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1 Lineare Gleichungssyteme

Sei n ≥ 1; mit Rn wird die Menge aller n-Tupel reeller Zahlen bezeichnet. Ein
Element von Rn hat also die Form (x1, . . . , xn) mit x1, . . . , xn Elementen aus R.
Ist x = (x1, . . . , xn) ∈ Rn und 1 ≤ k ≤ n, so heißt xk die k-te Komponente von
x. Das Element (0, . . . , 0) ∈ Rn wird mit 0 bezeichnet.

Eine Addition auf Rn wird erklärt durch

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn)

und eine Multiplikation eines Elements von Rn mit einer reellen Zahl durch

x (y1, y2, . . . , yn) = (xy1, xy2, . . . , xyn) .

Sei v ∈ Rn; für jedes x ∈ R heißt dann xv ein Vielfaches von v.

Seien m, n ∈ N; eine m× n reelle Matrix ist eine Anordnung von mn Elementen
von R nach folgendem Schema











a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn











Die Menge der m× n reellen Matrizen wird mit M(m× n,R) bezeichnet. Sei

A =







a11 · · · a1n
...

...
am1 · · · amn






∈ M(m× n,R)

eine m× n reelle Matrix; dann schreibt man auch A = (aij)1≤i≤m, 1≤j≤n oder nur
A = (aij). Seien 1 ≤ i ≤ m, 1 ≤ j ≤ n; der waagerecht geschriebene n-Tupel
(ai1, . . . , ain) wird die i-te Zeile von A und der senkrecht geschriebene m-Tupel







a1j
...
amj







die j-te Spalte von A genannt. Die Zeilen von A werden als Elemente von Rn und
die Spalten von A als Elemente von Rm betrachtet. Das Element







0 · · · 0
...

...
0 · · · 0






∈ M(m× n,R)
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wird mit 0 bezeichnet.

Seien m, n ≥ 1 und A = (aij) ∈ M(m× n,R), b = (b1, . . . , bm) ∈ Rm; dann heißt

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

das zu A und b gehörige lineare Gleichungssystem.

Ein Element (y1, . . . , yn) ∈ Rn heißt Lösung des zu A und b gehörigen linearen
Gleichungssystems, wenn y1, . . . , yn die m Gleichungen erfüllen, d.h., wenn

a11y1 + a12y2 + · · ·+ a1nyn = b1

a21y1 + a22y2 + · · ·+ a2nyn = b2
...

am1y1 + am2y2 + · · ·+ amnyn = bm

Die Menge aller Lösungen des Systems wird mit Lös(A, b) bezeichnet.

Das Gleichungssystem heißt lösbar, wenn Lös(A, b) mindestens ein Element von
Rn enthält. Es heißt eindeutig lösbar, wenn Lös(A, b) aus genau einem Element
von Rn besteht.

Das zu A und b gehörige lineare Gleichungssystem heißt homogen, wenn b = 0,
d.h., wenn bj = 0 für jedes j = 1, . . . , m. Ein homogenes Gleichungssystem
besitzt stets die triviale Lösung 0 = (0, . . . , 0). (Insbesondere ist ein homogenes
Gleichungssystem stets lösbar.)

Eine Teilmenge U von Rn heißt Untervektorraum von Rn, wenn gilt:

(U0) 0 ∈ U ,

(U1) u+ v ∈ U für alle u, v ∈ U ,

(U2) xu ∈ U für alle x ∈ R, u ∈ U .

Satz 1.1 Sei A = (aij) ∈ M(m× n,R); dann ist Lös(A, 0) ein Untervektorraum
von Rn. (Die Lösungsmenge eines homogenen linearen Gleichungssytems für n
Unbekannte ist ein Untervektorraum von Rn.)

Beweis (U0): Es wurde schon erwähnt, dass 0 = (0, . . . , 0) ∈ Lös(A, 0).

(U1): Seien u = (x1, . . . , xn), v = (y1, . . . , yn) ∈ Lös(A, 0); d.h.,

ai1x1 + ai2x2 + · · ·+ ainxn = 0 und ai1y1 + ai2y2 + · · ·+ ainyn = 0
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für jedes i = 1, . . . , m. Dann gilt

ai1(x1 + y1) + ai2(x2 + y2) + · · ·+ ain(xn + yn)

= ai1x1 + ai2x2 + · · ·+ ainxn + ai1y1 + ai2y2 + · · ·+ ainyn

= 0 + 0 = 0

für jedes i = 1, . . . , m und damit ist u+ v ∈ Lös(A, 0).

(U2): Seien u = (x1, . . . , xn) ∈ Lös(A, 0), x ∈ R; dann gilt

ai1(xx1) + ai2(xx2) + · · ·+ ain(xxn) = x(ai1x1 + ai2x2 + · · ·+ ainxn) = x0 = 0

für jedes i = 1, . . . , m; folglich ist auch xu ∈ Lös(A, 0).

Satz 1.2 Seien A ∈ M(m × n,R), b ∈ Rm, v ∈ Lös(A, b) und v′ ∈ Rn. Dann
gilt v′ ∈ Lös(A, b) genau, wenn v′ = v + u für ein u ∈ Lös(A, 0). (Man erhält
also alle Lösungen des zu A und b gehörigen Gleichungssystems, indem man zu
einer speziellen Lösung dieses Systems alle Lösungen des zu A und 0 gehörigen
Gleichungssystems addiert.)

Beweis Seien A = (aij), b = (b1, . . . , bm) und v = (y1, . . . , yn) ∈ Lös(A, b). Sei
u = (x1, . . . , xn) ∈ Lös(A, 0), d.h.,

ai1y1 + ai2y2 + · · ·+ ainyn = bi und ai1x1 + ai2x2 + · · ·+ ainxn = 0

für jedes i = 1, . . . , m. Dann gilt

ai1(y1 + x1) + ai2(y2 + x2) + · · ·+ ain(yn + xn)

= ai1y1 + ai2y2 + · · ·+ ainyn + ai1x1 + ai2x2 + · · ·+ ainxn

= bi + 0 = bi

für jedes i = 1, . . . , m und damit ist v + u ∈ Lös(A, b).

Seien nun v = (y1, . . . , yn), v
′ = (y′1, . . . , y

′
n) ∈ Lös(A, b), und sei u = (x1, . . . , xn),

wobei xi = y′i − yi für i = 1, . . . , m. Dann ist v′ = v + u und

ai1x1 + ai2x2 + · · ·+ ainx2

= ai1(y
′
1 − y1) + ai2(y

′
2 − y2) + · · ·+ ain(y

′
n − yn)

= ai1y
′
1 + ai2y

′
2 + · · ·+ ainy

′
n − (ai1y1 + ai2y2 + · · ·+ ainyn)

= bi − bi = 0

für jedes i = 1, . . . , m; folglich ist u ∈ Lös(A, 0).
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Unter elementaren Zeilenumformungen einer Matrix versteht man die folgenden
Operationen:

I Addition eines Vielfachen einer Zeile zu einer anderen Zeile.

II Vertauschen zweier Zeilen.

Lemma 1.1 Wird eine Matrix A durch eine elementare Zeilenumformung zu
einer Matrix A′ verändert, so gilt A′ = 0 genau dann, wenn A = 0.

Beweis Übung.

Seien m, n ≥ 1 und A = (aij) ∈ M(m× n,R), b = (b1, . . . , bm) ∈ Rm; dann wird
die m× (n + 1) reelle Matrix











a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

...
am1 am2 · · · amn bm











mit (A, b) bezeichnet.

Satz 1.3 Wird (A, b) durch eine elementare Zeilenumformung zu einer Matrix
(A′, b′) verändert, so gilt Lös(A, b) = Lös(A′, b′).

Beweis Entsteht (A′, b′) aus (A, b) durch Vertauschen zweier Zeilen, so ist es klar,
dass Lös(A, b) = Lös(A′, b′). Nehme also an, dass (A′, b′) aus (A, b) durch eine
Zeilenumformung vom Typ I entsteht. Genauer wird angenommen, dass (A′, b′)
durch Addition des x-fachen der p-ten Zeile zu der q-ten Zeile von (A, b) entsteht,
(wobei x ∈ R und p 6= q). Seien A′ = (a′ij), b

′ = (b′1, . . . , b
′
m); dann gilt

— a′ij = aij für alle j = 1, . . . , n, i 6= q,

— a′qj = aqj + xapj für alle j = 1, . . . , n,

— b′i = bi für i 6= q,

— b′q = bq + xbp.

Sei y = (y1, . . . , yn) ∈ Lös(A, b); d.h.,

ai1y1 + ai2y2 + · · ·+ ainyn = bi

für jedes i = 1, . . . , m. Dann gilt

a′i1y1 + a′i2y2 + · · ·+ a′inyn = ai1y1 + ai2y2 + · · ·+ ainyn = bi = b′i
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für jedes i 6= q und

a′q1y1 + a′q2y2 + · · ·+ a′qnyn

= (aq1 + xap1)y1 + (aq2 + xaq2)y2 + · · ·+ (aqn + xapn)yn

= aq1y1 + aq2y2 + · · ·+ aqnyn + x(ap1y1 + ap2y2 + · · ·+ apnyn)

= bq + xbp = b′q ,

und damit ist y ∈ Lös(A′, b′). Sei umgekehrt y = (y1, . . . , yn) ∈ Lös(A′, b′); d.h.,

a′i1y1 + a′i2y2 + · · ·+ a′inyn = b′i

für jedes i = 1, . . . , m. Dann gilt

ai1y1 + ai2y2 + · · ·+ ainyn = a′i1y1 + a′i2y2 + · · ·+ a′inyn = b′i = bi

für jedes i 6= q und

aq1y1 + aq2y2 + · · ·+ aqnyn

= (a′q1 − xap1)y1 + (a′q2 − xaq2)y2 + · · ·+ (a′qn − xapn)yn
= a′q1y1 + a′q2y2 + · · ·+ a′qnyn − x(ap1y1 + ap2y2 + · · ·+ apnyn)

= b′q − xbp = bq ;

folglich ist y ∈ Lös(A, b). Dies zeigt also, dass Lös(A, b) = Lös(A′, b′).

Eine Matrix A ∈ M(m × n,R) hat Zeilen-Stufen-Form, wenn für jede Zeile der
Matrix folgende zwei Bedingungen erfüllt sind:

— Sind die ersten p Elemente der Zeile Null für ein p mit p < n, so sind für alle
folgenden Zeilen mindestens die ersten p+ 1 Elemente Null.

— Sind alle Elemente der Zeile Null, so ist jedes Element von jeder der folgenden
Zeilen Null.

(Eine solche Matrix sieht etwa so aus:

































0 0 ∗ · · · · · · · · · · · · ·
0 0 0 0 ∗ · · · · · · · · · · ·
0 0 0 0 0 ∗ · · · · · · · · · ·
0 0 0 0 0 0 ∗ · · · · · · · · ·
0 0 0 0 0 0 0 0 0 ∗ · · · · · ·
0 0 0 0 0 0 0 0 0 0 ∗ · · · · ·
0 0 0 0 0 0 0 0 0 0 0 ∗ · · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
































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Dabei sind die mit einem Stern angedeuteten Elemente verschieden von Null
und die mit einem Punkt angedeuteten Elemente beliebig. Die mit einem Stern
angedeuteten Elemente bezeichnen also, soweit vorhanden, in jeder Zeile das erste
nicht-verschwindende Element.)

Insbesondere hat die Null-Matrix 0 Zeilen-Stufen-Form.

Sei A = (aij) ∈ M(m× n,R) mit A 6= 0 und für i = 1, . . . , m sei

pi =

{

min{1 ≤ j ≤ n : aij 6= 0} falls (ai1, . . . , ain) 6= 0 ,
0 sonst .

Die Matrix A hat also Zeilen-Stufen-Form genau dann, wenn

p1 < p2 < · · · < pr ,

wobei r der Index der letzten von Null verschiedenen Zeile von A ist. Hat A
Zeilen-Stufen-Form, so nennt man p1, . . . , pr die Treppen-Folge von A.

Satz 1.4 Seien A = (aij) ∈ M(m × n,R), b = (b1, . . . , bm) ∈ Rm mit (A, b) 6= 0.
Nehme an, dass (A, b) Zeilen-Stufen-Form hat, und sei p1, . . . , pr die Treppen-
Folge von A. Dann ist das zu A und b gehörige lineare Gleichungssystem lösbar
genau, wenn pr 6= n+ 1. Ferner ist das Gleichungssystem eindeutig lösbar genau
dann, wenn r = n und pj = j für jedes j = 1, . . . , n.

Beweis Übung.

































0 0 ∗ · · · · · · · · · · · · ·
0 0 0 0 ∗ · · · · · · · · · · ·
0 0 0 0 0 ∗ · · · · · · · · · ·
0 0 0 0 0 0 ∗ · · · · · · · · ·
0 0 0 0 0 0 0 0 0 ∗ · · · · · ·
0 0 0 0 0 0 0 0 0 0 ∗ · · · · ·
0 0 0 0 0 0 0 0 0 0 0 ∗ · · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

































nicht lösbar
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































0 0 ∗ · · · · · · · · · · · · ·
0 0 0 0 ∗ · · · · · · · · · · ·
0 0 0 0 0 ∗ · · · · · · · · · ·
0 0 0 0 0 0 ∗ · · · · · · · · ·
0 0 0 0 0 0 0 0 0 ∗ · · · · · ·
0 0 0 0 0 0 0 0 0 0 ∗ · · · · ·
0 0 0 0 0 0 0 0 0 0 0 ∗ · · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

































lösbar

































∗ · · · · · · · ·
0 ∗ · · · · · · ·
0 0 ∗ · · · · · ·
0 0 0 ∗ · · · · ·
0 0 0 0 ∗ · · · ·
0 0 0 0 0 ∗ · · ·
0 0 0 0 0 0 ∗ · ·
0 0 0 0 0 0 0 ∗ ·
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

































eindeutig lösbar

Satz 1.5 Jede Matrix in M(m×n,R) läßt sich durch eine Folge von elementaren
Zeilenumformungen in eine Matrix mit Zeilen-Stufen-Form überführen.

Beweis Der Beweis besteht in der Angabe des Gaußschen Algorithmus, der die
gesuchte Folge von elementaren Zeilenumformungen bestimmt. Der Hauptschritt
dieses Algorithmus wird nun beschrieben.

Sei A = (aij) ∈ M(m × n,R); für jedes j = 1, . . . , n bezeichne mit bj(A) die
m× j reelle Matrix, die aus den ersten j Spalten von A besteht. Sei

q′ =

{

max{j : bj(A) hat Zeilen-Stufen-Form} falls es ein solches j gibt ,
0 sonst ,

und definiere p′ ≥ 0 wie folgt:

— p′ = 0, falls q′ = 0 oder q′ > 0 und bq′(A) = 0,

— p′ sei der Index der letzten von Null verschiedenen Zeile von bq′(A), falls
q′ > 0 und bq′(A) 6= 0.
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Setze p = p′ + 1 und q = q′ + 1. Nehme jetzt an, dass A nicht Zeilen-Stufen-
Form hat. Dann ist q ≤ n; ferner ist p ≤ m und es gibt mindestens ein i mit
p ≤ i ≤ m und aiq 6= 0 (sonst hätte bq(A) Zeilen-Stufen-Form). Der Hauptschritt
des Gaußschen Algorithmus besteht in der Ausführung der folgenden elementaren
Zeilenumformungen:

— Gegebenenfalls die Vertauschung der p-ten und der i-ten Zeilen für ein i mit
p < i ≤ m, um ein von Null verschiedenes Element in die pq-te Stelle der
Matrix zu bringen.

— Für i = p+ 1, . . . , m die Addition des geeigneten Vielfachen der p-ten Zeile
zu der i-ten Zeile, um eine Null in die iq-te Stelle der Matrix zu bringen.

Diese Folge von elementaren Umformungen überführt A in eine Matrix A′ mit
folgenden Eigenschaften:

— Für i = 1, . . . , p′ ist die i-te Zeile von A′ gleich die i-te Zeile von A, d.h.,
a′ij = aij für alle i = 1, . . . , p′, j = 1, . . . , m.

— bq′(A
′) = bq′(A).

— a′pq 6= 0.

— a′iq = 0 für i = p+ 1, . . . , m.

Insbesondere hat dann bp(A
′) Zeilen-Stufen-Form und damit ist die Matrix A′

“näher” an der Zeilen-Stufen-Form als A.

Nach höchstens n-maliger Wiederholung dieses Hauptschrittes wird jede Matrix
in M(m× n,R) in eine Matrix mit Zeilen-Stufen-Form überführt.

Seien m, n ≥ 1 und A = (aij) ∈ M(m× n,R), b = (b1, . . . , bm) ∈ Rm. Es ist klar,
dass Lös(0, 0) = Rn; nehme also an, dass (A, b) 6= 0. Mit Hilfe des Gaußschen
Algorithmus kann die Matrix (A, b) in eine Matrix (A′, b′) mit Zeilen-Stufen-Form
überführt werden und nach Satz 1.3 gilt dann Lös(A, b) = Lös(A′, b′). Ferner gilt
nach Lemma 1.1, dass (A′, b′) 6= 0. Folglich kann Satz 1.4 verwendet werden, um
festzustellen, ob das zu A und b gehörige lineare Gleichungssystem lösbar bzw.
eindeutig lösbar ist.



2 Körper

Ein 5-Tupel (K,+, ·, 0, 1) bestehend aus einer Menge K, einer Verknüpfung

+ : K ×K → K

(λ, µ) 7→ λ+ µ

(genannt Addition), einer Verknüpfung

· : K ×K → K

(λ, µ) 7→ λµ

(genannt Multiplikation) und Elementen 0, 1 ∈ K mit 0 6= 1 heißt Körper, wenn
folgendes gilt:

(K1) (λ+ µ) + ν = λ+ (µ+ ν) für alle λ, µ, ν ∈ K.

(K2) λ+ µ = µ+ λ für alle λ, µ ∈ K.

(K3) 0 + λ = λ für alle λ ∈ K.

(K4) Zu jedem λ ∈ K gibt es ein Element −λ ∈ K mit (−λ) + λ = 0.

(K5) (λµ)ν = λ(µν) für alle λ, µ, ν ∈ K.

(K6) λµ = µλ für alle λ, µ ∈ K.

(K7) Für alle λ ∈ K gilt 1λ = λ.

(K8) Zu jedem λ ∈ K mit λ 6= 0 gibt es ein Element λ−1 ∈ K mit λ−1λ = 1.

(K9) λ(µ+ ν) = λµ+ λν für alle λ, µ, ν ∈ K.

Bemerkung: Nach der üblichen Konvention soll die Addition in K weniger stark
binden als die Multiplikation. (λµ+ λν bedeutet also (λµ) + (λν).)

Die Elemente 0 und 1 heißen das Nullelement oder die Null bzw. das Einselement
oder die Eins.

Lemma 2.1 Sei (K,+, ·, 0, 1) ein Körper.

(1) Das Nullelement 0 ist eindeutig: Ist 0′ ∈ K ein Element mit 0′ + λ = λ für
alle λ ∈ K, so ist 0′ = 0.

(2) Zu jedem λ ∈ K gibt es genau ein Element −λ ∈ K mit (−λ) + λ = 0.

(3) Das Einselement 1 ist eindeutig: Ist 1′ ∈ K ein Element mit 1′λ = λ für alle
λ ∈ K, so ist 1′ = 1.

(4) Zu jedem λ ∈ K mit λ 6= 0 gibt es genau ein Element λ−1 ∈ K mit λ−1λ = 1.

13
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Beweis (1) Sei 0′ ∈ K ein Element mit 0′ + λ = λ für alle λ ∈ K; insbesondere
ist dann 0′ + 0 = 0. Da aber 0 + λ = λ für alle λ ∈ K, ist auch 0 + 0′ = 0′, und
nach (K2) ist 0 + 0′ = 0′ + 0. Damit ist 0′ = 0 + 0′ = 0′ + 0 = 0.

(2) Sei λ ∈ K und sei λ′ ∈ K mit λ′+ λ = 0. Unter Anwendung von (K1), (K2),
(K3) und (K4) folgt dann, dass

λ′
(K3)
= 0 + λ′

(K4)
= ((−λ) + λ) + λ′

(K1)
= (−λ) + (λ+ λ′)

(K2)
= (−λ) + (λ′ + λ) = (−λ) + 0

(K2)
= 0 + (−λ)

(K3)
= −λ .

(3) Sei 1′ ∈ K ein Element mit 1′λ = λ für alle λ ∈ K; insbesondere ist dann
1′ · 1 = 1. Da aber 1λ = λ für alle λ ∈ K, ist auch 1 · 1′ = 1′, und nach (K6) ist
1 · 1′ = 1′ · 1. Damit ist 1′ = 1 · 1′ = 1′ · 1 = 1.

(4) Sei λ ∈ K \ {0} und sei λ′ ∈ K mit λ′λ = 1. Unter Anwendung von (K5),
(K6), (K7) und (K8) folgt dann, dass

λ′
(K7)
= 1λ′

(K8)
= (λ−1λ)λ′

(K5)
= λ−1(λλ′)

(K6)
= λ−1(λ′λ) = λ−11

(K6)
= 1λ−1 (K7)

= λ−1 .

Nach (K3) ist 0 + 0 = 0 und damit ist −0 = 0, da nach Lemma 2.1 (2) −0 das
eindeutige Element µ ∈ K mit µ+0 = 0 ist. Nach (K7) ist 1 ·1 = 1 und damit ist
1−1 = 1, da nach Lemma 2.1 (4) 1−1 das eindeutige Element µ ∈ K mit µ1 = 1
ist.

Wenn aus dem Kontext klar ist, welche Verknüpfungen + und · und Elemente 0
und 1 gemeint sind, dann wird lediglich K statt (K,+, ·, 0, 1) geschrieben.

Ist K ein Körper, so wird eine Verknüpfung

− : K ×K → K

(λ, µ) 7→ λ− µ

(genannt Subtraktion) durch λ− µ = λ+ (−µ) definiert.

Beispiele von Körpern

1. R mit der üblichen Addition und Multiplikation ist ein Körper. Hier ist das
Nullelement 0 und das Einselement 1.

2. Die rationalen Zahlen Q (wieder mit der üblichen Addition und Multiplikation)
bilden auch ein Körper. (Wieder ist das Nullelement 0 und das Einselement 1.)

3. Die komplexen Zahlen Sei C = R2 = {(x, y) : x, y ∈ R}; nun definiere eine
Addition + : C×C→ C durch

(x, y) + (x′, y′) = (x+ x′, y + y′)
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und eine Multiplikation · : C× C→ C durch

(x, y)(x′, y′) = (xx′ − yy′, xy′ + yx′) .

Dann ist (C,+, ·) ein Körper. (0, 0) ist die Null in C und −(x, y) = (−x,−y) für
alle (x, y) ∈ C. Ferner ist das Element (1, 0) die Eins in C. Ist (x, y) ∈ C mit
(x, y) 6= (0, 0), so ist σ = x2 + y2 > 0 und

(x/σ,−y/σ)(x, y) = (x2/σ + y2/σ, xy/σ − yx/σ) = (1, 0) ,

d.h., (x/σ,−y/σ) = (x, y)−1.

In der Praxis wird eine andere Schreibweise für die Elemente von C verwendet:
Da (x, 0) + (x′, 0) = (x+ x′, 0) und (x, 0)(x′, 0) = (xx′, 0) für alle x, x′ ∈ R, kann
zunächst die Teilmenge R × {0} = {(x, 0) : x ∈ R} von C mit dem Körper R

identifiziert werden, indem man x statt (x, 0) schreibt. Auf diese Weise wird R

als Teilmenge von C betrachtet. Das Element (0, 1) in C wird imaginäre Einheit
genannt und wird mit i bezeichnet. Für jedes (x, y) ∈ C gilt nun

(x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x+ iy ,

also kann man x+ iy statt (x, y) schreiben. Mit dieser Schreibweise gilt

(x+ iy) + (x′ + iy′) = (x+ x′) + i(y + y′)

(x+ iy)(x′ + iy′) = (xx′ − yy′) + i(xy + yx′) .

Außerdem ist 0 die Null und 1 die Eins in C. Ferner ist

(0, 1)(0, 1) = (−1, 0) = −(1, 0) ,

d.h., i2 = −1, und daher schreibt man manchmal i =
√
−1.

4. Endliche Körper Seien m, n ∈ Z; dann schreibt man m|n (m teilt n), wenn
es ℓ ∈ Z mit n = ℓm gibt. Sei n ≥ 2, und a, b ∈ Z; man schreibt a = b modn,
wenn n|(a − b). Zu jedem m ∈ Z gibt es ein eindeutiges Element mRestn aus
der Menge {0, . . . , n− 1} mit mRestn = m modn.

Für n ≥ 2 sei Zn = {0, 1, . . . , n − 1}. Eine Addition + : Zn × Zn → Zn wird
definiert durch

ℓ+m = (ℓ+m) Restn

und eine Multiplikation · : Zn × Zn → Zn durch

ℓm = (ℓm) Restn .

Für jedes n ≥ 2 sind (K1), (K2), (K3), (K4), (K5), (K6), (K7) und (K9) erfüllt.

Satz 2.1 Die Bedingung (K8) ist erfüllt genau dann, wenn n Primzahl ist. Damit
ist (Zn,+, ·, 0, 1) ein Körper genau dann, wenn n Primzahl ist.
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Beweis Nehme zuerst an, dass n keine Primzahl ist. Dann gibt es ℓ, m > 1 mit
ℓm = n. Da ℓ < n, m < n, kann ℓ und m als Elemente von Zn betrachtet werden
und in Zn gilt ℓm = 0, da nRestn = 0. Daher kann (Zn,+, ·) kein Körper sein.
(Übung: Sei (K,+, ·) ein Körper und λ, µ ∈ K mit λ 6= 0, µ 6= 0; dann ist auch
λµ 6= 0.)

Für die Umkehrung braucht man folgendes: Seien n, m ≥ 1; dann gibt es ℓ, k ∈ Z,
so dass ℓn+ km = (m,n), wobei (m,n) der größte gemeinsame Teiler von m und
n ist. (Dieses Ergebnis kann man in jedem Buch über elementare Zahlentheorie
finden.) Nehme jetzt an, dass p Primzahl ist und sei m ∈ Zp mit m 6= 0. Dann
gilt (m, p) = 1 und folglich gibt es ℓ, k ∈ Z mit ℓp + km = 1. Sei k′ = kRest p;
also gilt k′ − k = ℓ′p für ein ℓ′ ∈ Z, und daraus ergibt sich, dass

k′m− 1 = km− 1 + ℓ′mp = (ℓ+ ℓ′m)p .

Damit ist auch k′mRest p = 1; d.h., k′ = m−1 in Zp. Dies zeigt, dass in Zp die
Bedingung (K8) erfüllt ist.

Wenn p Primzahl ist, dann bezeichnet man den Körper Zp meistens mit Fp.

Sei K ein Körper mit Einselement 1. Für n ≥ 1 wird n1 als 1 + · · · + 1 (mit
n Summanden) verstanden. Gilt n1 6= 0 für alle n ≥ 1, so nennt man K einen
Körper der Charakteristik Null. Im anderen Falle ist die Charakteristik charK
definiert als die kleinste positive natürliche Zahl p, für die p1 = 0 gilt.

Insbesondere ist char Q = char R = char C = 0 und char Fp = p.

Lemma 2.2 Ist charK 6= 0, dann ist charK eine Primzahl.

Beweis Übung.

Sei K ein endlicher Körper; dann gibt es eine Primzahl p und n ≥ 1, so dass K
aus genau pn Elementen besteht (und charK = p). Ist umgekehrt p eine Primzahl
und n ≥ 1, so gibt es einen (im wesentlichen eindeutigen) endlichen Körper, der
aus genau pn Elementen besteht.

Lineare Gleichungssysteme können über einem beliebigen Körper K betrachtet
werden.

Sei n ≥ 1; mit Kn wird die Menge aller n-Tupel von Elementen aus K bezeichnet.
Ein Element von Kn hat also die Form (λ1, . . . , λn) mit λ1, . . . , λn Elementen
aus K. Das Element (0, . . . , 0) ∈ Kn wird mit 0 bezeichnet.

Eine Addition auf Kn wird erklärt durch

(λ1, λ2, . . . , λn) + (µ1, µ2, . . . , µn) = (λ1 + µ1, λ2 + µ2, . . . , λn + µn)
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und eine Multiplikation eines Elements von Kn mit einem Element von K durch

λ(µ1, µ2, . . . , µn) = (λµ1, λµ2, . . . , λµn) .

Sei v ∈ Kn; für jedes λ ∈ K heißt dann λv ein Vielfaches von v.

Seien m, n ≥ 1; eine m×n Matrix über K ist eine Anordnung von mn Elementen
von K nach folgendem Schema











a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn











Die Menge der m × n Matrizen über K wird mit M(m × n,K) bezeichnet. Die
Schreibweise A = (aij)1≤i≤m, 1≤j≤n und A = (aij) wird weiter verwendet. Zeilen
und Spalten werden wie im Fall K = R definiert; die Zeilen von A werden als
Elemente von Kn und die Spalten von A als Elemente von Km betrachtet. Das
Element







0 · · · 0
...

...
0 · · · 0






∈ M(m× n,K)

wird mit 0 bezeichnet.

Seien m, n ≥ 1 und A = (aij) ∈ M(m×n,K), b = (b1, . . . , bm) ∈ Km; dann heißt

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

das zu A und b gehörige lineare Gleichungssystem.

Ein Element (y1, . . . , yn) ∈ Kn heißt Lösung des zu A und b gehörigen linearen
Gleichungssystems, wenn y1, . . . , yn die m Gleichungen erfüllen, d.h., wenn

a11y1 + a12y2 + · · ·+ a1nyn = b1

a21y1 + a22y2 + · · ·+ a2nyn = b2
...

am1y1 + am2y2 + · · ·+ amnyn = bm

Die Menge aller Lösungen des Systems wird mit Lös(A, b) bezeichnet.

Das Gleichungssystem heißt lösbar, wenn Lös(A, b) mindestens ein Element von
Kn enthält. Das Gleichungssystem heißt eindeutig lösbar, wenn Lös(A, b) aus
genau einem Element von Kn besteht.
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Das zu A und b gehörige lineare Gleichungssystem heißt homogen, wenn b = 0.
Ein homogenes Gleichungssystem besitzt stets die triviale Lösung 0 = (0, . . . , 0).
(Insbesondere ist ein homogenes Gleichungssystem stets lösbar.)

Eine Teilmenge U von Kn heißt Untervektorraum von Kn, wenn gilt:

(U0) 0 ∈ U ,

(U1) u+ v ∈ U für alle u, v ∈ U ,

(U2) λu ∈ U für alle λ ∈ K, u ∈ U .

Satz 2.2 Sei A = (aij) ∈ M(m× n,K); dann ist Lös(A, 0) ein Untervektorraum
von Kn. (Die Lösungsmenge eines homogenen linearen Gleichungssytems für n
Unbekannte ist ein Untervektorraum von Kn.)

Beweis Dieser ist fast identisch mit dem Beweis für Satz 1.1.

Satz 2.3 Seien A ∈ M(m × n,K), b ∈ Km, v ∈ Lös(A, b) und v′ ∈ Kn. Dann
gilt v′ ∈ Lös(A, b) genau, wenn v′ = v + u für ein u ∈ Lös(A, 0). (Man erhält
also alle Lösungen des zu A und b gehörigen Gleichungssystems, indem man zu
einer speziellen Lösung dieses Systems alle Lösungen des zu A und 0 gehörigen
Gleichungssystems addiert.)

Beweis Dieser ist fast identisch mit dem Beweis für Satz 1.2.

Für eine Matrix über einem beliebigen Körper K werden nun elementare Zeilen-
umformungen wie im reellen Fall definiert. Sie sind:

I Addition eines Vielfachen einer Zeile zu einer anderen Zeile.

II Vertauschen zweier Zeilen.

Lemma 2.3 Wird eine Matrix A durch eine elementare Zeilenumformung zu
einer Matrix A′ verändert, so gilt A′ = 0 genau dann, wenn A = 0.

Beweis Dieser ist fast identisch mit dem Beweis für Lemma 1.1.

Seien m, n ≥ 1 und A = (aij) ∈M(m×n,K), b = (b1, . . . , bm) ∈ Km; dann wird
die m× (n + 1) reelle Matrix











a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

...
am1 am2 · · · amn bm











mit (A, b) bezeichnet.
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Satz 2.4 Wird (A, b) durch eine elementare Zeilenumformung zu einer Matrix
(A′, b′) verändert, so gilt Lös(A, b) = Lös(A′, b′).

Beweis Dieser ist fast identisch mit dem Beweis für Satz 1.3.

Eine Matrix A ∈ M(m × n,K) hat Zeilen-Stufen-Form, wenn für jede Zeile der
Matrix folgende zwei Bedingungen erfüllt sind:

— Sind die ersten p Elemente der Zeile Null für ein p mit p < n, so sind für alle
folgenden Zeilen mindestens die ersten p+ 1 Elemente Null.

— Sind alle Elemente der Zeile Null, so ist jedes Element von jeder der folgenden
Zeilen Null.

Insbesondere hat die Null-Matrix 0 Zeilen-Stufen-Form.

Sei A = (aij) ∈ M(m× n,K) mit A 6= 0 und für i = 1, . . . , m sei

pi =

{

min{1 ≤ j ≤ n : aij 6= 0} falls (ai1, . . . , ain) 6= 0 ,
0 sonst .

Die Matrix A hat also Zeilen-Stufen-Form genau dann, wenn

p1 < p2 < · · · < pr ,

wobei r der Index der letzten von Null verschiedenen Zeile von A ist. Hat A
Zeilen-Stufen-Form, so nennt man p1, . . . , pr die Treppen-Folge von A.

Satz 2.5 Seien A = (aij) ∈ M(m× n,K), b = (b1, . . . , bm) ∈ Km mit (A, b) 6= 0.
Nehme an, dass (A, b) Zeilen-Stufen-Form hat, und sei p1, . . . , pr die Treppen-
Folge von A. Dann ist das zu A und b gehörige lineare Gleichungssystem lösbar
genau, wenn pr 6= n+ 1. Ferner ist das Gleichungssystem eindeutig lösbar genau
dann, wenn r = n und pj = j für jedes j = 1, . . . , n.

Beweis Dieser ist fast identisch mit dem Beweis für Satz 1.4.

Satz 2.6 Jede Matrix in M(m×n,K) läßt sich durch eine Folge von elementaren
Zeilenumformungen in eine Matrix mit Zeilen-Stufen-Form überführen.

Beweis Der Gaußsche Algorithmus macht einen Sinn (und funktioniert) für einen
beliebigen Körper K.

Seien m, n ≥ 1 und A = (aij) ∈ M(m×n,K), b = (b1, . . . , bm) ∈ Km. Es ist klar,
dass Lös(0, 0) = Kn; nehme also an, dass (A, b) 6= 0. Mit Hilfe des Gaußschen
Algorithmus kann die Matrix (A, b) in eine Matrix (A′, b′) mit Zeilen-Stufen-Form
überführt werden und nach Satz 2.4 gilt dann Lös(A, b) = Lös(A′, b′). Ferner gilt
nach Lemma 2.3, dass (A′, b′) 6= 0. Folglich kann Satz 2.5 verwendet werden, um
festzustellen, ob das zu A und b gehörige lineare Gleichungssystem lösbar bzw.
eindeutig lösbar ist.



3 Vektorräume

Im Folgenden sei K ein Körper. Ein Vektorraum über K ist ein 4-Tupel (V,+, ·, 0)
bestehend aus einer Menge V , einer Verknüpfung (Addition)

+ : V × V → V

(λ, µ) 7→ λ+ µ

einer Verknüpfung (Multiplikation mit Skalaren)

· : K × V → V

(λ, v) 7→ λv

und einem Element 0 ∈ V , für das folgendes gilt:

(1) (u+ v) + w = u+ (v + w) für alle u, v, w ∈ V .

(2) u+ v = v + u für alle u, v ∈ V .

(3) 0 + v = v für alle v ∈ V .

(4) Zu jedem v ∈ V gibt es ein Element −v ∈ V mit (−v) + v = 0.

(5) (λµ)v = λ(µv) für alle λ, µ ∈ K, v ∈ V .

(6) 1v = v für alle v ∈ V .

(7) λ(u+ v) = λu+ λv für alle λ ∈ K, u, v ∈ V .

(8) (λ+ µ)v = λv + µv für alle λ, µ ∈ K, v ∈ V .

Bemerkung: Nach der üblichen Konvention soll die Addition in V weniger stark
binden als die Multiplikation mit Skalaren. (λu + λv bedeutet also (λu) + (λv)
und λv + µv bedeutet (λv) + (µv).)

Das Element 0 heißt das Nullelement oder die Null. Ein Vektorraum über K wird
auch K-Vektorraum genannt. Einen Vektorraum über K = R bzw. K = C nennt
man reellen Vektorraum bzw. komplexen Vektorraum.

Lemma 3.1 Sei (V,+, ·, 0) ein Vektorraum über K.

(1) Das Nullelement 0 ist eindeutig: Ist 0′ ∈ V ein Element mit 0′ + v = v für
alle v ∈ V , so ist 0′ = 0.

(2) Zu jedem v ∈ V gibt es genau ein Element −v ∈ V mit (−v) + v = 0.

20
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Beweis Übung.

Wenn aus dem Kontext klar ist, welche Verknüpfungen + und · und welches
Element 0 gemeint sind, dann wird lediglich V statt (V,+, ·, 0) geschrieben.

Lemma 3.2 Sei V ein Vektorraum über K und seien λ ∈ K, v ∈ V . Dann ist
λv 6= 0 genau, wenn λ 6= 0 und v 6= 0.

Beweis Übung.

Beispiele von Vektorräumen:

1. Sei n ≥ 1; definiere + : Kn ×Kn → Kn und · : K ×Kn → Kn durch

(λ1, . . . , λn) + (µ1, . . . , µn) = (λ1 + µ1, . . . , λn + µn) ,

λ(µ1, . . . , µn) = (λµ1, . . . , λµn) .

Dann ist (Kn,+, ·, 0) ein Vektorraum über K, wobei 0 = (0, . . . , 0). Für jedes
(λ1, . . . , λn) ∈ Kn ist −(λ1, . . . , λn) = (−λ1, . . . ,−λn).
2. Sei X eine Menge. Für f, g ∈ Abb(X,K) und λ ∈ K definiere Abbildungen
f + g, λf ∈ Abb(X,K) durch (f + g)(x) = f(x) + g(x) und (λf)(x) = λf(x).
Mit diesen Verknüpfungen + : Abb(X,K) × Abb(X,K) → Abb(X,K) und
· : K × Abb(X,K) → Abb(X,K) ist Abb(X,K) ein Vektorraum über K. Die
Nullabbildung 0 : X → K (mit 0(x) = 0 für alle x ∈ X) ist die Null und für jedes
f ∈ Abb(X,K) ist −f ∈ Abb(X,K) durch (−f)(x) = −f(x) für alle x ∈ X
gegeben.

3. Seien m, n ≥ 1 und sei M(m × n,K) die Menge aller m × n Matrizen über
K. Für A = (aij), B = (bij) ∈ M(m × n,K) und λ ∈ K definiere Matrizen
A + B, λA ∈ M(m × n,K) durch A + B = (aij + bij) und λA = (λaij). Mit
diesen Verknüpfungen + : M(m × n,K) × M(m × n,K) → M(m × n,K) und
· : K ×M(m × n,K) → M(m × n,K) ist M(m × n,K) ein K-Vektorraum. Die
Nullmatrix 0 ist die Null in M(m×n,K) und für jedes A = (aij) ∈ M(m×n,K)
ist −A = (−aij).
4. (Verallgemeinerung von 2.) Sei X eine Menge und sei V ein K-Vektorraum.
Für f, g ∈ Abb(X, V ) und λ ∈ K definiere Abbildungen f + g, λf ∈ Abb(X, V )
durch (f + g)(x) = f(x) + g(x) und (λf)(x) = λf(x). Mit diesen Verknüpfungen
+ : Abb(X, V )×Abb(X, V )→ Abb(X, V ) und · : K×Abb(X, V )→ Abb(X, V )
ist Abb(X, V ) ein Vektorraum über K. Die Nullabbildung 0 : X → V ist die Null
und für f ∈ Abb(X, V ) ist −f ∈ Abb(X, V ) durch (−f)(x) = −f(x) gegeben.

Sei V ein Vektorraum über K. Eine Teilmenge U ⊂ V heißt Untervektorraum
von V , wenn 0 ∈ U und λu + µv ∈ U für alle u, v ∈ U , λ, µ ∈ K. Insbesondere
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ist V selbst Untervektorraum von V . Ferner ist {0} stets Untervektorraum von
V , (da nach Lemma 3.2 λ0 = 0 für jedes λ ∈ K).

Sei U ein Untervektorraum von V . Dann induzieren die Verknüpfungen + und
· Verknüpfungen + : U × U → U und · : K × U → U . Mit diesen induzierten
Verknüpfungen (und mit dem Nullelement 0 aus V ) ist U ein K-Vektorraum.

Lemma 3.3 Sei U ein Untervektorraum von V und seien v1, . . . , vm Elemente
von U (mit m ≥ 1). Für alle λ1, . . . , λm ∈ K ist dann λ1v1 + · · ·+ λmvm wieder
ein Element von U .

Beweis Es wird durch Induktion nach n gezeigt, dass λ1v1+· · ·+λnvn ein Element
von U ist für jedes n = 1, . . . , m. Nach (U2) ist λ1v1 ein Element von U . Sei nun
n mit 1 ≤ n < m und nehme an, dass λ1v1 + · · ·+ λnvn ein Element von U ist.
Nach (U2) ist λn+1vn+1 ein Element von U , und daraus folgt nach (U1), dass

λ1v1 + · · ·+ λn+1vn+1 = (λ1v1 + · · ·+ λnvn) + λn+1vn+1

auch ein Element von U ist. Damit ist λ1v1 + · · ·+ λnvn ein Element von U für
jedes n = 1, . . . , m. Insbesondere ist λ1v1 + · · ·+ λmvm ein Element von U .

Im folgenden sei V ein Vektorraum über dem Körper K.

Seien v1, . . . , vm ∈ V (mit m ≥ 1). Ein Element v ∈ V heißt Linearkombination
von v1, . . . , vm, wenn es λ1, . . . , λm ∈ K gibt, so dass

v = λ1v1 + · · ·+ λmvm .

Die Menge aller Linearkombinationen von v1, . . . , vm nennt man die lineare Hülle
von v1, . . . , vm; sie wird mit L(v1, . . . , vm) bezeichnet.

Wichtiges Beispiel für den Vektorraum Km: Für j = 1, . . . , m sei

ej = (0, . . . , 0, 1, 0, . . . , 0)

mit der Eins in der j-ten Komponente. Dann gilt

λ1e1 + · · ·+ λmem = (λ1, . . . , λm)

für alle λ1, . . . , λm ∈ K und daraus ergibt sich, dass L(e1, . . . , em) = Km.

Seien nun v1, . . . , vm ∈ V (mit m ≥ 1).

Satz 3.1 L(v1, . . . , vm) ist ein Untervektorraum von V mit vj ∈ L(v1, . . . , vm)
für jedes j = 1, . . . , m.
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Beweis Nach Lemma 3.2 ist 0 = 0v1 + · · · + 0vm ∈ L(v1, . . . , vm). Seien nun
u, v ∈ L(v1, . . . , vm); dann gibt es Elemente λ1, . . . , λm, µ1, . . . , µm ∈ K, so
dass u = λ1v1 + · · ·+ λmvm und v = µ1v1 + · · ·+ µmvm. Folglich gilt

u+v = λ1v1 + · · ·+λmvm+µ1v1 + · · ·+µmvm = (λ1 +µ1)v1 + · · ·+(λm+µm)vm ,

und damit ist u+ v ∈ L(v1, . . . , vm). Für jedes λ ∈ K gilt ferner

λu = λ(λ1v1 + · · ·+ λmvm) = (λλ1)v1 + · · ·+ (λλm)vm ,

und folglich ist auch λu ∈ L(v1, . . . , vm). Dies zeigt also, dass L(v1, . . . , vm) ein
Untervektorraum von V ist.

Sei nun j mit 1 ≤ j ≤ m und definiere λ1, . . . , λm ∈ K durch

λi =

{

1 falls i = j ,
0 falls i 6= j .

Dann ist vj = 0 + · · ·+ 0 + 1vj + 0 + · · ·+ 0 = λ1v1 + · · ·+ λmvm, und damit ist
vj ∈ L(v1, . . . , vm).

Satz 3.2 Sei U ein Untervektorraum von V mit vj ∈ U für jedes j. Dann gilt
L(v1, . . . , vm) ⊂ U . Damit ist L(v1, . . . , vm) der kleinste Untervektorraum von V ,
der die Elemente v1, . . . , vm enthält.

Beweis Sei v ∈ L(v1, . . . , vm); dann gibt es Elemente λ1, . . . , λm ∈ K, so dass
v = λ1v1 + · · ·+ λmvm und nach Lemma 3.3 ist λ1v1 + · · ·+ λmvm ein Element
von U , d.h., v ∈ U . Folglich ist L(v1, . . . , vm) ⊂ U .

In den folgenden Lemmas sei m ≥ 1 und seien v1, . . . , vm ∈ V .

Lemma 3.4 Es gilt L(v1, . . . , vm) = {0} genau dann, wenn vj = 0 für jedes
j = 1, . . . , m.

Beweis Nach Satz 3.1 enthält L(v1, . . . , vm) die Elemente v1, . . . , vm und folglich
ist L(v1, . . . , vm) 6= {0}, wenn vj 6= 0 für ein j. Ist andererseits vj = 0 für jedes
j = 1, . . . , m, dann gilt λ1v1 + · · · + λmvm = 0 für alle λ1, . . . , λm ∈ K und
damit ist L(v1, . . . , vm) = {0}.

Lemma 3.5 Seien λ1, . . . , λm ∈ K mit λj 6= 0 für jedes j = 1, . . . , m. Dann
gilt L(λ1v1, . . . , λmvm) = L(v1, . . . , vm).
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Beweis Nach Satz 3.1 ist λjvj ∈ L(v1, . . . , vm) für jedes j = 1, . . . , m und daraus
folgt nach Satz 3.2, dass L(λ1v1, . . . , λmvm) ⊂ L(v1, . . . , vm). Umgekehrt ist

vj = 1vj = (λ−1
j λj)vj = λ−1

j (λjvj) ∈ L(λ1v1, . . . , λmvm)

für jedes j und damit ist auch L(v1, . . . , vm) ⊂ L(λ1v1, . . . , λmvm).

Lemma 3.6 Für jede Permutation {i1, . . . , im} von {1, . . . , m} gilt

L(vi1, . . . , vim) = L(v1, . . . , vm) .

Beweis Nach Satz 3.1 ist vij ∈ L(v1, . . . , vm) für jedes j = 1, . . . , m und daraus
folgt nach Satz 3.2, dass L(vi1 , . . . , vim) ⊂ L(v1, . . . , vm). Genauso gilt dann auch
L(v1, . . . , vm) ⊂ L(vi1 , . . . , vim).

Lemma 3.7 Sei u ∈ V . Dann gilt L(v1, . . . , vm) ⊂ L(v1, . . . , vm, u). Ferner gilt
L(v1, . . . , vm) = L(v1, . . . , vm, u) genau dann, wenn u ∈ L(v1, . . . , vm).

Beweis Nach Satz 3.1 ist vj ∈ L(v1, . . . , vm, u) für jedes j und daraus ergibt sich
nach Satz 3.2, dass L(v1, . . . , vm) ⊂ L(v1, . . . , vm, u).

Gilt L(v1, . . . , vm) = L(v1, . . . , vm, u), so ist u ∈ L(v1, . . . , vm), da nach Satz 3.1
u in L(v1, . . . , vm, u) liegt. Ist umgekehrt u ∈ L(v1, . . . , vm), so ist nach Satz 3.2
L(v1, . . . , vm, u) ⊂ L(v1, . . . , vm) und damit L(v1, . . . , vm) = L(v1, . . . , vm, u), da
nach Satz 3.1 vj ∈ L(v1, . . . , vm) für jedes j.

Lemma 3.8 Seien u, w ∈ V . Es gilt u ∈ L(v1, . . . , vm, w) \ L(v1, . . . , vm) genau
dann, wenn w ∈ L(v1, . . . , vm, u) \ L(v1, . . . , vm).

Beweis Nehme zunächst an, dass w ∈ L(v1, . . . , vm, u) \ L(v1, . . . , vm). Dann ist
insbesondere L(v1, . . . , vm, u) 6= L(v1, . . . , vm) und daraus folgt nach Lemma 3.7,
dass u /∈ L(v1, . . . , vm). Da w ∈ L(v1, . . . , vm, u), gibt es λ1, . . . , λm+1 ∈ K, so
dass w = λ1v1 + · · · + λmvm + λm+1u. Ferner ist λm+1 6= 0, sonst würde w in
L(v1, . . . , vm) liegen. Damit ist

u = µ1v1 + · · ·+ µmvm + µm+1w ,

wobei µj = (−1)λ−1
m+1λj für j = 1, . . . , m und µm+1 = λ−1

m+1. Dies zeigt also, dass
u ∈ L(v1, . . . , vm, w) \ L(v1, . . . , vm).

Der Beweis für die Umkehrung ist identisch, die Rollen von u und w müssen
lediglich getauscht werden.
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Für den Vektorraum Km gibt es einen engen Zusammenhang zwischen der Frage,
ob ein Vektor v ∈ Km in der linearen Hülle von Vektoren v1, . . . , vn liegt, und
der Frage, ob ein entsprechendes Gleichungssystem lösbar ist.

Seien v1, . . . , vn ∈ Km (mit n ≥ 1) mit vj = (α1j , . . . , αmj) für jedes j = 1, . . . , n.
Dann gibt es die Matrix A = (αij) ∈ M(m×n,K), in der die Vektoren v1, . . . , vn
als Spalten vorkommen.

Satz 3.3 Für jedes v ∈ Km gilt v ∈ L(v1, . . . , vn) genau dann, wenn das zu A
und v gehörige lineare Gleichungssystem lösbar ist.

Beweis Seien λ1, . . . , λn ∈ K; dann bedeutet v = λ1v1 + · · ·+ λnvn genau, dass
λ1αi1 + · · ·+ λnαin = βi für jedes i = 1, . . . , m, wobei v = (β1, . . . , βm). Also gilt
v = λ1v1 + · · ·+λnvn genau dann, wenn (λ1, . . . , λn) ∈ Lös(A, v), und damit liegt
v in L(v1, . . . , vn) genau dann, wenn Lös(A, v) 6= ∅.

Seien v1, . . . , vm ∈ V (mit m ≥ 1). Man sagt, dass v1, . . . , vm linear abhängig
sind, wenn es λ1, . . . , λm ∈ K mit λj 6= 0 für mindestens ein j gibt, so dass

λ1v1 + · · ·+ λmvm = 0 .

Die Vektoren v1, . . . , vm sind linear unabhängig, wenn sie nicht linear abhängig
sind. Mit anderen Worten sind die Vektoren v1, . . . , vm linear unabhängig genau
dann, wenn aus λ1v1 + · · ·+ λmvm = 0 stets folgt, dass λ1 = · · · = λm = 0, d.h.,
wenn eine Linearkombination von v1, . . . , vm nur dann Null sein kann, wenn alle
“Koeffizienten” verschwinden.

Wichtiges Beispiel für den Vektorraum Km: Für j = 1, . . . , m sei wieder

ej = (0, . . . , 0, 1, 0, . . . , 0)

mit der Eins in der j-ten Komponenten. Dann sind e1, . . . , em linear unabhängig:
Sind λ1, . . . , λm ∈ K mit λ1e1 + · · · + λmem = 0, so ist (λ1, . . . , λm) = 0, d.h.,
λj = 0 für jedes j = 1, . . . , m, da λ1e1 + · · ·+ λmem = (λ1, . . . , λm).

In den folgenden Lemmas sei m ≥ 1 und seien v1, . . . , vm ∈ V .

Lemma 3.9 Sind v1, . . . , vm linear unabhängig, so ist vj 6= 0 für jedes j und
ferner ist vj 6= vk, falls j 6= k.

Beweis Nehme an, dass vj = 0 für ein j, und definiere λ1, . . . , λm ∈ K durch

λi =

{

1 falls i = j ,
0 falls i 6= j .
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Dann ist λi 6= 0 für mindestens ein i und nach Lemma 3.2 ist

λ1v1 + · · ·+ λmvm = 0v1 + · · ·+ 0vj−1 + 1vj + 0vj+1 + · · ·+ 0vm

= 0 + · · ·+ 0 + 1vj + 0 + · · ·+ 0 = 1vj = vj = 0 .

Damit wären v1, . . . , vm linear abhängig. Folglich ist vj 6= 0 für jedes j.

Nehme nun an, dass es j, k mit j 6= k und vj = vk gibt, und definiere diesmal

λi =







−1 falls i = j ,
1 falls i = k ,
0 sonst .

Dann ist λi 6= 0 für mindestens ein i und nach Lemma 3.1 und Lemma 3.2 ist

λ1v1 + · · ·+ λmvm = (−1)vj + 1vk = (−vj) + vj = 0 ,

und wieder wären v1, . . . , vm linear abhängig. Folglich ist vj 6= vk, falls j 6= k.

Lemma 3.10 Seien λ1, . . . , λm ∈ K mit λj 6= 0 für jedes j = 1, . . . , m. Die
Vektoren λ1v1, . . . , λmvm sind genau dann linear unabhängig, wenn v1, . . . , vm
linear unabhängig sind.

Beweis Es wird gezeigt, dass v1, . . . , vm genau dann linear abhängig sind, wenn
λ1v1, . . . , λmvm linear abhängig sind. Nehme zunächst an, dass λ1v1, . . . , λmvm
linear abhängig sind. Dann gibt es µ1, . . . , µm ∈ K mit µj 6= 0 für mindestens
ein j, so dass µ1(λ1v1) + · · · + µm(λmvm) = 0. Für j = 1, . . . , m sei µ′j = µjλj ;
dann ist µ′j 6= 0 für mindestens ein j, da µ′j = 0 genau dann, wenn µj = 0, und

µ′1v1+ · · ·+µ′mvm = (µ1λ1)v1+ · · ·+(µmλm)vm = µ1(λ1v1)+ · · ·+µm(λmvm) = 0 .

Damit sind v1, . . . , vm linear abhängig.

Nehme nun umgekehrt an, dass v1, . . . , vm linear abhängig sind. Dann gibt es
µ1, . . . , µm ∈ K mit µj 6= 0 für mindestens ein j, so dass µ1v1 + · · ·+ µmvm = 0.
Für j = 1, . . . , m sei µ′j = µjλ

−1
j ; dann ist µ′j 6= 0 für mindestens ein j, da µ′j = 0

genau dann, wenn µj = 0. Ferner gilt µ′jλj = µjλ
−1
j λj = µj1 = µj für jedes j und

daraus ergibt sich, dass

µ′1(λ1v1) + · · ·+ µ′m(λmvm) = (µ′1λ1)v1 + · · ·+ (µ′mλm)vm

= µ1(λ1v1) + · · ·+ µm(λmvm) = 0 .

Folglich sind λ1v1, . . . , λmvm linear abhängig.
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Lemma 3.11 Seien i1, . . . , in (mit n ≥ 1) paarweise verschiedene Elemente aus
der Menge {1, 2, . . . , m}. (Es gilt also n ≤ m, 1 ≤ ij ≤ m für j = 1, . . . , n und
ij 6= ik, falls j 6= k.) Sind v1, . . . , vm linear unabhängig, so sind auch vi1, . . . , vin
linear unabhängig.

Beweis Nehme an, dass vi1 , . . . , vin linear abhängig sind. Es gibt also Elemente
λi1 , . . . , λin ∈ K mit λij 6= 0 für mindestens ein j, so dass λi1vi1 +· · ·+λinvin = 0.
Definiere µ1, . . . , µm ∈ K durch

µk =

{

λij falls k = ij für ein j = 1, . . . , n , ,
0 sonst .

Dann ist µk 6= 0 für mindestens ein k und nach Lemma 3.2 ist

µ1v1 + · · ·+ µmvm = λi1vi1 + · · ·+ λinvin = 0 .

Aber dies ist nicht möglich, da dann v1, . . . , vm linear abhängig wären. Also sind
vi1 , . . . , vin linear unabhängig.

Seien v1, . . . , vm linear unabhängig. Dann gibt es folgende spezielle Fälle von
Lemma 3.11:

— Für jedes n = 1, . . . , m sind v1, . . . , vn linear unabhängig.

— Ist m ≥ 2, so sind v1, . . . , vj−1, vj+1, . . . , vm linear unabhängig für jedes
j = 1, . . . , m.

— Für jede Permutation {i1, . . . , im} von {1, . . . , m} sind vi1 , . . . , vim linear
unabhängig.

Satz 3.4 (1) Sei v ∈ V ; dann ist v linear unabhängig genau, wenn v 6= 0.

(2) Seien v1, . . . , vm ∈ V mit m ≥ 2. Dann sind v1, . . . , vm linear unabhängig
genau, wenn vk /∈ L(v1, . . . , vk−1, vk+1, . . . , vm) für jedes k = 1, . . . , m.

Beweis (1) Sei λ ∈ K mit λ 6= 0; nach Lemma 3.2 gilt, dass λv = 0 genau dann,
wenn v = 0. Folglich ist v linear abhängig genau dann, wenn v = 0, d.h., v ist
linear unabhängig genau dann, wenn v 6= 0,

(2) Es wird gezeigt, dass vk ∈ L(v1, . . . , vk−1, vk+1, . . . , vm) für ein k genau dann
gilt, wenn v1, . . . , vm linear abhängig sind.

Nehme zunächst an, dass vk ∈ L(v1, . . . , vk−1, vk+1, . . . , vm) für ein k. Dann gibt
es λ1, . . . , λk−1, λk+1, . . . , λm ∈ K, so dass

vk = λ1v1 + · · ·+ λk−1vk−1 + λk+1vk+1 + · · ·+ λmvm .
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Setze λk = −1; dann ist λk 6= 0 und

λ1v1 + · · ·+ λmvm = λ1v1 + · · ·+ λk−1vk−1 + (−1)vk + λk+1vk+1 + · · ·+ λmvm

= (−1)vk + λ1v1 + · · ·+ λk−1vk−1 + λk+1vk+1 + · · ·+ λmvm

= (−1)vk + vk = (−vk) + vk = 0 ,

(da −v = (−1)v für jedes v ∈ V ). Damit sind v1, . . . , vm linear abhängig.

Nehme nun umgekehrt an, dass v1, . . . , vm linear abhängig sind. Dann gibt es
λ1, . . . , λm ∈ K mit λj 6= 0 für mindestens ein j, so dass λ1v1 + · · ·+ λmvm = 0.
Wähle k mit λk 6= 0 und für jedes j mit j 6= k sei µj = νλj , wobei ν = (−1)λ−1

k .
Dann ist νλk = (−1)(λ−1

k λk) = (−1)1 = −1 und

vk = 0 + vk = ν0 + vk = ν(λ1v1 + · · ·+ λmvm) + vk

= (νλ1)v1 + · · ·+ (νλm)vm + vk

= µ1v1 + · · ·+ µk−1vk−1 + µk+1vk+1 + · · ·+ µmvm + (νλk)vk + vk

= µ1v1 + · · ·+ µk−1vk−1 + µk+1vk+1 + · · ·+ µmvm + (−1)vk + vk

= µ1v1 + · · ·+ µk−1vk−1 + µk+1vk+1 + · · ·+ µmvm

und damit ist vk ∈ L(v1, . . . , vk−1, vk+1, . . . , vm).

Lemma 3.12 Seien v1, . . . , vm ∈ V linear unabhängig und sei u ∈ V . Dann
sind v1, . . . , vm, u linear unabhängig genau, wenn u /∈ L(v1, . . . , vm).

Beweis Sind v1, . . . , vm, u linear unabhängig, dann gilt nach Satz 3.4 (2), dass
insbesondere u /∈ L(v1, . . . , vm). Es bleibt also zu zeigen, dass u ∈ L(v1, . . . , vm),
wenn v1, . . . , vm, u linear abhängig sind.

Sind die Vektoren v1, . . . , vm, u linear abhängig, dann gibt es λ1, . . . , λm+1 ∈ K
mit λj 6= 0 für mindestens ein j, so dass λ1v1 + · · ·+ λmvm + λm+1u = 0. Nehme
an, dass λm+1 = 0; dann ist λj 6= 0 für mindestens ein j mit 1 ≤ j ≤ m und
λ1v1 + · · · + λmvm = 0. Dies steht aber im Widerspruch zu der Annahme, dass
v1, . . . , vm linear unabhängig sind, und daraus ergibt sich, dass λm+1 6= 0. Für
j = 1, . . . , m setze µj = νλj , wobei ν = (−1)λ−1

m+1. Dann ist νλm+1 = −1 und

u = 0 + u = ν0 + u = ν(λ1v1 + · · ·+ λmvm + λm+1u) + u

= (νλ1)v1 + · · ·+ (νλm)vm + (νλm+1)u+ u

= µ1v1 + · · ·+ µmvm + (−1)u+ u

= µ1v1 + · · ·+ µmvm + 0 = µ1v1 + · · ·+ µmvm ;

d.h., u ∈ L(v1, . . . , vm).
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Lemma 3.13 Die Vektoren v1, . . . , vm sind linear unabhängig genau dann, wenn
v1 6= 0 und vn /∈ L(v1, . . . , vn−1) für jedes n = 2, . . . , m.

Beweis Sind v1, . . . , vm linear unabhängig, dann ist nach Lemma 3.9 v1 6= 0 und
nach Satz 3.4 (2) gilt vn /∈ L(v1, . . . , vn−1) für jedes n = 2, . . . , m. Nehme nun
umgekehrt an, dass die Vektoren v1, . . . , vm linear abhängig sind. Dann gibt es
λ1, . . . , λm ∈ K mit λj 6= 0 für mindestens ein j, so dass λ1v1 + · · ·+ λmvm = 0.
Sei n = max{1 ≤ j ≤ m : λj 6= 0}; also ist λn 6= 0 und λ1v1 + · · · + λnvn = 0.
Falls n = 1, so ist λ1 6= 0 und λ1v1 = 0, und hier ist nach Lemma 3.2, v1 = 0.
Wenn aber n ≥ 2, so ist vn = µ1v1 + · · · + µn−1vn−1, wobei µj = (−1)λ−1

n λj
für j = 1, . . . , n − 1, und hier ist vn ∈ L(v1, . . . , vn−1). Daraus ergibt sich, dass
v1, . . . , vm linear unabhängig sein müssen, wenn v1 6= 0 und vn /∈ L(v1, . . . , vn−1)
für jedes n = 2, . . . , m.

Für den Vektorraum Km gibt es einen engen Zusammenhang zwischen der Frage,
ob Vektoren v1, . . . , vn ∈ Km linear unabhängig sind, und der Frage, ob ein
entsprechendes homogenes Gleichungssystem eindeutig lösbar ist.

Seien v1, . . . , vn ∈ Km (mit n ≥ 1) mit vj = (α1j , . . . , αmj) für jedes j = 1, . . . , n.
Es gibt dann die Matrix A = (αij) ∈ M(m×n,K), in der die Vektoren v1, . . . , vn
als Spalten vorkommen.

Satz 3.5 Die Vektoren v1, . . . , vn sind linear unabhängig genau dann, wenn das
zu A und 0 gehörige lineare Gleichungssystem eindeutig lösbar ist (d.h., genau
dann, wenn Lös(A, 0) = {0}).

Beweis Genau wie im Beweis für Satz 3.3 gilt λ1v1 + · · ·+λnvn = 0 genau dann,
wenn (λ1, . . . , λn) ∈ Lös(A, 0). Damit sind v1, . . . , vn linear unabhängig genau
dann, wenn Lös(A, v) = {0}.

Für Untervektorräume U1, . . . , Um (m ≥ 2) von V bezeichne mit U1 + · · ·+ Um
die Menge aller Elemente von V , die eine Darstellung der Form u1 + · · · + um
haben mit uj ∈ Uj für j = 1, . . . , m, und nenne U1 + · · · + Um die Summe der
Untervektorräume U1, . . . , Um.

Satz 3.6 (1) Die Summe U1 + · · · + Um der Untervektorräume U1, . . . , Um ist
ein Untervektorraum von V und Uj ⊂ U1 + · · ·+ Um für jedes j = 1, . . . , m.

(2) Ist U ein Untervektorraum von V mit Uj ⊂ U für jedes j = 1, . . . , m, so ist
U1 + · · ·+ Um ⊂ U .

Beweis Übung.

Nach Satz 3.6 ist die Summe U1 + · · ·+Um der kleinste Untervektorraum von V ,
der die Untervektorräume U1, . . . , Um enthält.
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Im folgenden sei wieder K ein Körper und V ein Vektorraum über K.

Sei U ein Untervektorraum von V und seien v1, . . . , vm ∈ V (mit m ≥ 1). Dann
heißt das m-Tupel (v1, . . . , vm) Basis von U , wenn gilt:

(B1) Die Vektoren v1, . . . , vm sind linear unabhängig,

(B2) L(v1, . . . , vm) = U .

Sei (v1, . . . , vm) eine Basis eines Untervektorraumes U von V . Nach Lemma 3.9
ist dann vj 6= 0 für jedes j, und daraus folgt nach Lemma 3.4, dass U 6= {0}.
Der triviale Untervektorraum {0} von V kann also im obigen Sinn keine Basis
besitzen. Es erweist sich aber als nützlich, die leere Menge ∅ als Basis von {0}
anzusehen.

Wichtiges Beispiel für den Vektorraum Km: Für j = 1, . . . , m sei wieder

ej = (0, . . . , 0, 1, 0, . . . , 0)

mit der Eins in der j-ten Komponenten. Dann sind e1, . . . , em linear unabhängig
und es gilt auch L(e1, . . . , em) = Km. Damit ist (e1, . . . , em) eine Basis von Km.
Sie wird die kanonische Basis von Km genannt.

Lemma 4.1 Sei U 6= {0} ein Untervektorraum von V und sei (v1, . . . , vm) eine
Basis von U .

(1) Seien λ1, . . . , λm ∈ K mit λj 6= 0 für jedes j; dann ist (λ1v1, . . . , λmvm) auch
eine Basis von U .

(2) Sei {i1, . . . , im} eine Permutation von {1, . . . , m}; dann ist (vi1 , . . . , vim) auch
eine Basis von U .

Beweis (1) Nach Lemma 3.5 ist L(λ1v1, . . . , λmvm) = U und nach Lemma 3.10
sind λ1v1, . . . , λmvm linear unabhängig. Damit ist (λ1v1, . . . , λmvm) eine Basis
von U .

(2) Nach Lemma 3.11 sind vi1 , . . . , vim linear unabhängig und nach Lemma 3.6
ist L(vi1 , . . . , vim) = U . Damit ist (vi1 , . . . , vim) eine Basis von U .

Satz 4.1 Sei U 6= {0} ein Untervektorraum von V und sei (v1, . . . , vm) eine
Basis von U . Dann gibt es zu jedem u ∈ U genau ein (λ1, . . . , λm) ∈ Km, so dass

u = λ1v1 + · · ·+ λmvm .

30
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Beweis Sei u ∈ U ; da U = L(v1, . . . , vm), gibt es mindestens ein m-Tupel
(λ1, . . . , λm) ∈ Km, so dass u = λ1v1 + · · · + λmvm. Nehme an, dass auch
u = µ1v1 + · · ·+ µmvm für ein (µ1, . . . , µm) ∈ Km. Dann ist

((−1)λ1 + µ1)v1 + · · ·+ ((−1)λm + µm)vm

= (−1)(λ1v1 + · · ·+ λmvm) + µ1v1 + · · ·+ µmvm

= (−1)u+ u = (−u) + u = 0 ,

und daraus folgt, dass (−1)λj + µj = 0 für jedes j = 1, . . . , m, da v1, . . . , vm
linear unabhängig sind. Damit ist λj = µj für jedes j = 1, . . . , m. (Übung: Sind
λ, µ ∈ K mit (−1)λ + µ = 0, so ist λ = µ.) Dies zeigt also, dass es genau ein
(λ1, . . . , λm) ∈ Km mit u = λ1v1 + · · ·+ λmvm gibt.

Satz 4.2 Seien (v1, . . . , vm), (w1, . . . , wn) zwei Basen eines Untervektorraumes
U von V mit U 6= {0}. Dann ist m = n.

Beweis Für den Beweis wird folgendes Austauschlemma gebraucht:

Lemma 4.2 Sei U 6= {0} ein Untervektorraum von V und seien (v1, . . . , vm),
(w1, . . . , wn) zwei Basen von U mit m ≥ 2 und n ≥ 1. Dann gibt es zu jedem
j = 1, . . . , m ein k mit 1 ≤ k ≤ n, so dass (v1, . . . , vj−1, vj+1, . . . , vm, wk) wieder
eine Basis von U ist.

Beweis Sei j mit 1 ≤ j ≤ m fest. Nehme an, wk ∈ L(v1, . . . , vj−1, vj+1, . . . , vm)
für jedes k = 1, . . . , n. Dann gilt nach (B2) und Satz 3.2, dass

U = L(w1, . . . , wn) ⊂ L(v1, . . . , vj−1, vj+1, . . . , vm) ,

und nach Satz 3.1 ist vj ∈ U ; d.h., vj ∈ L(v1, . . . , vj−1, vj+1, . . . , vm). Dies steht
aber im Widerspruch zu Satz 3.4 (2), da v1, . . . , vm linear unabhängig sind. Damit
gibt es ein k mit 1 ≤ k ≤ n, so dass wk /∈ L(v1, . . . , vj−1, vj+1, . . . , vm). Es wird
nun gezeigt, dass {v1, . . . , vj−1, vj+1, . . . , vm, wk} eine Basis von U ist.

Nach Lemma 3.11 sind v1, . . . , vj−1, vj+1, . . . , vm linear unabhängig, und folglich
sind nach Lemma 3.12 v1, . . . , vj−1, vj+1, . . . , vm, wk auch linear unabhängig.

Es bleibt zu zeigen, dass L(v1, . . . , vj−1, vj+1, . . . , vm, wk) = U . Nach (B2), Satz 3.1
und Lemma 3.6 ist

wk ∈ U = L(v1, . . . , vm) = L(v1, . . . , vj−1, vj+1, . . . , vm, vj) .

Aber wk /∈ L(v1, . . . , vj−1, vj+1, . . . , vm), d.h.,

wk ∈ L(v1, . . . , vj−1, vj+1, . . . , vm, vj) \ L(v1, . . . , vj−1, vj+1, . . . , vm) ,
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und daraus folgt nach Lemma 3.8, dass vj ∈ L(v1, . . . , vj−1, vj+1, . . . , vm, wk).
Nach Satz 3.2 ist also U = L(v1, . . . , vm) ⊂ L(v1, . . . , vj−1, vj+1, . . . , vm, wk); und
daher ist U = L(v1, . . . , vj−1, vj+1, . . . , vm, wk).

Nun zum Beweis für Satz 4.2, und ohne Beschränkung der Allgemeinheit kann
man annehmen, dass m ≥ n ≥ 1. Ist m = 1, dann ist m = n trivial richtig;
es kann also weiter angenommen werden, dass m ≥ 2. Nun wird Lemma 4.2
wiederholt angewendet.

Zuerst gibt es nach Lemma 4.2 ein k1 mit 1 ≤ k1 ≤ n, so dass (v2, . . . , vm, wk1)
eine Basis von U ist. Nun sind (v2, . . . , vm, wk1) und (w1, . . . , wn) Basen von U ;
also gibt es nach Lemma 4.2 ein k2 mit 1 ≤ k2 ≤ n, so dass (v3, . . . , vm, wk1, wk2)
eine Basis von U ist. Nach m-maliger Anwendung dieses Verfahrens erhält man
eine Basis (wk1, . . . , wkm

) von U . Insbesondere sind dann wk1, . . . , wkm
linear

unabhängig und daraus folgt nach Lemma 3.9, dass wki
6= wkj

und damit ki 6= kj,
falls i 6= j. Da aber 1 ≤ kj ≤ n für jedes j = 1, . . . , m, ist dies nur möglich, wenn
m = n.

Ein Untervektorraum U von V heißt nun endlichdimensional, wenn U eine Basis
besitzt. Sei U 6= {0} endlichdimensional; nach Satz 4.2 gibt es dann n ≥ 1, so
dass jede Basis von U aus genau n Elementen besteht und diese Zahl n wird die
Dimension von U gennant und wird mit dimU abgekürzt. Per Definition wird
der Untervektorraum {0} die Dimension 0 zugeordnet (dim{0} = 0).

Der Vektorraum V selber heißt endlichdimensional, wenn V eine Basis besitzt
(d.h., wenn V als Untervektorraum von V endlichdimensional ist). Dann ist die
Dimension von V die Anzahl der Elemente in einer Basis von V .

Für jedes m ≥ 1 ist der Vektorraum Km endlichdimensional und dimKm = m,
da (e1, . . . , em) eine Basis von Km ist.

Nicht jeder Vektorraum ist endlichdimensional: Zum Beispiel ist der Vektorraum
Abb(X,K) genau dann endlichdimensional, wenn die Menge X endlich ist. (Der
Beweis dafür ist eine Übung.) In der Vorlesung Linearer Algebra werden aber
hauptsächlich nur endlichdimensionale Vektorräume betrachtet.

Lemma 4.3 Seien m ≥ 0, n ≥ 1, seien u1, . . . , um ∈ V linear unabhängig und
w1, . . . , wn ∈ V . Dann gibt es i1, i2, . . . , ik mit k ≥ 0 und 1 ≤ i1 < · · · < ik ≤ n,
so dass u1, . . . , um, wi1, . . . , wik linear unabhängig sind und

L(u1, . . . , um, wi1, . . . , wik) = L(u1, . . . , um, w1, . . . , wn) .

(In dieser Formulierung werden v1, . . . , vp als linear unabhängig angesehen und
L(v1, . . . , vp) als {0} interpretiert, wenn p = 0.)
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Beweis Sei k ≥ 0 die größte Zahl, für die es 1 ≤ i1 < · · · < ik ≤ n gibt, so
dass u1, . . . , um, wi1, . . . , wik linear unabhängig sind. Seien i1, . . . , ik wie in der
Definition von k. Es wird nun gezeigt, dass

L(u1, . . . , um, wi1, . . . , wik) = L(u1, . . . , um, w1, . . . , wn) .

Sei j mit j 6= ip für jedes p = 1, . . . , n. Nach Lemma 3.11 sind dann die Vektoren
u1, . . . , um, wi1 , . . . , wik , wj linear abhängig und daraus folgt nach Lemma 3.12,
dass wj ∈ L(u1, . . . , um, wi1 , . . . , wik). Also ist v ∈ L(u1, . . . , um, wi1, . . . , wik) für
jedes v ∈ {u1, . . . , um, w1, . . . , wn} und folglich gilt nach Satz 3.2, dass

L(u1, . . . , um, w1, . . . , wn) ⊂ L(u1, . . . , um, wi1, . . . , wik) ,

d.h., L(u1, . . . , um, w1, . . . , wn) = L(u1, . . . , um, wi1 , . . . , wik).

Satz 4.3 Ein Untervektorraum U von V ist endlichdimensional genau dann,
wenn es ein n ≥ 1 und v1, . . . , vn ∈ U gibt, so dass U = L(v1, . . . , vn). Ist
ferner U 6= {0} und U = L(v1, . . . , vn), dann gibt es i1, . . . , ik mit k ≥ 1 und
1 ≤ i1 < · · · < ik ≤ n, so dass (vi1 , vi2 , . . . , vik) eine Basis von U ist.

Beweis Da {0} endlichdimensional ist und {0} = L(0), kann man annehmen, dass
U 6= {0}. Ist U endlichdimensional, dann gilt U = L(v1, . . . , vn) für jede Basis
(v1, . . . , vn) von U . Nehme also umgekehrt an, dass es n ≥ 1 und v1, . . . , vn ∈ U
mit U = L(v1, . . . , vn) gibt. Nach Lemma 4.3 (mit m = 0) gibt es dann k ≥ 0
und 1 ≤ i1 < · · · < ik ≤ n, so dass vi1 , vi2 , . . . , vik linear unabhängig sind und
L(vi1 , vi2, . . . , vik) = L(v1, . . . , vn) = U (und also ist k ≥ 1, da U 6= {0}). Damit
ist (vi1 , vi2 , . . . , vik) eine Basis von U ; insbesondere ist U endlichdimensional.

Lemma 4.4 Sei W ein endlichdimensionaler Untervektorraum von V und seien
u1, . . . , um ∈ W linear unabhängig. Dann gilt m ≤ dimW .

Beweis Sei (w1, . . . , wn) eine Basis von W . Nach Lemma 4.3 gibt es i1, . . . , ik
mit k ≥ 0 und 1 ≤ i1 < · · · < ik ≤ n, so dass u1, . . . , um, wi1, . . . , wik linear
unabhängig sind und L(u1, . . . , um, wi1, . . . , wik) = L(u1, . . . , um, w1, . . . , wn) . Da
aber uj ∈ W für jedes j = 1, . . . , m und W = L(w1, . . . , wn), ist nach Satz 3.1
und Satz 3.2 L(u1, . . . , um, w1, . . . , wn) = W . Damit ist (u1, . . . , um, wi1 , . . . , wik)
eine Basis von W . Insbesondere ist m ≤ n = dimW .

Satz 4.4 Seien U, W Untervektorräume von V mit W endlichdimensional und
U ⊂W . Dann ist U endlichdimensional und dimU ≤ dimW .
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Beweis Man kann annehmen, dass U 6= {0} (und damit ist auch W 6= {0}), da
die Behauptung trivial richtig ist, wenn U = {0}.
Da U 6= {0}, gibt es u1 ∈ U mit u1 6= 0 und nach Satz 3.4 (1) ist u1 linear
unabhängig. Gilt U = L(u1), dann ist (u1) schon eine Basis von U .

Ist dagegen U 6= L(u1), so gibt es u2 ∈ U \L(u1) und nach Lemma 3.12 sind dann
u1, u2 linear unabhängig. Gilt U = L(u1, u2), dann ist (u1, u2) eine Basis von U .

Ist dagegen U 6= L(u1, u2), so gibt es u3 ∈ U \L(u1, u2) und nach Lemma 3.12 sind
dann u1, u2, u3 linear unabhängig. Gilt U = L(u1, u2, u3), dann ist (u1, u2, u3) eine
Basis von U .

Ist dagegen U 6= L(u1, u2, u3), so gibt es u4 ∈ U \ L(u1, u2, u3) und . . . .

Entweder hört dieses Verfahren auf, indem U = L(v1, . . . , vm) für ein m ≥ 1, und
damit ist (v1, . . . , vm) eine Basis von U , oder das Verfahren hört nie auf, und
in diesem Fall ist {vk}k≥1 eine Folge von Elementen aus U mit der Eigenschaft,
dass für jedes m ≥ 1 die Vektoren v1, . . . , vm linear unabhängig sind. Aber
nach Lemma 4.4 ist das Letztere nicht möglich und daraus ergibt sich, dass U
endlichdimensional ist. Ist ferner (u1, . . . , um) eine Basis von U , dann gilt nach
Lemma 4.4, dass m ≤ dimW , d.h., dimU ≤ dimW .

Satz 4.5 (Basisergänzungssatz) Seien U, W Untervektorräume von V mit W
endlichdimensional und {0} 6= U ⊂W ; sei (u1, . . . , um) eine Basis von U . Dann
gibt es k ≥ 0 und v1, . . . , vk ∈W , so dass (u1, . . . , um, v1, . . . , vk) eine Basis von
W ist.

Beweis Sei (w1, . . . , wn) eine Basis von W . Nach Lemma 4.3 gibt es i1, . . . , ik
mit k ≥ 0 und 1 ≤ i1 < · · · < ik ≤ n, so dass u1, . . . , um, wi1, . . . , wik linear
unabhängig sind und L(u1, . . . , um, wi1 , . . . , wik) = L(u1, . . . , um, w1, . . . , wn). Wie
im Beweis für Lemma 4.4 ist nun (u1, . . . , um, wi1, . . . , wik) eine Basis von W .

Satz 4.6 Sei U 6= {0} ein endlichdimensionaler Untervektorraum von V und
seien u1, . . . , um ∈ U (mit m ≥ 1).

(1) Sind u1, . . . , um linear unabhängig, so ist m ≤ dimU .

(2) Sind u1, . . . , um linear unabhängig und m = dimU , so ist (u1, . . . , um) schon
eine Basis von U .

(3) Gilt L(u1, . . . , um) = U , so ist m ≥ dimU .

(4) Gilt L(u1, . . . , um) = U und m = dimU , so ist (u1, . . . , um) schon eine Basis
von U .
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Beweis (1) und (2): Setze U ′ = L(u1, . . . , um), und also ist (u1, . . . , um) eine
Basis von U ′. Nach Satz 4.5 gibt es dann k ≥ 0 und v1, . . . , vk ∈ U , so dass
(u1, . . . , um, v1, . . . , vk) eine Basis von U ist. Insbesondere ist m ≤ m+k = dimU .
Ist ferner m = dimU , d.h., k = 0, so ist (u1, . . . , um) eine Basis von U .

(3) und (4): Wie im Beweis für Satz 4.3 gibt es k ≥ 1 und 1 ≤ i1 < · · · < ik ≤ m,
so dass (vi1 , vi2 , . . . , vik) eine Basis von U ist. Insbesondere ist dimU = k ≤ m.
Ist ferner m = dimU , d.h., k = m, so ist ij = j für jedes j = 1, . . . , m und damit
ist (v1, v2, . . . , vm) = (vi1 , vi2 , . . . , vik) eine Basis von U .

Satz 4.7 Seien U, W Untervektorräume von V mit W endlichdimensional und
U ⊂W . Dann ist dimU = dimW gleichbedeutend mit U = W .

Beweis Dies ist klar, wenn U = {0} und also kann man annehmen, dass U 6= {0}.
Sei (u1, . . . , um) eine Basis von U ; dann sind u1, . . . , um ∈W linear unabhängig.
Ist m = dimU = dimW , so ergibt sich nach Satz 4.6 (2), dass (u1, . . . , um) auch
eine Basis von W ist, und insbesondere ist U = L(u1, . . . , um) = W .

Erinnerung: Für Untervektorräume U1, . . . , Um (m ≥ 2) von V ist die Summe
U1 + · · · + Um der Untervektorraum bestehend aus allen Elementen von V , die
eine Darstellung der Form u1 + · · ·+ um haben mit uj ∈ Uj für j = 1, . . . , m.

Sind U und W Untervektorräume von V , dann ist es klar, dass U ∩W auch ein
Untervektorraum von V ist.

Satz 4.8 Seien U und W endlichdimensionale Untervektorräume von V . Dann
sind die Untervektorräume U +W und U ∩W auch endlichdimensional und

dim(U +W ) + dim(U ∩W ) = dimU + dimW .

Beweis Nach Satz 4.4 ist U ∩W endlichdimensional, da U endlichdimensional
ist und U ∩W ⊂ U . Sei (v1, . . . , vm) eine Basis von U ∩W , (wobei m = 0, falls
U ∩W = {0}). Da U ∩W ⊂ U und U ∩W ⊂W , gibt es nach Satz 4.6 Vektoren
u1, . . . , up ∈ U (mit p ≥ 0) und Vektoren w1, . . . , wq ∈ W (mit q ≥ 0), so dass
(v1, . . . , vm, u1, . . . , up) eine Basis von U und (v1, . . . , vm, w1, . . . , wq) eine Basis
von W ist. Dann ist dim(U ∩W ) = m, dimU = m+ p und dimW = m+ q, und
also genügt es zu zeigen, dass (v1, . . . , vm, u1, . . . , up, w1, . . . , wq) eine Basis von
U +W ist.

Sei v ∈ U +W ; dann gibt es u ∈ U und w ∈ W , so dass v = u + w. Ferner gibt
es λ1, . . . , λm, µ1, . . . , µp ∈ K mit u = λ1v1 + · · ·+ λmvm + µ1u1 + · · ·+ µpup,
da (v1, . . . , vm, u1, . . . , up) eine Basis von U ist, und λ′1, . . . , λ

′
m, ν1, . . . , νq ∈ K
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mit w = λ′1v1 + · · ·+ λ′mvm + ν1w1 + · · ·+ νqwq, da (v1, . . . , vm, w1, . . . , wq) eine
Basis von W ist. Daraus folgt, dass

v = u+ w = λ′′1v1 + · · ·+ λ′′mvm + µ1u1 + · · ·+ µpup + ν1w1 + · · ·+ νqwq ,

wobei λ′′j = λj + λ′j für jedes j, d.h., v ∈ L(v1, . . . , vm, u1, . . . , up, w1, . . . , wq).
Damit ist U +W ⊂ L(v1, . . . , vm, u1, . . . , up, w1, . . . , wq). Andererseits folgt

L(v1, . . . , vm, u1, . . . , up, w1, . . . , wq) ⊂ U +W

unmittelbar aus Satz 3.2, da v1, . . . , vm, u1, . . . , up, w1, . . . , wq ∈ U +W , d.h.,
es gilt L(v1, . . . , vm, u1, . . . , up, w1, . . . , wq) = U +W .

Es wird nun gezeigt, dass v1, . . . , vm, u1, . . . , up, w1, . . . , wq linear unabhängig
sind. Seien λ1, . . . , λm, µ1, . . . , µp, ν1, . . . , νq ∈ K mit

λ1v1 + · · ·+ λmvm + µ1u1 + · · ·+ µpup + ν1w1 + · · ·+ νqwq = 0 .

Setze u = λ1v1 + · · · + λmvm + µ1u1 + · · · + µpup und w = ν1w1 + · · · + νqwq.
Dann ist u ∈ L(v1, . . . , vm, u1, . . . , up) = U und w ∈ L(w1, . . . , wq) = W . Aber
u + w = 0, d.h., w = −u = (−1)u und damit ist auch w ∈ U , d.h., w ∈ U ∩W .
Da (v1, . . . , vm) eine Basis von U ∩ W ist, gibt es λ′1, . . . , λ

′
m ∈ K, so dass

w = λ′1v1 + · · ·+ λ′mvm. Es gilt also

0 = u+ w

= λ1v1 + · · ·+ λmvm + µ1u1 + · · ·+ µpup + λ′1v1 + · · ·+ λ′mvm

= (λ1 + λ′1)v1 + · · ·+ (λm + λ′m)vm + µ1u1 + · · ·+ µpup

und v1, . . . , vm, u1, . . . , up sind linear unabhängig. Insbesondere ist dann µi = 0
für jedes i = 1, . . . , p und folglich ist λ1v1 + · · ·+ λmvm + ν1w1 + · · ·+ νqwq = 0.
Aber v1, . . . , vm, w1, . . . , wq sind linear unabhängig und daraus ergibt sich, dass
auch λj = 0 für j = 1, . . . , m und νk = 0 für k = 1, . . . , q. Dies zeigt, dass
v1, . . . , vm, u1, . . . , up, w1, . . . , wq linear unabhängig sind.

Sei A = (aij) ∈ M(m× n,K) eine m× n Matrix über K. Seien v1, . . . , vn ∈ Km

die Spalten von A; es gilt also vj = (a1j , . . . , amj) für jedes j = 1, . . . , n.

Es wird nun gezeigt, wie man eine Basis von Lös(A, 0) konstruieren kann. Wenn
A = 0, dann ist Lös(A, 0) = Kn, und in diesem Fall ist jede Basis von Kn auch
eine Basis von Lös(A, 0). Es kann also angenommen werden, dass A 6= 0. Nach
Satz 4.3 gibt es dann k1, . . . , kq mit q ≥ 1 und 1 ≤ k1 < · · · < kq ≤ n, so dass
(vk1 , . . . , vkq

) eine Basis von L(v1, . . . , vn) ist.

Seien ℓ1, . . . , ℓp mit 1 ≤ ℓ1 < · · · < ℓp ≤ n die restlichen Indizes (d.h., die
Indizes, die nicht in der Menge {k1, . . . , kq} vorkommen); insbesondere ist dann
p = n− q = n− dim L(v1, . . . , vn).
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Lemma 4.5 Seien µ1, . . . , µp ∈ K; dann gibt es genau eine Lösung (λ1, . . . , λn)
in Lös(A, 0) mit λℓi = µi für jedes i = 1, . . . , p.

Beweis Sei v = µ1vℓ1 + · · ·+µpvℓp; dann ist v ∈ L(v1, . . . , vn) und folglich gibt es
ν1, . . . , νq ∈ K, so dass v = ν1vk1 + · · ·+ νqvkq

, da (vk1 , . . . , vkq
) eine Basis von

L(v1, . . . , vn) ist. Definiere ein Element (λ1, . . . , λn) von Kn durch

λm =

{

µi falls m = ℓi für ein i ,
−νj falls m = kj für ein j .

Dann gilt λℓi = µi für jedes i = 1, . . . , p und

λ1v1 + · · ·+ λnvn = λℓ1vℓ1 + · · ·+ λℓpvℓp + λk1vk1 + · · ·+ λkq
vkq

= µ1vℓ1 + · · ·+ µpvℓp + (−ν1)vk1 + · · ·+ (−νq)vkq

= v − (ν1vk1 + · · ·+ νqvkq
) = v − v = 0 ,

und damit ist (λ1, . . . , λn) ∈ Lös(A, 0).

Sei nun (λ′1, . . . , λ
′
n) ein beliebiges Element von Lös(A, 0) mit λ′ℓi = µi für jedes

i = 1, . . . , p. Dann gilt

0 = 0− 0 = (λ1v1 + · · ·+ λnvn)− (λ′1v1 + · · ·+ λ′nvn)

= (λ1 − λ′1)v1 + · · ·+ (λn − λ′n)vn
= (λℓ1 − λ′ℓ1)vℓ1 + · · ·+ (λℓp − λ′ℓp)vℓp + (λk1 − λ′k1)vk1 + · · ·+ (λkq

− λ′kq
)vkq

= (λk1 − λ′k1)vk1 + · · ·+ (λkq
− λ′kq

)vkq
,

da λℓi = λ′ℓi für i = 1, . . . , p. Daraus ergibt sich, dass λkj
= λ′kj

für j = 1, . . . , q,

da vk1 , . . . , vkq
linear unabhängig sind. Damit ist (λ1, . . . , λn) = (λ′1, . . . , λ

′
n); d.h.,

es gibt genau ein (λ1, . . . , λn) ∈ Lös(A, 0) mit λℓi = µi für jedes i = 1, . . . , p.

Nach Lemma 4.5 gibt es für jedes i = 1, . . . , p eine eindeutige Lösung

ui = (λi1, . . . , λ
i
n) ∈ Lös(A, 0)

mit λiℓi = 1 und λiℓj = 0 für jedes j = 1, . . . , p mit j 6= i.

Satz 4.9 (u1, . . . , up) ist eine Basis von Lös(A, 0).

Beweis Sei u = (λ1, . . . , λn) ∈ Lös(A, 0) und setze u′ = u− (λℓ1u1 + · · ·+ λℓpup).
Dann ist u′ = (λ′1, . . . , λ

′
n) ∈ Lös(A, 0), da Lös(A, 0) ein Untervektorraum von

Kn ist, und für jedes i = 1, . . . , p gilt

λ′ℓi = λℓi − (λℓ1λ
1
ℓi

+ · · ·+ λℓpλ
p
ℓi
)

= λℓi − (λℓ10 + · · ·+ λℓi−1
0 + λℓi1 + λℓi+1

0 + · · ·+ λℓp0) = λℓi − λℓi = 0 .
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Also ist (λ′1, . . . , λ
′
n) ∈ Lös(A, 0) mit λ′ℓi = 0 für i = 1, . . . , p und daraus folgt,

dass (λ′1, . . . , λ
′
n) = (0, . . . , 0), da nach Lemma 4.5 (0, . . . , 0) das einzige Element

von Lös(A, 0) mit dieser Eigenschaft ist. Dies zeigt, dass u′ = 0, d.h.,

u = λℓ1u1 + · · ·λℓpup

und insbesondere ist L(u1, . . . , up) = Lös(A, 0).

Seien nun λ1, . . . , λp ∈ K mit λ1u1 + · · ·+ λpup = 0. Für i = 1, . . . , p gilt dann

0 = λ1λ
1
ℓi

+ · · ·+ λpλ
p
ℓi

= λ10 + · · ·+ λi−10 + λi1 + λi+10 + · · ·+ λp0 = λi ,

d.h., λi = 0 für jedes i = 1, . . . , p und daher sind u1, . . . , up linear unabhängig.
Dies zeigt, dass (u1, . . . , up) eine Basis von Lös(A, 0) ist.

Nach Satz 2.4 und Satz 2.6 braucht man eigentlich nur eine Basis von Lös(A, 0)
zu finden, wenn die Matrix A 6= 0 Zeilen-Stufen-Form hat. Nehme nun also an,
dass dies der Fall ist und sei q der Index der letzten von Null verschiedenen Zeile
von A. Für i = 1, . . . , m sei

ki =

{

min{1 ≤ j ≤ n : aij 6= 0} falls (ai1, . . . , ain) 6= 0 ,
0 sonst .

Da die Matrix A Zeilen-Stufen-Form hat, gilt k1 < k2 < · · · < kq.

Lemma 4.6 (vk1 , . . . , vkq
) ist eine Basis von L(v1, . . . , vn).

Beweis Übung. (Den Beweis findet man später im Beweis für Satz 7.2.)

Es ist gerade diese Basis, die benutzt werden soll, um die Basis (u1, . . . , un) von
Lös(A, 0) zu konstruieren.
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Beispiel: Sei A ∈ M(4× 6,R) folgende Matrix:









1 2 3 0 7 −1
1 2 2 4 7 0
2 4 6 1 12 −1
1 2 2 5 5 1









Durch eine geeignete Folge von elementaren Zeilenumformungen läßt sich A in
folgende Matrix A′ ∈ M(4× 6,R) überführen:









1 2 3 0 7 −1
0 0 −1 4 0 1
0 0 0 1 −2 1
0 0 0 0 0 0









und nach Satz 2.4 ist Lös(A′, 0) = Lös(A, 0). Seien v1, v2, v3, v4, v5, v6 die Spalten
von A′. Dann ist (v1, v3, v4) eine Basis von L(v1, v2, v3, v4, v5, v6). Nach Lemma 4.5
gibt es also eindeutige Lösungen

u1 = (λ1
1, λ

1
2, λ

1
3, λ

1
4, λ

1
5, λ

1
6) ∈ Lös(A′, 0) mit λ1

2 = 1, λ1
5 = 0 und λ1

6 = 0,

u2 = (λ2
1, λ

2
2, λ

2
3, λ

2
4, λ

2
5, λ

2
6) ∈ Lös(A′, 0) mit λ2

2 = 0, λ2
5 = 1 und λ2

6 = 0,

u3 = (λ3
1, λ

3
2, λ

3
3, λ

3
4, λ

3
5, λ

3
6) ∈ Lös(A′, 0) mit λ3

2 = 0, λ3
5 = 0 und λ3

6 = 1,

und nach Satz 4.9 ist dann (u1, u2, u3) eine Basis von Lös(A′, 0) und damit auch
von Lös(A, 0). In der Tat ist hier

u1 = (−2, 1, 0, 0, 0, 0) ,

u2 = (−31, 0, 8, 2, 1, 0) ,

u3 = (10, 0, −3, −1, 0, 1) .
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Seien X, Y, Z Mengen. Sind f : X → Y und g : Y → Z Abbildungen, so gibt es
eine Abbildung g ◦ f : X → Z, die definiert ist durch

(g ◦ f)(x) = g(f(x))

für jedes x ∈ X. Die Operation ◦ is assoziativ: Sind f : X → Y , g : Y → Z und
h : Z → W Abbildungen, so gilt h ◦ (g ◦ f) = (h ◦ g) ◦ f , und folglich kann man
einfach h ◦ g ◦ f schreiben.

Die Identitätsabbildung idX : X → X wird definiert durch idX(x) = x für jedes
x ∈ X. Es gilt f ◦ idX = f für jede Abbildung f : X → Y und idX ◦ g = g für
jede Abbildung g : Z → X.

Ist f : X → Y eine Abbildung und X ′ ⊂ X eine Teilmenge von X, so wird die
Teilmenge {y ∈ Y : y = f(x) für ein x ∈ X ′} von Y mit f(X ′) bezeichnet.

Eine Abbildung f : X → Y heißt injektiv, wenn f(x1) 6= f(x2) für alle x1 6= x2.
Die Abbildung f heißt surjektiv, wenn f(X) = Y (d.h., wenn es zu jedem y ∈ Y
ein x ∈ X gibt, so dass f(x) = y). Ist f injektiv und surjektiv, so heißt f bijektiv.

Lemma 5.1 (1) Sei f : X → Y bijektiv; dann gibt es eine eindeutige Abbildung
f−1 : Y → X, so dass f−1 ◦ f = idX und f ◦ f−1 = idY . Die Abbildung f−1 heißt
Umkehrabbildung von f und sie is ebenfalls bijektiv.

(2) Sei f : X → Y eine Abbildung; gibt es dann eine Abbildung g : Y → X mit
g ◦ f = idX und f ◦ g = idY , so ist f bijektiv und es gilt g = f−1.

(3) Seien f : X → Y und g : Y → X Abbildungen mit g ◦ f = idX . Dann ist f
injektiv und g surjektiv.

Beweis Übung.

Im folgenden sei K ein Körper und seien V, W Vektorräume über K.

Eine Abbildung f : V →W heißt linear oder Homomorphismus, wenn

f(λu+ µv) = λf(u) + µf(v)

für alle u, v ∈ V und alle λ, µ ∈ K gilt. Die Menge aller Homomorphismen von
V nach W wird mit Hom(V,W ) bezeichnet. Sei f ∈ Hom(V,W ); dann gilt

(1) f(u+ v) = f(u) + f(v) für alle u, v ∈ V ,

(2) f(λv) = λf(v) für alle v ∈ V , λ ∈ K,

40
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da f(λv) = f(λv + 00) = λf(v) + 0f(0) = λf(v) und

f(u+ v) = f(1u+ 1v) = 1f(u) + 1f(v) = f(u) + f(v) .

Sind umgekehrt (1) und (2) erfüllt, so ist f linear, da

f(λu+ µv) = f(λu) + f(µv) = λf(u) + µf(v) .

Ist f : V →W eine lineare Abbildung, so gilt insbesondere f(0) = 0, da

f(0) = f(00 + 00) = 0f(0) + 0f(0) = 0 + 0 = 0 .

Ferner ist f(−v) = −f(v), da f(−v) = f((−1)v) = (−1)f(v) = −f(v) für alle
v ∈ V . Sind v1, . . . , vm ∈ V (mit m ≥ 2), dann gilt

f(λ1v1 + · · ·+ λmvm) = λ1f(v1) + · · ·+ λmf(vm)

für alle λ1, . . . , λm ∈ K.

Satz 5.1 Sei A = (aij) ∈ M(m × n,K) und seien v1, . . . , vn ∈ Km die Spalten
von A (es gilt also vj = (a1j , . . . , amj) für jedes j = 1, . . . , n). Sei ϕA : Kn → Km

die Abbildung, die definiert ist durch

ϕA((λ1, . . . , λn)) = λ1v1 + · · ·+ λnvn

für jedes (λ1, . . . , λn) ∈ Kn. Dann ist ϕA linear (d.h., ϕA ∈ Hom(Kn, Km)). Sei
umgekehrt f ∈ Hom(Kn, Km); dann gibt es ein eindeutiges A ∈ M(m×n,K), so
dass f = ϕA.

Beweis Seien u, v ∈ Kn mit u = (λ1, . . . , λn) und v = (µ1, . . . , µn), und seien
λ, µ ∈ K. Dann ist

ϕA(λu+ µv) = ϕA((λλ1 + µµ1, . . . , λλn + µµn))

= (λλ1 + µµ1)v1 + · · ·+ (λλn + µµn)vn

= (λλ1v1 + · · ·+ λλnvn) + (µµ1v1 + · · ·+ µµnvn)

= λ(λ1v1 + · · ·+ λnvn) + µ(µ1v1 + · · ·+ µnvn)

= λϕA((λ1, . . . , λn)) + µϕA((µ1, . . . , µn)) = λϕA(u) + µϕA(v) .

Damit ist die Abbildung ϕA linear. Sei umgekehrt f ∈ Hom(Kn, Km) und sei
(e1, . . . , en) die kanonische Basis von Kn. Dann sind f(e1), . . . , f(en) Elemente
aus Km, sei also A = (aij) ∈ M(m × n,K) die Matrix, die f(e1), . . . , f(en) als
Spalten hat (und folglich ist (a1j , a2j, . . . , amj) = f(ej) für j = 1, . . . , n). Sei
(λ1, . . . , λn) ∈ Kn; dann ist (λ1, . . . , λn) = λ1e1 + · · ·+ λnen und damit ist

f((λ1, . . . , λn)) = f(λ1e1 + · · ·+ λnen)

= λ1f(e1) + · · ·+ λnf(en) = ϕA((λ1, . . . , λn)) ,
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d.h., f = ϕA. Ferner ist es klar, dass A eindeutig durch f bestimmt ist, da
f(ej) = ϕA(ej) die j te Spalte von A sein muss.

Sei A = (aij) ∈ M(m× n,K). Dann gilt

ϕA((λ1, . . . , λn)) =
(

n
∑

j=1

a1jλj, . . . ,
n

∑

j=1

amjλj

)

für alle (λ1, . . . , λn) ∈ Kn, da

ϕA((λ1, . . . , λn)) = λ1v1 + · · ·+ λnvn

= λ1(a11, . . . , am1) + · · ·+ λn(a1n, . . . , amn) =
(

n
∑

j=1

a1jλj, . . . ,
n

∑

j=1

amjλj

)

,

wobei v1, . . . , vn die Spalten von A sind.

Es ist klar, dass für jeden Vektorraum V die Identitätsabbildung idV : V → V
linear ist, d.h., idV ∈ Hom(V, V ).

Lemma 5.2 Seien f ∈ Hom(U, V ), g ∈ Hom(V,W ), (wobei U ein weiterer
Vektorraum über K ist). Dann ist die Abbildung g ◦ f : U → W linear, d.h.,
g ◦ f ∈ Hom(U,W ).

Beweis Seien u, v ∈ U und λ, µ ∈ K. Dann ist

(g ◦ f)(λu+ µv) = g(f(λu+ µv)) = g(λf(u) + µf(v))

= λg(f(u)) + µg(f(v)) = λ(g ◦ f)(u) + µ(g ◦ f)(v) .

Damit ist die Abbildung g ◦ f : U →W linear.

Sei f ∈ Hom(V,W ); dann heißt f Isomorphismus, wenn es ein g ∈ Hom(W,V )
mit g ◦ f = idV und f ◦ g = idW gibt. In diesem Fall ist nach Lemma 5.1 (2)
die Abbildung f bijektiv und g ist die Umkehrabbildung f−1 : W → V . Aber die
Umkehrung ist auch richtig:

Lemma 5.3 Ist f ∈ Hom(V,W ) bijektiv, so ist die Umkehrabbildung f−1 linear,
d.h., f−1 ∈ Hom(W,V ), und damit ist f ein Isomorphismus.

Beweis Seien w, w′ ∈W und λ, µ ∈ K. Dann gilt

f(f−1(λw + µw′)) = λw + µw′

= λf(f−1(w)) + µf(f−1(w′)) = f(λf−1(w) + µf−1(w′))

und daraus folgt, dass f−1(λw + µw′) = λf−1(w) + µf−1(w′).

Ist f ∈ Hom(V,W ) ein Isomorphismus, dann ist f−1 ∈ Hom(W,V ) ebenfalls ein
Isomorphismus.
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Lemma 5.4 Sei f : V → W eine lineare Abbildung und U ein Untervektorraum
von V . Dann ist f(U) ein Untervektorraum von W .

Beweis Da 0 = f(0) und 0 ∈ U , ist 0 ∈ f(U). Seien w, w′ ∈ f(U). Es gibt also
u, u′ ∈ U mit f(u) = w und f(u′) = w′ und folglich ist

f(u+ u′) = f(u) + f(u′) = w + w′ .

Aber u+u′ ∈ U , da U ein Untervektorraum von V ist, und daher ist w+w′ ∈ f(U).
Sei nun λ ∈ K; dann ist f(λu) = λf(u) = λw und λu ∈ U . Damit ist λw ∈ f(U)
für jedes λ ∈ K. Folglich ist f(U) ein Untervektorraum von W .

Für eine lineare Abbildung f : V →W setze

Kern f = {v ∈ V : f(v) = 0} und Bild f = f(V ) .

Lemma 5.5 Sei f : V →W eine lineare Abbildung. Dann ist Kern f ein Unter-
vektorraum von V und Bild f ein Untervektorraum von W .

Beweis Da f(0) = 0, ist 0 ∈ Kern f . Seien v, v′ ∈ Kern f und λ ∈ K. Dann gilt
f(v+ v′) = f(v)+ f(v′) = 0+0 = 0 und f(λv) = λf(v) = λ 0 = 0, und damit ist
v + v′ ∈ Kern f und λv ∈ Kern f . Folglich ist Kern f ein Untervektorraum von
V . Nach Lemma 5.4 ist Bild f = f(V ) ein Untervektorraum von W .

Lemma 5.6 Eine lineare Abbildung f : V → W ist injektiv genau dann, wenn
Kern f = {0}.

Beweis Ist f injektiv, so gilt insbesondere, dass f(v) 6= f(0) = 0 für alle v 6= 0
und damit ist Kern f = {0}. Nehme umgekehrt an, dass Kern f = {0} und seien
u, v ∈ V mit u 6= v. Dann ist u+ (−v) 6= 0 und daher ist auch f(u+ (−v)) 6= 0.
Aber f(u+ (−v)) = f(u) + (−f(v)) und daraus ergibt sich, dass f(u) 6= f(v).

Lemma 5.7 Sei b ∈ Km und x ∈ Kn; dann gilt x ∈ Lös(A, b) genau, wenn
ϕA(x) = b. Insbesondere ist Lös(A, 0) = KernϕA.

Beweis Dies ist klar.

Lemma 5.8 Sei f : V →W eine lineare Abbildung. Dann gilt

f(L(v1, . . . , vm)) = L(f(v1), . . . , f(vm))

für alle v1, . . . , vm ∈ V .
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Beweis Für alle λ1, . . . , λm ∈ K ist

f(λ1v1 + · · ·+ λmvm) = λ1f(v1) + · · ·+ λmf(vm)

und daraus folgt unmittelbar, dass f(L(v1, . . . , vm)) = L(f(v1), . . . , f(vm)).

Lemma 5.9 Sei U ein endlichdimensionaler Untervektorraum von V und sei
f : V → W eine lineare Abbildung. Dann ist der Untervektorraum f(U) von W
auch endlichdimensional und es gilt dim f(U) ≤ dimU .

Beweis Sei (u1, . . . , um) eine Basis von U . Nach Lemma 5.8 ist dann

f(U) = f(L(u1, . . . , um)) = L(f(u1), . . . , f(um)) ,

und daraus folgt nach Satz 4.3 und Satz 4.6 (3), dass f(U) endlichdimensional
ist und dim f(U) ≤ m = dimU .

Satz 5.2 (Dimensionsformel) Sei f : V → W eine lineare Abbildung. Ist V
endlichdimensional, so sind Kern f und Bild f auch endlichdimensional und

dimV = dim Kern f + dim Bild f .

Beweis Nach Satz 4.4 und Lemma 5.9 sind Kern f und Bild f endlichdimensional.
Sei (u1, . . . , um) eine Basis von Kern f und (w1, . . . , wp) eine Basis von Bild f (mit
m = 0 bzw. p = 0, falls Kern f = {0} bzw. Bild f = {0}). Da wi ∈ Bild f = f(V ),
gibt es für jedes i = 1, . . . , p einen Vektor vi ∈ V , so dass f(vi) = wi. Es wird
gezeigt, dass (u1, . . . , um, v1, . . . , vp) eine Basis von V ist.

V = L(u1, . . . , um, v1, . . . , vp): Sei v ∈ V ; da f(v) ∈ Bild f und (w1, . . . , wp) eine
Basis von Bild f ist, gibt es µ1, . . . , µp ∈ K, so dass f(v) = µ1w1 + · · ·+ µpwp.
Setze v′ = µ1v1 + · · ·+ µpvp; dann ist

f(v′) = f(µ1v1 + · · ·+µpvp) = µ1f(v1)+ · · ·+µpf(vp) = µ1w1 + · · ·+µpwp = f(v)

und damit ist f(v+ (−v′)) = f(v) + (−f(v′)) = 0, d.h., v+ (−v′) ∈ Kern f . Also
gibt es λ1, . . . , λm ∈ K, so dass v + (−v′) = λ1u1 + · · ·+ λmum und folglich ist

v = (v + (−v′)) + v′ = λ1u1 + · · ·+ λmum + µ1v1 + · · ·+ µpvp ,

d.h., v ∈ L(u1, . . . , um, v1, . . . , vp).

Die Vektoren u1, . . . , um, v1, . . . , vp sind linear unabhängig: Nehme also an, dass
λ1u1 + · · ·+ λmum + µ1v1 + · · ·+ µpvp = 0. Dann ist

0 = f(0) = f(λ1u1 + · · ·+ λmum + µ1v1 + · · ·+ µpvp)

= λ1f(u1) + · · ·+ λmf(um) + µ1f(v1) + · · ·+ µpf(vp) = µ1w1 + · · ·+ µpwp ,
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da u1, . . . , um ∈ Kern f und f(vi) = wi für i = 1, . . . , p. Aber w1, . . . , wp
sind linear unabhängig und daraus folgt, dass µi = 0 für i = 1, . . . , p. Nun ist
λ1u1+· · ·+λmum = 0 und die Vektoren u1, . . . , um sind linear unabhängig. Damit
gilt auch λj = 0 für j = 1, . . . , m, d.h., die Vektoren u1, . . . , um, v1, . . . , vp sind
linear unabhängig.

Dies zeigt also, dass (u1, . . . , um, v1, . . . , vp) eine Basis von V ist, und insbesondere
ist dimV = m+ p = dim Kern f + dim Bild f .

Satz 5.3 Seien V, W endlichdimensional mit dimV = dimW , sei f : V → W
eine lineare Abbildung. Dann sind äquivalent:

(1) f ist ein Isomorphismus.

(2) f ist injektiv.

(3) f ist surjektiv.

Beweis Nach Lemma 5.6 ist f injektiv genau dann, wenn Kern f = {0}, und
Kern f = {0} genau dann, wenn dim Kern f = 0. Andererseits ist nach Satz 4.7
f surjektiv genau dann, wenn dim Bild f = dimW . Aber nach Satz 5.2 ist
dim Kern f = 0 genau dann, wenn dim Bild f = dimW , da dimV = dimW .
Folglich ist f injektiv genau dann, wenn f surjektiv ist (und nach Lemma 5.3 ist
f ein Isomorphismus genau dann, wenn f bijektiv ist).

Eine lineare Abbildung f : V → V nennt man einen Endomorphismus von V . Ein
Endomorphismus, der auch ein Isomorphismus ist, heißt Automorphismus von V .
Mit f ist auch f−1 ein Automorphismus von V .

Sei V endlichdimensional und f ein Endomorphismus von V . Nach Satz 5.3 sind
dann äquivalent:

(1) f ist ein Automorphismus.

(2) f ist injektiv.

(3) f ist surjektiv.

(Die folgenden Beispiele zeigen, dass diese Behauptung im Allgemeinen nicht
richtig ist, wenn V nicht endlichdimensional ist. Sei V = Abb(N, K) und definiere
f, g : V → V durch f({λn}n≥0) = {λ′n}n≥0 und g({λn}n≥0) = {λ′′n}n≥0, wobei
λ′n = λn+1 für alle n ≥ 0 und λ′′0 = 0, λ′′n = λn−1 für alle n ≥ 1. Dann sieht man
leicht, dass f und g Endomorphismen von V sind. Die Abbildung f ist surjektiv
aber nicht injektiv und g ist injektiv aber nicht surjektiv.)
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Lemma 5.10 Sei f : V → W eine lineare Abbildung und seien v1, . . . , vm ∈ V .

(1) Ist f injektiv und sind v1, . . . , vm linear unabhängig, so sind f(v1), . . . , f(vm)
linear unabhängig.

(2) Ist f surjektiv und ist L(v1, . . . , vm) = V , so ist L(f(v1), . . . , f(vm)) = W .

(3) Ist f ein Isomorphismus und ist (v1, . . . , vm) eine Basis von V , dann ist auch
(f(v1), . . . , f(vm)) eine Basis von W .

(4) Ist (v1, . . . , vm) eine Basis von V und (f(v1), . . . , f(vm)) eine Basis von W ,
dann ist f ein Isomorphismus.

Beweis (1) Seien λ1, . . . , λm ∈ K mit λ1f(v1) + · · ·+ λmf(vm) = 0. Dann gilt

f(λ1v1 + · · ·+ λmvm) = λ1f(v1) + · · ·+ λmf(vm) = 0

und damit λ1v1 + · · · + λmvm = 0, da f injektiv ist. Folglich ist λj = 0 für
jedes j, da v1, . . . , vm linear unabhängig sind. Also sind f(v1), . . . , f(vm) linear
unabhängig.

(2) Dies folgt unmittelbar aus Lemma 5.8.

(3) Dies folgt unmittelbar aus (1) und (2).

(4) Nach Lemma 5.8 gilt

f(V ) = f(L(v1, . . . , vm)) = L(f(v1), . . . , f(vm)) = W ,

d.h., f ist surjektiv. Aber dimV = n = dimW und daraus folgt nach Satz 5.2,
dass f ein Isomorphismus ist. (Man kann auch zeigen, dass f injektiv ist, ohne
Satz 5.2 anzuwenden: Sei v ∈ Kern f ; da (v1, . . . , vm) eine Basis von V ist, gibt
es λ1, . . . , λm ∈ K mit λ1v1 + · · ·+ λmvm = 0 und dann gilt

0 = f(v) = f(λ1v1 + · · ·+ λmvm) = λ1f(v1) + · · ·+ λmf(vm) .

Daraus folgt, dass λj = 0 für jedes j = 1, . . . , m, da f(v1), . . . , f(vm) linear
unabhängig sind; d.h., v = 0 und damit ist Kern f = {0}.)

Lemma 5.11 Sei V endlichdimensional, sei (v1, . . . , vm) eine Basis von V und
w1, . . . , wm ∈W . Dann gibt es eine eindeutige lineare Abbildung f : V →W , so
dass f(vj) = wj für jedes j = 1, . . . , m.

Beweis Nach Satz 4.1 gibt es zu jedem v ∈ V genau ein (λ1, . . . , λm) ∈ Km, so
dass v = λ1v1 + · · ·+ λmvm. Folglich kann eine Abbildung f : V → W definiert
werden durch

f(v) = λ1w1 + · · ·+ λmwm , falls v = λ1v1 + · · ·+ λmvm .
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Dann ist f linear: Seien u, v ∈ V , λ, µ ∈ K mit u = λ1v1 + · · · + λmvm und
v = µ1v1 + · · ·+ µmvm. Folglich ist

λu+ µv = λ(λ1v1 + · · ·+ λmvm) + µ(µ1v1 + · · ·+ µmvm)

= (λλ1 + µµ1)v1 + · · ·+ (λλm + µµm)vm

und damit ist per Definition

f(λu+ µv) = (λλ1 + µµ1)w1 + · · ·+ (λλm + µµm)wm

= λ(λ1w1 + · · ·+ λmwm) + µ(µ1w1 + · · ·+ µmwm) = λf(u) + µf(v) .

Ferner gilt offensichtlich f(vj) = wj für jedes j = 1, . . . , m.

Eindeutigkeit: Seien f, g ∈ Hom(V,W ) mit f(vj) = wj = g(vj) für jedes j. Sei
v ∈ V ; es gibt also λ1, . . . , λm ∈ K, so dass v = λ1v1 + · · ·+ λmvm, and dann ist

f(v) = f(λ1v1 + · · ·+ λmvm) = λ1f(v1) + · · ·+ λmf(vm)

= λ1g(v1) + · · ·+ λmg(vm) = g(λ1v1 + · · ·+ λmvm) = g(v) ;

d.h., f = g.

Wenn es einen Isomorphismus f : V → W gibt, so heißen V und W isomorph.
(Da für jeden Isomorphismus f : V → W auch f−1 : W → V ein Isomorphismus
ist, sind die Rollen von V und W in dieser Definition symmetrisch.)

Satz 5.4 Ist V endlichdimensional, so sind V und W isomorph genau dann,
wenn W endlichdimensional ist und dimV = dimW .

Beweis Sind V und W isomorph, dann folgt unmittelbar aus Lemma 5.10 (3),
dass W endlichdimensional ist und dimV = dimW . Sei umgekehrt W endlich-
dimensional mit dim V = dimW = n, und sei (v1, . . . , vm) eine Basis von V und
(w1, . . . , wm) eine Basis von W . Nach Lemma 5.11 gibt es eine lineare Abbildung
f : V → W mit f(vj) = wj für jedes j = 1, . . . , m und nach Lemma 5.10 (4) ist
dann f ein Isomorphismus, d.h., V und W sind isomorph.

Ist V endlichdimensional mit dimV = n, so ist nach Satz 5.4 V isomorph zu Kn.

Sei f : V → W eine lineare Abbildung. Ist der Untervektorraum Bild f von W
endlichdimensional, dann nennt man dim Bild f den Rang von f und bezeichnet
diese Zahl mit rang f .

Lemma 5.12 Seien U, V und W endlichdimensionale Vektorräume über K und
seien f ∈ Hom(U, V ), g ∈ Hom(V,W ) (also ist g ◦ f ∈ Hom(U,W )). Dann gilt:

(1) rang g ◦ f ≤ min{rang f, rang g}.
(2) Ist f surjektiv, so ist rang g ◦ f = rang g.

(3) Ist g injektiv, so ist rang g ◦ f = rang f .
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Beweis (1) Es gilt Bild (g ◦ f) = (g ◦ f)(U) = g(f(U)) ⊂ g(V ) = Bild g und
damit ist rang g ◦ f = dim Bild (g ◦ f) ≤ dim Bild g = rang g. Andererseits gilt
nach Lemma 5.9, dass

rang g ◦ f = dim(g ◦ f)(U) = dim g(f(U)) ≤ dim f(U) = rang f .

(2) Ist f surjektiv, so ist (g ◦ f)(U) = g(f(U)) = g(V ) und damit

rang g ◦ f = dim(g ◦ f)(U) = dim g(V ) = rang g .

(3) Sei (v1, . . . , vm) eine Basis von f(U). Nach Lemma 5.10 (1) sind die Vektoren
g(v1), . . . , g(vm) linear unabhängig und nach Lemma 5.8 ist

(g ◦ f)(U) = g(f(U)) = g(L(v1, . . . , vm)) = L(g(v1), . . . , g(vm)) ,

d.h., (g(v1), . . . , g(vm)) ist eine Basis von (g ◦ f)(U). Insbesondere ist

rang g ◦ f = dim(g ◦ f)(U) = m = dim f(U) = rang f .
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Im Folgenden sei K ein Körper. Sei A = (aij) ∈ M(ℓ×m,K) eine ℓ×m Matrix
und B = (ajk) ∈ M(m × n,K) eine m × n Matrix über K. Dann gibt es die
linearen Abbildungen ϕA ∈ Hom(Km, Kℓ) und ϕB ∈ Hom(Kn, Km) und damit
nach Lemma 5.1 die lineare Abbildung ϕA ◦ ϕB ∈ Hom(Kn, Kℓ). Nach Satz 5.1
gibt es also eine eindeutige Matrix C = (cik) ∈ M(ℓ×n,K), so dass ϕC = ϕA◦ϕB.

Lemma 6.1 Für alle i = 1, . . . , ℓ, k = 1, . . . , n gilt cik =
m
∑

j=1

aijbjk.

Beweis Sei (e1, . . . , en) die kanonische Basis von Kn. Seien ferner v1, . . . , vm die
Spalten von A, v′1, . . . , v

′
n die Spalten von B und v′′1 , . . . , v

′′
n die Spalten von C.

Für jedes k = 1, . . . , n gilt dann

(c1k, . . . , cℓk) = v′′k = ϕC(ek) = (ϕA ◦ ϕB)(ek) = ϕA(ϕB(ek))

= ϕA(v′k) = ϕA((b1k, . . . , bmk)) = b1kv1 + · · ·+ bmkvm

= b1k(a11, . . . , aℓ,1) + · · ·+ bmk(a1m, . . . , aℓ,m)

=
(

m
∑

j=1

a1jbjk, . . . ,

m
∑

j=1

aℓjbjk

)

und damit gilt cik =
m
∑

j=1

aijbjk für alle i = 1, . . . , ℓ, k = 1, . . . , n.

Seien A = (aij) ∈ M(ℓ×m,K) und B = (ajk) ∈ M(m× n,K) und definiere eine
ℓ× n Matrix C = (cik) ∈ M(ℓ× n,K) über K durch

cik =
m

∑

j=1

aijbjk

für alle i = 1, . . . , ℓ, k = 1, . . . , n. Diese Matrix C heißt das Produkt von A und
B und wird mit AB bezeichnet. Nach Lemma 6.1 gilt dann

ϕA ◦ ϕB = ϕAB .

Satz 6.1 Seien A ∈ M(ℓ × m,K), B ∈ M(m × n,K) und C ∈ M(n × p,K).
Dann gilt (AB)C = A(BC). (Die Matrizenmultiplikation ist also assoziativ.)

Beweis Nach Lemma 6.1 gilt

ϕ(AB)C = ϕAB ◦ ϕC = (ϕA ◦ ϕB) ◦ ϕC = ϕA ◦ (ϕB ◦ ϕC) = ϕA ◦ ϕBC = ϕA(BC)

49
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und daraus folgt nach der Eindeutigkeit in Satz 5.1, dass (AB)C = A(BC).

Seien A1 ∈ M(n0 × n1, K), A2 ∈ M(n1 × n2, K), . . . , Am ∈ M(nm−1 × nm, K).
Mit Hilfe von Satz 6.1 kann man durch Induktion zeigen, dass das ‘Produkt’
dieser Matrizen unabhängig von der Reihenfolge der einzelnen Multiplikationen
ist; dieses ‘Produkt’ wird mit A1A2 · · ·Am bezeichnet.

Sei A = (aij) ∈ M(m× n,K) und sei u = (λ1, . . . , λn) ∈ Kn; dann gilt







a11 · · · a1n
...

...
am1 · · · amn

















λ1
...
·
λn











=







µ1
...
µm






,

wobei (µ1, . . . , µm) = ϕA(u). Folglich ist ϕA(u) = Au, wenn u bzw. ϕA(u) als
Elemente aus M(n×1, K) bzw. M(m×1, K) betrachtet wird. Aus diesem Grund
schreibt man oft Au statt ϕA(u). Seien

A =

(

0 1
0 0

)

, B =

(

1 0
0 0

)

∈ M(2× 2, K) .

Dann sind auch AB und BA Elemente von M(2× 2, K) und es gilt

AB =

(

0 1
0 0

) (

1 0
0 0

)

=

(

0 0
0 0

)

,

BA =

(

1 0
0 0

) (

0 1
0 0

)

=

(

0 1
0 0

)

.

Da AB 6= BA, ist die Matrizenmultiplikation nicht kommutativ; ferner ist sie
nicht nullteilerfrei, da A 6= 0, B 6= 0 aber AB = 0.

Für jedes n ≥ 1 sei En ∈ M(n× n,K) folgende Matrix:

En =











1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1











.

Es gilt also En = (δij), wobei δij =

{

1 falls i = j ,
0 sonst .

En heißt Einheitsmatrix.

Man sieht leicht, dass AEn = A und EnB = B für alle A ∈ M(m × n,K) und
alle B ∈ M(n × p,K). Ferner gilt ϕEn

= idKn. Man schreibt oft einfach E statt
En, wenn es klar ist, was n ist.

Eine Matrix A heißt quadratisch, wenn sie genauso viele Zeilen wie Spalten hat,
d.h., wenn A ∈ M(n× n,K) für ein n ≥ 1. Insbesondere ist En quadratisch.
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Lemma 6.2 Sei A ∈ M(n×n,K). Dann gibt es höchstens ein A′ ∈ M(n×n,K),
so dass AA′ = A′A = En.

Beweis Seien B, C ∈ M(n× n,K) mit AB = BA = En = AC = CA. Dann gilt

B = BEn = B(AC) = (BA)C = EnC = C .

Eine quadratische Matrix A ∈ M(n×n,K) heißt invertierbar, wenn es eine Matrix
A′ ∈ M(n×n,K) gibt, so dass AA′ = A′A = En. Nach Lemma 6.2 ist diese Matrix
A′ eindeutig und sie wird mit A−1 bezeichnet, d.h., A−1 ist die eindeutige Matrix
mit AA−1 = A−1A = En.

Lemma 6.3 (1) Die Einheitsmatrix En ist invertierbar und E−1
n = En.

(2) Ist A ∈ M(n × n,K) invertierbar, so ist auch A−1 invertierbar und es gilt
(A−1)−1 = A.

(3) Sind A, B ∈ M(n × n,K) invertierbar, so ist auch AB invertierbar und es
gilt (AB)−1 = B−1A−1.

Beweis (1) Dies ist klar, da EnEn = EnEn = En.

(2) Dies ist auch klar, da A−1A = AA−1 = En.

(3) Dies folgt aus der Assoziativität der Matrizenmultiplikation, da

(AB)(B−1A−1) = A(BB−1)A−1 = AEnA
−1 = AA−1 = En

und (B−1A−1)(AB) = B−1(A−1A)B = B−1EnB = B−1B = En.

Satz 6.2 Seien A, B ∈ M(n × n,K) mit AB = En. Dann sind A und B schon
invertierbar und es gilt B = A−1 und A = B−1.

Beweis Nach Lemma 6.1 gilt ϕA ◦ ϕB = ϕAB = ϕEn
= idKn und daraus ergibt

sich nach Lemma 5.1 (3), dass ϕA surjektiv und ϕB injectiv ist. Folglich sind
nach Satz 5.3 ϕA und ϕB beide Automorphismen. Nach Satz 5.1 gibt es dann
A′, B′ ∈ M(n× n,K), so dass ϕ−1

A = ϕA′ und ϕ−1
B = ϕB′ und folglich ist

ϕAA′ = ϕA ◦ ϕA′ = ϕA ◦ ϕ−1
A = idKn

= ϕEn
= idKn = ϕ−1

A ◦ ϕA = ϕA′ ◦ ϕA = ϕA′A .

Nach der Eindeutigkeit in Satz 5.1 ist also AA′ = En = A′A und genauso gilt
BB′ = En = B′B. Daher sind A und B invertierbar. Ferner gilt

B = EnB = (A−1A)B = A−1(AB) = A−1En = A−1

und A = AEn = A(BB−1) = (AB)B−1 = EnB
−1 = B−1.

Bisher wurden unter elementaren Zeilenumformungen die folgenden Operationen
verstanden:
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(I) Addition eines Vielfachen einer Zeile zu einer anderen Zeile.

(II) Vertauschen zweier Zeilen.

Es erweist sich aber als nützlich, eine dritte Art von elementarer Zeilenumformung
zuzulassen, und zwar:

(III) Multiplikation einer Zeile mit einem Skalar λ ∈ K, λ 6= 0.

Satz 2.4 gilt auch für Umformungen der dritten Art: Wird (A, b) durch eine
elementare Zeilenumformung vom Typ III zu einer Matrix (A′, b′) verändert, so
gilt Lös(A, b) = Lös(A′, b′).

Satz 6.3 Für eine quadratische Matrix A ∈ M(n× n,K) sind äquivalent:

(1) Die Matrix A ist invertierbar.

(2) Es gibt eine Matrix B ∈ M(n× n,K), so dass BA = En.

(3) Es gibt eine Matrix C ∈ M(n× n,K), so dass AC = En.

(4) Der Endomorphismus ϕA ist ein Automorphismus von Kn.

(5) Lös(A, 0) = {0}.
(6) Das zu (A, b) gehörige Gleichungssystem ist eindeutig lösbar für jedes b ∈ Kn.

(7) A läßt sich durch eine endliche Folge von elementaren Zeilenumformungen
in eine Matrix A′ = (a′ij) folgender Gestalt überführen:





























∗ · · · · · · · ·
0 ∗ · · · · · · ·
0 0 ∗ · · · · · ·
0 0 0 ∗ · · · · ·
0 0 0 0 ∗ · · · ·
0 0 0 0 0 ∗ · · ·
0 0 0 0 0 0 ∗ · ·
0 0 0 0 0 0 0 ∗ ·
0 0 0 0 0 0 0 0 ∗





























.

Es gilt also a′ii 6= 0 für jedes i = 1, . . . , n und a′ij = 0, falls i > j.

(8) A läßt sich durch eine endliche Folge von elementaren Zeilenumformungen
in die Einheitsmatrix En überführen.

Beweis (5) ⇔ (6) ⇔ (7): Dies folgt aus Satz 2.5.

(4) ⇔ (5): Dies folgt aus Satz 5.3, Lemma 5.6 und Lemma 5.7.

(1) ⇒ (2) und (1) ⇒ (3) sind klar.
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(2) ⇒ (1) und (3) ⇒ (1): Dies folgt aus Satz 6.2.

(4) ⇒ (1): Nach Satz 5.1 gibt es eine eindeutige Matrix A′ ∈ M(n × n,K) mit
ϕ−1
A = ϕA′. Aber ϕA′A = ϕA′ ◦ ϕA = ϕ−1

A ◦ ϕA = idKn = ϕEn
und daraus

folgt zusammen mit der Eindeutigkeit in Satz 5.1, dass A′A = En. Genauso gilt
AA′ = En. Damit ist A invertierbar (und ϕ−1

A = ϕA−1).

(1) ⇒ (4): Nach Lemma 6.1 ist

ϕA−1 ◦ ϕA = ϕA−1A = ϕEn
= idKn = ϕEn

= ϕAA−1 = ϕA ◦ ϕA−1

und damit ist ϕA ein Automorphismus.

(8) ⇒ (5) ist klar.

(7) ⇒ (8): Übung.

Sei A ∈ M(n×n,K) invertierbar. Nach Satz 6.3 ist dann ϕA ein Automorphismus
von Kn und der Beweis für diesen Satz zeigt, dass ϕ−1

A = ϕA−1 .

Sei 1 ≤ i, j ≤ n mit i 6= j und λ ∈ K mit λ 6= 0. Seien Sn(i, λ), Pn(i, j) und
Qn(i, j, λ) folgende Elemente von M(n× n,K):

Sn(i, λ) =





























1
. . .

1
λ

1
. . .

. . .

1





























← i te Zeile

Pn(i, j) =









































1
. . .

1
0 1

1
. . .

1
1 0

1
. . .

1









































← i-te Zeile

← j-te Zeile

i-te Spalte ↑ ↑ j-te Spalte
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Qn(i, j, λ) =









































1
. . .

1
1 λ

1
. . .

1
1

1
. . .

1









































← i-te Zeile

↑ j-te Spalte

(Außer der eingetragenen oder der durch Punkte angedeuteten Komponenten sind
dabei alle Komponenten gleich Null.) Solche Matrizen werden Elementarmatrizen
genannt.

Lemma 6.4 Elementarmatrizen sind invertierbar mit Sn(i, λ)−1 = Sn(i, λ
−1),

Pn(i, j)
−1 = Pn(i, j) und Qn(i, j, λ)−1 = Qn(i, j,−λ).

Beweis Übung.

Lemma 6.5 Sei A ∈ M(m × n,K) und sei 1 ≤ i, j ≤ m mit i 6= j und λ ∈ K
mit λ 6= 0. Dann gilt:

(1) Die Matrix Sm(i, λ)A erhält man durch Multiplikation der i-ten Zeile von A
mit dem Skalar λ.

(2) Die Matrix Pm(i, j)A erhält man durch Vertauschung der i-ten und der j-ten
Zeilen von A.

(3) Die Matrix Qm(i, j, λ)A erhält man durch Addition des λ-fachen der j-ten
Zeile zu der i-ten Zeile von A.

Beweis Übung.

Multiplikation von links mit einer Elementarmatrix bewirkt also eine elementare
Zeilenumformung. Ferner entsteht jede elementare Zeilenumformung auf diese
Weise.

Satz 6.4 Zu jeder Matrix A ∈ M(m × n,K) gibt es eine invertierbare Matrix
P ∈ M(m×m,K), so dass PA Zeilen-Stufen-Form hat.



6 Matrizen 55

Beweis Nach Satz 2.6 gibt es eine endliche Folge β1, . . . , βp von elementaren
Zeilenumformungen, die A in eine Matrix A′ mit Zeilen-Stufen-Form überführt.
Für jedes j = 1, . . . , p sei Bj ∈ M(m ×m,K) die Elementarmatrix, die durch
Multiplikation von links die Umformung βj bewirkt. Dann giltA′ = Bp · · ·B2B1A.
Setze P = Bp · · ·B2B1; PA hat also Zeilen-Stufen-Form und nach Lemma 6.3 (3)
und Lemma 6.4 ist P invertierbar.

Satz 6.5 Jede invertierbare Matrix ist Produkt von Elementarmatrizen.

Beweis Sei A ∈ M(n× n,K) invertierbar. Nach Satz 6.3 ((1)⇔ (8)) gibt es eine
Folge β1, . . . , βp von elementaren Zeilenumformungen, die A in die Matrix En
überführt. Für jedes j sei Bj ∈ M(m × m,K) die Elementarmatrix, die durch
Multiplikation von links die Umformung βj bewirkt. Dann gilt En = Bp · · ·B2B1A
und folglich ist

A = EnA = (Bp · · ·B2B1)
−1Bp · · ·B2B1A

= (Bp · · ·B2B1)
−1En = (Bp · · ·B2B1)

−1 = B−1
1 B−1

2 · · ·B−1
p .

Nach Lemma 6.5 sind aber B−1
1 , B−1

2 , . . . , B−1
p auch Elementarmatrizen.

Die Umkehrung von Satz 6.5 ist natürlich auch richtig: Nach Lemma 6.3 (3) und
Lemma 6.4 ist jedes Produkt von Elementarmatrizen invertierbar.

Satz 6.6 Sei A ∈ M(n × n,K) invertierbar und sei β1, . . . , βp eine Folge von
elementaren Zeilenumformungen, die A in die Einheitsmatrix En überführt. Dann
überführt die Folge β1, . . . , βp die Einheitsmatrix En in die Matrix A−1.

Beweis Für jedes j sei Bj die Elementarmatrix, die durch Multiplikation von
links die Umformung βj bewirkt. Dann ist En = Bp · · ·B2B1A, und die Folge
β1, . . . , βp überführt die Matrix En in die Matrix Bp · · ·B2B1En. Aber

Bp · · ·B2B1En = Bp · · ·B2B1 = A−1 ,

da (Bp · · ·B2B1)A = En.

Im Folgenden sei V ein endlichdimensionaler K-Vektorraum mit dimV = n ≥ 1.

Sei (u1, . . . , un) eine Basis von V . Sind v1, . . . , vn beliebige Vektoren aus V , so
gibt es nach Satz 4.1 eine eindeutige Matrix P = (pij) ∈ M(n× n,K), so dass

vj = p1ju1 + · · ·+ pnjun

für jedes j = 1, . . . , n. (Für jedes j ist also p1ju1 + · · · + pnjun die eindeutige
Darstellung von vj als Linearkombination von u1, . . . , un.) Natürlich kommt jede
Matrix P = (pij) ∈ M(n × n,K) auf diese Weise vor, da umgekehrt Vektoren
v1, . . . , vn ∈ V einfach durch vj = p1ju1 + · · ·+ pnjun für j = 1, . . . , n definiert
werden können.
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Lemma 6.6 Sei (u1, . . . , un) eine Basis von V und seien v1, . . . , vn ∈ V . Sei
P = (pij) ∈ M(n× n,K) die eindeutige Matrix mit

vj = p1ju1 + · · ·+ pnjun

für jedes j = 1, . . . , n. Dann ist P invertierbar genau, wenn (v1, . . . , vn) eine
Basis von V ist.

Beweis Nach Satz 4.6 (2) ist (v1, . . . , vn) eine Basis von V genau dann, wenn
v1, . . . , vn linear unabhängig sind. Seien λ1, . . . , λn ∈ K; dann ist

n
∑

j=1

λjvj =
n

∑

j=1

λj

n
∑

i=1

pijui =
n

∑

j=1

n
∑

i=1

λjpijui

=

n
∑

i=1

n
∑

j=1

λjpijui =

n
∑

i=1

(

n
∑

j=1

λjpij)ui =

n
∑

i=1

µiui ,

wobei (µ1 . . . , µn) = ϕP ((λ1, . . . , λn)). Damit ist λ1v1 + · · · + λnvn = 0 genau
dann, wenn ϕP ((λ1, . . . , λn)) = 0, da die Vektoren u1, . . . , un linear unabhängig
sind. Daraus ergibt sich, dass v1, . . . , vn genau dann linear unabhängig sind,
wenn KernϕP = {0}. Folglich gilt nach Lemma 5.6, Satz 5.3 und Satz 6.3, dass
v1, . . . , vn genau dann linear unabhängig sind, wenn die Matrix P invertierbar
ist.

Seien nun (u1, . . . , un), (v1, . . . , vn) Basen von V und sei P = (pij) ∈ M(n×n,K)
die eindeutige Matrix mit vj = p1ju1 + · · ·+ pnjun für jedes j. Dann heißt P die
Matrix für den Wechsel von (u1, . . . , un) nach (v1, . . . , vn). Nach Lemma 6.6 ist
P invertierbar.

Ist (u1, . . . , un) eine Basis von V und ist P = (pij) ∈ M(n × n,K) invertierbar,
dann ist nach Lemma 6.6 P die Matrix für den Wechsel von (u1, . . . , un) nach
(v1, . . . , vn), wobei (v1, . . . , vn) die durch vj = p1ju1 + · · ·+pnjun für j = 1, . . . , n
definierte Basis von V ist.

Für Basen α, β von V sei Pα,β ∈ M(n× n,K) die Matrix für den Wechsel von α
nach β.

Satz 6.7 Für jede Basis α von V definiert die Abbildung β 7→ Pα,β eine Bijektion
zwischen der Menge der Basen von V und der Menge der n × n invertierbaren
Matrizen über K.

Beweis Dies folgt unmittelbar aus Lemma 6.6.
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Satz 6.8 (1) Für jede Basis α von V ist Pα,α = En.

(2) Für alle Basen α, β von V ist Pβ,α = P−1
α,β.

(3) Für alle Basen α, β, γ von V ist Pα,γ = Pα,βPβ,γ.

Beweis (1) Dies ist klar, da vj =
∑n

i=1 δijvi für jedes j, wobei En = (δij).

(3) Seien α = (u1, . . . , un), β = (v1, . . . , vn) und γ = (w1, . . . , wn), und setze
Pα,β = (pij), Pβ,γ = (qij). Ferner sei Pα,βPβ,γ = (rij), also ist rij =

∑n

k=1 pikqkj
für jedes 1 ≤ i, j ≤ n. Für jedes j = 1, . . . , n ist nun

wj =
n

∑

k=1

qkjvk =
n

∑

k=1

qkj

n
∑

i=1

pikui =
n

∑

i=1

n
∑

k=1

pikqkjui =
n

∑

i=1

rijui ,

und folglich ist Pα,γ = (rij) = Pα,βPβ,γ.

(2) Nach (1) und (3) ist Pα,βPβ,α = Pα,α = En = Pβ,β = Pβ,αPα,β und daraus
folgt, dass Pβ,α = P−1

α,β.

Betrachte nun den speziellen Fall mit V = Kn. Für jede Basis α = (u1, . . . , un)
von Kn sei Cα ∈ M(n× n,K) die Matrix, die die n-Tupel u1, . . . , un als Spalten
hat.

Satz 6.9 Für alle Basen α, β von Kn ist Pα,β = C−1
α Cβ.

Beweis Sei α = (u1, . . . , un) eine Basis von Kn und sei Cα = (cij). Dann ist

uj = (c1j , . . . , cnj) = c1je1 + · · ·+ cnjen

für jedes j = 1, . . . , n, wobei ǫ = (e1, . . . , en) die kanonische Basis von Kn ist,
und folglich ist Cα die Matrix für den Wechsel von ǫ nach α. Nach Satz 6.8 (2) ist
dann C−1

α die Matrix für den Wechsel von α nach ǫ und daraus ergibt sich nach
Satz 6.8 (3), dass C−1

α Cβ die Matrix für den Wechsel von α nach β ist.
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Im folgenden sei K ein Körper und sei A = (aij) ∈ M(m×n,K) eine m×n Matrix
über K. Seien u1, . . . , um ∈ Kn die Zeilen und v1, . . . , vn ∈ Km die Spalten von
A; es gilt also ui = (ai1, . . . , ain) für jedes i = 1, . . . , m und vj = (a1j , . . . , amj)
für jedes j = 1, . . . , n.

Der Untervektorraum L(u1, . . . , um) von Kn heißt der Zeilenraum von A und
wird mit ZR(A) bezeichnet. Analog heißt der Untervektorraum L(v1, . . . , vn) von
Km der Spaltenraum von A und wird mit SR(A) bezeichnet.

Setze RangZ(A) = dim ZR(A) und RangS(A) = dim SR(A); RangZ(A) heißt der
Zeilenrang und RangS(A) der Spaltenrang von A. Also gilt 0 ≤ RangZ(A) ≤ n
und 0 ≤ RangS(A) ≤ m, da ZR(A) bzw. SR(A) ein Untervektorraum von Kn

bzw. von Km ist.

Ist A = 0, so ist RangZ(A) = RangS(A) = 0. Ist umgekehrt RangZ(A) = 0 oder
RangS(A) = 0, so ist nach Lemma 3.4 A = 0.

Satz 7.1 Es gilt RangZ(A) = RangS(A).

Beweis Dies ist trivial richtig, wenn A = 0; es kann also angenommen werden,
dass A 6= 0 und damit ist ZR(A) 6= {0} und SR(A) 6= {0}. Das folgende Lemma
wird benötigt:

Lemma 7.1 (1) Gibt es Matrizen B ∈ M(m × s,K) und C ∈ M(s× n,K) mit
A = BC, so gilt RangZ(A) ≤ s.

(2) Ist (v′1, . . . , v
′
s) eine Basis von SR(A) = L(v1, . . . , vn), so gibt es eine Matrix

C ∈ M(s × n,K) mit A = BC, wobei B ∈ M(m × s,K) die Matrix ist, die
v′1, . . . , v

′
s als Spalten hat.

Beweis (1) Sei B = (bij) und seien w1, . . . , ws die Zeilen von C; da A = BC,
gilt ui = bi1w1 + · · ·+ bisws für jedes i = 1, . . . , m. Damit ist ui ∈ L(w1, . . . , ws)
für jedes i und folglich gilt nach Satz 3.2, dass L(u1, . . . , um) ⊂ L(w1, . . . , ws).
Daraus ergibt sich nach Satz 4.3 und Satz 4.4, dass

RangZ(A) = dim L(u1, . . . , um) ≤ dim L(w1, . . . , ws) ≤ s .

(2) Da (v′1, . . . , v
′
s) eine Basis von L(v1, . . . , vn) ist, gibt es für jedes j = 1, . . . , n

eindeutige Elemente c1j , . . . , csj ∈ K, so dass vj = c1jv
′
1 + · · ·+ csjv

′
s und dann

gilt A = BC.

Sei s = RangS(A); nach Lemma 7.1 (2) gibt es dann Matrizen B ∈ M(m× s,K),
C ∈ M(s× n,K) mit A = BC, und daraus ergibt sich nach Lemma 7.1 (1), dass
RangZ(A) ≤ s = RangS(A).

58
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Sei nun At = (atji) ∈ M(n×m,K) die Matrix mit atji = aij. Dann sind v1, . . . , vn
die Zeilen und u1, . . . , um die Spalten von At und folglich ist ZR(At) = SR(A)
und SR(At) = ZR(A). Daher gilt

RangS(A) = RangZ(At) ≤ RangS(A
t) = RangZ(A) .

Dies zeigt also, dass RangZ(A) = RangS(A).

Setze nun rangA = RangZ(A) (= RangS(A)). Man nennt rangA einfach den
Rang von A.

Lemma 7.2 Es gilt BildϕA = SR(A) und insbesondere rangϕA = rangA.

Beweis Da ϕA((λ1, . . . , λn)) = λ1v1 + · · ·+ λnvn für alle (λ1, . . . , λn) ∈ Kn, gilt

BildϕA = ϕA(Kn) = L(v1, . . . , vn) = SR(A)

und damit auch rangϕA = dim BildϕA = dim SR(A) = rangA.

Satz 7.2 Es gilt dim Lös(A, 0) = n− rangA.

Beweis Nach Satz 5.2, Lemma 5.7 und Lemma 7.2 gilt

dim Lös(A, 0) = dim KernϕA = dimKn − dim BildϕA = n− rangA .

Lemma 7.3 Wird A durch eine elementare Zeilenumformung zu einer Matrix
A′ verändert, so gilt ZR(A) = ZR(A′) (und damit rangA = rangA′).

Beweis Nach Lemma 3.6 gilt ZR(A) = ZR(A′), wenn A′ aus A durch Vertauschen
zweier Zeilen entsteht. Entsteht A′ aus A durch eine Umformung vom Typ III,
so gilt ZR(A) = ZR(A′) nach Lemma 3.5. Es kann also angenommen weden, dass
A′ durch Addition des λ-fachen der k-ten Zeile zu der ℓ-ten Zeile von A entsteht,
(wobei λ ∈ K und k 6= ℓ). Seien u1, . . . , um die Zeilen von A und u′1, . . . , u

′
m die

Zeilen von A′. Dann gilt u′i = ui für jedes i 6= ℓ und u′ℓ = uℓ + λuk. Daraus folgt
nach Satz 3.1 und Satz 3.2, dass

ZR(A) = L(u1, . . . , um) = L(u′1, . . . , u
′
m) = ZR(A′) ,

da uℓ = u′ℓ + (−λ)u′k.

Satz 7.3 Sei A 6= 0 eine Matrix, die Zeilen-Stufen-Form hat und sei q der Index
der letzten von Null verschiedenen Zeile von A. Dann gilt rangA = q.
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Beweis Sei A = (aij) und für i = 1, . . . , m sei

ki =

{

min{1 ≤ j ≤ n : aij 6= 0} falls (ai1, . . . , ain) 6= 0 ,
0 sonst .

Da die Matrix A Zeilen-Stufen-Form hat, gilt k1 < k2 < · · · < kq.

Seien u1, . . . , um die Zeilen von A. Dann ist

ZR(A) = L(u1, . . . , um) = L(u1, . . . , uq) ,

da ui = 0, wenn i > q. Aber die Vektoren u1, . . . , uq sind linear unabhängig:
Seien λ1, . . . , λq ∈ K mit λ1u1 + · · ·+λquq = 0. Dann gilt λ1a1j + · · ·+λqaqj = 0
für jedes j = 1, . . . , n und insbesondere gilt λ1a1kj

+ · · · + λqaqkj
= 0 für jedes

j = 1, . . . , q. Nun ist a1k1 6= 0 und aik1 = 0 für i > 1 und damit ist λ1 = 0.
Nehme an, dass λℓ = 0 für ℓ = 1, . . . , j − 1 für ein j mit 1 < j < q. Dann ist
auch λj = 0, da ajkj

6= 0 und aikj
= 0 für i > j. Es gilt also λj = 0 für jedes

j = 1, . . . , q und daher sind u1, . . . , uq linear unabhängig. Daraus folgt, dass
(u1, . . . , uq) eine Basis von ZR(A) ist und insbesondere ist RangZ(A) = q.

Bemerkung: Sind v1, . . . , vn die Spalten von A, so ist (vk1 , . . . , vkq
) eine Basis von

SR(A):. Sei A′ diem×q Matrix über K, die vk1 , . . . , vkq
als Spalten hat. Dann hat

A′ Zeilen-Stufen-Form und 1, 2, . . . , q ist die Treppen-Folge von A′. Daraus folgt
nach Satz 2.5, dass das zu A′ und 0 gehörige lineare Gleichungssystem eindeutig
lösbar ist, und damit sind nach Satz 3.5 vk1, . . . , vkq

linear unabhängig. Aber
für jedes j ist das zu A′ und vj gehörige lineare Gleichungssystem lösbar und
daraus ergibt sich nach Satz 3.3, dass vj ∈ L(vk1 , . . . , vkq

). Nach Satz 3.2 ist dann
SR(A) = L(vk1 , . . . , vkq

). Daher ist (vk1, . . . , vkq
) eine Basis von SR(A).

Lemma 7.4 Seien A ∈ M(ℓ×m,K), B ∈ M(m× n,K). Dann gilt:

(1) rangAB ≤ min{rangA, rangB}.
(2) rangAB = rangA, falls rangB = m.

(3) rangAB = rangB, falls rangA = m.

Beweis Nach Lemmas 6.1 und 7.2 gilt rangA = rangϕA, rangB = rangϕB und
rangAB = rangϕAB = rangϕA ◦ ϕB.

(1) Nach Lemma 5.12 (1) gilt also

rangAB = rangϕA ◦ ϕB ≤ min{rangϕA, rangϕB} = min{rangA, rangB} .

(2) Ist rangB = m, so gilt dimϕB(Kn) = rangϕB = rangB = m und damit ist
ϕB surjektiv. Daraus ergibt sich nach Lemma 5.12 (2), dass

rangAB = rangϕA ◦ ϕB = rangϕA = rangA .
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(3) Ist rangA = m, so gilt nach Satz 5.2, dass

dim KernϕB = dimKm − rangϕA = m− rangA = 0

und damit ist ϕA injektiv. Daraus folgt nach Lemma 5.10 (3), dass

rangAB = rangϕA ◦ ϕB = rangϕB = rangB .

Satz 7.4 Eine Matrix A ∈ M(n × n,K) ist invertierbar genau dann, wenn sie
vollen Rang hat, d.h., wenn rangA = n.

Beweis Dies folgt aus Satz 6.3 ((1) ⇔ (5)), da nach Satz 7.2 rangA = n genau
dann gilt, wenn Lös(A, 0) = {0}.

Erinnerung: Unter elementaren Zeilenumformungen werden nun seit Kapitel 6
die folgenden Operationen verstanden:

(I) Addition eines Vielfachen einer Zeile zu einer anderen Zeile.

(II) Vertauschen zweier Zeilen.

(III) Multiplikation einer Zeile mit einem Skalar λ ∈ K, λ 6= 0.

Es gibt auch natürlich entsprechende Spaltenumformungen. Unter elementaren
Spaltenumformungen einer Matrix versteht man die folgenden Operationen:

(I) Addition eines Vielfachen einer Spalte zu einer anderen Spalte.

(II) Vertauschen zweier Spalten.

(III) Multiplikation einer Spalte mit einem Skalar λ ∈ K, λ 6= 0.

Unter einer elementaren Umformung einer Matrix versteht man eine elementare
Zeilenumformung oder eine elementare Spaltenumformung.

Lemma 7.5 Elementare Umformungen ändern den Rang einer Matrix nicht.

Beweis Dies folgt aus Lemmas 7.2 und 3.5 und den entsprechenden Ergebnissen
für elementare Spaltenumformungen.

Sei q mit 0 ≤ q ≤ min{m,n}; die folgende m× n Matrix (die Rang q hat)

Eq
m,n =





























1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0





























← q-te Zeile
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wird die Sub-Einheitsmatrix vom Rang q genannt. Also ist Eq
m,n = (δij), wobei

δij = 0 für alle i 6= j, δii = 1 für i = 1, . . . , q und δii = 0 für alle i > q.

Lemma 7.6 Sei B ∈ M(m × n,K) eine Matrix, die Zeilen-Stufen-Form hat.
Dann gibt es eine Folge von elementaren Spaltenumformungen, die die Matrix B
in die Sub-Einheitsmatrix vom Rang q überführt, wobei q = rangB.

Beweis Übung.

Satz 7.5 Jede Matrix A ∈ M(m × n,K) vom Rang q läßt sich durch eine Folge
von elementaren Umformungen in die Sub-Einheitsmatrix vom Rang q überführen.

Beweis Nach Satz 2.6 gibt es eine Folge von elementaren Zeilenumformungen,
die A in eine Matrix B mit Zeilen-Stufen-Form überführt und nach Lemma 7.5
ist dann rangB = q. Nun gibt es nach Lemma 7.6 eine Folge von elementaren
Spaltenumformungen, die B in die Sub-Einheitsmatrix vom Rang q überführt.

Erinnerung: Multiplikation von links mit einer Elementarmatrix bewirkt eine
elementare Zeilenumformung. Analog bewirkt nun Multiplikation von rechts mit
einer Elementarmatrix eine elementare Spaltenumformung und jede elementare
Spaltenumformung entsteht auf diese Weise.

Satz 7.6 Sei A ∈ M(m×n,K) eine m×n Matrix mit rangA = q. Dann gibt es
invertierbare Matrizen P ∈ M(m ×m,K) und Q ∈ M(n × n,K), so dass PAQ
die Sub-Einheitsmatrix vom Rang q ist, d.h.,

PAQ =





























1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0





























← q-te Zeile

Beweis Nach Satz 6.4 gibt es eine invertierbare Matrix P ∈ M(m×m,K), so dass
B = PA Zeilen-Stufen Form hat, und nach Lemma 7.4 ist rangB = q. Ferner gibt
es nach Lemma 7.5 eine Folge γ1, . . . , γp von elementaren Spaltenumformungen,
die B in die Sub-Einheitsmatrix Eq

m,n vom Rang q überführt. Für jedes j sei
Cj ∈ M(n × n,K) die Elementarmatrix, die durch Multiplikation von rechts die
Umformung γj bewirkt. Dann gilt Eq

m,n = BC1 · · ·Cp. Setze Q = C1 · · ·Cp; nach
Lemmas 6.3 (3) und 6.4 ist also Q invertierbar und PAQ = BQ = Eq

m,n.
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Im folgenden sei K ein Körper und seien V, W endlichdimensionale Vektorräume
über K mit dimV = n ≥ 1 und dimW = m ≥ 1. Sei auch (v1, . . . , vn) eine Basis
von V und (w1, . . . , wm) eine Basis von W .

Sei nun f ∈ Hom(V,W ). Für jedes j = 1, . . . , n ist f(vj) ein Element von W ;
nach Satz 4.1 gibt es also genau ein m-Tupel (a1j , a2j , . . . , amj) ∈ Km, so dass

f(vj) = a1jw1 + a2jw2 + · · ·+ amjwm .

Auf diese Weise wird eine Matrix A = (aij) ∈ M(m × n,K) definiert, die die
Matrix von f bezüglich der Basen (v1, . . . , vn) und (w1, . . . , wm) heißt.

Lemma 8.1 Für jedes A ∈ M(m× n,K) ist A die Matrix von ϕA bezüglich der
kanonischen Basen von Kn und Km.

Beweis Sei (e1, . . . , en) bzw. (e′1, . . . , e
′
m) die kanonische Basis von Kn bzw. von

Km. Für jedes j = 1, . . . , n gilt dann

ϕA(ej) = (a1j , . . . , amj) = a1je
′
1 + · · ·+ amje

′
m ,

und daraus ergibt sich, dass A die Matrix von ϕA bezüglich der Basen (e1, . . . , en)
und (e′1, . . . , e

′
m) ist.

Lemma 8.2 Sei A ∈ M(m×n,K). Dann gibt es ein eindeutiges f ∈ Hom(V,W ),
so dass A die Matrix von f bezüglich der Basen (v1, . . . , vn) und (w1, . . . , wm) ist.

Beweis Nach Lemma 5.11 gibt es ein eindeutiges f ∈ Hom(V,W ), so dass

f(vj) = a1jw1 + · · ·+ amjwm

für jedes j = 1, . . . , n, wobei A = (aij). Offensichtlich ist f dann die eindeutige
lineare Abbildung, so dass A die Matrix von f bezüglich der Basen (v1, . . . , vn)
und (w1, . . . , wm) ist.

Sei U ein weiterer endlichdimensionaler Vektorraum von V und sei (u1, . . . , up)
eine Basis von U .

Satz 8.1 Seien f ∈ Hom(V,W ), g ∈ Hom(U, V ), A die Matrix von f bezüglich
der Basen (v1, . . . , vn) und (w1, . . . , wm) und B die Matrix von g bezüglich der
Basen (u1, . . . , up) und (v1, . . . , vn). Dann ist AB die Matrix von f ◦ g bezüglich
der Basen (u1, . . . , up) und (w1, . . . , wm).

63
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Beweis Seien A = (aij), B = (bjk). Für jedes k = 1, . . . , p gilt dann

(f ◦ g)(uk) = f(g(uk)) = f
(

n
∑

j=1

bjkvj

)

=
n

∑

j=1

bjkf(vj)

=

n
∑

j=1

bjk

m
∑

i=1

aijwi =

m
∑

i=1

(

n
∑

j=1

aijbjk

)

wi =

m
∑

i=1

cikwi ,

wobei AB = (cik). Damit ist AB die Matrix von f ◦ g bezüglich der Basen
(u1, . . . , up) und (w1, . . . , wm).

Setze nun α = (v1, . . . , vn) und β = (w1, . . . , wm).

Satz 8.2 Sei α′ = (v′1, . . . , v
′
n) eine weitere Basis von V und β ′ = (w′1, . . . , w

′
m)

eine weitere Basis von W , sei f ∈ Hom(V,W ), sei A die Matrix von f bezüglich
α und β und B die Matrix von f bezüglich α′ und β ′. Dann gilt

B = Q−1AP ,

wobei P die Matrix für den Wechsel von α nach α′ und Q die Matrix für den
Wechsel von β nach β ′ ist.

Beweis Sei P = (pkj), Q = (qiℓ), A = (aik) und B = (bℓj). Für jedes j = 1, . . . , n
gilt dann

f(v′j) = f
(

n
∑

k=1

pkjvk

)

=

n
∑

k=1

pkjf(vk) =

n
∑

k=1

pkj

(

m
∑

i=1

aijwi

)

=

m
∑

i=1

(

n
∑

k=1

aikpkj

)

wi

sowie auch

f(v′j) =
m

∑

ℓ=1

bℓjw
′
ℓ =

m
∑

ℓ=1

bℓj

(

m
∑

i=1

qiℓwi

)

=
m

∑

ℓ=1

m
∑

i=1

bℓjqiℓwi =
m

∑

i=1

(

m
∑

ℓ=1

qiℓbℓj

)

wi .

Daraus ergibt sich, dass für jedes j = 1, . . . , n

m
∑

i=1

(

m
∑

ℓ=1

qiℓbℓj −
m

∑

ℓ=1

aikpkj

)

wi =

m
∑

i=1

(

m
∑

ℓ=1

qiℓbℓj

)

wi −
m

∑

i=1

m
∑

ℓ=1

(

aikpkj

)

wi

= f(v′j)− f(v′j) = 0 ,

und für jedes i = 1, . . . , m gilt also

m
∑

ℓ=1

qiℓbℓj =

m
∑

ℓ=1

aikpkj ,

da w1, . . . , wm linear unabhängig sind. Dies bedeutet aber genau, dass QB = AP ,
und damit ist B = P−1AP .
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Satz 8.3 Sei f ∈ Hom(V,W ) und sei A die Matrix von f bezüglich der Basen α
und β. Dann gilt rang f = rangA.

Beweis Sei ψ : Km →W die Abbildung, die definiert ist durch

ψ((λ1, . . . , λm)) = λ1w1 + · · ·+ λmwm .

Man sieht leicht, dass ψ linear ist. Ist (e1, . . . , em) die kanonische Basis von Km,
so gilt ψ(ej) = wj für jedes j und daraus folgt nach Lemma 5.10 (4), dass ψ ein
Isomorphismus ist. Für jedes (λ1, . . . , λn) ∈ Kn gilt nun

f
(

n
∑

j=1

λjvj

)

=

n
∑

j=1

λjf(vj) =

n
∑

j=1

λj

m
∑

i=1

aijwi =

m
∑

i=1

(

n
∑

j=1

aijλj

)

wi

= ψ(ϕA((λ1, . . . , λn))) ,

und daraus ergibt sich, dass Bild f = ψ(BildϕA), da (v1, . . . , vn) eine Basis von V
ist. Nach Lemma 5.8 und Lemma 5.10 (1) gilt aber dimU = dimψ(U) für jeden
Untervektorraum U von Km und folglich ist nach Lemma 7.1

rangA = rangϕA = dim BildϕA = dimψ(BildϕA) = dim Bild f = rang f .

Satz 8.4 Sei f ∈ Hom(V,W ) und A ∈ M(m× n,K). Dann sind äquivalent:

(1) rang f = rangA.

(2) Es gibt eine Basis α von V und eine Basis β von W , so dass A die Matrix
von f bezüglich α und β ist.

Beweis (2) ⇒ (1): Dies folgt unmittelbar aus Satz 8.3.

(1) ⇒ (2): Sei α′ eine beliebige Basis von V , sei β ′ eine beliebige Basis von
W und sei B die Matrix von f bezüglich α′ und β ′. Nach Satz 8.3 ist dann
rang f = rangB, d.h., rangA = rangB. Nun gibt es nach Satz 7.6 invertierbare
Matrizen P1 ∈ M(m×m,K) und Q1 ∈ M(n×n,K), so dass P1AQ1 = Eq

m,n, wobei
q = rang A und Eq

m,n ∈ M(m × n,K) die Sub-Einheitsmatrix vom Rang q ist.
Genauso gibt es invertierbare Matrizen P2 ∈ M(m×m,K) und Q2 ∈ M(n×n,K),
so dass P2BQ2 = Eq

m,n. Damit ist

A = EmAEn = (P−1
1 P1)A(Q1Q

−1
1 ) = P−1

1 (P1AQ1)Q
−1
1

= P−1
1 Eq

m,nQ
−1
1 = P−1

1 (P2BQ2)Q
−1
1

= (P−1
1 P2)B(Q2Q

−1
1 ) = (P2P

−1
1 )−1B(Q2Q

−1
1 ) = P−1BQ ,

wobei P = P−1
2 P1 und Q = Q2Q

−1
1 . Es gibt aber nach Lemma 6.6 eine Basis α

von V , so dass P die Matrix für den Wechsel von α′ nach α ist und es gibt eine
Basis β von W , so dass Q die Matrix für den Wechsel von β ′ nach β ist. Nach
Satz 8.2 ist A = P−1BQ dann die Matrix von f bezüglich der Basen α und β.
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Satz 8.5 Ist f ∈ Hom(V,W ) mit rang f = q, so gibt es eine Basis (v1, . . . , vn)
von V und eine Basis (w1, . . . , wm) von W mit f(vj) = wj für j = 1, . . . , q und
f(vj) = 0 für j = q + 1, . . . , n.

Beweis Sei Eq
m,n ∈ M(m × n,K) die Sub-Einheitsmatrix vom Rang q; dann ist

rangEq
m,n = q und folglich gibt es nach Satz 8.4 eine Basis (v1, . . . , vn) von V und

eine Basis (w1, . . . , wm) vonW , so dass Eq
m,n die Matrix von f bezüglich der Basen

(v1, . . . , vn) und (w1, . . . , wm) ist. Dies bedeutet aber genau, dass f(vj) = wj für
j = 1, . . . , q und f(vj) = 0 für j = q + 1, . . . , n.

Seien V, W Vektorräume über K; für f, g ∈ Hom(V,W ) und λ ∈ K sind die
Abbildungen f + g und λf auch linear, d.h., f + g, λf ∈ Hom(V,W ). Mit diesen
Verknüpfungen ist Hom(V,W ) ein Vektorraum über K.

Seien nun A = (aij), B = (bij) ∈ M(m × n,K) und λ ∈ K. Definiere Matrizen
A+B, λA ∈ M(m×n,K) durch A+B = (aij + bij) und λA = (λaij). Mit diesen
Verknüpfungen ist M(m× n,K) auch ein Vektorraum über K.

Satz 8.6 M(m× n,K) ist endlichdimensional und dim M(m× n,K) = mn.

Beweis Übung.

Seien V, W endlichdimensionale Vektorräume über K, sei α = (v1, . . . , vn) eine
Basis von V und β = (w1, . . . , wm) eine Basis von W . Für jede lineare Abbildung
f : V → W sei Mα,β(f) die Matrix von f bezüglich der Basen α und β; es gibt
also eine Abbildung Mα,β : Hom(V,W )→ M(m× n,K).

Satz 8.7 Die Abbildung Mα,β : Hom(V,W ) → M(m × n,K) ist linear und eine
Bijektion, d.h., Mα,β ist ein Isomorphismus.

Beweis Man sieht leicht, dass Mα,β linear ist und nach Lemma 8.2 ist Mα,β eine
Bijektion.

Nach Satz 5.4, Satz 8.6 und Satz 8.7 ist Hom(V,W ) endlichdimensional und

dim Hom(V,W ) = dimV × dimW .

Lemma 8.3 (1) Seien U, V, W Vektorräume über K und f, f ′ ∈ Hom(U, V ),
g, g′ ∈ Hom(V,W ). Dann gilt g◦(f+f ′) = g◦f+g◦f ′, (g+g′)◦f = g◦f+g′◦f .
(2) Es gilt A(B+B′) = AB+AB′ und (A+A′)B = AB+A′B für alle Matrizen
A, A′ ∈ M(ℓ×m,K) und B, B′ ∈ M(m× n,K).
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Beweis Übung.

In der Linearen Algebra ist das Interesse hauptsächlich für Endomorphismen,
d.h., für den Fall mit W = V . Im Folgenden sei V ein endlichdimensionaler
Vektorraum über K mit dimV = n ≥ 1.

Sei f : V → V ein Endomorphismus von V und (v1, . . . , vn) eine Basis von V ,
und sei A ∈ M(n× n,K) die Matrix von f bezüglich der Basen (v1, . . . , vn) und
(v1, . . . , vn). Diese Matrix A = (aij) ist also durch die Bedingungen

f(vj) = a1jv1 + a2jv2 + · · ·+ anjvn

für j = 1, . . . , n definiert und wird einfach die Matrix von f bezüglich der Basis
(v1, . . . , vn) genannt.

Sei A ∈ M(n × n,K); nach Lemma 8.1 ist A die Matrix von ϕA bezüglich der
kanonischen Basis von Kn.

Satz 8.8 Seien α, α′ Basen von V , sei f : V → V ein Endomorphismus von V ,
sei A die Matrix von f bezüglich der Basis α und A′ die Matrix von f bezüglich
der Basis α′. Dann gilt

A′ = P−1AP ,

wobei P die Matrix für den Wechsel von α nach α′ ist.

Beweis Dies ist ein Spezialfall von Satz 8.2.

Sei X eine Menge; eine Relation ≡ auf X heißt Äquivalenzrelation, wenn gilt:

(1) x ≡ x für alle x ∈ X (≡ ist reflexiv).

(2) x2 ≡ x1 für alle x1, x2 ∈ X mit x1 ≡ x2 (≡ ist symmetrisch).

(3) Sind x1, x2, x3 ∈ X mit x1 ≡ x2 und x2 ≡ x3, so ist x1 ≡ x3 (≡ ist
transitiv).

Seien nun A, B ∈ M(n× n,K); man schreibt A ∼ B, wenn es eine invertierbare
Matrix P ∈ M(n× n,K) gibt, so dass B = P−1AP .

Lemma 8.4 ∼ ist eine Äquivalenzrelation auf der Menge M(n× n,K).

Beweis (1) Für jedes A ∈ M(n× n,K) gilt A ∼ A, da A = E−1
n AEn.

(2) Seien A, B ∈ M(n× n,K) mit A ∼ B, es gibt also eine invertierbare Matrix
P ∈ M(n×n,K), so dass B = P−1AP . Dann gilt A = Q−1BQ mit Q = P−1 und
damit ist B ∼ A.
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(3) Seien A, B, C ∈ M(n×n,K) mit A ∼ B undB ∼ C, es gibt also invertierbare
Matrizen P, Q ∈ M(n× n,K), so dass B = P−1AP und C = Q−1BQ. Da

C = Q−1BQ = Q−1(P−1AP )Q = (Q−1P−1)A(PQ) = (PQ)−1A(PQ) ,

ist dann C = R−1AR mit R = PQ und damit ist A ∼ C.

Gilt A ∼ B, so sagt man, dass die Matrizen A und B ähnlich sind.

Satz 8.9 Sei f : V → V ein Endomorphismus von V und α eine Basis von V ;
sei ferner A die Matrix von f bezüglich der Basis α und sei B ∈ M(n × n,K)
eine beliebige Matrix. Dann gibt es eine Basis β von V , so dass B die Matrix von
f bezüglich β ist, genau, wenn die Matrizen A und B ähnlich sind.

Beweis Ist B die Matrix von f bezüglich einer Basis β, so gilt nach Satz 8.8,
dass B = P−1AP , wobei P die Matrix für den Wechsel von α nach β ist, und
damit sind die Matrizen A und B ähnlich. Seien umgekehrt A und B ähnlich,
es gibt also eine invertierbare Matrix P ∈ M(n × n,K), so dass B = P−1AP .
Nach Lemma 6.6 gibt es nun eine Basis β von V , so dass P die Matrix für den
Wechsel von α nach β ist, und nach Satz 8.8 ist B = P−1AP dann die Matrix
von f bezüglich der Basis β.

Sei f : V → V ein Endomorphismus. Ein Hauptziel der Linearen Algebra ist es,
eine vernüftige Antwort zur folgenden Frage zu finden:

— Wie wählt man eine Basis von V , so dass die Matrix von f bezüglich dieser
Basis ‘so einfach wie möglich’ ist?

— Sei B ∈ M(n× n,K). Wie prüft man, ob es eine Basis von V gibt, so dass B
die Matrix von f bezüglich dieser Basis ist?

Nach Satz 8.9 hätte man eine Antwort zu diesen Fragen, wenn die folgenden
Fragen beantwortet werden könnten:

— Sei A ∈ M(n× n,K). Was ist die ‘einfachste’ Matrix, die zu A ähnlich ist?

— Seien A, B ∈ M(n × n,K). Wie prüft man, ob A und B ähnlich sind, und
wie findet man gegebenenfalls eine invertierbare Matrix P mit B = P−1AP ?

(Wähle irgendeine Basis α = (u1, . . . , un) von V und sei A ∈ M(n × n,K) die
Matrix von f bezüglich α. Sei A′ die ‘einfachste’ Matrix, die zu A ähnlich ist, und
finde eine invertierbare Matrix P = (pij) ∈ M(n × n,K) mit A′ = P−1AP . Für
j = 1, . . . , n setze vj =

∑n
i=1 pijui; nach Lemma 6.6 ist also β = (v1, . . . , vn) eine

Basis von V und P ist die Matrix für den Wechsel von α nach β. Nach Satz 8.8 ist
dann A′ = P−1AP die Matrix von f bezüglich der Basis β; d.h., die Matrix von
f bezüglich der Basis β ist ‘so einfach wie möglich’. Sei nun B ∈ M(n × n,K);
nach Satz 8.9 gibt es eine Basis von V , so dass B die Matrix von f bezüglich
dieser Basis ist, genau dann, wenn A und B ähnlich sind.)



9 Direkte Summen

Sei V ein Vektorraum über einem Körper K, sei m ≥ 2 und seien U1, . . . , Um
Untervektoräume von V .

Satz 9.1 Äquivalent sind:

(1) Für jedes j = 1, . . . , m ist Uj ∩ (U1 + · · ·+ Uj−1 + Uj+1 + · · ·+ Um) = {0}.
(2) Gilt u1 + · · · + um = 0, wobei uj ∈ Uj für j = 1, . . . , m, so ist uj = 0 für
jedes j = 1, . . . , m.

(3) Gilt u1 + · · ·+ um = u′1 + · · ·+ u′m, wobei uj, u
′
j ∈ Uj für j = 1, . . . , m, so

ist uj = u′j für jedes j = 1, . . . , m.

Beweis (1) ⇒ (2): Für jedes j = 1, . . . , m sei uj ∈ Uj . Gilt u1 + · · ·+ um = 0,
dann ist für jedes j = 1, . . . , m

uj = −(u1 + · · ·+ uj−1 + uj+1 + · · ·+ um) ∈ U1 + · · ·+ Uj−1 + Uj+1 + · · ·+ Um

und daraus folgt nach (1), dass uj = 0.

(2) ⇒ (3): Seien uj, u
′
j ∈ Uj mit u1 + · · · + um = u′1 + · · · + u′m. Dann ist

uj − u′j ∈ Uj für jedes j und (u1 − u′1) + · · ·+ (um − u′m) = 0. Folglich gilt nach
(2), dass uj − u′j = 0 und damit uj = u′j für jedes j = 1, . . . , m.

(3) ⇒ (1): Sei uj ∈ Uj ∩ (U1 + · · · + Uj−1 + Uj+1 + · · · + Um). Dann gibt es für
jedes k 6= j ein uk ∈ Uk, so dass uk = u1 + · · ·+ uj−1 + uj+1 + · · ·+ um. Damit ist

0 + · · ·+ 0 + uk + 0 + · · ·+ 0 = u1 + · · ·+ uj−1 + 0 + uj+1 + · · ·+ um

und daraus folgt nach (3), dass ui = 0 für alle i = 1, . . . , m. Insbesondere ist
uj = 0, d.h., Uj ∩ (U1 + · · ·+ Uj−1 + Uj+1 + · · ·+ Um) = {0}.

Setze U = U1 + · · · + Um; dann heißt U direkte Summe von U1, . . . , Um, wenn
Uj ∩ (U1 + · · · + Uj−1 + Uj+1 + · · · + Um) = {0} für jedes j = 1, . . . , m, und in
diesem Fall schreibt man U = U1 ⊕ · · · ⊕ Um.

Ist U = U1⊕· · ·⊕Um eine direkte Summe, so hat nach Satz 9.1 ((1)⇒ (3)) jedes
u ∈ U eine eindeutige Darstellung u = u1+· · ·+um mit uj ∈ Uj für j = 1, . . . , m.

Ist m ≥ 3, so ist es klar, dass U = U1 + (U2 + · · ·+ Um).

Satz 9.2 Sei m ≥ 3, setze W = U2 + · · ·+Um und nehme an, dass U = U1⊕W
und W = U2 ⊕ · · · ⊕ Um. Dann gilt auch U = U1 ⊕ · · · ⊕ Um.

69
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Beweis Sei uj ∈ Uj für jedes j = 1, . . . , m mit u1 + · · · + um = 0. Dann ist
w = u2 + · · · + um ∈ W und u1 + w = 0. Nach Satz 9.1 ((1) ⇒ (2)) ist also
u1 = 0 und w = 0, da U = U1 ⊕W , und wieder nach Satz 9.1 ((1) ⇒ (2)) ist
dann uj = 0 für jedes j = 2, . . . , m, da W = U2 ⊕ · · · ⊕ Um. Daraus ergibt sich
nach Satz 9.1 ((2) ⇒ (1)), das U = U1 ⊕ · · · ⊕ Um.

Satz 9.3 Sei Uj 6= {0} für jedes j. Dann sind äquivalent:

(1) Es gilt U = U1 ⊕ · · · ⊕ Um.

(2) Ist uj ∈ Uj \ {0} für jedes j, so sind u1, . . . , un linear unabhängig.

(3) Sind uj1, . . . , u
j
kj
∈ Uj linear unabhängig für jedes j = 1, . . . , m, so sind die

Vektoren u1
1, . . . , u

1
k1
, . . . , um1 , . . . , u

m
km

linear unabhängig.

Beweis (1) ⇒ (3): Für j = 1, . . . , m seien uj1, . . . , u
j
kj
∈ Uj linear unabhängig

und seien λ1
1, . . . , λ

1
k1
, . . . , λm1 , . . . , λ

m
km
∈ K mit

λ1
1u

1
i + · · ·+ λ1

k1
u1
k1

+ · · ·+ λm1 u
m
1 + · · ·+ λmkm

umkm
= 0 .

Setze uj = λj1u
j
1 + · · · + λjkj

ujkj
; dann ist uj ∈ Uj und u1 + · · · + um = 0. Nach

Satz 1 ist also uj = λj1u
j
1 + · · ·+ λjkj

ujkj
= 0 für jedes j und damit gilt λji = 0 für

i = 1, . . . , kj, da uj1, . . . , u
j
kj
∈ Uj linear unabhängig sind. Dies zeigt, dass die

Vektoren u1
1, . . . , u

1
k1
, . . . , um1 , . . . , u

m
km

linear unabhängig sind.

(3) ⇒ (2): Dies ist klar.

(2) ⇒ (1): Für j = 1, . . . , m sei uj ∈ Uj mit u1 + · · ·+ um = 0, und setze

vj =

{

uj falls uj 6= 0 ,
u′j falls uj = 0 ,

und λj =

{

1 falls uj 6= 0 ,
0 falls uj = 0 ,

wobei u′j ein beliebiges Element aus Uj \ {0} ist. Dann ist λ1v1 + · · ·λmvm = 0.
Aber vj ∈ Uj \ {0} für j = 1, . . . , m, damit sind v1, . . . , vn linear unabhängig
und folglich ist λj = 0 für jedes j, d.h., uj = 0 für j = 1, . . . , m. Daraus ergibt
sich nach Satz 9.1, dass die Summe direkt ist.

Satz 9.4 Sei U = U1 ⊕ · · · ⊕ Um und für jedes j = 1, . . . , m sei fj : Uj → Uj
ein Endomorphismus von Uj. Dann gibt es einen eindeutigen Endomorphismus
f : U → U von U mit f(u) = fj(u) für jedes u ∈ Uj, j = 1, . . . , m.

Beweis Nach Satz 9.1 ((1) ⇒ (3)) hat jedes u ∈ U eine eindeutige Darstellung
u = u1+· · ·+um mit uj ∈ Uj für j = 1, . . . , m und folglich gibt es eine eindeutige
Abbildung f : U → U mit

f(u1 + · · ·+ um) = f1(u1) + · · ·+ fm(um)
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für alle uj ∈ Uj, j = 1, . . . , m. Man sieht leicht, dass f ein Endomorphismus ist
und per Definition gilt f(u) = fj(u) für jedes u ∈ Uj , j = 1, . . . , m. Ferner ist es
klar, dass f der eindeutige Endomorphismus von U mit dieser Eigenschaft ist.

Der Endomorphismus in Satz 9.4 heißt die direkte Summe der Endomorphismen
f1, . . . , fm und wird mit f1 ⊕ · · · ⊕ fm bezeichnet.

Lemma 9.1 Sei U = U1⊕· · ·⊕Um und sei f ein Endomorphismus von U . Dann
gibt es Endomorphismen fj : Uj → Uj, j = 1, . . . , m, so dass f = f1 ⊕ · · · ⊕ fm,
genau dann, wenn f(Uj) ⊂ Uj für jedes j = 1, . . . , m.

Beweis Dies ist klar.

Satz 9.5 Sei U = U1 ⊕ · · · ⊕ Um und seien fj , gj : Uj → Uj Endomorphismen
von Uj für jedes j = 1, . . . , m. Dann gilt

(f1 ⊕ · · · ⊕ fm) + (g1 ⊕ · · · ⊕ gm) = (f1 + g1)⊕ · · · ⊕ (fm + gm)

und (f1 ⊕ · · · ⊕ fm) ◦ (g1 ⊕ · · · ⊕ gm) = (f1 ◦ g1)⊕ · · · ⊕ (fm ◦ gm) .

Beweis Setze f = f1 ⊕ · · · ⊕ fm und g = g1 ⊕ · · · ⊕ gm. Dann gilt

(f + g)(u1 + · · ·+ um) = f(u1 + · · ·+ um) + g(u1 + · · ·+ um)

= f1(u1) + · · ·+ fm(um) + g1(u1) + · · ·+ gm(um)

= (f1(u1) + g1(u1)) + · · ·+ (fm(um) + gm(um))

= (f1 + g1)(u1) + · · ·+ (fm + gm)(um)

= ((f1 + g1)⊕ · · · ⊕ (fm + gm))(u1 + · · ·+ um)

und auch

(f ◦ g)(u1 + · · ·+ um) = f(g(u1 + · · ·+ um)) = f(g1(u1) + · · ·+ gm(um))

= f1(g1(u1)) + · · ·+ fm(gm(um)) = (f1 ◦ g1)(u1) + · · ·+ (fm ◦ gm)(um)

= ((f1 ◦ g1)⊕ · · · ⊕ (fm ◦ gm))(u1 + · · ·+ um)

für alle uj ∈ Uj , j = 1, . . . , m, und daraus ergibt sich, dass

f + g = (f1 + g1)⊕ · · · ⊕ (fm + gm) und f ◦ g = (f1 ◦ g1)⊕ · · · ⊕ (fm ◦ gm) .

Satz 9.6 Sei U = U1 ⊕ · · · ⊕ Um und für j = 1, . . . , m sei fj : Uj → Uj ein
Endomorphismus von Uj. Dann ist f1 ⊕ · · · ⊕ fm ein Automorphismus von U
genau, wenn fj ein Automorphismus von Uj ist für jedes j = 1, . . . , m.
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Beweis Dies folgt unmittelbar aus Satz 9.5, da idU = idU1
⊕ · · · ⊕ idUm

.

Lemma 9.2 Sei U = U1 ⊕ · · · ⊕ Um und für j = 1, . . . , m sei fj : Uj → Uj ein
Endomorphismus von Uj. Dann ist

Kern (f1 ⊕ · · · ⊕ fm) = Kern f1 ⊕ · · · ⊕Kern fm .

Beweis Dies ist klar.

Seien U1, . . . , Um endlichdimensional; da

U = U1 + · · ·+ Um = (· · · ((U1 + U2) + U3) + · · ·+ Um)

ist nach Satz 4.8 die Summe U endlichdimensional und es gilt

dimU ≤ dimU1 + · · ·+ dimUm .

Satz 9.7 Seien U1, . . . , Um endlichdimensional mit dimUj ≥ 1 für jedes j. Dann
sind äquivalent:

(1) Es gilt U = U1 ⊕ · · · ⊕ Um.

(2) Ist (uj1, . . . , u
j
kj

) eine Basis von Uj für jedes j = 1, . . . , m, so ist

(u1
1, . . . , u

1
k1
, . . . , um1 , . . . , u

m
km

)

eine Basis von U .

(3) Es gilt dimU = dimU1 + · · ·+ dimUm.

Beweis (2) ⇒ (3) ist klar und (1) ⇒ (2) folgt unmittelbar aus Satz 9.3, da

U = L(v1
1, . . . , v

1
k1
, . . . , vm1 , . . . , v

m
km

) ,

falls L(vj1, . . . , v
j
kj

) = Uj für jedes j = 1, . . . , m.

(3) ⇒ (2): Für jedes j = 1, . . . , m sei (uj1, . . . , u
j
kj

) eine Basis von Uj . Da wieder

U = L(u1
1, . . . , u

1
k1
, . . . , um1 , . . . , u

m
km

)

und dimU = k1 + · · · + km, ist nach Satz 4.6 (4) (u1
1, . . . , u

1
k1
, . . . , um1 , . . . , u

m
km

)
eine Basis von U .

(2) ⇒ (1): Für jedes j = 1, . . . , m seien uj1, . . . , u
j
kj
∈ Uj linear unabhängig.

Nach dem Basisergänzungssatz gibt es eine Basis (vj1, . . . , v
j
pj

) von Uj mit kj ≤ pj

und vji = uji für i = 1, . . . , kj. Dann ist (v1
1, . . . , v

1
p1
, . . . , vm1 , . . . , v

m
pm

) eine Basis
von U und insbesondere sind die Vektoren v1

1, . . . , v
1
p1
, . . . , vm1 , . . . , v

m
pm

linear
unabhängig. Damit sind auch u1

1, . . . , u
1
k1
, . . . , um1 , . . . , u

m
km

linear unabhängig
und daraus ergibt sich nach Satz 9.3, dass die Summe direkt ist.



10 Diagonalisierbarkeit

Im Folgenden sei K ein Körper und sei V ein Vektorraum über K.

Sei f : V → V ein Endomorphismus von V . Ein Element λ ∈ K heißt Eigenwert
von f , wenn es einen Vektor v ∈ V , v 6= 0, mit f(v) = λv gibt. Ein Vektor v 6= 0
mit f(v) = λv heißt dann Eigenvektor von f zum Eigenwert λ.

Wichtige Bemerkung: 0 ist ein Eigenwert von f genau dann, wenn f nicht injektiv
ist, d.h., genau dann, wenn Kern f 6= {0}.
Nehme nun an, dass V stets endlichdimensional ist mit dimV = n ≥ 1.

Ein Endomorphismus f : V → V heißt diagonalisierbar, wenn es eine aus Eigen-
vektoren von f bestehende Basis von V gibt, d.h., wenn es eine Basis (v1, . . . , vn)
von V gibt, so dass f(vj) = λjvj für ein λj ∈ K für jedes j = 1, . . . , n.

Es gibt Endomorphismen, die keine Eigenwerte besitzen, und insbesondere sind
solche Endomorphismen nicht diagonalisierbar.

Beispiel: Sei f : R2 → R2 die durch f((x, y)) = (−y, x) gegeben Abbildung;
dann ist f ein Endomorphismus von R2, und f = ϕA mit

A =

(

0 −1
1 0

)

.

Sei (x, y) ∈ R2 und λ ∈ R mit f((x, y)) = λ(x, y); dann ist (−y, x) = λ(x, y),
d.h., −y = λx und x = λy und damit x = −λ2x, und dies ist nur möglich, wenn
(x, y) = (0, 0). Daraus folgt, dass f keinen Eigenwert besitzt.

Eine Matrix D = (dij) ∈ M(n × n,K) heißt Diagonalmatrix, wenn dij = 0 für
alle i, j mit i 6= j. Eine Diagonalmatrix hat also folgende Gestalt:











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn











Lemma 10.1 Sei f : V → V ein Endomorphismus und sei α = (v1, . . . , vn) eine
Basis von V . Dann sind äquivalent:

(1) Die Basis α besteht aus Eigenvektoren von f .

(2) Die Matrix von f bezüglich α ist eine Diagonalmatrix.

Insbesondere ist f genau dann diagonalisierbar, wenn es eine Basis α von V gibt,
so dass die Matrix von f bezüglich α eine Diagonalmatrix ist.
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Beweis (1) ⇒ (2): Da vj ein Eigenvektor von f ist, ist f(vj) = λjvj für den
entsprechenden Eigenwert λj ∈ K. Dann aber ist die Diagonalmatrix











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn











die Matrix von f bezüglich der Basis α.

(2) ⇒ (1): Sei D = (dij) die Matrix von f bezüglich der Basis α. Sei 1 ≤ j ≤ n;
da D eine Diagonalmatrix ist, gilt

f(vj) = d1jv1 + · · ·+ dnjvn = djjvj .

Ferner ist vj 6= 0, da (v1, . . . , vn) eine Basis ist und folglich ist vj ein Eigenvektor
von f zum Eigenwert djj. Damit besteht (v1, . . . , vn) aus Eigenvektoren von f .

Eine Matrix A ∈ M(n × n,K) heißt diagonalisierbar, wenn A ähnlich zu einer
Diagonalmatrix ist, d.h., wenn es MatrizenD, P ∈ M(n×n,K) mit P invertierbar
und D einer Diagonalmatrix gibt, so dass A = P−1DP .

Satz 10.1 Sei f : V → V ein Endomorphismus, sei α eine Basis von V und
sei A die Matrix von f bezüglich der Basis α. Dann ist der Endomorphismus f
diagonalisierbar genau, wenn die Matrix A diagonalisierbar ist.

Beweis Nehme zunächst an, dass der Endomorphismus f diagonalisierbar ist.
Nach Lemma 10.1 gibt es dann eine Basis β von V , so dass die Matrix D von
f bezüglich β eine Diagonalmatrix ist. Aber nach Satz 8.8 gilt A = P−1DP ,
wobei P die Matrix für den Wechsel von β nach α ist. Damit ist die Matrix A
diagonalisierbar.

Nehme nun umgekehrt an, dass die Matrix A diagonalisierbar ist. Dann gibt es
Matrizen D, P ∈ M(n×n,K) mit D einer Diagonalmatrix und P invertierbar, so
dass A = P−1DP , und nach Lemma 6.6 gibt es eine Basis β von V , so dass P−1

die Matrix für den Wechsel von α nach β ist. Daraus ergibt sich nach Satz 8.8,
das (P−1)−1AP−1 = PAP−1 = D die Matrix von f bezüglich der Basis β ist.
Damit ist nach Lemma 10.1 der Endomorphismus f diagonalisierbar.

Sei A ∈ M(n×n,K); nach Satz 10.1 ist der Endomorphismus ϕA diagonalisierbar
genau, wenn die Matrix A diagonalisierbar ist, da nach Lemma 8.1 A die Matrix
von ϕA bezüglich der kanonischen Basis von Kn ist.

Sei A ∈ M(n × n,K); Ein Element λ ∈ K heißt Eigenwert von A, wenn λ
Eigenwert von ϕA ist, d.h., wenn es einen Vektor u ∈ Kn, u 6= 0, mit ϕA(u) = λu
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gibt. Ein Vektor u 6= 0 mit ϕA(u) = λu heißt dann Eigenvektor von A zum
Eigenwert λ, d.h., ein Eigenvektor von A zum Eigenwert λ ist nichts anderes als
ein Eigenvektor von ϕA zum Eigenwert λ.

Es gilt aber ϕA(u) = Au, wenn u als Element von M(n × 1, K) betrachtet wird,
und folglich ist λ ∈ K Eigenwert von A, genau wenn es einen Vektor u ∈ Kn,
u 6= 0, mit Au = λu gibt, d.h., wenn







a11 · · · a1n
...

...
an1 · · · ann













µ1
...
µn






= λ







µ1
...
µn






,

wobei u = (µ1, . . . , µn). Ein Vektor u ∈ Kn mit u 6= 0 ist also Eigenvektor von A
zum Eigenwert λ genau dann, wenn Au = λu.

Lemma 10.2 Seien A, Q ∈ M(n× n,K) und sei

D =











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn











eine Diagonalmatrix. Dann gilt AQ = QD genau, wenn Auj = λjuj für jedes j,
wobei u1, . . . , un die Spalten von Q sind. Ferner ist die Matrix Q invertierbar
genau dann, wenn (u1, . . . , un) eine Basis von Kn ist.

Beweis Die erste Aussage folgt aus der Definition von Matrizenmultiplikation.
Nun gilt dim L(u1, . . . , un) = RangS(Q) = rangQ und nach Satz 4.6 (4) ist
(u1, . . . , un) eine Basis von Kn genau dann, wenn dim L(u1, . . . , un) = n. Nach
Satz 7.4 ist andererseits Q invertierbar genau dann, wenn rangQ = n. Damit ist
Q invertierbar genau dann, wenn (u1, . . . , un) eine Basis von Kn ist.

Satz 10.2 Eine Matrix A ∈ M(n× n,K) ist diagonalisierbar genau dann, wenn
es eine aus Eigenvektoren von A bestehende Basis von Kn gibt.

Beweis Dies folgt unmittelbar aus Satz 10.1, da nach Lemma 8.1 A die Matrix
von ϕA bezüglich der kanonischen Basis vonKn ist. Es ist dennoch aufschlußreich,
den folgenden direkten Beweis zu betrachten:

Nehme zuerst an, dass A diagonalisierbar ist; dann gibt es eine Diagonalmatrix

D =











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn










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und eine invertierbare Matrix P , so dass A = P−1DP . Sei Q = P−1 und seien
u1, . . . , un die Spalten von Q. Dann ist Q−1AQ = D und damit auch AQ = QD.
Nach Lemma 10.2 gilt also Auj = λjuj für j = 1, . . . , n und (u1, . . . , un) ist eine
Basis von Kn. Damit ist (u1, . . . , un) eine aus Eigenvektoren von A bestehende
Basis von Kn.

Nehme nun umgekehrt an, dass es eine aus Eigenvektoren von A bestehende Basis
(u1, . . . , un) von Kn gibt. Für j = 1, . . . , n sei λj der entsprechende Eigenwert,
d.h., es gilt Auj = λjuj. Sei Q ∈ M(n × n,K) die Matrix, die u1, . . . , un als
Spalten hat. Nach Lemma 10.2 ist Q invertierbar und AQ = QD, wobei

D =











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn











.

Damit ist A = P−1DP , wobei P = Q−1, d.h., A ist diagonalisierbar.

Für jede Basis α = (v1, . . . , vn) von V sei ψα : Kn → V die durch

ψα((λ1, . . . , λn)) = λ1v1 + · · ·+ λnvn

definierte Abbildung. Man sieht leicht, dass ψα linear ist. Ist (e1, . . . , en) die
kanonische Basis von Kn, so gilt ψα(ej) = uj für jedes j = 1, . . . , n und daraus
folgt nach Lemma 5.10 (4), dass ψα ein Isomorphismus ist.

Lemma 10.3 Sei f : V → V ein Endomorphismus und sei A die Matrix von f
bezüglich einer Basis α von V . Dann gilt f ◦ ψα = ψα ◦ ϕA.

Beweis Sei α = (v1, . . . , vn) und A = (aij). Für alle (λ1, . . . , λn) ∈ Kn ist

(f ◦ ψα)((λ1, . . . , λn)) = f(ψα((λ1, . . . , λn)))

= f
(

n
∑

j=1

λjvj

)

=

n
∑

j=1

λjf(vj) =

n
∑

j=1

λj

n
∑

i=1

aijvi =

n
∑

i=1

(

n
∑

j=1

aijλj

)

vi

= ψα(ϕA((λ1, . . . , λn))) = (ψα ◦ ϕA)((λ1, . . . , λn))

und damit ist f ◦ ψα = ψα ◦ ϕA.

Satz 10.3 Sei f : V → V ein Endomorphismus, sei α = (v1, . . . , vn) eine Basis
von V und sei A die Matrix von f bezüglich der Basis α.

(1) Ein Element λ ∈ K ist ein Eigenwert von f genau dann, wenn λ ein Eigen-
wert von A ist.
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(2) Sei λ ein Eigenwert von f und u ∈ Kn; dann ist u ein Eigenvektor von A
zum Eigenwert λ genau, wenn ψα(u) ein Eigenvektor von f zum Eigenwert λ ist.

(3) Ist A diagonalisierbar und ist (u1, . . . , un) eine aus Eigenvektoren von A be-
stehende Basis von Kn, so ist (ψα(u1), . . . , ψα(un)) eine aus Eigenvektoren von
f bestehende Basis von V .

Beweis (1) und (2): Sei λ ∈ K und u ∈ Kn; es gilt f ◦ ψα = ψα ◦ ϕA nach
Lemma 10.3, und ψα ist ein Isomorphismus, und daraus ergibt sich, dass

Au = λu ⇔ ϕA(u) = λu ⇔ ϕA(u)− λu = 0

⇔ ψα(ϕA(u)− λu) = 0 ⇔ ψα(ϕA(u))− λψα(u) = 0

⇔ f(ψα(u))− λψα(u) = 0 ⇔ f(ψα(u)) = λψα(u) .

Ferner ist u 6= 0 genau dann, wenn ψα(u) 6= 0. Damit ist λ ein Eigenwert von f
genau dann, wenn λ ein Eigenwert von A ist, und u ist ein Eigenvektor von A
zum Eigenwert λ genau dann, wenn ψα(u) ein Eigenvektor von f zum Eigenwert
λ ist.

(3) Dies folgt unmittelbar aus (1) und (2) und Lemma 5.10 (3).

Lemma 10.4 Sei f : V → V ein Endomorphismus und für j = 1, . . . , m sei vj
ein Eigenvektor von f zum Eigenwert λj, wobei λi 6= λj, falls i 6= j. Dann sind
die Vektoren v1, . . . , vm linear unabhängig.

Beweis Nehme an, dass v1, . . . , vm linear abhängig sind. Da v1 6= 0, gibt es nach
Lemma 3.13 ein k mit 2 ≤ k ≤ m, so dass vk ∈ L(v1, . . . , vk−1). Sei p der kleinste
solche Index, es gilt also 2 ≤ p ≤ m, vp ∈ L(v1, . . . , vp−1), aber vi /∈ L(v1, . . . , vi−1)
für alle 2 ≤ i < p. Nach Lemma 3.13 sind v1, . . . , vp−1 linear unabhängig. Da
vp ∈ L(v1, . . . , vp−1), gibt es µ1, . . . , µp−1 ∈ K, so dass vp = µ1v1 + · · ·+µp−1vp−1.
Dann ist

0 = f(vp)− λpvp = f(µ1v1 + · · ·+ µp−1vp−1)− λp(µ1v1 + · · ·+ µp−1vp−1)

= µ1f(v1) + · · ·+ µp−1f(vp−1)− λp(µ1v1 + · · ·+ µp−1vp−1)

= µ1λ1v1 + · · ·+ µp−1λp−1vp−1 − (µ1λpv1 + · · ·+ µp−1λpvp−1)

= µ1(λ1 − λp)v1 + · · ·+ µp−1(λp−1 − λp)vp−1 ,

und daraus ergibt sich, dass µj(λj−λp) = 0 für j = 1, . . . , p−1, da v1, . . . , vp−1

linear unabhängig sind. Aber λj−λp 6= 0 und also ist µj = 0 für j = 1, . . . , p−1.
Damit ist vp = µ1v1 + · · ·+ µp−1vp−1 = 0 und dies ist ein Widerspruch, da vp ein
Eigenvektor ist. Daher müssen v1, . . . , vm linear unabhängig sein.
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Satz 10.4 (1) Ein Endomorphismus f : V → V hat höchstens n verschiedene
Eigenwerte (wobei n = dimV ), und gibt es n verschiedene Eigenwerte, so ist f
diagonalisierbar.

(2) Eine Matrix A ∈ M(n×n,K) hat höchstens n verschiedene Eigenwerte. Gibt
es n verschiedene Eigenwerte von A, so ist A diagonalisierbar.

Beweis Dies folgt unmittelbar aus Lemma 10.4 und (1) und (2) von Satz 4.6.

Sei f : V → V ein Endomorphismus und sei λ ∈ K. Für v ∈ V gilt f(v) = λv
genau dann, wenn v ∈ Kern (f − λ idV ), da

f(v) = λv ⇔ f(v)− λv = 0 ⇔ (f − λ idV )(v) = 0 ⇔ v ∈ Kern (f − λ idV ) .

Folglich ist λ ein Eigenwert von f genau dann, wenn Kern (f − λ idV ) 6= {0}.
Daraus ergibt sich nach Satz 5.3, dass λ genau dann ein Eigenwert von f ist,
wenn der Endomorphismus f − λ idV : V → V kein Automorphismus ist.

Für jeden Eigenwert λ setze E(f, λ) = Kern (f −λ idV ). Dieser Untervektorraum
von V heißt Eigenraum von f zum Eigenwert λ. Es gilt dim E(f, λ) ≥ 1 und
E(f, λ) \ {0} ist gerade die Menge aller Eigenvektoren von f zum Eigenwert λ.

Wichtige Bemerkung: Ist 0 ein Eigenwert von f , so ist E(f, 0) = Kern f .

Satz 10.5 Sei f : V → V ein Endomorphismus von V und seien λ1, . . . , λm die
verschiedenen Eigenwerte. Dann ist

E(f, λ1) + · · ·+ E(f, λm) = E(f, λ1)⊕ · · · ⊕ E(f, λm) .

(die Summe ist also direkt). Ferner ist f diagonalisierbar genau dann, wenn

V = E(f, λ1)⊕ · · · ⊕ E(f, λm) .

Beweis Es folgt zunächst unmittelbar aus Satz 9.3 und Lemma 10.4, dass die
Summe E(f, λ1) + · · ·+ E(f, λm) direkt ist.

Gilt V = E(f, λ1) ⊕ · · · ⊕ E(f, λm), so ist nach Satz 9.3 f diagonalisierbar. Ist
umgekehrt f diagonalisierbar, so ist es klar, dass V = E(f, λ1) + · · ·+ E(f, λm).
Also ist f diagonalisierbar genau dann, wenn V = E(f, λ1)⊕ · · · ⊕ E(f, λm).

Sei f : V → V ein diagonalisierbarer Endomorphismus und seien λ1, . . . , λm die
verschiedenen Eigenwerte von f . Für j = 1, . . . , m setze Uj = E(f, λj); also ist
V = U1 ⊕ · · · ⊕ Um und ferner gilt

f = λ1idU1
⊕ · · · ⊕ λmidUm

,

d.h., f ist die direkte Summe der Endomorphismen λ1idU1
, . . . , λmidUm

.
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Satz 10.6 Sei f : V → V ein Endomorphismus von V und seien λ1, . . . , λm die
verschiedenen Eigenwerte. Dann gilt dim E(f, λ1) + · · ·+ dim E(f, λm) ≤ dim V .
Ferner ist f diagonalisierbar genau dann, wenn

dim E(f, λ1) + · · ·+ dim E(f, λm) = dimV .

Beweis Dies folgt unmittelbar aus Satz 10.5 und Satz 9.7.

Beispiel Sei f : K2 → K2 die Abbildung, die durch f((x, y)) = (y, 0) gegeben
ist; dann ist f ein Endomorphismus von K2, und f = ϕA mit

A =

(

0 1
0 0

)

.

Sei (x, y) ∈ K2 und λ ∈ K mit f((x, y)) = λ (x, y); dann ist (y, 0) = λ(x, y), d.h.,
λy = 0 und y = λx. Damit ist 0 der einzige Eigenwert von f und

E(f, 0) = {v ∈ K2 : f(v) = 0} = {(x, 0) : x ∈ K} .

Insbesondere ist dim E(f, 0) = 1 < 2 = dimK2, und daraus folgt nach Satz 10.6,
dass f nicht diagonalisierbar ist.

Sei nun A ∈ M(n× n,K) und sei λ ∈ K. Für u ∈ Kn gilt Au = λu genau dann,
wenn u ∈ KernϕA−λEn

, da

Au = λu ⇔ Au− λEnu = 0 ⇔ (A− λEn)u = 0

⇔ ϕA−λEn
(u) = 0 ⇔ u ∈ Kern ϕA−λEn

.

Folglich ist λ ein Eigenwert von A genau dann, wenn der Endomorphismus ϕA−λEn

kein Automorphismus von Kn ist. Nach Satz 6.3 ist also λ ein Eigenwert von A
genau dann, wenn die Matrix A− λEn nicht invertierbar ist.

Für jeden Eigenwert λ setze E(A, λ) = KernϕA−λEn
. Dieser Untervektorraum

von V heißt Eigenraum von A zum Eigenwert λ. Es gilt dim E(A, λ) ≥ 1 und
E(A, λ) \ {0} ist gerade die Menge aller Eigenvektoren von A zum Eigenwert λ.

Lemma 10.5 Sei A ∈ M(n× n,K); dann gilt

E(A, λ) = Lös(A− λEn, 0)

für jeden Eigenwert λ von A.

Beweis Dies folgt unmittelbar aus Lemma 5.7.

Sei nun A ∈ M(n×n,K) und seien λ1, . . . , λm die verschiedenen Eigenwerte von
A. Nach Lemma 10.5 ist E(A, λj) = Lös(A − λjEn, 0), und also kann man mit
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Hilfe von Satz 10.1 und des Gaußschen Algorithmus eine Basis (uj1, . . . , u
j
pj

) von
E(A, λj) konstruieren. Nach Satz 10.6 ist A diagonalisierbar genau dann, wenn
p1 + · · ·+ pm = n. Nehme an, dass A diagonalisierbar ist und setze

(w1, . . . , wn) = (u1
1, . . . , u

1
p1
, u2

1, . . . , u
2
p2
, . . . , um1 , . . . , u

m
pm

) .

Dann ist (w1, . . . , wn) eine aus Eigenvektoren von A bestehende Basis von Kn.
Sei Q ∈ M(n× n,K) die Matrix, die w1, . . . , wn als Spalten hat; wie im Beweis
für Satz 10.2 gilt dann, dass Q invertierbar ist und Q−1AQ = D, wobei D die
Diagonalmatrix ist mit den Einträgen λ1, . . . , λ1, λ2, . . . , λ2, . . . , λm, . . . , λm auf
der Diagonalen, wobei für jedes j der Eigenwert λj genau pj-mal vorkommt.

Diese Verfahren kann aber nur durchführt werden, wenn die Eigenwerte von A
schon bekannt sind, und daher stellt sich die Frage: Wie findet man die Eigenwerte
einer Matrix A ∈ M(n× n,K)?

Bevor aber diese Frage beantwortet werden kann, müssen einige Eigenschaften
über Determinanten von Matrizen kennengelernt werden.



11 Trigonalisierbarkeit

Im Folgenden sei K ein Körper und V ein Vektorraum über K.

Sei f : V → V ein Endomorphismus von V . Ein Untervektorraum U von V heißt
f -invariant, wenn f(U) ⊂ U . In diesem Fall kann eine Abbildung f|U : U → U
definiert werden durch f|U(u) = f(u) für alle u ∈ U . Man sieht leicht, dass f|U
linear ist, d.h., f|U ist ein Endomorphismus von U . Diesen Endomorphismus f|U
nennt man die Einschränkung von f auf U .

Sei f : V → V ein Endomorphismus von V . Für jedes m ≥ 0 wird dann der
Endomorphismus fm : V → V definiert durch f 0 = idV , f 1 = f und (für m ≥ 1)
fm+1 = f ◦ fm.

Der Endomorphismus f heißt nilpotent, wenn fm = 0 für ein m ≥ 1. Also ist f
nilpotent genau dann, wenn Bild fm = {0} für ein m ≥ 1, und man beachte, dass
Bild fm = {0} genau dann gilt, wenn Kern fm = V .

Nehme nun an, dass V endlichdimensional ist mit dimV = n ≥ 1.

Eine Matrix A = (aij) ∈ M(n × n,K) heißt obere Dreiecksmatrix, wenn aij = 0
für alle i > j, und eine Matrix heißt trigonalisierbar, wenn sie ähnlich zu einer
oberen Dreiecksmatrix ist. Jede diagonalisierbare Matrix ist trigonalisierbar, da
eine Diagonalmatrix auch eine obere Dreiecksmatrix ist. Andererseits ist

(

0 1
0 0

)

eine obere Dreiecksmatrix und damit trigonalisierbar, aber diese Matrix ist nicht
diagonalisierbar.

Eine Folge V0, V1, . . . , Vn von Untervektorräumen von V heißt eine Fahne, wenn

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V

und dimVj = j für jedes j = 0, . . . , n. Ein Endomorphismus f : V → V von
V heißt trigonalisierbar, wenn es eine f -invariante Fahne gibt, wobei eine Fahne
V0, V1, . . . , Vn f -invariant heißt, wenn der Untervektorraum Vj f -invariant für
jedes j ist.

Satz 11.1 Sei f : V → V ein Endomorphismus von V und sei A ∈ M(n×n,K)
die Matrix von f bezüglich irgendeiner Basis von V . Dann ist f trigonalisierbar
genau, wenn A trigonalisierbar ist.

Beweis Nehme zuerst an, dass f trigonalisierbar ist. Es gibt also eine f -invariante
Fahne V0, V1, . . . , Vn. Nach wiederholter Anwendung des Basisergänzungssatzes
kann man eine Basis (u1, . . . , un) von V konstruieren, so dass (u1, . . . , uj) eine

81
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Basis von Vj ist für jedes j = 1, . . . , n. (Ist j < n und ist (u1, . . . , uj) eine
Basis von Vj, so gibt es nach dem Basisergänzungssatz ein uj+1 ∈ Vj+1, so dass
(u1, . . . , uj+1) eine Basis von Vj+1 ist.) Sei B = (bij) ∈ M(n × n,K) die Matrix
von f bezüglich der Basis (u1, . . . , un); dann ist f(uj) = b1ju1 + · · ·+ bnjun für
i = 1, . . . , n. Aber f(uj) ∈ Vj = L(u1, . . . , uj) und folglich ist bij = 0 für alle
i > j, d.h., B ist eine obere Dreiecksmatrix. Damit ist A trigonalisierbar, da nach
Satz 8.9 die Matrizen A und B ähnlich sind.

Nehme nun umgekehrt an, dass A trigonalisierbar ist. Dann ist A ähnlich zu einer
oberen Dreiecksmatrix B = (bij) ∈ M(n × n,K) und nach Satz 8.9 gibt es eine
Basis (u1, . . . , un) von V , so dass B die Matrix von f bezüglich (u1, . . . , un) ist. Sei
V0 = {0} und für j = 1, . . . , n setze Vj = L(u1, . . . , uj); die Folge V0, V1, . . . , Vn
ist also eine Fahne. Seien 1 ≤ k ≤ j ≤ n; dann ist

f(uk) = b1ku1 + · · ·+ bnkun ∈ L(u1, . . . , uk) ⊂ L(u1, . . . , uj) = Vj ,

da bik = 0 für i > k. Damit ist nach Lemma 5.8 und Satz 3.2

f(Vj) = f(L(u1, . . . , uj)) = L(f(u1), . . . , f(uj)) ⊂ L(u1, . . . , uj) = Vj

für j = 1, . . . , n, d.h., V0, V1, . . . , Vn ist eine f -invariante Fahne. Folglich ist f
trigonalisierbar.

Sei f : V → V trigonalisierbar und sei V0, V1, . . . , Vn eine f -invariante Fahne.
Da dimV1 = 1 und f(V1) ⊂ V1, gibt es dann ein λ ∈ K, so dass f(v) = λv für
jedes v ∈ V . Insbesondere besitzt jeder trigonalisierbare Endomorphismus einen
Eigenwert. Nach Satz 11.1 besitzt also jede trigonalisierbare Matrix ebenfalls
einen Eigenwert. Folglich ist zum Beispiel die reelle Matrix

(

0 −1
1 0

)

nicht trigonalisierbar, da sie keinen Eigenwert besitzt. Es wird aber in Satz 11.8
gezeigt werden, dass jeder komplexe Endomorphismus und damit jede komplexe
Matrix trigonalisierbar ist.

Hier ist das Hauptergebnis dieses Kapitels:

Satz 11.2 Sei f : V → V ein Endomorphismus von V und seien λ1, . . . , λm die
verschiedenen Eigenwerte von f . Dann sind äquivalent:

(1) f ist trigonalisierbar.

(2) Jeder f -invariante Untervektorraum U von V mit dimU ≥ 1 enthält einen
Eigenvektor von f .

(3) Ist U ein f -invarianter Untervektorraum von V mit dimU ≥ 1, so besitzt
die Einschränkung f|U von f auf U einen Eigenwert.
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(4) Es gibt Endomorphismen g, h : V → V mit g diagonalisierbar, h nilpotent
und g ◦ h = h ◦ g, so dass f = g + h.

(5) Es gibt eindeutige Endomorphismen g, h : V → V mit g diagonalisierbar, h
nilpotent und g ◦ h = h ◦ g, so dass f = g + h.

(6) Es gibt f -invariante Untervektorräume U1, . . . , Um von V mit

V = U1 ⊕ · · · ⊕ Um ,

so dass für jedes k der Endomorphismus f|Uk
− λkidUk

von Uk nilpotent ist.

(7) Es gibt eindeutige f -invariante Untervektorräume U1, . . . , Um von V mit

V = U1 ⊕ · · · ⊕ Um ,

so dass für jedes k der Endomorphismus f|Uk
− λkidUk

von Uk nilpotent ist, und
in der Tat gilt dann Uk = Kern (f − λkidV )n für jedes k = 1, . . . , m.

Beweis Dieser erstreckt sich über die nächsten zehn Seiten. Man beachte aber
an dieser Stelle, dass (2) und (3) trivial äquivalent sind: Sei U ein f -invarianter
Untervektorraum von V mit dimU ≥ 1. Ist u ∈ U ein Eigenvektor von f , so
ist u auch Eigenvektor von f|U und damit besitzt f|U einen Eigenwert. Besitzt
umgekehrt f|U einen Eigenwert λ, so gibt es u ∈ U \ {0} mit f|U(u) = λu, und
dann ist f(u) = λu, d.h., u ist ein Eigenvektor von f , der in U enthalten ist.

Bemerkung: In Kapitel 16 wird das charakteristische Polynom eingeführt und es
wird gezeigt, dass ein Endomorphismus f genau dann trigonalisierbar ist, wenn
sein charakteristisches Polynom χf in Linearfaktoren zerfällt.

Lemma 11.1 Sei f : V → V trigonalisierbar. Dann ist die Einschränkung f|U
von f auf U auch trigonalisierbar für jeden f -invarianten Untervektorraum U
mit dimU ≥ 1.

Beweis Sei V0, V1, . . . , Vn eine f -invariante Fahne und für jedes k = 1, . . . , n sei
Uk = U ∩ Vk. Dann ist Uk ein f|U -invarianter Untervektorraum von U und

{0} = U0 ⊂ U1 ⊂ · · · ⊂ Un = U .

Ferner gilt nach Satz 4.8, dass für k = 0, . . . , n− 1

dimUk+1 − dimUk = dim(U ∩ Vk+1)− dim(U ∩ Vk)
= (dimU + dimVk+1 − dim(U + Vk+1))

− (dimU + dimVk − dim(U + Vk))

= dimVk+1 − dimVk − dim(U + Vk+1) + dim(U + Vk))

= 1− dim(U + Vk+1) + dim(U + Vk) ≤ 1
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und daraus ergibt sich, dass dimUk+1 = dimUk oder dimUk+1 = 1 + dimUk für
k = 0, . . . , n − 1. Damit gibt es 0 < m1 < · · · < mp = n mit p = dimU , so
dass dimUmj

= j für j = 0, . . . , p. Also ist U0, Um1
, . . . , Ump

eine f|U -invariante
Fahne, und daher ist f|U trigonalisierbar.

Wie schon erwähnt wurde, besitzt jeder trigonalisierbare Endomorphismus einen
Eigenwert. Also liefert Lemma 11.1 insbesondere einen Beweis für (1) ⇒ (3) in
Satz 11.2.

Bemerkung: Die nachfolgenden Ergebnisse bis einschließlich Lemma 11.7 sind
auch richtig ohne die Annahme, dass V endlichdimensional ist.

Lemma 11.2 Sei f : V → V ein Endomorphismus. Dann gilt:

(1) Bild fk+1 ⊂ Bild fk für jedes k ≥ 0.

(2) Gilt Bild fm+1 = Bild fm für ein m ≥ 0, so ist Bild fk = Bild fm für alle
k ≥ m.

(3) Kern fk ⊂ Kern fk+1 für jedes k ≥ 0.

(4) Gilt Kern fm = Kern fm+1 für ein m ≥ 0, so ist Kern fm = Kern fk für alle
k ≥ m.

Beweis (1) Sei k ≥ 0 und v ∈ Bild fk+1; also gibt es u ∈ V mit v = fk+1(u).
Dann ist aber v = fk(w) mit w = f(u) und folglich ist v ∈ Bild fk. Daraus ergibt
sich, dass Bild fk+1 ⊂ Bild fk.

(2) Sei m ≥ 0 und nehme an, dass Bild fm+1 = Bild fm. Es wird gezeigt, dass
dann Bild fm+2 = Bild fm+1. Sei v ∈ Bild fm+1, es gibt also ein u ∈ V mit
v = fm+1(u). Aber Bild fm+1 = Bild fm und fm(u) ∈ Bild fm, und folglich gibt
es w ∈ V , so dass fm(u) = fm+1(w). Damit ist

v = fm+1(u) = f(fm(u)) = f(fm+1(w)) = fm+2(w) ,

d.h., v ∈ Bild fm+1. Dies zeigt, dass Bild fm+1 ⊂ Bild fm+2 und nach (1) ist
dann Bild fm+2 = Bild fm+1. Gilt nun Bild fm+1 = Bild fm für ein m ≥ 0, so ist
Bild fk = Bild fm für alle k ≥ m.

(3) Sei k ≥ 0 und v ∈ Kern fk; dann gilt fk+1 = f(fk(v)) = f(0) = 0 und
folglich ist v ∈ Kern fk+1. Damit ist Kern fk ⊂ Kern fk+1 für jedes k ≥ 0.

(4) Sei m ≥ 0 und nehme an, dass Kern fm = Kern fm+1. Es wird gezeigt, dass
Kern fm+1 = Kern fm+2. Sei v ∈ Kern fm+2; dann ist fm+1(f(v)) = fm+2(v) = 0,
d.h., f(v) ∈ Kern fm+1. Da Kern fm = Kern fm+1, ist dann f(v) ∈ Kern fm, d.h.,
v ∈ Kern fm+1. Dies zeigt, dass Kern fm+2 ⊂ Kern fm+1 und nach (3) ist damit
Kern fm+1 = Kern fm+2. Gilt nun Kern fm = Kern fm+1 für ein m ≥ 0, so ist
Kern fm = Kern fk für alle k ≥ n.
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Lemma 11.3 Sei f : V → V ein Endomorphismus.

(1) Es gilt Bild f 2 = Bild f genau dann, wenn V = Kern f + Bild f .

(2) Es gilt Kern f = Kern f 2 genau dann, wenn Kern f ∩ Bild f = {0}.

Beweis (1) Nehme zunächst an, dass V = Kern f + Bild f . Sei v ∈ Bild f , es
gibt also v′ ∈ V , so dass v = f(v′) und da V = Kern f + Bild f , gibt es dann
u ∈ Kern f und w ∈ V , so dass v′ = u+ f(w). Folglich ist

v = f(v′) = f(u+ f(w)) = f(u) + f(f(w)) = 0 + f(f(w)) = f 2(w)

und damit ist v ∈ Bild f 2. Dies zeigt, dass Bild f ⊂ Bild f 2, und daher ist nach
Lemma 11.2 (1) Bild f 2 = Bild f .

Nehme nun umgekehrt an, dass Bild f 2 = Bild f . Sei v ∈ V ; dann gibt es u ∈ V ,
so dass f(v) = f(f(u)), da Bild f 2 = Bild f . Dann ist v = (v − f(u)) + f(u)
und f(v − f(u)) = f(v)− f(f(u)) = 0, d.h., v − f(u) ∈ Kern f . Dies zeigt, dass
v ∈ Kern f + Bild f und damit ist V = Kern f + Bild f .

(2) Nehme zunächst an, dass Kern f ∩ Bild f = {0}, und sei v ∈ Kern f 2. Dann
ist f(f(v)) = 0 und folglich ist f(v) ∈ Kern f ∩ Bild f . Damit ist f(v) = 0, d.h.,
v ∈ Kern f . Dies zeigt, dass Kern f 2 ⊂ Kern f und nach Lemma 11.2 (3) ist dann
Kern f = Kern f 2.

Nehme nun umgekehrt an, dass Kern f = Kern f 2, und sei v ∈ Kern f ∩ Bild f .
Da v ∈ Kern f , gibt es u ∈ V , so dass v = f(u), und dann ist f(f(u)) = f(v) = 0,
da v ∈ Kern f . Also ist u ∈ Kern f 2 = Kern f , d.h., v = f(u) = 0. Dies zeigt,
dass Kern f ∩ Bild f = {0}.

Lemma 11.4 Sei f : V → V ein nilpotenter Endomorphismus. Dann gilt:

(1) 0 ist der einzige Eigenwert von f . (D.h: 0 ist ein Eigenwert und es gibt keinen
Eigenwert λ mit λ 6= 0.)

(2) Für jedes λ ∈ K ist λ der einzige Eigenwert von fλ = λidV + f , und ferner
ist E(fλ, λ) = E(f, 0) (und natürlich gilt E(f, 0) = Kern f).

Beweis (1) Sei m ≥ 1 mit fm = 0. Sei v ∈ V \ {0}; da f 0(v) = v 6= 0 und
fm(v) = 0, gibt es ein p mit 0 ≤ p < m, so dass f p(v) 6= 0 aber f p+1(v) = 0.
Setze u = f p(v); dann ist u 6= 0 und f(u) = 0 = 0u. Also ist 0 ein Eigenwert von
f (und u ist ein Eigenvektor zum Eigenwert 0).

Sei nun λ ∈ K ein Eigenwert von f und v ein Eigenvektor zum Eigenwert λ.
Dann gilt f(v) = λv und daraus folgt durch Induktion nach k, dass fk(v) = λkv
für alle k ≥ 1: Gilt fk(v) = λkv, so ist auch

fk+1(v) = f(fk(v)) = f(λkv) = λkf(v) = λkλv = λk+1v .
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Insbesondere ist λmv = fm(v) = 0 und damit ist λm = 0, da v 6= 0. Also ist
λ = 0. Dies zeigt, dass 0 der einzige Eigenwert von f ist.

(2) Dies folgt aus (1), da fλ(v) = µv genau dann gilt, wenn f(v) = (µ− λ)v.

Lemma 11.5 Seien f, g : V → V Endomorphismen von V mit f ◦ g = g ◦ f .
(1) Die Untervektorräume Kern g und Bild g sind beide f -invariant.

(2) Es gilt f ◦ gm = gm ◦ f für jedes m ≥ 1.

(3) Die Untervektorräume Kern gm und Bild gm sind beide f -invariant für jedes
m ≥ 1.

(4) Für jeden Eigenwert λ von g ist der Eigenraum E(g, λ) f -invariant.

Beweis (1) Sei v ∈ Kern g; dann gilt g(f(v)) = f(g(v)) = f(0) = 0 und damit
ist f(v) ∈ Kern g; folglich ist Kern g f -invariant. Sei nun v ∈ Bild g, es gibt also
w ∈ V mit v = g(w) und dann ist f(v) = f(g(w)) = g(f(w)) ∈ Bild g. Daher ist
auch Bild g f -invariant.

(2) Dies folgt unmittelbar durch Induktion nach m.

(3) Dies folgt unmittelbar aus (1) und (2).

(4) Sei v ∈ E(g, λ); dann gilt g(f(v)) = f(g(v)) = f(λv) = λf(v) und damit ist
f(v) ∈ E(g, λ).

Lemma 11.6 Sei f : V → V ein Endomorphismus und sei U ein f -invarianter
Untervektorraum von V . Dann ist jeder Eigenwert von f|U auch ein Eigenwert
von V .

Beweis Dies ist klar.

Lemma 11.7 Sei f : V → V ein Endomorphismus und seien U, W f -invariante
Untervektorräume von V mit V = U ⊕W . Dann ist jeder Eigenwert von V ein
Eigenwert von f|U oder ein Eigenwert von f|W .

Beweis Sei v ein Eigenvektor von f zum Eigenwert λ. Da V = U ⊕W , hat v
eine eindeutige Darstellung v = u + w mit u ∈ U und w ∈ W , und da U und
W f -invariant sind, ist f(u) ∈ U und f(w) ∈ W . Damit ist f(u)− λu ∈ U und
f(w)− λw ∈W und es gilt

(f(u)− λu) + (f(w)− λw) = f(u+ w)− λ(u+ w) = f(v)− λv = 0 .

Daraus egibt sich, dass f(u)− λu = f(w)− λw = 0, da U ∩W = {0}. Also ist
λ ein Eigenwert von f|U oder ein Eigenwert von f|W , da mindestens eines von u
und w nicht gleich Null ist.

Erinnerung: Es gilt dim V = n ≥ 1.
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Lemma 11.8 Sei f : V → V ein Endomorphismus. Dann gilt Bild fk = Bild fn

und Kern fk = Kern fn für alle k ≥ n. Insbesondere ist f genau dann nilpotent,
wenn fn = 0.

Beweis Für k ≥ 0 setze dk = dim Bild fk. Nach Lemma 11.2 (1) ist dk+1 ≤ dk
für jedes k und folglich gibt es d ≥ 0 und p ≥ 0, so dass dk = d für alle k ≥ p. Sei
q = min{k ≥ 0 : dk = d}. Dann ist dk = d für alle k ≥ q und nach Lemma 11.2 (2)
ist dk+1 < dk für alle 0 ≤ k < q. Aber d0 = n und d ≥ 0 und daraus ergibt sich,
dass q ≤ n. Insbesondere ist dk = d für alle k ≥ n und also ist nach Satz 4.7
Bild fk = Bild fn für alle k ≥ n. Genauso gilt auch Kern fk = Kern fn für alle
k ≥ n.

Lemma 11.9 Sei f : V → V ein Endomorphismus. Dann sind äquivalent:

(1) Bild f 2 = Bild f .

(2) V = Kern f + Bild f .

(3) Kern f = Kern f 2.

(4) Kern f ∩ Bild f = {0}.

Beweis (1) ⇔ (2) und (3) ⇔ (4) sind Lemma 11.3.

(2) ⇔ (4): Nach Satz 4.8 ist

dim(Kern f + Bild f) = dim Kern f + dim Bild f − dim(Kern f ∩ Bild f)

und nach der Dimensionsformel (Satz 5.2) ist dim V = dim Kern f + dim Bild f .
Daraus ergibt sich, dass

dimV = dim(Kern f + Bild f) + dim(Kern f ∩ Bild f) .

Außerdem folgt aus Satz 4.7, dass dimV = dim(Kern f+Bild f) genau dann gilt,
wenn V = Kern f + Bild f . Damit gilt V = Kern f + Bild f genau dann, wenn
dim(Kern f ∩ Bild f) = 0, d.h., genau dann wenn, Kern f ∩ Bild f = {0}.

Lemma 11.10 Sei f : V → V ein Endomorphismus und setze U = Kern fn und
W = Bild fn. Dann gilt:

(1) Die Untervektorräume U und W sind f -invariant.

(2) V = U ⊕W .

(3) Die Einschränkung f|U von f auf U ist nilpotent.

(4) Die Einschränkung f|W von f auf W ist ein Automorphismus.
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Beweis (1) Dies folgt unmittelbar aus Lemma 11.5 (3), da f ◦ f = f ◦ f .

(2) Nach Lemma 11.8 gilt Bild fk = Bild fn für alle k ≥ n und insbesondere
ist Bild (fn)2 = Bild f 2n = Bild fn. Daraus ergibt sich nach Lemma 11.9, dass
V = Kern fn + Bild fn und Kern fn ∩ Bild fn = {0}, d.h., V = U ⊕W .

(3) Für jedes u ∈ U = Kern fn ist fn|U(u) = fn(u) = 0. Daher ist fn|U = 0 und
insbesondere ist f|U nilpotent.

(4) Sei w ∈ W = Bild fn; da Bild fn+1 = Bild fn gibt es dann v ∈ V , so dass
w = fn+1(v). Aber w = f(fn(v)) und fn(v) ∈ Bild fn = W . Dies zeigt dass,
f(W ) = W und damit ist der Endomorphismus f|W : W → W surjektiv. Nach
Satz 5.3 ist also f|W ein Automorphismus, da nach Satz 4.4W endlichdimensional
ist.

Lemma 11.11 Sei f : V → V ein Endomorphismus von V , der mindestens
einen Eigenwert besitzt, und seien λ1, . . . , λm die verschiedenen Eigenwerte.
Dann gibt es f -invariante Untervektorräume U, W von V mit V = U ⊕ W ,
so dass gilt:

(1) Der Endomorphismus f|U − λ1idU von U ist nilpotent.

(2) λ2, . . . , λm sind die verschiedenen Eigenwerte von f|W .

Beweis Sei g = f−λ1idV und setze U = Kern gn,W = Bild gn. Nach Lemma 11.5
sind die Untervektorräume U und W f -invariant, da

g ◦ f = (f − λ1idV ) ◦ f = f 2 − λ1f = f ◦ (f − λ1idV ) = f ◦ g .

Nach Lemma 11.10 (angewendet auf g) ist V = U ⊕W , die Untervektorräume U
und W sind g-invariant, die Einschränkung g|U von g auf U ist nilpotent und die
Einschränkung g|W von g auf W ist ein Automorphismus.

Nun ist f|U − λ1idU = g|U und damit ist f|U − λ1idU nilpotent.

Ferner ist f|W − λ1idW = g|W , somit ist f|W − λ1idW ein Automorphismus und
insbesondere ist λ1 kein Eigenwert von f|W . Da f|U = λ1idU + (f|U − λ1idU)
und f|U − λ1idU nilpotent ist, ist nach Lemma 11.4 (2) λ1 der einzige Eigenwert
von f|U und daraus ergibt sich nach Lemma 11.7, dass λ2, . . . , λm Eigenwerte
von f|W sind. Damit sind nach Lemma 11.6 λ2, . . . , λm genau die verschiedenen
Eigenwerte von f|W .

Satz 11.3 Sei f : V → V ein Endomorphismus von V und seien λ1, . . . , λm die
verschiedenen Eigenwerte von f . Dann gibt es f -invariante Untervektorräume
U1, . . . , Um und U∗ von V mit V = U1 ⊕ · · · ⊕ Um ⊕ U∗, so dass gilt:

(1) Der Endomorphismus f|Uk
− λkidUk

von Uk ist nilpotent für jedes k.

(2) Der Endomorphismus f|U∗ von U∗ besitzt keinen Eigenwert.
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Beweis Für m ≥ 0 sei Am die folgende Aussage: Ist V ′ ein endlichdimensionaler
Vektorraum und ist g : V ′ → V ′ ein Endomorphismus von V ′ mit genau m
verschiedenen Eigenwerten µ1, . . . , µm, so gibt es g-invariante Untervektorräume
U ′1, . . . , U

′
m und U ′∗ von V ′ mit V ′ = U ′1 ⊕ · · · ⊕ U ′m ⊕ U ′∗, so dass gilt:

(1) Der Endomorphismus g|U ′
k
− µkidU ′

k
von U ′k ist nilpotent für jedes k.

(2) Der Endomorphismus g|U ′
∗

von U ′∗ besitzt keinen Eigenwert.

Es genügt also zu zeigen, dass Am richtig ist für jedes m ≥ 0.

Die Aussage A0 ist trivial richtig (mit U ′∗ = V ′). Sei m ≥ 1 und nehme an,
dass die Aussage Am−1 richtig ist. Sei V ′ ein endlichdimensionaler Vektorraum
und g : V ′ → V ′ ein Endomorphismus mit genau m verschiedenen Eigenwerten
µ1, . . . , µm. Nach Lemma 11.11 gibt es dann g-invariante Untervektorräume U ′1
und W ′ von V ′ mit V ′ = U ′1 ⊕W ′ so dass gilt:

(1) Der Endomorphismus g|U ′
1
− µ1idU ′

1
von U ′ ist nilpotent.

(2) µ2, . . . , µm sind die verschiedenen Eigenwerte von g|W ′.

Da Am−1 richtig ist, gibt es g|W ′-invariante Untervektorräume U ′2, . . . , U
′
m und U ′∗

von W ′ mit W ′ = U ′2 ⊕ · · · ⊕ U ′m ⊕ U ′∗, so dass gilt:

(1) Der Endomorphismus g|U ′
k
− µkidU ′

k
von U ′k ist nilpotent für k = 2, . . . , m.

(2) Der Endomorphismus g|U ′
∗

von U ′∗ besitzt keinen Eigenwert.

(Man beachte: g|U ′
k

ist die Einschränkung von g|W ′ auf U ′k für jedes k und g|U ′
∗

ist
die Einschränkung von g|W ′ auf U ′∗.) Nach Satz 9.2 ist aber

V ′ = U ′1 ⊕W ′ = U ′1 ⊕ (U ′2 ⊕ · · · ⊕ U ′m ⊕ U ′∗) = U ′1 ⊕ U ′2 ⊕ · · · ⊕ U ′m ⊕ U ′∗
und dies zeigt, dass die Aussage Am richtig ist. Durch Induktion nach m ist also
Am richtig für jedes m ≥ 0.

Lemma 11.12 Jeder nilpotente Endomorphismus von V ist trigonalisierbar.

Beweis Sei h : V → V nilpotent und setze m = min{k ≥ 1 : hk = 0}. Für jedes
k = 0, . . . , m sei Uk = Kernhk; nach Lemma 11.2 (3) und (4) ist dann

{0} = U0 ⊂ U1 ⊂ · · · ⊂ Um = V ,

und Uk 6= Uk+1 für jedes k = 0, . . . , m − 1. Für k = 1, . . . , m sei pk = dimUk;
nach wiederholter Anwendung des Basisergänzungssatzes kann man eine Basis
(u1, . . . , un) von V konstruieren, so dass (u1, . . . , upk

) eine Basis von Uk ist für
jedes k = 1, . . . , m. Für j = 1, . . . , n sei nun Vj = L(u1, . . . , uj); mit V0 = {0}
ist dann V0, . . . , Vn eine Fahne, und da h(Uk) ⊂ Uk−1 für k = 1, . . . , m, ist diese
Fahne h-invariant.
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Satz 11.4 Seien g, h : V → V Endomorphismen von V mit g diagonalisierbar,
h nilpotent und g ◦ h = h ◦ g. Dann ist f = g + h trigonalisierbar.

Beweis Nach Satz 10.5 gilt V = U1 ⊕ · · · ⊕ Um, wobei Uk = E(g, λk) und
λ1, . . . , λm die verschiedenen Eigenwerte von g sind. Für k = 1, . . . , m ist nach
Lemma 11.5 (4) Uk h-invariant und es ist klar, dass h|Uk

nilpotent ist. Damit ist
nach Lemma 11.12 h|Uk

trigonalisierbar und folglich gibt es nach Satz 11.1 und
Satz 8.9 eine Basis βk = (uk1, . . . , u

k
nk

) von Uk, so dass die Matrix Ak von h|Uk

bezüglich βk eine obere Dreiecksmatrix ist. Nun ist auch Uk f -invariant und die
Matrix von f|Uk

bezüglich βk ist die obere Dreiecksmatrix λkEnk
+ Ak. Sei jetzt

β = (u1
1, . . . , u

1
n1
, . . . , um1 , . . . , u

m
nm

) ;

nach Satz 9.7 ist β eine Basis von V und die Matrix von f bezüglich β ist eine
obere Dreiecksmatrix. Damit ist nach Satz 11.1 f trigonalisierbar.

Seien U1, . . . , Um, U Untervektorräume von V mit U = U1 ⊕ · · · ⊕ Um und für
jedes k = 1, . . . , m sei fk : Uk → Uk ein Endomorphismus von Uk. Dann gibt es
nach Satz 9.4 den Endomorphismus f = f1⊕· · ·⊕fm von U : f ist der eindeutige
Endomorphismus mit f(u) = fk(u) für alle u ∈ Uk, k = 1, . . . , m. Insbesondere
ist dann Uk f -invariant und fk = f|Uk

für jedes k = 1, . . . , m. Ist umgekehrt
f : U → U ein Endomorphismus von U mit Uk f -invariant für jedes k, so ist nach
Lemma 9.1 f = f|U1

⊕ · · · ⊕ f|Um
.

Gilt f = f1 ⊕ · · · ⊕ fm, so ist nach Satz 9.5 auch fk = fk1 ⊕ · · · ⊕ fkm für jedes
k ≥ 1.

Lemma 11.13 Sei f : V → V ein Endomorphismus und seien λ1, . . . , λm
die verschiedenen Eigenwerte. Nehme an, es gibt f -invariante Untervektorräume
U1, . . . , Um von V mit V = U1⊕ · · · ⊕Um, so dass f|Uk

− λkidUk
nilpotent ist für

jedes k. Dann gilt Uk = Kern (f − λkidV )n für jedes k = 1, . . . , m.

Beweis Für jedes k sei fk die Einschränkung von f auf Uk und hk = fk−λkidUk
;

also gilt fk = λkidUk
+ hk und hk ist nilpotent. Nun ist

f − λkidV = (f1 − λkidU1
)⊕ · · · ⊕ (fm − λkidUm

)

= ((λ1 − λk)idU1
+ h1)⊕ · · · ⊕ ((λm − λk)idUm

+ hm) ,

und folglich gilt nach Satz 9.5 und Lemma 9.2, dass

Kern (f − λkidV )n

= Kern ((λ1 − λk)idU1
+ h1)

n ⊕ · · · ⊕ ((λm − λk)idUm
+ hm)n

= Kern ((λ1 − λk)idU1
+ h1)

n ⊕ · · · ⊕Kern ((λm − λk)idUm
+ hm)n

= {0} ⊕ · · · ⊕ {0} ⊕Kernhnk ⊕ {0} ⊕ · · · ⊕ {0}
= Kernhnk = Uk ,
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da für jedes j 6= k der Endomorphismus (λj − λk)idUj
+ hj und damit auch

((λj − λk)idUj
+ hj)

n ein Automorphismus ist.

Beweis für Satz 11.2: Man erinnert sich, dass (2) ⇔ (3) trivial richtig ist und
auch, dass (1) ⇒ (3) unmittelbar aus Lemma 11.1 folgt. Ferner ist (5) ⇒ (4)
trivial richtig.

(3) ⇒ (6): Dies folgt unmittelbar aus Satz 11.3.

(6) ⇒ (7): Dies folgt unmittelbar aus Lemma 11.13.

(7) ⇒ (4): Seien λ1, . . . , λm die verschiedenen Eigenwerte von f . Es gibt dann
f -invariante Untervektorräume U1, . . . , Um mit V = U1 ⊕ · · · ⊕ Um so dass für
jedes k der Endomorphismus f|Uk

− λkidUk
von Uk nilpotent ist.

Setze g = g1 ⊕ · · · ⊕ gm und h = h1 ⊕ · · · ⊕ hm, wobei hk = f|Uk
− λkidUk

und
gk = λkidUk

. Dann gilt f|Uk
= gk + hk und

gk ◦ hk = λkidUk
◦ (f|Uk

− λkidUk
) = λkf|Uk

− λ2
kidUk

= (f|Uk
− λkidUk

) ◦ λkidUk
= hk ◦ gk

für jedes k, und daraus ergibt sich nach Satz 9.5, dass f = g+h und g ◦h = h◦g.
Ferner ist h nilpotent: Da hk nilpotent ist und dimUk ≤ n, ist nach Lemma 11.7
hnk = 0 für jedes k. Damit ist

hn(u1 + · · ·+ um) = (h1 ⊕ · · · ⊕ hm)n(u1 + · · ·+ um)

= (hn1 ⊕ · · · ⊕ hnm)(u1 + · · ·+ um) = hn1 (u1) + · · ·+ hnm(um) = 0

für alle uk ∈ Uk, k = 1, . . . , m, und folglich ist hn = 0. Schließlich ist auch g
diagonalisierbar: Dies folgt aus Satz 9.7 und Lemma 11.5, da jede Basis von Uk
aus Eigenvektoren von gk = λkidUk

besteht.

(4) ⇒ (1): Dies ist Satz 11.4.

(4) ⇒ (5): Es gibt Endomorphismen g, h : V → V mit g diagonalisierbar, h
nilpotent und g ◦h = h◦g, so dass f = g+h. Seien λ1, . . . , λm die verschiedenen
Eigenwerte von g und für k = 1, . . . , m sei Uk = E(g, λk). Nach Satz 10.5 ist V
die direkte Summe der Untervektorräume U1, . . . , Um, d.h., V = U1 ⊕ · · · ⊕ Um.

Da g ◦ h = h ◦ g, ist nach Lemma 11.5 (4) Uk h-invariant und damit ist Uk auch
f -invariant (da Uk g-invariant ist und f = g + h). Für jedes k sei fk (bzw. gk
bzw. hk) die Einschränkung von f (bzw. g bzw. h) auf Uk. Also gilt fk = gk + hk
für jedes k, f = f1 ⊕ · · · ⊕ fm, g = g1 ⊕ · · · ⊕ gm und h = h1 ⊕ · · · ⊕ hm. Ferner
ist gk = λkidUk

.

Nun ist hk = fk−λkidUk
nilpotent; damit ist nach Lemma 11.4 (2) λk der einzige

Eigenwert von fk = λkidUk
+ hk und insbesondere ist nach Lemma 11.6 λk ein

Eigenwert von f . Sei λ /∈ {λ1, . . . , λm}; nach Lemma 11.4 (2) ist 0 kein Eigenwert
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von fk−λidUk
, also ist fk−λidUk

ein Automorphismus von Uk und folglich ist nach
Satz 9.6 f−λidV = (f1−λidU1

)⊕· · ·⊕ (fm−λidUm
) ein Automorphismus von V ,

d.h., λ ist kein Eigenwert von f . Daraus ergibt sich, dass λ1, . . . , λm genau die
Eigenwerte von f sind und nach Lemma 11.13 ist dann Uk = Kern (f − λkidV )n

für jedes k = 1, . . . , m.

Dies zeigt, dass g = λ1idU1
⊕ · · · ⊕ λmidUm

und h = f − g, wobei λ1, . . . , λm die
Eigenwerte von f sind und Uk = Kern (f − λkidV )n. Insbesondere sind g und h
eindeutig durch f bestimmt.

Satz 11.5 Sei K = C; dann besitzt jeder Endomorphismus f : V → V einen
Eigenwert.

Beweis Nach Satz 8.7 hat der Vektorraum End(V ) aller Endomorphismen von V
die Dimension n2 und folglich sind die Elemente f 0, f 1, . . . , fn

2

linear abhängig.
Da f 0 = idV 6= 0, gibt es dann p mit 1 ≤ p ≤ n2, so dass f 0, f 1, . . . , f p−1 linear
unabhängig sind aber f p ∈ L(f 0, f 1, . . . , f p−1) und also gibt es c0, . . . , cp−1 ∈ C

mit f p = c0f
0 + · · · + cp−1f

p−1. Nach dem Fundamentalsatz der Algebra (siehe
Satz 16.4) gibt es nun λ0, . . . , λp−1 ∈ C, so dass

zp − cp−1z
p−1 − · · · − c1z − c0 = (z − λ0)× · · · × (z − λp−1)

für alle z ∈ C und daraus folgt (warum?), dass

(f − λ0idV ) ◦ · · · ◦ (f − λp−1idV ) = f p − cp−1f
p−1 − · · · − c1f − c0idV = 0 .

Aber (f − λ1idV ) ◦ · · · ◦ (f − λp−1idV ) 6= 0, sonst wären f 0, f 1, . . . , f p−1 linear
abhängig und folglich gibt es ein v ∈ V , so dass

u = (f − λ1idV ) ◦ · · · ◦ (f − λp−1idV ) (v) 6= 0 .

Dann ist u 6= 0 und (f − λ0idV )(u) = 0, d.h., λ0 ist ein Eigenwert von f .

Satz 11.6 Sei K = C; dann ist jeder Endomorphismus f von V trigonalisierbar.

Beweis Sei U ein f -invarianter Untervektorraum von V mit dimU ≥ 1. Nach
Satz 11.5 (angewendet auf f|U) besitzt f|U einen Eigenwert und daraus ergibt
sich nach Satz 11.2 (3) ⇒ (1), dass f trigonalisierbar ist.

Nach Satz 11.1 und Satz 11.6 ist jede komplexe Matrix trigonalisierbar.
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Im Folgenden sei K ein Körper und sei V ein endlichdimensionaler Vektorraum
über K mit dim V = n ≥ 1.

Sei f : V → V ein trigonalisierbarer Endomorphismus. Dieses Kapitel beschäftigt
sich mit der folgenden Frage: Wie kann man eine Basis von V wählen, so dass die
Matrix von f bezüglich dieser Basis so einfach wie möglich ist? Nach dem Beweis
für Satz 11.1 gibt es eine Basis, so dass die Matrix eine obere Dreiecksmatrix ist.
Satz 12.5 verfeinert diese Aussage: Es gibt eine Basis, so dass die Matrix von f
folgende Block-Gestalt hat:











J1

J2

. . .

Js











,

wobei J1, . . . , Js Jordanmatrizen sind. Eine (elementare) Jordanmatrix ist eine
Matrix aus der Familie {Jk(λ) : k ≥ 1, λ ∈ K}, wobei Jk(λ) das folgende Element
von M(k × k,K) ist:

Jk(λ) =















λ 1
λ 1

. . .

λ 1
λ















.

Jk(λ) heißt Jordanmatrix zum Eigenwert λ. (Warum?)

Sei f : V → V trigonalisierbar und seien λ1, . . . , λm die verschiedenen Eigenwerte
von f . Nach Satz 11.2 gibt es f -invariante Untervektorräume U1, . . . , Um von V
mit V = U1 ⊕ · · · ⊕ Um, so dass für jedes k der Endomorphismus f|Uk

− λkidUk

von Uk nilpotent ist. Setze fk = f|Uk
und hk = f|Uk

− λkidUk
; also sind fk und hk

Endomorphismen von Uk mit fk = λkidUk
+ hk und hk ist nilpotent. Für jedes k

sei (uk1, . . . , u
k
pk

) eine Basis von Uk und sei Bk die Matrix von hk bezüglich dieser
Basis. Dann ist Ak = λkEpk

+Bk die Matrix von fk bezüglich (uk1, . . . , u
k
pk

). Sei

(v1, . . . , vn) = (u1
1, . . . , u

1
p1
, . . . , um1 , . . . , u

m
pm

) ;

nach Satz 9.7 ist dann (v1, . . . , vn) eine Basis von V und die Matrix von f
bezüglich dieser Basis ist











A1

A2

. . .

Am











.

93
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Die Ausgangsfrage für trigonalisierbare Endomorphismen reduziert sich daher im
Wesentlichen auf die analoge Frage für nilpotente Endomorphismen und zunächst
werden also nilpotente Endomorphismen untersucht.

Sei f : V → V ein Endomorphismus von V und für jedes v ∈ V setze

Z(v, f) =
⋃

k≥1

L(v, f(v), . . . , fk(v)) .

Lemma 12.1 Für jedes v ∈ V ist Z(v, f) der kleinste f -invariante Untervektor-
raum von V , der v enthält.

Beweis Übung.

Lemma 12.2 Sei v ∈ V \ {0} und nehme an, dass fk(v) = 0 für ein k ≥ 1;
setze m = min{k ≥ 1 : fk(v) = 0}. Dann ist Z(v, f) = L(v, f(v), . . . , fm−1(v))
und (v, f(v), . . . , fm−1(v)) ist eine Basis von Z(v, f).

Beweis Für jedes k ≥ m ist L(v, f(v), . . . , fk(v)) = L(v, f(v), . . . , fm−1(v)), da
f j(v) = 0 für j = m, . . . , k, und L(v, f(v), . . . , fk(v)) ⊂ L(v, f(v), . . . , fm−1(v))
für k = 1, . . . , m − 1. Damit ist Z(v, f) = L(v, f(v), . . . , fm−1(v)). Es bleibt
also zu zeigen, dass die Vektoren v, f(v), . . . , fm−1(v) linear unabhängig sind.
Seien λ0, . . . , λm−1 ∈ K mit λ0v + λ1f(v) + · · ·+ λm−1f

m−1(v) = 0 und nehme
an, dass λj 6= 0 für ein j; setze k = min{0 ≤ j ≤ m − 1 : λj 6= 0}. Dann ist
λkf

k(v) + · · ·+ λm−1f
m−1(v) = 0 und daraus ergibt sich, dass

0 = fm−1−k(λkf
k(v) + · · ·+ λm−1f

m−1(v))

= λkf
m−1−k(fk(v)) + · · ·+ λm−1f

m−1−k(fm−1(v))

= λkf
m−1(v) + λk+1f

m(v) + · · ·+ λm−1f
2m−2−k(v) = λkf

m−1(v) ,

da f j(v) = 0 für alle j ≥ m. Aber dies ist nicht möglich, da fm−1(v) 6= 0 und
λk 6= 0, und folglich muss λj = 0 für jedes j sein, d.h., v, f(v), . . . , fm−1(v) sind
linear unabhängig.

Sei v ∈ V \ {0} und m wie im Lemma 12.2 und sei g die Einschränkung von f
auf Z(v, f); dann ist natürlich (fm−1(v), . . . , f(v), v) auch eine Basis von Z(v, f)
und die Matrix von g bezüglich dieser Basis ist















0 1
0 1

. . .

0 1
0















,
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da g(fm−1(v)) = fn(v) = 0 und g(fk(v)) = fk+1(v) für k = 0, . . . , m − 2.
Diese Matrix ist eine Jordanmatrix zum Eigenwert 0 und wird auch nilpotente
Jordanmatrix genannt.

Für einen nilpotenten Endomorphismus f : V → V setze

nil(f) = min{k ≥ 1 : fk = 0}

und für jedes v ∈ V \ {0} setze nil(v, f) = min{k ≥ 1 : fk(v) = 0}. Also ist stets
nil(v, f) ≤ nil(f) und es gibt mindestens ein v ∈ V \ {0} mit nil(v, f) = nil(f).

Lemma 12.3 Sei f ein nilpotenter Endomorphismus von V und sei v ∈ V \ {0}
mit nil(v, f) = nil(f). Dann gibt es einen f -invarianten Untervektorraum W von
V , so dass V = Z(v, f) ⊕W . (Es gilt also f(W ) ⊂ W , V = Z(v, f) + W und
Z(v, f) ∩W = {0}.)

Beweis Zunächst eine Feststellung: Sind W, W1 Untervektorräume eines endlich-
dimensionlen Vektorraumes mit W1 ⊂W , so gibt es einen Untervektorraum W2,
so dass W = W1 ⊕W2. (Im Allgemeinen ist aber W2 nicht eindeutig.)

Für jedes p ≥ 1 sei Ap die Aussage: Für jeden endlichdimensionalen Vektorraum
U 6= {0} über K, für jeden nilpotenten Endomorphismus h von U mit nil(h) = p
und für jedes u ∈ U \ {0} mit nil(u, h) = nil(h) gibt es einen Untervektorraum
W von U mit h(W ) ⊂ W , so dass U = Z(u, h) ⊕W . Es wird durch Induktion
nach p gezeigt, dass Ap richtig ist für alle p ≥ 1.

Die Aussage A1 ist richtig: Ist nil(h) = 1, so ist h = 0. In diesem Fall gilt
h(W ) ⊂ W für jeden Untervektorraum W von U und für jedes u ∈ U \ {0} gibt
es einen Untervektorraum W von U mit V = Z(u, h)⊕W .

Sei nun p ≥ 2 und nehme an, dass die Aussage Ap−1 richtig ist. Sei U 6= {0} ein
endlichdimensionaler Vektorraum über K, sei h ein nilpotenter Endomorphismus
von U mit nil(h) = p und sei u ∈ U \ {0} mit nil(u, h) = nil(h).

Setze U1 = Bildh; nach Lemma 11.3 gilt h(U1) ⊂ U1, und sei also h1 = h|U1

die Einschränkung von h auf U1. Dann ist der Endomorphismus h1 : U1 → U1

nilpotent mit nil(h1) = p− 1. (Für jedes k ≥ 1 ist

hk−1
1 (U1) = hk−1(U1) = hk−1(h(U)) = hk(U)

und insbesondere gilt hp−1
1 (U1) = hp(U) = {0} und hp−2

1 (U1) = hp−1(U) 6= {0},
d.h., es gilt hp−1

1 = 0 aber hp−2
1 6= 0.) Setze u1 = h(u); dann ist u1 ∈ U1 mit

nil(u1, h1) = p − 1 = nil(h1), da hp−2
1 (u1) = hp−1(u) 6= 0. Da die Aussage Ap−1

richtig ist, gibt es einen Untervektorraum W1 von U1 mit h1(W1) ⊂ W1, so dass
U1 = Z(u1, h1)⊕W1.
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Jetzt werden Z(u1, h1) und W1 als Untervektorräume von U angesehen und da
h1 = h|U1

, gilt dann Z(u1, h1) = Z(u1, h) und h(W1) ⊂ W1. Dies bedeutet, dass
W1 ein Untervektorraum von U ist mit h(W1) ⊂ W1 und U1 = Z(u1, h) ⊕W1.
Man beachte, dass (nach Lemma 5.8 und da hp(u) = 0)

Z(u1, h) = L(u1, h(u1), . . . , h
p−2(u1)) = L(h(u), h(h(u)), . . . , hp−2(h(u)))

= L(h(u), h2(u), . . . , hp−1(u)) = L(h(u), h2(u), . . . , hp−1(u), 0)

= L(h(u), h2(u), . . . , hp−1(u), hp(u)) = L(h(u), h(h(u)), . . . , h(hp−1(u)))

= h(L(u, h(u), . . . , hp−1(u))) = h(Z(u, h)) .

Es gilt nun auch Z(u, h) ∩W1 = {0}. (Beweis: Sei v ∈ Z(u, h) ∩W1; dann ist
h(v) ∈ h(Z(u, h)) = Z(u1, h) und h(v) ∈ h(W1) ⊂ W1. Damit ist h(v) = 0, weil
Z(u1, h) ∩ W1 = {0}. Da ferner v ∈ Z(u, h) = L(u, h(u), . . . , hp−1(u)), gibt es
λ0, . . . , λp−1 ∈ K, so dass v = λ0u+ · · ·+ λp−1h

p−1(u) und damit ist

0 = h(v) = h(λ0u+ · · ·+ λp−1h
p−1(u))

= λ0h(u) + · · ·+ λp−1h
p(u) = λ0h(u) + · · ·+ λp−2h

p−1(u) ,

da hp(u) = 0. Nach Lemma 12.2 sind aber h(u), . . . , hp−1(u) linear unabhängig
und daraus ergibt sich, dass λj = 0 für j = 0, . . . , p − 2, d.h., v = λp−1h

p−1(u).
Insbesondere ist v ∈ Z(u1, h) = L(h(u), . . . , hp−1(u)). Also ist v ∈ Z(u1, h) ∩W1

und Z(u1, h) ∩W1 = {0}, d.h., v = 0.)

Setze W ′ = {v ∈ U : h(v) ∈W1}; dann ist W ′ ein Untervektorraum von U . (Der
Beweis dafür ist eine Übung.) Da h(W1) ⊂W1, ist W1 ⊂W ′.

Ferner gilt U = Z(u, h) + W ′. (Beweis: Sei v ∈ U ; dann ist h(v) ∈ U1 und da
U1 = Z(u1, h) +W1, gibt es v1 ∈ Z(u1, h) und w1 ∈ W1, so dass h(v) = v1 + w1.
Aber Z(u1, h) = h(Z(u, h)) und damit gibt es v2 ∈ Z(u, h) mit h(v2) = v1.
Folglich ist w1 = h(v) − h(v2) = h(v − v2) und also ist v − v2 ∈ W ′. Daher ist
v = v2 + (v − v2) ∈ Z(u, h) +W ′.)

Setze W2 = Z(u, h)∩W ′; dann gilt W1 ⊂ W ′, W2 ⊂W ′ und W1 ∩W2 = {0} (da
W1 ∩W2 ⊂W1 ∩ Z(u, h) = {0}), d.h., W1 +W2 = W1 ⊕W2. Da W1 ⊕W2 ⊂W ′,
gibt es nun einen Untervektorraum W3 von W ′, so dass W ′ = W1 ⊕W2 ⊕W3.

Setze W = W1 ⊕W3; da W ⊂W ′, ist f(W ) ⊂ f(W ′) ⊂W1 ⊂W und auch

Z(u, h) ∩W = Z(u, h) ∩W ′ ∩W = W2 ∩W = W2 ∩ (W1 +W3) = {0} .

Schließlich gilt U = Z(u, h) + W . (Beweis: Sei v ∈ U ; da U = Z(u, h) + W ′,
gibt es v′ ∈ Z(u, h) und w′ ∈ W ′ mit v = v′ + w′, und da W ′ = W1 ⊕W2 ⊕W3,
gibt es dann wi ∈ Wi für i = 1, 2, 3, so dass w′ = w1 + w2 + w3. Folglich ist
v = (v′ + w2) + (w1 + w3) und v′ + w2 ∈ Z(u, h) und w1 + w3 ∈W .)

Dies zeigt, dass die Aussage Ap richtig ist, und daraus folgt durch Induktion nach
p, dass Ap richtig ist für alle p ≥ 1.



12 Jordansche Normalform 97

Satz 12.1 Sei f ein nilpotenter Endomorphismus von V . Dann gibt es Vektoren
v1, . . . , vm ∈ V \ {0} mit nil(f) = nil(v1, f) ≥ · · · ≥ nil(vm, f), so dass

V = Z(v1, f)⊕ · · · ⊕ Z(vm, f) .

Beweis Für jedes n ≥ 1 sei An die Aussage: Für jeden Vektorraum U über K mit
dimU ≤ n und für jeden nilpotenten Endomorphismus h von U gibt es Vektoren
u1, . . . , up ∈ U \ {0} mit nil(h) = nil(u1, h) ≥ · · · ≥ nil(up, h), so dass

U = Z(u1, h)⊕ · · · ⊕ Z(up, h) .

Es wird durch Induktion nach n gezeigt, dass An richtig ist für alle n ≥ 1.

Die Aussage A1 ist richtig: Ist dimU = 1, so ist h = 0 der einzige nilpotente
Endomorphimus von U und es gilt U = L(u) = Z(u, 0) für jedes u ∈ U \ {0}.
Sei nun n ≥ 2 und nehme an, dass An−1 richtig ist. Sei U ein Vektorraum über
K mit dimU = n und sei h ein nilpotenter Endomorphismus von U . Wähle
einen Vektor u1 ∈ U \ {0} mit nil(u1, h) = nil(h). Nach Lemma 12.4 gibt es also
einen h-invarianten Untervektorraum W von U , so dass U = Z(u1, h) ⊕W . Da
dimZ(u1, h) ≥ 1, ist dimW ≤ n − 1. Sei g = h|W die Einschränkung von h auf
W ; dann ist g : W → W ein nilpotenter Endomorphismus und nil(g) ≤ nil(h),
weil gk = 0, falls hk = 0. Da An−1 gilt, gibt es Vektoren u2, . . . , up ∈ W \ {0}
mit nil(g) = nil(u2, g) ≥ · · · ≥ nil(up, g), so dass

W = Z(u2, g)⊕ · · · ⊕ Z(up, g) .

Aber nil(uk, g) = nil(uk, h) und Z(uk, g) = Z(uk, h) für k = 2, . . . , p und daraus
folgt, dass nil(h) = nil(u1, h) ≥ nil(u2, h) ≥ · · · ≥ nil(up, h) und

U = Z(u1, h)⊕W = Z(u1, h)⊕ Z(u2, h)⊕ · · · ⊕ Z(up, h) .

Dies zeigt, dass die Aussage An richtig ist, und daraus folgt durch Induktion nach
n, dass An richtig ist für alle n ≥ 1.

Für jedes k ≥ 1 sei Nk folgendes Element von M(k × k,K):

Nk =















0 1
0 1

. . .

0 1
0















,

also ist Nk die einzige k × k nilpotente Jordanmatrix, und man beachte, dass
N1 = 0 (als Element von M(1× 1, K)).
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Eine Partition von n ist eine Folge [s1, . . . , sm] mit m ≥ 1, s1 ≥ · · · ≥ sm ≥ 1
und s1 + · · ·+ sm = n. (Die Anzahl von Partitionen von n ist natürlich endlich.)
Für jede Partition π = [s1, . . . , sm] von n wird ein Element Nπ ∈ M(n × n,K)
definiert durch

Nπ =











Ns1

Ns2

. . .

Nsm











.

Für jede Partition π = [s1, . . . , sm] von n und jedes k ≥ 1 sei #k(π) die Anzahl
der Elemente in der Menge {1 ≤ j ≤ m : sj = k}.

Lemma 12.4 Seien π und π′ Partitionen von n; dann gilt π = π′ genau, wenn
#k(π) = #k(π

′) für alle k ≥ 1.

Beweis Übung.

Lemma 12.5 Für jede Partition π von n und jedes k ≥ 1 gilt

#k(π) = rangNk−1
π − 2 rangNk

π + rangNk+1
π .

Beweis Sei π = [s1, . . . , sm]; für jedes q ≥ 0 ist dann

N q
π =











N q
s1

N q
s2

. . .

N q
sm











und daraus ergibt sich, dass

rangN q
π =

m
∑

j=1

rangN q
sj

=

n
∑

k=1

#k(π) rangN q
k .

Sei 1 ≤ q < k; dann sind die Einträge in der Matrix N q
k alle 0 außer denen auf

der oberen Nebendiagonalen der Länge k − q und da sind sie alle 1. Folglich ist
rangN q

k = k − q. Damit ist rangN q
k = max{k − q, 0} für alle k ≥ 1, q ≥ 0, da

N q
k = 0, falls q ≥ k und N0

k = Ek. Also gilt

rangN q
π =

n
∑

k=1

max{k − q, 0}#k(π) =

n
∑

k=q+1

(k − q)#k(π)
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für alle q ≥ 0. Mit anderen Worten:

rangN q
π = 0 für alle q ≥ n ,

rangNn−1
π = #k(π) ,

rangNn−2
π = #n−1(π) + 2#n(π) ,

rangNn−3
π = #n−2(π) + 2#n−1(π) + 3#n(π) ,

...

rangN1
π = #2(π) + 2#3(π) + 3#4(π) + · · ·+ (n− 1)#n(π) ,

rangN0
π = #1(π) + 2#2(π) + 3#3(π) + · · ·+ n#n(π) (= n) ,

und daraus sieht man leicht, dass für jedes k ≥ 1

#k(π) = rangNk−1
π − 2 rangNk

π + rangNk+1
π .

Lemma 12.6 Seien π und π′ Partitionen von n; dann sind die Matrizen Nπ und
Nπ′ ähnlich genau, wenn π = π′.

Beweis Sind Matrizen A und B ähnlich, so sind auch Ak und Bk ähnlich für
jedes k ≥ 0 und damit ist rangAk = rangBk für jedes k ≥ 0. Sind also Nπ und
Nπ′ ähnlich, so folgt aus Lemma 12.5, dass #k(π) = #k(π

′) für alle k ≥ 0 und
daher ist nach Lemma 12.4 π = π′. Die Umkehrung ist trivial richtig.

Satz 12.2 Sei f : V → V ein nilpotenter Endomorphismus. Dann gibt es eine
eindeutige Partition π von n und eine Basis (u1, . . . , un) von V , so dass Nπ die
Matrix von f bezüglich (u1, . . . , un) ist. Ferner gilt

#k(π) = rang fk−1 − 2 rang fk + rang fk+1

für jedes k ≥ 1.

Beweis Nach Satz 12.1 gibt es Vektoren v1, . . . , vm ∈ V \ {0}, so dass

V = Z(v1, f)⊕ · · · ⊕ Z(vm, f)

und mit nil(f) = nil(v1, f) ≥ · · · ≥ nil(vm, f). Sei sk = nil(vk); nach Lemma 12.2
ist (f sk−1(vk), . . . , f(vk), vk) eine Basis von Z(vk, f) für jedes k und daraus folgt
nach Satz 9.7, dass

(u1, . . . , un) = (f s1−1(v1), . . . , f(v1), v1, . . . , f
sm−1(vm), . . . , f(vm), vm)

eine Basis von V ist. Aber per Definition ist Nπ die Matrix von f bezüglich dieser
Basis, wobei π = [s1, . . . , sm].
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Für jedes k ≥ 0 ist nun Nk
π die Matrix von fk beüglich (u1, . . . , un) und damit

ist nach Satz 8.3 rang fk = rangNk
π . Also ist nach Lemma 12.5

#k(π) = rangNk−1
π − 2 rangNk

π + rangNk+1
π = rang fk−1− 2 rang fk + rang fk+1

für jedes k ≥ 1 und insbesondere ist (nach Lemma 12.4) π eindeutig durch f
bestimmt.

Satz 12.3 Sei A ∈ M(n×n,K) nilpotent; dann gibt es eine eindeutige Partition
π von n, so dass A und Nπ ähnlich sind. Ferner gilt

#k(π) = rangAk−1 − 2 rangAk + rangAk+1

für jedes k ≥ 1.

Beweis Der Endomorphismus ϕA : Kn → Kn ist nilpotent und folglich gibt es
nach Satz 12.2 eine Basis (u1, . . . , un) von Kn und eine Partition π von n, so dass
Nπ die Matrix von ϕA bezüglich (u1, . . . , un) ist. Aber A ist die Matrix von ϕA
bezüglich der kanonischen Basis von Kn und daraus ergibt sich nach Satz 8.8,
dass A und Nπ ähnlich sind. Für jedes k ≥ 0 sind dann Ak und Nk

π auch ähnlich
und damit gilt rangAk = rangNk

π . Nach Lemma 12.5 ist also

#k(π) = rangNk−1
π −2 rangNk

π +rangNk+1
π = rangAk−1−2 rangAk +rangAk+1

für jedes k ≥ 1 und insbesondere ist π eindeutig durch A bestimmt.

Satz 12.4 Nilpotente Matrizen A, B ∈ M(n × n,K) sind ähnlich genau dann,
wenn rangAk = rangBk für jedes k = 1, . . . , n− 1.

Beweis Sind A und B ähnlich, so sind Ak und Bk ähnlich für jedes k ≥ 0 und
damit ist rangAk = rangBk für alle k. Sei umgekehrt rangAk = rangBk für jedes
k = 1, . . . , n− 1; dann gilt rangAk = rangBk für all k ≥ 0, da Ak = 0 = Bk für
jedes k ≥ n und A0 = En = B0. Nach Satz 12.3 gibt es Partitionen π und π′ von
n, so dass A ähnlich zu Nπ und B ähnlich zu Nπ′ ist und ferner gilt

#k(π) = rangAk−1 − 2 rangAk + rangAk+1

= rangBk−1 − 2 rangBk + rangBk+1 = #k(π
′)

für alle k ≥ 1. Nach Lemma 12.4 ist also π′ = π. Folglich sind A und B beide
ähnlich zu Nπ und damit sind A und B ähnlich.

Im folgenden Satz sei f : V → V ein trigonalisierbarer Endomorphismus und
seien λ1, . . . , λm die verschiedenen Eigenwerte von f ; für k = 1, . . . , m setze
pk = dim Kern (f − λkidV )n.
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Satz 12.5 Für jedes k = 1, . . . , m gibt es eine Partition πk von pk und eine
Basis (u1, . . . , un) von V , so dass

J =











J1

J2

. . .

Jm











die Matrix von f bezüglich (u1, . . . , un) ist, wobei Jk = λkEpk
+ Nπk

. Ferner
ist die Matrix J eindeutig durch f bestimmt: Seien qk ≥ 1, k = 1, . . . , m, mit
q1 + · · ·+ qm = n und für jedes k sei J ′k = λkEqk +Nτk , wobei τk eine Partition
von qk ist. Ist

J ′ =











J ′1
J ′2

. . .

J ′m











die Matrix von f bezüglich irgendeiner Basis von V , so ist qk = pk für jedes k
und für alle j ≥ 1, k = 1, . . . , m gilt

#j(τk) = rang (f − λkidV )j−1 − 2 rang (f − λkidV )j + rang (f − λkidV )j+1 .

Beweis Für k = 1, . . . , m setze Uk = Kern (f − λkidV )n. Nach Satz 11.2 sind
U1, . . . , Um f -invariante Untervektorräume von V mit V = U1⊕· · ·⊕Um und für
jedes k ist der Endomorphismus f|Uk

− λkidUk
von Uk nilpotent. Setze fk = f|Uk

und hk = f|Uk
− λkidUk

; also sind fk und hk Endomorphismen von Uk mit hk
nilpotent und fk = λkidUk

+hk. Für jedes k gibt es nach Satz 12.2 eine eindeutige
Partition πk von pk und eine Basis (uk1, . . . , u

k
pk

) von Uk, so dass Nπk
die Matrix

von hk bezüglich dieser Basis ist. Dann ist Jk = λkEpk
+Npk

die Matrix von fk
bezüglich (uk1, . . . , u

k
pk

). Sei

(u1, . . . , un) = (u1
1, . . . , u

1
p1
, . . . , um1 , . . . , u

m
pm

) ;

nach Satz 9.7 ist (u1, . . . , un) eine Basis von V und J ist die Matrix von f
bezüglich dieser Basis.

Nehme jetzt an, dass J ′ die Matrix von f bezüglich einer Basis (v1, . . . , vn) ist.
Da q1 + · · ·+ qm = n, kann man

(v1, . . . , vn) = (v1
1, . . . , v

1
q1
, . . . , vm1 , . . . , v

m
qm

)

schreiben. Für jedes k setze Wk = L(vk1 , . . . , v
k
qk

); dann sind die Untervektorräume
W1, . . . , Wm f -invariant und V = W1 ⊕ · · · ⊕Wm. Nun ist Nτk die Matrix von
f|Wk
−λkidWk

bezüglich der Basis (vk1 , . . . , v
k
qk

) vonWk und daraus ergibt sich, dass
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f|Wk
− λkidWk

nilpotent ist. Nach Satz 11.2 ist also Wk = Uk und insbesondere
ist qk = pk für jedes k. Ferner ist nach Satz 12.2

#j(τk) = rang hj−1
k − 2 rang hjk + rang hj+1

k

für alle j ≥ 1, wobei hk = f|Uk
− λkidUk

. Aber für jedes ℓ ≥ 0 ist

(f − λkidV )ℓ = (f1 − λkidU1
)ℓ ⊕ · · · ⊕ (fm − λkidUm

)ℓ

und (fi − λkidUi
)ℓ ist ein Automorphismus von Ui, wenn i 6= k. Folglich ist

rang (f − λkidV )ℓ = rang (f1 − λkidU1
)ℓ + · · ·+ rang (fm − λkidUm

)ℓ

= p1 + · · ·+ pk−1 + rang hℓk + pk+1 + · · ·+ pm

= n− pk + rang hℓk

und daher ist

#j(τk) = rang (f − λkidV )j−1 − 2 rang (f − λkidV )j + rang (f − λkidV )j+1

für alle j ≥ 1, k = 1, . . . , m.

Im folgenden Satz sei A ∈ M(n × n,K) trigonalisierbar und seien λ1, . . . , λm
die verschiedenen Eigenwerte von A; setze pk = n − rang (A − λkEn)n für jedes
k = 1, . . . , m.

Satz 12.6 (1) Es gilt pk ≥ 1 für jedes k und p1 + · · ·+ pm = n.

(2) Für jedes k gibt es eine Partition πk von pk, so dass A ähnlich zu der Matrix

J =











J1

J2

. . .

Jm











ist, wobei Jk = λkEpk
+Nπk

.

(3) Die Matrix J ist eindeutig durch A bestimmt: Seien qk ≥ 1, k = 1, . . . , m,
mit q1+ · · ·+qm = n und für jedes k sei J ′k = λkEqk +Nτk , wobei τk eine Partition
von qk ist. Ist A ähnlich zu der Matrix

J ′ =











J ′1
J ′2

. . .

J ′m











,

so ist qk = pk für jedes k und für alle j ≥ 1, k = 1, . . . , m gilt

#j(τk) = rang (A− λkEn)j−1 − 2 rang (A− λkEn)j + rang (A− λkEn)j+1 .
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Beweis Dies ist ein Spezialfall von Satz 12.5: Der Endomorphismus ϕA von Kn

ist trigonalisierbar und λ1, . . . , λm sind die verschiedenen Eigenwerte von ϕA.
Für jedes k = 1, . . . , m ist

pk = n− rang (A− λkEn)n = n− rang (ϕA − λkidKn)n = Kern (ϕA − λkidKn)n

und ferner ist A ähnlich zu einer Matrix B genau dann, wenn es eine Basis von
Kn gibt, so dass B die Matrix von ϕA bezüglich dieser Basis ist.

Satz 12.7 Seien A, B ∈ M(n × n,K) trigonalisierbare Matrizen. Dann sind A
und B ähnlich genau, wenn sie die gleichen Eigenwerte λ1, . . . , λm besitzen und

rang (A− λkEn)j = rang (B − λkEn)j

für jedes j = 1, . . . , n− 1 und jedes k = 1, . . . , m.

Beweis Sind A und B ähnlich, so besitzen sie die gleichen Eigenwerte λ1, . . . , λm.
Ferner sind dann (A− λkEn)j und (B − λkEn)j auch ähnlich und damit ist

rang (A− λkEn)j = rang (B − λkEn)j

für alle j ≥ 0 und jedes k = 1, . . . , m. Die Umkehrung folgt aus Satz 12.6.



13 Gruppen

Ein Tripel (G, ·, e) bestehend aus einer Menge G, einer Verknüpfung

· : G×G→ G

(a, b) 7→ ab

und einem Element e ∈ G heißt Gruppe, wenn folgendes gilt:

(G1) Assoziativität: (ab)c = a(bc) für alle a, b, c ∈ G.

(G2) Das Element e ist linksneutral: Für alle a ∈ G gilt ea = a.

(G3) Existenz eines Linksinversen: Zu jedem a ∈ G gibt es ein Element b ∈ G,
so dass ba = e.

Lemma 13.1 Sei (G, ·, e) eine Gruppe.

(1) Das Element e ist auch rechtsneutral: Für alle a ∈ G gilt ae = a.

(2) Ein Linksinverses ist auch ein Rechtsinverses: Es gilt ab = e, falls ba = e.

Beweis (2) Seien a, b ∈ G mit ba = e. Nach (G3) gibt es also ein Element c ∈ G
mit cb = e und nach (G1) und (G2) gilt dann

e = cb = c(eb) = c((ba)b) = c(b(ab)) = (cb)(ab) = e(ab) = ab .

(1) Sei a ∈ G; nach (G3) gibt es also ein Element b ∈ G mit ba = e. Nach (G1),
(G2) und (2) gilt dann

ae = a(ba) = (ab)a = ea = a .

Nach Lemma 13.1 können (G2) und (G3) in der Definition einer Gruppe durch
(G2′) und (G3′) ersetzt werden, wobei

(G2′) Das Element e ist neutral: Für alle a ∈ G gilt ea = ae = a.

(G3′) Existenz eines Inversen: Zu jedem a ∈ G gibt es ein Element b ∈ G, so
dass ba = ab = e.

Lemma 13.2 Sei (G, ·, e) eine Gruppe.

(1) Das Element e ist das einzige neutrale Element: Gilt e′a = ae′ = a für alle
a ∈ G für ein e′ ∈ G, so ist e′ = e.

(2) Für jedes a ∈ G ist das Inverse eindeutig: Gilt ba = ab = e und ca = ac = e,
so ist b = c.

104
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Beweis (1) Dies ist klar, da e′ = ee′ = e.

(2) Hier ist b = be = b(ac) = (ba)c = ec = c.

Nach Lemma 13.2 (1) wird e das neutrale Element der Gruppe (G, ·, e) genannt.
Für jedes a ∈ G wird das Inverse von a meistens mit a−1 bezeichnet; a−1 ist
also das eindeutige Element mit a−1a = aa−1 = e. Es gilt (a−1)−1 = a für
jedes a ∈ G, da aa−1 = a−1a = e, und (ab)−1 = b−1a−1 für alle a, b ∈ G, da
(b−1a−1)ab = b−1(a−1a)b = b−1eb = b−1b = e und genauso gilt ab(b−1a−1) = e.

Sei (G, ·, e) eine Gruppe; gilt ab = ba für alle a, b ∈ G, so nennt man die Gruppe
abelsch. Für eine abelsche Gruppe schreibt man meistens (G,+, 0) statt (G, ·, e);
das neutrale Element wird also mit 0 bezeichnet und man schreibt a+ b statt ab.
Ferner wird in diesem Fall das Inverse von a mit −a statt a−1 bezeichnet.

Beispiele: (1) (Z,+, 0) ist eine abelsche Gruppe.

(2) (R,+, 0) ist eine abelsche Gruppe.

(3) Ist K ein Körper, so ist (K,+, 0) eine abelsche Gruppe.

(4) Ist K ein Körper, so ist (K×, ·, 1) eine abelsche Gruppe, wobei K× = K \{0}.
(5) Für n ≥ 1 ist (Zn,+, 0) eine abelsche Gruppe, wobei Zn = {0, 1, . . . , n − 1}
und + : Zn × Zn → Zn durch ℓ+m = (ℓ+m) Restn definiert ist.

(6) Ist V ein Vektorraum über einem Körper K, so ist (V,+, 0) eine abelsche
Gruppe.

(7) SeiK ein Körper und sei GL(n,K) die Menge aller invertierbaren Elemente in
M(n×n,K) . Nach Lemma 6.3 ist dann (GL(n,K), ·, En) eine Gruppe, die general
linear group, wobei hier · Matrizenmultiplikation bezeichnet. Diese Gruppe ist
nicht abelsch, wenn n > 1.

(8) Sei V ein Vektorraum über einem Körper K und sei Aut(V ) die Menge aller
Automorphismen von V . Nach Lemma 5.2 ist dann (Aut(V ), ◦, idV ) eine Gruppe.
Diese Gruppe ist nicht abelsch, wenn dimV > 1.

(9) Sei X eine Menge und sei Bij(X) die Menge aller Bijektionen f : X → X.
Dann ist (Bij(X), ◦, idX) eine Gruppe, die Gruppe der Permutationen von X
oder die symmetrische Gruppe von X. Enthält X mehr als zwei Elemente, so ist
die symmetrische Gruppe von X nicht abelsch. Im Spezialfall X = {1, 2, . . . , n}
schreibt man Sn statt Bij(X). Die Menge Sn enthält n! Elemente.

(10) Sei G = {e, a, b, c} und sei · : G×G→ G gegeben durch

· e a b c

e e a b c
a a e c b
b b c e a
c c b a e
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Dann ist (G, ·, e) eine abelsche Gruppe; sie heißt die Kleinsche Vierergruppe.

Bemerkung: Ist (G, ·, e) eine Gruppe mitG endlich, so kann man die Verknüpfung
· : G×G→ G oft am Besten in einer Gruppentafel (wie in (10)) übersehen.

Ist (G, ·, e) eine Gruppe, dann schreibt man meistens einfach G statt (G, ·, e)
(und geht davon aus, dass es klar ist, welche Verknüpfung · und welches neutrale
Element e gemeint ist).

Sei G eine Gruppe und seien a1, . . . , an ∈ G mit n ≥ 3; dann ist das ‘Produkt’
von a1, . . . , an unabhängig von der Reihenfolge der einzelnen Multiplikationen;
dieses ‘Produkt’ wird mit a1 · · ·an bezeichnet.

Sei G eine Gruppe und sei a ∈ G; die Potenzen an, n ≥ 0, werden rekursiv durch
a0 = e, a1 = a und (für n ≥ 1) an+1 = aan definirt. (Ist G abelsch, so soll man
aber na statt an schreiben.) Es ist leicht zu sehen, dass am+n = aman für alle
m, n ≥ 0. Nehme an, dass es 0 ≤ m < n mit am = an gibt; dann gilt

e = (am)−1am = (am)−1an

= (am)−1(aman−m) = ((am)−1am)an−m = ean−m = an−m .

Dies zeigt also, dass entweder

— alle Potenzen von a verschieden sind, und dann nennt man a ein Element
unendlicher Ordnung, oder

— am = e für ein m ≥ 1, und dann nennt man a ein Element endlicher Ordnung.

Sei a ∈ G ein Element endlicher Ordnung; die Zahl min{m ≥ 1 : am = e} heißt
dann die Ordnung von a und wird mit ord a bezeichnet. Ist a ∈ G ein Element
unendlicher Ordnung, so schreibt man auch ord a =∞.

Eine Gruppe G heißt endlich, wenn die Menge G endlich ist; in diesem Fall heißt
die Anzahl der Elemente in G die Ordnung von G und wird mit ordG bezeichnet.
Ist G eine endliche Gruppe, dann ist jedes Element von G ein Element endlicher
Ordnung.

Sei G eine Gruppe; eine nichtleere Teilmenge H von G heißt Untergruppe von G,
wenn H mit der Verknüpfung · und mit dem neutralen Element e aus G selbst
eine Gruppe ist. D.h., H ⊂ G ist eine Untergruppe von G, wenn gilt:

— ab ∈ H für alle a, b ∈ H ,

— e ∈ H ,

— a−1 ∈ H für jedes a ∈ H .

Beispiele: (1) Sei G eine Gruppe; dann sind {e} und G stets Untergruppen von
G.

(2) Z ist eine Untergruppe von R.
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(3) Ist V ein Vektorraum über einem Körper K, so ist jeder Untervektorraum
von V auch eine Untergruppe von V .

(4) Sei V ein K-Vektorraum; dann ist Aut(V ) eine Untergruppe von Bij(V ).

(5) Sei Y Teilmenge einer Menge X und H eine Untergruppe von Bij(X). Setze

FixH(Y ) = {f ∈ H : f(y) = y für alle y ∈ Y } ,
InvH(Y ) = {f ∈ H : f(Y ) = Y } .

Dann sind FixH(Y ) und InvH(Y ) beide Untergruppen von Bij(X).

Ist H eine endliche Untergruppe von G, so heißt die Anzahl der Elemente in H
die Ordnung von H und wird mit ordH bezeichnet.

Im Folgenden sei G eine Gruppe.

Lemma 13.3 Sei H eine nichtleere Teilmenge von G. Gilt a−1b ∈ H für alle
a, b ∈ H, so ist H eine Untergruppe von G.

Beweis Da H 6= ∅, gibt es ein Element c ∈ H , und folglich ist e = c−1c ∈ H .
Seien nun a, b ∈ H ; dann gilt a−1 = a−1e ∈ H und ab = (a−1)−1b ∈ H . Damit
ist H eine Untergruppe von G.

Lemma 13.4 Sei H eine endliche Teilmenge von G, für die gilt:

— e ∈ H,

— ab ∈ H für alle a, b ∈ H.

Dann ist H eine Untergruppe von G.

Beweis Es muss gezeigt werden, dass a−1 ∈ H für jedes a ∈ H . Sei a ∈ H ; dann
liegen alle Potenzen an, n ≥ 0, in H , da bc ∈ H für alle b, c ∈ H . Aber H ist
endlich und folglich können diese Potenzen nicht alle verschieden sein; also ist a
ein Element endlicher Ordnung. Sei n = ord a; dann ist an−1a = an = e, d.h.,
an−1 = a−1 und damit ist a−1 ∈ H .

Sei S eine nichtleere Teilmenge von G und bezeichne mit 〈S〉 die Teilmenge von
G, die aus allen endlichen Produkten von Elementen aus der Menge S ∪ S−1

besteht, wobei S−1 = {a−1 : a ∈ S}.

Lemma 13.5 Sei S eine nichtleere Teilmenge von G. Dann ist 〈S〉 eine Unter-
gruppe von G. Ferner ist 〈S〉 die kleinste Untergruppe von G, die S enthält: Ist
H eine Untergruppe von G mit S ⊂ H, so ist 〈S〉 ⊂ H.
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Beweis Es gilt e ∈ 〈S〉, da e = cc−1 für jedes c ∈ S. Seien a, b ∈ 〈S〉; dann gibt
es a1, . . . , am, b1, . . . , bn ∈ S ∪ S−1, so dass a = a1 · · ·am und b = b1 · · · bn und
folglich ist ab = a1 · · ·amb1 · · · bn ∈ 〈S〉. Ferner ist a−1 = a−1

m · · ·a−1
1 ∈ 〈S〉. Damit

ist 〈S〉 eine Untergruppe von G. Sei nun H eine Untergruppe von G mit S ⊂ H ;
dann ist a1 · · ·an ∈ H für alle a1, . . . , an ∈ S ∪ S−1 und daraus ergibt sich, dass
〈S〉 ⊂ H .

Man nennt 〈S〉 die von S erzeugte Untergruppe von G. Ist S = {a1, . . . , an}
endlich, so schreibt man einfach 〈a1, . . . , an〉 statt 〈{a1, . . . , an}〉.
Für a ∈ G, m ≥ 1 schreibt man meistens a−m statt (a−1)m. Für alle m, n ∈ Z

gilt nun am+n = aman.

Lemma 13.6 (1) Ist a ∈ G ein Element unendlicher Ordnung, dann sind die
Potenzen am, m ∈ Z, alle verschieden und 〈a〉 = {. . . , a−2, a−1, e, a, a2, . . .}.
(2) Ist a ∈ G ein Element endlicher Ordnung mit n = ord a, dann sind die
Potenzen am, m = 0, . . . , n− 1, alle verschieden und 〈a〉 = {e, a, . . . , an−1}.

Beweis (1) Nehme an, dass es m, n ∈ Z mit m < n und am = an gibt. Dann gilt
am+ℓ = amaℓ = anaℓ = an+ℓ für alle ℓ ≥ 0 und folglich gibt es p, q mit 0 ≤ p < q,
so dass ap = aq. Da aber a ein Element unendlicher Ordnung ist, ist dies nicht
möglich, und damit müssen die Potenzen am,m ∈ Z, alle verschieden sein. Es folgt
nun umittelbar aus der Definition von 〈a〉, dass 〈a〉 = {. . . , a−2, a−1, e, a, a2, . . .}.
(2) Nehme an, dass es 0 ≤ k < ℓ < n mit ak = aℓ gibt. Dann ist

aℓ−k = (ak)−1akaℓ−k = (ak)−1aℓ = (ak)−1ak = e

und dies ist nicht möglich, da 1 ≤ ℓ− k < n und n = min{m ≥ 1 : am = e}. Die
Potenzen am, m = 0, . . . , n− 1 sind also alle verschieden. Nach Lemma 13.4 ist
H = {e, a, . . . , an−1} eine Untergruppe von G, da akaℓ = ap mit p = (k+ℓ) Restn
für alle k, ℓ ∈ {0, 1, . . . , n−1}, und daraus folgt nach Lemma 13.5, dass 〈a〉 ⊂ H .
Damit ist H = 〈a〉.

Eine Untergruppe H von G heißt zyklisch, wenn H = 〈a〉 für ein a ∈ H . Ist H
eine unendliche zyklische Untergruppe von G, dann ist nach Lemma 13.6 (1)

H = {. . . , a−2, a−1, e, a, a2, . . .}
für ein a ∈ H . Ist dagegen H eine endliche zyklische Untergruppe von G, so ist
nach Lemma 13.6 (2) 〈a〉 = {e, a, . . . , an−1} für ein a ∈ H mit n = ord a = ordH .

Die Gruppe G heißt zyklisch, wenn G = 〈a〉 für ein a ∈ G, d.h., wenn G zyklisch
ist als Untergruppe von sich selbst. Jede zyklische Gruppe ist abelsch, da

aman = am+n = an+m = anam

für alle m, n ∈ Z. Für jedes n ≥ 1 ist Zn eine zyklische Gruppe der Ordnung n;
Z ist eine unendliche zyklische Gruppe.
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Satz 13.1 Ist G zyklisch, so ist jede Untergruppe H von G auch zyklisch.

Beweis Man kann annehmen, dass H 6= {e}, da die Untergruppe {e} = 〈e〉 trivial
zyklisch ist. Nun ist G = 〈a〉 für ein a ∈ G, und folglich gibt es n ∈ Z\{0}, so dass
an ∈ H . Damit gibt es k ≥ 1, so dass ak ∈ H , da a−n ∈ H , falls an ∈ H . Setze
m = min{k ≥ 1 : ak ∈ H}; es gilt also 〈am〉 ⊂ H . Nehme an, dass 〈am〉 6= H ,
und sei an ∈ H \ 〈am〉. Es gibt dann q ∈ Z und 0 ≤ ℓ < m, so dass n = mq + ℓ,
und tatsächlich ist ℓ ≥ 1, sonst wäre an = amq = (am)q ∈ 〈am〉. Aber

aℓ = (amq)−1amqaℓ = (amq)−1amq+ℓ = (amq)−1an = ((am)q)−1an ∈ H ,

im Widerspruch zur Wahl von m. Daraus ergibt sich, dass H = 〈am〉, d.h., H ist
zyklisch.

Sei H eine Untergruppe von G und für a, b ∈ G schreibe a ≡ b modH , wenn
ab−1 ∈ H . Auf diese Weise wird eine Relation ≡ modH auf G definiert.

Lemma 13.7 Die Relation ≡ modH ist eine Äquivalenzrelation auf G.

Beweis Reflexivität: Es gilt aa−1 = e ∈ H und damit ist a ≡ a modH für jedes
a ∈ G.

Symmetrie: Seien a, b ∈ G mit a ≡ b modH . Dann ist ab−1 ∈ H und damit auch
ba−1 = (ab−1)−1 ∈ H , d.h., b ≡ a modH .

Transitivität: Seien a, b, c ∈ G mit a ≡ b modH und b ≡ c modH . Dann ist
ab−1 ∈ H und bc−1 ∈ H und damit auch ac−1 = a(b−1b)c−1 = (ab−1)(bc−1) ∈ H ,
d.h., a ≡ c modH .

Die folgende allgemeine Konstruktion für Äquivalenzrelationen wird benötigt: Sei
X eine Menge und sei ≡ eine Äquivalenzrelation auf X. Eine Teilmenge A von
X heißt dann Äquivalenzklasse (bezüglich ≡), wenn es ein Element x ∈ X gibt,
so dass A = {x′ ∈ X : x′ ≡ x}.

Lemma 13.8 Zu jedem x ∈ X gibt es eine eindeutige Äquivalenzklasse, die x
enthält.

Beweis Für jedes x ∈ X sei Ax = {x′ ∈ X : x′ ≡ x}. Dann gilt x ∈ Ax, da x ≡ x,
und folglich gibt es mindestens eine Äquivalenzklasse (nämlich Ax), die x enthält.
Sei nun A eine beliebige Äquivalenzklasse, die x enthält. Dann gilt A = Ax: Es
gibt y ∈ X mit A = Ay; dann ist x ≡ y und damit auch y ≡ x, da ≡ symmetrisch
ist. Sei z ∈ A; dann ist z ≡ y und also z ≡ x, da y ≡ x und ≡ transitiv ist. Damit
ist z ∈ Ax und daraus ergibt sich, dass A ⊂ Ax. Sei umgekehrt z′ ∈ Ax; dann ist
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z′ ≡ x und also z′ ≡ y, da x ≡ y und ≡ transitiv ist. Daher ist z′ ∈ Ay = A und
folglich ist Ax ⊂ A. d.h., A = Ax.

Seien A, A′ Äquivalenzklassen; dann nach Lemma 13.8 ist entweder A = A′ oder
A ∩ A′ = ∅.

Betrachte nun wieder die Äquivalenzrelation ≡ modH . Für jedes a ∈ G setze
Ha = {ba : b ∈ H}; insbesondere ist He = H . Die Mengen Ha, a ∈ G, heißen
die Rechtsnebenklassen von H .

Lemma 13.9 Sei a ∈ G; dann ist

Ha = {b ∈ G : b ≡ a modH}

und die Abbildung b 7→ ba bildet die Menge H auf die Menge Ha bijektiv ab.

Beweis Sei b ∈ G; dann gilt

b ∈ Ha ⇔ b = ca für ein c ∈ H ⇔ ba−1 = c für ein c ∈ H
⇔ ba−1 ∈ H ⇔ b ≡ a modH

und folglich gilt Ha = {b ∈ G : b ≡ a modH}. Es ist klar, dass die Abbildung
b 7→ ba die Menge H auf Ha surjektiv abbildet. Ferner ist diese Abbildung
injektiv, da b = baa−1 = caa−1 = c, falls ba = ca.

Seien a, b ∈ G; dann ist nach Lemma 13.8 und Lemma 13.9 entweder Ha = Hb
oder Ha ∩Hb = ∅. Ferner gilt Ha = Hb genau dann, wenn a ≡ b modH .

Satz 13.2 (Satz von Lagrange) Sei G eine endliche Gruppe. Dann teilt die
Ordnung jeder Untergruppe von G die Ordnung der Gruppe G.

Beweis Sei H eine Untergruppe und seien A1, . . . , Am die Äquivalenzklassen
bezüglich der Äquivalenzrelation ≡ modH . (Da die Menge G endlich ist, gibt
es nur endlich viele Äquivalenzklassen.) Für jedes j = 1, . . . , m gibt es nach
Lemma 13.9 ein aj ∈ G, so dass Aj = Haj und daraus folgt nach der zweiten
Aussage in Lemma 13.9, dass Aj genau ordH Elemente enthält. Damit gilt nach
Lemma 13.8, dass ordG = m × ordH . Insbesondere ist ordH ein Teiler von
ordG.

Sei H eine Untergruppe von G; die Anzahl der verschiedenen Rechtsnebenklassen
von H heißt der Index von H in G und wird mit [G : H ] bezeichnet. Ist G endlich,
dann folgt aus dem Beweis für Satz 13.2, dass ordG = [G : H ]× ordH .
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Satz 13.3 Sei G eine endliche Gruppe der Ordnung n. Für jedes a ∈ G ist dann
ord a ein Teiler von n und insbesondere ist an = e.

Beweis Sei a ∈ G und setze H = 〈a〉; nach Lemma 13.4 (2) ist H eine Unter-
gruppe von G mit ordH = ord a und nach Satz 13.2 ist ordH ein Teiler von
n = ordG, d.h., ord a ist ein Teiler von n. Sei nun m = ordH , es gibt also ℓ ≥ 1
mit ℓm = n, und damit ist an = (am)ℓ = eℓ = e.

Satz 13.4 Sei G eine endliche Gruppe der Ordnung p, wobei p Primzahl ist.
Dann ist G zyklisch.

Beweis Sei a ∈ G mit a 6= e; dann ist ord a 6= 1 und nach Satz 13.3 ist ord a ein
Teiler von p. Die einzige Möglichkeit ist also ord a = p und folglich ist 〈a〉 eine
Untergruppe von G der Ordnung p. Damit ist G = 〈a〉, d.h., G ist zyklisch.

Für n > 1 sei ϕ(n) die Anzahl der zu n teilerfremden Zahlen m mit 1 ≤ m < n.

Satz 13.5 (Euler) Sei n > 1, m ∈ Z teilerfremd; dann ist mϕ(n) = 1 modn.

Beweis Sei Z∗n = {m ∈ Zn : m und n sind teilerfremd}; sind k, m ∈ Z∗n, so ist
kmRestn ∈ Z∗n, und folglich kann eine Verknüpfung · : Z∗n × Z∗n → Z∗n durch
km = kmRest n definiert werden. Dann ist (Z∗n, ·, 1) eine Gruppe. (Der Beweis
dafür ist eine Übung.) Da diese Gruppe der Ordnung ϕ(n) ist, gilt nach Satz 13.3,
dass mϕ(n) = 1 (in Z∗n) für jedes m ∈ Z∗n, d.h., mϕ(n) = 1 modn (in Z) für jedes
m ∈ Z∗n. Daraus ergibt sich, dass mϕ(n) = 1 modn für alle m ∈ Z, die teilerfremd
zu n sind.

Sei p eine Primzahl; dann ist ϕ(p) = p− 1, und daraus folgt nach Satz 13.5, dass
mp−1 = 1 mod p und damit auch mp = m mod p für alle m ∈ Z, die teilerfremd
zu p sind. Ist aber m ∈ Z nicht teilerfremd zu p, so ist m ein Vielfaches von p
und in diesem Fall ist mp = m = 0 mod p. Damit wurde den folgenden Satz von
Fermat bewiesen: Ist p eine Primzahl, so gilt mp = m mod p für alle m ∈ Z.

Sei H eine Untergruppe einer Gruppe G; setze aH = {ab : b ∈ H} für jedes
a ∈ G. Die Mengen aH , a ∈ G, heißen die Linksnebenklassen von H . Es gilt
aH = Ha für jedes a ∈ G, wenn G abelsch ist, aber im Allgemeinen ist dies nicht
richtig. (Übung: Man finde ein b ∈ S3, so dass bH 6= Hb, wobei H = {e, a} und
a : {1, 2, 3} → {1, 2, 3} durch a(1) = 2, a(2) = 1 und a(3) = 3 gegeben ist.)

Für jedes a ∈ G setze aHa−1 = {aba−1 : b ∈ H} und für Teilmengen S und T
Teilmengen von G setze auch ST = {ab : a ∈ S, b ∈ T}.



13 Gruppen 112

Lemma 13.10 Sei H eine Untergruppe von G; dann sind äquivalent:

(1) aba−1 ∈ H für alle a ∈ G, b ∈ H, (d.h., aHa−1 ⊂ H für jedes a ∈ G).

(2) aHa−1 = H für jedes a ∈ G.

(3) aH = Ha für jedes a ∈ G.

(4) H(ab) = (Ha)(Hb) für alle a, b ∈ G.

Beweis (1)⇒ (2): Da aba−1 ∈ H für alle a ∈ G, b ∈ H und (a−1)−1 = a, ist auch
a−1ba ∈ H für alle a ∈ G, b ∈ H . Sei b ∈ H und a ∈ G; dann ist b′ = a−1ba ∈ H
und ab′a−1 = b. Daraus folgt, dass H ⊂ aHa−1, d.h. H = aHa−1 für jedes a ∈ G.

(2) ⇒ (3): Seien a ∈ G, b ∈ H und setze b1 = aba−1. Dann ist b1 ∈ H und damit
ab = b1a ∈ Ha; d.h., aH ⊂ Ha. Ferner gibt es b2 ∈ H , so dass b = ab2a

−1 und
also ist ba = ab2 ∈ aH ; d.h., Ha ⊂ aH .

(3) ⇒ (4): Seien a, b ∈ G; für jedes c ∈ G ist cab = (ca)(eb) ∈ (Ha)(Hb)
und damit gilt H(ab) ⊂ (Ha)(Hb) immer. Sei nun c ∈ (Ha)(Hb), es gibt also
c1, c2 ∈ H mit c = c1ac2b. Aber aH = Ha und folglich gibt es c3 ∈ H , so dass
ac2 = c3a. Damit ist c = c1c3ab ∈ H(ab); d.h., (Ha)(Hb) ⊂ H(ab).

(4) ⇒ (1): Seien a ∈ G, b ∈ H ; dann ist

aba−1 = eaba−1 ∈ (Ha)(Ha−1) = H(aa−1) = He = H .

Eine Untergruppe H von G heißt Normalteiler von G, wenn aba−1 ∈ H für alle
a ∈ G, b ∈ H .

Beispiele: (1) {e} und G sind stets Normalteiler von G.

(2) Jede Untergruppe einer abelschen Gruppe ist ein Normalteiler.

(3) Jede UntergruppeH einer endlichen GruppeGmit Index 2 (d.h., [G : H ] = 2)
ist ein Normalteiler von G. (Für jedes a ∈ H gilt Ha = H = aH und für jedes
a /∈ H gilt Ha = G \H = aH .)

Lemma 13.11 Sei S eine Teilmenge von G mit aba−1 ∈ S für alle a ∈ G, b ∈ S.
Dann ist 〈S〉 ein Normalteiler von G.

Beweis Da ab−1a−1 = (aba−1)−1, ist aba−1 ∈ S ∪S−1 für alle a ∈ G, b ∈ S ∪S−1.
Seien nun a ∈ G, b ∈ 〈S〉; dann gibt es b1, . . . , bn ∈ S ∪S−1, so dass b = b1 · · · bn,
und folglich ist

aba−1 = ab1 · · · bna−1 = (ab1a
−1) · · · (abna−1) ∈ 〈S〉 .

Damit ist 〈S〉 ein Normalteiler.
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Sei S = {aba−1b−1 : a, b ∈ G}. Dann ist

c(aba−1b−1)c−1 = (cac−1)(cbc−1)(cac−1)−1(cbc−1)−1

ein Element von S für alle a, b, c ∈ G, und daraus folgt nach Lemma 13.11, dass
〈S〉 ein Normalteiler von G ist. Dieser Normalteiler wird mit K(G) bezeichnet
und heißt die Kommutatorgruppe von G. Es gilt K(G) = {e} genau dann, wenn
G abelsch ist.

Sei H ein Normalteiler von G; mit G/H wird die Menge aller Äquivalenzklassen
bezüglich der Äquivalenzrelation ≡ modH bezeichnet. Nach Lemma 13.9 ist also
G/H die Menge der verschiedenen Rechtsnebenklassen vonH . Nach Lemma 13.10
ist XY ∈ G/H für alle X, Y ∈ G/H . (Es gibt a, b ∈ G mit X = Ha und Y = Hb
und dann ist XY = (Ha)(Hb) = H(ab) ∈ G/H .) Damit gibt es eine Verknüpfung

· : G/H ×G/H → G/H

(X, Y ) 7→ XY .

Lemma 13.12 Sei H ein Normalteiler von G; dann ist (G/H, ·, H) eine Gruppe,
die Faktorgruppe von G nach H.

Beweis Assoziativität: Sind X, Y, Z beliebige Teilmengen von G, dann gilt

(XY )Z = X(Y Z) = {abc : a ∈ X, b ∈ Y, c ∈ Z} .

Das Element H ist linksneutral: Sei X ∈ G/H ; dann gibt es a ∈ G mit X = Ha
und nach Lemma 13.10 ist HX = (He)(Ha) = H(ea) = Ha = X.

Existenz eines Linksinversen: Sei X ∈ G/H , es gibt also a ∈ G mit X = Ha.
Setze Y = Ha−1; dann ist Y ∈ G/H und nach Lemma 13.10 ist

Y X = (Ha−1)(Ha) = H(a−1a) = He = H .

Ist H Normalteiler einer endlichen Gruppe G, so ist ordG/H = [G : H ].

Seien G, H Gruppen; eine Abbildung ϕ : G → H heißt ein Homomorphismus
(oder ein Gruppen-Homomorphismus), wenn gilt:

ϕ(ab) = ϕ(a)ϕ(b)

für alle a, b ∈ G.

Lemma 13.13 Sei ϕ : G → H ein Homomorphismus. Dann gilt ϕ(e) = e und
ϕ(a−1) = ϕ(a)−1 für jedes a ∈ G.
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Beweis Es gilt ϕ(e) = ϕ(ee) = ϕ(e)ϕ(e) und daraus folgt, dass

ϕ(e) = eϕ(e) = (ϕ(e)−1ϕ(e))ϕ(e) = ϕ(e)−1(ϕ(e)ϕ(e)) = ϕ(e)−1ϕ(e) = e .

Ferner gilt ϕ(a−1)ϕ(a) = ϕ(a−1a) = ϕ(e) = e und damit ist ϕ(a−1) = ϕ(a)−1.

Es ist klar, dass für jede Gruppe G die Identitätsabbildung idG : G → G ein
Homomorphismus ist.

Lemma 13.14 Seien G, H, K Gruppen und seien ϕ : G → H, ψ : H → K
Homomorphismen. Dann ist ψ ◦ ϕ : G→ K ein Homomorphismus.

Beweis Für alle a, b ∈ G ist

(ψ ◦ ϕ)(ab) = ψ(ϕ(ab)) = ψ(ϕ(a)ϕ(b)) = ψ(ϕ(a))ψ(ϕ(b)) = (ψ ◦ ϕ)(a)(ψ ◦ ϕ)(b)

und damit ist ψ ◦ ϕ ein Homomorphismus.

Seien G, H Gruppen; ein Homomorphismus ϕ : G → H heißt Isomorphismus,
wenn es einen Homomorphismus ψ : H → G gibt, so dass ψ ◦ ϕ = idG und
ϕ ◦ ψ = idH . In diesem Fall ist nach Lemma 5.1 (2) ϕ eine bijektive Abbildung
und ψ ist die Umkehrabbildung ϕ−1 von ϕ. Die Umkehrung ist auch richtig:

Lemma 13.15 Sei ϕ : G → H ein Homomorphismus. Ist ϕ bijektiv, dann ist
die Umkehrabbildung ϕ−1 : H → G ein Homomorphismus und damit is ϕ ein
Isomorphismus.

Beweis Seien a, b ∈ H ; dann ist ϕ(ϕ−1(a)ϕ−1(b)) = ϕ(ϕ−1(a))ϕ(ϕ−1(b)) = ab
und daraus folgt, dass ϕ−1(ab) = ϕ−1(a)ϕ−1(b).

Sind ϕ : G → H und ψ : H → K Isomorphismen, so sind auch ψ ◦ ϕ : G → K
und ϕ−1 : H → G Isomorphismen. Ferner ist idG : G→ G ein Isomorphismus.

Für einen Homomorphismus ϕ : G→ H setze

Kernϕ = {a ∈ G : ϕ(a) = e} und Bildϕ = ϕ(G) .

Lemma 13.16 (1) Kernϕ ist ein Normalteiler von G.

(2) Bildϕ ist eine Untergruppe von H.
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Beweis (1) Da e ∈ Kernϕ, ist Kernϕ 6= ∅. Seien a, b ∈ Kernϕ; dann ist nach
Lemma 13.13 ϕ(a−1b) = ϕ(a−1)ϕ(b) = ϕ(a)−1ϕ(b) = e−1e = e und damit ist
a−1b ∈ Kernϕ. Daraus folgt nach Lemma 13.3, dass Kernϕ eine Untergruppe
von G ist. Sei nun b ∈ Kernϕ; für jedes a ∈ G ist

ϕ(aba−1) = ϕ(a)ϕ(b)ϕ(a−1) = ϕ(a)eϕ(a)−1 = ϕ(a)ϕ(a)−1 = e ,

d.h., ϕ(aba−1) ∈ Kernϕ. Damit ist Kern ϕ Normalteiler von G.

(2) Seien a, b ∈ Bildϕ; es gibt also c, d ∈ G mit a = ϕ(c) und b = ϕ(d), und
folglich ist a−1b = ϕ(c)−1ϕ(d) = ϕ(c−1)ϕ(d) = ϕ(c−1d), d.h., a−1b ∈ Bild ϕ.
Ferner ist Bildϕ 6= ∅, da e = ϕ(e) ∈ Bildϕ. Nach Lemma 13.3 ist also Bildϕ
eine Untergruppe von H .

Beispiele: (1) Seien G, H Gruppen und definiere ϕ : G→ H durch ϕ(a) = e für
alle a ∈ G. Dann ist ϕ ein Homomorphismus mit Kernϕ = G und Bildϕ = {e}.
(2) Sei m ≥ 1 und definiere ϕ : Z→ Zm durch ϕ(n) = nRestm. Dann ist ϕ ein
Homomorphismus mit Kernϕ = {nm : n ∈ Z} und Bildϕ = Zm.

(3) Sei G eine Gruppe und a ∈ G; definiere eine Abbildung ϕ : Z → G durch
ϕ(n) = an für jedes n ∈ Z. Dann ist ϕ ein Homomorphismus mit Bildϕ = 〈a〉. Es
gilt Kernϕ = {0}, falls a ein Element unendlicher Ordnung ist, und wenn a ein
Element endlicher Ordnung ist, so ist Kernϕ = {nm : n ∈ Z}, wobei m = ord a.

(4) Man betrachte die zwei Gruppen (R,+, 0) und (R\{0}, ·, 1) und definiere eine
Abbildung ϕ : R → R \ {0} durch ϕ(x) = ex. Dann ist ϕ ein Homomorphismus
mit Kernϕ = {0} und Bildϕ = {x ∈ R \ {0} : x > 0}.
(5) Man betrachte die zwei Gruppen (R,+, 0) und (C×, ·, 1) (mit C× = C \ {0})
und definiere eine Abbildung ϕ : R → C× durch ϕ(x) = e2πix. Dann ist ϕ ein
Homomorphismus mit Kernϕ = Z und Bildϕ = {z ∈ C× : |z| = 1}.

Lemma 13.17 Sei ϕ : G → H ein Homomorphismus. Dann ist ϕ surjektiv
genau, wenn Bildϕ = H, und injektiv genau, wenn Kernϕ = {e}.

Beweis Es ist klar, dass ϕ genau dann surjektiv ist, wenn Bildϕ = H . Ferner ist
Kernϕ = {e}, wenn ϕ injektiv ist, da ϕ(e) = e. Sei also umgekehrt Kernϕ = {e}
und seien a, b ∈ G mit ϕ(a) = ϕ(b). Dann ist

ϕ(a−1b) = ϕ(a−1)ϕ(b) = ϕ(a)−1ϕ(b) = ϕ(b)−1ϕ(b) = e ,

d.h., a−1b ∈ Kernϕ. Damit ist a−1b = e, d.h., a = b. Folglich ist ϕ injektiv.

Sei ϕ : G → H ein Homomorphismus. Nach Lemmas 13.15 und 13.17 ist ϕ ein
Isomorphismus genau dann, wenn Kernϕ = {e} und Bildϕ = H . Die Gruppen
G und H heißen isomorph, wenn es einen Isomorphismus von G auf H gibt. Sind
G und H isomorph, so schreibt man G ∼= H . Es gilt G ∼= G für jede Gruppe G,
ferner ist H ∼= G, wenn G ∼= H , und G ∼= K, falls G ∼= H und H ∼= K.
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Satz 13.6 (1) Jede unendliche zyklische Gruppe ist isomorph zu Z.

(2) Jede endliche zyklische Gruppe der Ordnung m ist isomorph zu Zm.

Beweis (1) Sei G eine unendliche zyklische Gruppe, sei a ∈ G mit G = 〈a〉 und
sei ϕ : Z → G durch ϕ(n) = an gegeben. Dann ist ϕ ein Homomorphismus
und nach Lemma 13.6 (1) ist ϕ bijektiv. Folglich ist nach Lemma 13.15 ϕ ein
Isomorphismus.

(2) Sei G eine endliche zyklische Gruppe der Ordnung m. Nach Lemma 13.6 (2)
gibt es dann a ∈ G mit ord a = m, so dass G = {e, a, . . . , am−1}. Sei ϕ : Zm → G
gegeben durch ϕ(n) = an für n = 0, . . . , m − 1. Man sieht leicht, dass ϕ ein
Homomorphismus ist und damit ist nach Lemma 13.15 ϕ ein Isomorphismus.

Sei p eine Primzahl. Nach Satz 13.4 und Satz 13.6 (2) ist jede endliche Gruppe
der Ordnung p isomorph zu Zp.

Satz 13.7 Sei G eine Gruppe und H ein Normalteiler von G, sei π : G→ G/H
die durch π(a) = Ha definierte Abbildung. Dann ist π ein Homomorphismus mit
Kernϕ = H und Bildϕ = G/H.

Beweis Nach Lemma 13.10 ist π(ab) = H(ab) = (Ha)(Hb) = π(a)π(b) für alle
a, b ∈ G, und damit ist π ein Homomorphismus. Ferner ist

Kern π = {a ∈ G : Ha = H} = H

und es ist klar, dass Bild π = G/H .

Der Homomorphismus π : G → G/H heißt der kanonische Homomorphismus
von G auf G/H .

Sei S eine Teilmenge einer Gruppe G; nach Satz 13.7 und Lemma 13.16 (1) gibt
es eine Gruppe H und einen Homomorphismus ϕ : G→ H mit Kernϕ = S genau
dann, wenn S Normalteiler von G ist.

Satz 13.8 (Homomorphiesatz) Seien G, H Gruppen und sei ϕ : G → H
ein surjektiver Homomorphismus; setze K = Kernϕ und sei π : G → G/K der
kanonische Homomorphismus von G auf G/K. Dann gibt es einen Isomorphismus
ψ : G/K → H, so dass ϕ = ψ ◦ π. Insbesondere ist G/K ∼= H.

Beweis Seien a, b ∈ G mit Ka = Kb; da a ∈ Ka = Kb, gibt es dann c ∈ K,
so dass a = cb, und folglich ist ϕ(a) = ϕ(cb) = ϕ(c)ϕ(b) = eϕ(b) = ϕ(b), da
c ∈ K = Kernϕ. Sind also a, b ∈ G mit Ka = Kb, so ist ϕ(a) = ϕ(b), und daher
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kann eine Abbildung ψ : G/K → H durch ψ(Ka) = ϕ(a) definiert werden. Für
jedes a ∈ G ist dann ϕ(a) = ψ(Ka) = ψ(π(a)), d.h., ϕ = ψπ.

ψ ist ein Homomorphismus: Seien X, Y ∈ G/K; dann gibt es a, b ∈ G mit
X = Ka und Y = Kb, und nach Lemma 13.10 ist

ψ(XY ) = ψ((Ka)(Kb)) = ψ(K(ab)) = ϕ(ab)

= ϕ(a)ϕ(b) = ψ(Ka)ψ(Kb) = ψ(X)ψ(Y ) .

ψ ist ein Isomorphismus: Sei a ∈ H ; da ϕ surjektiv ist, gibt es b ∈ G mit
ϕ(b) = a, und dann ist ψ(Kb) = ϕ(b) = a, d.h., ψ ist surjektiv. Sei nun a ∈ G;
dann gilt ψ(Ka) = e, wenn a ∈ Kern ϕ = K, da ψ(Ka) = ϕ(a). Folglich ist
Kernψ = {K}, und nach Lemma 13.17 ist dann ψ injektiv. Nach Lemma 13.15
is also ψ ein Isomorphismus.

Seien G, H Gruppen und sei ϕ : G→ H ein Homomorphismus. Dann kann ϕ als
surjektiven Homomorphismus von G auf Bildϕ angesehen werden, und folglich
ist nach Satz 13.8 G/Kernϕ ∼= Bildϕ.

Für m ≥ 1 sei mZ = {mn : n ∈ Z}, also ist mZ eine Untergruppe von Z. Es gibt
einen surjektiven Homomorphismus ϕm : Z → Zm, der durch ϕm(n) = nRestm
definiert ist, und Kernϕm = mZ. Damit ist nach Satz 13.8 Z/mZ ∼= Zm.

Sei ϕ : R→ C× der Homomorphismus mit ϕ(x) = e2πix für jedes x ∈ R. Hier ist
Kernϕ = Z und Bildϕ = {z ∈ C× : |z| = 1}, und daraus folgt nach Satz 13.8,
dass R/Z ∼= {z ∈ C× : |z| = 1}.
Für n ≥ 2 sei Sn die Menge aller Bijektionen σ : {1, 2, . . . , n} → {1, 2, . . . , n}.
Dann ist Sn eine endliche Gruppe der Ordnung n!. Sie heißt die symmetrische
Gruppe vom Grad n. Das Produkt von σ und τ in Sn, das eigentlich σ ◦ τ ist,
wird aber einfach als στ geschrieben.

Die Elemente von Sn heißen Permutationen vom Grad n. Ein Element σ ∈ Sn
wird häufig angegeben in der Form

(

1 2 · · · n
σ(1) σ(2) · · · σ(n)

)

.

Zum Beispiel sind

(

1 2 3 4 5
3 1 5 4 2

)

und

(

1 2 3 4 5
5 4 1 2 3

)

Permutationen vom Grad 5.

Sind σ, τ ∈ Sn, so gilt für das Produkt στ :
(

1 · · · n
σ(1) · · · σ(n)

) (

1 · · · n
τ(1) · · · τ(n)

)

=

(

1 · · · n
σ(τ(1)) · · · σ(τ(n))

)

.

Zum Beispiel ist

(

1 2 3 4 5
3 1 5 4 2

) (

1 2 3 4 5
5 4 1 2 3

)

=

(

1 2 3 4 5
2 4 3 1 5

)

in S5.
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Eine Permutation σ ∈ Sn heißt Transposition, wenn {1 ≤ j ≤ n : σ(j) 6= j} aus
genau zwei Elementen besteht.

Satz 13.9 Jede Permutation ist als Produkt von Transpositionen darstellbar.
(Diese Darstellung als Produkt von Transpositionen ist aber nie eindeutig.)

Beweis Das weiß jedes fünfjährige Kind.

Definiere eine Abbildung sign : Sn → {−1, 1} durch sign(σ) = (−1)δ(σ), wobei
δ(σ) die Anzahl der Elemente in der Menge

{(i, j) : 1 ≤ i < j ≤ n mit σ(i) > σ(j)}

ist; sign(σ) heißt die Signatur von σ.

Lemma 13.18 Für jedes σ ∈ Sn ist

sign(σ) =
∏

1≤i<j≤n

σ(i)− σ(j)

i− j .

Beweis Sei P = {(i, j) : 1 ≤ i < j ≤ n} und definiere eine Abbildung ∆ : P → Z

durch ∆((i, j)) = i− j. Für jedes σ ∈ Sn definiere σ̂ : P → P durch

σ̂((i, j)) =

{

(σ(i), σ(j)) falls σ(i) < σ(j) ,
(σ(j), σ(i)) falls σ(j) < σ(i) .

Man sieht leicht, dass σ̂ surjektiv ist und damit ist σ̂ eine Bijektion. Setze auch

ε(σ, (i, j)) =

{

1 falls σ(i) < σ(j) ,
−1 falls σ(j) < σ(i) ;

dann ist σ(i)− σ(j) = ε(σ, (i, j))∆(σ̂((i, j))) für jedes (i, j) ∈ P und folglich ist

∏

(i,j)∈P

(σ(i)− σ(j)) =
∏

(i,j)∈P

ε(σ, (i, j))∆(σ̂((i, j)))

=
∏

(i,j)∈P

ε(σ, (i, j))
∏

(i,j)∈P

∆(σ̂((i, j)))

=
∏

(i,j)∈P

ε(σ, (i, j))
∏

(i,j)∈P

∆((i, j)) (da σ̂ eine Bijektion ist)

=
∏

(i,j)∈P

ε(σ, (i, j))
∏

(i,j)∈P

(i− j) .
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Aber
∏

(i,j)∈P

ε(σ, (i, j)) = sign(σ) und daraus ergibt sich, dass

sign(σ) =
∏

(i,j)∈P

ε(σ, (i, j)) =
∏

(i,j)∈P

σ(i)− σ(j)

i− j =
∏

1≤i<j≤n

σ(i)− σ(j)

i− j .

Betrachte nun {−1, 1} als Gruppe und zwar als Untergruppe von R× = R \ {0}.

Satz 13.10 Die Abbildung sign : Sn → {−1, 1} ist ein Homomorphismus.

Beweis Die Schreibweise aus dem Beweis für Lemma 13.18 wird verwendet. Seien
σ, τ ∈ Sn; dann gilt ε(στ, (i, j)) = ε(σ, τ̂ ((i, j)))ε(τ, (i, j)) für jedes (i, j) ∈ P und
daraus folgt, dass

sign(στ) =
∏

(i,j)∈P

ε(στ, (i, j))

=
∏

(i,j)∈P

ε(σ, τ̂ ((i, j)))ε(τ, (i, j))

=
∏

(i,j)∈P

ε(σ, τ̂ ((i, j)))
∏

(i,j)∈P

ε(τ, (i, j))

=
∏

(i,j)∈P

ε(σ, (i, j))
∏

(i,j)∈P

ε(τ, (i, j)) (da τ̂ eine Bijektion ist)

= sign(σ) sign(τ) .

Damit ist sign ein Homomorphismus.

Eine Permutation σ ∈ Sn heißt gerade, wenn sign(σ) = 1 und ungerade, wenn
sign(σ) = −1. Jede Transposition ist offensichtlich ungerade. Sei nun σ ∈ Sn und
sei σ = τ1 · · · τm eine Darstellung von σ als Produkt von Transpositionen. Nach
Satz 13.10 ist dann sign(σ) =

∏m

j=1 sign(τj) = (−1)m. Nach Satz 13.9 ist also eine
Permutation genau dann gerade bzw. ungerade, wenn sie als Produkt von einer
geraden bzw. ungeraden Anzahl von Transpostionen dargestellt werden kann.

Sei An die Menge der geraden Permutationen in Sn; da An = Kern sign, ist
nach Lemma 13.16 (1) An ein Normalteiler von Sn. An heißt die alternierende
Gruppe vom Rang n. Nach Satz 13.8 ist Sn/An ∼= {−1, 1}, und insbesondere ist
[Sn : An] = 2. Daraus folgt, dass ordAn = 1

2
n!.

Eine Gruppe G heißt einfach, wenn {e} und G die einzigen Normalteiler von
G sind. Zum Beispiel ist die Gruppe Zp einfach, wenn p Primzahl ist, da nach
Satz 13.2 {e} und Zp die einzigen Untergruppen von Zp sind.

Satz 13.11 Für n ≥ 5 ist An eine einfache Gruppe.
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Beweis Übung für Streberinnen und Streber.

Satz 13.12 (Satz von Cayley) Sei G eine endliche Gruppe der Ordnung n mit
n ≥ 2. Dann ist G isomorph zu einer Untergruppe von Sn.

Beweis Wähle irgendeine bijektive Abbildung γ : {1, 2, . . . , n} → G. Für jedes
a ∈ G sei σa : {1, 2, . . . , n} → {1, 2, . . . , n} die Abbildung, die gegeben ist durch

σa(j) = γ−1(aγ(j))

für jedes j = 1, . . . , n. Dann ist σa injektiv, da

σa(i) = σa(j) ⇒ γ−1(aγ(i)) = γ−1(aγ(j)) ⇒ aγ(i) = aγ(j)

⇒ a−1aγ(i) = a−1aγ(j) ⇒ eγ(i) = eγ(j)

⇒ γ(i) = γ(j) ⇒ i = j .

Damit ist σa bijektiv, d.h., σa ∈ Sn. Man kann also eine Abbildung ψ : G → Sn
definieren durch ψ(a) = σa und diese Abbildung ψ ist dann ein Homomorphismus:
Für alle a, b ∈ G und 1 ≤ j ≤ n ist

(ψ(a)ψ(b))(j) = ψ(a) (ψ(b)(j)) = ψ(a)(σb(j))

= ψ(a)(γ−1(bγ(j))) = σa(γ
−1(bγ(j))) = γ−1(aγ(γ−1(bγ(j))))

= γ−1(abγ(j)) = σab(j) = ψ(ab)(j)

und folglich ist ψ(ab) = ψ(a)ψ(b) für alle a, b ∈ G. Ferner ist ψ injektiv, da

ψ(a) = ψ(b) ⇒ ψ(a)(j) = ψ(b)(j) für alle j

⇒ γ−1(aγ(j)) = γ−1(bγ(j)) für alle j ⇒ a = b .

Sei H = Bildψ; nach Lemma 13.16 (2) ist H eine Untergruppe von Sn und ψ
kann als bijektiven Homomorphismus von G auf H angesehen werden. Damit
sind G und H isomorph.
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Ein 4-Tupel (R,+, ·, 0) bestehend aus einer Menge R, einer Verknüpfung

+ : R×R→ R

(a, b) 7→ a+ b

(genannt Addition), einer Verknüpfung

· : R×R→ R

(a, b) 7→ ab

(genannt Multiplikation) und einem Element 0 ∈ R heißt Ring, wenn gilt:

(R1) (a+ b) + c = a + (b+ c) für alle a, b, c ∈ R.

(R2) a + b = b+ a für alle a, b ∈ R.

(R3) Für alle a ∈ R gilt 0 + a = a.

(R4) Zu jedem a ∈ R gibt es ein Element −a ∈ R mit (−a) + a = 0.

(R5) (ab)c = a(bc) für alle a, b, c ∈ R.

(R6) a(b+ c) = ab+ ac und (b+ c)a = ba+ ca für alle a, b, c ∈ R.

Bemerkung: Nach der üblichen Konvention soll die Addition in R weniger stark
binden als die Multiplikation. (ab+ ac bedeutet also (ab) + (ac).)

Ist (R,+, ·, 0) ein Ring, so ist (R,+, 0) eine abelsche Gruppe.

Lemma 14.1 Sei (R,+, ·, 0) ein Ring.

(1) Das Nullelement 0 ist eindeutig: Ist 0′ ∈ R ein Element mit 0′ + a = a für
alle a ∈ R, so ist 0′ = 0.

(2) Zu jedem a ∈ R gibt es genau ein Element −a ∈ R mit (−a) + a = 0.

Beweis Übung.

Wenn es aus dem Kontext klar ist, welche Verknüpfungen + und · und welches
Element 0 gemeint sind, dann schreibt man meistens lediglich R statt (R,+, ·, 0).

Lemma 14.2 Sei R ein Ring; dann gilt a · 0 = 0 · a = 0 für alle a ∈ R.

Beweis Übung.

Ein Ring R heißt kommutativ, wenn gilt: ab = ba für alle a, b ∈ R.

121
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Lemma 14.3 Sei R ein Ring und seien 1, 1′ ∈ R Elemente mit 1a = a1 = a
und 1′a = a1′ = a für alle a ∈ R. Dann ist 1′ = 1.

Beweis Übung.

Ein Ring R heißt Ring mit 1, wenn es ein Element 1 ∈ R mit 1 6= 0 gibt, so dass
1a = a1 = a für alle a ∈ R. Ist R ein Ring mit 1, so ist nach Lemma 14.3 das
Einselement 1 eindeutig.

Beispiele von Ringen

1. Jeder Körper ist ein kommutativer Ring mit 1.

2. Z ist ein kommutativer Ring mit 1.

3. Für jedes n > 1 ist Zn ein kommutativer Ring mit 1.

4. Für jeden Körper K ist M(n × n,K) ein Ring mit 1 (mit Einselement En).
Dieser Ring ist aber nicht kommutativ, wenn n > 1.

5. Sei V ein Vektorraum über einem Körper K und sei End(V ) die Menge aller
Endomorphismen von V . Dann ist End(V ) ein Ring mit 1. Dieser Ring ist aber
nur kommutativ, wenn dimV = 1.

6. Sei [0, 1] = {x ∈ R : 0 ≤ x ≤ 1} und sei C([0, 1]) die Menge aller stetigen
Abbildungen von [0, 1] nach R. Dann ist C([0, 1]) ein kommutativer Ring mit 1,
wobei hier die Addition durch (f + g)(x) = f(x) + g(x) und die Multiplikation
durch (fg) (x) = f(x)g(x) für alle x ∈ [0, 1] definiert sind.

Sei R ein Ring und seien a1, . . . , an ∈ R mit n ≥ 3; dann ist die ‘Summe’
von a1, . . . , an unabhängig von der Reihenfolge der einzelnen Additionen und
wird mit a1 + · · · + an bezeichnet. Genauso ist das ‘Produkt’ von a1, . . . , an
unabhängig von der Reihenfolge der einzelnen Multiplikationen und wird mit
a1 · · ·an bezeichnet.

Sei R ein Ring; eine Teilmenge S von R heißt Unterring von R, wenn 0 ∈ S und
für alle a, b ∈ S auch −a, a + b und ab in S liegen. (S ist also bereits selbst ein
Ring bezüglich der in R gegebenen Operationen.)

Sei R ein Ring; eine Teilmenge U von R heißt Linksideal bzw. Rechtsideal von
R, wenn gilt:

— (U,+, 0) ist eine Untergruppe von (R,+, 0). Es gilt also 0 ∈ U und für alle
a, b ∈ U sind −a und a + b in U .

— Für alle a ∈ R, u ∈ U ist au ∈ U bzw. ist ua ∈ U .

Nun heißt U Ideal, wenn es Links- und Rechtsideal ist. Insbesondere sind R und
{0} stets Ideale von R.
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Sei R ein Ring und U ein Linksideal oder ein Rechtsideal von R; dann ist U ein
Unterring von R. Ist R ein Ring mit 1 und 1 ∈ U , dann ist U = R.

Wenn R kommutativ ist, ist jedes Linksideal ein Rechtsideal und umgekehrt.

Beispiel Sei R = M(2× 2,R) der Ring der 2× 2 Matrizen über R und sei

U =
{

(

a 0
b 0

)

: a, b ∈ R

}

;

dann ist U ein Linksideal von R aber kein Rechtsideal.

Sei R ein kommutativer Ring; für jedes a ∈ R setze (a) = {ab : b ∈ R}. Es ist
dann klar, dass (a) ein Ideal von R ist. Ein Ideal U von R heißt Hauptideal, wenn
U = (a) für ein a ∈ R.

Satz 14.1 Jedes Ideal von Z ist ein Hauptideal.

Beweis Übung.

Seien R, R′ Ringe; eine Abbildung ϕ : R→ R′ heißt ein Homomorphismus (oder
ein Ring-Homomorphismus), wenn gilt:

ϕ(a+ b) = ϕ(a) + ϕ(b) und ϕ(ab) = ϕ(a)ϕ(b)

für alle a, b ∈ R.

Lemma 14.4 Sei ϕ : R → R′ ein Homomorphismus. Dann gilt ϕ(0) = 0 und
ϕ(−a) = −ϕ(a) für alle a ∈ R.

Beweis Dies folgt unmittelbar aus Lemma 13.13.

Für einen Homomorphismus ϕ : R→ R′ setze

Kernϕ = {a ∈ R : ϕ(a) = 0} und Bildϕ = ϕ(R) .

Lemma 14.5 (1) Kernϕ ist ein Ideal von R.

(2) Bildϕ ist ein Unterring von R′.

Beweis (1) Da ϕ(0) = 0, ist 0 ∈ Kernϕ. Seien a, b ∈ Kern ϕ; nach Lemma 14.3
ist ϕ(−a) = −ϕ(a) = −0 = 0, und ϕ(a + b) = ϕ(a) + ϕ(b) = 0 + 0 = 0. Damit
sind −a und a + b auch in Kernϕ. Seien nun a ∈ R und u ∈ Kernϕ; dann
gilt nach Lemma 14.2, dass ϕ(au) = ϕ(a)ϕ(u) = ϕ(a) · 0 = 0 und genauso gilt
ϕ(ua) = ϕ(u)ϕ(a) = 0 · ϕ(a) = 0. Folglich ist Kernϕ ein Ideal von R.
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(2) Da ϕ(0) = 0, ist 0 ∈ Bildϕ. Seien a′, b′ ∈ Bildϕ; es gibt also a, b ∈ R mit
a′ = ϕ(a) und b′ = ϕ(b). Nach Lemma 14.4 ist −a′ = −ϕ(a) = ϕ(−a), und ferner
gilt a′ + b′ = ϕ(a) + ϕ(b) = ϕ(a + b) und a′b′ = ϕ(a)ϕ(b) = ϕ(ab). Damit liegen
−a′, a′ + b′ und a′b′ auch in Bildϕ. Folglich ist Bildϕ ein Unterring von R′.

Im Folgenden sei R ein kommutativer Ring mit 1.

Bezeichne nun mit Σ(R) die Menge aller Folgen {an}n≥0 aus R. Verknüpfungen
+ : Σ(R) × Σ(R) → Σ(R) und · : Σ(R) × Σ(R) → Σ(R) werden definiert durch
{an}n≥0 + {bn}n≥0 = {an + bn}n≥0 und {an}n≥0{bn}n≥0 = {cn}n≥0, wobei

cn = a0bn + a1bn−1 + · · ·+ an−1b1 + anb0 .

Dann ist Σ(R) ein kommutativer Ring mit 1. (Der Beweis dafür ist eine Übung.)
Das Nullelement ist die Folge 0 = {0n}n≥0, wobei 0n = 0 für alle n ≥ 0, und das
Einselement ist die Folge 1 = {1n}n≥0, wobei

1n =

{

1 falls n = 0 ,
0 sonst .

Sei nun Σo(R) die Teilmenge von Σ(R), die definiert ist durch

Σo(R) = {{an}n≥0 ∈ Σ(R) : an 6= 0 für nur endlich viel n ≥ 0} .

Lemma 14.6 Für alle α, β ∈ Σo(R) sind −α, α + β und αβ auch in Σo(R).
Ferner sind 0, 1 ∈ Σ(R) Elemente von Σo(R).

Beweis Seien α = {an}n≥0, β = {bn}n≥0 ∈ Σo(R). Es gibt also M, N ≥ 0, so
dass an = 0 für alle n > M und bn = 0 für alle n > N . Sei nun αβ = {cn}n≥0;
dann ist cn = a0bn + a1bn−1 + · · · + an−1b1 + anb0 = 0, falls n > M + N , d.h.,
αβ ∈ Σo(R). Die anderen Teile sind klar.

Nach Lemma 14.6 ist Σo(R), mit den Verknüpfungen aus Σ(R), ein kommutativer
Ring mit 1. Sei nun x ein Symbol, das als ‘Unbestimmte’ angesehen werden soll.
Ist α = {an}n≥0 ein Element von Σo(R) mit an = 0 für jedes n > m, so wird α
durch den Ausdruck

a0 + a1x+ a2x
2 + · · ·+ amx

m

dargestellt. Diese Darstellung ist nicht eindeutig, sind aber a0 +a1x+ · · ·+amx
m

und b0 + b1x + · · · + bℓx
ℓ zwei Darstellungen und ist m ≤ ℓ, so ist aj = bj für

j = 1, . . . , m und bj = 0 für m < j ≤ ℓ.

Man schreibt nun R[x] statt Σo(R); R[x] heißt der Polynomring über R in der
Unbestimmten x, die Elemente aus R[x] heißen Polynome in x mit Koeffizienten
aus R.
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Sei i : R → R[x] die Abbildung, die durch i(a) = a definiert ist. Mit anderen
Worten ist i(a) = {an}n≥0, wobei

an =

{

a falls n = 0 ,
0 sonst .

Diese Abbildung ist injektiv und folglich kann man jedes Element a aus R mit
dem Element i(a) aus R[x] identifizieren. Auf diese Weise wird R als Teilmenge
von R[x] betrachtet. Da i(a+b) = i(a)+ i(b) und i(ab) = i(a)i(b) für alle a, b ∈ R
und i(0) = 0 und i(1) = 1, erhält man dann die Addition und Multiplikation auf
R als Einschränkungen der entsprechenden Verknüpfungen auf R[x].

Ist f ∈ R[x] mit f 6= 0, so hat f eine eindeutige Darstellung

a0 + a1x+ a2x
2 + · · ·+ amx

m

mit am 6= 0. Die Zahl m heißt der Grad des Polynoms f und wird mit Grad f
bezeichnet. Das Element am heißt der Leitkoeffizient von f ; ist am = 1, so heißt
f normiert.

Für jedes a ∈ R definiere eine Abbildung Φa : R[x]→ R durch

Φa(f) = a0 + a1a + a2a
2 + · · ·+ ama

m

falls f = a0+a1x+a2x
2+· · ·+amxm mit am 6= 0, (wobei a2 = aa, a3 = aaa usw.).

Also ist Φa(f) der Wert des Polynoms f an der Stelle a und folglich schreibt man
meistens f(a) statt Φa(f).

Lemma 14.7 Die Abbildung Φa : R[x]→ R ist ein Homomorphismus.

Beweis Übung.

Die Abbildung Φa wird Einsetzhomomorphismus genannt.

Im Folgenden sei K ein Körper.

Lemma 14.8 Seien f, g ∈ K[x] mit f 6= 0, g 6= 0; dann ist

Grad fg = Grad f + Grad g .

Beweis Sei λ0 + λ1x + · · · + λmx
m bzw. µ0 + µ1x + · · · + µnx

n die eindeutige
Darstellung von f mit λm 6= 0 bzw. von g mit µn 6= 0. Dann ist

fg = ν0 + ν1x+ · · ·+ νm+nx
m+n

mit νm+n = λmµn 6= 0, und folglich ist Grad fg = m+ n = Grad f + Grad g.
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Lemma 14.9 (1) Sind f, g ∈ K[x] mit f 6= 0 und g 6= 0, so ist fg 6= 0.

(2) Sind f, g1, g2 ∈ K[x] mit f 6= 0 und fg1 = fg2, so ist g1 = g2.

Beweis (1) Dies folgt unmittelbar aus Lemma 14.8.

(2) Da f(g1 − g2) = 0 und f 6= 0, ist nach (1) g1 − g2 = 0, d.h., g1 = g2.

Satz 14.2 (Division mit Rest in K[x]) Seien f, g ∈ K[x] mit g 6= 0. Dann
gibt es eindeutige Polynome t, r ∈ K[x] mit f = tg + r und entweder r = 0 oder
Grad r < Grad g.

Beweis Existenz von t und r: Da 0 = 0g+0, kann man annehmen, dass f 6= 0. Ist
Grad f < Grad g, setze einfach t = 0 und r = f . Es kann also auch angenommen
werden, dass Grad f ≥ Grad g. Der Beweis erfolgt nun per Induktion nach Grad f .

Sei Grad f = 0. Da Grad f ≥ Grad g, ist auch Grad g = 0. Folglich ist f = λ0

und g = µ0 mit λ0, µ0 ∈ K und λ0 6= 0, µ0 6= 0, und damit ist

f = λ0 = (λ0µ
−1
0 )µ0 = (λ0µ

−1
0 )g + 0 .

Sei nun m ≥ 1 und nehme an, dass die Aussage über die Existenz von t und r
für alle Polynome f mit Grad f < m richtig ist.. Sei f ∈ K[x] mit Grad f = m.
Dann ist f = λ0 + λ1x + · · · + λmx

m, g = µ0 + µ1x + · · · + µnx
n mit λm 6= 0,

µn 6= 0 und m ≥ n. Setze f1 = f − (λmµ
−1
n xm−n)g, wobei x0 = 1; es gilt

f1 = (λ0 + · · ·+ λmx
m)− (λmµ

−1
n )(µ0x

m−n + µ0x
m−n+1 + · · ·+ µnx

m)

= (λ0 + · · ·+ λm−1x
m−1)− (λmµ

−1
n )(µ0x

m−n + · · ·+ µn−1x
m−1)

und damit ist entweder f1 = 0 oder Grad f1 ≤ m− 1. Nach Induktionsannahme
gibt es also Polynome t1, r ∈ K[x] mit f1 = t1g + r und entweder r = 0 oder
Grad r < Grad g. Setze t = t1 + λmµ

−1
n xm−n; dann ist

f = f1 + (λmµ
−1
n xm−n)g = t1g + r + (λmµ

−1
n xm−n)g

= (t1 + λmµ
−1
n xm−n)g + r = tg + r .

Eindeutigkeit von t und r: Nehme an, dass es auch Polynome t′, r′ mit f = t′g+r′

und entweder r′ = 0 oder Grad r′ < Grad g gibt. Dann ist entweder r′ = r oder
Grad (r′ − r) < Grad g. Ferner ist

0 = f − f = (tg + r)− (t′g + r′) = (t− t′)g + (r − r′)

und daraus folgt, dass (t− t′)g = r′ − r. Also ist t = t′ (und damit auch r = r′),
sonst wäre nach Lemma 14.8

Grad (r′ − r) = Grad (t− t′)g = Grad (t− t′) + Grad g ≥ Grad g .
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Satz 14.3 Sei U ein Ideal von K[x] mit U 6= {0}. Dann gibt es ein eindeutiges
normiertes Polynom g ∈ U , so dass U = (g). Insbesondere ist jedes Ideal von
K[x] ein Hauptideal, (da {0} = (0)).

Beweis Wähle ein Polynom g′ ∈ U \ {0}, so dass Grad g′ ≤ Gradh für alle
h ∈ U \ {0} und setzen g = λ−1g′, wobei λ der Leitkoeffizient von g′ ist. Dann
ist g normiert, g ∈ U und Grad g = Grad g′ ≤ Gradh für alle h ∈ U \ {0}. Nun
ist fg ∈ U für alle f ∈ K[x], da U ein Ideal ist, und damit ist (g) ⊂ U . Sei
andererseits f ∈ U ; nach Satz 14.2 gibt es Polynome t, r ∈ K[x] mit f = tg + r
und entweder r = 0 oder Grad r < Grad g. Aber r = f−tg ∈ U , und daraus ergibt
sich, dass r = 0 (sonst wäre Grad r < Grad g ≤ Grad r). Also ist f = tg ∈ (g),
d.h. U ⊂ (g) und folglich ist U = (g).

Eindeutigkeit von g: Sei h ein normiertes Polynom mit U = (h). Dann gibt es
u, v ∈ K[x] mit g = uh und h = vg, und daraus folgt, dass Gradh ≤ Grad g und
Grad g ≤ Gradh und also ist Gradh = Grad g. Aber h − g ∈ U , und entweder
h = g oder Grad (h − g) < Grad g, (da h und g beide normierte Polynome vom
gleichen Grad sind). Damit ist h = g.

Ist f ∈ K[x] ein Polynom, so heißt λ ∈ K Nullstelle von f , wenn f(λ) = 0, (d.h.,
wenn Φλ(f) = 0).

Satz 14.4 Sei f ∈ K[x] ein Polynom mit f 6= 0 und Grad f ≥ 1 und sei λ
eine Nullstelle von f . Dann gibt es ein eindeutiges Polynom g ∈ K[x], so dass
f = (λ− x)g. Ferner ist g 6= 0 und Grad g = (Grad f)− 1.

Beweis Nach Satz 14.2 gibt es Polynome g, r ∈ K[x] mit f = (λ− x)g + r und
entweder r = 0 oder Grad r < Grad (λ − x) = 1 Dies bedeutet also, dass r = µ
für ein µ ∈ K. Da aber Φλ ein Homomorphismus ist, ist

0 = f(λ) = Φλ((λ− x)g + µ) = Φλ(λ− x)Φλ(g) + Φλ(µ)

= (λ− λ)Φλ(g) + µ = 0Φλ(g) + µ = µ ,

d.h., µ = 0 und damit ist f = (λ − x)g. Es ist klar, dass g 6= 0 und nach
Lemma 14.8 ist Grad g = (Grad f) − 1. Gilt auch f = (λ − x)h, so ist nach
Lemma 14.9 (2) h = g, da λ− x 6= 0.

Lemma 14.10 Seien λ1, . . . , λn ∈ K (mit n ≥ 1) und seien f, g ∈ K[x] mit
Grad g ≥ 1 und (λ1 − x) · · · (λn − x) = fg. Dann ist λk eine Nullstelle von g für
mindestens ein k.
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Beweis Sei m = Grad f = n − Grad g ≤ n − 1, und nehme an, dass g(λk) 6= 0
für jedes k = 1, . . . , m. Da g(λ1) 6= 0 und f(λ1)g(λ1) = (fg)(λ1) = 0, ist
f(λk) = 0 und folglich gibt es nach Satz 14.4 f1 ∈ K[x] mit f = (λ1−x)f1. Nach
Lemma 4.9 (2) ist dann (λ2 − x) · · · (λn − x) = f1g; insbesondere ist f2(λ2) = 0.
Nach wiederholter Anwendung dieses Verfahren gibt es f1, . . . , fm ∈ K[x], so
dass (λk+1 − x) · · · (λn − x) = fkg für k = 1, . . . , m. Aber dann ist Grad fm = 0,
folglich ist (λm+1−x) · · · (λn−x) = λg für ein λ ∈ K\{0} und damit ist g(λk) = 0
für jedes k = m+ 1, . . . , n.

Viele der für einen Körper eingeführten Definitionen machen auch für einen Ring
einen Sinn. Im folgenden sei R ein Ring.

Sei n ∈ N; mit Rn wird die Menge aller n-Tupel von Elementen aus R bezeichnet.
Ein Element von Rn hat also die Form (a1, . . . , an) mit a1, . . . , an Elementen aus
R. Das Element (0, . . . , 0) ∈ Rn wird mit 0 bezeichnet.

Eine Addition auf Rn wird erklärt durch

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn)

und Multiplikation eines Elements von Rn links mit einem Element von R durch

a(b1, . . . , bn) = (ab1, . . . , abn) .

Seien m, n ≥ 1; eine m×n Matrix über R ist eine Anordnung von mn Elementen
von R nach folgendem Schema











a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn











Die Menge der m × n Matrizen über R wird mit M(m × n,R) bezeichnet. Die
Schreibweise A = (aij)1≤i≤m, 1≤j≤n und A = (aij) werden weiter verwendet. Ferner
werden Zeilen und Spalten wie im Fall eines Körpers definiert; die Zeilen von A
werden als Elemente von Rn und die Spalten als Elemente von Rm betrachtet.
Das Element







0 · · · 0
...

...
0 · · · 0






∈ M(m× n,R)

wird mit 0 bezeichnet.

Sei A = (aij) ∈ M(ℓ ×m,R) eine ℓ ×m Matrix und B = (ajk) ∈ M(m × n,R)
eine m× n Matrix über R. Für alle i = 1, . . . , ℓ, k = 1, . . . , n sei

cik =
m

∑

j=1

aijbjk ;
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es gibt also eine ℓ × n Matrix C = (cik) ∈ M(ℓ × n,R) über R. Diese Matrix C
heißt das Produkt von A und B und wird mit AB bezeichnet.

Satz 14.5 Seien A ∈ M(ℓ × m,R), B ∈ M(m × n,R) und C ∈ M(n × p, R).
Dann gilt (AB)C = A(BC). (Die Matrizenmultiplikation ist also assoziativ.)

Beweis Seien 1 ≤ λ ≤ ℓ, 1 ≤ ρ ≤ p. Dann ist
∑n

ν=1

(
∑m

µ=1 aλµbµν
)

cνρ das λ, ρ-te

Element in (AB)C und
∑m

µ=1 aλµ
(
∑n

ν=1 bµνcνρ
)

ist das λ, ρ-te Element in A(BC).
Da aber die Multiplikation in R assoziativ ist, ist

m
∑

µ=1

aλµ

(

n
∑

ν=1

bµνcνρ

)

=
n

∑

ν=1

(

m
∑

µ=1

aλµbµν

)

cνρ .

Daraus folgt, dass (AB)C = A(BC).

Seien A1 ∈ M(n0×n1, R), A2 ∈ M(n1×n2, R), . . . , Am ∈ M(nm−1×nm, R). Mit
Hilfe von Satz 14.5 kann man durch Induktion zeigen, dass das ‘Produkt’ der
Matrizen A1, . . . , Am unabhängig von der Reihenfolge der Multiplikationen ist;
dieses ‘Produkt’ wird mit A1 · · ·Am bezeichnet.

Sei n ≥ 1; nach Satz 14.5 ist M(n× n,R) (mit komponentenweiser Addition und
Matrizenmultiplikation) ein Ring. (Man sieht leicht, die restlichen Bedingungen
in der Definition eines Rings sind erfüllt.) Ist n ≥ 2 und ist die Multiplikation in
R nicht trivial (es gibt also a, b ∈ R mit ab 6= 0), so ist der Ring M(n × n,R)
nicht kommutativ.

Im folgenden sei R ein Ring mit 1 und sei En ∈ M(n× n,R) folgende Matrix:











1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1











.

Die Matrix En heißt wieder Einheitsmatrix. Man sieht leicht, dass AEn = A und
EnB = B für alle A ∈ M(m × n,R) und alle B ∈ M(n × p, R). Insbesondere ist
M(n× n,R) ein Ring mit Einselement En.

Lemma 14.11 Sei A ∈ M(n× n,R). Dann gibt es höchstens eine Matrix A′, so
dass AA′ = A′A = En.

Beweis Seien B, C ∈ M(n× n,R) mit AB = BA = En = AC = CA. Dann gilt

B = BEn = B(AC) = (BA)C = EnC = C .
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Eine Matrix A ∈ M(n× n,R) heißt invertierbar, wenn es A′ ∈ M(n× n,R) gibt,
so dass AA′ = A′A = En. Nach Lemma 14.11 ist diese Matrix A′ eindeutig und
sie wird mit A−1 bezeichnet, d.h., A−1 ist die eindeutige Matrix mit

AA−1 = A−1A = En .

Lemma 14.12 (1) Die Einheitsmatrix En ist invertierbar und E−1
n = En.

(2) Ist A ∈ M(n× n,R) invertierbar, so ist A−1 invertierbar und (A−1)−1 = A.

(3) Sind A, B ∈ M(n × n,R) invertierbar, so ist das Produkt AB invertierbar
und (AB)−1 = B−1A−1.

Beweis (1) Dies ist klar, da EnEn = EnEn = En.

(2) Dies ist auch klar, da A−1A = AA−1 = En.

(3) Dies folgt aus der Assoziativität der Matrizenmultiplikation, da

(AB)(B−1A−1) = A(BB−1)A−1 = AEnA
−1 = AA−1 = En

und (B−1A−1)(AB) = B−1(A−1A)B = B−1EnB = B−1B = En.
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Im Folgenden sei R ein kommutativer Ring. Ist a ∈ R und ε ∈ {−1, 1}, dann sei
εa das Element von R, das definiert ist durch

εa =

{

a falls ε = 1 ,
−a falls ε = −1 .

Sind ε, ε′ ∈ {−1, 1} und a, b ∈ R, dann ist (εε′)a = ε(ε′a), da −(−a) = a,
und ε(ab) = (εa)b, da −(ab) = (−a)b. Ferner ist ε(a + b) = (εa) + (εb), da
−(a + b) = (−a) + (−b).
Ist A = (ai,j) ∈ M(n× n,R) eine n× n Matrix über R, so heißt das Element

∑

σ∈Sn

sign(σ)a1σ(1)a2σ(2) · · ·anσ(n)

die Determinante von A und wird mit detA bezeichnet. Insbesondere ist

det

(

a11 a12

a21 a22

)

= a11a22 − a12a22

und für n = 3 ist

a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 − a13a22a31 + a13a21a32

die Determinante von A.

Eine Matrix A = (aij) ∈ M(n × n,R) heißt obere Dreiecksmatrix, wenn aij = 0
für alle i > j.

Lemma 15.1 Sei A = (aij) ∈ M(n× n,R) eine obere Dreiecksmatrix. Dann ist

detA = a11a22 · · ·ann .

Beweis Sei σ ∈ Sn eine Permutation mit σ 6= e, wobei e die Permutation ist mit
e(i) = i für alle i. Dann gibt es 1 ≤ i ≤ n mit σ(i) < i (warum?) und folglich
ist aiσ(i) = 0. Damit ist nach Lemma 14.2 a1σ(1)a2 σ(2) · · · anσ(n) = 0 und daraus
ergibt sich, dass detA = a11a22 · · ·ann.

Seien v1, . . . , vn Elemente aus Rn; bezeichne dann mit [v1, . . . , vn] die Matrix, die
v1, . . . , vn als Zeilen hat.

Satz 15.1 Seien v1, . . . , vn ∈ Rn und 1 ≤ k ≤ n.

(1) Ist vk = bu+ cw mit u, w ∈ Rn und b, c ∈ R, so ist

det[v1, . . . , vk−1, vk, vk+1, . . . , vn]

= b det[v1, . . . , vk−1, u, vk+1, . . . , vn] + c det[v1, . . . , vk−1, w, vk+1, . . . , vn] .

(2) Ist vk = vℓ für ein ℓ mit k 6= ℓ, so ist det[v1, . . . , vn] = 0.

131
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Beweis Sei [v1, . . . , vn] = (aij).

(1) Sei [v1, . . . , vk−1, u, vk+1, . . . , vn] = (auij), [v1, . . . , vk−1, w, vk+1, . . . , vn] = (awij).
Dann ist

det[v1, . . . , vk−1, vk, vk+1, . . . , vn]

=
∑

σ∈Sn

sign(σ)a1σ(1) · · ·a(k−1)σ(k−1)ak σ(k)a(k+1) σ(k+1) · · ·anσ(n)

=
∑

σ∈Sn

sign(σ)a1σ(1) · · ·a(k−1)σ(k−1)(ba
u
k σ(k) + cawk σ(k))a(k+1)σ(k+1) · · ·anσ(n)

= b
∑

σ∈Sn

sign(σ)au1σ(1) · · ·au(k−1)σ(k−1)a
u
k σ(k)a

u
(k+1)σ(k+1) · · ·aunσ(n)

+ c
∑

σ∈Sn

sign(σ)aw1σ(1) · · ·aw(k−1)σ(k−1)a
w
k σ(k)a

w
(k+1)σ(k+1) · · ·awnσ(n)

= b det[v1, . . . , vk−1, u, vk+1, . . . , vn] + c det[v1, . . . , vk−1, w, vk+1, . . . , vn] .

(2) Es gibt ℓ 6= k, so dass vℓ = vk, d.h., akj = aℓj für alle j = 1, . . . , n. Sei τ ∈ Sn
die Transposition, die die Elemente k und ℓ vertauscht und sei Tτ : Sn → Sn die
durch Tτ (σ) = στ definierte Abbildung. Da σττ = σ, ist Tτ (Tτ (σ)) = σ für jedes
σ ∈ S und nach Satz 13.10 ist

sign(Tτ (σ)) = sign(στ) = sign(σ) sign(τ) = − sign(σ)

für alle σ ∈ Sn. Sei An = {σ ∈ Sn : sign(σ) = 1}; also ist Tτ (An) ⊂ Sn \ An und
Tτ (Sn \An) ⊂ An. Damit ist Tτ (An) = Sn \An und jede Permutation in Sn \An
hat eine eindeutige Darstellung der Form στ mit σ ∈ An. Ferner gilt

a1 στ(1) · · ·anστ(n) = a1σ(1) · · ·anσ(n)

für alle σ ∈ Sn, da ai στ(i) = ai σ(i), falls i /∈ {k, ℓ}, ak στ(k) = ak σ(ℓ) = aℓ σ(ℓ) und
aℓ στ(ℓ) = aℓ σ(k) = ak σ(k). Daraus folgt, dass

detA =
∑

σ∈Sn

sign(σ)a1σ(1) · · ·anσ(n)

=
∑

σ∈An

sign(σ)a1σ(1) · · ·anσ(n) +
∑

σ∈An

sign(στ)a1 στ(1) · · ·anστ(n)

=
∑

σ∈An

sign(σ)a1σ(1) · · ·anσ(n) + sign(τ)
∑

σ∈An

sign(σ)a1σ(1) · · ·anσ(n) = 0 ,

da sign(τ) = −1.

Satz 15.2 Seien v1, . . . , vn ∈ Rn; dann gilt

det[vπ(1), . . . , vπ(n)] = sign(π) det[v1, . . . , vn]

für alle π ∈ Sn.
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Beweis Sei A = [v1, . . . , vn] mit A = (aij) und B = [vπ(1), . . . , vπ(n)] mit B = (bij),
also gilt bij = aπ(i) j für alle 1 ≤ i, j ≤ n. Sei Tπ : Sn → Sn die durch Tπ(σ) = σπ
definierte Abbildung. Dann ist Tπ injektiv, (da σ = (σπ)π−1 = (σ′π)π−1 = σ′,
wenn σπ = σ′π), und damit eine Bijektion. Folglich gibt es zu jedem σ ∈ Sn eine
eindeutige Permutation σ′ ∈ Sn, so dass σ = σ′π. Ferner ist

aπ(1) σπ(1) · · ·aπ(n) σπ(n) = a1 σ(1) · · ·anσ(n)

für alle σ ∈ Sn, und daraus ergibt sich, dass

detB =
∑

σ∈Sn

sign(σ)b1σ(1) · · · bn σ(n) =
∑

σ∈Sn

sign(σπ)b1σπ(1) · · · bnσπ(n)

=
∑

σ∈Sn

sign(σπ)aπ(1)σπ(1) · · ·aπ(n)σπ(n) =
∑

σ∈Sn

sign(σπ)a1σ(1) · · ·anσ(n)

= sign(π)
∑

σ∈Sn

sign(σ)a1 σ(1) · · ·anσ(n) = sign(π) detA .

Satz 15.3 Für alle A, B ∈ M(n× n,R) ist

detAB = (detA)(detB) .

Beweis Sei A = (aij) und seien v1, . . . , vn die Zeilen von B. Nach der Definition
für die Multiplikation von Matrizen ist AB = [w1, . . . , wn], wobei

wi = ai1v1 + · · ·+ ainvn

für i = 1, . . . , n. Daraus folgt nach Satz 15.1 (1), dass

detAB = det [w1, . . . , wn] = det[a11v1 + · · ·+ a1nvn, w2, . . . , wn]

=
n

∑

j1=1

a1j1 det[vj1 , w2, . . . , wn]

=

n
∑

j1=1

a1j1 det[vj1 , a21v1 + · · ·+ a2nvn, w3, . . . , wn]

n
∑

j1=1

n
∑

j2=1

a1j1a2j2 det[vj1, vj2, w3, . . . , wn]

...

=
n

∑

j1=1

· · ·
n

∑

jn=1

a1j1 · · ·anjn det[vj1 , . . . , vjn] .

Ferner ist nach Satz 15.1 (2) det[vj1, . . . , vjn] = 0, falls die Indizes j1, . . . , jn nicht
alle verschieden sind. Aber die Indizes j1, . . . , jn sind alle verschieden genau dann,
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wenn es eine Permutation σ ∈ Sn gibt, so dass jk = σ(k) für k = 1, . . . , n. Daraus
ergibt sich nach Satz 15.2, dass

n
∑

j1=1

· · ·
n

∑

jn=1

a1j1 · · ·anjn det[vj1, . . . , vjn]

=
∑

σ∈Sn

a1σ(1) · · ·anσ(n) det[vσ(1), . . . , vσ(n)]

=
∑

σ∈Sn

a1σ(1) · · ·anσ(n) sign(σ) det[v1, . . . , vn]

=
∑

σ∈Sn

a1σ(1) · · ·anσ(n) sign(σ) detB

=
∑

σ∈Sn

sign(σ)a1 σ(1) · · ·anσ(n) detB = (detA)(detB) ,

und damit ist detAB = (detA)(detB).

Für A = (aij) ∈ M(n× n,R) sei At ∈ M(n×n,R) die durch At = (atij) definierte
Matrix, wobei atij = aji für alle 1 ≤ i, j ≤ n; At heißt die zu A transponierte
Matrix.

Satz 15.4 Für jede Matrix A ∈ M(n× n,R) ist detAt = detA.

Beweis Sei A = (aij). Für jedes σ ∈ Sn gilt

aσ(1) 1 · · ·aσ(n)n = aσ(σ−1(1)) σ−1(1) · · ·aσ(σ−1(n)) σ−1(n) = a1σ−1(1) · · ·anσ−1(n)

und sign(σ−1) = sign(σ) (da sign(σ−1) sign(σ) = sign(σ−1σ) = sign(e) = 1).
Ferner gibt es zu jedem σ ∈ Sn eine eindeutige Permutation τ ∈ Sn, so dass
σ = τ−1. Daraus ergibt sich, dass

detA =
∑

σ∈Sn

sign(σ)a1σ(1) · · ·anσ(n) =
∑

σ∈Sn

sign(σ−1)a1σ−1(1) · · ·anσ−1(n)

=
∑

σ∈Sn

sign(σ)aσ(1) 1 · · ·aσ(n)n =
∑

σ∈Sn

sign(σ)at1σ(1) · · ·atn σ(n) = detAt .

Seien w1, . . . , wn Elemente aus Rn; dann bezeichnet [w1, . . . , wn]
′ die Matrix, die

w1, . . . , wn als Spalten hat.

Satz 15.5 Seien w1, . . . , wn ∈ Rn und 1 ≤ k ≤ n.

(1) Für jedes a ∈ R ist

det[w1, . . . , wk−1, awk, wk+1, . . . , wn]
′ = a det[w1, . . . , wn]

′ .
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(2) Sei ŵk ∈ Rn; dann ist

det[w1, . . . , wk−1, wk + ŵk, wk+1, . . . , wn]
′

= det[w1, . . . , wk−1, wk, wk+1, . . . , wn]
′ + det[w1, . . . , wk−1, ŵk, wk+1, . . . , wn]

′ .

(3) Ist wk = wℓ für ein ℓ mit k 6= ℓ, so ist det[w1, . . . , wn]
′ = 0.

(4) Für alle π ∈ Sn gilt

det[wπ(1), . . . , wπ(n)]
′ = sign(π) det[w1, . . . , wn]

′ .

Beweis Da [w1, . . . , wn]
′ die zu [w1, . . . , wn] transponierte Matrix ist, folgt dies

unmittelbar aus Satz 15.1, Satz 15.2 und Satz 15.4.

Satz 15.6 Seien m, ℓ ≥ 1 mit m+ ℓ = n und sei A ∈ M(n× n,R) eine Matrix
mit der Gestalt

(

A1 B
0 A2

)

,

wobei A1 ∈ M(m×m,R), A2 ∈ M(ℓ× ℓ, R) und B ∈ M(m× ℓ, R). Dann gilt

detA = (detA1)(detA2) .

Beweis Sei A = (aij); also ist aij = 0 für alle m < i ≤ n, 1 ≤ j ≤ m. Ferner
sei auch A1 = (a1

ij), A2 = (a2
ij); es gilt a1

ij = aij für alle 1 ≤ i, j ≤ m und
a2
ij = a(m+i) (m+j) für alle 1 ≤ i, j ≤ ℓ.

Sei σ ∈ Sn mit a1σ(1)a2σ(2) · · ·anσ(n) 6= 0; dann ist σ(i) > m für alle i > m und
damit auch σ(i) ≤ m für alle i ≤ m, da σ eine Bijektion ist. Folglich ist σ ∈ Pm,n
wobei

Pm,n = {σ ∈ Sn : σ({1, . . . , m}) ⊂ {1, . . . , m}
und σ({m+ 1, . . . , n}) ⊂ {m+ 1, . . . , n}} .

Sei ψ : Sm × Sℓ → Sm die Abbildung mit

ψ(τ, ̺)(k) =

{

τ(k) falls k ∈ {1, . . . , m} ,
̺(k −m) +m falls k ∈ {m+ 1, . . . , n} .

Dann ist ψ injektiv mit ψ(Sm × Sℓ) = Pm,n. Ferner gilt

sign(ψ(τ, ̺)) = sign(τ) sign(̺)
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für alle τ ∈ Sm, ̺ ∈ Sℓ. Daraus folgt, dass

detA =
∑

σ∈Sn

sign(σ)a1σ(1)a2σ(2) · · ·anσ(n)

=
∑

σ∈Pm,n

sign(σ)a1σ(1)a2σ(2) · · ·anσ(n)

=
∑

(τ,̺)∈Sm×Sℓ

sign(ψ(τ, ̺))a1ψ(τ,̺)(1)a2ψ(τ,̺)(2) · · ·anψ(τ,̺)(n)

=
∑

τ∈Sm

∑

̺∈Sℓ

sign(τ) sign(̺)a1
1 τ(1) · · ·a1

mτ(m)a
2
1 ̺(1) · · ·a2

ℓ ̺(ℓ)

=
∑

τ∈Sm

sign(τ) sign(̺)a1
1 τ(1) · · ·a1

mτ(m)

∑

̺∈Sℓ

a2
1 ̺(1) · · ·a2

ℓ ̺(ℓ)

= (detA1)(detA2) .

Sei R′ ein weiterer kommutativer Ring und ϕ : R′ → R ein Homomorphismus.
Dann kann eine Abbildung ϕ̂ : M(n × n,R′) → M(n × n,R) definiert werden
durch ϕ̂(A) = (ϕ(aij)), wobei A = (aij).

Lemma 15.2 Die Abbildung ϕ̂ ist ein Homomorphismus und

det ϕ̂(A) = ϕ(detA)

für alle A ∈ M(n× n,R′).

Beweis Es ist klar, dass ϕ̂(A + B) = ϕ̂(A) + ϕ̂(B) für alle A, B ∈ M(n × n,R)
und dass ϕ̂(En) = En. Seien A, B ∈ M(n× n,R) mit A = (aij), B = (bij); setze
AB = (cij). Dann gilt

ϕ(cik) = ϕ
(

n
∑

j=1

aijbjk

)

=
n

∑

j=1

ϕ(aij)ϕ(bjk)

und daraus folgt, dass ϕ̂(C) = ϕ̂(A)ϕ̂(B). Dies zeigt, dass ϕ̂ ein Homomorphismus
ist. Sei nun A = (aij) ∈ M(n× n,R′). Dann gilt

det ϕ̂(A) =
∑

σ∈Sn

sign(σ)ϕ(a1σ(1)) · · ·ϕ(anσ(n))

=
∑

σ∈Sn

sign(σ)ϕ(a1σ(1) · · ·anσ(n)) =
∑

σ∈Sn

ϕ(sign(σ)a1σ(1) · · · anσ(n))

= ϕ
(

∑

σ∈Sn

sign(σ)a1 σ(1) · · ·anσ(n)

)

= ϕ(detA) .
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Satz 15.7 Sei P = (pij) ∈ M(n × n,R[x]) eine Matrix von Polynomen und sei
a ∈ R. Für jedes 1 ≤ i, j ≤ n sei aij = pij(a) der Wert des Polynoms pij an
der Stelle a. Dann ist der Wert des Polynoms detP an der Stelle a gleich der
Determinanten der Matrix A = (aij), d.h., es gilt (detP )(a) = detA.

Beweis Dies folgt unmittelbar aus Lemma 15.2 mit R′ = R[x] und mit ϕ dem
Einsetzhomomorphismus Φa : R[x]→ R.

Satz 15.8 Sei R ein kommutativer Ring mit 1. Dann gilt

(detA)(detA−1) = 1

für jede invertierbare Matrix A ∈ M(n× n,R). Insbesondere ist dann detA 6= 0.

Beweis Es gilt AA−1 = En und damit ist nach Lemma 15.1 und Satz 15.3

(detA)(detA−1) = detEn = 1 · · ·1 = 1 .

Daraus folgt nach Lemma 14.2, dass detA 6= 0, da 0 6= 1.

Ist R ein kommutativer Ring mit 1, dann heißen A, B ∈ M(n × n,R) ähnlich,
wenn es eine invertierbare Matrix P ∈ M(n× n,R) gibt, so dass B = P−1AP .

Satz 15.9 Ähnliche Matrizen haben die gleiche Determinante: Sind die Matrizen
A, B ∈ M(n× n,R) ähnlich, so ist detB = detA.

Beweis Es gibt eine invertierbare Matrix P ∈ M(n×n,R), so dass B = P−1AP ,
und daraus folgt nach Satz 15.3, dass

detB = det(P−1AP ) = (detP−1)(detA) (detP ) = (detP−1)(detP )(detA)

= (det(P−1 detP ))(detA) = (detEn)(detA) = detA .

Im Folgenden sie K ein Körper.

Satz 15.10 Eine Matrix A ∈ M(n × n,K) ist invertierbar genau dann, wenn
detA 6= 0.

Beweis Nach Satz 15.8 braucht man hier nur zu zeigen, dass detA = 0, wenn A
nicht invertierbar ist. Außerdem kann man annehmen, dass n ≥ 2, (da der Fall
n = 1 trivial richtig ist). Sei also A nicht invertierbar und seien v1, . . . , vn die
Zeilen von A. Nach Satz 6.3 sind v1, . . . , vn linear abhängig und folglich gibt es
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nach Satz 3.4 (2) ein k mit 1 ≤ k ≤ n, so dass vk ∈ L(v1, . . . , vk−1, vk+1, . . . , vn),
d.h., es gibt λ1, . . . , λk−1, λk+1, . . . , λn aus K, so dass

vk = λ1v1 + · · ·+ λk−1vk−1 + λk+1vk+1 + · · ·+ λnvn .

Nach Satz 15.1 ist dann

detA = det[v1, . . . , vn] =
∑

j 6=k

λj det[v1, . . . , vk−1, vj, vk+1, . . . , vn] = 0 .

Sei A ∈ M(n × n,K) eine invertierbare Matrix. Nach Satz 6.3 ist das zu (A, b)
gehörige lineare Gleichungssystem eindeutig lösbar für jedes b ∈ Kn. Das nächste
Ergebnis liefert eine Formel für diese eindeutige Lösung.

Satz 15.11 (Cramersche Regel) Sei b = (b1, . . . , bn) ∈ Kn und für jedes j sei
Abj ∈ M(n×n,K) die Matrix, die man erhält, wenn die j-te Spalte von A durch b
ersetzt wird. Sei (λ1, . . . , λn) ∈ Kn die eindeutige Lösung des zu (A, b) gehörigen
linearen Gleichungssystems. Dann ist für j = 1, . . . , n

λj = (detA)−1(detAbj)

(und nach Satz 15.10 ist hier detA 6= 0).

Beweis Seien w1, . . . , wn die Spalten von A; also ist λ1w1 + · · ·+ λnwn = b und
daraus ergibt sich nach Satz 15.5, dass

detAbj = det[w1, . . . , wj−1, b, wj+1, . . . , wn]
′

= det[w1, . . . , wj−1, λ1w1 + · · ·+ λnwn, wj+1, . . . , wn]
′

=
n

∑

i=1

λi det[w1, . . . , wj−1, wi, wj+1, . . . , wn]
′

= λj det[w1, . . . , wj−1, wj, wj+1, . . . , wn]
′ = λj detA ,

d.h., λj = (detA)−1(detAbj).

Seien a, b, c, d, u, v,∈ K mit ad 6= bc. Nach Satz 15.11 ist die eindeutige Lösung
(x′, y′) des linearen Gleichungssystems

ax+ by = u

cx+ dy = v

gegeben durch

x′ =

(

det

(

a b
c d

))−1

det

(

u b
v d

)

= (ad− cb)−1(ud− vb) ,
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y′ =

(

det

(

a b
c d

))−1

det

(

a u
c v

)

= (ad− cb)−1(av − cu) .

Im Allgemeinen ist die Cramersche Regel eine sehr unpraktische Methode zur
Berechnung der Lösung linearer Gleichungssysteme. Viel weniger aufwendig ist
der Gaußsche Algorithmus.

Nun werden einige Hilfssätze zur Berechnung der Deteminanten betrachtet. Im
Folgenden sei R wieder ein kommutativer Ring.

Sei A ∈ M(n× n,R) und 1 ≤ i, j ≤ n; mit Aij wird die aus A durch Weglassen
der i-ten Zeile und der j-ten Spalte entstehende (n− 1)× (n− 1) Matrix.

Satz 15.12 Sei A = (aij) ∈ M(n× n,R). Für jedes k = 1, . . . , n gilt dann

detA =

n
∑

i=1

(−1)i+kaik detAik .

Beweis Sei k fest (mit 1 ≤ k ≤ n) und für i = 1, . . . , n sei

Sin = {σ ∈ Sn : σ(i) = k} .

Die Teilmengen S1
n, . . . , S

n
n bilden also eine Partition der Menge Sn; damit ist

detA =
∑

σ∈Sn

sign(σ)a1σ(1) · · ·anσ(n) =
n

∑

i=1

∑

σ∈Si
n

sign(σ)a1σ(1) · · ·anσ(n)

=
n

∑

i=1

aik
∑

σ∈Si
n

sign(σ)a1σ(1) · · ·ai−1σ(i−1)ai+1σ(i+1) · · ·anσ(n) .

Für i = 1, . . . , n sei Ti : Sin → Sn−1 die Abbildung, die definiert ist durch

Ti(σ)(ℓ) =















σ(ℓ) falls ℓ < i und σ(ℓ) < k ,
σ(ℓ)− 1 falls ℓ < i und σ(ℓ) > k ,
σ(ℓ+ 1) falls ℓ ≥ i und σ(ℓ) < k ,

σ(ℓ+ 1)− 1 falls ℓ ≥ i und σ(ℓ) > k .

Dann ist Ti eine Bijektion und für jedes σ ∈ Sin ist

a1 σ(1) · · ·ai−1σ(i−1)ai+1σ(i+1) · · ·anσ(n) = b1 τ(1) · · · bn−1 τ(n−1) ,

wobei τ = Ti(σ) und Aik = (bℓj)1≤ℓ≤n−1, 1≤j≤n−1. Folglich ist
∑

σ∈Si
n

sign(σ)a1 σ(1) · · ·ai−1σ(i−1)ai+1σ(i+1) · · ·anσ(n)

= (−1)i+k
∑

τ∈Sn−1

sign(τ)b1 τ(1) · · · bn−1 τ(n−1) = (−1)i+k detAik ,
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da sign(Ti(σ)) = (−1)i+k sign(σ) (warum?). Daraus ergibt sich,

detA =
n

∑

i=1

aik
∑

σ∈Si
n

sign(σ)a1σ(1) · · ·ai−1σ(i−1)ai+1σ(i+1) · · ·anσ(n)

=

n
∑

i=1

(−1)i+kaik detAik .

Die Berechnungsformel in Satz 15.12 heißt Entwicklung der Determinante nach
der k-ten Spalte. Es gibt natürlich auch eine entsprechende Berechnungsformel
für die Entwicklung der Determinante nach der k-ten Zeile:

Satz 15.13 Sei A = (aij) ∈ M(n× n,R). Für jedes k = 1, . . . , n gilt dann

detA =
n

∑

j=1

(−1)k+jakj detAkj .

Beweis Nach Satz 15.12 und Satz 15.4 ist

detA = detAt =
n

∑

i=1

(−1)i+katik det(At)ik

=

n
∑

i=1

(−1)i+kaki det(Aki)
t =

n
∑

j=1

(−1)k+jakj detAkj .

Lemma 15.3 Sei A = (aij) ∈ M(n × n,R) und sei Ă = (ăij) das Element von
M(n× n,R), das definiert ist durch

ăij = (−1)i+j detAji

für alle 1 ≤ i, j ≤ n. Dann gilt AĂ = ĂA = (detA)En.

Beweis Ist B ∈ M(n×n,R) und 1 ≤ i, k ≤ n, so wird mit Bk←i die n×n Matrix
bezeichnet, die man erhält, wenn die k-te Zeile von B durch die i-te Zeile von B
ersetzt wird. Also ist Bk←k = B und detBk←i = 0, falls k 6= i, da dann Bk←i

zwei gleiche Zeilen hat. Man beachte, dass Bk←i
kj = Bkj für alle 1 ≤ i, k, j ≤ n.

Setze ĂA = (cik); für 1 ≤ i, k ≤ n ist dann Satz 15.13

cik =
n

∑

j=1

aij ăjk =
n

∑

j=1

aij(−1)j+k detAkj =
n

∑

j=1

(−1)k+jaij detAkj

=

n
∑

j=1

(−1)k+jak←ikj detAk←ikj = detAk←i =

{

detA falls i = k ,
0 falls i 6= k ,

und folglich ist ĂA = (detA)En. Das gleiche Argument (mit Spalten statt Zeilen
und Satz 15.12 statt Satz 15.13) zeigt, dass AĂ = (detA)En.
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Satz 15.14 Eine Matrix A ∈ M(n×n,R) ist genau dann invertierbar, wenn das
Element detA von R invertierbar ist. (Ein Element a ∈ R heißt invertierbar,
wenn es b ∈ R mit ab = 1 gibt. In diesem Fall ist b eindeutig und man schreibt
b = a−1.)

Beweis Ist detA invertierbar, so ist nach Lemma 15.3 die Matrix A invertierbar
mit A−1 = (detA)−1Ă. Ist umgekehrt A invertierbar, so ist AA−1 = En und
damit ist 1 = detAA−1 = (detA)(detA−1). Folglich ist detA invertierbar mit
(detA)−1 = detA−1.

Im Folgenden sei K ein Körper. Für die praktische Berechnung der Determinante
einer Matrix aus M(n×n,K) sind im Allgemeinen die in Satz 15.12 und Satz 15.13
gegebenen Berechnungsformeln zu aufwendig. Es ist meistens besser, das folgende
Ergebnis in Zusammenhang mit dem Gaußschen Algorithmus zu benutzen .

Satz 15.15 Seien A, B ∈ M(n× n,K).

(1) Erhält man B aus A durch Addition eines Vielfachen einer Zeile zu einer
anderen Zeile, so ist detB = detA.

(2) Erhält man B aus A durch Vertauschen zweier Zeilen, so ist detB = − detA.

Beweis (1) Seien v1, . . . , vn die Zeilen von A und v′1, . . . , v
′
n die Zeilen von B.

Dann gibt es λ ∈ K und 1 ≤ j, k ≤ n mit j 6= k, so dass

v′i =

{

vi falls i 6= j ,
vj + λvk falls i = j ,

und daraus folgt nach Satz 15.1, dass

detB = det[v′1, . . . , v
′
n] = det[v1, . . . , vj−1, vj + λvk, vj+1, . . . , vn]

= det[v1, . . . , vj−1, vj , vj+1, . . . , vn] + λ det[v1, . . . , vj−1, vk, vj+1, . . . , vn]

= detA+ λ0 = detA .

(2) Dies folgt unmittelbar aus Satz 15.2.

Sei A ∈ M(n × n,K); nach dem Gaußschen Algorithmus (Satz 1.5) läßt sich
A durch eine Folge von elementaren Zeilenumformungen in eine Matrix B mit
Zeilen-Stufen-Form überführen und nach Satz 15.3 ist dann detA = (−1)m detB,
wobei m die Anzahl der verwendeten Vertauschungen ist. Aber eine Matrix in
Zeilen-Stufen-Form ist insbesondere eine obere Dreiecksmatrix und daher kann
ihre Determinante direkt mit Hilfe von Lemma 15.1 berechnet werden.



16 Das charakteristische Polynom

Im Folgenden sei R ein kommutativer Ring mit 1.

Sei A = (aij) ∈ M(n × n,R); da R ⊂ R[x], kann A auch als Element von
M(n× n,R[x]) betrachtet werden. Das Element

χA = det(A− xEn)

von R[x] heißt das charakteristische Polynom von A. Es gilt also χA = detP ,
wobei P = (pij) ∈ M(n× n,R[x]) die Matrix ist mit

pij =

{

aii − x falls i = j ,
aij falls i 6= j .

Insbesondere ist für n = 2

χA = det

(

a11 − x a12

a21 a22 − x

)

= (a11 − x)(a22 − x)− a12a21 = (a11a22 − a12a21)− (a11 + a22)x+ x2

(und man merke, dass a11a22 − a12a21 = detA), und für n = 3 ist

χA = det





a11 − x a12 a13

a21 a22 − x a23

a31 a32 a33 − x





= d− (a11a22 + a22a33 + a11a33 − a23a32 − a12a21 − a13a31)x

+ (a11 + a22 + a33)x
2 − x3 ,

wobei

d = a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 − a13a22a31 + a13a21a32

und damit ist d = detA.

Satz 16.1 Für jedes A ∈ M(n×n,R) ist χA ein Polynom vom Grad n. Ist ferner
A = (aij) ∈ M(n× n,R) und

χA = a0 + a1x+ · · ·+ anx
n ,

so ist a0 = detA, an−1 = (−1)n−1(a11 + a22 + · · ·+ ann) und an = (−1)n.

Beweis Es gilt χA = detP , wobei P = (pij) ∈ M(n× n,R[x]) wie oben ist. Sei

pd = p11 · · · pnn = (a11 − x) · · · (ann − x) ;

142
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dann ist pd ein Polynom vom Grad n und

χA =
∑

σ∈Sn

sign(σ)p1σ(1) · · · pnσ(n) = pd +
∑

σ∈S′
n

sign(σ)p1σ(1) · · ·pnσ(n) ,

wobei S ′n = Sn \ {e}. Sei σ ∈ S ′n; dann gibt es mindestens ein i mit σ(i) 6= i (und
damit pi σ(i) = ai σ(i)) und folglich ist p1σ(1) · · · pnσ(n) entweder 0 oder ein Polynom
vom Grad nσ mit nσ < n. Daraus ergibt sich, dass χA ein Polynom vom Grad n
ist. Der Beweis für den Rest ist eine Übung.

Satz 16.2 Ähnliche Matrizen haben das gleiche charakteristische Polynom: Sind
A, B ∈ M(n× n,R) ähnlich, so ist χB = χA.

Beweis Es gibt eine invertierbare Matrix P ∈ M(n×n,R), so dass B = P−1AP .
Betrachte die Matrizen A, B, P, P−1 und En als Elemente von M(n × nR[x]);
dann gilt

B − xEn = P−1AP − x(P−1EnP ) = P−1AP − P−1(xEn)P = P−1(A− xEn)P ,

da P−1P = En auch in M(n×n,R[x]) gilt, und daraus folgt nach Satz 15.3, dass

χB = det(B − xEn) = det(P−1(A− xEn)P )

= (detP−1)(det(A− xEn))(detP ) = (detP−1)(detP )(det(A− xEn))
= (det(P−1P ))(det(A− xEn)) = (detEn)(det(A− xEn))
= det(A− xEn) = χA .

Im Folgenden sei K ein Körper.

Satz 16.3 Sei A ∈ M(n × n,K); dann sind die Eigenwerte von A genau die
Nullstellen des charakteristischen Polynoms χA. Mit anderen Worten ist λ ∈ K
ein Eigenwert von A genau dann, wenn χA(λ) = 0.

Beweis Nach Satz 6.3 ist λ ∈ K ein Eigenwert von A genau dann, wenn die
Matrix A−λEn ∈ M(n×n,K) nicht invertierbar ist. Folglich ist nach Satz 15.10
λ genau dann ein Eigenwert, wenn det(A− λEn) = 0. Aber nach Satz 15.7 ist

det(A− λEn) = (det(A− xEn))(λ) = χA(λ) .

Damit sind die Eigenwerte von A genau die Nullstellen von χA.

Beispiel Sei A ∈ M(2× 2,R) folgende Matrix:
(

2 4
1 −1

)
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Dann ist χA = −6 − x + x2 = (3 − x)(−2 − x) und damit sind 3 und −2 die
Eigenwerte von A.

Es gibt numerische Verfahren für die Berechnung der Nullstellen von reellen und
komplexen Polynomen. Diese Verfahren kann also zur Berechnung der Eigenwerte
reeller und komplexer Matrizen angewendet werden.

Sei A ∈ M(n×n,K); nun gibt es das folgende Verfahren, das prüft, ob die Matrix
A diagonalisierbar ist:

(1) Man bestimme die (verschiedenen) Nullstellen λ1, . . . , λm von χA. Nach
Satz 16.3 sind dann λ1, . . . , λm die Eigenwerte von A.

(2) Für jedes j = 1, . . . , m ist nach Lemma 10.4

E(A, λj) = Lös(A− λjEn, 0)

und also kann mit Hilfe von Satz 16.1 und des Gaußschen Algorithmus eine Basis
(uj1, . . . , u

j
pj

) von E(A, λj) konstruiert werden.

(3) Nach Satz 10.6 ist A diagonalisierbar genau dann, wenn p1 + · · ·+ pm = n.

(4) Nehme an, dass A diagonalisierbar ist und setze

(w1, . . . , wn) = (u1
1, . . . , u

1
p1
, u2

1, . . . , u
2
p2
, . . . , um1 , . . . , u

m
pm

) .

Sei Q ∈ M(n× n,K) die Matrix, die w1, . . . , wn als Spalten hat. Nach Satz 10.2
ist Q invertierbar und Q−1AQ = D, wobei D die Diagonalmatrix ist mit den
Einträgen λ1, . . . , λ1, . . . , λm, . . . , λm auf der Diagonalen, wobei für jedes j der
Eigenwert λj genau pj-mal vorkommt.

Ein Körper K heißt algebraisch abgeschlossen, wenn jedes Polynom f ∈ K[x] mit
f 6= 0 und Grad f ≥ 1 eine Nullstelle besitzt. Ist K algebraisch abgeschlossen, so
gilt nach Satz 16.3, dass jede Matrix A ∈ M(n× n,K) einen Eigenwert besitzt.

Satz 16.4 (Fundamentalsatz der Algebra) C ist algebraisch abgeschlossen.

Beweis Trotz seines Namens ist der Fundamentalsatz der Algebra eigentlich ein
Satz der Analysis und einen Beweis dafür wird man erst in Analysis II oder in
einer Vorlesung über Funktionentheorie kennenlernen.

Nach Satz 16.3 und Satz 16.4 besitzt jede komplexe Matrix einen Eigenwert.

Der Körper R der reellen Zahlen ist nicht algebraisch abgeschlossen. Zum Beispiel
besitzt das Polynom 1 + x2 ∈ R[x] keine Nullstelle. (Dagegen sind i und −i die
Nullstellen des komplexen Polynoms 1 + x2 ∈ C[x].) Damit besitzt

A =

(

0 1
−1 0

)
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(als reelle Matrix) keinen Eigenwert, da χA = 1 + x2.

Die Körper Fp, p eine Primzahl, sind ebenfalls nicht algebraisch abgeschlossen.

Sei nun V ein endlichdimensionaler Vektorraum über K mit dimV = n ≥ 1.

Sei f : V → V ein Endomorphismus von V . Seien α und β Basen von V und sei A
bzw. B die Matrix von f bezüglich der Basis α bzw. bezüglich der Basis β. Nach
Satz 8.8 sind die Matrizen A und B ähnlich und daraus folgt nach Satz 16.2, dass
χB = χA. Man kann also das charakteristische Polynom χf von f durch χf = χA
definieren, wobei A die Matrix von f bezüglich irgendeiner Basis von V ist.

Satz 16.5 Sei f : V → V ein Endomorphismus. Dann sind die Eigenwerte von
f genau die Nullstellen von χf . Mit anderen Worten ist λ ∈ K ein Eigenwert
von f genau dann, wenn χf (λ) = 0.

Beweis Dies folgt unmittelbar aus Satz 16.3 und Satz 10.3 (1). (Ist A die Matrix
von f bezüglich einer Basis α von V und ist λ ∈ K, so behauptet Satz 10.3 (1),
dass λ genau dann ein Eigenwert von f ist, wenn es ein Eigenwert von A ist.)

Erinnerung: Ist f : V → V ein Endomorphismus, so heißt ein Untervektorraum
U von V f -invariant, wenn f(U) ⊂ U .

Satz 16.6 Sei f : V → V ein Endomorphismus und sei U ein f -invarianter
Untervektorraum von V mit dimU ≥ 1. Dann gibt ein Polynom p ∈ K[x], so
dass χf = χf|Up. (Das Polynom χf|U ist also ein Teiler von χf .)

Beweis Dies ist trivial richtig, wenn U = V und also kann man annehmen, dass
m = dimU < n; setze ℓ = n−m. Nach dem Basisergänzungssatz gibt es eine Basis
(v1, . . . , vn) von V , so dass (v1, . . . , vm) eine Basis von U ist. Sei A ∈ M(n×n,K)
die Matrix von f bezüglich (v1, . . . , vn). Dann hat A die Gestalt

(

A′ C
0 B

)

wobei A′ ∈ M(m×m,K), B ∈ M(ℓ× ℓ,K) und C ∈ M(m× ℓ,K), und A′ ist die
Matrix von f|U bezüglich (u1, . . . , um). Nun gilt

A− xEn =

(

A′ − xEm C
0 B − xEℓ

)

und daraus ergibt sich nach Satz 15.6, dass

χf = det(A− xEn) = det(A′ − xEm) det(B − xEℓ) = χf|UχB .
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Erinnerung: Eine Matrix A ∈ M(n×n,K) heißt trigonalisierbar, wenn sie ähnlich
zu einer oberen Dreiecksmatrix ist und ein Endomorphismus f : V → V heißt
trigonalisierbar, wenn es eine f -invariante Fahne gibt. (Eine Folge V0, V1, . . . , Vn
von Untervektorräumen von V heißt eine Fahne, wenn

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V

und dimVj = j für jedes j = 0, . . . , n, und eine Fahne V0, V1, . . . , Vn heißt
f -invariant, wenn für jedes j der Untervektorraum Vj f -invariant ist.)

Ist f : V → V ein Endomorphismus von V und ist A ∈ M(n× n,K) die Matrix
von f bezüglich irgendeiner Basis von V , so ist nach Satz 11.1 f trigonalisierbar
genau dann, wenn A trigonalisierbar ist.

Sei f ∈ K[x] ein Polynom mit f 6= 0 und Grad f ≥ 1; man sagt, dass f in
Linearfaktoren zerfällt, wenn es Elemente λ1, . . . , λn, λ ∈ K gibt, so dass

f = λ(λ1 − x) · · · (λn − x) .

Dann ist λ 6= 0, n = Grad f und λ1, . . . , λn sind genau die Nullstellen von f , da

f(µ) = λ(λ1 − µ) · · · (λn − µ) = 0

genau dann, wenn µ = λj für ein j. Zerfällt f in Linearfaktoren, so sieht man
leicht, dass die Darstellung f = λ(λ1− x) · · · (λn− x) bis auf die Reihenfolge der
Faktoren eindeutig ist.

Satz 16.7 Ist K algebraisch abgeschlossen, so zerfällt jedes Polynom f ∈ K[x]
mit f 6= 0 und Grad f ≥ 1 in Linearfaktoren.

Beweis Sei f ∈ K[x] mit f 6= 0 und Grad f ≥ 1; da K algebraisch abgeschlossen
ist, besitzt f eine Nullstelle λ und nach Satz 14.4 gibt es dann ein eindeutiges
Polynom g ∈ K[x], so dass f = (λ− x)g. Da g 6= 0 und Grad g = (Grad f)− 1,
erfolgt der Beweis nun per Induktion nach n = Grad f .

Insbesondere folgt aus Satz 16.4 und Satz 16.7, dass jedes Polynom f ∈ C[x] mit
f 6= 0 und Grad f ≥ 1 in Linearfaktoren zerfällt. Dagegen zerfällt zum Beispiel
das Polynom 1 + x2 ∈ R[x] nicht in Linearfaktoren, da dieses Polynom keine
Nullstellen besitzt.

Sei A ∈ M(n×n,K); zerfällt das charakteristische Polynom χA in Linearfaktoren,
dann gibt es λ1, . . . , λn ∈ K, so dass

χf = (λ1 − x) · · · (λn − x) ,

da nach Satz 16.1 (−1)n der Leitkoeffizient von χA ist. Das Gleiche gilt auch für
χf , wenn f : V → V ein Endomorphismus ist.
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Satz 16.8 (1) Eine Matrix A ∈ M(n × n,K) ist genau dann trigonalisierbar,
wenn das charakteristische Polynom χA in Linearfaktoren zerfällt.

(2) Ein Endomorphismus f : V → V von V ist genau dann trigonalisierbar,
wenn das charakteristische Polynom χf in Linearfaktoren zerfällt.

Beweis Nehme zuerst an, dass die Matrix A ∈ M(n × n,K) trigonalisierbar ist.
Dann ist A ähnlich zu einer oberen Dreiecksmatrix B = (bij) ∈ M(n× n,K) und
nach Satz 16.2 ist χA = χB. Aber die Matrix B− xEn ∈ M(n× n,K[x]) ist auch
eine obere Dreiecksmatrix mit den Einträgen b11−x, b22−x, . . . , bnn−x auf der
Diagonalen und daraus folgt nach Lemma 15.1, dass

χA = χB = det(B − xEn) = (b11 − x) · · · (bnn − x) .

Damit zerfällt das charakteristische Polynom χA in Linearfaktoren.

Ist der Endomorphismus f : V → V trigonalisierbar, dann folgt unmittelbar aus
Satz 11.1, dass auch das charakteristische Polynom χf in Linearfaktoren zerfällt.

Nehme nun an, dass das charakteristische Polynom χf in Linearfaktoren zerfällt,
es gibt aso λ1, . . . , λn ∈ K, so dass

χf = (λ1 − x) · · · (λn − x) .

Sei U ein f -invarianter Untervektorraum von V mit dimU = m ≥ 1. Nach
Satz 16.6 gibt es ein Polynom p ∈ K[x], so dass χf = χf|Up und daraus folgt
nach Lemma 14.10, dass χf|U (λk) = 0 für mindestens ein k. Dann ist aber λk ein
Eigenwert von f|U und damit enthält U einen Eigenvektor von f . Daraus ergibt
sich nach Satz 11.2, dass f trigonalisierbar ist.

Hier ist ein anderer Beweis, der Satz 11.2 nicht benutzt: Es wird durch Induktion
nach n = dimV gezeigt, dass f trigonalisierbar ist. Die Aussage ist trivial richtig,
wenn n = 1, da in diesem Fall jeder Endomorphismus trigonalisierbar ist. (Es gibt
nur eine Fahne und sie ist stets invariant.) Sei also n > 1 und nehme an, dass
g immer dann trigonalisierbar ist, wenn 1 ≤ dimW < n und g : W → W ein
Endomorphismus von W ist, für den χg in Linearfaktoren zerfällt.

Da χf in Linearfaktoren zerfällt, gibt es λ1, . . . , λn ∈ K, so dass

χf = (λ1 − x) · · · (λn − x) .

Dann ist insbesondere χf (λ1) = 0 und daraus folgt nach Satz 16.5, dass λ1

Eigenwert von f ist. Sei v1 ein Eigenvektor von f zum Eigenwert λ1; nach dem
Basisergänzungssatz gibt es dann v2, . . . , vn ∈ V , so dass (v1, . . . , vn) eine Basis
von V ist. Sei A = (aij) ∈ M(n × n,K) die Matrix von f bezüglich der Basis
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(v1, . . . , vn). Da f(v1) = λ1v1, ist a11 = λ1 und ai1 = 0 für i > 1; A hat also
folgende Gestalt:











λ1 ∗ · · · ∗
0
... B
0











,

wobei B ∈ M((n− 1)× (n− 1), K). Folglich ist nach Satz 15.6

χA = det(A− xEn) = (λ1 − x)(det(B − xEn−1))

und nach Lemma 14.9 (2) ist dann χB = det(B− xEn−1) = (λ2− x) · · · (λn− x),
d.h., das charakteristische Polynom χB zerfällt in Linearfaktoren.

Sei nun W = L(v2, . . . , vn); da (v2, . . . , vn) eine Basis von W ist, gibt es nach
Lemma 5.11 einen eindeutigen Endomorphismus g : W → W von W , so dass

g(vj) = a2jv2 + · · ·+ anjvn

für j = 2, . . . , n, und natürlich ist B die Matrix von g bezüglich (v2, . . . , vn).
Insbesondere zerfällt das charakteristische Polynom χg = χB in Linearfaktoren
und damit ist nach der Induktionsannahme g trigonalisierbar. Es gibt also eine
g-invariante Fahne

{0} = W0 ⊂W1 ⊂ · · · ⊂ Wn−1 = W

und nach wiederholter Anwendung des Basisergänzungssatzes gibt es eine Basis
(w1, . . . , wn−1) von W , so dass für jedes j = 1, . . . , n− 1 (w1, . . . , wj) eine Basis
von Wj ist. Dann ist nach Lemma 3.12 und Satz 4.6 (2) (v1, w1, . . . , wn−1) eine
Basis von V , da v1 /∈ L(v2, . . . , vn) = L(w1, . . . , wn−1). Setze V1 = L(v1) und
für j = 2, . . . , n sei Vj = L(v1, w1, . . . , wj−1); also ist V0 = {0}, V1, . . . , Vn eine
Fahne. Für jedes j = 2, . . . , n ist nun

f(vj) = a1jv1 + · · ·+ anjvn = a1jv1 + g(vj)

und damit ist (f − g)(vj) ∈ L(v1) für j = 2, . . . , n. Daraus ergibt sich nach
Satz 3.2, dass (f − g)(w) ∈ L(v1) für alle w ∈ L(v2, . . . , vn) = W . Folglich ist

f(wk) ∈ L(v1, g(wk)) ⊂ L(v1, w1, . . . , wk)

für k = 1, . . . , n− 1, und daher ist f(Vj) ⊂ Vj für j = 1, . . . , n, d.h., die Fahne
V0, V1, . . . , Vn ist f -invariant. Dies zeigt, dass f trigonalisierbar ist.

Nehme schließlich an, dass das charakteristische Polynom χA in Linearfaktoren
zerfällt. Da A die Matrix von ϕA bezüglich der kanonischen Basis von Kn ist, ist
χϕA

= χA. Damit zerfällt χϕA
in Linearfaktoren und daraus ergibt sich, dass ϕA

trigonalisierbar ist. Folglich gilt nach Satz 11.1, dass A trigonalisierbar ist.
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Satz 16.8 zeigt, dass jede komplexe Matrix trigonalisierbar ist. Genauso ist jeder
Endomorphismus eines endlichdimensionalen C-Vektorraumes trigonalisierbar.

Im Beweis für Satz 16.8 wird die entsprechende Aussage für Endomorphismen
benutzt, um zu zeigen, dass A trigonalisierbar ist, wenn χA in Linearfaktoren
zerfällt. Es ist aber möglich, dies direkt zu beweisen: Sei An ∈ M(n× n,K) eine
Matrix, für die das charakteristische Polynom χAn

in Linearfaktoren zerfällt. Sei
λ1 ein Eigenwert von An und wähle eine Basis (v1, . . . , vn) von Kn, so dass v1 ein
Eigenvektor von An zum Eigenwert λ1 ist. Sei Pn ∈ M(n× n,K) die Matrix mit
Spalten v1, . . . , vn (also ist Pn invertierbar). Setze A′n = P−1

n AnPn; die Matrix
A′n = (a′ij) hat die Gestalt:

A′n =











λ1 ∗ · · · ∗
0
... An−1

0











wobei An−1 ∈ M((n− 1)× (n− 1), K). Dann gilt nach Satz 15.6, dass

χAn
= det(An − xEn) = (λ1 − x) det(An−1 − xEn−1) = (λ1 − x)χAn−1

und daraus ergibt sich, dass χAn−1
in Linearfaktoren zerfällt. Nehme an, dass es

eine invertierbare Matrix Rn−1 = (rij) ∈ M((n − 1) × (n − 1), K) gibt, so dass
Bn−1 = R−1

n−1An−1Rn−1 eine obere Dreiecksmatrix ist. Setze

Qn =











1 0 · · · 0
0
... Rn−1

0











und Bn =











λ1 α1 · · · αn−1

0
... Bn−1

0











,

wobei für jedes j = 1, . . . , n− 1

αj = a′12r1j + a′13r2j + · · ·+ a′1nrn−1 j .

Dann ist Qn invertierbar und Bn ist eine obere Dreiecksmatrix, und man prüft
leicht nach, dass A′n = QnBnQ

−1
n . Damit ist An = RnBnR

−1
n , wobei Rn = PnQn.

Dies zeigt, dass die n×n Matrix An trigonalisierbar ist, wenn die (n−1)×(n−1)
Matrix An−1 trigonalisierbar ist. Durch Induktion nach n kann man auf diese
Weise beweisen, dass An trigonalisierbar ist.
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In Folgenden sei R ein kommutativer Ring mit 1.

Lemma 17.1 Zu jeder Matrix B ∈ M(n× n,R) gibt es einen eindeutigen Ring-
Homomorphismus ΦB : R[x]→ M(n× n,R) mit ΦB(1) = En und ΦB(x) = B.

Beweis Definiere ΦB : R[x]→ M(n× n,R) durch ΦB(0) = 0 und

ΦB(a0 + a1x+ · · ·+ amx
m) = a0En + a1B + · · ·+ amB

m ,

falls m ≥ 0 und am 6= 0. Dann gilt ΦB(1) = En und ΦB(B) = B und man sieht
leicht, dass ΦB ein Homomorphismus ist, da Ap+q = ApAq und xp+q = xpxq für
alle p, q ≥ 0. Ist ϕ : R[x] → M(n × n,R) ein Homomorphismus mit ϕ(1) = En
und ϕ(B) = B, dann gilt ϕ(xm) = Bm für alle m ≥ 1 und damit ist

ϕ(a0 + · · ·+ amx
m) = a0En + · · ·+ amB

m = ΦB(a0 + · · ·+ amx
m)

für alle a0, . . . , am ∈ R, m ≥ 0, und folglich ist ϕ = ΦB.

Satz 17.1 (Cayley-Hamilton) Für jedes A ∈ M(n× n,R) gilt ΦA(χA) = 0.

Beweis Sei Aχ = (A− xEn)t = At − xEn ∈ M(n× n,R[x]). Dann ist

χA = det(A− xEn) = det(A− xEn)t = detAχ ,

und daraus ergibt sich nach Lemma 15.3, dass

ĂχAχ = (detAχ)En = χAEn

in M(n× n,R[x]), d.h., die Matrix ĂχAχ ist das χA-fache der Einheitsmatrix in
M(n× n,R[x]).

Nach Lemma 15.2 induziert nun der Homomorphismus ΦA : R[x]→ M(n× n,R)
einen Homomorphismus Φ̂A : M(n× n,R[x])→ M(n× n,M(n× n,R)). Schreibe
χA(A) = ΦA(χA). Es gilt dann

Φ̂A(χAEn) = Φ̂A(ĂχAχ) = Φ̂A(Ăχ)Φ̂A(Aχ)

in M(n × n,M(n × n,R)) und Φ̂A(χAEn) = χA(A)En, d.h., Φ̂A(χAEn) ist das
χA(A)-fache der Einheitsmatrix in M(n× n,M(n× n,R)).

Definiere ⊗ : M(n× n,M(n× n,R))× (Rn)n → (Rn)n durch

B ⊗







v1
...
vn






=







w1
...
wn






,

150
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wobei wi = bi1v1 + · · ·+ binvn mit B = (bij) und wobei die Elemente von Rn und
(Rn)n als Spaltenvektoren betrachtet werden. Man prüft leicht nach, dass

(CB)⊗







v1
...
vn






= C ⊗

(

B ⊗







v1
...
vn







)

für alle B, C ∈ M(n × n,M(n × n,R)), v1, . . . , vn ∈ Rn. Seien e1, . . . , en ∈ Rn

die üblichen Einheitsvektoren. Für B = Φ̂A(At−xEn) gilt bij = ajiEn− δijA und
folglich ist

Φ̂A(At − xEn)⊗







e1
...
en






=







0
...
0






,

da für jedes i = 1, . . . , n

a1iEne1 + · · ·+ aniEnen = a1ie1 + · · ·+ anien

= si = Aei = 0 + · · ·+ Aei + · · ·+ 0

mit s1, . . . , sn ∈ Rn die Spalten von A. Für B = Φ̂A(χAEn) gilt andererseits
bij = δijχA(A) und folglich ist

Φ̂A(χAEn)⊗







e1
...
en






=







χA(A)e1
...

χA(A)en






.

Daraus ergibt sich, dass







χA(A)e1
...

χA(A)en






= Φ̂A(χAEn)⊗







e1
...
en






= Φ̂A(ĂχAχ)⊗







e1
...
en







=
(

Φ̂A(Ăχ)Φ̂A(At − xEn)
)

⊗







e1
...
en







= Φ̂A(Ăχ)⊗
(

Φ̂A(At − xEn)⊗







e1
...
en







)

= Φ̂A(Ăχ)⊗







0
...
0






=







0
...
0






;
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d.h., χA(A)ek = 0 für k = 1, . . . , n. Aber χA(A)ek ist die k-te Spalte von χA(A),
und also ist χA(A) = 0.

Im Folgenden sei nun K ein Körper. Für jede Matrix A ∈ M(n × n,K) sei
ΦA : K[x] → M(n × n,K) immer noch der eindeutige Ring-Homomorphismus
mit ΦA(1) = En und ΦA(x) = A.

Satz 17.2 Sei A ∈ M(n×n,K); dann gibt es ein eindeutiges normiertes Polynom
mA ∈ K[x] mit der folgenden Eigenschaft: Für p ∈ K[x] gilt ΦA(p) = 0 genau
dann, wenn mA ein Teiler von p ist. (mA heißt das minimale Polynom von A).

Beweis Nach Satz 17.1 ist ΦA(χA) = 0, d.h., χA ∈ Kern ΦA. Aber χA 6= 0 und
also ist Kern ΦA 6= {0}. Nach Satz 14.3 gibt es also ein eindeutiges normiertes
Polynom mA ∈ K[x], so dass Kern ΦA = (mA). Für ein Polynom p ∈ K[x] gilt
daher ΦA(p) = 0 genau dann, wenn mA ein Teiler von p ist.

Nach dem Satz von Cayley-Hamilton teilt mA das charakteristische Polynom χA.

Lemma 17.2 Seien A, B ∈ M(n× n,K) ähnlich. Dann gilt mA = mB.

Beweis Es gibt eine invertierbare Matrix P ∈ M(n×n,K), so dass B = P−1AP .
Dann ist Bm = P−1AmP für jedes m ≥ 0 und damit ΦB(p) = P−1ΦA(p)P für
jedes p ∈ K[x]. Insbesondere gilt

ΦB(mA) = P−1ΦA(mA)P = P−10P = 0

und folglich ist mB ein Teiler von mA. Genauso ist mA ein Teiler von mB und
daher ist mA = mB, da die Polynome mA und mB beide normiert sind.

Satz 17.3 Sei A ∈ M(n × n,K). Dann sind die Eigenwerte von A genau die
Nullstellen von mA und damit haben mA und χA die gleichen Nullstellen.

Beweis Da mA das charakteristische Polynom χA teilt, ist jede Nullstelle von mA

auch eine Nullstelle von χA. Sei umgekehrt λ eine Nullstelle von χA, d.h., λ ist
ein Eigenwert von A. Sei v ∈ Kn ein Eigenvektor von A zum Eigenwert λ und
sei mA = a0 + a1x + · · · + amx

m (und also ist am = 1). Da Av = λv, gilt auch
Akv = λkv für jedes k ≥ 0 und damit ist

(a0 + a1λ+ · · ·+ amλ
m)v

= a0v + a1λv + · · ·+ amλ
mv = a0Env + a1Av + · · ·+ amA

mv

= (a0En + a1A+ · · ·+ amA
m)v = ΦA(mA)v = 0v = 0 .

Folglich ist a0 + a1λ + · · · + amλ
m = 0, da v 6= 0, d.h., λ ist eine Nullstelle von

mA.



18 Euklidische und unitäre Vektorräume

Sei V ein reeller Vektorraum (d.h. ein Vektorraum über dem Körper R). Eine
Abbildung s : V × V → R heißt Bilinearform, wenn

s(λ1u1 + λ2u2, v) = λ1s(u1, v) + λ2s(u2, v) und

s(v, λ1u1 + λ2u2) = λ1s(v, u1) + λ2s(v, u2)

für alle u1, u2, v ∈ V und alle λ1, λ2 ∈ R. Eine Bilinearform s : V × V → R

heißt symmetrisch, wenn s(u, v) = s(v, u) für alle u, v ∈ V . Eine symmetrische
Bilinearform s : V × V → R heißt positiv definit, wenn s(v, v) > 0 für alle
v ∈ V mit v 6= 0. Ist s positiv definit, so ist insbesondere s(v, v) ≥ 0 für alle
v ∈ V , da s(0, 0) = 0 für jede Bilinearform s. Eine positiv definite symmetrische
Bilinearform nennt man Skalarprodukt.

Ein Paar (V, 〈·, ·〉) bestehend aus einem reellen Vektorraum V und einem Skalar-
produkt 〈·, ·〉 : V × V → R heißt euklidischer Vektorraum.

Ist (V, 〈·, ·〉) ein euklidischer Vektorraum, so wird die durch

‖v‖ =
√

〈v, v〉

definierte Abbildung ‖ · ‖ : V → R+ die Norm genannt.

Beispiele: (1) Definiere · : Rn × Rn → R durch

(x1, . . . , xn) · (y1, . . . , yn) =
n

∑

k=1

xkyk .

Dann ist (Rn, ·) ein euklidischer Vektorraum, der Rn mit dem üblichen Skalar-
produkt genannt wird. Es gilt

‖x‖ =

√

√

√

√

n
∑

j=1

x2
j

für alle x = (x1, . . . , xn) ∈ Rn.

(2) Seien a, b ∈ R mit a < b und sei C([a, b],R) der reelle Vektorraum aller
stetigen Abbildungen von [a, b] nach R. Sei 〈·, ·〉 : C([a, b],R) × C([a, b],R) → R

die Abbildung, die definiert ist durch

〈f, g〉 =

∫ b

a

f(t)g(t) dt .

Dann ist (C([a, b],R), 〈·, ·〉) ein euklidischer Vektorraum. (Der Beweis dafür ist
eine Übung.)

153
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(3) Sei ℓ2 der reelle Vektorraum aller quadratisch summierbaren Folgen reeller
Zahlen. (Eine Folge {xn}n≥0 heißt quadratisch summierbar, wenn es ein N ≥ 0
gibt, so dass

∑m

n=0 x
2
n ≤ N für alle m ≥ 0, d.h., wenn die unendliche Reihe

∑

n≥0 x
2
n konvergiert.) Seien {xn}n≥0, {yn}n≥0 ∈ ℓ2; da |xnyn| ≤ 1

2
(x2

n + y2
n) für

jedes n ≥ 0, konvergiert die unendliche Reihe
∑

n≥0 xnyn. Folglich kann eine
Abbildung 〈·, ·〉 : ℓ2 × ℓ2 → R durch

〈{xn}n≥0, {yn}n≥0〉 =
∑

n≥0

xnyn

definiert werden und dann ist (ℓ2, 〈·, ·〉) ein euklidischer Vektorraum. (Der Beweis
dafür ist eine Übung.)

In den folgenden zwei Sätzen sowie in Lemma 18.1 sei (V, 〈·, ·〉) ein euklidischer
Vektorraum.

Satz 18.1 (Cauchy-Schwarzsche Ungleichung) Für alle u, v ∈ V gilt

〈u, v〉| ≤
√

〈u, u〉〈v, v〉 .

Beweis Für jedes λ ∈ R gilt

0 ≤ 〈u− λv, u− λv〉 = 〈u, u− λv〉 − λ〈v, u− λv〉
= 〈u, u〉 − λ〈u, v〉 − λ〈v, u〉+ λ2〈v, v〉 = 〈u, u〉 − 2λ〈u, v〉+ λ2〈v, v〉 ,

d.h. 〈v, v〉λ2 − 2〈u, v〉λ+ 〈u, u〉 ≥ 0 für alle λ ∈ R. Daraus ergibt sich, dass

〈u, v〉2 ≤ 〈u, u〉〈v, v〉

und damit |〈u, v〉| ≤
√

〈u, u〉〈v, v〉. (Sind b, c ∈ R, a ≥ 0 und aλ2 − 2bλ + c ≥ 0
für alle λ ∈ R, so ist b2 ≤ ac.)

Satz 18.2 Die Norm ‖ · ‖ : V → R+ hat folgende Eigenschaften:

(1) ‖v‖ = 0 genau dann, wenn v = 0.

(2) ‖λv‖ = |λ|‖v‖ für alle v ∈ V , λ ∈ R.

(3) Dreiecksungleichung ‖u+ v‖ ≤ ‖u‖+ ‖v‖ für alle u, v ∈ V .

Beweis (1) und (2) sind klar. (3): Nach Satz 18.1 ist

‖u+ v‖2 = 〈u+ v, u+ v〉 = 〈u, u〉+ 2〈u, v〉+ 〈v, v〉
= ‖u‖2 + 2〈u, v〉+ ‖v‖2 ≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 = (‖u‖+ ‖v‖)2

und daraus folgt, dass ‖u+ v‖ ≤ ‖u‖+ ‖v‖.
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Lemma 18.1 (Polarisierungsidentitäten) Für alle u, v ∈ V gilt

〈u, v〉 = 1
2
(‖u‖2 + ‖v‖2 − ‖u− v‖2) = 1

4
(‖u+ v‖2 − ‖u− v‖2) .

Beweis Übung.

Der Begriff des Skalarproduktes wird nun auch für komplexe Vektorräume ein-
geführt. Ein komplexer Vektorraum zusammen mit einem Skalarprodukt heißt
unitärer Vektorraum.

Sei V ein komplexer Vektorraum (d.h. ein Vektorraum über dem Körper C). Eine
Abbildung s : V × V → C heißt Sesquilinearform, wenn

s(λ1u1 + λ2u2, v) = λ1s(u1, v) + λ2s(u2, v) und

s(v, λ1u1 + λ2u2) = λ1s(v, u1) + λ2s(v, u2)

für alle u1, u2, v ∈ V und alle λ1, λ2 ∈ C. Eine Sesquilinearform s : V × V → C

heißt Hermitesche Form, wenn s(u, v) = s(v, u) für alle u, v ∈ V . Ist s eine
Hermitesche Form, dann gilt s(v, v) = s(v, v) für alle v ∈ V , d.h. s(v, v) ∈ R für
alle v ∈ V . Eine Hermitesche Form s : V × V → C heißt positiv definit, wenn
s(v, v) > 0 für alle v ∈ V mit v 6= 0. Ist s positiv definit, so ist insbesondere
s(v, v) ≥ 0 für alle v ∈ V , da s(0, 0) = 0 für jede Sesquilinearform s. Eine positiv
definite Hermitesche Form nennt man Skalarprodukt.

Ein Paar (V, 〈·, ·〉) bestehend aus einem komplexen Vektorraum V und einem
Skalarprodukt 〈·, ·〉 : V × V → C heißt unitärer Vektorraum.

Ist (V, 〈·, ·〉) ein unitärer Vektorraum, so wird die durch

‖v‖ =
√

〈v, v〉

definierte Abbildung ‖ · ‖ : V → R+ die Norm genannt.

Beispiele: (1) Definiere · : Cn × Cn → C durch

(z1, . . . , zn) · (w1, . . . , wn) =
n

∑

j=1

zjwj .

Dann ist (Cn, ·) ein unitärer Vektorraum , der Cn mit dem üblichen Skalarprodukt

genannt wird. Es gilt ‖z‖ =
√

∑n
j=1 |zj |2 für alle z = (z1, . . . , zn) ∈ Cn.

(2) Seien a, b ∈ R mit a < b und sei C([a, b],C) der komplexe Vektorraum aller
stetigen Abbildungen von [a, b] nach C. Dann ist (C([a, b],C), 〈·, ·〉) ein unitärer
Vektorraum, wobei 〈·, ·〉 : C([a, b],C)× C([a, b],C)→ C durch

〈f, g〉 =
∫ b

a

f(t)g(t) dt
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definiert ist. (Der Beweis dafür ist eine Übung.)

(3) Sei ℓC
2 der komplexe Vektorraum aller Folgen quadratisch summierbarer kom-

plexer Zahlen. (Eine Folge {zn}n≥0 heißt quadratisch summierbar, wenn es ein
N ≥ 0 gibt, so dass

∑m
n=0 |zn|2 ≤ N für alle m ≥ 0, d.h., wenn die unendliche

Reihe
∑

n≥0 |zn|2 konvergiert.) Seien {zn}n≥0, {wn}n≥0 ∈ ℓC
2 ; dann konvergiert

die unendliche Reihe
∑

n≥0 znwn, da |znwn| ≤ 1
2
(|zn|2 + |wn|2). Folglich kann eine

Abbildung 〈·, ·〉 : ℓC
2 × ℓC

2 → C durch

〈{zn}n≥0, {wn}n≥0〉 =
∑

n≥0

znwn

definiert werden und dann ist (ℓC

2 , 〈·, ·〉) ein unitärer Vektorraum. (Der Beweis
dafür ist eine Übung.)

In den folgenden zwei Sätzen sowie in Lemma 18.2 sei (V, 〈·, ·〉) ein unitärer
Vektorraum.

Satz 18.3 (Cauchy-Schwarzsche Ungleichung) Für alle u, v ∈ V gilt

|〈u, v〉| ≤ ‖u‖‖v‖ .

Beweis Wenn v = 0, dann ist ‖v‖ = 0 und 〈u, v〉 = 0 und in diesem Fall ist
|〈u, v〉| = ‖u‖‖v‖ = 0. Sei also v 6= 0. Für jedes λ ∈ C gilt

0 ≤ 〈u− λv, u− λv〉 = 〈u, u− λv〉 − λ〈v, u− λv〉
= 〈u, u〉 − λ〈u, v〉 − λ〈v, u〉+ λλ〈v, v〉 = 〈u, u〉 − λ〈u, v〉 − λ〈u, v〉+ λλ〈v, v〉 ,

und insbesondere gilt mit λ = 〈v, v〉−1〈u, v〉, dass

0 ≤ 〈u, u〉 −
(

〈v, v〉−1〈u, v〉
)

〈u, v〉
−

(

〈v, v〉−1〈u, v〉
)

〈u, v〉+
(

〈v, v〉−1〈u, v〉
)(

〈v, v〉−1〈u, v〉
)

〈v, v〉
= 〈u, u〉 − 〈v, v〉−1〈u, v〉〈u, v〉 = 〈u, u〉 − 〈v, v〉−1|〈u, v〉|2 ,

d.h. |〈u, v〉|2 ≤ 〈u, u〉〈v, v〉 und damit ist |〈u, v〉| ≤ ‖u‖‖v‖.

Satz 18.4 Die Norm ‖ · ‖ : V → R+ hat folgende Eigenschaften:

(1) ‖v‖ = 0 genau dann, wenn v = 0.

(2) ‖λv‖ = |λ|‖v‖ für alle v ∈ V , λ ∈ C.

(3) Dreiecksungleichung) ‖u+ v‖ ≤ ‖u‖+ ‖v‖ für alle u, v ∈ V .
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Beweis (1) und (2) sind klar.

(3): Sei z = x + iy ∈ C mit x, y ∈ R; dann ist z + z = 2x ∈ R und also ist
z + z ≤ 2

√

x2 + y2 = 2|z|. Daraus folgt nach Satz 6.3, dass

‖u+ v‖2 = 〈u+ v, u+ v〉 = 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉
= ‖u‖2 + 〈u, v〉+ 〈u, v〉+ ‖v‖2 ≤ ‖u‖2 + 2|〈u, v〉|+ ‖v‖2

≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 = (‖u‖+ ‖v‖)2

und damit ist ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

Lemma 18.2 (Polarisierungsidentität) Für alle u, v ∈ V gilt

〈u, v〉 = 1
4
(‖u+ v‖2 − ‖u− v‖2 + i‖u+ iv‖2 − i‖u− iv‖2) .

Beweis Übung.

Im Folgenden sei (V, 〈·, ·〉) entweder ein euklidischer Vektorraum oder ein unitärer
Vektorraum. Der zugrundeliegende Körper wird mit K bezeichnet. Dies bedeutet,
dass K = R, falls (V, 〈·, ·〉) ein euklidischer Vektorraum ist, und K = C, falls
(V, 〈·, ·〉) ein unitärer Vektorraum ist.

Vektoren u, v ∈ V heißen orthogonal oder senkrecht zueinander (geschrieben
u ⊥ v), wenn 〈u, v〉 = 0. Vektoren v1, . . . , vm ∈ V heißen orthonormal, wenn

〈vi, vj〉 =

{

1 falls i = j ,
0 falls i 6= j ,

d.h., wenn ‖vj‖ = 1 für j = 1, . . . , m und vi ⊥ vj für alle i 6= j.

Lemma 18.3 Orthonormale Vektoren sind linear unabhängig.

Beweis Seien v1, . . . , vm orthonormale Vektoren und seien λ1, . . . , λm ∈ K mit
λ1v1 + · · ·+ λmvm = 0. Für jedes j = 1, . . . , m ist dann

0 = 〈0, vj〉 = 〈λ1v1 + · · ·+ λmvm, vj〉
= λ1〈v1, vj〉+ · · ·+ λm〈vm, vj〉 = λj〈vj, vj〉 = λj ,

d.h., λj = 0 für j = 1, . . . , m und damit sind v1, . . . , vm linear unabhängig.

Sei U ein endlichdimensionaler Untervektorraum von V . Dann heißt eine Basis
(u1, . . . , um) von U orthonormal, wenn die Vektoren u1, . . . , um orthonormal sind.
Seien u1, . . . , um ∈ U orthonormal; nach Lemma 18.3 ist (u1, . . . , um) immer eine
orthonormale Basis von L(u1, . . . , um). Daraus ergibt sich nach Satz 4.6, dass
(u1, . . . , um) genau dann eine orthonormale Basis von U ist, wenn dimU = m.

Bemerkung: Die kanonische Basis von Rn ist eine orthonormale Basis von Rn

mit dem üblichen Skalarprodukt. Genauso ist die kanonische Basis von Cn eine
orthonormale Basis von Cn mit dem üblichen Skalarprodukt.
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Satz 18.5 Sei (u1, . . . , um) eine orthonormale Basis eines Untervektorraumes U
von V . Für alle u ∈ U gilt dann

u = 〈u, u1〉u1 + · · ·+ 〈u, um〉um .

(Mit anderen Worten ist 〈u, u1〉u1 + · · · + 〈u, um〉um die eindeutige Darstellung
von u als Linearkombination der Vektoren u1, . . . , um.)

Beweis Sei u ∈ U ; da (u1, . . . , um) eine Basis von U ist, gibt es nach Satz 4.1
eindeutige Elemente λ1, . . . , λm ∈ K, so dass u = λ1u1 + · · ·+ λmum. Dann gilt

〈u, uj〉 = 〈λ1u1 + · · ·+λmum, uj〉 = λ1〈u1, uj〉+ · · ·+λm〈um, uj〉 = λj〈uj, uj〉 = λj

für jedes j = 1, . . . , m.

Für jedes v ∈ V setze

v∗ =

{

‖v‖−1v falls v 6= 0 ,
0 falls v = 0 ,

also gilt ‖v∗‖ = 1 für alle v 6= 0.

Satz 18.6 (Gram-Schmidtsches Orthonormalisierungsverfahren) Es sei
U ein endlichdimensionaler Untervektorraum von V und sei (u1, . . . , um) eine
Basis von U . Definiere v1, . . . , vm ∈ V

v1 = u∗1
v2 =

(

u2 − 〈u2, v1〉v1

)∗

...

vk =
(

uk − 〈uk, v1〉v1 − 〈uk, v2〉v2 − · · · − 〈uk, vk−1〉vk−1

)∗
,

...

vm =
(

um − 〈um, v1〉v1 − 〈um, v2〉 v2 − · · · − 〈um, vm−1〉vm−1

)∗
.

Dann ist (v1, . . . , vm) eine orthonormale Basis von U mit

L(v1, . . . , vk) = L(u1, . . . , uk)

für jedes k. Insbesondere besitzt jeder endlichdimensionale Untervektorraum von
V eine orthonormale Basis.

Beweis Es wird durch Induktion nach k bewiesen, dass v1, . . . , vk orthonormal
sind und L(v1, . . . , vk) = L(u1, . . . , uk) für jedes k = 1, . . . , m.

Induktionsanfang: Da u1 6= 0, ist ‖v1‖ = 1 und L(v1) = L(u1).
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Induktionsschritt: Sei 1 ≤ k < m und nehme an, dass v1, . . . , vk orthonormal
sind und L(v1, . . . , vk) = L(u1, . . . , uk). Setze

wk+1 = uk+1 − 〈uk+1, v1〉v1 − 〈uk+1, v2〉v2 − · · · − 〈uk+1, vk〉vk .

Dann ist wk+1 ∈ L(v1, . . . , vk, uk+1) und uk+1 ∈ L(v1, . . . , vk, wk+1), und daraus
ergibt sich nach Satz 3.2, dass L(v1, . . . , vk, wk+1) = L(v1, . . . , vk, uk+1). Aber
vk+1 = w∗k+1 und L(v1, . . . , vk) = L(u1, . . . , uk) und damit ist

L(v1, . . . , vk+1) = L(v1, . . . , vk, vk+1) = L(v1, . . . , vk, wk+1)

= L(v1, . . . , vk, uk+1) = L(u1, . . . , uk, uk+1) = L(u1, . . . , uk+1) .

Da u1, . . . , uk+1 linear unabhängig sind, gilt auch

uk+1 /∈ L(u1, . . . , uk) = L(v1, . . . , vk) ,

und daher ist wk+1 6= 0, d.h. ‖vk+1‖ = 1. Für jedes j = 1, . . . , k ist nun

〈vk+1, vj〉 = ‖wk+1‖−1〈wk+1, vj〉
= ‖wk+1‖−1〈 uk+1 − 〈uk+1, v1〉v1 − · · · − 〈uk+1, vk〉vk, vj〉
= ‖wk+1‖−1

(

〈uk+1, vj〉 − 〈uk+1, v1〉〈v1, vj〉 − · · · − 〈uk+1, vk〉〈vk, vj〉
)

= ‖wk+1‖−1
(

〈uk+1, vj〉 − 〈uk+1, vj〉〈vj, vj〉
)

= ‖wk+1‖−1
(

〈uk+1, vj〉 − 〈uk+1, vj〉
)

= 0 ,

und damit sind v1, . . . , vk+1 orthonormal, da nach Induktionsannahme v1, . . . , vk

schon orthonormal sind. Dies zeigt, dass die Vektoren v1, . . . , vk+1 orthonormal
sind und L(v1, . . . , vk+1) = L(u1, . . . , uk+1).

Es gibt den folgenden Basisergänzungssatz für orthonormale Basen:

Satz 18.7 Seien U, W Untervektorräume von V mit W endlichdimensional und
{0} 6= U ⊂ W ; sei (u1, . . . , um) eine orthonormale Basis von U . Dann gibt
es k ≥ 0 und Vektoren v1, . . . , vk ∈ W , so dass (u1, . . . , um, v1, . . . , vk) eine
orthonormale Basis von W ist.

Beweis Nach dem Basisergänzungssatz (Satz 4.5) gibt es w1, . . . , wk ∈ W (mit
k ≥ 0), so dass (u1, . . . , um, w1, . . . , wk) eine Basis von W ist. Wende nun das
Gram-Schmidtsche Orthonormalisierungsverfahren auf diese Basis an und erhalte
eine orthonormale Basis (u′1, . . . , u

′
m, v1, . . . , vk) von W . Man sieht aber leicht,

dass u′j = uj für j = 1, . . . , m, da die Vektoren u1, . . . , um schon orthonormal
sind. Also ist (u1, . . . , um, v1, . . . , vk) eine orthonormale Basis von W .

Sei W ein endlichdimensionaler Untervektorraum von V mit dimW = n und U
ein Untervektorraum von V mit U ⊂ W und dimU = m ≥ 1. Nach Satz 18.7
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gibt es dann eine orthonormale Basis (v1, . . . , vn) von W , so dass (v1, . . . , vm) eine
orthonormale Basis von U ist.

Für jede nichtleere Teilmenge M von V setzen wir

M⊥ = {v ∈ V : v ⊥ u für alle u ∈ M} .

M⊥ heißt das orthogonale Komplement von M . Offensichtlich ist {0}⊥ = V und
V ⊥ = {0}.

Lemma 18.4 M⊥ ist ein Untervektorraum von V .

Beweis Da 〈0, u〉 = 0 für alle u ∈ M , ist 0 ∈ M⊥. Seien nun v1, v2 ∈ M⊥ und
λ1, λ2 ∈ K; für jedes u ∈M⊥ ist dann 〈v1, u〉 = 〈v2, u〉 = 0 und damit auch

〈λ1v1 + λ2v2, u〉 = λ1〈v1, u〉+ λ2〈v2, u〉 = 0 ,

d.h., λ1v1 + λ2v2 ∈M⊥. Folglich ist M⊥ ein Untervektorraum von V .

Lemma 18.5 Sei V endlichdimensional und sei U ein Untervektorraum von V
mit {0} 6= U 6= V . Sei (v1, . . . , vn) eine orthonormale Basis von V , so dass
(v1, . . . , vm) eine orthonormale Basis von U ist, wobei m = dimU . Dann ist
(vm+1, . . . , vn) eine orthonormale Basis von U⊥.

Beweis Sei v ∈ U⊥; dann gilt 〈v, vj〉 = 0 für j = 1, . . . , m, da v1, . . . , vm ∈ U ,
und daraus folgt nach Satz 18.5, dass

v = 〈v, v1〉v1 + · · ·+ 〈v, vn〉vn = 〈v, vm+1〉vm+1 + · · ·+ 〈v, vn〉vn ∈ L(vm+1, . . . , vn) ,

d.h., U⊥ ⊂ L(vm+1, . . . , vn). Andererseits ist

〈λm+1vm+1 + · · ·+ λnvn, λ1v1 + · · ·+ λmvm〉 = 0

für alle λ1, . . . , λn ∈ K, und damit ist 〈λm+1vm+1 + · · · + λnvn, u〉 = 0 für alle
λm+1, . . . , λn ∈ K, u ∈ U , da (v1, . . . , vm) eine Basis von U ist. Folglich gilt
auch L(vm+1, . . . , vn) ⊂ U⊥, d.h., U⊥ = L(vm+1, . . . , vn). Aber vm+1, . . . , vn sind
orthonormal, und also ist (vm+1, . . . , vn) eine orthonormale Basis von U⊥.

Satz 18.8 Sei V endlichdimensional und sei U ein Untervektorraum von V .
Dann ist (U⊥)⊥ = U und es gilt dimU + dimU⊥ = dim V .
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Beweis Dies ist trivial richtig, wenn U = {0} oder U = V ; nehme also an, dass
{0} 6= U 6= V . Nach Satz 18.7 gibt es eine orthonormale Basis (v1, . . . , vn) von
V , so dass (v1, . . . , vm) eine orthonormale Basis von U ist, wobei m = dimU ,
und nach Lemma 18.5 ist dann (vm+1, . . . , vn) eine orthonormale Basis von U⊥.
Nun ist (v1, . . . , vn) eine orthonormale Basis von V , so dass (vm+1, . . . , vn) eine
orthonormale Basis von U⊥ ist. Daraus folgt nach Lemma 18.5, dass (v1, . . . , vm)
eine orthonormale Basis von (U⊥)⊥ ist, und damit ist (U⊥)⊥ = U . Ferner ist
dimU + dimU⊥ = m+ (n−m) = n = dim V .

Bemerkung Ist V nicht endlichdimensional, so gilt immer noch U ⊂ (U⊥)⊥ für
jeden Untervektorraum U von V . (Setze W = U⊥; für alle w ∈ W , u ∈ U ist
w ⊥ u und damit auch u ⊥ w und folglich ist U ⊂ W⊥ = (U⊥)⊥.) Aber im
Allgemeinen gilt U = (U⊥)⊥ nicht: Betrachte ℓ2 mit dem Skalarprodukt

〈{xn}n≥0, {yn}n≥0〉 =
∑

n≥0

xnyn

und sei ℓ0 = {{xn}n≥0 ∈ ℓ2 : xn 6= 0 für nur endlich viele n ≥ 0}. Dann ist ℓ0 ein
Untervektorraum von ℓ2 mit ℓ⊥0 = {0}. (Der Beweis dafür ist eine Übung.) Damit
ist (ℓ⊥0 )⊥ = {0}⊥ = ℓ2 6= ℓ0.

Untervektorräume U1 und U2 von V sind orthogonal, und man schreibt U1 ⊥ U2,
wenn u1 ⊥ u2 für alle u1 ∈ U1, u2 ∈ U2.

Sind nun U, U1, . . . , Um Untervektorräume von V , so heißt U die orthogonale
Summe von U1, . . . , Um, wenn U = U1 + · · ·+ Um und Uj ⊥ Uk für alle j 6= k.

Lemma 18.6 Eine orthogonale Summe ist direkt: Ist U die orthogonale Summe
von U1, . . . , Um, so ist auch U = U1 ⊕ · · · ⊕ Um.

Beweis Seien u1, . . . , um ∈ V mit uj ∈ Uj für jedes j und u1 + · · ·+ um = 0. Da
〈uj, uk〉 = 0 für alle j 6= k, haben wir für jedes j = 1, . . . , m, dass

0 = 〈u1 + · · ·+ um, uj〉 = 〈u1, uj〉+ · · ·+ 〈um, uj〉 = 〈uj, uj〉

und damit uj = 0. Daraus folgt nach Satz 3.7, dass U = U1 ⊕ · · · ⊕ Um.

Bemerkung Sei V endlichdimensional und seien U, W Untervektorräume von V .
Dann ist V die orthogonale Summe von U und W genau, wenn W = U⊥. (Der
Beweis dafür ist eine Übung.) Dies bedeutet, dass es zu jedem Untervektorraum
U von V einen eindeutigen Untervektorraum W gibt, so dass V die orthogonale
Summe von U und W ist. Zum Vergleich: Ist U ein Untervektorraum von V
mit {0} 6= U 6= V , dann gibt es unendlich viele Untervektorräume W , so dass
V = U ⊕W .



18 Euklidische und unitäre Vektorräume 162

Lemma 18.7 Seien U1, . . . , Um endlichdimensionale Untervektorräume von V
und für j = 1, . . . , m sei (uj1, . . . , u

j
kj

) eine orthonormale Basis von Uj. Dann ist
die Summe U = U1 + · · · + Um die orthogonale Summe von U1, . . . , Um genau,
wenn (u1

1, . . . , u
1
k1
, . . . , um1 , . . . , u

m
km

) eine orthonormale Basis von U ist.

Beweis Übung.
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Im Folgenden sei (V, 〈·, ·〉) entweder ein euklidischer Vektorraum oder ein unitärer
Vektorraum. Der zugrundeliegende Körper wird mit K bezeichnet. Dies bedeutet,
dass K = R, falls (V, 〈·, ·〉) ein euklidischer Vektorraum ist, und K = C, falls
(V, 〈·, ·〉) ein unitärer Vektorraum ist. Ist (V, 〈·, ·〉) ein euklidischer Vektorraum
und λ ∈ R, so ist λ einfach als λ zu interpretieren.

Lemma 19.1 Sei α : V → V eine Abbildung, für die gilt:

〈α(u), α(v)〉 = 〈u, v〉

für alle u, v ∈ V . Dann ist α linear; d.h. α ist ein Endomorphismus von V .

Beweis Für alle u, v ∈ V gilt

〈α(u+ v)− α(u)− α(v), α(u+ v)− α(u)− α(v) 〉
= 〈α(u+ v), α(u+ v)〉 − 〈α(u+ v), α(u)〉 − 〈α(u+ v), α(v)〉

− 〈α(u), α(u+ v)〉+ 〈α(u), α(u)〉+ 〈α(u), α(v)〉
− 〈α(v), α(u+ v)〉+ 〈α(v), α(u)〉+ 〈α(v), α(v)〉

= 〈u+ v, u+ v〉 − 〈u+ v, u〉 − 〈u+ v, v〉 − 〈u, u+ v〉
+ 〈u, u〉+ 〈u, v〉 − 〈v, u+ v〉+ 〈v, u〉+ 〈v, v〉

= 〈(u+ v)− u− v, (u+ v)− u− v〉 = 〈0, 0〉 = 0

und daraus folgt, dass α(u+ v)− α(u)− α(v) = 0, d.h., α(u+ v) = α(u) + α(v)
für alle u, v ∈ V . Ferner gilt für alle v ∈ V , λ ∈ K, dass

〈α(λv)− λα(v), α(λv)− λα(v)〉
= 〈α(λv), α(λv)〉 − λ〈α(λv), α(v)〉 − λ〈α(v), α(λv)〉+ λλ〈α(v), α(v)〉
= 〈λv, λv〉 − λ〈λv, v〉 − λ〈v, λv〉+ λλ〈v, v〉
= 〈λv − λv, λv − λv〉 = 〈0, 0〉 = 0 ,

und daraus folgt, dass α(λv) − λα(v) = 0, d.h. α(λv) = λα(v) für alle v ∈ V ,
λ ∈ K. Damit ist α eine lineare Abbildung.

Ein Endomorphismus f : V → V heißt orthogonal, falls (V, 〈·, ·〉) ein euklidischer
Vektorraum ist, bzw. unitär, falls (V, 〈·, ·〉) ein unitärer Vektorraum ist, wenn

〈f(u), f(v)〉 = 〈u, v〉

für alle u, v ∈ V .

163
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Satz 19.1 Ein Endomorphismus f : V → V ist orthogonal bzw. unitär genau
dann, wenn ‖f(v)‖ = ‖v‖ für alle v ∈ V .

Beweis Ist f orthogonal bzw. unitär, dann ist

‖f(v)‖2 = 〈f(v), f(v)〉 = 〈v, v〉 = ‖v‖2

und damit ‖f(v)‖ = ‖v‖ für alle v ∈ V . Für die Umkehrung nehme zunächst an,
dass (V, 〈·, ·〉) ein unitärer Vektorraum ist. Ist ‖f(w)‖ = ‖w‖ für alle w ∈ V , so
gilt nach Lemma 18.2, dass

4〈f(u), f(v)〉
= ‖f(u) + f(v)‖2 − ‖f(u)− f(v)‖2 + i‖f(u) + if(v)‖2 − i‖f(u)− if(v)‖2

= ‖f(u+ v)‖2 − ‖f(u− v)‖2 + i‖f(u+ iv)‖2 − i‖f(u− iv)‖2

= ‖u+ v‖2 − ‖u− v‖2 + i‖u+ iv‖2 − i‖u− iv‖2 = 4〈u, v〉

für alle u, v ∈ V , d.h., f ist unitär. Wenn (V, 〈·, ·〉) ein euklidischer Vektorraum
ist, dann benutzt man eine der Identitäten in Lemma 18.1 statt Lemma 18.2.

Ist f : V → V orthogonal bzw. unitär, dann gilt f(0) = 0 und für alle u, v ∈ V
gilt ‖f(u)− f(v)‖ = ‖u− v‖, da

‖f(u)− f(v)‖2 = ‖f(u− v)‖2 = 〈f(u− v), f(u− v)〉 = 〈u− v, u− v〉 = ‖u− v‖2 .

Für euklidische Vektorräume ist die Umkehrung auch richtig:

Satz 19.2 Sei (V, 〈·, ·〉) ein euklidischer Vektorraum und sei α : V → V eine
(beliebige) Abbildung mit α(0) = 0 und

‖α(u)− α(v)‖ = ‖u− v‖

für alle u, v ∈ V . Dann ist α ein orthogonaler Endomorphismus. (Hier bedeutet
‘beliebig’: Es wird nicht vorausgesetzt, dass α eine lineare Abbildung ist.)

Beweis Seien u, v ∈ V ; nach der Polarisierungsidentität in Lemma 18.1 ist

2〈α(u), α(v)〉 = ‖α(u)‖2 + ‖α(v)‖2 − ‖α(u)− α(v)‖2

= ‖α(u)− α(0)‖2 + ‖α(v)− α(0)‖2 − ‖α(u)− α(v)‖2

= ‖u− 0‖2 + ‖v − 0‖2 − ‖u− v‖2
= ‖u‖2 + ‖v‖2 − ‖u− v‖2 = 2〈u, v〉

und damit ist 〈α(u), α(v)〉 = 〈u, v〉 für alle u, v ∈ V . Daraus ergibt sich nach
Lemma 19.1, dass α ein orthogonaler Endomorphismus ist.
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Betrachte den unitären Vektorraum C = C1 mit dem üblichen Skalarprodukt, also
ist hier die Norm einfach | · |, und sei α : C → C die durch α(z) = z definierte
Abbildung. Dann gilt α(0) = 0 und |α(z) − α(z′)| = |z − z′| für alle z, z′ ∈ C,
aber die Abbildung α ist nicht linear. Dies zeigt, dass für unitäre Vektorräume
Satz 19.2 im Allgemeinen falsch ist.

Seien f, g : V → V orthogonale bzw. unitäre Endomorphismen von V . Dann ist
der Endomorphismus gf : V → V auch orthogonal bzw. unitär, da

〈(gf)(u), (gf)(v)〉 = 〈g(f(u)), g(f(v))〉 = 〈f(u), f(v)〉 = 〈u, v〉

für alle u, v ∈ V .

Lemma 19.2 Sei V endlichdimensional und sei f : V → V ein orthogonaler
bzw. ein unitärer Endomorphismus von V . Dann ist f ein Automorphismus und
f−1 ist auch orthogonal bzw. unitär.

Beweis Sei v ∈ Kern f ; dann ist 0 = 〈0, 0〉 = 〈f(v), f(v)〉 = 〈v, v〉 und damit ist
v = 0, d.h., Kern f = {0}. Da aber V endlichdimensional ist, ist nach Satz 5.3
f ein Automorphismus. Ferner ist

〈f−1(u), f−1(v)〉 = 〈f(f−1(u)), f(f−1(v))〉 = 〈u, v〉

für alle u, v ∈ V , d.h., f−1 ist orthogonal bzw. unitär.

Satz 19.3 Sei V endlichdimensional und f : V → V ein Endomorphismus von
V . Dann sind äquivalent:

(1) f ist orthogonal bzw. unitär.

(2) f ist ein Automorphismus und 〈f−1(u), v〉 = 〈u, f(v)〉 für alle u, v ∈ V .
(Später stellt sich heraus, dass f−1 der zu f adjungierte Endomorphismus ist.)

Beweis (1) ⇒ (2): Nach Lemma 19.2 ist f ein Automorphismus und

〈f−1(u), v〉 = 〈f(f−1(u)), f(v)〉 = 〈u, f(v)〉

für alle u, v ∈ V .

(2)⇒ (1): Für alle u, v ∈ V gilt 〈u, v〉 = 〈f−1(f(u)), v〉 = 〈f(u), f(v)〉 und damit
ist f orthogonal bzw. unitär.

Lemma 19.3 Sei V endlichdimensional, (v1, . . . , vn) eine orthonormale Basis
von V und sei f : V → V ein Endomorphismus. Dann ist f orthogonal bzw.
unitär genau, wenn (f(v1), . . . , f(vn)) eine orthonormale Basis von V ist.
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Beweis Ist f orthogonal bzw. unitär, so ist 〈f(vj), f(vk)〉 = 〈vj, vk〉 für alle j, k.
Folglich sind die Vektoren f(v1), . . . , f(vn) orthonormal, d.h., (f(v1), . . . , f(vn))
ist eine orthonormale Basis von V . Nehme umgekehrt an, dass (f(v1), . . . , f(vn))
eine orthonormale Basis von V ist. Seien u, v ∈ V ; dann gibt es eindeutige
Darstellungen u = λ1v1 + · · ·+ λnvn und v = µ1v1 + · · ·+ µnvn und dann ist

〈f(u), f(v)〉 = 〈f(λ1v1 + · · ·+ λnvn), f(µ1v1 + · · ·+ µnvn)〉
= 〈λ1f(v1) + · · ·+ λnf(vn), µ1f(v1) + · · ·+ µnf(vn)〉
= λ1µ1 + · · ·+ λnµn = 〈λ1v1 + · · ·+ λnvn, µ1v1 + · · ·+ µnvn〉
= 〈u, v〉 ,

und daraus ergibt sich, dass f orthogonal bzw. unitär ist.

Lemma 19.4 Sei V endlichdimensional und sei f : V → V ein orthogonaler
bzw. ein unitärer Endomorphismus. Ferner sei U ein Untervektorraum von V
mit f(U) ⊂ U . Dann gilt auch f(U⊥) ⊂ U⊥.

Beweis Sei v ∈ U⊥; für jedes u ∈ U gilt dann 0 = 〈v, u〉 = 〈f(v), f(u)〉. Also
ist f(v) ⊥ w für alle w ∈ f(U), d.h., f(v) ∈ f(U)⊥. Daraus ergibt sich, dass
f(U⊥) ⊂ f(U)⊥. (Dies ist auch richtig, wenn V nicht endlichdimensional ist.)
Aber V ist endlichdimensional und nach Lemma 19.2 ist f ein Automorphismus,
und daraus folgt nach Lemma 5.10, dass dim f(U) = dimU . Damit ist f(U) = U ,
da f(U) ⊂ U , d.h., f(U⊥) ⊂ U⊥.

Satz 19.4 Sei f : V → V ein orthogonaler bzw. ein unitärer Endomorphismus
von V und sei λ ein Eigenwert von f . Dann gilt |λ| = 1. Ist also f orthogonal, so
ist λ entweder −1 oder 1; ist dagegen f unitär, so gibt es θ ∈ R, so dass λ = eiθ.
Sind ferner λ1 und λ2 verschiedene Eigenwerte von f , so sind die Eigenräume
E(f, λ1) und E(f, λ2) orthogonal.

Beweis Sei v ∈ V ein Eigenvektor zum Eigenwert λ. Dann ist

〈v, v〉 = 〈f(v), f(v)〉 = 〈λv, λv〉 = λλ〈v, v〉 = |λ|2〈v, v〉 ,

und folglich ist |λ|2 = 1 und damit |λ| = 1, da 〈v, v〉 6= 0. Seien nun λ1 und λ2

verschiedene Eigenwerte von f und v1 ∈ E(f, λ1), v2 ∈ E(f, λ2). Dann ist

〈v1, v2〉 = 〈f(v1), f(v2)〉 = 〈λ1v1, λ2v2〉 = λ1λ2 〈v1, v2〉 .

Aber λ1λ2 6= 1 (Warum?) und damit ist 〈v1, v2〉 = 0. Folglich sind die Eigenräume
E(f, λ1) und E(f, λ2) orthogonal.

Das folgende Ergebnis bezieht sich nur auf unitäre Vektorräume. (Das analoge
Behauptung für euklidische Vektorräume ist im Allgemeinen falsch.)



19 Orthogonale und unitäre Endomorphismen 167

Satz 19.5 Sei (V, 〈·, ·〉) ein endlichdimensionaler unitärer Vektorraum (also ist
(V, 〈·, ·〉) ein unitärer Vektorraum mit V einem endlichdimensionalen komplexen
Vektorraum), sei f : V → V ein unitärer Endomorphismus und seien λ1, . . . , λm
die verschiedenen Eigenwerte von f . Dann ist V die orthogonale Summe der
Eigenräume E(f, λ1), . . . , E(f, λm).

Beweis Sei U = E(f, λ1) + · · ·+ E(f, λm); nach Satz 19.4 ist U die orthogonale
Summe von E(f, λ1), . . . , E(f, λm) und also muss gezeigt werden, dass U = V .
Nehme an, dass U 6= V und setze W = U⊥. Da f(E(f, λj)) ⊂ E(f, λj) für jedes
j, ist auch f(U) ⊂ U , und daraus folgt nach Lemma 19.4, dass f(W ) ⊂ W . Sei
g : W → W die Einschränkung von f auf W . Da dimW ≥ 1, ist χg ein nicht
konstantes Polynom und folglich gilt nach Satz 16.4 und Satz 16.5, dass es einen
Eigenwert λ ∈ C von g gibt. Sei v ∈ V ein Eigenvektor von g zum Eigenwert λ.
Dann ist f(v) = g(v) = λv, d.h., λ ist auch ein Eigenwert von f , und damit λ = λj
für ein j, und v ist ein Eigenvektor von f zum Eigenwert λ. Also ist v ∈ U ∩W
und dies ist ein Widerspruch, da U ⊥ W . Daraus ergibt sich, dass U = V , d.h.,
V ist die orthogonale Summe der Eigenräume E(f, λ1), . . . , E(f, λm).

Satz 19.6 Sei (V, 〈·, ·〉) ein endlichdimensionaler unitärer Vektorraum und sei
f ein unitärer Endomorphismus. Dann gibt es eine aus Eigenvektoren von f
bestehende orthonormale Basis von V . Ferner ist | det f | = 1.

Beweis Seien λ1, . . . , λm die verschiedenen Eigenwerte von f und für jedes j
sei (uj1, . . . , u

j
kj

) eine orthonormale Basis von E(f, λj). Dann ist nach Satz 19.5

und Lemma 18.7 (v1, . . . , vn) = (u1
1, . . . , u

1
k1
, . . . , um1 , . . . , u

m
km

) eine orthonormale
Basis von V , d.h., (v1, . . . , vn) ist eine aus Eigenvektoren bestehende orthonormale
Basis von V . Sei D = (dij) die Matrix von f bezüglich (v1, . . . , vn). Dann ist D
eine Diagonalmatrix und die Einträge d11, . . . , dnn auf der Diagonale sind alle
Eigenwerte von f . Daraus folgt nach Satz 19.4 und Lemma 16.1, dass

| det f | = | detD| = |d11 · · · dnn| = |d11| · · · |dnn| = 1 .

Das dem Satz 19.5 entsprechende Ergebnis für orthogonale Endomorphismen ist
im Allgemeinen falsch. Jetzt wird untersucht, wie orthogonale Endomorphismen
dargestellt werden kann und es wird mit dem Fall begonnen, in dem (V, 〈·, ·〉)
ein zweidimensionaler euklidischer Vektorraum ist (das heißt: (V, 〈 · ·〉) ist ein
euklidischer Vektorraum mit dimV = 2).

Bis auf weiteres sei also (V, 〈·, ·〉) ein zweidimensionaler euklidischer Vektorraum.
Sei f : V → V ein orthogonaler Endomorphismus und sei θ mit 0 ≤ θ ≤ π. Dann
heißt f eine Drehung um den Winkel θ, wenn

〈f(v), v〉 = ‖v‖2 cos θ

für alle v ∈ V .
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Lemma 19.5 (1) Die Identitätsabbildung idV : V → V ist die einzige Drehung
um den Winkel 0.

(2) Die Abbildung −idV ist die einzige Drehung um den Winkel π.

(3) Ist f : V → V eine Drehung um einen Winkel θ, wobei 0 < θ < π, so besitzt
f keinen Eigenwert.

Beweis (1) Es ist klar, dass idV eine Drehung um den Winkel 0 ist. Sei umgekehrt
f : V → V eine Drehung um den Winkel 0, es gilt also 〈f(v), v〉 = ‖v‖2 für alle
v ∈ V und daraus folgt, dass

〈f(v)− v, f(v)− v〉 = 〈f(v), f(v)〉 − 2〈f(v), v〉+ 〈v, v〉
= 〈v, v〉 − 2〈f(v), v〉+ 〈v, v〉 = 〈v, v〉 − 2〈v, v〉+ 〈v, v〉 = 0

und damit f(v) = v für alle v ∈ V .

(2) Es ist klar, dass −idV eine Drehung um den Winkel π ist. Sei umgekehrt
f : V → V eine Drehung um den Winkel π, es gilt also 〈f(v), v〉 = −‖v‖2 für alle
v ∈ V und daraus folgt, dass

〈f(v) + v, f(v) + v〉 = 〈f(v), f(v)〉+ 2 〈f(v), v〉+ 〈v, v〉
= 〈v, v〉+ 2〈f(v), v〉+ 〈v, v〉 = 〈v, v〉 − 2〈v, v〉+ 〈v, v〉 = 0

und damit f(v) = −v für alle v ∈ V .

(3) Sei λ ein Eigenwert von f und sei v ∈ V ein Eigenvektor zum Eigenwert λ.
Dann ist 〈f(v), v〉 = 〈λv, v〉 = λ〈v, v〉 = λ‖v‖2 6= ‖v‖2 cos θ, da nach Satz 19.4 λ
nur −1 oder 1 sein kann und −1 < cos θ < 1, wenn 0 < θ < π.

Ein orthogonaler Endomorphismus f : V → V heißt Spiegelung, wenn

dim E(f, 1) = dim E(f,−1) = 1 .

Sei f eine Spiegelung; dann gilt nach Satz 19.4, dass V die orthogonale Summe
der Eigenräume E(f, 1) und E(f,−1) ist. Sei v1 bzw. v2 ein Eigenvektor von f
zum Eigenwert 1 bzw. zum Eigenwert −1 mit ‖v1‖ = ‖v2‖ = 1. Dann ist (v1, v2)
eine orthonormale Basis von V und die Matrix von f bezüglich (v1, v2) ist

S =

(

1 0
0 −1

)

.

Insbesondere ist det f = −1, da detS = −1.

Für jedes θ ∈ R seien Dθ, Sθ ∈ M(2× 2,R) folgende Matrizen:

Dθ =

(

cos θ − sin θ
sin θ cos θ

)

, Sθ =

(

cos θ sin θ
sin θ − cos θ

)

.
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Insbesondere ist D0 = E2, Dπ = −E2 und S0 = S. Es gilt χSθ
= −1 + x2 für

jedes θ ∈ R (und damit sind −1 und 1 beide Eigenwerte von Sθ), da

det

(

cos θ − x sin θ
sin θ − cos θ − x

)

= −(cos θ − x)(cos θ + x)− sin2 θ = − cos2 θ − sin2 θ + x2 = −1 + x2 .

Ferner ist detDθ = 1 und detSθ = −1 für jedes θ ∈ R.

Satz 19.7 (1) Sei f : V → V ein orthogonaler Endomorphismus. Dann ist f
entweder eine Drehung oder eine Spiegelung.

(2) Sei f : V → V eine Drehung um den Winkel θ, wobei 0 ≤ θ ≤ π, und
sei (v1, v2) eine orthonormale Basis von V . Dann ist die Matrix von f bezüglich
(v1, v2) entweder Dθ oder D2π−θ. Insbesondere ist det f = 1.

(3) Sei f : V → V eine Spiegelung und sei θ mit 0 ≤ θ < 2π. Dann gibt es eine
orthonormale Basis (v1, v2) von V , so dass Sθ die Matrix von f bezüglich (v1, v2)
ist.

Beweis (1) Sei (v1, v2) eine orthonormale Basis von V und sei

A =

(

a b
c d

)

die Matrix von f bezüglich (v1, v2). Es gilt also

1 = 〈v1, v1〉 = 〈f(v1), f(v1)〉 = 〈av1 + cv2, av1 + cv2〉 = a2 + c2 ,

1 = 〈v2, v2〉 = 〈f(v2), f(v2)〉 = 〈bv1 + dv2, bv1 + dv2〉 = b2 + d2 ,

0 = 〈v1, v2〉 = 〈f(v1), f(v2)〉 = 〈av1 + cv2, bv1 + dv2〉 = ab+ cd ,

und damit gibt es ein eindeutiges θ mit 0 ≤ θ < 2π, so dass A = Dθ oder A = Sθ.
(Warum?) Nehme zunächst an, dass A = Dθ. Sei v ∈ V ; dann gibt es eindeutige
Elemente λ1, λ2 ∈ R, so dass v = λv1 + λ2v2 und

〈f(v), v〉 = 〈f(λ1v1 + λ2v2), λ1v1 + λ2v2〉 = 〈λ1f(v1) + λ2f(v2), λ1v1 + λ2v2〉
= 〈λ1(cos θ v1 + sin θ v2) + λ2(− sin θ v1 + cos θ v2), λ1v1 + λ2v2〉
= 〈(λ1 cos θ − λ2 sin θ)v1 + (λ1 sin θ + λ2 cos θ)v2, λ1v1 + λ2v2〉
= (λ1 cos θ − λ2 sin θ)λ1 + (λ1 sin θ + λ2 cos θ)λ2

= (λ2
1 + λ2

2) cos θ = ‖v‖2 cos θ .

Daraus ergibt sich, dass f eine Drehung um den Winkel θ′ ist, wobei

θ′ =

{

θ falls 0 ≤ θ ≤ π ,
2π − θ falls π < θ < 2π ,
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da 0 ≤ θ′ ≤ π und cos θ′ = cos θ. Nehme nun an, dass A = Sθ. Dann sind −1
und 1 Eigenwerte von f , da −1 und 1 Eigenwerte von Sθ sind, und folglich ist
dim E(f, 1) = dim E(f,−1) = 1, d.h., f ist eine Spiegelung.

(2) Sei f : V → V eine Drehung um den Winkel θ, wobei 0 ≤ θ < π, sei (v1, v2)
eine orthonormale Basis von V und sei A die Matrix von f bezüglich (v1, v2).
Genauso wie in (1) gibt es dann ein eindeutiges θ′ mit 0 ≤ θ′ < 2π, so dass
A = Dθ′ oder A = Sθ′. Nach Lemma 19.5 können aber −1 und 1 nicht beide
Eigenwerte von f sein und damit ist A = Sθ′ nicht möglich, d.h., A = Dθ′.
Daraus folgt (genauso wie in (1)), dass 〈f(v), v〉 = ‖v‖2 cos θ′ für alle v ∈ V .
Insbesondere ist cos θ′ = cos θ, d.h., θ′ ist entweder θ oder 2π − θ.
(3) Sei f : V → V eine Spiegelung und sei u1 bzw. u2 ein Eigenvektor von
f zum Eigenwert 1 bzw. zum Eigenwert −1 mit ‖u1‖ = ‖u2‖ = 1. Also ist
(u1, u2) eine orthonormale Basis von V und S = S0 ist die Matrix von f bezüglich
(u1, u2). Sei θ mit 0 ≤ θ < 2π, setze t = θ/2 und definiere Vektoren v1, v2 ∈ V
durch v1 = cos t u1 − sin t u2 und v2 = sin t u1 + cos t u2. Dann ist (v1, v2) eine
orthonormale Basis von V , da

〈v1, v1〉 = 〈cos t u1 − sin t u2, cos t u1 − sin t u2〉 = cos2 t+ sin2 t = 1 ,

〈v2, v2〉 = 〈sin t u1 + cos t u2, sin t u1 + cos t u2〉 = sin2 t+ cos2 t = 1 ,

〈v1, v2〉 = 〈cos t u1 − sin t u2, sin t u1 + cos t u2〉 = cos t sin t− sin t cos t = 0 ,

und die Matrix für den Wechsel von (u1, u2) nach (v1, v2) ist

D−t =

(

cos t sin t
− sin t cos t

)

.

Daraus folgt nach Satz 8.8, dass (D−t)
−1S0D−t die Matrix von f bezüglich (v1, v2)

ist. Aber man sieht leicht, dass (D−t)
−1S0D−t = DtS0D−t = Sθ. Damit ist Sθ die

Matrix von f bezüglich der orthonormalen Basis (v1, v2).

Sei θ mit 0 < θ < π; dann gibt es genau zwei Endomorphismen, die Drehungen um
den Winkel θ sind: Ist (v1, v2) eine orthonormale Basis von V , so hat eine dieser
Drehungen die Matrix Dθ und die andere die Matrix D2π−θ bezüglich (v1, v2).

Man sagt, dass f : V → V eine nichttriviale Drehung ist, wenn f eine Drehung
um einen Winkel θ mit 0 < θ < π ist. Nichttriviale Drehungen sind also genau
die orthogonalen Endomorphismen f : V → V , die keine Eigenwerte besitzen.

Die Untersuchung von orthogonalen Endomorphismen für den Fall dim V = 2
ist jetzt abgeschlossen. Im Folgenden sei nun (V, 〈·, ·〉) ein endlichdimensionaler
euklidischer Vektorraum.

Sei U ein Untervektorraum von V . Dann ist die Einschränkung 〈·, ·〉U von 〈·, ·〉
auf U × U ein Skalarprodukt. Ist f : V → V ein orthogonaler Endomorphismus
und ist U f -invariant, so ist die Einschränkung von f auf U auch orthogonal
bezüglich des euklidischen Vektorraumes (U, 〈·, ·〉U).
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Satz 19.8 Sei f : V → V ein orthogonaler Endomorphismus. Dann gibt es
zweidimensionale f -invariante Untervektorräume D1, . . . , Dm (mit m ≥ 0), so
dass für jedes j die Einschränkung von f auf Dj eine nichttriviale Drehung ist und
V die orthogonale Summe der Untervektorräume E(f, 1), E(f,−1), D1, . . . , Dm

ist.

Beweis Der folgende Hilfssatz wird benötigt:

Satz 19.9 Sei W ein endlichdimensionaler reeller Vektorraum mit dimW ≥ 1
und sei g : W → W ein Endomorphismus. Dann gibt es einen g-invarianten
Untervektorraum U von W mit dimU entweder 1 oder 2.

Beweis Sei (w1, . . . , wn) eine Basis von W und sei A ∈ M(n × n,R) die Matrix
von g bezüglich dieser Basis. Sei AC ∈ M(n × n,C) die Matrix A als komplexe
Matrix angesehen. Es gibt dann den reellen Endomorphismus ϕA : Rn → Rn und
den komplexen Endomorphismus ϕAC

: Cn → Cn, und die Abbildung ϕA ist die
Einschränkung der Abbildung ϕAC

auf der Teilmenge Rn von Cn. Nach Satz 16.4
und Satz 16.5 gibt es einen Eigenwert λ = α + iβ ∈ C (mit α, β ∈ R) von ϕAC

;
sei z = x+ iy ∈ Cn (mit x, y ∈ Rn) ein Eigenvektor zum Eigenwert λ. Dann gilt

0 = ϕAC
(z)− λz = ϕAC

(x+ iy)− (α + iβ)(x+ iy)

= ϕAC
(x) + iϕAC

(y)− (αx− βy)− i(βx+ αy)

= ϕA(x) + i ϕA(y)− (αx− βy)− i(βx+ αy)

und daraus folgt, dass ϕA(x) = αx− βy und ϕA(y) = βx+ αy. Sei V = L(x, y);
also ist V ein Untervektorraum von Rn mit dimV entweder 1 oder 2. (Da z 6= 0,
ist x 6= 0 oder y 6= 0.) Ferner ist nach Lemma 5.8 und Satz 3.2

ϕA(V ) = ϕA(L(x, y)) = L(ϕA(x), ϕA(y)) ⊂ L(x, y) = V .

Sei ψ : Rn →W die Abbildung, die gegeben ist durch

ψ((λ1, . . . , λn)) = λ1w1 + · · ·+ λnwn

und setze U = ψ(V ); nach Lemma 6.7 ist ψ ein Isomorphismus und damit ergibt
sich nach Lemma 5.10, dass U ein Untervektorraum von W mit dimU = dimV
ist, d.h., dimU ist entweder 1 oder 2. Aber nach Satz 8.2 gilt g ◦ψ = ψ ◦ϕA und
folglich ist g(U) = g(ψ(V )) = ψ(ϕA(V )) ⊂ ψ(V ) = U , d.h., U ist g-invariant.

Bemerkung Für komplexe Vektorräume ist die Situation viel einfacher: Sei W ein
endlichdimensionaler komplexer Vektorraum mit dimW ≥ 1 und sei g : W →W
ein Endomorphismus. Dann gibt es immer einen g-invarianten Untervektorraum
U von W mit dimU = 1. (Nach Satz 16.4 und Satz 16.5 gibt es einen Eigenwert
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λ ∈ C von g. Sei w ein Eigenvektor zum Eigenwert λ und setze U = L(w); dann
ist dimU = 1 und g(U) ⊂ U .)

Ist (W, 〈·, ·〉) ein endlichdimensionaler euklidischer Vektorraum und g : W → W
ein orthogonaler Endomorphismus, dann sei

∆(g) = dimW − dim E(g, 1)− dim E(g,−1) .

Der Beweis für Satz 19.8 erfolgt durch Induktion nach n = ∆(f).

Induktionsanfang: Sei f ein orthogonaler Endomorphismus mit ∆(f) = 0. Dann
gilt nach Satz 19.4, dass V die orthogonale Summe der Untervektorräume E(f, 1)
und E(f,−1) ist.

Induktionsschritt: Sei n > 0 und nehme an, dass die Aussage in Satz 19.9 für
jeden orthogonalen Endomorphismus g : W → W mit ∆(g) < n richtig ist.
Sei f : V → V ein orthogonaler Endomorphismus mit ∆(f) = n und setze
E = E(f, 1) + E(f,−1); nach Satz 18.8 und Satz 19.4 ist

dimE⊥ = dim V − dimE = dim V − dim E(f, 1)− dim E(f,−1) = n

und nach Lemma 19.4 ist f(E⊥) ⊂ E⊥, da f(E) ⊂ E. Sei f ′ die Einschränkung
von f auf E⊥; nach Satz 19.9 gibt es dann einen f ′-invarianten Untervektorraum
U von E⊥ mit dimU entweder 1 oder 2, und hier ist tatsächlich dimU = 2. (Ist
dimU = 1, so ist jeder Vektor in U \ {0} ein Eigenvektor von f ′ und damit auch
von f . Aber alle Eigenvektoren von f liegen in E und E ∩ U ⊂ E ∩ E⊥ = {0}.)
Nun ist der Untervektorraum U auch f -invariant und die Einschränkung von f
auf U ist eine nichttriviale Drehung, da U keinen Eigenvektor von f enthält.
Setze W = U⊥; nach Lemma 19.4 gilt f(W ) ⊂ W , da f(U) ⊂ U , sei also g
die Einschränkung von f auf W . Dann ist g ein orthogonaler Endomorphismus
bezüglich des euklidischen Vektorraumes (W, 〈·, ·〉W ). Ferner ist E(g, 1) = E(f, 1)
und E(g,−1) = E(f,−1), da E ⊂ W , und damit ist ∆(g) = ∆(f) − 2 < n.
Nach der Induktionsannahme gibt es also zweidimensionale g-invariante Unter-
vektorräume D1, . . . , Dm (mit m ≥ 0), so dass für jedes j die Einschränkung
von g auf Dj eine nichttriviale Drehung ist und W die orthogonale Summe von
E(g, 1), E(g,−1), D1, . . . , Dm ist. Daher ist die Einschränkung von f auf Dj, die
nichts anderes ist als die Einschränkung von g auf Dj, auch eine nichttriviale
Drehung. Da E(g, 1) = E(f, 1) und E(g,−1) = E(f,−1), ist V die orthogonale
Summe der Untervektorräume E(f, 1), E(f,−1), D1, . . . , Dm und U .

Satz 19.10 Sei f : V → V ein orthogonaler Endomorphismus. Dann ist

det f = (−1)k ,

wobei k = dim E(f,−1). Insbesondere ist det f entweder 1 oder −1.
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Beweis Nach Satz 19.8 ist V die orthogonale Summe der Untervektorräume

E(f, 1), E(f,−1), D1, . . . , Dm ,

wobei für jedes j die Einschränkung fj von f auf Dj eine nichttriviale Drehung
ist. Sei f0 die Einschränkung von f auf E(f, 1) und f ′0 die Einschränkung von
f auf E(f,−1). Da eine orthogonale Summe eine direkte Summe ist, ist f die
direkte Summe der Endomorphismen f0, f

′
0, f1, . . . , fm und folglich ist

det f = (det f0)(det f ′0)(det f1) · · · (det fm) .

Aber det f0 = 1, det f ′0 = (−1)k und nach Satz 19.7 (2) ist det fj = 1 für jedes
j = 1, . . . , m. Damit ist det f = (−1)k.

Der spezielle Fall von R3 mit dem üblichen Skalarprodukt wird nun untersucht.

Satz 19.11 Sei f : R3 → R3 ein orthogonaler Endomorphismus mit det f = 1.
Dann ist R3 die orthogonale Summe von f -invarianten Untervektorräumen L und
D mit dimL = 1, dimD = 2, so dass L ⊂ E(f, 1) und die Einschränkung von f
auf D eine Drehung ist. Mit anderen Worten: Jeder orthogonale Endomorphismus
von R3 mit Determinante 1 ist eine Drehung um eine Achse.

Beweis Nach Satz 19.10 muss dim E(f, 1) ungerade und dim E(f,−1) gerade sein.
Es gibt also drei Möglichkeiten:

(1) dim E(f, 1) = 3 und dim E(f,−1) = 0: Hier ist f = idR3. Sei D = L⊥,
wobei L ein beliebiger eindimensionaler Untervektorraum von R3 ist. Dann ist
die Einschränkung von f auf D eine Drehung um den Winkel 0.

(2) dim E(f, 1) = 1 und dim E(f,−1) = 2: Sei L = E(f, 1) und D = E(f,−1).
Dann ist die Einschränkung von f auf D eine Drehung um den Winkel π.

(3) dim E(f, 1) = 1 und dim E(f,−1) = 0: Sei L = E(f, 1) und D = L⊥. Der
Beweis für Satz 19.8 zeigt dann, dass die Einschränkung von f auf D eine nicht-
triviale Drehung ist.
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Eine reelle Matrix A ∈ M(n × n,R) heißt orthogonal, wenn die Spalten von A
eine orthonormale Basis von Rn (mit dem üblichen Skalarprodukt) bilden. Also
ist die Matrix A = (aij) ∈ M(n× n,R) genau dann orthogonal, wenn gilt:

n
∑

i=1

aijaij = 1 für j = 1, . . . , n ,

n
∑

i=1

aijaik = 0 für alle j 6= k .

Ist A = (aij) ∈ M(n × n,R), so bezeichnet At wieder die zu A transponierte
Matrix, d.h., At = (atij), wobei atij = aji.

Satz 20.1 Sei A ∈ M(n× n,R); dann sind äquivalent:

(1) A ist orthogonal.

(2) AtA = En.

(3) A ist invertierbar und A−1 = At.

(4) AAt = En.

(5) Die Zeilen von A bilden eine orthonormale Basis von Rn (mit dem üblichen
Skalarprodukt).

(6) Der Endomorphismus ϕA : Rn → Rn ist orthogonal bezüglich Rn mit dem
üblichen Skalarprodukt.

Beweis (1) ⇔ (2): Sei A = (aij) und setze δij =

{

1 falls i = j ,
0 falls i 6= j .

Dann gilt

A ist orthogonal ⇔
n

∑

i=1

aijaik = δjk für alle j, k

⇔
n

∑

i=1

atjiaik = δjk für alle j, k ⇔ AtA = En .

(4) ⇔ (5): Genauso.

(2) ⇔ (3) ⇔ (4): Dies folgt unmittelbar aus Satz 6.2.

(1) ⇔ (6): Seien v1, . . . , vn ∈ Rn die Spalten von A; also gilt ϕA(ej) = vj für
jedes j, wobei (e1, . . . , en) die kanonische Basis von Rn ist. Aber (e1, . . . , en) ist
eine orthonormale Basis, und daraus ergibt sich nach Lemma 19.3, dass ϕA genau
dann orthogonal ist, wenn (v1, . . . , vn) eine orthonormale Basis von Rn ist. Damit
ist ϕA orthogonal genau dann, wenn A orthogonal ist.

174
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Lemma 20.1 (1) Es gilt (AB)t = BtAt für alle A, B ∈ M(n× n,R).

(2) Ist A ∈ M(n × n,R) invertierbar, so ist At auch invertierbar und es gilt
(At)−1 = (A−1)t.

Beweis (1) Übung.

(2) Dies folgt unmittelbar aus (1) und Satz 6.2, da

At(A−1)t = (A−1A)t = Et
n = En .

Die Menge der n× n orthogonalen Matrizen wird mit O(n) bezeichnet.

Satz 20.2 O(n) ist eine Untergruppe der Gruppe GL(n,R) aller invertierbaren
n× n reellen Matrizen. Mit anderen Worten:

(1) Die Einheitsmatrix En ist orthogonal.

(2) Ist A orthogonal, so ist A−1 orthogonal.

(3) Sind A, B orthogonal, so ist AB orthogonal.

Beweis (1) Dies ist klar.

(2) Nach Satz 20.1, Lemma 20.1 (2) und Lemma 6.3 (3) ist

(A−1)tA−1 = (At)−1A−1 = (AAt)−1 = E−1
n = En

und damit ist nach Satz 20.1 A−1 auch orthogonal.

(3) Nach Satz 20.1 und Lemma 20.1 (1) ist

(AB)tAB = BtAtAB = BtEnB = BtB = En

und damit ist nach Satz 20.1 AB auch orthogonal.

Satz 20.3 Sei A ∈ M(n× n,R) orthogonal; dann ist detA entweder 1 oder −1.

Beweis Nach Satz 20.1, Satz 15.3 und Satz 15.4 ist

(detA)2 = (detA)(detA) = (detAt)(detA) = det(AtA) = detEn = 1

und damit ist detA entweder 1 oder −1.

Im Folgenden sei (V, 〈·, ·〉) ein endlichdimensionaler euklidischer Vektorraum.
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Lemma 20.2 Sei f : V → V ein Endomorphismus von V , sei (v1, . . . , vn) eine
orthonormale Basis und sei A die Matrix von f bezüglich (v1, . . . , vn). Definiere
B = (bij) ∈ M(n× n,R) durch bij = 〈f(vi), f(vj)〉. Dann ist B = AtA.

Beweis Für alle i, j ist

bij = 〈f(vi), f(vj)〉 =
〈

n
∑

k=1

akivk,

n
∑

ℓ=1

aℓjvℓ

〉

=
n

∑

k=1

n
∑

ℓ=1

akiaℓj〈vk, vℓ〉 =
n

∑

k=1

akiakj =
n

∑

k=1

atikakj ,

d.h., B = AtA.

Satz 20.4 Sei f : V → V ein Endomorphismus von V und sei (v1, . . . , vn) eine
orthonormale Basis. Dann ist die Matrix A von f bezüglich (v1, . . . , vn) orthogonal
genau, wenn der Endomorphismus f orthogonal ist.

Beweis Definiere B = (bij) ∈ M(n× n,R) durch bij = 〈f(vi), f(vj)〉 und also ist
nach Lemma 20.2 B = AtA. Nach Lemma 19.3 ist aber f orthogonal genau dann,
wenn (f(v1), . . . , f(vn)) eine orthonormale Basis von V ist und daher genau dann,
wenn B = En. Folglich ist f orthogonal genau dann, wenn A orthogonal ist.

Satz 20.5 Sei (v1, . . . , vn) eine orthonormale Basis von V und sei (u1, . . . , un)
eine (beliebige) Basis von V ; sei P die Matrix für den Wechsel von (v1, . . . , vn)
nach (u1, . . . , un). Dann ist (u1, . . . , un) eine orthonormale Basis genau, wenn P
orthogonal ist.

Beweis Für alle 1 ≤ k, ℓ ≤ n ist

〈uk, uℓ〉 =
〈

n
∑

i=1

pikvi,

n
∑

j=1

pjℓvj

〉

=

n
∑

i=1

n
∑

j=1

pikpjℓ〈vi, vj〉 =

n
∑

j=1

pjkpjℓ =

n
∑

j=1

ptkjpjℓ

und folglich gilt 〈uk, uℓ〉 = δkℓ für alle j, k genau dann, wenn P tP = En. Daraus
ergibt sich nach Satz 20.1, dass (u1, . . . , un) genau dann eine orthonormale Basis
ist, wenn die Matrix P orthogonal ist.

Für jedes θ ∈ R seien wieder Dθ, Sθ ∈ M(2× 2,R) folgende Matrizen:

Dθ =

(

cos θ − sin θ
sin θ cos θ

)

Sθ =

(

cos θ sin θ
sin θ − cos θ

)

.

Da sin2 θ + cos2 θ = 1, sind Dθ und Sθ orthogonale Matrizen.
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Satz 20.6 Sei A ∈ M(2 × 2,R) orthogonal; dann gibt es ein eindeutiges θ mit
0 ≤ θ < 2π, so dass A entweder Dθ oder Sθ ist. Mit anderen Worten ist

{Dθ : 0 ≤ θ < 2π} ∪ {Sθ : 0 ≤ θ < 2π}

genau die Menge aller 2× 2 orthogonalen Matrizen.

Beweis Übung.

Sei 0 ≤ θ < 2π; dann ist

Dθ

(

x
y

)

=

(

cos θ − sin θ
sin θ cos θ

) (

x
y

)

=

(

x cos θ − y sin θ
x sin θ + y cos θ

)

.

Sei nun v ∈ R2; dann gibt es r ≥ 0 und 0 ≤ α < 2π, so dass v =

(

r cosα
r sinα

)

, und

ϕDθ
(v) = Dθ

(

r cosα
r sinα

)

=

(

r cosα cos θ − r sinα sin θ
r cosα sin θ + r sinα cos θ

)

=

(

r cos(α + θ)
r sin(α + θ)

)

.

Also ist ϕDθ
wirklich eine Drehung um den Winkel θ. Für die Matrix Sθ gilt

Sθ

(

x
y

)

=

(

cos θ sin θ
sin θ − cos θ

) (

x
y

)

=

(

x cos θ + y sin θ
x sin θ − y cos θ

)

.

Sei v ∈ R2 mit v =

(

r cosα
r sinα

)

; dann ist

ϕSθ
(v) = Sθ

(

r cosα
r sinα

)

=

(

r cosα cos θ + r sinα sin θ
r cosα sin θ − r sinα cos θ

)

=

(

r cos(θ − α)
r sin(θ + α)

)

.

Also ist ϕSθ
eine Spiegelung an der Geraden y = (θ/2)x.

Sei MO(n× n,R) die Menge aller Matrizen in M(n× n,R) mit folgender Block-
Gestalt:















Ep
−Eq

Dθ1

. . .

Dθm















,

wobei p ≥ 0, q ≥ 0, m ≥ 0 und 0 < θj < π für j = 1, . . . , m (und natürlich ist
dann p+ q + 2m = n).

Satz 20.7 Sei A ∈ M(n×n,R) orthogonal; dann gibt es eine orthogonale Matrix
P ∈ M(n× n,R), so dass P−1AP ∈ MO(n× n,R).
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Beweis Setze f = ϕA; nach Satz 20.1 ist f : Rn → Rn orthogonal und folglich gibt
es nach Satz 19.8 zweidimensionale f -invariante Untervektorräume D1, . . . , Dm

von Rn (mit m ≥ 0), so dass für jedes j die Einschränkung fj von f auf Dj eine
nichttriviale Drehung ist und Rn die orthogonale Summe der Untervektorräume
E(f, 1), E(f,−1), D1, . . . , Dm ist. Sei 1 ≤ k ≤ m; nach Satz 19.7 (2) gibt es
eine orthonormale Basis (uk1, u

k
2) von D2, so dass Dθk

die Matrix von fk bezüglich
(uk1, u

k
2) ist. (Ist D2π−θk

die Matrix von fk bezüglich einer orthonormalen Basis
(w1, w2), so ist Dθk

die Matrix von fk bezüglich (w2, w1).) Sei (u1, . . . , up) eine
orthonormale Basis von E(f, 1) und (u′1, . . . , u

′
q) eine orthonormale Basis von

E(f,−1). Nach Lemma 18.7 ist dann

(v1, . . . , vn) = (u1, . . . , up, u
′
1, . . . , u

′
q, u

1
1, u

1
2, . . . , u

m
1 , u

m
2 )

eine orthonormale Basis von Rn und

B =















Ep
−Eq

Dθ1

. . .

Dθm















ist die Matrix von f = ϕA bezüglich (v1, . . . , vn). Sei P die Matrix für den Wechsel
von der kanonischen Basis (e1, . . . , en) von Rn nach (v1, . . . , vn). Nach Satz 20.5
ist P orthogonal, da (e1, . . . , en) eine orthonormale Basis von Rn ist, und nach
Satz 8.8 ist B = P−1AP , da A die Matrix von ϕA bezüglich (e1, . . . , en) ist.
Insbesondere ist P−1AP ∈ MO(n× n,R).

Eine komplexe Matrix A ∈ M(n × n,C) heißt unitär, wenn die Spalten von A
eine orthonormale Basis von Cn (mit dem üblichen Skalarprodukt) bilden. Also
ist die Matrix A = (aij) ∈ M(n× n,C) genau dann unitär, wenn gilt:

n
∑

i=1

aijaij = 1 für j = 1, . . . , n und
n

∑

i=1

aijaik = 0 für alle j 6= k ,

(wobei aij statt aij geschrieben wird). Ist A = (aij) ∈ M(n× n,C), so bezeichnet
At die zu A transponierte Matrix, d.h., At = (atij), wobei atij = aji, und A

bezeichnet die zu A konjugierte Matrix, d.h., A = (aij).

Satz 20.8 Sei A ∈ M(n× n,C); dann sind äquivalent:

(1) A ist unitär.

(2) AtA = En.

(3) A ist invertierbar und A−1 = A
t
.
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(4) AA
t
= En.

(5) Die Zeilen von A bilden eine orthonormale Basis von Cn (mit dem üblichen
Skalarprodukt).

(6) Der Endomorphismus ϕA : Cn → Cn ist unitär bezüglich Cn mit dem üblichen
Skalarprodukt.

Beweis (1) ⇔ (2): Sei A = (aij) und setze δij =

{

1 falls i = j ,
0 falls i 6= j .

Dann gilt

A ist orthogonal ⇔
n

∑

i=1

aijaik = δjk für alle j, k

⇔
n

∑

i=1

atjiaik = δjk für alle j, k ⇔ AtA = En .

(4) ⇔ (5): Genauso.

(2) ⇔ (3) ⇔ (4): Dies folgt unmittelbar aus Satz 6.2.

(1) ⇔ (6): Seien v1, . . . , vn ∈ Cn die Spalten von A; also gilt ϕA(ej) = vj für
jedes j, wobei (e1, . . . , en) die kanonische Basis von Cn ist. Aber (e1, . . . , en) ist
eine orthonormale Basis, und daraus ergibt sich nach Lemma 19.3, dass ϕA genau
dann unitär ist, wenn (v1, . . . , vn) eine orthonormale Basis von Cn ist. Damit ist
ϕA unitär genau dann, wenn A unitär ist.

Lemma 20.3 (1) Es gilt AB = AB für alle A, B ∈ M(n× n,C).

(2) Ist A ∈ M(n × n,C) invertierbar, so ist A auch invertierbar und es gilt
(A)−1 = A−1.

(3) Es gilt A
t
= At für alle A ∈ M(n× n,C).

Beweis (1) und (3) sind klar.

(2) Dies folgt unmittelbar aus (1) und Satz 6.2, da

A−1A = A−1A = En = En .

Die Menge der n× n unitären Matrizen wird mit U(n) bezeichnet.

Satz 20.9 U(n) ist eine Untergruppe der Gruppe GL(n,C) aller invertierbaren
n× n komplexen Matrizen. Mit anderen Worten:

(1) Die Einheitsmatrix En ist unitär.

(2) Ist A unitär, so ist A−1 unitär.

(3) Sind A, B unitär, so ist AB unitär.
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Beweis (1) Dies ist klar.

(2) Nach Satz 20.8, Lemma 20.1 (2), Lemma 20.3 (2) und Lemma 6.3 (3) ist

(A−1)tA−1 = (At)−1(A)−1 = (AAt)−1 = E−1
n = En

und damit ist nach Satz 20.8 A−1 auch unitär.

(3) Nach Satz 20.8, Lemma 20.1 (1) und Lemma 20.3 (1) ist

(AB)tAB = BtAtAB = BtEnB = BtB = En

und damit ist nach Satz 20.8 AB auch unitär.

Satz 20.10 Sei A ∈ M(n× n,C) unitär; dann ist |detA| = 1.

Beweis Es ist klar, dass detA = detA, und daraus folgt nach Satz 20.8, Satz 15.3
und Satz 15.4, dass

|detA|2 = (detA)(detA) = (detAt)(detA) = det(AtA) = detEn = 1 .

Damit ist | detA | = 1.

Im Folgenden sei (V, 〈·, ·〉) ein endlichdimensionaler unitärer Vektorraum.

Lemma 20.4 Sei f : V → V ein Endomorphismus von V , sei (v1, . . . , vn) eine
orthonormale Basis und sei A die Matrix von f bezüglich (v1, . . . , vn). Definiere
B = (bij) ∈ M(n× n,C) durch bij = 〈f(vi), f(vj)〉. Dann ist B = AtA.

Beweis Für alle i, j ist

bij = 〈f(vi), f(vj)〉 =
〈

n
∑

k=1

akivk,

n
∑

ℓ=1

aℓjvℓ

〉

=

n
∑

k=1

n
∑

ℓ=1

akiaℓj〈vk, vℓ〉 =

n
∑

k=1

akiakj =

n
∑

k=1

atikakj ,

d.h., B = AtA.

Satz 20.11 Sei f : V → V ein Endomorphismus von V und sei (v1, . . . , vn) eine
orthonormale Basis. Dann ist die Matrix A von f bezüglich (v1, . . . , vn) unitär
genau, wenn der Endomorphismus f unitär ist.
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Beweis Definiere B = (bij) ∈ M(n × n,C) durch bij = 〈f(vi), f(vj)〉 und also
ist nach Lemma 20.4 B = AtA. Nach Lemma 19.3 ist aber f unitär genau dann,
wenn (f(v1), . . . , f(vn)) eine orthonormale Basis von V ist und daher genau dann,
wenn B = En. Folglich ist f unitär genau dann, wenn A unitär ist.

Satz 20.12 Sei (v1, . . . , vn) eine orthonormale Basis von V und sei (u1, . . . , un)
eine (beliebige) Basis von V ; sei P die Matrix für den Wechsel von (v1, . . . , vn)
nach (u1, . . . , un). Dann ist (u1, . . . , un) eine orthonormale Basis genau, wenn P
unitär ist.

Beweis Für alle 1 ≤ k, ℓ ≤ n ist

〈uk, uℓ〉 =
〈

n
∑

i=1

pikvi,

n
∑

j=1

pjℓvj

〉

=

n
∑

i=1

n
∑

j=1

pikpjℓ〈vi, vj〉 =

n
∑

j=1

pjkpjℓ =

n
∑

j=1

ptkjpjℓ

und folglich gilt 〈uk, uℓ〉 = δkℓ für alle j, k genau dann, wenn P tP = En. Daraus
ergibt sich nach Satz 20.8, dass (u1, . . . , un) genau dann eine orthonormale Basis
ist, wenn die Matrix P unitär ist.

Satz 20.13 Sei A ∈ M(n × n,C) unitär; dann gibt es eine unitäre Matrix P ,
so dass P−1AP eine Diagonalmatrix ist. Insbesondere ist jede unitäre Matrix
diagonalisierbar.

Beweis Nach Satz 20.8 ist ϕA : Cn → Cn unitär (bezüglich Cn mit dem üblichen
Skalarprodukt) und folglich gibt es nach Satz 19.6 eine aus Eigenvektoren von
ϕA bestehende orthonormale Basis (v1, . . . , vn) von Cn. Die Matrix D von ϕA
bezüglich (v1, . . . , vn) ist also eine Diagonalmatrix. Sei P die Matrix für den
Wechsel von der kanonischen Basis (e1, . . . , en) von Cn nach (v1, . . . , vn). Nach
Satz 20.12 ist P unitär, da (e1, . . . , en) eine orthonormale Basis von Cn ist, und
da A die Matrix von ϕA bezüglich (e1, . . . , en) ist, ist nach Satz 8.8 D = P−1AP ,
d.h. P−1AP ist eine Diagonalmatrix.



21 Selbstadjungierte Endomorphismen

Im Folgenden sei (V, 〈·, ·〉) entweder ein euklidischer Vektorraum oder ein unitärer
Vektorraum. Der zugrundeliegende Körper wird mit K bezeichnet. Es gilt also
K = R, falls (V, 〈·, ·〉) ein euklidischer Vektorraum ist, und K = C, falls (V, 〈·, ·〉)
ein unitärer Vektorraum ist. Ist (V, 〈·, ·〉) ein euklidischer Vektorraum und λ ∈ R,
so ist λ einfach als λ zu interpretieren.

Ein Endomorphismus f : V → V heißt selbstadjungiert, wenn

〈f(u), v〉 = 〈u, f(v)〉

für alle u, v ∈ V .

Satz 21.1 Sei (V, 〈·, ·〉) ein unitärer Vektorraum. Dann ist ein Endomorphismus
f : V → V selbstadjungiert genau, wenn 〈f(v), v〉 reell ist für alle v ∈ V .

Beweis Ist f selbstadjungiert, so ist

〈f(v), v〉 = 〈v, f(v)〉 = 〈f(v), v〉

und damit ist 〈f(v), v〉 reell für alle v ∈ V . Die Umkehrung ist eine Übung.

Für euklidische Vektorräume gibt es kein Ergebnis, das Satz 21.1 entspricht.

Satz 21.2 Sei (V, 〈·, ·〉) ein unitärer Vektorraum und sei f : V → V ein selbst-
adjungierter Endomorphismus. Dann ist jeder Eigenwert von f reell.

Beweis Sei λ ∈ C ein Eigenwert von f und sei v ∈ V ein Eigenvektor von f zum
Eigenwert λ. Dann ist

λ〈v, v〉 = 〈λv, v〉 = 〈f(v), v〉 = 〈v, f(v)〉 = 〈v, λv〉 = λ〈v, v〉

und daraus folgt, dass λ = λ, da 〈v, v〉 6= 0. Damit ist λ ∈ R.

Sei f : V → V ein selbstadjungierter Endomorphismus; dann ist jeder Eigenwert
von f reell: Für einen euklidischen Vektorraum ist dies trivial der Fall und für
einen unitären Vektorraum ist dies die Behauptung von Satz 21.2.

Satz 21.3 Sei f : V → V ein selbstadjungierter Endomorphismus und seien
λ1, λ2 verschiedene Eigenwerte von f . Dann sind die Eigenräume E(f, λ1) und
E(f, λ2) orthogonal.

182
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Beweis Seien v1 ∈ E(f, λ1), v2 ∈ E(f, λ2); dann ist

λ1〈v1, v2〉 = 〈λ1v1, v2〉 = 〈f(v1), v2〉
= 〈v1, f(v2)〉 = 〈v1, λ2v2〉 = λ2〈v1, v2〉 = λ2〈v1, v2〉 ,

da λ2 ∈ R, und daraus folgt, dass 〈v1, v2〉 = 0, da λ1 6= λ2.

Lemma 21.1 Sei f : V → V ein selbstadjungierter Endomorphismus und sei U
ein Untervektorraum von V mit f(U) ⊂ U . Dann gilt auch f(U⊥) ⊂ U⊥.

Beweis Seien v ∈ U⊥, u ∈ U ; dann gilt 〈f(v), u〉 = 〈v, f(u)〉 = 0, da f(u) ∈ U .
Mit anderen Worten ist f(v) ⊥ u für alle v ∈ U⊥, u ∈ U ; d.h., f(U⊥) ⊂ U⊥.

Bemerkung Im Gegensatz zu dem entsprechenden Lemma für orthogonale bzw.
unitäre Vektorräume (Lemma 19.4) braucht man hier in Lemma 21.1 nicht an-
zunehmen, dass V endlichdimensional ist.

Sei f : V → V ein Endomorphismus von V ; ein Endomorphismus g : V → V
heißt zu f adjungiert, wenn für alle u, v ∈ V

〈g(u), v〉 = 〈u, f(v)〉 .

Also ist f selbstadjungiert genau dann, wenn f zu sich selbst adjungiert ist.

Lemma 21.2 Sei f : V → V ein Endomorphismus. Dann gibt es höchstens
einen Endomorphismus, der zu f adjungiert ist.

Beweis Seien g, h : V → V Endomorphismen, die zu f adjungiert sind. Für jedes
v ∈ V gilt dann

〈g(v)− h(v), g(v)− h(v)〉 = 〈g(v), g(v)− h(v)〉 − 〈h(v), g(v)− h(v)〉
= 〈v, f(g(v)− h(v))〉 − 〈v, f(g(v)− h(v))〉 = 0

und damit ist g(v) = h(v) für alle v ∈ V , d.h., g = h.

Wenn ein (und damit der) zu f adjungierte Endomorphismus existiert, so wird
dieser Endomorphismus meistens mit f ad bezeichnet.

Im Folgenden sei V stets endlichdimensional ist mit dimV ≥ 1.

Lemma 21.3 Seien f, g : V → V Endomorphismen und sei (v1, . . . , vn) eine
orthonormale Basis von V . Dann ist g der zu f adjungierte Endomorphismus
genau, wenn 〈g(vi), vj〉 = 〈vi, f(vj)〉 für alle 1 ≤ i, j ≤ n.
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Beweis Nehme an, dass 〈g(vi), vj〉 = 〈vi, f(vj)〉 für alle 1 ≤ i, j ≤ n. Seien nun
u, v ∈ V ; es gibt also eindeutige Elemente λ1, . . . , λn, µ1, . . . , µm ∈ K, so dass
u = λ1v1 + · · ·+ λnvn und v = µ1v1 + · · ·+ µnvn, und dann ist

〈u, f(v)〉 =
〈

n
∑

i=1

λivi,

n
∑

j=1

µjf(vj)
〉

=

n
∑

i=1

n
∑

j=1

λiµj〈vi, f(vj)〉 =

n
∑

i=1

n
∑

j=1

λiµj〈g(vi), vj〉

=
〈

n
∑

i=1

λig(vi),
n

∑

j=1

µjvj

〉

= 〈g(u), v〉

und daraus folgt, dass g der zu f adjungierte Endomorphismus ist. Natürlich ist
die Umkehrung trivial richtig.

Satz 21.4 Sei f : V → V ein Endomorphismus von V . Dann existiert der zu
f adjungierte Endomorphismus f ad : V → V . Ist ferner α eine orthonormale
Basis von V und ist A die Matrix von f bezüglich α, so ist At, falls (V, 〈·, ·〉) ein

euklidischer Vektorraum ist, bzw. A
t
, falls (V, 〈·, ·〉) ein unitärer Vektorraum ist,

die Matrix von f ad bezüglich der Basis α.

Beweis Sei (v1, . . . , vn) eine orthonormale Basis von V und A = (aij) die Matrix
von f bezüglich (v1, . . . , vn). Nach Lemma 8.2 gibt es dann einen eindeutigen
Endomorphismus g : V → V , so dass

g(vj) =
n

∑

i=1

ajivi =
n

∑

i=1

a tijvi

für j = 1, . . . , n, und folglich ist At bzw. A
t
die Matrix von g bezüglich der Basis

(v1, . . . , vn). Seien 1 ≤ j, k ≤ n; dann ist

〈g(vj), vk〉 =
〈

n
∑

i=1

a tijvi, vk

〉

=
n

∑

i=1

a tij〈vi, vk〉 = a tkj = ajk

=

n
∑

i=1

aik〈vj , vi〉 =
〈

vj,

n
∑

i=1

aikvi

〉

= 〈vj, f(vk)〉

und damit ist nach Lemma 21.3 g der zu f adjungierte Endomorphismus. Ferner

ist At bzw. A
t
die Matrix von g bezüglich (v1, . . . , vn).

Satz 21.5 Sei f : V → V ein Endomorphismus. Dann ist det f ad = det f , falls
(V, 〈·, ·〉) ein euklidischer Vektorraum ist, und det f ad = det f , falls (V, 〈·, ·〉) ein
unitärer Vektorraum ist.
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Beweis Dies folgt unmittelbar aus Satz 21.4 und Satz 15.4.

Satz 21.6 Sei f : V → V ein Endomorphismus. Dann sind äquivalent:

(1) f ist orthogonal bzw. unitär.

(2) f ist ein Automorphismus und f−1 = f ad.

Beweis Dies ist lediglich eine Umformulierung von Satz 19.3.

Eine Matrix A = (aij) ∈ M(n × n,R) heißt symmetrisch, wenn aji = aij für alle
i, j, d.h., wenn A = At.

Eine Matrix A = (aij) ∈ M(n × n,C) heißt Hermitesch, wenn aji = aij für alle

i, j, d.h., wenn A = A
t
.

Satz 21.7 Sei f : V → V ein Endomorphismus und α eine orthonormale Basis
von V . Dann ist die Matrix A von f bezüglich α symmetrisch bzw. Hermitesch
genau, wenn f selbstadjungiert ist.

Beweis Dies folgt unmittelbar aus Satz 21.4 und Lemma 8.2.

Lemma 21.4 Sei f : V → V ein selbstadjungierter Endomorphismus. Dann
besitzt f einen Eigenwert.

Beweis Ist (V, 〈·, ·〉) ein unitärer Vektorraum, dann folgt umittelbar aus Satz 16.4
und Satz 16.5, dass f einen Eigenwert besitzt, da χf 6= 0 und Gradχf ≥ 1.
Nehme also an, dass (V, 〈·, ·〉) ein euklidischer Vektorraum ist. Sei (v1, . . . , vn) eine
orthonormale Basis von V und sei A ∈ M(n × n,R) die Matrix von f bezüglich
(v1, . . . , vn). Sei AC ∈ M(n× n,C) die Matrix A als komplexe Matrix angesehen.
Nach Satz 21.7 ist A symmetrisch und damit ist AC Hermitesch. Daraus folgt
nach Satz 21.7, dass der Endomorphismus ϕAC

: Cn → Cn selbstadjungiert ist.
Insbesondere besitzt ϕAC

einen Eigenwert λ und nach Satz 21.1 ist λ ∈ R. Nun ist
λ (per Definition) ein Eigenwert von AC und daraus ergibt sich, dass λ auch ein
Eigenwert von A ist. (Sei z = x+ iy ∈ Cn ein Eigenvektor von AC zum Eigenwert
λ, wobei x, y ∈ Rn. Dann ist ACz = λz und damit Ax = λx und Ay = λy, d.h., λ
ist ein Eigenwert von A, da nicht beide von x und y gleich 0 sein können.) Nach
Satz 9.3 (1) ist dann λ ein Eigenwert von f .

Satz 21.8 Sei f : V → V ein selbstadjungierter Endomorphismus von V und
seien λ1, . . . , λm die verschiedenen Eigenwerte von f . Dann ist V die orthogonale
Summe der Eigenräume E(f, λ1), . . . , E(f, λm).



21 Selbstadjungierte Endomorphismen 186

Beweis Sei U = E(f, λ1) + · · ·+ E(f, λm); nach Satz 21.3 ist U die orthogonale
Summe von E(f, λ1), . . . , E(f, λm) und also bleibt nur zu zeigen, dass U = V .
Nehme an, dass U 6= V und setze W = U⊥. Da f(E(f, λj)) ⊂ E(f, λj) für jedes
j, ist auch f(U) ⊂ U , und daraus folgt nach Lemma 21.1, dass f(W ) ⊂ W . Sei
g : W → W die Einschränkung von f auf W . Dann sieht man leicht, dass g
selbstadjungiert ist (bezüglich (W, 〈·, ·〉W ), wobei 〈·, ·〉W die Einschränkung von
〈·, ·〉 auf W ×W ist). Da dimW ≥ 1, besitzt g nach Lemma 21.4 einen Eigenwert
λ. Sei v ∈ V ein Eigenvektor von g zum Eigenwert λ. Dann ist f(v) = g(v) = λv,
d.h., λ ist auch ein Eigenwert von f und damit ist λ = λj für ein j und v
ist ein Eigenvektor von f zum Eigenwert λ. Also ist v ∈ U ∩ W und dies ist
ein Widerspruch, da U ⊥ W . Daraus ergibt sich, dass U = V , d.h., V ist die
orthogonale Summe der Eigenräume E(f, λ1), . . . , E(f, λm).

Satz 21.9 Sei f : V → V ein selbstadjungierter Endomorphismus. Dann gibt es
eine aus Eigenvektoren von f bestehende orthonormale Basis von V .

Beweis Seien λ1, . . . , λm die verschiedenen Eigenwerte von f und für jedes j sei
(uj1, . . . , u

j
kj

) eine orthonormale Basis von E(f, λj). Dann ist nach Satz 21.8 und

Lemma 18.7 (u1
1, . . . , u

1
k1
, . . . , um1 , . . . , u

m
km

) eine orthonormale Basis von V und
damit eine aus Eigenvektoren von f bestehende orthonormale Basis.

Satz 21.10 Jeder Eigenwert einer Hermiteschen Matrix ist reell.

Beweis Dies folgt unmittelbar aus Satz 21.2, Satz 21.7 und Satz 9.3 (1).

Satz 21.11 Sei A symmetrisch bzw. Hermitesch; dann gibt es eine orthogonale
bzw. eine unitäre Matrix P , so dass P−1AP eine Diagonalmatrix ist. Insbesondere
ist jede symmetrische bzw. jede Hermitesche Matrix diagonalisierbar.

Beweis Sei K = R, falls A symmetrisch ist, und K = C, falls A Hermitesch
ist. Nach Satz 21.7 ist der Endomorphismus ϕA : Kn → Kn selbstadjungiert
(bezüglich Kn mit dem üblichen Skalarprodukt) und folglich gibt es nach Satz 21.9
eine aus Eigenvektoren von ϕA bestehende orthonormale Basis (v1, . . . , vn) von
Kn. Die Matrix D von ϕA bezüglich (v1, . . . , vn) ist also eine Diagonalmatrix.
Sei P die Matrix für den Wechsel von der kanonischen Basis (e1, . . . , en) von Kn

nach (v1, . . . , vn). Nach Satz 20.4 bzw. Satz 20.12 ist P orthogonal bzw. unitär,
da (e1, . . . , en) eine orthonormale Basis von Kn ist. Da ferner A die Matrix von
ϕA bezüglich (e1, . . . , en) ist, ist nach Satz 8.8 D = P−1AP , d.h., P−1AP ist eine
Diagonalmatrix.



21 Selbstadjungierte Endomorphismen 187

Sei A eine Hermitesche Matrix; nach Satz 21.11 gibt es dann eine unitäre Matrix
P , so dass P−1AP eine DiagonalmatrixD ist, und die Einträge auf der Diagonalen
von D müssen alle reell sein, da sie Eigenwerte von A sind.

Sei A eine symmetrische bzw. eine Hermitesche Matrix; es gibt nun das folgende
Verfahren zur Bestimmung einer orthogonalen bzw. einer unitären Matrix P , so
dass P−1AP eine Diagonalmatrix ist:

(1) Man bestimme die Nullstellen λ1, . . . , λm des charakteristischen Polynoms
χA. Nach Satz 16.3 sind dann λ1, . . . , λm die Eigenwerte von A.

(2) Für jedes j = 1, . . . , m ist nach Lemma 9.4

E(A, λj) = Lös(A− λjEn, 0)

und also kann mit Hilfe von Satz 9.1 und des Gaußschen Algorithmus eine Basis
(uj1, . . . , u

j
pj

) von E(A, λj) konstruiert werden.

(3) Für jedes j wende das Gram-Schmidtsche Verfahren auf (uj1, . . . , u
j
pj

) an, um

eine orthonormale Basis (vj1, . . . , v
j
pj

) von E(A, λj) zu konstruieren.

(4) Sei P die Matrix, die w1, . . . , wn als Spalten hat, wobei

(w1, . . . , wn) = (v1
1, . . . , v

1
p1
, v2

1, . . . , v
2
p2
, . . . , vm1 , . . . , v

m
pm

) .

Dann ist P orthogonal bzw. unitär und P−1AP = D, wobeiD die Diagonalmatrix
ist mit den Einträgen λ1, . . . , λ1, . . . , λm, . . . , λm auf der Diagonalen, wobei für
jedes j der Eigenwert λj genau pj-mal vorkommt.

Im Folgenden sei (V, 〈·, ·〉) ein endlichdimensionaler unitärer Vektorraum. Eine
Klasse Endomorphismen, die normalen Endomorphismen, wird nun eingeführt,
und es wird gezeigt, dass ein Endomorphismus f genau dann normal ist, wenn es
eine aus Eigenvektoren von f bestehende orthonormale Basis von V gibt.

Ein Endomorphismus f : V → V von V heißt normal, wenn f ◦ f ad = f ad ◦ f .
Insbesondere ist ein unitärer Endomorphismus f normal, da nach Satz 21.6

f ◦ f ad = f ◦ f−1 = idV = f−1 ◦ f = f ad ◦ f .

Ferner ist ein selbstadjungierter Endomorphismus f auch normal, da

f ◦ f ad = f ◦ f = f ad ◦ f .

Lemma 21.5 Sei f : V → V ein normaler Endomorphismus. Dann gilt:

(1) ‖f(v)‖ = ‖f ad(v)‖ für alle v ∈ V .

(2) Kern f = Kern f ad.

(3) Kern (f − λ idV ) = Kern (f ad − λ idV ) für alle λ ∈ C.
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(4) λ ∈ C ist ein Eigenwert von f genau dann, wenn λ ein Eigenwert von f ad

ist.

(5) E(f, λ) = E(f ad, λ) für jeden Eigenwert λ von f .

(6) Sind λ1 und λ2 Eigenwerte von f mit λ1 6= λ2, so sind die Eigenräume
E(f, λ1) und E(f, λ2) orthogonal.

Beweis (1) Für jedes v ∈ V gilt

‖f(v)‖2 = 〈f(v), f(v)〉 = 〈f ad(f(v)), v〉 = 〈f(f ad(v)), v〉
= 〈v, f(f ad(v))〉 = 〈f ad(v), f ad(v)〉 = 〈f ad(v), f ad(v)〉 = ‖f ad(v)‖2 .

(2) Nach (1) ist

Kern f = {v ∈ V : ‖f(v)‖ = 0} = {v ∈ V : ‖f ad(v)‖ = 0} = Kern f ad .

(3) Es gilt (f − λ idV )ad = f ad − λ idV , da

〈(f ad − λ idV )(u), v〉 = 〈f ad(u), v〉 − λ〈u, v〉
= 〈u, f(v)〉 − 〈u, λv〉 = 〈u, (f − λ idV )(v)〉 .

Ferner ist f − λ idV normal, da

(f − λ idV ) ◦ (f − λ idV )ad = (f − λ idV ) ◦ (f ad − λ idV )

= f ◦ f ad − λf ad − λf + λλ idV = f ad ◦ f − λf − λf ad + λλ idV

= (f ad − λidV ) ◦ (f − λ idV ) = (f − λ idV )ad ◦ (f − λ idV ) .

Daraus ergibt sich nach (2), dass

Kern (f − λ idV ) = Kern (f − λ idV )ad = Kern (f ad − λ idV ) .

(4) Sei λ ∈ C; dann ist λ ein Eigenwert von f genau, wenn Kern (f−λ idV ) 6= {0}
und λ ist ein Eigenwert von f ad genau dann, wenn Kern (f ad−λ idV ) 6= {0}. Aber
nach (3) ist Kern (f − λ idV ) = Kern (f ad − λ idV ).

(5) Dies folgt unmittelbar aus (3).

(6) Seien λ1, λ2 verschiedene Eigenwerte von f und v1 ∈ E(f, λ1), v2 ∈ E(f, λ2).
Nach (5) gilt auch v1 ∈ E(f ad, λ1) und folglich ist

λ2〈v1, v2〉 = 〈v1, λ2v2〉 = 〈v1, f(v2)〉 = 〈f ad(v1), v2〉 = 〈λ1v1, v2〉 = λ1〈v1, v2〉 .

Damit ist 〈v1, v2〉 = 0, d.h., v1 ⊥ v2, da λ1 6= λ2.
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Satz 21.12 Sei f : V → V ein Endomorphismus. Dann sind die folgenden drei
Aussagen äquivalent:

(1) f ist normal.

(2) V ist die orthogonale Summe der Eigenräume E(f, λ1), . . . , E(f, λm), wobei
λ1, . . . , λm die verschiedenen Eigenwerte von f sind.

(3) Es gibt eine aus Eigenvektoren von f bestehende orthonormale Basis von V .

Beweis (2) ⇒ (3): Dies ist identisch mit dem Beweis für Satz 21.9.

(3)⇒ (1): Sei (v1, . . . , vn) eine aus Eigenvektoren von f bestehende orthonormale
Basis von V , wobei vj ein Eigenvektor zum Eigenwert λj ist für jedes j. Dann
ist die Matrix von f bezüglich (v1, . . . , vn) die Diagonalmatrix D mit Einträgen

λ1, . . . , λn auf der Diagonalen. Daraus folgt nach Satz 21.4, dass D
t
die Matrix

von f ad bezüglich (v1, . . . , vn) ist, und damit ist DD
t
bzw. D

t
D die Matrix von

f ◦ f ad bzw. f ad ◦ f bezüglich (v1, . . . , vn). Aber D
t

ist die Diagonalmatrix mit

Einträgen λ1, . . . , λn auf der Diagonalen und folglich ist DD
t

= D
t
D = D′,

wobei D′ die Diagonalmatrix mit Einträgen |λ1|2, . . . , |λn|2 auf der Diagonalen
ist. Also folgt aus Lemma 8.2, dass f ◦ f ad = f ad ◦ f , d.h., f ist normal.

(1) ⇒ (2): Seien λ1, . . . , λm die verschiedenen Eigenwerte von f ; dann ist nach
Lemma 21.5 (6) die Summe U = E(f, λ1) + · · · + E(f, λm) eine orthogonale
Summe und also genügt es zu zeigen, dass U = V . Nehme an, dass U 6= V und
setze W = U⊥. Sei w ∈ W ; dann gilt 〈w, u〉 = 0 für jedes u ∈ E(f, λj) und
folglich ist

0 = λj〈w, u〉 = 〈w, λju〉 = 〈w, f ad(u)〉 = 〈f(w), u〉 ,

da nach Lemma 21.5 (4) E(f, λj) = E(f ad, λj). Dies bedeutet, dass f(w) ⊥ u für
alle u ∈ E(f, λj), und daher ist f(w) ⊥ u für alle w ∈ W und alle u ∈ U , d.h.,
f(W ) ⊂W . Sei g die Einschränkung von f auf W . Da dimW ≥ 1, ist χg 6= 0 ein
Polynom mit Gradχg ≥ 1 und folglich gibt es nach Satz 16.4 und Satz 16.5 einen
Eigenwert λ ∈ C von g. Sei v ∈ V ein Eigenvektor von g zum Eigenwert λ. Dann
ist f(v) = g(v) = λv, d.h., λ ist auch ein Eigenwert von f und damit ist λ = λj
für ein j und v ist ein Eigenvektor von f zum Eigenwert λ. Also ist v ∈ U ∩W
und dies ist ein Widerspruch, da U ⊥ W . Daraus ergibt sich, dass U = V , d.h.,
V ist die orthogonale Summe der Eigenräume E(f, λ1), . . . , E(f, λm).

Satz 21.12 liefert einen alternativen Beweis für Satz 19.6 und für Satz 21.9.
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Im Folgenden sei K ein Körper und seien V und W Vektorräume über K.

Eine Abbildung s : V ×W → K heißt Bilinearform, wenn für alle v1, v2, v ∈ V ,
w1, w2, w ∈W und alle λ1, λ2 ∈ K gilt:

s(λ1v1 + λ2v2, w) = λ1s(v1, w) + λ2s(v2, w) ,

s(v, λ1w1 + λ2w2) = λ1s(v, w1) + λ2s(v, w2) .

Beispiele (1) Ist (V, 〈·, ·〉) ein euklidischer Vektorraum, so ist das Skalarprodukt
〈·, ·〉 : V × V → R eine Bilinearform.

(2) Sei A = (aij) ∈ M(m× n,K) und definiere s : Km ×Kn → K durch

s(x, y) =

m
∑

j=1

n
∑

k=1

ajkxjyk ,

wobei x = (x1, . . . , xm) und y = (y1, . . . , yn); dann ist s eine Bilinearform.

(3) Für a, b ∈ R mit a < b sei C([a, b],R) der reelle Vektorraum aller stetigen
Abbildungen von [a, b] nach R. Sei K : [a, b] × [c, d] → R stetig und definiere
s : C([a, b],R)× C([c, d],R)→ R durch

s(f, g) =

∫ b

a

∫ d

c

K(x, y)f(x)g(y) dx dy ;

dann ist s eine Bilinearform.

Für jede Bilinearform s : V × W → K gibt es die transponierte Bilinearform
st : W × V → K, die für alle w ∈W , v ∈ V gegeben ist durch

st(w, v) = s(v, w) .

Seien nun V und W endlichdimensional mit dimV = m ≥ 1 und dimW = n ≥ 1.

Sei s : V × W → K eine Bilinearform, sei (v1, . . . , vm) eine Basis von V und
(w1, . . . , wn) eine Basis von W . Definiere eine Matrix A = (aij) ∈ M(m × n,K)
durch aij = s(vi, wj); dann heißt A die Matrix von s bezüglich (v1, . . . , vm) und
(w1, . . . , wn). Ist A die Matrix von s bezüglich (v1, . . . , vm) und (w1, . . . , wn),
so ist die transponierte Matrix At ∈ M(n × m,K) die Matrix von st bezüglich
(w1, . . . , wn) und (v1, . . . , vm).

Lemma 22.1 Sei (v1, . . . , vm) eine Basis von V und (w1, . . . , wn) eine Basis von
W . Dann gibt es zu jeder Matrix A ∈ M(m × n,K) genau eine Bilinearform s,
so dass A die Matrix von s bezüglich (v1, . . . , vm) und (w1, . . . , wn) ist.

190
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Beweis Übung.

Im Folgenden sei s : V ×W → K eine Bilinearform.

Lemma 22.2 Seien α, α′ zwei Basen von V und β, β ′ zwei Basen von W . Sei
A bzw. B die Matrix von s bezüglich α und β bzw. bezüglich α′ und β ′. Dann gilt
B = P tAQ, wobei P die Matrix für den Wechsel von α nach α′ und Q die Matrix
für den Wechsel von β nach β ′ ist.

Beweis Setze A = (aij), B = (bij), P = (pij), Q = (qij); seien α = (v1, . . . , vm),
α′ = (v′1, . . . , v

′
m), β = (w1, . . . , wn) und β ′ = (w′1, . . . , w

′
n). Dann gilt

bij = s(v′i, w
′
j) = s

(

m
∑

k=1

pkivk,

n
∑

ℓ=1

qℓjwℓ

)

=

m
∑

k=1

n
∑

ℓ=1

pkiqℓj , s(vk, wℓ) =

m
∑

k=1

n
∑

ℓ=1

pkiqℓjakℓ =

m
∑

k=1

n
∑

ℓ=1

ptikakℓqℓj

für alle 1 ≤ i ≤ m, 1 ≤ j ≤ n und folglich ist B = P tAQ.

Sind P ∈ M(m×m,K) und Q ∈ M(n×n,K) invertierbare Matrizen, so gilt nach
Lemma 7.4 (2) und (3), dass rangP tAQ = rangA für jedes A ∈ M(m × n,K).
Ist also A die Matrix von s bezüglich Basen α und β, so folgt aus Lemma 22.2,
dass rangA allein durch s bestimmt wird, und folglich setzt man rang s = rangA;
rang s heißt natürlich der Rang von s. Es gilt 0 ≤ rang s ≤ min{m,n}.
Da rangAt = rangA für jedes A ∈ M(m× n,K), ist rang st = rang s.

Erinnerung: Sei r mit 0 ≤ r ≤ min{m,n}; die folgende m× n Matrix

Er
m,n =





























1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0





























← r-te Zeile

wurde die Sub-Einheitsmatrix vom Rang r genannt. Also ist Er
m,n = (δij), wobei

δij =

{

1 falls i = j und 1 ≤ i ≤ r ,
0 sonst ,

und rangEr
m,n = r.
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Satz 22.1 Sei r = rang s; dann gibt es eine Basis α von V und eine Basis β von
W , so dass Er

m,n die Matrix von s bezüglich α und β ist.

Beweis Sei α′ eine beliebige Basis von V und β ′ eine beliebige Basis von W ,
und sei A die Matrix von s bezüglich α′ und β ′. Da rangA = r, gibt es nach
Satz 7.6 invertierbare Matrizen R ∈ M(m×m,K) und Q ∈ M(n×n,K), so dass
RAQ = Er

m,n; setze P = Rt. Sei nun α bzw. β die Basis von V bzw. W , so dass
P bzw. Q die Matrix für den Wechsel von α′ nach α bzw. für den Wechsel von
β ′ nach β ist. Nach Lemma 22.2 ist dann Er

m,n = P ′AQ = P tAQ die Matrix von
s bezüglich α und β.

Definiere nun L(s) ⊂ V und R(s) ⊂W durch

L(s) = {v ∈ V : s(v, w) = 0 für alle w ∈ W} ,
R(s) = {w ∈ W : s(v, w) = 0 für alle v ∈ V } .

Es ist klar, dass L(s) ein Untervektorraum von V und R(s) ein Untervektorraum
von W ist. Ferner gilt L(st) = R(s) und R(st) = L(s).

Satz 22.2 (Dimensionsformel) Es gilt

dimV − dim L(s) = rang s = dimW − dim R(s) .

Beweis Sei r = rang s; nach Satz 22.1 gibt es dann eine Basis α = (v1, . . . , vm)
von V und eine Basis β = (w1, . . . , wn) von W , so dass Er

m,n die Matrix von s
bezüglich α und β ist. Es gilt also

s(vj , wk) =

{

1 falls j = k und 1 ≤ j ≤ r ,
0 sonst ,

Da (w1, . . . , wn) eine Basis von W ist, gilt

L(s) = {v ∈ V : s(v, wk) = 0 für jedes k = 1, . . . , n} ,

und ist v ∈ V mit v = λ1v1 + · · ·+ λmvm, so gilt

s(v, wk) = s(λ1v1 + · · ·+ λmvm, wk) = λ1s(v1, wk) + · · ·+ λms(vm, wk)

=

{

λk falls k ≤ r ,
0 sonst .

Daraus ergibt sich, dass L(s) = L(vr+1, . . . , vm) und folglich ist

dim L(s) = dim L(vr+1, . . . , vm) = m− r = dimV − rang s .
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Genauso gilt dann

dim R(s) = dim L(st) = dimW − rang st = dimW − rang s .

Ab jetzt wird nur der Fall mit V = W betrachtet, und also ist s eine bilineare
Abbildung von V × V nach K. Hier wird eine Basis verwendet: Ist (v1, . . . , vn)
eine Basis von V , so wird (ajk) ∈ M(n× n,K) mit ajk = s(vj , vk) die Matrix von
s bezüglich (v1, . . . , vn) genannt.

Die Bilinearform s : V × V → K heißt symmetrisch, wenn st = s, d.h., wenn
s(v, w) = s(w, v) für alle v, w ∈ V . Ist A die Matrix von s bezüglich einer Basis
von V , so ist s symmetrisch genau dann, wenn A symmetrisch ist, d.h., genau
dann, wenn At = A.

Sind α, α′ zwei Basen von V und ist A bzw. B die Matrix von s bezüglich α bzw.
bezüglich α′, so gilt nach Lemma 22.2, dass B = P tAP , wobei P die Matrix für
den Wechsel von α nach α′ ist.

Nach Satz 22.2 gilt nun

dim L(s) = dim R(s) = dimV − rang s ,

und insbesondere ist rang s = dimV genau dann, wenn L(s) = R(s) = {0}. In
diesem Fall sagt man, dass s nicht ausgeartet ist. Ist A die Matrix von s bezüglich
einer Basis von V , so ist s nicht ausgeartet genau dann, wenn A invertierbar ist.

Satz 22.3 Sei s nicht ausgeartet und ŝ : V ×V → K eine beliebige Bilinearform.
Dann gibt es eindeutige Endomorphismen f, g : V → V , so dass

ŝ(v, w) = s(v, g(w)) = s(f(v), w)

für alle v, w ∈ V . Ist ferner α eine Basis von V , A ∈ M(n × n,K) die Matrix
von s und B ∈ M(n × n,K) die Matrix von ŝ bezüglich α, so ist (BA−1)t die
Matrix von f und A−1B die Matrix von g bezüglich α.

Beweis Sei α = (v1, . . . , vn) eine Basis von V und sei A = (aij) die Matrix von
s und B = (bij) die Matrix von ŝ bezüglich α. Da s nicht ausgeartet ist, ist A
invertierbar. Sei f : V → V ein Endomorphismus und sei C = (cij) die Matrix
von f bezüglich α. Dann gilt

s(f(vj), vk) = s(c1jv1 + · · ·+ cnjvn, vk)

= c1js(v1, vk) + · · ·+ cnjs(vn, vk) = c1ja1k + · · ·+ cnjank = (CtA)jk

und damit gilt ŝ(vj , vk) = bjk = s(f(vj), vk) für alle j, k genau dann, wenn
B = CtA. Folglich gilt ŝ(v, w) = s(f(v), w) für alle v, w ∈ V genau dann, wenn
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C = (BA−1)t. Aber es gibt einen eindeutigen Endomorphismus f : V → V , für
den (BA−1)t die Matrix von f bezüglich α ist und daher gibt es einen eindeutigen
Endomorphismus f : V → V , so dass ŝ(v, w) = s(f(v), w) für alle v, w ∈ V .

Sei nun g : V → V ein weiterer Endomorphismus mit C ′ = (c′ij) die Matrix von
g bezüglich α. Dann gilt

s(vj, g(vk)) = s(vj , c
′
1kv1 + · · ·+ c′nkvn)

= c′1ks(vj , v1) + · · ·+ c′nks(vj, vn) = c′1kaj1 + · · ·+ c′nkajn = (AC ′)jk

für alle j, k und also gilt ŝ(v, w) = s(v, g(w)) für alle v, w ∈ V genau dann, wenn
C ′ = A−1B. Folglich gibt es einen eindeutigen Endomorphismus g : V → V , so
dass ŝ(v, w) = s(v, g(w)) für alle v, w ∈ V .

Im Folgenden sei nun (V, 〈·, ·〉) ein endlichdimensionaler euklidischer Vektorraum
mit dimV = n ≥ 1. Die Bilinearform 〈·, ·〉 : V × V → R ist nicht ausgeartet: Ist
(v1, . . . , vn) eine orthonormale Basis von V , so ist die Matrix von 〈·, ·〉 bezüglich
(v1, . . . , vn) per Definition die Einheitsmatrix En und rangEn = n.

Sei s : V × V → R eine Bilinearform.

Satz 22.4 Es gibt einen eindeutigen Endomorphismus f : V → V , so dass
s(u, v) = 〈u, f(v)〉 für alle u, v ∈ V . Ist ferner α eine orthonormale Basis von V
und ist A die Matrix von f bezüglich α, so ist A auch die Matrix von s bezüglich
α.

Beweis Dies ist ein Spezialfall von Satz 22.3.

Lemma 22.3 Sei f der eindeutige Endomorphismus mit s(u, v) = 〈u, f(v)〉 für
alle u, v ∈ V . Dann ist s symmetrisch genau, wenn f selbstadjungiert ist.

Beweis Ist s symmetrisch, dann gilt für alle u, v ∈ V
〈u, f(v)〉 = s(u, v) = s(v, u) = 〈v, f(u)〉 = 〈f(u), v〉

und damit ist f selbstadjugiert. Ist umgekehrt f selbstadjugiert, so ist

s(u, v) = 〈u, f(v)〉 = 〈f(u), v〉 = 〈v, f(u)〉 = s(v, u)

für alle u, v ∈ V und also ist s symmetrisch.

Satz 22.5 Sei s symmetrisch. Dann gibt es eine orthonormale Basis α von V , so
dass die Matrix von s bezüglich α eine Diagonalmatrix D ist. Ist α = (v1, . . . , vn)
und sind λ1, . . . , λn die Einträge auf der Diagonalen, so gilt für alle u, v ∈ V :

s(u, v) =

n
∑

j=1

λj〈u, vj〉〈v, vj〉 .
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Beweis Sei f : V → V der eindeutige Endomorphismus mit s(u, v) = 〈u, f(v)〉
für alle u, v ∈ V . Nach Lemma 22.3 ist f selbstadjungiert, da s symmetrisch
ist, und folglich gibt es nach Satz 21.9 eine aus Eigenvektoren von f bestehende
orthonormale Basis (v1, . . . , vn) von V . Sei D die Diagonalmatrix mit Einträgen
λ1, . . . , λn auf der Diagonalen, wobei vj ein Eigenvektor zum Eigenwert λj ist für
jedes j. Dann ist D die Matrix von f bezüglich (v1, . . . , vn) und damit ist nach
Satz 22.4 D auch die Matrix von s bezüglich (v1, . . . , vn). Nach Satz 18.5 ist nun

s(u, v) = s
(

n
∑

j=1

〈u, vj〉vj,
n

∑

k=1

〈v, vk〉vk
)

=
n

∑

j=1

n
∑

k=1

〈u, vj〉〈v, vk〉s(vj, vk)

=

n
∑

j=1

λj〈u, vj〉〈v, vj〉

für alle u, v ∈ V , da s(vj , vk) =

{

λj falls j = k ,
0 falls j 6= k .

Sei s symmetrisch. Nach Satz 22.5 gibt es eine orthonormale Basis α von V , so
dass die Matrix von s bezüglich α eine Diagonalmatrix D ist. Sei α = (v1, . . . , vn)
und seien λ1, . . . , λn die Einträge auf der Diagonalen von D; sei σ : Rn×Rn → R

gegeben durch

σ(x, y) =
n

∑

j=1

λjxjyj

für alle x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. Dann ist σ eine symmetrische
Bilinearform auf Rn und nach Satz 22.5 gilt

s(ψ(x), ψ(y)) = σ(x, y)

für alle x, y ∈ Rn, wobei ψ : Rn → V der durch

ψ((x1, . . . , xn)) = x1v1 + · · ·+ xnvn

gegebene Isomorphismus ist, (da 〈ψ((x1, . . . , xn)), vj〉 = xj für jedes j). Daraus
ergibt sich, dass für alle u, v ∈ V

s(u, v) = σ(ψ−1(u), ψ−1(v)) .

Betrachte nun den speziellen Fall mit V = Rn (mit dem üblichen Skalarprodukt).

Sei A = (aij) ∈ M(n× n,R) eine symmetrische Matrix und sei s : Rn × Rn → R

die symmetrische Bilinearform auf Rn, die gegeben ist durch

s(x, y) =
n

∑

j=1

n
∑

k=1

ajkxjyk
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für alle x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. Natürlich ist A die Matrix von s
bezüglich der kanonischen Basis (e1, . . . , en) von Rn. Ferner ist

s(x, y) =

n
∑

j=1

n
∑

k=1

ajkxjyk =

n
∑

j=1

xj

(

n
∑

k=1

ajkyk

)

= x · ϕA(y)

für alle x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, und damit ist ϕA der eindeutige
Endomorphismus von Rn mit s(x, y) = x · ϕA(y) für alle x, y ∈ Rn.

Für alle (x1, . . . , xn), (y1, . . . , yn) ∈ Rn ist

n
∑

j=1

n
∑

k=1

ajkxjyk =
n

∑

j=1

xj

n
∑

k=1

ajkyk = (x1, . . . , xn)A







y1
...
yn







und folglich gilt s(x, y) = xtAy für alle x, y ∈ Rn, wenn die Elemente von Rn als
Spaltenvektoren betrachtet werden.

Satz 22.6 Es gibt einen orthogonalen Endomorphismus ψ : Rn → Rn von Rn

und Elemente λ1, . . . , λn ∈ R, so dass

s(x, y) = σ(ψ(x), ψ(y))

für alle x, y ∈ Rn, wobei σ : Rn × Rn → R wieder die durch

σ(x, y) =
n

∑

j=1

λjxjyj

für x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn definierte symmetrische Bilinearform
auf Rn ist.

Beweis Nach Satz 21.11 gibt es eine orthogonale Matrix P ∈ M(n × n,R), so
dass P−1AP eine Diagonalmatrix D ist. Seien λ1, . . . , λn die Einträge auf der
Diagonalen von D. Dann gilt

s(x, y) = xtAy = xt(PDP−1)y = xt(PDP t)y = (xtP )D(P ty)

= (P tx)tD(P ty) = σ(P tx, P ty) = σ(ψ(x), ψ(y))

für alle x, y ∈ Rn, wobei ψ = ϕP t . Aber P t = P−1 ist eine orthogonale Matrix
und daraus folgt nach Satz 20.1, dass ψ ein orthogonaler Endomorphismus von
Rn ist.

Satz 22.6 ist eigentlich nur ein Spezialfall von Satz 22.5: Sei P ∈ M(n× n,R) die
orthogonale Matrix, die im Beweis für Satz 22.6 vorkommt, und seien u1, . . . , un



22 Bilinearformen 197

die Spalten von P . Dann ist (u1, . . . , un) eine orthonormale Basis von Rn und D
ist die Matrix von s bezüglich (u1, . . . , un).

Es wird nun eine ‘quadratische’ Abbildung auf Rn untersucht: Seien a, bj ckℓ, dj,
1 ≤ j ≤ n, 1 ≤ k < ℓ ≤ n, Elemente aus R und definiere q : Rn → R durch

q((x1, . . . , xn)) =

n
∑

j=1

djx
2
j +

∑

i<j

cijxixj +
∑

bjxj + a .

Sei γ : Rn → Rn+1 die Abbildung, die gegeben ist durch

γ((x1, . . . , xn)) = (x1, . . . , xn, 1)

für alle (x1, . . . , xn) ∈ Rn.

Satz 22.7 Es gibt einen orthogonalen Endomorphismus ψ : Rn+1 → Rn+1 von
Rn+1 und Elemente λ1, . . . , λn+1 ∈ R, so dass

q = τ ◦ ψ ◦ γ ,

wobei τ : Rn+1 → R die ‘quadratische’ Abbildung ist, die gegeben ist durch

τ(x) =

n+1
∑

j=1

λjx
2
j

für alle x = (x1, . . . , xn+1) ∈ Rn+1.

Beweis Sei A = (aij)) ∈ M((n+ 1)× (n+ 1),R) die durch

aij =































dj falls i = j und 1 ≤ j ≤ n ,
cij/2 falls 1 ≤ i < j ≤ n ,
cji/2 falls 1 ≤ j < i ≤ n ,
bj/2 falls 1 ≤ j ≤ n und i = n+ 1 ,
bi/2 falls 1 ≤ i ≤ n und j = n+ 1 ,
a falls i = j = n+ 1

definierte Matrix und sei s : Rn+1 × Rn+1 → R die durch

s(x, y) =

n+1
∑

j=1

n+1
∑

k=1

ajkxjyk

für alle x = (x1, . . . , xn+1), y = (y1, . . . , yn+1) ∈ Rn+1 definierte Bilinearform. Da
die Matrix A symmetrisch ist, ist s symmetrisch, und man sieht leicht, dass

q((x1, . . . , xn)) = s((x1, . . . , xn, 1), (x1, . . . , xn, 1))
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für alle (x1, . . . , xn) ∈ Rn. Nach Satz 22.6 gibt es nun Elemente λ1, . . . , λn+1 ∈ R

und einen orthogonalen Endomorphismus ψ : Rn+1 → Rn+1, so dass

s(x, y) = σ(ψ(x), ψ(y))

für alle x, y ∈ Rn+1, wobei σ : Rn+1 ×Rn+1 → R die durch

σ(x, y) =
n+1
∑

j=1

λjxjyj

für alle x = (x1, . . . , xn+1), y = (y1, . . . , yn+1) ∈ Rn+1 gegebene symmetrische
Bilinearform auf Rn+1 ist. Für alle x ∈ Rn gilt also

q(x) = s(γ(x), γ(x)) = σ(ψ(γ(x)), ψ(γ(x))) = τ(ψ(γ(x))) ,

d.h.. q = τ ◦ ψ ◦ γ.

Im Folgenden sei V wieder ein endlichdimensionaler reeller Vektorraum und sei
s : V × V → R eine symmetrische Bilinearform.

Satz 22.8 Es gibt eine Basis α von V , so dass die Matrix von s bezüglich α eine
Diagonalmatrix ist.

Beweis Sei (u1, . . . , un) eine beliebige Basis von V und sei A ∈ M(n × n,R)
die Matrix von s bezüglich (u1, . . . , un). Da A symmetrisch ist, gibt es nach
Satz 21.11 eine orthogonale Matrix P ∈ M(n × n,R), so dass P tAP = P−1AP
eine Diagonalmatrix D ist. Nach Lemma 6.6 gibt es eine Basis (v1, . . . , vn) von
V , so dass P die Matrix für den Wechsel von (u1, . . . , un) nach (v1, . . . , vn) ist.
Daraus ergibt sich nach Lemma 22.2, dass P tAP = D die Matrix von s bezüglich
(v1, . . . , vn) ist.

Satz 22.9 Es gibt eine Basis α von V , so dass die Matrix von s bezüglich α
folgende Gestalt hat:





Ep
−Eq

0



 ,

wobei p ≥ 0, q ≥ 0 und p + q ≤ n. Ist α = (v1, . . . , vv), so gilt also

s
(

n
∑

j=1

λjvj ,
n

∑

k=1

µkvk

)

= (λ1µ1 + · · ·+ λpµp)− (λp+1µp+1 + · · ·+ λp+qµp+q)

für alle λ1, . . . , λn, µ1, . . . , µn ∈ R.
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Beweis Nach Satz 22.8 gibt es eine Basis α = (v1, . . . , vn) von V , so dass die
Matrix von s bezüglich α eine Diagonalmatrix ist. Seien λ1, . . . , λn die Einträge
auf der Diagonalen von D. Für jede Permutation π ∈ Sn ist απ = (vπ(1), . . . , vπ(n))
auch eine Basis von V und die Matrix von s bezüglich απ ist die Diagonalmatrix
Dπ mit Einträgen λπ(1), . . . , λπ(n) auf der Diagonalen. Es gibt also p ≥ 0, q ≥ 0
mit p + q ≤ n und eine Permutation π, so dass λπ(j) > 0 für j = 1, . . . , p,
λπ(j) < 0 für j = p + 1, . . . , p + q und λπ(j) = 0 für j = p + q + 1, . . . , n. Setze
nun (vπ(1), . . . , vπ(n)) = (u1, . . . , un) und (λπ(1), . . . , λπ(n)) = (µ1, . . . , µn), sei

εj =







(√
µj

)−1
falls 1 ≤ j ≤ p ,

(√−µj
)−1

falls p+ 1 ≤ j ≤ p+ q ,
1 falls p+ q + 1 ≤ j ≤ n .

und für j = 1, . . . , n sei wj = εjuj. Dann ist (w1, . . . , wn) eine Basis von V und

s(wj, wk) = s(εjuj, εkuk) = εjεks(uj, uk) =

{

ε2
jµj falls j = k ,
0 falls j 6= k ,

und ferner ist

ε2
jµj =







1 falls 1 ≤ j ≤ p ,
−1 falls p+ 1 ≤ j ≤ p+ q ,
0 falls p+ q + 1 ≤ j ≤ n .

Daraus ergibt sich, dass




Ep
−Eq

0





die Matrix von s bezüglich (w1, . . . , wn) ist.

Satz 22.10 (Sylvestersches Trägheitsgesetz) Seien α und β zwei Basen von
V und sei A bzw. B die Matrix von s bezüglich α bzw. β. Nehme an, dass

A =





Ep
−Eq

0



 und B =





Ep′

−Eq′
0



 .

Dann ist p = p′ und q = q′.

Beweis Sei α = (u1, . . . , un), β = (v1, . . . , vn) und sei P die Matrix für den
Wechsel von α nach β; nach Lemma 22.2 ist B = P tAP und daraus folgt, dass
rangA = rangB, da P und P t invertierbar sind. Damit ist

p+ q = rangA = rangB = p′ + q′ .



22 Bilinearformen 200

Setze U = L(u1, . . . , up) und W = L(vp′+1, . . . , vn). Dann ist

s
(

p
∑

j=1

λjuj,

p
∑

j=1

λjuj

)

=

p
∑

j=1

p
∑

k=1

λjλks(uj, uk) =

p
∑

j=1

λ2
j ,

und damit ist s(u, u) > 0 für alle u ∈ U \ {0}. Genauso gilt

s
(

n
∑

j=p′+1

µjvj ,

n
∑

j=p′+1

µjvj

)

=

n
∑

j=p′+1

n
∑

k=p′+1

µjµks(vj , vk) = −
n

∑

j=p′+1

µ2
j ,

und damit ist s(w,w) ≤ 0 für alle w ∈W . Folglich ist U ∩W = {0}, und daraus
ergibt sich nach Satz 4.8, dass

p+ (n− p′) = dimU + dimW = dim(U +W ) ≤ n ,

d.h., p ≤ p′. Aber das gleiche Argument zeigt, dass p′ ≤ p und damit ist p = p′.
Nun gilt auch, dass q = (p+ q)− p = (p′ + q′)− p′ = q′.

Sei s : V × V → R eine symmetrische Bilinearform und seien p ≥ 0, q ≥ 0 mit
p + q ≤ n = dim V die durch Satz 22.9 und Satz 22.10 eindeutig bestimmten
Zahlen. Man nennt p + q den Rang von s, p den Index von s und p − q die
Signatur von s.



23 Quotientenräume und das Tensor-Produkt

Im folgenden sei K ein Körper; ein Vektorraum bedeutet stets ein Vektorraum
über K.

Sei V ein Vektorraum und sei U ein Untervektorraum von V . Zunächst wird ein
neuer Vektorraum, der Quotientenraum von V durch U , konstruiert.

Für jedes v ∈ V sei U + v = {w ∈ V : w = u+ v für ein u ∈ U}. Insbesondere ist
v ∈ U + v und U + 0 = U .

Lemma 23.1 (1) Für alle v1, v2 ∈ V gilt entweder (U+v1)∩ (U +v2) = ∅ oder
U + v1 = U + v2. Ferner gilt U + v1 = U + v2 genau dann, wenn v1 − v2 ∈ U .

(2) Seien v1, v
′
1, v2, v

′
2 ∈ V mit U + v1 = U + v′1 und U + v2 = U + v′2; dann gilt

U + (v1 + v2) = U + (v′1 + v′2).

(3) Seien v1, v
′
1 ∈ V mit U + v1 = U + v′1; dann gilt U + λv1 = U + λv′1 für alle

λ ∈ K.

Beweis (1) Nehme an, dass (U+v1)∩ (U +v2) 6= ∅; dann gibt es u1, u2 ∈ U mit
u1 + v1 = u2 + v2 und folglich ist v1− v2 = u2−u1 ∈ U . Sei nun v ∈ U + v1; dann
gibt es u ∈ U mit v = u + v1 und damit ist v = u + (v1 − v2) + v2 ∈ U + v2, da
u+(v1− v2) ∈ U . Folglich ist U + v1 ⊂ U + v2 und genauso gilt U + v2 ⊂ U + v1,
d.h., U + v1 = U + v2. Dies zeigt, dass entweder (U + v1) ∩ (U + v2) = ∅ oder
U + v1 = U + v2 und auch dass v1 − v2 ∈ U , falls U + v1 = U + v2. Ferner zeigt
der Beweis, dass U + v1 = U + v2, falls v1 − v2 ∈ U .

(2) Gilt U + v1 = U + v′1 und U + v2 = U + v′2, so ist nach (1) v1 − v′1 ∈ U und
v2−v′2 ∈ U . Damit ist (v1 +v2)− (v′1 +v′2) = (v1−v′1)+(v2−v′2) ∈ U und daraus
folgt nach (1), dass U + (v1 + v2) = U + (v′1 + v′2).

(3) Gilt U + v1 = U + v′1, so ist nach (1) v1− v′1 ∈ U . Daraus folgt nach (1), dass
U + λv1 = U + λv′1, da λv1 − λv′1 = λ(v1 − v′1) ∈ U .

Eine Teilmenge N ⊂ V wird U-Nebenklasse genant, wenn W = U + v für ein
v ∈ V . Insbesondere ist U selbst eine Nebenklasse. Da v ∈ U+v, liegt jedes v ∈ V
in mindestens einer U -Nebenklasse, und daraus ergibt sich nach Lemma 23.1 (1),
dass jeder Vektor v in genau einer U -Nebenklasse liegt.

Die Menge der U -Nebenklassen wird mit V/U bezeichnet. Nach Lemma 23.1 (2)
kann eine Addition + : V/U × V/U → V/U durch

(U + v1) + (U + v2) = U + (v1 + v2)

definiert werden. Es ist klar, dass diese Addition assoziativ und kommutativ ist.
Ferner ist U + N = N für jedes N ∈ V/U und zu jedem N ∈ V/U gibt es ein

201
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−N ∈ V/U mit −N+N = U , da (U+(−v))+(U+v) = U . Nach Lemma 23.1 (3)
kann ebefalls eine Multiplikation mit Skalaren · : K × V/U → V/U durch

λ(U + v) = U + λv

definiert werden. Mit diesen Verknüpfungen ist V/U ein Vektorraum über K, der
der Quotientenraum von V durch U heißt. Die Nebenklasse U ist das Nullelement
in V/U .

Sei nun π : V → V/U die Abbildung mit π(v) = U + v für jedes v ∈ V . Da

π(v1 + v2) = U + (v1 + v2) = (U + v1) + (U + v2) = π(v1) + π(v2)

für alle v1, v2 ∈ V und π(λv) = U + λv = λ(U + v) = λπ(v) für alle v ∈ V ,
λ ∈ K, ist π eine lineare Abbildung. Ferner ist nach Lemma 23.1 (1)

Kern π = {v ∈ V : π(v) = U} = {v ∈ V : U + v = U + 0} = U

und π ist surjektiv. Die Abbildung π wird kanonische Abbildung genannt.

Satz 23.1 Sei W ein Vektorraum und f : V → W eine lineare Abbildung mit
U ⊂ Kern f ; dann gibt es eine eindeutige lineare Abbildung g : V/U → W mit
g ◦ π = f .

Beweis Gilt U + v1 = U + v2, so ist nach Lemma 23.1 (1) v1 − v2 ∈ U ⊂ Kern f
und damit ist f(v1) = f(v1 − v2 + v2) = f(v1 − v2) + f(v2) = 0 + f(v2) = f(v2).
Folglich gibt es eine eindeutige Abbildung g : V/U →W mit g(U + v) = f(v) für
alle v ∈ V und da g(U + x) = g(π(v)), ist dann g die eindeutige Abbildung mit
g ◦ π = f . Aber g ist linear, da

g((U + v1) + (U + v2)) = g(U + (v1 + v2))

= f(v1 + v2) = f(v1) + f(v2) = g(U + v1) + g(U + v2)

für alle v1, v2 ∈ V und

g(λ(U + v)) = g(U + λv) = f(λv) = λf(v) = λg(U + v)

für alle v ∈ V , λ ∈ K. Also ist g : V/U → W die eindeutige lineare Abbildung
mit g ◦ π = f .

Die Eigenschaft in Satz 23.1 führt zur folgenden Definition: Ein Paar (VU , ̺)
bestehend aus einem Vektorraum VU und einer linearen Abbildung ̺ : V → VU
mit Kern ̺ = U heißt ein V/U-Quotientenraum, wenn es zu jedem Vektorraum
W und zu jeder linearen Abbildung f : V → W mit U ⊂ Kern f eine eindeutige
lineare Abbildung g : VU →W gibt, so dass f = g ◦ ̺.
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Satz 23.2 Es gibt einen V/U-Quotientenraum.

Beweis Nach Satz 23.1 ist (V/U, π) ein V/U-Quotientenraum.

Lemma 23.2 Seien (VU , ̺) und (V ′U , ̺
′) zwei V/U-Quotientenräume; dann gibt

es einen eindeutigen Isomorphismus h : VU → V ′U , so dass h ◦ ̺ = ̺′.

Beweis (1) Das Paar (VU , ̺) ist ein V/U-Quotientenraum und ̺′ : V → V ′U ist
eine lineare Abbildung mit U ⊂ Kern ̺′. Folglich gibt es eine eindeutige lineare
Abbildung h : VU → V ′U mit h ◦ ̺ = ̺′.

(2) Das Paar (V ′U , ̺
′) ist ein V/U-Quotientenraum und ̺ : V → VU ist eine lineare

Abbildung mit U ⊂ Kern ̺. Folglich gibt es eine eindeutige lineare Abbildung
h′ : V ′U → VU mit h′ ◦ ̺′ = ̺.

(3) Das Paar (VU , ̺) ist ein V/U-Quotientenraum und ̺ : V → VU ist eine lineare
Abbildung mit U ⊂ Kern ̺. Folglich gibt es eine eindeutige lineare Abbildung
g : VU → VU mit g ◦ ̺ = ̺. Aber idVU

: VU → VU ist eine lineare Abbildung
mit idVu

◦ ̺ = ̺ und damit ist g = idVU
. Dies bedeutet: idVU

ist der eindeutige
Endomorphismus von VU mit idVU

◦ ̺ = ̺.

(4) Genauso ist idV ′
U

der eindeutige Endomorphismus von V ′U mit idV ′
U
◦ ̺′ = ̺′.

(5) Andererseits ist h′ ◦ h ein Endomorphismus von VU mit

(h′ ◦ h) ◦ ̺ = h′ ◦ (h ◦ ̺) = h′ ◦ ̺′ = ̺

und daher ist h′ ◦ h = idVU
.

(6) Genauso ist h ◦ h′ = idV ′
U
.

(7) Da h′ ◦ h = idVU
und h ◦ h′ = idV ′

U
, ist h : VU → V ′U ein Isomorphismus,

und da h die einzige lineare Abbildung ist mit h ◦ ̺ = ̺′, ist h insbesondere der
einzige Isomorphismus, so dass h ◦ ̺ = ̺′.

Den Beweis für Lemma 23.2 soll man merken; ein im Wesentlichen identischer
Beweis kommt stets bei jeder Definition vor, die die gleiche Struktur hat wie in
der Definition eines U/V -Quotientenraums.

In der Konstruktion eines Tensor-Produkts braucht man einen Quotientenraum
und einfachhalber wird der explizite Quotientenraum (V/U, π) verwendet. Es wird
aber von V/U und π lediglich benutzt, dass (V/U, π) ein V/U-Quotientenraum
ist.

Sei X eine Menge. Ein Vektorraum V mit X ⊂ V heißt X-frei, wenn es zu
jedem Vektorraum W und zu jeder Abbildung g : X → W eine eindeutige lineare
Abbildung f : V →W gibt, so dass g = f|X .
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Satz 23.3 Sei V ein Vektorraum und sei X eine nichtleere endliche Teilmenge
von V . Dann ist V ein X-freier Vektorraum genau, wenn die Vektoren in X eine
Basis von V bilden (und insbesondere ist V endlichdimensional mit dimV = |X|).

Beweis Übung.

Lemma 23.3 Seien V und V ′ zwei X-freie Vektorräume; dann gibt es einen
eindeutigen Isomorphismus h : V → V ′, so dass h(x) = x für jedes x ∈ X.

Beweis Im Wesentlichen identisch mit dem Beweis für Lemma 23.2.

Satz 23.4 Es gibt einen X-freien Vektorraum.

Beweis Sei Abb(X,K) der Vektorraum aller Abbildungen von X nach K und sei

V = {h ∈ Abb(X,K) : s(h) is endlich} ,

wobei s(h) = {x ∈ X : h(x) 6= 0}. Für jedes x ∈ X sei ferner εx : X → K durch

εx(y) =

{

1 falls y = x ,
0 falls y 6= x ,

definiert; also ist εx ∈ V . Für jedes h ∈ V gilt dann h =
∑

x∈s(h) h(x)εx. Setze

X ′ = {εx : x ∈ X}. Sei nun W ein Vektorraum und g : X ′ →W eine Abbildung;
definiere f : V →W durch

f(h) =
∑

x∈s(h)

h(x)g(εx) .

Dann sieht man leicht, dass f die eindeutige lineare Abbildung mit g = f|X′ ist
und folglich ist V ein X ′-freier Vektorraum. Aber die Abbildung x 7→ εx liefert
eine Bijektion zwischen X und X ′ und daher kann man X mit X ′ identifizieren.
Auf diese Weise ist V auch ein X-freier Vektorraum.

Es wird nun das Tensor-Produkt von Vektorräumen eingeführt. Dies wird nur für
zwei Faktoren gemacht; bei dem allgemeinen Fall von n Faktoren tauchen aber
keine zusätzliche Probleme auf.

Seien V1, V2 und V Vektorräume. Eine Abbildung s : V1× V2 → V heißt bilinear,
wenn für jedes v1 ∈ V1 die Abbildung s(v1, ·) : V2 → V linear und für jedes
v2 ∈ V2 die Abbildung s(·, v2) : V1 → V linear ist.

Seien V1 und V2 Vektorräume. Ein Paar (V, σ) bestehend aus einem Vektorraum
V und einer bilinearen Abbildung σ : V1× V2 → V heißt ein Tensor-Produkt von
V1 und V2, wenn es zu jedem Vektorraum W und zu jeder bilinearen Abbildung
s : V1 × V2 → W eine eindeutige lineare Abbildung f : V → W gibt, so dass
f ◦ σ = s.
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Lemma 23.4 Seien (V, σ) und (V ′, σ′) zwei Tensor-Produkte von V1 und V2;
dann gibt es einen eindeutigen Isomorphismus h : V → V ′, so dass h ◦ σ = σ′.

Beweis Im Wesentlichen identisch mit dem Beweis für Lemma 23.2.

Satz 23.5 Es gibt ein Tensor-Produkt von V1 und V2.

Beweis Setze X = V1 × V2 und sei V ein X-freier Vektorraum. Sei nun [X] die
Teilmenge von V bestehend aus allen Elementen, die eine der folgenden Formen
haben:

(v1 + v′1, v2)− (v1, v2)− (v′1, v2) mit v1, v
′
1 ∈ V1 und v2 ∈ V2,

(v1, v2 + v′2)− (v1, v2)− (v1, v
′
2) mit v1 ∈ V1 und v2, v

′
2 ∈ V2,

(λv1, v2)− λ(v1, v2) mit v1,∈ V1, v2 ∈ V2 und λ ∈ K,

(v1, λv2)− λ(v1, v2) mit v1,∈ V1, v2 ∈ V2 und λ ∈ K.

Sei U der kleinste Untervektorraum von V , der [X] enthält (also ist U der Durch-
schnitt von allen Untervektorräumen, die [X] enthalten).

Betrachte den Quotientenraum V/U und die kanonische Abbildung π : V → V/U .
Sei σ = π|X : X = V1 × V2 → V/U die Einschränkung von π : V → V/U auf X.

Die Abbildung σ : V1 × V2 → V/U ist bilinear: Seien v1, v
′
1 ∈ V1 und v2 ∈ V2;

dann ist (v1 + v′1, v2)− (v1, v2)− (v′1, v2) ∈ [X] ⊂ U = Kern π und damit ist

σ(v1 + v′1, v2)− σ(v1, v2)− σ(v′1, v2)

= π((v1 + v′1, v2))− π((v1, v2))− π((v′1, v2))

= π((v1 + v′1, v2)− (v1, v2)− (v′1, v2)) = 0 ;

d.h., σ(v1 + v′1, v2) = σ(v1, v2) + σ(v′1, v2). Genauso gilt

σ(v1, v2 + v′2) = σ(v1, v2) + σ(v1, v
′
2) für alle v1 ∈ V1, v2, v

′
2 ∈ V2,

σ(λv1, v2) = λσ(v1, v2) für alle v1,∈ V1, v2 ∈ V2 und λ ∈ K, und

σ(v1, λv2) = λσ(v1, v2) für alle v1,∈ V1, v2 ∈ V2 und λ ∈ K.

Damit ist σ bilinear. Sei nun s : V1×V2 → W eine beliebige bilineare Abbildung.
Da X = V1×V2 und V ein X-freier Vektorraum ist, gibt es eine eindeutige lineare
Abbildung g : V →W , so dass g|X = s, und es gilt U ⊂ Kern g: Seien v1, v

′
1 ∈ V1

und v2 ∈ V2; dann ist

g((v1 + v′1, v2)− (v1, v2)− (v′1, v2))

= g((v1 + v′1, v2))− g((v1, v2))− g((v′1, v2))

= s(v1 + v′1, v2)− s(v1, v2)− s(v′1, v2) = 0 ;
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d.h., (v1 + v′1, v2)− (v1, v2)− (v′1, v2) ∈ Kern g. Genauso gilt

(v1, v2 + v′2)− (v1, v2)− (v1, v
′
2) ∈ Kern g für alle v1 ∈ V1, v2, v

′
2 ∈ V2,

(λv1, v2)− λ(v1, v2) ∈ Kern g für alle v1,∈ V1, v2 ∈ V2 und λ ∈ K, und

(v1, λv2)− λ(v1, v2) ∈ Kern g für alle v1,∈ V1, v2 ∈ V2 und λ ∈ K.

Folglich ist [X] ⊂ Kern g und daher ist U ⊂ Kern g.

Da U ⊂ Kern g und (V/U, π) ein V/U-Quotientenraum ist, gibt es eine eindeutige
lineare Abbildung f : V/U →W mit f ◦ π = g. Daraus ergibt sich insbesondere,
dass f ◦ π|X = g|X, d.h., f ◦ σ = s.

Sei schließlich f ′ : V/U →W eine beliebige lineare Abbildung mit f ′◦σ = s. Dann
ist f ′ ◦ π : V →W eine lineare Abbildung mit (f ′ ◦ π)|X = f ′ ◦ π|X = f ′ ◦ σ = s.
Aber g ist die eindeutige lineare Abbildung mit g|X = s und also ist f ′ ◦ π = g.
Aber f ist die eindeutige lineare Abbildung mit f ◦ π = g und damit ist f ′ = f .
Folglich ist f : V/U → W die eindeutige lineare Abbildung, so dass f ◦ σ = s,
und dies zeigt, dass (V/U, σ) ein Tensor-Produkt von V1 und V2 ist.

Ein Tensor-Produkt von V1 und V2 wird meistens mit (V1⊗V2,⊗) bezeichnet, also
ist V1⊗V2 ein Vektorraum und⊗ : V1×V2 → V1⊗V2 eine bilineare Abbildung (und
man schreibt v1⊗v2 statt⊗(v1, v2)). Für jede bilineare Abbildung s : V1×V2 →W
gibt es also eine eindeutige lineare Abbildung f : V1⊗V2 →W , so dass f ◦⊗ = s.
Man redet hier meistens von dem Tensor-Produkt V1 ⊗ V2, obwohl V1 ⊗ V2 nur
im Sinne von Lemma 23.4 eindeutig ist.

Satz 23.6 Seien V1 und V2 endlichdimensionale Vektorräume mit V1 6= {0} und
V2 6= {0}, sei (v1, . . . , vm) eine Basis von V1 und (w1, . . . , wn) eine Basis von V2.
Dann bilden die Vektoren

{vj ⊗ wk : 1 ≤ j ≤ m, 1 ≤ k ≤ n}

eine Basis von V1 ⊗ V2. Insbesondere ist V1 ⊗ V2 endlichdimensional mit

dimV1 ⊗ V2 = dimV1 × dimV2 .

Beweis Setze B = {vj ⊗wk : 1 ≤ j ≤ m, 1 ≤ k ≤ n}. Betrachte einen beliebigen
Vektorraum W und eine beliebige Abbildung g : B → W . Da (v1, . . . , vm) und
(w1, . . . , wn) Basen sind, kann eine Abildung s : V1 × V2 →W durch

s
(

m
∑

j=1

λjvj,

n
∑

k=1

µkwk

)

=

m
∑

j=1

n
∑

k=1

λjµkg(vj ⊗ wk)

definiert werden und es ist klar, dass s biliear ist. Es gibt also eine eindeutige
lineare Abbildung f : V1 ⊗ V2 →W , so dass f ◦ ⊗ = s. Insbesondere gilt dann

f(vj ⊗ wk) = s(vj , wk) = g(vj ⊗ wk)
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für alle j, k, d.h., f|B = g. Sei umgekehrt f ′ : V1⊗V2 → W eine lineare Abbildung
mit f ′|B = g; dann gilt f ′(vj ⊗ wk) = g(vj ⊗ wk) = s(vj , wk) für alle j, k. Daraus
folgt, dass f ′ ◦ ⊗ = s und damit ist f ′ = f . Dies zeigt: Zu jedem Vektorraum
W und jeder Abbildung g : B → W gibt es eine eindeutige lineare Abbildung
f : V1⊗V2 → W , so dass f|B = g, d.h., V1⊗V2 ist ein B-freier Vektorraum. Nach
Satz 23.3 bilden dann die Vektoren in B eine Basis von V1 ⊗ V2.

Satz 23.7 Betrachte K als eindimensionalen Vektorraum, sei V ein Vektorraum
und sei σ : K × V → V Multiplikation mit Skalaren (also ist σ(λ, v) = λv für
alle λ ∈ K, v ∈ V ). Dann ist (V, σ) ein Tensor-Produkt von K und V , und daher
kann man V = K ⊗ V schreiben (mit λ⊗ v = λv).

Beweis Zunächst ist es klar, dass die Abbildung σ : K × V → V bilinear ist. Sei
also W ein Vektorraum und s : K × V → W eine bilineare Abbildung. Definiere
f : V → W durch f(v) = s(1, v); also ist f linear und

(f ◦ σ)(λ, v) = f(σ(λ, v)) = f(λv) = λf(v) = λs(1, v) = s(λ, v)

für alle λ ∈ K, v ∈ V , d.h., f ◦ σ = s. Ist umgekehrt f ′ : V → W eine beliebige
Abbildung mit f ′ ◦ σ = s, so ist f ′(v) = f ′(1v) = f ′(σ(1, v)) = s(1, v) = f(v) für
alle v ∈ V , d.h., f ′ = f . Insbesondere ist f die eindeutige lineare Abbildung, so
dass f ◦ σ = s.

Es wird nun eine wichtige Konstruktion präsentiert, die das Tensor-Produkt ver-
wendet. Diese wird zunac̈hst im Fall K = R durchgeführt.

Der reelle Vektorraum Rn ist Teilmenge der komplexen Vektorraum Cn. Ferner
kann man Cn als reellen Vektorraum betrachten: Die Addition ist die Addition in
Cn und die Multiplikation mit Skalaren · : R× Cn → Cn die Einschränkung der
Multiplikation mit Skalaren · : C×Cn → Cn. Dieser reelle Vektorraum wird mit
Cn

R
bezeichnet. Insbesondere (mit n = 1) bezeichnet CR der Körper C betrachtet

als reeller Vektorraum. Sei σ : CR × Rn → Cn
R

die Abbildung mit σ(z, v) = zv
(also ist σ die Einschränkung der Multiplikation mit Skalaren · : C×Cn → Cn).

Lemma 23.5 (Cn
R
, σ) ist ein Tensor-Produkt von CR und Rn.

Beweis Zunächst ist es klar, dass die Abbildung σ : CR × Rn → Cn
R

bilinear
ist. Sei also W ein reeller Vektorraum und s : CR × Rn → W eine bilineare
Abbildung. Definiere f : Cn

R
→ W durch f(v) = s(1, v1) + s(i, v2), wobei v1, v2

die eindeutigen Elemente von Rn mit v = v1 + iv2 sind. Dann sieht man leicht,
dass f die eindeutige lineare Abbildung ist mit f ◦ σ = s.

Für jedes z ∈ CR definiere σz : CR × Rn → Cn
R

durch σz(z
′, v) = σ(zz′, v). Dann

ist σz bilinear und folglich gibt es einen eindeutigen Endomorphismus αz von Cn
R
,
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so dass αz ◦ σ = σz. Aber hier ist αz explizit gegeben durch αz(v) = zv für alle
v ∈ Cn

R
und dies bedeutet, dass die Abbildung (z, v) 7→ αz(v) im Wesentlichen

nichts anderes ist als Multiplikation mit Skalaren · : C× Cn → Cn.

Man beachte schließlich, dass die Abbildung σ(1, ·) : Rn → Cn
R

injektiv ist und
daher kann man Rn mit dem Untervektorraum Bildσ(1, ·) von Cn

R
identifizieren.

Die obige Konstruktion für Rn wird nun für einen beliebigen reellen Vektorraum
V durchgeführt. Sei CR ⊗ V das Tensor-Produkt von CR und V .

Lemma 23.6 (1) Für jedes z ∈ CR gibt es einen eindeutigen Endomorphismus
αz von CR ⊗ V , so dass αz(z

′ ⊗ v) = zz′ ⊗ v für alle z′ ∈ CR, v ∈ V .

(2) Für alle z1, z2 ∈ CR gilt αz1+z2 = αz1 + αz2 und αz1z2 = αz1 ◦ αz2.
(3) Für jedes x ∈ R ⊂ CR ist αx = x idCR⊗V .

Beweis (1) Definiere σz : CR × V → CR ⊗ V durch σz(z
′, v) = zz′ ⊗ v. Dann ist

die Abbildung σz bilinear und folglich gibt es einen eindeutigen Endomorphismus
αz von CR ⊗ V , so dass αz ◦ ⊗ = σz, d.h., so dass αz(z

′ ⊗ v) = zz′ ⊗ v für alle
z′ ∈ CR, v ∈ V .

(2) Für alle z′ ∈ CR, v ∈ V gilt

(αz1 +αz2)(z
′⊗v) = αz1(z

′⊗v)+αz2(z
′⊗v) = z1z

′⊗v+z2z
′⊗v = (z1 +z2)z

′⊗v

und nach der Eindeutigkeit von αz1+z2 ist also αz1 + αz2 = αz1+z2. Genauso gilt

(αz1 ◦ αz2)(z′ ⊗ v) = αz1(αz2(z
′ ⊗ v)) = αz1(z2z

′ ⊗ v) = z1z2z ⊗ v

für alle z′ ∈ CR, v ∈ V und folglich ist αz1 ◦ αz2 = αz1z2 .

(3) Sei x ∈ R; da ⊗ bilinear ist, gilt für alle z′ ∈ CR, v ∈ V , dass

(x idCR⊗V )(z′ ⊗ v) = x(z′ ⊗ v) = xz′ ⊗ v

und nach der Eindeutigkeit von αx ist daher x idCR⊗V = αx.

Für z ∈ CR = C, w ∈ CR ⊗ V setze z ⋆ w = αz(w). Nach Lemma 23.6 gilt dann

(a) (z1z2) ⋆ v = z1 ⋆ (z2w) für alle z1, z2 ∈ C, w ∈ CR ⊗ V .

(b) 1 ⋆ w = w für alle w ∈ CR ⊗ V .

(c) z ⋆ (w1 + w2) = z ⋆ w1 + z ⋆ w2 für alle z ∈ C, w1, w2 ∈ CR ⊗ V .

(d) (z1 + z2) ⋆ w = z1 ⋆ w + z2 ⋆ w für alle z1, z2 ∈ C, w ∈ CR ⊗ V .
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(Natürlich gilt (c) einfach, weil αz linear ist.) Dies bedeutet: Mit der Addition
aus CR ⊗ V (als reellem Vektorraum) und mit ⋆ : C × (CR ⊗ V ) → CR ⊗ V
als Multiplikation mit Skalaren wird CR ⊗ V ein komplexer Vektorraum. Ferner
ist nach Lemma 23.6 (3) die Verknüpfung ⋆ verträglich mit der Multiplikation
mit Skalaren · : R × (CR ⊗ V ) → CR ⊗ V : Es gilt x ⋆ w = xw für alle x ∈ R,
w ∈ CR ⊗ V .

Lemma 23.7 Die lineare Abbildung v 7→ 1⊗ v von V nach CR ⊗ V ist injektiv.

Beweis Definiere s : CR × V → R durch s((x + iy), v) = xv für alle x, y ∈ R

und v ∈ V . Dann ist s eine bilinear und damit gibt es eine eindeutige lineare
Abbildung f : CR⊗V → R mit f ◦⊗ = s. Insbesondere ist f(1⊗v) = s(1, v) = v
für alle v ∈ V und also ist 1⊗ v 6= 0, falls v 6= 0.

Nach Lemma 23.7 kann man V mit dem (reellen) Untervektorraum

1⊗ V = {1⊗ v : v ∈ V }

von CR⊗V identifizieren. Auf diese Weise ist der reelle Vektorraum V Teilmenge
des komplexen Vektorraumes CR ⊗ V ; ferner sind die Verknüpfungen auf V die
Einschränkungen der entsprechenden Verknüpfungen auf CR ⊗ V .

Sei nun W ein weiterer reeller Vektorraum und sei h : V → W eine lineare
Abbildung; sei sh : CR × V → CR ⊗W die Abbildung mit sh(z, v) = z ⊗ h(v)
für alle z ∈ CR, v ∈ V . Dann ist sh bilinear und folglich gibt es eine eindeutige
lineare Abbildung hC : CR ⊗ V → CR ⊗W , so dass hC ◦ ⊗ = sh. Zunächst ist hC

nur eine lineare Abbildung mit CR ⊗ V und CR ⊗W als reellen Vektorräumen.
Aber hC ist auch eine lineare Abbildung zwischen den komplexen Vektorräumen
CR ⊗ V und CR ⊗W : Für alle z ∈ CR gilt

(hC ◦ αz) ◦ ⊗ = (αz ◦ hC) ◦ ⊗ = szh ,

wobei szh(z
′, v) = zz′⊗h(v) für alle z′ ∈ CR, v ∈ V , und also ist hC ◦αz = αz ◦hC,

d.h. hC(z ⋆ w) = z ⋆ hC(w) für alle w ∈ CR ⊗ V . Schließlich ist

hC(1⊗ v) = sh(1, v) = 1⊗ h(v)

für alle v ∈ V , und damit ist die Einschränkung von hC auf 1 ⊗ V die lineare
Abbildung 1⊗ h : 1⊗ V → 1⊗W , wobei (1⊗ h)(v) = 1⊗ h(v) für jedes v ∈ V .

Die obige Konstruktion kann für eine beliebige Körpererweiterung durchgeführt
werden: Ein Körper F heißt Körpererweiterung eines Körpers K, wenn K ⊂ F
und die Addition (bzw. die Multiplikation) in K die Einschränkung der Addition
(bzw. der Multiplikation) in F ist. Ist F eine Körpererweiterung von K, so ist
die Null (bzw. die Eins) in K auch die Null (bzw. die Eins) in F .
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Im Folgenden sei F eine Körpererweiterung eines Körpers K. Dann kann F als
Vektorraum über K betrachtet werden; dieser K-Vektorraum wird mit FK be-
zeichnet. Sei V ein K-Vektorraum; genauso wie im Spezialfall K = R/F = C

gibt es eine Verknüpfung ⋆ : F × (FK ⊗ V ) → FK ⊗ V , die den K-Vektorraum
FK ⊗ V in einen F -Vektorraum umwandelt.

Das einzige Problem hier ist das Ergebnis, das dem Lemma 27.7 entspricht. Dieses
ist zwar richtig, aber im Allgemeinen ist der Beweis dafür nicht so trivial:

Lemma 23.8 Die lineare Abbildung v 7→ 1⊗ v von V nach FK ⊗ V ist injektiv.

Beweis Dies folgt unmittelbar aus Satz 23.8.

Satz 23.8 Sei V1 ⊗ V2 das Tensor-Produkt von Vektorräumen V1 und V2. Dann
ist v1 ⊗ v2 6= 0 für alle v1 ∈ V1 \ {0}, v2 ∈ V2 \ {0}.

Beweis Sei v1 ∈ V1 \ {0}; nach Lemma 23.9 gibt es eine Linearform ϕ : V1 → K
mit ϕ(v1) 6= 0. Definiere s : V1 × V2 → V2 durch s(u1, u2) = ϕ(u1)u2; dann ist s
bilinear und folglich gibt es eine eindeutige lineare Abbildung f : V1 ⊗ V2 → V2,
so dass f ◦⊗ = s. Also ist f(v1⊗ v2) = ϕ(v1)v2 6= 0 für alle v2 6= 0 und damit ist
v1 ⊗ v2 6= 0 für alle v2 ∈ V2 \ {0}.

Lemma 23.9 Zu jedem Vektorraum V und jedem Vektor v ∈ V \ {0} gibt es
eine Linearform ϕ : V → K mit ϕ(v) 6= 0.

Beweis Nehme zunächst an, dass V endlichdimensional ist; dann gibt es eine
Basis (v1, . . . , vn) von V mit v1 = v und es gibt eine Linearform ϕ : V → K mit

ϕ(λ1v1 + · · ·+ λnvn) = λ1

für alle λ1, . . . , λn ∈ K. Insbesondere ist ϕ(v) = 1 6= 0.

Im Allgemeinen braucht man den folgenden Fakt: Es gibt stets eine Teilmenge X
von V mit v ∈ X, so dass V ein X-freier Vektorraum ist. Per Definition gibt es
insbesondere dann eine Linearform ϕ : V → K mit ϕ(v) = 1.
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unitäre, 178

Matrix für den Wechsel, 56
minimales Polynom, 152



Index 214

Multiplikation, 13, 121
Multiplikation mit Skalaren, 20

Nebenklasse, 201
neutrales Element, 105
nicht ausgeartete Bilinearform, 193
nilpotente Jordanmatrix, 95
nilpotenter Endomorphismus, 81
Norm, 153, 155
normaler Endomorphismus, 187
Normalteiler, 112
normiertes Polynom, 125
Null, 13, 20
Nullelement, 13, 20
Nullstelle eines Polynoms, 127

obere Dreiecksmatrix, 81, 131
Ordnung

einer Gruppe, 106
einer Untergruppe, 107
eines Gruppenelements, 106

orthogonale
Untervektorräume, 161
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symmetrische Bilinearform, 153, 193
symmetrische Gruppe, 105, 117
symmetrische Matrix, 185

Tensor-Produkt, 204, 206
transponierte Bilinearform, 190
transponierte Matrix, 134
Transposition, 118
Treppen-Folge, 10, 19
trigonalisierbare Matrix, 81, 146
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trigonalisierbarer Endomorphismus, 81,
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Umformung
elementare, 61

Umkehrabbildung, 40
unitäre Matrix, 178
unitärer Endomorphismus, 163
unitärer Vektorraum, 155
Untergruppe, 106

erzeugte, 108
zyklische, 108

Unterring, 122
Untervektorräume

orthogonale, 161
Untervektorraum, 6, 18, 21

invarianter, 81, 145

Vektoren
orthogonale, 157
orthonormale, 157

Vektorraum, 20
euklidischer, 153
freier, 203
unitärer, 155

Vielfaches, 5, 17

Zeile einer Matrix, 5
Zeilen-Stufen-Form, 9, 19
Zeilenrang, 58
Zeilenraum, 58
Zeilenumformung

elementare, 8, 18, 52
zerfällt in Linearfaktoren, 146
zyklische Gruppe, 108
zyklische Untergruppe, 108


