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Vorwort

Liebe Studierende, lieber Leser,

Dieses Skript zur analytischen Geometrie im dreidimensionalen Raum geht einen
ungewohnlichen Weg. Normalerweise wird steht das aufstellen und Losen von
Gleichungen im Vordergrund und die einzelnen Objekte wie Ebene, Punkt und
Geraden sind dann die Losungsmengen von Gleichungssystemen. In diesem Skript
wird sehr schnell das Skalarprodukt und das Vektorprodukt eingefiihrt, so dass Sie
Geometrie im drei- (bzw. zwei-) dimensionalen Raum durchfithren kénnen. Die
einzelnen Losungsverfahren werden nebeneinander gestellt. Dies ist beim Lernen
nur bedingt motivierend. Dies ist aber das grundsétzliche Problem der Vektor-
rechnung, dass Sie sehr viel grundlegendes Wissen miissen, um dann Geometrie
betreiben zu kénnen.

Dariiberhinaus werden in dem Skript immer auch Beispiele zur Vektorrech-
nung genommen, die sich nicht auf die dreidimensionale Geometrie beschréinken.
So soll der Ubergang zur linearen Algebra erleichtert werden. Dabei verlassen Sie
den Anschauungsraum.

Natiirlich empfehle ich Thnen dringend auch andere Biicher aus der Biicherei
zu benutzen und im Internet sowohl nach Aufgaben als auch nach Erkldrungen
zu suchen.

Ich hoffe, dass dieses Skript dem Einen oder Anderen hilft, den Mathematik-
unterricht besser zu bestehen.

Wenn Thnen Fehler auffallen, oder Sie das Skript oder Teile kommentieren
mogen, schreiben Sie doch bitte an folgende Adresse:

,stewen.rvk@gmx.de”

Roland Stewen

v



Kapitel 1

Einfiihrung

1.1

Definition von Vektoren

Sie kennen ,normale“ Zahlen, diese geben Ihnen eine Gréfle an. Wenn Sie aber
jetzt auch noch eine Richtung benotigen (Ein Beispiel ist in der Physik die Kraftr.
Diese hat nicht nur eine Stérke sondern auch eine Richtung), dann benétigen Sie
Vektoren.

Ein Vektor sind untereinandergeschriebene Zahlen. Z. B.: (%) oder auch <§)

,Normale Zahlen* — wie Sie sie bisher kennen — bezeichnet man im Unterschied
zu den Vektoren als Skalar.

Ein Vektor kann sehr unterschiedliche Bedeutungen haben. Nachfolgend seien
einige aufgefiihrt:

Ein Vektor kann die Kraft in der Physik reprisentieren. Die Kraft wird
durch einen Pfeil symbolisiert. Der Vektor gibt dann gerade die Verschie-
bung in x-Richtung (1. Komponente), in y-Richtung (2. Komponente) usw.
an. Die Lange des Vektors ist die Grofle der Kraft und die Richtung der
Kraft ist dann mit der Richtung des Vektors iibereinstimmend.

Der Lagerbestand in einer Firma. Die 1. Komponente ist dann der Bestand
der Grafikkarten, die 2. Komponente der Bestand der Festplatten usw. Da-
bei ist schnell klar, dass so ein Vektor viel mehr als 3 Komponenten haben
kann.

In der Geometrie kann ein Pfeil durch einen Vektor dargestellt werden.

In der Geometrie konnen Koordinaten von Punkten durch Vektoren darge-
stellt werden.

In der Geometrie kann die Verbindung von zwei Punkten durch einen Vektor
dargestellt werden.
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Ein Vektor kann einen Namen bekommen (sollte er in der Regel auch!). Um
den Namen eindeutig von allen anderen Variablen oder Parametern abzugrenzen,
welche fiir einzelne Zahlen stehen, wird der Name des Vektors i. d. Regel mit
einem Pfeil versehen:

L (2
- (3

Koordinaten von Punkten dagegen werden mit Grolbuchstaben gekennzeichnet:
Ein Punkt: P(2]3).

Zweikomponentige Vektoren konnen als Pfeile in einer Ebene gedeutet werden
und dreikomponentige Vektoren als Pfeile im dreidimensionalen Raum. Beachten
Sie jedoch, dass ein Vektor nur eine Lénge und eine Richtung hat. Vektoren mit
gleicher Linge und gleicher Richtung aber unterschiedlichem Anfangspunkt sind
jedoch identisch. (Vergleichen Sie Abb. [Tl auf S.2])

Abbildung 1.1
Diese Pfeile werden alle durch den Vektor (3) dargestellt. Obwohl die Pfeile alle
einen unterschiedlichen Anfangspunkt haben, sind die Vektoren identisch. (Sie
reprasentieren alle z. B. dieselbe Kraft.)

Abbildung 1.2: Einen Ortsvektor kann man als Pfeil auf einen Punkt auffassen.

In der Geometrie sind drei Interpretationen wichtig:
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1. Insbesondere konnen Sie in der Geometrie einen Punkt durch einen Vektor
repréasentieren. Sie nennen diesen Vektor dann Ortsvektor.

Sie konnen natiirlich auch sagen, dass der Ortsvektor die Verbindungslinie
zwischen dem Punkt und dem Nullpunkt ist.

2. Sie konnen einen Vektor als Verbindungsvektor zwischen zwei Punkten an-
sehen.

3. Sie konnen den Vektor auch als Verschiebungsvektor betrachten. Dann ver-
schieben Sie einen Punkt um den Vektor zu einem anderen Punkt.

Zwei Vektoren sind gleich, wenn Sie gleichlang sind und dieselbe Richtung
haben.

1.2 Léange eines Vektors

Die Lénge eines Vektors im kartesischen Koordinatenzystem (Die Koordinaten-
achsen haben jeweils einen 90° Winkel zueinander) lisst sich mit Hilfe des Satzes
von Pythagoras bestimmen. Wir untersuchen im folgenden zwei Beispiele und
verallgemeinern unsere gewonnen Kenntnisse dann auf hohere Dimensionen.

1.2.1 Lé&nge eines Vektors in 2 Dimensionen

(o)

Abbildung 1.3: Der rote Vektor ist die Hypotenuse in dem griinen Dreieck, welches
leicht versetzt eingezeichnet wurde.

Gegeben ist der im Bild [L3 rote Vektor:

(4



KAPITEL 1. EINFUHRUNG 4

Dies ist die Hypotenuse des griinen Dreiecks welches die Seitenldngen 3 und 4
hat. Die Lange der Hypotenuse berechnet sich dann wie folgt:

P=3+4
[= V3 +42

Fiir einen allgemeinen Vektor: @ = (gi) ist dann die Lénge sofort einleuch-

tend. Die Linge von @ (der Betrag von @ wird durch senkrechte Betragsstriche

angegeben) ist dann:
[ =|d| = /a3 + d3

1.2.2 Léange eines Vektors in 3 Dimensionen

Abbildung 1.4: Der rote Vektor ist die Hypotenuse des blauen Dreiecks. Die eine
Seite des blauen Dreiecks ist wiederum die Hyptenuse in dem griinen Dreieck.

Gegeben ist der im Bild [[.4] rote Vektor:

1

Dies ist die Hypotenuse des blauen Dreiecks. Eine Seitenldnge des blauen Drei-
ecks (die Lange der Seite welcher zur z-Achse parallel ist) ist bekannt: 2 (die 3.
Komponente des Vektors).
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Die andere Kathete des blauen Dreiecks (in der x-y-Ebene liegend) ist unbe-
kannt. Aber diese Seite selbst ist wiederum die Hypotenuse des griinen Dreiecks.
Die Katheten des griinen Dreiecks haben die Seitenldngen 1 und 2 (die 1. und 2.
Komponente von @).

Die Hypotenuse des griinen Dreiecks ist dann:

:12_|_22

2 2
= aj + aj

ZZ

griin

l2

grin
Die Hypotenuse des blauen Dreiecks, die Lange von @ ergibt sich dann:
‘6|2 = lgrﬁn + 22
|l@]? =12 + 2% + 22
|d| = V12 422 + 22
Oder allgemein:
aq

a= a9
as

|d| = +\/a? + a3 + a?

1.3 Rechenregeln zu Addition und Multiplika-
tion mit einer Zahl

Wir werden in diesem Kapitel die Rechenregeln fiir das Addieren (und Subtra-
hieren) zweier Vektoren und das Multiplizieren eines Vektors mit einer Zahl un-
tersuchen.

1.3.1 Addieren zweier Vektoren

Sie haben zwei Vektoren (sieche Abb.: [L]):
Der rote Vektor:
()

()

Wenn Sie beide Vektoren (Pfeile) addieren, dann ,, gehen® Sie insgesamt 4 in x-
Richtung und 4 in die y-Richtung. Somit ergibt der rote Pfeil und der blaue Pfeil
zusammen den griinen Pfeil.

Der blaue Vektor:
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Abbildung 1.5: Die Vektoraddition. Der rote und der blaue Pfeil ergeben den
griinen Pfeil.

Der griine Vektor:
L (4
“~\4

G+b=¢

Es gilt also:

Sie sehen aber auch, dass wenn Sie den roten Pfeil entlang gehen, dann den
blauen Pfeil entlang gehen und dann den griinen Pfeil zuriick gehen, Sie wieder
am Ausgangsort ankommen:

i+b—c=0

1.3.2 Multiplizieren eines Vektors mit einer Zahl

-3 -2 -1 123 456 7

Abbildung 1.6: Die Vektormultiplikation mit einer Zahl.

Wenn Sie einen Vektor mit einer Zahl multiplizieren, so ist dies wie bei einer
normalen Multiplikation auch, dass Sie die Vektoraddition mehrfach hintereinan-
der ausfiihren.
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- ()
s ()-()

Wenn Sie einen Vektor mit einer Zahl multiplizieren, werden alle Komponen-
ten des Vektors mit der Zahl multipliziert.

1.4 Beispiele zur Vektoraddition

Nachfolgend sind einige Beispiele der Vektoraddition aufgefiihrt.

1.4.1 Krifte in der Physik

Wenn auf einen Korper verschiedene Kréifte wirken, so konnen diese Kréfte durch
Vektoren dargestellt werden. Diese vielen Kréfte konnen Sie durch eine resultie-
rende Kraft ersetzen. Diese resultierende Kraft erhalten Sie, indem Sie die Kréfte
komponentenweise addieren.

Sie erhalten dabei ein Krafteparallelogramm.

Abbildung 1.7: Zwei gleichgrofie Krafte wirken in entgegengesetzte Richtung. Die
Bewegung ist null, die resultierende Kraft ebenfalls.

() ()= )
() ()= )

Fiir die Bewegung des Korpers ist es egal, ob die beiden roten Krifte oder die
eine blaue Kraft wirken. Anwendungen sind z. B. zwei Schlepper, die einen Tanker
ziehen.
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Abbildung 1.8: Zwei Krifte (rot) wirken auf einen Koérper. Die resultierende Kraft
(blau) ergibt sich durch die Addition. Fiir die Addition sind die verschobenen
Vektoren gestrichelt gezeichnet.

1.4.2 Vektoren als Lagerbestand

Wenn Sie ein Beispiel fiir Vektoren ausserhalb der Geometrie nehmen, dann kon-
nen Sie einen Lagerbestand als Vektor darstellen:

21 : Anzahl der Monitore

Ty : Anzahl der Tastaturen

Der Vektor (3) bedeutet, dass in dem Lager 3 Monitore und 4 Tastaturen
vorhanden sind.
Wenn jetzt noch 2 Monitore und 1 Tastatur geliefert werden:

() +()= )

So addieren Sie komponentenweise und erhalten 5 Monitore und 5 Tastaturen.

1.5 Polygonzug

In der Geometrie ist es egal, welchen Weg Sie von einem Punkt zu einem anderen
Punkt nehmen. (Im téglichen Leben nicht. Da ist ein Weg evtl. beschwerlicher
oder schoner als ein anderer Weg.) Im nachfolgenden Bild sehen Sie verschiedene
Wege um vom Ursprung zu dem Punkt P(5[5) zu gelangen.

(2)+()=()

1. Der rote Weg:
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2. Der griine Weg:
3. Der blaue Weg:

Wenn Sie also losgehen, entlang der (Vektor-) Pfeile gehen und zum Ursprung
zuriickkommen, so haben Sie sich letztendlich nicht bewegt. D. h. fiir den roten

() ()-() -

1.6 Darstellung in Winkeldarstellung

Da jeder Vektor eine Linge und einen Winkel zu den Koordinatenachsen hat,
kann man dieses auch zur Beschreibung des Vektors benutzen. Ein Pfeil ist durch
seine Lange und seinen Winkel eindeutig angegeben.

Abbildung 1.9: Ein 2-dim. Vektor und sein Winkel

Wenn die Liange des Vektors gegeben ist durch |@| und der Winkel mit der
x-Achse « ist (siche Abb.[L[.9), dann gilt fiir die einzelnen Komponenten:

x1 = |d| cos(«)

xo = |d| sin(«)

Somit konnen Sie einen 2-dimensionalen Vektor auch schreiben als:

o= (1) - () - ()
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Beispiel:

Die Léange des Vektors b ist:

| =v32+42=v0+16=v25=5

Der Vektor b schliesst mit der x-Achse folgenden Winkel ein:

4
g = arctan(g) = 53°

cos(53°) = 0,6
sin(53°) = 0,8

So kann man den Vektor b schreiben:

()5 ()

Wenn man die Bedeutung der Komponenten des Vektors éndert, d. h. man
benutzt andere Koordinaten (Kreiskoordinaten), dann hat die 1. Komponente die
Bedeutung der Lénge des Vektors und die 2. Komponente beschreibt den Winkel.
So hat dann der Vektor b bei diesen Koordinaten folgende Schreibweise:

s (5
= ()
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1.7 Ubungen

Aufgabe 1.1

Geben Sie einen Vektor an, der von Punkt A(1]5) zu Punkt B(3|7) zeigt.

(Losung siehe Seite [I3)).

Aufgabe 1.2
Bestimmen Sie die Lénge der Vektoren:

L (12
“=\16
/4
b= (22

20

(Losung siehe Seite [13]).
Aufgabe 1.3

11

Gegeben ist Thnen ein Viereck. Lesen Sie die Koordinaten der Punkte A, B, C,

D ab und bestimmen Sie die Verbindungsvektoren: AB, BC, CD und DA.

5 T T T

A B
0 1 1 1 1
Bestimmen Sie ebenfalls BA. 0 1 2 3 4
(Losung siehe Seite [I3)).
Aufgabe 1.4

Gegeben ist Thnen folgendes Dreieck: A(1|1), B(3|1) und C(2|3)
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4
35
3
25
2
15
1
0.5
0

0051152253354

Bestimmen Sie die Seitenmittelpunkte.
(Losung siehe Seite [I4]).
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Zu Aufgabe: [1.1]
Geben Sie einen Vektor an, der von Punkt A(1]5) zu Punkt B(3|7) zeigt.
Den gesuchten Vektor erhalten Sie, wenn Sie B-A berechnen:

i=B-A= (i)_@ - @

Wenn Sie vom Ursprung in Richtung A laufen, dann den Vektor ¢ entlang,
kommen Sie bei B an.
Es muss also gelten:

. (1 2\ 3\
Zu Aufgabe:

Bestimmen Sie die Léange der Vektoren:

Probe:

@] = V122 + 162 = /144 + 256 = V400 = 20

6] = V42 + 227 + 20% = /16 + 484 + 400 = v/900 = 30

Zu Aufgabe:
Gegeben ist Thnen ein Viereck. Lesen Sie die Koordinaten der Punkte A, B, C,
D ab und bestimmen Sie die Verbindungsvektoren: AB, BC, CD und DA.
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0 1 1 1 1
Bestimmen Sie ebenfalls BA. 0 ! 2 3 4

Die Koordinaten der Punkte sind: A(1|1), B(3|1), C(4[4) und D(1]3).

B_A:@_

o ADB:

b= (N-()-(2)
o= (D)-(1)- (1)
= ()-()-(3)

Es gilt: AB = - BA, weil Sie andersherum laufen.

Zu Aufgabe: 1.4
Gegeben ist Thnen folgendes Dreieck: A(1|1), B(3|1) und C(2|3)
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4
35
3
25
2
15
1
0.5
0

0051152253354

Bestimmen Sie die Seitenmittelpunkte.
Wir bestimmen zuerst die Seiten:

T w0
w0

emeoa-)-()

1. Mitttelpunkt der Seite AB:
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2. Mitttelpunkt der Seite BC:

3. Mitttelpunkt der Seite AC:

16



Kapitel 2

Skalarprodukt

Mit Hilfe des Skalarproduktes konnen Sie in der Geometrie Winkel zwischen Vek-
toren ausrechnen, bzw. leicht zeigen, dass Vektoren senkrecht zueinander sind.
Dariiber hinaus werden wir die wichtige Eigenschaft verwenden, dass das Ska-
larprodukt null ist, wenn die Vektoren senkrecht aufeinander stehen. Diese Ei-
genschaft benutzen wir dann, um im dreidimensionalen Raum Ebenen (bzw. im
zweidimensionalen Raum Geraden) zu definieren.

In der Physik wird bei der Berechnung der Arbeit (Arbeit gleich Kraft in Weg-
richtung mal Weg) die Projektionseigenschaft des Skalarproduktes ausgenutzt.

2.1 Definition des Skalarproduktes

Das Skalarprodukt zweier Vektoren ist folgendermafien definiert: Das Skalarpro-
dukt ist die Summe der komponentenweisen Multiplikation.
Beispiel fiir das Skalarprodukt eines 2-dim. Vektors:

— ' b

a-b= (Z;) . (b;) :a1b1+a2b2
1 3
(2)~<4) =1-34+2-4=3+8=11

Das Skalarprodukt zweier Vektoren ist eine Zahl.
Wir werden in diesem Abschnitt die Formel fiir das Skalarprodukt beweisen:

Bzw.:

@ b= al|b] cos(y)

v ist der eingeschlossene Winkel zwischen den beiden Vektoren @ und b.
Diese Beziehung hat wichtige Bedeutungen:

1. Wenn der Winkel zwischen den beiden Vektoren 90° betrdagt, dann ist das
Skalarprodukt null.

17
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2. Wenn das Skalarprodukt null ist, dann ist der Winkel zwischen den beiden
Vektoren 90°.

3. Sie kénnen mit obiger Formel den Winkel zwischen zwei Vektoren sehr
einfach berechnen, da das Skalarprodukt schnell ermittelt werden kann und
die Betrdage der Vektoren ebenfalls.

2.2 Rechenregeln des Skalarproduktes

Aus der Definition des Skalarproduktes werden hier die wichtigsten Rechenregeln
hergeleitet.

1. Das Kommutativgesetz:

STH
Sl
I
Sat!
=T

siche Kapitel 22211 S.

2. Das Assoziativgesetz mit Skalaren:

-,

(rd@)-b=r(a@-b)

sieche Kapitel 2.2.2] S.

Wenn Sie einen der beiden Vektoren unverdndert lassen, ist das Skalarpro-
dukt proportional zur Lénge des anderen Vektors.

3. Das Distributivgesetz:
i-(b+d)=a-b+a-é

siehe Kapitel 2.2.3 S.

Dieses Gesetz bendtigen Sie, wenn Sie Klammern auflésen wollen z. B. bei
Beweisen

4. Der Zusammenhang zwischen dem Skalarprodukt und dem Betrag eines

Vektors:
2

i-d=|dl

siche Kapitel 22241 S.

Dieses Gesetz benotigen Sie oft bei Beweisen oder Umformungen.
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2.2.1 Kommutativgesetz — Vertauschungsgesetz
i-b=0b-a

Dieses Gesetz ist eigentlich sofort einleuchtend. Hier betrachten wir exempla-
risch zwei 2-dimensionale Vektoren:

“ . bl = ay bl + a9 b2 = bl . e

a9 bg b2 a9
Da die Multiplikation kommutativ ist, konnen Sie auch die Vektoren @ und b beim
Skalarprodukt vertauschen.

2.2.2 Assoziativgesetz mit Skalaren — Vertauschungsge-
setz

(rd@)-b=r(a@-b)

Auch dieses Gesetz betrachten wir exemplarisch fiir 20dimensionale Vektoren:

T ay bl -
<7’CL2) . <b2) =Ta; bl ‘l"f’&gbg

Sie konnen auch spéter mit » multiplizieren und erhalten dennoch dasselbe Er-

gebnis:
r l<a1> . (bl)} =r(ay by +asby) =raj by +rasby
a9 bg

Dies bedeutet insbesondere, wenn dy undﬁl;o jeweils Vektoren der Lange 1 mit
derselben Richtung wie die Vektoren @ und b sind:

—

@b =|al|b] (d - bo)

Sie werden spéter lernen, dass das Skalarprodukt von @y und 50 der Kosinus des
eingeschlossenen Winkels ist.

2.2.3 Distributivgesetz — Klammerregel
i-(b+d)=a-b+a-é

Auch dieses Gesetz schauen wir uns exemplarisch mit 2-dimensionalen Vektoren
an. Da fiir die normale Multiplikation das Distributivgesetz gilt, gilt das Distri-
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butivgesetz dann auch beim Skalarprodukt:

- /7 [ ) bl—l-Cl
@ <b+5> o (&2) <b2+02)
:al(b1+cl)+a2(bg+02) :a1b1+a101+a262+&262

= a1b1 +a2b2+a201+a202
“() @) ()-(2)
a9 b2 a9 Co
2.2.4 Skalarprodukt und Betrag
a-a=|a]

Der Zusammenhang wird auch hier nur exemplarisch fiir 2-dimensionale Vektoren

gezeigt.
- o ay ay
a-a= . = a1 a + asas
Q9 (05}

Der Betrag des Vektors a ist:

S a1 . 2 2
)]

Wenn Sie den Betrag des Vektors quadrieren hebt sich die Wurzel weg:
@ =+ o

Durch unmittelbaren Vergleich sehen Sie, dass die Behauptung gilt.

2.2.5 Kosinus zum Quadrat

Der Kosinus des Winkels ist bestimmt durch das Skalarprodukt und der Betrige
der beiden den Winkel einschliessenden Vektoren:

b
cos() = L2
|l [b]
Somit gilt fiir das Quadrat:
(@-b)?
cos(vy) = =
" |? [b]?
und mit der Beziehung: |G@|*> = a - a@
- \2
co2(7) = O
(@-a)(b-b)
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2.3 Herleitung der Beziehung Winkel-Skalarprodukt

In diesem Abschnitt wird die Beziehung zwischen dem Winkel und dem Skalar-
produkt hergeleitet: . .
a-b=|al [b] cos(y)

oder umgestellt, um den Winkel zu bestimmen:

Es werden verschiedene Vorgehensweisen angeboten.
1. Die Herleitung mit Hilfe des Kosinussatzes. (Kapitel: 23371 S. 21)

2. Die Herleitung mit Hilfe der Additionstheoreme im 2-dimensionalen Raum.

(Kapitel: 2.3.2] S. 23])

2.3.1 Herleitung mit Hilfe des Kosinussatzes

Fiir die Beziehung des Skalarproduktes und dem Kosinus ist es nicht erforderlich,
dass Sie den Beweis fiir den Kosinussatz kennen. Sie kénnen ihn auch einfach nur
benutzen. Deshalb wird der Beweis des Kosinussatzes in einem spéteren Kapitel
(siehe Kapitel: 23] S. 23)) ausgefiihrt.

Das Quadrat der Lénge eines Vektors kann durch das Skalarprodukt ausge-
driickt werden.

Die Lange wird durch den Betrag angegeben: |d|.

|d| =\/af + a3 +...
@* =al +a5+...
Es gilt aber andererseits:

ay ai

az | .| G2 :a1~a1+a2-a2+...:af+a§+...

Sl
QL
I

Es gilt somit:
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Der Kosinussatz besagt, dass in jedem Dreieck folgende Beziehung gilt:
a’ 4+ b* —2ab cos(y) =

a und b sind aneinandergrenzende Seiten, welche den Winkel ~ einschliessen. ¢
liegt dann dem Winkel v gegeniiber.

6 T T T T T T

AN
o
-
N
w
IN
o
o

Nun schreiben wir die Seiten als Vektoren:

QO o 8!
Il
W e ™

= Q Q

Der Vektor & kann durch die Vektoren @ und b ausgedriickt werden:
g=a—b

Nachrechnen ergibt die Richtigkeit:

Nun ist die Linge der Seite a gleich dem Betrag des Vektors a: |d
In Vektorschreibweise sieht der Kosinussatz so aus:

ja@l* -+ (6 = 2|a| 5] cos(y) = |’
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Die Quadrate der Betrige werden nun ersetzt: |d@|*> = a-d
@-a+b-b—2allb cos(y)=¢é-c
Nun wir der Vektor & ersetzt durch @ — b:
@-a+b-b—2|a bl cos(y) = (@—b)-(a—b)
Ausklammern auf der rechten Seite ergibt:
G-a@+b-b—2|albl cos(y)=a-a—2a-b)+b-b)
Kiirzen auf beiden Seiten ergibt:
—2|a] |b] cos(y) = =2 - b)

Erneutes kiirzen auf beiden Seiten ergibt das Skalarprodukt:

—

@l B] cos(y) = a - b)

Herleitung des Kosinussatzes

Der Kosinussatz (oder auch der ,allgemeine Pythagoras®) erlaubt Thnen nicht nur
eine Aussage zu den Seitenldngen im rechtwinkligen Dreieck zu machen sondern
Sie erhalten eine Beziehung der Seitenldngen eines beliebigen Dreiecks.

Wenn Sie ein beliebiges Dreieck nehmen (vergleichen Sie mit der Abb. 2.1),
dann konnen Sie die Hohe h, vom Punkt B auf die gegeniiberliegende Seite b
einzeichnen. Die Hohe trifft auf die Seite b im Punkt H,.

Da die Hohe senkrecht auf die Seite steht, haben Sie jetzt zwei rechtwinklige
Dreiecke geschaffen. Bei dem unteren Dreieck (A, B, H;) werden wir den Satz
des Pythagoras anwenden. Das obere Dreieck (Hy, B, C) benutzen wir, um die zu
bestimmen, wie die Seite b unterteilt wurde vom HéhenfuBBpunkt H,.

Die Stecke H,C liegt im rechtwinkligen Dreieck (Hy, B, C) an den Winkel ~
an und wird somit durch den Kosinus bestimmt. Die Seite a liegt dem rechten
Winkel gegeniiber und ist deswegen die Hypotenuse:

H,C = a cos(7)

Die Strecke AH, ist die ganze Strecke b vermindert um die oben bestimmte
Strecke H,C:
AH, =b—a cos(7)

Die Stecke H,B liegt im rechtwinkligen Dreieck (Hj, B, C) dem Winkel ~
gegeniiber und wird somit durch den Sinus bestimmt. Die Seite a liegt dem rechten
Winkel gegeniiber und ist deswegen die Hypotenuse:

H,B = a sin(7)
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Abbildung 2.1: Ein Dreieck mit der Hohe h;, auf die Seite b (dem Punkt B
gegeniiberliegend). Die Seite b kann unterteilt werden in zwei Streckenabschnitte:
a-cos(y) und a — a - cos(7)

Nun wenden wir bei dem unteren Dreieck (A, B, Hp) den Satz des Pythagoras
an:

¢® = (AHy)* + (BH,)*
= (b —a cos(7))? + (a sin(y))?

Binomische Formeln:

=b* —2ab cos(y) + a* (cos(y))? + a® (sin(v))?
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Einklammern von a?
=b* —2ab cos(vy) + a® [(cos(y))? + (sin(7))?]

Wir benutzen folgende Beziehung: (sin(v))? + (cos())? = 1 (Pythagoras)
= b* —2ab cos(y) + a® [1]

Umstellen ergibt den gesuchten Kosinussatz:

=a*+b* —2ab cos(y)

2.3.2 Herleitung mit Hilfe des Additionstheorem

In diesem Kapitel wird die Beziehung Skalarprodukt und Winkel fiir 2-dimensionale
Vektoren (im 2-dim. Raum) mit Hilfe des Additionstheorems fiir den Kosinus her-

geleitet.
Es gilt:
. a la| cos(a)
a= = )
as la| sin(«)
und

P (bl) _ (|b| COS(ﬁ))
by 0] sin(f3)
Weiterhin gilt das Additionstheorem:
cos(a + ) = cos(a) cos(3) — sin(a) sin(3)
Es gilt:
cos(—f) = cos(p)
sin(—f) = — sin(beta)

Und damit:
cos(av — 3) = cos(a) cos(f) + sin(«) sin(p)

5 (la] cos(a)) (18] cos()
la| sin(«) || sin(p)
= |a| cos(a) |b| cos(B) + |a| sin(«) |b| sin(p)
= |a[ 0] [cos(av) cos(f3) + sin(a) sin(3)]
= |a| |b] [cos(a — B)]
= |a| |b] cos(7)
Mit ~ als Winkel zwischen den beiden Vektoren @ und b.
Sie erhalten die gesuchte Beziehung:

a-b = la||b] cos(v)
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Abbildung 2.2: Der Vektor 7i ist senkrecht zum Vektor @. Die Projektion des
Vektors b auf 7 ist eingezeichnet.

2.4 Projektion

Das Skalarprodukt ist die Projektion eines Vektors auf einen anderen Vektor
multipliziert mit der Lénge des anderen Vektors:

@-b=|d| cos(v)[b|

Wichtige Anwendungen, die hier kurz vorgestellt werden soll sind in der Physik
die Berechnung der Arbeit mit Hilfe des Skalarproduktes und in der Geometrie
die Berechnung der Hohe, bzw. Abstand eines Punktes.

Einige wichtige Anwendungen, die die projektive Eigenschaft des Skalarpro-
duktes benutzen:

e Die Berechnung der Arbeit in der Physik.

e Die Berechnung der Hohe, bzw. die Berechnung des Abstandes eines Punk-
tes von einer Ebene, Gerade usw. in der Geometrie. (Dies benutzen Sie
spater, um das Volumen eines dreidimensionalen Korpers zu berechnen.

2.4.1 Die Arbeit in der Physik

In der Physik ist Arbeit das Produkt aus Kraft mal Weg. Wobei nur die Kraft in
Wegrichtung geziahlt wird.
Arbeit = F, - s
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Die Kraft in Wegrichtung ist gerade die Projektion des Kraftvektors auf die Weg-
richtung. Wenn der Weg durch einen Vektor dargestellt wird, dessen Richtung
dem Weg entspricht und dessen Lénge der Léange des Weges entspricht, dann ist
das Skalarprodukt gleich der Arbeit. In vektorieller Schreibweise gilt also:

Arbeit = F - §

2.4.2 Die Ho6he oder der Abstand zu einer Geraden

Die Léange der Hohe ist der Abstand eines Punktes zur entsprechenden Geraden.
(Im Dreieck ist die Lange der Hohe h, der Abstand vom Punkt C zur gegeniiber-
liegenden Seite c).

Die Lénge der Hohe entspricht der Projektion der Hohe auf einer Geraden,
welche senkrecht zur entsprechenden Seite ist. Wenn der Normalenvektor die Lén-
ge 1 hat gilt:

|
—_

|10

h=iy-b

|
St

Wenn |7i| nicht eins ist, miissen Sie noch durch die Lénge des Normalenvektors
teilen.
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2.5 TUbungen

Aufgabe 2.1 .
Geben Sie das Skalarprodukt der beiden Vektoren @ und b an.

1 3
a=1| 2 b= 11
—2 1

(Losung siehe Seite B0).
Aufgabe 2.2
Bestimmen Sie den Winkel zwischen den beiden Vektoren:

() -0

(Losung siehe Seite B0).

Aufgabe 2.3
Zeigen Sie, dass die beiden Vektoren orthogonal (senkrecht) zueinander sind:
3 1
a= -2 b=1| 1
1 -1

(Losung siehe Seite [3T]).

Aufgabe 2.4

Geben Sie einen orthogonalen Vektor zu a@ an:
(Losung siehe Seite [BT]).

L (3
“~
Aufgabe 2.5

Geben Sie einen orthogonalen Vektor zu @ an:

ST
I
—_

(Losung siehe Seite [3T]).
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Aufgabe 2.6
In einem Vektor ist Thnen der Dieselpreis pro Tag fiir eine Woche gegeben:

14
1,45
15
=1 15
1,5
1.4
1,3

In einem zweiten Vektor ist Thnen die Anzahl der verkauften Litermengen pro
Tag angegeben:

1000
2000
2000
2000
1000
1000
1000

=~
I

Bestimmen Sie den Umsatz dieser Woche.
(Losung siehe Seite B2)).
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Zu Aufgabe: 2.1 B
Geben Sie das Skalarprodukt der beiden Vektoren @ und b an.

1 3
i=|2] b=|1
—2 1
1 3
2 |- (1] =134+2-14(-2)-1=34+2-2=3
—2) \1

Zu Aufgabe:
Bestimmen Sie den Winkel zwischen den beiden Vektoren:

~(2) ()

Zuerst miissen die Lingen der Vektoren bestimmt werden:

@] = V52 + 122 = /25 + 144 = V169 = 13

6] = /82 + 152 = /64 + 225 = /189 = 17
Das Skalarprodukt von @ und b:

5\ /8
(12) . (15) —5.8412.15 = 40 + 180 = 220

a-b=a] |b] cos(v)

Umstellen ergibt

ST
S

cos(y) =

l

| 1]
20

T 1317
9220

221
v=5°

N

[\)

Der Winkel betragt 5°.
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Zu Aufgabe:

Zeigen Sie, dass die beiden Vektoren orthogonal (senkrecht) zueinander sind:
3 1
a= -2 b=\ 1
1 -1

Die Vektoren sind genau dann orthogonal zueinander, wenn das Skalarprodukt
null ist.

A
i-b=|-2 1
1 ~1
=31+ (=2)-14+1-(=1)
=3-2-1

Zu Aufgabe: 2.4
Geben Sie einen orthogonalen Vektor zu a@ an:

()

Das Skalarprodukt des gesuchten Vektors mit dem Vektor @ muss null ergeben.

()

b

ist z. B. ein gesuchter Vektor.
Weitere Vektoren sind:

Uusw.

Zu Aufgabe:
Geben Sie einen orthogonalen Vektor zu @ an:

3
a= |1
2

Eine einfache Moglichkeit ist, dass Sie jeweils eine Komponente null wahlen
und dann die anderen beiden durch Vertauschung und Anderung eines Vorzei-
chens wéhlen:

. 1 -1 2 0
b= | -3 by=1 3
0 0 -3 -1

ol
I
=)
Sy
I
(\]
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Wo Sie das Vorzeichen wechseln ist egal (siche b und by).
Es gibt natiirlich noch mehr Moéglichkeiten, wie z. B.:

2

Wichtig ist, dass das Skalarprodukt mit @ null ergibt.

Zu Aufgabe:
In einem Vektor ist Thnen der Dieselpreis pro Tag fiir eine Woche gegeben:

1,4
1,45
1,5
=115
15
1,4
1,3

In einem zweiten Vektor ist Thnen die Anzahl der verkauften Litermengen pro
Tag angegeben:

1000
2000
2000
2000
1000
1000
1000

Bestimmen Sie den Umsatz dieser Woche.

Den Umsatz des Tages bestimmen Sie, indem Sie den Preis pro Liter mit
der verkauften Menge des Tages multiplizieren. Um den Umsatz der Woche zu
ermitteln, miissen Sie die Umsitze aller Tage addieren.

I
I

1,4 1000
1,45 2000
1,5 2000
Umsatz = | 1,5 | - | 2000
1,5 1000
1,4 1000
1,3 1000
=1,4-1000 + 1,45 - 2000 + 1,5 - 2000 + 1,5 - 2000 + 1,5 - 1000 + 1,4 - 1000 + 1,3 - 1000
= 14500

14.500 Euro wurde in der Woche umgesetzt.



Kapitel 3

Vektorprodukt — Kreuzprodukt

Das Vektorprodukt oder auch das Kreuzprodukt zweier dreidimensionaler Vek-
toren bestimmt einen Vektor, welcher senkrecht zu beiden Vektoren ist.

Dariiber hinaus werden wir sehen, dass wman mit Hilfe des Vektorproduktes
die Fldche des Parallelogramms berechnen kann, welche durch zwei Vektoren
aufgespannt wird.

3.1 Definition des Vektorproduktes

Das Vektorprodukt der beiden Vektoren a und b:

aq bl a9 bg — as b2
as X b2 = | as bl — a1 bg
as bs ay by —ag by

Wie merken Sie sich das Kreuzprodukt? Schreiben Sie einfach beide Vektoren
untereinander nochmal hin und bilden dann , Kreuze“.

Beispiel:

1 4

a=12|, b=15
3 6

Schreiben Sie nun die beiden Vektoren untereinander:

1 4
2 5
3 6
1]’ 4
2 5
3 6

Jetzt bilden Sie das Kreuzprodukt in folgender Weise, dass Sie fiir eine Zeile
jeweils die anderen Zeileneintrage miteinander multiplizieren. Die Verbindung

33
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von links oben nach rechts unten zihlt positiv, die Verbindung von links unten
nach rechts oben zéhlt negativ:

1. Fir die 1. Zeile bilden Sie ein Kreuz aus den folgenden beiden Zeilen (Nr.
2 und Nr. 3).

2. Fiir die 2. Zeile bilden Sie ein Kreuz aus den folgenden beiden Zeilen (Nr.
3 und Nr. 4).

3. Fiir die 3. Zeile bilden Sie ein Kreuz aus den folgenden beiden Zeilen (Nr.
4 und Nr. 5, bzw. Nr. 1 und Nr. 2).

1. Schritt: Wir berechnen die x-Komponente:

I

2. Schritt: Wir berechnen die y-Komponente:

2-6-3-5

O — W N
S U= O Ot =

w

; ;l 2:-6—-3-5
3 6| 3-4—-1-6
1 41

2 Y

3 6

3. Schritt: Wir berechnen die z-Komponente:

2:-6—-3-5
3:4—-1-6
=|1.5-2-4

W W
O UL O Ot

Also:

o
Il
SI
X
S
Il
W DN
-
X
R
S Ot
Il
wW DN
=
[
— W
D Ot
Il
o
W
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3.2 Rechenregeln

3.2.1 Bilinearitat

Fiir eine reelle Zahl r: » € & und zwei Vektoren ¢ und b aus dem dreidimensionalen
Raum gilt: B .
(rd) x b=r(a xb)

Das bedeutet anschaulich z. B., dass wenn ein Vektor um den Faktor zwei ver-
groflert wird, dass Vektorprodukt ebenfalls um den Faktor zwei vergroflert wird.

Beweis:
raq bl
(ra) xb= |raz | x | be
ras bg

Anwenden des Vektorproduktes
’l“agbg — ’l“agbg
= ’l“agbl — ’l“albg

’l“albg — ’l“agbl

Ausklammern von r

asbs — azby
= a3b1 - albg

alb2 — asby
=r(d x

3.2.2 Distributivgesetz

Fiir drei Vektoren aus dem dreidimensionalen Raum gilt:

(@4+b)xT=axc+bx@

Beweis:
. aq + bl C1
(C?—Fb))(gz a2+b2 X | Co
as + bg C3

(ag + bg)Cg — (ag + 63)62
(a3 -+ bg) (CL1 + bl)Cl
(a1 + bl) (CLQ + bQ)Cg
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Hier gilt das normale Distributivgestez fiir reelle Zahlen

asCs + bgCg — a3Cy — bgCQ
= asci + b301 — a1y — b101
a1Coy + b102 — A2C3 — bgCg

A2C3 — a3C2 bacs — byco
= | asc; —aicr | + | bscr — by
a1Cy — G2C3 bicy — bacs

Das Distributivgesetz mit der Biliniaritdt zusammen lésst Sie das Vektorpro-
dukt auch anders schreiben.

ISI

S

aq

as | xb

as

[ 1 0 0 .
ap |0 +as | 1] +as|0 X b
i 0 0 1

= (alé'l + a2€2 + a3€3) X g

Wenn man dieses Gesetz voraussetzt, und zusétzlich die Multiplikation der Ein-
heitsvektoren vorgibt, erhilt man ebenfalls das Vektorprodukt. (siehe Kap. B.0]

S. [9).

3.2.3 Antikommutativitiat

Fiir zwei Vektoren aus dem dreidimensionalen Raum gilt:

Bewels:

axb=—-bxda
byaz — bzay
—bxa=-— bgal — blag

bias — baay
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Alphabetische Umsortierung ergibt

a3b2 - CLng
= — | a1bs — azh
a2b1 — CL1b2
a2b3 - CL3b2
= | asby — a1bs
albg — &261
—axb

3.3 Normaleneigenschaft des Vektorproduktes

Hier zeigen wir mit Hilfe des Skalarproduktes, dass das der durch dass Vektor-
produkt a x b gebildete Vektor 7 tatsiachlich senkrecht zu den beiden Vektoren a
und b ist.

a2~bg—a3-b2
n=0axb= &3'bl—a1'b3
ap by —as-by

7 ist senkrecht zu @ und I;, wenn die Skalarprodukte von @ und b mit 7 jeweils 0
ergeben:

aq a2~bg—a3-b2
a-n= a9 . 0,3'61—0,1'b3
as ap by —az-by

= al(ag bg — as bg) + ag(a,g bl — a1 bg) + &3(&1 b2 — a2 bl)

:alagbg—alagbg—i—agagbl—a2a163+a3a1b2—a3agbl

und es gilt
. bl a2-b3—a3~b2
b-n= b2 : ag'bl—al'bg
bg al'bg—ag'bl

= bl(ag bg — as bg) + bg(ag bl — a1 bg) + bg(&l bg — A2 bl)
= blagbg — blang +b2a3b1 —b2a1b3 +bga1b2 - bgagbl
=0
Bemerkung: Oftmals wollen Sie nur einen senkrechten Vektor zu a und b

bestimmen. Dann koénnen Sie den Vektor auch kiirzen, also jede Komponente des
Vektors durch dieselbe Zahl teilen.
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3.4 Herleitung aus den Gleichungen

Ein oft auftretendes Problem in der Vektorrechnung ist die Suche nach einem
Vektor, der zu zwei gegebenen Vektoren senkrecht ist. Die Antwort bietet das
Vektorprodukt. Sie kénnen jedoch auch von der Bedingung und dem Skalarpro-
dukt ausgehen.

Angenommen, Sie haben die 3-dimensionalen Vektoren @ und b. Gesucht ist
ein Vektor 7, der sowohl zu @ als auch zu b senkrecht steht. Dann muss jeweils
das Skalarprodukt von 7 mit @ und b null sein:

S
I

0
0

Sy R
3y
Il

Das ergibt zwei Gleichungen:

ainy + asng + asng =0
b1n1 + bgng + b3n3 =0

Oder in Matrixschreibweise:

5 | =
by by b3 . 0
Dieses Gleichungssystem ist allgemein l6sbar:

Zuerst wird eine Zeile mit Nullen ergénzt, um eine quadratische Matrix zu
erhalten:

a; ao das T 0
bl bg b3 N9 = 0
0 0 O ng 0
[I’:al-ll—bl-l
aq (05} as T 0
0 a7 b2 — a9 bl aq b3 — as bl N9 = 0
0 0 0 ns 0

I’:(alb2—agbl)-1—a2~ff

CL1<CL1 b2 — a3 bl) 0 ag(al b2 — ag bl) —a2(a1 b3 — a3 bl) ny
0 ay bg — a2 bl aq bg — as bl o =
0 0 0 ng

Ausmultiplizieren in der 1. Zeile
CL1<CL1 bg—agbl) 0 aq CL3b2 —a2a3b1 — a CLng"‘CLQCLgbl nq
0 aq bg — a9 bl aq bg — as bl To
0 0 0 ns
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Zusammenfassen der Summanden in der 1. Zeile

aq (CLl bg — a9 bl) 0 a1 ag b2 — a1 Q9 b3 nq 0
0 aq b2 — Q9 bl aq bg — as bl T = 0
0 0 0 ns 0
I/ = I/CLl
aq bg — a9 bl 0 as bg — Q9 bg T 0
0 ay b2 — Q9 bl aq bg — as bl T = 0
0 0 0 ns 0

I/:[/(a,lbg—agbl)

II/ = II/(a1b2 —a2b1)
1 0 ag ba—as b

a1 ba—az by ny 0
a1 bs—az by _
O 1 a1 ba—as by o = O
n
00 0 3 0
Damit ergibt sich die Lésung zu:
__azbo—ao b3
a1 bo—as b
= __aibs—aszb
n=r a1 bo—aso by
1
Substituieren Sie: s = sy, und multiplizieren Sie das Minuszeichen mit
der Klammer aus:
- (Cl3 by — ap 53) az by — az by
n=s —(&163—&361) =S &361—&163
ay by — az by a1 by — as by

Wenn man nun s = 1 wihlt, ist dies gerade das Vektorprodukt.
Wenn die Vektoren a@ und b ganzzahlige Komponenten enthalten, hat der
Normalenvektor 77 ebenfalls nur ganzzahlige Komponenten.

3.5 Herleitung aus den Regeln

Sie konnen das Vektorprodukt fiir zwei dreidimensionale Vektoren @ und b aus
den Regeln eindeutig bestimmen.

e Das Vektorprodukt soll bilinear sein:

—

(rd@) x b =1r(a@ % b)

re R
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e Es soll das Distributivgesetz gelten:
(@+b)xC=axé+bxc
e Es soll anti-kommunitativ sein:
Axb=—bxa
Insbesondere gilt dann z. B. (siehe auch néchste Regel):

—

elxégz—f?gxél

e [ soll ein Rechtssystem sein:

€1x€2:€3
€3x€1:€2
€2x€3:€1

Beachten Sie, dass mit der anti-kommunitativen Regel dies eigentlich 6 Be-
dingungen sind.

e Das Vektorprodukt eines Vektors mit sich selbst soll null sein:

Sie kénnen nun mit Hilfe dieser Bedingungen ein das Vektorprodukt entwickeln,
um dann anschliessend zu zeigen, dass der so gebildete Vektor tatséichlich auf
den anderen beiden senkrecht steht und auch die Flache des gebildeten Paralle-

logramms enthélt.

ay
axb= as x b
as
! 0 0
= |a1 0 + a9 1 + as 0 Xg
i 0 0 1

= (alél + aggg + &353) X g
Dieselbe Umformung fiir den Vektor b fiihrt zu

= (alél + aggg + &353) X (blgl + bggg + 6353)
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Ein Verkniipfen dieser Gleichung nach dem Distributivgesetz (jeder Summand der
ersten Klammer wird mit jedem Summanden der zweiten Klammer verkniipft)

fithrt zu folgendem Term:
axb= alé'l X blgl + a1€1 X bggg + alél X bgé},
+ aggg X blgl + aggg X 6252 + 0,252 X bggg

+ a3é’3 X blgl + a3€3 X 6252 + CL3€3 X 6383

Nun sind aber alle Summanden Null bei denen €] x €7, bzw. €3 X €5, oder €3 X €3
auftritt:

axb = 0 + 0,151 X 6252 -+ 0,151 X bggg
—+ a2€2 X blgl + 0 + aggg X 6383
+ CL3€3 X blgl + CL3€3 X 6282 + 0

Andererseits ist aus den Regeln bekannt:

€2x€1:—€1x€2
51 X 83 = —e€3 81
€3X€2:—62X€3
Dies fiihrt zu:
axb = 0 + alé’l X bggg — alé’g X bggl
— aggl X blgg + 0 + a2€2 X bgé},
+ a3€3 X blgl — aggg X bgé}, + 0

Jetzt werden die Vektorprodukte der Einheitsvektoren gebildet:

51 X 52 = 53
83 X 81 = 82
52 X 53 = 51
a X g = 0 + a1b2€3 — CL1()3€2
— agblgg + 0 + agbggl
+ agblgg — agbggl + 0

Wenn man nun neu sortiert erhilt man:
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Oder in Vektorschreibweise:

ay by asbs — asby
axb= as X b2 = agbl — a1b3
a3 b3 a1by — agby

Die anderen Eigenschaften (Betrag des Vektorproduktes gleich der von den
Vektoren aufgespannten Fldche und die Orthonormalitit zu den multiplizierten
Vektoren) miissen genau so nachgewiesen werden.

3.6 Vektorprodukt und Fliche

In diesem Abschnitt wird der Zusammenhang zwischen dem Vektorprodukt und
der Fliche des Parallelogramms, welches die zwei Vektoren aufspannen aufgezeigt.

Dieses Kapitel konnen Sie auch iiberspringen. Die Herleitung ist nicht zwangs-
laufig gewinnbringend und ideenreich.

Das Ergebnis vorweg:

A(@,b) = |@ x b

Das Betrag des Vektorproduktes entspricht der Fliche des von den Vektoren a
und b aufgespannten Parallelogramms.

Im Laufe der Herleitung werden wir verschiedene Umformungen durchfiihren
miissen. Hier also zur Erinnerung kurz vorweg:

1. Winkel lassen sich mit Hilfe des Skalarproduktes bestimmen:

Sl
S

cos(y) =

=

SI

v ist der von den beiden Vektoren @ und b eingeschlossene Winkel. (Vgl.

Kap. 23 S. 21))

2. Im rechtwinkligen Dreieck ist das Quadrat der Hypotenuse gleich der Sum-
me der Quadrate der Katheten:

sin?(7y) + cos*(y) = 1

3. Das Quadrat des Betrages eines Vektors entspricht dem Skalarprodukt des

Vektors mit sich selbst:
? a

la|* =ad-ad

(Vgl. Kap. @, S.[18)
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Abbildung 3.1: In diesem Bild sehen Sie wie die zwei Vektoren @ und b ein
Parallelogramm aufspannen. Die Hohe des Parallelogramms ist gegeben durch:
h = |d| sin(y). v ist der von den beiden Vektoren eingeschlossene Winkel.

Die Fliche des von den beiden Vektoren @ und b aufgespannten Parallelo-
gramms erhalten Sie, indem Sie die H6he mit der Grundseite des Parallelogramms

multiplizieren. (S. Abb. Bl S. A3)

A=hly

Die Grundseite ist hier gegeben durch die Liange des Vektors b. Die Hohe lisst
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sich mit Hilfe des Sinus und dem eingeschlossenen Winkel v bestimmen:

h = |a] sin(y)
A = |a] [b] sin(v)
Im folgenden soll jetzt der Winkel v mit Hilfe des Skalarproduktes bestimmt
werden. Dadurch werden die Trigonometrischen Funktionen wieder aus der Fl&-
chenberechnung eliminiert.

Es gelten folgende zwei Beziehungen:

sin®(7) + cos?(7)
sin®(y) = 1 — cos(7)
sin(y) = /1 — cos?(y)

1
1

und

a-b
cos() = =0
|l |b]

—»._’2

cosz(v) (@)

=

j? |5
Einsetzen der obigen Beziehungen fiir die Fliche:
A = lal [b] sin(v)
= |a] [b] /1 = cos?(7)

(@- )2
= laf b4 /1 = ==
|a|? o]
Die Wurzel des Quadrates ist wieder dieselbe positive Zahl

Qo 1 - @0
aP o

Multiplizieren Sie wie beim Klammern auflésen

= g 2
_ \/ laf? 2 \a|2|b\2‘<“—>

af? |bf?

Kiirzen ergibt dann:

= lal b2 — @ By
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Wenn Sie die Regel beachten:|d|? = @ - @ ergibt sich:

A=\/G- @) b) - (@b
Dies ist sicherlich eine schéne und auch praktische Regel, hat aber noch nichts mit
dem Vektorprodukt zu tun. Deshalb werden wir jetzt die Komponentenschreib-
weise fiir dreidimensionale Vektoren benutzen:

aq bl
a= a9 b= bg
as bs
dann gilt folgendes:
aq aq
a-a=|ay az | = ai + a3 + a3
as as
und
by by

S
S
I
=
N
S
I\

=b; + b5+ b3
(@-@)(b-b) = (a®+ a2+ a2)(b? + b + b2)
= (ab] +aibs+aiby) + (a3 b2 + a3b; + a3 b3) + (a3 b] + a3 b3 + a3 b3)

Die Klammer sind nur {ibersichtshalber gesetzt.
Andererseits gilt fiir den anderen Summanden:

B ay by
a-b= [¢5) : bg :albl+a2b2+a3b3
as bg

Und das Quadrat:

(@-b)? = (a1 by + as by + azbs)?
= (a1 by + as by + az bz)(ay by + as by + az bs)
=aybyay by + ay by az by + a; by as bs
+ ag by ay by 4+ as by as by + as by az bs
+ az by ay by + a3 by as by + as bs asz b
= (a1 b1)* + (ag ba)* + (a3 b3)?

Umsortieren und zusammenfassen ergibt:

Die Diagonalelemente
+ 2(0,1 bl (05} b2) + 2((1,1 bl as bg) + 2(&2 b2 as bg)
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Umsortieren ergibt:

= (a1 b1)2 -+ (CLQ b2)2 -+ (a3 b3)2
+ 2((1,1 a9 bl b2) + 2(0,1 as bl bg) + 2(&2 as bg bg)

Der Ubersicht halber betrachten wir A2. Dann kann die Darstellung iiber mehrere

Zeilen erfolgen.
Wenn wir nun dies alles zusammenfiihren:

A=/@ @5 — (@ by
A? = (a]b] +ajb; + a3 b3)
+ (a3 b3 + a3 b3 + a3 b3)
+ (a2 b? + a3 b3 + albl)
— (a1 b1)* = (ag by)? — (a3 b3)?
— 2(ay ag by by) — 2(ay az by by) — 2(ag as by bs)

Entfernen gleicher Summanden

_ 212 272

+ a3 b3 + a3 b3
+ a3 b3 + a3 b;
— 2(@1 (05} bl bg) — 2(0,1 as bl bg) — 2(&2 as b2 bg)

Wenn wir jetzt umgekehrt den Betrag des Vektorproduktes berechnen:

a1 by as bs — asz by
axb= as X bg = agbl—albg
a3 b3 ay by — az by

Um leichter vergleichen zu konnen, ermitteln wir nicht die Lénge sondern das
Quadrat der Linge. (Dies sollte dann mit A? iibereinstimmen.) Dann ist das

Quadrat des Betrages:

|G@ % b|* = (ag bg — agby)?
+ (azby — ay bs)?
+ (a1 by — ay by)?
= a2 b — 2aybs asby + ai b
+a3b3 —2azby a; by + ai b3

+&%b§—20,1b2&261+&§b%
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Umordnen der einzelnen Buchstaben nach dem Alphabet:

:a§b§—2a2a3b2b3+a§bg

+&§b%—2&1&gblbg+af%b§
+&%bg—2&1&26162+&gb%

Umordnen der Summanden ergibt:

= ajb; +ajb;
+a3b +a3bs
+a§bf+a§b§

—2a1a26162—2a1agblbg—2a2a36263

Im Vergleich zur Rechnung oben ergibt sich nun die anfingliche Behauptung:

A=\/@ @)F b - @ b
A=1axb

3.7 Bemerkung

Einige kleinere Hinweise:

1. Sie verwenden in der analytischen Geometrie eigentlich niemals einen Punkt
P im Vektorprodukt. Denn es soll so gut wie niemals ein anderer Vektor
senkrecht auf der Verbindungslinie Ursprung Punkt P stehen.

Dies ist manchmal ein Fehler, den Anfianger bei der Berechnung von z. B.
Absténden usw. machen.

2. Das Vektorprodukt macht nur Sinn und ist auch nur so definiert fiir dreidi-
mensionale Vektoren. Im vierdimensionalen Raum hilft Thnen das Vektor-
produkt nicht. Aus einem zweidimensionalen Raum (Sie haben also nur 2
Koordinaten!) kénnen Sie durch ,anhéngen einer Null“ einen dreidimensio-
nalen Vektor erstellen bei dem die z-Komponente Null ist. (Schlielich ist
der zweidimensionale Raum im dreidimensionalen Raum eingebettet.)

1
@)% 2
0

So konnen Sie dann hier auch senkrechte Vektoren konstruieren.
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3. Uberpriifen Sie immer! das Vektorprodukt mit Hilfe des Skalarproduktes.
So vermeiden Sie Schwierigkeiten bei der weiteren Rechnung, welche wegen
eines kleinen Rechenfehlers sonst unweigerlich auftauchen.

1 2 2
21 x 10| = 5
3 1 —14
Probe:
1 2
215 | =1-24+2-543-(-4)=2410-12=0
3 —4
und
2 2
0]- {5 |=224+0-5+1-(-4)=440-4=0
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3.8 Ubungen

Aufgabe 3.1
Bestimmen Sie das Vektorprodukt der beiden Vektoren:

1 -1
a=12 b=11
3 2

(Losung siehe Seite B0).

Aufgabe 3.2

Ermitteln Sie die Flache des Dreiecks, welches durch die Punkte A(1]2]3), B(4/2]2),
C(4]0]5) aufgespannt wird.

(Losung siehe Seite [B0)).
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Zu Aufgabe: 3.1
Bestimmen Sie das Vektorprodukt der beiden Vektoren:

1
a= |2
3
—1
b= | 1
2

Héngen Sie zumindest die wl. und 2. Zeile an die Vektoren an und bilden Sie
dann das Kreuzprodukt, indem Sie kreuzweise multiplizieren und damit die Zeile
dariiber erstellen.

Beispiel: Die neue 1. Zeile bekommen Sie, indem Sie die 2. und 3. Zeile kreuz-
weise multiplizieren:

Verfahren:
1 ~1
2 1 2.2-3-1 4-3 1
3| 2 [=(3-(-n-12)=[-3-2|=|-5
1 —1 1-1—2-(=1) 142 3
2 1

Hier wurde ein anderes Verkniipfungszeichen gewahlt, weil hier zwei 5-dim. Vek-
toren verkniipft werden zu einem 3-dim. Vektor. Dies ist ja so kein Vektorprodukt.
Es gilt also:

Zu Aufgabe:
Ermitteln Sie die Flache des Dreiecks, welches durch die Punkte A(1]2]3), B(4/2]2),

C(4/|0]5) aufgespannt wird.
Zuerst miissen die das Dreieck aufspannenden Vektoren gesucht werden:

4 1 3
d=B-A=12|-[2]l=1( o0
2 3 1
1 4 -3
e=A—C=1[2|-|o] =] 2
3 5 )

Da es sich um eine Dreiecksfliche handelt, benttigen wir die Hélte der Parallelo-
grammfléche.
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Die Flache des Parallelogramms ist gleich der Lénge des Vektors 7.

7] = V22 + 92462 = V4 + 81 +36 = V121 = 11

Die Fliche des Dreiecks ist dann 5,5 FE (Flicheneinheiten) gross.

o1



Kapitel 4

Skalar- und Vektorprodukt

In diesem Abschnitt betrachten wir Zusammenhénge zwischen dem Skalarprodukt
und dem Vektorprodukt.

4.1 Volumen eines Parallelepipeds

Ein Parallelepiped ist ein Korper, der von drei Vektoren aufgespannt wird:

Ein Parallelepiped ist ein ,,verschobener* Quader (so wie ein Parallelogramm
ein , verschobenes“ Rechteck ist).

Die Grundfidche ergibt sich durch das Vektorprodukt:

A=dxb

Die Hohe ergibt sich dann aus der Projektion des Vektors ¢ auf den Normalen-
vektor.

V=G h=(@xb)-¢
Mit welchen Vektoren Sie das Vektorprodukt bilden ist natiirlich egal.
Insbesondere konnen Sie mit Hilfe des Volumens entscheiden, ob drei Vektoren
in einer Ebene liegen. Ob drei Vektoren einen Raum oder eine Ebene aufspannen
ist ein Entscheidungskriterium fiir:

1. Kann man diese drei Koordinaten als Basis fiir einen 3-dim. Raum be-
nutzen? Also kann man alle Punkte im 3-dim. mit diesen drei Vektoren
ausdriicken?

2. Wenn die drei Vektoren Richtungsvektoren fiir eine Ebene und eine Gera-
de darstellen (zwei fiir eine Ebene und ein Vektor fiir die Gerade), dann
entscheidet sich, ob die Gerade parallel zur Ebene liegt.

Wenn das Volumen null ist, dann liegen die drei Vektoren in einer Ebene.

52
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Abbildung 4.1: Drei Vektoren spannen ein Parallelepiped auf.

23
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-

Abbildung 4.2: Zwei Vektoren (@ und b) ergeben die Grundfléche. Die Hohe des
Parallelepipeds erhélt man durch die Projektion des dritten Vektors auf den Nor-
malenvektor. Die Projektion wird berechnet mit Hilfe der Skalarmultiplikation.
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4.2 'Trigonometrische Beziehungen

In diesem Abschnitt werden nur die Formeln der vergangenen Abschnitte gesam-
melt.

7y_sel im gesammten Abschnitt der Winkel zwischen den beiden Vektoren a
und b.

4.2.1 Kosinus

ab
)= T
4.2.2 Sinus
. x|
= ‘m \5|‘
4.2.3 Tangens
tan(y) = 120
b
4.3 Mehrfaches Vektorprodukt — Gralmann Iden-

titat

In diesem Abschnitt untersuchen wir, was passiert, wenn Sie das Vektorprodukt

zwischen zwei Vektoren bilden und dann erneut mit einem Vektor das Vektorpro-
dukt bilden: -
ax (bx?)
Sie haben 2 Vektoren b und & (nicht parallel) im 3-dim. Raum. Wenn Sie das

Vektorprodukt der beiden Vektoren b und ¢ bilden, erhalten Sie einen Vektor 1,
welcher jeweils orthogonal (senkrecht) zu den Vektoren b und ¢ ist.

n=bxc

Dieser Vektor 7 steht senkrecht auf der von den Vektoren b und & aufgespannten
Ebene.

Wenn Sie jetzt das Vektorprodukt von dem Vektor 77 und dem Vektor @ bilden,
erhalten Sie einen Vektor, welcher senkrecht auf 77 steht und somit in der von den
Vektoren b und & aufgespannten Ebene liegt und senkrecht zu @ ist.

—

d=axi=ax (bxad
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Dies ist z. B. hilfreich, wenn Sie ein Dreieck im Raum haben, und eine Héhe des
Dreiecks (also eine Senkrechte auf einer Seite des Dreiecks in der Dreiecksebene)
suchen.

Demzufolge kann man den Vektor d auch nur durch die beiden Vektoren b
und ¢ ausdriicken:

-

ix(bxd)=(@ ab—(a be

4.3.1 Beweis

bycz — bscy

g c= bgCl—blcg

bicy —bycy

bycz — bz co

ax(bxa) = bs ¢ — by ¢
bicy — by

a2(b1 cy — by 01 - a3(b3 1 — b 03)
= as(bz c3 — bs 02) - al(bl cy — by Cl)
al(bg C1 — bl 03) — ag(bg C3 — bg CQ)

ausmultiplizieren der Klammern
agblcg —a2b201 —a3b301 ‘l'agblcg
= a3b203—a3b302—a1b102+a1b201
a1b301 — a1b103 — a2b203 +a2b302

Umsortieren (1. und 4. Spalte und 2. und 3. Spalte)

a2b102+a3b103—a2b2c1—agbgcl
= a3b203+a1b201—a3b3c2—a1b1c2
albgcl+a2b302—a1b1c3—a2b2c3

In der ersten und zweiten Spalte steht der Vektor b mit entsprechenden Vorfak-
toren und in der dritten und vierten Spalte erscheint der Vektor ¢:

[05) Cg—l-agCg (05} bg—i—ag bg
ax (bx?d)=|ascst+arc; | b— lasbs+arby | ¢
ay cl—l—a202 aq bl+a2 bg

Die jeweiligen Vorfaktoren sind fast jeweils das Skalarprodukt. Bei dem Vektor b
ist es fast bis auf den dritten Summanden das Skalarprodukt @ - ¢ und bei dem
Vorfaktor des Vektors ¢ ist es fast das Skalarprodukt @ - b.
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Wir ergéinzen also eine , Null“.

a9 Cy + a3 C3 aq b1 C1 ay bl C1 [05) bz + as bg
CYX(bXE)I aszc3 + apcy b+ CLszCz — &262C2 — &3bg+a1b1 c
a1 €1 + Qg Cy as b3 Cs3 as b3 Cg ay bl + as bg
A ~~ >y
0

Die Summanden in der Mitte ergidnzen das jeweilige Skalarprodukt, so dass man
kurz schreiben kann:

-,

Ax(bxd) = (@ ab—(a b



Kapitel 5
Gerade

5.1 Definition einer Geraden in Parameterform

Wir werden uns zuerst Geraden im 2-dimensionalen ansehen:
Wir betrachten Punkte, die sich durch folgende Anleitung ergeben:

RO

Wenn Sie verschiedene Werte fiir ¢ einsetzen, erhalten Sie verschiedene Punkte,
welche sich auf einer Geraden befinden (siehe Abb.[51]). ¢ ist ein Parameter, in den
Sie alle rellen Zahlen einsetzen, um damit alle Punkte der Geraden zu erhalten.

Beispiele: - @ +1- G) - @
=2 (3) e (1) = )

Die Geradengleichung ist folgendermaflen aufgebaut:

7= 2 + !
NV 3 1
~—— ~—~

Name der Geraden
Ein beliebiger Punkt der Geraden Richtungsvektor der Geraden

Eine solche Geradengleichung ist in der Parameterdarstellung. ¢ ist der Parameter,
fiir den Zahlen eingesetzt werden. Im zweidimensionalen kann man auch eine
Normalendarstellung erzeugen.

Geradengleichungen obwohl sie dasselbe Objekt beschreiben.

Der Richtungsvektor ist ein Vektor parallel zur Geraden (umgangssprachliche Vor-
stellung: ,liegt in der Geraden“). Welchen Punkt der Geraden Sie nehmen ist egal.
Ebenso ist die Lange des Richtungsvektors egal. Darum unterscheiden sich manche

58
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12 + 12 +
10 + t=0 10 + t=1
8 8
6 6
4 4
2 2
120 8 6 4 2,0 2 4 6 8 10 12 120 8 6 4 2,0 2 4 6 8 10 12
al al
61 61
8 8
10 + 10 +
12 12
12 12
10 t 10 =3
8 8
6 6
4 4
2 2
4210 & -6 -4 2,0 2 4 6 8 10 12 4210 & -6 -4 2,0 2 4 6 8 10 12
4 4
6 6
8 8
10 10
12 12
12 12
10 =4 10 t
8 8
6 6
4 4
2 2
4210 & -6 -4 2,0 2 4 6 8 10 12 4210 & -6 -4 2,0 2 4 6 8 10 12
4 4
6 6
8 8
10 10
12 12

Abbildung 5.1: Die Punkte der griin eingezeichneten Geraden werden durch den
roten Pfeil und Vielfache des blauen Pfeiles erzeugt. Die Punkte ,links” von dem
roten Pfeil werden durch negative t-Werte erzeugt.

()
5= () ()

g und h beschreiben dieselbe Gerade. Der Punkt der Gerade h (3/4) ergibt sich
in der Gerade g, wenn ¢ = 1 gewihlt wird. Die Richtungsvektoren sind Vielfache
voneinander, zeigen also in dieselbe Richtung, auch wenn sie nicht gleichlang sind.

11

g:
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Im 3-dimensionalen wird die Geraden ebenso beschrieben. Z. B.:

1 5
gs T = 2 +t 6
3 7
(é) ist ein Punkt der Geraden und (?73) ist der Richtungsvektor der Geraden.

5.2 Punktprobe

Wenn Sie eine Geradengleichung haben, kénnen Sie sehr leicht einzelne Punkte
ausrechnen. Schwieriger ist der umgekehrte Weg: Zu entscheiden, ob ein Punkt
zu einer Gerade gehort oder nicht.

Gegeben ist eine Gerade g:

1 3
g:r=|2]+t]|1
3 4

und zwei Punkte P(4/3/7) und Q(4/3/8)
Um zu entscheiden, ob diese Punkte der Gerade zugehtren, miissen Sie priifen,
ob es ein t gibt, dass folgende Gleichung 16st:

1 3 4
21 +t|1| =13
3 4 7

Dies sind im Prinzip 3 Gleichungen:

143t=4
2+t=3
3+4t=7

Wenn Sie die erste Gleichung 16sen, erhalten Sie: t = 1. Einsetzen in die 2. und
3. Gleichung ergibt, dass t = 1 auch diese Gleichungen 16st. P ist also ein Punkt
der Geraden.

Bei Q sieht das anders aus:

1 3 4
21 +t|1| =13
3 4 8

Die Losung der ersten Gleichung ergibt wiederum ¢ = 1. Aber in die 3. Gleichung
eingesetzt, erhalten Sie nicht 8 sondern 7. Also ist Q kein Punkt der Geraden.
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5.3 Lagebeziehung von Geraden mit Hilfe des
Gaussverfahrens

In diesem Abschnitt lernen Sie, wie Sie den Schnittpunkt von zwei Geraden be-
stimmen. Sie suchen dazu den Punkte, der beiden Geraden gemeinsam ist. Um-
gangssprachlich: ,,Sie setzen die Geraden gleich® und 16sen das Gleichungssystem
z. B. mit Hilfe des Gaussverfahrens.

In diesem Kapitel wird der Zusammenhang zwischen den Lagebeziehungen der
Geraden und der jeweiligen Losungsmenge des Gleichungssystems. Als systema-
tisches Verfahren des Losens von Gleichungssystemen bietet sich das Gaussver-
fahren an.

5.3.1 Schnittpunkt

Gegeben sind zwei Geraden:

6 1
[0 T = 1 +r|0
5 1
7 2
g :r=13]+s|1
8 3

Abbildung 5.2: Die beiden Geraden g1 und ¢2 (siehe Text).

Gesucht ist der Punkt, der beiden Geraden gemeinsam ist:

6 1 7 2
11 +r|0]=1(3]+s]1
5 1 8 3
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(Achten Sie darauf, dass die Parameter der jeweiligen Geraden unterschiedlich
sind. Hier wurde zur r und s gewihlt.) Ziehen Sie auf beiden Seiten (E) ab:

1 1 2
r{0)l=12]+s|1
1 3 3
Ziehen Sie auf beiden Seiten s (g) ab:
1 2 1
r{0)] —s|1] =12
1 3 3

Schreiben Sie jetzt, fiir die Schreibweise beim Gaussverfahren, das Minuszeichen
in dem Vektor:

1 —2 1
r{0] +s|-1] =12
1 -3 3

1 —2 1
0 —1 -(r): 2
1 —3) \° 3

III =111 —1

1 —2 1
0 —1 -(T): 2
0 —1 5 2
III =111 —1I

1 -2 1
0 —1 -(T): 2
0 0 y 0
II'=(-1)-II

1 -2 1
0 1 -(T): )
0 0 5 0
I'=1+2-II

10 -3
0 1 -(T): )
00 5 0

Da die untere Zeile nur aus Nullen besteht, gibt es eine eindeutige Losung fiir r
und s. Somit gibt es einen Schnittpunkt:
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In g1 eingesetzt:

6 1 3
S=[1]4+(=3)-|10] =1
bt 1 2
oder in g2 eingesetzt:
7 2 3
S=13+(-2)- (1] =1
8 3 2

5.3.2 Parallele Geraden

Gegeben sind Thnen zwei Geraden:

6 1
g1 r=1]14+7r|0
bt 1
7 1
g:T=|3]+s|0
8 1

Wenn Sie wiederum einfach gleichsetzen:

6 1 7 1
1l +7r|0]l=13]|+s]0
5 1 8 1
Ziehen Sie auf beiden Seiten den Vektor (g) ab:
1 1 1
r{f0]l=12]+s|0
1 3 1
Ziehen Sie auf beiden Seiten: s (é) ab
1 —1 1
r{0) +s| 0 | =12
1 —1 3
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In der zweiten Zeile ist links in der Matrix eine Nullzeile, aber der Ergebnis-
vektor enthélt dort keine Null. Sie miissten also eine Losung fiir das folgende

Gleichungssystem finden:
Or 4+ 0s =2

Es gibt keine Zahlen fiir » und s, welche diese Gleichung erfiillen.

Wenn das Gleichungssystem keine Losung hat, haben die Geraden keinen
Punkt gemeinsam. Dies bedeutet, dass die Geraden parallel oder windschief im
Raum sind. Da die Richtungsvektoren Vielfache voneinander sind (hier ist der
Faktor 1, da sie gleich sind), sind die Geraden parallel.

5.3.3 Identische Geraden

Gegeben sind Thnen zwei Geraden:

6 1
[0 T = 1 +r|0
b} 1
8 1
ggif: 11+s|0
7 1

Beide Geraden haben denselben Richtungsvektor, sind also entweder parallel oder
identisch. Da sie beide unterschiedliche Ortsvektoren haben, ist die Identitdt der
beiden Geraden nicht unmittelbar ersichtlich.

Sie konnten jetzt einfach schauen, ob der Ortsvektor von g1 ein Punkt von g2
ist oder wie oben die beiden Geradengleichungen gleichsetzen.

6 1 8 1
11 4+7{0)=11]+s1]0
1 1

5.3.4 Zusammenfassung

5.4 Schnittwinkel zweier Geraden

In diesem Kapitel soll dargestellt werden, wie Sie den Winkel zweier sich schnei-
dender Geraden erhalten. Dies ist z. B. wichtig, wenn Sie die Punkte eines Drei-
ecks haben, daraus die Geraden durch die Punkte ermitteln und dann die Winkel
des Dreiecks bestimmen wollen.

Bei den Geraden miissen Sie nur den Winkel zwischen den Richtungsvektoren
bestimmen.

Beispiel: Da es bei den Geraden egal ist, welchen Punkt der Geraden Sie in der
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Abbildung 5.3: Zwei Geraden mit dem Schnittpunkt jeweils als Punkt P der Ge-
raden. Die Richtungsvektoren sind jeweils rot eingezeichnet. Der Winkel zwischen
den Geraden ist unabhéngig von der Wahl des Punktes P der Gerade.

Geradengleichung angeben, konnen Sie auch jeweils den Schnittpunkt angeben.
Dies hat nichts mit dem Winkel zu tun. (Siche Abb. B3] S.[63])

()3
o (o)
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Der Schnittwinkel ergibt sich aus dem Skalarprodukt:

@-b=|dl|bcos(v)
ab

— = cos(7)

jal [b

= W

() 6)
()| ()

5o3412-4
Varieyere o0
15 + 48 "~ os(o)
V25 T 1410 1 16 7
63 o)
——  — COS
/160 V25 K
63
135 = cos(7)
63
% — costy)
v = 14,25°

5.5 Geraden im 2-dim. Raum

In diesem Kapitel untersuchen wir Geraden im 2-dim. Raum. Dies ist eine Vor-
bereitung fiir die Definition von Ebenen mit Normalen.

Eine Gerade kann man im 2-dimensionalen Raum auch anders durch 2 Schritte
definieren:

1. 1. Schritt: Gegeben ist ein Vektor und die Gerade soll senkrecht zu dem
Vektor sein. Dadurch ist die Richtung der Geraden festgelegt. Es gibt bis-
her unendlich viele Geraden, die diese Bedingung erfiillen. Aber alle diese
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0 2 4 6 8 10

Abbildung 5.4: Im 2-dim. ist die Gerade durch den Punkt P und der normalen
(blauer Vektor) eindeutig bestimmt. Der Richtungsvektor ist der rote Vektor:

(=7 D).

10

0 1 1 1 1 1
0 2 4 6 8 10

Geraden sind parallel:

2. 2. Schritt: Da die Geraden alle parallel sind, haben sie keinen Punkt gemein-
sam. Die Geraden konnen deshalb unterschieden werden, indem zusétzlich
zur Normalen genau ein Punkt einer Geraden angegeben wird.
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Im folgenden gilt:

= Fin Punkt der Geraden

P
n = Ein Normalenvektor der Geraden
v

= Ein Richtungsvektor der Geraden

Um eine Geradengleichung mit Hilfe der Normalen angeben zu kénnen wird
die Eigenschaft der Normalen, dass sie senkrecht zur Gerade ist, benutzt. Das
Skalarprodukt vom Normalenvektor und dem Richtungsvektor der Geraden ist
null, denn der Normalenvektor und der Richtungsvektor der Geraden schliesen

einen 90° Winkel ein.
v-n=0

Der Richtungsvektor kann bestimmt werden durch die Angabe zweier Punkte
der Geraden. Wenn x und P Punkte der Gerade sind, dann ist der Richtungsvektor
gegeben durch:

T=7-P

bzw. in das Skalarprodukt eingesetzt:

—

F—Pkﬁzo

Die Situation ist dargestellt in der Abb. 5.4, S. 617
Beispiel:

Der Punkt der Geraden sei P = (3). Der Normalenvektor sei 77 = (3?).
Die Normalenform ergibt sich zu:

6] )

Bei dieser Gerade wére der Richtungsvektor "

-

Und eine andere Darstellung der Geraden wére somit:

()0

Ein weiterer Punkt ergibt sich durch einsetzen von z. B. t = 2:

(2)+2(2)= (3
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Wenn man diesen Punkt in die Normalenform einsetzt erhélt man tatsiachlich

BN CROISRONC

=—-12+12
=0

Jeder Punkt der Geraden erfiillt gerade diese Bedingung.
Wenn Sie einen Punkt einsetzten, welcher nicht zur der Geraden gehort, er-
halten Sie auch nicht null.
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5.6 Ubungen

Aufgabe 5.1
Geben Sie eine Gerade an, die durch die 2 Punkte A(2]3) und B(5/4) geht.
(Losung siehe Seite [72)).

Aufgabe 5.2
Entscheiden Sie, welche Geraden parallel bzw. identisch sind.

v7=(2) ()

(o)
() r()
ot ()

(Losung siehe Seite [72]).

Aufgabe 5.3
Bestimmen Sie den Schnittpunkt der beiden Geraden:

()

und

(Losung siehe Seite [73]).

Aufgabe 5.4
Eine Firma bietet einen Computer an, der aus folgenden Bauteilen besteht:
1 Netzteil

2 Graphikkarten

3 Festplatten

1 Motherboard

2 DVD-Laufwerke
2 Speicherriegel

Geben Sie den Verbrauch der Bauteile in Abhéngigkeit der gebauten Compu-

ter in Vektorschreibweise an.
(Losung siehe Seite [74)).
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Aufgabe 5.5
Gegeben sind Thnen zwei Geraden im dreidimensionalen Raum. Suchen Sie den
Schnittpunkt.

2 3
g:r=1|+r|1
0 2
—1 2
h:Z=-2|+s|1
0 1

(Losung siehe Seite [74]).

Aufgabe 5.6

Gegeben ist Thnen folgendes Dreieck: A(1]2]3), B(4/2]2), C(4/|0|5). Bestimmen Sie
die Hohe h,. Die Hohe h, geht vom Punkt A aus und trifft die Strecke BC, bzw.
ihre Verlangerung senkrecht.

(Losung siehe Seite [73]).

Aufgabe 5.7

Gegeben ist Thnen folgendes Dreieck: A(1]2|3), B(4|2|2), C(4/|0]5). Bestimmen
Sie die Mittelsenkrechte der Seite BC: m,. Die Mittelsenkrecht geht durch den
Mittelpunkt der Seite BC und ist senkrecht zu BC.

(Losung siehe Seite [70]).

Aufgabe 5.8

Gegeben ist folgendes Dreieck: A(1|1|1), B(4|2|4) und C(2|4|4). Bestimmen Sie
die Innenwinkel.

(Losung siehe Seite [T7]).

Aufgabe 5.9
Gegeben ist Thnen die Gerade g und ein Punkt P(1|2|5). Bestimmen Sie alle
Punkte auf der Geraden, die 9 LE vom Punkt P entfernt sind.

12 )
g:r=|0|+t|-5
13 2

(Losung siehe Seite [79]).
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Zu Aufgabe: 5.1
Geben Sie eine Gerade an, die durch die 2 Punkte A(2]3) und B(4|7) geht.

Der Vektor von A nach B lautet:

()6

Die Geradengleichung benétigt einen Punkt und einen Richtungsvektor:

()

Alternativen sind denkbar und ergeben dieselbe Gerade.

Anderer Punkt:
L (5 . 2
9:7=1, 4

Andere Richtung des Richtungsvektors:

() ()

Andere Liange des Richtungsvektors:

L (2 . 1
g:7=|, {5
Zu Aufgabe:

Entscheiden Sie, welche Geraden parallel bzw. identisch sind.

o= () ()

(G
e ()
s ()

1. hi: Der Graph von hy ist nicht parallel zur Gerade g, weil die Richtungs-
vektoren weder identisch noch Vielfache voneinander sind.

hllf

+r
+r
+r

4
6
4
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2.

ha: (&) ist das Doppelte des Richtungsvektors von g: (2). Die Richtungen
der beiden Geraden sind identisch.

Wir untersuchen, ob (3) ein Punkt der Geraden g ist.

5 3 2
6)=0)+G)
() ist also auch ein Punkt der Geraden g. Also sind die Geraden identisch.
hs: (&) ist das Doppelte des Richtungsvektors von g: (%). Die Richtungen

der beiden Geraden sind identisch.

Wir untersuchen, ob (2) ein Punkt der Geraden g ist.

) 3 2
(520 ()
Die 1. Komponente ergibt sich durch » = 1: 3+ 12 = 5, aber die zweite

Komponente stimmt nicht iiberein: 1 +1 -3 = 4.

(3) ist also kein Punkt der Geraden g. Also sind die Geraden parallel.

Zu Aufgabe:
Bestimmen Sie den Schnittpunkt der beiden Geraden:

und

sii=(3)+r(3)
o) ()

Achten Sie dararuf, dass beide Geradengleichungen unterschiedliche Parameter
haben!
Sie Losen folgendes Gleichungssystem:

g=nh

iSchrittweises umformen der Gleichung

(1) ()-0)6)
)

()= 0)-0)6)

()= () )
(3) ()= ()
() (5= ()
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Dieses Gleichungssystem kénnen Sie mit dem Gaussverfahren 16sen.

() ()= ()

B
(

()0

I'=T+4-1I
G D0)-()
I'=1/2

Zu Aufgabe: (5.4
Eine Firma bietet einen Computer an, der aus folgenden Bauteilen besteht:
1 Netzteil

2 Graphikkarten

3 Festplatten

1 Motherboard

2 DVD-Laufwerke
2 Speicherriegel

Geben Sie den Verbrauch der Bauteile in Abhéngigkeit der gebauten Compu-
ter in Vektorschreibweise an.

Verbrauch : ¥ =r

NN — W =

r ist die Anzahl der gebauten Computer: r € IN.

Zu Aufgabe:
Gegeben sind Thnen zwei Geraden im dreidimensionalen Raum. Suchen Sie den

Schnittpunkt.
2 3
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und
—1 2
h:2=|-2]+s|1
0 1
Gleichsetzen liefert:
g=nh
2 3 —1 2
1l+r(1]=1-2]+s]1
0 2 0 1
3 2 -1 2
r{l]—-s|l]=(-2]-1]1
2 1 0 0
3 -2 -3
r{l]+s|-1]=1-3
2 —1 0

Sie konnen das Gaussverfahren anwenden, aber Sie konnen auch zwei beliebige
Gleichungen aus dem Gleichungssystem herausnehmen und l6sen und anschlies-
send zur Probe in die noch fehlende Gleichung einsetzen. Wenn diese Gleichung
dann auch aufgeht, haben Sie den Schnittpunkt gefunden, andernfalls liegen die
Geraden windschief im Raum.

Wir untersuchen die 2. und die 3. Gleichung:

r—s=-—3
2r—s=20

2. Gleichung minus der 1. Gleichung ergibt: r» = 3
Damit ergibt sich durch Einsetzen: s = 6.
Einsetzen in die erste Gleichung zur Uberpriifung:

3r —2s = -3
3:-3—2:-6=0

Der Schnittpunkt ist also bei r = 3 oder s = 6. In welche Gleichung Sie
einsetzen ist egal (hier in g):

2 3 2 9 11
S=[1]+3[1|=(1]+[3]=]14
0 2 0 6 6

Zu Aufgabe:
Gegeben ist Thnen folgendes Dreieck: A(1]2]3), B(4]2]2), C(4]0]5). Bestimmen Sie
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die Hohe h,. Die Hohe h, geht vom Punkt A aus und trifft die Strecke BC, bzw.
ihre Verldngerung senkrecht.
Zuerst muss der Vektor von B nach C gesucht werden:

Nun suchen wir einen Vektor, der auf den Vektor d senkrecht steht und in der
Ebene des Dreiecks liegt.

Dazu konstruieren wir zuerst einen Vektor, der senkrecht auf die Ebene des
Dreiecks steht:

4 1 3
2 3 —1

Der Vektor 71 soll senkrecht auf die Ebene des Dreiecks stehen:

) 0 3 2
i=dxé=|-2|x[0]=]9
3 -1 6

Der Richtungsvektor der Hohe sei hr. hr steht senkrecht i}uf den Vektor J:
da die Hohe senkrecht auf die Dreiecksseite BC stehen soll. hr steht aber auch
senkrecht auf den Vektor 7, weil hr in der Dreiecksebene liegt.

- . 2 0 39
hr=nxd=|[9| x|—-2|]=1]—-6
6 3 —4
Damit ergibt sich die Hohe zu:
1 39
hy: =12 +r|—6
3 —4

Zu Aufgabe: (.7
Gegeben ist Thnen folgendes Dreieck: A(1]2]3), B(4/2|2), C(4]0]5). Bestimmen
Sie die Mittelsenkrechte der Seite BC: m,. Die Mittelsenkrecht geht durch den
Mittelpunkt der Seite BC und ist senkrecht zu BC.

Zuerst muss der Vektor von B nach C gesucht werden:

-

4 4
d=C—-B=|0|—-[2]=]|-2
3 2 3
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Nun suchen wir einen Vektor, der auf den Vektor d senkrecht steht und in der

Ebene des Dreiecks liegt.
Dazu konstruieren wir zuerst einen Vektor, der senkrecht auf die Ebene des

Dreiecks steht:

4 1 3
2 3 —1
Der Vektor 77 soll senkrecht auf die Ebene des Dreiecks stehen:
. 0 3 2
n=dxe=|-2|x| 0 ]=19
3 -1 6

Der Richtungsvektor der Mittelsenkrechte sei mr. mr steht senkrecht auf den
Vektor d, da die Mittelsenkrechte senkrecht auf die Dreiecksseite BC stehen soll.
mr steht aber auch senkrecht auf den Vektor 77, weil mr in der Dreiecksebene
liegt.

B 2 0 39
mr=nxd=19|x|-2]=1]-6
6 3 —14

Der Mittelpunkt der Seite BC ergibt sich durch:

0 1
21 =11
3 1,5

1
g+ -d=12]+
3

N =
N —

Damit ergibt sich die Mittelsenkrechte zu:

1 39
my:r=111]+r|—6
1,5 —4

Zu Aufgabe: 5.8
Gegeben ist folgendes Dreieck: A(1]1]1), B(4]2]|4) und C(3|5/5). Bestimmen Sie
die Innenwinkel.

Wir benétigen nur die Richtungsvektoren, nicht etwa die Geraden, welche
durch die Punkte gehen.

Die Seitenbezeichnungen erfolgen nach dem iiblichen Schema fiir Dreiecke. Die
Seite a liegt der Ecke A gegeniiber. Die Seite b liegt der Ecke B gegeniiber, usw.

3 1
— 5] =|-3
5 ~1

a:B—-C=

ISR
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Sl
I
Q
I
s
I

oy
I
oy
|
b
I
= DN > ot Ot W

N
W — W = s DN

S
oL

cos(a) =

=

e VY

W~ Wl =W

6+4+12

T VAT 16+16V9+1 49
99

= /3610
22

T 619
a = 33°

Sie berechnen hier den Aussenwinkel des Dreiecks, weil ¢ nicht auf A zeigt,
sondern von A auf B, aber @ von B nach C zeigt.

, a-c
osl7) = fara
1 3
-3 1
1 3
/1 3
-3 1
1 3
B 3-3-3
VI HIHIVIF I+
-3
IRVARRVAT
B =102°

B =18
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7 = 180° — 33° — 78°
= 70°
Zu Aufgabe:

Gegeben ist Thnen die Gerade g und ein Punkt P(1|2|5). Bestimmen Sie alle
Punkte auf der Geraden, die 9 LE vom Punkt P entfernt sind.

12 )
g:r=|0]|+t|-5
13 2

Bei zwei bestimmten Werten fiir ¢ ist die Entfernung zum Punkt P 9 LE:

lg—Pl=9

12 5 1
o +t —5 — 2 =9

V(11 +5)2 + 5t) + (8 4 2t)2
(11 4 5t)? + ( 2—5t) (8+2t) =)

Dies ist eine quadratische Gleichung mit bis zu zwei Losungen:

(114 5t)* + (=2 — 5t)* + (8 + 2t)* = 81
(1124211 - 5t + (5t)%)
+((=2)? +2-(=2) - (=5t) + (51)%)
+(8%42-8-2t + (2t)?) =
121 + 110t + 25t + 4 + 20t + 25t + 64 + 32t + 4t* = 81
189 + 162t + 54t* = 81
t=—-2odert=-1

Jetzt miissen noch die Punkte der Geraden bestimmt werden:
1. t=-2

12 D 2
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2. t=-1

12

13

—1-

)

80



Kapitel 6

Beweise in der 2-dim Geometrie

In diesem Kapitel werden einige ausgewihlte Sitze aus der ebenen Geometrie
bewiesen. Die Auswahl erfolgte nach zwei Gesichtspunkten.

1. Die Beweise sollen zeigen, wie elegant mit Hilfe der Vektorrechnung die
Beziehungen bewiesen werden kénnen.

2. Sie sollen Ubung bekommen mit der Vektorrechnung umzugehen.

Natiirlich wird dadurch auch die Sinnhaftigkeit der Vektorrechnung unterstrichen.

6.1 Raute

Eine Raute (siche Abb. 6.1}, S. BI) ist ein Viereck, dessen vier Seiten alle gleich
lang sind.

Behauptung: In einer Raute stehen die Diagonalen jeweils orthogonal (senk-
recht) aufeinander und sind gleich lang.

In Abb. [6.1] S. ist eine Raute abgebildet. Die Vektoren in dem Beispiel
sind: (3) und (%)

Abbildung 6.1: Eine Raute hat vier gleich lange Seiten.

81
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Abbildung 6.2: Die Raute mit Diagonalen.

Da der Beweis allgemeingiiltig sein soll, werden wir nur mit den Vektoren @
und b arbeiten.

Die Eckpunkt sind also einmal (0]0), der Punkt der durch den Vektor @ bzw. b
reprasentiert wird. Der letzte Eckpunkt ergibt sich durch durchlauten der beiden
Vektoren @ und b, also durch a + b.

Da wir Aussagen iiber Diagonalen priifen wollen, erstellen wir zuerst diese
Diagonalen als Teile von Geraden welche durch die entsprechenden Punkte der
Raute verlaufen.

Die 1. Diagonale ergibt sich sehr leicht. Sie verbindet die linke untere Ecke
mit der rechten oberen. Sie verbindet also die Punkte (0|0) mit @ + b. Dies kann
man durch eine Gerade ausdriicken.

di %= (8) +H(@+b) =t@—+b)
Die Diagonale ist nur ein Teil der Geraden. Die Diagonale wird beschrieben fiir
t € [0,1]. Wenn t = 0 gilt, hat man den Anfangspunkt der Diagonalen, wenn
t =1 gilt, dann hat man den Endpunkt der Diagonalen. B
Die zweite DiagonaleA verbindet die Punkte @ und den Punkt b.

dy: Z=ad+r(b—a)

Die Diagonalen sind senkrecht zueinander da das Skalarprodukt der Rich-
tungsvektoren null ergibt:

(G+b)-(b—a@)=a-b—a-a+b-b—>b-a
b—0



KAPITEL 6. BEWEISE IN DER 2-DIM GEOMETRIE 83

Nun berechnen wir noch den Schnittpunkt der beiden Diagonalen aus:

dy = dy
H@+b)=a+rb—a)
t@ +th) = @+ rb — rd)
ti—a—+rdi=rb—th
at+r—1)=0b(r—t)

Diese Gleichung kann nur gelost werden, wenn die jeweiligen Vorfaktoren null
sind:
r—t=20
t+r—1=0

Aus der ersten Gleichung folgt, dass r = ¢ gelten muss. Eingesetzt in die 2.
Gleichung ergibt sich:

t+t—1=0
26—1=0
20=1
1
2
=0,
X

Der Schnittpunkt der beiden Diagonalen ist in der Mitte der jeweiligen Dia-
gonalen.

6.2 Seitenhalbierende

Seitenhalbierende sind diejenigen Strecken im Dreieck, welche die Ecken des Drei-
ecks mit der Mitte der gegeniiberliegenden Seite verbinden.

Die Seitenhalbierende von der Ecke A bis zur Mitte der gegeniiberliegenden
Strecke a bezeichnet man mit s,. Entsprechend gibt es noch die Seitenhalbieren-
den s, und s.. Siehe Abb. [6.3], S.

Hier zeigen wir, dass sich die beiden Seitenhalbierenden s, und s; jeweils im
Verhiltns 1:2 schneiden.

Der Einfachheit halber legen wir die linke Ecke des Dreiecks (den Punkt A)
in den Ursprung.

Dann zeigt der Vektor b auf den Punkt B und der Vektor & auf den Punkt C.

Jetzt schreiben wir die Seitenhalbierenden in Vektorschreibweise:
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sa sb

Abbildung 6.3: Ein Dreieck mit zwei Seitenhalbierenden: s, und s,

1. s3: Diese Seitenhalbierende ist Teil einer Geraden durch den Punkt B und
der Mitte des Dreiecksseite b. Dies ist die Mitte der Seite von A zu C (B

gegeniiberliegend).
Die Mitte der Dreiecksseite b ergibt sich als die Hélfte des Weges von A zu
C:

1,

—c

2

Die Gerade lautet dann:
— ' 1 — '
Sp: T =b+t <§c—b)

2. s,: Diese Seitenhalbierende ist Teil einer Geraden durch den Punkt A und
der Mitte des Dreiecksseite a. Dies ist die Mitte der Seite von B zu C (A
gegeniiberliegend).

Um von A zur Mitte der Dreiecksseite b zu gelangen, muss man von A zu
B gehen und dann die Hilfte des Weges von B zu C:

-

(=)

—

b+

I
I
Sl

N | =
N | =

N =N = S
+
+ ol

S
N = Oy

o

(b+72)

Die Gerade lautet dann:

1

- 1
sa:f:c?—l—r(z(b—i-éj—d’):r—

(b+7)

[\)

Der Punkt der Geraden fillt weg, weil A im Ursprung liegt.
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Die Seitenhalbierenden sind Strecken zwischen den Punkten, welche jeweils be-
nutzt wurden die Geraden zu definieren. Darum sind die Seitenhalbierenden die
Punke, welche sich fiir die Werte zwischen 0 und 1 ergeben: 0 < t < 1 und
0<r<1.

Der Schnittpunkt wird durch gleichsetzen ermittelt:

- 1, - 1, =
r§b+7’50—b+t§c—tb
- 1
b(r—|—§t—1):5(t—r)

Die beiden Vektoren b und & kénnen nicht gleich sein. Diese Vektoren haben un-
terschiedliche Richtungen. Wenn also beide Seiten gleich sein sollen, dann miissen
beide Seiten null ergeben, dass heisst, dass die Klammern null sein miissen jeweils:

1
—t—1=0
r+2

t—r=20

Aus der zweiten Gleichung ergibt sich, dass r und ¢ gleich grof sind. Damit ergibt
sich die erste Gleichung zu:

1
—r—1=0
r+2r
1
T+§T:1
3
57’:1
2
r=-
3
Damit gilt fiir beide Parameter:
2
r=-
3
2
t==
3

Der Schnittpunkt der Seitenhalbierenden ist ausgehend von der Ecke des Dreiecks
nach einem Drittel der Strecke. Also teilt der Schnittpunkt die Strecken jeweils
im Verhéltnis 1:2.



Kapitel 7

Die Parameterform der Ebene

Ausgehend von der Geraden schauen wir uns eine Ebene an, die dadurch gekenn-
zeichnet ist, dass sie eine weitere Richtung hat.

Bei der Geraden haben wir zwei verschiedene Formen eingefiihrt: Die Para-
meterform und die Normalenform. Bei den Ebenen sind diese beiden Formen
ebenfalls von Bedeutung und dariiber hinaus werden wir die Normalenform noch
umformen zur Koordinatenform.

In diesem Kapitel werden die verschiedenen Darstellungsweisen vorgestellt
und auch deren Anwendungen (im Vorgriff) im Uberblick dargestellt.

7.1 Ebenengleichung

Die Parameterform der Ebene erzeugt alle Punkte der Ebene direkt. Sie ist dhnlich
aufgebaut wie die Parameterform der Gerade. Sie haben aber eine Richtung mehr:

E:Y=d+ru+sv

a :Ein Punkt der Ebene

@ :Ein Richtungsvektor der Ebene
v :Ein Richtungsvektor der Ebene
r :Parameter

s :Parameter

Die Richtungsvektoren diirfen nicht parallel sein sonst erhalten Sie wiederum nur
eine Gerade. Wenn Sie Zahlen in die Parameter einsetzen erhalten Sie Punkte der
Ebene. Jeder Punkt der Ebene lésst sich erzeugen durch eine geeignete Wahl von
r und s.

86
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o P N W M O o N

Abbildung 7.1: In diesem Bild sehen Sie wie jeder Punkt durch die drei Vektoren
gebildet werden kann. Vom Punkt A aus gehen Sie Vielfache der beiden Rich-
tungsvektoren. So wird z. B. der Punkt B durch drei mal den griinen Vektor und
zwei mal den blauen Vektor gehen gebildet. Fiir B gilt also in dieser Darstellung;:

B(3/2).

7.2 Parameterform: Punktprobe

Mit der Parameterform kann man schnell Punkte angeben. Man muss nur Werte
fiir » und s wahlen und in die Parameterform einsetzen, um irgendwelche Punkte
der Ebene zu erhalten.

Aber, wenn man einen gegebenen Punkt hat, wie entscheidet man dann, ob
dieser ein Punkt der Ebene ist?

Nun, man muss den Punkt mit der Ebene gleichsetzen und das entstehende
Gleichungssystem l6sen. Dieses Gleichungssystem mit den Variablen r und s kann
entweder eine eindeutige Losung haben fiir » und s oder keine Losung haben.
Wenn das Gleichungssystem keine Losung fiir » und s hat, dann ist der Punkt
kein Punkt der Ebene.

Beispiel:
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Untersucht werden soll ob der Punkt P(5/3/4) ein Punkt der Ebene ist.
Dies ergibt folgendes Gleichungssystem:

1 1 2 5
214710l +s|1] =13
1 1 1 4
Umstellen ergibt:
1 5 1
r{0)+s|1]=13]—-1|2
1 1 4 1
ausgerechnet:
1 2 4
r{0]+s|1] =11
1 1 3
Im Matrixschreibweise:
1 2 4
0 1 1
11 3
I1'=1-1I1I
1 4
0 1 1
0 1 1
I'=1-2-11I
10 2
0 1 1
0 1 1

Es gibt eine eindeutige Losung, » = 2 und s = 1. Der Punkt P ist ein Punkt der
Ebene E.

Diesen Punkt der Ebene kénnen Sie in der Ebene als P, 4(2/1) beschreiben.
Sie beschreiben alle Punkte der Ebene durch die Vielfache (r, s) der beiden Rich-
tungsvektoren.

7.3 Parameterform: Uberpriifen auf Parallelitit
bei Gerade und Ebene

Eine Gerade und eine Ebene sind dann parallel oder identisch, wenn der Rich-
tungsvektor der Gerade durch die Richtungsvektoren der Ebene dargestellt wer-
den konnen. Also, wenn die drei Richtungsvektoren (Geraden und Ebene) linear

abhingig sind. (Siehe Abb. S. B9 bis Abb[T4] S. RI).
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Abbildung 7.2: Eine Ebene mit ro-
ten Richtungsvektoren und dem (roten)
Ortsvektor. Die Vektoren der Geraden-
gleichung und die Gerade sind blau
eingezeichnet. Zu den Gleichungen der
Ebene und Gerade siehe Text.

Abbildung 7.4: Die Ebene und die Ge-
rade von oben. Sie sehen, dass mit den
Richtungsvektoren der Ebene der Rich-
tungsvektor der Gerade erstellt werden

kann. In diesem Fall durch eine einfache
Addition.

Abbildung 7.3: Die Ebene und die Ge-
rade von der Seite. Die Gerade ist par-
allel zur Ebene. Der Richtungsvektor

der Gerade ist ebenfalls parallel zur
Ebene.
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In Abb. S. B9 bis Abb[74], S. RI ist folgende Ebene dargestellt:

1 1 0
E:2=11]1+r|0]+s|1
1 0 0
Und folgende Gerade:
1 1
g: |1 +t]1
2 0

Die lineare Unabhéngigkeit bzw. Abhéngigkeit bestimmt sich entweder auf
folgendem Gleichungssystem:

rou+s-v+t-w=0

wobei u, v, W die Richtungsvektoren der Gerade und der Ebene sind.

Sie konnen aber auch einfacher vorgehen. Das Volumen eines Parallelepipeds
ergibt sich aus dem Vektorprodukt zweier Vektoren des Parallelepipeds und an-
schliessendem Skalarprodukt mit dem dritten Vektor:

-

V=(axb)-c
Wenn die drei Vektoren in einer Ebene liegen, sind sie linear abhéngig (der dritte

Vektor kann durch die anderen beiden erzeugt werden, bzw. bestimmt werden)
und somit ist das Volumen null.

7.4 Parameterform: Schnittpunkt - Gerade und
Ebene

Sie haben eine weitere Gerade und eine Ebene in Parameterform. Geben Sie
gegebenenfalls (wenn Sie nicht parallel liegen) den Schnittpunkt an.

Sie konnen auf die Parallelitit vorher iiberpriifen, miissen dies aber nicht
tun. Setzen Sie wiederum die Gerade und die Ebene gleich und l6sen Sie mit
dem Gaussverfahren. Wenn es keine Losung gibt, sind die Gerade und die Ebene
parallel. Wenn es unendlich viele Losungen gibt, dann liegt die Gerade in der
Ebene. Wenn es genau eine Losung gibt, dann gibt es einen Schnittpunkt.

Beispiel:

1 1 2
E:2=(2]+r[0] +s|1
1 1 1

und
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Parallelitétspriifung:
1 2 1 -1 1
0] x[1 {1l =111-11]=1#0
1 1 1 1 1

Die Vektoren sind nicht linear abhéngig sondern spannen einen Raum auf, denn
das Volumen der drei Vektoren ist nicht null. Die Parallelitétspriifung erspart
einen das Gaussverfahren, wenn die Ebene und die Gerade parallel sind und
somit keinen Schnittpunkt haben.

Gleichsetzen ergibt:

1 1 2 7 1
21 +r 0] +s1] =15 +t]|1
1 1 1 6 1
Umformen (alle Parameter auf die linke Seite) ergibt:
1 2 —1 7 1
r{0l+s|1]+t|{-1]=[5]—-1]2
1 1 —1 6 1
Ausrechnen:
1 2 -1 6
r10l+s|1]+t|-1]=1|3
1 1 -1 )

In Matrixschreibweise:

1 2 —1 r
01 —1 s| =
1 1 —1 t

Inr=1-1I1

I'=1—-11—-1II
1 0 O r 2
01 —1 s| =13
01 0 t 1
tausche 11 < 111
1 0 O T 2
01 0 s| =11
01 —1 t 3
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11" =111 —-1I
1 0 0 r 2
01 0 sl =11
00 —1 t 2
I =(-1)-1I11
1 00 r 2
010 sl =11
0 01 t -2

Der Schnittpunkt ist gegeben und ist bei » = 2 und s = 1, bzw. t = —2. Sie
kénnen r und s in die Ebenengleichung einsetzen oder t in die Geradengleichung:

7.5 Parameterform: Schnittgerade - Ebene und
Ebene

Wenn sich zwei Ebenen schneiden, ergibt sich als Schnittobjekt eine Gerade. Dies
kennen Sie aus eigener Anschauung: Ein Buch besteht aus zwei Ebenen: die linke
Buchseite und die rechte Buchseite. Beide Seiten des Buches schneiden sich in
der Falz, das ist eine Schnittgerade. Oder ein anderes Beispiel: die Kante eines
Raumes ist die Schnittgerade zweier Mauern (Ebenen).

Beispiel: Gegeben sind zwei Ebenen:

2 3 2

Elif: 9 +r 5! +s| -1

—4 -1 2
4 4 1
Ey:2=13|4+ul3]+v]| 1
0 2 -1

Gesucht ist die Schnittgerade der beiden Ebenen. Gesucht sind also alle Punkte,
die sowohl der Ebene F; als auch der Ebene E5 angehoren.

Diese Punkte finden Sie, indem Sie die beiden Ebenengleichungen gleichsetzen.
Durch das Gleichsetzen finden Sie Werte fiir die Parameter r, s, v und v, die es
Ihnen ermdglichen die Punkte zu berechnen, welche in beiden Ebenen vorhanden

4 4 1
9 +7r| 5 +s| -1 =13 4+u|3]|+v]| 1
0 2 -1
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Achten Sie bei dem Gleichsetzen darauf, dass Sie tatsiachlich 4 unterschiedliche
Parameternamen gewihlt haben. U. U. miissen Sie die Parameter umbenennen.
Umformen fithrt zu:

3 2 —4 -1 4 2
r| 5 +s|-1)+ul|l-3]+v|-1]=1|3]| — 9
-1 2 —2 1 0 —4
3 2 —4 —1 2
ry{ 5| +s|-1|4+ul|-3)+v|-1|=1]-6
-1 2 —2 1 4
In Matrixschreibweise
3 2 —4 -1 T 2
5 -1 -3 -1 s| | -6
-1 2 -2 1 ul | 4
0O 0 0 0 v 0

Dieses Gleichungssystem kénnen Sie mit Hilfe des Gaussverfahrens l6sen.

tausche: I1] < [

-1 2 -2 1 r 4
5 —1 =3 —1| |s| [-6
302 —4 —1| |u] |2
0 0 0 0 v 0

]I’ =II+5-1
I]I’ =IIT+3-1

—1 2 -2 1 r 4
—13 4 s| |14
—10 2l u] |14
0 v 0
(111 :111/2)

2 -2 1 r 4
0 9 —13 4 s| |14
0 4 =5 1| |ul|l |7
0 0 0 0 v 0

[H’ =911 —4-1II)
2 -2 1 r 4
0 9 —13 4 s| |14
o0 7 =7 {ul |7
00 0 0 v 0
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(111 = I11/7)

-1 2 -2 1 r 4
0 9 —-13 4 s| |14
0o 0 1 -1 ul |1
0 0 O 0 v 0
' =1+3-111
(U’ :H+13-H[
-1 2 T 6
0 9 O -9 s| |27
0 0 1 —1f {u] |1
0 0 0 v 0
(r :9-1—2 1)
-9 0 r 0
0 9 O s| |27
0 0 1 ul |1
0 0 v 0
I )
(I[’ = /9
100 r 0
010 s| |3
0 01 ul |1
000 O v 0
Die Losung lautet:
T 0 1
s| |3 Ly 1
U 1 1
v 0 1

Sie haben jetzt die Losungen fiir die Parameter r, s, u und v erhalten. Diese
miissen Sie jetzt noch in eine der beiden Ebenengleichungen einsetzen und Sie
erhalten dann die gesuchte Schnittgerade.

Hier setzen wir in F ein: r =t und s =t + 3.

2 3 2 2 3 2 6
5 |40+3) | -1 =9 |+t 5 |+t|-1]|+[-3]=
—4 ~1 2 —4 ~1 2 6

NS
ST
Il
©
_|_
~

Um kleinere Werte zu haben konnen Sie auch einen anderen Punkt wahlen:

8 5 3
P=|6]|+(-1)-|4] =2
2 1 1
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7.6 Ubungen

Aufgabe 7.1
Eine Computerfirma hat einen Lagerbestand vor Ort am 01.01.2013:

20 Gehduse und Motherboards
50 Festplatten
40 Graphikkarten
30 Prozessoren
60 DVD-Laufwerke

Die Niederlassung erhélt tédglich neue Ware, ohne dass sie auf die Bestellung

einen Einfluss hat:
5 Gehause und Motherboards

10 Festplatten
8 Graphikkarten

6 Prozessoren
10 DVD-Laufwerke

Die Niederlassung verkauft einzelne DVD-Laufwerke und einzelne Festplatten.
Ansonsten werden nur drei Computertypen angeboten:
Computer 1 besteht aus:

1 Gehéuse und Motherboard
1 Festplatten
1 Graphikkarten

1 Prozessoren
0 DVD-Laufwerke

Computer 2 besteht aus:

1 Gehéduse und Motherboard
2 Festplatten
2 Graphikkarten
1 Prozessoren

1 DVD-Laufwerke
und Computer 3 besteht aus:

1 Geh&duse und Motherboard
3 Festplatten
2 Graphikkarten
2 Prozessoren
2 DVD-Laufwerke

Gibt es einen Zeitpunkt zu dem das Lager leer ist?
(Losung siehe Seite [7]).
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Zu Aufgabe: [7.1]
Eine Computerfirma hat einen Lagerbestand vor Ort am 01.01.2013:

20 Gehduse und Motherboards
50 Festplatten
40 Graphikkarten
30 Prozessoren
60 DVD-Laufwerke

Die Niederlassung erhélt téglich neue Ware, ohne dass sie auf die Bestellung

einen Einfluss hat:
5 Gehause und Motherboards

10 Festplatten
8 Graphikkarten
6 Prozessoren
10 DVD-Laufwerke

Die Niederlassung verkauft auch einzelne Festplatten. Ansonsten werden nur
drei Computertypen angeboten:
Computer 1 besteht aus:

1 Gehéduse und Motherboard
1 Festplatten
1 Graphikkarten
1 Prozessoren
0 DVD-Laufwerke

Computer 2 besteht aus:

1 Gehéduse und Motherboard
2 Festplatten
2 Graphikkarten
1 Prozessoren

1 DVD-Laufwerke
und Computer 3 besteht aus:

1 Gehéduse und Motherboard
3 Festplatten
2 Graphikkarten
2 Prozessoren

2 DVD-Laufwerke

Gibt es einen Zeitpunkt zu dem das Lager leer ist?
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Sie konnen die Menge, die ins Lager geliefert wurde/wird, schreiben als:

5

10

(20//50//40//30//60) +r | 8
6

10

Die Mengen, welche verkauft werden konnen ergeben sich aus den Moglich-
keiten, welche verkauft werden konnen:

+u + v +w

[V
OO O = O
O~ = =
— o= NN
NN W

Tage nach dem 1.1.2013

Anzahl der verkauften Festplatten

Anzahl der verkauften Computer Typ 1

Anzahl der verkauften Computer Typ 2

Anzahl der verkauften Computer Typ 3
Wenn das Lager leer ist, dann entspricht die gelieferte Menge des den ver-
kauften Mengen. Die gelieferte Menge ist geometrisch gesehen eine Gerade. Die
verkauften Mengen ergeben, da Sie 4 Parameter haben einen 4-dimensionalen
Raum. Da Sie 5 verschiedene Komponenten (Computerbestandteile) haben, ar-
beiten wir mit einem 5-dimensionalen Raum.
Gleichsetzen liefert:

g e e n 3

5 0 1 1 1
10 1 1 2 3
(20//50//40//30//60) +r | 8 | =s | 0| +u |1 ]| +ov |2 +w]2
6 0 1 1 2
10 0 0 1 2

Bzw.:

= (20//50//40//30/ /60)

O OO = O
O = = =
— = N N
DO N W
|
oo
S 8 2 2 o
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tausche: 1] < — > 1

01 2 2

011 2

neu [[I =1-111—-1-11

neu [lV=1-1IV—-1-11

neuV=1-V-1-1V

= V/6

neu V'
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neu [V =1-IV-1-V

neu I11 = (—1) - III — (~3) -V
neu [l =(—1)- 1] —(=5)-V
neu [ = (—1)-1 —(-10)-V

(=1 (=1 (=2) (=3) 0 s 0
0 (-1) (-1) (-1) o0 u 5
0 0 (-1) (-1) © v|=1|(-5H)
0 0 0 1 0 w 5
o 0o 0o 0 (-1 \r 5
neu [Il =1-111 —(=1)-1V
neu [l =1-11—(-1)-1V
neul=1-1—(=3)-1IV

(—-1) (-1) (=2) 0 0 s 15

0 (=1) (-1) 0 0 u 10

0 0 (=1) 0 0 v =10

0 0 0 1 0 w 5

o 0 0 0 (-1 \r 5
neu Il =1-11—1-1I1

neu I = (=1)-1—(=2)-1II

1 1 0 0 0 s (—15)

0 (-1) 0 0 0 u 10

0 0 (=1) 0 0 v | = 0

0 0 0o 1 0 w 5

0 0 0 0 (-1 T 5

neul = (—-1)-1—1-1II

(-1) 0 o 0 0 s 5
0 (1) 0 0 0 u 10
0 0 (=1) 0 0 vl=10
0 0 0 1 0 w 5
o 0 0 0 (-1 \r 5
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neu I =1/(-1)

neu Il =11/(—-1)

neu [1] =1I1/(—1)
)

neu V =V/(-1
100 00 S -5
01 000 u —10
00100 v | = 0
00010 w 5
0 00O 1 r -5

s -5

u —10

v | = 0

w 5)

r -9

Der Lagerbestand war vor 5 Tagen leer. Ab jetzt fiillt er sich nur noch auf.



Kapitel 8

Die Parameterform der Ebene

Eine Ebene konnen Sie durch zwei Richtungsvektoren und einem Punkt ange-
ben. Das Problem ist, dass Sie bei zwei verschiedenen Ebenengleichungen, welche
dieselbe Ebene beschreiben unterschiedliche Richtungsvektoren haben koénnen.
Wenn Sie zeigen wollen, dass die beiden Ebenen identisch sind, miissen Sie zuerst
zeigen, dass die Richtungsvektoren der einen Ebene durch die Richtungsvektoren
der anderen Ebene erstetzt werden konnen. Das ist ein Gleichungssystem, wel-
ches Sie l6sen miissen. Wenn eine Ebene in Parameterform gegeben ist, miissen
Sie mit Hilfe des Gaussverfahrens die Schnittgerade beim Schnitt mit einer an-
deren Ebene ermitteln, bzw. mit Hilfe des Gaussverfahrens den Schnittpunkt der
Ebene mit einer Gerade.

Im dreidimensionalen Raum gibt es noch eine weitere Moglichkeit eine Ebene
zu beschreiben. So ist jede Ebene (im 3-dim. Raum) durch die Angabe eines zur
Ebene senkrechten Vektors und eines Punktes beschreibbar.

8.1 Ebenengleichung

Bei der Normalenform nutzen wir die Tatsache, dass der Normalenvektor 77 einer
Ebene senkrecht zu dieser Ebene ist. Dieser Normalenvektor beschreibt mit dieser
Eigenschaft sogar schon die Lage der Ebene. Die Ebene kann dann noch parallel
verschoben werden, daher benétigen wir spéter noch einen Punkt P zur genauen
Angabe der Lage der Ebene.

Der Normalenvektor ist senkrecht zu jedem Vektor welcher ,in“ der Ebene
liegt. Wenn Sie einen beliebigen Punkt der Ebene (mit dem Ortsvektor) & neh-
men, dann liegt £ — P in der Ebene. Also ist ¥ — P senkrecht zu dem Normalen-
vektor. Und wenn zwei Vektoren senkrecht zueinander sind, ist das Skalarprodukt

null:
E:[Z—P]-n=0

Fiir alle Punkte der Ebene ist diese Bedingung erfiillt, und wenn Sie in Z einen
Punkt einsetzen, der nicht der Ebene zugehort, dann ist das Skalarprodukt (also

102
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die Projektion auf den Normalenvektor) auch nicht null.

8.2 Die Koordinatenform

Wenn Sie die Normalenform ausmultiplizieren erhalten Sie die Koordinatenform.
Mit der Koordinatenform lésst es sich einfacher und schneller rechnen als mit der
(nicht ausmultiplizierten) Normalenform.

1. Beispiel: Thnen ist folgende Normalenform gegeben:

1 4
E:|7r—12 51 =0
3 6
Der gegebene Normalenvektor der Ebene ist:
4
n= |5
6
Der gegebene Punkt der Ebene ist:
1
P=12
3
Ausmultiplizieren der Normalenform:
I 1 i 4
x| — 2 5] =0
I3 3 i 6
€T 4 1 4
T2 51— 12115 =0
x3 6 3 6
€T 4 1 4
X9 51=121]-15
T3 6 3 6

4x1 4 by 4 63 = 32

Die Vorfaktoren der x-Komponenten sind gerade die Komponenten des Norma-
lenvektors und auf der rechten Seite steht das Skalarprodukt des Normalenvektors
mit einem Punkt der Ebene.

Beispiele:
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1.
E1 ZLL’1+4LL’2+3LL’3:5
Ein Normalenvektor der Ebene ist:
1
n= |4
3
Punkte der Ebene erhalten Sie am einfachsten, indem Sie einzelne Kompo-
nenten gleich null wiahlen und dann die letzte Komponente so wihlen, dass
die Gleichung erfiillt ist:
To — 0
T3 = 0
Dann bestimmt sich x; zu 5, damit die Ebenengleichung erfiillt ist: P; =
(5/0]0). Weitere Punkte nach diesem Schema erstellt: Py = (05/4|0), P5 =
(0|0]5/3). Sie konnen natiirlich auch geschickt kombinieren: P, = (2|0[1).
2.
Eg X1+ T = 5
Ein Normalenvektor der Ebene ist:
1
n=|1
0
Der Normalenvektor steht senkrecht auf die z-Koordinate. Daher liegt die
z-Koordinate in der Ebene.
3.

E31I1:5

Ein Normalenvektor der Ebene ist:
1
n=10
0

Dieser steht senkrecht auf der y-z-Ebene. Es handelt sich bei F3 um die
y-z-Ebene. Es handelt sich bei F3 um die y-z-Ebene..

Auch daran zu erkennen, dass Sie jeden beliebigen Wert fiir die y- und die
z-Komponente einsetzen konnen.
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8.3 Achsenaschnitt

Wenn Sie die Achsenabschnitte einer Ebene berechnen wollen (also an welchen
Punkten die Ebene die Achsen schneidet), konnen Sie dies mit der Koordinaten-
form schnell bewerkstelligen. Zwei Werte sind jeweils bekannt.
Beispiel:
2$1+4$2+$3 =38

1. Der Schnittpunkt mit der x-Achse.
xy ist gesucht. o = 0 und x3 = 0.

21’1:8

r1 = 4
P, = (4]0[0).

2. Der Schnittpunkt mit der y-Achse.
Zo ist gesucht. 1 = 0 und x3 = 0.

41’2:8

To = 2
P, = (0[2]0).

3. Der Schnittpunkt mit der z-Achse.
x3 ist gesucht. 1 = 0 und x5 = 0.

T3 = 8
P, = (0]0]8).

8.4 Normalenform: Punktprobe

Die Punktprobe ist bei der Normalenform im Gegensatz zur Parameterform sehr
einfach. Sie setzen den zu priifenden Punkt in die Normalenform ein und iiber-
priifen, ob die Bedingung eriillt ist.

Beispiel:

8.5 Normalenform: Schnittpunkt - Gerade und
Ebene

Sie haben eine weitere Gerade und eine Ebene in Parameterform. Geben Sie
gegebenenfalls (wenn Sie nicht parallel liegen) den Schnittpunkt an.
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Sie konnen auf die Parallelitit vorher iiberpriifen, miissen dies aber nicht
tun. Diesmal wird die Ebene in Normalenform umgewandelt und die Gerade
eingesetzt. Dadurch erhalten Sie eine einfache Gleichung, welche nur von einer
Variaben abhéngt. Wenn es unendlich viele Losungen gibt, dann liegt die Gerade
in der Ebene. Wenn es genau eine Losung gibt, dann gibt es einen Schnittpunkt.
Wenn es keine Losung gibt, dann ist die Gerade parallel zur Ebene.

Beispiel:

1 1 2
E:2=12]+r|10] +s|1
1 1 1

und

Bzw. die Koordinatenform:
E: —l’1+l’2+l’3:2

Parallelitétspriifung:d

~1 1
1] (1]=-1+141=1+#0
1 1

Da der Normalenvektor der Ebene nicht senkrecht ist zum Richtungsvektor der
Geraden, gibt es einen Schnittpunkt zwischen Ebene und Gerade.
Fiir die Gerade g gilt:
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oder
$1:7+t
$2:5+t
1’3:6+t

Einsetzen der Gerade in die Koordinatengleichung. Dabei erhalten Sie eine Glei-
chung mit nur einer Variablen, ndmlich ¢:

—x1 + 2o+ 23 =2
—(7T+t)+B+t)+(6+1) =2
—7—t+5+t+6+t=2
t+4=2

t=—2

Der Schnittpunkt ergibt sich durch Einsetzen des Wertes fiir ¢ in die Geraden-
gleichung.

7 1 b}
S=1|5|—-2-11| =13
6 1 4

8.6 Normalenform: Schnittgerade - Ebene und
Ebene

Wenn sich zwei Ebenen schneiden, ergibt sich als Schnittobjekt eine Gerade. Dies
kennen Sie aus eigener Anschauung: Ein Buch besteht aus zwei Ebenen: die linke
Buchseite und die rechte Buchseite. Beide Seiten des Buches schneiden sich in
der Falz, das ist eine Schnittgerade. Oder ein anderes Beispiel: die Kante eines
Raumes ist die Schnittgerade zweier Mauern (Ebenen).

Beispiel: Gegeben sind zwei Ebenen:

2 3 2
Elif: 9 +r 5! +s| -1
—4 —1 2
4 4 1
Ey: =3 +u 3] +v]| 1
0 2 -1

Gesucht ist die Schnittgerade der beiden Ebenen. Gesucht sind also alle Punkte,
die sowohl der Ebene F; als auch der Ebene Es angehoren.
Sie haben mehrere Moglichkeiten dieses Problem zu l6sen.
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1. Sie suchen alle Punkte, welche beide Koordinatengleichungen 16sen. Dies
ist ein Gleichungssystem mit zwei Gleichungen (die beiden Koordinaten-
gleichungen) und drei Unbekannten (xy, x5 und z3).

2. Sie formen eine Ebenengleichung zur Koordinatenform um, und setzen die
andere Ebene in die Koordinatenform um und erhalten eine Gleichung mit
zwel Unbekannten (r und s, bzw. u und v). Dies kénnen Sie auflésen und
erhalten dann eine Geradengleichung fiir die Schnittgerade.

3. Sie kénnen den Richtungsvektor der Schnittgerade aus den Normalenvek-
toren der beiden Ebenen unmittelbar ermitteln. Dann fehlt Thnen nur noch
ein Punkt der Schnittgeraden, also ein gemeinsamer Punkt beider Ebenen.
Dies ist aber einfacher zu ermitteln, wenn Sie einen Schnittpunkt suchen,
bei dem eine Komponente null ist. Dann haben Sie ein eindeutiges Glei-
chungssystem mit nur zwei Unbekannten.

Umformen der Ebenengleichungen in die Koordinatenformen:

3 2 9
7_1:1 = 5 X 1] = —8
—1 2 —13
9 2
8119 | =18—72+52=-2
—13 —4

El . 91’1 — 8!13'2 — 131’3 = -2

4 1 )
ﬁg— 3 X 1 = 6

2 —1 1
4 -5
311 6 | =—20+184+0=-2
0 1

E2 : —51’1 +6£L’2+!L’3 = -2

8.6.1 Losen des Gleichungssystems aus Koordinatenglei-
chungen

9!13'1 — 81’2 — 131’3 = -2
—51’1 + 61’2 +x3 = —2
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9 -8 —13) (1) (-2
-5 6 1 2=\ 2
II'=9-1T+5-1

9—8—13_?_ —2
0 14 —56 2] 7\ —28

x3
II'=11/14
9 —8 —13) (1) (-2
0 1 -4 2=\ 22
€3
I'=1+8-1
9 0 —45\ (") [-18
01 —4 Sl I
x3
I'=1/9
1o =5\ () _ (-2
01 —4) |72~ (-2
T3

Der Losungsvektor ist dann gerade die gesuchte Schnittgerade der beiden Ebenen:

-2 5
g:x=|-2]|+r|4
0 1

Um dieselbe Geradengleichung zu erhalten wie in Kap. [Z5] S.

—2 5) 3
P=|-21+14]=|2
0 1 1

3 )

g:r=|(2]|+r|4

1 1

8.6.2 Parametergleichung in die Koordinatengleichung ein-
setzen

In diesem Losungsweg wird die Parametergleichung von Fs in die Koordinaten-
gleichung von F; eingesetzt.

109
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Fiir E2 gllt

ry=4+4u+v
To =3+ 3u+v
r3=04+2u—v

Einsetzen in Ej:

911 — 8y — 1313 = —2
9(4+4u+v) —8(3+3u+v) —13(2u —v) = =2
(36 + 36u + 9v) — (24 4 24u + 8v) — (26u — 13v) = —2
36 + 36u + 9v — 24 — 24u — 8v — 26u + 13v = —2
12 — 14u + 14v = -2
—14u + 14v = —14
—u+v=-1
v=—-1+4+u

Dies eingesetzt in die Parametergleichung von Ey ergibt dann die Schnittgerade:

vy =4+4u+ (-1+u) =3+ 5u
Ty =3+3u+ (—1+u) =2+4u
x3=042u— (—1+u) =14+u

Und damit gilt fiir die Gerade:

Q
=11
I
=N W
+
~
s Ot

8.6.3 Bestimmen des Richtungsvektors aus den Norma-
lenvektoren

Die Schnittgerade ist ein Bestandteil der Ebene E; und somit bilden die Gera-
de und der Normalenvektor von E; einen senkrechten Winkel. D. h, dass der
Richtungsvektor der Schnittgerade und der Normalenvektor der Ebene einen 90°
Winkel haben.

Dieselbe Argumentation gilt auch fiir die Ebene FE5. Die Schnittgerade liegt
ja eben auch in der Ebene Fj.

Der Richtungsvektor der Schnittgerade ist senkrecht zu den beiden Norma-
lenvektoren der beiden Ebenen. Gesucht ist also der Richtungsvektor, bzw. ein
Vektor, welcher senkrecht zu den beiden Normalenvektoren der Ebenen ist. Diesen
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Vektor liefert das Vektorprodukt:

9 ) 70 )
7_1:1 X 7_1:2 = -8 X 6 =15~ |4
—13 1 40 1

Da Sie den Richtungsvektor benotigen, konnen Sie ,kiirzen“ und einen Vektor
wéhlen mit moglichst kleinen Werten.

Nun benétigen Sie nur noch einen Punkt der Schnittgeraden. Dazu miissen
Sie doch eines der Gleichungssysteme l6sen.

9!13'1 — 81’2 — 131’3 = -2
—55171 + 65(72 +x3 = —2

Wihlen Sie eine Komponente als null (jede andere beliebige Zahl geht auch).
Evtl., wenn das Gleichungssystem dann nicht 16sbar ist, miissen Sie eine andere
Komponente als null wihlen.

Hier wird jetzt willkiirlich z; = 0 gewéhlt: (Die Wahl sollte so sein, dass das
entstehende Gleichungssystem méglichst einfach wird.)

—81’2 — 131’3 = -2 I
65(32 +x3 = —2 11

Erste Rechnung: I + 13- 11:
7029 = —28

2
IQI—S

Um x3 zu bestimmen: 3-1+4-11:

—3bx3 = —14
2
Der Punkt lautet: P(0| — %|§)
0 5
g:@i={—3|+t|4
2 1
5

0 5 15 3
1

—2 +§- Al =z (0] =2

2 1 5 1
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Abbildung 8.1: Zwei Ebenen und dazu jeweils zwei Normalenvektoren, die sich
an der Spitze treffen und einen Winkel bilden. Eingezeichnet ist auch die Schnitt-
gerade der beiden Ebenen. Der Schnittwinkel der Ebene ist dann 180° Minus dem
Winkel der Normalenvektoren (siehe Text).

Damit ergibt sich die Schnittgerade zu:

3 5
g:r= 2] +t|4
1 1

8.7 Schnittwinkel bei Ebenen

Der Schnittwinkel zweier Ebenen kann mit Hilfe der Normalenvektoren bestimmt
werden. Siehe Abb. Bl S.

Dazu muss der Winkel den die Normalenvektoren einschliessen berechnet wer-
den. Die Winkelsumme im Viereck betragt 360°. Die Normalenvektoren haben
jeweils einen 90° Winkel zur Ebene. So dass sich der Winkel zwischen den Nor-
malenvektoren und der Ebene zu 180° ergénzen.

Der Schnittwinkel zwischen den Normalenvektoren ~ berechnet sich mit dem
Skalarprodukt:

cos(y) =mny - ngy
v = arccos(ny - na)
a =180 —v

Wenn dagegen eine Gerade eine Ebene schneidet, dann kénnen Sie den Winkel
zwischen dem Normalenvektor der Ebene und dem Richtungsvektor der Gerade
bestimmen. Dieser Vektor ergénzt sich dann mit dem gesuchten Winkel zwischen
Gerade und Ebene zu 90°. Das ist der Winkel, den der Normalenvektor zur Ebene
hat.
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8.8 Ubungen

Aufgabe 8.1
Gegeben ist [hnen folgende Ebene in Parameterform. Erstellen Sie die Normalen-
form und die Koordinatenform.

1 1 1
E:Z=(2]4+r|0] +s|1
3 2 1
(Losung siehe Seite [TT4]).
Aufgabe 8.2
Entscheiden Sie, ob die Ebenen parallel sind:
2 1 0
El:7=(3]+s|0|+1t]1
1 1 2
4 2 4
E2:2=|1|4+u|—-1]+4+v]|—-3
2 0 —2

n=12-1
(Losung siehe Seite [[14)).
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Zu Aufgabe: 8.1]
Gegeben ist Thnen folgende Ebene in Parameterform. Erstellen Sie die Normalen-
form und die Koordinatenform.

1 1 1
E:2=12]+r|10] +s|1
3 2 1

Erstellen Sie zuerst die Normale mit Hilfe des Vektorproduktes der Richtungs-
vektoren:

1 1 —2
n=|0] x|1]|] = 1
2 1 1
Damit ist die Normalenform:
1 —2
E:|7—12 1 =0
3 1
Die Koordinatenform:
—2 1
—2!13’1 + To+ 23 = 1 -2
1 3

—21’1+l’2+l’3:—2+2—|—3
—21’1+$2+Z’3:3

Zu Aufgabe:
Entscheiden Sie, ob die Ebenen parallel sind:

2 1 0
El:Z2=13]+s|0]+t]1
1 1 2
4 2 4
E2:2=|1|4+u|—-1]+4+v]|—-3
2 0 -2
Bestimmen Sie die Normalenvektoren der Ebenengleichungen.
1 0 -1 1
n=10]x[1]=|-2]~ 2
1 2 11 -1
2 4 2 1
no=|—-1|x|-3|=14 ]|~ 2
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Da die beiden Ebenen dieselben Normalenvektoren haben, sind sie entweder
parallel oder identisch.
Die Koordinatenform der ersten Ebene:

2 1
E11I1+2[L’2—[L’3: 31 - 2

1 —1
E11I1+2[L’2—[L’3:2+6—1
E11$1—|—2LL’2—LL’3:7

Ein Punkt der zweiten Ebene wird in die Koordinatengleichung der ersten Ebene
eingesetzt:

44+2-1-2=4+2-1
=5
£7

Da der Punkt der zweiten Ebene kein Punkt der ersten Ebene ist, sind die Ebenen
nicht identisch sondern parallel.



Kapitel 9

Abstand

In diesem Kapitel werden drei Abstandsberechnungen vorgestellt:

1.
2.
3.
4.
D.

Der Abstand zwischen zwei Punkten.

Der Abstand zwischen einem Punkt und einer Ebene.
Der Abstand zwischen einer Gerade und einer Ebene.
Der Abstand zwischen einer Ebene und einer Ebene.

Der Abstand zwischen einem Punkt und einer Gerade.

Ausgehend von der Normalenform werden wir die Hesse Normalenform (kurz
HNF) entwickeln, um den Abstand zwischen einer Ebene und einem Punkt be-
stimmen zu kénnen. Damit sind alle Absténde zu einer Ebene berechenbar.

Der Abstand zwischen einer Gerade und einer Ebene dagegen ist aufwéndiger.
Die Berechnung kann einmal durch eine Gleichung oder auch mit einer Hilfsebene
erfolgen.

9.1 Abstand: Punkt — Punkt

Den Abstand zwischen zwei Punkten berechnen Sie auf zweierlei Art. Die Rech-
nung ist aber immer dieselbe.

1.

2.

ay by
a= a9 b= bg
as b3

Mit Hilfe des Pythagoras: Der Abstand d bestimmt sich dann durch den
Pythagoras:

d= /(a1 — b1)? + (a2 — by)? + (a3 — bs)?
Mit Hilfe des Skalarproduktes:



KAPITEL 9. ABSTAND 117

9.2 Abstand: Punkt — Ebene

In diesem Kapitel lernen Sie den Abstand eines Punktes zu einer Ebene zu be-
stimmen. Wenn Sie den Abstand mit einem Lineal ausmessen, dann nehmen Sie
eine Normale durch zur Ebene durch den Punkt P und bestimmen den Schnitt-
punkt mit der Ebene und anschliessend bestimmen Sie den Abstand von P zum
Schnittpunkt. Dieses Verfahren ist moglich aber sehr aufwéndig.

Abbildung 9.1: Eine Ebene mit einem Punkt A und ihre Normale (rot) sind
eingezeichnet. Ein weiterer Punkt P und dessen Projektion auf die zur Ebene
senkrechte Gerade durch A sind ebenfalls eingezeichnet. Unten links ist das Ko-
ordinatensystem angedeutet.

In Abb. auf S. [[17 sind eine Ebene mit einem Punkt A und ihre Normale
(rotr Vektor) eingezeichnet. Ebenfalls ist eine gestrichelte Gerade eingezeichnet.
Des weiteren ist ein Punkt P dessen Abstand zur Ebene bestimmt werden soll
eingezeichnet.
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Skalarprodukt und Projektion sind eng mit einander verkniipft. Wenn der
Normalenvektor (77) die lange 1 hat, ist das Skalarprodukt so grofi wie die Pro-
jektion lang ist.

Der Vektor von A nach P bestimmt sich durch: p'— a.

Damit ist dann der Abstand d:

[P —d] - 7ig = d

7l ist der Normalenvektor der Ebene mit der Lénge 1.
Einen Normalenvektor der Léange 1 erhalten Sie, indem Sie den Normalenvek-
tor durch seine Lénge teilen:

—_

p—d - —=n=d
7]
Dies entspricht der Normalenform mit einem speziellen Normalenvektor. Dar-

um hat diese Normalenform einen speziellen Namen: Die Hesse Normalenform

(kurz: HNF):
1
[Z—dl-—=n=0
7]
Diese Form gibt, wenn man einen beliebigen Punkt fiir ¥ einsetzt, den Abstand
des Punktes zur Ebene an. Wenn der Punkt in der Ebene liegt, dann ist der

Abstand natiirlich null.

9.3 Abstand: Gerade — Ebene

Der Abstand einer Geraden zu einer Ebene macht nur dann Sinn, wenn die Gerade
und die Ebene parallel sind und keinen gemeinsamen Schnittpunkt haben.
Wenn die Gerade parallel ist, hat jeder Punkt der Geraden denselben Abstand
von der Ebene. Es reicht also, einen Punkt der Geraden in die HNF der Ebene
einzusetzen und den Abstand des Punktes von der Ebene zu bestimmen.

9.4 Abstand: Ebene — Ebene

Der Abstand einer Ebene zu einer anderen Ebene macht nur dann Sinn, wenn
beide Ebenen parallel sind und keinen gemeinsamen Schnittpunkt (genauer: keine
Schnittgerade) haben.

Wenn die Ebenen parallel sind, hat jeder Punkt einer Ebene denselben Ab-
stand zur anderen Ebene. Es reicht also, einen Punkt einer Ebene in die HNF
der anderen Ebene einzusetzen und den Abstand des Punktes von der Ebene zu
bestimmen.
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ko

Abbildung 9.2: Ein Punkt und eine Gerade sind eingezeichnet. v ist in dem Bild
der Richtungsvektor. Das Lot vom Punkt P auf die Gerade trifft die Gerade im
Punkt L. Die Vektoren v und P-A sind rot eingezeichnet.

9.5 Abstand: Punkt — Gerade

Um den Abstand zu einem Punkt zu berechnen miissen Sie ein bisschen Geometrie
betreiben. Dadurch ist die Berechnung aufwindiger und es gibt viele Moglichkei-
ten.

Gegeben ist Thnen eine Gerade g und ein Punkt P. Die senkrechte Verbindung
von P auf die Gerade g trifft die Gerade im Lotpunkt L. In der Abb.[Q.2] S.
ist die Situation im Uberblick dargestellt.

Dabei gibt es mehrere mogliche Vorgehensweisen:

1. Um den Lotpunkt L zu ermitteln stellen Sie eine Gleichung auf und 16sen
diese. Der Lotpunkt ist ein Punkt der Geraden. Also reicht die Angabe des
Parameters aus, um den Lotpunkt eindeutig festzulegen.
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Um den Wert fiir den Parameter zu bestimmen, nutzen Sie aus, dass die
Verbindung L P senkrecht zur Geraden ist: Also ist das Skalarprodukt vom
Vektor LP mit dem Richtungsvektor der Geraden null. Dies ergibt eine
Gleichung mit der Sie dann den Lotpunkt L bestimmen kénnen und dann
konnen Sie den Abstand bestimmen.

2. Sie konnen eine Hilfsebene bestimmen, die von der Geraden senkrecht durch-
drungen wird und den Punkt P beinhaltet. Sie bestimmen dann den Durch-
stoflpunkt der Geraden mit der Ebene, welcher gleich dem Lotpunkt L ist.
Anschliefend konnen Sie dann den Abstand von L zu P bestimmen.

3. Sie konnen fiir alle Punkte der Geraden eine Gleichung angeben, welche
den Abstand, bzw. das Quadrat des Abstandes zum Punkt P angibt. Der
kiirzeste Abstand ist dann der Abstand vom Punkt P zur Geraden. Dies ist
ein Extremwertproblem, welches mit den Methoden der Analysis gelost wer-
den kann. Bei dieser Methode erhalten Sie im Unterschied zu den anderen
Methoden nicht den Lotpunkt L.

4. Sie konnen sich ebenfalls das Vektorprodukt zu nutze machen. Die Idee
dabei ist, dass der Richtungsvektor der Geraden und der Vektor zwischen
dem Punkt der Geraden und dem gegebenen Punkt ein Parallelogramm
aufspannen. Die Fliache des Parallelogramms ist gerade die Léange der Hohe
multipliziert mit der Lénge der Grundseite.

Wihlen Sie als Lédnge der Grundseite den speziellen Richtungsvektor der
Gerade mit der Lénge 1:

—

0

al

Dann entspricht die Fliche des Parallelogramms gerade der Hohe, das ist
aber auch die Entfernung des Punktes von der Geraden. Die Fliche wird
dann mit dem Vektorprodukt ausgerechnet.

Vo

Alle Methoden werden wir an folgendem Beispiel durchrechnen und vorstellen.

13 3
gii=A+tv=[12] +t| 0
7 ~1

Es ist der Abstand des Punktes P(2|3|4) zur Geraden g gesucht.

9.5.1 Gleichung aus Skalarprodukt

L ist der Punkt der Geraden, welcher den kleinsten Abstand zu dem Punkt P
hat. Dann ist der Vektor PL senkrecht auf der Geraden (weil die senkrechte die
kiirzestes Verbindung ist). Also gilt folgende Beziehung:

(L—P)-v=0
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Statt L konnen wir die Geradengleichung schreiben:

(A+tv—P)-v=0

eingesetzt:
13 3 2 3
121+t 0| —{3 -1 0 ]=0
7 -1 4 -1
11 3 3
91+t 0 -1 0 ]=0
3 -1 -1
3B3+9-0-3+9+0t+t=0
30+ 10t =0
10t = —30
t=-3

Dieser Wert fiir ¢ wird dann eingesetzt in die Geradengleichung und ergibt dann
den Lotfulpunkt L:

13 3 4
L=112]1-31 0 | =112
7 -1 10
Der Abstand von L zu P:
4 2
d=1|112] - | 3
10 4
2
=119
6
:,/22_‘_92_‘_62
=+v4+ 81+ 36
=121
=11

Der Abstand des Punktes zur Gerade betréigt 11 LE.

9.5.2 Fuflpunktbestimmung mit Hilfsebene

Bei dieser Methode wird zuerst eine Hilfsebene Ej, konstruiert, welche den Punkt
P enthalt und auf der die Gerade g senkrecht steht. Der LotfuBlpunkt L ist dann
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<

Abbildung 9.3: Ein Punkt und eine Gerade sind eingezeichnet. v ist in dem
Bild der Richtungsvektor. Das Lot vom Punkt P auf die Gerade trifft die Gerade
im Punkt L. Die Vektoren v und P-A sind rot eingezeichnet. Dariiber hinaus
ist eine Ebene eingezeichnet, welche senkrecht zur Gerade ist und den Punkt P
beinhaltet. v ist nicht nur der Richtungsvektor der Geraden sondern ebenfalls der
Normalenvektor der Ebene.
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der DurchstoBpunkt der Gerade mt der Ebene. Die Situation ist in der Abb. 0.3
S. dargestellt.
Der Normalenvektor der Ebene Ej, ist der Richtungsvektor der Gerade:

2 3
Eh131'1+01'2—1'3: 31 - 0

4 -1
Eh13$1+0$2—£(73:6+0—4
Eh231'1+01'2—l'3:2

Jetzt wird L als gemeinsamer Punkt der Ebene Ej und der Geraden durch Ein-
setzen der Geradengleichung in die Koordinatenform der Ebene bestimmt:

3(13 + 3t) + 0(12 + 0f) — (7 — t) = 2
3949t —T+1=2

32+ 10t = 2
10t = —30
t=-3

Die Bestimmung von L und der Abstand zu P erfolgen wie oben.
Dieser Wert fiir ¢ wird dann eingesetzt in die Geradengleichung und ergibt
dann den Lotfulpunkt L:

13 3 4
L=112]1 -3 0 | =112
7 -1 10

Der Abstand von L zu P:

4
d=1|12] —
10

2
=119
6

= V22 + 92462
= V4 +81+36

=v121
=11

=W N

Der Abstand des Punktes zur Gerade betréigt 11 LE.
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9.5.3 Abstandsbestimmung als minimaler Abstand

Der Abstand eines beliebigen Punktes der Gerade zum Punkt bestimmt sich nach:

d= |7 - pl
13 3 2
= 121+t O — 13
7 -1 4
11 3
=9+t o
3 1

Um keinen Wurzelausdruck zu bekommen untersuchen wir das Quadrat des Ab-
standes:

11 3 11 3
d? = 91 +¢t| 0 . 91+t 0
3 —1 3 —1

(11+3t)*+ (9> + (3 —t)?
(121 + 66t + 9¢*) + (81) + (9 — 6t + t°)
211 + 60t + 10t

Das Quadrat des Abstandes ist eine Funktion von ¢:

qd(t) = 211 + 60t + 10¢*
qd'(t) = 60 + 20t

Wenn ¢d(t) minimal ist, dann gilt notwenigerweise:

qd'(t) =0
20t 4+60 =0
20t = —60
t=-3

Da qd(t) eine quadratische Funktion mit einem positiven Vorzeichen vor dem t?
ist, ist bei t = —3 das Minimum. Bei t = —3 ist der Lotfuflpunkt.
Der Abstand:

qd(—3) =211+ 60 - (=3) + 10 - (—3)?
=211 — 180+ 90
=121
d(—3) =11

Der Abstand des Punktes P zur Geraden g betragt dann 11 LE.
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9.5.4 Abstandsbestimmung mit Hilfe der Fliche

Wir betrachten zwei Vektoren:
1. Den Richtungsvektor der Geraden: .

2. Den Vektor zwischen dem Punkt der Geraden und dem gegebenen Punkt:
P-A.

Diese beiden Vektoren liegen in derselben Ebene wie das gesuchte Lot von P
auf die Gerade. Diese beiden Vektoren bilden ein Parallelogramm, dessen Hohe
gerade das gesuchte Lot ist.

In der Abb. 0.2 S. ist die Situation im Uberblick dargestellt.

Die Flache des Parallelogrammes berechnet sich durch

A = Grundseite mal Hohe

A=|0xp=al
Wenn nun die Grundseite des Parallelogrammes die Lidnge 1 hat, so entspricht
die Flédche der Liange der Hohe.

Einen Richtungsvektor mit der Lénge eins erhalten Sie, wenn Sie den Rich-
tungsvektor durch seine Lénge teilen:

Dann erhalten Sie die Léange der Hohe, bzw. den Abstand:

g [7xp=d

|l
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e

Abbildung 9.4: Ein Punkt und eine Gerade sind eingezeichnet. v ist in dem Bild
der Richtungsvektor. Das Lot vom Punkt P auf die Gerade trifft die Gerade im
Punkt L. Die Vektoren v und P-A sind rot eingezeichnet. Die Vektoren P-A und
v bilden ein Parallelogramm in der Ebene. Die Verbindung LP ist die Hohe des
Parallelogramms mit der Grundseite v.
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In unserem Beispiel:

g |U Xg—a|
|71
3 2 13
0 X 31— 112
BRIERE
B 3
0
g
3 —11
0 x(—9
~1 —3
B 9+0+1
-9
20
27
V10
B /81 + 400 + 729
V10
/1210
V10
=121
=11

Der Abstand betrigt 11 LE.
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9.6 Ubungen

Aufgabe 9.1
Bestimmen Sie den Abstand des Punktes P(1|1|2) von der Gerade g:

8 1
g: =9 | +t]2
18 3

(Losung siehe Seite [129)).
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Zu Aufgabe:
Bestimmen Sie den Abstand des Punktes P(1|1|2) von der Gerade g:

9 1
g:x= 11| +t| 2
—2 -2

1. Gleichung aus Skalarprodukt Wir suchen als erstes den Lotpunkt L:

(L—P)-v=0
(A+tv—P)-v=0
9 1 1 1
1)+t 2 | —|1 2 1=0
-2 -2 2 -2
8 1 1
10 )+t 2 - 2 | =0
—4 -2 -2
84+20+8+4t+4t+t=0
36+9t=0
9 = —36
t=—4

Dieser Wert fiir t wird dann eingesetzt in die Geradengleichung und ergibt
dann den Lotfulpunkt L:

9 1 5
-2 -2 6

Der Abstand von L zu P:

N =~ O W Ot
[\

W

VBRI
VT 1T
VTS

=6

Der Abstand des Punktes zur Gerade betriagt 6 LE.
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2. FuBBpunktbestimmung mit Hilfsebene Bei dieser Methode wird zuerst
eine Hilfsebene E), konstruiert, welche den Punkt P enthélt und auf der die
Gerade g senkrecht steht. Der Lotfulpunkt L ist dann der Durchstofipunkt
der Gerade mt der Ebene.

Der Normalenvektor der Ebene Ej, ist der Richtungsvektor der Gerade:

1 1
Ey 114+ 209 —223= (1] -] 2
2 -2

Eh2$1+21'2—21’3:1—|—2—4
Eh2$1+2$2—2$3: —1
Jetzt wird L als gemeinsamer Punkt der Ebene Ej und der Geraden durch
Einsetzen der Geradengleichung in die Koordinatenform der Ebene be-
stimmt:
(9+1t)+2(114+2t) —2(—2—2t) = —1
O+t +224+4t+4+4t=-1

3549t = -1
9t = —36
t=—-4

Die Bestimmung von L und der Abstand zu P erfolgen wie oben.

Dieser Wert fiir t wird dann eingesetzt in die Geradengleichung und ergibt
dann den Lotfuflpunkt L:

9 1 5
L=111] -4 2 =13
-2 —2 6
Der Abstand von L zu P:
5 1
d=113]-1{1
6 2
4
=12
4

e e
=V16+4+16
= /36
=6
Der Abstand des Punktes zur Gerade betréagt 6 LE.
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3. Abstandsbestimmung als minimaler Abstand Der Abstand eines be-
liebigen Punktes der Gerade zum Punkt bestimmt sich nach:

d= |7 — f
9 1 1
= 11 )+t 2 | — |1
—2 —2 2
8 1
= 10 )+t 2
—4 —2

Um keinen Wurzelausdruck zu bekommen untersuchen wir das Quadrat des

Abstandes:
8 1
d* = 10 | +¢| 2
—4 -2

(8+1)% + (10 + 2t)* + (—4 — 2t)*
(64 + 16t 4 t2) + (100 + 40t + 4t%) + (16 + 16t + 4t%)
180 + 72t + 9¢*

Das Quadrat des Abstandes ist eine Funktion von ¢:

qd(t) = 180 + 72t + 9¢*
qd'(t) =72 + 18t

Wenn ¢d(t) minimal ist, dann gilt notwenigerweise:

qd'(t) =0
18t +72=0
18t = =72
t=—4

Da qd(t) eine quadratische Funktion mit einem positiven Vorzeichen vor
dem t? ist, ist bei t = —3 das Minimum. Bei ¢t = —3 ist der LotfuSpunkt.

Der Abstand:
qd(—4) =180 + 72+ (—4) + 9 - (—4)*
= 180 — 288 + 144
=36
d(—4) =6

Der Abstand des Punktes P zur Geraden g betrigt dann 6 LE.
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4. Abstandsbestimmung mit Hilfe der Fliche Wir betrachten zwei Vek-
toren:
(a) Den Richtungsvektor der Geraden: v.
(b) Den Vektor zwischen dem Punkt der Geraden und dem gegebenen
Punkt: P-A.

Diese beiden Vektoren liegen in derselben Ebene wie das gesuchte Lot von
P auf die Gerade. Diese beiden Vektoren bilden ein Parallelogramm, dessen
Hohe gerade das gesuchte Lot ist.

In unserem Beispiel:

d:|17><gi:a|
|V
1 9 1
2 X 11 ] —-1(1
-2 —2 2
B 1
2
-2
1 8
2 x | 10
-2 —4
- J1+4+4
12
—12
—6

Sy o

V9

Der Abstand betriagt 6 LE.



Kapitel 10

Ebeneniibersicht

In diesem Kapitel soll eine Ubersicht zu den einzelnen Ebenenformen und deren
sinnvoller Einsatz in der 3-dim. Vektorrechnung gegeben werden. Grundsétzlich
kénnen Sie mit jeder Form jedes Problem losen. Nur wird es dann manchmal sehr
aufwandig.

Folgende Ebenenformen werden aufgefiihrt:

1. Die Parameterform
2. Die Normalenform
3. Die Hesse Normalenform

4. Die Koordinatenform

10.1 Ubersicht: Ebenen

In dieser Ubersicht werden die origindren Funktionalitéiten der einzelnen Ebenen-
formen aufgefiihrt. Sebstverstdndlich konnen Sie auch alle Probleme nur mit der
Parameterform 16sen. Sie haben dann nur weniger Spafl.

10.1.1 Die Parameterform

1. Aus drei Punkten der Ebene konnen Sie schnell die Parameterform herlei-
ten.

2. Mit Hilfe der Parameterform kénnen Sie weitere Punkte angeben.

3. Mit Hife des Vektorproduktes konnen Sie die Parameterform ind die Nor-
malenform umwandeln.
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10.1.2 Die Normalenform

1. Aus einem senkrechten Vektor zu der Ebene und einem Punkt schnell auf-
stellbar.

2. Sie kénnen schnell iiberpriifen, ob ein weiterer Punkt ein Punkt der Ebene
ist.

3. Sie kénnen schnell mit Hilfe des Normalenvektors bestimmen, ob eine wei-
tere Ebene parallel ist. (Dann sind die Normalenvektoren Vielfache vonein-
ander.)

4. Sie konnen mit Hilfe des Normalenvektors bestimmen, ob eine weitere Ge-
rade parallel zur Ebene ist. (Dann bilden der Normalenvektor und der Rich-
tungsvektor einen 90° Winkel, d. h. dass deren Skalarprodukt null ist.)

5. Sie konnen den Schnittwinkel zweier Ebenen, bzw. einer Gerade und einer
Ebene bestimmen.

10.1.3 Die Hesse Normalenform

Diese Form benutzen Sie nur, um den Abstand eines Punktes von einer Ebene zu
berechnen.

10.1.4 Die Koordinatenform

1. Mit der Koordinatenform konnen Sie alles machen, was Sie auch mit der
Normalenform machen konnen.

2. Diese Form benutzen Sie fiir Schnittpunkts- und Schnittgeradenberechnun-
gen indem Sie eine Parameterform in die Koordinatenform einsetzen.

3. Mit mehreren Koordinatenformen konnen Sie direkt ein Gleichungsystem
zur Bestimmung der Schnittgeraden aufstellen.



Kapitel 11

Arbeitsblatter

11.1 Tetraeder

Ein Tetraeder hat vier (tetra) vier Fldchen und damit vier Ecken. In diesem
Arbeitsblatt untersuchen wir einen regelméfligen Tetraeder. Seine Fliachen sind

jeweils gleichseitige Dreiecke.
Von einem regelméfigen Tetraeder sind 3 Eckpunkte gegeben: A(0[0]0), B(4/4]0),
C(0]4]4).

1. Geben Sie die Moglichkeiten fiir den 4. Punkt an.
(Nehmen Sie im folgenden an, dass D(4|0]4) sei.

2. Bestimmen Sie die Oberflache des Tetraeders.

3. Bestimmen Sie das Volumen des Tetraeders.

4. Bestimmen Sie den Winkel, den jede Kante mit der gegeniiberliegenden
Ebene einschlief3t.

5. Bestimmen Sie den Winkel, den die Dreiecksflachen einschliefen.

135
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11.2 Tetraeder — LOsung

Ein Tetraeder hat vier (tetra) vier Fldchen und damit vier Ecken. In diesem
Arbeitsblatt untersuchen wir einen regelméfligen Tetraeder. Seine Fliachen sind
jeweils gleichseitige Dreiecke.

Von einem regelméfligen Tetraeder sind 3 Eckpunkte gegeben: A(0(0]0), B(4[4]0),
C(0]4/4).

1. Geben Sie die Moglichkeiten fiir den 4. Punkt an.
Die Seitenlénge des Tetraeders betrégt:

4
IB—Al=||4]|=V16+16=+2-16 =42
0

4

IB-Cl=1|[ 0 ||=v16+16=Vv2-16=4V2
—4

0
IC—Al=[[4]|=VI6+16=v2-16=4V2
4

Da es sich um ein gleichseitiges Dreieck handelt, fallen die Seitenhalbieren-
de, die Mittelsenkrechte, die Hohe und die Winkelhalbierende zusammen.
Insbesondere sind die Schnittpunkte der Mittelsenkrechten, der Seitenhal-
bierenden und der Hohen (und der Winkelhalbierenden) identisch.

Die gesuchte Spitze befindet sich oberhalb des Umkreismittelpunktes des
Dreiecks damit sie von allen Ecken gleich weit entfernt ist. Der Umkreismit-
telpunkt ist der Schnittpunkt der Mittelsenkrechten, bzw. hier der Hohen.

Fiir die Konstruktion der Hohen benétigen wir die Normale des Dreiecks.

7= (B—A)x (C— A)

4 0
=14 x |4

0 4

16 1
=|-16] ~ [ -1

16 1

h. steht senkrecht auf die Normale und senkrecht auf die Strecke AB. Der
Richtungsvektor ist somit ebenfalls senkrecht zur Normalen und zu (B-A).

1 4 —4 —1
ve=iix (B—A)=|-1]x|al=[4a]~[1
1 0 8 2



KAPITEL 11. ARBEITSBLATTER 137

Die Hohe h. geht durch den Punkt C:

h, steht senkrecht auf die Normale und senkrecht auf die Strecke BC. Der
Richtungsvektor ist somit ebenfalls senkrecht zur Normalen und zu (C-B).

1 —4 —4 1
vo=Ax(C—B)=[-1]x|0|=[=8]~[2
1 4 —4 1

Die Hohe h, geht durch den Punkt A:

1
he=s512
1

Gesucht ist der Schnittpunkt der Hohe, bzw Mittelsenkrechten (Umkreis-
mittelpunkt). Dazu miissen Sie folgendes Gleichungssystem 1sen:

he = hy
1 0 —1
s|12] =14 +¢t] 1
1 4 2
1 1 0
sl2]1+tl-1]) =14
1 -2 4
Der ersten Zeile entnehmen Sie: s = —t und aus der 2. Zeile:
2s —t =4
2(—t)—t=4
—2t—t=4
—3t=4
. 4
3
4
S = —
3

Dies ist auch eine Losung fiir die dritte Zeile.
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Der gesuchte Mittelpunkt:

1 1

4
m=q 21 +r| -1
1 1

und den Abstand von 4+/2 zu A, B und C haben. Da die Gerade m von
allen Punkten gleich weit entfernt ist, reicht es den Abstand zum Punkt A
zu ermitteln.

Im — Al =42
4 (1 1
s 2]+t =42
1 1
4 2 8 2 4 2
- - — - =42 2
\/<3+r) +<3 7’) +<3+r) V2 )
4 /8 /4 ?
(Gre) +(G-r) +(5+7) =102
443r\?  [/8=3r\* [4+43r\°
+ = 32
3 3 3
2 o 2 2
(44—937’) +(8 937") +(4+937") _ 39
(16 +2-4-3r +9r%) + (64 — 487 + 9r®) + (16 + 247 + 9r?) =329
96 + 27r* = 288 |:3
324+ 9r? = 96

7“:——0de1"7":§
3 3



KAPITEL 11. ARBEITSBLATTER 139

1 1
Plzg 2 —g ~1
1 1
1y
3 \4
1 1
4
1 1

2. Bestimmen Sie die Oberflache des Tetraeders.

Der Tetraeder setzt sich, da er ein regelméfliger Tetraeder ist, aus vier gleich
groflen Dreiecken zusammen.

Die Flache eines Dreiecks bestimmt sich durch:

ii=(B—A)x (C— A)

4 0
=4 x |4

0 4

16
= | -16

16
A =i
=162 + 162 + 162
=+/3-16

— 443
Die Oberflache ist dann:

O=4-A
—4-4+3
—16V3

3. Bestimmen Sie das Volumen des Tetraeders.

Ein Tetraeder ist ein spitz zulaufender Korper, also gilt fiir sein Volumen:

1
V=-GH
3
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G: Grundflache und H ist seine Hohe.

Die Grundflache ergibt sich durch die Hélfte des Parallelogramms, welches
durch (B-A) und (C-A) aufgespannt wird:

Also ist das Volumen des Tetraeders nur % . % = é des Parallelepipeds.

V:é (B —=A)x(C=A)]-(D—A4)
L[ 16 1
=-—|-16 0
6\1w6) \a

1
= 2 (16-4+16-4)
128

6
64

3

4. Bestimmen Sie den Winkel, den jede Kante mit der gegeniiberliegenden
Ebene einschliefit.

Da der Tetraeder symmetrisch ist, reicht es den Winkel zu untersuchen, den
die Kante AD mit der Ebene, welche von AB und BC aufgespannt wird,
einschlief3t.

Die Ebene AB und BC hat den Normalenvektor (siehe oben):

4
AD=D—-A=1{0
4



KAPITEL 11. ARBEITSBLATTER 141

Der Winkel zwischen der Kante und dem Normalenvektor:

1 4
—1 0
1 4
cos(y) = 177 1
—1 0
1 4
B 444
cosly) = VIFI+1- V24
8
cos(y) = 755
_ V28
cos(y) = —\/§ NG
s
cos(y) = 73 vii
V2
cos(y) = m
V2
cos(y) = ﬁ
v~ 35°

Der gesuchte Winkel ist dann ca. 55°(90° - 35°).

5. Bestimmen Sie den Winkel, den die Dreiecksflichen einschliefen.

Da es sich um einen regelméfligen Korper handelt, reicht es zwei beliebige
Flachen zu untersuchen.

Der Normalenvektor der Ebene (AB, BC) ist bekannt:

Der Normalenvektor der Ebene (AB, AD):

4 4 16 1
ng= 4| x|0] =116 | ~| 1
0 4 —16 -1
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ﬁl'ﬁ2

0s() = Tl

1-1-1

T VB3
~1

3
~ 109°

Der gesuchte Winkel (der Schnittwinkel der Ebenen) ergénzt sich mit dem
Winkel der Normalenvektoren zu 180°. Und betrigt somit ca. 71°.
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11.3 Pyramide —L6sung

Eine Pyramide mit quadratischer Grundflache hat eine Ecke im Ursprung A(0|0]0),
weiterere Punkte der Grundflache seien B(4|4|2 und D(—4/2|4).

1. Bestimmen Sie die Koordinaten des iibrigen Punktes der Grundfiache.

2. Bestimmen Sie die Koordinaten der Spitze, wenn alle Kanten der Pyramide
gleich lang sind.
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11.4 Pyramide —L6sung

Eine Pyramide mit quadratischer Grundflache hat eine Ecke im Ursprung A(0|0]0),
weiterere Punkte der Grundflache seien B(4|4|2 und D(—4/2|4).

1. Bestimmen Sie die Koordinaten des iibrigen Punktes der Grundfiache.

Bestimmen Sie den Vektor von A zu D:

AD=D— A

Diesen Vektor verschieben Sie parallel, so dass er an den Punkt B anschlief3t:

C=B+AD
4 —4 0
=21+ 2 =1|4
4 4 8

2. Bestimmen Sie die Koordinaten der Spitze, wenn alle Kanten der Pyramide
gleich lang sind.

Die Lénge der Seite:

|=|B— A
:,/42_‘_42_'_22
= V16 + 16 + 22

Die Spitze ist auf der Normalen zur Grundfliche, welche durch den Mittel-
punkt des Quadrates geht. Auf dieser Geraden ist die Spitze der Ort (bzw.
einer der beiden Orte), welcher von A, B, C und D 6 LE entfernt ist.

D
4 —4 12 1
4
2

4 24 2
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Der Mittelpunkt des Quadrates liegt genau zwischen den beiden Punkten
A und C (natiirlich auch genau zwischen B und D):

M=A+_-(C-A4)

N —

- O O OO

Die Gerade auf der S liegt lautet:

Da alle Punkte auf g den selben Abstand zu A, B, C und D haben reicht
es, die Entfernung zu A zu betrachten.

|7 — Al =6
VIR (2202 + (44262 =6
2+ (2-2t)2+(4+2t)* =36
t* + (4 — 8t + 4t%) + (16 + 16t + 4¢*) = 36
9t* + 8t +20 = 36
92 + 8t — 16 =0
t ~ —1,8 oder t ~ 0,96
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S~ 2] -18]-2

18

7.6
Sy~ 2] +096 | -2

0,96
0,08

5,92
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