlig verändert. Bei der alternierenden
harmonischen Reihe sind nämlich die Reihen der positiven bzw. negativen Glieder

1 +
1

3
+

1

5
+ . . .

1

2
+

1

4
+

1

6
+ . . .

beide divergent. (Die zweite ist einfach die halbe harmonischen Reihe und deshalb divergent;
die Glieder und darum die Partialsummen der ersten Reihe sind aber offensichtlich größer
als die der zweiten, weshalb auch die erste Reihe divergent ist.) Darum kann man von der
alternierenden Reihe zunächst so viele positive Glieder (der Reihe nach) addieren, bis man
z.B. über 27 ist. Dann addiert man das erste negative Glieder und ist wieder unter 27.
Dann addiert man weiter positive Glieder, bis man wieder über 27 ist und dann das zweite
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negative Glied.Auf diese Weise erwischt man schließlich alle Glieder der Reihe und hat sie
so umgeordnet, dass die neue Reihe nun gegen 27 konvergiert. Es ist offensichtlich, dass man
auf diese Weise statt 27 auch jeden anderen Grenzwert einschließlich bestimmter Divergenz
gegen +∞ oder −∞ durch geeignete Umordnung erzielen kann.

Diese Zauberei funktionierte, weil man Glieder verschiedenen Vorzeichens hat, die für sich
genommen divergente Reihen bilden. Wenn nicht nur die Reihe

∑
ak, sondern auch die Reihe

∑ |ak| konvergiert, kann das wohl nicht mehr passieren. Das ist unser nächstes Thema.
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10.4 Die Segnungen absoluter Konvergenz

Absolut konvergente Reihen haben Eigenschaften, die bei bedingt konvergenten (eventuell)
fehlen, und die sie den endlichen Summen näherbringen: Man kann sie beliebig umordnen
ohne das Konvergenzverhalten zu verändern, und man kann sie auf die naheliegende Weise
miteinander multiplizieren. Das wollen wir in diesem Abschnitt zeigen.

Definition 270. Die Reihe
∑∞
k=0 a

′
k heißt eine Umordnung der Reihe

∑∞
k=0 ak, wenn es

eine bijektive Abbildung σ : N → N, k 7→ nk gibt, so dass für alle k gilt a′k = aσ(k).

Satz 271 (Umordnungssatz). Sei
∑∞
k=0 a

′
k eine Umordnung der Reihe

∑∞
k=0 ak. Ist die

Reihe
∑∞
k=0 ak absolut konvergent, so ist die Reihe

∑∞
k=0 a

′
k ebenfalls absolut konvergent

und beide Reihen haben dieselbe Summe:

∞∑

k=0

ak =
∞∑

k=0

a′k.

Beweis. 1. Es genügt zu zeigen, dass die umgeordnete Reihe ebenfalls konvergent mit dem-
selben Grenzwert wie das Original ist. Wendet man den Satz dann auf

∑∞
k=0 |ak| an, so folgt

auch die absolute Konvergenz.

2. Wir bezeichnen die Partialsummen mit sn bzw. s′n und setzen S :=
∑∞
k=0 ak.

Es genügt zu zeigen:
∀ǫ>0∃N∈N∀n≥N |sn − s′n| < ǫ. (92)

Ohne Einschränkung ist nämlich für n ≥ N auch |sn − S| < ǫ und daher

|s′n − S| ≤ |s′n − sn| + |sn − S| < 2ǫ.

Also konvergiert
∑
a′k gegen S.

3. Zum Beweis von (92). Sei σ : N → N, k 7→ nk eine bijektive Abbildung, a′k := aσ(k) und
sei ǫ > 0.

Wir betrachten ein N1 ∈ N und dazu ein N ∈ N so groß, dass

{σ(0), . . . , σ(N)} ⊃ {0, . . . , N1}.

Dann gilt für alle n ≥ N

s′n − sn =
n∑

k=0

aσ(k) −
n∑

k=0

ak =
n∑

k=0

aσ(k) −
N1∑

k=0

ak −
n∑

k=N1+1

ak =
n∑

k=0

σ(k)>N1

aσ(k) −
n∑

k=N1+1

ak.

Es folgt

|s′n − sn| ≤
n∑

k=0

σ(k)>N1

|aσ(k)| +
n∑

k=N1+1

|ak| ≤ 2
∞∑

k=N1+1

|ak|.

Weil
∑∞
k=0 |ak| konvergent ist, können wir ein N1 ∈ N so wählen, dass

∞∑

k=N1+1

|ak| <
ǫ

2
. (93)

Zu diesem N1 wählen wir N wie oben und erhalten (92).
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Wir zeigen die Umkehrung des Umordnungssatzes:

Satz 272. Ist die Reihe
∑∞
k=0 ak konvergent, aber nicht absolut konvergent, so lässt sie sich

so umordnen, dass sie konvergent gegen einen beliebig vorgegebenen Wert aus R∪{−∞,+∞}
ist.

Beweis. Seien (Pk)k∈N bzw. (Qk)k∈N die Folgen der positiven bzw. der Absolutbeträge der
negativen Reihenglieder in ihrer natürlichen Reihenfolge. Beide sind unendlich, sonst wäre
die Reihe absolut konvergent, und es gilt

lim
k→∞

Pk = lim
k→∞

Qk = 0.

Wenn wir zeigen können, dass
∑∞
k=0 Pk und

∑∞
k=0Qk beide divergent sind, folgt die Be-

hauptung mit demselben Trick, mit dem wir im vorangegangenen Abschnitt die alternierende
harmonische Reihe umgeordnet hatten.

Wir setzen

pk :=
|ak| + ak

2
, qk :=

|ak| − ak
2

.

Also ist pk = ak, falls ak > 0 und pk = 0, wenn ak < 0. Daher habe die Reihen
∑∞
k=0 pk

und
∑

k Pk bis auf Wiederholungen dieselbe Partialsummenfolge. Gleiches gilt für
∑∞
k=0 qk

und
∑

kQk. Also müssen wir zeigen, dass
∑∞
k=0 pk und

∑∞
k=0 qk beide divergent sind. Wäre

eine konvergent, so wegen

n∑

k=0

ak =
n∑

k=0

(pk − qk) =
n∑

k=0

pk −
n∑

k=0

qk

auch die andere. Dann wäre aber auch
∞∑

k=0

(pk + qk) =
∞∑

k=0

|ak|

konvergent im Widerspruch zur Voraussetzung. Also sind beide divergent.

Satz 273 (Cauchyprodukt). Seien
∑∞
k=0 ak und

∑∞
l=0 bl konvergente Reihen und eine

der beiden absolut konvergent. Setze

cm :=
m∑

k=0

akbm−k.

Dann ist die Reihe
∑∞
m=0 cm konvergent, und für die Summen gilt

( ∞∑

k=0

ak

)( ∞∑

l=0

bl

)

=
∞∑

m=0

cm. (94)

Bemerkung. Wir zeigen später, dass (94) auch gilt, wenn alle drei Reihen konvergent sind,
vgl. Korollar 288.

Beweis. Wir bezeichnen die Summen der beiden gegebenen Reihen mit A bzw. B und setzen

An :=
n∑

k=0

ak, Bn :=
n∑

l=0

bl, Cn :=
n∑

m=0

cm.
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Wir nehmen an, dass
∑
an absolut konvergiert und setzen

βn := Bn −B.

Dann ist

Cn = a0b0 + (a0b1 + a1b0) + . . .+ (a0bn + a1bn−1 + . . .+ anb0)

= a0Bn + a1Bn−1 + . . .+ anB0

= a0(B + βn) + a1(B + βn−1) + . . .+ an(B + β0)

= AnB + a0βn + . . .+ anβ0
︸ ︷︷ ︸

γn

.

Wir zeigen γn → 0. Dann ist limCn = limAnB = AB. Sei

α =
∞∑

k=0

|ak|.

Sei ǫ > 0. Weil βk → 0, können wir N1 ∈ N wählen mit

|βk| <
ǫ

2α+ 1
für alle k ≥ N1.

Für diese n ≥ N1 ist dann

|γn| ≤ |β0an + . . . βN1
an−N1

| + |βN1+1an−N1−1| + . . .+ |βna0|

≤ |β0an + . . . βN1an−N1 | +
ǫ

2α+ 1

n−N1−1∑

k=0

|ak|.

< |β0an| + . . .+ |βN1
an−N1

| + ǫ

2
.

Weil ak → 0, können wir ein N2 so wählen, dass für alle k ≥ N := N1 +N2

|ak| <
ǫ

2(|β0| + . . .+ |βN1
|) + 1

.

Dann ist für alle n ≥ N
|γn| < ǫ.

Beispiel 274. Die Reihe
∑∞
k=0

(−1)k

√
k+1

ist nach dem Leibnizkriterium konvergent. Das Cauchy-

produkt dieser Reihe mit sich selbst hat die Glieder cm mit

|cm| =

∣
∣
∣
∣
∣

m∑

k=0

(−1)k(−1)m−k
√
k + 1

√
m− k + 1

∣
∣
∣
∣
∣
=

m∑

k=0

1√
k + 1

√
m− k + 1

≥ m+ 1√
m+ 1

√
m+ 1

= 1.

Also ist
∑∞
m=0 cm nicht konvergent.

Wie Sie sich an der Reihe 1 − 1 + 1 − 1 + 1 − 1 ± . . . klarmachen können, gilt für unend-
liche Reihen auch kein “verallgemeinertes Assoziativgesetz”: Durch Setzen von geeigneten
Klammern wird die vorstehende Reihe konvergent, weil man nur noch eine Teilfolge der Par-
tialsummenfolge betrachtet. Man kann zeigen, aber wir verzichten darauf, dass man absolut
konvergente Reihen auch beliebig klammern darf, ohne die Konvergenz und den Limes zu
ändern.
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10.5 Potenzreihen

Die wichtigsten Funktionen erhält man durch eine Verallgemeinerung der Polynome auf
unendliche Summen:

Definition 275. Eine Potenzreihe ist eine unendliche Reihe der Form

∞∑

k=0

ak(z − z0)
k.

Wir wollen diese Reihen gleich im Komplexen betrachten und nehmen deshalb an, dass die
Koeffizienten ak und der Entwicklungspunkt z0 komplexe Zahlen sind. Weiter ist z eine
komplexe Variable.

Auf der Menge D ⊂ C aller z, für die die Reihe konvergiert, liefert f(z) :=
∑∞
k=0 ak(z−z0)k

also eine Funktion
f : D → C.

Wir untersuchen nun die Frage, für welche Werte von z die Reihe konvergiert. Es ist ein-
leuchtend, dass sie konvergiert, wenn |z − z0| ”

klein“ ist, und divergiert, wenn diese Zahl

”
groß“ ist. Dabei hängt die Bedeutung von

”
klein“ und

”
groß“ vermutlich von den ak ab.

Nach dem Wurzelkriterium ist die Reihe konvergent, wenn

|z − z0| lim sup k
√

|ak| = lim sup k

√

|ak||z − z0|k < 1,

und divergent, wenn

|z − z0| lim sup k
√

|ak| = lim sup k

√

|ak||z − z0|k > 1.

Definition 276 (Konvergenzradius). Zur Potenzreihe
∑∞
k=0 ak(z − z0)

k heißt

R :=
1

lim sup k
√

|ak|

der Konvergenzradius. Er ist +∞, wenn der Limes superior = 0 ist und 0, wenn der Limes
superior = +∞ ist.

Damit ergibt sich der

Satz 277 (Konvergenz von Potenzreihen). Sei R ∈ [0,+∞[∪{+∞} der Konvergenz-
radius der Potenzreihe

∑∞
k=0 ak(z − z0)

k. Dann gilt für alle z ∈ C:

|z − z0| < R =⇒ die Reihe
∑

ak(z − z0)
k ist absolut konvergent,

|z − z0| > R =⇒ die Reihe
∑

ak(z − z0)
k ist divergent.

Die Menge {z ∈ C | |z− z0| < R} ist ein
”
offener“ Kreis vom Radius R um den Mittelpunkt

z0, der sogenannte Konvergenzkreis der Reihe.
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Bemerkungen.

1. Ein offener Kreis ist eine Kreis-
fläche ohne die begrenzende
Kreislinie. Will man die letztere
dazurechnen, so spricht man von
einem abgeschlossenen Kreis.

2. Über die Konvergenz für z-Werte
auf dem Rand des Konvergenz-
kreises (|z−z0| = R) gibt der Satz
keine Auskunft.

3. Ist die Reihe reell, also alle ak
sowie z und z0 reell, so ist der

”
Konvergenzkreis“ ein symmetri-

sches Intervall

z0 −R < z < z0 +R

um z0.

abs. konvergent

z

divergent

Im Komplexen

Im Reellen

x
0

x
0

x
0

0

-R +R

?

divergent
absolut konvergent divergent

?

4. Für R = ∞ konvergiert die Reihe für alle z ∈ C bzw. z ∈ R.

5. Ein Wort zur Sprache: Sagen Sie nicht, die Reihe sei innerhalb des Konvergenzradius
konvergent. Der Konvergenzradius ist eine Zahl, z.B. 7. Was soll es bedeuten, dass die
Reihe innerhalb von 7 konvergiert?

Beispiel 278. Die geometrische Reihe
∑
zk ist eine Potenzreihe mit Konvergenzradius

R =
1

lim sup k
√

1
= 1.

Es gilt

f(z) =
∞∑

k=0

zk =
1

1 − z
für |z| < 1.

Beispiel 279. Die Reihe
∑∞
k=0

zk

k+1 hat ebenfalls Konvergenzradius 1, wie man bequem mit
dem Quotientenkriterium sieht. Noch einfacher: Wie wir wissen, ist sie

• für z = 1 divergent (harmonische Reihe),

• für z = −1 konvergent (alternierende harmonische Reihe).

Also muss der Konvergenzradius 1 sein.

Beispiel 280. Die Reihe
∞∑

k=0

5k

k + 1
z2k (95)
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ist komplizierter: Der Konvergenzradius nicht etwa gegeben durch

1/R = lim sup
k

√

5k

k + 1
.

Es ist nämlich

ak =

{
5k/2

k
2 +1

, falls k gerade,

0, falls k ungerade.

Weil die geraden Terme positiv sind, ist also

1/R = lim sup
2k

√

5k

k + 1
=

√
5

lim 2k
√
k + 1

=
√

5.

Dabei haben wir benutzt, dass lim 2k
√
k + 1 = 1. Warum gilt das?

Eine andere Möglichkeit, den Konvergenzradius dieser Reihe zu bestimmen, ist die direkte
Anwendung des Quotientenkriteriums:

∣
∣
∣
∣
∣

5k+1z2k+2

k+2

5kz2k

k+1

∣
∣
∣
∣
∣
= 5|z|2 k + 1

k + 2
→ 5|z|2.

Also konvergiert die Reihe für alle z mit |z2| < 1
5 ; sie divergiert für alle mit |z|2 > 1

5 . Der

Konvergenzradius ist also
√

1
5 .

Beispiel 281. Auch für die Reihe
∞∑

k=0

zk

k!

findet man den Konvergenzbereich am einfachsten mit dem Quotientenkriterium:

∣
∣
∣
∣
∣
∣

zk+1

(k+1)!

zk

k!

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣

k!z

(k + 1)!

∣
∣
∣
∣
=

∣
∣
∣
∣

z

k + 1

∣
∣
∣
∣
→ 0.

Also ist die Reihe für alle z absolut konvergent.

Für Partialsummen von Reihen gilt natürlich die Dreiecksungleichung. Deshalb gilt für ab-
solut konvergente Reihen ∣

∣
∣
∣
∣

∞∑

k=0

ak

∣
∣
∣
∣
∣
≤

∞∑

k=0

|ak|.

Insbesondere gilt deshalb für z im Inneren des Konvergenzkreises einer Potenzreihe

∣
∣
∣
∣
∣

∞∑

k=0

ak(z − z0)
k

∣
∣
∣
∣
∣
≤

∞∑

k=0

|ak| |z − z0|k.

Davon werden wir im folgenden wiederholt Gebrauch machen.

171



10.6 Differentiation von Potenzreihen

Wir betrachten im folgenden wieder reelle Potenzreihen, weil wir Funktionen mit komplexem
Argument noch nicht differenzieren können.

Satz 282 (Differentiation von Potenzreihen). Die Funktion f sei durch eine Potenz-
reihe mit Konvergenzradius R gegeben:

f(x) =
∞∑

k=0

ak(x− x0)
k, |x− x0| < R.

Dann gilt

(i) f ist auf {x | |x− x0| < R} differenzierbar und

f ′(x) =
∞∑

k=1

kak(x− x0)
k−1 =

∞∑

k=0

(k + 1)ak+1(x− x0)
k. (96)

(ii) Die Potenzreihe (96) hat ebenfalls den Konvergenzradius R.

Kurz: Potenzreihen darf man gliedweise differenzieren. Der Konvergenzradius ändert sich
dabei nicht.

Beweis. Zu (ii). Die Reihe
∑∞
k=0(k + 1)ak+1(x − x0)

k konvergiert genau dann, wenn die
Reihe

(x− x0)
∞∑

k=0

(k + 1)ak+1(x− x0)
k =

∞∑

k=1

kak(x− x0)
k

konvergiert. Wegen limk→∞
k
√
k = 1 ist der Konvergenzradius der letzteren Reihe

1

lim sup k
√

k|ak|
=

1

lim sup k
√

|ak|
= R.

Zu (i). Sei nun |p− x0| < R. Wir wollen zeigen:
Zu jedem ǫ > 0 gibt es ein δ > 0, so dass für alle x aus dem Konvergenzintervall mit
0 < |x− p| < δ

∣
∣
∣
∣
∣

f(x) − f(p)

x− p
−

∞∑

k=1

kak(p− x0)
k−1

∣
∣
∣
∣
∣

︸ ︷︷ ︸

=:(∗)

< ǫ. (97)

Das beweist dann die Differenzierbarkeit in p.

Zunächst ist nach dem Mittelwertsatz

f(x) − f(p)

x− p
−

∞∑

k=1

kak(p− x0)
k−1 =

∞∑

k=0

(

ak
(x− x0)

k − (p− x0)
k

x− p
− kak(p− x0)

k−1

)

=
∞∑

k=0

(
kak(ξk − x0)

k−1 − kak(p− x0)
k−1
)

=
∞∑

k=0

kak
(
(ξk − x0)

k−1 − (p− x0)
k−1
)
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für ξk zwischen x und p.

Sei also ǫ > 0. Wir wählen ein r mit |p−x0| < r < R. Dann ist
∑∞
k=1 k|ak|rk−1 konvergent,

und daher gibt es ein N ∈ N mit

∞∑

k=N+1

k|ak|rk−1 <
ǫ

3
.

Dann ist für x mit |x− x0| < r

(∗) ≤
N∑

k=0

k|ak|
∣
∣(ξk − x0)

k−1 − (p− x0)
k−1
∣
∣

+
∞∑

k=N+1

k |ak| |ξk − x0|
︸ ︷︷ ︸

<r

k−1 +
∞∑

k=N+1

k |ak| |p− x0|
︸ ︷︷ ︸

<r

k−1

≤
N∑

k=0

kak
∣
∣(ξk − x0)

k−1 − (p− x0)
k−1
∣
∣+

2

3
ǫ

In der ersten Summe stehen nur endlich viele Terme. Daher gibt es ein δ > 0, so dass
]p− δ, p+ δ[⊂]x0 − r, x0 + r[ und für alle x ∈]p− δ, p+ δ[ (also ξk ∈]p− δ, p+ δ[) gilt

N∑

k=0

kak
∣
∣(ξk − x0)

k−1 − (p− x0)
k−1
∣
∣ <

ǫ

3
.

Daraus folgt (97).

Wir kommen nun dazu, die noch ausstehenden Existenzbeweise für exp und sin zu führen,
vgl Satz 154 und Satz 186.

Beispiel 283 (Exponentialreihe). Wir haben im Abschnitt über die Exponentialfunktion
gesehen: Wenn es eine Lösung y = exp des Anfangswertproblems

y′ = y, y(0) = 1

gibt, muss nach dem Satz von Taylor gelten

expx =
∞∑

k=0

xk

k!
.

Das ist aber einer Potenzreihe mit R = ∞. Die Reihe definiert also eine differenzierbare
Funktion auf R, für deren Ableitung gilt:

d

dx

∞∑

k=0

xk

k!
=

∞∑

k=0

d

dx

xk

k!
=

∞∑

k=0

kxk−1

k!
=

∞∑

k=1

kxk−1

k!
=

∞∑

k=1

xk−1

(k − 1)!
=

∞∑

k=0

xk

k!
.

Damit ist die Existenz der Exponentialfunktion bewiesen.

Beispiel 284. Ebenso zeigt man, dass die Potenzreihe

∞∑

m=0

(−1)m
x2m+1

(2m+ 1)!

auf ganz R eine zweimal differenzierbar Funktion y mit

y′′ = −y, y(0) = 0, y′(0) = 1
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definiert. Das liefert den Existenzbeweis für die Sinusfunktion. Man findet für alle x ∈ R

sinx =
∞∑

m=0

(−1)m
x2m+1

(2m+ 1)!
, cosx =

∞∑

m=0

(−1)m
x2m

(2m)!
.

Bemerkung. Viele Funktionen sind durch Potenzreihen, aber auch durch andere unendliche
Reihen von Funktionen gegeben, zum Beispiel periodische Funktionen durch die sogenannten
Fourierreihen. Eine naheliegende Frage ist dann diese:

Gegeben Funktionen fk : J → R auf einem Intervall J , so dass

f(x) :=
∞∑

k=0

fk(x)

für alle x ∈ J definiert (die Reihe also konvergent) ist. Unter welchen Voraussetzungen
übertragen sich Eigenschaften wie Stetigkeit oder Differenzierbarkeit der fk dann auf die
Funktion f?

Dieses Thema gehört zum üblichen Standardrepertoire der Analysis I, aber wir vertagen es
aus Zeitgründen in die Analysis II, wo man es in einem allgemeineren Rahmen behandeln
kann.
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10.7 Abelscher Grenzwertsatz

Reelle Potenzreihen definieren im inneren ihres Konvergenzintervalles differenzierbare und
deshalb stetige Funktionen. Gelegentlich liegt auch in einem oder beiden Randpunkten des
Konvergenzintervalls noch Konvergenz vor. Wie steht es dort dann mit der Stetigkeit? Weil
die Randpunkte offenbar besonders ausgezeichnet sind, ist diese Frage von einigem Interesse,
vergleichen Sie die Beispiele unten.

Satz 285 (Abelscher Grenzwertsatz). Die reelle Potenzreihe
∑∞
k=0 ak(x− x0)

k sei auf
dem Intervall J ⊂ R konvergent. Dann ist die durch

f(x) :=
∞∑

k=0

ak(x− x0)
k

definierte Funktion stetig auf J .

Bemerkungen. 1. Sei R der Konvergenzradius der Reihe. Auf
{
x
∣
∣ |x− x0| < R

}
ist f

dann sogar differenzierbar, also erst recht stetig. Der Satz ist also nur interessant für die
Randpunkte (=Grenzwerte) des offenen Konvergenzintervalls.

2. Auch komplexe Potenzreihen sind im Inneren ihres Konvergenzkreises “komplex differen-
zierbar” (was auch immer das bedeuten mag) und deshalb stetig. Der Abelsche Grenzwert-
satz läßt sich aber nicht auf den komplexen Fall verallgemeinern, vgl. Beispiel 302.

Beweis. Wir beschränken uns beim Beweis auf den Fall x0 = 0, R = 1 und nehmen an, dass
die Reihe auch noch für x = 1 konvergiert. Der allgemeine Fall folgt daraus leicht: Betrachte
die Reihe

∑
ak(±R)kxk.

Wir setzen

sn :=
n∑

k=0

ak, s := f(1) = lim sn =
∞∑

k=0

ak.

Dann ist s−1 = 0. Wir beschränken uns auf 0 < x < 1 und erhalten:

n∑

k=0

akx
k =

n∑

k=0

(sk − sk−1)x
k = (1 − x)

(
n−1∑

k=0

skx
k

)

+ snx
n.

Die Folge (sn) ist konvergent, also beschränkt, und aus limn→∞ xn = 0 folgt deshalb
limn→∞ snx

n = 0. Damit ergibt sich

f(x) = (1 − x)
∞∑

k=0

skx
k, |x| < 1.

Andrerseits folgt aus
∑∞
k=0 x

k = 1
1−x , dass

s = (1 − x)
∞∑

k=0

sxk.

Sei ǫ > 0. Wir wollen zeigen, dass es dazu ein δ ∈]0, 1[ gibt, so dass

1 − δ < x < 1 =⇒ |f(x) − s| < ǫ. (98)
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Wir wählen ein N ∈ N, über das wir später verfügen wollen, und erhalten für 0 < x < 1

|f(x) − s| =

∣
∣
∣
∣
∣
(1 − x)

∞∑

k=0

(sk − s)xk

∣
∣
∣
∣
∣
≤ (1 − x)

∞∑

k=0

|sk − s|xk

≤ (1 − x)
N∑

k=0

|sk − s|xk + (1 − x)
∞∑

k=N+1

|sk − s|xk.

Durch Wahl von N können wir erreichen, dass in der zweiten Summe alle |sk − s| < ǫ/2, so
dass der ganze zweite Summand < (1 − x) ǫ2

1
1−x = ǫ

2 ist.

Der erste Summand geht für xր 1 gegen 0, es gibt also ein δ mit (98).

Die beiden folgenden Beispiele liefern insbesondere interessante Reihen-Grenzwerte.

Beispiel 286 (Logarithmische Reihe). Die Potenzreihe

∞∑

k=0

xk+1

k + 1
(99)

hat den Konvergenzradius 1 (Beweis?) und definiert deshalb eine differenzierbare Funktion
f :] − 1,+1[→ R. Für ihre Ableitung gilt

f ′(x) =
∞∑

k=0

xk =
1

1 − x
= − d

dx
ln(1 − x) =

d

dx
ln

1

1 − x
.

Also ist nach dem Konstanzkriterium

ln
1

1 − x
−

∞∑

0

xk+1

k + 1
= c.

Einsetzen von x = 0 zeigt, dass die Konstante c = 0 ist. Man erhält die sogenannte Loga-
rithmusreihe

ln
1

1 − x
=

∞∑

k=0

xk+1

k + 1
, |x| < 1.

Die Potenzreihe rechts ist auch für x = −1 noch konvergent. Nach dem Satz von Abel 285
ist der Grenzwert = limxց−1 ln 1

1−x = ln 1
2 = − ln 2. Wir benutzen

∞∑

k=0

(−1)k+1

k + 1
= −1 +

1

2
− 1

3
± = −

∞∑

k=1

(−1)k−1

k

und erhalten den Grenzwert der alternierenden harmonischen Reihe:

ln 2 =

∞∑

k=1

(−1)k−1

k
= 1 − 1

2
+

1

3
− + . . . .

Beispiel 287 (Leibnizreihe). Für |x| < 1 liefert die geometrische Reihe

1

1 − (−x2)
=

∞∑

k=0

(−x2)k.
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Damit erhält man wie oben aus

arctan′ x =
1

1 + x2
=

∞∑

k=0

(−1)kx2k

die arctan-Reihe

arctanx =
∞∑

k=0

(−1)k
x2k+1

2k + 1
, |x| < 1,

und für x = 1 aus dem Abelschen Grenzwertsatz 285 die Leibnizsche Reihe

π

4
=

∞∑

k=0

(−1)k

2k + 1
= 1 − 1

3
+

1

5
− + . . . .

Korollar 288 (Cauchyprodukt). Gegeben seien die drei konvergenten reellen Reihen

∞∑

k=0

ak,
∞∑

k=0

bk,
∞∑

k=0

ck

mit

cm :=
m∑

k=0

akbm−k.

Dann gilt
∞∑

k=0

ak

∞∑

k=0

bk =
∞∑

k=0

ck.

Bemerkung: Vergleichen Sie das mit Satz 273.

Beweis. Die Potenzreihen

∞∑

k=0

akx
k,

∞∑

k=0

bkx
k,

∞∑

k=0

ckx
k

haben offenbar Konvergenzradien ≥ 1. Für |x| < 1 sind sie absolut konvergent, und
∑∞
k=0 ckx

k

ist das Cauchyprodukt der beiden anderen! Deshalb gilt nach Satz 273 für |x| < 1

∞∑

k=0

akx
k

∞∑

k=0

bkx
k =

∞∑

k=0

ckx
k.

Nach dem Satz von Abel sind die durch die Reihen definierten Funktionen in x = 1 linksseitig
stetig, und daraus folgt die Behauptung.
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10.8 Die Taylorreihe

Ist f : J → R beliebig oft differenzierbar, also eine sogenannte C∞-Funktion, so bildet die
Folge der Taylorpolynome (Tn)n∈N von f in x0 ∈ J eine Potenzreihe

∞∑

k=0

f (k)(x0)

k!
(x− x0)

k,

die sogenannte Taylorreihe von f in x0. Es ist aber nicht klar, ob diese Reihe für x 6= x0

überhaupt konvergiert oder sogar gegen f(x) konvergiert. Anders gesagt: Es ist unklar ob
die Restglieder

Rn(x) = f(x) − Tn(x)

für n → ∞ (nicht für x → x0) konvergieren oder sogar gegen 0 konvergieren. Wenn das so
ist, erhält man also eine Darstellung von f als eine Potenzreihe:

f(x) =
∞∑

k=0

f (k)(x0)

k!
(x− x0)

k.

Für viele Funktionen ist das wenigstens lokal der Fall, und solche Funktionen nennt man
auch reell-analytisch.

Beispiel 289. Konvergente Potenzreihen sind gleichzeitig die Taylorreihe der durch sie
dargestellten Funktionen im Entwicklungspunkt. Das ist klar, weil man Potenzreihen wie

Polynome gliedweise differenzieren darf. Also folgt wie für Polynome ak = f(k)(x0)
k! . Damit

sind die Reihen für sin, cos oder exp die Taylorreihen dieser Funktionen in 0.

Aber im allgemeinen ist die Situation komplizierter.

Beispiel 290. Das Beispiel 287 zeigt

arctanx =
∞∑

k=0

(−1)k
x2k+1

2k + 1
für − 1 ≤ x ≤ 1,

aber für |x| > 1 ist zwar der arctan wunderbar definiert, die Potenzreihe hingegen divergent.

Beispiel 291. Die Funktion

f(x) =

{

e−1/x2

für x 6= 0

0 für x = 0

ist auf R beliebig oft differenzierbar und alle Ableitungen in 0 sind 0. Das folgt mit der
Kettenregel aus Beispiel 176. Also ist die Taylorreihe =0 und damit konvergent. Aber sie
konvergiert nur für x = 0 gegen f(x).

Ein Satz von Emil Borel besagt, dass es zu jeder Potenzreihe
∑
akx

k (auch solchen mit
Konvergenzradius R = 0) eine C∞-Funktion f : R → R gibt, deren Taylorreihe im Entwick-
lungspunkt 0 gerade die vorgegebene Reihe ist.

Satz 292 (E. Borel). Jede Folge reeller Zahlen ist die Folge der Taylorkoeffizienten einer
geeigneten C∞-Funktion im Entwicklungspunkt 0.
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Vorweg formulieren wir die durch vollständige Induktion leicht zu beweisende

Höhere Produktregel. Für n > 0 und n-mal differenzierbare Funktionen gilt

(uv)(n) =
n∑

k=0

(
n

k

)

u(n−k)v(k).

Beweis zum Satz von Borel. Wir wollen nun zu einer gegebenen Folge reller Zahlen (an) eine C∞-
Funktion f auf R konstruieren, für die

f (n)(0)

n!
= an

gilt. Als Ansatz wählen wir eine Modifikation der Taylorreihe:

f(x) :=

∞
X

n=0

anφ(qnx)xn. (100)

Dabei sei φ eine C∞(R)-Funktion mit folgenden Eigenschaften:

φ ≥ 0,

φ(x) = 1 für − 1

2
≤ x ≤ 1

2
,

φ(x) = 0 ⇐⇒ x ≤ −1 oder 1 ≤ x.

Eine solche Funktion konstruiert man wie im Abschnitt 4.3 unter Benutzung der C∞-Funktion aus
176.

Weiter sei (qn) eine Folge reeller Zahlen > 1, über deren Wahl wir später verfügen wollen. Zunächst
gilt für r < n

˛

˛

˛

˛

dr

dxr
an φ(qnx)xn

˛

˛

˛

˛

≤
˛

˛

˛

˛

˛

an

r
X

k=0

 

r

k

!

φ(r−k)(qnx)qr−k
n

n!

(n − k)!
xn−k

˛

˛

˛

˛

˛

≤ n! |an|
r
X

k=0

 

r

k

!

˛

˛

˛

φ(r−k)(qnx)
˛

˛

˛

|qnx|n−k

qn−r
n

1

(n − k)!

≤ n! |an|
qn

r
X

k=0

 

r

k

!

˛

˛

˛

φ(r−k)(qnx)
˛

˛

˛

|qnx|n−k.

Für |qnx| ≥ 1 ist φ(r−k)(qnx) = 0, und damit verschwindet auch die Summe rechts. Andernfalls,
d.h. für |qnx| < 1, ist mit

An := max{|φ(k)(x)| ; x ∈ R, k ≤ n}

˛

˛

˛

˛

dr

dxr
an φ(qnx)xn

˛

˛

˛

˛

≤ n! |an|
qn

r
X

k=0

 

r

k

!

˛

˛

˛

φ(r−k)(qnx)
˛

˛

˛

≤ n! |an|
qn

2nAn.

Bei vorgegebener Folge (an) wählen wir nun

qn := 1 + n2 2nn!|an|An.

Dann folgt für alle n > r
˛

˛

˛

˛

dr

dxr
an φ(qnx)xn

˛

˛

˛

˛

≤ 1

n2
.

Das liefert für jedes r ∈ N eine konstante konvergente Majoranten (ab Glied r + 1) für

∞
X

n=0

dr

dxr
(anφ(qnx)xn) .
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Aus dem Satz 305 folgt durch vollständige Induktion, dass (100) beliebig oft (gliedweise) differen-
zierbar ist. Weil φ(qnx) = 1 auf einer kleinen Umgebung von 0, ergibt sich weiter

dranφ(qnx)xn

dxr
(0) =

(

n!an für r = n

0 sonst.

Daher ist
f (n)(0)

n!
= an.

Beispiel 293 (Bernoullizahlen). Mit der Regel von Bernoulli-de L’Hospital zeigt man
leicht, dass

f(x) :=

{
x

ex−1 für x 6= 0

1 für x = 0

eine auf ganz R stetige Funktion darstellt. In Wahrheit ist diese Funktion sogar beliebig oft
differenzierbar und wird für |x| < 2π durch ihre Taylorreihe dargestellt.5 Die Ableitungen

f (k)(0) =: Bk

heißen die Bernoullizahlen.

Schreibt man x = (ex − 1)f(x), so folgt aus dem Cauchyproduktsatz

x =

( ∞∑

l=1

1

l!
xl

)( ∞∑

k=0

Bk
k!

xk

)

=
∞∑

m=1

(
m−1∑

k=0

Bk
k!(m− k)!

)

xm.

Aus der Eindeutigkeit der Taylorkoeffizienten folgt

0 =

m−1∑

k=0

Bk
k!(m− k)!

=
1

m!

m−1∑

k=0

(
m

k

)

Bk für m ≥ 2,

und das liefert eine Rekursionsformel zur Berechnung der Bk aus B0 = f(0) = 1.

B1 = −1

2
, B2 =

1

6
, B3 = 0, B4 = − 1

30
, . . . , B12 = − 691

2730
, . . .

”
Heute treten die Bernoulli-Zahlen an vielen Stellen in der Zahlentheorie, aber auch in anderen Gebieten,

zum Beispiel der algebraischen Topologie, in Erscheinung, und man hat den Eindruck, dass sie mit ganz
besonders tiefliegenden und zentralen Fragestellungen zusammenhängen“ (W. Scharlau/ H. Opolka: Von
Fermat bis Minkowski, Springer 1980). In dem angegebenen Buch finden Sie sehr gut verständlich auch
Herleitungen für eher

”
einfache“ Eigenschaften der Bernoullizahlen:

N−1
X

k=0

kn =
1

n + 1

n
X

j=0

“n + 1

j

”

BjNn+1−j , (J. Bernoulli 1713)

∞
X

k=1

1

k2n
=

(2π)2n

2(2n)!
|B2n| (Euler 1736).

5Das ist mit den uns zur Verfügung stehenden Mitteln vermutlich nur sehr mühsam zu beweisen, in der
komplexen Funktionentheorie ergeben sich diese Behauptungen aber ohne jede Rechnung ganz von selbst.
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10.9 Die komplexe Exponentialfunktion

Vergleichen Sie hierzu den Abschnitt 8.6.

Die komplexe Potenzreihe
∞∑

k=0

zk

k!

ist offenbar (?) für alle z ∈ C absolut konvergent und definiert deshalb eine Funktion

exp : C → C, z 7→
∞∑

k=0

zk

k!
,

deren Einschränkung auf die reelle Achse R die “alte” Exponentialfunktion ist, vgl. Beispiel
283.

Für rein-imaginäres iy erhält man

exp(iy) =

∞∑

k=0

(iy)k

k!
=

∞∑

m=0

(
(iy)2m

(2m)!
+

(iy)2m+1

(2m+ 1)!

)

.

Machen Sie sich anhand der Partialsummen klar, warum die letzte Gleichung gilt, sie ist
nicht ganz trivial! Weil auch die Reihen nur über die geraden bzw. nur über die ungeraden
k-Werte konvergent sind, ergibt sich weiter

exp(iy) =
∞∑

m=0

(iy)2m

(2m)!
+

∞∑

m=0

(iy)2m+1

(2m+ 1)!
=

∞∑

m=0

(−1)m
y2m

(2m)!
+ i

∞∑

m=0

(−1)m
y2m+1

(2m+ 1)!

= cos y + i sin y.

Für y = π liefert das insbesondere die berühmte Eulersche Identität eiπ = −1.

Mit dem Satz über das Cauchyprodukt ergibt sich für z, w ∈ C

exp(z) exp(w) =

∞∑

k=0

zk

k!

∞∑

l=0

zl

l!
=

∞∑

m=0

m∑

k=0

zk

k!

wm−k

(m− k)!

=
∞∑

m=0

1

m!

m∑

k=0

m!

k!(m− k)!
zkwm−k =

∞∑

m=0

(z + w)m

m!
= exp(z + w).

Das ist also ein neuer Beweis für das Additiontheorem der Exponentialfunktion, und einer
im Komplexen dazu. Insbesondere hat man also für reelle x, y

exp(x+ iy) = ex(cos y + i sin y).
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11 Ein Ausblick auf die Fourierreihen

Für eine moderne Theorie der Fourierreihen braucht man eine solide (Lebesguesche) Integra-

tionstheorie. Die kommt in diesem Analysiszyklus aber erst im dritten Semester. Andrerseits

ist die Fouriertheorie so wichtig in vielen Anwendungen und bietet so hübsche Aspekte, dass

ich Ihnen davon gern noch etwas zeigen möchte. Die schwierigen Beweise lasse ich für die

Analysis III, und auch sonst bin ich etwas großzügig: Zum Beispiel werden gegen Ende des

Abschnittes Fourierreihen gliedweise differenziert, was gerade bei Fourierreihen im allgemeinen

nicht erlaubt ist ...

Die Taylorapproximation liefert zu einer gegebenen Funktion f lokal ein approximierendes
Polynom, sagen wir Tf,n. Wie wählt man dieses Polynom? Die Formel für die Taylorkoeffi-

zienten ak = f(k)(x0)
k! war gerade so gemacht, dass Tf,n = f , falls f selbst schon ein Polynom

vom Grad ≤ n ist.

Wenn man periodische Funktionen f : R → R untersuchen will, kann man versuchen, diese
durch einfache periodische Funktionen wie Sinus und Cosinus zu approximieren. Genauer
wollen wir eine Funktion f mit der Periode T > 0, also mit

f(t+ T ) = f(t) für alle t ∈ R,

approximieren durch eine Linearkombination der (ebenfalls T -periodischen!) Funktionen
cos(k 2π

T t) und sin(k 2π
T t). Der Quotient ω = 2π

T heißt die zu T gehörige Kreisfrequenz. Wir
nennen eine Funktion der Form

F (t) :=
n∑

k=0

(ak cos(kωt) + bk sin(kωt)) (101)

mit ak, bk ∈ R ein trigonometrisches Polynom vom Grad n.

Gibt es (wie bei der Taylorapproximation) ein allgemeines Verfahren zur Berechnung der
Koeffizienten ak, bk, so dass F (t) sich reproduziert, wenn es bereits ein trigonometrisches
Polynom ist?

Dazu erinnern wir an die früher hergeleiteten sogenannten Orthogonalitätsrelationen für die trigonometri-
schen Funktionen:

Z 2π

0
cos mt sin ntdt = 0 für alle m, n ∈ N,

Z 2π

0
cos mt cos ntdt =

Z 2π

0
sin mt sin ntdt = 0 für alle m, n ∈ N, m 6= n,

Z 2π

0
cos2 mtdt =

Z 2π

0
sin2 mtdt = π für m ∈ N \ {0}.

Mit Hilfe der Substitutionsregel ergibt sich daraus für T > 0 und ω = 2π
T

:

Z T

0
cos mωt sin nωtdt = 0 für alle m, n ∈ N,

Z T

0
cos mωt cos nωtdt =

Z T

0
sin mωt sin nωtdt = 0 für alle m, n ∈ N, m 6= n,

Z T

0
cos2 mωtdt =

Z T

0
sin2 mωtdt = T/2 für m ∈ N \ {0}.

Wir multiplizieren nun (101) mit sin(lωt), wobei l ∈ N, und integrieren über [0, T ]. Nach
den Orthogonalitätsrelationen fallen in der Summe fast alle Terme weg, und es bleibt

∫ T

0

F (t) sin(lωt)dt =
T

2
bl
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für l > 0, also

bk =
2

T

∫ T

0

F (t) sin(kωt)dt, k ∈ N \ {0}.

Ebenso finden wir

ak =
2

T

∫ T

0

F (t) cos(kωt)dt, k ∈ N \ {0}. (102)

Der Koeffizient b0 interessiert nicht, weil sin(0ωt) = 0.

Der Koeffizienten a0 ist hat wegen
∫ T

0
cos2(0ωt)dt = T eine Sonderrolle. Damit (102) auch

für k = 0 gilt, ändert man die Notation ab und schreibt trigonometrische Polynome als

F (t) :=
a0

2
+

n∑

k=1

(ak cos(kωt) + bk sin(kωt)) (103)

Ist nun f : [0, T ] → R eine Regelfunktion, so nennen wir

ak :=
2

T

∫ T

0

f(t) cos(kωt)dt, bk :=
2

T

∫ T

0

f(t) sin(kωt)dt

die Fourierkoeffizienten und

Ff,n(t) :=
a0

2
+

n∑

k=1

(ak cos(kωt) + bk sin(kωt)) (104)

das n-Fourierpolynom von f .

Damit haben wir ein Verfahren gefunden, welches

1. Jeder Regelfunktion f : [0, T ] → R eine Folge von trigonometrischen Polynomen
(Ff,n)N∈N zuordnet, so dass

2.
Ff,n = f,

falls f ein trigonometrisches Polynom vom Grad ≤ n ist.

3. Diese Folge bezeichnet man als die Fourierreihe

Ff (t) :=
a0

2
+

∞∑

k=1

(ak cos(kωt) + bk sin(kωt)) (105)

von f .

Ist f : R → R eine T -periodische Funktion, die auf [0, T ] eine Regelfunktion ist, so definiert
man die Fourierreihe von f als die Fourierreihe von f |[0,T ].

Bevor wir Beispiele rechnen, stellen wir fest:

• Ist f : R → R eine T -periodische Funktion und f |[0,T ] eine Regelfunktion, so ist
f |[a,a+T ] für jedes a ∈ R eine Regelfunktion, und es gilt

∫ a+T

a

f(t)dt =

∫ T

0

f(t)dt.
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• Eine Regelfunktion f : [−T
2 ,

T
2 ] → R mit f(−t) = f(t) für alle t heißt gerade. Für

solche gilt
∫ T

2

−T
2

f(t)dt = 2

∫ T
2

0

f(t)dt.

• Eine Regelfunktion f : [−T
2 ,

T
2 ] → R mit f(−t) = −f(t) für alle t heißt ungerade. Für

solche gilt
∫ T

2

−T
2

f(t)dt = 0.

• Für gerade Funktionen verschwinden die Fourierkoeffizienten bk und es gilt

ak =
4

T

∫ T/2

0

f(t) cos(kωt)dt.

• Für ungerade Funktionen verschwinden die Fourierkoeffizienten ak und es gilt

bk =
4

T

∫ T/2

0

f(t) sin(kωt)dt.

Beispiel 294. Sei f : R → R die 2-periodische Funktion mit f(t) = 1 − 2|t| für t ∈ [−1, 1].
Dann ist f gerade, und die Fourierkoeffizienten sind bk = 0 und

ak =
4

2

∫ 1

0

(1 − 2t) cos(kπt)dt =
4 − 4 cos(kπ)

k2π2
=

{

0 für k gerade,
8

k2π2 für k ungerade.

Daraus folgt

Ff,2n+1(t) =
8

π2

n∑

m=0

1

(2m+ 1)2
cos((2m+ 1)πt)

Die nebenstehende Figur zeigt f und Ff,3, also den
Fall n = 1.

-2 -1 1 2

-1

-0.5

0.5

1

Beispiel 295. Sei f : R → R die 2-periodische Funktion mit f(t) = t für t ∈ [−1, 1[. Dann
ist f ungerade, und ähnlich wie im vorangehenden Beispiel findet man

Ff,n+1(t) =
2

π

n∑

k=0

(−1)k
sin((k + 1)πt)

k + 1

Die Figur zeigt f und Ff,8.

-2 -1 1 2

-1

-0.5

0.5

1
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Wann konvergiert die Fourierreihe Ff (t) gegen die Funktion f(t)?

In der Analysis 3 werden wir beweisen:

Satz 296. Die Funktion f sei T -periodisch und auf [0, T ] stückweise monoton. Für t ∈ R

sei f(t+) bzw. f(t−) der rechts- bzw. linksseitige Grenzwert von f an der Stelle t. Dann gilt

Ff (t) =
f(t+) + f(t−)

2
.

In den Punkten t, in denen f stetig ist, konvergiert die Fourierreihe also gegen f(t), an
Sprungstellen gegen das arithmetische Mittel von rechtsseitigem und linksseitigem Limes.

Vorsicht: Die Fourierreihe einer stetigen Funktion f muss nicht gegen f(t) konvergieren. Die
stückweise Monotonie ist eine zusätzliche Voraussetzung.

Aus Beispiel 294 folgt mit dem Satz für alle t ∈ [−1,+1]

1 − 2|t| =
8

π2

∞∑

m=0

1

(2m+ 1)2
cos((2m+ 1)πt)

Insbesondere ergibt sich für t = 0

π2

8
=

∞∑

m=0

1

(2m+ 1)2
= 1 +

1

9
+

1

25
− + . . . .

Aus

∞∑

k=1

1

k2
=

∞∑

m=0

1

(2m+ 1)2
+

∞∑

m=1

1

(2m)2
=

∞∑

m=0

1

(2m+ 1)2
+

1

4

∞∑

m=1

1

m2
,

folgt

3

4

∞∑

k=1

1

k2
=
π2

8

und
∞∑

k=1

1

k2
=
π2

6
.

Wenn auch die Fourierreihen wie für periodische Funktionen gemacht erscheinen, braucht
man für die Definition nur eine Regelfunktion auf [0, T ] und kann diese dann unter der sehr
schwachen stückweisen Monotonievoraussetzung durch eine Fourierreihe darstellen. Das lie-
fert eine “analytische” Darstellung auch für ganz “willkürliche” Funktionen. Diese Erkennt-
nis hat die Mathematiker zu Fouriers Zeiten sehr fasziniert und wesentlich zur Entstehung
des modernen Funktionsbegriffes beigetragen.

Tatsächlich kann man verschiedene Fourier-Darstellungen für f : [0, T ] → R finden: Man
kann f nämlich durch f(t) = f(−t) oder f(t) = −f(−t) auf [−T,+T ] erweitern und dann die
Fourierreihe (einer 2T -periodischen geraden oder ungeraden Funktion) bilden: Man erhält
Darstellungen nur mit cos-Termen oder nur mit sin-Termen. Das spielt eine Rolle in einer
wichtigen Anwendung der Fourierreihen, nämlich auf sogenannte Anfangswertprobleme für
partielle Differentialgleichungen.

Wir geben ein einfaches
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Beispiel 297. Wir betrachten eine schwingende Saite der Länge 1. Die Auslenkung an der
Stelle x zur Zeit t sei u(x, t).

Mögliche Lösungen der Schwingungsgleichungen ∂2u
∂t2 = ∂2u

∂x2 sind Funktionen

u(x, t) =
∑

k

(αk cos(kπt) + βk sin(kπt)) sin(kπx).

Beachten Sie, dass u(0, t) = u(1, t) = 0 zu jeder Zeit t.

Die Anfangsgestalt der Saite

u(x, 0) =
∑

k

αk sin(kπx)

bestimmt die Koeffizienten αk. Ist etwa u(x, 0) von
der Gestalt 0 1a

b

so setzt man diese Funktion zu einer 2-periodischen ungeraden Funktion fort:

0 1a

b
- 1

Deren Fourierkoeffizienten sind dann gerade die αk. Befindet sich die Saite zur Zeit t = 0 in
Ruhe, so sind die βk = 0 und

u(x, t) =
∞∑

k=1

αk cos(kπt) sin(kπx).

Die αk geben die Amplituden der Obertöne, und durch Wahl von a und b kann man darauf
Einfluss nehmen, und so die Tonqualität beeinflussen.

Hier sind die Beträge der Fourierkoeffizienten für b = 1 und zwei Werte von a:

2 4 6 8

0.2

0.4

0.6

0.8

1

a=0.5

2 4 6 8

0.2

0.4

0.6

0.8

1

a=0.6
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Anhang 1: Darstellung reeller Zahlen

In diesem Abschnitt wollen wir zeigen, dass jede reelle Zahl sich als unendlicher Dezimal-
bruch darstellen läßt, und dass diese Darstellung eindeutig ist, wenn man 9-periodische
Dezimalbrüche ausschließt. Dabei ist die Wahl der Zahl 10 vom mathematischen Stand-
punkt aus willkürlich, jede natürliche Zahl ≥ 2 leistet denselben Dienst. Zum Beispiel sind
binäre oder Hexadezimaldarstellungen durchaus gebräuchlich. Deshalb wählen wir allgemein
im folgenden eine Basiszahl

b ∈ N \ {0, 1}.
Eine b-adische Darstellung einer nicht-negativen rellen Zahl x ist dann gegeben durch eine
Zahlenfolge (ak)k∈Z mit folgenden Eigenschaften:

(i) Für alle k ∈ Z ist ak ∈ {0, 1, 2, . . . , b− 1}.
(ii) Es gibt ein n ∈ N mit ak = 0 für alle k > n.

(iii) Es gilt

x =
+∞∑

k=−∞
akb

k :=
+∞∑

k=1

a−kb
−k +

n∑

k=0

akb
k.

Es ist unmittelbar klar, dass (ak)k∈Z genau dann eine b-adische Darstellung von x ist, wenn
(ak+m)k∈Z eine solche von b−mx ist. Deshalb beschränken wir uns in folgenden auf Zahlen

x ∈ [0, 1[.

In der Darstellung kommen dann keine positiven Potenzen von bmehr vor, und um übersicht-
lichere Formeln zu bekommen schreiben wir a−k statt ak, d.h. wir suchen Darstellungen der
Form

x =

+∞∑

k=1

akb
−k.

Satz 298 (b-adische Darstellung). Zu jeder reellen Zahl x ∈ [0, 1[ gibt es eine eindeutig
bestimmte Folge (ak)k∈N \ {0} mit folgenden Eigenschaften:

(i) ak ∈ {0, 1, 2, . . . , b− 1} für alle k ∈ N \ {0}.

(ii) Für alle n ∈ N \ {0} ist

0 ≤ x−
n∑

k=1

akb
−k < b−n.

Dann gilt also

x =
+∞∑

k=1

akb
−k.

Man schreibt dann auch x mit den (b-adischen) Ziffern ak in der Form

x = 0.a1a2a3 . . .b

mit einem unteren Index b.

Beweis. Zur Existenz. Sei
a0 := 0, x0 := x.
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Dann ist
0 ≤ bx0 < b.

Setzen wir also

a1 := max{n ∈ N |n ≤ bx0} und x1 := bx0 − a1,

so ist
a1 ∈ {0, . . . , b− 1} und 0 ≤ x1 < 1.

Allgemein definieren wir rekursiv

ak+1 := max{n ∈ N |n ≤ bxk} und xk+1 := bxk − ak+1

und erhalten für alle k

ak+1 ∈ {0, . . . , b− 1} und 0 ≤ xk+1 < 1.

Damit ist offenbar (i) erfüllt. Und aus

0 ≤ xn = bxn−1 − an < 1

folgt mit

bxn−1 − an = b(bxn − an−1) − an = . . . = bnx0 − bn−1a1 − . . .− ban−1 − an

nach Division durch bn, dass

0 ≤ x−
n∑

k=1

akb
−k < b−n.

Also gilt (ii).

Zur Eindeutigkeit. Sei (ak)k∈N \ {0} eine b-adische Darstellungen für x und sei n ∈ N \ {0}.
Dann gilt

0 ≤ x−
n∑

k=1

akb
−k < b−n,

also

0 ≤ bnx−
n−1∑

k=1

akb
n−k

︸ ︷︷ ︸

=:y

−an < 1.

Dabei ist y eine reelle Zahl mit
y − 1 < an ≤ y.

Im halboffenen Intervall ]y− 1, y] liegt aber nur eine ganze Zahl, und daher ist an eindeutig
bestimmt. Das gilt für alle n ∈ N \ {0}.

Beispiel 299. Wir betrachten den Fall b = 10. Mit dem vorstehenden Satz haben wir jeder
reellen Zahl x ∈ [0, 1[ eine Potenzreihe mit ganzzahligen Koeffizienten ak zwischen 0 und 9
zugeordnet, so dass

x =
+∞∑

k=1

ak10−k = 0.a1a2 . . . (106)

gilt, und diese Reihe war unter der im Satz gemachten Bedingung (ii) eindeutig bestimmt.
Natürlich ist jede Reihe der Form (106) mit Koeffizienten ak ∈ {0, . . . , 9} konvergent und
liefert eine reelle Zahl x. Liefert der Satz für dieses x die originale Reihe zurück? Anders
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gefragt: Ist die Abbildung, die jedem x seine Dezimaldarstellung zuordnet surjektiv auf die
Reihen mit Koeffizienten zwischen 0 und 9? Das ist nicht so: Es gilt

+∞∑

k=2

9 · 10−k = 0.09999 . . . = 0.10000 . . . ..

Das beschreibt aber auch den einzig möglichen Problemfall: Wenn man 9-Perioden (oder im
allgemeinen (b− 1)-Perioden) ausschließt, entspricht jedem x ∈ [0, 1[ genau ein unendlicher
Dezimalbruch 0.a1 . . . und umgekehrt. Das beweisen wir im folgenden

Lemma 300. Gegeben seien zwei Folgen (ak)k∈N \ {0} und (ãk)k∈N \ {0} mit

ak, ãk ∈ {0, . . . , b− 1},
so dass

+∞∑

k=1

akb
−k =

+∞∑

k=1

ãkb
−k =: x.

Dann gilt: Es gibt ein n ∈ N \ {0} mit

a1 = ã1, . . . , an−1 = ãn−1, und an > ãn

genau dann, wenn

ãn = an − 1 und ãk = b− 1, ak = 0 für alle k > n.

In diesem Fall gilt

x−
n∑

k=1

ãk = b−n. (107)

Deshalb ist nach der Bedingung (ii) des Satzes die b-adische Darstellung von x nicht gegeben
durch die Folge (ãk)k∈N \ {0}, sondern notwendig dann durch die Folge (ak)k∈N \ {0}. Die
Folgen mit (b− 1)-Periode kommen nicht als b-adische Darstellungen vor.

Beweis. Es gilt

0 =
+∞∑

k=1

akb
−k −

+∞∑

k=1

ãkb
−k

=
n−1∑

k=1

(ak − ãk)b
−k

︸ ︷︷ ︸

=0

+ (an − ãn)b
−n

︸ ︷︷ ︸

≥b−n

+
+∞∑

k=n+1

(ak − ãk)b
−k

≥ b−n + (−(b− 1))
+∞∑

k=n+1

b−k = b−n + (−(b− 1))
b−(n+1)

1 − b−1
= b−n − b−n = 0

mit Gleichheit nur für den Fall

an = ãn + 1,

ak − ãk = −(b− 1) für alle k ≥ n+ 1.

Das beweist den ersten Teil des Satzes. In diesem Fall ist also

x =
n∑

k=1

akb
−k =

n∑

k=1

ãkb
−k + b−n,

und daraus folgt (107).
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Anhang 2: Subtileres über die Stetigkeit

Beispiel 301. Definiere f :] 0, 1 [→ R durch

f(x) :=

{
1
q , falls x = p

q mit teilerfremden natürlichen Zahlen p, q

0 sonst.

Dann ist f genau in ] 0, 1 [∩Q unstetig.

Beweis. Jede rationale Zahl ist Limes irrationaler Zahlen. Daher ist die Funktion in den
rationalen Zahlen unstetig. Andrerseits gibt es zu q ∈ N höchstens q rationale Zahlen der
Form p

q in ] 0, 1 [. Ist daher (pi

qi
) eine Folge, die gegen eine Irrationalzahl x konvergiert, so ist

lim 1
qi

= 0 und damit f in x stetig.

Setzt man f(0) = 1 und erweitert f auf R periodisch mit Periode 1, so ist die erweiterte
Funktion genau in den rationalen Punkten unstetig.

Im Gegensatz dazu gilt:

Es gibt keine Funktion f : R → R, die genau in den rationalen Zahlen stetig ist.

Beweis. a) Die Menge A der Stetigkeitspunkte ist ein abzählbarer Durchschnitt offener Men-
gen (Gδ-Menge).

Um x ∈ A gibt es zu jedem n ∈ N ein offenes Intervall In(x) mit

|f(y) − f(x)| < 1

n
für alle y ∈ In(x).

Die Menge

Gn =
⋃

x∈A
In(x)

ist offen und
A =

⋂

Gn.

Offenbar ist nämlich A ⊂ ⋂Gn. Aber für y ∈ ⋂Gn gibt es zu jedem n ein xn ∈ A, so dass
y ∈ In(xn). Dann ist aber

|f(xn) − f(z)| < 1

n
für alle z ∈ In(xn),

und deshalb

|f(z) − f(y)| < 2

n
für alle z ∈ In(xn).

Daher ist y ∈ A.

b) Aus dem Baireschen Kategoriensatz folgt, dass Q keine Gδ-Menge ist. (Vgl. z.B. Hewitt-
Stromberg S. 68.)
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Beispiel 302 (U. Brehm). Dieses Beispiel zeigt, dass der Abelsche Grenzwertsatz 285
nicht für komplexe Potenzreihen gilt.

Für n ∈ N sei µ(n) := 3+(−1)n

2 1 · 3 · 5 · . . . · (2n+ 1). Dann ist die komplexe Potenzreihe

f(z) :=
∞∑

n=1

(−1)n

n
zµ(n)

in z = 1 konvergent, aber dort nicht stetig.

Beweis. Wir zeigen die Existenz einer Folge (rm) mit 0 < rm < 1 und lim rm = 1, so dass

lim
∣
∣
∣f(rme

iπ
2m+1 )

∣
∣
∣ = ∞.

Nach Konstruktion ist µ(n) ≡ n mod(2) und für n ≥ m ist (2m+ 1)|µ(n). Daher gilt

∣
∣
∣
∣
∣

∞∑

n=1

(−1)n

n
rµ(n)
m eiπ

µ(n)
2m+1

∣
∣
∣
∣
∣
≥
∣
∣
∣
∣
∣

∞∑

n=m

. . .

∣
∣
∣
∣
∣
−
∣
∣
∣
∣
∣

m−1∑

n=1

. . .

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

∞∑

n=m

(−1)n

n
rµ(n)
m (−1)

µ(n)
2m+1

︸ ︷︷ ︸

=(−1)n

∣
∣
∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣

m−1∑

n=1

. . .

∣
∣
∣
∣
∣

≥
( ∞∑

n=m

1

n
rµ(n)
m

)

− (m− 1)

Also bleibt zu zeigen, dass man rm so wählen kann, dass z.B.

∞∑

n=m

1

n
rµ(n)
m ≥ 2m− 1 und lim rm = 1.

wegen der Divergenz der harmonischen Reihe gibt es aber Nm > m mit

Nm∑

n=m

1

n
≥ 2m,

und aus Stetigkeitsgründen findet man rm ∈]1 − 1
m , 1[ mit

Nm∑

n=m

1

n
rµ(n)
m ≥ 2m− 1.

Es folgt
∞∑

n=m

1

n
rµ(n)
m ≥ 2m− 1.
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Anhang 3: Nullstellen von C
∞-Funktionen

Ist f ∈ Ck+1(J) auf einem offenen Intervall J um 0 und ist f(0) = f ′(0) = . . . = fk(0) = 0,
so gilt nach dem Satz von Taylor für x 6= 0

f(x) =
fk+1(0)

(k + 1)!
xk+1 +R(x) =

(
fk+1(0)

(k + 1)!
+
R(x)

xk+1

)

xk+1 = h(x)xk+1.

Der Satz von Taylor sagt weiter, das

lim
x→0

R(x)

xk+1
= 0.

Setzen wir h(0) := f(k+1)(0)
(k+1)! , so ist h in 0 also stetig.

Damit haben wir eine Information über das Verhalten einer Ck+1-Funktion in der Nähe
einer k-fachen Nullstelle. Ist f sogar ein Polynom, so wissen wir aus dem Satz über die
Polynomdivision, dass h(x) wieder ein Polynom ist.

Unter den eingangs gemachten Voraussetzungen für f gibt uns der Satz von Taylor aber
über die Regularität von h in 0 außer der Stetigkeit keine weiteren Informationen. Wenn f
noch öfter differenzierbar ist, so kann man vermuten, dass auch h in 0 differenzierbar ist.
Für C∞-Funktionen ist das richtig, wie der folgende Satz zeigt, aber der Beweis ist nicht so
simpel.

Satz 303 (Lemma von Bohnenblust). Sei f : J → R eine C∞-Funktion auf einem
offenen Intervall J um 0 und seien

f(0) = f ′(0) = . . . f (k)(0) = 0

für ein k ∈ N. Dann gibt es eine C∞-Funktion h : J → R mit

f(x) = xk+1h(x).

Für diese gilt

h(0) =
f (k+1)(0)

(k + 1)!
.

Für den Beweis benötigen wir folgendes

Lemma 304. Seien a < 0 < b und g ∈ C1([a, b]). Dann gilt für jedes m ∈ N: Die Funktion
φ : [a, b] → R mit

φ(x) :=

∫ 1

0

tmg(xt)dt

ist differenzierbar und

φ′(x) :=

∫ 1

0

tm+1g′(xt)dt.

Ist g ∈ C∞([a, b]), so folgt also auch φ ∈ C∞([a, b]).
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Beweis. Sei ǫ > 0. Es gilt

φ(x+ ∆x) − φ(x)

∆x
−
∫ 1

0

tm+1g′(xt)dt =

∫ 1

0

(

tm
g((x+ ∆x)t) − g(xt)

∆x
− tm+1g′(xt)

)

dt

=

∫ 1

0

tm
(
g((x+ ∆x)t) − g(xt)

∆x
− tg′(xt)

)

dt.

Für festes t ∈ [0, 1] gibt es nach dem Mittelwertsatz ein ξ = ξx,t zwischen x und x+ ∆x, so
dass

g((x+ ∆x)t) − g(xt)

∆x
= tg′(ξt).

Nach Voraussetzung ist g′ stetig, also gleichmäßig stetig auf [a, b]. Zu dem gewählten ǫ > 0
gibt es daher ein δ > 0, so dass für alle ξ, x ∈ [a, b] gilt

|ξ − x| < δ =⇒ |g′(ξ) − g′(x)| < ǫ.

Dann gilt aber auch für jedes t ∈ [0, 1]

|ξ − x| < δ =⇒ |tm+1(g′(ξt) − g′(xt))| < ǫ

Für 0 < |∆x| < δ ist daher
∣
∣
∣
∣

φ(x+ ∆x) − φ(x)

∆x
−
∫ 1

0

tm+1g′(xt)dt

∣
∣
∣
∣
≤ ǫ.

Daraus folgt die Behauptung.

Beweis zum Lemma von Bohnenblust. Durch vollständige Induktion über k

k = 0. Sei also f(0) = 0. Definiere

h(x) :=

∫ 1

0

f ′(xt)dt.

Nach dem Lemma ist h ∈ C∞([a, b]). Weiter gilt

xh(x) =

∫ 1

0

xf ′(xt)dt =

∫ 1

0

df(xt)

dt
dt = f(xt)|1t=0 = f(x).

k → (k + 1). Sei der Satz für k bewiesen und sei

f(0) = f ′(0) = . . . = f (k+1)(0) = 0.

Dann ist nach Induktionsvoraussetzung

f(x) = xk+1h̃(x)

mit einer C∞-Funktion h̃, für die

h̃(0) =
1

(k + 1)!
fk+1(0) = 0.

Also gibt es eine C∞-Funktion h mit

h̃(x) = xh(x).

Dann ist f(x) = xk+2h(x), und aus der wiederholt angewendeten Produktregel folgt

1

(k + 2)!
f (k+2)(0) = h(0).
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Anhang 4: Differentiation von Reihen

Hier geben wir eine Verallgemeinerung des Satzes über die Differentiation von Potenzreihen
an:

Satz 305 (Differenzierbarkeit von Reihen). Auf dem offenen Intervall J seien diffe-
renzierbare Funktionen fk : J → R gegeben, so dass

∞∑

k=0

fk(x) (108)

für alle x ∈ J konvergent ist. Sei f : J → R die dadurch gegebene Summenfunktion.
Die Reihe

∑
f ′k(x) besitze eine von x unabhängige konvergente Majorante: Es gebe eine

konvergente Reihe
∑
ck reeller Zahlen mit

|f ′k| ≤ ck

für fast alle k. Dann ist f differenzierbar und es gilt

f ′ =
∞∑

k=0

f ′k.

Die Reihe (108) darf man also gliedweise differenzieren.

Beweis. Sei ǫ > 0. Dann gibt es N ∈ N mit

∞∑

k=N+1

ck < ǫ, (109)

und wir wählen ein solches. Nach dem Vergleichskriterium ist die Reihe
∑
f ′k(x) für jedes x

konvergent.

Seien nun x ∈ J und h ∈ R mit ]x − h, x + h[⊂ J . Nach den Rechenregeln für konvergente
Reihen erhalten wir

∣
∣
∣
∣

f(x+ h) − f(x)

h
−
∑

f ′k(x)

∣
∣
∣
∣
=

=

∣
∣
∣
∣
∣

N∑

k=0

(
fk(x+ h) − fk(x)

h
− f ′k(x)

)

+
∞∑

k=N+1

fk(x+ h) − fk(x)

h
−

∞∑

k=N+1

f ′k(x)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

N∑

k=0

(
fk(x+ h) − fk(x)

h
− f ′k(x)

)

+

∞∑

k=N+1

f ′k(ξk) −
∞∑

k=N+1

f ′k(x)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

N∑

k=0

(
fk(x+ h) − fk(x)

h
− f ′k(x)

)
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∞∑

k=N+1

f ′k(ξk)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∞∑

k=N+1

f ′k(x)

∣
∣
∣
∣
∣

<
N∑

k=0

∣
∣
∣
∣

fk(x+ h) − fk(x)

h
− f ′k(x)

∣
∣
∣
∣
+ 2ǫ

Weil die fk differenzierbar sind, gibt es zu jedem k ∈ {1, . . . , N} ein δk > 0, so dass für
|h| < δk ∣

∣
∣
∣

fk(x+ h) − fk(x)

h
− f ′k(x)

∣
∣
∣
∣
<

ǫ

N
.
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Ist daher |h| < δ = min{δ0, . . . , δk}, so folgt

∣
∣
∣
∣

f(x+ h) − f(x)

h
−
∑

f ′k(x)

∣
∣
∣
∣
< 3ǫ.

Anhang 5: Eine stetige, nirgends differenzierbare Funk-

tion

Schon Riemann und Weierstraß haben nach Funktionen gesucht, die zwar stetig, aber nir-
gends differenzierbar sind. Weierstraß hat wohl die erste solche Funktion gefunden. Hier
geben wir ein einfacheres Beispiel an, dass von T. Takagi (1903) stammt.

Sei K : R → R die stetige Funktion mit K(x+ 1) = K(x) und

K(x) :=

{

x für 0 ≤ x ≤ 1
2 ,

1 − x für1
2 ≤ x ≤ 1

und sei f die (ebenfalls 1-periodische) Funktion mit

f(x) :=
∞∑

k=0

K(2kx)

2k
. (110)

Nach dem Weierstraß-Kriterium aus Beispiel ?? ist f stetig. Wir wollen nun zeigen, dass
es nirgends differenzierbar ist. Der Beweis stammt von de Rham (1957). Wir betrachten
x0 ∈ R, n ∈ N \ {0} und i ∈ Z so, dass

αn :=
1

2n
≤ x0 ≤ βn :=

i+ 1

2n
.

Weil K(x) = K(0) = 0 für ganzzahliges x, erhalten wir

f(αn) =

∞∑

k=0

K(2k i
2n )

2k
=

n−1∑

k=0

K(2k i
2n )

2k
, f(βn) =

n−1∑

k=0

K(2k i+1
2n )

2k

Daher ist

rn :=
f(βn) − f(αn)

βn − αn
=
fn(βn) − fn(αn)

βn − αn
.

Aber die Funktion

fn =
n−1∑

k=0

K(2kx)

2k

ist ein Polygonzug und rn dessen Steigung auf dem Intervall ]αn, βn[. Nach Konstruktion
ist ]αn+1, βn+1[⊂]αn, βn[ und rn+1 = rn ± 1, so dass die Folge (rn) divergiert. Aber mit
λn := βn−x0

βn−αn
gilt

rn = λn
f(βn) − f(x0)

βn − x0
+ (1 − λn)

f(x0) − f(αn)

x0 − αn
,

wobei der erste Summand verschwindet, wenn x0 = αn (was dann übrigens x0 = αm für alle
m > n nach sich zieht). Wäre f in x0 differenzierbar, so wäre (rn) konvergent gegen gegen
die Ableitung an dieser Stelle. Widerspruch!
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1 Grundlagen der Topologie

1.1 Topologie in metrischen Räumen

• Bevor wir mit der Analysis von Funktionen mehrerer Variabler beginnen können,
müssen wir deren Definitionsbereiche, also höher-dimensionale Räume genauer ken-
nenlernen.

• Wir legen die Grundlagen für die Definition von Konvergenz in solchen Räumen und
damit für die Definitionen von Stetigkeit und Differenzierbarkeit von Funktionen auf
solchen Räumen.

Metrische Räume

• Wir lernen, was eine Metrik zur Abstandsmessung von Punkten in einem Raum (d.h.
in einer Menge) ist

• und betrachten dafür viele sehr verschiedene Beispiele. Das verdeutlicht gleichzeitig
die “Universalität”abstrakter mathematischer Begriffsbildungen.

Definition 1. Ein metrischer Raum ist ein Paar (X, d)
bestehend aus einer Menge X und einer Abbildung (der
Metrik)

d : X ×X → R

mit folgenden Eigenschaften für alle x, y, z ∈ X:

d(x, y) ≥ 0 und d(x, y) = 0 ⇔ x = y (1)

d(x, y) = d(y, x) (Symmetrie) (2)

d(x, z) ≤ d(x, y) + d(y, z) (Dreiecksungleichung) (3) x

y

z

d(x,z)

d(x,y)

d(y,z)

Beispiel 2. X = R, d(x, y) = |x− y|.

Beispiel 3 (Standardmetrik auf Rn). Wichtigstes Beispiel für dieses Semester:
Seien n ∈ N \ {0},

X = R
n := {(x1, . . . , xn) |xi ∈ R}

und für x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n

d(x, y) :=

√
√
√
√

n∑

i=1

(xi − yi)2.

Wir nennen diese Metrik die Euklidische Metrik oder die Standardmetrik auf Rn. Nur die
Dreiecksungleichung d(x, z) ≤ d(x, y)+d(y, z) bedarf eines Beweises. Wir verschieben ihn auf
das nächste Beispiel. Aber dort ist die Situation etwas allgemeiner und damit komplizierter.
Versuchen Sie einen einfacheren Beweis zu finden.
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Beispiel 4 (lp-Metrik). Für den R
n gibt es nicht nur die im letzten Beispiel angegebene

Metrik, sondern viele mehr. Zum Beispiel für p ≥ 1 die sogenannte lp-Metrik:

dp(x, y) := p

√∑

|xi − yi|p

Für p = 1 können Sie die Dreiecksungleichung selbst beweisen, für p > 1 ist das etwas
komplizierter. An der Stelle (∗) benutzen wir die Höldersche Ungleichung aus der Analysis I:

Es gilt mit q := p
p−1 für ai, bi ∈ R

n∑

i=1

|ai + bi|p =

n∑

i=1

|ai + bi| |ai + bi|p−1 ≤
n∑

i=1

|ai| |ai + bi|p−1 +

n∑

i=1

|bi| |ai + bi|p−1

≤
(∗)

(
n∑

i=1

|ai|p
) 1

p
(

n∑

i=1

|ai + bi|q(p−1)

) 1
q

+ . . .

=





(
n∑

i=1

|ai|p
) 1

p

+

(
n∑

i=1

|bi|p
) 1

p





(
n∑

i=1

|ai + bi|p
) 1

q

.

Division mit (
∑n

i=1 |ai + bi|p)
1
q liefert wegen 1− 1

q = 1
p

(
n∑

i=1

|ai + bi|p
) 1

p

≤
(

n∑

i=1

|ai|p
) 1

p

+

(
n∑

i=1

|bi|p
) 1

p

,

falls
∑n

i=1 |ai+ bi|p > 0. Aber die Ungleichung gilt natürlich auch, wenn
∑n

i=1 |ai+ bi|p = 0.
Mit

ai := yi − xi, bi := zi − yi.

ergibt sich die Dreiecksungleichung für dp.

Beispiel 5 (l∞-Metrik). Die sogenannte l∞-Metrik

d∞(x, y) := sup{|xi − yi| | 1 ≤ i ≤ n}.
ist eine weitere Metrik auf dem R

n. Beweisen Sie die Dreiecksungleichung und

lim
p→∞

dp(x, y) = d∞(x, y)

zur Rechtfertigung der Bezeichnung d∞.

Ein exotischeres Beispiel:

Beispiel 6 (U-Bahn). Sei X die Menge der Berliner U-Bahnstationen und d(x, y) für x, y ∈
X die Länge der kürzesten Schienenverbindung zwischen x und y.

Beispiel 7 (Spurmetrik). Ist (X, d) ein metrischer Raum, so ist jede Teilmenge A ⊂ X auf
natürliche Weise ein metrischer Raum mit der von d induzierten Metrik oder Spurmetrik

dA(x, y) := d(x, y)

für x, y ∈ A.
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Beispiel 8 (Diskrete Metrik). Ist X eine Menge, so liefert

d(x, y) =

{

0 für x = y

1 sonst

eine Metrik auf X, die sogenannte diskrete Metrik. Beweisen Sie die Dreiecksungleichung.

Definition 9 (Beschränktheit). Sei (Y, d) ein metrischer Raum.

(i) A ⊂ Y heißt beschränkt, wenn gilt:

• Zu jedem y ∈ Y gibt es ein M ∈ R mit d(y, y′) ≤M für alle y′ ∈ A.

Ist Y 6= ∅, so ist das äquivalent zu folgender Bedingung:

• Es gibt ein y ∈ Y und ein M ∈ R mit d(y, y′) ≤M für alle y′ ∈ A.

(ii) Für ∅ 6= A ⊂ Y heißt

diamA := sup
{
d(y′, y′′)

∣
∣ y′, y′′ ∈ A

}

der Durchmesser von A. Wir setzen diam ∅ := 0.

(iii) Eine Abbildung f : X → Y einer Menge X heißt beschränkt, wenn f(X) ⊂ Y be-
schränkt ist.

Lemma 10. Eine Teilmenge A des metrischen Raumes (Y, d) ist genau dann beschränkt,
wenn sie endlichen Durchmesser hat.

Beweis. Sie o.E. A 6= ∅. Ist A beschränkt, so gibt es M ∈ R und y ∈ Y mit d(y, y′) < M für
alle y′ ∈ A. Also gilt für alle y′, y′′ ∈ A

d(y′, y′′) ≤ d(y′, y) + d(y, y′′) < 2M.

Damit ist diamA ≤ 2M .

Ist umgekehrt M := diamA <∞ und y ∈ A, so gilt für alle y′ ∈ A

d(y, y′) ≤M,

also ist A beschränkt.

Funktionenräume. Wir nehmen nun eine ganz wesentliche Erweiterung unseres Horizontes
vor: Neben den Räumen, auf denen unsere Funktionen definiert sind, betrachten wir auch
Räume, deren Elemente (Punkte?!) selbst Funktionen sind, sogenannte Funktionenräume.
Denn wie zum Beispiel die Theorie der Potenzreihen zeigt, sind wir auch an der Konvergenz
von Funktionenfolgen interessiert.

Satz 11 (Supremumsmetrik). Seien (Y, d) ein metrischer Raum und X eine beliebige Menge,
beide 6= ∅. Sei

B(X,Y ) :=
{
f : X → Y

∣
∣ f beschränkt

}

die Menge der beschränkten Abbildungen von X in Y . Dann definiert

dsup(f, g) := sup
{
d(f(x), g(x))

∣
∣x ∈ X

}

eine Metrik auf B(X,Y ), die sogenannte Supremumsmetrik.
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Beweis. Sei x0 ∈ X. Dann gibt es zu f, g ∈ B(X,Y )
ein M mit

d(f(x0), f(x)) < M und d(g(x0), g(x)) < M

für alle x ∈ X. Daher ist für alle x

d(f(x), g(x)) < 2M + d(f(x0), g(x0)),

und supx∈X d(f(x), g(x)) ∈ R.

Also ist dsup : B(X,Y )× B(X,Y ) → R definiert.

d(f,g)

f

g

X=[a,b]
a b

Y= RI

(1), (2) sind trivial. Zur Dreiecksungleichung:

dsup(f, h) = sup
x
d(f(x), h(x))

≤ sup
x

(d(f(x), g(x)) + d(g(x), h(x)))

≤ sup
x
d(f(x), g(x)) + sup

x
d(g(x), h(x))

= dsup(f, g) + dsup(g, h).

Bemerkung: Für X = {1, . . . , n}, Y = R sind (B(X,Y ), dsup) und (Rn, d∞) isometrisch
isomorph:

(B(X,Y ), dsup) ∼= (Rn, d∞).

Das heißt, es gibt eine Bijektion φ : B(X,Y ) → R
n, nämlich

φ : f 7→ (f(1), . . . , f(n)),

für die
d∞(φ(f), φ(g)) = dsup(f, g).
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Topologie in metrischen Räumen

• Wir erklären, was Umgebungen und was offene Mengen in einem metrischen Raum
sind und lernen deren wesentliche Eigenschaften kennen.

• Begriffe wie Konvergenz oder Stetigkeit lassen sich allein mit dem Offenheitsbegriff
ohne weiteren Rückgriff auf die Metrik definieren. Das ist der Ausgangspunkt der Ver-
allgemeinerung metrischer Räume zu sogenannten topologischen Räumen, aber darauf
gehen wir in diesem Semester nicht näher ein.

Sei (X, d) ein metrischer Raum.

Definition 12 (Umgebung, offen, abgeschlossen). Sei a ∈ X.

(i) Für ǫ > 0 heißt
Uǫ(a) := {x ∈ X | d(x, a) < ǫ}

die offene Kugel vom Radius ǫ um a oder die (offene) ǫ-Umgebung von a.

(ii) U ⊂ X heißt eineUmgebung von a, wenn es ǫ > 0 gibt, so dass Uǫ(a) ⊂ U .

(iii) Y ⊂ X heißt offen, wenn Y eine Umgebung jedes seiner Punkte x ∈ Y ist.

(iv) Y ⊂ X heißt abgeschlossen, wenn X \Y offen ist.

Beispiel 13. Für die Standardmetrik bzw. die Metrik d∞ auf R2 findet man:

a

U (a)
ε

a

U (a)
ε

Beispiel 14. Für die Supremumsmetrik auf B(X,Y ) besteht Uǫ(f) aus allen Funktionen
g : X → Y mit

sup{d(f(x), g(x)) |x ∈ X} < ǫ.

Beispiel 15. Sei (X, d) = R mit der Standardmetrik.

]0, 1[, ]1,∞[, ]−∞,∞[ sind offen

[0, 1], [1,∞[, ]−∞,∞[ sind abgeschlossen,

[0, 1[ ist weder offen noch abgeschlossen.

Beispiel 16. In jedem (X, d) sind X und ∅ sowohl offen als auch abgeschlossen.
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Beispiel 17. Bezüglich der diskreten Metrik sind alle Teilmengen offen, also alle Teilmengen
auch abgeschlossen.

Beispiel 18. Die offenen Kugeln Uǫ(a) sind offen (Dreiecksungleichung).

Satz 19. Die Menge der stetigen Funktionen

C0([a, b]) :=
{
f : [a, b] → R

∣
∣ f stetig

}

ist eine abgeschlossene Teilmenge von (B([a, b],R), dsup).

Beweis. Zunächst sind stetige Funktionen auf einem kompakten Intervall beschränkt. Also
ist wirklich C0([a, b]) ⊂ B([a, b],R).
Sei f ∈ B([a, b],R) unstetig an der Stelle x0 ∈ [a, b]. Dann gibt es ein ǫ > 0, so dass für alle
δ > 0 gilt:

Es gibt ein x ∈ [a, b] mit |x− x0| < δ und |f(x)− f(x0)| ≥ ǫ.

Sei nun g ∈ Uǫ/3(f), dh. g ∈ B([a, b],R) und sup |f − g| < ǫ/3.

Dann gibt es zu jedem δ > 0 also ein x ∈ [a, b] mit |x− x0| < δ und

ǫ ≤ |f(x)− f(x0)| ≤ |f(x)− g(x)|
︸ ︷︷ ︸

<ǫ/3

+|g(x)− g(x0)|+ |g(x0)− f(x0)|
︸ ︷︷ ︸

<ǫ/3

.

Also gibt es zu jedem δ > 0 ein x ∈ [a, b] mit

|x− x0| < δ und |g(x)− g(x0)| ≥
ǫ

3
.

Also ist g unstetig und Uǫ/3(f) besteht nur aus unstetigen Funktionen. Daher ist die Menge
der unstetigen Funktionen in B([a, b],R) offen und das Komplement C0([a, b]) abgeschlossen.

Satz 20 (Metrische Räume sind Hausdorffsche Räume). Sind x, y ∈ X zwei verschiedene
Punkte eines metrischen Raumes, so gibt es Umgebungen U von x und V von y, die disjunkt
sind.

Beweis. Sei ǫ := d(x, y). Wir setzen

U := Uǫ/2(x), V := Uǫ/2(y).

Wäre z ∈ U ∩ V , so wäre

d(x, y) ≤ d(x, z) + d(z, y) < ǫ/2 + ǫ/2 = ǫ.

Das ist ein Widerspruch zur Definition von ǫ. Also gibt es kein z ∈ U ∩V : Der Durchschnitt
ist leer.

12



Satz 21 (Vereinigung und Durchschnitt offener Mengen). Die Vereinigung von beliebig
vielen und der Durchschnitt von endlich vielen offenen Teilmengen eines metrischen Raumes
sind wieder offen.

Beweis. Sei (Ui)i∈I eine Familie offener Mengen in X. Ist x ∈ ⋃i∈I Ui, so gibt es ein i ∈ I
mit x ∈ Ui. Weil Ui offen ist, gibt es dazu ein ǫ > 0 mit

Uǫ(x) ⊂ Ui ⊂
⋃

i∈I

Ui.

Also ist
⋃

i∈I Ui offen.

Ist andrerseits x ∈ ⋂i∈I Ui, so gibt es zu jedem i ∈ I ein ǫi > 0 mit

Uǫi(x) ⊂ Ui.

Wir wählen zu jedem i ein solches ǫi > 0. Ist die Indexmenge I endlich, so ist

ǫ := min{ǫi | i ∈ I}

positiv, und es gilt für jedes i ∈ I

Uǫ(x) ⊂ Uǫi(x) ⊂ Ui.

Daher ist
Uǫ(x) ⊂

⋂

i∈I

Ui.

Für unendliches I klappt das letzte Argument des Beweises nicht und ist die Aussage auch
nicht richtig:

Beispiel 22. Der Durchschnitt der unendlich vielen offenen Intervalle ]− 1
n ,

1
n [⊂ R ist {0},

also nicht offen bezüglich der Standardmetrik auf R.

Korollar 23. Der Durchschnitt von beliebig vielen und die Vereinigung von endlich vielen
abgeschlossenen Mengen sind wieder abgeschlossen.

Beweis. Der Beweis geschieht durch
”
Dualisieren“. Man benutzt folgende Tatsache: Ist

(Ai)i∈I eine beliebige Familie von Teilmengen von X, so gilt für x ∈ X:

x ∈
⋂

i∈I

Ai ⇐⇒ x /∈
⋃

i∈I

(X \Ai).

Das heißt
⋂

i∈I

Ai = X \
⋃

i∈I

(X \Ai)

und ebenso
⋃

i∈I

Ai = X \
⋂

i∈I

(X\Ai) .

Daraus ergibt sich mit dem vorstehenden Satz die Behauptung.
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Bemerkung. Sei X eine Menge und T ⊂ P(X) eine Teilmenge der Potenzmenge von
X. Sind die Vereinigung beliebig vieler und der Durchschnitt endlich vieler Mengen aus T
wieder in T , so nennt man T eine Topologie für X und (X, T ) einen topologischen Raum.1

Die Mengen aus T nennt man dann die offenen Mengen von (X, T ). Ein beliebiges U ⊂ X
heißt eine Umgebung von x ∈ X, wenn es eine offene Menge V ∈ T gibt, so dass

x ∈ V ⊂ U.

Topologische Räume sind eine Verallgemeinerung der metrischen Räume. In ihnen kann man
Begriffe wie Konvergenz, Stetigkeit usw. einführen.

Satz 24 (Spurtopologie). Seien (X, d) ein metrischer Raum und A ⊂ X eine beliebige
Teilmenge versehen mit der induzierten Metrik dA. Dann sind die offenen Teilmengen von
(A, dA) genau die Durchschnitte offener Teilmengen von (X, d) mit A:

B ⊂ A ist offen in (A, dA) ⇐⇒ Es gibt eine offene Teilmenge Y in (X, d) mit B = A ∩ Y .

Der Satz gilt auch mit “abgeschlossen” statt “offen”.

Beweis. Zu (⇐). Selbst.

Zu (⇒). Sei B ⊂ A offen. Dann gibt es zu jedem x ∈ B ein ǫ(x) > 0 mit

B ⊃ UA
ǫ(x)(x) :=

{
y ∈ A

∣
∣ dA(x, y) = d(x, y) < ǫ(x)

}
= A ∩ UX

ǫ(x)(x),

wobei
UX
ǫ(x)(x) :=

{
y ∈ X

∣
∣ dA(x, y) = d(x, y) < ǫ(x)

}
.

Die Menge

Y :=
⋃

x∈B

UX
ǫ(x)(x)

ist als Vereinigung offener Teilmengen von X offen in X und es gilt B = A ∩ Y . Damit ist

”
⇒“ für offene Mengen gezeigt.

Ist B ⊂ A abgeschlossen in A, so ist A \B offen in A. Also gibt es nach dem eben Bewiesenen
eine offene Teilmenge Y ⊂ X mit A \B = A ∩X und B = A ∩ (X \Y )ist der Durchschnitt
von A mit der abgeschlossenen Teilmenge X \Y von X.

Beispiel 25. Sei X =]0, 3] mit der Standardmetrik d(x, y) = |x− y|. Überlegen Sie, welche
Attribute auf welche Teilmengen von X zutreffen, welche nicht:

]0, 1] ]2, 3] ]1, 2] ]0, 3]

offen

abgeschlossen

1 Dabei definiert man den “leeren Durchschnitt” als X und die “leere Vereinigung” als ∅. Will man diese
logische Spitzfindigkeit vermeiden, so fordert man noch, dass X ∈ T und ∅ ∈ T .
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Definition 26 (Inneres, abgeschlossene Hülle, Rand). Seien (X, d) ein metrischer Raum
und Y ⊂ X. Wir definieren:

(i) Das Innere von Y oder der offene Kern von Y ist die Menge

◦

Y := Y 0 := {y ∈ Y | ∃ǫ>0 Uǫ(y) ⊂ Y }.

Die Punkte von
◦

Y heißen innere Punkte von Y .

(ii) Die abgeschlossene Hülle von Y ist die Menge

Ȳ := X \ (X \Y )0.

(iii) Der Rand von Y ist die Menge

∂Y := Ȳ \
◦

Y .

Satz 27. Sei Y ⊂ X. Dann gilt

(i)
◦

Y ist die größte offene Menge in Y :

◦

Y =
⋃

U offen, U⊂Y

U.

Insbesondere ist
◦

Y als Vereinigung offener Mengen selber offen.

(ii) Ȳ ist die kleinste abgeschlossene Menge, die Y enthält:

Ȳ =
⋂

A abgeschlossen, A⊃Y

A.

Insbesondere ist Ȳ als Durchschnitt abgeschlossener Mengen selber abgeschlossen.

(iii) Die Randpunkte von Y sind charakterisiert dadurch, dass jede ihrer Umgebungen Punk-
te von Y und Punkte von X \Y enthält:

∂Y =
{
x ∈ X

∣
∣ ∀ǫ>0 Uǫ(x) ∩ Y 6= ∅ und Uǫ(x) ∩ (X \Y ) 6= ∅

}
.

∂Y ist abgeschlossen.

Beweis. Zu (i). Sei

V :=
⋃

U offen, U⊂Y

U.

Zunächst gilt
◦

Y ⊂ V . Ist nämlich y ∈
◦

Y , so gibt es ǫ > 0 mit U := Uǫ(y) ⊂ Y , und U ist
offen. Also ist y ∈ V .

Weiter ist
◦

Y ⊃ V . Ist nämlich y ∈ V , so gibt es ein offenes U ⊂ Y mit y ∈ U . Da U offen

ist, gibt es ein ǫ > 0 mit Uǫ(y) ⊂ U ⊂ Y . Also ist y ∈
◦

Y .

Damit ist
◦

Y = V .
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Zu (ii). Das beweisen wir durch
”
Dualisieren“.

Ȳ = X \ (X \Y )0 = X \




⋃

(X \Y )⊃U offen

U



 =
⋂

(X \Y )⊃U offen

(X \U)

=
⋂

Y⊂(X \U),U offen

(X \U) =
⋂

Y⊂A, A abgeschlossen

A

Zu (iii). Nach Definition ist

Ȳ \Y 0 = (X \ (X \Y )0) \Y 0 = X \
(
(X \Y )0 ∪ Y 0

)
.

In (X \Y )0 liegen alle Punkte, die eine ganz in X \Y liegende Umgebung besitzen. In Y 0

liegen alle Punkte, die eine ganz in Y liegende Umgebung besitzen. Also besteht Ȳ \Y 0

genau aus den Punkten, deren sämtliche Umgebungen sowohl Y wie X \Y treffen. Daraus
folgt ∂Y = Ȳ \Y 0 und auch die Abgeschlossenheit von ∂Y .

Beispiel 28. Seien

U :=
{
(x, y, 0) ∈ R

3
∣
∣x2 + y2 < 1

}
⊂ R

3

E :=
{
(x, y, 0) ∈ R

3
∣
∣x, x ∈ R

}
⊂ R

3

Wir betrachten den R
3 mit der Standardmetrik d. Dann ist das Innere

◦

U = ∅ und

∂U = Ū =
{
(x, y, 0) ∈ R

3
∣
∣x2 + y2 ≤ 1

}
.

Betrachtet man hingegen U als Teilmenge von
(E, dE), so ist

◦

U = U,

Ū =
{
(x, y, 0) ∈ R

3
∣
∣x2 + y2 ≤ 1

}
,

∂U =
{
(x, y, 0) ∈ R

3
∣
∣x2 + y2 = 1

}
.

E

U
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1.2 Konvergenz

• Wir definieren Konvergenz in metrischen Räumen.

• Wir konkretisieren das an sehr verschiedenen Beispielen.

• Wir untersuchen den Zusammenhang mit der Offenheit und Abgeschlossenheit von
Mengen.

• Als wichtige Sätze lernen wir das Schachtelungsprinzip und den Banachschen Fix-
punktsatz kennen.

Sei (X, d) ein metrischer Raum.

Definition 29 (Konvergente Folgen). Sei (xk)k∈N eine Folge in (X, d). Die Folge heißt
konvergent gegen a ∈ X, und wir schreiben

lim
k→∞

xk = a oder xk → a,

wenn limk→∞ d(xk, a) = 0.

Dann heißt a der Limes oder Grenzwert der Folge.

Die Folge heißt konvergent, wenn es ein a ∈ X gibt, so dass (xk) gegen a konvergiert.

Eine nicht konvergente Folge heißt divergent.

Sei E eine Eigenschaft, die für alle Glieder einer Folge (xk) wahr oder falsch ist.
Wie im letzten Semester vereinbaren wir folgende äquivalente Sprechweisen:

• Es gibt ein k0 ∈ N, so dass E wahr ist für alle xk mit k ≥ k0.

• E gilt für fast alle Folgenglieder (oder für fast alle k).

• E gilt für alle hinreichend großen k.

Dann ist limk→∞ xk = a, wenn in jeder Umgebung von a fast alle Glieder der Folge (xk)
liegen oder, äquivalent, wenn in jedem Uǫ(a) mit ǫ > 0 fast alle Glieder der Folge (xk) liegen.

Nach der Hausdorff-Eigenschaft ist der Grenzwert einer konvergenten Folge eindeutig be-
stimmt.

Beispiel 30. Für R mit der Standardmetrik ist diese Konvergenz die übliche aus Analysis I.

Satz 31 (Koordinatenweise Konvergenz). Wir betrachten eine Folge (xk)k∈N im R
n mit der

Standardmetrik und schreiben xk = (xk1, . . . , xkn). Weiter sei a = (a1, . . . , an) ∈ R
n. Dann

gilt

lim
k→∞

xk = a ⇐⇒ lim
k→∞

xkj = aj für alle j.

Dasselbe gilt auch für R
n mit der dp-Metrik, 1 ≤ p ≤ ∞ beliebig.

Beweis. Sei 1 ≤ p <∞ Für alle k ∈ N und j ∈ {1, . . . , n} gilt

|xkj − aj | ≤
(

n∑

i=1

|xki − ai|p
)1/p

︸ ︷︷ ︸

d(xk,a)

≤ n1/p sup
1≤i≤n

|xki − ai|.
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Daraus folgt die Behauptung. Wie argumentiert man für p = ∞?

Bemerkung.Die Ungleichung im letzten Beispiel hat als einfache Konsequenz die Abschätzung

d∞(x, y) ≤ dp(x, y) ≤ n1/pd∞(x, y). (4)

Schließen Sie daraus, dass die offenen Mengen in (Rn, dp) für jedes p ∈ [1,+∞[ dieselben
sind wie in (Rn, d∞).

Satz 32 (Folgen-Abgeschlossenheit). Sei A eine Teilmenge des metrischen Raumes (X, d).
Dann sind die beiden folgenden Aussagen äquivalent:

(i) A ist abgeschlossen.

(ii) Für jede konvergente Folge (xk)k∈N mit limxk = x gilt:

(∀k xk ∈ A) =⇒ x ∈ A.

A ist also genau dann abgeschlossen, wenn es bezüglich der Grenzwertbildung abgeschlossen
ist.

Beweis. Zu (i) =⇒ (ii). Sei A abgeschlossen. Sei (xk) eine Folge in A und limxk = x ∈ X.
Zu zeigen: x ∈ A. Wäre x /∈ A, so läge a also in der offenen Menge X \A, und diese wäre
eine Umgebung von x. Dann lägen fast alle xk in X \A. Es liegt aber kein xk in dieser
Menge.

Zu (ii) ⇐= (i). Der Grenzwert jeder konvergenten Folge in A liege wieder in A. Wir zeigen
X \A ist offen. Andernfalls gibt es nämlich einen Punkt x /∈ A, so dass kein Uǫ(x) ganz
in X \A liegt. Dann gibt es zu jedem k ∈ N ein xk ∈ A mit xk ∈ U 1

k+1
(x). Offenbar

konvergieren die xk gegen x ∈ X \A. Widerspruch!

Beispiel 33 (Produktmengen). Seien A1, . . . , An ⊂ R abgeschlossen. Dann ist auch A1 ×
. . . × An ⊂ R

n abgeschlossen. Das folgt unmittelbar aus dem vorstehenden Satz in Verbin-
dung mit Satz 31.

Definition 34 (Gleichmäßige Konvergenz). Eine Folge (fk)k∈N von Abbildungen

fk : X → Y

der Menge X 6= ∅ in den metrischen Raum (Y, d) heißt gleichmäßig konvergent gegen f :
X → Y , wenn gilt:

∀ǫ>0 ∃k0∈N ∀k≥k0
∀x∈X d(fk(x), f(x)) < ǫ.

Das ist äquivalent zu

∀ǫ>0 ∃k0∈N ∀k≥k0
sup
x∈X

d(fk(x), f(x)) < ǫ.

Beispiel 35. Eine Folge (fk) in B(X,Y ) ist bezüglich der sup-Metrik konvergent gegen
f ∈ B(X,Y ) genau dann, wenn sie gleichmäßig gegen f konvergiert.

Der Begriff der gleichmäßigen Konvergenz macht allerdings auch für Folgen unbeschränkter
Funktionen einen Sinn.
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Beispiel 36 (Ungleichmäßige Konvergenz). Sei fk : [0, 1] → [0, 1], x 7→ xk und sei

f(x) :=

{

1 für x = 1,

0 sonst.

Dann konvergiert für jedes x ∈ [0, 1] die Folge
(fk(x))k∈N gegen f(x).
Man sagt, die Funktionenfolge (fk) konvergiert
punktweise gegen f . Aber für jedes k ist

sup
0≤x≤1

|fk(x)− f(x)| = 1,

und daher ist die Konvergenz nicht gleichmäßig.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Satz 37. Sei (fk : [a, b] → R)k∈N eine Folge stetiger Funktionen. Ist diese Folge gleichmäßig
konvergent gegen f : [a, b] → R, so ist f stetig.

Beweis. Als stetige Funktionen auf einem kompakten Intervall sind die fk beschränkt. Also
liegt die Folge in B([a, b],R). Auch die Grenzfunktion liegt in diesem Raum, weil sie sich
von fk für großes k nur wenig, zum Beispiel weniger als 1 unterscheidet. Also ist sie auch
beschränkt. Die Folge (fk) konvergiert also in B([a, b],R) gegen f . Nach Satz 19 ist C0([a, b])
abgeschlossen, und nach Satz 32 liegt der Grenzwert f dann auch in C0([a, b]).

Definition 38 (Cauchyfolge). Eine Folge (xk) in (X, d) heißt Cauchyfolge, wenn gilt:

∀ǫ>0 ∃k0∈N ∀k,l>k0
d(xk, xl) < ǫ.

Ist jede Cauchyfolge in (X, d) konvergent, so heißt (X, d) vollständig.

Beispiel 39. Jede konvergente Folge ist eine Cauchyfolge. Das beweist man wie in der
Analysis I.

Beispiel 40. Der Rn mit jeder der Metriken dp, 1 ≤ p ist vollständig. Ist nämlich (xk)k∈N

eine Cauchyfolge, so ist wegen

|xki − xli| ≤




∑

j

|xkj − xlj |p




1/p

= dp(xk, xl)

für alle i auch (xki)k inN eine Cauchyfolge, also konvergent. Aber koordinatenweise Konver-
genz bedeutet Konvergenz im (Rn, dp).

Beispiel 41. (B(X,Y ), dsup) ist vollständig, falls (Y, d) vollständig ist. (Beweis selbst).
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Satz 42. Ist (X, d) vollständig und A ⊂ X versehen mit der induzierten Metrik dA, so gilt

(A, dA) vollständig ⇔ A abgeschlossen.

Beweis. Zu ( =⇒ ). Sei (A, dA) vollständig und sei (ak)k∈N eine Folge in A, die gegen x ∈ X
konvergiert. Wir müssen zeigen, dass x ∈ A.

Als konvergente Folge ist (ak) eine d-Cauchyfolge. Damit ist sie aber wegen d(ak, al) =
dA(ak, al) auch eine dA-Cauchyfolge und nach Voraussetzung konvergent gegen ein a ∈ A.
Das bedeutet lim dA(ak, a) = lim d(ak, a) = 0. Also konvergiert (ak) auch in X gegen a.
Dann ist aber wegen der Eindeutigkeit des Grenzwertes x = a ∈ A.

Zu (⇐=). Seien nun A abgeschlossen und (ak) eine Cauchyfolge in (A, dA). Das ist dann
auch eine Cauchyfolge in (X, d), also konvergent gegen ein x ∈ X. Weil A abgeschlossen ist,
liegt x in A und ist der Grenzwert von (ak) in (A, dA).

Satz 43 (Schachtelungsprinzip). Sei (X, d) vollständig und

A0 ⊃ A1 ⊃ . . . (5)

eine
”
absteigende“ Folge von abgeschlossenen Mengen 6= ∅. Es gelte limk→∞ diamAk = 0.

Dann gibt es genau ein x∗ ∈ X, das in allen Ak liegt:

{x∗} =

∞⋂

k=0

Ak.

Beweis. Eindeutigkeit. Sind x∗0, x
∗
1 ∈ ⋂∞

k=0Ak, so gilt

x∗0, x
∗
1 ∈ Ak für alle k ∈ N,

und daher
d(x∗0, x

∗
1) ≤ diamAk.

Daher ist d(x∗0, x
∗
1) = 0, also x∗0 = x∗1.

Existenz. Wähle aus jedem Ak ein ak. Wir wollen zunächst zeigen, dass die Folge (ak) eine
Cauchyfolge ist. Sei also ǫ > 0. Da diamAk → 0 gibt es ein k0 ∈ N mit

diamAk ≤ ǫ für alle k ≥ k0.

Sind k, l ≥ k0, so sind nach (5)
ak, al ∈ Ak0

.

Damit ist aber
d(ak, al) ≤ ǫ

und (ak) ist eine Cauchyfolge. Weil (X, d) vollständig ist, ist sie konvergent gegen ein x∗ ∈ X,
und es bleibt zu zeigen, dass x∗ ∈ Ak für alle k. Aber die Folge (al)l≥k ist, wiederum wegen
(5), eine Folge in der abgeschlossenen Menge Ak, und deshalb liegt ihr Grenzwert in Ak.

Lemma 44 (Cauchyfolgenkriterium). Sei (xk)k∈N eine Folge im metrischen Raum (X, d).
Setze ak := d(xk, xk+1). Ist

∑∞
k=0 ak konvergent, so ist (xk)k∈N eine Cauchyfolge.
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Die Umkehrung gilt aber nicht, finden Sie ein Gegenbeispiel.

Beweis. Nach der Dreiecksungleichung ist

d(xk, xk+l) ≤
k+l−1∑

j=k

d(xj , xj+1) =

k+l−1∑

j=k

aj = |sk+l−1 − sk−1|,

wenn sk die k-te Partialsumme der Reihe
∑∞

k=0 ak bezeichnet. Die bilden aber nach Vor-
aussetzung eine Cauchyfolge.

Definition 45. Eine Abbildung f : X → Y zwischen metrischen Räumen (X, dX), (Y, dY )
heißt kontrahierend, wenn es ein λ ∈]0, 1[ gibt, so dass für alle x1, x2 ∈ X

dY (f(x1), f(x2)) ≤ λdX(x1, x2).

Wichtig ist die echte Ungleichung λ < 1. Die Zahl λ heißt dann auch ein Kontraktionsmodul
von f .

Satz 46 (Banachscher Fixpunktsatz). Seien (X, d) ein nicht-leerer, vollständiger metrischer
Raum und f : X → X eine kontrahierende Abbildung. Dann hat f genau einen Fixpunkt:
Es gibt genau ein x∗ ∈ X mit f(x∗) = x∗.
Ist x0 ∈ X und definiert man rekursiv xk+1 = f(xk) für alle k ∈ N, so ist die Iterationsfolge
(xk)k∈N konvergent gegen x∗.

Beweis. Zur Einzigkeit. Aus f(x∗1) = x∗1 und f(x∗2) = x∗2 folgt

d(x∗1, x
∗
2) = d(f(x∗1), f(x

∗
2)) ≤ λd(x∗1, x

∗
2) < d(x∗1, x

∗
2).

Daraus folgt d(x∗1, x
∗
2) = 0, also x∗1 = x∗2.

Existenz. Seien x0 ∈ X und dazu (xk)k∈N definiert wie im Satz. Wir zeigen, dass (xk)k∈N

eine Cauchyfolge ist. Zunächst ist

d(xk, xk+1) ≤ λd(xk−1, xk) ≤ λ2d(xk−2, xk−1) ≤ . . . ≤ λkd(x0, x1)

Weil die Reihe
∑∞

k=0 λ
kd(x0, x1) konvergiert, ist nach dem Cauchyfolgenkriterium (xk) also

eine Cauchyfolge und wegen der Vollständigkeit konvergent gegen ein x∗ ∈ X.

Es bleibt zu zeigen, dass x∗ ein Fixpunkt von f ist. Beachten Sie dazu, dass für alle k

d(f(x∗), x∗) ≤ d(f(x∗), xk+1) + d(xk+1, x
∗) ≤ d(f(x∗), f(xk)) + d(xk+1, x

∗)

≤ λ d(x∗, xk)
︸ ︷︷ ︸

→0

+ d(xk+1, x
∗)

︸ ︷︷ ︸

→0

.

Es folgt d(f(x∗), x∗) = 0, also f(x∗) = x∗.

Bemerkung. Die Behauptung des Satzes gilt auch unter der schwächeren(!) Voraussetzung,
dass nicht f , aber für ein m ∈ N die m-te Iteration fm := f ◦ . . .◦f kontrahierend ist. Beweis
als Übung.
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1.3 Kompaktheit

• Mit der Kompaktheit lernen wir einen zentralen Begriff der Topologie, der Analysis
und der Geometrie kennen.

• Die Definition mittels offener Überdeckungen ist logisch nicht ganz einfach, dafür aber
an die vielfältigen Verwendungen der Kompaktheit angepasst. Da müssen Sie also
durch ....

• Im R
n gibt es eine einfache Charakterisierung kompakter Mengen (Satz von Heine-

Borel), die aber in unendlich-dimensionalen (und vielen anderen) Räumen nicht greift.

• Mit der Hausdorffmetrik sprechen wir kurz den Themenkreis der fraktalen Geometrie
an.

Definition 47 (Kompaktheit). Seien (X, d) ein metrischer Raum und A ⊂ X.

(i) Eine offene Überdeckung von A ist eine Familie (Ui)i∈I von offenen Teilmengen Ui ⊂ X,
so dass A ⊂ ⋃i∈I Ui.

(ii) A heißt kompakt, wenn jede offene Überdeckung von A eine endliche Überdeckung von
A enthält, d.h. wenn gilt: Ist (Ui)i∈I eine offene Überdeckung von A, so gibt es eine
endliche Teilmenge K ⊂ I, so dass A ⊂ ⋃i∈K Ui. Man nennt (Ui)i∈K dann auch eine
endliche Teilüberdeckung2 von A.

Beispiel 48. Sei (an) eine gegen a ∈ X konvergente Folge in einem metrischen Raum. Dann
ist A := {a} ∪ {an |n ∈ N} kompakt. Hat man nämlich eine offenen Überdeckung (Ui)i∈I

gegeben, so liegt a in einer der offenen Mengen. In dieser liegen dann aber fast alle ak, und
man braucht nur noch endlich viele weitere Ui, um den Rest

”
einzufangen“.

Beispiel 49. Eine Teilmenge A eines metrischen Raumes (X, d) ist genau dann kompakt,
wenn sie als (triviale) Teilmenge von (A, dA) kompakt ist. Beweisen Sie das!

Verallgemeinerung auf topologische Räume. Da die vorstehende Definition nur den Begriff offener

Mengen, nicht aber explizit die Metrik benutzt, überträgt sie sich unmittelbar auf topologische Räume.

Auch die vorstehenden Beispiele übertragen sich.

Satz 50. Seien I1, . . . , In abgeschlossene und beschränkte Intervalle in R, Ik = [ak, bk].
Dann ist der abgeschlossene Quader

Q := I1 × . . .× In

kompakt.

Beweis. Sei (Ui)i∈I eine offene Überdeckung von Q.

Annahme: Keine endliche Teilfamilie von (Ui)i∈I überdeckt ganz Q.

2Der Name ist etwas problematisch:
”
Teil“ heißt nicht, dass nur ein Teil von A überdeckt wird, sondern,

dass man nur einen Teil der Familie offener Mengen – genauer: eine Teilmenge der Indizes – benutzt.
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Wir zerlegen Q durch Halbieren aller Seiten in 2n abgeschlossene Teilquader vom halben
Durchmesser. Dann gibt es wenigstens eines dieser Teilquader, wir nennen es Q1, welches
nicht durch endlich viele der Ui zu überdecken ist. Wir zerlegen Q1 durch Halbieren aller Sei-
ten in 2n abgeschlossene Teilquader vom halben Durchmesser. Dann gibt es wenigstens einen
dieser Teilquader, wir nennen es Q2, welches nicht durch endlich viele der Ui zu überdecken
ist. Durch Fortsetzung dieses Verfahrens finden wir eine Folge von abgeschlossenen Quadern

Q ⊃ Q1 ⊃ Q2 ⊃ . . .

mit diamQk → 0, deren keines sich durch endlich viele der Ui überdecken läßt. Nach dem
Schachtelungsprinzip gibt es x ∈ ⋂Qk ⊂ Q. Nach Voraussetzung gibt es ein i0 mit x ∈ Ui0 .
Weil Ui0 offen ist, gibt ein ǫ > 0 mit Uǫ(x) ⊂ Ui0 . Dann liegt aber jeder Quader Qk vom
Durchmesser < ǫ ganz in Ui0 . Widerspruch!

Für n = 1 liefert der Satz:

Korollar 51. Intervalle [a, b] mit −∞ < a ≤ b < +∞ sind kompakt in R.

Satz 52. Eine kompakte Teilmenge eines metrischen Raumes ist abgeschlossen und be-
schränkt.

Beweis. Sei A ⊂ X kompakt. Zum Beweis müssen wir geeignete offene Überdeckungen von
A konstruieren und ausnutzen, dass sie endliche Teilüberdeckungen besitzen.

Zur Beschränktheit. Ist X = ∅ so ist nichts zu zeigen. Andernfalls sei x ∈ X und für k ∈ N

sei
Uk := Uk+1(x).

Jedes a ∈ A liegt dann in Uk, sobald k + 1 > d(a, x). Also bildet (Un)n∈N eine offene
Überdeckung von A, und wegen der Kompaktheit gibt es ein n ∈ N mit

A ⊂
n⋃

k=0

Uk = Un.

Daher ist A beschränkt mit einem Durchmesser ≤ 2(n+ 1).

Zur Abgeschlossenheit. Sei x ∈ X \A. Zu jedem a ∈ A sei Ua eine offene Kugel um a

mit Radius 1
2 d(a, x). Offenbar bildet (Ua)a∈A eine offene Überdeckung von A, und nach

Voraussetzung gibt es also ein n ∈ N und a0, . . . , an, so dass

A ⊂
n⋃

k=0

Uak

Sei

ǫ :=
1

2
min{d(x, ak) | 0 ≤ k ≤ n}

Dann ist ǫ > 0 und für alle k ∈ {0, . . . , n}

Uǫ(x) ∩ Uak
= ∅.

Daher ist Uǫ(x) ⊂ X \A, also X \A offen und A abgeschlossen.
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Satz 53. Eine abgeschlossene Teilmenge einer kompakten Teilmenge ist kompakt.

Beweis. Seien A ⊂ X kompakt und B ⊂ A eine abgeschlossene Teilmenge. Sei (Ui)i∈I eine
offene Überdeckung von B. Wir suchen eine endliche Teilüberdeckung.

Durch Hinzunahme der offenen Menge U := X \B erhält man eine offene Überdeckung von
A. Weil A kompakt ist, gibt es eine endliche Teilmenge K ⊂ I mit

A ⊂ U ∪
⋃

k∈K

Uk.

Wegen B ∩ U = ∅ ist dann aber

B ⊂
⋃

k∈K

Uk,

und wir haben für B eine endliche Teilüberdeckung von (Ui)i∈I gefunden.

Satz 54 (Heine-Borel). Eine Teilmenge A des Rn mit der Standardmetrik ist kompakt genau
dann, wenn sie abgeschlossen und beschränkt ist.

Beweis. Trivial nach den Sätzen 50, 52 und 53.

Dieser Satz ist falsch in allgemeinen metrischen Räumen.

Beispiel 55. Sei M eine unendliche Menge und (X, d) = (B(M,R), dsup). Für m ∈ M sei
fm ∈ B(M,R) definiert durch

fm(n) :=

{

1 für m = n,

0 sonst.

Dann gilt

dsup(fm, fn) =

{

0 für m = n,

1 sonst.
(6)

Die Menge
A :=

{
fm

∣
∣m ∈M

}

hat daher den Durchmesser diam(M) = 1 und ist beschränkt.

Betrachtet man A als Teilmenge von Amit der durch dsup induzierten Metrik, so ist A trivia-
lerweise auch abgeschlossen. Nach (6) ist U 1

2
(fm) ∩ A = {fm}, und die offene Überdeckung

(

U 1
2
(fm)

)

m∈M
von A besitzt deshalb keine endliche Teilübderdeckung. Also ist A als Teil-

menge von (A, dsupA ) nicht kompakt, wohl aber abgeschlossen und beschränkt.

Derselbe Beweis klappt für jede unendliche Menge mit der diskreten Metrik.

Nach Satz 49 ist A auch als Teilmenge von (B(M,R), dsup) nicht kompakt. Es ist aber
beschränkt, s. oben, und auch abgeschlossen, wie wir mittels Satz 32 noch zeigen wollen.
Eine konvergente Folge in A ist eine Cauchyfolge. Nach (6) und dem Cauchykriterium mit
ǫ < 1 sind dann aber fast alle Folgenglieder gleich, also gleich dem Limes, der damit ebenfalls
in A liegt.
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Satz 56 (Bolzano-Weierstraß). Sei (X, d) ein metrischer Raum, A ⊂ X kompakt und
(xn)n∈N eine Folge in A. Dann besitzt (xn) eine konvergente Teilfolge.
Bemerkung: Weil A abgeschlossen ist, liegt der Limes dann in A.

Umgekehrt ist eine Teilmenge A eines metrischen Raumes kompakt, wenn in ihr jede Folge
eine konvergente Teilfolge besitzt. Der Beweis ist etwas trickreich (Vgl. zum Beispiel Klaus
Jänich, Topologie, Springer Hochschultext, 2. Aufl. p.97). Wir verzichten darauf.

Beweis. Falls es ein a ∈ A gibt, so dass #
{
k
∣
∣xk ∈ U

}
= ∞ für jede offene Umgebung U

von a, so ist dieses a Grenzwert einer konvergenten Teilfolge: Wähle nämlich n0 ∈ N beliebig
und zu jedem k ∈ N \ {0} ein nk ∈ N für das

xnk
∈ U 1

k
(a) und

nk > nk−1.

Unter den gemachten Voraussetzungen ist das möglich und liefert die gesuchte Teilfolge.

Gibt es kein solches a, so besitzt andererseits jedes a eine offene Umgebung Ua für die

#
{
k
∣
∣xk ∈ Ua

}
<∞.

Die Familie (Ua)a∈A ist eine offene Überdeckung des kompakten A, also gibt es ein n ∈ N

und a0, . . . , an ∈ A, so dass
A ⊂ Ua0

∪ . . . ∪ Uan
.

Dann ist aber #
{
k
∣
∣xk ∈ A

}
< ∞ im Widerspruch dazu, dass die Folge (xn)n∈N eine

unendliche Folge ist. Dieser Fall kann also nicht auftreten.

Korollar 57. Jeder kompakte metrische Raum ist vollständig.

Beweis. Ist (X, d) kompakt und (xk)k eine Cauchyfolge in X, so hat diese nach Bolzano-
Weierstraß eine gegen x∗ ∈ X konvergente Teilfolge (xkj

)j∈N. Beweisen Sie mit der Drei-
ecksungleichung, dass dann die ganze Folge (xk)k gegen x∗ konvergiert.

Korollar 58 (Lebesguesche Zahl). Seien (X, d) ein metrischer Raum, A ⊂ X kompakt und
(Ui)i∈I eine offene Überdeckung von A. Dann gibt es eine positive Zahl δ, so dass gilt:

Für alle a ∈ A gibt es ein i ∈ I mit Uδ(a) ⊂ Ui.

Jedes solche δ nennt man eine Lebesguesche Zahl der Überdeckung (Ui)i∈I von A.

Beweis. Andernfalls gibt es zu jedem δ > 0 ein a ∈ A, so dass Uδ(a) in keinem einzelnen der
Ui enthalten ist. Wir wählen eine Nullfolge (δk)k∈N und zu jedem δk ein solches ak ∈ A. Weil
A kompakt ist, gibt es nach dem Satz von Bolzano-Weierstraß eine konvergente Teilfolge der
(ak) mit Limes a∗ ∈ A. Wir können o.E. annehmen, dass limk→∞ ak = a∗. Dann gibt es ein
i0 ∈ I mit a∗ ∈ Ui0 .

Weil Ui0 offen ist, gibt es ein ǫ > 0 mit Uǫ(a
∗) ⊂ Ui0 . Wähle k ∈ N so groß, dass δk <

ǫ
2

und d(ak, a
∗) < ǫ

2 . Dann ist nach der Dreiecksungleichung Uδk(ak) ⊂ Ui0 im Widerspruch
zur Wahl von ak.
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Beispiel 59 (Cantorsches Diskontinuum). Für ein kompaktes Intervall [a, b] definieren wir

c([a, b]) := [a,
2a+ b

3
] ∪ [

a+ 2b

3
, b].

Die Menge c([a, b]) erhält man also aus [a, b], indem man das mittlere Drittel aus dem
Intervall herausnimmt.

a b

2a+b

   3

a+2b

    3

Sie besteht aus zwei kompakten Intervallen der Länge b−a
3 . Für die Vereinigung endlich

vieler disjunkter kompakter Intervalle I1 ∪ . . . ∪ In definieren wir

c(I1 ∪ . . . ∪ In) = c(I1) ∪ . . . ∪ c(In).

Dann ist also c(I1 ∪ . . . ∪ In) wieder die Vereinigung disjunkter kompakter Intervalle. Ist
L := max1≤k≤n( Länge von Ik), so ist das längste Teilintervall aus c(I1 ∪ . . . ∪ In) von der
Länge L/3. Wir beginnen nun mit C0 := [0, 1] und definieren induktiv

Ck+1 := c(Ck).

Die Menge C :=
⋂

k Ck heißt das Cantorsche Diskontinuum. Als Durchschnitt abgeschlosse-
ner Mengen ist C abgeschlossen und offenbar beschränkt, also kompakt und offenbar nicht
leer (0 ∈ C).

Sind x und y zwei Punkte von C mit Abstand d > 0, so liegen sie in jedem Ck, insbesondere
in einem Ck, dessen Intervall alle kürzer als d sind. Zwischen je zwei verschiedenen Punkten
x, y ∈ C gibt es also einen Punkt aus R \C. Daher rührt der Name Diskontinuum.

Beispiel 60 (von Kochsche Kurve).

Wir beginnen mit einem gleich-
seitigen Dreieck K0, das in der
Figur getönt ist. Auf das mitt-
lere Drittel jeder Seite setzen wir
ein (gefülltes) gleichseitiges Drei-
eck und erhalten einen

”
Stern“

K1. Offenbar liegt K1 in der ab-
geschlossenen Umkreisscheibe U
von K0.

K
0

Auf das mittlere Drittel jeder Seitenkante von K1 setzen wir wieder ein gleichseitiges Dreieck
und erhalten K2. Weil jede Seitenkante auch Seitenkante eines gleichseitigen Dreiecks in
U ist, liegen die angesetzten Dreiecke in U . Fortsetzung des Verfahrens liefert eine Folge
(Kj)j∈N von Teilmengen von U . In der obigen Abbildung ist diese Konstruktion nur lokal
durchgeführt. Wir setzen

K =
⋃

j∈N

Kj .

Den Rand ∂K nennt man die von Kochsche Kurve oder die von Kochsche Schneeflocke. Als
Rand einer Menge ist sie abgeschlossen, und weil sie in der kompakten Menge U liegt, ist
sie kompakt.
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Weil die Länge von ∂Kk+1 das 4
3 -fache der Länge von ∂Kk ist, ist es plausibel, der von

Kochschen Kurve eine unendliche Länge zuzusprechen. Die von ihr eingeschlossene Fläche
K ist hingegen offensichtlich von endlichem Flächeninhalt. Allerdings fehlen uns einstweilen
exakte Definitionen für Länge (von was?) und Flächeninhalt.

Beispiel 61 (Hausdorffmetrik). Sei FX die Menge der nicht-leeren kompakten Teilmengen
eines vollständigen (kompakten) metrischen Raumes (X, d). Definiere für A,B ∈ FX

(i) d(x,B) := inf{d(x, y) | y ∈ B} für x ∈ A,

(ii) d(A,B) := sup{d(x,B) |x ∈ A}, (wohldefiniert, weil d(., B) stetig auf der kompakten
Menge A),

(iii) h(A,B) := sup{d(A,B), d(B,A)}.

Dann ist (FX,h) ein vollständiger (kompakter) metrischer Raum, der Raum der Fraktale.
h heißt die Hausdorffmetrik. Vgl. [M. Barnsley, Fractals everywhere, Academic Press 1988].

Die nebenstehende Abbildung
zeigt, dass d(A,B) nicht symme-
trisch ist.

d(A,B)
B

A

d(B,A)=0B    A

⊃

Nachweis der Metrik-Eigenschaften.

Die Symmetrie ist klar.

Es gilt

h(A,B) = 0 ⇐⇒ d(A,B) = 0 und d(B,A) = 0.

Weiter ist

d(A,B) = 0 ⇐⇒ d(x,B) = 0 für alle x ∈ A ⇐⇒ A ⊂ B.

Also h(A,B) = 0 genau dann, wenn A = B.

Dreiecksungleichung. Seien a ∈ A, b ∈ B, c ∈ C.

d(a, c) ≤ d(a, b) + d(b, c) =⇒ d(a, C) ≤ d(a, b) + d(b, C)

=⇒ d(a, C) ≤ d(a, b) + d(B,C)

=⇒ d(a, C) ≤ d(a,B) + d(B,C)

=⇒ d(A,C) ≤ d(A,B) + d(B,C)

=⇒ d(A,C) ≤ h(A,B) + h(B,C)

Die rechte Seite ist in A und C symmetrisch, und deshalb folgt auch

d(C,A) ≤ h(A,B) + h(B,C),

also h(A,C) ≤ h(A,B) + h(B,C).
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Beispiel 62 (Noch einmal die von Kochsche Kurve). Seien A = ∂K0 und B = ∂K1 die
beiden ersten Randkurven der von Kochschen Konstruktion:

A
B

Sei a die Seitenlänge des Dreiecks A. Dann ist (vgl. Abbildung) bezüglich der Standardmetrik
des R2

d(A,B) <
a

6
,

d(B,A) =
a

6

√
3,

h(A,B) =
a

6

√
3.

Allgemeiner ist für die Randfolge (∂Kj) der von Kochschen Konstruktion h(∂Kk, ∂Kk+1) =
(
√
3/6)k+1a. Also ist (∂Kk)k∈N eine Cauchyfolge in FR

2 und man kann zeigen, dass die von
Kochsche Kurve ihr Grenzwert ist.

Bemerkung. In Dugundji, Topology findet man für kompaktes X dazu noch folgende
Übungsaufgaben:

(i) Für beliebiges E ⊂ X ist
{A ∈ FX |E ⊂ A}

abgeschlossen.

(ii) Setze für beliebiges E ⊂ X

I(E) = {A ∈ FX |A ⊂ E}
J(E) = {A ∈ FX |A ∩ E 6= ∅}.

Dann sind I(E) und J(E) mit E offen bzw. abgeschlossen.

(iii) Die Abbildung FX → R, A 7→ diam(A) ist stetig.

(iv) Die Abbildung FX ×FX → R, (A,B) 7→ d(A,B) ist stetig.

(v) FX ist kompakt.
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1.4 Zusammenhang

• Die Rolle der Intervalle in R wird in metrischen Räumen übernommen von den soge-
nannten zusammenhängenden Mengen, die wir jetzt kennenlernen.

Jede Menge X mit mindestens zwei Elementen läßt sich trivialerweise schreiben als Vereini-
gung zweier nicht-leerer disjunkter Teilmengen. Aber nicht jeder metrische Raum läßt sich
schreiben als Vereinigung zweier nicht-leerer disjunkter offener Mengen.

Definition 63 (Zusammenhang). Sei (X, d) ein metrischer Raum.

(i) X heißt zusammenhängend, wenn es nicht die Vereinigung zweier nicht-leerer disjunk-
ter offener Mengen ist:

Für alle offenen U, V ⊂ X mit

U ∩ V = ∅ und U ∪ V = X

gilt
U = ∅ oder V = ∅.

Das ist äquivalent zur Forderung, dass ∅ und X die einzigen zugleich offen und abge-
schlossen Teilmengen sind.

(ii) Eine Teilmenge A ⊂ X heißt zusammenhängend, wenn (A, dA) zusammenhängend ist.

(iii) X heißt wegzusammenhängend, falls es zu je zwei Punkten p, q ∈ X einen Weg von p
nach q, d.h. eine stetige Abbildung c : [0, 1] → X mit c(0) = p und c(1) = q gibt.3

Satz 64 (Zusammenhängende Teilmengen). Seien (X, d) ein metrischer Raum und A ⊂ X.
Dann ist A genau dann zusammenhängend, wenn gilt:
Für alle offenen U, V⊂ X mit

U ∩ V = ∅ und U ∪ V ⊃ A

gilt
U ∩A = ∅ oder V ∩A = ∅.

Beweis. Zu ( =⇒ ). Sei (A, dA) zusammenhängend und seien U, V ⊂ X wie im Satz. Dann
sind U ∩A und V ∩A offene Teilmengen von (A, dA) mit leerem Durchschnitt, deren Verei-
nigung A ist. Also ist U ∩A = ∅ oder V ∩A = ∅.
Zu (⇐=). Wir wollen zeigen, dass (A, dA) zusammenhängend ist. Seien also U, V ⊂ A

offen in A mit U ∩ V = ∅ und U ∪ V = A. Dann gibt es offene Mengen Ũ , Ṽ von X mit

Ũ ∩A = U, Ṽ ∩A = V.

Aber um die Vorausetzungen anwenden zu können, müssen Ũ und Ṽ disjunkt sein. Deshalb
müssen wir die Erweiterungen Ũ und Ṽ von U und V sorgfältig konstruieren.

Wir wählen zu jedem x ∈ U ein ǫ(x) > 0 mit Uǫ(x)(x) ∩ A ⊂ U . Das geht, weil U offen ist
in A. Wir definieren

Ũ :=
⋃

x∈U

U 1
2
ǫ(x)(x).

3Allerdings haben wir noch gar nicht definiert, was stetige Abbildungen sind. Das ist also eine Definition

”
auf Vorrat“.
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Entsprechend definieren wir Ṽ . Natürlich sind das offene Teilmengen von (X, d), und sie
sind auch disjunkt: Wäre z ∈ Ũ ∩ Ṽ , so gäbe es x ∈ U und y ∈ V mit

z ∈ U 1
2
ǫ(x)(x) ∩ U 1

2
ǫ(y)(y).

Sei etwa ǫ(y) ≤ ǫ(x). Dann ist aber

d(x, y) ≤ d(x, z) + d(z, y) ≤ 1

2
ǫ(x) +

1

2
ǫ(y) ≤ ǫ(x)

Dann wäre aber y ∈ U im Widerspruch zur Voraussetzung. Also ist Ũ ∩ Ṽ = ∅.
Jetzt können wir die Voraussetzungen auf Ũ und Ṽ anwenden und erhalten Ũ ∩A = U = ∅
oder Ṽ ∩A = V = ∅.
Zeigen Sie (später) entsprechend: Für A ⊂ X ist (A, dA) wegzusammenhängend genau dann,
wenn es zu allen p, q ∈ A eine stetige Abbildung c : [0, 1] → X mit c(0) = p und c(1) = q
mit c([a, b]) ⊂ A gibt.

Bemerkung zur Verallgemeinerung auf topologische Räume. Die obige Definition des Begriffs
zusammenhängend benutzt nur offene Mengen, nicht explizit die Metrik. Daher läßt sich die Definition
ohne Modifikation auf topologische Räume erweitern. Die schwierige Richtung von Satz 64 gilt allerdings
nicht für topologische Räume. Ein Gegenbeispiel findet man so: Man nimmt eine Menge X, die wenigstens
drei verschiedene Punkte O,P,Q enthält. Man definiert

T = {∅} ∪ {Y ⊂ X |O ∈ Y }.

als System der offenen Menge. T ist abgeschlossen gegenüber Durchschnitt und Vereinigung, definiert also
wirklich eine Topologie auf X. Die Teilmenge A = {P,Q} enthält die in A offenen disjunkten Teilmengen
U = {P} und V = {Q}. Aber diese lassen sich nicht zu disjunkten in X offenen Teilmengen erweitern,
weil jede solche den Punkt O enthält.

Satz 65. Sei A ⊂ B ⊂ Ā ⊂ X und sei A zusammenhängend. Dann ist auch B zusam-
menhängend. Insbesondere ist auch Ā zusammenhängend.

Beweis. Seien U, V ⊂ X offen und disjunkt mit B ⊂ U ∪ V . Wir müssen zeigen, dass
U ∩ B = ∅ oder V ∩ B = ∅. Weil A zusammenhängend ist, gilt U ∩ A = ∅ oder V ∩ A = ∅.
Sei etwa U ∩ A = ∅. Wäre U ∩ B 6= ∅, so gäbe es also ein b ∈ U ∩ B und, weil U offen ist,
dazu ein ǫ > 0 mit Uǫ(b) ⊂ U . Natürlich ist b ∈ Ā. Also liegen in Uǫ(b) auch Punkte von A.
Die liegen dann aber in U . Widerspruch zur Annahme U ∩A = ∅!

Satz 66. Die zusammenhängenden Teilmengen von R sind genau die Intervalle.

Beweis. Sei J ein Intervall. Seien U, V ⊂ R offen mit U ∩ V = ∅ und J ⊂ U ∪ V .
Annahme: p ∈ U ∩ J , r ∈ V ∩ J und o.E. p < r. Wir müssen zeigen, dass dies zum
Widerspruch führt. Sei

q := sup{t | [p, t] ⊂ U}.
Dann gilt nach Voraussetzung q ≤ r <∞. Offenbar ist q /∈ U , denn andernfalls wäre wegen
der Offenheit von U auch [p, q + ǫ] ⊂ U für kleines ǫ > 0 im Widerspruch zur Wahl von q.

Andrerseits ist q /∈ V , weil sonst wegen der Offenheit von V auch q− ǫ ∈ V für kleines ǫ > 0
im Widerspruch zur Wahl von q.

Damit ist q /∈ U ∪ V . Widerspruch zu q ∈ J ⊂ U ∪ V .
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Sei J ⊂ R zusammenhängend. Seien p < q < r mit p, r ∈ J . Wäre q /∈ J , so wäre

J ⊂ ]−∞, q[∪ ]q,∞[,

also J ⊂ ] − ∞, q[ oder J ⊂ ]q,∞[ im Widerspruch dazu, dass p in der einen, q in der
anderen dieser Mengen liegt.
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1.5 Stetige Abbildungen

• Nachdem der Konvergenzbegriff in metrischen Räumen erklärt ist, ist es leicht, auch
die Stetigkeit von Abbildungen solcher Räume zu erklären.

• Wir machen uns mit der Bedeutung dieses Begriffes in verschiedenen einfachen Situa-
tionen vertraut und formulieren Rechenregeln für stetige Abbildungen.

• Etwas abstrakter ist die Charakterisierung der Stetigkeit mittels offener oder abge-
schlossener Mengen.

Definition 67 (Stetigkeit). Seien (X, dX) und (Y, dY ) metrische Räume, G ⊂ X eine Teil-
menge und f : X ⊃ G→ Y eine Abbildung.

(i) f heißt stetig in p ∈ G, wenn limx→p f(x) = f(p) ist, d.h. wenn für jede gegen p
konvergente Folge (xk)k∈N in G auch limk→∞ f(xk) = f(p) ist.

(ii) f heißt stetig in oder auf G, wenn es stetig in jedem Punkt p ∈ G ist.

(iii) Offenbar ist f : X ⊃ G→ Y im Sinne dieser Definition stetig (in p ∈ G), genau dann,
wenn es (in p) stetig ist als Abbildung des metrischen Raumes (G, dG) nach Y .

Beispiel 68 (Komponentenweise Stetigkeit). Ist (X, dX) beliebig und (Y, dY ) = R
m, so ist

f = (f1, . . . , fm) genau dann stetig in p, wenn alle Komponentenfunktionen fi : X → R in
p stetig sind. Das folgt unmittelbar aus der Definition und Satz 31.

Partielle Stetigkeit. Bei einer Abbildung f : X → R
m kann man also die Stetigkeit

einfach an den (reellwertigen) Komponentenfunktionen untersuchen. Rm oder R auf der
rechten Seite macht also

”
keinen großen Unterschied“. Jetzt betrachten wir umgekehrt eine

Funktion f : R
n ⊃ G → Y . Dann können wir f(x) = f(x1, . . . , xn) als Funktion jeder

einzelnen Variablen betrachten, indem wir uns vorstellen, dass die anderen festbleiben. Es
stellt sich die naheliegende Frage, ob f in p stetig ist, wenn alle die Funktionen

x1 7→ f(x1, p2, p3, . . . , pn)

x2 7→ f(p1, x2, p3, . . . , pn)

x3 7→ f(p1, p2, x3, . . . , pn)

. . .

xn 7→ f(p1, p2, p3, . . . , xn)

stetig sind. Man nennt das partielle Stetigkeit, weil man immer nur einen Teil der Variablen
- nämlich eine - als variabel betrachtet. Folgt aus partieller Stetigkeit die Stetigkeit? Das ist
nicht so:

Partielle Stetigkeit impliziert NICHT Stetigkeit.

Beispiel 69. Sei f : R2 → R gegeben durch f(0, 0) := 0 und

f(x, y) :=
xy

x2 + y2
für (x, y) 6= (0, 0).

Für λ ∈ R geht nämlich die Folge ( 1k ,
λ
k ) gegen (0, 0), aber es ist

f(
1

k
,
λ

k
) =

λ

k2( 1
k2 + λ2

k2 )
=

λ

1 + λ2
.
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Für λ 6= 0 und k → ∞ geht das also nicht gegen 0 = f(0, 0). Andererseits ist f in (0, 0)
wegen f(x, 0) = 0 = f(0, y) aber partiell stetig.

Dieses Beispiel zeigt genauer, warum partielle Stetigkeit viel schwächer ist als
”
totale“ Ste-

tigkeit: Die Variable x muß sich der Stelle p auf beliebige Weise nähern dürfen. Bei der
partiellen Stetigkeit schränkt man sich aber auf achsenparallele Annäherung ein.

In unserem Beispiel ist die Funktion auf allen Geraden durch den Nullpunkt jeweils kon-
stant (Wert λ/(1+λ2)), nur im Nullpunkt hat sie definitionsgemäß den Wert 0. Der kommt
heraus, wenn man auf der x-Achse (λ = 0) oder auf der y-Achse (λ = ∞) an den Nullpunkt
heranläuft, aber eben nur dann.

Selbst wenn f(x) → f(p) bei Annäherung auf allen
Geraden durch p gilt, folgt daraus nicht die Stetigkeit
in p. Ein Gegenbeispiel liefert die Funktion g mit
g(x, y) = 1, falls y = x2 6= 0, und g(x, y) = 0 sonst.
Wie sieht der Graph dieser Funktion aus?

Beispiel 70. Die Abbildungen

α : R2 → R, (x1, x2) 7→ x1 + x2

µ : R2 → R, (x1, x2) 7→ x1x2

η : R2 ⊃ {(x1, x2) |x2 6= 0} → R, (x1, x2) 7→
x1
x2

sind stetig.

Wir zeigen das für α. Seien p = (p1, p2) ∈ R
2 und (xk = (xk1, xk2))k∈N

eine Folge mit
limxk = p. Dann ist

d(α(xk), α(p)) = |(xk1 + xk2)− (p1 + p2)| ≤ |xk1 − p1|+ |xk2 − p2|.

Aber nach Satz 31 folgt aus limxk = p, dass limxki = pi für i = 1, 2. Daher geht die rechte
Seite gegen Null und limα(xk) = α(p).

Beweis für µ und η selbst. Für den letzteren Fall benutzt man die Abschätzung

∣
∣
∣
∣

x1
x2

− p1
p2

∣
∣
∣
∣
=

∣
∣
∣
∣

x1p2 − x2p1
x2p2

∣
∣
∣
∣
≤ |x1 − p1||p2|+ |p1||p2 − x2|

|x2p2|
.
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Beispiel 71. Dieselben Argumente wie im vorstehenden Beispiel zeigen die Stetigkeit der
Determinante

det :M(n× n,R) → R, (xij) 7→
∑

σ

signσx1σ(1) . . . xnσ(n),

wenn man den Raum M(n×n,R) der quadratischen n-reihigen Matrizen auf die offensicht-

liche Weise mit dem R
n2

identifiziert und eine der lp-Metriken verwendet. Auch die mit der
Transponierten (xij)

T gebildete Abbildung

M(n× n,R) →M(n× n,R), (xij) 7→ (xij)(xij)
T

gebildete Abbildung ist stetig.

Beispiel 72. Seien (X, d) metrischer Raum und a ∈ X. Dann ist

d(., a) : X → R, x 7→ d(x, a)

stetig.

Beispiel 73. Sei (X, d) = (C0([a, b],R), dsup). Dann ist die Abbildung

∫ b

a

: X → R, f 7→
∫ b

a

f(x)dx

stetig, denn es gilt

∣
∣
∣
∣
∣

∫ b

a

f(x)dx−
∫ b

a

g(x)dx

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∫ b

a

(f(x)− g(x))dx

∣
∣
∣
∣
∣

≤
∫ b

a

|f(x)− g(x)|dx

≤
∫ b

a

sup
a≤x≤b

|f(x)− g(x)|dx

= |b− a|dsup(f, g).

Satz 74. Seien (Xi, di), i = 1, 2, 3 metrische Räume und fi : Xi ⊃ Gi → Xi+1 für i = 1, 2
Abbildungen mit f1(G1) ⊂ G2. Es sei f1 stetig in p1 ∈ G1 und f2 stetig in p2 := f1(p1).
Dann ist f2 ◦ f1 : X1 ⊃ G1 → X3 stetig in p1.
Kurz: Die Komposition stetiger Abbildungen ist stetig.

Beweis. Leicht.

Korollar 75. Ist (X, d) ein metrischer Raum, und sind f, g : X ⊃ G → R stetig in p ∈ G,
ist ferner λ ∈ R, so sind auch die Abbildungen

f + g, f − g, fg, λf : X ⊃ G→ R
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in p stetig. Insbesondere ist also der Vektorraum

C0(X,R) := {f : X → R | f stetig}

ein reeller Vektorraum.

Ist g(p) 6= 0, so ist f
g : X ⊃

{
x ∈ G

∣
∣ g(x) 6= 0

}
→ R in p stetig.

Beweis. Die Abbildungen sind vom Typ

x 7→ (f(x), g(x))
α7→ f(x) + g(x),

wobei die erste stetige Komponentenfunktionen besitzt.

Satz 76 (ǫ-δ-Kriterium für Stetigkeit). Seien (X, dX), (Y, dY ) metrische Räume und f :
X ⊃ G → Y . Sei p ∈ G. Dann ist f in p genau dann stetig, wenn es zu jedem ǫ > 0 ein
δ > 0 gibt, so dass

dY (f(p), f(x)) < ǫ für alle x ∈ G mit dX(p, x) < δ.

Die letzte Bedingung ist äquivalent zu

f(Uδ(p) ∩G) ⊂ Uǫ(f(p)).

Beweis. Zu ( =⇒ ). Sei ǫ > 0. Gäbe es kein δ wie angegeben, so gäbe es insbesondere zu
jedem k ∈ N ein xk ∈ G mit

dX(p, xk) <
1

k + 1
, aber dY (f(p), f(xk)) ≥ ǫ.

Dann wäre aber limxk = p und lim f(xk) 6= f(p). Widerspruch!

Zu (⇐=). Sei (xk)k∈N eine gegen p konvergente Folge. Wir müssen zeigen, dass lim f(xk) =
f(p). Sei also ǫ > 0 beliebig. Sei δ > 0 dazu gewählt wie im Satz. Dann gibt es ein k0 ∈ N

mit dX(xk, p) < δ für alle k ≥ k0. Dann ist aber dY (f(xk), f(p)) < ǫ für alle k ≥ k0.

Satz 77. (i) Seien (X, dX), (Y, dY ) metrische Räume und f : X → Y . Dann ist f stetig
genau dann, wenn für jede offene Teilmenge V ⊂ Y das Urbild f−1(V ) ⊂ X offen ist.
D.h. f ist genau dann stetig, wenn das Urbild aller offenen Mengen offen ist.

(ii) Die Aussage bleibt richtig, wenn man überall
”
offen“ durch

”
abgeschlossen“ ersetzt.

(iii) Ist f nicht auf ganz X definiert, sondern nur

f : X ⊃ G→ Y

stetig, so sind die Urbilder offener Mengen offen in (G, dG), aber nicht unbedingt in
X.

Oft wird dieser Satz etwas großzügig zitiert als:

Stetige Urbilder(?) offener Mengen sind offen.

35



Finden Sie Beispiele, die zeigen, dass die Bilder offener Mengen unter stetigen Abbildungen
im allgemeinen nicht offen sind.

Beweis. Zu (i =⇒ ). Seien also f stetig und V ⊂ Y offen. Wir wollen zeigen, dass f−1(V )

offen ist. Sei dazu x ∈ f−1(V ). Zu f(x) ∈ V gibt es dann ein ǫ > 0 mit

Uǫ(f(x)) ⊂ V.

Dazu gibt es dann ein δ > 0 mit

f(Uδ(x)) ⊂ Uǫ(f(x)) ⊂ V.

Das bedeutet aber Uδ(x) ⊂ f−1(V ).

Zu (i ⇐=). Sei das Urbild jeder offenen Menge offen und sei p ∈ X.

Sei weiter ǫ > 0. Dann ist Uǫ(f(p)) offen, also ist f−1(Uǫ(f(p))) offen und damit eine
Umgebung von p. Daher gibt es ein δ > 0 mit Uδ(p) ⊂ f−1(Uǫ(f(p))), d.h. mit

f(Uδ(p)) ⊂ Uǫ(f(p)).

Das war aber zu zeigen.

Zu (ii). Die Aussage über abgeschlossene Mengen folgt, weil A ⊂ Y genau dann abgeschlos-
sen ist, wenn Y \A offen ist, und weil andrerseits

f−1(Y \A) = X \ f−1(A).

Zu (iii). Die Offenheit in (G, dG) ist klar nach (i).

Beispiel 78. Die Einheitssphäre

Sn := {x ∈ R
n+1 |

∑

x2i = 1}

ist das Urbild von {1} ∈ R unter der stetigen Abbildung

x 7→
∑

x2i .

Also ist Sn abgeschlossen und, weil beschränkt, auch kompakt.

Beispiel 79 (Matrizengruppen). Wir erinnern an Beispiel 71. Daraus folgt:

(i) Die allgemeine linearer Gruppe GL(n,R), gebildet aus den invertierbaren Matrizen,
ist offen in M(n× n,R):

GL(n,R) = det−1(R \ {0}).

(ii) Die spezielle lineare Gruppe SL(n,R), gebildet aus allen Matrizen der Determinanten
= 1, ist abgeschlossen in M(n× n,R):

SL(n,R) = det−1({1}).

(iii) Die Gruppe der orthogonalen Matrizen O(n), gebildet aus allen Matrizen mit

(xij)(xij)
T = E(= Einheitsmatrix)

ist abgeschlossen inM(n×n,R). Weil alle ihre Komponenten xij maximal vom Betrag

1 sind, ist sie auch beschränkt und damit kompakt in M(n× n,R) = R
n2

.
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Die angegebenen Teilmengen von M(n× n,R) sind tatsächlich Gruppen bezüglich der Ma-
trixmultiplikation. Sie haben außerdem eine von M(n × n,R) geerbte Metrik, in der die
Gruppenoperationen stetig sind. Damit sind sie (die wichtigsten) Beispiele sogenannter Lie-
gruppen.
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1.6 Fünf wichtige Sätze über stetige Abbildungen

• Die Sätze und Definitionen in diesem Abschnitt verallgemeinern Sätze und Definitio-
nen, die wir (mit Ausnahme des letzten Satzes) aus der Analysis I für reelle Funktionen
schon kennen.

• Die Beweise sind sehr einfach, weil die Definitionen bereits die wesentlichen Eigen-
schaften erfassen.

Seien (X, dX), (Y, dY ) metrische Räume.

Satz 80 (vom Zusammenhang). Seien A ⊂ X zusammenhängend und f : A → Y stetig.
Dann ist auch f(A) ⊂ Y zusammenhängend.

Bemerkung. Das verallgemeinert den Zwischenwertsatz!

Beweis. Seien U, V ⊂ Y offen und disjunkt mit f(A) ⊂ U ∪V . Zu zeigen: U ∩ f(A) = ∅ oder
V ∩ f(A) = ∅.
Nach Satz 77 sind f−1(U) und f−1(V ) offen in (A, dA). Sie sind weiter disjunkt mit

A = f−1(U) ∪ f−1(V ).

Weil A zusammenhängend ist, folgt

f−1(U) = ∅ oder f−1(V ) = ∅,

und entsprechend ist U ∩ f(A) = ∅ oder V ∩ f(A) = ∅.

Satz 81 (Kompaktheitssatz). Seien A ⊂ X kompakt und f : A → Y stetig. Dann ist auch
f(A) ⊂ Y kompakt.

Beweis. Sei (Ui)i∈I eine offene Überdeckung von f(A). Dann ist (f−1(Ui))i∈I eine offene
Überdeckung von A. Also gibt es eine endliche Teilmenge J ⊂ I, so dass

A =
⋃

i∈J

f−1(Ui).

Aber dann ist
f(A) ⊂

⋃

i∈J

Ui.

Beispiel 82. Untersuchen Sie die Funktion

lnx

x
:]0,∞[→ R

um zu zeigen, dass stetige Abbildungen im allgemeinen weder beschränkte Mengen in be-
schränkte Mengen noch abgeschlossene Mengen in abgeschlossene Mengen abbilden.
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Satz 83 (vom Maximum). Seien A ⊂ X kompakt 6= ∅ und f : A → R stetig. Dann nimmt
f sein Maximum und Minimum an.

Beweis. Nach dem Kompaktheitssatz ist f(A) ⊂ R kompakt, also insbesondere beschränkt.
Daher ist die Funktion f : A → R beschränkt. Dann gibt es eine Folge (xk)k∈N in A mit
lim f(xk) = sup f . Nach dem Satz von Bolzano-Weierstraß hat (xk) in dem metrischen Raum
(A, dA) eine konvergente Teilfolge (xkj )j∈N. Ist x

∗ := limxkj ∈ A, so folgt

f(x∗) = lim f(xkj
) = lim f(xk) = sup f.

Also wird das Supremum angenommen und ist das Maximum von f .

Analog für das Minimum.

Definition 84. Sei f : X ⊃ G→ Y . f heißt gleichmäßig stetig auf G, wenn gilt

∀ǫ>0∃δ>0∀x∈Gf(Uδ(x) ∩G) ⊂ Uǫ(f(x)).

f ist genau dann gleichmäßig stetig auf der Teilmenge G ⊂ X in diesem Sinne, wenn es auf
(G, dG) gleichmäßig stetig ist.

Offenbar impliziert gleichmäßige Stetigkeit die gewöhnliche Stetigkeit. Die Umkehrung ist
nicht richtig:

Beispiel 85. Die Funktion f = x2 ist auf [0, 2] gleichmäßig stetig. Auf R ist sie stetig, aber
nicht gleichmäßig stetig.

Satz 86 (von der gleichmäßigen Stetigkeit). Seien f : X ⊃ A → Y stetig und A kompakt.
Dann ist f gleichmäßig stetig.

Beweis. Sei ǫ > 0. Dann gibt es zu jedem x ∈ A ein δx > 0 mit

f(Uδx(x) ∩A) ⊂ U 1
2
ǫ(f(x)).

Wir setzen
Ux := Uδx(x).

Dann ist (Ux)x∈A eine offene Überdeckung von A. Sei δ > 0 eine Lebesgue-Zahl dazu. Dann
gilt für alle x ∈ A: Es gibt ein y ∈ A mit Uδ(x) ⊂ Uy. Also ist

f(Uδ(x) ∩A) ⊂ f(Uy ∩A) ⊂ U 1
2
ǫ(f(y))

Insbesondere ist dann f(x) ∈ U 1
2
ǫ(f(y)) und deshalb

f(Uδ(x) ∩A) ⊂ U 1
2
ǫ(f(y)) ⊂ Uǫ(f(x)).

Beispiel 87. Sei f : [a, b] → R stetig auf dem kompakten Intervall. Dann ist f gleichmäßig
stetig, und es gibt zu ǫ > 0 ein δ > 0 mit |f(x) − f(y)| < ǫ für alle x, y ∈ [a, b] mit
|x−y| < δ. Wähle eine Zerlegung a = x0 < x1 < . . . < xn = b mit |xi−xi−1| < δ und wähle
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ξi ∈ [xi−1, xi] beliebig. Setze dann φ(x) := f(ξi) für alle x ∈ [xi−1, xi[ und φ(b) = f(b).
Dann ist φ also eine Treppenfunktion, und es gilt für alle x ∈ [xi−1, xi[

|f(x)− φ(x)| = |f(x)− f(ξi)| < ǫ

und
|f(b)− φ(b)| = 0 < ǫ.

Die Treppenfunktion approximiert die stetige Funktion f also besser als ǫ.

Auch andere Approximationsresultate für stetige Abbildungen benutzen die gleichmäßige
Stetigkeit, vgl. Übungen und den Weierstraßschen Approximationssatz z.B. in S. Hilde-
brandt, Analysis I.

Der in der Definition 34 eingeführte Begriff der gleichmäßigen Konvergenz einer Funktio-
nenfolge hat mit der gleichmäßigen Stetigkeit nichts zu tun. Im Raum der beschränkten
Funktionen bedeutete gleichmäßige Konvergenz einfach die Konvergenz bezüglich der Su-
premumsmetrik, und in dem Zusammenhang haben wir einen Spezialfall des folgenden Satzes
schon kennengelernt,vgl. Satz 37.

Satz 88 (von der gleichmäßigen Konvergenz). Sei die Folge (fi : G → Y )i∈N auf G ⊂ X
gleichmäßig konvergent gegen f : G→ Y . Sind alle fi stetig, so ist auch f stetig.

Beweis. Wir zeigen die Stetigkeit in p ∈ G. Sei (xj)j∈N eine Folge in G mit Grenzwert p. Zu
zeigen:

lim f(xj) = f(p).

Sei dazu ǫ > 0. Dann gibt es ein k0 ∈ N, so dass für alle k ≥ k0 und alle x ∈ G

dY (fk(x), f(x)) < ǫ/3.

Weil fk0
in p stetig ist, gibt es ein j0 mit

dY (fk0
(xj), fk0

(p)) < ǫ/3

für alle j ≥ j0. Dann ist aber für j ≥ j0

dY (f(xj), f(p)) ≤ dY (f(xj), fk0
(xj)) + dY (fk0

(xj), fk0
(p)) + dY (fk0

(p), f(p)) < ǫ.

Beispiel 89 (von der konstanten Majorante, Weierstraß). Sei (fk : G → R)k∈N eine Folge
von Funktionen. Sei (ck)k∈N eine Folge reeller Zahlen, so dass

|fk(x)| ≤ ck für alle x und

∞∑

i=0

ci konvergent.

Dann ist die Partialsummenfolge

sn :=

n∑

n=0

fn

auf G gleichmäßig konvergent. Zum Beweis setzen wir

γn :=
n∑

k=0

ck, γ :=

∞∑

k=0

ck.
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Zu ǫ > 0 gibt es dann ein N mit |γ − γm| < ǫ für alle m ≥ N . Dann ist aber für alle x und
m,n mit N < m < n

|sn(x)− sm(x)| =
∣
∣
∣
∣
∣

n∑

k=m+1

fk(x)

∣
∣
∣
∣
∣
≤

n∑

k=m+1

|fk(x)|

≤
n∑

k=m+1

ck = γn − γm ≤ γ − γm < ǫ. (7)

Also ist (sk(x))k∈N für jedes x ∈ G eine Cauchyfolge in R und deshalb konvergent. Der
Grenzwert sei s(x) =

∑∞
k=0 fk(x). Bildet man in (7) den Grenzwert für n→ ∞, so folgt

|s(x)− sm(x)| < ǫ für alle x ∈ G und m > N,

also die gleichmäßige Konvergenz. Nach dem letzten Satz ist s : G→ R stetig, wenn alle fk
stetig sind.

Insbesondere kann man das anwenden auf Potenzreihen
∑∞

k=0 ak(x − x0)
k. Ist R > 0 der

Konvergenzradius dieser Reihe, und 0 < r < R, so ist

∞∑

k=0

|ak|rk konvergent

und
|ak(x− x0)

k| ≤ |ak|rk für alle x ∈ [x0 − r, x0 + r].

Also ist die Potenzreihe auf [x0 − r, x0 + r] gleichmäßig konvergent und ihre Grenzfunktion
auf jedem solchen Intervall stetig. Also ist sie auf ]x0−R, x0+R[ stetig, aber das wussten wir
schon. Man sagt auch, Potenzreihen seien gleichmäßig konvergent auf jedem Kompaktum
im Inneren ihres Konvergenzbereichs.
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1.7 Normierte Vektorräume

• Wir lernen normierte Vektorräume kennen, die in der mehrdimensionalen Analysis als
Definitions- und Zielbereiche der Funktionen dienen.

• Endlich-dimensionale normierte Vektorräume sind insbesondere vollständige metrische
Räume, und auf ihnen ist jede lineare Abbildung stetig.

Differentialrechnung beschäftigt sich mit der linearen Approximation von Funktionen. In
einem allgemeinen metrischen Raum macht das keinen Sinn, weil man keine lineare Struktur
hat. Zum Beispiel kann man die U-Bahnstationen aus Beispiel 6 nicht addieren. Den richtigen
Rahmen für Linearität bieten Vektorräume. Und wenn man außerdem über Konvergenz
reden will, braucht man in den Vektorräumen eine Metrik, die sich mit der linearen Struktur
verträgt. Das führt zur Klasse der normierten Vektorräume, mit denen wir uns jetzt befassen
wollen.

Ausblick: Man kann nicht nur in normierten Vektorräumen Differentialrechnung betreiben,
sondern auch in Räumen, die sich selber durch lineare Räume approximieren lassen: wie
Flächen durch ihre Tangentialräume. Das führt zur Analysis auf sogenannten differenzier-
baren Mannigfaltigkeiten.

”
Vektorraum“ heißt hier immer reeller Vektorraum.

Definition 90. Sei V ein Vektorraum. Eine Norm für V ist eine Abbildung

‖..‖ : V → R, v 7→ ‖v‖,

so dass für alle u, v ∈ V und λ ∈ R gilt:

(i) ‖v‖ ≥ 0 und (‖v‖ = 0 ⇐⇒ v = 0),

(ii) ‖λv‖ = |λ| ‖v‖,

(iii) ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

Ein normierter Vektorraum (V, ‖.‖) ist ein Vektorraum V zusammen mit einer Norm ‖.‖ auf
V . Durch die Definition

d(u, v) := ‖u− v‖ (8)

wird daraus ein metrischer Raum, und alle Begriffe, die wir für metrische Räume erklärt
haben, sind auch für normierte Vektorrräume erklärt. Wenn wir in normierten Vektorräumen
von Konvergenz, Stetigkeit, offenen Mengen etc. sprechen, beziehen wir uns immer auf die
Metrik (8). Normierte Vektorräume sind also spezielle metrische Räume.

Beispiel 91 (Der Rn mit der Standardnorm). Der Vektorraum V = R
n besitzt eine Norm

‖x‖ :=
√∑

x2i , die wir als die Standardnorm oder Euklidische Norm des R
n bezeichnen

wollen. Die Axiome (i) und (ii) sind klar, die Dreiecksungleichung folgt, wenn wir beachten,
dass

‖x− y‖ =

√
√
√
√

n∑

k=1

(xk − yk)2 = d(x, y)

die Standardmetrik aus Beispiel 3 ist. Damit folgt

‖x+ y‖ = d(x,−y) ≤ d(x, 0) + d(−y, 0) = ‖x− 0‖+ ‖ − y − 0‖ = ‖x‖+ ‖y‖.
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Wenn wir vom R
n als normiertem Vektorraum sprechen, beziehen wir uns immer auf die

vorstehende Norm, obwohl es sehr viele andere gibt. Die Metriken dp aus Beispiel 4 wie die
Metrik d∞ kommen alle von einer Norm

‖x‖p := dp(x, 0),

der sogenannten lp-Norm.

Beispiel 92. Der Vektorraum der beschränkten Funktionen V = B(X,R) gestattet die
Norm ‖f‖ = ‖f‖sup = sup{|f(x)| |x ∈ X}, die zur Supremumsmetrik führt.

Beispiel 93. Nicht jede Metrik kommt von einer Norm, schon weil metrische Räume im all-
gemeinen eben keine Vektorräume sind: Beliebige Teilmengen von normierten Vektorräumen
sind als Teilmengen von metrischen Räumen wieder metrische Räume, im allgemeinen aber
keine normierten Vektorräume.

Aber auch auf
”
kompletten“ Vektorräumen gibt es Metriken, die nicht von einer Norm

kommen. Zum Beispiel kommt die diskrete Metrik auf dem R
n nicht von einer Norm. Warum

nicht?

Bemerkung. In der linearen Algebra haben Sie die Norm in einem Euklidischen Vektorraum
kennengelernt. Jedes positiv definite Skalarprodukt 〈., .〉 induziert eine Norm vermöge

‖x‖ :=
√

〈x, x〉.
Aber nicht jede Norm auf einem reellen Vektorraum kommt von einem Skalarprodukt. Not-
wendig und hinreichend ist die sogenannte Parallelogrammgleichung

2(‖x‖2 + ‖y‖2) = ‖x+ y‖2 + ‖x− y‖2.
Das die Bedingung notwendig ist, rechnen Sie leicht nach. Dass sie auch hinreichend ist, ist
schwieriger zu zeigen. Man definiert

〈x, y〉 := 1

4
(‖x+ y‖2 − ‖x− y‖2)

und muss dann vor allem die Bilinearität zeigen. Einen Beweis finden Sie zum Beispiel in
W. Klingenberg, Lineare Algebra und Analytische Geometrie, Springer 1984, p. 117.

Lemma 94. In einem normierten Vektorraum (V, ‖..‖) gilt für alle u, v ∈ V

| ‖u‖ − ‖v‖ | ≤ ‖u− v‖.

Beweis. Es gilt nach der Dreiecksungleichung

‖u‖ = ‖(u− v) + v‖ ≤ ‖u− v‖+ ‖v‖,
und daher

‖u‖ − ‖v‖ ≤ ‖u− v‖.
Aus Symmetriegründen ist dann aber auch ‖v‖ − ‖u‖ ≤ ‖u − v‖, und daraus folgt die
Behauptung.

Als Folgerung ergibt sich, dass die Funktion

‖.‖ : V → R, x 7→ ‖x‖
stetig ist.
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Definition 95. Mit L(V,W ) bezeichnen wir den Vektorraum der linearen Abbildungen

F : V →W

vom Vektorraum V in den Vektorraum W .

Satz 96. Seien (V, ‖..‖V ) und (W, ‖..‖W ) normierte Vektorräume, und sei F : V → W
linear. Dann ist F genau dann stetig, wenn es ein C ∈ R gibt, so dass für alle v ∈ V

‖F (v)‖W ≤ C‖v‖V .

Beweis. Zu ( =⇒ ). Wenn F stetig ist, ist es insbesondere in 0 stetig. Also gibt es zu ǫ = 1
ein δ > 0 mit

F (Uδ(0)) ⊂ Uǫ(F (0)) = U1(0).

Mit anderen Worten:
‖v‖V < δ =⇒ ‖F (v)‖W < 1.

Dann gilt aber für alle v 6= 0

1 > ‖F ( δ

2‖v‖V
v)‖W =

δ

2‖v‖V
‖F (v)‖W .

Das impliziert

‖F (v)‖W ≤ 2

δ
‖v‖V

auch für v = 0. Also können wir C = 2
δ wählen.

Zu (⇐=). Gibt es ein C wie im Satz, so ist für alle v1, v2 ∈ V

‖F (v1)− F (v2)‖W = ‖F (v1 − v2)‖W ≤ C‖v1 − v2‖V .

Daraus folgt die (gleichmäßige) Stetigkeit von F .

Wir verzichten im weiteren auf den Index am Normsymbol.

Definition 97. Sie n ∈ N. Ein (reeller) Vektorraum V heißt n-dimensional, wenn es einen
Isomorphismus

Φ : Rn → V

gibt. Dabei ist ein Isomorphismus eine bijektive Abbildung Φ, so dass Φ und Φ−1 linear sind.
Ein Vektorraum heißt endlich-dimensional, wenn er n-dimensional für ein n ∈ N ist.

Satz 98. Seien V,W normierte Vektorräume und V endlich-dimensional. Dann ist jede
lineare Abbildung F : V →W stetig.

Beweis. 1. Fall: V = R
n. Zunächst gilt für x ∈ R

n:

x = (x1, . . . , xn) =

n∑

i=1

xjej ,

wobei ej = (0, . . . , 0, 1, 0, . . . , 0) den j-ten Vektor der sogenannten Standardbasis des R
n

bezeichnet, der in der j-ten Komponente eine 1 und sonst lauter 0 hat. Daher ist

‖F (x)‖ = ‖F (
n∑

j=1

xjej)‖ = ‖
n∑

j=1

xjF (ej)‖ ≤
n∑

j=1

|xj | ‖F (ej)‖ ≤M
n∑

j=1

|xj |
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mit M := maxj ‖F (ej)‖. Wegen |xj | ≤
√

x21 + . . .+ x2n folgt
∑n

j=1 |xj | ≤ n
√

x21 + . . .+ x2n,
also

‖F (x)‖ ≤Mn‖x‖,
und F ist stetig.

2. Fall: V beliebig, endlich-dimensional. Sei Φ : Rn → V ein Isomorphismus. Dann ist Φ
nach dem 1. Fall stetig, und es gibt ein C ∈ R mit ‖Φ(x)‖ ≤ C‖x‖ für alle x. Wir zeigen,
dass es auch ein B > 0 gibt, so dass

B‖x‖ ≤ ‖Φ(x)‖ ≤ C‖x‖ für alle x ∈ R
n. (9)

Die Funktion ‖Φ‖ : R
n → R ist als Komposition stetiger Funktionen stetig und nimmt

deshalb auf der kompakten Menge

Sn−1 := {x ∈ R
n | ‖x‖ = 1}

ihr Minimum B in einem Punkt x∗ ∈ Sn−1 an. Weil x∗ 6= 0 und Φ ein Isomorphismus ist,
ist

B := ‖Φ(x∗)‖ > 0.

Für alle x 6= 0 gilt

‖Φ(x)‖ =

∥
∥
∥
∥
Φ(‖x‖ x

‖x‖ )
∥
∥
∥
∥
= ‖x‖

∥
∥
∥
∥
Φ(

x

‖x‖ )
∥
∥
∥
∥
≥ B‖x‖.

und die Ungleichung ‖Φ(x)‖ ≥ B‖x‖ gilt offenbar auch für x = 0. Damit ist (9) bewiesen.
Es folgt

‖Φ−1(v)‖ ≤ 1

B
‖v‖ für alle v ∈ V.

Schließlich ist nach dem 1. Fall die lineare Abbildung F ◦ Φ : Rn →W stetig mit

‖F ◦ Φ(x)‖ ≤ A‖x‖ für alle x ∈ R
n.

Damit erhalten wir

‖F (v)‖ = ‖F ◦ Φ(Φ−1(v))‖ ≤ A‖Φ−1(v)‖ ≤ AB‖v‖.

Korollar 99 (Die Operatornorm auf L(V,W )). Seien V und W normierte Vektorräume
und V 6= {0} endlich-dimensional. Dann definiert

‖F‖ := sup
v 6=0

‖F (v)‖
‖v‖ für F ∈ L(V,W )

eine Norm auf dem Vektorraum L(V,W ).

Beweis. Nach dem Satz gibt es ein C ∈ R, so dass für alle v 6= 0

‖F (v)‖
‖v‖ ≤ C.

Daher ist ‖F‖ ∈ R. Die Norm-Eigenschaften sind leicht zu verifizieren.

Korollar 100. Sei V ein endlich-dimensionaler normierter Vektorraum mit zwei Normen
‖..‖1, ‖..‖2. Dann gilt
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(i) Es gibt c, C > 0, so dass für alle v ∈ V gilt

c ‖v‖1 ≤ ‖v‖2 ≤ C ‖v‖1.

Man sagt: Je zwei Normen auf einem endlich-dimensionalen Vektorraum sind äquiva-
lent.

(ii) Eine Menge G ⊂ V ist genau dann bezüglich ‖..‖1 offen, wenn sie bezüglich ‖..‖2 offen
ist. Daher sind auch Begriffe wie Konvergenz, Kompaktheit, Stetigkeit usw. unabhängig
von der in V verwendeten Norm.

(iii) ‖..‖1-Cauchyfolgen sind auch ‖..‖2-Cauchyfolgen. Also ist auch der Begriff Cauchyfolge
unabhängig von der in V verwendeten Norm.

Beweis. Zu (i). Weil die Identität id : (V, ‖.‖2) → (V, ‖.‖1) linear, also stetig ist, gibt es ein
M > 0 mit

‖v‖1 ≤M ‖v‖2,
also

1

M
‖v‖1 ≤ ‖v‖2

für alle v. Die Stetigkeit von id in der anderen Richtung liefert die zweite Ungleichung.

Zu (ii). Ist G offen bezüglich ‖.‖1 und betrachtet man wieder id als stetige Abbildung von
(V, ‖.‖2) nach (V, ‖.‖1), so ist auch

G = id−1(G)

offen. Die umgekehrte Richtung folgt aus Symmetriegründen.

Zu (iii). Folgt leicht aus (i).

Beispiel 101. Für die lp-Normen auf Rn aus Beispiel 91 gilt: Ist 1 ≤ p ≤ q ≤ +∞ und
x ∈ R

n, so ist

‖x‖q ≤ ‖x‖p ≤ n
1
p−

1
q ‖x‖q, (10)

wobei 1
+∞ := 0.

Beweis: Sei zunächst q < +∞. Die linke Abschätzung ist leicht: Man kann o.E. annehmen,
dass

1 = (‖x‖q)q =
∑

i

|xi|q.

Insbesondere sind dann alle |xi| ≤ 1 und daher |xi|p ≥ |xi|q. Damit ist
∑

i |xi|p ≥ 1 und

‖x‖p =

(
∑

i

|xi|p
)1/p

≥ 1 = ‖x‖p.

Die rechte Ungleichung beweisen wir später im Beispiel 185.

Für den Fall q = +∞ vergleiche (4).

Definition 102. Ein vollständiger normierter Vektorraum heißt ein Banachraum.

Satz 103. Jeder endlich-dimensionale normierte Vektorraum (V, ‖.‖) ist ein Banachraum.
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Beweis. 1. Fall: V = R
n mit der Standardnorm. Das haben wir bereits im Beispiel 40 ge-

zeigt.

2. Fall: V beliebiger endlich-dimensionaler R-Vektorraum. Sie (vk)k∈N eine Cauchyfolge in
V . Nach unserer Definition (oder nach Linearer Algebra) gibt es einen Isomorphismus Φ :
R

n → V . Dann ist auch Φ−1 : V → R
n linear, also stetig, und es gibt ein C ∈ R mit

‖Φ−1(vj)− Φ−1(vk)‖ = ‖Φ−1(vj − vk)‖ ≤ C‖vj − vk‖

für alle j, k ∈ N. Also ist auch (xk = Φ−1(vk))k∈N eine Cauchyfolge in R
n. Sie ist nach dem

1. Fall konvergent gegen ein x∗ ∈ R
n. Wegen der Stetigkeit von Φ ist deshalb

lim
k→∞

vk = lim
k→∞

Φ(xk) = Φ(x∗).

Beispiel 104. Vergleiche Beispiele 71 und 79. Sei (V, ‖.‖) ein n-dimensionaler Banachraum.
Die Wahl einer Basis von V liefert nach linearer Algebra einen Isomorphismus

Φ : L(V, V ) →M(n× n,R)

zwischen dem Raum der linearen Abbildungen von V in sich und dem Raum der (n × n)-
Matrizen. Wenn wir L(V, V ) mit der Operatornorm und M(n×n,R) zum Beispiel mit dem

R
(n2) identifizieren und mit der entsprechenden Norm ausstatten, ist Φ nach Satz 98 ein

Homöomorphismus. Die Determinanten ist nach Beispiel 71 stetig auf M(n × n,R), und
weil die Determinante der linearen Abbildung F ∈ L(V, V ) nach linearer Algebra gerade
die Determinante der Matrix Φ(F ) ist, ist auch die Determinantenfunktion auf L(V, V )
stetig. Damit ist das Urbild von R \ {0}, also die invertierbaren Endomorphismen von V ,
eine offene Teilmenge GL(V ), die unter Φ der Menge der invertierbaren Matrizen GL(n,R)
entspricht. Für invertierbare Matrizen sind die Komponenten der Inversen durch gebrochen-
rationale Funktionen der originalen Komponenten gegeben, also insbesondere stetig. Daher
ist die Inversenbildung aufGL(n,R) und wegen der Φ-Invarianz auch aufGL(V ) eine stetige
Abbildung.

Wir halten noch einmal das Ergebnis aus dem Korollar 100 fest:

Ein (abstrakter) endlich-dimensionaler R-Vektorraum hat unendlich viele Basen, aber keine
von diesen ist besonders ausgezeichnet. Ebenso besitzt er unendlich viele Normen, aber
keine von diesen ist besonders ausgezeichnet. Allerdings sind sie alle äquivalent: Die durch
sie definierten Metriken liefern alle dieselben offenen Mengen, dieselben konvergenten Folgen,
dieselben stetigen Abbildungen. Um über Offenheit, Konvergenz oder Stetigkeit in endlich-
dimensionalen R-Vektorräumen zu sprechen, kann man eine beliebige Norm wählen. Weil es
aber egal ist, welche man wählt, kann man eben unabhängig von einer solchen Wahl über
Offenheit, Konvergenz oder Stetigkeit reden.
Der Rn besitzt eine Standardbasis und eine Standardnorm, die die Standardmetrik d2 liefert.
Natürlich kann man davon Gebrauch machen, oft muss man aber nicht ...
Mehr zu diesem Thema gleich in der Vorbemerkung zum nächsten Abschnitt und im Ab-
schnitt 2.7 über die klassische Vektoranalysis.
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2 Grundlagen der mehrdimensionalen Differentiation

Wir werden die Differentialrechnung in endlich-dimensionalen Banachräumen entwickeln.
Nach dem vorangehenden Abschnitt sind diese isomorph zu einem R

n, und man könnte sich
auch auf die letzteren beschränken.

Der Vorteil wäre, dass man im R
n eine ausgezeichnete Basis und damit ausgezeichnete

Koordinaten hat. Dadurch wird die Theorie konkreter. Man könnte die Differentialrechung
auf dem Begriff der partiellen Ableitung, also der Ableitung nach einer einzelnen Variablen,
aufbauen.

Der Nachteil wäre, dass man im R
n eine ausgezeichnete Basis und damit ausgezeichnete

Koordinaten hat. Diese verschleiern die Tatsache, dass die Konzepte der Differentialrechung
geometrischer Natur sind und mit speziellen Koordinaten nichts zu tun haben, vielleicht
aber sehr viel mit anderen Strukturen, die auf dem R

n auch noch so selbstverständlich
vorkommen, dass wir sie gar nicht bemerken.

Zum Beispiel ist V := {(x, y, z) ∈ R
3 |x + y + z = 0} ein zweidimensionaler Untervektor-

raum des R
3. Hat man darauf eine differenzierbare Funktion f : V → R gegeben, so ist

es zunächst unklar, was ihre partiellen Ableitungen sein sollen. Erst wenn man in V eine
Basis gewählt hat und damit eine Isomorphie von V auf R2, macht der Begriff der partiellen
Ableitungen von f einen Sinn. Allerdings für jede Basiswahl einen anderen. Und es gibt
keine

”
kanonische“ Weise, eine Basis zu wählen. Hingegen kann man den viel wichtigeren

Begriff des Gradienten ohne partielle Ableitungen definieren, braucht dafür aber ein Ska-
larprodukt. Und das Skalarprodukt des R

3 liefert auf ganz kanonische Weise eines für den
Untervektorraum V . (Vgl. Abschnitt 2.7.1.)

2.1 Die Ableitung

• Wir lernen die Ableitung als lineare Approximation einer Abbildung in der Nähe eines
Punktes kennen.

• Wir berechne die Ableitung in einfachsten Fällen.

Im folgenden seien V,W endlich-dimensionale Banachräume4 und G eine offene Teilmenge
von V .

Definition 105. Sei f : V ⊃ G→W eine Abbildung der offenen Menge G.

(i) f heißt differenzierbar in p ∈ G, wenn es eine lineare Abbildung F : V → W gibt, so
dass für die durch

f(x) = f(p) + F (x− p) +R(x) (11)

definierte
”
Restfunktion“ R : G→W gilt

lim
x→p

R(x)

‖x− p‖ = 0. (12)

F ist dann eindeutig bestimmt, vgl. Lemma 106, und wir nennen es die Ableitung oder
das Differential von f in p.

Notation:
F = Dpf = dpf.

(ii) f heißt differenzierbar (auf G), falls f in allen p ∈ G differenzierbar ist.

4Im folgenden genügt es, wenn V endlich-dimensional ist. Aber da wir keine konkreten Anwendungen für
unendlich-dimensionales W im Sinn haben, sei der Einfachheit halber auch W endlich-dimensional.
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Bemerkungen.

• Analytisch gesprochen ist Dpf die lineare Approximation von f in der Nähe von p.
Schreibt man x statt p und ∆x für x− p, so erhält man

∆f := f(x+∆x)− f(x) ≈ Dxf(∆x).

• Die Notation f ′(p) für die Ableitung finde ich weniger empfehlenswert, weil die Ab-
leitung eine lineare Abbildung ist, so dass man dann f ′(p)(v) schreiben müßte. Wir
heben uns diese Schreibweise daher auf für den Fall, wo Dpf auf kanonische Weise
durch eine Matrix gegeben ist, vgl. Beispiel 114.

Lemma 106. Ist f in p differenzierbar und F wie in der Definition, so gilt für alle v in V :

F (v) = lim
t→0

f(p+ tv)− f(p)

t
.

Beachten Sie: Weil der Definitionsbereich G von f offen ist, liegt für jedes v ∈ V und hin-
reichend kleines |t| der Punkt p+ tv in G. Deshalb ist der Limes sinnvoll. Die Definition der
Differenzierbarkeit kann man auch für Abbildungen von nicht-offenen Teilmengen hinschrei-
ben, aber die Ableitung ist dann im allgemeinen nicht mehr eindeutig.

Beweis. Ist F wie in der Definition, so folgt

f(p+ tv)− f(p)

t
=
f(p) + F (tv) +R(p+ tv)− f(p)

t
= F (v) +

R(p+ tv)

t
.

Aber
R(p+ tv)

t
=

R(p+ tv)

‖p+ tv − p‖
︸ ︷︷ ︸

→0

|t| ‖v‖
t

︸ ︷︷ ︸

=±‖v‖

.

Differenzierbarkeit und das Differential hängen wegen Korollar 100 nicht ab von den gewähl-
ten Normen auf V und W . Wir werden deshalb die Norm oft auch nicht spezifizieren. Wenn
man eine braucht, nimmt man eine.

Beispiel 107 (Der Fall R → R). Wie hängt die neue Ableitungsdefinition mit der aus dem
letzten Semester zusammen?

Die einzigen linearen Abbildungen von R nach R sind die Abbildungen x 7→ ax mit einem
festen a ∈ R. Eine Abbildung f : R ⊃ G → R ist deshalb differenzierbar im Sinne der
Analysis I genau dann, wenn sie auch nach der neuen Definition differenzierbar ist. Dann
gilt für p ∈ G und v ∈ R

Dpf(v) = f ′(p)v,

d.h.
f ′(p) = Dpf(1) (13)

oder verbal:

Neue Ableitung = Multiplikation mit der alten Ableitung.
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Beispiel 108. Sei f : R2 → R, (x, y) 7→ 1+3x+4y+5xy2. Dann ist f in (0, 0) differenzierbar
mit

D(0,0)f(u, v) = 3u+ 4v.

Es ist nämlich
f(x, y) = 1 + 3(x− 0) + 4(y − 0) + 5xy2,

und weil 5xy2 in (x − 0) und (y − 0)
”
kubisch ist“, geht der Rest für (x, y) → (0, 0) gegen

null: ∣
∣
∣
∣
∣

5xy2
√

x2 + y2

∣
∣
∣
∣
∣
= 5

∣
∣
∣
∣
∣

x
√

x2 + y2
y2

∣
∣
∣
∣
∣
≤ 5y2.

Durch Nachrechnen können Sie bestätigen, dass

f(x, y) = 32 + 23(x− 1) + 24(y − 2) + 20(x− 1)(y − 2) + 5(y − 2)2 + 5(x− 1)(y − 2)2
︸ ︷︷ ︸

=:R(x,y)

.

Der Rest dividiert durch
√

(x− 1)2 + (y − 2)2 geht für (x, y) → (1, 2) wieder gegen null.
Damit ist f auch in (x, y) = (1, 2) differenzierbar und

D(1,2)f(u, v) = 23u+ 24v.

(Die Umrechnung von f auf den Punkt (x, y) = (1, 2) geschieht erst für x und dann für y
mit der Taylorformel aus Analysis I. Vgl. auch Satz 148).

Geometrische Interpretation.
Die geometrische Interpretation ist am ein-
fachsten im Fall f : R2 ⊃ G → R. Dann ist
der Graph von

x 7→ f(p) +Dpf(x− p)

eine Ebene im R
3, die Tangentialebene an den

Graphen von f .

z

x

y

p=(x ,y )
00

Beispiel 109. Die (offene) obere Einheits-Halbkugel ist gegeben durch den Graphen von

f(x, y) =
√

1− x2 − y2

über der offenen Menge {(x, y) |x2 + y2 < 1}.
Die Tangentialebene im Punkt (x0, y0,

√

1− x20 − y20) ist gegeben durch den Graphen der
affinen Abbildung

f(x0, y0) +D(x0,y0)f : R2 → R,

falls f differenzierbar ist. Aber das wissen wir noch nicht, und wir wissen auch noch nicht,
wie wir D(x0,y0)f berechnen sollen.
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Berechnung von Ableitungen. Das ist offenbar ein wichtiges Problem, dem wir
noch länger nachgehen werden. Wir beginnen mit zwei ganz trivialen Fällen:

Beispiel 110 (Konstante Abbildungen). Sei f : V ⊃ G → W konstant. Dann ist Dpf = 0
für alle p ∈ G.

Beispiel 111 (Lineare Abbildungen). Sei f : V →W linear. Dann ist

f(x) = f(p) + f(x− p) + 0.

Also ist f in jedem Punkt p ∈ V differenzierbar und Dpf = f . Zum Beispiel ist die Additi-
onsabbildung

α : V × V → V, (x, y) 7→ α(x, y) = x+ y

vom Vektorraum V × V der Paare in den Vektorraum V linear:

α(λ1(x1, y1) + λ2(x2, y2)) = α((λ1x1 + λ2x2, λ1y1 + λ2y2))

= λ1x1 + λ2x2 + λ1y1 + λ2y2

= λ1α(x1, y1) + λ2α(x2, y2).

Also ist α differenzierbar, und für alle (x, y) und (u, v) in V × V ist

D(x,y)α(u, v) = u+ v.

Nun ein etwas anspruchsvolleres Beispiel.

Beispiel 112 (Skalarmultiplikation). Die Abbildung der Skalarmultiplikation

µ : R× V → V, (λ, x) 7→ λx

ist differenzierbar in jedem (λ0, x0) ∈ R× V . Es ist nämlich

µ(λ, x) = λx = λ0x0
︸︷︷︸

µ(λ0,x0)

+(λ− λ0)x0 + λ0(x− x0)
︸ ︷︷ ︸

=:F (λ−λ0,x−x0)

+(λ− λ0)(x− x0)
︸ ︷︷ ︸

=:R(λ,x)

.

Diese Gleichung rechnet man leicht nach. Es bleibt zu zeigen, dass

lim
(λ,x)→(λ0,x0)

R(λ, x)

‖(λ, x)− (λ0, x0)‖
= 0.

Dazu braucht man eine Norm auf R×V . Wir nehmen an, dass auf V eine Norm ‖.‖ gegeben
ist, und definieren

‖(λ, x)‖ := |λ|+ ‖x‖.
Rechnen Sie nach, dass das wirklich eine Norm definiert. Damit gilt dann:

|R(λ, x)|
‖(λ, x)− (λ0, x0)‖

=
|λ− λ0|‖x− x0‖

|λ− λ0|+ ‖x− x0‖
≤ ‖x− x0‖ → 0

für (λ, x) → (λ0, x0). Daraus folgt die Behauptung. Wir halten fest:

D(λ0,x0)µ(λ, x) = λ0x+ λx0.

Das ist eine Art Produktregel, auf die wir noch zurückkommen.
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Die beiden folgenden Beispiele sind überaus wichtig! Sie stellen einen ersten Schritt zur
expliziten praktischen Berechnung von Ableitungen dar.

Beispiel 113 (Komponentenweise Differentiation). Sei

f = (f1, . . . , fm) : V ⊃ G→ R
m

mit Komponentenfunktionen fi : G→ R. Dann ist f genau dann in p differenzierbar, wenn
alle fi in p differenzierbar sind. In diesem Fall gilt

Dpf(v) = (Dpf1(v), . . . , Dpfm(v)) für alle v ∈ V. (14)

Beweis. In Komponenten sieht die Gleichung (11) so aus:

fi(x) = fi(p) + Fi(x− p) +Ri(x).

Nun ist F linear genau dann, wenn alle Komponenten Fi linear sind. Und weil Konvergenz
im R

n einfach komponentenweise Konvergenz ist, folgt die Behauptung durch Betrachtung

der Komponenten Ri(x)
‖x−p‖ von R(x)

‖x−p‖ .

Dieses Beispiel gestattet eine Verallgemeinerung auf folgende Situation:
Seien V und W1, . . . ,Wm endlich-dimensionale Banachräume, G ⊂ V offen und seien

fi : V ⊃ G → Wi

für i ∈ {1, . . . ,m} Abbildungen. Wir definieren

f : V ⊃ G →W1 × . . .×Wm

x 7→ (f1(x), . . . , fm(x)).

Dann ist f genau dann differenzierbar in p, wenn alle fi in p differenzierbar sind, und es gilt
wieder die Gleichung (14).

Beispiel 114 (Funktionalmatrix). f : Rn ⊃ G → R
m sei differenzierbar in p ∈ G. Dann

ist Dpf : R
n → R

m eine lineare Abbildung, und eine solche wird nach Linearer Alge-
bra dargestellt durch eine Matrix, die wir mit f ′(p) bezeichnen und die Jacobimatrix oder
Funktionalmatrix von f in p nennen. Die Spalten sind gerade die Bilder der Basisvektoren
e1, . . . , en:

f ′(p) = (Dpf(e1) . . . Dpf(en)) = (Dpfi(ej)) =






Dpf1(e1) . . . Dpf1(en)
...

...
Dpfm(e1) . . . Dpfm(en)




 .

Die Formel im Lemma 106 liefert eine Möglichkeit, die Dpfm(ej) zu berechnen. Wir kommen
im Abschnitt 2.3 darauf zurück.

Beispiel 115 (Kurven). Eine Abbildung f : R ⊃]a, b [→ W nennt man eine Kurve in W .
Ist f in t ∈]a, b [ differenzierbar, so ist für alle λ ∈ R

Dtf(λ) = λDtf(1),

Also ist Dtf : R →W durch den Tangentialvektor ḟ(t) := Dtf(1) eindeutig bestimmt.
Ist W = R

m und f = (f1, . . . , fm), so ist

ḟ(t) =
(

ḟ1(t), . . . , ḟm(t)
)

.
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Dabei ist nach Lemma 106

ḟi(t) = Dtfi(1) = lim
τ→0

fi(τ + t)− fi(t)

τ
.

ḟi(t) ist also die gewöhnliche Ableitung der Analysis I. Ins-
besondere können wir die Definition von ḟ auch auf den
Fall kompakter Intervalle [a, b] ausdehnen.

Konkret: Die Kurve f : R → R
3, t 7→ (cos t, sin t, t) ist

eine Spiralkurve. Sie hat den Geschwindigkeitsvektor

ḟ(t) = (− sin t, cos t, 1).

Und es gilt zum Beispiel

D2f(−5) = (5 sin 2,−5 cos 2,−5).

f(t)

f(t)
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2.2 Rechenregeln für differenzierbare Abbildungen

• Differenzierbare Abbildungen sind stetig.

• Die wichtigsten Hilfsmittel zur Berechnung von Ableitungen sind wie in der Analysis I
die Kettenregel und die Produktregel, die wir hier kennenlernen.

• Wir betrachten viele Beispiele für multilineare Abbildungen (Produkte) und sehr wich-
tige Beispiele von Ableitungen.

• Es lohnt sich, die Formeln (21), (23), (24) und (25) auswendig zu wissen.

Satz 116. Seien V,W endlich-dimensionale Banachräume. Ist f : V ⊃ G → W in p ∈ G
differenzierbar, so ist es dort auch stetig.

Beweis. Die Behauptung folgt aus

f(x) = f(p) +Dpf(x− p) +R(x),

weil für x → p das Restglied gegen 0 geht, und weil die lineare Abbildung Dpf auf einem
endlich-dimensionalen Banachraum stetig ist.

Satz 117 (Kettenregel). Seien U, V,W endlich-dimensionale Banachräume, G ⊂ U und
H ⊂ V offen, g : G → V und f : H → W Abbildungen mit g(G) ⊂ H. Sei g differenzierbar
in p ∈ G und f differenzierbar in q = g(p) ∈ H. Dann ist die Abbildung f ◦ g : G → W
differenzierbar in p, und es gilt:

Dp(f ◦ g) = Dg(p)f ◦Dpg.

Beweis. Die definierenden Gleichungen

g(x) = g(p) +Dpg(x− p) +R(x)

f(y) = f(q) +Dqf(y − q) + S(y)

implizieren

f(g(x)) = f(g(p)) +Dqf(g(x)− g(p)) + S(g(x))

= f(g(p)) +Dqf(Dpg(x− p)) +Dqf(R(x)) + S(g(x))
︸ ︷︷ ︸

=:T (x)

.

Es bleibt zu zeigen, dass

lim
x→p

T (x)

‖x− p‖ = 0. (15)

Im folgenden benutzen wir die im Korollar 99 definierte Operatornorm.

Zunächst gilt
‖Dqf(R(x))‖

‖x− p‖ ≤ ‖Dqf‖
‖R(x)‖
‖x− p‖ → 0 (16)

für x→ p.
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Schwieriger ist der zweite Summand von T (x). Die Behauptung

lim
y→q

S(y)

‖y − q‖ = 0

ist äquivalent zur Behauptung:

∀ǫ>0∃δ>0(‖y − q‖ < δ =⇒ ‖S(y)‖ ≤ ǫ‖y − q‖).

Sei ǫ > 0 und sei δ > 0 dazu wie vorstehend gewählt. Weil g stetig ist in p, gibt es ein η > 0,
so dass

‖x− p‖ < η =⇒ ‖g(x)− g(p)‖ < δ.

Für ‖x− p‖ < η ist dann also

‖S(g(x))‖ ≤ ǫ‖g(x)− g(p)‖ = ǫ‖Dpg(x− p) +R(x)‖ ≤ ǫ(‖Dpg‖ ‖x− p‖+ ‖R(x)‖).

Weil limx→p
R(x)
‖x−p‖ = 0, kann man annehmen, dass η > 0 so klein ist, dass

‖R(x)||
‖x− p‖ < 1 für 0 < ‖x− p‖ < η.

Dann folgt

‖S(g(x))‖ ≤ ǫ(‖Dpg‖ ‖x− p‖+ ‖x− p‖) = ǫ(‖Dpg‖+ 1)‖x− p‖.

Wir haben also zu jedem ǫ > 0 ein η > 0 gefunden, so dass

0 < ‖x− p‖ < η =⇒ ‖S(g(x))‖
‖x− p‖ ≤ ǫ(‖Dpg‖+ 1).

Das bedeutet aber

lim
x→p

‖S(g(x))‖
‖x− p‖ = 0. (17)

Aus (16) und (17) folgt (15) und damit die Behauptung.

Die Skalarmultiplikation R× V → V, (λ, v) 7→ λv eines Vektorraums ist in jedem der beiden
Argument linear, man nennt das bilinear. Eine Verallgemeinerung sind die multilinearen oder
k-linearen Abbildungen, zum Beispiel die Determinante. Der folgende Satz verallgemeinert
das Beispiel 112 auf multilineare Abbildungen.

Satz 118 (Produktregel). Seien V1, . . . , Vk,W endlich-dimensionale Banachräume und

µ : V1 × . . .× Vk →W

eine k-lineare Abbildung, d.h. µ ist in jedem seiner k Argumente linear. Dann ist µ diffe-
renzierbar und es gilt

D(p1,...,pk)µ(v1, . . . , vk) =
k∑

i=1

µ(p1, . . . , pi−1, vi, pi+1, . . . , pk).

Bemerkung: Der erste Summand ist zu interpretieren als µ(v1, p2, . . . , pk), der letzte ent-
sprechend.

Beweis. A. Wir zeigen zunächst die Stetigkeit von µ, genauer: Es gibt C mit

‖µ(x1, . . . , xk)‖ ≤ C‖x1‖ · . . . · ‖xk‖ für alle xi ∈ Vi. (18)
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Ist e1, . . . , en eine Basis von V , so sind die Koordinatenabbildungen

x =
∑

j

xjej 7→ xi

linear, also stetig, und es gibt zu jedem i eine Konstante Ci mit |xi| ≤ Ci‖x‖ für alle x.

Wir wählen nun Basen ei1, . . . , eini
für Vi und schreiben xi =

∑

j xijeij ∈ Vi. Aus der
Multilinearität folgt dann

‖µ(x1, . . . , xk)‖ = ‖
∑

j1,...,jk

x1j1 · . . . · xkjkµ(e1j1 , . . . , ek,jk)‖

≤
∑

j1,...,jk

C1j1‖x1‖ · . . . · Ckjk‖xk‖ · ‖µ(e1j1 , . . . , ekjk)‖

=




∑

j1,...,jk

C1j1 . . . Ckjk‖µ(e1j1 , . . . , ekjk)‖





︸ ︷︷ ︸

=:C

‖x1‖ · . . . · ‖xk‖.

B. Nun zum eigentlichen Beweis. Dazu müssen wir den Restterm

R(x1, . . . , xk) = µ(x1, . . . , xk)− µ(p1, . . . , pk)−
k∑

i=1

µ(p1, . . . , pi−1, xi − pi, pi+1, . . . , pk)

berechnen. Dann müssen wir eine Norm ‖.‖ auf V1 × . . .× Vk wählen und zeigen, dass

lim
(x1,...,xk)→(p1,...,pk)

R(x1, . . . , xk)

‖(x1, . . . , xk)− (p1, . . . , pk)‖
= 0.

Eigentlich müssen wir den Restterm natürlich gar nicht berechnen, sondern wir müssen ihn
in einer Form schreiben, die es ermöglicht, den Grenzwert zu berechnen. Dazu führen wir
folgende Schreibweise ein:

∑

1≤j1<...<jm≤k

µj1...jm(p, x) :=
∑

1≤j1<...<jm≤k

µ(p1, . . . , xj1 −pj1 , . . . , xjm −pjm , . . . , pk), (19)

wobei über alle Produkte summiert wird, die aus µ(p1, . . . , pk) entstehen, indem man die pji
ersetzt durch xji − pji . Der Restterm ist dann also

R(x1, . . . , xk) = µ(x1, . . . , xk)− µ(p1, . . . , pk)−
∑

1≤j1≤k

µj1(p, x).

Wir zeigen gleich in einem Lemma, dass dann

R(x1, . . . , xk) =

k∑

m=2

∑

1≤j1<...<jm≤k

µj1...jm(p, x). (20)

Jeder Summand der rechten Seite enthält also mindestens zwei “Faktoren” der Form (xj−pj)
und geht deshalb für (x1, . . . , xk) → (p1, . . . , pk) mindestens quadratisch gegen 0.

Genauer: Ist ‖.‖i eine Norm auf Vi, so definiert

‖(x1, . . . , xk)‖ := ‖x1‖1 + . . .+ ‖xk‖k
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eine Norm auf V1 × . . .× Vk, und weil nach (18)

‖µ(p1, . . . , xj1 − pj1 , . . . , xj2 − pj2 , . . . , pk)‖
‖((x1, . . . , xk)− (p1, . . . , pk)‖

≤ C‖p1‖ . . .
‖xj1 − pj1‖

‖p1‖+ . . .+ ‖xj1 − pj1‖+ . . .+ ‖pk‖
︸ ︷︷ ︸

≤1

. . . ‖xj2 − pj2‖
︸ ︷︷ ︸

→0

. . . ‖pk‖,

geht das Restglied gegen 0.

Die Restgliedformel (20) folgt aus

Lemma 119. Für jede k-lineare Abbildung µ : V1× . . .×Vk →W und alle (x1, . . . , xk) und
(p1, . . . , pk) ∈ V1 × . . .× Vk gilt unter der Verwendung von (19)

µ(x1, . . . , xk) = µ(p1, . . . , pk) +
k∑

m=1

∑

1≤j1<...<jm≤k

µj1...jm(p, x)

Die p-Terme auf der rechten Seite heben sich also weg.

Beweis. Wir zeigen das durch vollständige Induktion über k.

k = 1. Die Formel
µ(x1) = µ(p1) + µ(x1 − p1)

folgt aus der 1-Linearität.

k → k + 1. Sei also µ : V1 × . . .× Vk+1 →W eine k-lineare Abbildung. Dann ist

(∗) :=µ(p1, . . . , pk+1) +
k+1∑

m=1

∑

1≤j1<...<jm≤k+1

µj1...jm(p, x)

= µ(p1, . . . , pk+1) +

k+1∑

m=1

∑

1≤j1<...<jm≤k

µj1...jm(p, x)

+

k+1∑

m=1

∑

1≤j1<...<jm=k+1

µj1...jm(p, x).

Im mittleren Term kann m = k + 1 nicht vorkommen. Deshalb können wir fortfahren

(∗) = µ(p1, . . . , pk+1) +

k∑

m=1

∑

1≤j1<...<jm≤k

µj1...jm(p, x)

+ µ(p1, . . . , pk, xk+1 − pk+1) +

k+1∑

m=2

∑

1≤j1<...<jm=k+1

µj1...jm(p, x).

Wir definieren nun zwei k-lineare Abbildungen auf V1 × . . .× Vk durch

µ0(x1, . . . , xk) := µ(x1, . . . , xk, pk+1),

µ1(x1, . . . , xk) := µ(x1, . . . , xk, xk+1).
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Wir erhalten

(∗) = µ0(p1, . . . , pk) +
k∑

m=1

∑

1≤j1<...<jm≤k

µ0
j1...jm(p, x)

+ µ1(p1, . . . , pk)− µ0(p1, . . . , pk)

+

k+1∑

m=2

∑

1≤j1<...<jm−1≤k

µ1
j1...jm(p, x)−

k+1∑

m=2

∑

1≤j1<...<jm−1≤k

µ0
j1...jm(p, x)

=
k∑

m=1

∑

1≤j1<...<jm≤k

µ0
j1...jm(x, p) + µ1(p1, . . . , pk)

+

k∑

m=1

∑

1≤j1<...<jm≤k

µ1
j1...jm(p, x)−

k∑

m=1

∑

1≤j1<...<jm≤k

µ0
j1...jm(p, x)

= µ1(p1, . . . , pk) + +

k∑

m=1

∑

1≤j1<...<jm≤k

µ1
j1...jm(p, x)

=
Ind.V or.

µ1(x1, . . . , xk) = µ(x1, . . . , xk+1).

Die Produktregel aus der Analysis I ist eine Kombination aus der vorstehenden Produktregel
mit der Kettenregel. Das erklären wir genauer:

Beispiel 120 (Alte Produktregel). Seien J ⊂ R ein offenes Intervall, p ∈ J und seien f, g :
J → R differenzierbare Funktionen. Sei weiter µ : R× R → R die Multiplikationsabbildung
(x, y) 7→ xy und sei

(f, g) : J → R× R, t 7→ (f(t), g(t)).

Wir betrachten die Komposition

h := µ ◦ (f, g) : t 7→ f(t)g(t).

Dann gilt

h′(p) =
(13)

Dph(1)

=
Kettenregel

D(f(p),g(p))µ ◦Dp(f, g)(1)

=
(14)

D(f(p),g(p))µ ◦ (Dpf(1), Dpg(1))

=
(13)

D(f(p),g(p))µ ◦ (f ′(p), g′(p))

=
Produktregel

µ(f ′(p), g(p)) + µ(f(p), g′(p))

=f ′(p)g(p) + f(p)g′(p).

Beispiel 121. Hier sind wichtige multilineare Produkte. Überlegen Sie, was in jedem ein-
zelnen Fall die Produktregel besagt.

(i) Das normale Produkt reeller Zahlen hatten wir gerade

R× R → R, (x, y) 7→ xy.
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(ii) Matrix mal Vektor: Sei M(m× n,R) der Vektorraum der reellen (m× n)-Matrizen.

M(m× n,R)× R
n → R

m, (A, x) 7→ Ax.

(iii) Allgemeiner
L(V,W )× V →W, (f, v) 7→ f(v)

(iv) Das kanonische Skalarprodukt im R
n

R
n × R

n → R, (x, y) 7→ 〈x, y〉 =
n∑

i=1

xiyi.

(v) Allgemeiner jedes Skalarprodukt

V × V → R, (x, y) 7→ 〈x, y〉

auf einem Euklidischen Vektorraum V, oder noch allgemeiner jede Bilinearform.

(vi) Das Kreuzprodukt
R

3 × R
3 → R

3, (x, y) 7→ x× y

auf dem R
3.

(vii) Die Determinante als Funktion der Spalten:

R
n × . . .× R

n → R, (x1, . . . , xn) 7→ det(x1, . . . , xn).

Dieses führen wir in einem Beispiel weiter unten aus.

Beispiel 122. Wir betrachten einen Euklidischen Vektorraum (V, 〈., .〉) und dazu:
die Produktabbildung

µ : V × V → R, (x, y) 7→ 〈x, y〉 ,
die lineare “Diagonal-Abbildung”

δ : V → V × V, x 7→ (x, x),

und die “Norm-Abbildung”

r : V → R, x 7→ ‖x‖ =
√

〈x, x〉

Dann ist
r =

√
◦ µ ◦ δ.

Seien x, p ∈ V und p 6= 0. Wir wollen zeigen, dass r in p differenzierbar ist und das Differential
ausrechnen.

• δ ist als lineare Abbildung differenzierbar und

Dpδ(x) = δ(x) = (x, x).

• µ ist nach der Produktregel differenzierbar und

D(p,p)µ(x, x) = µ(x, p) + µ(p, x) = 2µ(x, p).
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• Die Wurzel
√

ist nach Analysis I differenzierbar und

(
√

)′(t̃) =
1

2
√
t̃
.

Das bedeutet

Dt̃

√
(t) =

1

2
√
t̃
t.

Nimmt man die vorstehenden Ergebnisse zusammen, so sieht man, dass r in p nach der
Kettenregel differenzierbar ist und

Dpr(x) =
1

2
√

µ(p, p)
2µ(x, p) =

〈x, p〉
r(p)

. (21)

Beispiel 123. Für Vektoren x1, . . . , xn ∈ R
n schreiben wir

X := (x1, . . . , xn)

für die Matrix mit den Spalten xj . Ist (e1, . . . , en) die kanonische Basis des Rn, so ist also

E := (e1, . . . , en)

die n-reihige Einheitsmatrix. So identifizieren wir den Raum R
n × . . .× R

n mit dem Raum
M(n × n,R) der quadratischen n-reihigen Matrizen. Die Determinante – nehmen Sie das
als Definition, wenn Sie in der Linearen Algebra noch nicht so weit sind – ist mit dieser
Identifikation eine n-lineare Abbildung

det : Rn × . . .Rn → R, (x1, . . . , xn) 7→ det(x1, . . . , xn)

mit folgenden zusätzlichen Eigenschaften:

det(x1, . . . , xn) = 0, falls zwei der xj gleich sind,
(22)

det(e1, . . . , en) = 1.

Damit gilt für A = (a1, . . . , an) ∈M(n×n,R) und entsprechendes B nach der Produktregel

DA det(B) =
n∑

j=1

det(a1, . . . , aj−1, bj , aj+1, . . . , an)

=

n∑

j=1

det(a1, . . . , aj−1,

n∑

k=1

bkjek, aj+1, . . . , an)

=

n∑

k=1

n∑

j=1

bkj det(a1, . . . , aj−1, ek, aj+1, . . . , an)
︸ ︷︷ ︸

=:av
jk

=

n∑

k=1

n∑

j=1

bkja
v
jk.

Definiert man also die Adjungte adj(A) der Matrix A durch

adj(A) := (avjk)j,k=1,...,n = (det(a1, . . . , aj−1, ek, aj+1, . . . , an))j,k=1,...,n,

so ist DA det(B) gerade die Summe der Diagonalelemente der Matrix B adj(A), die soge-
nannte Spur dieser Matrix:

DA det(B) = Spur(B adj(A)).

Wir merken noch an:
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1. Ist A = E, so ist nach (22)

evjk = det(e1, . . . , ej−1, ek, ej+1, . . . , en) = δjk,

also adj(E) = E und

DE det(B) = Spur(B). (23)

2. Allgemein gilt nach (22)

n∑

k=1

avikakj = det(a1, . . . , ai−1,
n∑

k=1

akjek, ai+1, . . . , an)

= det(a1, . . . , ai−1, aj , ai+1, . . . , an) = δij det(A),

also adj(A)A = det(A)E. Ist detA 6= 0, so ist A also invertierbar und

adj(A) = det(A)A−1.

In diesem Fall ist

DA det(B) = det(A) Spur(BA−1). (24)

Beispiel 124. Sei V ein endlich-dimensionaler Banachraum. Wir wollen zeigen

• GL(V ) :=
{
A ∈ L(V, V )

∣
∣A invertierbar

}
ist offen in L(V, V ),

• die Abbildung
inv : GL(V ) → L(V, V ), A 7→ A−1

ist differenzierbar und

• ihre Ableitung ist

DA inv(B) = −A−1BA−1. (25)

Beachten Sie: Für V = R ist

λ(x−1)′ = Dx(x
−1)(λ) = −x−1λx−1 = λ(−x−2)

genau die aus der Schule bekannte Formel für die Ableitung von 1
x .

Wir benutzen auf L(V, V ) die Operatornorm und die Ungleichung

‖AB‖ ≤ ‖A‖ ‖B‖ (26)

für die Norm der Komposition von A und B (Beweis?).

Sei A ∈ GL(V ) und B ∈ L(V, V ) mit

‖A−B‖ < 1

‖A−1‖ . (27)

Aus (26) folgt dann also
‖A−1(A−B)‖ < 1. (28)

Nun benutzen wir
B = A− (A−B) = A(E −A−1(A−B)),
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wobei E die identische Abbildung von V ist, und denken an die geometrische Reihe. Wir
definieren

Sn :=

(
n∑

k=0

(
A−1(A−B)

)k

)

A−1.

Aus

‖Sn+m − Sn‖ =

∥
∥
∥
∥
∥

(
n+m∑

k=n+1

(
A−1(A−B)

)k

)

A−1

∥
∥
∥
∥
∥
≤
(

n+m∑

k=n+1

∥
∥A−1(A−B)

∥
∥
k

)

‖A−1‖

folgt mit (28), dass die Sn eine Cauchyfolge bilden. Weil L(V, V ) endlich-dimensional, also
ein Banachraum ist, existiert S := limSn. Aus

SnA = E +A−1(A−B) + . . .+ (A−1(A−B))n

SnA(A
−1(A−B)) = A−1(A−B) + . . .+ (A−1(A−B))n + (A−1(A−B))n+1

folgt durch Subtraktion:
SnB = E − (A−1(A−B))n+1.

Der letzte Term geht für n → ∞ gegen Null, also ist SB = E, d.h. S = B−1. Verschärft
man (27) zu

‖A−B‖ ≤ 1

2‖A−1‖ , (29)

so folgt mit der Dreiecksungleichung und (26)

‖Sn‖ ≤
n∑

k=0

‖A−1(A−B)‖k‖A−1‖ ≤ 1

1− 1
2

‖A−1‖ = 2‖A−1‖.

Aus (29) folgt also ‖B−1‖ ≤ 2‖A−1‖ und damit

‖B−1 −A−1‖ = ‖B−1(A−B)A−1‖ ≤ ‖B−1‖‖A−B‖‖A−1‖ ≤ 2‖A−1‖2‖A−B‖.

Das impliziert die Stetigkeit von inv. Schließlich untersuchen wir den Restterm

R(B) = inv(B)− inv(A) +A−1(B −A)A−1 = B−1 −A−1 +A−1(B −A)A−1

= −A−1(B −A)B−1 +A−1(B −A)A−1 = A−1(B −A)(A−1 −B−1).

Dann ist nach (26)

‖R(B)‖
‖B −A‖ ≤ ‖A−1‖‖A−1 −B−1‖.

Wegen der Stetigkeit von inv geht das für B → A gegen 0 und inv ist differenzierbar mit
der angegebenen Ableitung.

Im vorstehenden Beispiel haben wir eigentlich nur benutzt, dass L(V, V ) ein Banachraum
mit einer “Multiplikation” AB ist, für die (26) gilt, eine sogenannte Banachalgebra. Dass
es sich bei den Elementen um lineare Abbildungen handelt, spielte keine Rolle: Wir haben
einen Satz aus der Theorie der Banachalgebren bewiesen.
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2.3 Richtungsableitungen, partielle Ableitungen

• Nun endlich die Differentiation für bescheidenere Ansprüche!

• Richtungs- und insbesondere partielle Ableitungen kann man mit Methoden der Ana-
lysis I ausrechnen.

• Aber der Zusammenhang mit der (totalen) Differenzierbarkeit ist nicht ganz trivial.

Seien V,W endlich-dimensionale Banachräume, G ⊂ V offen, p ∈ G und f : V ⊃ G → W
eine Abbildung.

Definition 125. (i) Für v ∈ V definiere die Richtungsableitung von f in p in Richtung
v durch

∂vf(p) := lim
t→0

f(p+ tv)− f(p)

t
,

falls dieser Limes existiert.

(ii) Ist V = R
n mit der kanonischen Basis e1, . . . , en, so nennt man die Richtungsableitun-

gen ∂ei(p) die partiellen Ableitungen von f in p.

Notation:
∂f

∂xi
(p) = ∂if(p) = ∂eif(p).

Statt xi auch andere Variablennamen.

Es gilt also

∂if(p) = lim
t→0

f(p1, . . . , pi + t, . . . , pn)− f(p1, . . . , pn)

t

Das ist (für W = R) die Ableitung von f nach der i-ten Variablen im Sinne der
Analysis I.

Beispiel 126. Ist f in p differenzierbar, so existieren dort alle Richtungsableitungen und
es gilt

∂vf(p) = Dpf(v).

Speziell gilt also im Fall V = R
n

∂if(p) = Dpf(ei).

Beispiel 127 (Funktionalmatrix zu Fuß). Ist weiter

f : Rn ⊃ G→ R
m,

differenzierbar, so ist nach Beispiel 114 die Darstellungsmatrix von Dpf , also die Funktio-
nalmatrix, mit Methoden der Analysis I zu berechnen:

f ′(p) = (∂jfi(p))i = 1, . . . ,m
j = 1, . . . , n

=

(
∂fi
∂xj

(p)

)

i = 1, . . . ,m
j = 1, . . . , n

.
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Beispiel 128. Vgl. Beispiel 69.

Existieren in p alle Richtungsableitungen, so muß f
in p nicht differenzierbar, ja nicht einmal stetig sein,
wie man an

f(x, y) :=

{

1 falls y = x2 > 0

0 sonst.

sieht.

Satz 129 (Differenzierbarkeit und partielle Differenzierbarkeit). Existieren auf ganz G alle
Richtungsableitungen (oder im Fall V = R

n auch nur alle partiellen Ableitungen) und sind
diese stetig, so ist f in G differenzierbar.

Dieser Satz ist ein überaus nützliches Kriterium, weil oft die Berechnung von partiellen
Ableitungen nach Analysis I sehr einfach und die Stetigkeit der Ableitungen offensichtlich
ist.

Beweis. Wir führen den Beweis nur für V = R
n,W = R. Mittels komponentenweiser Diffe-

rentiation bzw. partieller Differentiation folgt daraus der Satz für V = R
n,W = R

m. Sind
schließlich Φ : Rn → V und Ψ : Rm → W Isomorphismen und setzt man f̃ := Ψ ◦ f ◦ Φ−1,
so ist f genau dann differenzierbar bzw. partiell differenzierbar, wenn das entsprechende für
f̃ gilt. Daraus folgt der Satz dann für beliebige V,W .

Seien also V = R
n,W = R. Für p ∈ G definiere

Fp(x1, . . . , xn) :=

n∑

j=0

xj∂jf(p).

Dann ist Fp : Rn → R linear und der offensichtliche Kandidat für die Ableitung an der Stelle
p. Wir betrachten eine offene ǫ-Kugel U = Uǫ(p), die ganz in der offenen Menge G liegt,
und beschränken uns im folgenden auf x ∈ U . Beachten Sie, dass dann auch die Punkte
(p1, . . . , pj , xj+1, . . . , xn) in U und damit im Definitionsbereich von f liegen. Für x ∈ U gilt
daher

f(x)− f(p) = f(x1, . . . , xn)− f(p1, . . . , pn)

= f(x1, . . . , xn)− f(p1, x2, . . . , xn)

+ f(p1, x2, . . . , xn)− f(p1, p2, x3, . . . , xn)

...

+ f(p1, . . . , pn−1, xn)− f(p1, . . . , pn).

Wir wenden auf jede Zeile den Mittelwertsatz an.

f(x)− f(p) = ∂1f(ξ1, x2, . . . , xn)(x1 − p1)

+ ∂2f(p1, ξ2, . . . , xn)(x2 − p2)

...

+ ∂nf(p1, . . . , pn−1, ξn)(xn − pn)
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mit ξi zwischen xi und pi. Daraus folgt

f(x)− f(p)− Fp(x− p)

‖x− p‖ =
n∑

i=1

xi − pi
‖x− p‖
︸ ︷︷ ︸

beschränkt

(∂if(p1, . . . , ξi, . . . , xn)− ∂if(p))
︸ ︷︷ ︸

→0

und mit der Stetigkeit der partiellen Ableitungen die Behauptung.

Beispiel 130. Die Abbildung f : R2 → R
3 mit

f(x, y) = (sinx cos y, sinx sin y, cos y)

hat die folgende Matrix partieller Ableitungen:

(∂jfi(x, y)) =





cosx cos y − sinx sin y
cosx sin y sinx cos y

0 − sin y



 .

Die partiellen Ableitungen sind offensichtlich stetig. Daher ist die Funktion differenzierbar
und das Differential D(x,y)f : R2 → R

3 wird durch die obige Matrix f ′(x, y) repräsentiert.

Beispiel 131 (Das
”
totale Differential“). Die Koordinaten-Abbildungen

xi : R
n → R, (v1, . . . , vn) 7→ vi

sind linear. Deshalb ist für alle p in R
n

Dpxi = xi.

Jedes v ∈ R
n läßt sich schreiben als

v =
∑

xi(v)ei =
∑

Dpxi(v)ei.

Ist f in p ∈ G ⊂ R
n differenzierbar, so folgt

Dpf(v) = Dpf(
∑

Dpxi(v)ei) =
∑

Dpxi(v)Dpf(ei) =
∑

∂if(p)Dpxi(v).

Das schreibt man auch so:
Df =

∑

∂ifDxi (30)

oder - gebräuchlicher -

df =
∑ ∂f

∂xi
dxi.

Man nennt diesen Ausdruck das
”
totale Differential“ von f im Gegensatz zu den einzelnen

partiellen Differentialen ∂f
∂xi

. Bei Lichte besehen ist das totale Differential an der Stelle p
aber einfach nur die Ableitung Dpf .

Beispiel 132 (Kettenregel in partiellen Ableitungen). Für differenzierbare Abbildungen
zwischen den Standardräumen sieht die Kettenregel in partiellen Ableitungen folgenderma-
ßen aus:

Aus Dp(f ◦ g) = Dg(p)f ◦Dpg folgt nach linearer Algebra

(f ◦ g)′(p) = f ′(g(p))g′(p),
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wobei rechts das Produkt der Matrizen steht. Also, wenn wir die Variablen im Definitions-
raum von f mit yj und im Definitionsraum von g mit xk bezeichnen,

(
∂(f ◦ g)i
∂xk

(p)

)

=

(
∂fi
∂yj

(g(p))

)(
∂gj
∂xk

(p)

)

oder
∂(f ◦ g)i
∂xk

=
∑

j

∂fi
∂yj

(g(p))
∂gj
∂xk

(p).

Abgekürzte Notation:
∂fi
∂xk

=
∑

j

∂fi
∂yj

∂yj
∂xk

.
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2.4 Höhere Ableitungen

• Die Ableitung einer Funktion von mehreren Variablen ist nicht eine Zahl, sondern eine
Lineare Abbildung. Entsprechend werden erst recht die höheren Ableitungen solcher
Funktionen kompliziertere Gebilde, nämlich multilineare Abbildungen.

• Wir lernen, wie man sie “trotzdem” effektiv berechnen kann.

• Wir lernen den Satz von Schwarz über die Symmetrie höherer Ableitungen, der manche
Rechnung vereinfacht, aber auch wichtige Anwendungen auf Differentialgleichungen
hat.

Vorbemerkung. Wir erinnern daran, dass L(V,W ) den Vektorraum aller linearen Abbil-
dungen von V nach W bezeichnet. Sind V und W endlich-dimensional, so ist auch L(V,W )
endlich-dimensional und es gilt dimL(V,W ) = (dimV )(dimW ), vgl. Lineare Algebra.

Definition 133 (Zweite Ableitung). Sei f : V ⊂ G→W auf G differenzierbar. Dann ist

Df : G→ L(V,W ), p 7→ Dpf.

Ist diese Abbildung differenzierbar in p ∈ G, so heißt f in p zweimal differenzierbar und

D2
pf := Dp(Df) : V → L(V,W )

die zweite Ableitung von f in p.

Wir haben also für v1, v2 ∈ V

D2
pf(v1) ∈ L(V,W ),

D2
pf(v1)(v2) ∈W.

Beispiel 134. Sei (V, 〈., .〉) ein Euklidischer Vektorraum und sei r : V \ {0} → R gegeben
durch r(x) =

√
< x, x >. Wir haben im Beispiel 122 ausgerechnet, dass

Dpr(v) =
1

r(p)
< p, v >,

also

Dr : x 7→ Dxr =
1

r(x)
< x, . >∈ L(V,R).

Das ist das Produkt der Abbildung 1
r : V \ {0} → R mit der Abbildung

g : V → L(V,R)
x 7→ 〈x, .〉

1. Faktor: Weil r differenzierbar ist, ist nach der Kettenregel auch 1
r differenzierbar, und es

ist

Dp
1

r
(v) = − 1

r2(p)
Dpr(v) = − 1

r3(p)
< p, v > .

2. Faktor: Die Abbildung g : V → L(V,R) ist linear, also auch differenzierbar und

Dpg(v) = g(v) = 〈v, .〉 .
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Produktregel: Daher ist Dr nach der Produktregel differenzierbar, und es gilt

Dp(Dr)(v) = − 1

r3(p)
< p, v >< p, . > +

1

r(p)
< v, . >

=
1

r3(p)

(
r2(p) < v, . > − < p, v >< p, . >

)

=
1

r3(p)
(< p, p >< v, . > − < p, v >< p, . >) ,

also

D2
pr(v)(w) =

1

r3(p)
(< p, p >< v,w > − < p, v >< p,w >) .

Es ist klar, wie man höhere als 2. Ableitungen definiert. Dabei entsteht allerdings ein
kleines Problem: Wir erhalten D3

pf ∈ L(V, L(V, L(V,W ))), und den Zielraum der 7. Ablei-
tung mag man nicht mehr hinschreiben. Dieses Problem vermeiden wir folgendermaßen:

Wir definieren
D2

pf(v, w) := Dpf
2(v)(w).

Dann ist
D2

pf : V × V →W

eine bilineare Abbildung von V nach W . Im obigen Beispiel ist also

D2
pr(v, w) :=

1

r3(p)
(< p, p >< v,w > − < p, v >< p,w >) . (31)

Bezeichnen wir mit Lk(V,W ) den Vektorraum der k-linearen Abbildungen von V nach W ,
so haben wir allgemeiner einen kanonischen Isomorphismus

jk : L(V, Lk−1(V,W )) → Lk(V,W )

mit
jk(Φ)(v1, . . . , vk) := Φ(v1)(v2, . . . , vk).

(Beweisen Sie das! Es folgt, dass dimLk(V,W ) = (dimV )k(dimW ) < ∞, wenn V und W
endlich-dimensional sind.)

Damit definieren wir induktiv die k-Ableitung Dk
pf einer Funktion an der Stelle p wir folgt:

Definition 135 (Höhere Ableitungen). Ist f : V ⊃ G → W bereits (k − 1) mal differen-
zierbar und ist die (k − 1)-te Ableitung

Dk−1f : G→ Lk−1(V,W ), x 7→ Dk−1
x f

in p ∈ G differenzierbar, so heißt f in p k-mal differenzierbar und die k-te Ableitung in p ist
gegeben durch

Dk
pf(v1, . . . , vk) := jk(Dp(D

k−1f))(v1, . . . , vk) = Dp(D
k−1f)(v1)(v2, . . . , vk).

Die k-te Ableitung einer k-mal differenzierbaren Abbildung f : V ⊃ G→W an einer Stelle
p ist also eine k-lineare Abbildung

Dk
pf ∈ Lk(V,W ).
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Lemma 136. Ist f in p k-mal differenzierbar so gilt für v1, . . . , vk ∈ V

Dk
pf(v1, . . . , vk) = ∂v1 . . . ∂vk

f(p).

Insbesondere existiert die rechte Seite.

Beweis. Durch Induktion über k.

k = 1. Dpf(v) = ∂vf(p) wissen wir schon.

(k − 1) → k. Die Abbildung

g : Lk−1(V,W ) → W
µ 7→ µ(v2, . . . , vk).

ist linear. Nach Kettenregel und Voraussetzung ist daher g ◦Dk−1f differenzierbar mit

Dp(g ◦Dk−1f)(v1) = g
(
Dp(D

k−1f)(v1)
)
= Dp(D

k−1f)(v1)(v2, . . . , vk)

= Dk
pf(v1, . . . , vk).

Andrerseits ist nach Induktionsvoraussetzung

g ◦Dk−1f = Dk−1f(v2, . . . , vk) = ∂v2
. . . ∂vk

f

und deshalb nach dem Fall k = 1

Dp(g ◦Dk−1f)(v1) = ∂v1
. . . ∂vkf.

Dieses Lemma impliziert insbesondere folgende Vereinfachung: Um D2
pf(v1, v2) zu berech-

nen, muß ich nicht die schwerer vorzustellende Abbildung Df : G→ L(V,W ) differenzieren,
sondern ich kann Df(v2) : G → W in Richtung v1 differenzieren: Ich darf vor der zweiten
Ableitung den Vektor v2 einsetzen.

D2
pf(v1, v2) = ∂v1

∂v2
f(p) = Dp(Df(v2))(v1).

Dabei muß man auf die Reihenfolge der Vektoren achten – bis wir gleich gezeigt haben, dass
sie keine Rolle spielt!

Beispiel 137 (Höhere Ableitungen auf dem R
n). Ist f : Rn ⊃ G → W in p ∈ G k-mal

differenzierbar, und hat man k Vektoren

vj = (v1j , . . . , vnj) ∈ R
n, j ∈ {1, . . . , k},

gegeben, so gilt

Dk
pf(v1, . . . , vk) =

n∑

i1,...,ik=1

∂i1 . . . ∂ikf(p)vi11 . . . vikk. (32)

Also läßt sich die k-te Ableitung von f mittels k-facher partieller Ableitungen ausrechnen.

Konkret betrachen wir die Normfunktion r(x) =
√∑n

i=1 x
2
i auf Rn \ {0}. Wir finden

∂jr =
xj
r
, ∂i∂jr =

rδij − xj
xi

r

r2
=

1

r3
(
r2δij − xixj

)
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und damit

D2
pr(v, w) =

1

r3(p)



r2(p)

n∑

i=1

viwi −
(

n∑

i=1

pivi

)



n∑

j=1

pjwj







 .

Vergleichen Sie das mit (31).

Für spätere Verwendung zeigen wir hier noch das folgende

Lemma 138. Für k-mal differenzierbares f : V ⊃ G→W , p ∈ G und v1, . . . , vk ∈ V gilt

Dk
pf(v1, . . . , vk) = Dk−1

p (Df)(v1, . . . , vk−1)(vk).

Beweis. Ich beweise das für V = R
n mit den Koordinatenprojektionen xj : Rn → R. Der

allgemeine Fall geht nach Wahl einer Basis genauso, nur treten an die Stelle der xj dann die
dualen Basisvektoren. Es ist

Dk−1
p (Df)(v1, . . . , vk−1)(vk) = Dk−1

p (

n∑

j=1

(∂jf)xj)(v1, . . . , vk−1)(vk)

=
n∑

i1,...,ik−1,j=1

∂i1 . . . ∂ik−1
∂jf(p)vi11 . . . vik−1k−1xj(vk)

=

n∑

i1,...,ik−1,j=1

∂i1 . . . ∂ik−1
∂jf(p)vi11 . . . vik−1k−1vjk.

Vergleich mit (32) liefert die Behauptung.

Für die Frage, ob f zweimal differenzierbar ist, gibt es ebenfalls ein gutes Kriterium
mittels partieller Ableitungen: Sei f differenzierbar (z.B. weil es überall stetige partielle
Ableitungen besitzt). Nach (30) ist Df wegen der Konstanz der Abbildungen p 7→ Dpxi = xi
genau dann differenzierbar, wenn die partiellen Ableitungen ∂if alle differenzierbar sind. Das
läßt sich wieder mittels partieller Ableitungen testen, und man erhält: Existieren alle zweiten
partiellen Ableitungen von f auf G und sind sie dort stetig, so ist f zweimal differenzierbar.

Entsprechendes gilt für höhere Ableitungen.

Definition 139 (Ck-Funktionen). Ist f : V ⊃ G → W k-mal differenzierbar und die
Abbildung

Dkf : G→ Lk(V,W ), p 7→ Dk
pf

stetig, so heißt f k-mal stetig differenzierbar. Nach der vorstehenden Bemerkung ist das für
V = R

n äquivalent dazu, dass alle partiellen Ableitungen k-ter Ordnung von f existieren
und stetig sind. Wir schreiben dafür

f ∈ Ck(G,W ) oder kurz f ∈ Ck.

Schließlich soll f ∈ C∞ bedeuten, dass f beliebig oft differenzierbar ist – die Stetigkeit der
Ableitungen folgt dann natürlich von selbst.

Ist f in p zweimal differenzierbar und sind u, v
”
hinreichend kleine“ Vektoren, so gilt

f(p+ u+ v)− f(p+ u)− f(p+ v) + f(p) ≈ Dp+uf(v)−Dpf(v) ≈ D2
pf(u, v).

Die linke Seite ist also eine Approximation für die 2. Ableitung, die zum Beispiel in der
diskreten Mathematik wichtig ist. Wir berechnen damit die 2. Ableitung:
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Lemma 140. Sei f : V ⊃ G → W differenzierbar und in p ∈ G zweimal differenzierbar.
Dann gilt für alle u, v ∈ V

D2
pf(u, v) = lim

t→0

f(p+ tu+ tv)− f(p+ tu)− f(p+ tv) + f(p)

t2
.

Weil der Zähler rechts in u und v symmetrisch ist, folgt daraus der wichtige

Satz 141 (H.A. Schwarz). Sei f : V ⊃ G → W in G 2-mal differenzierbar. Dann gilt für
alle u, v ∈ V und p ∈ G

D2
pf(u, v) = D2

pf(v, u).

Beweis des Lemmas 140. 1. Schritt. Es genügt der Beweis für den Fall W = R, weil f =
∑
fiei, wo die ei eine Basis von W und die fi reellwertige Funktionen sind.

2. Schritt. In Anlehnung an die heuristische Betrachtung oben definieren wir eine Funktion

F (t) := f(p+ u+ tv)− f(p+ tv).

Dabei seien ‖u‖ und ‖v‖ hinreichend klein, so dass p+ u+ tv und p+ tv für 0 ≤ t ≤ 1 in G
liegen. Dann ist nach dem Mittelwertsatz für ein τ ∈]0, 1 [

f(p+ u+ v)− f(p+ u)− f(p+ v) + f(p) = F (1)− F (0)

= F ′(τ)

= Dp+u+τvf(v)−Dp+τvf(v)

= (Dp+u+τvf −Dpf)(v)− (Dp+τvf −Dpf)(v)

=: (∗)

Wir wenden jetzt auf die Funktion Df die Definition der Differenzierbarkeit an der Stelle p
an, und erhalten für x = p+ u+ τv bzw. x = p+ τv

(∗) = = D2
pf(u+ τv)(v) +R(p+ u+ τv)(v)

−D2
pf(τv)(v)−R(p+ τv)(v)

= D2
pf(u, v) + (R(p+ u+ τv)−R(p+ τv))(v).

Zu gegebenem ǫ > 0 gibt es ein δ > 0, so dass

‖R(x)‖ ≤ ǫ‖x− p‖, falls ‖x− p‖ < δ. (33)

Beachten Sie, dass R(x) ∈ L(V,W ). Für die Norm von R(x) verwenden wir daher wie üblich
die Operatornorm auf L(V,W ).

Für ‖u‖+ ‖v‖ < δ ist dann

‖R(p+ u+ τv)‖ ≤ ǫ‖u+ τv‖ ≤ ǫ(‖u‖+ ‖v‖),
‖R(p+ τv)‖ ≤ ǫ‖τv‖ ≤ ǫ(‖u‖+ ‖v‖),

also

‖(∗)−D2
pf(u, v)‖ = ‖(R(p+ u+ τv)−R(p+ τv))(v)‖ ≤ 2ǫ(‖u‖+ ‖v‖)‖v‖.
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Nun seien u, v ∈ V beliebig und t0 > 0 bei vorgegebenem ǫ > 0 so klein gewählt, dass
‖t0u‖+ ‖t0v‖ < δ ist, vgl. (33). Dann folgt für alle t mit |t| ≤ t0

∥
∥
∥
∥

f(p+ tu+ tv)− f(p+ tu)− f(p+ tv) + f(p)

t2
−D2

pf(u, v)

∥
∥
∥
∥

=

∥
∥
∥
∥
∥

f(p+ tu+ tv)− f(p+ tu)− f(p+ tv) + f(p)−D2
pf(tu, tv)

t2

∥
∥
∥
∥
∥

≤ 2ǫ
(‖tu‖+ ‖tv‖)‖tv‖

t2
= 2ǫ(‖u‖+ ‖v‖)‖v‖

Daraus folgt die Behauptung.

Korollar 142 (zum Satz von Schwarz). Ist f : Rn ⊃ G → W in G 2-mal differenzierbar
(oder 2-mal partiell differenzierbar mit stetigen zweiten partiellen Ableitungen), so gilt für
alle i, j

∂i∂jf = ∂j∂if.

Beispiel 143 (Wichtige Anwendung: Integrabilitätskriterium). Seien f1, . . . , fn : R
n ⊃

G→ R. Die elementarste Frage der Theorie der partiellen Differentialgleichungen ist die, ob
es eine Funktion y : G→ R gibt, so dass für alle i gilt:

∂iy = fi. (34)

Haben die fi stetige partielle Ableitungen, so hat ein solches y, falls es existiert, stetige par-
tielle Ableitungen bis zur Ordnung 2. Also ist eine notwendige Bedingung für die Lösbarkeit
von (34), dass

∂jfi = ∂j∂iy = ∂i∂jy = ∂ifj ,

d.h.
∂jfi = ∂ifj für alle i, j.

Aus dem Satz von Schwarz in Verbindung mit dem Lemma 136 ergibt sich unmittelbar die
folgende Verallgemeinerung:

Korollar 144 (zum Satz von Schwarz). Ist f : V ⊃ G→W k-mal differenzierbar in G, so
gilt für jede Permutation (i1, . . . , ik) von (1, . . . , k) und für alle p ∈ G und v1, . . . , vk ∈ V

Dk
pf(v1, . . . , vk) = Dk

pf(vi1 , . . . , vik)

bzw.
∂v1

. . . ∂vkf(p) = ∂vi1
. . . ∂vik

f(p).

Bemerkungen. In der Literatur (z.B. im Buch von Rudin) findet man den Satz von Schwarz
häufig in folgender Form: Existieren alle partiellen Ableitungen 2. Ordnung von f und sind
sie stetig, so gilt

∂i∂jf = ∂j∂if.

Aus dem Vergleich mit unserer Version ergeben sich zwei Fragen:
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1. Gibt es Funktionen, die zweimal differenzierbar, aber nicht zweimal stetig differenzier-
bar sind? Dann ist die Version des Satzes 141 stärker als die oben zitierte.

Antwort: Ja. Die Funktion

g : R → R, x 7→ x4 sin
1

x

ist auf R zweimal differenzierbar, aber die 2. Ableitung ist in 0 nicht stetig. Entspre-
chendes gilt dann auch für die durch f(x, y) := g(x) definierte Funktion auf R2.

2. Gibt es Funktionen mit (nicht stetigen) partiellen Ableitungen 2. Ordnung, für die der
Satz von Schwarz nicht gilt?

Antwort: Ja. Die Funktion f : R2 → R mit

f(x, y) :=

{

0 für x = y = 0

xy x2−y2

x2+y2 sonst

besitzt überall stetige 1. partielle Ableitungen und (in 0 unstetige) 2. partielle Ablei-
tungen. Für sie gilt

∂1∂2f(0, 0) = 1 6= −1 = ∂2∂1f(0, 0).

Beweise als Übung.
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2.5 Schrankensatz, Satz von Taylor

• Schrankensatz und Satz von Taylor kann man auch für Funktionen mehrerer Variablen
formulieren.

In höherdimensionalen Räumen wird die naive Verallgemeinerung des Mittelwertsatzes

f(b)− f(a)
?
= Dξf(b− a) für geeignetes ξ zwischen(?) a und b

falsch. Zum Beispiel gilt für die Funktion f : [0, 2π] → R
3 mit f(t) = (cos t, sin t, t), dass

f(2π)− f(0) = (0, 0, 2π).

Aber für alle ξ ∈]0, 2π[ ist Dξf(2π − 0) = 2π(− sin t, cos t, 1) 6= (0, 0, 2π).

Der Schrankensatz, den wir jetzt beweisen, liefert einen Ersatz für den Mittelwertsatz.

Satz 145 (Schrankensatz). Seien V,W endlich-dimensionale Banachräume und sei

f : V ⊃ G→W

eine differenzierbare Abbildung. Seien a, b ∈ G, so dass die Strecke

ab := {a+ t(b− a) | 0 ≤ t ≤ 1}

in G enthalten ist. Dann gilt

‖f(b)− f(a)‖ ≤ sup
x∈ab

‖Dxf‖ ‖b− a‖.

Zusatz. Wenn f in den Endpunkten von ab nicht differenzierbar, aber stetig ist, gilt dieselbe
Behauptung, wobei das Supremum über alle Punkte von ab \ {a, b} zu nehmen ist.

Beweis. Sei K := supx∈ab ‖Dxf‖ und sei ǫ > 0. Sei o.E. K < ∞, sonst ist nichts zu zeigen.
Wir definieren

A := {t ∈ [0, 1] | ‖f(a+ t(b− a))− f(a)‖ ≤ t(K + ǫ)‖b− a‖}.

Weil beide Seiten der Ungleichung in der Definition von A in t ∈ [0, 1] stetig sind, ist A
abgeschlossen. Wegen 0 ∈ A ist A 6= ∅. Insbesondere gilt

supA =: s ∈ A ⊂ [0, 1].

Wir zeigen s = 1, d.h.
‖f(b)− f(a)‖ ≤ (K + ǫ)‖b− a‖.

Weil das für alle ǫ > 0 gilt, folgt daraus die Behauptung.

Annahme: s < 1. Die Funktion f ist in p = a+ s(b− a) differenzierbar, und wir haben

f(a+ t(b− a)) = f(a+ s(b− a)) +Dpf((t− s)(b− a)) +R(a+ t(b− a))

mit limx→p
R(x)
‖x−p‖ = 0, also limt→s

R(a+t(b−a))
|t−s|·‖b−a‖ = 0.

(Beachten Sie ‖(a+ t(b− a))− (a+ s(b− a))‖ = ‖(t− s)(b− a)‖ = |t− s|‖b− a‖.)
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Daher gibt es δ > 0, so dass für s < t < s+ δ gilt

‖R(a+ t(b− a))‖ ≤ ǫ(t− s) · ‖b− a‖.

Aus der Dreiecksungleichung folgt für s < t < s+ δ

‖f(a+ t(b− a))− f(a+ s(b− a))‖ ≤ ‖Dpf‖ (t− s) · ‖b− a‖+ ǫ(t− s) · ‖b− a‖
≤ (t− s)(K + ǫ)‖b− a‖.

und weiter

‖f(a+ t(b− a))− f(a)‖ ≤ ‖f(a+ t(b− a))− f(a+ s(b− a))‖+ ‖f(a+ s(b− a))− f(a)‖
≤ (t− s)(K + ǫ)‖b− a‖+ s(K + ǫ)‖b− a‖
= t(K + ǫ)‖b− a‖.

Das ist ein Widerspruch zur Definition von s. Also ist s = 1 und (i) bewiesen.

Zum Zusatz. Ist f nur im
”
Inneren“ der Strecke ab differenzierbar, so gilt nach dem Bewei-

senen für alle 0 < t1 < t2 < 1

‖f(a+ t2(b− a))− f(a+ t1(b− a))‖ ≤ sup
0<t<1

‖Da+t(b−a)f‖ ‖(a+ t2(b− a))− (a+ t1(b− a))‖

= sup
0<t<1

‖Da+t(b−a)f‖ (t2 − t1)‖b− a‖.

Durch Grenzübergang t1 ց 0 und t2 ր 1 folgt mit der Stetigkeit von f die Behauptung.

Berechnung der Operatornorm. Bisher hatte die Operatornorm nur eine Hilfsfunktion.
Der Schrankensatz macht es wünschenswert, sie explizit zu berechnen. Das ist ein Problem
der linearen Algebra. Wir geben die Resultate für zwei einfache Fälle.

1. F : Rn → R sei bezüglich der Standardbasen gegeben durch die m × 1-Matrix A =
(a1, . . . , an). Dann ist die Operatornorm bezüglich der Euklidischen Norm von R

n und
dem Betrag |.| auf R gegeben durch

‖A‖ =

√
√
√
√

n∑

i=1

a2i .

Im Falle des Schrankensatzes, ist F = Df gegeben durch die Matrix

f ′ = (∂1f, . . . , ∂nf)

und

‖Df‖ =

√
√
√
√

n∑

i=1

(∂if)2.

2. f : Rn → R
m sei bezüglich der Standardbasen gegeben durch die m×n-Matrix A. Die

Normen auf Rn und R
m seien die üblichen Euklidischen Normen. Mit AT bezeichnen

wir die transponierte Matrix. Dann ist ATA eine symmetrische (=selbstadjungierte)
n× n-Matrix und ‖A‖ ist die Wurzel aus dem Maximum der Eigenwerte von ATA.

Korollar 146. Sei G ⊂ V offen und zusammenhängend und sei f : G → R differenzierbar
mit Dpf = 0 für alle p ∈ G. Dann ist f konstant.
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Beweis. Sei p ∈ G und
U := {x ∈ G | f(x) = f(p)}.

Ist a ∈ U , so gibt es r > 0 mit Ur(a) ⊂ G. Aus dem Schrankensatz folgt dann für alle
b ∈ Ur(a)

‖f(b)− f(p)‖ = ‖f(b)− f(a)‖ ≤ 0 · ‖b− a‖,
also b ∈ U . Deshalb ist U offen. Andrerseits ist

G \U = f−1(R \ {f(p)})
ebenfalls offen. Weil G zusammenhängend ist, folgt dass entweder U = ∅ oder G \U = ∅.
Wegen p ∈ U folgt U = G.

Für spätere Verwendung “verfeinern” wir dieses Korollar noch etwas:

Korollar 147. Seien G ⊂ V1 × V2 offen und f : G → W differenzierbar. Es gelte für alle
(p1, p2) ∈ G, dass

0 = D(p1,p2)f(0, .) : V2 →W.

Offenbar gibt es zu jedem (p1, p2) ∈ G ein ǫ > 0 mit

Uǫ(p1)× Uǫ(p2) ⊂ G.

Dafür gilt dann

f(q1, q2) = f(q1, r2) für alle q1 ∈ Uǫ(p1) und q2, r2 ∈ Uǫ(p2).

Mit andern Worten: Ist die V2-Ableitung von f Null, so hängt f lokal nicht von der V2-
Variablen ab.

Beweis. Betrachte die Funktion

g : V2 ⊃ Uǫ(p2) →W, t 7→ f(q1, t).

Für diese gilt nach der Kettenregel angewendet auf t 7→ (q1, t) 7→ f(q1, t)

Dtg(v2) = D(q1,t)f(0, v2) = 0,

und aus dem Schrankensatz angewendet auf g folgt g(q2) = g(r2) und damit die Behauptung.

Satz 148 (Taylorformel). Sei f : V ⊃ G→W n-mal differenzierbar.
Dann läßt sich f darstellen als

f(x) =






n∑

k=0

1

k!
Dk

pf(x− p, . . . , x− p
︸ ︷︷ ︸

k−mal

)




+R(x), (35)

wobei für die dadurch definierte Restfunktion R gilt

lim
x→p

R(x)

‖x− p‖n = 0.

Zusatz: Ist f sogar (n+1)-mal differenzierbar und reellwertig(!) und ist px ⊂ G, so gibt es
q ∈ px, so dass

R(x) =
1

(n+ 1)!
Dn+1

q f(x− p, . . . , x− p
︸ ︷︷ ︸

(n+1)−mal

).
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Beweis. Der Zusatz folgt direkt aus dem 1-dimensionalen Fall: Wir setzen v := x− p und

g : [0, 1] → R, t 7→ g(t) := f(p+ tv).

Dann gibt es τ ∈ [0, 1], so dass

f(x) = g(1)

=

(
n∑

k=0

1

k!
g(k)(0)

)

+
1

(n+ 1)!
g(n+1)(τ)

=





n∑

k=0

1

k!
∂v . . . ∂v
︸ ︷︷ ︸

k−mal

f(p)



+
1

(n+ 1)!
∂v . . . ∂v
︸ ︷︷ ︸

(n+1)−mal

f(p+ τv)

=

n∑

k=0

1

k!
Dk

pf(x− p, . . . , x− p
︸ ︷︷ ︸

k−mal

) +
1

(n+ 1)!
Dn+1

q f(x− p, . . . , x− p
︸ ︷︷ ︸

(n+1)−mal

)

mit q = p+ τv.

Nun zum Beweis der ersten Taylorformel. Die kann man nicht einfach auf den eindimen-
sionalen Fall zurückführen. Die Mehrdimensionalität von W ist dabei sekundär. Aber ein
Ansatz wie oben führt nur zu Informationen über limt→0

R(p+tv)
‖tv‖n , und das ist eine deutlich

eingeschränkte Aussage.

Beweis durch vollständige Induktion über n.

n = 1. Das ist einfach die Definition der Differenzierbarkeit.

(n− 1) → n. Die Induktionsvoraussetzung angewendet auf die (n − 1)-mal differenzierbare
Funktion Df liefert

Dxf =

(
n−1∑

k=0

1

k!
Dk

p(Df)(x− p, . . . , x− p)

)

+ R̃(x) (36)

mit

lim
x−p→0

R̃(x)

‖x− p‖n−1
= 0. (37)

Nun berechnen wir die Ableitung von

R(x) = f(x)−
n∑

k=0

1

k!
Dk

pf(x− p, . . . , x− p).

Der erste Term unter dem Summenzeichen ist f(p), fällt bei der Differentiation also weg.
Unter Benutzung der Produktregel, des Satzes von Schwarz und des Lemmas 138

DxR(v) = Dxf(v)−
n∑

k=1

1

k!
kDk

pf(x− p, . . . , x− p, v)

= Dxf(v)−
n∑

k=1

1

(k − 1)!
Dk−1

p (Df)(x− p, . . . , x− p)(v).

Also ist

DxR = Dxf −
n−1∑

k=0

1

k!
Dk

p(Df)(x− p, . . . , x− p) = R̃(x).
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Zu jedem ǫ > 0 gibt es ein δ > 0 mit Uδ(p) ⊂ G, so dass für alle x ∈ Uδ(p)

‖R̃(x)‖ ≤ ǫ‖x− p‖n−1 (38)

Wegen R(p) = 0 folgt aus dem Schrankensatz dann für alle x ∈ Uδ(p)

‖R(x)‖ = ‖R(x)−R(p)‖ ≤ sup
y∈Uδ(p)

‖DyR‖ ‖x− p‖ ≤ ǫ‖x− p‖n,

also

lim
x→p

R(x)

‖x− p‖n = 0.
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2.6 Lokale Extrema

• Wir wenden die Taylorformel auf Extremalprobleme an.

Definition 149. Sei l ∈ Lk(V,R) eine k-lineare Abbildung. Wenn der Zielraum R ist, nennt
man solche Abbildungen auch k-Linearformen, insbesondere für k = 2 Bilinearformen.

l heißt

(i) positiv definit, wenn l(v, . . . , v) > 0 für alle v 6= 0.

(ii) positiv-semidefinit, wenn l(v, . . . , v) ≥ 0 für alle v.

(iii) negativ definit, wenn l(v, . . . , v) < 0 für alle v 6= 0.

(iv) negativ-semidefinit, wenn l(v, . . . , v) ≤ 0 für alle v.

(v) indefinit, wenn v 7→ l(v, . . . , v) das Vorzeichen wechselt.

Lemma 150. Sei l ∈ Lk(V,R) eine symmetrische k-Linearform, d.h. es gelte

l(v1, . . . , vk) = l(vi1 , . . . , vik)

für jede Permutation (i1, . . . , ik) von (1, . . . , k). Dann gilt:

(i) Ist l(v, . . . , v) = 0 für alle v ∈ V , so ist l = 0.

(ii) Ist k ungerade, so ist l = 0 oder l indefinit.

Beweis. Zu (i). Vollständige Induktion über k.

k = 1. Trivial.

(k − 1) → k. Dann gilt

0 = l(tv + w, . . . , tv + w)

=
k∑

i=0

(
k

i

)

l(tv, . . . , tv
︸ ︷︷ ︸

i−mal

, w, . . . , w)

=

k∑

i=0

(
k

i

)

ti l(v, . . . , v
︸ ︷︷ ︸

i−mal

, w, . . . , w).

Ein Polynom verschwindet aber nur dann identisch, wenn alle Koeffizienten=0 sind. Daher
ist insbesondere l(v, . . . , v, w) = 0 für alle v, w. Bei festem w ist l(., . . . , ., w) symmetrisch
und (k − 1)-linear. Deshalb ist nach Induktionsvoraussetzung l(v1, . . . , vk−1, w) = 0 für alle
vi, w.

Zu (ii). Gibt es ein v mit l(v, . . . , v) 6= 0, etwa > 0, so ist l(−v, . . . ,−v) < 0 und l indefinit.
Andernfalls ist l = 0 nach (i).

Definition 151. Die Funktion f : V ⊃ G → R hat in p ein strenges lokales Maximum,
wenn es ein ǫ > 0 gibt, so dass

∀x∈G (0 < ‖x− p‖ < ǫ =⇒ f(x) < f(p)) .
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Analog erklärt man strenge lokale Minima.

Satz 152 (Lokale Extrema). Sei f : V ⊃ G→ R k-mal differenzierbar, k ≥ 1, p ∈ G und

Dpf = 0, . . . , Dk−1
p f = 0,

Dk
pf 6= 0.

Dann gilt:

(i) Ist Dk
pf negativ definit, so hat f in p ein strenges lokales Maximum.

(ii) Ist Dk
pf positiv definit, so hat f in p ein strenges lokales Minimum.

(iii) Ist Dk
pf indefinit, insbesondere k ungerade, so hat f in p kein lokales Extremum, son-

dern einen sogenannten Sattelpunkt.

Im semidefiniten Fall wird keine Aussage gemacht.

Aus (iii) folgt insbesondere die wichtige notwendige Bedingung:

Hat f in p ein lokales Extremum, so ist Dpf = 0.

Beweis des Satzes. Die Idee des Beweises ergibt sich aus der Taylorformel. Es gilt

f(x)− f(p) =
1

k!
Dk

pf(x− p, . . . , x− p) +R(x), (39)

mit

lim
x→p

R(x)

‖x− p‖k = 0. (40)

Also haben f(x)− f(p) und Dk
pf(x− p, . . . , x− p) dasselbe Vorzeichen, vorausgesetzt, man

kann das Restglied vernachlässigen. Letzteres zu zeigen, ist das technisches Problem des
Beweises.

Die Einheitssphäre S :=
{
v ∈ V

∣
∣ ‖v‖ = 1

}
ist abgeschlossen und beschränkt, nach dem Satz

von Heine-Borel (der in endlich-dimensionalen Banachräumen ebenso gilt wie im Standard-
R

n. Warum?) also kompakt. Daher existieren

m := min
v∈S

Dk
pf(v, . . . , v) und M := max

v∈S
Dk

pf(v, . . . , v).

Für beliebiges v ∈ V folgt daraus

m‖v‖k ≤ Dk
pf(v, . . . , v) ≤M‖v‖k.

Ist Dk
pf positiv definit, negativ definit oder indefinit, so ist ǫ := 1

2k! min(|m|, |M |) > 0.
Wegen (40) gibt es ein δ > 0 mit Uδ(p) ⊂ G und

|R(x)| ≤ ǫ‖x− p‖k für alle x ∈ Uδ(p).

Zu (i). Ist Dk
pf negativ definit, also M < 0, so folgt für x ∈ Uδ(p)

1

k!
Dk

pf(x− p, . . . , x− p) +R(x) ≤ M

k!
‖x− p‖k − M

2k!
‖x− p‖k =

M

2k!
‖x− p‖k ≤ 0
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mit Gleichheit nur für x = p. Aus (39) folgt die Behauptung (i).

Zu (ii). Analog.

Zu (iii). Im indefiniten Fall ist m < 0 < M , und es gibt v1, v2 ∈ S mit

Dk
pf(v1, . . . , v1) = m, Dk

pf(v2, . . . , v2) =M.

Dann ist xj := p+ δ
2vj ∈ Uδ(p) und es gilt

1

k!
Dk

pf(x1 − p, . . . , x1 − p) +R(x1) ≤
m

k!
‖x1 − p‖k − m

2k!
‖x1 − p‖k =

m

2k!
‖x1 − p‖k < 0,

1

k!
Dk

pf(x2 − p, . . . , x2 − p) +R(x2) ≥
M

k!
‖x2 − p‖k − M

2k!
‖x2 − p‖k =

M

2k!
‖x2 − p‖k > 0.

Aus (39) folgt die Behauptung (iii).

Bemerkung. Die Frage, wann eine symmetrische k-Linearform zum Beispiel positiv definit
ist, ist eine Frage an die (multi)lineare Algebra. Ein häufiger Spezialfall ist k = 2. Wir wollen
überdies annehmen, dass V = R

n ist. Dann ist

D2
pf(u, v) =

n∑

i,j=1

∂i∂jf(p)uivj .

Die (symmetrische) Matrix

H =






∂1∂1f(p) . . . ∂1∂nf(p)
...

...
∂n∂1f(p) . . . ∂n∂nf(p)






der zweiten partiellen Ableitungen heißt auch die Hessesche Matrix von f . Für sie gilt also

D2
pf(u, v) = 〈Hu, v〉

mit dem kanonischen Skalarprodukt 〈u, v〉 =∑n
i=1 uivi. Es ist also eine interessante Frage,

wann die durch eine symmetrische Matrix A gegebene Bilinearform 〈Au, v〉 positiv definit
ist. In der Linearen Algebra lernt man (z.B. im Zusammenhang mit der Hauptachsentrans-
formation), dass dies genau dann gilt, wenn alle Eigenwerte von A positiv sind. Dann nennt
man auch A positiv definit. In der linearen Algebra lernt man auch, wie man die Eigenwerte
bestimmt, und hat damit eine Methode, um im Fall k = 2 positive Definitheit nachzuprüfen.

Ein anderes Kriterium ist das folgende:

Lemma 153 (Hauptminorenkriterium). Eine symmetrische (n× n)-Matrix

A = (aij)i,j=1,...,n

ist genau dann positiv definit, wenn alle Hauptminoren positiv sind. Dabei sind Hauptmi-
noren oder Hauptabschnittsdeterminanten die Determinanten der Matrizen

Ak := (aij)i,j=1,...,k

A ist genau dann negativ definit, wenn die Hauptminoren wechselndes Vorzeichen beginnend
mit a11 < 0 haben.

Man findet dieses Kriterium oft in der Literatur zitiert (als Kriterium von Sylvester oder
Hurwitz), aber selten bewiesen. Wir geben deshalb einen Beweis im Anhang.
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Im Falle n = 2 ist die Hessematrix gegeben durch

(
∂2xf ∂y∂xf
∂x∂yf ∂2yf

)

und wir erhalten folgendes Kriterium für lokale Extrema:

Satz 154. Sei f : R2 ⊃ G → R zweimal differenzierbar auf der offenen Menge G und sei
p ∈ G. Dann gilt:

(i) Hat f in p ein lokales Extremum, so ist Dpf = 0.

(ii) Ist Dpf = 0 und gilt
∂2xf(p)∂

2
yf(p)− (∂x∂yf(p))

2 > 0,

so hat f in p ein strenges lokales Extremum, und zwar

• ein Maximum, falls ∂2xf(p) < 0,

• ein Minimum, falls ∂2xf(p) > 0.

(iii) Ist
∂2xf(p)∂

2
yf(p)− (∂x∂yf(p))

2 < 0,

so hat f in p kein lokales Extremum. (Sattelpunkt)

Wir geben dafür noch einen direkten Beweis ohne weiteren Bezug auf die lineare Algebra:

Beweis. Wir bezeichnen die Hessematrix kurz mit

A =

(
a b
b c

)

Dann ist

D2
pf(

(
x
y

)

,

(
x
y

)

) = ax2 + 2bxy + cy2 =: φ(x, y).

Wählt man y = 0, so sieht man, dass a > 0 bzw. a < 0 notwendig für die positive bzw.
negative Definitheit ist. Die ist in diesem Fall dann aber äquivalent dazu, dass

0 < x2 + 2
b

a
xy +

c

a
y2 =

(

x+
b

a
y

)2

+
c

a
y2 − b2

a2
y2 =

(

x+
b

a
y

)2

+
ac− b2

a2
y2.

Wählt man nun y 6= 0 und x = − b
ay, so ergibt sich ac−b2 als weitere notwendige Bedingung.

Diese ist aber auch hinreichend: Die rechte Seite ist dann ≥ 0, und verschwindet nur für
y = 0 und x = 0.
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2.7 Differentialoperatoren der klassischen Vektoranalysis

• Wir interpretieren Abbildungen - wie in der Physik - als Vektor- oder Skalarenfelder.

• Gradient, Divergenz, Rotation und Laplaceableitung sind Felder, die mit Hilfe von
Differentiationsprozessen aus anderen Feldern entstehen. Diese Operationen haben sich
in der Physik als wichtig erwiesen.

• Wir lernen elementare Definitionen dieser Operationen im R
n, bemühen uns aber

auch um Definitionen in abstrakten Vektorräumen um zu klären, welche zusätzlichen
Strukturen ggf. noch erforderlich sind.

Definition 155. Sei G ⊂ V eine offene Teilmenge des endlich-dimensionalen Banachraums
V . Für diese Vorlesung vereinbaren wir folgende Sprechweisen:

• Ein Vektorfeld auf G ist eine Abbildung X : G→ V .

• Ein skalares Feld auf G ist eine reellwertige Funktion f : G→ R.

Wir wollen im folgenden eine kurze Einführung der klassischen Differentialoperatoren geben.
Wir geben jeweils zwei Definitionen, eine elementare im R

n und eine abstrakte, die etwas
mehr lineare Algebra voraussetzt und die aufzeigt, welche

”
Hintergrundstrukturen“ in die

Definition einfließen.

2.7.1 Gradient

• Naiv. Mit 〈x, y〉 =
∑n

i=1 xiyi bezeichnen wir das kanonische Skalarprodukt auf Rn.
Der Gradient eines differenzierbaren skalaren Feldes f : Rn ⊃ G → R ist das folgende
Vektorfeld:

grad f : G→ R
n, p 7→ gradp f := (∂1f(p), . . . , ∂nf(p)).

Fundamentale Eigenschaften:

(i)
〈
gradp f, v

〉
= Dpf(v) für alle v ∈ V.

(ii) Der Gradient steht senkrecht auf den Niveaus von f . Genauer gilt für eine diffe-
renzierbare Kurve c :]a, b[→ G

f ◦ c konstant ⇐⇒
〈

gradc(t) f, ċ(t)
〉

= 0 für alle t. (41)

Das folgt aus der Kettenregel, weil
〈

gradc(t) f, ċ(t)
〉

= Dc(t)f(ċ(t)) =
d
dt (f ◦ c).

(iii) Der Gradient ist ein linearer Differentialoperator:

Für α, β ∈ R und f, g : G→ R ist

grad(αf + βg) = α grad f + β grad g.

(iv) Der Gradient gibt die Richtung und Größe des stärksten Wachstums der Funktion
f an:

Ist ‖v‖ = 1 und φ der Winkel zwischen dem Gradienten und der Richtung v, so
ist

∂vf(p) = ‖ gradp f‖ cosφ.
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• Für Fortgeschrittene. Ist l : V × V → R eine (nicht notwendig symmetrische)
Bilinearform, so liefert

jl : V → V ∗ = L(V,R), v 7→ l(v, .)

eine lineare Abbildung von V in V ∗. Ist diese Abbildung ein Isomorphismus, so heißt
l nicht-degeneriert. Ist l nicht-degeneriert, so kann man den l-Gradienten eines diffe-
renzierbaren skalaren Feldes f : G→ R definieren durch

gradlp f := j−1
l (Dpf),

d.h. durch die Gleichung

l(gradlp f, v) = Dpf(v) für alle v ∈ V .

Er ist ebenfalls ein linearer Differentialoperator und die obigen Eigenschaften (i), (ii)
gelten mit l statt 〈., .〉.

Beispiel 156 (Euklidischer Gradient). Seien V = R
n und l(x, y) = 〈x, y〉 =

∑
xiyi das

übliche Skalarprodukt. Das liefert den
”
naiven“ Gradienten wie oben. Allgemeiner gibt es

in jedem Euklidischen Vektorraum einen kanonischen Gradienten.

Beispiel 157 (Vierergradient). Sei V = R
4 und

L(x, y) = x1y1 + x2y2 + x3y3 − x4y4

das sogenannte Lorentzprodukt. Der zugehörigen Gradient, der sogenannte Vierergradient ist
gegeben durch

gradL f = (∂1f, ∂2f, ∂3f,−∂4f).

Er spielt – wie das Lorentzprodukt – eine große Rolle in der Relativitätstheorie.

Beispiel 158 (Symplektischer Gradient). Sei V = R
2n und

σ(x, y) = xn+1y1 + . . .+ x2nyn − x1yn+1 − . . .− xny2n

das sogenannte symplektische Skalarprodukt. Der entsprechende symplektische Gradient ist
gegeben durch

gradσ f = (−∂n+1f, . . . ,−∂2nf, ∂1f, . . . , ∂nf).

Er spielt eine wichtige Rolle in der Hamilton-Jacobi-Theorie der klassischen Mechanik, vgl.
Beispiel 160.

2.7.2 Divergenz

• Naiv. Sei V = R
n und X = (X1, . . . , Xn) : G → R

n ein differenzierbares Vektorfeld.
Dann ist die Divergenz von X das folgende skalare Feld:

divX : G→ R, p 7→ divpX :=

n∑

i=1

∂iXi(p).

Beachte: divX ist gerade die Summe der Diagonalelemente der Jacobimatrix (∂jXi)
von X.
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• Für Fortgeschrittene. Ist V ein beliebiger endlich-dimensionaler Vektorraum und
X : G→ V ein differenzierbares Vektorfeld, so ist für p in G das Differential DpX ein
Endomorphismus von V . Man definiert

divX = Spur(DpX).

Der Satz von Gauß (Spezialfall des in der Analysis III zu beweisenden Stokesschen
Integralsatzes) gibt eine Interpretation des Divergenz als ”Quellstärke‘“ des Feldes
X. Das hat damit zu tun, dass die Spur die Ableitung der Determinante ist und die
Determinante Volumina misst.

2.7.3 Rotation

• Naiv. Sei V = R
3 und X : G→ R

3 ein differenzierbares Vektorfeld. Die Rotation von
X ist das folgende Vektorfeld:

rotX : G→ R
3

mit

rotpX :=





∂2X3(p)− ∂3X2(p)
∂3X1(p)− ∂1X3(p)
∂1X2(p)− ∂2X1(p)



 .

• Für Fortgeschrittene. Für zwei Vektoren a, b ∈ R
3 ist das Vektorprodukt a × b

charakterisiert durch die Bedingungen

(i) a× b = 0, falls a, b linear abhängig,

und andernfalls

(ii) ‖a× b‖ = ‖a‖‖b‖ sin∠(a, b),
(iii) 〈a× b, a〉 = 〈a× b, b〉 = 0 und (a, b, a× b) ist eine positiv orientierte Basis des R3.

Durch diese Bedingungen lässt sich ein Vektorprodukt in jedem orientierten 3-dimensionalen
Euklidischen Vektorraum definieren.

Wir erklären nun zwei Methoden, um Achsrotatio-
nen in einem orientierten 3-dimensionalen Euklidi-
sche Vektorraum V zu beschreiben. Die Achse sei ge-
geben durch einen Einheitsvektor u. Das Geschwin-
digkeitsfeld der Drehung in einem Punkt x ∈ V muss
dann senkrecht zu x und u stehen und mit dem Ab-
stand von der Achse linear anwachsen.

x

u

ωu × x

Das wird geleistet

1. durch ein Feld
x 7→ ωu× x,

wo ω ∈ R die sogenannte Winkelgeschwindigkeit bezeichnet, oder

2. durch ein Feld
x 7→ Ax,

wobei A ein schiefadjungierter (=schiefsymmetrischer) Endomorphismus von V
mit Kern(A) = Ru ist. (Jeder schiefadjungierte Endomorphismus 6= 0 eines drei-
dimensionalen Raumes hat einen 1-dimensionalen Kern. Warum?)
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Der Zusammenhang zwischen diesen beiden Methoden ist einfach: Für a ∈ V ist
A : x 7→ a× x schiefadjungiert, weil

〈a× x, y〉 = −〈x, a× y〉 ,

und die Abbildung
a 7→ a× . . .

liefert eine Isomorphismus(!) von V auf den Vektorraum der schiefadjungierten Endo-
morphismen von V .

Das Differential DpX eines differenzierbaren Vektorfeldes an der Stelle p ist im allge-
meinen weder schiefsymmetrisch noch symmetrisch, aber man kann es in einen schief-
symmetrischen Anteil (= Rotationsanteil) und in einen symmetrischen Anteil zerlegen:

DpX =
1

2
(DpX −DpX

∗) +
1

2
(DpX +DpX

∗).

(Der ∗ bezeichnet die Adjungierte oder transponierte Matrix.) Dann gilt (Nachrech-
nen!)

rotpX × . . . = DpX −DpX
∗.

In diesem Sinne ist die Rotation rotX der doppelte Rotationsanteil von DX.

Es gibt eine Verallgemeinerung der Rotation auf Vektorräume beliebiger Dimension, aber nicht mehr
für Vektorfelder, sondern für kompliziertere Objekte, die sogenannten Differentialformen vgl. (Analysis
III).

Satz 159. Für zweimal differenzierbare Felder gilt

rot grad f =0,

div rotX =0.

Das gibt also notwendige Bedingungen dafür, dass sich ein differenzierbares Vektorfeld als
Gradient (eines Potentials) oder Rotation (eines Vektorpotentials) schreiben läßt: die Ro-
tation bzw. Divergenz muß verschwinden. Lokal, nicht aber global, sind diese Bedingungen
auch hinreichend, vgl. Analysis III.

Beweis. Stures Nachrechnen unter Benutzung des Satzes von Schwarz über die Vertausch-
barkeit der zweiten partiellen Ableitungen.

2.7.4 Laplaceoperator

Für zweimal differenzierbare skalare Felder auf G ⊂ R
n (oder in einem Euklidischen Vek-

torraum) ist der Laplaceoperator definiert durch

∆f = div grad f.

In Koordinaten bedeutet das

∆pf =
n∑

i=1

∂2i f(p).

Funktionen mit ∆f = 0 heißen harmonische Funktionen.
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Der Laplaceoperator spielt eine fundamentale Rolle für die Beschreibung sehr vieler physika-
lischer Phänomene (Wärmeleitungsgleichung, Wellengleichung, Schrödingergleichung). Zum
Beispiel ist die Amplitude f einer Welle in einem homogenen 3-dimensionalen Medium eine
Funktion der Raumkoordinaten xi und der Zeit t und genügt der Gleichung

∆pf =

3∑

i=1

∂2f

∂x2i
=

1

c2
∂2

∂t2
.

Normiert man die Ausbreitungsgeschwindigkeit auf c = 1 und verwendet im R
4 den Vierer-

gradienten, so schreibt man den entsprechenden Laplaceoperator auch als �f := div grad f ,
und die Wellengleichung wird einfach

�f = 0.
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2.8 Ein Kapitel Newtonsche Mechanik

Die Differentialrechnung verdankt ihre Entstehung ganz wesentlich den Bemühungen um das
Verständnis der Gesetze der Mechanik. Daher ist es (auch für angehende Finanzmathema-
tikerinnen) nicht unangemessen, ein wenig über die mathematischen Modelle der Mechanik
zu lernen.

• Wir lernen die Newtonschen Bewegungsgleichungen und zeigen die Erhaltungssätze
für Energie und Drehimpluls.

• Wir leiten die Keplerschen Planetengesetze aus Newtons Graviatitonsgesetz und Be-
wegungsgesetz her.

Die Bewegung eines Massenpunktes der Masse m im 3-dimensionalen Euklidischen Raum
wird beschrieben durch eine Kurve

x : R ⊃ J → R
3, t 7→ x(t),

wobei wir die in der Physik übliche Bezeichnungsweise verwenden. Die Geschwindigkeit der
Punktes ist

ẋ =
dx

dt
= Dx(1) : J → R

3

und seine Beschleunigung gegeben durch

ẍ =
d2x

dt2
: J → R

3.

Das Newtonsche Bewegungsgesetzt besagt nun, dass diese Bewegung bestimmt wird durch
die Kraft, die auf den Massenpunkt wirkt, und zwar durch die Formel “Kraft = Masse mal
Beschleunigung”:

mẍ = F (x).

Dabei ist die Kraft gegeben durch ein Vektorfeld F : R3 → R
3, wenn wir uns auf den Fall

beschränken, dass die Kraft nur vom Ort und nicht auch von der Zeit abhängt (auf autonome
Systeme würde der Physiker sagen). In der Physik ist es üblich, den Impuls p := mẋ als
“dummy-Variable” einzuführen und die Bewegung des Massenpunktes als eine Kurve im
6-dimensionalen sogenannten Phasenraum zu verstehen. Ein Vorteil dieser Beschreibung ist,
dass bei bekannter Kraft F die Bewegung des Punktes bekannt ist, wenn man weiß, wo im
Phasenraum er sich zu einem Zeitpunkt t0 befindet. Die Newtonsche Bewegungsgleichung
im Phasenraum ist dann das folgende Differentialgleichungssystem:

ẋ = m−1p,
(42)

ṗ = F (x).

Lösungen t 7→ (x(t), p(t)) heißen auch Phasenkurven. Ihre ersten 3 Komponenten liefern also
die Bahn des Massenpunktes im Ortsraum, die zweiten 3 dagegen den Impuls.

Beispiel 160 (Energieerhaltungssatz). Wir nehmen an, dass die Kraft F ein Potential
U : R3 → R besitzt, d.h. dass

F (x) = − gradx U.

Wir definieren dann eine Funktion H : R3 × R
3 → R auf dem Phasenraum durch

H(x, p) = U(x) +
1

2m
〈p, p〉 .
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H ist die Summe aus potentieller und kinetischer Energie und heißt auch die Hamiltonfunk-
tion. Die Bewegungsgleichungen lauten dann

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
,

oder, unter Verwendung des symplektischen Gradienten aus Beispiel 158,

(ẋ, ṗ) = − gradσ(x,p)H.

Weil für die symplektische Bilinearform aber σ(v, v) = 0 für alle v ∈ R
2n, folgt daraus

σ(gradσ(x(t),p(t))H(ẋ(t), ṗ(t))) = 0.

Nach (41) ist also H auf den Phasenkurven (x(t), y(t)) konstant. Wir haben den Energieer-
haltungssatz bewiesen.

Beispiel 161 (Drehimpulserhaltung). Wir nehmen nun an, dass F ein zentrales Feld ist,
d.h. dass für alle x 6= 0

F (x) = f(x)x.

Wir definieren eine Funktion

J : R3 × R
3 → R

3, x(x, p) 7→ x× p,

die der Drehimpuls heißt. Für eine Phasenkurve t 7→ (x(t), p(t)) erhalten wir

d

dt
J(x, p) = ẋ× p+ x× ṗ = −m−1p× p− f(x)x× x = 0.

Also ist der Drehimpuls J auf jeder Phasenkurve konstant. Wegen J ⊥ x liegt die zugehörige
Ortskurve in einer Ebene senkrecht zum konstanten J .

Das letzte Beispiel dieses Abschnitts dokumentiert eine der ganz großen Leistungen in der
Geschichte der Naturwissenschaften und einen phantastischen frühen Erfolg der neu ent-
deckten Differentiallrechnung.

Beispiel 162 (Keplersche Gesetze als Konsequenz der Newtonschen Bewegungsgleichung
und des Gravitationsgesetzes). Die Keplerschen Gesetze für die Bewegung der Planeten in
einem Zentralfeld besagen:

1. Die Planetenbahnen sind Ellipsen mit der Sonne im Brennpunkt.

2. Der Fahrstrahl überstreicht in gleichen Zeiten gleiche Flächen.

3. Die Quadrate der Umlaufzeiten verhalten sich wie die Kuben der großen Halbachsen.

Kepler (1571-1630) hatte diese Gesetze aus umfassenden astronomischen Beobachtungen
(von Tycho Brahe und ihm selbst) errechnet. Das ist eine staunenswerte Leistung experi-
menteller Naturwissenschaft, vor allem, wenn man bedenkt, dass Kepler eines der ersten
Fernrohre konstruierte. Eine Generation später führten sie Newton zur Entdeckung seines
Gravitationsgesetzes

F (x) = −γmM x

r3
, r = ‖x‖, (43)
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aus dem sich in Verbindung mit den Bewegungsgleichungen die Keplerschen Gesetze herlei-
ten, wie wir nun zeigen wollen.

Die Bewegungsgleichung sieht so aus:

ẋ = m−1p (44)

ṗ = −γmM x

r3
. (45)

Weil das Gravitationsfeld zentralsymmetrisch ist, ist der Drehimpuls J = x× p längs jeder
Lösungskurve (x, p) konstant, und die Bewegung verläuft in einer Ebene senkrecht zu J .

Zwischenrechnung. Wir betrachten eine Lösung t 7→ (x(t), p(t)) der Bewegungsgleichungen
und erhalten

d

dt
(J × p) = J × ṗ = (x× p)× ṗ = 〈x, ṗ〉 p− 〈p, ṗ〉x = −γm2M

(
ẋ

r
− 〈ẋ, x〉

r3
x

)

.

Wenn man Erfahrung im Differenzieren von Vektorfeldern hat, kommt einem der Klammer-
ausdruck bekannt vor, vgl. auch Beispiel 122. Nach (21) ist nämlich

d

dt

x

r
=
ẋ

r
− 1

r2
dr

dt
x =

ẋ

r
− 〈x, ẋ〉

r3
dr

dt
.

Wir definieren deshalb

A(x, p) :=
J × p

γm2M
+
x

r
.

Dann ist auch der sogenannte Lenzsche Vektor A eine Erhaltungsgröße, d.h. t 7→ A(x(t), p(t))
ist längs jeder Phasenkurve konstant.

Wir nehmen jetzt an, dass J in Richtung der z-Achse zeigt. Dann liegen J × p und x in der
xy-Ebene. Also liegt auch A in der xy-Ebene, und wir nehmen an, dass das konstante(!) A
in Richtung der positiven x-Achse zeigt. Wir schreiben x = r(cosφ, sinφ, 0) in Zylinderko-
ordinaten. Mit ‖A‖ =: ǫ ist dann

〈A, x〉 = ǫ r cosφ.

Andrerseits ist

〈A, x〉 = 〈J × p, x〉
γm2M

+ r = −〈J, x× p〉
γm2M

+ r = − 〈J, J〉
γm2M
︸ ︷︷ ︸

=:η

+r

Aus den beiden Gleichungen folgt

r(1− ǫ cosφ) = η. (46)

Das ist die Polarkoordinaten-Gleichung eines Kegelschnitts mit Brennpunkt im Ursprung
und für ǫ < 1 eine Ellipse mit den Halbachsen

a =
η

1− ǫ2
, b = a

√

1− ǫ2. (47)

Das findet man in jeder besseren Formeltafel. Wir geben eine kurze Herleitung:

Hier sollen x = r cosφ und y = r sinφ die kartesischen Koordinaten des Punktes x(t) bezeich-
nen. Aus (46) folgt

r = ǫx+ η,
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und nach Quadrieren

x2 + y2 = ǫ2x2 + 2ǫηx+ η2

x2(1− ǫ2)− 2ǫηx+ y2 = η2

x2 − 2ǫ
η

1− ǫ2
︸ ︷︷ ︸

=:a

x+
y2

1− ǫ2
= η

η

1− ǫ2
= ηa = (1− ǫ2)a2

(x− ǫa)2 +
y2

1− ǫ2
= (1− ǫ2)a2 + ǫ2a2 = a2

Nach Division mit a2 folgt schließlich – falls ǫ < 1 – die Gleichung für eine in Richtung der
x-Achse verschobene Ellipse mit den Halbachsen a und b = a

√
1− ǫ2:

(x− ǫa)2

a2
+

y2

a2(1− ǫ2)
= 1.

Damit ist das 1. Keplersche Gesetz bewiesen.

Der Flächeninhalt des Dreieck zwischen x(t) und ẋ(t)
ist gegeben durch

1

2
‖x× ẋ‖ =

1

2m
‖x× p‖ =

1

2m
‖J‖.

x(t)

x(t)

In einem kleinen Zeitintervall ∆t überstreicht der Fahrstrahl in erster Näherung die Fläche
1
2‖x×∆tẋ‖, zwischen t0 und t1 also die Fläche

∫ t1

t0

1

2
‖x× ẋ‖dt = t1 − t0

2m
‖J‖.

Das ist das 2. Keplersche Gesetz.

Ist T die Umlaufzeit, so ist die Fläche der Ellipse F = T ‖J‖
2m . Andrerseits gilt für Ellipsen,

dass F = πab. Daher erhalten wir

T 2

4m2
‖J‖2 = π2a4(1− ǫ2) = π2a3η = π2a3

‖J‖2
γm2M

.

Also

T 2 =
4π2

γM
a3.

Das ist das 3. Keplersche Gesetz.
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3 Mehrdimensionale Differentialrechnung: Die großen

Sätze

3.1 Der Umkehrsatz

• Weil die Ableitung einer differenzierbaren Abbildung diese lokal sehr gut approximiert,
gibt sie zum Beispiel Auskunft auf die Frage nach der lokalen Umkehrbarkeit der
Funktion.

Lemma 163. Für endlich-dimensionale Banachräume V,W gleicher Dimension sei

Iso(V,W ) :=
{
A ∈ L(V,W )

∣
∣A invertierbar

}
.

Dann gilt:

(i) Iso(V,W ) ist offen in L(V,W ).

(ii) Die Inversenabbildung

inv : Iso(V,W ) → L(W,V ), A 7→ A−1

ist differenzierbar mit
DA inv(B) = −A−1BA−1

(iii) Für A ∈ Iso(V,W ) und v ∈ V gilt

‖A(v)‖ ≥ 1

‖A−1‖‖v‖, (48)

wobei ‖A−1‖ die Operatornorm bezeichnet.

Beweis. Die Behauptungen (i), (ii) folgen aus dem Beispiel 124 mit Hilfe eines Isomorphimus
Φ : V →W .

Zu (iii). Es ist

‖v‖ = ‖A−1(A(v))‖ ≤ ‖A−1‖ · ‖A(v)‖.
Daraus folgt (48).

Satz 164 (Umkehrsatz). Seien G ⊂ V offen und f : V ⊃ G → W stetig differenzierbar,
d.h. Df existiert und ist stetig. Sei p ∈ G und sei

Dpf : V →W invertierbar.

Dann ist f bei p lokal invertierbar mit stetig differenzierbarem Inversen.
Genauer: Es gibt eine offene Umgebung U von p in G, so dass gilt

(i) f |U ist injektiv,

(ii) f(U) ist offen in W,

(iii) (f |U )−1 : f(U) → V ist stetig differenzierbar und für alle x ∈ U gilt

Df(x)(f |U )−1 = (Dxf)
−1.
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Bemerkung. Aus der letzten Formel folgt: Ist f sogar k-mal stetig differenzierbar, so ist
auch die lokale Umkehrung k-mal stetig differenzierbar.

Definition 165. Eine k-mal stetig differenzierbare Abbildung mit einem k-mal stetig dif-
ferenzierbaren Inversen heißt ein Ck-Diffeomeorphismus.

Eine stetig differenzierbare Abbildung mit invertierbarem Differential ist also lokal ein C1-
Diffeomorphismus.

Beweis des Umkehrsatzes. Zu (i). Lokale Injektivität von f bei p.

Wir setzen F := Dpf und β := 1
‖F−1‖ .

Idee: Seien x, y nah bei p. Dann ist

‖f(y)− f(x)‖ = ‖(f(y)− f(p))− (f(x)− f(p))‖
(49)

≈ ‖Dpf(y − p)−Dpf(x− p)‖ = ‖F (y − x)‖ ≥
(48)

β‖y − x‖.

Aus y 6= x
”
folgt“ dann also f(y) 6= f(x).

Um das zu präzisieren, müssen wir das ≈-Zeichen quantitativ kontrollieren. Der Approxi-
mationsfehler ist

‖f(y)− f(x)− F (y − x)‖ = ‖(f(y)− F (y))− (f(x)− F (x))‖ = ‖φ(y)− φ(x)‖

mit
φ(x) := f(x)− F (x).

Offenbar ist φ stetig differenzierbar und Dpφ = Dpf −F = 0. Also gibt es ein δ > 0, so dass

U = Uδ(p) ⊂ G

und

‖Dξφ‖ ≤ β

3
für alle ξ ∈ U.

(Hier genügte im Augenblick auch ‖Dξφ‖ < β, aber im Hinblick auf den Beweis von (ii)
fordern wir die schärfere Abschätzung.) Dann ist nach dem Schrankensatz

‖φ(y)− φ(x)‖ ≤ sup
ξ∈U

‖Dξf − F‖ ‖y − x‖ ≤ β

3
‖y − x‖.

Der Approximationsfehler in (49) ist also maximal 1
3 der rechten Seite. Also ist

‖f(y)− f(x)‖ ≥ 2

3
β ‖y − x‖ (50)

und f |U injektiv. Nach dem Lemma ist weiter

Dxf invertierbar für x ∈ U. (51)

Zu (ii). Offenheit von f(U).

Seien U wie oben und x ∈ U . Wir müssen zeigen, dass es ein ǫ > 0 gibt, so dass

Uǫ(f(x)) ⊂ f(U).

Wähle zunächst r > 0 mit

K := {y ∈ V | ‖y − x‖ ≤ r} ⊂ U.
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Nach (50) gilt

‖y − x‖ = r =⇒ ‖f(y)− f(x)‖ ≥ 2

3
βr, (52)

d.h. die Randpunkte von K werden durch f auf Punkte abgebildet, die mindestens den
Abstand 2

3βr von f(x) haben. Wir wollen zeigen, dass

U 1
3
βr(f(x)) ⊂ f(K) ⊂ f(U). (53)

Sei also z ∈ U 1
3
βr(f(x)). Sei y

∗ ∈ K ein Punkt, in dem die stetige Funktion ‖f(y)− z‖ auf

dem kompakten K ihr Minimum annimmt. Wir wollen zeigen, dass f(y∗) = z; dann ist (53)
bewiesen.

Zunächst ist
‖y∗ − x‖ < r. (54)

Sonst wäre nach Definition von K nämlich ‖y∗ − x‖ = r, und nach (52) folgte mit der
Dreiecksungleichung

‖f(y∗)− z‖ ≥ 1

3
βr.

Aber das steht wegen ‖z − f(x)‖ < 1
3βr im Widerspruch zur Wahl von y∗.

Wir nehmen nun an, dass

f(y∗) 6= z. (55)

Wegen der Invertierbarkeit von Dy∗f gibt es dann
ein v 6= 0 mit

Dy∗f(v) = z − f(y∗) 6= 0.

Geht man von y∗ in Richtung v, so bleibt man für
eine Weile in K, und das f -Bild bewegt sich in Rich-
tung z−f(y∗), also in Richtung auf z zu. Daher liegt
für kleine positive t der Punkt f(y∗ + tv) näher an
z als f(y∗), und wir erhalten einen Widerspruch zur
Wahl von y∗.

z

y*

f(y*)

v

f(x)

x

K

f(K)

Wir präzisieren das:

Wähle δ1 > 0 so klein, dass y∗ + tv ∈ K für alle t ∈ [0, δ1]. Dann ist

f(y∗ + tv)− z = f(y∗)− z + tDy∗f(v) +R(y∗ + tv)

= (f(y∗)− z)(1− t) +R(y∗ + tv).

Es gibt ein t ∈]0, δ1[, so dass

‖R(y∗ + tv)‖ ≤ ‖z − f(y∗)‖
2‖v‖ ‖tv‖ =

t

2
‖z − f(y∗)‖,

also

‖f(y∗ + tv)− z‖ ≤ (1− t)‖f(y∗)− z‖+ t

2
‖z − f(y∗)‖ < ‖f(y∗)− z‖
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im Widerspruch zur Wahl von y∗. Damit war die Annahme (55) falsch, und es gilt f(y∗) = z,
also U 1

3
βr(f(x)) ⊂ U .

Zu (iii). Stetige Differenzierbarkeit der lokalen Umkehrabbildung.

Sei g := (f |U )−1 : f(U) → V . Seien z, w ∈ f(U) und x := g(z). Dann haben wir

f(g(w))
︸ ︷︷ ︸

=w

= f(g(z))
︸ ︷︷ ︸

=z

+Dxf(g(w)− g(z)) +R(g(w))

oder

Dxf(g(w)− g(z))− (w − z) = −R(g(w)).

mit limy→x
R(y)
‖y−x‖ = 0. Wegen (51) ist Dxf invertierbar. Es folgt

g(w) = g(z) + (Dxf)
−1(w − z)−(Dxf)

−1(R(g(w)))
︸ ︷︷ ︸

=:R̃(w)

.

Wir wollen zeigen, dass

lim
w→z

R̃(w)

‖w − z‖ = 0. (56)

Wegen der Injektivität von g und nach (50) gilt für w 6= z

0 < ‖g(w)− g(z)‖ ≤ 3

2β
‖w − z‖.

Insbesondere ist g stetig, und aus

R̃(w)

‖w − z‖ = −(Dxf)
−1








R(g(w))

‖g(w)− g(z)‖
︸ ︷︷ ︸

→0 für w→z








‖g(w)− g(z)‖
‖w − z‖

︸ ︷︷ ︸

≤ 3
2β

folgt die Behauptung (56). Also ist g differenzierbar und

Df(x)g = Dzg = (Dxf)
−1.

Schließlich ist z 7→ g(z) 7→ Dg(z)f 7→ (Dg(z)f)
−1 als Komposition stetiger Abbildungen

wieder stetig. Damit haben wir die stetige Differenzierbarkeit der Umkehrabbildung gezeigt.

Bemerkung. Die Formel für die Ableitung folgt auch aus

(f |U )−1 ◦ f |U = id

mit der Kettenregel:
Df(x)(f |U )−1 ◦Dx(f |U ) = Dx id = id .

Beispiel 166. Die Abbildung f : R
2 \ {0} → R

2 mit f(x, y) := (x2 − y2, 2xy) hat die
Funktionalmatrix

f ′(x, y) =

(
2x −2y
2y 2x

)

.
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Sie ist deshalb stetig differenzierbar und D(x,y)f ist für alle (x, y) ∈ R
2 \ {0} invertierbar.

Also besitzt f um jeden Punkt lokal ein stetig differenzierbares Inverses. Aber f ist nicht
global invertierbar, weil z.B. f(1, 1) = f(−1,−1). Es ist

f({(x, y) |x > 0 und y > 0}) = {(x, y) | y > 0}

und

g(u, v) =
1√
2

(√
√

u2 + v2 + u,

√
√

u2 + v2 − u

)

, v > 0

ist das Inverse von f |{(x,y) | x>0 und y>0}. Die Formel für die Ableitung der Inversen liefert

g′(f(x, y)) = (f ′(x, y))−1 =
1

2(x2 + y2)

(
x y
−y x

)

.

Zum Beispiel ergibt sich für x = y = 1, also (u, v) = (0, 2),

g′(0, 2) =
1

4

(
1 1
−1 1

)

.

Beispiel 167 (Stetige Polarkoordinaten). Die Polarkoordinaten in der Ebene sind nicht
eindeutig, die Winkelkoordinate ist nur bis auf ein ganzzahliges Vielfaches von 2π bestimmt.
Und wenn man die Eindeutigkeit mit “Gewalt” erzwingt, indem man zum Beispielverlangt,
dass φ ∈ [−π, π[, so wird die Winkelkoordinate auf der negativen x-Achse unstetig.

Wir wollen aber überlegen: Eine stetige Kurve c : [a, b] → R
2 \ {0} kann man auch in

Polarkoordinaten mit stetiger Winkelfunktion beschreiben: Ist c(a) = ‖c(a)‖(cosφ0, sinφ0),
so gibt es genau eine stetige Funktion Φ : [a, b] → R mit Φ(a) = φ0 und

c(t) = ‖c(t)‖(cosΦ(t), sinΦ(t))
(57)

= ‖c(t)‖eiΦ(t) in komplexer Notation.

Wir betrachten die Abbildung

f : R2 ⊃ G :=
{
(r, φ)

∣
∣ r > 0

}
→ R

2 \ {0}
(r, φ) 7→ (r cosφ, r sinφ)

Dann ist

f ′(r, φ) =

(
cosφ −r sinφ
sinφ r cosφ

)

.

Rechnen Sie nach, dass das für alle (r, φ) ∈ G invertierbar ist. Also ist f nach dem Umkehr-
satz lokal invertierbar. Wir wissen natürlich mehr: Die Abbildung f ist surjektiv auf R2 \ {0},
und mittels Arcus-Funktionen lassen sich lokale Umkehrabbildungen explizit hinschreiben.Weil
das wegen der erforderlichen Fallunterscheidungen mühsam ist, wählen wir nun zu jedem
p = (r, φ) ∈ G eine offene Umgebung Up, die von f diffeomorph auf eine offene Menge
Vp := f(Up) ⊂ R

2 \ {0} abgebildet wird. Dann ist (Vp)p∈G eine offene Übderdeckung von
R

2 \ {0}, und wegen der Stetigkeit von c ist
(
c−1(Vp)

)

p∈G
eine offene Überdeckung von [a, b].

Nach dem Lebesgue-Lemma gibt es eine Zerlegung

a = t0 < t1 < . . . < tn = b,

so dass jedes [tj−1, tj ] in einem der c−1(Vp) enthalten ist. Wir wählen zu jedem j ein solches
p, und schreiben fj := f |Up

.
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Wir definieren nun rekursiv

Φ(a) := φ0

Φ(t) :=
(
f−1
j (c(t))

)

2
−
(
f−1
j (c(tj−1))

)

2
+Φ(tj−1) für t ∈]tj−1, tj ].

Dabei bedeutet der untere Index (.)2 die 2. Komponente (eben die φ-Komponente). Offenbar
ist dann Φ|]tj−1,tj ] stetig, und weil außerdem

lim
tցtj−1

Φ(t) = Φ(tj−1),

ist Φ : [a, b] → R stetig. Wir zeigen, dass (57) gilt. Nehmen wir an, dass das bereits für
t ≤ tj−1 erfüllt ist. Dann folgt für tj−1 < t ≤ tj :

‖c(t)‖eiΦ(t) = ‖c(t)‖ exp
(

i
((
f−1
j (c(t))

)

2
−
(
f−1
j (c(tj−1))

)

2
+Φ(tj−1)

))

= ‖c(t)‖ exp
(

i
(
f−1
j (c(t)

)

2

) ‖c(tj−1)‖ exp (iΦ(tj−1))

‖c(tj−1)‖ exp
(

i
(
f−1
j (c(tj−1)

)

2

)

= c(t)
c(tj−1)

c(tj−1)
= c(t).

Zur Eindeutigkeit von Φ. Wir nehmen an, dass

‖c(t)‖eiΦ(t) = c(t) = ‖c(t)‖eiΦ̃(t) für alle t ∈ [a, b].

Dann folgt

ei(Φ(t)−Φ̃(t)) = 1 für alle t ∈ [a, b],

also
Φ(t)− Φ̃(t) ∈

{
2kπ

∣
∣ k ∈ Z

}
für alle t ∈ [a, b].

Wenn Φ und Φ̃ stetig sind mit Φ(a) = φ0 = Φ̃(a), so folgt daraus Φ = Φ̃.
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3.2 Implizite Funktionen

• Ist F linear, so ist F (x, y) = F ((x, 0)+(0, y)) = F (x, 0)+F (0, y) und die Frage, ob sich
die Gleichung F (x, y) = 0 nach y = y(x) auflösen lässt, ist einfach die Frage nach der
Umkehbarkeit von F (0, .). Wir lernen im Satz über implizite Funktionen die Antwort
auf die entsprechende Frage für differenzierbares F .

Problem: Seien V0, V1,W endlich-dimensionale Banachräume und f : V0 × V1 →W . Unter
welchen Voraussetzungen hat die Gleichung

f(x, y) = 0 (58)

für jedes x ∈ V0 genau eine Lösung y ∈ V1?

Unter diesen Umständen gibt es dann eine eindeutig bestimmte Funktion g : V0 → V1, für
die für alle x ∈ V0 gilt

f(x, g(x)) = 0. (59)

Man sagt dann auch, dass (58) sich nach einer Funktion y = g(x) eindeutig auflösen läßt
oder dass g durch (59) implizit definiert wird.

Geometrisch bedeutet das, dass man das Niveau
f = 0 als Graphen

{
(x, g(x))

∣
∣x ∈ V0

}
einer Funkti-

on g : V0 → V1 beschreibt, also durch V0 parametri-
siert: Jeder Punkt auf dem 0-Niveau liegt über genau
einem Punkt von V0.

V
0

V0

V
0

V
1

V1

V
1

x

{ f=0 } = Graph (g:     ->    )

Im FallW = R
m hat f die Komponentenfunktionen f1, . . . , fm. Man hat alsomGleichungen,

die Dimension von W ist die Anzahl der gegebenen Gleichungen. Ebenso kann man die
Dimension von V1 als die Anzahl der gesuchten Unbekannten yi ansehen. Es ist also wohl
vernünftig, dimV1 = dimW zu wählen.

Beispiel 168. Sei f = F : V0 × V1 →W linear und sei dimV1 = dimW . Dann hat man

F (x, y) = F ((x, 0) + (0, y)) = F (x, 0) + F (0, y),

d.h. F liefert zwei lineare Abbildungen

F (. , 0) : V0 →W,

F (0, .) : V1 →W.

Dann ist (58) genau dann für jedes x ∈ V0 eindeutig lösbar, wenn die lineare Abbildung
F (0, .) : V1 →W invertierbar ist. Die Gleichung

0 = F (x, y) = F (x, 0) + F (0, y)

ist nämlich äquivalent zu
F (0, y) = −F (x, 0).

Das ist höchstens dann eindeutig lösbar, wenn F (0, .) injektiv ist. Nach der Dimensionsvor-
aussetzung ist in diesem Fall aber F (0, .) bijektiv und die Gleichung tatsächlich für jedes x
eindeutig lösbar. Man findet

g(x) = −F (0, .)−1(F (x, 0)).
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Im Fall V0 = R
n und V1 = W = R

m ist F gegeben durch eine m × (n + m)−Matrix der
Form

(F (1)
︸︷︷︸

n

| F (2)
︸︷︷︸

m

),

und F (0, .) wird repräsentiert durch die quadratische m ×m−Matrix F (2), die also inver-
tierbar sein muß.

Wenn wir dieses Ergebnis von linearen Abbildungen auf differenzierbare Abbildungen ver-
allgemeinern wollen, ist es plausibel, dass wir nur ein lokales Ergebnis erhalten. Experimen-
tieren Sie ein bißchen mit dem Fall V0 = V1 =W = R und

f(x, y) := x− y2.

Satz 169 (über implizite Funktionen). Seien V0, V1,W endlich-dimensionale Banachräume,
G ⊂ V0 × V1 offen und f : V0 × V1 ⊃ G→W stetig differenzierbar.
Sei (p, q) ∈ G mit

f(p, q) = 0, (60)

D(p,q)f(0, .) : V1 →W invertierbar. (61)

Beachte, dass damit dimV1 = dimW .
Dann läßt sich

f(x, y) = 0 (62)

in einer Umgebung von (p, q) eindeutig nach einer stetig differenzierbaren Abbildung y = g(x)
auflösen.

Genauer:
Es gibt offene Umgebungen U0 von p in V0 und U1 von q in V1 mit folgenden Eigenschaften:

(i) U0 × U1 ⊂ G, und zu jedem x ∈ U0 gibt es genau ein y ∈ U1 mit

f(x, y) = 0.

(ii) Die nach (i) eindeutig bestimmte Funktion g : U0 → U1 mit

f(x, g(x)) = 0

ist stetig differenzierbar.

(iii) Für alle x ∈ U0 ist D(x,g(x))f(0, .) : V1 →W invertierbar und für v ∈ V0 ist

Dxg(v) = −
(
D(x,g(x))f(0, .)

)−1 ◦D(x,g(x))f(v, 0). (63)

Bemerkung. Im Fall V0 = R
n, V1 =W = R

m werden die linearen Abbildungen

D(x,y)f(0, .) : R
m → R

m bzw D(x,y)f(., 0) : R
n → R

m

repräsentiert durch die Matrizen
(
∂fi
∂yj

(x, y)

)

i,j=1,...,m

bzw.

(
∂fi
∂xj

(x, y)

)

i=1,...,m;j=1,...,n
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Beweis zum Satz über implizite Funktionen.

Die Idee. Die Gleichung f(x, y) = 0 ist genau dann eindeutig nach y auflösbar, wenn dasselbe
für die Gleichung

h(x, y) := (x, f(x, y)) = (x, 0)

gilt. h erweist sich nach dem Umkehrsatz als lokal invertierbar, und die gesuchte Lösungsfunktion
g ist dann gegeben durch

(x, g(x)) = h−1(x, 0),

also durch die zweite Komponente von h−1(., 0).

A. Vorbemerkung. Da V0 × V1 endlich-dimensional
ist, sind alle Normen äquivalent, und wir verwenden
der Einfachheit halber die Norm

‖(v, w)‖ = sup(‖v‖, ‖w‖).

Das hat den Vorteil, dass

Uǫ((p, q)) = Uǫ(p)×Uǫ(q) für (p, q) ∈ V0 × V1 und ǫ > 0.

Analog verfahren wir gleich mit dem Raum V0 ×W .

V

V

q

U
ε

U
ε

(p,q)U
ε

(p)

(q)

0

1

B. Reduktion auf den Umkehrsatz. Wir setzen die obige Beweisidee um und definieren die
Abbildung

h : V0 × V1 ⊃ G→ V0 ×W, (x, y) 7→ (x, f(x, y))

zwischen gleich-dimensionalen Vektorräumen. Es gilt

D(x,y)h(v, w) = (v,D(x,y)f(v, w)), (64)

und deshalb ist mit f auch h stetig differenzierbar. Weiter ist

D(p,q)h invertierbar, (65)

denn

0 = D(p,q)h(v, w) ⇐⇒
(64)

v = 0 und D(p,q)f(v, w) = 0

⇐⇒ v = 0 und D(p,q)f(0, w) = 0 ⇐⇒ v = 0 und w = 0

nach Voraussetzung.

C. Anwendung des Umkehrsatzes. Nach dem Umkehrsatz gibt es ǫ > 0, so dass

U := Uǫ(p)× Uǫ(q) ⊂ G,

h|U injektiv,

h(U) offen,

(h|U)−1 stetig differenzierbar.

Da h(U) offen und

(p, 0) = (p, f(p, q)) = h(p, q) ∈ h(U) ⊂ V0 ×W,

gibt es δ > 0 mit δ < ǫ und

Uδ(p)× Uδ(0) = Uδ((p, 0)) ⊂ h(U) ⊂ V0 ×W.
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Wir setzen nun

U0 := Uδ(p), U1 := Uǫ(q),

und behaupten, dass diese das
Gewünschte leisten.

V

W

V

V

0

0

0

p

p

q

0

1

1

U

U

U δ

h

Zu (i). Zunächst ist
U0 × U1 ⊂ Uǫ(p)× Uǫ(q) = U ⊂ G. (66)

Ist x ∈ U0, so ist (x, 0) ∈ Uδ((p, 0)) ⊂ h(U). Darum gibt es nach dem Umkehrsatz genau ein
(x̃, y) ∈ U mit h(x̃, y) = (x, 0).

Offenbar ist

• x̃ = x,

• y ∈ U1 nach Definition von U und U1, und

• f(x, y) = 0 nach Definition von h.

Also gibt es zu jedem x ∈ U0 ein y ∈ U1 mit f(x, y) = 0. Wir bezeichnen dieses y mit g(x).

Sind y1, y2 ∈ U1 mit f(x, y1) = 0 = f(x, y2), so folgt h(x, y1) = (x, 0) = h(x, y2), also
y1 = y2.

Damit ist (i) bewiesen.

Zu (ii). Für x ∈ U0 haben wir eben gezeigt, dass

h(x, g(x)) = (x, f(x, g(x))) = (x, 0).

Bezeichnen wir also mit π : V0 × V1 → V1, (v, w) 7→ w die Projektion, so ist

g(x) = π ◦ (h|U)−1(x, 0).

Daher ist g stetig differenzierbar.

Zu (iii). Nach (65) ist D(x,y)h für (x, y) ∈ U invertierbar. Nach (62) haben wir dann

D(x,y)h(0, w) = (0, D(x,y)f(0, w)) = 0 ⇐⇒ w = 0.

Daraus folgt, dass für (x, y) ∈ U auch D(x,y)f(0, .) injektiv und damit invertierbar ist.
Insbesondere ist also für alle x ∈ U0

D(x,g(x))f(0, .) invertierbar. (67)

Nun differenzieren wir

φ : U0 ∋ x 7→
α

(x, g(x)) 7→ f(x, g(x))

nach der Kettenregel. Wir erhalten

Dxφ(v) = D(x,g(x))f(Dxα(v))

= D(x,g(x))f(v,Dxg(v))

= D(x,g(x))f(v, 0) +D(x,g(x))f(0, Dxg(v)). (68)

Andererseit ist φ = 0, also Dxφ = 0. Damit folgt aus (67) und (68) die Formel in (iii).
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Beispiel 170. Seien V0 = V1 =W = R und f : V0 × V1 = G→ R, (x, y) 7→ x− y2. Dann
ist

D(p,q)f(v, w) = v − 2qw.

In (p, q) = (0, 0) ist die Voraussetzung über die Inver-
tierbarkeit der Ableitung also nicht erfüllt, wohl aber
in allen Punkten (q2, q) mit q 6= 0. In der Nähe dieser
Punkte läßt sich f−1({0}) = {(x, y) |x−y2 = 0} also
lokal als Graph schreiben.

x

y
x = y2

2 2

(p  ,q  )
1 1

(p  ,q  )
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3.3 Der Rangsatz

• Der Rangsatz beinhaltet in gewisser Weise die Quintessenz der linearen Approximation
differenzierbarer Abbildungen.

In der Linearen Algebra betrachtet man folgendes Problem: Eine lineare Abbildung

F : V →W

zwischen zwei R-Vektorräumen der Dimensionen n und m kann man durch eine (m × n)-
Matrix darstellen, nachdem man in V und W Basen gewählt hat. Die Darstellungsmatrix
hängt wesentlich von den gewählten Basen ab, und man kann fragen, ob man sie durch
geschickte Wahl der Basen besonders einfach gestalten kann. Tatsächlich kann man immer
die folgende Form erreichen













1 . . . 0
...

. . .
...

0 . . . 1

0 . . . . . . 0
...

...
0 . . . . . . 0

0 . . . 0
...

...
0 . . . 0

0 . . . . . . 0
...

...
0 . . . . . . 0













.

Die Zahl der Einsen ist dabei der Rang r der linearen Abbildung, d.h. die Dimension von
F (V ). Dieses Resultat kann man auch so formulieren:

Ist F : V →W wie oben, so gibt es Isomorphismen Φ : V → R
n und Ψ :W → R

m, so dass

Ψ ◦ F ◦ Φ−1 : Rn → R
m

gegeben ist durch
Ψ ◦ F ◦ Φ−1(x1, . . . , xn) = (x1, . . . , xr, 0 . . . , 0).

Die Isomorphismen Φ und Ψ nennt man auch Koordinaten. In geeigneten Koordinaten sieht
also jede lineare Abbildung vom Rang r aus wie

(x1, . . . , xn) 7→ (x1, . . . , xr, 0 . . . , 0).

Wir übertragen das nun lokal auf Ck-Abbildungen, vgl. Definition 139. An die Stelle der
linearen Koordinatenabbildung Φ : V → R

n tritt jetzt ein Ck-Diffeomorphismus

Φ : V ⊃ U → Ũ ⊂ R
n

(also eine bijektive Ck-Abbildung mit Ck-Inversem) zwischen offenen Umgebungen und U
von p ∈ G und Ũ von Φ(p) = 0 in R

n und analog für Ψ. Diese Diffeomorphismen nennt man
ebenfalls (krummlinige) Koordinaten.
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Satz 171 (Rangsatz). Seien V,W Banachräume der Dimensionen n und m, G ⊂ V offen,
und

f : V ⊃ G→W k-mal stetig differenzierbar, 1 ≤ k ≤ +∞.

f sei von konstantem Rang r, d.h. der Rang von Dxf : V → W sei = r unabhängig von
x ∈ G. Dann gilt: Zu jedem p ∈ G gibt es Ck-Diffeomorphismen

Φ : V ⊃ U1 → Ũ1 ⊂ R
n

und
Ψ :W ⊃ U2 → Ũ2 ⊂ R

m

offener Umgebungen von p bzw. f(p) auf offene Umgebungen von 0 = Φ(p) in R
n bzw. von

Ψ(f(p)) = 0 ∈ R
m, so dass

f(U1) ⊂ U2

und
Ψ ◦ f ◦ Φ−1(x1, . . . , xn) = (x1, . . . , xr, 0, . . . , 0) für alle x ∈ Ũ1.

Ck-Abbildungen von konstantem Rang r sind also in geeigneten Ck-Koordinaten von der
Form

(x1, . . . , xn) 7→ (x1, . . . , xr, 0 . . . , 0).

p

0q

0
Φ

Ψ

f

≅

≅

V

W

R

R

I

I
m

n

Konvention. Um die Notation übersichtlich zu halten, schreiben wir zum Beispiel:

Sei g : V →W ein lokaler Diffeomorphismus bei p,

wenn g auf einer offenen Umgebung von p ∈ V (nicht notwendig aber auf ganz V ) definiert
und Ck-differenzierbar ist, und eine (eventuell kleinere) offene Umgebung von p diffeomorph
auf eine offene Umgebung von g(p) in W abbildet.

Wegen des zu Beginn dieses Abschnittes angeführten Satzes aus der linearen Algebra genügt
es, folgende Version des Rangsatzes zu beweisen:
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Satz 172 (Rangsatz, 2. Version). Seien V,W endlich-dimensionale Banachräume, sei G ⊂
V offen, p ∈ G und sei

f : V ⊃ G→W ∈ Ck und von konstantem Rang r.

Dann gibt es lokale Ck-Diffeomorphismen

φ :V → V bei p mit φ(p) = p,

ψ :W →W bei f(p) mit ψ(f(p)) = f(p),

für die auf einer offenen Umgebung von 0 ∈ V

ψ ◦ f ◦ φ−1 = Dpf

gilt. In geeigneten lokalen Koordinaten um p und f(p) sieht f also aus wie seine Ableitung,
d.h. wie eine lineare Abbildung vom Rang r.

Beweis. Vorbereitung. Durch Translationen (also C∞-Diffeomorphismen) in V und W
können wir erreichen, dass p = 0 und f(p)=0. Das setzen wir im folgenden voraus. Um
den Beweis übersichtlich zu halten, benutzen wir die obige Konvention und verzichten auf
die explizite Kontrolle der Definitionsbereiche.

Wir definieren
V2 := KernD0f, W1 := BildD0f = D0f(V ),

und wählen zu V2 und W1 komplementäre Unterräume, so dass also

V = V1 ⊕ V2, W =W1 ⊕W2.

Das Differential D0f bildet dann also den r-dimensionalen Raum V1 isomorph auf W1 ab.
Entsprechend der Zerlegung bezeichnen wir für x ∈ V die Komponenten in V1 bzw. V2 mit
x1 bzw. x2 und entsprechend für y ∈W . Insbesondere ist f = f1 + f2 mit fi : G→Wi.

1. Schritt: Konstruktion von φ. Die Komponentenabbildungen sind linear, und deshalb ist

F := D0(f1|V1
) = (D0f |V1

)1 : V1 →W1

ein Isomorphismus. Daher ist nach dem Umkehrsatz

f1|V1
: V1 →W1

ein lokaler Diffeomorphismus5. Dann ist auch F−1 ◦ f1 : V1 → V1 ein lokaler Diffeomorphis-
mus. Wir definieren φ : V → V durch

φ(x) := F−1(f1(x)) + x2 für x = x1 + x2.

Dann ist
D0φ(v1 + v2) = F−1(D0f1(v1 + v2)) + v2 = v1 + v2,

also
D0φ = idV , (69)

und deshalb ist φ ein lokaler Diffeomorphismus.

5 Genauer: “... ein lokaler Ck-Diffeomorphismus bei 0.”, aber das unterdrücken wir in Zukunft: Alle
unsere lokalen Diffeomorphismen und Abbildungen sind “bei 0” und k-mal stetig differenzierbar.
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Aus der Definition folgt für die V1-Komponente φ1(x) = F−1 ◦ f1(x), also φ1(φ−1(x)) =
F−1 ◦ f1(φ−1(x)) und

f1(φ
−1(x)) = F (x1). (70)

2. Schritt: Konstruktion von ψ. Nun definieren wir ψ :W →W durch

ψ(y1 + y2) = y1 + y2 − f2 ◦ φ−1 ◦ F−1(y1).

Dafür gilt

D0ψ(w1 + w2) = w1 + w2 −D0(f2 ◦ φ−1 ◦ F−1)(w1)
︸ ︷︷ ︸

∈W2

= 0 ⇐⇒ w1 = 0 und w2 = 0.

Also D0ψ injektiv und damit bijektiv, und ψ ist ein lokaler Diffeomorphismus. Wir erhalten

ψ ◦ f ◦ φ−1(x) = ψ(f ◦ φ−1(x))

=
(70)

ψ(F (x1) + f2 ◦ φ−1(x))

= F (x1) + f2 ◦ φ−1(x)− f2 ◦ φ−1 ◦ F−1(F (x1))

= F (x1) + f2 ◦ φ−1(x)− f2 ◦ φ−1(x1)

Wir sind also fertig, wenn wir zeigen können, dass für x ∈ V nah bei 0

f2 ◦ φ−1(x) = f2 ◦ φ−1(x1). (71)

3. Schritt: Nachweis von (71). Das ist das eigentliche Herzstück des Beweises. Aus (70) folgt

Dxf
(
Dφ(x)φ

−1(v1 + v2)
)
= Dφ(x)(f ◦ φ−1)(v1 + v2)

= Dφ(x)(f1 ◦ φ−1 + f2 ◦ φ−1)(v1 + v2)

= F (v1) +Dφ(x)f2(v1 + v2). (72)

Wir betrachten nun die Projektion π1 :W →W1, y 7→ y1. Aus der letzten Gleichung folgt

π1 (Dxf(V )) ⊃ π1
(
Dxf(Dφ(x)φ

−1(V1)
)
= F (V1) =W1.

Damit ist Rang(Dxf) ≥ dimW1 = r für alle Punkte x nah bei p = 0.

Gäbe es v2 ∈ V2 mit Dφ(x)(f2 ◦ φ−1)(v2) = w2 6= 0, so wäre

w2 =
(72)

Dxf(Dφ(x)φ
−1(v2)) ∈ Dxf(V ) und π1(w2) = Dφ(x)(π1 ◦ f2 ◦ φ−1)(v2) = 0.

Also wäre w2 ∈ Kernπ1|Dxf(V ) und nach Linearer Algebra

dimDxf(V ) = dimKern(π1) + dimBild(π1) ≥ r + 1

im Widerspruch zur Rangvoraussetzung über f , die wir hier zu ersten Mal benutzen. Es
folgt

Dx(f2 ◦ φ−1)|V2
= 0,

d.h. f2 ◦ φ−1 ist nach Korollar 147 lokal unabhängig von der V2-Komponenten und

f2 ◦ φ−1(x) = f2 ◦ φ−1(x1).

Wir halten noch ein Ergebnis aus diesem Beweis fest: Im letzten Schritt haben wir – ohne
Benutzung der Konstanz des Ranges – gezeigt, dass für alle Punkte x nah bei p

Dpf(V ) =W1 ⊂ π1(Dxf(V )),

Also ist der Rang von Df in Nachbarpunkten von p mindestens so groß wie in p. Man sagt,
er ist unterhalb-stetig. Damit erhalten wir:
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Lemma 173. Für jede stetig differenzierbare Funktion ist der Rang unterhalb-stetig.

Beispiel 174. Auf der Menge der reellen invertierbaren n× n Matrizen betrachten wir die
Abbildung

f :M(n× n,R) ⊃ GL(n,R) →M(n× n,R)

mit f(A) = AAT , wobei AT die transponierte Matrix bezeichnet. Dafür gilt

DAf(B) = BAT +ABT ,

und diese Matrix ist symmetrisch(=selbstadjungiert)! Ist andererseits C ∈ M(n × n,R)
symmetrisch, so folgt

DAf

(
1

2
C(A−1)T

)

=
1

2
C(A−1)TAT +

1

2
A(A−1)CT = C.

Also ist für alle A ∈ GL(n,R) das Bild von DAf der n(n+1)
2 -dimensionale Raum aller

symmetrischen Matrizen und f ist von konstantem Rang n(n+1)
2 .

Korollar 175. Sei f : V ⊂ G→W stetig differenzierbar.

(i) Ist f eine Immersion, d.h. Dpf für alle p injektiv, so ist f lokal injektiv.

(ii) Ist f eine Submersion, d.h. Dpf für alle p surjektiv, so ist f eine offene Abbildung,
d.h. f bildet offene Mengen in offene Mengen ab.

Beweis. Selbst.
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4 Mannigfaltigkeiten

• Wir lernen mit den Mannigfaltigkeiten eine Verallgemeinerung des Flächenbegriffs auf
beliebige Dimension (und Kodimension) kennen.

• Beispiele sind vor allem die “Niveaus” von Abbildungen, wie die höherdimensionalen
Sphären, aber auch viel abstraktere Räume, wie etwa die orthogonalen Matrizen.

• Der Tangentialraum ist eine lineare Approximation der Mannigfaltigkeit und ermöglicht,
auch für Funktionen auf Mannigfaltigkeiten die Ableitung als lineare Abbildung zu de-
finieren.

• Als Anwendung behandeln wir Extrema unter Nebenbedingungen.

Eine m-dimensionale Mannigfaltigkeit im Banachraums V ist eine Teilmenge M ⊂ V , die
in geeigneten krummlinigen Koordinaten (für V !) lokal so aussieht wie ein m-dimensionaler
Untervektorraum:

Definition 176. Seien m, k ∈ N, k > 0. Eine Teilmenge M ⊂ V eines n-dimensionalen Ba-
nachraums heißt eine m-dimensionale Ck-(Unter)mannigfaltigkeit, wenn es zu jedem Punkt
p ∈ M eine offene Umgebung U von p in V und einen Ck-Diffeomorphismus φ : U → φ(U)
auf eine offene Teilmenge φ(U) ⊂ R

n gibt, so dass gilt:

M ∩ U = φ−1(Rm ∩ φ(U)),

d.h.
M ∩ U =

{
x ∈ U

∣
∣φm+1(x) = . . . = φn(x) = 0

}
. (73)

Dabei betrachten wir also R
m ⊂ R

n als den Unterraum aller Punkte, deren letzte n − m
Koordinaten verschwinden.

U

M

RI

RI

n

m

ϕ

V

Eine große Klasse von Beispielen liefert der folgende

Satz 177 (Gleichungsdefinierte Untermannigfaltigkeiten). Seien V und W Banachräume
endlicher Dimension. Seien G ⊂ V offen und g : G → W ∈ Ck, k > 0, vom konstanten
Rang r, 0 < r < n := dimV und q ∈ g(G). Dann ist

M := g−1({q})

eine n− r-dimensionale Ck-Mannigfaltigkeit.
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Im Fall g : R
2 → R bzw. g : R

3 → R ist M also eine Niveaukurve bzw. -fläche. Glei-
chungsdefinierte Untermannigfaltigkeiten kann man also auch als Niveaumannigfaltigkeiten
bezeichnen.

Beweis. Sei p ∈M . Nach dem Rangsatz gibt es Ck-Diffeomorphismen

Φ : V ⊃ U1 → Ũ1 ⊂ R
n

und
Ψ :W ⊃ U2 → Ũ2 ⊂ R

m (m = dimW )

offener Umgebungen von p bzw. q = g(p) auf offene Umgebungen von Φ(p) = 0 in R
n bzw.

von Ψ(q) = 0 in R
m, so dass

g(U1) ⊂ U2

und
Ψ ◦ g ◦ Φ−1(x1, . . . , xn) = (x1, . . . , xr, 0, . . . , 0) für alle x ∈ Ũ1. (74)

Dann gilt für p′ ∈ U := U1

p′ ∈M ⇐⇒ g(p′) = q

⇐⇒ Ψ(g(p′)) = 0

⇐⇒ Ψ ◦ g ◦ Φ−1 ◦ Φ(p′) = 0

⇐⇒
(74)

Φ1(p
′) = . . . = Φr(p

′) = 0.

Bis auf die Nummerierung der Koordinatenfunktionen ist das die Definitionsgleichung (73).

Beispiel 178. Die Abbildung

g : Rn+1 → R, (x1, . . . , xn+1) 7→ (

n+1∑

i=1

x2i )− 1

hat die Funktionalmatrix

g′(x1, . . . , xn+1) = 2(x1, . . . , xn+1),

und weil R eindimensional ist, ist Dxg surjektiv für alle x 6= 0. Daher ist die Einheitssphäre

Sn :=
{
x
∣
∣ g(x) = 0

}
=
{

(x1, . . . , xn+1)
∣
∣
∣

∑

x2i = 1
}

eine n-dimensionale C∞-Untermannigfaltigkeit des Rn+1.

Beispiel 179. Wir betrachten im n2-dimensionalen Vektorraum der quadratischen n-reihigen
Matrizen die Menge

O(n) = {A ∈M(n× n) |AAt = E}
der orthogonalen Matrizen. Nach Beispiel 174 ist das eine C∞-Untermannigfaltigkeit der

Dimension n2− n(n+1)
2 = n(n−1)

2 . Die orthogonalen Matrizen bilden außerdem bezüglich der
Matrixmultiplikation eine Gruppe. Die Gruppenoperationen sind offenbar differenzierbar
und O(n) ist eine sogenannte Liegruppe.
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Definition 180 (Tangentialraum). Sei M eine m-dimensionale Mannigfaltigkeit im n-
dimensionalen Banachraum V , sei p ∈ M und φ : U → R

n ein Koordinatensystem dazu
wie in der Definition 176. Dann ist also

M ∩ U = φ−1(Rm ∩ φ(U)),

und wir definieren den Tangentialraum TpM an M in p durch

TpM := Dφ(p)φ
−1(Rm).

Das ist also ein m-dimensionaler Vektorraum und eine lineare Approximation für M in der
Nähe von p.

Auf dem nebenstehenden Bild ist ei-
gentlich nicht TpM dargestellt, son-
dern der nach p verschobene Tangenti-
alraum, weil das unserer anschaulichen
Vorstellung eher entspricht. Zum Rech-
nen ist natürlich der Vektorunterraum
TpM angenehmer als der parallele affi-
ne Unterrraum.

M

RI

RI

n

m

ϕ

V T  Mp

Damit der Tangentialraum wohldefiniert ist, müssen wir zeigen, dass er nicht vom gewählten
Koordinatensystem abhängt. Sei also φ̃ : Ũ → R

n ein weiteres Koordinatensystem um p
wie in der Definition 176. Wir können o.E. annehmen, dass U = Ũ . Weil φ und φ̃ lokale
Diffeomorphismen sind, folgt aus φ̃−1(Rm ∩ φ̃(U)) =M ∩ U = φ−1(Rm ∩ φ(U)), dass

φ̃ ◦ φ−1(Rm ∩ φ(U)) ⊂ R
m

und deshalb
Dpφ̃ ◦Dφ(p)φ

−1(Rm) ⊂ R
m,

also

Dφ(p)φ
−1(Rm) ⊂

(

Dpφ̃
)−1

(Rm) = Dφ̃(p)(φ̃
−1)(Rm).

Durch Vertauschen von φ und φ̃ ergibt sich die umgekehrte Inklusion, also Gleichheit der
Räume.

Beispiel 181. Ist M = g−1({q}) ⊂ V eine gleichungsdefinierte Untermannnigfaltigkeit
wie im Satz 177, so gilt für p ∈ M und ein Koordinatensystem φ : U → R

n um p, dass
M ∩ U = φ−1(Rm ∩ φ(U)), also g ◦ φ−1(Rm ∩ φ(U)) = {q} und daher

Dpg(TpM) = Dpg(Dφ(p)φ
−1(Rm)) = 0.

Weil der Rang von g aber gerade dimV − dimM ist, folgt

TpM = KernDpg = (Dpg)
−1({0}).

Das ist die linearisierte Version von

M = g−1({q}).
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Auf Mannigfaltigkeiten kann man “Analysis treiben”, insbesondere die Differenzierbarkeit-
von Funktionen erklären. Das Differential an einer Stelle p ∈M ist dann eine lineare Abbil-
dung auf dem Tangentialraum TpM .

Wir betrachten dazu nur ein

Beispiel 182 (Extrema auf Mannigfaltigkeiten). Seien G ⊂ V offen und M ⊂ G ein
Mannigfaltigkeit. Sei f : G → R eine differenzierbare Funktion. Wir suchen lokale Extrema
der Funktion f |M : M → R. Sei p ∈ M und φ : U → R

n ein Koordinatensystem um p wie
in der Mannigfaltigkeitsdefinition, φ(p) = 0. Dann ist M ∩ U = φ−1(Rm). Hat also f |M in
p ein lokales Extremum, so hat f ◦ φ−1|Rm∩φ(U) in 0 ein lokales Extremum. Deshalb ist

D0(f ◦ φ−1)(Rm) = Dpf(TpM) = 0. (75)

Notwendig für lokale Extrema der Einschränkung f |M von f ist also das Verschwinden der
Einschränkung der Ableitung auf den Tangentialraum an M .

Ist M = g−1({q}) gleichungsdefiniert, so bedeutet (75), dass

KernDpg ⊂ KernDpf. (76)

Die im Beispiel zuletzt betrachtete Situation ist unter dem Namen Extremwerte unter Ne-
benbedingungen berühmt. Sei g : V ⊃ G → W stetig differenzierbar und sei q ∈ g(G). Sei
weiter f : G → R differenzierbar. Wir suchen lokale Extrema der Funktion f unter der
Nebenbedingung g = q, d.h. lokale Extrema von f |g−1({q}). Die Menge

G̃ :=
{
p ∈ G

∣
∣Dpg ist surjektiv

}

ist nach Lemma 173 eine offene Teilmenge und g−1({q}) ∩ G̃ eine Mannigfaltigkeit M der
Dimension dimV − dimW . Hat f |g−1({q}) ein lokales Extremum in p ∈ M , so gilt dort
also die notwendige Bedingung (76). Typischerweise ist in den Anwendungen die Menge
g−1({q}) \M der sogenannten singulären Punkte eine endliche Punktmenge, die man dann
noch gesondert untersuchen muss.

Wir geben noch eine Variante von (76), die für die explizite Berechnung lokaler Extrema
unter Nebenbedingungen hilfreich ist:

Es ist ein Standardproblem der lineare Algebra, den Kern einer linearen Abbildung zu be-
stimmen, also zu prüfen, ob (76) gilt. Aber meistens kennt man p gar nicht, sondern will
die Extremalstellen erst finden. Das führt in der Regel auf nicht-lineare Gleichungssysteme,
die schwer zu lösen sind. Bei der Bestimmung der Punkte vom zweiten Typ ist aber das
folgende Lemma hilfreich:

Lemma 183 (Lagrange-Multiplikatoren). Sei G offen in V = R
n und seien f : G→ R und

g = (g1, . . . , gm) : G→ R
m differenzierbar bzw. stetig differenzierbar.

Dann ist (76) äquivalent dazu, dass es reelle Zahlen λ1, . . . , λm ∈ R gibt (sog. Lagrange-
Multiplikatoren), so dass für alle j ∈ {1, . . . , n}

∂jf(p) =
m∑

i=1

λi∂jgi(p). (77)

Beweis. Bezeichnen wir die Funktionalmatrizen mit f ′(p) bzw. g′(p), die Transposition mit
(. . .)T und setzen wir λ := (λ1, . . . , λn), so ist (77) äquivalent zu

f ′(p) = λg′(p) oder f ′(p)T = g′(p)TλT .
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Dieses lineare Gleichungssystem ist genau dann lösbar, wenn die erweiterte Matrix (g′(p)T , f ′(p)T )

denselben Rang wie g′(p)T hat, wenn also die Matrix

(
g′(p)
f ′(p)

)

denselben Rang wie die Ma-

trix g′(p) hat. Weil beide dieselbe Anzahl von Spalten haben, ist das genau dann der Fall,
wenn die Kerne dieser beiden Matrizen gleiche Dimension haben. Weil aber

Kern g′(p) ⊃ Kern

(
g′(p)
f ′(p)

)

= Kern g′(p) ∩ Kern f ′(p),

ist das genau dann der Fall, wenn KernDpg ⊂ KernDpf .

Rezept. Zur Bestimmung der Kandidaten p für Stellen lokaler Extrema von

f : Rn ⊃ G→ R

unter der Nebenbedingungen g = 0 mit g : G→ R
m sucht man

1. alle Punkte p mit g(p) = 0, in denen Dpg(R
n) 6= R

m (singuläre Punkte),

2. alle Lösungen p, λ von

g1(p) = 0, . . . , gm(p) = 0,

∂jf(p) =

m∑

i=1

λi∂jgi(p), j = 1, . . . ,m.

Das sind m+ n Gleichungen für die n+m Variablen p1, . . . , pn, λ1, . . . , λm.

Die λ’s kann man wieder vergessen.

In typischen Problemen ist m < n, und die so gefundene Kandidatenmenge diskret oder
sogar endlich.

Beispiel 184. Wir betrachten das Problem,

f(x, y, z) = xyz

unter der Nebenbedingung
x2 + y2 + z2 ≤ 1

zu maximieren, also das größte achsenparallele Quader in der Einheitskugel B zu finden.
(Dessen Volumen ist dann 8|xyz|, vgl. Abbildung.)

Beachten Sie, dass hier die Nebenbedingung durch
eine Ungleichung gegeben ist. Die Kugel B ist kom-
pakt, und weil f stetig ist, nimmt es auf B sein Ma-
ximum an. Das kann nicht in einem inneren Punkt
geschehen, weil wir sonst alle Seiten des Quaders ein
wenig vergrößern können und immer noch in der Ku-
gel B bleiben: x

y

z

(x,y,z)

Wenn x2 + y2 + z2 < 1, ist auch |x|2 + |y|2 + |z|2 < 1 und es gibt ǫ > 0 mit

(|x|+ ǫ)2 + (|y|+ ǫ)2 + (|z|+ ǫ)2 < 1.

Dafür ist aber

f(|x|+ ǫ, |y|+ ǫ, |z|+ ǫ) = (|x|+ ǫ)(|y|+ ǫ)(|z|+ ǫ) > |xyz| ≥ xyz = f(x, y, z).
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Ein anderes Argument liefert dasselbe Ergebnis: Läge das Maximum in einem inneren Punkt
(x, y, z) so wäre

f ′(x, y, z) = (yz xz xy) = (0 0 0).

Dann wäre aber f(x, y, z) = 0 das Maximum. Jedoch nimmt f offenbar auch positive Werte
an.

Also wird das Maximum auf dem Rand angenommen, ist also ein Maximum unter der
Nebenbedingung

g(x, y, z) := x2 + y2 + z2 − 1 = 0.

Die Funktionalmatrix
g′(x, y, z) = (2x 2y 2z)

ist 6= (0 0 0) für alle Punkte, die die Nebenbedingung erfüllen. Daher gibt es keine singulären
Punkte.

Wir lösen nach dem Rezept:
x2 + y2 + z2 − 1 = 0,

und

yz = λ 2x,

xz = λ 2y,

xy = λ 2z.

Multipliziert man diese letzteren Gleichungen mit x, y, z, addiert und verwendet die Neben-
bedingung, so hat man

3xyz = 2λ.

Einsetzen von λ in die obigen Gleichungen liefert

x2 = y2 = z2 =
1

3

oder zwei Koordinaten sind 0, die dritte dann wegen der Nebenbedingung ±1. Die letzteren
Punkte liefern aber f = 0 und scheiden daher für ein Extremum aus. Mögliche Extrema
liegen also in den Punkten

(± 1√
3
,± 1√

3
,± 1√

3
)

mit voneinander unabhängigen Vorzeichen. Die entsprechenden Funktionswerte sind

f = ± 1

3
√
3
.

Die positiven sind die Maxima, die negativen die Minima.

Als eine weiteres Anwendung für die Methode der Lagrange-Multiplikatoren beweisen wir
im nächsten Beispiel die früher behauptete Abschätzung der lp-Normen gegeneinander, vgl.
Beispiel 101.

Beispiel 185. Wir erinnern an die Definition der lp-Norm auf Rn:

‖x‖p :=

(
n∑

i=1

|xi|p
) 1

p
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Wir zeigen: Für 1 ≤ p ≤ q und alle x ∈ R
n gilt

‖x‖q ≤ ‖x‖p ≤ n
1
p−

1
q ‖x‖q. (78)

Wir zeigen das durch vollständige Induktion über n.

n = 1. Trivial.

n− 1 =⇒ n. Es genügt zu zeigen: Für alle x = (x1, . . . , xn) gilt

n∑

i=1

|xi|q = 1 =⇒ 1 ≤ ‖x‖p ≤ n
1
p−

1
q .

Die Voraussetzung impliziert |xi| ≤ 1 und deshalb |xi|q ≤ |xi|p für alle i. Also folgt die linke
Ungleichung, wir müssen nur noch die rechte beweisen. Offenbar können wir uns dabei auf
die kompakte Menge

{

x = (x1, . . . , xn)

∣
∣
∣
∣
∣

n∑

i=1

xqi = 1 mit xi ≥ 0 für alle i

}

beschränken. Ist wenigstens ein xi = 0, so liegt x in einem R
n−1. Nach Induktionsvoraus-

setzung gilt für solche x also

‖x‖p ≤ (n− 1)
1
p−

1
q ≤ n

1
p−

1
q .

Daher genügt es zu zeigen, dass die differenzierbare Funktion f(x) :=
∑n

i=1 x
p
i auf der Menge

{
x = (x1, . . . , xn)

∣
∣xi > 0

}
unter der Nebenbedingung

g(x) :=
n∑

i=1

xqi = 1

das Maximum
(

n
1
p−

1
q

)p

besitzt. Die notwendige Bedingung für ein Extremum ist die Exi-

stenz eines λ mit
∂f

∂xj
= pxp−1

j = λ
∂g

∂xj
= λqxq−1

j

oder
xp−q
j = λ

q

p

für alle j. Daraus folgt x1 = . . . = xn, nach der Nebenbedingung also x1 = . . . = xn = 1
n1/q .

Der Funktionswert an dieser Stelle ist

f(x) = n
1

np/q
= n1− p

q =
(

n
1
p−

1
q

)p

und damit das (eindeutig bestimmte) Maximum von f .
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5 Differentialgleichungen

5.1 Existenz- und Eindeutigkeit

• Was ist eine Differentialgleichung? Was ist eine Lösung einer Differentialgleichung?

• Die Differentialgleichung y′ = f hat für stetiges f auf einem Intervall viele Lösungen,
nämlich die Stammfunktionen von f . Durch Vorgabe des Funktionswertes y(a) an einer
Stelle wird daraus eine eindeutige Lösung ausgewählt. Der Satz von Picard-Lindelöf
verallgemeinert das zu einem Existenz- und Eindeutigkeitssatz für eine große Klasse
von Differentialgleichungen.

Definition 186. Seien V ein endlich-dimensionaler Banachraum, G ⊂ R× V offen, und

f : G→ V, (t, x) 7→ f(t, x)

eine Abbildung.

(i) Die Gleichung

ẋ = f(t, x), (79)

heißt eine gewöhnliche Differentialgleichung erster Ordnung in expliziter Form, (kurz
eine Differentialgleichung) oder ein dynamisches System. In physikalischen Anwendun-
gen ist t oft eine Zeitvariable, daher die Namenswahl und die Verwendung des Punktes ˙
anstelle des Strichs ′.

(ii) Ist f in der ersten Variablen konstant, so kann man f auffassen als eine Abbildung
f : V ⊃ G→ V . In diesem Fall nennt man

ẋ = f(x) (80)

eine autonome Differentialgleichung oder ein autonomes System.

(iii) Eine auf einem Intervall J ⊂ R mit nicht-leerem Inneren
◦

J 6= ∅ definierte differenzier-
bare Funktion x : J → V heißt eine Lösung von (79), wenn für alle t ∈ J

(t, x(t)) ∈ G und ẋ(t) = f(t, x(t)).

(iv) Sei (t0, x0) ∈ G. Das Gleichungssystem

ẋ = f(t, x), x(t0) = x0 (81)

heißt ein Anfangswertproblem.

(v) Eine Lösung x : J → V von (79) heißt eine Lösung des Anfangswertproblems (81),
wenn außerdem t0 ∈ J und x(t0) = x0 ist.

(vi) Das Anfangswertproblem (81) heißt eindeutig lösbar, wenn es eine Lösung gibt, und
wenn je zwei Lösungen x1 : J1 → V und x2 : J2 → V auf J1 ∩ J2 übereinstimmen.

Beispiel 187. Die Bahn x(t) eines Punktes der Massem in einem zeit-, raum- und geschwin-
digkeitsabhängigen Kraftfeld im 3-dimensionalen Raum ist gegeben durch das Newtonsche
Bewegungsgesetz

mẍ = F (t, x, ẋ).
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Nach Einführung des Impulses p = mẋ als zusätzlicher Variabler nimmt dieses mit V =
R

3 × R
3 = R

6 die Form (79) an:

ẋ = m−1p

ṗ = F (t, x,m−1p).

Im einfachsten Fall hängt f nicht von x ab, sondern ist nur eine Funktion von t. Dann ist
das Problem, die Differentialgleichung

ẋ = f(t)

zu lösen, einfach(?) das Problem, f zu integrieren. In der Theorie der Differentialgleichungen
betrachtet man dieses Problem als

”
trivial“.

Jenseits von diesem einfachsten Fall gibt es aber nur noch in sehr speziellen Fällen Verfahren
zur Lösung einer Differentialgleichung im naiven Sinne. Das bedeutet, dass man im Einzel-
fall allenfalls mit speziellen Tricks Lösungen finden und/oder mit numerischen Verfahren
berechnen kann. In anderen Fällen kann man sich eventuell wichtige Informationen über die
Lösungen verschaffen, ohne diese explizit zu kennen. Zum Beispiel sind sicher alle Lösungen
von ẋ = 1 + x2 + x14 streng monoton wachsend.

Gerade in dieser Situation ist es wichtig zu wissen, ob eine Differentialgleichung Lösungen
hat und wieviele sie gegebenenfalls hat: Dann weiß man wenigstens, wonach man sucht.
Eine weitere Hilfe können Informationen über die Struktur der Lösungsmenge liefern. Zum
Beispiel kann man bei manchen Differentialgleichungen schon gefundene Lösungen benutzen,
um weitere zu finden.

Diese Überlegungen unterstreichen die Bedeutung des folgenden Satzes:

Satz 188 (Existenz- und Eindeutigkeitssatz). Sei f : R×V ⊃ G→ V stetig auf der offenen
Menge G, und sei (t0, x0) ∈ G. Dann ist das Anfangswertproblem

ẋ = f(t, x), x(t0) = x0 (82)

lösbar. Ist f nach x stetig differenzierbar, so ist die Lösung eindeutig.
Insbesondere gibt es eine Lösung auf einem Intervall der Form J =]t0 − ǫ, t0 + ǫ[.

Bemerkung. Der Existenzsatz bei stetiger rechter Seite stammt von Peano, der Existenz-
und Eindeutigkeitssatz bei zusätzlicher lokaler Lipschitz-Stetigkeit der rechten Seite bezüglich
x von Picard und Lindelöf. Die hier gemachten Voraussetzungen sind etwas zu scharf, dafür
bequem zu formulieren. Die Beweisidee werden wir im nächsten Abschnitt für den Spezial-
fall linearer Differentialgleichungen kennenlernen, den allgemeinen Fall und andere Details
überlassen wir der Vorlesung über Gewöhnliche Differentialgleichungen.

(Gegen)beispiele.Die folgenden Beispiele sollen die Voraussetzungen des Satzes von Picard-
Lindelöf illustrieren.

Beispiel 189. Für stetiges f besitzt (82) immer Lösungen (Satz von Peano), aber die sind
nicht unbedingt eindeutig.
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Das Anfangswertproblem

ẋ =
3
√
x2, x(0) = 0

hat unendlich viele Lösungen, z.B. x = 0 oder,
für b > 0, die Lösungen

xb(t) =

{

0 für t ≤ b
1
27 (t− b)3 für t ≥ b.

b

b
x

x

Beispiel 190. Für unstetige rechte Seite muß (82) keine Lösung haben. Ist G = R×R und

f(t, x) :=

{

0 für t ≤ 0

1 für t > 0
,

so hat (82) mit der Anfangsbedingung x(0) = 0 keine Lösung, weil die Ableitung einer
differenzierbaren Funktion keine Sprungstellen hat (Satz von Dini).

Der Satz 188 macht keine Ausage über die maximale Größe des Definitonsbereichs einer
Lösung.

Beispiel 191. Die Funktion f(t, x) := 1 + x2 ist auf ganz R× R definiert. Die Lösung von

ẋ = 1 + x2, x(0) = 0

existiert aber auf keinem größeren Intervall als ]− π
2 ,

π
2 [, wo sie durch x = tan gegeben ist.
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5.2 Lineare Differentialgleichungen.

• Lineare Differentialgleichungen sind einfach lineare Gleichungssysteme, wenn auch auf
Vektorräumen aus Funktionen. Darum kennen wir die Struktur des Lösungsraumes aus
der linearen Algebra: er ist ein affiner Raum, gegeben durch eine konkrete Lösung, plus
die Lösung des zugehörigen homogenen Systems, also den Kern der linearen Abbildung,
die dem System zugrunde liegt.

• Weil die beteiligten Funktionenräume aber unendliche Dimension haben, sind die Exi-
stenz von Lösungen und die Dimension des Kerns nicht so klar. Wir klären das im
nächsten Abschnitt.

Definition 192. Eine lineare Differentialgleichung 1. Ordnung auf einem offenen Intervall
J ⊂ R ist eine Differentialgleichung der Form

ẋ = F (t)x+ g(t), (83)

wobei F : J ∋ t 7→ F (t) ∈ L(V, V ) und g : J → V stetig sind. Jede Lösung x ist dann
offenbar stetig differenzierbar. Wir bezeichnen mit Ck(J, V ) den Vektorraum der k-mal
stetig differenzierbaren Abbildungen von J nach V und definieren

L : C1(J, V ) → C0(J, V ), x 7→ ẋ− F (t)x.

Dann ist L eine lineare Abbildung. Die auf J definierten Lösungen der zugehörigen homo-
genen linearen Differentialgleichung

ẋ = F (t)x (84)

bilden deshalb einen Vektorraum Kern(L), und alle Lösungen von (83) auf J erhält man,
indem man zu einer Lösung x̃ von (83) alle Lösungen der homogenen Gleichung addiert.

Beispiel 193. Wir betrachten das Gleichungssystem

ẋ1 = x1+ 3x2+ 2 cos2 t
ẋ2 = 3x1+ x2+ 2 sin2 t

oder
d

dt

(
x1
x2

)

=

(
1 3
3 1

)(
x1
x2

)

+

(
2 cos2 t
2 sin2 t

)

Das zugehörige homogene System

d

dt

(
x1
x2

)

=

(
1 3
3 1

)(
x1
x2

)

hat Lösungen:
(
x1
x2

)

= a1

(
e4t

e4t

)

+ a2

(
e−2t

−e−2t

)

, a1, a2 ∈ R.

(Nachrechnen! Im Abschnitt 5.2.2 wird erklärt, wie man die finden kann.) Wir zeigen gleich,
dass das alle Lösungen sind. Eine Lösung für das inhomogene System werden wir weiter
unten konstruieren, nämlich

1

4

(
sin 2t+ cos 2t− 1
− sin 2t− cos 2t− 1

)

.

Die
”
allgemeine Lösung“ der inhomogenen Gleichung ist daher
(
x1
x2

)

=
1

4

(
sin 2t+ cos 2t− 1
− sin 2t− cos 2t− 1

)

+ a1

(
e4t

e4t

)

+ a2

(
e−2t

−e−2t

)

, a1, a2 ∈ R.
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5.2.1 Der Hauptsatz über lineare Differentialgleichungen

• Wir lernen, wie man eine Differentialgleichung in eine Integralgleichung umschreibt
und diese mit Hilfe des Banachschen Fixpunktsatzes löst.

Satz 194 (Hauptsatz über lineare Differentialgleichungen). Sei n := dimV . Mit den obigen
Bezeichnungen gilt für t0 ∈ J, x0 ∈ V :

(i) Das Anfangswertproblem

ẋ = F (t)x+ g(t)
(85)

x(t0) = ξ0

hat genau eine auf ganz J definierte Lösung.

(ii) Der Lösungsraum Kern(L) der zugehörigen homogenen Gleichung

ẋ = F (t)x
(86)

ist n-dimensional.
Funktionen x1, . . . , xn ∈ Kern(L) sind genau dann linear unabhängig, wenn ihre Werte
x1(t), . . . , xn(t) ∈ V an einer (und dann an jeder) Stelle t ∈ J linear unabhängig sind.
In diesem Fall ist jede Lösung der homogenen Gleichung (86) von der Form

x(t) =
n∑

i=1

cixi(t), ci ∈ R, (87)

und für jedes n-Tupel (c1, . . . , cn) reeller Zahlen ist das eine Lösung.

(iii) Ist (x1, . . . , xn) eine Basis von KernL, so ist jede Lösung von (85) von der Form

x(t) =
n∑

i=1

ci(t)xi(t), (88)

mit geeigneten Funktionen c1, . . . , cn ∈ C1(J,R).

Die Funktion (88) ist genau dann eine Lösung von (85), wenn die ci die folgende
Differentialgleichung erfüllen:

n∑

i=1

ċi(t)xi(t) = g(t). (89)

Variation der Konstanten. Ist x1, . . . , xn eine Basis von Kern(L), so erhält man durch
Lösen des gewöhnlichen linearen Gleichungssystems (89) die ċi(t). Anschließende Integration
liefert die ci(t) und damit eine Lösung von (85) in der Form (88). Diese Methode nennt
man Variation der Konstanten.
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Beweis. Die Idee. Ist x : J → V eine Lösung des Anfangswertproblems, so gilt nach Inte-
gration der Differentialgleichung:

x(t) = ξ0 +

∫ t

t0

(F (τ)x(τ) + g(τ))dτ

︸ ︷︷ ︸

=:Φ(x)(t)

. (90)

Die Lösung x ist also ein Fixpunkt von Φ. Umgekehrt folgt aus x = Φ(x) mit stetigem x
sofort die (sogar stetige) Differenzierbarkeit von x, die Anfangsbedingung x(t0) = ξ0 und
durch Differenzieren

ẋ(t) = F (t)x(t) + g(t).

Wir wollen deshalb Φ als Abbildung auf einem metrischen Raum stetiger Funktionen x
auffassen und mit dem Banachschen Fixpunktsatz zeigen, dass Φ genau einen Fixpunkt hat.
Dann ist das Anfangswertproblem eindeutig lösbar. Überdies liefert der Fixpunktsatz ein
Iterationsverfahren zur Berechnung der Lösung.

Dabei braucht man allerdings offenbar das Integral von Funktionen mit Werten in einem
Banachraum V mit Norm ‖.‖V , das ich hier ebenso wenig erklären will, wie die Formel

∥
∥
∥
∥

∫ t

t0

f(t)dt

∥
∥
∥
∥
V

≤
∣
∣
∣
∣

∫ t

t0

‖f(t)‖V dt
∣
∣
∣
∣
,

die wir im Beweis benötigen. (Die Absolutstriche auf der rechten Seite braucht man, wenn
man auch t < t0 zulassen will.) Sie können sich einfach vorstellen, dass V = R

n und kom-
ponentenweise integrieren, oder im Anhang Genaueres darüber finden.

Der Standardbeweis des Existenz- und Eindeutigkeitssatzes von Picard und Lindelöf benutzt
dieselbe Idee.

Zu (i). 1. Schritt: Existenz und Eindeutigkeit für kompaktes J . Wir nehmen zunächst an,
dass J ein kompaktes Intervall ist. Wir wählen ein α ≥ 0, über das wir später verfügen
wollen, und erklären auf dem Vektorraum C0(J, V ) der auf J stetigen Abbildungen nach
(V, ‖.‖) eine Norm durch

‖x‖α := sup
t∈J

‖x(t)‖e−α|t−t0|.

Offenbar ist ‖x‖0 die normale Supremumsnorm. Überlegen Sie, dass man auch für α > 0
eine Norm erhält, für die

min
t∈J

(

e−α|t−t0|
)

‖x‖0 ≤ ‖x‖α ≤ max
t∈J

(

e−α|t−t0|
)

‖x‖0.

Die α-Normen sind also zur Supremumsnorm äquivalent, und (C0(J, V ), ‖.‖α) ist mit jeder
α-Norm vollständig. Für x ∈ C0(J, V ) definieren wir nun Φ : C0(J, V ) → C0(J, V ) durch

Φ(x)(t) := ξ0 +

∫ t

t0

(F (τ)x(τ) + g(τ))dτ.

Weil F stetig ist, ist C := supt∈J ‖F (t)‖ < ∞. Damit gilt für x, y ∈ C0(J, V ), t ∈ J und
positives α

‖Φ(x)(t)− Φ(y)(t)‖ =

∥
∥
∥
∥

∫ t

t0

F (τ)(x(τ)− y(τ))dτ

∥
∥
∥
∥
≤
∣
∣
∣
∣

∫ t

t0

‖F (τ)(x(τ)− y(τ))‖ dτ
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ t

t0

C ‖(x(τ)− y(τ))‖ e−α|τ−t0|eα|τ−t0|dτ

∣
∣
∣
∣

≤ C‖x− y‖α
∣
∣
∣
∣

∫ t

t0

eα|τ−t0|dτ

∣
∣
∣
∣
≤ C‖x− y‖α

eα|t−t0|

α
.
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Die letzte Ungleichung ergibt sich im Fall t < t0 wie folgt:

∣
∣
∣
∣

∫ t

t0

eα|τ−t0|dτ

∣
∣
∣
∣
=

∫ t0

t

eα(t0−τ)dτ = eαt0
e−ατ

−α

∣
∣
∣
∣

t0

t

= eαt0
e−αt − e−αt0

α
≤ eα|t−t0|

α
.

Den Fall t0 ≤ t können Sie selbst machen. Wir erhalten

‖Φ(x)(t)− Φ(y)(t)‖e−α|t−t0| ≤ C

α
‖x− y‖α

und damit

‖Φ(x)− Φ(y)‖α ≤ C

α
‖x− y‖α.

Wählen wir also α > C. so ist Φ kontrahierend und besitzt nach dem Bachnachschen Fix-
punktsatz 46 genau einen Fixpunkt x ∈ C0(J, V ). Also besitzt das Anfangswertproblem
genau eine Lösung auf J .

2. Schritt: Existenz und Eindeutigkeit für nicht-kompaktes J . Ist J nicht kompakt, so gibt
es eine Folge kompakter Intervalle (Ji)i∈N mit

t0 ∈ J0 ⊂ J1 ⊂ . . .

und

J =
∞⋃

i=0

Ji.

Dazu gibt es eine Folge eindeutig bestimmter Lösungen xi : Ji → V des Anfangswertpro-
blems, für die also gilt xi+1|Ji

= xi. Setzt man deshalb x(t) := xi(t), falls t ∈ Ji, so definiert
das eine Funktion x : J → V , die das Anfangswertproblem löst.

Sind schließlich x1, x2 : J → V zwei Lösungen des Anfangswertproblems und ist t ∈ J \ {t0},
so sei I das kompakte Intervall mit Endpunkten t0 und t. Dann sind x1|I und x2|I Lösungen
des Anfangswertproblems, nach dem 1. Schritt ist also x1|I = x2|I und insbesondere x1(t) =
x2(t). Daraus folgt die Eindeutigkeit.

Zu (ii). Sei t1 ∈ J . Die Abbildung

Kern(L) → V, x 7→ x(t1)

ist linear. Weil das Anfangswertproblem mit der Anfangsbedingung x(t1) = x1 genau eine
Lösung hat, ist diese Abbildung also ein Isomorphismus. Daraus folgt die Behauptung.

Zu (iii). Sei x1, . . . , xn eine Basis von Kern(L) und seien c1, . . . , cn ∈ C1(J, V ). Wir setzen

x(t) =
∑

ci(t)xi(t).

Dann gilt

ẋ− F (t)x(t) =
d

dt

∑

ci(t)xi(t)− F (t)
∑

ci(t)xi(t)

=
∑

ċixi +
∑

ci(t)(ẋi − F (t)xi(t))

=
∑

ċixi.

Also ist x genau dann eine Lösung von ẋ = F (t)x+ g(t), wenn für alle t ∈ J

∑

ċi(t)xi(t) = g(t).
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Umgekehrt sind für jedes t ∈ J die Vektoren x1(t), . . . , xn(t) ∈ V linear unabhängig, und
daher gibt es eindeutig bestimmte ċi, die dieses inhomogene lineare Gleichungssystem lösen.
Schreibt man das Gleichungssystem in Koordinaten aus, so ist die Lösung eine rationa-
le Funktion in den Koeffizienten. Die sind aber stetig, und daher sind auch die ċi stetige
Funktionen. Durch Integration findet man C1-Funktionen ci und damit eine Lösung der
inhomogenen Gleichung. Jede andere unterscheidet sich davon nur durch eine Linearkombi-
nation der xi mit konstanten Koeffizienten, ist also auch von der Form x(t) =

∑
ci(t)xi(t).

Bemerkung. Nach dem Hauptsatz ist das Problem, eine lineare Differentialgleichung zu
lösen, reduziert auf den homogenen Fall. Wenn F (t) = A ∈ L(V, V ) unabhängig von t ist,
spricht man von einer linearen Differentialgleichung mit konstanten Koeffizienten. In diesem
Fall kann man eine Lösungsbasis für die homogene Gleichung mit Methoden der linearen
Algebra bestimmen, vgl. den nächsten Abschnitt 5.2.2.

Beispiel 195. Wir kommen zurück auf das Beispiel 193. Die Lösungen

(
e4t

e4t

)

und

(
e−2t

−e−2t

)

der homogenen Gleichung sind linear unabhängig, weil sie an der Stelle 0 linear unabhängig
sind. Sie bilden also eine Lösungsbasis für die homogene Differentialgleichung.

Variation der Konstanten mit dem Ansatz

xs(t) = c1(t)x1(t) + c2(t)x2(t)

führt auf das Gleichungssystem

(
e4t e−2t

e4t −e−2t

)(
ċ1
ċ2

)

=

(
2 cos2 t
2 sin2 t

)

.

Lösen liefert

ċ1(t) = e−4t, ċ2(t) = (cos2 t− sin2 xt)e2t = cos 2t e2t,

und Integration

c1(t) = −1

4
e−4t, c2(t) =

1

4
(sin 2t+ cos 2t)e2t.

Damit erhalten wir die früher schon angegebene Lösung

xs(t) = −1

4
e−4t

(
e4t

e4t

)

+
1

4
(sin 2t+ cos 2t)e2t

(
e−2t

−e−2t

)

=
1

4

(
sin 2t+ cos 2t− 1
− sin 2t− cos 2t− 1

)

der inhomogenen Gleichung.
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5.2.2 Lineare Differentialgleichungen mit konstanten Koeffizienten

• Homogene lineare Differentialgleichungen mit von t unabhängiger rechter Seite kann
man explizit lösen.

• Wir lernen im Vorübergehen die Matrix-Exponential-Lösung kennen und betrachten
dann genauer die Eigenwertmethode zur Lösung.

• Diese ist besonders einfach für diagonalisierbare Endomorphismen, aber wir diskutie-
ren auch, wie man den allgemeinen Fall bewältigt.

Nach dem vorangehenden Abschnitt gibt es mit der Variation der Konstanten eine Methode
zur Lösung inhomogener linearer Differentialgleichungen, wenn man die zugehörige homogene
Differentialgleichung ẋ = F (t)x vollständig gelöst hat. Für das letztere Problem aber gibt
es keine allgemeines Verfahren. Nur im Fall konstanter Funktion F kann man eine Lösung
explizit hinschreiben. Das wollen wir jetzt erläutern.

Im Fall V = R hat die Differentialgleichung

ẋ = ax

die Lösungen x(t) = x(0) exp(ta). Ist nun V ein endlich-dimensionaler Banachraum und
F (t) = A eine konstante lineare Abbildung von V in sich, so kann man entsprechend den
Ansatz x(t) = exp(tA) machen. Aber was soll exp(tA) überhaupt bedeuten?

Nun, Endomorphismen (quadratische Matrizen) kann man miteinander multiplizieren und

damit sind die Potenzen Ak definiert. Dann ist für jedes t ∈ R die Folge
(
∑n

j=0
tj

j!A
j
)

n∈N

wohldefiniert und konvergent im Banachraum L(V, V ), eine konvergente Potenzreihe in
L(V, V ) gewissermaßen6. Sie definiert eine differenzierbare Funktion

X : R → L(V, V ), t 7→ exp(tA)

mit Ẋ = AX. Und für jeden Vektor v ∈ V ist dann nach der Produktregel

x : t 7→ X(t)v = exp(tA)v

eine Lösung von
ẋ = Ax. (91)

Mit einer Basis v1, . . . , vn von V erhält man eine Basis

x1(t) = exp(tA)v1, . . . , xn(t) = exp(tA)vn

für den Lösungsraum von (91), weil die Funktionswerte für t = 0 linear unabhängig sind.

Die Berechnung der verallgemeinerten Exponentialfunktion ist natürlich nicht so leicht ist,
aber die Lineare Algebra bietet Hilfe. Wir bezeichnen mit E : V → V im folgenden die
Identität bzw. die Einheitsmatrix. Wenn das charakteristische Polynom det(A− λE) von A
in Linearfaktoren zerfällt, besitzt A eine Jordansche Normalform, was in anderen Worten
bedeutet: Es gibt eine Basis Basis v1, . . . , vn von V aus Hauptvektoren von A. Zu jedem
i ∈ {1, . . . , n} gibt es einen Eigenwert λi und ein ki ∈ N \ {0}, so dass

(A− λiE)kivi = 0.

Im Idealfall ist ki = 1 für alle i, d.h. A ist diagonalisierbar und die vi bilden eine Basis aus
Eigenvektoren.

6Diese Konstruktion ist nicht ganz ohne: Weil die Matrixmultiplikation nicht kommutativ ist, ist zum
Beispiel meistens exp(A+B) 6= exp(A) exp(B). Gleichheit gilt allerdings, wenn AB = BA.
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Nun kann man zeigen:

exp(tA) = exp(tλE + t(A− λE)) = exp(tλE) exp(t(A− λE)) = eλt
∞∑

j=0

tj

j!
(A− λE)j .

Insbesondere ist also

xi(t) = exp(tA)vi = eλit
ki−1∑

j=0

tj

j!
(A− λE)jvi,

und man bekommt eine Lösungsbasis mittels endlicher Summen. Ist A diagonalisierbar und
v1, . . . , vn eine Basis aus Eigenvektoren mit zugehörigen Eigenwerten λ1, . . . , λn, so ist also

x1(t) = eλ1tv1, . . . , xn(t) = eλntvn

eine Lösungsbasis für ẋ = Ax.

In den vorstehenden Überlegungen sind wir mit vektorwertigen Potenzreihen relativ großzügig
umgegangen. Wir geben nun einen strengen Beweis für den folgenden

Satz 196. Seien A ∈ L(V, V ) ein Endomorphismus, k ∈ N \ {0} und v ∈ V ein Hauptvektor
der Stufe k von A zum Eigenwert λ ∈ R, d.h. es gelte

(A− λE)kv = 0.

Dann ist

x(t) := eλt
k−1∑

j=0

tj

j!
(A− λE)jv

eine Lösung von ẋ = Ax. Diese Lösung ist also von der Form eλtv(t), wobei v(t) ein Polynom
in t mit vektoriellen Koeffizienten ist.

Beweis. Nach Voraussetzung ist

x(t) = eλt
k∑

j=0

tj

j!
(A− λE)jv,

wobei wir jetzt bis k summieren. Das macht ja keinen Unterschied. Wir finden

ẋ(t) = λx(t) + eλt
k∑

j=1

tj−1

(j − 1)!
(A− λE)jv

= λx(t) + eλt(A− λE)

k∑

j=1

tj−1

(j − 1)!
(A− λE)j−1v

= λx(t) + (A− λE)eλt
k−1∑

j=0

tj

j!
(A− λE)jv

= Ax(t).
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Korollar 197. Besitzt V eine Basis v1, . . . , vn aus Hauptvektoren von A ∈ L(V, V ) der
Stufen k1, . . . , kn und zugehörigen Eigenwerten λ1, . . . , λn, so liefern die Funktionen

xi(t) := eλit





ki−1∑

j=0

tj

j!
(A− λiE)jvi



 , i ∈ {1, . . . , n}

eine Lösungsbasis von ẋ = Ax.

Nach linearer Algebra ist die Voraussetzung dieses Satzes genau dann erfüllt, wenn A eine
Jordansche Normalform besitzt, d.h. wenn das charakteristische Polynom von A in Linear-
faktoren zerfällt.

Beweis. Nach dem Satz sind die xi Lösungen, und wegen xi(0) = vi sind sie linear un-
abhängig.

Beispiel 198. Vgl. Beispiel 193. Die Matrix der homogenen Differentialgleichung

d

dt

(
x1
x2

)

=

(
1 3
3 1

)(
x1
x2

)

hat die Eigenwerte 4 und −2 mit Eigenvektoren

(
1
1

)

bzw.

(
1
−1

)

. Deshalb ist

x1(t) = e4t
(
1
1

)

, x2(t) = e−2t

(
1
−1

)

eine Lösungsbasis.

In diesem Beispiel hat man eine Basis aus Eigenvektoren. Braucht man aber Hauptvektoren
höherer Stufe, so wird die Sache mühsam, denn man muß die Matrixpotenzen bis (A−λE)k

bilden. Einfacher geht es bei doppelten Nullstellen des charakteristischen Polynoms, d.h. bei
Eigenwerten der algebraischen Vielfachheit 2 und der geometrischen Vielfachheit 1:

Beispiel 199. Wir betrachten ẋ = Ax. Sei λ ein Eigenwert von A mit der algebraischen
Vielfachheit 2 und der geometrischen Vielfachheit 1, d.h. λ ist eine doppelte Nullstelle des
charakteristischen Polynoms, aber dimKern(A − λE) = 1. Sei v1 einen Eigenvektor zu λ.
Dann gibt es zu λ einen von v1 linear unabhängigen Hauptvektor v2. Für den gilt

0 = (A− λE)2v2 = (A− λE)((A− λE)v2) = A(A− λE)v2 − λ(A− λE)v2.

Das heißt, (A−λE)v2 ist ein Eigenvektor zum Eigenwert λ. (Beachte (A−λE)v2 6= 0, sonst
wäre v2 ja ein von v1 linear unabhängiger Eigenvektor.) Damit ist (A − λE)v2 = av1 mit
a 6= 0 und

(A− λE)(
1

a
v2) = v1.

Weil es auf Vielfache 6= 0 bei Eigen- und Hauptvektoren nicht ankommt, können wir den
Faktor 1/a vergessen.

Fazit: Das Gleichungssystem
(A− λE)v2 = v1

ist lösbar und liefert uns
”
den“ fehlenden Hauptvektor zum Eigenwert λ. Die zugehörige

Lösung ist dann
x(t) = eλt(v2 + tv1).
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Beispiel 200. Wir betrachten

A =





0 1 −1
−2 3 −1
−1 1 1





Diese Matrix hat die Eigenwerte λ1 = λ2 = 1 und λ3 = 2. Die Gleichung

(A− 1E)v =





−1 1 −1
−2 2 −1
−1 1 0









x
y
z



 =





0
0
0





liefert einen linear unabhängigen Eigenvektor





1
1
0



 zum Eigenwert 1. Daher liefert





−1 1 −1
−2 2 −1
−1 1 0









x
y
z



 =





1
1
0





einen Hauptvektor





0
0
−1



 zum Eigenwert 1, der offenbar von dem Eigenvektor linear un-

abhängig ist. Das Differentialgleichungssystem

ẋ(t) = Ax

hat in diesem Fall eine Lösungsbasis aus

x1(t) = et





1
1
0



 , x2(t) = et(





0
0
−1



+ t





1
1
0



)

und einer weiteren Lösung x3(t) = e2t





0
1
1



 zum Eigenwert 2.

Beispiel 201. Die Voraussetzungen des Beispiels 199 sind nötig: Wir betrachten die Matrix

A =





1 1 1
0 2 1
0 −1 0



 .

Das charakteristische Polynom ist

det(A− λE) =

∣
∣
∣
∣
∣
∣

1− λ 1 1
0 2− λ 1
0 −1 −λ

∣
∣
∣
∣
∣
∣

= −(λ− 1)3.

Also ist λ = 1 ein Eigenwert der algebraischen Vielfachheit 3. Die zugehörige Eigenvektor-
gleichung





0 1 1
0 1 1
0 −1 −1









x
y
z



 = 0
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hat Rang 1. Sie liefert also zwei linear unabhängige Eigenvektoren, zum Beispiel

v1 =





1
0
0



 , v2 =





0
1
−1



 .

Aber keines der beiden Gleichungssysteme





0 1 1
0 1 1
0 −1 −1









x
y
z



 =





1
0
0



 ,





0 1 1
0 1 1
0 −1 −1









x
y
z



 =





0
1
−1





ist lösbar! Um den fehlenden Hauptvektor zu finden muss man also eine von v1 und v2
unabhängige Lösung v3 von (A − 1E)2v = 0 finden. In diesem Fall ist das trivial, weil die
algebraische Vielfachheit 3 ist, die Hauptvektoren also den ganzen R

3 aufspannen. Man kann

deshalb irgendeinen von v1 und v2 unabhängigen Vektor v3 wählen, z.B. v3 =





0
1
0



.

Eine Lösungsbasis von ẋ = Ax ist in diesem Fall also

x1(t) = et





1
0
0



 , x2(t) = et





0
1
−1



 , x3(t) = et









0
1
0



+ t





1
1
−1







 .

Komplexe Eigenwerte. Um Probleme mit der abstrakten Komplexifizierung reeller Vek-
torräume zu vermeiden, beschränken wir uns im folgenden auf V = R

n und Matrizen A.

Bekanntlich hat nicht jede reelle Matrix eine reelle Jordansche Normalform, d.h. der R
n

besitzt möglicherweise keine Basis aus Hauptvektoren. Wie kommt man dann zu einer
Lösungsbasis von ẋ = Ax?

Zunächst kann man die obigen Überlegungen ohne wesentliche Änderung auf komplexwer-
tige Lösungen x : R → C

n verallgemeinern. Man stellt fest, dass das Anfangswertproblem
eindeutig lösbar und der Lösungsraum von ẋ = Ax ein n-dimensionaler C-Vektorraum ist.
Und weil über C jede Matrix eine Jordansche Normalform besitzt, liefert die obige Theo-
rie also eine Methode zur Gewinnung einer Lösungsbasis für komplexe homogene lineare
Differentialgleichungssysteme mit konstanten Koeffizienten.

Wenn man aber von einem reellen Problem ausgeht, möche man gern eine reelle Lösungsbasis
haben. Seien also die Matrix A reell und x : R → C

n eine komplexe Lösung. Wir bezeichnen
mit ¯ die komponentenweise komplexe Konjugation als Abbildung von C

n nach C
n. Weil

diese Abbildung reell linear ist, folgt aus ẋ(t) = Ax(t), dass

˙̄x(t) = ẋ(t) = Ax(t) = Ax̄(t)

ist. Mit jeder komplexen Lösung ist also auch die dazu konjugierte Funktion eine Lösung.
Weil Linearkombinationen von Lösungen wieder Lösungen sind, erhält man aus jeder kom-
plexen Lösung x : R → C

n zwei reelle

xre(t) :=
1

2
(x(t) + x̄(t)), xim(t) :=

1

2i
(x(t)− x̄(t)).

Die komplexen Lösungen x(t) und x̄(t) liefern natürlich dieselben reellen Lösungen, deshalb
kann man von jedem konjugiert-komplexen Paar eine Lösung ignorieren. Ist schließlich x(t)
eine komplexe Lösung mit reellem Anfangswert x(t0) = ξ0, so ist xre eine reelle Lösung
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mit demselben Anfangswert, xim eine mit Anfangswert xim(t0) = 0, also xim = 0. Daher
ist x = xre überhaupt reell, und man bekommt auf diese Weise Lösungen für alle reellen
Anfangswerte, also alle reellen Lösungen.

Wir betrachten das noch genauer. Ist u1, . . . , un eine Basis des C
n und uk = vk + iwk mit

uk, wk ∈ R
n und ist weiter ξ ∈ R

n, so gibt es αk = βk + iγk mit βk, γk ∈ R, so dass

ξ =

n∑

k=1

αkuk =

n∑

k=1

(βkvk − γkwk) + i

n∑

k=1

(βkwk + γkvk) =

n∑

k=1

(βkvk − γkwk).

Die Real- und Imaginärteile der uk bilden also ein Erzeugendensystem von R
n. Berechnet

man nun die Eigenwerte des reellen A und dazu mittels Hauptvektoren eine Lösungsbasis
x1, . . . , xn für den Raum der komplexen Lösungen von ẋ = Ax, so kann man sich bei
konjugiert-komplexen Eigenwerten jeweils auf einen beschränken und für den dazu konjugier-
ten die konjugierten Lösungen verwenden. Spaltet man diese in Real- und Imaginärteil und
läßt die doppelt auftretenden Lösungen fort, so erhält man n reelle Lösungen xr1, . . . , xrn,
deren Werte xr1(0), . . . , xrn(0) nach der vorstehenden Überlegung den R

n erzeugen und die
deshalb linear unabhängig sind.

Wir fassen zusammen:

Gesucht eine reelle Lösungsbasis für ẋ = Ax mit reeller n× n-Matrix A.

1. Berechne die Eigenwerte von A, also die reellen und komplexen Nullstellen des charak-
teristischen Polynoms det(A−λE). Von den Paaren konjugiert-komplexer Eigenwerten
lasse jeweils einen weg.

2. Zu jedem der verbleibenden Eigenwerte λ der algebraischen Vielfachheit k berechne k
linear unabhängige Hauptvektoren v1, . . . , vk ∈ C

n als Lösungen von (A− λE)kv = 0.
Sie liefern k Lösungen

xλ,κ(t) = eλt
k∑

j=0

tj

j!
(A− λE)jvκ, κ ∈ {1, . . . , k}.

3. Die entstehenden nicht-reellen Lösungen zerlege in Real- und Imaginärteil. Das liefert
insgesamt n linear unabhängige reelle Lösungen und damit eine reelle Lösungsbasis.

Wir schließen mit einem einfachen

Beispiel 202. Wir betrachten ẋ = Ax mit A =

(
0 5
−2 2

)

.

Das charakteristische Polynom ist
∣
∣
∣
∣

−λ 5
−2 2− λ

∣
∣
∣
∣
= λ2 − 2λ+ 10 = (λ− (1 + 3i))(λ− (1− 3i)).

Berechnung eines Eigenvektors zu λ = 1 + 3i:
(
−1− 3i 5

−2 1− 3i

)(
v1
v2

)

=

(
0
0

)

⇐= v =

(
v1
v2

)

=

(
5

1 + 3i

)

Das liefert die komplexe Lösung

x(t) = e(1+3i)t

(
5

1 + 3i

)

= et(cos 3t+ i sin 3t)

(
5

1 + 3i

)

= et
(

5 cos 3t
cos 3t− 3 sin 3t

)

+ iet
(

5 sin 3t
3 cos 3t+ sin 3t

)
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und die reellen Lösungen

x1(t) = et
(

5 cos 3t
cos 3t− 3 sin 3t

)

, x2(t) = et
(

5 sin 3t
3 cos 3t+ sin 3t

)

,

die offenbar linear unabhängig sind.
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5.2.3 Skalare lineare Differentialgleichungen höherer Ordnung.

• Skalare lineare Differentialgleichungen höherer Ordnung treten sehr häufig auf, zum
Beispiel in vielen grundlegenden Problemen der Mechanik oder Elektrotechnik.

• Wir wissen schon, wie man sie umschreiben kann in ein lineares System erster Ordnung,
aber hier lernen wir, wie man diesen Aufwand vermeiden und direkt Lösungen finden
kann.

Problem: Sei J ⊂ R ein offenes Intervall und seien f1, . . . , fn, g : J → R stetige Funktionen.
Wir suchen Lösungen der linearen Differentialgleichung

x(n) + f1(t)x
(n−1) + . . .+ fn−1(t)ẋ+ fn(t)x = g(t), (92)

gegebenenfalls mit den Anfangsbedingungen in t0 ∈ J

x(t0) = ξ0, . . . , x
(n−1)(t0) = ξn−1. (93)

Wir haben in der Einleitung zu den gewöhnlichen Differentialgleichungen schon am Bei-
spiel der Newtonschen Bewegungsgleichung demonstriert, wie man die Differentialgleichung
höherer Ordnung auf eine erster Ordnung in einem höher-dimensionalen Raum übersetzt.
Wir wenden das auf das vorstehende Problem an.

Ist x eine Lösung von (92), (93), und setzt man y1 = x, y2 = ẋ, . . . , yn = x(n−1), so folgt mit

y :=






y1
...
yn






ẏ =








0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

−fn −fn−1 . . . −f1







y +








0
...
0
g(t)







, y(t0) =






ξ0
...

ξn−1




 (94)

Ist umgekehrt y : J → R
n eine Lösung von (94), so ist x := y1 eine solche von (92), (93).

Damit folgt aus dem Hauptsatz 194 über lineare Differentialgleichungen:

Satz 203. Gegeben sei das Anfangswertproblem

x(n) + f1(t)x
(n−1) + . . .+ fn−1(t)ẋ+ fn(t)x = g(t), (95)

x(t0) = ξ0, . . . , x
(n−1)(t0) = ξn−1. (96)

mit stetigen Funktionen f1, . . . , fn, g : J → R auf einem Intervall J um t0 und ξ0, . . . ξn−1 ∈
R

Dann gilt

(i) Das Anfangswertproblem hat genau eine auf ganz J definierte Lösung.

(ii) Der Lösungsraum der zugehörigen homogenen linearen Differentialgleichung n-ter Ord-
nung

x(n) + f1(t)x
(n−1) + . . .+ fn−1(t)ẋ+ fn(t)x = 0 (97)

ist ein n-dimensionaler Untervektorraum von Cn(J,R).
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Satz 203 (Fortsetzung). (iii) Lösungen x1, . . . , xn von (97) sind genau dann linear un-
abhängig, wenn die Spaltenvektoren der sogenannten Wronskimatrix

W (t) :=








x1(t) . . . xn(t)
ẋ1(t) . . . ẋn(t)
...

...

x
(n−1)
1 (t) . . . x

(n−1)
n








an einer Stelle (und dann an allen Stellen) t ∈ J linear unabhängig sind.

(iv) (Variation der Konstanten) Hat man eine Lösungsbasis x1, . . . , xn für die homogene
Gleichung (97), so erhält man alle Lösungen der inhomogenen Gleichung in der Form

x(t) =

n∑

i=1

ci(t)xi(t),

wo die Funktionen ci ∈ C1(J,R) bis auf Konstanten bestimmt sind durch ein lineares
Gleichungssystem für ihre Ableitungen:

W (t)






ċ1(t)
...

ċn(t)




 =






0
...

g(t)




 .

Beispiel 204. Löse das Anfangswertproblem

ẍ− 6ẋ+ 8x = 64t2

x(0) = 5, ẋ(0) = 0

mit den geschenkten Lösungen x1(t) = e2t, x2(t) = e4t für die zugehörige homogene Glei-
chung.

0. Schritt. Die Wronskimatrix der beiden Lösungen in t=0 ist

W (0) =

(
e2t e4t

2e2t 4e4t

)

t=0

=

(
1 1
2 4

)

.

Offenbar sind die Spalten linear unabhängig und x1, x2 bilden daher eine Basis für den
Lösungsraum der homogenen Gleichung.

1. Schritt. Lösen des linearen Gleichungssystems

(
e2t e4t

2e2t 4e4t

)(
ċ1(t)
ċ2(t)

)

=

(
0

64t2

)

liefert
ċ1(t) = −32t2e−2t, ċ2(t) = 32t2e−4t.

2. Schritt. Integrieren mit partieller Integration oder http://integrals.wolfram.com/ liefert

c1(t) = 8e−2t(1 + 2t+ 2t2), c2(t) = −e−4t(1 + 4t+ 8t2).

3. Schritt. Die allgemeine Lösung der gegebenen Differentialgleichung ist also

x(t) = 8(1 + 2t+ 2t2)− (1 + 4t+ 8t2) + a1e
2t + a2e

4t = (7 + 12t+ 8t2) + a1e
2t + a2e

4t
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mit beliebigen Konstanten a1, a2 ∈ R.

4. Schritt. Um die Anfangsbedingungen zu erfüllen, berechnen wir

x(0) = 7 + a1 + a2 = 5

ẋ(0) = 12 + 2a1 + 4a2 = 0

und erhalten aus diesem linearen Gleichungssystem a1 = 2, a2 = −4. Damit ist die gesuchte
Lösung

x(t) = 7 + 12t+ 8t2 + 2e2t − 4e4t.

Bemerkung. Variation der Konstanten ein Algorithmus zur Ermittlung einer Lösung für die
inhomogene Gleichung. Er erfordert Lösen eines linearen Gleichungssystems und Integratio-
nen. Nicht selten kann man durch genaues Hinsehen (oder Erfahrung) auch eine Lösung für
die inhomogene Gleichung leichter finden, eventuell sogar einfach hinschreiben. Im obigen
Fall liefert die linke Seite der Differentialgleichung, weil die Koeffizienten konstant sind, für
jedes eingesetzte Polynom x(t) wieder ein Polynom, und zwar vom gleichen Grad. Weil aber
auch die rechte Seite ein Polynom von zweiten Grad ist, kann man versuchen, einfach

x(t) = A+Bt+ Ct2

anzusetzen und die Koeffizienten (durch Koeffizientenvergleich) so zu bestimmen, dass t2

herauskommt. Das ist im obigen Fall wesentlich einfacher als die Variation der Konstanten.
Probieren Sie es!

Wir wollen nun zeigen, wie man eine Lösungsbasis für eine lineare homogene Differential-
gleichung finden kann, wenn ihre Koeffizienten konstant sind. Wie im Fall der Systeme ist
es günstig, dabei auch komplexwertige Lösungen x : R → C zuzulassen und sich später zu
überlegen, wie man daraus wieder reellwertige gewinnen kann.

Satz 205. Wir betrachten also auf J = R die homogene lineare Differentialgleichung

x(n) + a1x
(n−1) + . . .+ an−1ẋ+ anx = 0 (98)

mit a1, . . . , an ∈ R.

(i) Eine Basis für den Unterraum aller komplexwertigen Lösungen von (98) in Cn(R,C)
ist gegeben durch die Funktionen

xij(t) = tj etλi , 1 ≤ i ≤ m, 0 ≤ j ≤ ki − 1.

Dabei sind λ1, . . . , λm ∈ C die verschiedenen Nullstellen des sogenannten charakteri-
stischen Polynoms

χ(λ) = λn + a1λ
n−1 + . . .+ an−1λ+ an,

der Differentialgleichung und ki ist die Vielfachheit der Nullstelle λi.

(ii) Sind die ai reell und besitzt χ(λ) nicht-reelle Nullstellen, so treten diese in konjugierten
Paaren gleicher Multiplizität auf. Ist λ = α± iω ein solches Paar mit Multiplizität k,
so erhält man daraus reelle linear unabhängige Lösungen

tj eαt cos(ωt) und tj eαt sin(ωt), 0 ≤ j ≤ k − 1.

Auf diese Weise erhält man eine Basis des reellen Lösungsraumes von (98).
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Wir brauchen einige Vorbereitungen für den Beweis. Wenn der Satz richtig ist, sind alle
Lösungen beliebig oft differenzierbar. Wir suchen unsere Lösungen deshalb gleich im Raum

C∞ := C∞(R,C)

und schreiben Dk zur Abkürzung für dk

dtk
. Für ein Polynom

φ(λ) = a0λ
n + a1λ

n−1 + . . .+ an−1λ+ an

mit möglicherweise komplexen Koeffizienten ak definieren wir

φ(D) ∈ L(C∞, C∞)

durch

φ(D)x = a0D
nx+ a1D

n−1x+ . . .+ an−1Dx+ anx

= a0x
(n) + a1x

(n−1) + . . .+ a1ẋ+ anx.

Lemma 206. (i) Die “Einsetzung” φ 7→ φ(D) ist ein Algebra-Homomorphismus von der
Algebra der Polynome in die Algebra L(C∞, C∞). Insbesondere gilt für Polynome
φ(λ), ψ(λ) und ρ(λ) = φ(λ)ψ(λ), dass

ρ(D) = φ(D)ψ(D) : C∞ → C∞.

Daher ist φ(D)ψ(D) = ψ(D)φ(D).

(ii) Seien p 6= 0 ein Polynom, k ∈ N und µ, ν ∈ C.

Wir setzen D in das Polynom φ(λ) := (λ− µ)k ein. Dann ist

(D − µ)k
(
p(t)eνt

)
= q(t)eνt

mit einem Polynom q, für das gilt:

µ 6= ν =⇒ Grad q = Grad p,

µ = ν =⇒ Grad q = (Grad p)− k,

Dabei soll Grad q < 0 bedeuten, dass q = 0.

Beweis des Lemmas. Zu (i). Seien φ(λ) =
∑
aiλ

i, ψ(λ) =
∑
bjλ

j . Dann ist

φ(D)ψ(D)x = φ(D)
∑

bjx
(j) =

∑

bj
∑

aix
(i+j).

Zu (ii). Vollständige Induktion über k. Für k = 0 ist nichts zu zeigen.

k → (k + 1). Nach Induktionsvoraussetzung ist

(D − µ)k
(
p(t)eνt

)
= q(t)eνt

mit einem Polynom q(t) vom im Satz beschriebenen Grad. Dann gilt aber

(D − µ)k+1
(
p(t)eνt

)
= (D − µ)q(t)eνt = (q̇(t) + νq(t)− µq(t))eνt.

Ist µ = ν, so verkleinert sich der Grad des Polynom-Faktors vor eνt um 1, andernfalls bleibt
er gleich.
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Beweis des Satzes. Zu (i). Ist χ(λ) das im Satz definierte charakteristische Polynom, so ist
die Differentialgleichung gegeben durch

χ(D)x = 0.

Andrerseits ist nach dem Lemma für j < ki

χ(D)xij(t) = (D − λ1)
k1 . . . (D − λm)km

(
tjeλit

)

= (D − λ1)
k1 . . . (D − λi−1)

ki−1(D − λi+1)
ki+1 . . . (D − λm)km(D − λi)

ki
(
tjeλit

)

= 0.

Daher sind die angegebenen Funktionen n Lösungen der Differentialgleichung. Wir zeigen
ihre lineare Unabhängigkeit. Sei

0 =
∑

i,j

αijxij(t) =
∑

i

pi(t)e
λit

für alle t. Dabei sind die pi(t) Polynome vom Grad ≤ ki − 1, und wir müssen zeigen, dass
sie alle 0 sind. Aber nach dem Lemma ist

0 = (D − λ2)
k2 . . . (D − λm)kk

(
∑

i

pi(t)e
λit

)

= q1(t)e
λ1t

mit einem Polynom q1 vom selben Grad wie p1. Also folgt p1 = 0, und entsprechend für die
anderen pi(t).

Zu (ii). Nach der Eulerschen Identität ist

tjeαt cosωt =
1

2
tje(α+iω)t +

1

2
tje(α−iω)t,

tjeαt sinωt =
1

2i
tje(α+iω)t − 1

2i
tje(α−iω)t.

Daher sind die cos− sin−Lösungen als Linearkombination (mit komplexen Koeffizienten)
von Lösungen der homogenen linearen Differentialgleichung auch Lösungen. Weil man aus
ihnen die komplexe Lösungsbasis linear kombinieren kann, bilden sie ein Erzeugendensystem
für den komplexen Lösungsraum mit n Elementen. Daher sind sie linear unabhängig über
den komplexen Zahlen, also erst recht über den reellen Zahlen.

Beispiel 207. Die charakteristische Gleichung von

ẍ− 6ẋ+ ax = 0

hat die Lösungen λ1,2 = 3±
√
9− a. Für a = 8, 9, 10 erhält man als Lösungsbasen also

x1(t) = e2t, x2 = e4t

bzw.
x1(t) = e3t, x2 = te3t

bzw.
x1(t) = e(3+i)t, x2 = e(3−i)t.

Im letzteren Fall ist eine reelle Lösungsbasis gegeben durch

x1(t) = e3t cos t, x2 = e3t sin t.
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6 Anhang

6.1 Hauptminorenkriterium

Wir geben einen Beweis (von Udo Jeromin) für dieses Kriterium. Vgl. auch M. Köcher,
Lineare Algebra und analytische Geometrie, Springer.

Hauptminorenkriterium. Eine symmetrische (n×n)-Matrix A = (aij)i,j=1,...,n ist genau
dann positiv definit, wenn alle Hauptminoren positiv sind. Dabei sind Hauptminoren die
Determinanten der Matrizen

Ak := (aij)i,j=1,...,k

A ist genau dann negativ definit, wenn die Hauptminoren wechselndes Vorzeichen beginnend
mit a11 < 0 haben.

Beweis. Die Behauptung über negative Definitheit folgt aus der über positive Definitheit
durch Betrachtung von −A. Wir beweisen also nur den ersten Teil des Kriteriums.

Mit 〈. , .〉 bezeichnen wir das kanonische Skalarprodukt der Euklidischen Räume. A ist positiv
definit, wenn gilt

∀x∈Rn(x 6= 0 =⇒ 〈Ax, x〉 > 0).

Wir benutzen das obige Zitat aus der linearen Algebra

A positiv definit =⇒ alle Eigenwerte positiv =⇒ detA > 0

und kommen zum Beweis des Lemmas:

Beweis von ⇒.

Für x =






x1
...
xk




 ∈ R

k mit k ≤ n sei x′ :=

(
x
0

)

:=













x1
...
xk
0
...
0













∈ R
n.

Ist A positiv definit, so gilt für alle k ∈ {1, . . . , n} und x ∈ R
k \ {0}:

0 < 〈Ax′, x′〉 = 〈Akx, x〉 .

Also sind alle Ak ebenfalls positiv definit und haben daher positive Determinante.

Beweis von ⇐=. Seien nun umgekehrt alle detAk positiv. Wir zeigen durch vollständige
Induktion über n, dass A positiv definit ist.

Der Beweis benutzt folgende Idee, um die Determinante der ganzen Matrix mit der eines
Hauptminors in Verbindung zu bringen:

Ist

(
A B
C D

)

eine Blockmatrix mit quadratischem A und D, und ist A invertierbar, so

gilt
(
A B
C D

)

=

(
A 0
C E

)(
E A−1B
0 D − CA−1B

)

.

Das kann man im Kopf nachrechnen. Insbesondere ist dann

det

(
A B
C D

)

= detA det(D − CA−1B).
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n = 1. Nichts zu zeigen.

(n− 1) → n. Wir nehmen also an, der Satz sei für n − 1 bereits bewiesen. Dann ist An−1

positiv definit und insbesondere invertierbar.

1. Schritt. Für y ∈ R
n−1 \ {0} ist nach Voraussetzung

〈

A

(
y
0

)

,

(
y
0

)〉

= 〈An−1y, y〉 > 0.

2. Schritt. Es genügt zu zeigen, dass

f(y) :=

〈

A

(
y
1

)

,

(
y
1

)〉

> 0 für alle y ∈ R
n−1.

Wegen 〈A(tx), tx〉 = t2 〈Ax, x〉 folgt dann

〈Ax, x〉 > 0 für alle x mit xn 6= 0,

und mit dem ersten Schritt ergibt sich daraus die Behauptung. Schreiben wir

A =

(
An−1 a
aT α

)

mit a =






a1n
...

an−1n




 und α = ann, so wird

f(y) = 〈An−1y, y〉+ 2 〈a, y〉+ α.

3. Schritt. Ist λ > 0 der kleinste Eigenwert von An−1, so gilt

〈An−1y, y〉 ≥ λ 〈y, y〉 ,

also

〈An−1y, y〉+ 2 〈a, y〉+ α ≥ λ‖y‖2 − 2‖a‖ ‖y‖ − |α| = ‖y‖(λ‖y‖ − ‖a‖)− |α|.

Das wird groß, wenn ‖y‖ groß wird: Außerhalb einer hinreichend großen Kugel im R
n−1 ist

daher f(y) ≥ f(0). Deshalb nimmt die stetige Funktion f auf Rn−1 ihr globales Minimum
an. An dieser Stelle verschwindet ihre Ableitung, die wir jetzt berechnen:

Dyf(v) = 〈An−1y, v〉+ 〈An−1v, y〉+ 2 〈a, v〉 = 2 〈An−1y + a, v〉 .

Das Minimum wird also angenommen an der Stelle y∗ = −A−1
n−1a. Sein Wert ist

f(y∗) =
〈
a,A−1

n−1a
〉
− 2

〈
a,A−1

n−1a
〉
+ α = α−

〈
a,A−1

n−1a
〉
.

4. Schritt. Nach der Vorüberlegung ist

detAn = detAn−1(α−
〈
a,A−1

n−1a
〉
).

Mit detAn und detAn−1 ist also auch f(y∗) = α−
〈
a,A−1

n−1a
〉
positiv.
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6.2 Vektorwertige Integrale

Wir definieren das Integral für stetige Funktionen g : [a, b] → V mit Werten in einem
endlich-dimensionalen Banachraum V so:

Ist b1, . . . , bn eine Basis von V , so schreibt sich g als

g =
∑

gibi

mit stetigen reellwertigen Funktionen gi. Wir setzen

∫ b

a

g(t)dt :=
∑

i

(
∫ b

a

gi(t)dt

)

bi.

Man zeigt, dass das von der gewählten Basis unabhängig ist. Falls V = R
n, bedeutet das

einfach komponentenweise Integration.

Für das so verallgemeinerte Integral gelten die folgenden vom R-wertigen Fall vertrauten
Regeln:

∫ b

a

(g + h)(t)dt =

∫ b

a

g(t)dt+

∫ b

a

h(t)dt,

∫ b

a

λg(t)dt = λ

∫ b

a

g(t)dt, (99)

d

dt

∫ t

a

g(τ)dτ = g(t), (100)

∥
∥
∥
∥
∥

∫ b

a

g(t)dt

∥
∥
∥
∥
∥
≤
∫ b

a

‖g(t)‖dt. (101)

Die beiden ersten Gleichungen folgen trivial aus der Definition. Die dritte beweise ich nur
für den Fall V = R

n und die Norm zum üblichen Skalarprodukt 〈x, y〉 =∑xiyi.

Aus (99) folgt für v ∈ R
n

∫ b

a

< v, g(t) > dt =

∫ b

a

(
∑

vigi(t))dt =
∑

vi

∫ b

a

gi(t)dt =< v,

∫ b

a

g(t)dt > .

Setzt man

v :=

∫ b

a
g(t)dt

‖
∫ b

a
g(t)dt‖

∈ R
n, (102)

so wird

‖
∫

g(t)dt‖ =< v,

∫

g(t)dt >=

∫

< v, g(t) > dt ≤
(Cauchy−Schwarz)

∫

‖g(t)‖dt.

Ebenso beweist man den allgemeinen Fall, nachdem man zuvor gezeigt hat, dass es zu jedem
v ∈ V (bei uns v =

∫
g) ein ω ∈ L(V,R) gibt, für das ‖ω‖ ≤ 1 und ω(v) = ‖v‖ ist.)
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1 Definition des Lebesgueintegrals

Wir haben in der Analysis I das Regelintegral für reell- (oder komplex-)wertige Funktionen
auf einem Intervall kennen gelernt. Es diente unter anderem zur Flächenberechnung. Will
man auch Volumina berechnen, so scheint eine Erweiterung der Integration auf Funktionen
von mehreren Variablen wünschenswert. Das werden wir jetzt in Angriff nehmen, gleichzeitig
aber das Regelintegral verallgemeinern.

Es gibt verschiedene Integralbegriffe,

• eben das Regelintegral, welches Sie im ersten Semester kennengelernt haben,

• das Riemannsche Integral, das lange Zeit in den Lehrbüchern der Analysis Standard
war, und

• das Lebesguesche Integral, das wir in diesem Semester betrachten wollen.

Für Treppenfunktionen, ja für alle
”
anständigen“ Funktionen, liefern diese Integrale densel-

ben Wert. Sie unterscheiden sich aber hinsichtlich der jeweiligen Menge der
”
integrierbaren“

Funktionen; diese Menge vergrößert sich bei den obigen drei Integralbegriffen in der ange-
gebenen Reihenfolge.

Aber es ist nicht das Ziel, möglichst
”
exotische“ Funktionen auch noch integrieren zu können,

es geht um andere Vorteile: In vielen Anwendungen der Analysis möchte man Grenzwertpro-
zesse in Funktionenräumen, zum Beispiel im Raum der integrierbaren Funktionen, durch-
führen. Ein Beispiel aus der Theorie der Differentialgleichungen haben Sie im letzten Seme-
ster beim Beweis des Satzes von Picard-Lindelöf gesehen, andere Beispiele im Zusammen-
hang mit der Fourier-Entwicklung von Funktionen gaben Lebesgue (um 1900) den Anlass
zur Entwicklung seiner Integrationstheorie. Ziel ist, dass unter möglichst allgemeinen Vor-
aussetzungen

lim
n→∞

∫
fn =

∫
lim

n→∞
fn

gilt, und hier gewinnt das Lebesgueintegral um Längen!

Der wesentliche Unterschied in den Definitionen kommt (jedenfalls bei unserem Zugang)
folgendermaßen zustande:

Zunächst definiert man das Integral für Treppenfunktionen auf die offensichtliche Weise.
Dann erweitert man es auf Funktionen, die sich durch Treppenfunktionen

”
gut approximie-

ren“ lassen. Der Unterschied liegt in der Definition von
”
gut approximieren“.

• Bei den Regelfunktionen betrachtet man Grenzwerte von Folgen von Treppenfunktio-
nen im Sinne gleichmäßiger Konvergenz.

• In der Riemannschen Theorie betrachtet man Funktionen, die sich zwischen zwei
Treppenfunktionen mit beliebig klein vorgegebener Integraldifferenz einsperren lassen
(Sandwiching).

• In der Lebesgueschen Theorie schließlich betrachtet man Grenzwerte von monotonen
Folgen von Treppenfunktionen.

Es gibt verschiedene Zugänge zum Lebesgueintegral. Der hier gewählte basierend auf Hir-
zebruch/Scharlau und Weir geht zurück auf Riesz-Nagy (vgl. Literaturliste). Er zielt direkt
auf das Integral im Rn und stellt die Monotonie in den Vordergrund. Das ist jedenfalls für
die Analysis angemessen und nach meiner Meinung verständlicher als der (sehr elegante)
Zugang über eine axiomatische Maßtheorie.
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1.1 Intervalle und Maße

• Wir lernen ein Axiomensystem für Maße auf der Menge aller Intervalle des Rn kennen.
Diese Definition hat allerdings nur provisorischen Charakter. Später werden wir den
Maßbegriff auf eine viel größere Familie von Teilmengen des Rn erweitern.

• Schon im eindimensionalen Fall war die Definition des Integrals für Treppenfunktio-
nen nicht ganz einfach, weil man die Unabhängigkeit von der Darstellung der Trep-
penfunktion zeigen musste. Den Beweis haben wir damals nur skizziert. In höheren
Dimensionen ist das noch viel komplizierter. Wir formulieren und beweisen mit dem
Zerlegungslemma ein fundamentales Hilfsmittel für solche Probleme.

Wir beschränken uns nicht auf Flächen- oder Volumenberechnung, sondern betrachten allge-
meinere Maße. Stellen Sie sich etwa vor, dass Sie für einen Körper im R3 nicht das Volumen,
sondern durch Integration einer Dichte seine Masse ermitteln möchte.

Definition 1.

(i) Wir bezeichnen mit

I(Rn) :=
{
I ⊂ Rn

∣∣ I = I1 × . . .× In, Ik beschränktes Intervall in R
}

die Menge der beschränkten Intervalle im Rn. Dabei lassen wir auch leere Intervall zu.

Bemerkung: Der Durchschnitt zweier beschränkter Intervalle ist wieder ein beschränktes
Intervall.

(ii) Eine Abbildung φ : I(Rn) → R heißt ein Maß, wenn sie additiv, monoton und regulär
ist, d.h. folgende drei Eigenschaften besitzt:

• Additivität: Für alle I, I1, I2 ∈ I(Rn) gilt

I = I1
·∪ I2 =⇒ φ(I) = φ(I1) + φ(I2).

Dabei bezeichnet
·∪ die disjunkte Vereinigung.

• Monotonie: Für alle I, J ∈ I(Rn) gilt

I ⊂ J =⇒ φ(I) ≤ φ(J).

• Regularität1:

∀I∈I(Rn) ∀ǫ>0 ∃J∈I(Rn)(J offen) ∧ (I ⊂ J) ∧ (φ(J) ≤ φ(I) + ǫ).

Aus der Additivität folgt φ(∅) = 0 und mit der Monotonie dann φ ≥ 0.

Beispiel 2 (Lebesguemaß). Das Lebesguemaß auf R ist definiert durch

µ1 : I(R) → R, I 7→ µ1(I) :=

{
0 für I = ∅,
sup(I) − inf(I) für I 6= ∅ .

Jedem Intervall wird also seine
”
Länge“ zugeordnet.

1Der Begriff der Regularität stellt eine Verbindung zur Topologie des Rn her, der für die Analysis sehr
bedeutsam, in der abstrakteren Maßtheorie aber nicht erwünscht ist und dort deshalb nicht auftritt.
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Beispiel 3 (Produktmaß). Sind φ1, φ2 Maße auf Rp und Rq, so definiert

φ(I1 × I2) := φ1(I1)φ2(I2)

für I1 × I2 ∈ I(Rp+q) = I(Rp) × I(Rq) ein Maß, das Produktmaß φ = φ1 × φ2.

Insbesondere erhält man das n-dimensionale Lebesguemaß µn rekursiv durch µn = µn−1×µ1.

Beweis der Maßeigenschaften. Wir zeigen nur die Additivität, die beiden anderen Eigen-
schaften sind sehr einfach.

Sei I = J ∪̇K mit I = I1×I2 und entsprechend für J,K. Wir setzen voraus, dass J 6= ∅ 6= K.
Dann gilt insbesondere

Jq ∪Kq = Iq q = 1, 2. (1)

1. Fall: Sei J1 ∩K1 6= ∅. Wir zeigen zunächst, dass dann

J1 = K1. (2)

Aus Symmetriegründen genügt der Nachweis, dass J1 ⊂ K1. Sei also x1 ∈ J1 ⊂ I1. Nach
Voraussetzung gibt es y1 ∈ J1∩K1, und dazu ein y2 ∈ K2 ⊂ I2, so dass also (y1, y2) ∈ K ⊂ I.
Nun ist (x1, y2) ∈ I = J∪̇K. Wäre (x1, y2) ∈ J , so also y2 ∈ J2 und (y1, y2) ∈ J im
Widerspruch zu J ∩K = ∅. Also ist (x1, y2) ∈ K und daher x1 ∈ K1 und (2) bewiesen.

Nun folgt wegen J ∩K = ∅, dass J2 ∩K2 = ∅. Damit ist

φ(I) = φ1(I1)φ2(I2) = φ1(I1) (φ2(J2) + φ2(K2))

= φ1(J1)φ2(J2) + φ1(K1)φ2(K2) = φ(J) + φ(K).

2. Fall: J2 ∩K2 6= ∅. Beweist man wie den ersten Fall.

3. Fall: J1 ∩K1 = ∅ = J2 ∩K2. Seien x1 ∈ J1, y2 ∈ K2.
Nach (1) ist dann (x1, y2) ∈ I, also z.B. (x1, y2) ∈ J . Dann ist aber y2 ∈ J2. Widerspruch!
Dieser Fall kommt nicht vor.

Beispiel 4 (Diracmaß). Sei M ⊂ Rn eine diskrete Teilmenge, d.h. #(M ∩ K) < ∞ für
jedes kompakte K ⊂ Rn. Dann definiert

δM (I) := #(M ∩ I)

ein Maß. Für M = {0} heißt δ := δM das Diracmaß in 0.

Satz 5 (Additivitätssatz für Intervalle). Seien I, I1, . . . , Ik ∈ I(Rn) und I1, . . . , Ik
paarweise disjunkt. Dann gilt:

I =
·⋃

j=1,...,k

Ij =⇒ φ(I) =
∑

j=1,...,k

φ(Ij).

Das Problem beim Beweis verdeutlicht die folgende Vereinigung von 5(!) Intervallen:

9



Keine zwei dieser Intervalle bilden vereinigt ein Intervall. Deshalb kann man nicht einfach
das Additivitätsaxiom mehrfach anwenden.

Die Lösung bietet eine Zerlegung in
kleinere

”
atomare“ disjunkte Interval-

le, in der Abbildung die vier Ecken, die
vier offenen Seiten und die offene Recht-
eckfläche. Daraus kann man erst ver-
tikale

”
Spalten“ und daraus dann das

ganze Intervall so aufbauen, dass man
jedesmal das Additivitätsaxiom anwen-
den kann. Das Maß des ganzen Inter-
valls, aber auch das Maß jedes der obi-
gen fünf Teilintervalle ist jeweils die
Summe der Maße der beteiligten

”
Ato-

me“.

Erst über der linken unteren Ecke,

dann über dem offenen mittleren Intervall,

dann über der rechten unteren Ecke einen "Turm" aufbauen.

Schließlich die Türme zusammensetzen.

Wir nennen eine Familie (Jρ)1≤ρ≤m von paarweise disjunkten Intervallen aus I(Rn) eine
Intervallkette, wenn

r⋃

ρ=1

Jρ

für jedes r ∈ {1, . . . ,m} ein Intervall ist. Nach vollständiger Induktion ist dann für jedes
Maß φ

φ(
m⋃

ρ=1

Jρ) =
m∑

ρ=1

φ(Jρ).

Der Beweis des obigen Satzes wird im wesentlichen reduziert auf das folgende

Lemma 6 (Zerlegungslemma). Seien I1, . . . , Im ∈ I(Rn). Dann gibt es eine Familie

(Jρ1...ρn
)1≤ρi≤4m−1

von (4m−1)n (zum Teil vielleicht leeren) Intervallen in I(Rn) mit folgenden Eigenschaften:

(i) Die Jρ1...ρn
sind paarweise disjunkt.

(ii) Für alle q ist

Iq =
⋃

Iq∩Jρ1...ρn 6=∅
Jρ1...ρn

.
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(iii) Definiere für q ∈ {1, . . . ,m}
Jq

ρ1...ρn
= Iq ∩ Jρ1...ρn

.

(Nach (i), (ii) ist das leer oder = Jρ1...ρn
.) Definiere weiter für 1 ≤ j < n und

1 ≤ ρ1, . . . , ρj ≤ 4m− 1

Jq
ρ1...ρj

=
4m−1⋃

ρj+1,...,ρn=1

Jq
ρ1...ρjρj+1,...,ρn

.

Dann ist für alle 1 ≤ j ≤ n und alle 1 ≤ ρ1, . . . , ρj−1 ≤ 4m− 1 die Familie
(
Jq

ρ1...ρj

)

1≤ρj≤4m−1

eine Intervallkette.

(iv) Ist φ ein Maß auf Rn, so gilt

φ(Iq) =
4m−1∑

ρ1,...,ρn=1

φ(Jq
ρ1...ρn

).

Beweis. Wir beweisen (i) - (iii) durch vollständige Induktion über die Dimension n.

n = 1. Seien aq := inf Iq, bq := sup Iq und
{
aq

∣∣ q ∈ {1, . . . ,m}
}
∪
{
bq
∣∣ q ∈ {1, . . . ,m}

}
= {J1, J3, ..., J2r−1}

mit
J1 < J3 < . . . < J2r−1.

Das sind r ≤ 2m Punkte, weil ja Endpunkte der Intervalle zusammenfallen können. Wir
bezeichnen die r − 1 offenen Intervalle dazwischen mit J2i =]J2i−1, J2i+1[. Wenn wir die
J2i−1 als einpunktige Intervalle verstehen, haben wir also eine Folge von 2r − 1 ≤ 4m − 1
aneinander anschliessenden disjunkten Intervallen. Wenn es weniger als 4m− 1 sind, füllen
wir durch leere Intervalle auf, setzen also J2r = ... = J4m−1 = ∅.

J J J J
J J J J J

J   , J

1

1

2

11

2

3

3

4 5 6 7 8 9

1 0
= 0

I

I I

m = 3 ,  n = 1

Dann ist offenbar (Jρ)1≤ρ≤4m−1 eine Intervallkette, und es gelten (i) und (ii). Für jedes q
ist weiter (Jq

ρ )1≤ρ≤4m−1 eine Intervallkette, die in der Regel mit einigen leeren Intervallen
beginnt (und endet), und es ist

Iq =
4m−1⋃

ρ=1

Jq
ρ .

Damit gilt (iii).

n→ n+ 1. Sei

Iq = I
∼

q × Ĩq

mit I
∼

q ∈ I(Rn) und Ĩq ∈ I(R). Wir wählen dazu

11



• J
∼ρ1...ρn

gemäß der Induktionsvoraussetzung und

• J̃ρ wie im Fall n = 1.

Damit setzen wir
Jρ1...ρnρn+1 := J

∼ρ1...ρn

× J̃ρn+1 .

Diese Intervalle erfüllen die Behauptung: Sie sind paarweise disjunkt, weil ihre Faktoren
disjunkt sind. Es gilt

Iq = I
∼

q × Ĩq =




⋃

I
∼

q∩J
∼ρ1...ρn

6=∅
J
∼ρ1...ρn


×




⋃

Ĩq∩J̃ρn+1
6=∅

J̃ρn+1




=
⋃

I
∼

q ∩ J
∼ρ1...ρn

6= ∅
Ĩq ∩ J̃ρn+1 6= ∅

J
∼ρ1...ρn

× J̃ρn+1
=

⋃

Iq∩Jρ1...ρn+1
6=∅
Jρ1...ρn+1

.

Die Kettenbedingung (iii) folgt für den letzten Index ρn+1 aus dem Fall n = 1 und für die
anderen aus der Induktionsvoraussetzung, weil eine Intervallkette eine Intervallkette bleibt,
wenn man das Kartesische Produkt ihrer Glieder mit einem festen Intervall bildet.

Damit sind (i) - (iii) bewiesen.

Schließlich gilt (vi) wegen

φ(Iq) = φ

(
⋃

ρ1

Jq
ρ1

)
=
∑

ρ1

φ(Jq
ρ1

) =
∑

ρ1

φ

(
⋃

ρ2

Jq
ρ1ρ2

)
= . . . =

∑

ρ1

. . .
∑

ρn

φ
(
Jq

ρ1...ρn

)
.

Beweis des Additivitätssatzes. Wähle zu I, I1, . . . , Ik eine Familie (Jρ1...ρn
) wie im Zerle-

gungslemma. Weil I =
⋃
Ij , ist ohne Einschränkung

I =
⋃

1≤ρ1,...,ρn≤4k−1

Jρ1...ρn
.

Dann gilt
k∑

j=1

φ(Ij) =
k∑

j=1

∑

ρ1,...,ρn

φ(Jj
ρ1...ρn

) = φ(I).

Wir formulieren die Ergebnisse aus Zerlegungslemma und Additionssatz noch einmal in einer
“griffigen” Kurzform:

Lemma 7 (Zerlegungslemma, Version 2). Zu I1, . . . , Ik ∈ I(Rn) gibt es paarweise
disjunkte J1, . . . , Jr ∈ I(Rn) mit folgenden Eigenschaften:

Für alle j ∈ {1, . . . , k} und Maße φ : I(Rn) → R ist

Ij =
⋃

Ij∩Jρ 6=∅
Jρ und φ(Ij) =

∑

Ij∩Jρ 6=∅
φ(Jρ).
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Bemerkung. Für I(Rn) gilt

(i) ∅ ∈ I(Rn).

(ii) I1, I2 ∈ I(Rn) =⇒ I1 ∩ I2 ∈ I(Rn).

(iii) Sind I, J ∈ I(Rn) mit J ⊂ I, so gibt es (nach dem Zerlegungslemma) paarweise

disjunkte Menge J1, . . . , Jk ∈ I(Rn) mit I \ J =
⋃k

i=1 Jk.

In der Maßtheorie nennt man I(Rn) dann einen Semiring und fragt, unter welchen Voraus-
setzungen sich eine additive und monotone Funktion auf einem solchen fortsetzen lässt zu
einem Maß auf der von dem Semiring erzeugten σ-Algebra - was auch immer das genau
bedeuten mag. Vergleiche dazu den Abschnitt 5.
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1.2 Treppenfunktionen. Nullmengen

• Die Definition für das Integral von Treppenfunktionen bezüglich eines gegebenen Ma-
ßes ist nun kanonisch.

• Mit den Nullmengen eines Maßes lernen wir einen zentralen Begriff der Lebesgueschen
Integrationstheorie kennen.

• Wir beweisen ein erstes Lemma über die Integration monotoner Folgen.

Sei φ ein Maß auf Rn.

Definition 8 (Charakteristische Funktion und Treppenfunktion).
(i) Für eine Teilmenge A ⊂ Rn bezeichne

χ
A

: Rn → R

die charakteristische Funktion mit

χ
A
(x) :=

{
1 für x ∈ A,

0 sonst.

Beachten Sie:
χ
A ∪B = χ

A
+ χ

B
− χ

A ∩B
und insbesondere

χ
A∪̇B = χ

A
+ χ

B
.

(ii) Eine Funktion der Form

f =
m∑

µ=1

aµχIµ
(3)

mit aµ ∈ R, Iµ ∈ I(Rn) heißt Treppenfunktion.

Bemerkungen:

• Die Darstellung ist nicht eindeutig!

• Nach dem Zerlegungslemma 6 gibt es immer eine Darstellung mit paarweise dis-
junkten Iµ.

• Treppenfunktionen sind beschränkt und haben kompakten Träger. (Der Träger
einer reellwertigen Funktion ist die abgeschlossene Hülle der Punktmenge, auf der
die Funktion 6= 0 ist.)

(iii) Das φ-Integral von f wie in (3) definiert man als

∫
f dφ =

m∑

µ=1

aµφ(Iµ).

Unabhängigkeit von der Darstellung. Sei

f =
m∑

µ=1

aµχIµ
=

n∑

ν=1

bνχKν
.

Nach dem Zerlegungslemma existiert eine Familie disjunkter Intervalle Jρ, so dass

Iµ =
⋃

Jρ∩Iµ 6=∅
Jρ, Kν =

⋃

Jρ∩Kν 6=∅
Jρ.
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Es folgt

f =
m∑

µ=1

aµ

∑

Jρ∩Iµ 6=∅
χ
Jρ

=
∑

ρ




∑

Jρ∩Iµ 6=∅
aµ



χ
Jρ

=
∑

ρ




∑

Jρ∩Kν 6=∅
bν



χ
Jρ

(4)

und nach Satz 5
φ(Iµ) =

∑

Jρ∩Iµ 6=∅
φ(Jρ), φ(Kν) =

∑

Jρ∩Kν 6=∅
φ(Jρ).

Weil die Jρ paarweise disjunkt sind, sind die Koeffizienten von χ
Jρ

in den beiden letzten

Termen von (4) gleich. Es folgt

m∑

µ=1

aµφ(Iµ) =
m∑

µ=1

aµ

∑

Jρ∩Iµ 6=∅
φ(Jρ) =

∑

ρ




∑

Jρ∩Iµ 6=∅
aµ



φ(Jρ)

=
∑

ρ




∑

Jρ∩Kν 6=∅
bν



φ(Jρ) =
n∑

ν=1

bνφ(Kν).

Satz 9. Die Treppenfunktionen auf Rn bilden einen Vektorraum T (Rn). Das Integral

T (Rn) → R, f 7→
∫
f dφ

ist linear und monoton:
∫
f dφ ≤

∫
g dφ, falls f ≤ g.

Beweis. Die Vektorraumeigenschaft und die Linearität sind klar nach der Definition.

Zur Monotonie: Sind f und g zwei Treppenfunktionen, so gibt es nach dem Zerlegungssatz
eine endliche Menge beschränkter, paarweise disjunkter(!) Intervalle I1, . . . , Im, so dass sich
f und g schreiben lassen als

f =

m∑

i=0

αiχIi
, g =

m∑

i=0

βiχIi
.

aus f ≤ g folgt αi ≤ βi für alle i und daraus
∫
f dφ ≤

∫
g dφ.

Definition 10 (Nullmengen). N ⊂ Rn heißt φ-Nullmenge, wenn es zu jedem ǫ > 0 eine
Folge (Ik) in I(Rn) gibt, so dass

N ⊂
∞⋃

k=0

Ik und
∞∑

k=0

φ(Ik) < ǫ.

Bemerkung: Wegen der Regularitätseigenschaft gibt es dann auch immer eine solche Folge
(Ik) von offenen Intervallen. (Beweis?)

Beispiele 11. (i) Einpunktige Mengen sind µn-Nullmengen.

(ii) Rn \ {0} ist eine δ -Nullmenge, aber {0} ist keine δ -Nullmenge.
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Beispiel 12 (Cantormenge). Die Cantormenge C entsteht aus dem Intervall [0, 1], indem
man das mittlere Drittel ]13 ,

2
3 [ herausnimmt, aus jedem verbleibenden Intervall wieder das

mittlere Drittel herausnimmt usw. Durch die Konstruktion ergeben sich endliche Folgen von
Intervallen der Gesamtlänge

1,
2

3
,
4

9
, . . .

Zu gegebenem ǫ > 0 läßt sich C also sogar durch nur endlich viele Intervalle einer Ge-
samtlänge = (2

3 )k < ǫ überdecken. Die Cantormenge ist daher eine µ1-Nullmenge.

Satz 13. Abzählbare Vereinigungen von Nullmengen sind Nullmengen.

Beweis. Seien (Ni)i∈N eine Folge von φ-Nullmengen und N =
⋃
Ni. Sei ǫ > 0. Dann gibt es

zu jedem i ∈ N eine Folge (Iij)j∈N, für die Ni ⊂
⋃

j∈N Iij und

∞∑

j=0

φ(Iij) <
ǫ

2i+1
.

Wir bezeichnen mit (Jk)k∈N die “Diagonalfolge”

I00, I10, I01, I20, I11, I02, I30, I21, I12, I03, . . .

Dann ist
N =

⋃

i∈N

Ni ⊂
⋃

i,j∈N

Iij =
⋃

k∈N

Jk.

Andrerseits ist
m∑

k=0

φ(Jk) ≤
m∑

i=0

m∑

j=0

φ(Iij) <
m∑

i=0

ǫ

2i+1
< ǫ.

Also ist
∑∞

k=0 φ(Jk) ≤ ǫ.

Beispiele 14. 1. Weil einpunktige Mengen µ1-Nullmengen sind, ist die abzählbare Menge
Q ⊂ R eine µ1-Nullmenge.

2. Die Cantormenge ist eine überabzählbare µ1-Nullmenge. Stellt man nämlich die Zahlen
in C im

”
Trialsystem“ dar, so erhält man genau die Zahlen der Form 0.a1a2a3 . . . mit aj 6= 1

für alle j. Diese Menge ist aber offensichtlich gleichmächtig zur Menge [0, 1] ⊂ R dargestellt
im Dualsystem, also überabzählbar.

Definition 15. Sei φ ein Maß auf Rn.

(i) Zwei Funktionen f, g : Rn → R heißen φ-gleich, wenn es eine φ-Nullmenge N gibt, so
dass

f |Rn \N = g|Rn \N .

Wir schreiben das als
f =φ g.

Analog definiert man f ≤φ g etc.
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(ii) Eine Folge (fi) von Funktionen heißt φ-konvergent gegen eine Funktion f , wenn es
eine φ-Nullmenge N gibt, so dass lim fi(x) = f(x) für alle x /∈ N . Wir schreiben das
als

lim fi =φ f.

(iii) Man sagt f : Rn → R ist eine φ-definierte Funktion, wenn f auf dem Komplement
einer φ-Nullmenge N definiert ist, eigentlich also eine Abbildung f : Rn \N → R ist.

Wenn klar ist, von welchem Maß die Rede ist, sagt man auch einfach
”
f und g sind fast-

überall gleich“, (fi) ist
”
fast-überall konvergent‘“, f ist

”
fast-überall definiert“ etc.

In unserem Aufbau der Lebesgueschen Integrationstheorie spielen monotone Funktionen-
folgen eine wichtige Rolle. Eine einfache Situation beschreibt das folgende Lemma, dessen
Beweis erstaunlich schwierig ist.

Lemma 16 (Monotone Nullfolgen von Treppenfunktionen). Sei (hm)m∈N eine Folge
von Treppenfunktionen mit

(i) hm ≥ 0 für alle m ∈ N,

(ii) hm(x) ≥ hm+1(x) für alle m ∈ N und x ∈ Rn,

(iii) limm→∞ hm =φ 0.

Dann gilt

lim
m→∞

∫
hm dφ = 0.

Beweis. Wegen der Monotonie genügt es zu zeigen: Zu jedem ǫ > 0 gibt es ein m0 mit

∫
hm0dφ < ǫ.

Sei also ǫ > 0. Wir wählen ein kompaktes Intervall K ∈ I(Rn), auf dessen Komplement h0

und damit jedes hm verschwinden, und ein M > 0 mit h0 ≤Mχ
K

.

Zu jedem hm wählen wir endlich viele paarweise disjunkte Intervalle Jmρ ⊂ K (1 ≤ ρ ≤ rm),
so dass

hm =

rm∑

ρ=1

αmρχJmρ

und
⋃rm

ρ=1 Jmρ = K. Das ist möglich nach dem Zerlegungslemma angewendet auf K und die
Konstanzintervalle von hm.

Damit definieren wir
S :=

{
(m, ρ)

∣∣αmρ < ǫ
}
.

Sei N eine φ-Nullmenge, auf deren Komplement limm→∞ hm = 0 ist, und sei dazu (J̃k)k∈N

eine Folge offener Intervalle mit

N ⊂
⋃

k∈N

J̃k und
∞∑

k=0

φ(J̃k) < ǫ.
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Wir wollen auch die Jmρ durch offene Intervalle ersetzen, um die Kompakheit von K aus-
nutzen zu können. Wir wählen dazu für jedes (m, ρ) eine Zahl ǫmρ > 0 mit

∞∑

m=0

rm∑

ρ=1

ǫmρ < 1,

etwa ǫmρ = 1
2m+ρ+1 , und ein offenes Intervall J̃mρ mit

J̃mρ ⊃ Jmρ und φ(J̃mρ) − φ(Jmρ) < ǫmρǫ.

Ist limhm(x) = 0, so gibt es ein m mit hm(x) < ǫ, d.h ein (m, ρ) ∈ S mit x ∈ Jmρ.

Andernfalls ist x ∈ N , also enthalten in einem J̃k. Daher ist

K ⊂
(
⋃

S

J̃mρ

)
∪
(
⋃

N

J̃k

)
.

Weil K kompakt ist, gibt es eine endliche Teilmenge S0 ⊃ S und ein l ∈ N, so dass

K ⊂
(
⋃

S0

J̃mρ

)
∪




⋃

k≤l

J̃k



 =

(
⋃

S0

Jmρ

)
∪
(
⋃

S0

J̃mρ \ Jmρ

)
∪




⋃

k≤l

J̃k



 . (5)

Sei m0 das größte der in S0 vorkommenden m’s und sei x ∈ K.

• Gibt es (m, ρ) ∈ S0 mit x ∈ Jmρ, so ist hm0
(x) ≤ hm(x) = αmρ < ǫ.

• Ist x in einer der beiden letzten Teilmengen von (5), so ist jedenfalls hm0
(x) ≤M .

Also ist
hm0

≤ ǫ
∑

S0

χ
Jmρ

︸ ︷︷ ︸
≤χ

K

+M
∑

S0

χ
J̃mρ \ Jmρ

+M
∑

k≤l

χ
J̃k

Mit der Monotonie des Integrals erhalten wir
∫
hm0

dφ ≤ ǫφ(K) +M(
∑

ǫmρ)ǫ+Mǫ < (φ(K) + 2M)ǫ.

Als Folgerung erhalten wir

Lemma 17. Für I ∈ I(Rn) gilt

I ist φ-Nullmenge ⇐⇒ φ(I) = 0.

Beweis. Zu (⇐). Trivial: Überdecke I durch sich selbst und eine Folge leerer Intervalle.

Zu ( =⇒ ). Die Folge (hm := χ
I
)m∈N ist eine monoton fallende Folge nicht-negativer Trep-

penfunktionen, die für alle x /∈ I gegen 0 konvergiert. Nach Voraussetzung ist sie also
φ-konvergent gegen 0. Daher gilt

φ(I) =

∫
hm dφ→ 0.
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Lemma 18. Sind f, g ∈ T (Rn) mit f =φ g, so ist für jedes Maß φ

∫
fdφ =

∫
gdφ.

Beweis. Ohne Einschränkung können wir annehmen, dass

f =
∑

µ

aµχIµ
, g =

∑

µ

bµχIµ

mit denselben paarweise disjunkten Intervallen. Dann ist

∫
fdφ =

∑

µ

aµφ(Iµ),

∫
gdφ =

∑

µ

bµφ(Iµ).

Aus aµ 6= bµ folgt nach Voraussetzung, dass Iµ eine φ-Nullmenge ist, nach dem vorstehenden
Lemma also φ(Iµ) = 0 gilt. Damit folgt die Behauptung.

Im Zusammenhang mit der Monotonie werden wir es im folgenden häufig zu tun haben mit
dem Supremum von zwei (oder mehr) Funktionen:

Definition 19. Wir definieren

sup(f, g)(x) := sup(f(x), g(x)).

(Man könnte das auch das Maximum nennen, ist aber nicht üblich).

Machen Sie sich klar, dass für reelle Zahlen(folgen) gilt

a > 0 =⇒ sup(a+ b, 0) ≤ a+ sup(b, 0), (6)

sup(a, b) ≤ sup(a, 0) + sup(b, 0), (7)

lim ai = a und lim bi = b =⇒ lim sup(ai, bi) = sup(a, b). (8)

Lemma 20. Das Lemma 16 gilt auch ohne die Voraussetzung (i).

Beweis. Definiere gm := sup(hm, 0). Die Treppenfunktion gm entsteht also aus der Treppen-
funktion hm, indem man auf den Konstanzintervallen mit negativem Funktionswert diesen
durch 0 ersetzt. Ist hm < 0 auf einem Intervall I ∈ I(Rn), so konvergiert hm(x) wegen der
Monotonie für kein x ∈ I gegen Null. Weil aber limhm =φ 0, ist I eine φ-Nullmenge, d.h.

gm =φ hm

und ∫
gmdφ =

∫
hmdφ.

Dann erfüllt (gm)m∈N die Voraussetzungen (i)-(iii) des Lemma 16, und daher ist

0 = lim
m→∞

∫
gmdφ = lim

m→∞

∫
hmdφ.
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1.3 Das Integral auf L1
+(φ)

• Wir erweitern nun den Integralbegriff auf Grenzwerte monoton wachsender Folgen von
Treppenfunktionen. Weil die Integralfolge dann ebenfalls monoton wachsend ist, muss
sie beschränkt sein um zu konvergieren.

• Die so erhaltene Klasse L1
+(φ) von Funktionen ist sehr groß, sie umfasst insbesondere

alle stetigen Funktionen mit kompaktem Träger und im Fall vo φ = µ1 alle Regelfunk-
tionen.

• Wir untersuchen die elementaren Eigenschaften des Integrals auf der Klasse L1
+(φ).

Sei φ ein Maß auf Rn.

Definition 21. Wir bezeichnen mit L1
+(φ) die Menge aller Funktionen f : Rn → R mit

folgender Eigenschaft:

Es gibt eine monoton wachsende Folge von Treppenfunktionen (fi)i∈N

mit beschränkter Integralfolge (
∫
fi dφ)i∈N, so dass lim fi =φ f .

(9)

Wegen der Monotonie des Integrals auf Treppenfunktionen ist die beschränkte Folge (
∫
fi dφ)i∈N

konvergent. Wir zeigen, dass der Limes nur von f abhängt und bezeichnen ihn mit
∫
f dφ.

Wir nennen der Einfachheit halber (fi)i∈N eine (integral)definierende Treppenfunktionsfolge
zu f .

Lemma 22. Seien (fi), (gi) monoton wachsende, φ-konvergente Folgen von Treppenfunk-
tionen mit beschränkten Integralfolgen und

f := lim
i→∞

fi ≤φ lim
i→∞

gi =: g.

Dann gilt

lim
i→∞

∫
fi dφ ≤ lim

i→∞

∫
gi dφ.

Steht links Gleichheit, so auch rechts, und daraus folgt die gewünschte Unabhängigkeit der
Integraldefinition von der Wahl der definierenden Treppenfunktionsfolge.

Beweis. Wegen der Monotonie der Folgen ist

fi ≤φ f, gi ≤φ g,

Wir wählen i ∈ N und definieren

hj = sup(0, fi − gj).

Dann ist (hj)j∈N eine monoton fallende Folge nicht negativer Treppenfunktionen, und weil
fi ≤φ f ≤φ g, ist

lim
j→∞

hj =φ sup(fi − g, 0) =φ 0. (10)

Nach Lemma 16 ist daher

0 = lim
j→∞

∫
hjdφ ≥ lim

j→∞

∫
(fi − gj) dφ =

∫
fidφ− lim

j→∞

∫
gjdφ.
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Also ist für alle i ∫
fidφ ≤ lim

j→∞

∫
gjdφ.

Daraus folgt mit i→ ∞ die Behauptung.

Weiter gilt folgendes

Lemma 23. Ist f ∈ L1
+(φ) und g =φ f , so ist g ∈ L1

+(φ) und

∫
g dφ =

∫
f dφ.

Beweis. Ist (fi) eine definierende Treppenfunktionsfolge für f , so ist es auch eine solche für
g. Daraus folgt die Behauptung.

Beispiel 24. Weil Q eine µ1-Nullmenge ist, gilt für die charakteristische Funktion

f := χ
Q

=µ1
0 ∈ L1

+(µ1).

Also ist f ∈ L1
+(µ1) und

∫
f dµ1 = 0. Dagegen ist f |[0,1] keine Regelfunktion und nicht

Riemann-integrierbar.

Satz 25. Seien f, g ∈ L1
+(φ) und a ≥ 0. Dann gilt

(i) f + g ∈ L1
+(φ) und

∫
(f + g) dφ =

∫
fdφ+

∫
gdφ.

(ii) af ∈ L1
+(φ) und

∫
afdφ = a

∫
fdφ.

(iii) f ≤φ g =⇒
∫
fdφ ≤

∫
gdφ.

(iv) sup(f, g) ∈ L1
+(φ).

Beweis. Zu (i) und (ii). Folgen sofort aus der Definition des Integrals für L1
+(φ) und den

entsprechenden Aussagen für Treppenfunktionen.

Zu (iii). Das ist Lemma 22.

Zu (iv). Sind (fi)i und (gi)i definierende Folgen von Treppenfunktionen zu f und g, so ist

sup(f0, g0) ≤ sup(f1, g1) ≤ . . .

eine monoton wachsende Folge von Treppenfunktionen(!) mit

lim
i

(sup(fi, gi)) =φ sup(f, g).

Ist die Integralfolge beschränkt?

sup(fi, gi) ≤
(7)

sup(fi, 0) + sup(0, gi) = sup(fi − f0︸ ︷︷ ︸
≥0

+f0, 0) + sup(0, gi − g0︸ ︷︷ ︸
≥0

+g0)

≤
(6)
fi − f0 + sup(f0, 0) + gi − g0 + sup(0, g0)

= fi + gi − (f0 + g0 − sup(f0, 0) − sup(0, g0))︸ ︷︷ ︸
=:h0

= fi + gi − h0.
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Daher gilt nach der Monotonie des Integrals für Treppenfunktionen

∫
sup(fi, gi)dφ ≤

∫
fidφ+

∫
gidφ−

∫
h0dφ,

und mit (
∫
fidφ)i, (

∫
gidφ)i ist auch diese Integralfolge beschränkt.

Beispiel 26. L1
+(φ) ist kein Vektorraum:

Sei Ij := [ 1
4j+1 ,

1
4j [. Dann definiert

fk :=
k∑

j=0

2jχ
Ij

eine monoton wachsende Folge von Treppen-
funktionen mit beschränkter µ1-Integralfolge

∫
fkdµ1 =

k∑

j=0

2j 3

4j+1
<

3

2
. 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

f
2

Also ist

f = lim fk =
∞∑

j=0

2jχ
Ij

∈ L1
+(µ1).

Dagegen ist −f /∈ L1
+(µ1), weil jede Treppenfunktion nach unten beschränkt und deshalb

auf einem Intervall ]0, 1
4k [ größer als f ist. Daher gibt es keine monoton wachsende Folge

von Treppenfunktionen, die µ1-fast-überall gegen f konvergiert.

Satz 27. Sei f : Rn → R beschränkt mit kompaktem Träger2. Ist die Menge der Unstetig-
keitsstellen von f eine φ-Nullmenge, so ist f ∈ L1

+(φ). Insbesondere sind stetige Funktionen
f : Rn → R mit kompaktem Träger in L1

+(φ) für jedes Maß φ.

Beweis. Sei K = [−R,R]n] ∈ I(Rn) ein kompakter Würfel, der den Träger von f enthält,
und sei diam(K) der Durchmesser von K.

Durch i-fache Halbierung in jeder Koordinatenrichtung erhält man 2ni Intervalle vom Durch-
messer (

1

2

)i

diam(K),

die sich an den Rändern überlappen. Durch Anwendung des Zerlegungslemmas auf die In-
tervalle der i-ten Stufe erhält man paarweise disjunkte Intervalle

Ji0, . . . , Jiri

mit folgenden Eigenschaften

2Der Träger einer Funktion f ist die abgeschlossene Hülle der Punktmenge
˘

x
˛

˛ f(x) 6= 0
¯

.
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(i)

K =

ri⋃

j=0

Jij

(ii) Für alle j ist

diamJij ≤
(

1

2

)i

diamK.

(iii) Jedes J(i+1)j ist enthalten
in einem Jij′ .

Wir setzen

αij := inf
{
f(x)

∣∣x ∈ Jij

}
und fi :=

ri∑

j=1

αijχJij
.

Dann ist (fi) eine Folge von Treppenfunktionen. Wegen (i) und (iii) ist die Folge monoton
wachsend. Weiter gilt für alle i

fi ≤ sup
x
f(x)χ

K
.

Deshalb ist die Integralfolge (
∫
fi dφ) beschränkt durch supx f(x)φ(K).

Aus der ǫ-δ-Definition der Stetigkeit folgt schließlich mit (i), (ii), dass limi→∞ fi(x) = f(x)
in allen Stetigkeitspunkten x von f . Also ist nach Voraussetzung limi→∞ fi =φ f und (fi)i∈N

eine definierende Treppenfunktionsfolge für f .

Beispiel 28. Der Rand eines Intervalls I ∈ I(Rn) ist die Vereinigung von endlich vielen
(n − 1)-dimensionalen Intervallen, also eine µn-Nullmenge. Ist daher f : I → R stetig und
beschränkt, und setzt man

f̃(x) :=

{
f(x) für x ∈ I

0 sonst,

so ist nach dem vorstehenden Satz f̃ ∈ L1
+(µn).

In diesem Sinne sind also stetige Funktionen auf kompakten Intervallen in L1
+(µn). Vergleiche

auch Beispiel 67.

Satz 29 (Regel- und Lebesgueintegral). Sei f : [a, b] → R eine Regelfunktion. Wir
setzen f(x) := 0 für x /∈ [a, b]. Dann gilt f ∈ L1

+(µ1) und

∫
fdµ1 =

∫ b

a

f(x)dx.

Beweis. Sei (ǫi)i∈N eine positive Nullfolge. Nach Definition der Regelfunktionen gibt es dazu
eine Folge (fi)i∈N von Treppenfunktionen, so dass

fi − ǫiχ[a, b]
≤ f ≤ fi + ǫiχ[a, b]

.
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Wir definieren Treppenfunktionen

gi := fi − ǫiχ[a, b],

hi := sup(g0, . . . , , gi).

Dann ist (hi)i∈N monoton wachsend, und offenbar

gi ≤ hi ≤ f ≤ sup(|f |)χ[a, b].

Für alle x ∈ R ist
lim gi(x) = lim fi(x) − lim ǫiχ[a, b]

= f(x)

und daher
lim

i→∞
hi(x) = f(x).

Die Integralfolge der hi ist durch sup(|f |)(b− a) beschränkt. Also ist f ∈ L1
+(µ1), und nach

Definition des Regel- und des Lebesgueintegrals ist

∫
fdµ1 =

∫ b

a

f(x)dx.
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1.4 Das Integral auf L1(φ)

• Die Klasse L1
+(φ) ist zwar sehr groß, aber noch nicht groß genug: Sie ist, wie das Bei-

spiel 26 gezeigt hat, nicht abgeschlossen bezüglich Differenzbildung. Dieses Manko ist
leicht zu beheben. Damit ist dann die Definition des Lebesgueintegrals abgeschlossen.

Sei φ ein Maß auf Rn.

Definition 30. (i) Wir nennen

L1(φ) :=
{
f − g

∣∣ f, g ∈ L1
+(φ)

}

die Menge der bezüglich φ (Lebesgue-)integrierbaren Funktionen.

(ii) Für h ∈ L1(φ) und f, g ∈ L1
+(φ) mit h = f − g definieren wir das Integral von h als

∫
hdφ :=

∫
fdφ−

∫
gdφ.

Es ist leicht zu sehen, dass diese Definition unabhängig von der Wahl von (f, g) ist:

Sind f, g, f̃ , g̃ ∈ L1
+(φ) und gilt

f − f̃ ≤φ g − g̃,

so folgt f + g̃ ≤φ f̃ + g. Nach Satz 25 ist dann
∫
fdφ+

∫
g̃dφ ≤

∫
f̃dφ+

∫
gdφ und daher

∫
fdφ−

∫
gdφ ≤

∫
f̃dφ−

∫
g̃dφ.

φ-Gleichheit der Funktionen impliziert die Gleichheit der Integrale.

Satz 31. (i) L1(φ) ist ein R-Vektorraum und

∫
. . . dφ : L1(φ) → R

ist linear.

(ii) Für f, g ∈ L1(φ) gilt

f ≤φ g =⇒
∫
fdφ ≤

∫
gdφ.

(iii) Für f, g ∈ L1(φ) gilt
sup(f, g), inf(f, g) ∈ L1(φ).

(iv) Mit f ∈ L1(φ) ist auch |f | ∈ L1(φ), und es gilt

|
∫
fdφ | ≤

∫
|f |dφ.

Beweis. Zu (i). dass L1(φ) ein Vektorraum ist, ist klar. Die Linearität ergibt sich leicht
aus Satz 25.

Zu (ii). Siehe oben
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Zu (iii). Für f = f1 − f2 mit f1, f2 ∈ L1
+(φ) zeigt man durch Fallunterscheidung nach dem

Vorzeichen von f1 − f2:
sup(f, 0) = sup(f1, f2)︸ ︷︷ ︸

∈L1
+(φ)

− f2︸︷︷︸
∈L1

+(φ)

.

Also ist sup(f, 0) ∈ L1(φ). Daraus folgt für f, g ∈ L1(φ)

sup(f, g) = sup(f − g, 0)︸ ︷︷ ︸
∈L1(φ)

+ g︸︷︷︸
∈L1(φ)

∈ L1(φ).

Weiter folgt
inf(f, g) = − sup(−f,−g) ∈ L1(φ).

Zu (iv). Aus (iii) und
|f | = sup(f, 0) + sup(−f, 0)

folgt |f | ∈ L1(φ). Aber −|f | ≤ f ≤ |f |, und die Monotonie liefert

−
∫

|f |dφ ≤
∫
fdφ ≤

∫
|f |dφ.

Korollar 32. Seien f ∈ L1(φ) und g =φ f . Dann gilt g ∈ L1(φ) und

∫
fdφ =

∫
gdφ.

Beweis. Sei f = f1 − f2 mit fi ∈ L1
+(φ). Dann folgt

f̃1 := g + f2 =φ f + f2 = f1.

Nach Lemma 23 ist f̃1 ∈ L1
+(φ) und daher

g = f̃1 − f2 ∈ L1(φ).

Die Gleichheit der Integrale folgt dann aus Punkt (ii) im vorstehenden Satz.
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2 Die Konvergenzsätze

Die meisten
”
in der Praxis“ vorkommenden Funktionen sind integrierbar bezüglich aller

gängigen Integralbegriffe. Der Vorteil des Lebesgueschen Integrals gegenüber dem Riemann-
schen oder dem Regelintegral ist sein angenehmes Verhalten bei Grenzwertprozessen im In-
tegranden. Das ist zum Beispiel wichtig, wenn es um die Konvergenz von Approximations-
oder Iterationsverfahren geht.

2.1 Der Konvergenzsatz von Beppo Levi

• Der Satz von Beppo Levi über die Integration monotoner Funktionenfolgen ist die
erste “Belohnung” für die mühevolle Integraldefinition.

• Als Anwendungen erhalten wir ein Kriterium für Integrabiltät und den Beweis, dass
alle Riemann-integrierbaren Funktionen auch Lebesgue-integrierbar sind.

• Das Lemma von Fatou ist ein Grenzwertsatz ohne Monotonievoraussetzung.

Sei φ ein Maß auf Rn.

Das folgende Lemma besagt, dass L1(φ) und L1
+(φ)

”
nicht so stark von einander abweichen“.

Wir werden später beweisen, dass bezüglich einer sehr natürlichen Norm auf dem Vektorraum
L1(φ) der Unterraum L1

+(φ) dicht ist: die abgeschlossene Hülle von L1
+(φ) ist L1(φ). Im

Augenblick benötigen wir das Lemma, um Eigenschaft von L1
+(φ) auf L1(φ) zu übertragen.

Lemma 33. Seien f ∈ L1(φ) und ǫ > 0. Dann gibt es g, h ∈ L1
+(φ) mit folgenden Eigen-

schaften:

(i) f = g − h,

(ii) h ≥ 0,

(iii)
∫
h dφ < ǫ.

Beweis. Nach Definition von L1(φ) gibt es g1, h1 ∈ L1
+(φ) mit

f = g1 − h1.

Sei (si) eine definierende Folge von Treppenfunktionen zu h1 und k ∈ N, so dass für das im
Lemma vorgegebene ǫ gilt:

0 ≤
∫
h1 dφ−

∫
sk dφ < ǫ.

Dann gilt mit h2 = h1 − sk, g2 = g1 − sk:

h2, g2 ∈ L1
+(φ), f = g2 − h2,

∫
h2 dφ < ǫ.

Weil die Folge (si) monoton wachsend und lim si =φ h1, ist

h2 ≥φ 0.

Das ist fast die Behauptung des Lemmas, nur ist h2 möglicherweise auf einer φ-Nullmenge
negativ. Wir setzen daher h := sup(h2, 0) ∈ L1

+(φ) und g := f +h. Da diese Funktionen nur
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auf einer φ-Nullmenge von h2 und g2 abweichen, sind sie ebenfalls in L1
+(φ) und erfüllen die

Behauptung.

Satz 34 (von Beppo Levi über monotone Konvergenz). Sei

f0 ≤φ f1 ≤φ f2 ≤φ . . . ,

eine φ−monoton wachsende Folge in L1(φ) mit beschränkter Integralfolge: Es gibt A ∈ R
mit ∫

fi dφ ≤ A für alle i ∈ N.

Dann gibt es f ∈ L1(φ) mit

f =φ lim
i→∞

fi,
∫
fdφ = lim

i→∞

∫
fidφ.

Analoges gilt für φ-monoton fallende Folgen: Betrachte (−fi)i∈N.

Beweis. Ohne Einschränkung können wir annehmen, dass

0 = f0 ≤ f1 ≤ f2 ≤ . . .

mit überall geltenden Ungleichungen. Die Folge

f̃i := sup(f0 − f0, f1 − f0, f2 − f0, . . . , fi − f0)

hat nämlich diese Eigenschaften, und es gilt f̃i =φ fi − f0 für alle i.

Den Beweis führen wir entsprechend der Definition des Integrals in drei Schritten.

1. Schritt. Seien die fi Treppenfunktionen. Weil monotone beschränkte Folgen konvergent
sind, müssen wir nur zeigen:

N :=
{
x
∣∣ (fi(x))i unbeschränkt

}
ist eine φ-Nullmenge. (11)

Dann ist (fi)i∈N φ-konvergent, und aus der Definition von L1
+(φ) folgt der Rest der Behaup-

tung.

Sei ǫ > 0. Wir suchen eine Intervallfolge (Ij), die N überdeckt und für die
∑∞

j=0 φ(Ij) < ǫ.

Mit der oberen Schranke A für die Integralfolge setzen wir

Ei :=

{
x

∣∣∣∣ fi(x) >
2A

ǫ

}
.

Weil f0 = 0, ist E0 = ∅. Wegen der Monotonie von (fi) ist

Ei ⊂ Ei+1,

und nach Definition von N ist

N ⊂
∞⋃

i=0

Ei.

Nun ist fi eine Treppenfunktionen, und Ei deshalb Vereinigung endlich vieler disjunkter
Intervalle. Also sind die χ

Ei
und damit die Funktionen χ

Ei \Ei−1
= χ

Ei
− χ

Ei−1
Treppen-

funktionen. Daher gibt es eine monoton wachsende Folge natürlicher Zahlen (ri)i∈N und eine
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Folge paarweise disjunkter Intervalle (Ij)j∈N in I(Rn), so dass

χ
Ei \Ei−1

=

ri∑

j=ri−1+1

χ
Ij
.

Es folgt

Ei =
⋃̇

0≤j≤ri

Ij und N ⊂
⋃

j∈N

Ij .

Weil fi ≥ 0, ist nach Definition von Ei

fi ≥
2A

ǫ
χ
Ei

=
2A

ǫ

ri∑

j=0

χ
Ij
,

und daher

A ≥
∫
fi dφ ≥ 2A

ǫ

ri∑

j=0

φ(Ij)

oder ∞∑

j=0

φ(Ij) ≤ A
ǫ

2A
< ǫ.

Damit ist (11) bewiesen.

2. Schritt. Seien nun die fi ∈ L1
+(φ) mit fi ≤ fi+1. Nach Definition von L1

+(φ) gibt es dann
zu jedem i eine monoton wachsende Folge von Treppenfunktionen (sij)j∈N mit

lim
j→∞

sij =φ fi und lim
j→∞

∫
sij dφ =

∫
fi dφ.

Die Funktionen
sk := sup

i,j≤k
sij .

sind Treppenfunktion. Offenbar gilt
sk ≤ sk+1.

Aus der Monotonie und φ-Konvergenz von (sij)j∈N sowie der Monotonie von (fi)i∈N folgt

sij ≤φ fi ≤ fk für alle i, j ≤ k,

und daher

sk ≤φ fk und

∫
sk dφ ≤

∫
fk dφ ≤ A. (12)

Nach dem 1. Schritt ist die Folge (sk) daher φ-konvergent gegen eine Funktion f ∈ L1(φ)
und lim

∫
sk dφ =

∫
f dφ. Es bleibt zu zeigen, dass

fk ≤φ f, (13)

dann folgt aus (12) die Behauptung. Für i ≤ k ist

sik ≤ sk ≤φ f.

Für k → ∞ geht die linke Seite aber fast überall gegen fi, und damit folgt (13).

3. Schritt. Seien nun die fi ∈ L1(φ). Wir schreiben mit Hilfe von Lemma 33

fi =
i∑

j=1

(fj − fj−1) =
i∑

j=1

(gj − hj) =
i∑

j=1

gj

︸ ︷︷ ︸
=:g̃i

−
i∑

j=1

hj

︸ ︷︷ ︸
=:h̃i

.
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Dabei seien gj , hj ∈ L1
+(φ) mit

fj − fj−1 = gj − hj , hj ≥ 0,

∫
hjdφ ≤ 1

2j+1
.

Weil die fj − fj−1 wegen der vorausgesetzten Monotonie nicht negativ sind, sind mit den

hj auch die gj ≥ 0. Dann sind aber (g̃i)i∈N und (h̃i)i∈N monoton wachsende Folgen von
L1

+(φ)-Funktionen mit beschränkten Integralfolgen

∫
h̃idφ <

∞∑

j=1

1

2j+1
= 1,

∫
g̃idφ =

∫
h̃idφ+

∫
fidφ < 1 +A.

Nach dem 2. Schritt sind sie φ-konvergent gegen g ∈ L1(φ) bzw. h ∈ L1(φ), und die Integrale
konvergieren gegen

∫
gdφ bzw.

∫
hdφ.

Damit ist fi = g̃i − h̃i für i→ ∞ fast überall konvergent gegen f := g − h ∈ L1(φ) und die
Integrale konvergieren gegen

∫
fdφ.

Korollar 35 (Integrierbarkeitskriterium). Seien f : Rn → R und (Ij)j∈N eine Folge
von Intervallen mit folgenden Eigenschaften

(i) f ≥φ 0.

(ii) I0 ⊂ I1 ⊂ I2 ⊂ . . . und
⋃

j∈N Ij = Rn.

(iii) Für alle j ∈ N ist
fχ

Ij
∈ L1(φ).

(iv) Die Integralfolge (
∫
fχ

Ij
dφ)j∈N ist beschränkt.

Dann gilt f ∈ L1(φ) und ∫
fdφ = lim

j→∞

∫
fχ

Ij
dφ.

Zusatz: Ist die Integralfolge unbeschränkt, so ist f /∈ L1(φ).

Beweis. Die Folge (fχ
Ij

)j∈N erfüllt die Voraussetzungen des Beppo Levi, und sie konvergiert

überall gegen f . Daraus folgt die Behauptung. Den Zusatz beweisen Sie selbst.

Beispiel 36. Konkret betrachten wir

f =
1

x2
χ

[1,∞[
: R → R

bezüglich φ = µ1 und die Intervallfolge Ij := [−j, j]. Dann ist fχ
Ij

eine Regelfunktion und

nach Satz 29 ist ∫
fχ

Ij
=

∫ j

1

dx

x2
= − 1

x

∣∣∣∣
j

1

= 1 − 1

j
< 1.

Es folgt f ∈ L1(µ1) und ∫
f dµ1 =

∫ ∞

1

dx

x2
= 1.
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Korollar 37. Sei f ∈ L1(φ), f ≥φ 0 und
∫
fdφ = 0. Dann ist f =φ 0.

Beweis. Die Folge (if)i ist wegen f ≥φ 0 monoton wachsend und hat eine beschränkte
Integralfolge:

∫
(if) dφ = i

∫
(f) dφ = 0. Also ist (if) fast-überall konvergent. Das ist aber

nur der Fall, wenn f =φ 0.

Beispiel 38 (Lebesgueintegral und Riemannintegral). Sei f : R → R. Zu jedem ǫ > 0
gebe es Treppenfunktionen g, h, so dass

g ≤ f ≤ h und

∫
(h− g) dµ1 < ǫ.

Dann hat f kompakten Träger in einem Intervall [a, b], und die vorstehende Bedingung
bedeutet gerade, dass f über [a, b] im Sinne von Riemann integrierbar ist.

Man findet (mittels sup- und inf-Bildung) Folgen (gi), (hi) von Treppenfunktionen mit

gi ≤ gi+1 ≤ f ≤ hi+1 ≤ hi und

∫
(hi − gi) dµ1 <

1

i
.

Diese sind nach dem Satz von B. Levi µ1-konvergent gegen g, h ∈ L1(µ1) mit

g ≤µ1
f ≤µ1

h und

∫
(h− g) dµ1 = 0.

Nach dem Korollar ist g =µ1
h, also f =µ1

g und daher f ∈ L1(µ1). Weiter folgt

∫
f dµ1 =

∫
g dµ1 = lim

∫
gi dµ1 =

∫ b

a

f(x)dx.

Folgerung: Ist f : [a, b] → R integrierbar im Sinne von Riemann, so ist die außerhalb von
[a, b] mit 0 fortgesetzte Funktion f̃ integrierbar bezüglich µ1. Kurz: Riemann-integrierbare
Funktionen sind Lebesgue-integrierbar und ihr Riemannsches Integral ist gleich dem Lebes-
gueschen.

Das gilt mit derselben Argumentation auch auf dem Rn.

Aber das Grenzwertverhalten für Folgen integrierbarer Funktionen ist in der Lebesgueschen
Theorie viel besser als beim Regel- oder Riemannintegral:

Beispiel 39. Wir betrachten die Folge (fi)i∈N mit

fi := χ[0, 1] ∩ 1
i!

Z
.

Also ist fi(x) = 1, wenn 0 ≤ x ≤ 1 und i!x ∈ Z, und sonst = 0. Offenbar gilt

fi ≤ fi+1 ≤ χ[0, 1]

und
f := lim

i→∞
fi = χ

[0, 1] ∩ Q
.

Die fi sind Treppenfunktionen, insbesondere also Regel- und Riemann-integrierbar. Ihr
Grenzwert f ist zwar beschränkt, aber keine Regelfunktion und nicht Riemann-integrierbar.
Nach dem Satz von Beppo Levi (oder weil f =µ1

0) ist f aber bezüglich µ1 Lebesgue-
integrierbar und

∫
fdµ1 = lim

∫
fidµ1 = 0.
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Wenn man im Satz von Beppo Levi auf die Voraussetzung der Monotonie verzichtet, wird
die Behauptung falsch, wie das Beispiel der Folge fi = (−1)iχ

[0, 1]
)i∈N in L1(µ1) zeigt. Setzt

man aber schon voraus, dass die Folge (fi)i∈N von L1(φ)-Funktionen fast überall gegen eine
Funktion f konvergiert, so kann man fragen, unter welchen Voraussetzungen f ∈ L1(φ) ist
und was man über

∫
f dφ weiß. Eine Antwort darauf gibt das folgende Lemma von Fatou,

eine andere der Konvergenzsatz von Lebesgue im nächsten Abschnitt.

Um diesen Themenkreis aber wirklich gut zu verstehen, müßte man Beispiele haben, in
denen die Grenzfunktion nicht integrierbar ist. Nichtintegrierbarkeit kann grob gesprochen
drei Ursachen haben:

• Die Funktion ist “zu unbeschränkt”, ihre Werte werden zu groß.

• Die Funktionswerte für großes ‖x‖ gehen nicht schnell genug gegen 0.

• Die Funktion ist zu “zappelig”, zu irregulär.

Die Folgen ( 1
xχ[ 1

i+1
, 1])i∈N oder (χ[−i, i])i∈N liefern Grenzfunktionen, die aus dem ersten oder

zweiten Grund nicht µ1-integriebar sind. Nicht integrierbare Funktionen der dritten Art, also
nicht integrierbare beschränkte reelle Funktionen mit kompaktem Träger sind außerordentlich
schwierig zu finden. Vergleichen Sie dazu Beispiel 74.

Satz 40 (Lemma von Fatou). Sei (fi)i∈N eine Folge nicht negativer Funktionen in
L1(φ) mit beschränkter Integralfolge

∫
fi dφ ≤ A.

Sie sei φ-konvergent gegen f : Rn → R. Dann ist f ∈ L1(φ) und

∫
fdφ ≤ lim inf

∫
fi dφ ≤ A.

Beweis. Zunächst ist die Folge

gi := inf(f0, f1, . . . , fi)

monoton fallend und gi ≥φ 0. Also ist die Integralfolge beschränkt, und nach dem Satz von
Beppo Levi ist die Folge φ-konvergent gegen die integrierbare Funktion

h0 := inf(f0, f1, . . .) ∈ L1(φ).

Nach demselben Argument sind die Funktionen

hi := inf(fi, fi+1, . . .)

integrierbar, und sie bilden eine monoton wachsende Folge. Wegen hi ≤ fi ist die Inte-
gralfolge der hi durch A nach oben beschränkt, und nach dem Satz von Beppo Levi ist hi

φ-konvergent gegen eine Funktion h ∈ L1(φ) mit
∫
h dφ ≤ A. Andrerseits ist außerhalb einer

φ-Nullmenge
f(x) = lim fi(x) = lim inf fi(x) = h(x).

Also ist f ∈ L1(φ) und
∫
f dφ ≤ A.
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Ist weiter B := lim inf
∫
fi dφ, so gibt es eine Teilfolge (fik

), für die B = limk

∫
fik

dφ.
Also gibt es zu jedem ǫ > 0 eine Teilfolge (fik

) mit
∫
fik

dφ ≤ B + ǫ für alle k. Weil auch
limk fik

=φ f , folgt nach dem oben Bewiesenen

∫
f dφ ≤ B + ǫ

für jedes ǫ > 0 und daraus

∫
fdφ ≤ B = lim inf

∫
fi dφ.

Beispiel 41. Betrachten Sie (fi = χ[i, i+ 1])i∈N bezüglich µ1.
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2.2 Der Konvergenzsatz von Lebesgue

• Dieses ist neben Beppo Levi und Fatou der dritte wichtige Konvergenzsatz der Lebes-
gueschen Theorie.

• Als Anwendung erhalten wir einen oft benutzen Satz über die Differentiation von Inte-
gralen nach einem Parameter im Integranden. Wir untersuchen auch die Notwendigkeit
der dabei gemachten Voraussetzungen.

• Eine Anwendung des Differentiationssatzes ist die “Glättung” stetiger Funktionen
durch Faltung mit einer geeigneten “Kernfunktion”. (Gleitender Mittelwert)

Sei φ ein Maß auf Rn.

Satz 42 (von Lebesgue über dominierte Konvergenz). Sei (fi)i∈N eine Folge in
L1(φ), die durch eine Funktion g ∈ L1(φ) dominiert wird:

|fi| ≤φ g für alle i.

Weiter sei die Folge φ-konvergent gegen eine Funktion f : Rn → R:

f =φ lim
i→∞

fi.

Dann folgt

f ∈ L1(φ) und

∫
fdφ = lim

i→∞

∫
fidφ.

Beweis. Die Folgen (g + fi)i∈N und (g − fi)i∈N in L1(φ) erfüllen die Voraussetzungen des
Lemmas 40 von Fatou (mit A = 2

∫
g dφ).

Nach dem Lemma ist g ± f ∈ L1(φ), also auch f ∈ L1(φ), und es gilt

lim inf

∫
(g + fi) dφ ≥

∫
(g + f) dφ und lim inf

∫
(g − fi) dφ ≥

∫
(g − f) dφ.

Daher ist

lim inf

∫
fi dφ ≥

∫
f dφ (14)

und

− lim sup

∫
fi dφ = lim inf

∫
(−fi) dφ ≥ −

∫
f dφ.

oder

lim sup

∫
fi dφ ≤

∫
f dφ. (15)

Aus (14) und (15) folgt

lim

∫
fi dφ =

∫
f dφ.

Auf die Majorante kann man nicht verzichten:

Beispiel 43. Die Funktionenfolge ((i + 1)2χ
]0, 1

i+1
]
)i∈N von µ1-integrierbaren Funktionen

konvergiert überall gegen 0, die Grenzfunktion ist integrierbar, aber die Integralfolge kon-
vergiert nicht. Die Funktionenfolge ist nicht L1(µ1)-dominiert.
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Satz 44 (Differentiation unter dem Integral). Sei

f : Rn×] a, b [→ R, (x, t) 7→ f(x, t) =: ft(x).

Es gelte:

(i) Für alle t ∈] a, b [ ist ft ∈ L1(φ).

(ii) Für alle x ∈ Rn ist t 7→ f(x, t) differenzierbar.

(iii) Es gibt g ∈ L1(φ), so dass |∂f
∂t (., t)| ≤φ g für alle t ∈] a, b [.3

Dann ist

F : ] a, b [→ R, t 7→
∫
ftdφ differenzierbar,

∂f

∂t
(., t) ∈ L1(φ) für jedes t ∈] a, b [

und
d

dt

∫
ftdφ =

∫
∂f

∂t
(., t)dφ.

Beweis. Wir setzen

F (t) :=

∫
ft dφ.

Sei (ti) eine gegen t konvergente Folge in ] a, b[ \ {t}. Dann ist

1

ti − t
(F (ti) − F (t)) =

∫
fti

− ft

ti − t︸ ︷︷ ︸
∈L1(φ)

dφ (16)

Nun ist für fast alle x
∣∣∣∣
fti

− ft

ti − t
(x)

∣∣∣∣ =
∣∣∣∣
f(x, ti) − f(x, t)

ti − t

∣∣∣∣ =
MWS

∣∣∣∣
∂f

∂t
(x, t∗i )

∣∣∣∣ ≤ g(x).

Also ist nach dem Satz von Lebesgue

lim
i→∞

fti
− ft

ti − t
=
∂f

∂t
(., t) ∈ L1(φ)

und
dF

dt
(t) = lim

i→∞

∫
fti

− ft

ti − t
dφ =

∫
∂f

∂t
(., t) dφ.

Konvention. Wir schreiben

∫
fχ]a, b[dµ1 =

∫ b

a

f(x)dx,

falls die linke Seite existiert. Das ist sinnvoll, weil das Lebesgueintegral das Regelintegral
erweitert.

3Das ist zum Beispiel erfüllt, wenn | ∂f
∂t

| ≤Mχ
K

für ein M ∈ R und kompaktes K ∈ I(Rn).
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Beispiel 45. Wichtige Beispiele, in denen die Differentiation nach einem Parameter unter
dem Integral eine Rolle spielen, liefern

• die Gammafunktion Γ(x) :=
∫∞
0
tx−1e−tdt, x > 0,

• die Laplacetransformation F (s) :=
∫∞
0
f(t)e−stdt.

(Beachten Sie hier die (traditionelle) Namensgebung für die Variablen.)

Aber nicht immer kann man die Ableitung nach einem Parameter in das Integral hineinzie-
hen:

Beispiel 46 (Boris Springborn).

Wir betrachten eine stetig differenzierbare
nicht negative Funktion h : R → R mit kom-
paktem Träger und c :=

∫
hdµ1 > 0. Dazu be-

trachten wir die “von rechts kommende Welle”

f(x, t) := th(x− 1

t
), f(x, 0) := 0.

h

x

Dann existieren ∫
f(., t)dµ1 = tc für alle t ∈ R

und
∂f

∂t
(x, t) =

{
h(x− 1

t ) + 1
th

′(x− 1
t ) für t 6= 0,

0 für t = 0.

Für den zweiten Fall beachte, dass

∂f

∂t
(x, 0) = lim

t→0

f(x, t) − 0

t
= lim

t→0
h(x− 1

t
) = 0,

weil h kompakten Träger hat. Die partielle Ableitung ist für alle t bezüglich x integrierbar,
und es ist ∫

∂f

∂t
(., 0)dµ1 =

∫
0dµ1 = 0 6= c =

d

dt

∫
f(., t)dµ1.

Also kann man die t-Ableitung nicht in das Integral hineinziehen.

Beispiel 47 (Glättungsoperator, Faltung). Sei ρ : R → R nicht-negativ, stetig diffe-
renzierbar mit Träger in einem (kleinen) Intervall [−δ, δ] und

∫
ρ dµ1 = 1. (Vergleichen Sie

den Abschnitt 4.3 im Skriptum zur Analysis I. Zum Beispiel kann man definieren

ρ(x) =
τ(x)∫∞

−∞ τdµ1

wobei τ(x) := exp( 1
x2−δ2 ) für x2 < δ2 und τ(x) = 0 sonst.)

Der besseren Übersicht wegen benutzen wir im folgenden die oben gemachte Konvention

∫ b

a

f(x)dx :=

∫
f(x)χ

[a, b]
dµ1.
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Für f ∈ L1(µ1) definieren wir dann die Faltung mit ρ als

f̃(t) := f ∗ ρ(t) :=

∫ ∞

−∞
f(x)ρ(t− x) dx =

∫ t+δ

t−δ

f(x)ρ(t− x) dx.

Wir erhalten also f̃ aus f durch gleitende, gewichtete Mittelung der Funktionswerte um jede
Stelle t.

Das setzt natürlich voraus, dass x 7→ f(x)ρ(t−x) ∈ L1(µ1). Wir werden später sehen, dass
das wahr ist, vgl. Beispiel 51 und Satz 54.

Offenbar ist t 7→ f(x)ρ(t− x) für jedes x differenzierbar und es gilt

∣∣∣∣
∂

∂t
f(x)ρ(t− x)

∣∣∣∣ ≤ (sup
t∈R

|ρ′(t)|)|f(x)| ∈ L1(µ1).

Daher ist f̃ nach dem Satz differenzierbar und

f̃ ′(t) =

∫ ∞

−∞
f(x)ρ′(t− x) dx.

Bemerkung: Ist f gleichmäßig stetig und ǫ > 0, so gibt es ein δ > 0 mit |f(x) − f(t)| < ǫ,
falls |t− x| < δ. Wähle zu δ ein entsprechendes ρ. Dann hat man für alle t

∫ ∞

−∞
ρ(t− x)dx = 1, also f(t) =

∫ ∞

−∞
f(t)ρ(t− x)dx.

Weil ρ(t− x) = 0 für |t− x| ≥ δ gilt weiter, dass

|f(t) − f̃(t)| =

∣∣∣∣
∫ ∞

−∞
f(t)ρ(t− x)dx−

∫ ∞

−∞
f(x)ρ(t− x)dx

∣∣∣∣

≤
∫ ∞

−∞
|f(t) − f(x)|ρ(t− x)dx

≤
∫ t+δ

t−δ

|f(t) − f(x)|ρ(t− x)dx

< ǫ.

Gleichmäßig stetige Funktionen lassen sich also gleichmäßig durch differenzierbare Funktio-
nen approximieren.
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3 Messbare Funktionen

• Wir lernen mit den messbaren Funktionen eine Klasse von Funktionen kennen, die
gegenüber algebraischen Operationen wie gegenüber der φ-Konvergenz abgeschlossen
ist, in der man also erstaunlich sorglos rechnen kann, die andererseits aber ganz nah
an der Klasse der integrierbaren Funktionen liegt:

• Die Nichtintegrierbarkeit einer Funktion kann zwei Gründe haben: Die Funktion ist
“zu groß”, so dass das “Integral” unendlich wird. Oder die Funktion ist so “zappelig”,
dass das “Integral” völlig sinnlos ist. Messbare Funktionen sind solche, die nur aus
dem ersten Grund nicht integrierbar sind. Wenn man sie geeignet “kupiert”, werden
sie integrierbar, vgl. Satz 57.

Definition 48. f : Rn → R heißt φ-messbar, wenn es eine Folge von Treppenfunktionen
gibt, die φ-konvergent gegen f ist.

Beispiel 49. L1(φ)-Funktionen sind φ-messbar.

Im Gegensatz zur Integrierbarkeit ist Messbarkeit eine
”
lokale“ Eigenschaft:

Satz 50. Sei f : Rn → R. Dann gilt

f messbar ⇐⇒ ∀I∈I(Rn) f χI messbar.

Beweis. Zu (⇒). Ist lim sj =φ f , so folgt lim sjχI =φ fχI für jedes I ∈ I(Rn).

Zu (⇐). Sei (Ij)j∈N eine Folge disjunkter beschränkter Intervalle mit Rn =
⋃∞

j=0 Ij . Weil
f χ

Ij
messbar ist, gibt es eine Folge (sjk)k∈N von Treppenfunktionen und eine φ-Nullmenge

Nj mit
lim

k→∞
sjk(x)χ

Ij
(x) = f(x)χ

Ij
(x) für alle x /∈ Nj .

Definiere die φ-Nullmenge N :=
⋃
Nj und

sk :=
k∑

j=0

sjkχIj
.

Ist x ∈ Il \N und k ≥ l, so ist

sk(x) = slk(x) → f(x).

Damit ist f φ-meßbar.

Beispiel 51. Ist f : Rn → R auf dem Komplement einer φ-Nullmenge stetig, so ist f
φ-messbar.

Beweis. SeiW ∈ I(RRn) ein beschränktes Inervall vom DurchmesserA. Nach Satz 50 müssen
wir nur zeigen, dass fχ

K
φ-messbar ist. Wir zerlegen W durch sukzessive Seitenhalbierung

und Anwendung des Zerlegungslemmas in paarweise disjunkte Intervalle Ik1, . . . , Ikrk
vom

Durchmesser < A
2k und wählen xkj ∈ Ikj . Dann definiert

fk :=

rk∑

j=1

f(xkj)χIkj
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eine Folge von Treppenfunktionen, die in allen Stetigkeitspunkten von f gegen f konvergiert.

Beispiel 52. Ist f : R → R monoton, so existieren in jedem Punkt der links- und der rechts-
seitige Funktionslimes, d.h. alle Unstetigkeitsstellen sind Sprungstellen. In dem kompakten

Intervall [a, b] hat f höchstens n Sprungstellen mit Sprung ≥ |f(b)−f(a)|
n , also in dem kom-

pakten Intervall und dann auch auf ganz R höchstens abzählbare viele Unstetigkeitsstellen.
Also sind monotone Funktionen f : R → R bezüglich µ1 messbar.

Die folgenden Sätze 53 und 56 zeigen, dass der Begriff der Messbarkeit flexibler ist als der der
Integrierbarkeit. Weil andrerseits diese Begriff aber eng zusammenhängen (vgl. Sätze 54 und
57), sind die messbaren Funktionen ein hilfreiches Instrument in der Integrationstheorie.

Satz 53. (i) Die φ-messbaren Funktionen bilden einen R-Vektorraum.

(ii) Der Raum der φ-messbaren Funktionen ist abgeschlossen bezüglich endlicher Produkte
und endlicher inf- bzw. sup-Bildung.

(iii) Der Quotient von φ-messbaren Funktionen ist φ-messbar, wenn der Nenner nur auf
einer φ-Nullmenge verschwindet.

(iv) Ist f : Rn → R φ-messbar und h : J → R stetig auf dem Intervall J mit f(Rn) ⊂ J ,
so ist h ◦ f ebenfalls φ-messbar.

Beweis. Zu (i) und (ii). Es ist klar, dass die Treppenfunktionen einen gegen Multiplikation,
inf und sup abgeschlossenen Vektorraum bilden. Daraus folgt unmittelbar dasselbe für die
φ-messbaren Funktionen.

Zu (iii). Sei f : Rn → R fast-überall 6= 0. Sei (si) eine Folge von Treppenfunktionen, die
fast-überall gegen f konvergiert. Definiere

ti(x) :=

{
1

si(x) , falls si(x) 6= 0,

0 sonst.
.

Dann ist (ti)i∈N eine Folge von Treppenfunktionen, die fast-überall gegen 1
f konvergiert.

Zu (iv). Ich führe den Beweis nur für den Spezialfall

J = [a, b[ mit a, b ∈ R, a < b.

Es ist dann klar, wie die anderen Fälle gehen. Sei also (si) eine Folge von Treppenfunktionen,
die auf dem Komplement der φ-Nullmenge N gegen f konvergiert. Beachten Sie, dass zu
jedem x /∈ N ein i0 existiert, so dass si(x) < b für alle i ≥ i0. Wir wählen ein b′ ∈]a, b[ und
definieren

s̃i(x) :=






si(x), falls si(x) ∈ J

b′, falls si(x) ≥ b

a, falls si(x) < a.

Das liefert eine Funktionsfolge, die ebenfalls auf Rn \N gegen f konvergiert, und deren
Werte in J liegen. Die Funktionen h ◦ s̃i konvergieren wegen der Stetigkeit von h dann auf
dem Komplement von N gegen h ◦ f , und sie sind

”
beinahe“ Treppenfunktionen, nur haben

sie im allgemeinen keinen kompakten Träger. Aber die Funktionen

fi := χ
[−i, i ]n h ◦ s̃i
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bilden eine Folge von Treppenfunktionen, die überall dort gegen h◦f konvergiert, wo (si)i∈N

gegen f konvergiert.

Satz 54 (Messbarkeit und Integrierbarkeit 1). Seien f, g : Rn → R Funktionen.
f sei φ-messbar und g ∈ L1(φ). Dann gilt

(i) |f | ≤φ g =⇒ f ∈ L1(φ).

(ii) f beschränkt =⇒ fg ∈ L1(φ).

Beweis. Zu (i). Wir nehmen zunächst an, dass f ≥ 0. Sei f =φ lim si für eine Folge von
Treppenfunktionen (si). Wir können o.E. annehmen, dass die si ≥ 0. Dann ist

f =φ lim(inf(si, g)),

mit inf(si, g) ∈ L1(φ), 0 ≤ inf(si, g) ≤ g. Also ist nach dem Satz von Lebesgue f ∈ L1(φ).

Ist f beliebig, so gilt

f = sup(f, 0) − sup(−f, 0),

wobei beide Summanden durch g dominiert werden. Weil sup(f, 0), sup(−f, 0) ≥ 0 sind sie
nach dem vorstehenden Beweis in L1(φ), also ist auch ihre Differenz φ-integrierbar.

Zu (ii). fg ist messbar und |fg| ≤ sup |f |︸ ︷︷ ︸
<∞

|g|. Mit g ist auch |g| ∈ L1(φ), und deshalb folgt

die Behauptung aus Teil (i).

Beispiel 55. Die Aussage (ii) liefert ein hinreichendes Kriterium für die Integrierbarkeit
des Produktes zweier integrierbarer Funktionen.

Beachten Sie dagegen, dass f(x) := 1√
x
χ]0, 1] ∈ L1(µ1), aber f2(x) = 1

xχ]0, 1]
/∈ L1(µ1).

Satz 56. Seien (fi) eine Folge φ-messbarer Funktionen und f : Rn → R. Dann gilt

(i)
f =φ lim fi =⇒ f ist φ-messbar.

(ii)
f = sup(f0, f1, ...) =⇒ f ist φ-messbar.

(iii)
f = inf(f0, f1, ...) =⇒ f ist φ-messbar.

Beweis. Es genügt, die Behauptung (i) zu beweisen, weil z.B.

inf(f0, f1, . . .) = lim
k→∞

inf(f0, . . . , fk)

Das Infimum endlich vieler messbarer Funktionen f0, . . . , fk ist aber nach Satz 53 messbar.

1. Fall: |fi| ≤ 1 für alle i. Wegen Satz 50 müssen wir nur zeigen, dass fχ
I

für jedes I ∈ I(Rn)
messbar ist.
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Sei also I ∈ I(Rn). Nach Satz 54 (ii) gilt für alle i

fiχI ∈ L1(φ) und |fiχI| ≤ χ
I
∈ L1(φ).

Nach dem Satz von Lebesgue ist daher

fχ
I

=φ lim
i→∞

(fiχI) ∈ L1(φ).

Insbesondere ist fχ
I

messbar.

2.Fall: fi beliebig. Nach Satz 53 ist (tanh fi) eine Folge messbarer Funktionen, die φ-konver-
gent ist gegen tanh f . Nach dem 1. Fall ist tanh f messbar. Dann ist aber auch f =
tanh−1 ◦ tanh ◦f messbar.

Bemerkung. Langsam sehnt man sich nach einem Beispiel einer nicht messbaren Funktion.
Solche sind sehr schwer anzugeben, vgl. Beispiel 74. Alle “halbwegs anständigen” Funktionen
sind messbar.

Durch
”
vertikales und horizontales Stutzen“

wird aus einer messbaren Funktion f eine in-
tegrierbare Funktion f̃ , und das ist charakte-
ristisch für messbare Funktionen:

A

- A

K

f

f
~

Satz 57 (Messbarkeit und Integrierbarkeit 2). f : Rn → R ist genau dann φ-messbar,
wenn für jedes A > 0 und jedes K ∈ I(Rn) die “gestutzte” Funktion

f̃ = inf(sup(f,−Aχ
K

),+Aχ
K

)

in L1(φ) ist.

Beweis. Zu (⇒). Nach Satz 53 ist f̃ φ-messbar. Weiter gilt

|f̃ | ≤ Aχ
K

∈ L1(φ),

und daher ist f̃ ∈ L1(φ) nach dem Satz 54.

Zu (⇐). Es gilt
f = lim

k→∞
inf(sup(f,−kχ

[−k, k]n),+kχ
[−k, k]n).

Die Behauptung folgt daher aus Satz 56.
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4 Sukzessive Integration: Fubini und Tonelli

• In diesem Abschnitt lernen wir, wie man mehrdimensionale Integrale auf niedriger-
dimensionale reduzieren kann. Das ist insbesondere von Bedeutung für die Integration
bezüglich des Lebesguemaßes µn = µ1 × . . .× µ1.

Satz 58 (Fubini). Seien φ1 und φ2 Maße auf Rn1 bzw. Rn2 , und sei φ = φ1 × φ2 das
Produktmaß auf Rn1+n2 . Sei f ∈ L1(φ).
Dann gilt:

(i) Für φ1-fast alle x1 ist f(x1, .) ∈ L1(φ2).

(ii) Die (für φ1-fast-alle x1 definierte) Funktion

F : x1 7→
∫
f(x1, .)dφ2

ist in L1(φ1) und ∫
Fdφ1 =

∫
fdφ.

Die Rollen von φ1 und φ2 lassen sich dabei vertauschen.

Kurzform:

∫
fdφ =

∫ (∫
fdφ2

)
dφ1 =

∫ (∫
fdφ1

)
dφ2, falls die linke Seite existiert.

Beweis. Vorbemerkung. Gilt der Satz für Funktionen f1, . . . , fk, so auch für deren Linear-
kombinationen. Das folgt unmittelbar aus der Linearität des Integrals.

Teil 1: Der Satz gilt für Treppenfunktionen.

Nach der Vorbemerkung können wir uns auf den Fall f = χ
I

mit I ∈ I(Rn) beschränken.
Sei I = I1 × I2 die offensichtliche Zerlegung. Dann ist also für alle (x1, x2) ∈ Rn1 × Rn2

f(x1, x2) = χ
I1

(x1)χI2
(x2).

Es folgt
f(x1, .) = χ

I1
(x1)χI2

∈ L1(φ2)

und

F (x1) =

∫
χ
I1

(x1)χI2
dφ2 = φ2(I2)χI1

(x1).

Damit ist F eine Treppenfunktion und ∈ L1(φ1). Schließlich ist
∫
F dφ1 = φ2(I2)

∫
χ
I1
dφ1 = φ2(I2)φ1(I1) = φ(I) =

∫
f dφ.

Teil 2: Ein Lemma. Zum weiteren Beweis brauchen wir das folgende

Lemma 59. Unter den Voraussetzungen des Satzes sei M eine φ-Nullmenge. Dann ist für
φ1-fast alle x1 die Menge

Mx1
=
{
x2

∣∣ (x1, x2) ∈M
}

eine φ2-Nullmenge.
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Beweis des Lemmas. Für k ∈ N sei (Ikj)j eine Folge von Intervallen mit

M ⊂ ∪∞
j=0Ikj und

∞∑

j=0

φ(Ikj) <
1

2k+1
. (17)

Definiere
gl :=

∑

k,j≤l

χ
Ikj
.

Offenbar ist (gl)l∈N eine monoton wachsende Folge von Treppenfunktionen, und nach (17)
ist die Integralfolge beschränkt:

∫
gl dφ =

∑

k,j≤l

φ(Ikj) ≤
l∑

k=0

1

2k+1
≤ 1.

Für x1 ∈ Rn1 definieren wir

Gl(x1) :=

∫
gl(x1, .)dφ2.

Dann ist (Gl)l∈N eine monoton wachsende Folge von Treppenfunktionen auf dem Rn1 , und
nach dem Teil 1 unseres Beweises ist die Integralfolge beschränkt:

∫
Gldφ2 =

∫
gldφ ≤ 1.

Nach dem Satz von Beppo Levi gibt es daher eine φ1-Nullmenge N1, so dass (Gl(x1))l∈N für
alle x1 /∈ N1 konvergiert. Wir wollen zeigen, dass Mx1

für x1 /∈ N1 eine φ2-Nullmenge ist.

Sei also x1 /∈ N1. Wir betrachten eine weitere monoton wachsende Folge von Treppenfunk-
tionen, nämlich (gl(x1, .))l∈N. Die zugehörige Integralfolge ist wegen

∫
gl(x1, .)dφ2 = Gl(x1)

konvergent und damit beschränkt. Nach dem Satz von Beppo Levi gibt es also eine φ2-
Nullmenge N2, so dass (gl(x1, x2))l∈N für alle x2 /∈ N2 konvergiert.

Aber: Für (x1, x2) ∈M , d.h. für x2 ∈Mx1
, gibt es zu jedem k ein j mit (x1, x2) ∈ Ikj . Daher

liegt (x1, x2) in unendlich vielen der Ikj und (gl(x1, x2))l∈N ist divergent. Ist also x1 /∈ N1,
so ist Mx1 ⊂ N2 und damit eine φ2-Nullmenge.

Teil 3: Der Satz gilt für f ∈ L1
+(φ). Für welche x1 ist f(x1, .) ∈ L1(φ2)?

Sei (si)i∈N eine monoton wachsende Folge von Treppenfunktionen mit

lim
i→∞

si =φ f, lim
i→∞

∫
si dφ =

∫
f dφ.

Dann haben wir also eine φ-Nullmenge

M :=
{
(x1, x2)

∣∣ (si(x1, x2))i∈N konvergiert nicht gegen f(x1, x2)
}
.

Nach dem Lemma aus Teil 2 gibt es eine φ1-Nullmenge N1, so dass Mx1 für alle x1 /∈ N1

eine φ2-Nullmenge ist. Das heißt, für alle x1 /∈ N1 gilt

lim
i→∞

si(x1, .) =φ2
f(x1, .).

Nun ist (si(x1, .))i∈N eine monoton wachsende Treppenfunktionsfolge. Wir untersuchen für
x1 /∈ N1 die Integralfolge

Si(x1) =

∫
si(x1, .)dφ2.
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Das ist aber (für beliebiges x1 ∈ Rn1) eine monoton wachsende Folge von Treppenfunktionen,
für die nach Teil 1 ∫

Sidφ1 =

∫
sidφ→

∫
fdφ. (18)

Die (Si)i∈N bilden also eine “Beppo-Levi-Folge”: Es gibt eine φ1-Nullmenge Ñ1, so dass
(Si(x1))i∈N für alle x1 /∈ N1 ∪ Ñ1 konvergiert, also beschränkt ist.

Dann ist auch (si(x1, .))i∈N eine “Beppo Levi-Folge”, ihr φ2-Grenzwert ist φ2-integrierbar
und die Integrale konvergieren:

lim
i→∞

si(x1, .) =φ2 f(x1, .) ∈ L1(φ2)

und

lim
i→∞

Si(x1) = lim
i→∞

∫
si(x1, .)dφ2 =

∫
f(x1, .) = F (x1).

Weiter liefert Beppo Levi für die Folge (Si)i∈N, dass F ∈ L1(φ1) und
∫
Fdφ1 = lim

i→∞

∫
Sidφ1 =

(18)

∫
fdφ.

Teil 4: Schluss des Beweises: f ∈ L1(φ). Die Behauptung folgt in diesem Falle aus Teil 3 und
der Vorbemerkung.

Beispiel 60. Die Funktion f : R2 → R mit

f(x, y) := (x2 + y2)χ[0, 1]2(x, y)

ist stetig auf einem kompakten Intervall, also nach Beispiel 28 µ2-integrierbar. Nach Fubini
gilt

∫
fdµ2 =

∫ (∫
f(x, y)dµ1

)
dµ1 =

∫ (∫
(x2 + y2)χ[0, 1](y)χ[0, 1](x)dµ1

)
dµ1.

Die µ1-Integrale sind aber nach Satz 29 dasselbe wie die entsprechenden Regelintegrale. Wir
erhalten

∫
fdµ2 =

∫ 1

0

(∫ 1

0

(x2 + y2)dy

)
dx =

∫ 1

0

(yx2 +
y3

3
)

∣∣∣∣
1

0

dx =

∫ 1

0

(x2 +
1

3
)dx =

2

3
.

Bemerkung. Oft ist es nicht so schwer, die Existenz eines oder beider iterierter Integrale∫
(
∫
f dφ1)dφ2 und

∫
(
∫
f dφ2)dφ1 zu zeigen. Leider folgt daraus im allgemeinen aber nicht,

dass f ∈ L1(φ1 × φ2), so dass man den Satz von Fubini nicht anwenden kann. (Ein Beispiel
können Sie in den Übungen konstruieren.) Man muß dazu etwas mehr verlangen:

Satz 61 (Tonelli). Seien φ1 und φ2 Maße auf Rn1 bzw. Rn2 , und sei φ = φ1 × φ2 das
Produktmaß auf Rn1+n2 . Sei f : Rn1+n2 → R φ-messbar. Ferner existiere eines der beiden
folgenden Integrale:

∫ (∫
|f |dφ2

)
dφ1 oder

∫ (∫
|f |dφ1

)
dφ2.

Dann ist f ∈ L1(φ), also nach dem Satz von Fubini

∫
fdφ =

∫ (∫
fdφ2

)
dφ1 =

∫ (∫
fdφ1

)
dφ2.
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Beweis. Sei Ik := [−k, k]n und

hk := inf(|f |χ
Ik
, kχ

Ik
).

Mit f sind nach Satz 53 auch |f | und die hk messbar. Die Funktion hk wird durch die
integrierbare Funktion kχ

Ik
dominiert und ist deshalb nach Satz 54 integrierbar. Also können

wir den Satz von Fubini darauf anwenden:
∫
hk dφ =

∫ (∫
hk dφ2

)
dφ1 =

∫ (∫
hk dφ1

)
dφ2.

Wir nehmen o.E. an, dass
∫

(
∫
|f |dφ2)dφ1 existiert. Weil 0 ≤ hk(x1, .) ≤ |f |(x1, .) und nach

Voraussetzung |f |(x1, .) ∈ L1(φ2) für φ1-fast alle x1, erhalten wir

∫
hk dφ ≤

∫ (∫
|f |dφ2

)
dφ1. (19)

Die hk bilden eine monoton wachsende Folge integrierbarer Funktionen, die überall gegen
|f | konvergieren. Die Integralfolge ist nach (19) beschränkt. Also ist |f | nach dem Satz von
B. Levi integrierbar. Nach Satz 54 ist damit auch f integrierbar.

Beispiel 62.

Die Funktion g := inf(1, 1
x2 ) ist µ1-integrierbar (Satz

von Beppo Levi und Regelintegral mit Stammfunk-
tion). Sie dominiert die stetige und deshalb µ1-

messbare Funktion e−x2

, die daher nach Satz 54
ebenfalls in L1(µ1) liegt.

-4 -2 2 4

0.2

0.4

0.6

0.8

1

Daher existiert das iterierte Integral

∫ (∫
e−x2

e−y2

dy

)
dx =

∫ (
e−x2

∫
e−y2

dy

)
dx

=

(∫
e−y2

dy

)(∫
e−x2

dx

)
=

(∫
e−x2

dx

)2

.

(Wir haben dx und dy anstelle von dµ1 geschrieben um anzudeuten, auf welche Variable

sich die Integration bezieht.) Weiter ist e−(x2+y2) stetig, also µ2-messbar. Damit folgt aus
dem Satz von Tonelli, dass

e−(x2+y2) ∈ L1(µ2)

und

∫
e−(x2+y2)dµ2 =

(∫
e−x2

dx

)2

ist.

Wir werden später sehen, dass mit Hilfe mehrdimensionaler Integration die linke Seite leicht
zu berechnen ist. Das gibt dann eine Auswertung des in der Wahrscheinlichkeitstheorie
wichtigen und eindimensional nicht so leicht zu berechnenden Integrals

∫
e−x2

dµ1.
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5 Messbare und integrierbare Mengen

• Wir betrachten messbare Mengen und ihr Maß, und damit ein fundamentales Pro-
blem der Geometrie: Was ist eigentlich der Flächeninhalt einer Teilmenge des R2, die
“krummlinig begrenzt” oder noch komplizierter ist? Was das Volumen eines Körpers
im R3? Und wie berechnet man das? (Beim axiomatischen Aufbau der Maß- und Inte-
grationstheorie steht der Begriff messbare Menge ganz am Anfang.)

• Wir klären Zusammenhänge zwischen Messbarkeit und Topologie.

• Wir berechnen das Volumen der n-dimensionalen Vollkugel.

• Wir lernen ein Beispiel einer nicht-messbaren Menge kennen.

Sei φ ein Maß auf Rn.

Definition 63. Sei A ⊂ Rn.

(i) A heißt φ-messbar bzw. φ-integrierbar, wenn die charakteristische Funktion χ
A

von A
φ-messbar bzw. φ-integrierbar ist. Im letzteren Fall definiert man das Maß von A als

φ(A) :=

∫
χ
A
dφ.

(ii) Für f : Rn ⊃ B → R bezeichnen wir mit f̂ : Rn → R die triviale Erweiterung von f

durch f̂(x) := 0 für x /∈ B.

Ist A ⊂ B φ-messbar, so nennen wir f φ-messbar auf A bzw. φ-integrierbar über A,
wenn f̂χ

A
φ-messbar bzw. φ-integrierbar ist. Im letzteren Fall schreibt man

f ∈ L1(A, φ)

und ∫

A

fdφ :=

∫
f̂χ

A
dφ.

Beispiel 64. Jedes I ∈ I(Rn) ist φ-integrierbar, und die neue Definition von φ(I) ist mit
der Maß-Definition verträglich.

Satz 65 (Die σ-Algebra der messbaren Mengen).

(i) Komplement, abzählbare Vereinigungen und abzählbare Durchschnitte messbarer Men-
gen sind messbar. Die messbaren Mengen bilden eine sogenannte σ-Algebra oder ein
Borelsystem.

(ii) (σ-Additivität) Ist (Ai)i eine Folge φ-integrierbarer, paarweise disjunkter Mengen, so
gilt

A :=
⋃̇
Ai ist φ-integrierbar ⇐⇒

∞∑

i=0

φ(Ai) <∞.

In diesem Fall ist

φ(A) =
∞∑

i=0

φ(Ai).
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Beweis. Zu (i). Für das Komplement CA := Rn \A ist χ
CA

= 1 − χ
A
. Die 1-Funktion ist

φ-messbar. Deshalb ist CA mit A messbar.

Weiter hat man für U :=
⋃
Ai, D :=

⋂
Ai

χ
U

= sup
i
χ
Ai

χ
D

= inf
i
χ
Ai
.

Weil inf und sup abzählbar vieler messbarer Funktionen messbar sind, sind mit den Ai auch
U und D messbar.

Zu (ii). Sei fk :=
∑k

i=0 χAi
. Dann ist (fk)k∈N eine monoton wachsende Folge in L1(φ) mit

lim fk = χ
A
,

∫
fkdφ =

k∑

j=0

φ(Aj).

Ist χ
A
∈ L1(φ), so gilt wegen |fk| ≤ χ

A
nach dem Satz von Lebesgue

φ(A) =

∫
χ
A
dφ = lim

∫
fkdφ =

∞∑

j=0

φ(Aj).

Ist umgekehrt die Reihe konvergent, so folgt aus dem Satz von Beppo Levi, dass χ
A
∈ L1(φ).

Beispiel 66 (Messbarkeit von Borelmengen). Sei A ⊂ Rn offen. Um zu zeigen, dass
A bezüglich eines jeden Maßes φ messbar ist, genügt nach Satz 50 der Nachweis, dass A∩ I
für jedes I ∈ I(Rn) messbar ist. Durch fortgesetzte Halbierung in jeder Koordinatenrichtung
erhält man zu jedem k ∈ N eine Familie (Ikj)0≤j≤2n beschränkter Intervalle mit

∞⋃

j=0

Ikj = I, diam(Ikj) =
diam(I)

2k
.

Zu x ∈ A ∩ I gibt es ein k ∈ N mit U diam I

2k
(x) ⊂ A und ein j mit x ∈ Ikj . Dann ist aber

Ikj ⊂ A, und wir haben gezeigt, dass

A ∩ I =
⋃

Ikj⊂A

Ikj

die Vereinigung von abzählbar vielen beschränkten Intervallen ist. Also ist A bezüglich eines
jeden Maßes φ messbar. Das gilt dann auch für alle Mengen, die man aus den offenen durch
Komplementbildung, abzählbare Vereinigung und abzählbare Durchschnitte erhält, also für
die sogenannten Borelmengen.

Beispiel 67 (Kompakte Mengen). Kompakte Mengen sind integrierbar bezüglich ei-
nes jeden Maßes: Als abgeschlossene Mengen sind sie messbar, und ihre charakteristische
Funktion wird dominiert durch eine Treppenfunktion.

Ist K ⊂ Rn kompakt und f : K → R stetig, so gibt es nach einem Satz der Topologie
(Tietzescher Erweiterungssatz) eine stetige und beschränkte Erweiterung f̃ : Rn → R von f .
Nach Satz 54 ist dann f̃χ

K
∈ L1(φ), also f ∈ L1(P, φ) für jedes Maß φ, stetige Funktionen

auf kompakten Mengen sind integrierbar bezüglich eines jeden Maßes.
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Satz 68. Sei f : Rn → R φ-messbar. Dann sind die Mengen

A :=
{
x
∣∣ f(x) > 0

}

und
B :=

{
x
∣∣ f(x) ≥ 0

}

φ-messbar.

Beweis. Zunächst ist g := sup(f, 0) messbar. Weiter sind die Funktionen

hj(x) := inf(jg(x), 1)

messbar und konvergent gegen χ
A
. Also ist A messbar. Folglich ist auch die Menge

{
x
∣∣ − f(x) > 0

}

messbar. Schließlich ist dann aber auch B als deren Komplement messbar.

Satz 69. Eine Menge N ⊂ Rn ist genau dann eine φ-Nullmenge, wenn sie φ-integrierbar
und φ(N) = 0 ist.

Beweis. Ist N eine φ-Nullmenge, so ist χ
N

=φ 0. Daher ist N nach dem Korollar 32

integrierbar und φ(N) =
∫
χ
N
dφ =

∫
0dφ = 0.

Ist umgekehrt χ
N
φ-integrierbar mit Integral = 0, so folgt aus dem Korollar 37 zum Satz

von B. Levi, dass χ
N

=φ 0, also N eine φ-Nullmenge.

Satz 70. Für i = 1, 2 seien φi ein Maß auf Rni und fi : Rni → R nicht negativ. Wir
definieren φ := φ1 × φ2 und f : Rn = Rn1+n2 → R durch

f(x1, x2) := f1(x1)f2(x2).

Dann gilt

(i) Ist fi ∈ L1(φi) für i = 1, 2, so ist f ∈ L1(φ) und

∫
fdφ =

∫
f1dφ1

∫
f2dφ2.

(ii) Sind die fi bezüglich φi messbar, so ist f bezüglich φ messbar.

Beweis. Vgl. Hausaufgaben.
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Korollar 71. Seien φ1, φ2 und φ wie im Satz. Dann gilt

(i) Für φi-integrierbare Mengen Ai ⊂ Rni ist A1 ×A2 φ-integrierbar und

φ(A1 ×A2) = φ1(A1)φ2(A2).

(ii) Für φi-messbare Mengen Ai ⊂ Rni ist A1 ×A2 φ-messbar.

(iii) Ist N1 eine φ1-Nullmenge, so ist N1 × Rn2 eine φ-Nullmenge.

Beweis. Vgl. Hausaufgaben.

Satz 72. Sei f : Rn → R eine nicht-negative integrierbare Funktion und

G :=
{
(x1, . . . , xn+1)

∣∣ 0 ≤ xn+1 ≤ f(x1, . . . , xn)
}
⊂ Rn+1

die Menge unter dem Graphen von f . Dann gilt

f ∈ L1(µn) ⇐⇒ χ
G
∈ L1(µn+1).

In diesem Falle gilt

µn+1(G) =

∫
fdµn.

Beweis. Zwei Vorbemerkungen: Setzen wir

g(x1, . . . , xn+1) := xn+1(f(x1, . . . , xn) − xn+1)

so ist
G =

{
x
∣∣ g(x) ≥ 0

}
.

Nach den Sätzen 70 und 68 ist G daher messbar bezüglich µn+1 = µn × µ1.

Zum anderen ist

χ
G
(x1, . . . , xn, xn+1) =

{
1 für 0 ≤ xn+1 ≤ f(x1, . . . , xn)

0 sonst

= χ
[0, f(x1, . . . , xn)]

(xn+1)

und ∫
χ

[0, f(x1, . . . , xn)]
dµ1 = f(x1, . . . , xn).

Zu (⇐). Ist χ
G
∈ L1(µn+1), so liefert der Satz von Fubini

µn+1(G) =

∫
χ
G
dµn+1 =

∫ (∫
χ

[0, f(x1, . . . , xn)]
(xn+1)dµ1

)
dµn =

∫
fdµn. (20)

Zu (⇒). Ist f ∈ L1(µn), so existiert die rechte Seite von (20). Wir können den Satz von
Tonelli anwenden und erhalten die Integrierbarkeit von χ

G
.
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Beispiel 73 (Das Volumen der n-dimensionalen Vollkugel). Sei

Dn
r :=

{
x ∈ Rn

∣∣∣
∑

x2
i ≤ r2

}
.

die n-dimensionale Vollkugel vom Radius r. Dn
r ist als kompakte Menge µn-integrierbar.

Der Fall n = 1 ist trivial:
µ1(D

1
r) = µ1([−r,+r]) = 2r.

Für höheres n versuchen wir nun,

Vn(r) := µn(Dn
r )

mit dem Satz von Fubini zu berechnen, indem wir die Identität

χ
Dn

r
(x1, . . . , xn) = χ

Dn−1√
r2−x2

n

(x1, . . . , xn−1)χ[−r,+r](xn)

benutzen. Wir schreiben wieder

dµn = d(µn−1 × µ1), dµ1 =: dxn,

und erhalten:

Vn(r) =

∫
χ
Dn

r
dµn

=

∫
χ[−r, r ](xn)(

∫
χ
Dn−1√

r2−x2
n

dµn−1) dxn

=

∫
χ[−r, r ](xn)Vn−1(

√
r2 − x2

n) dxn.

Wir nehmen nun an, wir hätten schon gezeigt, dass das Volumen der (n− 1)-Kugel propor-
tional zur (n− 1)-ten Potenz des Radius ist, also Vn−1(r) = vn−1r

n−1 mit

vk := Vk(1) für alle k.

Für n = 1 stimmt das ja. Dann folgt weiter

Vn(r) =

∫
χ[−r, r ](xn)vn−1

√
r2 − x2

n

n−1
dxn = vn−1

∫
χ

[−r, r ]
(xn)

√
r2 − x2

n

n−1
dxn

= vn−1

∫ r

−r

√
r2 − t2

n−1
dt = vn−1

∫ r

−r

rn−1
√

1 − (t/r)2
n−1

dt

= rnvn−1

∫ r

−r

√
1 − (t/r)2

n−1 1

r
dt = rnvn−1

∫ 1

−1

√
1 − τ2

n−1
dτ.

Also ist dann Vn(r) proportional zu rn

Vn(r) = vnr
n.

Setzen wir

In :=

∫ 1

−1

√
1 − τ2

n−1
dτ =

Substitution

∫ π
2

−π
2

cosn t dt,

so haben wir weiter gefunden, dass

vn = vn−1In = vn−2InIn−1.
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Durch partielle Integration folgt

In =
n− 1

n
In−2 für n ≥ 2,

mit I2 = π
2 , I1 = 2. Dann ist aber

InIn−1 =
(n− 1)(n− 2)

n(n− 1)
In−2In−3 =

n− 2

n
In−2In−3 = . . .

=






2
nI2I1 für gerades n

1
nI1I0 für ungerades n.




 =
2π

n
.

Damit gilt

v2m =
πm

m!
, v2m+1 =

2m+1πm

1 · 3 · . . . (2m+ 1)

Mit Hilfe der Gammafunktion (vgl. Beispiel 45) kann man das einheitlich so schreiben:

vn =
(
√
π)n

Γ(n
2 + 1)

.

Es ergeben sich die folgenden Volumina der Kugeln und daraus durch Differentiation die
(n− 1)-dimensionalen Volumina der zugehörigen Sphären:

n 1 2 3 4 5 6 7

Volumen(Dn
r ) 2r πr2 4

3πr
3 1

2π
2r4 8

15π
2r5 1

6π
3r6 16

105π
3r7

Oberfläche(Dn
r ) 2πr 4πr2 2π2r3 8

3π
2r4 π3r5 16

15π
3r6

Nicht-messbare Mengen sind außerordentlich schwer zu finden:

Beispiel 74 (Nicht-messbare Menge). Durch x ∼ y ⇐⇒ x − y ∈ Q wird auf ] 0, 1[
eine Äquivalenzrelation definiert. Sei M ⊂] 0, 1 [ eine Menge, die aus jeder Äquivalenzklasse
genau ein Element enthält. Dann ist M nicht µ1-messbar.

Beweis. Ist x ∈] 0, 1 [, so gibt es ein dazu äquivalentes y ∈ M . Dann ist r := x − y rational
und liegt offenbar in ] − 1, 1 [. Also ist

] 0, 1 [ ⊂ M̂ :=
⋃

r∈Q∩ ]−1,1[

(r +M) ⊂ ] − 1, 2 [.

Weil M aus jeder Äquivalenzklasse nur ein Element enthält, sind die r + M paarweise
disjunkt.

Annahme: M ist µ1-messbar.

Wegen 0 ≤ χ
M

≤ χ
] − 1, 2[

ist M dann sogar µ1-integrierbar und (Beweis ?) auch r +M für

jedes r ∈ Q ∩ ] − 1, 1 [ integrierbar mit

µ1(r +M) = µ1(M).
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• Wäre µ1(M) = 0, d.h. M eine µ1-Nullmenge, so wäre auch die abzählbare Vereinigung
M̂ eine µ1-Nullmenge im Widerspruch zu ]0, 1 [⊂ M̂ .

• Wäre µ1(M) > 0, so wäre nach der σ-Additivität

µ1(] − 1, 2 [) ≥ µ1(M̂) =
∑

r

µn(r +M) = ∞.

Widerspruch!

Also war die Annahme der Messbarkeit falsch.
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6 Der Transformationssatz

• Häufig hat man Integrationsprobleme mit gewissen Symmetrieeigenschaften des Inte-
grationsbereiches. Dann sind andere als die Euklidischen Koordinaten sehr hilfreich.
Wir lernen in den folgenden Abschnitten, wie man dafür die Integrale umschreibt. Der
Kernpunkt ist die Volumenverzerrung durch die Koordinatenabbildung.

Wir betrachten in diesem Kapitel

das Lebesguemaß µn auf Rn.

Integrierbarkeit, Messbarkeit und Nullmengen beziehen sich stets darauf. Wir wollen folgen-
de Frage untersuchen:

Seien A ⊂ Rn integrierbar und h : Rn → Rn. Wie verhalten sich µn(A) und µn(h(A))
zueinander? Wie wird also das n-dimensionale Volumen einer Menge durch eine Abbildung
h verzerrt?

6.1 Nullmengen und Verzerrung durch lineare Abbildungen

• Was passiert mit Nullmengen unter C1-Abbildungen?

• Lineare Abbildungen bilden Würfel oder Quader in Parallelotope ab. Die elementar-
geometrische Volumenverzerrung wird dabei durch die Determinante beschrieben. Wir
lernen, dass das auch für die Volumenverzerrung messbarer Mengen zutrifft.

Zwei Vorbemerkungen:

1. Fast-disjunkte Intervalle. Der Rand eines Intervalls aus I(Rn) ist die Vereinigung von
endlich vielen niedriger-dimensionalen Intervallen und deshalb eine µn-Nullmenge. Darum
ist µn additiv (sogar σ-additiv) auch für nicht notwendig paarweise disjunkte Intervalle,
wenn sie sich allenfalls an den Rändern überlappen. Das ist sehr angenehm zum Beispiel
bei Argumenten mit Intervall-Halbierung. Wir geben dieser Situation der Einfachheit einen
Namen:

Definition 75. Eine Familie (Ij)j∈J beschränkter Intervalle, die sich allenfalls am Rande
überlappen, d.h. deren offene Kerne I0

j paarweise disjunkt sind, nennen wir fast-disjunkt.

Ist also (Ij)j∈N eine fast-disjunkte Folge in I(Rn) und
⋃
Ij beschränkt, so gilt

µn(
⋃

j∈N

Ij) =
∑

j∈N

µn(Ij).

2. Würfel. Der Schrankensatz

‖h(y) − h(x)‖ ≤ (sup ‖Dh‖) ‖y − x‖

gibt eine Abschätzung für die lineare Verzerrung und damit für die Verzerrung von Kugeln.
Wenn wir

statt der üblichen Euklidischen Norm auf dem Rn die sup-Norm ‖.‖∞ verwenden,
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sind die Kugeln achsenparallele Würfel, d.h. spezielle beschränkte Intervalle in I(Rn). Die
Methoden der Analysis II werden damit auch für unseren Aufbau der Integrationstheorie
verfügbar.

Allerdings müssen wir uns erst noch klarmachen, dass es an vielen Stellen der Integrations-
theorie genügt, mit Würfeln statt mit Intervallen zu argumentieren. Dem ist ein Teil dieses
Abschnittes gewidmet.

Definition 76. Für p ∈ Rn und r > 0 sei

W (p, r) :=

{
(x1, . . . , xn)

∣∣∣∣ ‖x− p‖∞ = sup
1≤i≤n

|xi − pi| ≤ r

}

die abgeschlossene Vollkugel um p vom Radius r in der sup-Norm.

Lemma 77 (Ausschöpfungslemma). Seien G ⊂ Rn offen und r > 0. Dann gibt es eine
Folge fast-disjunkter, kompakter Würfel (Wi)i∈N mit Kantenlängen ≤ r und

G =
⋃

i∈N

Wi.

Beweis. Für k ∈ N sei

Wk =

{
W ((x1, . . . , xn),

r

2k+1
)

∣∣∣∣xi =
(2mi + 1)r

2k+1
mit mi ∈ Z

}
.

Die Würfel aus Wk bilden dann eine Zerlegung des
Rn in fast-disjunkte Würfel der Kantenlänge r

2k , und

zu jedem W ∈ Wk+1 gibt es ein W̃ ∈ Wk mit
W ⊂ W̃ . Die Würfel von Wk+1 erhält man, wenn
man die Würfel von Wk in jeder Koordinatenrich-
tung halbiert.
Sei WG

−1 := ∅ und sei WG
k für k ∈ N die Menge aller

W ∈ Wk, die ganz in G liegen und die nicht schon in
einem Würfel aus WG

k−1 enthalten sind.

Dann ist WG :=
⋃∞

k=1 Wk abzählbar, die W ∈ WG

sind fast-disjunkt und
⋃

W∈WG W = G.

Lemma 78 (Nullmengen und Würfel). Seien r > 0 und N ⊂ Rn.

N ist genau dann eine Nullmenge, wenn es zu jedem ǫ > 0 eine Folge (Wi = W (pi, ri))i∈N

von kompakten Würfeln gibt, so dass

N ⊂
⋃

i∈N

Wi,
∑

i∈N

µn(Wi) < ǫ, und für alle i ri < r.

Beweis. Die Bedingung ist offenbar hinreichend.
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Ist andrerseits N eine µn-Nullmenge, so gibt es zu jedem ǫ > 0 eine Folge (Ij)j∈N offener
Intervalle aus I(Rn), die N überdeckt, und für die

∑

j∈N

µn(Ij) < ǫ.

Zu jedem Ij gibt es nach Lemma 77 eine Folge fast-disjunkter kompakter Würfel (W j
i )i∈N

mit Kantenlängen < r und Vereinigung Ij . Für diese gilt

∑

i∈N

µn(W j
i ) = µn(Ij).

Die als Folge numerierten W j
i überdecken dann N und haben ein Gesamtmaß < ǫ.

Lemma 79 (C1-Bilder von Nullmengen). Seien G ⊂ Rn offen, h : G → Rn stetig
differenzierbar und N ⊂ G eine Nullmenge. Dann ist auch h(N) eine Nullmenge.

Bemerkung. Das gilt nicht für stetige Abbildungen. Peano hat 1890 ein Beispiel für eine
stetige Abbildung der Nullmenge

{
(x, 0)

∣∣ 0 ≤ x ≤ 1
}
⊂ R2 in den R2 gegeben, deren Bild

das Einheitsquadrat ist. Vgl. z.B. Barner-Flohr, Analysis II, p. 40.

Beweis. Nach dem Ausschöpfungslemma gibt es eine Folge kompakter Würfel (Wj)j∈N mit
G =

⋃
j∈N Wj . Weil die abzählbare Vereinigung von Nullmengen eine Nullmenge ist, genügt

daher der Nachweis, dass h(N ∩W ) für jeden kompakten Würfel W ⊂ G eine Nullmenge
ist. Zu einem solchen W = W (p, r) gibt es ein R > r mit W̃ = W (p,R) ⊂ G (Beweis?). Weil
f stetig auf dem kompakten W̃ ist, existiert

M := max
{
‖Dxh‖

∣∣∣x ∈ W̃
}
.

Sei nun ǫ > 0. Nach Lemma 78 gibt es eine Folge von Würfeln Wi = W (pi, ri) der Kan-
tenlänge < R − r mit N ∩ W ⊂ ⋃

Wi und
∑
µn(Wi) < ǫ. Wir können o.E. annehmen,

dass (N ∩ W ) ∩ Wi 6= ∅ für alle i ∈ N. Dann liegen alle Wi in W̃ . Daher ist nach dem
Schrankensatz

h(Wi) = h(W (pi, ri)) ⊂W (h(pi),Mri).

Damit ist

h(N ∩W ) ⊂
⋃
W (h(pi),Mri) und

∑
µn(W (h(pi),Mri) = Mn

∑
µn(Wi) ≤Mnǫ.

Also ist h(N ∩W ) eine µn-Nullmenge.

Wir betrachten jetzt das oben angesprochene Problem der Volumenverzerrung zunächst für
(lineare) Isomorphismen h : Rn → Rn.

Nach linearer Algebra (vgl. Fischer, p.94, Satz 2.7.3) ist jeder Automorphismus von Rn das
Produkt endlich-vieler elementarer Automorphismen. Dabei heißt ein Automorphismus h
elementar, wenn er von einem der folgenden drei Typen ist:

• h multipliziert eine Komponente mit λ 6= 0.

• h vertauscht zwei Komponenten

• h(x1, . . . , xn) = (x1 + x2, x2, . . . , xn).
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Lemma 80 (Verzerrung durch elementare Isomorphismen). Sei h : Rn → Rn ein
elementarer Automorphismus und W ein kompakter Würfel. Dann ist h(W ) kompakt, also
integrierbar, und es gilt

µn(h(W )) = |deth |µn(W ). (21)

Beweis. Für die beiden ersten Typen elementarer Isomorphismen ist die Behauptung klar,
weil h(W ) ein Intervall ist, dessen Volumen sich elementar errechnet.

Sei also h vom dritten Typ und

W = W1 × . . .×Wn.

Dann gilt
χ
h(W )(x1, . . . , xn) = χ(x2 +W1)(x1)χW2 × . . .×Wn

(x2, . . . , xn).

Dabei bezeichnet x2 +W1 das um x2 verschobene Intervall W1, für das offenbar

µ1(x2 +W1) = µ1(W1).

Nach dem Satz von Fubini existiert
∫
χ

(x2 +W1)
(.)χ

W2 × . . .Wn
(x2, . . . , xn) dµ1 = µ1(x2 +W1)χW2 × . . .Wn

(x2, . . . , xn)

= µ1(W1)χW2 × . . .Wn
(x2, . . . , xn),

und es gilt

µn(h(W )) =

∫
χ
h(W )

dµn =

∫
µ1(W1)χW2 × . . .Wn

dµn−1

= µ1(W1)µn−1(W2 × . . .×Wn) = µn(W ).

Aus det(h) = 1 folgt die Behauptung.

Weil χ
h(W )

◦ h = χ
W

ist, kann man die Formel (21) auch so schreiben:

∫
χ
h(W )

dµn =

∫
(χ
h(W )

◦ h)|deth |dµn. (22)

Wir wollen diese Formel nun schrittweise verallgemeinern auf beliebige Automorphismen h
und integrierbare Funktionen f anstelle von χ

h(W ).

1. Schritt. Seien h ein elementarer Automorphismus und f = χ
A

für eine offene und be-

schränkte TeilmengeA ⊂ Rn. Dann ist auch h−1(A) offen und nach dem Ausschöpfungslemma
77 die Vereinigung abzählbar vieler fast-disjunkter kompakter Würfel: h−1(A) =

⋃
i∈N Wi.

Weil h injektiv und nullmengentreu ist, ist dann A =
⋃

i∈N h(Wi) mit fast-disjunkten h(Wi),
also

χ
A

=µn

∞∑

i=0

χ
h(Wi)

.

Weil A beschränkt ist, ist χ
A
∈ L1(µn), und wie im Beweis der σ-Additivität folgt mit (22)

∫
χ
A
dµn =

∞∑

i=0

∫
χ
h(Wi)

dµn =
∞∑

i=0

∫
(χ
h(Wi)

◦ h)|deth|dµn

=

∫
(χS

i∈N
h(Wi)

◦ h)|deth|dµn =

∫
(χ
A
◦ h)|deth|dµn.
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2. Schritt. Sei h1 ein beliebiger Automorphismus des Rn, h2 ein elementarer Automorphis-
mus, A ⊂ Rn offen und beschränkt, und für f = χ

A
gelte

∫
fdµn =

∫
(f ◦ h1)|deth1|dµn.

Dann gilt nach dem 1. Schritt
∫
fdµn =

∫
(f ◦ h1)|deth1|dµn =

∫
χ
h−1
1 (A)

|deth1|dµn = |deth1|
∫
χ
h−1
1 (A)

dµn

= |deth1|
∫

(χ
h−1
1 (A)

◦ h2)|deth2|dµn =

∫
(f ◦ (h1 ◦ h2))|det(h1 ◦ h2)|dµn.

Weil aber jeder Automorphismus das endliche Produkt elementarer Automorphismen ist,
erhalten wir mit den 1. Schritt: Ist f = χ

A
für ein offenes und beschränktes A ⊂ Rn, so gilt

für jeden Automorphismus h : Rn → Rn

∫
f dµn =

∫
(f ◦ h)|deth | dµn. (23)

3. Schritt. Ist f ∈ T (Rn), so ist f =µn

∑k
j=1 λjχIj

mit offenen beschränkten Intervallen

Ij . Wegen der Linearität des Integrals gilt (23) daher auch für Treppenfunktionen f .

4. Schritt. Ist h : Rn → Rn ein Automorphismus, ist f ∈ L1
+(µn) und ist (fi)i∈N eine mono-

ton wachsende Folge von Treppenfunktionen mit f = limµn
, also

∫
fdµn = limi→∞

∫
fidµn,

so ist ((fi ◦ h)|deth|)i∈N nach dem 3. Schritt eine offenbar monoton wachsende Folge inte-
grierbarer Funktionen mit beschränkter Integralfolge

(∫
(fi ◦ h)|deth|dµn =

∫
fidµn

)

i∈N

Nach Beppo Levi ist (f ◦ h)|deth| =µn
limi→∞(fi ◦ h)|deth| ∈ L1(µn) und (23) gilt auch

für f ∈ L1
+(µn).

Schließlich gilt die Behauptung wegen der Linearität des Integrals dann auch für f ∈ L1(µn),
und wir erhalten den folgenden Satz:

Satz 81 (Transformationssatz für lineare Isomorphismen). Seien h : Rn → Rn ein
Automorphismus und f ∈ L1(µn). Dann ist auch f ◦ h ∈ L1(µn) und es gilt

∫
f dµn =

∫
(f ◦ h)|deth | dµn. (24)

Beispiel 82 (Ellipsenfläche). Der Isomorphismus h : (x, y) 7→ (ax, by) mit a, b > 0 bildet
den Einheitkreis D auf die Ellipse mit den Halbachsen a und b ab. Deren Fläche ist deshalb
gleich der Fläche π des Einheitskreises mal |deth | = ab:

F =

∫
χ
h(D)dµ2 =

∫
(χ
h(D) ◦ h)abdµ2 = ab

∫
χ
D
dµ2 = abπ.

Wenn h kein Automorphismus, sondern ein Diffeomorphismus, also eine stetig differenzierba-
re Abbildung mit stetig differenzierbarem Inversen ist, liefert die allgemeine Philosophie der
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Differentialrechnung sofort eine Vermutung, wie man diese Formel verallgemeinern sollte:
Statt der Determinante von h sollte wohl die Determinante der Ableitung von h auftreten:

∫
f dµn =

∫
(f ◦ h)|detDh | dµn.

Der Beweis dieser Formel ist unser Ziel in den folgenden Abschnitten. Wenn wir f nur über
einen Bereich h(G) integrieren wollen, müssen wir f ersetzen durch fχ

h(G)
. Es ergibt sich

∫
fχ

h(G) dµn =

∫
((fχ

h(G)) ◦ h)|detDh | dµn =

∫
(f ◦ h)χ

G
|det Dh |dµn

oder, nach Seitenvertauschung,

∫

G

(f ◦ h)|det Dh |dµn =

∫

h(G)

f dµn.

Für das Verständnis des Transformationssatzes ist es überaus hilfreich, sich diese Formel
an der folgenden Skizze klarzumachen. Die Determinante liefert die Verzerrung der Grund-
fläche, während die Ordinaten, also die Funktionswerte, bei der Transformation f 7→ f ◦ h
unverändert bleiben.

h

Graph ( f )Graph (f   h)o

G h(G)

58



6.2 Verzerrung durch C1-Diffeomorphismen

• Die infinitesimale Volumenverzerrung eines Diffeomorphismus wird durch lineare Ap-
proximation berechnet und ist deshalb gegeben durch die Determinante der Funktio-
nalmatrix.

• Die globale Volumenverzerrung eines Diffeomorphismus ergibt sich durch Integration
der infinitesimalen Verzerrung.

Die beiden folgenden Lemmata beschreiben infinitesimal und global die Volumenverzerrung
von Würfeln durch C1-Diffeomorphismen4:

Lemma 83 (Infinitesimale Würfelverzerrung). Seien G ⊂ Rn offen, h : G→ Rn stetig
differenzierbar, p ∈ G und Dph bijektiv. Sei (Wi) eine Folge kompakter, nicht entarteter5

Würfel in G mit

lim
i→∞

diamWi = 0 und p ∈
⋂
Wi.

Dann sind die h(Wi) kompakt, also integrierbar, und

lim
i→∞

µn(h(Wi))

µn(Wi)
= |detDph |.

Beweis. 1. Schritt. Wir können o.E. annehmen, dass Dph = id.

Sonst setzen wir g := (Dph)
−1. Dann ist

µn(h(Wi))

µn(Wi)
=

µn(h(Wi))

µn(g ◦ h(Wi))

µn(g ◦ h(Wi))

µn(Wi)
=

Lemma 80
|detDph |

µn(g ◦ h(Wi))

µn(Wi)

und Dp(g ◦ h) = id.

2. Schritt. Sei also D
p
h = id. Dann folgt aus der stetigen Differenzierbarkeit und dem

Schrankensatz, dass es zu jedem ǫ ∈]0, 1[ eine Umgebung U von p gibt, so dass für alle
q, q′ ∈ U

‖h(q) − h(q′)‖ ≤ (1 + ǫ)‖q − q′‖.
Mit dem Umkehrsatz erhält man ebenso eine Umgebung, auf der

‖q − q′‖ ≤ 1

1 − ǫ
‖h(q) − h(q′)‖.

Nach eventueller Verkleinerung von U erhalten wir für alle q, q′ ∈ U

(1 − ǫ)‖q − q′‖ ≤ ‖h(q) − h(q′)‖ ≤ (1 + ǫ)‖q − q′‖.

Weil wir mit der Supremumsnorm arbeiten, bedeutet das aber für alle Würfel W (q, r) ⊂ U ,
dass

W (h(q), (1 − ǫ)r)) ⊂ h(W (q, r)) ⊂W (h(q), (1 + ǫ)r).

4 Zur Erinnerung: C1-Diffeomorphismen sind bijektive, stetig differenzierbare Abbildungen mit stetig
differenzierbarem Inversen.

5D.h. mit positiver Kantenlänge, also µn(Wi) > 0.
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Also ist

(1−ǫ)n(2r)n ≤ µn(h(W (q, r))) ≤ (1+ǫ)n(2r)n

und deshalb

(1 − ǫ)n ≤ µn(h(W (p, r)))

µn(W (p, r))
≤ (1 + ǫ)n.

W(q,r)

W(h(q),(1+ε)r)

h

q

W(h(q),(1-ε)r)

Daraus folgt die Behauptung.

Lemma 84 (Globale Würfelverzerrung). Seien G ⊂ Rn offen und h : G → Rn ein
C1-Diffeomorphismus. Sei W ein kompakter Würfel in G. Dann ist h(W ) kompakt, also
integrierbar, |detDh | ∈ L1(W,µn) und

µn(h(W )) =

∫

W

|detDh | dµn. (25)

Vergleichen Sie das mit Lemma 80.

Die Gleichung (25) können wir auch schreiben als

∫

h(G)

χ
h(W )

dµn =

∫

G

(χ
h(W )

◦ h)|detDh | dµn. (26)

Beweis von Lemma 84. Sei L die Kantenlänge von W . Wir unterteilen W durch fortgesetzte
Halbierung. Zu jedem k erhalten wir so 2kn kompakte fast-disjunkte Würfel (Wkj)1≤j≤2kn

der Kantenlänge L/2k, so dass für jedes k ∈ N

W =
2kn⋃

j=1

Wkj und χ
W

=µn

2kn∑

j=1

χ
Wkj

.

Weil h injektiv und nach Lemma 79 nullmengentreu ist, folgt

χ
h(W ) =µn

2kn∑

j=1

χ
h(Wkj)

.

Wir definieren eine Folge von Treppenfunktionen

fk :=
2kn∑

j=1

µn(h(Wkj))

µn(Wkj)
χ
Wkj

.

Zunächst wollen wir zeigen, dass diese Folge µn-konvergent ist. Die Vereinigung der Ränder
aller Wkj bildet eine Nullmenge N . Für x ∈ W \N gibt es zu jedem k genau ein j(k) mit
x ∈Wkj(k). Dann ist also

fk(x) =
µn(h(Wkj(k)))

µn(Wkj(k))
.

Für x ∈W \N folgt aus Lemma 83, dass lim fk(x) = |detDxh |, also

lim
k→∞

fk =µn
χ
W
|detDh |.
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Weiter ist
∫
fkdµn =

2kn∑

j=1

µ
n
(h(Wkj)) = µn(h(W )) =

∫
χ
h(W )

dµn.

Die Behauptung ergibt sich daher aus dem Satz von Lebesgue, falls die fk von einer inte-
grierbaren Funktion dominiert werden. Mit M := supx∈W ‖Dxh‖ liegt aber jedes h(Wkj)
nach dem Schrankensatz in einem Würfel der M -fachen Kantenlänge, also des Mn-fachen
Volumens, und es folgt

0 ≤ fk ≤Mnχ
W

∈ L1(µn).

Beispiel 85. Wie man einen Isomorphismus von Rn auf einen Vektorraum deuten kann
als ein Koordinatensystem in diesem Vektorraum, so kann man allgemeiner auch Diffeomor-
phismen als (sogenannte “krummlinige”) Koordinaten interpretieren. Wir betrachten ebene
Polarkoordinaten.

Sei h : R2 ⊃]0,∞[×]0, 2π[→ R2 der Diffeomorphismus

h(ρ, φ) := (ρ cosφ, ρ sinφ).

ρ und φ heißen die Polarkoordinaten des Punktes h(ρ, φ). Die Funktionalmatrix im Punkt
(ρ, φ) ist

h′(ρ, φ) =

(
cosφ −ρ sinφ
sinφ ρ cosφ

)

Die Funktionaldeterminante ist

|detD(ρ,φ)h| = detD(ρ,φ)h = ρ.

Nach Lemma 83 wird also ein kleines Quadrat an der Stelle (ρ, φ) durch h abgebildet auf
eine Menge vom annähernd ρ-fachen Flächeninhalt.

Für große Quadrate erhält man die Flächenverzerrung nach Lemma 84 durch Integration,
und mit dem Satz von Fubini ergibt sich für 0 < ρ0 < ρ1 und 0 < φ0 < φ1 < 2π

µ2(h([ρ0, ρ1] × [φ0, φ1])) =

∫ φ1

φ0

∫ ρ1

ρ0

ρdρ dφ =
1

2
(φ1 − φ0)(ρ

2
1 − ρ2

0).

h

ρ ρ

φ

φ

0

0

1

1

W
h(W)

Schreibt man die linke Seite als µ2-Integral und (in Anlehnung an den Satz von Fubini)
dµ2 = dx dy, so ergibt sich ∫

h(W )

dx dy =

∫

W

ρ dρ dφ.
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Das kodiert man gern in der Formel

dx dy = ρ dρ dφ.

Man sagt das Flächenelement in Polarkoordinaten sei ρ dρ dφ.

Beachten Sie: h ist kein Diffeomorphismus auf der abgeschlossenen Menge [0,∞[×[0, 2π],
und deshalb können wir nicht ρ0 = φ0 = 0 und φ1 = 2π setzen, um die Kreisfläche zu
errechnen. Das ist ärgerlich und muss noch “repariert” werden. Vergleichen sie dazu den
Zusatz in der folgenden endgültigen Version des Transformationssatzes und das Beispiel 88.

Beispiel 86 (Allgemeine Kugelkoordinaten). Für die Funktionaldeterminante der ver-
allgemeinerten Kugelkoordinaten

hn : Rn ⊃ [0,∞[×[0, π]n−2 × [0, 2π] → Rn

mit

h2(r, φ) := r(cosφ, sinφ),

h3(r, θ1, φ) := r(cosφ sin θ1, sinφ sin θ1, cos θ1)

= r(h2(1, φ) sin θ1, cos θ1),

hn+1(r, θ1, . . . , θn−1, φ) := r(hn(1, θ1, . . . , θn−2, φ) sin θn−1, cos θn−1)

gilt
|detDhn| = rn−1(sin1 θ1 . . . sin

n−2 θn−2).

Insbesondere gilt für die 3-dimensionalen Kugelkoordinaten h3(r, θ, φ)

|detDh3| = r2 sin θ.

Beweis. Durch Induktion.

Induktionsanfang klar.

Induktionsschritt. Es ist

Dhn+1 =

 

hn(1, . . .) sin θn−1 r
∂hn(1,...)

∂θ1
sin θn−1 . . . r

∂hn(1,...)
∂θn−2

sin θn−1 rhn(1, . . .) cos θn−1 r
∂hn(1,...)

∂φ
sin θn−1

cos θn−1 0 . . . 0 −r sin θn−1 0

!

.

Beachten Sie, dass in der ersten Zeile n-reihige Vektoren stehen, so dass diese Matrix “ordnungsgemäß” vom
Format (n+ 1) × (n+ 1) ist. Damit folgt

| detDhn+1| = ±rn sinn−1 θn−1

˛

˛

˛

˛

˛

hn(1, . . .) sin θn−1
∂hn(1,...)

∂θ1
. . . hn(1, . . .) cos θn−1

∂hn(1,...)
∂φ

cos θn−1 0 . . . − sin θn−1 0

˛

˛

˛

˛

˛

= ± r
n sinn−2 θn−1

cos θn−1

˛

˛

˛

˛

˛

hn(1, . . .) sin2 θn−1
∂hn(1,...)

∂θ1
. . . hn(1, . . .) cos2 θn−1

∂hn(1,...)
∂φ

cos θn−1 sin θn−1 0 . . . − sin θn−1 cos θn−1 0

˛

˛

˛

˛

˛

= ± r
n sinn−1 θn−1

cos θn−1

˛

˛

˛

˛

˛

hn(1, . . .) sin θn−1
∂hn(1,...)

∂θ1
. . . hn(1, . . .)

∂hn(1,...)
∂φ

cos θn−1 0 . . . 0 0

˛

˛

˛

˛

˛

= ±rn sinn−1 θn−1

˛

˛

˛

hn(1, . . .)
∂hn(1,...)

∂θ1
. . .

∂hn(1,...)
∂θn−2

∂hn(1,...)
∂φ

˛

˛

˛

= ±rn(sinn−1 θn−1)| detDhn(1, θ1, . . . , θn−2, φ)|
= rn(sinn−1 θn−1) . . . (sin1 θ1).
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6.3 Der Transformationssatz

• Wir haben früher die Volumenverzerrung durch lineare Isomorphismen berechnet und
daraus den Transformationssatz 81 für Integrale gewonnen.

• Nachdem die Volumenverzerrung durch Diffeomorphismen geklärt ist, können wir dar-
aus ebenso den Transformationssatz für Integrale gewinnen, also Integrale in andere
Koordinatensysteme umschreiben.

Wir verallgemeinern (26) auf beliebige Funktionen f ∈ L1(µn) anstelle von χ
h(W )

.

Satz 87 (Transformationssatz). Sei h : G → Rn injektiv und stetig differenzierbar auf
der offenen Menge G ⊂ Rn. Dann gilt:

(i) h(G) ist µn-messbar.

(ii) Ist f ∈ L1(h(G), µn), so ist (f ◦ h)|detDh | ∈ L1(G,µn) und

∫

h(G)

fdµn =

∫

G

(f ◦ h)|detDh |dµn.

Zusatz: Die Injektivitätsforderung darf h auf einer Nullmenge auch verletzen:
Ist h stetig differenzierbar auf einer offenen Umgebung der µn-messbaren (aber nicht not-
wendig offenen) Menge G, und ist N ⊂ G eine µn-Nullmenge, so dass

G \N offen und h |G \N injektiv,

so gelten ebenfalls die obigen Behauptungen.

Beispiel 88. Eine typische Situation, in der sich der Zusatz als nützlich erweist, sind die
Polarkoordinaten, vgl. Beispiel 85:

h(ρ, φ) = (ρ cosφ, ρ sinφ) für (ρ, φ) ∈ R2,

G = [0, R ] × [0, 2π]

N = ∂G = G \ (]0, R [× ]0, 2π [).

h
2π

G

h(G)

R

h ist auf dem Inneren von G ein Diffeomorphismus, nicht aber auf ganz G. Aber wenn man
mit der Idee aus Beispiel 85 die Kreisfläche berechnen will, möchte man ρ0 = φ0 = 0, ρ1 = R
und φ1 = 2π setzen. Darf man auch, weil die Injektivität nur auf einer Nullmenge, nämlich
dem Rand ∂G, verletzt ist.

Der Beweis des Transformationssatzes gliedert sich entsprechend den Voraussetzungen über
h in drei Teile

Teil A: h ist ein C1-Diffeomorphismus der offenen Menge G.

Teil B: h ist eine injektive C1-Abbildung der offenen Menge G.

Teil C: h ist wie im Zusatz.
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Beweis des Transformationssatzes: Teil A. Sei also G offen und

h : Rn ⊃ G→ h(G) ⊂ Rn

ein C1-Diffeomorphismus. Wir stellen zunächst fest, dass dann h(G) offen und damit µn-
messbar ist.

A.1 Sei f = χ
A

für ein beschränktes, offenes A ⊂ h(G). Dann läßt sich die offene Menge

h−1(A) ⊂ G schreiben als Vereinigung einer fast-disjunkten Folge kompakter Würfel Wj in
G. Dann gilt also

χ
h−1(A)

=µn

∞∑

j=0

χ
Wj

und, weil h nullmengentreu ist,

χ
A

=µn

∞∑

j=0

χ
h(Wj)

.

Nach Lemma 84 gilt für die Partialsummen

∫ 


k∑

j=0

χ
h(Wj)



 dµn =

∫ 


k∑

j=0

(χ
h(Wj)

◦ h)|detDh|



 dµn,

und weil
∑k

j=0 χh(Wj)
≤ χ

A
für jedes k ∈ N, ist diese Integralfolge beschränkt. Anwendung

des Satzes von Beppo Levi auf beide Seiten liefert daher

∫
f dµn =

∫
(f ◦ h)|detDh | dµn,

und das ist dasselbe(!) wie

∫

h(G)

f dµn =

∫

G

(f ◦ h)|detDh | dµn.

A.2 Nun sei f = χ
h(G) g für eine Treppenfunktion g =

∑k
i=0 ci χIi

. Dann ist

f =µn

∑
ci χI0i ∩ h(G)

und die Behauptung folgt aus A.1 und der Linearität des Integrals.

A.3 Sei f = χ
h(G)

g mit g ∈ L1
+(µn), und sei (gj)j∈N eine monoton wachsende Folge von

Treppenfunktionen mit µn-Limes g. Dann ist f =µn
limχ

h(G)
gj , und wegen der Nullmen-

gentreue von h−1 auch f ◦ h =µn
lim(χ

h(G)gj) ◦ h. Nach A.3 gilt für jedes j ∈ N

∫
χ
h(G)

gjdµn =

∫
((χ

h(G)
gj) ◦ h)|detDh|dµn.

Weil χ
h(G)

gj ≤µn
χ
h(G)

g ∈ L1(µn), ist diese Integralfolge beschränkt, und nach Beppo Levi

gilt ∫
χ
h(G)

gdµn =

∫
((χ

h(G)
g) ◦ h)|detDh|dµn,

also ∫

h(G)

f dµn =

∫

G

(f ◦ h)|detDh | dµn.
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A.4 Ist schließlich f ∈ L1(µn) beliebig, so folgt die Behauptung aus A.3 und der Linearität
des Integrals.

Beweis des Transformationssatzes: Teil B. Wir verlangen nun nicht mehr, dass h ein Diffeo-
morphismus ist, sondern nur eine injektive C1-Abbildung. Sei

K :=
{
x
∣∣Dxh nicht bijektiv

}
.

K ist abgeschlossen, also G \K offen und damit messbar. Wir zeigen später im Satz 93
(Lemma von Sard), dass

h(K) eine µn-Nullmenge

ist. Wegen h(G \K) ⊂ h(G) ⊂ h(G \K) ∪ h(K) ist dann

χ
h(G \K) =µn

χ
h(G).

Ist also f ∈ L1(h(G), µn), so auch f ∈ L1(h(G \K,µn) und

∫

h(G)

fdµn =

∫

h(G \K)

fdµn

=

∫

G \K

(f ◦ h)|detDh |dµn

=

∫

G \K

(f ◦ h)|detDh |dµn +

∫

K

(f ◦ h)|detDh |dµn

︸ ︷︷ ︸
=0

=

∫

G

(f ◦ h)|detDh |dµn.

Beim letzten Schritt haben wir verwendet, dass χ
G \K + χ

K
= χ

G
.

Beweis des Transformationssatzes: Teil C. Wir beweisen nun den Zusatz.

G \N ist offen, also messbar, und damit ist auch G messbar. Weiter ist

h(G \N) ⊂ h(G) ⊂ h(G \N) ∪ h(N),

und h(N) ist nach Lemma 79 eine Nullmenge. Nach Teil A und B ist h(G \N) messbar, also
ist auch h(G) messbar. Weiter ist

∫

h(G)

f dµn =

∫

h(G \N)

f dµn =
Teil B

∫

G \N

(f ◦ h)|detDh | dµn =

∫

G

(f ◦ h)|detDh | dµn.

Beispiel 89. Für einen Diffeomorphismus x : [a, b] → x([a, b]) ⊂ R und eine Regelfunktion
f : x([a, b]) → R besagt die Substitutionsregel:

∫ x(b)

x(a)

f(x) dx =

∫ b

a

f(x(t))x′(t) dt.

Vergleichen Sie das mit dem Transformationssatz. Warum steht hier x′(t) statt |x′(t)|?
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Beispiel 90 (Bewegungsinvarianz). Translationen und orthogonale Abbildungen des Rn

sind Diffeomorphismen mit Funktionaldeterminante vom Absolutbetrag 1. Also erhalten sie
das Lebesguemaß integrierbarer Mengen. Das Lebesguemaß ist bewegunsinvariant.

Beispiel 91 (Gaußsches Fehlerintegral). Die Funktion f : R2 → R, (x, y) 7→ e−(x2+y2)

ist stetig, und daher für jedes R > 0 integrierbar über den abgeschlossenen Kreis BR vom
Radius R. Anwendung des Transformationssatzes mit Polarkoordinaten liefert

∫

BR

fdµ2 =

∫

[0,R]×[0,2π]

e−ρ2

ρ dµ2 =

∫

[0,R]×[0,2π]

e−ρ2

ρ dρdφ.

Darauf wenden wir den Fubini an und schreiben die 1-dimensionalen Lebesgueintegrale in
Regelintegrale um

∫

BR

fdµ2 =

∫ 2π

0

(∫ R

0

e−ρ2

ρ dρ

)
dφ = 2π

(
1

2
− e−R2

2

)
.

Wir betrachten nun den Fall R = n ∈ N und wenden auf die Folge (χ
Bn

f)n∈N den Satz von

Beppo Levi an. Er liefert

∫
f dµ2 = lim

n→∞

∫

Bn

fdµ2 = lim
n→∞

π(1 − e−n2

) = π.

Andrerseits wissen wir aus Beispiel 62

∫
fdµ2 =

(∫ +∞

−∞
e−t2dt

)2

und finden
∫ ∞

−∞
e−t2dt =

√
π.

Dies ist das in der Statistik sehr wichtige
Integral der Gaußschen Verteilung. Es läßt
sich

”
eindimensional“ nicht leicht finden,

e−t2 hat keine elementare Stammfunktion.

Beispiel 92 (Trägheitsmoment der homogenen Hohlkugel). Die Kugelkoordinaten
oder sphärischen Polarkoordinaten h : [0,∞[×[0, π] × [0, 2π] → R3 mit

h(r, θ, φ) := (r sin θ cosφ, r sin θ sinφ, r cos θ)

sind ein Diffeomorphismus auf ]0,∞[×]0, π[×]0, 2π[, und die Funktionaldeterminante ist nach
Beispiel 86 gegeben durch r2 sin θ.
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θ

θ

ϕ

ϕ

r

x

y

z

r sin

θr d

d

dr

Wir berechnen damit das Trägheitsmoment einer homogenen Hohlkugel K mit Radien a < b
und der Massendichte m bezüglich der z−Achse durch den Mittelpunkt, welches definiert
ist durch

Θ =

∫

K

m(x2 + y2)dµ3.

Anwendung des Transformationssatzes auf sphärische Polarkoordinaten und Fubini ergibt:

Θ =

∫ b

a

∫ π

0

∫ 2π

0

mr2 sin2 θ r2 sin θdφdθdr =

∫ b

a

∫ π

0

∫ 2π

0

mr4 sin3 θ dφdθdr

= 2πm
b5 − a5

5

∫ π

0

sin3 θdθ =
8mπ

15
(b5 − a5).

Unter Verwendung der Gesamtmasse M = m 4
3π(b3 − a3) erhält man

Θ =
2

5
M

b5 − a5

b3 − a3
.

Rollt die Kugel auf einer schiefen Ebene der Neigung α, und bezeichnet ψ den Rota-
tionswinkel, so ergibt sich die Bewegungsgleichung aus dem Energieerhaltungssatz:

M

2
(bψ̇)2 +

Θ

2
ψ̇2 = Mgbψ sinα =⇒ ψ(t) =

Mgb sinα

2(Mb2 + Θ)
t2.

Die Laufzeit T für die Strecke S = bψ(T ) erfüllt dann

T 2 =
2S

g sinα
(1 +

Θ

Mb2
).

Durch ein Laufzeit-Experiment lassen sich also das Trägheitsmoment Θ und damit der innere
Radius a aus den leicht zu messenden Hohlkugel-Parametern M und b bestimmen.
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6.4 Das Lemma von Sard

• Es scheint plausibel, dass Mengen, auf denen der Rang einer differenzierbaren Ab-
bildung < n ist, auf Mengen einer Dimension < n abgebildet werden, aber es ist
natürlich gar nicht klar, was das eigentlich bedeuten soll. Das Lemma von Sard gibt
eine Präzisierung, die wir im Beweis zum Transformationssatz bereits benutzt haben.

Satz 93 (Lemma von Sard). Seien G ⊂ Rn offen und h : G→ Rn stetig differenzierbar.
Sei

K :=
{
x
∣∣ detDxh = 0

}
.

Dann ist die Menge der kritischen Werte h(K) von h eine µn-Nullmenge.

Beweis. Wir verwenden die Euklidische Norm auf Rn, weil wir die Bewegungsinvarianz von
µn brauchen werden.

Weil die Vereinigung abzählbar vieler Nullmengen eine Nullmenge ist, genügt es nach dem
Ausschöpfungslemma 77 zu zeigen, dass h(K∩W ) für jeden kompakten Würfel W ⊂ G eine
µn-Nullmenge ist. Sei W also ein solcher Würfel, sei

M := sup
x∈W

‖Dxh‖,

und sei
ǫ > 0.

Die Funktion ‖Dh‖ ist stetig auf der kompakten Menge W , also gleichmäßig stetig. Daher
gibt es zu dem gegebenen ǫ eine Zerlegung vonW in kn kompakte WürfelWj , j ∈ {1, . . . , kn},
mit

W =
kn⋃

j=1

Wj , diamWj =
diamW

k
,

so dass für alle j gilt
x, y ∈Wj =⇒ ‖Dyh−Dxh‖ < ǫ. (27)

Für alle Komponentenfunktionen hi von h, alle j ∈ {1, . . . , kn} und alle x, y in Wj gilt nach
dem Schrankensatz

|hi(y) − hi(x)| ≤ ‖h(y) − h(x)‖ ≤M‖y − x‖ ≤M
diamW

k
. (28)

Nun sei x ∈ K ∩Wj , also Dxh(R
n) 6= Rn, und wir nehmen zunächst an, dass

Dxh(R
n) ⊂ Rn−1 × {0}. (29)

Dann gilt für die letzte Komponenten hn und y ∈Wj

|hn(y) − hn(x)| = |hn(y) − hn(x) −Dxhn(y − x)︸ ︷︷ ︸
=0

|

≤ ‖h(y) − h(x) −Dxh(y − x)‖
= ‖(h(y) −Dxh(y)) − (h(x) −Dxh(x))‖ .

Der Schrankensatz angewendet auf die Funktion y 7→ h(y) −Dxh(y) liefert dann

|hn(y) − hn(x)| ≤ sup
q∈xy

‖Dqh−Dxh‖‖y − x‖ ≤ ǫ
diamW

k
. (30)
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Nach (28) und (30) ist die kompakte Menge h(Wj) also enthalten in einem Intervall vom
Volumen (

M
diamW

k

)n−1

2ǫ
diamW

k
= 2

ǫ

kn
Mn−1(diamW )n.

Ohne die Voraussetzung (29) ist Dxh(R
n) enthalten in einer anderen Hyperebene des Rn,

die man aus Rn−1 ×{0} durch eine Drehung erhalten kann. Wegen der Bewegungsinvarianz
von µn, vergleiche Beispiel 90, gilt dann auch in diesem Fall

µn(h(Wj)) ≤ 2
ǫ

kn
Mn−1(diamW )n.

Das gilt für alle j mit K ∩Wj 6= ∅, insgesamt aber für höchstens kn Indizes.

Weil h(K ∩W ) ⊂ ⋃K∩Wj 6=∅ h(Wj) und alle diese Mengen integrierbar sind, folgt

µn(h(K ∩W )) ≤ µn




⋃

K∩Wj 6=∅
h(Wj)



 ≤ 2ǫMn−1(diamW )n

für jedes ǫ > 0. Also ist µn(h(K ∩W )) = 0 und die Behauptung bewiesen.

Bemerkung. Für differenzierbare Abbildungen auch zwischen Räumen verschiedener Di-
mension

f : Rn ⊃ G→ Rm

heißen Punkte, in denen das Differential nicht surjektiv ist, kritische Punkte und ihre Bil-
der kritische Werte. Das Lemma von Sard (1942) in seiner vollen Form besagt, dass auch
in diesem Fall die Menge der kritischen Werte eine Lebesgue-Nullmenge ist, wobei man
(merkwürdiger Weise) voraussetzen muss, dass die Abbildung f mehr als max(0, n−m)-mal
stetig differenzierbar ist. (Vgl. z.B. Bröcker/Jänich, Einführung in die Differentialtopologie,
Springer-Verlag).

Es gibt ein Beispiel (von H. Whitney 1935) für eine C1-Funktion von R2 nach R, deren
kritische Wertemenge ein nicht-degeneriertes Intervall enthält. Für C2-Funktionen ist das
unmöglich.

Beispiel 94 (Transversalität). Das Lemma von Sard spielt im Zusammenhang mit dem
Begriff der Transversalität eine wichtige Rolle in der Differentialtopologie. Wir geben dafür
ein einfachstes Beispiel.

Sei f : [a, b ] → R stetig differenzierbar mit
f(a) < f(b). Nach dem Lemma von Sard ist
f(K) =

{
f(t)

∣∣ f ′(t) = 0
}

eine µ1-Nullmenge
in R und deshalb ist [f(a), f(b) ] \ f(K) 6= ∅.
Liegt y0 in dieser Menge, so schneidet die Ge-
rade y = y0 den Graphen von f transversal: In
keinem Schnittpunkt ist die Gerade tangential
an den Graphen. Das Lemma von Sard liefert
also die Existenz transversaler (horizontaler)
Geraden.

a b

g

Graph f

y
0
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7 Räume integrierbarer Funktionen

• Wir machen einen Ausflug in die Funktionalanalysis.

7.1 Die Lp-Räume

• Konvergenz von Folgen hatten wir in der Analysis II mittels Metrik, Topologie oder
Norm erklärt. Die in den Konvergenzsätzen benutzte punktweise Konvergenz fast
überall ist von etwas anderer Natur, nur die gleichmäßige Konvergenz ließ sich als
Konvergenz in der Supremumsnorm verstehen.

• Wir definieren deshalb auf verschiedenen Räumen integrierbarer Funktionen, die für
die Praxis der numerischen Mathematik oder der partiellen Differentialgleichungen von
großer Wichtigkeit sind, auch Normen und damit neue Konvergenzbegriffe.

• Wir werden diese Konvergenz im Zusammenhang mit den Fourierreihen im nächsten
Kapitel noch benötigen.

Im folgenden sei φ wieder ein beliebiges Maß auf Rn. Weiter seien A ⊂ Rn eine φ-messbare
Menge und p ≥ 1.

Definition 95. (i) Wir setzen

Lp(A, φ) :=
{
f : A→ R

∣∣ f ist φ-messbar und |f |p ist φ-integrierbar über A
}
.

(ii) Für f ∈ Lp(A, φ) definieren wir

‖f‖p :=

(∫
|f |pdφ

)1/p

.

Die Definition stimmt für p = 1 mit der bisherigen überein: f ist genau dann integrierbar,
wenn es messbar und |f | integrierbar ist.

Die Menge Lp(A, φ) ist ein Vektorunterraum vom Raum aller Abbildungen von A nach R.
Natürlich ist sie abgeschlossen unter der Multiplikation mit reellen Zahlen, also muss man
nur zeigen, dass mit f, g ∈ Lp(A, φ) auch f + g ∈ Lp(A, φ). Aber f + g und |f + g|p sind
φ-messbar, und weil

|f + g|p ≤ (2 sup(|f |, |g|))p = 2p sup(|f |p, |g|p) ∈ L1(A, φ)

ist |f + g|p nach Satz 54 auch φ-integrierbar.

Wir erinnern an ein Resultat aus der Analysis I:

Für a, b ≥ 0 und p, q > 1 mit 1
p + 1

q = 1 gilt

ab ≤ ap

p
+
bq

q
. (31)

Mit Hilfe dieser Ungleichung haben wir den folgenden Satz in einer diskreten Version bereits
in der Analysis I bewiesen:
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Satz 96 (Höldersche Ungleichung). Seien p, q > 1 mit

1

p
+

1

q
= 1.

Seien f ∈ Lp(A, φ) und g ∈ Lq(A, φ). Dann ist fg ∈ L1(A, φ) und

‖fg‖1 ≤ ‖f‖p‖g‖q.

Beweis. Ist ‖f‖p = 0, so folgt
∫
|f |pdφ = 0, also f =φ 0. Entsprechend für g.

Also o.E. ‖f‖p 6= 0 6= ‖g‖q. Für x ∈ A gilt nach (31)

|f(x)|
‖f‖p

|g(x)|
‖g‖q︸ ︷︷ ︸

φ-messbar

≤ 1

p

( |f(x)|
‖f‖p

)p

+
1

q

( |g(x)|
‖g‖q

)q

︸ ︷︷ ︸
φ-integrierbar

.

Nach Satz 54 folgt daraus fg ∈ L1(A, φ). Durch Integration ergibt sich

1

‖f‖p‖g‖q
‖fg‖1 ≤ 1

p‖f‖p
p

∫
|f |p dφ+

1

q‖g‖q
q

∫
|g|q dφ =

1

p
+

1

q
= 1.

Satz 97 (Minkowskische Ungleichung). Für p ≥ 1 und f, g ∈ Lp(A, φ) gilt

‖f + g‖p ≤ ‖f‖p + ‖g‖p

Beweis. Für p = 1 ist das trivial.

Sei also p > 1 und sei q = 1
1− 1

p

= p
p−1 , so dass 1

p + 1
q = 1. Beachten Sie, dass dann p−1 = p

q .

Also gilt
f ∈ Lp =⇒ |f |p−1 ∈ Lq.

Für f, g ∈ Lp folgt

|f + g|p = |f + g| |f + g|p−1 ≤ |f |︸︷︷︸
∈Lp

|f + g|p−1

︸ ︷︷ ︸
∈Lq

+ |g|︸︷︷︸
∈Lp

|f + g|p−1

︸ ︷︷ ︸
∈Lq

und nach der Hölderschen Ungleichung
∫

A

|f + g|pdφ ≤ ‖f‖p ‖(|f + g|p−1)‖q + ‖g‖p ‖(|f + g|p−1)‖q

= (‖f‖p + ‖g‖p)

(∫

A

|f + g|pdφ
) 1

q

.

Falls |f + g| =φ 0 ist, ist die Behauptung trivial. Andernfalls folgt nach Division durch
(∫

A
|f + g|pdφ

) 1
q die Behauptung.

Es sieht so aus, als sei ‖ . . . ‖p für p ≥ 1 eine Norm auf dem Vektorraum Lp(A, φ). Offenbar
gilt

‖λf‖p = |λ| ‖f‖p,
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und nach dem letzten Satz gilt die Dreiecksungleichung. Allerdings folgt aus ‖f‖p = 0 nach
dem Korollar zum Satz von Beppo Levi nur f =φ 0 und nicht f = 0, wie sich das für eine
Norm gehören würde. ‖.‖p ist also nur eine sogenannte Halbnorm.

Definition 98. Die Menge

N (A, φ) :=
{
f : A→ R

∣∣ f =φ 0
}

ist für jedes p > 0 ein Untervektorraum von Lp(A, φ). Wir bezeichnen den Quotientenvek-
torraum nach diesem Unterraum mit

Lp(A, φ) := Lp(A, φ)/N (A, φ).

Für p ≥ 1 induziert dann ‖ . . . ‖p auf Lp(A, φ) eine Norm.

Bemerkung. In der Praxis wird die Unterscheidung zwischen Lp und Lp sehr großzügig
gehandhabt. Man sagt oft

”
Sei f ∈ Lp“ wenn man eigentlich meint

”
Sei f ∈ Lp“, wenn also

f eine Funktion und nicht eine Äquivalenzklasse von Funktionen sein soll. Wir werden uns
dieser (Un)sitte anschließen.

Beispiel 99 (Hilbertraum). Für p = 2 wird die Norm auf L2(A, φ) durch ein positiv
definites Skalarprodukt

〈f, g〉 :=

∫
fg dφ

geliefert. Der Raum L2(A, φ) heißt auch der Hilbertraum der quadrat-integrierbaren Funk-
tionen.

Die Cauchy-Schwarz-Ungleichung | 〈f, g〉 | ≤ ‖f‖2‖g‖2 ist in diesem Fall äquivalent zur
Hölderschen Ungleichung.

Für φ = δN erhält man den Raum der quadrat-summierbaren Folgen, der üblicherweise mit
l2 bezeichnet und

”
Klein-l-zwei“ genannt wird.

Bemerkung zur Integration komplexwertiger Funktionen. Komplexwertige Funktio-
nen f : Rn ⊃ A→ C sind Paare reellwertiger Funktionen:

f = u+ iv mit u = Re f, v = Im f : Rn ⊃ A→ R.

Man definiert
L1

C(A, φ) =
{
u+ iv

∣∣u, v ∈ L1(A, φ)
}

und für f = u+ iv ∈ L1
C(A, φ)

∫

A

f dφ :=

∫

A

u dφ+ i

∫

A

v dφ.

Dafür gelten die elementaren Rechenregeln der Integration. Insbesondere hat man für f wie
oben

|f | ∈ L1(A, φ) und

∣∣∣∣
∫

A

f dφ

∣∣∣∣ ≤
∫

A

|f | dφ.

Beweis. Sind u, v ∈ L1(A, φ), so ist
√
u2 + v2 messbar, und wegen

|f | =
√
u2 + v2 ≤

√
2 sup(|u|, |v|) ∈ L1(A, φ)
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sogar integrierbar. Sei nun I :=
∫

A
fdφ 6= 0. Dann folgt mit einem schon aus der Analysis 1

bekannten Trick

1 = Re

∫
A
fdφ

I
=

∫

A

Re
f

I
dφ ≤

∫

A

|f |
|I| dφ,

also |I| ≤
∫

A
|f |dφ.

Man definiert Lp
C als Menge der komplexwertigen Funktionen mit messbarem Real- und

Imaginärteil, für die |f |p integrierbar ist. Dazu definiert man analog Lp
C und insbesondere

L2
C. Auf diesem Raum liefert

〈f, g〉 :=

∫
fḡ dφ.

ein unitäres Skalarprodukt (=positiv definite Sesquilinearform).
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7.2 Die Vollständigkeit der Lp-Räume

• Wir beweisen die Vollständigkeit der Lp-Räume.

• In diesem Zusammenhang beschäftigen wir uns noch einmal mit den verschiedenen
Konvergenzbegriffen für Funktionenfolgen und mit den Unterschieden zwischen endlich-
dimensionalen und unendlich-dimensionalen Banachräumen.

Im folgenden seien φ ein Maß auf Rn und A ⊂ Rn eine φ-messbare Menge.

Satz 100 (Fischer-Riesz). Für p ≥ 1 ist (Lp(A, φ), ‖ . . . ‖p) vollständig, also ein Banach-
raum.

Beweis. Ich schreibe Lp statt Lp(A, φ) und beschränke mich auf den Fall p > 1. Der Fall
p = 1 geht sehr ähnlich, aber es ist eine gute Übung, sich die nötigen Änderungen klar zu
machen.

Sei (fk) eine Cauchyfolge in Lp. Wir wollen zeigen, dass diese Folge konvergent ist, d.h. dass
es eine Limesfunktion f ∈ Lp gibt, so dass

lim ‖fk − f‖ = 0.

1. Schritt. Wir konstruieren zunächst einen Kandidaten für f .

Wegen der Cauchy-Eigenschaft gibt es eine streng monoton wachsende Folge (mk) mit

‖fl − fmk
‖p <

1

2k+1
für alle l ≥ mk. (32)

Wir wollen zeigen, dass (fmk
)k∈N φ-konvergent ist. Dazu schreiben wir

fmk
= fm0

+
k∑

j=1

(fmj
− fmj−1

).

Es genügt zu zeigen, dass die Reihe
∑∞

j=1(fmj
− fmj−1) fast überall absolut konvergent ist,

es genügt sogar, das auf jedem beschränkten Intervall I ∈ I(Rn) zu zeigen. Dazu benutzen
wir den Satz von Beppo Levi.

Weil χ
I
∈ Lq für q := p

p−1 ist, ist nach der Hölderschen Ungleichung

|fmj
− fmj−1 |χI ∈ L1.

und

∫
(

k∑

j=1

|fmj
−fmj−1

|χ
I
)dφ =

k∑

j=1

∥∥|fmj
− fmj−1

|χ
I

∥∥
1
≤

k∑

0

‖ |fmj
−fmj−1

|‖p‖χI‖q ≤
(32)

‖χ
I
‖q.

Nach dem Satz von Beppo Levi ist also die Reihe fast überall absolut konvergent, und
(fmk

)k∈N konvergiert fast überall gegen eine Funktion f .

2. Schritt. Wir zeigen nun, dass f ∈ Lp.
Als Grenzwert messbarer Funktionen ist f messbar, und die Folge (|fmk

|p)k∈N konvergiert
fast-überall gegen |f |p. Wir wenden auf diese Folge das Lemma von Fatou (Lemma 40) an.
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Zunächst ist offenbar |fmk
|p ≥ 0. Weil (fmk

)k∈N eine Cauchyfolge ist, ist auch (‖fmk
‖p)k∈N

eine Cauchyfolge in R und damit konvergent. Also ist

(

∫
|fmk

|pdφ)k∈N beschränkt.

Damit sind die Voraussetzungen des Lemmas von Fatou erfüllt, und es folgt

|f |p =φ lim
k

|fmk
|p ∈ L1.

Also ist f ∈ Lp.

3. Schritt. Wir wissen nun, dass (fmk
)k∈N fast-überall konvergent gegen ein f ∈ Lp ist. Wir

zeigen, dass (fmk
)k∈N auch bezüglich ‖ . . . ‖p gegen f konvergiert.

Dazu sei k ∈ N. Wir betrachten die Folge

(|fml
− fmk

|p)l≥k

und wenden wieder das Lemma von Fatou an. Es gilt

|fml
− fmk

|p ≥ 0,
∫

|fml
− fmk

|p dφ = ‖fml
− fmk

‖p
p ≤ 1

2(k+1)p
,

lim
l→∞

|fml
− fmk

|p =φ |f − fmk
|.

Aus dem Lemma von Fatou folgt

∫
|f − fmk

|p dφ ≤ 1

2(k+1)p
.

Daraus folgt aber die Behauptung.

4. Schritt. Konvergiert eine Teilfolge einer Cauchyfolge, so konvergiert die ganze Folge gegen
denselben Grenzwert. Darum konvergiert auch die Folge (fj)j∈N gegen f .

Bemerkung: Konvergenzbegriffe für Funktionenfolgen. Der vorstehende Beweis hat
uns darauf aufmerksam gemacht, dass es für Funktionenfolgen sehr verschiedene Konver-
genzbegriffe gibt:

• Gleichmäßige Konvergenz auf dem Definitionsbereich

• Punktweise Konvergenz

• Punktweise Konvergenz φ-fast überall

• Konvergenz im p-Mittel, d.h. lim ‖fk − f‖p = 0.

Die Beziehungen zwischen den drei ersten Begriffen sollten ziemlich klar sein, deren Bezie-
hungen zum vierten sind allerdings nicht so einfach, wie die folgenden Beispiele zeigen.

Beispiel 101. Dass selbst gleichmäßige Konvergenz nicht die Konvergenz im p-Mittel im-
pliziert, zeigt die Folge

(k−1/pχ
[0, k]

)k∈N

für φ = µ1.
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Im Beweis des Fischer-Riesz haben wir gezeigt:

Satz 102. Eine im p-Mittel konvergente Folge in Lp besitzt eine fast-überall konvergente
Teilfolge.

Die Folge selbst braucht aber nirgends punktweise konvergent zu sein:

Beispiel 103. Für k ∈ N sei n(k) ∈ N die eindeutig bestimmt Zahl mit

2n(k) ≤ k < 2n(k)+1.

Definiere

ak :=
k − 2n(k)

2n(k)
, bk := ak +

1

2n(k)

und
fk = χ[ak, bk ].

Läuft k von 2n(k) bis 2n(k)+1 − 1, so läuft ak von 0 bis 1 − 1
2n(k) und

µ1([ak, bk ]) =
1

2n(k)+1
.

Die Folge (fk(x)) konvergiert für kein x ∈ [0, 1]. Andrerseits liegt sie in L1(R, µ1), und
‖fk‖1 = 1

2n(k) , d.h. (fk) konvergiert in L1(R, µ1) gegen 0.

Bemerkung. Die Lp-Räume sind (für die meisten Maße) unendlich-dimensionale Banach-
räume, die L2- und L2

C-Räume vollständige Räume mit positiv-definitem Skalarprodukt,
sog. Hilberträume. Für solche gelten natürlich alle Ergebnisse der linearen Algebra, die nicht
auf die Dimension Bezug nehmen, und alle Aussagen über (vollständige) metrische Räume.
Insbesondere kann man von (endlichen) Linearkombinationen sprechen, und im L2 hat man
die Begriffe orthogonal, orthonormal etc. Man kann z.B. das Schmidtsche Orthonormalisie-
rungsverfahren anwenden, wohingegen die Frage nach der Existenz von Orthonormalbasen
auf die Dimension Bezug nimmt und deshalb nicht a priori klar ist.

Auch manche der Ihnen bisher bekannten topologischen Aussagen über Banachräume be-
ziehen sich vor allem auf den endlich-dimensionalen Fall und übertragen sich nicht auf den
unendlich-dimensionalen.

• Untervektorräume sind zum Beispiel nicht notwendig abgeschlossen.

So ist C0([0, 1]) ⊂ L1([0, 1]) ein echter Untervektorraum, aber, wie wir später sehen
werden, dicht in L1, d.h. die abgeschlossene Hülle von C0([0, 1]) ist L1([0, 1]).

• Die abgeschlossenen Kugeln sind nicht länger kompakt, vgl. Beispiel 104.

• Lineare Abbildungen sind nicht unbedingt stetig.

Beispiel 104 (Nicht-kompakte Einheitskugel). Die Funktionen fk := χ[k, k + 1] liegen

für jedes p ≥ 1 im Lp(µ1) und erfüllen ‖fk‖p = 1. Sie liegen also in der Einheitskugel des
Lp(µ1). Weiter rechnet man sofort nach, dass ‖fk − fl‖p = p

√
2 für k 6= l. Deshalb ist keine

Teilfolge von (fk)k∈N eine Cauchyfolge und erst recht keine Teilfolge konvergent. Darum ist
die Einheitskugel im Lp(µ1) nicht kompakt.
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Beispiel 105. Der Raum l2 aus dem Beispiel 99 der quadrat-summierbaren Folgen enthält
den Unterraum E aller Folgen mit nur endlich vielen von 0 verschiedenen Gliedern. Dieser
wird aufgespannt von den Folgen ek := (δjk)j∈N, die lauter Nullen und eine 1 haben. Durch

α((xj)j∈N) :=
∞∑

j=0

jxj

wird eine lineare Abbildung α : E → R definiert, die nicht stetig ist, weil

|α(ek)| = k = k‖ek‖2,

d.h. weil α nicht beschränkt ist. E ist ein dichter Teilraum von l2.

Eine unstetige lineare Funktion auf dem ganzen Banachraum l2 findet man, indem man einen
Unterraum F ⊂ l2 wählt, so dass l2 = E ⊕F ist. Für den Beweis der Existenz eines solchen
algebraischen Komplements benötigt man das Auswahlaxiom oder das Zornsche Lemma,
also ein mengentheoretisches Argument. Dann definiert man eine Erweiterung α̃ : l2 → R
von α auf den ganzen Raum durch α̃(e+ f) := α(e) für e ∈ E, f ∈ F .
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8 Fourierreihen

Fourierreihen sind das Mittel zur Analyse periodischer Funktionen. Eine Funktion f : R → R
heißt T -periodisch, wenn

∀x∈R f(x+ T ) = f(x).

In diesem Fall heißt ω := 2π
T die zugehörige (Kreis-)frequenz.

Musterbeispiele sind die Funktionen cos(kωx) und sin(kωx) für beliebiges k ∈ N. Ein Ziel
der Fourierschen Theorie ist es, beliebige T -periodische Funktionen als (unendliche) Line-
arkombination von diesen Musterfunktionen zu schreiben, also zum Beispiel - für gerade
T -periodische Funktionen -, eine Darstellung der Form

f(x) =
∞∑

k=1

ak cos(kωx)

zu finden. Die Amplituden ak geben dann an, mit welchem Gewicht der Baustein cos(kωt)
an f(t) beteiligt ist. Wir untersuchen, für welche Funktionen f eine solche Darstellung
existiert, in welchem Sinne die Konvergenz der unendlichen Reihe gemeint ist und wann die
Koeffizienten ak eindeutig sind. Die Abbildung

f 7→ (ak)k∈N

bezeichnet man auch als Fouriertransformation oder Spektralanalyse. Sie analysiert, welche
Frequenzen kω mit welchem Gewicht an f beteiligt sind.

Im menschlichen Ohr sind die Haarzellen des Cortischen Organs jeweils für bestimmte Fre-
quenzen empfindlich. Das Ohr übermittelt dem Gehirn also die Fouriertransformierten der
von ihm aufgenommenen akustischen Signale.

Rauschunterdrückungs- oder Kompressionsverfahren (etwa für MP3) zerlegen Signale mit
der Fouriertransformation in ihr Frequenzspektrum, filtern die unerwünschten oder über-
flüssigen Frequenzen heraus und setzen das Signal dann wieder zusammen.

Wesentliche Anwendungen der Fourieranalyse etwa auf Randwertprobleme partieller Diffe-
rentialgleichungen betreffen die Darstellung von Funktionen f : [a, b] → R auf kompakten
Intervallen, die also sicher nicht periodisch sind, durch trigonometrische Funktionen. Dazu
setzt man f einfach mit der Periode b− a auf ganz R fort. (Das klappt natürlich nur wenn
f(a) = f(b). Wenn µ1-Nullmengen keine Rolle spielen, ist das kein Problem, andernfalls
muss man sich was anderes einfallen lassen. Was, zum Beispiel?)
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8.1 Lineare Algebra und Geometrie im Hilbertraum

• Wir beginnen mit abstrakter Hilbertraumtheorie. Dabei haben wir den L2 als Beispiel
im Hinterkopf, er wird für uns das Beispiel eines Hilbertraums werden. Aber in diesem
Abschnitt geht es nur um lineare Algebra und Geometrie, nicht um Analysis und
Integralrechung.

Wir verwenden folgende Definitionen für den Begriff Skalarprodukt. Vergleichen Sie dazu das
Lineare-Algebra-Skriptum von Mehrmann.

(i) Ein Skalarprodukt auf einem R-Vektorraum V ist eine positiv-definite symmetrische
Bilinearform. Ein endlich-dimensionaler R-Vektorraum mit einem Skalarprodukt heißt
ein Euklidischer Vektorraum.

(ii) Ein Skalarprodukt auf einem C-Vektorraum V ist eine positiv-definite hermitesche Bi-
linearform. Ein C-Vektorraum mit einem Skalarprodukt heißt ein unitärer Vektorraum.

Beispiele 106.

〈v, w〉 :=
n∑

k=1

vkwk auf Rn,

〈v, w〉 :=
n∑

k=1

vkw̄k auf Cn.

〈f, g〉 :=

∫

A

fg dφ auf L2(A, φ),

〈f, g〉 :=

∫

A

fḡ dφ auf L2
C(A, φ).

Zur Erinnerung: Ist (e0, . . . , en) eine Basis des (endlich-dimensionalen) Vektorraumes V , so
läßt sich jeder Vektor f ∈ V eindeutig schreiben als

f =
n∑

j=0

fj ej .

Die Bestimmung der Entwicklungskoeffizienten fj erfordert in der Regel das Lösen eines
linearen Gleichungssystems und kann sehr aufwendig sein. Ist V aber ein Euklidischer oder
unitärer Vektorraum mit Skalarprodukt 〈. , .〉 und ist (e0, . . . , en) eine Orthonormalbasis, so
berechnen sich die Entwicklungskoeffizienten vj ganz einfach als

fj = 〈f, ej〉 .

Für die Norm von f gilt dann (nach Pythagoras)

‖f‖2 = 〈f, f〉 =
n∑

j=0

| 〈f, ej〉 |2.

Eine gebräuchliche Alternative bieten orthogonale Basen, für die also cj := 〈ej , ej〉 nicht
notwendig 1 ist. Dann gilt ebenfalls

f =

n∑

j=0

fj ej , jetzt aber mit fj =
1

cj
〈f, ej〉 . (33)

Was passiert, wenn die ej zwar orthonormal sind, aber keine Basis bilden?
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Lemma 107. Seien e0, . . . , en orthonormale Vektoren in einem reellen oder komplexen Vek-
torraum (V, 〈. , .〉) mit Skalarprodukt und sei W der davon aufgespannte Untervektorraum.
Definiere die Orthogonalprojektion auf W durch

PW (f) :=
n∑

j=0

〈f, ej〉 ej , f ∈ V.

Dann gilt für alle f ∈ V

(i) f − PW (f) ⊥W , d.h. 〈f − PW (f), g〉 für alle g ∈W .

(ii) ‖f−PW (f)‖ = min
{
‖f − g‖

∣∣ g ∈W
}

und PW (f) ist der einzige Punkt in W , in dem
dieses Minimum angenommen wird.

Beweis. Zu (i). Das folgt unmittelbar aus
〈
f −∑n

j=0 〈f, ej〉 ej , ek

〉
= 〈f, ek〉 − 〈f, ek〉 = 0.

Zu (ii). Für g ∈W gilt
f − g = f − PW (f)︸ ︷︷ ︸

∈W⊥

+PW (f) − g︸ ︷︷ ︸
∈W

.

Also gilt
‖f − g‖2 = ‖f − PW (f)‖2 + ‖PW (f) − g‖2.

Daraus folgt die Behauptung.

Beachten Sie, dass in diesem Lemma zwar die Endlichkeit von n nicht aber die der Dimension
von V eine Rolle spielt.

Für den Rest dieses Abschnitts sei (V, 〈. , .〉) ein Hilbertraum, d.h. ein Vektorraum über R
oder C mit einem Skalarprodukt 〈. , .〉 und davon induzierter Norm ‖ . . . ‖, der bezüglich
d(x, y) := ‖x− y‖ vollständig ist.

Die Objekte unseres Interesses sind eigentlich die konkreten Hilberträumen L2(A, φ) und
L2

C(A, φ) mit dem oben eingeführen Skalarprodukt. Aber die bei den Untersuchungen ver-
wendete Sprache lehnt sich bewusst an die Situation im Euklidischen oder unitären Raum
der linearen Algebra an, um die geometrische Anschauung (zum Beispiel den Begriff Ortho-
gonalprojektion) zu provozieren und zu übertragen.

Definition 108. Seien J eine Indexmenge und (ej)j∈J eine Familie in V . Die Familie heißt
orthonormal oder ein Orthonormalsystem, wenn für alle i, j ∈ J gilt

〈ei, ej〉 = δij =

{
1 für i = j,

0 sonst.

Beispiel 109 (Gram-Schmidt). Wir betrachten in einem Hilbertraum eine Folge (fk)k∈N

linear unabhängiger Vektoren. Dann zeigt man leicht, dass

g0 := f0, gk := fk −
k−1∑

j=0

〈fk, gj〉
‖gj‖2

gj

eine Folge orthogonaler Vektoren definiert und dass daher
{
g̃k := 1

‖gk‖ gk

∣∣ k ∈ N
}

ein Or-

thonormal system liefert.

Dieses Verfahren nennt man das Orthonormalisierungsverfahren von Gram-Schmidt.
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Konvention für Doppelreihen. Insbesondere im Hinblick auf den komplexen Hilbertraum
L2

C ist es nützlich, Orthonormalsysteme mit Indexmenge Z zu betrachten, vgl. Beispiel 115
im nächsten Abschnitt. In diesem Zusammenhang treten unendliche Reihen der Form

∑

j∈Z

cj =
+∞∑

j=−∞
cj (34)

auf, und man muss erklären, was das sein soll und vor allem, wann eine solche Reihe kon-
vergent heißen soll. Eine übliche Bedingung ist, dass die Reihen

+∞∑

j=0

cj und
+∞∑

j=1

c−j

beide konvergent sein sollen. Der Grenzwert der Reihe (34) ist dann die Summe der beiden
Grenzwerte. Wir vereinbaren aber für unsere Untersuchungen der Fourierreihen, dass (34)
einfach die Folge

∑

j∈Z

cj :=




n∑

j=−n

cj





n∈N

sein soll und nennen die Folgenglieder wie bei “normalen” unendlichen Reihen die Partial-
summen. Konvergenz der Reihe heißt Konvergenz der Folge der Partialsummen. Für die in
diesem Abschnitt untersuchte (Norm-)Konvergenz von Fourierreihen im Hilbertraum (später
ist das Konvergenz im quadratischen Mittel) liefern beide Konventionen dasselbe, aber bei
der punktweisen Konvergenz im Abschnitt 8.3 ist das nicht klar.

Definition 110 (Fourierreihe). Sei (ej)j∈J ein Orthonormalsystem im Hilbertraum V
mit Indexmenge J = N bzw. J = Z. Für f ∈ V definiert man die Fourierreihe von f
bezüglich (ej)j∈J durch

F(f) :=
∑

j∈J

〈f, ej〉 ej .

Die 〈f, ej〉 heißen die Fourierkoeffizienten von f . Im Falle der Konvergenz schreiben wir, wie
bei unendlichen Reihen üblich, F(f) auch für den Grenzwert. Die Partialsummen bezeichnen
wir mit Fn(f).

Satz 111 (Besselsche Ungleichung und Parsevalsche Gleichung). Seien J ∈ {N,Z}
und (ej)j∈J ein ON-System im Hilbertraum (V, 〈. , .〉). Für f ∈ V gilt dann

(i) Besselsche Ungleichung: ∑

j∈J

| 〈f, ej〉 |2 ≤ ‖f‖2.

(ii) Die Fourierreihe F(f) =
∑

j∈J 〈f, ej〉 ej ist in (V, 〈. , .〉) konvergent.

(iii) Die Parsevalsche Gleichung ∑

j∈J

| 〈f, ej〉 |2 = ‖f‖2

gilt genau dann, wenn

F(f) =
∑

j∈J

〈f, ej〉 ej = f,

d.h. wenn die Fourierreihe von f in (V, 〈. , .〉) gegen f konvergiert.
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Beweis. Zu (i). Das folgt aus Lemma 107: Ist nämlich W = Spann
{
ej

∣∣ j ∈ J, |j| ≤ n
}
, so

ist PW (f) = Fn(f) und

‖f‖2 = ‖Fn(f)‖2 + ‖f −Fn(f)‖2. (35)

Daher ist für jedes n
n∑

j∈J,|j|≤n

| 〈f, ej〉 |2 = ‖Fn(f)‖2 ≤ ‖f‖2.

Zu (ii). Nach (i) ist
∑

j∈J | 〈f, ej〉 |2 konvergent. Das Cauchykriterium liefert daher zu vor-
gegebenem ǫ > 0 ein N ∈ N, so dass für alle n ≥ m ≥ N

ǫ >
∑

m<|j|≤n

| 〈f, ej〉 |2 = ‖Fn(f) −Fm(f)‖2
.

Die Partialsummen der Fourierreihe bilden also eine Cauchyfolge in V , und die ist wegen
der Vollständigkeit des Hilbertraums konvergent.

Zu (iii). Folgt aus (35).

Definition 112. Sei (ej)j∈J ein Orthonormalsystem in (V, 〈. , .〉). Nach Linearer Algebra
ist

Spann
{
ej

∣∣ j ∈ J
}

der Vektorunterraum bestehend aus allen endlichen(!) Linearkombinationen von Vektoren
ej . Das Orthonormalsystem heißt vollständig oder eine ON-Basis des Hilbertraums (V, 〈. , .〉),
wenn dieser Raum dicht in (V, 〈. , .〉) ist, d.h. wenn seine abgeschlossene Hülle ganz V ist:

V = Spann
{
ej

∣∣ j ∈ J
}
.

Das bedeutet, dass es zu jedem f ∈ V und zu jedem ǫ > 0 eine endliche Indexmenge J0 ⊂ J
gibt, für die

‖f −
∑

j∈J0

λj ej ‖ < ǫ.

Satz 113. Ist J ∈ {N,Z} und ist (ei)i∈J eine ON-Basis von (V, 〈. , .〉), so konvergiert für
jedes f ∈ V die Fourierreihe gegen f :

f =
∞∑

j=0

〈f, ej〉 ej .

Beweis. Sei ǫ > 0. Weil die ej eine Basis bilden, gibt es eine natürliche Zahl n ∈ N und ein
g ∈ Spann

{
ej

∣∣ j ∈ J, |j| ≤ n
}

mit ‖f − g‖ < ǫ. Nach Lemma 107 folgt dann aber

‖f −Fn(f)‖ ≤ ‖f − g‖ < ǫ.
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8.2 Orthonormalsysteme und Fourierreihen im L2

• Wir kommen jetzt zur Analysis zurück und betrachten die L2-Räume als konkrete
Beispiele von Hilberträumen.

• Wir geben darin drei Orthonormalsysteme an, von denen wir allerdings erst später
zeigen können, dass sie sogar Orthonormalbasen sind.

• Und wir konkretisieren für diese Systeme die Berechnung der Fourierkoeffizienten.

Beispiel 114 ( Legendrepolynome). Wir betrachten den Hilbertraum L2([−1,+1], µ1).
Die auf [−1,+1] eingeschränkten Monome 1, x, x2, x3, . . . sind linear unabhängig. Durch
Orthonormalisieren erhält man die normierten Legendrepolynome P̃k(x). Die ersten dieser
Polynome sind √

1/2,
√

3/2x,
√

5/8 (3x2 − 1),
√

7/8 (5x3 − 3x).

In den Anwendungen (vor allem in der Theorie physikalisch wichtiger partieller Differenti-
algleichungen wie der Wellengleichung oder der Diffusionsgleichung) benutzt man gern die
nicht normierten Legendrepolynome

Pk(x) :=

√
2

2k + 1
P̃k(x).

Für sie gibt es eine Fülle von Identitäten. Zum Beispiel ist

Pk(x) :=
1

2kk!

dk

dxk
(x2 − 1)k.

Damit schreibt sich die sogenannte Fourier-Legendre-Reihe einer Funktion f ∈ L2([−1,+1], µ1)
als

F(f) =
∞∑

k=0

akPk, ak :=
2k + 1

2

∫ +1

−1

f(x)Pk(x)dx,

vergleiche (33).

Beispiel 115 (Das komplexe trigonometrische System). Seien T > 0 und ω := 2π
T .

Wir betrachten den komplexen Hilbertraum L2
C([0, T ], 1

T µ1) mit dem unitären Skalarprodukt

〈f, g〉 =
1

T

∫

[0,T ]

f ḡ dµ1 =
1

T

∫ T

0

f(x) ḡ(x) dx.

und darin die Familie (
eikωx

)
k∈Z

.

Wegen

1

T

∫ T

0

eikωxe−ilωxdx =
1

T

∫ T

0

ei(k−l)ωxdx =





ei(k−l)ωx

T i(k−l)ω

∣∣∣
T

0
= 0 für k 6= l

1 sonst.

ist dies ein orthonormales System, das komplexe trigonometrische System zur Periode T .
Die Fourierreihe eines f ∈ L2

C([0, T ], 1
T µ1) = L2

C([0, T ], µ1) ist gegeben durch

F(f) =

+∞∑

k=−∞
cke

ikωx, ck =
1

T

∫ T

0

f(x)e−ikωxdx.
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Beispiel 116 (Das reelle trigonometrische Orthonormalsystem). Aus dem letzten
Beispiel folgt für k, l ≥ 1

〈sin kωx, sin lωx〉 =

〈
1

2i
(eikωx − e−ikωx),

1

2i
(eilωx − e−ilωx)

〉

=
1

2i

1

−2i

〈
eikωx − e−ikωx, eilωx − e−ilωx

〉

=
1

4

{〈
eikωx, eikωx

〉
+
〈
e−ikωx, e−ikωx

〉
= 2 für k = l,

0 sonst.

Das bedeutet
2

T

∫ T

0

sin kωx sin lωx dx = δkl.

Analoges findet man für den Cosinus, während gemischte Skalarprodukte von Sinus und
Cosinus 0 ergeben. Zusammen erhält man für T > 0 und ω = 2π

T im reellen Hilbertraum
L2([0, T ], 2

T µ1) mit dem Skalarprodukt

〈f, g〉 =
2

T

∫ T

0

f(x)g(x)dx

ein Orthonormalsystem

1√
2
, cosωx, sinωx, cos 2ωx, sin 2ωx, cos 3ωx, . . . ,

das man als das reelle trigonometrische Orthonormalsystem zur Periode T bezeichnet. Die
zugehörige Fourierreihe von f ∈ L2([0, T ], 2

T µ1) bezeichnet man auch als klassische Fourier-
reihe. Man notiert sie in der Form

F(f)(x) =
a0

2
+

∞∑

k=1

(ak cos(kωx) + bk sin(kωx))

mit

ak :=
2

T

∫ T

0

f(x) cos(kωx)dx, bk :=
2

T

∫ T

0

f(x) sin(kωx)dx.

Dabei betrachtet man also eigentlich nur die geraden Partialsummen der Fourierreihe, aber
das macht keinen Unterschied, wie man mit Hilfe der Besselschen Ungleichung nachweisen
kann.

Der Term a0

2 kommt so zustande:

〈
f,

1√
2

〉
1√
2

=

(
2

T

∫ T

0

f(x)
1√
2
dx

)
1√
2

=
1

2

(
2

T

∫ T

0

f(x) cos(0ωx) dx

)
.

Alle in den letzten drei Beispielen vorgestellten ONSysteme sind vollständig, d.h. die ent-
sprechenden Fourierreihen F(f) konvergieren im quadratischen Mittel(!) gegen f :

lim
n→∞

‖Fn(f) − f‖2 = 0. (36)

Das ist aber keine Aussage über punktweise Konvergenz, vergleichen Sie Beispiel 103.
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Wenn man schreibt

f(x) =
a0

2
+

∞∑

k=1

(ak cos(kx) + bk sin(kx)),

so suggeriert das diese Gleichung für alle oder doch fast alle x. Das ist aber nicht gemeint
und im allgemeinen nicht richtig. Deshalb schreibt man (36) gern etwas nebulös als

f(x) ∼ a0

2
+

∞∑

k=1

(ak cos(kx) + bk sin(kx)).

Periode T oder Periode 2π? Häufig beschränkt man sich beim Studium klassischer Fou-
rierreihen auf den Fall 2π-periodischer Funktionen, weil dann ω = 2π

T = 1 ist und die Formeln
etwas einfacher werden. Die Perioden lassen sich aber einfach umrechnen:

Mit h : R → R, x 7→ T
2πx gilt

• Ist g : R → R periodisch mit Periode T , so ist g̃ = g ◦h periodisch mit Periode 2π und
umgekehrt. Insbesondere wird zum Beispiel aus g = cos kωx die Funktion g̃ = cos kx.

• Sind f, g ∈ L2([0, T ], µ1), so sind nach dem Transformationssatz f̃ , g̃ ∈ L2([0, T ], µ1)
und umgekehrt. Es gilt

2

T

∫ T

0

fg dµ1 =
1

π

∫ 2π

0

f̃ g̃ dµ1.
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8.3 Punktweise Konvergenz

• Wir betrachten in diesem und dem folgenden Abschnitt die Frage nach der punktweisen
Konvergenz der L2-Fourierreihen. Das ist eine völlig andere Fragestellung, als die nach
der Konvergenz im quadratischen Mittel.

• Trotzdem werden gerade diese Untersuchungen letztlich auch den noch ausstehenden
Beweis für die Vollständigkeit der im letzten Abschnitt betrachteten L2-Orthonormal-
systeme ermöglichen.

Wir betrachten hier klassische reelle Fourierreihen für periodische Funktionen, wobei wir
der Einfachheit halber den Fall T = 2π, also ω = 1 wählen. Die Funktionen seien quadrat-
integrierbar in dem Sinne, dass ihre Einschränkungen in L2([−π, π], µ1) liegen. Wir fragen
nach punktweiser Konvergenz der Fourierreihe.

Wir bezeichnen die (geraden) Partialsummen der Fourierreihe mit

sn(x) :=
a0

2
+

n∑

k=1

(ak cos kx+ bk sin kx),

wobei die Fourierkoeffizienten ak, bk gegeben sind durch

ak :=
1

π

∫ π

−π

f(x) cos kx dx, bk :=
1

π

∫ π

−π

f(x) sin kx dx.

Lemma 117 (Dirichlet-Kern). Für den Dirichlet-Kern

Dn(x) = 1/2 +
n∑

k=1

cos kx

gilt:

(i) Dn(x) = Dn(−x),
Dn(x+ 2π) = Dn(x).

(ii) 1
π

∫ +π

−π
Dn(x)dx = 1.

(iii) Dn(x) =
sin(n+ 1

2 )x

2 sin x
2

,

falls der Nenner 6= 0.
-3 -2 -1 1 2 3

2

4

6

(Die Abbildung suggeriert vielleicht, dass Dn eine gedämpfte Schwingung ist. Aber Dn ist
periodisch! In Wirklichkeit interessiert uns Dn auch nur auf[−π, π], und da ist die Funktion

”
bei 0 konzentriert“.)

Beweis. (i) und (ii) sind trivial.

Zu (iii). Durch Induktion. Der Induktionsanfang n = 0 ist ebenfalls trivial.

Für den Induktionsschritt verwendet man die Formel

sinx− sin y = 2 sin
x− y

2
cos

x+ y

2
.
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Diese liefert
sin(n+ 1

2 )x

2 sin x
2

− sin(n− 1
2 )x

2 sin x
2

= cosnx.

Lemma 118. Sei f : R → R 2π-periodisch und quadrat-integrierbar. Dann gilt

(i)

sn(x) =
1

π

∫ π

−π

f(x+ t)Dn(t) dt =
1

π

∫ π

−π

f(x+ t) + f(x− t)

2
Dn(t) dt. (37)

(ii) Sind η, x ∈ R, so gilt

lim
n→∞

sn(x) = η ⇐⇒ lim
n→∞

1

π

∫ π

−π

{f(x+ t) + f(x− t)

2
− η} Dn(t)dt = 0.

Die Behauptung des Lemmas ist interessant: Bei der Berechnung der Fourierkoeffizienten
geht der Funktionsverlauf von f über die ganze Periode ein. Die Formel (37) zeigt zusammen
mit einem Blick auf den Graphen von Dn, dass die (Partialsummen der) Fourierreihe in der
Nähe von x im wesentlichen nur vom Verhalten von f in der Nähe von x abhängen.

Beweis. Zu (i).

sn(x) =
1

π

∫ π

−π

(
1

2
+

n∑

k=1

cos kt cos kx+ sin kt sin kx

)
f(t) dt

=
1

π

∫ π

−π

(
1

2
+

n∑

k=1

cos k(t− x)

)
f(t) dt

=
1

π

∫ π

−π

Dn(t− x)f(t) dt =
1

π

∫ π−x

−π−x

Dn(u)f(x+ u) du

=
1

π

∫ π

−π

Dn(u)f(x+ u) du (Integrand 2π-periodisch).

Das beweist die erste Gleichung. Mit der Substitution t→ −t ergibt sich

sn(x) =
1

π

∫ −π

π

Dn(−t)f(x− t) (−dt) =
1

π

∫ π

−π

Dn(t)f(x− t) dt,

also auch

sn(x) =
1

π

∫ π

−π

f(x+ t) + f(x− t)

2
Dn(t) dt.

Zu (ii). Nach dem vorangehenden Lemma ist

η =
1

π

∫ π

−π

ηDn(t) dt

Damit folgt (ii) unmittelbar aus (i).

Definition 119. Ist f eine reelle Funktion und existiert der rechtsseitige Limes

f(x+) := lim
tց0

f(x+ t),
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so kann man

lim
tց0

f(x+ t) − f(x+)

t

betrachten. Wenn dieser Grenzwert existiert, heißt er die rechtsseitige Ableitung von f in x
und wird mit f ′(x+) bezeichnet.

Entsprechend definiert man die linksseitige Ableitung f ′(x−) .

Satz 120 (Punktweise Konvergenz). Sei f : R → R T -periodisch und auf [0, T ]
quadrat-integrierbar. Sei x ∈ R. Existieren der rechtsseitige und linksseitige Grenzwert f(x+)
bzw.f(x−) und die rechtsseitige und linksseitige Ableitung von f an der Stelle x, so folgt

lim sn(x) =
f(x+) + f(x−)

2
.

Ist f in x außerdem stetig, so gilt also

lim sn(x) = f(x).

Beweis. Wir beschränken uns auf den Fall T = 2π. Wir setzen

η :=
f(x+) + f(x−)

2
und φ(t) :=

f(x+ t) + f(x− t)

2
− η

und wollen Lemma 118 anwenden. Wir haben

1

π

∫ π

−π

φ(t)Dn(t) dt =
1

π

∫ π

−π

φ(t)
sin(n+ 1

2 )t

2 sin t
2

dt

=
1

2π

∫ π

−π

φ(t)

(
cosnt+ sinnt

cos t
2

sin t
2

)
dt

=
1

2π

∫ π

−π

φ(t) cosnt dt+
1

2π

∫ π

−π

φ(t) cot
t

2
sinnt dt. (38)

Mit f ist auch φ ∈ L2([−π, π ], 1
πµ1), und das ist die einzige Eigenschaft von φ, die wir

hier brauchen. Nach der Besselschen Ungleichung konvergieren dann die Fourierkoeffizienten
1
π

∫ π

−π
φ(t) cosnt dt von φ gegen 0.

Dasselbe Argument gilt für das zweite Integral in (38), wenn wir gezeigt haben, dass

ψ(t) := φ(t) cot
t

2
∈ L2([−π, π],

1

π
µ1). (39)

Das Problem beim Nachweis von (39) ist der Pol von cot t
2 in 0, und erst hier kommt die

spezielle Definition von φ zum Tragen. Es gilt nämlich

ψ(t) =
f(x+ t) + f(x− t) − 2η

2 sin t
2

cos
t

2

=
f(x+ t) + f(x− t) − (f(x+) + f(x−))

2 sin t
2

cos
t

2

=



f(x+ t) − f(x+)

t︸ ︷︷ ︸
→f ′(x+)

+
f(x− t) − f(x−)

t︸ ︷︷ ︸
→f ′(x−)




t
2

sin t
2

cos
t

2
︸ ︷︷ ︸

→1

→ f ′(x+) + f ′(x−) für tց 0.
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Weil ψ eine ungerade Funktion ist, existiert auch ψ(t−). Also gibt es ein kompaktes Inter-
vall [−δ, δ] ⊂ [−π,+π], auf dem ψ messbar und beschränkt ist. Daher ist ψχ

[−δ, δ] ∈ L2.

Andrerseits ist mit φ auch ψ auf [−π,+π] \ [−δ, δ] quadrat-integrierbar und (39) bewiesen.

Im Beweis haben wir gesehen, dass das Verhalten der Funktion ψ in der Nähe von 0, also
das Verhalten von f in der Nähe von x entscheidend ist für das Konvegenzverhalten von
F(f)(x). Das ergibt das

Korollar 121 (Riemannscher Lokalisationssatz). Das (punktweise) Konvergenzverhal-
ten und der Grenzwert der Fourierreihe einer quadrat-integrierbaren periodischen Funktion
an der Stelle x hängt nur vom Verhalten von f auf einer beliebig kleinen Umgebung von x
ab.

Definition 122. Eine T -periodische Funktion f : R → R heißt stückweise differenzierbar,
wenn es 0 = x0 < x1 < . . . < xn = T und differenzierbare Funktionen fk : [xk−1, xk] → R
gibt, so dass

f |]xk−1,xk[ = fk|]xk−1,xk[ für alle k ∈ {1, . . . , n}.

Korollar 123. Ist f 2π-periodisch und stückweise differenzierbar, so gilt für alle x

F(f)(x) =
f(x+) + f(x−)

2
.

Bemerkungen.

1. Es gibt stetige 2π-periodische Funktionen, für die die Fourierreihe in überabzählbar
vielen Punkten divergiert (Du Bois-Reymond 1873). Andrerseits hat man bei quadrat-
integrierbaren Funktionen µ1- fast-überall Konvergenz gegen f (Carleson 1966).

2. Ist f eine gerade Funktion, d.h. gilt f(−x) = f(x) für alle x, so gilt für alle k

ak =
4

T

∫ T/2

0

f(t) cos kωt dt,

bk = 0.

3. Ist f eine ungerade Funktion, so gilt für alle k

ak = 0,

bk =
4

T

∫ T/2

0

f(t) sin kωt dt.

Die Bemerkungen 2 und 3 vereinfachen in den folgenden Beispielen (und auch sonst gele-
gentlich) die Berechnung der Fourierkoeffizienten.

Beispiel 124. Sei f : R → R 2π-periodisch mit f(x) = π
2 − |x| für −π ≤ x ≤ π.

-6 -4 -2 2 4 6
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Dann ist f gerade, also treten nur Cosinusterme auf. Es gilt

ak =
2

π

∫ π

0

(
π

2
− x) cos(kx) dx = . . . =

{
4

k2π für k ungerade

0 für k gerade
.

Die Fourierreihe konvergiert nach dem Satz punktweise gegen f . Also ist

f(x) =
4

π
{cosx+

cos 3x

32
+

cos 5x

52
+ . . .}.

Daraus folgt mit x = 0

∞∑

0

1

(2k + 1)2
=
π2

8
,

∞∑

1

1

k2
=
π2

6
.

In der Abbildung sind f und F10(f) dargestellt.

Beispiel 125. Sei f : R → R 2π-periodisch mit f(x) = x/2 für −π < x ≤ π.

Dann gilt

f(x) = {sinx− sin 2x

2
+

sin 3x

3
− + . . .}

für x 6= (2k + 1)π.

-6 -4 -2 2 4 6
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1
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In der Abbildung sind f und F6(f) dargestellt.

Für x = π/2 erhält man die Leibnizsche Reihe

∞∑

0

(−1)k

2k + 1
=
π

4
.

Durch gliedweise Differentiation obiger Fourierreihe erhält man die Reihe

cosx− cos 2x+ cos 3x− + . . . .

Die Glieder dieser Reihe gehen für kein x gegen 0. Ist nämlich x = 2π p
q mit p, q ∈ Z, q > 0,

so ist für k ∈ N
cos(kqx) = cos(2pπ) = 1.

Ist andrerseits x = 2πy mit irrationalem y, so sind die Reste modulo 2π von
{
kx
∣∣ k ∈ N

}

dicht in [0, 2π] und die Folge (cos(2kx))k∈N divergent. Also ist die differenzierte Reihe für
kein x konvergent. Fourierreihen darf man i.a. nicht gliedweise differenzieren.
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Die Fourierentwicklung von Funktionen in einem Raum L2(A, φ) betrifft zunächst Funktio-
nen, die eben auf der Menge A definiert sind. Weil aber das trigonometrische Orthonormal-
system eine natürliche periodische Erweiterung auf ganz R besitzt, taugt die Fourieranalyse
im L2([0, 2π], 1

πµ1) zur Behandlung periodischer Funktionen auf R, und ist historisch dar-
aus entstanden. Aber auch die Fourieranalyse von Funktionen, die nur auf dem Intervall
[0, 2π] (oder einem anderen kompakten Intervall) sinnvoll gegeben sind, ist ein wichtiges
Anwendungsgebiet. Das demonstrieren wir im folgenden Beispiel.

Beispiel 126. Die Bewegung einer schwingenden Saite der Länge π wird gegeben durch die
Gleichung

u(x, t) =
∞∑

1

{ak cosωkt+ bk sinωkt} sin kx,

wobei ωk = kω1 die k-te Oberschwingung ist. Beachten Sie, dass die Schwingung zwar in t
periodisch ist, die Ortskoordinate x aber natürlich nur in dem Intervall [0, π] eine sinnvolle
Bedeutung hat! Die Grundschwingung ω1 wird durch die Physik der Saite bestimmt. Die
Koeffizienten ak, bk hingegen sind durch die Anfangsbedingungen

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x)

bestimmt:

ak =
2

π

∫ π

0

u0(x) sin kx dx, bk =
2

πωk

∫ π

0

u1(x) sin kx dx.

Gezupfte Saite:

0 a

0

u     =		 0

u

1

=

π

b

u(x, t) = 2b
a(π−a)

∑
sin ka

k2 cosωkt sin kx.

Angeschlagene Saite:

0 a

1

u     =		 0

u

0

=

ε

1/ε

π

u(x, t) = 2
πω1ǫ

∑ sin(ka) sin(kǫ/2)
k2 sinωkt sin kx.

Durch die Wahl der Stelle a kann man unerwünschte Obertöne minimieren, z.B. den 7. und
13. (Sexte+3/8 bzw. Sexte-1/4 Ton).
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8.4 Cesàro-Konvergenz

• Die Fourierreihe selbst einer stetigen 2π-periodischen Funktion f ist im allgemeinen
nicht punktweise gegen f konvergent6. Jetzt werden wir diesen Mißstand mit dem
Cesàroschen Summierungsverfahren

”
reparieren“.

• Wir erhalten für die Cesàro-Mittel der Fourierreihe bei stetigen Funktionen sogar
gleichmäßige Konvergenz und damit einen einfachen Beweis für den Weierstraßschen
Approximationssatz: Jede stetige Funktion auf einem kompakten Intervall läßt sich
gleichmäßig durch Polynome approximieren.

• Die Vollständigkeit trigonometrischer und anderer ON-Systeme ist eine einfache Fol-
gerung.

Definition 127. Eine Folge (ak)k∈N reeller Zahlen heißt Cesàro-konvergent gegen a, wenn
die Folge ihrer arithmetischen Mittel (a0+...+an

n+1 )n∈N gegen a konvergiert.

Ist lim ak = a, so ist die Folge auch Cesàro-konvergent gegen a, aber die Umkehrung gilt
nicht, wie die Folge an = (−1)n zeigt.

Lemma 128. Für den Fejér-Kern

Fn(t) :=
D0(t) + . . .+Dn(t)

n+ 1

gilt:

(i) Fn(t) = 1
2(n+1)

sin2(n+1)t/2
sin2 t/2

,

(ii) 1
π

∫ π

−π
Fn(t) dt = 1,

(iii) Fn(t) ≤ 1
2(n+1) sin2(δ/2)

für 0 < δ ≤ |t| ≤ π.
-3 -2 -1 1 2 3

1

2

3

4

Beweis. Zu (i). Es gilt

(2 sin
t

2
)2Dk(t) = 2 sin(k +

1

2
)t sin

t

2
= cos kt− cos(k + 1)t.

Aufsummieren liefert

(2 sin
t

2
)2Fn(t) =

1

n+ 1
(1 − cos(n+ 1)t) =

2

n+ 1
sin2(n+ 1)

t

2
.

Zu (ii). Aus Lemma 117 folgt 1
π

∫ π

−π
Dk(t)dt = 1. Damit ergibt sich (ii).

Zu (iii). Das ist nach (i) trivial.

6 Ein erstes Beispiel dafür stammt von du Bois-Reymond 1873
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Satz 129 (Fejér). Sei f : R → R stetig und T -periodisch. Dann konvergieren die arithme-
tischen Mittel

σn(x) :=
s0(x) + . . .+ sn(x)

n+ 1

der Fourier-Partialsummen sk(x) von f gleichmäßig gegen f . Die Fourierreihe ist also ins-
besondere überall Cesàro-konvergent gegen f .

Beweis. Sei o.E. T = 2π. Zunächst ist die stetige Funktion f auf dem kompakten Intervall
[−π, π] beschränkt und gleichmäßig stetig. Wegen der Periodizität gibt es daher ein M ∈ R
und zu jedem ǫ > 0 ein δ > 0, so dass für alle x, y ∈ R

|f(x)| ≤M,

|x− y| < δ =⇒ |f(x) − f(y)| < ǫ.

Sei o.E. δ < π. Dann erhalten wir nach dem Lemma 118 und dem vorstehenden Lemma

σn(x) − f(x) =
1

n+ 1

n∑

k=0

sk(x) − f(x)

=
1

π

∫ π

−π

f(x+ t)Fn(t) dt− 1

π

∫ π

−π

f(x)Fn(t) dt

=
1

π

∫ π

−π

(f(x+ t) − f(x))Fn(t) dt.

Daher ist

|σn(x) − f(x)| ≤ 1

π

∫ π

−π

|f(x+ t) − f(x)|Fn(t) dt

=
1

π

∫ δ

−δ

|f(x+ t) − f(x)|︸ ︷︷ ︸
<ǫ

Fn(t) dt+
1

π

∫

δ<|t|<π

|f(x+ t) − f(x)|︸ ︷︷ ︸
≤2M

Fn(t) dt

≤ ǫ
1

π

∫ π

−π

Fn(t) dt

︸ ︷︷ ︸
=1

+
1

π
2M 2π

1

2(n+ 1)2 sin2(δ/2)
< 2ǫ

für hinreichend große n.

Als erste Konsequenz erhalten wir:

Satz 130 (Weierstraßscher Approximationssatz). Für jedes kompakte Intervall [a, b]
liegen die Polynome dicht in (C0[a, b], dsup).

Wir halten noch einmal fest: Eine Teilmenge A eines metrischen Raumes X heißt dicht in
X, wenn ihre abgeschlossene Hülle gleich X ist:

Ā = X,

d.h. wenn es zu jedem ǫ > 0 und jedem x ∈ X ein a ∈ A gibt, für das d(x, a) < ǫ.

Beweis. Sei f : [a, b] → R eine stetige Funktion auf dem kompakten Intervall [a, b] und sei
ǫ > 0. Wir suchen ein Polynom p mit |f(x) − p(x)| < ǫ für alle x ∈ [a, b]. Wir setzen f auf
ganz R stetig mit Periode T = 2(b− a) fort:
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a b

Die Cesàromittel der Fortsetzung seien mit σn bezeichnet. Dann gibt es nach dem Satz von
Fejér ein n mit

|σn(x) − f(x)| < ǫ/2

für alle x ∈ R.

Nun ist σn eine reelle Linearkombination von Termen cos kωx, sin kωx. Die Taylorreihen
dieser Funktionen konvergieren auf [0, T ] gleichmäßig gegen cos kωx, sin kωx. Also gibt es
ein Polynom p mit

|σn(x) − p(x)| < ǫ/2 für alle x ∈ [0, T ].

Dann ist aber nach der Dreiecksungleichung

|f(x) − p(x)| < ǫ

für alle x ∈ [0, π].

Wo wir gerade bei dichten Teilräumen sind, beweisen wir noch einen Satz darüber:

Satz 131. Sei p ≥ 1. Dann gilt:

(i) Ist φ ein Maß auf Rn, so gibt es zu jedem f ∈ Lp(Rn, φ) und jedem ǫ > 0 eine
Treppenfunktion s mit

‖f − s‖p < ǫ.

(ii) Zu jedem f ∈ Lp(Rn, µn) und jedem ǫ > 0 gibt es eine stetige Funktion g : Rn → R
mit kompaktem Träger und

‖f − g‖p < ǫ.

Mit anderen Worten:

• Die Treppenfunktionen sind dicht in (Lp(Rn, φ), ‖ . . . ‖p) und

• die stetigen Funktionen mit kompaktem Träger sind dicht in (Lp(Rn, µn), ‖ . . . ‖p).

(Gemeint sind dabei natürlich die Mengen der Restklassen in Lp, welche wenigstens eine
Treppenfunktion bzw. eine stetige Funktion mit kompaktem Träger enthalten.)

Beweis des Satzes. Zu (i). A. Wir betrachten zunächst den Fall, dass |f | beschränkt durch
M ∈ R ist, und sein Träger in einem kompakten Intervall K liegt.

Weil f messbar ist, gibt es eine Folge von Treppenfunktionen (sj)j∈N mit

lim
j→∞

sj =φ f.

Ohne Einschränkung können wir annehmen, dass für alle j ∈ N gilt

|sj | ≤M, Träger sj ⊂ K.
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Dann gilt
|sj − f |p ≤ (|sj | + |f |)p ≤ (2M)pχ

K
∈ L1

und
lim

j→∞
|sj − f |p =φ 0.

Nach dem Satz von Lebesgue gilt daher

‖sj − f‖p
p =

∫
|sj − f |p dφ → 0.

Zu jedem beschränkten f ∈ Lp mit kompakten Träger und jedem ǫ > 0 gibt es also eine
Treppenfunktion s mit ‖s− f‖p < ǫ.

B. Nun sei f ∈ Lp beliebig. Zu k ∈ N definieren wir

fk := inf(sup(f,−k),+k)χ[−k,+k]n.

Dann ist fk messbar und beschränkt mit kompaktem Träger, also in Lp. Weiter gilt

|f − fk|p ≤ |f |p ∈ L1

und
lim

k→∞
|f − fk|p =φ 0

Nach dem Satz von Lebesgue gilt daher

‖f − fk‖p
p =

∫
|f − fk|p dφ → 0.

Zu jeder Lp-Funktion f und jedem ǫ > 0 gibt es also eine beschränkte Lp-Funktion g mit
kompaktem Träger, so dass

‖f − g‖p < ǫ.

Aus A. und B. folgt damit die Behauptung (i).

Zu (ii). Nach Teil (i) genügt es zu zeigen: Zu jeder Treppenfunktion s und jedem ǫ > 0
gibt es eine stetige Funktion g mit kompaktem Träger, so dass ‖s− g‖2 < ǫ ist. Wegen der
Dreiecksungleichung kann man sich dabei beschränken auf den Fall s = χ

I
für ein I ∈ I(Rn).

Und weil Intervalle mit leeren Inneren µn-Nullmengen sind, kann man sich weiterhin auf

den Fall
◦
I 6= ∅ beschränken.

Sei also I ∈ I(Rn) ein solches Intervall und sei ǫ > 0. Weil µn(I) = µn(Ī) ist, gibt es nach
dem Regularitätsaxiom eine offenes Intervall J ∈ I(Rn) mit Ī ⊂ J und

µn(J) < µn(I) + ǫ.

Wir behaupten nun, dass es eine stetige Funktion g : Rn → R mit folgenden Eigenschaften
gibt:

g|I = 1, g|Rn \ J = 0, 0 ≤ g − χ
I
≤ 1.

Für eine solche Funktion gilt
0 ≤ g − χ

I
≤ χ

J
− χ

I

und wegen |g − χ
I
|p ≤ g − χ

I
dann

‖g − χ
I
‖p

p ≤
∫

(χ
J
− χ

I
) ≤ ǫ,

und (ii) ist bewiesen.
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Die Existenz einer Funktion g mit den angegebenen Eigenschaften sieht man vielleicht am
einfachsten so ein: Man wählt eine lineare Transformation F : Rn → Rn, die Ī auf den
Würfel

W := [−1,+1]n =
{
x ∈ Rn

∣∣ ‖x‖sup ≤ 1
}

abbildet. F (J) ist dann eine offene Umgebung von W , und es gibt ein δ > 1 mit

{
x ∈ Rn

∣∣ ‖x‖sup ≤ δ
}
⊂ F (J).

Mit

λ(t) :=






1 für 0 ≤ t ≤ 1,

1 − t−1
δ−1 für 1 ≤ t ≤ δ,

0 für t ≥ δ.

1

1

δ

λ

leistet dann
g(x) := λ(‖F (x)‖sup)

das Gewünschte.

Damit können wir nun eine Lücke aus dem letzten Abschnitt schließen:

Satz 132 (Vollständigkeit des trigonometrischen ON-Systems). Seien T > 0 und
ω = 2π

T . Dann ist das Orthonormalsystem

1√
2
, cosωx, sinωx, cos 2ωx, sin 2ωx, . . .

in L2([0, T ], 2
T µ1) vollständig.

Beweis. Seien f ∈ L2([0, T ], 2
T µ1) und ǫ > 0. Wir setzen f(x) := 0 für x ∈ R \ [0, T ] fort.

Nach Satz 131 gibt es dann eine stetige Funktion g mit kompaktem Träger, so dass

√∫

R

|f − g|2 dµ1 < ǫ.

Durch Einschränkung erhalten wir eine stetige Funktion g : [0, T ] → R mit

‖f − g‖2 < ǫ. (40)

wobei ‖ . . . ‖2 die Norm von L2([0, T ], 2
T µ1) bezeichnet.

Wir können g stetig so abändern, dass sich
die L2-Norm nicht wesentlich ändert, also (40)
erhalten bleibt, und zusätzlich g(0) = g(T )
gilt. Dann kann man g mit Periode T stetig
fortsetzen. T 2T

g

Wir bezeichnen die Cesàromittel der Partialsummen von g mit σn. Nach dem Satz von Fejér
gibt es ein n mit

|σn(x) − g(x)| < ǫ√
2

für alle x ∈ R.
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Also ist

‖σn − g‖2 =

√
2

T

∫ T

0

|σn − g|2dµ1 < ǫ

und

‖f − σn‖2 ≤ ‖f − g‖2 + ‖g − σn‖2 < 2ǫ.

Weil σn in dem vom trigonometrischen ONSystem aufgespannten Unterraum liegt, folgt die
Behauptung.

Korollar 133. Das Orthonormalsystem

(
eikωx

)
k∈Z

ist in L2
C([0, T ], 1

T µ1) vollständig.

Beweis. Die Orthonormalität haben wir früher schon gesehen. Sei f ∈ L2
C([0, T ], 1

T µ1). Dann
folgt

u = Re(f) ∈ L2([0, T ],
2

T
µ1), v = Im(f) ∈ L2([0, T ],

2

T
µ1).

Beachten Sie, dass der Faktor 1
T oder 2

T für die Integrierbarkeit keine Rolle spielt. Allerdings
macht er sich bei der Norm bemerkbar. Zum Beispiel ist

‖u‖L2 =
√

2‖u‖L2
C
.

Nach dem letzten Korollar gibt es zu jedem ǫ > 0 Linearkombinationen σ und τ von
cos(kωx), sin(kωx), so dass

‖u− σ‖L2 < ǫ, ‖v − τ‖L2 < ǫ.

Dann ist
‖f − (σ + iτ)‖L2

C
≤ ‖u− σ‖L2

C
+ ‖v − τ‖L2

C
≤ ǫ√

2
+

ǫ√
2
.

Schließlich sind aber cos(kωx) und sin(kωx) Linearkombinationen von eikωx und e−ikωx.

Korollar 134. Die Polynome liegen für jedes p ≥ 1 dicht in Lp([a, b], µ1). Insbesondere
sind die normierten Legendrepolynome eine ON-Basis von L2([−1,+1], µ1).

Beweis. Jedes f ∈ Lp([a, b], µ1) läßt sich bezüglich der Lp-Norm durch stetige Funktionen
auf [a, b] approximieren. Stetige Funktionen lassen sich nach dem Satz von Weierstraß durch
Polynome bezüglich dsup approximieren. Dann lassen sie sich aber auch bezüglich der Lp-
Norm approximieren, denn für stetiges f und g ist

‖f − g‖p =

(∫ b

a

|f(x) − g(x)|p dx
) 1

p

≤ dsup(f, g)
p
√
b− a.
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8.5 Rückblick auf das Lebesgueintegral

• Wir untersuchen, in wieweit das Lebesgueintegral die einzig sinnvolle Erweiterung des
Integrals für Treppenfunktionen ist.

Für Treppenfunktionen gibt es zu unserer Definition des Integrals wohl kaum vernünftige Al-
ternativen. Von dieser Definition ausgehend haben wir durch Approximation mit monotenen
Folgen etc. das Integral zu einer linearen Abbildung auf L1 erweitert. Weil

|
∫
f dφ−

∫
g dφ| ≤

∫
|f − g| dφ = ‖f − g‖1,

ist die induzierte lineare Abbildung
∫

: L1 → R auch stetig.

Nun gibt es (zum Beipiel im Forster oder Barner/Flohr) andere Konstruktionen für Inte-
grale, die von den Autoren ebenfalls Lebesgueintegral genannt werden. Ist das Ergebnis mit
dem unseren identisch?

Um das zu klären beweisen wir, dass sich ein normierter Vektorraum X

• e.g. der Raum T (Rn) der Restklassen von Treppenfunktionen mit der 1-Norm

auf höchstens eine Weise zu einem vollständigen normierten Vektorraum Y

• e.g. (L1, ‖ . . . ‖1)

ergänzen läßt, in dem X dicht liegt. Genauer ist Y bis auf normtreue Isomorphie eindeutig
bestimmt und heißt eine Vervollständigung von X. Wir zeigen auch (und das zuerst), dass
sich eine stetige lineare Abbildung f : X → R

• e.g. das Treppenfunktionsintegral

auf genau eine Weise zu einer stetigen linearen Abbildung F : Y → R fortsetzen läßt.
Also sind alle stetigen linearen Erweiterungen des Treppenfunktionsintegrals auf Vervoll-
ständigungen von T (Rn) eindeutig bis auf Isomorphie.

Satz 135. Seien (Y, ‖ . . . ‖Y ) und (Z, ‖ . . . ‖Z) Banachräume und X ⊂ Y ein dichter Un-
terraum. Sei f : X → Z linear und stetig. Dann gibt es genau eine lineare stetige Abbildung
F : Y → Z mit F |X = f .

Beweis. Einzigkeit von F . Ist F : Y → Z linear und stetig mit F |X = f und ist y ∈ Y ,
so gibt es wegen der Dichtheit von X eine Folge (xi)i∈N in X mit limxi = y. Wegen der
Stetigkeit folgt F (y) = limF (xi) = lim f(xi). Also ist F (y) eindeutig bestimmt.

Konstruktion von F . Seien wieder y ∈ Y und (xi)i∈N eine Folge in X mit limxi = y. Dann
ist

lim ‖xk − y‖Y = 0.

Also ist (xk) eine Cauchyfolge in Y . Wegen ‖f(xi)−f(xj)‖Z ≤ ‖f‖ ‖xi−xj‖Z ist (f(xi))i∈N

dann eine Cauchyfolge in Z und daher konvergent gegen ein z ∈ Z. Wir zeigen, dass z nicht
von der Cauchyfolge (xi) abhängt, und können dann definieren:

F (y) := z. (41)
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Ist nämlich (ξi)i∈N eine weitere gegen y konvergente Folge in X ⊂ Y , so definiert

ζi :=

{
xi für i gerade

ξi für i ungerade

ebenfalls eine gegen y konvergente Cauchyfolge. Und weil Teilfolgen einer konvergenten Folge
denselben Limes haben wie die Originalfolge, ist lim f(ξi) = lim f(ζi) = lim f(xi).

Eigenschaften von F . Ist y ∈ X, so kann man für (xk) die konstante Folge wählen. Also ist

F |X = f.

Der Nachweis der Linearität ist einfach (selber machen!). Schließlich ist mit den obigen
Bezeichnungen

‖F (y)‖Z = lim ‖f(xi)‖Z ≤ lim ‖f‖ ‖xi‖X = ‖f‖ ‖y‖Y

Daher ist F stetig und ‖F‖ ≤ ‖f‖.
Definition 136. Seien (X, ‖ . . . ‖X) ein normierter R-Vektorraum und (Y, ‖ . . . ‖Y ) ein Ba-
nachraum. Es gelte

• X ist Untervektorraum von Y ,

• ‖x‖Y = ‖x‖X für alle x ∈ X,

• X ist dicht in Y .

Dann heißt (Y, ‖ . . . ‖Y ) eine Vervollständigung von (X, ‖ . . . ‖X).

Bis auf normtreue Isomorphie gibt es zu gegebenem (X, ‖ . . . ‖) höchstens eine Vervollständigung:

Korollar 137. Seien (Y1, ‖ . . . ‖1) und (Y2, ‖ . . . ‖2) zwei Vervollständigungen von (X, ‖ . . . ‖X).
Dann gibt es genau einen stetigen Isomorphismus F : Y1 → Y2 mit F |X = id. Es gilt

‖F (y1)‖2 = ‖y1‖1 (42)

für alle y1 ∈ Y1.

Beweis. Der Beweis ist eine rein formale Konsequenz des Satzes 135. Wir wenden diesen
Satz viermal an:

1. Y = Y1, Z = Y2, f : X → Z, x 7→ x.
Das liefert eine eindeutig bestimmte stetige lineare Abbildung F1 : Y1 → Y2 mit
F1|X = id.

2. Y = Y2, Z = Y1, f : X → Z, x 7→ x.
Das liefert eine eindeutig bestimmte stetige lineare Abbildung F2 : Y2 → Y1 mit
F2|X = id.

3. Y = Y1, Z = Y1, f : X → Z, x 7→ x.
Das liefert eine eindeutig bestimmte stetige lineare Abbildung E : Y1 → Y1 mit

E|X = id .

Wir kennen aber zwei Abbildungen, die dies leisten: E = F2◦F1 und E = id : Y1 → Y1.
Wegen der Eindeutigkeit ist also

F2 ◦ F1 = id .
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4. Analog finden wir F1 ◦ F2 = id : Y2 → Y2.

Damit erhalten wir die Existenz und Eindeutigkeit des stetigen Isomorphismus F = F1. Aus
F |X = id folgt mit der Stetigkeit auch (42).

Zu einem normierten R-Vektorraum (X, ‖ . . . ‖) konstruiert man eine Vervollständigung ganz
ähnlich, wie man die reellen Zahlen aus den rationalen konstruiert: Die Menge der Cauchy-
folgen in X bildet einen Vektorraum Ỹ . Der Quotient von Ỹ nach den Nullfolgen ist ein
Vektorraum Y , der X in Gestalt der konstanten Folgen enthält. Wird y ∈ Y repräsentiert
durch die Cauchyfolge (xi), so ist (‖xi‖) konvergent und man definiert ‖y‖ := lim ‖xi‖. Das
liefert dann eine Vervollständigung von (X, ‖ . . . ‖).
Diese Konstruktionsverfahren kann man natürlich konkret auf die Integration anwenden.
Man beginnt mit dem Raum der Treppenfunktionen T (Rn) und dem darauf definierten
Integral. Dann zeigt man, dass

‖f‖ :=

∫
|f | dφ

eine Norm definiert, wenn man den Raum der φ-fast überall verschwindenden Treppenfunk-
tionen herausdividiert. Das liefert einen normierten Vektorraum (T (Rn), ‖ . . . ‖). Den ver-
vollständigt man durch Adjunktion der Cauchyfolgen und erhält (L1(φ), ‖ . . . ‖1). Das klingt
einfach, die Probleme kommen aber beim Umgang mit konkreten Funktionen. Wir haben
zum Beispiel gesehen, dass L1-Konvergenz ziemlich kompliziert mit punktweiser Konvergenz
zusammenhängt.
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9 Der Satz von Stokes

Der Fundamentalsatz der Differential- und Integralrechnung sagt, dass für eine stetig diffe-
renzierbare Funktion f : [a, b] → R gilt

∫

[a,b]

f ′dµ1 = f |ba .

Der Satz von Stokes ist eine in jeder Beziehung sehr starke Verallgemeinerung des Funda-
mentalsatzes. An die Stelle des Intervalls und seiner Endpunkte treten eine k-dimensionale
kompakte Mannnigfaltigkeit M und ihr Rand ∂M , der eine (k− 1)-dimensionale Mannigfal-
tigkeit ist. Stellen Sie sich M als Fläche im R3 (zum Beispiel als Halbsphäre) und ∂M als
deren Randkurve vor. Man bekommt also

∫

M

?′ =

∫

∂M

?

Aber was wird da integriert? Die n-reihige Determinante dient in der Linearen Algebra zur
Berechnung n-dimensionaler Volumina, sie ist so etwas wie ein n-dimensionales Maß. Dif-
ferentialformen von Grad k sind Verallgemeinerungen der Determinante und so etwas wie
k-dimensionale Maße. Sie sind die “natürlichen” Integranden auf k-dimensionalen Mannig-
faltigkeiten. Für sie gibt es eine Verallgemeinerung der Ableitung, die sogenannte Cartansche
Ableitung. Sie macht aus einer Differentialform ω vom Grad k − 1 eine Differentialform dω
vom Grad k. Funktionen sind 0-Formen, die Cartansche Ableitung der Funktion f ist die
Differentialform vom Grad 1 gegeben durch Df = f ′dx.

Der Satz von Stokes besagt dann, dass

∫

M

dω =

∫

∂M

ω.

Dieser Satz hat viele Anwendungen und Facetten, deren wichtigste sicher seine Funktion
als Bindeglied zwischen Analysis (Integration, Ableitung) und Geometrie (Mannigfaltigkeit,
Rand) ist. In dieser Gestalt spielt der Satz eine zentrale Rolle für die Entwicklung der
Differentialtopologie und der algebraischen Topologie.

Er hat aber auch viele physikalische Anwendungen: Er erklärt zum Beispiel das Phänomen
der Induktion in einem zeitlich veränderlichen Magnetfeld. Oder er besagt, dass die Flussbi-
lanz einer physikalischen Größe durch die Oberfläche eines Gebietes gerade das Integral über
die Quelldichte dieser Größe im Inneren liefert. Damit spielt er unter verschiedenen Namen
und in sehr verschiedenen Schreibweisen eine zentrale Rolle in der Elektrodynamik, in der
Hydrodynamik, in der Wärmelehre, in der Verfahrenstechnik usw. usw.

Um den Satz richtig verstehen zu können, müssen wir mit berandeten Mannigfaltigkeiten
und mit Differentialformen umgehen können. Wir beginnnen mit den letzteren. Dazu bedarf
es einer gewissen Vorbereitung in linearer Algebra, mit der wir jetzt anfangen.
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9.1 Alternierende multilineare Algebra

• Wir definieren alternierende k-Formen in einem n-dimensionalen Vektorraum und ler-
nen verschiedene Beispiele dafür kennen, die sich später als die typischen Beispiele
herausstellen werden.

• Wir lernen, warum alternierende Formen so heißen.

• Wir bestimmen die Dimension des Raumes der k-Formen.

• Wir definieren das Zurückholen von Formen mit linearen Abbildungen und und benut-
zen n-Formen im n-dimensionalen Raum zur Definition einer Orientierung.

Zur Bezeichnung: Wir werden häufiger Permutationen benötigen. Wir bezeichnen mit Sn

die Gruppe der Permutationen von {1, . . . , n} und mit

sign(σ) =
∏

1≤i<j≤n

σ(j) − σ(i)

j − i
= det(eσ(1), . . . , eσ(n))

das Signum der Permutation σ ∈ Sn.

Sei V ein n-dimensionaler R-Vektorraum und V ∗ sein Dualraum.

Definition 138. Sei k ∈ N.

Eine alternierende k-Form auf V ist eine k-lineare Abbildung

ω : V × . . .× V︸ ︷︷ ︸
k

→ R

mit
ω(v1, . . . , vk) = 0, falls zwei der vi gleich sind.

Der Vektorraum der alternierenden k-Formen wird mit ΛkV ∗ bezeichnet. Wir setzen

Λ0V ∗ := R.

Das typische Beispiel einer alternierenden Form ist die Determinante.

Beispiel 139 (Determinantenform). Für V = Rn definiert

ω(v1, . . . , vn) := det(v1, . . . , vn)

eine alternierende n-Form, und Sie wissen aus der linearen Algebra, dass die Determinan-
ten bis auf einen skalaren Faktor die einzige alternierende n-Form auf dem Rn ist, d.h.
dimΛn(Rn)∗ = 1.

Beispiel 140 (1-Formen). Es gilt Λ1V ∗ = V ∗. Alternierende 1-Formen sind also einfach
Linearformen. In einem Euklidischen Vektorraum oder allgemeiner in einem reellen Vektor-
raum mit einem nicht degenerierten inneren Produkt 〈., .〉 hat man einen Isomorphismus

V → Λ1V ∗, v 7→ ωv := 〈. , v〉 .
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Satz 141. Für ω ∈ ΛkV ∗ und jede Permutation σ ∈ Sn gilt

ω(vσ(1), . . . , vσ(k)) = sign(σ)ω(v1, . . . , vk).

Darum heißen die alternierenden Formen alternierend.

Beweis. Vgl. Determinantentheorie in der linearen Algebra. Die Idee ist diese:

0 = ω(v1 + v2, v1 + v2, v3, . . . , vk)

= ω(v1, v1, v3, . . . , vk)︸ ︷︷ ︸
=0

+ω(v1, v2, v3, . . . , vk) + ω(v2, v1, v3, . . . , vk) + ω(v2, v2, v3, . . . , vk)︸ ︷︷ ︸
=0

= ω(v1, v2, v3, . . . , vk) + ω(v2, v1, v3, . . . , vk).

Aus der Determinantenform auf dem Rn kann man neue Formen gewinnen, wie wir in den
beiden nächsten Beispielen zeigen:

Beispiel 142 (Flussform). Für v ∈ Rn ist

∗ωv := det(v, . . .)

eine alternierende (n− 1)-Form, und

V → Λn−1(Rn)∗, v 7→ ∗ωv

ist ein Isomorphismus. (Beweis?) Den Namen “Flussform” erklären wir später.

Beispiel 143. Seien k ∈ {1, . . . , n} und 1 ≤ i1 < . . . < ik ≤ n. Dann definiert

ωi1...ik(v1, . . . , vk) := det(e1, . . . ,

i1
↓

v1, . . . ,

ik
↓

vk . . . , en)

eine alternierende k-Form auf dem Rn. Zum Beispiel ist ω2...n = ∗ωe1 .

Anschaulich kann man sich ωi1...ik(v1, . . . , vk) so vorstellen: Die Vektoren v1, . . . , vk spannnen
im Rn ein k-dimensionales Parallelotop Π auf. ωi1...ik(v1, . . . , vk) ist bis aufs Vorzeichen
das k-dimensionale Volumen der orthogonalen Projektion von Π in den von ei1 , . . . , eik

aufgespannten Unterraum.

Schreibt man vj =
∑n

i=1 vijei, so erhält man

ωi1...ik(v1, . . . , vk) = det

(
e1, . . . ,

i1
↓

n∑

m1=1

vm11, . . . ,

ik
↓

n∑

mk=1

vmkk, . . . , en

)

=
n∑

m1,...,mk=1

vm11 . . . vmkk det(e1, . . . ,

i1
↓

em1
, . . . ,

ik
↓

emk
. . . , en).

Nur die Summanden sind 6= 0, für die (m1, . . . ,mk) eine Permutation von (i1, . . . , ik) ist.
Für diese liefert die Determinante gerade das Signum der Permutation:

ωi1...ik(v1, . . . , vk) =
∑

σ∈Sk

sign(σ)viσ(1)1 . . . viσ(k)k.
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Wir halten fest, dass für 1 ≤ j1 < . . . < jk ≤ n gilt

ωi1...ik(ej1 , . . . , ejk
) =

{
1 falls (j1, . . . , jk) = (i1, . . . , ik),

0 sonst.
(43)

Die Rechnung aus dem vorstehenden Beispiel angewendet nicht auf auf ωi1...ik , sondern auf
ein beliebiges ω ∈ ΛkV ∗, liefert mit Satz 141

Satz 144. Für ω ∈ ΛkV ∗, eine Basis (e1, . . . , en) von V und vj =
∑n

i=1 vijei gilt

ω(v1, . . . , vk) =
∑

1≤i1<...<ik≤n

ω(ei1 , . . . , eik
)
∑

σ∈Sk

sign(σ)viσ(1)1 . . . viσ(k)k.

Insbesondere ist ω durch seine Werte auf den (monotonen k-tupeln von) Basisvektoren ein-
deutig bestimmt.

Satz 145. Sei n := dimV . Dann ist

dimΛkV ∗ =

(
n

k

)
.

Beweis. Wir beweisen das zunächst nur für V = Rn, den allgemeinen Fall erledigen wir im
Anschluss an die Definition 147.

Für k > n sind je k Vektoren im Rn linear abhängig, und deshalb ist jede alternierende
k-Form ω = 0:

dimΛk(Rn)∗ = 0 =

(
n

k

)
, falls k > n.

Sei nun k ≤ n. Nach Beispiel 143 und Satz 144 gilt für jedes ω ∈ Λk(Rn)∗

ω(v1, . . . , vk) =
∑

1≤i1<...<ik≤n

ω(ei1 , . . . , eik
)
∑

σ∈Sk

sign(σ)viσ(1)1 . . . viσ(k)k

=
∑

1≤i1<...<ik≤n

ω(ei1 , . . . , eik
)ωi1...ik(v1, . . . , vk),

also
ω =

∑

1≤i1<...<ik≤n

ω(ei1 , . . . , eik
)ωi1...ik .

Nach (43) sind die ωi1...ik linear unabhängig, und daraus folgt die Behauptung.

Beispiel 146. Mit dem Euklidischen Raum Rn kommen zwei weitere Räume, die nachdem
vorstehenden Satz auf kanonische Weise isomorph zu Rn sind:

Rn → Λ1(Rn)∗, u 7→ ωu := 〈., u〉 ,
Rn → Λn−1(Rn)∗, u 7→ ∗ωu := det(u, . . .).
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Es stellt sich heraus, dass manche physikalische Größen (zum Beispiel Impuls oder Magnet-
feld), die üblicherweise als Vektoren interpretiert werden, mathematisch besser zu

”
verste-

hen“ sind, wenn man sie als 1-Formen oder (n−1)-Form interpretiert. Vgl. die Beispiele 159
und 255.

Definition 147 (Zurückholen von Formen). Ist f : W → V eine lineare Abbildung und
ω ∈ ΛkV ∗, so definiert

f∗ω(w1, . . . , wk) := ω(f(w1), . . . , f(wk))

eine alternierende k-Form auf W , die mit f zurückgeholte Form. Die Abbildung

f∗ : ΛkV ∗ → ΛkW ∗, ω 7→ f∗ω

ist linear.

Das Zurückholen von Formen erfüllt offenbar

(h ◦ f)∗ = f∗ ◦ h∗ und id∗ = id .

Deshalb liefert ein Isomorphismus f : V →W für jedes k eine Isomorphie ΛkW ∗ ∼= ΛkV ∗.

Das beweist den Satz 145 für beliebiges V .

Satz 148. Für f ∈ End(V ) und µ ∈ ΛnV ∗ mit n = dimV ist

f∗µ = (det f)µ.

Beweis. Falls µ = 0 ist nichts zu zeigen.

Andernfalls ist µ eine Basis des
(
n
n

)
= 1-dimensionalen Vektorraums ΛnV ∗, und

f∗µ = cµ

für eine Konstante c, die wir nun bestimmen. Sei (ei) eine Basis von V und f(ej) =
∑

i fijei.
Dann ist

c µ(e1, . . . , en) = f∗µ(e1, . . . , en)

=
∑

i1,...,in

fi11 . . . finnµ(ei1 , . . . , ein
)

=
∑

σ∈Sn

fσ(1)1 . . . fσ(n)nµ(eσ(1), . . . , eσ(n))

=
∑

σ∈Sn

sign(σ)fσ(1)1 . . . fσ(n)nµ(e1, . . . , en)

= (det f)µ(e1, . . . , en)

Weil µ(e1, . . . , en) 6= 0 folgt die Behauptung.
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Definition 149 (Orientierung, Volumenform). Sei V ein n-dimensionaler reeller Vek-
torraum.

(i) ΛnV ∗ ist ein 1-dimensionaler Vektorraum, ΛnV ∗ \ {0} besteht also aus zwei Zusam-
menhangskomponenten. Jede von diesen heißt eine Orientierung von V und V zusam-
men mit einer solchen ein orientierter Vektorraum. Eine Orientierung ist also gegeben
durch eine alternierende n-Form µ 6= 0, und λµ mit λ 6= 0 liefert dieselbe Orientierung
genau dann, wenn λ > 0.

Eine Basis (v1, . . . , vn) in einem orientierten Vektorraum V heißt positiv orientiert,
wenn für ein und dann für alle µ aus der Orientierung

µ(v1, . . . , vn) > 0.

Umgekehrt bestimmt jede Basis (v1, . . . , vn) eine Orientierung

{
µ ∈ ΛnV ∗ ∣∣µ(v1, . . . , vn) > 0

}
.

(ii) Ist V ein orientierter Euklidischer Vektorraum, so gibt es in der Orientierung genau ein
µ ∈ ΛnV ∗, welches auf einer und nach Satz 148 dann auf jeder positiv orientierten Or-
thonormalbasis den Wert 1 annimmt. Dieses µ heißt die Volumenform des orientierten
Euklidischen Vektorraums V .

Bemerkungen. 1. In der Linearen Algebra definiert man die Orientierung eines endlich-
dimensionalen reellen Vektorrraumes häufig als eine Äquivalenzklasse von Basen, wobei zwei
Basen äquivalent oder gleich-orientiert heißen, wenn sie durch einen Automorphismus mit
positiver Determinante ineinander überführt werden. Überlegen Sie, dass das mit der obigen
Definition übereinstimmt.

2. Für V = {0} ist nach Definition Λ0V ∗ = R. Die beiden Komponenten von R \ {0} lassen
sich charakterisieren durch die Zahlen +1 und −1, und unter einer Orientierung von V = {0}
versteht man die Wahl einer dieser Zahlen.
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9.1.1 Äußeres Produkt

• Wir definieren ein assoziatives Produkt zwischen alternierenden Formen und benutzen
dieses, um k-Formen mit Hilfe von 1-Formen darzustellen.

Multilinearformen, die nicht alternieren, kann man mit Gewalt dazu bringen:

Definition 150 (Alternierung). Ist T : V × . . .× V → R eine k-lineare Abbildung, so ist
Alt(T ) mit

Alt(T )(v1, . . . , vk) :=
1

k!

∑

σ∈Sk

sign(σ)T (vσ(1), . . . , vσ(k))

eine alternierende k-Form, die Alternierung von T .

Ist T bereits alternierend, so ist Alt(T ) = T .

Beweis, dass Alt(T ) alternierend ist. Sei τ ∈ Sk. Dann gilt

Alt(T )(vτ(1), . . . , vτ(k)) =
1

k!

∑

σ∈Sk

sign(σ)T (vσ(τ(1)), . . . , vσ(τ(k)))

=
1

k!

∑

ρ∈Sk

sign(ρτ−1)T (vρ(1), . . . , vρ(k))

= sign(τ)Alt(T )(v1, . . . , vk).

Wir benutzen das, um für alternierende Formen ein Produkt zu erklären.

Definition 151. Seien ω ∈ ΛkV ∗, θ ∈ ΛlV ∗.

(i) Das Tensorprodukt ω ⊗ θ von ω und θ ist definiert durch

(ω ⊗ θ)(v1, . . . , vk+l) := ω(v1, . . . , vk)θ(vk+1, . . . , vk+l).

(ii) Das äußere Produkt ω ∧ θ ∈ Λk+lV ∗ von ω und θ ist definiert durch

ω ∧ θ :=
(k + l)!

k!l!
Alt(ω ⊗ θ).

Satz 152. Seien ω, ωi ∈ ΛkV ∗, θ ∈ ΛlV ∗, η ∈ ΛmV ∗ und f : W → V linear. Dann gelten
folgende Regeln

(ω1 + ω2) ∧ θ = ω1 ∧ θ + ω2 ∧ θ,
(aω) ∧ θ = a(ω ∧ θ),
f∗(ω ∧ θ) = f∗ω ∧ f∗θ,

ω ∧ θ = (−1)klθ ∧ ω,
(ω ∧ θ) ∧ η = ω ∧ (θ ∧ η).

Beweis. Bis auf die letzten zwei Aussagen ist das leicht zu beweisen. Für diese vgl. Spivak
p. 80/81 oder Agricola/Friedrich p. 2.
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Beispiel 153. Für φ ∈ Λ0V ∗ = R und ω ∈ ΛkV ∗ ist offenbar φ ⊗ ω = φω, und weil das
eine alternierende k-Form ist, folgt

φ ∧ ω = φω.

Beispiel 154. Für ω1, ω2 ∈ Λ1V ∗ und v1, v2 ∈ V ist

(ω1 ∧ ω2)(v1, v2) =
2!

1!1!

1

2!
(ω1(v1)ω2(v2) − ω1(v2)ω2(v1))

= ω1(v1)ω2(v2) − ω1(v2)ω2(v1).

Beispiel 155. Vgl. Beispiel 146. Für u, v ∈ R3 findet man mit der Formel aus dem letzten
Beispiel wegen ωu(ei) = 〈ei, u〉 = ui

(ωu ∧ ωv)(ei, ej) = uivj − ujvi

Das sieht so aus, wie die Komponenten des Vektorproduktes u× v. Zeigen Sie

ωu ∧ ωv = ∗ωu×v.

Das Dachprodukt kann man also auffassen als eine Verallgemeinerung des Vektorproduk-
tes auf beliebig-dimensionale Räume. Die spezielle Situation im dreidimensionalen kommt
dadurch zustande, dass 1 + 1 = 3 − 1 ist.

Lemma 156. Seien ω ∈ Λk−1V ∗, θ ∈ Λ1V ∗ und v1, . . . , vk ∈ V . Dann gilt

(ω ∧ θ)(v1, . . . , vk) =
k∑

j=1

(−1)k−jω(v1, . . . , v̂j , . . . , vk)θ(vj). (44)

Beweis. Nach Definition ist

(ω ∧ θ)(v1, . . . , vk) =
k!

(k − 1)!1!

1

k!

∑

σ∈Sk

sign(σ)ω(vσ(1), . . . , vσ(k−1))θ(vσ(k)).

Ist j := σ(k), so ist der ω-Term in der Summe

±ω(v1, . . . , v̂j , . . . , vk),

wobei v̂j bedeutet, dass vj ausgelassen wird.

Das Vorzeichen bestimmt sich durch die Permutation, die vσ(1), . . . , vσ(k−1) in die monotone
Reihenfolge v1, . . . , v̂j , . . . , vk bringt:

(vσ(1), . . . , vσ(k−1), vσ(k)) →
sign(σ)

(v1, . . . , vj , . . . , vk) →
(−1)k−j

(v1, . . . , v̂j , . . . , vk, vj)

Also folgt

(ω ∧ θ)(v1, . . . , vk) =
1

(k − 1)!

k∑

j=1

∑

σ ∈ Sk

σ(k) = j

sign(σ)2︸ ︷︷ ︸
=1

(−1)k−jω(v1, . . . , v̂j , . . . , vk)θ(vj).
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Weil es in Sk gerade (k − 1)! Permutationen mit σ(k) = j gibt, erhalten wir daraus (44).

Statt (−1)k−j kann man in (44) natürlich auch (−1)k+j schreiben. Dann hat die Formel (44)
Ähnlichkeit mit dem Laplaceschen Determinantenentwicklungssatz. Das ist kein Zufall, wie
der Beweis zum nächsten Satz zeigt.

Satz 157. Seien v1, . . . , vk ∈ V und ω1, . . . , ωk ∈ Λ1V ∗ = V ∗. Dann gilt

(ω1 ∧ . . . ∧ ωk)(v1, . . . , vk) = det(ωi(vj))i,j=1,...,k. (45)

Die Formel (45) ist der Grund für den merkwürdigen Koeffizienten bei der Definition von ∧.

Beweis. Vollständige Induktion über k.

Der Fall k = 1 ist trivial.

(k − 1) → k.

(ω1 ∧ . . . ∧ ωk−1) ∧ ωk(v1, . . . , vk)

=
(44)

k∑

j=1

(−1)k+jω1 ∧ . . . ∧ ωk−1(v1, . . . , v̂j , . . . , vk)ωk(vj)

=
k∑

j=1

(−1)k+j




ω1(v1) . . . ω̂1(vj) . . . ω1(vk)
...

...

ωk−1(v1) . . . ̂ωk−1(vj) . . . ωk−1(vk)


ωk(vj)

= det(ωi(vj)),

wobei der Entwicklungssatz von Laplace nach der letzten Zeile benutzt wurde.

Satz 158. Seien (e1, . . . , en) eine Basis von V und (ω1, . . . , ωn) die duale Basis von V ∗.
Dann gilt für ω ∈ ΛkV ∗:

ω =
∑

1≤i1<...<ik≤n

ω(ei1 , . . . , eik
)ωi1 ∧ . . . ∧ ωik

.

(ωi1 ∧ . . . ∧ ωik
)1≤i1<...<ik≤n ist eine Basis für ΛkV ∗, und die ω(ei1 , . . . , eik

) ∈ R sind die
Entwicklungskoeffizienten von ω bezüglich dieser Basis.

Dieser Satz erklärt die Notation ΛkV ∗: Das ist der Raum der von den k-fachen Produkten
von Formen aus V ∗ erzeugt wird, die k-te “äußere Potenz” von V ∗.

Beweis. Sei j1 < . . . < jk. Dann gilt
∑

1≤i1<...<ik≤n

ω(ei1 , . . . , eik
)(ωi1 ∧ . . . ∧ ωik

)(ej1 , . . . , ejk
)

=
∑

1≤i1<...<ik≤n

ω(ei1 , . . . , eik
) det(ωiα

(ejβ
))

︸ ︷︷ ︸
=0, falls (j1,...,jk) 6=(i1,...,ik)

= ω(ej1 , . . . , ejk
).

Aus dem Satz 144 folgt daher die Behauptung.
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Beispiel 159 (Basisdarstellung in Λk(Rn)∗). Sei V = Rn. Die duale Basis zur Standard-
basis bezeichnen wir mit x1, . . . , xn. Das sind gerade die Projektionen auf die Koordinaten-
achsen. Dann gilt also

ω =
∑

1≤i1<...<ik≤n

ω(ei1 , . . . , eik
)xi1 ∧ . . . ∧ xik

.

In diesem Fall ist xi1 ∧ . . . ∧ xik
= ωi1...ik , vgl. Beispiel 143.

Beispiel 160. Seien etwa ω =
∑
ai xi, θ =

∑
bi xi. Dann ist

ω ∧ θ =
∑

i<j

(ai bj − aj bi)xi ∧ xj .

Bemerkung. Man bezeichnet die Räume ΛkV ∗ mit dem äußeren Produkt, oder, formal
genauer, die direkte Vektorraumsumme

Λ∗V ∗ :=
n⊕

k=0

ΛkV ∗

mit der darauf durch ∧ induzierten Multiplikation als die Graßmannalgebra von V ∗.7

Hermann Graßmann (1809-1877) war nicht nur der Erfinder dieser Operation, man kann
ihn als den Erfinder der abstrakten Linearen Algebra im heutigen Sinne ansehen. Er war
seinen Zeitgenossen damit weit voraus, konnte sich aber als Autodidakt kaum verständlich
machen und wurde deshalb lange Zeit seines Lebens von der etablierten Mathematik nicht
gewürdigt, ja kaum wahrgenommen. Außer zur Mathematik hat er bedeutende Beiträge
auch zur Physik und zur Sprachwissenschaft geleistet.

Zum Wirken und zur Person von Hermann Graßmann sei der entsprechende Abschnitt in
Felix Kleins “Mathematik im 19. Jahrhundert” empfohlen.

7 Die Graßmannalgebra ΛkV des endlich-dimensionalen R-Vektorraumes V “selbst”, also ohne Sternchen,
kann man im Rahmen unserer Behandlung mit Hilfe der kanonischen Isomorphie (V ∗)∗ ∼= V definieren.
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9.2 Differentialformen

• Ein Vektorfeld ist eine Abbildung

X : V ⊃ G→ V,

die jedem Punkt p ∈ G einen Vektor X(p) zuordnet.

Ebenso ist eine Differentialform vom Grad k ein Feld alternierender k-Formen, also
eine Abbildung

ω : V ⊃ G→ ΛkV ∗,

die jedem Punkt p ∈ G eine alternierende k-Form ωp zuordnet.

• Wir übertragen unsere Kenntnisse der alternierenden k-Formen auf k-Formenfelder.

• Insbesondere lernen wir die Basisdarstellung von Differentialformen kennen. Eine Klip-
pe ist dabei die gängige Praxis, konstante Abbildungen mit demselben Symbol zu
bezeichnen wie ihren Wert.

Seien V ein endlich-dimensionaler normierter R-Vektorraum, G ⊂ V eine offene Menge und
k ∈ N.

Definition 161. Eine C∞-Abbildung

ω : G→ ΛkV ∗, p 7→ ωp.

heißt eine Differentialform vom Grad (oder Rang) k auf G.

Die Addition und Skalarmultiplikation sowie das Dachprodukt von alternierenden Multili-
nearformen übertragen sich

”
wertweise“ auf Differentialformen. Außerdem kann man Diffe-

rentialformen wertweise mit reellwertigen C∞-Funktionen multiplizieren.

Auf diese Weise bilden die Differentialformen vom Grad k einen Modul

Ωk(G) := C∞(G,ΛkV ∗)

über dem Ring C∞(G,R) der reellwertigen C∞-Funktionen.

Bemerkung. Natürlich kann man auch Differentialformen mit niedrigerer Differenzierbar-
keitsordnung definieren. Aber bei der Differentiation von Differentialformen endlicher Diffe-
renzierbarkeitsordnung verliert man jeweils eine Ordnung. Das führt dazu, dass man neben
dem Grad ständig auch noch die Differenzierbarkeitsordnung kontrollieren muss. Wir ver-
meiden dieses Problem, indem wir uns auf den C∞-Fall beschränken.

Beispiel 162. Ω0(G) = C∞(G,R) sind die C∞-Funktionen auf G.

Beispiel 163. Ist f : G→ R eine C∞-Funktion, so ist

Df : G→ L(V,R) = V ∗ ∈ Ω1(G).

Im Zusammenhang mit Differentialformen schreiben wir meistens df statt Df , vgl. Ab-
schnitt 9.3.

Beispiel 164. Alternierende k-Formen kann man als konstante Differentialformen auffassen.
Dann ist also

ΛkV ∗ ⊂ Ωk(V ).
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Beispiel 165 (Zur anschaulichen Vorstellung). Eine alternierende 2-Form ω ∈ Λ2(R3)∗

kann man sich als Strömung einer Flüssigkeit im R3 vorstellen: ω(v, w) gibt an, wieviel
davon pro Zeiteinheit durch das von den Vektoren v und w aufgespannte Parallelogramm
hindurchfließt.8

Dabei ist kommentarlos unterstellt, dass die
Strömung stationär ist, d.h. dass es nicht darauf an-
kommt, wann die Zeiteinheit gewählt ist, und es ist
unterstellt, dass die Strömung homogen ist, d.h. dass
es nicht darauf ankommt, wo im R3 das Parallelo-
gramm liegt (Translationsinvarianz).

v

w

p

q

v

v

w

w

Differentialformen ermöglichen es, wenigstens die
zweite Spezialisierung aufzugeben, also eine stati-
onäre inhomogene Strömung zu modelieren und zwar
durch eine Differentialform ω ∈ Ω2(R3). Für (hinrei-
chend kleine) Vektoren v, w ∈ R3 gibt

ωp(v, w)

an, wieviel Flüssigkeit pro Zeiteinheit durch das von
v und w an der Stelle p ∈ R3 aufgespannte Paralle-
logramm fließt.

Genauer liefert

ωp(v, w) = lim
hց0

Fluss durch das von (hv, hw) aufgespannte Parallelogramm

h2

die Flussdichte durch das von v und w bestimmte infinitesimal kleine Parallelogramm im
Punkte p.

Beispiel 166 (Die Flussform). Sei F : Rn ⊃ G→ Rn ein C∞-Vektorfeld. Dann definiert

∗ωF
p (v1, . . . , vn−1) := det(F (p), v1, . . . , vn−1) (46)

eine Differentialform ∗ωF ∈ Ωn−1(G), die den
”
Fluss“ des Vektorfeldes F durch die von n−1

Vektoren aufgespannten infinitesimalen Hyperflächenstücke misst, und die wir die Flussform
zu F nennen.

Ist V nicht der Rn, sondern ein orientierter Euklidischer Vektorraum und µ ∈ ΛnV ∗ seine
Volumenform, vgl. die Definition 149, so kann man auch in diesem Fall zu jedem Vektorfeld
F : V ⊃ G→ V eine Flussform

∗ωF := µ(F, . . .)

definieren.

Definition 167. Ist h : G → H ⊂ W eine C∞-Abbildung in die offene Teilmenge H des
Vektorraumes W , und ist ω ∈ Ωk(H), so definiert

(h∗ω)p(v1, . . . , vk) := ωh(p)(Dph(v1), . . . , Dph(vk))

eine k-Form h∗ω ∈ Ωk(G), die mit h zurückgeholte Form.

8 Ist u der Geschwindigkeitsvektor der Strömung, so ist ω = ∗ωu. Das ist ein Beispiel dafür, dass man
Strömungen bequem durch 2-Formen modeliert.
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Beispiel 168. Sind V ein n-dimensionaler R-Vektorraum, µ ∈ Ωn−1(V ) und h : V ⊃ G→ V
eine C∞-Abbildung, so gilt nach Satz 148

h∗µ = det(Dh)µ.

Satz 169. Für die Komposition f ◦ g von C∞-Abbildungen gilt

(f ◦ g)∗ω = g∗(f∗ω). (47)

Beweis.

(g∗(f∗ω))p(v1, . . .) = (f∗ω)g(p)(Dpg(v1), . . .) = ωf(g(p))(Dg(p)f(Dpg(v1)), . . .).

Die Formel (47) ist also im wesentlichen die Kettenregel. Direkt aus der Definition folgt

Satz 170. Es gilt
f∗(ω ∧ θ) = f∗ω ∧ f∗θ

und
f∗(φω) = (φ ◦ f)f∗ω.

Basisdarstellung von Differentialformen. Für das weitere Verständnis ist es ungeheuer
wichtig, dass Sie sich folgende Sachverhalte klarmachen:

1. Eine (beliebige) Abbildung f : V ⊃ G → W in einen Vektorraum W mit Basis
(w1, . . . , wm) kann man nach dieser Basis entwickeln:

f =
m∑

i=1

fiwi.

Die fi sind die Komponentenfunktionen.

Insbesondere ist f ∈ C∞ genau dann, wenn alle fi ∈ C∞.

Die duale Basis (ω1, . . . , ωn) zu einer Basis (e1, . . . , en) von V liefert eine Basis

(ωi1 ∧ . . . ∧ ωik
)1≤i1<...<ik≤n

für den Vektorraum ΛkV ∗. Infolgedessen hat man für ω ∈ Ωk(G) eine Darstellung

ω =
∑

1≤i1<...<ik≤n

φi1...ik
ωi1 ∧ . . . ∧ ωik

(48)

mit C∞-Funktionen φi1...ik
. Für p ∈ G ist

ωp =
∑

1≤i1<...<ik≤n

φi1...ik
(p)ωi1 ∧ . . . ∧ ωik

∈ ΛkV ∗.

Nach Satz 158 sind die Funktionen φi1...ik
gegeben durch

φi1...ik
(p) = ωp(ei1 , . . . , eik

).
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2. Ist V = Rn, k = 1 und ω = df , so hat man in Λ1(Rn)∗ die kanonische duale Basis
(x1, . . . , xn) und zum Beispiel

df =
n∑

i=1

∂f

∂xi
xi. (49)

Aber so schreibt man das nicht. Stattdessen finden Sie

df =
n∑

i=1

∂f

∂xi
dxi. (50)

Der Unterschied (besser: der fehlende Unterschied) zwischen beiden Notationen ist
folgender. Sind f eine reellwertige Abbildung und g eine konstante Abbildung in den
Vektorraum Wmit Wert w, so beschreiben

f w : p 7→ f(p)w

und
f g : p 7→ f(p)g(p) = f(p)w

dieselbe Abbildung. Wegen der Linearität der xi ist nun dxi : p 7→ dpxi = xi eine
konstante Abbildung. Die rechte Seite von (50) ist also zu lesen als:

p 7→
n∑

i=1

∂f

∂xi
(p) dpxi =

n∑

i=1

∂f

∂xi
(p)xi ∈ Λ1(Rn)∗.

Die vorstehenden Überlegungen gelten nicht nur für 1-Formen und die kanonische Basis
des Rn, sondern ganz allgemein. Wir formulieren das noch einmal als Satz.

Satz 171. Sei (ω1, . . . , ωn) die duale Basis zu (e1, . . . , en).

(i) Sind φi1...ik
: G→ R gegebene C∞-Funktionen, so ist

ω =
∑

1≤i1<...<ik≤n

φi1...ik
dωi1 ∧ . . . ∧ dωik

∈ Ωk(G).

(ii) Jedes ω ∈ Ωk(G) läßt sich eindeutig so darstellen, nämlich mit

φi1...ik
= ω(ei1 , . . . , eik

).

(iii) Insbesondere ist jede Differentialform vom Grad k auf dem Rn von der Form

ω =
∑

1≤i1<...<ik≤n

φi1...ik
dxi1 ∧ . . . ∧ dxik

.

mit C∞-Funktionen φi1...ik
.

Beispiel 172. Für die Determinantenform des Rn gilt

det = dx1 ∧ . . . ∧ dxn ∈ Ωn(Rn).

Vergleiche Satz 157.
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Beispiel 173. Für die Flussform ∗ωF ∈ Ωn−1(G) zu einem F : Rn ⊃ G→ Rn findet man

∗ωF =

n∑

i=1

∗ωF (e1, . . . , êi, . . . , en)dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn

=
n∑

i=1

det(F, e1, . . . , êi, . . . , en)dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn

=
n∑

i=1

(−1)i−1 det(e1, . . . , F, . . . , en)dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn

=
n∑

i=1

(−1)i−1Fidx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn.
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9.3 Die Cartansche oder äußere Ableitung

• Eine Differentialform ω vom Grad k ist insbesondere eine differenzierbare Abbildung
ω : V ⊃ G → Lk(V,R). Ihre Ableitung an einer Stelle p ∈ G ist deshalb eine lineare
Abbildung in L(V,Lk(V,R)) = Lk+1(V,R), die aber im allgemeinen nicht alternie-
rend ist. Wir machen sie “mit Gewalt” alternierend und erhalten auf diese Weise die
Cartansche Ableitung.

• Wir lernen Rechenregeln für die Cartansche Ableitung kennen. Weil nach dem Schwarz-
schen Lemma die höheren Ableitungen symmetrisch sind, überrascht es nicht sehr, dass
die zweifache Cartansche Ableitung verschwindet: Man macht sie ja gerade antisym-
metrisch.

Definition 174 (Cartansche oder äußere Ableitung). Sei ω ∈ Ωk(G).
Für jedes j ∈ {1, . . . , k + 1} und für v1, . . . , vk+1 ∈ V ist dann

p 7→ ωp(v1, . . . , v̂j , . . . , vk+1)

eine C∞-Funktion aufG (der Vektor vj ausgelassen). Die Richtungsableitung dieser Funktion
nach vj sei mit

p 7→ ∂vj
ω(v1, . . . , v̂j , . . . , vk+1)|p

bezeichnet. Dann definiert

dpω(v1, . . . , vk+1) :=
k+1∑

j=1

(−1)j−1∂vj
ω(v1, . . . , v̂j , . . . , vk+1)|p.

eine Differentialform dω ∈ Ωk+1(G). Sie heißt die Cartansche oder äußere Ableitung von ω.

(Man schreibt dpω statt (dω)p. Die Formeln gewinnen an Übersichtlichkeit, wenn man das
Argument p überhaupt unterdrückt, wie in den folgenden Beispielen.)

Dass dpω wirklich alternierend ist, ergibt sich aus dem nachstehenden Lemma.

Für ω ∈ Ωk(G) = C∞(G,ΛkV ∗) und p ∈ G ist Dpω ∈ L(V,ΛkV ∗) ⊂ Lk+1(V,R) eine
(k + 1)-Linearform auf V

Dpω(v1, . . . , vk+1) := Dpω(v1)(v2, . . . , vk+1) = ∂v1ω(v2, . . . , vk+1)|p.

Das ist wegen der asymmetrischen Rolle des ersten Arguments nicht alternierend. Aber wir
können darauf die Alternierung aus Definition 150 anwenden und erhalten:

Lemma 175. Für ω ∈ Ωk(G) und p ∈ G ist

dpω = (k + 1)AltDpω.

Beweis. Für j ∈ {1, . . . , k + 1} bezeichne τj ∈ Sk+1 die Transposition von 1 und j. Dann
gilt für v1, . . . , vk+1 ∈ V
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(k + 1)AltDpω(v1, . . . , vk+1) =
k + 1

(k + 1)!

∑

σ∈Sk+1

sign(σ)Dpω(vσ(1), . . . , vσ(k+1))

=
1

k!

∑

σ∈Sk+1

sign(σ)∂vσ(1)
ω(vσ(2), . . . , vσ(k+1))|p

=
1

k!

k+1∑

j=1

∑

σ ∈ Sk+1
σ(1) = 1

sign(τj ◦ σ)∂vτj◦σ(1)
ω(vτj◦σ(2), . . . , vτj◦σ(k+1))|p

=
1

k!

k+1∑

j=1

∑

σ ∈ Sk+1
σ(1) = 1

sign(τj ◦ σ)∂vj
ω(vτj◦σ(2), . . . , vτj◦σ(k+1))|p

=
1

k!

∑

σ ∈ Sk+1
σ(1) = 1

sign(τ1 ◦ σ)∂v1ω(vσ(2), . . . , vσ(k+1))|p

− 1

k!

k+1∑

j=2

∑

σ ∈ Sk+1
σ(1) = 1

sign(σ)∂vj
ω(vτj◦σ(2), . . . , vτj◦σ(k+1))|p

= ∂v1
ω(v2, . . . , vk+1)|p − 1

k!

k+1∑

j=2

∑

σ ∈ Sk+1
σ(1) = 1

∂vj
ω(vτj(2), . . . , vτj(k+1))|p

= ∂v1
ω(v2, . . . , vk+1)|p −

k+1∑

j=2

∂vj
ω(v2, . . . , vj−1,

j−1
↓

v1 , vj+1, . . . , vk+1)|p

= ∂v1
ω(v2, . . . , vk+1)|p −

k+1∑

j=2

(−1)j−2∂vj
ω(v1, . . . , v̂j , . . . , vk+1)|p

=
k+1∑

j=1

(−1)j−1∂vj
ω(v1, . . . , v̂j , . . . , vk+1)|p.

Beispiel 176.
ω ∈ Ω1(G) =⇒ dω(v, w) = ∂vω(w) − ∂wω(v).

Beispiel 177. Für die Flussform ∗ωF = det(F, . . .) ∈ Ωn−1(G) auf dem Rn ergibt sich

d ∗ ωF (e1, . . . , en) =
n∑

j=1

(−1)j−1∂ej
det(F, e1, . . . , êj , . . . , en)︸ ︷︷ ︸

=(−1)j−1Fj

=
n∑

j=1

∂Fj

∂xj
= divF.

Also
d ∗ ωF = (divF ) det = (divF )dx1 ∧ . . . ∧ dxn.

Lemma 178. Seien φ : G → R eine C∞-Abbildung auf der offenen Menge G ⊂ V und
ω0 ∈ ΛkV ∗. Dann gilt

d (φω0) = dφ ∧ ω0.
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Beweis. Nach Lemma 156 und der vorletzten Formel aus Satz 152 gilt für θ ∈ Λ1V ∗,
ω0 ∈ ΛkV ∗ und v1, . . . , vk+1 ∈ V

(θ ∧ ω0)(v1, . . . , vk+1) =
k+1∑

j=1

(−1)j−1θ(vj)ω0(v1, . . . , v̂j , . . . , vk+1).

Daher ist

((dφ) ∧ ω0)(v1, . . . , vk+1) =
k+1∑

j=1

(−1)j−1dφ(vj)ω0(v1, . . . , v̂j , . . . , vk+1)

=
k+1∑

j=1

(−1)j−1∂vj
φω0(v1, . . . , v̂j , . . . , vk+1)

= d(φω0)(v1, . . . , vk+1).

Lemma 179. Die Cartansche Ableitung

d : Ωk(G) → Ωk+1(G)

ist R-linear.

Beweis. Trivial

Satz 180. Mit den Bezeichnungen von Satz 171 sei

ω =
∑

1≤i1<...<ik≤n

φi1...ik
dωi1 ∧ . . . ∧ dωik

∈ Ωk(G).

Dann gilt

dω =
∑

1≤i1<...<ik≤n

dφi1...ik
∧ dωi1 ∧ . . . ∧ dωik

=
∑

1≤i1<...<ik≤n

n∑

j=1

∂ej
φi1...ik

dωj ∧ dωi1 ∧ . . . ∧ dωik
.

Im Fall der kanonischen Basis des Rn hat man für

ω =
∑

1≤i1<...<ik≤n

φi1...ik
dxi1 ∧ . . . ∧ dxik

also

dω =
∑

1≤i1<...<ik≤n

n∑

j=1

∂φi1...ik

∂xj
dxj ∧ dxi1 ∧ . . . ∧ dxik

.

Beweis. Triviale Folge aus den Lemmas 178 und 179 in Verbindung mit

dφ =
∑

j

∂ej
φdωj .

Beachten Sie, dass die dωi1 ∧ . . . ∧ dωik
konstante Differentialformen sind.
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Beispiel 181. Bezeichnen wir die Koordinatenfunktionen auf dem R2 mit x, y statt mit
x1, x2, so ist

ω := x dy − y dx ∈ Ω1(R2)

und
dω = dx ∧ dy − dy ∧ dx = 2 dx ∧ dy.

Beispiel 182. Wir berechnen noch einmal, und zwar jetzt in Koordinaten, die Cartansche
Ableitung der Flussform

∗ωF =
n∑

i=1

(−1)i−1Fi dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn.

Wir erhalten wie früher

d ∗ ωF =
n∑

i=1

(−1)i−1
n∑

j=1

∂Fi

∂xj
dxj ∧ dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn︸ ︷︷ ︸

=0 für j 6=i

=

n∑

i=1

∂Fi

∂xi
dx1 ∧ . . . ∧ dxn = (divF )dx1 ∧ . . . ∧ dxn.

Satz 183. Für die Cartansche Ableitung gelten die folgenden Rechenregeln:

(i) d : Ωk(G) → Ωk+1(G) ist R-linear.

(ii) d(ω ∧ θ) = (dω) ∧ θ + (−1)kω ∧ (dθ), wenn ω ∈ Ωk(G), θ ∈ Ωl(G).

(iii) d(dω) = 0.

(iv) d(f∗ω) = f∗(dω), wenn (f : V ⊃ G→ H ⊂W ) ∈ C∞(G,W ) und ω ∈ Ωk(H).

Beweis. Zu (i). Das war Lemma 179.

Zu (ii). Weil d linear ist, können wir o.E. annehmen, dass

ω = φω0, θ = ψ θ0.

mit φ, ψ ∈ C∞(G,R) und ω0 ∈ ΛkV ∗, θ0 ∈ ΛlV ∗. Dann gilt

ω ∧ θ = φψ ω0 ∧ θ0︸ ︷︷ ︸
konstant

und nach Lemma 178 ist

d(ω ∧ θ) = d(φψ) ∧ (ω0 ∧ θ0) = (dφ)ψ ∧ (ω0 ∧ θ0) + φ(dψ) ∧ ω0 ∧ θ0
= (dφ ∧ ω0) ∧ ψθ0 + (−1)k(φω0) ∧ (dψ ∧ θ0) = dω ∧ θ + (−1)kω ∧ dθ.

Zu (iii). Wieder genügt es, den Fall
ω = φω0
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mit φ und ω0 wie oben zu betrachten. Dafür gilt dω = dφ ∧ ω0 und nach (ii)

d2ω = (d2φ) ∧ ω0.

Also genügt es zu zeigen, dass d2φ = 0 für C∞-Funktionen φ. Aber

d(dφ)(v, w) = ∂vdφ(w) − ∂wdφ(v) = ∂v∂wφ− ∂w∂vφ = 0

nach dem Satz von Schwarz.

Zu (iv). Für Funktionen φ ∈ C∞(H,R) = Ω0(H) gilt

d(f∗φ) = d(φ ◦ f) = dφ ◦Df = f∗dφ.

Für eine konstante 1-Form ω0 ∈ Λ1W ∗ und u, v ∈ V gilt

d(f∗ω0)(u, v) = ∂uω0(Df(v)) − ∂vω0(Df(u)) = ω0(∂u∂vf) − ω0(∂v∂uf) = 0

nach dem Satz von Schwarz. Nach (ii) ist dann aber auch

d(f∗(ω1 ∧ . . . ∧ ωk)) = 0

für beliebige ω1, . . . , ωk ∈ Λ1W ∗, also ist

d(f∗ω0) = 0

für jede konstante k-Form ω0 ∈ ΛkW ∗.

Schließlich folgt für ω = φω0 mit φ ∈ C∞(H,R) und ω0 ∈ ΛkW ∗

d(f∗ω) = d(f∗(φω0)) = d((f∗φ)f∗ω0) = (d(f∗φ)) ∧ (f∗ω0)

= f∗(dφ) ∧ (f∗ω0) = f∗(d(φω0)) = f∗(dω).

Mit der Linearität von d und f∗ folgt daraus die Behauptung.

Ein Rätsel. Im obigen Beweis haben wir gezeigt, dass für C∞-Abbildungen f : V → W
und ω0 ∈ Λ1W ∗

d(f∗ω0) = 0.

Andrerseits ist für die lineare Abbildung ω0 : W → R doch

dpω0 = ω0, für alle p ∈W,

und nach Teil (iv) des vorstehenden Satzes ist daher

d(f∗ω0) = f∗(dω0) = f∗ω0.

Aber sicher ist das für “die meisten” Abbildungen f und ω0 ∈ Λ1W ∗ nicht = 0.

Was ist da los?
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9.4 Potentiale von Differentialformen

• Ein Potential einer Differentialform ω ist eine “Stammfunktion”, genauer eine Diffe-
rentialform θ mit ω = dθ.

• Im Gegensatz zum Hauptsatz der Differential- und Integralrechnung besitzt aber nicht
jede Differentialform ein Potential. dω = 0 ist eine offensichtlich notwendige Bedin-
gung, und Sie finden leicht Formen, die das nicht erfüllen.

• Wir lernen, dass diese Bedingung im allgemeinen nicht hinreichend ist, und finden im
Lemma von Poincaré eine hinreichende Zusatzbedingung.

• Das Lemma kann man in der Sprache der Kohomologietheorie formulieren, und wir
lernen bei der Gelegenheit, was die Kohomologiegruppen einer offenen Mengen G ⊂ V
sind, und was man sich darunter vorstellen soll.

Sei G eine offene Teilmenge eines endlich-dimensionalen R-Vektorraums V .

Definition 184. Sei ω ∈ Ωk(G).

(i) ω heißt geschlossen, wenn dω = 0.

(ii) ω heißt exakt, wenn es ein θ ∈ Ωk−1(G) gibt, für das

dθ = ω.

Jedes solche θ heißt ein Potential für ω.

Beispiel 185. Im Fall ω ∈ Ω1(G) ist ein Potential also eine Funktion θ mit dθ = ω. Für
V = Rn und ω =

∑n
i=1 φidxi bedeutet das

∂θ

∂xi
= φi.

In der Physik bezeichnet man üblicherweise −θ und nicht θ als das Potential von φ.

Eine 0-Form ω ∈ Ω0(G), d.h. eine Funktion ω ∈ C∞(G,R), kann zwar geschlossen sein (was
bedeutet das?), sie kann aber nicht exakt sein, weil Ω−1(G) nicht definiert ist.

Satz 186. Notwendig für die Existenz eines Potentials zu ω ∈ Ωk(G) ist dω = 0. Nur
geschlossene Formen können ein Potential besitzen.

Müssen sie aber nicht. Wir zeigen gleich, dass die Geschlossenheit im allgemeinen nicht hin-
reichend ist. Zuvor betrachten wir noch kurz die Frage der Eindeutigkeit von Potentialen.

Wenn θ ∈ Ωk−1(G) ein Potential von ω ∈ Ωk(G) und θ0 ∈ Ωk−1(G) ist, dann ist θ + θ0
genau dann ebenfalls ein Potential von ω, wenn dθ0 = 0. Das ist sicher der Fall, wenn θ0
selber ein Potential η ∈ Ωk−2(G) besitzt, aber weil die Exaktheit von θ0 im allgemeinen
nicht notwendig für die Geschlossenheit ist, gibt es vielleicht noch mehr Potentiale zu ω.
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Beispiel 187 (Wichtig: Sphärenvolumenform). Mit r : Rn \ {0} → R, x 7→
√∑

x2
i

definieren wir das Vektorfeld X : Rn \ {0} → Rn durch

X(x) =
x

rn

und betrachten die zugehörige Flussform ∗ωX . Diese Form, also

∗ωX = det(
x

‖x‖n
, . . .) ∈ Ωn−1(Rn \ {0}),

nennen wir aus später erläuterten Gründen die Sphärenvolumenform des Rn.

Für sie gilt nach den Beispielen 177 und 182

d ∗ ωX = divX dx1 ∧ . . . ∧ dxn = 0,

weil

divX =
n∑

i=1

∂i
xi

rn
=

n∑

i=1

(
1

rn
− xi

nxi

rn+2

)
=

n

rn
− n

∑
i x

2
i

rn+2
= 0.

Also ist ∗ωX geschlossen.

Für n = 2 ist

∗ωX =
x

x2 + y2
dy − y

x2 + y2
dx.

Gibt es dazu ein Potential, also eine Funktion θ : R2 \ {0} → R mit

∂θ

∂x
=

−y
x2 + y2

,
∂θ

∂y
=

x

x2 + y2
?

Offenbar hat arccot x
y die richtigen partiellen Ableitungen, ist aber nur auf dem Komplement

der x-Achse definiert und nicht auf R2 \ {0}. Das Grenzwertverhalten bei Annäherung an
die Achse ist hier dargestellt:

π

arccot

π

π 0

0

Die Winkelfunktion

φ(x, y) :=






arccot x
y für y > 0,

0 für x > 0 und y = 0,

−π + arccot x
y für y < 0,

ist dann ein C∞-Funktion (Beweis?) auf dem

”
Schlitzgebiet“

G =
{
(x, y) ∈ R2

∣∣x > 0 oder y 6= 0
}
,

G
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also auf der Ebene ohne die nicht-positive x-Achse. Dort hat sie einen Sprung der Größe 2π.

Gäbe es ein Potential θ für ∗ωX auf R2 \ {0}, so wäre auf dem Schlitzgebiet d(θ − φ) = 0,
die Differenz also konstant. Dann wäre aber auch θ auf der negativen x-Achse unstetig.
Widerspruch!

Daher besitzt die geschlossene 1-Form ∗ωX kein Potential auf R2 \ {0}. Wir werden später
sehen, dass die Spärenvolumenform auch in höheren Dimensionen kein Potential besitzt.

Physikalisch läßt sich ∗ωX für n = 2 interpretieren als zweidimensionaler Schnitt durch das Ma-

gnetfeld eines geraden Leiters oder für n = 3 als das elektrisches Feld einer Punktladung. Formen

mit dω = 0, die kein Potential besitzen, sind also nicht besonders exotisch.

Wir wollen nun zeigen:

Satz 188 (Poincarésches Lemma). Für k, n ∈ N \ {0} ist jede auf dem ganzen Rn defi-

nierte geschlossene k-Form ω ∈ Ωk(Rn) exakt.

Beweis. Der Beweis erfolgt durch vollständige Induktion über n.

Für n = 1 verschwindet jede k-Form mit k > 1, hat also 0 ∈ Ωk−1(R) als Potential. Jede
1-Form ist von der Gestalt ω = φdx mit φ ∈ C∞(R,R), und jede Stammfunktion von φ ist
ein Potential von ω.

Der Induktionsschritt ergibt sich aus dem folgenden

Lemma 189. Sei G ⊂ Rn offen. Wir definieren

π : G× R → G, (x, t) 7→ x,

s : G→ G× R, x 7→ (x, 0).

Dann gibt es eine Familie linearer Abbildung

(
Kk : Ωk(G× R) → Ωk−1(G× R)

)
k≥1

,

so dass für alle k ≥ 1 und ω ∈ Ωk(G× R)

ω − π∗s∗ω = (−1)k−1(dKk −Kk+1d)ω. (51)

(Wir lassen im weiteren den unteren Index bei K weg: Der Grad der eingesetzten Form
definiert, um welches k es sich handelt.)

Ist der Satz nun schon bewiesen für den Rn, so wenden wir das Lemma auf G = Rn an.
Ist ω ∈ Ωk(Rn+1) geschlossen, so ist d(s∗ω) = s∗(dω) = 0, die Form s∗ω ∈ Ωk(Rn) nach
Induktionsvoraussetzung also exakt: s∗ω = dθ. Daher ist

ω = π∗s∗ω + (−1)k−1(dKω −K dω︸︷︷︸
=0

) = π∗dθ + (−1)k−1dKω = d
(
π∗θ + (−1)k−1Kω

)
.

Also ist ω exakt, und der Satz bewiesen.

Der schwierige Teil ist der
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Beweis des Lemmas 189. Für die Konstruktion der Kk benutzen wir auf G× R ⊂ Rn × R
die Koordinaten x1, . . . , xn, t und definieren die lineare Abbildung Kk auf den Basisformen
der Typen

φdxi1 ∧ . . . ∧ dxik
(52)

φdxi1 ∧ . . . ∧ dxik−1
∧ dt (53)

mit φ ∈ C∞(G× R,R), φ = φ(x, t) wie folgt:

K(φdxi1 ∧ . . . ∧ dxik
) := 0,

K(φdxi1 ∧ . . . ∧ dxik−1
∧ dt) :=

(∫ t

0

φ(x, τ)dτ

)
dxi1 ∧ . . . ∧ dxik−1.

Dafür müssen wir nun (51) nachrechnen.

Formen vom Typ (52).
Wegen π∗s∗dxi = (s ◦ π)∗dxi = d(xi ◦ s ◦ π) = dxi ergibt sich für ω = φdxi1 ∧ . . . ∧ dxik

ω − π∗s∗ω = (φ(x, t) − φ(x, 0))dxi1 ∧ . . . ∧ dxik
.

Andrerseits ist

dKω −Kdω = 0 −K(dφ ∧ dxi1 ∧ . . . ∧ dxik
)

= 0 −K

(
(−1)k ∂φ

∂t
dxi1 ∧ . . . ∧ dxik

∧ dt+ Terme ohne dt

)

= (−1)k−1(φ(x, t) − φ(x, 0))dxi1 ∧ . . . ∧ dxik
.

Daraus folgt (51).

Formen vom Typ (53).
Wegen π∗s∗dt = π∗0 = 0 gilt für ω = φdxi1 ∧ . . . ∧ dxik−1

∧ dt

π∗s∗(φdxi1 ∧ . . . ∧ dxik−1
∧ dt) = 0,

also
ω − π∗s∗ω = ω.

Andrerseits ist

dKω −Kdω = (−1)k−1φ(x, t) dxi1 ∧ . . . ∧ dxik−1
∧ dt

+
n∑

j=1

(∫ t

0

∂φ

∂xj
dτ

)
dxj ∧ dxi1 ∧ . . . ∧ dxik−1

−K




k∑

j=1

∂φ

∂xj
dxj ∧ dxi1 ∧ . . . ∧ dxik−1

∧ dt





= (−1)k−1φ(x, t) dxi1 ∧ . . . ∧ dxik−1
∧ dt

= (−1)k−1ω.

Daraus folgt (51).

Korollar 190. Ist die offene Teilmenge G ⊂ V im n-dimensionalen Vektorraum V zum Rn

C∞-diffeomorph und ist k ≥ 1, so ist jedes geschlossene ω ∈ Ωk(G) exakt.
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Beweis. Ist f : Rn → G ⊂ V ein C∞-Diffeomorphismus auf G und dω = 0 so ist df∗ω =
f∗dω = 0, also nach dem Lemma von Poincaré f∗ω = dθ für ein θ ∈ Ωk−1(Rn). Dann ist
aber

d(f−1)∗θ = (f−1)∗dθ = (f−1)∗f∗ω = ω.

Beispiel 191. Eine offene Menge im Rn enthält um jeden ihrer Punkte p einen offenen
Würfel W =

{
q ∈ Rn

∣∣ |qi − pi| < ǫ
}
, der durch die Abbildung

q 7→
(

tan
π(q1 − p1)

2ǫ
, . . . , tan

π(qn − pn)

2ǫ

)

C∞-diffeomorph auf den Rn abgebildet wird. Deshalb besitzt jede geschlossene k-Form um
jeden Punkt ein lokales Potential.

Beispiel 192. Das Schlitzgebiet

G =
{
(x, y)

∣∣x > 0 oder y 6= 0
}

aus Beispiel 187 ist diffeomorph zum R2. Die Abbildung (x, y) 7→ (x2−y2, 2xy) bildet nämlich
die offene rechte Halbebene x > 0 diffeomorph auf G ab9, jene ist selbst aber diffeomorph
zum R2. Also besitzt jede geschlossene 1-Form auf G ein Potential.

Bemerkungen.

1. In vielen Analysisbüchern finden Sie das Lemma von Poincaré formuliert und bewiesen
für sogenannte Sterngebiete, also offene Mengen, in denen man sämtliche Punkte mit
einem festen sogenannten Sternpunkt verbinden kann. Das sieht, weil der Rn natürlich
ein Sterngebiet ist, auf den ersten Blick allgemeiner aus als unsere Version, ist es aber
nicht, weil jedes Sterngebiete im Rn zum ganzen Rn diffeomorph ist. Diese Tatsache
habe ich in der Literatur nicht gefunden, obwohl sie vermutlich bekannt ist. Einen
Beweis von Stefan Born finden Sie im Anhang.

2. Das im Beweis benutzte Lemma 189 liefert mehr Information, als der übliche Beweis
für sternförmige Mengen, vgl. Satz 196 unten.

Wenn ein mathematischer Satz notwendige Bedingungen für eine Aussage formuliert (z.B.
“Notwendig für die Konvergenz von

∑
ak ist lim ak = 0”), so ist die Frage, warum diese

Bedingung nicht auch hinreichend ist, oftmals mit einem Gegenbeispiel abgetan.
Hier ist das nicht so. Im Gegenteil: Die Beobachtung, dass geschlossene Formen nicht im-
mer exakt sind, bietet den Einstieg in einen der schönsten und reichhaltigsten Bereiche der
Mathematik, in dem Analysis, Algebra und Geometrie auf wunderbare Weise ineinander-
greifen. Ich möchte Ihnen im Rest dieses Abschnittes und der gesamten Vorlesung davon
einen Eindruck vermitteln.

9Die Abbildung ist nämlich gegeben durch r(cosφ, sinφ) 7→ r2(cos 2φ, sin 2φ).
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Das Diffeomorphieproblem. Wann sind zwei offene Teilmengen von endlich-dimensionalen
Banachräumen diffeomorph?

Ist f : G→ H eine C∞-Abbildung zwischen offenen Mengen, so ist die
”
Zurückholung“

f∗ : Ωk(H) → Ωk(G)

eine lineare Abbildung von Vektorräumen. Ist f ein Diffeomorphismus, so ist f∗ ein Isomor-
phismus. (Beweis?) Wenn also Ωk(H) und Ωk(G) als R-Vektorräume nicht isomorph sind,
sind G und H nicht diffeomorph.

Damit hat man ein geometrisches Problem auf eines der linearen Algebra zurückgeführt,
indem man jedem G algebraische

”
Invarianten“, nämlich die Vektorräume Ωk(G) zuordnet.

Leider sind aber diese Vektorräume unendlich-dimensional, so dass sie für die Isomorphie-
frage kaum brauchbare Antworten liefern. Deshalb muß man die hier skizzierte Idee noch
etwas verfeinern:

Definition 193. In Ωk(G) hat man zwei Vektorunterräume, gebildet von den geschlossenen
bzw. exakten Differentialformen:

Zk(G) :=
{
ω
∣∣ dω = 0

}
,

Bk(G) :=
{
dθ
∣∣ θ ∈ Ωk−1(G)

}
, B0(G) := {0}.

Man nennt diese Räume auch die k-Kozykeln bzw. k-Koränder.

Wegen d2 = 0 ist Bk(G) ⊂ Zk(G). Der Quotientenvektorraum

Hk(G) := Zk(G)/Bk(G)

heißt die k-te De Rhamsche Kohomologiegruppe, wobei sich
”
Gruppe“ auf die additive Vek-

torraumstruktur bezieht.

Wegen f∗dω = d(f∗ω) bildet f∗ Kozykeln in Kozykeln und Koränder in Koränder ab,
induziert also für jedes k eine lineare Abbildung

f∗ : Hk(H) → Hk(G),

Beachten Sie:

• Ein Diffeomorphismus f liefert auch einen Isomorphismus der Kohomologiegruppen:
Diffeomorphe offene Mengen haben isomorphe Kohomologiegruppen.

• Hk(G) = 0 bedeutet, jede geschlossene k-Form auf G besitzt ein Potential.

Die Kohomologiegruppen sind nun oft endlich-dimensionale Vektorräume und die Isomor-
phiefrage ist dann einfach durch die Dimension zu beantworten. Allerdings muß man sie erst
einmal haben!

Hier ist ein triviales

Beispiel 194. Machen Sie sich klar, dass

H0(G) = RAnzahl der Zusammenhangskomponenten von G.

Offene Mengen mit endlich- aber verschieden vielen Zusammenhangskomponenten sind des-
halb nicht diffeomorph. Aber das sieht man auch ohne Kohomologie ...

126



Beispiel 195 (Die Kohomologiegruppen des Rn). Weil Rn zusammenhängend ist, ist
H0(Rn) ∼= R. Und nach dem Poincareschen Lemma ist

Hk(Rn) = 0 für alle k ≥ 1.

Diese Formel ist äqivalent zum Lemma von Poincaré.

Das Lemma 189 liefert den

Satz 196. Für jedes offene G ⊂ Rn und jedes k ∈ N induziert die Projektion π : G×R → G
einen Isomorphismus

π∗ : Hk(G) → Hk(G× R).

Beweis. Surjektivität: Für geschlossenes ω ∈ Ωk(G) ist ds∗ω = s∗dω = 0 und

ω = π∗(s∗ω) + (−1)k−1dKω︸ ︷︷ ︸
Korand

.

Also wird die Kohomologieklasse von s∗ω durch π∗ auf die von ω abgebildet.

Injektivität: Ist ω ∈ Ωk(G) geschlossen und π∗ω in Hk(G×R) trivial, d.h. π∗ω = dθ exakt,
so ist

ω = s∗π∗ω = s∗dθ = ds∗θ.

Also ist ω ein Korand und repräsentiert 0 ∈ Hk(G).

Beispiel 197. Wir haben im Beispiel 187 gezeigt, dass

H1(R2 \ {0}) 6= 0.

Nach dem Poincaréschen Lemma ist H1(R2) = 0, also sind R2 und R2 \ {0} nicht zueinander
diffeomorph.

Man kann beweisen, dass allgemeiner für k verschiedene Punkte p1, . . . , pk ∈ Rn

Hn−1(Rn \ {p1, . . . , pk}) ∼= Rk.

Die (n− 1)-te Kohomologie misst also die Anzahl der
”
0-dimensionalen Löcher“.

Aus Satz 196 folgt durch Induktion für k verschiedene parallele r-dimensionale Ebenen
E1, . . . , Ek ⊂ Rn, dass

Hn−r−1(Rn \ {E1, . . . , Ek}) ∼= Hn−r−1(Rn−r \ {p1, . . . , pk}) ∼= Rk.

Die (n− r − 1)-te Kohomologie misst also die Anzahl der
”
r-dimensionalen Löcher“.

Definitionsgemäß ist Hk(G) ein Objekt der Analysis. Nun stellt sich heraus, dass es eine
Bedeutung für die Geometrie besitzt. Und tatsächlich befinden wir uns hier an einer der
wichtigsten Schnittstellen zwischen diesen beiden Gebieten der Mathematik. Der Satz von
Stokes vertieft die Kenntnis dieser Zusammenhänge noch weiter.
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9.5 Integration von Differentialformen über Ketten

• Nach dem Studium der Differentialformen, also der natürlichen “k-dimensionalen In-
tegranden” wenden wir uns nun den Integrationsbereichen zu. Dafür gibt es zwei Va-
rianten:

• Später werden wir die Integration von k-Formen über k-dimensionale Mannigfaltigkei-
ten wie zum Beispiel (k = 2) die Sphäre definieren.

• Zunächst aber betrachten wir die Integration von k-Formen über k-dimensionale Ket-
ten. Damit kann man zum Beispiel 2-Formen über die Oberfläche eines Würfels in-
tegrieren, die wegen ihrer Ecken und Kanten keine differenzierbare Mannigfaltigkeit
ist.

In diesem Abschnitt seien V,W endlich-dimensionale Banachräume.

Vorbemerkung. Bei der Definition differenzierbarer Funktionen hatten wir stets einen
offenen Definitionsbereich vorausgesetzt. Eine Abbildung f : V ⊃ A → W einer beliebigen
Teilmenge A ⊂ V heißt C∞-differenzierbar, wenn es eine offene Umgebung U von A in
V und eine C∞-Abbildung f̃ : U → W gibt, für die f̃ |A = f ist. Im allgemeinen ist die
Fortsetzung f̃ natürlich nicht eindeutig bestimmt, aber das Differential

p 7→ Dpf

ist eine wohldefinierte C∞-Abbildung auf der abgeschlossenen Hülle des Inneren von A.

Im Sinne dieser Bemerkung bedeutet
”
ω ∈ Ωk(A)“ für ein beliebiges A ∈ V , dass es eine

offene Umgebung G von A und ein ω̃ ∈ Ωk(G) gibt, so dass ω = ω̃|A. Für die Definition
des Integrals käme man natürlich mit viel weniger Regularität aus: Stetiges oder lebesgue-
integrierbares ω : A→ ΛkV ∗ wäre ausreichend. Wir bleiben trotzdem in der C∞-Kategorie.

Definition 198. Seien A ⊂ Rk µk-meßbar und ω ∈ Ωk(A). Dann definieren wir:

∫

A

ω :=

∫

A

ω(e1, . . . , ek)dµk,

falls das Integral existiert, falls also ω(e1, . . . , ek) ∈ L1(A,µk).

Bemerkungen.

1. Beachten Sie, dass ω ∈ Ωk(A) auf dem Rk(!) von der Form φ dx1 ∧ . . .∧dxk ist. Damit
gilt also ∫

A

φdx1 ∧ . . . ∧ dxk =

∫

A

φ dµk.

2. Es kommen zwei Standardsituationen vor, in denen die Existenz des Integrals klar ist.
In dieser Vorlesung werden wir es vor allem mit kompaktem A, nämlich mit kompak-
ten Intervallen A, zu tun haben. Bei der Definition der Integration von Formen über
Mannigfaltigkeiten (vgl. Anhang) ist hingegen A offen und der Träger von ω kom-
pakt. In beiden Fällen hat man ein Lebesgueintegral einer stetigen Funktion über eine
kompakte Menge.

Lemma 199 (Transformationsformel). Sei A ⊂ Rk µk-messbar und sei h : A → Rk

eine C∞-Abbildung. Der Rand ∂A sei eine µk-Nullmenge und h auf dem Inneren
◦
A injektiv

und

detDxh ≥ 0 für alle x ∈
◦
A.
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Existiert dann
∫

h(A)
ω, so auch

∫
A
h∗ω und es gilt

∫

A

h∗ω =

∫

h(A)

ω.

Beweis. Folgt unmittelbar aus dem Transformationssatz:
∫

A

h∗ω(e1, . . . , ek) dµk =

∫

A

ωh(Dh(e1), . . . , Dh(ek)) dµk =

∫

A

det(Dh)ωh(e1, . . . , ek) dµk

=

∫

A

(ω(e1, . . . , ek) ◦ h) |det(Dh)| dµk

=

∫

h(A)

ω(e1, . . . , ek)dµk.

Für Differentialformen ist die Transformationsformel also besonders einfach, weil sie die
Determinante schon

”
eingebaut“ haben.

Definition 200. Seien G ⊂ V offen,

c : Rk ⊃ A→ G

eine C∞-Abbildung einer µk-messbaren Menge A ⊂ Rk und ω ∈ Ωk(G). Für k > 0 definieren
wir

∫

c

ω :=

∫

A

c∗ω =

∫

A

ωc(Dc(e1), . . . , Dc(ek)) dµk =

∫

A

ωc(∂1c, . . . , ∂kc) dµk, (54)

falls die rechte Seite existiert.

Im Fall k = 0 ist Rk = {0} und ω ∈ Ω0(G) eine Funktion auf G. Für ∅ 6= A ⊂ R0, also für
A = {0}, definieren wir

∫
c
ω als den Funktionswert von ω an der Stelle c(0):

∫

c

ω := ωc(0). (55)

Beispiel 201 (Kurvenintegral). Mit c : [a, b] → G und ω ∈ Ω1(G) ist

∫

c

ω =

∫ b

a

ωc(t)(ċ(t))dt.

• Hat ω ein Potential θ, so ist nach der Kettenregel

∫

c

ω =

∫ b

a

dc(t)θ(ċ(t))dt =

∫ b

a

(θ ◦ c)̇ dt = θ(c(b)) − θ(c(a))

die Potentialdifferenz zwischen den Endpunkten der Kurve.

• Ist F : V ⊃ G→ V ein Vektorfeld und V euklidisch, so definiert man

∫

c

〈F, ds〉 :=

∫

c

ωF =

∫ b

a

〈F (c(t)), ċ(t)〉 dt.

Integriert wird also die tangentiale Komponente des Feldes F . Interpretiert man F als
Kraft, so nennt man dieses Integral auch das Arbeitsintegral.
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Beispiel 202 (Argumentfunktion und Umlaufzahl). Sei

ω =
1

x2 + y2
(xdy − ydx) ∈ Ω1(R2 \ {0})

die Sphärenvolumenform und sei c : [a, b] → R2 \ {0} eine C∞-Kurve. Wir identifizieren R2

mit C und halten schon mal fest, dass

ωc(ċ) =
1

|c|2 (cxċy − cy ċx) =
1

|c|2 〈ċ, ic〉 . (56)

Sei φ0 ∈ R eine der bis auf ganzzahlige Vielfache von 2π bestimmten Zahlen mit

c(a) = |c(a)|eiφ0 . (57)

Wir definieren eine Funktion φ : [a, b] → R durch

φ(t) := φ0 +

∫

c|[a,t]

ω = φ0 +

∫ t

a

ωc(τ)(ċ(τ))dτ

und berechnen

d

dt

(
c

|c|e
−iφ

)
=

(
ċ

|c| −
〈c, ċ〉 c
|c|3

)
e−iφ +

c

|c| (−iφ̇)e−iφ

=
(56)

e−iφ

|c|

(
ċ− 〈c, ċ〉 c

|c|2 − icωc(t)(ċ(t))

)

=
e−iφ

|c|

(
ċ−

〈
ċ,
c

|c|

〉
c

|c| −
〈
ċ,
ic

|ic|

〉
ic

|ic|

)

= 0

Also ist die Funktion konstant, und die Konstante ist nach (57) gleich 1. Also ist

c(t) = |c(t)|eiφ(t) für alle t.

Jede C∞-Kurve in R2 \ {0} besitzt also eine Polarkoordinatendarstellung mit einer Argu-
mentfunktion φ die stetig, ja sogar C∞ ist. Zeigen Sie, dass φ durch die Anfangsbedingung
(57) eindeutig bestimmt ist.

Ist nun c : [a, b] → R2 \ {0} geschlossen, so ist eiφ(b) = eiφ(a), also

n(c, 0) :=
1

2π
(φ(b) − φ(a))

eine ganze Zahl, die man die Umlaufzahl von c um 0 nennt.

Ist schließlich c : [a, b] → R2 geschlossen und p ∈ R2 \ c[a, b], so heißt

n(c, p) := n(c− p, 0)

die Umlaufzahl von c um p.
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Beispiel 203 (Hyperflächenintegral, Flussintegral). Seien

• F : G→ Rn ein Vektorfeld auf der offenen Menge G ⊂ Rn,

• A ⊂ Rn−1 kompakt und

• c : Rn−1 ⊃ A→ G eine C∞-Abbildung.

Man stellt sich vor, dass c eine Hyperfläche im Rn parametrisiert, und nennt
∫

c

〈F, dO〉 :=

∫

c

∗ωF =

∫

I

det (F ◦ c, ∂1c, . . . , ∂n−1c) dµn−1.

das Flussintegral von F über c.

Beispiel 204 (Sphärenvolumen). Seien r > 0, ∗ωX ∈ Ω2(R3) \ {0} die Sphärenvolumen-
form und

c : [0, π] × [0, 2π] → R3 \ {0},
(
θ
φ

)
7→




r sin θ cosφ
r sin θ sinφ
r cos θ





die Parametrisierung der Sphäre vom Radius r. Wir berechnen
∫

c

∗ωX =

∫

[0,π]×[0,2π]

∗ωX
c (

∂c

∂θ
,
∂c

∂φ
) dµ2

=

∫ π

0

∫ 2π

0

det(
1

r3




r sin θ cosφ
r sin θ sinφ
r cos θ



 ,




r cos θ cosφ
r cos θ sinφ
−r sin θ



 ,




−r sin θ sinφ
r sin θ cosφ

0



) dφ dθ

=

∫ π

0

∫ 2π

0

sin θ dφdθ = 4π.

Das ist das Volumen (=die Oberfläche!) der Einheitssphäre im R3. Allgemein kann man
zeigen, dass das Integral

∫
c
∗ωX das Volumen der Einheits(hyper)sphäre im Rn liefert, wenn

c eine (Hyper-)Sphäre um 0 im Rn parametrisiert. Das Volumen der Sphäre vom Radius r
ist dann rn−1

∫
c
∗ωX .

Beispiel 205. Wir betrachten die Sphärenvolumenform im Rn \ {0}, also

ωx := det

(
x

‖x‖n
, . . .

)
∈ Ωn−1(Rn \ {0}).

Wir wählen i ∈ {1, . . . , n} und ǫ ∈ {0,+1} und wollen ω integrieren über folgende Abbildung

c : [0, 1]n−1 → Rn \ {0}, (x1, . . . , xn−1) 7→ (x1−
1

2
, . . . , xi−1−

1

2
, ǫ− 1

2
, xi−

1

2
, . . . , xn−1−

1

2
).

Dafür ist

∂jc =

{
ej für j < i,

ej+1 für j ≥ i.

und

ωc(∂1c, . . . , ∂n−1c) = (−1)i−1 det


e1, . . . ,

i
↓

c

‖c‖n
, . . . , en


 = (−1)n−1 ǫ− 1

2

‖c‖n
.
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Wir verzichten auf die schwierige Integration von ‖c‖−n und halten nur fest, dass

(−1)i−1(ǫ− 1

2
)

∫

c

ω > 0.

Satz 206 (Parameterinvarianz). Sei h : A → Rk wie im Lemma 199. Seien G ⊂ V
offen, ω ∈ Ωk(G) und c : h(A) → G eine C∞-Abbildung. Dann gilt

∫

c◦h

ω =

∫

c

ω.

Beweis. ∫

c◦h

ω =

∫

A

(c ◦ h)∗ω =

∫

A

h∗c∗ω =

∫

h(A)

c∗ω =

∫

c

ω.

Intermezzo: Volumina

Definition 207 (k-dimensionales Volumen). Seien V ein Euklidischer Vektorraum, A ⊂
V kompakt und c : A→ V eine C∞-Abbildung. Das Volumen von c ist

vol(c) :=

∫

A

√
det (< ∂ic, ∂jc >) dµk.

Bemerkung. Sie wissen, dass |det f | für einen Endomorphismus f : V → V die Volumen-
verzerrung durch f beschreibt. Für f : Rn → Rn ist aber

|det f |2 = det(〈f(ei), ek〉) det(〈ek, f(ej)〉) = det ((〈f(ei), ek〉)(〈ek, f(ej)〉))

= det

(
∑

k

〈f(ei), ek〉 〈ek, f(ej)〉
)

= det(〈f(ei), f(ej)〉).

Weil es für lineare Abbildungen zwischen verschiedenen, insbesondere verschieden-dimensionalen
Räumen keine Determinante gibt, benutzt man die Gramsche Determinante

det (< f(ei), f(ej) >)

zur Definition von niedriger-dimensionalen Volumina in Räumen größerer Dimension.

Beispiel 208. Für c : [a, b] → V ist

vol(c) =

∫ b

a

√
〈ċ(t), ċ(t)〉 dt

die Länge der Kurve c.

Ende des Intermezzos
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Notation. Von nun an bezeichnen wir mit I das Einheitsintervall:

I = [0, 1].

Wir setzen I0 := {0} = R0. und betrachten für k ≥ 1 den k-dimensionalen Einheitswürfel
Ik ⊂ Rk.

Definition 209 (k-Ketten und Integration über k-Ketten). Sei G eine offene Teil-
menge des endlich-dimensionalen Banachraumes V und sei k ∈ N

(i) Wir bezeichnen mit
Ik(G) := C∞(Ik, G)

die Menge der C∞-Abbildungen von Ik nach G. Diese Abbildungen bezeichnen wir
auch als C∞-Intervalle in G. Anschaulich sind das mit Ik parametrisierte k-dimen-
sionale “Flächenstücke” in G.

(ii) Ein c ∈ Ik(G) (k > 0) heißt degeneriert, wenn es nur von weniger als k Variablen
abhängt, d.h. wenn ∂ic = 0 für ein i ∈ {1, . . . , k}.

(iii) Die k-Kettengruppe in G ⊂ V ist

Ck(G) :=
{
C : Ik(G) → Z

∣∣C(c) 6= 0 nur für endlich viele c
}
.

Ihre Elemente heißen k-Ketten in G. Die Addition in Z macht Ck(G) zu einer abelschen
Gruppe.

Man identifiziert c ∈ Ik(G) mit der k-Kette, die auf c den Wert 1 und auf allen anderen
den Wert 0 hat. Dann ist Ik(G) ⊂ Ck(G) und

C =
∑

c

C(c)c.

k-Ketten sind also
”
formale Linearkombinationen“ von k-dimensionalen C∞-Intervallen

mit ganzzahligen Koeffizienten.

(iv) Eine k-Kette C ∈ Ck(G) heißt degeneriert, wenn alle an ihr beteiligten C∞-Intervalle
degeneriert sind, d.h. wenn gilt

∀c∈Ik(G) (C(c) 6= 0 =⇒ c degeneriert) .

(v) Für ω ∈ Ωk(G) und C ∈ Ck(G) sei

∫

C

ω :=
∑

C(c) 6=0

C(c)

∫

c

ω =
∑

C(c) 6=0

C(c)

∫

Ik

ωc(∂1c, . . . , ∂kc)dµk. (58)

Vergleiche (54). Im Fall k = 0 heißt das nach (55)

∫

C

ω :=
∑

C(c) 6=0

C(c)ωc(0).

ACHTUNG: Sind c1, c2 : Ik → G ⊂ V zwei verschiedene Abbildungen, so hat c1 + 5c2 jetzt
zwei Bedeutungen, nämlich wie “früher” als wertweise gebildete neue Abbildung mit

(c1 + 5c2)(x) := c1(x) + 5c2(x),

die allerdings nicht notwendig mehr inG landet, oder eben als die formale Linearkombination
der beiden C∞-Intervalle, d.h. als Abbildung von Ik(V ) nach Z,die auf c1 den Wert 1, auf
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c2 den Wert 5 und auf allen anderen C∞ -Intervallen c Wert 0 annimmt. Ein Ausweg aus
diesem Dilemma wären neue Rechenzeichen für die Kettengruppen, also etwa c1 ⊕ (5 ⊗ c2).
Das verwendet man aber nicht und muss deshalb aus dem jeweiligen Zusammenhang ablesen,
welche Interpretation gemeint ist.

Konvention. Solange wir mit der genaueren Untersuchung der Kettengruppen beschäftigt
sind, interpretieren wir

∑
αici natürlich immer als (“formale”) Linearkombination in Ck.

Später gilt diese Interpretation jedenfalls dann, wenn die Kette als Integrationsbereich unter
einem Integral steht.

Beispiel 210. Für ω ∈ Ω1(R2) und c : I → R2, t 7→ e2πit ist
∫

5c

ω = 5

∫

c

ω

das Fünffache des Integrals von ω über den Einheitskreis, und eben nicht das Integral von
ω über den Kreis vom Radius 5.

Lemma 211. Für festes ω ∈ Ωk(G) ist
∫
ω : C 7→

∫

C

ω

ein Gruppenhomomorphismus von Ck(G) in die additive Gruppe von R.

Der Beweis ist trivial.

Beispiel 212 (Zur Anschauung). Der letzte Teil der Ketten-Definition erklärt die vor-
angehenden: Man möchte über eine Familie aus mehreren k-dimensionalen Intervallen inte-
grieren, wobei die Teilintegrale eventuell mehrfach gezählt werden. C(c) gibt an, mit welcher
Vielfachheit das Integral über c gezählt werden soll.

Wenn man den Fluss eines Vektorfeldes F
durch das vom C∞-Intervall

c : I2 → R3

gegebene Rechteck ermitteln will, integriert
man ∗ωF über c.

I

c

2

Wenn man den Fluss durch die Oberfläche eines Qua-
ders ermitteln will, werden die gegenüberliegenden
Seitenwände bis auf eine Translation durch dasselbe
c geliefert, aber die Integrale sind mit verschiedenem
Vorzeichen zu versehen, weil der Fluss von links nach
rechts einmal positiv, einmal negativ zu zählen ist.
Das Vorzeichen kodiert in gewisser Weise die Orien-
tierung der Flächen.

-1
+1

Konkret kann man betrachten:

c1 : [0, 1]2 → R3, (x, y) 7→ (1, x, y),

c0 : [0, 1]2 → R3, (x, y) 7→ (0, x, y).
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Dann ist c1 − c0 eine formale Linearkombination und
∫

c1−c0

=

∫

c1

−
∫

c0

.

c1 − c0 meint nicht die wertweise gebildete Differenz der Abbildungen, also nicht etwa

(x, y) 7→ (1, 0, 0).

Vergleiche dazu die obige Konvention.
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9.6 Der Satz von Stokes

• Wir lernen nun die “Ketten-Version” des Satzes von Stokes kennen.

• Dazu brauchen wir aber noch den Randoperator für Ketten, der zum Beispiel der
3-Kette im R3, die aus einem einzigen singulären Intervall, nämlich der Inklusion
[0, 1]3 →֒ R3 des Einheitswürfels in den R3 besteht, die 2-Kette zuordnet, die von
den 6 Seitenflächen des Würfels gebildet wird.

Sei G offen im n-dimensionalen R-Vektorraum V und weiterhin I = [0, 1].

Definition 213 (Randoperator).

(i) Definiere für i ∈ {1, . . . , k} die i-te untere und obere Seite

si, s
i : Ik−1 → Ik

von Ik durch

si(x1, . . . , xk−1) = (x1, . . . , xi−1, 0, xi, . . . , xk−1),

si(x1, . . . , xk−1) = (x1, . . . , xi−1, 1, xi, . . . , xk−1).

Bei sk bzw. sk steht also einfach am Schluss eine 0 oder 1.

(ii) Der Randoperator
∂ : Ck(G) → Ck−1(G)

ist der eindeutig bestimmte Gruppenhomomorphismus mit

∂c :=
k∑

i=1

(−1)i−1(c ◦ si − c ◦ si) (59)

für jedes c ∈ Ik(G).

Der Randoperator leistet also gerade das im Beispiel 212 erklärte Ziel, entgegengesetzte
Seiten eines C∞-Intervalls für die Integration mit entgegengesetztem Vorzeichen zu versehen.

Beispiel 214. Seien cB ∈ I3(R
3), cS ∈ I2(R

3) gegeben durch

cB(r, s, t) := (r sinπs cos 2πt, r sinπs sin 2πt, r cosπs)

cS(x, y) := cB(1, x, y).

Dann ist

∂cB = cS − κ(0,0,0) − {(x, y) 7→ (0, 0,−x)} + {(x, y) 7→ (0, 0,+x)},

wo κa die konstante Abbildung mit Wert a ist. Beachte, dass in dieser Summe die letzten
drei C∞-Intervalle degeneriert sind, vgl. Definition 209 (ii).

Beweis.

∂cB = cB(1, x, y) − cB(0, x, y) − cB(x, 1, y) + cB(x, 0, y) + cB(x, y, 1) − cB(x, y, 0)

= cS(x, y) − κ(0,0,0) − (0, 0,−x) + (0, 0, x) + (x sinπy, 0, x cosπy) − (x sinπy, 0, x cosπy).

Beachte, dass die beiden letzten Terme dieselbe Abbildung mit verschiedenem Vorzeichen
liefern, sie heben sich weg. Aber es gilt nicht, dass −(0, 0,−x) + (0, 0, x) = (0, 0, 2x).
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Bemerkung. In diesem Beispiel deutet sich an, dass das
”
Kettenkonzept“ nicht besonders

gut geeignet ist, um Integrationen über Bereiche wie die Sphäre damit zu behandeln. Dazu
braucht man einen geometrischeren Zugang, der durch die Integration von Differentialformen
über Mannigfaltigkeiten geliefert wird. Wir gehen darauf im Kapitel 10.4 ein.

Beispiel 215. Wir berechnen spaßeshalber

∂2cB(x) = ∂cS(x)

+ κ(0,0,0) − κ(0,0,0) − κ(0,0,0) + κ(0,0,0)

− (0, 0,−1) + (0, 0, 0) + (0, 0,−x) − (0, 0,−x)
+ (0, 0,+1) − (0, 0, 0) − (0, 0, x) + (0, 0, x)

= ∂cS(x) − (0, 0,−1) + (0, 0,+1)

= cS(1, x) − cS(0, x) − cS(x, 1) + cS(x, 0) − (0, 0,−1) + (0, 0,+1)

= (0, 0,−1) − (0, 0, 1) − (sinπx, 0, cosπx) + (sinπx, 0, cosπx) − (0, 0,−1) + (0, 0,+1)

= 0.

Dieses Ergebnis gilt ganz allgemein:

Lemma 216.

∂ ◦ ∂ = 0.

Wir zeigen zunächst:

Lemma 217. Für i < j gilt

sj ◦ si = si ◦ sj−1, sj ◦ si = si ◦ sj−1,

sj ◦ si = si ◦ sj−1, sj ◦ si = si ◦ sj−1.

Beweis von Lemma 217.

sj ◦ si(x1, . . . , xk−2) = sj(x1, . . . , xi−1, 1, xi, . . . , xk−2)

= (x1, . . . , xi−1, 1, xi, . . . , xj−2, 0, xj−1, . . . , xk−2)

si ◦ sj−1(x1, . . . , xk−2) = si(x1, . . . , xj−2, 0, xj−1, . . . , xk−2)

= (x1, . . . , xi−1, 1, xi, . . . , xj−2, 0, xj−1, . . . , xk−2).

Das zeigt die erste Formel. Dabei kommt es nur darauf an, richtig abzuzählen, an welcher
Stelle man 0 bzw. 1 einsetzen muss. Daher folgen die andere Formeln genauso.

Beweis von Lemma 216. Wir müssen das wegen der Homomorphie von ∂ nur für C∞-
Intervalle c ∈ Ck zeigen.

∂(∂c) = ∂
k∑

j=1

(−1)j−1(c ◦ sj − c ◦ sj)

=
k−1∑

i=1

k∑

j=1

(−1)i+j(c ◦ sj ◦ si − c ◦ sj ◦ si − c ◦ sj ◦ si + c ◦ sj ◦ si) (60)
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Wir betrachten

k−1∑

i=1

k∑

j=1

(−1)i+jc ◦ sj ◦ si =
∑

1≤i<j≤k

(−1)i+jc ◦ sj ◦ si +
∑

1≤j≤i<k

(−1)i+jc ◦ sj ◦ si

=
∑

1≤i<j≤k

(−1)i+jc ◦ si ◦ sj−1 +
∑

1≤j≤i<k

(−1)i+jc ◦ sj ◦ si

=
j−1=̃

∑

1≤i<̃+1≤k

(−1)i+̃+1c ◦ si ◦ s̃ +
∑

1≤j≤i<k

(−1)i+jc ◦ sj ◦ si

= −
∑

1≤i≤̃<k

(−1)i+̃c ◦ si ◦ s̃ +
∑

1≤j≤i<k

(−1)i+jc ◦ sj ◦ si

= 0.

Ebenso verschwinden die drei anderen Terme.

Wegen ∂2 = 0 haben die Kettengruppen und Randoperatoren ∂ : Ck(G) → Ck−1 viel
Ähnlichkeit mit den Differentialformen und der Cartanschen Ableitung d : Ωk(G) → Ωk+1(G).
Man kann

”
Zyklen“ Zk(G) und

”
Ränder“ Bk(G) definieren, die hier wirklich anschaulich et-

was mit Rändern und mit randlosen, also geschlossenen Ketten zu tun haben.

Die entsprechenden Quotienten HWürfel
k (G) = Zk(G)/Bk(G) könnte man (Würfel-)Homo-

logiegruppen nennen. Sie sind aber keine brauchbaren mathematische Objekte, die (etwa
im Beispiel 214) auftretenden degenerierten Ketten erweisen sich als störend.10 Für eine
brauchbare Homologietheorie muss man die Kettengruppen modulo der degenerierten Ketten
betrachten, vgl. Fulton, Algebraic Topology, Springer 1995, Chapter 23.

Satz 218 (Stokes, um 1850). Seien G ⊂ V offen, k ≥ 1, ω ∈ Ωk−1(G) und C ∈ Ck(G).
Dann gilt

∫

C

dω =

∫

∂C

ω.

Die hier gegebene moderne Version beruht auf dem Differentialformenkalkül, den wir in den
vorangehenden Abschnitten erklärt haben und der von Elie Cartan (1869-1951) entwickelt
wurde.

Beweis. 1. Schritt. Wir betrachten folgenden Spezialfall

V = Rk,

c = ι : Ik →֒ Rk,

ω = φdx1 ∧ . . . d̂xi ∧ . . . ∧ dxk ∈ Ωk−1(G),

wobei G eine offenen Umgebung von Ik ist.

Wir berechnen zunächst

dω =
∂φ

∂xi
dxi ∧ dx1 ∧ . . . d̂xi ∧ . . . ∧ dxk = (−1)i−1 ∂φ

∂xi
dx1 ∧ . . . ∧ dxk.

Weil c eine k-Kette im Rk ist, ist
∫

c

dω = (−1)i−1

∫

Ik

∂φ

∂xi
dµk.

10Aus der Definition des Randoperators ∂ folgt, dass konstante C∞-Intervalle immer Zyklen, aber, weil
Ränder immer aus einer geraden Anzahl von C∞-Intervallen bestehen, niemals Ränder sind. Sie liefern also
in der Würfelhomologie immer eine nicht-triviale Homologieklasse. Geometrisch ist das “unerwünscht”.
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Mit dem Satz von Fubini und dem Hauptsatz der Differential- und Integralrechnung folgt
daraus

∫

c

dω = (−1)i−1

∫

Ik−1

∫ 1

0

∂φ

∂xi
dxi dµk−1

= (−1)i−1

∫

Ik−1



φ(x1, . . . ,

i
↓

1, . . . , , xk) − φ(x1, . . . ,

i
↓

0, . . . , , xk)



 dµk−1. (61)

Wir berechnen nun die rechte Seite der Stokes-Formel.

∫

∂c

ω =
k∑

j=1

(−1)j−1

(∫

sj

ω −
∫

sj

ω

)

=
k∑

j=1

(−1)j−1

(∫

Ik−1

ωsj (∂1s
j , . . . , ∂k−1s

j) dµk−1 −
∫

Ik−1

ωsj
(∂1sj , . . . , ∂k−1sj) dµk−1

)

Wie sehen die Integranden aus? Wir erinnern an

∂ms
j =

{
em für m < j,

em+1 für mj ≥ j.

}
= ∂msj

Die Argumente ∂1s
j , . . . , ∂k−1s

j enthalten also genau dann nicht ei, wenn j = i. In allen
anderen Fällen ist ω(∂1s

j , . . . , ∂k−1s
j) = 0, weil dann

(
dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxk

)
(∂1s

j , . . . , ∂k−1s
j) = 0.

Für j = i ergibt sich

ωsi(∂1s
j , . . . , ∂k−1s

j) = (φ ◦ si)
(
dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxk

)
(e1, . . . , êi, . . . , ek)

= φ(x1, . . . ,

i
↓

1, . . . , xk)

Entsprechendes gilt für sj . Also erhalten wir

∫

∂c

ω = (−1)i−1

(∫

Ik−1

ωsi(∂1s
i, . . . , ∂k−1s

i) dµk−1 −
∫

Ik−1

ωsi
(∂1si, . . . , ∂k−1si) dµk−1

)

= (−1)i−1




∫

Ik−1

φ(x1, . . . ,

i
↓

1, . . . , , xk) − φ(x1, . . . ,

i
↓

0, . . . , , xk)



 dµk−1

Damit und mit (61) ist der Satz im Spezialfall bewiesen. Der Kern des Beweises ist der
Fundamentalsatz der Differential- und Integralrechnung zusammen mit dem Fubini. Alles
weitere ist Einsetzen in die Definitionen.

2. Schritt. Weil das Integral linear und jedes ω ∈ Ωk−1(G) eine Linearkombination von
Formen der obigen Gestalt ist, gilt der Satz damit für beliebiges ω ∈ Ωk−1(G).

3. Schritt. Seien nun G ⊂ V offen, c ∈ Ik(G) und ω ∈ Ωk−1(G). Wir bezeichnen mit
ι : Ik →֒ Rk die Inklusion. Dann folgt

∫

c

dω =

∫

c◦ι

dω =

∫

ι

c∗dω =

∫

ι

dc∗ω =
2. Schritt

∫

∂ι

c∗ω

=
k∑

i=1

(−1)i−1

(∫

si

c∗ω −
∫

si

c∗ω

)
=

k∑

i=1

(−1)i−1

(∫

c◦si

ω −
∫

c◦si

ω

)
=

∫

∂c

ω.
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Damit gilt der Satz für C∞-Intervalle. Weil aber das Integral und der Randoperator Ho-
momorphismen auf der Kettengruppe Ck(G) sind, gilt er dann auch für beliebige Ketten.

Beispiel 219 (Der Fall k = 1). Für c : I → G ∈ I1(G) und ω = φ : G→ R ∈ Ω0(G) ist

∫

c

dω =

∫

[0,1]

dφ(c′) dµ1 =

∫ 1

0

φ′(x) dx = φ(c(1)) − φ(c(0)).

Andererseits ist nach (55)

∫

∂c

ω =

∫

c◦s1

ω −
∫

c◦s1

ω = ωc(s1(0)) − ωc(s1(0)) = φ(c(1)) − φ(c(0)).

In diesem Fall ist der Stokes also (bis auf eine Substitution) gerade der Hauptsatz der
Differential- und Integralrechnung.
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9.7 Beispiele und Anwendungen

• Mit dem Satz von Stokes eröffnet sich eine schier unübersehbare Fülle von Anwendun-
gen und weiteren Entwicklungen in den verschiedensten Gebieten der Mathematik.

• Eine kleine Auswahl bieten die Beispiele in den nächsten zwei Unterabschnitten.

• Weitere interessante Aspekte schreibe ich in einem Anhang auf, den wir in der Vorle-
sung nicht mehr schaffen, den ich Ihnen aber als Ferienlektüre wärmstens empfehle.

9.7.1 Hn−1(Rn \ {0}) und der Fixpunktsatz von Brouwer

Damit eine k-Form ω auf einem GebietG ein Potential besitzt, muß sie notwendig geschlossen
sein. Dann gibt es zumindest lokal ein Potential, nicht immer aber auch global, d.h. auf
ganz G. Ob alle geschlossenen k-Formen ein globales Potential haben, ob also Hk(G) =
0, hängt mit der Topologie von G zusammen. Der Satz von Stokes liefert ein wichtiges
notwendiges Kriterium für die Existenz eines globalen Potentials und, wenn dieses nicht
erfüllt ist, topologische Informationen über G.

Lemma 220. Notwendig für die Existenz eines Potentials zu ω ∈ Ωk(G) ist neben dω = 0,
dass ∫

C

ω = 0

für jedes C ∈ Ck(G) mit degeneriertem Rand ∂C, insbesondere also, falls ∂C = 0.

Beweis. Aus ω = dθ folgt nach der Definition 209 der Degeneriertheit

∫

C

ω =

∫

C

dθ =

∫

∂C

θ = 0,

vergleiche (58).

Satz 221. Für n ≥ 1 gilt
Hn−1(Rn \ {0}) 6= 0.

Beweis. Die (n− 1)-Form ω := ∗ω x
‖x‖n ∈ Ωn−1(Rn \ {0}), die Sphärenvolumenform, ist nach

Beispiel 187 geschlossen. Die Abbildung

w : In → Rn, x 7→ x−
(

1

2
, . . . ,

1

2

)

verschiebt den Einheitswürfel so, dass sein Zentrum im Nullpunkt liegt. Also ist

C := ∂w ∈ Cn−1(R
n \ {0})

eine (n− 1)-Kette in Rn \ {0}, die nach Lemma 216 geschlossen ist.

Mit (59) erhalten wir

∫

C

ω =
n∑

i=1

(−1)i−1

∫

w◦si

ω −
n∑

i=1

(−1)i−1

∫

w◦si

ω.
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Die Seiten von w sind aber gerade die in Beispiel 205 betrachteten Abbildungen c, und aus
jenem Beispiel folgt, dass alle Summanden positiv sind. Die geschlossene Form ω besitzt also
kein Potential.

Bemerkungen. 1. Ist C := ∂w wie im vorstehenden Beweis, so kann man zeigen, dass die
Abbildung

Ωn−1(Rn \ {0}) → R, ω 7→
∫

C

ω

einen Isomorphismus Hn−1(Rn \ {0}) ∼= R induziert.

2. Im obigen Beweis kann man w ersetzen durch ǫw mit beliebigem ǫ > 0. Das zeigt dann,
dass auch die Einschränkung der Sphärenvolumenform auf das Komplement von 0 in einer
beliebigen offenen Umgebung von 0 kein Potential besitzt.

Als Folgerung von Satz 221 beweisen wir:

Satz 222 (Brouwerscher Fixpunktsatz (1912)). Jede C∞-Abbildung f : Dn → Dn der
Vollkugel Dn =

{
x ∈ Rn

∣∣ ‖x‖ ≤ 1
}

hat wenigstens einen Fixpunkt.

Beweis. Im Fall n = 1 ist f : [−1, 1] → [−1, 1], also f(−1) − (−1) ≥ 0 und f(1) − 1 ≤ 0.
Daher hat f(x)−x nach dem Zwischenwertsatz eine Nullstelle, und f damit einen Fixpunkt.

Für n ≥ 2 erfolgt der Beweis indirekt. Wir nehmen also an, es gäbe eine fixpunktfreie
C∞-Abbildung f : Dn → Dn. Wir definieren dann eine Abbildung g : Dn → Rn wie folgt:

Für jedes x ∈ Dn schneidet die Gerade{
x+ t(x− f(x))

∣∣ t ∈ R
}

durch x und f(x)

die Sphäre Sn−1 =
{
x
∣∣ ‖x‖ = 1

}
in genau

zwei Punkten, und wir bezeichnen mit

g(x) = x+ t(x)(x− f(x))

den Schnittpunkt, der näher an x als an f(x)
liegt.

x

f(x)

g  (x)

Löst man die quadratische Gleichung für die Schnittpunkte, so findet man

g(x) = x+




√〈

x,
x− f(x)

‖x− f(x)‖

〉2

+ 1 − ‖x‖2 −
〈
x,

x− f(x)

‖x− f(x)‖

〉

 x− f(x)

‖x− f(x)‖ . (62)

Überlegen Sie, dass der Radikand stets positiv ist. Nach Definition der Differenzierbarkeit
auf nicht-offenen Mengen gibt es eine offene Umgebung U von Dn und eine C∞-Fortsetzung
von f auf U , die wir ebenfalls mit f bezeichnen wollen. Wir können o. E. annehmen, dass
f(x) 6= x auf U und dass der Radikand in (62) auf U positiv ist, so dass g ∈ C∞(U,Rn).
Wir können ferner annehmen, dass U eine offene Kreisscheibe U1+ǫ(0) ist, weil die stetige
Funktion x 7→ ‖x‖ auf der kompakten Menge

{
x ∈ Rn \U

∣∣ ‖x‖ ≤ 2
}

ein Minimum > 1
annimmt, wenn diese Menge nicht überhaupt leer und daher U2(0) ⊂ U ist. Beachten Sie,
dass g(U) ⊂ Sn−1, also

g : U → U \ {0}.
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Wir definieren
j : U \ {0} → U, x 7→ x

‖x‖ .

Nach der 2. Bemerkung zum Satz 221 ist die Einschränkung ω ∈ Ωn−1(U \ {0}) der Sphären-
volumenform geschlossen ohne Potential auf U \ {0}. Weil aber

dg∗ω = g∗dω = 0,

besitzt g∗ω ∈ Ωn−1(U) nach dem Lemma von Poincaré ein Potential θ ∈ Ωn−2(U). Dafür
gilt dann

d(j∗θ) = j∗dθ = j∗g∗ω = (g ◦ j)︸ ︷︷ ︸
=j

∗ω = j∗ω. (63)

Nun ist aber
j∗ω = ω. (64)

Beachten Sie dazu, dass dpj(v) = v
‖p‖ + dp

1
‖x‖ (v)p. Daher ist

j∗ωp(v1, . . . , vn−1) = det

(
j(p)

‖j(p)‖n
, dpj(v1), . . . , dpj(vn−1)

)

= det

(
p

‖p‖ ,
v1
‖p‖ , . . . ,

vn−1

‖p‖

)

= ωp(v1, . . . , vn−1).

Nach (63) und (64) ist j∗θ ∈ Ωn−2(U \ {0}) also ein Potential von ω. Widerspruch!

Damit war die Annahme, es existiere eine fixpunktfreie C∞-Abbildung vonDn in sich, falsch.

Ein Ergebnis des Beweises ist: Es gibt keine C∞-Abbildung g : Dn → Sn−1, die auf Sn−1

die Identität ist, also keine sogenannte Retraktion von Dn auf Sn−1.

Der originale Satz von Brouwer gilt sogar für stetige Abbildungen. Wir beweisen das, weil
wir dabei Gelegenheit erhalten, einiges aus der Integrationstheorie zu wiederholen, und weil
es eine substantielle Verschärfung des Satzes ist.

Zunächst eine Vorbemerkung über die Integration Rm-wertiger Funktionen.

Für f : Rn → Rm mit Komponentenfunktionen fi : Rn → R definiert man das Integral
einfach komponentenweise:

∫
fdµn =

(∫
f1dµn, . . . ,

∫
fmdµn

)
,

falls die rechte Seite existiert. Die meisten Rechenregeln übertragen sich unmittelbar. Wir
brauchen aber eine nicht so evidente, nämlich

∥∥∥∥
∫
fdµn

∥∥∥∥ ≤
∫

‖f‖dµn (65)

für die Standardnorm im Rn. Zum Beweis sei g :=
∫
fdµn. Dann folgt mit der Ungleichung

von Cauchy-Schwarz

∥∥∥∥
∫
fdµn

∥∥∥∥
2

=

〈∫
fdµn, g

〉
=

∫
〈f, g〉 dµn ≤

∫
‖f‖‖g‖dµn = ‖g‖

∫
‖f‖dµn

und daraus (65).
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1. Schritt: Faltung mit C∞-Funktionen. Ist f : Rn → Rn µn-integrierbar und be-
schränkt und hat g ∈ C∞(Rn,R) kompakten Träger, so ist y 7→ g(x− y) ∈ L1(µn) für jedes
x ∈ Rn, also ist nach Satz 54 auch die Funktion y 7→ f(y)g(x−y) für jedes x integrierbar. Die
partiellen Ableitungen ∂g

∂xj
sind stetig und haben kompakten Träger, sind also beschränkt

≤Mi, und dasselbe Argument zeigt, dass y 7→ ∂
∂xj

(f(y)g(x− y)) ∈ L1(µn) für alle x ∈ Rn.

Weiter ist
∥∥∥ ∂

∂xj
(f(y)g(x− y))

∥∥∥ ≤Mi‖f‖ ∈ L1(µn), und nach Satz 44 ist also die Funktion

f ∗ g : x 7→
∫
f(y)g(x− y)dy

nach allen xj partiell differenzierbar, und es gilt

∂(f ∗ g)
∂xj

(x) =

∫
f(y)

∂g(x− y)

∂xj
dy.

Dabei soll
∫
...dy das bezüglich y genommene µn-Integral sein. Durch vollständige Induktion

folgt daraus unmittelbar, dass f ∗ g ∈ C∞(Rn,Rn).

2. Schritt: Glatte Approximation. Ist f : Dn → Dn stetig auf der kompakten Einheits-
kugel Dn ⊂ Rn, so ist es gleichmäßig stetig. Zu jedem ǫ > 0 gibt es daher ein δ > 0 mit

‖f(x) − f(y)‖ < ǫ für alle x, y ∈ Dn mit ‖x− y‖ < δ. (66)

Zu δ wählen wir eine C∞-Funktion11 g : Rn → R mit folgenden Eigenschaften:

g ≥ 0,

g(x) = 0 ⇐⇒ ‖x‖ ≥ δ,
∫
g dµn = 1.

Wir setzen nun f auf den ganzen Rn fort, indem wir definieren:

f(x) :=

{
f
(

x
‖x‖

)
für 1 < ‖x‖ ≤ 2,

0 für ‖x‖ > 2.

Dann ist f µn-integrierbar und beschränkt und erfüllt (66) sogar für alle x, y ∈ Rn mit
‖x‖, ‖y‖ ≤ 2. Damit ist f ∗ g ∈ C∞(Rn,Rn), und es gilt für alle x ∈ Dn

‖f ∗ g(x) − f(x)‖ =

∥∥∥∥
∫
f(y)g(x− y)dy −

∫
f(x)g(x− y)dy

∥∥∥∥

≤
∫

‖f(y) − f(x)‖ g(x− y)dy.

Für alle x, y ∈ Dn gilt: Ist ‖x−y‖ ≥ δ, so ist g(x−y) = 0, andernfalls ist ‖f(y)−f(x)‖ < ǫ.
Also folgt

‖f ∗ g(x) − f(x)‖ ≤
∫
ǫg(x− y)dy = ǫ.

Wir haben also zu einer stetigen Funktion jedem ǫ > 0 eine C∞-Funktion f ∗ g =: f̃
konstruiert, für die

‖f(x) − f̃(x)‖ < ǫ für alle x ∈ Dn.

11 Setzen wir τ(x) := exp
“

1
‖x‖2−δ2

”

für ‖x‖ < δ und τ(x) = 0 sonst, so leistet g(x) :=
τ(x)

R

τdµn
das

Gewünschte.
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Aus (65) folgt weiter, dass

‖f ∗ g‖ ≤
∫

‖f(y)‖g(x− y)dy ≤ ‖
∫
g(y − x)dy = 1,

so dass f̃(Dn) ⊂ Dn.

3. Schritt. Ist f : Dn → Dn stetig, so ist x 7→ ‖x− f(x)‖ eine stetige Abbildung auf einer
kompakten Menge, nimmt also ihr Minimum =: 2ǫ an. Hätte f keinen Fixpunkt, so wäre
ǫ > 0. Konstruieren wir dann wie oben eine approximierende C∞-Abbildung f̃ : Dn → Dn

mit ‖f − f̃‖ < ǫ, so ist für alle x ∈ D

‖x− f̃(x)‖ ≥ ‖x− f(x)‖ − ‖f(x) − f̃(x)‖ ≥ ǫ > 0.

Also hätte auch f̃ keinen Fixpunkt im Widerspruch zur bewiesenen C∞-Version des Brou-
werschen Fixpunktsatzes.

Wir halten noch einmal fest:

Satz 223 (Brouwerscher Fixpunktsatz für stetige Abbildungen)). Jede stetige Ab-
bildung f : Dn → Dn der Vollkugel Dn =

{
x ∈ Rn

∣∣ ‖x‖ ≤ 1
}

hat wenigstens einen Fix-
punkt.

Natürlich gilt das auch, wenn man Dn durch einen dazu homöomorphen metrischen Raum
ersetzt.

Korollar 224 (Frobenius). Jede quadratische Matrix mit nur nicht-negativen Einträgen
hat einen nicht-negativen reellen Eigenwert.

Beweis. Wir erinnern an die lp-Normen auf dem Rn:

‖x‖p :=

{
(
∑n

i=1 |xi|p)1/p
für 1 < p <∞,

maxi=,...,n |xi| für p = ∞.

Wir setzen Dn
p :=

{
x ∈ Rn

∣∣ ‖x‖p ≤ 1
}
. Dn

2 ist also die “normale” Einheitskugel, und Dn
∞

ist ein Würfel der Kantenlänge 2 um 0.

Sei nun A eine (n× n)-Matrix mit nur nicht-negativen Einträgen und o.E. A regulär, sonst
ist 0 ein Eigenwert. Wir betrachten das Simplex ∆ :=

{
x ∈ Rn

∣∣ ‖x‖1 = 1 und alle xi ≥ 0
}

und darauf die Abbildung

f : x 7→ Ax

‖Ax‖1
.

Nach den Voraussetzungen über A bildet f das Simplex ∆ stetig in sich ab. Wir zeigen,
dass ∆ homöomorph zur (n − 1)-dimensionalen Vollkugel ist. Dann hat f nach dem Satz
von Brouwer einen Fixpunkt x ∈ ∆, und der ist ein Eigenvektor:

Ax = ‖Ax‖1x.

Die Homöomorphie von ∆ zur Kugel beweist man am einfachsten über eine (längere) Kette
einfacher Homöomorphien:
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Weil die lp-Normen stetig (bezüglich der Norm-
unabhängigen Topologie des Rn−1) sind, ist für be-
liebige 1 ≤ p, q ≤ ∞ die Abbildung

Φpq : Rn−1 → Rn−1, x 7→
{‖x‖p

‖x‖q
x für x 6= 0

0 für x = 0

jedenfalls in allen Punkten x 6= 0 stetig. Aber weil

‖Φpq(x)‖q = ‖x‖p (67)

ist, gilt die Stetigkeit auch in 0. Offenbar ist Φpq auch
bijektiv mit Φ−1

pq = Φqp, und wegen (67) liefert Φpq

einen Homöomorphismus von Dp auf Dq.

Φ
2

2

∞

∞

∞
Φ

1

1

1

x

x

(x,1-||x|| )

(x  +1)/2
i

i

D

D

S

S

W

n-1

n-1

Insbesondere ist die Standardvollkugel Dn−1
2 vermöge Φ2∞ homöomorph zum Würfel Dn−1

∞ .
Mittels Translation und Homothetie mit dem Faktor 1

2 bildet man Dn−1
∞ homöomorph ab

auf den Würfel
W := Dn−1

∞ ∩
{
x ∈ Rn−1

∣∣ alle xi ≥ 0
}
.

Weiter geht es mit Φ∞1 auf das (n− 1)-dimensionale Simplex

S := Dn−1
1 ∩

{
x ∈ Rn−1

∣∣ alle xi ≥ 0
}

=

{
x ∈ Rn−1

∣∣∣∣∣

n−1∑

i=1

xi ≤ 1 und alle xi ≥ 0

}
.

Das wird durch die Abbildung

Rn−1 → Rn, (x1, . . . , xn−1) 7→
(
x1, . . . , xn−1, 1 −

n−1∑

i=1

xi

)

homöomorph auf ∆ abgebildet, und die Homöomorphie zwischen der (n− 1)-dimensionalen
Vollkugel und ∆ ist gezeigt.
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9.7.2 Der Cauchysche Integralsatz

Wir bleiben dabei, dass unsere Abbildungen und Funktionen von der Klasse C∞ sind. Die
kanonischen Koordinatenfunktionen des R2 = C bezeichnen wir mit x und y.

Definition 225 (Komplexes Kurvenintegral). Seien

G ⊂ C offen,

C ∈ C1(G) und

f : G→ C eine C∞-Funktion.

Wir schreiben
f(z) = f(x+ iy) = u(x, y) + iv(x, y)

mit reellen u, v und definieren
∫

C

f(z)dz :=

∫

C

(udx− vdy) + i

∫

C

(vdx+ udy).

Für C = c = c1 + ic2 : I → G ist
∫

c

f(z)dz =

∫ 1

0

c∗(u dx− v dy) + i . . .

=

∫ 1

0

{u ◦ c(t) dx(ċ(t)) − v ◦ c(t) dy(ċ(t))} dt+ i . . .

=

∫ 1

0

{u ◦ c(t) ċ1(t) − v ◦ c(t) ċ2(t)} dt+ i . . .

=

∫ 1

0

Re {(u ◦ c(t) + i v ◦ c(t))(ċ1(t) + i ċ2(t))} dt+ i . . .

=

∫ 1

0

Re {f(c(t))ċ(t)} dt+ i

∫ 1

0

Im {f(c(t))ċ(t)} dt

=

∫ 1

0

f(c(t)) ċ(t)dt.

Entsprechend definiert man allgemeiner das Kurvenintegral über Kurven c : [a, b] → G mit
beliebigem Definitionsbereich [a, b] durch

∫

c

f(z) dz :=

∫ b

a

f(c(t))ċ(t) dt.

Beispiel 226. Sei c : [0, 2π] → C, t 7→ eit. Dann gilt
∫

c

dz

z
=

∫ 2π

0

1

eit
ieitdt = 2πi.

Rechnet man dasselbe mit 1-Formen, so findet man

f(x+ iy) =
1

x+ iy
=

x

x2 + y2

︸ ︷︷ ︸
u(x,y)

−i y

x2 + y2

︸ ︷︷ ︸
v(x,y)

und ∫

c

f(z)dz =

∫

c

xdx+ ydy

x2 + y2
+ i

∫

c

ydx− xdy

x2 + y2
=

∫

c

d ln
√
x2 + y2 + i

∫

c

∗ωX

= i

∫

c

∗ωX = i

∫ 2π

0

det

(
cos t − sin t
sin t cos t

)
dt = 2πi.
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Definition 227. f : C ⊃ G→ C heißt holomorph auf G, wenn für alle z ∈ G das Differential
dzf = Dzf : R2 → R2 C-linear ist.

Satz 228. Sei f = u+ iv : C ⊃ G→ C eine C∞-Abbildung mit reellen u und v. Dann sind
folgende Aussagen äquivalent:

(i) f ist holomorph.

(ii) Es gelten die Cauchy-Riemannschen Differentialgleichungen

∂u

∂x
=
∂v

∂y
und

∂u

∂y
= −∂v

∂x
.

(iii) In allen z0 ∈ G ist f komplex differenzierbar, d.h. es existiert

f ′(z0) := lim
z→z0

f(z) − f(z0)

z − z0

In diesem Fall ist Dz0f : C → C gegeben durch die Multiplikation mit der komplexen Zahl
f ′(z0).

Natürlich ist (iii) ein sehr effektives Kriterium für Holomorphie, weil es aussieht wie im Reel-
len und daher die Differenzierbarkeitsbeweise aus dem Reellen sich unmittelbar übertragen.
So sind Polynome oder Potenzreihen in z holomorph.

Dagegen ist die komplexe Konjugation f(z) := z̄ nicht holomorph: Die Abbildung f ist reell
linear, also Dz0f = f : z 7→ z̄ für alle z0 ∈ C. Aber z 7→ z̄ ist eben nicht komplex-linear.

Beweis des Satzes. Vorbemerkung. Eine C-lineare Abbildung von C in sich ist von der Form

z = x+ iy 7→ (α+ iβ)(x+ iy) = (αx− βy) + i(βx+ αy),

wo x, y, α, β ∈ R. Eine R-lineare Abbildung von C = R2 in sich ist von der Form
(
x
y

)
7→
(
a b
c d

)(
x
y

)
=

(
ax+ by
cx+ dy

)
.

Vergleich der beiden Formeln zeigt, dass die letztere Abbildung genau dann sogar C-linear
ist, wenn

a = α = d, b = −β = −c
gilt. Die Matrix von Df ist aber gerade die Funktionalmatrix

Df ∼=
(

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)

Die reelle Ableitung Dz0f an einer Stelle z0 aus G ist also genau dann komplex-linear, wenn
die Cauchy-Riemannschen Differentialgleichungen gelten.

Nun zum eigentlichen Beweis:

Zu (i) =⇒ (ii). Klar nach Vorbemerkung.

Zu (ii) =⇒ (iii). f ist reell-differenzierbar und Dz0
f komplex-linear, nämlich Multiplika-

tion mit m := ∂u
∂x (z0) + i ∂v

∂x (z0). Nach Definition der reellen Differenzierbarkeit gilt daher

f(z) = f(z0) +m(z − z0) +R(z) mit lim
z→z0

R(z)

‖z − z0‖
= 0.
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Offenbar ist

lim
z→z0

R(z)

‖z − z0‖
= lim

z→z0

R(z)

|z − z0|
= 0 ⇐⇒ lim

z→z0

R(z)

z − z0
= 0.

Also folgt
f(z) − f(z0)

z − z0
−m =

R(z)

z − z0
→ 0 für z → z0.

Das ist aber (iii) mit f ′(z0) = m.

Zu (iii) =⇒ (i). Aus (iii) folgt

f(z) = f(z0) + f ′(z0)(z − z0) +R(z) mit lim
z→z0

R(z)

z − z0
= 0.

Also ist Dz0f die Multiplikation mit f ′(z0) und C-linear.

Satz 229 (Integralsatz von Cauchy). Ist f holomorph in G und C ∈ C2(G), so gilt

∫

∂C

f(z)dz = 0.

Beweis.
∫

∂C

f(z)dz =

∫

∂C

(udx− vdy) + i

∫

∂C

(vdx+ udy)

=

∫

C

(du ∧ dx− dv ∧ dy) + i

∫

C

(dv ∧ dx+ du ∧ dy)

= −
∫

C

(
∂u

∂y
+
∂v

∂x

)
dx ∧ dy + i

∫

C

(
∂u

∂x
− ∂v

∂y

)
dx ∧ dy

= 0.

Bemerkung. Beachten Sie, dass nach unserer Generalvoraussetzung holomorphe Funktio-
nen C∞ sind. In der Funktionentheorie setzt man für die holomorphen Funktionen nur die
einmalige komplexe Differenzierbarkeit voraus, nicht einmal die Stetigkeit der Ableitung.
Der Cauchysche Integralsatz gilt dann immer noch, der Beweis wird aber schwieriger und
lässt sich nicht einfach auf den Stokes zurückführen.

Dieser unscheinbare Satz ist das Herz der komplexen Funktionentheorie mit phantastischen
Folgen. Zum Beispiel dieser:

Satz 230 (Integralformel von Cauchy). Ist f holomorph auf einer offenen Umgebung
G des abgeschlossenen Kreises K und ist c der positiv durchlaufene Rand von K, so gilt für

alle z0 ∈
◦
K

f(z0) =
1

2πi

∫

c

f(z)

z − z0
dz.

Die Werte von f auf dem Rand des Kreises bestimmen also alle Funktionswerte im Inneren!

Beweis. Seien R der Radius und a der Mittelpunkt von K. Dann ist also

c : I → C, t 7→ a+Re2πit
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eine positiv orientierte Parametrisierung des Kreis-
randes.
Sei weiter 0 < ǫ < R− |z0 − a|.
Der abgeschlossene ǫ-Kreis um z0 liegt also in

◦
K.

Wir definieren nun ein zweidimensionales C∞-
Intervall

Cǫ ∈ I2(G \ {z0})
durch

cǫ(t) := z0 + ǫe2πit

Cǫ(s, t) := (1 − s)cǫ(t) + s c(t).

a

z
0

ε

c(t)

c (t)
ε

Überlegen Sie, dass nach Konstruktion z0 nicht im Bild von C liegt!

Dafür gilt

∂Cǫ = (a+Re2πit)︸ ︷︷ ︸
c

− (z0 + ǫe2πit)︸ ︷︷ ︸
=:cǫ

.

Aus dem Cauchyschen Integralsatz folgt daher
∫

c

f(z)

z − z0
dz =

∫

cǫ

f(z)

z − z0
dz,

weil der Integrand in G \ {z0} holomorph ist.

Nun gilt aber
∫

cǫ

f(z)

z − z0
dz =

∫ 1

0

f(z0 + ǫe2πit)

ǫe2πit
2πiǫe2πitdt

= 2πi

∫ 1

0

f(z0 + ǫe2πit)dt→ 2πif(z0) für ǫ→ 0.

Bemerkung. Aus dem Satz 44 über die Differentiation unter dem Integral (trivial erweitert
auf komplexwertige Funktionen) folgt, dass zum Beispiel für stetiges f die Funktion

z0 7→ 1

2πi

∫

c

f(z)

z − z0
dz

nach x und y beliebig oft partiell differenzierbar, also C∞, ist.

Im Beweis der Cauchyschen Integralformel haben wir neben dem Cauchyschen Integralsatz
explizit nur die Stetigkeit von f verwendet. Wenn man den Integralsatz ohne die C∞-
Voraussetzung bewiesen hat, folgt aus der Cauchyschen Integralformel also, dass Funktionen,
die auf einer offenen Menge G ⊂ C einmal komplex differenzierbar sind, immer beliebig oft
differenzierbar sind. Ja sie besitzen lokal sogar immer eine konvergente Taylorreihe. Darum
ist die Theorie komplex differenzierbarer Funktionen, die sogenannte Funktionentheorie oder
komplexe Analysis, sehr anders als die reell differenzierbarer Funktionen.

Als Anwendung beweisen wir noch den

Satz 231 (Fundamentalsatz der Algebra). Jedes nicht-konstante komplexe Polynom
hat mindestens eine Nullstelle. (Mit Polynomdivision folgt daraus sogar die Existenz von n
Nullstellen, wenn das Polynom vom Grad n ist.)
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Beweis. Sei p(z) = zn + a1z
n−1 + . . . + an ein Polynom vom Grad n ≥ 1. (O.E. kann man

den höchsten Koeffizienten auf 1 normieren.) Dann gilt

|p(z)| = |z|n|1 +
a1

z
+ . . .+

an

zn︸ ︷︷ ︸
→0 für |z|→∞

|.

Also gibt es ein r0 > 0, so dass für alle z ∈ C mit |z| > r0 gilt

|p(z)| ≥ |z|n
2
.

Nun nehmen wir an, dass p keine Nullstelle hat. Dann ist f(z) := 1
p(z) eine holomorphe

Funktion auf ganz C. Aus der Cauchyschen Integralformel angewendet auf den Kreis cr vom
Radius r > r0 folgt

|f(0)| =

∣∣∣∣
1

2πi

∫

cr

f(z)

z
dz

∣∣∣∣ =
∣∣∣∣

1

2πi

∫ 1

0

f(re2πit)

re2πit
2πire2πitdt

∣∣∣∣

≤
(65)

∫ 1

0

|f(re2πit)| dt ≤
∫ 1

0

2

rn
dt =

2

rn
.

Daraus folgt f(0) = 1
p(0) = 0. Widerspruch!
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10 Anhang

10.1 Sternförmige Mengen

Bis auf die Vorbemerkungen stammt dieser Abschnitt von Stefan Born.

Das Lemma von Poincaré in der von uns bewiesenen Form besagt, dass in der offenen Menge
G ⊂ Rn jede geschlossene Differentialform ein Potential besitzt, wenn G diffeomorph zum
Rn ist. In der Literatur finden Sie diese Behauptung oft unter der Voraussetzung bewiesen,
dass G sternförmig bezüglich eines Punktes p ∈ G ist, was bedeutet, dass p mit jedem
anderen Punkt von G durch eine Strecke in G verbunden ist. “Unser” Beweis, der dem
Buch von Bott und Tu folgt, ist geringfügig einfacher zu formulieren als der Beweis für
den sternförmigen Fall, liefert gleichzeitig aber die nützliche Information, dass Hk(G) ∼=
Hk(G× R). In den praktischen Anwendungen ist die Diffeomorphie zum Rn genauso leicht
zu zeigen, wie die Sternförmigkeit. Es bleibt jedoch die Frage, ob die Version für sternförmige
Mengen allgemeiner ist, denn offenbar ist ja der Rn sternförmig. Die Frage ist, ob umgekehrt
jede sternförmige offene Menge des Rn diffeomorph zum Rn ist.

Beispiel 232. Sei G ⊂ Rn offen und sternförmig bezüglich 0. Sei Uǫ(0) ⊂ G und φ : R → R
eine monotone C∞-Funktion mit

φ(t) =

{
0 für t ≤ ǫ

2 ,

1 für t ≥ ǫ.

Wir bezeichnen für x ∈ G\{0} mit d(x) den “Randabstand” in Richtung von x, also

d(x) := sup

{
t

∣∣∣∣ t
x

‖x‖ ∈ G

}

und definieren f : G→ Rn durch

f(x) :=

(
1 + tan

(
φ(‖x‖)‖x‖

d(x)

π

2

))
x.

Die Funktion φ dient vor allem dazu, die Singularität von d(x) in 0 zu entschärfen. Wenn
d(x) auf G \ {0} eine C∞-Funktion ist, so ist f ein Diffeomorphismus von G auf den Rn,
und wir haben unser Ziel erreicht. Sie finden aber leicht Beispiele, bei denen die Funktion d
nicht einmal stetig ist, und dann schlägt diese Konstruktion fehl.

Dennoch ist es richtig, dass jede sternförmige offene Menge des Rn diffeomorph zum Rn

ist, wie die folgenden Ausführungen von Stefan Born zeigen. Ich kenne dafür sonst keinen
Beweis in der Literatur.

Definition 233 (Halbstetigkeit). Sei (X, d) ein metrischer Raum. Eine Abbildung f :
X → R heißt von unten halbstetig, wenn für jedes x ∈ X und jedes ǫ > 0 ein δ > 0 existiert,
so dass für alle y ∈ Uδ gilt: f(y) > f(x) − ǫ.

Lemma 234. Sei (X, d) ein metrischer Raum und f : X → R eine von unten halbstetige,
nach unten durch s > 0 beschränkte Funktion. Dann gibt es eine monoton wachsende Folge
stetiger, nach unten durch s beschränkter Funktionen fn : X → R, die punktweise gegen f
konvergiert.

Beweis. Definiere fn : X → R durch

fn(x) := inf
{
f(p) + nd(x, p)

∣∣ p ∈ X
}
.
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Aus der Definition folgt unmittelbar s ≤ fn ≤ f und fn ≤ fn+1 für alle n ∈ N. Seien nun
x, y ∈ X, und sei ǫ > 0. Dann gibt es ein p ∈ X, so dass

fn(x) ≥ f(p) + nd(x, p) − ǫ.

Außerdem gilt nach Definition

fn(y) ≤ f(p) + nd(y, p).

Somit
fn(y) − fn(x) ≤ nd(y, p) − nd(x, p) + ǫ ≤ nd(x, y) + ǫ.

Da das für jedes ǫ > 0 und mit vertauschten Rollen von x und y gilt, folgt

|fn(x) − fn(y)| ≤ nd(x, y).

Daher ist fn Lipschitz-stetig mit Lipschitz-Konstante n und insbesondere stetig. (Die für
normierte Räume gegebene Definition von Lipschitz-Stetigkeit erweitert sich ohne weiteres
auf metrische Räume.)

Es bleibt noch die Konvergenz zu zeigen. Sei x ∈ X, ǫ > 0. Dann gibt es, da f in x von
unten halbstetig ist, ein δ > 0, so dass

d(x, y) < δ =⇒ f(y) ≥ f(x) − ǫ.

Wähle n so, dass nδ > f(x) − ǫ. Sei nun p ∈ X beliebig. Falls d(p, x) < δ, gilt

f(p) + nd(x, p) ≥ f(p) > f(x) − ǫ.

Für d(p, x) ≥ δ gilt aber

f(p) + nd(x, p) ≥ f(p) + nδ ≥ nδ ≥ f(x) − ǫ.

Somit gilt also f(x) ≥ . . . ≥ fn+1(x) ≥ fn(x) ≥ f(x) − ǫ, d.h. fn konvergiert punktweise
gegen f .

Bemerkung: Wir haben jetzt also für jeden metrischen Raum bewiesen, dass eine von
unten halbstetige Funktion sich von unten monoton durch Lipschitz-stetige Funktionen fn

approximieren lässt, und zwar so, dass die Lipschitz-Konstante von fn gerade n ist. Man
kann sich das genauer ansehen und sieht, dass für eine Lipschitz-stetige Funktion f mit
Lipschitz-Konstante L die Funktionen fn mit f identisch sind, sobald n > L.

Lemma 235. Sei M eine kompakte (möglicherweise berandete) (Unter-) Mannigfaltigkeit
und f : M → R eine stetige Funktion. Dann gibt es für jedes ǫ > 0 eine C∞-Funktion g mit
‖f(x) − g(x)‖∞ < ǫ für alle x ∈ M (d.h. f lässt sich durch glatte Funktionen gleichmäßig
approximieren.)

Beweis. Für jedes x ∈M gibt es eine in M offene Umgebung Ux, so dass |f(y) − f(x)| < ǫ
für alle y ∈ Ux. Diese Ux überdecken M , und es gibt eine endliche Teilüberdeckung durch
Uxj

, j = 1, . . . , l. Nach dem Satz über die Zerlegung der Eins gibt es eine subordinierte glatte
Zerlegung der Eins λi, i = 1, . . . ,m. Die λi sind also C∞, nichtnegativ, addieren sich zu Eins
und supp(λi) ⊂ Uxji

. Nun liefert

g :=
m∑

i=1

f(xji
)λi

das Gewünschte.
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Lemma 236. Sei M eine kompakte (möglicherweise berandete) (Unter-) Mannigfaltigkeit
mit der (vom umgebenden Raum geerbten) Metrik d und f : M → R eine von unten
halbstetige, nach unten durch s > 0 beschränkte Funktion. Dann gibt es eine nach unten
durch s/2 beschränkte, punktweise streng monoton wachsende Folge von C∞-Funktionen
fn : M → R, die punktweise gegen f konvergiert, und ein N ∈ N, so dass für alle n ≥ N
gilt: ‖fn+1 − fn‖∞ ≥ 1

2n(n+1) .

Beweis. Wir wissen schon, dass es es eine monoton wachsende, nach unten durch s be-
schränkte, gegen f konvergente Folge stetiger Funktionen fn : M → R gibt. Wir betrachten
nun gn := fn−1/n. Wählen wir N > 4/s, so können wir für alle n ≥ N feststellen gn > 3s/4.
Außerdem gilt

gn+1(x) − gn(x) = fn+1(x) − fn(x) − 1

n+ 1
+

1

n
≥ 1

n(n+ 1)
.

Nun gibt es dem letzten Lemma zufolge für jedes n ∈ N eine C∞-Funktion hn mit

‖gn − hn‖∞ <
1

4n(n+ 1)
.

Dann gilt

hn+1(x) − hn(x) ≥ gn+1(x) −
1

4(n+ 1)(n+ 2)
− gn(x) − 1

4n(n+ 1)

≥ 1

n(n+ 1)
− 2

1

4n(n+ 1)
=

1

2n(n+ 1)
.

Außerdem gilt für alle n ≥ N

hn >
3s

4
− 1

4n(n+ 1)
>

3s

4
− 1

n
>

3s

4
− s

4
=
s

2
.

Die Folge (hn)n∈N benennen wir jetzt um in (fn)n∈N. Diese Folge hat alle gewünschten
Eigenschaften.

Satz 237. Sei C ⊂ Rn eine sternförmige offene Menge. Dann ist C diffeomorph zu Rn.

Beweis. Der Beweis ist etwas länglich. Wir nehmen o.E. an, dass C sternförmig bezüglich 0
ist. Der Plan des Beweises sieht nun so aus:

1. Zunächst führen einen Vorbereitungsschritt durch, indem wir einen Diffeomorphismus
von Rn auf U1(0) angeben, der die Sternförmigkeit bezüglich 0 erhält. Wir können also
im Weiteren davon ausgehen, dass C ⊂ U1(0), und es genügt, die Diffeomorphie von
C zu U1(0) nachzuweisen.

2. Sei Sn−1 :=
{
x ∈ Rn

∣∣ ‖x‖2 = 1
}
. Wir definieren eine

”
Radiusfunktion“

f : Sn−1 → R+, x 7→ sup
{
λ > 0

∣∣λx ∈ C
}
.

3. Diese Funktion f ist nach unten durch ein s > 0 beschränkt und von unten halb-
stetig. Sie lässt sich also durch eine punktweise streng monoton wachsende Folge von
C∞-Funktionen fn > s/2 approximieren. Ersetze fN durch die konstante Funktion
Sn−1 → R, x 7→ s/2. Das enstpricht einer Ausschöpfung von C durch sternförmige
offene Mengen

Cn :=
{
tx
∣∣x ∈ Sn−1, 0 ≤ t ≤ fn(x)

}
, n ≥ N

mit glatten Rändern.

154



4. Das Ziel sieht nun so aus: Bilde durch radiale Verzerrung U1−1/N (0) auf CN ab und
für n ≥ Nden

”
Ring“ U1−1/(n+1)\U1−1/n auf Cn+1\Cn, so dass sich alles zu einem

Diffeomorphismus Φ : U1(0) → C zusammenfügt. Zur Angabe der radialen Verzer-
rung der Ringe wählen wir streng monotone Funktionen [1 − 1/n, 1 − 1/(n + 1)] →
[fn(x), fn+1(x)], x ∈ Sn−1, die in einer Umgebung der Randpunkte linear mit Stei-
gung 1/2 sind. Indem wir diese Funktionen in einer Weise wählen, die C∞ von den
Randpunkten 1− 1/n, 1− 1/(n+ 1), fn(x), fn+1(x) abhängt, bekommen wir an den
Rändern zusammenpassende C∞-Diffeomorphismen der

”
Ringe“. Mit einer Hilfsfunk-

tion [0, 1 − 1/N ] → [0, s/2], die bei Null linear mit Steigung 1 und bei 1− 1/N linear
mit Steigung 1/2 ist, bildet man U1−1/N glatt auf CN ab, so dass die Abbildung am
Rand ebenfalls passt.

Jetzt also zur Durchführung dieses Planes:

1. Sei h : R+
0 → R+

0 eine C∞-Funktion, die auf einer Umgebung der Null gleich der
Identität ist, deren Ableitung überall größer als Null ist, und die lims→∞ h(s) = 1
erfüllt. (Man bastelt sich leicht eine solche Funktion.) h ist streng monoton und besitzt
eine C∞-Umkehrfunktion mit limsր1 h

−1(s) = ∞. Die Abbildungen

Φ : Rn → U1(0), x 7→ x
h(‖x‖)
‖x‖

und

Ψ : Rn → U1(0), x 7→ x
h−1(‖x‖)

‖x‖
sind invers zueinander. Sie sind in einer Umgebung der 0 gleich der Identität. In
allen anderen Stellen ist x 7→ ‖x‖ eine C∞-Funktion. Damit sind Φ und Ψ C∞-
Diffeomorphismen. Die Abbildungen erhalten, da sie

”
radial“ sind, die Sternförmigkeit.

Wir können also anstelle von C die Menge Φ(C) betrachten. Sei also im folgenden an-
genommen, dass C ⊂ U1(0).

2. Sei Sn−1 :=
{
x ∈ Rn

∣∣ ‖x‖2 = 1
}
. Wir definieren eine

”
Radiusfunktion“

f : Sn−1 → R+, x 7→ sup
{
λ > 0

∣∣λx ∈ C
}
.

Wir stellen fest, dass f(Sn−1) ⊂ [0, 1].

3. Da C offen ist, gibt es ein s > 0 so dass Us ⊂ C, folglich ist inf f ≥ s. Weiter wird
behauptet, dass f von unten halbstetig ist: Sei x ∈ Sn−1 und ǫ > 0, dann gibt es ein
s > f(x)− ǫ, so dass sx ∈ C. Da C offen ist, gibt es ein δ > 0, so dass Uδ(sx) ⊂ C. Ist
nun y ∈ Sn−1 mit ‖x− y‖ < δ/s, so gilt

‖sx− sy‖ = s‖x− y‖ < δ

s
s = δ,

also sy ∈ Uδ(sx) ⊂ C, daher f(y) > s > f(x) − ǫ.

Nun wende ich das Lemma an und erhalte eine Folge glatter Funktionen fn mit
den dort angegebenen Eigenschaften. Wir ersetzen fN durch die konstante Funkti-
on Sn−1 → R, x 7→ s/2. Dann schöpfen die Cn, n ≥ N die Menge C durch glatt
berandete sternförmige Mengen aus, und es gilt immer noch ‖fn+1 − fn‖∞ ≥ 1

2n(n+1)

für alle n ≥ N .

4. Um nun den gewünschten Diffeomorphismus angeben zu können, brauchen wir zwei
C∞-Hilfsfunktionen.
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Die eine g : [0, 1 − 1/N ] → [0, s/2] soll in einer Umgebung der 0 gleich der Identität
sein, in einer Umgebung von 1 − 1/N gleich x 7→ 1/2(x − (1 − 1/N)) + s/2 sein und
eine überall positive Ableitung besitzen. Es ist klar, dass es so eine Funktion gibt.

Die zweite Hilfsfunktion ist mühsamer zu bekommen. Sei

M :=
{
(a, b, c, d) ∈ R4

∣∣ a < b, c < d, d− c > (b− a)/2
}
.

Gesucht ist eine C∞ Funktion h : R ×M → R mit den Eigenschaften

(a) ∂xh(x, a, b, c, d) > 0

(b) h(·, a, b, c, d)([a, b]) = [c, d]

(c) Zu jedem a < b gibt es ein δ > 0, so dass für x < a+ δ:

h(x, a, b, c, d) =
1

2
(x− a) + c

und für x > b− δ

h(x, a, b, c, d) =
1

2
(x− b) + d.

Wir stellen zunächst fest, dass es eine C∞-Funktionen ψ : R → R gibt, die monoton
fällt, und für die gilt

ψ|]−∞, 1
4 ] = 1, ψ|[ 34 ,∞| = 0.

So eine Funktion kann man leicht angeben. Nun setzen wir

h(x, a, b, c, d) =

(
1

2
(x− a) + c

)
ψ

(
x− a

b− a

)
+

(
1

2
(x− b) + d

)(
1 − ψ(

x− a

b− a
)

)
.

Die dritte Eigenschaft ist erfüllt für δ = b−a
4 Außerdem gelten h(a, a, b, c, d) = c und

h(b, a, b, c, d) = d. Wenn wir die erste Eigenschaft und damit die Monotonie bewiesen
haben, folgt die zweite. Wir müssen die erste für x ∈]a, b[ zeigen:

∂xh(x, a, b, c, d) = . . . =
1

2
+

(
1

2
(b− a) − (d− c)

)
1

b− a
ψ′
(
x− a

x− b

)
.

Da (a, b, c, d) ∈ M , ist 1/2(b − a) − (d − c) ≤ 0. Außerdem ist ψ′ ≤ 0, so dass folgt
∂xh(x, a, b, c, d) ≥ 1/2 > 0. Jetzt sind wir endlich so weit, Φ definieren zu können.

Setze für x ∈ U1−1/(n+1) \U1−1/n, n ≥ N

Φ(x) :=
x

‖x‖h
(
‖x‖, 1 − 1

n
, 1 − 1

n+ 1
, fn(x), fn+1(x)

)

und für x ∈ U1−1/N setze

Φ(x) :=
x

‖x‖g(‖x‖).

Φ ist gleich der Identität in einer Umgebung der Null, also dort C∞ und insbesondere
differenzierbar mit umkehrbarem Differential. Im Inneren (d.h. im offenen Kern) der

”
Ringe“U1−1/(n+1) \U1−1/n ist Φ C∞. In Polarkoordinaten (d.h. wenn wir Ψ−1 ◦Φ◦Ψ

betrachten mit der Polarkoordinatenabbildung Ψ) sieht die Jacobimatrix so aus:

(
∂xh ∗
∗ En−1

)
.
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Diese Matrix ist regulär, da ∂xh > 0. Bleiben noch die problematischen Mengen
∂U1−1/n =: S1−1/n. Für jedes n ≥ N gibt es eine offene Teilmenge U des Rn, so
dass S1−1/n ⊂ U und für alle x ∈ U ist

Φ(x) =
x

‖x‖

(
1

2

(
‖x‖ −

(
1 − 1

n

))
+ fn(x)

)
,

daher ist Φ auch dort C∞ mit invertierbarer Ableitung (Jacobi-Matrix in Polarkoor-
dinaten wie oben, nur mit 1/2 als oberem linken Eintrag). Φ ist also überall C∞ mit
invertierbarer Ableitung.

Nach Konstruktion bildet die Abbildung Ursprungsgeraden in sich ab und ist dort
injektiv, also ist sie überhaupt injektiv. Φ ist aber auch surjektiv, da

⋃

x∈Sn−1

[0, f(x)[x = C

und [0, f(x)[⊂ Φ(U1(0)).

Daher besitzt Φ eine Umkehrfunktion, die nach dem Umkehrsatz differenzierbar ist.
Diese Umkehrfunktion ist sogar C∞.
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10.2 Homotopie und Homologie von Wegen

Definition 238. Sei G ⊂ V offen.

(i) Zwei Wege c0, c1 : [a, b] → G mit gleichem Anfangspunkt c0(a) = c1(a) und gleichem
Endpunkt c0(b) = c1(b) heißen in G homotop, wenn es eine Abbildung

H : [a, b] × [0, 1] → G

gibt, für die gilt:

• Für alle t ∈ [a, b] ist

H(t, 0) = c0(t), H(t, 1) = c1(t).

• Für alle s ∈ [0, 1] ist cs := H( . , s) ein Weg von c0(a) nach c0(b) .

Die Abbildung H heißt in diesem Fall eine Homotopie zwischen c0 und c1.

Bemerkung. Wir setzen alle Abbildungen c0, c1 und H als C∞-Abbildungen voraus.
Oft finden Sie diese Definition auch für (nur) stetige Abbildungen.

(ii) Ein geschlossener Weg c : [a, b] → G heißt in G nullhomotop, wenn es eine C∞-
Abbildung H : [a, b] × [0, 1] → G gibt, so dass gilt:

• H deformiert c in einen konstanten Weg:

H( . , 0) = c, H( . , 1) konstant.

• Die Wege H( . , s) = cs sind alle geschlossen:

H(a, s) = H(b, s) für alle s ∈ [0, 1].

Bemerkung. Wir bestehen nicht darauf, dass dabei der Punkt H(a, s) = H(b, s) fest
bleibt. Allerdings macht es keinen Unterschied, ob man das verlangt oder nicht.

(iii) Zwei k-Ketten C0, C1 ∈ Ck(G) heißen in G homolog, wenn gilt

∂C1 = ∂C0 und (68)

es gibt eine (k + 1)-Kette H ∈ Ck+1(G) mit ∂H = C1 − C0 + Cdeg, (69)

wobei Cdeg eine degenerierte k-Kette ist, d.h. eine ganzzahlige formale Linearkombi-
nation von Intervallen c : Ik → G, deren Differential nirgends injektiv ist. Beachte,
dass das Integral jeder k-Form über eine degenerierte k-Kette verschwindet.

Bemerkung. Man kann diese Definition auch ohne “Cdeg“ machen und erhält dann
einen anderen Homologiebegriff.

(iv) Ketten, die homolog zu einem konstanten C∞-Intervall sind, heißen nullhomolog.

Beispiel 239. Wir betrachten zwei homotope Wege c0, c1 : [a, b] → G mit gleichem An-
fangspunkt c0(a) = c1(a) und gleichem Endpunkt c0(b) = c1(b). Sei H : [a, b] × [0, 1] → G
eine Homotopie zwischen ihnen.

Wir betrachten die umparametrisierten Wege

c̃i(t) := ci(a+ t(b− a)), t ∈ [0, 1]

und
H̃(t, s) = H(a+ t(b− a), s), (t, s) ∈ [0, 1]2.
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Dann ist H̃ ∈ C2(G) und

∂H̃ = H̃(., 1) − H̃(., 0) − H̃(1, .) + H̃(0, .) = c̃1 − c̃0 − κc̃0(b) + κc̃0(a).

Also sind c̃0 und c̃1 in G homolog. In leichter Verallgemeinerung der obigen Definition
nennen wir zwei Wege c0 und c1 auf einem beliebigen Intervall [a, b] mit gleichen Anfangs-
und Endpunkten homolog, wenn die wie oben umparametrisierten Wege homolog sind. Dann
kann man das Ergebnis dieses Beispiels formulieren als:

Homotope Wege sind homolog.

Die Umkehrung gilt nicht, wie das folgende Beispiel zeigt.

Beispiel 240 (Zum Nachdenken). Hier skizziere ich ein Beispiel für einen Weg, der
nullhomolog, aber nicht nullhomotop ist.

Im R3 betrachten wir das Komplement G von
zwei Geraden und darin den skizzierten ge-
schlossenen Weg. Nach etwas Probieren mit
einem Gummiband ist man überzeugt, dass
sich dieser Weg nicht in G auf einen Punkt
zusammenziehen läßt, d.h. dass er nicht null-
homotop ist. Das ist aber schwer zu beweisen.

In diesen Weg kann man nun eine Fläche ein-
spannen, die von dem Weg berandet wird. Al-
lerdings ist diese Fläche keine Kreisscheibe,
sondern ein Stück von einer Torusfläche. Es
ist dann nicht so schwer, auf dieser Fläche ei-
ne 2-Kette zu konstruieren, deren Rand der
“gestückelte” vorgegebene Weg ist. Schließlich
überlegt man sich, dass der “gestückelte” Weg
homolog zum Originalweg ist.

Beispiel 241 (Homologe Wege und geschlossene Formen). Sind c0, c1 : I → G in G
homologe Wege, so gibt es also ein C2(G) mit

c1 − c0 = ∂C − Cdeg.

Weil die degenerierten Wege zum Integral nicht beitragen, gilt also für jede 1-Form ω
∫

c1

ω −
∫

c0

ω =

∫

∂C

ω

und für jede geschlossene 1-Form ω

0 =

∫

H

dω =

∫

c0

ω −
∫

c1

ω,
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also ∫

c0

ω =

∫

c1

ω.

Das gilt wegen der Parameterinvarianz der Integrale dann auch für homologe und erst recht
für homotope Wege auf einem beliebigen Intervall [a, b].

Das Integral einer geschlossenen 1-Form ist eine Homologieinvariante und deshalb erst recht
eine Homotopieinvariante.

Benutzen Sie das für einen exakten Beweis, dass der Kreis c(t) := (cos t, sin t) für 0 ≤ t ≤ 2π
sich in R2 \ {0} nicht auf einen Punkt zusammenziehen läßt.

Potentiale von 1-Formen

Definition 242. Seien G ⊂ Rn offen und wegzusammenhängend und ω ∈ Ω1(G). Das
Integral von ω heißt wegunabhängig, wenn gilt: Für je zwei C∞-Wege c : [a, b] → G und
c̃ : [ã, b̃] → G mit

c(a) = c̃(ã) und c(b) = c̃(b̃)

ist ∫

c

ω =

∫

c̃

ω.

Bemerkung. Man kann jeden stückweise C∞-Weg zu ei-
nem C∞-Weg umparametrisieren, wobei sich das Integral
wegen der Substitutionsregel nicht ändert. Für die Umpara-
metrisierung benutzt man auf dem Intervall [a, b] eine C∞-
Parametertransformation ρ : [a, b] → [a, b], die in der Nähe
eines jeden Stückelungspunktes xi konstant ist. Ein solches
ρ findet man mittels Buckelfunktionen, vgl. Analysis I.

x x
1 n

a

a

b

b

Das hat zur Folge, dass Wegunabhängigkeit gegenüber stückweise C∞-Kurven gleichbedeu-
tend mit Wegunabhängigkeit gegenüber “echten” C∞-Kurven ist.

Satz 243 (Konstruktion von Potentialen). Seien G ⊂ Rn eine offene, nicht-leere weg-
zusammenhängende Menge und ω ∈ Ω1(G). Das Integral von ω sei wegunabhängig. Sei p ein
fester Punkt in G. Wähle zu jedem x einen stückweise C∞-Weg c : [a, b] → G von p = c(a)
nach x = c(b) und definiere

φ(x) :=

∫

c

ω.

Dann ist φ nach Voraussetzung wohldefiniert. Es ist eine C∞-Funktion und ein Potential
von ω.

Beweis. Sei x0 ∈ G und c : [a, b] → G ein C∞-Weg von p nach x0. Sei i ∈ {1, . . . , n}. Setze
c(t) := x0 + (t− b)ei. Dann gibt es ein ǫ > 0, so dass c(t) ∈ G für b ≤ t < b+ ǫ und

φ(x0 + (t− b)ei) =

∫

c[a,b+t]

ω =

∫

c|[a,b]

ω +

∫

c|[b,b+t]

ω = φ(x0) +

∫ b+t

b

ωx0+(τ−b)ei
(ei)dτ.
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Daher existiert
∂φ

∂xi
(x0) = ωx0(ei)

und ist offenbar stetig. Also ist φ differenzierbar mit dφ = ω. Dann ist φ aber sogar C∞.

Beispiel 244. In der Praxis kann man die Bestimmung eine Potentials durch Integration
oft im Kopf durchführen. Die Form

ω = 2xy dx+ (x2 + 3z)dy + (3y + cos z)dz

ist geschlossen auf dem R3 (nachrechnen!). Also besitzt sie nach dem Poincaréschen Lemma
ein Potential, das man schrittweise so findet:

φ(x, y, z) = x2y + β(y, z)

= x2y + 3yz + γ(z)

= x2y + 3yz + sin z.

Korollar 245. Sei ω ∈ Ω1(G), G ⊂ Rn offen und wegzusammenhängend. Dann sind fol-
gende Aussagen äquivalent:

(i) Das Integral von ω ist wegunabhängig.

(ii) ω besitzt ein Potential.

(iii) Für alle C1, C2 ∈ C1(G) gilt

∂C1 = ∂C2 =⇒
∫

C1

ω =

∫

C2

ω.

(iv) Für alle C ∈ C1(G) gilt

∂C = 0 =⇒
∫

C

ω = 0.

(v) Für jede geschlossene Kurve c : [a, b] → G gilt

∫

c

ω = 0.

Für das Integral über geschlossenes c schreibt man suggestiv auch
∮

c
ω.

Beweis. Selbst.

Definition 246. Eine offene Menge G ⊂ Rn heißt einfach zusammenhängend, wenn eine
der beiden folgenden äquivalenten Bedingungen erfüllt ist:

(i) Jeder geschlossene Weg in G ist in G nullhomotop.

(ii) Je zwei Wege in G mit gleichen Anfangs- und gleichem Endpunkt sind in G homotop.

Die Implikation (i) =⇒ (ii) benutzt die C∞-Umparametrisierung des geschlossenen Weges,
der von zwei Wegen mit gleichem Anfangs- und gleichem Endpunkt gebildet wird.
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Korollar 247. Für alle n ≥ 3 ist Rn \ {0} einfach zusammenhängend. Daher besitzt jede
geschlossene 1-Form ein Potential:

H1(Rn \ {0}) = 0 für n ≥ 3.

Nach Abschnitt 9.4 war hingegen H1(R2 \ {0}) 6= 0.

Beweis. Sei c : [a, b] → Rn \ {0} ein geschlossener C∞-Weg. Der Doppelkegel

{
sc(t)

∣∣ s ∈ R, t ∈ [a, b]
}

hat eine
”
Dimension“ 2 < n und ist deshalb 6= Rn.

Beweis: Das Differential der Abbildung

[a, b] × R
n−1

→ R
n
, (t, s1, . . . , sn−1) = s1c(t)

hat überall Rang ≤ 2 < n. Deshalb ist ihr Bild gleich der Menge ihrer kritischen
Werte und nach dem Lemma von Sard eine Nullmenge.

Wähle ein p ∈ Rn, das nicht auf diesem Kegel liegt. Dann definiert

H(t, s) := (1 − s)c(t) + sp

eine Homotopie in Rn \ {0} von c in die konstante Abbildung vom Wert p.
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10.3 Klassische Integralsätze

10.3.1 Der Hodge-∗-Operator

Neben dem äußeren Produkt gibt es eine weitere wichtige algebraische Operation, die wir
jetzt beschreiben wollen. Wir betrachten zunächst wieder alternierende k-Formen. Die Ope-
ration überträgt sich dann problemlos wertweise auf Differentialformen.

Sei V ein n-dimensionaler R-Vektorraum.

Wegen
(
n
k

)
=
(

n
n−k

)
ist

ΛkV ∗∗ ∼= Λn−kV ∗∗.

Eine einfache Methode, einen solchen Isomorphismus explizit hinzuschreiben, ist die folgen-
de. Man wähle eine Basis von V und die dazu duale Basis (ω1, . . . , ωn). Zum Basisvektor

ωi1 ∧ . . . ∧ ωik
, 1 ≤ i1 < . . . < ik ≤ n

von ΛkV ∗∗ gibt es eindeutig bestimmte 1 ≤ j1 < . . . < jn−k ≤ n, so dass

{i1, . . . , ik, j1, . . . , jn−k} = {1, . . . , n}.

Wir definieren dann eine lineare Abbildung h : ΛkV ∗∗ → Λn−kV ∗∗ durch

h(ωi1 ∧ . . . ∧ ωik
) := ±ωj1 ∧ . . . ∧ ωjn−k

.

Die Vorzeichen können wir beliebig wählen, zum Beispiel stets +. Wir wählen aber statt-
dessen

ǫi1...,ik
= sign

(
1, . . . , k, k + 1 . . . , n

i1, . . . , ik, j1, . . . , jn−k

)

Diese Konstruktion hängt von der gewählten Basis von V ab. Andere Basen liefern in der
Regel andere Isomorphismen h.

Ist aber (V, 〈., .〉) ein orientierter Euklidischer Vektorraum, und verwendet man nur positiv-
orientierte ON-Basen, so hängt h nicht von der Basiswahl ab. Um das zu zeigen, geben wir
zunächst eine andere Definition des Isomorphismus. Sei also (V, 〈., .〉) wie angegeben.

Lemma 248 (und Definition). Es gibt genau ein µ ∈ ΛnV ∗∗ mit

µ(e1, . . . , en) = 1

für jede positiv-orientierte ON-Basis. µ heißt die Volumenform von (V, 〈., .〉).

Beweis. Ist (e1, . . . , en) eine positiv orientierte ON-Basis, so gibt es, weil dimΛnV ∗∗ = 1,
genau ein µ ∈ ΛnV ∗∗, welches die Gleichung für diese Basis erfüllt. Weil aber

µ(f(e1), . . . , f(en)) = det(f)µ(e1, . . . , en)

ist, gilt die dann auch für alle andern positiv-orientierten ON-Basen.

Definition 249 (Hodgeoperator, ∗-Operator). Sei (V, 〈., .〉) ein n-dimensionaler ori-
entierter Euklidischer Vektorraum mit Volumenform µ. Für v ∈ V sei ωv := 〈., v〉. Dann
definieren wir für jedes k den Hodgeoperator

∗ : ΛkV ∗∗ → Λn−kV ∗∗

durch
∗ω(v1, . . . , vn−k)µ := ω ∧ ωv1 ∧ . . . ∧ ωvn−k . (70)

163



Insbesondere ist
∗1 = µ, ∗µ = 1.

Beachten Sie, dass wir für diese Definition zwar die Orientierung und das Skalarpordukt,
aber keine Basis benötigt haben.12

Den Zusammenhang mit dem oben definierten Isomorphismus h gibt das folgende

Lemma 250. Seien (e1, . . . , en) eine positiv-orientierte Orthonormalbasis und ω1, . . . , ωn

die duale Basis. Seien 1 ≤ i1 < . . . < ik ≤ n und 1 ≤ j1 < . . . < jn−k ≤ n mit
{i1, . . . , ik, j1, . . . , jn−k} = {1, . . . , n}. Dann gilt

∗(ωi1 ∧ . . . ∧ ωik
) = ǫi1...ik

ωj1 ∧ . . . ∧ ωjn−k
.

Dabei ist das Vorzeichen ǫi1...ik
= ±1 gegeben durch13

ǫi1...ik
= sign

(
1 . . . n

i1 . . . ik j1 . . . jn−k

)
.

Bis auf das Vorzeichen ist also ∗(ωi1 ∧ . . . ∧ ωik
) gerade das äußere Produkt der komple-

mentären Basisformen.

Beweis. Nach Definition ist

∗(ωi1 ∧ . . . ∧ ωik
)(v1, . . . , vn−k) = (ωi1 ∧ . . . ∧ ωik

∧ ωv1 ∧ . . . ∧ ωvn−k)(e1, . . . , en)

= ǫ (ωi1 ∧ . . . ∧ ωik
∧ ωv1 ∧ . . . ∧ ωvn−k)(ei1 , . . . , eik

, ej1 , . . . , ejn−k
)

mit ǫ = ǫi1...ik
. Rechnet man die rechte Seite mit der Determinantenformel (45) aus Satz

157 aus, so erhält man

∗(ωi1 ∧ . . . ∧ ωik
)(v1, . . . , vn−k)

= ǫ det




ωi1(ei1) . . . ωi1(eik
) ωi1(ej1) . . . ωi1(ejn−k

)
...

...
...

...
ωik

(ei1) . . . ωik
(eik

) ωik
(ej1) . . . ωik

(ejn−k
)

ωv1(ei1) . . . ωv1(eik
) ωv1(ej1) . . . ωv1(ejn−k

)
...

...
...

...
ωvn−k(ei1) . . . ωvn−k(eik

) ωvn−k(ej1) . . . ωvn−k(ejn−k
)




= ǫ det




1 . . . 0 0 . . . 0
...

...
...

...
0 . . . 1 0 . . . 0

ωv1(ei1) . . . ωv1(eik
) ωv1(ej1) . . . ωv1(ejn−k

)
...

...
...

...
ωvn−k(ei1) . . . ωvn−k(eik

) ωvn−k(ej1) . . . ωvn−k(ejn−k
)




= ǫ det(ωvρ(ejσ
))

= ǫ det(< vρ, ejσ
>)

= ǫ det(ωjσ
(vρ))

= ǫi1...ik
(ωj1 ∧ . . . ∧ ωjn−k

)(v1, . . . , vn−k).

12Allgemeiner braucht man zur Definition des ∗-Operators kein positiv-definites Skalarprodukt, es genügt
ein nicht-ausgeartetes vom Index ι. Dann steht in der Formel (70) rechts noch ein Faktor (−1)ι.

13Im nicht-positiven Fall ist ǫi1...ik
= sign

`1 ... n
i1...ik j1...jn−k

´

< ei1 , ei1 > . . . < eik
, eik

>.

164



Wir verzichten auf die explizite Definition des Hodegeoperators für Differentialformen, weil
sie so selbstverständlich ist. Wir geben nur eine Version des letzen Lemmas für Differential-
formen im Rn.

Lemma 251. Im Rn mit dem kanonischen Skalarprodukt gilt

∗(dxi1 ∧ . . . ∧ dxik
) = ǫi1...ik

dxj1 ∧ . . . ∧ dxjn−k
.

Dabei ist das Vorzeichen ǫi1...ik
= ±1 gegeben durch

ǫi1...ik
= sign

(
1 . . . n

i1 . . . ik j1 . . . jn−k

)
.

Beispiel 252. Im R3 und ωu = u1dx1 + u2dx2 + u3dx3 gilt

∗ωu = u1dx2 ∧ dx3 − u2dx1 ∧ dx3 + u3dx1 ∧ dx2

In der Physik gibt es wichtige Anwendungen mit nicht positiv-definitem Skalarprodukt. In
der Relativitätstheorie und Elektrodynamik stehen Minkowskische Vektorräume im Vorder-
grund, in der Hamiltonschen Mechanik sind es symplektische Skalarprodukte. Wir schließen
mit einem kleinen Beispiel im Minkowskiraum.

Beispiel 253. Im R4 mit dem Minkowski-(oder Lorentz-)produkt

〈x, y〉L = x1y1 + x2y2 + x3y3 − x4y4

ist zum Beispiel

∗dx1 = dx2 ∧ dx3 ∧ dx4,

∗dx4 = −dx1 ∧ dx2 ∧ dx3,

und

∗(dx1 ∧ dx2) = dx3 ∧ dx4,

∗(dx3 ∧ dx4) = −dx1 ∧ dx2.

Im Euklidischen R4 stehen hier überall +-Zeichen.
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10.3.2 Klassische Differentialoperatoren und Integralsätze

Seien G offen ⊂ Rn, f ∈ C∞(G,R) eine Funktion und F = (F1, . . . , Fn) ∈ C∞(G,Rn) ein
Vektorfeld.

Unter den klassischen Differentialoperatoren verstehen wir die folgenden:

gradf := (∂1f, . . . , ∂nf)

divF := ∂1F1 + . . .+ ∂nFn

∆f := div grad f

rotF := (∂2F3 − ∂3F2, ∂3F1 − ∂1F3, ∂1F2 − ∂2F1), falls n = 3.

Sie spielen in vielen Anwendungen der Analysis in Physik und Ingenieurwissenschaften eine
wichtig Rolle. Wir zeigen in diesem Abschnitt, wie sie sich in das Konzept der Differential-
formen einordnen lassen.

Satz 254. Im Euklidischen Raum (Rn, 〈., .〉) gilt:

(i)
ωgrad f = df.

(ii)
divF = ∗d ∗ ωF .

(iii)
∆f = ∗d ∗ df.

(iv) Für n = 3 ist
ωrot F = ∗dωF

Beweis. Die Beweise erfolgen durch Einsetzen der Definitionen. Wir zeigen nur eine Glei-
chung:

Zu (ii). Es ist

∗d ∗ ωF = ∗d ∗
n∑

i=1

Fi dxi

= ∗d
n∑

i=1

(−1)i−1Fi dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn

= ∗
n∑

i=1

(−1)i−1




n∑

j=1

∂Fi

∂xj
dxj



 ∧ dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn

= ∗
n∑

j=1

n∑

i=1

∂Fi

∂xj
(−1)i−1dxj ∧ dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn

= ∗
n∑

i=1

∂Fi

∂xi
dx1 ∧ . . . ∧ dxn

= ∗divF dx1 ∧ . . . ∧ dxn

= divF.
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Beispiel 255. Die Maxwellschen Gleichungen im Vakuum lauten:

rotE + Ḃ = 0 rotB − c−2Ė = µ0J (71)
divB =0 divE = ρµ0c

2.

Das sind Gleichungen für Vektorfelder E,B, J im R3, die überdies aber von der Zeit t
abhängen. Der Punkt bezeichnet die Ableitung nach der Zeit. Die Größen c, ρ und µ0 sind
Konstanten.

Wir betrachten nun den (R4, 〈., .〉L) mit dem Minkowskiprodukt, vgl. Beispiel 253. Wir fassen
die Zeit als vierte Koordinate auf: t = x4, und definieren die elektromagnetische Feldform
und die Viererstromform

F := c ∗ ωB + ωE ∧ dx4, Γ := ωJ − cρdx4,

wobei ∗ωB etc. im R3 gebildet und in den R4 eingebettet werden. Dann schreiben sich die
Maxwellschen Gleichungen mit dem ∗-Operator von (R4, 〈., .〉L) als

dF = 0, ∗d ∗ F + µ0cΓ = 0.

Das ist nicht nur einfacher als (71), sondern auch offensichtlich relativistisch invariant: Li-
neare Abbildungen T : R4 → R4, die das obige Skalarprodukt und die Orientierung erhalten,
heißen (eigentliche) Lorentztransformationen. Für sie gilt

∗(T ∗ω) = T ∗(∗ω).

Ist also F eine Lösung der Maxwellschen Gleichungen, so ist auch T ∗F eine solche zur
transformierten Viererstromform T ∗Γ.

Ist (V, 〈., .〉) ein orientierter Vektorraum mit nicht-degeneriertem Skalarprodukt, so kann
man unter Verwendung des Isomorphismus v 7→ ωv die klassischen Differentialoperatoren
verallgemeinern.

Definition 256 (Nicht-Euklidische Vektorräume). Sind (V, 〈., .〉) ein orientierter Vek-
torraum mit nicht-degeneriertem Skalarprodukt vom Index ι und G ⊂ V offen, so definieren
wir

(i) den Gradienten grad f von f : G→ R durch

ωgrad f = df,

(ii) die Divergenz von F : G→ V durch

divF = (−1)ι ∗ d ∗ ωF .

Weiter definiert man das Kodifferential δ : Ωk(G) → Ωk−1(G) und den Laplaceoperator
∆ : Ωk(G) → Ωk(G) wie folgt:

δ := (−1)ι+n(k−1) ∗ d∗ : Ωk(G) →
OOk − 1G.

∆ := dδ + δd : Ωk(G) → Ωk(G).
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Beispiel 257. Im Minkowskiraum aus Beispiel 255 heißt der Gradient der Vierergradient,
die Divergenz die Viererdivergenz und der Laplaceoperator der Wellenoperator. Zum Beispiel
ist

� f := ∆Lorentzf =
∂2f

∂x2
1

+
∂2f

∂x2
2

+
∂2f

∂x2
2

− ∂2f

∂x2
4

.

Für die hier eingeführten Differentialoperatoren ergeben sich nun unmittelbar die folgenden
klassischen Versionen des Stokesschen Satzes. Vergleichen Sie für die Integraldefinitionen∫
〈F, ds〉 und

∫
〈F, dO〉 die Beispiele 201, 203.

Satz 258 (Greenscher Satz). Seien G ⊂ R2 offen, p, q : G → R und C ∈ C2(G). Dann
gilt ∫

C

(
∂q

∂x
− ∂p

∂y
)dx ∧ dy =

∫

∂C

pdx+ qdy.

Insbesondere folgt (q = x oder p = y) für injektives c ∈ I2(R
2) mit detDc ≥ 0

Fläche(c(I2)) =

∫

c

dx ∧ dy =

∫

∂c

xdy = −
∫

∂c

ydx =
1

2

∫

∂c

−ydx+ xdy.

Ein Anwendungsbeispiel für die Flächenformel ist der Satz von Holditch, vgl. Abschnitt
10.4.8

Eine diskrete Variante davon gibt die in der Geodäsie unentbehrliche

Gaußsche Flächenformel. Seien (xi, yi), i = 1, . . . , n die Koordinaten der Eckpunkte eines
(eingebetteten) n-Ecks. Die Numerierung laufe im mathematisch positiven Sinne. Dann gilt
für die Fläche

F = −1

2

n∑

i=1

yi∆ix, ∆ix = xi+1 − xi−1.

Dabei ist x0 = xn, xn+1 = x1.

Beim Vergleich mit der Integralformel F = −
∫
ydx beachte, dass ∆ix = xi+1−xi−1 = 2∆xi.

Daher der Faktor 1/2.

Beweis:
Wir betrachten zunächst ein Dreieck: Dafür ist

F =
1

2
(y2x2 + (y1 + y2)(x1 − x2) − y1x1)

=
1

2
(y1(x0 − x2) + y2(x1 − x3) + y3(x2 − x1))

= −1

2

3∑

i=1

yi∆ix.

(x  ,y  )

(x  ,y  )

(x  ,y  )

1 1

2 2

3 3

Bei Vertauschung von 1 und 2 ergibt sich die negative Fläche. Die Flächenformel ist offenbar
invariant unter Translationen, weil

∑n
i=1 ∆ix = 0. Daher folgt die allgemeine Formel aus

der Dreiecksformel.
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Satz 259 (Klassischer Satz von Stokes). G ⊂ R3 offen, F : G→ R3 ein differenzierbares
Vektorfeld und C ∈ C2(G) eine 2-Kette (Flächenstück) in G. Dann ist

∫

C

〈rotF, dO〉 =

∫

∂C

〈F, ds〉 .

Satz 260 (Satz von Gauß, Divergenzsatz). G ⊂ Rn offen, F : G → Rn ein differen-
zierbares Vektorfeld und C ∈ Cn(G) eine n-Kette (Volumen) in G. Dann ist

∫

C

divF dx1 ∧ . . . ∧ dxn =

∫

∂C

〈F, dO〉 .
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10.3.3 Harmonische Funktionen

Dieser Abschnitt erweitert den Abschnitt 9.7.2 über den Cauchyschen Integralsatz.

u : Rn ⊃ G→ R heißt harmonisch, wenn ∆u = 0, d.h. wenn d ∗ du = 0.

Beispiel 261. Ist f = u+ iv : C ⊂ G→ C holomorph, so sind u und v harmonisch.

Beispiel 262. Ist r : Rn \ {0} → R, x 7→ ‖x‖, so ist rn−2 für n ≥ 3 harmonisch.

Satz 263 (Integralsatz für harmonische Funktionen). Ist u : G → R harmonisch, so
gilt für jedes C ∈ Cn(G)

∫

∂C

∗du = 0.

Für n = 2 bedeutet das
∫

∂C

(
−∂u
∂y
dx+

∂u

∂x
dy

)
= 0.

Beweis. Trivial

Satz 264 (Mittelwertsatz für harmonische Funktionen). Ist u : R2 ⊃ G → R har-
monisch, und liegt die abgeschlossene Kreisscheibe vom Radius R um a in G, so gilt

u(a) =
1

2π

∫ 2π

0

u(a+Reiφ)dφ. (72)

Beweis. Für holomorphe Funktionen gilt nach der Cauchyschen Integralformel (Satz 230)

f(a) =

∫ 1

0

f(a+Re2πit)dt =
2πt=φ

∫ 2π

0

f(a+Reiφ 1

2π
)dφ.

Also gilt die Formel für holomorphe Funktionen. Damit gilt sie auch für den Realteil einer
holomorpen Funktion. Wir zeigen nun, dass sich jedes aufG harmonische u lokal so darstellen
läßt.

Auf einem offenen Kreis U , der den R-Kreis um a enthält und selbst in G liegt, ist

ω := −∂u
∂y
dx+

∂u

∂x
dy

geschlossen, weil u harmonisch ist. Daher besitzt ω ein Potential v : U → R. Dann ist aber
f := u+ iv auf U holomorph.

Satz 265 (Maximumprinzip für harmonische Funktionen). Nimmt eine harmonische
Funktion auf einer offenen, zusammenhängenden Menge G ⊂ R2 ihr Maximum an, so ist
sie konstant.
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Beweis. Sei a ∈ G ein Punkt, in dem die harmonische Funktion u ihr Maximum annimmt.
Nach dem Mittelwertsatz ist u(a) der Mittelwert von u über den Rand jeder abgeschlossenen
Kreisscheibe um a, die in G liegt. Weil aber u(a) ≥ u bedeutet das, dass u = u(a) auf jedem
hinreichend kleinen Kreis um a. Also ist u lokal konstant. Aus dem Zusammenhang von G
folgt die globale Konstanz.

Wir wollen nun die Mittelwertformel (72) für harmonische Funktionen auf dem Kreis so
verallgemeinern, dass sie nicht nur den Wert im Mittelpunkt sondern möglichst in einem
beliebigen Punkt liefert: wie die Cauchyformel. Sei z0 ein innerer Punkt der Kreisscheibe
D2

R von Radius R um 0. Die gebrochen-lineare Transformation

f(z) = R
Rz + z0
R+ zz̄0

bildet die Einheitskreisscheibe auf die Kreisscheibe vom Radius R und den Punkt 0 auf z0
ab.

Ist nun u harmonisch auf D2
R, so ist u(f(z)) harmonisch auf D2

1 und nach der Mittelwert-
formel gilt

u(z0) = u(f(0)) =
1

2π

∫ 2π

0

u(f(eit)dt =
1

2π

∫ 2π

0

u(R
Reit + z0
R+ z̄0eit

)dt

Wir möchten

eiφ =
Reit + z0
R+ z̄0eit

substituieren und berechnen dazu dt
dφ . Wir lösen nach eit auf und erhalten:

eit =
Reiφ − z0
R− eiφz̄0

.

Wir differenzieren diese Gleichung nach φ:

ieit dt

dφ
=
Rieiφ(R− eiφz̄0) − (Reiφ − z0)(−ieiφz̄0)

(R− eiφz̄0)2
=
R2ieiφ − ieiφz0z̄0

(R− eiφz̄0)2

und teilen durch ieit:

dt

dφ
=

R2eiφ − eiφz0z̄0
(R− eiφz̄0)(Reiφ − z0)

=
R2 − z0z̄0

(Re−iφ − z̄0)(Reiφ − z0)

=
R2 − z0z̄0

(Reiφ − z0)(Reiφ − z0)
=

R2 − z0z̄0
|Reiφ − z0|2

Anwendung der Substitutionsregel liefert nun

u(z0) =
1

2π

∫ 2π

0

u(Reiφ)
R2 − z0z̄0
|Reiφ − z0|2

dφ.

Schließlich ergibt sich mit z0 = reiθ aus dem
Cosinussatz
|Reiφ − z0|2 = R2 − 2Rr cos(θ − φ) + r2

und damit

Rr

θ
ϕ


z
0

Satz 266 (Poissonsche Integralformel). Sei u(z) harmonisch auf der abgeschlossenen
Kreisscheibe vom Radius R um 0. Dann gilt für alle r mit 0 ≤ r < R:

u(reiθ) =
1

2π

∫ 2π

0

u(Reiφ)
R2 − r2

R2 − 2Rr cos(θ − φ) + r2
dφ. (73)
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Für r = 0 bekommt man wieder die Mittelwertformel.

Es gibt für die Poisson-Formel eine sehr anschauliche geometrische Interpretation: Wir be-
trachten einen inneren Punkt z0 im Kreis vom Radius R und lassen die Sekante durch
diesen Punkt um ihn rotieren. Uns interessiert das Verhältnis der Geschwindigkeit der bei-
den Schnittpunkte der Sekante mit dem Kreis zueinander.

Nach dem Sekantensatz ist das Produkt ab der Se-
kantenabschnitte dabei konstant und zwar ist

ab = (R+ r)(R− r) = R2 − r2,

wenn r der Abstand von z0 vom Mittelpunkt ist.
Diesen Wert erhält man nämlich, wenn die Sekante
durch den Mittelpunkt geht. Das gesuchte Geschwin-
digkeitsverhältnis ist daher mit den Bezeichnungen
der Abbildung

vb

va
=

cosβvb

cosβva
=
b

a
=
ab

a2
=

R2 − r2

R2 + r2 − 2Rr cosφ
.

r

ϕ

z
0

cos   v

v

a

a

b

b

β 

β

β

β

a

b

cos   v

v

R

R

Das ist genau der Kern aus der Poisson-Formel. Er beschreibt also die Längenverzerrung,
wenn man den Rand des Kreises durch z0 auf die gegenüberliegende Seite des Kreises pro-
jiziert. Randstücke nah bei z0 werden dabei gestreckt, Stücke fern von z0 entsprechend
gestaucht. Wenn man die Randwertverteilung von u zunächst auf diese Weise durch z0 pro-
jiziert, und dann über den Einheitskreis mittelt, erhält man den Wert u(z0). Im Bild der
Temperaturverteilung für die Kreisscheibe: Randwerte nah bei z0 haben großen Einfluss auf
die Temperatur in z0, Randwerte fern von z0 haben geringen Einfluss.

Ist u harmonisch auf der abgeschlossenen Kreisscheibe vom Radius R, so liefert die Poisson-
formel also die Werte im Inneren berechnet aus den Randwerten. Aber man kann beweisen,
dass man diese Formel auch zur Lösung der Randwertaufgabe benutzen kann:

Satz 267 (Existenzsatz für die 1. Randwertaufgabe). Sei u0 eine stetige Funktion
auf der Kreislinie vom Radius R um 0. Dann definiert

u(reiθ) =
1

2π

∫ 2π

0

u0(Re
iφ)

R2 − r2

R2 − 2Rr cos(θ − φ) + r2
dφ (74)

eine auf der abgeschlossenen Kreisscheibe stetige und im Inneren harmonische Funktion u
mit u(Reiφ) = u0(Re

iφ).

Das analoge Verfahren mit der Cauchyschen Integralformel liefert eine analytische Funktion
im Innern, die aber i.a. keine stetige Fortsetzung der auf dem Rand vorgegebenen Funktion
ist.
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10.4 Der Satz von Stokes auf Mannigfaltigkeiten

10.4.1 Mannigfaltigkeiten

Seien V,W endlich-dimensionale Banachräume.

Definition 268. Sei A ∈ V .

(i) Eine Abbildung f : V ⊃ A → W heißt eine C∞-Abbildung, wenn sie sich zu einer
C∞-Abbildung auf einer offenen Umgebung von A fortsetzen läßt, d.h. wenn es eine
offene Umgebung U von A in V und eine Abbildung f̃ : V ⊃ U →W gibt, für die gilt

• f̃ ist beliebig oft differenzierbar,

• f̃ |A = f .

(ii) Eine Abbildung f : A → W heißt ein Diffeomorphismus, wenn f injektiv ist und
sowohl f wie f−1 : f(A) → V C∞-Abbildungen sind.

Beispiel 269. Sei
Dn :=

{
x ∈ Rn

∣∣x2
1 + . . .+ x2

n ≤ 1
}

die abgeschlossene Vollkugel im Rn und sei

A :=
{
x ∈ Dn

∣∣xn < 0
}
.

Sei f : A→ Rn definiert durch

f(x1, . . . , xn) :=

(
x1, . . . , xn−1, xn +

√
1 − (x2

1 + . . .+ x2
n−1)

)
.

Dann ist
A ⊂ U :=

{
x ∈ Rn

∣∣x2
1 + . . .+ x2

n−1 < 1
}
,

U offen und f setzt sich mit derselben Formel von selbst zu einer C∞-Abbildung auf U fort.
Überzeugen Sie sich, dass f injektiv ist. Für (x1, . . . , xn) ∈ A gilt

−
√

1 − (x2
1 + . . .+ x2

n−1) ≤ xn < 0,

und daher ist

f(A) =

{
x ∈ Rn

∣∣∣∣ 0 ≤ xn <
√

1 − (x2
1 + . . .+ x2

n−1)

}
.

f

A

f(A)

U

U

Die Umkehrabbildung ist

f−1(y1, . . . , yn) =

(
y1, . . . , yn−1, yn −

√
1 − (y2

1 + . . .+ y2
n−1)

)
.

Sie erweitert sich ebenfalls “von selbst” zu einer C∞-Abbildung auf derselben offenen Menge
U ⊂ Rn. Also ist f ein Diffeomorphismus.
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Beispiel 270. Weil eine C∞-Abbildung f : A → W auf einer nicht-offenen Menge A im
allgemeinen viele verschiedene Fortsetzungen auf offene Umgebungen besitzt, ist dxf : V →
W im allgemeinen nur in inneren Punkten von A eindeutig definiert. Zum Beispiel läßt sich
die Nullabbildung auf der x-Achse des R2

f : R2 ⊃
{
(x, 0)

∣∣x ∈ R
}
→ R, x 7→ 0

fortsetzen zu f̃(x, y) = 0 oder zu f̃(x, y) = y auf ganz R2, und entsprechend sind die
Differentiale verschieden.

Beispiel 271 (Der Halbraum Hk). Wir werden es im folgenden oft mit Abbildungen des
abgeschlossenen oberen Halbraumes

f : Hk :=
{
x ∈ Rk

∣∣xk ≥ 0
}
→W

zu tun haben und gehen auf diese Situation hier etwas ausführlicher ein.

Wenn wir von inneren (xk > 0) oder von Randpunkten (xk = 0) von Hk sprechen, beziehen
wir uns auf den umgebenden Rk, und wir identifizieren den Rand von Hk mit Rk−1.

Ist f : Hk ⊃ U → W eine C∞-Funktion auf einer offenen Teilmenge von Hk, so ist im
Gegensatz zum letzten Beispiel das Differential dxf : Rk →W auch in Randpunkten durch
f eindeutig bestimmt, weil sich die partiellen Ableitungen allein aus Funktionswerten von f
berechnen, egal wie die Fortsetzung aussieht ...

Sei nun h : Hk ⊃ U → Hk ein Diffeomorphismus einer offenen Teilmenge U ⊂ Hk auf

eine offene Teilmenge h(U) von Hk. Nach der Kettenregel angewendet auf h ◦ h−1 ist das
Differential dxh : Rk → Rk in allen Punkten invertierbar. Nach dem Umkehrsatz bildet h
deshalb innere Punkte von U auf innere Punkte ab. Und weil dasselbe Argument auch für
h−1 gilt, bildet h Randpunkte in Randpunkte ab:

h|U∩Rk−1 : U ∩ Rk−1 → Rk−1

U
h(U)

h

H H

R R

k k

k-1
k-1

I I

Ist x ∈ U ∩ Rk−1 ein Randpunkt, so gilt also

∂h

∂xi
(x) ∈ Rk−1 für alle i ∈ {1, . . . , k − 1}

und ∂h
∂xk

(x) = limtց0
h(x+tek)−h(x)

t zeigt in den oberen Halbraum. Es ist also

∂h

∂xk
(x) = λek + v mit λ > 0 und v ∈ Rk−1

und folglich

det(
∂h

∂x1
, . . . ,

∂h

∂xk
) = λ det(

∂h

∂x1
, . . . ,

∂h

∂xk−1
, ek).
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Hat also dxh : Rk → Rk positive Determinante, so gilt dasselbe für die auf den Rand
eingeschränkte Abbildung dxh|U∩Rk−1 : Rk−1 → Rk−1.

Wir halten die letzten Ergebnisse noch einmal fest:

Lemma 272. Ist h : Hk ⊃ U → Hk ein Diffeomorphismus einer offenen Teilmenge U ⊂ Hk

auf eine offene Teilmenge h(U) von Hk, so gilt

h(U ∩ Rk−1) ⊂ Rk−1

und h|U∩Rk−1 ist ein Diffeomorphismus einer offenen Teilmenge des Rk−1 auf eine offene
Teilmenge des Rk−1. Ist det dh > 0 positiv auf U , so ist det d(h|U∩Rk−1) positiv auf U∩Rk−1.

Definition 273 (Berandete Mannigfaltigkeit). (i) Eine Teilmenge M ⊂ V heißt ei-
ne k-dimensionale berandete Mannigfaltigkeit (oder Untermannigfaltigkeit), wenn sie
lokal diffeomorph zum abgeschlossenen Halbraum

Hk :=
{
x ∈ Rk

∣∣xk ≥ 0
}

ist, d.h. wenn gilt:

Zu jedem p ∈M gibt es eine (in M) offene Umgebung U und einen Diffeomorphismus
u : U → Rk auf eine offene Teilmenge u(U) von Hk.

(ii) Jedes solche u : U → Hk heißt eine Karte für M und die Umkehrung φ := u−1 : Hk ⊃
u(U) →M heißt eine Parametrisierung für M .

(iii) Eine Familie von Karten, deren Definitionsbereiche ganzM überdecken, heißt ein Atlas
für M .

(iv) Sind u1 : U1 → Hk und u2 : U2 → Hk zwei Karten mit U1 ∩ U2 6= ∅, so ist

u2 ◦ u−1
1 : Hk ⊃ u1(U1 ∩ U2) → u2(U1 ∩ U2) ⊂ Hk

ein Diffeomorphismus zwischen offenen Teilmengen von Hk, der auch der Kartenwech-
sel der beiden Karten heißt.

Beispiel 274. Die abgeschlossene Vollkugel Dn ist eine n-dimensionale berandet Mannig-
faltigkeit. Die Abbildung f aus Beispiel 269 liefert eine Karte für jeden Punkt von M mit
xn < 0. Analog findet man Karten für die Punkte mit xn > 0 oder xi < 0 bzw. xi > 0 für
beliebiges i. Die Abbildung

u :
{
x
∣∣x2

1 + . . .+ x2
n < 1

}
→ Hn, (x1, . . . , xn) 7→ (x1 + 1, x2, . . . , xn)

liefert eine Karte um jeden inneren Punkt von Dn. Ihr Bild liegt im offenen Halbraum
xn > 0.

Lemma 275 (und Definition: Randpunkte). Seien M eine k-dimensionale berandete
Mannigfaltigkeit und

u : U → u(U), û : Û → û(U)

zwei Karten und p ∈ U ∩ Û . Liegt dann u(p) auf dem Rand von Hk, d.h. ist uk(p) = 0, so
ist auch ûk(p) = 0. Punkte p, die von einer und dann also von jeder Karte in den Rand von
Hk abgebildet werden, heißen Randpunkte der Mannigfaltigkeit M .

Die Menge der Randpunkte von M , der Rand von M , wird mit ∂M bezeichnet. Sie ist leer
oder eine (k − 1)-dimensionale Mannigfaltigkeit mit leerem Rand.
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Beweis. Folgt unmittelbar aus Lemma 272.

Bemerkungen.

1. Die Definition des Randes kollidiert ein wenig mit der topologischen Begriffsbildung:
Eine abgeschlossene Kreisscheibe B ⊂ R3 im dreidimensionalen Raum ist eine 2-
dimensionale berandete Untermannigfaltigkeit. Als Teilmenge des metrischen Raumes
R3 sind alle ihre Punkte Randpunkte, im differentialgeometrischen Sinne aber nur die
Punkte auf der Kreislinie.

2. Für berandete Mannigfaltigkeit M mit leerem Rand ∂M = ∅ wie etwa die offene Voll-
kugel klingt der Begriff “berandete Mannigfaltigkeit” unsinnig. Wir bezeichnen des-
halb mit “Mannigfaltigkeit” in Zukunft sowohl “echt” berandete Mannigfaltigkeiten,
wie unberandete Mannigfaltigkeiten (∂M = ∅).

3. In der Analysis II hatten wir eine Teilmenge M ⊂ V eines n-dimensionalen Banachrau-
mes eine k-dimensionale Untermannigfaltigkeit genannt, wenn es zu jedem p ∈M eine
offene Umgebung Ũ von p in V und einen Diffeomorphismus φ : V ⊃ Ũ → φ(Ũ) ⊂ Rn

auf eine offene Menge φ(Ũ) des Rn gab, so dass mit der üblichen Idenifikation Rk ⊂ Rn

galt
φ(M ∩ Ũ) = Rk ∩ φ(Ũ).

Nach Verkleinerung von Ũ können wir annehmen, dass Rk ∩ φ(Ũ) beschränkt ist. Wir
setzen U := M ∩ Ũ . Offenbar ist dann φ|U : U → Rk ein Diffeomorphismus von
U auf die offene Teilmenge Rk ∩ φ(Ũ) des Rk. Und weil Rk ∩ φ(Ũ) beschränkt ist,
können wir ein a ∈ Rk so wählen, dass u := a + φ|U im Inneren von Hk liegt. Also
ist jede k-dimensionale Mannigfaltigkeit im Sinne der Analysis II eine k-dimensionale
Mannigfaltigkeit mit leerem Rand im Sinne der neuen Definition.

Davon gilt auch die Umkehrung: Ein Diffeomorphismus u : M ⊃ U → u(U) ⊂ Rk

läßt sich nach Definition zu einer C∞-Abbildung φ : Ũ → Rk einer offenen Umge-
bung Ũ von p in V nach Rk ⊂ Rn fortsetzen. Die Umkehrabbildung u−1 wird durch
u−1(x1, . . . , xn) := u−1(x1, . . . , xk) zu einer C∞-Abbildung auf der offenen Menge
u(U) × Rn−k ⊂ Rn fortgesetzt.

Also sind die C∞-Mannigfaltigkeiten im Sinne der Analysis II genau die Mannigfal-
tigkeiten mit leerem Rand im Sinne der neuen Definition.

Beispiel 276 (Zur Veranschaulichung). Eine abgeschlossene Halbsphäre oder ein Möbius-
band sind berandete 2-dimensionale Untermannigfaltigkeiten des R3.

Der Rand ist in beiden Fällen eine geschlossene Kurve.

Beispiel 277 (Zum Nachdenken). Die Menge

M =
{
x ∈ Dn

∣∣xn < 0
}

ist eine berandete n-dimensionale Mannigfaltigkeit. Was ist ihr Rand?
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10.4.2 Zerlegung der Eins

Sei V ein endlich-dimensionaler Banachraum.

Der folgende Satz ist ein technisches Hilfsmittel zur
”
Lokalisierung“ globaler Objekte auf

einer Mannigfaltigkeit und umgekehrt zum
”
Verschmelzen“ lokaler Objekte zu globalen Ob-

jekten. Wir formulieren und beweisen ihn nur in einer sehr speziellen Situation für kompakte
Mannigfaltigkeiten, weil wir ihn allgemeiner nicht benötigen und weil dadurch der Beweis
viel einfacher wird.

Satz 278 (Zerlegung der Eins). Seien M ⊂ V eine kompakte berandete k-dimensionale
Mannigfaltigkeit und (uα : Uα → Hk)α∈A ein Atlas für M .
Dann gibt es endlich-viele C∞-Funktionen

λ1, . . . , λm : M → [0, 1]

mit folgenden Eigenschaften:

(i) Zu jedem i ∈ {1, . . . ,m} gibt es ein α ∈ A mit

suppλi :=
{
x
∣∣λi(x) 6= 0

}
⊂ Uα.

suppλi heißt der Träger von λi.

(ii) Für alle x ∈M ist
m∑

i=1

λi(x) = 1.

Die Familie (λi)1≤i≤m nennt man auch eine zu (Uα)α∈A passende Zerlegung der Eins.

Beweis. Wähle zu jedem x ∈ M eine Karte ux : Ux → Hk aus dem gegebenen Atlas aus,
für die x ∈ Ux. Dann ist ux(Ux) eine offene Teilmenge von Hk, und es gibt (vgl. Analysis I,
4.3) eine nicht negative C∞-Funktion ψx : Hk → R mit

ψx(ux(x)) = 1,

suppψx ⊂ ux(Ux).

Setze

λ̃x(y) :=

{
ψx(ux(y)), falls y ∈ Ux,

0 sonst.

Dann ist λ̃x eine C∞-Funktion auf M . Das ist nach der Kettenregel klar auf der offenen
Menge Ux und erst recht klar auf der offenen Menge M \u−1

x (suppψx). Diese beiden offenen
Mengen überdecken aber M , und daher ist λ̃x überall C∞.

(Vx := λ̃−1
x (]0,∞[))x∈M ist eine offene Überdeckung der kompakten Mannigfaltigkeit M .

Also genügen endlich viele dieser Mengen, um M zu überdecken:

M = Vx1
∪ . . . ∪ Vxm

.

Dann ist also
σ := λ̃x1

+ . . .+ λ̃xm
> 0

und für λi := λ̃xi
/σ gilt

∑
λi = 1. Der Träger von λi liegt in Uxi

. Aber Uxi
= Uα für ein

α ∈ A, und damit folgt die Behauptung.
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10.4.3 Orientierung

Definition 279. Sei M eine berandete k-dimensionale Untermannigfaltigkeit von V .

(i) Eine Differentialform vom Grad m auf M ist eine C∞-Abbildung

ω : M → ΛmV ∗.

Beachten Sie, dass sich ω nach Definition zu einer C∞-Abbildung auf einer offenen
Umgebung G von M in V erweitern läßt.

Den Vektorraum der Differentialform vom Grad m auf M bezeichnen wir mit Ωm(M).

Ist φ : Rk ⊃ Ũ →M eine (lokale) Parametrisierung für M , so ist φ∗ω ∈ Ωm(Ũ).

(ii) p ∈M heißt eine Nullstelle von ω ∈ Ωm(M), wenn für eine Parametrisierung φ für M
um p

(φ∗ω)φ−1(p) = 0. (75)

Hat man zwei Parametrisierungen φi um p, so gilt

φ∗1ω = (u2 ◦ u−1
1︸ ︷︷ ︸

Diffeo

)∗φ∗2ω. (76)

Also gilt (75) für alle Parametrisierungen, wenn es für eine gilt.

(iii) Eine Form η ∈ Ωm(M) = Ωdim M (M) ohne Nullstelle heißt eine Determinantenform
auf M . M heißt orientierbar, wenn es auf M eine Determinantenform gibt.

(iv) Zwei Determinantenformen η1, η2 auf M heißen äquivalent, wenn

φ∗η1(e1, . . . , ek)

φ∗η2(e1, . . . , ek)
> 0

für jede Parametrisierung φ. Das definiert eine Äquivalenzrelation, und jede Äquivalenz-
klasse heißt eine Orientierung von M . Jede Determinantenform auf M definiert also
eine Orientierung von M . Ein Mannigfaltigkeit mit einer Orientierung heißt eine ori-
entierte Mannigfaltigkeit und die Determinantenformen aus der Orientierung dann
positive Determinantenformen.

Bemerkungen.

1. Im Rk ist eine Basis positiv orientiert, wenn sie genauso orientiert ist, wie die Stan-
dardbasis, das heißt, wenn die Basistransformation zwischen den beiden eine positive
Determinante hat.

2. Stattdessen kann man auch sagen, eine Basis im Rk ist positiv orientiert, wenn die
Determinante mit den Vektoren der Basis als Argumenten positiv ist.

3. Ein k-dimensionaler reeller Vektorraum hat im Gegensatz zum Rk keine ausgezeichnete
Orientierung. Aber man kann eine auszeichnen, indem man irgendeine Basis als positiv
orientiert deklariert.

4. Auf den k-tupeln von Vektoren in einem k-dimensionalen Vektorraum hat man im
Gegensatz zum Rk keine ausgezeichnete Determinante. Aber man kann eine wählen,
indem man irgendeine alternierende k-Form 6= 0 auszeichnet. Das liefert dann gleich-
zeitig wie in der 2. Bemerkung eine Orientierung für den Vektorraum.
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5. Eine Orientierung für eine Mannigfaltigkeit ist anschaulich eine “kohärente” Orientie-
rung für deren Tangentialräume. Machen Sie sich das am Zylinder, am (nicht orien-
tierbaren) Möbiusband und an der 2-Sphäre klar.

6. Wie in der 4. Bemerkung kann man eine Orientierung auf einer Mannigfaltigkeit aus-
zeichnen, indem man (in “kohärenter” Weise) in jedem Tangentialraum eine alternie-
rende k-Form 6= 0 vorgibt, eben eine Determinantenform.

7. Wir verzichten hier der Einfachheit halber auf die Einführung des Tangentialraums.
Daher “akzeptieren” unsere oben definierten Differentialformen in ihren multilinearen
Argumenten beliebige Argumente aus dem umgebenden Vektorraum V , und nicht nur
Tangentialvektoren an M . Diesen ungewollten Effekt beseitigen wir dadurch, dass wir
im wesentlichen die zurückgeholten Formen φ∗ω = (u−1)∗ω betrachten. Beachten Sie
die definierende Gleichung

φ∗ω(v1, . . . , vk) = ωφ(dφ(v1, . . . , dφ(vk)︸ ︷︷ ︸
tangential an M

).

Beispiel 280. Auf Rk oder Hk ist η = dx1 ∧ . . . ∧ dxk = det eine Determinantenform, die
also eine Orientierung definiert. Diese bezeichnen wir als die Standardorientierung von Rk

bzw. Hk

Beispiel 281. Sei ∗ωX ∈ Ωn−1(Rn \ {0}) wie im Beispiel 187 und Sn−1 ⊂ Rn. Wir betrach-
ten ∗ωX als Element von Ωn−1(Sn−1). Ist φ : Rn−1 ⊃ Ũ → Sn−1 eine Parametrisierung, so
sind also ∂1φ, . . . , ∂n−1φ überall linear unabhängig. Aus 〈φ, φ〉 = 1 folgt durch Differenzie-
ren 〈φ, ∂iφ〉 = 0 für alle i ∈ {1, . . . , n − 1}. Also sind auch φ, ∂1φ, . . . , ∂n−1φ überall linear
unabhängig. Daher ist

φ∗(∗ωX)(e1, . . . , en−1) = det(φ, ∂1φ, . . . , ∂n−1φ)

niemals 0 und ∗ωX ist eine Determinantenform auf Sn−1. Die zugehörige Orientierung nen-
nen wir die Standardorientierung von Sn−1.

Das gilt natürlich auch für Sphären von beliebigem Radius r > 0.

Definition 282. (i) Zwei Karten für eine Mannigfaltigkeit heißen gleichorientiert, wenn
ihr Kartenwechsel überall positive Funktionaldeterminante hat.

(ii) Sei M eine orientierte Mannigfaltigkeit. Eine Karte u : U → Rk für M heißt positiv
orientiert, wenn

(u−1)∗η(e1, . . . , ek) > 0

für eine (und dann für jede) positive Determinantenform η ∈ Ωk(M). Entsprechend
definiert man negativ orientierte Karten

Lemma 283. Sei M eine k-dimensionale kompakte berandete Untermannigfaltigkeit von V .
Dann gilt:

(i) Ist M orientiert, so sind die Kartenwechsel zwischen positiv orientierten Karten gleich-
orientiert. M besitzt einen Atlas aus gleichorientierten Karten.

(ii) Besitzt M einen Atlas aus gleichorientierten Karten, so gibt es genau eine Orientie-
rung für M bezüglich der alle Karten aus dem Atlas positiv orientiert sind.
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Beweis. Zu (i). Die erste Behauptung ist klar nach (76).

Wir wählen nun für M eine Atlas mit zusammenhängenden Kartengebieten und eine posi-
tive Determinantenform η. Dann wechselt (u−1)∗η(e1, . . . , ek) nicht das Vorzeichen. Ist es
negativ, so ersetzen wir die erste Komponente u1 von u durch −u1 und erhalten so eine posi-
tiv orientierte Karte mit demselben Kartengebiet. Das tun wir mit jeder Karte und erhalten
eine Atlas aus positiv und daher gleichorientierten Karten.

Zu (ii). Es ist klar, dass es nur eine solche Orientierung geben kann.

Sei A ein Atlas wie in (ii). Wir wählen dazu eine Zerlegung der Eins (λi)1≤i≤m und zu jedem
i eine Karte (ui : Ui → Rk) ∈ A mit

suppλi ⊂ Ui.

Wir setzen

(ηi)x :=

{
(u∗i dx1 ∧ . . . ∧ dxk)x für x ∈ Ui

0 sonst

Beachten Sie, dass die ηi im allgemeinen nicht C∞ sind, wohl aber die λiηi ∈ Ωk(M). Wir
definieren

η =
m∑

i=1

λiηi ∈ Ωk(M).

Dann ist

(u−1
j )∗η(e1, . . . , ek) =

∑

i

(λi ◦ u−1
j )

(
(u−1

j )∗u∗i dx1 ∧ . . . ∧ dxk

)
(e1, . . . , ek)

=
∑

i

(λi ◦ u−1
j ) det(D(uiu

−1
j ))(dx1 ∧ . . . ∧ dxk)(e1, . . . , ek)

> 0.

Nach Definition der Zerlegung der Eins bilden die suppλj und deshalb die Kartengebiete
Uj eine Überdeckung von M und η ist eine Determinantenform, bezüglich der alle Karten
aus dem konstruierten Atlas positiv orientiert sind.

Übungsaufgabe. Eine zusammenhängende Mannigfaltigkeit besitzt keine oder genau zwei
Orientierungen.

Wir erinnern nun an Lemma 272: Ist u : U → Hk eine Karte für M mit U ∩ ∂M 6= ∅, so ist

u|U∩∂M : U ∩ ∂M → Rk−1

eine Karte für ∂M . Gleichorientierte Karten für M liefern auf diese Weise gleichorientierte
Karten für ∂M , und ein Atlas für M mit gleichorientierten Karten induziert einen solchen
für ∂M . Deshalb folgt aus dem letzten Lemma:

Satz 284 (und Definition: Randorientierung). Sei M ⊂ V eine orientierte kompakte
k-dimensionale berandete Mannigfaltigkeit mit nicht-leerem Rand. Dann gibt es auf ∂M
genau eine Orientierung mit folgender Eigenschaft:

• Ist dimM gerade, so induziert jeder Atlas aus positiv orientierten Karten für M einen
Atlas aus positiv orientierten Karten für ∂M .

• Ist dimM ungerade, so induziert jeder Atlas aus positiv orientierten Karten für M
einen Atlas aus negativ orientierten Karten für ∂M .

Diese Orientierung heißt die induzierte Randorientierung.
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Beispiel 285. Auf der Einheitsvollkugel Dn definiert die Determinantenform

det = dx1 ∧ . . . ∧ dxn ∈ Ωn(Rn)

eine Orientierung und nach Beispiel 269 ist

u(x1, . . . , xn) =

(
x1, . . . , xn +

√
1 − (x2

1 + . . .+ x2
n−1)

)

eine Karte fürDn. Das Orientierungsverhalten dieser Karte ist gegeben durch das Vorzeichen
von

(u−1)∗ det(e1, . . . , en) = det

(
∂u−1

∂y1
, . . . ,

∂u−1

∂yn

)
= 1,

weil u−1 fast so aussieht wie u, vgl. Beispiel 269. u ist also eine positiv orientierte Karte
für die berandete Mannigfaltigkeit Dn. Es liefert in geraden Dimensionen n eine positive, in
ungeraden Dimensionen eine negativ orientierte Karte bezüglich der Randorientierung von
Sn−1 = ∂Dn.

Wie verhält sich diese Randorientierung zur Standardorientierung, vgl. Beispiel 281?

Dazu berechnen wir

((u|Sn−1)−1)∗ ∗ ωX(e1, . . . , en−1) = (u−1|Rn−1)∗ ∗ ωX(e1, . . . , en−1)

= det

(
u−1(y)

‖u−1(y)‖ ,
∂u−1

∂y1
, . . . ,

∂u−1

∂yn−1

)

= det
(
u−1(y), e1, . . . , en−1

)

= (−1)n−1 det
(
e1, . . . , en−1, u

−1(y)
)
.

Weil u−1(y) negative n-te Koordinate hat, vgl. die Abbildung in Beispiel 269, hat der letz-
te Ausdruck also Vorzeichen (−1)n. Die Orientierung von Sn−1 als Rand der kanonisch
orientierten Vollkugel Dn ist also die Standardorientierung von Sn−1. Das mag mit der
Fallunterscheidung in der Definition im Satz 284 versöhnen.

Bemerkung. Die Aussagen von Lemma 283 und damit der Satz 284 gelten auch für nicht-
kompaktes M . Den Beweis muss man nicht ändern, man braucht nur eine allgemeinere
Version des Satzes von der Zerlegung der Eins. Da wir im folgenden Abschnitt ohnehin aber
nur kompakte berandete Mannigfaltigkeiten betrachten, reicht unsere “Sparversion”.
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10.4.4 Integration über Mannigfaltigkeiten

Sei V ein endlichdimensionaler Banachraum.

Definition 286. Seien M eine k-dimensionale kompakte, orientierte berandete Unterman-
nigfaltigkeit von V und ω ∈ Ωk(M). Nach dem Satz 278 von der Zerlegung der Eins, ins-
besondere nach der letzten Bemerkung dort, gibt es einen Atlas (ui : Ui → Hk)1≤i≤k mit
positiv orientierten Karten und dazu eine Zerlegung der Eins (λi)1≤i≤k mit suppλi ⊂ Ui.
Wir bezeichnen mit φi = u−1

i die zugehörigen Parametrisierungen und definieren:

∫

M

ω :=
m∑

i=1

∫

M

λiω :=
m∑

i=1

∫

ui(supp λi)

φ∗i (λiω) :=
m∑

i=1

∫

ui(supp λi)

φ∗i (λiω)(e1, . . . , ek) dµk.

Beachten Sie, daß suppλi abgeschlossen, also kompakt ist. Daher ist auch

x 7→ φ∗i (λiω)x(e1, . . . , ek)

eine C∞-Funktion mit kompaktem Träger ui(suppλj) und die µk-Integrale existieren.

Wir müssen zeigen, dass diese Definition unabhängig von den gemachten Wahlen ist. Das
liegt im wesentlichen an diesem

Lemma 287. Seien ui : Uj → Hk für i = 1, 2 zwei gleich-orientierte Karten für M mit
Parametrisierungen φi := u−1

i und ω ∈ Ωk(M) mit kompaktem Träger

S := suppω ⊂ U1 ∩ U2.

Dann gilt ∫

u1(S)

φ∗1ω =

∫

u2(S)

φ∗2ω. (77)

Beweis. Nach der Transformationsformel Lemma 199 gilt
∫

u1(S)

φ∗1ω =

∫

u1(S)

(u2 ◦ u−1
1 )∗φ∗2ω =

∫

u2◦u−1
1 (u1(S))

φ∗2ω =

∫

u2(S)

φ∗2ω.

Nun zum eigentlichen

Beweis der Unabhängigkeit. Sei (ũj : Ũj → Rk)1≤j≤m̃ ein weiterer Atlas wie in der Definition

und (λ̃j) dazu eine Zerlegung der Eins . Dann gilt

m∑

i=1

∫

ui(supp λi)

φ∗i (λiω) =
m∑

i=1

∫

ui(supp λi)

φ∗i (
m̃∑

j=1

λ̃jλiω)

=
∑

i=1,...,m

∑

j=1,...,m̃

∫

ui(supp λi ∩ supp λ̃j)

φ∗i (λ̃jλiω)

=
(77)

∑

j=1,...,m̃

∑

i=1,...,m

∫

ũj(supp λ̃i ∩ supp λ̃j)

φ̃∗j (λ̃jλiω)

=
∑

j=1,...,m̃

∫

ũj(supp λ̃j)

φ̃∗j (λ̃jω).

So elegant die Methode der Zerlegung der Eins für die Definition von
∫

M
ω auch ist, niemand

würde sie benutzen, um konkrete Integrale zu berechnen. Dafür ist das folgende Lemma
hilfreich:
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Lemma 288. Seien M eine kompakte orientierte Mannigfaltigkeit, ω ∈ Ωk(M), k = dimM ,
und

φ : Rk ⊃ G→M

eine C∞-Abbildung einer kompakten Menge G ⊂ Rk mit folgenden Eigenschaften:

(i)
suppω ⊂ φ(G).

(ii) Es gibt eine µk-Nullmenge N ⊂ G, so dass G \N offen in Hk und

φ|G \N : G \N →M

eine positiv orientierte Parametrisierung von M , d.h das Inverse einer positiv orien-
tierten Karte für M ist.

Dann ist ∫

M

ω =

∫

G

φ∗ω.

Beweis. Es genügt, den Beweis zu führen für den Fall, dass suppω enthalten ist im Defini-
tionsbereich einer positiv orientierten Karte u : U → Hk. Dann ist

∫

M

ω =

∫

u(supp ω)

(u−1)∗ω.

Sei G′ :=
{
x ∈ G

∣∣φ(x) ∈ U
}
. Dann ist

h := u ◦ φ|G′ : G′ → Rk

auf der offenen Menge G′ \N ein orientierungstreuer Diffeomorphismus auf eine offene Teil-
menge von Hk, die u(suppω) enthält. Daher gilt

∫

u(supp ω)

(u−1)∗ω(e1, . . . , ek)dµk =

∫

h(G′)

(u−1)∗ω(e1, . . . , ek)dµk

=

∫

G′

(u−1)∗ωh(e1, . . . , ek) det(Dh)︸ ︷︷ ︸
>0

dµk

=

∫

G′

h∗(u−1)∗ωh(e1, . . . , ek)dµk

=

∫

G′

φ∗u∗(u−1)∗ω =

∫

G′

φ∗ω =

∫

G

φ∗ω.

Beispiel 289. Die Kugelkoordinaten

[0, π] × [0, 2π] → S2, (θ, φ) 7→




sin θ cosφ
sin θ sinφ

cos θ





erfüllen die Voraussetzungen des Lemmas, wenn man S2 mit der Standardorientierung ver-
sieht. Darum ist

∫

S2

∗ωX =

∫

[0,π]

∫

[0,2π]

det




sin θ cosφ cos θ cosφ − sin θ sinφ
sin θ sinφ cos θ sinφ sin θ cosφ

cos θ − sin θ 0



 dφ dθ

=

∫

[0,π]

∫

[0,2π]

sin θdφdθ = 4π.
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Beispiel 290.

Bildet φ : Rn−1 ⊃ G → Sn−1 die kompakte Men-
ge G surjektiv auf die Sphäre Sn−1 ab und ist auf
dem offenen Komplement einer Nullmenge ein orien-
tierungstreuer Diffeomorphismus, so leistet

φ̃ : G× [−π/2, π/2] → Sn, (x, t) 7→ (φ(x) cos t, sin t)

dasselbe für Sn.

ϕ

ϕ

∼

Wir berechnen die Zurückholung φ̃∗(∗ωX) der Flussform ∗ωX ∈ Ωn(Rn+1) mit X = x
‖x‖n+1 .

Dabei beachten wir, dass ‖φ‖ = ‖φ̃‖ = 1.

φ̃∗(∗ωX)(x,t)(e1, . . . , en) = det(φ̃,
∂φ̃

∂x1
, . . . ,

∂φ̃

∂xn−1
,
∂φ̃

∂t
)

= det




φ(x) cos t | ∂φ(x)

∂xi
cos t | −φ(x) sin t

sin t | 0 | cos t





=
1

cos t sin t
det




φ(x) cos t sin t | ∂φ(x)

∂xi
cos t | −φ(x) sin t cos t

sin2 t | 0 | cos2 t





=
1

cos t sin t
det




φ(x) cos t sin t | ∂φ(x)

∂xi
cos t | 0

sin2 t | 0 | 1





=
1

cos t sin t
det
[
φ(x) cos t sin t | ∂φ(x)

∂xi
cos t

]

= cosn−1 t det
[
φ(x) | ∂φ(x)

∂xi

]

= cosn−1 t φ∗(∗ωX)x(e1, . . . , en−1),

wobei in der letzten Zeile die Flussform auf dem Rn steht. Durch Induktion ergibt sich
daraus, dass ∫

Sn

∗ωX = Volumen(Sn),

vgl. Beispiel 73.
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10.4.5 Der Satz von Stokes auf Mannigfaltigkeiten

Sei V ein endlich-dimensionaler Banachraum.

Lemma 291. Sei ω ∈ Ωk−1(Hk) mit kompaktem Träger S ⊂ Hk. Wir betrachten Rk−1 als
Teilmenge Rk−1 × {0} von Rk. Dann gilt

∫

S

dω(e1, . . . , ek) dµk = (−1)k

∫

S∩Rk−1

ω(e1, . . . , ek−1) dµk−1.

Beweis. Sei r > 0 so gewählt, dass

S ⊂ ] − r, r[k−1 × [0, r[ ⊂ [−r, r]k−1 × [0, r] =: Q.

Q

S

RI
k-1

Definiere
c : Ik → Q, (x1, . . . , xk) 7→ (r(2x1 − 1), . . . , r(2xk−1 − 1), rxk).

Dann gilt nach der Transformationsformel Lemma 199 und dem Satz von Stokes für Ketten

∫

S

dω =

∫

Q

dω =

∫

c(Ik)

dω =

∫

Ik

c∗dω =

∫

c

dω =

∫

∂c

ω =
k∑

i=1

(−1)i−1

(∫

c◦si

ω −
∫

c◦si

ω

)
.

Aber allenfalls die untere k-te Seite von c trifft den Träger von ω. Wir erhalten

∫

S

dω(e1, . . . , ek) dµk = (−1)k

∫

c◦sk

ω = (−1)k

∫

S∩Rk−1

ω(e1, . . . , ek−1) dµk−1.

Beachten Sie, dass die Identität eine positiv orientierte Karte vonHk ist. Ihre Einschränkung
auf Rk−1 ist ebenfalls positiv orientiert bezüglich der Standardorientierung von Rk−1. Aber
die Randorientierung von ∂Hk stimmt damit nur bei geradem k überein. Deshalb kann man
die Formel der Lemmas auch schreiben als

∫

Hk

dω =

∫

∂Hk

ω.

Das ist die einfachste Version des Satzes von Stokes für Mannigfaltigkeiten, den wir aber
nur für kompakte Mannigfaltigkeiten beweisen:
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Satz 292 (Stokes). Seien M eine k-dimensionale kompakte, orientierte berandete Unter-
mannigfaltigkeit von V und ω ∈ Ωk−1(M). Der Rand ∂M trage die induzierte Randorien-
tierung. Dann gilt ∫

M

dω =

∫

∂M

ω.

Ist insbesondere ∂M = ∅, so gilt ∫

M

dω = 0.

Beweis. Seien (ui : Ui → Hk)i∈{1,...,m} ein Atlas mit positiv orientierten Karten und sei
(λi : Ui → R)i∈{1,...,m} eine Zerlegung der Eins dazu. Dann gilt

∫

M

dω =

∫

M

d(

m∑

i=1

λiω) =

m∑

i=1

∫

M

d(λiω)

=
m∑

i=1

∫

ui(supp λi)

(u−1
i )∗d(λiω)(e1, . . . , ek)

=
m∑

i=1

∫

ui(supp λi)

d((u−1
i )∗λiω)(e1, . . . , ek)

=
(Lemma 291)

(−1)k
m∑

i=1

∫

ui(supp λi)∩Rk−1

(u−1
i )∗λiω(e1, . . . , ek−1)

=

∫

∂M

ω.

Beispiel 293. Für 0 < R 6= 1 ist M =
{
x ∈ Rn+1

∣∣ (1 − ‖x‖)(R− ‖x‖) ≤ 0
}

eine (n+ 1)-
dimensionale Mannigfaltigkeit M deren Rand die beiden Sphären Sn

R und Sn vom Radius
R bzw. 1 mit entgegengesetzten Orientierungen bilden. Sei ∗ωX wie im Beispiel 290. Weil
d ∗ ωX = 0 folgt aus dem Satz von Stokes

0 =

∫

M

d ∗ ωX = ±
(∫

Sn
R

∗ωX −
∫

Sn

∗ωX

)
.

Es folgt also ∫

Sn
R

∗ωX =

∫

Sn

∗ωX = V olumen(Sn).

Allgemeiner gilt das für jede kompakte Hyperfläche X ⊂ Rn+1, die gemeinsam mit einer
Sphäre Sn

R eine kompakte Untermannigfaltigkeit M des Rn+1 berandet.

Beispiel 294. Ist M eine kompakte unberandete k-dimensionale orientierte Mannigfaltig-
keit, so istM× [0, 1] ⊂ V ×R eine kompakte berandete (k+1)-dimensionale Mannigfaltigkeit.
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M x {0} M x {1}

M x [0,1]

Ein Atlas (ui : Ui → Rk)i∈J mit positiv orientierten Karten liefert einen Atlas für M × [0, 1]
mit folgenden Karten:

u+
i : Ui × [0, 1[→ Rk+1, (x, t) 7→




ui1(x)
ui2(x)

...
uik(x)
t



,

u−i : Ui×]0, 1] → Rk+1, (x, t) 7→




−ui1(x)
ui2(x)

...
uik(x)
1 − t



.

Man rechnet nach, dass diese Karten gleich-orientiert sind. Wenn man die Randkomponenten
M ×{0} und M ×{1} auf die offensichtliche Weise mit M identifiziert, stimmt bei geradem
k+1 die Randorientierung auf M×{0} mit der ursprünglichen Orientierung von M überein,
auf M × {1} erhält man die entgegengesetzte Orientierung. Bei ungeradem k+ 1 kehrt sich
das um.

Sei nun N eine weitere k-dimensionale Mannigfaltigkeit und ω ∈ Ωk(N). Seien

f0, f1 : M → N

zwei homotope Abbildungen, d.h. es gibt eine C∞-Abbildung F : M × [0, 1] → N mit

F (., 0) = f0, F (., 1) = f1.

Weil ω vom Grad k = dimN ist, ist dω = 0. Also ist auch

0 =

∫

M× [0,1]

F ∗dω =

∫

M× [0,1]

d(F ∗ω) =

∫

∂M

F ∗ω = ±
(∫

M

f∗0ω −
∫

M

f∗1ω

)
.

Für homotope Abbildungen f0, f1 : M → N gilt also

∫

M

f∗0ω =

∫

M

f∗1ω.

Beispiel 295. Wir wenden das an auf den Fall M = N = Sk und die Antipodenabbildung

α : Sk → Sk, x 7→ −x.
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Weil die Form η := ∗ωX ∈ Ωk(Rk+1 \ {0}) die Orientierung von Sk definiert, ist

∫

Sk

η > 0.

Nun ist aber

(α∗η)p(v1, . . . , vk) = η−p(−v1, . . . ,−vk) = det(−p,−v1, . . . ,−vk) = (−1)k+1ηp(v1, . . . , vk).

Für gerades k ist also ∫

Sk

α∗η < 0

und die Antipodenabbildung damit nicht homotop zur Identität id : Sk → Sk.

Sei nun T : Sk → Rk+1 eine C∞-Abbildung mit

〈x, T (x)〉 = 0

für alle x ∈ Sk. Dann nennt man T auch ein tangentiales Vektorfeld auf der Sphäre Sk.

Hat T keine Nullstelle, so liefert

F (x, t) := cos(πt)x+ sin(πt)
T (x)

‖T (x)‖

eine Homotopie F : Sk × [0, 1] → Sk zwischen
der Identität und der Antipodenabbildung.

x

-x

T(x)

F(x,t)

Solche Abbildungen können also nur für ungerades k existieren. (Tun sie auch!) Für gera-
des k, insbesondere für k = 2 hat hingegen jedes tangentiale Vektorfeld auf der k-Sphäre
mindestens eine Nullstelle:

Jeder glatt gekämmte Igel hat mindestens einen Glatzpunkt.
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10.4.6 Der Abbildungsgrad

In diesem Abschnitt skizzieren wir die Definition einer Homotopieinvarianten für Selbstab-
bildungen der (n− 1)-dimensionalen Einheitssphäre

Sn−1 =
{
x ∈ Rn

∣∣ ‖x‖ = 1
}
.

Lemma 296. Seien f : M → N ein Diffeomorphismus zusammenhängender kompakter
k-Mannigfaltigkeiten und ω ∈ Ωk(N). Dann gilt

∫

M

f∗ω = ±
∫

N

ω.

Wir verzichten auf den Beweis. Er benutzt die Definition des Integrals über Mannigfaltig-
keiten und das Lemma 199.

Sei wieder X := x
‖x‖n auf Rn \ {0}. Wir versehen Sn−1 mit der von ∗ωX induzierten Orien-

tierung. Dann ist

cn−1 :=

∫

Sn−1

ωn−1 > 0.

ωn−1 := ∗ωX ∈ Ω(Rn \ {0}).
(Tatsächlich ist dies das Volumen der Sphäre.) Wir setzen im folgenden

ωn−1 :=
1

cn−1
∗ ωX .

Dann ist also
∫

Sn−1 ωn−1 = 1.

Satz 297 (Abbildungsgrad). Sei f : Sn−1 → Sn−1 eine C∞-Abbildung. Dann ist

deg(f) :=

∫

Sn−1

f∗ωn−1

eine ganze Zahl, der sogenannte Abbildungsgrad von f .

Bemerkung. Nach Beispiel 294 ist deg(f0) = deg(f1), wenn f0 und f1 homotop sind.

Beweis. Sei P := en der
”
Nordpol“ von Sn−1 und für r > 0

Dr :=
{
x ∈ Sn−1

∣∣ ‖P − x‖ ≤ r
}

die
”
Polkappe“ vom Radius r.

P

D r

B

B

B

1

2

f

3
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Wir nehmen zunächst folgendes an:

Es gibt ein r > 0, so dass f−1(Dr) die Vereinigung von endlich vielen
disjunkten Mengen B1, . . . , Bk ⊂ Sn−1 ist, die jeweils durch f diffeomorph
auf Dr abgebildet werden.

(∗)

Dann ist ∫

Sn−1

f∗ωn−1 =

∫

Sn−1\ S

Bi

f∗ωn−1 +
k∑

i=1

∫

Bi

f∗ωn−1. (78)

Wir betrachten das erste Integral rechts. Nach dem Lemma von Poincaré besitzt ωn−1 auf
dem sternförmigen Komplement der Halbachse

{
λP

∣∣λ ≥ 0
}

ein Potential θn−2. Damit gilt
∫

Sn−1\ S

Bi

f∗dθn−2 =

∫

Sn−1\ S

Bi

df∗θn−2 =

∫

∂(Sn−1 \ S

Bi)

f∗θn−2

= −
k∑

i=1

∫

∂Bi

f∗θn−2 =
Lemma 296

−
k∑

i=1

±
∫

∂Dr

θn−2

=
k∑

i=1

±
∫

∂(Sn−1 \Dr)

θn−2 =
k∑

i=1

±
∫

Sn−1 \Dr

dθn−2

=
k∑

i=1

±
∫

Sn−1 \Dr

ωn−1 = m

∫

Sn−1 \Dr

ωn−1

für ein ganzzahliges m.

Für r → 0 geht dies gegen m
∫

Sn−1
ωn−2 = m, während die Bi jeweils auf einen Punkt

schrumpfen. Die Bi-Integrale in (78) gehen daher gegen 0 und aus (78) folgt die Behauptung.

Wir skizzieren nun noch, warum man ohne Einschränkung die Annahme (*) machen kann.
Wir setzen f durch f̃(x) := ‖x‖ f( x

‖x‖ ) auf Rn \ {0} fort und wenden darauf das Lemma von

Sard an. Man rechnet nach, dass Q ∈ Rn genau dann ein regulärer Wert von f̃ ist, wenn
dasselbe für Q/‖Q‖ gilt. Wir können also o.E. annehmen, dass P = en ein regulärer Wert
ist. Nach dem Umkehrsatz bildet f dann eine Umgebung eines jeden Punktes ∈ f−1({p})
diffeomorph ab. Weil Sn−1 kompakt ist, ist f−1({p}) = {p1, . . . , pk} endlich und eine Umge-
bung Ui von pi wird diffeomorph auf eine offene Umgebung von P abgebildet. Wir können
annehmen, dass die Ui disjunkt sind. Wählt man r > 0 so klein, dass

Dr ⊂
(

k⋂

i=1

f(Ui)

)
\ f(Sn−1 \

k⋃

i=1

Ui),

so folgt (∗).
Bemerkungen.

1. Der Beweis liefert eine anschauliche Interpretation des Abbildungsgrades: Dieser zählt
einfach die Urbilder eines regulären Wertes von f mit Vielfachheiten ±1 abhängig
davon, ob f in diesen Punkten die Orientierung erhält oder umkehrt.

2. Eine Standardanwendung des Abbildungsgrades ist diese: Gegeben sei eine Abbildung
f : Dn → Rn und ein y ∈ Rn. Man möchte wissen, ob

f(x) = y

eine Lösung besitzt. Wenn y ∈ f(Sn−1) ist das klar. Andernfalls betrachtet man die
Abbildungen

g : Sn−1 → Sn−1, x 7→ f(x) − y

‖f(x) − y‖ .
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Wenn deg(g) 6= 0, besitzt die Gleichung eine Lösung.

Andernfalls wäre nämlich f((1 − s)x) 6= y für alle s ∈ [0, 1] und

G(x, s) : Sn−1 → Sn−1, x 7→ f((1 − s)x) − y

‖f(1 − s)(x) − y‖

eine Homotopie zwischen g und einer konstanten Abbildung, also deg(g) = 0.

3. In der Funktionentheorie spielt die Umlaufzahl eines geschlossenen Weges c : S1 → C
bezüglich eines Punktes z0 /∈ c(S1) eine wichtige Rolle. Sie wir definiert als

n(c, z0) :=
1

2π

∫

c

1

z − z0
dz

Diese Umlaufzahl ist gerade der Abbildungsgrad von

g(x) :=
c(x) − z0
|c(x) − z0|

.

Das beweist man mittels der Identität

1

z
dz =

1

x+ iy
(dx+ idy) =

x− iy

x2 + y2
(dx+ idy)

=
1

2
d ln(x2 + y2) + i

(
xdy

x2 + y2
+

−ydx
x2 + y2

)
.
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10.4.7 Der Antipodensatz

Satz 298 (Antipodensatz von Borsuk-Ulam (1933)). Sei f : Sn−1 → Sn−1 eine
ungerade C∞- Abbildung, d.h. es gelte

f(−x) = −f(x) für alle x ∈ Sn−1.

Dann ist der Abbildungsgrad von f ungerade, insbesondere also 6= 0.

Beweis. Der Beweis benutzt vollständige Induktion über n. Die topologischen Argumente
sind ähnlich denen in Beweis von Satz 297.

Wir bezeichnen

S := Sn−1, S0 := Sn−2 ⊂ S, S+ := abgeschlossene obere Hemisphäre.

n=1. Dann ist f(−1) = −f(1), also f bijektiv und der Abbildungsgrad daher = ±1.

n=2. Wir wählen in S \ (f(S0) ∪ S0) einen regulären Wert N von f . Dann ist auch −N ein
regulärer Wert. Wir bezeichnen mit π : R2 → R1 die Projektion entlang der Geraden RN
und definieren

G : S+\f−1({N,−N}) → S0, x 7→ π ◦ f(x)

‖π ◦ f(x)‖ .

Sei f−1({N,−N}) ∩ S+ = {p1, . . . , pr} mit paarweise verschiedenen pi. Das Komplement
von {p1, . . . , pr} in S+ \S0 besteht aus r + 1 Intervallen, die durch G jeweils in einen der
zwei Punkte von S0 abgebildet werden. Weil f in den pi regulär ist, werden aufeinander
folgende Intervalle in verschiedene Punkte von S0 abgebildet. Weil G|S0 wieder ungerade
ist, werden die Punkte von S0, also auch die daran angrenzenden Intervalle (das

”
erste“ und

das
”
letzte“) in verschiedene Punkte von S0 abgebildet. Damit ist r ungerade, und weil f

eine ungerade Abildung ist, erhalten wir

1 ≡ r = #(f−1({N,S}) ∩ S+) =
1

2
#(f−1({N,S})) = #(f−1({N})) ≡ deg(f). (79)

(n− 1) → n, n ≥ 3. Nach dem Satz von Sard ist f(S0) 6= S. Weil f(S0) überdies kompakt
ist, gibt es wieder nach dem Satz von Sard einen regulären Wert N von f im Komplement
von f(S0) ∪ S0. Nach der Voraussetzung über f ist dann auch −N ein regulärer Wert von
f im Komplement von f(S0).

Sei f−1({N,−N}) ∩ S+ = {p1, . . . , pr}. Seien U1, . . . , Ur ⊂ S+ \S0 paarweise disjunkte
offene Umgebungen um die pi, die durch f diffeomorph auf eine kleine offene Kugel um N
bzw. −N abgebildet werden, vgl. den Beweis zu Satz 297. Wir bezeichnen mit

π : Rn → Rn−1

die Projektion entlang der Achse RN und betrachten die Abbildungen

G : S+ \ (
⋃
Bi) → S0, x 7→ π ◦ f(x)

‖π ◦ f(x)‖ , g := G|S0.

Dann ist g wieder ungerade, hat nach Induktionsvoraussetzung also ungeraden Abbildungs-
grad. Sei ωn−2 ∈ Ω(Rn−1) wie im Abschnitt 10.4.6. Dann gilt

∫

∂(S+ \ (
S

Bi))

G∗ωn−2 =

∫

S+ \ (
S

Bi)

G∗dωn−2 = 0. (80)
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Andrerseits ist aber nach Lemma 296
∫

∂Ui

G∗ωn−2 = ±
∫

S0

ωn−2 = ±1

und daher
∫

∂(S+ \ (
S

Bi))

G∗ωn−2 = −
∫

S0

g∗ωn−2 −
∑

(

∫

∂Ui

G∗ω) = −deg(g) −
r∑

1

±1. (81)

Nach (80), (81) ist also r ungerade. Aus (79) folgt die Behauptung.

Korollar 299. Für jede stetige Abbildung f : Sn → Rn gibt es ein x ∈ Sm mit f(x) =
f(−x).

Beweis. Andernfalls wäre minx∈Sn ‖f(x)−f(−x)‖ =: ǫ > 0, und man könnte wie im Beweis
des Fixpunktsatzes von Brouwer f approximieren durch eine C∞-Abbildung f̃ : Sn → Rn

mit minx∈Sn ‖f̃(x) − f̃(−x)‖ > ǫ
2 . Dann ist

g(x) :=
f̃(x) − f̃(−x)

‖f̃(x) − f̃(−x)‖
eine ungerade C∞-Abbildung g : Sn → Sn−1 ⊂ Sn

Offenbar ist g(Sn) 6= Sn und deshalb ist deg(g) = 0 im Widerspruch zum Antipodensatz.

Korollar 300. Man kann einen Apfel durch einen ebenen Schnitt so teilen, dass beide Teile
dieselbe Menge an Kalorien, Vitaminen und Schadstoffen enthalten.

Beweis. Wir betrachten den R3 als eingebettet in den R4. Seien k, v, s : R3 → R die Dichte-
verteilungen der Kalorien, Vitamine bzw. Schadstoffe. Für x ∈ S3 ⊂ R4 setzen wir

M(x) :=
{
y ∈ R3

∣∣ 〈x, y〉 ≥ 〈x, e4〉
}

=
{
y
∣∣x1y1 + x2y2 + x3y3 ≥ x4

}
.

Das ist also ein Halbraum im R3. Wir definieren f : S3 → R3 durch

f(x) :=

(∫

M(x)

k dµ3,

∫

M(x)

v dµ3,

∫

M(x)

s dµ3

)

und setzen voraus, dass f ∈ C∞. Dann gibt es ein x mit f(x) = f(−x), d.h. von allen drei
Ingredienzien liegt genauso viel im Halbraum M(x) wie in seinem Komplement.
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Korollar 301. Für m 6= n ist Rm nicht homöomorph zu Rn.

Beweis. Sei m < n. Dann ist die Inklusion j : Sm ⊂ Rm+1 ⊂ Rn eine injektive Abbildung.
Gäbe es einen Homöomorophismus h : Rn → Rm, so wäre h◦j : Sm → Rm ebenfalls injektiv
im Widerspruch zu Korollar 299.

Derselbe Beweis liefert: Für m 6= n sind Rm und Rn nicht einmal lokal homöomorph. Ist
G ⊂ Rm offen, nicht leer und homöomorph zu einer offenen Teilmenge von Rn, so folgt
m = n.
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10.4.8 Der Satz von Holditch

Wir schließen mit einer ebenso
”
harmlosen“ wie hübschen Anwendung des Satzes von Stokes

und der Umlaufzahl auf ein geometrisches Problem in der Ebene.

Satz 302 (Holditch). A rod CC ′ of a given length has its two ends in the curve of an
ellipse and moved round, having a tracing point P, at the distances c and c′ from its ends,
tracing a curve. The area contained between the curve and the ellipse = πcc′, and is therefore
independent of the ellipse.

c

c'

P

Der Satz wurde von einem in der Mathematik weiter nicht bekannten Herrn Holditch unter
dem Pseudonym

”
Petrarch“ als

”
Prize quest XV“ in

”
The Lady’s and Gentleman’s Diary

for the Year of Our Lord 1857“ publiziert. Im nächsten Jahrgang findet man eine
”
General

solution“ des ebenfalls weiter nicht bekannten W.S.B. Woolhouse, mit folgendem Ergebnis:

Let C,C ′ and P denote the areas of the curves described by those points respectively. Then

P =
c′C + cC ′

c+ c′
− cc′π.

In obtaining this remarkable general formula we have assumed the curves to return into
themselves and the angle the rod makes with the x-axis to revolve through 2π, but in all
other respects the reasoning obviously holds good absolutely. It is not even necessary that
the curves described by C, C ′ should have any algebraic equation. They may, indeed, be any
lines drawn at random.

Ich gebe eine moderne Formulierung dieses hübschen Satzes. Siehe auch A. Broman, Hol-
ditch’s Theorem, Mathematics Magazine 54, 1981.

Definition 303. Seien c, c1, c2 : [0, 1] → R2 geschlossene C∞-Kurven.

(i) Setze c̃(s, t) := sc1(t) + (1 − s)c2(t) für (s, t) ∈ I2 und definiere

A(c1, c2) :=

∫

c̃

dx ∧ dy.

Ist c̃ im wesentlichen injektiv und orientierungstreu, so gibt A(c1, c2) die Fläche von
c̃(I2) an. Deshalb nennt man c̃ die algebraische Fläche zwischen c1 und c2.

(ii) Setze

A(c) :=

∫

c

xdy =
1

2

∫

c

xdy − ydx.

Ist c : [0, 1] → S1, so ist also A(c) = 1
2

∫
c
∗ωX .
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Lemma 304.
A(c1, c2) = A(c1) −A(c2).

Ist insbesondere c2 konstant, so gilt A(c1) = A(c1, c2), und das ist die von c eingeschlossene
algebraische Fläche.

Lemma 305. Definiert man (c1 + c2)(t) := c1(t) + c2(t), so gilt

B(c1, c2) := A(c1 + c2) −A(c1) −A(c2)

=

∫ 1

0

(x ◦ c1)(t)(y ◦ c2)′(t)dt+

∫ 1

0

(x ◦ c2)(t)(y ◦ c1)′(t)dt

Insbesondere ist B in jedem Argument homogen:

B(λc1, c2) = λB(c1, c2) = B(c1, λc2).

Satz 306 (Holditch/Woolhouse). Seien c1, c2 : [0, 1] → R2 geschlossene C∞-Kurven
und ‖c2 − c1‖ = l > 0 konstant. Seien l1, l2 ∈ R mit l1 + l2 = l und sei

c3 := c1 +
l1
l
(c2 − c1).

Dann gilt
l1A(c2) + l2A(c1)

l
= A(c3) + n(γ, 0)πl1l2,

wobei n(γ, 0) die Umlaufzahl der Kurve

γ :=
c2 − c1

l

(also der
”
Stabesrichtung“) um 0 ist.

Ist insbesondere A(c1) = A(c2), z.B. weil c1, c2 (wie bei der ersten Formulierung von Herrn
Holditch) bis auf eine Parameterverschiebung dieselbe Kurve sind, so folgt

A(c1, c3) = A(c1) −A(c3) = n(γ)πl1l2.

Beweis.

A(c2) = A(c3 +
l2
l
(c2 − c1))

= A(c3) +A(
l2
l
(c2 − c1)) +B(c3,

l2
l
(c2 − c1))

= A(c3) + l22A(γ) + l2B(c3, γ)

Ebenso folgt

A(c1) = A(c3 −
l1
l
(c2 − c1))

= A(c3) + l21A(γ) − l1B(c3, γ),

und daraus folgt durch Elimination von B die Behauptung.
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