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Vorwort

Liebe Studierende, lieber Leser,
Dieses Skript zur analytischen Geometrie im dreidimensionalen Raum geht einen
ungewöhnlichen Weg. Normalerweise wird steht das aufstellen und Lösen von
Gleichungen im Vordergrund und die einzelnen Objekte wie Ebene, Punkt und
Geraden sind dann die Lösungsmengen von Gleichungssystemen. In diesem Skript
wird sehr schnell das Skalarprodukt und das Vektorprodukt eingeführt, so dass Sie
Geometrie im drei- (bzw. zwei-) dimensionalen Raum durchführen können. Die
einzelnen Lösungsverfahren werden nebeneinander gestellt. Dies ist beim Lernen
nur bedingt motivierend. Dies ist aber das grundsätzliche Problem der Vektor-
rechnung, dass Sie sehr viel grundlegendes Wissen müssen, um dann Geometrie
betreiben zu können.

Darüberhinaus werden in dem Skript immer auch Beispiele zur Vektorrech-
nung genommen, die sich nicht auf die dreidimensionale Geometrie beschränken.
So soll der Übergang zur linearen Algebra erleichtert werden. Dabei verlassen Sie
den Anschauungsraum.

Natürlich empfehle ich Ihnen dringend auch andere Bücher aus der Bücherei
zu benutzen und im Internet sowohl nach Aufgaben als auch nach Erklärungen
zu suchen.

Ich hoffe, dass dieses Skript dem Einen oder Anderen hilft, den Mathematik-
unterricht besser zu bestehen.

Wenn Ihnen Fehler auffallen, oder Sie das Skript oder Teile kommentieren
mögen, schreiben Sie doch bitte an folgende Adresse:

”
stewen.rvk@gmx.de“

Roland Stewen

iv



Kapitel 1

Einführung

1.1 Definition von Vektoren

Sie kennen
”
normale“ Zahlen, diese geben Ihnen eine Größe an. Wenn Sie aber

jetzt auch noch eine Richtung benötigen (Ein Beispiel ist in der Physik die Kraftr.
Diese hat nicht nur eine Stärke sondern auch eine Richtung), dann benötigen Sie
Vektoren.

Ein Vektor sind untereinandergeschriebene Zahlen. Z. B.: ( 2
3 ) oder auch

(
2
3
6

)

”
Normale Zahlen“ – wie Sie sie bisher kennen – bezeichnet man im Unterschied

zu den Vektoren als Skalar.
Ein Vektor kann sehr unterschiedliche Bedeutungen haben. Nachfolgend seien

einige aufgeführt:

• Ein Vektor kann die Kraft in der Physik repräsentieren. Die Kraft wird
durch einen Pfeil symbolisiert. Der Vektor gibt dann gerade die Verschie-
bung in x-Richtung (1. Komponente), in y-Richtung (2. Komponente) usw.
an. Die Länge des Vektors ist die Größe der Kraft und die Richtung der
Kraft ist dann mit der Richtung des Vektors übereinstimmend.

• Der Lagerbestand in einer Firma. Die 1. Komponente ist dann der Bestand
der Grafikkarten, die 2. Komponente der Bestand der Festplatten usw. Da-
bei ist schnell klar, dass so ein Vektor viel mehr als 3 Komponenten haben
kann.

• In der Geometrie kann ein Pfeil durch einen Vektor dargestellt werden.

• In der Geometrie können Koordinaten von Punkten durch Vektoren darge-
stellt werden.

• In der Geometrie kann die Verbindung von zwei Punkten durch einen Vektor
dargestellt werden.

1



KAPITEL 1. EINFÜHRUNG 2

Ein Vektor kann einen Namen bekommen (sollte er in der Regel auch!). Um
den Namen eindeutig von allen anderen Variablen oder Parametern abzugrenzen,
welche für einzelne Zahlen stehen, wird der Name des Vektors i. d. Regel mit
einem Pfeil versehen:

~a =

(
2
3

)

Koordinaten von Punkten dagegen werden mit Großbuchstaben gekennzeichnet:
Ein Punkt: P(2|3).

Zweikomponentige Vektoren können als Pfeile in einer Ebene gedeutet werden
und dreikomponentige Vektoren als Pfeile im dreidimensionalen Raum. Beachten
Sie jedoch, dass ein Vektor nur eine Länge und eine Richtung hat. Vektoren mit
gleicher Länge und gleicher Richtung aber unterschiedlichem Anfangspunkt sind
jedoch identisch. (Vergleichen Sie Abb. 1.1 auf S. 2 )

-4

-2

 0

 2

 4

-4 -2  0  2  4

Abbildung 1.1
Diese Pfeile werden alle durch den Vektor ( 2

3 ) dargestellt. Obwohl die Pfeile alle
einen unterschiedlichen Anfangspunkt haben, sind die Vektoren identisch. (Sie
repräsentieren alle z. B. dieselbe Kraft.)

-3

-2

-1

 0

 1

 2

 3

 4

-3 -2 -1  0  1  2  3  4

P

Abbildung 1.2: Einen Ortsvektor kann man als Pfeil auf einen Punkt auffassen.

In der Geometrie sind drei Interpretationen wichtig:
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1. Insbesondere können Sie in der Geometrie einen Punkt durch einen Vektor
repräsentieren. Sie nennen diesen Vektor dann Ortsvektor.

Sie können natürlich auch sagen, dass der Ortsvektor die Verbindungslinie
zwischen dem Punkt und dem Nullpunkt ist.

2. Sie können einen Vektor als Verbindungsvektor zwischen zwei Punkten an-
sehen.

3. Sie können den Vektor auch als Verschiebungsvektor betrachten. Dann ver-
schieben Sie einen Punkt um den Vektor zu einem anderen Punkt.

Zwei Vektoren sind gleich, wenn Sie gleichlang sind und dieselbe Richtung
haben.

1.2 Länge eines Vektors

Die Länge eines Vektors im kartesischen Koordinatenzystem (Die Koordinaten-
achsen haben jeweils einen 90◦ Winkel zueinander) lässt sich mit Hilfe des Satzes
von Pythagoras bestimmen. Wir untersuchen im folgenden zwei Beispiele und
verallgemeinern unsere gewonnen Kenntnisse dann auf höhere Dimensionen.

1.2.1 Länge eines Vektors in 2 Dimensionen

-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4

Abbildung 1.3: Der rote Vektor ist die Hypotenuse in dem grünen Dreieck, welches
leicht versetzt eingezeichnet wurde.

Gegeben ist der im Bild 1.3 rote Vektor:

(
3
4

)
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Dies ist die Hypotenuse des grünen Dreiecks welches die Seitenlängen 3 und 4
hat. Die Länge der Hypotenuse berechnet sich dann wie folgt:

l2 = 32 + 42

l =
√
32 + 42

Für einen allgemeinen Vektor: ~a = ( a1
a2 ) ist dann die Länge sofort einleuch-

tend. Die Länge von ~a (der Betrag von ~a wird durch senkrechte Betragsstriche
angegeben) ist dann:

l = |~a| =
√

a21 + a22

1.2.2 Länge eines Vektors in 3 Dimensionen

-2 -1  0  1  2

-2
-1

 0
 1

 2

-2

-1

 0

 1

 2

Abbildung 1.4: Der rote Vektor ist die Hypotenuse des blauen Dreiecks. Die eine
Seite des blauen Dreiecks ist wiederum die Hyptenuse in dem grünen Dreieck.

Gegeben ist der im Bild 1.4 rote Vektor:

~a =





1
2
2





Dies ist die Hypotenuse des blauen Dreiecks. Eine Seitenlänge des blauen Drei-
ecks (die Länge der Seite welcher zur z-Achse parallel ist) ist bekannt: 2 (die 3.
Komponente des Vektors).
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Die andere Kathete des blauen Dreiecks (in der x-y-Ebene liegend) ist unbe-
kannt. Aber diese Seite selbst ist wiederum die Hypotenuse des grünen Dreiecks.
Die Katheten des grünen Dreiecks haben die Seitenlängen 1 und 2 (die 1. und 2.
Komponente von ~a).

Die Hypotenuse des grünen Dreiecks ist dann:

l2grün = 12 + 22

l2grün = a21 + a22

Die Hypotenuse des blauen Dreiecks, die Länge von ~a ergibt sich dann:

|~a|2 = l2grün + 22

|~a|2 = 12 + 22 + 22

|~a| =
√
12 + 22 + 22

Oder allgemein:

~a =





a1
a2
a3





|~a| =
√

a21 + a22 + a23

1.3 Rechenregeln zu Addition und Multiplika-

tion mit einer Zahl

Wir werden in diesem Kapitel die Rechenregeln für das Addieren (und Subtra-
hieren) zweier Vektoren und das Multiplizieren eines Vektors mit einer Zahl un-
tersuchen.

1.3.1 Addieren zweier Vektoren

Sie haben zwei Vektoren (siehe Abb.: 1.5):
Der rote Vektor:

~a =

(
1
3

)

Der blaue Vektor:

~b =

(
3
1

)

Wenn Sie beide Vektoren (Pfeile) addieren, dann
”
gehen“ Sie insgesamt 4 in x-

Richtung und 4 in die y-Richtung. Somit ergibt der rote Pfeil und der blaue Pfeil
zusammen den grünen Pfeil.
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-3

-2

-1

 0

 1

 2

 3

 4

 5

-3 -2 -1  0  1  2  3  4  5

Abbildung 1.5: Die Vektoraddition. Der rote und der blaue Pfeil ergeben den
grünen Pfeil.

Der grüne Vektor:

~c =

(
4
4

)

Es gilt also:
~a+~b = ~c

Sie sehen aber auch, dass wenn Sie den roten Pfeil entlang gehen, dann den
blauen Pfeil entlang gehen und dann den grünen Pfeil zurück gehen, Sie wieder
am Ausgangsort ankommen:

~a+~b− ~c = 0

1.3.2 Multiplizieren eines Vektors mit einer Zahl

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

-3 -2 -1  0  1  2  3  4  5  6  7

Abbildung 1.6: Die Vektormultiplikation mit einer Zahl.

Wenn Sie einen Vektor mit einer Zahl multiplizieren, so ist dies wie bei einer
normalen Multiplikation auch, dass Sie die Vektoraddition mehrfach hintereinan-
der ausführen.
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~a =

(
1
2

)

3 · ~a = 3 ·
(
1
2

)

=

(
3
6

)

Wenn Sie einen Vektor mit einer Zahl multiplizieren, werden alle Komponen-
ten des Vektors mit der Zahl multipliziert.

1.4 Beispiele zur Vektoraddition

Nachfolgend sind einige Beispiele der Vektoraddition aufgeführt.

1.4.1 Kräfte in der Physik

Wenn auf einen Körper verschiedene Kräfte wirken, so können diese Kräfte durch
Vektoren dargestellt werden. Diese vielen Kräfte können Sie durch eine resultie-
rende Kraft ersetzen. Diese resultierende Kraft erhalten Sie, indem Sie die Kräfte
komponentenweise addieren.

Sie erhalten dabei ein Kräfteparallelogramm.

-4

-2

 0

 2

 4

-4 -2  0  2  4

Abbildung 1.7: Zwei gleichgroße Kräfte wirken in entgegengesetzte Richtung. Die
Bewegung ist null, die resultierende Kraft ebenfalls.

(
3
0

)

+

(
−3
0

)

=

(
0
0

)

(
3
2

)

+

(
1
3

)

=

(
4
5

)

Für die Bewegung des Körpers ist es egal, ob die beiden roten Kräfte oder die
eine blaue Kraft wirken. Anwendungen sind z. B. zwei Schlepper, die einen Tanker
ziehen.
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-4

-2

 0

 2

 4

-4 -2  0  2  4

Abbildung 1.8: Zwei Kräfte (rot) wirken auf einen Körper. Die resultierende Kraft
(blau) ergibt sich durch die Addition. Für die Addition sind die verschobenen
Vektoren gestrichelt gezeichnet.

1.4.2 Vektoren als Lagerbestand

Wenn Sie ein Beispiel für Vektoren ausserhalb der Geometrie nehmen, dann kön-
nen Sie einen Lagerbestand als Vektor darstellen:

x1 : Anzahl der Monitore

x2 : Anzahl der Tastaturen

Der Vektor ( 3
4 ) bedeutet, dass in dem Lager 3 Monitore und 4 Tastaturen

vorhanden sind.
Wenn jetzt noch 2 Monitore und 1 Tastatur geliefert werden:

(
3
4

)

+

(
2
1

)

=

(
5
5

)

So addieren Sie komponentenweise und erhalten 5 Monitore und 5 Tastaturen.

1.5 Polygonzug

In der Geometrie ist es egal, welchen Weg Sie von einem Punkt zu einem anderen
Punkt nehmen. (Im täglichen Leben nicht. Da ist ein Weg evtl. beschwerlicher
oder schöner als ein anderer Weg.) Im nachfolgenden Bild sehen Sie verschiedene
Wege um vom Ursprung zu dem Punkt P(5|5) zu gelangen.

1. Der rote Weg: (
3
2

)

+

(
2
3

)

=

(
5
5

)
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2. Der grüne Weg: (
4
1

)

+

(
1
4

)

=

(
5
5

)

3. Der blaue Weg: (
5
5

)

Wenn Sie also losgehen, entlang der (Vektor-) Pfeile gehen und zum Ursprung
zurückkommen, so haben Sie sich letztendlich nicht bewegt. D. h. für den roten
Weg: (

3
2

)

+

(
2
3

)

−
(
5
5

)

= 0

1.6 Darstellung in Winkeldarstellung

Da jeder Vektor eine Länge und einen Winkel zu den Koordinatenachsen hat,
kann man dieses auch zur Beschreibung des Vektors benutzen. Ein Pfeil ist durch
seine Länge und seinen Winkel eindeutig angegeben.

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

α

Abbildung 1.9: Ein 2-dim. Vektor und sein Winkel

Wenn die Länge des Vektors gegeben ist durch |~a| und der Winkel mit der
x-Achse α ist (siehe Abb. 1.9), dann gilt für die einzelnen Komponenten:

x1 = |~a| cos(α)
x2 = |~a| sin(α)

Somit können Sie einen 2-dimensionalen Vektor auch schreiben als:

~a =

(
a1
a2

)

=

(
|~a| cos(α)
|~a| sin(α)

)

= |~a|
(
cos(α)
sin(α)

)
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Beispiel:

~b =

(
3
4

)

Die Länge des Vektors ~b ist:

|~b| =
√
32 + 42 =

√
9 + 16 =

√
25 = 5

Der Vektor ~b schliesst mit der x-Achse folgenden Winkel ein:

β = arctan(
4

3
) = 53◦

cos(53◦) = 0,6

sin(53◦) = 0,8

So kann man den Vektor ~b schreiben:

~b =

(
3
4

)

= 5 ·
(
0,6
0,8

)

Wenn man die Bedeutung der Komponenten des Vektors ändert, d. h. man
benutzt andere Koordinaten (Kreiskoordinaten), dann hat die 1. Komponente die
Bedeutung der Länge des Vektors und die 2. Komponente beschreibt den Winkel.
So hat dann der Vektor ~b bei diesen Koordinaten folgende Schreibweise:

~b =

(
5
53◦

)
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1.7 Übungen

Aufgabe 1.1

Geben Sie einen Vektor an, der von Punkt A(1|5) zu Punkt B(3|7) zeigt.
(Lösung siehe Seite 13).

Aufgabe 1.2

Bestimmen Sie die Länge der Vektoren:

~a =

(
12
16

)

~b =





4
22
20





(Lösung siehe Seite 13).

Aufgabe 1.3

Gegeben ist Ihnen ein Viereck. Lesen Sie die Koordinaten der Punkte A, B, C,
D ab und bestimmen Sie die Verbindungsvektoren: AB, BC, CD und DA.

Bestimmen Sie ebenfalls BA.
 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5

D

C

BA

(Lösung siehe Seite 13).

Aufgabe 1.4

Gegeben ist Ihnen folgendes Dreieck: A(1|1), B(3|1) und C(2|3)
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 0
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 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.5  1  1.5  2  2.5  3  3.5  4

C

BA

Bestimmen Sie die Seitenmittelpunkte.
(Lösung siehe Seite 14).
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Zu Aufgabe: 1.1

Geben Sie einen Vektor an, der von Punkt A(1|5) zu Punkt B(3|7) zeigt.
Den gesuchten Vektor erhalten Sie, wenn Sie B-A berechnen:

~c = B −A =

(
3
7

)

−
(
1
5

)

=

(
2
2

)

Wenn Sie vom Ursprung in Richtung A laufen, dann den Vektor ~c entlang,
kommen Sie bei B an.

Es muss also gelten:
A+ ~c = B

Probe:

A+ ~c =

(
1
5

)

+

(
2
2

)

=

(
3
7

)

= B

Zu Aufgabe: 1.2

Bestimmen Sie die Länge der Vektoren:

~a =

(
12
16

)

~b =





4
22
20





|~a| =
√
122 + 162 =

√
144 + 256 =

√
400 = 20

|~b| =
√
42 + 222 + 202 =

√
16 + 484 + 400 =

√
900 = 30

Zu Aufgabe: 1.3

Gegeben ist Ihnen ein Viereck. Lesen Sie die Koordinaten der Punkte A, B, C,
D ab und bestimmen Sie die Verbindungsvektoren: AB, BC, CD und DA.
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Bestimmen Sie ebenfalls BA.
 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5

D

C

BA

Die Koordinaten der Punkte sind: A(1|1), B(3|1), C(4|4) und D(1|3).

• AB:

B − A =

(
3
1

)

−
(
1
1

)

=

(
2
0

)

• BC:

C −B =

(
4
4

)

−
(
3
1

)

=

(
1
3

)

• CD:

D − C =

(
1
3

)

−
(
4
4

)

=

(
−3
−1

)

• DA:

A−D =

(
1
1

)

−
(
1
3

)

=

(
0
−2

)

• BA:

A− B =

(
1
1

)

−
(
3
1

)

=

(
−2
0

)

Es gilt: AB = - BA, weil Sie andersherum laufen.

Zu Aufgabe: 1.4

Gegeben ist Ihnen folgendes Dreieck: A(1|1), B(3|1) und C(2|3)
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 0
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 4
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BA

Bestimmen Sie die Seitenmittelpunkte.
Wir bestimmen zuerst die Seiten:

• AB:

AB = B −A =

(
3
1

)

−
(
1
1

)

=

(
2
0

)

• BC:

BC = C −B =

(
2
3

)

−
(
3
1

)

=

(
−1
2

)

• AC:

AC = C − A =

(
2
3

)

−
(
1
1

)

=

(
1
2

)

1. Mitttelpunkt der Seite AB:

Mc = ~a+
1

2
AB

=

(
1
1

)

+
1

2

(
2
0

)

=

(
1
1

)

+

(
1
0

)

=

(
2
1

)
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2. Mitttelpunkt der Seite BC:

Ma = ~b+
1

2
BC

=

(
3
1

)

+
1

2

(
−1
2

)

=

(
3
1

)

+

(
−0,5
1

)

=

(
2,5
2

)

3. Mitttelpunkt der Seite AC:

Mb = ~a +
1

2
AC

=

(
1
1

)

+
1

2

(
1
2

)

=

(
1
1

)

+

(
0,5
1

)

=

(
1,5
2

)



Kapitel 2

Skalarprodukt

Mit Hilfe des Skalarproduktes können Sie in der Geometrie Winkel zwischen Vek-
toren ausrechnen, bzw. leicht zeigen, dass Vektoren senkrecht zueinander sind.
Darüber hinaus werden wir die wichtige Eigenschaft verwenden, dass das Ska-
larprodukt null ist, wenn die Vektoren senkrecht aufeinander stehen. Diese Ei-
genschaft benutzen wir dann, um im dreidimensionalen Raum Ebenen (bzw. im
zweidimensionalen Raum Geraden) zu definieren.

In der Physik wird bei der Berechnung der Arbeit (Arbeit gleich Kraft in Weg-
richtung mal Weg) die Projektionseigenschaft des Skalarproduktes ausgenutzt.

2.1 Definition des Skalarproduktes

Das Skalarprodukt zweier Vektoren ist folgendermaßen definiert: Das Skalarpro-
dukt ist die Summe der komponentenweisen Multiplikation.

Beispiel für das Skalarprodukt eines 2-dim. Vektors:

~a ·~b =
(
a1
a2

)

·
(
b1
b2

)

= a1 b1 + a2 b2

Bzw.: (
1
2

)

·
(
3
4

)

= 1 · 3 + 2 · 4 = 3 + 8 = 11

Das Skalarprodukt zweier Vektoren ist eine Zahl.
Wir werden in diesem Abschnitt die Formel für das Skalarprodukt beweisen:

~a ·~b = |~a| |~b| cos(γ)

γ ist der eingeschlossene Winkel zwischen den beiden Vektoren ~a und ~b.
Diese Beziehung hat wichtige Bedeutungen:

1. Wenn der Winkel zwischen den beiden Vektoren 90◦ beträgt, dann ist das
Skalarprodukt null.

17
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2. Wenn das Skalarprodukt null ist, dann ist der Winkel zwischen den beiden
Vektoren 90◦.

3. Sie können mit obiger Formel den Winkel zwischen zwei Vektoren sehr
einfach berechnen, da das Skalarprodukt schnell ermittelt werden kann und
die Beträge der Vektoren ebenfalls.

2.2 Rechenregeln des Skalarproduktes

Aus der Definition des Skalarproduktes werden hier die wichtigsten Rechenregeln
hergeleitet.

1. Das Kommutativgesetz:
~a ·~b = ~b · ~a

siehe Kapitel 2.2.1 S. 19

2. Das Assoziativgesetz mit Skalaren:

(r~a) ·~b = r(~a ·~b)

siehe Kapitel 2.2.2 S. 19

Wenn Sie einen der beiden Vektoren unverändert lassen, ist das Skalarpro-
dukt proportional zur Länge des anderen Vektors.

3. Das Distributivgesetz:

~a · (~b+ ~c) = ~a ·~b+ ~a · ~c

siehe Kapitel 2.2.3 S. 19

Dieses Gesetz benötigen Sie, wenn Sie Klammern auflösen wollen z. B. bei
Beweisen

4. Der Zusammenhang zwischen dem Skalarprodukt und dem Betrag eines
Vektors:

~a · ~a = |~a|2

siehe Kapitel 2.2.4 S. 20

Dieses Gesetz benötigen Sie oft bei Beweisen oder Umformungen.
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2.2.1 Kommutativgesetz – Vertauschungsgesetz

~a ·~b = ~b · ~a
Dieses Gesetz ist eigentlich sofort einleuchtend. Hier betrachten wir exempla-

risch zwei 2-dimensionale Vektoren:
(
a1
a2

)

·
(
b1
b2

)

= a1 b1 + a2 b2 =

(
b1
b2

)

·
(
a1
a2

)

Da die Multiplikation kommutativ ist, können Sie auch die Vektoren ~a und~b beim
Skalarprodukt vertauschen.

2.2.2 Assoziativgesetz mit Skalaren – Vertauschungsge-

setz

(r~a) ·~b = r(~a ·~b)
Auch dieses Gesetz betrachten wir exemplarisch für 20dimensionale Vektoren:

(
r a1
r a2

)

·
(
b1
b2

)

= r a1 b1 + r a2 b2

Sie können auch später mit r multiplizieren und erhalten dennoch dasselbe Er-
gebnis:

r

[(
a1
a2

)

·
(
b1
b2

)]

= r(a1 b1 + a2 b2) = r a1 b1 + r a2 b2

Dies bedeutet insbesondere, wenn ~a0 und ~b0 jeweils Vektoren der Länge 1 mit
derselben Richtung wie die Vektoren ~a und ~b sind:

~a ·~b = |~a| |~b| (~a0 ·~b0)

Sie werden später lernen, dass das Skalarprodukt von ~a0 und ~b0 der Kosinus des
eingeschlossenen Winkels ist.

2.2.3 Distributivgesetz – Klammerregel

~a · (~b+ ~c) = ~a ·~b+ ~a · ~c
Auch dieses Gesetz schauen wir uns exemplarisch mit 2-dimensionalen Vektoren
an. Da für die normale Multiplikation das Distributivgesetz gilt, gilt das Distri-
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butivgesetz dann auch beim Skalarprodukt:

~a · (~b+ ~c) =

(
a1
a2

)

·
(
b1 + c1
b2 + c2

)

= a1(b1 + c1) + a2(b2 + c2) = a1 b1 + a1 c1 + a2 b2 + a2 c2

= a1 b1 + a2 b2 + a2 c1 + a2 c2

=

(
a1
a2

)

·
(
b1
b2

)

+

(
a1
a2

)

·
(
c1
c2

)

2.2.4 Skalarprodukt und Betrag

~a · ~a = |~a|2

Der Zusammenhang wird auch hier nur exemplarisch für 2-dimensionale Vektoren
gezeigt.

~a · ~a =

(
a1
a2

)

·
(
a1
a2

)

= a1 a1 + a2 a2

Der Betrag des Vektors ~a ist:

|~a| =
∣
∣
∣
∣

(
a1
a2

)∣
∣
∣
∣
=

√

a21 + a22

Wenn Sie den Betrag des Vektors quadrieren hebt sich die Wurzel weg:

|~a|2 = a21 + a22

Durch unmittelbaren Vergleich sehen Sie, dass die Behauptung gilt.

2.2.5 Kosinus zum Quadrat

Der Kosinus des Winkels ist bestimmt durch das Skalarprodukt und der Beträge
der beiden den Winkel einschliessenden Vektoren:

cos(γ) =
~a ·~b
|~a| |~b|

Somit gilt für das Quadrat:

cos(γ) =
(~a ·~b)2

|~a|2 |~b|2

und mit der Beziehung: |~a|2 = ~a · ~a

cos2(γ) =
(~a ·~b)2

(~a · ~a)(~b ·~b)
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2.3 Herleitung der BeziehungWinkel–Skalarprodukt

In diesem Abschnitt wird die Beziehung zwischen dem Winkel und dem Skalar-
produkt hergeleitet:

~a ·~b = |~a| |~b| cos(γ)
oder umgestellt, um den Winkel zu bestimmen:

cos(γ) =
~a ·~b
|~a| |~b

Wenn Sie die Regel beachten:|~a|2 = ~a · ~a ergibt sich:

cos2(γ) =
(~a ·~b)2

(~a · ~a)(~b ·~b)

Es werden verschiedene Vorgehensweisen angeboten.

1. Die Herleitung mit Hilfe des Kosinussatzes. (Kapitel: 2.3.1, S. 21)

2. Die Herleitung mit Hilfe der Additionstheoreme im 2-dimensionalen Raum.
(Kapitel: 2.3.2, S. 25)

2.3.1 Herleitung mit Hilfe des Kosinussatzes

Für die Beziehung des Skalarproduktes und dem Kosinus ist es nicht erforderlich,
dass Sie den Beweis für den Kosinussatz kennen. Sie können ihn auch einfach nur
benutzen. Deshalb wird der Beweis des Kosinussatzes in einem späteren Kapitel
(siehe Kapitel: 2.3.1, S. 23) ausgeführt.

Das Quadrat der Länge eines Vektors kann durch das Skalarprodukt ausge-
drückt werden.

Die Länge wird durch den Betrag angegeben: |~a|.

|~a| =
√

a21 + a22 + . . .

|~a|2 = a21 + a22 + . . .

Es gilt aber andererseits:

~a · ~a =






a1
a2
...




 ·






a1
a2
...




 = a1 · a1 + a2 · a2 + . . . = a21 + a22 + . . .

Es gilt somit:
~a · ~a = |~a|2
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Der Kosinussatz besagt, dass in jedem Dreieck folgende Beziehung gilt:

a2 + b2 − 2 a b cos(γ) = c2

a und b sind aneinandergrenzende Seiten, welche den Winkel γ einschliessen. c
liegt dann dem Winkel γ gegenüber.

-1

 0

 1

 2

 3

 4

 5

 6

-1  0  1  2  3  4  5  6

γ

c

ab

C

BA

Nun schreiben wir die Seiten als Vektoren:

~a = B − C

~b = A− C

~c = B − A

Der Vektor ~c kann durch die Vektoren ~a und ~b ausgedrückt werden:

~c = ~a−~b

Nachrechnen ergibt die Richtigkeit:

~a−~b = (B − C)− (A− C)

= B − C − A+ C

= B −A

= ~c

Nun ist die Länge der Seite a gleich dem Betrag des Vektors ~a: |~a|
In Vektorschreibweise sieht der Kosinussatz so aus:

|~a|2 + |~b|2 − 2 |~a| |~b| cos(γ) = |~c|2
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Die Quadrate der Beträge werden nun ersetzt: |~a|2 = ~a · ~a

~a · ~a +~b ·~b− 2 |~a| |~b| cos(γ) = ~c · ~c

Nun wir der Vektor ~c ersetzt durch ~a−~b:

~a · ~a+~b ·~b− 2 |~a| |~b| cos(γ) = (~a−~b) · (~a−~b)

Ausklammern auf der rechten Seite ergibt:

~a · ~a+~b ·~b− 2 |~a| |~b| cos(γ) = ~a · ~a− 2~a ·~b) +~b ·~b)

Kürzen auf beiden Seiten ergibt:

−2 |~a| |~b| cos(γ) = −2~a ·~b)

Erneutes kürzen auf beiden Seiten ergibt das Skalarprodukt:

|~a| |~b| cos(γ) = ~a ·~b)

Herleitung des Kosinussatzes

Der Kosinussatz (oder auch der
”
allgemeine Pythagoras“) erlaubt Ihnen nicht nur

eine Aussage zu den Seitenlängen im rechtwinkligen Dreieck zu machen sondern
Sie erhalten eine Beziehung der Seitenlängen eines beliebigen Dreiecks.

Wenn Sie ein beliebiges Dreieck nehmen (vergleichen Sie mit der Abb. 2.1),
dann können Sie die Höhe hb vom Punkt B auf die gegenüberliegende Seite b
einzeichnen. Die Höhe trifft auf die Seite b im Punkt Hb.

Da die Höhe senkrecht auf die Seite steht, haben Sie jetzt zwei rechtwinklige
Dreiecke geschaffen. Bei dem unteren Dreieck (A, B, Hb) werden wir den Satz
des Pythagoras anwenden. Das obere Dreieck (Hb, B, C) benutzen wir, um die zu
bestimmen, wie die Seite b unterteilt wurde vom Höhenfußpunkt Hb.

Die Stecke HbC liegt im rechtwinkligen Dreieck (Hb, B, C) an den Winkel γ
an und wird somit durch den Kosinus bestimmt. Die Seite a liegt dem rechten
Winkel gegenüber und ist deswegen die Hypotenuse:

HbC = a cos(γ)

Die Strecke AHb ist die ganze Strecke b vermindert um die oben bestimmte
Strecke HbC:

AHb = b− a cos(γ)

Die Stecke HbB liegt im rechtwinkligen Dreieck (Hb, B, C) dem Winkel γ
gegenüber und wird somit durch den Sinus bestimmt. Die Seite a liegt dem rechten
Winkel gegenüber und ist deswegen die Hypotenuse:

HbB = a sin(γ)
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Abbildung 2.1: Ein Dreieck mit der Höhe hb auf die Seite b (dem Punkt B
gegenüberliegend). Die Seite b kann unterteilt werden in zwei Streckenabschnitte:
a · cos(γ) und a− a · cos(γ)

Nun wenden wir bei dem unteren Dreieck (A, B, Hb) den Satz des Pythagoras
an:

c2 = (AHb)
2 + (BHb)

2

= (b− a cos(γ))2 + (a sin(γ))2

Binomische Formeln:

= b2 − 2 a b cos(γ) + a2 (cos(γ))2 + a2 (sin(γ))2
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Einklammern von a2

= b2 − 2 a b cos(γ) + a2
[
(cos(γ))2 + (sin(γ))2

]

Wir benutzen folgende Beziehung: (sin(γ))2 + (cos(γ))2 = 1 (Pythagoras)

= b2 − 2 a b cos(γ) + a2 [1]

Umstellen ergibt den gesuchten Kosinussatz:

= a2 + b2 − 2 a b cos(γ)

2.3.2 Herleitung mit Hilfe des Additionstheorem

In diesem Kapitel wird die Beziehung Skalarprodukt undWinkel für 2-dimensionale
Vektoren (im 2-dim. Raum) mit Hilfe des Additionstheorems für den Kosinus her-
geleitet.

Es gilt:

~a =

(
a1
a2

)

=

(
|a| cos(α)
|a| sin(α)

)

und

~b =

(
b1
b2

)

=

(
|b| cos(β)
|b| sin(β)

)

Weiterhin gilt das Additionstheorem:

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)

Es gilt:

cos(−β) = cos(β)

sin(−β) = − sin(beta)

Und damit:
cos(α− β) = cos(α) cos(β) + sin(α) sin(β)

~a ·~b =
(
|a| cos(α)
|a| sin(α)

)

·
(
|b| cos(β)
|b| sin(β)

)

= |a| cos(α) |b| cos(β) + |a| sin(α) |b| sin(β)
= |a| |b| [cos(α) cos(β) + sin(α) sin(β)]

= |a| |b| [cos(α− β)]

= |a| |b| cos(γ)

Mit γ als Winkel zwischen den beiden Vektoren ~a und ~b.
Sie erhalten die gesuchte Beziehung:

~a ·~b = |a| |b| cos(γ)
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Abbildung 2.2: Der Vektor ~n ist senkrecht zum Vektor ~a. Die Projektion des
Vektors ~b auf ~n ist eingezeichnet.

2.4 Projektion

Das Skalarprodukt ist die Projektion eines Vektors auf einen anderen Vektor
multipliziert mit der Länge des anderen Vektors:

~a ·~b = |~a| cos(γ)|~b|

Wichtige Anwendungen, die hier kurz vorgestellt werden soll sind in der Physik
die Berechnung der Arbeit mit Hilfe des Skalarproduktes und in der Geometrie
die Berechnung der Höhe, bzw. Abstand eines Punktes.

Einige wichtige Anwendungen, die die projektive Eigenschaft des Skalarpro-
duktes benutzen:

• Die Berechnung der Arbeit in der Physik.

• Die Berechnung der Höhe, bzw. die Berechnung des Abstandes eines Punk-
tes von einer Ebene, Gerade usw. in der Geometrie. (Dies benutzen Sie
später, um das Volumen eines dreidimensionalen Körpers zu berechnen.

2.4.1 Die Arbeit in der Physik

In der Physik ist Arbeit das Produkt aus Kraft mal Weg. Wobei nur die Kraft in
Wegrichtung gezählt wird.

Arbeit = Fs · s
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Die Kraft in Wegrichtung ist gerade die Projektion des Kraftvektors auf die Weg-
richtung. Wenn der Weg durch einen Vektor dargestellt wird, dessen Richtung
dem Weg entspricht und dessen Länge der Länge des Weges entspricht, dann ist
das Skalarprodukt gleich der Arbeit. In vektorieller Schreibweise gilt also:

Arbeit = ~F · ~s

2.4.2 Die Höhe oder der Abstand zu einer Geraden

Die Länge der Höhe ist der Abstand eines Punktes zur entsprechenden Geraden.
(Im Dreieck ist die Länge der Höhe hc der Abstand vom Punkt C zur gegenüber-
liegenden Seite c).

Die Länge der Höhe entspricht der Projektion der Höhe auf einer Geraden,
welche senkrecht zur entsprechenden Seite ist. Wenn der Normalenvektor die Län-
ge 1 hat gilt:

|n0| = 1

h = ~n0 ·~b

Wenn |~n| nicht eins ist, müssen Sie noch durch die Länge des Normalenvektors
teilen.
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2.5 Übungen

Aufgabe 2.1

Geben Sie das Skalarprodukt der beiden Vektoren ~a und ~b an.

~a =





1
2
−2



 ~b =





3
1
1





(Lösung siehe Seite 30).

Aufgabe 2.2

Bestimmen Sie den Winkel zwischen den beiden Vektoren:

~a =

(
5
12

)

~b =

(
8
15

)

(Lösung siehe Seite 30).

Aufgabe 2.3

Zeigen Sie, dass die beiden Vektoren orthogonal (senkrecht) zueinander sind:

~a =





3
−2
1



 ~b =





1
1
−1





(Lösung siehe Seite 31).

Aufgabe 2.4

Geben Sie einen orthogonalen Vektor zu ~a an:

~a =

(
3
1

)

(Lösung siehe Seite 31).

Aufgabe 2.5

Geben Sie einen orthogonalen Vektor zu ~a an:

~a =





3
1
2





(Lösung siehe Seite 31).
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Aufgabe 2.6

In einem Vektor ist Ihnen der Dieselpreis pro Tag für eine Woche gegeben:

~p =













1,4
1,45
1,5
1,5
1,5
1,4
1,3













In einem zweiten Vektor ist Ihnen die Anzahl der verkauften Litermengen pro
Tag angegeben:

~l =













1000
2000
2000
2000
1000
1000
1000













Bestimmen Sie den Umsatz dieser Woche.
(Lösung siehe Seite 32).
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Zu Aufgabe: 2.1

Geben Sie das Skalarprodukt der beiden Vektoren ~a und ~b an.

~a =





1
2
−2



 ~b =





3
1
1









1
2
−2



 ·





3
1
1



 = 1 · 3 + 2 · 1 + (−2) · 1 = 3 + 2− 2 = 3

Zu Aufgabe: 2.2

Bestimmen Sie den Winkel zwischen den beiden Vektoren:

~a =

(
5
12

)

~b =

(
8
15

)

Zuerst müssen die Längen der Vektoren bestimmt werden:

|~a| =
√
52 + 122 =

√
25 + 144 =

√
169 = 13

|~b| =
√
82 + 152 =

√
64 + 225 =

√
189 = 17

Das Skalarprodukt von ~a und ~b:

(
5
12

)

·
(
8
15

)

= 5 · 8 + 12 · 15 = 40 + 180 = 220

~a ·~b = |~a| |~b| cos(γ)

Umstellen ergibt

cos(γ) =
~a ·~b
|~a| |~b|

=
220

13 · 17
=

220

221
γ = 5◦

Der Winkel beträgt 5◦.
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Zu Aufgabe: 2.3

Zeigen Sie, dass die beiden Vektoren orthogonal (senkrecht) zueinander sind:

~a =





3
−2
1



 ~b =





1
1
−1





Die Vektoren sind genau dann orthogonal zueinander, wenn das Skalarprodukt
null ist.

~a ·~b =





3
−2
1



 ·





1
1
−1





= 3 · 1 + (−2) · 1 + 1 · (−1)

= 3− 2− 1

= 0

Zu Aufgabe: 2.4

Geben Sie einen orthogonalen Vektor zu ~a an:

~a =

(
3
1

)

Das Skalarprodukt des gesuchten Vektors mit dem Vektor ~amuss null ergeben.

~b =

(
−1
3

)

ist z. B. ein gesuchter Vektor.
Weitere Vektoren sind:

~c =

(
1
−3

)

~d =

(
2
−6

)

usw.

Zu Aufgabe: 2.5

Geben Sie einen orthogonalen Vektor zu ~a an:

~a =





3
1
2





Eine einfache Möglichkeit ist, dass Sie jeweils eine Komponente null wählen
und dann die anderen beiden durch Vertauschung und Änderung eines Vorzei-
chens wählen:

~b =





1
−3
0



 ~b2 =





−1
3
0



 ~c =





2
0
−3



 ~d =





0
2
−1




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Wo Sie das Vorzeichen wechseln ist egal (siehe ~b und ~b2).
Es gibt natürlich noch mehr Möglichkeiten, wie z. B.:

~e =





2
−8
1





Wichtig ist, dass das Skalarprodukt mit ~a null ergibt.

Zu Aufgabe: 2.6

In einem Vektor ist Ihnen der Dieselpreis pro Tag für eine Woche gegeben:

~p =













1,4
1,45
1,5
1,5
1,5
1,4
1,3













In einem zweiten Vektor ist Ihnen die Anzahl der verkauften Litermengen pro
Tag angegeben:

~l =













1000
2000
2000
2000
1000
1000
1000













Bestimmen Sie den Umsatz dieser Woche.
Den Umsatz des Tages bestimmen Sie, indem Sie den Preis pro Liter mit

der verkauften Menge des Tages multiplizieren. Um den Umsatz der Woche zu
ermitteln, müssen Sie die Umsätze aller Tage addieren.

Umsatz =













1,4
1,45
1,5
1,5
1,5
1,4
1,3













·













1000
2000
2000
2000
1000
1000
1000













= 1,4 · 1000 + 1,45 · 2000 + 1,5 · 2000 + 1,5 · 2000 + 1,5 · 1000 + 1,4 · 1000 + 1,3 · 1000
= 14500

14.500 Euro wurde in der Woche umgesetzt.



Kapitel 3

Vektorprodukt – Kreuzprodukt

Das Vektorprodukt oder auch das Kreuzprodukt zweier dreidimensionaler Vek-
toren bestimmt einen Vektor, welcher senkrecht zu beiden Vektoren ist.

Darüber hinaus werden wir sehen, dass wman mit Hilfe des Vektorproduktes
die Fläche des Parallelogramms berechnen kann, welche durch zwei Vektoren
aufgespannt wird.

3.1 Definition des Vektorproduktes

Das Vektorprodukt der beiden Vektoren ~a und ~b:




a1
a2
a3



×





b1
b2
b3



 =





a2 b3 − a3 b2
a3 b1 − a1 b3
a1 b2 − a2 b1





Wie merken Sie sich das Kreuzprodukt? Schreiben Sie einfach beide Vektoren
untereinander nochmal hin und bilden dann

”
Kreuze“.

Beispiel:

~a =





1
2
3



 , ~b =





4
5
6





Schreiben Sie nun die beiden Vektoren untereinander:










1
2
3
1
2
3











,











4
5
6
4
5
6











Jetzt bilden Sie das Kreuzprodukt in folgender Weise, dass Sie für eine Zeile
jeweils die anderen Zeileneinträge miteinander multiplizieren. Die Verbindung

33
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von links oben nach rechts unten zählt positiv, die Verbindung von links unten
nach rechts oben zählt negativ:

1. Für die 1. Zeile bilden Sie ein Kreuz aus den folgenden beiden Zeilen (Nr.
2 und Nr. 3).

2. Für die 2. Zeile bilden Sie ein Kreuz aus den folgenden beiden Zeilen (Nr.
3 und Nr. 4).

3. Für die 3. Zeile bilden Sie ein Kreuz aus den folgenden beiden Zeilen (Nr.
4 und Nr. 5, bzw. Nr. 1 und Nr. 2).

1. Schritt: Wir berechnen die x-Komponente:











1
2
3
1
2
3





















4
5
6
4
5
6











=









2 · 6− 3 · 5








2. Schritt: Wir berechnen die y-Komponente:











1
2
3
1
2
3





















4
5
6
4
5
6











=









2 · 6− 3 · 5
3 · 4− 1 · 6









3. Schritt: Wir berechnen die z-Komponente:











1
2
3
1
2
3





















4
5
6
4
5
6











=









2 · 6− 3 · 5
3 · 4− 1 · 6
1 · 5− 2 · 4









Also:

~c = ~a×~b =





1
2
3



×





4
5
6



 =





2 · 6− 3 · 5
3 · 4− 1 · 6
1 · 5− 2 · 4



 =





−3
6
−3




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3.2 Rechenregeln

3.2.1 Bilinearität

Für eine reelle Zahl r: r ∈ ℜ und zwei Vektoren ~a und~b aus dem dreidimensionalen
Raum gilt:

(r~a)×~b = r(~a×~b)

Das bedeutet anschaulich z. B., dass wenn ein Vektor um den Faktor zwei ver-
größert wird, dass Vektorprodukt ebenfalls um den Faktor zwei vergrößert wird.

Beweis:

(r~a)×~b =





ra1
ra2
ra3



×





b1
b2
b3





Anwenden des Vektorproduktes

=





ra2b3 − ra3b2
ra3b1 − ra1b3
ra1b2 − ra2b1





Ausklammern von r

= r





a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1





= r(~a×~b)

3.2.2 Distributivgesetz

Für drei Vektoren aus dem dreidimensionalen Raum gilt:

(~a+~b)× ~c = ~a× ~c+~b× ~c

Beweis:

(~a+~b)× ~c =





a1 + b1
a2 + b2
a3 + b3



×





c1
c2
c3





=





(a2 + b2)c3 − (a3 + b3)c2
(a3 + b3)c1 − (a1 + b1)c1
(a1 + b1)c2 − (a2 + b2)c3




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Hier gilt das normale Distributivgestez für reelle Zahlen

=





a2c3 + b2c3 − a3c2 − b3c2
a3c1 + b3c1 − a1c1 − b1c1
a1c2 + b1c2 − a2c3 − b2c3





=





a2c3 − a3c2
a3c1 − a1c1
a1c2 − a2c3



 +





b2c3 − b3c2
b3c1 − b1c1
b1c2 − b2c3





= ~a× ~c+~b× ~c

Das Distributivgesetz mit der Biliniarität zusammen lässt Sie das Vektorpro-
dukt auch anders schreiben.

~a×~b =





a1
a2
a3



×~b

=



a1





1
0
0



+ a2





0
1
0



 + a3





0
0
1







×~b

= (a1~e1 + a2~e2 + a3~e3)×~b

Wenn man dieses Gesetz voraussetzt, und zusätzlich die Multiplikation der Ein-
heitsvektoren vorgibt, erhält man ebenfalls das Vektorprodukt. (siehe Kap. 3.5,
S. 39).

3.2.3 Antikommutativität

Für zwei Vektoren aus dem dreidimensionalen Raum gilt:

~a×~b = −~b× ~a

Beweis:

−~b × ~a = −





b2a3 − b3a2
b3a1 − b1a3
b1a2 − b2a1




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Alphabetische Umsortierung ergibt

= −





a3b2 − a2b3
a1b3 − a3b1
a2b1 − a1b2





=





a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1





= ~a×~b

3.3 Normaleneigenschaft des Vektorproduktes

Hier zeigen wir mit Hilfe des Skalarproduktes, dass das der durch dass Vektor-
produkt ~a×~b gebildete Vektor ~n tatsächlich senkrecht zu den beiden Vektoren ~a
und ~b ist.

~n = ~a×~b =





a2 · b3 − a3 · b2
a3 · b1 − a1 · b3
a1 · b2 − a2 · b1





~n ist senkrecht zu ~a und ~b, wenn die Skalarprodukte von ~a und ~b mit ~n jeweils 0
ergeben:

~a · ~n =





a1
a2
a3



 ·





a2 · b3 − a3 · b2
a3 · b1 − a1 · b3
a1 · b2 − a2 · b1





= a1(a2 b3 − a3 b2) + a2(a3 b1 − a1 b3) + a3(a1 b2 − a2 b1)

= a1 a2 b3 − a1 a3 b2 + a2 a3 b1 − a2 a1 b3 + a3 a1 b2 − a3 a2 b1

= 0

und es gilt:

~b · ~n =





b1
b2
b3



 ·





a2 · b3 − a3 · b2
a3 · b1 − a1 · b3
a1 · b2 − a2 · b1





= b1(a2 b3 − a3 b2) + b2(a3 b1 − a1 b3) + b3(a1 b2 − a2 b1)

= b1 a2 b3 − b1 a3 b2 + b2 a3 b1 − b2 a1 b3 + b3 a1 b2 − b3 a2 b1

= 0

Bemerkung: Oftmals wollen Sie nur einen senkrechten Vektor zu ~a und ~b
bestimmen. Dann können Sie den Vektor auch kürzen, also jede Komponente des
Vektors durch dieselbe Zahl teilen.



KAPITEL 3. VEKTORPRODUKT – KREUZPRODUKT 38

3.4 Herleitung aus den Gleichungen

Ein oft auftretendes Problem in der Vektorrechnung ist die Suche nach einem
Vektor, der zu zwei gegebenen Vektoren senkrecht ist. Die Antwort bietet das
Vektorprodukt. Sie können jedoch auch von der Bedingung und dem Skalarpro-
dukt ausgehen.

Angenommen, Sie haben die 3-dimensionalen Vektoren ~a und ~b. Gesucht ist
ein Vektor ~n, der sowohl zu ~a als auch zu ~b senkrecht steht. Dann muss jeweils
das Skalarprodukt von ~n mit ~a und ~b null sein:

~a · ~n = 0

~b · ~n = 0

Das ergibt zwei Gleichungen:

a1n1 + a2n2 + a3n3 = 0

b1n1 + b2n2 + b3n3 = 0

Oder in Matrixschreibweise:

(
a1 a2 a3
b1 b2 b3

)




n1

n2

n3



 =

(
0
0

)

Dieses Gleichungssystem ist allgemein lösbar:
Zuerst wird eine Zeile mit Nullen ergänzt, um eine quadratische Matrix zu

erhalten: 



a1 a2 a3
b1 b2 b3
0 0 0









n1

n2

n3



 =





0
0
0





II ′ = a1 · II − b1 · I



a1 a2 a3
0 a1 b2 − a2 b1 a1 b3 − a3 b1
0 0 0









n1

n2

n3



 =





0
0
0





I ′ = (a1 b2 − a2 b1) · I − a2 · II



a1(a1 b2 − a2 b1) 0 a3(a1 b2 − a2 b1)− a2(a1 b3 − a3 b1)
0 a1 b2 − a2 b1 a1 b3 − a3 b1
0 0 0









n1

n2

n3



 =





0
0
0





Ausmultiplizieren in der 1. Zeile




a1(a1 b2 − a2 b1) 0 a1 a3 b2 − a2 a3 b1 − a1 a2 b3 + a2 a3 b1
0 a1 b2 − a2 b1 a1 b3 − a3 b1
0 0 0









n1

n2

n3



 =





0
0
0




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Zusammenfassen der Summanden in der 1. Zeile




a1(a1 b2 − a2 b1) 0 a1 a3 b2 − a1 a2 b3
0 a1 b2 − a2 b1 a1 b3 − a3 b1
0 0 0









n1

n2

n3



 =





0
0
0





I ′ = I/a1



a1 b2 − a2 b1 0 a3 b2 − a2 b3
0 a1 b2 − a2 b1 a1 b3 − a3 b1
0 0 0









n1

n2

n3



 =





0
0
0





I ′ = I/(a1 b2 − a2 b1)
II ′ = II/(a1 b2 − a2 b1)





1 0 a3 b2−a2 b3
a1 b2−a2 b1

0 1 a1 b3−a3 b1
a1 b2−a2 b1

0 0 0










n1

n2

n3



 =





0
0
0





Damit ergibt sich die Lösung zu:

~n = r






− a3 b2−a2 b3
a1 b2−a2 b1

− a1 b3−a3 b1
a1 b2−a2 b1

1






Substituieren Sie: s = r
a1 b2−a2 b1

und multiplizieren Sie das Minuszeichen mit
der Klammer aus:

~n = s





− (a3 b2 − a2 b3)
− (a1 b3 − a3 b1)
a1 b2 − a2 b1



 = s





a2 b3 − a3 b2
a3 b1 − a1 b3
a1 b2 − a2 b1





Wenn man nun s = 1 wählt, ist dies gerade das Vektorprodukt.
Wenn die Vektoren ~a und ~b ganzzahlige Komponenten enthalten, hat der

Normalenvektor ~n ebenfalls nur ganzzahlige Komponenten.

3.5 Herleitung aus den Regeln

Sie können das Vektorprodukt für zwei dreidimensionale Vektoren ~a und ~b aus
den Regeln eindeutig bestimmen.

• Das Vektorprodukt soll bilinear sein:

(r~a)×~b = r(~a×~b)

r ∈ ℜ.
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• Es soll das Distributivgesetz gelten:

(~a+~b)× ~c = ~a× ~c+~b× ~c

• Es soll anti-kommunitativ sein:

~a×~b = −~b× ~a

Insbesondere gilt dann z. B. (siehe auch nächste Regel):

~e1 × ~e2 = −~e2 × ~e1

• Es soll ein Rechtssystem sein:

~e1 × ~e2 = ~e3

~e3 × ~e1 = ~e2

~e2 × ~e3 = ~e1

Beachten Sie, dass mit der anti-kommunitativen Regel dies eigentlich 6 Be-
dingungen sind.

• Das Vektorprodukt eines Vektors mit sich selbst soll null sein:

~e1 × ~e1 = 0

~e2 × ~e2 = 0

~e3 × ~e3 = 0

Sie können nun mit Hilfe dieser Bedingungen ein das Vektorprodukt entwickeln,
um dann anschliessend zu zeigen, dass der so gebildete Vektor tatsächlich auf
den anderen beiden senkrecht steht und auch die Fläche des gebildeten Paralle-
logramms enthält.

~a×~b =





a1
a2
a3



×~b

=



a1





1
0
0



+ a2





0
1
0



+ a3





0
0
1







×~b

= (a1~e1 + a2~e2 + a3~e3)×~b

Dieselbe Umformung für den Vektor ~b führt zu

= (a1~e1 + a2~e2 + a3~e3)× (b1~e1 + b2~e2 + b3~e3)
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Ein Verknüpfen dieser Gleichung nach dem Distributivgesetz (jeder Summand der
ersten Klammer wird mit jedem Summanden der zweiten Klammer verknüpft)
führt zu folgendem Term:

~a×~b = a1~e1 × b1~e1 + a1~e1 × b2~e2 + a1~e1 × b3~e3

+ a2~e2 × b1~e1 + a2~e2 × b2~e2 + a2~e2 × b3~e3

+ a3~e3 × b1~e1 + a3~e3 × b2~e2 + a3~e3 × b3~e3

Nun sind aber alle Summanden Null bei denen ~e1 ×~e1, bzw. ~e2 ×~e2, oder ~e3 ×~e3
auftritt:

~a×~b = 0 + a1~e1 × b2~e2 + a1~e1 × b3~e3
+ a2~e2 × b1~e1 + 0 + a2~e2 × b3~e3
+ a3~e3 × b1~e1 + a3~e3 × b2~e2 + 0

Andererseits ist aus den Regeln bekannt:

~e2 × ~e1 = −~e1 × ~e2

~e1 × ~e3 = −~e3 × ~e1

~e3 × ~e2 = −~e2 × ~e3

Dies führt zu:

~a×~b = 0 + a1~e1 × b2~e2 − a1~e3 × b3~e1
− a2~e1 × b1~e2 + 0 + a2~e2 × b3~e3
+ a3~e3 × b1~e1 − a3~e2 × b2~e3 + 0

Jetzt werden die Vektorprodukte der Einheitsvektoren gebildet:

~e1 × ~e2 = ~e3

~e3 × ~e1 = ~e2

~e2 × ~e3 = ~e1

~a×~b = 0 + a1b2~e3 − a1b3~e2
− a2b1~e3 + 0 + a2b3~e1
+ a3b1~e2 − a3b2~e1 + 0

Wenn man nun neu sortiert erhält man:

~a×~b = (a2b3 − a3b2)~e1

+ (a3b1 − a1b3)~e2

+ (a1b2 − a2b1)~e3
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Oder in Vektorschreibweise:

~a×~b =





a1
a2
a3



×





b1
b2
b3



 =





a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1





Die anderen Eigenschaften (Betrag des Vektorproduktes gleich der von den
Vektoren aufgespannten Fläche und die Orthonormalität zu den multiplizierten
Vektoren) müssen genau so nachgewiesen werden.

3.6 Vektorprodukt und Fläche

In diesem Abschnitt wird der Zusammenhang zwischen dem Vektorprodukt und
der Fläche des Parallelogramms, welches die zwei Vektoren aufspannen aufgezeigt.

Dieses Kapitel können Sie auch überspringen. Die Herleitung ist nicht zwangs-
läufig gewinnbringend und ideenreich.

Das Ergebnis vorweg:
A(~a,~b) = |~a×~b|

Das Betrag des Vektorproduktes entspricht der Fläche des von den Vektoren ~a
und ~b aufgespannten Parallelogramms.

Im Laufe der Herleitung werden wir verschiedene Umformungen durchführen
müssen. Hier also zur Erinnerung kurz vorweg:

1. Winkel lassen sich mit Hilfe des Skalarproduktes bestimmen:

cos(γ) =
~a ·~b
|~a| |~b

γ ist der von den beiden Vektoren ~a und ~b eingeschlossene Winkel. (Vgl.
Kap. 2.3, S. 21)

2. Im rechtwinkligen Dreieck ist das Quadrat der Hypotenuse gleich der Sum-
me der Quadrate der Katheten:

sin2(γ) + cos2(γ) = 1

3. Das Quadrat des Betrages eines Vektors entspricht dem Skalarprodukt des
Vektors mit sich selbst:

|~a|2 = ~a · ~a
(Vgl. Kap. 4, S. 18)
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χ

a
->

b
->

|a|sin(χ)

Abbildung 3.1: In diesem Bild sehen Sie wie die zwei Vektoren ~a und ~b ein
Parallelogramm aufspannen. Die Höhe des Parallelogramms ist gegeben durch:
h = |~a| sin(γ). γ ist der von den beiden Vektoren eingeschlossene Winkel.

Die Fläche des von den beiden Vektoren ~a und ~b aufgespannten Parallelo-
gramms erhalten Sie, indem Sie die Höhe mit der Grundseite des Parallelogramms
multiplizieren. (S. Abb. 3.1, S. 43)

A = h |~b|

Die Grundseite ist hier gegeben durch die Länge des Vektors ~b. Die Höhe lässt
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sich mit Hilfe des Sinus und dem eingeschlossenen Winkel γ bestimmen:

h = |a| sin(γ)
A = |a| |b| sin(γ)

Im folgenden soll jetzt der Winkel γ mit Hilfe des Skalarproduktes bestimmt
werden. Dadurch werden die Trigonometrischen Funktionen wieder aus der Flä-
chenberechnung eliminiert.

Es gelten folgende zwei Beziehungen:

sin2(γ) + cos2(γ) = 1

sin2(γ) = 1− cos2(γ)

sin(γ) =
√

1− cos2(γ)

und

cos(γ) =
~a ·~b
|~a| |~b|

cos2(γ) =
(~a ·~b)2

|~a|2 |~b|2

Einsetzen der obigen Beziehungen für die Fläche:

A = |a| |b| sin(γ)
= |a| |b|

√

1− cos2(γ)

= |a| |b|
√

1− (~a ·~b)2
|~a|2 |~b|2

Die Wurzel des Quadrates ist wieder dieselbe positive Zahl

=
√

|a|2 |b|2
√

1− (~a ·~b)2
|~a|2 |~b|2

Multiplizieren Sie wie beim Klammern auflösen

=

√

|a|2 |b|2 − |a|2 |b|2 (~a ·~b)2
|~a|2 |~b|2

Kürzen ergibt dann:

=

√

|a|2 |b|2 − (~a ·~b)2
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Wenn Sie die Regel beachten:|~a|2 = ~a · ~a ergibt sich:

A =

√

(~a · ~a)(~b ·~b)− (~a ·~b)2

Dies ist sicherlich eine schöne und auch praktische Regel, hat aber noch nichts mit
dem Vektorprodukt zu tun. Deshalb werden wir jetzt die Komponentenschreib-
weise für dreidimensionale Vektoren benutzen:

~a =





a1
a2
a3



 ~b =





b1
b2
b3





dann gilt folgendes:

~a · ~a =





a1
a2
a3



 ·





a1
a2
a3



 = a21 + a22 + a23

und

~b ·~b =





b1
b2
b3



 ·





b1
b2
b3



 = b21 + b22 + b23

(~a · ~a)(~b ·~b) = (a21 + a22 + a23)(b
2
1 + b22 + b23)

= (a21 b
2
1 + a21 b

2
2 + a21 b

2
3) + (a22 b

2
1 + a22 b

2
2 + a22 b

2
3) + (a23 b

2
1 + a23 b

2
2 + a23 b

2
3)

Die Klammer sind nur übersichtshalber gesetzt.
Andererseits gilt für den anderen Summanden:

~a ·~b =





a1
a2
a3



 ·





b1
b2
b3



 = a1 b1 + a2 b2 + a3 b3

Und das Quadrat:

(~a ·~b)2 = (a1 b1 + a2 b2 + a3 b3)
2

= (a1 b1 + a2 b2 + a3 b3)(a1 b1 + a2 b2 + a3 b3)

= a1 b1 a1 b1 + a1 b1 a2 b2 + a1 b1 a3 b3

+ a2 b2 a1 b1 + a2 b2 a2 b2 + a2 b2 a3 b3

+ a3 b3 a1 b1 + a3 b3 a2 b2 + a3 b3 a3 b3

= (a1 b1)
2 + (a2 b2)

2 + (a3 b3)
2

Umsortieren und zusammenfassen ergibt:

Die Diagonalelemente

+ 2(a1 b1 a2 b2) + 2(a1 b1 a3 b3) + 2(a2 b2 a3 b3)



KAPITEL 3. VEKTORPRODUKT – KREUZPRODUKT 46

Umsortieren ergibt:

= (a1 b1)
2 + (a2 b2)

2 + (a3 b3)
2

+ 2(a1 a2 b1 b2) + 2(a1 a3 b1 b3) + 2(a2 a3 b2 b3)

Der Übersicht halber betrachten wir A2. Dann kann die Darstellung über mehrere
Zeilen erfolgen.

Wenn wir nun dies alles zusammenführen:

A =

√

(~a · ~a)(~b ·~b)− (~a ·~b)2

A2 = (a21 b
2
1 + a21 b

2
2 + a21 b

2
3)

+ (a22 b
2
1 + a22 b

2
2 + a22 b

2
3)

+ (a23 b
2
1 + a23 b

2
2 + a23 b

2
3)

− (a1 b1)
2 − (a2 b2)

2 − (a3 b3)
2

− 2(a1 a2 b1 b2)− 2(a1 a3 b1 b3)− 2(a2 a3 b2 b3)

Entfernen gleicher Summanden

= a21 b
2
2 + a21 b

2
3

+ a22 b
2
1 + a22 b

2
3

+ a23 b
2
1 + a23 b

2
2

− 2(a1 a2 b1 b2)− 2(a1 a3 b1 b3)− 2(a2 a3 b2 b3)

Wenn wir jetzt umgekehrt den Betrag des Vektorproduktes berechnen:

~a×~b =





a1
a2
a3



×





b1
b2
b3



 =





a2 b3 − a3 b2
a3 b1 − a1 b3
a1 b2 − a2 b1





Um leichter vergleichen zu können, ermitteln wir nicht die Länge sondern das
Quadrat der Länge. (Dies sollte dann mit A2 übereinstimmen.) Dann ist das
Quadrat des Betrages:

|~a×~b|2 = (a2 b3 − a3 b2)
2

+ (a3 b1 − a1 b3)
2

+ (a1 b2 − a2 b1)
2

= a22 b
2
3 − 2 a2 b3 a3 b2 + a23 b

2
2

+ a23 b
2
1 − 2 a3 b1 a1 b3 + a21 b

2
3

+ a21 b
2
2 − 2 a1 b2 a2 b1 + a22 b

2
1
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Umordnen der einzelnen Buchstaben nach dem Alphabet:

= a22 b
2
3 − 2 a2 a3 b2 b3 + a23 b

2
2

+ a23 b
2
1 − 2 a1 a3 b1 b3 + a21 b

2
3

+ a21 b
2
2 − 2 a1 a2 b1 b2 + a22 b

2
1

Umordnen der Summanden ergibt:

= a21 b
2
2 + a21 b

2
3

+ a22 b
2
1 + a22 b

2
3

+ a23 b
2
1 + a23 b

2
2

− 2 a1 a2 b1 b2 − 2 a1 a3 b1 b3 − 2 a2 a3 b2 b3

Im Vergleich zur Rechnung oben ergibt sich nun die anfängliche Behauptung:

A =

√

(~a · ~a)(~b ·~b)− (~a ·~b)2

A = |~a×~b|

3.7 Bemerkung

Einige kleinere Hinweise:

1. Sie verwenden in der analytischen Geometrie eigentlich niemals einen Punkt
P im Vektorprodukt. Denn es soll so gut wie niemals ein anderer Vektor
senkrecht auf der Verbindungslinie Ursprung Punkt P stehen.

Dies ist manchmal ein Fehler, den Anfänger bei der Berechnung von z. B.
Abständen usw. machen.

2. Das Vektorprodukt macht nur Sinn und ist auch nur so definiert für dreidi-
mensionale Vektoren. Im vierdimensionalen Raum hilft Ihnen das Vektor-
produkt nicht. Aus einem zweidimensionalen Raum (Sie haben also nur 2
Koordinaten!) können Sie durch

”
anhängen einer Null“ einen dreidimensio-

nalen Vektor erstellen bei dem die z-Komponente Null ist. (Schließlich ist
der zweidimensionale Raum im dreidimensionalen Raum eingebettet.)

(
1
2

)

→





1
2
0





So können Sie dann hier auch senkrechte Vektoren konstruieren.
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3. Überprüfen Sie immer! das Vektorprodukt mit Hilfe des Skalarproduktes.
So vermeiden Sie Schwierigkeiten bei der weiteren Rechnung, welche wegen
eines kleinen Rechenfehlers sonst unweigerlich auftauchen.





1
2
3



×





2
0
1



 =





2
5
−4





Probe:




1
2
3



 ·





2
5
−4



 = 1 · 2 + 2 · 5 + 3 · (−4) = 2 + 10− 12 = 0

und 



2
0
1



 ·





2
5
−4



 = 2 · 2 + 0 · 5 + 1 · (−4) = 4 + 0− 4 = 0
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3.8 Übungen

Aufgabe 3.1

Bestimmen Sie das Vektorprodukt der beiden Vektoren:

~a =





1
2
3



 ~b =





−1
1
2





(Lösung siehe Seite 50).

Aufgabe 3.2

Ermitteln Sie die Fläche des Dreiecks, welches durch die Punkte A(1|2|3), B(4|2|2),
C(4|0|5) aufgespannt wird.
(Lösung siehe Seite 50).



KAPITEL 3. VEKTORPRODUKT – KREUZPRODUKT 50

Zu Aufgabe: 3.1

Bestimmen Sie das Vektorprodukt der beiden Vektoren:

~a =





1
2
3





~b =





−1
1
2





Hängen Sie zumindest die w1. und 2. Zeile an die Vektoren an und bilden Sie
dann das Kreuzprodukt, indem Sie kreuzweise multiplizieren und damit die Zeile
darüber erstellen.

Beispiel: Die neue 1. Zeile bekommen Sie, indem Sie die 2. und 3. Zeile kreuz-
weise multiplizieren:

Verfahren:








1
2
3
1
2









⊗









−1
1
2
−1
1









=





2 · 2− 3 · 1
3 · (−1)− 1 · 2
1 · 1− 2 · (−1)



 =





4− 3
−3− 2
1 + 2



 =





1
−5
3





Hier wurde ein anderes Verknüpfungszeichen gewählt, weil hier zwei 5-dim. Vek-
toren verknüpft werden zu einem 3-dim. Vektor. Dies ist ja so kein Vektorprodukt.

Es gilt also:

~a×~b =





1
2
3



×





−1
1
2



 =





1
−5
3





Zu Aufgabe: 3.2

Ermitteln Sie die Fläche des Dreiecks, welches durch die Punkte A(1|2|3), B(4|2|2),
C(4|0|5) aufgespannt wird.

Zuerst müssen die das Dreieck aufspannenden Vektoren gesucht werden:

~d = B −A =





4
2
2



−





1
2
3



 =





3
0
−1





~e = A− C =





1
2
3



−





4
0
5



 =





−3
2
−2





Da es sich um eine Dreiecksfläche handelt, benötigen wir die Hälte der Parallelo-
grammfläche.

~n = ~d× ~e =





3
0
−1



×





−3
2
−2



 =





2
9
6




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Die Fläche des Parallelogramms ist gleich der Länge des Vektors ~n.

|~n| =
√
22 + 92 + 62 =

√
4 + 81 + 36 =

√
121 = 11

Die Fläche des Dreiecks ist dann 5,5 FE (Flächeneinheiten) gross.



Kapitel 4

Skalar- und Vektorprodukt

In diesem Abschnitt betrachten wir Zusammenhänge zwischen dem Skalarprodukt
und dem Vektorprodukt.

4.1 Volumen eines Parallelepipeds

Ein Parallelepiped ist ein Körper, der von drei Vektoren aufgespannt wird:
Ein Parallelepiped ist ein

”
verschobener“ Quader (so wie ein Parallelogramm

ein
”
verschobenes“ Rechteck ist).

Die Grundfläche ergibt sich durch das Vektorprodukt:

A = ~a×~b

Die Höhe ergibt sich dann aus der Projektion des Vektors ~c auf den Normalen-
vektor.

V = G · h = (~a×~b) · ~c
Mit welchen Vektoren Sie das Vektorprodukt bilden ist natürlich egal.

Insbesondere können Sie mit Hilfe des Volumens entscheiden, ob drei Vektoren
in einer Ebene liegen. Ob drei Vektoren einen Raum oder eine Ebene aufspannen
ist ein Entscheidungskriterium für:

1. Kann man diese drei Koordinaten als Basis für einen 3-dim. Raum be-
nutzen? Also kann man alle Punkte im 3-dim. mit diesen drei Vektoren
ausdrücken?

2. Wenn die drei Vektoren Richtungsvektoren für eine Ebene und eine Gera-
de darstellen (zwei für eine Ebene und ein Vektor für die Gerade), dann
entscheidet sich, ob die Gerade parallel zur Ebene liegt.

Wenn das Volumen null ist, dann liegen die drei Vektoren in einer Ebene.

52
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Abbildung 4.1: Drei Vektoren spannen ein Parallelepiped auf.
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a
->

b
->

c
->

n
->

Abbildung 4.2: Zwei Vektoren (~a und ~b) ergeben die Grundfläche. Die Höhe des
Parallelepipeds erhält man durch die Projektion des dritten Vektors auf den Nor-
malenvektor. Die Projektion wird berechnet mit Hilfe der Skalarmultiplikation.
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4.2 Trigonometrische Beziehungen

In diesem Abschnitt werden nur die Formeln der vergangenen Abschnitte gesam-
melt.

γ sei im gesammten Abschnitt der Winkel zwischen den beiden Vektoren ~a
und ~b.

4.2.1 Kosinus

cos(γ) =
~a ·~b
|~a| |~b|

4.2.2 Sinus

sin(γ) =
|~a×~b|
|~a| |~b|

4.2.3 Tangens

tan(γ) =
|~a×~b|
~a ·~b

4.3 Mehrfaches Vektorprodukt – Graßmann Iden-

tität

In diesem Abschnitt untersuchen wir, was passiert, wenn Sie das Vektorprodukt
zwischen zwei Vektoren bilden und dann erneut mit einem Vektor das Vektorpro-
dukt bilden:

~a× (~b× ~c)

Sie haben 2 Vektoren ~b und ~c (nicht parallel) im 3-dim. Raum. Wenn Sie das

Vektorprodukt der beiden Vektoren ~b und ~c bilden, erhalten Sie einen Vektor ~n,
welcher jeweils orthogonal (senkrecht) zu den Vektoren ~b und ~c ist.

~n = ~b× ~c

Dieser Vektor ~n steht senkrecht auf der von den Vektoren ~b und ~c aufgespannten
Ebene.

Wenn Sie jetzt das Vektorprodukt von dem Vektor ~n und dem Vektor ~a bilden,
erhalten Sie einen Vektor, welcher senkrecht auf ~n steht und somit in der von den
Vektoren ~b und ~c aufgespannten Ebene liegt und senkrecht zu ~a ist.

~d = ~a× ~n = ~a× (~b× ~c)
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Dies ist z. B. hilfreich, wenn Sie ein Dreieck im Raum haben, und eine Höhe des
Dreiecks (also eine Senkrechte auf einer Seite des Dreiecks in der Dreiecksebene)
suchen.

Demzufolge kann man den Vektor ~d auch nur durch die beiden Vektoren ~b
und ~c ausdrücken:

~a× (~b× ~c) = (~a · ~c)~b− (~a ·~b)~c

4.3.1 Beweis

~b× ~c =





b2 c3 − b3 c2
b3 c1 − b1 c3
b1 c2 − b2 c1





~a× (~b× ~c) =





a1
a2
a3



×





b2 c3 − b3 c2
b3 c1 − b1 c3
b1 c2 − b2 c1





=





a2(b1 c2 − b2 c1)− a3(b3 c1 − b1 c3)
a3(b2 c3 − b3 c2)− a1(b1 c2 − b2 c1)
a1(b3 c1 − b1 c3)− a2(b2 c3 − b3 c2)





ausmultiplizieren der Klammern

=





a2 b1 c2 − a2 b2 c1 − a3 b3 c1 + a3 b1 c3
a3 b2 c3 − a3 b3 c2 − a1 b1 c2 + a1 b2 c1
a1 b3 c1 − a1 b1 c3 − a2 b2 c3 + a2 b3 c2





Umsortieren (1. und 4. Spalte und 2. und 3. Spalte)

=





a2 b1 c2 + a3 b1 c3 − a2 b2 c1 − a3 b3 c1
a3 b2 c3 + a1 b2 c1 − a3 b3 c2 − a1 b1 c2
a1 b3 c1 + a2 b3 c2 − a1 b1 c3 − a2 b2 c3





In der ersten und zweiten Spalte steht der Vektor ~b mit entsprechenden Vorfak-
toren und in der dritten und vierten Spalte erscheint der Vektor ~c:

~a× (~b× ~c) =





a2 c2 + a3 c3
a3 c3 + a1 c1
a1 c1 + a2 c2



~b−





a2 b2 + a3 b3
a3 b3 + a1 b1
a1 b1 + a2 b2



~c

Die jeweiligen Vorfaktoren sind fast jeweils das Skalarprodukt. Bei dem Vektor ~b
ist es fast bis auf den dritten Summanden das Skalarprodukt ~a · ~c und bei dem
Vorfaktor des Vektors ~c ist es fast das Skalarprodukt ~a ·~b.
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Wir ergänzen also eine
”
Null“.

~a× (~b× ~c) =





a2 c2 + a3 c3
a3 c3 + a1 c1
a1 c1 + a2 c2



~b+





a1 b1 c1
a2 b2 c2
a3 b3 c3



−





a1 b1 c1
a2 b2 c2
a3 b3 c3





︸ ︷︷ ︸

0

−





a2 b2 + a3 b3
a3 b3 + a1 b1
a1 b1 + a2 b2



~c

Die Summanden in der Mitte ergänzen das jeweilige Skalarprodukt, so dass man
kurz schreiben kann:

~a× (~b× ~c) = (~a · ~c)~b− (~a ·~b)~c



Kapitel 5

Gerade

5.1 Definition einer Geraden in Parameterform

Wir werden uns zuerst Geraden im 2-dimensionalen ansehen:
Wir betrachten Punkte, die sich durch folgende Anleitung ergeben:

g : ~x =

(
2
3

)

+ t

(
1
1

)

Wenn Sie verschiedene Werte für t einsetzen, erhalten Sie verschiedene Punkte,
welche sich auf einer Geraden befinden (siehe Abb. 5.1). t ist ein Parameter, in den
Sie alle rellen Zahlen einsetzen, um damit alle Punkte der Geraden zu erhalten.

Beispiele:

t = 1,

(
2
3

)

+ 1 ·
(
1
1

)

=

(
3
4

)

t = 2,

(
2
3

)

+ 2 ·
(
1
1

)

=

(
4
5

)

Die Geradengleichung ist folgendermaßen aufgebaut:

g
︸︷︷︸

Name der Geraden

: ~x =

(
2
3

)

︸︷︷︸

Ein beliebiger Punkt der Geraden

+t

(
1
1

)

︸︷︷︸

Richtungsvektor der Geraden

Eine solche Geradengleichung ist in der Parameterdarstellung. t ist der Parameter,
für den Zahlen eingesetzt werden. Im zweidimensionalen kann man auch eine
Normalendarstellung erzeugen.

Der Richtungsvektor ist ein Vektor parallel zur Geraden (umgangssprachliche Vor-
stellung:

”
liegt in der Geraden“). Welchen Punkt der Geraden Sie nehmen ist egal.

Ebenso ist die Länge des Richtungsvektors egal. Darum unterscheiden sich manche
Geradengleichungen obwohl sie dasselbe Objekt beschreiben.

58
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Abbildung 5.1: Die Punkte der grün eingezeichneten Geraden werden durch den
roten Pfeil und Vielfache des blauen Pfeiles erzeugt. Die Punkte

”
links“ von dem

roten Pfeil werden durch negative t-Werte erzeugt.

g : ~x =

(
2
3

)

+ t

(
1
1

)

h : ~x =

(
3
4

)

+ t

(
2
2

)

g und h beschreiben dieselbe Gerade. Der Punkt der Gerade h (3/4) ergibt sich
in der Gerade g, wenn t = 1 gewählt wird. Die Richtungsvektoren sind Vielfache
voneinander, zeigen also in dieselbe Richtung, auch wenn sie nicht gleichlang sind.
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Im 3-dimensionalen wird die Geraden ebenso beschrieben. Z. B.:

g2 : ~x =





1
2
3



 + t





5
6
7





(
1
2
3

)

ist ein Punkt der Geraden und
(

5
6
7

)

ist der Richtungsvektor der Geraden.

5.2 Punktprobe

Wenn Sie eine Geradengleichung haben, können Sie sehr leicht einzelne Punkte
ausrechnen. Schwieriger ist der umgekehrte Weg: Zu entscheiden, ob ein Punkt
zu einer Gerade gehört oder nicht.

Gegeben ist eine Gerade g:

g : ~x =





1
2
3



+ t





3
1
4





und zwei Punkte P(4/3/7) und Q(4/3/8)
Um zu entscheiden, ob diese Punkte der Gerade zugehören, müssen Sie prüfen,

ob es ein t gibt, dass folgende Gleichung löst:





1
2
3



+ t





3
1
4



 =





4
3
7





Dies sind im Prinzip 3 Gleichungen:

1 + 3t = 4

2 + t = 3

3 + 4t = 7

Wenn Sie die erste Gleichung lösen, erhalten Sie: t = 1. Einsetzen in die 2. und
3. Gleichung ergibt, dass t = 1 auch diese Gleichungen löst. P ist also ein Punkt
der Geraden.

Bei Q sieht das anders aus:





1
2
3



+ t





3
1
4



 =





4
3
8





Die Lösung der ersten Gleichung ergibt wiederum t = 1. Aber in die 3. Gleichung
eingesetzt, erhalten Sie nicht 8 sondern 7. Also ist Q kein Punkt der Geraden.
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5.3 Lagebeziehung von Geraden mit Hilfe des

Gaussverfahrens

In diesem Abschnitt lernen Sie, wie Sie den Schnittpunkt von zwei Geraden be-
stimmen. Sie suchen dazu den Punkte, der beiden Geraden gemeinsam ist. Um-
gangssprachlich:

”
Sie setzen die Geraden gleich“ und lösen das Gleichungssystem

z. B. mit Hilfe des Gaussverfahrens.
In diesem Kapitel wird der Zusammenhang zwischen den Lagebeziehungen der

Geraden und der jeweiligen Lösungsmenge des Gleichungssystems. Als systema-
tisches Verfahren des Lösens von Gleichungssystemen bietet sich das Gaussver-
fahren an.

5.3.1 Schnittpunkt

Gegeben sind zwei Geraden:

g1 : ~x =





6
1
5



+ r





1
0
1





g2 : ~x =





7
3
8



+ s





2
1
3





-10 -5  0  5  10-10
-5

 0
 5

 10
-10
-5
 0
 5

 10

Abbildung 5.2: Die beiden Geraden g1 und g2 (siehe Text).

Gesucht ist der Punkt, der beiden Geraden gemeinsam ist:





6
1
5



+ r





1
0
1



 =





7
3
8



+ s





2
1
3




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(Achten Sie darauf, dass die Parameter der jeweiligen Geraden unterschiedlich

sind. Hier wurde zur r und s gewählt.) Ziehen Sie auf beiden Seiten
(

6
1
5

)

ab:

r





1
0
1



 =





1
2
3



 + s





2
1
3





Ziehen Sie auf beiden Seiten s
(

2
1
3

)

ab:

r





1
0
1



− s





2
1
3



 =





1
2
3





Schreiben Sie jetzt, für die Schreibweise beim Gaussverfahren, das Minuszeichen
in dem Vektor:

r





1
0
1



 + s





−2
−1
−3



 =





1
2
3





Dieses Gleichungssystem lösen Sie mit dem Gaussverfahren:




1 −2
0 −1
1 −3



 ·
(
r
s

)

=





1
2
3





III ′ = III − I




1 −2
0 −1
0 −1



 ·
(
r
s

)

=





1
2
2





III ′ = III − II




1 −2
0 −1
0 0



 ·
(
r
s

)

=





1
2
0





II ′ = (−1) · II




1 −2
0 1
0 0



 ·
(
r
s

)

=





1
−2
0





I ′ = I + 2 · II




1 0
0 1
0 0



 ·
(
r
s

)

=





−3
−2
0





Da die untere Zeile nur aus Nullen besteht, gibt es eine eindeutige Lösung für r
und s. Somit gibt es einen Schnittpunkt:
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In g1 eingesetzt:

S =





6
1
5



+ (−3) ·





1
0
1



 =





3
1
2





oder in g2 eingesetzt:

S =





7
3
8



+ (−2) ·





2
1
3



 =





3
1
2





5.3.2 Parallele Geraden

Gegeben sind Ihnen zwei Geraden:

g1 : ~x =





6
1
5



+ r





1
0
1





g2 : ~x =





7
3
8



+ s





1
0
1





Wenn Sie wiederum einfach gleichsetzen:




6
1
5



+ r





1
0
1



 =





7
3
8



+ s





1
0
1





Ziehen Sie auf beiden Seiten den Vektor
(

6
1
5

)

ab:

r





1
0
1



 =





1
2
3



 + s





1
0
1





Ziehen Sie auf beiden Seiten: s
(

1
0
1

)

ab:

r





1
0
1



 + s





−1
0
−1



 =





1
2
3





Ergibt folgendes Gleichungssystem:




1 −1
0 0
1 −1





(
r
s

)

=





1
2
3




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In der zweiten Zeile ist links in der Matrix eine Nullzeile, aber der Ergebnis-
vektor enthält dort keine Null. Sie müssten also eine Lösung für das folgende
Gleichungssystem finden:

0r + 0s = 2

Es gibt keine Zahlen für r und s, welche diese Gleichung erfüllen.
Wenn das Gleichungssystem keine Lösung hat, haben die Geraden keinen

Punkt gemeinsam. Dies bedeutet, dass die Geraden parallel oder windschief im
Raum sind. Da die Richtungsvektoren Vielfache voneinander sind (hier ist der
Faktor 1, da sie gleich sind), sind die Geraden parallel.

5.3.3 Identische Geraden

Gegeben sind Ihnen zwei Geraden:

g1 : ~x =





6
1
5



+ r





1
0
1





g2 : ~x =





8
1
7



+ s





1
0
1





Beide Geraden haben denselben Richtungsvektor, sind also entweder parallel oder
identisch. Da sie beide unterschiedliche Ortsvektoren haben, ist die Identität der
beiden Geraden nicht unmittelbar ersichtlich.

Sie könnten jetzt einfach schauen, ob der Ortsvektor von g1 ein Punkt von g2
ist oder wie oben die beiden Geradengleichungen gleichsetzen.





6
1
5



+ r





1
0
1



 =





8
1
7



+ s





1
0
1





5.3.4 Zusammenfassung

5.4 Schnittwinkel zweier Geraden

In diesem Kapitel soll dargestellt werden, wie Sie den Winkel zweier sich schnei-
dender Geraden erhalten. Dies ist z. B. wichtig, wenn Sie die Punkte eines Drei-
ecks haben, daraus die Geraden durch die Punkte ermitteln und dann die Winkel
des Dreiecks bestimmen wollen.

Bei den Geraden müssen Sie nur den Winkel zwischen den Richtungsvektoren
bestimmen.

Beispiel: Da es bei den Geraden egal ist, welchen Punkt der Geraden Sie in der
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 0
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 0  2  4  6  8  10  12  14

P

Abbildung 5.3: Zwei Geraden mit dem Schnittpunkt jeweils als Punkt P der Ge-
raden. Die Richtungsvektoren sind jeweils rot eingezeichnet. Der Winkel zwischen
den Geraden ist unabhängig von der Wahl des Punktes P der Gerade.

Geradengleichung angeben, können Sie auch jeweils den Schnittpunkt angeben.
Dies hat nichts mit dem Winkel zu tun. (Siehe Abb. 5.3, S. 65 )

g : ~x =

(
1
2

)

+ r

(
5
12

)

h : ~x =

(
1
2

)

+ r

(
3
4

)
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Der Schnittwinkel ergibt sich aus dem Skalarprodukt:

~a ·~b = |~a| |~b cos(γ)
~a ·~b
|~a| |~b

= cos(γ)

(
5
12

)

·
(
3
4

)

∣
∣
∣
∣

(
5
12

)∣
∣
∣
∣

∣
∣
∣
∣

(
3
4

)∣
∣
∣
∣

= cos(γ)

5 · 3 + 12 · 4√
52 + 122

√
32 + 42

= cos(γ)

15 + 48√
25 + 144

√
9 + 16

= cos(γ)

63√
169

√
25

= cos(γ)

63

135̇
= cos(γ)

63

65
= cos(γ)

γ = 14,25◦

5.5 Geraden im 2-dim. Raum

In diesem Kapitel untersuchen wir Geraden im 2-dim. Raum. Dies ist eine Vor-
bereitung für die Definition von Ebenen mit Normalen.

Eine Gerade kann man im 2-dimensionalen Raum auch anders durch 2 Schritte
definieren:

1. 1. Schritt: Gegeben ist ein Vektor und die Gerade soll senkrecht zu dem
Vektor sein. Dadurch ist die Richtung der Geraden festgelegt. Es gibt bis-
her unendlich viele Geraden, die diese Bedingung erfüllen. Aber alle diese
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Abbildung 5.4: Im 2-dim. ist die Gerade durch den Punkt P und der normalen
(blauer Vektor) eindeutig bestimmt. Der Richtungsvektor ist der rote Vektor:

(~v = ~x− ~P ).

Geraden sind parallel:
 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10

2. 2. Schritt: Da die Geraden alle parallel sind, haben sie keinen Punkt gemein-
sam. Die Geraden können deshalb unterschieden werden, indem zusätzlich
zur Normalen genau ein Punkt einer Geraden angegeben wird.
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Im folgenden gilt:

~P = Ein Punkt der Geraden

~n = Ein Normalenvektor der Geraden

~v = Ein Richtungsvektor der Geraden

Um eine Geradengleichung mit Hilfe der Normalen angeben zu können wird
die Eigenschaft der Normalen, dass sie senkrecht zur Gerade ist, benutzt. Das
Skalarprodukt vom Normalenvektor und dem Richtungsvektor der Geraden ist
null, denn der Normalenvektor und der Richtungsvektor der Geraden schliesen
einen 90◦ Winkel ein.

~v · ~n = 0

Der Richtungsvektor kann bestimmt werden durch die Angabe zweier Punkte
der Geraden. Wenn x und P Punkte der Gerade sind, dann ist der Richtungsvektor
gegeben durch:

~v = ~x− ~P

bzw. in das Skalarprodukt eingesetzt:

[

~x− ~P
]

· ~n = 0

Die Situation ist dargestellt in der Abb. 5.4, S. 67.
Beispiel:

Der Punkt der Geraden sei P = ( 2
2 ). Der Normalenvektor sei ~n = (−2

3 ).
Die Normalenform ergibt sich zu:

g :

[

~x−
(
2
2

)]

·
(
−2
3

)

= 0

Bei dieser Gerade wäre der Richtungsvektor ~v:

~v =

(
3
2

)

Und eine andere Darstellung der Geraden wäre somit:

~x =

(
2
2

)

+ t

(
3
2

)

Ein weiterer Punkt ergibt sich durch einsetzen von z. B. t = 2:

(
2
2

)

+ 2

(
3
2

)

=

(
8
6

)
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Wenn man diesen Punkt in die Normalenform einsetzt erhält man tatsächlich
null:

[(
8
6

)

−
(
2
2

)]

·
(
−2
3

)

=

[(
6
4

)]

·
(
−2
3

)

= 6 · (−2) + 4 · 3
= −12 + 12

= 0

Jeder Punkt der Geraden erfüllt gerade diese Bedingung.
Wenn Sie einen Punkt einsetzten, welcher nicht zur der Geraden gehört, er-

halten Sie auch nicht null.
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5.6 Übungen

Aufgabe 5.1

Geben Sie eine Gerade an, die durch die 2 Punkte A(2|3) und B(5|4) geht.
(Lösung siehe Seite 72).

Aufgabe 5.2

Entscheiden Sie, welche Geraden parallel bzw. identisch sind.

g : ~x =

(
3
1

)

+ r

(
2
3

)

h1 : ~x =

(
2
3

)

+ r

(
3
1

)

h2 : ~x =

(
5
4

)

+ r

(
4
6

)

h3 : ~x =

(
5
5

)

+ r

(
4
6

)

(Lösung siehe Seite 72).

Aufgabe 5.3

Bestimmen Sie den Schnittpunkt der beiden Geraden:

g : ~x =

(
3
1

)

+ r

(
2
3

)

und

h : ~x =

(
1
1

)

+ s

(
4
5

)

(Lösung siehe Seite 73).

Aufgabe 5.4

Eine Firma bietet einen Computer an, der aus folgenden Bauteilen besteht:
1 Netzteil
2 Graphikkarten
3 Festplatten
1 Motherboard
2 DVD-Laufwerke
2 Speicherriegel
Geben Sie den Verbrauch der Bauteile in Abhängigkeit der gebauten Compu-

ter in Vektorschreibweise an.
(Lösung siehe Seite 74).
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Aufgabe 5.5

Gegeben sind Ihnen zwei Geraden im dreidimensionalen Raum. Suchen Sie den
Schnittpunkt.

g : ~x =





2
1
0



+ r





3
1
2





und

h : ~x =





−1
−2
0



+ s





2
1
1





(Lösung siehe Seite 74).

Aufgabe 5.6

Gegeben ist Ihnen folgendes Dreieck: A(1|2|3), B(4|2|2), C(4|0|5). Bestimmen Sie
die Höhe ha. Die Höhe ha geht vom Punkt A aus und trifft die Strecke BC, bzw.
ihre Verlängerung senkrecht.
(Lösung siehe Seite 75).

Aufgabe 5.7

Gegeben ist Ihnen folgendes Dreieck: A(1|2|3), B(4|2|2), C(4|0|5). Bestimmen
Sie die Mittelsenkrechte der Seite BC: ma. Die Mittelsenkrecht geht durch den
Mittelpunkt der Seite BC und ist senkrecht zu BC.
(Lösung siehe Seite 76).

Aufgabe 5.8

Gegeben ist folgendes Dreieck: A(1|1|1), B(4|2|4) und C(2|4|4). Bestimmen Sie
die Innenwinkel.
(Lösung siehe Seite 77).

Aufgabe 5.9

Gegeben ist Ihnen die Gerade g und ein Punkt P(1|2|5). Bestimmen Sie alle
Punkte auf der Geraden, die 9 LE vom Punkt P entfernt sind.

g : ~x =





12
0
13



+ t





5
−5
2





(Lösung siehe Seite 79).
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Zu Aufgabe: 5.1

Geben Sie eine Gerade an, die durch die 2 Punkte A(2|3) und B(4|7) geht.
Der Vektor von A nach B lautet:

~b− ~a =

(
4
7

)

−
(
2
3

)

=

(
2
4

)

Die Geradengleichung benötigt einen Punkt und einen Richtungsvektor:

g : ~x =

(
2
3

)

+ r

(
2
4

)

Alternativen sind denkbar und ergeben dieselbe Gerade.
Anderer Punkt:

g : ~x =

(
5
4

)

+ r

(
2
4

)

Andere Richtung des Richtungsvektors:

g : ~x =

(
2
3

)

+ r

(
−2
−4

)

Andere Länge des Richtungsvektors:

g : ~x =

(
2
3

)

+ r

(
1
2

)

Zu Aufgabe: 5.2

Entscheiden Sie, welche Geraden parallel bzw. identisch sind.

g : ~x =

(
3
1

)

+ r

(
2
3

)

h1 : ~x =

(
2
3

)

+ r

(
3
1

)

h2 : ~x =

(
5
4

)

+ r

(
4
6

)

h3 : ~x =

(
5
5

)

+ r

(
4
6

)

1. h1: Der Graph von h1 ist nicht parallel zur Gerade g, weil die Richtungs-
vektoren weder identisch noch Vielfache voneinander sind.
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2. h2: ( 4
6 ) ist das Doppelte des Richtungsvektors von g: ( 2

3 ). Die Richtungen
der beiden Geraden sind identisch.

Wir untersuchen, ob ( 5
4 ) ein Punkt der Geraden g ist.

(
5
4

)

=

(
3
1

)

+ 1 ·
(
2
3

)

( 5
4 ) ist also auch ein Punkt der Geraden g. Also sind die Geraden identisch.

3. h3: ( 4
6 ) ist das Doppelte des Richtungsvektors von g: ( 2

3 ). Die Richtungen
der beiden Geraden sind identisch.

Wir untersuchen, ob ( 5
5 ) ein Punkt der Geraden g ist.

(
5
5

)

6=
(
3
1

)

+ 1 ·
(
2
3

)

Die 1. Komponente ergibt sich durch r = 1: 3 + 1 · 2 = 5, aber die zweite
Komponente stimmt nicht überein: 1 + 1 · 3 = 4.

( 5
4 ) ist also kein Punkt der Geraden g. Also sind die Geraden parallel.

Zu Aufgabe: 5.3

Bestimmen Sie den Schnittpunkt der beiden Geraden:

g : ~x =

(
3
1

)

+ r

(
2
3

)

und

h : ~x =

(
1
1

)

+ s

(
4
5

)

Achten Sie dararuf, dass beide Geradengleichungen unterschiedliche Parameter
haben!

Sie Lösen folgendes Gleichungssystem:

g = h
(
3
1

)

+ r

(
2
3

)

=

(
1
1

)

+ s

(
4
5

)

iSchrittweises umformen der Gleichung

r

(
2
3

)

=

(
1
1

)

−
(
3
1

)

+ s

(
4
5

)

r

(
2
3

)

=

(
−2
0

)

+ s

(
4
5

)

r

(
2
3

)

− s

(
4
5

)

=

(
−2
0

)

r

(
2
3

)

+ s

(
−4
−5

)

=

(
−2
0

)
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Dieses Gleichungssystem können Sie mit dem Gaussverfahren lösen.

(
2 −4
3 −5

)(
r
s

)

=

(
−2
0

)

II ′ = 2 · II − 3 · I
(
2 −4
0 2

)(
r
s

)

=

(
−2
6

)

II ′ = II/2
(
2 −4
0 1

)(
r
s

)

=

(
−2
3

)

I ′ = I + 4 · II
(
2 0
0 1

)(
r
s

)

=

(
10
3

)

I ′ = I/2
(
1 0
0 1

)(
r
s

)

=

(
5
3

)

Zu Aufgabe: 5.4

Eine Firma bietet einen Computer an, der aus folgenden Bauteilen besteht:
1 Netzteil
2 Graphikkarten
3 Festplatten
1 Motherboard
2 DVD-Laufwerke
2 Speicherriegel
Geben Sie den Verbrauch der Bauteile in Abhängigkeit der gebauten Compu-

ter in Vektorschreibweise an.

Verbrauch : ~x = r











1
2
3
1
2
2











r ist die Anzahl der gebauten Computer: r ∈ N.

Zu Aufgabe: 5.5

Gegeben sind Ihnen zwei Geraden im dreidimensionalen Raum. Suchen Sie den
Schnittpunkt.

g : ~x =





2
1
0



+ r





3
1
2




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und

h : ~x =





−1
−2
0



+ s





2
1
1





Gleichsetzen liefert:

g = h




2
1
0



 + r





3
1
2



 =





−1
−2
0



+ s





2
1
1





r





3
1
2



− s





2
1
1



 =





−1
−2
0



−





2
1
0





r





3
1
2



+ s





−2
−1
−1



 =





−3
−3
0





Sie können das Gaussverfahren anwenden, aber Sie können auch zwei beliebige
Gleichungen aus dem Gleichungssystem herausnehmen und lösen und anschlies-
send zur Probe in die noch fehlende Gleichung einsetzen. Wenn diese Gleichung
dann auch aufgeht, haben Sie den Schnittpunkt gefunden, andernfalls liegen die
Geraden windschief im Raum.

Wir untersuchen die 2. und die 3. Gleichung:

r − s = −3

2r − s = 0

2. Gleichung minus der 1. Gleichung ergibt: r = 3
Damit ergibt sich durch Einsetzen: s = 6.

Einsetzen in die erste Gleichung zur Überprüfung:

3r − 2s = −3

3 · 3− 2 · 6 = 0

Der Schnittpunkt ist also bei r = 3 oder s = 6. In welche Gleichung Sie
einsetzen ist egal (hier in g):

S =





2
1
0



 + 3





3
1
2



 =





2
1
0



 +





9
3
6



 =





11
4
6





Zu Aufgabe: 5.6

Gegeben ist Ihnen folgendes Dreieck: A(1|2|3), B(4|2|2), C(4|0|5). Bestimmen Sie
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die Höhe ha. Die Höhe ha geht vom Punkt A aus und trifft die Strecke BC, bzw.
ihre Verlängerung senkrecht.

Zuerst muss der Vektor von B nach C gesucht werden:

~d = C −B =





4
0
5



−





4
2
2



 =





0
−2
3





Nun suchen wir einen Vektor, der auf den Vektor ~d senkrecht steht und in der
Ebene des Dreiecks liegt.

Dazu konstruieren wir zuerst einen Vektor, der senkrecht auf die Ebene des
Dreiecks steht:

~e = B − A =





4
2
2



−





1
2
3



 =





3
0
−1





Der Vektor ~n soll senkrecht auf die Ebene des Dreiecks stehen:

~n = ~d× ~e =





0
−2
3



×





3
0
−1



 =





2
9
6





Der Richtungsvektor der Höhe sei ~hr. ~hr steht senkrecht auf den Vektor ~d,
da die Höhe senkrecht auf die Dreiecksseite BC stehen soll. ~hr steht aber auch
senkrecht auf den Vektor ~n, weil ~hr in der Dreiecksebene liegt.

~hr = ~n× ~d =





2
9
6



×





0
−2
3



 =





39
−6
−4





Damit ergibt sich die Höhe zu:

ha : ~x =





1
2
3



+ r





39
−6
−4





Zu Aufgabe: 5.7

Gegeben ist Ihnen folgendes Dreieck: A(1|2|3), B(4|2|2), C(4|0|5). Bestimmen
Sie die Mittelsenkrechte der Seite BC: ma. Die Mittelsenkrecht geht durch den
Mittelpunkt der Seite BC und ist senkrecht zu BC.

Zuerst muss der Vektor von B nach C gesucht werden:

~d = C −B =





4
0
5



−





4
2
2



 =





0
−2
3




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Nun suchen wir einen Vektor, der auf den Vektor ~d senkrecht steht und in der
Ebene des Dreiecks liegt.

Dazu konstruieren wir zuerst einen Vektor, der senkrecht auf die Ebene des
Dreiecks steht:

~e = B − A =





4
2
2



−





1
2
3



 =





3
0
−1





Der Vektor ~n soll senkrecht auf die Ebene des Dreiecks stehen:

~n = ~d× ~e =





0
−2
3



×





3
0
−1



 =





2
9
6





Der Richtungsvektor der Mittelsenkrechte sei ~mr. ~mr steht senkrecht auf den
Vektor ~d, da die Mittelsenkrechte senkrecht auf die Dreiecksseite BC stehen soll.
~mr steht aber auch senkrecht auf den Vektor ~n, weil ~mr in der Dreiecksebene
liegt.

~mr = ~n× ~d =





2
9
6



×





0
−2
3



 =





39
−6
−4





Der Mittelpunkt der Seite BC ergibt sich durch:

~a+
1

2
~d =





1
2
3



 +
1

2





0
−2
3



 =





1
1
1,5





Damit ergibt sich die Mittelsenkrechte zu:

ma : ~x =





1
1
1,5



 + r





39
−6
−4





Zu Aufgabe: 5.8

Gegeben ist folgendes Dreieck: A(1|1|1), B(4|2|4) und C(3|5|5). Bestimmen Sie
die Innenwinkel.

Wir benötigen nur die Richtungsvektoren, nicht etwa die Geraden, welche
durch die Punkte gehen.

Die Seitenbezeichnungen erfolgen nach dem üblichen Schema für Dreiecke. Die
Seite a liegt der Ecke A gegenüber. Die Seite b liegt der Ecke B gegenüber, usw.

~a : B − C =





4
2
4



−





3
5
5



 =





1
−3
−1




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~b = C −A =





3
5
5



−





1
1
1



 =





2
4
4





~c = B − A =





4
2
4



−





1
1
1



 =





3
1
3





cos(α) =
~b · ~c
|~b| |~c|

=





2
4
4



 ·





3
1
3





∣
∣
∣
∣
∣
∣





2
4
4





∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣





3
1
3





∣
∣
∣
∣
∣
∣

=
6 + 4 + 12√

4 + 16 + 16
√
9 + 1 + 9

=
22√

36
√
19

=
22

6
√
19

α = 33◦

Sie berechnen hier den Aussenwinkel des Dreiecks, weil ~c nicht auf A zeigt,
sondern von A auf B, aber ~a von B nach C zeigt.

cos(β ′) =
~a · ~c
|~a| |~c|

=





1
−3
−1



 ·





3
1
3









1
−3
−1





∣
∣
∣
∣
∣
∣





3
1
3





∣
∣
∣
∣
∣
∣

=
3− 3− 3√

1 + 9 + 1
√
9 + 1 + 9

=
−3√
11

√
19

β ′ = 102◦

β = 78◦
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γ = 180◦ − 33◦ − 78◦

= 70◦

Zu Aufgabe: 5.9

Gegeben ist Ihnen die Gerade g und ein Punkt P(1|2|5). Bestimmen Sie alle
Punkte auf der Geraden, die 9 LE vom Punkt P entfernt sind.

g : ~x =





12
0
13



+ t





5
−5
2





Bei zwei bestimmten Werten für t ist die Entfernung zum Punkt P 9LE:

|g − P | = 9
∣
∣
∣
∣
∣
∣





12
0
13



+ t





5
−5
2



−





1
2
5





∣
∣
∣
∣
∣
∣

= 9

∣
∣
∣
∣
∣
∣





11
−2
8



+ t





5
−5
2





∣
∣
∣
∣
∣
∣

= 9

√

(11 + 5t)2 + (−2− 5t)2 + (8 + 2t)2 = 9

(11 + 5t)2 + (−2− 5t)2 + (8 + 2t)2 = 81

Dies ist eine quadratische Gleichung mit bis zu zwei Lösungen:

(11 + 5t)2 + (−2− 5t)2 + (8 + 2t)2 = 81

(112 + 2 · 11 · 5t+ (5t)2)

+((−2)2 + 2 · (−2) · (−5t) + (5t)2)

+(82 + 2 · 8 · 2t+ (2t)2) = 81

121 + 110t+ 25t2 + 4 + 20t+ 25t2 + 64 + 32t+ 4t2 = 81

189 + 162t+ 54t2 = 81

t = −2 oder t = −1

Jetzt müssen noch die Punkte der Geraden bestimmt werden:

1. t = −2




12
0
13



− 2 ·





5
−5
2



 =





2
10
9




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2. t = −1




12
0
13



− 1 ·





5
−5
2



 =





7
5
11







Kapitel 6

Beweise in der 2-dim Geometrie

In diesem Kapitel werden einige ausgewählte Sätze aus der ebenen Geometrie
bewiesen. Die Auswahl erfolgte nach zwei Gesichtspunkten.

1. Die Beweise sollen zeigen, wie elegant mit Hilfe der Vektorrechnung die
Beziehungen bewiesen werden können.

2. Sie sollen Übung bekommen mit der Vektorrechnung umzugehen.

Natürlich wird dadurch auch die Sinnhaftigkeit der Vektorrechnung unterstrichen.

6.1 Raute

Eine Raute (siehe Abb. 6.1, S. 81) ist ein Viereck, dessen vier Seiten alle gleich
lang sind.

Behauptung: In einer Raute stehen die Diagonalen jeweils orthogonal (senk-
recht) aufeinander und sind gleich lang.

In Abb. 6.1, S. 81 ist eine Raute abgebildet. Die Vektoren in dem Beispiel
sind: ( 3

4 ) und ( 4
3 )

Abbildung 6.1: Eine Raute hat vier gleich lange Seiten.

81
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a
->

b
->

b
-> + a

->

a
-> + b

->

Abbildung 6.2: Die Raute mit Diagonalen.

Da der Beweis allgemeingültig sein soll, werden wir nur mit den Vektoren ~a
und ~b arbeiten.

Die Eckpunkt sind also einmal (0|0), der Punkt der durch den Vektor ~a bzw. ~b
repräsentiert wird. Der letzte Eckpunkt ergibt sich durch durchlaufen der beiden
Vektoren ~a und ~b, also durch ~a +~b.

Da wir Aussagen über Diagonalen prüfen wollen, erstellen wir zuerst diese
Diagonalen als Teile von Geraden welche durch die entsprechenden Punkte der
Raute verlaufen.

Die 1. Diagonale ergibt sich sehr leicht. Sie verbindet die linke untere Ecke
mit der rechten oberen. Sie verbindet also die Punkte (0|0) mit ~a +~b. Dies kann
man durch eine Gerade ausdrücken.

d1 : ~x =

(
0
0

)

+ t(~a+~b) = t(~a +~b)

Die Diagonale ist nur ein Teil der Geraden. Die Diagonale wird beschrieben für
t ∈ [0, 1]. Wenn t = 0 gilt, hat man den Anfangspunkt der Diagonalen, wenn
t = 1 gilt, dann hat man den Endpunkt der Diagonalen.

Die zweite DiagonaleA verbindet die Punkte ~a und den Punkt ~b.

d2 : ~x = ~a + r(~b− ~a)

Die Diagonalen sind senkrecht zueinander da das Skalarprodukt der Rich-
tungsvektoren null ergibt:

(~a+~b) · (~b− ~a) = ~a ·~b− ~a · ~a+~b ·~b−~b · ~a
= ~a ·~b− 0 + 0−~b · ~a
= 0
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Nun berechnen wir noch den Schnittpunkt der beiden Diagonalen aus:

d1 = d2

t(~a+~b) = ~a+ r(~b− ~a)

t~a + t~b) = ~a+ r~b− r~a)

t~a− ~a + r~a = r~b− t~b

~a(t + r − 1) = ~b(r − t)

Diese Gleichung kann nur gelöst werden, wenn die jeweiligen Vorfaktoren null
sind:

r − t = 0

t+ r − 1 = 0

Aus der ersten Gleichung folgt, dass r = t gelten muss. Eingesetzt in die 2.
Gleichung ergibt sich:

t + t− 1 = 0

2t− 1 = 0

2t = 1

t =
1

2

t = 0,5

r = 0,5

Der Schnittpunkt der beiden Diagonalen ist in der Mitte der jeweiligen Dia-
gonalen.

6.2 Seitenhalbierende

Seitenhalbierende sind diejenigen Strecken im Dreieck, welche die Ecken des Drei-
ecks mit der Mitte der gegenüberliegenden Seite verbinden.

Die Seitenhalbierende von der Ecke A bis zur Mitte der gegenüberliegenden
Strecke a bezeichnet man mit sa. Entsprechend gibt es noch die Seitenhalbieren-
den sb und sc. Siehe Abb. 6.3, S. 84.

Hier zeigen wir, dass sich die beiden Seitenhalbierenden sa und sb jeweils im
Verhältns 1:2 schneiden.

Der Einfachheit halber legen wir die linke Ecke des Dreiecks (den Punkt A)
in den Ursprung.

Dann zeigt der Vektor ~b auf den Punkt B und der Vektor ~c auf den Punkt C.
Jetzt schreiben wir die Seitenhalbierenden in Vektorschreibweise:
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sbsa

C

c

B

b

A a

Abbildung 6.3: Ein Dreieck mit zwei Seitenhalbierenden: sa und sb

1. sb: Diese Seitenhalbierende ist Teil einer Geraden durch den Punkt B und
der Mitte des Dreiecksseite b. Dies ist die Mitte der Seite von A zu C (B
gegenüberliegend).

Die Mitte der Dreiecksseite b ergibt sich als die Hälfte des Weges von A zu
C:

1

2
~c

Die Gerade lautet dann:

sb : ~x = ~b+ t

(
1

2
~c−~b

)

2. sa: Diese Seitenhalbierende ist Teil einer Geraden durch den Punkt A und
der Mitte des Dreiecksseite a. Dies ist die Mitte der Seite von B zu C (A
gegenüberliegend).

Um von A zur Mitte der Dreiecksseite b zu gelangen, muss man von A zu
B gehen und dann die Hälfte des Weges von B zu C:

~b+
1

2
(~c−~b) = ~b+

1

2
~c− 1

2
~b

=
1

2
~b+

1

2
~c

=
1

2
(~b+ ~c)

Die Gerade lautet dann:

sa : ~x = ~a+ r

(
1

2
(~b+ ~c)− ~a

)

= r
1

2
(~b+ ~c)

Der Punkt der Geraden fällt weg, weil A im Ursprung liegt.
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Die Seitenhalbierenden sind Strecken zwischen den Punkten, welche jeweils be-
nutzt wurden die Geraden zu definieren. Darum sind die Seitenhalbierenden die
Punke, welche sich für die Werte zwischen 0 und 1 ergeben: 0 ≤ t ≤ 1 und
0 ≤ r ≤ 1.

Der Schnittpunkt wird durch gleichsetzen ermittelt:

sa = sb

r
1

2
(~b+ ~c) = ~b+ t

(
1

2
~c−~b

)

r
1

2
~b+ r

1

2
~c = ~b+ t

1

2
~c− t~b

r~b+ t
1

2
~b−~b = t

1

2
~c− r

1

2
~c)

~b (r +
1

2
t− 1) = ~c (t− r)

Die beiden Vektoren ~b und ~c können nicht gleich sein. Diese Vektoren haben un-
terschiedliche Richtungen. Wenn also beide Seiten gleich sein sollen, dann müssen
beide Seiten null ergeben, dass heisst, dass die Klammern null sein müssen jeweils:

r +
1

2
t− 1 = 0

t− r = 0

Aus der zweiten Gleichung ergibt sich, dass r und t gleich groß sind. Damit ergibt
sich die erste Gleichung zu:

r +
1

2
r − 1 = 0

r +
1

2
r = 1

3

2
r = 1

r =
2

3

Damit gilt für beide Parameter:

r =
2

3

t =
2

3

Der Schnittpunkt der Seitenhalbierenden ist ausgehend von der Ecke des Dreiecks
nach einem Drittel der Strecke. Also teilt der Schnittpunkt die Strecken jeweils
im Verhältnis 1:2.



Kapitel 7

Die Parameterform der Ebene

Ausgehend von der Geraden schauen wir uns eine Ebene an, die dadurch gekenn-
zeichnet ist, dass sie eine weitere Richtung hat.

Bei der Geraden haben wir zwei verschiedene Formen eingeführt: Die Para-
meterform und die Normalenform. Bei den Ebenen sind diese beiden Formen
ebenfalls von Bedeutung und darüber hinaus werden wir die Normalenform noch
umformen zur Koordinatenform.

In diesem Kapitel werden die verschiedenen Darstellungsweisen vorgestellt
und auch deren Anwendungen (im Vorgriff) im Überblick dargestellt.

7.1 Ebenengleichung

Die Parameterform der Ebene erzeugt alle Punkte der Ebene direkt. Sie ist ähnlich
aufgebaut wie die Parameterform der Gerade. Sie haben aber eine Richtung mehr:

E : ~x = ~a+ r ~u+ s~v

~a :Ein Punkt der Ebene

~u :Ein Richtungsvektor der Ebene

~v :Ein Richtungsvektor der Ebene

r :Parameter

s :Parameter

Die Richtungsvektoren dürfen nicht parallel sein sonst erhalten Sie wiederum nur
eine Gerade. Wenn Sie Zahlen in die Parameter einsetzen erhalten Sie Punkte der
Ebene. Jeder Punkt der Ebene lässt sich erzeugen durch eine geeignete Wahl von
r und s.

86
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Abbildung 7.1: In diesem Bild sehen Sie wie jeder Punkt durch die drei Vektoren
gebildet werden kann. Vom Punkt A aus gehen Sie Vielfache der beiden Rich-
tungsvektoren. So wird z. B. der Punkt B durch drei mal den grünen Vektor und
zwei mal den blauen Vektor gehen gebildet. Für B gilt also in dieser Darstellung:
B(3/2).

7.2 Parameterform: Punktprobe

Mit der Parameterform kann man schnell Punkte angeben. Man muss nur Werte
für r und s wählen und in die Parameterform einsetzen, um irgendwelche Punkte
der Ebene zu erhalten.

Aber, wenn man einen gegebenen Punkt hat, wie entscheidet man dann, ob
dieser ein Punkt der Ebene ist?

Nun, man muss den Punkt mit der Ebene gleichsetzen und das entstehende
Gleichungssystem lösen. Dieses Gleichungssystem mit den Variablen r und s kann
entweder eine eindeutige Lösung haben für r und s oder keine Lösung haben.
Wenn das Gleichungssystem keine Lösung für r und s hat, dann ist der Punkt
kein Punkt der Ebene.

Beispiel:

E : ~x =





1
2
1



+ r





1
0
1



 + s





2
1
1




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Untersucht werden soll ob der Punkt P(5/3/4) ein Punkt der Ebene ist.
Dies ergibt folgendes Gleichungssystem:





1
2
1



+ r





1
0
1



+ s





2
1
1



 =





5
3
4





Umstellen ergibt:

r





1
0
1



 + s





2
1
1



 =





5
3
4



−





1
2
1





ausgerechnet:

r





1
0
1



+ s





2
1
1



 =





4
1
3





Im Matrixschreibweise: 



1 2
0 1
1 1



 ·
(
r
s

)

=





4
1
3





III ′ = I − III




1 2
0 1
0 1



 ·
(
r
s

)

=





4
1
1





I ′ = I − 2 · II




1 0
0 1
0 1



 ·
(
r
s

)

=





2
1
1





Es gibt eine eindeutige Lösung, r = 2 und s = 1. Der Punkt P ist ein Punkt der
Ebene E.

Diesen Punkt der Ebene können Sie in der Ebene als Pr,s(2/1) beschreiben.
Sie beschreiben alle Punkte der Ebene durch die Vielfache (r, s) der beiden Rich-
tungsvektoren.

7.3 Parameterform: Überprüfen auf Parallelität

bei Gerade und Ebene

Eine Gerade und eine Ebene sind dann parallel oder identisch, wenn der Rich-
tungsvektor der Gerade durch die Richtungsvektoren der Ebene dargestellt wer-
den können. Also, wenn die drei Richtungsvektoren (Geraden und Ebene) linear
abhängig sind. (Siehe Abb. 7.2 S. 89 bis Abb.7.4, S. 89).
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Abbildung 7.2: Eine Ebene mit ro-
ten Richtungsvektoren und dem (roten)
Ortsvektor. Die Vektoren der Geraden-
gleichung und die Gerade sind blau
eingezeichnet. Zu den Gleichungen der
Ebene und Gerade siehe Text.
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Abbildung 7.3: Die Ebene und die Ge-
rade von der Seite. Die Gerade ist par-
allel zur Ebene. Der Richtungsvektor
der Gerade ist ebenfalls parallel zur
Ebene.
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Abbildung 7.4: Die Ebene und die Ge-
rade von oben. Sie sehen, dass mit den
Richtungsvektoren der Ebene der Rich-
tungsvektor der Gerade erstellt werden
kann. In diesem Fall durch eine einfache
Addition.
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In Abb. 7.2 S. 89 bis Abb.7.4, S. 89 ist folgende Ebene dargestellt:

E : ~x =





1
1
1



+ r





1
0
0



 + s





0
1
0





Und folgende Gerade:

g : ~x





1
1
2



 + t





1
1
0





Die lineare Unabhängigkeit bzw. Abhängigkeit bestimmt sich entweder auf
folgendem Gleichungssystem:

r · ~u+ s · ~v + t · ~w = 0

wobei ~u, ~v, ~w die Richtungsvektoren der Gerade und der Ebene sind.
Sie können aber auch einfacher vorgehen. Das Volumen eines Parallelepipeds

ergibt sich aus dem Vektorprodukt zweier Vektoren des Parallelepipeds und an-
schliessendem Skalarprodukt mit dem dritten Vektor:

V = (~a×~b) · ~c

Wenn die drei Vektoren in einer Ebene liegen, sind sie linear abhängig (der dritte
Vektor kann durch die anderen beiden erzeugt werden, bzw. bestimmt werden)
und somit ist das Volumen null.

7.4 Parameterform: Schnittpunkt - Gerade und

Ebene

Sie haben eine weitere Gerade und eine Ebene in Parameterform. Geben Sie
gegebenenfalls (wenn Sie nicht parallel liegen) den Schnittpunkt an.

Sie können auf die Parallelität vorher überprüfen, müssen dies aber nicht
tun. Setzen Sie wiederum die Gerade und die Ebene gleich und lösen Sie mit
dem Gaussverfahren. Wenn es keine Lösung gibt, sind die Gerade und die Ebene
parallel. Wenn es unendlich viele Lösungen gibt, dann liegt die Gerade in der
Ebene. Wenn es genau eine Lösung gibt, dann gibt es einen Schnittpunkt.

Beispiel:

E : ~x =





1
2
1



+ r





1
0
1



 + s





2
1
1





und

g : ~x =





7
5
6



+ t





1
1
1




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Parallelitätsprüfung:









1
0
1



×





2
1
1







 ·





1
1
1



 =





−1
1
1



 ·





1
1
1



 = 1 6= 0

Die Vektoren sind nicht linear abhängig sondern spannen einen Raum auf, denn
das Volumen der drei Vektoren ist nicht null. Die Parallelitätsprüfung erspart
einen das Gaussverfahren, wenn die Ebene und die Gerade parallel sind und
somit keinen Schnittpunkt haben.

Gleichsetzen ergibt:





1
2
1



 + r





1
0
1



+ s





2
1
1



 =





7
5
6



 + t





1
1
1





Umformen (alle Parameter auf die linke Seite) ergibt:

r





1
0
1



 + s





2
1
1



+ t





−1
−1
−1



 =





7
5
6



−





1
2
1





Ausrechnen:

r





1
0
1



+ s





2
1
1



 + t





−1
−1
−1



 =





6
3
5





In Matrixschreibweise:




1 2 −1
0 1 −1
1 1 −1









r
s
t



 =





6
3
5





III ′ = I − III




1 2 −1
0 1 −1
0 1 0









r
s
t



 =





6
3
1





I ′ = I − II − III




1 0 0
0 1 −1
0 1 0









r
s
t



 =





2
3
1





tausche II ↔ III




1 0 0
0 1 0
0 1 −1









r
s
t



 =





2
1
3




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III ′ = III − II




1 0 0
0 1 0
0 0 −1









r
s
t



 =





2
1
2





II ′ = (−1) · III




1 0 0
0 1 0
0 0 1









r
s
t



 =





2
1
−2





Der Schnittpunkt ist gegeben und ist bei r = 2 und s = 1, bzw. t = −2. Sie
können r und s in die Ebenengleichung einsetzen oder t in die Geradengleichung:

S =





7
5
6



+ (−2) ·





1
1
1



 =





5
3
4





7.5 Parameterform: Schnittgerade - Ebene und

Ebene

Wenn sich zwei Ebenen schneiden, ergibt sich als Schnittobjekt eine Gerade. Dies
kennen Sie aus eigener Anschauung: Ein Buch besteht aus zwei Ebenen: die linke
Buchseite und die rechte Buchseite. Beide Seiten des Buches schneiden sich in
der Falz, das ist eine Schnittgerade. Oder ein anderes Beispiel: die Kante eines
Raumes ist die Schnittgerade zweier Mauern (Ebenen).

Beispiel: Gegeben sind zwei Ebenen:

E1 : ~x =





2
9
−4



+ r





3
5
−1



+ s





2
−1
2





E2 : ~x =





4
3
0



+ u





4
3
2



 + v





1
1
−1





Gesucht ist die Schnittgerade der beiden Ebenen. Gesucht sind also alle Punkte,
die sowohl der Ebene E1 als auch der Ebene E2 angehören.

Diese Punkte finden Sie, indem Sie die beiden Ebenengleichungen gleichsetzen.
Durch das Gleichsetzen finden Sie Werte für die Parameter r, s, u und v, die es
Ihnen ermöglichen die Punkte zu berechnen, welche in beiden Ebenen vorhanden
sind. 



2
9
−4



+ r





3
5
−1



+ s





2
−1
2



 =





4
3
0



 + u





4
3
2



+ v





1
1
−1




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Achten Sie bei dem Gleichsetzen darauf, dass Sie tatsächlich 4 unterschiedliche
Parameternamen gewählt haben. U. U. müssen Sie die Parameter umbenennen.

Umformen führt zu:

r





3
5
−1



 + s





2
−1
2



+ u





−4
−3
−2



 + v





−1
−1
1



 =





4
3
0



−





2
9
−4





r





3
5
−1



+ s





2
−1
2



+ u





−4
−3
−2



+ v





−1
−1
1



 =





2
−6
4





In Matrixschreibweise:






3 2 −4 −1
5 −1 −3 −1
−1 2 −2 1
0 0 0 0







·







r
s
u
v







=







2
−6
4
0







Dieses Gleichungssystem können Sie mit Hilfe des Gaussverfahrens lösen.

tausche: III ↔ I






−1 2 −2 1
5 −1 −3 −1
3 2 −4 −1
0 0 0 0







·







r
s
u
v







=







4
−6
2
0







(
II ′ = II + 5 · I
III ′ = III + 3 · I

)







−1 2 −2 1
0 9 −13 4
0 8 −10 2
0 0 0 0







·







r
s
u
v







=







4
14
14
0







(
III ′ = III/2

)







−1 2 −2 1
0 9 −13 4
0 4 −5 1
0 0 0 0







·







r
s
u
v







=







4
14
7
0







(
III ′ = 9 · III − 4 · II

)







−1 2 −2 1
0 9 −13 4
0 0 7 −7
0 0 0 0







·







r
s
u
v







=







4
14
7
0






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(
III ′ = III/7

)







−1 2 −2 1
0 9 −13 4
0 0 1 −1
0 0 0 0







·







r
s
u
v







=







4
14
1
0







(
I ′ = I + 3 · III
II ′ = II + 13 · III

)







−1 2 0 −1
0 9 0 −9
0 0 1 −1
0 0 0 0







·







r
s
u
v







=







6
27
1
0







(
I ′ = 9 · I − 2 · II

)







−9 0 0 9
0 9 0 −9
0 0 1 −1
0 0 0 0







·







r
s
u
v







=







0
27
1
0







(
I ′ = I/(−9)
II ′ = II/9

)







1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 0







·







r
s
u
v







=







0
3
1
0







Die Lösung lautet:






r
s
u
v







=







0
3
1
0







+ t







1
1
1
1







Sie haben jetzt die Lösungen für die Parameter r, s, u und v erhalten. Diese
müssen Sie jetzt noch in eine der beiden Ebenengleichungen einsetzen und Sie
erhalten dann die gesuchte Schnittgerade.

Hier setzen wir in E1 ein: r = t und s = t+ 3.

g : ~x =





2
9
−4



+t





3
5
−1



+(t+3)





2
−1
2



 =





2
9
−4



+t





3
5
−1



+t





2
−1
2



+





6
−3
6



 =





8
6
2



+t





5
4
1





Um kleinere Werte zu haben können Sie auch einen anderen Punkt wählen:

P =





8
6
2



 + (−1) ·





5
4
1



 =





3
2
1




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g : ~x =





3
2
1



+ t





5
4
1




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7.6 Übungen

Aufgabe 7.1

Eine Computerfirma hat einen Lagerbestand vor Ort am 01.01.2013:








20Gehäuse und Motherboards
50 Festplatten

40Graphikkarten
30 Prozessoren

60DVD-Laufwerke









Die Niederlassung erhält täglich neue Ware, ohne dass sie auf die Bestellung
einen Einfluss hat: 







5Gehäuse und Motherboards
10 Festplatten
8Graphikkarten
6 Prozessoren

10DVD-Laufwerke









Die Niederlassung verkauft einzelne DVD-Laufwerke und einzelne Festplatten.
Ansonsten werden nur drei Computertypen angeboten:

Computer 1 besteht aus:








1Gehäuse und Motherboard
1 Festplatten

1Graphikkarten
1 Prozessoren

0DVD-Laufwerke









Computer 2 besteht aus:








1Gehäuse und Motherboard
2 Festplatten

2Graphikkarten
1 Prozessoren

1DVD-Laufwerke









und Computer 3 besteht aus:








1Gehäuse und Motherboard
3 Festplatten

2Graphikkarten
2 Prozessoren

2DVD-Laufwerke









Gibt es einen Zeitpunkt zu dem das Lager leer ist?
(Lösung siehe Seite 97).
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Zu Aufgabe: 7.1

Eine Computerfirma hat einen Lagerbestand vor Ort am 01.01.2013:









20Gehäuse und Motherboards
50 Festplatten

40Graphikkarten
30 Prozessoren

60DVD-Laufwerke









Die Niederlassung erhält täglich neue Ware, ohne dass sie auf die Bestellung
einen Einfluss hat: 







5Gehäuse und Motherboards
10 Festplatten
8Graphikkarten
6 Prozessoren

10DVD-Laufwerke









Die Niederlassung verkauft auch einzelne Festplatten. Ansonsten werden nur
drei Computertypen angeboten:

Computer 1 besteht aus:









1Gehäuse und Motherboard
1 Festplatten

1Graphikkarten
1 Prozessoren

0DVD-Laufwerke









Computer 2 besteht aus:









1Gehäuse und Motherboard
2 Festplatten

2Graphikkarten
1 Prozessoren

1DVD-Laufwerke









und Computer 3 besteht aus:









1Gehäuse und Motherboard
3 Festplatten

2Graphikkarten
2 Prozessoren

2DVD-Laufwerke









Gibt es einen Zeitpunkt zu dem das Lager leer ist?
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Sie können die Menge, die ins Lager geliefert wurde/wird, schreiben als:

(
20//50//40//30//60

)
+ r









5
10
8
6
10









Die Mengen, welche verkauft werden können ergeben sich aus den Möglich-
keiten, welche verkauft werden können:

s









0
1
0
0
0









+ u









1
1
1
1
0









+ v









1
2
2
1
1









+ w









1
3
2
2
2









r Tage nach dem 1.1.2013
s Anzahl der verkauften Festplatten
u Anzahl der verkauften Computer Typ 1
v Anzahl der verkauften Computer Typ 2
w Anzahl der verkauften Computer Typ 3
Wenn das Lager leer ist, dann entspricht die gelieferte Menge des den ver-

kauften Mengen. Die gelieferte Menge ist geometrisch gesehen eine Gerade. Die
verkauften Mengen ergeben, da Sie 4 Parameter haben einen 4-dimensionalen
Raum. Da Sie 5 verschiedene Komponenten (Computerbestandteile) haben, ar-
beiten wir mit einem 5-dimensionalen Raum.

Gleichsetzen liefert:

(
20//50//40//30//60

)
+ r









5
10
8
6
10









= s









0
1
0
0
0









+ u









1
1
1
1
0









+ v









1
2
2
1
1









+ w









1
3
2
2
2









Bzw.:








0 1 1 1 −5
1 1 2 3 −10
0 1 2 2 −8
0 1 1 2 −6
0 0 1 2 −10









·









s
u
v
w
r









=
(
20//50//40//30//60

)



KAPITEL 7. DIE PARAMETERFORM DER EBENE 99

tausche: II < − > I









1 1 2 3 (−10)
0 1 1 1 (−5)
0 1 2 2 (−8)
0 1 1 2 (−6)
0 0 1 2 (−10)









·









s
u
v
w
r









=









50
20
40
30
60









neu III = 1 · III − 1 · II
neu IV = 1 · IV − 1 · II








1 1 2 3 (−10)
0 1 1 1 (−5)
0 0 1 1 (−3)
0 0 0 1 (−1)
0 0 1 2 (−10)









·









s
u
v
w
r









=









50
20
20
10
60









neu V = 1 · V − 1 · III








1 1 2 3 (−10)
0 1 1 1 (−5)
0 0 1 1 (−3)
0 0 0 1 (−1)
0 0 0 1 (−7)









·









s
u
v
w
r









=









50
20
20
10
40









neu V = 1 · V − 1 · IV








1 1 2 3 (−10)
0 1 1 1 (−5)
0 0 1 1 (−3)
0 0 0 1 (−1)
0 0 0 0 (−6)









·









s
u
v
w
r









=









50
20
20
10
30









neu V = V/6









1 1 2 3 (−10)
0 1 1 1 (−5)
0 0 1 1 (−3)
0 0 0 1 (−1)
0 0 0 0 (−1)









·









s
u
v
w
r









=









50
20
20
10
5








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neu IV = 1 · IV − 1 · V
neu III = (−1) · III − (−3) · V
neu II = (−1) · II − (−5) · V
neu I = (−1) · I − (−10) · V








(−1) (−1) (−2) (−3) 0
0 (−1) (−1) (−1) 0
0 0 (−1) (−1) 0
0 0 0 1 0
0 0 0 0 (−1)









·









s
u
v
w
r









=









0
5

(−5)
5
5









neu III = 1 · III − (−1) · IV
neu II = 1 · II − (−1) · IV
neu I = 1 · I − (−3) · IV








(−1) (−1) (−2) 0 0
0 (−1) (−1) 0 0
0 0 (−1) 0 0
0 0 0 1 0
0 0 0 0 (−1)









·









s
u
v
w
r









=









15
10
0
5
5









neu II = 1 · II − 1 · III
neu I = (−1) · I − (−2) · III








1 1 0 0 0
0 (−1) 0 0 0
0 0 (−1) 0 0
0 0 0 1 0
0 0 0 0 (−1)









·









s
u
v
w
r









=









(−15)
10
0
5
5









neu I = (−1) · I − 1 · II








(−1) 0 0 0 0
0 (−1) 0 0 0
0 0 (−1) 0 0
0 0 0 1 0
0 0 0 0 (−1)









·









s
u
v
w
r









=









5
10
0
5
5








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neu I = I/(−1)
neu II = II/(−1)
neu III = III/(−1)
neu V = V/(−1)









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









·









s
u
v
w
r









=









−5
−10
0
5
−5

















s
u
v
w
r









=









−5
−10
0
5
−5









Der Lagerbestand war vor 5 Tagen leer. Ab jetzt füllt er sich nur noch auf.



Kapitel 8

Die Parameterform der Ebene

Eine Ebene können Sie durch zwei Richtungsvektoren und einem Punkt ange-
ben. Das Problem ist, dass Sie bei zwei verschiedenen Ebenengleichungen, welche
dieselbe Ebene beschreiben unterschiedliche Richtungsvektoren haben können.
Wenn Sie zeigen wollen, dass die beiden Ebenen identisch sind, müssen Sie zuerst
zeigen, dass die Richtungsvektoren der einen Ebene durch die Richtungsvektoren
der anderen Ebene erstetzt werden können. Das ist ein Gleichungssystem, wel-
ches Sie lösen müssen. Wenn eine Ebene in Parameterform gegeben ist, müssen
Sie mit Hilfe des Gaussverfahrens die Schnittgerade beim Schnitt mit einer an-
deren Ebene ermitteln, bzw. mit Hilfe des Gaussverfahrens den Schnittpunkt der
Ebene mit einer Gerade.

Im dreidimensionalen Raum gibt es noch eine weitere Möglichkeit eine Ebene
zu beschreiben. So ist jede Ebene (im 3-dim. Raum) durch die Angabe eines zur
Ebene senkrechten Vektors und eines Punktes beschreibbar.

8.1 Ebenengleichung

Bei der Normalenform nutzen wir die Tatsache, dass der Normalenvektor ~n einer
Ebene senkrecht zu dieser Ebene ist. Dieser Normalenvektor beschreibt mit dieser
Eigenschaft sogar schon die Lage der Ebene. Die Ebene kann dann noch parallel
verschoben werden, daher benötigen wir später noch einen Punkt P zur genauen
Angabe der Lage der Ebene.

Der Normalenvektor ist senkrecht zu jedem Vektor welcher
”
in“ der Ebene

liegt. Wenn Sie einen beliebigen Punkt der Ebene (mit dem Ortsvektor) ~x neh-
men, dann liegt ~x−P in der Ebene. Also ist ~x− P senkrecht zu dem Normalen-
vektor. Und wenn zwei Vektoren senkrecht zueinander sind, ist das Skalarprodukt
null:

E : [~x− P ] · ~n = 0

Für alle Punkte der Ebene ist diese Bedingung erfüllt, und wenn Sie in ~x einen
Punkt einsetzen, der nicht der Ebene zugehört, dann ist das Skalarprodukt (also

102
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die Projektion auf den Normalenvektor) auch nicht null.

8.2 Die Koordinatenform

Wenn Sie die Normalenform ausmultiplizieren erhalten Sie die Koordinatenform.
Mit der Koordinatenform lässt es sich einfacher und schneller rechnen als mit der
(nicht ausmultiplizierten) Normalenform.

1. Beispiel: Ihnen ist folgende Normalenform gegeben:

E :



~x−





1
2
3







 ·





4
5
6



 = 0

Der gegebene Normalenvektor der Ebene ist:

~n =





4
5
6





Der gegebene Punkt der Ebene ist:

P =





1
2
3





Ausmultiplizieren der Normalenform:









x1

x2

x3



−





1
2
3







 ·





4
5
6



 = 0





x1

x2

x3



 ·





4
5
6



−





1
2
3



 ·





4
5
6



 = 0





x1

x2

x3



 ·





4
5
6



 =





1
2
3



 ·





4
5
6





4x1 + 5x2 + 6x3 = 4 + 10 + 18

4x1 + 5x2 + 6x3 = 32

Die Vorfaktoren der x-Komponenten sind gerade die Komponenten des Norma-
lenvektors und auf der rechten Seite steht das Skalarprodukt des Normalenvektors
mit einem Punkt der Ebene.

Beispiele:
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1.
E1 : x1 + 4x2 + 3x3 = 5

Ein Normalenvektor der Ebene ist:

~n =





1
4
3





Punkte der Ebene erhalten Sie am einfachsten, indem Sie einzelne Kompo-
nenten gleich null wählen und dann die letzte Komponente so wählen, dass
die Gleichung erfüllt ist:

x2 = 0

x3 = 0

Dann bestimmt sich x1 zu 5, damit die Ebenengleichung erfüllt ist: P1 =
(5|0|0). Weitere Punkte nach diesem Schema erstellt: P2 = (0|5/4|0), P3 =
(0|0|5/3). Sie können natürlich auch geschickt kombinieren: P4 = (2|0|1).

2.
E2 : x1 + x2 = 5

Ein Normalenvektor der Ebene ist:

~n =





1
1
0





Der Normalenvektor steht senkrecht auf die z-Koordinate. Daher liegt die
z-Koordinate in der Ebene.

3.
E3 : x1 = 5

Ein Normalenvektor der Ebene ist:

~n =





1
0
0





Dieser steht senkrecht auf der y-z-Ebene. Es handelt sich bei E3 um die
y-z-Ebene. Es handelt sich bei E3 um die y-z-Ebene..

Auch daran zu erkennen, dass Sie jeden beliebigen Wert für die y- und die
z-Komponente einsetzen können.
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8.3 Achsenaschnitt

Wenn Sie die Achsenabschnitte einer Ebene berechnen wollen (also an welchen
Punkten die Ebene die Achsen schneidet), können Sie dies mit der Koordinaten-
form schnell bewerkstelligen. Zwei Werte sind jeweils bekannt.

Beispiel:
2x1 + 4x2 + x3 = 8

1. Der Schnittpunkt mit der x-Achse.
x1 ist gesucht. x2 = 0 und x3 = 0.

2x1 = 8

x1 = 4

P1 = (4|0|0).

2. Der Schnittpunkt mit der y-Achse.
x2 ist gesucht. x1 = 0 und x3 = 0.

4x2 = 8

x2 = 2

P2 = (0|2|0).

3. Der Schnittpunkt mit der z-Achse.
x3 ist gesucht. x1 = 0 und x2 = 0.

x3 = 8

P3 = (0|0|8).

8.4 Normalenform: Punktprobe

Die Punktprobe ist bei der Normalenform im Gegensatz zur Parameterform sehr
einfach. Sie setzen den zu prüfenden Punkt in die Normalenform ein und über-
prüfen, ob die Bedingung erüllt ist.

Beispiel:

8.5 Normalenform: Schnittpunkt - Gerade und

Ebene

Sie haben eine weitere Gerade und eine Ebene in Parameterform. Geben Sie
gegebenenfalls (wenn Sie nicht parallel liegen) den Schnittpunkt an.
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Sie können auf die Parallelität vorher überprüfen, müssen dies aber nicht
tun. Diesmal wird die Ebene in Normalenform umgewandelt und die Gerade
eingesetzt. Dadurch erhalten Sie eine einfache Gleichung, welche nur von einer
Variaben abhängt. Wenn es unendlich viele Lösungen gibt, dann liegt die Gerade
in der Ebene. Wenn es genau eine Lösung gibt, dann gibt es einen Schnittpunkt.
Wenn es keine Lösung gibt, dann ist die Gerade parallel zur Ebene.

Beispiel:

E : ~x =





1
2
1



+ r





1
0
1



 + s





2
1
1





und

g : ~x =





7
5
6



+ t





1
1
1





Erstellen der Normalenform:




1
0
1



×





2
1
1



 =





−1
1
1





Dann lautet die Normalenform:

E :



~x−





1
2
1













−1
1
1



 = 0

Bzw. die Koordinatenform:

E : −x1 + x2 + x3 = 2

Parallelitätsprüfung:d





−1
1
1



 ·





1
1
1



 = −1 + 1 + 1 = 1 6= 0

Da der Normalenvektor der Ebene nicht senkrecht ist zum Richtungsvektor der
Geraden, gibt es einen Schnittpunkt zwischen Ebene und Gerade.

Für die Gerade g gilt:





x1

x1

x3



 =





7
5
6



+ t





1
1
1




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oder

x1 = 7 + t

x2 = 5 + t

x3 = 6 + t

Einsetzen der Gerade in die Koordinatengleichung. Dabei erhalten Sie eine Glei-
chung mit nur einer Variablen, nämlich t:

−x1 + x2 + x3 = 2

−(7 + t) + (5 + t) + (6 + t) = 2

−7 − t + 5 + t+ 6 + t = 2

t+ 4 = 2

t = −2

Der Schnittpunkt ergibt sich durch Einsetzen des Wertes für t in die Geraden-
gleichung.

S =





7
5
6



− 2 ·





1
1
1



 =





5
3
4





8.6 Normalenform: Schnittgerade - Ebene und

Ebene

Wenn sich zwei Ebenen schneiden, ergibt sich als Schnittobjekt eine Gerade. Dies
kennen Sie aus eigener Anschauung: Ein Buch besteht aus zwei Ebenen: die linke
Buchseite und die rechte Buchseite. Beide Seiten des Buches schneiden sich in
der Falz, das ist eine Schnittgerade. Oder ein anderes Beispiel: die Kante eines
Raumes ist die Schnittgerade zweier Mauern (Ebenen).

Beispiel: Gegeben sind zwei Ebenen:

E1 : ~x =





2
9
−4



+ r





3
5
−1



+ s





2
−1
2





E2 : ~x =





4
3
0



+ u





4
3
2



 + v





1
1
−1





Gesucht ist die Schnittgerade der beiden Ebenen. Gesucht sind also alle Punkte,
die sowohl der Ebene E1 als auch der Ebene E2 angehören.

Sie haben mehrere Möglichkeiten dieses Problem zu lösen.
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1. Sie suchen alle Punkte, welche beide Koordinatengleichungen lösen. Dies
ist ein Gleichungssystem mit zwei Gleichungen (die beiden Koordinaten-
gleichungen) und drei Unbekannten (x1, x2 und x3).

2. Sie formen eine Ebenengleichung zur Koordinatenform um, und setzen die
andere Ebene in die Koordinatenform um und erhalten eine Gleichung mit
zwei Unbekannten (r und s, bzw. u und v). Dies können Sie auflösen und
erhalten dann eine Geradengleichung für die Schnittgerade.

3. Sie können den Richtungsvektor der Schnittgerade aus den Normalenvek-
toren der beiden Ebenen unmittelbar ermitteln. Dann fehlt Ihnen nur noch
ein Punkt der Schnittgeraden, also ein gemeinsamer Punkt beider Ebenen.
Dies ist aber einfacher zu ermitteln, wenn Sie einen Schnittpunkt suchen,
bei dem eine Komponente null ist. Dann haben Sie ein eindeutiges Glei-
chungssystem mit nur zwei Unbekannten.

Umformen der Ebenengleichungen in die Koordinatenformen:

~n1 =





3
5
−1



×





2
−1
2



 =





9
−8
−13









9
−8
−13



 ·





2
9
−4



 = 18− 72 + 52 = −2

E1 : 9x1 − 8x2 − 13x3 = −2

~n2 =





4
3
2



×





1
1
−1



 =





−5
6
1









4
3
0



 ·





−5
6
1



 = −20 + 18 + 0 = −2

E2 : −5x1 + 6x2 + x3 = −2

8.6.1 Lösen des Gleichungssystems aus Koordinatenglei-

chungen

9x1 − 8x2 − 13x3 = −2

−5x1 + 6x2 + x3 = −2
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(
9 −8 −13
−5 6 1

)

·





x1

x2

x3



 =

(
−2
−2

)

II ′ = 9 · II + 5 · I
(
9 −8 −13
0 14 −56

)

·





x1

x2

x3



 =

(
−2
−28

)

II ′ = II/14
(
9 −8 −13
0 1 −4

)

·





x1

x2

x3



 =

(
−2
−2

)

I ′ = I + 8 · I
(
9 0 −45
0 1 −4

)

·





x1

x2

x3



 =

(
−18
−2

)

I ′ = I/9
(
1 0 −5
0 1 −4

)

·





x1

x2

x3



 =

(
−2
−2

)

Der Lösungsvektor ist dann gerade die gesuchte Schnittgerade der beiden Ebenen:

g : ~x =





−2
−2
0



+ r





5
4
1





Um dieselbe Geradengleichung zu erhalten wie in Kap. 7.5, S. 92

P =





−2
−2
0



 + 1





5
4
1



 =





3
2
1





g : ~x =





3
2
1



+ r





5
4
1





8.6.2 Parametergleichung in die Koordinatengleichung ein-

setzen

In diesem Lösungsweg wird die Parametergleichung von E2 in die Koordinaten-
gleichung von E1 eingesetzt.
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Für E2 gilt:

x1 = 4 + 4u+ v

x2 = 3 + 3u+ v

x3 = 0 + 2u− v

Einsetzen in E1:

9x1 − 8x2 − 13x3 = −2

9(4 + 4u+ v)− 8(3 + 3u+ v)− 13(2u− v) = −2

(36 + 36u+ 9v)− (24 + 24u+ 8v)− (26u− 13v) = −2

36 + 36u+ 9v − 24− 24u− 8v − 26u+ 13v = −2

12− 14u+ 14v = −2

−14u+ 14v = −14

−u+ v = −1

v = −1 + u

Dies eingesetzt in die Parametergleichung von E2 ergibt dann die Schnittgerade:

x1 = 4 + 4u+ (−1 + u) = 3 + 5u

x2 = 3 + 3u+ (−1 + u) = 2 + 4u

x3 = 0 + 2u− (−1 + u) = 1 + u

Und damit gilt für die Gerade:

g : ~x =





3
2
1



+ t





5
4
1





8.6.3 Bestimmen des Richtungsvektors aus den Norma-

lenvektoren

Die Schnittgerade ist ein Bestandteil der Ebene E1 und somit bilden die Gera-
de und der Normalenvektor von E1 einen senkrechten Winkel. D. h, dass der
Richtungsvektor der Schnittgerade und der Normalenvektor der Ebene einen 90◦

Winkel haben.
Dieselbe Argumentation gilt auch für die Ebene E2. Die Schnittgerade liegt

ja eben auch in der Ebene E2.
Der Richtungsvektor der Schnittgerade ist senkrecht zu den beiden Norma-

lenvektoren der beiden Ebenen. Gesucht ist also der Richtungsvektor, bzw. ein
Vektor, welcher senkrecht zu den beiden Normalenvektoren der Ebenen ist. Diesen
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Vektor liefert das Vektorprodukt:

~n1 × ~n2 =





9
−8
−13



×





−5
6
1



 =





70
56
40



 ∼





5
4
1





Da Sie den Richtungsvektor benötigen, können Sie
”
kürzen“ und einen Vektor

wählen mit möglichst kleinen Werten.
Nun benötigen Sie nur noch einen Punkt der Schnittgeraden. Dazu müssen

Sie doch eines der Gleichungssysteme lösen.

9x1 − 8x2 − 13x3 = −2

−5x1 + 6x2 + x3 = −2

Wählen Sie eine Komponente als null (jede andere beliebige Zahl geht auch).
Evtl., wenn das Gleichungssystem dann nicht lösbar ist, müssen Sie eine andere
Komponente als null wählen.

Hier wird jetzt willkürlich x1 = 0 gewählt: (Die Wahl sollte so sein, dass das
entstehende Gleichungssystem möglichst einfach wird.)

−8x2 − 13x3 = −2 I

6x2 + x3 = −2 II

Erste Rechnung: I + 13 · II:

70x2 = −28

x2 = − 2

5

Um x3 zu bestimmen: 3 · I + 4 · II:

−35x3 = −14

x3 =
2

5

Der Punkt lautet: P(0| − 2
5
|2
5
).

g : ~x =





0
− 2

5
2
5



+ t





5
4
1





Um einen anderen Punkt zu finden:




0
− 2

5
2
5



 +
3

5
·





5
4
1



 =
1

5





15
10
5



 =





3
2
1




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Abbildung 8.1: Zwei Ebenen und dazu jeweils zwei Normalenvektoren, die sich
an der Spitze treffen und einen Winkel bilden. Eingezeichnet ist auch die Schnitt-
gerade der beiden Ebenen. Der Schnittwinkel der Ebene ist dann 180◦ Minus dem
Winkel der Normalenvektoren (siehe Text).

Damit ergibt sich die Schnittgerade zu:

g : ~x =





3
2
1



+ t





5
4
1





8.7 Schnittwinkel bei Ebenen

Der Schnittwinkel zweier Ebenen kann mit Hilfe der Normalenvektoren bestimmt
werden. Siehe Abb. 8.1, S. 112

Dazu muss der Winkel den die Normalenvektoren einschliessen berechnet wer-
den. Die Winkelsumme im Viereck beträgt 360◦. Die Normalenvektoren haben
jeweils einen 90◦ Winkel zur Ebene. So dass sich der Winkel zwischen den Nor-
malenvektoren und der Ebene zu 180◦ ergänzen.

Der Schnittwinkel zwischen den Normalenvektoren γ berechnet sich mit dem
Skalarprodukt:

cos(γ) = n1 · n2

γ = arccos(n1 · n2)

α = 180− γ

Wenn dagegen eine Gerade eine Ebene schneidet, dann können Sie den Winkel
zwischen dem Normalenvektor der Ebene und dem Richtungsvektor der Gerade
bestimmen. Dieser Vektor ergänzt sich dann mit dem gesuchten Winkel zwischen
Gerade und Ebene zu 90◦. Das ist der Winkel, den der Normalenvektor zur Ebene
hat.
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8.8 Übungen

Aufgabe 8.1

Gegeben ist Ihnen folgende Ebene in Parameterform. Erstellen Sie die Normalen-
form und die Koordinatenform.

E : ~x =





1
2
3



+ r





1
0
2



 + s





1
1
1





(Lösung siehe Seite 114).

Aufgabe 8.2

Entscheiden Sie, ob die Ebenen parallel sind:

E1 : ~x =





2
3
1



+ s





1
0
1



+ t





0
1
2





E2 : ~x =





4
1
2



+ u





2
−1
0



+ v





4
−3
−2





n = 1, 2, -1
(Lösung siehe Seite 114).
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Zu Aufgabe: 8.1

Gegeben ist Ihnen folgende Ebene in Parameterform. Erstellen Sie die Normalen-
form und die Koordinatenform.

E : ~x =





1
2
3



+ r





1
0
2



 + s





1
1
1





Erstellen Sie zuerst die Normale mit Hilfe des Vektorproduktes der Richtungs-
vektoren:

n =





1
0
2



×





1
1
1



 =





−2
1
1





Damit ist die Normalenform:

E :



~x−





1
2
3







 ·





−2
1
1



 = 0

Die Koordinatenform:

−2x1 + x2 + x3 =





−2
1
1



 ·





1
2
3





−2x1 + x2 + x3 = −2 + 2 + 3

−2x1 + x2 + x3 = 3

Zu Aufgabe: 8.2

Entscheiden Sie, ob die Ebenen parallel sind:

E1 : ~x =





2
3
1



+ s





1
0
1



+ t





0
1
2





E2 : ~x =





4
1
2



+ u





2
−1
0



+ v





4
−3
−2





Bestimmen Sie die Normalenvektoren der Ebenengleichungen.

n1 =





1
0
1



×





0
1
2



 =





−1
−2
11



 ∼





1
2
−1





n2 =





2
−1
0



×





4
−3
−2



 =





2
4
−2



 ∼





1
2
−1




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Da die beiden Ebenen dieselben Normalenvektoren haben, sind sie entweder
parallel oder identisch.

Die Koordinatenform der ersten Ebene:

E1 : x1 + 2x2 − x3 =





2
3
1



 ·





1
2
−1





E1 : x1 + 2x2 − x3 = 2 + 6− 1

E1 : x1 + 2x2 − x3 = 7

Ein Punkt der zweiten Ebene wird in die Koordinatengleichung der ersten Ebene
eingesetzt:

4 + 2 · 1− 2 = 4 + 2− 1

= 5

6= 7

Da der Punkt der zweiten Ebene kein Punkt der ersten Ebene ist, sind die Ebenen
nicht identisch sondern parallel.



Kapitel 9

Abstand

In diesem Kapitel werden drei Abstandsberechnungen vorgestellt:

1. Der Abstand zwischen zwei Punkten.

2. Der Abstand zwischen einem Punkt und einer Ebene.

3. Der Abstand zwischen einer Gerade und einer Ebene.

4. Der Abstand zwischen einer Ebene und einer Ebene.

5. Der Abstand zwischen einem Punkt und einer Gerade.

Ausgehend von der Normalenform werden wir die Hesse Normalenform (kurz
HNF) entwickeln, um den Abstand zwischen einer Ebene und einem Punkt be-
stimmen zu können. Damit sind alle Abstände zu einer Ebene berechenbar.

Der Abstand zwischen einer Gerade und einer Ebene dagegen ist aufwändiger.
Die Berechnung kann einmal durch eine Gleichung oder auch mit einer Hilfsebene
erfolgen.

9.1 Abstand: Punkt – Punkt

Den Abstand zwischen zwei Punkten berechnen Sie auf zweierlei Art. Die Rech-
nung ist aber immer dieselbe.

~a =





a1
a2
a3



 ~b =





b1
b2
b3





1. Mit Hilfe des Pythagoras: Der Abstand d bestimmt sich dann durch den
Pythagoras:

d =
√

(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2

2. Mit Hilfe des Skalarproduktes:

d2 = (~a−~b) · (~a−~b)

116
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9.2 Abstand: Punkt – Ebene

In diesem Kapitel lernen Sie den Abstand eines Punktes zu einer Ebene zu be-
stimmen. Wenn Sie den Abstand mit einem Lineal ausmessen, dann nehmen Sie
eine Normale durch zur Ebene durch den Punkt P und bestimmen den Schnitt-
punkt mit der Ebene und anschliessend bestimmen Sie den Abstand von P zum
Schnittpunkt. Dieses Verfahren ist möglich aber sehr aufwändig.

A

P

Abbildung 9.1: Eine Ebene mit einem Punkt A und ihre Normale (rot) sind
eingezeichnet. Ein weiterer Punkt P und dessen Projektion auf die zur Ebene
senkrechte Gerade durch A sind ebenfalls eingezeichnet. Unten links ist das Ko-
ordinatensystem angedeutet.

In Abb. 9.1 auf S. 117 sind eine Ebene mit einem Punkt A und ihre Normale
(rotr Vektor) eingezeichnet. Ebenfalls ist eine gestrichelte Gerade eingezeichnet.
Des weiteren ist ein Punkt P dessen Abstand zur Ebene bestimmt werden soll
eingezeichnet.
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Skalarprodukt und Projektion sind eng mit einander verknüpft. Wenn der
Normalenvektor (~n) die länge 1 hat, ist das Skalarprodukt so groß wie die Pro-
jektion lang ist.

Der Vektor von A nach P bestimmt sich durch: ~p− ~a.
Damit ist dann der Abstand d:

[~p− ~a] · ~n0 = d

~n0 ist der Normalenvektor der Ebene mit der Länge 1.
Einen Normalenvektor der Länge 1 erhalten Sie, indem Sie den Normalenvek-

tor durch seine Länge teilen:

[~p− ~a] · 1

|~n|~n = d

Dies entspricht der Normalenform mit einem speziellen Normalenvektor. Dar-
um hat diese Normalenform einen speziellen Namen: Die Hesse Normalenform
(kurz: HNF):

[~x− ~a] · 1

|~n|~n = 0

Diese Form gibt, wenn man einen beliebigen Punkt für ~x einsetzt, den Abstand
des Punktes zur Ebene an. Wenn der Punkt in der Ebene liegt, dann ist der
Abstand natürlich null.

9.3 Abstand: Gerade – Ebene

Der Abstand einer Geraden zu einer Ebene macht nur dann Sinn, wenn die Gerade
und die Ebene parallel sind und keinen gemeinsamen Schnittpunkt haben.

Wenn die Gerade parallel ist, hat jeder Punkt der Geraden denselben Abstand
von der Ebene. Es reicht also, einen Punkt der Geraden in die HNF der Ebene
einzusetzen und den Abstand des Punktes von der Ebene zu bestimmen.

9.4 Abstand: Ebene – Ebene

Der Abstand einer Ebene zu einer anderen Ebene macht nur dann Sinn, wenn
beide Ebenen parallel sind und keinen gemeinsamen Schnittpunkt (genauer: keine
Schnittgerade) haben.

Wenn die Ebenen parallel sind, hat jeder Punkt einer Ebene denselben Ab-
stand zur anderen Ebene. Es reicht also, einen Punkt einer Ebene in die HNF
der anderen Ebene einzusetzen und den Abstand des Punktes von der Ebene zu
bestimmen.
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A

P

L

v

Abbildung 9.2: Ein Punkt und eine Gerade sind eingezeichnet. v ist in dem Bild
der Richtungsvektor. Das Lot vom Punkt P auf die Gerade trifft die Gerade im
Punkt L. Die Vektoren v und P-A sind rot eingezeichnet.

9.5 Abstand: Punkt – Gerade

Um den Abstand zu einem Punkt zu berechnen müssen Sie ein bisschen Geometrie
betreiben. Dadurch ist die Berechnung aufwändiger und es gibt viele Möglichkei-
ten.

Gegeben ist Ihnen eine Gerade g und ein Punkt P . Die senkrechte Verbindung
von P auf die Gerade g trifft die Gerade im Lotpunkt L. In der Abb. 9.2, S. 119
ist die Situation im Überblick dargestellt.

Dabei gibt es mehrere mögliche Vorgehensweisen:

1. Um den Lotpunkt L zu ermitteln stellen Sie eine Gleichung auf und lösen
diese. Der Lotpunkt ist ein Punkt der Geraden. Also reicht die Angabe des
Parameters aus, um den Lotpunkt eindeutig festzulegen.
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Um den Wert für den Parameter zu bestimmen, nutzen Sie aus, dass die
Verbindung LP senkrecht zur Geraden ist: Also ist das Skalarprodukt vom
Vektor LP mit dem Richtungsvektor der Geraden null. Dies ergibt eine
Gleichung mit der Sie dann den Lotpunkt L bestimmen können und dann
können Sie den Abstand bestimmen.

2. Sie können eine Hilfsebene bestimmen, die von der Geraden senkrecht durch-
drungen wird und den Punkt P beinhaltet. Sie bestimmen dann den Durch-
stoßpunkt der Geraden mit der Ebene, welcher gleich dem Lotpunkt L ist.
Anschließend können Sie dann den Abstand von L zu P bestimmen.

3. Sie können für alle Punkte der Geraden eine Gleichung angeben, welche
den Abstand, bzw. das Quadrat des Abstandes zum Punkt P angibt. Der
kürzeste Abstand ist dann der Abstand vom Punkt P zur Geraden. Dies ist
ein Extremwertproblem, welches mit den Methoden der Analysis gelöst wer-
den kann. Bei dieser Methode erhalten Sie im Unterschied zu den anderen
Methoden nicht den Lotpunkt L.

4. Sie können sich ebenfalls das Vektorprodukt zu nutze machen. Die Idee
dabei ist, dass der Richtungsvektor der Geraden und der Vektor zwischen
dem Punkt der Geraden und dem gegebenen Punkt ein Parallelogramm
aufspannen. Die Fläche des Parallelogramms ist gerade die Länge der Höhe
multipliziert mit der Länge der Grundseite.

Wählen Sie als Länge der Grundseite den speziellen Richtungsvektor der
Gerade mit der Länge 1:

v0 =
~v

|~v|
Dann entspricht die Fläche des Parallelogramms gerade der Höhe, das ist
aber auch die Entfernung des Punktes von der Geraden. Die Fläche wird
dann mit dem Vektorprodukt ausgerechnet.

Alle Methoden werden wir an folgendem Beispiel durchrechnen und vorstellen.

g : ~x = A+ tv =





13
12
7



 + t





3
0
−1





Es ist der Abstand des Punktes P(2|3|4) zur Geraden g gesucht.

9.5.1 Gleichung aus Skalarprodukt

L ist der Punkt der Geraden, welcher den kleinsten Abstand zu dem Punkt P
hat. Dann ist der Vektor PL senkrecht auf der Geraden (weil die senkrechte die
kürzestes Verbindung ist). Also gilt folgende Beziehung:

(L− P ) · v = 0
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Statt L können wir die Geradengleichung schreiben:

(A+ tv − P ) · v = 0

eingesetzt:








13
12
7



+ t





3
0
−1



−





2
3
4







 ·





3
0
−1



 = 0









11
9
3



+ t





3
0
−1







 ·





3
0
−1



 = 0

33 + 9 · 0− 3 + 9t + 0t+ t = 0

30 + 10t = 0

10t = −30

t = −3

Dieser Wert für t wird dann eingesetzt in die Geradengleichung und ergibt dann
den Lotfußpunkt L:

L =





13
12
7



− 3





3
0
−1



 =





4
12
10





Der Abstand von L zu P :

d =

∣
∣
∣
∣
∣
∣





4
12
10



−





2
3
4





∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣





2
9
6





∣
∣
∣
∣
∣
∣

=
√
22 + 92 + 62

=
√
4 + 81 + 36

=
√
121

= 11

Der Abstand des Punktes zur Gerade beträgt 11 LE.

9.5.2 Fußpunktbestimmung mit Hilfsebene

Bei dieser Methode wird zuerst eine Hilfsebene Eh konstruiert, welche den Punkt
P enthält und auf der die Gerade g senkrecht steht. Der Lotfußpunkt L ist dann
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A

P

L

v

Abbildung 9.3: Ein Punkt und eine Gerade sind eingezeichnet. v ist in dem
Bild der Richtungsvektor. Das Lot vom Punkt P auf die Gerade trifft die Gerade
im Punkt L. Die Vektoren v und P-A sind rot eingezeichnet. Darüber hinaus
ist eine Ebene eingezeichnet, welche senkrecht zur Gerade ist und den Punkt P
beinhaltet. v ist nicht nur der Richtungsvektor der Geraden sondern ebenfalls der
Normalenvektor der Ebene.
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der Durchstoßpunkt der Gerade mt der Ebene. Die Situation ist in der Abb. 9.3,
S. 122 dargestellt.

Der Normalenvektor der Ebene Eh ist der Richtungsvektor der Gerade:

Eh : 3x1 + 0x2 − x3 =





2
3
4



 ·





3
0
−1





Eh : 3x1 + 0x2 − x3 = 6 + 0− 4

Eh : 3x1 + 0x2 − x3 = 2

Jetzt wird L als gemeinsamer Punkt der Ebene Eh und der Geraden durch Ein-
setzen der Geradengleichung in die Koordinatenform der Ebene bestimmt:

3(13 + 3t) + 0(12 + 0t)− (7− t) = 2

39 + 9t− 7 + t = 2

32 + 10t = 2

10t = −30

t = −3

Die Bestimmung von L und der Abstand zu P erfolgen wie oben.
Dieser Wert für t wird dann eingesetzt in die Geradengleichung und ergibt

dann den Lotfußpunkt L:

L =





13
12
7



− 3





3
0
−1



 =





4
12
10





Der Abstand von L zu P :

d =

∣
∣
∣
∣
∣
∣





4
12
10



−





2
3
4





∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣





2
9
6





∣
∣
∣
∣
∣
∣

=
√
22 + 92 + 62

=
√
4 + 81 + 36

=
√
121

= 11

Der Abstand des Punktes zur Gerade beträgt 11 LE.
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9.5.3 Abstandsbestimmung als minimaler Abstand

Der Abstand eines beliebigen Punktes der Gerade zum Punkt bestimmt sich nach:

d = |~x− ~p|

=

∣
∣
∣
∣
∣
∣





13
12
7



+ t





3
0
−1



−





2
3
4





∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣





11
9
3



+ t





3
0
−1





∣
∣
∣
∣
∣
∣

Um keinen Wurzelausdruck zu bekommen untersuchen wir das Quadrat des Ab-
standes:

d2 =









11
9
3



+ t





3
0
−1







 ·









11
9
3



+ t





3
0
−1









(11 + 3t)2 + (9)2 + (3− t)2

(121 + 66t+ 9t2) + (81) + (9− 6t+ t2)

211 + 60t+ 10t2

Das Quadrat des Abstandes ist eine Funktion von t:

qd(t) = 211 + 60t+ 10t2

qd′(t) = 60 + 20t

Wenn qd(t) minimal ist, dann gilt notwenigerweise:

qd′(t) = 0

20t+ 60 = 0

20t = −60

t = −3

Da qd(t) eine quadratische Funktion mit einem positiven Vorzeichen vor dem t2

ist, ist bei t = −3 das Minimum. Bei t = −3 ist der Lotfußpunkt.
Der Abstand:

qd(−3) = 211 + 60 · (−3) + 10 · (−3)2

= 211− 180 + 90

= 121

d(−3) = 11

Der Abstand des Punktes P zur Geraden g beträgt dann 11LE.
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9.5.4 Abstandsbestimmung mit Hilfe der Fläche

Wir betrachten zwei Vektoren:

1. Den Richtungsvektor der Geraden: ~v.

2. Den Vektor zwischen dem Punkt der Geraden und dem gegebenen Punkt:
P-A.

Diese beiden Vektoren liegen in derselben Ebene wie das gesuchte Lot von P
auf die Gerade. Diese beiden Vektoren bilden ein Parallelogramm, dessen Höhe
gerade das gesuchte Lot ist.

In der Abb. 9.2, S. 119 ist die Situation im Überblick dargestellt.
Die Fläche des Parallelogrammes berechnet sich durch

A = Grundseite mal Höhe

A = |~v × ~p− a|

Wenn nun die Grundseite des Parallelogrammes die Länge 1 hat, so entspricht
die Fläche der Länge der Höhe.

Einen Richtungsvektor mit der Länge eins erhalten Sie, wenn Sie den Rich-
tungsvektor durch seine Länge teilen:

~v0 =
~v

|~v|

Dann erhalten Sie die Länge der Höhe, bzw. den Abstand:

d =
|~v × ~p− a|

|~v|
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A

P

L

v

h

Abbildung 9.4: Ein Punkt und eine Gerade sind eingezeichnet. v ist in dem Bild
der Richtungsvektor. Das Lot vom Punkt P auf die Gerade trifft die Gerade im
Punkt L. Die Vektoren v und P-A sind rot eingezeichnet. Die Vektoren P-A und
v bilden ein Parallelogramm in der Ebene. Die Verbindung LP ist die Höhe des
Parallelogramms mit der Grundseite v.
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In unserem Beispiel:

d =
|~v × ~p− a|

|~v|

=

∣
∣
∣
∣
∣
∣





3
0
−1



×









2
3
4



−





13
12
7









∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣





3
0
−1





∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣





3
0
−1



×





−11
−9
−3





∣
∣
∣
∣
∣
∣

√
9 + 0 + 1

=

∣
∣
∣
∣
∣
∣





−9
20
−27





∣
∣
∣
∣
∣
∣

√
10

=

√
81 + 400 + 729√

10

=

√
1210√
10

=
√
121

= 11

Der Abstand beträgt 11 LE.
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9.6 Übungen

Aufgabe 9.1

Bestimmen Sie den Abstand des Punktes P(1|1|2) von der Gerade g:

g : ~x =





8
9
18



+ t





1
2
3





(Lösung siehe Seite 129).
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Zu Aufgabe: 9.1

Bestimmen Sie den Abstand des Punktes P(1|1|2) von der Gerade g:

g : ~x =





9
11
−2



+ t





1
2
−2





1. Gleichung aus Skalarprodukt Wir suchen als erstes den Lotpunkt L:

(L− P ) · v = 0

(A + tv − P ) · v = 0








9
11
−2



+ t





1
2
−2



−





1
1
2







 ·





1
2
−2



 = 0









8
10
−4



+ t





1
2
−2







 ·





1
2
−2



 = 0

8 + 20 + 8 + 4t+ 4t+ t = 0

36 + 9t = 0

9t = −36

t = −4

Dieser Wert für t wird dann eingesetzt in die Geradengleichung und ergibt
dann den Lotfußpunkt L:

L =





9
11
−2



− 4





1
2
−2



 =





5
3
6





Der Abstand von L zu P :

d =

∣
∣
∣
∣
∣
∣





5
3
6



−





1
1
2





∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣





4
2
4





∣
∣
∣
∣
∣
∣

=
√
42 + 22 + 42

=
√
16 + 4 + 16

=
√
36

= 6

Der Abstand des Punktes zur Gerade beträgt 6 LE.
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2. Fußpunktbestimmung mit Hilfsebene Bei dieser Methode wird zuerst
eine Hilfsebene Eh konstruiert, welche den Punkt P enthält und auf der die
Gerade g senkrecht steht. Der Lotfußpunkt L ist dann der Durchstoßpunkt
der Gerade mt der Ebene.

Der Normalenvektor der Ebene Eh ist der Richtungsvektor der Gerade:

Eh : 1x1 + 2x2 − 2x3 =





1
1
2



 ·





1
2
−2





Eh : x1 + 2x2 − 2x3 = 1 + 2− 4

Eh : x1 + 2x2 − 2x3 = −1

Jetzt wird L als gemeinsamer Punkt der Ebene Eh und der Geraden durch
Einsetzen der Geradengleichung in die Koordinatenform der Ebene be-
stimmt:

(9 + t) + 2(11 + 2t)− 2(−2− 2t) = −1

9 + t+ 22 + 4t+ 4 + 4t = −1

35 + 9t = −1

9t = −36

t = −4

Die Bestimmung von L und der Abstand zu P erfolgen wie oben.

Dieser Wert für t wird dann eingesetzt in die Geradengleichung und ergibt
dann den Lotfußpunkt L:

L =





9
11
−2



− 4





1
2
−2



 =





5
3
6





Der Abstand von L zu P :

d =

∣
∣
∣
∣
∣
∣





5
3
6



−





1
1
2





∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣





4
2
4





∣
∣
∣
∣
∣
∣

=
√
42 + 22 + 42

=
√
16 + 4 + 16

=
√
36

= 6

Der Abstand des Punktes zur Gerade beträgt 6 LE.
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3. Abstandsbestimmung als minimaler Abstand Der Abstand eines be-
liebigen Punktes der Gerade zum Punkt bestimmt sich nach:

d = |~x− ~p|

=

∣
∣
∣
∣
∣
∣





9
11
−2



 + t





1
2
−2



−





1
1
2





∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣





8
10
−4



 + t





1
2
−2





∣
∣
∣
∣
∣
∣

Um keinen Wurzelausdruck zu bekommen untersuchen wir das Quadrat des
Abstandes:

d2 =









8
10
−4



+ t





1
2
−2







 ·









8
10
−4



 + t





1
2
−2

(8 + t)2 + (10 + 2t)2 + (−4− 2t)2

(64 + 16t+ t2) + (100 + 40t+ 4t2) + (16 + 16t+ 4t2)

180 + 72t+ 9t2

Das Quadrat des Abstandes ist eine Funktion von t:

qd(t) = 180 + 72t+ 9t2

qd′(t) = 72 + 18t

Wenn qd(t) minimal ist, dann gilt notwenigerweise:

qd′(t) = 0

18t+ 72 = 0

18t = −72

t = −4

Da qd(t) eine quadratische Funktion mit einem positiven Vorzeichen vor
dem t2 ist, ist bei t = −3 das Minimum. Bei t = −3 ist der Lotfußpunkt.

Der Abstand:

qd(−4) = 180 + 72 · (−4) + 9 · (−4)2

= 180− 288 + 144

= 36

d(−4) = 6

Der Abstand des Punktes P zur Geraden g beträgt dann 6LE.
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4. Abstandsbestimmung mit Hilfe der Fläche Wir betrachten zwei Vek-
toren:

(a) Den Richtungsvektor der Geraden: ~v.

(b) Den Vektor zwischen dem Punkt der Geraden und dem gegebenen
Punkt: P-A.

Diese beiden Vektoren liegen in derselben Ebene wie das gesuchte Lot von
P auf die Gerade. Diese beiden Vektoren bilden ein Parallelogramm, dessen
Höhe gerade das gesuchte Lot ist.

In unserem Beispiel:

d =
|~v × ~p− a|

|~v|

=

∣
∣
∣
∣
∣
∣





1
2
−2



×









9
11
−2



−





1
1
2









∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣





1
2
−2





∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣





1
2
−2



×





8
10
−4





∣
∣
∣
∣
∣
∣

√
1 + 4 + 4

=

∣
∣
∣
∣
∣
∣





12
−12
−6





∣
∣
∣
∣
∣
∣

√
9

=

√
144 + 144 + 36√

9

=

√
324√
9

=
√
36

= 6

Der Abstand beträgt 6 LE.



Kapitel 10

Ebenenübersicht

In diesem Kapitel soll eine Übersicht zu den einzelnen Ebenenformen und deren
sinnvoller Einsatz in der 3-dim. Vektorrechnung gegeben werden. Grundsätzlich
können Sie mit jeder Form jedes Problem lösen. Nur wird es dann manchmal sehr
aufwändig.

Folgende Ebenenformen werden aufgeführt:

1. Die Parameterform

2. Die Normalenform

3. Die Hesse Normalenform

4. Die Koordinatenform

10.1 Übersicht: Ebenen

In dieser Übersicht werden die originären Funktionalitäten der einzelnen Ebenen-
formen aufgeführt. Sebstverständlich können Sie auch alle Probleme nur mit der
Parameterform lösen. Sie haben dann nur weniger Spaß.

10.1.1 Die Parameterform

1. Aus drei Punkten der Ebene können Sie schnell die Parameterform herlei-
ten.

2. Mit Hilfe der Parameterform können Sie weitere Punkte angeben.

3. Mit Hife des Vektorproduktes können Sie die Parameterform ind die Nor-
malenform umwandeln.
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10.1.2 Die Normalenform

1. Aus einem senkrechten Vektor zu der Ebene und einem Punkt schnell auf-
stellbar.

2. Sie können schnell überprüfen, ob ein weiterer Punkt ein Punkt der Ebene
ist.

3. Sie können schnell mit Hilfe des Normalenvektors bestimmen, ob eine wei-
tere Ebene parallel ist. (Dann sind die Normalenvektoren Vielfache vonein-
ander.)

4. Sie können mit Hilfe des Normalenvektors bestimmen, ob eine weitere Ge-
rade parallel zur Ebene ist. (Dann bilden der Normalenvektor und der Rich-
tungsvektor einen 90◦ Winkel, d. h. dass deren Skalarprodukt null ist.)

5. Sie können den Schnittwinkel zweier Ebenen, bzw. einer Gerade und einer
Ebene bestimmen.

10.1.3 Die Hesse Normalenform

Diese Form benutzen Sie nur, um den Abstand eines Punktes von einer Ebene zu
berechnen.

10.1.4 Die Koordinatenform

1. Mit der Koordinatenform können Sie alles machen, was Sie auch mit der
Normalenform machen können.

2. Diese Form benutzen Sie für Schnittpunkts- und Schnittgeradenberechnun-
gen indem Sie eine Parameterform in die Koordinatenform einsetzen.

3. Mit mehreren Koordinatenformen können Sie direkt ein Gleichungsystem
zur Bestimmung der Schnittgeraden aufstellen.



Kapitel 11

Arbeitsblätter

11.1 Tetraeder

Ein Tetraeder hat vier (tetra) vier Flächen und damit vier Ecken. In diesem
Arbeitsblatt untersuchen wir einen regelmäßigen Tetraeder. Seine Flächen sind
jeweils gleichseitige Dreiecke.

Von einem regelmäßigen Tetraeder sind 3 Eckpunkte gegeben: A(0|0|0), B(4|4|0),
C(0|4|4).

1. Geben Sie die Möglichkeiten für den 4. Punkt an.

(Nehmen Sie im folgenden an, dass D(4|0|4) sei.

2. Bestimmen Sie die Oberfläche des Tetraeders.

3. Bestimmen Sie das Volumen des Tetraeders.

4. Bestimmen Sie den Winkel, den jede Kante mit der gegenüberliegenden
Ebene einschließt.

5. Bestimmen Sie den Winkel, den die Dreiecksflächen einschließen.
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11.2 Tetraeder – Lösung

Ein Tetraeder hat vier (tetra) vier Flächen und damit vier Ecken. In diesem
Arbeitsblatt untersuchen wir einen regelmäßigen Tetraeder. Seine Flächen sind
jeweils gleichseitige Dreiecke.

Von einem regelmäßigen Tetraeder sind 3 Eckpunkte gegeben: A(0|0|0), B(4|4|0),
C(0|4|4).

1. Geben Sie die Möglichkeiten für den 4. Punkt an.

Die Seitenlänge des Tetraeders beträgt:

|B −A| =

∣
∣
∣
∣
∣
∣





4
4
0





∣
∣
∣
∣
∣
∣

=
√
16 + 16 =

√
2 · 16 = 4

√
2

|B − C| =

∣
∣
∣
∣
∣
∣





4
0
−4





∣
∣
∣
∣
∣
∣

=
√
16 + 16 =

√
2 · 16 = 4

√
2

|C −A| =

∣
∣
∣
∣
∣
∣





0
4
4





∣
∣
∣
∣
∣
∣

=
√
16 + 16 =

√
2 · 16 = 4

√
2

Da es sich um ein gleichseitiges Dreieck handelt, fallen die Seitenhalbieren-
de, die Mittelsenkrechte, die Höhe und die Winkelhalbierende zusammen.
Insbesondere sind die Schnittpunkte der Mittelsenkrechten, der Seitenhal-
bierenden und der Höhen (und der Winkelhalbierenden) identisch.

Die gesuchte Spitze befindet sich oberhalb des Umkreismittelpunktes des
Dreiecks damit sie von allen Ecken gleich weit entfernt ist. Der Umkreismit-
telpunkt ist der Schnittpunkt der Mittelsenkrechten, bzw. hier der Höhen.

Für die Konstruktion der Höhen benötigen wir die Normale des Dreiecks.

~n = (B − A)× (C −A)

=





4
4
0



×





0
4
4





=





16
−16
16



 ∼





1
−1
1





hc steht senkrecht auf die Normale und senkrecht auf die Strecke AB. Der
Richtungsvektor ist somit ebenfalls senkrecht zur Normalen und zu (B-A).

vc = ~n× (B −A) =





1
−1
1



×





4
4
0



 =





−4
4
8



 ∼





−1
1
2




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Die Höhe hc geht durch den Punkt C:

hc =





0
4
4



+ t





−1
1
2





ha steht senkrecht auf die Normale und senkrecht auf die Strecke BC. Der
Richtungsvektor ist somit ebenfalls senkrecht zur Normalen und zu (C-B).

va = ~n× (C − B) =





1
−1
1



×





−4
0
4



 =





−4
−8
−4



 ∼





1
2
1





Die Höhe ha geht durch den Punkt A:

ha = s





1
2
1





Gesucht ist der Schnittpunkt der Höhe, bzw Mittelsenkrechten (Umkreis-
mittelpunkt). Dazu müssen Sie folgendes Gleichungssystem lösen:

ha = hb

s





1
2
1



 =





0
4
4



+ t





−1
1
2





s





1
2
1



+ t





1
−1
−2



 =





0
4
4





Der ersten Zeile entnehmen Sie: s = −t und aus der 2. Zeile:

2s− t = 4

2(−t)− t = 4

−2t− t = 4

−3t = 4

t = − 4

3

s =
4

3

Dies ist auch eine Lösung für die dritte Zeile.
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Der gesuchte Mittelpunkt:

M =
4

3





1
2
1





Der gesuchte 4. Punkt muss auf folgender Geraden liegen:

m =
4

3





1
2
1



+ r





1
−1
1





und den Abstand von 4
√
2 zu A, B und C haben. Da die Gerade m von

allen Punkten gleich weit entfernt ist, reicht es den Abstand zum Punkt A
zu ermitteln.

|m−A| = 4
√
2

∣
∣
∣
∣
∣
∣

4

3





1
2
1



+ r





1
−1
1





∣
∣
∣
∣
∣
∣

= 4
√
2

√
(
4

3
+ r

)2

+

(
8

3
− r

)2

+

(
4

3
+ r

)2

= 4
√
2 |()2

(
4

3
+ r

)2

+

(
8

3
− r

)2

+

(
4

3
+ r

)2

= 16 · 2
(
4 + 3r

3

)2

+

(
8− 3r

3

)2

+

(
4 + 3r

3

)2

= 32

(4 + 3r)2

9
+

(8− 3r)2

9
+

(4 + 3r)2

9
= 32

(16 + 2 · 4 · 3r + 9r2) + (64− 48r + 9r2) + (16 + 24r + 9r2) = 32 · 9
96 + 27r2 = 288 | : 3
32 + 9r2 = 96

r = − 8

3
oder r =

8

3
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P1 =
4

3





1
2
1



− 8

3





1
−1
1





= − 1

3





4
0
4





P2 =
4

3





1
2
1



 +
8

3





1
−1
1





=





4
0
4





2. Bestimmen Sie die Oberfläche des Tetraeders.

Der Tetraeder setzt sich, da er ein regelmäßiger Tetraeder ist, aus vier gleich
großen Dreiecken zusammen.

Die Fläche eines Dreiecks bestimmt sich durch:

~n = (B −A)× (C − A)

=





4
4
0



×





0
4
4





=





16
−16
16





A = |~n|
=

√
162 + 162 + 162

=
√
3 · 16

= 4
√
3

Die Oberfläche ist dann:

O = 4 · A
= 4 · 4

√
3

= 16
√
3

3. Bestimmen Sie das Volumen des Tetraeders.

Ein Tetraeder ist ein spitz zulaufender Körper, also gilt für sein Volumen:

V =
1

3
GH
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G: Grundfläche und H ist seine Höhe.

Die Grundfläche ergibt sich durch die Hälfte des Parallelogramms, welches
durch (B-A) und (C-A) aufgespannt wird:

Also ist das Volumen des Tetraeders nur 1
2
· 1
3
= 1

6
des Parallelepipeds.

V =
1

6
[(B − A)× (C −A)] · (D − A)

=
1

6





16
−16
16



 ·





4
0
4





=
1

6
(16 · 4 + 16 · 4)

=
128

6

=
64

3

4. Bestimmen Sie den Winkel, den jede Kante mit der gegenüberliegenden
Ebene einschließt.

Da der Tetraeder symmetrisch ist, reicht es den Winkel zu untersuchen, den
die Kante AD mit der Ebene, welche von AB und BC aufgespannt wird,
einschließt.

Die Ebene AB und BC hat den Normalenvektor (siehe oben):

~n =





1
−1
1





AD = D − A =





4
0
4




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Der Winkel zwischen der Kante und dem Normalenvektor:

cos(γ) =





1
−1
1



 ·





4
0
4





∣
∣
∣
∣
∣
∣





1
−1
1





∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣





4
0
4





∣
∣
∣
∣
∣
∣

cos(γ) =
4 + 4√

1 + 1 + 1 ·
√
42 + 42

cos(γ) =
8√

3 ·
√
32

cos(γ) =

√
2 8√

3 ·
√
32 ·

√
2

cos(γ) =

√
2 8√

3 ·
√
64

cos(γ) =

√
2 8√
3 · 8

cos(γ) =

√
2√
3

γ ∼ 35◦

Der gesuchte Winkel ist dann ca. 55◦(90◦ - 35◦).

5. Bestimmen Sie den Winkel, den die Dreiecksflächen einschließen.

Da es sich um einen regelmäßigen Körper handelt, reicht es zwei beliebige
Flächen zu untersuchen.

Der Normalenvektor der Ebene (AB, BC) ist bekannt:

~n1 =





1
−1
1





Der Normalenvektor der Ebene (AB, AD):

~n2 =





4
4
0



×





4
0
4



 =





16
16
−16



 ∼





1
1
−1




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cos(γ) =
~n1 · ~n2

|~n1| |~n2|

=
1− 1− 1√

3
√
3

=
−1

3
∼ 109◦

Der gesuchte Winkel (der Schnittwinkel der Ebenen) ergänzt sich mit dem
Winkel der Normalenvektoren zu 180◦. Und beträgt somit ca. 71◦.
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11.3 Pyramide –Lösung

Eine Pyramide mit quadratischer Grundfläche hat eine Ecke im Ursprung A(0|0|0),
weiterere Punkte der Grundfläche seien B(4|4|2 und D(−4|2|4).

1. Bestimmen Sie die Koordinaten des übrigen Punktes der Grundfläche.

2. Bestimmen Sie die Koordinaten der Spitze, wenn alle Kanten der Pyramide
gleich lang sind.
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11.4 Pyramide –Lösung

Eine Pyramide mit quadratischer Grundfläche hat eine Ecke im Ursprung A(0|0|0),
weiterere Punkte der Grundfläche seien B(4|4|2 und D(−4|2|4).

1. Bestimmen Sie die Koordinaten des übrigen Punktes der Grundfläche.

Bestimmen Sie den Vektor von A zu D:

~AD = D − A

=





−4
2
4





Diesen Vektor verschieben Sie parallel, so dass er an den Punkt B anschließt:

C = B + ~AD

=





4
2
4



+





−4
2
4



 =





0
4
8





2. Bestimmen Sie die Koordinaten der Spitze, wenn alle Kanten der Pyramide
gleich lang sind.

Die Länge der Seite:

l = |B −A|
=

√
42 + 42 + 22

=
√
16 + 16 + 22

=
√
36

= 6

Die Spitze ist auf der Normalen zur Grundfläche, welche durch den Mittel-
punkt des Quadrates geht. Auf dieser Geraden ist die Spitze der Ort (bzw.
einer der beiden Orte), welcher von A, B, C und D 6LE entfernt ist.

~n = AD × AB

=





4
4
2



×





−4
2
4



 =





12
−24
24



 ∼





1
−2
2




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Der Mittelpunkt des Quadrates liegt genau zwischen den beiden Punkten
A und C (natürlich auch genau zwischen B und D):

M = A+
1

2
(C − A)

=





0
0
0




1

2









0
4
8



−





0
0
0









=





0
2
4





Die Gerade auf der S liegt lautet:

g : ~x = M + t~n

=





0
2
4



 t





1
−2
2





Da alle Punkte auf g den selben Abstand zu A, B, C und D haben reicht
es, die Entfernung zu A zu betrachten.

|~x− A| = 6
√

t2 + (2− 2t)2 + (4 + 2t)2 = 6

t2 + (2− 2t)2 + (4 + 2t)2 = 36

t2 + (4− 8t+ 4t2) + (16 + 16t+ 4t2) = 36

9t2 + 8t+ 20 = 36

9t2 + 8t− 16 = 0

t ∼ −1,8 oder t ∼ 0,96
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S1 ∼





0
2
4



− 1,8





1
−2
2





∼





−1,8
0,2
7,6





S2 ∼





0
2
4



+ 0,96





1
−2
2





∼







0,96
0, 08

5,92






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