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Janich [5] und Fischer [3] haben die Darstellung beeinflusst.
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1 Lineare Gleichungssyteme

Sei n > 1; mit R™ wird die Menge aller n-Tupel reeller Zahlen bezeichnet. Ein
Element von R™ hat also die Form (z1,...,2,) mit z, ..., z, Elementen aus R.
Ist © = (x1,...,2,) € R" und 1 < k < n, so heiit z; die k-te Komponente von
x. Das Element (0,...,0) € R” wird mit 0 bezeichnet.

Eine Addition auf R" wird erklart durch
<x17x27"'7xn) + (y17y27---7yn) = (xl +y17372 +y277xn+yn>

und eine Multiplikation eines Elements von R™ mit einer reellen Zahl durch

x(y17y27 s 7yn) = (fL‘yl,fL'yQ, cee 7$yn) .

Sei v € R™; fiir jedes x € R heiffit dann zv ein Vielfaches von v.

Seien m, n € N; eine m x n reelle Matriz ist eine Anordnung von mn Elementen
von R nach folgendem Schema

@11 Arz *-- Aip
Q21 Q22 *-- A2y
Am1 QGm2 **° Amn

Die Menge der m x n reellen Matrizen wird mit M(m X n, R) bezeichnet. Sei

ail -+ Qin
A= : : € M(m x n,R)

Am1 **° Qmn

eine m x n reelle Matrix; dann schreibt man auch A = (a;;)1<i<m, 1<j<n 0der nur
A = (a;5). Selen 1 < i < m, 1 < j < n; der waagerecht geschriebene n-Tupel
(a1, ..., a;) wird die i-te Zeile von A und der senkrecht geschriebene m-Tupel

alj

amj

die j-te Spalte von A genannt. Die Zeilen von A werden als Elemente von R™ und
die Spalten von A als Elemente von R™ betrachtet. Das Element

0---0
€ M(m x n,R)
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wird mit 0 bezeichnet.
Seien m, n > 1 und A = (a;;) € M(m x n,R), b = (by,...,b,) € R™; dann heifit

1121 + 129 + + - + ATy = b1

A21T1 + A22X9 + * + + + Aop Ty = b2

Am1T1 + AQpaXe + - - + Qpp Ty, = bm

das zu A und b gehérige lineare Gleichungssystem.
Ein Element (yi,...,y,) € R™ heiit Lisung des zu A und b gehorigen linearen

Gleichungssystems, wenn yq, ..., y, die m Gleichungen erfiillen, d.h., wenn

a1y + a1oys + - - - + aryn, = by
a1 Y1 + agys + - -+ + asyn, = by

A1l + A2y + -+ - + AmnlYn = bm

Die Menge aller Losungen des Systems wird mit Los(A, b) bezeichnet.

Das Gleichungssystem heifit ldsbar, wenn Los(A, b) mindestens ein Element von
R™ enthélt. Es heifit eindeutig losbar, wenn Los(A, b) aus genau einem Element
von R" besteht.

Das zu A und b gehorige lineare Gleichungssystem heifit homogen, wenn b = 0,
d.h., wenn b; = 0 fiir jedes j = 1, ..., m. Ein homogenes Gleichungssystem
besitzt stets die triviale Losung 0 = (0,...,0). (Insbesondere ist ein homogenes
Gleichungssystem stets losbar.)

Eine Teilmenge U von R"™ heifit Untervektorraum von R", wenn gilt:
(U0) 0 € U,
(Ul) u+wv e U fir alle u, v € U,
(U2) zu e U firallez e R, u e U.

Satz 1.1 Sei A = (a;;) € M(m x n,R); dann ist Los(A,0) ein Untervektorraum
von R™. (Die Lisungsmenge eines homogenen linearen Gleichungssytems fir n
Unbekannte ist ein Untervektorraum von R™.)

Beweis (U0): Es wurde schon erwihnt, dass 0 = (0,...,0) € Los(4,0).
(U1): Seien w = (z1,...,2n), v = (Y1,--.,Yn) € LOs(A,0); d.h.,

;11 + QioTy + -+ Gy, = 0 und  anyi + aipYe + -+ QY =0
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fiir jedes 2 =1, ..., m. Dann gilt

ain(®1 +y1) + (T2 +y2) + -+ + Ain (70 + Yn)
= @j1T1 + Qg2 + -0 AipTp + QY1 + QigYa + 0+ Qinln
=04+0=0
fiir jedes i =1, ..., m und damit ist u + v € Los(A, 0).
(U2): Seien u = (x1,...,2,) € Los(A4,0), x € R; dann gilt

ai(zxy) + ap(xxs) + -+ - + ap(xxy,) = x(an) + aprs + - + Gipx,) =20 =0

fir jedes i = 1, ..., m; folglich ist auch zu € Los(A,0). O

Satz 1.2 Seien A € M(m x n,R), b € R™, v € Los(A4,b) und v' € R™. Dann
gilt v' € Los(A,b) genau, wenn v' = v + u fir ein u € Los(A,0). (Man erhdlt
also alle Losungen des zu A und b gehdrigen Gleichungssystems, indem man zu
einer speziellen Losung dieses Systems alle Losungen des zu A und 0 gehdrigen
Gleichungssystems addiert.)

Beweis Seien A = (a;;), b = (b1,...,by) und v = (y1,...,y,n) € LOs(A,b). Sei
u=(xy,...,2,) € Los(A4,0), d.h.,

aiyr + aigya + -+ @ipYn = bi und a;ry + @itz + -+ QT =0
fiir jedes 2 =1, ..., m. Dann gilt
ain(yr + 1) + ap(y2 + 2) + - + Ain(Yn + )

= Qi1y1 t GigY2 + -t AinYn T Qi1 T1 + QT2+ AinTp
=b,+0=10

fiir jedes i = 1, ..., m und damit ist v + u € Los(A, b).
Seien nun v = (y1,...,Yn), V' = (¥}, ..., y,) € Los(A,b), und sei u = (21, ...,2,),
wobei z; =y, —y; fir i =1, ..., m. Dann ist v' = v + « und
1Ty + Qg2 + - -+ Aip T2
= an(yy — 1) + ai2(ys — y2) + -+ + ain(Yp — Yn)

= any) + anyy + -+ any, — (@ayr + aizya + - + @inYn)

fir jedes i = 1, ..., m; folglich ist u € Los(A,0). O
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Unter elementaren Zeilenumformungen einer Matrix versteht man die folgenden
Operationen:

1 Addition eines Vielfachen einer Zeile zu einer anderen Zeile.

II Vertauschen zweier Zeilen.

Lemma 1.1 Wird eine Matrix A durch eine elementare Zeilenumformung zu
einer Matriz A" verdndert, so gilt A" =0 genau dann, wenn A = 0.

Beweis Ubung. O

Seien m, n > 1 und A = (a;;) € M(m x n,R), b= (by,...,by,) € R™; dann wird
die m x (n + 1) reelle Matrix

ay;y @y - Qi by
A1 Qg -+ Aoy bo
Am1 Qm2 **° Amn bm

mit (A, b) bezeichnet.

Satz 1.3 Wird (A,b) durch eine elementare Zeilenumformung zu einer Matriz
(A", V) verdndert, so gilt Los(A, b) = Los(A',1).

Beweis Entsteht (A’, V') aus (A, b) durch Vertauschen zweier Zeilen, so ist es klar,
dass Los(A,b) = Los(A’, V). Nehme also an, dass (A',b) aus (A,b) durch eine
Zeilenumformung vom Typ I entsteht. Genauer wird angenommen, dass (A’,b")
durch Addition des z-fachen der p-ten Zeile zu der g-ten Zeile von (A, b) entsteht,
(wobei z € R und p # ¢). Seien A" = (aj;), b' = (b}, ..., b,,); dann gilt

- agj:aijﬁirallejzl,...,n,z'#q,
= ag; + aay, fivalle j =1, ..., n,
— b, = by + xb,.

Sei y = (Y1,.-.,Yn) € Los(A,b); d.h.,
a1 + aipya + -+ QipYn = b;
fiir jedes i = 1, ..., m. Dann gilt

WY1 + Qoo + -+ W Yn = QY1 + QioYo + -+ il = by = b
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fiir jedes 7 # ¢ und

A Y1 + GooYa + -+ -+ Al Un
= (ag1 + xap1)y1 + (age + Tage)ys + -+ + (agn + Tapn)Yn
= a1 + Y2 + -+ gu¥n + T(apyr + appys + - -+ ApnYn)
= by +ab, = b,

und damit ist y € Los(A’,b'). Sei umgekehrt y = (y1,...,y,n) € Los(A",V); d.h.,
Y1+ GigYa + -+ F QY = b
fiir jedes 2 =1, ..., m. Dann gilt
ainy1 + Gioya + -+ QinYn = A1 T QY2 + o+ Gl = = b;
fiir jedes 7 # ¢ und

Qq1Y1 + Qg2Y2 + -4 QgnlYn
= (%1 — ZTap)Y1 + (a/q? — Tag)ys + -+ (a;n — TQpn)Yn
= a;lyl + a;2y2 + -+ a;nyn - x(aplyl + ap2y2 + -+ apnyn)
=00 —ab,=b,:
q p q>

folglich ist y € Los(A, b). Dies zeigt also, dass Los(A, b) = Los(A',v). O

Eine Matrix A € M(m x n,R) hat Zeilen-Stufen-Form, wenn fiir jede Zeile der
Matrix folgende zwei Bedingungen erfiillt sind:

— Sind die ersten p Elemente der Zeile Null fiir ein p mit p < n, so sind fiir alle
folgenden Zeilen mindestens die ersten p + 1 Elemente Null.

— Sind alle Elemente der Zeile Null, so ist jedes Element von jeder der folgenden
Zeilen Null.

(Eine solche Matrix sieht etwa so aus:

DO DD DD DO oo

S OO DD OO oo oo
OO DD DO DO OO O K
SO OO OO oo o

O OO DO DO DO OO K
OO O OO OO ¥
O OO O OO *
SO oo o o -
O OO oo o
O OO OO *

O O O O ¥

O O O %
oo o -
oo o -

S O *

o o -
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Dabei sind die mit einem Stern angedeuteten Elemente verschieden von Null
und die mit einem Punkt angedeuteten Elemente beliebig. Die mit einem Stern
angedeuteten Elemente bezeichnen also, soweit vorhanden, in jeder Zeile das erste
nicht-verschwindende Element.)

Insbesondere hat die Null-Matrix 0 Zeilen-Stufen-Form.
Sei A= (a;;) € M(m x n,R) mit A# 0 und fir i =1, ..., m sei

_Jmin{l <j <n:a;# 0} falls (an, ..., am) #0,
pi = 0 sonst .

Die Matrix A hat also Zeilen-Stufen-Form genau dann, wenn

p1<p2 <--- <D,

wobel r der Index der letzten von Null verschiedenen Zeile von A ist. Hat A
Zeilen-Stufen-Form, so nennt man py, ..., p, die Treppen-Folge von A.

Satz 1.4 Seien A = (a;;) € M(m x n,R), b= (by,...,by) € R™ mit (A,0) # 0.
Nehme an, dass (A,b) Zeilen-Stufen-Form hat, und sei pq, ..., p, die Treppen-
Folge von A. Dann ist das zu A und b gehorige lineare Gleichungssystem losbar
genau, wenn p,. #n + 1. Ferner ist das Gleichungssystem eindeutig lisbar genau
dann, wenn r =n und p; = j fir jedes j =1, ..., n.

Beweis Ubung. O

0O 0 % -

0 0 0 0 =«

0O 0 0 0 0 =«

O 00 000 «x - -

0O 00O OO0 0 0 0 =%

0O 00O OO O0OO0OTO0OTO0 =«

o 0o ooo o0 o0o0o0©O0OO0 *x - - -
O 00Ooo0o o0 0 O0O0OO0OO0OTO0OTO0OTO0OTO0 %
O 000 0o o0 O0O0O0OO0OO0OTO0OTU0TUO0TUO0DTO0
O 00oo 0o o0 0 O0O0OO0OO0OTO0OTO0ODTUO0OTUO0TO0

nicht losbar
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O O O o o

SO DD DO o O oo
S OO DO OO oo oo
OO OO -

SO DD DODDOD OO OO *
SO DO OO OO oo
S OO DO OO OO K

S OO O OO O K

S OO O OO ¥

S OO OO *

o O O O ¥

o O O %

o o o -

S O %

o O

o O

losbar

S OO OO *
S OO O ¥
o O O %
S O %

DO DODDODDOD DO OO O *
O OO OO OO ¥
O OO OO OO *
S O ¥

o O

00 0 O

eindeutig losbar

Satz 1.5 Jede Matriz in M(m x n,R) lift sich durch eine Folge von elementaren
Zeilenumformungen in eine Matriz mit Zeilen-Stufen-Form tberfiihren.

Beweis Der Beweis besteht in der Angabe des Gaufischen Algorithmus, der die
gesuchte Folge von elementaren Zeilenumformungen bestimmt. Der Hauptschritt
dieses Algorithmus wird nun beschrieben.

Sei A = (a;;) € M(m x n,R); fiir jedes j = 1, ..., n bezeichne mit b;(A) die

m X j reelle Matrix, die aus den ersten j Spalten von A besteht. Sei

, max{j : bj(A) hat Zeilen-Stufen-Form} falls es ein solches j gibt ,
7= 0 sonst ,

und definiere p’ > 0 wie folgt:
— p' =0, falls ¢ = 0 oder ¢' > 0 und b,(A) =0,

— p’ sei der Index der letzten von Null verschiedenen Zeile von b, (A), falls
¢ > 0und by (A) # 0.
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Setze p = p' + 1 und ¢ = ¢’ + 1. Nehme jetzt an, dass A nicht Zeilen-Stufen-
Form hat. Dann ist ¢ < n; ferner ist p < m und es gibt mindestens ein ¢ mit
p <i<mund a;, # 0 (sonst hitte b,(A) Zeilen-Stufen-Form). Der Hauptschritt
des Gauflschen Algorithmus besteht in der Ausfithrung der folgenden elementaren
Zeilenumformungen:

— Gegebenenfalls die Vertauschung der p-ten und der i-ten Zeilen fiir ein ¢ mit
p <1 < m, um ein von Null verschiedenes Element in die pg-te Stelle der
Matrix zu bringen.

— Firi=p+1, ..., mdie Addition des geeigneten Vielfachen der p-ten Zeile
zu der i-ten Zeile, um eine Null in die 7¢g-te Stelle der Matrix zu bringen.

Diese Folge von elementaren Umformungen iiberfithrt A in eine Matrix A’ mit
folgenden Eigenschaften:

— Firi =1, ..., p ist die i-te Zeile von A’ gleich die i-te Zeile von A, d.h.,

aj; = a firallec=1,...,p, j=1,..., m.
— b () = by (A).
— a,, # 0.

aj, =0firi=p+1,...,m.

Insbesondere hat dann b,(A’) Zeilen-Stufen-Form und damit ist die Matrix A’
“ndher” an der Zeilen-Stufen-Form als A.

Nach hochstens n-maliger Wiederholung dieses Hauptschrittes wird jede Matrix
in M(m x n,R) in eine Matrix mit Zeilen-Stufen-Form tiberfithrt. O

Seien m, n > 1 und A = (a;;) € M(m x n,R), b = (b, b)) € R™. Es ist klar,
dass Los(0,0) = R"; nehme also an, dass (A,b) # 0 1t Hilfe des GauBschen
Algorithmus kann d1e Matrix (A, b) in eine Matrlx (A’, V') mit Zeilen-Stufen-Form
tiberfithrt werden und nach Satz 1.3 gilt dann Los(A, b) Los(A',b'). Ferner gilt
nach Lemma 1.1, dass (A’, ') # 0. Folglich kann Satz 1.4 verwendet werden, um
festzustellen, ob das zu A und b gehorige lineare Gleichungssystem losbar bzw.
eindeutig losbar ist.



2 Korper

Ein 5-Tupel (K, +,-,0,1) bestehend aus einer Menge K, einer Verkniipfung

+:KxK—>K
(A ) — A+ p

(genannt Addition), einer Verkniipfung

KX K —-K
(A, 1) = A

(genannt Multiplikation) und Elementen 0, 1 € K mit 0 # 1 heifit Kérper, wenn
folgendes gilt:
(K1) A4+ p)+v=A+(p+v) firalle A\, p, v € K.
(K2) A+ p=p+ A furalle \, p € K.
(K3) 04+ X = A fiir alle A € K.
(K4) Zu jedem X\ € K gibt es ein Element —\ € K mit (—\) + A =0,
(K5) (Au)v = A(pw) fiir alle A\, pu, v € K.
(K6) Ay = p fiir alle A\, p € K.
(K7) Fir alle A € K gilt 1\ = A,
(K8) Zu jedem X € K mit A # 0 gibt es ein Element A™' € K mit A™'\ = 1.
(K9) AM(p+v) =Au+ v fur alle A\, u, v € K.

Bemerkung: Nach der iiblichen Konvention soll die Addition in K weniger stark
binden als die Multiplikation. (Ax + Av bedeutet also (Ap) + (Av).)

Die Elemente 0 und 1 heiflen das Nullelement oder die Null bzw. das Einselement
oder die Eins.

Lemma 2.1 Sei (K, +,-,0,1) ein Korper.

(1) Das Nullelement 0 ist eindeutig: Ist 0" € K ein Element mit 0" + X\ = X fiir
alle N € K, so ist 0/ =

(2) Zu jedem \ € K gibt es genau ein Element —\ € K mit (—\) + X = 0.

(3) Das Finselement 1 ist eindeutig: Ist 1’ € K ein Element mit '\ = X\ fiir alle
Ae K, soistl =1.

(4) Zu jedem A € K mit A # 0 gibt es genau ein Element \™* € K mit ™1\ = 1.

13
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Beweis (1) Sei 0' € K ein Element mit 0' + A = A fiir alle A € K; insbesondere
ist dann 0/ 4+ 0 = 0. Da aber 0 + A = A fiir alle A € K, ist auch 0+ 0" = 0/, und
nach (K2)ist 0+ 0" =04+ 0. Damit ist ' =0+ 0 =0+ 0= 0.

(2) Sei A € K und sei X' € K mit '+ A = 0. Unter Anwendung von (K1), (K2),
(K3) und (K4) folgt dann, dass

4)

(N =N =X 2 e
) (=) +N+X)=(=N\)+0 04 (=)

NS
(

g 1z

(K3)

A

(3) Sei 1’ € K ein Element mit 1’A\ = A fiir alle A € K; insbesondere ist dann
1"-1=1. Da aber 1A = A fiir alle A € K, ist auch 1-1" = 1’, und nach (K6) ist
1-7=1-1.Damitist I'=1-1"=1-1=1.

(4) Sei A € K\ {0} und sei N € K mit ’A = 1. Unter Anwendung von (K5),
(K6), (K7) und (K8) folgt dann, dass

)\/ (Ig) 1)\/ (K:S) ()\—1)\))\/ (IS) )\—1()\)\/)

(K6)

pha )\71<)\/)\) — )\711 (Ig) 1)\71 (Ig)

Ao

Nach (K3) ist 0 + 0 = 0 und damit ist —0 = 0, da nach Lemma 2.1 (2) —0 das
eindeutige Element p € K mit 40 = 0 ist. Nach (K7) ist 1-1 = 1 und damit ist
17! =1, da nach Lemma 2.1 (4) 17! das eindeutige Element y € K mit ul =1
1st.

Wenn aus dem Kontext klar ist, welche Verkniipfungen + und - und Elemente 0
und 1 gemeint sind, dann wird lediglich K statt (K, +,-,0,1) geschrieben.

Ist K ein Korper, so wird eine Verkniipfung

— KxK—->K
(A p) = A —p
(genannt Subtraktion) durch A — p = A + (—p) definiert.

Beispiele von Korpern

1. R mit der iiblichen Addition und Multiplikation ist ein Korper. Hier ist das
Nullelement 0 und das Einselement 1.

2. Die rationalen Zahlen Q (wieder mit der iiblichen Addition und Multiplikation)
bilden auch ein Kérper. (Wieder ist das Nullelement 0 und das Einselement 1.)

3. Die komplezen Zahlen Sei C = R? = {(x,y) : 2, y € R}; nun definiere eine
Addition + : C x C — C durch

(z,y) + () = (z+ 2"y +y)



2 KORPER 15

und eine Multiplikation - : C x C — C durch

(z,y)(a,y) = (za" — yy', 2y + ya') .

Dann ist (C, +, ) ein Korper. (0,0) ist die Null in C und —(z,y) = (—z, —y) fiir
alle (z,y) € C. Ferner ist das Element (1,0) die Eins in C. Ist (x,y) € C mit
(z,y) # (0,0), so ist 0 = 2% +y* > 0 und

(x/o,~y/o)(z,y) = (¢* /o +y*/o,xy/o — yx/o) = (1,0) ,
d.h., (z/o,—y/o) = (x,y) L.

In der Praxis wird eine andere Schreibweise fiir die Elemente von C verwendet:
Da (z,0) + (2/,0) = (z +2/,0) und (z,0)(2’,0) = (z2/,0) fiir alle z, 2’ € R, kann
zunéchst die Teilmenge R x {0} = {(x,0) : z € R} von C mit dem Korper R
identifiziert werden, indem man z statt (z,0) schreibt. Auf diese Weise wird R
als Teilmenge von C betrachtet. Das Element (0,1) in C wird imagindre Einheit
genannt und wird mit i bezeichnet. Fiir jedes (z,y) € C gilt nun

(z,y) = (2,0) + (0,y) = (2,0) + (0, 1)(y,0) = x + iy ,
also kann man x + iy statt (x,y) schreiben. Mit dieser Schreibweise gilt
(x+iy)+ (2 +iy) = (x+2") +i(y +9)
(x +iy) (2" + 1)) = (22’ —yy') +i(zy + ya') .
Auflerdem ist 0 die Null und 1 die Eins in C. Ferner ist
(0,1)(0,1) = (~1,0) = ~(1,0),
d.h., i> = —1, und daher schreibt man manchmal i = /—1.

4. Endliche Korper Seien m, n € Z; dann schreibt man m|n (m teilt n), wenn
es { € Z mit n = ¢m gibt. Sei n > 2, und a, b € Z; man schreibt a = b modn,
wenn n|(a —b). Zu jedem m € Z gibt es ein eindeutiges Element m Restn aus
der Menge {0,...,n — 1} mit m Restn = m modn.
Fir n > 2 sei Z, = {0,1,...,n — 1}. Eine Addition + : Z, x Z, — Z, wird
definiert durch

{+m = ({+m)Restn

und eine Multiplikation - : Z,, X Z,, — 7Z,, durch
¢{m = (fm) Restn .

Fiir jedes n > 2 sind (K1), (K2), (K3), (K4), (K5), (K6), (K7) und (K9) erfiillt.

Satz 2.1 Die Bedingung (K8) ist erfillt genau dann, wenn n Primzahl ist. Damit
ist (Zy,+,+,0,1) ein Kérper genau dann, wenn n Primzahl ist.



2 KORPER 16

Beweis Nehme zuerst an, dass n keine Primzahl ist. Dann gibt es £, m > 1 mit
/m =n. Dal <n, m <n, kann £ und m als Elemente von Z,, betrachtet werden
und in Z, gilt fm = 0, da nRestn = 0. Daher kann (Z,, +, -) kein Korper sein.
(Ubung: Sei (K, +,-) ein Kérper und A\, € K mit A # 0, g # 0; dann ist auch
A #0.)

Fiir die Umkehrung braucht man folgendes: Seien n, m > 1; dann gibt es £, k € 7Z,
so dass {n+ km = (m,n), wobei (m,n) der grofite gemeinsame Teiler von m und
n ist. (Dieses Ergebnis kann man in jedem Buch iiber elementare Zahlentheorie
finden.) Nehme jetzt an, dass p Primzahl ist und sei m € Z, mit m # 0. Dann
gilt (m,p) = 1 und folglich gibt es ¢, k € Z mit {p + km = 1. Sei k' = k Rest p;
also gilt k' — k = {'p fiir ein ¢’ € Z, und daraus ergibt sich, dass

Km—1=km—1+mp={+{m)p.

Damit ist auch ¥mRestp = 1; d.h., ¥ = m™! in Z,. Dies zeigt, dass in Z, die
Bedingung (K8) erfiillt ist. O
Wenn p Primzahl ist, dann bezeichnet man den Koérper Z, meistens mit [F,.

Sei K ein Korper mit Einselement 1. Fiir n > 1 wird nl als 1+ --- 4+ 1 (mit
n Summanden) verstanden. Gilt nl # 0 fiir alle n > 1, so nennt man K einen
Korper der Charakteristik Null. Im anderen Falle ist die Charakteristik char K
definiert als die kleinste positive natiirliche Zahl p, fiir die p1 = 0 gilt.

Insbesondere ist char Q = char R = char C = 0 und charF, = p.
Lemma 2.2 [st char K # 0, dann ist char K eine Primzahl.

Beweis Ubung. O

Sei K ein endlicher Korper; dann gibt es eine Primzahl p und n > 1, so dass K
aus genau p" Elementen besteht (und char K = p). Ist umgekehrt p eine Primzahl
und n > 1, so gibt es einen (im wesentlichen eindeutigen) endlichen Koérper, der
aus genau p" Elementen besteht.

Lineare Gleichungssysteme kénnen iiber einem beliebigen Kérper K betrachtet
werden.

Sein > 1; mit K" wird die Menge aller n-Tupel von Elementen aus K bezeichnet.
Ein Element von K™ hat also die Form (Aq,...,\,) mit Ay, ..., A\, Elementen
aus K. Das Element (0,...,0) € K™ wird mit 0 bezeichnet.

Eine Addition auf K™ wird erklart durch

()\17)\27---7)%)"‘(Mlaﬂ%---a/in):()\1"‘/117)\2"‘#27---7)\11"‘/111)



2 KORPER 17

und eine Multiplikation eines Elements von K™ mit einem Element von K durch

)\(,LLl,,LLQ, s 7Mn) = ()\,Lbl, )\M27 sy )\[Ln) .
Sei v € K™; fiir jedes A € K heifit dann A\v ein Vielfaches von v.

Seien m, n > 1; eine m xn Matriz iber K ist eine Anordnung von mn Elementen
von K nach folgendem Schema

@11 Arz *-- Aip
Q21 Q22 *-- A2y
Am1 QGm2 **° Amn

Die Menge der m x n Matrizen tiber K wird mit M(m X n, K) bezeichnet. Die
Schreibweise A = (ai;)1<i<m,1<j<n und A = (a;;) wird weiter verwendet. Zeilen
und Spalten werden wie im Fall K = R definiert; die Zeilen von A werden als
Elemente von K™ und die Spalten von A als Elemente von K™ betrachtet. Das

Element
0---0

€ M(m x n, K)

wird mit 0 bezeichnet.
Seien m, n > 1 und A = (a;;) € M(m xn,K), b= (b1,...,b,) € K™; dann heifit

1121 + Q129 + *+ + + ATy = b1

A21T1 + A22X9 + * + + + Aop Ty = b2

Am1T1 + A2l + -+ + Qpp Ty = bm

das zu A und b gehérige lineare Gleichungssystem.
Ein Element (y1,...,y,) € K" heiit Losung des zu A und b gehorigen linearen
Gleichungssystems, wenn ¥, ..., y, die m Gleichungen erfiillen, d.h., wenn

a1 yr + ays + - -+ ay, = by
a21Y1 + A2Ys + - - - + a2, Y = bo

Am1Y1 + G2y + - - + CmnYn = bm

Die Menge aller Losungen des Systems wird mit Los(A, b) bezeichnet.

Das Gleichungssystem heiit [dsbar, wenn Los(A, b) mindestens ein Element von
K™ enthélt. Das Gleichungssystem heifit eindeutig l6sbar, wenn Los(A,b) aus
genau einem Element von K™ besteht.
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Das zu A und b gehorige lineare Gleichungssystem heifit homogen, wenn b = 0.
Ein homogenes Gleichungssystem besitzt stets die triviale Losung 0 = (0,...,0).
(Insbesondere ist ein homogenes Gleichungssystem stets 16sbar.)

Eine Teilmenge U von K™ heifit Untervektorraum von K", wenn gilt:
(U0) 0 € U,
(Ul) u+wv e U fir alle u, v € U,
(U2) MueU firalle e K,ueU.

Satz 2.2 Sei A = (a;;) € M(m x n, K); dann ist Los(A4,0) ein Untervektorraum
von K". (Die Lisungsmenge eines homogenen linearen Gleichungssytems fiir n
Unbekannte ist ein Untervektorraum von K™.)

Beweis Dieser ist fast identisch mit dem Beweis fiir Satz 1.1. O

Satz 2.3 Seien A € M(m xn,K), b € K™, v € Los(A,b) und v" € K". Dann
gilt v € Los(A,b) genau, wenn v' = v + u fir ein u € Los(A,0). (Man erhdalt
also alle Losungen des zu A und b gehorigen Gleichungssystems, indem man zu
einer speziellen Losung dieses Systems alle Losungen des zu A und 0 gehdrigen
Gleichungssystems addiert.)

Beweis Dieser ist fast identisch mit dem Beweis fiir Satz 1.2. O

Fiir eine Matrix iiber einem beliebigen Korper K werden nun elementare Zeilen-
umformungen wie im reellen Fall definiert. Sie sind:

I Addition eines Vielfachen einer Zeile zu einer anderen Zeile.

II Vertauschen zweier Zeilen.

Lemma 2.3 Wird eine Matrix A durch eine elementare Zeilenumformung zu
einer Matriz A" verdndert, so gilt A" =0 genau dann, wenn A = 0.

Beweis Dieser ist fast identisch mit dem Beweis fiir Lemma 1.1. O

Seien m, n > 1 und A = (a;;) € M(m xn,K), b= (by,...,b,) € K™; dann wird
die m x (n + 1) reelle Matrix

ay @iz - Qi by
A1 Qg -+ Aoy bo
Am1 Qm2 **° Amn bm

mit (A, b) bezeichnet.
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Satz 2.4 Wird (A,b) durch eine elementare Zeilenumformung zu einer Matriz

(A, V) verdndert, so gilt Los(A,b) = Los(A',b).
Beweis Dieser ist fast identisch mit dem Beweis fiir Satz 1.3. O

Eine Matrix A € M(m x n, K) hat Zeilen-Stufen-Form, wenn fiir jede Zeile der
Matrix folgende zwei Bedingungen erfiillt sind:

— Sind die ersten p Elemente der Zeile Null fiir ein p mit p < n, so sind fiir alle
folgenden Zeilen mindestens die ersten p + 1 Elemente Null.

— Sind alle Elemente der Zeile Null, so ist jedes Element von jeder der folgenden
Zeilen Null.

Insbesondere hat die Null-Matrix 0 Zeilen-Stufen-Form.
Sei A= (a;;) € M(m xn, K) mit A 0und firi=1, ..., m sel

_{min{lﬁjgn:aij#O} falls (a1, ..., aim) #0,

pi 0 sonst .

Die Matrix A hat also Zeilen-Stufen-Form genau dann, wenn

P <p2 <--- <D,

wobel r der Index der letzten von Null verschiedenen Zeile von A ist. Hat A
Zeilen-Stufen-Form, so nennt man py, ..., p, die Treppen-Folge von A.

Satz 2.5 Seien A = (a;;) € M(m xn,K), b= (by,...,b,) € K™ mit (A,b) #0.
Nehme an, dass (A,b) Zeilen-Stufen-Form hat, und sei py, ..., p. die Treppen-
Folge von A. Dann ist das zu A und b gehérige lineare Gleichungssystem losbar
genau, wenn p,. # n + 1. Ferner ist das Gleichungssystem eindeutig lisbar genau
dann, wenn r =n und p; = j fir jedes j =1, ..., n.

Beweis Dieser ist fast identisch mit dem Beweis fir Satz 1.4. O

Satz 2.6 Jede Matrixz in M(m xn, K) lafit sich durch eine Folge von elementaren
Zeilenumformungen in eine Matriz mit Zeilen-Stufen-Form tberfiihren.

Beweis Der Gaufische Algorithmus macht einen Sinn (und funktioniert) fiir einen
beliebigen Kérper K. O

Seien m, n > 1und A = (a;;) € M(m xn,K), b= (by,...,b,) € K™. Es ist klar,
dass Los(0,0) = K™; nehme also an, dass (A,b) # 0. Mit Hilfe des GauBschen
Algorithmus kann die Matrix (A, b) in eine Matrix (A’,0') mit Zeilen-Stufen-Form
tiberfithrt werden und nach Satz 2.4 gilt dann Los(A, b) = Los(A’, ). Ferner gilt
nach Lemma 2.3, dass (A’, ') # 0. Folglich kann Satz 2.5 verwendet werden, um
festzustellen, ob das zu A und b gehorige lineare Gleichungssystem losbar bzw.
eindeutig losbar ist.



3 Vektorriaume

Im Folgenden sei K ein Korper. Ein Vektorraum tiber K ist ein 4-Tupel (V) +, -, 0)
bestehend aus einer Menge V', einer Verkniipfung (Addition)

+:VxV =V
(A ) — A+ p

einer Verkniipfung (Multiplikation mit Skalaren)

KXV -V
(N, v) — Av

und einem Element 0 € V| fiir das folgendes gilt:

1) (w+v)+w=u+ (v+w) fir alle u, v, w € V.

2) u+v=v+ufiralleu veV.

3 +oyv=vwfirallev eV.

4) Zu jedem v € V gibt es ein Element —v € V mit (—v) +v = 0.

6) lv=wfiralleveV.

(1)

(2)

(3) 0

(4)

(5) (Aw)v = A(u) fir alle \, p€ K, v e V.

(6)

(7) Mu+v) =+ v fiir alle A € K, u, v e V.
(8)

8) AN+ p)v=X v+ pvfiralle \, pe K,veV.

Bemerkung: Nach der iiblichen Konvention soll die Addition in V' weniger stark
binden als die Multiplikation mit Skalaren. (Au + Av bedeutet also (Au) + (Av)
und A\v + pv bedeutet (Av) + (uv).)

Das Element 0 heifit das Nullelement oder die Null. Ein Vektorraum iiber K wird
auch K -Vektorraum genannt. Einen Vektorraum iiber K = R bzw. K = C nennt
man reellen Vektorraum bzw. komplexen Vektorraum.

Lemma 3.1 Sei (V,+,-,0) ein Vektorraum tber K.

(1) Das Nullelement 0 ist eindeutig: Ist 0" € V' ein Element mit 0/ +v = v fir
allev €V, soist 0 = 0.

(2) Zu jedem v € V gibt es genau ein Element —v € V. mit (—v) +v = 0.

20
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Beweis Ubung. O

Wenn aus dem Kontext klar ist, welche Verkniipfungen + und - und welches
Element 0 gemeint sind, dann wird lediglich V' statt (V,+,-,0) geschrieben.

Lemma 3.2 Sei V' ein Vektorraum tber K und seien A\ € K, v € V.. Dann ist
v # 0 genau, wenn A # 0 und v # 0.

Beweis Ubung. O

Beispiele von Vektorrdaumen:

1. Sei n > 1; definiere + : K" x K™ — K" und - : K x K" — K" durch

<)\17"'7)\n)+<,u17"'7:un> = ()\1+M17"'7)\n+ﬂn)7
)\(:uh'"?:un) = ()\:ulv7)\,un) .

Dann ist (K", +,-,0) ein Vektorraum iiber K, wobei 0 = (0,...,0). Fiir jedes
()\1, e )\n) e K" ist —<)\1, e )\n) = (—)\1, Cey _)\n)

2. Sei X eine Menge. Fiir f, g € Abb(X, K) und A € K definiere Abbildungen
[+ g, Af € Abb(X, K) durch (f + g)(z) = f(z) + g(z) und (A\f)(z) = A\f(x).
Mit diesen Verkniipfungen + : Abb(X, K) x Abb(X,K) — Abb(X, K) und
- K x Abb(X, K) — Abb(X, K) ist Abb(X, K) ein Vektorraum iiber K. Die
Nullabbildung 0 : X — K (mit 0(x) = 0 fiir alle z € X)) ist die Null und fiir jedes
f € Abb(X, K) ist —f € Abb(X, K) durch (—f)(zx) = —f(z) fur alle z € X
gegeben.

3. Seien m, n > 1 und sei M(m x n, K) die Menge aller m x n Matrizen iiber
K. Fir A = (a;j), B = (bjj) € M(m x n,K) und A € K definiere Matrizen
A+ B, MA € M(m x n,K) durch A+ B = (a;; + b;;) und A = (Aa;;). Mit
diesen Verkniipfungen + : M(m x n, K) x M(m x n, K) — M(m x n, K) und
-t K xM(m xn, K) — M(m x n, K) ist M(m x n, K) ein K-Vektorraum. Die
Nullmatrix 0 ist die Null in M(m x n, K) und fiir jedes A = (a;;) € M(m x n, K)
ist —A = (—a;).

4. (Verallgemeinerung von 2.) Sei X eine Menge und sei V' ein K-Vektorraum.
Fiir f, g € Abb(X,V) und X\ € K definiere Abbildungen f + g, A\f € Abb(X, V)
durch (f +9g)(z) = f(x)+g(x) und (Af)(x) = Af(x). Mit diesen Verkniipfungen
+ : Abb(X, V) x Abb(X, V) — Abb(X, V) und - : K x Abb(X,V) — Abb(X,V)
ist Abb(X, V) ein Vektorraum iiber K. Die Nullabbildung 0 : X — V ist die Null
und fiir f € Abb(X, V) ist —f € Abb(X, V) durch (—f)(x) = — f(x) gegeben.

Sei V' ein Vektorraum iiber K. Eine Teilmenge U C V heiflit Untervektorraum
von V, wenn 0 € U und A\u + pv € U fiir alle u, v € U, X\, p € K. Insbesondere
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ist V' selbst Untervektorraum von V. Ferner ist {0} stets Untervektorraum von
V', (da nach Lemma 3.2 A0 = 0 fiir jedes A € K).

Sei U ein Untervektorraum von V. Dann induzieren die Verkniipfungen + und
- Verkniipfungen + : U x U — U und - : K x U — U. Mit diesen induzierten
Verkniipfungen (und mit dem Nullelement 0 aus V') ist U ein K-Vektorraum.

Lemma 3.3 Seit U ein Untervektorraum von V und seien vy, ..., v, Elemente
von U (mit m > 1). Fir alle Ay, ..., Ay, € K ist dann M\vy + - - - + A\ v, wieder
ein Element von U.

Beweis Es wird durch Induktion nach n gezeigt, dass A\jv1+- - -+, v, ein Element
von U ist fiir jedes n =1, ..., m. Nach (U2) ist A\jv; ein Element von U. Sei nun
n mit 1 < n < m und nehme an, dass A\jv; + - -+ + A\,v, ein Element von U ist.
Nach (U2) ist A\p419n41 ein Element von U, und daraus folgt nach (U1), dass

AU+ Apr1Una1r = Ao+ -+ X)) F A1 Vna

auch ein Element von U ist. Damit ist \jv; + - - - + A\,v, ein Element von U fiir
jedes n =1, ..., m. Insbesondere ist \jvy + - -+ + A\, v, €in Element von U. O

Im folgenden sei V' ein Vektorraum iiber dem Korper K.

Seien vy, ..., Uy € V (mit m > 1). Ein Element v € V heifit Linearkombination
VON Uy, ..., Uy, Wenn es Ay, ..., A, € K gibt, so dass

V= MU+ AU, -

Die Menge aller Linearkombinationen von vy, ..., v, nennt man die lineare Hiille
VON VU1, ..., Up; sie wird mit L(vy, ..., v,,) bezeichnet.
Wichtiges Beispiel fiir den Vektorraum K™: Fir j =1, ..., m sei

e; =(0,...,0,1,0,...,0)
mit der Eins in der j-ten Komponente. Dann gilt

)\1€1+"'+)\m€m:(Ala---y)\m)

fiir alle Ay, ..., A, € K und daraus ergibt sich, dass L(ey,...,e,) = K™
Seien nun vy, ..., vy, € V (mit m > 1).
Satz 3.1 L(vy,...,vy) ist ein Untervektorraum von V mit v; € L(vq,...,vp)

fiir jedes 7 =1, ..., m.
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Beweis Nach Lemma 3.2 ist 0 = Ovy; + -+ 4+ Ov,, € L(vy,...,0,). Seien nun
u, v € L(vy,...,v,); dann gibt es Elemente Ay, ..., Ay, p1, -- ., by € K, so
dass u = A\jvy + -+ - + A\puy, und v = vy + - - - + pe vy Folglich gilt

UV = A\U1 - AU+ 01 U = (A ) v+ (A ) U
und damit ist u 4+ v € L(vy,...,v,). Fiir jedes A € K gilt ferner
AU = )\()\1’01 +--+ )\mvm) = ()\)\1)1)1 + -+ <)\)\m>vm s

und folglich ist auch Au € L(vy,...,v,). Dies zeigt also, dass L(vy,...,v,,) ein
Untervektorraum von V' ist.

Sei nun j mit 1 < j < m und definiere \q, ..., A\, € K durch
\ 1 fallsi=j,
“10 fallsi #£ 5.

Dannist v; =0+---+0+1v; +0+---+0 = Aoy + - - - + AV, und damit ist
vj € L(vy,...,vp). O

Satz 3.2 Sei U ein Untervektorraum von V- mit v; € U fiir jedes j. Dann gilt

L(vi,...,vn) CU. Damit ist L(vy, ..., v,) der kleinste Untervektorraum von V,
der die Elemente vy, ..., v, enthdlt.
Beweis Sei v € L(vy,...,vy); dann gibt es Elemente Aq, ..., A, € K, so dass

v = M\vU1 + -+ AU, und nach Lemma 3.3 ist Ajv; + -+ - + \,0,,, €in Element
von U, d.h., v € U. Folglich ist L(vq,...,v,) CU. O

In den folgenden Lemmas sei m > 1 und seien vy, ..., v, € V.

Lemma 3.4 Es gilt L(vq,...,v,) = {0} genau dann, wenn v; = 0 fir jedes
j=1 ..., m.

Beweis Nach Satz 3.1 enthélt L(vq, ..., v,,) die Elemente vy, ..., v, und folglich
ist L(vy,...,vm) # {0}, wenn v; # 0 fiir ein j. Ist andererseits v; = 0 fir jedes
7 =1,...,m, dann gilt \jv; + -+ + A\,v,, = 0 fiir alle Ay, ..., \,, € K und

damit ist L(vy,...,v,) = {0}. O

Lemma 3.5 Seien A\, ..., A\, € K mit \j # 0 fir jedes j = 1, ..., m. Dann
gilt L(Av1, .« . s ApUm) = Lvg, ..o vg).
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Beweis Nach Satz 3.1 ist A\;u; € L(vq,...,vy,) fir jedes j =1, ..., m und daraus
folgt nach Satz 3.2, dass L(Ajvy, ..., Apvym) C Lvy, ..., vp). Umgekehrt ist

V5 = 1’Uj = (A;lkj)vj = )\;1<)‘jvj) € L()\lvl, ey )\mvm)

fiir jedes 7 und damit ist auch L(vq, ..., v,) C L(Av1, ..., Apty,). O

Lemma 3.6 Fir jede Permutation {iy,..., iy} von {1,...,m} gilt

L(viyy .. yvs,) = Lvg, ... vm) -

Beweis Nach Satz 3.1 ist v;, € L(vy, ..., vn) fiir jedes j = 1, ..., m und daraus
folgt nach Satz 3.2, dass L(v;,,...,v;,) C L(vy,...,v,). Genauso gilt dann auch
L(vi,...,vm) C L(vyy, ... y0;,). O

Lemma 3.7 Seiu € V. Dann gilt L(vy,...,v,) C L(vy, ..., v;m,u). Ferner gilt
L(vi,...,vm) = L(vy, ..., 0m, u) genau dann, wenn u € L(vy, ..., vy).

Beweis Nach Satz 3.1 ist v; € L(vy, ..., v, u) fiir jedes j und daraus ergibt sich
nach Satz 3.2, dass L(vy, ..., v,) C L(vy, ..., 0y, uw).

Gilt L(vy, ..., vm) = L(v1,. .., Um,u), so ist u € L(vy,...,v,), da nach Satz 3.1
win L(vy, ..., Up,u) liegt. Ist umgekehrt u € L(vy, ..., v,,), so ist nach Satz 3.2
L(vi, ..., vm,u) C L(vq,...,0y) und damit L(vy, ..., v,) = L(ve, ..., Un,u), da
nach Satz 3.1 v; € L(vy, ..., v,) fir jedes j. O

Lemma 3.8 Seien u, w € V. Es gilt u € L(vy, ..., 0y, w) \ L(vy,...,v,) genau

dann, wenn w € L(vy, ..., 0m,u) \ L(vy, ..., 0p).

Beweis Nehme zunéchst an, dass w € L(vy, ..., vy, u) \ L(vy, ..., vy). Dann ist
insbesondere L(vy, ..., vy, u) # L(vy, ..., v,) und daraus folgt nach Lemma 3.7,
dass u & L(vy,...,vp). Daw € L(vy,...,up,u), gibt es Ay, ..., A1 € K, so

dass w = A\ + - + AU + Apiu. Ferner ist A1 # 0, sonst wiirde w in
L(vy,...,v,) liegen. Damit ist

U= 101 + -+ U + 1 W

wobei p1; = (=1)A, A fiir j =1, ..., mund fi,41 = AL ;. Dies zeigt also, dass
u € L(vy, ..., vm,w) \ L(ve, ..., v).

Der Beweis fiir die Umkehrung ist identisch, die Rollen von w und w miissen
lediglich getauscht werden. O
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Fiir den Vektorraum K™ gibt es einen engen Zusammenhang zwischen der Frage,
ob ein Vektor v € K™ in der linearen Hiille von Vektoren vy, ..., v, liegt, und
der Frage, ob ein entsprechendes Gleichungssystem losbar ist.

Seien vy, ..., v, € K™ (mitn > 1) mit v; = (ay,, ..., ;) firjedesj =1, ..., n.
Dann gibt es die Matrix A = (o;;) € M(m xn, K), in der die Vektoren vy, ..., v,
als Spalten vorkommen.

Satz 3.3 Fir jedes v € K™ gilt v € L(vy,...,v,) genau dann, wenn das zu A
und v gehorige lineare Gleichungssystem losbar ist.

Beweis Seien A\, ..., A\, € K; dann bedeutet v = A\jv; + - - - + A\,v, genau, dass
Ao+ Ay, = G fiir jedes i =1, ..., m, wobei v = (04, ..., Bn). Also gilt
v = Ay +- -+ A\, genau dann, wenn (Aq, ..., \,) € Los(A,v), und damit liegt
vin L(vy,...,v,) genau dann, wenn Los(A,v) # @. O

Seien vy, ..., v, € V (mit m > 1). Man sagt, dass vy, ..., v, linear abhdngig
sind, wenn es Ay, ..., A, € K mit A; # 0 fiir mindestens ein j gibt, so dass

)\101+"'+>\mvm:0.

Die Vektoren vy, ..., v, sind linear unabhdngig, wenn sie nicht linear abhéngig
sind. Mit anderen Worten sind die Vektoren vy, ..., v,, linear unabhéngig genau
dann, wenn aus Ajv; + - - - + A\, v, = 0 stets folgt, dass \y = --- =\, =0, d.h,,
wenn eine Linearkombination von vy, ..., v, nur dann Null sein kann, wenn alle
“Koeffizienten” verschwinden.

Wichtiges Beispiel fiir den Vektorraum K™: Fiir j =1, ..., m sei wieder
e; =(0,...,0,1,0,...,0)

mit der Eins in der j-ten Komponenten. Dann sind e, ..., e,, linear unabhéngig:
Sind Ay, ..., A\ € K mit Mjeg + -+ + A\pey, = 0, 80 ist (Mg, ..., A\pn) = 0, d.h,,
A =0firjedes j =1,..., m, da Ae; + -+ Apem = (A, ..., An).

In den folgenden Lemmas sei m > 1 und seien vy, ..., v, € V.

Lemma 3.9 Sind vq, ..., vy, linear unabhingig, so ist v; # 0 fir jedes j und
ferner ist v # vy, falls j # k.

Beweis Nehme an, dass v; = 0 fiir ein j, und definiere Ay, ..., A, € K durch

\ 1 fallsi=j,
“10 fallsi #£ 5.
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Dann ist A; # 0 fiir mindestens ein ¢ und nach Lemma 3.2 ist

)\1U1+---+)\mvm:01)1+---+01)j_1+1vj+01)j+1+---+0vm
=0+ +0+1v; 40+ +0=1v;=v; =0.

Damit wéren vy, ..., v, linear abhéngig. Folglich ist v; # 0 fiir jedes j.

Nehme nun an, dass es j, k mit j # k£ und v; = v, gibt, und definiere diesmal

—1 fallsi =7,
A=< 1 fallsi=Fk,
0 sonst .

Dann ist \; # 0 fiir mindestens ein ¢ und nach Lemma 3.1 und Lemma 3.2 ist

v+ Apvp = (=1 + g = (—vj) +v; =0,

und wieder wéren vy, ..., v, linear abhéngig. Folglich ist v; # vy, falls j # k. O
Lemma 3.10 Seien A\, ..., A\, € K mit \j # 0 fiir jedes j = 1, ..., m. Die
Vektoren \vy, ..., AU sind genau dann linear unabhdngig, wenn vy, ..., Up

linear unabhdngig sind.

Beweis Es wird gezeigt, dass vy, ..., v, genau dann linear abhéngig sind, wenn
AV1, ..., ApUpy, linear abhéngig sind. Nehme zunéchst an, dass A\jvy, ..., A\pu,
linear abhéngig sind. Dann gibt es 1, ..., f,, € K mit pu; # 0 fiir mindestens
ein j, so dass p1(Ajv1) + -+ + fln(Amvm) = 0. Fiir j =1, ..., m sei p = ;)3
dann ist p; # 0 fiir mindestens ein j, da p; = 0 genau dann, wenn p; = 0, und

ot U = (Aot (A ) Um = i (Mon) + A+ i (A vn) = 0.

Damit sind v, ..., v, linear abhéngig.

Nehme nun umgekehrt an, dass vy, ..., v, linear abhingig sind. Dann gibt es
Hi,y -y fm € K mit p; # 0 fiir mindestens ein j, so dass p1v; + - - - + iV = 0.
Firj=1, ..., mseiyj; = uj)\j’l; dann ist y; # 0 fiir mindestens ein j, da p; =0

genau dann, wenn ; = 0. Ferner gilt p/\; = ,uj)\j_l)\j = pj1 = p; fiir jedes j und
daraus ergibt sich, dass

Nll()‘lvl) T+t ,U:n()‘mvm> = (/1,1)‘1>U1 et (,U;n)‘mwm
= p1(Mv1) + - i (Apvm) =0

Folglich sind A\jvq, ..., Anv,, linear abhingig. O
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Lemma 3.11 Seien iy, ..., i, (mit n > 1) paarweise verschiedene Elemente aus
der Menge {1,2,...,m}. (Es gilt alson <m, 1 <i; <m firj=1,...,n und
i; # ik, falls j # k.) Sind vy, ..., vy, linear unabhingig, so sind auch vy, ..., v;,

linear unabhdngig.

Beweis Nehme an, dass v;,, ..., v;, linear abhéngig sind. Es gibt also Elemente
Aigs -5 Aip, € Kmit )y, # 0 fiir mindestens ein j, so dass Ay, vy, ++ - -+ A, v;, = 0.
Definiere 1, ..., p, € K durch

Ai, falls k=ij firein j=1,...,n,,
M =
0 sonst .

Dann ist i # 0 fiir mindestens ein k£ und nach Lemma 3.2 ist

M1U1+"'+vam:)‘i1vi1+"'+)\i"vin:0'

Aber dies ist nicht moglich, da dann vy, ..., v, linear abhéngig wéiren. Also sind
Vi, - .., U;, linear unabhingig. O
Seien w1, ..., v, linear unabhéngig. Dann gibt es folgende spezielle Fille von
Lemma 3.11:
— Fiir jedesn=1, ..., msind vy, ..., v, linear unabhéngig.
— Ist m > 2, so sind vy, ..., vj_1, Vj41, - .., Uy linear unabhéngig fiir jedes
=1 ..., m.
— Fiir jede Permutation {i,...,4,} von {1,...,m} sind v;, ..., v; linear
unabhéngig.

Satz 3.4 (1) Seiv € V; dann ist v linear unabhingig genau, wenn v # 0.

(2) Seien vy, ..., vy € V mit m > 2. Dann sind vy, ..., vy, linear unabhingig
genau, wenn vy & L(v1,..., V51, Vkt1,-..,0m) fir jedes k=1, ..., m.

Beweis (1) Sei A € K mit A # 0; nach Lemma 3.2 gilt, dass Av = 0 genau dann,
wenn v = 0. Folglich ist v linear abhéngig genau dann, wenn v = 0, d.h., v ist
linear unabhéngig genau dann, wenn v # 0,

(2) Es wird gezeigt, dass vy € L(v1, ..., Uk_1, Uks1,-- -, V) fur ein k genau dann
gilt, wenn vy, ..., v, linear abhéngig sind.
Nehme zunéchst an, dass v, € L(vy, ..., 05 1,Vks1, ..., Up) fur ein k. Dann gibt
€S AL, -y A1y Aktls - -5 Am € K, S0 dass

Vg = A1+ - A1 Vk—1 + A1 V,1 + -+ AUy,
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Setze A\ = —1; dann ist A\, # 0 und

MU+ AU, = Aor e+ Ae1vp1 + (S 10k + A1k 0+ At
= (—D)vg + A\vp 4+ -+ Ao 1Vk—1 + App1 V41 + -+ AU
= (_1)Uk + Vi = (—Uk) + Vi = 0 s

(da —v = (—1)v fiir jedes v € V). Damit sind vy, ..., v, linear abhéngig.
Nehme nun umgekehrt an, dass vy, ..., v, linear abhéngig sind. Dann gibt es
Aty ooy Ay € K mit \; # 0 fiir mindestens ein j, so dass \jvq + -+ -+ Apvy,, = 0.

Wiihle k mit Ay # 0 und fiir jedes j mit j # k sei p; = v\, wobei v = (—=1)\ .
Dann ist v\, = (—=1)(A\;'A\x) = (—=1)1 = —1 und

v =04 v =0+ v = v( Mo + -+ -+ Apom) + v
= (1/)\1)1]1 +---+ (u)\m)vm + vg
= 101+ - V=1 F k1 V1 + o F U + (VAR U 4 U
= U1 + - F o 1Vk—1 F e 1Vkt1 o F U + (1) + v
= M1V + - U1 Vk—1 F e+ Vk+1 + 0 U,

und damit ist vy € L(vy, ..., Vg1, Vks1, -+, Um). O

Lemma 3.12 Seien vy, ..., v, € V linear unabhingig und sei w € V. Dann
sind vy, ..., Uy, u linear unabhdngig genau, wenn u & L(vy, ..., vp).

Beweis Sind vy, ..., v, u linear unabhéngig, dann gilt nach Satz 3.4 (2), dass
insbesondere u ¢ L(vy,...,v,). Es bleibt also zu zeigen, dass u € L(vy,. .., ),
wenn vy, ..., Up, u linear abhéngig sind.

Sind die Vektoren vy, ..., v,,, u linear abhéngig, dann gibt es Ay, ..., A\j,y1 € K

mit A\; # 0 fiir mindestens ein 7, so dass A\jv; + - -+ + AUy, + Ay = 0. Nehme
an, dass A\,4+1 = 0; dann ist A; # 0 fiir mindestens ein j mit 1 < 57 < m und
Av1 + -+ Apv, = 0. Dies steht aber im Widerspruch zu der Annahme, dass
V1, ..., Uy linear unabhéingig sind, und daraus ergibt sich, dass \,,.1 # 0. Fiir
j=1,..., msetze u; = v\, wobei v = (—1)A L. Dann ist vA,,41 = —1 und

u=0+u=v04+u=vAv+ -+ ApUn + Apr1u) +u
= (A + -+ (WAR)vm + (PAma1)u + u
= V1 + - F U+ (=L u 4 u
= v+ UV + 0 = v + -+ U,

dh., ueL(vy,...,v,). O
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Lemma 3.13 Die Vektoren vy, ..., v, sind linear unabhdingig genau dann, wenn
vy # 0 und v, & L(vy, ... ,v,_1) fir jedesn =2, ..., m.

Beweis Sind vy, ..., v, linear unabhéngig, dann ist nach Lemma 3.9 v; # 0 und
nach Satz 3.4 (2) gilt v, ¢ L(vy,...,v,-1) fiir jedes n = 2, ..., m. Nehme nun
umgekehrt an, dass die Vektoren vy, ..., v, linear abhéngig sind. Dann gibt es
ALy ooy Ay € K mit \; # 0 fiir mindestens ein j, so dass \jvq + -+ -+ Apvy,, = 0.
Sei n = max{l < j < m: \; # 0}; also ist A, # 0 und \jvy + -+ A\v, = 0.
Falls n = 1, so ist \; # 0 und A\jv; = 0, und hier ist nach Lemma 3.2, v; = 0.
Wenn aber n > 2, 80 ist v, = pvy + -+ + fp_1Vp_1, Wobei u; = (=1)A 1),

fir j =1, ..., n— 1, und hier ist v, € L(vy,...,v,_1). Daraus ergibt sich, dass
V1, ..., Up linear unabhéngig sein miissen, wenn vy # 0 und v, ¢ L(vy,...,v,1)
fiir jedesn=2, ..., m. O

Fiir den Vektorraum K™ gibt es einen engen Zusammenhang zwischen der Frage,
ob Vektoren v, ..., v, € K™ linear unabhéngig sind, und der Frage, ob ein
entsprechendes homogenes Gleichungssystem eindeutig 16sbar ist.

Seien vy, ..., v, € K™ (mit n > 1) mit v; = (o, ..., ;) firjedesj =1, ..., n.
Es gibt dann die Matrix A = (a;;) € M(m xn, K), in der die Vektoren vy, ..., v,
als Spalten vorkommen.

Satz 3.5 Die Vektoren vy, ..., v, sind linear unabhdngig genau dann, wenn das
zu A und 0 gehirige lineare Gleichungssystem eindeutig losbar ist (d.h., genau

dann, wenn Los(A,0) = {0}).

Beweis Genau wie im Beweis fiir Satz 3.3 gilt \yv; + - - - + A\, v, = 0 genau dann,
wenn (Ap,...,A\,) € Los(A,0). Damit sind vy, ..., v, linear unabhingig genau
dann, wenn Los(A,v) = {0}. O

Fiir Untervektorrdume Uy, ..., U, (m > 2) von V bezeichne mit Uy + -- - + U,
die Menge aller Elemente von V', die eine Darstellung der Form wy + - - - + uy,
haben mit u; € U; fiir j = 1, ..., m, und nenne U; + --- + U,, die Summe der
Untervektorrdume Uy, ..., U,.

Satz 3.6 (1) Die Summe Uy + - -- + U, der Untervektorriume Uy, ..., U, ist
ein Untervektorraum von V und U; C Uy + -+ - + U, fir jedes j =1, ..., m.

(2) Ist U ein Untervektorraum von V mit U; C U fir jedes j =1, ..., m, so ist

uy+---+U, CU.

Beweis Ubung. O

Nach Satz 3.6 ist die Summe U; + - - - + U,,, der kleinste Untervektorraum von V/,
der die Untervektorraume Uy, ..., U, enthilt.



4 Endlichdimensionale Vektorriaume

Im folgenden sei wieder K ein Kérper und V ein Vektorraum iiber K.

Sei U ein Untervektorraum von V' und seien vy, ..., v, € V (mit m > 1). Dann
heilt das m-Tupel (vq,...,v,) Basis von U, wenn gilt:
(B1) Die Vektoren vy, ..., v, sind linear unabhéngig,

(B2) L(vi,...,vm) =U.

Sei (vy,...,v,) eine Basis eines Untervektorraumes U von V. Nach Lemma 3.9
ist dann v; # 0 fiir jedes j, und daraus folgt nach Lemma 3.4, dass U # {0}.
Der triviale Untervektorraum {0} von V kann also im obigen Sinn keine Basis
besitzen. Es erweist sich aber als niitzlich, die leere Menge @ als Basis von {0}
anzusehen.

Wichtiges Beispiel fiir den Vektorraum K™: Fiir j =1, ..., m sei wieder
e; =(0,...,0,1,0,...,0)

mit der Eins in der j-ten Komponenten. Dann sind eq, ..., e, linear unabhéngig
und es gilt auch L(ey, ..., e,) = K™. Damit ist (ej,...,e,) eine Basis von K™.
Sie wird die kanonische Basis von K™ genannt.

Lemma 4.1 Sei U # {0} ein Untervektorraum von V und sei (vq,...,vy) eine
Basis von U.

(1) Seien Ay, ..., Ay € K mit X\; # 0 fiir jedes j; dann ist (A\vy, ..., \pUp,) auch
eine Basis von U.

(2) Sei{iy, ..., in} eine Permutation von {1,...,m}; dann ist (v;,,...,v; ) auch
eine Basis von U.

Beweis (1) Nach Lemma 3.5 ist L(Ajv1,. .., Apty,) = U und nach Lemma 3.10

sind A\jvy, ..., ApUy, linear unabhéngig. Damit ist (Ajvy, ..., A\,vy,) eine Basis
von U.

(2) Nach Lemma 3.11 sind v;,, ..., v;,, linear unabhéngig und nach Lemma 3.6
ist L(vyy, ..., v, ) = U. Damit ist (v;,,...,v;,) eine Basis von U. O

Satz 4.1 Sei U # {0} ein Untervektorraum von V und sei (vi,...,v,) eine
Basis von U. Dann gibt es zu jedem u € U genau ein (A, ..., \y) € K™, so dass

U= AU+ -+ AU -

30



4 ENDLICHDIMENSIONALE VEKTORRAUME 31

Beweis Sei uw € U; da U = L(vy,...,v,), gibt es mindestens ein m-Tupel
(A, .y Am) € K™, so dass u = Av; + -+ + \pvp. Nehme an, dass auch
U= 01 + -+ Uy, fir ein (g, ..., py) € K™. Dann ist

(_

(DA 4+ p)vr + -+ (D) A + pn) v
AMUL A+ A U) + v+ U

utu=(—u)+u=0,

(
(

und daraus folgt, dass (—1)\; + p; = 0 fiir jedes j =1, ..., m, da vy, ..., Uy
linear unabhéingig sind. Damit ist \; = p; fiir jedes j =1, ..., m. (Ubung: Sind
A p € K mit (—=1)A 4+ p = 0, so ist A = p.) Dies zeigt also, dass es genau ein
(A, Am) € K™ mit u= Aoy + -+ + Aoy, gibt. O

~1)
~1)

Satz 4.2 Seien (vy,...,vn), (w1,...,w,) zwei Basen eines Untervektorraumes
U von V. mit U # {0}. Dann ist m = n.

Beweis Fiir den Beweis wird folgendes Austauschlemma gebraucht:

Lemma 4.2 Sei U # {0} ein Untervektorraum von V und seien (vy, ..., Uy),
(w1, ..., wy,) zwei Basen von U mit m > 2 und n > 1. Dann gibt es zu jedem
j=1,...,meink mitl <k<n, sodass (v1,...,0j_1,0j11,-..,Um, W) wieder

eine Basis von U ist.

Beweis Sei j mit 1 < j < m fest. Nehme an, wy, € L(vq,...,0j_1,0j11,..,0Up)
fiir jedes k =1, ..., n. Dann gilt nach (B2) und Satz 3.2, dass

U:L(wl,...,wn) CL(vl,...,vj_l,vj+1,...,vm),

und nach Satz 3.1 ist v; € U; d.h., v; € L(vq,...,vj_1,0j41, ..., Uy). Dies steht
aber im Widerspruch zu Satz 3.4 (2), da vy, ..., vy, linear unabhéngig sind. Damit
gibt es ein k mit 1 < k < n, so dass wy ¢ L(vy,...,vj_1,0j41,...,Un). Es wird
nun gezeigt, dass {v1,...,0j_1,Vj11,..., Un, wi} eine Basis von U ist.

Nach Lemma 3.11 sind vy, ..., vj_1, Vj41, ..., Up linear unabhéngig, und folglich
sind nach Lemma 3.12 vy, ..., vj_1, Vj41, - .., Um, Wy auch linear unabhéngig.

Es bleibt zu zeigen, dass L(v1, ..., vj_1, V41, . . ., Um, wy) = U. Nach (B2), Satz 3.1
und Lemma 3.6 ist

Wg € U= L(Ul,...,’Um) = L(U17...7Uj717vj+17...7vm7vj) .
Aber wy, ¢ L(vy,...,0j-1,0j41, ..., Up), d.ho,

wy € L(’Ul, ey Uj—1, V541, - - ,’Um,l)j) \ L(Ul, ey U1, V541, . - ,Um) s
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und daraus folgt nach Lemma 3.8, dass v; € L(vi,...,0j-1,0j41, ..., Un, Wg).
Nach Satz 3.2 ist also U = L(vq,...,vm) C L(v1,...,0j-1,041, .. ., U, Wi); und
daher ist U = L(vy, ..., 0j-1, Vjt1,- - ., U, Wg). O

Nun zum Beweis fiir Satz 4.2, und ohne Beschrinkung der Allgemeinheit kann
man annehmen, dass m > n > 1. Ist m = 1, dann ist m = n trivial richtig;
es kann also weiter angenommen werden, dass m > 2. Nun wird Lemma 4.2
wiederholt angewendet.

Zuerst gibt es nach Lemma 4.2 ein k; mit 1 < k; < n, so dass (va, ..., Uy, Wk, )
eine Basis von U ist. Nun sind (vs, ..., v, wg, ) und (wy,...,w,) Basen von U;
also gibt es nach Lemma 4.2 ein ky mit 1 < ky < n, so dass (vs, ..., Un, Wk, , Wk,)
eine Basis von U ist. Nach m-maliger Anwendung dieses Verfahrens erhélt man
eine Basis (wg,, ..., wy, ) von U. Insbesondere sind dann wy,, ..., wg, linear
unabhéingig und daraus folgt nach Lemma 3.9, dass wy, # wy; und damit k; # k;,
falls i # j. Da aber 1 < k; < n fiir jedes j = 1, ..., m, ist dies nur méglich, wenn
m=mn. O

Ein Untervektorraum U von V heifit nun endlichdimensional, wenn U eine Basis
besitzt. Sei U # {0} endlichdimensional; nach Satz 4.2 gibt es dann n > 1, so
dass jede Basis von U aus genau n Elementen besteht und diese Zahl n wird die
Dimension von U gennant und wird mit dim U abgekiirzt. Per Definition wird
der Untervektorraum {0} die Dimension 0 zugeordnet (dim{0} = 0).

Der Vektorraum V selber heifit endlichdimensional, wenn V eine Basis besitzt
(d.h., wenn V' als Untervektorraum von V' endlichdimensional ist). Dann ist die
Dimension von V' die Anzahl der Elemente in einer Basis von V.

Fiir jedes m > 1 ist der Vektorraum K™ endlichdimensional und dim K™ = m,
da (eq,...,e,) eine Basis von K™ ist.

Nicht jeder Vektorraum ist endlichdimensional: Zum Beispiel ist der Vektorraum
Abb(X, K) genau dann endlichdimensional, wenn die Menge X endlich ist. (Der
Beweis dafiir ist eine Ubung.) In der Vorlesung Linearer Algebra werden aber
hauptséachlich nur endlichdimensionale Vektorrdume betrachtet.

Lemma 4.3 Seien m >0, n > 1, seien uy, ..., U, € V linear unabhdingig und
Wi, ..., W, € V. Dann gibt es iy, i, ..., 0p mitk >0undl <4y <--- <1 <n,
50 dass uy, ..., Upm, Wiy, ..., W; linear unabhdingig sind und

L(wg, ooy Uy Wiy ooy wyy) = LU, ooy Uy, w1, .o, wy)

(In dieser Formulierung werden vy, ..., v, als linear unabhdingig angesehen und
L(v1,...,vp) als {0} interpretiert, wenn p =0.)
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Beweis Sei k > 0 die grofite Zahl, fir diees 1 < 41 < -+ < 7 < n gibt, so
dass ui, ..., Upm, Wi, ..., w;, linear unabhéngig sind. Seien 1, ..., i; wie in der
Definition von k. Es wird nun gezeigt, dass

Lty ooy Uy Wiy ooy wyy) = LUy, . ooy Uy, w1, .o wy)
Sei j mit j # i, fiir jedes p =1, ..., n. Nach Lemma 3.11 sind dann die Vektoren
UL, -y U,y Wip, - .., Wi, w; linear abhingig und daraus folgt nach Lemma 3.12,
dass w; € L(uq, ..., Um, Wiy, ..., w; ). Also ist v € L(uq, ..., up, w;,, ..., w;,) fiir

jedes v € {uy, ..., Up,ws, ..., w,} und folglich gilt nach Satz 3.2, dass
L(u, ooy Um,wr, .oy wy) C L(ug, .o Uy Wiy, ooy, )

d.h., L(uy, ..., um, wr, ..o, wy) = L(ug, ooy U, Wiy, - wy,). O

Satz 4.3 FEin Untervektorraum U wvon V st endlichdimensional genau dann,

wenn es einn > 1 und vy, ..., v, € U gibt, so dass U = L(vq,...,v,). Ist
ferner U # {0} und U = L(vy,...,v,), dann gibt es iy, ..., i mit k > 1 und
1<iy <---<ip <mn, sodass (Vi,, Viy, - .., 0;,) eine Basis von U ist.

Beweis Da {0} endlichdimensional ist und {0} = L(0), kann man annehmen, dass
U # {0}. Ist U endlichdimensional, dann gilt U = L(vy,...,v,) fir jede Basis
(v1,...,v,) von U. Nehme also umgekehrt an, dass esn > 1 und vy, ..., v, € U
mit U = L(vy,...,v,) gibt. Nach Lemma 4.3 (mit m = 0) gibt es dann k£ > 0
und 1 <43 < --- <4 < n, so dass v;,, Uy, ..., v;, linear unabhéngig sind und
L(viy, vigs - -, 0;,) = L(v1,...,v,) = U (und also ist k£ > 1, da U # {0}). Damit
ist (v, Uiy, - - -, v;,) €ine Basis von U; insbesondere ist U endlichdimensional. O

Lemma 4.4 Sei W ein endlichdimensionaler Untervektorraum von V. und seien
Uty -y Uy € W linear unabhdngig. Dann gilt m < dim W.

Beweis Sei (wy, ..., w,) eine Basis von W. Nach Lemma 4.3 gibt es iy, ..., i
mit £ > 0und 1 <43 < -+ < i < m, sodass uy, ..., Up, W, ..., w,;, linear
unabhéngig sind und L(uy, ..., U, Wiy, ..., w; ) = L(u, . .., Uy, w1, ..., w,) . Da
aber u; € W fiir jedes j =1, ..., m und W = L(wy, ..., w,), ist nach Satz 3.1
und Satz 3.2 L(uy, ..., U, w1, ..., w,) = W. Damit ist (uq, ..., Up, Wi, ..., w;,)
eine Basis von W. Insbesondere ist m <n=dimW. O

Satz 4.4 Seien U, W Untervektorrdume von V. mit W endlichdimensional und
U Cc W. Dann ist U endlichdimensional und dimU < dim W.
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Beweis Man kann annehmen, dass U # {0} (und damit ist auch W # {0}), da
die Behauptung trivial richtig ist, wenn U = {0}.

Da U # {0}, gibt es uy € U mit u; # 0 und nach Satz 3.4 (1) ist uy linear
unabhéngig. Gilt U = L(uy), dann ist (u1) schon eine Basis von U.

Ist dagegen U # L(uy), so gibt es ug € U\ L(u;) und nach Lemma 3.12 sind dann
u1, ug linear unabhéngig. Gilt U = L(uy, us), dann ist (u,us) eine Basis von U.

Ist dagegen U # L(uy, us), so gibt es ug € U\ L(uy, u2) und nach Lemma 3.12 sind
dann wuy, ug, ug linear unabhingig. Gilt U = L(uq, ug, u3), dann ist (u, ug, u3) eine
Basis von U.

Ist dagegen U # L(uy,ug,u3), so gibt es uy € U \ L(uy, us, u3) und ... .

Entweder hort dieses Verfahren auf, indem U = L(vy, ..., v,,) fir ein m > 1, und
damit ist (vy,...,v,) eine Basis von U, oder das Verfahren hort nie auf, und
in diesem Fall ist {vj}x>1 eine Folge von Elementen aus U mit der Eigenschaft,
dass fiir jedes m > 1 die Vektoren vy, ..., v, linear unabhéingig sind. Aber
nach Lemma 4.4 ist das Letztere nicht moéglich und daraus ergibt sich, dass U
endlichdimensional ist. Ist ferner (us,...,u,,) eine Basis von U, dann gilt nach
Lemma 4.4, dass m < dim W, d.h., dimU < dim W. O

Satz 4.5 (Basisergidnzungssatz) Seien U, W Untervektorriume von V- mit W

endlichdimensional und {0} # U C W; sei (u1, ..., uy) eine Basis von U. Dann
gibt es k>0 und vy, ..., v € W, so dass (uy, ..., Up,v1,...,0) eine Basis von
W ist.

Beweis Sei (wy, ..., w,) eine Basis von W. Nach Lemma 4.3 gibt es iy, ..., i
mit £ > 0und 1 <4 < --- <4 < n, sodass uy, ..., Up, Wy, ..., w;, linear
unabhéngig sind und L(ui, . . ., Up, Wiy, ..., w;, ) = L(ug, ...y U, wy, ..., wy,). Wie
im Beweis fiir Lemma 4.4 ist nun (uy, ..., U, Wy, ..., w; ) eine Basis von W. O

Satz 4.6 Sei U # {0} ein endlichdimensionaler Untervektorraum von V und
seien uy, ..., Uy, € U (mit m > 1).

(1) Sind uy, ..., Uy, linear unabhdngig, so ist m < dimU.

(2) Sindwuy, ..., up linear unabhingig und m = dim U, so ist (uq, . .., Uy,) schon
eine Basis von U.

(3) Gilt L(uy, ..., up) =U, soist m > dimU.

(4) Gilt L(uy, ..., up) =U und m = dim U, so ist (uy,...,u,) schon eine Basis
von U.
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Beweis (1) und (2): Setze U' = L(uy,...,uy), und also ist (ug,...,u,,) eine
Basis von U’. Nach Satz 4.5 gibt es dann & > 0 und vy, ..., v, € U, so dass
(Ui, ...y Upm, V1, ..., U;) eine Basis von U ist. Insbesondere ist m < m+k = dim U.
Ist ferner m = dim U, d.h., k = 0, so ist (uq, ..., u,,) eine Basis von U.

(3) und (4): Wie im Beweis fiir Satz 4.3 gibtesk > 1und 1 < iy < -+ < i < m,
so dass (vj,, iy, ..., v;, ) eine Basis von U ist. Insbesondere ist dimU = k < m.
Ist ferner m = dim U, d.h., k = m, so ist ¢; = j fiir jedes j = 1, ..., m und damit
ist (v1,v2,...,0m) = (Viy, Viy, ..., v;,) eine Basis von U. O

Satz 4.7 Seien U, W Untervektorrdume von V. mit W endlichdimensional und

UcCW. Dann ist dimU = dim W gleichbedeutend mit U = W'

Beweis Dies ist klar, wenn U = {0} und also kann man annehmen, dass U # {0}.
Sei (uy,...,uy) eine Basis von U; dann sind uq, ..., u,, € W linear unabhéngig.
Ist m = dim U = dim W, so ergibt sich nach Satz 4.6 (2), dass (uy,. .., u,) auch
eine Basis von W ist, und insbesondere ist U = L(uy, ..., uy) = W. O

Erinnerung: Fiir Untervektorrdume Uy, ..., Uy, (m > 2) von V ist die Summe
Uy + -+ + U, der Untervektorraum bestehend aus allen Elementen von V, die
eine Darstellung der Form w; + - - - + u,, haben mit u; € U; fiir j =1, ..., m.

Sind U und W Untervektorrdume von V', dann ist es klar, dass U N W auch ein
Untervektorraum von V ist.

Satz 4.8 Seien U und W endlichdimensionale Untervektorriume von V. Dann
sind die Untervektorrdume U +W und U N W auch endlichdimensional und

dim(U 4+ W) +dim(UNW) =dimU + dim W .

Beweis Nach Satz 4.4 ist U N W endlichdimensional, da U endlichdimensional
ist und UNW C U. Sei (vy,...,v,) eine Basis von U N W, (wobei m = 0, falls
UNW ={0}). DaUNW Cc U und UNW C W, gibt es nach Satz 4.6 Vektoren

U, ..., Uy € U (mit p > 0) und Vektoren wy, ..., w, € W (mit ¢ > 0), so dass
(U1, ...y U, UL, ..., up) eine Basis von U und (vq,...,0m, wy,...,w,) eine Basis
von W ist. Dann ist dim(U NW) =m, dimU = m + p und dim W = m + ¢, und
also geniigt es zu zeigen, dass (vy,...,Un, U1, ..., Uy, Wy, ..., w,) eine Basis von
U+ W ist.

Sei v € U + W; dann gibt es u € U und w € W, so dass v = u + w. Ferner gibt
€S A1y ooy Ay [y <oy fp € Komit w = Aoy 4 -+ AUy + i + -+ -+ ity

da (vi,...,Um,u1,...,u,) eine Basis von U ist, und X, ..., A vy, ..., v, € K
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mit w = Nuvy + -+ AN vy + 4wy + - - + v, da (v, ..., Uy, w1, ..., w,) elne
Basis von W ist. Daraus folgt, dass

v=u4w=ANv1 4+ N O+ U+ iy, + viwy o vy,

wobei A7 = \; + A, fiir jedes j, d.h., v € L(vi,..., U, tn, ..o, Up, Wi, .o W)
Damit ist U +W C L(v1, ..., Um, U1, ..., Up, W1, . .., w,). Andererseits folgt

L(vg, .oy Uy Uty ooy Upy W1, ..y wy) CU+ W

unmittelbar aus Satz 3.2, da vy, ..., vy, U1, ..., Up, Wi, ..., we € U+ W, dh,
es gilt L(vi, ..., Uy Uty .oy Up, w1, ..., w,) = U+ W.

Es wird nun gezeigt, dass vy, ..., Uy, U1, ..., Up, W1, ..., W, linear unabhingig
sind. Seien A1, ..., A, fa, <oy My, V1, ..., Vg € K mit

ML+ A Um + patn 4 - ity + 1w+ - Vg = 0.

Setze u = A1 + -+ + A\pUn + paug + -+ + ppu, und w = rwy + - -+ Y,
Dann ist w € L(vy,...,vp,u1,...,up) = U und w € L(wy,...,w,) = W. Aber
u+w=0,dh., w=—u=(—1)u und damit ist auch w € U, d.h., w e UNW.
Da (v1,...,vy) eine Basis von U N W ist, gibt es A}, ..., A, € K, so dass
w = N+ -+ X v,. Es gilt also

O=u+w
= MU+ A AU+ g+ -ty + N A
= M+ 2ADv1+ -+ (A 4+ AU+ fliug + - - 4

und vy, ..., Up, U, ..., Uy sind linear unabhéngig. Insbesondere ist dann p; = 0
fiir jedes ¢ =1, ..., p und folglich ist \yv1 + -+ + A\vy, + 101 + -+ - + vw, = 0.
Aber vy, ..., Uy, wy, ..., w, sind linear unabhéngig und daraus ergibt sich, dass
auch \; = 0fir j =1,...,mund v, = 0 fiir £ = 1, ..., ¢. Dies zeigt, dass
Uiy ooy Uy ULy - ., Up, Wi, - .., W, linear unabhéngig sind. O

Sei A = (a;;) € M(m x n, K) eine m x n Matrix tiber K. Seien vy, ..., v, € K™
die Spalten von A; es gilt also v; = (ayj,. .., ay;) fir jedes j =1, ..., n.

Es wird nun gezeigt, wie man eine Basis von Los(A, 0) konstruieren kann. Wenn
A =0, dann ist Los(A,0) = K™, und in diesem Fall ist jede Basis von K™ auch
eine Basis von Los(A,0). Es kann also angenommen werden, dass A # 0. Nach

Satz 4.3 gibt es dann &y, ..., kg mit ¢ > 1Tund 1 < k; < --- < k; < n, so dass
(Vky» - - -, Uk, ) €ine Basis von L(vy, ..., v,) ist.

Seien (1, ..., 4, mit 1 < ¢ < --- < {, < n die restlichen Indizes (d.h., die
Indizes, die nicht in der Menge {k1,...,k,} vorkommen); insbesondere ist dann

p=n—q=n—dmL(v,...,v,).
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Lemma 4.5 Seien ji1, ..., p, € K; dann gibt es genau eine Losung (A1, ..., Ay)
in Los(A,0) mit Ao, = p; fir jedesi =1, ..., p.

Beweis Sei v = pyve, + -+ + ppvy,; dann ist v € L(vy, ..., vy,) und folglich gibt es
Vi, ..., Vg € K, sodass v = vyup, + - - + vgug,, da (vg,, ..., vg,) eine Basis von
L(vq,...,v,) ist. Definiere ein Element (Aq,...,A,) von K™ durch

w; falls m = ¢; fiir ein 7 ,
Am = e
—v; falls m = k; fiir ein j .
Dann gilt Ay, = ; fiir jedes i =1, ..., p und
AU+ AUy = A v e A Ve, Mg Uk e A Uk,
= Ve + -+ v, + (=)o + oo 4 (=),
=v— (g, +- - Frgup,) =v—1v=0,
und damit ist (Aq,...,\,) € Los(A,0).
Sei nun (A},...,A},) ein beliebiges Element von Los(A,0) mit A} = p;, fiir jedes
1=1, ..., p. Dann gilt
0=0—0=(N\wv1 4+ A\v,) —(Novr +--+ XN o)
=AM = 2ADvr 4+ = Aoy,
= (Mg = A )vey A+ (A, = A Jvg, + My — A )y -+ (N, — As, )k,
= (A = Np)vry + oo (Mg — Ay, ),
da A\, = \j, fiiri =1, ..., p. Daraus ergibt sich, dass A\, = )\;j firj=1,...,q,

da vy, ..., vy, linear unabhéingig sind. Damit ist (A1,..., A,) = (A],..., A}); d.h.,
es gibt genau ein (A1,..., \,) € Los(A,0) mit Ay, = p; fir jedesi =1, ..., p. O

Nach Lemma 4.5 gibt es fiir jedes ¢ =1, ..., p eine eindeutige Losung
u; = (N}, ..., \L) € Los(A, 0)

mit Ay, =1 und X, =0 fiir jedes j =1, ..., p mit j # i.
Satz 4.9 (uy,...,u,) ist eine Basis von Los(A,0).

Beweis Sei u = (A, ..., A,) € Los(A,0) und setze v’ = u — (Agur + - - -+ A, up).
Dann ist v’ = (N},...,A}) € Los(A4,0), da Los(A,0) ein Untervektorraum von
K™ ist, und fiir jedes i =1, ..., p gilt

)\21 = )\Zi - ()\Zl)\%l _'_ T _'_ )\ép)\lgl>
=X, — (A 0+ -+ X 0+ A1+ X 04+ X,0) =X, = A, =0
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Also ist (Af,...,A},) € Los(A,0) mit Ay =0 fiir i = 1, ..., p und daraus folgt,
dass (A],...,A) =(0,...,0), da nach Lemma 4.5 (0,...,0) das einzige Element
von Los(A, 0) mit dieser Eigenschaft ist. Dies zeigt, dass v’ = 0, d.h.,

u = )\glul + - )\gpup
und insbesondere ist L(uy, ..., u,) = Los(A4,0).
Seien nun Ay, ..., A\, € K mit Mjug +---+Au, =0. Fire =1, ..., p gilt dann
O:)\l)\}i+---+)\p)\§i =AM0+ - F A0+ NI+ A 0+ -+ 2,0 = N

d.h., \; = 0 fiir jedes ¢ =1, ..., p und daher sind w4, ..., u, linear unabhéngig.
Dies zeigt, dass (u1, ..., u,) eine Basis von Los(A,0) ist. O

Nach Satz 2.4 und Satz 2.6 braucht man eigentlich nur eine Basis von Lds(A, 0)
zu finden, wenn die Matrix A # 0 Zeilen-Stufen-Form hat. Nehme nun also an,
dass dies der Fall ist und sei ¢ der Index der letzten von Null verschiedenen Zeile
von A. Firi=1, ..., m sei

kA_{min{lgjgn:aiJ-;éO} falls (a1, ..., am) #0,

0 sonst .

Da die Matrix A Zeilen-Stufen-Form hat, gilt k1 < ks < --- < k.
Lemma 4.6 (vy,,...,vy,) st eine Basis von L(vy, ..., vy).

Beweis Ubung. (Den Beweis findet man spéter im Beweis fiir Satz 7.2.) O

Es ist gerade diese Basis, die benutzt werden soll, um die Basis (uq, ..., u,) von
L6s(A, 0) zu konstruieren.
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Beispiel: Sei A € M(4 x 6,R) folgende Matrix:

1230 7-1
12247 0
2 46 112-1
1225 5 1

Durch eine geeignete Folge von elementaren Zeilenumformungen lafit sich A in
folgende Matrix A" € M(4 x 6,R) iiberfiihren:

12 30 7-1
0 0-14 0 1
00 01-2 1
00 00 0 O

und nach Satz 2.4 ist Los(A’, 0) = Los(A, 0). Seien vy, vy, v3, v4, vs, vg die Spalten
von A’. Dann ist (vq, v3, v4) eine Basis von L(vy, v, v3, vy, 5, v6). Nach Lemma 4.5
gibt es also eindeutige Losungen

wr = (AL, AL AL AL AL AL € Lis(A’,0) mit AL = 1, AL = 0 und AL = 0,
up = (A, A3, 0203, 02)02) € Los(A’,0) mit A2 =0, A2 =1 und \2 =0,
uz = (A5, A3, 03 03,03 03) € Los(A’,0) mit A3 =0, A2 =0 und A\ =1,
e

und nach Satz 4.9 ist dann (uq, us, u3) eine Basis von Los(A’,0) und damit auch
von Los(A,0). In der Tat ist hier

Uy = <_27 17 07 07 07 O) 9
us = (=31, 0,8, 2, 1,0),
uz = (10,0, =3, =1, 0, 1) .



5 Lineare Abbildungen

Seien X, Y, Z Mengen. Sind f: X — Y und g : Y — Z Abbildungen, so gibt es
eine Abbildung go f : X — Z, die definiert ist durch

(9o f)(x) = g(f(x))

fiir jedes x € X. Die Operation o is assoziativ: Sind f: X - Y, ¢g:Y — Z und
h: Z — W Abbildungen, so gilt ho (go f) = (hog) o f, und folglich kann man
einfach h o g o f schreiben.

Die Identititsabbildung idy : X — X wird definiert durch idx(z) = z fiir jedes
x € X. Es gilt foidy = f fiir jede Abbildung f : X — Y und idy o g = ¢ fiir
jede Abbildung ¢ : Z — X.

Ist f: X — Y eine Abbildung und X’ C X eine Teilmenge von X, so wird die
Teilmenge {y € Y : y = f(x) fiir ein 2 € X'} von Y mit f(X’) bezeichnet.

Eine Abbildung f : X — Y heiit injektiv, wenn f(z1) # f(x2) fir alle x1 # xs.
Die Abbildung f heifit surjektiv, wenn f(X) =Y (d.h., wenn es zu jedem y € Y’
ein z € X gibt, so dass f(z) = y). Ist f injektiv und surjektiv, so heifit f bijektiv.

Lemma 5.1 (1) Sei f: X — Y bijektiv; dann gibt es eine eindeutige Abbildung
f71:Y — X, sodass f~'of=1idx und fo f~' =idy. Die Abbildung f=* heifst
Umkehrabbildung von f und sie is ebenfalls bijektiv.

(2) Sei f: X — Y eine Abbildung; gibt es dann eine Abbildung g : Y — X mit
go f=1idx und f o g =idy, so ist f bijektiv und es gilt g = 1.

(8) Seien f: X — Y und g : Y — X Abbildungen mit go f =idyx. Dann ist f
imjektiv und g surjektiv.

Beweis Ubung. O

Im folgenden sei K ein Korper und seien V, W Vektorrdume iiber K.

Eine Abbildung f : V — W heifit linear oder Homomorphismus, wenn

O+ o) = Mf(u) + uf ()

fiir alle u, v € V und alle A\, p € K gilt. Die Menge aller Homomorphismen von
V nach W wird mit Hom(V, W) bezeichnet. Sei f € Hom(V, W); dann gilt

(1) flutwv)= f(u)+ f(v) fir alle u, v € V,
(2) f(hw)=Af(v) firallev eV, A€ K,

40
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da f(Av) = f(Av+00) = Af(v) +0f(0) = Af(v) und
flutv) = f(lu+1v) = 1f(u) + 1f(v) = f(u) + f(v) -
Sind umgekehrt (1) und (2) erfiillt, so ist f linear, da

fOu+ po) = f(du) + f(po) = Af(u) + pf (v) -
Ist f:V — W eine lineare Abbildung, so gilt insbesondere f(0) =0, da
f(0) = f(00+00)=0f(0)+0f(0)=0+0=0.

Ferner ist f(—v) = —f(v), da f(—v) = f((=1)v) = (=1)f(v) = —f(v) fur alle
veV.Sind vy, ..., v, €V (mit m > 2), dann gilt

Jvr 4 4 Aptm) = A f(v1) + -+ A f(vm)
fir alle Ay, ..., \,, € K.

Satz 5.1 Sei A = (a;;) € M(m x n, K) und seien vy, ..., v, € K™ die Spalten
von A (es gilt also v; = (ayj, ..., am;) fir jedesj=1,...,n). Seips: K* — K™
die Abbildung, die definiert ist durch

SOA(()‘la SR )‘N)) = )‘1”1 + )‘nvn

fir jedes (A1, ..., A\n) € K™. Dann ist @4 linear (d.h., o4 € Hom(K™, K™)). Sei
umgekehrt f € Hom(K™, K™); dann gibt es ein eindeutiges A € M(m xn, K), so
dass f = pa.

Beweis Seien u, v € K™ mit u = (A1,...,\,) und v = (u,..., y,), und seien
A, p € K. Dann ist

a4 pv) = @a((A1 + ppin, - AN+ pigin))

= (A1 + pp)vr + -+ (A + piptn)on

= (A1 + -+ ANUn) + (i vy + - A i vn)

= )\(Alvl 4+ 4 )\nvn) + M(Mlvl R ann)

= 2pa((Ar, -, An)) + ppal(pns - in)) = Apa(u) + ppa(v) -
Damit ist die Abbildung ¢4 linear. Sei umgekehrt f € Hom(K™, K™) und sei
(é1,...,€,) die kanonische Basis von K". Dann sind f(ey),..., f(e,) Elemente
aus K™, sei also A = (a;;) € M(m x n, K) die Matrix, die f(e1),..., f(e,) als
Spalten hat (und folglich ist (aij,as;,...,am;) = f(e;) fiir j = 1, ..., n). Sei
(A1, ..., An) € K™ dann ist (Aq, ..., A\y) = Ajep + -+ - + A\ye, und damit ist

f(()\l, ceey )\n)) = f()\lel + -+ )\nen)
= >\1f(61) +oee ANf(en) = 9014(()‘1’ SR AN)) )



5 LINEARE ABBILDUNGEN 42

d.h., f = p4a. Ferner ist es klar, dass A eindeutig durch f bestimmt ist, da
f(e;) = pale;) die jte Spalte von A sein muss. O

Sei A = (a;;) € M(m x n, K). Dann gilt

@A((Ala cey )\n)) = (Z alj)\j, e Z amj)\j>
j=1 j=1

fir alle (Ag,...,\,) € K", da
@A(()\lu tt )\n)) = )\lvl + -+ )\n'Un

n n

= )\1(a11,---,am1)+---+)‘n(a1na-~vamn) = (Zalj)\j,...,Zamj)\j) ,

j=1 j=1
wobei vy, ..., v, die Spalten von A sind.

Es ist klar, dass fiir jeden Vektorraum V' die Identitdtsabbildung idy : V' — V
linear ist, d.h., idy € Hom(V, V).

Lemma 5.2 Seien f € Hom(U,V), g € Hom(V.W), (wobei U ein weiterer
Vektorraum tiber K ist). Dann ist die Abbildung go f : U — W linear, d.h.,
go f € Hom(U, W).

Beweis Seien u, v € U und A\, p € K. Dann ist
(g0 /)Ou+ pv) = g(fOu+ pv)) = g0 f(u) + pf(v))
= Ag(f(w) + pg(f(v) = Ag o f)(u) +u(go f)(v) .
Damit ist die Abbildung go f : U — W linear. O

Sei f € Hom(V,W); dann heifit f Isomorphismus, wenn es ein g € Hom(W,V)
mit g o f = idy und f o g = idy gibt. In diesem Fall ist nach Lemma 5.1 (2)
die Abbildung f bijektiv und ¢ ist die Umkehrabbildung f=!: W — V. Aber die
Umkehrung ist auch richtig:

Lemma 5.3 Ist f € Hom(V, W) bijektiv, so ist die Umkehrabbildung f~ linear,
d.h., f~1 € Hom(W, V), und damit ist f ein Isomorphismus.

Beweis Seien w, w' € W und A\, u € K. Dann gilt

FOU 0w 4 ) = duo b
= M w) + pf(f7H W) = O (w) + pf (W)
und daraus folgt, dass f~'(Aw + pw’) = Af~Hw) + pfH(w'). O

Ist f € Hom(V,W) ein Isomorphismus, dann ist f~! € Hom (W, V) ebenfalls ein
[somorphismus.
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Lemma 5.4 Sei f:V — W eine lineare Abbildung und U ein Untervektorraum
von V. Dann ist f(U) ein Untervektorraum von W.

Beweis Da 0 = f(0) und 0 € U, ist 0 € f(U). Seien w, w' € f(U). Es gibt also
u, v € U mit f(u) =w und f(u') = w’ und folglich ist
flu+u)=flu)+ f(u)=w+w".

Aber u+u’ € U, da U ein Untervektorraum von V' ist, und daher ist w+w’ € f(U).
Sei nun A\ € K; dann ist f(Au) = Af(u) = Aw und Au € U. Damit ist A\w € f(U)
fiir jedes A € K. Folglich ist f(U) ein Untervektorraum von W. O

Fiir eine lineare Abbildung f: V — W setze
Kernf={veV: f(v)=0} und Bildf = f(V).

Lemma 5.5 Sei f: V — W eine lineare Abbildung. Dann ist Kern f ein Unter-
vektorraum von V' und Bild f ein Untervektorraum von W.

Beweis Da f(0) =0, ist 0 € Kern f. Seien v, v" € Kern f und A € K. Dann gilt
flo+v)=f(v)+ f(¥)=04+40=0und f(Av) = Af(v) = A0 =0, und damit ist
v+ v € Kern f und Av € Kern f. Folglich ist Kern f ein Untervektorraum von
V. Nach Lemma 5.4 ist Bild f = f(V) ein Untervektorraum von W. O

Lemma 5.6 FEine lineare Abbildung f : V. — W ist injektiv genau dann, wenn
Kern f = {0}.

Beweis Ist f injektiv, so gilt insbesondere, dass f(v) # f(0) = 0 fiir alle v # 0
und damit ist Kern f = {0}. Nehme umgekehrt an, dass Kern f = {0} und seien
w, v € V mit u # v. Dann ist u 4+ (—v) # 0 und daher ist auch f(u+ (—v)) # 0.
Aber f(u+ (—v)) = f(u)+ (—f(v)) und daraus ergibt sich, dass f(u) # f(v). O

Lemma 5.7 Sei b € K™ und x € K"; dann gilt x € Lo6s(A,b) genau, wenn
wa(x) =0b. Insbesondere ist Los(A,0) = Kern py.

Beweis Dies ist klar. O

Lemma 5.8 Sei f: V — W eine lineare Abbildung. Dann gilt
Sy, om)) = L(f(v1), .., fum))

fir alle vy, ..., v, € V.
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Beweis Fiir alle Ay, ..., \,, € K ist
f<)\1U1 + -+ )\mvm) = )\lf(vl) +ooee Amf(”m)
und daraus folgt unmittelbar, dass f(L(vq,...,vn)) = L(f(v1), ..., f(vn)). O

Lemma 5.9 Sei U ein endlichdimensionaler Untervektorraum von V' und sei
f:V — W eine lineare Abbildung. Dann ist der Untervektorraum f(U) von W
auch endlichdimensional und es gilt dim f(U) < dim U.

Beweis Sei (uq,...,u,) eine Basis von U. Nach Lemma 5.8 ist dann

JU) = f(L(ug, o um)) = LOf(ua), - f(um)

und daraus folgt nach Satz 4.3 und Satz 4.6 (3), dass f(U) endlichdimensional
ist und dim f(U) < m =dimU. O

Satz 5.2 (Dimensionsformel) Sei f : V. — W eine lineare Abbildung. Ist V
endlichdimensional, so sind Kern f und Bild f auch endlichdimensional und

dimV = dim Kern f + dim Bild f .

Beweis Nach Satz 4.4 und Lemma 5.9 sind Kern f und Bild f endlichdimensional.
Sei (uq, . .., Uy,) eine Basis von Kern f und (wy, ..., w,) eine Basis von Bild f (mit
m = 0bzw. p =0, falls Kern f = {0} bzw. Bild f = {0}). Daw; € Bild f = f(V),
gibt es fiir jedes i = 1, ..., p einen Vektor v; € V, so dass f(v;) = w;. Es wird
gezeigt, dass (uy, ..., Um,v1,...,V,) eine Basis von V ist.

V =L(u, ..., Un,v1,...,0,): Sei v € V; da f(v) € Bild f und (wy, ..., w,) eine
Basis von Bild f ist, gibt es pq, ..., u, € K, so dass f(v) = pwy + - - - + ppw,.
Setze v/ = pyvy + - - - + p,p0,; dann ist

f(vl) = f(ﬂﬂh"" : '+/~vap) = le(vl)"" : '+pr<vp) = W1+ fpWy = f(v)

und damit ist f(v+ (=v")) = f(v) + (—=f(v')) =0, d.h., v+ (=0") € Kern f. Also
gibt es A\, ..., Ay € K, so dass v + (—=v') = A\jug + - - - + Ay, und folglich ist

v=(v+ (=) +0 = Xus + -+ Xy, + 1101 + -+ 0,

d.h., v e L(ug, ..., up,v1,...,0).
Die Vektoren uy, ..., Uy, v1, ..., v, sind linear unabhéngig: Nehme also an, dass
AUy + -+ AUy, + 101 + - -+ ppv, = 0. Dann ist
0= f(0)= f(Arus + -+ Ay, + p101 + -+ + Lpvp)
= Af(ur) + oo+ A f(Um) + paf(01) + -+ ppf (vp) = pwn + -+ + ppwy
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da uy, ..., uy € Kern f und f(v;) = w; fir ¢ = 1, ..., p. Aber wy, ..., w,
sind linear unabhingig und daraus folgt, dass u; = 0 fiir ¢ = 1, ..., p. Nun ist
AU+ - -+ Aty = 0und die Vektoren uy, ..., u,, sind linear unabhéngig. Damit
gilt auch \; =0 fir j =1, ..., m, d.h., die Vektoren wy, ..., Up, v1, ..., v, sind
linear unabhéngig.

Dies zeigt also, dass (uy, ..., Um,v1,...,v,) eine Basis von V ist, und insbesondere
ist dimV =m + p=dimKern f +dim Bild f. O

Satz 5.3 Seien V., W endlichdimensional mit dimV = dimW, sei f : V — W
eine lineare Abbildung. Dann sind dquivalent:

(1) f ist ein Isomorphismus.
(2) f ist injektiv.
(3) [ ist surjektiv.

Beweis Nach Lemma 5.6 ist f injektiv genau dann, wenn Kern f = {0}, und
Kern f = {0} genau dann, wenn dim Kern f = 0. Andererseits ist nach Satz 4.7
f surjektiv genau dann, wenn dim Bild f = dim W. Aber nach Satz 5.2 ist
dim Kern f = 0 genau dann, wenn dim Bild f = dim W, da dimV = dim W.
Folglich ist f injektiv genau dann, wenn f surjektiv ist (und nach Lemma 5.3 ist
f ein Isomorphismus genau dann, wenn f bijektiv ist). O

Eine lineare Abbildung f : V' — V nennt man einen Endomorphismus von V. Ein
Endomorphismus, der auch ein Isomorphismus ist, heifit Automorphismus von V.
Mit f ist auch f=! ein Automorphismus von V.

Sei V' endlichdimensional und f ein Endomorphismus von V. Nach Satz 5.3 sind
dann dquivalent:

(1) f ist ein Automorphismus.
(2) f ist injektiv.
(3) f ist surjektiv.

(Die folgenden Beispiele zeigen, dass diese Behauptung im Allgemeinen nicht
richtig ist, wenn V' nicht endlichdimensional ist. Sei V' = Abb(N, K') und definiere
frg V= Vdurch f({Ai}nz0) = {A o und g({Antnz0) = {A7 tnz0, wobei
A, = Apq1 fiir alle n > 0 und A\j = 0, A = A\, fir alle n > 1. Dann sieht man
leicht, dass f und g Endomorphismen von V sind. Die Abbildung f ist surjektiv
aber nicht injektiv und g ist injektiv aber nicht surjektiv.)
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Lemma 5.10 Sei f: V — W eine lineare Abbildung und seien vy, ..., v, € V.

(1) Ist f injektiv und sind vy, . .., vy, linear unabhdngig, so sind f(vy), ..., f(vm)
linear unabhdngig.

(2) Ist f surjektiv und ist L(vy, ..., v,) =V, so ist L(f(v1),..., f(vm)) = W.

(8) Ist f ein Isomorphismus und ist (vy,...,vy,) eine Basis von V', dann ist auch
(f(v1),..., f(vm)) eine Basis von W.

(4) Ist (vyi,...,vy) eine Basis von V und (f(vy),..., f(vm)) eine Basis von W,
dann ist f ein Isomorphismus.

Beweis (1) Seien Ay, ..., Ay, € K mit Ay f(vy) + -+ + A\ f(vs) = 0. Dann gilt
f()\lvl + -+ )\mUm) = )\1f(U1) + -+ )\mf<vm> =0

und damit Aoy + -+ 4+ Ay, = 0, da f injektiv ist. Folglich ist A; = 0 fiir
jedes j, da vy, ..., vy, linear unabhéngig sind. Also sind f(v1), ..., f(v,,) linear
unabhéngig.

(2) Dies folgt unmittelbar aus Lemma 5.8.
(3) Dies folgt unmittelbar aus (1) und (2).
(4) Nach Lemma 5.8 gilt

fV) = f(L(vs, - om)) = L(f (1), -, fom)) = W,

d.h.; f ist surjektiv. Aber dimV = n = dim W und daraus folgt nach Satz 5.2,
dass f ein Isomorphismus ist. (Man kann auch zeigen, dass f injektiv ist, ohne
Satz 5.2 anzuwenden: Sei v € Kern f; da (vy,...,v,,) eine Basis von V ist, gibt
es A\, ..., Ay € K mit \jvy + - -+ \,0,, = 0 und dann gilt

0=f(v)=f(Mvr+- -+ Apvm) = A f(v1) + -+ A f(Um) -

Daraus folgt, dass A\; = 0 fiir jedes 7 = 1, ..., m, da f(v1), ..., f(vs) linear
unabhéngig sind; d.h., v = 0 und damit ist Kern f = {0}.) O

Lemma 5.11 Sei V' endlichdimensional, sei (vy,...,vy) eine Basis von V und
wi, ..., w, € W. Dann gibt es eine eindeutige lineare Abbildung f :V — W, so
dass f(vj) = w; fir jedes j =1, ..., m.

Beweis Nach Satz 4.1 gibt es zu jedem v € V genau ein (Aq,...,\,) € K™, so
dass v = A\jv; + - - - + A\, vy, Folglich kann eine Abbildung f : V' — W definiert
werden durch

fv) = Mwy + -+ Apwp, , falls v = vy + -+ Ao,
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Dann ist f linear: Seien w, v € V, A\, p € K mit u = A\jv; + -+ + A\pv, und
v = vy + - + WmUpy. Folglich ist

A A pv = A A0+ - ApU) + (v + - A U
= (AN + pp)vr + -+ (A A+ fifon) Uy
und damit ist per Definition

SO+ po) = (A + pp)wy + -+ -+ (Ao + phtn ) Wi,
= AMAMwy + -+ Apw) + p(prwy + - W) = Af(u) + pf(v) .

Ferner gilt offensichtlich f(v;) = w; fiir jedes j =1, ..., m.
Eindeutigkeit: Seien f, g € Hom(V, W) mit f(v;) = w; = g(v;) fiir jedes j. Sei
v e Viesgibt also A\j, ..., A\, € K, so dass v = \jvy + - - - + A\, U, and dann ist

f) = fAvr+ -4 Xpv) = A f(vr) + -+ A f (V)
= Mg(v1) 4+ -+ Ang(vm) = g(Avr + -+ Apvm) = g(v)

dh., f=g9. O

Wenn es einen Isomorphismus f : V' — W gibt, so heilen V' und W isomorph.
(Da fiir jeden Isomorphismus f: V — W auch f~!: W — V ein Isomorphismus
ist, sind die Rollen von V' und W in dieser Definition symmetrisch.)

Satz 5.4 Ist V endlichdimensional, so sind V und W isomorph genau dann,
wenn W endlichdimensional ist und dim V' = dim W.

Beweis Sind V' und W isomorph, dann folgt unmittelbar aus Lemma 5.10 (3),
dass W endlichdimensional ist und dim V' = dim W. Sei umgekehrt W endlich-
dimensional mit dim V' = dim W = n, und sei (vy, ..., v,,) eine Basis von V' und
(w1, ..., wy,) eine Basis von W. Nach Lemma 5.11 gibt es eine lineare Abbildung
f:V — W mit f(v;) =w; fiir jedes j =1, ..., m und nach Lemma 5.10 (4) ist
dann f ein Isomorphismus, d.h., V und W sind isomorph. O

Ist V endlichdimensional mit dim V' = n, so ist nach Satz 5.4 V' isomorph zu K™.

Sei f : V — W eine lineare Abbildung. Ist der Untervektorraum Bild f von W
endlichdimensional, dann nennt man dim Bild f den Rang von f und bezeichnet
diese Zahl mit rang f.

Lemma 5.12 Seien U, V und W endlichdimensionale Vektorrdume tiber K und
seien f € Hom(U, V), g € Hom(V, W) (also ist go f € Hom(U, W)). Dann gilt:

(1) rang g o f < min{rang f,rangg}.
(2) Ist f surjektiv, so ist ranggo f = rangg.
(8) Ist g injektiv, so ist ranggo f = rang f.
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Beweis (1) Es gilt Bild (go f) = (go f)(U) = g(f(U)) C g(V) = Bildg und
damit ist rangg o f = dimBild (g o f) < dim Bild ¢ = rangg. Andererseits gilt
nach Lemma 5.9, dass

ranggo f =dim(go f)(U) = dimg(f(U)) < dim f(U) = rang f .
(2) Ist f surjektiv, so ist (go f)(U) = g(f(U)) = g(V) und damit
ranggo f =dim(go f)(U) = dimg(V) =rangg .

(3) Sei (vq,...,v,) eine Basis von f(U). Nach Lemma 5.10 (1) sind die Vektoren
g(v1), ..., g(vy) linear unabhéngig und nach Lemma 5.8 ist

(g0 N)U) =g(f(U)) = g(L(vy, ..., vm)) = Lg(v1), .., g(vm)) ,
d.h.; (g(v1),...,9(vy)) ist eine Basis von (g o f)(U). Insbesondere ist

ranggo f =dim(go f)(U) =m =dim f(U) =rang f . O



6 Matrizen

Im Folgenden sei K ein Korper. Sei A = (a;;) € M(¢ x m, K) eine ¢ x m Matrix
und B = (aj;) € M(m x n, K) eine m x n Matrix iiber K. Dann gibt es die
linearen Abbildungen ¢4 € Hom(K™, K*) und pp € Hom(K", K™) und damit
nach Lemma 5.1 die lineare Abbildung ¢4 o op € Hom(K™, K*). Nach Satz 5.1
gibt es also eine eindeutige Matrix C' = (¢;) € M(¢xn, K), so dass ¢c = pa0pp.

Lemma 6.1 Firallei=1,..., 0, k=1,...,n gilt cixt = Y a;jbji.
j=1

Beweis Sei (ey,...,e,) die kanonische Basis von K™. Seien ferner vy, ..., v, die
Spalten von A, v{, ..., v), die Spalten von B und v{, ..., v/ die Spalten von C.

Fiir jedes £k =1, ..., n gilt dann

(Ciky -y Cop) = UZ = pcler) = (paopp)(er) = valepler))
= @a(v) = @al(bik, -, bmk)) = bixvr + -+ + bk O,
= blk(alla cee aa'f,l) +---+ bmk(alma sy aﬁ,m)

m m
= ( E aljbjk, ey E (lgjbjk>
J=1 J=1

und damit gilt c;, = > ajbjp furallei =1, ..., 0, k=1, ..., n. O
j=1

Seien A = (a;;) € M({ x m, K) und B = (a;;) € M(m x n, K) und definiere eine
¢ x n Matrix C' = (¢;x) € M(¢ x n, K) iiber K durch

m

Cik = E aijbjp,

J=1

firalle:s=1, ..., ¢, k=1, ..., n. Diese Matrix C' heifit das Produkt von A und
B und wird mit AB bezeichnet. Nach Lemma 6.1 gilt dann

PAOYPB = PYAB -

Satz 6.1 Seien A € M({ x m,K), B € M(m x n,K) und C € M(n x p, K).
Dann gilt (AB)C = A(BC). (Die Matrizenmultiplikation ist also assoziativ.)

Beweis Nach Lemma 6.1 gilt
P(AB)C = $AB ©C PC = (SOA o <PB) OYc =®a0 (<PB o @C) = PAOPYBC = PA(BC)

49
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und daraus folgt nach der Eindeutigkeit in Satz 5.1, dass (AB)C = A(BC). O

Seien A1 € M(ng X n1, K), Ay € M(ny X ng, K), ..., Ay € M(ny1 X 0y, K).
Mit Hilfe von Satz 6.1 kann man durch Induktion zeigen, dass das ‘Produkt’
dieser Matrizen unabhéngig von der Reihenfolge der einzelnen Multiplikationen
ist; dieses ‘Produkt’ wird mit A; A, - -- A,, bezeichnet.

Sei A = (a;;) € M(m x n, K) und sei u = (Ay,...,\,) € K"; dann gilt

A

aiy +- - Qin . H1

Qm1 **° Qmn A Hm
n

wobei (1, ..., tm) = wa(u). Folglich ist p4(u) = Au, wenn u bzw. p4(u) als
Elemente aus M(n x 1, K) bzw. M(m x 1, K') betrachtet wird. Aus diesem Grund
schreibt man oft Au statt p4(u). Seien

01 10
A:(OO),B:(OO)GM(ZXQ,K).

Dann sind auch AB und BA Elemente von M(2 x 2, K') und es gilt
01 10 00
18=(50) (00) = (00)
10 01 01
54=(50) (00) = (00)

Da AB # BA, ist die Matrizenmultiplikation nicht kommutativ; ferner ist sie
nicht nullteilerfrei, da A # 0, B # 0 aber AB = 0.

Fiir jedes n > 1 sei E,, € M(n x n, K) folgende Matrix:

0 1 0
En: . .

Es gilt also E, = (d;;), wobei d;; = { (1) gilrllsstl =7 E,, heiit Einheitsmatriz.

Man sieht leicht, dass AE,, = A und E,B = B fiir alle A € M(m x n, K) und
alle B € M(n x p, K). Ferner gilt ¢, = idg». Man schreibt oft einfach E statt
E,, wenn es klar ist, was n ist.

Eine Matrix A heifit quadratisch, wenn sie genauso viele Zeilen wie Spalten hat,
d.h., wenn A € M(n x n, K) fiir ein n > 1. Insbesondere ist £, quadratisch.
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Lemma 6.2 Sei A € M(nxn, K). Dann gibt es hochstens ein A’ € M(nxn, K),

so dass AA' = AA=F,.

Beweis Seien B, C' € M(n x n, K) mit AB = BA =E, = AC = CA. Dann gilt
B = BE, = B(AC) = (BA)C' = E,C =C . O

Eine quadratische Matrix A € M(nxn, K) heifit invertierbar, wenn es eine Matrix
A" € M(nxn, K) gibt, so dass AA" = A’A = E,,. Nach Lemma 6.2 ist diese Matrix
A’ eindeutig und sie wird mit A~! bezeichnet, d.h., A~ ist die eindeutige Matrix
mit AA™' = A'A=E,.

Lemma 6.3 (1) Die Einheitsmatriz E, ist invertierbar und E; ' = E,,.

(2) Ist A € M(n x n, K) invertierbar, so ist auch A™" invertierbar und es gilt
(A=t = A,

(8) Sind A, B € M(n x n, K) invertierbar, so ist auch AB invertierbar und es

gilt (AB)™' = B~tA-L.

Beweis (1) Dies ist klar, da E, E,, = E, E, = E,.

(2) Dies ist auch klar, da A™'A = AA™' = E,.

(3) Dies folgt aus der Assoziativitdt der Matrizenmultiplikation, da
(AB)(B'A™ )= ABBB YA '=AE,A' = AA' = E,

und (B~'A"Y)(AB) = B\ (A" A)B = B'E,B=B'B=E,. O

Satz 6.2 Seien A, B € M(n x n, K) mit AB = E,. Dann sind A und B schon
invertierbar und es gilt B= A"! und A = B~1.

Beweis Nach Lemma 6.1 gilt a4 0 pp = wap = pp, = idg» und daraus ergibt
sich nach Lemma 5.1 (3), dass ¢4 surjektiv und ¢p injectiv ist. Folglich sind
nach Satz 5.3 ¢4 und ¢p beide Automorphismen. Nach Satz 5.1 gibt es dann
A, B' € M(n x n, K), so dass ¢! = ¢ und p5' = ¢p und folglich ist
paa = paopa =paopy = idgn
= g, = idgn :goAfl OWYA =PQ0Pg=Ya4 .

Nach der Eindeutigkeit in Satz 5.1 ist also AA" = E,, = A’A und genauso gilt
BB' = E,, = B'B. Daher sind A und B invertierbar. Ferner gilt

B=E,B=(A"A)B=A"YAB)=A'E, = A™
und A = AE, = A(BB™') = (AB)B~' = E,B~' = B~. O

Bisher wurden unter elementaren Zeilenumformungen die folgenden Operationen
verstanden:



6 MATRIZEN 592

(I) Addition eines Vielfachen einer Zeile zu einer anderen Zeile.

(IT) Vertauschen zweier Zeilen.

Es erweist sich aber als niitzlich, eine dritte Art von elementarer Zeilenumformung
zuzulassen, und zwar:

(III) Multiplikation einer Zeile mit einem Skalar A € K, A # 0.

Satz 2.4 gilt auch fir Umformungen der dritten Art: Wird (A,b) durch eine
elementare Zeilenumformung vom Typ III zu einer Matrix (A’,b") verandert, so

gilt Los(A,b) = Los(A', b').

Satz 6.3 Fir eine quadratische Matriz A € M(n x n, K) sind dquivalent:

(1) Die Matriz A ist invertierbar.

(2) Es gibt eine Matriz B € M(n x n, K), so dass BA = E,,.

(3) Es gibt eine Matriz C' € M(n x n, K), so dass AC = E,,.

(4) Der Endomorphismus g4 ist ein Automorphismus von K.

(5) Los(A,0) = {0}.

(6) Das zu (A, b) gehirige Gleichungssystem ist eindeutig losbar fir jedes b € K™.

(7) A lafst sich durch eine endliche Folge von elementaren Zeilenumformungen
in eine Matriz A" = (aj;) folgender Gestalt diberfiihren:

*
0 =
0 0 =«
0 0 0 =«
0 0 0 0 =«
0 00 0 0 =
0 00 0 0 0 =
0000 0 0 0 =«
0000 0 0 0 0 =
Es gilt also al; # 0 fir jedes 1 =1, . nundagj:O, falls i > 7.

(8) A lafst sich durch eine endliche Folge von elementaren Zeilenumformungen
in die Einheitsmatrixz E,, tberfiihren.

Beweis (5) < (6) < (7): Dies folgt aus Satz 2.5.
(4) & (6
(1) = (2

Dies folgt aus Satz 5.3, Lemma 5.6 und Lemma 5.7.

):
) und (1) = (3) sind klar.
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(2) = (1) und (3) = (1): Dies folgt aus Satz 6.2.

(4) = (1): Nach Satz 5.1 gibt es eine eindeutige Matrix A" € M(n x n, K) mit
0t = @a. Aber Qua = ppops = 9,0 ps = idgn = g, und daraus
folgt zusammen mit der Eindeutigkeit in Satz 5.1, dass A’A = E,,. Genauso gilt
AA" = E,. Damit ist A invertierbar (und ;' = p4-1).

(1) = (4): Nach Lemma 6.1 ist

PA-10PA = Pa-14 = P, =1dgn = PE, = Paa-1 = Pa0 Pa1

und damit ist ¢4 ein Automorphismus.

(8) = (5) ist klar.

(7) = (8): Ubung. O

Sei A € M(n xn, K) invertierbar. Nach Satz 6.3 ist dann ¢4 ein Automorphismus
von K™ und der Beweis fiir diesen Satz zeigt, dass ¢ ;" = @4-1.

Sei 1 <4, j <mmiti# jund A € K mit A # 0. Seien S,(i,\), P,(i,7) und
Q. (i, j, A) folgende Elemente von M(n x n, K):

1
1
. A «— i te Zeile
Sn(’L, )\) = 1
1
1
1
0 1 «— i-te Zeile
1
Pa(i, j) =
1

1 0

1 «— j-te Zeile

1
i-te Spalte T T j-te Spalte
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1 A «— i-te Zeile

Qn(ivjv )\) =

1
T j-te Spalte

(AuBer der eingetragenen oder der durch Punkte angedeuteten Komponenten sind
dabei alle Komponenten gleich Null.) Solche Matrizen werden Elementarmatrizen
genannt.

Lemma 6.4 FElementarmatrizen sind invertierbar mit S, (i, \)™' = S,(i, \71),

Pa(i, j) 7 = Puli, ) und Qu(i, j,A) ™" = Qul(i, j, = ).

Beweis Ubung. O

Lemma 6.5 Sei A € M(m xn,K) und sei 1 <i,j <m miti#jund A € K
mit X # 0. Dann gilt:

(1) Die Matriz Sy, (i, \)A erhdlt man durch Multiplikation der i-ten Zeile von A
mit dem Skalar \.

(2) Die Matriz P,,(i,j)A erhdlt man durch Vertauschung der i-ten und der j-ten
Zeilen von A.

(3) Die Matriz Qn,(i,j,\)A erhdlt man durch Addition des A-fachen der j-ten
Zeile zu der i-ten Zeile von A.

Beweis Ubung. O

Multiplikation von links mit einer Elementarmatrix bewirkt also eine elementare
Zeilenumformung. Ferner entsteht jede elementare Zeilenumformung auf diese

Weise.

Satz 6.4 Zu jeder Matriz A € M(m x n, K) gibt es eine invertierbare Matriz
P e M(m xm,K), so dass PA Zeilen-Stufen-Form hat.
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Beweis Nach Satz 2.6 gibt es eine endliche Folge (3, ..., 3, von elementaren
Zeilenumformungen, die A in eine Matrix A" mit Zeilen-Stufen-Form iiberfiihrt.
Fiir jedes j = 1, ..., p sei B; € M(m x m, K) die Elementarmatrix, die durch

Multiplikation von links die Umformung /3; bewirkt. Dann gilt A’ = B, - - - By B, A.
Setze P = B),- -+ ByBy; PA hat also Zeilen-Stufen-Form und nach Lemma 6.3 (3)
und Lemma 6.4 ist P invertierbar. O

Satz 6.5 Jede invertierbare Matrix ist Produkt von Elementarmatrizen.

Beweis Sei A € M(n x n, K) invertierbar. Nach Satz 6.3 ((1) < (8)) gibt es eine
Folge (i, ..., B, von elementaren Zeilenumformungen, die A in die Matrix E,
tiberfithrt. Fiir jedes j sei B; € M(m x m, K) die Elementarmatrix, die durch
Multiplikation von links die Umformung 3; bewirkt. Dann gilt £, = B,, - - - BsB1 A
und folglich ist

A=E,A= (B, - ByB)) 'B,-- ByB A
= (B, -+ ByB)) 'E, = (B, --ByBy) ' =B{'By'-- B, .

Nach Lemma 6.5 sind aber B; ', By *, ..., B;l auch Elementarmatrizen. O

Die Umkehrung von Satz 6.5 ist natiirlich auch richtig: Nach Lemma 6.3 (3) und
Lemma 6.4 ist jedes Produkt von Elementarmatrizen invertierbar.

Satz 6.6 Sei A € M(n x n, K) invertierbar und sei [, ..., 3, eine Folge von
elementaren Zeilenumformungen, die A in die Einheitsmatriz E, tberfihrt. Dann
iiberfiihrt die Folge (i, ..., B, die Einheitsmatriz E, in die Matriz A~

Beweis Fiir jedes j sei B; die Elementarmatrix, die durch Multiplikation von
links die Umformung §; bewirkt. Dann ist E, = B,---ByB; A, und die Folge
B1, .., By Uberfiithrt die Matrix E), in die Matrix B, - - - By B E),. Aber

Bp~-~BQBlEn:Bp-~-BgBl:A*I,
da (BpBgBl)A: En O

Im Folgenden sei V' ein endlichdimensionaler K-Vektorraum mit dimV =n > 1.

Sei (u,...,u,) eine Basis von V. Sind vy, ..., v, beliebige Vektoren aus V, so
gibt es nach Satz 4.1 eine eindeutige Matrix P = (p;;) € M(n X n, K), so dass

Vj = prjur + -t Prjln

fir jedes j = 1, ..., n. (Fiir jedes j ist also pyju; + - -+ + pyju, die eindeutige
Darstellung von v; als Linearkombination von u, ..., u,.) Natiirlich kommt jede
Matrix P = (p;;) € M(n x n, K) auf diese Weise vor, da umgekehrt Vektoren
v, ..., vy € V einfach durch v; = pyju; + -+ - 4 ppju, fiir j =1, ..., n definiert
werden konnen.
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Lemma 6.6 Sei (uy,...,u,) eine Basis von V und seien vy, ..., v, € V. Sei
P = (pi;) € M(n x n, K) die eindeutige Matriz mit
Uj = Prjur + -0+t Pojln

fiir jedes j = 1, ..., n. Dann ist P invertierbar genau, wenn (vy,...,v,) eine
Basis von V' ist.

Beweis Nach Satz 4.6 (2) ist (vq,...,v,) eine Basis von V genau dann, wenn
vy, ..., U, linear unabhéngig sind. Seien A\{, ..., A\, € K; dann ist
DA = DN Y P = Yy bt
j=1 j=1 =1 j=1 i=1
=22 A = (D Nipiius = ) i
i=1 j=1 =1 j=1 i=1

wobei (p1 ..., pn) = @p((A1,-..,Ay)). Damit ist A\jv; + - -+ + \v, = 0 genau

dann, wenn @p((A1,...,\,)) = 0, da die Vektoren uy, ..., u, linear unabhingig
sind. Daraus ergibt sich, dass vy, ..., v, genau dann linear unabhéngig sind,
wenn Kern pp = {0}. Folglich gilt nach Lemma 5.6, Satz 5.3 und Satz 6.3, dass
v1, ..., U, genau dann linear unabhéngig sind, wenn die Matrix P invertierbar
ist. O

Seien nun (uy, ..., uy), (v1,...,v,) Basen von V und sei P = (p;;) € M(n xn, K)
die eindeutige Matrix mit v; = pyju; + - - - + ppju, fiir jedes j. Dann heifit P die
Matriz fir den Wechsel von (uq,...,u,) nach (vi,...,v,). Nach Lemma 6.6 ist
P invertierbar.

Ist (u1,...,u,) eine Basis von V und ist P = (p;;) € M(n x n, K) invertierbar,
dann ist nach Lemma 6.6 P die Matrix fiir den Wechsel von (uy,...,u,) nach
(v1,...,0y,), wobei (v, ...,v,) die durch v; = pyjug +- -+ pyu, fiir j =1, ..., n

definierte Basis von V ist.

Fiir Basen a, § von V sei P, 3 € M(n x n, K) die Matrix fiir den Wechsel von o
nach (.

Satz 6.7 Fir jede Basis o von'V definiert die Abbildung 3 — P, 3 eine Bijektion
zwischen der Menge der Basen von V' und der Menge der n x n invertierbaren
Matrizen iber K.

Beweis Dies folgt unmittelbar aus Lemma 6.6. O
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Satz 6.8 (1) Fiir jede Basis o von'V ist Py, = E,.
(2) Fir alle Basen o, 8 von V ist Pg, = P(;}g
(3) Fir alle Basen o, 3,y von 'V ist Py = Py 3Ps..

Beweis (1) Dies ist klar, da v; = > | §;;v; fiir jedes j, wobei E,, = (d;;).

(3) Seien a = (u1,...,uy,), B = (v1,...,v,) und v = (wy,...,w,), und setze
P, s = (pij), Psy = (qi;). Ferner sei P, gPs, = (r;;), also ist 7;; = > ;_, DikGr;
fiir jedes 1 <4, 7 < n. Fiir jedes j =1, ..., n ist nun
wj = Z%ﬂ% = Z% Zpikui = Z Zpikajui = Zﬁ‘juz‘ )
k=1 k=1 =1 i=1 k=1 i=1

und folglich ist P, , = (ri;) = PagPs-

2) Nach (1) und (3) ist P,gP34 = Pyo = E, = P3g = P3P, 3 und daraus
75 ﬁ? b 57/8 /37 7/6
folgt, dass Pso = P, é O

Betrachte nun den speziellen Fall mit V' = K". Fiir jede Basis a = (uy,...,uy)
von K" sei C, € M(n x n, K) die Matrix, die die n-Tupel uy, ..., u, als Spalten
hat.

Satz 6.9 Fiir alle Basen o, 3 von K" ist Py 5= C;'Cj.

Beweis Sei o = (uy,...,u,) eine Basis von K" und sei C, = (¢;;). Dann ist
u]' = (Clj, Cey an) = cljel R anen
fiir jedes j = 1, ..., n, wobei € = (ey,...,e,) die kanonische Basis von K" ist,

und folglich ist C,, die Matrix fiir den Wechsel von € nach a. Nach Satz 6.8 (2) ist
dann C;! die Matrix fiir den Wechsel von a nach € und daraus ergibt sich nach
Satz 6.8 (3), dass C;'Cj die Matrix fiir den Wechsel von « nach g ist. O



7 Rang einer Matrix

Im folgenden sei K ein Korper und sei A = (a;;) € M(mxn, K) eine m xn Matrix
iitber K. Seien uq, ..., u,, € K" die Zeilen und vy, ..., v, € K™ die Spalten von
A; es gilt also w; = (an,...,a;) fir jedes i =1, ..., m und v; = (ay;, ..., Amj)
fiir jedes j =1, ..., n.

Der Untervektorraum L(uq,...,u,) von K™ heifit der Zeilenraum von A und

wird mit ZR(A) bezeichnet. Analog heiit der Untervektorraum L(vy,. .., v,) von
K™ der Spaltenraum von A und wird mit SR(A) bezeichnet.

Setze Rang,(A) = dim ZR(A) und Rangg(A) = dim SR(A); Rang,(A) heifit der
Zeilenrang und Rangg(A) der Spaltenrang von A. Also gilt 0 < Rang,(A) < n
und 0 < Rangg(A) < m, da ZR(A) bzw. SR(A) ein Untervektorraum von K"
bzw. von K™ ist.

Ist A =0, so ist Rang,(A) = Rangg(A) = 0. Ist umgekehrt Rang,(A) = 0 oder
Rangg(A) = 0, so ist nach Lemma 3.4 A = 0.

Satz 7.1 Es gilt Rang,(A) = Rangg(A).

Beweis Dies ist trivial richtig, wenn A = 0; es kann also angenommen werden,
dass A # 0 und damit ist ZR(A) # {0} und SR(A) # {0}. Das folgende Lemma
wird bend6tigt:

Lemma 7.1 (1) Gibt es Matrizen B € M(m x s, K) und C' € M(s x n, K) mit
A = BC, so gilt Rang,(A) < s.

(2) Ist (vi,...,v.) eine Basis von SR(A) = L(vy,...,v,), so gibt es eine Matrix

C € M(s x n,K) mit A = BC, wobei B € M(m x s,K) die Matriz ist, die
vy, ..., v, als Spalten hat.

Beweis (1) Sei B = (b;;) und seien wy, ..., w, die Zeilen von C; da A = BC,
gilt w; = bjywy + -+ - + bisw; fiir jedes ¢ =1, ..., m. Damit ist u; € L(wy, ..., wy)
fiir jedes ¢ und folglich gilt nach Satz 3.2, dass L(uy,...,uy) C L(ws,. .., wy).
Daraus ergibt sich nach Satz 4.3 und Satz 4.4, dass

Rang,(A) = dim L(uq, ..., uy) < dimL(wq, ..., ws) < s .

(2) Da (vy,...,v.) eine Basis von L(vy, ..., v,) ist, gibt es fiir jedes j =1, ..., n
eindeutige Elemente ¢y;, ..., ¢;; € K, so dass v; = ¢1;v1 + - - - + ¢5;v, und dann
gilt A= BC. O

Sei s = Rangg(A); nach Lemma 7.1 (2) gibt es dann Matrizen B € M(m x s, K),
C € M(s x n, K) mit A = BC, und daraus ergibt sich nach Lemma 7.1 (1), dass
Rang,(A) < s = Rangg(A).

o8
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Sei nun A* = (a};) € M(n xm, K) die Matrix mit a%; = a;;. Dann sind vy, ..., v,
die Zeilen und wy, ..., u,, die Spalten von A" und folglich ist ZR(A") = SR(A)
und SR(A") = ZR(A). Daher gilt

Rangg(A) = Rang,(A") < Rangg(A") = Rang,(A) .
Dies zeigt also, dass Rang,(A) = Rangg(A). O

Setze nun rang A = Rang,(A) (= Rangg(A)). Man nennt rang A einfach den
Rang von A.

Lemma 7.2 FEs gilt Bild o4 = SR(A) und insbesondere rang p 4 = rang A.

Beweis Da @a((A1,...,An)) = \vg + -+ + Ay, fiir alle (A, ..., \,) € K™, gilt
Bild s = @a(K") = L(v1, ..., v,) = SR(A)

und damit auch rang ¢4 = dim Bild ¢4 = dim SR(A) = rang A. O

Satz 7.2 Es gilt dim Los(A,0) = n —rang A.

Beweis Nach Satz 5.2, Lemma 5.7 und Lemma 7.2 gilt

dim Los(A4,0) = dimKern p4 = dim K" — dim Bildp4 = n —rang A . O

Lemma 7.3 Wird A durch eine elementare Zeilenumformung zu einer Matrix

A" verdndert, so gilt ZR(A) = ZR(A") (und damit rang A = rang A’).

Beweis Nach Lemma 3.6 gilt ZR(A) = ZR(A’), wenn A" aus A durch Vertauschen
zweier Zeilen entsteht. Entsteht A’ aus A durch eine Umformung vom Typ III,
so gilt ZR(A) = ZR(A’) nach Lemma 3.5. Es kann also angenommen weden, dass
A’ durch Addition des A-fachen der k-ten Zeile zu der /-ten Zeile von A entsteht,
(wobei A € K und k # (). Seien uy, ..., U, die Zeilen von A und o}, ..., u/, die
Zeilen von A’. Dann gilt u; = w; fiir jedes ¢ # ¢ und uj, = u; + Auy. Daraus folgt
nach Satz 3.1 und Satz 3.2, dass
ZR(A) = L(u1, ..., upy) = L(uy,...,u,,) = ZR(A"),

» ' m

da wy = uy + (=A)uj. O

Satz 7.3 Sei A # 0 eine Matriz, die Zeilen-Stufen-Form hat und sei q der Index
der letzten von Null verschiedenen Zeile von A. Dann gilt rang A = q.



7 RANG EINER MATRIX 60

Beweis Sei A = (a;;) und fiir i =1, ..., m sei
b - min{l < j <n:a; # 0} falls (a;,...,a) #0,
! 0 sonst .

Da die Matrix A Zeilen-Stufen-Form hat, gilt £y < kg < --- < k.

Seien uq, ..., u,, die Zeilen von A. Dann ist
ZR(A) = L(u1, ..., upm) = Lug, ... u,) ,

da w; = 0, wenn ¢ > ¢. Aber die Vektoren uy, ..., u, sind linear unabhéngig:
Seien Ay, ..., Ay € K mit A\ju; +- - -+ Au, = 0. Dann gilt Mag;+---+Aay =0
fir jedes j = 1, ..., n und insbesondere gilt Ajaix; + -+ + Agag;, = 0 fiir jedes
j=1,..., ¢ Nunist ajy, # 0 und az, = 0 fiir ¢« > 1 und damit ist \; = 0.
Nehme an, dass A\y = 0 fir £ =1, ..., 7 — 1 fiir ein 7 mit 1 < j < ¢. Dann ist
auch \; = 0, da aj; # 0 und ag,; = 0 fir ¢« > j. Es gilt also A\; = 0 fiir jedes
Jj =1,..., ¢ und daher sind u,, ..., u, linear unabhéingig. Daraus folgt, dass
(u1,...,u,) eine Basis von ZR(A) 1st und insbesondere ist Rang,(A) = q.

Bemerkung: Sind vy, ..., v, die Spalten von A, so ist (v, ..., vx,) eine Basis von
SR(A):. Sei A" die mx ¢ Matrix iiber K, die vy, ..., vy, als Spalten hat. Dann hat
A’ Zeilen-Stufen-Form und 1, 2, ..., ¢ ist die Treppen-Folge von A’. Daraus folgt
nach Satz 2.5, dass das zu A’ und 0 gehorige lineare Gleichungssystem eindeutig
16sbar ist, und damit sind nach Satz 3.5 v, ..., vi, linear unabhingig. Aber
fir jedes j ist das zu A’ und v; gehorige lineare Gleichungssystem losbar und
daraus ergibt sich nach Satz 3.3, dass v; € L(vg,, . .., v,). Nach Satz 3.2 ist dann
SR(A) = L(vg,, - .., v,). Daher ist (vg,,...,vg,) eine Basis von SR(A). O

Lemma 7.4 Seien A € M({ x m, K), B € M(m x n, K). Dann gilt:
(1) rang AB < min{rang A, rang B}.

(2) rang AB = rang A, falls rang B = m.

(8) rang AB = rang B, falls rang A = m.

Beweis Nach Lemmas 6.1 und 7.2 gilt rang A = rang ¢ 4, rang B = rang ¢ und
rang AB = rang o g = rang 4 o ppg.
(1) Nach Lemma 5.12 (1) gilt also

rang AB = rang ¢4 o pp < min{rang ¢, rang ¢} = min{rang A, rang B} .

(2) Ist rang B = m, so gilt dim pg(K") = rang pp = rang B = m und damit ist
wp surjektiv. Daraus ergibt sich nach Lemma 5.12 (2), dass

rang AB = rang p4 0 g =rang o4 = rang A .
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(3) Ist rang A = m, so gilt nach Satz 5.2, dass
dim Kern ¢pp = dim K™ —rang 4 = m —rang A =0
und damit ist ¢4 injektiv. Daraus folgt nach Lemma 5.10 (3), dass
rang AB =rang o4 0 pg =rang g =rang B . O

Satz 7.4 Eine Matrix A € M(n x n, K) ist invertierbar genau dann, wenn sie
vollen Rang hat, d.h., wenn rang A = n.

Beweis Dies folgt aus Satz 6.3 ((1) < (5)), da nach Satz 7.2 rang A = n genau
dann gilt, wenn Los(A4,0) = {0}. O
Erinnerung: Unter elementaren Zeilenumformungen werden nun seit Kapitel 6

die folgenden Operationen verstanden:

(I) Addition eines Vielfachen einer Zeile zu einer anderen Zeile.
(IT) Vertauschen zweier Zeilen.

(III) Multiplikation einer Zeile mit einem Skalar A € K, A # 0.

Es gibt auch natiirlich entsprechende Spaltenumformungen. Unter elementaren
Spaltenumformungen einer Matrix versteht man die folgenden Operationen:

(I) Addition eines Vielfachen einer Spalte zu einer anderen Spalte.
(IT) Vertauschen zweier Spalten.

(III) Multiplikation einer Spalte mit einem Skalar A € K, A # 0.

Unter einer elementaren Umformung einer Matrix versteht man eine elementare
Zeilenumformung oder eine elementare Spaltenumformung.

Lemma 7.5 Elementare Umformungen dndern den Rang einer Matrix nicht.

Beweis Dies folgt aus Lemmas 7.2 und 3.5 und den entsprechenden Ergebnissen
fiir elementare Spaltenumformungen. O

Sei ¢ mit 0 < ¢ < min{m, n}; die folgende m x n Matrix (die Rang ¢ hat)

1000 O0O0OO0OO0OO0OOO0OO0OO0O0

061000O0OO0OO0OO0OO0OO0OGO0OO0O

001 00O0O0O0O0OO0OO0OTO0OO0O0

0o 0oo010O0O0O0OO0O0O0OO0OTUO0O0
EL,=10000100O00O0O0O0O0O0

0o 00 o001O0O0O0O0O0O0TO0O0 — q-te Zeile

0O 000 0O0O0OO0OO0OO0OTO0OTO0OTO0°O0

0O 000 0O0O0OO0OO0OO0OTO0OTO0OTO0°O0

0o 00 00O0O0OO0OO0OO0OO0OO0OO0O0
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wird die Sub-FEinheitsmatriz vom Rang q genannt. Also ist EYf, , = (d;;), wobei
dij=0ftirallet#7,0; =1firi=1, ..., ¢gund 6; = 0 fiir alle 7 > gq.

Lemma 7.6 Sei B € M(m x n, K) eine Matriz, die Zeilen-Stufen-Form hat.
Dann gibt es eine Folge von elementaren Spaltenumformungen, die die Matriz B
i die Sub-FEinheitsmatriz vom Rang q iberfiihrt, wobei ¢ = rang B.

Beweis Ubung. O

Satz 7.5 Jede Matriz A € M(m x n, K) vom Rang q lifit sich durch eine Folge
von elementaren Umformungen in die Sub-Einheitsmatriz vom Rang q tberfiihren.

Beweis Nach Satz 2.6 gibt es eine Folge von elementaren Zeilenumformungen,
die A in eine Matrix B mit Zeilen-Stufen-Form iiberfiihrt und nach Lemma 7.5
ist dann rang B = ¢. Nun gibt es nach Lemma 7.6 eine Folge von elementaren
Spaltenumformungen, die B in die Sub-Einheitsmatrix vom Rang ¢ iiberfiithrt. O

Erinnerung: Multiplikation von links mit einer Elementarmatrix bewirkt eine
elementare Zeilenumformung. Analog bewirkt nun Multiplikation von rechts mit
einer Elementarmatrix eine elementare Spaltenumformung und jede elementare
Spaltenumformung entsteht auf diese Weise.

Satz 7.6 Sei A € M(m xn, K) eine m xn Matrix mit rang A = q. Dann gibt es
invertierbare Matrizen P € M(m x m, K) und @ € M(n x n, K), so dass PAQ
die Sub-Einheitsmatriz vom Rang q ist, d.h.,

1000 0O0O0OO0OO0OO0OO0OO0OO0O0
010 00O0O0OO0OO0OO0OO0OO0OO0O0
001 00O0O0O0O0OO0OO0OO0OTO0O0
o0 010O0O0O0O0OO0O0OO0OTO0TO0
PAQ=| 0 0O 0O O 1 0 0 0 0O O O 0O 0 O
0o o0 001O0O0O0O0O0TO0O0O0 — q-te Zeile
o o000 O0O0O0OO0O0OO0O0O°O0°O0
oo o000 O0O0O0OO0OO0OO0TO0O0°O0
o0 00O0O0OO0OO0OO0OO0OO0OO0OTO0O0

Beweis Nach Satz 6.4 gibt es eine invertierbare Matrix P € M(mxm, K), so dass
B = PA Zeilen-Stufen Form hat, und nach Lemma 7.4 ist rang B = q. Ferner gibt
es nach Lemma 7.5 eine Folge 74, ..., 7, von elementaren Spaltenumformungen,
die B in die Sub-Einheitsmatrix EY , vom Rang ¢ iiberfiihrt. Fiir jedes j sei
C; € M(n x n, K) die Elementarmatrix, die durch Multiplikation von rechts die
Umformung v; bewirkt. Dann gilt £}, , = BCy---C). Setze ) = C - - - Cp; nach

Lemmas 6.3 (3) und 6.4 ist also @ invertierbar und PAQ = BQ = E}, ,. O



8 Lineare Abbildungen und Matrizen

Im folgenden sei K ein Korper und seien V, W endlichdimensionale Vektorrdume
tiber K mit dimV =n > 1 und dim W = m > 1. Sei auch (v, ..., v,) eine Basis

von V und (wy,...,w,) eine Basis von W.
Sei nun f € Hom(V,W). Fiir jedes j = 1, ..., n ist f(v;) ein Element von W;
nach Satz 4.1 gibt es also genau ein m-Tupel (ai;, as;, ..., amj) € K™, so dass

f(v;) = arjwy + agjws + -+ - + AWy, -
Auf diese Weise wird eine Matrix A = (a;;) € M(m X n, K) definiert, die die

Matriz von f beziiglich der Basen (vy,...,v,) und (wy,...,w,) heifit.

Lemma 8.1 Fir jedes A € M(m x n, K) ist A die Matriz von @ beziiglich der
kanonischen Basen von K™ und K™.

Beweis Sei (eq,...,e,) bzw. (¢],..., e ) die kanonische Basis von K" bzw. von
K™. Fiir jedes 7 =1, ..., n gilt dann

pales) = (aij, ..., am;) = arjey + -+ + amjey,
und daraus ergibt sich, dass A die Matrix von ¢4 beziiglich der Basen (e, ..., e,)
und (¢f,...,€},) ist. O

Lemma 8.2 Sei A € M(mxn, K). Dann gibt es ein eindeutiges f € Hom(V, W),
so dass A die Matriz von f beziiglich der Basen (vq,...,v,) und (wy,. .., wy,) ist.

Beweis Nach Lemma 5.11 gibt es ein eindeutiges f € Hom(V, W), so dass
f(Uj) = aljwl + -+ amjwm

fir jedes j =1, ..., n, wobei A = (a;;). Offensichtlich ist f dann die eindeutige
lineare Abbildung, so dass A die Matrix von f beziiglich der Basen (vy,...,v,)
und (wyq, ..., w,) ist. O

Sei U ein weiterer endlichdimensionaler Vektorraum von V und sei (uy, ..., u,)
eine Basis von U.

Satz 8.1 Seien f € Hom(V,W), g € Hom(U,V'), A die Matriz von f beziglich
der Basen (vi,...,v,) und (wq,...,wy) und B die Matriz von g beziglich der
Basen (uy, ..., u,) und (vy,...,v,). Dann ist AB die Matriz von f o g beziiglich
der Basen (uy,...,u,) und (wy, ..., Wy,).

63
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Beweis Seien A = (a;;), B = (b;),). Fiir jedes k =1, ..., p gilt dann

(£ o9)(w) = Fgw)) = £ (3 bawos) = D bief (vy)

n m m n m
= E bk § Qi Wi = § (E aijbjk)wi = E CikW; ,
j=1 i=1

=1 j=1 i=1
wobei AB = (c¢i). Damit ist AB die Matrix von f o g beziiglich der Basen

(g, ... up) und (wy, ..., wy). O

Setze nun a = (vq,...,v,) und = (wq,...,wpy).

Satz 8.2 Sei o = (vy,...,v),) eine weitere Basis von V und ' = (w,...,w),)

y n m

eine weitere Basis von W, sei f € Hom(V, W), sei A die Matriz von f beziglich
a und 3 und B die Matriz von [ beziiglich o und ('. Dann gilt

B=Q AP,

wobei P die Matrix fir den Wechsel von o nach o' und Q die Matrixz fir den

Wechsel von 3 nach (3 ist.

Beweis Sei P = (py;), Q = (gie), A = (a;) und B = (by;). Firjedes j =1, ..., n
gilt dann

f(U}) = f(Zpkjvk) = Zpkjf(vk) = Zpkj (Z az’jwi> = Z(Z aikpkj>wi
k=1 k=1 k=1 i=1 i=1 k=1
sowie auch
f(U;) = Z bz]'wé = Z bz]' (Z qz‘zwz> = Z bz]'qz'ewz = Z(Z qz‘zbej)wi .
=1 =1 =1 =1 i=1 =1 (=1
Daraus ergibt sich, dass fiir jedes j =1, ..., n
> (Z Gy — > az‘kij) wp =Y (Z qz‘zsz)wi >y (aikpkj>wi
i=1 =1 =1 i=1 =1 i=1 (=1
= f(v)) = f(v;) =0,
und fiir jedes i =1, ..., m gilt also
> by =Y aikprj
=1 =1
da ws, ..., wy,, linear unabhéngig sind. Dies bedeutet aber genau, dass QB = AP,

und damit ist B = P 1AP. O



8 LINEARE ABBILDUNGEN UND MATRIZEN 65

Satz 8.3 Sei f € Hom(V, W) und sei A die Matriz von f beziglich der Basen «
und 3. Dann gilt rang f = rang A.

Beweis Sei ¢ : K™ — W die Abbildung, die definiert ist durch
1/)(()\1, c. ,)\m)) = )\1’(1]1 + -4 )\mwm .

Man sieht leicht, dass ¢ linear ist. Ist (eq, ..., e,,) die kanonische Basis von K™,
so gilt ¥(e;) = w; fiir jedes j und daraus folgt nach Lemma 5.10 (4), dass 1 ein
[somorphismus ist. Fiir jedes (A, ..., A,) € K™ gilt nun

f(z )\jl)j) = Z )\jf(’l}j) = Z )‘j Z Qi W; = Z (Z aij)\j>wi
j=1 j=1 j=1 =1 =1 j=1
= ¢(<PA(()\1> R )‘n))) )
und daraus ergibt sich, dass Bild f = ¢(Bild p4), da (v1, ..., v,) eine Basis von V

ist. Nach Lemma 5.8 und Lemma 5.10 (1) gilt aber dim U = dim ¢ (U) fiir jeden
Untervektorraum U von K™ und folglich ist nach Lemma 7.1

rang A = rang p4 = dim Bild 4 = dim¢(Bild ¢ 4) = dim Bild f = rang f . O

Satz 8.4 Sei f € Hom(V, W) und A € M(m x n, K). Dann sind dquivalent:
(1) rang f = rang A.

(2) Es gibt eine Basis a von V und eine Basis 3 von W, so dass A die Matriz
von f beziiglich o und (3 ist.

Beweis (2) = (1): Dies folgt unmittelbar aus Satz 8.3.

(1) = (2): Sei o' eine beliebige Basis von V, sei ' eine beliebige Basis von
W und sei B die Matrix von [ beziiglich o/ und . Nach Satz 8.3 ist dann
rang f = rang B, d.h., rang A = rang B. Nun gibt es nach Satz 7.6 invertierbare
Matrizen P, € M(mxm, K) und @, € M(nxn, K), so dass PLAQ, = Ef, ,,, wobei
q =rang A und Ef, , € M(m x n, K) die Sub-Einheitsmatrix vom Rang ¢ ist.
Genauso gibt es invertierbare Matrizen P, € M(mxm, K) und Q2 € M(nxn, K),
so dass P,BQy = EJ, . Damit ist

A= E,AE, = (P['P)A (Q1Q1 ) = P H(PAQQ
= PEL,Q7 = (P23Q2)Q1
= (P 1P2) (Q2Q1 ) = (RPT)T'B(@:Q7") = PT'BQ ,
wobei P = P, 'P; und Q = Q,Q;". Es gibt aber nach Lemma 6.6 eine Basis «
von V', so dass P die Matrix fiir den Wechsel von o’ nach « ist und es gibt eine

Basis 3 von W, so dass (Q die Matrix fiir den Wechsel von ' nach [ ist. Nach
Satz 8.2 ist A = P71B(Q dann die Matrix von f beziiglich der Basen o und 3. O
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Satz 8.5 Ist f € Hom(V, W) mit rang f = q, so gibt es eine Basis (vq,...,v,)
von V und eine Basis (wy, ..., wy) von W mit f(v;) =w; firj=1,..., ¢ und
fvj)) =0 firj=q+1, ..., n

Beweis Sei EY, , € M(m x n, K) die Sub-Einheitsmatrix vom Rang ¢; dann ist
rang B, . = ¢ und folglich gibt es nach Satz 8.4 eine Basis (v, ...,v,) von V und
eine Basis (wy, . .., wy,) von W, so dass EY, , die Matrix von f beziiglich der Basen
(v1,...,v,) und (wy, ..., wy,) ist. Dies bedeutet aber genau, dass f(v,;) = w; fir
j=1,...,qund f(vj)) =0fir j=¢+1,...,n. O

Seien V, W Vektorrdume iiber K; fir f, ¢ € Hom(V,W) und A € K sind die
Abbildungen f+ g und Af auch linear, d.h., f + g, A\f € Hom(V, W). Mit diesen
Verkniipfungen ist Hom(V, W) ein Vektorraum iiber K.

Seien nun A = (a;;), B = (bi;) € M(m x n, K) und A € K. Definiere Matrizen
A+ B, M € M(m xn, K) durch A+ B = (a;; +b;;) und AA = (Aa;;). Mit diesen
Verkniipfungen ist M(m X n, K') auch ein Vektorraum tiber K.

Satz 8.6 M(m x n, K) ist endlichdimensional und dim M(m x n, K') = mn.

Beweis Ubung. O

Seien V, W endlichdimensionale Vektorrdume iiber K, sei a = (vy,...,v,) eine
Basis von V und § = (wy, ..., w,,) eine Basis von W. Fiir jede lineare Abbildung
f:V — W sei M,5(f) die Matrix von f beziiglich der Basen a und ; es gibt
also eine Abbildung M, s : Hom(V, W) — M(m x n, K).

Satz 8.7 Die Abbildung M, s : Hom(V, W) — M(m x n, K) ist linear und eine
Bijektion, d.h., M, g ist ein Isomorphismus.

Beweis Man sieht leicht, dass M, g linear ist und nach Lemma 8.2 ist M, g eine
Bijektion. O

Nach Satz 5.4, Satz 8.6 und Satz 8.7 ist Hom(V, W) endlichdimensional und
dimHom(V, W) =dimV x dim W .

Lemma 8.3 (1) Seien U, V, W Vektorriume iber K und f, f' € Hom(U,V),

g, ¢ € Hom(V,W). Dann gilt go(f+f") =gof+gof, (9g+g)of =gof+gof.

(2) Es gilt AB+B') = AB+ AB' und (A+A")B = AB+ A'B fiir alle Matrizen
A, A e MU xm,K) und B, B € M(m x n, K).
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Beweis Ubung. O

In der Linearen Algebra ist das Interesse hauptsichlich fiir Endomorphismen,
d.h., fiir den Fall mit W = V. Im Folgenden sei V' ein endlichdimensionaler
Vektorraum iiber K mit dimV =n > 1.

Sei f:V — V ein Endomorphismus von V und (vy,...,v,) eine Basis von V,
und sei A € M(n x n, K) die Matrix von f beziiglich der Basen (vy,...,v,) und
(v1,...,v,). Diese Matrix A = (a;;) ist also durch die Bedingungen

f(’Uj) = aljvl + anvg + -+ anjvn
fiir j =1, ..., n definiert und wird einfach die Matriz von f beziiglich der Basis

(v1,...,v,) genannt.

Sei A € M(n x n, K); nach Lemma 8.1 ist A die Matrix von ¢4 beziiglich der
kanonischen Basis von K™.

Satz 8.8 Seien a, o/ Basen von'V, sei f:V — V ein Endomorphismus von V,
sei A die Matriz von f beziiglich der Basis o und A’ die Matrixz von f beziiglich
der Basis o. Dann gilt

A= P tAP

wobei P die Matrix fiir den Wechsel von o nach o' ist.

Beweis Dies ist ein Spezialfall von Satz 8.2. O

Sei X eine Menge; eine Relation = auf X heiBt Aquivalenzrelation, wenn gilt:
(1) x =z fur alle x € X (= ist refleziv).
(2) xo = a4 fiir alle 1, 9 € X mit x7 = o (= ist symmetrisch).

(3) Sind 21, 29, 23 € X mit x; = x9 und 23 = x3, S0 ist 7 = x3 (= ist
transitiv).

Seien nun A, B € M(n x n, K); man schreibt A ~ B, wenn es eine invertierbare
Matrix P € M(n x n, K) gibt, so dass B = P~'AP.

Lemma 8.4 ~ ist eine Aquivalenzrelation auf der Menge M(n x n, K).

Beweis (1) Fiir jedes A € M(n xn, K) gilt A~ A, da A= E 'AE,.

(2) Seien A, B € M(n x n, K) mit A ~ B, es gibt also eine invertierbare Matrix
P eM(nxn,K),sodass B= P 'AP. Dann gilt A= Q 'BQ mit Q = P~! und
damit ist B ~ A.
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(3) Seien A, B, C' € M(nxn, K) mit A ~ Bund B ~ C, es gibt also invertierbare
Matrizen P, Q € M(n x n, K), so dass B = P~'AP und C = Q' BQ. Da

C=Q7'BQ=Q ' (PT'AP)Q = (Q7'PTHA(PQ) = (PQ)"A(PQ) ,
ist dann C = R7'AR mit R = PQ und damit ist A ~ C. O

Gilt A ~ B, so sagt man, dass die Matrizen A und B dhnlich sind.

Satz 8.9 Sei f : V — V ein Endomorphismus von V und a eine Basis von V';
sei ferner A die Matriz von f beziglich der Basis a und sei B € M(n x n, K)
eine beliebige Matriz. Dann gibt es eine Basis 3 von V', so dass B die Matrix von
f beziiglich B ist, genau, wenn die Matrizen A und B dhnlich sind.

Beweis Ist B die Matrix von f beziiglich einer Basis (3, so gilt nach Satz 8.8,
dass B = P7'AP, wobei P die Matrix fiir den Wechsel von a nach 3 ist, und
damit sind die Matrizen A und B &hnlich. Seien umgekehrt A und B &hnlich,
es gibt also eine invertierbare Matrix P € M(n x n, K), so dass B = P71AP.
Nach Lemma 6.6 gibt es nun eine Basis # von V, so dass P die Matrix fiir den
Wechsel von « nach 3 ist, und nach Satz 8.8 ist B = P~!AP dann die Matrix
von f beziiglich der Basis 3. O

Sei f:V — V ein Endomorphismus. Ein Hauptziel der Linearen Algebra ist es,
eine verniiftige Antwort zur folgenden Frage zu finden:

— Wie wahlt man eine Basis von V', so dass die Matrix von f beziiglich dieser
Basis ‘so einfach wie moglich’ ist?

— Sei B € M(n x n, K). Wie priift man, ob es eine Basis von V' gibt, so dass B
die Matrix von f beziiglich dieser Basis ist?

Nach Satz 8.9 hétte man eine Antwort zu diesen Fragen, wenn die folgenden
Fragen beantwortet werden konnten:

— Sei A € M(n x n, K). Was ist die ‘einfachste’ Matrix, die zu A dhnlich ist?

— Seien A, B € M(n x n, K). Wie priift man, ob A und B dhnlich sind, und
wie findet man gegebenenfalls eine invertierbare Matrix P mit B = P~1AP?

(Wihle irgendeine Basis a = (uq,...,u,) von V und sei A € M(n x n, K) die
Matrix von f beziiglich a.. Sei A’ die ‘einfachste’ Matrix, die zu A dhnlich ist, und
finde eine invertierbare Matrix P = (p;;) € M(n x n, K) mit A’ = P"'AP. Fiir
j=1,..., nsetze v; =Y | piju; nach Lemma 6.6 ist also § = (vy,...,v,) eine
Basis von V und P ist die Matrix fiir den Wechsel von « nach 3. Nach Satz 8.8 ist
dann A’ = P~'AP die Matrix von f beziiglich der Basis 3; d.h., die Matrix von
f beziiglich der Basis (3 ist ‘so einfach wie moglich’. Sei nun B € M(n x n, K);
nach Satz 8.9 gibt es eine Basis von V', so dass B die Matrix von f beziiglich
dieser Basis ist, genau dann, wenn A und B dhnlich sind.)



9 Direkte Summen

Sei V' ein Vektorraum iiber einem Korper K, sei m > 2 und seien Uy, ..., U,
Untervektordume von V.

Satz 9.1 Aquivalent sind:
(1) Firgjedesj=1,....mistUN({U +---+Uj_1 +Uj1 +---+Upy) ={0}.

(2) Gilt uy + -+ uy =0, wobei u; € U; fir j =1,...,m, soist u; =0 fir
jedes g =1, ..., m.

(8) Gilt wuy + -+ + Upy = Uy + - - 4wy, wobei uj, uf € Uy fir j =1,...,m, so
ist uj = uj fir jedes j =1, ..., m.

Beweis (1) = (2): Fiir jedes j =1, ..., msei u; € U;. Gilt wy + -+ + u,,, = 0,
dann ist fiir jedes j =1, ..., m

uj=—(u 4+ Fug+up+Fuy) €U+ + U+ U + -+ Uy,

und daraus folgt nach (1), dass u; = 0.

(2) = (3): Seien wy, uj € Uj mit uy + -+ + Uy = vy + -+ + up,. Dann ist
uj — uj € Uj fiir jedes j und (ug — uy) + -+ + (um — uy,) = 0. Folglich gilt nach
(2), dass u; — uj; = 0 und damit u; = uj fiir jedes j =1, ..., m.

(3) = (1) Sei Uj € Ujﬂ(Ul+"'+Uj71—|—Uj+1—|—"'+Um). Dann glbt es fur
jedes k # j ein uy € Uy, so dass uy = ug + -+ uj—1 + Ujq1 + - - + Uy,. Damit ist
O+ +04+u+0+---+0=u + -+ uj1 +0+ujpr + -+ Uy

und daraus folgt nach (3), dass w; = 0 fiir alle ¢ = 1, ..., m. Insbesondere ist
uj=0,dh., ;N0 +---+U;-1+Uja+---+U,) ={0}. O

Setze U = Uy + -+ + U,,; dann heiit U direkte Summe von Uy, ..., U,,, wenn
UnNnU+-4+Ui1+Ujs1 +---+Upy,) = {0} fitr jedes j =1, ..., m, und in
diesem Fall schreibt man U =U; @ - - - & U,,.

Ist U=U;®---®U, eine direkte Summe, so hat nach Satz 9.1 ((1) = (3)) jedes
u € U eine eindeutige Darstellung v = u; +- - - +u,, mit u; € U; fiir j =1, ..., m.

Ist m > 3, so ist es klar, dass U = Uy + (Uy + -+ - + Upp,).
Satz 9.2 Seim > 3, setze W = Uy + - - -+ U, und nehme an, dassU = U; @ W
und W =Usy @ --- ® U,,. Dann gilt auch U = U, @ --- D U,,.

69



9 DIREKTE SUMMEN 70

Beweis Sei u; € Uj fiir jedes j = 1, ..., m mit uy + --- + u,, = 0. Dann ist
w=uy+ -+ U, € Wund u; + w = 0. Nach Satz 9.1 ((1) = (2)) ist also
up =0und w =0, da U = U; & W, und wieder nach Satz 9.1 ((1) = (2)) ist
dann u; = 0 fiir jedes j =2, ..., m,da W = Uy, @ - -- ® Up,. Daraus ergibt sich
nach Satz 9.1 ((2) = (1)),das U =U; @ ---® U,,. O

Satz 9.3 Sei U; # {0} fiir jedes j. Dann sind dquivalent:
(1) Es gilt U =U, & --- & Up,.
(2) Ist u; € U; \ {0} fiir jedes j, so sind uq, ..., u, linear unabhdingig.

(3) Sindwl, ..., uij € U, linear unabhingig fir jedes j =1, ..., m, so sind die

Vektoren ui, ..., u,lgl, coulty o upt linear unabhdngig.

Beweis (1) = (3): Fiir j = 1, ..., m seien u!, ..., uij € U; linear unabhéngig
und seien A}, ..., )\}21, s AT L AR € Komit
AMuj + - Ny, AT Al =0

Setze u; = Nul + -+ )\f;juij; dann ist u; € U; und uy + - -+ + u,, = 0. Nach
Satz 1 ist also u; = )\Jlujl + -+ )\{;juij = 0 fiir jedes j und damit gilt )\f = 0 fiir

t=1,..., kj, da u{, ce uf;j € U; linear unabhéngig sind. Dies zeigt, dass die
Vektoren ui, ..., u}ﬁ, cooyuf’, oo, g linear unabhéngig sind.

(3) = (2): Dies ist klar.

(2) = (1): Firj=1, ..., mseiu; € U; mit ug + - - - + u,, = 0, und setze

 Juy fallsu; #0, 1 fallsu; #0,
”J_{u;. fallsuy =0, " ATV 0 fallsu, =0,

wobei u} ein beliebiges Element aus U; \ {0} ist. Dann ist Adjvy + -+ Ayyvg, = 0.
Aber v; € U; \ {0} fiir j = 1, ..., m, damit sind vy, ..., v, linear unabhéngig
und folglich ist A\; = 0 fiir jedes j, d.h., u; = 0 fiir j = 1, ..., m. Daraus ergibt
sich nach Satz 9.1, dass die Summe direkt ist. O

Satz 9.4 Sei U = U, © --- ® U, und fiir jedes j =1, ..., m sei f; : U; — Uj
emn Endomorphismus von U;. Dann gibt es einen eindeutigen Endomorphismus
f:U—UwonU mit f(u) = f;(u) fir jedesuecU;, j=1,..., m.

Beweis Nach Satz 9.1 ((1) = (3)) hat jedes u € U eine eindeutige Darstellung
U= u;+---Fu, mitu; € U; fiir j = 1, ..., m und folglich gibt es eine eindeutige
Abbildung f : U — U mit

flur 4 um) = fi(ur) + -+ frn(Um)
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fir alle u; € U, 7 =1, ..., m. Man sieht leicht, dass f ein Endomorphismus ist
und per Definition gilt f(u) = f;(u) fir jedes u € U;, j =1, ..., m. Ferner ist es
klar, dass f der eindeutige Endomorphismus von U mit dieser Eigenschaft ist. O

Der Endomorphismus in Satz 9.4 heifit die direkte Summe der Endomorphismen
fi, -+, frn und wird mit f; ® --- @ f,,, bezeichnet.

Lemma 9.1 Set U =U,®---B U, und set f ein Endomorphismus von U. Dann
gibt es Endomorphismen f; :U; — U;, j=1,...,m, sodass f = f1i ® - D f,
genau dann, wenn f(U;) C U; fur jedes j = 1 , M.

Beweis Dies ist klar. O

Satz 9.5 Sei U = U, @ --- ® Uy, und seien f;, g; : U; — U; Endomorphismen
von Uj fiir jedes j =1, ..., m. Dann gilt

(1@ ®fm) + (@D Bgm) = (f1+91) - D (fo + gm)
und (fl@@fm)o(gl@@gm):(flogl)@@(fmogm)

Beweis Setze f=fi®---& f,und g =91 & --- D g,,. Dann gilt

(f+g)(ur+ - Fum) = flur+ - A um) +glur + - +up)
= filur) + -+ folum) + g1(ur) + -+ + gm(tm)
= (fi(u1) + gi(ur)) + -+ + (fin(wn) + gm(tm))
= (fi+g)(ur) + -+ (fon + ) (Um)
=((itg) O @ (fn+ gm))(ua + -+ wp)

und auch

(fog)(us+--- +um) = flg(ur + -+ um)) = flg1(ur) + - + g (um))

= filgi(u1)) + -+ f(gm(um)) = (fi 0 g1)(u1) + -+ (fim © gim) (um)
= ((ficg) & @& (fmogm))(ur + -+ up)
fir alle u; € Uj, j =1, ..., m, und daraus ergibt sich, dass

fH9=(/i+9) D ®(frntgm) und fog=(fiog)® D (fmogm). O

Satz 9.6 Sei U = U, @ --- DUy, und fiir j =1,...,m sei f; : Uy — U; ein
Endomorphismus von U;. Dann ist fi @ --- @ f,, ein Automorphismus von U
genau, wenn f; ein Automorphismus von U; ist fir jedes j =1, ..., m.
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Beweis Dies folgt unmittelbar aus Satz 9.5, da idy =idy, & --- @ idy,,. O
Lemma 9.2 Sei U =U, ®--- @ Uy, und fiir j =1, ..., m sei f; : U; — U;j ein
Endomorphismus von U;. Dann ist

Kern(fy @@ fn) =Kern f; @ --- @ Kern f,,, .

Beweis Dies ist klar. O

Seien Uy, ..., U,, endlichdimensional; da
U=U+-+Up= (" (U1 +Ua) +Us) + -+ Up)

ist nach Satz 4.8 die Summe U endlichdimensional und es gilt

dimU <dimU; +---+dimU,, .

Satz 9.7 Seien Uy, ..., Uy, endlichdimensional mit dim U; > 1 fiir jedes j. Dann
sind dquivalent:

(1) Es gilt U =U, & --- & Up,.
(2) Ist (v, ... ,uij) eine Basis von U; fir jedes j =1, ..., m, so ist
(u%,...,u,lﬂ,...,uT,...,uZLm)

eine Basis von U.

(8) Es gilt dimU = dim U; + - - - + dim U,,,.

Beweis (2) = (3) ist klar und (1) = (2) folgt unmittelbar aus Satz 9.3, da
U:L(v%,...,v,il,..., ol )

falls L(v{, e ,vij) = U, fiir jedes j =1, ..., m.

(3) = (2): Fiirjedes j =1, ..., m sei (u], ... ,uij) eine Basis von U;. Da wieder
U:L(u%,...,u}ﬁ,...,uT,...,u;”m)

und dimU = ky + - -+ + Ky, ist nach Satz 4.6 (4) (ug,...,up, ..., u*, ..., up’)
eine Basis von U.

(2) = (1): Fiir jedes j = 1, ..., m seien u?, ..., uf;j € U; linear unabhéngig.
Nach dem Basisergénzungssatz gibt es eine Basis (v{, e ,vgj) von U; mit k; < p;
und vg = ui fir i =1, ..., k;. Dann ist (v%,...,vél,..., v, ..., v ) eine Basis
von U und insbesondere sind die Vektoren v}, ..., vél, oy UYL, vpr linear
unabhingig. Damit sind auch ui, ..., u}ﬁ, ooy uf', oo, upt linear unabhéngig

und daraus ergibt sich nach Satz 9.3, dass die Summe direkt ist. O



10 Diagonalisierbarkeit

Im Folgenden sei K ein Korper und sei V' ein Vektorraum iiber K.

Sei f:V — V ein Endomorphismus von V. Ein Element A\ € K heifit Figenwert
von f, wenn es einen Vektor v € V', v # 0, mit f(v) = Av gibt. Ein Vektor v # 0
mit f(v) = v heift dann Eigenvektor von f zum Eigenwert A.

Wichtige Bemerkung: 0 ist ein Eigenwert von f genau dann, wenn f nicht injektiv
ist, d.h., genau dann, wenn Kern f # {0}.

Nehme nun an, dass V' stets endlichdimensional ist mit dimV =n > 1.

Ein Endomorphismus f : V — V heifit diagonalisierbar, wenn es eine aus Eigen-
vektoren von f bestehende Basis von V' gibt, d.h., wenn es eine Basis (vq, ..., v,)
von V gibt, so dass f(v;) = A\ju; fiir ein \; € K fiir jedes j =1, ..., n.

Es gibt Endomorphismen, die keine Eigenwerte besitzen, und insbesondere sind
solche Endomorphismen nicht diagonalisierbar.

Beispiel: Sei f : R? — R? die durch f((z,y)) = (—y,z) gegeben Abbildung;
dann ist f ein Endomorphismus von R? und f = ¢4 mit

0—-1
(1)
Sei (z,y) € R? und X\ € R mit f((z,y)) = Mz,y); dann ist (—y,z) = Az, y),

d.h., —y = Az und = \y und damit z = —\?z, und dies ist nur méoglich, wenn
(z,y) = (0,0). Daraus folgt, dass f keinen Eigenwert besitzt.

Eine Matrix D = (d;;) € M(n x n, K) heift Diagonalmatriz, wenn d;; = 0 fiir
alle 7, j mit i # j. Eine Diagonalmatrix hat also folgende Gestalt:

MO0
0 X--- 0
00 -\
Lemma 10.1 Sei f : V — V ein Endomorphismus und sei o = (vy,...,v,) eine

Basis von V. Dann sind dquivalent:

(1) Die Basis o besteht aus Eigenvektoren von f.

(2) Die Matriz von f beziiglich « ist eine Diagonalmatriz.

Insbesondere ist f genau dann diagonalisierbar, wenn es eine Basis a von V' gibt,
so dass die Matriz von f beziiglich a eine Diagonalmatriz ist.
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Beweis (1) = (2): Da v; ein Eigenvektor von f ist, ist f(v;) = Ajv; fiir den
entsprechenden Eigenwert \; € K. Dann aber ist die Diagonalmatrix

MO0
0 X+ 0
00 -\

die Matrix von f beziiglich der Basis a.

(2) = (1): Sei D = (d;;) die Matrix von f beziiglich der Basis . Sei 1 < j < n;
da D eine Diagonalmatrix ist, gilt

f(Uj) = dljvl + -+ dnjvn = djjvj .

Ferner ist v; # 0, da (vy, ..., v,) eine Basis ist und folglich ist v; ein Eigenvektor
von f zum Eigenwert d;;. Damit besteht (vy,...,v,) aus Eigenvektoren von f. O

Eine Matrix A € M(n x n, K) heifit diagonalisierbar, wenn A &hnlich zu einer
Diagonalmatrix ist, d.h., wenn es Matrizen D, P € M(nxn, K) mit P invertierbar
und D einer Diagonalmatrix gibt, so dass A = P~1DP.

Satz 10.1 Sei f : V — V ein Endomorphismus, sei « eine Basis von V und
sei A die Matriz von f beziiglich der Basis oo. Dann ist der Endomorphismus f
diagonalisierbar genau, wenn die Matriz A diagonalisierbar ist.

Beweis Nehme zunéchst an, dass der Endomorphismus f diagonalisierbar ist.
Nach Lemma 10.1 gibt es dann eine Basis # von V, so dass die Matrix D von
f beziiglich 8 eine Diagonalmatrix ist. Aber nach Satz 8.8 gilt A = P71DP,
wobei P die Matrix fiir den Wechsel von 3 nach « ist. Damit ist die Matrix A
diagonalisierbar.

Nehme nun umgekehrt an, dass die Matrix A diagonalisierbar ist. Dann gibt es
Matrizen D, P € M(n xn, K) mit D einer Diagonalmatrix und P invertierbar, so
dass A = P~'DP, und nach Lemma 6.6 gibt es eine Basis 3 von V, so dass P~!
die Matrix fiir den Wechsel von « nach 3 ist. Daraus ergibt sich nach Satz 8.8,
das (P~')'AP~! = PAP™! = D die Matrix von f beziiglich der Basis 3 ist.
Damit ist nach Lemma 10.1 der Endomorphismus f diagonalisierbar. O

Sei A € M(n xn, K); nach Satz 10.1 ist der Endomorphismus ¢4 diagonalisierbar
genau, wenn die Matrix A diagonalisierbar ist, da nach Lemma 8.1 A die Matrix
von @4 beziiglich der kanonischen Basis von K™ ist.

Sei A € M(n x n,K); Ein Element A\ € K heifit Eigenwert von A, wenn \
Eigenwert von ¢4 ist, d.h., wenn es einen Vektor u € K™, u # 0, mit @ 4(u) = Au
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gibt. Ein Vektor u # 0 mit pa(u) = Au heiit dann Eigenvektor von A zum
Eigenwert A, d.h., ein Eigenvektor von A zum Eigenwert A ist nichts anderes als
ein Eigenvektor von ¢4 zum Eigenwert \.

Es gilt aber p4(u) = Au, wenn u als Element von M(n x 1, K) betrachtet wird,
und folglich ist A\ € K Eigenwert von A, genau wenn es einen Vektor u € K",
u # 0, mit Au = Au gibt, d.h., wenn

a1l * - An 251 251
=Al ]
Ap1 * - Gpn Hn Hn
wobei u = (pu1, ..., ftn). Ein Vektor u € K™ mit u # 0 ist also Eigenvektor von A

zum Eigenwert A genau dann, wenn Au = A\u.

Lemma 10.2 Seien A, Q € M(n x n, K) und sei

MO - 0

0 Xg--- 0

00 -\,
eine Diagonalmatriz. Dann gilt AQ = QD genau, wenn Au; = \ju; fir jedes j,
wobei uq, ..., u, die Spalten von @) sind. Ferner ist die Matriz () invertierbar
genau dann, wenn (uy,...,u,) eine Basis von K" ist.

Beweis Die erste Aussage folgt aus der Definition von Matrizenmultiplikation.
Nun gilt dimL(uy,...,u,) = Rangg(Q)) = rang@ und nach Satz 4.6 (4) ist

(ui,...,u,) eine Basis von K™ genau dann, wenn dim L(uy,...,u,) = n. Nach
Satz 7.4 ist andererseits () invertierbar genau dann, wenn rang () = n. Damit ist
@ invertierbar genau dann, wenn (ug,...,u,) eine Basis von K™ ist. O

Satz 10.2 FEine Matriz A € M(n x n, K) ist diagonalisierbar genau dann, wenn
es eine aus Figenvektoren von A bestehende Basis von K™ gibt.

Beweis Dies folgt unmittelbar aus Satz 10.1, da nach Lemma 8.1 A die Matrix
von ¢ 4 beziiglich der kanonischen Basis von K™ ist. Es ist dennoch aufschlufireich,
den folgenden direkten Beweis zu betrachten:

Nehme zuerst an, dass A diagonalisierbar ist; dann gibt es eine Diagonalmatrix
AN O -2 0
0 Xy 0

D={ . .. .

00 -\,
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und eine invertierbare Matrix P, so dass A = P7!DP. Sei Q = P~! und seien
Uy, ..., Uy, die Spalten von ). Dann ist Q@ *AQ = D und damit auch AQ = QD.
Nach Lemma 10.2 gilt also Au; = A\ju; fir j =1, ..., nund (uq,...,u,) ist eine
Basis von K™. Damit ist (uq,...,u,) eine aus Eigenvektoren von A bestehende
Basis von K™.

Nehme nun umgekehrt an, dass es eine aus Eigenvektoren von A bestehende Basis
(u1,...,u,) von K™ gibt. Fiir j =1, ..., n sei A; der entsprechende Eigenwert,
d.h., es gilt Au; = Aju;. Sei Q@ € M(n x n, K) die Matrix, die uy,...,u, als
Spalten hat. Nach Lemma 10.2 ist () invertierbar und AQ) = QD, wobei

MO -2 0
0 Xy 0
00 -\,

Damit ist A = P~'DP, wobei P = Q~!, d.h., A ist diagonalisierbar. O
Fiir jede Basis a = (v1,...,v,) von V sei ¢, : K" — V die durch
wa(()\la SRR An)) = ANy + -+ )\nvn

definierte Abbildung. Man sieht leicht, dass 1, linear ist. Ist (eq,...,e,) die
kanonische Basis von K", so gilt ¢, (e;) = u; fiir jedes j =1, ..., n und daraus
folgt nach Lemma 5.10 (4), dass 1, ein Isomorphismus ist.

Lemma 10.3 Sei f: V — V ein Endomorphismus und sei A die Matriz von f
beziiglich einer Basis o von V. Dann gilt f o1, = 1¥q 0 p4.

Beweis Sei o = (vy,...,v,) und A = (a;;). Fir alle (A\y,...,\,) € K™ ist

(f ota)((Ars - An)) = f(®al(Ar, o0 A )))

n

= f(}i1 Aj“j) =) Nif(y; Z)‘ Z“U“l i(z @i\ )

_]:1 =1 1=

= Ya(@a((Ar; 5 An))) = (Yo 0 pa) ()‘17 An))

und damit ist f o, = 1,0 pa. O

Satz 10.3 Sei f : V — V ein Endomorphismus, sei « = (vy,...,v,) eine Basis
von V und sei A die Matrix von [ beziiglich der Basis c.

(1) Ein Element A € K st ein Eigenwert von f genau dann, wenn X ein Eigen-
wert von A ist.
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(2) Sei \ ein Figenwert von f und u € K"; dann ist u ein Figenvektor von A
zum Eigenwert A genau, wenn v, (u) ein Eigenvektor von f zum Figenwert X ist.

(3) Ist A diagonalisierbar und ist (uq, ..., u,) eine aus Figenvektoren von A be-
stehende Basis von K", so ist ({o(u1),...,Ya(u,)) eine aus Eigenvektoren von
f bestehende Basis von V.

Beweis (1) und (2): Sei A € K und u € K™; es gilt f o1, = 1, © 4 nach
Lemma 10.3, und v, ist ein Isomorphismus, und daraus ergibt sich, dass

Au=Xdu < ps(u)= < palu)—Au=0
& Yalpa(u) =) =0 & dalpa(u)) = Ma(u) =0
& f(Wa(w) = Mpa(u) =0 < f(a(u)) = Ma(u) .

Ferner ist u # 0 genau dann, wenn ¥, (u) # 0. Damit ist A ein Eigenwert von f
genau dann, wenn A ein Eigenwert von A ist, und wu ist ein Eigenvektor von A
zum Eigenwert A genau dann, wenn 1, (u) ein Eigenvektor von f zum Eigenwert
A ist.

(3) Dies folgt unmittelbar aus (1) und (2) und Lemma 5.10 (3). O

Lemma 10.4 Sei f : V — V ein Endomorphismus und fir j =1, ..., m sei v;
ein Bigenvektor von f zum Figenwert \;, wobei N\; # \;, falls i # j. Dann sind
die Vektoren vy, ..., v, linear unabhdingig.

Beweis Nehme an, dass vy, ..., v, linear abhéngig sind. Da v; # 0, gibt es nach
Lemma 3.13 ein k mit 2 < k < m, so dass v € L(vq,...,vx_1). Sei p der kleinste
solche Index, es gilt also 2 < p < m, v, € L(vy,...,v,-1), aber v; ¢ L(vy, ..., v;—1)
fir alle 2 < ¢ < p. Nach Lemma 3.13 sind vy, ..., v,_; linear unabhingig. Da
v, € L(vy,...,up—1), gibt es g, ..., pp—1 € K, s0 dass v, = pyvy +- -+ thp_10p_1.
Dann ist

0= f(vp) = Apvp = fpavr + -+ pp1vp-1) = Ap(pav1 + - + fp-10p-1)
= pf(vr) + -+ ppr f(Vp-1) = Ap(pavr + -+ + prp1v,1)
= AU F o U1 Ap—1Up1 — (AU F e o1 ApUp_1)
= (A = Ap)vr+ -+ 1 (A1 — Ap)vpr

und daraus ergibt sich, dass p;(A\; —A,) =0firj=1,...,p—1,dawvy, ..., v,
linear unabhéngig sind. Aber A\; =\, # 0 und alsoist y; =0 fiirj =1, ..., p—1.
Damit ist v, = pyv1 + - - - + pp—1vp—1 = 0 und dies ist ein Widerspruch, da v, ein
Eigenvektor ist. Daher miissen vy, ..., v,, linear unabhéngig sein. O
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Satz 10.4 (1) Ein Endomorphismus f : V. — V hat hichstens n verschiedene
Figenwerte (wobei n = dimV ), und gibt es n verschiedene Eigenwerte, so ist f
diagonalisierbar.

(2) Eine Matriz A € M(n xn, K) hat héchstens n verschiedene Eigenwerte. Gibt
es n verschiedene Figenwerte von A, so ist A diagonalisierbar.

Beweis Dies folgt unmittelbar aus Lemma 10.4 und (1) und (2) von Satz 4.6. O

Sei f:V — V ein Endomorphismus und sei A € K. Fir v € V gilt f(v) = \v
genau dann, wenn v € Kern (f — Aidy), da

fw)= & f(v)—=Iv=0 < (f—Aidy)(v) =0 & veKemn(f—Aidy) .

Folglich ist A ein Eigenwert von f genau dann, wenn Kern (f — Aidy) # {0}.
Daraus ergibt sich nach Satz 5.3, dass A genau dann ein Eigenwert von f ist,
wenn der Endomorphismus f — Aidy : V' — V kein Automorphismus ist.

Fiir jeden Eigenwert A setze E(f, \) = Kern (f — Aidy ). Dieser Untervektorraum
von V' heiBt Eigenraum von f zum Figenwert A. Es gilt dimE(f,\) > 1 und
E(f,A) \ {0} ist gerade die Menge aller Eigenvektoren von f zum Eigenwert \.

Wichtige Bemerkung: Ist 0 ein Eigenwert von f, so ist E(f,0) = Kern f.

Satz 10.5 Sei f:V — V ein Endomorphismus von V und seien Ay, ..., \,, die
verschiedenen Figenwerte. Dann ist

B(f M) 4+ B(f Am) = B(F, ) & - @ B(f, Am) -
(die Summe ist also direkt). Ferner ist f diagonalisierbar genau dann, wenn

V=E(f,\M)® - DE(f, \n) .

Beweis Es folgt zundchst unmittelbar aus Satz 9.3 und Lemma 10.4, dass die

Summe E(f, A1) + -+ E(f, \,,) direkt ist.

Gilt V = E(f,\1) @ --- ® E(f, Am), so ist nach Satz 9.3 f diagonalisierbar. Ist
umgekehrt f diagonalisierbar, so ist es klar, dass V' = E(f, A1) + - - + E(f, A\n)-
Also ist f diagonalisierbar genau dann, wenn V' = E(f, A1) @ --- @ E(f, A\yy). O

Sei f:V — V ein diagonalisierbarer Endomorphismus und seien Ay, ..., A, die
verschiedenen Eigenwerte von f. Fiir j =1, ..., m setze U; = E(f, A;); also ist
V=U®---®U, und ferner gilt

f=XNidy, &--- & \yidy,,

d.h., f ist die direkte Summe der Endomorphismen A,idy,, ..., A\nidy,,.
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Satz 10.6 Sei f : V — V ein Endomorphismus von V und seien Ay, ..., \,, die
verschiedenen Eigenwerte. Dann gilt dim E(f, A;) +--- +dim E(f, \,,) < dim V.
Ferner ist f diagonalisierbar genau dann, wenn

dimE(f,\) +---+dimE(f, \,,)) = dim V.

Beweis Dies folgt unmittelbar aus Satz 10.5 und Satz 9.7. O

Beispiel Sei f: K* — K? die Abbildung, die durch f((z,y)) = (y,0) gegeben
ist; dann ist f ein Endomorphismus von K2, und f = ¢4 mit

01
A= (O 0) |
Sei (z,y) € K> und A € K mit f((z,y)) = X (x,y); dann ist (y,0) = \(z,y), d.h.,
Ay = 0 und y = Az. Damit ist 0 der einzige Eigenwert von f und

E(f,0)={ve K*: f(v)=0}={(2,0): 2 € K} .

Insbesondere ist dim E(f,0) =1 < 2 = dim K2, und daraus folgt nach Satz 10.6,
dass f nicht diagonalisierbar ist.
Sei nun A € M(n x n, K) und sei A € K. Fiir u € K" gilt Au = Au genau dann,
wenn u € Kernp_»g,, da
Au=X & Au—AE,u=0 & (A—AE,)u=0
& paag,(u) =0 < ueKern pa g, -
Folglich ist A ein Eigenwert von A genau dann, wenn der Endomorphismus ¢4 _»g,

kein Automorphismus von K" ist. Nach Satz 6.3 ist also A ein Eigenwert von A
genau dann, wenn die Matrix A — AFE),, nicht invertierbar ist.

Fiir jeden Eigenwert A\ setze E(A,\) = Kernps_,g,. Dieser Untervektorraum
von V heiit Figenraum von A zum FEigenwert X. Es gilt dimE(A, A) > 1 und
E(A, M)\ {0} ist gerade die Menge aller Eigenvektoren von A zum Eigenwert A.

Lemma 10.5 Sei A € M(n x n, K); dann gilt
E(A,\) = Los(A — AE,,,0)

fiir jeden Eigenwert A von A.

Beweis Dies folgt unmittelbar aus Lemma 5.7. O

Sei nun A € M(n x n, K) und seien Ay, ..., A, die verschiedenen Eigenwerte von
A. Nach Lemma 10.5 ist E(A4, \;) = Los(A — A\;E,,0), und also kann man mit
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Hilfe von Satz 10.1 und des Gaufischen Algorithmus eine Basis (u?, ..., uf,j) von
E(A, \;) konstruieren. Nach Satz 10.6 ist A diagonalisierbar genau dann, wenn
p1+ -+ pm = n. Nehme an, dass A diagonalisierbar ist und setze

1 2 m m)

2
ULy ooy Up sy Uy ooy U

(wy,...,w,) = (uj,...,u s Uy s

Dann ist (wy,...,w,) eine aus Eigenvektoren von A bestehende Basis von K.
Sei @ € M(n x n, K) die Matrix, die wy, ..., w, als Spalten hat; wie im Beweis
fiir Satz 10.2 gilt dann, dass @ invertierbar ist und Q='AQ = D, wobei D die
Diagonalmatrix ist mit den Eintragen Ay,..., A1, Ao, .., Ao, ooy Ay o5 Ay auf
der Diagonalen, wobei fiir jedes j der Eigenwert )\; genau p;-mal vorkommt.

Diese Verfahren kann aber nur durchfiihrt werden, wenn die Eigenwerte von A
schon bekannt sind, und daher stellt sich die Frage: Wie findet man die Eigenwerte
einer Matrix A € M(n x n, K)?

Bevor aber diese Frage beantwortet werden kann, miissen einige Eigenschaften
iiber Determinanten von Matrizen kennengelernt werden.



11 Trigonalisierbarkeit

Im Folgenden sei K ein Korper und V' ein Vektorraum iiber K.

Sei f:V — V ein Endomorphismus von V. Ein Untervektorraum U von V heifit
f-invariant, wenn f(U) C U. In diesem Fall kann eine Abbildung fiy : U — U
definiert werden durch fiy(u) = f(u) fir alle v € U. Man sieht leicht, dass fiy
linear ist, d.h., fr ist ein Endomorphismus von U. Diesen Endomorphismus f|;;
nennt man die Einschrinkung von f auf U.

Sei f : V — V ein Endomorphismus von V. Fiir jedes m > 0 wird dann der
Endomorphismus f™:V — V definiert durch f° =idy, f! = f und (fiir m > 1)

= fo .

Der Endomorphismus f heifit nilpotent, wenn f™ = 0 fiir ein m > 1. Also ist f
nilpotent genau dann, wenn Bild f™ = {0} fiir ein m > 1, und man beachte, dass
Bild f™ = {0} genau dann gilt, wenn Kern f™ = V.

Nehme nun an, dass V' endlichdimensional ist mit dimV =n > 1.

Eine Matrix A = (a;;) € M(n x n, K) heifit obere Dreiecksmatriz, wenn a;; = 0
fiir alle ¢ > 7, und eine Matrix heiflt trigonalisierbar, wenn sie @hnlich zu einer
oberen Dreiecksmatrix ist. Jede diagonalisierbare Matrix ist trigonalisierbar, da
eine Diagonalmatrix auch eine obere Dreiecksmatrix ist. Andererseits ist

(0)

eine obere Dreiecksmatrix und damit trigonalisierbar, aber diese Matrix ist nicht
diagonalisierbar.

Eine Folge Vg, Vi, ..., V,, von Untervektorrdumen von V heifit eine Fahne, wenn
{0} =VocViC---C V,=V

und dimV; = j fiir jedes 7 = 0, ..., n. Ein Endomorphismus f : V' — V von
V' heif3t trigonalisierbar, wenn es eine f-invariante Fahne gibt, wobei eine Fahne
Vo, Vi, ..., Vi f-invariant heifit, wenn der Untervektorraum V; f-invariant fiir
jedes j ist.

Satz 11.1 Sei f : V — V ein Endomorphismus von V und sei A € M(n x n, K)
die Matriz von f beziiglich irgendeiner Basis von V. Dann ist f trigonalisierbar
genau, wenn A trigonalisierbar ist.

Beweis Nehme zuerst an, dass f trigonalisierbar ist. Es gibt also eine f-invariante
Fahne Vg, Vi, ..., V,,. Nach wiederholter Anwendung des Basisergéinzungssatzes
kann man eine Basis (uq,...,u,) von V konstruieren, so dass (ui,...,u;) eine

81
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Basis von V; ist fiir jedes j = 1, ..., n. (Ist j < n und ist (u,...,u;) eine
Basis von Vj, so gibt es nach dem Basisergénzungssatz ein u;;; € Vj4q, so dass
(w1,...,ujr1) eine Basis von Vjiy ist.) Sei B = (b;;) € M(n x n, K) die Matrix
von f beziiglich der Basis (uq, ..., u,); dann ist f(u;) = byju; + - - + by u, fur
i=1,...,n. Aber f(u;) € V; = L(uy,...,u;) und folglich ist b;; = 0 fiir alle
1 > j, d.h., B ist eine obere Dreiecksmatrix. Damit ist A trigonalisierbar, da nach
Satz 8.9 die Matrizen A und B dhnlich sind.

Nehme nun umgekehrt an, dass A trigonalisierbar ist. Dann ist A dhnlich zu einer
oberen Dreiecksmatrix B = (b;;) € M(n x n, K) und nach Satz 8.9 gibt es eine
Basis (uq, ..., u,) von V so dass B die Matrix von f beziiglich (u1, ..., u,) ist. Sei
Vo ={0} und fiir j =1, ..., nsetze V; = L(uy,...,u;); die Folge V;, V4, ..., V,,
ist also eine Fahne. Seien 1 < k£ < 7 < n; dann ist

f(uk) :blku1+~-~—|—bnkun EL(ul,...,uk) CL(ul,...,uj) I‘/j,

da b;, = 0 fir ¢« > k. Damit ist nach Lemma 5.8 und Satz 3.2

f(V;) = f(L(u,...,u;)) = L(f(w),..., f(u;)) C L(us,...,u;) =V;

fir =1, ..., n,dh, Vy, Vi, ..., V, ist eine f-invariante Fahne. Folglich ist f
trigonalisierbar. O

Sei f: V — V trigonalisierbar und sei Vg, Vi, ..., V, eine f-invariante Fahne.
Da dimV; = 1 und f(V4) C Vi, gibt es dann ein A € K, so dass f(v) = Av fiir
jedes v € V. Insbesondere besitzt jeder trigonalisierbare Endomorphismus einen
Eigenwert. Nach Satz 11.1 besitzt also jede trigonalisierbare Matrix ebenfalls
einen Eigenwert. Folglich ist zum Beispiel die reelle Matrix

0-1
10
nicht trigonalisierbar, da sie keinen Eigenwert besitzt. Es wird aber in Satz 11.8

gezeigt werden, dass jeder komplexe Endomorphismus und damit jede komplexe
Matrix trigonalisierbar ist.

Hier ist das Hauptergebnis dieses Kapitels:

Satz 11.2 Sei f: V — V ein Endomorphismus von V und seien Ay, ..., \,, die
verschiedenen FEigenwerte von f. Dann sind dquivalent:

(1) f ist trigonalisierbar.

(2) Jeder f-invariante Untervektorraum U von V mit dimU > 1 enthdlt einen
Eigenvektor von f.

(8) Ist U ein f-invarianter Untervektorraum von V mit dimU > 1, so besitzt
die Einschrinkung fiy von f auf U einen Eigenwert.
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(4) Es gibt Endomorphismen g, h : V. — V mit g diagonalisierbar, h nilpotent
und goh = hog, so dass f =g+ h.

(5) Es gibt eindeutige Endomorphismen g, h : V. — V mit g diagonalisierbar, h
nilpotent und go h = ho g, so dass f = g+ h.

(6) Es gibt f-invariante Untervektorraume Uy, ..., Uy, von V mit
V=U® - -®Up,,

so dass fiir jedes k der Endomorphismus fiy, — A\idy, von Uy nilpotent ist.

(7) Es gibt eindeutige f-invariante Untervektorrdume Uy, ..., Uy, von V mit
V=Ue& --aU,,

so dass fiir jedes k der Endomorphismus fiu, — A\iidy, von Uy nilpotent ist, und
in der Tat gilt dann Uy = Kern (f — A\gidy)™ fir jedes k=1, ..., m.

Beweis Dieser erstreckt sich iiber die néichsten zehn Seiten. Man beachte aber
an dieser Stelle, dass (2) und (3) trivial dquivalent sind: Sei U ein f-invarianter
Untervektorraum von V mit dimU > 1. Ist v € U ein Eigenvektor von f, so
ist u auch Eigenvektor von fjy und damit besitzt fi; einen Eigenwert. Besitzt
umgekehrt fiy einen Eigenwert A, so gibt es u € U \ {0} mit fiy(u) = Au, und
dann ist f(u) = Au, d.h., u ist ein Eigenvektor von f, der in U enthalten ist. O

Bemerkung: In Kapitel 16 wird das charakteristische Polynom eingefiihrt und es
wird gezeigt, dass ein Endomorphismus f genau dann trigonalisierbar ist, wenn
sein charakteristisches Polynom Y in Linearfaktoren zerfillt.

Lemma 11.1 Sei f : V — V trigonalisierbar. Dann ist die Einschrinkung fiu
von f auf U auch trigonalisierbar fir jeden f-invarianten Untervektorraum U
mit dimU > 1.

Beweis Sei Vg, Vi, ..., V, eine f-invariante Fahne und fiir jedes k =1, ..., n sei
Ur = U N V. Dann ist Uy ein fy-invarianter Untervektorraum von U und

{0}=UycU,Cc---Cc U,=U.
Ferner gilt nach Satz 4.8, dass fir k=0, ..., n—1

dim Up41 — dim Uy, = dim(U N Viy1) — dim(U N Vi)
= (dim U + dim Vj 41 — dim(U + Vi41))
— (dim U + dim V}, — dim(U + V%))
— dim Vi1 — dim Vi — dim(U + Viyr) + dim(U + V)
=1—dim(U + Viy1) + dim(U + V) < 1
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und daraus ergibt sich, dass dim Uy, = dim Uy oder dim Uy ; = 1 + dim Uy, fiir
kE=0,...,n—1 Damit gibt es 0 < m; < --- < m, = n mit p = dimU, so
dass dim U,,; = j fiir j =0, ..., p. Also ist Uy, Uy, - .., Up, eine fiy-invariante
Fahne, und daher ist f|;y trigonalisierbar. O

Wie schon erwéhnt wurde, besitzt jeder trigonalisierbare Endomorphismus einen
Eigenwert. Also liefert Lemma 11.1 insbesondere einen Beweis fiir (1) = (3) in
Satz 11.2.

Bemerkung: Die nachfolgenden Ergebnisse bis einschliefilich Lemma 11.7 sind
auch richtig ohne die Annahme, dass V' endlichdimensional ist.

Lemma 11.2 Sei f: V — V ein Endomorphismus. Dann gilt:
(1) Bild ¥ c Bild f* fiir jedes k > 0.

(2) Gilt Bild f™*! = Bild f™ fiir ein m > 0, so ist Bild f* = Bild f™ fiir alle
k>m.

(3) Kern f*  Kern f**! fiir jedes k > 0.

(4) Gilt Kern f™ = Kern f™*1 fiir ein m > 0, so ist Kern f™ = Kern f* fiir alle
k> m.

Beweis (1) Sei k > 0 und v € Bild f**1; also gibt es u € V mit v = f*(u).
Dann ist aber v = f*(w) mit w = f(u) und folglich ist v € Bild f*. Daraus ergibt
sich, dass Bild f¢*! c Bild f*.

(2) Sei m > 0 und nehme an, dass Bild f™™! = Bild f™. Es wird gezeigt, dass
dann Bild f™? = Bild f™*. Sei v € Bild f™*!, es gibt also ein u € V mit
v = f™(u). Aber Bild f™*! = Bild f™ und f™(u) € Bild f™, und folglich gibt
esw €V, so dass f™(u) = f™(w). Damit ist

v= " u) = F( (W) = FOUTHw) = P (w)

d.h., v € Bild f™"!. Dies zeigt, dass Bild f™™! C Bild f™** und nach (1) ist
dann Bild f™*2 = Bild f™*!. Gilt nun Bild f™! = Bild f™ fiir ein m > 0, so ist
Bild f* = Bild f™ fiir alle k& > m.

(3) Sei k > 0 und v € Kern f*; dann gilt f*™ = f(f*(v)) = f(0) = 0 und
folglich ist v € Kern f**!. Damit ist Kern f* C Kern f**! fiir jedes k > 0.

(4) Sei m > 0 und nehme an, dass Kern f™ = Kern f™". Es wird gezeigt, dass
Kern ™! = Kern f™2. Sei v € Kern f™%; dann ist f™"!(f(v)) = f™™2(v) =0,
d.h., f(v) € Kern f™. Da Kern f™ = Kern f™"! ist dann f(v) € Kern f™, d.h.,
v € Kern f™*1. Dies zeigt, dass Kern f™*? C Kern f™™! und nach (3) ist damit
Kern f™*1 = Kern f™*2. Gilt nun Kern f™ = Kern f™*! fiir ein m > 0, so ist
Kern f™ = Kern f* fiir alle k > n. O
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Lemma 11.3 Sei f: V — V ein Endomorphismus.
(1) Es gilt Bild f? = Bild f genau dann, wenn V = Kern f + Bild f.
(2) Es gilt Kern f = Kern f? genau dann, wenn Kern f N Bild f = {0}.

Beweis (1) Nehme zunéchst an, dass V' = Kern f + Bild f. Sei v € Bild f, es
gibt also v € V, so dass v = f(¢v') und da V' = Kern f + Bild f, gibt es dann
u € Kern f und w € V, so dass v = u + f(w). Folglich ist

v=f)=flut f(w) = fu)+ f(f(w) =0+ f(f(w)) = f*(w)

und damit ist v € Bild f2. Dies zeigt, dass Bild f C Bild f2, und daher ist nach
Lemma 11.2 (1) Bild f? = Bild f.

Nehme nun umgekehrt an, dass Bild f? = Bild f. Sei v € V; dann gibt es u € V,
so dass f(v) = f(f(u)), da Bild f> = Bild f. Dann ist v = (v — f(u)) + f(u)
und f(v — f(u)) = f(v) — f(f(u)) =0, d.h., v — f(u) € Kern f. Dies zeigt, dass
v € Kern f + Bild f und damit ist V = Kern f + Bild f.

(2) Nehme zunichst an, dass Kern f N Bild f = {0}, und sei v € Kern f%. Dann
ist f(f(v)) =0 und folglich ist f(v) € Kern f N Bild f. Damit ist f(v) =0, d.h.,
v € Kern f. Dies zeigt, dass Kern f? C Kern f und nach Lemma 11.2 (3) ist dann
Kern f = Kern f2.

Nehme nun umgekehrt an, dass Kern f = Kern f2, und sei v € Kern f N Bild f.
Dawv € Kern f, gibt es u € V, so dass v = f(u), und dann ist f(f(u)) = f(v) =0,
da v € Kern f. Also ist u € Kern f2 = Kern f, d.h., v = f(u) = 0. Dies zeigt,
dass Kern f N Bild f = {0}. O

Lemma 11.4 Sei f:V — V' ein nilpotenter Endomorphismus. Dann gilt:

(1) 0 ist der einzige Eigenwert von f. (D.h: 0 ist ein Eigenwert und es gibt keinen
Figenwert A mit X # 0.)

(2) Fiir jedes A\ € K ist \ der einzige Figenwert von fy = Mdy + f, und ferner
ist E(fx, \) = E(f,0) (und natirlich gilt E(f,0) = Kern f ).

Beweis (1) Sei m > 1 mit f™ = 0. Sei v € V \ {0}; da f°(v) = v # 0 und
f™(w) = 0, gibt es ein p mit 0 < p < m, so dass fP(v) # 0 aber fP*(v) = 0.
Setze u = fP(v); dann ist u # 0 und f(u) = 0 = Ou. Also ist 0 ein Eigenwert von
f (und w ist ein Eigenvektor zum Eigenwert 0).

Sei nun A € K ein Eigenwert von f und v ein Eigenvektor zum Eigenwert .
Dann gilt f(v) = Av und daraus folgt durch Induktion nach k, dass f*(v) = Mwv
fiir alle k > 1: Gilt f*(v) = A*v, so ist auch

P W) = F(FAW)) = FOF0) = X f(0) = Mo = Ay
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Insbesondere ist A™v = f™(v) = 0 und damit ist ™ = 0, da v # 0. Also ist
A = 0. Dies zeigt, dass 0 der einzige Eigenwert von f ist.

(2) Dies folgt aus (1), da fy(v) = pv genau dann gilt, wenn f(v) = (p— A)v. O

Lemma 11.5 Seien f, g: V — V Endomorphismen von V mit fog=go f.
(1) Die Untervektorriume Kern g und Bild g sind beide f-invariant.

(2) Es gilt fog™=g™o f fir jedesm > 1.

(8) Die Untervektorriume Kern g™ und Bild g™ sind beide f-invariant fir jedes
m > 1.

(4) Fiir jeden Eigenwert A von g ist der Eigenraum E(g, \) f-invariant.

Beweis (1) Sei v € Kern g; dann gilt g(f(v)) = f(g(v)) = f(0) = 0 und damit
ist f(v) € Kern g; folglich ist Kern g f-invariant. Sei nun v € Bild g, es gibt also
w €V mit v = g(w) und dann ist f(v) = f(g(w)) = g(f(w)) € Bild g. Daher ist
auch Bild g f-invariant.

(2) Dies folgt unmittelbar durch Induktion nach m.

(3) Dies folgt unmittelbar aus (1) und (2).

(4) Sei v € E(g, A); dann gilt g(f(v)) = f(g(v)) = f(Av) = Af(v) und damit ist
f(v) € E(g,A). O

Lemma 11.6 Sei f: V — V ein Endomorphismus und sei U ein f-invarianter
Untervektorraum von V. Dann ist jeder Eigenwert von fiy auch ein Eigenwert
von V.

Beweis Dies ist klar. O

Lemma 11.7 Sei f : V — V ein Endomorphismus und seien U, W f-invariante
Untervektorrdume von V-mit V. =U @& W. Dann st jeder Figenwert von V ein
Bigenwert von fiiy oder ein Eigenwert von fw .

Beweis Sei v ein Eigenvektor von f zum Eigenwert \. Da V. = U & W, hat v
eine eindeutige Darstellung v = v + w mit v € U und w € W, und da U und
W f-invariant sind, ist f(u) € U und f(w) € W. Damit ist f(u) — Au € U und
f(w) = Aw € W und es gilt

(f(u) = M) + (f(w) = Aw) = flu+w) = ANu+w) = f(v)—Av=0.
Daraus egibt sich, dass f(u) — A\u = f(w) — Aw = 0, da U NW = {0}. Also ist

A ein Eigenwert von fjy oder ein Eigenwert von fjy, da mindestens eines von u
und w nicht gleich Null ist. O

Erinnerung: Es gilt dimV =n > 1.
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Lemma 11.8 Sei f : V — V ein Endomorphismus. Dann gilt Bild f* = Bild f"
und Kern f* = Kern f™ fiir alle k > n. Insbesondere ist f genau dann nilpotent,
wenn f* = 0.

Beweis Fiir k > 0 setze dp, = dim Bild f*. Nach Lemma 11.2 (1) ist dp1 < di
fiir jedes k und folglich gibt es d > 0 und p > 0, so dass dj, = d fiir alle k > p. Sei
q = min{k > 0: dy = d}. Dann ist dj, = d fir alle k > ¢ und nach Lemma 11.2 (2)
ist djy1 < dj, fiir alle 0 < k < ¢q. Aber dy = n und d > 0 und daraus ergibt sich,
dass ¢ < n. Insbesondere ist dp = d fiir alle £ > n und also ist nach Satz 4.7
Bild f* = Bild f" fiir alle k > n. Genauso gilt auch Kern f* = Kern ™ fiir alle
k>n. O

Lemma 11.9 Sei f:V — V ein Endomorphismus. Dann sind dquivalent:
(1) Bild f? = Bild f.

(2) V =Kern f + Bild f.

(3) Kern f = Kern f2.

(4) Kern f N Bild f = {0}.

Beweis (1) < (2) und (3) < (4) sind Lemma 11.3.
(2) < (4): Nach Satz 4.8 ist

dim(Kern f + Bild f) = dim Kern f + dim Bild f — dim(Kern f N Bild f)

und nach der Dimensionsformel (Satz 5.2) ist dim V' = dim Kern f + dim Bild f.
Daraus ergibt sich, dass

dim V' = dim(Kern f + Bild f) + dim(Kern f N Bild f) .

AuBerdem folgt aus Satz 4.7, dass dim V' = dim(Kern f + Bild f) genau dann gilt,
wenn V = Kern f + Bild f. Damit gilt V' = Kern f + Bild f genau dann, wenn
dim(Kern f N Bild f) = 0, d.h., genau dann wenn, Kern f N Bild f = {0}. O

Lemma 11.10 Sei f : V — V ein Endomorphismus und setze U = Kern f™ und
W = Bild f*. Dann gult:

(1) Die Untervektorraume U und W sind f-invariant.
2)V=UasW.

(3) Die Einschrinkung fiuv von f auf U ist nilpotent.

(4) Die Einschrinkung fiw von [ auf W ist ein Automorphismus.
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Beweis (1) Dies folgt unmittelbar aus Lemma 11.5 (3), da fo f = fo f.

(2) Nach Lemma 11.8 gilt Bild f* = Bild f™ fiir alle & > n und insbesondere
ist Bild (f*)? = Bild f?" = Bild f". Daraus ergibt sich nach Lemma 11.9, dass
V = Kern f" 4+ Bild f* und Kern f* N Bild f* = {0}, d.h., V=U® W.

(3) Fiir jedes u € U = Kern f" ist fl(u) = f"(u) = 0. Daher ist fj; = 0 und
insbesondere ist fi; nilpotent.

(4) Sei w € W = Bild f™; da Bild f**! = Bild f" gibt es dann v € V, so dass
w = " (v). Aber w = f(f"(v)) und f*(v) € Bild f* = W. Dies zeigt dass,
f(W) =W und damit ist der Endomorphismus fjw : W — W surjektiv. Nach

Satz 5.3 ist also fly ein Automorphismus, da nach Satz 4.4 W endlichdimensional
ist. O

Lemma 11.11 Sei f : V. — V ewmn Endomorphismus von V, der mindestens
einen FEigenwert besitzt, und seien Ay, ..., N, die verschiedenen Eigenwerte.
Dann gibt es f-invariante Untervektorrdume U, W von V mit V.= U & W,
so dass gilt:

(1) Der Endomorphismus fji — Midy von U ist nilpotent.

(2) Ag, ..., Ay sind die verschiedenen Eigenwerte von fiw .

Beweis Sei g = f—M\idy und setze U = Kern g", W = Bild ¢". Nach Lemma 11.5
sind die Untervektorrdume U und W f-invariant, da

gof=(f=XNidv)of=f=Nf=[fo(f—Nidy)=fog.

Nach Lemma 11.10 (angewendet auf g) ist V = U & W, die Untervektorraume U
und W sind g-invariant, die Einschrdnkung g, von g auf U ist nilpotent und die
Einschrédnkung gy von g auf W ist ein Automorphismus.

Nun ist fjy — A1idy = gjy und damit ist fjy — Aidy nilpotent.

Ferner ist fir — Aidw = gjw, somit ist fijr — Ajidy ein Automorphismus und
insbesondere ist A; kein Eigenwert von fiw. Da fiy = Midy + (fjy — Miidy)
und fjy — Aidy nilpotent ist, ist nach Lemma 11.4 (2) A; der einzige Eigenwert
von fy und daraus ergibt sich nach Lemma 11.7, dass Ag, ..., A, Eigenwerte
von fi sind. Damit sind nach Lemma 11.6 Ay, ..., A, genau die verschiedenen
Eigenwerte von fiy,. O

Satz 11.3 Sei f: V — V ein Endomorphismus von V und seien Ay, ..., A, die
verschiedenen Figenwerte von f. Dann gibt es f-invariante Untervektorrdiume
Uy, ...,Uyp und U, von V mit V=U, @ -- DU, ® U, so dass gilt:

(1) Der Endomorphismus fiu, — \iidy, von Uy ist nilpotent fiir jedes k.

(2) Der Endomorphismus fiy, von U, besitzt keinen Figenwert.
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Beweis Fiir m > 0 sei A, die folgende Aussage: Ist V'’ ein endlichdimensionaler

Vektorraum und ist ¢ : V' — V' ein Endomorphismus von V' mit genau m

verschiedenen Eigenwerten i1, ..., iy, so gibt es g-invariante Untervektorrdume
LU, und U von Vimit Vi=U; @ --- @ U), @ Uy, so dass gilt:

(1) Der Endomorphismus gy, — pidy; von Uy ist nilpotent fiir jedes k.
(2) Der Endomorphismus g, von U] besitzt keinen Eigenwert.
Es geniigt also zu zeigen, dass A,, richtig ist fiir jedes m > 0.

Die Aussage Ag ist trivial richtig (mit U, = V’). Sei m > 1 und nehme an,
dass die Aussage A,,_; richtig ist. Sei V' ein endlichdimensionaler Vektorraum
und g : V' — V'’ ein Endomorphismus mit genau m verschiedenen Eigenwerten
[1y - -+ Mm- Nach Lemma 11.11 gibt es dann g-invariante Untervektorraume Uj
und W’ von V' mit V! = U] & W' so dass gilt:

(1) Der Endomorphismus gy — pidy; von U’ ist nilpotent.
(2) 2, ..., fn sind die verschiedenen Eigenwerte von gy

Da A,,_; richtig ist, gibt es g|y-invariante Untervektorrdume Us, ..., U} und U]
von W' mit W =U,®--- @ U & U, so dass gilt:

(1) Der Endomorphismus gy, — pidy; von Uy ist nilpotent fiir k =2, ..., m.
(2) Der Endomorphismus g, von U] besitzt keinen Eigenwert.

Man beachte: g, ist die Einschriankung von gy auf U, fiir jedes k und gy ist
9u; g g k J qu;
die Einschréankung von gy~ auf U;.) Nach Satz 9.2 ist aber

Vi=UeW =UeUy&--aU, eU)=UaoU,d--aU, &U,
und dies zeigt, dass die Aussage A,, richtig ist. Durch Induktion nach m ist also

A,, richtig fiir jedes m > 0. O

Lemma 11.12 Jeder nilpotente Endomorphismus von V' ist trigonalisierbar.

Beweis Sei h: V — V nilpotent und setze m = min{k > 1 : h* = 0}. Fiir jedes
k=0, ..., msei Uy = Kern h*; nach Lemma 11.2 (3) und (4) ist dann

{0y =UycU,C---CU,=V,

und Uy # Upyq fiir jedes k =0,...,m—1. Fir k =1, ..., m sei p, = dim Uy;
nach wiederholter Anwendung des Basiserginzungssatzes kann man eine Basis

(u1,...,u,) von V konstruieren, so dass (ui,...,u,,) eine Basis von Uy ist fir
jedesk=1,...,m. Firj=1,...,nsei nun V; = L(wy,...,u;); mit V; = {0}
ist dann Vg, ..., V,, eine Fahne, und da h(Uy) C Uy_; fir k=1, ..., m, ist diese

Fahne h-invariant. O
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Satz 11.4 Seien g, h : V. — V' Endomorphismen von V mit g diagonalisierbar,
h nilpotent und go h = h o g. Dann ist f = g+ h trigonalisierbar.

Beweis Nach Satz 10.5 gilt V. = U; @ -+ @ U, wobei U, = E(g, \x) und
A1, - .., Ay die verschiedenen Eigenwerte von g sind. Fiir £ = 1, ..., m ist nach
Lemma 11.5 (4) Uy h-invariant und es ist klar, dass hjy, nilpotent ist. Damit ist
nach Lemma 11.12 Ay, trigonalisierbar und folglich gibt es nach Satz 11.1 und
Satz 8.9 eine Basis 3, = (uf,... ,u’fbk) von Uy, so dass die Matrix A von Ay,

beziiglich (3 eine obere Dreiecksmatrix ist. Nun ist auch Uy f-invariant und die
Matrix von f|y, beziiglich 3 ist die obere Dreiecksmatrix A\, E,, + Aj. Sei jetzt

ﬁ:(ui,...,u}w...,uT,...,unmm);

nach Satz 9.7 ist 3 eine Basis von V' und die Matrix von f beziiglich (3 ist eine
obere Dreiecksmatrix. Damit ist nach Satz 11.1 f trigonalisierbar. O

Seien Uy, ..., U,,, U Untervektorrdume von V mit U = U; @ --- & U,, und fiir
jedes k=1, ..., msei fi : Uy — Ui ein Endomorphismus von Uy. Dann gibt es
nach Satz 9.4 den Endomorphismus f = fi&---& f,, von U: f ist der eindeutige
Endomorphismus mit f(u) = fx(u) fir alle uw € Uy, k =1, ..., m. Insbesondere
ist dann Uy, f-invariant und fp = fjy, fiir jedes k = 1, ..., m. Ist umgekehrt
f U — U ein Endomorphismus von U mit U, f-invariant fiir jedes k, so ist nach
Lemma 9.1 f = fiy, ® -+ ® flu,,.-

Gilt f = fi® -+ ® f, so ist nach Satz 9.5 auch f*¥ = fF @ --.- @ f* fiir jedes
kE>1.

Lemma 11.13 Sei f : V. — V ein Endomorphismus und seien Ai, ..., Ay,
die verschiedenen Eigenwerte. Nehme an, es gibt f-invariante Untervektorrdume
Uy, ...,UpvonVmitV=U & - ®Upy, sodass fly, — \eidy, nilpotent ist fiir
jedes k. Dann gilt Uy, = Kern (f — M\idy )™ fiir jedes k=1, ..., m.

Beweis Fiir jedes k sei f;, die Einschrénkung von f auf U, und hy, = fi — A\pidy,;
also gilt fi = A\gidy, + hi und Ay ist nilpotent. Nun ist

f—=Xeddy = (f1 — MNeddy,) @ -+ - & (frn — Aiddy,,)
= (M = A)idy, +h1) @ -+ @ (A — Mp)idy,, + i)

und folglich gilt nach Satz 9.5 und Lemma 9.2, dass

Kern (f — Agidy )"
= Kern (A — \p)idy, + h)" @ -+ @ (A — Ap)idy, + hn)"”
= Kern (A, — A\p)idy, + h1)" @ - - - @ Kern (A, — Ap)idy,, + hin)"
— (0} @ {0} e Kenhl & {0} & --- @ {0}
= Kernhy = Uy, ,
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da fiir jedes j # k der Endomorphismus (A; — Ap)idy; + h; und damit auch
((Aj = A)idy; + h;)" ein Automorphismus ist. O

Beweis fiir Satz 11.2: Man erinnert sich, dass (2) < (3) trivial richtig ist und
auch, dass (1) = (3) unmittelbar aus Lemma 11.1 folgt. Ferner ist (5) = (4)
trivial richtig.

(3) = (6): Dies folgt unmittelbar aus Satz 11.3.
(6) = (7): Dies folgt unmittelbar aus Lemma 11.13.

(7) = (4): Seien Ay, ..., A, die verschiedenen Eigenwerte von f. Es gibt dann
f-invariante Untervektorrdume Uy, ..., U, mit V = U; & --- @ U, so dass fiir
jedes k der Endomorphismus f, — Axidy, von Uy nilpotent ist.

Setze g = g1 ® -+ D g und h = hy @ --- D hyy,, wobei hy = fly, — A\pidy, und
gr = M\iidy,. Dann gilt fiy, = gr + Iy, und

gi © hk = )\kldUk o (f\Uk — )\kldUk) == )‘kf\Uk - )\zldUlC
= (flv, — Meide,) © Akidy, = hy o g
fiir jedes k, und daraus ergibt sich nach Satz 9.5, dass f = g+h und goh = hog.

Ferner ist h nilpotent: Da hy nilpotent ist und dim U, < n, ist nach Lemma 11.7
hy = 0 fiir jedes k. Damit ist

R (uyp + -+ um) = (b1 @ -+ @ hy)" (U1 + - - - + Upp,)
=M@ - ®hp)(ur + -+ Up) = b (w) + -+ by (up,) =0
fir alle up € U, £k = 1, ..., m, und folglich ist A" = 0. SchlieBlich ist auch g

diagonalisierbar: Dies folgt aus Satz 9.7 und Lemma 11.5, da jede Basis von Uy
aus Eigenvektoren von g, = A\zidy, besteht.

(4) = (1): Dies ist Satz 11.4.
(4) = (5): Es gibt Endomorphismen ¢, h : V' — V mit g diagonalisierbar, h

nilpotent und goh = hog, so dass f = g+ h. Seien Ay, ..., A, die verschiedenen
Eigenwerte von ¢g und fiir £ =1, ..., m sei Uy = E(g, \x). Nach Satz 10.5 ist V
die direkte Summe der Untervektorrdume Uy, ..., U,,, d.h.,, V =U; & --- D U,,.

Da goh = ho g, ist nach Lemma 11.5 (4) Uy h-invariant und damit ist Uj, auch
f-invariant (da Uy g-invariant ist und f = g + h). Fiir jedes k sei fi (bzw. g
bzw. hy) die Einschrankung von f (bzw. g bzw. h) auf Uy. Also gilt fr = gx + hg
firjedes k, f=f1® - B fm, 9= D D gp und h = hy & --- D h,,. Ferner
ist g = )\kldUk

Nun ist by = fr — Aridy, nilpotent; damit ist nach Lemma 11.4 (2) Ay der einzige
Eigenwert von f; = A\gidy, + hi und insbesondere ist nach Lemma 11.6 A; ein
Eigenwert von f. Sei A ¢ {\1,..., A }; nach Lemma 11.4 (2) ist 0 kein Eigenwert



11 TRIGONALISIERBARKEIT 92

von fi—Aidy, , also ist fi —Aidy, ein Automorphismus von Uy, und folglich ist nach
Satz 9.6 f —ANidy = (f1 —Aidy, ) @ - - & (fi — Aidy,, ) ein Automorphismus von V/,
d.h., X ist kein Eigenwert von f. Daraus ergibt sich, dass Ay, ..., A, genau die
Eigenwerte von f sind und nach Lemma 11.13 ist dann Uy = Kern (f — Agidy )™
fiir jedes k=1, ..., m.

Dies zeigt, dass g = M\idy, @ - - - @ Apidy,, und h = f — g, wobei Ay, ..., A, die
Eigenwerte von f sind und Uy = Kern (f — A\xidy)”. Insbesondere sind g und h
eindeutig durch f bestimmt. O

Satz 11.5 Sei K = C; dann besitzt jeder Endomorphismus f : V. — V einen
Eigenwert.

Beweis Nach Satz 8.7 hat der Vektorraum End(V') aller Endomorphismen von V'
die Dimension n2 und folglich sind die Elemente f°, f1, ..., f** linear abhingig.
Da f° =idy # 0, gibt es dann p mit 1 < p < n?, so dass f9, f1, ..., fP~! linear
unabhéngig sind aber fP € L(f°, f1,..., f77!) und also gibt es ¢g, ..., ¢, 1 € C
mit fP = cof°+ -+ ¢,_1fP'. Nach dem Fundamentalsatz der Algebra (siehe
Satz 16.4) gibt es nun Ao, ..., A\,_1 € C, so dass

Py 2P =iz =g = (2= X)) X o X (2= A1)
fir alle z € C und daraus folgt (warum?), dass
(f — Aoldv) O:---0 (f — )\p—lidV) = fp - Cp_lfp_l — = le - Coidv =0.

Aber (f — Midy) o -+ o (f — N\p_qidy) # 0, sonst wiren fO, f1, ..., fP~! linear
abhéngig und folglich gibt es ein v € V', so dass

u = (f—)\ﬂdv)O---O(f—Ap_lidv) (’U) 7é 0.

Dann ist u # 0 und (f — A\pidy)(u) = 0, d.h., )¢ ist ein Eigenwert von f. O

Satz 11.6 Sei K = C; dann ist jeder Endomorphismus f von V trigonalisierbar.

Beweis Sei U ein f-invarianter Untervektorraum von V' mit dimU > 1. Nach
Satz 11.5 (angewendet auf fjy) besitzt fjy einen Eigenwert und daraus ergibt
sich nach Satz 11.2 (3) = (1), dass f trigonalisierbar ist. O

Nach Satz 11.1 und Satz 11.6 ist jede komplexe Matrix trigonalisierbar.
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Im Folgenden sei K ein Korper und sei V' ein endlichdimensionaler Vektorraum
iber K mit dimV =n > 1.

Sei f : V — V ein trigonalisierbarer Endomorphismus. Dieses Kapitel beschéftigt
sich mit der folgenden Frage: Wie kann man eine Basis von V wiéhlen, so dass die
Matrix von f beziiglich dieser Basis so einfach wie méglich ist? Nach dem Beweis
fiir Satz 11.1 gibt es eine Basis, so dass die Matrix eine obere Dreiecksmatrix ist.
Satz 12.5 verfeinert diese Aussage: Es gibt eine Basis, so dass die Matrix von f
folgende Block-Gestalt hat:

Ji
Ja

Js
wobei Jy, ..., Js Jordanmatrizen sind. Eine (elementare) Jordanmatriz ist eine

Matrix aus der Familie {Ji(\) : k£ > 1, A € K}, wobei Ji(\) das folgende Element
von M(k x k, K) ist:

Al
Al
Jk()\) — .
Al
A
Jr(N) heift Jordanmatrix zum Eigenwert A. (Warum?)
Sei f : V' — V trigonalisierbar und seien Ay, ..., A, die verschiedenen Eigenwerte
von f. Nach Satz 11.2 gibt es f-invariante Untervektorrdaume Uy, ..., U,, von V

mit V = U; @ --- @ Up, so dass fiir jedes k& der Endomorphismus f, — Axidy,
von Uy, nilpotent ist. Setze fr = fiy, und hy = flu, — A\iidy,; also sind f;, und hy,

Endomorphismen von Uy mit f = A\¢idy, + Ay und hy ist nilpotent. Fiir jedes k
sei (uf, ... ,u’;k) eine Basis von Uy, und sei By die Matrix von hy beziiglich dieser

Basis. Dann ist Ay, = A\,.E,, + By, die Matrix von f;, beziiglich (uf, ... ,u’;k). Sei

1 1 :
(U1, svn) = (Ug, Uy )
nach Satz 9.7 ist dann (vy,...,v,) eine Basis von V und die Matrix von f
beziiglich dieser Basis ist
A
Ay

93
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Die Ausgangsfrage fiir trigonalisierbare Endomorphismen reduziert sich daher im
Wesentlichen auf die analoge Frage fiir nilpotente Endomorphismen und zunéchst
werden also nilpotente Endomorphismen untersucht.

Sei f:V — V ein Endomorphismus von V' und fiir jedes v € V' setze

=L, f@),.... fi(v)).

k>1

Lemma 12.1 Fir jedesv € V ist Z(v, f) der kleinste f-invariante Untervektor-
raum von V', der v enthdlt.

Beweis Ubung. O

Lemma 12.2 Sei v € V \ {0} und nehme an, dass f¥(v) = 0 fir ein k >
setze m = min{k > 1 : f¥(v) = 0}. Dann ist Z(v, f) = L(v, f(v)
und (v, f(v),..., f* 1 (v)) ist eine Basis von Z(v, f).

Beweis Fiir jedes k > m ist L(v, f(v),..., ff¥()) = L(v, f(v),..., f"1(v)), da
fj(v):()fiirj—m ...y k, und L(v, ( ), o fEw)) € L(v, f(v),..., fmv))
fir k =1,...,m— 1. Darmt ist Z( f) = L(v, f(v),..., f™*(v)). Es bleibt
also zu zeigen, dass die Vektoren v, f ( )y oy fH(0) hnear unabhéngig sind.
Seien g, ..., Ap_1 € K mit \gv + A\ f(v) + -+ + A1 /™1 (v) = 0 und nehme

an, dass \; # 0 fiir ein j; setze k& = min{0 S j<m—1:)\; # 0}. Dann ist
MefF() 4+ -+ A1 f™ L (v) = 0 und daraus ergibt sich, dass

0= f""F S W)+ A ()
= NS ER@) A+ X TR ()
= oS 0) A+ X f7(0) A+ A TR 0) = M f T (v)
da f/(v) = 0 fiir alle j > m. Aber dies ist nicht méglich, da f™ !(v) # 0 und
)

A # 0, und folglich muss A\; = 0 fiir jedes j sein, d.h., v, f(v), ..., f™ !(v) sind
linear unabhéngig. O

Sei v € V '\ {0} und m wie im Lemma 12.2 und sei g die Einschrankung von f
auf Z(v, f); dann ist natiirlich (f™1(v),..., f(v),v) auch eine Basis von Z (v, f)
und die Matrix von g beziiglich dieser Basis ist

01
01
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da g(fm™t(v)) = f*(v) = 0 und g(f*(w)) = f**(v) fir k = 0,..., m — 2.
Diese Matrix ist eine Jordanmatrix zum Eigenwert 0 und wird auch nilpotente
Jordanmatriz genannt.

Fiir einen nilpotenten Endomorphismus f : V — V setze
nil(f) = min{k > 1: f* = 0}

und fiir jedes v € V '\ {0} setze nil(v, f) = min{k > 1: f*(v) = 0}. Also ist stets
nil(v, f) < nil(f) und es gibt mindestens ein v € V' \ {0} mit nil(v, f) = nil(f).

Lemma 12.3 Sei f ein nilpotenter Endomorphismus von V und seiv € V'\ {0}
mit nil(v, f) = nil(f). Dann gibt es einen f-invarianten Untervektorraum W von
V, so dass V = Z(v, f) ®W. (Es gilt also f(W) C W,V = Z(v, )+ W und
Z(v, f)nW ={0}.)

Beweis Zunéchst eine Feststellung: Sind W, W; Untervektorrdume eines endlich-
dimensionlen Vektorraumes mit W; C W, so gibt es einen Untervektorraum W5,
so dass W = W; @ Wy. (Im Allgemeinen ist aber W5 nicht eindeutig.)

Fiir jedes p > 1 sei A, die Aussage: Fiir jeden endlichdimensionalen Vektorraum
U # {0} tiber K, fiir jeden nilpotenten Endomorphismus ~ von U mit nil(h) = p
und fiir jedes u € U \ {0} mit nil(u, h) = nil(h) gibt es einen Untervektorraum
W von U mit h(W) C W, so dass U = Z(u,h) & W. Es wird durch Induktion

nach p gezeigt, dass A, richtig ist fiir alle p > 1.

Die Aussage A; ist richtig: Ist nil(h) = 1, so ist h = 0. In diesem Fall gilt
h(W) C W fir jeden Untervektorraum W von U und fiir jedes u € U \ {0} gibt
es einen Untervektorraum W von U mit V = Z(u,h) & W.

Sei nun p > 2 und nehme an, dass die Aussage A,_; richtig ist. Sei U # {0} ein
endlichdimensionaler Vektorraum iiber K, sei h ein nilpotenter Endomorphismus
von U mit nil(h) = p und sei v € U \ {0} mit nil(u, h) = nil(h).

Setze U; = Bild h; nach Lemma 11.3 gilt h(U;) C Ui, und sei also hy = hyy,
die Einschrankung von h auf U;. Dann ist der Endomorphismus h; : Uy — U;
nilpotent mit nil(h;) = p — 1. (Fiir jedes k > 1 ist

RO = R () = WM (MU)) = RH(U)

und insbesondere gilt h?~(U;) = h?(U) = {0} und kY *(Uy) = h»~Y(U) # {0},
d.h., es gilt 27" = 0 aber h¥™* # 0.) Setze u; = h(u); dann ist u; € U; mit
nil(up, hy) = p — 1 = nil(hy), da B2 *(u;) = BP~'(u) # 0. Da die Aussage A,_;
richtig ist, gibt es einen Untervektorraum W; von U; mit hy(W;) C Wy, so dass
Uy = Z(uq, hy) @ Wi.
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Jetzt werden Z(uq, hy) und Wi als Untervektorrdume von U angesehen und da
hi = hjy,, gilt dann Z(uq, hy) = Z(uq, h) und h(W;) C Wi. Dies bedeutet, dass
Wy ein Untervektorraum von U ist mit A(W;) C Wy und Uy = Z(uy, h) @ Wi.
Man beachte, dass (nach Lemma 5.8 und da h?(u) = 0)

Z(u1,h) = L(ug, h(w), ..., BP"*(u1)) = L(h(u), h(h(u)), ..., B"~*(h(u)))

(w1, h(ug 1
- L(h(u),h2(u),...,hp L(w)) = L(h(u), B3(w), ..., "~ (u), 0)
= L(h(u), h2(u), ..., "~ (u), b (1)) = L(h(u), h(h()), . .., h(F~}(x)))
= h(L(u, h(u), ...,

)
W (w)) = h(Z(u, b)) -
}-

Es gilt nun auch Z(u,h) N Wy = {0}. (Beweis: Sei v € Z(u,h) N Wi; dann ist
h(v) € h(Z(u,h)) = Z(uy, h) und h(v) € h(Wy) C Wi. Damit ist h(v) = 0, weil
Z(uy,h) N Wy = {0}. Da ferner v € Z(u,h) = L(u, h(u),..., "7 (u)), gibt es
Aoy -5 Ap1 € K, so dass v = Au + -+ -+ A\, AP (u) und damit ist

0=nh(v) =h(Aou+---+ )\p_lhp_l(u))
= Xoh(u) + -+ A\ 1hP(u) = Xoh(u) + -+ - + N\p_o2h? 7 (u) |

da h?(u) = 0. Nach Lemma 12.2 sind aber h(u), ..., h?7!(u) linear unabhéngig
und daraus ergibt sich, dass \; =0 fiir j =0, ..., p— 2, d.h., v = A\,_1hP " (u).
Insbesondere ist v € Z(uy, h) = L(h(u), ..., kP71 (u)). Also ist v € Z(uy, h) N W,
und Z(uy, h) "Wy = {0}, d.h., v =10.)

Setze W' = {v € U : h(v) € Wi}; dann ist W’ ein Untervektorraum von U. (Der
Beweis dafiir ist eine Ubung.) Da h(W;) C Wy, ist Wy € W".

Ferner gilt U = Z(u,h) + W'. (Beweis: Sei v € U; dann ist h(v) € U; und da
Uy = Z(uy, h) + Wi, gibt es v; € Z(uy, h) und wy € Wy, so dass h(v) = vy + wy.
Aber Z(uj,h) = h(Z(u,h)) und damit gibt es vy € Z(u,h) mit h(vy) = v;.
Folglich ist wy = h(v) — h(ve) = h(v — vy) und also ist v — vy € W’'. Daher ist
v="vy+ (v—19) € Z(u,h) +W")

Setze Wy = Z(u, h) N W’; dann gilt Wy C W', Wy C W’ und Wy, N W, = {0} (da
WinWy C WynZ(u,h) ={0}), d.h.,, Wy + Wy =W, & Wy. Da W, @ Wy C W/,
gibt es nun einen Untervektorraum W3 von W’ so dass W' = Wy @ W, & Wi,

Setze W =Wy @ Ws; da W C W' ist f(W) C f(W') € Wi, C W und auch
Z(u,h) "W = Z(u, h) NW'NW =WoNW =Wo N (W; + W3) = {0} .

Schliefllich gilt U = Z(u,h) + W. (Beweis: Sei v € U; da U = Z(u,h) + W',
gibt es v' € Z(u,h) und w’ € W' mit v =v' + w’, und da W' = Wy @ Wy @ Wi,
gibt es dann w; € W; fir i = 1, 2, 3, so dass w’ = w; + ws + w3. Folglich ist
v = (v 4+ wy) + (wy +ws) und v/ + wy € Z(u,h) und wy + ws € W.)

Dies zeigt, dass die Aussage A, richtig ist, und daraus folgt durch Induktion nach
p, dass A, richtig ist fiir alle p > 1. O
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Satz 12.1 Sei f ein nilpotenter Endomorphismus von V. Dann gibt es Vektoren
U1y o vy Uy € V\ {0} mit nil(f) = nil(vy, f) > -+ > nil(vy,, f), so dass

V:Z(Ul,f)@@Z(’Um,f)

Beweis Fiir jedes n > 1 sei A, die Aussage: Fiir jeden Vektorraum U iiber K mit
dim U < n und fiir jeden nilpotenten Endomorphismus A von U gibt es Vektoren
U, ..., up € U\ {0} mit nil(h) = nil(uy, h) > - -+ > nil(u,, h), so dass

U=2Z(uy,h)®- @& Z(up h) .

Es wird durch Induktion nach n gezeigt, dass A,, richtig ist fiir alle n > 1.

Die Aussage A; ist richtig: Ist dimU = 1, so ist h = 0 der einzige nilpotente
Endomorphimus von U und es gilt U = L(u) = Z(u, 0) fiir jedes uw € U \ {0}.

Sei nun n > 2 und nehme an, dass A,_; richtig ist. Sei U ein Vektorraum iiber
K mit dimU = n und sei h ein nilpotenter Endomorphismus von U. Wéhle
einen Vektor u; € U \ {0} mit nil(u;, h) = nil(h). Nach Lemma 12.4 gibt es also
einen h-invarianten Untervektorraum W von U, so dass U = Z(uy,h) & W. Da
dim Z(uy, h) > 1, ist dimW < n — 1. Sei g = hyw die Einschrénkung von h auf
W; dann ist g : W — W ein nilpotenter Endomorphismus und nil(g) < nil(h),
weil gF = 0, falls h* = 0. Da A,_; gilt, gibt es Vektoren uy, ..., u, € W\ {0}
mit nil(g) = nil(ug, g) > -+ > nil(u,, g), so dass

W =Z(uz,g) ® - © Z(up, g) .

Aber nil(ug, g) = nil(ug, h) und Z(ug, g) = Z(ug, h) fiir k =2, ..., p und daraus
folgt, dass nil(h) = nil(uy, h) > nil(ug, h) > --- > nil(u,, h) und

U = Z(Ul,h) @W: Z(ul,h)@Z(UQ,h)@ @Z(Up,h) .

Dies zeigt, dass die Aussage A,, richtig ist, und daraus folgt durch Induktion nach
n, dass A, richtig ist fiir allen > 1. O

Fiir jedes k > 1 sei N}, folgendes Element von M(k x k, K):
01
01
01
0

also ist N die einzige k£ X k nilpotente Jordanmatrix, und man beachte, dass
N; =0 (als Element von M(1 x 1, K)).
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Eine Partition von n ist eine Folge [s1,...,8,] mit m > 1, s > -+ > s, > 1
und $1 + - - - + 8, = n. (Die Anzahl von Partitionen von n ist natiirlich endlich.)
Fiir jede Partition m = [s1,..., S;,] von n wird ein Element N, € M(n X n, K)
definiert durch

Fiir jede Partition m = [s1,..., ;] von n und jedes k > 1 sei #(w) die Anzahl
der Elemente in der Menge {1 < j <m:s; =k}.

Lemma 12.4 Seien m und 7' Partitionen von n; dann gilt # = 7' genau, wenn

#Hi(m) = #x(7") fir alle k > 1.

Beweis Ubung. O

Lemma 12.5 Flir jede Partition ™ von n und jedes k > 1 gilt

4. (1) = rang N*~' — 2rang N¥ 4 rang NF1

Beweis Sei m = [s1,...,8p]; fiir jedes ¢ > 0 ist dann
N
N4
NI = -
N

und daraus ergibt sich, dass

m

rang NI = Zrang N = Z #.(m) rang N} .
k=1

j=1

Sei 1 < ¢ < k; dann sind die Eintrége in der Matrix N}! alle 0 aufler denen auf
der oberen Nebendiagonalen der Liange k — ¢ und da sind sie alle 1. Folglich ist
rang N} = k — ¢. Damit ist rang N = max{k — ¢,0} fiir alle £ > 1, ¢ > 0, da
NI =0, falls ¢ > k und N} = Ej. Also gilt

n

rang N¢ = > max{k — q, 0}#(r) = Y (k — q)#x(7)
k=1

k=q+1
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fiir alle ¢ > 0. Mit anderen Worten:

rang N? =0 fiiralleqg>n,

rang N = #,.(n) ,

rang Ny~ = #,1(m) + 2#4(7) |

rang N3 = #,_o(7) + 24, _1(7) + 3#.(7) ,

rang N} = #a(m) + 243(m) + 34a(m) + -+ (n — Dfa(r) |
rang Ny = #1(7) + 2#2(7) + 3#3(7) + - +nfta(m) (=n),

und daraus sieht man leicht, dass fiir jedes k > 1

#i(m) = rang N*~' — 2rang N¥ + rang N**!' . O

Lemma 12.6 Seien m und n' Partitionen von n; dann sind die Matrizen N, und
N, dhnlich genau, wenn © = 7.

Beweis Sind Matrizen A und B dhnlich, so sind auch A* und B* #hnlich fiir
jedes k > 0 und damit ist rang A¥ = rang B* fiir jedes & > 0. Sind also N, und
N, ahnlich, so folgt aus Lemma 12.5, dass #(7) = #(n’) fiir alle & > 0 und
daher ist nach Lemma 12.4 7 = 7/. Die Umkehrung ist trivial richtig. O

Satz 12.2 Sei f : V — V ein nilpotenter Endomorphismus. Dann gibt es eine
eindeutige Partition m von n und eine Basis (uy,...,u,) von V, so dass N, die
Matriz von f beziiglich (uy, ..., u,) ist. Ferner gilt

4. (1) = rang f*~! — 2rang f* + rang fF*!

fiir jedes k > 1.

Beweis Nach Satz 12.1 gibt es Vektoren vy, ..., v, € V' \ {0}, so dass
V:Z<U17f>@@Z<UWL7f)

und mit nil(f) = nil(vy, f) > -+ > nil(vy,, f). Sei s, = nil(vg); nach Lemma 12.2
ist (f*Y(vg),..., f(vr),vr) eine Basis von Z(uy, f) fiir jedes k und daraus folgt
nach Satz 9.7, dass

(U1, ... un) = (F 7 1), .o, f),vn, s 5 N ), s [ (V) Um)

eine Basis von V ist. Aber per Definition ist N, die Matrix von f beziiglich dieser
Basis, wobei m = [s1, ..., Sm]-
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Fiir jedes k& > 0 ist nun N¥ die Matrix von f* beiiglich (u1,...,u,) und damit
ist nach Satz 8.3 rang f* = rang N¥. Also ist nach Lemma 12.5

#.(m) = rang N*' — 2rang N¥ + rang N**! = rang f*~! — 2rang f* + rang f*™!

fiir jedes & > 1 und insbesondere ist (nach Lemma 12.4) 7 eindeutig durch f
bestimmt. O

Satz 12.3 Sei A € M(n x n, K) nilpotent; dann gibt es eine eindeutige Partition
m von n, so dass A und N, dhnlich sind. Ferner gilt

#1(m) = rang A*~' — 2rang A" + rang A**

fiir jedes k > 1.

Beweis Der Endomorphismus ¢4 : K™ — K" ist nilpotent und folglich gibt es
nach Satz 12.2 eine Basis (uy, ..., u,) von K" und eine Partition 7 von n, so dass
N, die Matrix von @4 beziiglich (uq, ..., u,) ist. Aber A ist die Matrix von @4
beziiglich der kanonischen Basis von K™ und daraus ergibt sich nach Satz 8.8,
dass A und N, #hnlich sind. Fiir jedes k¥ > 0 sind dann A* und N* auch #hnlich
und damit gilt rang A*¥ = rang N¥. Nach Lemma 12.5 ist also

#1(7) = rang N*~! — 2rang N* +rang N*™' = rang A*~! — 2rang A" + rang A"

fiir jedes k > 1 und insbesondere ist 7 eindeutig durch A bestimmt. O

Satz 12.4 Nilpotente Matrizen A, B € M(n x n, K) sind dhnlich genau dann,
wenn rang A¥ = rang B* fiir jedes k=1, ..., n — 1.

Beweis Sind A und B &hnlich, so sind A* und B* #hnlich fiir jedes & > 0 und
damit ist rang A* = rang B* fiir alle k. Sei umgekehrt rang A*¥ = rang B* fiir jedes
k=1,...,n—1; dann gilt rang A* = rang B* fiir all £ > 0, da A* = 0 = B* fiir
jedes k > n und A° = E,, = BY. Nach Satz 12.3 gibt es Partitionen 7 und 7’ von
n, so dass A dhnlich zu N, und B dhnlich zu N, ist und ferner gilt

#4(7) = rang A*' — 2rang A* + rang A**
= rang B*! — 2rang B" + rang B*! = #,. (')

fiir alle £ > 1. Nach Lemma 12.4 ist also n’ = 7. Folglich sind A und B beide
dhnlich zu N, und damit sind A und B ahnlich. O

Im folgenden Satz sei f : V' — V ein trigonalisierbarer Endomorphismus und
seien A1, ..., A, die verschiedenen Eigenwerte von f; fiir £k = 1, ..., m setze
pr = dim Kern (f — Agidy)".
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Satz 12.5 Fiir jedes k = 1, ..., m gibt es eine Partition m; von pr und eine
Basis (uq,...,u,) von 'V, so dass

Ji
P
I

die Matriz von f beziglich (uy,...,u,) ist, wobei J, = AE,, + Ny, . Ferner
st die Matriz J eindeutig durch f bestimmt: Seien q, > 1, k=1, ..., m, mit
¢+ -+ ¢ = n und fir jedes k sei J;, = \yE,, + N, wobei 7y, eine Partition
von qy ist. Ist

Ji

J = &

. p
die Matriz von f beziiglich irgendeiner Basis von V', so ist q, = py fir jedes k
und fir alle j > 1, k=1, ..., m gilt

#i(m;) = rang (f — )\kidv)j_1 — 2rang (f — )\kidv)j + rang (f — )\kidv)jJrl )

Beweis Fir k = 1, ..., m setze U, = Kern (f — \¢idy)™. Nach Satz 11.2 sind
Uy, ..., U, f-invariante Untervektorrdume von V mit V =U;®- - -® U, und fiir
jedes k ist der Endomorphismus fy, — Aridy, von Uy nilpotent. Setze fi = fu,
und hy = fiy, — Mddy,; also sind fr und h;, Endomorphismen von U, mit hy,
nilpotent und fi = Axidy, + hy. Fiir jedes k gibt es nach Satz 12.2 eine eindeutige
Partition 7, von p und eine Basis (uf, ... ,u’;k) von Uy, so dass N, die Matrix
von hy, beziiglich dieser Basis ist. Dann ist J, = A\ E,, + N, die Matrix von f;

beziiglich (uf, ... u} ). Sei

o 1 1 m m
(Ur, ooy un) = (U, e Uy Uy )
nach Satz 9.7 ist (uq,...,u,) eine Basis von V und J ist die Matrix von f

beziiglich dieser Basis.

Nehme jetzt an, dass J' die Matrix von f beziiglich einer Basis (vy,...,v,) ist.
Da ¢, + -+ -+ ¢ = n, kann man

(U1, ..., 0,) = (U%,...,U;I,...,U{”,...,v;fn)
schreiben. Fiir jedes k setze Wy, = L(vf, . . ., v(’;k); dann sind die Untervektorrdume
Wi, ..., Wy, f-invariant und V. =W; @ --- ® W,,. Nun ist N,, die Matrix von

Jiw, — Akidw, beziiglich der Basis (vf, el v(’;k) von W}, und daraus ergibt sich, dass
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Jiw, — Akidw, nilpotent ist. Nach Satz 11.2 ist also Wj, = U, und insbesondere
ist qr = py fiir jedes k. Ferner ist nach Satz 12.2

#(m,) = rang hi_l — 2rang hi + rang h{jl
fiir alle 7 > 1, wobei hy = fiy, — Apidy,. Aber fiir jedes £ > 0 ist
(f = Mudy)’ = (fr = Meddy)* @ - @ (fon — Niidlp,)f
und (f; — Aidy;,)¢ ist ein Automorphismus von U;, wenn i # k. Folglich ist
rang (f — \eidy)" = rang (fi — Midy, )" + -+ - + rang (fr — Middy, )

= p1+ oy Frang by + P+ P
= n — pg + rang hy,

und daher ist
#i(m;) = rang (f — )\kidv)jfl — 2rang (f — )\kidv)j + rang (f — )\kidv)jJr1
firalle j > 1, k=1,...,m. O

Im folgenden Satz sei A € M(n x n, K) trigonalisierbar und seien Ay, ..., A,
die verschiedenen Eigenwerte von A; setze pp = n — rang (A — A\ E,)™ fiir jedes

k=1,...,m.
Satz 12.6 (1) Es gilt pr, > 1 fir jedes k und py + - -+ + pm = n.

(2) Fiir jedes k gibt es eine Partition my von py, so dass A dhnlich zu der Matrix

J1
- "
. N
ist, wobet J, = M\ Ep, 4+ Ny, .

(8) Die Matriz J ist eindeutig durch A bestimmt: Seien q, > 1, k=1, ..., m,
mit g1+ - - +qm = n und fir jedes k sei J;, = \yEy, + Ny, , wobei 7, eine Partition
von q ist. Ist A dhnlich zu der Matrix

1
J =

so ist qx = px fiir jedes k und fir alle 7 > 1, k=1, ..., m gilt
#i(m,) = rang (A — \yE, )7 — 2rang (A — A\ E,)? + rang (A — A\ E,) 1.
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Beweis Dies ist ein Spezialfall von Satz 12.5: Der Endomorphismus ¢4 von K™
ist trigonalisierbar und Ay, ..., A\, sind die verschiedenen Eigenwerte von 4.
Fiir jedes k=1, ..., m ist

pr =mn —rang (A — \E,)" = n —rang (pa — Agidgn)" = Kern (o4 — Agidgn)"

und ferner ist A dhnlich zu einer Matrix B genau dann, wenn es eine Basis von

K™ gibt, so dass B die Matrix von ¢4 beziiglich dieser Basis ist. O

Satz 12.7 Seien A, B € M(n x n, K) trigonalisierbare Matrizen. Dann sind A

und B dhnlich genau, wenn sie die gleichen Eigenwerte Ay, ..., A, besitzen und
rang (A — A E,) = rang (B — \E,)?

fiir jedes 7 =1, ..., n—1 und jedes k =1, ..., m.

Beweis Sind A und B &hnlich, so besitzen sie die gleichen Eigenwerte Ay, ..., Ap,.
Ferner sind dann (A — M\ E,)? und (B — A\;E,)’ auch dhnlich und damit ist

rang (A — \ E,) = rang (B — \iE,)?

fiir alle j > 0 und jedes k =1, ..., m. Die Umkehrung folgt aus Satz 12.6. O
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Ein Tripel (G, -, e) bestehend aus einer Menge G, einer Verkniipfung

T GxG—-G
(a,b) — ab

und einem Element e € G heifit Gruppe, wenn folgendes gilt:
(G1) Assoziativitit: (ab)c = a(be) fiir alle a, b, ¢ € G.
(G2) Das Element e ist linksneutral: Fir alle a € G gilt ea = a.

(G3) Emistenz eines Linksinversen: Zu jedem a € G gibt es ein Element b € G,
so dass ba = e.

Lemma 13.1 Sei (G, -, e) eine Gruppe.
(1) Das Element e ist auch rechtsneutral: Fir alle a € G gilt ae = a.

(2) Ein Linksinverses ist auch ein Rechtsinverses: Es gilt ab = e, falls ba = e.

Beweis (2) Seien a, b € G mit ba = e. Nach (G3) gibt es also ein Element ¢ € G
mit ¢b = e und nach (G1) und (G2) gilt dann

e =cb = c(eb) = ¢((ba)b) = c(b(ab)) = (cb)(ab) = e(ab) = ab .

(1) Sei a € G; nach (G3) gibt es also ein Element b € G mit ba = e. Nach (G1),
(G2) und (2) gilt dann

ae = a(ba) = (ab)a =ea=a. O

Nach Lemma 13.1 kénnen (G2) und (G3) in der Definition einer Gruppe durch
(G2') und (G3') ersetzt werden, wobei

(G2') Das Element e ist neutral: Fir alle a € G gilt ea = ae = a.

(G3') Ezistenz eines Inversen: Zu jedem a € G gibt es ein Element b € G, so
dass ba = ab = e.

Lemma 13.2 Sei (G, -, e) eine Gruppe.

(1) Das Element e ist das einzige neutrale Element: Gilt €'a = ae’ = a fiir alle
a € G fir ein € € G, so ist e =e.

(2) Fiir jedes a € G ist das Inverse eindeutig: Gilt ba = ab = e und ca = ac = e,
so ist b= c.

104
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Beweis (1) Dies ist klar, da ¢/ = ee’ =e.

(2) Hier ist b = be = b(ac) = (ba)c =ec =c. O

Nach Lemma 13.2 (1) wird e das neutrale Element der Gruppe (G, -, €) genannt.
Fiir jedes a € G wird das Inverse von a meistens mit a~! bezeichnet; a=! ist
also das eindeutige Element mit ¢ 'a = aa™' = e. Es gilt (a71)™! = a fiir
jedes a € G, da aa™! = a7 ta = e, und (ab)™ = b~ la™! fiir alle a, b € G, da
(b'a™Nab =b""(a"a)b = b~'eb = b~'b = e und genauso gilt ab(b'a"') = e.
Sei (G, -, e) eine Gruppe; gilt ab = ba fiir alle a, b € G, so nennt man die Gruppe
abelsch. Fiir eine abelsche Gruppe schreibt man meistens (G, +,0) statt (G, -, e);
das neutrale Element wird also mit 0 bezeichnet und man schreibt a + b statt ab.
Ferner wird in diesem Fall das Inverse von a mit —a statt a~! bezeichnet.

Beispiele: (1) (Z,+,0) ist eine abelsche Gruppe.

(2) (R,+,0) ist eine abelsche Gruppe.

(3) Ist K ein Korper, so ist (K, +,0) eine abelsche Gruppe.

(4) Ist K ein Korper, so ist (K, -, 1) eine abelsche Gruppe, wobei K* = K\ {0}.
(5) Fur n > 1 ist (Z,,+,0) eine abelsche Gruppe, wobei Z,, = {0,1,...,n — 1}
und + : Z,, X Z,, — Z,, durch £ +m = (¢ + m) Rest n definiert ist.

(6) Ist V ein Vektorraum iiber einem Korper K, so ist (V,+,0) eine abelsche
Gruppe.

(7) Sei K ein Korper und sei GL(n, K') die Menge aller invertierbaren Elemente in
M(nxn, K) . Nach Lemma 6.3 ist dann (GL(n, K), -, E,,) eine Gruppe, die general
linear group, wobei hier - Matrizenmultiplikation bezeichnet. Diese Gruppe ist
nicht abelsch, wenn n > 1.

(8) Sei V ein Vektorraum iiber einem Kérper K und sei Aut(V') die Menge aller
Automorphismen von V. Nach Lemma 5.2 ist dann (Aut(V), o,idy ) eine Gruppe.
Diese Gruppe ist nicht abelsch, wenn dim V' > 1.

(9) Sei X eine Menge und sei Bij(X) die Menge aller Bijektionen f : X — X.
Dann ist (Bij(X),o,idx) eine Gruppe, die Gruppe der Permutationen von X
oder die symmetrische Gruppe von X. Enthélt X mehr als zwei Elemente, so ist
die symmetrische Gruppe von X nicht abelsch. Im Spezialfall X = {1,2,... n}
schreibt man S, statt Bij(X). Die Menge S,, enthélt n! Elemente.

(10) Sei G = {e,a,b,c} und sei - : G x G — G gegeben durch

eabc
eabc
aechb
bcea
cbae

0®§>®|-
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Dann ist (G, -, €) eine abelsche Gruppe; sie heifit die Kleinsche Vierergruppe.

Bemerkung: Ist (G, -, e) eine Gruppe mit G endlich, so kann man die Verkniipfung
-1 G x G — G oft am Besten in einer Gruppentafel (wie in (10)) iibersehen.

Ist (G,-,e) eine Gruppe, dann schreibt man meistens einfach G statt (G, -, e)
(und geht davon aus, dass es klar ist, welche Verkniipfung - und welches neutrale
Element e gemeint ist).

Sei GG eine Gruppe und seien aq, ..., a, € G mit n > 3; dann ist das ‘Produkt’
von ay, ..., a, unabhingig von der Reihenfolge der einzelnen Multiplikationen;
dieses ‘Produkt’ wird mit a; - - - a,, bezeichnet.

Sei GG eine Gruppe und sei a € G die Potenzen a”, n > 0, werden rekursiv durch
a’ = e, a' = aund (fir n > 1) @' = aa™ definirt. (Ist G abelsch, so soll man
aber na statt a" schreiben.) Es ist leicht zu sehen, dass a™™™ = a™a" fiir alle
m, n > 0. Nehme an, dass es 0 < m < n mit a™ = a” gibt; dann gilt

e=(a™)ta™ = (a™) 'a"

— (am)fl a™a® m) — ((am)flam)anfm —eqt ™ = g™
Dies zeigt also, dass entweder

— alle Potenzen von a verschieden sind, und dann nennt man a ein Element
unendlicher Ordnung, oder

— a™ = e fiir ein m > 1, und dann nennt man a ein Element endlicher Ordnung.

Sei a € G ein Element endlicher Ordnung; die Zahl min{m > 1: a™ = e} heifit

dann die Ordnung von a und wird mit ord a bezeichnet. Ist a € G ein Element
unendlicher Ordnung, so schreibt man auch ord a = oo.

Eine Gruppe G heifit endlich, wenn die Menge G endlich ist; in diesem Fall heifit
die Anzahl der Elemente in G die Ordnung von G und wird mit ord G' bezeichnet.
Ist G eine endliche Gruppe, dann ist jedes Element von G ein Element endlicher
Ordnung.

Sei GG eine Gruppe; eine nichtleere Teilmenge H von G heifit Untergruppe von G,
wenn H mit der Verkniipfung - und mit dem neutralen Element e aus G selbst
eine Gruppe ist. D.h., H C G ist eine Untergruppe von G, wenn gilt:

— ab e H firallea, be H,
— ee H,
— a~ ' € H fiir jedes a € H.

Beispiele: (1) Sei G eine Gruppe; dann sind {e} und G stets Untergruppen von
G.

(2) Z ist eine Untergruppe von R.
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(3) Ist V' ein Vektorraum iiber einem Korper K, so ist jeder Untervektorraum
von V' auch eine Untergruppe von V.

(4) Sei V ein K-Vektorraum; dann ist Aut(V') eine Untergruppe von Bij(V).
(5) Sei Y Teilmenge einer Menge X und H eine Untergruppe von Bij(X). Setze

Fixg(Y)={feH: fly)=yfiralleyeY},
Invg(Y)={feH: f(Y)=Y}.

Dann sind Fixy (YY) und Invg(Y') beide Untergruppen von Bij(X).

Ist H eine endliche Untergruppe von G, so heifit die Anzahl der Elemente in H
die Ordnung von H und wird mit ord H bezeichnet.

Im Folgenden sei G eine Gruppe.

Lemma 13.3 Sei H eine nichtleere Teilmenge von G. Gilt a='b € H fiir alle
a, b€ H, soist H eine Untergruppe von G.

Beweis Da H # @, gibt es ein Element ¢ € H, und folglich ist e = ¢~ !c € H.
Seien nun a, b € H; dann gilt «=! = a~'e € H und ab = (a!)~'b € H. Damit
ist H eine Untergruppe von G. O

Lemma 13.4 Sei H eine endliche Teilmenge von G, fiir die gilt:

—ee H,
— ab € H fiir allea, be H.

Dann ist H eine Untergruppe von G.

Beweis Es muss gezeigt werden, dass a=! € H fiir jedes a € H. Sei a € H; dann
liegen alle Potenzen a”, n > 0, in H, da bc € H fiir alle b, c € H. Aber H ist
endlich und folglich kénnen diese Potenzen nicht alle verschieden sein; also ist a
ein Element endlicher Ordnung. Sei n = orda; dann ist a"'a = a" = e, d.h.,
a" ' =a ! und damit ist a=! € H. O

Sei S eine nichtleere Teilmenge von G und bezeichne mit (S) die Teilmenge von
G, die aus allen endlichen Produkten von Elementen aus der Menge S U S~!
besteht, wobei S~ = {a"!:a € S}.

Lemma 13.5 Sei S eine nichtleere Teilmenge von G. Dann ist (S) eine Unter-
gruppe von G. Ferner ist (S) die kleinste Untergruppe von G, die S enthdlt: Ist
H eine Untergruppe von G mit S C H, so ist (S) C H.
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Beweis Es gilt e € (S), da e = cc™! fiir jedes ¢ € S. Seien a, b € (S); dann gibt
es a1y ..., Qm, b1, ..., by € SUS™! sodass a =ay---a, und b = b; ---b, und
folglich ist ab = ay - - - amby - - - b, € (S). Fernerist a™! = a;'---a;"' € (S). Damit
ist (S) eine Untergruppe von G. Sei nun H eine Untergruppe von G mit S C H;
dann ist a; - - -a, € H fiir alle ay, ..., a, € SUS™! und daraus ergibt sich, dass
(S)CcH. O

Man nennt (S) die von S erzeugte Untergruppe von G. Ist S = {aq,...,a,}
endlich, so schreibt man einfach (ay,...,a,) statt ({a1,...,a,}).

Fiir a € G, m > 1 schreibt man meistens =™ statt (a=!)™. Fiir alle m, n € Z
gilt nun ™" = a™a™.

Lemma 13.6 (1) Ist a € G ein Element unendlicher Ordnung, dann sind die
Potenzen a™, m € Z, alle verschieden und {a) = {...,a %,a7 1 e,a,a?, ...}.
(2) Ist a € G ein Element endlicher Ordnung mit n = orda, dann sind die
Potenzen a™, m =0, ..., n — 1, alle verschieden und (a) = {e,a,...,a" 1}.

Beweis (1) Nehme an, dass es m, n € Z mit m < n und a™ = @™ gibt. Dann gilt
a™tt = ama’ = a"a’ = a"** fiir alle £ > 0 und folglich gibt es p, ¢ mit 0 < p < g,
so dass a? = a?. Da aber a ein Element unendlicher Ordnung ist, ist dies nicht
moglich, und damit miissen die Potenzen o, m € Z, alle verschieden sein. Es folgt

nun umittelbar aus der Definition von (a), dass (a) = {...,a7%,a" !, e,a,a?, ...}

(2) Nehme an, dass es 0 < k < £ < n mit a* = a* gibt. Dann ist
aéfk — (ak)flakasz — (ak)flaé — (ak>71ak —e

und dies ist nicht moglich, da 1 </ —%k <n und n = min{m > 1: a™ = e}. Die
Potenzen a™, m =0, ..., n — 1 sind also alle verschieden. Nach Lemma 13.4 ist
H ={e,a,...,a" '} eine Untergruppe von G, da a*a’ = a? mit p = (k+/) Restn
fir alle k, ¢ € {0,1,...,n—1}, und daraus folgt nach Lemma 13.5, dass (a) C H.
Damit ist H = (a). O

Eine Untergruppe H von G heifit zyklisch, wenn H = (a) fiir ein a € H. Ist H
eine unendliche zyklische Untergruppe von GG, dann ist nach Lemma 13.6 (1)

H=1{. ,a%a" ead,.. }
fiir ein a € H. Ist dagegen H eine endliche zyklische Untergruppe von G, so ist
nach Lemma 13.6 (2) (a) = {e,qa,...,a" '} fiir ein @ € H mit n = orda = ord H.
Die Gruppe G heifit zyklisch, wenn G = (a) fiir ein a € G, d.h., wenn G zyklisch
ist als Untergruppe von sich selbst. Jede zyklische Gruppe ist abelsch, da

aman — am+n — an—i—m — anam

fiir alle m, n € Z. Fiir jedes n > 1 ist Z,, eine zyklische Gruppe der Ordnung n;
Z ist eine unendliche zyklische Gruppe.
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Satz 13.1 Ist G zyklisch, so ist jede Untergruppe H von G auch zyklisch.

Beweis Man kann annehmen, dass H # {e}, da die Untergruppe {e} = (e) trivial
zyklisch ist. Nun ist G = (a) fiir ein a € G, und folglich gibt es n € Z\ {0}, so dass
a" € H. Damit gibt es kK > 1, so dass a* € H, da a™™ € H, falls " € H. Setze
m = min{k > 1:a* € H}; es gilt also (¢™) C H. Nehme an, dass (a™) # H,
und sei a” € H \ (a™). Es gibt dann ¢ € Z und 0 < ¢ < m, so dass n = mq + ¢,
und tatsdchlich ist ¢ > 1, sonst wére " = a™? = (a™)? € (a™). Aber

aé _ (amq)flamqaf — (amq)flaquré — (amq)flan — ((am)q)flan cH ’

im Widerspruch zur Wahl von m. Daraus ergibt sich, dass H = (a™), d.h., H ist
zyklisch. O

Sei H eine Untergruppe von G und fiir a, b € G schreibe a = b mod H, wenn
ab~! € H. Auf diese Weise wird eine Relation = mod H auf G definiert.

Lemma 13.7 Die Relation = mod H ist eine Aquivalenzrelation auf G.

Beweis Reflezivitit: Es gilt aa™ = e € H und damit ist a = a mod H fiir jedes
a€d.

Symmetrie: Seien a, b € G mit a = b mod H. Dann ist ab~! € H und damit auch
ba™t = (ab™')"' € H,d.h., b=a mod H.

Transitivitit: Seien a, b, ¢ € G mit a = b mod H und b = ¢ mod H. Dann ist
ab™' € H und be™! € H und damit auch ac™! = a(b™'b)c™! = (ab™!)(bc™!) € H,
dh.,a=cmodH. O

Die folgende allgemeine Konstruktion fiir Aquivalenzrelationen wird bendtigt: Sei
X eine Menge und sei = eine Aquivalenzrelation auf X. Eine Teilmenge A von
X heiBt dann Aquivalenzklasse (beziiglich =), wenn es ein Element x € X gibt,
sodass A={z' € X : 2/ =z}.

Lemma 13.8 Zu jedem x € X gibt es eine eindeutige Aquivalenzklasse, die x
enthdlt.

Beweis Fiir jedes x € X sei A, = {2/ € X : 2’ =a}. Danngilt v € A,, da x = z,
und folglich gibt es mindestens eine Aquivalenzklasse (némlich A,), die z enthélt.
Sei nun A eine beliebige Aquivalenzklasse, die & enthilt. Dann gilt A = A,: Es
gibt y € X mit A = A,; dann ist x = y und damit auch y = x, da = symmetrisch
ist. Sei z € A; dann ist z = y und also z = z, da y = = und = transitiv ist. Damit
ist z € A, und daraus ergibt sich, dass A C A,. Sei umgekehrt 2’ € A,; dann ist
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2’ =z und also 2’ =y, da = y und = transitiv ist. Daher ist 2’ € A, = A und

folglich ist A, C A.d.h., A=A, O

Seien A, A’ Aquivalenzklassen; dann nach Lemma 13.8 ist entweder A = A’ oder

ANA =@.

Betrachte nun wieder die Aquivalenzrelation = mod H. Fiir jedes a € G setze
Ha = {ba : b € H}; insbesondere ist He = H. Die Mengen Ha, a € G, heilen
die Rechtsnebenklassen von H.

Lemma 13.9 Seia € G; dann ist
Ha={beG:b=amod H}

und die Abbildung b — ba bildet die Menge H auf die Menge Ha bijektiv ab.

Beweis Sei b € G; dann gilt

be Ho < b=-cafireince H & ba ' =cfireince H
< ba'eH & b=amodH

und folglich gilt Ha = {b € G : b = a mod H}. Es ist klar, dass die Abbildung
b — ba die Menge H auf Ha surjektiv abbildet. Ferner ist diese Abbildung
injektiv, da b = baa™! = caa™! = ¢, falls ba = ca. O

Seien a, b € GG; dann ist nach Lemma 13.8 und Lemma 13.9 entweder Ha = Hb
oder Ha N Hb = @. Ferner gilt Ha = Hb genau dann, wenn a = b mod H.

Satz 13.2 (Satz von Lagrange) Sei G eine endliche Gruppe. Dann teilt die
Ordnung jeder Untergruppe von G die Ordnung der Gruppe G.

Beweis Sei H eine Untergruppe und seien Ay, ..., A, die Aquivalenzklassen
beziiglich der Aquivalenzrelation = mod H. (Da die Menge G endlich ist, gibt
es nur endlich viele Aquivalenzklassen.) Fiir jedes j = 1, ..., m gibt es nach
Lemma 13.9 ein a; € G, so dass A; = Ha; und daraus folgt nach der zweiten
Aussage in Lemma 13.9, dass A; genau ord H Elemente enthélt. Damit gilt nach
Lemma 13.8, dass ord G = m x ord H. Insbesondere ist ord H ein Teiler von

ordG. O

Sei H eine Untergruppe von G; die Anzahl der verschiedenen Rechtsnebenklassen
von H heiit der Index von H in G und wird mit [G : H| bezeichnet. Ist G endlich,
dann folgt aus dem Beweis fiir Satz 13.2, dass ord G = [G : H] x ord H.
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Satz 13.3 Sei G eine endliche Gruppe der Ordnung n. Fir jedes a € G ist dann
ord a ein Teiler von n und insbesondere ist a™ = e.

Beweis Sei a € G und setze H = (a); nach Lemma 13.4 (2) ist H eine Unter-
gruppe von G mit ord H = orda und nach Satz 13.2 ist ord H ein Teiler von
n =ord G, d.h., orda ist ein Teiler von n. Sei nun m = ord H, es gibt also ¢ > 1

mit ¢m = n, und damit ist a” = (a™) = e’ =e. O

Satz 13.4 Sei G eine endliche Gruppe der Ordnung p, wobei p Primzahl ist.
Dann ist G zyklisch.

Beweis Sei a € G mit a # e; dann ist orda # 1 und nach Satz 13.3 ist ord a ein
Teiler von p. Die einzige Moglichkeit ist also orda = p und folglich ist (a) eine
Untergruppe von G der Ordnung p. Damit ist G = (a), d.h., G ist zyklisch. O

Fiir n > 1 sei ¢(n) die Anzahl der zu n teilerfremden Zahlen m mit 1 < m < n.
Satz 13.5 (Euler) Sein > 1, m € Z teilerfremd; dann ist m$™ = 1 modn.

Beweis Sei 7 = {m € Z, : m und n sind teilerfremd}; sind k, m € Z7, so ist
kmRestn € Z;, und folglich kann eine Verkniipfung - : Z} x Z! — Z; durch
km = km Rest n definiert werden. Dann ist (Z,-,1) eine Gruppe. (Der Beweis
dafiir ist eine Ubung.) Da diese Gruppe der Ordnung ¢(n) ist, gilt nach Satz 13.3,
dass m#™ =1 (in Z}) fiir jedes m € Z}, d.h., m*™ =1 modn (in Z) fiir jedes
m € Z*. Daraus ergibt sich, dass m#™ = 1 modn fiir alle m € Z, die teilerfremd
zu n sind. O

Sei p eine Primzahl; dann ist ¢(p) = p — 1, und daraus folgt nach Satz 13.5, dass
mP~! = 1 mod p und damit auch m? = m mod p fiir alle m € Z, die teilerfremd
zu p sind. Ist aber m € Z nicht teilerfremd zu p, so ist m ein Vielfaches von p
und in diesem Fall ist m” = m = 0 mod p. Damit wurde den folgenden Satz von
Fermat bewiesen: Ist p eine Primzahl, so gilt m? = m mod p fiir alle m € Z.

Sei H eine Untergruppe einer Gruppe G; setze aH = {ab : b € H} fiir jedes
a € G. Die Mengen aH, a € G, heiflen die Linksnebenklassen von H. Es gilt
aH = Ha fiir jedes a € GG, wenn G abelsch ist, aber im Allgemeinen ist dies nicht
richtig. (Ubung: Man finde ein b € Ss, so dass bH # Hb, wobei H = {e,a} und
a:4{1,2,3} — {1,2,3} durch a(1) = 2, a(2) = 1 und a(3) = 3 gegeben ist.)

Fiir jedes a € G setze aHa™' = {aba™' : b € H} und fiir Teilmengen S und T
Teilmengen von G setze auch ST = {ab:a € S, be T}.
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Lemma 13.10 Sei H eine Untergruppe von G; dann sind dquivalent:
(1) aba™' € H fiir allea € G, b€ H, (d.h., aHa ' C H fiir jedes a € G).
(2) aHa™' = H fiir jedes a € G.

(8) aH = Ha fiir jedes a € G.

(4) H(ab) = (Ha)(HD) fir alle a, b € G.

Beweis (1) = (2): Daaba™! € H fiirallea € G, b € H und (a~ ')~ = a, ist auch
a~lba € H firallea € G, b€ H. Seib€ H und a € G; dann ist ¥ = a 'ba € H
und ab’a™! = b. Daraus folgt, dass H C aHa™ ', d.h. H = aHa ! fiir jedes a € G.

(2) = (3): Seien a € G, b € H und setze b; = aba™'. Dann ist b; € H und damit
ab = bia € Ha; d.h., aH C Ha. Ferner gibt es by € H, so dass b = abya™! und
also ist ba = aby, € aH; d.h., Ha C aH.

(3) = (4): Seien a, b € G; fiir jedes ¢ € G ist cab = (ca)(eb) € (Ha)(Hb)
und damit gilt H(ab) C (Ha)(Hb) immer. Sei nun ¢ € (Ha)(Hb), es gibt also
c1, co € H mit ¢ = cjacob. Aber aH = Ha und folglich gibt es ¢3 € H, so dass
acy = cza. Damit ist ¢ = ¢yc3ab € H(ab); d.h., (Ha)(Hb) C H(ab).

(4) = (1): Seien a € G, b € H; dann ist

aba™' = eaba™ € (Ha)(Ha™ ') = H(aa ') = He=H . O

Eine Untergruppe H von G heiit Normalteiler von G, wenn aba~' € H fiir alle
ace G, be H.

Beispiele: (1) {e} und G sind stets Normalteiler von G.
(2) Jede Untergruppe einer abelschen Gruppe ist ein Normalteiler.

(3) Jede Untergruppe H einer endlichen Gruppe G mit Index 2 (d.h., [G : H] = 2)
ist ein Normalteiler von G. (Fiir jedes a € H gilt Ha = H = aH und fiir jedes
a¢ Hgilt Ho=G\ H=aH.)

Lemma 13.11 Sei S eine Teilmenge von G mit aba™' € S fiir allea € G, b€ S.
Dann ist (S) ein Normalteiler von G.

Beweis Daab™ta™ = (aba™')"!,ist aba™! € SUS™ ! fiir allea € G, be SUS™.
Seien nun a € G, b € (S); dann gibt es by, ..., b, € SUS™!, so dass b = by - - - by,
und folglich ist

=aby - -bya” ! = (aba™t) - - - (abya™t) € (S) .

aba

Damit ist (S) ein Normalteiler. O
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Sei S = {aba"'b7! : a, b € G}. Dann ist
c(aba b1t = (cac ) (ebe™ M (cac™) " (ebe™ ) 7!

ein Element von S fiir alle a, b, ¢ € G, und daraus folgt nach Lemma 13.11, dass
(S) ein Normalteiler von G ist. Dieser Normalteiler wird mit K (G) bezeichnet
und heiit die Kommutatorgruppe von G. Es gilt K(G) = {e} genau dann, wenn
G abelsch ist.

Sei H ein Normalteiler von G; mit G/H wird die Menge aller Aquivalenzklassen
beziiglich der Aquivalenzrelation = mod H bezeichnet. Nach Lemma 13.9 ist also
G/H die Menge der verschiedenen Rechtsnebenklassen von H. Nach Lemma 13.10
ist XY € G/H furalle X, Y € G/H. (Esgibt a, b € Gmit X = Haund Y = Hb
und dann ist XY = (Ha)(Hb) = H(ab) € G/H.) Damit gibt es eine Verkniipfung

. G/H x G/H — G/H
(X,Y) — XY .

Lemma 13.12 Sei H ein Normalteiler von G; dann ist (G/H, -, H) eine Gruppe,
die Faktorgruppe von G nach H.

Beweis Assoziativitat: Sind X, Y, Z beliebige Teilmengen von G, dann gilt

(XY)Z=X(YZ)={abc:ae X,beY, ce Z}.

Das Element H ist linksneutral: Sei X € G/H; dann gibt es a € G mit X = Ha
und nach Lemma 13.10 ist HX = (He)(Ha) = H(ea) = Ha = X.

Ezistenz eines Linksinversen: Sei X € G/H, es gibt also a € G mit X = Ha.
Setze Y = Ha™'; dann ist Y € G/H und nach Lemma 13.10 ist

YX =(Ha ') (Ha)=H(a'a) =He=H . O

Ist H Normalteiler einer endlichen Gruppe G, so ist ord G/H = [G : H].

Seien G, H Gruppen; eine Abbildung ¢ : G — H heifit ein Homomorphismus
(oder ein Gruppen-Homomorphismus), wenn gilt:

p(ab) = p(a)e(b)

fiir alle a, b € G.

Lemma 13.13 Sei ¢ : G — H ein Homomorphismus. Dann gilt p(e) = e und
o(a™t) = @(a)™?t fir jedes a € G.
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Beweis Es gilt p(e) = p(ee) = p(e)p(e) und daraus folgt, dass

ple) = ep(e) = (p(e) " ple))p(e) = ()~ (ple)p(e)) = wle)
Ferner gilt p(a™')p(a) = p(a1a) = p(e) = e und damit ist p(a™!) = ¢(a)™t. O
Es ist klar, dass fiir jede Gruppe G die Identitdtsabbildung idg : G — G ein

Homomorphismus ist.

Lemma 13.14 Seien G, H, K Gruppen und seien ¢ : G — H, ¢ : H - K
Homomorphismen. Dann ist ¢ o ¢ : G — K ein Homomorphismus.

Beweis Fiir alle a, b € G ist

(¢ 0 p)(ab) = P(p(ab)) = P(p(a)p(b)) = ¥ (e(a))b(p(b)) = (¥ o @)(a)(¥ o ¢)(b)
und damit ist ¥ o ¢ ein Homomorphismus. O

Seien GG, H Gruppen; ein Homomorphismus ¢ : G — H heifit Isomorphismus,
wenn es einen Homomorphismus ¢ : H — G gibt, so dass ¢ o ¢ = idg und
p o1 =idy. In diesem Fall ist nach Lemma 5.1 (2) ¢ eine bijektive Abbildung
und ) ist die Umkehrabbildung ¢! von ¢. Die Umkehrung ist auch richtig:

Lemma 13.15 Sei ¢ : G — H ein Homomorphismus. Ist ¢ bijektiv, dann ist
die Umkehrabbildung ¢! : H — G ein Homomorphismus und damit is ¢ ein
Isomorphismus.

Beweis Seien a, b € H; dann ist (¢~ (a) L)) = (e~ a))p(p=t(b) = ab
und daraus folgt, dass ' (ab) = p~(a)p " (b). O

Sind ¢ : G — H und ¢ : H — K Isomorphismen, so sind auch Y op : G — K
und ¢! : H — G Isomorphismen. Ferner ist idg : G — G ein Isomorphismus.

Fiir einen Homomorphismus ¢ : G — H setze

Kernyp ={a € G:¢(a) =e} und Bildy = ¢(G) .

Lemma 13.16 (1) Kerny ist ein Normalteiler von G.
(2) Bild ¢ ist eine Untergruppe von H.
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Beweis (1) Da e € Kern ¢, ist Kernp # @. Seien a, b € Kern ¢; dann ist nach
Lemma 13.13 p(a™'0) = ¢(a () = ¢(a) tp(b) = e 'e = e und damit ist
a~'b € Kerny. Daraus folgt nach Lemma 13.3, dass Kern ¢ eine Untergruppe
von G ist. Sei nun b € Kern y; fiir jedes a € G ist

p(aba™') = p(a)p(b)p(a™") = pla)ep(a) ™ = p(a)p(a) ' = e,

d.h., p(aba™!) € Kern ¢. Damit ist Kern ¢ Normalteiler von G.

(2) Seien a, b € Bild ¢; es gibt also ¢, d € G mit a = ¢(c) und b = ¢(d), und
folglich ist a™'b = p(c)to(d) = p(c)p(d) = p(c7d), d.h., a™'b € Bild .
Ferner ist Bild p # &, da e = ¢(e) € Bild ¢. Nach Lemma 13.3 ist also Bild ¢
eine Untergruppe von H. O

Beispiele: (1) Seien G, H Gruppen und definiere ¢ : G — H durch ¢(a) = e fiir
alle a € G. Dann ist ¢ ein Homomorphismus mit Kern ¢ = G und Bild ¢ = {e}.

(2) Sei m > 1 und definiere ¢ : Z — Z,, durch ¢(n) = n Rest m. Dann ist ¢ ein
Homomorphismus mit Kernp = {nm : n € Z} und Bild p = Z,,.

(3) Sei G eine Gruppe und a € G; definiere eine Abbildung ¢ : Z — G durch
©(n) = a™ fiir jedes n € Z. Dann ist ¢ ein Homomorphismus mit Bild ¢ = (a). Es
gilt Kern ¢ = {0}, falls a ein Element unendlicher Ordnung ist, und wenn a ein
Element endlicher Ordnung ist, so ist Kern = {nm : n € Z}, wobei m = ord a.

(4) Man betrachte die zwei Gruppen (R, +,0) und (R\{0}, -, 1) und definiere eine
Abbildung ¢ : R — R\ {0} durch ¢(z) = €*. Dann ist ¢ ein Homomorphismus
mit Kernp = {0} und Bildp = {x € R\ {0} : 2 > 0}.

(5) Man betrachte die zwei Gruppen (R, +,0) und (C*,-,1) (mit C* = C\ {0})
und definiere eine Abbildung ¢ : R — C* durch ¢(z) = €*™*. Dann ist ¢ ein
Homomorphismus mit Kern ¢ = Z und Bildp = {z € C* : |z| = 1}.

Lemma 13.17 Sei ¢ : G — H ein Homomorphismus. Dann ist ¢ surjektiv
genau, wenn Bild ¢ = H, und injektiv genau, wenn Kern p = {e}.

Beweis Es ist klar, dass ¢ genau dann surjektiv ist, wenn Bild o = H. Ferner ist
Kern ¢ = {e}, wenn ¢ injektiv ist, da ¢(e) = e. Sei also umgekehrt Kern¢ = {e}
und seien a, b € G mit p(a) = ¢(b). Dann ist

p(a™'b) = p(a™)p(b) = p(a) " p(b) = p(b)'p(b) = e,
d.h., a='b € Kern . Damit ist a='b = e, d.h., a = b. Folglich ist ¢ injektiv. O

Sei ¢ : G — H ein Homomorphismus. Nach Lemmas 13.15 und 13.17 ist ¢ ein
Isomorphismus genau dann, wenn Kern ¢ = {e} und Bild ¢ = H. Die Gruppen
G und H heiflen isomorph, wenn es einen Isomorphismus von G auf H gibt. Sind
G und H isomorph, so schreibt man G = H. Es gilt G = G fiir jede Gruppe G,
ferner ist H = G, wenn G = H, und G 2 K, falls G =2 H und H = K.
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Satz 13.6 (1) Jede unendliche zyklische Gruppe ist isomorph zu Z.
(2) Jede endliche zyklische Gruppe der Ordnung m ist isomorph zu Zy,.

Beweis (1) Sei G eine unendliche zyklische Gruppe, sei a € G mit G = (a) und
sei ¢ 1 Z — G durch p(n) = a" gegeben. Dann ist ¢ ein Homomorphismus
und nach Lemma 13.6 (1) ist ¢ bijektiv. Folglich ist nach Lemma 13.15 ¢ ein
Isomorphismus.

(2) Sei G eine endliche zyklische Gruppe der Ordnung m. Nach Lemma 13.6 (2)
gibt es dann @ € G mit orda = m, so dass G = {e,a,...,a™'}. Sei p : Z,, — G
gegeben durch ¢(n) = a™ fir n = 0, ..., m — 1. Man sieht leicht, dass ¢ ein
Homomorphismus ist und damit ist nach Lemma 13.15 ¢ ein Isomorphismus. O

Sei p eine Primzahl. Nach Satz 13.4 und Satz 13.6 (2) ist jede endliche Gruppe
der Ordnung p isomorph zu Z,.

Satz 13.7 Sei G eine Gruppe und H ein Normalteiler von G, seim: G — G/H
die durch w(a) = Ha definierte Abbildung. Dann ist m ein Homomorphismus mit
Kernyp = H und Bildp = G/H.

Beweis Nach Lemma 13.10 ist w(ab) = H(ab) = (Ha)(Hb) = 7(a)m(b) fiir alle
a, b € G, und damit ist 7 ein Homomorphismus. Ferner ist

Keenmr={a€e G: Hao=H}=H
und es ist klar, dass Bildm = G/H. O

Der Homomorphismus 7 : G — G/H heifit der kanonische Homomorphismus

von G auf G/H.

Sei S eine Teilmenge einer Gruppe G; nach Satz 13.7 und Lemma 13.16 (1) gibt
es eine Gruppe H und einen Homomorphismus ¢ : G — H mit Kern ¢ = S genau
dann, wenn S Normalteiler von G ist.

Satz 13.8 (Homomorphiesatz) Seien G, H Gruppen und sei ¢ : G — H
ein surjektiver Homomorphismus; setze K = Kerny und sei m : G — G/K der

kanonische Homomorphismus von G auf G/ K. Dann gibt es einen Isomorphismus
v :G/K — H, so dass ¢ = ¢ om. Insbesondere ist G/K = H.

Beweis Seien a, b € G mit Ka = Kb; da a € Ka = Kb, gibt es dann ¢ € K,
so dass a = cb, und folglich ist ¢(a) = w(cb) = @(c)p(b) = ep(b) = ¢(b), da
¢ € K =Kernp. Sind also a, b € G mit Ka = Kb, so ist ¢(a) = ¢(b), und daher
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kann eine Abbildung ¢ : G/K — H durch ¢(Ka) = ¢(a) definiert werden. Fiir
jedes a € G ist dann ¢(a) = Y(Ka) = ¥(7(a)), d.h., ¢ =Y.

Y ist ein Homomorphismus: Seien X, Y € G/K; dann gibt es a, b € G mit
X = Kaund Y = Kb, und nach Lemma 13.10 ist

P(XY) = ((Ka)(Kb)) = ¢(K(ab)) = p(ab)
= p(a)p(b) = p(Ka)p(Kb) = p(X)y(Y) .

Y ist ein Isomorphismus: Sei a € H; da ¢ surjektiv ist, gibt es b € G mit
©(b) = a, und dann ist ¥ (Kb) = p(b) = a, d.h., ¥ ist surjektiv. Sei nun a € G;
dann gilt ¢(Ka) = e, wenn a € Kern ¢ = K, da ¢¥(Ka) = ¢(a). Folglich ist
Kernvy = {K}, und nach Lemma 13.17 ist dann ¢ injektiv. Nach Lemma 13.15
is also 1) ein Isomorphismus. O

Seien GG, H Gruppen und sei ¢ : G — H ein Homomorphismus. Dann kann ¢ als
surjektiven Homomorphismus von G auf Bild ¢ angesehen werden, und folglich
ist nach Satz 13.8 G /Kern ¢ = Bild .

Fiir m > 1 sei mZ = {mn : n € Z}, also ist mZ eine Untergruppe von Z. Es gibt
einen surjektiven Homomorphismus ¢,, : Z — Z,,, der durch ¢,,(n) = nRestm
definiert ist, und Kern ¢,, = mZ. Damit ist nach Satz 13.8 Z/mZ = 7Z,,.

Sei ¢ : R — C* der Homomorphismus mit ¢(x) = e*™ fiir jedes x € R. Hier ist
Kernp = Z und Bildp = {z € C* : |z| = 1}, und daraus folgt nach Satz 13.8,
dass R/Z = {z € C* : |z| = 1}.

Fiir n > 2 sei S, die Menge aller Bijektionen o : {1,2,...,n} — {1,2,...,n}.
Dann ist S, eine endliche Gruppe der Ordnung n!. Sie heifit die symmetrische
Gruppe vom Grad n. Das Produkt von ¢ und 7 in S,,, das eigentlich o o 7 ist,
wird aber einfach als o7 geschrieben.

Die Elemente von S,, heilen Permutationen vom Grad n. Ein Element o € S,
wird haufig angegeben in der Form

(oot oty)

C g 12345 12345 .
Zum Beispiel sind (3 154 2) und <5 4119 3) Permutationen vom Grad 5.

Sind 0, 7 € S,,, so gilt fiir das Produkt o7:
oty o) (ot otr) = Cottn o)

D 12345 12345 12345\ .
Zum Beispiel ist (31542) <54123)—<24315)1n55.
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Eine Permutation o € S,, heit Transposition, wenn {1 < j < n:o(j) # j} aus
genau zwei Elementen besteht.

Satz 13.9 Jede Permutation ist als Produkt von Transpositionen darstellbar.
(Diese Darstellung als Produkt von Transpositionen ist aber nie eindeutig.)

Beweis Das weif jedes fiinfjahrige Kind. O

Definiere eine Abbildung sign : S, — {—1,1} durch sign(c) = (—1)°“) wobei
d(o) die Anzahl der Elemente in der Menge

{(4,7): 1 <i<j<nmito() >0c(j)}

ist; sign(o) heifit die Signatur von o.

Lemma 13.18 Fliir jedes o € S, ist

sign(o) = H %‘?(‘j).

1<i<j<n

Beweis Sei P = {(i,7) : 1 <1i < j < n} und definiere eine Abbildung A : P — 7Z
durch A((i,j)) =i — j. Fiir jedes 0 € S,, definiere 6 : P — P durch

(0(4),0(i)) falls o(j) < o(i) .

Man sieht leicht, dass ¢ surjektiv ist und damit ist 6 eine Bijektion. Setze auch

5((i, 7)) = { (0(2),0(j)) falls o(i) <o(j),

o 1 falls o(i) < o(j)
e(o, (4,)) = { —1 falls o(j) < Oé) ;

dann ist (i) — o(j) = (o, (i, 7))A(6((4,7))) fir jedes (i,j) € P und folglich ist

I[ (0@ —o() = ] (o )AG(( )

(3,7)€P (3,7)€EP
= I elo.i.) T] AG(G.5)
(3,7)€EP (3,7)€EP
= [ =(o.Gi.5) [] AG.5) (daé eine Bijektion ist)
(i,7)€EP (i,7)€EP

= II e II -9 -

(i,7)eP (i,7)€EP
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Aber [] e(o,(i,7)) = sign(o) und daraus ergibt sich, dass
(1,)€P

sign(o) = H (o, (1,7)) = H M: H U@)_U(]'). 0

(i,§)EP (i.j)eP 1= 1<i<j<n i
Betrachte nun {—1, 1} als Gruppe und zwar als Untergruppe von R* =R\ {0}.
Satz 13.10 Die Abbildung sign : S, — {—1,1} ist ein Homomorphismus.
Beweis Die Schreibweise aus dem Beweis fiir Lemma 13.18 wird verwendet. Seien

o, T € Sp; dann gilt e(o7, (1, 7)) = e(o,7((3, §)))e(T, (i, 7)) fur jedes (7,5) € P und
daraus folgt, dass

sign(or) = H e(o, (4, 7))

= :iﬁpa(a, #((i,3)))e(7, (i,5))

_ (ilpg(a,%((i,j))) (11;(7’ (i,))

_ i—[ e(o, (4, 7)) AH:(T’ (i,7)) (da 7 eine Bijektion ist)
Gy

Damit ist sign ein Homomorphismus. O

Eine Permutation o € S, heifit gerade, wenn sign(c) = 1 und ungerade, wenn
sign(o) = —1. Jede Transposition ist offensichtlich ungerade. Sei nun o € S,, und
sei 0 = 11 -+ - T, eine Darstellung von o als Produkt von Transpositionen. Nach
Satz 13.10 ist dann sign(o) =[]/, sign(7;) = (—1)™. Nach Satz 13.9 ist also eine
Permutation genau dann gerade bzw. ungerade, wenn sie als Produkt von einer
geraden bzw. ungeraden Anzahl von Transpostionen dargestellt werden kann.

Sei A,, die Menge der geraden Permutationen in S,; da A, = Kern sign, ist
nach Lemma 13.16 (1) A, ein Normalteiler von S,. A, heiBit die alternierende
Gruppe vom Rang n. Nach Satz 13.8 ist S, /A, = {—1,1}, und insbesondere ist
(S, : A,] = 2. Daraus folgt, dass ord A,, = %n!.

Eine Gruppe G heifit einfach, wenn {e} und G die einzigen Normalteiler von
G sind. Zum Beispiel ist die Gruppe Z, einfach, wenn p Primzahl ist, da nach
Satz 13.2 {e} und Z, die einzigen Untergruppen von Z, sind.

Satz 13.11 Firn > 5 ist A, eine einfache Gruppe.
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Beweis Ubung fiir Streberinnen und Streber. O

Satz 13.12 (Satz von Cayley) Sei G eine endliche Gruppe der Ordnung n mit
n > 2. Dann ist G isomorph zu einer Untergruppe von S,,.

Beweis Wihle irgendeine bijektive Abbildung v : {1,2,...,n} — G. Fiir jedes
a€Gseio,:{1,2,...,n} — {1,2,...,n} die Abbildung, die gegeben ist durch

oa(j) =7 H(ay(4))

fiir jedes 7 =1, ..., n. Dann ist o, injektiv, da
0a(i) = 0a(j) = 7 Hav(D)) =7 (a1(h) = ar(i) = ar(j)
= a a’v()za* 1) = ey(i) = ex(j

= (i) =70) = i=j.

Damit ist o, bijektiv, d.h., o, € S,,. Man kann also eine Abbildung ¢ : G — S,
definieren durch ¢ (a) = o, und diese Abbildung ¢ ist dann ein Homomorphismus:
Fiir alle a, b € Gund 1 < j < n ist

(¥(a)p(0))(j) = ¥(a) (¥(b)(4)) = P(a)(ow(]))
= P(a)(y ' (07(9))) = aa(v T (07(4))) =7 av (v by ()
=7 aby(j)) = ow(j) = 1(ab)(j)

und folglich ist ¥ (ab) = ¥ (a)(b) fiir alle a, b € G. Ferner ist ¢ injektiv, da

U(a) =9(b) = P(a)(j) =
= 7 (a(5))

Sei H = Bildv; nach Lemma 13.16 (2) ist H eine Untergruppe von S, und 1
kann als bijektiven Homomorphismus von G auf H angesehen werden. Damit
sind G und H isomorph. O

Y(b)(j) fir alle 5
=~ Hby(y)) firallej = a=0b.



14 Ringe

Ein 4-Tupel (R, +, -, 0) bestehend aus einer Menge R, einer Verkniipfung

+:RxR—R
(a,b) —a+b

(genannt Addition), einer Verkniipfung

-t RxR—R
(a,b) — ab
(genannt Multiplikation) und einem Element 0 € R heiit Ring, wenn gilt:
(R1) (a+b)+c=a+ (b+c) fir alle a, b, c € R.
(R2) a+b="0b+a fur alle a, b € R.
(R3) Fir alle a € R gilt 0+ a = a.
(R4)
(R5) (ab)e = a(be) fiir alle a, b, ¢ € R.
(R6) a(b+c¢) = ab+ ac und (b + ¢)a = ba + ca fiir alle a, b, c € R.

Zu jedem a € R gibt es ein Element —a € R mit (—a) + a = 0.

Bemerkung: Nach der iiblichen Konvention soll die Addition in R weniger stark
binden als die Multiplikation. (ab + ac bedeutet also (ab) + (ac).)

Ist (R,+,-,0) ein Ring, so ist (R, +,0) eine abelsche Gruppe.

Lemma 14.1 Sei (R,+,-,0) ein Ring.

(1) Das Nullelement 0 ist eindeutig: Ist 0' € R ein Element mit 0' + a = a fir
alle a € R, so ist 0" = 0.

(2) Zu jedem a € R gibt es genau ein Element —a € R mit (—a) +a = 0.

Beweis Ubung. O

Wenn es aus dem Kontext klar ist, welche Verkniipfungen + und - und welches
Element 0 gemeint sind, dann schreibt man meistens lediglich R statt (R, +, -, 0).

Lemma 14.2 Sei R ein Ring; dann gilt a-0=0-a =0 fir alle a € R.

Beweis Ubung. O

Ein Ring R heifit kommutativ, wenn gilt: ab = ba fiir alle a, b € R.

121
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Lemma 14.3 Sei R ein Ring und seien 1, 1" € R Elemente mit la = al = a
und 1'a = al’ = a fiir allea € R. Dann ist 1" = 1.

Beweis Ubung. O

Ein Ring R heifit Ring mit 1, wenn es ein Element 1 € R mit 1 # 0 gibt, so dass
la = al = a fiir alle a € R. Ist R ein Ring mit 1, so ist nach Lemma 14.3 das
Einselement 1 eindeutig.

Beispiele von Ringen

1. Jeder Korper ist ein kommutativer Ring mit 1.

2. Z ist ein kommutativer Ring mit 1.

3. Fiir jedes n > 1 ist Z,, ein kommutativer Ring mit 1.

4. Fiir jeden Korper K ist M(n x n, K) ein Ring mit 1 (mit Einselement E,,).
Dieser Ring ist aber nicht kommutativ, wenn n > 1.

5. Sei V ein Vektorraum iiber einem Korper K und sei End(V') die Menge aller
Endomorphismen von V. Dann ist End(V) ein Ring mit 1. Dieser Ring ist aber
nur kommutativ, wenn dim V' = 1.

6. Sei [0,1] = {x € R: 0 < 2z < 1} und sei C([0,1]) die Menge aller stetigen
Abbildungen von [0, 1] nach R. Dann ist C([0, 1]) ein kommutativer Ring mit 1,
wobei hier die Addition durch (f + ¢)(z) = f(x) + g(x) und die Multiplikation
durch (fg) (z) = f(x)g(x) fiir alle = € [0, 1] definiert sind.

Sei R ein Ring und seien ai, ..., a, € R mit n > 3; dann ist die ‘Summe’
von ai, ..., a, unabhingig von der Reihenfolge der einzelnen Additionen und
wird mit a; + --- + a, bezeichnet. Genauso ist das ‘Produkt’ von aq, ..., a,

unabhéngig von der Reihenfolge der einzelnen Multiplikationen und wird mit
ay - - - a, bezeichnet.

Sei R ein Ring; eine Teilmenge S von R heifit Unterring von R, wenn 0 € S und
fiir alle a, b € S auch —a, a + b und ab in S liegen. (S ist also bereits selbst ein
Ring beziiglich der in R gegebenen Operationen.)

Sei R ein Ring; eine Teilmenge U von R heifit Linksideal bzw. Rechtsideal von
R, wenn gilt:
— (U, +,0) ist eine Untergruppe von (R, +,0). Es gilt also 0 € U und fiir alle
a,be U sind —aund a+bin U.
— Firallea e R, u € U ist au € U bzw. ist ua € U.

Nun heiflt U Ideal, wenn es Links- und Rechtsideal ist. Insbesondere sind R und
{0} stets Ideale von R.
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Sei R ein Ring und U ein Linksideal oder ein Rechtsideal von R; dann ist U ein
Unterring von R. Ist R ein Ring mit 1 und 1 € U, dann ist U = R.

Wenn R kommutativ ist, ist jedes Linksideal ein Rechtsideal und umgekehrt.

Beispiel Sei R = M (2 x 2,R) der Ring der 2 x 2 Matrizen iiber R und sei

U:{(‘;g):a,be]&};

dann ist U ein Linksideal von R aber kein Rechtsideal.

Sei R ein kommutativer Ring; fiir jedes a € R setze (a) = {ab : b € R}. Es ist
dann klar, dass (a) ein Ideal von R ist. Ein Ideal U von R heifit Hauptideal, wenn
U = (a) fur ein a € R.

Satz 14.1 Jedes Ideal von Z ist ein Hauptideal.

Beweis Ubung. O

Seien R, R’ Ringe; eine Abbildung ¢ : R — R’ heifit ein Homomorphismus (oder
ein Ring-Homomorphismus), wenn gilt:

pla+0b) =¢(a) +¢(b) und @(ab) = p(a)p(b)

fiir alle a, b € R.

Lemma 14.4 Sei ¢ : R — R’ ein Homomorphismus. Dann gilt ¢(0) = 0 und
o(—a) = —p(a) fir alle a € R.

Beweis Dies folgt unmittelbar aus Lemma 13.13. O
Fiir einen Homomorphismus ¢ : R — R’ setze

Kernp ={a € R: p(a) =0} und Bildy = p(R) .

Lemma 14.5 (1) Kerny ist ein Ideal von R.
(2) Bild ¢ ist ein Unterring von R'.

Beweis (1) Da ¢(0) =0, ist 0 € Kern ¢. Seien a, b € Kern ; nach Lemma 14.3
ist o(—a) = —p(a) = =0 =0, und ¢(a +b) = ¢(a) + ¢(b) = 0+ 0 = 0. Damit
sind —a und a + b auch in Kerngp. Seien nun ¢ € R und u € Kern p; dann
gilt nach Lemma 14.2, dass ¢(au) = p(a)p(u) = ¢(a) - 0 = 0 und genauso gilt
o(ua) = p(u)p(a) =0 - p(a) = 0. Folglich ist Kern ¢ ein Ideal von R.
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(2) Da ¢(0) = 0, ist 0 € Bild ¢. Seien d’, b' € Bild ¢; es gibt also a, b € R mit
a’ = ¢(a) und b’ = ¢(b). Nach Lemma 14.4 ist —a’ = —¢(a) = ¢(—a), und ferner
gilt o' +b' = p(a) + ¢(b) = ¢(a+b) und a'b’ = p(a)p(b) = p(ab). Damit liegen
—ad, @' + b und 't/ auch in Bild ¢. Folglich ist Bild ¢ ein Unterring von R'. O

Im Folgenden sei R ein kommutativer Ring mit 1.

Bezeichne nun mit ¥(R) die Menge aller Folgen {a, },>0 aus R. Verkniipfungen
+:3(R) x X(R) — X(R) und - : X(R) x X(R) — X(R) werden definiert durch
{an}nzo + {bn}nzo = {an + bn}nzo und {an}nEO{bn}nEO = {Cn}n207 wobei

Cp = aobn + Cblbn71 + -+ an,1b1 + anbo .

Dann ist ¥(R) ein kommutativer Ring mit 1. (Der Beweis dafiir ist eine Ubung.)
Das Nullelement ist die Folge 0 = {0, },>0, wobei 0,, = 0 fiir alle n > 0, und das
Einselement ist die Folge 1 = {1, },,>0, wobei

1= 1 fallsn=0,
" 10 sonst.

Sei nun ¥,(R) die Teilmenge von 3 (R), die definiert ist durch

Yo(R) = {{an}tn>0 € X(R) : a,, # 0 fiir nur endlich viel n > 0} .

Lemma 14.6 Fir alle o, f € Y,(R) sind —«, o+ [ und af3 auch in L,(R).
Ferner sind 0, 1 € 3(R) Elemente von X,(R).

Beweis Seien a = {an}tn>0, B = {bn}n>0 € Eo(R). Es gibt also M, N > 0, so
dass a, = 0 fiir alle n > M und b, = 0 fiir alle n > N. Sei nun af = {c¢, }n>0;
dann ist ¢, = agb, + a1bp,—1 + - + apn_1by + a,bg = 0, falls n > M + N, d.h.,
afl € 3,(R). Die anderen Teile sind klar. O

Nach Lemma 14.6 ist X,(R), mit den Verkniipfungen aus ¥(R), ein kommutativer
Ring mit 1. Sei nun x ein Symbol, das als ‘Unbestimmte’ angesehen werden soll.
Ist @ = {an}n>0 €in Element von ¥,(R) mit a, = 0 fiir jedes n > m, so wird «
durch den Ausdruck

ap + a1z + asz® + - - + apz™

dargestellt. Diese Darstellung ist nicht eindeutig, sind aber ag +a1x+ - - -+ a,,z™
und by + b1 + - - - + byx’ zwei Darstellungen und ist m < ¢, so ist a; = b; fiir
j=1,...,mund b; =0 fir m < j <.

Man schreibt nun R[x] statt X,(R); R[z] heifit der Polynomring iiber R in der
Unbestimmten z, die Elemente aus R[z]| heilen Polynome in x mit Koeffizienten
aus R.
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Sei i : R — RJz] die Abbildung, die durch i(a) = a definiert ist. Mit anderen
Worten ist i(a) = {an}n>0, wobei

" a fallsn=20,
"7 10 sonst.

Diese Abbildung ist injektiv und folglich kann man jedes Element a aus R mit
dem Element i(a) aus R[z] identifizieren. Auf diese Weise wird R als Teilmenge
von R[z| betrachtet. Dai(a+b) = i(a)+i(b) und i(ab) = i(a)i(b) fir allea, b € R
und i(0) = 0 und (1) = 1, erhélt man dann die Addition und Multiplikation auf
R als Einschrinkungen der entsprechenden Verkniipfungen auf R[z].

Ist f € R[x] mit f # 0, so hat f eine eindeutige Darstellung
ap + a1z + asz® + - - + apz™

mit a,, # 0. Die Zahl m heifit der Grad des Polynoms f und wird mit Grad f
bezeichnet. Das Element a,, heif3t der Leitkoeffizient von f; ist a,, = 1, so heif3t
f normiert.

Fiir jedes a € R definiere eine Abbildung ®, : R[z] — R durch
(I)a(f) = a0+a1a+a2a2+.._+amam

falls f = ap+a1x+asx®*+- - -+ a,,x™ mit a,, # 0, (wobei a® = aa, a®> = aaa usw.).

Also ist @,(f) der Wert des Polynoms f an der Stelle a und folglich schreibt man
meistens f(a) statt ®,(f).

Lemma 14.7 Die Abbildung ®, : R[x] — R ist ein Homomorphismus.

Beweis Ubung. O

Die Abbildung ®, wird Einsetzhomomorphismus genannt.

Im Folgenden sei K ein Korper.

Lemma 14.8 Seien f, g € K[z] mit f #0, g # 0; dann ist
Grad fg = Grad f + Grad g .

Beweis Sei A\g + \ix + -+ + Apx™ bzw. pg + 1 + - - + ppx™ die eindeutige
Darstellung von f mit A, # 0 bzw. von g mit pu, # 0. Dann ist

fo=wvo+1riz+ -+ Vpppa™"

mit vy, n = Amftn # 0, und folglich ist Grad fg = m +n = Grad f + Gradg. O
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Lemma 14.9 (1) Sind f, g € K[x] mit f # 0 und g # 0, so ist fg # 0.
(2) Sind f, g1, g2 € K[x] mit f # 0 und fg1 = fga, s0 ist g1 = go.

Beweis (1) Dies folgt unmittelbar aus Lemma 14.8.
(2) Da f(g1 —g2) =0 und f # 0, ist nach (1) g1 — g2 =0, d.h., g1 = go. O

Satz 14.2 (Division mit Rest in Klz]) Seien f, g € Klx] mit g # 0. Dann
gibt es eindeutige Polynome t, r € K[z| mit f = tg + r und entweder r = 0 oder
Gradr < Gradg.

Beweis Existenz von t und r: Da 0 = 0g+0, kann man annehmen, dass f # 0. Ist
Grad f < Grad g, setze einfach ¢ = 0 und r = f. Es kann also auch angenommen
werden, dass Grad f > Grad g. Der Beweis erfolgt nun per Induktion nach Grad f.

Sei Grad f = 0. Da Grad f > Gradg, ist auch Grad g = 0. Folglich ist f = XA
und g = po mit A, po € K und A\ # 0, po # 0, und damit ist

=20 = (Moo o = (Mopg)g+0 .

Sei nun m > 1 und nehme an, dass die Aussage iiber die Existenz von ¢ und r
fiir alle Polynome f mit Grad f < m richtig ist.. Sei f € K[z| mit Grad f = m.
Dann ist f = Ao+ Mz + -+ - + 2™, g = po + pux + - - - + ppx™ mit A, # 0,
tn # 0 und m > n. Setze fi = f — (A\np, '2™™)g, wobei 2° = 1; es gilt

fi= Mo+ -+ Apz™) — ()\mu;l)(,uoxm_" + ,uoxm_"H + -t ™)
= Ao+ A1) = Ny, ) (o™ " 4 -+ praz™ )

und damit ist entweder f; = 0 oder Grad f; < m — 1. Nach Induktionsannahme
gibt es also Polynome t1, r € Klz| mit f; = t;g + r und entweder r = 0 oder
Gradr < Grad g. Setze t = t; + A, p, ‘2™ ™; dann ist

f=F+ Q'@ g = g + 7+ Qg 2" ")g
= (1 + Apty, 2" ) g T =g+

Eindeutigkeit von ¢ und r: Nehme an, dass es auch Polynome ¢', v/ mit f = t'g+1r’
und entweder ' = 0 oder Gradr’ < Grad g gibt. Dann ist entweder ' = r oder
Grad (1" — r) < Grad g. Ferner ist

O=f—f=@g+r)—{Fg+r)=0t—t)g+(r—1)

und daraus folgt, dass (t —t')g =’ — r. Also ist ¢t = ¢’ (und damit auch r = r’),
sonst wére nach Lemma 14.8

Grad (r' —r) = Grad (t — t')g = Grad (t — ') + Gradg > Gradg . D
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Satz 14.3 Sei U ein Ideal von Klx] mit U # {0}. Dann gibt es ein eindeutiges
normiertes Polynom g € U, so dass U = (g). Insbesondere ist jedes Ideal von

K|z| ein Hauptideal, (da {0} = (0)).

Beweis Wihle ein Polynom ¢’ € U \ {0}, so dass Gradg" < Gradh fiir alle
h € U\ {0} und setzen g = \~'¢’, wobei X\ der Leitkoeffizient von ¢’ ist. Dann
ist g normiert, g € U und Grad g = Grad ¢’ < Gradh fiir alle h € U \ {0}. Nun
ist fg € U fiir alle f € K[z], da U ein Ideal ist, und damit ist (g) C U. Sei
andererseits f € U; nach Satz 14.2 gibt es Polynome ¢, r € K[z| mit f =tg+r
und entweder r = 0 oder Gradr < Grad g. Aber r = f—tg € U, und daraus ergibt
sich, dass r = 0 (sonst wire Gradr < Gradg < Gradr). Also ist f = tg € (g),
d.h. U C (g) und folglich ist U = (g).

Eindeutigkeit von g: Sei h ein normiertes Polynom mit U = (h). Dann gibt es
u, v € K[z] mit g = uh und h = vg, und daraus folgt, dass Grad h < Grad g und
Gradg < Grad h und also ist Grad h = Grad g. Aber h — g € U, und entweder
h = g oder Grad (h — g) < Gradg, (da h und g beide normierte Polynome vom
gleichen Grad sind). Damit ist h = g. O

Ist f € K|z] ein Polynom, so heifit A € K Nullstelle von f, wenn f(\) =0, (d.h.,
wenn ®,(f) =0).

Satz 14.4 Sei f € Kl[z] ein Polynom mit f # 0 und Grad f > 1 und sei A
eine Nullstelle von f. Dann gibt es ein eindeutiges Polynom g € K[x], so dass
f=(O\—=ux)g. Fernerist g # 0 und Gradg = (Grad f) — 1.

Beweis Nach Satz 14.2 gibt es Polynome ¢, r € K[x] mit f = (A — z)g + r und
entweder r = 0 oder Gradr < Grad (A — z) = 1 Dies bedeutet also, dass r = pu
fiir ein p € K. Da aber ®, ein Homomorphismus ist, ist

0=f(A) = 2A((A —2)g + p) = PA(A — 2)®i(g) + Pa()
= (A=)0s(g) + 1 =08x(g) + 1= 11,

d.h., 4 = 0 und damit ist f = (A — z)g. Es ist klar, dass ¢ # 0 und nach
Lemma 14.8 ist Gradg = (Grad f) — 1. Gilt auch f = (A — x)h, so ist nach
Lemma 14.9 (2) h=g,da A —2 #0. O

Lemma 14.10 Seien Ay, ..., N\, € K (mit n > 1) und seien f, g € K[x] mit
Gradg > 1 und (A —x) -+ (\y — ) = fg. Dann ist A\ eine Nullstelle von g fiir
mindestens ein k.
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Beweis Sei m = Grad f = n — Gradg < n — 1, und nehme an, dass g(\x) # 0
fir jedes k = 1, ..., m. Da g(A1) # 0 und f(A)g(A1) = (fg)(A1) = 0, ist
f(Ax) = 0 und folglich gibt es nach Satz 14.4 f; € K[x] mit f = (A —x) f1. Nach
Lemma 4.9 (2) ist dann (Ay — ) - -+ (A, — ) = f1g; insbesondere ist fo(A2) = 0.
Nach wiederholter Anwendung dieses Verfahren gibt es fi, ..., f,, € K[z, so
dass (Apy1 —2) -+ (A —2) = frg fiir k=1, ..., m. Aber dann ist Grad f,, = 0,
folglich ist (A1 —2) -+ - (A, —2x) = Ag fiir ein A € K\ {0} und damit ist g(A\x) =0
fir jedes k=m+1, ..., n. O

Viele der fiir einen Korper eingefiihrten Definitionen machen auch fiir einen Ring
einen Sinn. Im folgenden sei R ein Ring.

Sei n € N; mit R" wird die Menge aller n-Tupel von Elementen aus R bezeichnet.
Ein Element von R" hat also die Form (ay, ..., a,) mit ay, ..., a, Elementen aus
R. Das Element (0, ...,0) € R" wird mit 0 bezeichnet.

Eine Addition auf R" wird erklért durch
(a1, ... a,) + (b,...,by) = (a1 + b1,...,a, + by)
und Multiplikation eines Elements von R" links mit einem Element von R durch
a(by,...,b,) = (aby,...,ab,) .

Seien m, n > 1; eine m xn Matriz iiber R ist eine Anordnung von mn Elementen
von R nach folgendem Schema

@11 Ar2 *-- Aip
Q21 Q22 *-- A2y
Am1 Am2 * - Gmn

Die Menge der m x n Matrizen iiber R wird mit M(m x n, R) bezeichnet. Die
Schreibweise A = (a;;)1<i<m,1<j<n und A = (a;;) werden weiter verwendet. Ferner
werden Zeilen und Spalten wie im Fall eines Korpers definiert; die Zeilen von A
werden als Elemente von R™ und die Spalten als Elemente von R™ betrachtet.
Das Element

0---0
: : | € M(m xn,R)

wird mit 0 bezeichnet.

Sei A = (a;;) € M(¢ x m, R) eine £ x m Matrix und B = (a;;) € M(m x n, R)
eine m x n Matrix iiber R. Firallei=1, ..., ¢, k=1, ..., n sei

m
Cik = E aijbjk 3
Jj=1
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es gibt also eine ¢ x n Matrix C' = (¢;) € M(¢ x n, R) iiber R. Diese Matrix C'
heifit das Produkt von A und B und wird mit AB bezeichnet.

Satz 14.5 Seien A € M({ x m,R), B € M(m x n,R) und C € M(n X p, R).
Dann gilt (AB)C = A(BC). (Die Matrizenmultiplikation ist also assoziativ.)

Beweis Seien 1 <A< /(,1<p<p. Dannist > _, (ETZI a,\ubw)c,,p das M\, p-te
Element in (AB)C und Y7 | ay, (>0, bucy,) st das A, p-te Element in A(BC).

Da aber die Multiplikation in R assoziativ ist, ist

n

> o (S beees) = 3 (D onit) -
1

u=1 V= v=1 p=1
Daraus folgt, dass (AB)C = A(BC). O

Seien A; € M(ng x ny1, R), As € M(nq X ng, R), ..., Ay € M(nyp—1 X 0, R). Mit
Hilfe von Satz 14.5 kann man durch Induktion zeigen, dass das ‘Produkt’ der
Matrizen A;, ..., A,, unabhéngig von der Reihenfolge der Multiplikationen ist;
dieses ‘Produkt’ wird mit A; --- A,, bezeichnet.

Sei n > 1; nach Satz 14.5 ist M(n x n, R) (mit komponentenweiser Addition und
Matrizenmultiplikation) ein Ring. (Man sieht leicht, die restlichen Bedingungen
in der Definition eines Rings sind erfiillt.) Ist n > 2 und ist die Multiplikation in
R nicht trivial (es gibt also a, b € R mit ab # 0), so ist der Ring M(n x n, R)
nicht kommutativ.

Im folgenden sei R ein Ring mit 1 und sei E,, € M(n x n, R) folgende Matrix:

Die Matrix FE,, heifit wieder Einheitsmatriz. Man sieht leicht, dass AF,, = A und
E,B = B fiir alle A € M(m x n, R) und alle B € M(n X p, R). Insbesondere ist
M(n x n, R) ein Ring mit Einselement F,,.

Lemma 14.11 Sei A € M(n x n, R). Dann gibt es hichstens eine Matriz A, so
dass AA'=A'A=FE,.

Beweis Seien B, C € M(n x n, R) mit AB = BA = FE, = AC = CA. Dann gilt

B = BE, = B(AC) = (BA)C = E,C =C . O
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Eine Matrix A € M(n x n, R) heiBt invertierbar, wenn es A" € M(n x n, R) gibt,
so dass AA' = A’A = E,.. Nach Lemma 14.11 ist diese Matrix A’ eindeutig und
sie wird mit A~! bezeichnet, d.h., A™! ist die eindeutige Matrix mit

AA ' =AT'A=E, .

Lemma 14.12 (1) Die Einheitsmatriz E, ist invertierbar und E;' = E,,.
(2) Ist A € M(n x n, R) invertierbar, so ist A~' invertierbar und (A=1)~! = A.

(8) Sind A, B € M(n x n, R) invertierbar, so ist das Produkt AB invertierbar
und (AB)™' = B~1A™L

Beweis (1) Dies ist klar, da E, E, = E,E, = E,.

(2) Dies ist auch klar, da A™'A = AA"' = E,.

(3) Dies folgt aus der Assoziativitdt der Matrizenmultiplikation, da
(AB)(B'A™ ) = ABBB YA ' = AE, A" = AA™' = E,

und (B'A")(AB) = B-Y(A"'A)B = B'E,B= B 'B=E,. O



15 Determinante einer Matrix

Im Folgenden sei R ein kommutativer Ring. Ist « € R und € € {—1,1}, dann sei
ea das Element von R, das definiert ist durch

- a fallse =1,
U —g fallse = —1.

Sind €, ¢ € {—1,1} und a, b € R, dann ist (e¢')a = e(¢'a), da —(—a) = a,
und e(ab) = (ea)b, da —(ab) = (—a)b. Ferner ist e(a + b) = (ca) + (eb), da
—(a+b) = (—a)+ (-b).
Ist A= (a;j) € M(n x n, R) eine n x n Matrix {iber R, so heifit das Element
Z Sign(0)a1 5(1)a20(2) * * * An o(n)
o€Sn

die Determinante von A und wird mit det A bezeichnet. Insbesondere ist

d ap a1z \
et = 11022 — G12022
a1 22

und fir n = 3 ist
11022033 — 11023032 — (12021033 + G12023G31 — A13022G31 + A13021 032
die Determinante von A.
Eine Matrix A = (a;;) € M(n x n, R) heifit obere Dreiecksmatriz, wenn a;; = 0

fiir alle ¢ > j.

Lemma 15.1 Sei A = (a;;) € M(n x n, R) eine obere Dreiecksmatriz. Dann ist

det A = a11a92 * * * Upyp, -

Beweis Sei o € S, eine Permutation mit o # e, wobei e die Permutation ist mit
e(i) = ¢ fur alle 7. Dann gibt es 1 < i < n mit o(i) < ¢ (warum?) und folglich
ist ajs(;) = 0. Damit ist nach Lemma 14.2 a;,(1)a24(2) ** * Gnom) = 0 und daraus
ergibt sich, dass det A = aj1a9s - - - apy,. O

Seien vy, ..., v, Elemente aus R"; bezeichne dann mit [vy, ..., v,] die Matrix, die
V1, ..., U, als Zeilen hat.
Satz 15.1 Seien vy, ..., v, € R und 1 <k <n.

(1) Ist v =bu+ cw mit u, w € R" und b, c € R, so ist

detfvy, ..., k1, Uk, Uks1, - - -, Un)

= bdet[vy, ..., Vk_1,U, Vg1, ..., 0] + cdetfvy, ... v 1, W, Vs, .., Vp] -

(2) Ist v, = vy fiir ein £ mit k # €, so ist det[vy,...,v,] = 0.

131
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Beweis Sei [vq,. .., v,] = (aij).
(1) Sei [v1, .oy Uk—1, Uy Vg1, -, V) = (), [V15 00 Vo1, W, Vg1, - 0] = (a3).
Dann ist

det[vy, ..., Vk—1, Uk, Vkt1s - - - 5 Un)

= Z Sign(U)fllau) © o O(k=1) o(k—1) Ak o (k) (k4+1) o (k+1) * * * Ano(n)

UGSn
= Z sign(o)ai o(1) - - 'a(kfl)a(kfl)(ba%a(k) + Ca}cua(k))a(kJrl)U(k‘Jrl) © " Ono(n)

gESy
=b Z Sign<a)a11to(1) e 'a?kfl)o(kfl)a;;o(k)al(tml)o(k+1) o ~a$io<n>

UGSn
+c Z Sign(a)aqf}au) e 'a?ljc—l)o(k—l)aql;}a(k)aq(%—i—l)a(k+1) o 'a’ZU(n)
gESy

= bdet[vy,. .., V51, U, Vg1, ..., 0] + cdetfvr, ... V1, W, Vi1, ..., Vp] -

(2) Es gibt £ # k, so dass vy = vg, d.h., ap; = ag; firalle j =1, ..., n.Seit € 5,
die Transposition, die die Elemente £ und ¢ vertauscht und sei T : S,, — S,, die
durch T, (c) = o7 definierte Abbildung. Da o717 = 0, ist T, (T, (0)) = o fiir jedes
o € S und nach Satz 13.10 ist

sign(7T; (o)) = sign(oT) = sign(o) sign(7) = —sign(o)

fir alle o € S,,. Sei 4,, = {0 € S, : sign(o) = 1}; also ist T(A,) C S, \ 4, und
T.(S, \ A,) C A,. Damit ist T.(A,,) = S, \ A, und jede Permutation in S, \ 4,

hat eine eindeutige Darstellung der Form o7 mit o € A,,. Ferner gilt
A157(1) """ Onor(n) = A1o(1) * " Ono(n)

fir alle 0 € Sy, da aior(s) = i), falls @ & {k, L}, apor) = Arow) = oo und
Apor(e) = Qro(k) = Aro(k)- Daraus folgt, dass

det A = Z SigN(0) a1 o(1) * * * G o(n)

oESy

= Z Sign(U)a1 o(1) """ Ano(n) + Z Sign(UT)(l1 or(1) """ Anor(n)
O'EAn O'EAn
oc€Ay o€An

da sign(r) = —1. O

Satz 15.2 Seien vy, ..., v, € R"; dann gilt
det[vr(1y, - - -, Un(n)] = sign(m) detfvy, ..., v,]

fiir alle m € S,,.
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Beweis Sei A = [v1,...,v,] mit A = (a;;) und B = [vzq1), .. ., Ur(n)) mit B = (by),
also gilt by; = ar(;; fiir alle 1 <4, j <n. Sei Ty : S, — 5, die durch Tr(0) = o7
definierte Abbildung. Dann ist T} injektiv, (da o = (om)r! = (o/7)n ! = o,
wenn o = ¢'m), und damit eine Bijektion. Folglich gibt es zu jedem o € S, eine
eindeutige Permutation o’ € S,,, so dass o = o’w. Ferner ist

Ar(1)on(1) """ Ax(n)on(n) = Alo(1) * " Ano(n)

fiir alle o € S,,, und daraus ergibt sich, dass

det B = Z sign(a)b1 (1) " bn a(n) = Z sign(aﬂ)bl om(1) """ bn om(n)

o€Sn o€Sn
= Z Sign(aﬂ-)an(l) or(1) **  Qr(n)on(n) = Z sign(mr)al a(1) " " Ano(n)
0ESh 0ESh
= sign(m) Z SigN(0) a1 o(1) * * * Gno(m) = sign(m)det A . O
O’GSn

Satz 15.3 Fir alle A, B € M(n x n, R) ist
det AB = (det A)(det B) .

Beweis Sei A = (a;;) und seien vy, ..., v, die Zeilen von B. Nach der Definition
fiir die Multiplikation von Matrizen ist AB = [wy, . .., w,], wobei

W; = A1V + **+ + QiU
fir i = 1, ..., n. Daraus folgt nach Satz 15.1 (1), dass

det AB = det [wy, ..., w,| = detlaj1vr + -+ + a1,Un, W, . . ., W)

n
= E aljldet[vjl,wQ,...,wn]

Ji=1
n
= E ayj, detfvj,, ag vy + - - + A2nUn, W3, . . ., Wy
Ji=1
n n
E E a1j1a2j2 det[vjl, ’U]‘Q, Wws, ... ,wn]
G1=1 jo=1

n n
== E E aljl---anjndet[vjl,...,vjn].

Jji=1 Jn=1

Ferner ist nach Satz 15.1 (2) det[v;,, ..., v;,] = 0, falls die Indizes ji, ..., j, nicht
alle verschieden sind. Aber die Indizes ji, ..., j, sind alle verschieden genau dann,



15 DETERMINANTE EINER MATRIX 134

wenn es eine Permutation o € S,, gibt, so dass ji, = o(k) fir k =1, ..., n. Daraus
ergibt sich nach Satz 15.2, dass

n n
E E aljl---anjndet[vjl,...,vjn]

Jji=1 Jn=1

= Z Ulo(1) " Ano(m) det[Us);s - - - s Vo(n)]
= Z A1o(1) " ** Ono(n) SigN(0) detlvy, ..., vy
= Z A10(1) " ** Ono(n) Sign(o) det B

= Z SIgN(0) a1 o(1) * * * Qo) det B = (det A)(det B) ,

und damit ist det AB = (det A)(det B). O

Fiir A = (a;;) € M(n x n, R) sei A" € M(n x n, R) die durch A" = (aj;) definierte
Matrix, wobei af; = ay; fiir alle 1 <4, j < n; A" heiBt die zu A transponierte
Matrix.

Satz 15.4 Fiir jede Matrizx A € M(n x n, R) ist det A* = det A.

Beweis Sei A = (a;;). Fir jedes o € 5, gilt

Ag(1)1 """ Qo(n)n = Qo(o=1(1))o=1(1) " " " Qo(o=1(n))o—1(n) = Alo=1(1) " " Gno—1(n)
und sign(c~!) = sign(o) (da sign(o~!)sign(c) = sign(c'o) = sign(e) = 1).
Ferner gibt es zu jedem o € S, eine eindeutige Permutation 7 € S,,, so dass
o = 7. Daraus ergibt sich, dass

det A = Z Sign(0)a14(1) * ** Anom) = Z sign(o™ a1 o-1(1) * * * Gno-1(n)

oc€Snh o€Sh
Z Sign(0)ag(1y1 - - Go(n)n Z sign(o alg(l ana(n =detA'. O
O'ESn UGSn
Seien wy, ..., w, Elemente aus R"; dann bezeichnet [wy, ..., w,]|" die Matrix, die
wy, ..., w, als Spalten hat.
Satz 15.5 Seien wq, ..., w, € R" und 1 <k <n.

(1) Fiir jedes a € R ist

detfwy, ..., wy_1, AWk, Wiy, - . ., wy,] = adetfwy, ... w,]" .
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(2) Seiwy € R"; dann ist
detfwy, . .., wy_1, Wk + Wi, Wiy 1, - .-, Wy

/ ~
= det[wy, ..., Wp_1, Wk, Wy1, ..., wy] + detfwy, ..., wg_1, Wg, Wet1, -, Wy .

(8) Ist wy, = wy fiir ein € mit k # £, so ist det|wy, ..., w,] = 0.
(4) Fiir alle m € S,, gilt

det{wrqy, ..., Wem)] = sign(m) det[wy, ..., w,]" .

Beweis Da [wy,...,w,]" die zu [wy, ..., w,] transponierte Matrix ist, folgt dies
unmittelbar aus Satz 15.1, Satz 15.2 und Satz 15.4. O

Satz 15.6 Seien m, { > 1 mit m + ¢ =n und sei A € M(n x n, R) eine Matriz

mit der Gestalt
A, B
0 Ay )’

wobei Ay € M(m x m, R), Ay € M(¢ x £, R) und B € M(m x ¢, R). Dann gilt

det A = (det A;)(det Ay) .

Beweis Sei A = (a;;); also ist a;; = 0 fiir alle m < ¢ < n,

sei auch Ay = (aj;), Ay = (af;); es gilt aj; = ay; fiir alle
3; = Qi) (my) fir alle 1 <4, j < L.

Sei 0 € S, mit a1,1)A205(2) * * * Anom) 7# 0; dann ist o(i) > m fiir alle ¢ > m und
damit auch o(i) < m fiir alle i < m, da o eine Bijektion ist. Folglich ist o € P,,,
wobel

Ppn={0€S,:0({1,...,m}) C{1,...,m}
und o({m+1,...,n}) C{m+1,...,n}}.

Sei ¢ : S, X Sy — 5, die Abbildung mit

T(k) falls k € {1,...,m},
w(T’Q)(k):{g(k—m)ij falls k € {m+1,...,n}.

Dann ist ¢ injektiv mit ¢(S,, x S¢) = P, . Ferner gilt

sign(¢ (7, o)) = sign(7) sign(p)
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fiir alle 7 € S,,,, 0 € Sp. Daraus folgt, dass

det A = 3 sign(0)a10(1)020@) * - * Gno(m)

oESy

- Z sign(0)a10(1)020(2) * * * Ano(n)

0€Pm n

= ) sign((7, 0) a1 prom 2@ tnviren)
(1,0)€Sm xS,

= Z ZSIgn 7) Sign(0)a1 (1) " * Ay () 01 p(1) "~ O g(0)

TESm 0ES)
= Z Sign(T) sign(g)a1 (1) " mT(m) Z a’lg a’ﬁg )
TESm QES{

= (det Ay)(det As) . O

Sei R’ ein weiterer kommutativer Ring und ¢ : R — R ein Homomorphismus.
Dann kann eine Abbildung ¢ : M(n x n, R') — M(n x n, R) definiert werden
durch ¢(A) = (¢(a;;)), wobei A = (a;;).

Lemma 15.2 Die Abbildung ¢ ist ein Homomorphismus und
det (A) = p(det A)

fiir alle A € M(n x n, R').

Beweis Es ist klar, dass ¢(A + B) = ¢(A) + ¢(B) fir alle A, B € M(n x n, R)
und dass ¢(E,) = E,. Selen A, B € M(n x n, R) mit A = (a;;), B = (b;;); setze
AB = (¢;;). Dann gilt

o(cik) (Z Ay Jk) = Zn: p(aij)p(bix)

und daraus folgt, dass p(C') = @(A)p(B). Dies zeigt, dass ¢ ein Homomorphismus
ist. Sei nun A = (a;;) € M(n x n, R'). Dann gilt

det p(A4) = ) sign(0)p(aro() - Planom)

O’GSn
=) sign(0)p(aio@)  tnom) = Y P(S180(0)a16(1)  + Anowm)
gESy oESy

= @(Z sign(o)ay o1y - - ~am(n)> =p(det A) . O
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Satz 15.7 Sei P = (p;;) € M(n x n, R[z]) eine Matriz von Polynomen und sei
a € R. Fir jedes 1 < 1, j < n sei a;; = p;;(a) der Wert des Polynoms p;; an
der Stelle a. Dann ist der Wert des Polynoms det P an der Stelle a gleich der
Determinanten der Matriz A = (a;j), d.h., es gilt (det P)(a) = det A.

Beweis Dies folgt unmittelbar aus Lemma 15.2 mit R’ = R[z] und mit ¢ dem
Einsetzhomomorphismus @, : R[z] — R. O
Satz 15.8 Sei R ein kommutativer Ring mit 1. Dann gilt

(det A)(det A™1) =1

fir jede invertierbare Matriz A € M(n x n, R). Insbesondere ist dann det A # 0.

Beweis Es gilt AA~! = E,, und damit ist nach Lemma 15.1 und Satz 15.3
(det A)(det A™') =detE, =1---1=1.
Daraus folgt nach Lemma 14.2, dass det A #0,da 0 # 1. O

Ist R ein kommutativer Ring mit 1, dann heiflen A, B € M(n X n, R) dhnlich,
wenn es eine invertierbare Matrix P € M(n x n, R) gibt, so dass B = P~'AP.

Satz 15.9 Ahnliche Matrizen haben die gleiche Determinante: Sind die Matrizen
A, B € M(n x n, R) dhnlich, so ist det B = det A.

Beweis Es gibt eine invertierbare Matrix P € M(n x n, R), so dass B = P~'AP,
und daraus folgt nach Satz 15.3, dass

det B = det(P~'AP) = (det P~")(det A) (det P) = (det P~*)(det P)(det A)
= (det(P~'det P))(det A) = (det E,)(det A) =det A . O

Im Folgenden sie K ein Korper.

Satz 15.10 Fine Matriz A € M(n x n, K) ist invertierbar genau dann, wenn
det A # 0.

Beweis Nach Satz 15.8 braucht man hier nur zu zeigen, dass det A = 0, wenn A
nicht invertierbar ist. Auflerdem kann man annehmen, dass n > 2, (da der Fall
n = 1 trivial richtig ist). Sei also A nicht invertierbar und seien vy, ..., v, die
Zeilen von A. Nach Satz 6.3 sind vy, ..., v, linear abhéngig und folglich gibt es
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nach Satz 3.4 (2) ein k mit 1 < k <mn, so dass vy, € L(v1,..., 0% 1, Vks1,---,Un),
d.h.; es gibt Ay, ..., A1, Akrr, -, Ap aus K so dass
Ve = AU+ -+ A1V 1 + A1Vt + -+ ApUp -
Nach Satz 15.1 ist dann
det A = det[vy,...,v,] = Z)\j det[vy, ..., k1,0, Vkt1, ..., 0] = 0. O

i#k

Sei A € M(n x n, K) eine invertierbare Matrix. Nach Satz 6.3 ist das zu (A, b)
gehorige lineare Gleichungssystem eindeutig losbar fiir jedes b € K. Das néchste
Ergebnis liefert eine Formel fiir diese eindeutige Losung.

Satz 15.11 (Cramersche Regel) Seib= (by,...,b,) € K" und fiir jedes j sei
A;’- € M(n xn, K) die Matriz, die man erhdlt, wenn die j-te Spalte von A durch b
ersetzt wird. Sei (A1,...,\,) € K" die eindeutige Losung des zu (A,b) gehirigen
linearen Gleichungssystems. Dann ist fir j=1,..., n

A; = (det A) 7 (det AS’)

(und nach Satz 15.10 ist hier det A # 0).

Beweis Seien wq, ..., w, die Spalten von A; also ist \jw; + -+ - + \,w,, = b und
daraus ergibt sich nach Satz 15.5, dass

det AI; = detwy, ..., wj—1,b,wjt1, ..., w,|

e det[wl, P 7wj717 )\lwl —'— P _'_ )\nwn’w]+17 o ’wn]/
= Z)\Z det[wl, e, Wi, Wiy Wiy, - - ,wn]’
i=1
= )‘j det[wl, ceey, Wi, Wy, Wig1y v v ,wn]' = >‘j det A s
d.h., A; = (det A)~"'(det A%). O

Seien a, b, ¢, d, u, v, € K mit ad # bc. Nach Satz 15.11 ist die eindeutige Losung
(«',y’) des linearen Gleichungssystems

ar +by = u
cx+dy =v

gegeben durch

2 = (det (‘C‘ Z))_l det (Z‘ Z) = (ad — cb) "} (ud — vb) |
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y = (det (‘C’ Z))_ det (“ g) = (ad — cb) " av — cu) .

Im Allgemeinen ist die Cramersche Regel eine sehr unpraktische Methode zur
Berechnung der Losung linearer Gleichungssysteme. Viel weniger aufwendig ist
der Gauflsche Algorithmus.

Nun werden einige Hilfssdtze zur Berechnung der Deteminanten betrachtet. Im
Folgenden sei R wieder ein kommutativer Ring.

Sei A € M(n xn,R) und 1 <14, j < n; mit A;; wird die aus A durch Weglassen
der i-ten Zeile und der j-ten Spalte entstehende (n — 1) x (n — 1) Matrix.

Satz 15.12 Sei A = (a;j) € M(n x n, R). Fir jedes k=1, ..., n gilt dann

det A = Z(—l)”kaik det A;, .

Beweis Sei k fest (mit 1 <k <n)und firi=1, ..., n sei

St ={o €S, a(i)=k}.

Die Teilmengen S}, ..., S” bilden also eine Partition der Menge S,,; damit ist
det A = Z Sign(0)a1 o1y« * Gno(n) Z Z Sign(0)a1o(1) * * * G o(n)
0ESh =1 oeS}

= Zam Z sign(o alo(l T Gi—10(i—1)Fit10(i+1) T Ano(n) -

c€eSy
Firi=1,...,nseiT;:S — S, ; die Abbildung, die definiert ist durch

o(0) falls £ < i und o(¢) <
ol)—1 falls ¢ <iund o(¢) >
o(l+1) falls¢>iund o(f) <

o(l+1)—1 falls ¢ >iund o(¢) >

Ti(o)(€) =

Dann ist T; eine Bijektion und fiir jedes o € S? ist
A1o(1) " Gi—10(i—-1)Fit10(i+1) " " Ano(n) = by (1) " 'bn—lr(n—l) )

wobel 7 = E(O’) und Azk = (bfj)lgﬁgn—l,lgjgn—l- FOlgllCh ist

Z Sign(U)a1a(1) Qi 10(i-1)Git1a(i+1) T na(n)

= (—1)Z+k Z Sigﬂ(T)bl (1) " 'bnflq—(nfl) = (—1>Z+k det Azk s

TESn—1
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da sign(T;(0)) = (—1)"**sign(o) (warum?). Daraus ergibt sich,

det A = Z Qi Z s1gn a10(1 Ai—10(i—-1)Ai+10(i+1) ** * Ano(n)

ceSh

= Z(—l)iJrkaik det Azk . O

Die Berechnungsformel in Satz 15.12 heifit Entwicklung der Determinante nach
der k-ten Spalte. Es gibt natiirlich auch eine entsprechende Berechnungsformel
fiir die Entwicklung der Determinante nach der k-ten Zeile:

Satz 15.13 Sei A = (a;;) € M(n x n, R). Fir jedes k=1, ..., n gilt dann

det A = Z(—l)k“akj det Ay; .

Beweis Nach Satz 15.12 und Satz 15.4 ist

n

det A = det A" = "(—=1)"aj; det(A")y,

i=1

n
- Z(— 1) ag; det(Ag;)* Z k”akj det Ay; . O

Lemma 15.3 Sei A = (a;;) € M(n x n, R) und sei A = (a;;) das Element von
M(n x n, R), das definiert ist durch

dij = (—1)i+j det Aji
fiir alle 1 <4, j <n. Dann gilt AA = AA = (det A)E,,.

Beweis Ist B € M(nxn, R) und 1 < i, k < n, so wird mit B*~* die n x n Matrix
bezeichnet, die man erhélt, wenn die k-te Zeile von B durch die ¢-te Zeile von B
ersetzt wird. Also ist B*¥* = B und det B¥~ = 0, falls k # i, da dann BF—*
zwei gleiche Zeilen hat. Man beachte, dass Bk*i = By, firalle1 <4, k, j <n.

Setze AA = (ci,); fiir 1 <4, k < n ist dann Satz 15.13

n

Cik = Zaw%k = Zaw 1)7* det Ay, = Z(—l)k”azj det Ag;

7j=1

= Z(—l)k”a’gf det A’g;_’ — det AF—i — { det A fallsi=F,

0 fallsi#k,

und folglich ist AA = (det A)E),. Das gleiche Argument (mit Spalten statt Zeilen
und Satz 15.12 statt Satz 15.13) zeigt, dass AA = (det A)E,,. O
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Satz 15.14 Fine Matriz A € M(n X n, R) ist genau dann invertierbar, wenn das
FElement det A von R invertierbar ist. (Ein Element a € R heifit invertierbar,

wenn es b € R mit ab =1 gibt. In diesem Fall ist b eindeutig und man schreibt
b=a'.)

Beweis Ist det A invertierbar, so ist nach Lemma 15.3 die Matrix A invertierbar
mit A~' = (det A)~'A. Ist umgekehrt A invertierbar, so ist AA~' = E, und
damit ist 1 = det AA™! = (det A)(det A~!). Folglich ist det A invertierbar mit
(det A)7t=det A~ O

Im Folgenden sei K ein Korper. Fiir die praktische Berechnung der Determinante
einer Matrix aus M(nxn, K) sind im Allgemeinen die in Satz 15.12 und Satz 15.13
gegebenen Berechnungsformeln zu aufwendig. Es ist meistens besser, das folgende
Ergebnis in Zusammenhang mit dem Gaufischen Algorithmus zu benutzen .

Satz 15.15 Seien A, B € M(n x n, K).

(1) Erhdlt man B aus A durch Addition eines Vielfachen einer Zeile zu einer
anderen Zeile, so ist det B = det A.

(2) Erhdlt man B aus A durch Vertauschen zweier Zeilen, so ist det B = — det A.

Beweis (1) Seien vy, ..., v, die Zeilen von A und v, ..., v/, die Zeilen von B.
Dann gibt es A € K und 1 < j, k < n mit j # k, so dass

o — v; falls 1 #£ j |
vyt fallsi =g,

und daraus folgt nach Satz 15.1, dass

det B = det[v],...,v)] = det[vy,...,vj_1,0; + AUk, Vjs1, - ., Un)
= detfvy,...,0j_1,V5, 041, ..., Up] + Adet[vr, ..., V51, Uk, Vg1, - - -, V)
=det A+ N0 =det A .

(2) Dies folgt unmittelbar aus Satz 15.2. O

Sei A € M(n x n, K); nach dem GauBschen Algorithmus (Satz 1.5) lat sich
A durch eine Folge von elementaren Zeilenumformungen in eine Matrix B mit
Zeilen-Stufen-Form tiberfiithren und nach Satz 15.3 ist dann det A = (—1)" det B,
wobei m die Anzahl der verwendeten Vertauschungen ist. Aber eine Matrix in
Zeilen-Stufen-Form ist insbesondere eine obere Dreiecksmatrix und daher kann
ihre Determinante direkt mit Hilfe von Lemma 15.1 berechnet werden.



16 Das charakteristische Polynom

Im Folgenden sei R ein kommutativer Ring mit 1.

Sei A = (a;;) € M(n x n,R); da R C R[z], kann A auch als Element von
M(n x n, R[z]) betrachtet werden. Das Element

Xa = det(A — zE,)

von R[z]| heiit das charakteristische Polynom von A. Es gilt also x4 = det P,
wobei P = (p;;) € M(n x n, R[z]) die Matrix ist mit

_Jai—x falls i =7,
Pig = a;; fallsi#j.

Insbesondere ist fir n = 2

XA:det(an_x a12 )

g1 Q2 — X

= (a1 — x)(ag — ) — a12a21 = (a11a29 — A12a21) — (a11 + ag)r + z?

(und man merke, dass ajja92 — aj2a2; = det A), und fiir n = 3 ist

a3 —T Q12 @13
Xa = det a1 Q2 — X g3
a3 agz Q33 — T

=d— (a11a22 + G92G33 + Q11033 — Q23032 — Q12021 — a13a31)$
2 3
+ (a11 + agn + agz)r —z°

wobel
d = aj1a22a33 — 11023032 — Q12021033 + Q12023031 — A13A22031 + 13021 A32

und damit ist d = det A.

Satz 16.1 Fir jedes A € M(nxn, R) ist xa ein Polynom vom Grad n. Ist ferner
A = (a;;) € M(n x n, R) und

XA =ag+ax+ -+ a,z",
so ist ag = det A, a,_1 = (=1)""Yay + ag + -+ + apn) und a, = (=1)".
Beweis Es gilt x4 = det P, wobei P = (p;;) € M(n x n, R[z]) wie oben ist. Sei
Pd = P11 Pnn = (afll _:L‘)(ann_x) ;

142
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dann ist p; ein Polynom vom Grad n und

XA = Z Sign(a)plg(l) “""Pno(n) = Pd + Z Sign(a)pla(l) “*Pnon)
o€Sh UGS;L

wobei S/, = S, \ {e}. Sei o € S!; dann gibt es mindestens ein i mit o(i) # i (und
damit p;s() = aio) ) und folghch 1St P14(1) * * * Pno(n) entweder 0 oder ein Polynom
vom Grad n, mit n, < n. Daraus ergibt smh, dass x4 ein Polynom vom Grad n
ist. Der Beweis fiir den Rest ist eine Ubung. O

Satz 16.2 Ahnliche Matrizen haben das gleiche charakteristische Polynom: Sind
A, B € M(n x n, R) dhnlich, so ist xp = xa-

Beweis Es gibt eine invertierbare Matrix P € M(n x n, R), so dass B = P~'AP.
Betrachte die Matrizen A, B, P, P~! und E, als Elemente von M(n x n R[x]);
dann gilt

B—xE,=P'AP —2(P'E,P)= P'AP — P Y(zE,)P = P (A — 2E,)P,
da P~'P = E, auch in M(n X n, R[z]) gilt, und daraus folgt nach Satz 15.3, dass

x5 = det(B — zE,) = det(P™'(A — 2E,)P)
= (det P7Y)(det(A — zE,))(det P) = (det P~')(det P)(det(A — zE,))
= (det(P~'P))(det(A — zE,)) = (det E,)(det(A — zE,))
=det(A—zE,)=xa. O

Im Folgenden sei K ein Korper.

Satz 16.3 Sei A € M(n x n, K); dann sind die Figenwerte von A genau die
Nullstellen des charakteristischen Polynoms x a. Mit anderen Worten ist A € K
ein Eigenwert von A genau dann, wenn x4(A) = 0.

Beweis Nach Satz 6.3 ist A € K ein Eigenwert von A genau dann, wenn die
Matrix A —AE,, € M(n x n, K) nicht invertierbar ist. Folglich ist nach Satz 15.10
A genau dann ein Eigenwert, wenn det(A — AE,) = 0. Aber nach Satz 15.7 ist

det(A — AE,) = (det(A — zE,))(\) = xa(A) .
Damit sind die Eigenwerte von A genau die Nullstellen von x4. O

Beispiel Sei A € M(2 x 2, R) folgende Matrix:

(i)
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Dann ist x4 = —6 —x + 2> = (3 — z)(—2 — z) und damit sind 3 und —2 die
Eigenwerte von A.

Es gibt numerische Verfahren fiir die Berechnung der Nullstellen von reellen und
komplexen Polynomen. Diese Verfahren kann also zur Berechnung der Eigenwerte
reeller und komplexer Matrizen angewendet werden.

Sei A € M(n xn, K); nun gibt es das folgende Verfahren, das priift, ob die Matrix
A diagonalisierbar ist:

(1) Man bestimme die (verschiedenen) Nullstellen A, ..., A, von x4. Nach
Satz 16.3 sind dann Ay, ..., A, die Eigenwerte von A.

(2) Fiir jedes j =1, ..., m ist nach Lemma 10.4

E(A, )\j) = LOS(A - )\jEna O)
und also kann mit Hilfe von Satz 16.1 und des Gauflschen Algorithmus eine Basis
(ui, ..., up ) von E(A, ;) konstruiert werden.
(3) Nach Satz 10.6 ist A diagonalisierbar genau dann, wenn p; + - - - + p,, = n.
(4) Nehme an, dass A diagonalisierbar ist und setze

(wy,...,w,) = (u%,...,ull)l,u%,...,u§2,...,u’f1,...,u;1m) )
Sei @ € M(n x n, K) die Matrix, die wy, ..., w, als Spalten hat. Nach Satz 10.2
ist @ invertierbar und Q 'AQ = D, wobei D die Diagonalmatrix ist mit den
Eintragen Ay,..., A1,..., Ap, ..., A auf der Diagonalen, wobei fiir jedes j der
Eigenwert )\; genau p;-mal vorkommt.

Ein Korper K heifit algebraisch abgeschlossen, wenn jedes Polynom f € K[x] mit
f # 0 und Grad f > 1 eine Nullstelle besitzt. Ist K algebraisch abgeschlossen, so
gilt nach Satz 16.3, dass jede Matrix A € M(n x n, K) einen Eigenwert besitzt.

Satz 16.4 (Fundamentalsatz der Algebra) C ist algebraisch abgeschlossen.

Beweis Trotz seines Namens ist der Fundamentalsatz der Algebra eigentlich ein
Satz der Analysis und einen Beweis dafiir wird man erst in Analysis II oder in
einer Vorlesung iiber Funktionentheorie kennenlernen. O

Nach Satz 16.3 und Satz 16.4 besitzt jede komplexe Matrix einen Eigenwert.

Der Korper R der reellen Zahlen ist nicht algebraisch abgeschlossen. Zum Beispiel
besitzt das Polynom 1+ z? € R[z] keine Nullstelle. (Dagegen sind 7 und —i die
Nullstellen des komplexen Polynoms 1+ z? € C[z].) Damit besitzt

1= ()
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(als reelle Matrix) keinen Eigenwert, da x4 = 1+ 2.
Die Korper F,, p eine Primzahl, sind ebenfalls nicht algebraisch abgeschlossen.
Sei nun V ein endlichdimensionaler Vektorraum iiber X mit dimV =n > 1.

Sei f : V — V ein Endomorphismus von V. Seien o und 3 Basen von V und sei A
bzw. B die Matrix von f beziiglich der Basis a bzw. beziiglich der Basis (3. Nach
Satz 8.8 sind die Matrizen A und B dhnlich und daraus folgt nach Satz 16.2, dass
XB = X4. Man kann also das charakteristische Polynom x; von f durch x5 = xa
definieren, wobei A die Matrix von f beziiglich irgendeiner Basis von V ist.

Satz 16.5 Sei f : V — V ein Endomorphismus. Dann sind die Eigenwerte von
[ genau die Nullstellen von x¢. Mit anderen Worten ist A € K ein Figenwert
von f genau dann, wenn X () = 0.

Beweis Dies folgt unmittelbar aus Satz 16.3 und Satz 10.3 (1). (Ist A die Matrix
von f beziiglich einer Basis @ von V und ist A € K, so behauptet Satz 10.3 (1),
dass A genau dann ein Eigenwert von f ist, wenn es ein Eigenwert von A ist.) O

Erinnerung: Ist f : V — V ein Endomorphismus, so heifit ein Untervektorraum
U von V' f-invariant, wenn f(U) C U.

Satz 16.6 Sei f : V — V ein Endomorphismus und set U ein f-invarianter
Untervektorraum von V- mit dimU > 1. Dann gibt ein Polynom p € Klz|, so
dass Xt = Xf,,p- (Das Polynom Xf st also ein Teiler von Xf-)

Beweis Dies ist trivial richtig, wenn U = V' und also kann man annehmen, dass
m = dim U < n; setze £ = n—m. Nach dem Basisergénzungssatz gibt es eine Basis
(v1,...,v,) von V so dass (vy,...,v,) eine Basis von U ist. Sei A € M(n xn, K)
die Matrix von f beziiglich (vy,...,v,). Dann hat A die Gestalt

A C
0 B
wobei A’ € M(mxm,K), Be M x{,K)und C € M(m x ¢, K), und A’ ist die

Matrix von fiy beziiglich (uy,. .., uy). Nun gilt

A—:L’En:<A_xEm C )

0 B —zE,
und daraus ergibt sich nach Satz 15.6, dass

Xy = det(A — zE,) = det(A' — zE,,) det(B — 2E;) = xf, x5 - O
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Erinnerung: Eine Matrix A € M(n xn, K) heifit trigonalisierbar, wenn sie &hnlich
zu einer oberen Dreiecksmatrix ist und ein Endomorphismus f : V' — V heif3t
trigonalisierbar, wenn es eine f-invariante Fahne gibt. (Eine Folge Vg, Vi, ..., V},
von Untervektorrdumen von V heiflt eine Fahne, wenn

{0} =VocViC---C V,=V

und dimV; = j fiir jedes j = 0, ..., n, und eine Fahne Vj, Vi, ..., V, heiit
f-invariant, wenn fiir jedes j der Untervektorraum V; f-invariant ist.)
Ist f:V — V ein Endomorphismus von V und ist A € M(n x n, K) die Matrix

von f beziiglich irgendeiner Basis von V/, so ist nach Satz 11.1 f trigonalisierbar
genau dann, wenn A trigonalisierbar ist.

Sei f € K[x] ein Polynom mit f # 0 und Grad f > 1; man sagt, dass f in
Linearfaktoren zerfdllt, wenn es Elemente i, ..., A\,, A € K gibt, so dass

f=AXMN—-2)--(\,—2x).
Dann ist A # 0, n = Grad f und A, ..., A\, sind genau die Nullstellen von f, da

) =AM =p) - (A =) =0

genau dann, wenn p = A; fiir ein j. Zerfallt f in Linearfaktoren, so sieht man
leicht, dass die Darstellung f = A(Ay —z) - - - (A, — x) bis auf die Reihenfolge der
Faktoren eindeutig ist.

Satz 16.7 Ist K algebraisch abgeschlossen, so zerfillt jedes Polynom f € K|x]
mit [ # 0 und Grad f > 1 in Linearfaktoren.

Beweis Sei f € K[z| mit f # 0 und Grad f > 1; da K algebraisch abgeschlossen
ist, besitzt f eine Nullstelle A\ und nach Satz 14.4 gibt es dann ein eindeutiges
Polynom g € K|z, so dass f = (A — z)g. Da g # 0 und Grad g = (Grad f) — 1,
erfolgt der Beweis nun per Induktion nach n = Grad f. O

Insbesondere folgt aus Satz 16.4 und Satz 16.7, dass jedes Polynom f € Clz] mit
f # 0 und Grad f > 1 in Linearfaktoren zerfillt. Dagegen zerfillt zum Beispiel
das Polynom 1 + z? € R[z] nicht in Linearfaktoren, da dieses Polynom keine
Nullstellen besitzt.

Sei A € M(nxn, K); zerfallt das charakteristische Polynom y 4 in Linearfaktoren,
dann gibt es A1, ..., A\, € K, so dass

Xp = —x)-- (A=),

da nach Satz 16.1 (—1)" der Leitkoeffizient von y 4 ist. Das Gleiche gilt auch fiir
X¢f, wenn f : V — V ein Endomorphismus ist.
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Satz 16.8 (1) Eine Matrix A € M(n x n, K) ist genau dann trigonalisierbar,
wenn das charakteristische Polynom x4 in Linearfaktoren zerfdillt.

(2) Ein Endomorphismus f : V. — V won V ist genau dann trigonalisierbar,
wenn das charakteristische Polynom Xy in Linearfaktoren zerfdllt.

Beweis Nehme zuerst an, dass die Matrix A € M(n x n, K) trigonalisierbar ist.
Dann ist A dhnlich zu einer oberen Dreiecksmatrix B = (b;;) € M(n x n, K') und
nach Satz 16.2 ist x4 = xp. Aber die Matrix B — zE,, € M(n x n, K[z]) ist auch
eine obere Dreiecksmatrix mit den Eintrédgen by; —x, bes —x, ..., by, —x auf der
Diagonalen und daraus folgt nach Lemma 15.1, dass

Xa=xp=det(B—zE,) = (b —z) - (bpn — ) .

Damit zerfallt das charakteristische Polynom x4 in Linearfaktoren.

Ist der Endomorphismus f : V' — V trigonalisierbar, dann folgt unmittelbar aus
Satz 11.1, dass auch das charakteristische Polynom x in Linearfaktoren zerféllt.

Nehme nun an, dass das charakteristische Polynom x in Linearfaktoren zerféllt,
es gibt aso Ay, ..., A\, € K, so dass

Xfr=W\—x)---(A\,—2).

Sei U ein f-invarianter Untervektorraum von V' mit dimU = m > 1. Nach
Satz 16.6 gibt es ein Polynom p € Kfz], so dass x;y = Xy, p und daraus folgt
nach Lemma 14.10, dass xj,, (Ar) = 0 fiir mindestens ein k. Dann ist aber Ay ein
Eigenwert von fjy und damit enthélt U einen Eigenvektor von f. Daraus ergibt
sich nach Satz 11.2, dass f trigonalisierbar ist.

Hier ist ein anderer Beweis, der Satz 11.2 nicht benutzt: Es wird durch Induktion
nach n = dim V' gezeigt, dass f trigonalisierbar ist. Die Aussage ist trivial richtig,
wenn n = 1, da in diesem Fall jeder Endomorphismus trigonalisierbar ist. (Es gibt
nur eine Fahne und sie ist stets invariant.) Sei also n > 1 und nehme an, dass
g immer dann trigonalisierbar ist, wenn 1 < dimW < nund g : W — W ein
Endomorphismus von W ist, fiir den x, in Linearfaktoren zerféllt.

Da x; in Linearfaktoren zerfdllt, gibt es Ay, ..., A, € K, so dass

Xfr=M—a)-(\ —2x).

Dann ist insbesondere xf(A;) = 0 und daraus folgt nach Satz 16.5, dass A\
Eigenwert von f ist. Sei v; ein Eigenvektor von f zum FEigenwert A\;; nach dem
Basisergidnzungssatz gibt es dann vy, ..., v, € V, so dass (vy,...,v,) eine Basis
von V ist. Sei A = (a;;) € M(n x n, K) die Matrix von f beziiglich der Basis
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(v1,...,v,). Da f(vy) = Ajvy, ist a;; = A\ und a;; = 0 fir ¢ > 1; A hat also
folgende Gestalt:

wobei B € M((n — 1) x (n — 1), K). Folglich ist nach Satz 15.6
xa =det(A—zE,) = (A —x)(det(B —xE,_1))

und nach Lemma 14.9 (2) ist dann xp = det(B —zE,_1) = (A2a —x) - - - (A, — 2),
d.h., das charakteristische Polynom yxpg zerfillt in Linearfaktoren.

Sei nun W = L(vg,...,v,); da (vg,...,v,) eine Basis von W ist, gibt es nach
Lemma 5.11 einen eindeutigen Endomorphismus g : W — W von W, so dass

9(vj) = agjva + - - + apjvy,

fir 7 = 2, ..., n, und natiirlich ist B die Matrix von g beziiglich (vq,...,v,).
Insbesondere zerfallt das charakteristische Polynom x, = xp in Linearfaktoren
und damit ist nach der Induktionsannahme ¢ trigonalisierbar. Es gibt also eine
g-invariante Fahne

{O}ZWOCW1C“‘CWn_1:W

und nach wiederholter Anwendung des Basisergdnzungssatzes gibt es eine Basis
(wy,...,wy—1) von W, so dass fiir jedes j =1, ..., n—1 (wy,...,w,;) eine Basis
von Wj ist. Dann ist nach Lemma 3.12 und Satz 4.6 (2) (vy,wy,...,w,_1) eine
Basis von V', da vy ¢ L(vy,...,v,) = L(wq,...,w,_1). Setze V; = L(v;) und
fir j =2,..., nsel V; = L(vy,wy,...,wj_1); also ist Vj = {0}, V4, ..., V,, eine
Fahne. Fiir jedes j = 2, ..., n ist nun

f(vj) = arjor + -+ 4 anjvn = ayjvr + g(v;)
und damit ist (f — ¢)(v;) € L(v) fir j = 2, ..., n. Daraus ergibt sich nach
Satz 3.2, dass (f — g)(w) € L(vy) fiir alle w € L(vy, ..., v,) = W. Folglich ist

f(wg) € L(vy, g(wg)) C Lvy,wy, ..., wg)

fir k=1, ..., n—1, und daher ist f(V;) C V; fir j =1, ..., n, d.h., die Fahne
Vo, Vi, ..., V, ist f-invariant. Dies zeigt, dass f trigonalisierbar ist.

Nehme schlielich an, dass das charakteristische Polynom x4 in Linearfaktoren
zerfillt. Da A die Matrix von ¢4 beziiglich der kanonischen Basis von K" ist, ist
Xoa = Xa. Damit zerfdllt x,, in Linearfaktoren und daraus ergibt sich, dass ¢4
trigonalisierbar ist. Folglich gilt nach Satz 11.1, dass A trigonalisierbar ist. O
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Satz 16.8 zeigt, dass jede komplexe Matrix trigonalisierbar ist. Genauso ist jeder
Endomorphismus eines endlichdimensionalen C-Vektorraumes trigonalisierbar.

Im Beweis fiir Satz 16.8 wird die entsprechende Aussage fiir Endomorphismen
benutzt, um zu zeigen, dass A trigonalisierbar ist, wenn x4 in Linearfaktoren
zerfallt. Es ist aber moglich, dies direkt zu beweisen: Sei A,, € M(n x n, K) eine
Matrix, fiir die das charakteristische Polynom x4, in Linearfaktoren zerfallt. Sei
A1 ein Eigenwert von A,, und wéhle eine Basis (v, ..., v,) von K", so dass v; ein
Eigenvektor von A, zum Eigenwert \; ist. Sei P,, € M(n x n, K) die Matrix mit
Spalten vy, ..., v, (also ist P, invertierbar). Setze A/, = P, 1A, P,; die Matrix
A, = (aj;) hat die Gestalt:

wobei A, 1 € M((n — 1) x (n— 1), K). Dann gilt nach Satz 15.6, dass
Xa, = det(A, —zE,) = (M —x)det(A,—1 —2E,_1) = (M — 2)xa,_,
und daraus ergibt sich, dass x4, , in Linearfaktoren zerféllt. Nehme an, dass es

eine invertierbare Matrix R,_1 = (r;;) € M((n — 1) x (n — 1), K) gibt, so dass
B, = R;EIAn_an_l eine obere Dreiecksmatrix ist. Setze

10 --- 0 Moy o
0 0 1 B 0
n = un n — ’
Rnfl anl
0 0
wobei fiir jedes j =1, ..., n—1

f— , . , . .« .. , .
Qj = Q1715 + Q3T + -+ Qg Tn-1j -

Dann ist @),, invertierbar und B,, ist eine obere Dreiecksmatrix, und man priift
leicht nach, dass A, = Q,,B,Q,!. Damit ist A, = R, B, R, wobei R, = P,Q,.
Dies zeigt, dass die n x n Matrix A,, trigonalisierbar ist, wenn die (n—1) x (n—1)
Matrix A,_; trigonalisierbar ist. Durch Induktion nach n kann man auf diese
Weise beweisen, dass A,, trigonalisierbar ist.



17 Das minimale Polynom

In Folgenden sei R ein kommutativer Ring mit 1.

Lemma 17.1 Zu jeder Matriz B € M(n x n, R) gibt es einen eindeutigen Ring-

Homomorphismus ®p : R[x] — M(n x n, R) mit ®5(1) = E, und ®5(z) = B.

Beweis Definiere ®p : R[z] — M(n x n, R) durch ®5(0) = 0 und
bp(ag+ a1z + -+ apx™) =aE, + a1 B+ -+ a, B™,

falls m > 0 und a,, # 0. Dann gilt ®5(1) = E,, und ®5(B) = B und man sieht
leicht, dass ®p ein Homomorphismus ist, da APt = AP A? und zP*? = P27 fiir
alle p, ¢ > 0. Ist ¢ : R[x] — M(n X n, R) ein Homomorphismus mit ¢(1) = E,
und ¢(B) = B, dann gilt ¢(2™) = B™ fur alle m > 1 und damit ist

olag+ -+ apz™) =ak, + -+ apnB™ = $plag+ -+ - + apx™)

fiir alle ag, ..., a,, € R, m > 0, und folglich ist p = &5. O

Satz 17.1 (Cayley-Hamilton) Fiir jedes A € M(n x n, R) gilt ®4(xa) = 0.

Beweis Sei A, = (A —zE,)" = A" — 2E, € M(n x n, R[z]). Dann ist
xa = det(A —zE,) = det(A — zE,) = det A, ,
und daraus ergibt sich nach Lemma 15.3, dass
A A, = (det A)E, = xaE,

in M(n x n, R[z]), d.h., die Matrix A, A, ist das ya-fache der Einheitsmatrix in
M(n x n, R[z]).

Nach Lemma 15.2 induziert nun der Homomorphismus ®4 : R[z] — M(n x n, R)
einen Homomorphismus ® 4 : M(n x n, R[z]) — M(n x n, M(n x n, R)). Schreibe
xXa(A) = Pa(xa). Es gilt dann

DA(XAE,) = Da(AAy) = Pa(A)DA(A,)

in M(n x n,M(n x n, R)) und @)A(XAEH) = xa(A)E,, d.h, @A(XAEn) ist das
X a(A)-fache der Einheitsmatrix in M(n x n, M(n x n, R)).

Definiere ® : M(n x n, M(n x n, R)) x (R")"™ — (R™)" durch
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wobei w; = bjjv1 + - - - + b v, mit B = (b;;) und wobei die Elemente von R™ und
(R™)™ als Spaltenvektoren betrachtet werden. Man priift leicht nach, dass

(CB) Ul ~Ccwo(Be vl )

Un Un

fir alle B, C € M(n x n,M(n x n,R)), vy, ..., v, € R". Seien ey, ..., e, € R"
die iiblichen Einheitsvektoren. Fiir B = & A(A'—2E,) gilt by; = aj; E, — ;A und
folglich ist
€1 0
O A" —zE )2 | =],
en 0

da fiir jedes1 =1, ..., n

aliEnel+"'+a'niEnen = ap;e1 + -+ apién
:Si:Aei:0+"'+A6i+"‘+O

mit sy, ..., s, € R™ die Spalten von A. Fiir B = éA(XAEn) gilt andererseits
bi; = 6;;xa(A) und folglich ist

€1 xa(Aer
Pa(xaBa)® | 1 | = :
€n xa(Ae,
Daraus ergibt sich, dass
xa(A)e e e1
: =da(aB) @ | o | =daAA)® |
XA(A>€n €n €n
€1
= (Da(A)da(A" —zE)) © |
€n
€1
—d,(4) @ (éA(Af —zE)e | : )
€n
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d.h., xa(A)ep =0fir k=1, ..., n. Aber xa(A)eg ist die k-te Spalte von x4 (A),
und also ist xy4(A4) =0. O

Im Folgenden sei nun K ein Korper. Fiir jede Matrix A € M(n x n, K) sei
¢, : K[z] — M(n x n, K) immer noch der eindeutige Ring-Homomorphismus
mit ®4(1) = E,, und ®4(x) = A.

Satz 17.2 Sei A € M(nxn, K); dann gibt es ein eindeutiges normiertes Polynom
my € Klx] mit der folgenden FEigenschaft: Fir p € Klz| gilt ®a(p) = 0 genau
dann, wenn ma ein Teiler von p ist. (ma heifit das minimale Polynom von A).

Beweis Nach Satz 17.1 ist ®4(x4) = 0, d.h., x4 € Kern®,4. Aber x4 # 0 und
also ist Kern ®4 # {0}. Nach Satz 14.3 gibt es also ein eindeutiges normiertes
Polynom my € K|z, so dass Kern ®4 = (my). Fiir ein Polynom p € K|[z] gilt
daher ®4(p) = 0 genau dann, wenn m4 ein Teiler von p ist. O

Nach dem Satz von Cayley-Hamilton teilt m4 das charakteristische Polynom y 4.
Lemma 17.2 Seien A, B € M(n x n, K) dhnlich. Dann gilt my = mpg.

Beweis Es gibt eine invertierbare Matrix P € M(n x n, K), so dass B = P~1AP.
Dann ist B™ = P7'A™P fiir jedes m > 0 und damit ®p(p) = P~ 1®4(p)P fiir
jedes p € K|z|. Insbesondere gilt

dp(my) = P'®,(my)P =P 0P =0

und folglich ist mp ein Teiler von m,4. Genauso ist m, ein Teiler von mp und
daher ist m4 = mp, da die Polynome m, und mpg beide normiert sind. O

Satz 17.3 Sei A € M(n x n,K). Dann sind die Eigenwerte von A genau die
Nullstellen von my und damit haben my und x4 die gleichen Nullstellen.

Beweis Da m4 das charakteristische Polynom x 4 teilt, ist jede Nullstelle von m 4
auch eine Nullstelle von x 4. Sei umgekehrt A\ eine Nullstelle von x4, d.h., A ist
ein Eigenwert von A. Sei v € K™ ein Eigenvektor von A zum Eigenwert \ und
sei mg = ag + a1z + - -+ + ap2™ (und also ist a,, = 1). Da Av = Ao, gilt auch
AFy = Neo fiir jedes k£ > 0 und damit ist

(ag + ar A+ -+ apA™)v
= agV + A\ + - + a A"V = agEpv + aAv + - - -+ a, AT
= (aoEn + a1 A+ -+ an,A™)v = Pa(my)v =00 =0.

Folglich ist ag + a1\ + -+ - + a,,\™ = 0, da v # 0, d.h., A ist eine Nullstelle von
my. O



18 Euklidische und unitire Vektorriaume

Sei V' ein reeller Vektorraum (d.h. ein Vektorraum iiber dem Koérper R). Eine
Abbildung s : V x V — R heifit Bilinearform, wenn

s(Auy + Aaug, v) = Ays(ug,v) + Aas(ug,v) und

s(v, Mg + Aaug) = Ais(v, uy) + Aas(v, ug)
fiir alle uy, ug, v € V und alle A;, \y € R. Eine Bilinearform s : V xV — R
heilt symmetrisch, wenn s(u,v) = s(v,u) fir alle u, v € V. Eine symmetrische
Bilinearform s : V' x V' — R heifit positiv definit, wenn s(v,v) > 0 fiir alle
v € V mit v # 0. Ist s positiv definit, so ist insbesondere s(v,v) > 0 fiir alle

v eV, das(0,0) =0 fiir jede Bilinearform s. Eine positiv definite symmetrische
Bilinearform nennt man Skalarprodukt.

Ein Paar (V, (-,-)) bestehend aus einem reellen Vektorraum V' und einem Skalar-
produkt (-,-) : V x V — R heiit euklidischer Vektorraum.

Ist (V, (-,-)) ein euklidischer Vektorraum, so wird die durch
[o]] = v/ (v, )
definierte Abbildung || - || : V' — R* die Norm genannt.

Beispiele: (1) Definiere - : R" x R™ — R durch

(1, xn) - (Y1, -5 Yn) Zxkyk

Dann ist (R",) ein euklidischer Vektorraum, der R™ mit dem tblichen Skalar-

produkt genannt wird. Es gilt

] =
fir alle v = (z4,...,2,) € R™
(2) Seien a, b € R mit a < b und sei C([a,b],R) der reelle Vektorraum aller
stetigen Abbildungen von [a,b] nach R. Sei (-,-) : C([a,b],R) x C([a,b],R) — R

die Abbildung, die definiert ist durch

(r.9) = [ st d

Dann ist (C([a,b],R), (-,-)) ein euklidischer Vektorraum. (Der Beweis dafiir ist
eine Ubung.)

153
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(3) Sei ¢y der reelle Vektorraum aller quadratisch summierbaren Folgen reeller
Zahlen. (Eine Folge {z,},>0 heifit quadratisch summierbar, wenn es ein N > 0
gibt, so dass > 22 < N fiir alle m > 0, d.h., wenn die unendliche Reihe

=0"n
> o0 @ Konvergiert.) Seien {z, baso, {nbnzo € lo; da [zayal < (a2 + y2) fi
jedes n > 0, konvergiert die unendliche Reihe ano TnYn. Folglich kann eine
Abbildung (-, -) : 5 x 5 — R durch

<{xn}n207 {yn}n20> = Z TnYn

n>0

definiert werden und dann ist ({2, (-, -)) ein euklidischer Vektorraum. (Der Beweis
dafiir ist eine Ubung.)

In den folgenden zwei Sétzen sowie in Lemma 18.1 sei (V, (-, -)) ein euklidischer
Vektorraum.

Satz 18.1 (Cauchy-Schwarzsche Ungleichung) Fiir alle u, v € V' gilt

(u, v)| < /(u,u){v,v) .

Beweis Fiir jedes A € R gilt

0 < (u—A,u— M) = (u,u— ) — Av,u— \v)
= (u,u) — Mu,v) — Mo, u) + A2 {v,v) = (u,u) — 2\ (u,v) + X\*(v,v) ,

d.h. (v, v)A? — 2{u, v)\ + (u, u) > 0 fiir alle A € R. Daraus ergibt sich, dass
(u,v)* < (u,u) (v, v)
und damit |(u, v)| < v/{u,u){v,v). (Sind b, c € R, a > 0 und a\? — 2bA +¢ >0

fiir alle A € R, so ist b* < ac.) O

Satz 18.2 Die Norm || - || : V — R* hat folgende Eigenschaften:
(1) ||v]| =0 genau dann, wenn v = 0.

(2) || \vl|| = [A|||v|| fir allev eV, X € R.

(3) Dreiecksungleichung ||u+ v|| < ||lu|| + ||v|| fir alle u, v e V.

Beweis (1) und (2) sind klar. (3): Nach Satz 18.1 ist

Ju+v]]? = (u+v,u+v) = (u,u) + 2{u,v) + (v, v)
= Jlull® + 2(u, v) + [[v]|* < Jul? + 2[ull|lo] + [[v]I* = (Ju] + |v])?

und daraus folgt, dass ||u +v|| < [Jul| + ||v]. O
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Lemma 18.1 (Polarisierungsidentititen) Fir alle u, v €V gilt

(u,v) = 3([ull* + [0]* = [lu = v]|*) = §(lu+vlI* = lu —]*) .

Beweis Ubung. O

Der Begriff des Skalarproduktes wird nun auch fiir komplexe Vektorrdume ein-
gefiithrt. Ein komplexer Vektorraum zusammen mit einem Skalarprodukt heifit
unitérer Vektorraum.

Sei V' ein komplexer Vektorraum (d.h. ein Vektorraum tiber dem Korper C). Eine
Abbildung s: V x V — C heifit Sesquilinearform, wenn

s(Aug + Aug, v) = Ais(ug, v) + Aas(ug,v) und
s(v, Ay + Aattn) = A18(v,u1) + Aas(v, us)

fiir alle uq, ug, v € V und alle A\{, Ay € C. Eine Sesquilinearform s : V x V — C
heilt Hermitesche Form, wenn s(u,v) = s(v,u) fiir alle u, v € V. Ist s eine
Hermitesche Form, dann gilt s(v,v) = s(v,v) fir alle v € V', d.h. s(v,v) € R fiir
alle v € V. Eine Hermitesche Form s : V' x V — C heifit positiv definit, wenn
s(v,v) > 0 fir alle v € V mit v # 0. Ist s positiv definit, so ist insbesondere
s(v,v) > 0 fiir alle v € V', da s(0,0) = 0 fiir jede Sesquilinearform s. Eine positiv
definite Hermitesche Form nennt man Skalarprodukt.

Ein Paar (V,(-,-)) bestehend aus einem komplexen Vektorraum V und einem
Skalarprodukt (-, ) : V' x V' — C heifit unitirer Vektorraum.

Ist (V, (-,)) ein unitdrer Vektorraum, so wird die durch
[0l = v/ {v, v)

definierte Abbildung || - || : V' — R die Norm genannt.
Beispiele: (1) Definiere - : C" x C* — C durch

n
(21,...,zn)-(w1,...,wn):sz@j.
j=1

Dann ist (C", -) ein unitérer Vektorraum , der C™ mit dem tblichen Skalarprodukt

genannt wird. Es gilt [|z[| = /> 7_, [z fiir alle z = (z1,...,2,) € C".

(2) Seien a, b € R mit a < b und sei C([a, b],C) der komplexe Vektorraum aller
stetigen Abbildungen von [a, b] nach C. Dann ist (C([a,b],C), (-,)) ein unitérer
Vektorraum, wobei (-, -) : C([a, b],C) x C([a,b],C) — C durch

(f.g) = / F ()5 di
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definiert ist. (Der Beweis dafiir ist eine Ubung.)

(3) Sei £5 der komplexe Vektorraum aller Folgen quadratisch summierbarer kom-
plexer Zahlen. (Eine Folge {z,},>0 heifit quadratisch summierbar, wenn es ein
N > 0 gibt, so dass Yo" |z,|* < N fiir alle m > 0, d.h., wenn die unendliche
Reihe Y, .o |2a|* konvergiert.) Seien {z,}n>0, {wn}nzo € €5; dann konvergiert
die unendliche Reihe Y, - 20y, da [2,W,| < 5(]20|* + |wn|?). Folglich kann eine
Abbildung (-,-) : €5 x ¢§ — C durch

({zn}n>0, {wn}tnz0) = Z Zn W,

n>0

definiert werden und dann ist (¢S, (-,-)) ein unitdrer Vektorraum. (Der Beweis
dafiir ist eine Ubung.)

In den folgenden zwei Sétzen sowie in Lemma 18.2 sei (V,(-,-)) ein unitérer
Vektorraum.

Satz 18.3 (Cauchy-Schwarzsche Ungleichung) Fir alle u, v € V' gilt

[ {w, )| < ullflv]} -

Beweis Wenn v = 0, dann ist ||[v]| = 0 und (u,v) = 0 und in diesem Fall ist
|(u,v)| = ||u||||v]] = 0. Sei also v # 0. Fiir jedes A € C gilt

0 < (u—Av,u— M) = (u,u— ) — v, u— \v)
= (u, 1) — Mu, v) — Mo, u) + (v, v) = (u,u) — Mu,v) — Mu,v) + A\(v,v) ,

und insbesondere gilt mit A = (v, v) ! {u,v), dass

0< (u,u)— (v, > u,v)) (u, > -
—((v, o) {us 0) + ((0,0) 7, 0) ((0,0) 7w, v) v, )
=<u,u>—<v,v> < v><uv> (1,0) <vv> Y, 0)f?

d.h. |{u, v)[* < (u, u){(v,v) und damit ist |[(u,v)| < |lul|||v||. O

Satz 18.4 Die Norm || - || : V — R* hat folgende Eigenschaften:
(1) |lv]| = 0 genau dann, wenn v = 0.

(2) ||\l = |Al||v]| fir allev e V, X e C.

(3) Dreiecksungleichung) ||u+v| < ||ul| + ||v| fir alle u, v € V.
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Beweis (1) und (2) sind klar.
(3): Sei 2z =z +iy € Cmit z, y € R; dann ist z + Z = 22 € R und also ist
2+ Z < 24/2? + y? = 2|z|. Daraus folgt nach Satz 6.3, dass

lu+vll* = u+v,u+v) = {u,u) + (u,0) + (v,u) + (v,0)

= Jlull* + (w,v) + (u,v) + ol* < Jull® + 2w, v)] + [|v])®
< flull® + 2flulllloll + ol* = (lull + [lv])*

und damit ist [|u + v|| < ||u|| + ||v]]. O

Lemma 18.2 (Polarisierungsidentitit) Fiir alle u, v € V gilt

(u,v) = 3(lu+v]* = llu —ol* +illu + iv]|* — illu —iv]]*) .

Beweis Ubung. O

Im Folgenden sei (V, (-, -)) entweder ein euklidischer Vektorraum oder ein unitérer
Vektorraum. Der zugrundeliegende Korper wird mit K bezeichnet. Dies bedeutet,
dass K = R, falls (V,(-,-)) ein euklidischer Vektorraum ist, und K = C, falls

(V,{-,-)) ein unitdrer Vektorraum ist.

Vektoren u, v € V heiflen orthogonal oder senkrecht zueinander (geschrieben

u L v), wenn (u,v) = 0. Vektoren vy, ..., v,, € V heiflen orthonormal, wenn
|1 fallsi=7j,
(vir vj) = {0 falls i # 7 ,
d.h., wenn |lvj|| =1fiir j=1, ..., mund v; L v, fiir alle ¢ # j.

Lemma 18.3 Orthonormale Vektoren sind linear unabhdngig.

Beweis Seien vy, ..., v, orthonormale Vektoren und seien Ay, ..., A\, € K mit
Avr + o+ Apvpy, = 0. Flir jedes j =1, ..., m ist dann

0= <0, Uj) = <)\1’U1 —+ 4 )\m’l}m,’l}j>
= A (v, v5) + o A (U, 05) = A (v, 05) = Ay
d.h.,, \; =0 fiir j =1, ..., m und damit sind vy, ..., vy, linear unabhingig. O

Sei U ein endlichdimensionaler Untervektorraum von V. Dann heifit eine Basis
(u, ..., uy) von U orthonormal, wenn die Vektoren uy, ..., u,, orthonormal sind.
Seien uq, ..., U, € U orthonormal; nach Lemma 18.3 ist (u1, ..., u,,) immer eine
orthonormale Basis von L(uy,...,u,). Daraus ergibt sich nach Satz 4.6, dass
(u1,...,U,) genau dann eine orthonormale Basis von U ist, wenn dim U = m.

Bemerkung: Die kanonische Basis von R™ ist eine orthonormale Basis von R"
mit dem iiblichen Skalarprodukt. Genauso ist die kanonische Basis von C" eine
orthonormale Basis von C" mit dem iiblichen Skalarprodukt.
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Satz 18.5 Sei (uq,...,uy) eine orthonormale Basis eines Untervektorraumes U
von V. Fiir alle w € U gilt dann

w = (u,up)us + -+ (U, Up ) Uy

(Mit anderen Worten ist (u,ui)uy + - - - + (U, U )uy, die eindeutige Darstellung

von u als Linearkombination der Vektoren uy, ..., uy,.)
Beweis Sei w € U; da (uy,...,u,) eine Basis von U ist, gibt es nach Satz 4.1
eindeutige Elemente A\, ..., A\, € K, so dass u = \ju; + - - - + \puy,. Dann gilt

(u,u) = (Arur+- -+ At 1) = Ar(ug, ug) + - - A (um, u5) = Aj(uy, u5) = X
fir jedes y =1, ..., m. O
Fiir jedes v € V setze

. [lvlTtv fallsv #0,
v 0 fallsv=0,

also gilt ||v*|| =1 fur alle v # 0.

Satz 18.6 (Gram-Schmidtsches Orthonormalisierungsverfahren) FEs sei

U ein endlichdimensionaler Untervektorraum von V- und sei (uq,...,u,) eine
Basis von U. Definiere vy, ..., v, € V
v = uj

Vg = (Uz - <U2701>01)*

U = (Uk - (Uch)l)Ul - (UM)Q)UQ - <Ukavk—1>vk—1)* )
Um = (um - <Um, 1)1>’U1 - <Um, UQ) Uy — - — <um7vm—1>vm—1)* .
Dann ist (v, ..., vy) eine orthonormale Basis von U mit

L(vi, ..., o) = L(ug, ..., ug)
fiir jedes k. Insbesondere besitzt jeder endlichdimensionale Untervektorraum von

V' eine orthonormale Basis.

Beweis Es wird durch Induktion nach k bewiesen, dass vy, ..., vx orthonormal
sind und L(vq,...,v,) = L(uy, ..., ug) fir jedes k=1, ..., m.

Induktionsanfang: Da uy # 0, ist ||v1]| = 1 und L(vy) = L(uy).
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Induktionsschritt: Sei 1 < k < m und nehme an, dass vy, ..., vx orthonormal
sind und L(vq,...,vx) = L(uq, ..., ux). Setze

W1 = U1 — (U1, V1)V1 — (kg1 V2)V2 — ++ - — (Uk1, Vk) Vg, -
Dann ist w1 € L(vy, ..., g, tugy1) und ugyq € L(vy, ..., g, wee1), und daraus
ergibt sich nach Satz 3.2, dass L(vy,..., vk, wks1) = L(vi, ..., v, ugs1). Aber
Vg1 = wi,q und L(vy, ..., v5) = L(uy, ..., ug) und damit ist
L(vi,...,vk41) = L(ve, ..o, 0, V1) = Lve, o, Ok, Wep1)
= L(v1, .., vk, upe1) = L(ug, ooy up, uper) = Lug, oo uprn) -
Da wuy, ..., ugyq linear unabhéngig sind, gilt auch

Uk+1 ¢ L(u17"'7uk> = L(Ulu"'vvk) )

und daher ist wgy1 # 0, d.h. ||Jvgyq]] = 1. Fiir jedes j =1, ..., k ist nun
(Vry1,05) = llwpga |~ {wpgr, v;)
= Jlwrra |7 urrn = (upgr, vi)vr = -+ = (kg V) ok, ;)
= [Jwrsa||” ((uk—l—lavj (U1, v1) (U1, v5) — - — <Uk+1,vk><vk,'l}j>)
= ||wpgr||” ((uk-i—lavj uk+1,v])(vj,v]>)
= [Jwkra |7 ((unrr, v5) = (wpen, 0)) =0,
und damit sind vy, ..., vgy; orthonormal, da nach Induktionsannahme vy, ..., v
schon orthonormal sind. Dies zeigt, dass die Vektoren vy, ..., vi11 orthonormal
sind und L(vy, ..., vp11) = L(uq, ..., upyq). O

Es gibt den folgenden Basisergénzungssatz fiir orthonormale Basen:

Satz 18.7 Seien U, W Untervektorrdume von V- -mit W endlichdimensional und
{0} # U C W; sei (uy,...,uy) eine orthonormale Basis von U. Dann gibt
es k > 0 und Vektoren vy, ..., vy € W, so dass (uy, ..., Un,V1,...,0) eine
orthonormale Basis von W ist.

Beweis Nach dem Basisergénzungssatz (Satz 4.5) gibt es wy, ..., wy € W (mit
k > 0), so dass (ug,...,Un,ws,...,w;) eine Basis von W ist. Wende nun das
Gram-Schmidtsche Orthonormalisierungsverfahren auf diese Basis an und erhalte
eine orthonormale Basis (u},...,ul  v1,...,v) von W. Man sieht aber leicht,
dass u} = u; fiir j = 1, ..., m, da die Vektoren uy, ..., uy, schon orthonormal
sind. Also ist (41, ..., Unp, v, ..., V) eine orthonormale Basis von W. O

Sei W ein endlichdimensionaler Untervektorraum von V mit dimW = n und U
ein Untervektorraum von V mit U C W und dimU = m > 1. Nach Satz 18.7
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gibt es dann eine orthonormale Basis (vy, ..., v,) von W, so dass (vy, ..., v,,) eine
orthonormale Basis von U ist.

Fiir jede nichtleere Teilmenge M von V setzen wir
M*={veV: v Lufiralleuec M} .

M+ heiBt das orthogonale Komplement von M. Offensichtlich ist {0} =V und
vV ={0}.

Lemma 18.4 M*' ist ein Untervektorraum von V.

Beweis Da (0,u) = 0 fiir alle u € M, ist 0 € M*. Seien nun v;, v, € M+ und
A1, Ay € K; fiir jedes u € Mt ist dann (v, u) = (ve, u) = 0 und damit auch

(A1 + A, u) = A (v, u) + Aa(vg,u) =0,
d.h., \v; 4+ Aovy € M+, Folglich ist M+ ein Untervektorraum von V. O

Lemma 18.5 Sei V endlichdimensional und sei U ein Untervektorraum von V
mit {0} # U # V. Sei (vy,...,v,) eine orthonormale Basis von V, so dass

(v1,...,0m) eine orthonormale Basis von U ist, wobei m = dimU. Dann ist
(U1, -+, 0n) eine orthonormale Basis von U+t.
Beweis Sei v € Ut; dann gilt (v,v;) =0 fir j =1,...,m,davy, ..., v, €U,

und daraus folgt nach Satz 18.5, dass
v = (v, v1)v1++ (U, V)V = (U, V1) Umnr1 + - -+ (0, 00, € L(Vpgt, -0, 0n)
d.h., Ut C L(vpy1, - - -, 0,). Andererseits ist

<)\m+lvm+1 +--- 4+ )\nvna )\lvl + -+ )\mvm> =0

fiir alle A1, ..., A, € K, und damit ist (A1 10m41 + -+ + Apvp, u) = 0 fiir alle
Amstls s Ay € K uw € U, da (vy,...,v,,) eine Basis von U ist. Folglich gilt
auch L(vyy1,...,v,) C UL, d.h., Ut = L(vmqt, ..., 00). Aber vpyq, ..., v, sind
orthonormal, und also ist (v,41,...,v,) eine orthonormale Basis von U+. O

Satz 18.8 Sei V' endlichdimensional und sei U ein Untervektorraum wvon V.
Dann ist (UL)+ = U und es gilt dim U + dim U+ = dim V.
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Beweis Dies ist trivial richtig, wenn U = {0} oder U = V; nehme also an, dass
{0} # U # V. Nach Satz 18.7 gibt es eine orthonormale Basis (v1,...,v,) von
V', so dass (vy,...,v,) eine orthonormale Basis von U ist, wobei m = dimU,
und nach Lemma 18.5 ist dann (v, 11, .. .,v,) eine orthonormale Basis von U~.
Nun ist (vy,...,v,) eine orthonormale Basis von V| so dass (vj41,...,v,) eine
orthonormale Basis von U+ ist. Daraus folgt nach Lemma 18.5, dass (vy,. .., Uy)
eine orthonormale Basis von (U+)1 ist, und damit ist (U1)* = U. Ferner ist
dimU +dimUt =m+ (n—m)=n=dimV. O

Bemerkung Tst V nicht endlichdimensional, so gilt immer noch U C (U+)* fiir
jeden Untervektorraum U von V. (Setze W = U+ fiir alle w € W, u € U ist
w L u und damit auch v L w und folglich ist U ¢ W+ = (U*)*.) Aber im
Allgemeinen gilt U = (U+)* nicht: Betrachte £, mit dem Skalarprodukt

<{xn}n207 {yn}n20> = Z TnYn

n>0

und sei by = {{zp}n>0 € {2 : x, # 0 fiir nur endlich viele n > 0}. Dann ist ¢, ein

Untervektorraum von £, mit /- = {0}. (Der Beweis dafiir ist eine Ubung.) Damit
ist (EOL)l = {0}L = €2 # eo.

Untervektorrdume U; und U, von V sind orthogonal, und man schreibt U; L Us,
wenn uy L uy fiir alle uy € Uy, uy € Us.

Sind nun U, Uy, ..., U, Untervektorrdume von V', so heifit U die orthogonale
Summe von Uy, ..., Uy, wenn U =U; +--- + U, und U; L U, fiir alle j # k.

Lemma 18.6 FEine orthogonale Summe ist direkt: Ist U die orthogonale Summe
von Uy, ..., Uy, soist auch U =U; @ --- D U,,.

Beweis Seien uy, ..., Uy, € V mit u; € U; fiir jedes j und u; + - - - +u,, = 0. Da
(uj, u) = 0 fiir alle j # k, haben wir fiir jedes j =1, ..., m, dass

0= (ur+ -+ tm, ug) = (ur, uz) + -+ (U, 45) = (ug, )
und damit u; = 0. Daraus folgt nach Satz 3.7, dass U =U; @ --- @ Up,. O

Bemerkung Sei V endlichdimensional und seien U, W Untervektorrdume von V.
Dann ist V die orthogonale Summe von U und W genau, wenn W = U+, (Der
Beweis dafiir ist eine Ubung.) Dies bedeutet, dass es zu jedem Untervektorraum
U von V einen eindeutigen Untervektorraum W gibt, so dass V' die orthogonale
Summe von U und W ist. Zum Vergleich: Ist U ein Untervektorraum von V
mit {0} # U # V, dann gibt es unendlich viele Untervektorrdume W, so dass
V=UoW.
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Lemma 18.7 Seien Uy, ..., U, endlichdimensionale Untervektorrdaume von V
und fir j =1, ..., m sei (u]l, e ,u{;j) eine orthonormale Basis von U;. Dann ist
die Summe U = Uy + - -- + U, die orthogonale Summe von Uy, ..., U, genau,
wenn (uy, ... up ..., uf", ... ul ) eine orthonormale Basis von U ist.

Beweis Ubung. O



19 Orthogonale und unitire Endomorphismen

Im Folgenden sei (V/, (-, -)) entweder ein euklidischer Vektorraum oder ein unitérer
Vektorraum. Der zugrundeliegende Korper wird mit K bezeichnet. Dies bedeutet,
dass K = R, falls (V,(:,-)) ein euklidischer Vektorraum ist, und K = C, falls
(V,{-,-)) ein unitérer Vektorraum ist. Ist (V,(-,-)) ein euklidischer Vektorraum
und X\ € R, so ist A einfach als A zu interpretieren.

Lemma 19.1 Sei «: V — V eine Abbildung, fir die gilt:

{a(u), a(v)) = (u,v)

fiir alle w, v € V. Dann st « linear; d.h. « ist ein Endomorphismus von V.

Beweis Fiir alle u, v € V' gilt

und daraus folgt, dass a(u +v) — a(u) — a(v) =0, d.h., a(u+v) = a(u) + a(v)
fiir alle u, v € V. Ferner gilt fiir alle v € V, A € K, dass

(a(Av) — Aa(v), a(Av) — Aa(v))
= (a(Av), a(dv)) = Ma(hv), a(v)) — Ma(v), a(Av)) + A(a(v), a(v))
= (v, \v) — A Av,v) — A(v, Av) + A (v, v)
= (Av — Av, \v — Av) = (0,0) =0,

und daraus folgt, dass a(\v) — Aa(v) = 0, d.h. a(lv) = Aa(v) fiir alle v € V|
A € K. Damit ist « eine lineare Abbildung. O

Ein Endomorphismus f : V' — V heifit orthogonal, falls (V, (-, -)) ein euklidischer
Vektorraum ist, bzw. unitar, falls (V, (-, -)) ein unitédrer Vektorraum ist, wenn

(f(u), f(v)) = (u, v)

fiir alle u, v € V.

163
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Satz 19.1 Ein Endomorphismus f : V — V st orthogonal bzw. unitir genau
dann, wenn || f(v)|| = ||v]|| fir allev € V.

Beweis Ist f orthogonal bzw. unitar, dann ist

I @)1 = {f(©), f(v)) = (v,v) = [[o]|*

und damit || f(v)]| = ||v]| fur alle v € V. Fiir die Umkehrung nehme zunéchst an,
dass (V, (-,-)) ein unitédrer Vektorraum ist. Ist || f(w)|| = ||w]| fiir alle w € V| so
gilt nach Lemma 18.2, dass

A(f (w), f(v))

Fu) + F@I* = 1 () = FOI + il f () +if )° =il f(u) = if (o)
Flu+o)ll* = I1f (= 0)|* + il f (u+ )| = ill f (w — iv)||*

u+vl|* = Ju—v||?+i|u+wvl|* — iy —iv||* = 4u, v)

fir alle u, v € V', d.h., f ist unitdr. Wenn (V, (-, -)) ein euklidischer Vektorraum
ist, dann benutzt man eine der Identitdten in Lemma 18.1 statt Lemma 18.2. O

Ist f:V — V orthogonal bzw. unitér, dann gilt f(0) = 0 und fiir alle u, v € V
gilt || f(u) = f(v)]| = [lu =], da

1f () = F)I* = [f(u=0)* = (flu—2v), flu=v)) = (u—v,u—v) = [u—v|.

Fiir euklidische Vektorrdume ist die Umkehrung auch richtig:

Satz 19.2 Sei (V,(-,-)) ein euklidischer Vektorraum und sei o : V. — V eine
(beliebige) Abbildung mit a(0) = 0 und

la(uw) = a@)|| = |lu = vl

fir alle u, v € V.. Dann ist « ein orthogonaler Endomorphismus. (Hier bedeutet
‘beliebig’: Es wird nicht vorausgesetzt, dass a eine lineare Abbildung ist.)

Beweis Seien u, v € V; nach der Polarisierungsidentitdt in Lemma 18.1 ist

2(a(u), a(v)) = la@)|* + lla(@)]|* = a(u) — a(v)|?
= Jla(u) = a(0)[* + [la(v) — a(0)||* — [la(w) — a(v)]*
= lu— 0" + [lv = 0" — [Ju — v[|*

= ull* + [Jol* = lu = v]|* = 2(u, v)

und damit ist (a(u),a(v)) = (u,v) fiir alle u, v € V. Daraus ergibt sich nach
Lemma 19.1, dass « ein orthogonaler Endomorphismus ist. O
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Betrachte den unitéiren Vektorraum C = C! mit dem iiblichen Skalarprodukt, also
ist hier die Norm einfach |- |, und sei a : C — C die durch «(z) = Z definierte
Abbildung. Dann gilt «(0) = 0 und |a(z) — a(2’)| = |z — /| fir alle z, 2’ € C,
aber die Abbildung « ist nicht linear. Dies zeigt, dass fiir unitdre Vektorrdume
Satz 19.2 im Allgemeinen falsch ist.

Seien f, g : V — V orthogonale bzw. unitdre Endomorphismen von V. Dann ist
der Endomorphismus gf : V' — V auch orthogonal bzw. unitér, da

((9.N)(w), (g)(w)) = (g(f(u)), g(f(v))) = (f(u), f(v)) = (u,v)

fiir alle u, v € V.

Lemma 19.2 Sei V' endlichdimensional und sev f : 'V — V ein orthogonaler
bzw. ein unitdrer Endomorphismus von V. Dann ist f ein Automorphismus und
f~1 ist auch orthogonal bzw. unitér.

Beweis Sei v € Kern f; dann ist 0 = (0,0) = (f(v), f(v)) = (v,v) und damit ist
v =0, d.h., Kern f = {0}. Da aber V endlichdimensional ist, ist nach Satz 5.3
f ein Automorphismus. Ferner ist

(f 1) f7H ) = (F(F @) F(F () = (u,0)

fiir alle u, v € V, d.h., f~! ist orthogonal bzw. unitir. O

Satz 19.3 Sei V' endlichdimensional und f : V — V ein Endomorphismus von
V. Dann sind dquivalent:

(1) f ist orthogonal bzw. unitdir.

(2) f ist ein Automorphismus und {(f~'(u),v) = (u, f(v)) fir alle u,v € V.
(Spdter stellt sich heraus, dass f~' der zu f adjungierte Endomorphismus ist.)

Beweis (1) = (2): Nach Lemma 19.2 ist f ein Automorphismus und

(f7H ), v) = (fF(f7 (), f(v) = {u, f(v))
fir alle u, v € V.

(2) = (1): Fiiralle u, v € V gilt (u,v) = (f(f(u)),v) = (f(u), f(v)) und damit
ist f orthogonal bzw. unitéir. O

Lemma 19.3 Sei V' endlichdimensional, (vq,...,v,) eine orthonormale Basis
von V und sei f : V. — V ein Endomorphismus. Dann ist f orthogonal bzw.
unitdr genau, wenn (f(v1),..., f(v,)) eine orthonormale Basis von V' ist.
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Beweis Ist f orthogonal bzw. unitér, so ist (f(v;), f(vk)) = (v;, vg) fiir alle j, k.
Folglich sind die Vektoren f(v1), ..., f(v,) orthonormal, d.h., (f(v1),..., f(vs))
ist eine orthonormale Basis von V. Nehme umgekehrt an, dass (f(v1),..., f(v,))
eine orthonormale Basis von V ist. Seien u, v € V; dann gibt es eindeutige
Darstellungen v = \jv; + - - - + A\v, und v = pyvy + - - - + ppv, und dann ist

(f(u), f0)) = (f(\v1 + -+ Agon), f(pavr + - + pinvy))
= (Mf () 4 Aaf(on) g f(01) + -+ i f (0n))
= M+ A, = (Avr £ AU, a0+ A i Un)

= <uvv> )

und daraus ergibt sich, dass f orthogonal bzw. unitér ist. O

Lemma 19.4 Sei V' endlichdimensional und sei f : 'V — V ein orthogonaler
bzw. ein unitdrer Endomorphismus. Ferner sei U ein Untervektorraum von V
mit f(U) C U. Dann gilt auch f(U+) C U*.

Beweis Sei v € Ut; fiir jedes u € U gilt dann 0 = (v,u) = (f(v), f(u)). Also
ist f(v) L w fiir alle w € f(U), d.h., f(v) € f(U)*. Daraus ergibt sich, dass
f(U+) c f(U)*. (Dies ist auch richtig, wenn V nicht endlichdimensional ist.)
Aber V ist endlichdimensional und nach Lemma 19.2 ist f ein Automorphismus,
und daraus folgt nach Lemma 5.10, dass dim f(U) = dim U. Damit ist f(U) = U,
da f(U) C U, dh., f(UY) cU*+. O

Satz 19.4 Sei f : V — V ein orthogonaler bzw. ein unitirer Endomorphismus
von V und sei X ein Eigenwert von f. Dann gilt |\| = 1. Ist also f orthogonal, so
ist X entweder —1 oder 1; ist dagegen f unitir, so gibt es @ € R, so dass \ = e%.
Sind ferner \y und Ao verschiedene Eigenwerte von f, so sind die Eigenrdume

E(f, A1) und E(f, \2) orthogonal.

Beweis Sei v € V' ein Eigenvektor zum Eigenwert A. Dann ist

(v,0) = (f(v), f(v)) = (W, ) = A\v,v) = [A*(v,0) ,

und folglich ist [A|*> = 1 und damit |A\| = 1, da (v,v) # 0. Seien nun A\; und A,
verschiedene Eigenwerte von f und vy € E(f, A1), v2 € E(f, A2). Dann ist

(v1,v2) = (f(v1), f(02)) = (A1, Aava) = A ds (01, 0)

Aber A Xy # 1 (Warum?) und damit ist (vy,v,) = 0. Folglich sind die Eigenrdume
E(f, A1) und E(f, A2) orthogonal. O

Das folgende Ergebnis bezieht sich nur auf unitdre Vektorrdume. (Das analoge
Behauptung fiir euklidische Vektorrdume ist im Allgemeinen falsch.)
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Satz 19.5 Sei (V,(-,-)) ein endlichdimensionaler unitdrer Vektorraum (also ist
(V. (-,-)) ein unitirer Vektorraum mit V einem endlichdimensionalen komplexen
Vektorraum), sei f : V. — V ein unitirer Endomorphismus und seien Ay, ..., Ay,
die verschiedenen FEigenwerte von f. Dann ist V die orthogonale Summe der
Figenraume E(f, A1), ..., E(f, \n).

Beweis Sei U = E(f, A1) + -+ E(f, Am); nach Satz 19.4 ist U die orthogonale
Summe von E(f, A1), ..., E(f, A\;,) und also muss gezeigt werden, dass U = V.
Nehme an, dass U # V und setze W = U*. Da f(E(f, \;)) C E(f, ;) fiir jedes
J, ist auch f(U) C U, und daraus folgt nach Lemma 19.4, dass f(W) C W. Sei
g : W — W die Einschréankung von f auf W. Da dim W > 1, ist x, ein nicht
konstantes Polynom und folglich gilt nach Satz 16.4 und Satz 16.5, dass es einen
Eigenwert A € C von g gibt. Sei v € V ein Eigenvektor von g zum Eigenwert .
Dannist f(v) = g(v) = Av, d.h., A ist auch ein Eigenwert von f, und damit A = \;
fiir ein 7, und v ist ein Eigenvektor von f zum Eigenwert . Also ist v € UNW
und dies ist ein Widerspruch, da U L W. Daraus ergibt sich, dass U =V, d.h.,
V ist die orthogonale Summe der Eigenrdume E(f, A1), ..., E(f, An). O

Satz 19.6 Sei (V,(-,-)) ein endlichdimensionaler unitdrer Vektorraum und sei
fein unitarer Endomorphismus. Dann gibt es eine aus Figenvektoren von f
bestehende orthonormale Basis von V. Ferner ist |det f| = 1.

Beweis Seien \Aq, ..., A, die verschiedenen Eigenwerte von f und fiir jedes j
sei (u] ,uiﬂ) eine orthonormale Basis von E(f,\;). Dann ist nach Satz 19.5
und Lemma 18.7 (vy,...,v,) = (uf,...,up ..., ul",...,u}" ) eine orthonormale
Basis von V', d.h., (vy, ..., v,) ist eine aus Eigenvektoren bestehende orthonormale
Basis von V. Sei D = (d;;) die Matrix von f beziiglich (vq,...,v,). Dann ist D
eine Diagonalmatrix und die Eintrage diq, ..., d,, auf der Diagonale sind alle

Eigenwerte von f. Daraus folgt nach Satz 19.4 und Lemma 16.1, dass

Das dem Satz 19.5 entsprechende Ergebnis fiir orthogonale Endomorphismen ist
im Allgemeinen falsch. Jetzt wird untersucht, wie orthogonale Endomorphismen
dargestellt werden kann und es wird mit dem Fall begonnen, in dem (V/(-,-))
ein zweidimensionaler euklidischer Vektorraum ist (das heiit: (V,(--)) ist ein
euklidischer Vektorraum mit dim V' = 2).

Bis auf weiteres sei also (V] (-, -)) ein zweidimensionaler euklidischer Vektorraum.
Sei f : V' — V ein orthogonaler Endomorphismus und sei 6 mit 0 < # < 7. Dann
heilt f eine Drehung um den Winkel 6, wenn

(f(v),v) = ||v||* cos @

fiir alle v € V.
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Lemma 19.5 (1) Die Identitdtsabbildung idy : V — V st die einzige Drehung
um den Winkel 0.

(2) Die Abbildung —idy ist die einzige Drehung um den Winkel 7.

(8) Ist f:V — V eine Drehung um einen Winkel 0, wobei 0 < 6 < 7, so besitzt
f keinen Figenwert.

Beweis (1) Esist klar, dass idy eine Drehung um den Winkel 0 ist. Sei umgekehrt
f:V — V eine Drehung um den Winkel 0, es gilt also (f(v),v) = ||v||? fiir alle
v € V und daraus folgt, dass

(f(v) = v, f(v) =v) = (f(v), [(v)) = 2{f(v),0) + (v, v)
= <U,U> - 2<f(1)),’l}> + <'U7U> = <U,U> - 2<U,U> + <U,U> =0
und damit f(v) = v fir alle v € V.

(2) Es ist klar, dass —idy eine Drehung um den Winkel 7 ist. Sei umgekehrt
f:V — V eine Drehung um den Winkel 7, es gilt also (f(v),v) = —||v||? fiir alle
v € V und daraus folgt, dass

(f()+v, f(v) +v) = (f(v), [(0)) +2(f(v),v) + (v,0)
= <U7U> + 2<f<U),’U> + <U7U> = <U7U> - 2<’U,U> + <U7U> =0
und damit f(v) = —v fiir alle v € V.

(3) Sei A ein Eigenwert von f und sei v € V ein Eigenvektor zum Eigenwert .
Dann ist (f(v),v) = (v, v) = Mov,v) = A||v||* # ||v]|? cos 6, da nach Satz 19.4 A
nur —1 oder 1 sein kann und —1 < cosf < 1, wenn 0 < § < 7. O

Ein orthogonaler Endomorphismus f : V' — V heifit Spiegelung, wenn
dimE(f,1) =dimE(f,-1) =1.

Sei f eine Spiegelung; dann gilt nach Satz 19.4, dass V' die orthogonale Summe
der Eigenrdume E(f,1) und E(f, —1) ist. Sei v; bzw. vy ein Eigenvektor von f
zum Eigenwert 1 bzw. zum Eigenwert —1 mit ||v1]| = ||vz|| = 1. Dann ist (vq, vg)
eine orthonormale Basis von V' und die Matrix von f beziiglich (vq,v) ist

()

Insbesondere ist det f = —1, da det S = —1.
Fiir jedes 6 € R seien Dy, Sy € M(2 x 2,R) folgende Matrizen:

cos@ —sinf cosf sind
De:(sin@ COSQ)’ Se:(sin@—cos@)'
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Insbesondere ist Dy = E,, Dy = —Fy und Sy = S. Es gilt x5, = —1 + x? fiir
jedes 6 € R (und damit sind —1 und 1 beide Eigenwerte von Sy), da

det<cosﬁ—x sin 0 )

sinf —cosf —x

= —(cosf — x)(cosf 4+ x) — sin®f = —cos® — sin® § + 2> = —1 + 2% .

Ferner ist det Dy = 1 und det Sy = —1 fiir jedes 6 € R.

Satz 19.7 (1) Sei f :V — V ein orthogonaler Endomorphismus. Dann ist f
entweder eine Drehung oder eine Spiegelung.

(2) Sei f : V. — V eine Drehung um den Winkel 0, wobei 0 < 6 < m, und
sei (v1,vy) eine orthonormale Basis von V. Dann ist die Matriz von f beziglich
(v1,v9) entweder Dy oder Doy _q. Insbesondere ist det f = 1.

(8) Sei f:V — V eine Spiegelung und sei 0 mit 0 < 0 < 2mw. Dann gibt es eine
orthonormale Basis (v1,v9) von V', so dass Sy die Matriz von f beziglich (vy,vs)
18t.

Beweis (1) Sei (v, vy) eine orthonormale Basis von V' und sei

ab
)
die Matrix von f beziiglich (v1,vs). Es gilt also

(f(v1), f(v1)) = {avy + cvy, avy + cvy) = a® + 2,
(f(vg), f(v2)) = (bvy + dvg, buy + dvy) = b* 4+ d? |
(f(v1), f(v2)) = (av1 + cva, by + dvg) = ab + cd

= (v1,01)

1 =
1= <U27 ’U2> =
0 =

und damit gibt es ein eindeutiges 6 mit 0 < 6 < 27, so dass A = Dy oder A = Sy.
(Warum?) Nehme zunéchst an, dass A = Dy. Sei v € V; dann gibt es eindeutige
Elemente A\i, Ay € R, so dass v = Av; + Ayv9 und

(f(v),v) = (f(Mv1 + Aav2), Avr + Agve) = (A1 f(v1) + Aaf (v2), Ayvr + Agvg)
= (A1(cosO vy + sin O vg) + Ao(—sin b vy + cos B vg), \jvy + Agvs)

= (A cos@ — \ysin@)vy + (A sin @ + Ay cos 0)vg, \yv1 + Aovsg)

= (A cosf — Agsin @) + (A sin € + Ay cos 0) Ao

= (

A+ A3) cosd = ||v||*cosd .
Daraus ergibt sich, dass f eine Drehung um den Winkel ¢ ist, wobei

0 — 0 falls0<0<m,
S| 2r—6 fallsT < 6 < 27,
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da 0 < ¢ < mund cos@ = cosf. Nehme nun an, dass A = Sp. Dann sind —1
und 1 Eigenwerte von f, da —1 und 1 Eigenwerte von Sy sind, und folglich ist
dimE(f,1) =dim E(f, —1) = 1, d.h., f ist eine Spiegelung.

(2) Sei f:V — V eine Drehung um den Winkel 6, wobei 0 < 6§ < 7, sei (v1, vg)
eine orthonormale Basis von V und sei A die Matrix von f beziiglich (vy,vs).
Genauso wie in (1) gibt es dann ein eindeutiges ¢ mit 0 < ¢ < 27, so dass
A = Dy oder A = Sp. Nach Lemma 19.5 kénnen aber —1 und 1 nicht beide
Eigenwerte von f sein und damit ist A = Sp nicht moglich, d.h., A = Dy
Daraus folgt (genauso wie in (1)), dass (f(v),v) = |[v[|*cos@ fiir alle v € V.
Insbesondere ist cos@’ = cosf, d.h., € ist entweder 6 oder 27 — 6.

(3) Sei f : V — V eine Spiegelung und sei u; bzw. us ein Eigenvektor von
f zum FEigenwert 1 bzw. zum Eigenwert —1 mit |ui|| = [|us]| = 1. Also ist
(u1, uz) eine orthonormale Basis von V und S = S ist die Matrix von f beziiglich
(u1,us). Sei @ mit 0 < 0 < 2w, setze t = 6/2 und definiere Vektoren vy, vo € V
durch v; = costu; — sintus und vy = sintu; + costug. Dann ist (v, vy) eine
orthonormale Basis von V', da

{(v1,v1) = (costuy —sintuy, costu, —sintug) = cos®t +sin’t =1,
(vg,v9) = (sintu; + cost uy, sintuy + costug) = sin®t + cos’t =1,

(v1,v9) = (costuy — sintus,sintu; + costus) = costsint —sintcost =0,
und die Matrix fiir den Wechsel von (uq, us) nach (vq,vy) ist
cost sint
D, = ) :
! < —sint cost )
Daraus folgt nach Satz 8.8, dass (D_;)~'SqD_; die Matrix von f beziiglich (vy,vs)

ist. Aber man sieht leicht, dass (D_;)"1SqD_; = D;SoD_; = Sy. Damit ist Sy die
Matrix von f beziiglich der orthonormalen Basis (vq,v2). O

Sei # mit 0 < 6 < 7; dann gibt es genau zwei Endomorphismen, die Drehungen um
den Winkel 0 sind: Ist (v, v2) eine orthonormale Basis von V', so hat eine dieser
Drehungen die Matrix Dy und die andere die Matrix Da,_g beziiglich (vy, vs).

Man sagt, dass f : V — V eine nichttriviale Drehung ist, wenn f eine Drehung
um einen Winkel # mit 0 < # < 7 ist. Nichttriviale Drehungen sind also genau
die orthogonalen Endomorphismen f : V — V' die keine Eigenwerte besitzen.

Die Untersuchung von orthogonalen Endomorphismen fiir den Fall dimV = 2
ist jetzt abgeschlossen. Im Folgenden sei nun (V/ (-, -)) ein endlichdimensionaler
euklidischer Vektorraum.

Sei U ein Untervektorraum von V. Dann ist die Einschrankung (-, )y von (-, )
auf U x U ein Skalarprodukt. Ist f : V' — V ein orthogonaler Endomorphismus
und ist U f-invariant, so ist die Einschrénkung von f auf U auch orthogonal
beziiglich des euklidischen Vektorraumes (U, (-, -)v).
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Satz 19.8 Sei f : V. — V ein orthogonaler Endomorphismus. Dann g¢ibt es
zweidimensionale f-invariante Untervektorraume Dy, ..., Dy, (mit m > 0), so
dass fiir jedes j die Finschrinkung von f auf D; eine nichttriviale Drehung ist und
V' die orthogonale Summe der Untervektorriume E(f,1), E(f,—1), Dy, ..., Dy,
15t.

Beweis Der folgende Hilfssatz wird benotigt:

Satz 19.9 Sei W ein endlichdimensionaler reeller Vektorraum mit dimW > 1
und sei g : W — W ein Endomorphismus. Dann gibt es einen g-invarianten
Untervektorraum U von W mit dim U entweder 1 oder 2.

Beweis Sei (wy,...,w,) eine Basis von W und sei A € M(n x n,R) die Matrix
von g beziiglich dieser Basis. Sei Ac € M(n x n,C) die Matrix A als komplexe
Matrix angesehen. Es gibt dann den reellen Endomorphismus ¢4 : R® — R™ und
den komplexen Endomorphismus ¢4, : C" — C", und die Abbildung ¢4 ist die
Einschrénkung der Abbildung ¢ 4. auf der Teilmenge R™ von C". Nach Satz 16.4
und Satz 16.5 gibt es einen Eigenwert A = a + i € C (mit o, § € R) von p4;
sei z =z +iy € C" (mit x, y € R") ein Eigenvektor zum Eigenwert \. Dann gilt

0=a.(2) = Az = pac(z +iy) — (o +iB)(x + iy)
- @Ac(x) + ZQOAC( ) (QZE - ﬁy) - Z(ﬁ$ + ay)
= pa(z) +ipa(y) — (ax — By) —i(Br + ay)

und daraus folgt, dass pa(z) = ax — Sy und pa(y) = Bz + ay. Sei V = L(z,y);
also ist V' ein Untervektorraum von R™ mit dim V' entweder 1 oder 2. (Da z # 0,
ist x # 0 oder y # 0.) Ferner ist nach Lemma 5.8 und Satz 3.2

pa(V) = pa(L(z,y)) = L(pa(z),0a(y)) C L(z,y) =V .
Sei ¢ : R® — W die Abbildung, die gegeben ist durch
1/}<()\17 SRR )\n)) = Nwy + -+ Awy,

und setze U = ¢(V'); nach Lemma 6.7 ist ¢ ein Isomorphismus und damit ergibt
sich nach Lemma 5.10, dass U ein Untervektorraum von W mit dim U = dim V'
ist, d.h., dim U ist entweder 1 oder 2. Aber nach Satz 8.2 gilt go = 1oy, und
folglich ist g(U) = g(¢(V)) = ¥(pa(V)) C (V) =U, d.h., U ist g-invariant. O

Bemerkung Fiir komplexe Vektorrdume ist die Situation viel einfacher: Sei W ein
endlichdimensionaler komplexer Vektorraum mit dimW > 1und sei g : W — W
ein Endomorphismus. Dann gibt es immer einen g-invarianten Untervektorraum
U von W mit dim U = 1. (Nach Satz 16.4 und Satz 16.5 gibt es einen Eigenwert
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A € C von g. Sei w ein Eigenvektor zum Eigenwert A und setze U = L(w); dann

ist dimU =1 und g(U) C U.)

Ist (W, (-,-)) ein endlichdimensionaler euklidischer Vektorraum und g : W — W
ein orthogonaler Endomorphismus, dann sei

A(g) =dim W —dimE(g,1) — dim E(g, —1) .

Der Beweis fiir Satz 19.8 erfolgt durch Induktion nach n = A(f).

Induktionsanfang: Sei f ein orthogonaler Endomorphismus mit A(f) = 0. Dann
gilt nach Satz 19.4, dass V' die orthogonale Summe der Untervektorrdume E(f, 1)
und E(f, —1) ist.

Induktionsschritt: Sei n > 0 und nehme an, dass die Aussage in Satz 19.9 fiir
jeden orthogonalen Endomorphismus g : W — W mit A(g) < n richtig ist.
Sei f : V — V ein orthogonaler Endomorphismus mit A(f) = n und setze
E =E(f,1)+ E(f,—1); nach Satz 18.8 und Satz 19.4 ist

dim B+ = dimV — dim £ = dim V — dim E(f,1) — dimE(f, —1) =n

und nach Lemma 19.4 ist f(E+) C E+, da f(F) C E. Sei f’ die Einschrinkung
von f auf E+; nach Satz 19.9 gibt es dann einen f’-invarianten Untervektorraum
U von E* mit dim U entweder 1 oder 2, und hier ist tatsichlich dim U = 2. (Ist
dimU = 1, so ist jeder Vektor in U \ {0} ein Eigenvektor von f’ und damit auch
von f. Aber alle Eigenvektoren von f liegen in E und ENU C EN E+ = {0}.)
Nun ist der Untervektorraum U auch f-invariant und die Einschriankung von f
auf U ist eine nichttriviale Drehung, da U keinen Eigenvektor von f enthélt.
Setze W = U™; nach Lemma 19.4 gilt f(W) C W, da f(U) C U, sei also g
die Einschrinkung von f auf W. Dann ist g ein orthogonaler Endomorphismus
beziiglich des euklidischen Vektorraumes (W, (-, -)w). Ferner ist E(g, 1) = E(f, 1)
und E(g,—1) = E(f,—1), da £ C W, und damit ist A(g) = A(f) —2 < n.
Nach der Induktionsannahme gibt es also zweidimensionale g-invariante Unter-
vektorrdume Dy, ..., D,, (mit m > 0), so dass fiir jedes j die Einschrinkung
von g auf D; eine nichttriviale Drehung ist und W die orthogonale Summe von
E(g,1), E(g,—1), D1, ..., Dy, ist. Daher ist die Einschrénkung von f auf D;, die
nichts anderes ist als die Einschrénkung von ¢ auf D;, auch eine nichttriviale
Drehung. Da E(g,1) = E(f,1) und E(g, —1) = E(f, —1), ist V' die orthogonale
Summe der Untervektorrdume E(f, 1), E(f,—1), Dy, ..., Dy, und U. O

Satz 19.10 Sei f : V — V ewn orthogonaler Endomorphismus. Dann ist
det f = (~1)",

wobei k = dim E(f, —1). Insbesondere ist det f entweder 1 oder —1.



19 ORTHOGONALE UND UNITARE ENDOMORPHISMEN 173

Beweis Nach Satz 19.8 ist V' die orthogonale Summe der Untervektorraume
E(f’]-)a E(fa_l)a D17 teey Dm )

wobei fiir jedes j die Einschrénkung f; von f auf D, eine nichttriviale Drehung
ist. Sei fy die Einschrankung von f auf E(f,1) und f} die Einschrinkung von
f auf E(f, —1). Da eine orthogonale Summe eine direkte Summe ist, ist f die
direkte Summe der Endomorphismen fo, fJ, fi, ..., fm und folglich ist

det f = (det fo)(det fo)(det f1) - - (det fin) -

Aber det fo = 1, det fj = (—1)* und nach Satz 19.7 (2) ist det f; = 1 fiir jedes
j=1,..., m. Damit ist det f = (—=1)*. O

Der spezielle Fall von R?® mit dem iiblichen Skalarprodukt wird nun untersucht.

Satz 19.11 Sei f : R® — R3 ein orthogonaler Endomorphismus mit det f = 1.
Dann ist R® die orthogonale Summe von f-invarianten Untervektorriumen L und
D mitdimL =1, dim D = 2, so dass L C E(f,1) und die Finschrinkung von f
auf D eine Drehung ist. Mit anderen Worten: Jeder orthogonale Endomorphismus
von R® mit Determinante 1 ist eine Drehung um eine Achse.

Beweis Nach Satz 19.10 muss dim E(f, 1) ungerade und dim E( f, —1) gerade sein.
Es gibt also drei Méglichkeiten:

(1) dimE(f,1) = 3 und dimE(f, —1) = 0: Hier ist f = idgs. Sei D = L*,
wobei L ein beliebiger eindimensionaler Untervektorraum von R3 ist. Dann ist
die Einschrankung von f auf D eine Drehung um den Winkel 0.

(2) dimE(f,1) = 1 und dimE(f,—1) = 2: Sei L = E(f,1) und D = E(f, —1).
Dann ist die Einschréinkung von f auf D eine Drehung um den Winkel 7.

(3) dimE(f,1) = 1 und dimE(f, —1) = 0: Sei L = E(f,1) und D = L*. Der
Beweis fiir Satz 19.8 zeigt dann, dass die Einschréankung von f auf D eine nicht-
triviale Drehung ist. O



20 Orthogonale und unitire Matrizen

Eine reelle Matrix A € M(n x n,R) heiit orthogonal, wenn die Spalten von A
eine orthonormale Basis von R” (mit dem iiblichen Skalarprodukt) bilden. Also
ist die Matrix A = (a;;) € M(n x n,R) genau dann orthogonal, wenn gilt:

Zaijaijzl ﬁirjzl,...,n,

i=1
Zaijaik =0 fiir alle j #k .
i=1
Ist A = (a;;) € M(n x n,R), so bezeichnet A’ wieder die zu A transponierte

Matrix, d.h., A" = (af;), wobei aj; = aj;.

Satz 20.1 Sei A € M(n x n,R); dann sind dquivalent:
(1) A ist orthogonal.

(2) A'A = E,.
(3) A ist invertierbar und A~ = A’
(1) AA = E,.

(5) Die Zeilen von A bilden eine orthonormale Basis von R™ (mit dem tiblichen

Skalarprodukt).

(6) Der Endomorphismus @4 : R™ — R™ ist orthogonal beziiglich R™ mit dem
iblichen Skalarprodukt.

1 fallsi=j,

0 falls i g, Dann il

Beweis (1) < (2): Seli A = (a;;) und setze d;; = {

A ist orthogonal < Z a;ja;, = 0j fir alle j, k

i=1

& Zaﬁiaik =0, firalle j, k & A'A=F,.
i=1
(4) & (5): Genauso.
(2) & (3) & (4): Dies folgt unmittelbar aus Satz 6.2.
(1) < (6): Seien vy, ..., v, € R™ die Spalten von A; also gilt pa(e;) = v; fur
jedes j, wobei (eq,...,e,) die kanonische Basis von R" ist. Aber (ey,...,e,) ist
eine orthonormale Basis, und daraus ergibt sich nach Lemma 19.3, dass ¢4 genau

dann orthogonal ist, wenn (vy, ..., v,) eine orthonormale Basis von R™ ist. Damit
ist 4 orthogonal genau dann, wenn A orthogonal ist. O

174
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Lemma 20.1 (1) Es gilt (AB)' = B'A* fiir alle A, B € M(n x n,R).

(2) Ist A € M(n x n,R) invertierbar, so ist A" auch invertierbar und es gilt
(At)—l _ (A—l)t.

Beweis (1) Ubung.
(2) Dies folgt unmittelbar aus (1) und Satz 6.2, da

AANYY =(AA) =E =E,. O

Die Menge der n x n orthogonalen Matrizen wird mit O(n) bezeichnet.

Satz 20.2 O(n) ist eine Untergruppe der Gruppe GL(n,R) aller invertierbaren
n x n reellen Matrizen. Mit anderen Worten:

(1) Die Einheitsmatriz E, ist orthogonal.
(2) Ist A orthogonal, so ist A~' orthogonal.
(8) Sind A, B orthogonal, so ist AB orthogonal.

Beweis (1) Dies ist klar.
(2) Nach Satz 20.1, Lemma 20.1 (2) und Lemma 6.3 (3) ist
(A—l)tA—l — (At)—lA—l — (AAt)—l — E;l — En

und damit ist nach Satz 20.1 A~! auch orthogonal.
(3) Nach Satz 20.1 und Lemma 20.1 (1) ist

(AB)'AB = B'A'AB = B'E,B = B'B = E,,

und damit ist nach Satz 20.1 AB auch orthogonal. O

Satz 20.3 Sei A € M(n x n,R) orthogonal; dann ist det A entweder 1 oder —1.

Beweis Nach Satz 20.1, Satz 15.3 und Satz 15.4 ist
(det A)? = (det A)(det A) = (det A*)(det A) = det(A'A) = det £, = 1
und damit ist det A entweder 1 oder —1. O

Im Folgenden sei (V, (-, )) ein endlichdimensionaler euklidischer Vektorraum.
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Lemma 20.2 Sei f : V — V ein Endomorphismus von V', sei (vq,...,v,) eine
orthonormale Basis und sei A die Matriz von f beziglich (vy,...,v,). Definiere

B = (bj;) € M(n x n,R) durch bjj = (f(v;), f(v;)). Dann ist B = A'A.

Beweis Fiir alle 4, j ist

bij = (f(vi), f(vy)) = < kiU, agjvz>
k=1 =1
= akiaéj<vk,ve> = Zakiakj = Zaﬁkam )
k=1 (=1 k=1 k=1
d.h., B=A'A. O
Satz 20.4 Sei f : V — V ein Endomorphismus von V und sei (v, ...,v,) eine
orthonormale Basis. Dann ist die Matriz A von f beziglich (vy, ..., v,) orthogonal

genau, wenn der Endomorphismus f orthogonal ist.

Beweis Definiere B = (b;;) € M(n x n,R) durch b;; = (f(v;), f(v;)) und also ist
nach Lemma 20.2 B = A'A. Nach Lemma 19.3 ist aber f orthogonal genau dann,
wenn (f(v1),..., f(v,)) eine orthonormale Basis von V' ist und daher genau dann,
wenn B = F,,. Folglich ist f orthogonal genau dann, wenn A orthogonal ist. O

Satz 20.5 Sei (vy,...,v,) eine orthonormale Basis von V' und sei (uy, ..., u,)
eine (beliebige) Basis von V; sei P die Matriz fir den Wechsel von (vq,...,vy,)
nach (uy,...,u,). Dann ist (uy,...,u,) eine orthonormale Basis genau, wenn P

orthogonal ist.

Beweis Fiir alle 1 < k, £ < n ist
<Uk7ué> = <Z DikVi, ijzvj> = Z Zpikpjé<viavj> = ijkpjé = Zpll;jpjé
i=1 j=1 i=1 j=1 j=1 j=1

und folglich gilt (ug,u,) = Oy fiir alle j, k genau dann, wenn P'P = E,,. Daraus
ergibt sich nach Satz 20.1, dass (uq, ..., u,) genau dann eine orthonormale Basis
ist, wenn die Matrix P orthogonal ist. O

Fiir jedes 6 € R seien wieder Dy, Sy € M(2 x 2, R) folgende Matrizen:
cosf —sinf cosf sinf
DGz(sin@ Cosé’) SGz(sin@—cos@) )

Da sin? 0 + cos? @ = 1, sind Dy und Sy orthogonale Matrizen.
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Satz 20.6 Sei A € M(2 x 2,R) orthogonal; dann gibt es ein eindeutiges 6 mit

0 <6< 2m, so dass A entweder Dy oder Sy ist. Mit anderen Worten ist
{Dyp:0<0<2r}U{Sp:0<0 <27}

genau die Menge aller 2 x 2 orthogonalen Matrizen.

Beweis Ubung. O

Sei 0 < 0 < 27; dann ist
LNEA cosf —siné x\ (xcost —ysind
\y ) \sin® cosé y) \xsinf+ycosh |’

. . 7 CoS (v
Sei nun v € R?; dann gibt es 7 > 0 und 0 < o < 27, so dass v = (Tsina)’ und

()= D rcosa\ [ rcosacosf —rsinasing\ [ rcos(a+6)
Poo\V) =50\ rsina ]~ \rcosasing +rsinacosf ) rsin(a+46) )’

Also ist ¢p, wirklich eine Drehung um den Winkel 6. Fiir die Matrix Sy gilt

g (%) _ cosf sinf x\ [ xcost+ysinb
\'y ) \sinh —cosh y) \xsinf —ycosl ) -

T COS v
7 sin o

(v) = S rcosa\ [ rcosacosf +rsinasind\ [ rcos(d — )
P8\ =20\ psing ) T \ reosasing — rsinacosd ) rsin(f+a«) )
Also ist pg, eine Spiegelung an der Geraden y = (0/2)x.

Sei Mo (n x n,R) die Menge aller Matrizen in M(n x n, R) mit folgender Block-
Gestalt:

Sei v € R? mit v = ( ); dann ist

wobei p > 0,¢>0,m>0und 0 < §; < firj=1,..., m (und natiirlich ist
dann p + ¢+ 2m = n).

Satz 20.7 Sei A € M(n xn,R) orthogonal; dann gibt es eine orthogonale Matriz
P e M(n x n,R), so dass P"*AP € Mg(n x n,R).
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Beweis Setze f = pa;nach Satz 20.1ist f : R® — R" orthogonal und folglich gibt
es nach Satz 19.8 zweidimensionale f-invariante Untervektorrdume Dy, ..., D,,
von R™ (mit m > 0), so dass fiir jedes j die Einschrankung f; von f auf D, eine
nichttriviale Drehung ist und R" die orthogonale Summe der Untervektorraume
E(f,1), E(f,—1), Dy, ..., Dy, ist. Sei 1 < k < m; nach Satz 19.7 (2) gibt es
eine orthonormale Basis (uf, u5) von Dy, so dass Dy, die Matrix von f; beziiglich
(uf, ub) ist. (Ist Doy_g, die Matrix von fi beziiglich einer orthonormalen Basis
(wy,wq), so ist Dy, die Matrix von fj, beziiglich (wq,w).) Sei (uq,...,u,) eine
orthonormale Basis von E(f,1) und (u},...,u}) eine orthonormale Basis von

» Y
E(f,—1). Nach Lemma 18.7 ist dann

(U1, ..., 0p) = (ul,...,up,ull,...,uq,u%,u%,...,uﬁn,u;”)
eine orthonormale Basis von R" und
By
—E,
B = D91
Doy,
ist die Matrix von f = ¢4 beztiglich (vy, ..., v,). Sei P die Matrix fiir den Wechsel
von der kanonischen Basis (ey,...,e,) von R"” nach (vy,...,v,). Nach Satz 20.5
ist P orthogonal, da (ey,...,e,) eine orthonormale Basis von R™ ist, und nach

Satz 8.8 ist B = P7'AP, da A die Matrix von ¢4 beziiglich (e, ..., e,) ist.
Insbesondere ist P~1AP € Mg(n x n,R). O

Eine komplexe Matrix A € M(n x n,C) heifit unitir, wenn die Spalten von A
eine orthonormale Basis von C™ (mit dem iiblichen Skalarprodukt) bilden. Also
ist die Matrix A = (a;;) € M(n x n,C) genau dann unitér, wenn gilt:

Zaijaijzl firj=1,...,n und Zaijaik:() fiir alle j # k |

i=1 i=1

(wobel @;; statt @;; geschrieben wird). Ist A = (a;;) € M(n X n, (C) so bezeichnet
A" die zu A transponierte Matrix, d.h., A" = (af;), wobei aj; = a;, und A
bezeichnet die zu A konjugierte Matrix, d.h., A = (a,j)

Satz 20.8 Sei A € M(n x n,C); dann sind dquivalent:
(1) A ist unitdr.

(2) AtA =E,,.

(3) A ist invertierbar und A~ = A’
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(4) AA" = E,.

(5) Die Zeilen von A bilden eine orthonormale Basis von C" (mit dem tblichen
Skalarprodukt).

(6) Der Endomorphismus g4 : C* — C™ ist unitdr beziiglich C* mit dem tiblichen
Skalarprodukt.

1 fallsi=j,

0 falls i £  Denosilt

Beweis (1) < (2): Sei A = (a;;) und setze d;; = {

A ist orthogonal < Z a;ja;, = 0j fir alle j, k
i=1

& Za;ﬁik =0 fir alle j, £k < A'A=E, .
i=1

(4) & (5): Genauso.

(2) & (3) & (4): Dies folgt unmittelbar aus Satz 6.2.

(1) & (6): Seien vy, ..., v, € C" die Spalten von A; also gilt pa(e;) = v; fir
jedes j, wobei (eq,...,e,) die kanonische Basis von C" ist. Aber (eq,...,e,) ist
eine orthonormale Basis, und daraus ergibt sich nach Lemma 19.3, dass ¢4 genau
dann unitér ist, wenn (vy, ..., v,) eine orthonormale Basis von C" ist. Damit ist
p 4 unitir genau dann, wenn A unitér ist. O

Lemma 20.3 (1) Es gilt AB = AB fiir alle A, B € M(n x n,C).

(2) Ist A € M(n x n,C) invertierbar, so ist A auch invertierbar und es gilt
(A7t =A-1

(3) Es gilt A=A fir alle A € M(n x n,C).

Beweis (1) und (3) sind klar.

(2) Dies folgt unmittelbar aus (1) und Satz 6.2, da
ATA=A'1A=E,=E,. O

Die Menge der n x n unitdren Matrizen wird mit U(n) bezeichnet.

Satz 20.9 U(n) ist eine Untergruppe der Gruppe GL(n,C) aller invertierbaren
n X n komplexen Matrizen. Mit anderen Worten:

(1) Die Einheitsmatriz E, ist unitdr.
(2) Ist A unitir, so ist A~' unitdr.
(8) Sind A, B unitir, so ist AB unitdir.
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Beweis (1) Dies ist klar.
(2) Nach Satz 20.8, Lemma 20.1 (2), Lemma 20.3 (2) und Lemma 6.3 (3) ist

(A AT = (a) (@) = (AA) = B, = F,

und damit ist nach Satz 20.8 A~! auch unitar.

(3) Nach Satz 20.8, Lemma 20.1 (1) und Lemma 20.3 (1) ist
(AB)AB — B'A"AT — B'E,B = BB - E,

und damit ist nach Satz 20.8 AB auch unitar. O

Satz 20.10 Sei A € M(n x n,C) unitdr; dann ist |[det A| = 1.

Beweis Es ist klar, dass det A = det A, und daraus folgt nach Satz 20.8, Satz 15.3
und Satz 15.4, dass

|det A|*> = (det A)(det A) = (det A")(det A) = det(A"A) =det B, = 1.
Damit ist |det A| =1. O

Im Folgenden sei (V, (-, )) ein endlichdimensionaler unitérer Vektorraum.

Lemma 20.4 Sei f : V — V ein Endomorphismus von V', sei (vq,...,v,) eine
orthonormale Basis und sei A die Matriz von f beziiglich (vy, . .. ,v,ﬁ. Definiere
B = (b;;) € M(n x n,C) durch b;; = (f(v;), f(v;)). Dann ist B = A'A.

Beweis Fiir alle 4, j ist

bij = (f(vi), f(vy)) = < ki Uk, azjve>
k=1 =1
= WkiGej (U, Ve) = Z AfiQrj = Z 3y,
k=1 (=1 k=1 k=1
dh., B=A'A. O
Satz 20.11 Sei f : V — V' ein Endomorphismus von V' und sei (vy,...,v,) eine
orthonormale Basis. Dann ist die Matriz A von [ beziglich (v, ..., v,) unitir

genau, wenn der Endomorphismus f unitdr ist.
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Beweis Definiere B = (b;;) € M(n x n,C) durch b;; = (f(v;), f(v;)) und also
ist nach Lemma 20.4 B = A'A. Nach Lemma 19.3 ist aber f unitéir genau dann,
wenn (f(v1),..., f(v,)) eine orthonormale Basis von V' ist und daher genau dann,
wenn B = F,. Folglich ist f unitir genau dann, wenn A unitér ist. O

Satz 20.12 Sei (vy,...,v,) eine orthonormale Basis von V und sei (uq, ..., uy,)
eine (beliebige) Basis von V' ; sei P die Matriz fir den Wechsel von (vq,...,v,)
nach (uy, ..., u,). Dann ist (uq, ..., u,) eine orthonormale Basis genau, wenn P
unitdr ist.

Beweis Fiir alle 1 < k, £ < n ist

(up, ue) = <Z Pik Vi, ijwj> = Z Zpik]_)jé<viavj> = ijk]_)jé = Zp}tgjpjz
=1 j=1 j=1 j=1

i=1 j=1

und folglich gilt (uy,us) = ¢ fiir alle j, k genau dann, wenn PP = E,. Daraus
ergibt sich nach Satz 20.8, dass (uq, ..., u,) genau dann eine orthonormale Basis
ist, wenn die Matrix P unitér ist. O

Satz 20.13 Sei A € M(n x n,C) unitir; dann gibt es eine unitire Matriz P,
so dass PYAP eine Diagonalmatriz ist. Insbesondere ist jede unitire Matriz
diagonalisierbar.

Beweis Nach Satz 20.8 ist ¢4 : C" — C™ unitér (beziiglich C" mit dem iiblichen
Skalarprodukt) und folglich gibt es nach Satz 19.6 eine aus Eigenvektoren von
w4 bestehende orthonormale Basis (vy,...,v,) von C". Die Matrix D von @4
beziiglich (vq,...,v,) ist also eine Diagonalmatrix. Sei P die Matrix fiir den
Wechsel von der kanonischen Basis (ey,...,e,) von C" nach (vy,...,v,). Nach
Satz 20.12 ist P unitér, da (eq,...,e,) eine orthonormale Basis von C" ist, und
da A die Matrix von ¢4 beziiglich (ey,...,e,) ist, ist nach Satz 8.8 D = P~'AP,
d.h. P'AP ist eine Diagonalmatrix. O



21 Selbstadjungierte Endomorphismen

Im Folgenden sei (V, (-, -)) entweder ein euklidischer Vektorraum oder ein unitérer
Vektorraum. Der zugrundeliegende Korper wird mit K bezeichnet. Es gilt also
K =R, falls (V, (-,+)) ein euklidischer Vektorraum ist, und K = C, falls (V, (-,-))
ein unitirer Vektorraum ist. Ist (V, (-,-)) ein euklidischer Vektorraum und A € R,
so ist \ einfach als \ zu interpretieren.

Ein Endomorphismus f : V — V heifit selbstadjungiert, wenn

(f(u),v) = (u, f(v))

fir alle u, v € V.

Satz 21.1 Sei (V,(-,-)) ein unitirer Vektorraum. Dann ist ein Endomorphismus
f:V =V selbstadjungiert genau, wenn (f(v),v) reell ist fir alle v € V.

Beweis Ist f selbstadjungiert, so ist

und damit ist {f(v),v) reell fiir alle v € V. Die Umkehrung ist eine Ubung. O

Fiir euklidische Vektorrdume gibt es kein Ergebnis, das Satz 21.1 entspricht.

Satz 21.2 Sei (V,(-,-)) ein unitirer Vektorraum und sei f : V — V ein selbst-
adjungierter Endomorphismus. Dann ist jeder Eigenwert von f reell.

Beweis Sei A € C ein Eigenwert von f und sei v € V ein Eigenvektor von f zum
Eigenwert A. Dann ist

Mo,v) = (A, v) = (f(v),v) = (v, f(v)) = (v, \v) = \v,v)
und daraus folgt, dass A = A, da (v,v) # 0. Damit ist A € R. O

Sei f:V — V ein selbstadjungierter Endomorphismus; dann ist jeder Eigenwert
von f reell: Fiir einen euklidischen Vektorraum ist dies trivial der Fall und fiir
einen unitidren Vektorraum ist dies die Behauptung von Satz 21.2.

Satz 21.3 Sei f : V. — V ein selbstadjungierter Endomorphismus und seien
A1, Ay verschiedene FEigenwerte von f. Dann sind die Eigenrdume E(f, A1) und
E(f, A2) orthogonal.

182
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Beweis Seien vy € E(f, A1), va € E(f, A2); dann ist
>\1<Ul,02> = <)\101J)2> = <f(U1),1)2>
= <Ul7 f(Uz» = <Ul7 )\2U2> = )\2<U1,U2> = )\2<U17U2> )

da Ay € R, und daraus folgt, dass (vy,v2) =0, da Ay # Ay, O

Lemma 21.1 Sei f:V — V ein selbstadjungierter Endomorphismus und sei U
ein Untervektorraum von V mit f(U) C U. Dann gilt auch f(UL) C U*.

Beweis Seien v € U+, u € U; dann gilt (f(v),u) = (v, f(u)) = 0, da f(u) € U.
Mit anderen Worten ist f(v) L u fiir allev € UL, u € U; d.h., f(UY) cU*. O

Bemerkung Im Gegensatz zu dem entsprechenden Lemma fiir orthogonale bzw.
unitére Vektorrdume (Lemma 19.4) braucht man hier in Lemma 21.1 nicht an-
zunehmen, dass V' endlichdimensional ist.

Sei f : V — V ein Endomorphismus von V; ein Endomorphismus g : V — V
heifit zu f adjungiert, wenn fiir alle u, v € V

{9(u),v) = (u, f(v)) -

Also ist f selbstadjungiert genau dann, wenn f zu sich selbst adjungiert ist.

Lemma 21.2 Sei f : V. — V ein Endomorphismus. Dann gibt es hochstens
einen Endomorphismus, der zu f adjungiert ist.

Beweis Seien g, h : V' — V Endomorphismen, die zu f adjungiert sind. Fiir jedes
v €V gilt dann

{9(v) = h(v), g(v) = h(v)) = (9(v), g(v)
= (v, f(g(v)

und damit ist g(v) = h(v) fir allev € V, d.h., g =h. O

Wenn ein (und damit der) zu f adjungierte Endomorphismus existiert, so wird
dieser Endomorphismus meistens mit f2¢ bezeichnet.

Im Folgenden sei V' stets endlichdimensional ist mit dim V' > 1.

Lemma 21.3 Seien f, g : V — V Endomorphismen und sei (vy,...,v,) eine
orthonormale Basis von V. Dann ist g der zu f adjungierte Endomorphismus
genau, wenn (g(v;),v;) = (v;, f(v;)) fir alle 1 <i, j <n.
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Beweis Nehme an, dass (g(v;),v;) = (v, f(v;)) fiir alle 1 <4, 7 < n. Selen nun
u, v € V; es gibt also eindeutige Elemente Ay, ..., Ay, g1, ..., i € K, so dass
U= Av1+ -+ A\v, und v = vy + - - - + Upv,, und dann ist

= <i )\ivi,iﬂjf@j>>
= ZZAM] i, f(v5)) ii)\l’%

i=1 j=1 i=1 j=1
= <Z Aig(vi),Zujvj> = (9(u),v
i=1 Jj=1

und daraus folgt, dass g der zu f adjungierte Endomorphismus ist. Natiirlich ist
die Umkehrung trivial richtig. O

~

Satz 21.4 Sei f : V. — V ein Endomorphismus von V. Dann ezistiert der zu
f adjungierte Endomorphismus f24 : V. — V. Ist ferner o eine orthonormale
Basis von 'V und ist A die Matriz von f beziiglich «, so ist A, falls (V. {(-,-)) ein

euklidischer Vektorraum ist, bzw. Zt, falls (V,(-,-)) ein unitdrer Vektorraum ist,
die Matriz von f39 beziiglich der Basis a.

Beweis Sei (vy, ..., v,) eine orthonormale Basis von V' und A = (a;;) die Matrix
von f beziiglich (vq,...,v,). Nach Lemma 8.2 gibt es dann einen eindeutigen
Endomorphismus g : V' — V| so dass

g(vj) = Z iV = Z awvl

=1

fir j =1, ..., n, und folglich ist A* bzw. A" die Matrix von g beziiglich der Basis
(v1,...,0,). Seien 1 < j, k < n; dann ist

n n
—t —t —t —
k) = < E az‘jviavk> = E aij<vi7vk> = Qi = Qjk
i=1

=1
- Zazk U]avl — <U]7Zalkvl> U]7 (Uk»

und damit ist nach Lemma 21.3 g der zu f adjungierte Endomorphismus. Ferner
ist A bzw. A" die Matrix von g beziiglich (vq,...,v,). O

Satz 21.5 Sei f : V — V ein Endomorphismus. Dann ist det f2¢ = det f, falls
(V,(-,+)) ein euklidischer Vektorraum ist, und det f2¢ = det f, falls (V,(-,-)) ein

unitdarer Vektorraum ist.
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Beweis Dies folgt unmittelbar aus Satz 21.4 und Satz 15.4. O

Satz 21.6 Sei f: V — V ein Endomorphismus. Dann sind dquivalent:
(1) f ist orthogonal bzw. unitdir.
(2) f ist ein Automorphismus und f~! = f3d.

Beweis Dies ist lediglich eine Umformulierung von Satz 19.3. O

Eine Matrix A = (a;;) € M(n x n,R) heiit symmetrisch, wenn a;; = a;; fiir alle
i, 7, d.h., wenn A = A’

Eine Matrix A = (a;;) € M(n x n,C) heiit Hermitesch, wenn a;; = @;; fiir alle
. -t
1, j, d.h., wenn A =A".

Satz 21.7 Sei f : V — V ein Endomorphismus und o eine orthonormale Basis
von V. Dann ist die Matriz A von f beziiglich o symmetrisch bzw. Hermitesch
genau, wenn f selbstadjungiert ist.

Beweis Dies folgt unmittelbar aus Satz 21.4 und Lemma 8.2. O

Lemma 21.4 Sei f : V — V ein selbstadjungierter Endomorphismus. Dann
besitzt f einen Figenwert.

Beweis Ist (V, (-, -)) ein unitdrer Vektorraum, dann folgt umittelbar aus Satz 16.4
und Satz 16.5, dass f einen Eigenwert besitzt, da xy # 0 und Gradx; > 1.
Nehme also an, dass (V, (-, -)) ein euklidischer Vektorraum ist. Sei (vy, ..., v,) eine
orthonormale Basis von V' und sei A € M(n x n,R) die Matrix von f beziiglich
(v1,...,05,). Sei Ac € M(n x n,C) die Matrix A als komplexe Matrix angesehen.
Nach Satz 21.7 ist A symmetrisch und damit ist A¢c Hermitesch. Daraus folgt
nach Satz 21.7, dass der Endomorphismus ¢4, : C" — C" selbstadjungiert ist.
Insbesondere besitzt ¢ 4. einen Eigenwert A und nach Satz 21.1 ist A € R. Nun ist
A (per Definition) ein Eigenwert von Ac und daraus ergibt sich, dass A auch ein
Eigenwert von A ist. (Sei z = z+iy € C" ein Eigenvektor von A¢ zum Eigenwert
A, wobei z, y € R™. Dann ist Acz = Az und damit Az = Az und Ay = Ay, d.h., A
ist ein Eigenwert von A, da nicht beide von = und y gleich 0 sein kénnen.) Nach
Satz 9.3 (1) ist dann A ein Eigenwert von f. O

Satz 21.8 Sei f : 'V — V ein selbstadjungierter Endomorphismus von V und
seien A1, ..., Ay die verschiedenen Eigenwerte von f. Dann ist V' die orthogonale
Summe der Eigenrdume E(f, A1), ..., E(f, \n).
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Beweis Sei U = E(f, A1) +---+ E(f, Am); nach Satz 21.3 ist U die orthogonale
Summe von E(f, A1), ..., E(f, \) und also bleibt nur zu zeigen, dass U = V.
Nehme an, dass U # V und setze W = U*. Da f(E(f, \;)) C E(f, ;) fiir jedes
J, ist auch f(U) C U, und daraus folgt nach Lemma 21.1, dass f(W) C W. Sei
g : W — W die Einschrinkung von f auf W. Dann sicht man leicht, dass g
selbstadjungiert ist (beziiglich (W, (-,-)w ), wobei (-, )y die Einschriankung von
(-,-) auf W x W ist). Dadim W > 1, besitzt g nach Lemma 21.4 einen Eigenwert
A. Sei v € V ein Eigenvektor von g zum Eigenwert A. Dann ist f(v) = g(v) = Av,
d.h., A ist auch ein Eigenwert von f und damit ist A = A; fiir ein j und v
ist ein Eigenvektor von f zum Eigenwert \. Also ist v € U N W und dies ist
ein Widerspruch, da U 1 W. Daraus ergibt sich, dass U = V, d.h., V ist die
orthogonale Summe der Eigenraume E(f, A1), ..., E(f, A\n). O

Satz 21.9 Sei f:V — V ein selbstadjungierter Endomorphismus. Dann gibt es
eine aus Kigenvektoren von f bestehende orthonormale Basis von V.

Beweis Seien Ay, ..., A, die verschiedenen Eigenwerte von f und fiir jedes j sei
(ul,... ,uij) eine orthonormale Basis von E(f, A;). Dann ist nach Satz 21.8 und
Lemma 18.7 (ui,...,uy,...,uf",...,u}" ) eine orthonormale Basis von V' und

damit eine aus Eigenvektoren von f bestehende orthonormale Basis. O

Satz 21.10 Jeder Eigenwert einer Hermiteschen Matrix ist reell.

Beweis Dies folgt unmittelbar aus Satz 21.2, Satz 21.7 und Satz 9.3 (1). O

Satz 21.11 Sei A symmetrisch bzw. Hermitesch; dann gibt es eine orthogonale
bzw. eine unitire Matriz P, so dass P~YAP eine Diagonalmatriz ist. Insbesondere
1st jede symmetrische bzw. jede Hermitesche Matrix diagonalisierbar.

Beweis Sei K = R, falls A symmetrisch ist, und K = C, falls A Hermitesch
ist. Nach Satz 21.7 ist der Endomorphismus ¢, : K* — K" selbstadjungiert
(beziiglich K™ mit dem {iblichen Skalarprodukt) und folglich gibt es nach Satz 21.9
eine aus Eigenvektoren von ¢4 bestehende orthonormale Basis (vy,...,v,) von
K". Die Matrix D von ¢4 beziiglich (vy,...,v,) ist also eine Diagonalmatrix.
Sei P die Matrix fiir den Wechsel von der kanonischen Basis (ey, ..., e,) von K"
nach (vy,...,v,). Nach Satz 20.4 bzw. Satz 20.12 ist P orthogonal bzw. unitér,
da (eq,...,e,) eine orthonormale Basis von K" ist. Da ferner A die Matrix von
4 beziiglich (e, ..., e,) ist, ist nach Satz 8.8 D = P71AP, d.h., P"'AP ist eine
Diagonalmatrix. O
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Sei A eine Hermitesche Matrix; nach Satz 21.11 gibt es dann eine unitére Matrix
P, so dass P~'AP eine Diagonalmatrix D ist, und die Eintriige auf der Diagonalen
von D miissen alle reell sein, da sie Eigenwerte von A sind.

Sei A eine symmetrische bzw. eine Hermitesche Matrix; es gibt nun das folgende
Verfahren zur Bestimmung einer orthogonalen bzw. einer unitdren Matrix P, so
dass P~'AP eine Diagonalmatrix ist:

(1) Man bestimme die Nullstellen Ay, ..., A, des charakteristischen Polynoms
X4 Nach Satz 16.3 sind dann Ay, ..., A\, die Eigenwerte von A.

(2) Fiir jedes j =1, ..., m ist nach Lemma 9.4
E(A, \;) = Los(A — A;E,, 0)

und also kann mit Hilfe von Satz 9.1 und des Gaufischen Algorithmus eine Basis

(u), ... ,ug;j) von E(A, \;) konstruiert werden.

(3) Fiir jedes j wende das Gram-Schmidtsche Verfahren auf (u, ..., ug)j) an, um
eine orthonormale Basis (v], . .. ,vgj) von E(A, \;) zu konstruieren.

(4) Sei P die Matrix, die wy, ..., w, als Spalten hat, wobei

(wl,...,wn):(v%,...,vzl)l,vf,...,1)12)2,...,1){”,...,1)7”)

Dann ist P orthogonal bzw. unitir und P~*AP = D, wobei D die Diagonalmatrix
ist mit den Eintrdgen A\i,..., A1,..., A,y ..., Ay auf der Diagonalen, wobei fiir
jedes j der Eigenwert \; genau p;-mal vorkommt.

Im Folgenden sei (V, (-,-)) ein endlichdimensionaler unitérer Vektorraum. Eine
Klasse Endomorphismen, die normalen Endomorphismen, wird nun eingefiihrt,
und es wird gezeigt, dass ein Endomorphismus f genau dann normal ist, wenn es
eine aus Eigenvektoren von f bestehende orthonormale Basis von V' gibt.

Ein Endomorphismus f : V — V von V heiit normal, wenn f o f24 = fado f.
Insbesondere ist ein unitdrer Endomorphismus f normal, da nach Satz 21.6

fofi=foft=idy=f"lof=/"0f.

Ferner ist ein selbstadjungierter Endomorphismus f auch normal, da
fofd=fof=f"of.

Lemma 21.5 Sei f:V — V ein normaler Endomorphismus. Dann gilt:

(1) 1F @) = /()| fir alle v € V.
(2) Kern f = Kern f.
(3) Kern (f — Nidy) = Kern (f2¢ — Xidy) fiir alle A € C.
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(4) X € C ist ein Eigenwert von f genau dann, wenn X ein Eigenwert von f2¢
15t.

(5) BE(f,\) = E(f29,\) fiir jeden Eigenwert \ von f.

(6) Sind A1 und Ny Figenwerte von f mit \y # Ao, so sind die Eigenrdume
E(f, A1) und E(f, \2) orthogonal.

Beweis (1) Fiir jedes v € V gilt

IF )P = (f (), f(0)) = (F(f(v)),0) = (F(f*(v)),v)
= (v, f(f*4(v))) = (f*4(v), f24(v)) = (f*(v), [*(v)) = |/ (@)]* -

(2) Nach (1) ist

Kernf={veV:|f)|=0}={veV:|f9@)|=0}=Kern .

(3) Es gilt (f — \idy)2d = f24 — Xidy, da

(24 = Nidv)(u),v) = (f*(u),v) = Mu,v)

Ferner ist f — Aidy normal, da
(f = Aidy) o (f = Aidy)* = (f = Aidy) o (f*¢ = Xidy)
= fo A Afd—Xf+M\idy = f290 f —Af = A4+ Midy
= (f*9 = Xidy) o (f = Xidy) = (f — Nidy)* o (f — Nidy) .

Daraus ergibt sich nach (2), dass

Kern (f — Aidy) = Kern (f — Midy)* = Kern (¢ — Xidy) .

(4) Sei A € C; dann ist A ein Eigenwert von f genau, wenn Kern (f —Aidy) # {0}
und X ist ein Eigenwert von f2¢ genau dann, wenn Kern (f2¢—Xidy) # {0}. Aber
nach (3) ist Kern (f — Aidy) = Kern (2 — Xidy).

(5) Dies folgt unmittelbar aus (3).

(6) Seien \j, Ao verschiedene Eigenwerte von f und v, € E(f, A1), va € E(f, \2).
Nach (5) gilt auch v; € E(f2¢, \;) und folglich ist

Ao (v, v2) = (v1, Adgwa) = (vr, f(v2)) = (f*4(v1),v2) = (A1, v2) = Ai (v, v2) .

Damit ist <U1,U2> = 0, dh, U1 1 Vo, da Xl # Xg. O
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Satz 21.12 Sei f: V — V ein Endomorphismus. Dann sind die folgenden dre:
Aussagen dquivalent:

(1) f ist normal.

(2) V ist die orthogonale Summe der Figenrdume E(f, A1), ..., E(f, Am), wobei
A1y .oy A die verschiedenen Figenwerte von [ sind.

(3) Es gibt eine aus Eigenvektoren von f bestehende orthonormale Basis von V.

Beweis (2) = (3): Dies ist identisch mit dem Beweis fiir Satz 21.9.

(3) = (1): Sei (vy,...,v,) eine aus Eigenvektoren von f bestehende orthonormale
Basis von V, wobei v; ein Eigenvektor zum Eigenwert A; ist fiir jedes j. Dann
ist die Matrix von f beziiglich (vy,...,v,) die Diagonalmatrix D mit Eintrigen
A1, ..., A\, auf der Diagonalen. Daraus folgt nach Satz 21.4, dass D' die Matrix
von f24 beziiglich (vy,...,v,) ist, und damit ist DD’ bzw. D'D die Matrix von
fo f3 bzw. fado f beziiglich (vy,...,v,). Aber D' ist die Diagonalmatrix mit
Eintrdgen M1, ..., A, auf der Diagonalen und folglich ist DD' =D'D =D ,
wobei D’ die Diagonalmatrix mit Eintriigen |A\;|?, ..., |\,|* auf der Diagonalen
ist. Also folgt aus Lemma 8.2, dass f o 24 = f2do f, d.h., f ist normal.

(1) = (2): Seien Aq, ..., A, die verschiedenen Eigenwerte von f; dann ist nach
Lemma 21.5 (6) die Summe U = E(f, A1) + --- + E(f, \,) eine orthogonale
Summe und also geniigt es zu zeigen, dass U = V. Nehme an, dass U # V und
setze W = U*. Sei w € W; dann gilt (w,u) = 0 fiir jedes u € E(f,);) und
folglich ist

0= A (w,u) = (w, ju) = (w, /() = (f(w),u)

da nach Lemma 21.5 (4) E(f, \;) = E(f24,\;). Dies bedeutet, dass f(w) L u fiir
alle u € E(f, \;), und daher ist f(w) L w fiir alle w € W und alle w € U, d.h.,,
f(W) C W. Sei g die Einschrénkung von f auf W. Da dim W > 1, ist x, # 0 ein
Polynom mit Grad x, > 1 und folglich gibt es nach Satz 16.4 und Satz 16.5 einen
Eigenwert A € C von g. Sei v € V ein Eigenvektor von g zum Eigenwert A\. Dann
ist f(v) = g(v) = Av, d.h., X ist auch ein Eigenwert von f und damit ist A = \;
fiir ein j und v ist ein Eigenvektor von f zum Eigenwert . Also ist v €e UNW
und dies ist ein Widerspruch, da U L W. Daraus ergibt sich, dass U = V', d.h.,
V ist die orthogonale Summe der Eigenrdume E(f, A1), ..., E(f, Ay). O

Satz 21.12 liefert einen alternativen Beweis fiir Satz 19.6 und fiir Satz 21.9.



22 Bilinearformen

Im Folgenden sei K ein Korper und seien V' und W Vektorrdume iiber K.
Eine Abbildung s : V x W — K heifit Bilinearform, wenn fiir alle vy, v9, v € V,
wy, wy, w € W und alle Ay, Ay € K gilt:

s(A1v1 + Agvg, w) = Ars(vy, w) + Aes(ve, w)
s(v, Mqwy + Aswsy) = Ais(v, wy) + Aas(v, ws) .

Beispiele (1) Ist (V, (-, -)) ein euklidischer Vektorraum, so ist das Skalarprodukt
(-,-) : V. xV — R eine Bilinearform.

(2) Sei A = (a;;) € M(m x n, K) und definiere s : K™ x K™ — K durch
y) = Zzag‘k%‘yk 3
=1 k=1

wobei = (z1,...,2y,) und y = (y1,...,y,); dann ist s eine Bilinearform.

(3) Fiir a, b € R mit a < b sei C([a,b],R) der reelle Vektorraum aller stetigen
Abbildungen von [a,b] nach R. Sei K : [a,b] X [¢,d] — R stetig und definiere
s : C([a, b],R) x C([¢,d],R) — R durch

b d
s(f,9) = / / K (2, 9)f(2)g(y) de dy

dann ist s eine Bilinearform.

Fiir jede Bilinearform s : V x W — K gibt es die transponierte Bilinearform
st W xV — K, die fiir alle w € W, v € V gegeben ist durch

s'(w,v) = s(v,w) .

Seien nun V und W endlichdimensional mit dimV =m > 1 und dimW =n > 1.

Sei s : V. x W — K eine Bilinearform, sei (vy,...,v,,) eine Basis von V' und
(wy,...,w,) eine Basis von W. Definiere eine Matrix A = (a;;) € M(m x n, K)
durch a;; = s(v;,w;); dann heiit A die Matriz von s beziiglich (vy, ..., vy) und
(wr,...,wy,). Ist A die Matrix von s beziiglich (vq,...,v,) und (wy,...,w,),

so ist die transponierte Matrix A®* € M(n x m, K) die Matrix von s* beziiglich
(wq, ..., wy,) und (vy,..., V).

Lemma 22.1 Sei (vq,...,v,) eine Basis von V und (w, ..., w,) eine Basis von
W. Dann gibt es zu jeder Matriz A € M(m x n, K) genau eine Bilinearform s,
so dass A die Matriz von s beziiglich (vq,...,vy) und (wy, ..., w,) ist.

190
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Beweis Ubung. O

Im Folgenden sei s : V x W — K eine Bilinearform.

Lemma 22.2 Seien «, o zwei Basen von V und 3, 3 zwei Basen von W. Sei
A bzw. B die Matriz von s beziiglich o und [ bzw. beziiglich o' und 3'. Dann gilt
B = P'AQ, wobei P die Matriz fiir den Wechsel von o nach o' und QQ die Matriz
fiir den Wechsel von (3 nach (3’ ist.

Beweis Setze A = (a;j), B = (bij), P = (pij), Q = (¢i5); selen o = (vy,...,0p),

o = (vy,...,v,), B=(w,...,w,) und ' = (w],...,w,). Dann gilt

>y m
m n
! !
bij = s(v;, wj) = 5(2 PkiVk, Z%‘W)
k=1 =1
m n m n m n
3
= E Pkiqej, S(Uk,wz) = E PkiqejQge = g § PirQreqe;
1 ¢=1 k=1 ¢=1 k=1 ¢=1

IN T

fiir alle 1 <7 <m, 1 < j <n und folglich ist B = P'AQ. O

Sind P € M(m xm, K) und @ € M(n xn, K) invertierbare Matrizen, so gilt nach
Lemma 7.4 (2) und (3), dass rang P'AQ) = rang A fiir jedes A € M(m x n, K).
Ist also A die Matrix von s beziiglich Basen « und f, so folgt aus Lemma 22.2,
dass rang A allein durch s bestimmt wird, und folglich setzt man rang s = rang A;
rang s heifit natiirlich der Rang von s. Es gilt 0 < rang s < min{m, n}.

Da rang A' = rang A fiir jedes A € M(m X n, K), ist rang s' = rang s.

Erinnerung: Sei r mit 0 < r < min{m, n}; die folgende m x n Matrix

]
]

B, =

m,n
«— r-te Zeile

SO DO DD OO OO
(>l elNoloNell )
SO OO oo+ OOo
[N e eNolS = Reolo)
DO DO O OO oo
S OO OO O oo
O OO OO oo oo
S OO OO o oo
S OO OO Do oo
O OO O OO o oo
O OO O O oo oo
O OO OO oo oo
SO DO OO oo oo
SO DO OO oo oo

wurde die Sub-Einheitsmatriz vom Rang r genannt. Also ist Ey, = (6;;), wobei

5 — 1 fallsi=jund 1 <i<r,
10 sonst,

und rang E) . =7.
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Satz 22.1 Seir =rangs; dann gibt es eine Basis o von V' und eine Basis (3 von
W, so dass Ej, ,, die Matriz von s beziiglich a und 3 1ist.

Beweis Sei o eine beliebige Basis von V und ' eine beliebige Basis von W,
und sei A die Matrix von s beziiglich o/ und 3’. Da rang A = r, gibt es nach
Satz 7.6 invertierbare Matrizen R € M(m x m, K) und Q € M(n x n, K), so dass
RAQ = E" :setze P = R'. Sei nun « bzw. 3 die Basis von V bzw. W, so dass

m,n’

P bzw. ) die Matrix fiir den Wechsel von o’ nach « bzw. fiir den Wechsel von

#' nach 3 ist. Nach Lemma 22.2 ist dann EJ, , = P'AQ = P'AQ die Matrix von
s beziiglich a und . O

Definiere nun L(s) C V und R(s) C W durch

L(s) ={veV:s(v,w)=0 fir alle w € W},
R(s) ={we W :s(v,w)=0furallev e V}.

Es ist klar, dass L(s) ein Untervektorraum von V' und R(s) ein Untervektorraum
von W ist. Ferner gilt L(s") = R(s) und R(s") = L(s).
Satz 22.2 (Dimensionsformel) FEs gilt
dimV — dimL(s) = rang s = dim W — dim R(s) .
Beweis Sei r = rang s; nach Satz 22.1 gibt es dann eine Basis o = (vy,...,vp)

von V' und eine Basis 8 = (w1,...,w,) von W, so dass E}, , die Matrix von s
beziiglich o und [ ist. Es gilt also

1 falls j=kund 1 <5< r,
0 sonst ,

s(vj, we) = {
Da (wy, ..., w,) eine Basis von W ist, gilt
L(s) ={v eV :s(v,wg) =0 fir jedes k =1, ..., n},
und ist v € V mit v = A\jvy + -+ + AU, so gilt

s(v,wg) = s(Av1 + -+ ApU, W) = Aps(v1, we) + -+ -+ XSV, W)
A falls k<,
“ 1 0 sonst.

Daraus ergibt sich, dass L(s) = L(v,41, ..., v,) und folglich ist

dimL(s) = dim L(vy41,...,0p) =m —r=dimV —rangs .



22 BILINEARFORMEN 193

Genauso gilt dann

dim R(s) = dimL(s") = dim W —rang s' = dimW —rangs . O

Ab jetzt wird nur der Fall mit V' = W betrachtet, und also ist s eine bilineare
Abbildung von V' x V nach K. Hier wird eine Basis verwendet: Ist (vy,...,v,)
eine Basis von V, so wird (a;;) € M(n x n, K) mit a;; = s(v;, vy) die Matrix von
s beziiglich (vy,...,v,) genannt.

Die Bilinearform s : V x V' — K heifit symmetrisch, wenn s* = s, d.h., wenn
s(v,w) = s(w,v) fir alle v, w € V. Ist A die Matrix von s beziiglich einer Basis
von V, so ist s symmetrisch genau dann, wenn A symmetrisch ist, d.h., genau
dann, wenn A® = A.

Sind «, o’ zwei Basen von V und ist A bzw. B die Matrix von s beziiglich o bzw.
beziiglich o/, so gilt nach Lemma 22.2, dass B = P'AP, wobei P die Matrix fiir
den Wechsel von « nach o ist.

Nach Satz 22.2 gilt nun
dimL(s) = dimR(s) = dimV —rangs ,

und insbesondere ist rang s = dim V' genau dann, wenn L(s) = R(s) = {0}. In
diesem Fall sagt man, dass s nicht ausgeartet ist. Ist A die Matrix von s beziiglich
einer Basis von V', so ist s nicht ausgeartet genau dann, wenn A invertierbar ist.

Satz 22.3 Sei s nicht ausgeartet und 5 : V xV — K eine beliebige Bilinearform.
Dann gibt es eindeutige Endomorphismen f, g:V — V, so dass

$(v,w) = 5(v, g(w)) = s(f(v), w)

fiir alle v, w € V. Ist ferner o eine Basis von V, A € M(n x n, K) die Matrix
von s und B € M(n x n, K) die Matriz von § beziiglich a, so ist (BA™Y)" die
Matriz von f und A~'B die Matriz von g beziiglich .

Beweis Sei o = (vy,...,v,) eine Basis von V' und sei A = (a;;) die Matrix von
s und B = (b;;) die Matrix von § beziiglich a. Da s nicht ausgeartet ist, ist A
invertierbar. Sei f : V' — V ein Endomorphismus und sei C' = (¢;;) die Matrix
von f beziiglich . Dann gilt

s(f(vj),vr) = s(crjvr + -+ - + CnjUn, Vi)
= c1;8(v1, V) + -+ Cpgs(Un, k) = Crjang + o cpgan, = (CTA) i

und damit gilt $(vj,v,) = by, = s(f(v;),vx) fiir alle j, k genau dann, wenn
B = C'A. Folglich gilt §(v,w) = s(f(v),w) fiir alle v, w € V genau dann, wenn
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C = (BA™1)t. Aber es gibt einen eindeutigen Endomorphismus f : V — V, fiir
den (BA™1)* die Matrix von f beziiglich « ist und daher gibt es einen eindeutigen
Endomorphismus f : V — V| so dass §(v,w) = s(f(v),w) fiir alle v, w € V.

Sei nun g : V' — V ein weiterer Endomorphismus mit C" = (¢};) die Matrix von
g beziiglich a. Dann gilt
s(vj, 9(vr)) = s(vj, chgvr + -+ + Cvn)
= s(vj,v1) + -+ (v, 0n) = gy + -+ Cpajn = (AC)
fiir alle 7, k& und also gilt §(v, w) = s(v, g(w)) fiir alle v, w € V genau dann, wenn

(" = A7'B. Folglich gibt es einen eindeutigen Endomorphismus ¢ : V — V, so
dass $(v,w) = s(v, g(w)) fur alle v, w € V. O

Im Folgenden sei nun (V/ (-, -)) ein endlichdimensionaler euklidischer Vektorraum
mit dim V' = n > 1. Die Bilinearform (-,-) : V' x V' — R ist nicht ausgeartet: Ist
(v1,...,v,) eine orthonormale Basis von V, so ist die Matrix von (-, -) beziiglich
(v1,...,v,) per Definition die Einheitsmatrix E, und rang E,, = n.

Sei s: V xV — R eine Bilinearform.

Satz 22.4 Es gibt einen eindeutigen Endomorphismus f : V. — V, so dass
s(u,v) = (u, f(v)) fir allew, v € V. Ist ferner a eine orthonormale Basis von V'
und ist A die Matriz von f beziiglich a, so ist A auch die Matriz von s beziiglich
a.

Beweis Dies ist ein Spezialfall von Satz 22.3. O

Lemma 22.3 Sei f der eindeutige Endomorphismus mit s(u,v) = (u, f(v)) fir
alle u, v € V.. Dann ist s symmetrisch genau, wenn f selbstadjungiert ist.

Beweis Ist s symmetrisch, dann gilt fiir alle u, v € V

(u, f(v)) = s(u,v) = s(v,u) = (v, f(u)) = (f(u),v)

und damit ist f selbstadjugiert. Ist umgekehrt f selbstadjugiert, so ist
s(u,v) = (u, f(v)) = (f(u),v) = (v, f(u)) = s(v,u)

fiir alle u, v € V und also ist s symmetrisch. O

Satz 22.5 Seis symmetrisch. Dann gibt es eine orthonormale Basis o von'V', so
dass die Matriz von s beziglich a eine Diagonalmatriz D ist. Ist o = (vy,...,v,)
und sind Ay, ..., A\, die Eintrdge auf der Diagonalen, so gilt fir alle u, v € V:

s(u,v) = Z Aj(u,vi) (v, v;) .
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Beweis Sei f : V. — V der eindeutige Endomorphismus mit s(u,v) = (u, f(v))
fiir alle u, v € V. Nach Lemma 22.3 ist f selbstadjungiert, da s symmetrisch
ist, und folglich gibt es nach Satz 21.9 eine aus Eigenvektoren von f bestehende
orthonormale Basis (vq,...,v,) von V. Sei D die Diagonalmatrix mit Eintrdgen
A1, .., Ap auf der Diagonalen, wobei v; ein Eigenvektor zum Eigenwert A; ist fiir
jedes j. Dann ist D die Matrix von f beziiglich (vy,...,v,) und damit ist nach
Satz 22.4 D auch die Matrix von s beziiglich (vq,...,v,). Nach Satz 18.5 ist nun

s(u,v) = s(zn:(u,vj>vj,zn:(v,vk)vk> = zn:zn:(u,vjﬂv,vk}s(vj,vk)

j=1 k=1 j=1 k=1
= > A{u, v {v,v;)
j=1
y A fallsj =k,
fir alle u, v € V, da s(v;, vg) = { 0 falls j £k . O

Sei s symmetrisch. Nach Satz 22.5 gibt es eine orthonormale Basis a von V', so
dass die Matrix von s beziiglich « eine Diagonalmatrix D ist. Sei o = (vy,...,v,)
und seien Ay, ..., A\, die Eintrége auf der Diagonalen von D; sei 0 : R" x R" — R
gegeben durch

a(z,y) =D Nw,y;
j=1

fir alle x = (21,...,2,), ¥y = (y1,.-.,Yn) € R". Dann ist o eine symmetrische
Bilinearform auf R™ und nach Satz 22.5 gilt

s((x), ¥(y)) = olz,y)
fiir alle x, y € R", wobei ¢ : R* — V' der durch
1/1((5517 o 7xn)) = 2101 + -+ TpUy

gegebene Isomorphismus ist, (da (¢Y((x1,...,2,)),v;) = x; fiir jedes j). Daraus
ergibt sich, dass fiir alle u, v € V'

s(u,v) = o (¥~ (u), ¥ (v)) .

Betrachte nun den speziellen Fall mit V' = R” (mit dem iiblichen Skalarprodukt).

Sei A = (a;;) € M(n x n,R) eine symmetrische Matrix und sei s : R x R" — R
die symmetrische Bilinearform auf R", die gegeben ist durch

s(z,y) =D auriy

j=1 k=1
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fir alle x = (z1,...,2,), ¥y = (Y1, ..., yn) € R™. Natiirlich ist A die Matrix von s

beziiglich der kanonischen Basis (ey, ..., e,) von R™. Ferner ist
s(w,y) = Z Z%k%‘yk = Z%‘ (Z ajkalc) =z pay)
j=1 k=1 j=1 k=1

fir alle x = (z1,...,2,), y = (Y1, .., Yn) € R", und damit ist @4 der eindeutige
Endomorphismus von R™ mit s(z,y) = = - pa(y) fiir alle z, y € R™.

Fiir alle (z1,...,2,), (Y1,--.,yn) € R™ ist
Y1

Z Z iKY = ij Z ajkyr = (21,...,2,)A
k=1

und folglich gilt s(z,y) = a' Ay fiir alle x, y € R™, wenn die Elemente von R™ als

Spaltenvektoren betrachtet werden.

Satz 22.6 Es gibt einen orthogonalen Endomorphismus ¢ : R® — R" von R"
und Elemente Ay, ..., \, € R, so dass

s(z,y) = o(¥(x), ¥(y))

fir alle x, y € R™, wobei o : R x R" — R wieder die durch
o(,y) =D Ajw;y;
j=1

firx = (x1,...,2,), y = (Y1,---,Yn) € R" definierte symmetrische Bilinearform
auf R™ ist.

Beweis Nach Satz 21.11 gibt es eine orthogonale Matrix P € M(n x n,R), so
dass P7'AP eine Diagonalmatrix D ist. Seien A, ..., A\, die Eintrdge auf der
Diagonalen von D. Dann gilt

s(z,y) = a' Ay = 2'(PDP™)y = a'(PDP")y = (z'P)D(P'y)
= (P'z)'D(P'y) = o(P'z, P'y) = o(¢(x),¥(y))
fiir alle z, y € R", wobei ¥ = @p:. Aber P! = P~! ist eine orthogonale Matrix

und daraus folgt nach Satz 20.1, dass ¥ ein orthogonaler Endomorphismus von
R™ist. O

Satz 22.6 ist eigentlich nur ein Spezialfall von Satz 22.5: Sei P € M(n x n,R) die
orthogonale Matrix, die im Beweis fiir Satz 22.6 vorkommt, und seien uq, ..., u,
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die Spalten von P. Dann ist (ui, ..., u,) eine orthonormale Basis von R™ und D
ist die Matrix von s beziiglich (uq, ..., u,).

Es wird nun eine ‘quadratische’ Abbildung auf R™ untersucht: Seien a, b; cxe, d;,
1<j<n,1<k<{<n, Elemente aus R und definiere ¢ : R — R durch

q((.ﬁl}l, e ,l’n)) = Zdj.l’? + ZCZ‘J‘I‘Z‘SL’]’ + Z bjxj +a.
j=1 i<j
Sei v : R® — R™*"! die Abbildung, die gegeben ist durch

Y(z1, .. my)) = (X1, ..., Tp, 1)

fir alle (xq,...,z,) € R™

Satz 22.7 Es gibt einen orthogonalen Endomorphismus v : R"™ — R gon
R und Elemente Ay, ..., My1 € R, so dass

q=Totpory,

wobei 7 : R" — R die ‘quadratische’ Abbildung ist, die gegeben ist durch

n+1

T(z) = Z )\jaﬁ
j=1

fiir alle v = (xq, ..., Ty, 1) € R?TL

Beweis Sei A = (a;;)) € M((n+ 1) x (n+1),R) die durch
([ d; fallsi=jund1<j<n,
Cij/2 faHS1§Z<j§TL,

cji/2 falls 1 <j<i<n,

b;/2 fallsl1 <j<nundi=n+1,
b;/2 falls1<i<nundj=n+1,
a fallsi=j=n+1

\

definierte Matrix und sei s : R*" x R**! — R die durch

n+1 n+1
s(z,y) = Z Z kT Yk
j=1 k=1
fiir alle z = (21, ..., Tns1), ¥ = (Y1, .. -, Yns1) € R definierte Bilinearform. Da

die Matrix A symmetrisch ist, ist s symmetrisch, und man sieht leicht, dass

q((z1, ... xn)) = s((x1, ... 20, 1), (21, ..oy T, 1))
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fir alle (xq,...,x,) € R". Nach Satz 22.6 gibt es nun Elemente \;, ..., A,11 € R
und einen orthogonalen Endomorphismus 1 : R**! — R"*1 5o dass

s(z,y) = o(¥(z),¥(y))
fiir alle z, y € R™™, wobei o : R""! x R**! — R die durch

n+1

o(,y) =D Ajw;y;
=1

fir alle z = (z1,...,%ps1), ¥ = (Y1, -, Yns1) € R" gegebene symmetrische
Bilinearform auf R"*! ist. Fiir alle z € R™ gilt also

=8
8
SN—
I
V)
—~
)
~—~
&
=
8
N—
N—
I
)
—~
=
=
8
SN—
:_/
<
=
8
SN—
N—
S~—
I

(W (v(2)))
dh.g=71o0vo~. O

Im Folgenden sei V' wieder ein endlichdimensionaler reeller Vektorraum und sei
5:V xV — R eine symmetrische Bilinearform.

Satz 22.8 Es gibt eine Basis a von V', so dass die Matriz von s beziiglich o eine
Diagonalmatrix ist.

Beweis Sei (uq,...,u,) eine beliebige Basis von V und sei A € M(n x n,R)
die Matrix von s beziiglich (uq,...,u,). Da A symmetrisch ist, gibt es nach
Satz 21.11 eine orthogonale Matrix P € M(n x n,R), so dass PPAP = P7'AP
eine Diagonalmatrix D ist. Nach Lemma 6.6 gibt es eine Basis (vy,...,v,) von
V', so dass P die Matrix fiir den Wechsel von (uq,...,u,) nach (vy,...,v,) ist.
Daraus ergibt sich nach Lemma 22.2, dass P!AP = D die Matrix von s beziiglich
(1,...,0,) ist. O

Satz 22.9 Es gibt eine Basis o von V', so dass die Matriz von s beziiglich o
folgende Gestalt hat:

wobeip>0,q>0undp+q<n. Ist o= (vy,...,v,), so gilt also

5<§£:'\ﬂﬁv:£:ﬁﬂﬂ%) = (Mg 4+ Apptp) = Apsaplpr1 -+ + Apialipg)
j=1 k=1

fir alle Ay, ..., Mg, p1y -, i € R
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Beweis Nach Satz 22.8 gibt es eine Basis v = (vy,...,v,) von V, so dass die
Matrix von s beziiglich « eine Diagonalmatrix ist. Seien Ay, ..., A, die Eintrége
auf der Diagonalen von D. Fiir jede Permutation m € .S, ist a,; = (%(1), o ,vﬂ(n))
auch eine Basis von V und die Matrix von s beziiglich « ist die Diagonalmatrix
D mit Eintrdgen A1), ..., Az auf der Diagonalen. Es gibt also p > 0, ¢ > 0
mit p + ¢ < n und eine Permutation m, so dass A;; > 0 fir 5 = 1, ..., p,
Ay <O flir j=p+1,...,p+qund \y;y =0 fiir j=p+qg+1,..., n Setze
nun (Vr(1ys - - - Va(n)) = (U1, -, uUp) und (Azq), .o Army) = (fas - -+ 5 i), sei

(\/;Tj)_l falls 1< j <p,

gi=9 (V=) fallsp+1<j<p+q,
1 falls p+q+1<j<n.

und fiir j =1, ..., n sei w; = ¢;u;. Dann ist (wy,...,w,) eine Basis von V' und

e2u; falls j =k,
s(wy, wy) = s(ejuy, epuy) = 88wz, ug) = { 0 falls i#k,

und ferner ist
1 falls1<j5<p,

giuj: —1 fallsp+1<j<p+gq,
0 fallsp+qg+1<j<n.

Daraus ergibt sich, dass

die Matrix von s beziiglich (wq,...,w,) ist. O

Satz 22.10 (Sylvestersches Triagheitsgesetz) Seien a und 3 zwei Basen von
V und sei A bzw. B die Matrixz von s beziiglich o« bzw. (3. Nehme an, dass

E, Ey
A= —L, und B = —Ly
0 0

Dann ist p =p" und g = ¢'.

Beweis Sei o = (u1,...,uy,), 8 = (v1,...,v,) und sei P die Matrix fiir den
Wechsel von a nach 3; nach Lemma 22.2 ist B = P*AP und daraus folgt, dass
rang A = rang B, da P und P" invertierbar sind. Damit ist

p+qg=rangA=rangB=1p +¢ .
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Setze U = L(uq, ..., u,) und W = L(vy41, ..., v,). Dann ist
p p PP p
S M o A) = 30D ksl ) = 0N
j=1 j=1 j=1 k=1 j=1
und damit ist s(u,u) > 0 fiir alle w € U \ {0}. Genauso gilt
(3w X mu) = 3D s u) =— > #2,
Jj=p'+1 J=p'+1 Jj=p'+1 k=p'+1 J=p'+1

und damit ist s(w,w) < 0 fiir alle w € W. Folglich ist U N W = {0}, und daraus
ergibt sich nach Satz 4.8, dass

p+(n—p)=dmU+dimW =dim(U + W) <n,

d.h., p < p'. Aber das gleiche Argument zeigt, dass p’ < p und damit ist p = p'.
Nun gilt auch, dass g = (p+q) —p=(@p' +¢)—p =¢. O

Sei s : V x V — R eine symmetrische Bilinearform und seien p > 0, ¢ > 0 mit
p+qg <n =dimV die durch Satz 22.9 und Satz 22.10 eindeutig bestimmten
Zahlen. Man nennt p + ¢ den Rang von s, p den Inder von s und p — ¢ die
Signatur von s.



23 Quotientenrdume und das Tensor-Produkt

Im folgenden sei K ein Korper; ein Vektorraum bedeutet stets ein Vektorraum
iiber K.

Sei V' ein Vektorraum und sei U ein Untervektorraum von V. Zunéchst wird ein
neuer Vektorraum, der Quotientenraum von V' durch U, konstruiert.

Fiir jedesv € Vsei U +v ={w € V : w=wu+w fir ein u € U}. Insbesondere ist
veU4+vund U+0=U.

Lemma 23.1 (1) Fir alle vy, vy € V gilt entweder (U +v,) N (U +v2) = @ oder
U+ vy =U++wvy. Ferner gilt U + vy = U + vy genau dann, wenn vy — vy € U.

(2) Seien vy, vy, ve, vy €V mit U+ vy = U + v} und U + vy = U + v}y; dann gilt
U+ (v1 +vy) =U + (v] +05).

(3) Seien vy, vy € V mit U+ vy = U +v}; dann gilt U 4+ \vy = U + Avy fir alle
e K.

Beweis (1) Nehme an, dass (U+v1)N (U +vs) # &; dann gibt es uy, us € U mit
U1 + v = us + vy und folglich ist v; — vy = ug —uy € U. Sei nun v € U 4 v; dann
gibt es u € U mit v = u + v; und damit ist v = u + (v; — v2) + v9 € U + vy, da
u+ (v; —vy) € U. Folglich ist U +v; C U + vy und genauso gilt U + vy C U + vy,
d.h., U 4+ vy = U + vy. Dies zeigt, dass entweder (U + v1) N (U + v3) = & oder
U + vy = U + vy und auch dass v; — vy € U, falls U + vy = U + vy. Ferner zeigt
der Beweis, dass U + v = U + vy, falls v; — vy € U.

(2) Gilt U+ vy =U +wv; und U + vy = U + v}, so ist nach (1) v; — v} € U und
vy —vh € U. Damit ist (vy +vy) — (v] +v4) = (v —v]) + (v2 — v}) € U und daraus
folgt nach (1), dass U + (v1 +vq) = U + (v} + v5).

(3) Gilt U+ vy, = U +v1, so ist nach (1) vy — v} € U. Daraus folgt nach (1), dass
U+ My =U+ M, da dvy — M) = Aoy —v)) €U. O

Eine Teilmenge N C V wird U-Nebenklasse genant, wenn W = U + v fiir ein
v € V. Insbesondere ist U selbst eine Nebenklasse. Da v € U+w, liegt jedesv € V
in mindestens einer U-Nebenklasse, und daraus ergibt sich nach Lemma 23.1 (1),
dass jeder Vektor v in genau einer U-Nebenklasse liegt.

Die Menge der U-Nebenklassen wird mit V/U bezeichnet. Nach Lemma 23.1 (2)
kann eine Addition + : V/U x V/U — V/U durch

(U+v1)+ (U+vy) =U+ (v1 +v2)

definiert werden. Es ist klar, dass diese Addition assoziativ und kommutativ ist.
Ferner ist U + N = N fiir jedes N € V/U und zu jedem N € V/U gibt es ein

201
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—N € V/Umit —-N+N =U,da (U+(—v))+(U+wv) = U. Nach Lemma 23.1 (3)
kann ebefalls eine Multiplikation mit Skalaren - : K x V/U — V/U durch

AU A+v)=U+ v

definiert werden. Mit diesen Verkniipfungen ist V/U ein Vektorraum tiber K, der
der Quotientenraum von V durch U heifit. Die Nebenklasse U ist das Nullelement
in V/U.

Sei nun 7 : V' — V/U die Abbildung mit m(v) = U + v fiir jedes v € V. Da
7T(U1 —|—U2) =U+ (Ul +U2) = (U"—Ul) + (U+U2) = 7T<U1) —|—7T(U2)

fir alle v, vo € V und 7(Av) = U + A = AU 4+ v) = An(v) fiir alle v € V,
A € K, ist 7 eine lineare Abbildung. Ferner ist nach Lemma 23.1 (1)

Kernmr={veV :nv)=U}={veV:U+v=U+0}=U

und 7 ist surjektiv. Die Abbildung 7 wird kanonische Abbildung genannt.

Satz 23.1 Sei W ein Vektorraum und f : V. — W eine lineare Abbildung mit
U C Kern f; dann gibt es eine eindeutige lineare Abbildung g : V/U — W mit

gom=f.

Beweis Gilt U + vy = U + va, so ist nach Lemma 23.1 (1) v; — vy € U C Kern f
und damit ist f(vi) = f(v1 —v2 +v2) = fvr —v2) + f(v2) =0+ f(v2) = f(va).
Folglich gibt es eine eindeutige Abbildung g : V/U — W mit g(U +v) = f(v) fiir
alle v € V und da g(U + x) = g(w(v)), ist dann ¢ die eindeutige Abbildung mit
gom = f. Aber g ist linear, da

g(U+v1)+ (U + vg)) (U + (v1 + v9))

g
= f(v1 +v2) = f(v1) + f(v2) = g(U + v1) + g(U + v9)

fiir alle vy, v9 € V und
gAU +v)) = g(U + M) = f(Av) = Af(v) = Ag(U +v)

fir alle v € V, A € K. Also ist g : V/U — W die eindeutige lineare Abbildung
mit gor = f. O

Die Eigenschaft in Satz 23.1 fiihrt zur folgenden Definition: Ein Paar (Vy, o)
bestehend aus einem Vektorraum V; und einer linearen Abbildung o : V — Vi
mit Kern o = U heifit ein V/U-Quotientenraum, wenn es zu jedem Vektorraum
W und zu jeder linearen Abbildung f : V — W mit U C Kern f eine eindeutige
lineare Abbildung ¢g : Vi — W gibt, so dass f = g o o.
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Satz 23.2 FEs gibt einen V/U-Quotientenraum.

Beweis Nach Satz 23.1 ist (V/U, ) ein V/U-Quotientenraum. O

Lemma 23.2 Seien (Viy, 0) und (V{;, 0') zwei V/U-Quotientenrdume; dann gibt
es einen eindeutigen Isomorphismus h : Vi — V{;, so dass ho p = (.

Beweis (1) Das Paar (Vy, o) ist ein V/U-Quotientenraum und o' : V. — V}; ist
eine lineare Abbildung mit U C Kern ¢'. Folglich gibt es eine eindeutige lineare
Abbildung b : Viy — V, mit ho p = ¢'.

(2) Das Paar (V{}, ¢') ist ein V/U-Quotientenraum und o : V' — Vj; ist eine lineare
Abbildung mit U C Kern p. Folglich gibt es eine eindeutige lineare Abbildung
h': V) — Vg mit b o ¢ = p.

(3) Das Paar (Vy, o) ist ein V/U-Quotientenraum und g : V' — V}; ist eine lineare
Abbildung mit U C Kern p. Folglich gibt es eine eindeutige lineare Abbildung
g:Vu — Vy mit go o = p. Aber idy,, : Viy — Vy ist eine lineare Abbildung
mit idy, o ¢ = p und damit ist g = idy;,. Dies bedeutet: idy;, ist der eindeutige
Endomorphismus von Vi mit idy,, o o = o.

(4) Genauso ist idyy der eindeutige Endomorphismus von V; mit idyy o o =0.

(5) Andererseits ist A’ o h ein Endomorphismus von V; mit
(Woh)og="ho(hog) =hod =0

und daher ist h' o h = idy,,.
(6) Genauso ist hoh' = idyy.

(7) Da W' o h =idy, und hoh' = idy, ist h : Viy — V{; ein Isomorphismus,
und da h die einzige lineare Abbildung ist mit h o o = ¢/, ist h insbesondere der
einzige Isomorphismus, so dass ho o= ¢. O

Den Beweis fiir Lemma 23.2 soll man merken; ein im Wesentlichen identischer
Beweis kommt stets bei jeder Definition vor, die die gleiche Struktur hat wie in
der Definition eines U/V-Quotientenraums.

In der Konstruktion eines Tensor-Produkts braucht man einen Quotientenraum
und einfachhalber wird der explizite Quotientenraum (V/U, 7) verwendet. Es wird
aber von V/U und 7 lediglich benutzt, dass (V/U, ) ein V/U-Quotientenraum
ist.

Sei X eine Menge. Ein Vektorraum V mit X C V heiit X-frei, wenn es zu
jedem Vektorraum W und zu jeder Abbildung g : X — W eine eindeutige lineare
Abbildung f: V — W gibt, so dass g = fix.
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Satz 23.3 Sei V' ein Vektorraum und sei X eine nichtleere endliche Teilmenge
von V. Dann ist V ein X -freier Vektorraum genau, wenn die Vektoren in X eine
Basis von 'V bilden (und insbesondere ist V' endlichdimensional mit dim V' = | X| ).

Beweis Ubung. O

Lemma 23.3 Seien V und V' zwei X -freie Vektorrdiume; dann gibt es einen
eindeutigen Isomorphismus h : V. — V', so dass h(zx) = x fir jedes v € X.

Beweis Im Wesentlichen identisch mit dem Beweis fiir Lemma 23.2. O

Satz 23.4 Es gibt einen X -freien Vektorraum.

Beweis Sei Abb(X, K) der Vektorraum aller Abbildungen von X nach K und sei
V ={h € Abb(X, K) : s(h) is endlich} ,
wobei s(h) = {x € X : h(z) # 0}. Fiir jedes x € X sei ferner ¢, : X — K durch
1 fallsy ==,
exy) = {O falls y # =,
definiert; also ist €, € V. Fiir jedes h € V gilt dann h = }_ ., h(z)e,. Setze

X' ={e,:x € X}. Sei nun W ein Vektorraum und g : X’ — W eine Abbildung;
definiere f : V' — W durch

f(h)y = hiz)g(e) -

xzes(h)

Dann sieht man leicht, dass f die eindeutige lineare Abbildung mit g = f|x- ist
und folglich ist V' ein X’-freier Vektorraum. Aber die Abbildung x — ¢, liefert
eine Bijektion zwischen X und X’ und daher kann man X mit X’ identifizieren.
Auf diese Weise ist V' auch ein X-freier Vektorraum. O

Es wird nun das Tensor-Produkt von Vektorrdumen eingefiihrt. Dies wird nur fiir
zwei Faktoren gemacht; bei dem allgemeinen Fall von n Faktoren tauchen aber
keine zusétzliche Probleme auf.

Seien Vi, V5 und V' Vektorrdume. Eine Abbildung s : V; x V5 — V' heif3t bilinear,
wenn fiir jedes v; € V; die Abbildung s(vq,-) : Vo — V linear und fiir jedes
vy € V3 die Abbildung s(-,v9) : V3 — V linear ist.

Seien V; und V5, Vektorraume. Ein Paar (V, o) bestehend aus einem Vektorraum
V und einer bilinearen Abbildung o : V; x Vo — V heifit ein Tensor-Produkt von
Vi und V5, wenn es zu jedem Vektorraum W und zu jeder bilinearen Abbildung
s : Vi x Vo — W eine eindeutige lineare Abbildung f : V — W gibt, so dass
foo=s.
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Lemma 23.4 Seien (V,0) und (V',0') zwei Tensor-Produkte von Vi und Vs;
dann gibt es einen eindeutigen Isomorphismus h:V — V' so dass hoo = o’.

Beweis Im Wesentlichen identisch mit dem Beweis fiir Lemma 23.2. O

Satz 23.5 Es gibt ein Tensor-Produkt von Vi und V5.

Beweis Setze X = Vi x V5 und sei V ein X-freier Vektorraum. Sei nun [X] die
Teilmenge von V' bestehend aus allen Elementen, die eine der folgenden Formen
haben:

(v1 4+ V4, v2) — (v1,v2) — (V},v9) mit vy, v] € V} und vy € V5,
(v1,v9 + v5) — (v1,v2) — (vg,vh) mit v; € V] und vq, v} € Vs,
(Avy,v9) — AM(v1,v9) mit vy, € Vi, v9 € Vo und X € K,
(v1, Avg) — A(v1,v9) mit vy, € Vi, v9 € Vo und A € K.

Sei U der kleinste Untervektorraum von V', der [X|] enthélt (also ist U der Durch-
schnitt von allen Untervektorrdumen, die [X] enthalten).

Betrachte den Quotientenraum V/U und die kanonische Abbildung 7 : V' — V/U.
Seioc=mx: X =V xV; — V/U die Einschrinkung von 7 : V' — V/U auf X.

Die Abbildung o : V; x Vo — V/U ist bilinear: Seien vy, v] € V; und vy € Va;
dann ist (v 4+ v}, v2) — (v1,v2) — (v}, v9) € [X] C U = Kern7 und damit ist
o(vy + vy, v9) — o(vy,v9) — (v, V)
= m((v1 4 vy, v2)) — ((v1,02)) — 7((vy, v2))
= 7((vy + v}, v9) — (v1,v9) — (V],02)) =0
d.h., o(vy + v}, v2) = o(v1,v2) + o (v}, v2). Genauso gilt
o(v1, vy +vh) = o(vy,v9) + o (v, vh) fir alle vy € Vi, vg, v € V5,
o(Avy,vg) = Ao(vy, v) fiir alle vy, € Vi, vy € Vo und A € K, und
o(vi, Avg) = Ao (v, vo) fiir alle v, € Vi, vy € Vo und A € K.

Damit ist ¢ bilinear. Sei nun s : V; x V5 — W eine beliebige bilineare Abbildung.
Da X = V; x V5 und V ein X-freier Vektorraum ist, gibt es eine eindeutige lineare
Abbildung g : V — W, so dass gx = s, und es gilt U C Kern g: Seien v;, v} € V;
und vy € V5; dann ist

g((v1 + vy, v2) — (v1,v2) — (v, v2))
= g((v1 + vy, v2)) = g((v1,v2)) — g((v], v2))
= s(vy + v}, v9) — s(vy, v2) — (v}, v2) =0
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d.h., (v1 + v}, v9) — (v1,v2) — (v],v2) € Kern g. Genauso gilt
(v1,v9 + vy) — (v1,v9) — (v1,04) € Kern g fiir alle v; € Vi, vy, vh € Vi,
(Avg, v9) — A(v1,v2) € Kern g fiir alle vy, € Vi, v € V5 und A € K, und
(v1, Avg) — A(v1,v9) € Kern g fiir alle vy, € Vi, vy € Vo und A € K.
Folglich ist [X] C Kern g und daher ist U C Kern g.

Da U C Kerngund (V/U, ) ein V/U-Quotientenraum ist, gibt es eine eindeutige
lineare Abbildung f : V/U — W mit f onm = g. Daraus ergibt sich insbesondere,
dass fomx = g)x, d.h., foo=s.

Sei schlieBlich f’ : V//U — W eine beliebige lineare Abbildung mit f'oo = s. Dann
ist f'om:V — W eine lineare Abbildung mit (f' o) x = ffomx = f' oo =s.
Aber g ist die eindeutige lineare Abbildung mit gx = s und also ist f o7 = g.
Aber f ist die eindeutige lineare Abbildung mit f o 7 = ¢ und damit ist [ = f.
Folglich ist f : V/U — W die eindeutige lineare Abbildung, so dass f oo = s,
und dies zeigt, dass (V/U, o) ein Tensor-Produkt von V; und V5 ist. O

Ein Tensor-Produkt von V; und V5 wird meistens mit (V; ® V5, ®) bezeichnet, also
ist V1®V; ein Vektorraum und ® : V; xVy — V1 ®V; eine bilineare Abbildung (und
man schreibt v; @, statt ®(vy, v9)). Fiir jede bilineare Abbildung s : Vi xVy — W
gibt es also eine eindeutige lineare Abbildung f : V;®Vy — W, so dass fo® = s.
Man redet hier meistens von dem Tensor-Produkt V; ® V5, obwohl V; ® V5 nur
im Sinne von Lemma 23.4 eindeutig ist.

Satz 23.6 Seien Vi und Vs endlichdimensionale Vektorrdume mit Vi # {0} und
Vo # {0}, sei (v1,...,vy) eine Basis von Vi und (wy, ..., w,) eine Basis von V;.
Dann bilden die Vektoren

{vj@wp:1<j<m,1<k<n}
eine Basis von Vi @ Vs. Insbesondere ist Vi ® V5 endlichdimensional mit

dimV; ® Vo =dim V] x dim V5 .

Beweis Setze B = {v; @ wy, : 1 < j <m, 1 <k <n}. Betrachte einen beliebigen
Vektorraum W und eine beliebige Abbildung g : B — W. Da (vy,...,v,) und
(wy,...,w,) Basen sind, kann eine Abildung s: V; x V5 — W durch

s (Z A\jvj, Z ukwk> = Z Z Ajkg (v; @ wy)
j=1 k=1 J=1 k=1

definiert werden und es ist klar, dass s biliear ist. Es gibt also eine eindeutige
lineare Abbildung f : V; ® Vo — W so dass f o ® = s. Insbesondere gilt dann

f(v; @ wi) = s(vj, wg) = g(v; @ wy)
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fiir alle j, k, d.h., fijp = g. Sei umgekehrt f': Vi@V, — W eine lineare Abbildung
mit f/p = g; dann gilt f'(v; ® wi) = g(v; @ wi) = s(vj, wy) fiir alle j, k. Daraus
folgt, dass f' o ® = s und damit ist f* = f. Dies zeigt: Zu jedem Vektorraum
W und jeder Abbildung g : B — W gibt es eine eindeutige lineare Abbildung
[ ViV, — W, sodass fjg = g, d.h., V1 ®V; ist ein B-freier Vektorraum. Nach
Satz 23.3 bilden dann die Vektoren in B eine Basis von V; ® V5. O

Satz 23.7 Betrachte K als eindimensionalen Vektorraum, sei V' ein Vektorraum
und sei 0 1 K xV — V' Multiplikation mit Skalaren (also ist o(\,v) = v fir
alle A€ K,v e V). Dann ist (V,o) ein Tensor-Produkt von K und V', und daher
kann man V= K ® V' schreiben (mit A @ v = \v).

Beweis Zunichst ist es klar, dass die Abbildung o : K x V' — V bilinear ist. Sei
also W ein Vektorraum und s : K x V' — W eine bilineare Abbildung. Definiere
f:V — W durch f(v) = s(1,v); also ist f linear und

(fea)Xv) = flo(Av) = f(Av) = Af(v) = As(1,v) = s(A, )

fir alle A € K, v € V, d.h., f oo = s. Ist umgekehrt f': V — W eine beliebige
Abbildung mit f' oo = s, so ist f'(v) = f'(1v) = f'(o(1,v)) = s(1,v) = f(v) fiir
alle v € V, d.h., f' = f. Insbesondere ist f die eindeutige lineare Abbildung, so
dass foo =s. O

Es wird nun eine wichtige Konstruktion préasentiert, die das Tensor-Produkt ver-
wendet. Diese wird zunachst im Fall K = R durchgefiihrt.

Der reelle Vektorraum R™ ist Teilmenge der komplexen Vektorraum C". Ferner
kann man C" als reellen Vektorraum betrachten: Die Addition ist die Addition in
C"™ und die Multiplikation mit Skalaren - : R x C* — C" die Einschrankung der
Multiplikation mit Skalaren - : C x C" — C". Dieser reelle Vektorraum wird mit
CE bezeichnet. Insbesondere (mit n = 1) bezeichnet Cg der Korper C betrachtet
als reeller Vektorraum. Sei o : Cg x R®™ — C} die Abbildung mit o(z,v) = zv
(also ist o die Einschrankung der Multiplikation mit Skalaren - : C x C* — C").

Lemma 23.5 (C{,0) ist ein Tensor-Produkt von Cg und R™.

Beweis Zunéchst ist es klar, dass die Abbildung o : Cg x R® — Cg bilinear
ist. Sei also W ein reeller Vektorraum und s : Cg x R® — W eine bilineare
Abbildung. Definiere f : CE — W durch f(v) = s(1,v1) + s(i,v2), wobei vy, vg
die eindeutigen Elemente von R™ mit v = vy + 2v9 sind. Dann sieht man leicht,
dass f die eindeutige lineare Abbildung ist mit foo =s. O

Fiir jedes z € Cg definiere o, : Cg x R" — Cf durch o,(2',v) = o(22/,v). Dann
ist o, bilinear und folglich gibt es einen eindeutigen Endomorphismus «a, von Cg,
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so dass a, o 0 = 0,. Aber hier ist «, explizit gegeben durch a,(v) = zv fiir alle
v € C§ und dies bedeutet, dass die Abbildung (z,v) +— a.(v) im Wesentlichen
nichts anderes ist als Multiplikation mit Skalaren - : C x C* — C™.

Man beachte schlieBlich, dass die Abbildung o(1,-) : R® — C} injektiv ist und
daher kann man R™ mit dem Untervektorraum Bild o (1, -) von Cj identifizieren.

Die obige Konstruktion fiir R” wird nun fiir einen beliebigen reellen Vektorraum
V' durchgefiihrt. Sei Cg ® V' das Tensor-Produkt von Cg und V.

Lemma 23.6 (1) Flir jedes z € Cg gibt es einen eindeutigen Endomorphismus
a, von Cg @V, so dass o, (2 @ v) = z2' @ v fiir alle 2/ € Cg, v € V.

(2) Fiir alle z1, z3 € Cg gilt sy 4.y = Q) + iy UNd Oy py = ) © Ay

(3) Fir jedes x € R C Cg ist a, = xidgygy.

Beweis (1) Definiere 0, : Cg x V' — Cr @ V' durch 0,(%',v) = 22’ ® v. Dann ist
die Abbildung o, bilinear und folglich gibt es einen eindeutigen Endomorphismus
a, von Cg ® V', so dass o, o ® = 0,, d.h., so dass a, (7 @ v) = zz/ @ v fiir alle
7 eCr,veV.

(2) Fiir alle 2’ € Cg, v € V gilt
(az +a.,) (2 ®v) = a, (2 @v)+a., (2 @) = 212’ QU+ 222" @v = (21 + 22)2 Q0
und nach der Eindeutigkeit von a, ., ist also a,, + a,, = a,,+.,. Genauso gilt
(az, 00.,) (2 ®@v) = a.,(a, (2 @) = a,, (202 @v) = 21292 Q0
fir alle 2/ € Cg, v € V und folglich ist a,, o a,, = ., .,.
3) Sei x € R; da ® bilinear ist, gilt fiir alle 2’ € Cg, v € V', dass
( ) Y ) g ) )
(Tide,ev) (2 @v) =z(2 @v) =22’ @0
und nach der Eindeutigkeit von «, ist daher ridc,gy = a,. O

Fir z€ Cg =C, w € Cg ® V setze z xw = a,(w). Nach Lemma 23.6 gilt dann

a) (z122) *v = 21 % (20w) fiir alle 29, 20 € C, w € Cg @ V.
1

(
(b) 1xw =w fir alle w € Cg @ V.

)
)

() zx(wy +wy) = zxwy + z*w; fur alle z € C, wy, wy € CR V.
)

(d) (z1+20) xw =21 xw+ 29 xw fir alle 21, 20 € C, w € CR® V.
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(Natiirlich gilt (c) einfach, weil «, linear ist.) Dies bedeutet: Mit der Addition
aus Cg ® V (als reellem Vektorraum) und mit x : Cx (Cg @ V) — Cr @V
als Multiplikation mit Skalaren wird Cg ® V' ein komplexer Vektorraum. Ferner
ist nach Lemma 23.6 (3) die Verkniipfung x vertréglich mit der Multiplikation
mit Skalaren - : R x (CR ® V) — Cg ® V: Es gilt z x w = zw fiir alle z € R,
weCr®V.

Lemma 23.7 Die lineare Abbildung v +— 1® v von V nach Cgr ® V ist injektiv.

Beweis Definiere s : Cg x V' — R durch s((z + iy),v) = zv fir alle z, y € R
und v € V. Dann ist s eine bilinear und damit gibt es eine eindeutige lineare
Abbildung f: Cg®V — R mit fo® = s. Insbesondere ist f(1®v) = s(1,v) = v
fiir alle v € V und also ist 1 ® v # 0, falls v # 0. O

Nach Lemma 23.7 kann man V' mit dem (reellen) Untervektorraum
IV={1®v:veV}

von Cr ® V identifizieren. Auf diese Weise ist der reelle Vektorraum V' Teilmenge
des komplexen Vektorraumes Cg ® V'; ferner sind die Verkniipfungen auf V' die
Einschréinkungen der entsprechenden Verkniipfungen auf Cgx ® V.

Sei nun W ein weiterer reeller Vektorraum und sei h : V' — W eine lineare
Abbildung; sei s; : Cg x V. — Cg ® W die Abbildung mit s,(z,v) = z ® h(v)
fiir alle z € Cg, v € V. Dann ist s, bilinear und folglich gibt es eine eindeutige
lineare Abbildung h¢ : Cg ® V. — Cr ® W, so dass h¢c o ® = sp,. Zunéchst ist hc
nur eine lineare Abbildung mit Cg ® V und Cg ® W als reellen Vektorrdumen.
Aber h¢ ist auch eine lineare Abbildung zwischen den komplexen Vektorraumen
Cr ®V und Cgr ® W: Fiir alle z € Cy gilt

(hcoa,)o® = (a,0hc)o® =5} ,

wobei s} (2/,v) = 22’ @ h(v) fiir alle 2’ € Cg, v € V, und also ist hcoa, = a, 0 h,
d.h. he(z *xw) = 2z x he(w) fiir alle w € Cg ® V. Schliefllich ist

he(1®v) = sp(1,v) =1® h(v)

fiir alle v € V, und damit ist die Einschrinkung von h¢ auf 1 ® V' die lineare
Abbildung 1®h: 1@V — 1@ W, wobei (1® h)(v) =1® h(v) fir jedes v € V.

Die obige Konstruktion kann fiir eine beliebige Korpererweiterung durchgefiihrt
werden: Ein Korper F' heifit Korpererweiterung eines Korpers K, wenn K C F
und die Addition (bzw. die Multiplikation) in K die Einschrankung der Addition
(bzw. der Multiplikation) in F' ist. Ist F' eine Korpererweiterung von K, so ist
die Null (bzw. die Eins) in K auch die Null (bzw. die Eins) in F.
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Im Folgenden sei F' eine Korpererweiterung eines Koérpers K. Dann kann F als
Vektorraum iiber K betrachtet werden; dieser K-Vektorraum wird mit Fi be-
zeichnet. Sei V' ein K-Vektorraum; genauso wie im Spezialfall K = R/F = C
gibt es eine Verkniipfung x : F' X (Fx @ V) — Fgx ® V, die den K-Vektorraum
Fr ®V in einen F-Vektorraum umwandelt.

Das einzige Problem hier ist das Ergebnis, das dem Lemma 27.7 entspricht. Dieses
ist zwar richtig, aber im Allgemeinen ist der Beweis dafiir nicht so trivial:

Lemma 23.8 Die lineare Abbildung v — 1 ® v von V nach Fx @V ist injektiv.

Beweis Dies folgt unmittelbar aus Satz 23.8. O

Satz 23.8 Sei V; ® V5 das Tensor-Produkt von Vektorraumen Vi und V. Dann
ist vy @ vy # 0 fiir alle vy € V1 \ {0}, ve € V2\ {0}.

Beweis Sei v; € V7 \ {0}; nach Lemma 23.9 gibt es eine Linearform ¢ : V; — K
mit ¢(vy) # 0. Definiere s : V] x Vo — V5 durch s(uq, us) = ¢(u;)ug; dann ist s
bilinear und folglich gibt es eine eindeutige lineare Abbildung f : Vi ® V5 — V5,
so dass fo® = s. Also ist f(v; ® vy) = p(v1)ve # 0 fiir alle v # 0 und damit ist
v; @ vy # 0 fiir alle vy € Vo \ {0}. O

Lemma 23.9 Zu jedem Vektorraum V und jedem Vektor v € V \ {0} gibt es
eine Linearform ¢ : V — K mit p(v) # 0.

Beweis Nehme zunéchst an, dass V' endlichdimensional ist; dann gibt es eine
Basis (v1,...,v,) von V mit v; = v und es gibt eine Linearform ¢ : V' — K mit

o(Aur + -+ Aun) = N

fir alle A, ..., A\, € K. Insbesondere ist ¢(v) =1 # 0.

Im Allgemeinen braucht man den folgenden Fakt: Es gibt stets eine Teilmenge X
von V mit v € X, so dass V' ein X-freier Vektorraum ist. Per Definition gibt es
insbesondere dann eine Linearform ¢ : V' — K mit ¢(v) = 1. O
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Korpererweiterung, 209
kanonische Abbildung, 202
kanonische Basis, 30
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Kleinsche Vierergruppe, 106
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Multiplikation, 13, 121 Quotientenraum, 202
Multiplikation mit Skalaren, 20

Rang
Nebenklasse, 201 einer Bilinearform, 191, 200
neutrales Element, 105 einer linearen Abbildung, 47
nicht ausgeartete Bilinearform, 193 einer Matrix, 59
nilpotente Jordanmatrix, 95 Rechtsideal, 122
nilpotenter Endomorphismus, 81 Rechtsnebenklasse, 110
Norm, 153, 155 Ring, 121
normaler Endomorphismus, 187 kommutativer, 121
Normalteiler, 112 mit 1, 122
normiertes Polynom, 125 Ring-Homomorphismus, 123
Null, 13, 20
Nullelement, 13, 20 Satz von Cayley, 120

Satz von Cayley-Hamilton, 150

Nullstelle eines Polynoms, 127
Satz von Lagrange, 110

obere Dreiecksmatrix, 81, 131 selbstadjungierter Endomorphismus, 182
Ordnung Sesquilinearform, 155
einer Gruppe, 106 Signatur
einer Untergruppe, 107 einer Bilinearform, 200
eines Gruppenelements, 106 einer Permutation, 118
orthogonale Skalarprodukt, 153, 155
Untervektorrdume, 161 Spalte einer Matrix, 5
orthogonale Matrix, 174 Spaltenrang, 58
orthogonale Summe, 161 Spaltenraum, 58
orthogonale Vektoren, 157 Spaltenumformung
orthogonaler Endomorphismus, 163 elementare, 61
orthogonales Komplement, 160 Spiegelung, 168
orthonormale Basis, 157 Sub-Einheitsmatrix, 62, 191
orthonormale Vektoren, 157 Subtraktion, 14
o Summe von Untervektorrdumen, 29
Partition, 98 surjektive Abbildung, 40

Permutation, 117

gerade, 119
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Polarisierungsidentitat, 154, 157
Polynom, 124

Sylvestersches Tragheitsgesetz, 199
symmetrische Bilinearform, 153, 193
symmetrische Gruppe, 105, 117
symmetrische Matrix, 185

charakteristisches, 142, 145 Tensor-Produkt, 204, 206
minimales, 152 transponierte Bilinearform, 190
normiertes, 125 transponierte Matrix, 134
Polynomring, 124 Transposition, 118
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Produkt von Matrizen, 49, 129 trigonalisierbare Matrix, 81, 146
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unitdre Matrix, 178
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unitarer Vektorraum, 155
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erzeugte, 108
zyklische, 108
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Untervektorraume
orthogonale, 161
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Vektoren
orthogonale, 157
orthonormale, 157

Vektorraum, 20
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freier, 203
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Zeilenraum, 58
Zeilenumformung
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zerfallt in Linearfaktoren, 146
zyklische Gruppe, 108
zyklische Untergruppe, 108



