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Kapitel 1

Meflbare Mengen und Funktionen

In diesem Kapitel legen wir den Rahmen fiir eine allgemeine Integrationstheorie fest, indem wir angeben,
welchen Mengen wir ein ,Maf* oder ,Volumen® zuordnen wollen, und welche Funktionen wir integrieren
wollen. Diese Mengen und Funktionen heiffen dann mefSbar. Daf$ man tiberhaupt Mengen aussondert und
nicht alle Mengen und Funktionen als mefbar behandelt, liegt daran, dafy man spdter ja Vorschriften
angeben will, die jeder meflbaren Menge und jeder meflbaren Funktion eine Zahl (das Maf bzw. das
Integral) zuordnet, und solche Vorschriften umso schwieriger zu finden sind, je komplizierter die Mengen
und Funktionen aussehen. Die Strategie ist daher, von mdglichst einfachen Mengen auszugehen (wie
z.B. Intervallen) und weitere mefbare Mengen durch elementare Operationen wie Schneiden, Vereinigen
oder Komplementbilden dazuzugewinnen. So stofit man auf den Begriff einer Algebra von Mengen, von
dem sich aber herausstellt, daf$ er nicht ausreichend ist. Man verallgemeinert ihn auf den Begriff der
o-Algebra, in dem auch abzihlbar unendliche Schnitte und Vereinigungen inkorporiert sind. Als meflbare
Funktionen nimmt man dann, in Analogie zur Stetigkeit, solche, deren Urbilder von mef$baren Mengen
mefsbar sind.

1.1 MeB3bare Mengen

Seien M eine beliebige, nichtleere Menge und P(M) := {N | N C M} die Potenzmenge von M,
d.h., die Menge aller Teilmengen von M. Eine nichtleere Menge 9t C (M) von Teilmengen von M heifit
eine Algebra, wenn

Ei,...E,eM = FEFU..UE,eM

und
Eem = M\Eece

Wenn sogar
E;eMjeN = |JEem
jEN
gilt, dann heifit die Algebra 91 eine o-Algebra.

Ein Paar (M,0), wobei M eine nichtleere Menge und 9 C PB(M) eine o-Algebra ist, heifft ein
meflbarer Raum oder kurz ein Mefiraum. Die Elemente der o-Algebra heiflen meflbare Mengen.

Bemerkung 1.1.1 : Nach den de Morganschen Gesetzen gilt

NE =\ (o B)).

also gelten in einer Algebra bzw. einer o-Algebra 9 auch die Gesetze

El,...,Enem = En..NnNE,eMm

1



2 KAPITEL 1. MESSBARE MENGEN UND FUNKTIONEN

bzw.
EjeMmjeN = [)E e
jJEN

AuBerdem gilt wegen EU (M \ E) = M und EN (M \ E) = () automatisch 0, M € 9. "

Beispiel 1.1.2 : Sei M eine beliebige, nichtleere Menge.
(i) P(M) ist eine o-Algebra.
(ii) {0, M} ist eine o-Algebra.

Seien M und A beliebige, nichtleere Mengen. Wenn 9, C PB(M) fiir jedes a € A eine o-Algebra
ist, dann ist auch (), 4, M, € P(M) eine o-Algebra. Wenn jetzt € C P(M) eine beliebige, nichtleere
Teilmenge ist, dann ist

o(€):= ﬂ m

eCcom
9N o—Algebra

ebenfalls eine o-Algebra, und zwar die kleinste, die & enthélt. Man nennt sie die von & erzeugte o-
Algebra.

Beispiel 1.1.3 : Sei (M,U) ein topologischer Raum und
¢ ={U € PB(M) | U offen in M}.

Dann heifit die von € erzeugte o-Algebra die Borel-o-Algebra von (M,U). Wir bezeichnen sie mit 95 ;.
Die Elemente von B, heiflen die Borel-mef3baren Teilmengen von M. n

Seien jetzt My, ..., M, nichtleere Mengen und 9; C P(M;) o-Algebren fir j =1,...,n. Dann heifit
die von
{El X ... XEn|Ej ij,jzl,...,n}

erzeugte o-Algebra die Produkt-o-Algebra der 9t;. Sie wird mit ®?:1 IM; bezeichnet.

Proposition 1.1.4 : Seien My,..., M, nichtleere Mengen und M; € &; C PB(M;) firj =1,...,n.
Dann gilt

n

Q) o(€)=c({E1x...x E, | E; € €;,j=1,...,n}). (1.1)

=1
Beweis:

IDEE: Um, C* zu zeigen, nenne die rechte Seite von (1.1) einfach 9t und betrachte M := {F; C M; |
W;l(Fj) € M} mit den Projektionen ; auf den j-ten Faktor. Die 91} sind o-Algebren und enthalten
mit &; auch o(€;). Damit erhélt man Ey x ... x B, =(\]_, 7rj_1(Ej) € M fiir alle E; € o(€;), also

@1 0(€;) CM.

Die Inklusion ,,0¢ ist klar. Fiir die Umkehrung nennen wir die rechte Seite von (1.1) einfach

=

I und betrachten die Mengensysteme

M = {F; C M; | m; ' (F)) € MY,
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wobei m;: My x ... x M, — M;j die Projektion auf den j-ten Faktor ist.
Da die Urbildoperation mit Schnitten und Komplementbildung vertauscht:

T () Ba) = ()7 (Ba), 7 (M \ E) = M\ 7' (E),
acA acA

ist M, C P(M;) eine o-Algebra, die €; also auch o (€;) enthilt. Wenn jetzt E; € o(€;), dann
gilt W;l(Ej) € M, also

Eyx...xE, = ﬂﬂfl(Ej)eim,

was wiederum @, o(€;) C M impliziert. n

Ein metrischer Raum (M, p) heifit separabel, wenn er eine abzihlbare Teilmenge Q C M enthiilt,
die einen nichtleeren Schnitt mit jeder nichtleeren, offenen Teilmenge von M hat:

VO+UCMoffen : QnNnU #0. (1.2)

Als Beispiel betrachte R* und darin die abzihlbare Teilmenge QF, die jede e-Kugel, also auch jede
nichtleere, offene Menge schneidet. Man nennt Teilmengen @ eines topologischen Raumes M, die (1.2)
erfiillen, dicht.

Proposition 1.1.5 : Seien My, ..., M, separable metrische Raume und M = My X ... x M,, versehen
mit der Produkttopologie. Dann gilt

Q) B, = Bur.
j=1

Beweis:

IDEE: Wiéhle jeweils eine dichte Folge {x§k> | k € N} C M; und setze €; := {B(:c§k>; r) | keN,0<
r € Q}. Dann findet man By, = o(€;), und weil {2, . 2% | k; €N, j =1,...,n} abzéhlbar
und dicht in M ist, ergibt sich auch By = o({E1 X ... x E,, | Ej € €,}). Jetzt folgt die Behauptung
mit Proposition 1.1.4.

Seien {ng) | k € N} C M; abzéhlbare, dichte Mengen in M; fir j =1,...,n und
¢; = {B@™;r) |[keN,0<reqQ}

Behauptung: B, = o(¢&;).
Wenn némlich U C M; offen ist und = € U, dann gibt es ein € > 0 mit B(x;¢) C U und ein
k € N mit xgk) € B(z; §). Fiir r € Q mit § <r < § gilt dann

T € B(x§k);r) C B(z;e) CU
Damit sehen wir aber, daf} jede offene Menge in M eine (automatisch abzdhlbare) Vereinigung
von Elementen von €; sein muf.
Analog finden wir auch
%MZO'({El X...x E, ‘ Ej S Gj}),

weil die Menge
(@), a0y |k eNj=1,...,n}
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abzahlbar und dicht in M ist. Zusammen mit Proposition 1.1.4 erhalten wir

n n

By :®J(@j) :®%M7"

j=1 j=1

Das folgende Lemma erleichtert die Identifizierung der von einer Algebra erzeugten o-Algebra.

Lemma 1.1.6 : Seien M eine nichtleere Menge und 2 C P(M) eine Algebra. Weiter sei € die kleinste
Familie von Mengen, die A enthdlt und folgende Eigenschaften hat:

(a) Fir Ey CE, C ... mit E; € € gilt U;;Ej ec.
(b) Fir Ey 2 Ey 2 ... mit By € € gilt (2, E; € €.
Dann haben wir € = o(2A).

Beweis:

IDEE: Zunichst verifiziert man, daf es so ein kleinstes Mengensystem gibt (alle schneiden!). Dann
setzt man fiir £ € €
C(E):={FeC€|E\FF\EENFcC¢)}

und beweist mit der Minimalitit von €, dal €(FE) D € gilt. Weiter folgert man, da§ € eine Algebra
ist. Wegen (a) ist € dann sogar eine o-Algebra.

Indem man alle Mengensysteme, die 2 enthalten und sowohl (a) als auch (b) erfiillen, schnei-
det, sieht man, daf} es in der Tat ein kleinstes solches Mengensystem gibt.

Die Inklusion € C o () ist klar. Fiir die Umkehrung definiert man zu E € € das Mengensystem
¢(E)={Fe¢|E\F,F\E,ENF € ¢},

Dann erfiillt €(E) die Bedingungen (a) und (b) mit €(E) statt €.

Wenn E € 2, dann gilt auflerdem 2 C €(F). Wegen der Minimalitidt von € haben wir dann
also € C €(E). Nun gilt aber nach der Definition fiir alle E, F € €

Fe¢lE) & FEcgp).

Das bedeutet, wir haben
VEcA, Fel : EcF).

Wieder mit der Minimalitét von € folgern wir € C €(F'). Insbesondere bedeutet dies, dafl
VE,Fe€: ENFE\FF\FEecC,

d.h.; € ist eine Algebra.
Wenn E; € € fiir j € N, dann betrachten wir F,, := [Jj_, E; € € und schlieBen mit (a)

J

@

Ej: [j F, €¢.
n=1

Also ist € eine o-Algebra, und das beweist die Behauptung. n
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Ubung 1.1.1 : Seien (My, M), ..., (M,,9,) meBbare Rdume. Eine Teilmenge F C M; X ... x M, heifit ein
mefBbarer Quader, wenn sie von der Form £ = A; X ... x A, mit A; € M, fiiri = 1,...,n ist. Sei A die Menge
aller endlichen Vereinigungen von mefibaren Quadern. Zeige:

(i) A ist die kleinste Algebra in 91 ® ... ® M, die alle meBSbaren Quader enthélt.

(ii) Jedes Element von 2 148t sich als disjunkte Vereinigung endlich vieler mefibarer Quader schreiben.

[
Ubung 1.1.2 : Die Borel-o-Algebra Br wird von jedem der folgenden Mengensysteme erzeugt:
(a) € = {la,b[| a <b},
(b) € ={[a,b] | a <b},
(c) € ={]a,b] [ a < b},
(d) €s={[a,b]| a <b},
(e) & = {Ja,o0[| a € R},
(f) € ={]—o0,b[| bR},
(g) &7 ={[a,o0[| a € R},
(h) €5 ={]—00,b] | beR}.
[

Ubung 1.1.3 : Seien M eine nichtleere Menge und & C 3(M) eine beliebige, nichtleere Teilmenge der Potenz-
menge von M. Zeige, dafl o(€&) tatséchlich eine o-Algebra ist. ]

Ubung 1.1.4 : Sei M eine iiberabzihlbare Menge. Setze
M :={FE C M| E oder M\ E ist héchstens abzéhlbar}.

Zeige, daBl M eine o-Algebra auf M ist. ]

Ubung 1.1.5 : Fiir jede natiirliche Zahl n € N bezeichne 9,, die vom System

€= {{1}1,{2},... {n}}

auf N erzeugte o-Algebra. Zeige, dafl 9, aus allen Mengen A C N besteht, welche entweder A C {1,...,n} oder
m € A fiir alle m > n + 1 erfiillen. Offenbar gilt M, C M, 11 fiir alle n € N. Warum ist dennoch |J72_; M., keine
o-Algebra auf N? [

Ubung 1.1.6 : Seien M eine o-Algebra auf einer nichtleeren Menge M und N € 9. Zeige, daB
My :={NNA:AecM}
eine o-Algebra auf N ist. Man nennt 9y die Spur-o-Algebra auf N. [ |

Ubung 1.1.7 :  Seien (M, 9N) ein meBbarer Raum, (X,7) ein topologischer Raum und f : M — X eine
Abbildung. Zeige, daf das System aller Teilmengen E C X mit f~!(E) € 9 eine o-Algebra auf X ist. [

Ubung 1.1.8 : Sei (M, p) ein metrischer Raum und D C M. Zeige, da folgende Aussagen #quivalent sind.
(i) D ist dicht.
(ii) D= M.
(iii) Fiir alle x € M und fiir alle € > 0 existiert ein y € D mit p(z,y) < €.
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1.2 Mef3bare Funktionen

Seien (M,9) und (N, 91) meBbare Rdume und f: M — N eine Abbildung. Dann heifit f (90, 91)-
mef3bar, wenn
YAem :  fH(A) e, (1.3)

d.h., wenn Urbilder mefibarer Mengen wieder mefibar sind. Wir lassen den Zusatz (90, 91)- weg, wenn klar
ist, welche o-Algebren gemeint sind. Wenn die o-Algebra 91 von dem Mengensystem & C PB(N) erzeugt
wird, dann kénnen wir (1.3) auch durch

YNee : fHN)em

ersetzen.

Beispiel 1.2.1 : Seien (M,U) und (N,V) topologische Rdume und f: M — N stetig. Da Urbilder
offener Mengen unter f offen sind, ist die Abbildung (B, B )-mefibar. [

Bemerkung 1.2.2 : Seien (M, M), (N, M) und (L, £) meBbare Réume sowie f: M - Nundg: N — L
meBbare Abbildungen. Dann ist auch g o f: M — L mefibar:

VEeL : (gof) ME)=f (g " (E)) eM.

Proposition 1.2.3 :  Seien (M,9) ein mefbarer Raum und f,g: M — C mefbare, d.h. (I, Bc)-
mefibare Abbildungen. Dann sind auch f+ g und fg mefibar.

Beweis:

IDEE: Verkniipfe die meBbare Abbildung h: M — C2?, z +— (f(z), g(z)) mit der Addition bzw. der
Multiplikation auf C (beides stetig, also meBbar).

Betrachte die Abbildung
h: M — €%,z (f(2),9(x)).

Die Borel-o-Algebra B2 von C? wird von den Mengen der Form U x U’ mit U, U’ C C offen,
erzeugt. Wegen
WU XU = f~HU)Nng H(U")

ist also h mefibar. Weil aber f + g und fg durch Verkniipfung von h mit den stetigen, also
meflbaren Abbildungen
CxC—-C, (r,w)—z+w

und

CX(C—)(C, (z,w)r—>zw
entstehen, folgt die Behauptung aus Bemerkung 1.2.2. L]

Die néchste Proposition wird bei der Konstruktion von Maflen auf R” =R x ... x R niitzlich sein.

Proposition 1.2.4 : Seien (M, M), (N,MN) und (L, £) mefbare Riume.
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(i) Wenn E € MO N, dann gilt

E, = {yeN|(z,y) e E} eM,
EY = {xeM]|(z,y) € E} €M

y

EY eY ;<
(ii) Wenn f: M x N — L mefbar ist, dann sind auch die Abbildungen

fo:N—L, y~ f(zy),
VM= L oz f(z,y)

fiir alle x € M und y € N mefbar.

Beweis:

IDEE: Zeige, daB {E£ € M@ MN | (Vz € M,y € N) E, € M, EY € M} eine o-Algebra ist, die alle
mefBbaren Quader A x B € 9 @ I enthilt.

Betrachte das Mengensystem
C={EecMmeN|(Vee M,ye N) E, € M, EY € M}.

Dann gilt
YVAeMBeN : AxBec.

AufBlerdem verifiziert man fiir E, E1, F5,... € €und x € M,y € N sofort

(DEJL = G(Ej)wa

(Un)' = U
M\EY = ((MxN)\E),
N\E, = ((MxN)\E),

Also ist € eine o-Algebra, die alle mefibaren Quader A X B mit A € 9 und B € I enthalt.
Daraus folgt aber 9t ® 9 C € und somit (i).

Um (ii) zu beweisen, miissen wir nur noch feststellen, daf$§ fiir C' € £ gilt

fHC) = (1)), wmd (f)7HC) = (1)
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Beispiel 1.2.5 : Seien (M,9) ein meBbarer Raum und £ C M eine mefibare Menge. Dann ist die

durch
(m) 1 firmekF
m) =
XE 0 firmégkFE

definierte charakteristische Funktion xg: M — R mefibar, weil

M falls a < 0 <1 < b,
1 E falls 0 <a <1 <b,
xp (la. b)) = M\E fallsa<0<b<1,
0 sonst.

Also sind auch endliche (komplexe) Linearkombinationen von charakteristischen Funktionen mefbarer
Mengen meBbar. Solche Funktionen nennen wir einfache Funktionen. Die einfachen Funktionen M — C
lassen sich charakterisieren als diejenigen mefibaren Funktionen, die nur endlich viele Werte annehmen:
Wenn némlich f(M) = {z1,...,2,}, dann ist jedes E; := f~!(z;) fiir j = 1,...,n meBbar, und es gilt

n
f= Z ZiXE;-
Jj=1

Diese Zerlegung von f als Linearkombination von charakteristischen Funktionen nennt man die Stan-
dardzerlegung von f. Sie erfiillt insbesondere E; N E; = ) fiir i # j. [

Um sich ldstige Fallunterscheidungen in den Betrachtungen reellwertiger mefbarer Funktionen zu
ersparen, erginzen wir die Menge R um zwei Punkte, die die Rolle von plus und minus ,,Unendlich“
spielen sollen:

[—00,00] := {—o0} UR U {o0}.

Hier sind —oo und oo einfach Symbole. Wir ergéinzen die Ordnung auf R durch
VreR : —oo<r<oo

und erhalten so eine Ordnung auf [—o00,00]. Mit dieser Ordnung kann man Begriffe wie untere und
obere Schranke sowie Supremum und Infimum leicht auf Teilmengen von [—oo, 00] iibertragen. Der
einzige Unterschied zum Fall R ist, dafl auch in R unbeschriinkte Mengen in [—o0, o0] ein Supremum
haben. Analog erhiilt man auch den Limes superior und den Limes inferior fiir Folgen in [—o0, c0].

Addition und Multiplikation lassen sich nicht in verniinftiger Weise auf ganz [—oo, co] fortsetzen. Wir
setzen jedoch
x+y firax,yeR,

00 fir © €]— 00, 0] und y = oo,
T+yi= (00 fiir £ = oo und y €]— o0, o],
—oo  fiir z € [—00,00[ und y = —o0,
—oo  fiir z = —oo0 und y € [—o0, 0],
wobel [—00,00[ := {—00} UR und ]— 00, 00| := R U {oc}. Wenn insbesondere [0, c0] := [0, co[ U{c0},

dann definiert dies eine Addition auf [0, oc]. Analog setzt man

xy  fir z,y € R,

+oo fiir z €]0,00] und y = +oo,
xy = +oo fiir z = +o00 und y €10, o0,

Foo fir x € [—00,0[ und y = £oo,

Foo fiir x = +00 und y € [—o0,0].
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Bemerkung 1.2.6 : Setze
B—oc,00] = {E S [-00,00] | ENR € Br} C P([—00, o0]).

Dann sieht man leicht, dal B[_ ., ] eine o-Algebra ist, die von den Halbstrahlen |a, oo} := ]a, oo[ U {oo}
mit a € R erzeugt wird.

Sei jetzt (M,9M) ein mefbarer Raum, und seien f,g: M — [—00,00] meBibare Abbildungen. Wenn
f+g9: M — [—o00,00] definiert ist, d.h., wenn f(z) + g(x) fiir jedes € M definiert ist, dann ist f + g
auch mefbar:

(f +9) 7 (a, ) = (f+9)""(a,00) U (f +9)""({o0})
= (f+9) ' (a,c0)Ug™ ({oo}) U 7 ({oo})

und (f+g)~!(Ja, oo[) ist meBbar, weil es mit h~1(]a, oo[) zusammenfillt, wobei h die Summe der mefibaren
Funktionen f|pr, glar: M — R mit M’ = f~}(R) N g~ (R) ist. n

Proposition 1.2.7 :  Seien (M,9M) ein mefbarer Raum und (fn)nen eine Folge mefbarer Funktionen
fn: M — [—00,00]|. Dann gilt:

(i) sup frn: M — [—o00, 0] ist mefSbar.
(ii) inf f,: M — [—o00, 0] ist mefbar.

)

)

(iii) limsup f,,: M — [—o00, 00| ist mefSbar.

(iv) liminf f,: M — [—o0, 00] ist mefbar.
)

(v

Beweis:

Wenn der punktweise Limes f =lim f,,: M — [—o0, 00| existiert, dann ist er mefbar.

IDEE: (i) folgt aus (sup fn) ' (Ja,00]) = U, fi ' (Ja,c]), der Rest dann aus (i).
Beachte, daf3

(sup fn) '(a,00]) = {me M| 51711p fn(m) > a}

= {m € M |3Inmit f,(m) > a}

U £ (a, 00)).

Dies zeigt (i). Der zweite Teil folgt mit (i) und inf f,, = —sup(—f,). Die Teile (iii) und (iv)
folgen jetzt, weil Limes superior und Limes inferior durch sukzessives Bilden von Suprema und
Infima entstehen. Der letzte Teil ist dann wegen lim f,, = limsup f,, fiir konvergente Folgen
klar. [

Mit Proposition 1.2.7 kénnen wir zu einer mefbaren Funktion f: M — [—o00, o0] den positiven Teil
/1 :=max(f,0) und den negativen Teil f~ := —min(f,0) definieren, die beide wieder mefibar sind.

Ubung 1.2.1 : Seien (M,9N) ein meBbarer Raum und f, g : M — [—o00, c0] meBbar. Zeige, daB dann auch die
folgenden Funktionen mefibar sind.

(i) max{f, g}, (i) min{f, ¢}, (i) f*, (i) /"
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Ubung 1.2.2 : Seien (an)nen und (bn)nen Folgen in [—o0, 00]. Zeige:
(i) limsup,,_, . (—an) = —liminf, . an,
(ii) Aus a, < b, fir alle n € N folgt liminf, o an < liminf,, .o by.

Ubung 1.2.3 :  Seien M eine o-Algebra auf M und f, : M — R eine Folge meBbarer Funktionen. Zeige, daB
die Menge
A:={ze M|3 lim f,(z)}

eine mefibare Teilmenge von M ist. [

Ubung 1.2.4 :  Sei M eine o-Algebra auf M, und sei f : M — C eine meBbare Funktion. Zeige, daB es eine
mefibare Funktion a: M — C gibt mit || =1 und f = «|f]. [

Ubung 1.2.5 : Sei R das System aller Teilmengen von R, die sich als endliche Vereinigung von Intervallen
schreiben lassen. Eine Abbildung u : SR — [0, co] heiit additiv, wenn fiir disjunkte Mengen E1, ..., E, € R gilt

wE1U...UE,) = u(E) + ...+ u(Ey),

sie ist o-additiv, wenn fiir disjunkte Mengen E1, Fa,... € R gilt

Iz (G Ej> = iu(Ej),

j=1 j=1

ferner wird sie endlich genannt, wenn u(A) < oo fiir alle A € R ist.

Zeige, daB die Abbildung u : SR — [0, co] mit

[ 1 fallsesein e > 0 gibt mit ]0,¢[C A,
w(4) '_{ 0 sonst

additiv und endlich, aber nicht o-additiv ist. [ ]

Ubung 1.2.6 :  Sei M eine nichtleere Menge. Ein Dynkin-System iiber M ist ein nichtleeres System ® von
Teilmengen von M mit

(a) M e,
(b) ABE®D, ACB=B\Ae®,
(c) An €D disjunkt = |J;2, An €D.
Zeige:
(i) Jede o-Algebra ist ein Dynkin-System.
(if) Sei R CP(M). Dann existiert ein kleinstes Dynkin-System, das 9R umfafit.

(iii) Ein Dynkin-System % ist genau dann eine o-Algebra, wenn es schnittstabil ist, d.h., wenn aus A, B € ®
folgt, daB AN B € D ist.



Kapitel 2

Maf3 und Integral

In diesem Kapitel fithren wir den Begriff des Mafles auf beliebigen, mefibaren Rdumen und den zugehdrigen
Integralbegriff ein. Zentrale Ergebnisse sind die Analoga der schon fir die reelle Gerade bewiesenen,
fundamentalen Konvergenzsitze. Dariiber hinaus zeigen wir, wie man Mafe und Integrale auf Produkt-
rdumen konstruiert. Das entscheidende Ergebnis in diesem Kontext ist der Satz von Fubini, der besagt,
daf$ Integrale auf Produktrdumen durch iteriertes Integrieren berechnet werden konnen und die Rethenfolge
dabei keine Rolle spielt.

2.1 Malfle

Sei (M,9M) ein meSbarer Raum. Eine Abbildung
p: M — [0, 00]

heiit ein Maf3 auf (M, 9), wenn (@) = 0 ist und fiir jede disjunkte, abzihlbare Familie E;, Es, ... von
meflbaren Mengen gilt

8

o0

n(J Ej) = ZM(EJ')-

J

Hier ist Z]Oil w(E;) als der Grenzwert der entsprechenden Reihe zu lesen, wenn alle (E;) endlich (d.h.
in [0, 00[) sind und die Reihe konvergiert; falls dem nicht so ist, setzt man Y772, u(E;) := oo. Das Tripel
(M, 90, 1) heifit ein Maflraum. Ein Mafl 4 heifit endlich, wenn p(M) € [0, 00[, und o-endlich, wenn
M = Upen Erx mit p(Ey) < oo.

Beachte, dafl aus E C E’ wegen u(E') = u(E’'\ E) + p(FE) sofort folgt u(E) < p(E’). Insbesondere
nimmt ein endliches Mafl nur endliche Werte an.

Beispiel 2.1.1 : Sei M # () eine beliebige Menge.

(i) Sei M = P(M) > E. Dann definiert u(E) := > .p f(z) mit f: M — {1}, +— 1 ein MaB, das
Zahlmaf3.

(ii) Sei M = P(M) und xy € M. Dann definiert

L 1 firageFE
w(E) = { 0 sonst

ein Maf}, das Dirac- oder Punktmaf3 in zq € M.

11
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Beispiel 2.1.2 : Betrachte den mefibaren Raum (R, Bg). Dann ist fiir jedes A € Bg die charakteristi-
sche Funktion y 4 lokal integrierbar im Sinne der Integrationstheorie einer Variablen und durch

M) = [ xa

wird ein Mafiraum (R, Bg, A!) definiert. Das so definierte Ma A\! nennt man Lebesgue-Maf3 auf R. =

Bei der Konstruktion von Maflen ist es in der Regel nicht so schwer, eine passende Algebra 20 C P (M)
zu finden, auf der die endliche Additivitét u(Uj_, Ej) = >_j_, p#(E;) gilt. Dagegen ist der Ubergang zu
der von 2 erzeugten o-Algebra oft schwierig. Umso angenehmer ist der folgende Satz, der zeigt, daf es
nur eine ,,gute“ Fortsetzung einer endlich additiven Funktion p: % — [0, 00] zu einem Ma$ auf (M, o(2))
geben kann.

Satz 2.1.3 : Seien M eine nichtleere Menge, A C P(M) eine Algebra und MM := o(A). Weiter sei u ein
Maf$ auf (M,90) mit

JAy As,.ce (A =M und (Vi EN 1 p(4;) < o).
j=1

Wenn v ein Maf auf (M, D) ist, das auf A mit p ibereinstimmt, dann gilt p = v.
Beweis:

IDEE: Fiir endliches p betrachte € := {E € 9 | u(E) = v(E)} und zeige, dal € die Bedingungen
(a) und (b) aus Lemma 1.1.6 erfiillt. Mit dem Lemma folgt dann € = 971, d.h., die Behauptung. Fiir
o-endliche Mafle schneide alle Mengen mit einer Familie von Mengen endlichen Mafles.

Spezialfall: u(M) < co.

Wir setzen
C:={FEecM|uE)=rvE)} M

Beachte, dafl wegen u(F \ E) = pu(F) — u(E) fiir meSbare Mengen E C F und der analogen
Aussage fiir v gilt
Ee¢ = F\Eec¢

sofern F' € €. Dann erfiillt € die Bedingungen (a) und (b) aus Lemma 1.1.6:
Wenn E; C F, C ... mit B € €, setze
Cl = E17 Cg = EQ\El, 03 = E3\E2,...

Dann sind die Cj alle disjunkt, und es gilt

oo o0 o0

M(U Ej) = M(U Ci) =Y _u(C)=> v(C)=v(l]C)) = V(U Ej).

i—=1 j=1 j=

Also ist auch U‘;il E; € ¢, und dies zeigt (a). Bedingung (b) folgt durch Komplementbildung
sofort aus (a),da M e A C €.
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Wegen 2l C € kénnen wir Lemma 1.1.6 anwenden und erhalten 9t = €. Dies beweist den Satz
fiir den Spezialfall.

Allgemeiner Fall: Wir stellen zunichst fest, dafl wir eine disjunkte Familie 4; € %, j € N
mit

UAj:Mund (VjeN : p(4;) <o)
j=1

finden kénnen: Wenn némlich A; € 2, j € Nirgendeine Familie mit

Al =M und (Vj e N : p(A}) < oo)

s

<
Il
_

ist, setzt man einfach

A= A und A4, = A)\ A

n—1-
Jj=1

Wegen u(E) = 3272, p(E N Aj) und v(E) = 3322, w(E N A;) fiir E € 9 geniigt es also zu
zeigen, daf} fir N € 2 mit u(N) < oo gilt u(ENN) = v(E N N). Dazu betrachten wir die
Algebra B

A:={ANN|AecA} CP(N),
die die o-Algebra -

M:={ENN|Eecm} CPN)

erzeugt. Dann erfiillen die Einschrdnkungen von p und v auf M die Voraussetzungen des
Spezialfalls, und dieser zeigt dann u(E N N) =v(ENN). "

Ubung 2.1.1 : Sei p ein MaB auf einer o-Algebra 9. Zeige:
(i) Aus A, € M, A1 C A, C ... folgt

nhﬁrr;C w(An) = <U An> .

neN
(ii) Aus A, € M, A1 D A> D ... und p(41) < oo folgt

nlLIr;c w(An) = p (ﬂ An> .

neN

(iii) Die Voraussetzung p(A;) < oo in Teil (ii) ist nicht iiberfliissig.

(iv) In (ii) kann die Vorausetzung p(A;) < oo weggelassen werden, wenn p ein o-endliches Maf} ist. (Hierzu
benétigt man den Umordnungssatz).

2.2 Integrale

Sei jetzt (M, 9, 1) ein Mafiraum. Wir bezeichnen die Menge der meBbaren Funktionen f: M — [0, ]
mit £ (M). Wenn f € L1 (M) einfach ist und

n
F=Y ajxe,
j=1
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die Standardzerlegung von f ist, dann definieren wir das Integral von f bzgl. u durch

/M fdu = §:j u(E)

Hier setzen wir 0 - co = 0 und beachten ferner, dafl in der obigen Standardzerlegung a; > 0 fiir alle j
gilt.
Fiir A € 9 setzen wir

/ fdu = Zaj ,U,(E] N A)
A j=1

Falls M und das Ma$ p aus dem Kontext klar sind, schreiben wir einfach [ f fiir [,, fdu und [, f fiir
Ja fdp.

Proposition 2.2.1 :  Seien (M, DM, u) ein Mafraum und f,g € LY (M) einfache Funktionen.
(i) Wenn ¢ >0, dann gilt [cf =c [ f.
i) [(f+a)=[I+]g

(iii) Wenn f <g, dann gilt [ f < [g.

Beweis:

IDEE: Betrachte die Standardzerlegungen der einfachen Funktionen.

(i) folgt unmittelbar aus den Definitionen. Fiir (ii) betrachte die Standardzerlegungen

f= Zajxfm und g—zbkak

j=1

von f und g. Zusétzlich setzen wir

A()I:M\UAJ', B()I:J\f\LJBk7 aoiioiibo.

j=1 k=1

Dann gilt

f=Y ajxa,, wd g=> bixs,

j=0 k=0

sowie .

A= JAnBy) Vi=0,1,....n

k=0

und

LnJ ﬂBk Vk=0,1,...,m
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Jetzt rechnet man

/f+/g = z%aju +kz:bk/i By) = ZZ(aj + b)) (A, N Bg).
J= 0

j=0 k=0

<.

Wenn {c1,...,¢} ={a;+b;|j=0,...,n;k=0,...,m}\ {0} und
C; = U (AjﬂBk),
aj+bk:c7;

dann ist

l
f"_g:ZCiXCi

i=1

die Standardzerlegung von f 4 g, und (ii) folgt aus

/f+g Zcz,u Z Z aj—i-bk A ﬂBk)

i=1 aj+br=c;

Wenn jetzt f < g, dann gilt a; < by wenn immer A; N By, # (). Also findet man

/f ZZ%MA NBy) <> Y bep(A; N By) /g.

] 0 k=0 ]:0k=0

Proposition 2.2.2 : Seien (M, DM, u) ein Mafraum und f € L (M) eine einfache Funktion. Dann ist
die Abbildung

M — [0, 0], A»—>/ f
A
ein Map.
Beweis:

IDEE: Die Arbeit besteht darin, die Gleichheit fU‘x’ 2 f=>x, fE f fiir jede disjunkte Familie
FEn, Es, ... von meBlbaren Mengen in M zu zeigen. Dafiir braucht man den Umordnungssatz fiir Reihen.

Sei f =" =1 @5 XE; die Standardzerlegung von f. Wir stellen zunéchst fest, dafl f@ f=
Z?Zl a;p(P) = 0 ist und wihlen eine disjunkte, abzihlbare Familie Ey, Es, ... von mefbaren
Mengen in M. Dann gilt

/UgolEif - i:ajﬁt(AJ @Ez)

= Z@u(U (A; N E) )
j=1 i=1

= Zaqu(AmE)
j=1 =1

oo

= D) au(4;NE)

i=1 j=1

_ i/Ef
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Beachte, dal wir hier die Umordnung der Summierung rechtfertigen miissen: Wenn die Reihen
Yoo, 1(Aj N E;) konvergieren, geht das nach dem Umordnungssatz fiir Reihen.Wenn eine der
Reihen nicht konvergiert, verifizieren wir direkt, dafl beide Seiten oo sind. [

Fiir beliebige f € LT (M) und A € M definieren wir jetzt das Integral von f {iber A bzgl. u durch

/ Jdp:=sup{ [, ¢du |0 < ¢ < f, ¢ einfach}.
A

Es folgt unmittelbar aus den entsprechenden Aussagen fiir einfache Funktionen (vgl. Proposition
2.2.1), daB [, cfdp =c [, fdp fir f € LY(M) und ¢ > 0 sowie [, fdu < [, gdp fiir f,g € L7(M) und
f < g. Genauso sieht man, dafl fA < fB f,falls f € LT (M) und A C B mefibar sind. AuBlerdem erkennt
man, daB8 [, fdu =0 ist, falls f~*(]0,00]) N A eine Nullmenge ist.

Die Additivitat des Integrals ergibt sich nicht automatisch, weil nicht klar ist, ob man jede einfache
Funktion ¢, die 0 < ¢ < f + g erfiillt, als Summe ¢1 + ¢ mit 0 < ¢; < f und 0 < ¢ < g schreiben kann.
Das folgende Lemma wird uns helfen, die Additivitdt des Integrals zu beweisen.

Lemma 2.2.3 : Seien (M,0) ein mefbarer Raum und f: M — [0,00| eine meffbare Funktion. Dann
gibt es eine Folge (¢n)nen einfacher Funktionen mit folgenden Eigenschaften:

(a) 0S¢ <d2<...<f.
(b) (¢n)nen konvergiert punktweise gegen f.

Beweis:

IDEE: Mit Ef == f'(|%, 55]) und F, == f7'(]2",00)) fiir n,k € Nund 0 < k < 2°" — 1 ist die

22n_ 1

gesuchte Folge durch ¢, := ) ;_, Xk + Q”XFn gegeben.
Furn,kENmit0§k§22”—1setze

iqk k41
Eﬁ =f 1(]27727“])
und
Fy = (12", 00])
Dann ist
22n_1 k .
Pp = kZ:O on XE} +2"xr,

eine einfache Funktion. Jetzt geniigt es, fiir jedes n € N die folgenden Eigenschaften zu zeigen:

(37) ¢n S ¢n+1,
(b)) 0< f(z) — dpn(z) < 27" fiir jedes € M mit f(z) < 2™,

Dafiir miissen wir mehrere Fille unterscheiden:
1) Wenn z € EF und f(z) € 525, 2], dann gilt 2 € E2% | und

k 2k
Pn(x) = on T ontl Prs1(T).

2) Wenn x € EX und f(z) € |22, 222], dann gilt « € E254" und

k. 2k+1
bn(7) = on < ot Pnt1(z).
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3) Wenn = € F,, und f(z) € ]2",2"!], dann gilt fiir ein 2271 < k < 2272 — 1 daf
T € EﬁH und

n k
(bn(x) =2"< ont1 = ¢n+1(9€)~
4) Wenn z € F,, und f(z) € |2"!, oo[, dann gilt z € F,, 11 und
bn(x) =2" < 2" = ¢4 (2).

Damit haben wir (a’). Die Bedingung (b’) folgt analog durch Nachrechnen (Ubung!). "

Der néchste Satz ist eine Variante des Satzes von der Monotonen Konvergenz und an dieser Stelle der
Schliissel zur Additivitdt des Integrals.

Satz 2.2.4 (Monotone Konvergenz): Seien (M, 9, u) ein Maffraum und (f,)nen eine Folge in
LT(M) mit fp, < fna1 fiir alle n € N. Dann gilt

/ lim fn:/supfnzsup/fn: lim /fn
n—oo neN neN n—oo

IDEE: Die Ungleichung sup,cy [ fn < [ f fiir f = sup, fn ist unmittelbar einsichtig. Fiir die
Umkehrung betrachte E, = {z € M | fn(z) > t¢(x)}, wobei 0 < t < 1 fest gewihlt ist, und schliefle
mit Proposition 2.2.2 (und Ubung 2.1.1), daB [ ¢ = sup,,cx fEn ¢ gilt. Es folgt ¢t [ ¢ < sup,,cy [ fn
und damit die Behauptung mit ¢t — 1.

Beweis:

Wegen der Monotonie von (f,)nen und ([ fn)nen sind die Suprema gleich den Limiten. Setze
[ i=sup,cy fn € LT(M). Dann zeigt f, < f sofort [ f, < [ f und somit

sup [ f< [ £
neN
Um auch die Umkehrung zu zeigen, wihle ein ¢t € ]0,1[. Wenn jetzt ¢ eine einfache Funktion
mit 0 < ¢ < f ist, betrachte
Bui={z € M| fula) > t9(2)}.

Da f,, und ¢ meflbar sind, ist auch F,, mefibar. Sei z € M beliebig mit f(z) > 0, dann
gilt wegen ¢(x) < f(z) und ¢(x) < oo, daB tp(x) < f(x). Also finden wir ein n € N mit
fn(x) > té(x). Also gilt

U E, = M.

neN
Wegen E,, C E, 41 folgt mit Proposition 2.2.2 und Ubung 2.1.1

[ o
neNJE,,
und wir konnen rechnen

t/(b:sup/ t¢SSup/ fnSSup/fn~
neNJE, neNJ g, neN

Weil ¢ €]0, 1] beliebig war, erhalten wir

o<suw [,

neN

fo<um

und schlief}lich
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Korollar 2.2.5 :  Seien (M, M, u) ein Mafraum und (f,)nen eine Folge in LT (M). Wir setzen f =

sup{d>_7_, fj | n € N}. Dann gilt
f= i
f=%]

IDEE: Beniitze zunsichst Proposition 2.2.1 und Satz 2.2.4, um [(h+g) = [h+ [ g fiir h,g € LT (M)
zu zeigen. Mit Induktion iiber die Anzahl der Summanden und dann erneut Satz 2.2.4 folgt schliellich

Beweis:

die Behauptung.
Wir zeigen zunichst, daf fiir h, g € LT (M) gilt

/(h+g)=/h+/g.

Dazu seien zu h und g Folgen (¢ )neny und (¢, )nen einfacher Funktionen wie in Lemma
2.2.3 gewihlt. Dann ist (¢, + ¥ )nen eine monoton steigende Folge einfacher Funktionen mit
sup,en(®n + ¥n) = h+ g und Satz 2.2.4 liefert zusammen mit Proposition 2.2.1

[Jirg) =t [onrun) = tim ([ ot [ =i [o)+(lim [w)= [+ [0
Mit Induktion folgt jetzt sofort

Die Funktionen g,, := Z?:l f; konvergieren punktweise monoton gegen f und erneut mit Satz

2.2.4 schlieflen wir n 00
[=tm fon=tim 3 [5=3 [ 5
j=1 Jj=1

Seien (M, 9, u) wie zuvor ein Mafiraum und f: M — [—o00,00] eine mefbare Funktion sowie f =
fT — f~ die Zerlegung von f in ihren positiven und ihren negativen Teil. Wenn eines der beiden Integrale
Ir * endlich ist, dann definieren wir

[ tani= [ rrau- [ 1 an (2.1)

und nennen [ fdp das Integral von f. Wenn sowohl [ fdu als auch [ f~du endlich sind, nennen wir
f p-integrierbar. Wenn aus dem Kontext klar ist, welches Mafl gemeint ist, lassen wir das u weg. Eine
meflbare Funktion f: M — C heifit integrierbar, wenn Re f: M — R und Im f: M — R integrierbar
sind. Das Integral [ f ist dann durch

[ = [Ressi[mg

definiert. Fiir K gleich R oder C sei £*(M, i, K) oder (wenn das Maf aus dem Kontext klar ist) £(M, K)
die Menge der integrierbaren Funktionen f: M — K. Statt £1(M,C) schreibt man oft nur £!(M).

Satz 2.2.6 : Seien (M, M, u) ein Mafiraum und f : M — [—o00, 0] mef$bar, dann sind folgende Aussa-
gen dquivalent:
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(1) f ist p-integrierbar.
(2) f* und f~ sind p-integrierbar.
(3) FEs gibt eine p-integrierbare Funktion g mit |f| < g.
(4) |f] ist u—integrierbar.

Beweis:

»(1)&(2)%: Dies folgt unmittelbar aus den Definition der Integrierbarkeit.

»(2)=(3)“: Sind f* und f~ p-integrierbar, dann sind f*, f~ und g = |f| = f* + f~ meBbar (vgl.
Bemerkung 1.2.6) und nach Korollar 2.2.5 gilt

/gdu:/(f++f’)du:/f+du+/f’ dp < 0.

Somit ist auch g p-integrierbar und wegen |f| = g = fT + f~ folgt die Behauptung.

»(3)=(4)¢: Existiert eine p-integrierbare Funktion g mit |f| < g, so gilt, wieder mit Korollar 2.2.5,
aufgrund von g = |f| 4+ (¢ — | f]):

/Ifldué/gdu-

Die Behauptung folgt nun aus der Annahme, da [ g dp < co.
»(4)=(2)“: Sei nun |f| p-integrierbar. Es gilt: f* < |f| und f~ < |f|. AuBerdem sind f*, f~ und
| /| meBbar und nichtnegativ. Damit wird

/f+du§/|f\du<oo und /f_d,ug/|f|dp<oo.

Proposition 2.2.7 : LY(M,K) ist ein K-Vektorraum, und die Abbildung

[ieorr -k 5o [r

ist K-linear, bildet nichtnegative Funktionen auf nichtnegative Zahlen ab und erfillt die Ungleichung
[ sl= [
M M

IDEE: Zerlege erst in Real- und Imaginérteil, dann in positiven und negativen Teil.

Wir zeigen zunéichst die Linearitéit. Dabei behandeln wir nur den Fall K = R. Der Fall K = C
sei dem Leser als (einfache) Ubung iiberlassen.

Seien also f,h € LY(M,R) und r € R. Es geniigt jetzt zu zeigen, da8 f + h,rf € L}(M,R)

" [ren=[rs[n [r=r]s

Die Funktionen f 4 h und f sind meBbar (vgl. Bemerkung 1.2.6). Wenn r > 0, dann gilt
rf* = (rf)*, also sind [(rf)* =r [ f* endlich (vgl. Proposition 2.2.1). Dies zeigt, da§ r f

integrierbar ist mit
/rf:/r]”f/rf*:r/]”fr/f*:r/f.

Beweis:

19
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Der Fall 7 < 0 liefert (rf)* = —rf¥ und geht ansonsten analog.
Zunéchst gilt wegen Korollar 2.2.5

Jr-fo-fr- ]

fiir alle f, f',h, b/ € LT (M) mit f — h = f' — I/, falls die betrachteten Integrale endlich sind.
Wegen Satz 2.2.6 und der Dreiecksungleichung folgt die Integrierbarkeit von f + h, und somit

gilt mit obigem

Jurn = [urn= [
Jurenty= i n)
[ [ for- [
/f+/h

Damit ist die Linearitit des Integrals gezeigt. Die Positivitét ist nach Definition unmittelbar
klar, und fiir die letzte Behauptung setzen wir fM f=re" mit r >0 und v € [0, 27]. Dann
rechnen wir nach:

[ si=en [ = [ enr= [ retep< [ ensi= [

weil [Im(e= f) = 0 ist. n

Ubung 2.2.1 : Sei (M, 9, 1) ein MaBraum, und sei 9* die Familie aller E C M, fiir die es A, B € 9 gibt mit
ACECBund u(B\ A) =0. Fiir £ € 9" definiere u*(F) := p(A). Zeige:

(i) 9" ist eine o-Algebra, die 9T enthilt,
(ii) p* ist wohldefiniert,
) p* ist ein MaB auf M,
(iii) p* ist eine Fortsetzung von u, d.h. p*(E) = u(E) fiir alle E € 9.
Man nennt den Mafraum (M, 9", 1*) die Vervollstindigung von (M, N, u). ]

(iii

Ubung 2.2.2 : Seien (M, 0N, 1) ein Mafraum und (M, I*, u*) seine Vervollstindigung.

(i) Beweise, daB eine Funktion f : M — [—o0, co] genau dann 9T*-meBbar ist, wenn es 9-meBbare Funktionen
fisfo : M — [—o00,00] gibt, mit f1 < f < fo und f1 = fo p-fast iiberall gilt (d.h. pu({z € M | f1(z) #
fa(2)}) = 0).

(ii) Sei f: M — R eine 9" -meBbare Funktion. Zeige, dafl die Funktionen fi, fo aus Teil (i) i.a. nicht {iberall
endlich gew#hlt werden kdnnen.

Ubung 2.2.3 : Seien (M, 9, 1) ein MaBraum und f : M — [0, co] eine mefbare Funktion. Definiere

v(E) := / fdu, EeM
E
Zeige, daf3 v ein Maf ist. [

Ubung 2.2.4 : Sei M die o-Algebra aus Ubung 1.1.4. Definiere fiir E € I

(E) = 0, falls E abzahlbar ist,
’u 1 1, sonst.

Zeige, daB p ein Maf3 auf 91 ist. n
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Ubung 2.2.5 : Finde ein Beispiel eines Mafes, das nicht g-endlich ist. ]

Ubung 2.2.6 : Seien (M,9M) ein meBbarer Raum, p ein endliches Ma8 auf 9 und f € £ (M, C, 1). Weiter sei
S C C eine abgeschlossene Menge mit der Eigenschaft, dafl

Je fdr
n(E)
fiir jedes E € 9 mit u(E) > 0. Zeige, daBl f(x) € S fiir fast alle z € M.

Hinweis: Jede offene Teilmenge von C 148t sich als abzéhlbare Vereinigung offener Kugeln schreiben, vgl. Propo-
sition 1.1.5. |

Ap(f) = €s

Ubung 2.2.7 : Seien (M, 9N, 1) ein MaBraum und (E,)nen eine Folge meBbarer Teilmengen von M mit

oo

Z w(Ey) < oco.

n=1
Zeige, daB fast alle x € M in hochstens endlich vielen E, liegen (d.h., die Menge derjenigen = € M, fiir die dies
nicht gilt, hat das Maf} 0). [
Ubung 2.2.8 : Charakterisiere diejenigen einfachen Funktionen, die integrierbar sind. ]

Ubung 2.2.9 : Ist die Dirichletsche Sprungfunktion
{ 1 falls z € Q,

Fr0] =R f(z):=9 1 sonst.
integrierbar?

Ubung 2.2.10 : Sei (M, M, 1) ein MaBraum, und sei (f,)nen eine Folge integrierbarer Funktionen f, : M — R,
die gleichméiBig gegen eine Funktion f konvergiert (d.h. fiir jedes € > 0 gibt es ein no € N, so daB fiir alle z € M
gilt: | f(z) — fn(z)| < €). Zeige:

(i) Wenn u(M) < oo, dann ist f integrierbar.

(ii) Die Aussage aus Teil (i) ist falsch fiir Mafiriume mit u(M) = oo.

2.3 Produktmalfle

Gegeben seien zwei Mafirdume (M, 9, ) und (N, N, v). Wir wollen daraus ein Maf auf (M x N, M)
konstruieren. Die Grundidee ist, Funktionen in zwei Variablen nacheinander in den beiden Variablen zu
integrieren.

Fir £ € 9 ® M sind nach Proposition 1.2.4 die Mengen

E, = {yeN|(z,y) eE}eMn
EY = {zeM|(z,y) cE}eMm

fir alle x € M und y € N mefibar. Damit kann man die Funktionen

fe: M —[0,00], z— v(E,)
gp: N —[0,00], y > p(EY)

definieren.

Lemma 2.3.1 : Fualls p und v o-endlich sind, sind die Funktionen fr und gg sind fir jedes E € M R@N
mefsbar.

Beweis:
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IDEE: Betrachte € := {E € M RN | fr meBbar} und zeige, dafl € die Bedingungen (a) und (b) aus
Lemma 1.1.6 erfiillt. Da aulerdem endliche, disjunkte Vereinigungen von Quadern der Form A x B
mit A € M, B € N in € sind, folgt die Behauptung.

Wir fithren den Beweis fiir fg, der andere Fall geht analog. Betrachte das Mengensystem
C:={EecMN| fr meBbar}.
Wenn £ = A x Bmit A € M, B € N ein meBbarer Quader ist, dann gilt

B fallsxz € A,
Be = { 0 sonst

und
v(B) fallsx € A,

fe(r) = { 0 sonst.

| ‘ A

Also ist fg in diesem Fall mefibar und £ € €. Wenn E die disjunkte Vereinigung endlich
vieler, meflbarer Quader F1, ..., Ej ist, dann ist

Je=fe, +...+ [E

mefbar und Ubung 1.1.1 zeigt, daB die von den meBbaren Quadern erzeugte Algebra 2 in ¢
enthalten ist.

A2

B2

B1

A1

Damit reicht es jetzt, zu zeigen, dafl € die Bedingungen (a) und (b) aus Lemma 1.1.6 erfiillt:
Sei By C Ep C ... mit Ej € Cund E =2, Ej. Dann gilt fiir 2 € M (vel. Ubung 2.1.1)

fe(x) =v(E;) =v Ul(Ej)m = }iGHI%V((Ej)m) = %iEHR}ij (z),

was die Mefibarkeit von fg zeigt (vgl. Proposition 1.2.7).

Analog, wenn F1 D Fp D ... mit F; € Cund F = ﬂjoil E;, dann gilt fir x € M (vgl. Ubung
2.1.1(iv) - an dieser Stelle braucht man die o-Endlichkeit)

fe(x) =v(E;) =v Q(Ej)x = }iGH&V((Ej)x) = %.iEHRlIij (z),

was wiederum die Meflbarkeit von fg zeigt (vgl. Proposition 1.2.7). L]
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Satz 2.3.2 : (M, MM, u) und (N, M, v) seien zwei o-endliche Mafrdume. Dann ist Abbildung

pE v MEN — (0,00, E /M V(Ey)dpu(x)
ein Maf. Weiter ist 4 @ v o-endlich und es gilt

(we)(B) = [ vEdduto) = [ u(Enivty).

N

Beweis:

IDEE: Die o-Additivitdt p@v(Uj2, E;) = 3272, p®@v(E;) folgt aus dem Satz 2.2.4 von der Montonen
Konvergenz. Die o-Endlichkeit des Mafles folgt mit Satz 2.1.3 durch zuriickschneiden mit Quadern
endlichen Volumens. Die letzte Formel folgt durch Vertauschen der Rollen von p und v sowie erneut
dem Eindeutigkeitssatz 2.1.3.

Es ist klar, daf3
(90)®) = [ v0)dutz) =0

gilt. Wenn Ey, Es, ... eine disjunkte Familie von Mengen in 9T ® M ist und F = Ujoil E;,
dann gilt

o0

v(E;) = Z V((Ej)m)

Jj=1

und mit dem Satz 2.2.4 von der Monotonen Konvergenz folgt

(1@ v)(E) = /M V(B )dp(e) =Y /M V(B ) )diw) = 3 0 v) (E).
Dies zeigt, dal y ® v ein Maf} ist.

Wenn jetzt p und v o-endlich sind, dann gibt es Mengen A;, As, ... mit A; € M, u(A4;) < oo
fiir j € Nund {J;cy 4j = M sowie Mengen By, B, ... mit B; € N, v(B;) < oo fiir j € Nund
Ujen Bj = N. Es folgt

U 4 xBi=MxN

7,keN
mit
(o)A x B = [ o) x B
— [ v(Bdua)
Aj
— U(Bou(4y)
< Q.
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Dies zeigt, dal 4 ® v o-endlich ist und sogar die etwas stidrkere Bedingung aus Satz 2.1.3
erfiillt.

Wir wiederholen jetzt das ganze Argument fiir die Abbildung
M- 0,0, B [ u(ENav(y)
N

und finden, daf8 auch diese Abbildung ein o-endliches Maf ist, fiir das die Mengen A; x By,
das Maf p1(A;)v(Bg) haben. Aber dann zeigt Satz 2.1.3 die Gleichheit

(we)(B) = [ vEdduto) = [ u(Enivty)

N

Das Maf} 1 ® v heifit das Produktmaf} von p und v.

Man will das Verfahren aus Satz 2.3.2 iterieren und so Produktmafle von endlich vielen o-endlichen
Maflen konstruieren. In diesem Kontext ist das folgende Korollar sehr wichtig.

Korollar 2.3.3 : Seien (M;,M;, u;) firi=1,2,3 drei o-endliche Mafirdume. Dann gilt:
(1) (9 @ M) @ M3 = My ® (My @ M) = My @ My @ M.
(i) (1 @ p2) @ pz = p1 @ (p2 @ p3).

Beweis:

IDEE: Kombiniere Satz 2.3.2 mit Satz 2.1.3.

Der erste Teil folgt sofort aus der Tatsache, dafl alle drei o-Algebren von den Mengen der
Form E; X Fy x E3 mit E; € 9, und ¢ = 1,2, 3 erzeugt werden.

Da die von den Mengen der Form E; X F; X FE3 erzeugte Algebra 2 mit FE; € 9, und
i = 1,2,3 gerade die Menge der disjunkten Vereinigungen solcher Mengen ist (vgl. Ubung
1.1.1), folgt der zweite Teil aus Satz 2.3.2 und Satz 2.1.3, weil die Mafle auf Elementen von 2
iibereinstimmen. [

Mit diesem Korollar kénnen wir jetzt zu einer endlichen Familie (M;, M, 1), ¢ = 1,...,k von o-
endlichen MaBrdumen ein Produktma8 1 ® ... ® pg auf (M X ... X M, M @ ... Q@ My) durch

@@ (M) =p @ (p2® (... ® pk) ... )(E)

definieren.

Beispiel 2.3.4 : Betrachte den mefibaren Raum
(Rn,%Rn) = (R X ... X R,%R@ ®%R)
Dann heifit das ProduktmaBl A" = A' ®...® A! der Lebesgue-Mafle auf R das Lebesgue-Maf3 auf R". m

Satz 2.3.5 (Fubini - 1. Version): Seien (M, 9, ) und (N, N, v) zwei o-endliche Mafrdume. Sei
f: M x N —[0,00] eine mefsbare Abbildung. Dann gilt

/M (/N f(x,y)dV(y)) du(w)Z/N </M f(w,y)du(w)) dV(y)=/Mfo(:v,y)d(u®V)(x,y)~
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Beweis:

IDEE: Fiir charakterische Funktionen ist dies gerade der Satz 2.3.2. Dann bildet man Linearkom-
binationen und approximiert durch einfache Funktionen geméfl Lemma 2.2.3. Die Behauptung folgt
dann aus dem Satz 2.2.4 von der Monotonen Konvergenz.

Wenn f die charakteristische Funktion einer meflbaren Menge ist, dann ist die Aussage
gerade die Gleichheit in Satz 2.3.2 plus die Definition des Produktmafles. Da man Summen
und positive Konstanten aus den Integralen herausziehen kann, ist die Behauptung auch fiir
einfache Funktionen richtig.

Wihle jetzt eine approximierende Folge (¢, )nen fiir f wie in Lemma 2.2.3. Dann gilt

/M . fz,y)d(p@v)(z,y) = lim On(z,y)d(p @ v)(z,y). (2.2)

=00 JMx N

Jetzt setzt man
gn(2) = /N bn(z,y)dr(y) und  hy(y) == /qun(x,y)du(x)
olz) = /N f@,y)dvy) und h(y) = /Mf@,y)du(x).

Dann sind die Folgen (g, )nen und (hy,)nen monoton steigende Folgen mefibarer Funktionen
und Satz 2.2.4 zeigt

gn(x) = g(z) und  hn(y) — h(y).
Wieder mit Satz 2.2.4 rechnen wir jetzt

n—oo

= lim M(/Iv%(m,y)dV(y)) dp(x)

/g(x)d,u(x) = lim gn(x)dp(z)
M M

n—oo

= lim Pn(z,y)d(p @ v)(z,y)
MXxN

= lim N( ; (bn(x,y)du(m)) dv(y)

n—oo

n—oo

= lim ho (y)dv(y)
N
~ [ hwvty).
N

Wegen (2.2) beweist diese Rechnung die Behauptung. ]

Beispiel 2.3.6 : Die Eulersche Beta—Funktion B: [0, co[x [0, co[— [0, oo] ist durch

B L
= t

definiert. Mit Satz 2.3.5 zeigt man die Identitét

L'(p)L'(q)
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Dazu fiihrt man in der Definition
o0
I'(p) = / P le % dy
0

der Gamma—Funktion fiir p > 0 die Substitution z = ty durch und findet

F(P)_ > p—1 _—ty
m —/0 Yy’ e dy

fir t > 0. Damit rechnet man unter Zuhilfenahme von Satz 2.3.5
!

L(p+q)B(p,q) = P(p+q)/ooo(1+t)p+th

o0 oo
= / tpfldt/ ypra—le=(+y gy
0 0

o0 o0
= / yq’le’ydy/ (ty)P~te Wydt
0 0

= D(@T(p).
In der Wahrscheinlichkeitstheorie wird die folgende Darstellung der Betafunktion beniitzt, die man aus
der Substitution x = 1%% erhilt:

1
Blpa) = [ 2 (1= )t e,
0

Durch Auswertung von (2.3) in (3, 3) leitet man die Formel

o) ) ooe_t
e_xdmz/ —dt=T(H =7
/0 [ =T = v

her:

= arcsin (2(¢t — %))’

77T+7T
2 2

Ubung 2.3.1 : Sei v ein endliches Maf auf dem meBbaren Raum ([0, 0o[, B[o,o0[), und sei ¢: [0, 00[— R definiert
durch ¢(t) = v([0, t]). Weiter sei (M, M, 1) ein Maraum und f: M — [0, oo[ meBbar. Dann gilt

/M<¢> o f)(@)dp(z) = /[ i)

fiir die Funktion F': [0, 00[— [0,00[,t — p({z € M | f(z) > t}). [
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2.4 Nullmengen und Konvergenz

Sei (M, 9, 1) ein Mafiraum. Eine Menge E € 9 heifit eine p-Nullmenge, wenn p(FE) = 0. Eine
Aussage iiber die Punkte z € M heifit u-fast iiberall (u-f.ii.) wahr, wenn sie fiir das Komplement einer
Nullmenge wahr ist. Manchmal sagt man auch, die Aussage gelte fiir p-fast alle (f.u-f.a.) z. Wenn das
Maf aus dem Kontext klar ist, lassen wir das u in den obigen Bezeichnungen weg.

Seien insbesondere (M, M, 1) ein Mafiraum und (N, N) ein meBbarer Raum. Dann heiflen zwei mefiba-
re Abbildungen f,g: M — N p—fast iiberall gleich, wenn {m € M | f(m) # g(m)} eine p—Nullmenge
ist. Wir schreiben dann

f=g (fi.)

Beispiel 2.4.1 : Eine Folge von Funktionen f,,: M — C konvergiert (f.ii.) gegen eine Funktion f: M —
C, wenn es eine Nullmenge A C M gibt mit

Vee M\ A : lim f,(z) = f(x).

n—oo

Proposition 2.4.2 : Sei (M, 9, 1) ein Mafraum und f € LT (M). Dann sind folgende Aussagen dqui-
valent:

(1) [y fdu=0.
(2) f=0 (fi).
Beweis:

IDEE: Fiir einfache Funktionen ist das klar und fiir allgemeines f folgt ,,(2) = (1)* sofort, weil jede
f approximierende, einfache Funktion fast {iberall Null sein muf}. Fiir die Umkehrung zeigt man, dafl
alle Ey, :={z € M | f(z) > +} Nullmengen sind.

Wenn f = Z?Zl ajXg,; eine einfache Funktion ist, dann folgt die Behauptung sofort aus
k

=000 aiu(E)).

Fiir allgemeines f nehmen wir zunéchst an, da§ f = 0 (f.ii.). Wenn ¢ eine einfache Funktion

mit 0 < ¢ < f ist, dann ist ¢ = 0 (£.ii.), also gilt [ ¢ = 0. Damit folgt [ f = 0 nach der

Definition des Integrals.

Umgekehrt sei [ f =0, dann setze
Ep:={ze M| f(z) > +}.

Es gilt fiir jedes k € N
uB) =k [ t<k [1=0
Ex

M={zeM|fx)=0tU ] E
keN

also impliziert

die Behauptung, weil die abzéhlbare Vereinigung von Nullmengen selbst eine Nullmenge ist
(Ubung!). n
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Nach Proposition 2.4.2 ist die Menge N der mefibaren Funktionen f: M — K, die p-fast iiberall
gleich Null sind, ein Untervektorraum von £(M,K), auf dem das Integral verschwindet. Daher definiert
J: £LY(M,K) — K auch ein lineares Funktional auf dem Quotientenraum L'(M,K) := £*(M,K)/N. Es
wird auch mit f bezeichnet. Da es im Kontext der Integrationstheorie meist unerheblich ist, wenn man
eine Funktion auf einer Nullmenge abindert, wird oft der Unterschied zwischen L' und £' nicht extra
erwihnt. Man betrachtet dann ein Element von L!(M,K) als eine Funktion, die man aber nach Belieben
auf Nullmengen abédndern darf.

Wenn wir betonen wollen, iiber welches Maf3 wir integrieren, schreiben wir £(M, u, K) und L*(M, p, K).
Wenn aus dem Kontext klar ist, iber welchen Raum wir integrieren oder in welchem Korper die Werte
der Funktionen liegen sollen, schreiben wir auch L!(C, u) oder L' (u) etc.

Lemma 2.4.3 (Fatou):  Sei (fn)nen eine Folge in LT(M). Dann gilt

/hmlnf fn <lim mf/fn

Beweis:

IDEE: Betrachte die monoton steigende Folge (inf, > fn)ken mit punktweisem Grenzwert lim inf_ o f
und beniitze den Satz 2.2.4 von der Monotonen Konvergenz.

Fiir alle k € N gilt
Vizk ol fa< i,

e
vizk: [ntr< [
T
/;Lgfkfn_]lgg/fr

Weil die Folge (inf,>x fn)ken monoton steigend mit punktweisem Grenzwert liminfy o fr
ist, zeigt Satz 2.2.4 jetzt

_ < T .
/hkmlnff;C hm /mf fn kh_)rf)lojlgz/f] hknigf/fk

also

Dies wiederum zeigt

Satz 2.4.4 (Dominierte Konvergenz): Sei (M, D, pn) ein Mafraum und (f,)nen eine Folge mefs-
barer Funktionen M — C, die (f.i.) gegen eine mefbare Funktion f: M — C konvergiert. Wenn es eine
Funktion g € L*(M,R) mit

VYneN :  |fn] <g (fi.)

gibt, dann ist f € LY(M,C), und es gilt

/ f= lim -
Beweis:

IDEE: Aufspaltung in Real- und Imaginérteil und anschlieend in Positiv- und Negativteil reduziert
die Behauptung auf nichtnegative Funktionen. Durch Ab&nderung der Funktionen auf einer Nullmen-
ge kann man auflerdem annehmen, daf§ die Konvergenz punktweise ist. Anwendung des Lemmas 2.4.3
von Fatou auf (fn)nen und auf (g — fn)nen liefert dann die Behauptung.
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Nach Satz 2.2.6 und der Voraussetzung gilt f,, € £!(M, C) fiir alle n gilt. Wegen | Im f,|, | Re f,,| <
| fr| gelten die Voraussetzungen automatisch auch fiir Real- und Imaginérteile der Funktionen.
Man kann daher annehmen, dafl alle involvierten Funktionen reellwertig sind. Jetzt zeigt man
mit demselben Argument, dafl wir 0.B.d.A. annehmen kénnen f,,, f € LT(M).

Sei jetzt A € M eine Nullmenge mit
Vee M\ A : lim f,(z) = f(z)

und
VneNze M\ A : |fulx)] <glx).

Indem wir f,, durch min (fn7 g(1— XA)) und f durch min (f, g(1— XA)) ersetzen, kénnen wir
jetzt annehmen, dal A = (). Jetzt sagt das Lemma 2.4.3 von Fatou, daf}

f< liminf/fn < /g.
Andererseits zeigt dasselbe Lemma

/ /f /g f) <hmlnf/g fn) —/g—ligsogp/fn.

Zusammen sehen wir

limsup/fn §/f§hminf/fn§1'1msup/fn,

was die Behauptung beweist. [

Ein Maf3 p heifit vollstdndig, wenn jede Teilmenge einer Nullmenge mefbar ist.

Beachte, dafi der punktweise Grenzwert einer Folge von mefibaren Funktionen meBbar ist (vgl. Pro-
position 1.2.7). Wenn also die Folge (f,)nen iiberall gegen f konvergiert, so ist im Satz 2.4.4 von der
dominierten Konvergenz die Annahme, dafl f mefbar ist, iiberfliissig. Sei jetzt A C M eine p-Nullmenge
mit

Vee M\ A : lim f,(z) = f(x).

Wir definieren f: M — C durch
For={ 79 ferZy
Dann gilt ]7: lim, o0 fr - (1 — xa4), also ist fmeﬁbar. Fiir E € Bc gilt
FUE)N (M A) = F1(E) N (M 4),

d.h.
FUE) = (FHE) N M\ A) U (fHE)NA).

Wenn g vollstédndig ist, dann ist f automatisch mefibar.

Satz 2.4.5 (Fubini - 2. Version): Seien (M, 0, u) und (N, MN,v) zwei o-endliche Mafirdume und
f: M x N — C eine mefibare Abbildung. Wenn

[l ey <.
MxN

dann gilt
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(i) Die Funktionen
fo: N—=C, yw f(z,y)

sind fir fast alle x € M integrierbar.

(ii) Die Funktionen
[P M—C, xze fa,y)

sind fiir fast alle y € N integrierbar.

(iii) Es gilt

/ f(,y)d(n ® v) (2, y)
Mx N

([ st anto
/N (/M I (@, y>du(x)) dv ().

Beweis:

IDEE: Man zeigt, dal man sich auf nicht negative Funktionen beschrinken kann, und beachtet,
dafl ein Integral nur endlich sein kann, wenn der Integrand fast iiberall endlich ist. Dann folgt die
Behauptung aus dem Satz 2.3.5 von Fubini.

Indem wir zunéichst nach Real- und Imaginérteil und dann nach positivem und negativem
Teil aufspalten, kdnnen wir 0.B.d.A. annehmen, da§ f € £*(M). Jetzt beniitzen wir die Be-
zeichnungen aus dem Beweis von Satz 2.3.5. Dort wird gezeigt, da8 fiir g(x) = [ f(x,y)dv(y)
gilt

| st@)duta) < .
M

Dann kann es aber keine Menge positiven Mafies geben, auf der g: M — [0, oc] den Wert oo
annimmt. Dies beweist (i). Die Behauptung (ii) folgt ganz analog. Der dritte Teil wurde schon
in Satz 2.3.5 bewiesen. [

Satz 2.4.6 (Parameterabhingige Integrale):  Seien (M, 0, 1) ein Mafraum und f: M X [a,b] —
C eine Funktion, fir die f(-,t): M — C fiir jedes t € |a,b] integrierbar ist. Setze F(t) := [, f(x,t) du(x).

(i) Wenn es eine integrierbare, nichtnegative Funktion g auf M mit |f(z,t)| < g(z) fir alle x € M
und t € [a,b] ¢gibt und limy_¢, f(z,t) = f(x,to) fir alle x € M ist, dann gilt auch

lim F(t) = F(to).

t—>t0
(ii) Wenn die partielle Ableitung % existiert, und es auflerdem eine integrierbare, nichtnegative Funk-
tion g auf M mit |%{(x,t)| < g(z) fir alle x € M und t € [a,b] gibt, so ist F differenzierbar in
la,b[, und es gilt

(o) = [ Gt duta).

Beweis:

IDEE: Wende den Satz 2.4.4 iiber die dominierte Konvergenz auf die Folgen f,(z) = f(z,t,) und
f(@tn)—f(x,t0)

s mit ¢, — to an (fiir letzteres braucht man den Mittelwertsatz).
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(i) Setze fn(x) = f(z,t,), wobei t,, — to fiir n — oco. Mit dem Satz 2.4.4 iiber die dominierte
Konvergenz rechnen wir

Flo) = [ fGat) dufa)
[ Jim (e duta)
M

= i | (@) dp(z)

= dim [ f(@ta) du(a)
M

n—oo

= lim F(t,).

n—oo

(if) Mit hy,(z) := W gilt lim,, o0 hyp(z) = %(x,to), also ist %( -, tp) meBbar (vgl.
Proposition 1.2.7). Mit dem Mittelwertsatz sieht man, da8 fiir jedes x € M gilt

(@) < sup |5 (2,8)] < g(a).
t€la,b]

Jetzt rechnen wir wieder mit dem Satz 2.4.4 iiber die dominierte Konvergenz:

| Gret) dute) =t [ o) duto)

Ubung 2.4.1 : Sei (M, 9M, 1) ein MaBraum. Fiir f, g : M — [—o0, 00] gelte f = g u-fast iiberall, d.h., die Menge
{z € M|f(z) # g(z)} ist meBbar und hat das Maf Null.

(i) Belege durch ein Beispiel, dal aus der Mefibarkeit von f im allgemeinen nicht die Mefibarkeit von g folgt.
(i) Sei jetzt (M,9M, ) vollstéindig. Zeige, daBl mit f auch g mefbar ist.

Ubung 2.4.2 : Definiere f : [0,1] x [0,1] — R durch

2 2
f(@,y) -—{ Grrnz  falls (2,y) # (0,0),
b . 0

sonst.

(i) Zeige:

[ ([ sna) i = 2 e
/01 (/Olf(x,y)dm)dy - ,%

(ii) Folgere aus (i), dal f nicht integrierbar ist.
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Ubung 2.4.3 : Definiere f : [~1,1] x [~1,1] — R durch

2 falls |y| #1
— 1—y2 )
fz,y) == { 0

sonst.

/ 11 ( / 11 f(x,y)dx) ay
/ 11 ( / 11 1@, y)dy) ds

Ubung 2.4.4 : Definiere f : [-1,1] x [-1,1] — R durch

Zeige, daf
existiert, aber

nicht existiert.

falls |zy| # 1,

oy
= (1=JzD2+(1~y)?

x,y) =
f(@.y) { 0 sonst.

Zeige:
(i)

[1 (/i f(:uy)dy) dx = /jl ([1 f(m,y)dm) dy = 0.

(i) f ist nicht @ber [—1,1] x [—1, 1] integrierbar.

Ubung 2.4.5 : Seien (M, 90, i) ein MaBraum und A, B C M mefibar. Zeige, daB aus p(A) = 0 folgt, da A x B

eine Nullmenge in (M x M, M@ M, 4 @ w) ist.

Ubung 2.4.6 : Sei f:[0,1] x [0,1] — R integrierbar. Zeige:
1 x 1 1
/ (/ f(m,y)dy) dzx = / (/ f (=, y)dac) dy.
0 0 0 y

Ubung 2.4.7 : Die Funktion f : R? — R sei definiert durch

F(1,22) .7{ V1—2? —22 fallszf+a3<1,
) M O

sonst.

Berechne das Integral
[y, m2) d(zr, z2).

R2

Ubung 2.4.8 : Berechne das Volumen des Kugeloktanten

K = {(z1,®2,x3) : x1, T2, 23 > 0,27 + x5 + x5 < 1}.

Ubung 2.4.9 : Sei A C R? die rechte Hiilfte des Einheiskreises und
f: R? — R, (z1,22) — 21.
Berechne fA fz1,zs)d(z1, 32).

Ubung 2.4.10 : Fiir eine Menge A C R™ mit A"(A) > 0 heifit der Punkt

1
SzzifmdeRn
An(A) Ja

der Schwerpunkt von A. Berechne den Schwerpunkt des Kugeloktanten aus Aufgabe 2.4.8. (Hierbei ist die

Integration komponentenweise zu verstehen.)
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Ubung 2.4.11 : Berechne die folgenden Grenzwerte:
(i)
lim (1 - E) % dx,
n

n—oo 0

33
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Kapitel 3

Fortsetzung von Maflen

o—Algebren stellen den natirlichen Definitionsbereich von Wahrscheinlichkeitsmaflen dar. Fir die beiden
Mayj$—Fortsetzungssdtze, die wir hier behandeln, erweist es sich jedoch als zweckmdfig, als Vorstufen von
o—Algebren auch einfachere Mengensysteme zu untersuchen. Man erhdlt dann relativ einfache Ezistenz-
und Fortsetzungssditze fiir Mafle. Insbesondere sieht man wie bestimmten Funktionen (den sogemannten
Verteilungsfunktionen) auf R Wahrscheinlichkeitsmafle zugeordnet werden kénnen. Damit lifit sich dann
eine Vielzahl von in der Stochastik relevanten Wahrscheinlichkeitsverteilungen beschreiben.

3.1 Mengensysteme

(2 sei eine nichtleere Menge und und PB(2) = {N | N C Q} die Potenzmenge von 2, d.h. die Menge aller
Teilmengen von 2. Eine Teilmenge M C P(2) heifit vereinigungsstabil (geschrieben U-stabil), wenn
mit A, B € M auch AU B € M gilt und durchschnittsstabil oder einfach schnittstabil (geschrieben
N-stabil), wenn mit A, B € M auch AN B € M gilt.

Ein System S von Teilmengen von €2 heiffit Semiring iiber ), wenn es folgende Eigenschaften besitzt:
(a) D es,
(b) S ist N-stabil,
(¢) Zu A, B € S existieren n € N und paarweise disjunkte Mengen C1,...,C,, € S mit

A\B = Lnj Ci.

i=1

Bemerkung 3.1.1 : Sei Q = R", n € N. Bezeichnen a = (ay,...,a,) und b = (by,...,b,) zwei Punkte
in R® mit a < b, d.h. a; < b; fiir ¢ = 1,...,n, dann versteht man unter einem linksseitig offenen und
rechtsseitig abgeschlossenen Intervall die folgende Punktmenge:

la,blny :=={z = (z1,...,2n) ER" [a; <2; < bj; i =1,...,n}.

Beachte, daf |a, b](,,) leer ist, falls es ein j mit b; < a; gibt.
Behauptung: Das Mengensystem

I":= {]a,b]n) | a,b € R™, a < b}
ist ein Semiring iiber 2 = R™.

(a) 0 :]a, a](n) el
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(b) Sei A =]a,b](n, B =]c,d]n) und C = AN B.

Mit e; := max{a;, ¢;} und f; := min{a;, ¢;} gilt
Ja,bln) N e, d)(n) =le, fl(n)-

(C) Sei A :]a, b](n) und B :}Cy d](n,)-

— ' G | G |G
A'PL hoe Tt -2 2_ 120
: A: G B :C4
& 1 GG

Mit e; := max{a;, ¢;} und f; := min{a;, ¢;} gilt Ja, b])\]e, d](ny =]a, b]m)\le, flny, d.h., wir konnen
annehmen, dafl
a; <c¢; <d;<b; Vi=1,...,n

gilt. Damit kénnen wir dann rechnen

aq b1 C1 dl
Ja, blg\le, dln) = N \ B
29 by (& dp (n)

al C1 dl bl
a9 b2 a9 bg
= ) . U ) .
J an bn J (TL) a’?’l bn (TL)
1 C1 dy C1 dy
a9 Co do by
U az | | b3 U az | | bs
1 \an bn) 1 (n) an bn) 1 (n)
1/ e dy c1 dy
U ) U )
Cn—1 dnfl Cn—1 dnfl
G Cn d, by

J (n) (n)

Dabei sind die Vereinigungen disjunkt und manche der 2™ Stiicke evtl. leer (wenn némlich nicht
a; < ¢ < d; <b; gllt)

Ein System R von Teilmengen einer nichtleeren Menge €2 heifit ein Ring iiber €2, wenn es die folgenden
Eigenschaften besitzt:
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(a) 0 e R,
(b) fR ist U-stabil,
(c) Fiir A, B € R gilt A\B € .

Ein System 2 von Teilmengen einer nichtleeren Menge ) heifit eine Algebra iiber €2, wenn gilt:
(a) Qe
(b) 2 ist U-stabil,
(c) Fiir A € A gilt CA:=Q\A € A

Ein System § von Teilmengen einer nichtleeren Menge () heiit c—Algebra {iber 2, wenn es die
folgenden Eigenschaften besitzt:

(a) QeF,
(b) Fiir A € § gilt CA:= O\A € 5.

(¢) Fiir jede Folge (Ap)nen von Elementen aus § ist U A, ef.
neN

Beispiel 3.1.2 : Sei 2 # (.
(i) | = {0} ist der kleinste Ring iiber 2.
(i) § = {0,Q} ist die kleinste o—Algebra iiber Q.
(iii) § =P(NQ) ist die grobte o—Algebra iiber Q.

Proposition 3.1.3 :  Sei Q nicht leer. Dann gilt
(i) Ist R ein Ring dber Q, dann ist R auch N-stabil.
(ii) {o-Algebra} C {Algebra} C {Ring} C {Semiring}
(iii) Ein Ring R dber Q ist genau dann eine Algebra iber ), wenn Q € R.
(iv) Sei § eine o-Algebra iiber Q. Fiir jede Folge (Ay)nen von Elementen aus § ist [,y An € §.
Beweis:

IDEE: Rechnen mit Schnitten, Vereinigungen und Komplementen von Mengen. Insbesondere braucht
man die de Morganschen Gesetze.

(i) Zunéchst stellt man fest, daf aus A, B € R nach Definition auch A\B € R folgt. Dann
folgt aber auch A\(A\B) € fR. Es gilt aber

A\(A\B) = ANC(4\B)
=ANCANCB)
=An(CAUB)
=(AnCA)U(ANnB)
=ANB
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(ii) Die Inklusion {o—Algebra} C {Algebra} folgt unmittelbar aus den Definitionen. Jede
Algebra 2 ist ein Ring, weil sie mit © auch ) = Q\Q enthilt und aus A, B € 2 folgt

A\B=ANnCB=CBUlA e

Nach (i) ist schliefilich auch jeder Ring ein Semiring.

(iii) Wegen (ii) ist nur noch zu zeigen, dafl ein Ring MR iiber Q mit Q € R eine Algebra ist.
Das ist wegen (A = Q\ A aber klar.

(iv) Aus A, € § folgt CA,, € § und U CA, € 3. Aber dann gilt auch
neN

C(U Can) = N BCA) = ) Au €.

neN neN neN

Ubung 3.1.1 : Man zeige durch Angabe von Beispielen, daf die Inklusionskette {o—Algebra} C {Algebra} C
{Ring} C {Semiring} fiir Mengensysteme in einer nichtleeren Menge (2 i.a. aus strikten Inklusionen besteht. m

Ein System ® von Teilmengen von 2 heifit Dynkin—System iiber ), wenn es die folgenden Eigen-
schaften hat:

(a) Qe?,
(b) Fiir A € D gilt (A =Q\A €D,

(¢) Fiir jede Folge (A, )nen paarweise disjunkter Mengen aus © ist auch U A, €D.
neN

Fiir AC Bin® gilt AUCB € ® und daher C(AUCB) = B\ A € ®. Also kann man Bedingung (b)
durch

(b") Fir A Be® mit AC Bgilt B\ Ae€D.

ersetzen.

Satz 3.1.4 : D sei ein Dynkin—System iber Q. Dann sind folgende Aussagen dquivalent:
(1) ® ist eine o-Algebra.
(2) © ist N-stabil.

Beweis:

IDEE: ,,(1)=(2)“ ist klar mit Proposition 3.1.3. Fiir die Umkehrung mufl man abzihlbare Ver-
einigungen in disjunkte abz#hlbare Vereinigungen umwandeln. Das geht mit dem Ansatz B, :=

AU < Am)-
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Da in Proposition 3.1.3 bereits gezeigt wurde, dal o-Algebren N-stabil sind, ist nur noch
zu zeigen, daB fiir jede Folge A1, As,... € D (4, nicht notwendig paarweise disjunkt) auch
Unen An € D ist. Betrachte dazu die disjunkten Mengen

n—1 n—1 n—1
By =4, () CApm =A.nC Am = A\ 4Am).
m=1 m=1 m=1

Da ® ist nach Voraussetzung N-stabil und abgeschlossen unter Komplementbildung ist, sind

die B, in ®. Damit folgt [, cy Bn € ® und es reicht zu zeigen, dafl |J,,cy Bn = U,y An-

Die Inklusion ,,C* ist offensichtlich. Fiir die Umkehrung wihle z € |J,,cjy An. Dann gibt es
ein kleinstes ng € N mit zg € A,, und es folgt z¢ € A, \ (U Ap) = By, "

n<ng

Proposition 3.1.5 :  Sei I eine beliebige Indexmenge und X; fiir jedes i € I ein Ring, eine Algebra, ein
Dynkin—System oder eine o—Algebra iiber Q. Dann ist

X=X ={ACQ|(Viel) AcX;}
el
ein Mengensystem desselben Typs wie die X;.
Beweis:
IDEE: Priife direkt die Definitionen nach.

Wir beweisen den Satz exemplarisch fiir Ringe:

(a) Wegen () € X; fiir alle i € I gilt ) € ﬂ X,

i€l
(b) Fir A,B €[] %; gilt AUB € X, fiirallei € I, dh., AUB € ] X;.
i€l iel
(c) Fir A, B €[] %; gilt A\B € X; fir alle i € I, d.h., A\B € ) X;.
iel el

Bemerkung 3.1.6 : Der Durchschnitt von Semiringen ist im allgemeinen kein Semiring mehr, wie das
folgende Gegenbeispiel zeigt:

S1= {@, {1}7 {2}» {3}a {1a 2, 3}}’
S2 - {wa {1}7 {27 3}7 {17 27 3}}
sind zwei Semiringe iiber Q = {1,2,3}. Der Schnitt
S=51Nn8={0,{1},{1,2,3}}
ist zwar gegeniiber der Durchschnittsbildung abgeschlossen, doch es gilt:
Sy {1,2,31\{1} = {2,3} = {2} U {3} mit {2},{3} € 51,
Sa: {1,2,31\{1} = {2,3} € S,
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Satz 3.1.7 (Erzeugendensysteme): SeiQ # () und B ein beliebiges System von Teilmengen von Q.
Dann gibt es unter den Ringen, Algebren, Dynkin—Systemen bzw. o—Algebren, die B enthalten, jeweils
ein kleinstes solches System (symbolisch IM(B) = R(B), A(B), D(B) bzw. o(B)) namlich

M(B) = ﬂ{im’ | M D W, M ist Ring, Algebra, Dynkin—System bzw. o—Algebra}.
M(B) heifit das von B erzeugte System und B der Erzeuger des Systems.

Beweis:

IDEE: Kombiniere Proposition 3.1.5 mit dem Umstand, da§ die Potenzmenge eine o-Algebra (eine
Algebra, ein Ring etc.) ist.

Die Existenz eines solchen Systems folgt aus der Tatsache, dafi die Potenzmenge J3(£2) die
Menge 8B umfafit und alle Eigenschaften eines Ringes, einer Algebra, eines Dynkin—Systems
bzw. einer o—Algebra besitzt. Die Behauptung ergibt sich nun unmittelbar aus Proposition
3.1.5, wonach der Durchschnitt von Ringen, Algebren, Dynkin-Systemen bzw o—Algebren
wieder ein Ring, eine Algebra, ein Dynkin—System bzw. eine o—Algebra ist. n

Satz 3.1.8 : Sei ) eine nichtleere Menge, und € C P(Q) sei schnittstabil, so stimmen das von & erzeugte
Dynkin—System ©(E) und die von € erzeugte c—Algebra o(E) dberein.

Beweis:

IDEE: Wegen Satz 3.1.4 geniigt es zu zeigen, dafl (&) schnittstabil ist. Dafiir weifit man nach, daf§
fiir jedes A € ®(E) das System D4 :={C C Q| ANC € D(E)} ein Dynkin—System ist, das D (&)
enthélt. Daraus folgt dann die Behauptung.

Da jede o—Algebra auch ein Dynkin—System ist, gilt D(E) C o(&). Ist umgekehrt D(E) als
o—Algebra nachgewiesen, folgt auch o(€) C ©(€) und somit D(€) = o(€). Nach Satz 3.1.4
muf} deshalb nur noch iiberpriift werden, ob ®(€) mit je zwei Mengen A und B auch AN B
enthalt. Dafiir zeigen wir, daf fiir jedes A € ©(&) das System

D4:={CCQ|ANC D)}

ein Dynkin—System ist. Wegen AN = A € D(E) ist Q € D 4. Seien weiter B,C € D4 mit
B C C.Dannist (ANC)\(ANB) € D(E), weil ANB C ANC und D(€) Dynkin-System ist.
Es gilt aber (ANC)\(ANB)=AN(C\ B),so dafl C'\ B € D 4. Sei nun (D,,),en eine Folge

paarweise disjunkter Mengen aus D 4. Da ©(&) Dynkin—System ist, folgt |J (AND,) € D(£)
neN
und wegen |J (AND,)=An |J D, ist deshalb |J D,, € D 4. Damit ist nachgewiesen, da8
neN neN neN

D 4 ein Dynkin—System ist. Fiir jedes F € £ gilt £ C D (weil £ schnittstabil ist) und deshalb
D(E) C D. Fiir jedes D € D(E) und jedes F € £ ist also END € D(E) bzw. £ C Dp und
somit D(E) C Dp, mit anderen Worten D (&) ist N-stabil. "

Eine o—Algebra § heifit separabel, wenn es ein abzihlbares Teilmengensystem K C () mit o(K) =
$ gibt.
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Satz 3.1.9 (Darstellungssatz fiir Ringe): Ist S ein Semiring iber Q, so ist der von S erzeugte
Ring das Mengensystem K aller Mengen E C ), die eine endliche Zerlegung der Form

E:UAi, A, eSS firi=1,...,n und A;NA; =0 firi#j,

i=1
gestatten.
Beweis:

IDEE: Mit Proposition 3.1.5 reduziert man die Behauptung auf die Implikation £,D € K =
E\D € K, die durch eine Mengenumrechnung unter Ausnutzung der Zerlegungen von E und D
bewiesen wird.

Wir zeigen zunichst, dafl K ein Ring ist: Wegen () € S folgt auch sofort ) € K. Seien jetzt
E,;D € K. Dann gibt es Zerlegungen der Form

E=[JA, AieSs und D=\ B B;€s.
j=1

=1

Wegen EUD = (E\D)U D und (E\D)ND = § geniigt es E\D € K zu beweisen. Dazu
rechnen wir

E\D
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Il

m —_

n

wobel A;\B; = Ui;:1 Ci;r mit Cjj, € S eine passende Zerlegung ist. Jetzt wissen wir, daf
K ein Ring ist, der S enthilt. Wenn R’ ein weiterer Ring ist, der S enthilt, dann enthélt
R’ auch alle Mengen der Form E = (J!", A; mit A; € S, d.h. ganz K. Also ist K der von S
erzeugte Ring (vgl. Proposition 3.1.5). ]

Beispiel 3.1.10 :
Wir wollen jetzt noch einmal zum Semiring I" = {]a, b](,,) | a,b € R"} aller endlichen, links offenen
und rechts abgeschlossenen Intervalle des R™ zuriickkehren und uns einen Uberblick iiber die Elemente der



42 KAPITEL 3. FORTSETZUNG VON MASSEN

von I" erzeugten o—Algebra o(I") verschaffen, die auch c—Algebra der Borelschen Mengen genannt
und mit B" bezeichnet wird. Da es sich bei den Ergebnissen von Zufallsexperimenten in der Regel um
reelle Zahlen oder reellwertige Vektoren handelt, spielt die o—Algebra der Borelschen Mengen in der
Wahrscheinlichkeitstheorie und deren Anwendungen naturgeméfl eine besondere Rolle.

Da die Vereinigung bzw. der Durchschnitt von abzéhlbar vielen Mengen aus B" wieder ein Element
aus B" ist, gehoren neben den Intervallen |a, b](,,) auch die folgenden Mengen zu B":

1
[a,b] () :={(21,..., @) ER" [@; S@; <bsi=1,...,n} = ﬂ}a—mb]( )E%n,
. ] n
JEN

1
Ja, by = {(z1, . 2n) €R" |@s <z < biyi=1,... ,n} = U]a,b—ﬂ( e,
jEN "

| =00,b)(ny = {z = (21,...,2,) ER" | —00 < 2; < bs3i=1,...,n} = U]—m,b](n) € B,
meN

{b} :]a” b](n)\(aa b)(n) € B".

Proposition 3.1.11 : § sei eine o—-Algebra iiber Q und Q' eine nichtleere Menge mit Q' C Q. Dann ist
F:={UNA|AecF} eine o-Algebra iber V, die sogenannte Spur—o—Algebra.

Beweis:

IDEE: Wihle fiir jedes A’ € §' ein A € § mit A’ = AN’ und niitze aus, dal § eine o—Algebra ist.

(a) Wegen Q' C Qist ' NQ=Q". Mit Q € § ist deshalb auch ' € §'.
(b) Sei A’ € §F'. Aufgrund der Definition von § gibt es ein A € F mit A’ = QY N A. Da §
eine o—Algebra ist, ist CA € §. Dann gilt aber
WA =\ NA)=0"\A=0NCAc3.

(¢) Sei (A])nen eine Folge von Elementen aus §’. Dann gibt es aufgrund der Definition von
§’ eine Folge (A,)nen von Elementen aus §, so dafl A], = Q' N A, fiir alle n € N. Da §

o—Algebra ist, ist | J,, oy An € §. Aufgrund der Definition von § folgt weiter:

OnlJA.eq.
neN
Es gilt aber

OnlJA.=J@n4,)=J A4, aso |4, €3

neN neN neN neN

Ubung 3.1.2 : Zeige, daf man als Erzeugendensystem fiir B" ebenso die linksseitig abgeschlossenen und rechts-
seitig offenen Intervalle des R™ hitte wihlen kénnen. Zeige weiter, da3 auch die offenen bzw. die kompakten
Mengen des R™ Erzeugendensysteme der c—Algebra der Borelschen Mengen 8" sind. [

Ubung 3.1.3 : Essei {§: | t € T} ein System von o-Algebren iiber einer nichtleeren Menge Q. Welche der
folgenden Aussagen ist richtig?
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(i) User St ist eine o-Algebra.
(ii) N,eq St ist eine o-Algebra.
]

Ubung 3.1.4 : Es sei (Qn)nen eine Folge von paarweise disjunkten, nichtleeren Mengen. Es sei 2, eine o-
Algebra tiber €, fiir alle n € N. Sei ferner

A= {n[:jl A,

(i) Zeige, daB A eine o-Algebra iiber Q := |77, Qy, ist.

n=1

Anemn}.

(ii) Ist 2 ein Dynkin-System, wenn alle 2,, Dynkin-Systeme sind?

(iii) Kann man auf die paarweise Disjunktheit der Q, in (i) oder (ii) verzichten?

[
Ubung 3.1.5 : Man zeige:
(i) Das System der beschriankten Mengen des R" ist ein Ring, aber keine Algebra.
(ii) Das System der endlichen Vereinigungen von Intervallen der Form ]a,b], Ja, oo und | — oo, b] mit a,b € R
ist eine Algebra, aber keine o-Algebra.
[
Ubung 3.1.6 : Sei Q # ( und MM C P(Q) ein Mengensystem mit folgenden Eigenschaften:
(a) ABEMANB#£0 = ANBeM.
(b) A, BEMACB = 3C,...,Cy paarweise disjunkt mit B\A = (J5_, C;.
(¢c) VA, BeM3IceM : ACC,BCC.
Zeige, daB folgende Menge R ein Ring ist:
k
R = {A € B(Q) ‘ A= 45,4 eim}u{@}.
j=1
n

3.2 Mengenfunktionen

Wir wollen jetzt auf den Begriff des (Wahrscheinlichkeits-) Mafles zu sprechen kommen. So wie es sich
bei den bisherigen Betrachtungen als zweckméfig erwies, neben der primér interessierenden o—Algebra
auch Mengensysteme mit verwandten Strukturen zu untersuchen, ist es auch im folgenden niitzlich, neben
Wahrscheinlichkeitsmaflen zun#chst allgemeinere Mengenfunktionen zu betrachten.

Sei S ein Semiring iiber © und g : S — RU {oo} eine Funktion.
(a) p heiBt nichtnegativ, wenn p(@) =0 und p(A) > 0 fiir alle A € S.
(b) p heiit additiv, wenn fiir alle A, B € S mit AN B =0 und AUB € S gilt:
n(AU B) = pu(A) + pu(B).

(¢) p heifit o—additiv, wenn fiir jede Folge (A, )nen von paarweise fremden Elementen aus S (d.h.
A;NA; =0 fir i # j) mit ), .y An €S

iU 4n) = St

neN neN

neN

(d) p heiBt subadditiv, wenn fiir alle A, B € S mit AU B € S gilt:

u(AUB) < p(A) + u(B).
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(e) w heiBt o—subadditiv, wenn fiir jede Folge (A, )nen von Elementen aus S mit (J, cy An €S

M( U An) <Y u(An).

neN neN

Die Einschrinkung S — R U {oco} (anstelle von S — R U {—o00,400}) wird gemacht, um sinnlose
Ausdriicke wie co—oo zu vermeiden. Andererseits will man auch in der Lage sein, Mengen mit unendlichem
MaB zu behandeln und kommt daher nicht mit reellwertigen Funktionen aus.

(i) p heifit Inhalt, wenn p nichtnegativ und additiv ist.

)

(ii) p heifit Pramafl, wenn p nichtnegativ und o—additiv ist.

(iii) p heit Maf}, wenn p Pramafl und S eine o—Algebra ist.
)

(iv) u heift Wahrscheinlichkeitsmaf}, wenn g ein Mafl und p(2) = 1 ist.

Ein Inhalt p heifit endlich, wenn p(A) < oo ist fiir alle A € S.

Beispiel 3.2.1 :

(i) Sei R ein Ring iiber  und w € 2. Die Abbildung 1 : R — R U {0} sei definiert durch

weA
M(A)={(1) o

Dann ist g ein endliches Prima8. Ist R eine o—Algebra, so ist u ein Wahrscheinlichkeitsmaf (das
sogenannte Dirac—Maf).

Veranschaulichung: % = {0, {1}, {2, 3},{1,2,3}}.

R ist eine o—Algebra iiber Q = {1,2,3}. Wihle w = 1. Dann ergibt sich p(@) = 0, p({1}) = 1,
n({2,3}) =0, u({1,2,3}) = 1.

(i) Sei F': R — R eine monoton wachsende Funktion. Die auf dem Semiring I' der links offenen und
rechts abgeschlossenen Intervalle Ja, b] C R, a < b durch

n(la,b]) = F(b) — F(a)
definierte Mengenfunktion ist ein endlicher Inhalt auf I', denn es gilt:

(a) u(0) = p(la,d]) = F(a) — Fa) = 0.
(b) p(la,b]) = F(b) — F(a) > 0 fir a < b auf Grund der Monotonie von F.
(c) Es seien |a,b] und ]a’, b'] zwei Intervalle aus I' mit b = a’. Die Eigenschaft b = a’ wird gefordert,

um Ja, b U]a’,b'] =]a,b’] € I' und Ja,b] N]a’,b'] = O sicherzustellen. Dann gilt:

plla, b Ula’, b)) = p(la, b'])

]
— F(¥) - Fla
— F(d) - F(a) + F(V) — F(d')
=F(b) — F(a)+ F(V') — F(d') (wegen b = a’)
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Bemerkung 3.2.2 : Sei (uy)nen eine Folge von Wahrscheinlichkeitsmaflen, die alle auf einer c—Algebra
§ tiber Q definiert sind. Sei weiter (v, )nen eine Folge von nichtnegativen reellen Zahlen mit ) oy, = 1.
Weiter sei p: § — RU {oo} definiert durch

u(A) = Z ap pin(A), VAESF.

neN <1

<1

Dann ist p nichtnegativ und erfiillt 4(€) = 1. Um zu zeigen, dafl p ein Wahrscheinlichkeitsmafl auf § ist,
mufl man nur noch die o—Additivitat nachweisen:

u( UJ An> = Cmpm (U An> (Def. von 1)

neN meN neN

= Z QU Z L (An) (o—Additivitéat der piy,)

meN neN

= Z Z Qb (Ar) (Umordnungssatz fiir abs. konv. Reihen)
neNmeN

= Z w(Ap) (Def. von p).
neN

Proposition 3.2.3 : FEs sei R ein Ring iber Q und p: R — RU {oo} ein Inhalt. Dann gilt:
(i) Fiir alle A,B € R gilt p(AUB) + n(ANB) = u(A) + u(B).
(ii) p ist monoton, d.h. VA, B € R mit A C B gilt u(A) < u(B).
(iii) VA, B € R mit A C B und u(A) < oo gilt u(B\A) = pu(B) — p(A4).
(iv) p ist subadditiv.
(v) Ist p ein Pramaf, dann ist p o—subadditiv.
Beweis:

IDEE: Schreibe AU B = AU(B\A), dann liefern die Definitionen die Punkte (i) bis (iv). Fiir (v)
braucht man wieder den Ansatz By, := A,\(J Am).

m<n

(i) Firalle A, B € Rgilt AUB = AU(B\A) und AN(B\A) = () sowie (ANB)U(B\A) = B
und (AN B) N (B\A) = 0. Damit ergibt sich

(AU B) = p(A) + p(B\A), und p(ANB)+ u(B\A) = pu(B).

Fiir u(ANB) < oo liefert dies u(AUB) = p(A) + u(B) — u(AN B), also die Behauptung.
Fiir (AN B) = oo folgt

u(A) + u(B) = p(A)u(AN B) + u(B\A) = 50 = u(AU B) + p(AN B).
(ii),(iii) Wegen A = BN A finden wir
1(B) = p(A) + u(B\A) > p(A).
(iv) Aufgrund von (ii) rechnet man

(AU B) = p(A) + p(B\A) < u(A) + pu(B).
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(v) Sei (An)nen eine Folge von Elementen aus 9% mit (J,.y An € . Wir setzen By := A
n—1

und B, = A,\ U Ay, fiir n > 2. Dann gilt (), ey Bn = Upen An, Bn € Ay und

m=1
B,, € R fiir alle n. Aulerdem sind die B,, paarweise disjunkt Aus der o—Additivitit und
der Monotonie von p folgt dann

u( U An> =u< U Bn> = u(Bn) < p(An).

neN neN neN neN

Proposition 3.2.4 : § sei eine o—Algebra iber Q und p: § — RU {occ} ein MafS. Dann gilt:

(i) Fir jede Folge (Ap)nen von Elementen aus § mit A,, C A, 41 fir alle n gilt:

u(UAOﬁ$MM)

neN

(ii) Ist p endlich, dann gilt fiir jede Folge (A )nen von Elementen aus § mit A, 1 C A, fir allen :

u(ﬂAO—ﬁ%MM)

neN

Die unter (i) angegebene Eigenschaft von p bezeichnet man als Stetigkeit von unten, die unter (ii)
als Stetigkeit von oben.

Beweis:

IDEE: Mit B, := A,\A,—1 und Proposition 3.2.3 bekommt man (i). Teil (ii) erhdlt man aus (i)
durch Komplementbildung.

(i) O.B.d.A. sei u(A,) < oo fiir alle n € N (sonst ist die Aussage trivialerweise richtig).
Wir setzen By := A; und B, 41 = A,41\A, fiir n > 1. Dann gilt: B, N B; = 0 fiir i # j
und {J,,cny Brn = U, e An- Hieraus folgt:

() (Y

neN neN

= Z w(By) (1 ist o—additiv)
neN

= u(Ar) + Z p(Anp1\An)

m

= p(A41)+ lim Z (1(Ans1) — u(A,))  (aufgrund von Proposition 3.2.3 (iii))
n=1
= lim p(An).

m—0o0
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(ii) Allgemein gilt:

,u( ﬂ An> = ,u([] U CAn) (Regeln von de Morgan)

neN neN
= ,u<Q\ U CAn) (Definition des Komplements)
neN
= u(Q) — ,u< U CAn> (aufgrund von Proposition 3.2.3 (iii))
neN
= u(Q) — u( U (Q\An)>-
neN

Es gilt aber Q\A; C O\ Az C Q\ A3 C ---. Deshalb kénnen wir (i) anwenden und erhalten

(U@ ) = T u(@\A,) = (@)~ tim p(4,)

n—oo
neN

Damit wird

M( N An> = lim u(4,).

neN

3.3 Mafl—Fortsetzungssitze und duflere Mafle

Es seien 901 und My zwei Mengensysteme iiber 2 mit My C M5, Gilt fiir die beiden Mengenfunktionen
v: My — RU{oco} und p: My — RU{oo} die Beziechung v(A) = u(A) fir alle A € 9, dann nennt man
u eine Fortsetzung (Erweiterung) von v auf M, und v eine Restriktion (Einschrinkung) von p
auf M.

Satz 3.3.1 (1. Mafi—Fortsetzungssatz): Sei S ein Semiring iber Q und v: S — R U {oo} ein
Inhalt. Dann gibt es eine eindeutig bestimmte Fortsetzung p: R(S) — R U {oo}, die auch ein Inhalt ist.
Sie erfullt

WE)=> v(A) mit E=JA, AieS, i=1,...,n, und A;NA; =0 firi+# j. (3.1)

=1 i=1

Falls v ein Pramaf ist, ist auch p ein Prdamafs.

Beweis:

IDEE: Die Eindeutigkeit folgt aus dem Darstellungssatz 3.1.9 fiir Ringe. Fiir die Existenz zeigt man
durch Verfeinerung zuerst, daf§ p(F) nicht von der Wahl der Zerlegung abhhéngt. Dann verifiziert
man, daf i ein Inhalt ist. Wieder mit dem Darstellungssatz 3.1.9 fiir Ringe und Verfeinerung folgert
man schlieBllich die o—Additivitat von p aus der o—Additivitdt von v.

Nach dem Darstellungssatz 3.1.9 fir Ringe kann jede Menge E € R(S) in der Form E =

P 1A, Ay e Stiri=1,...,pund A4; N A; = 0 fiir i # j dargestellt werden. Daher ist
1, wenn es existiert, durch (3.1) eindeutig bestimmt. Die Existenz zeigen wir in mehreren
Schritten.
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1. Schritt: Die Darstellung von p ist wohldefiniert, d.h. unabhéngig von der gewéhlten Zer-
legung der Menge E € 9‘{(5) in Mengen A; aus S.

Zu zeigen: Sind E = 1A; und E = Uq_lB mit A;,B; € S (i =1,...,p; j =
1,...,q) und A; N Ay = (Z) fur i # k, BjN By =0 fiir j # ¢ zwei endliche Zerlegungen von
E, dann gilt:

Offensichtlich sind

Aj=ANE= Am(UB) JinBy) (i=1,...,p)

Jj=1
p g
i=1 ]

Zerlegungen von A; und B; in paarweise disjunkte Mengen A; N B; € Sfiri=1,...,p
und j =1,...,q. Es gilt also

= Z Z v(A; N By) (da v additiv ist)

2. Schritt: g ist ein Inhalt.

Hierfiir ist zu zeigen, dafl p nichtnegativ und additiv ist. Dafl p nichtnegativ ist, folgt
unmittelbar aus der Definition von p. Sei E = E' JE” mit E'NE" =0 und E,E',E" €
R(S). Dann existieren nach dem Darstellungssatz 3.1.9 fiir Ringe Zerlegungen

P q
=J4, E'=JA4], A A)es, i=1,...p j=1,....q
. e
so daf}

p q
E=FUE"=JAjul]4]
Da AN A} = 0 wegen E' N E" = (), gilt
p q
E) = v(A)+> v(A)) = p(E") + u(E").
i=1 j=1

3. Schritt: Ist v Pramaf, dann ist auch seine Erweiterung ein Pramaf, d.h., ist v o—additiv,
so ist auch p o—additiv.

Zu zeigen: Ist E = ),y En eine Zerlegung von E € R(S) mit E,, € R(S), E,NEy, =0
fiir n # m, so gilt:
!

neN
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Aufgrund des Darstellungssatzes fiir Ringe (Satz 3.1.9) existieren fiir £ und E,, Zerle-
gungen

p
E=[JA, Aie€S, AinA;=0firi#j

i=1

Pn
E, = Uan, B,; €5, anﬁBnkZV)fﬁrjyék,
j=1
Hieraus folgt:
oo Pn
E= U U an7
n=1j=1
o0 pn
a=ane=U) Uenn,
n=1j=1
P
B,; = ENBy; = -J(4inB,;).
i=1

Die Mengen A; N By,; sind paarweise disjunkt. Folglich gilt:

P
w(E) = Z v(A;) (Definition der Erweiterung)
i=1
P o Pa
= Z 1/( U J(4; N an)> (aufgrund der speziellen Zerlegung der A;)
i=1 Nn=1j=1
P Pn
= Z Z v(A; N Byj) (v ist nach Voraussetzung c—additiv)
i=1 n=1j=1
o Pn P
= Z Z v(A; N Byj) (Umordnungssatz fiir abs. konv. Reihen)
n=1;=1i=1
o0 Pn P
= Z y( U (4; N an)) (v ist additiv)
n=1j=1 Ni=1
0o Pn
= Z v(By,;) (aufgrund der speziellen Zerlegung der B,,;)
n=1j=1
o0
= Z w(Ey) (Definition von p),
n=1

was zU zeigen war.

S sei ein Semiring iiber 2 und p ein Prémaf (Inhalt) auf (€,.5). Weiter sei 9t C S sei ein Mengen-
system in . Dann heifit p c—endlich auf 91, wenn es Mengen A; C As C ... € M mit U]Oi1 A =Q
und p(4;) < oo, j € N, gibt.

Der folgende Satz ist eine Verschiarfung des schon bewiesenen Eindeutigkeitssatzes 2.1.3.

Satz 3.3.2 (Eindeutigkeitssatz fiir Maflie): 9 sei ein N-stabiles System von Teilmengen von Q.
Sind py und pe zwei Mafe auf o(OMN), die auf M dbereinstimmen und dort oc—endlich sind, so stimmen
sie auch auf o(9M) dberein.
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Beweis:

IDEE: Fir jedes E € I mit pu1(E) = p2(F) < oo zeigt man, daBl Dg := {D € o(M) | pi(EN
D) = u2(E N D)} ein Dynkin—System ist, das 2 enthilt. Daraus folgert man mit Satz 3.1.8, daf§
Dr =oc(M). Fir u,;(E) = oo schreibe E als disjunkte Vereinigung von Mengen endlichen Mafes.

Zu zeigen ist, daf fiir jedes M € o(IM) gilt (M) = po(M). Fir E € 9 mit 1 (E) =
p2(E) < oo setzen wir

Dp = {D € o(M) | ju(END) = pus(EN D)}

Behauptung: © g ist ein Dynkin-System, dafl 91 enthélt.
(a) Wegen 1 (ENQ) =1 (E) = p2(E) = p2(ENQ) gilt Q € D.
(b) Mit Proposition 3.2.3 rechnen wir

,U,l(E N CD)

I
T =
==
!
— — _~—
|
=
&
)
>

falls D € ®p. Also gilt CD e .

(c) Sei (D,,)nen eine Folge paarweise disjunkter Elemente von ® g. Dann gilt

p(EN U D,) = Nl( U(EmDn))

neN neN

= ZNI(EmDn)

neN

= Z p2(E N Dy)

neN

= /.Lg(Eﬂ U Dn)v
neN

also ) D, € Dg.

Da mit A, B € 9 auch AN B € M, folgt zunichst M C Dp. Damit ist die Behauptung
bewiesen. Es gilt also fiir das von 91 erzeugte Dynkin-System D (9) die Beziehung D (9M) C
D g und Satz 3.1.8 liefert D(M) = D = o(M). Wir erhalten

neN

m(ENA) =pu(ENA) fir Ae o) und E € M mit p1(E) = pa(F) < oo.

Aufgrund der o—Endlichkeit von pq und ps existiert eine Folge (A, )nen von Mengen aus 9

mit |J A, =Q und pi(A,) = p2(A4,) < oo fiir alle n € N. Mit obigem Argument finden wir
neN

/Jl(An ﬂA) = /,[,Q(An ﬂA) VAe U(m), n € N.
Mit Proposition 3.2.4(i) finden wir jetzt

i(A) = Tim (A, 1 A) = lim ps(A, N A) = pa(A) VA € o(I).

n—oo n—oo

Ein Maf} p auf (R™, B"™), fiir welches u(K) < oo fiir jedes kompakte K C R™ ist, heifit ein Borel-Maf}
auf (R, B").
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Lemma 3.3.3 : Ein Maf$ p auf (R™,B") ist ein Borel-Maf$ genau dann, wenn es endlich auf 1™ ist.
Beweis:

IDEE: Das ist eine Konsequenz des Satzes von Heine—Borel.

Wenn p auf I™ endlich ist, dann ist p ein Borel-Maf, weil jede kompakte Teilmenge K C R"
nach dem Satz von Heine-Borel beschrinkt, also in einem Interval der Form ]a, b](,,y mit
a,b € R™ enthalten ist.

Umgekehrt, wenn j ein Borel-Maf ist, dann ist x4 endlich auf I" weil [a, b],,) fiir jedes a, b € R™
kompakt ist und ]a, b](,) enthélt. ]

Korollar 3.3.4 : Jedes Borel-Maf$ v auf (R™,B™) ist eindeutig durch seine Werte auf 1™ bestimmd.
Beweis:

IDEE: Kombiniere den Eindeutigkeitssatz 3.3.2 mit Lemma 3.3.3.

I"™ ist als Semiring (vgl. Bemerkung 3.1.1) N—stabil und u ist nach Lemma 3.3.3 endlich auf
I". Es gilt 8" = ¢(I") und auBlerdem haben wir

U ](7’”’ R 771)7 (TL, . ,’)’L)](n) = R".
n=1
Damit ist ¢ o-endlich auf I™ und die Behauptung folgt aus Satz 3.3.2. -

Sei M eine Menge und PB(M) ihre Potenzmenge, d.h. die Menge {N | N C M} aller Teilmengen von
M. Ein dufleres Maf3 auf M ist eine Funktion p*: P(M) — [0, o] mit folgenden Eigenschaften

(i) p*(@) =0,
(ii) p*(A) < p*(B) falls AC BC Q.

(i) Fiir jede Folge (A;)jen in P(2) gilt /J’*(UjeN 4;) < ZjeN 1 (4;).

Die Bezeichnung duferes Maf leitet sich von der folgenden Konstruktion her:

Lemma 3.3.5: Sei ) € € C P(Q) und p: € — [0,00] eine Abbildung mit p(0) = 0. Fiir beliebiges
U € PB(Q) definieren wir €(U) als das System aller Folgen Ay, As,... € € mit U C |, A, und setzen

pA(U) = {3 p(An) | (Anuens € E(O)), (32)
n=1

wobei inf () := oo definiert wird. Dann ist p* ein dufSeres Map.
Beweis:

IDEE: Die Punkte (i) und (ii) sind unmittelbare Konsequenzen der Definitionen. Fiir (iii) betrach-
tet man Folgen in €(U,), die p*(Un) bis auf 5 approximieren und beniitzt die Eigenschaften der
geometrischen Reihe.

(i) folgt mit (0,0,...) € €(0). Die Monotonie (ii) ergibt sich, weil A C B impliziert (A4) D
¢(B). Um (iii) zu zeigen, miissen wir zwei Félle unterscheiden. Falls >~ | i*(A,,) = oo, dann
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ist (ii) automatisch richtig. Wir nehmen also an, da8 Y2 | p*(A4,,) < co. Wihle e > 0 beliebig,
aber fest. Fiir jedes n gibt es dann eine Folge (A, m)men € §(An) mit Y p(Anm) <
p*(An) + 5= Die Folge (Apnm)n,m=1,2,... (ordne die unendliche Matrix als Folge an) liegt in
@(Uzozl Ap). Hieraus entsteht mit dem Umordnungssatz

(U A0 €D p(Anm) < 3 (1 (An) + 57 ) £ D7 4 (An) 5 < 0.
n=1 m,n n=1 n=1

Da ¢ > 0 beliebig ist, folgt die Behauptung.

Bemerkung 3.3.6 : Sei u ein Pramaf} auf einem Semiring S in 2. Lemma 3.3.5 sagt dann gerade, dafl
die durch (3.2) definierte Abbildung p* : P(Q) — R U {oo} ein duBeres Mafl auf €2 ist. Man nennt diese
Abbildung auch das vom Pramafl y induzierte duflere Mafi. L]

Im Folgenden werden wir die eindeutig bestimmte Fortsetzung des Prdmafles p auf den Ring R :=
R(S) wieder mit p bezeichnen (vgl. Satz 3.3.1).

Lemma 3.3.7 : Sei u ein Primaf auf einem Semiring S in Q. Es gilt u*(B) = p(B) fir alle B € R.
Beweis:

IDEE: Die Ungleichung ,,<“ folgt aus dem Darstellungssatz 3.1.9 fiir Ringe. Fiir die Ungleichung
,»>“ baut man aus (A, )nen € S(B) eine disjunkte Folge mit B als Vereinigung.

Der Darstellungssatz 3.1.9 fiir Ringe besagt, da man jedes B € R in der Form B = )i, C;
mit n € N,C; € S,C;NC; = 0,i # j darstellen kann. Daraus folgt (Cq,Cs,...,Cp,0,0,...) €
S(B) und dann p*(B) < Y1 w(Ci) = pu(B).

Umgekehrt gibt es zwei Fille: Wenn p*(B) = oo, ist alles gezeigt. Wenn p*(B) < o0, so gilt

S(B) # (. Es sei nun (Ay)nen € S(B). Weil Ringe schnittstabil sind (vgl. Proposition 3.1.3),
folgt A, N B € R. Wegen (J;2, A, D Bgilt B=J,—,(4, N B). Setze Dy := (A; N B) und
D, = (AnﬂB)\U;.zll(Aj NB) € R fiir n > 2. Hieraus ergibt sich B =)~ D,,, D;ND; =0
fiir i # j. Da p ein PramaB ist und D,, C A, fiir alle n € N gilt, folgt pu(B) = >0, u(D,) <
>0y w(Ay). Damit hat man schlieSlich p(B) < p*(B). "

Wenn p* ein duleres Mafl auf M ist, heift eine Teilmenge G C M p*-mef3bar, wenn fiir jedes U C M
gilt
w(U) =p (UNG)+p"(UnN(M\G)) fir alle U € P(M) . (3.3)

Bemerkung 3.3.8 : Sei p* ein dufleres Mafl auf M und A, E C M. Dann gilt
P (E) < pt(ENA)+p"(EN(M\ A))

nach Definition des dufleren Mafles. Um die p*-Mefibarkeit von A zeigen, mufl man also nur die umgekehrte
Ungleichung beweisen, die im Falle p*(E) = oo trivial wird. Zu zeigen bleibt also

VE C M,p*(E) < oo :  p*(E) > p*(ENA)+ p*(EN (M\ A)).
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Satz 3.3.9 (Caratheodory): Sei u* ein duferes MafS auf M. Dann ist die Menge I aller p*-
mefbaren Mengen eine o-Algebra und die Einschrdinkung von p* auf I ist ein vollstindiges Maf.

Beweis:

IDEE: Sobald man die Definition der p*-MeBbarkeit zur Verfiigung hat sind alle genannten Eigen-
schaften elementar zu verifizieren.

Da die Definition der p*-Mefibarkeit symmetrisch in A und M \ A ist, ist 9T abgeschlossen
unter Komplementbildung.

Seien jetzt A, B € M und £ C M, dann gilt
W) = p(ENA)+ (BN (M A)
pW(ENANB)+p (ENAN(M\B)+p (EN(M\ A)NB)
+u (BN (M\ A)N(M\ B))
> W(EN(AUB) + " (BN (M\ (AUB))),
also nach Bemerkung 3.3.8 AU B € M.
Wenn A, B € 9t disjunkt sind, finden wir
p(AUB) = p*((AUB)NA) +p*((AUB) N (M \ A)) = " (A) + p*(B),
d.h. p* ist endlich additiv auf 9.
Sei jetzt (A;);jen eine Folge disjunkter Mengen in 9. Wir setzen B,, := U;;l Ajund B =
(J en 4j- Dann gilt fiir jedes £ C M
w(ENB,) = p(ENB,NA,)+p" (ENB,N(M\A,))
= p(ENA,)+p (ENBy_1)

und mit Induktion sieht man p*(E N B,,) = Z?Zl p (ENAj). Dies wiederum zeigt

pH(E) = p* (ENB,) +p*(EN(M\ By)) > " (EN(M\B))+ > p*(ENA,).

j=1

Jetzt 1483t man n gegen oo gehen und findet mit der o-Subadditivitéit von p*

p(E) = pr(EN(M\B)+ Y u*(ENA;)

> U(EﬂAj) +p (EN(M\ B))
= w(ENB)+u (EN(M\B))
> pr(E).

Damit gilt B € 9t und man hat gezeigt, dafl 9t eine o-Algebra ist. Aber wenn man in dieser
Rechnung F = B setzt, folgt zudem

o0 oo

p(B) =) W (BNA) = p1(4)),

j=1 j=1
d.h. p* ist o-additiv auf 9, also ein Maf.
Bleibt die Vollstédndigkeit zu zeigen. Wenn aber p*(A) = 0, dann gilt fir jedes E C M

1 (B) < W (B 0A) + 1 (B0 (M\ A)) = i (BN (M 4)) < i (E).
Damit gilt A € 9, was die Vollsténdigkeit zeigt. n
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Wir haben unsere Aufgabe gelost, jedes Pramafl u auf einem Semiring S in Q zu einem Maf} auf
o(9) fortzusetzen, wenn wir zeigen kénnen, daff p* ein Maf} auf o(S) ist. Hierzu beniitzen wir Konzept
der p*-Meflbarkeit. Wir bezeichnen mit 2 die Menge aller p*-mefibaren Teilmengen von 2 und erinnern
daran, daf§ nach Satz 3.3.9 diese Menge eine o—Algebra ist. Wenn nun p* das von p induzierte duflere
Maf ist, dann miissen wir noch zeigen, dafl alle A € S p*—mefbar sind. In diesem Falle ist S C 2. Hieraus
folgt o(S) C A, und damit ist p* eingeschrankt auf o(S) ein Maf}, das p nach Lemma 3.3.7 fortsetzt. Im
allgemeinen ist A jedoch grofler als o(S). Wir zeigen:

Lemma 3.3.10 : Sei S ein Semiring iber Q und p: S — R U {oo} ein Primaff sowie p*: P(Q) —
R U {0} das von p induzierte duflere Maf. Dann sind alle B € S p*-meflbar.

Beweis:

IDEE: Die Ungleichung p*(U) < p*(U N B) + p* (U NCB) fiir B € S und U C Q folgt sofort aus
Bemerkung 3.3.8, weil p* eine dufleres Maf ist. Fiir die Umkehrung konstruiert man aus Elementen
von S(U) Elemente von S(U N B) und S(U\B).

Es seien B € S und U C 2 beliebig. Nach Bemerkung 3.3.8 gentigt es
w*(U) > p*(UNB) +pu*(UNCB) (3.4)

zu zeigen. Ist S(U) = 0, folgt u*(U) = oo, und wir sind fertig. Wir kénnen also 0.B.d.A.
annehmen, daB S(U) # 0. Es sei nun (A, )nen € S(U). Wegen A; € S findet man D;; € S
mit Dj7i1 n Dj,iz = () fiir 7, # 1o, 7 € N und

A\B =) Dj.i.
=1

Somit folgt Ay := (4;NB)jen € S(UNB) und Ag := (D;;)jen,1<i<n, € S(U\B) = S(UNCB).
Da p additiv auf S ist, ergibt sich mit dem 1. MaBfortsetzungssatz 3.3.1

H(As) = (A; 0 B) + B(ANB) = 54 0 B) + 3 Ds)

fir alle j € N, wobei zu beachten ist, dal A; \ B nich notwendigerweise in S liegt. Hieraus
folgt mit der Definition von S(U N B) bzw. S(U NCB)

Zu(Aj)= Do B+ Y p(E) = p(UNB)+u"(UNCB)

Ei€A; Ex€As
fiir jedes (A;)jen € S(U). Daraus ergibt sich durch Infimumsbildung

w*(U) > p*(UNB) + p*(UNCB).

Bemerkung 3.3.11 : In der Situation von Lemma 3.3.10 liefert Satz 3.3.9 wegen S C 2, daf o(S) C 2.
Also ist die Restriktion von p* auf o(S) ein Ma$, das p nach Lemma 3.3.7 fortsetzt. "
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Satz 3.3.12 (2. Maf3—Fortsetzungssatz): Sei pu ein Primaf$ auf einem Semiring S in Q. Dann
definiert

V(A) = inf { i u(Ay) ‘ (An)nen € §(A)} fiir A € o(S)

ein Maf auf o(S), das p fortsetzt. Ist u o-endlich auf S, so ist auch v o-endlich. In diesem Fall ist v
die einzige Fortsetzung von p zu einem Maf auf o(S).

Beweis:

IDEE: Die Existenz wird durch Bemerkung 3.3.11 gesichert, die Eindeutigkeit wird durch den Ein-
deutigkeitsatz 3.3.2 gesichert.

Die Existenz von v erhélt man aus Bemerkung 3.3.11 indem man das von p induzierte &uflere
MaB auf o(S) einschriinkt. Dies liefert gleichzeitig die Formel fiir v. Sei jetzt u o-endlich.
Dann gibt es A; € A C ... in S mit (J,,cy An = Q und p(A,) < oo fiir alle n € N. Wegen
v(A,) = pu(A,) folgt damit auch die o-Endlichkeit von v. Die Eindeutigkeitsaussage folgt
jetzt unmittelbar aus dem Eindeutigkeitssatz 3.3.2. L]

Ubung 3.3.1 : Sei p ein o-endliches Ma8 auf einer o-Algebra 90 iiber Q und p* das von p induzierte duflere
MaB. Zeige: Zu Q € P(Q) gibt es ein A € M mit folgenden Eigenschaften:

(a) Q C A
(b) (@) € p(A).
(¢) w(b) =0 fiir alle B€ M mit BC A\ Q.

Hinweis: Falls 11" (Q) < oo, finde eine Folge (An)nen in MM mit Q C A, und p(An) < p*(Q) + . u
Ubung 3.3.2 :  Zeige, daB auf dem von I' erzeugten Ring SR genau ein Inhalt ;4 existiert, der
1 fira<0<b
plla, b)) = {0
sonst
erfillt. Ist g o-additiv?
]

Ubung 3.3.3 : Sei Rein Ring und p1: R — R ein Inhalt. Setze d, (A4, B) := u(A\BUB\ A) und zeige, daB d,, eine
Pseudometrik auf R ist, d.h. es gelten alle Axiome einer Metrik, bis auf die Implikation ,,d,(4,B) =0 — A= B.“
[

Ubung 3.3.4 :

Sei p* ein dufleres Mafl auf Q und 9" die o-Algebra aller p*-mefibaren Teilmengen von . Weiter sei v die
Einschrinkung von p* auf 9" und v* das von v induzierte duere Mafl auf Q. Zeige:

(i) Fir E C Q gilt p*(E) < v*(E) und Gleichheit gilt genau dann, wenn es ein A € M* mit A DO E und
K (A) = p*(E) gibt.

(i) Wenn p* das von einem Pramafl p induzierte dulere Maf ist, dann gilt p* = v*.

(iii) Konstruiere ein p* auf Q = {0,1} so, daBl pu* # v* gilt.
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3.4 Mafldefinierende Funktionen

Eine Funktion F : R — R heifit ma3definierende Funktion iiber R, falls sie monoton steigend und
rechtsseitig stetig ist.
Eine Funktion F' : R — R heiflit Verteilungsfunktion iiber R, falls sie monoton steigend, rechtsseitig
stetig und normiert, d.h. mEmoo F(z) =0, wEIJPooF(m) =1, ist.

Satz 3.4.1 :  Zu jeder mafdefinierenden Funktion F : R — R gibt es genau ein Maf ur tber (R, B')
mit
pr(Ja,b)) = F(b)— F(a) Va,beR mit a<b (3.5)

Ist F' eine Verteilungsfunktion, dann ist pp ein Wahrscheinlichkeitsmaf, das mit Pp bezeichnet wird.
Beweis:

IDEE: Ausgangspunkt unseres Beweises ist der Semiring I' der links offenen und rechts abgeschlos-
senen Intervalle ]a, b], a,b € R mit a < b, auf dem, wie wir schon wissen, v = v(]a, b]) := F(b) — F(a)
einen Inhalt definiert (siehe Beispiel 3.2.1). Wir zeigen zuerst, da v auch o—additiv bzw. ein Primaf
ist, das aufgrund des ersten Fortsetzungssatzes eindeutig zu einem PrémaB ) auf dem von I' er-
zeugten Ring 9%(]11) fortgesetzt werden kann. Ist v auBlerdem o—endlich, dann existiert aufgrund des
zweiten Fortsetzungssatzes auch eine eindeutige Fortsetzung von v zu einem Ma8 pr auf der von I'
erzeugten o—Algebra o (I') = BL.

Nach Beispiel 3.2.1 definiert v = v(]a, b]) := F(b) — F(a) einen Inhalt auf dem Semiring I'.

1. Schritt: v ist o-additiv, d.h. ein Primaf auf I'.
(A)nen bezeichne eine Folge von paarweise disjunkten Mengen aus I!' mit der Eigen-
schaft A = (), cnyAn € I'. Mit 9 bezeichnen wir die durch den Fortsetzungssatz 3.3.1
garantierte eindeutige Fortsetzung von v auf den von I' erzeugten Ring R(I'). Aufgrund
der Additivitdt und der Monotonie von ¢ gilt:

Sv(A) = > v(4n) da v und v auf I!' {ibereinstimmen
n=1 n=1

Y (", A,)  da wir lediglich )", A, € R(I') voraussetzen konnen,

miissen wir 1 anstelle von v heranziehen

¥ ()72, A,) aufgrund der Monotonie von 1)

v(Uol, Ay)  daldo—, A, € T vorausgesetzt war und v und ¢ auf I*
iibereinstimmen.

A

Hieraus folgt unmittelbar

> v(An) = W}i_r)nOOZV(An) < V<U An> = v(A). (3.6)

Wir zeigen weiter, daf auch v({Jo—; 4,) < D07, v(A,) gilt, was zusammen mit der
eben bewiesenen Ungleichung die Beziehung v(A) = v(U,—, An) = > oo, ¥(A4,) und
damit die o-Additivitdt von v beweisen wiirde.

Wir setzen A =: |a,b] und A,, =: Ja,, b,] fiir n € N, und definieren fiir beliebige § > 0
und 6, >0, n=1,2,...

A":=]a+4,b] und A, :=la,, b, + d,)].
Offensichtlich gilt:
A=la,a+6lUJa+8,b und A =]an,b,]U]bn,by + 6,
Die Additivitat von v liefert

v(4) = v(la,a+6])+v(a+0,0]) = Fla+d) - F(a) +v(4),
v(4,) = v(lan, b)) +v(Jbn, bn + 6n]) = v(An) + F(by + 6,) — F(bn).
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Da F' als rechtsseitig stetig vorausgesetzt war, gibt es zu jedem £ > 0 ein 6 > 0 und zu
jedem e, >0ein §, >0, n=1,2,..., so daf} gilt:

v(A) <v(A)+e und v(4A) <v(4,) +e, (n=1,2,...).

Fiir spéitere Zwecke modifizieren wir dies zu

’ € / € o
v(A) <v(A") + 5 und v(A)) <v(A,)+ SRR (n=1,2,...) (3.7)
Man beachte weiter, daf3
A =]a+6,b] Cla+6,b C Uan,b +oa0C | 4, (3.8)
n=1 n=1

und daB nach dem Uberdeckungssatz von Heine-Borel endlich viele der A/, zur Uber-
deckung der Menge [a + d, b] ausreichen. Deshalb gilt

k
A c |4, firein k€N,
n=1

womit unter Verwendung von Proposition 3.2.3 schliefllich folgt:

v(A) < v(4)+ 2
= 9(4) + 5 da v =1 auf I
g €
< <U ;) B aufgrund von (3.8)
k €
< 7; Y(A4,) + 5 da 1 subadditiv ist
; €
:ZV(A;L)+§ da v =1 auf I'
n=1
a € €
S Z (V(An) + W) t3 aufgrund von (3.7)
n=1
<D V) te da Y sor ==
n=1 ne—1

Da & > 0 beliebig gewihlt werden kann, folgt hieraus zusammen mit (3.6) die Behaup-
tung.

2. Schritt: v ist o-endlich.

Hierfiir ist die Existenz einer Mengenfolge (A, ),en aus I mit A C Ay C A3 C ...,
Unen An = Rund v(A,,) < oo fiir alle n nachzuweisen. Hierfiir wéhlen wir A,, := |—n,n],
n € N. Offensichtlich gilt 4y € Ay € A3 C ... und |J,cnyAn = R. AuBlerdem ist
v(] —n,n]) = F(n) — F(—n) < oo fiir alle n, was zu zeigen war.

3. Schritt: Existenz von pp.

Da v ein o-endliches Pramaf auf I' ist, kénnen wir den Fortsetzungssatz 3.3.12 anwenden
und finden ein eindeutig bestimmtes Maf§ pr: o(I') — RU {00}, das v fortsetzt und o-
endlich ist. Wegen o(I') = B! folgt die Behauptung.

4. Schritt: pp ist ein Wahrscheinlichkeitsmaf}, falls F' normiert ist.
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Wir miissen zeigen, daf} aus den beiden Aussagen lim,_,_ o F'(z) = 0und lim,_, 1 o F'(z) =
1 die Eigenschaft pup(R) = 1 folgt. Dafiir beweisen wir zunéichst, dal F(z) = pp(]—o0, x])
fiir alle z € R gilt. Da up stetig von unten ist (sieche Proposition 3.2.4(i)), folgt:

() = o0 a)) = (|1 = n.a))

neN
= lim pp(] —n,2])
= lm (F(2) - F(-n)
=F(z) — nlLrI;O F(—n)
=F(x)—0
= F(x).

Aufgrund der Darstellung R = J,, o] — 00, 7] und der Tatsache, daf i stetig von unten
ist (siehe Proposition 3.2.4(i)), folgert man analog

pr(R) = uF(U}—oo,n]) = lim pp(]—oo,n]) = lim F(n) = 1.

n—o0 n—00
neN

Satz 3.4.2 :  Gegeben sei ein Wahrscheinlichkeitsmafy P iiber (R,B'). Dann hat die durch F(z) :=
P(] — oo, z]) definierte Funktion F : R — R folgende Eigenschaften:

(i) F ist monoton steigend.
(ii) F ist rechtsseitig stetig.
(iii) lim F(z) =0 und lim F(z)=1,

Tr— —00 r—+00

d.h., F ist eine Verteilungsfunktion.

Beweis:
IDEE: Man iibersetzt die insbesondere in Proposition 3.2.4 gewonnenen Eigenschaften von P in
FEigenschaften von F'.

Die Aussage (i) folgt unmittelbar aus der Annahme, daf§ P monoton ist (vgl. Satz 3.4.1). Fiir
den Nachweis von (ii) mufl man noch zeigen, daf fiir jede monoton fallende Folge (2, )nen mit
lim,, o0 T, = 0 auch lim,,_, oo (F(x + xp) — F(x)) = 0 fiir alle z € R gilt. Da P stetig von
oben ist (siche Proposition 3.2.4(ii)), gilt aber:

lim [F(z + 2,) — F(z)] = lim P(lz,z + z,]) = p( N,z + xn]) = P(0) = 0.

Die Aussage (iii) 148t sich ebenfalls mit Hilfe von Proposition 3.2.4 beweisen:

0 = P0)=P([)]-00,-n]) = lim P(]—oo,—n]) = lim F(-n)

1 = P®) =P(|J]~oco.n)) = lim P(|~oco.n]) = lim F(n)
neN
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Bemerkung 3.4.3 :

(i) Die Siitze 3.4.1 und 3.4.2 besagen, daf es eine umkehrbar eindeutige Zuordnung von Verteilungs-
funktionen iiber R und Wahrscheinlichkeitsmafen auf (R, B!) gibt.

(ii) Verteilungsfunktionen sind automatisch mefibar.

(iii) Wegen der Korrespondenz aus (i) spricht man héufig von Wahrscheinlichkeitsverteilungen oder
einfach nur von Verteilungen. und meint damit wahlweise das Wahrscheinlichkeitsmafl oder die

zugehorige Verteilungsfunktion.

Proposition 3.4.4 : (Rechenregeln fiir mafidefinierende Funktionen)
Sei F eine mapdefinierende Funktion iber R und pr das korrespondierende Maf$ auf (R,BY), dann gilt

fir alle a,b € R mit a < b:
(i) pr(a,b)) = F(b) - F(a),
(i) pr(lab) = F(b-0) = F(a),
(iii) pr(la,b]) = F(b) - Fla—-0),
(iv) pr({a}) = F(a) = F(a=0),

(v) pr(la,b)) = F(b—0)—=F(a-0),
wobei wir mit F(x — 0) den linksseitigen Grenzwert von F an der Stelle x bezeichnen (entsprechend
F(z+0)).

Ist F eine Verteilungsfunktion tiber R und bezeichnet Pr das zugehdrige Wahrscheinlichkeitsmafl auf

(R,B), dann gilt fiir alle x € R:

(vi) Pp(]—o0,2]) = F(x),

(vil) Pp(]—oo,a]) = F(z—0),
(viii) Pp(Jz,o0]) = 1— F(x).

Beweis:

IDEE: Diese Aussagen lassen sich jeweils mit kleinen Rechnungen verifizieren. Das wichtigste Hilfs-

mittel ist dabei Proposition 3.2.4.

(i) Diese Behauptung ist gleichbedeutend mit (3.5).

(i)
pr(la,b)) = W(U]a,b—}l]>

24t e (Ja,b— 1))
= lim F(b—21)—F(a)

= F(b—0)— F(a).
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(i)
pr(la, b)) = pr (ﬂ Ja— i,b]>

n=1

= lim pp (Ja—1,0]) (up ist stetig von oben (siehe Proposition 3.2.4(ii)))

n—oo

— lim (F(b) ~Fla— l))

n—oo

= F(b) — F(a - 0).

pr(fa}) = pr (ﬂ Ja— iﬂ)

n=1

— tim pr (Ja— 2.a])

n—oo

= lim (F(a) — F(a— %))

n—oo

= F(a) — F(a—0).

(v) pr([a,b]) = pr(a, blU{a}) = pr(la, b)) + pr(fa}) = F(b—0) = F(a - 0).
(vi) Wurde bereits unter (iii) im Beweis von Satz 3.4.2 gezeigt.

(vii)

Pr(] =00, 2]) = Pr(] — oo, z]\{z})
= Pp(] —o00,2]) — Pr({x})
= F(z) = (F(z) - F(z = 0))
= F(xz —0).

Beispiel 3.4.5 : Die Funktion

z <0,
0<z<1,
1<z <2,
2<x <3,
3<z
definiert eine Verteilungsfunktion {iber R. Man verifiziert leicht:

Pr(]—1,5)=F(5)-F(-1)=1-0=1.

F(x) =

— 00l~3 00l o= O

Pr(3,2) = F2) - F(3) = § -5 =1
Pr(3:3) =FB-0)-F(5-0) =5 -5 =5
Pr(]0,1]) = F(1 —0) — F(0) = é — é =0.
T 4 3
Pr({2}) =F(2)-F2-0) =g - o ==



3.4. MASSDEFINIERENDE FUNKTIONEN 61

Beispiel 3.4.6 (Lebesgue—Mafl): Das mit der mafidefinierenden Funktion
Fz)==x Vz e R.

korrespondierende Ma8 A = Ar (vgl. Bemerkung 3.4.3) iiber B! ist die eindeutig bestimmte Fortsetzung
des elementargeometrischen Inhalts

Ma,b]) = F(b) — F(a) =b—a, Va,b € R, a <b.

Es heifit das eindimensionale Lebesgue—Maf auf (R, B!). "

Beispiel 3.4.7 (Exponential-Verteilung):
Sei A > 0. Die Funktion F': R — R mit

1—e >
Plz) = e x>0,
0 x < 0.

definiert eine Verteilungsfunktion tiber R. Man nennt /' Exponentialverteilung mit dem Parameter \.
Fiir die Exponentialverteilung mit dem Parameter A verwenden wir das Symbol Exp(A).

Diese Verteilung ist von grofler praktischer Bedeutung. Zum Beispiel wurde durch umfangreiche stati-
stische Erhebungen nachgewiesen, daf§ Einfallabsténde und Gespriachsdauern im Telefonverkehr in guter
N#herung exponentialverteilt sind. Aber auch das Ausfallverhalten einer Maschine, d.h. die Zeit zwischen
zwei aufeinanderfolgenden Ausfillen, kann gut durch eine Exponentialverteilung modelliert werden.

Man beachte, dafl F' stetig und an allen Stellen x # 0 differenzierbar ist:

_ dF(x)
- dx

fx):

Ae ™ >0,
0 z < 0.

Hieraus folgt

Pp(] —o00,2]) = F(z) = / f(t) dt, z € R,

und
b

}%@ﬁD:F@—Fm%i/ﬂﬂﬁ, abeR, a<bh

a

Es sei f:R — RT eine iiber R integrierbare Funktion mit

/f@ﬁ:L

Dann wird durch

eine Verteilungsfunktion F' iiber R und damit ein Wahrscheinlichkeitsmafl Pr auf (R, B') definiert. Die
Funktion f wird Dichte der Wahrscheinlichkeitsverteilung Pr genannt.
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Beispiel 3.4.8 (Rechteckverteilung): Fiir jedes Paar a,b € R mit a < b wird durch

1

R = x € la,b],
o {o o)

eine Dichte iiber R definiert. Das zugehorige Wahrscheinlichkeitsmaf heiit Rechteck(a, b)—Verteilung
oder Gleichverteilung auf [a, b], kurz R(a,b). Die zugehorige Verteilungsfunktion lautet:

8 O

Flz)=¢2=2 qg<z<bh,

—a — —

b
1 x >b.

Die Rechteck—Verteilung spielt bei der Erzeugung von Zufallszahlen und der Simulation stochastischer
Prozesse eine wichtige Rolle.
L]

Beispiel 3.4.9 (Weibull-Verteilung): Fiir A\, 8 > 0 definiert

. 3. 67}\1‘,[3 €T
ﬂm:{kﬂ .

0 z <0
eine Wahrscheinlichkeitsdichte iiber R. Die zugehorige Verteilungsfunktion lautet:

l—e 2 23>0
F(x):{ 0 z < 0.

Das korrespondierende Wahrscheinlichkeitsmafl Pr iiber (R,B!) heifit Weibull-Verteilung mit den
Parametern ), 3. Die Substitution y = 2°, dy = B2°~'du fithrt auf das Integral der Exponentialverteilung.
Die Weibull-Verteilung findet Anwendung in der Zuverléssigkeitstheorie.

Beispiel 3.4.10 (Standardnormalverteilung):

Die Funktion 1 ,
fla) = —=e 355)

CoV2r

wird als Gaufische Glockenkurve mit den Parametern u € R und o > 0 bezeichnet und definiert eine
Wahrscheinlichkeitsdichte iiber R. Die korrespondierende Verteilungsfunktion lautet

[NIE

Fa)= [soi= [ et e @em)

—00

Die zu F(x) gehorende Verteilung Pr auf (R,B) wird Normalverteilung mit dem Parameter p
und o genannt. Im Fall 4 = 0 und ¢ = 1 spricht man von der Standard—Normalverteilung. Fiir die
Normalverteilung verwendet man das Symbol N(u, o). Im Falle der Standard—Normalverteilung verwendet
man anstelle von F(z) das Symbol ®(z) und anstelle von f(x) das Symbol ¢(z).

Um die Werte der Normalverteilung zu berechnen, geniigt es, die Standard-Normalverteilung zu
kennen. Denn vermoge der Substitutionen y = (¢ — p)/o und o - dy = dt erhilt man

[ 1 I_la:fu2 1 [ 2 T— U
F(z) = t) dt = —— 62(v)dt:—/ey/2d:/ d.:<I>( )
@=[ra-— | — v= [ ety =0 (=
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Abbildung 3.1: Dichtefunktion der Normalverteilung mit Lokalisationsparameter p = 2 und Streupara-
meter o = 1.

Dies ist der Grund, warum in Statistik—Biichern lediglich die Standard—Normalverteilung tabelliert ist.
Fiir den Nachweis von

+oo
/ olx) de =1
benutzt man die Beziehung
—+00 t2 ) 400 +o0
(/exp(——) dt) / /exp —— exp(——) dx dy
+o00 +oo
2,2
= exp(—gc—’—y)dxdy,
—00 —00

die man mit Hilfe von Polarkoordinaten, d.h. mit Hilfe der Substitution dz dy = r d¢ dr, in

2w oo
2

//exp ——)rdrdd = —2mexp(— 7"2
00

[e.9]

2

)| =

0

iiberfiithren kann.

Beispiel 3.4.11 (Logarithmische Normalverteilung): Fiir 4 € R und o > 0 definiert auch

1
flz) = oxV2m

e—(lnx—u)z/QU2 x>0
0 <0
eine Wahrscheinlichkeitsdichte iiber R. Das zugehérige Wahrscheinlichkeitsmaf iiber (R, B1) heifit loga-

rithmische Normalverteilung. Sie wird als Modellverteilung bei Lebensdauer— und Festigkeitsproble-
men eingesetzt. [

Beispiel 3.4.12 (Cauchy—Verteilung):
Fiir A > 0 und g € R definiert
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eine Wahrscheinlichkeitsdichte iiber R. Denn es ist

7 T 1 2 —p 1
/f(x)dx = / ——dz z:=—— dz=—dx
4 S ) - ETS

o0
-
B 71+ 2%
(7 r
= = ——d d
71'(/1—1—2’2 Z+/1+ 2%
— 00 0
1 / 1 /
- (aEmoo [ e i [ e
a 0
1 . .
= = < lim (— arctana) +bhrn (arctan )
i a— —00 — 00
1 /m 7
= ~(Z+2) =1
T (2 + 2)
Die zu f gehorende Verteilungsfunktion heifit Cauchy—Verteilung. L]

Beispiel 3.4.13 (Gammaverteilung):
Seien b,p € RT. Das zur Dichte

x>0

x <0

oo

mit der durch I'(p) = / xP~te "dx definierten Gammafunktion gehérende Wahrscheinlichkeitsmaf§ P

0

auf (R, B') heift Gammaverteilung mit den Parametern b und p, kurz Gamma(b, p).
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Abbildung 3.2: Dichtefunktion der Gammaverteilung mit variablem Parameter b bei konstantem p (links)
bzw. variablem p bei konstantem b (rechts).

Die Tatsache, daf3 fj;o f(z) dz =1, folgt aus der Beziehung

o oo

/bpquesz dr = /(bm)pfle*b“"b dx = /Zpileiz dz =T'(p).
0

0 0
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Die Gammaverteilung wird unter anderem als Modellverteilung in der Zuverlissigkeitstheorie und der
Warteschlangentheorie verwendet. Als Spezialfille der Gammaverteilung ergeben sich die x2-Verteilung
und die Erlang—Verteilung (siche unten).

Beispiel 3.4.14 (y*—Verteilung):
Das Wahrscheinlichkeitsmafi P mit der Dichte

2 le”z >0
0 x <0,

heifit y?>—Verteilung mit n Freiheitsgraden, n € N. Die x?-Verteilung ergibt sich aus der Gammavertei-
lung, indem man p = 5 und b = % setzt.

Abbildung 3.3: Dichtefunktion der y2-Verteilung mit variablen Freiheitsgrad n.

Die y2-Verteilung spielt eine zentrale Rolle in der mathematischen Statistik.

Beispiel 3.4.15 (Erlang-Verteilung):
Seien n € N und b € R™. Das zur Dichte

fwy = Jorme e 020
0 z < 0.

gehérende Wahrscheinlichkeitsmaf8 P auf (R, B1) heiit Erlang—Verteilung mit den Parametern b und n,
kurz Erlang(b, n). Fiir diesen Spezialfall der Gammaverteilung ld83t sich die zugehorige Verteilungsfunktion
F(z) in geschlossener Form darstellen:

Die Behauptung 148t sich durch Differenzieren rasch verifizieren:

, . n—1 (bx)k b n—1 (bl’)kil b (bx)”*l pr o .
Fo= (o e ) = e e e
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fiir x > 0. Die Erlang—Verteilung verdankt ihren Namen dem dénischen Mathematiker A.K. Erlang, der
1908 Mitarbeiter der Copenhagen Telephone Company wurde und mit seinen Arbeiten zur Leistungsbe-
wertung von Fernsprechvermittlungssystemen den Grundstein fiir die Warteschlangentheorie legte. [

Beispiel 3.4.16 (Betaverteilung):
Das Wahrscheinlichkeitsmaf iiber (R, ') mit der Dichte

(b—a)l—r=a
f(z) = B(p,q)

(x —a)P~L(b—2)9"1 | x€la,b]
, T¢la, b

mit a,b € R, a < b und p,q > 0 heilt Betaverteilung 1.Art iiber dem Intervall ]a,b[. Dabei steht
Ausdruck

1
B(p,q) := /tp’l(l —t) 1t at
0

fiir die Eulersche Betafunktion. Fiir die Betaverteilung mit dem Parameter p und ¢ verwenden wir das
Symbol Beta(p, ¢). Die Betaverteilung hat Anwendungen in der Netzplantechnik, wo sie zur Modellierung
von Ubergangszeiten verwendet wird.

6 {\/
R
SO
RN

5 ’?W\‘\‘\‘

R

0. = 2 s ‘ &4s Y
0. R

‘ 2
1 2 3 4

Abbildung 3.4: Dichtefunktion der Betaverteilung mit Parameter ¢ = 4 und variablem p.

«




Kapitel 4

Zerlegung von Maflen

4.1 Signierte Mafle

Sei (M, ) ein meBbarer Raum. Ein signiertes Maf3 auf (M, 9) ist eine Abbildung v: 9t — [—o0, 0]
mit folgenden Eigenschaften:

(i) v(0) =0.
(ii) v nimmt hochstens einen der Werte £oo an.
(iii) Fiar jede Folge (A;) en von paarweise disjunkten Elementen A; von 9t gilt:
v({J 45) =D v(4))
JEN JEN
und die Reihe konvergiert absolut, falls v({J,cy 4;5) € R.

Damit ist jedes Mafl auf (M, 91) insbesondere ein signiertes Mafi. Um den Unterschied zu betonen,
nennt man manchmal ein Maf3 auch ein positives Maf3.

Beispiel 4.1.1 : Sei (M, ) ein meBbarer Raum.

(i) Fiir zwei MaBe pq, po auf (M,90), von denen mindestens eines endlich ist, ist v := p3 — po ein
signiertes Mafl.

(ii) Sei p ein Maf} auf (M, 91). Fiir eine meBbare Funktion f: M — [—o0, 00, fiir die mindestens eines
der Integrale [ M f* dp endlich ist, definiert

v(A) = /A fdu

ein signiertes Mafl. Wir nennen f in diesem Fall erweitert p-integrierbar und schreiben dv :=

fdu.

Bemerkung 4.1.2 : Sei v ein signiertes Maf} auf dem mefibaren Raum (M, 9). Mit den im Beweis von
Proposition 3.2.4 (siehe auch Ubung 2.1.1) beniitzten Argumenten erhélt man die folgenden Stetigkeits-
aussagen.

(i) Aus A, e M, A C Ay C ... folgt

nlirr;o v(A,) =v (U An> .

neN

67
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(ii)) Aus A, € M, A1 D Ay DO ... und v(A4;) < oo folgt

nh_)ngo v(A,) =v (ﬂ An> .

neN

(iii) Die Voraussetzung v(A;) < oo in Teil (ii) ist nicht iiberfliissig.

Sei v ein signiertes Mafl auf dem mefibaren Raum (M, ). Eine Menge A € 9 heifit positiv bzw.
negativ bzgl. v, wenn fiir alle B € 9t mit B C A gilt v(B) > 0 bzw. v(B) < 0. Eine Menge, die positiv
und negativ ist, heiit Nullmenge.

Beispiel 4.1.3 : In der Situation von Beispiel 4.1.1(ii) ist A bzgl. v positiv, bzw. negativ genau dann,
wenn auf A p-fast iiberall gilt f > 0, bzw. f <0. [

Lemma 4.1.4 : Seiv ein signiertes Maf$ auf dem mef$baren Raum (M,9M) und (A;) en eine Folge von

bzgl. v positiven Mengen. Dann ist auch UjeN Aj eine bzgl. v positive Menge.

Beweis:

Setze By, := A, \ U;L:_ll A;. Dann ist B,, C A,, mefibar, also ist B,, positiv bzgl. v. Die B,

sind offensichtlich paarweise disjunkt. Wenn jetzt C' C | ien A; meflbar ist, dann gilt

v(C) =Y v(CNBy) >0.

neN

Satz 4.1.5 (Hahn—Zerlegung): Sei v ein signiertes Maf$ auf dem mefbaren Raum (M,9).

(i) Es gibt eine disjunkte Zerlegung von M in eine bzgl. v positive Menge P € I und eine bzgl. v
negative Menge N € 9.

(ii) Die Zerlegung aus (i) ist im wesentlichen eindeutig. Genauer, wenn P' U N’ = M eine weitere
solche Zerlegung ist, dann gilt

V(P\P)=u(P'\P)=0=u(N\N')=u(N'\N).

Beweis:

IDEE: Finde zu jedem A € 9T mit v(A) > —oo eine positive Teilmenge P4 C A mit v(Pa) > v(A).
Dabei verlangt man zuniichst fiir die Teilmengen nicht, da8 v(B) > 0, sondern nur v(B) > —e.

Wir koénnen 0.B.d.A. annehmen, dafl v den Wert co nicht annimmt (sonst betrachte —v statt
v). Aulerdem schliefen wir den trivialen Fall, da8 v konstant gleich —oo ist, aus. Sei A € M.

Behauptung 1: Wenn v(A4) > —oo, dann gibt es zu jedem € > 0 ein B € 9 mit B C A und
(a) v(B) 2 v(4),
(b) v(C) > —e fiir alle C € M mit C C B.
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Angenommen dies ist nicht der Fall. Dann gibt es ein € > 0 so, daf fiir jedes B € 9t mit
B C Aund v(B) > v(A) ein C € M mit C C B und v(C) < —e existiert. Mit B = A findet
man ein C; € M mit C; C A und v(Cy) < —e. Wegen

v(A\ C1) =v(A) —v(C) > v(4)
findet man dann ein Co € MM mit Co C A\ Cy und v(Cs) < —e. Jetzt gilt
v(A\ (C1UCy)) =v((A\C1)\ Co) =v(A\ C1) — v(Ca) > v(A\ Cy) > v(A)

und wir sehen, dafl wir induktiv eine Folge (C;);en disjunkter Mengen in 9 finden konnen,

die in A enthalten sind und v(Cj) < —e erfiillen. Aber dann gilt fiir C':= |J;y Cj, daB

v(A\C) = v(A) = Y v(C)) =
JjEN
im Widerspruch zur Annahme.

Behauptung 2: Wenn v(A4) > —oo, dann gibt es eine bzgl. v positive Menge P4 C A mit
v(Py) > v(A).

Setze A1 := A und definiere A,, induktiv wie folgt: Zu A,,_; gibt es nach Behauptung 1 eine
Menge A,, € M mit A, C A,—1 und v(A,) > v(A4,_1) sowie

CeMCCA, : v(C)>-

3=

Dann ist P4 := ),y An € A positiv bzgl. v und mit Bemerkung 4.1.2 finden wir

v(Py) = lim v(A,) > v(A),

n—00

was Behauptung 2 beweist.

Mit Behauptung 2 finden wir eine Folge (P;);en von bzgl. v positiven Mengen, die

s:= lim v(P;) =sup{r(A) | A € M}
j—00
erfiillt. Setze P := J;cy P;. Dann gilt ¥(P) = s und nach Lemma 4.1.4 ist P positiv. Wenn
C € M zu P disjunkt ist, dann gilt v(P U C) = v(P) + v(C), also v(C) < 0. Dies zeigt, dafl
N := M \ P bzgl. v negativ ist. Damit ist (i) bewiesen.

Um (ii) zeigen, stellen wir einfach fest, dal P\ P’ C P N N’ bzgl. v sowohl positiv als auch

negativ, also eine Nullmenge ist. Analog schlieit man fiir P’ \ P sowie fiir N\ N/ und N'\ N.
"

Eine disjunkte Zerlegung P U N = M wie in Satz 4.1.5 heifit eine Hahn-Zerlegung fiir v. Seien
jetzt v und p zwel positive Mafle auf dem meBbaren Raum (M, 91). Dann heifit v singulir bzgl. p, falls
es eine disjunkte Zerlegung AU B = M mit A, B € 9 und v(A) = 0 = u(B) gibt. Offensichtlich ist v
singulér bzgl. i genau dann, wenn p singulér bzgl. v ist. Man tragt dem Rechnung, indem man schreibt
v 1, falls v singuldr bzgl. p ist.

Satz 4.1.6 : Sei v ein signiertes Maf auf dem mefbaren Raum (M,9). Dann gibt es eindeutig be-
stimmte positive Mafle vT und v—, fiir die gilt
v=vt—v" und vtliv .

Beweis:
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IDEE: Betrachte fiir A € 9 die Schnitte von A mit den beiden Mengen einer Hahn-Zerlegung.

Sei M = P U N eine Hahn-Zerlegung fiir v. Wir setzen
vT(A):=v(ANP) und v (A):=-v(ANN)
fiir A € M. Dann ist es Routine zu zeigen, dal v+ positive MaBe sind, die v = vT — v~ und

vt 1y~ erfiillen.

Um die Eindeutigkeitsaussage zu beweisen, nehmen wir an, da pu* positive Maie mit v =
ut —p~ und pt Ly~ sind. Es gibt dann nach Definition eine disjunkte Zerlegung AU B = M
mit A,B € Mund p~(A) = 0 = u™(B). Also ist AU B = M eine Hahn-Zerlegung fiir v.
Nach Satz 4.1.5(ii) gilt (P \ AU A\ P) = 0. Fiir jedes C € 9 finden wir also

pH(C) = pt(C N A) = v(C N A)=v(CNP)=vH0),

d.h. pt = v+, Fiir uy~ = v~ argumentiert man analog. "

Man nennt v* den positiven bzw. den negativen Teil von v. Die Zerlegung v = v — v~ heifit die
Jordan-Zerlegung von v. Das signierte Mafl v heifit endlich, wenn sowohl ' als auch v~ endliche
MafBe sind. Das positive Maf3

lv| ==vT + v~
nennt man die totale Variation von v. Schlieflich setzen wir

LYM,v) = L"(M,R,vT) N LY (M, R,v7)

/fdu ::/fdzﬁ—/fdzf.

Seien p und v signierte Mafle auf M. Dann heifit p ein singulédr bzgl. v, wenn dies fiir ihre totalen
Variationen gilt.

und fiir f € L'(M,v)

Ubung 4.1.1 : Seien v und y signierte Mafle auf einem mefBbaren Raum (M, 901) und E € 9.
(i) Zeige, daBl v(F) =0 fiir alle E D F € M genau dann, wenn |[v|(F) =0 fiir alle £ D F € 9.
(ii) Zeige, daf die folgenden Aussagen #dquivalent sind:

(a) vLp.
(b) vl L g
() vt Lpund v~ L p.

(iii) Zeige, daB |u + v| < |v| + |u|.

Ubung 4.1.2 : Sei v ein signiertes MaB auf einem meSbaren Raum (M,9) und E € M. Zeige:
(i) vH(E) =sup{v(F) | Fe M, F C E}.
(ii) v (BE) = —inf{v(F) | Fe M, F C E}.

(iii) |v|(E) = sup { Y v(E) | By e ME =", Ej}.



4.2. DER SATZ VON RADON-NIKODYM 71

4.2 Der Satz von Radon-Nikodym

Sei (M, 9M) ein mefbarer Raum. Weiter sei v ein signiertes Mafl und p ein positives Mafi auf (M, ).
Dann heifit v absolut stetig bzgl. u, falls

VAeM . pd)=0 = v(4)=0.

In diesem Fall schreibt man v << p.

Beispiel 4.2.1 : Wenn p ein positives Mafl auf dem mefibaren Raum (M, 90) ist und f eine erweitert
p-integrierbare Funktion, dann ist das durch v(A4) = [ 4 [ dp definierte signierte Maf} absolut stetig bzgl.
w. Es ist endlich, falls f € L*(M, R, ). ]

Bemerkung 4.2.2 : Sei (M,9) ein meBbarer Raum. Weiter sei v ein signiertes Mafl und u ein positives
Maf3 auf (M, 9M).

(i) v << p ist dquivalent zu |v| << p.

(ii) v << p ist dquivalent zu
v << p und v << p.

(iii) Wenn v << p und v u, dann gilt v = 0.

Lemma 4.2.3 : Sei (M,0N) ein mefbarer Raum. Weiter sei v ein endliches signiertes Mafl und p ein
positives Maf auf (M,9M). Dann sind folgende Aussagen dquivalent:

(1) v<< p.
(2) Zu jedem € > 0 gibt es ein 6 > 0 mit

VAe M u(A)<d : v(A)<e

Beweis:

IDEE: Nur (1) = (2)“ erfordert Arbeit: Konstruiere aus der Negierung von (2) eine Menge B mit
w(B) =0, aber v(B) > e.

Beachte, dafl wir wegen
w(A)] = VT (A) — v~ (A)] < vT(A) + v (4) = [V(4)

und Bemerkung 4.2.2(i) 0.B.d.A. v als positiv annehmen kénnen.
Die Implikation ,,(2) = (1)“ ist klar. Fiir die Umkehrung halten wir € > 0 fest und nehmen
an, dafl es zu jedem n € N ein A,, € M mit

w(Ay) <27 und v(A4,) >e

gibt. Setze By := (Jr—, A, und B := (o, Bg. Dann gilt p(By) < 2'7% und w(B) =
limg_,00 p4(B) = 0 (vgl. Bemerkung 4.1.2). Andererseits gilt co > v(Bj) > €, also v(B) =
limg_, o0 ¥(Bg) > € und v ist nicht absolut stetig bzgl. pu. [
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Bemerkung 4.2.4 : Sei (M,M, u) Mairaum und f € L*(M,R, ). Wenn man wie in Beispiel 4.2.1 aus
f ein signiertes Mafl v auf (M, 9) konstruiert, liefert Lemma 4.2.3 folgende Aussage.

Zu jedem € > 0 gibt es ein § > 0 mit: (VA € M, u(A) <) | / fdu| <e.
A

Die Aussage ist auch fiir f € L'(M,C,u) richtig, wie man sofort sieht, wenn man f in Real- und
Imaginérteil aufspaltet. L]

Lemma 4.2.5 : Seien v und pu endliche, positive Mafle auf dem mefbaren Raum (M,9). Dann gilt
entweder vy oder aber es gibt ein € > 0 und ein A € M mit

(a) u(4) >0,
(b) v > e auf A, d.h. A ist positiv bzgl. v — epu.
Beweis:

IDEE: Betrachte Hahn-Zerlegungen fiir v — %u.

Sei M = P, UN,, eine Hahn-Zerlegung fiir v — %u. Setze P :=J,,cny P und N :=)
M\ P. Dann ist N negativ bzgl. v — %u fiir jedes n € N, also gilt

nENNn =

0 <w(N) < Lu(N)

fiir alle n € N und damit v(IN) = 0. Wenn p(P) = 0, dann ist p singulér bzgl. v. Andernfalls
gilt u(P) > 0 und man findet ein n € N mit u(P,) > 0 (vgl. Bemerkung 4.1.2). Da P, nach
Definition positiv bzgl. v — % u ist, ist A := P, eine Menge der gesuchten Art. n

Wir nennen ein signiertes Mafl o-endlich, wenn seine totale Variation o-endlich ist.

Satz 4.2.6 (Radon-Nikodym): Seien (M,9M) ein mefbarer Raum, v ein o-endliches signiertes Majf
auf (M,9M) und p ein o-endliches positives Maf auf (M,9N). Dann gibt es eindeutig bestimmte o-endliche
signierte Mafle X und p auf (M,9%) mit

Alp, p<p, v=A+p.
Auflerdem gibt es eine erweitert p-integrierbare Funktion f: M — R mit
dp = fdu.

Wenn h: M — R eine weitere p-integrierbare Funktion ist, die dp = hdp erfillt, dann gilt h = f u-fast
tberall.

Beweis:

Wir nehmen zunéchst an, dafl i und v endliche positive Mafle sind und setzen
Fim {f: M= [0,00] | (VA € ) / Fdu < v(A)}.
A
Seien f,g € F und h := max(f,g). Wenn B:={zx € M | f(z) > g(z)} und A € 9, dann gilt

/fdu:/ fdu+/ gdp < v(ANB)+v(A\ B) = v(A),
A ANB A\B
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also h € F.
Fiir a := sup{,, fdu | f € F} gilt a < v(M) < oo. Wir wiihlen eine Folge (fy)nen in F
mit lim, fM fndp = a und setzen g, := max(f1,..., fn) € F sowie f :=sup, cy fn. Dann

liefert der Satz 2.2.4 von der monotonen Konvergenz

/fd,u: lim/gndu:a.
M n—oo M

Insbesondere ist f p-fast iiberall endlich und wir kénnen 0.B.d.A. annehmen, dafl f: M — R.
Behauptung: Das durch d\ = dv — f du definierte signierte Maf§ A erfiillt AL p.

Wir nehmen an, dem wiire nicht so. Dann gibt es nach Lemma 4.2.5 ein A € 9T und ein € > 0
mit p(A) > 0 und A > ey auf A. Aber dann gilt

exadpy < d\N=dv— fdu

und daher f + exs € F. Auflerdem finden wir

/M(f +exa)dp = a+eu(A) > a,

im Widerspruch zur Definition von a.

Fiir den Beweis des Satzes fiir positive endliche Mafle fehlt jetzt nur noch die Eindeutigkeits-
aussage. Um diese zu zeigen, nehmen wir an, dafl dv = d\ + hdu sowie ALy und X' Ly, Dann
folgt dX — dX = (f — h)dp, also A — N << pu, und (A — ) Lu. Aber dann gilt A = A nach
Bemerkung 4.2.2(iii).

Jetzt nehmen wir an, dafl ¢ und v beides o-endliche positive Mafle sind. Dann finden wir
eine Folge (A;);jen von disjunkten Elementen in 90t mit M = |J,cy A; sowie pu(A;) < oo und
v(A;) < oo fur alle j € N. Wir setzen p;(C) = p(C' N A;) und v;(C) = v(C N A;) fir alle
C € M. Jetzt wenden wir den ersten Teil des Beweises auf A; an und finden Mafie A; und
Funktionen f;: M — R mit

dv; = d\j+ fidpg, NjLpg, MM\ A;)=0, flana, =0.
Dann erfiillen A := 3,y Aj und f:=3" f;
dv =d\+ fdu, Alp
und die Existenzaussage des Satzes ist bewiesen. Die Eindeutigkeit folgt wie im Falle der

endlichen Mafle.

Schliellich ist noch der Fall zu betrachten, in dem v ein signiertes Maf ist. Dieser Fall folgt
aber aus obigem angewandt auf v und v~. [

Die Zerlegung v = A 4+ p mit ALy und p << p heifit die Lebesgue—Zerlegung von v bzgl. . Wenn
v << u, dann liefert Satz 4.2.6 eine erweitert u-integrierbare Funktion mit dv = fdu. Dieses, bis auf
p-Nullmengen eindeutig bestimmte f heifit die Radon-Nikodym Ableitung von v nach p. Sie wird
auch mit g—: bezeichnet.

Man sieht sofort, daf3
d(l/1 + 1/2) - dl/1 + dl/2

de  dp " dp
aber es gilt z.B. auch eine Version der Kettenregel fiir die Radon—-Nikodym Ableitung:

Proposition 4.2.7 :  Sei (M, M) ein meflbarer Raum und v ein signiertes o-endliches Maf auf (M, 9).
Seien 1 und A zwei o-endliche Mafle auf (M,0N), die v << pu << X\ erfillen.
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(i) Wenn g € LY(M,C,v), dann gilt gg—z € LY(M,C, ) und

d
/gduz/ g—yd,u.
M M dp

dv  dv du ..
N dp i A — fast dberall.

(i) Es gilt v<< A und

Beweis:

(i) Wir kénnen 0.B.d.A. annehmen, da8 v ein positives MaB ist, indem wir v+

behandeln. Wenn A € 9 und g = x4, dann gilt

dv dv
gdv=v(A)= [ —dup= / g—dp.
/M ) Adp M dp

Dies beweist (i) fiir charakteristische Funktionen. Uber positive Linearkombinationen
und Grenzwerte davon findet man (i) fiir positive integrierbare Funktionen und dann
iiber Linearkombinationen fiir alle integrierbaren Funktionen.

(ii) Sei A € M und g := XA%- Dann liefert (i)

separat

dv dv dp
A= [ Zq :/——dA,
WA = | Gadn= | anax

also (ii).

Ubung 4.2.1 : Seien v; fiir j € N und p signierte MaBe auf einem mefibaren Raum (M, IN). Zeige:
(1) Wenn v; L p fiir alle j € N, dann gilt 37,
(ii) Wenn v; << p fiir alle j € N, dann gilt >, v; << p.

vi L p.

Ubung 4.2.2 :  Zeige durch ein Gegenbeispiel, daff in Lemma 4.2.3 nicht auf die Endlichkeit von v als Voraus-
setzung verzichtet werden kann. n

Ubung 4.2.3 :  Seien v; und p; fiir i = 1,2 jeweils o-endliche signierte MaBe auf den mefbaren Riumen
(M;, ;). Zeige: Wenn v; << u;, dann gilt
(1) 11 @ v2 << 1 ® pe.

.s d(v1 Qv dv dv
(i) G5y (@ 22) = G4 (@) G2 (22).

4.3 Komplexe Mafle

Ein komplexes Maf} auf einem mefibaren Raum (M, 90) ist eine Abbildung v: 9t — C mit
(a) v(0) =0,

(b) Wenn (4;)jen eine Folge disjunkter Mengen in 90U ist, dann ist die Reihe 37, yv(4;) absolut

konvergent und es gilt
v((J) =D v(4y).
jEN  jeN
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Insbesondere ist ein signiertes Mafl nur dann ein komplexes Maf}, wenn es endlich ist.

Beispiel 4.3.1 :  Sei (M, 9, y) ein MaBraum und f € L*(M,C, p1). Dann definiert v(A) := [, fdu ein
komplexes Mafl. Wir schreiben, dhnlich wie im Falles signierter Mafle, dv = f du. [

Man kann ein komplexes Mafl v in offensichtlicher Weise als eine Summe Rev 4 ¢Imv mit zwei
signierten endlichen Maflen Re v und Im v schreiben, die man dann den Realteil und den Imaginérteil
von v nennt. Man setzt dann

LY(M,C,v) := LY(M,C,Rev) N L*(M,C,Im v)

/fdv ::/fd(Reu)+i/fd(Imz/).

Zwei komplexe Mafle v und p heilen zueinander singulér, geschrieben v, wenn

und

RevlRep, RevlImpy, ImvliRep, ImvlImpu.

Ein komplexes Mafl v heifit absolut stetig bzgl. eines positive Mafles A, geschrieben v << A\, wenn
Rev << A und Imv << A

Bemerkung 4.3.2 : Indem man die Resultate aus Abschnitt 4.2 auf Realteil und Imaginérteil anwendet,
findet man Verallgemeinerungen der dortigen Resultate fiir komplex Mafle. Insbesondere hat man eine
komplexe Version des Satzes 4.2.6 von Radon-Nikodym.

Lemma 4.3.3 : Sei v ein komplexes Maf auf dem mefbaren Raum (M,IN).
(i) Es gibt ein endliches Maf§ i auf (M,9N) und eine Funktion f € L*(M,C,u) mit dv = f dpu.
(ii) Wenn py, s endliches Mape auf (M, M) mit dv = fidus = fadus fiir f; € L*(M,C,pu;) sind,

dann gilt auch

|f1] dpy = | fa] dpa.

Beweis:

(i) Setze p:=|Rev|+|Imv|. Dann ist p ein endliche Mafl und es gilt v << p. Der komplexe
Radon-Nikodym Satz (vgl. Bemerkung 4.3.2) liefert dann die Funktion f € L'(M,C, p)
mit dv = fdu.

(ii) Setze A = uq + po. Wegen p; << A gilt nach Proposition 4.2.7

dp

o dps
higy A =dv = o= d).

Da aber die Funktionen % nicht-negativ sind, folgt auch

dpz

_ dpn _ apz .
| fildpa = [f1 ad)\ =|f2 5\ dX\ = | fa|dps.

Lemma 4.3.3 erlaubt es uns die totale Variation eines komplexen Mafles v mit dv = fu als
] = [f]dp

zu definieren. Da fiir ein endliches signiertes Ma8l v gilt v = (xp — xn)|v|, wobei M = P U N eine
Hahn-Zerlegung fiir v und |v| die totale Variation von v ist, ist die neue Definition der totalen Variation
wegen |xp — xn| = 1 kompatibel mit der alten.
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Proposition 4.3.4 : Sei v ein komplexes Maf$ auf dem mefbaren Raum (M,9).

(i) v<<|v| und ‘% ist |v|-fast iberall gleich 1.

(ii) |v(A)| < |v|(A) fir alle A € M.
(iii) LY(M,C,v) = LY(M,C, |v|)
(iv) | [o fdv] < [y, 1f1dlv| fir alle f € L*(M,C,v).
Beweis:
Wir beweisen nur (i), die anderen Aussagen sind dem Leser zur Ubung iiberlassen.

v << |v| ist klar. Wenn dv = fdp und g := %, dann gilt

fdp=dv=gdlv|=g|f|dp.

Dies zeigt f = g|f| p-fast iiberall und daher auch f = g|f| v-fast iiberall. Da aber |f]| > 0

v-fast iiberall, finden wir g = 1 v-fast {iberall.



Kapitel 5

Radon-Mafile

5.1 Der Rieszsche Darstellungssatz

Sei M ein lokal kompakter Hausdorff-Raum und C.(M) der Raum der stetigen Funktionen f: M — C
mit kompaktem Triiger. Ein lineares Funktional I: C.(M) — C heifit positiv, wenn I(f) > 0 falls f > 0.

Proposition 5.1.1 : Sei [: C.(M) — C ein positives lineares Funktional und K C M kompakt. Dann
gibt es eine Konstante Cx mit

Vfe Ce(M),supp f C K :  |I(f)] < Ck|lfllco-
Beweis:

IDEE: Wende das Lemma von Urysohn an.

Wir kénnen 0.B.d.A. annehmen, daf} f reellwertig ist. Nach dem Lemma von Urysohn gibt
es eine Funktion ¢ € C.(M) mit Werten in [0, 1], die auf K konstant gleich 1 ist. Wenn jetzt
f € Ceo(M) mit supp f C K ist, dann gilt |f| < || f|lcop- Dies liefert || f|lcop = f > 0, also nach
Voraussetzung || f|lcoI(¢) = I(f) > 0 und damit [I(f)] < I(©)|f|oo- n

Sei jetzt B, die Borel-o-Algebra auf dem lokal kompakten Hausdorff-Raum M. Ein Mafl u auf
(M, B ), fiir das gilt
VK C M kompakt : p(K) < oo,

heif3t ein Borel-Mafl auf M.

Wenn p ein Borel-Maf$ auf (M, B ) ist, dann gilt C.(M) C L*(M, p) und

1(f) = /Mfdu

definiert ein positives lineares Funktional auf C.(M).
Sei jetzt A € B ;. Dann heiit u von auflen regulir auf A, wenn

w(A) =inf{u(U) | A CU,U offen},
und von innen regulir auf A, wenn
w(A) =sup{u(K) | A D K, K kompakt}.

7
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Ein Borel-Maf}, das von innen und von auflen regulir auf A ist, heifit regular auf A. Ein Radon-Maf3
ist ein Borel-Maf}, das auf allen Borelmengen in M von auflen regulédr und auf allen offenen Mengen in
M von innen regulér ist.

Satz 5.1.2 (Rieszscher Darstellungssatz):  Sei M ein lokal kompakter Raum und I: C.(M) — C
ein positives lineares Funktional. Dann gibt es ein eindeutig bestimmtes Radon-Mafl p mit

WEQWJIm:Aﬁ@-

Das Maf hat dariiber hinaus folgende Eigenschaften:

(a) Fir jede offene Teilmenge U von M gilt

w(U) =sup{I(f) | f: M — [0,1] stetig mit supp f C U}.

(b) Fiir jede kompakte Teilmenge K von M gilt

pw(K)=inf{I(f)| f: M — R stetig mit f > yx}

Beweis:

IDEE: Die Eindeutigkeit ist leicht zu sehen. Fiir die Existenz konstruiere ein #ufleres Mafi u*
via p(U) := sup{I(f) | f: M — [0,1] stetig mit supp f C U} und p*(A4) := inf{a(U) | A C
U, U offen in M}. Dieses schrinkt man auf 8 ein.

Wir zeigen zunéichst die Eindeutigkeit. Sei p ein Radon-Maf mit I(f) = | v J dp fiir alle
feCo(M)und U C M offen. Wenn f: M — [0, 1] stetig ist mit supp f C U, dann folgt

I(f) < p(U).

Andererseits, wenn K C U kompakt ist, dann findet man mit dem Lemma von Urysohn eine
stetige Abbildung f: M — [0,1] mit supp f C U und f|x = 1. Fiir dieses f gilt

MMSAJW:HH

Da aber p auf U von innen regulér ist, liefert dies die Eigenschaft (a). Damit sind die Werte
von  auf den offenen Mengen vollstéindig durch I bestimmt. Da die offenen Mengen die Borel
o-Algebra erzeugen, ist also p durch I eindeutig festgelegt.

Um jetzt die Existenz von p zu beweisen, definieren wir zunéchst fiir jede offene Teilmenge
U von M
w(U) :=sup{I(f) | f: M — [0, 1] stetig mit supp f C U}

(endlich wegen Proposition 5.1.1) und dann fiir jede Teilmenge A C M
w*(A) :=inf{a(U) | A CU,U offen in M}.

Es ist klar, dafl g(U) < (V) falls U C V zwei offene Teilmengen von M sind. Damit folgt
sofort
YU C M offen : p(U) = p*(U).

Behauptung: Es gilt

*

(i) w* ist ein duBeres MasB.

(ii) Jede offene Teilmenge von M ist p*-mefibar.
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iii) Das durch den Satz 3.3.9 bestimmte Mafl 1 = p*|g3,, erfiillt
=By
w(K) =inf{I(f) | f: M — R stetig mit f > xx}

fiir jede kompakte Teilmenge K von M.
(iv) p ist ein Radon-Ma8B.
(v) I(f) = [, [ dp fiir jedes f e C.(M).

Wenn diese Behauptungen bewiesen sind, hat man den Satz bewiesen.

u (i): Wir zeigen, daB fiir jede Folge (U;),;en von offenen Mengen in M und U := UJEN ; gilt
a(U) < 7 en #(U;). Dann folgt fiir £ C M

—inf { Y 5(U;) | Uj offen, B C | J U}

JEN jEN

und (i) folgt mit Lemma 3.3.5.

Sei also (Uj);en eine Folge von offenen Mengen in M und U := {J; ¢y U;. Fiir jede stetige
Funktion f: M — [0,1] mit K :=supp (f) C U gibt es ein n € N mit K C Uj:1 U;. Wir
beniitzen eine Teilung der Eins auf K: Dies sind kompakt getragene stetige Funktionen
g1, gn: M — [0,1] mit supp(g;) € U; und Z;—;l g; = 1 auf K. Aber dann gilt

f= Z?Zl fg; und supp (fg,;) C U;, was zu

n

I(f) =Y _I(fg)) sz Z

j=1
fithrt. Da f mit den erwéhnten Eigenschaften beliebig war, zeigt dies gerade p(U) <
Z;il ﬁ(Uj)~
Zu (ii): Seien zunéchst U, A C M beide offen. Dann ist ANU offen, und zu € > 0 finden wir eine
stetige Funktion f: M — [0, 1] mit kompaktem Triiger supp (f) € ANU und

I(f) > WANT) —e.

Analog, weil A \ supp (f) offen ist, finden wir eine stetige Funktion g: M — [0, 1] mit
kompaktem Tréger supp (g) C A\ supp (f) und

I(g) > f(A\ supp (f)) — €.

Aber dann gilt f+ g: M — [0,1] und supp (f + g) C A, also

aA) = I(f)+1(g)
> A(ANU)+ p(A\supp (f)) — 2e
> p(ANU)+p*(A\U) — 2e.

Jetzt 146t man e gegen 0 gehen und findet p(A) > p*(ANU) 4+ p*(A\ U).
Fiir ein allgemeines A C M mit p*(A) < oo findet man eine offene Umgebung V 2 A
mit (V) < p*(A) + € und rechnet

pr(A) +e a(v)
pr(VnuU)+p(V\U)
p(ANU) +p*(A\ D).
>

AVARAVARLY,

Wieder mit € gegen 0 ergibt sich p(A4) > p*(ANU) + p*(A\ U), was nach Bemerkung
3.3.8 die Gleichheit

i(A) = p*(ANU) + p* (A\U)
zeigt.
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Zu (iii):

Zu (iv):

Zu (v):
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Das Maf} i ist von auflen regulidr nach Satz 3.3.9. Sei jetzt K C M kompakt und f €
C.(M) mit f > xk. Fiir 1 > € > 0 betrachte die offene Menge U, := {z € M | f(x) >
1 — €}. Fiir jede stetige Funktion g: M — [0, 1] mit kompaktem TTager supp (g9) C U,
gilt g < (1—¢€)71f, also I(g) < (1 —¢€)"LI(f). Dies liefert

u(K) < p(Ue) < (1—e)HI(f)

und mit € — 0 sogar u(K) < I(f).

Umgekehrt, fiir eine offene Umgebung U von K findet man mit dem Lemma von Urysohn
eine stetige Funktion f: M — [0, 1] mit kompaktem Tréger supp (f) C U und f|x = 1.
Es gilt also f > xx und I(f) < p(U). Da p von aulen reguliir ist, folgt die Behauptung.

Bis jetzt haben wir gesehen, dafl y auf kompakten Mengen endliche Werte annimmt und
von auflen regulér ist. Bleibt zu zeigen, dafl p auf offenen Mengen von innen regulér ist.
Sei dazu U C M offen und r < pu(U). Wir wihlen eine stetige Funktion f: M — [0, 1]
mit kompaktem Tréger K :=supp (f) C U und I(f) > r. Dann gilt nach (iii) p(K) > r,
also die innere Regularitit.

Es geniigt zu zeigen, daf} fiir jede kompakt getragene stetige Funktion f: M — [0, 1] gilt
I(f)y= [ o fdu, da diese Menge von Funktionen ganz C.(M) aufspannt. Sei also f so
eine Funktion. Fiir N € Nund 1 < j < N setze K; := {z € M | f(x) > N~'j} sowie
Ky :=supp (f). Wir definieren Funktionen fi,..., fxy € C.(M) durch

0 r € K
fite) = fle)=N"'(j—-1) z2eK; 1\K;
Nil Z'EK]‘

oder f; = min{max{f — N~'(j —1),0}, N"'}. Es gilt N~ xk, < f; < N™'xg,_,, also

N7hu(Kj) < / fidp < N7'p(Kj-1).
M

Da f; € C.(M), gilt fiir ein offenes U D K;_1 die Ungleichung I(f;) < N~'u(U). Wegen
(iii) und der duBeren Regularitit ergibt sich

N7 u(Ky) < I(f;) < N™Ha(H-a).

Mit f = Zjvzl f; finden wir jetzt

N

N‘lzu(Kg) /fdu<N 1ZM i-1),
N N

N7 () < I(f) < NS (K, ),
Jj=1 j=1

und

- /M fdpl < N=Y(u(Ko) — p(Kx)) < N~ p(supp (£)).

Weil aber p(supp (f)) < oo ergibt sich mit N — oo die Behauptung.

Ubung 5.1.1 : Sei M ein lokal kompakter Hausdorffraum, N eine abgeschlossene Teilmenge von M und v ein
Radon-Maf} auf N. Zeige:
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(i) I(f) := [y fln dv ein positives lineares Funktional I: Ce(M) — C.
(ii) Das I induzierte MaBl p auf M ist durch p(E) = v(E N N) gegeben.

Ubung 5.1.2 : Sei p ein Radon-Ma8 auf M.

(i) Sei N die Vereinigung aller offenen Teilmengen U C X mit p(U) = 0. Zeige: p(N) = 0 und fiir jede offene
Teilmenge V C M mit V \ N # 0 gilt (V) > 0. Man nennt M \ N den Triger von p und bezeichnet ihn
mit supp p.

(ii) Zeige: Es gilt = € supp p genau dann, wenn [, fdp = 0 fiir alle f € Ce(M,[0,1]) mit f(x) > 0.
]

Ubung 5.1.3 :  Sei M die Einpunktkompaktifizierung einer diskreten Mengen. Zeige: wenn w1 ein Radon-Maf
auf M ist, dann ist supp p abzdhlbar. n

Ubung 5.1.4 : Sei R; die Menge R mit der diskreten Topologie und X := R x Ry mit der zugehérigen Pro-
dukttopologie. Zeige:

(i) Eine Funktion f: X — R ist genau dann in C¢(X), wenn f¥ € C.(R) und f¥ = 0 fiir alle bis auf endlich
viele y (hierbei ist f¥(z) = f(z,y)).
(ii) Durch I(f):=3" cr Jg f¥ wird ein positives lineares Funktional auf C.(X) definiert.

(iii) Das zu I gehorige Radon-Ma8 p erfiillt u(E) = oo fiir alle £ C X mit FN (R x {y}) # 0 fiir iiberabzihlbar
viele y € Ry.

(iv) Sei E = {0} x Rq4. Dann gilt u(E) = oo, aber u(K) = 0 fiir jede kompakte Teilmenge K von E.

5.2 Approximationseigenschaften

Sei (M, M, 1) ein Mafiraum und (f,)nen eine Folge meBbarer Funktionen f,,: M — C. Man sagt,
(fn)nen konvergiert im Maf} gegen eine mefibare Funktion f, geschrieben f,, —, f, falls

Ve>0: p({zeM||fu(z)— f(x)|>€}) — O

n—oo

Analog heifit (f,)neny Cauchy-Folge im Ma#, falls

Ve>0 : p({zeM||fu(@)— fml(x)|>€}) — 0.

n,Mm—00

Wenn (f,,)nen eine Folge in L'(M, C, ) ist, dann sagt man (f,,),en konvergiert im L'-Sinn gegen
f € L', wenn

=l = [ 1fu= fldn = 0,

Proposition 5.2.1 : Wenn f, — f im L'-Sinn, dann konvergiert f, —,, f.
Beweis:

IDEE: Betrachte A, . = {z € M | |fn(z) — f(2)| > €}.

Setze Ap.c = {x € M | |fu(x) — f(z)| > €}. Dann gilt

/Ifn—flduZ/ o= fldu > en(Ano).
M A

n,e

Also hat man
w(An) < € Hifn = fllu T 0,

was die Behauptung beweist. n
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Satz 5.2.2 : Seien (M, M, 1) ein Mafraum und (fn)nen eine Cauchy-Folge im Maf. Dann gilt
(i) Es gibt eine mefbare Funktion f: M — C mit f, —, f.
(ii) Es gibt eine Teilfolge (fn,)jen die p-fast iberall gegen f konvergiert.

(i) Wenn f, —, g, dann gilt f = g p-fast dberall.

Beweis:

IDEE: Konstruiere eine Teilfolge g; := fn;, fiir die A; := {z € M | |g;(x) — gj1(zx)] > 277} die
Ungleichung p(A4;) < 277 erfiillt und betrachte Fy, := Ujor 45

Wir wiihlen g; := f,,, mit pu(A;) <277 fiir
Aj={zeM | 19 (x) — gj41(z)| > 277}

Setze F, = U2, Aj, dann gilt u(Fy) < >2°2, 277 = 217F Fiir F = (), Fy, folgt u(F) =
limg—, 00 1(Fy) = 0 mit Proposition 3.2.4.

Wenn z € Fy, und i > j > k, findet man
i—1 i—1 ‘
(+) 195@) — @) < 3 g @) — a@)] < 327 < 21,
I=j =5

Also ist (g;)jen auf M\ F =,y M \ Fi punktweise eine Cauchy-Folge. Wir setzen

f(z) = {gmﬂﬂ 9:() ’ Z? .

Dann liefert () auch
Vo g Fi,j >k : |gj(z) — f(x)] <2279,

Wegen p(F)) — 0 folgt g; —, f. Dann mufl aber auch f,, —, f gelten, weil

k—oo
{o € M| Iful0)=f@)| 2 e} € {we M | |ful@)=—g;(@)] = S}ufw € M [lg;(0)— ()| = S}

Damit sind (i) und (ii) bewiesen.

Fiir (iii) beachten wir, da8 f, —, g und
{o e M| |f@)—g(@) > e} € {z e M| [7(@) ~ fala)| = SYU{z € M | [fu(e) —gla)] > £}

die Identitit p({z € M | |f(z) — g(z)| > €}) = 0 fiir alle € > 0 zeigen. Mit e = + — 0 ergibt
sich f = g u-fast tiberall. [

Korollar 5.2.3 : Wenn f, — f in L', dann gibt es eine Teilfolge (fn;)jen, die p-fast dberall gegen f
konvergiert.

Beweis:

Dies ist einfach eine Kombination von Proposition 5.2.1 und Satz 5.2.2. n
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Satz 5.2.4 (Egorov): Sei (M,DM,u) ein Mafiraum und p endlich, sowie f, und f mefbare Funktio-
nen auf M. Wenn f, — f p-fast iberall, dann gibt es zu € > 0 ein A € M mit u(A) < e und f, — f
gleichmiflig auf M \ A.

Beweis:

IDEE: Betrachte A, (k) :=U_, {z € M | |fm(z) — f(z)| = k~'}.
Wir kénnen 0.B.d.A. annehmen, daf} f, — f punktweise gilt. Fiir k,n € N setze

An(k) = | {2 € M| |fm(@) = f@)| = k.

Fiir festes k ist die Folge (A, (k))nen monoton fallend und es gilt (), .y An (k) = 0. Weil aber
(M) < oo kénnen wir mit Proposition 3.2.4 schlielen, dafl (A, (k)) — 0.

Fiir e > 0 und k € N wiihlen wir jetzt ny so groB, da$ p(A,, (k)) < €27% und setzen

A= A, (k).

keN

Dann gilt p(A) < € und wir haben
Vo >ng,e g A | falz) — flo)] < k7L

Also konvergiert f, — f gleichméfig auf M \ A. [

Lemma 5.2.5 : Sei M ein lokal kompakter Raum und p ein Radon-Mafl auf M. Dann ist u auf allen
o-endlichen Mengen von innen reguldr.

Beweis:

IDEE: Zeige zunichst die Regularitéit auf Mengen von endlichem Ma8.

Sei p(A) < oo und € > 0. Dann gibt es eine offene Umgebung U D A mit p(U) < u(A) + €
und eine kompakte Teilmenge B C U mit u(B) > p(U) —e. Wegen u(U \ A) < e finden
wir auch eine offene Umgebung V O U \ A mit u(V) < e. Dabei kénnen wir annehmen, dafl
V C U. Dann erfiillt die kompakte Menge K := B\V C A

w(K) = p(B) = (BNV) > p(A) — e — p(V) > p(A) — 2e.

Damit ist g von innen reguldr auf A.

Wenn (A) = oo, aber A = ;o A;, wobei (4))jen eine aufsteigende Folge in B mit

p(A;) < oo ist, dann gilt (A;) — oo. Also gibt zu N € N ein j € N mit p(A4;) > N und
j—o00

der erste Teil des Beweises liefert eine kompakte Teilmenge K C E; mit u(K) > N. Damit
ist also p auch auf so einem A von innen regulér. L]

Lemma 5.2.6 : Sei M lokal kompakt und p ein o-endliches Radon-Maf auf (M, B ). Zu A € By
und € > 0 gibt es eine offene Umgebung U von A und eine abgeschlossene Teilmenge F' von A mit
w(U\F) <e.
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Beweis:

IDEE: Uberdecke Mengen A; endlichen MaBes durch offene Mengen U; so, da§ die Reihe Y, u(U;\ 4;)
konvergiert. Fiir abgeschlossene Menge argumentiere via Komplementbildung.

Schreibe A als disjunkte Vereinigung A = UjeN A; mit p1(A;) < 0o. Zu jedem A; findet man
eine offene Umgebung U; mit p(Uj) < p(A;) + 27771 und setzt U := J,y Uj. Dann ist U
offene Umgebung von A mit

pU\A) <ed 27971 = %

jEN

Dasselbe Argument, angewandt auf M \ A, liefert eine offene Umgebung V' von M \ A mit
w(VNA)<§. Fir F:=M\V gilt dann ' C A und

WU\ F) = p(U\ A) + p(A\ F) = u(U\ A) + p(ANV) < e.

Satz 5.2.7 :  Sei M lokal kompakt und jede offene Teilmenge von M sei abzdhlbare Vereinigung von
kompakten Mengen. Dann ist jedes Borel-Maf ist reguldr und insbesondere ein Radon-Maf.

Beweis:

IDEE: Konstruiere ein positives lineares Funktional aus 1 und beniitze die Regularititseigenschaften
des zugehorigen Radon-Mafles v.

Sei p ein Borel-Mafi. Da dann p auf allen kompakten Mengen endlich ist, gilt C.(M) C
LY(M, p) und I(f) = [, fdp definiert ein positives lineares Funktional auf C.(M). Sei v
das nach dem Rieszschen Darstellungssatz 5.1.2 zugehorige Radon-Mafl. Wenn U C M offen
ist, dann kann man es nach Voraussetzung als abzihlbare Vereinigung U = | jen K von
kompakten Mengen K; schreiben. Wihle mit dem Lemma von Urysohn f; € C.(M) mit
supp (f1) € U und f|g, = 1. Dann definiert man induktiv f,, € C.(M) mit supp (fn) C U
und f |U_?’: , K;UUTE supp (f;) = 1. Dann konvergieren die f,, monoton und punktweise gegen
xu- Der Satz 2.2.4 von der monotonen Konvergenz liefert

w(U) = lim fndp = lim / fndv =v(U).
Wenn jetzt A € B, und € > 0, dann finden wir mit Lemma 5.2.6 eine offene Umgebung V
von A und eine abgeschlossene Teilmenge FF C A mit v(V \ F) < e. Da aber V' \ F offen ist,
folgt u(V \ F') < e. Insbesondere haben wir u(V) < pu(A) + €, was die dulere Regularitéit von
u beweist. Wegen p(F) > u(A) — € und der Tatsache, dafl F sich als abzéhlbare Vereinigung
von kompakten Mengen schreiben 148t (das gilt fiir M statt F' und dann schneidet man die
kompakten Mengen mit F'), erhalten wir auch die innere Regularitit von p. [

Lemma 5.2.8 : Sei M ein lokal kompakter Raum und p ein Radon-Maf$ auf M. Dann ist C.(M) dicht
in LY (M, ).

Beweis:
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IDEE: Beniitze Lemma 5.2.5 und das Lemma von Urysohn um charakteristische Funktionen zu
approximieren.

Kombiniert man Lemma 2.2.3 mit dem Satz 2.2.4 von der monotonen Konvergenz, so sieht
man (nach Aufteilung in Real- und Imaginiirteil sowie anschlieBend in positive und negative
Teile), da8 die einfachen Funktionen dicht in L'(M, i) sind, also geniigt es zu zeigen, daB fiir
jedes E € By mit u(E) < oo die charakteristische Funktion x g in L'(M, i) durch Elemente
von C.(M) approximiert werden kann. Mit Lemma 5.2.5 finden wir eine kompakte Teilmenge
K C E und eine offene Umgebung U D F mit u(U \ K) < €. Das Lemma von Urysohn liefert
dann eine stetige Funktion f: M — [0, 1] mit kompaktem Triger supp (f) C U und f|x = 1.
Dies zeigt xx < f < xy und daher

Ixe — flli <w(U\K) <e.

Satz 5.2.9 (Lusin): Sei M ein lokal kompakter Raum und p ein Radon-MafS auf M. Weiter sei
fi+ M — C eine mefbare Funktion, fir die gilt u({x € M | f(x) # 0}) < co. Dann gibt es zu jedem € > 0
ein ¢ € Co(M) mit

p{z e M| f(z) # o(z)}) <e

Wenn f beschrinkt ist, kann man ¢ so wdhlen, daf

lellos < II.fllso-
Beweis:

IDEE: Approximiere f durch eine Folge stetiger Funktionen und betrachte eine hinreichend grofie
Menge, auf der die Konvergenz gleichméfig ist.

Wir setzen E := {& € M | f(z) # 0} und nehmen zunéchst an, dafl f beschrinkt ist.
Dann gilt f € L'(M, ) und Lemma 5.2.8 zeigt, daB es eine Folge (g, )nen in C.(M) gibt, die
in L'(M, ) gegen f konvergiert. Mithilfe von Korollar 5.2.3 kénnen wir annehmen (durch
Ubergang zu einer Teilfolge), daBl (gn)nen p-fast iiberall gegen f konvergiert. Jetzt wenden
wir Egorovs Satz 5.2.4 an und finden eine Teilmenge A C E auf der (gn)nen gleichméBig
gegen f konvergiert und fiir die gilt u(£\ A) < §.

AuBlerdem liefert Lemma 5.2.5 eine kompakte Teilmenge B C A und eine offene Umgebung
U DO E mit

;L(A\B)<§ und u(U\E)<§.

Da g, — f auf B gleichméBig konvergiert und B kompakt ist, ist f|p stetig. Der Fortset-
zungsatz 7?7 von Tietze liefert uns eine Funktion g € C.(M) mit g|p = f|p und supp (g) C U.
Also gilt

{zeM|f(z)#g(x)} CU\B
und letztere Menge hat Maf} kleiner als e.

Bleibt im Falle eines beschrankten f noch die Normabschétzung zu zeigen. Dazu betrachte
die stetige Funktion §: C — C, die durch

e 1 < 1l
Az = {,znﬂm 21> 1 flle

definiert ist. Dann erfiillt ¢ := o g die Ungleichung ||¢||co < ||f|lco, und es gilt ¢ = f auf
der Menge {x € M | f(z) = g(z)}.
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Wenn f nicht beschrinkt ist, setze A, := {x € M | 0 < |f(z)| < n}. Dann ist (A,)nen eine
monoton steigende Folge mit (J, .y An = E. Also gibt es zu e > 0 einn € Nmit u(E\A,) < §
Der erste Teil des Beweises liefert ein ¢ € C.(M) mit ¢ = fxa, auflerhalb einer Menge vom
Maf kleiner §. Damit ist also ¢ = f auflerhalb einer Menge vom Maf} kleiner e. [

Ubung 5.2.1 : Sei (M, 9, 1) ein Mafraum und f,,, f: M — C meBbar fiir n € N. Zeige, daB folgende Bedin-
gungen dquivalent sind:

(1) o —u [
(2) Zu jedem e > 0 gibt es ein N € N mit
V>N : p({zeM||fu(z)— f(z)] =€} <e€
gegeben.

Ubung 5.2.2 : Sei (M, 0N, 1) ein Mafraum sowie f,, und f meBbare Funktionen auf M. Weiter sei g: M — R
integrierbar mit |f,| < g fiir alle n € N. Zeige: Wenn f, — f p-fast iiberall, dann gibt es zu € > 0 ein A € 9 mit
uw(A) < eund f, — f gleichmifig auf M \ A. [

Ubung 5.2.3 :  Sei (M, 9, u) ein MaBraum mit endlichem g und f: M x [0,1] — C eine Funktion, fiir die
f(,y): M — C meBbar ist fiir jedes y € [0, 1] sowie f(z,-): [0,1] — C stetig fiir jedes x € M. Zeige:

(i) Fir 0 <e€,6 <1 ist die Menge
Ees:={zeM||f(z,y) — f(z,0)] > ¢ fiir alle y < 5}

mefbar.
(ii) Fiir jedes € > 0 gibt es eine meBbare Teilmenge £ C M mit u(E) < € und f(-,y) — f(-,0) gleichm#Big
y—
auf M\ E.
[
Ubung 5.2.4 : Sei u ein Radon-Ma# auf einem lokal kompakten Hausdorffraum M und ¢ € C(M, [0, oo]). Zeige:

Durch v(E) := fE ¢ dp wird ein Radon-Mafl v auf M definiert. Hinweis: betrachte das Funktional f +— fM fodu.
[

5.3 Der Satz von Bochner

Eine stetige Funktion f: R™ — C heifit positiv definit, wenn fiir jede endlich Auswahl z1,...,zN
von Punkten in R™ die Matrix (ai;); j=1,...,n mit

aij = f(zi — ;)
positiv semidefinit ist.

Beispiel 5.3.1 : Die Exponentialfunktionen f: R® — C mit f(z) = " wobei h € R" fest gewihlt
und « - h das euklidische innere Produkt von x und h ist, ist positiv definit. Um das zu sehen, rechnet

man
N N N N
§ § ez(wj—zk Z—: E E za:J zj R hzk — ‘ E ezzJ ‘ > 0.
=1 k=1

j=1k=1
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Bemerkung 5.3.2 : Sei f: R™ — C positiv definit. Wéhle z; = 0 und 25 = 2. Dann ist die zugehorige
positiv semidefinite Matrix gleich

Da A insbesondere hermitesch ist, gilt f(—z) = f(z)
nichtnegative Eigenwerte, also gilt 0 < det(A4) = £(0)? — f(z)f(—x). Der Test gegen den Vektor (é)
zeigt £(0) > 0. Also folgt

. Nach dem Sylvesterschen Trégheitssatz hat A nur

f(0) = [f(=)].

Bemerkung 5.3.3 : Sei p ein endliches Radon—-Maf} auf R™. Dann gilt

d — 0
/nf ’u”f“oo_)o

Insbesondere ist p, betrachtet als lineares Funktional auf dem Schwartzraum S(R™) stetig, d.h., eine
temperierte Distribution. Daher kann man die Fourier—Transformierte /i eines endlichen Radon-Mafes
1 betrachten. Mit dem Satz 2.4.5 berechnet sie sich durch

(1, @)
[ ] et mecanaue)

[ oo [ e iue o

d.h., sie ist durch die temperierte (sogar beschriinkte) Funktion

(o) =

@ | e du(E)
R

gegeben, die wir ebenfalls mit /i bezeichnen (vgl. Beispiel A.4.1). L]

Satz 5.3.4 (Bochner): Sei f: R"™ — C eine Funktion. Dann sind die folgenden Aussagen dquivalent:
(1) f ist positiv definit.

(2) FEs existiert ein endliches Radon-Maf p mit
flz) = / e~ T du(€) Ve R™

Beweis:

»(2)=(1)“: Die Stetigkeit von f folgt sofort aus Satz 2.4.6(i) aus der Stetigkeit der beschrénkten
Funktion (x,¢) +— e~*¢. Die Rechnung aus Beispiel 5.3.1 liBt sich ebenfalls unter das
Integral ziehen:

N N )
PIPIEED / TS dp(€)

N N
szemj.f szemk.g du(€)
j=1 k=1

j=1k=1 Rn R™
N 74152
= [ me] due)
R J=t
> 0.
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»(1)=(2)“: Sei ¢ € S(R™) eine Schwartzfunktion. Nach Bemerkung 5.3.2 ist f beschriankt. Da ¢
nach Bemerkung A.2.4 integrierbar ist, ist auch die Funktion

(z,y) = f(z — y)p(2)o(y)

integrierbar. Fiir M € N zerlege den Wiirfel | — M, M|™ in Wiirfel Wy, ..., Wy, die Trans-
late von | — ﬁ, ﬁ] sind. Die Mittelpunkte dieser Wiirfel seien mit z1,...,zN bezeichnet.
Weiter sei far die Funktion, die auf jedem Wiirfel W; konstant mit dem Wert f(z;) ist.
Analog definiert man die Funktionen ¢j;. Dann konvergieren die fj; punktweise gegen

f sowie die pp; gegen ¢ und der Satz 2.4.4 von der dominierten Konvergenz zeigt, dafl

N N
/ L @yl dedy = lim 3> f(a; - w)plas)p(od) volWyvol W 2 0,

M—o0 4
j=1k=1

wobei volW; = ]f;;, das Volumen von W; ist. Mit dem Satz 2.4.5 von Fubini ergibt sich
iiber die Substitution z =  — y (wegen der Translationsinvarianz des Lebesgue-Mafies)

0< [ 1) [ wlpE=aded: = [ 1)) ) de

wobei @(z) = p(—2) ist und ¢ * ¢ die Faltung von ¢ und . Nach Bemerkung A.2.5 gilt
px @ € S(R™), deren Fourier—Transformierte nach Satz A.3.2 durch

()" =do=0d =2

ist. Wir betrachten die Funktion f € L'(R™) gem#f Beispiel A.4.1 als temperierte Dis-
tribution. Mit der Fourier—Inversionsformel aus Bemerkung A.4.10 ergibt sich also

0<(f,0x@) = (/)" oxd) = (f, 18

Da ¢ eine beliebige Schwartzfunktion war und die Fouriertransformation nach Korollar
A.3.9 ein Automorphismus von S(R™) ist, finden wir, daf§

0 < (f, 9%

fiir alle ¢ € S(R™). Sei jetzt g(x) = e ™#I" die Gau-Funktion (vgl. Beispiel A.3.5),
0 < h e C®(R") und € > 0. Dann ist h+e2g € S(R™) strikt positiv. Mit der Kettenregel
sieht man, dafl ¢ = \/h + €2g € C>°(R"™), aber da 1(z) auBlerhalb des Triigers von h
mit v/g(z) = e~31eI” {ibereinstimmt, gilt sogar ¥ € S(R™). Da € > 0 beliebig gewé#hlt
werden kann, liefert die sich ergebende Ungleichung

0 < (f,181%) = (f,h) +€(f,9),

daB 0 < (f,h) fiir alle 0 < h € C°(R"). Beachte, daB f nach dem Riemann-Lebesgue-
Lemma A.3.3 insbesondere temperiert ist. Also gilt nach Beispiel A.4.1, daf

(f,h) = fh.
]R'n.

Aber nach dem Satz von Stone-Weierstrafl (angewendet auf eine feste kompakte Teil-
menge von R™) ist C'¢°(R™) dicht in C.(R™) bzgl. der gleichméfligen Konvergenz, woraus
man ableitet, daB 0 < (£, h) fiir alle 0 < h € C.(R").

Nach dem Rieszschen Darstellungssatz 5.1.2 bedeutet das aber gerade, da f durch ein
Radon-Maf p via

o= [
gegeben ist. Mit Bemerkung 5.3.3 erhalten wir

@) = (F)@) = i) = [ e (o),
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falls wir zeigen konnen, dafl p endlich ist.

Sei n := g * g. Dann ist /) = |g§|> = g? = 7 positiv und integrierbar, definiert also ein
endliches Radon-Maf3. Nach dem ersten Teil des Beweises ist dann n = ()" positiv
definit. Nach Beispiel A.3.5 gilt

™

n(z) = 9% 3lel”,
Betrachte die Familie
nt(x) = t_nn (%) = (2t2)_g67ﬁ|w‘2

von dilatierten Funktionen fiir ¢ > 0. Die Fourier—Transformierten dieser Funktionen
sind also durch

. _ot2lg|2
n(§) =e 247 mlel

gegeben, also insbesondere positiv und integrierbar. Damit sind die 7; positiv definit,
was man aber auch direkt aus der positiven Definitheit von 7 hétte ableiten kdnnen.
Beachte, daf§ nach Beispiel A.3.5 und Satz A.1.6 gilt

/ ne(z) dz = 1.
Es folgt

f0) = f(@)me(—x) da
Rn

<f7 ﬁt>
= <f’ ﬁt>

= / [7e[* dpa
R’IL
= / e—2t° el du(g).

Da aber £ — e=20°7IE” fiir ¢ — 0 gleichméfig auf Kompakta gegen 1 konvergiert, ergibt
sich pu(K) < f(0) fiir jedes Kompaktum K C R™. Da pu regulér ist, folgt die Behauptung.

5.4 Das Haarsche Maf3

G bezeichne eine lokalkompakte topologische Gruppe, C.(G) den Raum der stetigen Funktionen auf
G mit kompaktem Triger

supp (f) = {z € G: f(z) # 0}
und CF(G) darin den Kegel der nicht-negativen Funktionen. Wir definieren eine Norm auf C.(G) durch
[|f]] :== max{|f(g)|: g € G}. Die Gruppe G wirkt auf dem Raum C.(G) durch
G x C.(G) — C.(GQ), (g, f) = Xg(f) == fodg
und durch
GXCC(G)_)CC(G)7 (g7f)Hpg(f) ::fopga

wobei Ag(h) = gh und py(h) = hg ist.
Angesichts des Rieszschen Darstellungssatzes 5.1.2 bezeichnen wir ein lineares Funktional p auf C.(G),
das auf Cf (G) nicht-negativ ist, d.h.

u(f)=0  VfellH(a),
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als ein positives Mafl auf G. Man schreibt dann auch

| f@duta) == ur).
Ein positives Maf p auf G heifit linksinvariant, wenn
/fgwdu /f Ydu(z Vge G
und rechtsinvariant, wenn

/fxgdu /f V() Vg eG.

Ein links- bzw. rechtsinvariantes positives Maf 1 auf G heifit links- bzw. rechtsinvariantes Haarsches
Maf3 , wenn pu(f) > 0 fiir f € CF(G) \ {0} gilt.

Wir setzen nun K := C.(G),Ky = CF(G) und K% := K, \ {0}. Fiir eine kompakte Teilmenge
C C @ bezeichnen wir mit C.(C) die Menge aller Funktionen in K, deren Tréiger in C enthalten ist und
setzen K7 (C) := C.(C)NK}.

Lemma 5.4.1 : Fir g € K} und f € K ezistieren s1,...,5, € G, so daff f <> | cihs,(9)-
Beweis:

Sei U eine offene Teilmenge von G mit infsey g(s) > 0. Dann kann man supp (f) mit endlich
vielen Mengen der Gestalt sU iiberdecken und erhélt damit die Behauptung fiir hinreichend
grofe c;. [

Lemma 5.4.2 : Sei (f : g) das Infimum der Zahlen Y., ¢; fir alle Systeme (c1,...,¢n, 51, ..., Sp) mit
F <Y cids;(g). Dann gelten folgende Aussagen :

i) Asf:9)=(f:9) Ve K,ge Kt s€G.
(i) (rf:9) =r(f:9) Vfe K,ge K%, reRY.
(iit) (f+f):9)<(f:9)+(f:9) Vf. ' € K,g€ K},
(iv) (f :g) = sup(f)/sup(g) VieK,ge K.
(V) (f:h)<(f:9)(g:h) VfeK,g,he K.
(v) 0< iy < 9 < (£ - fo) V. fo.g € K7

(vii) Seien f, f',h € K mit h(s) > 1 @m Triger von (f + f') und € > 0. Dann existiert eine kompakte
FEinsumgebung V von 1 in G, so daf

Fe+(f 9 <((f+f):g)+e(h:g) VgeKi(V).

Beweis:
Die Eigenschaften (i) bis (iii) sind evident.
(iv) Ist f <> . cids; (g) mit ¢; > 0, so gilt

sup f < () ¢;)supg.

%
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(v) Ist f <37 cids,(9) und g < 37 djAe;(h) mit ¢;,d; > 0, so ist
f< Z Cidj)‘&itj (h)
,J
und somit (f : h) <37, ceidy = (32, ¢)(D2; dy)-
(vi) Hierzu wendet man (v) auf fy, f, g an.

(vii) Wir setzen F := f + f’ + 3eh. Die Funktionen ¢,¢’, die auf dem Tréger von f + f’
mit f/F, f'/F {ibereinstimmen und auflerhalb verschwinden, gehéren zu K7 . Also sind sie
gleichmiBig stetig (Ubung 5.4.1) und wir finden zu jedem 1 > 0 eine Einsumgebung V C G,
so daf

6(z) —o(y)| <m, [¢'(z)—¢(y)|<n, fir yeaV.
Sei nun g € K3 (V). Dann gilt ¢As(g) < (6(s) +1)As(g) und ¢'As(g) < (¢/(s) + 1) As(9)
(Nachweis !). SlIld €y Cp > 0und sq,...,8, € Gmit F <) . ¢;\q,(g), so haben wir

f=0oF < Zcz¢)\s g < ZCZ Sz + 77)>\sig

und ebenso fiir f/. Damit ist

(f:9)+(f: g<Zcz d(s:) + ¢'(s1) +2) < 1+2n§jcz,

da ¢ + ¢’ < 1. Mit der Definition von F und (ii), (iii) und (v) schlieBen wir nun
(fro)+(f:9) < (A+2n)(F:g)

< (U + )1 9)+ gelhg))
< ((F+1):9)+ %e(h cg)+20((f + 1) s B)(h = g) +en(h: g).
Hieraus folgt (vii) sofort, wenn man 7 ausreichend klein wéhlt. L]

Satz 5.4.3 :  Auf einer lokalkompakten Gruppe existiert ein linksinvariantes und ein rechtsinvariantes
Haar’sches Maf.

Beweis:

Die Familie der Obermengen der Mengen K% (V) fiir V' € U(1) bilden einen Filter auf K7 .
Sei F ein feinerer Ultrafilter und fo € K7} fest. Fiir f € K7 setzen wir

(f:9)
(foig) (f f)

(Lemma 5.4.2(vi)). Dann ist «(F) ein Ultrafilter auf dem kompakten Raum [ T fo ,(f + fo)]
(Satz B.6.9) und daher existiert I(f) := lim «(F) (Satz B.6.11) und der Limes ist eindeutig, da
Intervalle separiert sind. Nach iii) ist I(f + f') < I(f)+I(f’) und mit vii) folgt I(f)+I(f") <

I(f + f') +el(h) fiir € >0 und fiir jede Funktion h € K73 mit hlsupp (74-5) = 1. Die Existenz
so einer Funktion folgt aus dem Lemma von Urysohn. Also ist I(f + f') = I(f) + I(f'). Ist
nun f € K, so setzen wir zunichst fi := max(0, f) und f_ := fy — f. Wir definieren nun
I(0) = 0 und I(f) := I(fy) — I(f-). Dadurch wird auf K ein lineares Funktional definiert
(Ubung). Nach Lemma 5.4.2(i) gilt sogar

I ) =1(f) VgeG, feK

Ig(f) =

und o : K} — [——,(f: fo)l, g— 14(f)

und damit ist I ein linksinvariantes Haarsches Maf. Die Existenz eines rechtsinvarianten
Haarschen MaBes folgt aus der Existenz des linksinvarianten fiir die Gruppe G°P = (G, *) mit
dem Produkt x x y = yx. n
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Unser néchstes Ziel ist es, die Eindeutigkeit bis auf einen positiven Faktor zu zeigen.
Lemma 5.4.4 : Sei u ein positives Maf auf G. Dann gelten folgende Aussagen :
(1) w(f) < u(f') fir f,f" € Ce(G) mit f < f'.
(i) |u()] < wdlf)) fir f e K.

(iii) Zu jeder kompakten Teilmenge V' C G existiert ein Cy > 0 mit
lW(HI < Cvllfll VfeCe(V).

Beweis:

(i) Das folgt aus p(f’) — pu(f) = u(f' = f) = 0.
(ii) Aus (i) folgt p(f) < wp(|f]) und —p(f) = w(—f) < p(|f]) und damit die Behauptung.
(

iii) Nach Satz A.42 finden wir h € Ky mit hly = 1. Fiir f € C.(V) ist daher |f| < ||f]|h.
Also gilt

(O] < £ < NN pCh).-

Lemma 5.4.5 : Sind V,Vi,Va C G kompakt mit VVi U ViV ™! C Vs, so ist sind die Abbildungen

Vx (CcV) Il 1) = (Cc(Va) - 1), (9,0) = Agf
und

Vox (Ce(W) I -11) = (Ce(Va) Il 11), (9.f) = pof
stetig.

Beweis:

Wegen supp (Mg f) = gsupp (f) ist Ay f € C(V2) fiir f € Ce(V1). Seinune > Ound (g, f) € V'x
C.(V1). Da f gleichmiBig stetig ist (Ubung 5.4.1), finden wir eine symmetrische Einsumgebung
W C G mit

[fly~le) — f(x)]  VyeWzed.

Ist nun (¢/, f') € V x C.(V1) mit ¢’ € Wg und ||f — f’|| < ¢, so folgt

Mg " = A fIl < 1A (f = DI+ [IAg f = Agfll S €+ € = 2e.

Die zweite Behauptung folgt analog. [

Lemma 5.4.6 : Sei h € C.(G x G) mit supp (h) C V x V fiir eine kompakte Menge V- C G. Dann
gelten folgende Aussagen :

(i) Die Abbildungen
G—CV), g (z+ hig,2))

und

G — Cu(V), g (z+ h(z,g))

sind stetig.
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(ii) (Fubini) Sind p und p' positive Mafe auf G, so sind die Funktionen g — [, h(x,g) du(x) und
g Joh(g,x) dy'(x) stetig mit

//hxydu ) (y //hfcydu )dp ().

Beweis:

(i) Das folgt sofort aus der gleichmiBigen Stetigkeit von h (Ubung 5.4.1).

(ii) Die Stetigkeit der beiden Funktionen folgt aus (i) und Lemma 5.4.4 Damit sind beide
Doppelintegrale wohldefiniert, da die Tréger beider Funktionen wieder in V liegen. Nach
Lemma 5.4.4 sind die linearen Abbildungen

a: Co(V x V) >R, fH/G/Gf(x,y) du(x)dp' (y)

und

g0V xv) =R [ [ [ fe) diaute)
beide stetig bzgl. || f|| := max{|f(z,y)|: z,y € V}. Wie man sofort sieht, stimmen sie auf den
Funktionen der Gestalt f(x,y) = fi(x)f2(y) iiberein. Nach dem Satz von Stone-Weierstrafl

liegt der von diesen Funktionen aufgespannte Untervektorraum dicht in C.(V x V). Daher
stimmen die beiden stetigen Funktionen o und 8 sogar auf C.(V x V) tiberein. n

Satz 5.4.7 : Sind p und p' linksinvariante Haarsche Mafe auf G, so existiert X > 0 mit u’ = Ap.

Beweis:

Sei f € K mit u(f) # 0. Nach Lemma 5.4.4 und Lemma 5.4.5 ist die Funktion
1
D:: G — R, 8»—>—/fts du'(t
) 5 [ e au

stetig. Sei g € K. Die Funktion (s,t) — f(s)g(t~'s) hat kompakten Triiger in G' x G. Wir
setzen §(z) := g(z~1). Damit folgt

W@ = [ 1) duts) [ g™t e
= /f(s) du(s)/ g(t™'s) du'(t) Linksinvarianz von u/
G fe!
= [ [ 5t s) ') duts)
cJla
//f(s)g(tils) du(s) dp/(t) Fubini
/ / f(ts)g w(s) du'(t) Linksinvarianz von g

- / /fts dyl(t) du(s)  Fubini
= wlg-pw(f)Dy) = pu(f)u(g - Dy).

Also ist
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Aus Ubung 5.4.2 folgt damit Dy = Dy fiir f, f' € K. Wir setzen D := Dy. Hiermit ist

W (f) = DW)n(f) Vi€ K

und damit fiir alle f € K. Die Ungleichung D(1) > 0 folgt, weil y’ ein linksinvariantes
Haarsches Maf ist. L]

Beispiel 5.4.8 :
(i) Auf den reellen Zahlen R definiert das Lebesgue-Maf ein Haarsches Ma8.

(ii) Auf den ganzen Zahlen Z ist
u(f):=Y_f(n)  VfeCZ)
nez

ein Haarsches Maf3.

(iii) Auf dem Kreis R/Z definiert

wp= [ reszma vrecmz)

ein Haarsches Maf3.

(iv) Auf einer endlichen Gruppe (mit der diskreten Topologie) ist durch

p(f)=>_ fg)

geG

ein Haarsches Maf} gegeben.

Satz 5.4.9 : Sei u ein linksinvariantes Haarsches Maf auf der lokalkompakten Gruppe G. Dann existiert
ein stetiger Homomorphismus

A: G- RE = (RY {0},
mit

popg=~Agp  VgeG.

Beweis:

Zunéchst ist
1o pg(Aef) = wlpgAaf) = W Aapgf) = plpgf) = 1o py(f).

Also ist p o pg ein linksinvariantes Haarsches Mafl und es existiert A(g) €]0, co[ mit o pgy =

A(g)p. Sei f € K. Dann ist

1

A(g) = mu(pgf)

und nach Lemma 5.4.5 ist A stetig. Die Homomorphie folgt sofort. [

Man nennt die Funktion A aus Satz 5.4.9 auch die modulare Funktion von G (sie hingt nicht von u
ab). Eine lokalkompakte Gruppe G heifit unimodular, wenn ein linksinvariantes Haarsches Maf} auf G
auch rechtsinvariant ist, d.h. wenn A(G) = {1} ist.
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Satz 5.4.10 :

(i) Kompakte Gruppen sind unimodular.

(ii) Abelsche lokalkompakte Gruppen sind unimodular.

(iii) Lokalkompakte Gruppen mit dichter Kommutatorgruppe G' = (G, G) sind unimodular.
Beweis:

(i) In diesem Fall ist A(G) eine kompakte Untergruppe von R} und damit gleich {1}.

(i) Klar, da pgf = Aj-1 f fiir f € Co(G) und g € G.

(iii) Die Untergruppe A((G,G)) C (RF,R}) = {1} ist dicht in A(G) und damit ist A(G) =
{1}. "

Korollar 5.4.11 :  Auf einer kompakten Gruppe G existiert genau ein biinvariantes Haarsches Mafl p
mit p(l) = 1.

Beweis:

Das folgt aus Satz 5.4.10, dem Eindeutigkeitssatz und 1 € K7 . n

Wir nennen ein Haarsches Mafl p auf einer kompakten Gruppe G mit u(G) = 1 ein normiertes
Haarsches MaSf} .

Eine der wichtigsten Anwendungen des Haarschen Mafles auf kompakten Gruppen ist die folgende

Satz 5.4.12 : (Weylscher Trick) Sei G eine kompakte Gruppe, V' ein endlichdimensionaler Hilbertraum
mit dem Skalarprodukt (-,-) und 7: G — GL(V) ein stetiger Homomorphismus. Dann existiert auf V' ein
Skalarprodukt (-,-), fir das alle Abbildungen w(g) orthogonal sind.

Beweis:

Wir setzen
@) = [ (rlo)o.7(0)y) dutg) Yoy eV
G

fiir ein normiertes Haarsches Mafl p auf G. Das Integral ist wohldefiniert, da alle Funktionen
g — (7(g9)z,m(g)y) stetig sind. Man priift sofort nach, daB (-,-) symmetrisch und bilinear
ist. Fiir x = y ist (z,z) > 0, da der Integrand eine positive Funktion ist. Also ist (-,-) ein
Skalarprodukt. Fiir ¢’ € G ist

(m(g")x,m(g")y) = (z,y)

wegen der Linksinvarianz des Haarschen Mafles. Also sind die Abbildungen w(g) bzgl. (-,-)
alle orthogonal. n

Ubung 5.4.1 : Sei G eine lokalkompakte Gruppe und f € C.(G). Dann ist f gleichmiBig stetig in dem Sinne,
da zu € > 0 eine Einsumgebung V' C G so existiert, dafl

If(z) = fly)| <e fir yeaV.
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Ubung 5.4.2 : 2. Sei y ein Haarsches Ma8 auf der lokalkompakten Gruppe G und h € C(G) mit p(fh) = 0 fiir
alle f € C.(G). Dann ist h = 0.

Hinweis: Ist f € K7}, so ist auch p(fh?) = 0. Man verwende nun Satz A.42, um fiir alle ¢ € G eine Funktion
f € K} mit f(g) =1 zu finden. [

Ubung 5.4.3 : Zeige, da der Weylsche Trick fiir beliebige Hilbertriume H funktioniert, wenn man nur vor-
aussetzt, dafl die Funktionen
g m(g9)y

fir y € H stetig sind. ]

Ubung 5.4.4 : Sei G eine lokalkompakte Gruppe, p ein linksinvariantes Haarsches MaB auf G und C.(G) der
Raum der stetigen Funktionen mit kompaktem Triiger auf G. Fiir f,h € C.(G) definiere man die Faltung

f*h(g) = /G Floe™)h(z) du(z)

und setze
17l = | 1@ dua).
Man zeige:
(i) Mit dem Faltungsprodukt wird C.(G) zu einer assoziativen R-Algebra.
(i) Fir f,h € Co(G) gitt |[f + hlly < [Ifll1lIAlls, db. (C(G), 5| - IIs) ist eine normierte Algebra.

(iii) Die Vervollstandigung von C.(G) bzgl. der Norm || - ||1 wird mit L'(G) bezeichnet. Man kann die Faltung
zu einer assoziativen Multiplikation auf L'(G) fortsetzen, so daB L'(G) zu einer Banachalgebra wird.

(iv) Man iiberlege sich, wie die Faltung auf einer endlichen Gruppe aussieht.
(v) Was ist L'(G) fiir eine diskrete Gruppe, z.B. fiir Z ?

Ubung 5.4.5 : Wir behalten die Bezeichnungen aus Ubung 5.4.4 bei. Auf C¢(QG) betrachte man die Bilinearform

(f by = /G F@)h() du(z).

Man zeige:

(i) Diese Bilinearform ist positiv definit auf C.(G).
(ii) Die Vervollstdndigung von C.(G) bzgl. der induzierten Norm

Lf12 = /£, f)

bezeichnet man mit L?(G). Durch die Fortsetzung des Skalarprodukts auf L?(G) wird dieser Banachraum
zu einem Hilbertraum.

(iii) Man zeige, daB die Abbildungen Ag: f + foX,—1,Cc(G) — Cc(G) sich zu unitéren Abbildungen von L*(G)
auf sich fortsetzen lassen.

Ubung 5.4.6 : Zeige: das Haarsche MaB auf einer lokal kompakten Gruppe ist reguliir. ]



Kapitel 6

Zeitmittel

6.1 Asymptotische Verteilungen und invariante Mafle

Sei (M, p) ein metrischer Raum und f: M — M stetig. Fiir x € M ist die Bahn unter f die
Menge {f*(x) | k € Ny}, wobei wir f© := idy und f* := f o f*~! setzen. Fiir U C M betrachte die
Wiederkehrhiufigkeiten

Fy(f,x,n) :=#{k €Ng|0<k <n—1;f"=x) U},

die sich mit der charakteristischen Funktion xy von U auch durch

v(f,z,n) ZxU (f*(x)

ausdriicken 1483t. Falls der Grenzwert lim,,_ %FU (f,z,n) existiert, nennt man ihn die asymptotische
Dichte der Verteilung der Bahn von z unter f auf U und M \ U und bezeichnet ihn mit Fy (f,z). Es
gilt dann

n—1

Fy(f,z) = }I_{I;OEZXU ()

Der Ausdruck lim,, o 2 777 " v (f¥(z)) heiBt auch das Zeitmittel oder Birkhoff-Mittel der Funktion
Xv. Allgemein definiert man fiir eine Funktion ¢: M — C das Zeitmittel I, () von ¢ in « durch

.1y
L(p) = lim ~ % o(f*(z))
k=0
falls der Limes existiert.

Proposition 6.1.1 : Wenn I,(p) fir alle p € C(M,R) ezistiert, so gilt:

(i) Ip: C(M,R) — R ist R-linear.
(i) |L(¢)] < supyenr lp(y)l-
(iii) I(v) >0, falls ¢ > 0.

) L:(1) =
(v) In(po f) = I.(p) = I (), falls ¢ beschrinkt ist.

(iv

Beweis:

97
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IDEE: Dies folgt direkt aus den Definitionen.
(i) Betrachte das R-lineare Funktional

M. c(M,R) — R
n—1

b S elf)

k=1

Dann rechnet man
L(re+syp) = lim I (ro+ sy)

= lim (rI(p) + 51 (v))

= 7 lim I(M(p) +s lim I{M(y)
= rl(p) + sl (¢).

IL(¢)| = | lim I{"(y)|

n—00

= lim [I{Y(¢)|

n—1
1
< lim = k
< lim =S el @)
k=1
< sup [p(y)]
yeM

(ifi) Dies ist klar, weil fiir ¢ > 0 auch I\ (¢) > 0 gilt.
(iv) Dies ist offensichtlich.

(v)

' 1 n—1 n—1
L(po f) —I(p) = lim — (Z e(f (@) = Y el (@)
k=0
wobei die letzte Gleichheit eine Konsequenz der Beschrénktheit von ¢ ist.

Bemerkung 6.1.2 : Sei M kompakt und metrisierbar. Dann zeigen (i) und (ii) aus Proposition 6.1.1
zusammen mit Proposition 5.1.1, dafl I,: C(M,R) — R ein positives lineares Funktional und somit stetig
ist. Hier betrachten wir auf C'(M,R) die Topologie, die durch die Norm || - || gegeben wird. n

Ein Mafiraum (M, 90, i) heiBit ein Wahrscheinlichkeitsraum oder kurz ein W-Raum, wenn p ein
Wahrscheinlichkeitsmaf ist, d.h. wenn p(M) = 1.
Sei (M, 9, 1) ein Mafiraum und f: M — M mefibar. Dann heifft ¢ invariant unter f, wenn

VAem : u(f7H(A) = pA).

Umgekehrt heifit in diesem Falle f maflerhaltend.
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Proposition 6.1.3 : Sei M kompakt und metrisierbar sowie f: M — M stetig. Falls I, existiert, gibt
es ein WahrscheinlichkeitsmafS i, auf (M,Byr), das unter f invariant ist.

Beweis:

IDEE: Kombiniere Bemerkung 6.1.2 mit dem Rieszschen Darstellungssatz 5.1.2 und dem Satz 5.2.9
von Lusin.

Nach dem Rieszschen Darstellungssatz 5.1.2 gibt es zu I, ein eindeutig bestimmtes Radon-
MaB pe mit [y, pdu, = I(p) fiir alle ¢ € C(M). Insbesondere gilt p, (M) = I,(1) = 1.
Damit ist p, ein Wahrscheinlichkeitsmafi. Mit Proposition 6.1.1(v) findet man

() /M«o o f)dps = L(wo f) = L(p) = /M o dpts

fiir alle ¢ € C(M,R). Mit dem Satz 5.2.9 von Lusin kénnen wir charakteristische Funktio-
nen durch stetige Funktionen approximieren und erhalten so das Analogon von (x) auch fiir
charakteristische Funktionen. Damit rechnet man dann

L(fHA) = Ldp,
p ) = [

= / Xf-1(4) Atz
M

M

= / XA dpt
M

= Mz (A)

und das beweist die Behauptung. [

Lemma 6.1.4 : Sei M kompakt und metrisierbar. Dann gibt es eine dichte Folge (¢on)nen in C(M).
Beweis:

IDEE: Konstruiere eine abzihlbare Basis {U; | 7 € N} der Topologie und betrachte die von den
Funktionen g;: M — R,z — inf{p(z,y) | y € M \ Uj; }erzeugte Unteralgebra von C(M,R).

Wiihle eine beliebige Metrik p auf M. Dann gibt es zu jedem n € N eine endliche Teilmenge
B, € M mit M = {J,cp B(x; 1), wobei B(z;r) die Kugel mit Radius 7 um z bzgl. der
gewihlten Metrik ist. Die Menge B := |J,cy Bn ist dann hochstens abzéhlbar und wenn
z € M und € > 0, findet man ein y € B mit p(z,y) < ¢, d.h. A ist dicht in M. Die B(z; 1)
mit = € B bilden eine abzéhlbare Basis {U; | j € N} der Topologie.

Betrachte jetzt die stetigen Funktionen
gi:M — R
z — inf{p(z,y) |y € M\ U;}
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und die daraus gebildeten Monome g7"* - - - gi'» mit m; fiir j € Ny. Die Familie dieser Monome
ist wieder abzéhlbar, kann also in eine Folge (h;)jen angeordnet werden. Schlielich betrachten
wir noch endliche Linearkombinationen der h; mit rationalen Koeflizienten. Diese Familie ist
immer noch abzdhlbar und wir ordnen sie in eine Folge (¢;);en an. Diese Folge ist dann dicht
in der Menge der Linearkombinationen der h; mit reellen Koeffizienten, also der von den g;
erzeugten Unteralgebra A von C(M,R).

Die Algebra A trennt die Punkte von M, weil fiir  # y in M eine Umgebung U; von z existiert
mit y ¢ U; und daher g;(z) > 0 und g;(y) = 0. Jetzt zeigt der Satz von Stone-Weierstraf,
dal A dicht in C(M,R) liegt. Also liegt die Folge (p;);jen ebenfalls dicht in C'(M,R). Dies
beweist das Lemma fiir C'(M,R) und der Fall C(M) = C(M, C) folgt, indem man Funktionen
in Real- und Imaginérteil aufspaltet. n

Satz 6.1.5 (Krylov-Bogolubov): Sei M kompakt, metrisierbar und f: M — M stetig. Dann gibt
es ein f-invariantes Wahrscheinlichkeitsmaf auf (M, Bnr).

Beweis:

IDEE: Kombiniere die Ideen der Propositionen 6.1.1 and 6.1.3 mit Lemma 6.1.4.

Sei z € M und (p;);en eine dichte Folge in C'(M). Fiir jedes j € N ist die Menge

{Tllnzlw(f’“(x)) | nen}
k=0

beschriankt. Dann findet man jetzt eine Folge (n;)ien fiir die der Grenzwert

n;—1

(%) lim — " i () = J(g;)
k=0

fiir jedes j € N existiert. Hier beniitzt man das Cantorsche Diagonalargument: wéhle eine

konvergente Teilfolge nl(l) fiir j = 1, darin eine konvergente Teilfolge nl(z) fiir j = 2 etc., und

®

setze dann n; :=n; .

Sei jetzt ¢ € C(M) beliebig und € > 0. Dann gibt es ein j € N mit ||¢ —¢;|leo < €. Dies liefert

fiir alle n;
nil S o(f (@) *n% S ()] < nil S Ie(f () — 9 (FE@)] < e.
k=0 k=0 k=0

Wegen (%) kann dann die beschrinkte Folge n% ZZ’;OI ©(f*(x)) hochstens einen Haufungs-
punkt haben, muf} also konvergent sein. Setze

Wie im Beweis von Proposition 6.1.1 sieht man, dafi J: C(M) — C ein positives lineares
Funktional mit J(1) = 1 ist, das unter f invariant bleibt. Dann folgt wie in Proposition 6.1.3,
daBl das zu J gemifB dem Rieszschen Darstellungssatz 5.1.2 gehorige Wahrscheinlichkeitsmafl
p unter f invariant ist. n
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Bemerkung 6.1.6 : Wenn M kompakt metrisierbar ist und f: M — M ein HomGomorphismus, dann
gilt fiir jedes f-invariante Mafl p auf (M, B )

VAEe By ¢ p(f(A)) = ulA),

wie man leicht sieht, wenn man die Definition auf f(A) anwendet. "

Sei f: M — M eine Abbildung. Wie iiblich nennen wir eine Menge A C M f-invariant, wenn
f(A) :== {f(z) | # € A} C A gilt. Dagegen heifit A f~!-invariant, wenn f~'(A) = {z € M | f(z) €
A} C A, d.h., f~ -Invarianz setzt die Invertierbarkeit von f nicht voraus! Wenn f invertierbar ist, fallen
die beiden Interpretationen von f~'-Invarianz zusammen. Beachte, daf} folgende Bedingungen fiir A C M
dquivalent sind:

(1) Aist f-invariant und f~!-invariant.
(2) f71(4) = A
(3) xaof=xa.

Falls diese Bedingungen gelten, nennen wir A stark f-invariant.

Ubung 6.1.1 :  Sei (M,9M, 1) ein Wahrscheinlichkeitsraum und f: M — M maBerhaltend. Zeige, daB fiir jedes
@€ L' (M,p) gilt o feL'(M,u) und [, (po f)du= [, ¢dpu. .

Satz 6.1.7 (Birkhoffscher Ergodensatz): Sei (M, 9, u) ein Wahrscheinlichkeitsraum und f: M —
M maferhaltend. Wenn ¢ € L*(M, i), dann existiert das Zeitmittel

o) = im 137 o4 (a)
k=0

fir p-fast alle x € M.
Beweis:

IDEE: Mithilfe des Satzes 4.2.6 von Radon-Nikodym konstruiert man zu ¢ eine bzgl. J:= {4 € M |
f71(A) = A} meBbare Funktion o5, die ¢ du = @5 du erfiillt. Diese ist dann p-f.ii. gleich ¢;.

Sei h € LY(M,R,pu) und J := {A € M | f~1(A) = A} die o-Algebra aller f~l-invarianten
mefbaren Mengen. Betrachte den ,, f ~!-invarianten“ mefibaren Raum (M,J) und darauf die
Mafle Ay und p. Dann gilt h << g und nach dem Satz 4.2.6 von Radon-Nikodym gibt es
eine J-mefbare Funktion hy: M — C mit hdu = hy dp. Dann gilt aber h3'(z) € J fiir jedes
z € C. Dies zeigt (hy o f)7(2) = h5'(2) fiir alle z € C, also hy o f = hs.

Betrachte jetzt H,, := max{ZZ:Ol hof¥ |1 < m < n}. Wegen der Identitiit max(a, a+b)—b =
a —min(0, ) gilt

m—1 m—1
2 : k 2 : k+1
Hn+1 — Hn o f = maxXi<m<n+l1 ho f — MaXij<m<n ho f +
k=0 k=0
m—1 m—1
k k
= max | h,h 4+ maxo<m<nti E ho f* ] —maxocm<nti E hof
k=1 k=1
m—1
= h—min | 0, maxo<m<nii E ho fk
k=1

h — min(0, H,, o f),
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wobei mit max und min fiir Funktionen jeweils das punktweise Maximum und Minimum
gemeint ist. Es ergibt sich

(%) Hyt1 = h+max(0,H, o f).

Setze jetzt A := {x € M | Hy(z) — oo}. Dann gilt A € 3. Wenn némlich y = f(x) € A,
dann liefern H,(y) — oo und (n*_)zoodaﬁ x € A. Umgekehrt, wenn z € A und y = f(x),
dann zeigt (x) zusar%?nogn mit H,(x) — oo, daB H,(y) > 0 fiir grofie n, also H,(y) =
Hy1(z) — h(x) 7 und y € A. Mi‘?ggom Satz 2.4.4 von der dominierten Konvergenz und

der f-Invarianz von p findet man

Og/(Hn_H—Hn)d,uz/(HnH—Hnof)du — /hdu:/hjdu.
A A n—oo 4 A

Wenn insbesondere hy konstant und negativ ist, dann folgt u(A) = 0.
Weiter gilt

(z)

n—1

1 H,
(xx) Vee M\ A : limsupg E ho f*(z) <limsup ——2% < 0.

k=0

n— 00 n—00 n

Jetzt wihle h := ¢ — ¢35 — €. Dann gilt hy = —e < 0, also u(A) = 0, und wegen (*x)

n—1
1
lim sup (EZgoofk) —p3—€<0
k=0

n—oo

p-fast iiberall. Ersetzt man ¢ durch —y, findet man analog

n—1

1
li 'f(—E k)> —
imin nk-ogpof >3 —¢€

n—00

p-fast iiberall und zusammen schliellich ¢ = 5 p-fast iiberall. n

Bemerkung 6.1.8 : Der Beweis von Satz 6.1.7 zeigt insbesondere, dafl das Zeitmittel ¢ ¢ einer Funktion
¢ € L'(M, p1) meBbar (nach Proposition 1.2.7) und f-invariant ist. Insbesondere folgt aus p; = ¢

/sz/%M:/wm
A A A

fiir alle A € M mit f~1(A) = A. .

1

Bemerkung 6.1.9 : Wenn f invertierbar ist, kann man Satz 6.1.7 auch auf f~ anwenden und erhélt

die p-fast iiberall Konvergenz der Zeitmittel

Br(a) = lm L3 (1))
k=0

fiir ,negative Zeiten“, also auch fiir die beidseitigen Zeitmittel

n—1
. 1 —k
Jim o D e(f @),
k=—n+1

Das bringt allerdings keine neue Information, da ¢ = %, u-fast iiberall. Wére dem nicht so, dann kénnte
man (0.B.d.A. sei ¢ € L'(M,R, 1)) ein € > 0 und eine f~!-invariante Menge A € J mit pu(A) > 0 und

Vee A ¢p(r)>Pp(x)+e oder ¢p(r) <Pp(z)—e
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finden. Aber das ist nicht moéglich, denn Bemerkung 6.1.8 liefert

/@f’du:/wdu:/@dw
A A A

Satz 6.1.10 : Sei M kompakt metrisierbar und f: M — M stetig. Dann hat die Menge

n—1
Ap={z € M| (Vp € C(M)) existiert lim_ % ];)@(fk(l’))}

bzgl. jedes f-invarianten Borel-Wahrscheinlichkeitsmafes das Mafs 1. Wenn f ein Homdomorphismus
ist, gilt das auch fir die Menge

fr€ M| (vp € CON) lim 23 o7 @) = T 23" (1)),
k=0 k=0

Beweis:

IDEE: Kombiniere den Birkhoffschen Ergodensatz 6.1.7 mit den Ideen aus Satz 6.1.5 und seinem
Beweis.

Wihle ein f-invariantes Borel-Wahrscheinlichkeitsmaf8 p und eine dichte Folge (¢;)jen in
C(M) (vgl. Lemma 6.1.4). Nach dem Birkhoffschen Ergodensatz 6.1.7 hat die Menge

n—1
1
By = {x eEM ‘ (Vj e N)  existiert nlgr;o - Z(pj(fk(x))}
k=0

als abzéhlbarer Schnitt von Mengen mit vollem Maf selbst volles Maf. Jetzt argumentiert man
wie im Beweis von Satz 6.1.5 und zeigt, dal By = Ay gilt. Damit folgt die erste Behauptung.
Die zweite Behauptung folgt dann aus Bemerkung 6.1.9. [

Ubung 6.1.2 : Zeige, daB es fiir die Abbildung f: [0,1] — [0, 1], die durch

Z fir0<ax<l1
_J)2 >
f(@) {1 fir x =0

definiert ist, kein f-invariantes Borel-Maf auf [0, 1] gibt. ]

Ubung 6.1.3 : Sei (M, 9, 1) ein MaBraum und A € 9 erfiille p(A) > 0. Weiter sei T: M — M mafBerhaltend
und pa das durch pa(B) = “iﬁg?) definierte MaBl auf (A, N*P(A)). Fiir z € A setze n(z) := min{n € N |
T"(z) € A} und Ta(z) := T™(z). Unter der Annahme, daB n(x) < oo ist fiir alle = € A, zeige, dal Ta: A — A

fiir pa maflerhaltend ist. [ |

Ubung 6.1.4 : Sei Q2 := {(w;)jez | w; € {0,1}} = {0,1}” mit der Produkttopologie versehen (kompakt nach
dem Satz von Tychonov). Weiter seien 0 und 1 die konstanten Folgen mit Werten 0 bzw. 1. Zeige
(i) Es gibt genau ein Borel-WahrscheinlichkeitsmaB v auf Q2, das u({0}) = p({1}) = & erfiillt.

11 1St 1Invariant unter der 1It- Lransiormation o: ii2 — 342, dle durch o(w) = w mit w; = Wwj41 dennier
ii) p ist invariant unter der Shift-Transf ti Q Qs, die durch " mit W] j+1 definiert
ist.

(iii) Es gibt einen Punkt w € Qo, der fiir jedes ¢ € C(92) die Gleichung

n—1

ti 13" (0" @) = 5 (6O + (D) = | pdn

n—too N
k=0 Q22

erfiillt.
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Ergodizitat

Sei (M, M) ein mefbarer Raum und f: M — M eine meBbare Abbildung. Ein f-invariantes Maf} x
auf (M,9M) heifit ergodisch, wenn fiir jede stark f-invariante Menge A € 9 entweder u(A) = 0 gilt
oder u(M \ A) = 0. In diesem Fall sagt man auch, f ist ergodisch bzgl. u.

Lemma 6.2.1 : Sei (M, 9, 1) ein W-Raum und f: M — M eine maferhaltende Abbildung. Dann sind
folgende Aussagen dquivalent

(1) f ist ergodisch bzgl. p.

(2) Jede f-invariante mefbare Funktion ¢: M — C ist p-fast dberall konstant.

(3) Jede beschrinkte f-invariante mefbare Funktion ¢: M — C ist u-fast iberall konstant.

Beweis:

IDEE: Betrachte die Urbildmenge ¢~ *(] — oo, a[) fiir passendes a € R.

»(3)=(1)¢ Dies ist klar, wenn man fiir ¢ die charakteristische Funktion einer stark f-invarianten

»(D=(2)*

¢

Menge nimmt.

Betrachte die Borel-mefibare und monoton wachsende Funktion

g: R — [0,1]
a — p(e (] —o0,al),

die limg—,_ oo g(a) = p(0) = 0 und lim,_,o g(a) = p(M) = 1 erfiillt (vgl. Proposition
3.2.4).

Wenn es ein a € R mit 0 < g(a) < 1 gibt, dann haben die beiden stark f-invarianten
Mengen ¢~ !([a, co]) und ¢~ 1(] — o0, a[) beide positives Mafl und f kann nicht bzgl. 1
ergodisch sein.

Also gilt g(R) € {0,1} und wegen der Monotonie gilt mit « = inf{t € R | g(t) = 1}

0 firt<a
t) =
9(t) {1 fir t > a.

Damit sind die Mengen A, := ¢ '([a + 1,00[) und B, := ¢ (] — 00,a — 1[) ebenso
Nullmengen, wie ihre Vereinigung ¢~1(M \ ¢~ !(a)). Aber dann ist ¢ p-fast iiberall
konstant.

»(2)=(3)“ Dies ist trivial.

Ubung 6.2.1 : Sei (M,90N) ein meBbarer Raum und f: M — M eine mefbare Abbildung und p # v zwei bzgl.
f ergodische W-Mafle. Zeige, dafl p L v.
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Proposition 6.2.2 : Sei (M, M, i) ein W-Raum und f: M — M ergodisch bzgl. u. Wenn ¢ € L*(M, ),
dann gilt fir p-fast alle x € M

n—1
pre) = Jim 3" o(fHe)) = [ pdn.
k=0 M

In anderen Worten: Fiir ergodische Abbildungen stimmen Zeitmittel und Ortsmittel iberein.
Beweis:

IDEE: Kombiniere Lemma 6.2.1 mit Bemerkung 6.1.8.

Nach Bemerkung 6.1.8 ist ¢¢ f-invariant, also wegen der Ergodizitét nach Lemma 6.2.1 p-fast
iiberall konstant. Dann zeigt dieselbe Bemerkung aber auch p-fast iiberall

w(ﬂc):/ wdu:/ @ dp.
M M

Die Abbildung f: M — M heifit eindeutig ergodisch, wenn es genau ein f-invariantes Wahrschein-
lichkeitsmaf} auf (M, 91) gibt.

Proposition 6.2.3 : Sei (M,9) ein mefbarer Raum und f: M — M eindeutig ergodisch. Dann ist
das eindeutig bestimmte f-invariante Wahrscheinlichkeitsmaf$ p auf (M,9) ergodisch.

Beweis:

w(BNA)

IDEE: Betrachte das durch pa(B) := (A

fiir u(A) > 0 definierte Wahrscheinlichkeitsma$ pa.

Fir A € M mit p(A) > 0 und B € M setze

n(BNA)
pa(B) =
Br= =
Dann ist g4 ein Wahrscheinlichkeitsmaf}, das zudem f-invariant ist, falls A stark f-invariant
ist:
_ (B)nA 1B)Nnf A (BnA BnA
i) < PTBINA) B0 S W B4 pB0A)

p(A4) p(A4) 1(A) p(A4)
Also gilt 4 = pa und das zeigt p(A) = 1.

Man nennt das Ma8l 4 das bedingte Mafl bzgl. A.

Proposition 6.2.4 : Sei M ein kompakter metrisierbarer Raum und f: M — M eindeutig ergodisch.
Dann konvergieren fiir jedes o € C(M) die Zeitmittel

n—1
1

=Y ol fF (@)

k=0

3

gleichmdfig gegen c := fM wdu, wobei v das eindeutig bestimmte f-invariante Wahrscheinlichkeitsmay3
auf (M, Byr) ist.
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Beweis:

IDEE: Wenn die Behauptung fiir ein ¢ € C(M,R) nicht zutrifft, dann findet man mit den Metho-
den von Proposition 6.1.1 und Satz 6.1.5 zwei f-invariante positive lineare Funktionale, die auf ¢
unterschiedliche Werte annehmen.

Wir nehmen an, daff - 377 <p( k(x)) fiir ein p € C(M,R) nicht gleichmiBig konvergiert.
Dann gibt es ein € > 0 und eine Folge x, € M mit

E
=

(%) VkeN : o(fi(zr)) — ¢ > e

el

lim

k—o0

=0

Nach () kénnen wir (wieder nach Ubergang zu einer Teilfolge) entweder annehmen, daf

ne—1

VkeN : =S Z o(fi(z)) > c+e

n
k2o

oder, dafl

1 Tkal

VkeN: — Z o(fYzg)) <c—e

n
L

gilt. Insgesamt haben wir also folgende Situation: Es gibt zwei Zahlen a,b € R und zwei Folgen
(k) keN, (Yk)ken von Punkten in M sowie eine Folge (ng)ren mit ng LT 00 und

1 nEg—1 neg—1
- ; o(f@r) <a<b< - l; o (f(wr)-

Mit einem Diagonalargument vom Cantorschen Typ (vgl. Satz 6.1.5 und Satz 6.1.10) findet
nach eine Teilfolge (n,);en, fiir die die folgenden Grenzwerte fiir alle ¢ € C(M) existieren:

Nk —1 nk.j—l

J(®) = lim — Z o(f wnd L) = tm — S ().

Jj—o00 nk J—00 Nk .
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Wie in Proposition 6.1.1 sieht man, dafl J; und Jy f-invariante positive lineare Funktionale
mit J1(1) = 1 = J2(1) sind. Also gibt es nach dem Rieszschen Darstellungssatz 5.1.2 zwei
Radonsche Wahrscheinlichkeitsmaie pq und po auf (M,By) mit Ji(¢) = [ 2 ¥ dpy und
Jo(¥) = [}, ¥ dps. Wie im Beweis von Satz 6.1.5 sieht man, daf8 41 und po f-invariant sind.
Wegen

Ji(p) S a <b< Ja(p)

gilt 1 # pe im Widerspruch zur Voraussetzung. [

Proposition 6.2.5 : Sei M ein kompakter metrisierbarer Raum und die stetige Abbildung f: M — M
eindeutig ergodisch. Sei p das zugehorige f-invariante Wahrscheinlichkeitsmafl und U C M offen mit
w(OU) = 0. Dann konvergieren die Zeitmittel

1 n—1
n Z xu(f*(z))
k=0

gleichmdflig gegen u(U).
Beweis:

IDEE: Approximiere xy durch stetige Funktionen und wende Proposition 6.2.4 an.

Seien @, > xv und ¢ < xy fiir m € N zwei Folgen in C(M) mit

/%du — w(U) und /gmdu —_ )
M m— 00 M m— 00

(vgl. z.B. Satz von Lusin 5.2.9).

p—— XU
// [0} \\‘
— —— MU
! e
Fir n € Nund x € M gilt dann
1 n—1 1 n—1 1 n—1
(+) =~ e, (@) < =3 (@) < = D B ().
k=0 k=0 k=0

Proposition 6.2.4 und Proposition 6.2.2 zeigen, daf8 die linke Seite von (x) gegen [, w, du
und die rechte Seite gegen || v Pm dp konvergiert. Fiir 6 > 0 wihle jetzt ein n € N mit
Jos @ dpe > p(U) — ¢ und fom dp < p(U) + $. Es ergibt sich fiir groBe m

p() 5 < LS () < w(w) + 6
k=0

und da ¢ beliebig war, folgt die Behauptung. n
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Proposition 6.2.6 : Sei M ein kompakter metrisierbarer Raum und f: M — M stetig. Wenn fiir jedes
@ aus einer dichten Teilmenge von C(M) die Zeitmittel

1 n—1
k
=3 el @)
k=0
gleichmdfig in x gegen eine Konstante konvergieren, dann ist f eindeutig ergodisch.

Beweis:

IDEE: Kombiniere die Ideen von Satz 6.1.5 mit Bemerkung 6.1.8 um zu zeigen, daf} die Integrale
[ P dpp unabhéngig von p durch die entsprechende Konstanten gegeben sind.

Wie im Beweis des Satzes 6.1.5 stellt man zunéichst fest, dal die gleichméfige Konvergenz fiir
die Funktionen aus einer dichten Teilmenge von C'(M) schon die gleichméBige Konvergenz fiir
alle Funktionen in C' (M) zur Folge hat.

Sei jetzt ,u ein f invariantes Borelsches Wahrscheinlichkeitsma8. Sei ¢ € C(M) und ¢ :=
limy, oo = >0, Y o(f¥(x)), dann gilt mit Bemerkung 6.1.8

n—1
1
pdp = lim — / dp = / lim — o(f*(x d,u:/cdﬂ:c,
[ ean=tim 5 [ LS ety [

d.h. das Integral ist nicht von u abhéngig. Dies beweist die Behauptung. [

!

Ubung 6.2.2 : Betrachte die durch f(z,t) = (z + «,t) mit irrationalem « definierte Abbildung f: Sl x [0, 1]
S' x [0,1]. Zeige: fiir jede stetige Funktion ¢: S x [0,1] — C konvergieren die Zeitmittel X > 7~ w(fk(x)
gleichméfig in « gegen eine Konstante, aber f ist nicht eindeutig ergodisch.

" —

Beispiel 6.2.7 (Irrationale Rotationen auf dem Kreis): Sei S' := {z € C| |z| = 1} = {e2™ |
t € R} der Einheitskreis in C. Er ist eine kompakte topologische Gruppe bzgl. der Multiplikation auf C.
Als solche ist S! isomorph zum eindimensionalen Torus T := R/Z via

R/Z — S*
t+Z — eQﬂ'it.

Die Rotation R, um den Winkel 27« ist auf S' durch
RQ(Z) _ eQTriaz

gegeben. Auf T wird das zu
R,(t+Z)=(t+a+7Z).

Wir beniitzen Proposition 6.2.6 um zu zeigen, dafl die Rotation R,, fiir irrationales a eindeutig ergodisch
ist. Man nennt dieses Resultat auch den Gleichverteilungssatz von Kronecker und Weyl. Um ihn
zu beweisen, geniigt es, zu zeigen, dafl die Zeitmittel ¢pr_ fiir eine dichte Teilmenge von Funktionen in
C(T) gleichmaBig gegen eine Konstante konvergieren.

Nach dem Satz von Stone-Weierstraf sind die trigonometrischen Polynome so eine dichte Teilmenge
und da mit zwei Funktionen auch alle Linearkombinationen das passende Verhalten im Zeitmittel haben,
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brauchen wir nur die fiir m € Z durch x,,(t + Z) = > definierten Funktionen auf T zu betrachten.
Wegen ' ,
(Xm © Roc)(t + Z) = eZmimitte) — 62‘mmaXm(t + Z)

gilt
n—1 n—1 ;
1 1 ) |1 _ eQTrzmna|
- m Ra t+ 7)== 2mimka| _ e - 0 0
n (X © )( + ) n Z e n|1 _ 627r1ma| njo)o
k=0 k=0
fiir m # 0. Fiir m = 0 haben wir y,, = 1 und das schlie§t den Beweis der Behauptung ab. [

Beispiel 6.2.8 (Irrationale Translationen auf dem Torus): Betrachte den n-dimensionalen To-
rus T = R"/Z™ und fiir « = (a1, ..., a,) € R die Abbildung

T,: T — T"

t+7" — t+a+7Z"
Wenn 1, a1, . .., o, € Rrational unabhéingig sind (d.h. linear unabhéngig als Elemente des Q-Vektorraums
R), dann ist T, ergodisch.

Um das einzusehen, betrachten wir eine beschrinkte mefibare und T, -invariante Funktion y: T" — C.
Sei

n
X(t1, . itn) = j{: Xki,....k, €XD 2Wi§£:kj%

(K1 ook ) ELZT j=1

die Fourier-Entwicklung von x. Dann gilt

X(Tot) = x(t1+a1,... .ty + )

n
Z Xk1,....k, €XP 27 Z k‘j (tj + Oéj)

(K1, kn ) EZ™ j=1
n n
= Z Xki,....k, €XD | 271 Z kjoaj | exp | 2mi Z kjt;
(K1 kn ) EZ™ j=1 =1

Die Invarianz von y unter T, und die Eindeutigkeit der Fourierkoeffizienten liefert

n
Xklw")k)n = Xk1y~~7kn e)(lj(Zﬂ-Z Z k]t7)’
j=1

,,,,,

folgt Xk,,..k, = O fiir alle (k1,...,k,) # 0, d.h. x ist konstant (bis auf eine Menge vom Mafl 0). Da x
insbesondere die charakteristische Funktion einer beliebigen 7', !-invarianten mefibaren Menge sein kann,
liefert das die Ergodizitét von Ty,. [

Beispiel 6.2.9 (Expansionen auf dem Torus): Fiir m € {2,3,...} ist die Abbildung

E,:T — T
t+7Z — mt+7Z

ergodisch bzgl. des Lebesgue-Mafles 1 (das gleich dem Haar-Maf ist).
Um das einzusehen, betrachte eine E,,-invariante, mebare und beschréankte Funktion ¢: T — C und
ihre Fourierentwicklung

(p(t + Z) — Z (pkeQﬂ-ikt_
keZ
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Dann gilt
o(t+2Z)=p(En(t+7Z)) = Z ppemikmt
kezZ
also ¢, = @my fiir alle m € N. Nach dem Riemann-Lebesgue Lemma gilt aber limg_,o |pr| = 0, was
dann ¢ = 0 fiir alle von Null verschiedenen k impliziert. [

Bemerkung 6.2.10 : Sei M ein kompakter metrisierbarer Raum und M (M) die Menge aller Borel-
Mafle auf M. Wegen der Kompaktheit ist nach Definition jedes Borel-Maf} auf M endlich. Nach Satz 5.2.7
ist auBerdem jedes Borel-MaB reguléir. Nach dem Rieszschen Darstellungssatz 5.1.2 liefert I,,(f) = [,, f du
eine Inklusion

M(M) < C(M)*
poo—= Iy,

wobei C'(M)* den Raum der stetigen linearen Funktionale auf C(M) bezeichnet. Das Bild der Einbettung
sind genau die positiven Funktionale in C'(M)*. Damit erbt M (M) von C(M)* eine Topologie, die
schwach*-Topologie, die durch

Ly — I & (VpeCM)) In(p) — I(p)

definiert wird. Interpretiert man die Elemente von C(M)* also einfach als C-wertige Funktionen auf
C(M), so ist dies die Topologie der punktweisen Konvergenz. Offensichtlich ist sowohl die Teilmenge der
reellwertigen Funktionale als auch die der positive Funktionale abgeschlossen in dieser Topologie. Also
ist M(M) eine abgeschlossenen Teilmenge von C'(M)*.

Sei My (M) :={pu e M(M) | p(M) =1} die Menge der Borelschen Wahrscheinlichkeitsmafie auf M.
Dann ist M1 (M) in der schwach*-Topologie kompakt. Um das einzusehen, betrachte fiir ¢ € C(M) die
kompakte Menge D, := {z € C | |z| < ||¢||s } und setze

D= ][ D..
peC (M)

Dann ist D nach dem Satz von Tychonov kompakt. Die Menge D besteht aus allen C-wertigen Funktionen
I auf C(M), die |I(¢)| < ||¢|lo erfiillen und die Topologie auf D ist in dieser Interpretation gerade die
Topologie der punktweisen Konvergenz. Sei

B:={I € C(M)* | I ist positiv und (Vo € C(M)) [I(©)| < [|¢]loo}-

Dann stimmen die Topologien auf B, die einerseits von D, andererseits von der schwach*-Topologie
induziert werden iiberein. Da M(M) C B abgeschlossen ist, bleibt also nur zu zeigen, da§ B in D
abgeschlossen ist. Das ist aber klar, weil die punktweise Addition und Multiplikation mit Skalaren stetig
in der Produkttopologie sind. [

Sei M kompakt metrisierbar und f: M — M stetig. Wir bezeichnen die Menge alle f-invarianten
Elemente von My (M) mit Mq(f).

Proposition 6.2.11 : Sei M kompakt metrisierbar und f: M — M stetig. Dann sind folgende Aussagen
dquivalent:

(1) pw e My(f) ist nicht ergodisch.
(2) Es gibt py # po in My(f) und ein X €]0, 1] mit p = Apg + (1 — N pa.

Beweis:
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»(1)=(2)“ Sei A € By f-invariant mit 0 < p(A) < 1, dann gilt
o= p(A)pa + (1= p(A))pan a-

»(2)=(1)“ Aus p(A) = 0 folgt mit (2) auch pi(A) =0 = uz(A4), also gilt p; << p fiir ¢ = 1,2. Der
Satz 4.2.6 von Radon-Nikodym liefert Funktionen p; mit du; = p; du. Damit schreibt
man (2) als

Ap1+ (L —=A)p2 =1 p-fast iiberall.

Weil aber p; # po zwei f-invariante Wahrscheinlichkeitsmafe sind, gilt aulerdem p;o f =
p; sowie [, ¢ Pi dp; = 1 und py ist nicht p—fast iiberall gleich p,. Insbesondere kdnnen nicht
beide p; p-fast iiberall konstant sein. Nach Lemma 6.2.1 ist also p auch nicht ergodisch.

111

Geometrisch sagt diese Proposition, daf§ die Extrempunkte der konvexen Menge M, (f) gerade die

ergodischen Mafle sind.

Satz 6.2.12 : Sei M kompakt metrisierbar und f: M — M stetig. Dann gibt es ein ergodisches f-

invariantes Borelsches Wahrscheinlichkeitsmaf.
Beweis:

Sei (¢;)jen eine dichte Folge in C (M, R) (vgl. Lemma 6.1.4) und definiere 49 2 A; 2 A D ...
induktiv via Ag := My (f) und

Ajpi={pne A / @j+1dp = sup / Pj+1dv}.
M veA; JM

Diese Definition sinnvoll, weil fiir schwach*-abgeschlossenes (also kompaktes) A; die schwach*-
stetige Abbildung

A — R

Vo /ijJrldV
M

ihr Supremum annimmt und dementsprechend 4,11 nicht leer und schwach*-abgeschlossen
ist. Damit folgt (wieder mit der Kompaktheit)

@?ég = m .Aj.
j€Np

Wir zeigen, daf§ £ aus Extrempunkten von M (f) besteht und schliefen dann mit Proposition
6.2.11, daf alle Elemente von & C M (f) ergodisch sind.

Seien also 1, o € My (f) und X €]0,1[ so gewéhlt, dal p = Ay + (1 — Nz € €. Zu zeigen
ist = p1 = po. Wegen [, odp = X[, oduy + (1 = X) [, ¢dpus fiir alle ¢ € C(M) und
€ Aj fir j € Ny finden wir

/SDdeNZ/ j+1dp;, 1=1,2
M M

/%‘dMZ/ sﬁjd/ﬂ:/ @jdus VjeN.
M M M

Dies zeigt p1, p2 € A; fiir alle j € N. Aber dann gilt

/sadu=/ sodm:/ © dpi
M M M

fir alle ¢ € C(M,R), weil die Folge der ¢, dicht war. Mit der Eindeutigkeitsaussage im
Rieszschen Darstellungssatz 5.1.2 folgt dann p = p1 = po. n

und
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Beispiel 6.2.13 (Translationen auf kompakten abelschen Gruppen): Sei G eine kompakte me-
trisierbare abelsche Gruppe. Dann gibt es auf G ein eindeutig bestimmtes Borelsches Wahrscheinlickeits-
maf pg, das unter allen Linkstranslationen

Ag: G — G
h — gh

invariant ist. Dieses Maf} heiit das Haarsche Maf3. Wir zeigen, daf jedes )4, das ergodisch bzgl. pq ist,
dann schon automatisch eindeutig ergodisch ist.

Sei dazu p ein beliebiges Ag-invariantes Borelsches Wahrscheinlichkeitsmafi auf G. Da g mit allen
h € G kommutiert, sind dann auch die durch

pn(A) == p(An(A)) VA€ Bg

definierten Mafle unter A, invariant. Da die Menge M;(),) konvex und schwach*-abgeschlossen ist,
kénnen wir fiir jedes E € B¢ mit pe(E) > 0 ein Ag-invariantes Mafl vy auf (G, B¢) durch

1
vi(A) = MT(E)/EM(A) duc(h)

definieren. Wenn FE1, F5 zwei disjunkte solche Mengen sind, dann findet man
(*) pe(ErU Ey)ve,ue, = pe(E1)ve, + pe(E2)ve,.
AuBlerdem rechnet man

ve(AH(A) = / s (A)) dpac (k)

(k-1 (A)) duc (k)
w(An-11(A)) duc (k)
WAk (A)) duc (k)

e (A) duc (k)
(A)

I
I S~ a—~a a3

und erhélt die Ap-Invarianz von vg fiir alle Ap. Mit vg(G) = 1 liefert die Eindeutigkeit des Haarschen
MafBes die Identitit vg = pa-.

Wenn jetzt u # pe gilt, dann gibt es eine Funktion ¢ € C(G,R) mit fccpdu #* ngodug. Mit dem
Satz von Fubini finden wir

(o) /C:soduG/C;(/JduG) duhfcz(/czwduh> d#G/g(/cho)\hdu) duc.

Betrachte die stetige Funktion
v: G — R

h — /<po)\hdu.
G

Sei 1 € G das Einselement der Gruppe. Wegen (xx) gilt dann (1) # [, ¢ ¥ duc, und folglich ist ¢ nicht
konstant. Also finden wir eine reelle Zahl a mit pg(¥~1([a,o0[)) > 0 und pe(¥=1(] — oo, a[)) > 0.
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Es folgt
/ bdpc > e (e, 0o))a
P ~1([a,o00[)

und

/ Yduc < pe(1( - 0o,a))a
Pp=1(]—o0,al)

Mit E =1~ ([a,c0[) und F = G'\ E 148t sich das erst in

1 1
m/ﬂ"“““m/EWG

1
ndVEzi//noAhdﬂd#G
/G ne(E) JeJa

(und der analogen Aussage fiir F' - beides beweist man, indem man mit charakteristischen Funktionen
startet und dominierte Konvergenz anwendet) in

/godyp<a§/cpduE
G G

umformulieren, was insbesondere vy # vp zeigt. Mit (x) findet man aber

und dann mit

pe(BE)ve + pe(F)vr = vg = pg-

Nach Proposition 6.2.11 steht dies im Widerspruch zur Ergodizitit von ug. n

Ubung 6.2.3 : Sei S’ := R/Z. Zeige, da8 die Abbildung f: S* — S*, die durch f(z) := z + = sin(rz) mod 1
definiert ist, eindeutig ergodisch ist. ]
Ubung 6.2.4 : Sei (M, 9, 1) ein MaBraum und 7': M — M maBerhaltend.
(i) Zeige, daB der durch Ur f(x) := f(Tx) definierte Operator Ur: L*(M, u) — L*(M, ) unitér ist.
(ii) Zeige, daB folgende Aussagen dquivalent sind:
(1) T ist ergodisch bzgl. pu.

(2) 1 ist ein einfacher Eigenwert von Urp.

|
Ubung 6.2.5 : Betrachte die Abbildung A, : T? — T2, (z,9) — (¢ 4+ o,y + =) mit o € R.
(i) Sei a irrational. Zeige, dal A, eindeutig ergodisch ist.
(ii) Sei « rational. Bestimme alle A,-invarianten Borel-Wahrscheinlichkeitsmafe auf T2.
|

Ubung 6.2.6 : Seci L € GL(m,Z) und Fy: T™ — T™ definiert durch Fr(z+Z") = Lz +Z". Zeige, daBl folgende
Aussagen dquivalent sind:

(1) Fy ist ergodisch.

(2) L hat keinen Eigenwert, der eine Einheitswurzel ist.
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6.3 Wiederkehr und Mischung

Satz 6.3.1 : (Poincaré-Wiederkehrsatz) Sei (M, 9, u) ein W-Raum und f: M — M eine mafSerhal-
tende Abbildung. Fir A € M und N € N gilt

p{z e A| (VN <neN)f*(z)e M\ A}) =0.

Beweis:

Indem man f durch fV ersetzt, kann man 0.B.d.A. annehmen, da N = 1. Die Menge

A:={zeA|(VneN)fi(z)e M\ A} = AN (ﬂ f‘”(M\A))

neN
ist meBbar. Es gilt f~"(A) N A = { fiir alle n € N, also auch

AN A) =0

fiir alle n # m in N. Da f das MaB p erhilt, gilt auBerdem pu(f~"(A)) = u(A). Wegen

L= p(M) = p ( U f"(z@) =Y u(fTMA) = Y uA)

neNg neNy neNy

folgt schlieBlich p(A) = 0. "

Sei M ein metrisierbarer Raum, der separabel ist. Das bedeutet, M enthélt eine abzidhlbare dichte
Teilmenge. Fiir einen metrischen Raum ist das dquivalent dazu, dafl die Topologie hat eine abz#éhlbare
Basis hat (betrachte Kugeln mit rationalen Radii um die Punkte der dichten Folge). Fiir ein Borel-Maf
w auf M definiert man den Trager supp () durch

supp (u) := {x € M | (YU offene Umgebung von z), u(U) > 0}.
Proposition 6.3.2 :  Sei p ein Borel-Maf$ auf M. Dann gilt:
(i) supp (u) ist abgeschlossen in M.
(i) (M \ supp (p)) = 0.
(iii) Fir A € By mit (M \ A) =0 gilt supp (n) C A.
Beweis:

(i) Wenn (2, )nen eine Folge in supp (@) ist mit z, — x € M, dann gilt fiir jede offene
n—oo
Umgebung U von z, dal x,, € U fiir groBe n. Nach Definition von supp (u) folgt u(U) > 0.

(ii) Jeder Punkt y € M\supp (p) hat eine offene Umgebung U mit p(U) = 0. Da M separabel
ist, kann M \ supp (u) mit abzéhlbar vielen solcher Umgebungen iiberdeckt werden. Es

folgt pu(M \ supp () = 0.
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(iii) Fiir A € By mit p(M \ A) = 0 betrachte U := M \ A € M \ A. Dann ist U offen mit
w(U) = 0, kann also kein Element von supp (1) enthalten. Es folgt supp (1) C A.

Sei M ein topologischer Raum und f: M — M stetig. Ein Punkt 2 € M heifit rekurrent bzgl. f,
wenn es eine Folge (n;)jeny mit n; — oo und z = limj_,o f™ (x) gibt. D.h. rekurrente Punkte sind
j—oo

Héufungspunkte ihrer f-Bahnen. Der Abschlufl der Menge aller bzgl. f rekurrenten Punkte wird mit
R(f) bezeichnet. Eine abgeschlossene f-invariante Teilmenge () # A C M heifit minimal bzgl. f, wenn
sie keine abgeschlossene f-invariante echte nichtleere Teilmenge hat.

Satz 6.3.3 : Sei M ein vollstindiger separabler metrisierbarer Raum und f: M — M stetig. Dann gilt
(i) supp (¢) C R(f) fiir jedes f-invariante Borelsche Wahrscheinlichkeitsmaf p auf (M, B ).
(ii) Wenn u ergodisch ist, dann hat die Finschrinkung von f auf supp (u) eine dichte Bahn.

(ili) Wenn M kompakt ist und f|supp () eindeutig ergodisch, dann ist supp (u) eine minimale Menge
bzgl. f.

Beweis:

IDEE: Man beniitzt Poincaré-Wiederkehrsatz 6.3.1 fiir (i), Proposition 6.2.2 fiir (ii) und den Satz
6.1.5 von Krylov-Bogolubov fiir (iii).

(i) Wéhle eine abzéhlbare Basis {Uy, U, ...} der Topologie und bezeichne mit R die Menge
der z € M, fiir die mit 2 € U,,, auch unendlich viele der f*(x) in U, liegen. Dann wendet
man den Poincaré-Wiederkehrsatz 6.3.1 auf jedes U,,, separat an und findet, daf3 R volles
Maf hat, d.h. u(M \ R) = 0. Mit Proposition 6.3.2(iii) folgt also, da8l supp (1) C R.
Wenn z € R und U eine offene Umgebung von z ist, dann gilt * € U,, C U fiir ein
m und daher sind unendlich viele f*(x) in U. Da U beliebig klein sein kann, zeigt dies
R C R(f), also supp (1) € R C R(f).

(ii) Sei jetzt {Uy,Us, ...} eine abzihlbare Basis der auf supp (u) induzierten Topologie. Dann

gilt nach Definition des Trégers u(U;) > 0 fur alle j € N. Wir wenden Proposition 6.2.2
simultan auf jedes xy, an und finden eine Menge R € B, von vollem Maf} mit

n—1
. .1 &
Vee R jeN:  lim — kE:o xu, (f*(x)) = u(U;) > 0.

Also schneidet die Bahn von € R jedes U; und ist daher dicht.

(iii) Wenn A C supp (u) eine echte f-invariante und abgeschlossene Teilmenge von supp (1)
ist, dann gibt es nach dem Satz 6.1.5 von Krylov-Bogolubov ein f|s-invariantes Bo-
relsches Wahrscheinlichkeitsmafl v auf A. Wir betrachten v als Mafl auf M indem wir
v(M \ A) = 0 setzen. Dann ist supp (v) C A, also insbesondere v # p. Andererseits
rechnet man sofort nach, da§ v wegen f~1(M\ A) = M\ f1(A) C M\ A invariant unter
f ist. Dies liefert einen Widerspruch zur Voraussetzung.

Sei M ein topologischer Raum und f: M — M stetig. Dann heiflt f topologisch transitiv, wenn es
einen Punkt z € M gibt, fiir den die Bahn {f"(x) | n € Np} dicht in M ist.
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Lemma 6.3.4 : Sei M ein lokal kompakter separabler metrischer Raum ohne offene Punkte und f: M —
M stetig. Betrachte die folgenden Aussagen:

(1) f ist topologisch transitiv.

)
(2) Zu zwei nichtleeren offenen Teilmengen U,V C M gibt es ein n € Ng mit f*(U) NV £ 0.
(3) Es gibt keine zwei nichtleeren disjunkten f~!-invarianten offenen Mengen in M.
)

(4) Jede f-invariante Funktion in C(M) ist konstant.

Dann sind (1) bis (3) dquivalent und die ersten drei implizieren (4).

Beweis:

IDEE: Die Implikation ,,(2)=-(1)“ beniitzt die Characterisierung kompakter Mengen iiber die endliche
Schnitteigenschaft. Die anderen Implikationen kénnen direkt aus den Definitionen abgeleitet werden.

»(1)=(2)“ Sei f topologisch transitiv ist und {f"(x) | n € No} dicht in M. Dann gibt es n,m € Ny
mit f?(x) € U und f™(x) € V. Wenn m > n, dann gilt f™(z) = fm"(f"(z)) €
fm™U) NV und wir sind fertig. Wenn n > m, wihlen wir eine offene Teilmenge
V! CV mit f¥(x) ¢ V' fiir alle 0 < k < n (das geht, weil endliche Teilmengen nach
Voraussetzung nicht offen sind). Dann gibt es ein m/ € Ng mit f™ (z) € V' C V und es
folgt m’ > n, also (2) mit dem ersten Teil des Argments.

»(2)=(1)“ Sei Uy, Us, ... eine Basis der Topologie. Durch Verkleinern kénnen wir annehmen, dafl Uy
kompakt ist. Es geniigt jetzt, eine Bahn zu konstruieren, die jedes U; schneidet. Wahle
ny € No mit f™(Uy) N Uy # (. Dann ist Uy N f~"(Us) # 0 offen und wir finden eine
offene Menge Vi mit V; C Uy N f~™ (Uy). Danach wihle ny € Ng mit f2(Vy) N Us # 0
und eine offene Menge Vo mit Vo C Vi N f~"2(Us). Induktiv finden wir eine Folge (nj)jen
in Ny und eine Folge (V;);en von offenen Teilmengen von M mit

Vier S V0 7 (Ujs2)-

Da die Vj alle kompakt sind, ist K := (\;en Vi = ;jen V5 # 0 Mit ng := 0 gilt dann fiir
re K
VjieN : fri-i(z)elU;.

»(2)=(3)“ Seien U,V zwei f~'-invariante nichtleere offene Mengen. Dann gibt es nach (2) ein n € Ny
mit fY(U)NV # 0. Wegen U C f~1(U) folgt UNV D fM(U)NV # 0 und wir haben
(3)-

»(3)=(2)“ Wenn (2) nicht gilt, dann findet man zwei nichtleere offene Mengen U und V' mit f™(U)N
V = 0 fiir alle n € Ny. Es gilt aber allgemein die mengentheoretische Relation

(%) fonNv=0 <« Unf™V)=0,

die fiir n € Z. Also haben wir UNf~"(V') = 0 fiir alle n € No. Setze V' := {J, oy, 7™ (V).
Dann ist V' eine nichtleere offene f~!-invariante Menge mit V' N U = 0. Es folgt V' N
7Y U) = f(V'nU) =0, dh. U := U,ey, f"(U) ist eine nichtleere offene f~'-
invariante Menge mit V' N U’ = (. Dies zeigt, dal auch (3) nicht gilt.
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»(3)= el ¢ € , -invariant. Dann sind fiir a € ie Mengen ¢~ (] — 00,a]) un

3)=(4)“ Sei ¢ € C(M,R) f-i i D ind f R die M ot d
v (Ja, ) offen, disjunkt und f~!l-invariant. Je eine davon muf nach (3) also leer sein.
Dann ist aber ¢ konstant.

Beachte, daf die Implikation ,,(1) = (2)“ in Lemma 6.3.4 fiir die Nachfolgerabbildung f: N — N,z —
x + 1 falsch ist: Die Bahn von = = 1 ist ganz N (versehen mit der diskreten Topologie) und fiir V = {1}
und U = {2} gilt f5(U) NV =0 fiir alle k € N,.

Beispiel 6.3.5 (Irrationale Translationen auf dem Torus): Wenn 1, a,...,«, € R rational un-
abhéngig sind, dann ist die Abbildung T, : T" — T" aus Beispiel 6.2.8 topologisch transitiv. Um das
einzusehen, stellt man mit Beispiel 6.2.8 zunéchst fest, dafl T,, ergodisch bzgl. des Haarschen Mafles ist.
Da das Haarsche Maf} auf ganz T™ getragen wird, folgt die Behauptung jetzt aus Satz 6.3.3. [

Ubung 6.3.1 : Sei T: [0,1] — [0,1] eine Abbildung, die das Lebesgue-MaB A erhlt. Zeige: fiir M-fast alle
z € [0,1] gilt
liminf n|T"(z) — z| < 1.

n—oo

Sei (M, 9, 1) ein Mafiraum. Dann heifit eine mafierhaltende Abbildung f: M — M mischend, wenn
gilt
VABEM : p(f(A)NB) — u(A)u(B).

n—oo

Proposition 6.3.6 : Sei (M, 9, u) ein Mafraum und f: M — M mischend. Dann ist f ergodisch.

Beweis:

Sei A € 9 stark f-invariant. Dann gilt fiir jedes n € N
u(f AN (M A)) = (AN (M A) =0

und weil f mischend ist, folgt u(A)u(M \ A) =0. "

Beispiel 6.3.7 (Irrationale Translationen auf dem Torus): Keine der Translationen T, : T" —
T™ ist mischend bzgl. des Lebesgue-MaBles p auf T". Um das einzusehen, kénnen wir nach Proposition
6.3.6 0.B.d.A. annehmen, dal T, ergodisch ist. Nach Satz 6.3.3 ist dann T, topologisch transitiv und
eine Isometrie bzgl. der von R™ auf T™ induzierten Metrik. Also gibt es eine kleine Kugel B und eine
Folge (n;)jeny in N mit n; — oo und T, (B) N B = { fiir alle j € N (betrachte z.B. ein Folge

J‘)OO
von Punkten in der Bahn von z, die gegen einen Punkt y # x konvergiert). Aber dann gilt natiirlich
w(To ™ (B)N B) = 0 # u(B)? und T,, kann nicht mischend sein. .

Eine Familie Y von mefbaren Mengen in M heifit dicht, wenn man fiir A € 9 zu jedem € > 0 ein A’ € U
mit
u(ANA") < €
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finden kann, wobei AAA’ := A\ A’UA’\ A die symmetrische Differenz von A und A’ ist. Die Familie 4
heiflt ausreichend, die Vereinigungen von endlich vielen disjunkten Elementen von i eine dichte Familie
bilden.

Eine Teilmenge von L?(M, 1) heifit total, wenn der von ihr aufgespannte lineare Unterraum dicht in

L?(M, ) liegt.

Lemma 6.3.8 : Sei (M, 9, 1) ein Mafiraum und f: M — M maflerhaltend.

(i) Wenn fiir eine ausreichende Familie € von mefbaren Mengen gilt
VA BeC : u(fT"(A)NB) — wA)u(B),

dann ist f mischend.

(ii) f ist mischend genau dann, wenn fiir eine in L?(M, ) totale Teilmenge ® gilt

Vo, € @ /M p(f" (@) (@) du(z) — (/M@du) (/M¢du)-

IDEE: Fiir (i) approximiert man beliebige meSbare Mengen durch Elemente der ausreichenden

Beweis:

Familie, fiir (ii) reduziert man das Problem zunéchst durch ein Approximationsargument auf den Fall
® = L*(M, i) und betrachtet dann charakteristische Funktionen von Mengen.

(i) Seien Aq,..., A, B1,..., By € €mit A; N Ay :@fﬁri#il und BjﬂBj/ :(Z)fur];éj'

Setze
k k
A=J4 wd B:=|])B,
i=1 j=1
dann gilt
k 1
p(A)=> p(A;) und u(B) = u(B;)
i=1 j=1
Nach Voraussetzung gilt
E o1 ko1
p(FANB) =) Y wlf M (A)NBy) — > > W A)u(By) = ((A)u(B).
i=1 j=1 i=1 j=1

Damit hat man
VABed o p(fT(A)NB) — w(A)pu(B)

fiir die dichte Familie 4, die durch endliche Vereinigungen von disjunkten Elementen in
¢ entsteht.

Seien jetzt A, B € 99t und € > 0 beliebig sowie A’, B’ € 4 mit

WAAAY < S, W(BAB') <

»JMm

1
Dann rechnet man
W(f~"(A) N B) —w(A)pB)| < p(f"(ALA) N B) + pu(f"(A") N (BAB'))
FHu(f AN B — w(A)u(B")|
+u(A)W(BAB') + w(B")u(ALA")
< p(fM AN BY) = (A u(B)| + €

und erhélt mit € — 0 die Behauptung.
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(i) Wir konnen o0.B.d.A. annehmen, da8 ® dicht in L?(M, i), da die Ausdriicke in (ii) ses-
quilinear in ¢ und ¢ sind. In der Tat kénnen wir sogar ® = L?(M, ;1) voraussetzen, wie
das folgende Approximationsargument zeigt: Wenn ¢,v € L%(M, ) und QZ,{Z; € & mit
o — @ll2 < e und ||1p — b|l2 < € (wobei || - ||2 die Norm auf L2(M, y1) ist), dann rechnet

|| et @@t - [ edu [ Gau| <

< | @) = o) dutw) + [ (el @) = 37 @) dita)
+[ Iw(f”(x))@du(x) - [ B [ D
+/ @du/ mdw/ (w—&)du/ Edﬂ‘
< o fllally — 77/1||2+H<P @) o [
+\/ (" (a /wdu/ 3 dul
+| [ au ||¢—¢H2+H<P—@||2|/ G
< ‘/ (f"(= / sﬁdu/deuM6<||<p||+1+’/Mﬁdu‘ﬂ/MiduD-
Wenn aber

() Ve PO [ ol @I dula) — (/Msodu> </deu>

n—oo

gilt, braucht man nur ¢ := x4 und ¥ := xp zu setzen, um zu sehen, dafl f mischend ist.

Umgekehrt bilden die charakteristischen Funktionen von mefibaren Mengen eine totale
Familie ® von Funktionen in L?(M, ), fiir die

Vo, € /M P(f"(2)) (@) du(z) — </M<pdu) (/deu)

gilt, falls f mischend ist. Nach dem ersten Teil des Beweises gilt dann aber schon (x)
und (ii) ist bewiesen.

Beispiel 6.3.9 (Expansionen auf dem Torus): Fiir m € {2,3,...} ist die Abbildung
E,:T — T
t+7Z — mt+Z

aus Beispiel 6.2.9 mischend bzgl. des Lebesgue-Mafles p auf T.
Um das einzusehen, miissen wir nach Proposition 6.3.8(i) nur

VA, B kleine Intervalle :  u(f™"(4A)NB) — u(A)u(B)

zeigen. Hier soll ein kleines Intervall eine Menge der Form I + Z C T sein, wobei I ein Intervall in R der
Léange kleiner 1 ist. Das Urbild von t + Z unter E7, ist

{Hk Z‘k—o,l,...,m”—l}.
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Dementsprechend ist E, "(A) die disjunkte Vereinigung von m”™ kleinen Intervallen der Linge ”n(ﬁ),
im Abstand von n} (der Anfangspunkte) gleichmifig aufgereiht. Damit enthilt B hochstens m™u(B),

mindestens aber (m™—1)u(B) dieser kleinen Intervalle. Es ergibt sich also, mit €, € [0, 1] passend gewéhlt,

HA)

m" n—oo

w(Ey"ANB) = (m" + €,)u(B) 1(B)p(A).

a

Beispiel 6.3.10 (Hyperbolische Torus—Automorphismen): Sei L := eine ganzzahlige

b
d
Matrix mit Determinante +1 und von =£1 verschiedenen Eigenwerten. Dann ist die Abbildung
Fr:T? — T?
(z,y) +Z* — (ax+by,cx+by) + 22

ergodisch und sogar mischend bzgl. des Lebesgue-MaBes p auf T?2.
Betrachte dazu die Charaktere

Xm.n - ™ — gt
((E, y) — e?wi(szrny)
mit m,n € Z. Es gilt

)) — e27ri((am+cn)x+(bm+dn)y)

Xm,n(FL <x7 Y = Xam+cn,bm+dn(x; y>7

d.h., wenn man die Charaktere von T? via X, <— (m,n) mit Z? identfiziert, wirkt Fj, wie die trans-
ponierte Matrix L' von L. Nach den Voraussetzungen an L sind alle L!*-Bahnen in Z? unendlich aufer
der von (0, 0).

Wenn jetzt ¢ eine beschrinkte mefibare und Fr-invariante Funktion auf T? ist und

o= OmaXmn
(m,n)€Z?

ihre Fourier—Entwicklung, dann gilt
Pm,n = Pam+cn,bm+dn;

d.h. die Fourier-Koeffizienten sind konstant auf den L!-Bahnen. Nach dem Riemann-Lebesgue Lemma
gilt

- 0
m2+n2—oo

lm,n

also verschwinden alle ¢, », bis auf ¢ . Dies zeigt, dafi ¢ (u-fast iiberall) konstant ist und daher mit
Lemma 6.2.1 die Egodizitédt von ¢.

Wir beniitzen Proposition 6.3.8(ii) um zu zeigen, dafi Fr, sogar mischend ist. Beachte dazu, daf die
Menge der Charaktere X, total in L?(T?, u) ist. Wir miissen also nur

— 00

0 Wm0 ez s [ nalEF et ([ ) ([ Teidn)
T2 T2 T2
zeigen. Wenn m =n = k = [ = 0, dann sind alle Integrale in () gleich 1. Wir kénnen also (m,n) # (0,0)

annehmen. Dann ist aber die rechte Seite von () gleich 0, weil alle nicht-konstanten Charaktere das Inte-
gral 0 haben (Schur—Orthogonalitit). Auerdem gilt (LY)Y (m,n) N und daher (LY)N (m,n) #

(k,1) fir grofle N. Dies liefert (wieder mit Schur—Orthogonalitét)

/T2 X (FL (2, )Xk (2, y) du(z, y) = /Tz X(LN (mn)— (k1) A = 0

und damit die Behauptung. n
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Beispiel 6.3.11 (Der Bernoulli-Shift): Sei N € {2,3,...} und
Oy = {w=(w))jez | (Vj € Z) wj € {0,1,...,N —1}} ={0,1,...,N — 1}*

der Shift—Raum mit N Buchstaben. Wir versehen {0,1,..., N — 1} mit der diskreten und Qp mit
der Produkt—Topologie. Damit wird 2y ein kompakter separabler metrisierbarer Raum. Eine mogliche

Metrik ist | /)
A Wn — Wy
di(w,w) =3 N
nez

wobei A > 1 beliebig gew#hlt werden kann.
Firn; <mg <...<nginZund ai,...,a, € {0,1,..., N — 1} betrachtet man den Zylinder

Cotiar={weQn [(Vi=1,... k) wy, = as}.

A1,

Die Zylinder bilden eine Basis der Topologie auf Q.
Die durch

on(w) =, W, =wni1
definierte Abbildung o : Qn — Qv ist offensichtlich bijektiv und bildet Zylinder auf Zylinder ab. Damit
wird sie zu einem Homoomorphismus, den man den beidseitigen Shift oder auch Bernoulli—-Shift auf
Qn nennt.
Wiéhle eine Wahrscheinlichkeitsverteilung p = (po, . ..,pn-1) auf {0,1,..., N =1}, d.h. p; € [0,1] mit
Ziv 11 p; = 1. Dann kann man ein Produktmaf p, auf Qy, das Bernoulli-Maf3, definieren, das auf den
Zylindern durch

(+) up(CRrome) Hpm

gegeben ist. Daraus kann man zunéchst ein dufleres Mafl und dann ein Maf§ konstruieren, von dem al-
lerdings nachgewiesen werden muf}, dafl es wirklich auf der ganzen Borel o-Algebra von Qy definiert ist.
Wenn wir die Existenz von p, voraussetzen (was wir hier tun wollen), dann liefert Satz 2.1.3 die Ein-
deutigkeit. Wegen (x) impliziert dies die oy-Invarianz von pup. Wir behaupten, dafl o immer mischend
bzgl. u, ist.

Man kann zeigen, daf} die Familie € der symmetrischen Zylinder

Cli={weQn | VMi=—-m,...,m)wy, = a;}

fir m € Ng und o = (@_p, ..., ) € {0,1,..., N — 1}?™+1 ausreichend im Sinne von Proposition 6.3.8
ist. Es reicht daher,

Np(gﬁn(cs) n Cé) e Np( )p Cﬁ H Pa; H D,

i=—k Jj=—1

fiir alle k,1 € Ng und a € {0,...,,N —1}?**1 3 € {0,..., N — 1}2~1 zu zeigen. Wegen o"(CF) =
cl- k """ "Jrk gilt firn > k+1+1

O_;[n(ctl)c[) N Céi — Oﬁ ll’ JAn—k,...,n+k

By
und das zeigt wegen
l k
L. lin—k,..n+k\ _
(Cﬁ 15 ’ﬁz,a—k,m’ak) - H Dg; H Pa;
j==1 i=—k

die Behauptung. n
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Beispiel 6.3.12 (Der Markov—Shift): Seien Qy und on wie in Beispiel 6.3.11 definiert. Betrachte
eine stochastische Matrix I = (m;;); j—o,... n—1, d.h. 7;; € [0, 1] mit

N—-1
Vi=0,...,N—1: > m=1
=0

Wir nehmen an, IT ist transitiv, d.h. es gibt ein m € Ny, fiir das alle Eintrége von II"™ positiv sind. Dann
sagt der Satz von Perron—Frobenius, dafl II einen bis auf skalare Vielfache eindeutig bestimmten
FEigenvektor p mit positiven Eintrdgen hat. Der zugehorige Eigenwert ist 1 und betragsméfiig echt grofler
als alle anderen Eigenwerte von II. Wenn p = (po, . ..,pn—1), dann normieren wir p durch

N-1
Z bi = 17
=0

und setzen

m—1
p(CR') = pa,, H Tasaiy -
i=—m
Wie in Beispiel 6.3.11 erhélt so ein Borel-Ma8 ppp auf Qp, das Markov—Maf} zu II. Dann ist MH(C’]Q) =pj
und 7;; représentiert das Maf des Anteils von CY, der von oy nach C} abgebildet wird. Wegen IIp = p
ist ur on-invariant.
Sei jetzt A = (ai;)s j=0,... N—1 eine Matrix mit Eintrégen in {0, 1} und

Qa={weQy|(VicZ)ayvuw,, =1}

Wir nehmen an, da88 7; ; = 0 gilt falls a;; = 0. Dann ist Q4 invariant unter oy und oy'. Weiter gilt, da
supp (umn) € Qa, d.he, p(24) = 1. Mehr noch, on: Qa4 — Qa, der Markov—Shift zu II ist mischend.
Um das einzusehen, stellen wir zunéichst fest, daf§ fiir n > m + k gilt

—n m k __ —k,...,k,k+1,.... n—m—1,n—m,....n+m
on"(Cy)N Cg = U C

Bty 3Bl Vht1sesYn—m—1,0—myeee,m
Ym+1ssYn—m—1€{0,..., N—1}

Weiter gilt

n—m—=k
—k,..., k,k+1,..., n—m—1n—m,..., n+my __ ky —1 m
NJH(Oﬁ,k,...,Bk,fykﬂ,...,wn,m,l,a,m,...,m) - /U'H(Cﬂ)pﬁk MH(COL )ﬂ-gk'}’kJrl H Tt r Yt r+1 T Y Qo »

r=1

Die Summation ergibt dann
pr(oy"(C) N CF) = Mn(Cg)ﬂn(an)PEk}ﬂﬁkwéizvn—k)-

(n)

Aus dem Satz von Perron-Frobenius folgt, daf} fiir II" = (77@)),»7]»:1,“,71\;_1 gilt m;;

p — p;. Damit erhélt
J n—oo
man

un(oy"(C2) N CF) — pn(CF)un(CT)

und weil die symmetrischen Zylinder eine ausreichende Familie bilden, folgt die Behauptung mit Propo-
sition 6.3.8. [
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Anhang A

Die Fourier-Transformation

A.1 Die Faltung

Seien f,g: R™ — C Borel-mefibar. Die durch
frg(@):= [ flz-y)gly) dy
Rn

definierte Funktion (fiir die z, fiir die die rechte Seite definiert ist), heift die Faltung von f und g.

Proposition A.1.1 : Seien f,g,h: R® — C Borel-meflbar. Dort wo alle auftretenden Integrale konver-
gieren, gelten folgende Identitdten:

(i) frg=g=f.

(ii) (f*g)xh=[fx(g*h).

(il) (f*g)*=f**g=f*g"

(iv) supp (f * g) € supp f + suppg.

Beweis:

(i) Mit einer Substitution (vgl. Satz C.4.6) rechnet man

(e = [ sw=vat)dy

- / @)yl - 2) dz
]Rn
(g% f)(@).

(ii) Hier beniitzt man (i) und den Satz 2.3.5 von Fubini, um zu rechnen
((fg)*h)(x) = /Rn(g ¢ )@ — y)h(y) dy

/n / 9(x —y —2)f(2)h(y) dzdy

/n 1) / g9(x —y — 2)h(y) dy dz

[ 16 [ (hege—z)a:

= (f*(g=h))(2).
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(iii) Wegen

(f+9)(z) = - (x—2-y)g(y)dy = f* xg(x)

und (i) gilt auch (fxg)* = (g* f)* =g"* f = [ * g°.

(iv) Wenn = ¢ supp f + suppg und y € supp g, dann gilt  — y ¢ supp f, was fiir alle y auf
f(z —y)g(y) = 0 fithrt. Damit gilt aber (f * g)(z) = 0.

Lemma A.1.2 : (Youngsche Ungleichung) Seien f € L*(R™) und g € LP(R™) mit 1 < p < oo. Dann
existiert (f * g)(x) fiir fast alle x € R™ und f x g € LP(R™). Dariiber hinaus gilt

1 * gllp < 111 llgll-

Beweis:

Mit der Minkowskiungleichung fiir Integrale (vgl. Proposition ??) rechnen wir

1f*gll, = f(W)g¥(-) dy

R

p

11611, dy
1711 gl

IN

Proposition A.1.3 : Seien p und q konjugierte Exponenten und f € LP(R™) sowie g € LY(R™). Dann
existiert (f * g)(x) fir alle x € R™ und es gilt

1f * glloc < I fllpllgllq-

Wenn 1 < p < oo gilt dariiber hinaus f x g € Co(R™), d.h. zu € > 0 gibt es eine kompakte Teilmenge
K CR™ mit
[(fxg)(x)] <e VeeR"\K.

Beweis:

Mit der Holderungleichung (vgl. Lemma ?7?) folgt

[ 156 = )l dy < 151, gl

also existiert (f * ¢g)(z) in der Tat fiir alle z € R™ und erfiillt ||f * glloc < [|fllp lgllq- Mit
Proposition A.1.1 rechnen wir jetzt

|(f * 9)"(2) = (f * 9) ()] [((FY = 1) * g) ()]

17 = fllp lgllq-

Fiir p < oo konvergiert nach Proposition 77 letzterer Ausdruck mit y — 0 gegen 0, was mit
Bemerkung ?7? die gleichméflige Stetigkeit von f * g liefert. Fiir p = oo vertauscht man in
diesem Argument einfach die Rollen von p und q.

IN
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Sei jetzt 1 < p, g < co. Nach Lemma ?7? kann man zwei Folgen (f,,)nen und (gn)nen in C.(R™)
mit
an - f”p njo)o 0 und Hgn - QHP njo)o 0

finden. Mit Proposition A.1.1(iv) sieht man, dal supp (f,, * g») kompakt ist. Die schon bewie-
sene Stetigkeit von f, x g, liefert also f,, * g, € C.(R™). Weiterhin rechnet man

((fa*gn)(@) = (Fx)@)] < [(fa* (90— 9) @)+ [((fa = F) * 9) (2)]
< Wallp lgn = glla + 162 = £l lglly — 0.
Also konvergiert f, * g, gleichméafig gegen f * g und dies beweist die Behauptung. n

Lemma A.1.4 : Sei (M, 9, 1) ein Mafraum und (fn)nen eine konvergente Folge in LP(u) mit Grenz-
wert f € LP(u). Dann gibt es eine Teilfolge, die p—fast iberall gegen [ konvergiert.

Beweis:

Wir nehmen zunéchst an, daf§ p < co. Fiir n € N und € > 0 setze

Ene =1y € M|[[faly) = f(y)] > e}
Dann gilt [, |[fn(z) — f(2)[P > e’v(Ey ), also

1

V(En,e) < o

T
Wir wéhlen eine Teilfolge (n;)jeny mit v(E;) < o fir E; = {y € M | |fy,(y) — f(y)] > €}.
Dann gilt
Jn;(y) — g(ly) Vy € M\limsup Ej,
J—00 jGN

wobei limsup, ey Ej = (2, (U;’O:,C Ej). Um das einzusehen, beachte

oo oo

M\limsup E; = | | ((M\ E))

JEN k=1 \j=Fk

Also gibt es zu y € M \ limsup;cy £ ein k € N mit y ¢ E; fiir alle j > k. Das bedeutet aber
gerade | fp, (y) — f(y)| < 2% fiir alle j > k, d.h. f,, (y) — f(y). Andererseits gilt

v U Ej) =< Z 25 9k+1
j=k j=k
woraus man v(limsup;cy £;) = 0 schliet. n

Proposition A.1.5 : (Glittung) Sei f € L*(R") und g € C*R"™). Wenn 0% fir alle |a|] < k
beschrinkt ist, dann ist g x f € C¥(R™) und es gilt

0% g f)=0%*f V]a| <k.

Beweis:
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Die Existenz von (0%g * f)(x) fiir alle x folgt aus

(0% f)(z) = | 97g9(x —y)f(y) dy,

R

weil 8%g beschréinkt ist. Mit 0% g(z — y) f(y) = 9 (9(x — y) f(y)) folgt die Behauptung jetzt
aus Satz 2.4.6. -

Sei ¢: R™ — C eine Funktion und ¢ > 0. Dann setzt man

pi(r) = tinso (%)

Satz A.1.6 : Seip € L'(R") und [, p(x)dx = a. Dann gilt

(i) Jgn we(@)dz = [}, o(x)dr = a.
(ii) Sei f e LP(R™) mit 1 < p < co. Dann gilt f * @, — af in LP(R™).

(iii) Wenn f beschrinkt und gleichmdf$ig stetig ist, dann ist die Konvergenz f * 4 Py af gleichmdapig.

(iv) Wenn f € L®(R"™) und U C R™ eine offene Teilmenge auf der f stetig ist. Dann ist die Konvergenz
[ P—y af gleichmdfig auf kompakten Teilmengen von U.

Beweis:

(i) Mit der Transformationsformel (vgl. Satz C.4.6) rechnet man

/n pi(x) dv = /n %@(%)dw = /n e(y) dy.

(i) Mit der Rechnung
(Fee)@)=af@) = [ (fle=v)- f@)eulv)dy
= /n (f(z—tz) — f(2))pe(tz)t" dz
= [ (-t - i@)ez) bz
[ 0@ - st a:

und der Minkowskiungleichung aus Proposition ?? finden wir

| =0 - soete|

/ ( / (@) = f@)| o))" da:); dz

[ =1l et de
Rn

I * e —aflp

IN



A.2. DER SCHWARTZ-RAUM 129

Beachte, da8 || f** — f||, < 2| f||,- Nach Proposition ?? gilt || f** — f||, 0 falls p < oco.
Also liefert der Satz 2.4.4 von der dominierten Konvergenz || f * ¢, — af|, Py 0 und
damit die Behauptung.

(iii) Dies geht genauso wie (ii), nur bendtigt man die gleichmiiBige Stetigkeit um ||f** —
flloo p— 0 schlieBen zu kénnen (vgl. Bemerkung ??). Dann liefert der Satz 2.4.4 von der

dominierten Konvergenz || f * ¢ — af||c Py 0 und damit die Behauptung.

(iv) Sei € > 0 und E C R" eine kompakte Teilmenge mit fRn\E lo(x)]de < e. Wenn jetzt
K C U eine kompakte Teilmenge ist und z € K, dann gilt fiir z € F und kleine ¢ > 0,
dal ¢ — ¢tz € U und (vgl. Lemma 77)

sup |f(x —tz) - f(z)[ < e
zeK,z€E

Damit rechnet man

sup [f * ¢y(2) —af(z)] <
zeK

IN

zeK R\ E

sup (/E(f(z—tz)—f(x)llea(z)ldz+/ |(f($—tz)—f(z)|<p(z)|dz>

IN

c / l0(2)] dz + 2] flloce.

wobei t immer noch als klein angenommen wird. Damit folgt aber (iv) sofort.

n
A.2 Der Schwartz-Raum
Die Menge
SR") :={f € C¥[R") | Ifll(n,a) <00, VN €N, ae Ny}
heifit der Schwartz—Raum, wobei
1l (v,a) == S;lﬂgl(l + [lz)¥]0% f ()] (A1)

(,0%f fallt schneller auf Null ab als jede Potenz von ||z[|V“) und || - || die euklidische Norm auf R™ ist.

Bemerkung A.2.1 : Die durch (A.1) definierten Funktionen [ - [|(n,a): S — R sind Halbnormen. Wir
versehen S(R™) mit der von diesen Halbnormen im Sinne von Bemerkung ?? erzeugten Topologie. Sei
{fr}5° eine Folge in S(R™) und f € S(R™), dann konvergiert f — f in S(R™) genau dann, wenn

||fk - f”(N,oz) kjc:o 0 V(N7 O().

Proposition A.2.2 : S(R") ist vollstindig, d.h. wenn fiir eine Folge { fx}ren in S(R™) alle || fill(n,a)
Cauchy-Folgen sind, dann konvergiert fi gegen ein f € S(R™).

Beweis:

Sei {fi tken wie in der Proposition beschrieben. Da fiir jedes n € N gilt

sup [0%f(x)] < | fll(wv,a)
rER™
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konvergiert 0¢ f(x) lokal gleichméBig in « € R™. Nach Satz ?7 ist die Grenzfunktion g, dann
stetig. Wir wollen zeigen, dal die Grenzfunktion gy der f; unendlich oft differenzierbar ist
und 0%gg = g, erfiillt. Dazu machen wir eine Induktion iiber |«|.

Setze v; = (0,...,0,1,0,...,0) € R" und 5 = (0,...,0,1,0,...,0) € N mit jeweils der 1 an
der j-ten Stelle. Dann gilt

e+ t0)) = @) = [ Oyfula+ su))ds
0

und die linke Seite konvergiert fiir k — oo gegen go(z + tv;) — go(z), wihrend die rechte Seite
t

nach dem Satz 2.4.4 von der dominierten Konvergenz gegen | gg(z+sv;)ds konvergiert. Aber
0

dann zeigt der Hauptsatz ?? der Differential- und Integralrechnung 9°go(z) = 0;g0(x) = gs-
Damit hat man den Induktionsanfang und der Induktionsschritt geht ganz analog.

Halte jetzt (NN, o) fest. Zu e > 0 findet man ein kg € N mit || f, — fi|l(v,a) < € fiir alle k,1 > ko.
Also gilt
|(L+ |2V (0% fu(z) — 0% fulz))| <e VxR, k 1>k

und das liefert c

(1 4+ [lz[)¥
Wegen gq(z) = klim 0° fr(z) gibt es also zu jedem z ein k, € N mit |go(z) — 0°fi(z)| <

0% fx(x) — 0% fu(=) | Vo eRY k1> k.

W fiir alle [ > k; und man findet mit

0% fe(2) = ga(@)| < [0 fi(x) — 0% fi(2)]| + |0° fulz) — gal < (

3 + 9
L+ [lzDN (A + [l

fiir alle [ > k., k die Abschétzung

2e
(L+ (=)™

Damit gilt dann fr — go in S(R™). L]

0% fi () — ga(x)] < V k> k.

Proposition A.2.3 : Fir jede Funktion f € C*(R") sind die folgenden Aussagen dquivalent:
(1) feSmR).
(2) 08 f ist beschrinkt fiir jede Wahl von o und 3.
(3) 0%(xPf) ist beschrinkt fir jede Wahl von o und 3.

Beweis:

(1)=(2): Dies folgt sofort, weil |2°| < (14 ||z||) fiir alle N > |3|.

(2)=(1): Halte N fest und setze m := min{>_,_, lz;|N | ||lz|| = 1} > 0. Indem man die
Fille ||| < 1 und ||z|| > 1 separat betrachtet, sieht man die erste Ungleichung von

A+ lzDY <2V + 2|y <2V [ 14 2> |z Y |5
j=1

die zweite ist klar fiir ||| = 1 und folgt dann allgemein aus dem identischen Homoge-
nitétsverhalten von [lz||N und Y27, |25V
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(2)=(3): 9%(«P f) ist nach der Produktregel eine endliche Linearkombination von Termen
der Form z70° f.

(3)=(2): £70° f ist nach der Produktregel eine endliche Linearkombination von Termen
der Form 9% (2P f).

Bemerkung A.2.4 : Aus Proposition A.2.3 sieht man sofort, dafi S(R™) C LP(R™) fiir alle 1 < p < oo.
n

Proposition A.2.5 : Seien f,g € S(R™). Dann gilt f * g € S(R™).
Beweis:
Nach Proposition A.1.5 gilt f x g € C°°(R™). Mit
L+ ol <1+ flz =yl + [yl < (1 + [l = gD+ llyll)

rechnet man

L+ 2™ 10 (f * g)(@)] < /R (L +[lz = yID™ 0% f(z — y)| (L + [yl V|9 (y)] dy
< fllovaloliovsnioy [ @+l dy
und eine Integration in Polarkoordinaten zeigt, daf [, (1 + Iy~ dy < oc. "

Proposition A.2.6 : Zu jedem ¢ € S(R™) gibt es eine Folge (¢r)ren in C°(R™) C S(R™) mit pr, — ¢
in S(R™). Insbesondere ist C°(R™) dicht in S(R™).

Beweis:

Sei ¢ € C2°(R™) mit ¥|p = 1, wobei B = {z : ||z|| < 1}. Fiir k € N setze @5 (z) = ¢(z) ¥(£).
Dann gilt ¢, € C(R™). Mit

0 (prla) = p(@) = (@) (W(D) ~ 1))

I
o
@
)
Gt
=2
—
Q
<
—
Nl
N’
+
—
Q
Q
S
—~
5]
S~—
S—
—~
<
Nl
|
—_
S—

findet man
1 x
c1+e2ly() =11+ )~

k
%Cl r € kB
%014—%62 x ¢ kB

(1 + |2N 0% (pr(@) — p(x)) | <

IA
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Bemerkung A.2.7 : Sei Q) C R" offen. Dann gibt es zu jedem ¢ € C°(Q) gibt es eine Folge (¢k)ken
in C°(92) mit ¢ — ¢ in C*(Q). Insbesondere ist C°(2) dicht in C>° ().
Um das einzusehen, betrachte eine Folge von offenen Mengen U; C {2 mit folgenden Eigenschaften:
(a) Uj C Ujt1,
(b) Uj; ist kompakt,
(©) Uyen Uy = .

So eine Familie existiert, wie man sich mithilfe der Distanzfunktion d(z) := inf,gq |z — y| tiberlegen
kann. Dann wéhlen wir unter Verwendung des C'*°-Urysohn-Lemmas ?? Funktionen v¢; € C2°(Q) mit
%“Uﬁ =1 und supp®; C Ujy1. Setzt man jetzt pr = oy, so gilt v € C°(2) und die ¢y konvergieren
in  gleichméBig auf Kompakta gegen ¢. n
A.3 Die Fourier—Transformation

Sei f € L*(R™). Dann heifit
ff(f) = f(f) = / f($>e—27rix-§dx

Rn

die Fourier—Transformierte von f.
Die folgende Bemerkung ist eine unmittelbare Konsequenz der Definitionen und Satz 2.4.6.

Bemerkung A.3.1 :

@) [flloo < 1f 11

(ii) f ist stetig.

Satz A.3.2 : Fir f,g € LY(R") gilt
(i) (SN = e 2w Ef(€) und (f)" = h mit h(x) = ™0 f(x).

(i) Wenn z®f € L*(R™) fir |a| < k gilt, dann hat man f € C*(R™) und
0o f = ((—2mix)*f)".
(iii) Wenn f € C*(R™), 0°f € LY(R"™) fir |a| <k und 9*f € Cy fiir |a| < k —1 gilt, dann hat man
(0% )" () = (2mi&)" f(€).
(iv) Sei T € GL(n,R) und f € L'(R™). Dann gilt

(foD) =|detT| " fo(T 1.

Beweis:
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(i) Dies folgt aus

(f)"E) = [l —y)e ™S dy

R™

(z)e‘2m(z+y)'5dz

Rn
= e (g
und einer analogen Rechnung fiir den zweiten Teil.

(ii) Hier rechnet man

9 f(¢)

og - f(z)e ™8 dy

f(x)ag (e—eri:v{) dx

R

. f(z)(—2miz)*e *™ ¢ dz
= ((—2miz)* f(2))"(©).

(iii) Wir fiihren eine Induktion iiber n durch. Fiir n = || = 1, d.h. fiir f € Cy hat man

A

fl@)e™ 8 de = fla)e?™™¢ = — [ f(a)(=2mi€)e > du(€)
R~ T Rn

= 2mief(€).

Fiir n beliebig und |a| = 1 ersetze f’ in obiger Rechnung durch 9; f. Fiir | > 1 ersetze
f" durch 9;(8° f) mit |B| = |a| — 1.

(iv) Setze S := (T~1)T. Dann liefert die Transformationsformel aus Satz C.4.6

(foT)"(¢) f(Tx)e ™ d

R

-1
[det T|~H [ fly)e ™ *Cdy
R’ﬂ

|detT|" [ f(y)e ™5 dy
Rn

|det |~ f(S¢).

(v) Mit dem Satz 2.3.5 von Fubini rechnet man
(f*9)"(©) = / | @ —y)gly) dye™*m da
= / [ f— y)e T Eg(y)e TV da dy

= 1O [ awemreay
= J©3).

133
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Lemma A.3.3 : (Riemann-Lebesgue) F bildet L'(R") nach Co(R"), dem Raum der stetigen Funktio-
nen f mit lim, o f(x) =0, ab.
Beweis:
Wenn f € C}(R") ist, dann gilt 9;f € C.(R™) und Satz A.3.2(iii) zusammen mit Bemerkung
A.3.1 zeigt, daB |¢;]f(€) beschrinkt ist. Damit folgt f € Co(R™).

Nach Korollar ?? ist aber C}(R™) dicht in L*(R™), also kénnen wir eine Folge (f,)nen in
C(R™) wihlen, fiir die f,, — f in L*(R"™). Damit erhiilt man

£ = £ < [ 1fule) = F@ e = 1fa = £l

und dies zeigt die gleichméfiige Konvergenz von fn gegen f . Weil aber nach dem ersten Teil
des Beweises f,, € Cp(R"™) gilt, folgt auch f € Co(R™). n

Korollar A.3.4 : F(S(R™)) C S(R™).

Beweis:

Wenn f € S(R™), dann gilt nach Proposition A.2.3 wegen fRn Wl‘nﬂdx < 00, daB x*90f €
LY (R™) N Co(R™). Jetzt liefert Satz A.3.2(iv) f € C°°(R") und wir kénnen rechnen
o8 f A
(—2mi)lel )>
A32 a4 f A
27 (aﬂi)m)

T (=2mi
A32 o B 1 A
=7 9 ((27”5) (7(—27ri)|a\) )
= og(@m)l?lel(—a)llef f(£))
= 8,4 (¢ f(©)).
Jetzt zeigt Bemerkung A.3.1, dafi ¢ (€8 f) beschriankt ist und mit Proposition A.2.3 schliefit
man f € S(R"). n

(@0’ )" = ((~2miw)(

Beispiel A.3.5: Seia >0 und f(z) = e~ml2* Dann gilt

fl) = ate I,

Fir n = 1 rechnet man

(Fr© = (~2mize )" (g

I Il
| \
—~
¥y
78
— S~—
@ s
- —~
i
SN~—
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was zunéchst auf die Differentialgleichung

und dann auf

fithrt. Also ist e%¢1” f(£) konstant und Auswertung in & = 0 liefert als Konstante

R —ralz|? _ 1
f(()):/Re Hdm—%.

Damit hat man den Fall n = 1 bewiesen. Fiir allgemeine n rechnet man jetzt mit dem Satz 2.3.5 von
Fubini

f(§) _ / efaﬂ'|a:|2€f27rim»§ dr
R’VL

2 _omixa
= H/eiaﬂ-lajj‘ e 271—sz€] dx]

AIR

<
I

S
7

2
= Le-zier

az

2
e~ uléil

I
i.:lﬁ

—

Lemma A.3.6 : Fir f,g € L'(R") gilt [5, f(x)g(z)de = [;. f(z)g(x)dz.
Beweis:

Dies folgt, indem man den Satz 2.4.5 auf das Integral [, [o. f(2)g(y)e 2™ dy dz anwendet.
"

Proposition A.3.7 : Die Fourier-Transformation F: S(R") — S(R™) ist stetig.
Beweis:

Wir beniitzen zunichst die Kompaktheit der Einheitskugel in R™ und die Homogenitét von
&V fiir folgende Abschitzung

L+[EDN 08B < er(X+ca D €M) 1083 < D cpa 170251,

IBI<SN

Mit Lemma A.3.6 und dem Beweis des Riemann-Lebesgue-Lemmas A.3.3 findet man die

Identitaten R
(£9¢2)" (@) = (~1) i) =1 57 (w" p(-a))

(@) ()
und

5'68?@(5) vemme A-3.0 / |5| (2mi) lol— Iﬁlaﬁ(x o(— 1))627riz-§dx

S / a2 ( o(x)) (2mi)l =18l e=2mia-g gy
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Es ergibt sich also
|558§L@(f)| <c / \85((—x)“<p(m))|dm

Wegen 97 ((—z)%p(z)) = 3 cs5,4(x78°¢) und
5,0

270(@)] < (1 +]a))O%p(x)]
= (L4 |20 ()

1
oMl (1]-+n+1,6) W

1
(1 + [z])m+t

IN

finden wir schlie3lich
|§Ba?@(§)‘ <a Z ey sllelyentis

Satz A.3.8 : (Fouricrinversion) Seien f € L*(R™) und f € L*(R™). Setzt man f(z) = f(—z), so gilt
HY=DHr=r  fi.

Beweis:

Fiir t > 0 und = € R"™ setze
90(5) — e27riz-§77rt2|§|2'

Dann rechnet man mit Beispiel A.3.5
o = [ elgemenas

_ /efwtﬂa\?efzme(yfz)dg

e
t’ﬂ
= gt(x - y)7

wobei g(z) = e~7lz1* | Es ergibt sich in der Notation von Satz A.1.6

/R eI i e ag Fw)ely) dy

R

fy)e(y) dy
e

= fW)ge(x —y)dy
Rn

= (fxg)(@).

Satz A.1.6 zeigt, da3 f x g fiir t — 0 in L'(R™) gegen f konvergiert. Nach Lemma A.1.4 gibt
es dann eine Folge (t,)nen positiver Zahlen mit lim,, o t, = 0, fiir die f * g, fast {iberall
gegen f konvergiert.

Andererseits folgt aus f € L'(R™) mit dem Satz 2.4.4 von der dominierten Konvergenz, daf

fxgilw) = / CePRRETIR () dg — | ETEEf(E) de = () (@),

t—0 Rn

dh. f und (f)V sind fast iiberall gleich, also f = (f)¥ € L'(R™). Die Identitit f = (f)" €
L' (R™) zeigt man vollig analog. n
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Korollar A.3.9 :
(i) Wenn f € L' und f =0, dann gilt f =0 f.i.
(ii) F: S(R™) — S(R™) ist ein Isomorphismus von topologischen Vektorrdiumen.

Beweis:

Der Teil (i) ist klar. Fiir Teil (ii) beniitzen wir das Korollar A.3.4 um zu sehen, daf§ F(S(R™)) C
S(R™). Damit gilt aber auch f € S(R") fiir f € S(R"), d.h. f € S(R") impliziert f = (f)" €

S(R™). Die Behauptung folgt dann aus Proposition A.3.7, weil die Stetigkeit von f — f sofort
aus der Stetigkeit von f — f folgt. L]

Satz A.3.10 : (Plancherel) Wenn f € L* N L2, dann gilt f € L? und Flpinpz: LPNL2 — LN L2 laft
sich zu einer bijektiven Isometrie F : L? — L? fortsetzen.

Beweis:

Sei X := {f € L*(R") | f € L'(R")}. Nach der Fourier-Inversionsformel aus Satz A.3.8
und dem Riemann-Lebesgue-Lemma A.3.3 gilt X C L>°(R™). Mit Proposition ?? liefert das
X C L>®(R") N LY(R") C L?(R"). Andererseit gilt S(R") C X nach Bemerkung A.2.4 und
Korollar A.3.4. Wegen C.(R") C S(R") und Korollar ?? ist also X dicht in L?(R"™).

Seien jetzt f,g € X und h := §. Dann liefert die Fourier-Inversionsformel

iL(f) /w eI EG dy

672771'1{9 dx

Il
\‘

n

@ fi.

Il
<

Lemma A.3.6 liefert dann

f@g(x)de = | f@)h(@)de= | fle)h@)de= [ f()i(x)de.
R™ Rn R™ R
Das bedeutet, F erhiilt das L?-Skalarprodukt. Da nach Satz A.3.8 gilt F(X) C X, kann man

also die Abbildung F: X — X zu einer Isometrie F: L2(R") — L2(R™) fortsetzen.
Als néichstes zeigen wir, da F und F auf L*(R™) N L2(R") tatséichlich iibereinstimmen. Sei
also f € LY(R™) N L*(R"™). Mit g(x) = e=l#1”der Youngschen Ungleichung (vgl. Lemma
A.1.2) und Satz A.1.6 findet man

1 * gellp < Nl Ngells = £ 1lp llgells,

also f * g; € LY(R™) N L?(R™). Weiter rechnet man mit Satz A.3.2 und Beispiel A.3.5

(F %90 (€) = (&) J(§) = ™ f(g).
Dies zeigt (f * g;)" € L*(R"), also f * g; € X. Da aber f x g, P fin LY(R™) und L*(R").

Der Beweis des Riemann-Lebesgue-Lemmas A.3.3 liefert jetzt die gleichméfBige Konvergenz
(f*ge)" P f. Andererseits gilt in L2(R") auch (f xg;)" = F(f *g:) = F(f). Nach Lemma

A.1.4 gibt es also eine Folge (t;)jen mit limj . t; =0 und (f * g¢,)" — F(f) fast {iberall.
j—oo
Also ergibt sich schlielich f = F(f) fast iiberall, d.h. f = F als L2 Funktionen.
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Wegen Korollar A.3.9(ii) wissen wir jetzt, daB F: L*(R") — L?(R") eine Isometrie mit dich-
tem Bild ist. Damit ist F automatisch injektiv, aber indem man ein f € L?(R™) durch
Vektoren im Bild approximiert, erhélt man jetzt auch die Surjektivitdt aus der Isometrie. =

Korollar A.3.11 : Sei F : L*(R") — L*(R") die Fouriertransformation. Dann ist F~' auf L'(R™) N
L2(R™) durch die inverse Fouriertransformation f — f gegeben.

Beweis:

Da x — —z auf allen LP(R™) einen isometrischen Isomorphismus induziert, verifiziert man
leicht, dafl einen Plancherelsatz A.3.10 auch fiir die inverse Fouriertransformation. Die resul-
tierende Transformation F*: L?(R") — L2(R") schriinkt sich auf dem dichten Unterraum
LYR™")NL*(R") zu f + f ein, also zeigt die Fourierinversion A.3.8, da8 F o F* = id. Analog
sieht man F*f o F = id, d.h. es ergibt sich F# = F~!, also die Behauptung. [

A.4 Temperierte Distributionen

Ein lineares Funktional F' : S(R™) — C heilt temperierte Distributionen, wenn fiir f; — 0 in
S(R™) gilt F(fx) — 0. Wir bezeichnen den Raum aller temperierten Distributionen mit S'(R™) und
schreiben

(F,):=F(p) ¢€S8R"),FeSR").

Eine mefibare Funktion f : R" — C heifit temperiert, wenn es ein N € N mit (1 + |z|)~V f € L}(R")
gibt. Wir bezeichnen den Raum aller temperierten Funktionen mit T'(R™).

Beispiel A.4.1 : Sei f:R"™ — C temperiert. Setze fiir ¢ € S(R")

(R = [ o

Dann gilt
f N -N
F < 1 < ||(1
[(F, ) _/!(1“9:‘)1\,! [T+ [z)) "l < I+ 2™ Fll el v

und man sieht, dafl F' eine temperierte Distribution ist.

Beachte, dafi jede Funktion f € LP(R™) mit 1 < p < oo temperiert ist: Fiir N > % gilt ndmlich
W € LY(R™) und das zeigt fiir ¢ = p’ mit der Holderungleichung aus Lemma ?? die Behauptung,.
Wenn f; und fs fast iiberall gleich sind, dann gilt F} = F5. [

Beispiel A.4.2 : Fiir x € R" setze
(F, ) = 0%(x).

Dann gilt |(F, ©)| < ||¢]lo,« und F ist eine temperierte Distribution. Fiir & = 0 nennt man diese Distri-
bution die Diracsche §-Distribution. L]

Proposition A.4.3 : Sei f: R® — C temperiert und F die zugehérige temperierte Distribution (vgl.
Beispiel A.4.1). Wenn F =0, dann ist [ fast iberall Null, d.h. die temperierten Funktionen konnen als
Teilmenge der temperierten Distributionen aufgefafit werden.

Beweis:
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Schreibe f = |f| e fiir eine mefibare Funktion p: R™ — R und wiihle eine kompakte Menge
E C R™. Dann existiert das Integral [, |f| = [, fe™", weil f temperiert ist.

Nach Proposition ?? gibt es ein Folge (¢x)ren in C°(R™) € S(R™) mit ¢, — xge * in LP
und damit fast iiberall (evtl. nach Ubergang zu einer Teilfolge, vgl. Lemma A.1.4). Mit dem
Satz 2.4.4 von der dominierten Konvergenz fiihrt dies auf

o= [ sou— [ pewee= [

also ist f|g und somit auch f fast iiberall Null. "

Eine Funktion f € C*°(R") heiit langsam wachsend, wenn es zu jedem Multiindex o € Nj} existiert
ein N € N| fiir das % beschréankt ist.

Proposition A.4.4 : (Multiplikation mit Funktionen) Sei f € C*°(R"™) langsam wachsend. Dann wird
durch
(fF.o)=(F fe) FeSR"),pcSR")

eine temperierte Distribution definiert.
Beweis:

Die Abbildung ¢ +— fy ist stetig von S(R") — S(R™), d.h. wenn ¢, — ¢ in S(R™). Wir
behaupten, dal dann auch gilt for — fp in S(R™). Wegen

20 (fo)l = |a™ Y 07f0°¢|

Y+6=4

_ of
-2 ‘ (1+ |z])
—_———

| (1 + [x)N g% |

THo=A beschrankt
beschrénkt
gilt f € S(R™). Analog sieht man fiir ¢ — 0
Iferlve = sup(<1+\x|>N|aa<fsok>|)
< sup Y | | 1 )M 9%
(1+ \x|
y+o=«
endlich
— 0,
k—o0

was die Behauptung zeigt. Wenn jetzt ¢, — 0 gilt, so findet man

(fF, 1) = (F, for) — 0,

weil F' eine temperierte Distribution ist. Damit also ist auch fF eine temperierte Distribution.
]

Proposition A.4.5 : (Translation) Sei y € R™ und F € §'(R™). Dann definiert
(FY @) == (F,97") ¥V peSR")

eine temperierte Distribution.
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Beweis:

Wenn ¢, — ¢ in S(R™), dann zeigen wir zunéchst ¢, ¥ — ¢~¥ in S(R™):
loi vy = sup (14 |2]) 0% (@)
= sup (1 + |2) ¥[0% (e ~ )]
= sup (1t o —y) 0% on(a — 9)I(1+ )™
= (1+ 1)V lerllove-

Wenn also ¢, — 0 so gilt ¢, ¥ — 0 und das zeigt die Behauptung. Dariiber hinaus sieht man
(FY,or) = (F.¢,") — 0

und die Proposition ist bewiesen. [

Proposition A.4.6 : (Verkniipfung mit invertierbaren linearen Abbildungen) Sei S € GL(n,R) und
F € §'(R™). Dann definiert

._L -1 n
<FoS,<p>.—detS<F,<poS )y VpeSRY

eine temperierte Distribution.
Beweis:

Wenn ¢ — ¢ in S(R™), dann zeigen wir zunichst o5 0 S™1 — p o S~! in S(R™): Mit der
Kettenregel findet man

(oS = Y cpd’pos!
161<]od

mit von S abhéngigen Konstanten cg. Wegen 0 < ||S|| < oo findet man eine Konstante C' mit

lpo S vy <C Y leslllelwvg),
1BI<|al

was die Behauptung beweist. Der Rest des Beweises geht wie der Beweis von Proposition
A4.5. [

Proposition A.4.7 : (Ableiten) Sei F € §'(R™). Durch

(O F,p) = (=1)l*UF,0%¢) Vo e SR")
wird eine temperierte Distribution definiert.
Beweis:

Wenn ¢, — ¢ in S(R™) so gilt nach Definition der Topologie des Schwartzraums 0%py — 9%p
in S(R™). Der Rest des Beweises geht wie der Beweis von Proposition A.4.5. L]
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Proposition A.4.8 : (Faltung) Sei F € S'(R") und ¢ € S(R") sowie ¢(z) = ¢(—z). Durch

(Fx9,0) = (Fpx¢) VoeSR")
wird eine temperierte Distribution definiert.

Beweis:

Wenn ¢ — ¢ in S(R™), so gilt ¢ * ¢ — ¢ x 1 in S(R™) wie man aus der Abschiitzung

(L+ 2N0%(or * ¥) ()] < cllell v, 1Yl (N4nt1.0)

sieht (vgl. Proposition A.2.5). Der Rest des Beweises geht wie der Beweis von Proposition
A4.5. L]

Proposition A.4.9 : (Fourier—Transformation) Sei F' € §'(R™). Durch

~

(F,p):=(F,¢) VYpeSR")
wird eine temperierte Distribution definiert.
Beweis:

Wenn ¢, — ¢ in S(R™), dann gilt nach Proposition A.3.7 ¢ — @ in S(R™). Damit ist der
Beweis Routine (vgl. Beweis von Proposition A.4.5). "

Bemerkung A.4.10 : Vollig analog zu Proposition A.4.9 zeigt man, dal durch

(F,p) = (F,¢) VoeSR")

fir F' € §'(R™) wird eine temperierte Distribution definiert wird. Mit der Fourier-Inversionsformel aus
Satz A.3.8 erhélt man

(F)Y,0) = (F,¢) = (F,(¢)") = (F, ¢),

also (ﬁ)v = F. Analog findet man (F)" = F. Also ist die Fourier-Transformation F — F ein linearer
Isomorphismus von &’'(R™). Wenn ein Netz (Fl,)qca in der schwach*-Topologie von S'(R™) gegen F €
S’(R™) konvergiert, dann zeigt die Charakterisierung der Konvergenz in dieser Topologie aus Proposition
7?7 zusammen mit Proposition A.3.7, daf3

~

(Pay ) = (Fas @ — (F,3) = (F\0)
und daher auch die Stetigkeit der Fourier-Transformation auf S’(R™). Als Ergebnis erhalten wir, dafl
die Fouriertransformation ein Automorphismus des topologischen Vektorraums S’ (R™) ist, dessen Inverse
durch die Fourier—Inversionsformel

~

(F)Y = (F)" = F (A.2)

gegeben ist. [

Proposition A.4.11 : Sei f: R® — C temperiert und F die zugehdrige temperierte Distribution. Dann
gilt
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(i) (hF, ) = [(hf)p fiir alle langsam wachsenden Punktionen h und ¢ € S(R™).
(il) (FY, ) = [ f¥%0 fir alle y € R" und o € S(R™).
(iii) (FoS,¢)= [(foS)p fir alle S € GL(n,R") und ¢ € S(R™).
(iv) (0°F,¢) = [0*fp fiir alle || < k und ¢ € S(R™), wenn f € C*(R™).
(V) (Fxt,0) = [(f*)e fir alle ¢ € S(R™) und ¢ € S(R™).
(Vi) (F )= [ fo fir alle p € S(R™), wenn f € L'(R™).
Beweis:

(i) Dies folgt unmittelbar aus den Definitionen.
(i)
/fyso = /f(w —y)p(r)de = /f(x)w(ery)dw = /fso‘y~

(iii) Mit der Transformationsformel aus Satz C.4.6 findet man
Jres)e=ldersit [ fipos

(iv) Mit partieller Integration ergibt sich

[orre= v [ o

[xve= [ [ve-niwewiy iz

(v) Man rechnet

und

/f(y)({/? ) (y) dy //f(y){ﬁ(y — 2)p(x)dy da
[ [ 1wt - pote)dyds

(vi) Mit Lemma A.3.6 findet man [ fo = [ f¢.

Proposition A.4.12 : Sei K C R"™ kompakt und konvex. Dann gibt es zu jedem xg € R*\ K ein & € R™
und ein ag € R mit

(a) 2o & < ap.
(b) y-& > o fiir alley € K.

Beweis:



A.4. TEMPERIERTE DISTRIBUTIONEN 143

Nach Satz ?? gibt es ein yp € K mit 0 < |y — zo| = infycx |y — zo|. Wir setzen &y := yo — xo
und ag := & - (x9 + yo). Dann gilt

§o-wo = %fo . ((370 + o) + (zo — yo))
= oo+ %(930 —%0) - (Yo — o)

1
= o — 5\330 - y0|2

< .

Auf der anderen Seite gilt

o Y = %fo : ((ﬂfo —Yo) + (Yo — 1‘0))
= oo+ %(yo — o) - (Yo — o)
= 040+%|$0*y0|2
> .
Wenn jetzt y € K beliebig ist, dann gilt y(¢) := yo + t(y — vo)
ly(t) — ol = lyo — zol® + 2t(yo — x0) - (¥ — yo) + t*ly — wol* = [yo — mo[> V¢ € [0,1].

Also kann die Ableitung des quadratischen Polynoms ¢ — |y(t) — x| in ¢t = 0 nicht negativ
sein. Damit gilt (yo — xo) - (¥ — v0) > 0, d.h,,

§o-y=(Wo—20) -y > (Yo — o) - Yo = &0 - Yo > Q.

Lemma A.4.13 : Sei K C R"™ kompakt und konvex sowie H: R™ — R definiert durch H() :=

sup, e (¥, ). Dann gilt
K={yeR"| (Y€ €R") y-£ < H©)}

Beweis:

Die Inklusion ,,C* folgt unmittelbar aus der Definition von H. Wenn jetzt o € R™\ K, dann
zeigt Proposition A.4.12, dafl es ein £ € R™ und ein « € R mit zp-& > a > y-£ firalley € K
gibt. Aber damit gilt dann zg - £ > H(§) und das zeigt ,,O¢. ]

Bemerkung A.4.14 : Sei f € C°(R™). Dann folgt aus Satz 2.4.6 und den Cauchy-Riemann Differen-
tialgleichungen (vgl. Satz ?77?), dafl durch die Formel

fQ = | fla)e ™ da
]R[

eine holomorphe Funktion f : C" — C definiert wird, die nach Bemerkung ?? durch ihre Einschrankung
auf R™ eindeutig bestimmt wird. n
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Satz A.4.15 : (Paley—Wiener) Sei K C R™ kompakt und konvexr sowie H: R™ — R definiert durch
H(§) = sup,ex(z,&). Dann sind fir jede ganze (d.h. stetige und in jeder Variablen holomorphe) Funktion
F: C" — C die folgenden Aussagen dquivalent.

(1) F = f fir eine Funktion f € C°(K).
(2) Zu jedem N € N gibt es eine Konstante Cy > 0 mit

|F(&)| < On(1+[¢) N2 HImO we e Cm.

Beweis:

»(1)=-(2)“ Nach der Definition der Fourier-Transformation ist klar, daf

19(@)] < lgllpgnye™

fiir jede integrierbare Funktion. Mit Satz A.3.2 findet man also
10° F(O)] < C0° fll 1 oy 2™ H O

Dies wiederum beweist die Abschitzung in (2), weil [¢¥|(1+[¢|)™N < 1 fiir |a] < N gilt.

»(2)=(1)“ Wir nehmen jetzt an, da§ F' die Abschitzung (2) fir jedes N erfiillt. Dann ist die
Einschrankung von F' auf R™ eine temperierte Funktion, also gilt nach Bemerkung A.4.10,
dafl F auf R™ mit der Fourier—Transformierten der durch

fo) = [ e ae

definierten (temperierten) Funktion f: R” — R {ibereinstimmt. Wenn wir jetzt zeigen
konnen, dafl supp f C K, dann definiert die Formel fiir die Fourier-Transformation eine
ganze Funktion, die auf R™ mit F' iibereinstimmt, also (Referenz???) gleich F' ist. Die
Abschitzung (2) zusammen mit dem Cauchy—Integralsatz ?? zeigt, daf} fiir jedes n € R™
gilt

)= [ Ry

Wendet man jetzt (2) mit N =n + 1 an, so ergibt sich
|f(a)] < e 2menmt2m e, g [ (14 Jg) "1 de.
Mit tn statt n gibt das im Grenzwert fiir t — oo

u(z) =0 fir H(n) <z-n.

Wenn aber H(n) > z - n fiir jedes n € R™, dann gilt nach Lemma A.4.13 z € K, also
folgt supp f C K.



Anhang B

Topologie

B.1 Umgebungen

Sei M eine (nichtleere) Menge und p: M x M — R eine Funktion. Das Paar (M, p) heifit ein metri-
scher Raum, wenn fiir alle z,y, z € M gilt:

(M2) p(x,y) — p(z,z) < p(y, z) (Dreiecksungleichung).

Wir nennen die Funktion p eine Metrik auf M. Wenn die Metrik p aus dem Kontext klar ist oder ihre
speziellen Eigenschaften nicht gebraucht werden, sagen wir einfach: M ist ein metrischer Raum.

Proposition B.1.1 : Sei (M, p) ein metrischer Raum, dann gilt fir alle x,y,z € M
(i) p(z,y) = 0.
(ii) p(z,y) = p(y,z).

(il) p(z,y) = |p(z,2) — ply, 2)|.

Beweis:

IDEE: Dies folgt direkt aus den Definitionen.
(M2)

(i): Dies folgt aus 0 = p(z,2) < p(x,y) + p(z,y).

(M2)
(ii): Es gilt p(y,z) < p(y,y) + p(z,y) "=’ p(z,y). Durch Vertauschen der Rollen von z und
y in diesem Argument folgt die Behauptung.

(M2) ii .
(iii): Aus p(z,2) < p(x,y)+p(2,y) = p(z,y)+p(y, 2) folgt p(x,y) > p(x,2) — p(y, z). Wieder

folgt die Behauptung, indem man in diesem Argument die Rollen von = und y vertauscht
und (ii) ausnutzt.

145
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Sei (M, p) ein metrischer Raum, 2 € M und r > 0. Dann heifit die Menge
By(x;r) :={y € M | p(z,y) <r}

die offene Kugel um z mit Radius r. Wenn die Metrik aus dem Kontext klar ist, schreiben wir
lediglich B(x;r) statt B,(z;7).

Es sei « € M. Eine Teilmenge U C M heifit eine Umgebung von x in M, wenn es ein r > 0 gibt
mit B(z;r) C U. Man beachte, daB§ « dann automatisch in U enthalten ist. Insbesondere sind also die
offenen Kugeln B(z;7) Umgebungen von z in M. Die Menge aller Umgebungen von = in M wird mit
U(z) bezeichnet.

Proposition B.1.2 : Sei (M, p) ein metrischer Raum und x € M. Dann gilt
(Ul) z €U fir alle U € U(x).

(U2) M €U(x).

e C @

(U3) Aus Uy e U(x) und Uy C Uz C M folgt Us € U(x).

o

Ug
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(U4) Aus Uy, Us € U(x) folgt U1 NU2 € U(x).

Beweis:

IDEE: Dies folgt direkt aus den Definitionen. Man denke dabei in Kugeln.

(U1), (U2) und (U3) folgen unmittelbar aus den Definitionen. Wenn B(z;r1) € U; und
B(x;ry) C Uy sind, gilt fiir jedes 0 < r < min(ry, )

B(x;r) CU; NUs,

was (U4) zeigt. Um (U5) zu zeigen, wihlen wir eine Kugel B(z;r) C U; und setzen Uy :=
B(z;7). Zu jedem y € Uy miissen wir nun eine Kugel B(y;r’) um y finden, die ganz in U;
liegt. Es sei also y € Us. Als v/ wihle r — 7 mit p(x,y) < ro < r. Fiir z € B(y;r — rq) gilt
nun, dafl

p(ZE,Z) S ,O(JU,y) + p(y,z) <ro+ (T - TO) =T,
also ist z € B(x;r) C U;. Insgesamt haben wir B(y;r — rg) C Uy, folglich Uy € U(y). [

B.2 Topologische Riaume

In der Analysis einer reellen Variablen entwickelt man eine Theorie der Konvergenz und Stetigkeit, die
wesentlich auf den Eigenschaften der iiber den Absolutbetrag definierten Abstandsmetrik beruht. Diese
Theorie 148t sich problemlos auf allgemeine metrische Riume iibertragen. Da aber nicht alle Mengen,
auf denen man Konvergenz und Stetigkeit beschreiben méchte, mit einer Metrik versehen sind (man
denke z.B. an Rédume von differenzierbaren Funktionen), sucht man nach alternativen Formulierungen.
Es stellt sich heraus, dafl die in Proposition B.1.2 aufgefiihrten Eigenschaften (U1) - (U5) des Systems
aller Umgebungen von Punkten in metrischen Rdumen ausreichen, um eine Theorie von Konvergenz und
Stetigkeit aufzubauen, die die Theorie fiir metrische Rdume subsumiert. Auch wenn zunéchst alle Mengen,
auf denen wir Konvergenz und Stetigkeit untersuchen wollen, metrische Rdume sein werden (manchmal
ist die Metrik aber auch alles andere als kanonisch), rechtfertigen spétere Anwendungen daher die folgende
Definition:

Sei M eine Menge und

P(M) := {N C M}
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die Potenzmenge von M, d.h. die Menge aller Teilmengen von M. Ein Paar (M,U), fiir das

U:M — P(PM)) ={NCPM)}
x — Ux)

jedem x € M eine Menge von Teilmengen von M zuordnet, heif3t ein topologischer Raum, wenn fiir
jedes x € M das System U(x) die Eigenschaften (U1)-(U5) aus Proposition B.1.2 erfiillt. Wir nennen die
Elemente von U(z) wieder Umgebungen von z in M. Wenn zusétzlich die Bedingung

Vi, 29 € M (1‘175.1'2 = 30 EZ/{(:cl)HUg EU(.Z’Q)ZUlﬂUQZQ)

gilt, dann heifit der topologische Raum nach dem Mathematiker Felix Hausdorff (1868-1942) ein Haus-
dorff-Raum.

Bemerkung B.2.1 : Seien (M7,U;) und (M, Us) topologische Rédume. Fiir (z,y) € M; x My definiere
B(z,y) := {Ur x Uz | U € U (z),U2 € Uz(y)}

sowie

U(z,y) ={V C M x My |3 BeB(z,y): BCV}

Es ist nicht schwer zu zeigen, da8 (M, x My, U) ein topologischer Raum ist (Ubung!). Man nennt diesen
Raum das topologische Produkt von (My,U;) und (Ms,Us) und U die Produkttopologie auf der
Produktmenge M; x M,. Es ebenfalls kein Problem, diese Konstruktion auf das Produkt endlich vieler
topologischer Rdume zu iibertragen. n

B.3 Offene und abgeschlossene Mengen

Sei (M,U) ein topologischer Raum. Eine Teilmenge U C M heifit offen, wenn sie Umgebung jedes
Punktes ist, den sie enthélt, d.h.
VeeU: Uel(x).

Eine Teilmenge A C M heifit abgeschlossen, wenn ihr Komplement CA := M \ A offen ist.

Proposition B.3.1 : Sei (M,U) ein topologischer Raum. Dann gilt:
(i
(ii

) Vereinigungen offener Mengen in M sind offen.
)

(iii) Schnitte abgeschlossener Mengen in M sind abgeschlossen.
)
)

Endliche Schnitte offener Mengen in M sind offen.

(iv) Endliche Vereinigungen abgeschlossener Mengen in M sind abgeschlossen.

(v) @ und M sind sowohl abgeschlossen als auch offen.

Beweis:
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IDEE: Die Aussagen iiber offene Mengen folgen sofort aus den Definitionen und die Aussagen iiber
abgeschlossene Mengen dann durch Komplementbildung.

Die letzte Behauptung ist klar mit den Definitionen. Seien U,,, v € I, offen in M.

(i) Wenn z € UveF U,, dann gibt es ein vy mit z € U,, und U, ist Umgebung von . Wegen
Uyy € U, er Uy ist auch letztere Menge eine Umgebung von z.

(ii) Sei jetzt I' endlich und @ € (), Uy. Jedes U, ist Umgebung von z und mit Induktion
folgt aus der Bedingung (U4) in der Definition eines topologischen Raums, dafl endliche
Schnitte von Umgebungen eines Punktes selbst Umgebungen dieses Punktes sind. Damit
folgt die Behauptung.

Die néchsten beiden Behauptungen folgen aus den ersten beiden und den de Morganschen
Formeln

M\UU’Y:m(M\UV)

yel’ yel’

und

M\ (U, =Jw\U,).

yer yer
L]
Satz B.3.2 : Wenn man fir einen topologischen Raum (M,U) die Menge
T :={VC M|V offen}
aller offenen Teilmengen kennt, kann man die Funktion U rekonstruieren:
Uz)={UCM|3IVeT: 2V CU}L (B.1)

(0

\Y V]

Beweis:

IDEE: Die Inklusion ,,0% folgt sofort aus den Definitionen. Fiir die andere Inklusion betrachte zu

U € U(x) die Menge U° :={y € U | U € U(y)} und zeige, daB sie offen ist.
»,C“ Wenn U € U(x), dann setze

U°:={yeM|Ucl(y)}.
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Es gilt © € U° C U wegen (U1), also bleibt zu zeigen, dafl U° offen ist: Sei also y € U°.
Dann gibt es nach der Eigenschaft (U5) in der Definition eines topologischen Raums (vgl.
Proposition B.1.2) ein V € U(y) derart, daB

VzeV: Uel(z).

Dann gilt V' C U° und daher U° € U(y).

,»,2% Bezeichne die rechte Seite der Gleichung (B.1) mit U’(z). Wenn U € U'(z) und V € T
mit x € V C U, dann gilt V € U(z) und nach (U3) auch U € U(x).

Auf Grund der in Satz B.3.2 beschriebenen Beziehung (B.1) zwischen Umgebungen und offenen Mengen
wird in vielen Biichern ein topologischer Raum durch Angabe seiner offenen Teilmengen definiert. Man
nennt dann die Menge 7 der offenen Teilmengen von M die Topologie von M. Dies fiihrt auf die folgende
Definition:

Sei M eine Menge. Eine Topologie auf M ist eine Familie 7 von Teilmengen von M mit folgenden
Eigenschaften:

(T1) peT, MeT.

(T2) {Uo|acA}cT = (U Us)eT.
a€cA

(T3) Uy,...,U, €T = (N U)eT.
=1

Natiirlich ist nicht jede Menge 7 von Teilmengen von M eine Topologie. Aus Proposition B.3.1 folgt
aber sofort, dafl die Menge der offenen Mengen in M eine Topologie ist. Ist umgekehrt auf M eine
Topologie 7 gegeben, so ist das durch (B.1) definierte Paar (M,U) ein topologischer Raum und 7" gerade
die Menge der offenen Teilmengen von (M,U) (Ubung!).

Es gibt also eine leicht zu beschreibende Bijektion zwischen der Menge der Umgebungssysteme U und
den Topologien 7 auf M. Daher nennt man auch das Paar (M, 7) einen topologischen Raum. Ob man
U oder T zur Beschreibung des topologischen Raumes beniitzt, ist dann Geschmacksache und héngt ein
wenig vom Kontext ab. Wenn U und damit 7 (und umgekehrt) aus dem Kontext klar sind oder nicht
explizit benannt werden miissen, nennen wir einfach M einen topologischen Raum. Die Elemente von 7°
heiflen offene Mengen.

Sei M ein topologischer Raum und B C M beliebig. Die Menge
B = ﬂ{A | A D B, A abgeschlossen}
ist die kleinste abgeschlossene Menge, die B enthilt. B heifit der Abschluf3 von B. Die Menge
B°:=|J{U |U C B,U offen} = {y € M | B € U(y)}

(vel. Beweis von Satz B.3.2) ist die grofite offene Menge, die in B enthalten ist. B° heifit das Innere von
B. Die Differenz B\ B° heifit der Rand von B und wird mit OB bezeichnet.

Fiir eine Teilmenge E C M heifit eine Menge U C M eine Umgebung von F, wenn E C U°. Also
ist U eine Umgebung von E genau dann, wenn U eine Umgebung jeden Punktes von E ist.

Proposition B.3.3 :  Sei (M,7) ein topologischer Raum und A C M. Dann gilt:
(i) A= AUHP(A).
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(ii) A ist genau dann abgeschlossen, wenn HP(A) C A.
Beweis:
IDEE: Dies folgt direkt aus den Definitionen.

(i) Aus z ¢ A folgt x € (A € T, also ist CA eine Umgebung von x. Wegen A NCA = () ist
dann 2 ¢ HP(A). Also gilt HP(A4) C A und damit A UHP(A) C A.
Umgekehrt folgt aus © ¢ HP(A)U A, daBesein U € T mit z € U und ANU = ( gibt.
Also gilt A C CU und damit 2 ¢ A, dh. A C AUHP(A).

(ii) A ist genau dann abgeschlossen, wenn A = A, was aber nach (i) #quivalent zu HP(A) C A
ist.

B.4 Erzeugung von Topologien

Sei M eine Menge und 77 sowie 75 Topologien auf M. Dann heiit 7; gréber als 75 (und 73 feiner
als 77), wenn 77 C Ts.

Bemerkung B.4.1 : Sei M eine Menge und & C P(M). Dann gibt es genau eine grobste Topologie
T (&) auf M, die € enthilt, ndmlich

T(€) :=({T S P(M) | T Topologie auf M,€ C T}.

In diesem Fall heifit £ auch eine Subbasis fiir 7(£) und 7 (€) die von £ erzeugte Topologie. (Ubung:
Zeige, daBl T (€) tatséchlich eine Topologie ist.) n

Proposition B.4.2 : Sei M eine beliebige Menge und € C P(M). Dann ist £ = {(\,paucn V |V € E}
eine Basis der von & erzeugten Topologie.

Beweis:

IDEE: Uberpriife, daB O := {Ugep Us | B beliebige Indexmenge,Us € £’} eine Topologie auf M ist,
die € enthilt und zeige, dal O C T fiir jedes T € {7 € P(M) | T Topologie auf M,E C T}.

Die Details seien dem Leser zur Ubung iiberlassen. [

Proposition B.4.3 : Sei M eine beliebige Menge und € C P(M). Dann gilt

7@ ={ U (N Ea) | Bact}.

belicbig  endlich
viele viele

Beweis:

Setze £ := { (| Ea | Ea € £}, dann folgt aus Proposition B.4.2, da £ die Basis ciner

endlich
viele

Topologie ist. Diese Topologie ist gerade

{ U r

beliebig
viele

und somit grober als 7(€), d.h. gleich 7 (). "

Eaeg}
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B.5 Stetigkeit von Abbildungen

Seien (M,U) und (N, V) topologische Rdume und f: M — N eine Abbildung. Dann heifit [ stetig
in g € M, wenn
YV e V(f(x0)) U € U(zo) : fF(U) C V.

Wenn f in jedem Punkt von M stetig ist, dann sagt man einfach, f ist stetig. Die Menge der stetigen
Abbildungen f: M — N wird mit C(M, N) oder auch mit C°(M, N) bezeichnet.

Proposition B.5.1 :  Seien (M,U) und (N,V) topologische Riume, xg € M und f: M — N eine
Abbildung. Dann sind folgende Aussagen dquivalent:

(1) f ist stetig in xo.

(2) Wenn V € V(f(xg)), dann ist f~2(V) ={x € M | f(z) € V} € U(xg), d.h. Urbilder von Umge-
bungen von f(xg) sind Umgebungen von x.

Beweis:

IDEE:

»(2)=(1)“: Wenn aus V € V(f(zo)) folgt f~1(V) € U(zp), dann zeigt f(f~1(V)) CV, daB f in g
stetig ist.

»(1)=(2)“: Umgekehrt, wenn f in xo stetig ist und V' € V(f(zo)), dann gibt es ein U € U(xp) mit
f(U) C V. Also haben wir U C f~1(V), was f~1(V) € U(zo) zur Folge hat.

Proposition B.5.2 :  Seien (M,U) und (N,V) topologische Riume sowie f: M — N eine Abbildung.
Dann sind folgende Aussagen dquivalent:

(1) f ist stetig.

(2) WennV C N offen ist, dann ist f=2(V) C M offen.

(3) Wenn V C N abgeschlossen ist, dann ist f=1(V) C M abgeschlossen.
Beweis:

IDEE: Beniitze Proposition B.5.1.



B.5. STETIGKEIT VON ABBILDUNGEN 153

»(2)<(3)“: Dies folgt sofort aus der Mengengleichheit
FTHNNA) =M\ f7H(4),

die fiir jede Teilmenge A C N und ohne jede Voraussetzung an f gilt.

»(2)=(1)*“ Wenn z € M und V € V(f(z)), dann gilt f(z) € V°, dh. x € f~1(V°), und V°
ist offen. Nach Voraussetzung ist f~!(V°) offen, also eine Umgebung von x. Damit ist
f~Y(V) eU(x), also ist f nach Proposition B.5.1 stetig in z.

»(1)=(2)“: Sei f stetig in jedem z € M. Wenn V C N offen ist, dann gilt fiir x € f~1(V), dafl
f(x) € V ist und folglich ist V € V(f(x)). Wegen der Stetigkeit von f in x gibt es nach
Definition ein U € U(x) mit f(U) C V, also U C f~1(V). Damit ist f~1(V) € U(z). Da
x € f7Y(V) beliebig war, ist f~1(V) offen.

Sei X # () eine Menge und {Y, }4ca eine Familie von topologischen Riumen. Fiir eine Familie von
Abbildungen f,: X — Y, nennt man die von

{fa'(Ua) | Uy C Yy offen, a € A}

erzeugte Topologie auf X die von {f,}aca erzeugte initiale oder schwache Topologie auf X. Man
nennt diese Topologie auch die von den f, induzierte Topologie auf X.

Sei { X4 }aca eine Familie von (als disjunkt betrachteten) Mengen, dann heifit

X::H Xo ={f: A— HXa\f(a)EXa}

acA acA

das mengentheoretische Produkt der X,,. Dabei ist die [ [, 4 X« die disjunkte Vereinigung der X,,.
Man schreibt die Elemente von X als (z4)aca, wenn f(a) = x,.

Beispiel B.5.3 : Sei {X, }aca eine Familie von topologischen Réumen, dann heifit die von den Projek-
tionen

pe: [ Xa — X5
acA

(xa)ozEA = Xp

auf X := [],c4 Xa erzeugte schwache Topologie auch die Produkttopologie auf X und der topologi-

sche Raum X heifit das topologische Produkt der X,,. (Ubung: Man zeige, dafl dies mit der Definition
der Produkttopologie in Beispiel B.2.1 kompatibel ist.) [

Wenn die Indexmenge A iiberabzahlbar ist, dann hat die Produkttopologie keine abzidhlbare Basis und
die Verwendung von Folgen in der Beschreibung der Konvergenz in so einem Produktraum reicht nicht
mehr aus.

Eine Gruppe G, die zugleich ein topologischer Raum ist, heilt topologische Gruppe, wenn gilt:
(a) pu: G x G — G,u(g,h) = gh, ist stetig.

(b) v: G — G,u(g) = g1, ist stetig.
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B.6 Kompakte Mengen

Sei (X, 7) ein topologischer Raum und Y C X eine beliebige Teilmenge. Eine Menge F von Teilmengen
von X heifit eine Uberdeckung von Y, wenn

YgUF.

FeF

ezl

Eine Uberdeckung F heifit offen, wenn alle F' € F offen in X sind. Die Menge Y heiit kompakt,
wenn jede offene Uberdeckung F von Y eine endliche Teiliiberdeckung hat, d.h. wenn es eine endliche
Teilmenge F’ von F gibt, die selbst eine Uberdeckung von Y ist.

X

In einem topologischen Raum X sagt man, eine Familie {F,}4ca von Teilmengen von X habe die

endliche Schnitteigenschaft, wenn fiir alle endlichen Teilmengen B C A gilt [ Fj # 0.
BeEB

Satz B.6.1 : Scien (X,7) und (X', T") topologische Riume. Dann gilt:

(i) Ist X kompakt und Y C X abgeschlossen, so ist auch'Y kompakt.

)
(ii) Ist X hausdorffsch und Y C X kompakt, so ist Y abgeschlossen.
(iii) Ist X kompakt und f: X — X' stetig, so ist f(X) C X' kompakt.
)

iv) Is ompakt, ausdorffsch sowie f: X — X' stetig und bijektiv, so ist auch die Umkehrabbil-
iv) Ist X k kt, X' hausd h ; X — X' stetig und bijekti st auch die Umkehrabbil
dung f~1: X’ — X stetig.

Beweis:

IDEE: Die Aussagen (i)-(iii) folgen direkt aus den Definitionen. Teil (iv) leitet man mithilfe von
Proposition B.5.2 her.

(i) {Ua}aea eine Familie von offenen Teilmengen von X mit Y C |J U,. Dann gilt X =
a€cA

CYu J U, und davon gibt es eine endliche Teiliiberdeckung, die dann auch eine endliche
a€cA
Teiliiberdeckung von Y ist.

(i) Zuz € X \Y und y € Y gibt es Umgebungen U, und V,, von z und y mit U, NV, = 0.
Dann gilt Y C |J V, und es existiert eine endliche Teiliiberdeckung V,,,...,V,, von Y.
yey

Setze
k

k
U = mUy und V := UV
i=1 i=1
Dann ist U eine Umgebung von 2 und V O Y. Auflerdem gilt U NV = (. Dies zeigt
x €U C X\Y und damit ist X \ Y offen.
(iii) Sei f(X) € |J Va, wobei die V,, € X' offen sind. Dann sind auch die f~1(V,,) offen
acA
in X und es gilt X C J,cqf ' (Vo). Also existiert eine endliche Teilitberdeckung X C
AV u.. U fY(V,,) so, daBB f(X) C V,, U...UV,, endliche Teiliiberdeckung ist.
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(iv) Wir zeigen (vgl. Proposition B.5.2)
F C X abgeschlossen = f(F) C X' abgeschlossen.

Wenn also F' C X abgeschlossen ist, so liefert (i), da8 F' kompakt ist. Nach (iii) ist dann
auch f(F') kompakt und (ii) zeigt schlieflich, dal f(F') abgeschlossen ist.

Wir haben im Beweis von Satz B.6.1(ii) stillschweigend das Auswahlaxiom beniitzt.

Lemma B.6.2 : (Alexander) Seien X # (), £ CP(X) und T := T(E). Dann sind folgende Aussagen
dquivalent.

(1) (X,7T) ist kompakt.
(2) Jede Uberdeckung von X durch Elemente von € hat eine endliche Teiliiberdeckunyg.

Beweis:

IDEE: Die eine Richtung ist trivial, fiir die andere betrachte

{{Ua}aea | Ua offen, X = | J Ua hat keine endliche Teiliiberdeckung }.
acA

»(1) = (2)“: Diese Richtung ist trivial.
»(2) = (1)“: (X, 7) sei nicht kompakt. Die Menge

A= {{Ua}aeA | Uy offen, X = U U, hat keine endliche Teiliiberdeckung }
a€cA

ist durch die Inklusion partiell geordnet. Wir wollen das Zornsche Lemma anwenden

und miissen dazu zeigen, daf8 A induktiv geordnet ist. Sei {Ag}gep eine total geordnete

Teilmenge von A und Uy, ..., U, € |J Ag. Dann gibt esein fp € Bmit Uy,..., U, € Ag,
peB

und es gilt X # U U;. Also ist auch |J Ag € A, d.h. die total geordnete Teilmenge
BEB

{Ap}secp hat eine obere Schranke in A.

Jetzt liefert das Zornsche Lemma ein maximales Element A von A. Wenn eine offene

Menge U C X nicht in 4 liegt, dann hat wegen der Maximalitdt AU {U} eine endliche

Teiliiberdeckung von X. Wir setzen B := ANE.

Behauptung: B ist eine Uberdeckung von X.

Um das zu sehen, nehmen wir an, da eseinz € X\ |J B gibt. Wihle U € Amit z € U,
BeB

dann gibt es nach Proposition B.4.3 Elemente V7,...,V, € Emit z € ﬂ V; C U. Es folgt
Jj=1

V; ¢ A fiir alle j, weil sonst z € V; € B wire. Also gibt es wegen der Maximalitét von A

zuj =1,...,k jeweils endliche Vereinigungen W; von Elementen in A mit W;UV; = X

Damit findet man i . i
oUW 2 (N u(Uw) -x
= j=1 =

so, dafl A eine endliche Teiliiberdeckung hat. Dieser Widerspruch beweist die Behaup-
tung.

Abschliefend stellt man noch fest, daf die Uberdeckung B keine endliche Teiliiberdeckung
zuléft, weil sonst auch A eine hétte, d.h. (2) gilt nicht.
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Satz B.6.3 : (Tychonoff) Sei {X,}aca eine Familie kompakter topologischer Riume. Dann ist das

topologische Produkt X = H X, kompakt.
a€cA

Beweis:

IDEE: Beniitze das Lemma B.6.2 von Alexander fiir Uberdeckungen durch Teilmengen der Form
pa’(Uy) mit offenen U, C X,.

Nach dem Lemma B.6.2 von Alexander geniigt es zu zeigen, da8 jede Uberdeckung von X
durch Teilmengen _(_ier Form p;l(UQ) mit offenen U, C X, eine endliche Teiliiberdeckung hat.
Sei A eine solche Uberdeckung und

Ay :={U C X, | U offen und p_*(U) € A}.

Behauptung: Es gibt ein f € Amit Xg= |J U.
UGAB

Wenn nicht, dann gibt es ein # € X mit po(x) ¢ |J U fiir alle « € A. Aber dann gilt

UeA,
r¢ U p;'(U)= U V und A wire keine Uberdeckung. Dieser Widerspruch beweist die
UeAq VeA
a€A
Behauptung.
Jetzt niitzen wir die Kompaktheit von Xz aus, um zu sehen, dafl es Uy,...,U; € Ag mit

k
Xs = U Uj gibt. Aber dann gilt pgl(Uj) € A, also hat A wegen
j=1

X =p;'(Xp) =p;' (U1)U...Ups' (Uy)

eine endliche Teiliiberdeckung. L]

Ein nichtleeres System F von Teilmengen einer Menge X heifit Filter auf X, wenn es folgende
Bedingungen erfiillt:

F1) Jede Obermenge einer Menge aus F gehort zu F.
F2) Der Durchschnitt von zwei Mengen aus F gehort zu F.
F3) Die leere Menge gehort nicht zu F.

Wegen F2) gehoren sogar endliche Durchschnitte von Mengen aus F wieder zu F. Ist G ein weiterer
Filter auf X, so heiflit G feiner bzw. gréber als F, wenn F C G bzw. G C F. Ein Filter U heifit
Ultrafilter, wenn es keinen von U/ verschiedenen Filter auf X gibt, der feiner als U ist.

Beispiel B.6.4 : Sei z € X.
(a) Dann ist U(x), die Menge aller Umgebungen von z, ein Filter, der Umgebungsfilter von z.

(b) Dann ist die Menge aller Obermengen von {z} ein Ultrafilter, der feiner als U(z) ist. Die Menge
der Obermengen einer Teilmenge A C X mit mindestens zwei Elementen ist ebenfalls ein Filter,
aber kein Ultrafilter (wéhle x € A und betrachte alle Mengen, die = enthalten).
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Ein Filter F auf X heifit konvergent gegen x € X, wenn F feiner als der Umgebungsfilter I (z) ist.
Man schreibt dafiir auch kurz F — x oder z € lim F. Die Schreibweise x = lim F bedeutet zusétzlich,
daB F nur gegen x konvergiert.

Ubung B.6.1 : Sei (M, T) ein topologischer Raum, (2,)nen eine Folge in M und x € M. Zeige:

(i) Die Menge aller Obermengen von Mengen der Form {z,, | m > n} bildet einen Filter auf M, den soge-
nannten Endstiicksfilter von (zn)nen.

(ii) Die Folge (zn)nen konvergiert genau dann gegen z, wenn ihr Endstiicksfilter den Umgebungsfilter von x
enthalt.

[
Ubung B.6.2 : Sei (M,T) ein topologischer Raum, E C M und = € M. Zeige, daB die beiden folgenden
Aussagen dquivalent sind:
(1) z€ E.
(2) Es gibt einen Filter F, der E enthilt und gegen x konvergiert.

n
Ubung B.6.3 : Essei M eine nichtleere Menge und (zs)aca ein Netz in M. Setze
Ba:={zs e M |BZ a}
fiir « € A und betrachte die Menge F(zo) aller Obermengen der Mengen B,, d.h.
Flza)={FCM|3aecA: B, C F}.
Zeige: F(zq) ist ein Filter auf M.
(F(za) heifit der durch das Netz (zo)aca erzeugte Filter.) [

Ubung B.6.4 : Es sei M eine nichtleere Menge und F ein Filter auf M. Zeige, dass es ein Netz (Ta)aca in M
gibt mit F(zo) = F. L]

Ubung B.6.5 : Es sei M ein topologischer Raum. Dann gilt:
(i) Konvergiert das Netz (za)aca gegen x € M, dann konvergiert auch F(zq) gegen .

(ii) Konvergiert der Filter F gegen € M und ist (Za)aca ein Netz mit F(zo) = F, dann konvergiert (za)aca
gegen .

Lemma B.6.5 : In der Menge aller Filter auf X (geordnet durch Inklusion) besitzt jede Kette K eine
obere Schranke.

Beweis:

IDEE: Fiir eine Kette K von Filtern auf X betrachte {A C X | (3F € K) A € F}.

Sei K eine Kette von Filtern auf X. Wir setzen
M={ACX|(3FeK)AcF}

Um zu beweisen, da8 M ein Filter ist, zeigen wir nur F2), der Rest sei dem Leser zur Ubung
iiberlassen. Sind F; und Fy € M, so existieren F; € K mit F; € F;. Wir konnen o0.B.d.A.
annehmen, dafl 7; C F5. Dann ist aber F; € F5 fiir ¢ = 1,2 und daher

FiNFy, e Fo C M.



158 ANHANG B. TOPOLOGIE

Proposition B.6.6 : Zu jedem Filter gibt es einen feineren Ultrafilter.

Beweis:

IDEE: Dies folgt direkt aus dem Zornschen Lemma, angewendet auf die Menge aller Filter, die feiner
sind als der vorgegebene, und Lemma B.6.5. |

Lemma B.6.7 : Sei F ein Filter auf X und das Komplement der Teilmenge A von X wnicht in F
enthalten. Dann existiert ein Filter G auf X, der A enthdlt und feiner als F ist.

Beweis:

IDEE: G € G, wennes F € F mit FN A C G gibt.

Wir definieren G als das System aller Obermengen der Schnitte der Mengen aus F mit der
Menge A und zeigen, dal G ein Filter ist. Enthielte G die leere Menge, so géibe es in F
eine Menge F' C X \ A und es wire folglich X \ A € F, was wir ausgeschlossen haben. Die
Eigenschaft F1) ist trivial. Sind Gy, G2 € G, so existieren Fy, Fo € F mit F; N A C G;. Also
ist

FiNF,NACG NGy

und daher G NGy € G.

Satz B.6.8 : FEin Filter F auf X ist genau dann ein Ultrafilter, wenn fir jede Teilmenge A von X
entweder A oder X \ A zu F gehirt.

Beweis:

IDEE: Mit Lemma B.6.7 folgt das direkt aus den Definitionen.

Sei zuerst F ein Ultrafilter und X \ A ¢ F. Nach Lemma B.6.7 existiert ein feinerer Filter (der
dann natiirlich mit F iibereinstimmt), der A enthilt. Folglich ist A € F. Ist umgekehrt F ein
Filter auf X, der fiir jede Menge entweder die Menge selbst oder ihr Komplement enthilt, so
ist er maximal, denn man kann keine weitere Menge zu F hinzunehmen ohne F2) oder F3)
zu verletzen. ]

Sei f: X — Y eine Abbildung und F ein Filter auf X. Dann bezeichnen wir mit f(F) den Filter aller
Obermengen der Bilder der Elemente von F (Ubung: zeige, dafl das wirklich ein Filter ist).

Korollar B.6.9 : Ist F ein Ultrafilter auf X und f: X — 'Y eine Abbildung, so ist f(F) ein Ultrafilter
auf Y.

Beweis:
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IDEE: Mit Satz B.6.8 folgt das direkt aus den Definitionen.

Nach Satz B.6.8 ist zu zeigen, daf} fiir jede Teilmenge A C Y entweder A oder Y \ A zu f(F)
gehort. Dies folgt aber sofort daraus, dal A genau dann zu f(F) gehort, wenn f~1(A) zu F
gehort und Satz B.6.8. n

Proposition B.6.10 : FEine Abbildung f : X — Y zwischen topologischen Rdumen ist genau dann stetig
in x € X, wenn das Bild f(U(z)) als Filter gegen f(z) konvergiert.

Beweis:

IDEE: Dies folgt direkt aus den Definitionen.

Sei f stetig in z und V eine Umgebung von f(z). Dann ist f~1(V) eine Umgebung von
zund f(f7H(V)) C V. Also ist V € f(U(x)), und f(U(z)) konvergiert gegen f(x). Sei
dies umgekehrt der Fall, O C Y offen und z € f~1(0). Wir haben zu zeigen, dafi f~1(0)
eine Umgebung von z ist. Wegen unserer Annahme finden wir eine Umgebung U von x mit
f(U) C O, da O eine Umgebung von f(z) ist. Damit ist aber auch z € U C f~1(0).

Satz B.6.11 : Fiir einen topologischen Raum (X, T) sind folgende Aussagen dquivalent:
(1) X ist kompakt.

(2) In jeder Familie abgeschlossener Teilmengen von X mit leerem Durchschnitt gibt es eine endliche
Teilfamilie, deren Durchschnitt leer ist.

(3) Jeder Ultrafilter auf X ist konvergent.

Beweis:

IDEE: ,,(1)<(2)=(3)* folgt direkt aus den Definitionen. Fiir ,,(3) = (2)* sucht man einen Ultrafil-
ter, der zu einer Familie von abgeschlossenen Teilmengen mit endlicher Durchschnittseigenschaft die
endlichen Durchschnitte enthélt.

»(1) < (2)“: Erhélt man durch Komplementbildung.

»(2) =(3)“: Sei F ein Ultrafilter auf X. Wegen (2) und F2), F3) ist der Durchschnitt aller abgeschlos-
senen Mengen in F nicht leer. Sei z in diesem Durchschnitt und U eine offene Umgebung
von z. Dann ist X \ U nicht in F und daher U € F (vgl. Satz B.6.8). Also konvergiert
F gegen x.

»(3) = (2)“: Sei K eine Familie abgeschlossener Teilmengen von X mit leerem Durchschnitt und F
die Menge der Obermengen endlicher Durchschnitte von Mengen aus K. Angenommen,
keiner dieser endlichen Durchschnitte ist leer. Dann ist F ein Filter auf X, zu dem nach
Proposition B.6.6 ein feinerer Ultrafilter F’ existiert. Nach Voraussetzung konvergiert
F’ gegen ein z € X. Sei F € K und U eine Umgebung von z. Dann gehéren F und U
zu F', also ist F N U # 0. Wir schlieBen daraus (vgl. Proposition B.3.3), dafl x € F ist,
im Widerspruch zu (e F = 0.
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Bemerkung B.6.12 : Die Ergebnisse iiber Filter erlauben einen sehr 6konomischen Beweis der Satzes
B.6.3 von Tychonoff: Sei F ein Ultrafilter auf X =[], .4 Xo und p,: X — X, die kanonische Projektio-
nen fiir ¢ € A. Nach Korollar B.6.9 sind die Bildfilter p,,(F) Ultrafilter auf den X, . Nach Satz B.6.11 sind
also die p, (F) konvergent (wenn man die X, als kompakt voraussetzt). Also findet man zu jedem o € A
ein z, € X, so, dafl p,(F) eine Umgebungsbasis fiir z, in X, enthélt. Sei jetzt U eine Umgebung von
T = (Ta)aca- Dann enthilt U eine Umgebung von z der Form [ ], 4 Us mit U, = X,, fiir alle a € A\ B,
wobei B C A endlich ist. Wihle Fjg € F' mit pg(Fjp) € Ug fiir alle 8 € B. Dann ist F:= (\;cp Fp € F
und es gilt F' C U. Also konvergiert F gegen = und die Kompaktheit von X folgt aus Satz B.6.11. n

B.7 Lokal kompakte Ridume und Kompaktifizierungen

Ein hausdorffscher topologischer Raum X heifit lokal kompakt, wenn jeder Punkt von X eine kom-
pakte Umgebung besitzt.

Lemma B.7.1 : In einem lokal kompakten topologischen Raum X enthdlt jede Umgebung eines Punktes
x € X eine kompakte Umgebung.

Beweis:

IDEE: Betrachte den Filter der Obermengen von kompakten Umgebungen von z und zeige, dafl er
gegen x konvergiert. Nutze dazu die Existenz eines dazugehorigen Ultrafilters aus, um einen Wider-
spruchsbeweis zu bauen.

Nach Voraussetzung ist die Menge F der Obermengen kompakter Umgebungen von z ein
Filter in X. Es reicht zu zeigen, dafl er gegen x konvergiert. Sei K eine feste kompakte
Umgebung von z. Da es ausreicht, die Behauptung fiir den Filter FNK :={FNK | F € F}
zu zeigen, kénnen wir annehmen, dafl X kompakt ist. Sei U eine beliebige offene Umgebung
von z. Wir nehmen an, daf§ keine Menge von F in U enthalten ist. Dann ist F; := FN (X \U)
ein Filter. Sei F| ein Ultrafilter, der F; verfeinert (Proposition B.6.6). Der Ultrafilter Fj
konvergiert gegen einen Punkt y € X (Satz B.6.11). Wir fiithren dies zu einem Widerspruch.
Zunichst ist @ = y unmdglich, da U nicht in F] enthalten sein kann. Also ist y # z und wir
finden disjunkte offene Umgebungen U; von x und Us von y. Dann ist X \ Us nach Satz B.6.1
eine kompakte Umgebung von x und somit ist die Menge (X \ U2) \U = X \ (U U Us) in F]
enthalten. Wegen Us € Fj liefert dies einen Widerspruch. n

Lemma B.7.2 : Sei X lokal kompakt, K C X kompakt und U O K offen. Dann existiert eine kompakte
Menge V. C X mit
KCVeCVCU.

Beweis:

IDEE: Dies folgt aus Lemma B.7.1.

Zu jedem Punkt von z € K wéhlen wir eine kompakte Umgebung V,, C U (Lemma B.7.1).
Dann existieren endlich viele Punkte z1,...,z,, so da K C (J;_, V. Wir setzen V :=
Ui, Ve, CU. n
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Sei M ein topologischer Raum. Der Tréger supp (f) einer stetigen Funktion f: M — C ist die kleinste
abgeschlossene Menge, auf deren Komplement f verschwindet.

Lemma B.7.3 : (Lemma von Urysohn fiir lokal kompakte Riume) Sei X lokal kompakt, K C X
kompakt und U 2 K offen. Dann existiert eine stetige Funktion h mit kompaktem Trager auf X mit

h‘K =1 und h‘X\U =0.

Beweis:

IDEE: Konstruiere mit Lemma B.7.2 induktiv eine Folge von offenen relativ kompakten Mengen
U(L£) mit U(L) C UER) fiir k = 0,...,2" — 1, ergéinze dies durch U(r) = U%S,,U(i) und

on on on

setze f(z) :=inf{t e R |2 € U(t)}.
Wir setzen U(1) := U. Mit Lemma B.7.2 finden wir eine offene relativ kompakte Menge U(0)

mit K CU(0) CU(0) C U(1). Nochmalige Anwendung dieses Lemmas fiithrt zu einer Menge

U(3) mit

U0) CU3) CUG) cUu@).

Mit Induktion iiber n finden wir fiir jede rationale Zahl der Gestalt 2 € [0,1] eine offene,
relativ kompakte Menge U(2) mit

U(r) CU(r")

fir r,7’ € {#x |n € N,k =0,...2"} und r < r’. Dabei gehen wir folgendermafien von n — 1
zu n iiber: Fiir k gerade ist mit Induktion U(zﬁn) schon bekannt. Sei k£ ungerade: Mit Lemma
B.7.2 finden wir eine offene relativ kompakte Menge U(4:) mit

UL cU(&) cU(&) cUBR).

on on

Fiir eine beliebige reelle Zahl r € [0, 1] setzen wir nun

U= J U(%).

k
5m <1

Fir r = 2% ist dies konsistent mit der bisherigen Definition. Fiir ¢ < ¢’ finden wir nun r = 2%

und 1’ = % mit ¢t < r <7’ <t und daher ist auch in diesem Fall

Uty CU(r) CU((r") CUW).

Wir setzen noch U(t) = 0 fiir t <0 und U(t) = X fiir t > 1. Wir definieren
flz):=inf{t e R |z e U()}.

Dann ist f(K) C {0} und f(X\U) C {1}.

Wir zeigen, dal f stetig ist. Sei dazu zg € X, f(zg) = to und ¢ > 0. Wir setzen V :=
Ul(to+¢e)\U(tg — €). Das ist eine Umgebung von zo. Aus z € V. C U(to+e) folgt f(x) < tp+e.
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Ist f(z) < to—e, so folgt x € U(tg—e) C Uty — €), ein Widerspruch. Alsoist | f(x)— f(zo)| <€
auf V und damit ist f stetig. Wir setzen h:=1— f.
Damit ist alles gezeigt bis auf die Kompaktheit von supp (k). Wenn wir aber die Konstruktion

fiir das V° aus Lemma B.7.2 statt fiir U durchfiithren, gilt supp (h) C V und supp (h) ist als
abgeschlossene Teilmenge einer kompakten Menge nach Satz B.6.1 kompakt. [



Anhang C

Spezielle Eigenschaften des
Lebesgue-Mafles

In diesem Kapitel beschdftigen wir uns speziell mit dem Lebesgue-Mafs. Als erstes betrachten wir Re-
gularitdtseigenschaften, die im Verlauf niitzliche Anwendungen haben. Insbesondere bendtigen wir die
Aussage, daff das Lebesque-Mafl einer Borelmenge E als das Infimum aller Mafe der offenen Mengen,
die E enthalten, geschrieben werden kann. Damit lifit sich dann das Lebesque-Maf aus Kapitel 77 als die
Vervollstandigung des Lebesque-Mafles aus Kapitel 2 identifizieren. Das eigentliche Hauptergebnis dieses
Kapitels ist der Transformationssatz, der eine Verallgemeinerung der Substitutionsregel ist und beschreibt,
wie sich Integrale unter stetig differenzierbaren Abbildungen verhalten.

C.1 Regularitit

Fiir Funktionen auf R betrachten wir hier den Integrierbarkeitsbegriff, wie er in der Integralrechnung
einer reellen Variablen entwickelt wurde.

Lemma C.1.1 : Sei E C R beschrankt, und sei xg integrierbar. Dann ist E mefbar im Sinne von
Ubung ?? und es gilt

/XE =inf{A\Y(U) | E CU, U offen in R}.

Beweis:

IDEE: Mit Lemma ?7 findet man eine Entwicklung x g als Reihe von Stufenfunktionen, deren Be-
tragsintegrale sich zu wenig mehr als [ xg aufsummieren. Zerlege die Stufenfunktionen in Linear-
kombinationen von Funktionen der Form Xlag,brl- Dann wahlt man ar < air so nah an ag, daf
S low A (Jaw, be]) < [ xe +e Mit Un = {z € R | 0, |ok|xjag,o0(2) > 1;} findet man dann
ECUX_ Upund N (UZ_, Un) < (14 €)(e+ [ xE)-

Da xg integrierbar ist, gibt es nach Lemma ?? zu € > 0 eine Folge (fi)ren von Stufenfunk-
tionen mit xp ~ >, fr und

Ii/|fk</XE+;~

Indem wir jedes fj, durch die endlich vielen Vielfachen von Elementarfunktionen ersetzen, die
in die kanonische Darstellung von fj eingehen, kénnen wir 0.B.d.A. annehmen, daf

(VE €N)  fr = Ak X{ay bu[-
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Wihle jetzt ap < ag so, daf3

~ €
Z(ak — ak)|ak| < 5
k
Dann gilt
> law M (Jak, bi]) < /XE+6.
k=1

Setze jetzt
1
1+e€

Un ={z € R _|alxja,s (@) >
k=1

}

Dann ist U, offen und es gilt U,,,4+1 C U,,.

Sei z € E. Wenn die Reihe Y77 | g X[ay b, [(¢) absolut konvergiert, dann konvergiert sie gegen
1. Also ist wegen X(a, b,[ < XJax.be[ Jedes ¢ € E in einem U,, enthalten, d.h.

EC U, =:U.

1

e

Also finden wir mit

M(Up) < (1+¢) 3 |k Xjan o < (L4 €)(e+ )
/1; EIXag,b[ /XE

dafl
M) < (1+6)(6+/XE).

Betrachte jetzt den Mafiraum (R™, Bgn, A™).

Satz C.1.2 : Sei E € Bgn. Es gilt

(i) A™(E) =inf{\"(U) | ECU, U offen in R"}.

(ii) A*(E) =sup{\"(K) | K C E, K kompakt in R™}.
Beweis:

IDEE: Als erstes zeigt man, dafl es ausreicht, beschrinkte Mengen zu betrachten. Dazu schneidet
man mit einer wachsenden Familie (Bg)ren von offenen Wiirfeln und approximiere darin so gut,
dafl die Fehler sich immer noch zu einer kleinen Zahl summieren (geometrische Reihe). € := {F C
B | \"(F) = inf{\"(U) | F C U C By offen} die Eigenschaften (a) und (b) aus Lemma 1.1.6 hat.
Dieses Lemma liefert dann (i). Den Teil (ii) beweist man zuerst fiir Mengen, die abgeschlossen und
beschrinkt sind (dann folgt die Behauptung trivialerweise aus dem Satz ?? von Heine-Borel), dann
fiir beliebige beschrénkte Mengen (abschliefen und (i) auf die Differenz Menge—Abschlul anwenden;
das K ist dann der Abschlul ohne die gefundene offen Menge) und schliefilich fiir beliebige Mengen
(mit Br4+1 \ Bk schneiden, die bisherigen Ergebnisse anwenden und wieder die geometrische Reihe
beniitzen).

(i) Wir zeigen zunéchst, daf§ wir 0.B.d.A. annehmen koénnen, daB E beschrinkt ist und
daher endliches Maf3 hat. Betrachte dazu die Mengen

Bk = {(xl,...,xn) ERn | (v]:L)n) |$]| <k}
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REGULARITAT
/e

By

Wenn jetzt U, C R™ offen ist mit £ N By C Uy, und
A'(Uk) = A"(ENBy) <

dann gilt £ C |72, U; =: Uy, und es folgt

oo o0 1
n !
)\(Uk\E)SZ;C "(Ux \ (EN By)) Z?
j: :
Dies zeigt aber die Behauptung.
Sei also E C By,. Wir zeigen, dafl die Familie
C:={F C B | \"(F)=inf{\"(U) | F CU C By, offen}
die Eigenschaften (a) und (b) aus Lemma 1.1.6 hat.
u (a): Wenn F; C F5, C ... mit F; € Cund F := Uj F};, dann wahle F; C U; C By, mit

AU\ Fj) <

I\J‘H

Mit U}, = Uj2,, U finden wir F' C U}, und

1
25 gm-

o0
AU\ F) < ZA” (U; \ F}) <
j:m
Dies zeigt I’ € €.
u (b): Wenn Fy O Fy O ... mit F; € C und F := ﬂj F};, dann wihle wieder F; C U; C
Bk mit

Mit Uy, := j=, U; finden wir F C Uy, und
AU N\NFE) =X UL\ F) + N (Fp \ F) < XN (U, \ Fr) + X' (Ep, \ F).
Um zu zeigen, dal F' € € geniigt es also, zu zeigen, dafl
mliinoo AY(Fn \ F)=0.

Wegen

N (Bi\ F) = A"(B) = A (Fy)
und

A (B \ F) = X"(Bk) — A"(F)

folgt dies aber aus Satz 2.2.4, angewendet auf die monoton steigende Folge der xp,\r,,
mit Grenzwert x g, \ p-
Als néchstes stellen wir fest, dafl Lemma 1.1.6 tatsichlich auf € anwendbar ist: Nach
Lemma C.1.1 sind alle mefibaren Quader Elemente von €, weil die Mafle der Quader
von oben durch Mafle offener Quader approximiert werden kénnen. Nach Ubung 1.1.1
besteht die von den mefibaren Quadern in By, erzeugte Algebra aus endlichen disjunkten
Vereinigungen solcher Quader, ist also auch in € enthalten. Jetzt liefert Lemma 1.1.6,
daff € alle mefibaren Mengen in By, also auch E enthélt. Dies beweist (i).

165
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(ii) Wir unterscheiden mehrere Félle: Wenn E beschrénkt und abgeschlossen ist, dann ist E
kompakt nach dem Satz 7?7 von Heine—Borel und die Behauptung ist trivial.

Wenn E beschrénkt ist, aber nicht abgeschlossen, dann ist der Abschlufl E von E ebenso
wie F\ E kompakt und mefibar. Nach (i) findet man zu € > 0 ein offenes U O F\ E mit

A'(U) < A" (E\E) +e.

Fir K := E\ U C E gilt dann

A'(K) = NY(E)=XN"(ENU)
= N(E) - (WU - AU\ B))
> AY(E)-\'(U)+\"(E\ E)
> AN'(E)—e

Schliellich sei £ unbeschriankt. Setze
E,:=FEnN (Bk+1/Bk).

Dann gibt es Ky, C Ej, kompakt mit

€
N'(K) = N'(Bx) = o

Dann ist K := U§:1 K; C E kompakt mit

=

k k
NY(K) =Y A(KG) = Y A(Ey) — 26 = A" (| Ej) — 2e.

Jj=1

Wegen A(E) = supyey )\"(Ufz1 E;) folgt die Behauptung.

Die in Satz C.1.2 beschriebenen Figenschaften des Lebesgue-Mafles lassen sich allgemein fiir Mafle
auf lokalkompakten Rdumen (mit der Borel-o-Algebra) formulieren:

Sei (M,U) ein topologischer Hausdorff-Raum, der lokalkompakt ist, d.h., fiir den jeder Punkt eine
kompakte Umgebung hat. Ein Mafl u: B3, — [0, 0o] heifit regulér, wenn fiir jedes E € By gilt:

(i) u(E) =inf{u(U) | E CU,U offen in M}.
(ii) p(F) =sup{u(K) | K C E, K kompakt in M}.

C.2 Charakterisierung des Lebesgue-Mafles

Wir zeigen, daf die Integrierbarkeit einer Funktion auf R gleichbedeutend ist mit der Integrierbarkeit
bzgl. der in Ubung 2.2.1 behandelten Vervollstindigung (A1)* des Lebesgue-Mafles \!.

Wir beginnen mit dem Vergleich der beiden verschiedenen Begriffe von Nullmengen. Dabei schreiben
wir [ f fiir das Integral im Sinne der Integralrechnung einer Variablen und [ fd(A')* fiir das Integral
bzgl. des Mafles.

Proposition C.2.1 : Fir N C R sind die folgenden Aussagen dquivalent:
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(1) N ist eine Nullmenge (vgl. Proposition 77).
(2) Es gibt eine A\'-Nullmenge N C R mit N C N.
(3) N ist eine (\*)*-Nullmenge.

Beweis:

IDEE: Um die wesentliche Implikation , (1) = (2)“ (die Umkehrung folgt aus Proposition ?7)
zu zeigen, approximiert man Nullmengen via Lemma C.1.1 durch offene Mengen vom Maf % und
schneidet diese dann.

»(1) = (2)“: Wenn N eine Nullmenge im Sinne von Proposition ?? ist, dann ist x v integrier-
bar, und es gilt [ xy = 0. Wir kénnen 0.B.d.A. annehmen, dal N beschréinkt ist (andernfalls
betrachte NN| — k, k[ fiir alle k € N). Jetzt zeigt Lemma C.1.1, dafl es zu jedem e > 0 ein
offenes U, mit N C U, C R und

Al(UE)S/XN—l—e:e

gibt. Wenn man jetzt N = N U1 setzt, dann gilt N € B und fiir alle n € N

neN

M(N) < ANUL) <

S|

3=

Damit ist N aber eine A\!-Nullmenge, die N enthilt.
»(2) & (3)“: Dies folgt direkt aus der Definition der Vervollstandigung.

5(2) = (1)“: Wegen 0 = A}(N) = J x5 ist N eine Nullmenge im Sinne von Proposition ??.
Dann zeigt diese Proposition, dal N ebenfalls eine Nullmenge im Sinne von Abschnitt ?7? ist.
n

Beachte, dafl Proposition C.2.1 insbesondere zeigt, daf (f.ii.) im Sinne von (??) dasselbe ist wie
((Ah)*-fii.).

Satz C.2.2 : Sei f: R — R. Dann sind folgende Aussagen dquivalent:
(1) f ist integrierbar (im Sinne von (7?) und (77)).
(2) f ist (A\Y)*-integrierbar.
Wenn die beiden Aussagen zutreffen, dann stimmen auch die beiden Integralbegriffe tiberein.
Beweis:

IDEE: Beide Beweisrichtungen beruhen wesentlich auf der Moglichkeit, die Funktionen durch Ele-
mentarfunktionen bzw. Stufenfunktionen zu approximieren. Dann wendet man jeweils den Satz von
der monotonen Konvergenz an.

Wir nehmen zuniichst an, da (2) gilt. Nach (2.1) sind dann auch f* bzgl. (A!)* integrierbar,
und wir konnen annehmen, dafl f: R — [0,00[. Nach Lemma 2.2.3 gibt es eine monoton
steigende Folge (¢,)nen nichtnegativer einfacher Funktionen, die kleiner gleich f sind und
punktweise gegen f konvergieren. Die ¢, sind nach Beispiel 2.1.2 alle lokal integrierbar (vgl.

Proposition ??), und es gilt
/%:/WW:/WMW-
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Wegen [ ¢nd(A)* < [ fd(A\')* zeigt der Satz 2.2.4 von der monotonen Konvergenz, daf es
eine integrierbare Funktion f: R — R gibt, gegen die (¢, )nen (f.ii.) konvergiert mit

[ 7=t [ o

Dann gilt auch f = f(fu) und somit ist f — feine Nullfunktion (d.h. [ |f| =0). Jetzt zeigt
Proposition 7?7, dal f im integrierbar ist mit

/fZ/f—hm o /fd>\1

Sei jetzt umgekehrt f integrierbar im Sinne von (?7?) und (?7). Weiter sei f ~ Z;’il f; fiir
Stufenfunktionen f;. Mit Beispiel 2.1.2 ist klar, daB Stufenfunktionen (A!)*-integrierbar sind
und die beiden Integralbegriffe fiir solche Funktionen zusammenfallen. Setze

n
j=1

und beachte, daB (s,)nen eine monoton steigende Folge von (A!)*-integrierbaren Funktionen

ist, fiir die gilt
/snd()\l)* Z/Sn < Z/\fﬂ < o0.
j=1

Dann sagt der Satz 2.2.4 von der Monotonen Konvergenz, da s := sup,,cy S, eine (A1)*-
integrierbare Funktion ist, die

/sd()\l)* = sup/snd()\l)* < 00
neN

erfiillt. Setze jetzt t,, := Z;’:l f;. Dann ist ¢,, eine (A!)*-integrierbare Funktion, und es gilt
t, < s. Weil t,, nach Proposition ?? (f.ii.) gegen f konvergiert, zeigt der Satz 2.4.4 von der
Dominierten Konvergenz, dafl f (A!)*-integrierbar ist mit

/fd(/\l)* = lim [ ,d(A)" = ,}lféo/ /f

"
Korollar C.2.3 : Sei E CR. Dann sind folgende Aussagen dquivalent:
(1) E ist mefsbar im Sinne von Abschnitt ?7.
(2) E ist (A\Y)*-mefbar.
Beweis:
Wende Satz C.2.2 auf die charakteristischen Funktionen x pn[—p ) an. [

Dieses Korollar zeigt zusammen mit Satz C.2.2, daf die Vervollstindigung (A!)* von A! tatsichlich
nichts anderes ist als das Lebesgue-Maf} aus Abschnitt ?7.

Ubung C.2.1 : Projekt: Der Satz von Vitali: ,,Es gibt kein translationsinvariantes Maf auf der Potenzmenge
von R“. ]
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C.3 Affine Transformationen

Betrachte den Mafiraum (R"™, Bgn, A™). Wir untersuchen das Verhalten des Lebesgue-Mafles und von
Lebesgue-Integralen unter affinen Transformationen des Raums. Wir erinnern daran, daf jede stetige
Abbildung ®: R™ — R™ mefbar ist. Insbesondere sind mit E alle verschobenen Mengen F + z = {y €
R™ | y —z € E} mit x € R” mefbar.

Proposition C.3.1 : (Translationsinvarianz) Sei x € R™. Dann gilt
(VE € Bgn) MN'(E +2)=\"(E).
Beweis:

IDEE: Man weist die Gleichheit fiir Quader nach und argumentiert dann mit Satz 2.1.3.
Wir definieren eine Abbildung

w: Brn — [0,00], E — \*(E + x).

Da die Verschiebung von Mengen mit Vereinigungen vertauscht:

(Ej+2)= UE + x,

EC%%

verifiziert man sofort, daf p ein Maf auf (R™, Bg») ist. Wenn F = A; x ... X A,, ein mefibarer
Quader ist, gilt
E4+xz=(A14+21) X...x (Ap + 2p)

w(E) =M (A +21) ... - M (A, +2,) und A(E) = A(A)-...- A (4,).

Da die von den meibaren Quadern erzeugte Algebra aus disjunkten Vereinigungen von Qua-
dern besteht, erhalten wir mit Satz 2.1.3 die Gleichheit A\ = u, wenn wir die Behauptung fiir
n = 1 zeigen konnen.

Sei also n = 1. Wenn F ein Intervall oder eine endliche Vereinigung disjunkter Intervalle ist,
ist die Gleichheit u(E) = A (E) offensichtlich. Also folgt die Behauptung wieder mit Satz
2.1.3, diesmal angewendet auf die von den Intervallen erzeugte Algebra, die offensichtlich aus
endlichen Vereinigungen disjunkter Intervalle besteht. [

Bemerkung C.3.2 : Wenn E € Bg und 0 # ¢ € R, dann zeigen dieselben Argumente wie im Beweis
von Proposition C.3.1, daB fir cE = {cx € R | x € E} gilt

N (cE) = [e| A (B),

weil dies fiir Intervalle so ist. Also gilt die Formel

/f YA ( :c|/fc:cd/\
fiir alle einfachen Funktionen:

/XCE(x)d)\l(x) = A{(cE) = |c]\(F |C|/XE YA ( |C|/XcE cx)d\ ().

Durch Supremumsbildung folgt sie dann auch fiir beliebige Funktionen in £1(R) und schlieflich fiir
feLYR,C). .
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Satz C.3.3 : Sei T € Homg(R"™,R™) invertierbar.
(i) Wenn f: R™ — C mefbar ist, dann ist auch f o T mefbar.
(i) Wenn f € LT(R™) oder f € LY(R™,C), dann gilt

/fd)\”: \detT\/(foT)d)\”.

(ili) Wenn E € Brn, dann gilt T(E) € Brn und

NY(T(E)) = | det TINY(E).

Beweis:

IDEE: Wesentlich ist die Formel in (ii). Man beweist sie mit dem Satz 2.3.5 von Fubini fiir Streckun-
gen, Scherungen und Permutationen und niitzt dann aus, daf sich jede invertierbare lineare Abbildung
als Produkt von solchen schreiben l4f3t.

Die erste Aussage folgt mit Beispiel 1.2.1 und Bemerkung 1.2.2 sofort aus der Stetigkeit von
T. Die letzte Aussage folgt aus der zweiten mit f = xg.

Durch Aufspaltung in Real- und Imaginérteil sowie anschlieBende Aufspaltung in positiven
und negativen Teil kénnen wir 0.B.d.A. annehmen, dal f € L1 (R™).

Wenn die Gleichung aus (ii) fiir zwei invertierbare lineare Abbildungen Ty, 7> € Homg (R™, R™)
gilt, dann auch fir T3 o Ts:

K

|detT1|/foT1

|detT1||detT2|/(foT1)oT2

| det (T} o T3)| /f o (Ty0T5)

Der Gauflalgorithmus zeigt, dafi sich jede invertierbare lineare Selbstabbildung von R™ als ein
Produkt von Abbildungen der Form

M(z1,..., 221,25, Zj41,- -, Tn) = (1, ..., Tj—1,CTj, Tjt1, ..., Tn)
mit ¢ Z0 und j € {1,...,n} (Multiplikation),
S(x1, . L1, T, g1y, ) = (T, .., T, T + AT, Tjg1, ..., Tn)
mit d € Rund j # k € {1,...,n} (Scherung) sowie

P(il, ey L1, LGy Ty ey Th—1, Lhy LTht1y- - - 71'71)

= (1'1, ey L1, Ty Ljdlye ey Th—1yLjy Thd1y- -y ZL'n)
mit j # k € {1,...,n} (Permutation) geschricben werden kann. Es geniigt also, die Behaup-
tung fiir diese drei Transformationen zu beweisen.

Wir beginnen mit M. Nach dem Satz 2.3.5 von Fubini kénnen wir zuerst nach der j-ten
Variablen integrieren:

fa\" =
R’n

= / ) </(x1,...,xj_l,a:j,xj+1,...,xn)d)\l(xj)> d/\n_l(l‘l,...,Z‘j_l,i‘j,.%‘j+1,...,$n),
Rn— R
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wobei Z; bedeutet, dafl diese Komponente weggelassen wird. Bemerkung C.3.2 zeigt, daf3

/R(xlv"'7xj—17xj,$j+1a'"axn)d)‘l(xj): |C|/R(xlv"'axj—lvcl'j,xj—‘rla"'7xn)d)‘1(xj)7

was
/ fdAn:‘d f(xl,...,l’j_l,Cl’j,Z'jJ,_l,...,In)dAn(SCl,...,iEn)
R"™ R™

zur Folge hat. Wegen det M = c zeigt dies die Behauptung fiir M.
Fiir S geht man genauso vor, beniitzt aber statt Bemerkung C.3.2 die Proposition C.3.1, um
/(xl, T, X T, ,xn)d)\l(xj) = /(wl, e T1, T, Tyl + AT, ,xn)d)\l(xj)
R R

zu zeigen, und die Relation det S = 1.

Die Behauptung fiir P folgt wegen det P = +1 sofort aus Satz 2.3.5, weil es gleichgiiltig ist,
ob man zuerst iiber die Variable x; oder iiber die Variable x;, integriert. L]

Ubung C.3.1: Sei A € Mat(n x n,R) symmetrisch und positiv definit. Berechne

/ e AT g

]
Ubung C.3.2 : Seien a,b, ¢ > 0. Berechne das Volumen des Ellipsoids
2 2 2
E = {(m,y,z) €R?| <£) + (g> + <E) < 1}.
a b c
]
Ubung C.3.3 : Seien ai,...,an Vektoren des R”. Unter dem von ar,...,a, aufgespannten Parallelepiped
versteht man die Menge
P.= {ZAM 0< A <1 fﬁrj_l,...,n}.
=1
Zeige:
A"(P) = |det(a1,...,an)|.
]

C.4 Die Transformationsformel fiir Diffeomorphismen

In diesem Abschnitt beweisen wir den eigentlichen Transformationssatz. Er behandelt folgende Situa-
tion: 2 C R™ ist eine offene Menge, und ®: 2 — R" ist eine stetig differenzierbare Abbildung, deren Bild
®(0) ebenfalls offen ist. Auflerdem soll die Umkehrabbildung ¥: ®(£2) — Q von ®: Q — P(Q) existie-
ren und selbst stetig differenzierbar sein (eine solche Abbildung nennt man einen Diffeomorphismus).
Angestrebt wird die Transformationsformel

/ fda\" :/(fo(I))|Jq>|d)\"7
®(Q) Q

wobei Jg die Funktionaldeterminante von @ ist. Diese Formel reduziert sich fiir n = 1 und stetiges f auf
die Substitutionsregel (?7).
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Die Grundidee fiir den Beweis ist, ® lokal durch sein Taylorpolynom erster Ordnung, d.h. eine affine
Transformation, zu approximieren und die Resultate von Abschnitt C.3 zu beniitzen. Die Strategie ist,

zunéchst die Ungleichung
[ rav< [Fewmlar
3(Q) Q

zu zeigen und diese dann auch fiir ¥ statt ® zu verwenden. Genauer: Betrachte zunéchst die konstante
Funktion 1. Dann wird die Ungleichung zu

A (@(9)) S/QIJ@I-

Wenn man so eine Ungleichung fiir jedes melbare F statt 2 hat, 148t sich die gesuchte Ungleichung mit
Approximation von f durch einfache Funktionen gewinnnen.

Proposition C.4.1 : Sei U C R™ offen. Dann ist U die Vereinigung einer abzdhlbaren Familie
Q1,Q2, ... von mefbaren Quadern QQ; der Form

(%) [a1,a1 + h] X ... X [an, an + h]
mit a = (ay,...,a,) € R", h >0 und

(Vj£keN) QINQy=0.
Beweis:

IDEE: Zerteile den Raum in Wiirfel, die durch benachbarte Punkte des Gitters %Z" aufgespannt
werden. Suche diejenigen Wiirfel heraus, die in U liegen, verfeinere dann durch Vergréflerung von k
und wahle wieder die Wiirfel, die nicht in den vorherigen Wiirfeln, aber noch in U liegen. Fiir k — oo

findet man alle Punkte von U.
Fiir k € N sei Dy, die Familie der Quader von der Form (x) mit

a; € 2%2” und h = 2%
Fir Q # Q' € Upe; Dr mit Q° N (Q')° # 0 gilt entweder @ C Q' oder Q" C @: Wenn
namlich Q € Dy, Q' € Dy und Q € @', dann gibt es eine Ecke a von @', die in Q° liegt.
Also liegt a € 2%2 nicht in dem Gitter %Z, und daher gilt ¥’ > k. Aber dann liegen auch
alle benachbarten Gitterpunkte von a in ﬁZ immer noch in dem Quader @, der ja die
Kantenlénge 55 hat, und folglich gilt Q" C Q.

Jetzt definiere induktiv:
F; 1= Q

QeEDy
QCU

QEDE,.QCU
(YQ'eULZ) Dk, Q' CFi 1) QoNn(Q)7=0

und

Es geniigt jetzt zu zeigen, dafl
o0
U=JF,
k=1

weil man Quader, die zu F} beitragen, aber schon in einem Quader, der zu einem der
Iy, ..., F,_1 beigetragen hat, enthalten sind, in der Aufzidhlung einfach nicht beriicksichtigt.

Wenn x € U, dann ist
§ := inf — > 0.

Wiéhle k£ € N so, dafl 2% < §. Dann folgt @ C U fiir alle Q € Dy mit z € Q. Da es immer so
ein @ gibt und dieses dann in [ J;- ; F}, liegt, sehen wir, da U C |J,—, Fj. Die Umkehrung ist
klar, also folgt die Behauptung. n
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Wir greifen jetzt die Notation vom Anfang des Abschnitts auf und beweisen die Transformationsformel
in einer Reihe von Lemmata. Wir betrachten R™ als normierten Vektorraum mit der Maximumsnorm

[ lloo-
Lemma C.4.2 : Seien a = (ay,...,a,) € Q, h >0 und
Q={zeR"||la—z|e <h} Q.

Dann gilt fiir jedes invertierbare T' € Homg (R™, R™)
N(B(@) < |det T13"(@) (500 [T )op )
ye

Beweis:

IDEE: Schitze ||®(z) — ®(a)||c mithilfe des Mittelwertsatz ?? fiir fiir z,a € Q ab und kombiniere
das Ergebnis mit Satz C.3.3 und der Kettenregel, 7?7 um die Behauptung zu erhalten.

Nach dem Mittelwertsatz 77 gilt fiir alle x € @

[@(z) — ®(a)]loo < hsup ||P'(y)]lop-
yER

° @ 2h sup(...)

Dann gilt
A(@(Q)) < (2hsup [[2(y)llop)™ = A™(Q)(sup [|®'(y)]lop)™.
yeQ yeQ

Dies beweist die Behauptung fiir 7" = id.
Fiir den allgemeinen Fall setze ® =T~ 0 ® und rechne mit Satz C.3.3 und der Kettenregel
??
AMT(2(Q)))
= |det T|N®(Q))
| det T| A™(Q) (sup | @' (3)llop)”
yeQ

| det T'| A"(Q)(Slelg 17719 (y)llop)"

A"(@(Q))

IN

Lemma C.4.3 : Seiena= (a1,...,a,) €Q, h >0 und Q ={z € R" | |la — z||oc < h} C Q. Dann gilt
V@@ < [ |Jal.
Q

Beweis:

IDEE: Zerlege den Quader in kleine Quader, auf denen man Jg durch konstante lineare Abildungen
approximiert. Fiir die wendet man dann Lemma C.4.2 an.
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Wegen der Stetigkeit von ® und der Kompaktheit von @ kénnen wir zu € > 0 ein § > 0

wéahlen mit

(Vy,2 € Q, [ly — zlloc <8) [|@'(2) 1@ (y)[I5p < 1 +e.
Wir schreiben @ als Vereinigung von kompakten Quadern @1, ..., Q,, mit Seitenldnge kleiner
als ¢, d.h.

(Vy,z € Q5) ly — 2[lc <9

Auflerdem nehmen wir an, dafl
(Vi#jell,...,m}) QNQs=0.
Wihle a9 e Q; fir j=1,...,m so, dafl

|det ®'(a?)| = inf |det ®'(z)].
xEQj
Wendet man jetzt Lemma C.4.2 auf Q; und T} := ®'(a?)) an, so ergibt sich

A (2(Q))

IN

PIPYCICH)

IA

> [det @' (aV)A"(Q;) <sup ||¢>’<a<j>>-1<1>’<y>||op>
= YEQR;

J

(146> |det ' (a9)| A™(@Q;)

j=1

(1+e)/|det &' (2)] dA" (2)
= (140 [ ola)| X" (@),

IA

IN

und dies beweist die Behauptung, weil € > 0 beliebig war. [

Lemma C.4.4 : Fiir jede offene Teilmenge U C Q gilt
@) < [ 1l
U

Beweis:

IDEE: Kombiniere Proposition C.4.1 und Lemma C.4.3.
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Schreibe U = U;’il Q; wie in Proposition C.4.1. Dann rechnet man mit Lemma C.4.3

yiew) = welJe) = Je@))

< Y ON(R(Q))
j=1
< > [ 1= [ 1l
j=17Qj j=17@%
= /ZXQ;|J<I>|
Ui
- /|J¢‘|a
U
weil alle @; \ @9 Nullmengen sind. ]

Lemma C.4.5 : Fiir mefbare Teilmengen E € Brn von § gilt

N(B(E)) < /E sl

Beweis:

IDEE: Schépfe 2 durch kompakte Mengen aus und wende auf diese den Satz C.1.2 an. Dabei kann
man die offenen Approximationen so wihlen, da die Vereinigung U der offenen Mengen [, [Ja| <
€+ [ |Ja] erfiillt. Dann folgt die Behauptung aus Lemma C.4.4.

Nach Proposition C.4.1 148t sich Q als Vereinigung von kompakten Mengen K7, Ko, . .. schrei-
ben, wobei wir 0.B.d.A. annehmen konnen, dal Ky C Ky C ... gilt. Fiir j € N setze

Ej =FEN Kj.
Zu € > 0 gibt es nach Satz C.1.2 offene Umgebungen U; von E; in Q) mit
-1
(Vi eN) AN"(U;\Ej) <e (2]’ sup |J¢|> :
reK;

Daraus folgt mit
Uy N (K \ Kj—1) € (Uj \ Ej) U(E;\ Ej-1),

€
/ |J¢|gf+/ \Tol.
Uin(K;\Kj-1) 2 Ej\Ej 1

Fir U := U;i1 U; liefert der Satz 2.2.4 von der monotonen Konvergenz

daB3

[ 1ol = i ol
U k=00 JUk_, (U;n(K\K; 1))
k
< lim / | Ja|
kﬂooj; Ui N(EG\K-1)
k €
k—»oo; (2] E;\Ej_1 |

= lim <6(1—2k)+/ |Jq>|>
k—oo By
= 6—|—/ |Ja .
E

175
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Mit Lemma C.4.4 finden wir
)< [l [ 1al,
U E
n

M (@(E)) < A

und dies beweist die Behauptung, da € > 0 beliebig war

Satz C.4.6 : (Transformationsformel) Sei Q@ C R"™ eine offene Menge, und sei ®: Q@ — R™ eine
stetig differenzierbare Abbildung mit offenem Bild ®(2) und stetig differenzierbarer Umkehrabbildung

U: () — Q.
(i) Sei f: ®(Q) — C nichtnegativ oder integrierbar. Dann gilt

A(Q)f=/9<fo<1>>u¢.

(ii) Wenn E C Q mefsbar ist, dann ist auch ®(E) mefbar, und es gilt
(B) = [ 170l
E

Beweis:
IDEE: Wesentlich ist (i), und das folgt fiir einfache Funktionen aus Lemma C.4.5. Nichtnegative
Funktionen approximiert man durch einfache und beniitzt den Satz 2.2.4 von der Monotonen Kon-
j XAj

vergenz. Integrierbare Funktionen spaltet man in Positiv- und Negativteil auf
(ii) folgt mit f = xa(m) sofort aus (i). Fiir eine einfache Funktion ¢ = > a;xa, liefert

Lemma C.4.5, dafl
/ zaj (A; N ()
()
< | Ja
Z / 1(A;n2(Q))
= /<¢>o¢>>|Jq>|.
Q
Mit Lemma 2.2.3 kénnen wir f durch solche ¢ monoton approximieren, und dann liefert Satz
2.2.4
[ s= ol
o(Q) Q
Wir wenden diese Ungleichung jetzt auf ¥ und (f o ®)|Jp| an, was wegen |Jg(z)| = |Jp ©

(x)|~! ergibt

IN

/ (fo®oW)|JpoW| |yl
3(Q)

N ~/¢>(Q) /

[ ool
Q
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Damit ist der Satz bewiesen. [

Beispiel C.4.7 : (Polarkoordinaten) Betrachte die Abbildung

®: 10, 0o[x]0, 7[x]0, 27 [— R3, (1,6, $) — (rsinf cos ¢, rsin O sin ¢, r cos 6).

Dann ist die darstellende Matrix von ®'(r, 6, ¢) bzgl. der Standardbasis von R?:
sinfcos¢ rcosfcos¢p —rsinfsing
sinfsing rcosfsing rsinfcoso

cos 6 —rsinf 0

Als Funktionaldeterminante erhélt man dann

Jo(r,0,¢) = r’sin 6.

Will man jetzt z.B. das Volumen der euklidischen Kugel B(0; R) mit Radius R ausrechnen, so stellt man
fest, daf

®(]0, R[]0, w[x]0,27[) = B(0; R) \ {(2,y,2) € R* | y = 0 und z > 0}.

Letzteres unterscheidet sich von B(0; R) nur durch eine Nullmenge, also gilt

R ,m 2
4
N (B(0; R)) = / / / r?sin® do df dr = —~mR>.
o Jo Jo 3
Fiir die Sphiire S(0; R) = {v € R? | ||v|| = R} zeigt dann der Satz von der Monotonen Konvergenz, daf
4
M(S(0;R)) = lim g7r((R +e) —(R—¢)?) =0.
Also ist die Sphére eine Lebesgue-Nullmenge. [

Beispiel C.4.8 : (Zylinderkoordinaten) Betrachte die Abbildung
®: 10, 00[x]0, 27[xR — R3, (r, ¢, h) — (rsin ¢, cos ¢, h).

e
4

S——
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Dann ist die darstellende Matrix von ®(r, ¢, h) bzgl. der Standardbasis von R3

sing rcos¢ O
cos¢ —rsing 0
0 0 1

Als Funktionaldeterminante erhélt man dann
Jo(r, ¢, h) = —r.
Will man jetzt z.B. das Volumen des Zylinders
Z(R,H) :={(z,y,2) € R* |0 < 2z < H,2* + y*> < R*}
ausrechnen, so stellt man fest, dafl
®(]0, R[x]0, 27[x]0, h[) = Z(R, H) \ {(x,y,2) € R® | y = 0 und = > 0}.

Letzteres unterscheidet sich von Z(H, R) nur durch eine Nullmenge, also gilt

R 27 H 1
N(Z(H,R)) = / / / rdr d¢ dh = —wR*H.
0 0 0 2

Fiir die Mantelfliiche M (H,R) = {(z,y,2) € R® | 0 < 2z < H,2? + y* = R?} zeigt dann der Satz von
der Monotonen Konvergenz, daf3

N(M(H,R)) = lim %((R +e)2—(R—e)*) =0.

€—

Also ist die Mantelfiche eine Lebesgue-Nullmenge. [

Ubung C.4.1 : (Polarkoordinaten) Betrachte die Abbildung
®: 10, 00[x]0, 7[* " x]0, 2n[— R™, (r,0,¢) — & = (x1, ..., L),

die durch
r1 = rcosbfr
Ty = 7rsiné; cosbs
xr3 = 7rsinf;sinfs cosfs
Tn—1 = 7rsinfisinfs-...-sinf,_2cosb,_1
Tn, = rsinfysinfs-...-sinf,_osinf,_1

gegeben ist. Fiille die Details der folgenden Rechnung ein:
Wir setzen
s; = sinfj, c; = cosb;.

Dann ist die darstellende Matrix von ®'(r,01,...,0,_1) bzgl. der Standardbasis von R":

c1 —rs1 0 0
$1C2 rci1c2 —rs1s2 0 0
S1°*Sn—2Cn—1 rC182 ' TSp—2Cn—1 . . —TrS1---Sn—1
S1° " Sn—28n—1 rCi182 - "TSn—25n—1 N ° rS1-Sn—2Cn—1

Indem man die Determinante dieser Matrix durch Entwicklung nach der ersten Zeile berechnet, kommt mit
Induktion auf das Ergebnis

Ja(r,0,¢) =" (sin ;)" *(sin )" "% (sinf,,_2).

(Beachte, daBl es nicht so ohne weiteres méglich ist, mit diesem Resultat das Volumen der euklidischen Kugel
B(0; R) C R" zu bestimmen). n



C.4. DIE TRANSFORMATIONSFORMEL FUR DIFFEOMORPHISMEN

Ubung C.4.2 : (Kugelvolumen) Fiir p > 0 und R > 0 setze
B(0:R) = {z € B" | Y [oy” < B)
j=1
und zeige

A" (B (03 R)) = R"2”7FE£ - 1;

durch Nachpriifen der folgenden Rechnungen:

179

e Es geniigt, die Formel fiir R = 1 zu verifizieren und dann die die Transformationsformel fiir die Streckung

x — Rz anzuwenden.
e Setze a,(n) := A"(By(0;1)) und beachte, daf fiir 0 < ¢t < 1 gilt

P

sowie

n—1

APTHBETH0; (1= [¢)F) = (1= [t]") 7 ap(n —1).

e Beniitze die Beta-Funktion fiir folgende Rechnung:

! n—1
o) = apn-1) [ @) tar
1 p
2 n+p—1 1)
= —ap(n—-1)B|—,—
p p(n = 1) ( P p
r(e=t4+1riE+1
— ap(n—1) (% n) (;+1)
LG +1)
e Zeige mit Induktion, dafl
TG+
ap(n) = m.

Fiir den Fall p = 2 haben wir jetzt das Volumen der n-dimensionalen euklidischen Kugel berechnet:

ol
3
Is

e :
)\"(B;(();l))zznl“(%) Fes)

Mit diesen Resultaten zeigt man leicht, dafi die Mengen

Sp(0;R) = {z €R" | Y _ |2;|" = R"}

Jj=1

Lebesgue-Nullmengen sind.

Br N0 (1 —[t")7 = {2’ € R"V | (2/,1) € BL(0;1)}

Ubung C.4.3 : Sei v > 0. Berechne den Inhalt der Fliche, die von der positiven z-Achse und der Spur der

Archimedischen Spirale
f:[0,2n0] = R®, f(t) := (ytcost,ytsint)

eingeschlossen wird, d.h., zu berechnen ist der Flacheninhalt von

M :={(rcos¢,rsing) e R*|0<r <~v¢, 0<¢<2r}

Ubung C.4.4 : Beweise die bekannte Identitiit

/ e dp = N3
R

auf folgende Weise: Sei (r,¢) — (rcos¢,rsin¢) die Transformation auf Polarkoordinaten. Berechne mit der

Transformationsformel das Integral

/ e Y d(z,y).
Jr2



180 ANHANG C. SPEZIELLE EIGENSCHAFTEN DES LEBESGUE-MASSES

Ubung C.4.5 : Berechne das Volumen des Kugelsektors
S::{(m,y,z)6R3:m2+y2+22§r2; x2+y2§cz},
wobei ¢ und r positive Konstanten sind. ]

Ubung C.4.6 : Sei M ein k-dimensionaler Teilraum des R™ mit k < n. Zeige, daf M eine Lebesgue Nullmenge
ist. |
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