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Teil 1
Kurven

1 Euklidische Geometrie

1.1 Der R” als euklidischer Raum

Ein euklidischer Vektorraum ist ein reeller Vektorraum E versehen mit einem Ska-
larprodukt. Wir betrachten den Spezialfall E = R™ mit dem Standard-Skalarprodukt
() : R* x R* —» R, gegeben durch

(a, b> = i a;b;
i=1

fiir a = (a1,...,04), b= (b1,...,b,) € R*. Mittels ||a|| := y/{a,a) erhilt man eine
Norm auf R und durch d(a, b) := ||a—b|| eine Metrik. Der Winkel Z(a,b) zwischen
zwei vom Nullvektor verschiedenen Vektoren a und b wird durch

(a,b)
/ = 7
cos £(e, 0) = e

definiert. Eine euklidische Isometrie oder eine Bewegung ist eine Abbildung ¢ :
R™ — R™ mit der folgenden Eigenschaft: Fiir alle z,y € R" gilt

d(¢(x), o(y)) = d(z,y).

Nach Definition von d ist diese Bedingung dquivalent zu ||¢(z) — ¢(y)|| = ||z — y|
fiir alle z,y € R™. Beispiele von Isometrien sind Translationen, Spiegelungen und
Rotationen. Ist a € R”, so bezeichnet T, : R* — R” die Translation x — z + a.
Sei A eine orthogonale Abbildung, d.h. A ist linear und (Az, Ay) = (=z,y) fir
alle z,y € R". Eine orthogonale Abbildung ist dadurch charakterisiert, dass ihre
Darstellungsmatrix M beziiglich der Standardbasis orthogonal ist, also M € O(n).
Fir z € R ist
Ry, =T,0A0T_,

eine Rotation (oder Drehung) um 2. Der Punkt z ist ein Fixpunkt von R und
jede Rotation um z ist von obiger Form (fiir ein geeignetes A). Die Rotation heif3t
eigentlich, falls det A > 0 (die entsprechende Abbildungsmatrix ist dann in der
speziellen orthogonalen Gruppe SO(n)).

Die Isometrien des R™ bilden beziiglich der Komposition von Abbildungen eine
Gruppe. Aus der linearen Algebra ist folgender Satz bekannt (vgl. E.G. Rees, Notes
on Geometry, Part I, Thm. 5).

Satz 1. Jede euklidische Isometrie ist als Verkniipfung einer Rotation mit einer
Translation darstellbar.



1.2 Ableitung von Skalarprodukt und Vektorprodukt

Wir wollen als Vorbereitung noch die ,, Ableitung® des Skalarprodukts und des Vek-
torprodukts bestimmen. Dazu seien s — a(s) und s — b(s) zwei differenzierbare
Abbildungen von einem offen Intervall I C R nach R™. Dann ist

s = (a(s),b(s)) = D ai(s)bi(s)
i=1

eine differenzierbare Funktion und es gilt die Produktregel

n

> ai(s)bis)

3 fa(s). b5 = L3
i=1
(ai(5)bi(s) + ai(s)bi(s))

d
ds
-3
=1

= (d'(s),b(5)) + (a(s),b'(s))-

Als néchstes betrachten wir das Vektorprodukt A : R® x R® — R®. Definitionsgem&f
gilt fiir a = (a1, az,a3) und b = (by, by, b3)

a/\bz(

= (a2b3 — a3b2, —a1bs + a3b1, aiby — azbl).

ar b
as b2

a1 b
az b3

az by
az bz

’

Sind s — a(s) und s — b(s) differenzierbare Abbildungen von I C R nach R?, so
rechnet man leicht nach, dass ebenfalls eine Produktregel gilt

d

£(a(s) Ab(s)) = a'(s) A b(s) + a(s) A (s).

2 Parametrisierte Kurven in R"

2.1 Ein Definitionsversuch

Die naheliegende Definition einer Kurve ist folgende: Es sei I C R ein Intervall.
Eine ,Kurve“ in R" ist eine stetige Abbildung f : I — R". Diese Defintion 1483t
dann aber Spezialfiille zu, die man nicht unbedingt als Kurven bezeichnen mochte.
So gibt es zum Beispiel eine stetige, surjektive Abbildung f : [0,1] — [0,1] x [0,1].
GemisB obiger Definition wire also das Einheitsquadrat in R? das Bild einer Kur-
ve. Wir wollen das Konstruktionsprinzip einer solchen Peano-Kurve skizzieren, vgl.
Abb. 2.1. Man betrachtet das Einheitsquadrat und die wie in (a) eingezeichnete
Kurve. Eine Skalierung mit dem Faktor 1/2, Drehung um 90 Grad im Uhrzeiger-
sinn um den eingezeichneten Punkt und Verschiebung um den Vektor (0,1/2) fiihrt
auf die Abbildung (b). Wir spiegeln an der in (c) eingezeichneten Achse, verschie-
ben um den Vektor (1/2,0) und verbinden die Endpunkte der vier Kurven wie in
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Abbildung 2.1: Konstruktion einer Peano-Kurve

(d). Ausgehend von (d) wiederholt man jetzt diese Schritte. Im Grenzfall erhilt
man schliellich eine stetige Abbildung von [0, 1] auf das Einheitsquadrat (vgl. z.B.
Konigsberger, Analysis 1, S. 282).

2.2 Differenzierbare Kurven

Um Phénomene wie im letzten Abschnitt, also z.B. raumfiillende Kurven, auszu-
schliefen, muss die Definition entsprechend eingeschriinkt werden. Zuniichst noch
eine technische Vorbemerkung: Ist I C R ein beliebiges Intervall und ¢ : I — R”
eine Abbildung, so heifit ¢ differenzierbar, wenn es ein offenes Intervall I* O I und
eine differenzierbare Abbildung ¢* gibt mit ¢*|; = c.

Definition 1. Es sei I C R ein Intervall. Eine parametrisierte Kurve ist eine
C®-Abbildung ¢ : T — R*, t — (21 (t), ..., z,(t)), d-h. die Ableitungen

k
(k) gy . D i
z; (t) = W(t)
existieren fir alle k e Nundi=1,...,n. Im Falln =2 (bzw. n = 3) nennt man c

ebene Kurve (bzw. Raumkurve).
Bemerkung (a) Oft fordert man nur, dass ¢ eine C*-Abbildung ist (also k£ mal
stetig differenzierbar fiir ein festes k € N).

(b) Eine parametrisierte Kurve ist eine Abbildung und nicht mit der Bildmenge
¢(I) C R™ zu verwechseln. Die Menge ¢(I) nennt man manchmal auch die Spur von
c. Da Intervalle zusammenh#ngend und differenzierbare Kurven insbesondere auch
stetig sind, ist die Spur einer parametrisierten Kurve ebenfalls zusammenhingend.

2.3 Tangentialvektoren
Sei z = (x1,...,2,) € R". Der Tangentialraum von R™ im Punkt z ist die Menge
ToR" := {z} x R" = {(z,a) |la e R"}.

Mittels der Bijektion T,R* — R", (z,a) — a versehen wir T, R” mit der Struk-
tur eines reellen Vektorraums. Damit wird diese Bijektion zu einem Vektorraum-
Isomorphismus. Die Elemente des Tangentialraums 7, R heiflen Tangentialvektoren.



Den Punkt z bezeichnet man als Fuipunkt von v = (z,a) € T,R. Einen Tangenti-
alvektor kann man sich als einen im Punkt 2 angehefteten Vektor a vorstellen. Den
Tangentialvektor an eine parametrisierten Kurve ¢ im Punkt ¢(t) definieren wir als
(c(t),c () € TeyR™, wobei

¢(0) = S(0) = (@ 1), .., 7 (1)

Vermoge der obigen Bijektion schreiben wir fiir (¢(t), ¢(¢)) oft nur ¢/(t). Auch wenn
wir den Fupunkt in der Schreibweise nicht explizit auffithren, muss man sich im
Klaren sein, dass ¢(t) einen eindeutig bestimmten FuBpunkt hat, der aus dem
Kontext immer ersichtlich sein sollte. Die Tangente an ¢ im Punkt ¢(t) ist die affine
Gerade s — c(t) + sc'(¢), vgl. Abb. 2.2. Diese Definition ist natiirlich nur sinnvoll,
wenn ¢ (t) nicht verschwindet.

Abbildung 2.2: Tangente und Tangentialvektor

Beispiele (a) Gerade: Wir betrachten die affine Gerade ¢(t) = a + tb mit a,b €
R™ und ¢t € R. Dann ist ¢/(t) = b = konstant.

(b) Kreis: Sei

co: R—= R, t s (rcos(at),rsin(at)).
Die Spur von ¢, ist ein Kreis mit Zentrum 0 und Radius r > 0. Fiir den Tangenti-
alvektor im Punkt ¢, (t) erhalten wir

cl (t) = (—rasin(at),ra cos(at)).
Dieser Vektor steht stets senkrecht auf dem Vektor ¢, (t), vgl. Abb. 2.3.
(c) Helix: Die Kurve

c:R—= R t (acos(t),asin(t),Bt),(a >0, € R),

heifit Heliz oder Schraubenlinie, vgl. Abb. 2.3. Fiir a = 0 erhilt man eine Gerade,
fiir 8 = 0 einen Kreis in der Ebene z = 0.

3 Linge und Bogenlingeparameter

3.1 Die Linge einer Kurve

Definition 2. Die Linge L(c) einer parametrisierten Kurve ¢ : I — R™ ist definiert
als

L(e) = / 1! (9] dt.
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Abbildung 2.3: Tangentialvektor an einen Kreis und eine Helix

Beispiele (a) Die Kurve ¢: I =[0,00) — R?, ¢t — e~ !(cost,sint) heifit Logarith-
mische Spirale. Es ist

c'(t) = —eY(cost,sint) + e~t(—sint, cost)

und [|¢/(t)||* = 2e72¢. Daraus folgt
20 = [ I¢@lde=va [ eta=va
I 0

(b) Die Spur der Kurve ¢ : I = [0,27] — R?, t = (acost,Bsint), a > B > 0, ist
eine Ellipse. Wegen ¢'(t) = (—asint, 8 cost) folgt

27
L(c) =/Ilc’(t)||dt=/ Vo2 sin® ¢ + 52 cos? ¢
I 0

Das ist ein sogenanntes elliptisches Integral; es ist nicht elementar darstellbar.

Satz 2. Die Linge von Kurven ist invariant unter Isometrien, d.h. ist ¢: I — R”
eine parametrisierte Kurve und ¢ eine Isometrie, so gilt L(¢ o ¢) = L(c).

Beweis. Wegen Satz 1 geniigt es die Behauptung fiir Translationen und Rotationen
zu zeigen. Da diese differenzierbar sind, ist ¢ o ¢ selbst wieder eine parametrisierte
Kurve. Sei also zunichst ¢ = T,, a € R", eine Translation. Dann ist

(poc)(t) =c(t)+a und (poc)(t) =c(?).

Damit folgt unmittelbar aus der Definition der Linge, dal L(¢ o ¢) = L(c). Sei
schliesslich ¢ = R4 . eine Rotation. Aus der Definition von Ry4 . folgt

(o0)(t) = Ac'(t).

Da A eine orthogonale Abbildung ist, gilt ||Ac'|| = ||¢'|| und damit auch in diesem
Fall L(¢oc) = L(c). O



3.2 Parametertransformationen

Es sei ¢ : I — R™ eine gegebene parametrisierte Kurve und I ein weiteres Intervall.
Eine Parametertransformation ist ein Diffeomorphismus ¢ : I — I, d.h. p ist
bijektiv, differenzierbar (d.h. hier also C*°) und die inverse Abbildung ¢! : T — I
ist ebenfalls differenzierbar. Man sagt, dafl die Kurve ¢ := ¢o ¢y : I — R"™ aus ¢
durch die Parametertransformation ¢ entsteht:

4/
C
I

Satz 3. Die Ldnge von parametrisierten Kurven ist invariant unter Parameter-
transformationen: Entsteht ¢ aus ¢ durch Parametertransformation, so gilt L(c) =
L(e).

Beweis. Esseié: I — R*, r — &(r), eine parametrisierte Kurve und ¢ : I — I,
t — r = p(t) eine Parametertransformation. Fiir ¢ := ¢ o ¢ gilt dann

10 = [ g0l [|95 2 0]

Mit Kettenregel und Substitutionsregel folgt weiter

/IHW(t)Hdt:/IHg(w(t))th'(tﬂdt:/fH%(r)HdrzL(é)

Damit ist der Satz bewiesen. O

Bemerkung (a) Die Sitze 2 und 3 lassen sich folgendermaflen zusammenfassen:
Hat man ein kommutatives Diagramm der Form
|+

i é
|

I———R"

mit einem Diffeomorphismus ¢ : I — I und einer Isometrie ¢, so gilt

L(c) = L(¢po¢o ) = L(3).

(b) Parametertransformationen definieren auf der Menge aller parametrisierten
Kurven eine Aquivalenzrelation: zwei Kurven ¢;, ¢5 sind fiquivalent, falls es eine Pa-
rametertransformation ¢ gibt mit ¢y = ¢; 0. Eine entsprechende Aquivalenzklasse
heiflt auch unparametrisierte (oder geometrische) Kurve.



3.3 Regulire Kurven und Bogenlinge

Es sei ¢ : I — R™ eine parametrisierte Kurve. Die Tangente an ¢ im Punkt ¢(t) ist
die affine Gerade s — c(t) + sc'(t). Fiir gewisse geometrische Konzepte, die wir im
Folgenden einfiihren werden, muss man voraussetzen, dass in jedem Kurvenpunkt
von ¢ die Tangente existiert (der entsprechende Tangentialvektor ¢’(¢) also nicht
der Nullvektor ist). Das fiihrt auf folgende

Definition 3. Die Kurve ¢ : I — R"™ heifst regulir, wenn fir alle t € 1 gilt
c(t) #0.

Beispiel. Wir betrachten die Kurven ¢ : R — R?, ¢t ~— (t,#2) und & : R — RZ,
t — (t3,1%). Es ist ¢/(t) = (1,2t) und c ist reguliir. Wegen & (t) = (3t2,6t5) ist ¢
nicht regulér. Man beachte aber, dass ¢(R) = é(R) eine Parabel ist. Die Eigenschaft
“reguléir” ist demnach keine Eigenschaft der Spur einer Kurve.

Es sei ¢ : [a, 8] = R™ eine regulire Kurve. Setzt man

t
dﬂ=/HﬂﬁWs

so ist s(t) die Linge des Kurvenstiicks zwischen ¢(a) und ¢(t), vgl. Abb. 3.1. Damit
ist s : [a, 8] = [0, L(c)] nach Konstruktion streng monoton wachsend und

ds

Z O =Dl #0,

da ¢ regulidr ist. Daraus folgt, dass s ein Diffeomorphismus von [a, 8] auf [0, L(c)]
ist (vgl. z.B. Heuser, Analysis I, 47.3) und somit eine Parametertransformation
definiert.

C
N W s
c(a)

Abbildung 3.1: Linge eines Kurvenstiicks

Definition 4. Der Diffeomorphismus s : [a, 8] = [0, L(c)] heifst Bogenlénge oder
auch Bogenlédngeparameter.

Ist ¢ : [, ] = R*,t — c(t), mit Bogenlinge parametrisiert, d.h. s(t) =t — a, so ist

Il = =1,

Die Kurve ¢ wird also mit konstanter Geschwindigkeit 1 durchlaufen. Ist umgekehrt
[|d(@®)|] = 1 fiir alle ¢t € [, 0], so ist s(t) = t — @ und ¢ ist nach Bogenlinge
parametrisiert. Damit folgt unmittelbar



Lemma 1. Eine Kurve ¢ : I — R™, t — ¢(t) ist genau dann nach Bogenlinge
parametrisiert, wenn ||c'(t)|| = 1 fir alle t € I gilt. O

Bemerkung (a) Die Parametrisierung nach Bogenlénge ist bis auf Verschiebung
s — s + so und Richtungsumkehr s — —s eindeutig bestimmt.

(b) Eine mit Bogenlinge parmetrisierte Kurve ist insbesondere reguir.
Es gilt nun folgender, fiir die Theorie wichtige, Satz:

Satz 4. Jede regulire, parametrisierte Kurve ¢ : [a, 5] — R", t + &(t) mit Linge
I kann nach Bogenlinge parametrisiert werden, d.h. es gibt eine nach Bogenlinge
parametrisierte Kurve ¢ : [0,]] = R, s = ¢(s), die aus é durch Parametertransfor-
mation entsteht.

Beweis. Wir setzen ;

p(t) ==

Damit ist ¢ : [a,8] = [0,I], t = @(t) =: s(t) eine streng monoton wachsende,
differenzierbare Abbildung mit

()

0 = 0= 5] o

Also hat ¢ eine differenzierbare Umkehrabbildung ¢! : [0,1] — [a, 8], s = t. Die
Kurve c(s) := (¢ o ¢ 1)(s) ist demnach ebenfalls differenzierbar und wegen

|Zel =170l = [Fe ol [-6] =70l |-

ist sie nach Bogenl'alnge parametrisiert. O

1

Beispiel. Wir betrachten die Kurve & : T := [0,27] — R?, ¢t — (rcost,rsint).
Die Spur von ¢ ist ein Kreis vom Radius r. Es gilt &(t) = (—rsint,r cost), also
[|¢'(#)|| = r. Fiir die Bogenliinge s ergibt sich

¢
s(t) = / rdr = rt.
0

Damit erhdlt man ¢t = t(s) = 2. Weiter gilt L(¢) = 2nr. Die Umparametrisierung
¢:[0,27r] — R? von & nach Bogenliinge hat demnach die Gestalt

c(s) :=¢(t(s)) = (r cos z, 7 sin z)

4 Kriimmung von Kurven

4.1 Motivation und Definition

Wir wollen in diesem Abschnitt den zentralen Begriff der ,,Kriimmung* definieren.
Anschaulich ist klar, dass eine Gerade oder ein Geradenstiick nicht , gekriimmt“



ist, also ,,Kriimmung“ 0 haben sollte. Betrachtet man Kreise mit immer grosser
werdendem Radius, so nidhern sich diese immer mehr einer Geraden an. Es ist
deshalb plausibel, dass die ,,Kriimmung“ eines Kreises vom Radius r proportional
zu 1/r sein sollte. Die folgende Definition misst die Anderung der Tangenten.

Definition 5. Es sei ¢ : I — R™, s — c¢(s) eine mit Bogenlinge parametrisierte
Kurve. Die Kriimmung von ¢ im Punkt ¢(s) ist definiert als

wels) = 5(s) = 1 ()] = || e )] = 0.

Wir wollen nachpriifen, ob diese Definition obiger Heuristik entspricht. Dazu
betrachten wir zunichst eine Gerade ¢ : s — a + sb. Diese ist genau dann nach
Bogenlinge parametrisiert, wenn ||b]| = 1 gilt. Da ¢'(s) = b konstant ist, hat dies
auf die zweite Ableitung ¢"’(s) = 0 in diesem Fall keinen Einfluss. Nach obiger
Definition haben wir also jedenfalls k(s) = 0 fiir alle s.

Als zweiten Test betrachten wir einen mit Bogenlinge parametrisierten Kreis
vom Radius r, also

¢(s) = (r cos ;, rsin ;)
Dann ist ¢'(s) = (- sin(s/r), cos(s/r)) und

1 s s 1
" _ S o _any o _ & )
c'(s) = r( cos o sin r) - c(s)

Es folgt also k(s) = ||c"(s)|| = 1/r.

Bemerkung (a) Falls « identisch gleich Null ist, so ist ¢"(s) = 0 fiir alle s € I.
Durch Integration folgt, dass ¢'(s) = b =konstant und ¢(s) = a+ sb gelten muss. Ei-
ne mit Bogenlénge parametrisierte Kurve mit verschwindender Kriimmung ist also
stets ein Geradenstiick. Da auch die Umkehrung hiervon gilt, sind Geraden(stiicke)
genau die mit Bogenlénge parametrisierten Kurven mit konstanter Kriimmung 0.

(b) Falls k konstant ungleich Null ist, so erhélt man im Falle ebener Kurven
Kreisstiicke. In hoheren Dimensionen gibt es noch andere Kurven mit konstan-
ter Kriimmung (z.B. die Helix). Wir werden darauf spiiter eingehen (vgl. Satz 6
und Abschnitt 5.2).

Da sich regulidre Kurven stets nach Bogenlinge parametrisieren lassen, liegt es
nahe die Definition der Kriimmung folgendermafien zu erweitern:

Definition 6. Es sei é: I — R", t — é(t) eine regulire, parametrisierte Kurve.
Wir definieren die Kriimmung x(é(t)) = k(t) von é im Punkt é(t) durch

K(&()) = k(€0 ¢7")(s)) = K(c(s)),

wobei ¢ := ¢o ¢! die Umparametrisierung von & nach Bogenlinge ist.



Damit ist per Definition die Kriimmung einer Kurve invariant unter Parameter-
transformationen. Ist ¢ eine Bewegung des R", so ist

(@0 )" ()l = lle" (s)].

Diese Formel gilt némlich fiir Translationen und Rotationen und damit nach Satz
1 fiir beliebige Isometrien. Die Kriimmung einer Kurve ist damit - wie die Linge -
invariant unter Isometrien.

Wir fiigen noch eine wichtige Beobachtung an. Falls ¢ : I — R", s — ¢(s)
mit Bogenléinge parametrisiert ist, so gilt {c'(s),c'(s)) = ||c(s)||*> = 1. Ableiten
(vgl. Abschnitt 1.2) ergibt 2(c'(s),c"(s)) = 0, also ist ¢'(s) orthogonal zu ¢”(s), in
Zeichen c'(s) L ().

4.2 Die orientierte Kriitmmung fiir ebene Kurven

Fiir die im letzten Abschnitt definierte Kriimmung einer parametrisierten Kurve
in R” gilt k > 0. Fiir ebene Kurven, d.h. fiir n = 2, kénnen wir die Kriimmung
zusdtzlich mit einem Vorzeichen versehen. Wir wihlen dazu eine Orientierung von
R?, d.h. wir betrachten die Menge 9B aller geordneten Bases von R? und definieren
auf B folgende Aquivalenzrelation: Zwei geordnete Basen B = (by,by) und B’ =
(b!, b}) sind dquivalent, wenn die Matrix Mpp:, die den Basiswechsel von B nach B’
beschreibt positive Determinante hat. Diese Aquivalenzrelation zerlegt die Menge
B in zwei Klassen. Man wihlt eine dieser beiden Klassen aus und bezeichnet eine
Basis als positiv orientiert, wenn sie dieser Klasse angehort. Wir wollen eine Basis als
positiv orientiert bezeichnen, wenn sie zur Klasse der Standard-Basis E = (ey, e2)
gehort. Die Basiswechselmatrix Mg ist gerade

Mg = (b1|b2) c szz,

wenn (b |bz) die Matrix bezeichnet, die als Spalten die Vektoren by, b2 hat. Eine
Basis B = (b1, b2) ist also genau dann positiv orientiert, wenn det(by |by) > 0 gilt.

Es sei ¢c: I — R2, s ¢(s) eine nach Bogenlinge parametrisierte ebene Kurve.
Fiir den Tangentialvektor an ¢ im Punkt ¢(s) setzen wir T'(s) := ¢(s). Da ¢ mit Bo-
genlinge parametrisiert ist, ist 7'(s) ein Einheitsvektor. Wir wihlen in jedem Punkt
¢(s) einen Einheitsnormalenvektor N (s), so dass (T'(s), N(s)) positiv orientiert ist,
vgl. Abb. 4.1. Damit folgt insbesondere, dass N (s) parallel zu ¢ (s) ist.

Definition 7. Der Vektor N(s) heifit Normalenvektor von ¢ im Punkt c(s). Die
Abbildung k* : I — R definiert durch

c"(s) = k*(s)N(s)
heifst orientierte Kriimmung von c.

Geometrisch ld8t die orientierte Kriimmung folgende Deutung zu: Ist k*(s) < 0,
so dreht die Tangente im Uhrzeigersinn; ist k*(s) > 0, so dreht die Tangente im
Gegenuhrzeigersinn, vgl. Abb. 4.2. Geht man zur anderen Orientierung von R?
iiber, so sind die Folgerungen zu vertauschen.

10



Abbildung 4.1: Normalenvektor

N k* <0 k*>0

Abbildung 4.2: Orientierte Kriimmung

Bemerkung (a) Da s — T(s) differenzierbar ist, sind sowohl N : I — R? als auch

k* : I — R differenzierbare Abbildungen.

(b) Das Vorzeichen der orientierten Kriimmung #ndert sich, wenn man die Kurve

riickwarts durchléuft, d. h. anstelle von ¢ : [a, 3] — R? betrachtet man ¢~ : [a, 8] —

R?, s c(a+ B — s).

(c) Es gilt stets &(s) = |k*(s)|.

(d) Die orientierte Kriimmung ist invariant unter eigentlichen Bewegungen des R?.

Sei dazu é:= A - cmit A € SO(2). Dann gilt
d(A-c)

é(s) = s (s)=A-c(s) und ¢&"(s)

_ d*(A-c)

12 (s) = A-'(s).

Da A eine eigentliche Bewegung ist, gilt N(s) = AN(s). Nach Definition gilt
A-K*(s)N(s) = A-c"(s) =&"(s) = &*(s)N(s) = R*(s)AN(s) = A-&*(s)N(s).
Nach Multiplikation mit A~ folgt x*(s) = £*(s). Man mache sich klar, dass diese

Aussage fiir beliebige Bewegungen im Allgemeinen falsch ist (z.B. Spiegelungen).

5 Frenet-Formeln und Hauptsatz

5.1 Frenet-Formeln fiir ebene Kurven

Ist ¢ : I — R?, s — c(s) eine mit Bogenlinge parametrisierte ebene Kurve, so
haben wir nach Abschnitt 4.2 fiir jedes s € I eine Orthonormalbasis (T'(s), N(s))
der Tangentialebene TC(S)R2 = R2. Diese nennt man auch ein begleitendes 2-Bein.
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Nach Definition der Kriimmung gilt 7"(s) = k*(s)N(s). Wir wollen untersuchen,
wie sich N'(s) in der Basis (T'(s), N(s)) darstellen ldsst. Fiir alle s € I gilt

0=(T(s),N(s)) (5.1)
1= (N(s), N(s))

Ableiten dieser Gleichungen fiihrt auf

0=(T"(s), N(s)) + (T (5), N'(s)) (5.3)
0=2(N'(s),N(s)) (5.4)
Da wir Vektoren in R? betrachten, folgt aus (5.1) und (5.4), dass N'(s) proportional
zu T(s) ist. Demnach gibt es zu jedem s € I ein A(s) mit N'(s) = A(s)T(s). Wir
wollen \(s) bestimmen. Wegen (T'(s),T(s)) = ||T(s)||> = 1 gilt
A(8) = M(s)(T'(s), T (5)) = (\(8)T(s), T (s)) = (N'(s),T(s))

und wegen (5.3) und [|N(s)

=1
A(s) = ~(N(s), T'(s)) = (N (), K" ()N (s)) = —r"(s).

Zusammfassend erhalten wir folgenden

Satz 5 (Frenet-Formeln fiir ebene Kurven). Es seic: I — R?, s — c(s) eine
mit Bogenlinge parametrisierte Kurve. Dann gelten fiir s € I die Ableitungsglei-
chungen von Frenet:

T'(s) = 6*(s)N(s)
N'(s) = —k*(8)T(s)

bzw. in Matrizschreibweise
(%)= (i ) (38):

Wir wissen bereits, dass Kreisstiicke konstante Kriimmung £ > 0 haben. Mithilfe
der Frenet-Formeln ldsst sich diese Aussage in der Ebene umkehren.

O

Satz 6. Es seic: I — R?, ¢~ c(s) eine nach Bogenlinge parametrisierte ebene
Kurve mit konstanter Krimmung k* = k > 0. Dann ist die Spur von ¢ ein Segment
eines Kreises vom Radius 1/k.

Beweis. Wir betrachten die parametrisierte Kurve 7(s) := ¢(s) + *N(s). Dann
gilt 7'(s) = ¢'(s) + ~N'(s), und aus Satz 5 folgt

¥(s) = T(s) + 1 (=RT()) =0,
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d.h. v(s) = konstant = a € R?. Damit gilt

1 1
lle(s) —all = I =N(s)ll = —,

d.h. ¢(I) liegt auf einem Kreis mit Zentrum a und Radius <. O

Satz 7 (Haupsatz iiber ebene Kurven). Es sei £* : I = R, s — £*(s) eine
differenzierbare Funktion. Dann gilt

(a) Es gibt eine nach Bogenlinge parametrisierte Kurve ¢ : I — R?, s —

c(s), so dass k*(s) die orientierte Kriimmung von c ist.

(b) Jede andere ebene Kurve &, die den Bedingungen aus (a) geniigt, unter-
scheidet sich von ¢ nur durch eine eigentliche euklidische Bewegung der
Ebene. Genauer: Es gibt eine Matriz D € SO(2) und einen Vektor a,
so dass &(s) = Dc(s) + a gilt.

Beweis. Die gesuchte Kurve ¢ soll nach Bogenlinge parametrisiert sein, d.h.
[Ic'(s)|| = ||IT(s)|| = 1. Deshalb machen wir den Einheitsvektor-Ansatz T'(s) :=
(cosa(s),sina(s)) fiir eine zu bestimmende Funktion a : I — R. Es gilt dann
notwendigerweise
N(s) = (—sina(s),cos a(s)).

Wegen den Frenet-Formeln gilt weiter k*(s)N(s) = T'(s) = &/(s)N(s). Damit folgt
a'(s) = k*(s). Wir wihlen jetzt Anfangsbedingungen, d.h. fiir s € I geben wir
¢(so) und T'(sg) vor. Es sei ¢(sg) = (0,0) und T'(sg) = (1,0), insbesondere also

a(sg) = 0. Aufgrund der obigen Uberlegungen setzen wir

Fiir die gesuchte Kurve ¢(s) = (z1(s), z2(s)) mit ¢'(s) = T(s) = (2 (s), x5 (s)) ist

s

z1(s) = / Ccosa(o)do  und  a(s) = / sin a(0)do.

80 80

Man rechnet leicht nach, dass ¢ die Eigenschaften aus (a) hat. Es sei ¢ eine weitere

Kurve, die den Bedingungen in (a) geniigt. Da (T'(sq), N(s¢)) positiv orientiert ist,

gibt es eine eigentliche Drehung ¢, die das 2-Bein (T'(sq), N (s0)) in é(so) auf das
2-Bein (T'(s¢), N(s0)) in ¢(sp) abbildet. Wir betrachten die Kurve ¢ := ¢o¢. Da die
orientierte Krimmung unter eigentlichen Bewegungen invariant bleibt, gilt

T'(s) = k*(s)N(s) und N'(s) = —k*(s)T(s).
Wir betrachten die differenzierbare Funktion
£(s) = IT() = T(s)I12 + IN(s) = N (s)].
Mit den Frenet-Formeln aus Satz 5 folgt %(s) = 0, d.h f muss konstant sein.

Da weiter T(so) = ¢(T(s0)) = T(so) und N(so) = #(N(so)) = N(so) ist, folgt
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f(30) = 0 und damit f = 0. Insbesondere ist also T'(s) = T(s) fiir alle s € I. Damit
folgt
d(c—¢)

(s) =T(s)—T(s) =0

= konstant. Weil aber nach Definition ¢(sq)

ds
fir alle s € I, d.h. ¢(s) —¢(s) =k =
dh.c=é¢=¢oc. O

¢(so) folgt schliesslich k& =0,

5.2 Frenet-Formeln fiir Raumkurven

Am Ende von Abschnitt 4.1 hatten wir {iberlegt, dass fiir eine mit Bogenlinge
parametrisierte Kurve ¢: I — R™, s — ¢(s) gilt ¢/(s) L ¢"(s).
Falls nun (s) = ||¢’(s)|| # O fiir alle s € I gilt, so ist

cII (S)
lle" ()l
ein Einheitsvektor, der senkrecht auf dem Tangentialvektor T'(s) := ¢'(s) steht, vgl.

Abb. 5.1. H(s) heifit Hauptnormale zu ¢'(s) im Punkt ¢(s). Mit Definition 5 gilt
T'(s) = ¢"(s) = K(s)H(s).

H(s) :=

Abbildung 5.1: Hauptnormale

Es sei jetzt ¢ : I — R®, ¢ = ¢(s) eine nach Bogenlinge parametrisierte Raum-
kurve. Wir machen die Annahme, dass k(s) = ||¢"(s)|| # O fiir alle s € I. Dann
existiert in jedem Punkt ¢(s) die Hauptnormale H(s). Die durch den Tangential-
vektor T'(s) und H(s) aufgespannte Ebene heifit Schmiegebene von ¢ im Punkt ¢(s).
Der Vektor B(s) := T'(s) A H(s) heiit Binormale von ¢ im Punkt ¢(s). Fiir ebene
Kurven ist die Schmiegebene die Ebene R? selbst und die Binormale ist konstant.

Bemerkung. Fiir die Binormale B(s) gilt [|B(s)|| = 1 und B(s) steht nach Defi-
nition senkrecht auf der Schmiegebene. Somit bilden die Vektoren T'(s), H(s) und
B(s) fiir jedes s € I eine Orthonormalbasis des Tangentialraumes T, R® = R?. Fiir
Raumkurven haben wir also ein begleitendes 3-Bein, das Frenet-Bein, vgl. Abb. 5.2.

Wir wollen die Ableitungen T”(s), H'(s) und B’(s) in der Basis {T'(s), H(s), B(s)}
darstellen, d.h. die Anderung des Frenet-Beines bestimmen. Wegen (B(s), B(s)) = 1
folgt durch Ableiten

2(B'(s),B(s)) =0 (5.5)
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Schmiegebene

Abbildung 5.2: Das begleitende 3-Bein

d.h. B'(s) steht senkrecht auf B(s). Nach Definition von B(s) ist

d
B/(s) = - (¢/(s) A H(5)
=c"(s) NH(s) +c'(s) AN H'(s)
=k(s)H(s) NH(s)+T(s)NH'(s) =T(s) NH'(s),
also steht B'(s) senkrecht auf T'(s). Zusammen mit (5.5) folgt, dass B’(s) propor-
tional zu H(s) ist. Wir machen folgende

Definition 8. Die Abbildung 7 : I — R, die fiir jedes s € I der Gleichung
B'(s) = —7(s)H(s)
gendigt, heifit Torsion (oder Windung) von c.

Geometrisch misst 7 die Anderung der Schmiegebene, da B eine Normale der
Schmiegebene ist. Fiir ebene Kurven ist B = konstant und damit 7 = 0.

Bemerkung. Ist é: I — R3, ¢ — &(t) eine (nicht unbedingt mit Bogenlinge
parametrisierte) regulire Kurve mit () # 0, so definiert man die Torsion 7(¢) von
¢ im Punkt &(t) durch

T(t) = 1((€0 97 ")(s)) = 7(s),
wobei ¢ := &0 ¢! die Umparametrisierung von & nach Bogenlinge ist.

Beispiel. Wir wollen Kriimmung und Torsion fiir die Helix bestimmen. Nach
Definition ist ¢ : (—oo,00) — R®, t — (acost,asint,ft) mit o > 0 und 8 € R.
Wegen & (t) = (—asint, acost, f) folgt ||&'(¢)|| = /a? + 82. Wir parametrisieren ¢
zunéichst nach Bogenlidnge (von 0 aus), also s(t) = t\/a? + 2. Damit ist t = t(s) =

s/v/a? + % und mit v := y/a? + (2 ist
c(s) = ¢&(t(s)) = (a cos %,asin %,ﬂ%)

die Umparametrisierung von ¢ nach Bogenldnge. Weiter ist



Setzt man ez := (0,0,1), so folgt aus dieser Gleichung (T'(s),e3) = B/v. T(s)
schliesst also mit der z-Achse einen konstanten Winkel ein. Fiir die zweite Ableitung
von ¢ erhdlt man ¢”(s) = (—ay~? cos(sy™!), —ay~? sin(sy!),0). Es folgt also
a a
H(S) = ||C”(S)|| = ? = m = konstant Z 0.
Damit ist

_d'(s) s .8
H(s)—m—(—cos;,—sm;ﬂ)

und nach Definition von B
B8 . s B s a)
B(s) =T(s)NH(s :(—sm—,——cos—,— .
(s) =T(s) NH(s) S Sin o8,

Nach Definition erh&lt man 7 aus der Gleichung

B'(s) = (% cos %, % sin %,0) = —7(s)H(s),

also ist

B B

7(8) = — = ———— = konstant.
(s) A2 aZ+ B2

Wir wollen uns jetzt wieder der Darstellung von T(s), H'(s) und B'(s) im
begleitenden Dreibein T'(s), H(s), B(s) zuwenden. Wir wissen schon, dass

T'(s) = k(s)H(s) (5.6)

B'(s) = —7(s)H(s). (5.7)

Wir miissen also noch H'(s) bestimmen. Nach allgemeinen Eigenschaften des Vek-
torprodukts gilt mit B(s) = T'(s) AH(s) auch T'(s) = H(s) AB(s) = —B(s) NH(s)
und H(s) = B(s) AT(s). Durch Ableiten ergibt sich dann

H'(s) = B'(s) ANT(s) + B(s) AT'(s)
und wegen (5.6) und (5.7)
H'(s) = —7(s)H(s) AT (s) + k(s)B(s) A H(s)
= 7(8)B(s) — k(8)T(s).
Man erhélt also folgenden

Satz 8 (Frenet-Formeln fiir Raumkurven). Es sei ¢ : I — R® eine nach
Bogenlinge parametrisierte Kurve mit x(s) # 0 fir alle s € I. Dann gelten folgende
Ableitungsgleichungen:

( T'(s) ) ( 0 Kk(s) 0 ) ( T(s) )
H((s) | = —k(s) 0 7(s) H(s) |.
B'(s) 0 —-7(s) 0 B(s)

16



Die Verteilung der Vorzeichen in dieser Matrix erkldrt die Wahl des Vorzeichens
in der Definition von 7.

Mithilfe der Frenet-Formeln erhilt man einen zu Satz 7 analogen Hauptsatz
fiir Raumkurven: Eine mit Bogenlinge parametrisierte Raumkurve ist durch ih-
re Kriimmung und Torsion bis auf eine euklidische Bewegung von R® eindeutig
festgelegt. Genauer gilt

Satz 9 (Hauptsatz iiber Raumkurven). Es seien k: I = Ryq, s —= £(s) und
7:I >R, s— 7(s) differenzierbare Funktionen. Dann gilt
(a) Es gibt eine mit Bogenlinge parametrisierte Kurvec: I — R?, s+ ¢(s),
so dass k die Kriimmung und 7 die Torsion von c ist.
(b) Jede andere mit Bogenlinge parametrisierte Raumkurve ¢ : I — R®
mit den Figenschaften aus (a) unterscheidet sich von ¢ nur durch eine
eigentliche Bewegung des R2, d.h. es gibt eine orthogonale Abbildung A
mit det A = 1 und einen Vektor a € R3, so dass é(s) = (Aoc)(s) +a
gilt.

Beweis-Skizze. Die Frenet-Formeln beschreiben ein lineares Differentialgleichungs-
system 1. Ordnung. Dazu setzen wir T =: (z1,%2,23), H =: (z4,25,26) und
B =: (%7, 28,%9). Die Formeln von Frenet liefern das System

T = Kx4

Ty = —TTg

Ein solches lineares System hat zu gegebenen Anfangsbedingungen

T(s0) z1(s0) z2(s0) 3(so)
H(sg) = | x4(s0) x5(s0) 26(s0)
B(sp) x7(s0) ws(so) wo(so)

genau eine auf ganz I definierte Losung (vgl. z.B. W. Walter, Gewodhnliche Diffe-
rentialgleichungen, S. 132). Damit erhélt man T'(s) = ¢/(s) und durch Integration
¢(s). Beim Beweis der Eindeutigkeit geht man dhnlich vor wie im Hauptsatz {iber
ebene Kurven (Ubung!). O

Bemerkung. Fiir die Dimensionen n > 4 kann man analoge Betrachtungen an-
stellen. Man geht aus von den hdheren Ableitungen ¢'(s),c”(s),...,c" Y (s) und
fordert, dass in jedem Punkt s € I diese n — 1 Vektoren linear unabhéngig sind.
Kurven, die diese Bedingung erfiillen nennt man Frenet-Kurven. Fiir n = 2 sind
Frenet-Kurven gerade regulére Kurven und fiir n = 3 sind Frenet-Kurven regulire
Kurven mit nicht verschwindender Kriimmung. Man konstruiert aus diesen n — 1
Vektoren mittels des Gram-Schmidt-Verfahrens fiir jedes s € I n — 1 orthonor-
mierte Vektoren und ergénzt diese dann zu einer Orthonormalbasis von T, (,)R"
(ein begleitendes n-Bein). Damit beweist man dann analoge Frenet-Formeln und
Hauptsétze.
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6 Ausblick auf die globale Kurventheorie

Nach dem Hauptsatz versteht man die lokale Gestalt einer Raumkurve vollstéindig,
sobald man ihre Kriimmung und Torsion kennt. Technisch kann man - mindestens
im Prinzip - alles auf die Frenet-Formeln zuriickfiihren. Die Untersuchung von glo-
balen Eigenschaften ist viel schwieriger, da man zusé&tzlich die topologische Gestalt
der Kurve im Groflen beriicksichtigen muss. Im Folgenden diskutieren wir einige
Sétze aus der globalen Kurventheorie. Fehlende Beweise findet man z.B. in den
Biichern von Klingenberg und Spivak.

6.1 Totalkriimmung, Umlaufsatz von Hopf

Eine regulire Kurve ¢ : [a, b] = R™ heif}t (differenzierbar) geschlossen, wenn es eine
reguldre Kurve & : R — R™ gibt mit €|, 5) = c und &(t+(b—a)) = &(t). Insbesondere
gilt also

¢(b) =é(b) =é(a+b—a) =é&a) =c(a) und ' (b) =& (b) = & (a) = ¢(a).

Eine geschlossene Kurve ¢ : [a,b] — R™ heifit einfach geschlossen, wenn die Ein-
schréinkung c|j, ) von c auf [a,b) injektiv ist.

Satz 10 (Polarwinkel und Windungszahl). Es seic : [a,b] — R2\{0}, t = c(t),
eine parametrisierte Kurve. Dann gilt
(a) Es gibt eine differenzierbare Funktion ¢ : [a,b] = R, so dass

c(t) = [le(®)[] (cos((t)), sin(p(#)))

fir alle t € [a,b] ist.

(b) Istt : [a,b] = R eine weitere Funktion mit den Eigenschaften von ¢ aus
(a), so ist Y = ¢ + 27k mit einem k € Z. Inbesondere ist die Differenz
p(b) — p(a) nicht von ¢ abhingig. Die Funktion ¢ heifit Polarwinkel-
Funktion.

(c) Falls c geschlossen ist, so ist

W(e) == =

W(c) heifst Windungszahl von c.

(o(b) = ¥(a)) € Z.

Beweis. (a) Da die Abbildung [a, b] — R* \ {0}, t — ¢(t)/||c(t)|| wohldefiniert und
differenzierbar ist, geniigt es die Behauptung in (a) fiir Kurven ¢ mit ¢([a, b]) C S*
zu zeigen. Es sei t € [a,b]. Dann gibt es wegen der Stetigkeit von c¢ eine relativ
offene, zusammenhingende Umgebung I; von ¢ (also ein Intervall der Form [a, €),
(6,b] oder (g,0), das t enthilt und in [a, b] enthalten ist), so dass ¢(I;) in einem der
folgenden offenen Halbkreise von S' enthalten ist:
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S5 7
S1={(z,y) €R®|(z,y) € S*,y > 0} S,
Sy ={(z,y) € R |(z,y) € S,z < 0} U3 vy
S3 = {(z,y) € R | (z,y) € S,y < 0}
Sy ={(z,y) €R®|(z,y) € S",z > 0}

S3 vy Sy

Die Abbildung b : [a,b] = {1,2,3,4} sei so gewéhlt, dass c(I;) C Sy gilt. Weiter
seien vy := (1,0), ve := (0,1), vz := (—=1,0), vg := (0, —1). Fiir ¢ € [a,b] definieren
wir 6; : I; = R durch

s+ arccos({c(s), Un())) + g(h(t) -1).

Da {c(s),vnw)) € (—1,1), ist 6; : I; — R differenzierbar. Nach Definition gilt
c(s) = (cos(s),sinby(s)) fiir s € I;. Da [a,b] kompakt und die I;,t € [a,b], ei-
ne relativ offene Uberdeckung von [a, b] bilden, gibt es endlich viele ¢1,...,t,, so
dass die Iy;, j = 1,...,n, das Intervall [a, b] {iberdecken. Ohne Einschrinkung gelte
Ij; C I, nur fiir j = l. Es bezeichne a; den Anfangs- und b; den Endpunkt des
Intervalls I;;. Ohne Einschrénkung seien die I;; nach aufsteigenden Anfangspunk-
ten sortiert, also a; < a; fiir ¢ < j. Wir definieren jetzt ¢ : [a,b] - R. Es sei
®llar,b1) = 04, - Da die I, eine Uberdeckung bilden, gilt [a1,b1) N (az, bs) # 0. Nach
Konstruktion miissen 6, und 6;, = ¢|}4, 3,) auf der offenen Menge [ay, b1) N (a2, b2)
modulo 27 {ibereinstimmen. Damit kann man ¢|,, 5,) eindeutig auf [a;,bz) fort-
setzen. Nach endlich vielen Schritten erhiilt man eine differenzierbare Abbildung ¢
mit den geforderten Eigenschaften.

(b) Ist ¢ eine weitere solche Abbildung, so gilt notwendigerweise ¥(t) — ¢(t) =
27k(t) fiir jedes t € [a,b] mit einer Funktion k : [a,b] — Z. Da k stetig und auf
einer zusammenhingenden Menge definiert ist, folgt k(t) = ¢ € Z fiir alle ¢ € [a, b].

(¢) Fiir geschlossene Kurven gilt nach Definition von ¢ stets ¢(a) = ¢(b) + 27k
mit einem k € Z. O

Definition 9. Es seic: [a,b] — R? eine regulire geschlossene Kurve. Die Umlauf-
zahl U(c) von c ist definiert als die Windungszahl von ¢'(t),

Ule) :=W(c) €.
Dabei wird c' : [a,b] — R \ {0} als differenzierbare Kurve aufgefaft.

Beispiele. In Abb. 6.1 sind die Bilder einiger geschlossener Kurven und ihre Um-
laufzahlen angegeben. Alle Kurven werden einmal in Pfeilrichtung durchlaufen.

Der folgende Satz bestimmt globale topologische Informationen iiber eine ebene
Kurve (Umlaufzahl) aus lokalen Groflen (Kriimmung).
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00,0

Abbildung 6.1: Die Umlaufzahl

Satz 11. Es sei c : [a,b] & R?, s — c(s), eine mit Bogenlinge parametrisierte,
geschlossene ebene Kurve. Die Umlaufzahl von c ist gleich der Totalkriimmung von

¢ dividiert durch 2m: ,
1
U(e) = —/ K*(s)ds.
2r J,

Beweis. Wir wenden Satz 10 auf die Kurve ¢’ an. Es gibt also eine differenzierbare
Funktion ¢ : [a,b] — R, so dass

T(s) = c(s) = (cos p(s),sin p(s)).
Weiter ist dann N (s) = (—sin¢(s), cos ¢(s)). Mit den Frenet-Formeln folgt

' (s)N(s) =T'(s) = " (s)N(s).
Da N(s) # 0) haben wir also k*(s) = ¢'(s) und

b b
/ K*(s)ds = / @' (s)ds = p(b) — p(a) = 27U (c).
Damit ist der Satz bewiesen. O

Bemerkung (a) Da «* invariant ist unter eigentlichen Bewegungen (vgl. 4.2),
zeigt Satz 11, dass U(c) (im Gegensatz zu W (c¢)) nicht von der Lage des Bildes von
c in R? relativ zum Ursprung (0,0) abhiingt.

(b) Durchlsuft man die Kurve riickwirts, so #ndert sich das Vorzeichen von k*
und von U(c).

Lemma 2. Es sei A C R? sternférmig beziiglich xo € A, d.h. fiir jedes x € A
ist die Strecke Tox ganz in A enthalten. Ist e : A — B2\ {0} eine stetige Ab-
bildung, dann gibt es eine stetige Polarwinkelfunktion ¢ : A — R mit e(z) =

lle(@)l|(cos(p(=)), sin(e(2))).

20



Beweis. Wir setzen ¢(z¢) = 0. Dann ist die Einschrinkung von e auf die Strecke
Zo + t(z — x0) eine stetige Kurve mit Parameter ¢ € [0,1]. Nach Satz 10 ist ¢
dann eindeutig definiert léings der Strecke Zoz. Da A sternférmig ist , ist damit eine
Funktion ¢ auf ganz A eindeutig definiert und ebenfalls stetig. O

Satz 12 (Hopfscher Umlaufsatz). Fiir eine einfach geschlossene, nach Bo-
genldnge parametrisierte ebene Kurve c : [a,b] — R? gilt

1 b

— * = +£1.
o /. Kk*(s)ds

Beweis. Nach Wahl geeigneter Koordinatenachsen kénnen wir annehmen, dass
c(t) = (z(t),y(t)) mit y(a) = y(b) = 0 und y(¢) > 0 fiir alle ¢ gilt. Wir betrachten
dann die Menge

A={(5,t) eR? |a<s<t<b}

und die Abbildung e : A — R? \ {0} definiert durch

[egclel. | falls 5 # t und (s,t) # (a,b);

e(s,t):==< (), falls s = t;
—c(a), falls (s,t) = (a,b).

Weil die Kurve c¢ einfach geschlossen ist, gilt c(t) # c(s) fiir alle t # s aufler
(s,t) = (a,b) und somit ist e wohldefiniert. Die Steitigkeit von e folgt durch
Ubergang von Sekanten zu Tangenten. Weiter ist e(t,t) = ¢'(t), die Tangente der
(mit Bogenlinge parametrisierten) Kurve ¢ im Punkt ¢(¢). Nach Lemma 2 existiert
dann eine Polarwinkelfunktion ¢ : A — R mit e(s,t) = (cos(p(x)),sin(¢(z)) und
p(a,a) = 0. Die Funktion ¢(t) := ¢(t,t) ist dann die Poalarwinkelfunktion lings
der Kurve ¢, und nach Satz 11 (und dessen Beweis) gilt

1t 1

b
K (0t = o / P (1)t = o (p(b, 1) — pla,0).

2 J,

Andererseits ist ¢(a,b) — p(a,a) = 7, falls z'(a) > 0 (sonst = —7), sowie (b, b) —
(a,b) =, falls 2'(a) > 0 (sonst —=). Insgesamt ist also ¢(b, b) — ¢(a,a) entweder
gleich +27 oder —27. O

Der nichste Satz hat Beziehungen zur Knotentheorie.

Satz 13 (Fary-Milnor). Sei c : [0,L] — R®, s = c(s) eine geschlossene, nach
Bogenlinge parametrisierte Roumkurve. Ist ¢ ein Knoten, so gilt

L
/ k(s)ds > 4.
0
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6.2 Konvexe Kurven

Definition 10. FEine regulire ebene Kurve c: I — R?, t — c(t) heiffit konvex, falls
fiir alle t € I das Bild ¢(I) der Kurve ganz in einer der durch die Tangente an c in
c(t) definierten Halbebenen liegt, vgl. Abb. 6.2.

konvex nicht-konvex

Abbildung 6.2: Konvexitét

Satz 14 (Charakterisierung konvexer Kurven). Eine einfach geschlossene,
requlire ebene Kurve ¢ : I — B2, s — ¢(s) ist genau dann konvez, falls entweder
k*(s) > 0 fiir alle s € I oder k*(s) <0 fiir alle s € I gilt. O

Satz 15 (4-Scheitelsatz). Eine einfach geschlossene, konveze ebene Kurve hat
mindestens 4 Scheitelpunkte, d.h. Punkte mit '(s) = 0. O

Der néichste Satz liefert die Losung einer beliebten “Denksport-Aufgabe”: Ein
Seil wird am Aquator um die Erdkugel gespannt(!). Wieviel linger muf3 das Seil
sein, wenn es iiberall einen Meter Abstand vom Boden haben soll?

Satz 16 (Parallelkurve). Sei c¢ : [0,I]] = R?, s = c(s) eine einfach geschlos-
sene, konvere, nach Bogenlinge parametrisierte ebene Kurve mit k*(s) > 0. Die
Parallelkurve ¢ von ¢ im Abstand d > 0, d.h. also

c(s) :==c(s) — dN(s),
hat die Linge L(¢) = L(c) + 2nd.
Beweis. Nach Definition gilt &(s) = ¢'(s) — dN'(s) und mit den Frenet-Formeln
ist
c'(s) = c(s) + d*(8)T(s) = ¢'(5)(1 + dr*(s)).
Damit gilt

l !
L(E):/O ||E’(s)||ds:/0 11+ di* ()| ds

und wegen k*(s) > 0 und dem Hopfschen Umlaufsatz

1
L(e) =1+ d/ k*(s)ds = L(c) + 2nd.
0
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Teil 11
Flachen

7 Regulire Flichen im R?

7.1 Die Tangentialabbildung

Es sei U C R™ eine offene Menge. Weiter sei f : U — R"™ eine differenzierbare
Abbildung!. Die Tangentialabbildung oder das Differential von f im Punkt a € U
ist die lineare Abbildung

dfo : TaR™ = Tyo)R™;  dfy(X) := lim fla+tX) - f(a)

d
fimy ; = gt li=0 fla+1X).

Andere gebriuchliche Schreibweisen fiir df, sind f., oder T, f. Aus der Analysis
sollten folgende Tatsachen bekannt sein: (i) Fiir X = e; (= i-ter Standardbasis-
vektor) ist df,(e;) =: %(a) = fz,(a) die i-te partielle Ableitung von f nach x;
im Punkt a, (ii) beziiglich der Standardbasen von T,R™ und Tt,)R" hat df, die
Jacobi-Matrix D, f von f als Darstellungsmatrix:

_ (o
Daf — (61_] (a)> 1211,,71
J=1...,m

Fiir eine geometrische Interpretation der Wirkungsweise von df,, betrachten wir den
Fall U = R? mit Koordinaten (u,v), n = 3 und X = e; (vgl. Abb. 7.1).

€25

Y
-

Abbildung 7.1: Die Tangentialabbildung

Die Tangentialabbildung df, bildet den Tangentialvektor der Geraden ¢t — a + tey
im Punkt a auf den Tangentialvektor der Raumkurve ¢t — f(a+te;) im Punkt f(a)

1Wenn nichts anderes vorausgesetzt wird, verstehen wir unter einer differenzierbaren Abbildung
immer eine C'*°-Abbildung.
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ab. Da df, linear ist, wird der Tangentialraum T,R? auf einen Untervektorraum
von T,y R® abgebildet, der von

{dfa(er), dfa(e2)} = {fula), fu(a)}

aufgespannt wird.

Die Kurven R — R?, ¢ ~ (uq,v0) + te;, i = 1,2, nennt man Parameterlinien.
Die Parameterlinien ¢ — (ug + t,vp) (bzw. t — (ug,vo + t)) nennt man u-Linien
(bzw. v-Linien) und schreibt dafiir oft nur v = vy (bzw. u = up).

Ein im Folgenden wichtiges Hilfsmittel ist der aus der Analysis bekannte Satz
iiber die Umkehrabbildung:

Satz 1 (Umkehrsatz). Es sei W C R offen, a € W und f : W — R™ differen-
zierbar. Ist dfy : ToR™ — Tp)R™ ein Vektorraumisomorphismus, so gibt es eine
offene Umgebung U C W wvon a und eine offene Umgebung V won f(a), so dass
flu : U =V ein Diffeomorphismus ist. O

7.2 Reguldre Flichen

Eine Teilmenge S C R® heiBt regulire Fliche, falls es zu jedem Punkt p € S
eine offene Umgebung V von p in R?, eine offene Teilmenge U C R? und eine
C>-Abbildung z : U — R3, (u,v) = z(u,v) gibt (vgl. Abb. 7.2) mit folgenden
Eigenschaften
(a) z(U)=SNVund z: U - SNV ist ein Homdomorphismus.
(b) Die Tangentialabbildung dz(y ) : T(y,0)R> = Tp(y,,)R® ist injektiv fiir
alle (u,v) € U.

Abbildung 7.2: Reguldre Fliche

Bemerkung (a) Da z differenzierbar ist, ist 2 insbesondere stetig. Bedingung (a)
besagt, dass es eine stetige Inverse 27! : SNV — U gibt. Dabei ist SNV bzw. U
mit der entsprechenden Teilraum-Topologie von R? bzw. R? versehen.
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(b) Bedingung (b) bedeutet dass die Jabobi-Matrix

6.’1‘71 81’1
6—u(u’v) W(U,U)
Dy = %(u, v) %(u,v) = (mu(u, v), 2, (u, v))
655'3 8$3
%(Uav) E(uﬂ))

fiir alle (u,v) € U den Rang 2 hat. Aquivalent dazu sind: (i) die Spaltenvekto-
ren z,(u,v) und z,(u,v) sind linear unabhiingig, (ii) fiir das Vektorprodukt gilt
Ty (1, 0) A 2y (u,v) # 0.

(c) Die Abbildung z heifit Parametrisierung von S im Punkt p. Die Umkehr-
Abbildung 27! : SNV — U heiBlt Karte oder lokales Koordinatensystem um p
und die (u,v) nennt man Koordinaten von z(u,v).

Im gleichen Punkt einer Fliache kann es verschiedene Parametrisierungen geben.
Wir wollen zeigen,dass die entsprechenden Koordinatenwechsel differenzierbar sind.
Dazu benétigen wir den etwas technischen

Satz 2. Es sei S C R® eine regulire Fliche. Weiter sei W C R? offen und f : W —
R® eine differenzierbare Abbildung mit f(W) C S. Istp € f(W) undz : U — S
eine Parametrisierung um p mit x(U) C f(W), so ist fir W' := f~1(z(U)) die
Abbildung

zlof: W U
differenzierbar.

Beweis. Nach Voraussetzung gibt eine offene Umgebung V C R® von p mit 2(U) =
SNV.Daxz(U) C f(W)C S gilt

W'=f"zU) = f7HSNV)=WnfH(V)=fT1(V).

Wegen der Stetigkeit von f und da V offen ist, ist W' offen in R2. Die Frage nach
der Differenzierbarkeit von z=1 o f ist also sinnvoll. Wir zeigen, dass z7! o f in
jedem Punkt a € W' differenzierbar ist. Sei dazu ¢ = f(a) und (ug,v0) € U so,
dass ¢ = x(ug, vo) gilt. Wir definieren z : U x R — R® durch

Z(u,v,t) == z(u,v) + (0,0,1).

Dann gilt offenbar Z = z auf U x {0}. Es ist

ox ox
6—1;(”0,00) a—vl(Uo,’Uo) 0
_ ox ox
Diwowo 0 = | 52 (uo,v0) 5= (uo,v0) 0
ox ox
6—;(%,1}0) a—;(uo,vo) 1
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Wegen der Rangbedingung an z gibt es eine 2 x 2 Untermatrix der Jacobimatrix
D (yy,00)%, die Rang 2 hat. Nach eventueller Vertauschung der Koordinaten z; kann
man annehmen, dass diese Untermatrix die 2 x 2 Untermatrix von Dy y,0)Z ist,
die links oben steht. Damit ist Dy, y,,0)Z regulér und nach dem Umkehrsatz gibt
es offene Umgebungen U C U x R von (ug,v,0) und V C R® von Z(ug,vo,0) =

z(ug,vo) = q = f(a), so dass Z|g : U — V ein Diffeomorphismus ist. Dann ist
UNn (U x {0}) =U" x {0}

fiir eine in R? offenen Menge U’ C U. Da x ein Homdomorphismus von U auf z(U) =
SNV ist, gibt es eine offene Menge V' C R?, so dass z|y» ein Homdomorphismus
von U’ auf SNV" ist. Wir bezeichnen mit 7 : R® — R? die Projektion (z1, 22, 23) —
(x1,22). Da z|lvr = Z|y <o, gilt 7' =7 o (&|g)~" auf SNV,

Wegen der Stetigkeit von f ist W” := f~1(SN V') offen in R? mit a € W" und
auf W" gilt

zlof=nmoz tof.

Als Verkettung differenzierbarer Abbildungen ist 7oZ ! o f und damit auch z=1o f
in a differenzierbar. Da a beliebig war, folgt die Behauptung. (]

Korollar 1. Es sei S eine requlire Fliche und x : U — S und T : U — S seien

Parametrisierungen von S um p. Sei D := x(U) N Z(U). Dann ist der Koordina-
tenwechsel
g lox:2 (D)= z YD)

differenzierbar (mit differenzierbarer Inverser x=! o %). (]

7.3 Tangentialebenen einer Fliche

Es sei S eine reguldre Fliche und p € S. Weiter sei ¢ : (—¢,e) =+ S C R® eine
differenzierbare Kurve mit ¢(0) = p. Der Vektor

dc
"0) := — T, R3
¢(0) =2 () €T,

heiflt Tangentialvektor an die Fliche S im Punkt p. Die Tangentialebene T},S einer
reguldren Fliche S im Punkt p ist die Menge aller solchen Tangentialvektoren, also

T,S = {c'(0) | ¢ wie oben }.

Die Elemente des Tangentialraumes nennt man Tangentialvektoren. Die lineare
Hiille einer Menge von Vektoren {aj,...,a,} bezeichnen wir im Folgenden mit
[al,...,am].
Lemma 1. Ist z : U — S eine Parametrisierung von S um p mit z(u,v) = p, so
15t

TpS = d'r(u,v) (T(u,v)Rz) = {p} x [:L‘u(u,v),mv(u,v)].

Insbesondere ist T,S ein zweidimensionaler Untervektorraum von T,R3.
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Beweis. Wir zeigen zuerst, dass TS C d(y,v) (T(u,.)R?). Sei also ¢/(0) € TS fiir
eine differenzierbare Kurve ¢ : (—e,e) — S C R® mit ¢(0) = p. Weiterseiz : U — S
eine Parametrisierung um p. Dann ist nach Satz 2 die Abbildung

p:=x"toc: (-8 U

differenzierbar (£ sei dabei so klein gew#hlt, dass diese Abbildung definiert ist;
wegen der Stetigkeit von ¢ ist das immer mdoglich), vgl. Abb. 7.3(a).

v z loc
7" (p)
4—*—*_’ —_—> >
& 0 ¢ t zloc u
(a)
x
A’[) /\
i) TH
a
"u

Abbildung 7.3: Tangentialvektoren
Es folgt
d
CI(O) = a |0 (.’L‘ 0 (P)(t) = dx(u,v) (‘pl(o))a d.h. CI(O) € dx(u,v) (T(’LL,’U)R2)

und somit gilt T,S C {p} x [y (u,v), 2, (u,v)].
Sei jetzt umgekehrt

Y =a=z, (U, ’U) + By (’U,, U) € dm(u,v) (T(u,v)R2 )
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Wir setzen ¢(t) := z((u,v) + t(a, 8)), vgl. Abb. 7.3(b). Dann ist ¢ differenzierbar,
¢(0) = p und es gilt

CI(O) = dm(u,v) (0561 + 562) = adm(u,'u) (61) + Bdaj(u,'u) (62)
= axu(u,v) + Bzy (u,v) =Y,

d.h. Y € T,S. Alsoist auch die Inklusion {p} x [z, (u, v), 2, (u,v)] C T},S gezeigt. O

Lemma 2. Die Tangentialebene in einem Punkt einer reguliren Fliche ist un-
abhdngig von der lokalen Parmetrisierung. Genauer seienx : U — S undz : U — S
Parametrisierungen von S um p. Fir z, = z,(z 1(p)), 2, := z,(z 1 (p)) und

Ty :=Za(T7(p)), Tp := T5(T"(p)) gilt dann
TpS = [Ty, Ty] = [Za, To)-

Beweis. Die erste Behauptung folgt unmittelbar aus der Definition von T3S, die
ja gar keine Parametrisierungen verwendet. der zweite teil des Lemmas folgt dann
aus Lemma, 1. O

Lemma 3. Es sei S eine regulire Fliche und M eine offene Teilmenge von S,
d. h. es gibt eine offen Menge W C R® mit M = SNW. Dann ist M eine regulire
Fliche und T,M = T,S fir allep € M.

Beweis. Ist p € M und z : U — S eine Parametrisierung von S um p, so ist z
eingeschriinkt auf 2= (2(U) N M) eine Parametrisierung von M um p. O

8 Beispiele

8.1 Affine Ebenen

Die affine Ebene durch p € R® aufgespannt durch die linear unabhsingigen Vektoren
X,Y € R ist
S:={p+uX +vY|u,veR},

vergleiche Abb. 8.1. Wir wollen zeigen, dass S eine reguldre Fléche ist. Eine einzige

Abbildung 8.1: Eine affine Ebene
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Parametrisierung reicht hier schon aus. Man wihlt dazu U := R2, V := R3 und
setzt  : U — R®, (u,v) = p+uX +vY.Daz, = X, 2, = Y, ist die Rang-
Bedingung erfiillt. Dass = ein Homd&omorphismus ist, folgt aus der Definition der
Unterraumtopologie.

8.2 Graphen von Funktionen

Es sei U C R? offen und f : U = R eine C*°-Funktion. Der Graph von f ist die
Menge
S = {(.1'1,1'2,1'3) € R |(x1,22) €U, z3 = f(ml,m2)}.

Wir wollen iiberlegen, dass S eine regulire Fliche ist. Wie bei Ebenen geniigt auch
hier eine einzige Parametrisierung. Wir setzen V := R? und definieren z : U — R®

zs3

(u, v, f(u,v))

Abbildung 8.2: Graph einer Funktion

durch (u,v) — (u,v, f(u,v)), vgl. Abb. 8.2. Dann gilt
zU)=S=8nV.

Ferner ist die bijektive Abbildung z : U — S differenzierbar und somit auch stetig.
Die Umkehrabbildung 27! : S — U, (u,v, f(u,v)) — (u,v) ist stetig, da =1 = 7|g,
wobei 7 : R® — R? die Projektion (z1,%2,3) = (z1,Z2) bezeichnet. Insbesondere
ist z also ein Homdomorphismus von U auf S. Wegen

1 0
0 1
D(u )T =
’ of of
au (U,U) 61) (U,'U)

ist die Rangbedingung ebenfalls erfiillt.

Umgekehrt ist jede reguldre Fliche lokal als Graph einer Funktion darstellbar.
Genauer gilt

Satz 3. Es sei S eine regulire Fliche. Dann gibt es zu jedem p € S eine offene
Menge O C R?, so dass SN O der Graph einer C*-Funktion ist.
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Beweis. Essei z: U — S eine Parametrisierung um p = x(ug, vo). Da S regulir
ist, konnen wir (nach eventueller Vertauschung der Koordinaten x;) annehmen,

dass die Matrix
%(u vo) %(u vo)
6U 0, Y0 31} 0, Y0

D =
0 0
—(;;2 (ug,v0) —5;2 (an ’Uo)

reguliir ist. Es sei 7 : R® — R? die Projektion (z1, s, x3) — (21, x2). Dann ist
gi=mox:U =R, (u,v) (z1(u,v),z2(u,v))

differenzierbar. Wegen Dy, ,,)9 = D gibt es nach dem Umkehrsatz offenene Umge-
bungen W C U von (ug,v) und V C R? von (z1(uo,vo), 2 (ug, vo)), so dass g|w :
W — V ein Diffeomorphismus ist. Sei h := (glw)™' : V = W, (z1,22) = (u,v).
Dann gilt

((E o h)('TlJm?) = Z’(U,’U)
.Z'l(u,’l}),IBQ(U,U),.’L'g(U,U))

Z1,T2, $3(h($17$2))‘

=(

= (

Da z ein Homoomorphismus ist, ist (W) = x(h(V)) offen in z(U). Es gibt also
n

eine offene Menge O C R?, so dass (W) = S N O gilt. SchlieBlich ist SN O der
Graph der Funktion f:V — R, (z1,z2) — z3(h(z1,22))- O

8.3 Die 2-Sphire

Es sei S := S? := {& = (x1,22,23) € R® |||z]| = 1}. Die Menge S ist also gerade
die Einheitssphire, vgl. Abb. 8.3. Wir wollen zeigen, dass S eine regulire Fliche

z3

Z2 z1

\
Abbildung 8.3: Die 2-Sphére
ist. Dazu betrachten wir zunéchst die offene Menge

Vit = {(21,72,23) € R® |23 >0} C R?,
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und die offene Menge
Us := {(21,72) € R |2} + 75 < 1}.

Dann ist S2 NV," der Graph der Funktion f : Uz — R,

(w1, T2) = /1 — (22 + 23).

Nach Beispiel 8.2 ist 23 : Uz — R®, (z1,32) = (z1,T2,1/1 — (27 + 22)) eine lokale
Parametrisierung von S2. Das Bild von z7 ist die offene obere Hemisphiire. Analog
parametrisiert man die untere offene Hemisphére durch

z3 :Us = R (21,20) = (561,332,—\/1 — (2} + 23)).

Damit fehlen noch die Punkte auf S? mit 23 = 0. Fiir diese bekommt man Para-
metrisierungen durch Vertauschen der Rollen von z3 mit x; bzw. z,.

Wir haben also insgesamt 6 lokale Parametrisierungen gebraucht, um S2 zu
iiberdecken. Man kommt allerdings schon mit 2 Parametrisierungen aus. Es soll
nur die Idee wiedergegeben werden, detailliertes Nachrechnen ist als Ubung empfoh-
len. Wir konstruieren Koordinatenumgebungen durch stereographische Projektion
7 (vgl. Abb 8.4). Bezeichnet N = (0,0, 1) den ,,Nordpol® so ist 7 : S% \ {N} — R?
gegeben durch

1
1— 3 (.’L’l,.’EQ).

Eine analoge Formel erhilt man fiir die stereographische Projektion vom ,,Stidpol“
S =(0,0,—1) aus.

($1,$2,.’L’3) =

T3
A
1
T = (mla 07 1133)
]
11 .Z‘Il Z1
x) 1

I 1—.(13'3

Abbildung 8.4: Stereographische Projektion

8.4 Implizit definierte Flichen
Oft ist eine Menge S implizit durch eine Gleichung definiert:

S = {(#1,22,3) € B | f(a1,22,73) = 0}
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Die Sphére S? fillt in diese Klasse von Flichen. Das folgende Kriterium gibt eine
hinreichende Bedingung dafiir, dass S eine regulire Fliche ist.

Satz 4. Sei Vo C R® offen und f : Vo = R eine C®-Funktion. Weiter sei
S = {(.’171,.732,.’133) S R3 |f(:c1,a:2,z'3) = 0} = f_l{O}

Falls fiir alle p € S der Gradient

grad f(p) = (

ist, so ist S eine regulire Fldche.

of of of

dx1’ dxy’ Ox3

)®) # (0,0,0)

Beweis. Sei p € S. Wegen grad f(p) # 0 kénnen wir ohne Einschrinkung anneh-
men, dass Of/0x3(p) # 0 ist. Wir definieren ¢ : Vo — R® durch (z1,22,23) —
(.’El,.’L'Q, f(.’ll'l, 1’2,1’3)). Dann gﬂt

1 0 0
0 1 0
DpSOZ )
of of of
6—311(10) é)—mg(p) 8773(19)

also det D # 0. Nach dem Satz iiber die Umkehrabbildung gibt es offene Mengen
Vi C Vo, W1 = (V1) C R® mit p € V1, o(p) € Wi, so dass ¢|y, : Vi — W; ein
Diffeomorphismus ist. Es gilt dann
SNVi = (plv) (WN (B x {0})).
Sei m : R® — R? die Projektion (z1,z2,z3) — (z1,22). Dann ist
U :=x(W.n (R x {0}))
offen in R%. Die Inklusion i : U — Wy N (R? x {0}), (z1,22) — (z1,22,0), ist ein

Homgéomorphismus. Somit ist z := (p|y;) "t 0i: U — R® eine lokale Parametrisie-
rung von S, die wegen dz = d(p|y;)~! o di Rang 2 hat. O

Beispiel (a) Es seien a,b,c € R\ {0}. Wir betrachten das Ellipsoid S definiert
durch

.’L'2 ,’L‘2 1-2
Mit den Bezeichnungen aus Satz 4 sei Vo := R® und f: R® - R,
.’13'2 ,CL'2 _1-2
(w1, m2,23) := a—; + b_22 + 0_23 ~1,

also S = f~'{0}. Um den Satz anwenden zu konnen, miissen wir zeigen, dass
grad f(p) # 0 fiir alle p € S gilt. Es ist aber

21 2x9 2x
gradf($1,$2,$3) = (a—;’b—;’ 0_23) = (07050)

nur fiir (z1, z2,23) = (0,0,0) € S. Fiir a = b = ¢ = 1 erhilt man die Einheitssphire
S2.
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(b) Das nichste Beispiel ist etwas abstrakter. Fiir d > 0 betrachten wir die Menge
aller symmetrischen 2 x 2 Matrizen mit Determinante d, also

S = {X:(m1 T2 >|ZL','€R, detX:x1$3—:c§:d}.

Iy I3
Essei f: R = R, f(z1,22,73) := 173 — 75 — d. Dann ist
grad f(z1,xa,z3) = (23, —222,21) # (0,0,0)

fiir alle X € S, da d > 0. Nach Satz 4 ist S eine regulire Fliche (ein 2-schaliges
Hyperboloid).

Bemerkung. Die Bedingung grad f(p) # 0 fiir alle p € S ist hinreichend, aber
nicht notwendig dafiir, dass S eine regulire Fliche ist. Wir betrachten dazu die
Sphiire

52 = {($1,.’L’2,.’E3) € R3 |$% +-7/'§ +$§ = 1}

und setzen f(z1,2,73) = (z} + 23 + 23 — 1), Dann ist S* = f71(0),
grad f(z1, 2o, x3) = 2(x] + 73 + x5 — 1)(221, 272, 223)

und somit grad f(p) = O fiir alle p € S2. Trotzdem ist S? - wie wir bereits wissen -
eine regulire Fliche (siehe Beispiel (a) und 7.3).

8.5 Rotationsflichen

Eine wichtige Klasse von Fldchen sind Drehflichen oder Rotationsflichen. Dabei
wird eine ebene Kurve in der z;z3-Ebene um die z3-Achse gedreht, vgl. Abb. 8.5.
Um eine regulédre Fliache zu erhalten, muss die zu rotierende Kurve gewisse Bedin-
gungen erfiillen, auf die wir hier aber nicht eingehen wollen.

zs3

A c

v

T

Abbildung 8.5: Rotationsfliche
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9 Die 1. Fundamentalform

9.1 Definition

Wir wollen auf einer reguliren Fliche Geometrie betreiben, also z.B. Lingen und
Winkel messen. Der Tangentialraum T, R* = R? ist mit dem Standardskalarprodukt
(-,-) von R® versehen. Ist S C R® eine regulire Fliche und p € S, so ist die
Tangentialebene 7,S ein Untervektorraum von T,R? (siehe Lemma II. 2). Es liegt
also nahe, das Standard-Skalarprodukt auf T,S einzuschrénken.

Definition 1. Es sei S eine regulire Fliche undp € S. Dann definiert die bilineare
Abbildung
()p : TpS xTpS = R, (X,Y), =(X,Y)

ein Skalarprodukt auf T),S. Die Zuordnung I : p — I, := {(-,-), heifit 1. Fundamen-
talform von S.

Fiir eine gegebene Parameterisierung z : U — S von S um p haben wir die Basis

2, =z, (z7H(p)) und =z, = z,(z"(p))

von T}, S. Beziiglich dieser Basis konnen wir I, p € 2(U), durch eine positiv definite,
symmetrische Matrix (g;;(u,v)) € R?*? beschreiben. Die folgende Bezeichnung
dieser Matrix geht auf Gauf3 zuriick:

R g11  G12 _ E F
= (00 92 ) = (5 L),

911 = E = E(u,v) = (Ty, Ty)p,
gi2=gan=F= F(Uav) = <$u7$v>p = <$v7$u>p;
922 = G = G(u,v) = {Ty, Ty)p-

mit

Zusammenfassend haben wir gezeigt: Auf einer reguliren Fliche S wird durch das
Standardskalarprodukt von R® eine Familie von Skalarprodukten (I,),cs induziert.
Beziiglich einer Parametrisierung « : U — S von S ist diese Familie gegeben durch
eine 2-parametrige Familie von Matrizen (g;;(u,v))(u,v)ev- Dabei sind die Eintrage
gij : U — R differenzierbare Funktionen.

Beispiel (a) Wir betrachten eine affine Ebene, die global durch z : R? — R3,
(u,v) = To +ufi + vfo mit zwei orthonormierten Vektoren f, fo € R® parametri-
siert ist. Dann ist z,, = f; und z, = f2, also

(Fa)=(01)
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(b) Es sei S der Zylinder S = {(z1,22,23) € R® |27 + 23 = r?}. Eine lokale Para-
metrisierung von S ist x(u,v) = (r cosu,r sinu,v). Dann ist z,, = r(— sinu, cosu, 0),
Z» = (0,0,1) und damit

Bemerkung. Die innere Geometrie einer Fliche umfasst alle Eigenschaften oder
Groflen, die nur von der 1. Fundamentalform abhiingen (bzw. durch diese bestimmt
sind).

Nach den obigen Beispielen stimmen fiir »r = 1 die 1. Fundamentalform von Zylinder
und Ebene iiberein. Der tiefere Grund dafiir liegt darin, dass man den Zylinder unter
Erhaltung der 1. Fundamentalform in die Ebene ,abwickeln“ kann. Insbesondere
enthilt die 1. Fundamentalform nicht die vollstindige Information dariiber, wie die
Fliiche in den R? eingebettet ist. Fiir viele geometrische Fragestellungen geniigt es
aber oft, die 1. Fundamentalform zu kennen. In den néchsten beiden Abschnitten
geben wir erste Beispiele dazu an. Wir werden spéter in Teil IV noch ausfiihrlich
auf Fragen der inneren Geometrie eingehen.

9.2 Lé&nge von Fliachenkurven

Essei z : U — S eine Parametrisierung einer regulire Fliche S. Weiter sei [a, ] —
U, t = (u(t),v(t)) eine differenzierbare Kurve. Dann ist ¢(t) = z(u(t),v(t)) eine
differenzierbare Flichenkurve, vgl. Abb. 9.1. Da z(U) C S C R® kann man ¢

x
ST U /\
U
—— S
@ B

u

Abbildung 9.1: Eine Flichenkurve

natiirlich auch als Raumkurve auffasssen. Die Lénge von c¢ ist dann

B
L@=/Hﬂwﬁ
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Weiter ist nach der Kettenregel ¢'(t) = z,(u(t), v(t))u'(t) + 2, (u(t),v(t))v'(t) €
Te(#)S und somit

' @I = (' (1), ¢'(¢))
= (u'(t)*{@u, 2o} + 20/ ()0 (t){@u, 20) + (V'(2))* (@0, @0)
= (W' ())*E +2u' () () F + (v'()*G.

Zur Bestimmung von L(c) fiir eine Flichenkurve geniigt es also, die 1. Fundamental-
form der Fléche und die Kurve im Parametergebiet zu kennen. Mit andern Worten:
die Lénge einer Fichenkurve von S ist eine Gréfle der inneren Geometrie von S.

9.3 Winkel zwischen Parameterlinien

Es sei S eine reguldre Fliche. Wir betrachten die Parameterlinien v = uo und
v = vg bzw. deren Bilder x(ug,t) und z(¢,v9) auf S, vgl. Abb. 9.2.

(3] U = Ug /\
A

UV =1

Tu

Abbildung 9.2: Parameterlinien

Der Winkel «, unter dem sich z(ug,t) und z(t,v9) im Punkt z(ug,vg) schneiden,
ist gegeben durch

{2y (o, v0), Tv(uo,v0))

llzw(uo, vo)ll [l (uo, vo)l
F(UOJ ’l)(])

- \/E(UO,UO) : G(Uo,vo).

Auch hier geniigt die Kenntnis der 1. Fundamentalform, um den Winkel zu bestim-
men.

Cosa =

9.4 Verhalten von I bei Koordinatenwechsel

Es sei S eine regulire Fliche. Sind zwei Parametrisierungen z : U — S, z: U — S
um den Punkt p € 2(U)NZ(U) gegeben, so stellt sich die Frage, wie die Darstellun-
gen der 1. Fundamentalform I, in den jeweiligen Koordinaten zusammenhéngen.
Wir betrachten dazu den Koordinatenwechsel

zlox: 27 ' (z(U)Nz(0))
(u,v)

= (@(U) N &(0))

(w, 0).
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Nach der Kettenregel gilt

ox _Ozo(z lox) _ox,
%(U,U) = T(U;U) = %(uﬂ))
or ,_ _. Ou or ,_ _, 0v
- %(U,’U) ) %(uav) + %(U,’U) ) %(uav)
und
Oz _ 0%o(z 'ox) _ o0z _
B_(Ua U) v (ua U) v (ua U)
o, . Ou oT,  _ v
a(u,v)%( 7U)+ p) ( 7“) p) (U,’U)
Wir setzen
f1:=zy(u,v) fo = my (u,v)
f1:=z4(u,0) fo := Ty (4, ?)

Beziiglich dieser Standardbasen hat der Koordinatenwechsel gemass obiger Rech-
nung die Darstellungmatrix

D(u,v) = (dij(uav)) =

Wir kénnen also schreiben
2
fi=Y_ drif

k=1

und
2 —_ -
9i5 = (fi Fdp = Y, dradis (e, i),

k=1

bzw.

(gij (U,U)) = DT(“) U) (S_]ij (ﬂ, Q_}))D(uau)'

Fiir jeden Punkt p = z(u,v) = Z(u,?) gelten also die bekannten Transformations-
formeln fiir Skalarprodukte unter Basiswechsel.

Bemerkung. Wir haben in diesem Teil (2-dimensionale) reguliire Fléichen in R3
eingefiihrt und gewisse allgemeine Eigenschaften diskutiert. Die Dimensionen zwei
und drei wurden aber nirgends wirklich benutzt. Tatsdchlich kann man die bishe-
rigen Konzepte genauso fiir beliebige Dimensionen betrachten: man spricht dann
von ((n — 1)-dimensionalen) reguldren Hyperflichen in R™.
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Teil IIT
Kriimmung von Flachen

10 Gauf}- und Weingarten-Abbildung

10.1 Differenzierbare Abbildungen

Wir betrachten zwei regulére Flichen M und N und eine stetige Abbildung f :
M — N.Esseienp e M, x: U - M eine Parametrisierung um pundy : V - N
eine Parametrisierung um f(p).

Definition 1. Die stetige Abbildung f : M — N heifit differenzierbar in p € M,
wenn die Abbildung

y"lofox: a7 (z(U)N [T (V) =y~ (f=(U)) Ny(V))

differenzierbar in =1 (p) ist, vgl. Abb. 10.1. Sie heifit differenzierbar, wenn sie in
jedem Punkt g € M differenzierbar ist.

z3

x1

T2 »'UI T Iy

yilofoa:

-

v

Abbildung 10.1: Darstellung in lokalen Koordinaten

Bemerkung (a) Da f stetig ist, ist die Menge z~! (z(U) N f~(y(V))) offen in U
und damit offen in R?. Die Frage nach Differenzierbarkeit ist also sinnvoll.

(b) Die Darstellung von f in Definition 1 bezeichnet man auch als Darstellung von
f in lokalen Koordinaten. Man kann sich also merken: f ist genau dann differen-
zierbar, wenn f in lokalen Koordinaten differenzierbar ist.
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(c) Die Differenzierbarkeitsaussage in lokalen Koordinaten héngt nicht von der Pa-
rametrisierung um p und f(p) ab. Genauer: Ist Z eine weitere Parametrisierung um
p und ¥ eine weitere Parametrisierung um f(p), so ist y~! o f oz genau dann diffe-
renzierbar in z='(p), wenn § ' o foz differenzierbar in z=!(p) ist (Ubungsaufgabe!).

Definition 2. Es sein € N. Ist f : M — R" eine stetige Abbildung, so heifst f
differenzierbar in p € M, wenn die Abbildung

fozx:U—-R"

fiir eine und damit jede Parametrisierung um p differenzierbar ist.

10.2 Das Tangentialbiindel

Es sei f : M — N eine differenzierbare Abbildung zwischen reguléren Flichen.
Weiter sei v € T, M ein Tangentialvektor, d. h. es gibt eine differenzierbare Kurve c :
(—€,€) = R3 mit ¢(0) = p, ¢((—¢,€)) C M und ¢/(0) = v. Die Tangentialabbildung
dfy : TyM — Ty N ist die lineare Abbildung gegeben durch

ah) = 429 0),

d.h. df, bildet den Tangentialvektor ¢'(0) der Kurve ¢ im Punkt p auf den Tangen-
tialvektor der Kurve f o ¢ im Punkt f(p) ab, vgl. Abb. 10.2.

M

Abbildung 10.2: Die Tangentialabbildung

Wir miissen zeigen, dass df,, wohldefiniert ist, d.h. ist ¢ : (—£,&) — M, eine weitere
Kurve mit ¢(0) = p und &' (0) = v, so ist zu zeigen, dass

d(foc) v _d(feoc)
7 0 =—"7—00

gilt. Dazu sei x : U — M eine Parametrisierung um ¢(0) = ¢(0) = p. Wegen der
Stetigkeit von ¢ und ¢ kann man annehmen, dass die Abbildungen z~oc und z=1o¢
definiert sind. Dann gilt nach Voraussetzung

dﬂfz—l(p) (W(O)) = CI(O) = (_JI(O) = d.’L‘z—l(p) (W(O))
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Da dz,-1(p) injektiv ist, folgt

diz ' oc)  d(z 'oc)
7 O =——7—(0)
Somit gilt
dfo0)  _d(fozostod

_d(foe)
T dt )

Es kommt also nicht auf die Kurve ¢ an, sondern nur auf den Tangentialvektor ¢'(0)
dieser Kurve. Ist ¢'(0) = ax,, + Bz, so kann man die spezielle Kurve

t= z(z” (p) + t(a, B))

benutzen. Rechnen Sie mithilfe solcher Kurven die Linearitat von df, nach.

Definition 3. Die disjunkte Vereinigung

™ = [[ T,M
pEM

heifst das Tangentialbiindel von M. Eine differenzierbare Abbildung f : M — N
induziert durch die Festsetzung

df(pa U) = (f(p);dfp(v))a (p,U) € TI’M
eine Abbildung df : TM — TN.

10.3 Normalenfelder

Die Kriimmung einer Kurve haben wir als Anderungsgescbwindigkeit der Tangente
definiert. Die Kriimmung einer Fliche wird nun analog als Anderungsgeschwindigkeit
der Tangentialebene definiert. Dazu benstigen wir einige neue Begriffe.

Definition 4. Ein Einheitsnormalenvektorfeld auf einer offenen Teilmenge W
einer requldren Fliche S ist eine differenzierbare Abbildung

N:W TR =R xR, ¢+~ (¢,N(q)),
die jedem Punkt ¢ € W einen FEinheitsnormalenvektor an S in q zuordnet, d. h.
IN@I=1 und (N(g),X)=0
fiir alle X € T, S, vgl. Abb. 10.3.

40



N(P)JA\
S

Vv

Abbildung 10.3: Einheitsnormalenvektor

Eine regulire Fliche S heifit orientierbar, wenn es auf S ein differenzierbares Ein-
heitsnormalenvektorfeld N : S — TR® gibt. Die Wahl eines solchen Vektorfeldes
nennt man auch eine Orientierung von S. Auf einer orientierbaren Fliche gibt es
immer genau zwei Orientierungen.

Definition 5. Es sei S eine regulire Fliche und x : U — S eine Parametrisierung
von S um p = z(u,v). Der Vektor

N(p) :=

heifit Einheitsnormalenvektor von S im Punkt p € S beziiglich x.
Die Abbildung

Ty (U, 0) A Ty (0, 0)
||$u (’LL, U) A Ty (ua U)

€ T,R?

[

Noz:U—-TR =R x R®

ist per Definition differenzierbar und N ist ein Normalenfeld. B
Esseiz:U — S, (4,0) — Z(G,0) eine weitere Parametrisierung um p. Mit N(p)
sei der Normalenvektor beziiglich Z bezeichnet. Weiter sei

e: zHzU)Nz(0) — 7Y zU)Nz(TD))
(@,0) = (u,0)

der Koordinatenwechsel. Es gilt also
Z(u, ) = (2 0 ¢)(4,v) = x(u,v)
und damit

Ty NTy = (xu% +xv%) A (xu% +xv%>

Ooudv Oudv
= (%% — %%) Ty N Ty = det(dp) Ty A Ty
Schliellich erhalten wir det(dy)
= et(dy
N(p) = —T— - N(p).
(p) Tdet(dy)] (p)

Ist det(dyp) > 0 so heifit ¢ orientierungserhaltend. Bei einem orientierungserhalten-
den Diffeomorphismus gilt also N(p) = N(p), sonst gilt N(p) = —N(p).
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Bemerkung. Eine regulire Fliche S ist genau dann orientierbar, wenn es eine
Uberdeckung (¢;)icr von S durch Parametrisierungen ¢; : U; — S gibt, so dass
alle Koordinatenwechsel ¢; o go;l positive Funktionaldeterminate haben (Ubungs-
aufgabel).

Beispiele (a) Die 2-Sphére S? und Graphen von Funktionen sind stets orientier-
bar. Jede Fliche, die durch eine Parametrisierung beschrieben werden kann, ist
orientierbar.

(b) Das Mébiusband ist nicht orientierbar, vgl. Abb. 10.4.

Abbildung 10.4: M6biusband

10.4 Gauf}- und Weingarten-Abbildung

Es sei S eine orientierbare Fliiche mit Einheitsnormalenfeld N. Die Abbildung = :
TR® — R3, (p,v) — v ist differenzierbar und damit auch die Abbildung wo N. Fiir
diese Abbildung schreiben wir einfach N. Nach Definition ist also N(S) C S?, vgl.
Abb. 10.5.

Abbildung 10.5: Gaufl-Abbildung

Definition 6. Sei S eine orientierbare Fliche. Die differenzierbare Abbildung
N:S—S* pw— N(p)
heifit Gau-Abbildung von S.
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Da das Vektorfeld N bis auf ein Vorzeichen eindeutig bestimmt ist, gibt es zu jedem
p € N eine Parametrisierung z : U — S um p, so dass N auf z(U) die Gestalt aus
Definition 5 hat.

Wir betrachten die Tangentialabbildung
dNp : TpS = Ty S°.

Nach Konstruktion steht N (p) senkrecht auf Ty, S?. Da aber per Definition N (p)
auch senkrecht auf T),S steht, konnen wir die Tangentialrdume T,S und Tn(;)S?
iiber die Abbildung (p,v) — (N (p),v) identifizieren: T),S = Ty(,)S*. Insbesondere
fassen wir nun dN,, als Endomorphismus von T},S auf.

Definition 7. Die Tangentialabbildung der Gauf-Abbildung
dNp : Tp,S - T,S, pe€eS,
heifst Weingarten-Abbildung (oder auch Form-Operator).

Essei z : U = S eine Parametrisierung von S. Weiter sei p = z(u,v) € z(U). Dann
haben wir die Basis

{20 = 2u(u,v), Ty, = 24 (u,v)}

von T,,S. Fiir die Tangentialabbildung dN,, gilt dann
dNp(zy) = dN, (dx(uﬂ,) (61))

=d(N 0 z)(u,)(e1)
_O(Nox) o
- T(uav) - N’u(u7v)
und
dN,(z,) = W(u,v) =: Ny(u,v).

Bemerkungen (a) Ist ¢ : I — S, t — ¢(t) = z(u(t),v(t)) eine differenzierbare
Flachenkurve mit ¢(0) = p und N(t) := N(c(t)) die Einschrinkung der Gauf-
Abbildung auf diese Kurve, so gilt

N'(0) = d(]\;: 9 (0) = dN,(c'(0)) = AN, (u' (0)z + v'(0)zy)

= u'(0)Nu(1(0),v(0)) + v'(0) Ny (u(0),v(0)).
(b) Da (N,N) =1 folgt duch ableiten
(Ny,N) =(N,,N)=0.

Das zeigt nochmals
dN,(TpS) = dNp ([T, 2y]) = [Ny, Ny] C N* 2 T,8S,

d.h. dN, ist fiir alle p € S ein Endomorphismus von T},S.
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Satz 1. Die Weingarten-Abbildung dNp, : T,S — T,,S einer reguldren Fliche S ist
fiir jeden Punkt p € S selbstadjungiert beziiglich der 1. Fundamentalform von S,
d. h. es gilt

(dN;D(X):Y)p = (X, de(Y»p

fiir alle p € S und alle X,Y € T,S.

Beweis. Es geniigt die Behauptung fiir eine Basis von TS zu zeigen. Dazu sei
z : U — S eine Parametrisierung von S. Dann haben wir die Basis {z,,z,} von
TpS. Wegen der Symmetrie des Skalarprodukts gilt

(dNp(4), 2y) = (Tu, ANp(24,)), (dNp(xy), Ty) = (T4, dNp(2y)).

Es bleibt also
<de($U)>$v) = (;L'u,de(.iL'v))

zu zeigen. Das ist aber dquivalent zu
(Nu; Ty) = (T, Ny).

Um das zu zeigen, leiten wir (N,z,) = 0 = (N, z,) nach v bzw. nach « ab und
erhalten

(Ny,xy) + (N, Zyy) =0
<Nua-73v) + <Na -Tvu> =0.

Da x eine C*®-Abbildung, ist gilt T, = T, (z € C? hitte schon gereicht.). Damit
folgt die Behauptung. O

Wir erinnnern an die folgenden Begriffe aus der Linearen Algebra. Sei E ein
euklidischer Vektorraum, d.h. E ist ein reeller Vektorraum mit Skalarprodukt. Zu
einer selbstadjungierten Abbildung ¢ : E — E gehort eine symmetrische Bilinear-
form By definiert durch

By(X,Y) := (¢(X),Y)

bzw. eine quadratische Form
Qy(X) = By(X, X) = (4(X), X).
Wir betrachten jetzt diese Konzepte fiir £ = T,S and ¢ = —dN),.

Definition 8. Die quadratische Form II,, die zu —dNp, p € S, gehort, heifst 2.
Fundamentalform von S in p, also

IIP(X) = <_dNP(X)7 X)IJ

fir alle p € S und alle X € T,S. Wir werden die Bezeichnung II, auch fir die
entsprechende Bilinearform verwenden.
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Beispiele (a) Es sei S die affine Ebene durch p € R® aufgespannt von den Vekto-
ren f; und fi. Ein Normalenfeld auf S ist dann offenbar konstant. Es sei

_ AN
N TSk

Wir wihlen die Orientierung so, dass N(p) = (p, f) gilt. Die Gauf-Abbildung ist
also konstant. Fiir die Weingarten-Abbildung gilt folglich dN, = 0, bzw. II, = 0
fiir alle ¢ € S.

(b) Wir betrachten die Sphire S? vom Radius r (S? = S?). Fiir N ergeben sich
die zwei Moglichkeiten

PP

lpll

je nach Wahl der Orientierung. Positives Vorzeichen entspricht dem “Gufleren” Nor-

malenfeld, negatives Vorzeichen dem “inneren”, vgl. Abb. 10.6. Damit ist

N(p) =+

Abbildung 10.6: AuBeres Normalenfeld auf S?

1 1
N = :E—ing und de = :l:—idTpsa.
roor T g
Nach Definition erhélt man I, (X) = F1(X, X),.
(c) Als weiteres Beispiel betrachten wir den Zylinder S, vgl. Abb. 10.7,
S = {(z1,22,23) € R’ |2] + 23 = 1}.

Die GauB-Abbildung ist konstant lings Mantellinien und das Bild N(S) ist ein
GroBkreis auf S2, vgl. Abb. 10.7.
Fiir die Weingarten-Abbildung erh&lt man

dN,(X) =0, wenn X tangential an eine Mantellinie ist und
dN,(Y) =Y, wenn Y tangential an eine Kreislinie ist.

Die Vektoren X und Y sind orthogonal und bilden damit eine Basis von T},S.
Beziiglich dieser Basis hat die zweite Fundamentalform also die Darstellung

0 0
]%_(OIWW)'
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T3

Abbildung 10.7: Zylinder und entprechende Gaufl-Abbildung

Zeigen Sie als , dass der Zylinder eine reguldre Fliche ist, und weisen Sie dann
mithilfe einer Parametrisierung von S die obigen Behauptungen nach.

(d) Wir betrachten das hyperbolische Paraboloid, das implizit durch
S ={(z1,22,23) € R’ |23 =23 — 27}

gegeben ist, vgl. Abb. 10.8. Eine globale Parametrisierung von S ist die Abbildung
z:RE SR (u,0) = (u,v,v% —u?).

S ist insbesondere der Graph einer Funktion und damit orientierbar.
Wir wihlen das Normalenfeld bzgl. x als Orientierung, vgl. Definition 5. Es gilt

Abbildung 10.8: Hyperbolisches Paraboloid

Zy(u,v) = (1,0, —2u) und z, (u,v) = (0,1, 2v), sowie z, (u, vV)Axy (u,v) = (2u, —2v,1).
Fiir den Normalenvektor in p = z(u,v) erhalten wir also
Ty N\ Ty (2u, —2v,1)

N(p) = N(z(u,v)) = NN IRV
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Fiir p = (0,0,0) = 2(0,0) gilt

Ty = mu( ’

) = (1:070) =é1,
) = (0,1,0) = es.

Fiir eine Flichenkurve ¢ mit ¢(0) = p = (0,0,0) ist N (t) := N(c(t)) = N(z(u(t),v(t)))
die Einschrinkung der Gauf3-Abbildung auf diese Kurve. Dann ergibt sich

0,0
Ty = 2,(0,0

)

Da aber

' (0) = u'(0)24(0,0) + v'(0)z+(0,0)
u'(0)er + v'(0)e2,

sehen wir durch Vergleich: e; = z,(0,0) ist Eigenvektor von dN, zum Eigenwert 2
und ey = 2,(0,0) ist Eigenvektor zum Eigenwert —2.

11 Gaufl-Kriimmung und mittlere Kriimmung

11.1 Die Normalschnittkriimmung

Wir gehen aus von einer Idee von Euler und betrachten sogenannte Normalschnitte
einer Fliche. Dazu sei S eine orientierte regulire Fliche und p € S. Weiter sei
X € T,S mit || X|| = 1. Es bezeichne

ox = [N(p)7X]

die affine Ebene in R® durch p, aufgespannt von X und N(p). Dann ist ox NS in
einer Umgebung von p das Bild einer reguliren, mit Bogenlinge parametrisierten
Kurve ¢cx : I — S mit ¢x(0) = X. Um das einzusehen, wihlen wir eine lokale
Parametrisierung z : U — S von S um p, die mit der Orientierung von S vertraglich
ist. Dann bilden die Vektoren

xuamvaxu /\ 'rll

eine Basis von R® (wobei als Argument iiberall z!(p) zu nehmen ist). Weiter sei B
die Matrix deren Spalten gerade diese Vektoren sind. Wir fithren einen Basiswechsel
im R3 durch, beziehen uns also jetzt auf die obige Basis, d.h. wir betrachten die
Koordinaten (y1,y2,y3) mit

Z1 n
T2 = Y2
T3 Ys
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Dieser Koordinatenwechsel ist ein Diffeomorphismus von R? auf sich selbst. Beziiglich
der Koordinaten y entpricht S der Menge

B 'S={B 'p|pe S}.

Da z eine Parametrisierung von S ist, ist B~! o x eine Parametrisierung von B~1$
und es gilt

Cl(B_1 o .Z')x—l(p) = dB;1 o d.Z'$—1(p)

= (Ty Ty Ty ATy) H(Ty Ty)
1 0

= 0 1
0 0

Wir haben damit dieselbe Situation wie im Beweis von Satz 3 in Abschnitt 8.2.
Die Orthogonalprojektion 7 auf die Ebene [z,,z,] ist in einer hinreichend klei-
nen Umgebung von p ein Diffeomorphismus auf eine offene Umgebung von (0,0) €
R? 2 [zy,,]. Der Schnitt von ox mit dieser Ebene ist eine Gerade durch 0. Der
Schnitt von o x mit S ist das Bild dieser Geraden unter 7 ~! und damit eine reguléire
Fldchenkurve.

Es sei £ : I = R die Kriimmung von cx, also

k(s) = Ik (s)]]-

Da cx in der Ebene ox liegt ist ¢4 (0) parallel zu N(p), d.h. H(0) = £N(p) (sofern
H(0) definiert ist). Das Vorzeichen ist durch die Orientierung von S bzw. durch die
Wahl von N bestimmt.

Definition 9. Die Normalschnittkriimmung k., (X) von S im Punkt p in Richtung
X €T,S, | X|| =1, ist definiert als

kin(X) == (% (0), N (p)) = ££(0).

Das ist - bis auf ein durch N bestimmtes Vorzeichen - die Kriimmung der ebenen
Kurve SNox. Mit anderen Worten: N induziert eine Orientierung von ox. Wahlt
man diese Orientierung als die positive Orientierung von ox, so ist k, gerade die
orientierte Kriimmung von S Nox.

Wir stellen jetzt eine Beziehung zur 2. Fundamentalform bzw. zur Weingarten-
Abbildung her. Dazu sei N(s) := N(cx(s)) der Normalenvektor von S im Punkt
cx(s), s € I. Dann gilt

(N(s),cx(s)) =0

fiir alle s € I. Ableiten nach s ergibt

(N'(s),¢x (s)) + (N(s),cx (s)) =0 (%)
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fiir alle s € I. Es folgt

IT,(X) = II,(¢x(0))

und mit ()
I, (X) = (N(0),c% (0)) = kn(X)
Damit erhdlt man eine geometrische Interpretation der 2. Fundamentalform IT,,:
I, (X) = kn(X)
fir alle X € T,S mit || X|| = 1.

Beispiele (a) Wir betrachten eine Ebene. Alle Schnitte sind Geraden und alle
Normalkriimmungen verschwinden. Es gilt also II, = 0.

(b) Wir betrachten die Sphire S?. Alle Normalschnitte sind Grofkreise, d. h. fiir
die Normalkriimmung gilt stets k,(X) = +1, bzw.

II,(X) = +1

fiir alle p € S? und alle X € T,S mit ||X|| = 1. Das Vorzeichen wird durch die
Wahl der Orientierung bestimmt. Bei Wahl des dufleren Normalenfeldes erhilt man
negative Vorzeichen, bei Wahl des inneren Normalenfeldes positives Vorzeichen, vgl.
Abb. 11.1.

N(p)

Iﬁ)n<0,N(p)=p an>0aN(p):_p

Abbildung 11.1: Normalschnittkriimmung von S2
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11.2 Hauptkriimmungen

Aus der Linearen Algebra wissen wir: Da —dN,, : T,,S — T, fiir jedes p € S selbst-
adjungiert beziiglich der 1. Fundamentalform ist, gibt es eine Orthonormalbasis

{Ei(p), Ex(p)}

von T,,S aus Eigenvektoren von —dN,,

—dNy(Ei(p)) = ri(p)Ei(p),  i=1,2.

Der Endomorphismus —d N, ist damit diagonalisierbar und die Darstellungs-Matrizen
von I, und II,, beziiglich obiger Basis aus Eigenvektoren haben die Gestalt

(0 ) (1)

I, und II, sind also insbesondere simultan diagonalisierbar fiir alle p € S. Ohne
Einschrénkung sei 1(p) > k2(p). Dann gilt

w1 (p) = max {II,(X) [ | X[| = 1, X € Tp(5)}

und
Ka(p) = min {I,(X) | | X|| = 1, X € T,(5)}.

Das bedeutet geometrisch: Die Eigenwerte k1(p) und k2(p) sind die Extrema der
Normalschnittkriimmung in orthogonalen Richtungen.

Definition 10. Die Eigenwerte x1(p) und k2(p) heiffen Hauptkriimmungen in
p. Die zugehirigen Eigenvektoren E(p), E>(p) € TpS heifflen Hauptkriimmungs-
richtungen von S inp € S.

Aus den Hauptkriimmungen k; und k2 in einem Punkt p € S kann man die Nor-
malschnittkriimmung in einer beliebigen Richtung X € TS5, || X|| = 1, berechnen.
Dazu stellt man X in der Basis E;, F» von T),S dar,

X =cos8 E, +sinf Es.
Dann erhilt man folgende Formel von Euler:

fin(X) = I (X)
= (=dNy(X), X)p

= 1 cos? 0 + ko sin? 4.

11.3 Die Gau3-Kriimmung

Es sei S eine regulire Fliche. Unter einer geometrischen Figenschaft von S ver-
steht man eine Eigenschaft, die unabhiingig von der Wahl einer Parametrisierung
von S ist (fiir ihre Bestimmung ist man natiirlich trotzdem oft auf eine konkrete
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Parametrisierung angewiesen). Fiir Konstruktionen im Tangentialraum bedeutet
Unabhingigkeit gerade Unabhingigkeit von der gewihlten Basis. Die Lineare Al-
gebra liefert uns einige solche Invarianten. So sind etwa fiir eine quadratische Form
bzw. eine symmetrische Bilinearform die Spur und die Determinante einer Dar-
stellungsmatrix unabhéngig von der Wahl der Basis, beziiglich der die jeweilige
Abbildung dargestellt wird.

Definition 11. Wir betrachten den Endomorphismus —dN, : T,S — T,S und
setzen

K(p) := det(—dN,) = r1(p)r2(p),
1 1
H(p) = 5Spur(~dN,) = 5 (51 (p) + r2(p))
Damit erhalten wir Funktionen K : S — R und H : S — R; K(p) heiffit GauB3-
Kriimmung von S in p, H(p) heifft mittlere Kriimmung von S in p.

Neben I und IT sind das die wichtigsten (lokalen) geometrischen Invarianten einer
Fliche. Anhand der GauB-Kriimmung klassifiziert man die Punkte einer Fliche
folgendermaflen: Der Punkt p € S heifit

elliptischer Punkt, wenn K(p) >0 < det(—dN,) >0

K(p)=0und —dN, #0 <
det(—dN,) =0 und —dN, #0

hyperbolischer Punkt, wenn K(p) < 0 <= det(—dN,) <0

parabolischer Punkt, wenn

Flachpunkt, wenn kK1 =ky=0 &< —dN,=0.

Bemerkung. Die GauB-Kriimmung ist von der Wahl der Orientierung von S
bzw. von der Wahl des Normalenfelds N unabhingig. Hingegen &dndert die mittlere
Kriimmung beim Wechsel der Orientierung ihr Vorzeichen.

11.4 Formeln fiir K und H in lokalen Koordinaten

Es sei S eine orientierte regulére Flache und z : U — S eine mit der Orientierung
vertriigliche Parametrisierung von S. Wir wollen fiir einen Punkt p € z(U) mithilfe
von z Formeln fiir die 2. Fundamentalform, die Gaufl-Kriimmung und die mittlere
Kriimmung herleiten. Sei also p € z(U) und

Ty = xu(mil(p))a Ty 1= xv(xil (p))-

Dann ist B := {zy, 2, } eine Basis von T},S. Nach Voraussetzung gilt fiir g € z(U)

Ty (271 (q)) A zy (271 (q))
llzu(z=1(q)) A zu (@~ (q))|

A = (o o)

a1 a2

N(q) =

Es sei



die Abbildungsmatrix von dNN, beziiglich B, d.h.
de(.'L'u) = Q1124 + Q212

dNp(zy) = @124 + a22%y

Die Matrix der 2. Fundamentialform II,, beziiglich B sei

(51)

Durch ableiten von (N o x,z,) = (N o z,x,) = 0 erhiilt man zunéchst

((Nox)y,xy) + (N o x,Tyy) =
(N o)y, zy) + (N oz, 2y,) =0
((N Ox)vaxu) + <N Ox,-’Euv) =0

Also ist mit N, := (N o z),, = dNp(z,,) und N, := (N o ), = dNp(zy),

e = II,(Tu,Tu) = —(dNp(Tu), Tu) = —(Nu, Tu) = (N, Tuu)
f = IIp(xuaxv) = _<Nu;$v) = <N; muv)
g =IIp(xy,zy) = —(Ny, &y) = (N, Tyy).

Nach Definition ist II,(X,Y) = I,(—dNp(X),Y) fir X,Y € T,S. Wir wollen
voriibergehend eine etwas allgemeinere Situation betrachten. Dazu sei ® ein selbst-
adjungierter Endomorphismus eines n-dimensionalen euklidischen Vektorraums V'
mit Basis by,...,b,. Es sei ) die durch

Q(z,y) == (®(x),y) (z,yeV)

definierte symmetrische Bilinearform. Weiter seien

B = (bij) = (Q(bi; b5)),  C = (cij) := ((bs, bj))

die Darstellungsmatrix von ) bzw. die Matrix des Skalarprodukts und A die Matrix
von ® in dieser Basis. Dann gilt

bij = Q(bi, b;) = (®(bi), b;)
= () arib, bs)
k

= E QkiCly
k

bzw. B = ATC.
Wenden wir nun diese Uberlegungen auf obige Situation an, so haben wir

(5 9)--(om)(Fe)
f9) a2 as2 F G
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und damit

ar=-(me)=(s (R E)

Man beachte dabei, dass die Matrix eines Skalarprodukts stets regulér ist, da diese
Matrix nur positive Eigenwerte und damit nicht verschwindende Determinante hat.
In unserem Fall gilt speziell

E F\_ 1 G -F
F G) ~EG-F*\-F E )’

Damit erhalten wir das
Lemma 1. Fiir die Gauf-Krimmung im Punkt p € S gilt

det(II,)  eg— f?
det(I,) EG-F?’

K(p) = det(—dN,) = det(—A) = det(—AT) =

Fiir die mittlere Kriimmung im Punkt p € S gilt

leG -2fF +gFE
2 EG-F?

Bemerkung. Wird X € T,S = [z,,z,] als Tangentialvektor an eine Kurve ¢
geschrieben, also ¢/(0) = X, so ist

c'(0) = u'(0)z, + v'(0)x,

H(p) = 5Spur(~4) =

und

I,(c'(0 )) —(dNp(c'(0),¢'(0))
—(u'(0)Ny + 0" (0) Ny, u' (0)zy, + v'(0)zy)
= (u' 0))%e +2u'(0)v'(0)f + (v'(0))*g
(man vgl. dazu auch I,(¢'(0)) = (v'(0))2E + 2u'(0)v' (0)F + (v'(0))%G).
Beispiele (a) Fiir den Rotationstorus betrachten wir die lokale Parametrisierung

(a+ 7 cosu) cosv
z(u,v) = | (a+rcosu)sinv |, (u,v) € (0,27) x (0,27).
rsiny

Mit den obigen Formeln erhélt man
E=r? F=0, G=(a+rcosu)?
e=r, f=0, g=(a+rcosu)cosu

und damit

eg—f* cosu
K(a(u,v)) = EG—-F?2 r(a+rcosu)

Wir wollen die Punkte des Torus klassifizieren. Man erhilt
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parabolische Punkte (K = 0) fir u=7/2 und u = 37/2,
hyperbolische Punkte (K < 0) fir w € (7/2,37/2),
elliptische Punkte (K > 0) fiir u € (0,7/2) U (3r/2,2m).

Man vergleiche zu dieser Klassifikation auch Abb. 11.2. Ahnlich berechnet man
auch die mittlere Kriimmung (Ubungsaufgabe!).

T3
T K=0
< 1> «
%
\u -~
w le
|
|
|
|
K<0 |, K>0

Abbildung 11.2: Erzeugende Kurve des Rotationstorus

(b) Wir betrachten nun allgemeine Rotationsflichen (vgl. II. 8.5). Es sei v —
(p(v),0,%(v)), v € (a,b), die zu rotierende Kurve, ohne Einschrinkung sei diese
nach Bogenlénge parametrisiert (d.h. (¢')% + (¢')? = 1). Dann ist

z(u,v) := (p(v) cosu, p(v) sinu, P (v)), (u,v) € (0,2m) x (a,d)
eine lokale Parametrisierung. Damit folgt
E=¢’, F=0, G=)P+@)=1
e=—py', f=0, g=1'¢" =y’
und
_eg—f _ ¥

ek —;(d)’w” —9"").

Ableiten von (¢')% + (0')2 = 1 ergibt

2(PIS0” + 2¢I¢II — 0.

und damit
K = =) = ¥'u"y)
_ e ey = ¢
=5 (@) +(©)) "
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12 Rotationsflichen mit konstanter Gau3-Kriimmung

Wir betrachten eine Rotationsfliche mit konstanter Kriimmung. Es gelten die Vor-
aussetzungen und Bezeichnungen des letzten Beispiels. Die obige Formel fiir K
liefert die Differentialgleichung

¢" + Kop =0

mit einer Konstanten K. Die allgemeine Losung dieser Differentialgleichung hat
folgende Gestalt:

a cos(v Kov) + bsin(v/Kyv) falls Ko > 0
pv) =< av+b falls Ko =0
a cosh(v/—Kov) + bsinh(v/—Kov) falls Ko <0

mit beliebigen Konstanten a,b € R. Wir betrachten die Fille Ky € {1,0,—1}
genauer.

1. Fall K =0 : Esist ¢(v) = av + b. Wegen
() < (&) + ()2 =1
folgt a®> < 1. Damit erhélt man einen
Kreiszylinder fiir a =0,

Kreiskegel fiir 0<|a| <1,

Ebenenstiick fiir a=1.

2. Fall K =1 : Nach geeigneter Wahl von v ist ¢(v) = acosv, a > 0. Weiterhin
muss gelten a?sin? v < 1. Es folgt

Pv) = /Ov V1 —a2sin’t dt.

Man erhilt
2-Sphire fiir a=1
Spindelfliche fir 0<a<1
Wulst-Fliche fiir a>1

Diese Flichen haben typischerweise auch nicht-regulére Punkte.

3. Fall K = —1: Esist ¢(v) = ae’ + be ? und (ae’ — be ?)? < 1. Sei zunichst
ab = 0, also etwa b = 0. Durch geeignete Wahl von v kann man ¢ = 1
erreichen. Dann ist

p(v) =¢€’ ) = /Ov V1 —e?t dt.
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Die ebene Kurve v — (p(v),9(v)) heiBt Traoktriz oder Schleppkurve. Die
Lange der Tangentenstrecke von (¢(v),%(v)) bis zum Schnitt mit der x3-
Achse ist konstant 1. Die durch Rotation dieser Kurve entstehende Fliiche
(mit singuliren Punkten) heifit Pseudo-Sphire. Sie spielte eine wichtige Rolle

in der Geschichte der nicht-euklidischen Geometrie.

Fiir ab # 0 hat man etwa a = —b = ¢/2 bzw. a = b = ¢/2. Fliichen die
der ersten Bedingung geniigen sind vom Kegeltyp. Flichen die der zweiten
Bedingung geniigen sind vom Kehltyp.

2-Sphére

Kegeltyp

13 Minimalflichen

Es sei S eine reguldre Fliche und z :

PO
Spindelfliche

Kehltyp

1

Traktrix

Abbildung 12.1: Ezeugende Kurven verschiedener Typen von Rotationsflichen

U — S eine Parametrisierung von S. Der
hier verwendete Integralbegriff ist der des Lebesgue-Integrals, der aus der Analysis
bekannt sein sollte (vgl. z.B. K. Koénigsberger, Analysis II, Kap. 7).

Definition 12. Der Flicheninhalt von z(U) ist definiert als

A(z(U)) = //UdAz//U\/mdudv,
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dabei heifft dA = ||zy, A zy||dudv das Flichenelement von x.

Wir haben hier die Gleichung (aAb, cAd) = (a, c)(b,d) —(a,d)(b,c) fiir a,b,c,d € R3
benutzt. Die Zahl A(z(U)) ist unabhingig von der Parametrisierung (Ubung!).



Definition 13. Es sei D C U ein beschrinktes Gebiet mit Rand 8D unda : D — R
eine C®-Funktion mit a|lsp = 0. Eine normale Variation von z ist eine Familie

2°:D = R3
von Flichensticken x¢(u,v) := z(u,v) + ea(u,v)N(u,v), € € (=4,9).
Wir wollen den Flicheninhalt von z° bestimmen. Es gilt
x5, = 2, +ealN, +ea, N
Ty = Ty +ealN, + ca, N.
Fiir die erste Fundamentalform von z¢ erhilt man
Ef = E — 2ace + O(e?)
F¢ =F —2aef + O(e?)
G® =G —2aeg + O(?)
und damit
E=Ge — (F¢)2 dudv
= (EG — F? + 2ae(—gE — G + 2fF) + 0(52))1/2 du dv
= (EG — F? + 2a¢(—2H(EG — F?)) + 0(52))1/2 du dv

Aus dieser letzten Formel erkennt man dass E°G® — (F¢)? # 0 fiir geniigend kleines
€ gilt, d.h. x° ist eine regulére Parametrisierung. Wir erhalten

A(e) == A(* (D)) = / / FoGr = (F9)2 dudv
D
= // ((EG — F?)(1 —4acH) + 0(82))1/2 du dv
D
Daraus ergibt sich die erste Variation des Flichenfunktionals:

A'(0) = @(0) - / /D VEG — F?(=2aH) du dv.

Wir haben hier benutzt, dass [ und - vertauschbar sind (vgl. dazu K. Kénigsberger,
Analysis 2, 4. Aufl., 8.4).

Satz 2. Seiz : U = R® eine lokale Parametrisierung einer requliren Fliche S.
Die mittlere Kriimmung H von S verschwindet genau dann, wenn A'(0) = 0 fir
alle normalen Variationen von x gilt.

Beweis. Sei A'(0) = 0. Wir nehmen an, dass ein Punkt p € z(U) C S existiert
mit H(p) # 0. Aus Stetigkeitsgriinden existiert dann eine Umgebung z(W) C z(U)
von p, so dass H(q) # 0 fiir alle ¢ € 2(W). Wir wihlen D C W und eine Funktion
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a: D — R so, dass a(u,v) = H(z(u,v)) gilt fiir alle (u,v) € D und a = 0 auf
U\ D. Aus obiger Formel folgt dann, dass A’(0) < 0 gilt. Das ist ein Widerspruch
zur Voraussetzung.

Sei umgekehrt H = 0. Dann folgt sofort .A'(0) = 0 wegen obiger Formel. O
Definition 14. FEine regulire Fliche mit H = 0 heiffit Minimalfliche.

Bemerkungen (a) H = 0 ist notwendig fiir A(z°) < A(z®) fiir alle normalen
Variationen z° : D — R® mit 2°|sp = z|sp, aber nicht hinreichend: Ein kritischer
Punkt des Flichenfunktionals braucht kein Minimum zu sein. Um das zu entschei-
den, braucht man noch die 2. Variation. Der Name Minimalfléiche ist also etwas
irrefithrend.

(b) Ist H # 0 so kann man mit der Variation a(u, v) := H(u,v) den Flicheninhalt
verkleineren.

(¢) Minimalflichen haben keine elliptischen Punkte. Aus H = %(/@1 + ko) = 0 folgt
nimlich K = k1ks = —k? < 0. Also kann z.B. S? oder ein Rotationstorus keine
Minimalfliche sein.

(d) Minimalflichen ohne Rand kénnen nicht kompakt sein. Beweisidee: Eine kom-
pakte Fliche im R® hat Punkte mit K(p) > 0. Ist némlich B, die kleinste offene
Kugel im R® in der S enthalten ist, so sind in einem Beriihrpunkt p alle Normal-
schnittkriimmungen von S grofler oder gleich 1/7.

(e) Physikalisch werden Minimalflichen mit Rand durch Seifenhéute realisiert. Ex-
perimente motivierten das Plateau-Problem: Gibt es zu jeder einfach geschlosse-
nen Kurve ¢ in R® eine Fliche mit kleinstem Flicheninhalt mit ¢ als Rand? Diese
Frage konnte um 1930 positiv beantwortet werden.

(f) Es gibt enge Beziehungen zwischen Minimalflichen und der Funktionentheorie
(Weierstraf3-Darstellung).

Beispiele (a) Ebenen sind stets Minimalflichen, da H = 0 aus k1 = k2 folgt.

(b) Das Katenoid ist die einzige Rotationsfliche die auch Minimalfldche ist. Sie
entsteht durch Rotation der sogenannten Kettenlinie, die durch

t — (acosh(t/a),t)

gegeben ist.
(c) Eine Regelfliche ist eine Fliche, die folgende Parametrisierung zulésst:

z:U—=R, (u,v) = c(u)+0Y(u),

mit einer differenzierbaren Kurve ¢ in R® und einem Vektorfeld Y lings c. Das
Helikoid (oder Wendelfliche) ist die durch

z(u,v) = (0,0, au) + v(cosu, sin u, 0)

definierte Regelfliche. Es ist die einzige Regelfliche mit H = 0.
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Abbildung 13.1: Katenoid
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Abbildung 13.2: Helikoid aus verschiedenen Perspektiven. Das Helikoid wird schritt-
weise “nach hinten” gekippt.
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Teil IV
Innere Geometrie von Fliachen

14 Lokale Isometrien

14.1 Ein Beispiel
Wir betrachten das Ebenenstiick parametrisiert durch
z:(0,27) x R >R, (u,v) = (u,0,v),
und das Zylinderstiick parametrisiert durch
y:(0,2r) x R > R, (u,v) — (cosu,sinu,v).

Als offene Teilmengen von Ebene und Zylinder sind es regulire Flichen. Die ange-
gebenen Parametrisierungen sind per Definition Diffeomorphismen auf die entspre-
chenden Flichen. Die Abbildung ¢ := y o 2! von der Ebene auf den Zylinder,

(u,0,v) — (cosu,sinu,v),

ist differenzierbar und kann als “Aufwickeln” des Ebenenstiicks auf das Zylin-
derstiick aufgefasst werden. Fiir die obigen Parametrisierungen gilt

.fL'u:(]-,0,0), Z'UZ(O,O,].), EZG:]—: FZO)
Yy = (—sinwu,cosu,0), y, =(0,0,1), E=G=1, F=0.

Die ersten Fundamentalformen der Ebene und des Zylinders haben beziiglich der
Basen {zy,z,} und {yu,y»} demnach dieselben Darstellungen. Hat man eine dif-
ferenzierbare Kurve (u(t),v(t)) in U so folgt aus Abschnitt 9.2, dass sich entspre-
chende Kurven z(u(t), v(t)) in der Ebene und y(u(t),v(t)) auf dem Zylinder dieselbe
Lange haben. Es gibt beim “Aufwickeln” der Ebene auf den Zylinder bzw. beim
“Abwickeln” des Zylinders auf die Ebene also keine Lingenverzerrung.

Abbildung 14.1: Auf- und Abwickeln eines Ebenenstiicks auf einen Zylinder

Man kann sich nun fragen, ob es eine solche “lingentreue” Abbildung auch zwi-
schen anderen Flichen gibt, etwa zwischen Ebene und 2-Sphiire. Im Folgenden
wollen wir solche Fragen beantworten. Dazu werden wir zun#chst den Begriff einer
ldingentreuen Abbildung definieren.
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14.2 Isometrien

Wir erinnern daran, dass eine Abbildung f : S — S zwischen zwei reguliren Flichen
S und S differenzierbar in p € S ist, wenn es Parametrisierungen x um p und z um
f(p) gibt, so dass die Abbildung z7! o f oz differenzierbar ist (vgl. Abschnitt 10.1).

Definition 1. FEs seien S und S regulire Flichen.
(a) Ein Diffeomorphismus ¢ : S — S heifit Isometrie, falls fiir alle p € S
und alle X1, X € TpS

(X1, Xa)p = (dpp(X1), d‘pp(X2)>cp(P)

gilt, d.h. die lineare Abbildung dp, : (TpS,(,)p) = (Tpp)Ss (: )e(p)) ist
eine euklidische Isometrie fir alle p € S. Die Flichen S und S heiffen
dann isometrisch.

(b) Gibt es zu jedem p € S eine Isometrie p : U — U einer offenen Umge-
bung U von p auf eine offene Umgebung U von o(p), so heifft S lokal
isometrisch zu S. Ist S lokal isometrisch zu S, so auch S zu S.

Beispiele (a) Die Abbildung ¢ aus Abschnitt 14.1 ist eine (lokale) Isometrie.

(b) Es sei ¢ eine auf einem offenen Intervall I = (—¢,¢) definierte, mit Bogenlénge
parametrisierte, sphirische Raumkurve, d. h. eine Kurve, deren Bild in S? enthalten
ist. Es gilt also ||c(u)|| = 1 und ||¢'(u)|| = 1 fiir w € I. Die durch

z(u,v) :=xzo + ve(u), (u,v) €I x Rso

definierte Teilmenge von R? heift ein allgemeiner Kegel. Nach eventueller Verklei-
nerung von ¢ ist S := z(I x Ry¢) eine regulire Fliche und z|r«r., ist eine globale
Parametrisierung von S. Es gilt

Ty =vc, z,=c,
E=v} F=0, G=1.

Wir definieren ¢ : S — R? durch
p = z(u,v) = (vcosu,vsinu,0).
Dann ist ¢ ein lokaler Diffeomorphismus. Da fiir die lokale Parametrisierung
Z(u,v) = (v cosu,vsinu,0)
der Ebene E =%, F =0, G = 1 gilt, ist ¢ eine lokale Isometrie.

Satz 1. Es seien S und S regulire Flichen. Weiter seienx : U — S undz : U — S
zwei lokale Parametrisierungen mit gemeinsamem Parameterbereich U. Dann ist
E=E,F=F und G=G inU genau dann, wenn die Abbildung

p:=Fox ' :z(U) = &)

eine (lokale) Isometrie ist.
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Beweis. Es sei ¢ eine lokale Isometrie. Dann gilt

E = (Zy,Zu) = (dp(zy),do(T4)) = (Tu, Tu) = E.

Analog folgen F = F und G = G.

Wir kommen zur Umkehrung obiger Aussage. Es sei p € z(U) und X € T},S. Dann
hat X eine Darstellung
X = (0) =u'zy +0'zy

fiir eine differenzierbare Kurve ¢(t) = z(u(t),v(t)), ¢(0) = p. Weiter gilt

dpp(X) = & (oan = 2 @oa~ om)(ult), v(e)
d| I- -
== . (u(t),v(t)) =u'Ty +0'Ty

Also gilt

= (Uu'ZTy +0V'Ty,u'Ty +0'T,)
= (u')?E + 2u'v'F + (v')?G
= (u)?E + 2uv'F 4+ (v')?G
= (X, X)p

(d(pra d‘PPX) o(p)

Mit der Polarisations-Identitét
1
<X7Y) = §(<X +Y7X+ Y) - <X>X> - <Y>Y))

fiir alle X,Y € T,S folgt die Behauptung. O

Beispiel. Wir zeigen, dass das Katenoid lokal isometrisch zum Helikoid ist. Dazu
betrachten wir die lokale Parametrisierung

z(u,v) = (coshvcosu, coshvsinu,v), (u,v) €U :=(0,27) x R.
des Katenoids. Dann gilt
E =cosh’®v, F =0, G=1+sinh?v = cosh®v.
Eine lokale Parametrisierung des Helikoids ist
z(a,v) = (Vcos@, vsin@,w), (u,0) € U :=(0,2m) x R.

Die Abbildung U — U, (u,v) ~ (u,sinhv) = (@, ) ist ein Diffeomorphismus von
U auf U, da

o(u,v)

A(u,v)

:det(1 0 )zcoshv;éo.

0 coshv
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Damit erhilt man eine Parametrisierung des Helikoids mit Parameterbereich U:
Z(u,v) = (sinh v cos u, sinh v sin u, u).

Beziiglich dieser Parametrisierung gilt

E = (%,,%,) = sinh®v + 1 = cosh’v, F =0, G = cosh?v.
Damit folgt die Behauptung aus dem obigen Satz.

Bemerkungen (a) Lokale Isometrien sind léingentreu und winkeltreu: Wir be-
trachten ohne Einschrankung den Fall einer Isometrie. Ist ¢ : I — S eine Flichen-
kurveund ¢ : S — S eine Isometrie, so ist L(c) = L(poc). SchlieBen zwei Kurven c;
und ¢2 im Punkt ¢; (0) = ¢2(0) den Winkel « ein, so schlielen auch die Bildkurven
poc und @ o ¢y im Punkt (¢ o ¢;)(0) diesen Winkel ein.

(b) Auch wenn man weif}, dass zwei Flichen lokal isometrisch sind, ist es oft schwie-
rig eine lokale Isometrie explizit anzugeben.

(c) Der Nachweis, dass zwei Flichen nicht lokal isometrisch sein kdnnen ist im
allgemeinen einfacher. Es geniigt, Isometrie-Invarianten zu finden, die verschieden
sind. Wir werden sehen, dass die Gauf3-Kriimmung eine solche Invariante ist. Damit
folgt beispielsweise sofort, dass die 2-Sphire und die Ebene nicht lokal isometrisch
sein kénnen.

15 Christoffel-Symbole und Theorema egregium

Bei einer Raumkurve haben wir das Anderungsverhalten des begleitenden Dreibeins
betrachtet, um die Formeln von Frenet zu erhalten. Wir betrachten nun eine lokale
Parametrisierung z : U — S einer Fliche S und das sogenannte Darbouz-Bein
Ty, Ty, N. Nach Voraussetzung sind diese drei Vektoren zwar linear unabhéngig,
bilden aber im allgemeinen keine Orthonormalbasis.

Wir wollen das Anderungsverhalten dieses Dreibeins beschreiben. Die Ableitung
Zyy VON I, nach u ist eine Linearkombination von ., x, und N. Analoges gilt fiir
die anderen Ableitungen und wir kénnen schreiben:

Tuu = D112y + T2, + LN
Typ = U132y + D133y + Lo N
Tyy = 1"2}3:“ + I‘ﬁmu + LLN
Tyy = Doy + To22, + L N.

(15.1)

Fiir die partiellen Ableitungen von N verwenden wir die Bezeichnungen

Ny = a1124 + a212y,
Ny = a122y + 4222,

Vergleichen Sie dazu auch Abschnitt 11.4.
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Definition 2. Die Funktionen I’if mit i,5,k € {1,2} nennt man Christoffel-
Symbole von S beziiglich der Parametrisierung x.

Wir wollen die Koeffizienten L; und I‘if berechnen. Zunichst ist wegen z,, = Ty
Ik =1k k=1,2

und Ls = L. Bildet man mit den Gleichungen aus (15.1) das Skalarprodukt mit
N so folgt

lee; L2:f7 L3:ga
wobei e, f, g die Koeffizienten der 2. Fundamentalform sind (vgl. 11.4). Wir bilden
nun das Skalarprodukt der Gleichungen in (15.1) mit z,, und z,. Man erhilt
1
T ME+T3F = Ty, Tu) = 5B

1
FI%F + FI%G = <mu’U7$‘U> =F, - §Ev

1
THE+T5F = (T, Ty) = §Ev

2 (15.2)
T 3F +T,53G = (Typ, Ty) = §Gu

1
Ty E +To3F = (Tyy,zy) = F, — EG"

1
Db F + 152G = (Tyo, o) = EGU

Jedes dieser drei linearen Gleichungssysteme ist wegen EG — F? # 0 eindeutig
16sbar. Die Christoffel-Symbole kénnen also aus den Koeffizienten E, F,G der 1.
Fundamentalform und deren Ableitungen berechnet werden. Beispielsweise gilt mit
den ersten zwei Zeilen von (15.2)

5 g [T B,
(7 3) re) \m-im
und damit schliesslich
Iy E F\ ! %Eu
r:? B ( PG ) F,—iE,

Diese Uberlegung zeigt: Die Christoffel-Symbole I‘if sind Groen der inneren Geo-
metrie einer Fliche.
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Das System (15.1) ist unterbestimmt, d. h. man hat mehr Unbekannte als Gleichun-
gen. Um Beziehungen zwischen den Unbekannten in (15.1) zu finden, leiten wir
nochmals ab. Die folgenden Rechnungen gehen im wesentlichen auf Gauf} zuriick.
Zunichst gilt allgemein

(xuu)v - (wuv)u = 0;
(xvv)u - (xvu)v =0, (153)
Nuv - Nvu =0.

Setzt man (15.1) in (15.3) ein, so erhilt man Gleichungen der Form
A;xy + Bixzy, + C;N =0, 1=1,2,3,

wobei A;, B; und C; Funktionen von E, F, G, e, f, g und deren Ableitungen sind.
Da z,, x,, N linear unabhingig sind, erhilt man 9 Relationen

A;=0, B;=0, C;i=0 i=1,23.

Wir betrachten jetzt die 1. Gleichung aus (15.3) im Detail:

TiiZuw + T 2200 + Ny + (T D)oy + (T12) 02y + e, N =
T5%uu + T13%ou + [Ny + (T13)u@u + (T13)uy + fulN

Wir benutzen nochmals (15.1) und erhalten durch Vergleich der Koeffizienten von
Ty

By =T33 + T4iT53 + ea + (T47)y — [43T,7 — T1303 — fasr — (T43). = 0.

Setzt man noch die Werte fiir a;; ein, vgl. Abschnitt 11.4, so ergibt sich die Gaufs-
Formel

—EK = (T'13)u — (T11)v + [13047 + T30, — [43T,3 — Tj5ly5

Da die Christoffel-Symbole Groflen der inneren Geometrie sind, folgt aus der Gau8-
Formel der wichtige Satz

Satz 2 (Theorema egregium). Die Gauf-Krimmung K einer reguliren Fliche
ist invariant unter lokalen Isometrien.

Die Definition der GauB-Kriimmung benutzte die Einbettung einer Fliche in den
umgebenden Raum R3. Obiger Satz besagt nun aber, dass die Gauf-Kriimmung
einer Fliche nicht von dieser Einbettung abhiingt. Sie ist also eine Gréfle (oder
Invariante) der inneren Geometrie einer Fliche.

Beweis von Satz 2. Seip € Sund z: U — S eine lokale Parametrisierung um
p. Weiter sei V C 2(U) eine Umgebung von p und ¢ : V — ¢(V) C S eine lokale
Isometrie. Dann ist

Ti=poz:z (V)= (V)
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eine lokale Parametrisierung von S um (p). Ist nun ¢ € V beliebig, so stimmen
die Koeffizienten der 1. Fundamentalform von S bei ¢ (bez. z) und von S bei ¢(q)
(bez. z) iiberein und damit auch die Christoffel-Symbole in ¢ und ¢(q). Nach der
GauB3-Formel gilt somit

K(q) = K(¢(q))
fiir alle g € V. O

Aus dem Beispiel in 14.2 folgt demnach: Die Gaufl-Kriimmung des Katenoids und
des Helikoids sind demnach in entsprechenden Punkten gleich. Das ist anschaulich
nicht evident!

16 Kovariante Ableitung und Geoditische

Wir wollen in diesem Abschnitt Groflen und Eigenschaften der inneren Geometrie
einer Fliche herleiten. Das sind Konzepte, die insbesondere nicht von der Einbet-
tung der Fliche in einen umgebenden Raum abhingen.

16.1 Die kovariante Ableitung

Wir definieren zuniichst die Richtungsableitung eines Vektorfeldes auf einer re-
guldren Fliche.

Definition 3. Fin differenzierbares Vektorfeld Y auf einer reguliren Fliche S ist
eine differenzierbare Abbildung

Y:8 TS =][[T,5 mit Y(p) €T,S.
peES

Dabei heifst Y differenzierbar, wenn fiir jede lokale Parametrisierung x : U — S die
Funktionen a,b: U — R in der Darstellung

Y (z(u,v)) = a(u,v)zy(u,v) + b(u, v)zy (u,v),
kurz Y = ax, + bx,, differenzierbar sind.

Es seien X € T,S und ¢ : (—¢,e) — S eine differenzierbare Kurve mit ¢(0) = p
und ¢'(0) = X. Ist Y ein differenzierbares Vektorfeld auf S, so bezeichne Y (t) die
Einschrinkung von Y auf ¢, also

Wir wollen das Vektorfeld Y “in Richtung X” ableiten. Nach Definition 3 ist die
Abbildung Y o ¢ : (—¢,¢) — R® differenzierbar. Mit

d(Y oc)

Y'(t) = 7

(t)
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bezeichnen wir die gewohnliche Ableitung nach dem Parameter ¢. Zuniichst ist Y (¢)
ein Element von Tc(t)]R3. Wir konnen also schreiben

Yl(t) = axy + Bz, + YN,

wenn N ein Normalenvektor von S im Punkt ¢(¢) ist. Dabei bezeichnet man den
Tangentialvektor az, +8z, € Tc)S als Tangential- und yN als Normalkomponente
von Y'(t).

Definition 4. Sei X € T,S, ¢ : (—e,e) = S differenzierbar mit ¢(0) = p und
c'(0) = X. Die Tangentialkomponente DxY won Y'(0), also die Orthogonalprojek-
tion von Y'(0) auf T,S, heifit kovariante Ableitung von Y in Richtung X.

Ausgehend von einem Vektorfeld Y und einem Vektor X € T},S erhalten wir also
wieder einen Vektor DxY € T,S. In der Definition dieser Zuordnung scheint der
umgebende Raum und die Kurve c eine entscheidende Rolle zu spielen. Wir wollen
nun aber zeigen, dass dies nicht der Fall ist.

Lemma 1. Die kovariante Ableitung ist ein Begriff der inneren Geometrie einer
Fliche, insbesondere also vom umgebenden Raum unabhingig.

Beweis. Seien X € T),S und z : U =+ S eine lokale Parametrisierung um p. Weiter
sei ¢: (—e,e) = S eine differenzierbare Kurve mit ¢(0) = p und ¢'(0) = X, also

X = (0)=u'zy +0'zy

mit differenzierbaren Funktionen u,v : (—¢,&) — U. Ist nun Y ein differenziebares
Vektorfeld auf S so gilt

Y (t) = a(u(t), v(t))zu(u(t), v(t) + b(u(t),v(t))zy (u(t), v(t))
=: a(t)zy(t) + b(t)zy (t).

Aus (24)" = W' Tyy + V' Ty folgt (alles bei t = 0 ausgewertet)
Y' =d'zy + b1y + a(u' Ty + 0'Tuy) + bt Ty, + 0 T40).

Mit den Formeln (15.1) aus Abschnitt 15 findet man fiir die Tangentialkomponente
von Y'(0)

DXY = (al + Fl%aul + Fléavl + Flébul + FQ;bUI)xu"_

(V' +Tyfau’ + T3av’ + Ty3bu’ + Ty3bo’) (16.1)
Dabei ist die rechte Seite bei p bzw. ¢ = 0 auszuwerten. Man sieht, dass DxY
nicht von der Kurve ¢, sondern nur von ¢'(0) = X bzw. von den Koordinaten
(u'(0),v'(0)) von ¢'(0) in der Basis zy,z, von TS abhiingt. Da die Christoffel-
Symbole Groflen der inneren Geometrie sind, ist mit dieser Formel gezeigt, dass
auch die kovariante Ableitung ein Begriff der inneren Geometrie ist (also nur von
der 1. Fundamentalform abhingt). O
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Bemerkung. Nach obigem Lemma 1 kann man also D.()Y berechnen, falls man
die Koeffizienten der 1. Fundamentalform kennt. Genauer gilt (Ubungsaufgabe!):
Es seien S und S lokal isometrische regulire Fliichen und Y ein differenzierbares
Vektorfeld auf S. Weiter sei p € S, X € T,S und ¢ : W — W eine lokale Isometrie
einer offenen Umgebung von p auf eine offene Umgebung von ¢(p) = p. Dann ist
Y :=dp(Y) ein differenzierbares Vektorfeld auf W. Mit X := dy,(X) gilt

DxY = dp,(DxY),
d.h. man hat das folgende kommutative Diagramm:

W —— W
Dxi lDX

Beispiel. Fiir die Ebene gilt E=G =1, F =0, [’} = 0 und damit ist
D.)Y =ad'z, + b,

die gewohnliche Ableitung Y' von Y = az, + bz,. Das ist auch direkt aus der
geometrischen Konstruktion klar. Die kovariante Ableitung verallgemeinert also
die gewohnliche Ableitung von Vektoren in der Ebene.

16.2 Geodéatische

Es sei S eine regulire Fliche und v : I — S eine differenzierbare Kurve. Das
Vektorfeld +'(¢t) : I — T'S ist nur ldngs v definiert. Trotzdem kann man ein solches
Vektorfeld in Richtung X € T,(S) ableiten, wenn p € v(I) gilt, und wenn man X
als Tangentialvektor einer Kurve ¢ darstellen kann, deren Bild in v(I) enthalten ist
(z.B. wenn X = +/(t) wie in der folgenden Definition).

Definition 5. Fine nicht konstante, differenzierbare Kurve v : I — S heifit
Geoddtische, falls

D’y’(t) ’yl(t) = 0
fiir alle t € I gilt.

Bemerkungen (a) Die Eigenschaft Geodétische zu sein ist eine innergeometrische
Eigenschaft einer Kurve auf einer Fliche. Insbesondere ist diese Eigenschaft nach
der Bemerkung in 16.1 invariant unter lokalen Isometrien.

(b) Damit man fiir eine Kurve ¢ : [0,]] = S keine Probleme mit der Ableitung in
den Randpunkten bekommt verlangt man in diesem Fall, dass ¢ die Einschrinkung
einer differenzierbaren Kurve é: (0 — g,/ +¢) — S auf [0, 1] ist.
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Satz 3. Die Tangentialvektoren einer Geodditischen haben konstante Ldnge, d. h.
ist v : I — S eine Geoditische, so gibt es ein a # 0 mit ||¥'(t)|| = a fir alle
t € I. Damit sind Geoddtische stets proportional zur Bogenlinge parametrisiert,
d.h. s = at, wenn s die Bogenlinge ist.

Beweis. Es sei N(v(t)) die Normale von S im Punkt (¢). Dann gilt

IO = S (0,4 0) = 267"(8), 7 0
= 2Dyt + BON (D), () = 0,
da D,/ (47" = 0 und N(y(t)) orthogonal zu ~'(t) ist. O

Beispiele (a) In der euklidischen Ebene R? sind Geodétische genau die Geraden,
da ’7” = D,Yr(t)’yl =0.
(b) Jede Gerade auf einer Fliche ist Geoditische: gleiches Argument wie in (a).

Ist v eine Kurve auf der Fliche S, so hat man das folgende geometrische Kriteri-
um fiir Geodétische. Es ergibt sich unmittelbar aus der Definition der kovarianten
Ableitung.

Lemma 2. Fine Flichenkurve vy ist genau dann Geoddtische, wenn die Hauptnor-
male in jedem Punkt proportional zur Flichennormale ist, d.h. senkrecht auf der
Fliche steht. O

Beweis. Die Tangentialkomponente von " ist D..7'. Ist also H(t) proportional
zu N(t), so folgt D.y' = 0. Ist umgekehrt D4 = 0, so hat 4" nur eine Normal-
komponente, d.h. H(t) ist proportional zu N(t). O
Wenn wir im folgenden Punktmengen als Kurven bezeichnen, so sind natiirlich
immer entsprechende Parametrisierungen dieser Punktmengen gemeint.

Beispiele (a) Die 2-Sphére. Nach obigem Kriterium sind Grof8-Kreise Geodéti-
sche, da ein Gross-Kreis eine ebene Kurve mit H||N ist. Wir werden spéter sehen,
dass es durch jeden Punkt in jeder Richtung lokal genau eine Geodétische gibt. Da-
mit sind Grof-Kreise die einzigen (mit Bogenlinge parametrisierten) Geodétischen
auf S2.

(b) Der Zylinder. Wir betrachten einen Zylinder vom Radius 1. Da Mantelli-
nien Geraden sind, sind sie Geoditische. Ebenso sind Breitenkreise Geodétische,
weil H||N gilt. Wie sehen die iibrigen Geodétischen aus? Da Geodéitische Objekte
der inneren Geometrie sind, ist die Eigenschaft Geodé&tische zu sein, invariant un-
ter lokalen Isometrien. Folglich gehen beim Abwickeln des Zylinders auf die Ebene
Geoditische in Geodétische tiber. Die gleiche Aussage gilt natiirlich auch fiir die
andere Richtung. Es geniigt also die Geodéitischen der Ebene zu kennen und die-
se auf den Zylinder aufzuwickeln, man vergleiche dazu Abb. 16.1. Demnach gibt
es unendlich viele Geodétische zwischen zwei Punkten. Neben Mantellinien und
Breitenkreisen sind also Schraubenlinien genau die Geodétischen auf dem Zylinder.
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Abbildung 16.1: Geodatische auf dem Zylinder

16.3 Die Differentialgleichung fiir Geoditische

Wir wollen die definierende Gleichung einer Geodéatischen, also D.,»y" = 0, in lokalen
Koordinaten genauer untersuchen. Dazu sei v : I — S eine differenzierbare Kurve
auf S und z : U — S eine lokale Parametrisierung, so dass

mit differenzierbaren Funktionen u und v gilt. Dann ist

V() = u'(t)zu(u(t),v(t) + V' (E)zy (u(t), v(t)).

Benutzt man Gleichung (16.1) fiir Y = +/, also a = u', b = v', so ist v genau dann
Geoditische, wenn

0=u"+T5(u)? + 20 53u'v’ + o3 (v')?, (16.2)

0=12"+ Fl%(ul)2 + 2F1§UIUI + Fzg(vl)27 '
da z, und z, linear unabhingig sind. (16.2) ist ein Differentialgleichungssystem 2.
Ordnung fiir 4 und v. Ein solches System hat zu gegebenen Anfangsbedingungen
lokal genau eine Losung (vgl. z.B. V.I. Arnol’d, Gewohnliche Differentialgleichun-
gen, Kap. 4). Die Anfangsbedingungen entsprechen dabei einem Startpunkt ~(0),
gegeben durch (u(0),v(0)) und einem Tangentialvektor gegeben durch seine Koor-
dinaten (u'(0),v'(0)). Es ergibt sich also der folgende wichtige

Satz 4 (Lokale Existenz und Eindeutigkeit von Geoditischen). Seien S
eine requldre Fliche, p € S und 0 # X € TS ein Tangentialvektor.
(a) (Existenz) Es gibt ein € > 0 und eine Geoddtische 7y : (—¢,€) — S mit
7(0) = p und v'(0) = X.
(b) (Eindeutigkeit) Ist 7 : (=J,0) — S eine weitere Geoditische die die-
sen Bedingungen geniigt, so ist v =7 auf (—¢,&) N (=4,0).
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17 Geodatische auf Rotationsfliachen

Es sei c¢(v) = (¢(v),0,9(v)) eine regulire, ebene Kurve mit ¢ > 0 definiert auf
einem offenen Intervall I. Wir betrachten die Rotationsfliche S, gegeben durch

S = {(z1,22,23) € R’ |33 = 9(v), 2] + 25 = (p(v))*, v € I}.
Eine lokale Parametrisierung von S ist gegeben durch

z(u,v) = (p(v) cosu, p(v)sinu,(v)), (u,v) € (0,27) x I.

Die ebene Kurve ¢ wird also um die x3-Achse rotiert. Ohne Einschrinkung sei ¢
mit Bogenlidnge parametrisiert, also
dipy 2
+ (%)
dv

|0 == )

Wir nehmen auflerdem an, dass ¢ ein Homomorphismus von I auf‘gp(I ) ist, I ist mit

der Teilraumtopologie versehen. Dann ist S eine regulire Fliche (Ubungsaufgabe!).

Fiir eine Rotationsfliche gilt £ = ¢?, F = 0, G = 1. Fiir die Christoffel-Symbole
erhilt man

1dy

;=0 T,=0 T35==--"

11 » Lo 127 5

dy
F1% =0, Fl% = _(10%’ Fzg =

Damit hat das Differentialgleichungssystem fiir Geoditische folgende Gestalt

0_ull+2il;0 l’l)l

‘Pd” (17.1)
0=0" — =2 (u')2.

dv

Wir wissen bereits, dass Kurven mit H||N Geoditische sind. Demnach sind alle
Meridiane Geodiitische, vgl. Abb. 17.1. Wir testen das nochmals mit unserer Diffe-
rentialgleichung. Fiir Meridiane ist v konstant, also 4’ = 0. Ohne Einschrinkung sei
s = v die Bogenlinge, dann gilt v’ = 1 und v" = 0. Das Differentialgleichungssystem
(17.1) ist also erfiillt.

Abbildung 17.1: Meridiane auf einer Rotationsflache
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Welche Breitenkreise sind Geodétische? Ein Breitenkreis v ist genau dann Geodéti-
sche, wenn " parallel zu N ist, d.h. wenn N in der Schmiegebene von v liegt.
Anschaulich gilt das genau bei lokalen Extrema von ¢, also wenn

do _

o 0.

Wir priifen das mit unserer Differentialgleichung. Fiir einen Breitenkreis ist v = vg
konstant und damit v' = 0. Aus der 1. Gleichung von (17.1) folgt dann «" = 0,
also ist 0 # u' konstant, da Geoditische nicht konstant sind. Damit folgt aus der
2. Gleichung
de
X _-0
Y

also dp/dv =0, da ¢ > 0.

Wir wollen eine weitere wichtige Folgerung aus dem System (17.1) ableiten. Es ist
(Q02u')l — 2<pd—v'u' + (102u//
dv

2 dy
2 n [
= _— = 0
o (u" + - 0" u')
wegen der 1. Gleichung von (17.1). Es gilt also ¢?u’ = ¢ mit einer Konstanten
¢ € R Der Winkel 8 € [0,7/2], unter dem eine mit Bogenlinge parametrisierte
Geodétische v einen Breitenkreis schneidet, ist gegeben durch

cos = Lz _ e, +m)] _ ledPhe]

lullllvll llzul] - 1 [zl

?

da bei Rotationsflichen stets z, Lz,(<= F = 0) und ||z,|| = p(<= E = ¢?) gilt.
Da weiter ¢(v(s)) gerade der Radius r(s) des Breitenkreises ist, folgt die Relation
von Clairaut

r(s) cos §(s) = ¢ = konst.

Die Relation von Clairaut ermoglicht eine qualitative Diskussion des Verhaltens von
Geodétischen auf Rotationsflachen. Es gilt

e Nimmt der Radius ab, also r | 0, so wéchst cos§ bzw. 8 | 0.
e Wiichst der Radius, also r 1 0o, so nimmt cosé ab bzw. § 1 7/2.
o Ist ¢ = 0 folgt cosf = 0 bzw. § = /2.

Beispiele (a) Wir betrachten einen Zylinder. Dort ist der Radius r konstant und
damit auch 8. Wir bekommen unsere Ergebnisse nochmals bestétigt: Geodatische
sind Schraubenlinien (8 € (0,7/2)), Kreise (§ = 0) und Geraden (8 = 7/2).
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(b) Wir betrachten das elliptische Paraboloid. Es entsteht durch Rotation der Pa-
rabel (21,0,22?) um die z3-Achse. Implizit ist es gegeben durch

{(.73'1,332,.753) € R3 |.CU3 = ‘:U% +$g}

Mit Satz 4 aus dem Abschnitt {iber implizit definierte Flichen folgt, dass das ellip-
tische Paraboloid eine regulére Fliche ist. Eine Geoditische, die kein Meridian ist,
hat eine Form wie in Abb. 17.2.

>
N

Abbildung 17.2: Geodétische auf dem elliptischen Paraboloid

18 Kiirzeste Kurven sind Geoditische

Die kovariante Ableitung auf einer Fliche S verallgemeinerte die gewohnliche Ablei-
tung eines Vektorfelds in der (euklidischen) Ebene. Die ebenen Kurven mit ¢/ =0
sind Geraden(stiicke) und damit kiirzeste Verbindungen. Wir werden in diesem
Abschnitt sehen, dass Kurven, die kiirzeste Verbindungen realisieren, Geodatische
sind. Die Umkehrung hiervon gilt jedoch im Allgemeinen nicht: Geodatische brau-
chen nicht Kiirzeste zu sein (vgl. z.B. Grokreise auf S?2).

Definition 6. Sei ¢ : [a,b] — S eine differenzierbare, regulire Kurve auf der
requldren Fliche S. Fine Variation mit festen Endpunkten von ¢ ist eine differen-
zierbare Abbildung c : [a,b] x (—0,6) = S fiir die gilt (vgl. Abb. 18.1):

(a) die Kurve c.(t) := c(t,€) ist reguldr mit c(a,e) = é(a), c(b,e) = &(b) fiir alle
€ € [-0,0] und
(b) c(t,0) =¢é(t), te€la,b].

Die Kurve ¢y(t) = &(t) soll minimale Linge im Vergleich zu Nachbarkurven haben.
Dazu betrachten wir das (zur Variation ¢ gehorende) Léingenfunktional

b
L:(~6,6) 3R, e L(e) = L(co) =/ . (8)]]
wobei / die Ableitung nach ¢ bezeichnet. Die Abbildung

[a,b] x (=6,8) > R, (t,€) = [l (B)]]
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Abbildung 18.1: Variation mit festen Endpunkten

ist wegen der Forderungen an ¢ differenzierbar. Insbesondere existiert die partielle
Ableitung nach e. Auch L ist differenzierbar und wir haben
dL ) b (cl,0c./0e
Lo [ Ligwa= [0,
de  J, Oe a It
(vgl. Konigsberger, Analysis 2, 2.6). Weiter gilt
ocl 0 /0ce 0 (0c.
O _85(615) - at(as)'
Eine notwendige Bedingung fiir die Minimalitéit von L(cy) im Vergleich zur Linge

von Nachbarkurven ist dL/de(0) = 0. Die Kurve ¢ ist dann kritischer Punkt des
Langenfunktionals. Fiir festes ¢ ist

(=6,0) = S, e c(t,e)

eine differenzierbare, zu ¢ transversale Kurve. Das differenzierbare Vektorfeld léngs
¢ = Co
V() = gc(t 0)
- 0e 7
heiit Variationsfeld. Es ist V(a) = V(b) = 0. Wir nehmen jetzt an, dass é(t) = co(t)
mit Bogenlinge parametrisiert ist, d. h. ||cp|| = 1. Damit folgt

b b
TO=[@rma= [ @0

a

Es gilt (¢', V') = (&, V) — (¢",V). Integration liefert

b
d%m=wwwwﬁ—/@%ww
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da V tangential an S, also N1V ist. Falls nun é eine Geodétische ist, so ist
dL/de(0) = 0, d.h. Geoditische sind kritische Punkte des Lingenfunktionals. Es
gilt folgender

Satz 5 (Kiirzeste sind Geoditische). Sei é : [a,b] = S eine mit Bogenlinge
parametrisierte, differenzierbare Flichenkurve mit é(a) = p1 und é(b) = pa, so dass
é([a,b]) C z(U) fiir eine Parametrisierung x : U — S von S. Hat ¢ unter allen
Verbindungskurven von py und py kiirzeste Linge, so ist é eine Geoddtische.

Beweis. Sei ¢ eine Variation von ¢ mit festen Endpunkten und Variationsfeld V.
Da é nach Voraussetzung eine kiirzeste Verbindung zwischen p; und po ist, gilt fiir
jede solche Variationen

_dL

b
0) == [ (Do V) s
Ist ¢ keine Geodétische so gilt Dz ;)¢ # 0 fiir ein to € [a,b]. Wir leiten daraus
einen Widerspruch zu obiger Gleichung ab. Da Dy )¢ stetig ist gibt es ein § > 0
mit
DEI(t)éI #0, te [to—g,t0+5].

Wir konstruieren nun eine Variation von ¢, die obiger Gleichung (*) widerspricht.
Sei dazu z : U — S eine Parametrisierung von S mit pi,ps € z(U) und w,v
seien differenzierbare Funktion [a,b] — R mit &(t) = z(u(t),v(t)). Da Dy )& ein
differenzierbares Vektorfeld lings ¢(t) ist, gibt es differenzierbare Funktionen x;, z2 :
[@,b] = R mit

D)€ = 1 (D)2 (u(t), v(t)) + 22(t) 2o (u(t), v(t))-

Es sei a: [a,b] = R eine differenzierbare Abschneidefunktion wie in Abb. 18.2.

Abbildung 18.2: Abschneidefunktion
Wir wihlen ein Intervall I := [—&, ] so klein, dass
c(t,e) == z(u(t) + ea(t)z1(t),v(t) + ea(t)z2(t))

fiir (¢,€) € [a,b] x I definiert ist. Dann ist ¢ eine Variation von é mit festen End-
punkten. Fiir das zugehorige Variationsvektorfeld V' gilt

V(t) = %c(t, 0) = a1y + axoxy = a(t)Da ()¢
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Damit folgt

dL b » b 112
E(O) = —/ (Da 1)@, V(1)) dt = —/ a(t)||Da ) €'||” dt < 0.

Das ist ein Widerspruch z (x). O

Bemerkungen (a) Das Argument in obigem Beweis zeigt: Falls eine Kurve & zwi-
schen zwei Punkten p und ¢ keine Geodéitische ist, so lésst sie sich verkiirzen, d. h.
es gibt eine Nachbarkurve ¢ mit gleichen Endpunkten und L(c) < L(é).

(b) Die Umkehrung von Satz 5 ist falsch. Geodétische sind nicht immer Kiirzeste.
Einfache Gegenbeispiele findet man auf der 2-Sphire und dem Zylinder.

(c¢) Man kann zeigen: Sind p und ¢ geniigend nahe, so existiert genau eine kiirzeste
Geodétische zwischen p und ¢ (vgl. Satz 8 im niichsten Abschnitt).

19 Geoditische Parallelkoordinaten

Durch die Wahl von speziellen, der jeweiligen Fragestellung angepassten Parametri-
sierungen lassen sich Rechnungen oft vereinfachen. Wir wollen hier ein Beispiel einer
solchen Parametrisierung angeben. Zuéichst fithren wir einige neue Bezeichnungen

ein. Es sei
v_ [ 91 g2\ _[(E F
(9:1) ( 921 922 > ' ( F G )

die Matrix der 1. Fundamentalform. Die dazu inverse Matrix bezeichnen wir mit

(gij) = (gij)il-

Anstelle von (u,v) schreiben wir (u!,u?). Weiter sei

. 09
Gijk = 6uk .

Damit ergibt sich fiir die Christoffel-Symbole aus den Gleichungen (15.2)

2

1
Fi? =3 ngl(gil,j + gjt,i — 9ij1)
=1

(Ubungsaufgabe!). Ist Y = a'x,1 + a’z,> ein differenzierbares Vektorfeld und ¢’ =
i Ty + ubzy2 das Tangentenvektorfeld an eine differenzierbare Kurve, so erhalten
wir fiir die kovariante Ableitung den Ausdruck

2 2
DY =) ((a’“)’ +> F,-fai(uj)')xuk.
k=1 ij=1

Insbesondere konnen wir das Differentialgleichungssystem fiir Geodétische (16.2)
schreiben als

2
@)+ 3 DA W) =0, k=12

3,j=1
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Lemma 3 (Orthogonale Parameterlinien). Falls g12 = 0, so ist g* = 1/g;; fiir
1=1,2, und firi#k

kk,i i,k
Y= g ' = (log/gkk) i und T;F = ——g“ .
9kk 9kk

Beweis. Offensichtlich gilt

g O _1: 1/911 0
0 g2 0 1/ga2 )’

Setzt man dies in die Formel fiir die Christoffel-Symbole ein, so ergibt sich fiir ¢ # k

1
Fii = igkkgkk,i
und 1
rf= §gkk(_giz',k)-

O

Satz 6 (Geoditische Parallelkoordinaten). Seien S eine regulire Fliche und
F:V =8, (v',0%) - 3t v?)

eine lokale Parametrisierung von S. Weiter sei c(s) = F(v!(s),v2(s)), s € [a,b]
eine differenzierbare Flichenkurve. Es sei sg € (a,b) und ¢'(sg) # 0. Dann gibt es
einen Diffeomorphismus

U—=2(U)

0: U=V, (u'u?)— (v1,0?) wl /

|4

von einer offenen Menge U C R? auf eine offene Umgebung V' C V wvon (v'(s0),v%(s0)),
so dass fiir die lokale Parametrisierung x := T o @ gilt
(a) Die Kurve c(s) = z(u'(s),u%(s)) = (x o p71)(v!(s),v2(s)) ist in einer
genidigend kleinen Umgebung von sy gegeben durch u'(s) = 0 und u?(s) =
s.
(b) Die Kurven u? = konst. sind nach Bogenlinge parametrisierte Geodiiti-
sche, die jede der Kurven u' = konst. orthogonal schneiden. Die Seg-
mente a < u' < B 2wischen den Kurven u' = o und u' = B haben alle
die gleiche Linge 8 — a (vgl. Abb. 19.1).
(c) Die Koeffizienten der 1. Fundamentalform bzgl. x haben die Form

g1 = (T, 0) =1, g12=0, g2z >0.

Haben umgekehrt die Koeffizienten der 1. Fundamentalform diese Ge-
stalt, so gelten die Eigenschaften aus (b).
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(d) Falls speziell c(s) Geoditische ist mit ||c'(s)|| = 1, so gilt zusdtzlich
922(0,u*) =1, g221(0,u%) =0, T.5(0,u*)=0

fiir alle i, j, k.

Abbildung 19.1: Geoditische Parallelkoordinaten. Die gestrichelten Linien sind
nach Bogenlinge parametrisierte Geodétische.

Definition 7. Koordinaten mit den Eigenschaften (a) und (b) aus Satz 6 heifien
Geoditische Parallelkoordinaten (basierend auf einer Kurve u' = konst.). Die Kur-
ven u! = konst. heiflen Parallelkurven. Ist speziell u' = 0 eine mit Bogenlinge pa-
rametrisierte Geoddtische, so nennt man die Koordinaten auch Fermi-Koordinaten.

Beweis von Satz 6. (a),(b) Indem wir eventuell ¢ auf eine kleine Umgebung von
so € (a,b) einschriinken, kénnen wir ohne Einschrinkung annehmen, dass ¢'(s) # 0
fiir alle s € (a,b) gilt. Es sei
c(s)
T = fe o

und T*(s) € TS so, dass T* LT, ||T*|| = 1 und (7,T*) die gleiche Orientierung
wie (Z,1,%,2) hat. Sei s € (a,b). Wir wissen, dass es zu ¢(s) und T™*(s) ein £(s)
und eine nach Bogenlinge parametrisierte Geodétische v : (—e(s),e(s)) = S mit
~7(0) = ¢(s) und 7'(0) = T*(s) gibt. Wir fassen alle diese Geoditischen in einer
1-Parameterfamilie ¢ zusammen: fiir s € (a,b), t € (—&(s),&(s)) sei

t e c(t,s) = #(v'(t,s),v%(t, )
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die nach Bogenlinge parametrisierte Geoditische mit

0,9 =cls),  9o(0,8) = T"(5).

Indem man (a, b) eventuell nochmals verkleinert, konnen wir annehmen, dass £(s) =
€ > 0 von s unabhingig ist. Die Abbildung

(=€) x (a,b) =V, (t,8)— (v'(t,s),v%(t,s))

ist differenzierbar, da die v*(t, s) als Lésungen der Differentialgleichungen fiir Geodéti-
sche differenzierbar von den Anfangsbedingungen ¢(s), 7*(s) abhingen. Die Jacobi-
Matrix von ¢ im Punkt (0, so) hat als Spalten die linear unabhingigen Vektoren
T*(so) und T'(sp). Somit ist ¢ nach dem Umkehrsatz ein Diffeomorphismus von
einer Umgebung U von (0, so) in (—&,¢e) x (a,b) auf eine Umgebung V' C V von
(v (s0),v%(50)). Damit ist (a) und der 2. Teil von (b) gezeigt.

(c) Wir schreiben ab jetzt (u!,u?) fiir (¢,s). Da die Kurven 4> = konst. nach
Konstruktion mit Bogenlinge parametrisierte Geodétische sind, ist

g1 = ||zl = 1.

Aus den Differentialgleichungen fiir Geodétische (16.2) folgt fiir u! = s und u? =
konst.
Iy =T7=0.

Somit gilt

1
0=Ty = 2 Zgu(gll,l + g1 —g110) = 929121
1

Da g'? = —g12/ det(gix,) ist, folgt aus dieser Gleichung gi2g12.1 = 0 oder auch

1 01
5(9%2),1 = w§932 =0,

d.h. g12 ist als Funktion von u' konstant. Da nach Konstruktion
912(0,u2) = (T, T*) =0

ist, folgt gi2(u',u?) = 0. Damit ist der 1. Teil von (b) gezeigt. Da (g;x) als Matrix
eines Skalarprodukts positiv definit ist gilt gao = det(g;zr) > 0. Wir kommen nun
zum 2. Teil von (c). Es gelte also

gu=1, gi2=0, g2 >0.

Daraus folgt I';; = 0 und nach Lemma 3 ist I';3 = 0. Also

— T —
D; z,n = E Iizw =0,
i
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d.h. die Kurven u? = konst. sind nach Bogenliinge parametrisierte (da g;1 = 1)
Geoditische, welche (wegen g;2 = 0) jede der Kurven u' = konst. orthogonal
schneiden. Jede dieser Kurven kann als Basiskurve gewdhlt werden.

(d) Fiir s = u? sei ¢(s) = z(0,u?) eine nach Bogenlénge parametrisierte Geodétische.
Dann gilt g22(0,u?) = 1. Da g;2 = 0 und g1; = 1, folgt mit Lemma 3

Fﬁ =0= Fl%'

Wir miissen noch die Behauptung fiir die {ibrigen Christoffel-Symbole zeigen. Léngs
der Kurve ¢ gilt DT = De(5)c' = 0, also

0= L(T6). T () = ('), T"(3)) + (T(6).T(5)
= <Dc’(s)Ta ) + (T, DC'(S)T*)
= <T, DCI(S)T*>-

Aus ||T*(s)|| = 1 folgt dhnlich wie oben

0= (T (5), T*(5)) = AT*(5), Do T").
Wir schlieflen daraus, dass D.(,)T* orthogonal zu [T(s),T*(s)] = T,(,)S ist. Also
muss Dy (5T* = 0 sein. In geoditischen Parallelkoordinaten (u',u?) ist T*(s) =
T1(0,u?). Die Formel fiir die kovariante Ableitung (16.1) liefert fiir (a', a?) = (1,0)
die Gleichung
Fl%(07u2) =0= F1§(07u2).

Nach Lemma, 3 ist

1
Fé _ g22,1

1 2y = 0.
5 gy’ also  g22,1(0,u°) =0

Weiterhin folgt damit ebenfalls aus Lemma 3
0, u?)
130,02 = 92100 _ ¢
3(0.ut) = £

Schliefllich ist wegen g22(0,u?) =1,

0 2
T,3(0,u%) = gzz,;;;u )y,

Damit ist der Satz vollstindig bewiesen. O
Wir wollen zwei Anwendungen von geoditischen Parallelkoordinaten geben.
Zun#chst werden wir eine Formel fiir die Gauf-Kriimmung in geoditischen Parallel-

koordinaten herleiten und anschlielend zeigen wir, dass Geoditische lokal Kiirzeste
sind.
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Satz 7. In geoditischen Parallelkoordinaten gilt fir die Gauf-Krimmung

K(u',u?) = —7(\/\‘7;7)2’11 (ut,u?).

Beweis. Nach der GauB-Formel (Theorema egregium) gilt
—gukK = I‘13,1 - Flff),2 + T35 + 13T 3 — T30y — TiTys.
Mit Lemma 3 und da in geodéitischen Parallelkoordinaten g11 = 1, g12 = 0 gilt,

folgt
—K = (log \/g22),11 + ((log \/g22),1)*.
Wir setzen f := ,/g22 und rechnen

(og s + (og 1)) = (1) + (L) = Tt %

Damit ist der Satz bewiesen. O

Wir wissen bereits, dass kiirzeste Verbindungen immer Geoditische sind. Die
Umkehrung ist im Allgemeinen falsch, wie etwa das Beispiel des Zylinders zeigt.
Der folgende Satz besagt jedoch, dass geniigend kleine Segmente von Geodétischen
auch Kiirzeste sind.

Satz 8 (Geoditische sind lokal Kiirzeste). Seien S eine regulire Fliche und
z:U = S, (u!,u?) = 2(u',u?) geoditische Parallelkoordinaten. Dann ist eine mit
Bogenlinge parametrisierte Geoddtische der Form

v(s) := z(s,u3), so <5< s

kiirzer als eine beliebige Kurve
o(t) = o(u' (t),u’(t), to<t<t

die po = v(s0) = c(to) und p1 = v(s1) = c(t1) verbindet.
Beweis. Esist ¢/ = (u!)'z,1 + (u?)'z,2. Damit folgt
((@"))?g11 + 2(u')' (u?) g2 + g22((u®)')?
= ((uh))? + (u®)?g22(u' (1), u (1))
> ((u')")?.

lle'[1?

Es gilt also

L) > [ ()]t > ul(0) - u!(t0) = 31— 50 = L().

to
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Korollar 1. Geoditische werden durch (lokale) Isometrien auf Geoditische abge-
bildet.

Beweis. Sei v eine Geoditische. Wir betrachten geoditische Parallelkoordinaten
bei (t) (das ist immer moglich nach Satz 6). Nach Satz 8 ist «y lokal Kiirzeste. Fiir
eine Isometrie ¢ ist ¢ oy dann eine Kiirzeste zwischen entsprechenden Bildpunkten
(o lisst Langen invariant). Nach Satz 5 ist eine Kiirzeste eine Geodétische. O

Bemerkung: Geoditische Polarkoordinaten. Sei S eine regulire Fliche und
p € S. Fiir £ > 0 geniigend klein betrachten wir den geometrischen Ort K. al-
ler Endpunkte von geoditischen Segmenten der Linge ¢, die von p ausgehen. K,
heifit geodditischer Kreis vom Radius € und Zentrum p. Die der “Kurve” K. ent-
sprechenden geodétischen Parallelkoordinaten heiflen geodditische Polarkoordinaten,
vgl. Abb. 19.2.

Abbildung 19.2: geodétische Polarkoordinaten

Man kann zeigen, dass die Parameterlinien einerseits die von p ausgehenden
Geoditischen und andererseits die geoditischen Kreise um p sind. Die Tatsache,
dass sich diese Kurven jeweils unter einem rechten Winkel schneiden, heifit in diesem
Fall auch “Gaufl-Lemma” (fiir Einzelheiten siehe Vorlesung “Riemannsche Geome-
trie”).

20 Parallelverschiebung und geoditische
Kriimmung

20.1 Parallele Vektorfelder

Wir wollen das Konstruktions-Prinzip der Parallelverschiebung in der euklidischen
Ebene auf gekriimmte Flichen iibertragen.

Definition 8. Es sei ¢ : [ — S eine differenzierbare Flichenkurve und Y (t) ein
differenzierbares Vektorfeld lings c, d. h. Y (t) € To)S firt € I. Y (t) heifit parallel
langs ¢, wenn

Dc’(t)Y(t) = 0
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fiir alle t € I gilt.

Bemerkungen (a) Wir betrachten den Spezialfall der euklidischen Ebene. Hier
ist
DowY(t) =Y'(t) =0 <= Y(t) = konst.

Die parallelen Vektorfelder sind hier also gerade die konstanten Vektorfelder.
(b) Das Tangentenvektorfeld ¢'(t) einer Geodétischen c ist stets parallel.

Satz 9. Es seien Y und Z parallele Vektorfelder lings ¢: I — S. Dann ist
(Y'(t), Z(t))c(ry = konst.
Damit sind der Winkel £(Y (t), Z(t)) und die Lingen ||Y (t)||, ||Z(t)]| konstant.

Beweis. Das Vektorfeld Y ist genau dann parallel, wenn die Tangentialkomponente
von Y’ verschwindet, wenn also Y”(t) LT, S gilt. Daraus folgt

SV (0, 7)) = (V1) Z(0) + (Y (1), Z'(1)) = 0.
Demnach ist (Y'(t), Z(t)) konstant. O

Beispiel (Parallelfelder lings Geoditischen). Wir betrachten eine Geodéti-
sche ¢ : I — S. Wie sieht das Parallelfeld Y lings ¢ mit Y (to) = Yo € Te(4,)S
aus? Ist a der Winkel zwischen ¢'(tp) und Yy, so folgt aus obigem Satz, dass die-
ser Winkel lings ¢ erhalten bleibt. Man erhilt also Y (¢), indem man ¢/(¢) um den
Winkel a dreht und eventuell noch mit einem konstanten Faktor multipliziert. Das
so erhaltene Vektorfeld Y ist differenzierbar und parallel.

Satz 10 (Existenz und Eindeutigkeit von Parallelfeldern). Es seienc: I —
S eine differenzierbare Kurve auf der reguliren Fliche S und Yy € T,(;,)S, to € I.
Dann gibt es ein eindeutig bestimmtes Parallelfeld Y (t) lings ¢ mit Y (to) = Yp.

Beweis. Wir kénnen annehmen, dass I abgeschlossen ist. Damit ist ¢(I) C S
kompakt und wird von endlich vielen Koordinatenumgebungen iiberdeckt. Wegen
der Eindeutigkeit geniigt es, die Behauptung fiir Segmente von ¢ zu beweisen, die
ganz in einer Koordinatenumgebung liegen. Es sei also x : U — S eine lokale
Parametrisierung um ¢(t¢) und u,v seien differenzierbare Funktionen, so dass ¢(t) =
z(u(t),v(t)) in dieser Koordinatenumgebung gilt. Wir machen fiir Y den Ansatz

Y (t) = a(t)zu(u(t), v(t)) + b(t)zy (u(t), v(t))

mit zu bestimmenden differenzierbaren Funktionen a und b. Y ist genau dann par-
allel, wenn

0=D,Y =(a' + T jau' + T 3av’ + T 150u + Toybv’)z,+
(0 + T 2au’ +T 2av + T 200" + T3’ ),
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gilt, also genau wenn
a' +Tjau’ +Tav’ +Tdbu’ + Thybw’ =0 (20.1)
b + T fau’ +T3av’ +T3bu’ + Tysbv’ = 0. )
Das ist aber ein lineares Differentialgleichungssystem 1. Ordnung fiir @ und b. Es
hat zu gegebenen Anfangsbedingungen (a(to), b(to)) genau eine Losung (a(t), b(t))-
Zudem ist diese Losung auf dem ganzen Intervall I definiert. O

20.2 Parallelverschiebung

Wir zeigen im Folgenden wie man mit Hilfe von Parallelfeldern Vektoren lings
Kurven “parallel verschieben” kann.

Definition 9. Seic: I — S eine differenzierbare Kurve und Yo € Te(y,)S. Weiter
sei Y(t) das parallele Vektorfeld lings ¢ mit Y (to) = Yo. Fiir t1 € I heifit dann
Y (t1) die Parallelverschiebung von Yy lings ¢ nach c(t1).

Bemerkungen (a) Aus Satz 9 folgt, dass die Parallelverschiebung lings einer
Kurve ¢ : [a,b] = S eine lineare Isometrie der euklidischen Vektorrdume T,,S und
TS ist, wobei p = ¢(a) und ¢ = ¢(b) ist. Die Parallelverschiebung ermdglicht somit
den Vergleich “weit voneinander entfernter” Tangentialriume.

(b) Ist die Kurve ¢ nur stiickweise differenzierbar, so definiert man die Parallelver-
schiebung segmentweise.

(c) Die Parallelverschiebung ist als Begriff der inneren Geometrie einer Fliche
invariant unter lokalen Isometrien. Genauer: Hat man eine Kurve ¢ : I — S mit
¢(I) C U, U offen, eine Isometrie ¢ : U — U C S und Yy € Tp()S, so gilt das
kommutative Diagramm:

d
Yo ————— dp(Yo)

PV liangs cl/ lPV lings poc

V(1) ——— do(Y ()

(d) Es seien S und S zwei regulire Flichen, die sich lings einer differenzierbaren
Kurve ¢ : I - SN S tangential beriihren, d.h. T,,;)S = T.()S fiir alle ¢ € I. Ist Yo
ein Vektor aus T, S = Te()S, so ist Y (t) genau dann die Parallelverschiebung von
Yy lidngs ¢ beziiglich S, wenn Y (¢) die Parallelverschiebung von Yy lings ¢ beziiglich
S ist. Denn: die kovariante Ableitung D, ()Y ist fiir beide Flachen dieselbe (da das
entsprechende Differentialgleichungssystem (20.1) fiir beide Fléichen identisch ist).

Beispiel. Wir betrachten ein Beispiel zur letzten Bemerkung. Es sei ¢ der Brei-
tenkreis zum Winkel 7/2 — ¢ auf einer orientierten Einheitssphire. Weiter sei Yy
tangential an ¢ im Punkt p. Gesucht ist die Parallelverschiebung von Y, lings c.
Dazu betrachten wir den Kegel K, der die Sphire lings ¢ tangential beriihrt, vgl.
Abb. 20.1. Dieser hat gerade den Offnungswinkel ¢ = 7/2 — .
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Abbildung 20.1:

Die Kurve ¢ liegt auf dem Kegel und Y} ist tangential an K. Ohne Einschrinkung
sei ¢ mit Bogenlidnge parametrisiert und p = ¢(0). Nach der obigen Bemerkung
geniigt es, die Parallelverschiebung von Yj lings ¢ beziiglich K zu bestimmen.
Da K lokal isometrisch zur Ebene ist, konnen wir die Parallelverschiebung in der
Ebene durchfiihren (vgl. Abb. 20.2) und dann wieder auf den Kegel bzw. die Sphére
iibertragen.

Abbildung 20.2: Parallelverschiebung von Yy in der Ebene. Parallelverschiebung
auf dem Zylinder erhélt man, indem man den erhaltenen Winkel zwischen Y (t)
und ¢/(t) auf den Zylinder {ibertrigt.

20.3 Parallelverschiebung und Kriimmung

Wir wollen nun die Parallelverschiebung mit der Kriimmung in Verbindung bringen.
Dazu betrachten wir eine orientierbare Fliche S. Weiter sei ¢ : I — S, t — ¢(t)
eine mit Bogenléinge parametrisierte Flichenkurve. Wegen ||c/(2)(|> = (¢',¢') = 1 ist
(c"(t),c (t)) = 0. Damit ist die Tangentialkomponente D s c’ von ¢" proportional
zu N(t) A c'(t). Das fithrt auf folgende

Definition 10. Die Abbildung k4 : I — R definiert durch

Doy (t) = kg () (N (t) A (1))
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heifit geodatische Krimmung. Die Zahl k4(t) heifst geoddtische Krimmung von ¢
im Punkt c(t).

Das Vorzeichen von k4 héngt von der gew&hlten Orientierung der Fliche bzw. vom
Durchlaufsinn der Kurve ab.

Lemma 4. Sei ¢ : I — S eine nach Bogenlinge parametrisierte Kurve und
k(t) = ||"(#®)|| die Krimmung von c. Weiter sei k,(t) = (c¢"(t), N(t)) die Nor-
malschnittkriimmung von S im Punkt c(t) in Richtung ¢ (t). Dann gilt

K2(t) = K2(t) + Iig (t).
Beweis. Zerlegung von ¢” in Normal- und Tangentialkomponente liefert

" =(c",N)N + Dy
= knN + K4(N A ).

Da N und N Ac’ orthogonale Einheitsvektoren sind folgt k* = ||c"||* = &2+ 2. O

Bemerkungen (a) Mit Definition 10 gilt: Eine Kurve cist genau dann Geoditische,
wenn kg = 0 gilt. Das erklért auch die Bezeichnung “geodétische Kriimmung”.
(b) Falls T1(t) = ¢/(t) und T»(t) ein begleitendes 2-Bein von c¢ ist, das gleich ori-
entiert ist wie S, so ist

tg(t) = (Derryc', T(t))-

Die geodatische Kriimmung &, ist also eine Grofle der inneren Geometrie einer
orientierten Flache.

Im folgenden sei Y ein paralleles Einheitsvektorfeld lings einer nach Bogenlinge
parametrisierten Kurve ¢ : I = [a,b] = S.

Es sei V ein 2-dimensionaler orientierter Vektorraum. Weiter seien X und Y
zwei linear unabhéngige Vektoren. Es sei a € (0, 7) der Winkel zwischen X und Y,
also (X.Y)

cosa XY € (—1,1).
Der orientierte Winkel zwischen X und Y ist definiert als o, wenn (X,Y") positiv
orientiert ist, und als —«, wenn (X,Y) negativ orientiert ist. Man beachte, dass die
Reihenfolge von X und Y entscheidend ist! Im Spezialfall einer orientierten Fliche
ist jede Tangentialebene orientiert und das Vorzeichen des orientierten Winkels
zwischen X und Y ist gegeben durch das Vorzeichen von det(X,Y, N), wobei N die
Flichennormale ist.

Lemma 5. FEs sei Y ein paralleles Einheitsvektorfeld lings der nach Bogenlinge
parametrisierten Kurve ¢ : I — S. Weiter sei 6(t) der orientierte Winkel zwischen
Y (t) und c'(t), also

Y (t) = cos@(t) ¢ (t) —sin6(t) (N(t) A (t)),
mit cosB(t) = (c'(t),Y (t)), |6] € (0,7). Dann ist k4(t) = 6'(t).
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Beweis. Wir leiten die Gleichung cos8(t) = (¢'(¢), Y (t)) nach ¢ ab und erhalten
mit DY = Dy’ =0, dass

—0'(t)sin6(t) = (c"(£), Y (£)) + (c'(t),Y'(2))
= (Depyc, Y () +(c'(t), De()Y)
— (Do cos (t) ¢ (1) — sin B(t) (N(2) A /(1))
— cos(t) (Dor(es ¢ (1)) — sin B(2) iy (1
= —sin0(t) ky(t)
Fiir tg € I mit sinf(tg) # 0 folgt die Behauptung. Ist sinf(¢) ungleich 0 in ei-
ner Umgebung von ¢, so folgt die Behauptung, da 6'(t) und k,(t) stetig sind. Ist

siné(t) = 0 auf einem abgeschlossenen Intervall J C I, so ist ¢ auf J Geodétische
(daY = ¢ und Y parallel)und damit k, = 0 = 6'(¢) auf J. O

Bemerkung: Holonomie. Betrachtet man die Winkeldnderung (bzgl. ¢') bei Par-
allelverschiebung lings ¢, so gilt nach obigem Lemma,

8(t1) — O(to) = / " (1) dt.

to

Ist insbesondere ¢ geschlossen, so ist §(b) —6(a) der Winkel zwischen Y (b) und Y (a).

Es sei nun T (t),T»(t),T5(t) = N(t) eine begleitende Orthonormalbasis einer
Flachenkurve c(t) (¢ muss nicht mit Bogenlinge parametrisiert sein) mit T3 (¢) und
Ts(t) € Te(y)S- Weiter sei

Y (t) = cos (t) T1(t) + sinp(t) Ta(t)
ein Einheits-Vektorfeld lings ¢
Frage: Wie muss man ¢ wihlen, damit Y parallel ist?
Wir stellen zunéchst fest, dass wegen (T}, T;) = d;;
(T, Tj) + (T3, Tj) = 0

(A ]

gilt. Setzt man a;; := (T}, T}), so folgt a;; = —aj;- Man erhilt damit eine schief-
symmetrische Matrix (a;;) die folgende Eigenschaft hat

T/ 0 a f Ty
T = —a 0 7 Ty
Ty -8 = 0 T3

Weiter gilt
Y'=—¢'sinpTi + ¢' cospTs + cos (aT> + BT3) + sin (—aTy +vT3)
—(a+¢")sinpT) + (a+ ¢')cospTs + (B cosp + ysin p)Ts.

Das Vektorfeld Y ist genau dann parallel, wenn die Tangentialkomponente von Y’
verschwindet, also genau dann, wenn a+¢' = 0 gilt. Im niichsten Lemma bestimmen
wir a(= —¢') mittels geoditischer Parallelkoordinaten.
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Lemma 6. Es sei S eine orientierte Fliche, x : U — S, (u',u?) — z(u',u?) seien
geoditische Parallelkoordinaten und c sei eine Kurve in x(U), also

Beweis. Zunichst ist

TI(t) = Lo (1), (1))

dt
= (") (8) By (u' (1), 0 (1) + (u?)' () Try2 (u' (1), u? (1))
In geoditischen Parallelkoordinaten gilt aber g1o = 0 und g;; = 1 und damit
I';i = 0. Weiter ist nach Lemma 3 auch I';7 = — %22 = 0. Also ergibt sich

<$u1u1,mu2) = <F1%Z’u1 -+ Fﬁxuz + lN, :Eu2> = Fﬁglg -+ Fﬁggg =0.

Damit folgt

1 10 1
_ 2\/ _: 9 2y/
a <$u1u2axu2)(u ) ||37u2|| 2 9ul <$u27$u2>(u ) ”mu2||
1 1
= 5922,1@(712)' = (v/922) 1 (u?)’
Damit ist das Lemma bewiesen. O

Als Anwendung charakterisieren wir die Flichen mit Gau-Kriimmung Null.

Satz 11 (Flichen mit K = 0). Sei S eine reguldre Fliche. Folgende Aussagen
sind dquivalent:
(a) Die Parallelverschiebung ist lokal wegunabhingig, d.h. zu jedem p € S
gibt es eine (Koordinaten-)Umgebung in der die Parallelverschiebung
nicht von der Kurve ¢ abhdngt.
(b) Zu jedem p € S gibt es geoditische Parallelkoordinaten, so dass gij = 0;;
gilt.
(c) S ist lokal isometrisch zur euklidischen Ebene.
(d) Fiir die GaufS-Kriimmung K von S gilt K = 0.

Beweis. Der Beweis der Aquivalenzen (b) <= (c) <= (d) ist eine Ubungsaufgabe.
Wir vervollstindigen nun noch den Ringschlu8.

(c) = (a): Parallelfelder in der euklidischen Ebene sind konstant, also ist die
Parallelverschiebung wegunabhingig.
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(a) = (b): In einer Umgebung von p wihlen wir Fermi-Koordinaten z : U — S
(vgl. Satz 6) basierend auf der nach Bogenlinge parametrisierten Geodétischen
2(0,4?) mit p = £(0,0). Nach Annahme ist die Parallelverschiebung in z(U) wegu-
nabhiingig. Wir zeigen: die Kurven z(a, u?) sind alle Geodéitische. Dazu betrachten
wir den Einheitsvektor T
Ay = —“(a,0).
0 \/gQ_Q( )
Die Kurve u? = 0 ist Geodiitische, deren Tangentialvektor im Punkt z(a,0) senk-
recht zu Ay steht. Also ist die Parallelverschiebung A; von Ay lings u? = 0
nach z(0,0) ein Einheitsvektor, der orthogonal zum Tangentialvektor an z(u',0) in

u! = 0 steht.

As

Abbildung 20.3: Parallelverschiebung von A,

Damit folgt
Ty2

V922

Die Parallelverschiebung 4, von A; lings u! = 0 nach z(0,b) ist der Tangential-
vektor an die Geoditische u! = 0, also

A =

(0,0).

Ly2
V922

Nun verschieben wir A, parallel lings der Geoditischen u? = b nach z(a,b) und
erhalten wegen g5 = 0

Ay =

(0,0).

Az = 22 (a,b).

V922
Nach Voraussetzung ist die Parallelverschiebung wegunabhingig. Also ist die Par-
allelverschiebung von Ay lsings u' = a ebenfalls A;. Da b beliebig war, ist

Ly2

V922

(a,u?)
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ein paralleles Einheitsvektorfeld lings z(a, u?). Dann ist z(a,u?) aber eine Geodéti-
sche. Da Geodétische proportional zur Bogenlinge parametrisiert sind, folgt, dass

g22(a,u?) als Funktion von u? konstant ist. Aus der Differentialgleichung fiir
Geoditische (16.2) folgt mit u = uy, dass ', = 0. Da nach Lemma 3

9221
r 1 — 5
22 —2911

gilt, ist g22 auch als Funktion von u; konstant. Damit schlieflen wir, dass geo (u!,u?) =
922(0,0) = 1 gilt. Da fiir geoditische Parallelkoordinaten allgemein g1 = 1 und
g12 = 0 gilt, folgt schliefilich die Behauptung g;; = d;;. O
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Teil V
Der Satz von Gauf3-Bonnet und
Folgerungen

21 Umlaufsatz und Satz von Gauf3-Bonnet

21.1 Der Umlaufsatz fiir Flichenkurven

Wir beginnen mit einer Verallgemeinerung des Umlaufsatzes von Hopf (Satz 12 in
6.1). Dazu benétigen wir noch einige zuséitzliche Begriffe.

Definition 1. Sei S eine requlire Fldche. Unter einer einfach geschlossenen, stiick-
weise regulidren Flichenkurve verstehen wir eine stetige Abbildung c : [0,1] — S mit
folgenden Eigenschaften
(a) Die Kurve ist geschlossen, d.h. ¢(0) = c(l).
(b) Die Kurve c ist injektiv auf 10,1].
(c) Es gibt eine Unterteilung 0 =tg < t1 < -+ < tg < tp41 =1 von [0,1], so
dass ¢ auf jedem Segment I; := [t;—1,t;],1=1,...,k+1, differenzierbar
und reguldr ist.

Nach Definition gibt es fiir jedes ¢; links- und rechtsseitige Ableitungen von c.
Wir schreiben ¢ (¢]) fiir die rechtsseitige und ¢'(¢;") fiir die linksseitige Ableitung.
Wir wollen weiter annehmen, dass S orientiert ist. Dann sei —7 < ¢; < 7 der
orientierte Winkel zwischen ¢/(¢;) und ¢/(¢]"). (Den Fall |§;| = 7, der anschaulich
einer “Spitze” entspricht, betrachten wir hier nicht.) Zudem nehmen wir an, dass ¢
auf jedem regulédren Segment mit Bogenlidnge parametrisiert ist.

Definition 2. Der mit Vorzeichen versehene Winkel —m < 6; < m heifst Aussen-
winkel im Punkt c(t;), vgl. Abb. 21.1. Falls 6; # 0, so nennen wir c(t;) eine Ecke
von c.

! t_
Orientierung Q c( z+1)

(5,'4_1 <0

Cl(tjﬂ)

c(t7)

Abbildung 21.1: Aussenwinkel einer Kurve
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Es sei jetzt x : U — S, (u,v) — z(u,v) eine lokale Parametrisierung von S,
die mit der Orientierung von S vertriglich ist. Weiter sei U homtomorph zu einer
offenen Kreisscheibe. Sei ¢ : [0,1] — S eine einfach geschlossene, stiickweise regulire
Kurve mit ¢([0,1]) C z(U), Ecken ¢(t;) und Aussenwinkeln §; fir i = 1,..., k. Man
beachte, dass mit dieser Konvention ¢(0) = ¢(I) keine Ecke ist! Schlielich sei fiir
i=1,...,k+1und ¢t € I; = [t;—1,ti], Bi(t) der orientierte Winkel zwischen z,,(c(t))
und ¢'(t). Es gilt also insbesondere

(¥) 6= Biy1(ts) = Bi(ti) (i=1,...,k).

Der folgende Satz ist eine Verallgemeinerung des Satzes von Hopf (Satz 12 in 6.1)
fiir ebene Kurven.

Satz 1 (Umlaufsatz fiir Flichenkurven). Mit obigen Bezeichnungen gilt

k+1 k
Z (Bi(t:) — Bi(ti—1)) + Z §; = +2.
i=1 i=1

In Worten: Die totale Variation des Winkels zwischen einem festen Richtungsfeld
und dem Tangentialvektor von c ist zusammen mit den “Spriingen” an den Ecken
gleich £27 (wobei das Vorzeichen von der Orientierung der Kurve abhdngt).

Beweis. 1. Schritt: Wir nehmen an, dass ¢ keine Ecken hat, also §; = 0 fiir alle
i =1,..., k. Dann ist nach (x) B;11(t;) = Bi(¢;) fiir i = 1, ..., k und die Behauptung
des ist Satzes somit dquivalent zu

Br+1(l) — £1(0) = £2m.

Diese Gleichung ist nun aber eine Konsequenz aus den folgenden drei Bemerkungen:

(1) Da sowohl Br+1(1) als auch B8;(0) den Winkel zwischen z, und ¢'(0) = ¢'(I)
messen, ist Bg41(l) — B1(0) ein Vielfaches von 27.

(2) Sei I die erste Fundamentalform von S und I° die erste Fundamentalform
der euklidischen Ebene R?. Fiir A € [0, 1] ist dann I* := AT + (1 — X)I° ebenfalls ein
(positiv definites) Skalarprodukt auf T, fiir p € S (genauer: I ist eine sogenannte
Riemannsche Metrik). Wir definieren den Winkel 8* zwischen z,, und ¢’ beziiglich
I* durch

cos f* == D (@, )
VIM @y, 2,) I, )

Weil B stetig von A\ abhingt, versindert sich 8*(I) — *(0) stetig mit . Da dieser
Wert aber immer ein Vielfaches von 27 ist, muss er konstant sein.

(3) Fiir A = 0 ist (S, I°) lokal isometrisch zu der euklidischen Ebene (vgl. Satz
11 in 20.3). Wir kénnen also S in diesem Fall als Stiick von R? und c als ebene
Kurve auffassen. Somit ist 4°(1) — 8°(0) gerade 27 mal die Umlaufzahl von ¢, also
nach dem Umlaufsatz von Hopf (Satz 12 in 6.1) gleich +2x.
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2. Schritt: Wir nehmen jetzt an, dass ¢ insgesamt k& Ecken hat, also §; # 0 fiir
i=1,...,k. Mit obiger Gleichung (x) gilt allgemein

k+1 k
Z (Bi(t:) = Bilti—1)) + Z 8 = Br+1(l) — B(0).

Satz 1 ist somit wieder dquivalent zur Gleichung

Brt1(l) — B1(0) = +2m.

Wir beweisen diese Gleichung, indem wir wie im ersten Schritt die folgenden Ei-
genschaften (1), (2), (3) nachweisen. (1) und (2) sind klar:

(1) Bre1(l) = B1(0) = 2mn. (n € Z),

(2) B2 (1) — B2(0) = konstant = 57, (1) = #9(0) = (Brr (1) — £ (0).

(3) Die zu beweisende Aussage von Satz 1 ist dquivalent zu der folgenden Verall-
gemeinerung des Umlaufsatzes von Hopf fiir ebene geschlossene Kurven mit Ecken:

k+1 k
B () — B1(0) = Z (Bi(ti) — Bilti—1)) + Z 8 = +2r.

Um diese Gleichung zu beweisen, gehen wir wie folgt vor. Fiir jede Ecke c(t;) wihlen
wir einen kleinen Kreis K um c(t;). Sei P = c(a;) der letzte Punkt von ¢([t;—1,t;])
auf K und @ = ¢(b;) der erste Punkt von ¢([t;, t;41]) auf K. Wir wihlen dann eine
glatte Kurve ¢; von P nach @ mit Anfangsrichtung ¢/(a;) und Endrichtung ¢'(b;),
vgl. Abb. 21.2. Wenn der Radius von K gegen Null geht, so ist die totale Anderung

PQ

K

Abbildung 21.2: Glatten von Ecken

der Tangentenrichtung von ¢; beliebig nahe bei ¢;. Wihlt man also alle Kreisradien
geniigend klein, so erhilt man mittels der Kurven ¢; eine einfach geschlossene glatte
Kurve & Nach dem Umlaufsatz ist die totale Anderung des Tangentenvektors &
gleich +27. Andererseits ist die totale Tangenteninderung lings der Teilkurven ¢;
nahe bei Zle d;, withrend die totale Anderung der iibrigen Segmente von ¢ nahe

bei Zfill (Bi(t;) — Bs(ti—1)) ist. Wir erhalten somit insgesamt, dass der Ausdruck

k1 k
Bry1(l) = B1(0) = Z (Bi(t:) — Bi(ti—1)) + Z‘si
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nahe bei +27 ist. Nach (1) und (2) muss er somit gleich +27 sein. O

21.2 Satz von Gauf3-Bonnet (lokale Version)

Definition 3. Es sei S eine orientierte Fliche. Ein einfaches Gebiet ist eine Teil-
menge G von S, die homdomorph zu einer (abgeschlossenen) Kreisscheibe ist und
fiir deren Rand gilt G = ¢([0,1]) fiir eine stickweise regulire, einfach geschlossene
Kurve c:[0,]] = S.

Wir nehmen ohne Einschrankung an, dass ¢ auf jedem reguldren Segment nach
Bogenliange parametrisiert ist. Dann kann man auf jedem solchen Segment von ¢ den
Vektor ¢'(t) zu einer positiv orientierten Orthonormalbasis (c'(t), T»(t)) von TS
erginzen. Man sagt c¢ ist beziiglich G positiv orientiert, falls auf jedem reguliren
Segment von c gilt: fiir die positive Orthonormalbasis (¢'(t), T>(t)) zeigt T»(t) nach
G, genauer: Ist £(¢) eine in G verlaufende differenzierbare Kurve mit £(0) = ¢(t)
und €'(0) # ¢(t), so ist

(€'(0), T(t)) > 0.

Anschaulich: Das Innere von G liegt “links” von ¢, vgl. Abb. 21.3.

Orientierung Q

Abbildung 21.3: Eine positiv orientierte Randkurve

Wir hatten gesehen, dass der Flicheninhalt von z(U) gegeben ist durch

A(x(U))://UdA://U|a:u/\a:v|dudv

und dass diese Grofle unabhiingig von der lokalen Parametrisierung x ist. Genau
so zeigt man, dass fiir eine differenzierbare Funktion f auf z(U) das Integral von f
iiber G, also die Grofle

1= [ /G saa= [ /V F((u,v)) dA

mit G = z(V'), unabhéngig von der Parametrisierung ist.

Satz 2 (GauB3-Bonnet, lokale Version). Es sei z : U — S eine lokale Parame-
trisierung einer reguldren Fliche S durch geoddtische Parallelkoordinaten. Weiter
sei G C z(U) ein einfaches, abgeschlossenes Gebiet mit Rand 0G = ¢(I) fir eine
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positiv orientierte, einfach geschlossene, stiickweise regulire Kurve c. Die Kurve ¢
sei mit Bogenlinge parametrisiert. Sind firi=1,...,k, c(t;) die Ecken von ¢ und
0; die Aussenwinkel, so gilt

k+1

//KdA+Z/tl dt+26—27r,
ti-1

i=1

dabei ist k4 die geoddtische Krimmung der reguldren Segmente von c und K ist die
Gaufl-Krimmung von S.

Bemerkung. Der Satz gilt auch ohne die Einschrankung, dass man geodatische
Parallelkoordinaten als Parameter hat. Diese Voraussetzung erleichtert lediglich den
Beweis.

Beweis von Satz 2. Da wir geodétische Parallelkoordinaten voraussetzen, gilt

nach Abschnitt 19, Satz 6,
1 0
@)= (o o)

Damit ist dA = \/det(g;;) du' du® = |/gaz du'du®. Weiter ist T} := z,, ein Ein-
heitsvektorfeld auf G. Liangs der Randkurve ¢ betrachten wir ein Parallelfeld Y (¢).
Auf I; := [ti—1,ti], e = 1,...,k + 1, sei 0;(t) der orientierte Winkel zwischen Y (t)
und ¢'(¢), ¢;i(t) der orientierte Winkel zwischen T7(t) und Y (¢), vgl. Abb. 21.4.

Abbildung 21.4:

Dann ist
Bi(t) =6i(t) + ¢i(t), teL
differenzierbar. Nach dem Umlaufsatz fiir Flichenkurven (Satz 1) und unserer An-
nahme iiber Orientierung und Durchlaufsinn ist die gesamte Tangentendrehung von
¢’ beziiglich T gegeben durch

k+1 k
Z (Bi(ti) — Bilti-1)) + Zéi = 27. (21.1)

Das konnen wir auch schreiben als
k+1 k+1

277—2/& dt+26_2/ (0L(t) + (¢ dt+26 (21.2)
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Nach Lemma 5 aus Abschnitt 20.3 ist
k+1

k+1/ 0i(t) dt = Z/ Ky (t (21.3)

Weiter ist nach Lemma 6 aus Abschnitt 20.3

k+1 k+1

k+1
0 go2 9
Z/% t)dt = Z/ )dt = Z/um) - 6Vu1)d
WgT . )
-/ <au1 w2 [[ o
1(0G) HG) (21.4)

// , /g2 5 du'du?
—1(G) 92

=// KoafldAz// KdA
z=1(G) G

In der Gleichung * wurde der Satz von Gauf}-Green fiir Gebiete €2 der Ebene ver-

wendet,
P
Pdm+Qdy—// @—6— dxdy
a0

mit P = 0 und Q = —(,/g22),1. Gleichung *x gllt nach Satz 7 aus Abschnitt 19.
Setzt man nun (21.3) und (21.4) in (21.2) ein, so folgt die Behauptung. O

21.3 Folgerungen
(a) Wenn die Kurve ¢ keine Ecken hat, so gilt

// KdA+/ Kg dt = 2.
G oG

(b) Falls S die euklidische Ebene R? ist, so ist K = 0 und &, = k*, die orientierte
Kriimmung. Satz 2 ist dann gerade der Umlaufsatz von Hopf fiir ebene Kurven (vgl.
auch den Beweis von Satz 1).

(c) Es sei ¢ ein geoditisches Polygon, d.h. die reguliiren Segmente von ¢ sind
Geodétische. Dann ist k, = 0 und es gilt

k
// KdA+> 6 =2
G i=1

Definiert man die Innenwinkel a; an den Ecken c¢(t;) als a; :== m — d;, so gilt fiir ein
geoditisches n-Eck

n

/ KdA=2r-) (r—a;) =m(2—n) +Za,

i=1 i=1
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Insbesondere gilt fiir ein geodatisches Dreieck A

// KdA=oa1 +as+ a3 — 7.
A

(d) Wir betrachten ein geoditisches Dreieck A und spezialisieren die GauB-Kriimmung.
Dann gilt fiir die Innenwinkelsumme von A

> K>0
a+p+7y =n p, falls K=0
<7 K <0

Beispielsweise ist K = 1 fiir die Einheitssphire S?, K = 0 fiir die Ebene und
K = —1 fiir die Pseudosphiire.

(e) Ist K <0 im Gebiet G, so schneiden sich zwei mit Bogenlidnge parametrisier-
te, voneinander verschiedene Geoditische in G hochstens einmal. Das kann man
wie folgt einsehen. Angenommen die Geoditischen schneiden sich mehr als einmal.
Dann entsteht (insbesondere) ein geoditisches 2-Eck (vgl. Abb. 21.5) fiir das gilt

a>0und g > 0 (wieso?).
%
A

Abbildung 21.5: Geoditisches 2-Fck

Nach obiger Folgerung (b) aus dem Satz von Gauf-Bonnet ist aber
02/ KdA=a+8>0,

ein Widerspruch!

22 Mannigfaltigkeiten (light)

22.1 Definition

Wir wollen im Folgenden den Begriff der reguldren Fliche verallgemeinern. Bisher
waren unsere Flichen stets Teilmengen von R3. Das ist eine starke Einschrinkung,
denn geometrische Konfigurationen haben oft mehr als nur zwei Parameter. Ein
Beispiel ist die Position eines Pendels mit n > 2 Gelenken, vgl. Abb. 22.1. Die Lage
ist hier durch das n-Tupel (ai,...,a,) € [0,27]" gegeben. Andere geometrische
Objekte wiederum sind gar nicht erst als Teilmengen eines R™ gegeben, so zum
Beispiel der n-dimensionale projektive Raum, den wir in 22.2 genauer betrachten.
Das folgende Konzept hat sich im Laufe der Zeit herausgebildet (siehe Anhang C).
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Abbildung 22.1: Ebenes Pendel mit 3 Gelenken

Definition 4. Fine n-dimensionale topologische Mannigfaltigkeit ist ein topolo-
gischer Raum M, der lokal euklidisch ist. Genauer: Es gibt eine Menge von Paaren
A = {(M;, ;) |i € I} von offenen Teilmengen M; C M und stetigen Abbildungen
i : M; = R™ mit den folgenden FEigenschaften:

(a) Die Mengen M; bilden eine Uberdeckung von M, d. h.

M= M.
iel

(b) Fiir alle i € I ist @; : M; — p;(M;) CR™ ein Homéomorphismus.

FEine n-dimensionale, topologische Mannigfaltigkeit heifit differenzier-
bar, falls zusdtzlich gilt

(c) Falls M;NM; # 0, so ist o;(M;NM;) offen in R™ und der Kartenwechsel
pjop; !t i(M; N M;) = p;(M; N Mj)

ist differenzierbar, vgl. Abb. 22.2.

M

go/ \;‘Oj
piopi
_— >
@ piog;’ @
Abbildung 22.2: Kartenwechsel
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Das Paar (M;,p;) nennt man Karte von M und die Menge A differenzierbarer
Atlas fiir M. Ist A ein mazimaler differenzierbarer Atlas, so heifit A eine differen-
zierbare Struktur auf M.

Bemerkungen (a) Nach dem Satz von der Gebietstreue (vgl. Anhang A) ist die
Dimension n einer topologischen Mannigfaltigkeit wohldefiniert.

(b) Ein differenzierbarer Atlas A fiir M induziert eine eindeutig bestimmte diffe-
renzierbare Struktur auf M. Man erhilt sie, indem man alle mit A vertriglichen
Karten zu A hinzufiigt. Dabei heifit ¢ : U — R*, U C M vertriglich mit .4 wenn
1 den Bedingungen (b) und (c) aus Definition 4 geniigt.

(c) Eine differenzierbare Struktur A auf einer differenzierbaren Mannigfaltigkeit
M induziert eine Topologie auf M: eine Menge O C M ist offen, falls fiir alle
(M;, ;) € A die Menge ¢;(M; N O) offen in R™ ist. Insbesondere sind die M; offen.
(d) Hat man eine stetige Abbildung f : M — N zwischen differenzierbaren Man-
nigfaltigkeiten, so heifit f differenzierbar, wenn f die Bedingungen aus Definition
1 aus Abschnitt 10.1 erfiillt. Dabei sind die Begriffe regulire Fliche durch diffe-
renzierbare Mannigfaltigkeit und lokale Parametrisierung durch Karte zu ersetzen,
man vgl. dazu auch Abb. 22.3.

V7

¢
Yiofopr! N
@i (M;) - vi(Ny)

(]

Abbildung 22.3: Darstellung einer differenzierbaren Abbildung in lokalen Koordi-
naten. f ist differenzierbar, wenn 4, o f o <p;1 differenzierbar ist.

(e) Fir die Kartenwechsel kann man auch verlangen, dass sie anstatt C* eine der
folgenden Bedingungen erfiillen:

stetig topologische Mannigfaltigkeit
Cck C*-Mannigfaltigkeit

affin affine Mannigfaltigkeit
holomorph komplexe Mannigfaltigkeit
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Die entsprechenden Objekte erhalten dann die Bezeichnung aus der zweiten Spalte.

Definition 5. Sei (M, A) eine differenzierbare Mannigfaltigkeit. M heifit orien-
tierbar, falls man aus A einen Atlas auswihlen kann, so dass die Funktionaldeter-
minaten aller Kartenwechsel @; o goj_l gleiches Vorzeichen haben.

Eine zweidimensionale Mannigfaltigkeit M in R®, versehen mit der Teilraumto-
pologie ist genau dann orientierbar, wenn es ein differenzierbares Einheitsnorma-
lenfeld auf M gibt. Denn eine solche Mannigfaltigkeit ist ja nichts anderes als eine
reguldre Fliche.

22.2 Beispiele

(a) 1-dimensionale Mannigfaltigkeiten. Jede zusammenhingende 1-dimensi-
onale topologische Mannigfaltigkeit ist homdomorph zu einem Intervall in R oder
zur Kreislinie S (vgl. z.B. L. Fiihrer, Allgemeine Topologie, Vieweg, 1977, Kap.
15.13).

(b) Regulidre Flichen. Wir betrachten eine regulire Fliche S. Die Umkehrab-
bildungen lokaler Parametrisierungen bilden einen differenzierbaren Atlas fiir S.
Die Karten sind hier so gew#hlt, dass die von der entsprechenden differenzierbaren
Struktur induzierte Topologie gerade die Teilraumtopologie ist.

(c) Reguliire Flichenstiicke. Wir betrachten eine offene Menge U C R? und eine
injektive Immersion f : U — R3, d.h. f ist differenzierbar und die Tangentialab-
bildung df, ist injektiv fiir alle p € U. Dann ist {(f(U), f~')} ein differenzierbarer
Atlas fiir f(U). Der wesentliche Unterschied zwischen regulidren Flichen und re-
guldren Flichenstiicken ist, dass regulire Flichenstiicke im Allgemeinen nicht die
Teilraumtopologie tragen.

(d) Die reell projektive Ebene. Wir betrachten die Menge P? der 1-dimensionalen
Untervektorriume von R?, also

P?:={[z]|z € B,z #0}.
Definiert man auf R?\{0} die Aquivalenzrelation ~ durch
T~y &< =Ny

mit einem \ # 0, so hat man eine bijektive Abbildung zwischen (R*\{0})/~ und P2.
Die entsprechende Quotienten-Topologie (sieche Anhang A) ist dann eine natiirliche
Topologie auf P2. Schriinkt man die obige Aquivalenzrelation auf S? ein, so werden
genau die Antipodenpunkte identifiziert, d.h. ~ auf S2 ist definiert durch

T~y &= T =Ty

Wir erhalten also P2 = $?/.. Es sei V3 die obere offene Hemisphére von S?. Wir
definieren p3 : V3 — R? durch (z1,z2,23) ~ (71,72). Dann ist p3 injektiv und
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p3(V3) ist die offene Einheitskreisscheibe B;(0) in R2. Es sei nun 7 : S2 — P2
definiert durch z — [z]. Weiter sei M3 := 7(V3). Dann ist

¢3: Mz > R, [a] = (po(mly;) ") ([z])

injektiv und @3(Ms) = B1(0). Wir betrachten nun die offenen Hemisphéren V; :=
{z € S%|z; >0} und V; := {z € S? |z, > 0}. Fiir diese konstruieren wir analo-
ge Abbildungen ¢; : M; — R? und ¢, : My — R2, dabei ist M; := «(V;). Die
Definitionsbereiche dieser Abbildungen {iberdecken P? und die Bilder dieser Abbil-
dungen sind offen. Weiter ist {(M;, ;) |i = 1,2, 3} ein differenzierbarer Atlas von
P2 (Ubung!), der seinerseits eine differenzierbarer Struktur auf P? induziert.
Ubungsaufgabe: Ersetzt man die orthogonalen Projektionen durch passende stereo-
graphische Projektionen, so ergibt sich ein differenzierbarer Atlas fiir P2, der die
gleiche differenzierbare Struktur induziert.

23 Klassifikationssatz fiir kompakte
2-Mannigfaltigkeiten

23.1 Chirurgie

Aus gegebenen topologischen Rdumen kann man durch “verkleben” neue konstru-
ieren. Der anschauliche Begriff des Verklebens wird dabei durch eine Aquivalenzre-
lation prézisiert.

Wir wollen einen Spezialfall genauer beschreiben. Dazu sei X ein topologischer
Raum und a : X — X ein Homdomorphismus. Die Menge X X [0,1] sei mit der
Produkt-Topologie versehen. Auf dieser Menge definieren wir eine Aquivalenzrela-
tion ~ durch (z,0) ~ (a(z),1) fir z € X und (z,t) ~ (z,t) fiirz € Xund 0 < ¢ < 1.
Die Menge der Aquivalenzklassen (X x [0, 1]) /a wird mit der Quotienten-Topologie
versehen. Anschaulich werden gegeniiberliegende Seiten des “Rechtecks” X x [0, 1]
so verklebt, wie es der Homomorphismus a angibt, vgl. Abb. 23.1.

1

X
Abbildung 23.1: Selbstverkleben von X x [0,1]
Beispiele (a) (Zylinder) Wir betrachten X = [-1,1] und a(z) = x. Wir ver-

kleben also ein Paar sich gegeniiberliegender Seiten. Genauer betrachten wir die
Aquivalenzrelation ~ mit den Klassen

{(z,0), (z,1) |z € [-1,1]} und {(z,t) |z € [-1,1],¢t € (0,1)}.
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Dieser Quotientenraum wird schematisch wie in Abb. 23.2 dargestellt. Der entspre-

1

bé 0

Abbildung 23.2: Die mit Pfeilen markierten Seiten werden verklebt.

chende Quotientenraum (X x [0, 1])/a ist homdomorph zu einem Rotationszylinder
(Ubungsaufgabe!).

(b) (Torus) Wir betrachten das Einheitsquadrat @ = [0,1]?. Wir verkleben ge-
geniiberliegende Rander dieses Quadrats, vgl. Abb. 23.3, d.h. wir verkleben zuerst

> 1

0o 10

Abbildung 23.3: Selbstverkleben des Einheitsquadrats zum Torus

etwa die obere und untere Kante (der Zylinder entsteht), und danach die vertikalen
Kanten, die jetzt Kreise sind. Ubung: Man zeige, dass Rotationstorus und das wie
oben verklebte Einheitsquadrat homdomorph sind.

(c¢) (Mé6biusband) Das Mobiusband entsteht, indem man ein Rechteck wie in
Abb. 23.4 verklebt. Die Pfeile in entgegengesetzter Richtung deuten dabei an, dass

< 1

3{, 0

Abbildung 23.4: Moébiusband

die Seiten so zu identifizieren sind, dass beim Verkleben die Pfeile wieder in die
gleiche Richtung zeigen. Formal haben wir X =[-1,1] und a(z) = —z.

(d) Klein’sche Flasche. Die Klein’sche Flasche entsteht aus einem Rechteck
durch Verkleben wie in Abbildung 23.5.
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Abbildung 23.5: Die Klein’sche Flasche

Es seien X und Y topologische Raume, Xy C X ein Teilraum und ¢ : X = Y
eine stetige Abbildung. Es bezeichene Y U, X den Quotientenraum X +Y/ ~ nach
der von 2 ~ ¢(x) fiir alle z € X erzeugten Aquivalenzrelation auf der topologischen
Summe X 4+ Y. Man sagt dann, ¥ U, X entstehe durch Anheften von X an YV
mittels der Anheftungsabbildung ¢ (oder auch: Y U, X entsteht aus X + Y durch
Indentifizieren der Punkte z € X mit ihren Bildpunkten p(z) € Y).

Beispiele (a) Verkleben von 2 Henkeln. Wir betrachten zun#chst einen Torus
und stanzen eine offene Kreisscheibe aus. Wir erhalten einen topologischen Raum,
der als Henkel bezeichnet wird. Haben wir nun zwei Kopien solcher Henkel, so ver-

Abbildung 23.6: Verkleben von zwei Henkeln

kleben wir entprechende Punkte der Randkreise (es ist also ¢ = id). Das Ergebnis
ist der in Abb. 23.6 dargestellte Raum.

(b) Sphire mit Henkel. Stanzt man aus einer Sphire eine offene Kreisscheibe
aus, so kann man lings des Randkreises einen Henkel anheften, vgl. Abb. 23.7.
Eine Sphire mit einem Henkel ist homdomorph zu einem Torus. Diesen Prozess
kann man wiederholen und so mehrere Henkel an eine Sphére anheften.

(c) Die projektive Ebene. Wir betrachten nochmals die projektive Ebene P2.
Wir wollen hier skizzieren, wie man P? erhélt, wenn man ein Mobiusband und eine
abgeschlossene Kreisscheibe auf bestimmte Art miteinander verklebt. Es sei S die
obere abgeschlossene Hemisphire von S$2. Man erhilt daraus P? als topologischen
Raum, wenn man gegeniiberliegende Punkte auf der Einheitskreislinie (Aquator)
verklebt. Dieser Quotientenraum ist aber hom6omorph zu einer abgeschlossenen
Einheitskreisscheibe, auf der gegeniiberliegende Randpunkte verklebt werden. Man
muss dazu die obere Hemisphiire lediglich “flachdriicken”. Wir wollen diesen Fak-
torraum (vgl. Abb. 23.8 links) auf eine andere Art konstruieren. Wir betrachten die
Einheitskreisscheibe D und zerschneiden/verkleben diese wie in Abb. 23.8 rechts.
Die beiden Riume in Abb. 23.8 sind dann homdomorph. Wir deformieren nun die
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Abbildung 23.7: Sphéire mit Henkel

/b\
é% <m AL
N~

Abbildung 23.8: Verkleben der projektiven Ebene I

>

DOT DL

<

Y

Abbildung 23.9: Verkleben der projektiven Ebene II

dusseren Teile der zerschnittenen Kreisscheibe wie in Abb. 23.9 links. Dann ver-
kleben wir zuerst das Rechteck zum Mobiusband und die beiden tibrigen Teile zu
einer Kreisscheibe. SchlieBlich erhalten wir P2, indem wir die Kreisscheibe an das
Mobiusband anheften.

(d) Die Klein’sche Flasche. Die Klein’sche Flasche entsteht durch Verkleben
von zwei Mobiusbéndern (vgl. K. Janich, Topologie, S.60).

23.2 Der Klassifikationssatz

Unter einer 2-Mannigfaltigkeit verstehen wir hier eine 2-dimensionale, zusammenhin-
gende topologische Mannigfaltigkeit. Die kompakten 2-Mannigfaltigkeiten kann man
vollstandig auflisten. Einen Beweis des folgenden Satzes findet man z.B. im Buch
von Ossa, Kap. 3.8.
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Satz 3 (Klassifikationssatz). Es sei M eine kompakte 2-Mannigfaltigkeit. Dann
gilt
(a) Ist M orientierbar, so gibt es ein g € NU {0}, so dass M homdomorph
zu einer 2-Sphdre mit g Henkeln ist.
(b) Ist M nicht orientierbar, so gibt es ein g € N, so dass M homdomorph
zu einer 2-Sphdre mit g > 1 aufgesetzten Mobiusbindern ist.
Die Zahl g heifst Geschlecht von M. Zwei kompakte 2-Mannigfaltigkeiten sind genau
dann homdomorph, wenn sie vom gleichen Geschlecht und beide orientierbar (bzw.
nicht orientierbar) sind.

Beispiele (a) Die Sphiire S? ist orientierbar und hat Geschlecht g = 0. Der Torus
ist ebenfalls orientierbar und hat Geschlecht g = 1.

(b) Die projektive Ebene ist nicht orientierbar und vom Geschlecht g = 1. Die
Klein’sche Flasche ist nicht orientierbar und vom Geschlecht g = 2.

24  Satz von Gauf3-Bonnet (Globale Version)

24.1 Triangulierungen

Wir bendtigen hier einige Begriffe und Sétze aus der algebraischen Topologie, die
wir ohne Beweise angeben. Sei A das Standard 2-Simplex, also A := {(z1,%2,23) €
R|zi+a22+23=1 und 0<m; <1,i=1,23}.

Definition 6. Es sei M eine kompakte, orientierbare 2-Mannigfaltigkeit. Eine Tri-
angulierung von M ist eine endliche Familie

op: Ao op(A)CM (k=1,...,n)

von orientierungserhaltenden Diffeomorphismen oy, (d.h. o, hat positive Funktio-
naldeterminante), fir die gilt:
(a) Die Simplices (oder Dreiecke) oy (A) bilden eine Uberdeckung von M,

(b) Ist ox(A) Noj(A) # 0, dann haben or(A) und o0;(A) entweder genau
eine Kante oder genau eine Ecke gemeinsam.

Satz 4. Jede kompakte, orientierbare 2-Manngifaltigkeit M mit gegebenem Atlas
A besitzt eine Triangulierung o : A = M (k=1,...,n), so dass jedes simplex
or(A) ganz im Definitionsbereich einer Karte von A enthalten ist.

Einen Beweis dieses Satzes findet man z.B. in J. Munkres, Elemenatry differen-
tial topology, Princeton, 1966.
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Definition 7. Die Euler-Poincaré Charakteristik einer Triangulierung T von M
ist definiert als

x(M,T) := #Ecken — #Kanten + #Flichen,
(dabei steht # fiir “Anzahl”).

Satz 5. Die Fuler-Poincaré Charakteristik einer kompakten, orientierbaren 2-Man-
nigfaltigkeit M ist unabhingig von der Triangulierung T, und es gilt

wobei g das Geschlecht von M ist.
Aus Satz 3 und Satz 5 folgt

Korollar 1. Die Euler Charakteristik x(M) ist eine topologische Invariante und
zwei kompakte, orientierbare 2-Mannigfaltigkeiten M; und Ms sind genau dann
homdomorph, wenn x(My) = x(Mz) gilt. O

Beispiele (a) Wir betrachten die Sphére S2. Der Sphire sei ein Tetraeder einbe-
schrieben, vgl. Abb. 24.1. Man “projiziert” die Seiten dieses Tetraeders auf S2 und

Abbildung 24.1: Triangulierungen von S? und 72

erhilt dadurch eine Triangulierung. Es ergibt sich damit x(S?) =4 — 6+ 4 = 2.

(b) Es sei T? der Torus. Durch die wie in Abb. 24.1 angedeutete Triangulierung
des Rechtecks erhélt man eine Triangulierung von T2. Es gilt also x(7?) = 9—27+
18 = 0. Entfernt man aus dieser Triangulierung eine Fliche, so erhilt man eine
Triangulierung eines Henkels. Die Euler-Poincaré Charakterisktik eines Henkels ist
also x(7T?%) — 1= —1.

24.2 Der Satz von Gaufl-Bonnet
Wir kénnen nun eine globale Version des Satzes von Gauf-Bonnet formulieren.

Satz 6 (Gauf-Bonnet, globale Version). Es sei M C R® eine kompakte, ori-
entierbare 2-Mannigfaltigkeit. Dann gilt

//M K dA = 2rx(M).
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Bemerkungen (a) Der Satz gilt allgemeiner fiir jede kompakte, orientierbare 2-
Mannigfaltigkeit M mit einer Riemannschen Metrik (M braucht also nicht unbe-
dingt als Teilmenge von R® gegeben zu sein). Dazu muss man aber alle Begriffe wie
Kriimmung, Parallelverschiebung, Flacheninhalt usw. zuerst entsprechen verallge-
meinern (vgl. dazu die Vorlesung “Riemannschen Geometrie”).

(b) Ist M eine kompakte, orientierbare 2-Mannigfaltigkeit, die homdomorph zu S?

ist, so gilt stets
// KdA = 4n.
M

(c) Ist M eine kompakte, orientierbare 2-Mannigfatigkeit mit K > 0, so ist M
homsomorph zu S2. Aus dem Satz von Gauf-Bonnet und Satz 5 folgt namlich

1
2—Zgzx(M)=%//MKdA>O,

also g = 0. Nach dem Klassifikationssatz ist dann M hom&omorph zu S2.

Beweisskizze zu Satz 6: Wir wihlen eine Triangulierung o; : A — M,(j =
1,...,f) von M, so dass jedes Dreieck o;(A) ganz in einem Parallelkoordinaten-
Gebiet liegt. Wir orientieren die Dreiecke so, dass ihre Orientierung mit derjenigen
der Mannigfaltigkeit M iibereinstimmt. Es bezeichne e die Anzahl der Ecken, k die
Anzahl der Kanten und f die Anzahl der Fliichen dieser Triangulierung. Nach dem
lokalen Satz von Gaufl-Bonnet gilt fiir j =1,..., f

3
KdA:—/ kg dt + agj)—w.
/ /ajm) B(os(A) 2

i=1

Wir summieren nun iiber alle j und erhalten

f f
KdA = // KdA=- / Kgdt +e2m — fm.
//M J; oj (A) J:z1 a(fi(A))

Jede Kante erscheint in dieser Summe 2 mal, aber gegenldufig orientiert (so dass
sich das Vorzeichen der geoditischen Kriimmung jeweils umkehrt, vgl. Definition
10 in 20.3). Damit ergibt sich

K dA = e2n — fr.
/.

Jede Dreiecksfliche hat 3 Kanten und jede Kante berandet genau 2 Flichen, also
ist 3f = 2k. Somit folgt schliefllich

// KdA=27re—f7r=27r(e—gf+f)=27T(e—k+f)=27rx(M).
M
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Anhang

A Einige Grundbegriffe der Topologie

Ein topologischer Raum ist ein Paar (X,7T) bestehend aus einer Menge X und
einem System 7 von Teilmengen von X, so dass gilt:

(1) X und 0 sind in T,

(2) der Durchschnitt von endlich vielen und die Vereinigung von beliebig vielen
Mengen aus 7 ist wieder in T.

Das Teilmengensystem 7 nennt man eine Topologie von X . Die Elemente von
T heiflen offene Teilmengen von X. Eine Menge A C X ist abgeschlossen in
X genau dann, wenn ihr Komplement offen ist.

Eine Basts von T ist eine Teilmenge B C T, so dass fiir jede offene Menge
VeTglt V=L, Vimit V; € B.

Ubung: R" und C" haben eine abzihlbare Basis.

Sei £ € X. Eine Teilmenge U C X heifit Umgebung von © € X, wenn es
eine offene Menge V gibt mit x € V C U. Ein topologischer Raum erfiillt das
Hausdorffsche Trennungsazxiom oder ist hausdorffsch, wenn zu je zwei ver-
schiedenen Punkten disjunkte, offene Umgebungen existieren.

Eine Teilmenge Y C X eines topologischen Raumes ist selbst wieder ein topolo-
gischer Raum versehen mit der Teilraum- Topologie: Eine Menge U C Y ist offen
genau dann, wenn es eine offene Menge V' von X gibt mit VNY =U.

Ubung: Sei X hausdorffsch mit abzihlbarer Basis. Dann ist jeder Teilraum
Y C X auch hausdorffsch mit abzéhlbarer Basis.

Die topologische Summe von zwei topologischen Ridumen X und Y ist die
disjunkte Vereinigung X + Y versehen mit der Topologie
{U+V |Uoffenin X,V offenin Y}.

Eine Abbildung zwischen topologischen Riumen, f : X — Y, heif3t stetig,
falls die Urbilder von offenen Mengen in Y offen sind in X. Die Abbildung f :
X — Y heifit offen, falls Bilder von offenen Mengen in X offen sind in Y. Eine
bijektive Abbildung f : X — Y, fiir die sowohl f als auch ihre Umkehrabbildung
f~1:Y — X stetig sind, heiit Homdomorphismus.

Ein metrischer Raum ist ein Paar (X, d), bestehend aus einer Menge X und
einer Abbildung d: X x X — R, so dass fiir alle z,y, 2z € X gilt:

(1) d(z,y) >0 und d(z,y) =0<=z=y.

(2) d(z,y) = d(y, ),
(3) d(=, 2) < d(z,y) + d(y, 2)-

Ein metrischer Raum (X,d) ist auch ein topologischer Raum. Die Topologie
wird wie folgt konstruiert: eine Menge O C X ist offen, falls fiir alle p € O ein
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e = e(p) > 0 existiert, so dass der Ball um p mit Radius € ganz in O enthalten ist:
Be(p) :=={q € X [ d(p,q) <&} CO.

_ Eine Teilmenge Y C X eines topologischen Raumes heifit kompakt, wenn jede
Uberdeckung von Y durch offene Mengen eine endliche Teiliiberdeckung enthalt: If
Y = U;¢; Ui, then there are i1, ... ,i, € I such that Y = {J;_, Us,.

Ein topologischer Raum X heifit zusammenhdngend, wenn er sich nicht in
zwei nichtleere, disjunkte, offene Teilmengen zerlegen lisst (oder, fiquivalent, wenn
X und @ die einzigen zugleich offenen und abgeschlossenen Teilmengen sind).

Ubung: Stetige Bilder von kompakten Mengen sind kompakt. Stetige Bilder
von zusammenhdngenden Mengen sind zusammenhé&ngend.

Seien X und Y topologische Rdume. Eine Teilmenge W C X x Y heifit offen
in der Produkt-Topologie, wenn es zu jedem Punkt (z,y) € W Umgebungen U
von z in X und V von y in Y gibt, so dass U x V C W.

Sei X ein topologischer Raum und ~ eine Aquivalenzrelation auf X. Wir be-
zeichnen mit [z] := {y € X| y ~ z} die Aquivalenzklasse von x. Weiter bezeichne
X/ ~ die Menge der Aquivalenzklassen und 7: X — X/ ~; x — [z] die natiirli-
che Projektion. Die Quotienten- Topologie auf X/ ~ ist so definiert: U C X/ ~
ist offen genau dann, wenn 7~1(U) offen ist in X (7 ist dann stetig).

Satz von der Gebietstreue: Ist U C R™ offen und f : U — R™ eine injektive
und stetige Abbildung, so ist f(U) C R® auch offen.

Einen Beweis dieses Satzes findet man z.B. im Buch von Alexandroff und Hopf,
Kap. X.2., oder im Buch von Ossa, Kap. 5.6.

Korollar Fiir m # n ist R™ nicht homdéomorph zu R™.

Beweis-Skizze. Ist etwa m < n so ist (z,...,2™) — (z',...,2™,0,...,0) eine

injektive, stetige Abbildung von R™ auf eine nicht offene Teilmenge von R". Wire
nun R” homoomorph zu R™, so ergibt sich ein Widerspruch zum Satz von der
Gebietstreue. O
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B Fragen zur Lernkontrolle

1. Kurven: Was ist eine parametrisierte Kurve? Wie ist ein Tangentialvektor an
eine Kurve definiert? Beispiel? Gegenbeispiel? Was heifit und wozu braucht man
den Begriff “reguléir” im Zusammenhang mit Kurven? Wieso ist die Linge einer
Kurve ein geometrischer Begriff? Was charakterisiert die Bogenlénge als Parame-
ter? Welche Kurven kann man immer mit Bogenldnge parametrisieren? Welche
ebenen Kurven haben konstante Krimmung? Wie lauten die Ableitungsgleichun-
gen von Frenet fiir ebene Kurven bzw. fiir Raumkurven? Was besagt der Hauptsatz
der (lokalen) Kurventheorie fiir Raumkurven? Was ist die zentrale Idee des Bewei-
ses? Wieviel Differenzierbarkeit muss man voraussetzen? Was versteht man unter
Hauptnormale, Binormale und Schmiegebene? Wie ist die Torsion definiert? Gibt
es Raumkurven mit konstanter Kriimmung und beliebig vorgegebener Torsion? Bei-
spiel einer Kurve mit Kriimmung 4 und Torsion 10?7 Was besagt der Umlaufsatz
von Hopf?

2. Fliichen: Was ist eine regulire Fliche(=rF) in R®*? Was versteht man unter
einer lokalen Parametrisierung einer rF? Wie sind Tangentialebenen und Tangenti-
alvektoren von rF definiert? Wann ist die Niveaumenge f~!(a) einer Funktion eine
rF? Beweis? Was ist die erste Fundamentalform einer rF? Wie verhlt sich die erste
Fundamentalform unter Koordinatentransformationen?

3. Kriimmung: Was versteht man unter der Gauf}- bzw. der Weingarten-
Abbildung? Beispiele? Was fiir eine wichtige (linear-algebraische) Eigenschaft hat
die Weingarten-Abbildung? Wie ist die 2. Fundamentalform definiert und wie kann
man sie geometrisch interpretieren? Definition der GauB-Kriimmung und der mitt-
leren Kriimmung? Was ist der Zusammenhang dieser Groéflen mit der Normal-
kriimmung und den Hauptkrimmungen? Wie lauten die Formeln fiir H und K?
Wie nennt man rF mit H = 0 und was ist die geometrische Interpretation davon?

4. Innere Geometrie: Was ist eine Isometrie (lokal, global) von rF? Bei-
spiele? Gegenbeispiele? Wie berechnet man den Flicheninhalt einer rF? Was sind
Christoffel-Symbole? Was besagt das “theorema egregium”? Wie ist die kovariante
Ableitung eines Vektorfeldes auf einer rF in eine gegebene Richtung definiert? Bei-
spiele fiir Groflen der inneren Geometrie? Ist die kovariante Ableitung eine solche
Grofle? Wie findet man die Formel dafiir? Was ist die kovariante Ableitung in der
euklidischen Ebene R?? Was ist eine Geodétische? Weitere Charakterisierungen
von Geos? Wie lauten die Differentialgleichungen fiir Geodétische und wie leitet
man sie her? Was besagt der Satz iiber die lokale Existenz und Eindeutigkeit von
Geoditischen? Beispiele von Geos auf Rotationsfliichen? Wie lautet der Satz von
Clairaut? Was ist der Zusammenhang zwischen Geodiitischen und kiirzesten Verbin-
dungskurven auf rF? Beweisidee? Was sind geoditische Parallelkoordinaten? Was
sind Fermi-Koordinaten? Wie sieht die 1. Fundamentalform in solchen Koordinaten
aus? Wie lautet die Formel fiir die GauB-Kriimmung in geodétischen Parallelkoor-
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dinaten? Was ist ein paralleles Vektorfeld? Wie ist die Parallelverschiebung lings
einer Kurve definiert und was hat sie fiir eine wichtige Figenschaft? Was versteht
man unter der geoditischen Kriimmung einer Flichenkurve? Besteht ein Zusam-
menhang zwischen der geodétischen Kriimmung und der Parallelverschiebung? Was
hat die geodétische Kriimmung mit Geodétischen zu tun?

5. Satz von Gauf3-Bonnet: Was versteht man unter der Orientierung ei-
ner rF bzw. allgemeiner einer 2-Mannigfaltigkeit? Was ist eine differenzierbare 2-
Mannigfaltigkeit? Was versteht man unter dem Geschlecht und der Euler-Charakte-
ristik einer kompakten, orientierbaren 2-Mannigfaltigkeit? Klassifikationssatz? Wie
lautet die lokale und wie die globale Version des Satzes von Gauf3-Bonnet und was
sind die Beweisideen? Anwendungen (z.B. auf geodiitische Dreiecke in Flichen mit
konstanter Gau3-Kriimmung)?
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C Historische Anmerkungen

Kurven und Flichen im dreidimensionalen euklidischen Raum gehotren zu den klas-
sischen Gegenstinden der Geometrie. Die Methoden der analytischen Geometrie
und der Differentialrechnung wurden seit ihrer Erfindung systematisch auch zur
Untersuchung von Kurven und Fléichen eingesetzt (u.a. im 18. Jahrhundert von
L. Euler). Erst um 1827 jedoch hat Carl-Friedrich Gaufl (1777-1855) die Diffe-
rentialgeometrie grundlegend verdndert und durch seine Entdeckungen den Weg
zum abstrakten und fundamentalen Konzept einer differenzierbaren Mannigfaltig-
keit aufgezeigt. In seinem berithmten “theorema egregium” hat Gaufl nachgewiesen,
dass es ein Ma#8 fiir die Kriimmung einer Fliche gibt (heute als Gauf3-Kriimmung
bezeichnet), das nur von der Moglichkeit einer Lingenmessung von Kurven auf der
Fliche abhiingig ist (1. Fundamentalform). Durch diese Entdeckung einer “intrin-
sischen” oder “inneren” Geometrie (also unabhingig von der Gestalt der Fliche im
umgebenden Raum) wurde das abstrakte Konzept einer 2-Mannigfaltigkeit denk-
bar, auf der eine beliebige Langenmessung vorgegeben ist.

Weiter gefordert wurden solche Vorstellungen durch die Entdeckung von nicht-
euklidischen Geometrien durch Janos Bolyai (1802-1860) und unabhingig von Ni-
kolai Iwanowitsch Lobachefskij (1793-1856) um 1830. In einer nicht-euklidischen
(d.h. elliptischen oder hyperbolischen) Geometrie gelten alle “Postulate” von Eu-
klid ausser dem Parallelenaxiom. Letzteres besagt, dass es durch einen Punkt p,
welcher nicht auf einer Geraden L liegt, genau eine zu L parallele Gerade gibt. Die
Moglichkeit von widerspruchsfreien Geometrien, in denen das Parallelenaxiom nicht
gilt, war auch Gaufl bekannt. Er hat seine Einsichten jedoch nicht verdffentlicht
(wohl um Konflikte philosophischer Art zu vermeiden).

Der entscheidende Paradigmenwechsel gelang schliellich Berhard Riemann (1826-
1866). In seinem Habilitationsvortrag in Géttingen im Jahre 1854 fiihrte er den Be-
griff einer “Mannigfaltigkeit” ein als einer “mehrfach ausgedehnten Grofie”, die lokal
so “aussieht” wie R™. Er machte klar, wie in einem solchen Raum viele verschiedene
Lingenmessungen definiert werden konnen (heute sogenannte Riemannsche Metri-
ken). Damit hat er insbesondere topologische (d.h. nur von der gegebenen Man-
nigfaltigkeit abhingige) und metrische (d.h. durch die gew#hlte Lingenmessung
bestimmte) Eigenschaften klar unterschieden. Weiter zeigte er, dass sich sowohl die
euklidische Geometrie als auch die nicht-euklidischen Geometrien als Spezialfille
von Riemannschen Geometrien auffassen lassen.

In der zweiten Hilte des 19. Jahrhunderts haben zahlreiche weitere wichtige
Entwicklungen stattgefunden. Vom Standpunkt der modernen Differentialgeometrie
und der Theorie der Mannigfaltigkeiten aus gesehen besonders bedeutend ist das
monumentale Werk von Henri Poincaré (1854-1912). Verschiedene Konzepte, die er
einfiihrte und Fragen, die er stellte, waren richtungsweisend fiir die Weiterentwick-
lung dieses Gebietes im 20. Jahrhundert. So benutzte er z.B. (Homotopie-)Gruppen,
um topologische Invarianten von Mannigfaltigkeiten zu bestimmen und unterstrich
die Bedeutung von Mannigfaltigkeiten im Studium von dynamischen Systemen.
Die beriihmte Poincaré-Vermutung besagt, dass eine geschlossene, einfach zusam-
menhingende 3-dimensionale Mannigfaltigkeit hom&omorph zu einer 3-Sphire ist.
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Fiir die Losung dieses Problems wurde im Jahr 2000 ein Preisgeld von einer Million
Dollar ausgesetzt (vgl. www.claymath.org/millennium). Momentan (Februar 2004)
diskutieren Experten gerade iiber die Vollsténdigkeit eines schwierigen, von Grisha
Perelman vorgelegten “Beweises” .

Von besonderer Bedeutung fiir die weitere Entwicklung des Mannigfaltigkeitsbe-
griffs und die Mathematik des 20. Jahrhunderts insgesamt war die Entstehung der
Theorie der Lie-Gruppen (das sind Gruppen, die gleichzeitig auch Mannigfaltigkei-
ten sind). Nach deren Einfiihrung durch Sophus Lie (1842-1899) gegen Ende des 19.
Jahrhunderts haben vor allem Elie Cartan (1869-1951) und Hermann Weyl (1885-
1955) wichtige Beitrige geleistet. Lie-Gruppen bilden heute einen zentralen Gegen-
stand mathematischer Forschung. Schon in seinem Erlanger Programm von 1878
hatte Felix Klein (1849-1925) den engen Zusammenhang zwischen Gruppentheorie
und Geometrie betont (via Symmetrien). Alle diese Beitrige fithrten zusammen mit
dem Entstehen der Topologie zu einer zunehmenden Klirung der Begriffe, so dass
die Theorie der Mannigfaltigkeiten heute hochentwickelt und fiir weite Bereiche der
Mathematik und der Physik fundamental ist (z.B. Differentialgeometrie, Riemann-
sche Geometrie, Relativititstheorie, Quanten(feld)theorie, Analysis, Lie-Gruppen,
algebraische Geometrie).
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handelt Mannigfaltigkeiten. Der 2. Band enthilt (u.a.) historische Teile (z.B. ein
Kapitel “How to read Gauss”). Fiinf Biicher fiir Leser mit viel Zeit (man wird aller-
dings auch belohnt). Das Besondere bei Spivak: es wird viel motiviert (was in der
mathematischen Literatur leider eher selten ist).
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