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Kapitel 1

Meßbare Mengen und Funktionen

In diesem Kapitel legen wir den Rahmen für eine allgemeine Integrationstheorie fest, indem wir angeben,
welchen Mengen wir ein ”Maß“ oder ”Volumen“ zuordnen wollen, und welche Funktionen wir integrieren
wollen. Diese Mengen und Funktionen heißen dann meßbar. Daß man überhaupt Mengen aussondert und
nicht alle Mengen und Funktionen als meßbar behandelt, liegt daran, daß man später ja Vorschriften
angeben will, die jeder meßbaren Menge und jeder meßbaren Funktion eine Zahl (das Maß bzw. das
Integral) zuordnet, und solche Vorschriften umso schwieriger zu finden sind, je komplizierter die Mengen
und Funktionen aussehen. Die Strategie ist daher, von möglichst einfachen Mengen auszugehen (wie
z.B. Intervallen) und weitere meßbare Mengen durch elementare Operationen wie Schneiden, Vereinigen
oder Komplementbilden dazuzugewinnen. So stößt man auf den Begriff einer Algebra von Mengen, von
dem sich aber herausstellt, daß er nicht ausreichend ist. Man verallgemeinert ihn auf den Begriff der
σ-Algebra, in dem auch abzählbar unendliche Schnitte und Vereinigungen inkorporiert sind. Als meßbare
Funktionen nimmt man dann, in Analogie zur Stetigkeit, solche, deren Urbilder von meßbaren Mengen
meßbar sind.

1.1 Meßbare Mengen

Seien M eine beliebige, nichtleere Menge und P(M) := {N | N ⊆ M} die Potenzmenge von M ,
d.h., die Menge aller Teilmengen von M . Eine nichtleere Menge M ⊆ P(M) von Teilmengen von M heißt
eine Algebra, wenn

E1, . . . , En ∈ M ⇒ E1 ∪ . . . ∪ En ∈ M

und
E ∈ M ⇒ M \ E ∈ M.

Wenn sogar
Ej ∈ M, j ∈ N ⇒

⋃

j∈N
Ej ∈ M

gilt, dann heißt die Algebra M eine σ-Algebra.
Ein Paar (M, M), wobei M eine nichtleere Menge und M ⊆ P(M) eine σ-Algebra ist, heißt ein

meßbarer Raum oder kurz ein Meßraum. Die Elemente der σ-Algebra heißen meßbare Mengen.

Bemerkung 1.1.1 : Nach den de Morganschen Gesetzen gilt
⋂

Ej = M \
(⋃

(M \ Ej)
)

,

also gelten in einer Algebra bzw. einer σ-Algebra M auch die Gesetze

E1, . . . , En ∈ M ⇒ E1 ∩ . . . ∩ En ∈ M

1
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bzw.
Ej ∈ M, j ∈ N ⇒

⋂

j∈N
Ej ∈ M.

Außerdem gilt wegen E ∪ (M \ E) = M und E ∩ (M \ E) = ∅ automatisch ∅,M ∈ M.

Beispiel 1.1.2 : Sei M eine beliebige, nichtleere Menge.

(i) P(M) ist eine σ-Algebra.

(ii) {∅,M} ist eine σ-Algebra.

Seien M und A beliebige, nichtleere Mengen. Wenn Ma ⊆ P(M) für jedes a ∈ A eine σ-Algebra
ist, dann ist auch

⋂
a∈A Ma ⊆ P(M) eine σ-Algebra. Wenn jetzt E ⊆ P(M) eine beliebige, nichtleere

Teilmenge ist, dann ist
σ(E) :=

⋂

E⊆M

M σ−Algebra

M

ebenfalls eine σ-Algebra, und zwar die kleinste, die E enthält. Man nennt sie die von E erzeugte σ-
Algebra.

Beispiel 1.1.3 : Sei (M,U) ein topologischer Raum und

E = {U ∈ P(M) | U offen in M}.

Dann heißt die von E erzeugte σ-Algebra die Borel–σ-Algebra von (M,U). Wir bezeichnen sie mit BM .
Die Elemente von BM heißen die Borel–meßbaren Teilmengen von M .

Seien jetzt M1, . . . ,Mn nichtleere Mengen und Mj ⊆ P(Mj) σ-Algebren für j = 1, . . . , n. Dann heißt
die von

{E1 × . . .× En | Ej ∈ Mj , j = 1, . . . , n}
erzeugte σ-Algebra die Produkt-σ-Algebra der Mj . Sie wird mit

⊗n
j=1 Mj bezeichnet.

Proposition 1.1.4 : Seien M1, . . . ,Mn nichtleere Mengen und Mj ∈ Ej ⊆ P(Mj) für j = 1, . . . , n.
Dann gilt

n⊗

j=1

σ(Ej) = σ({E1 × . . .× En | Ej ∈ Ej , j = 1, . . . , n}). (1.1)

Beweis:

Idee: Um
”
⊆“ zu zeigen, nenne die rechte Seite von (1.1) einfach M und betrachte M′

j := {Fj ⊆ Mj |
π−1

j (Fj) ∈ M} mit den Projektionen πj auf den j-ten Faktor. Die M′
j sind σ-Algebren und enthalten

mit Ej auch σ(Ej). Damit erhält man E1 × . . .× En =
⋂n

j=1 π−1
j (Ej) ∈ M für alle Ej ∈ σ(Ej), also⊗n

j=1 σ(Ej) ⊆ M.

Die Inklusion ”⊇“ ist klar. Für die Umkehrung nennen wir die rechte Seite von (1.1) einfach
M und betrachten die Mengensysteme

M′
j := {Fj ⊆ Mj | π−1

j (Fj) ∈ M},
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wobei πj : M1 × . . .×Mn → Mj die Projektion auf den j-ten Faktor ist.

Da die Urbildoperation mit Schnitten und Komplementbildung vertauscht:

π−1
j (

⋂

a∈A

Ea) =
⋂

a∈A

π−1
j (Ea), π−1

j (Mj \ E) = M \ π−1
j (E),

ist M′
j ⊆ P(Mj) eine σ-Algebra, die Ej also auch σ(Ej) enthält. Wenn jetzt Ej ∈ σ(Ej), dann

gilt π−1
j (Ej) ∈ M, also

E1 × . . .× En =
n⋂

j=1

π−1
j (Ej) ∈ M,

was wiederum
⊗n

j=1 σ(Ej) ⊆ M impliziert.

Ein metrischer Raum (M,ρ) heißt separabel, wenn er eine abzählbare Teilmenge Q ⊆ M enthält,
die einen nichtleeren Schnitt mit jeder nichtleeren, offenen Teilmenge von M hat:

∀ ∅ 6= U ⊆ M offen : Q ∩ U 6= ∅. (1.2)

Als Beispiel betrachte Rk und darin die abzählbare Teilmenge Qk, die jede ε-Kugel, also auch jede
nichtleere, offene Menge schneidet. Man nennt Teilmengen Q eines topologischen Raumes M , die (1.2)
erfüllen, dicht.

Proposition 1.1.5 : Seien M1, . . . ,Mn separable metrische Räume und M = M1× . . .×Mn, versehen
mit der Produkttopologie. Dann gilt

n⊗

j=1

BMj = BM .

Beweis:

Idee: Wähle jeweils eine dichte Folge {x(k)
j | k ∈ N} ⊆ Mj und setze Ej := {B(x

(k)
j ; r) | k ∈ N, 0 <

r ∈ Q}. Dann findet man BMj = σ(Ej), und weil {(x(k1)
1 , . . . , x

(kn)
n ) | kj ∈ N, j = 1, . . . , n} abzählbar

und dicht in M ist, ergibt sich auch BM = σ({E1× . . .×En | Ej ∈ Ej}). Jetzt folgt die Behauptung

mit Proposition 1.1.4.

Seien {x(k)
j | k ∈ N} ⊆ Mj abzählbare, dichte Mengen in Mj für j = 1, . . . , n und

Ej := {B(x(k)
j ; r) | k ∈ N, 0 < r ∈ Q}.

Behauptung: BMj = σ(Ej).

Wenn nämlich U ⊆ Mj offen ist und x ∈ U , dann gibt es ein ε > 0 mit B(x; ε) ⊆ U und ein
k ∈ N mit x

(k)
j ∈ B(x; ε

4 ). Für r ∈ Q mit ε
4 < r < ε

2 gilt dann

x ∈ B(x(k)
j ; r) ⊆ B(x; ε) ⊆ U.

Damit sehen wir aber, daß jede offene Menge in Mj eine (automatisch abzählbare) Vereinigung
von Elementen von Ej sein muß.

Analog finden wir auch
BM = σ({E1 × . . .× En | Ej ∈ Ej}),

weil die Menge
{(x(k1)

1 , . . . , x(kn)
n ) | kj ∈ N, j = 1, . . . , n}
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abzählbar und dicht in M ist. Zusammen mit Proposition 1.1.4 erhalten wir

BM =
n⊗

j=1

σ(Ej) =
n⊗

j=1

BMj
.

Das folgende Lemma erleichtert die Identifizierung der von einer Algebra erzeugten σ-Algebra.

Lemma 1.1.6 : Seien M eine nichtleere Menge und A ⊆ P(M) eine Algebra. Weiter sei C die kleinste
Familie von Mengen, die A enthält und folgende Eigenschaften hat:

(a) Für E1 ⊆ E2 ⊆ . . . mit Ej ∈ C gilt
⋃∞

j=1 Ej ∈ C.

(b) Für E1 ⊇ E2 ⊇ . . . mit Ej ∈ C gilt
⋂∞

j=1 Ej ∈ C.

Dann haben wir C = σ(A).

Beweis:

Idee: Zunächst verifiziert man, daß es so ein kleinstes Mengensystem gibt (alle schneiden!). Dann
setzt man für E ∈ C

C(E) := {F ∈ C | E \ F, F \ E, E ∩ F ∈ C}
und beweist mit der Minimalität von C, daß C(E) ⊇ C gilt. Weiter folgert man, daß C eine Algebra

ist. Wegen (a) ist C dann sogar eine σ-Algebra.

Indem man alle Mengensysteme, die A enthalten und sowohl (a) als auch (b) erfüllen, schnei-
det, sieht man, daß es in der Tat ein kleinstes solches Mengensystem gibt.

Die Inklusion C ⊆ σ(A) ist klar. Für die Umkehrung definiert man zu E ∈ C das Mengensystem

C(E) := {F ∈ C | E \ F, F \ E, E ∩ F ∈ C}.

Dann erfüllt C(E) die Bedingungen (a) und (b) mit C(E) statt C.

Wenn E ∈ A, dann gilt außerdem A ⊆ C(E). Wegen der Minimalität von C haben wir dann
also C ⊆ C(E). Nun gilt aber nach der Definition für alle E,F ∈ C

F ∈ C(E) ⇔ E ∈ C(F ).

Das bedeutet, wir haben
∀E ∈ A, F ∈ C : E ∈ C(F ).

Wieder mit der Minimalität von C folgern wir C ⊆ C(F ). Insbesondere bedeutet dies, daß

∀E, F ∈ C : E ∩ F, E \ F, F \ E ∈ C,

d.h., C ist eine Algebra.

Wenn Ej ∈ C für j ∈ N, dann betrachten wir Fn :=
⋃n

j=1 Ej ∈ C und schließen mit (a)

∞⋃

j=1

Ej =
∞⋃

n=1

Fn ∈ C.

Also ist C eine σ-Algebra, und das beweist die Behauptung.
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Übung 1.1.1 : Seien (M1,M1), . . . , (Mn,Mn) meßbare Räume. Eine Teilmenge E ⊆ M1 × . . .×Mn heißt ein
meßbarer Quader, wenn sie von der Form E = A1× . . .×An mit Ai ∈ Mi für i = 1, . . . , n ist. Sei A die Menge
aller endlichen Vereinigungen von meßbaren Quadern. Zeige:

(i) A ist die kleinste Algebra in M1 ⊗ . . .⊗Mn, die alle meßbaren Quader enthält.

(ii) Jedes Element von A läßt sich als disjunkte Vereinigung endlich vieler meßbarer Quader schreiben.

Übung 1.1.2 : Die Borel-σ-Algebra BR wird von jedem der folgenden Mengensysteme erzeugt:

(a) E1 = {]a, b[| a < b},
(b) E2 = {[a, b] | a < b},
(c) E3 = {]a, b] | a < b},
(d) E4 = {[a, b[| a < b},
(e) E5 = {]a,∞[| a ∈ R},
(f) E6 = {]−∞, b[| b ∈ R},
(g) E7 = {[a,∞[| a ∈ R},
(h) E8 = {]−∞, b] | b ∈ R}.

Übung 1.1.3 : Seien M eine nichtleere Menge und E ⊆ P(M) eine beliebige, nichtleere Teilmenge der Potenz-
menge von M . Zeige, daß σ(E) tatsächlich eine σ-Algebra ist.

Übung 1.1.4 : Sei M eine überabzählbare Menge. Setze

M := {E ⊆ M | E oder M \ E ist höchstens abzählbar}.

Zeige, daß M eine σ-Algebra auf M ist.

Übung 1.1.5 : Für jede natürliche Zahl n ∈ N bezeichne Mn die vom System

En := {{1}, {2}, . . . , {n}}

auf N erzeugte σ-Algebra. Zeige, daß Mn aus allen Mengen A ⊆ N besteht, welche entweder A ⊆ {1, . . . , n} oder
m ∈ A für alle m ≥ n + 1 erfüllen. Offenbar gilt Mn ⊆ Mn+1 für alle n ∈ N. Warum ist dennoch

⋃∞
n=1 Mn keine

σ-Algebra auf N?

Übung 1.1.6 : Seien M eine σ-Algebra auf einer nichtleeren Menge M und N ∈ M. Zeige, daß

MN := {N ∩A : A ∈ M}

eine σ-Algebra auf N ist. Man nennt MN die Spur-σ-Algebra auf N .

Übung 1.1.7 : Seien (M,M) ein meßbarer Raum, (X, T ) ein topologischer Raum und f : M → X eine
Abbildung. Zeige, daß das System aller Teilmengen E ⊆ X mit f−1(E) ∈ M eine σ-Algebra auf X ist.

Übung 1.1.8 : Sei (M, ρ) ein metrischer Raum und D ⊆ M . Zeige, daß folgende Aussagen äquivalent sind.

(i) D ist dicht.

(ii) D = M .

(iii) Für alle x ∈ M und für alle ε > 0 existiert ein y ∈ D mit ρ(x, y) < ε.



6 KAPITEL 1. MESSBARE MENGEN UND FUNKTIONEN

1.2 Meßbare Funktionen

Seien (M, M) und (N, N) meßbare Räume und f : M → N eine Abbildung. Dann heißt f (M, N)-
meßbar, wenn

∀A ∈ N : f−1(A) ∈ M, (1.3)

d.h., wenn Urbilder meßbarer Mengen wieder meßbar sind. Wir lassen den Zusatz (M, N)- weg, wenn klar
ist, welche σ-Algebren gemeint sind. Wenn die σ-Algebra N von dem Mengensystem E ⊆ P(N) erzeugt
wird, dann können wir (1.3) auch durch

∀N ∈ E : f−1(N) ∈ M

ersetzen.

Beispiel 1.2.1 : Seien (M,U) und (N,V) topologische Räume und f : M → N stetig. Da Urbilder
offener Mengen unter f offen sind, ist die Abbildung (BM , BN )-meßbar.

Bemerkung 1.2.2 : Seien (M, M), (N, N) und (L,L) meßbare Räume sowie f : M → N und g : N → L
meßbare Abbildungen. Dann ist auch g ◦ f : M → L meßbar:

∀E ∈ L : (g ◦ f)−1(E) = f−1
(
g−1(E)

) ∈ M.

Proposition 1.2.3 : Seien (M, M) ein meßbarer Raum und f, g : M → C meßbare, d.h. (M, BC)-
meßbare Abbildungen. Dann sind auch f + g und fg meßbar.

Beweis:

Idee: Verknüpfe die meßbare Abbildung h : M → C2, x 7→ (f(x), g(x)) mit der Addition bzw. der

Multiplikation auf C (beides stetig, also meßbar).

Betrachte die Abbildung
h : M → C2, x 7→ (f(x), g(x)).

Die Borel-σ-Algebra BC2 von C2 wird von den Mengen der Form U ×U ′ mit U,U ′ ⊆ C offen,
erzeugt. Wegen

h−1(U × U ′) = f−1(U) ∩ g−1(U ′)

ist also h meßbar. Weil aber f + g und fg durch Verknüpfung von h mit den stetigen, also
meßbaren Abbildungen

C× C→ C, (z, w) 7→ z + w

und
C× C→ C, (z, w) 7→ zw

entstehen, folgt die Behauptung aus Bemerkung 1.2.2.

Die nächste Proposition wird bei der Konstruktion von Maßen auf Rn = R× . . .× R nützlich sein.

Proposition 1.2.4 : Seien (M, M), (N, N) und (L, L) meßbare Räume.
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(i) Wenn E ∈ M⊗N, dann gilt

Ex := {y ∈ N | (x, y) ∈ E} ∈ N,

Ey := {x ∈ M | (x, y) ∈ E} ∈ M.

y

E

E y E y
x

E

x

y

Ex

(ii) Wenn f : M ×N → L meßbar ist, dann sind auch die Abbildungen

fx : N → L, y 7→ f(x, y),
fy : M → L, x 7→ f(x, y)

für alle x ∈ M und y ∈ N meßbar.

Beweis:

Idee: Zeige, daß {E ∈ M ⊗N | (∀x ∈ M, y ∈ N) Ex ∈ N, Ey ∈ M} eine σ-Algebra ist, die alle

meßbaren Quader A×B ∈ M⊗N enthält.

Betrachte das Mengensystem

C := {E ∈ M⊗N | (∀x ∈ M, y ∈ N) Ex ∈ N, Ey ∈ M}.

Dann gilt
∀A ∈ M, B ∈ N : A×B ∈ C.

Außerdem verifiziert man für E,E1, E2, . . . ∈ C und x ∈ M, y ∈ N sofort

( ∞⋃

j=1

Ej

)
x

=
∞⋃

j=1

(Ej)x,

( ∞⋃

j=1

Ej

)y

=
∞⋃

j=1

(Ej)y,

M \ Ey = ((M ×N) \ E)y
,

N \ Ex = ((M ×N) \ E)x .

Also ist C eine σ-Algebra, die alle meßbaren Quader A × B mit A ∈ M und B ∈ N enthält.
Daraus folgt aber M⊗N ⊆ C und somit (i).

Um (ii) zu beweisen, müssen wir nur noch feststellen, daß für C ∈ L gilt

f−1
x (C) =

(
f−1(C)

)
x

und (fy)−1(C) =
(
f−1(C)

)y
.
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Beispiel 1.2.5 : Seien (M, M) ein meßbarer Raum und E ⊆ M eine meßbare Menge. Dann ist die
durch

χE(m) :=

{
1 für m ∈ E

0 für m 6∈ E

definierte charakteristische Funktion χE : M → R meßbar, weil

χ−1
E (]a, b[) =





M falls a < 0 < 1 < b,
E falls 0 ≤ a < 1 < b,

M \ E falls a < 0 < b ≤ 1,
∅ sonst.

Also sind auch endliche (komplexe) Linearkombinationen von charakteristischen Funktionen meßbarer
Mengen meßbar. Solche Funktionen nennen wir einfache Funktionen. Die einfachen Funktionen M → C
lassen sich charakterisieren als diejenigen meßbaren Funktionen, die nur endlich viele Werte annehmen:
Wenn nämlich f(M) = {z1, . . . , zn}, dann ist jedes Ej := f−1(zj) für j = 1, . . . , n meßbar, und es gilt

f =
n∑

j=1

zjχEj
.

Diese Zerlegung von f als Linearkombination von charakteristischen Funktionen nennt man die Stan-
dardzerlegung von f . Sie erfüllt insbesondere Ei ∩ Ej = ∅ für i 6= j.

Um sich lästige Fallunterscheidungen in den Betrachtungen reellwertiger meßbarer Funktionen zu
ersparen, ergänzen wir die Menge R um zwei Punkte, die die Rolle von plus und minus ”Unendlich“
spielen sollen:

[−∞,∞] := {−∞} ∪ R ∪ {∞}.
Hier sind −∞ und ∞ einfach Symbole. Wir ergänzen die Ordnung auf R durch

∀r ∈ R : −∞ < r < ∞

und erhalten so eine Ordnung auf [−∞,∞]. Mit dieser Ordnung kann man Begriffe wie untere und
obere Schranke sowie Supremum und Infimum leicht auf Teilmengen von [−∞,∞] übertragen. Der
einzige Unterschied zum Fall R ist, daß auch in R unbeschränkte Mengen in [−∞,∞] ein Supremum
haben. Analog erhält man auch den Limes superior und den Limes inferior für Folgen in [−∞,∞].

Addition und Multiplikation lassen sich nicht in vernünftiger Weise auf ganz [−∞,∞] fortsetzen. Wir
setzen jedoch

x + y :=





x + y für x, y ∈ R,

∞ für x ∈ ]−∞,∞] und y = ∞,

∞ für x = ∞ und y ∈ ]−∞,∞],
−∞ für x ∈ [−∞,∞[ und y = −∞,

−∞ für x = −∞ und y ∈ [−∞,∞[,

wobei [−∞,∞[ := {−∞} ∪ R und ]− ∞,∞] := R ∪ {∞}. Wenn insbesondere [0,∞] := [0,∞[∪{∞},
dann definiert dies eine Addition auf [0,∞]. Analog setzt man

xy :=





xy für x, y ∈ R,

±∞ für x ∈ ]0,∞] und y = ±∞,

±∞ für x = ±∞ und y ∈ ]0,∞],
∓∞ für x ∈ [−∞, 0[ und y = ±∞,

∓∞ für x = ±∞ und y ∈ [−∞, 0[.
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Bemerkung 1.2.6 : Setze

B[−∞,∞] := {E ⊆ [−∞,∞] | E ∩ R ∈ BR} ⊆ P([−∞,∞]) .

Dann sieht man leicht, daß B[−∞,∞] eine σ-Algebra ist, die von den Halbstrahlen ]a,∞] := ]a,∞[∪ {∞}
mit a ∈ R erzeugt wird.

Sei jetzt (M, M) ein meßbarer Raum, und seien f, g : M → [−∞,∞] meßbare Abbildungen. Wenn
f + g : M → [−∞,∞] definiert ist, d.h., wenn f(x) + g(x) für jedes x ∈ M definiert ist, dann ist f + g
auch meßbar:

(f + g)−1(]a,∞]) = (f + g)−1(]a,∞[) ∪ (f + g)−1({∞})
= (f + g)−1(]a,∞[) ∪ g−1({∞}) ∪ f−1({∞})

und (f+g)−1(]a,∞[) ist meßbar, weil es mit h−1(]a,∞[) zusammenfällt, wobei h die Summe der meßbaren
Funktionen f |M ′ , g|M ′ : M ′ → R mit M ′ = f−1(R) ∩ g−1(R) ist.

Proposition 1.2.7 : Seien (M, M) ein meßbarer Raum und (fn)n∈N eine Folge meßbarer Funktionen
fn : M → [−∞,∞]. Dann gilt:

(i) sup fn : M → [−∞,∞] ist meßbar.

(ii) inf fn : M → [−∞,∞] ist meßbar.

(iii) lim sup fn : M → [−∞,∞] ist meßbar.

(iv) lim inf fn : M → [−∞,∞] ist meßbar.

(v) Wenn der punktweise Limes f = lim fn : M → [−∞,∞] existiert, dann ist er meßbar.

Beweis:

Idee: (i) folgt aus (sup fn)−1(]a,∞]) =
⋃∞

n=1 f−1
n (]a,∞]), der Rest dann aus (i).

Beachte, daß

(sup fn)−1(]a,∞]) = {m ∈ M | sup
n

fn(m) > a}
= {m ∈ M | ∃n mit fn(m) > a}

=
∞⋃

n=1

f−1
n (]a,∞]).

Dies zeigt (i). Der zweite Teil folgt mit (i) und inf fn = − sup(−fn). Die Teile (iii) und (iv)
folgen jetzt, weil Limes superior und Limes inferior durch sukzessives Bilden von Suprema und
Infima entstehen. Der letzte Teil ist dann wegen lim fn = lim sup fn für konvergente Folgen
klar.

Mit Proposition 1.2.7 können wir zu einer meßbaren Funktion f : M → [−∞,∞] den positiven Teil
f+ := max(f, 0) und den negativen Teil f− := −min(f, 0) definieren, die beide wieder meßbar sind.

Übung 1.2.1 : Seien (M,M) ein meßbarer Raum und f, g : M → [−∞,∞] meßbar. Zeige, daß dann auch die
folgenden Funktionen meßbar sind.

(i) max{f, g}, (ii) min{f, g}, (iii) f+, (iv) f−.
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Übung 1.2.2 : Seien (an)n∈N und (bn)n∈N Folgen in [−∞,∞]. Zeige:

(i) lim supn→∞(−an) = − lim infn→∞ an,

(ii) Aus an ≤ bn für alle n ∈ N folgt lim infn→∞ an ≤ lim infn→∞ bn.

Übung 1.2.3 : Seien M eine σ-Algebra auf M und fn : M → R eine Folge meßbarer Funktionen. Zeige, daß
die Menge

A := {x ∈ M | ∃ lim
n→∞

fn(x)}
eine meßbare Teilmenge von M ist.

Übung 1.2.4 : Sei M eine σ-Algebra auf M , und sei f : M → C eine meßbare Funktion. Zeige, daß es eine
meßbare Funktion α : M → C gibt mit |α| = 1 und f = α|f |.

Übung 1.2.5 : Sei R das System aller Teilmengen von R, die sich als endliche Vereinigung von Intervallen
schreiben lassen. Eine Abbildung µ : R → [0,∞] heißt additiv, wenn für disjunkte Mengen E1, . . . , En ∈ R gilt

µ(E1 ∪ . . . ∪ En) = µ(E1) + . . . + µ(En),

sie ist σ-additiv, wenn für disjunkte Mengen E1, E2, . . . ∈ R gilt

µ

( ∞⋃
j=1

Ej

)
=

∞∑
j=1

µ(Ej),

ferner wird sie endlich genannt, wenn µ(A) < ∞ für alle A ∈ R ist.

Zeige, daß die Abbildung µ : R → [0,∞] mit

µ(A) :=

{
1 falls es ein ε > 0 gibt mit ]0, ε[⊆ A,
0 sonst

additiv und endlich, aber nicht σ-additiv ist.

Übung 1.2.6 : Sei M eine nichtleere Menge. Ein Dynkin-System über M ist ein nichtleeres System D von
Teilmengen von M mit

(a) M ∈ D,

(b) A, B ∈ D, A ⊆ B ⇒ B \A ∈ D,

(c) An ∈ D disjunkt ⇒ ⋃∞
n=1 An ∈ D.

Zeige:

(i) Jede σ-Algebra ist ein Dynkin-System.

(ii) Sei R ⊆ P(M). Dann existiert ein kleinstes Dynkin-System, das R umfaßt.

(iii) Ein Dynkin-System D ist genau dann eine σ-Algebra, wenn es schnittstabil ist, d.h., wenn aus A, B ∈ D
folgt, daß A ∩B ∈ D ist.



Kapitel 2

Maß und Integral

In diesem Kapitel führen wir den Begriff des Maßes auf beliebigen, meßbaren Räumen und den zugehörigen
Integralbegriff ein. Zentrale Ergebnisse sind die Analoga der schon für die reelle Gerade bewiesenen,
fundamentalen Konvergenzsätze. Darüber hinaus zeigen wir, wie man Maße und Integrale auf Produkt-
räumen konstruiert. Das entscheidende Ergebnis in diesem Kontext ist der Satz von Fubini, der besagt,
daß Integrale auf Produkträumen durch iteriertes Integrieren berechnet werden können und die Reihenfolge
dabei keine Rolle spielt.

2.1 Maße

Sei (M, M) ein meßbarer Raum. Eine Abbildung

µ : M → [0,∞]

heißt ein Maß auf (M, M), wenn µ(∅) = 0 ist und für jede disjunkte, abzählbare Familie E1, E2, . . . von
meßbaren Mengen gilt

µ(
∞⋃

j=1

Ej) =
∞∑

j=1

µ(Ej).

Hier ist
∑∞

j=1 µ(Ej) als der Grenzwert der entsprechenden Reihe zu lesen, wenn alle µ(Ej) endlich (d.h.
in [0,∞[) sind und die Reihe konvergiert; falls dem nicht so ist, setzt man

∑∞
j=1 µ(Ej) := ∞. Das Tripel

(M, M, µ) heißt ein Maßraum. Ein Maß µ heißt endlich, wenn µ(M) ∈ [0,∞[ , und σ-endlich, wenn
M =

⋃
k∈NEk mit µ(Ek) < ∞.

Beachte, daß aus E ⊆ E′ wegen µ(E′) = µ(E′ \ E) + µ(E) sofort folgt µ(E) ≤ µ(E′). Insbesondere
nimmt ein endliches Maß nur endliche Werte an.

Beispiel 2.1.1 : Sei M 6= ∅ eine beliebige Menge.

(i) Sei M = P(M) 3 E. Dann definiert µ(E) :=
∑

x∈E f(x) mit f : M → {1}, x 7→ 1 ein Maß, das
Zählmaß.

(ii) Sei M = P(M) und x0 ∈ M . Dann definiert

µ(E) :=
{

1 für x0 ∈ E
0 sonst

ein Maß, das Dirac- oder Punktmaß in x0 ∈ M .

11
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M

xo

E1
E 2

Beispiel 2.1.2 : Betrachte den meßbaren Raum (R, BR). Dann ist für jedes A ∈ BR die charakteristi-
sche Funktion χA lokal integrierbar im Sinne der Integrationstheorie einer Variablen und durch

λ1(A) :=
∫

χA

wird ein Maßraum (R, BR, λ1) definiert. Das so definierte Maß λ1 nennt man Lebesgue-Maß auf R.

Bei der Konstruktion von Maßen ist es in der Regel nicht so schwer, eine passende Algebra A ⊆ P(M)
zu finden, auf der die endliche Additivität µ(

⋃n
j=1 Ej) =

∑n
j=1 µ(Ej) gilt. Dagegen ist der Übergang zu

der von A erzeugten σ-Algebra oft schwierig. Umso angenehmer ist der folgende Satz, der zeigt, daß es
nur eine ”gute“ Fortsetzung einer endlich additiven Funktion µ : A → [0,∞] zu einem Maß auf (M, σ(A))
geben kann.

Satz 2.1.3 : Seien M eine nichtleere Menge, A ⊆ P(M) eine Algebra und M := σ(A). Weiter sei µ ein
Maß auf (M, M) mit

∃A1, A2, . . . ∈ A :
∞⋃

j=1

Aj = M und (∀j ∈ N : µ(Aj) < ∞).

Wenn ν ein Maß auf (M, M) ist, das auf A mit µ übereinstimmt, dann gilt µ = ν.

Beweis:

Idee: Für endliches µ betrachte C := {E ∈ M | µ(E) = ν(E)} und zeige, daß C die Bedingungen

(a) und (b) aus Lemma 1.1.6 erfüllt. Mit dem Lemma folgt dann C = M, d.h., die Behauptung. Für

σ-endliche Maße schneide alle Mengen mit einer Familie von Mengen endlichen Maßes.

Spezialfall: µ(M) < ∞.

Wir setzen
C := {E ∈ M | µ(E) = ν(E)} ⊆ M.

Beachte, daß wegen µ(F \ E) = µ(F ) − µ(E) für meßbare Mengen E ⊆ F und der analogen
Aussage für ν gilt

E ∈ C ⇒ F \ E ∈ C

sofern F ∈ C. Dann erfüllt C die Bedingungen (a) und (b) aus Lemma 1.1.6:

Wenn E1 ⊆ E2 ⊆ . . . mit Ej ∈ C, setze

C1 := E1, C2 := E2 \ E1, C3 := E3 \ E2, . . .

Dann sind die Cj alle disjunkt, und es gilt

µ(
∞⋃

j=1

Ej) = µ(
∞⋃

j=1

Cj) =
∞∑

j=1

µ(Cj) =
∞∑

j=1

ν(Cj) = ν(
∞⋃

j=1

Cj) = ν(
∞⋃

j=1

Ej).

Also ist auch
⋃∞

j=1 Ej ∈ C, und dies zeigt (a). Bedingung (b) folgt durch Komplementbildung
sofort aus (a), da M ∈ A ⊆ C .
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Wegen A ⊆ C können wir Lemma 1.1.6 anwenden und erhalten M = C. Dies beweist den Satz
für den Spezialfall.

Allgemeiner Fall: Wir stellen zunächst fest, daß wir eine disjunkte Familie Aj ∈ A, j ∈ N
mit ∞⋃

j=1

Aj = M und (∀j ∈ N : µ(Aj) < ∞)

finden können: Wenn nämlich A′j ∈ A, j ∈ N irgendeine Familie mit

∞⋃

j=1

A′j = M und (∀j ∈ N : µ(A′j) < ∞)

ist, setzt man einfach

A′′n :=
n⋃

j=1

A′j und An := A′′n \A′′n−1.

Wegen µ(E) =
∑∞

j=1 µ(E ∩ Aj) und ν(E) =
∑∞

j=1 µ(E ∩ Aj) für E ∈ M genügt es also zu
zeigen, daß für N ∈ A mit µ(N) < ∞ gilt µ(E ∩ N) = ν(E ∩ N). Dazu betrachten wir die
Algebra

Ã := {A ∩N | A ∈ A} ⊆ P(N),

die die σ-Algebra
M̃ := {E ∩N | E ∈ M} ⊆ P(N)

erzeugt. Dann erfüllen die Einschränkungen von µ und ν auf M̃ die Voraussetzungen des
Spezialfalls, und dieser zeigt dann µ(E ∩N) = ν(E ∩N).

Übung 2.1.1 : Sei µ ein Maß auf einer σ-Algebra M. Zeige:

(i) Aus An ∈ M, A1 ⊆ A2 ⊆ . . . folgt

lim
n→∞

µ(An) = µ

( ⋃

n∈N
An

)
.

(ii) Aus An ∈ M, A1 ⊇ A2 ⊇ . . . und µ(A1) < ∞ folgt

lim
n→∞

µ(An) = µ

( ⋂

n∈N
An

)
.

(iii) Die Voraussetzung µ(A1) < ∞ in Teil (ii) ist nicht überflüssig.

(iv) In (ii) kann die Vorausetzung µ(A1) < ∞ weggelassen werden, wenn µ ein σ-endliches Maß ist. (Hierzu
benötigt man den Umordnungssatz).

2.2 Integrale

Sei jetzt (M, M, µ) ein Maßraum. Wir bezeichnen die Menge der meßbaren Funktionen f : M → [0,∞]
mit L+(M). Wenn f ∈ L+(M) einfach ist und

f =
n∑

j=1

aj χEj
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die Standardzerlegung von f ist, dann definieren wir das Integral von f bzgl. µ durch

∫

M

fdµ :=
n∑

j=1

aj µ(Ej).

Hier setzen wir 0 · ∞ = 0 und beachten ferner, daß in der obigen Standardzerlegung aj ≥ 0 für alle j
gilt.

Für A ∈ M setzen wir ∫

A

fdµ :=
n∑

j=1

aj µ(Ej ∩A).

Falls M und das Maß µ aus dem Kontext klar sind, schreiben wir einfach
∫

f für
∫

M
fdµ und

∫
A

f für∫
A

fdµ.

A

E 1

E 2

E 3

E4

Proposition 2.2.1 : Seien (M, M, µ) ein Maßraum und f, g ∈ L+(M) einfache Funktionen.

(i) Wenn c ≥ 0, dann gilt
∫

cf = c
∫

f .

(ii)
∫

(f + g) =
∫

f +
∫

g.

(iii) Wenn f ≤ g, dann gilt
∫

f ≤ ∫
g.

Beweis:

Idee: Betrachte die Standardzerlegungen der einfachen Funktionen.

(i) folgt unmittelbar aus den Definitionen. Für (ii) betrachte die Standardzerlegungen

f =
n∑

j=1

ajχAj , und g =
m∑

k=1

bkχBk

von f und g. Zusätzlich setzen wir

A0 := M \
n⋃

j=1

Aj , B0 := M \
m⋃

k=1

Bk, a0 := 0 =: b0.

Dann gilt

f =
n∑

j=0

ajχAj , und g =
m∑

k=0

bkχBk

sowie

Aj =
m⋃

k=0

(Aj ∩Bk) ∀j = 0, 1, . . . , n

und

Bk =
n⋃

j=0

(Aj ∩Bk) ∀k = 0, 1, . . . ,m.
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Jetzt rechnet man
∫

f +
∫

g =
n∑

j=0

ajµ(Aj) +
m∑

k=0

bkµ(Bk) =
n∑

j=0

m∑

k=0

(aj + bk)µ(Aj ∩Bk).

Wenn {c1, . . . , cl} = {aj + bk | j = 0, . . . , n; k = 0, . . . , m} \ {0} und

Ci :=
⋃

aj+bk=ci

(Aj ∩Bk),

dann ist

f + g =
l∑

i=1

ciχCi

die Standardzerlegung von f + g, und (ii) folgt aus

∫
(f + g) =

l∑

i=1

ciµ(Ci) =
l∑

i=1

∑

aj+bk=ci

(aj + bk)µ(Aj ∩Bk).

Wenn jetzt f ≤ g, dann gilt aj ≤ bk wenn immer Aj ∩Bk 6= ∅. Also findet man
∫

f =
n∑

j=0

m∑

k=0

ajµ(Aj ∩Bk) ≤
n∑

j=0

m∑

k=0

bkµ(Aj ∩Bk) =
∫

g.

Proposition 2.2.2 : Seien (M, M, µ) ein Maßraum und f ∈ L+(M) eine einfache Funktion. Dann ist
die Abbildung

M → [0,∞], A 7→
∫

A

f

ein Maß.

Beweis:

Idee: Die Arbeit besteht darin, die Gleichheit
∫

⋃∞
i=1 Ei

f =
∑∞

i=1

∫
Ei

f für jede disjunkte Familie

E1, E2, . . . von meßbaren Mengen in M zu zeigen. Dafür braucht man den Umordnungssatz für Reihen.

Sei f =
∑n

j=1 ajχEj die Standardzerlegung von f . Wir stellen zunächst fest, daß
∫
∅ f =∑n

j=1 ajµ(∅) = 0 ist und wählen eine disjunkte, abzählbare Familie E1, E2, . . . von meßbaren
Mengen in M . Dann gilt

∫
⋃∞

i=1 Ei

f =
n∑

j=1

ajµ
(
Aj ∩

∞⋃

i=1

Ei

)

=
n∑

j=1

ajµ
( ∞⋃

i=1

(Aj ∩ Ei)
)

=
n∑

j=1

aj

∞∑

i=1

µ(Aj ∩ Ei)

=
∞∑

i=1

n∑

j=1

ajµ(Aj ∩ Ei)

=
∞∑

i=1

∫

Ei

f.
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Beachte, daß wir hier die Umordnung der Summierung rechtfertigen müssen: Wenn die Reihen∑∞
i=1 µ(Aj ∩Ei) konvergieren, geht das nach dem Umordnungssatz für Reihen.Wenn eine der

Reihen nicht konvergiert, verifizieren wir direkt, daß beide Seiten ∞ sind.

Für beliebige f ∈ L+(M) und A ∈ M definieren wir jetzt das Integral von f über A bzgl. µ durch
∫

A

f dµ := sup{∫
A

φdµ | 0 ≤ φ ≤ f, φ einfach}.

Es folgt unmittelbar aus den entsprechenden Aussagen für einfache Funktionen (vgl. Proposition
2.2.1), daß

∫
A

cfdµ = c
∫

A
fdµ für f ∈ L+(M) und c ≥ 0 sowie

∫
A

fdµ ≤ ∫
A

gdµ für f, g ∈ L+(M) und
f ≤ g. Genauso sieht man, daß

∫
A

f ≤ ∫
B

f , falls f ∈ L+(M) und A ⊆ B meßbar sind. Außerdem erkennt
man, daß

∫
A

fdµ = 0 ist, falls f−1(]0,∞]) ∩A eine Nullmenge ist.

Die Additivität des Integrals ergibt sich nicht automatisch, weil nicht klar ist, ob man jede einfache
Funktion φ, die 0 ≤ φ ≤ f + g erfüllt, als Summe φ1 +φ2 mit 0 ≤ φ1 ≤ f und 0 ≤ φ2 ≤ g schreiben kann.
Das folgende Lemma wird uns helfen, die Additivität des Integrals zu beweisen.

Lemma 2.2.3 : Seien (M, M) ein meßbarer Raum und f : M → [0,∞] eine meßbare Funktion. Dann
gibt es eine Folge (φn)n∈N einfacher Funktionen mit folgenden Eigenschaften:

(a) 0 ≤ φ1 ≤ φ2 ≤ . . . ≤ f .

(b) (φn)n∈N konvergiert punktweise gegen f .

Beweis:

Idee: Mit Ek
n := f−1(] k

2n , k+1
2n ]) und Fn := f−1(]2n,∞]) für n, k ∈ N und 0 ≤ k ≤ 22n − 1 ist die

gesuchte Folge durch φn :=
∑22n−1

k=0
k
2n χEk

n
+ 2nχFn

gegeben.

Für n, k ∈ N mit 0 ≤ k ≤ 22n − 1 setze

Ek
n := f−1(]

k

2n
,
k + 1
2n

])

und
Fn := f−1(]2n,∞]).

Dann ist

φn :=
22n−1∑

k=0

k

2n
χEk

n
+ 2nχFn

eine einfache Funktion. Jetzt genügt es, für jedes n ∈ N die folgenden Eigenschaften zu zeigen:

(a’) φn ≤ φn+1,

(b’) 0 ≤ f(x)− φn(x) ≤ 2−n für jedes x ∈ M mit f(x) ≤ 2n.

Dafür müssen wir mehrere Fälle unterscheiden:

1) Wenn x ∈ Ek
n und f(x) ∈ ] 2k

2n+1 , 2k+1
2n+1 ], dann gilt x ∈ E2k

n+1 und

φn(x) =
k

2n
=

2k

2n+1
= φn+1(x).

2) Wenn x ∈ Ek
n und f(x) ∈ ] 2k+1

2n+1 , 2k+2
2n+1 ], dann gilt x ∈ E2k+1

n+1 und

φn(x) =
k

2n
<

2k + 1
2n+1

= φn+1(x).
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3) Wenn x ∈ Fn und f(x) ∈ ]2n, 2n+1], dann gilt für ein 22n+1 ≤ k ≤ 22n+2 − 1, daß
x ∈ Ek

n+1 und

φn(x) = 2n ≤ k

2n+1
= φn+1(x).

4) Wenn x ∈ Fn und f(x) ∈ ]2n+1,∞[, dann gilt x ∈ Fn+1 und

φn(x) = 2n < 2n+1 = φn+1(x).

Damit haben wir (a’). Die Bedingung (b’ ) folgt analog durch Nachrechnen (Übung!).

Der nächste Satz ist eine Variante des Satzes von der Monotonen Konvergenz und an dieser Stelle der
Schlüssel zur Additivität des Integrals.

Satz 2.2.4 (Monotone Konvergenz): Seien (M, M, µ) ein Maßraum und (fn)n∈N eine Folge in
L+(M) mit fn ≤ fn+1 für alle n ∈ N. Dann gilt

∫
lim

n→∞
fn =

∫
sup
n∈N

fn = sup
n∈N

∫
fn = lim

n→∞

∫
fn.

Beweis:

Idee: Die Ungleichung supn∈N
∫

fn ≤ ∫
f für f = supn fn ist unmittelbar einsichtig. Für die

Umkehrung betrachte En = {x ∈ M | fn(x) ≥ tφ(x)}, wobei 0 < t < 1 fest gewählt ist, und schließe

mit Proposition 2.2.2 (und Übung 2.1.1), daß
∫

φ = supn∈N
∫

En
φ gilt. Es folgt t

∫
φ ≤ supn∈N

∫
fn

und damit die Behauptung mit t → 1.

Wegen der Monotonie von (fn)n∈N und (
∫

fn)n∈N sind die Suprema gleich den Limiten. Setze
f := supn∈N fn ∈ L+(M). Dann zeigt fn ≤ f sofort

∫
fn ≤

∫
f und somit

sup
n∈N

∫
fn ≤

∫
f.

Um auch die Umkehrung zu zeigen, wähle ein t ∈ ]0, 1[. Wenn jetzt φ eine einfache Funktion
mit 0 ≤ φ ≤ f ist, betrachte

En := {x ∈ M | fn(x) ≥ tφ(x)}.
Da fn und φ meßbar sind, ist auch En meßbar. Sei x ∈ M beliebig mit f(x) > 0, dann
gilt wegen φ(x) ≤ f(x) und φ(x) < ∞, daß tφ(x) < f(x). Also finden wir ein n ∈ N mit
fn(x) ≥ tφ(x). Also gilt ⋃

n∈N
En = M.

Wegen En ⊆ En+1 folgt mit Proposition 2.2.2 und Übung 2.1.1
∫

φ = sup
n∈N

∫

En

φ,

und wir können rechnen

t

∫
φ = sup

n∈N

∫

En

tφ ≤ sup
n∈N

∫

En

fn ≤ sup
n∈N

∫
fn.

Weil t ∈]0, 1[ beliebig war, erhalten wir
∫

φ ≤ sup
n∈N

∫
fn

und schließlich ∫
f ≤ sup

n∈N

∫
fn.



18 KAPITEL 2. MASS UND INTEGRAL

Korollar 2.2.5 : Seien (M, M, µ) ein Maßraum und (fn)n∈N eine Folge in L+(M). Wir setzen f :=
sup{∑n

j=1 fj | n ∈ N}. Dann gilt ∫
f =

∞∑

j=1

∫
fj .

Beweis:

Idee: Benütze zunächst Proposition 2.2.1 und Satz 2.2.4, um
∫

(h+g) =
∫

h+
∫

g für h, g ∈ L+(M)

zu zeigen. Mit Induktion über die Anzahl der Summanden und dann erneut Satz 2.2.4 folgt schließlich

die Behauptung.

Wir zeigen zunächst, daß für h, g ∈ L+(M) gilt
∫

(h + g) =
∫

h +
∫

g.

Dazu seien zu h und g Folgen (φn)n∈N und (ψn)n∈N einfacher Funktionen wie in Lemma
2.2.3 gewählt. Dann ist (φn + ψn)n∈N eine monoton steigende Folge einfacher Funktionen mit
supn∈N(φn + ψn) = h + g und Satz 2.2.4 liefert zusammen mit Proposition 2.2.1
∫

(h+g) = lim
n→∞

∫
(φn+ψn) = lim

n→∞
(
∫

φn+
∫

ψn) = ( lim
n→∞

∫
φn)+( lim

n→∞

∫
ψn) =

∫
h +

∫
g.

Mit Induktion folgt jetzt sofort ∫ n∑

j=1

fj =
n∑

j=1

∫
fj .

Die Funktionen gn :=
∑n

j=1 fj konvergieren punktweise monoton gegen f und erneut mit Satz
2.2.4 schließen wir ∫

f = lim
n→∞

∫
gn = lim

n→∞

n∑

j=1

∫
fj =

∞∑

j=1

∫
fj .

Seien (M, M, µ) wie zuvor ein Maßraum und f : M → [−∞,∞] eine meßbare Funktion sowie f =
f+−f− die Zerlegung von f in ihren positiven und ihren negativen Teil. Wenn eines der beiden Integrale∫

f± endlich ist, dann definieren wir
∫

fdµ :=
∫

f+dµ−
∫

f−dµ (2.1)

und nennen
∫

fdµ das Integral von f . Wenn sowohl
∫

f+dµ als auch
∫

f−dµ endlich sind, nennen wir
f µ-integrierbar. Wenn aus dem Kontext klar ist, welches Maß gemeint ist, lassen wir das µ weg. Eine
meßbare Funktion f : M → C heißt integrierbar, wenn Re f : M → R und Im f : M → R integrierbar
sind. Das Integral

∫
f ist dann durch

∫
f :=

∫
Re f + i

∫
Im f

definiert. Für K gleich R oder C sei L1(M,µ,K) oder (wenn das Maß aus dem Kontext klar ist) L1(M,K)
die Menge der integrierbaren Funktionen f : M → K. Statt L1(M,C) schreibt man oft nur L1(M).

Satz 2.2.6 : Seien (M, M, µ) ein Maßraum und f : M → [−∞,∞] meßbar, dann sind folgende Aussa-
gen äquivalent:
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(1) f ist µ-integrierbar.

(2) f+ und f− sind µ-integrierbar.

(3) Es gibt eine µ-integrierbare Funktion g mit |f | ≤ g.

(4) |f | ist µ–integrierbar.

Beweis:

”(1)⇔(2)“: Dies folgt unmittelbar aus den Definition der Integrierbarkeit.

”(2)⇒(3)“: Sind f+ und f− µ-integrierbar, dann sind f+, f− und g = |f | = f+ + f− meßbar (vgl.
Bemerkung 1.2.6) und nach Korollar 2.2.5 gilt

∫
g dµ =

∫
(f+ + f−) dµ =

∫
f+ dµ +

∫
f− dµ < ∞.

Somit ist auch g µ-integrierbar und wegen |f | = g = f+ + f− folgt die Behauptung.

”(3)⇒(4)“: Existiert eine µ-integrierbare Funktion g mit |f | ≤ g, so gilt, wieder mit Korollar 2.2.5,
aufgrund von g = |f |+ (g − |f |):

∫
|f | dµ ≤

∫
g dµ.

Die Behauptung folgt nun aus der Annahme, daß
∫

g dµ < ∞.

”(4)⇒(2)“: Sei nun |f | µ-integrierbar. Es gilt: f+ ≤ |f | und f− ≤ |f |. Außerdem sind f+, f− und
|f | meßbar und nichtnegativ. Damit wird

∫
f+ dµ ≤

∫
|f | dµ < ∞ und

∫
f− dµ ≤

∫
|f | dµ < ∞.

Proposition 2.2.7 : L1(M,K) ist ein K-Vektorraum, und die Abbildung
∫

: L1(M,K) → K, f 7→
∫

f

ist K-linear, bildet nichtnegative Funktionen auf nichtnegative Zahlen ab und erfüllt die Ungleichung
∣∣∣
∫

M

f
∣∣∣ ≤

∫

M

|f |.

Beweis:

Idee: Zerlege erst in Real- und Imaginärteil, dann in positiven und negativen Teil.

Wir zeigen zunächst die Linearität. Dabei behandeln wir nur den Fall K = R. Der Fall K = C
sei dem Leser als (einfache) Übung überlassen.

Seien also f, h ∈ L1(M,R) und r ∈ R. Es genügt jetzt zu zeigen, daß f + h, rf ∈ L1(M,R)
und ∫

(f + h) =
∫

f +
∫

h,

∫
rf = r

∫
f.

Die Funktionen f + h und f sind meßbar (vgl. Bemerkung 1.2.6). Wenn r ≥ 0, dann gilt
rf± = (rf)±, also sind

∫
(rf)± = r

∫
f± endlich (vgl. Proposition 2.2.1). Dies zeigt, daß rf

integrierbar ist mit
∫

rf =
∫

rf+ −
∫

rf− = r

∫
f+ − r

∫
f− = r

∫
f.
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Der Fall r < 0 liefert (rf)± = −rf∓ und geht ansonsten analog.

Zunächst gilt wegen Korollar 2.2.5
∫

f −
∫

h =
∫

f ′ −
∫

h′

für alle f, f ′, h, h′ ∈ L+(M) mit f − h = f ′ − h′, falls die betrachteten Integrale endlich sind.

Wegen Satz 2.2.6 und der Dreiecksungleichung folgt die Integrierbarkeit von f +h, und somit
gilt mit obigem

∫
(f + h) =

∫
(f + h)+ −

∫
(f + h)−

=
∫

(f+ + h+)−
∫

(f− + h−)

=
∫

f+ −
∫

f− +
∫

h+ −
∫

h−

=
∫

f +
∫

h.

Damit ist die Linearität des Integrals gezeigt. Die Positivität ist nach Definition unmittelbar
klar, und für die letzte Behauptung setzen wir

∫
M

f = reiγ mit r ≥ 0 und γ ∈ [0, 2π[. Dann
rechnen wir nach:

∣∣
∫

M

f
∣∣ = e−iγ

∫

M

f =
∫

M

e−iγf =
∫

M

Re(e−iγf) ≤
∫

M

|e−iγf | =
∫

M

|f |,

weil
∫

Im(e−iγf) = 0 ist.

Übung 2.2.1 : Sei (M,M, µ) ein Maßraum, und sei M∗ die Familie aller E ⊆ M , für die es A, B ∈ M gibt mit
A ⊆ E ⊆ B und µ(B \A) = 0. Für E ∈ M∗ definiere µ∗(E) := µ(A). Zeige:

(i) M∗ ist eine σ-Algebra, die M enthält,

(ii) µ∗ ist wohldefiniert,

(iii) µ∗ ist ein Maß auf M ,

(iii) µ∗ ist eine Fortsetzung von µ, d.h. µ∗(E) = µ(E) für alle E ∈ M.

Man nennt den Maßraum (M,M∗, µ∗) die Vervollständigung von (M,M, µ).

Übung 2.2.2 : Seien (M,M, µ) ein Maßraum und (M,M∗, µ∗) seine Vervollständigung.

(i) Beweise, daß eine Funktion f : M → [−∞,∞] genau dann M∗-meßbar ist, wenn es M-meßbare Funktionen
f1, f2 : M → [−∞,∞] gibt, mit f1 ≤ f ≤ f2 und f1 = f2 µ-fast überall gilt (d.h. µ({x ∈ M | f1(x) 6=
f2(x)}) = 0).

(ii) Sei f : M → R eine M∗-meßbare Funktion. Zeige, daß die Funktionen f1, f2 aus Teil (i) i.a. nicht überall
endlich gewählt werden können.

Übung 2.2.3 : Seien (M,M, µ) ein Maßraum und f : M → [0,∞] eine meßbare Funktion. Definiere

ν(E) :=

∫

E

f dµ, E ∈ M.

Zeige, daß ν ein Maß ist.

Übung 2.2.4 : Sei M die σ-Algebra aus Übung 1.1.4. Definiere für E ∈ M

µ(E) :=

{
0, falls E abzählbar ist,
1, sonst.

Zeige, daß µ ein Maß auf M ist.
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Übung 2.2.5 : Finde ein Beispiel eines Maßes, das nicht σ-endlich ist.

Übung 2.2.6 : Seien (M,M) ein meßbarer Raum, µ ein endliches Maß auf M und f ∈ L1(M,C, µ). Weiter sei
S ⊆ C eine abgeschlossene Menge mit der Eigenschaft, daß

AE(f) :=

∫
E

f dµ

µ(E)
∈ S

für jedes E ∈ M mit µ(E) > 0. Zeige, daß f(x) ∈ S für fast alle x ∈ M .
Hinweis: Jede offene Teilmenge von C läßt sich als abzählbare Vereinigung offener Kugeln schreiben, vgl. Propo-
sition 1.1.5.

Übung 2.2.7 : Seien (M,M, µ) ein Maßraum und (En)n∈N eine Folge meßbarer Teilmengen von M mit

∞∑
n=1

µ(En) < ∞.

Zeige, daß fast alle x ∈ M in höchstens endlich vielen En liegen (d.h., die Menge derjenigen x ∈ M , für die dies
nicht gilt, hat das Maß 0).

Übung 2.2.8 : Charakterisiere diejenigen einfachen Funktionen, die integrierbar sind.

Übung 2.2.9 : Ist die Dirichletsche Sprungfunktion

f : [0, 1] → R f(x) :=

{
1 falls x ∈ Q,
0 sonst.

integrierbar?

Übung 2.2.10 : Sei (M,M, µ) ein Maßraum, und sei (fn)n∈N eine Folge integrierbarer Funktionen fn : M → R,
die gleichmäßig gegen eine Funktion f konvergiert (d.h. für jedes ε > 0 gibt es ein n0 ∈ N, so daß für alle x ∈ M
gilt: |f(x)− fn(x)| < ε). Zeige:

(i) Wenn µ(M) < ∞, dann ist f integrierbar.

(ii) Die Aussage aus Teil (i) ist falsch für Maßräume mit µ(M) = ∞.

2.3 Produktmaße

Gegeben seien zwei Maßräume (M, M, µ) und (N, N, ν). Wir wollen daraus ein Maß auf (M×N, M⊗N)
konstruieren. Die Grundidee ist, Funktionen in zwei Variablen nacheinander in den beiden Variablen zu
integrieren.

Für E ∈ M⊗N sind nach Proposition 1.2.4 die Mengen

Ex := {y ∈ N | (x, y) ∈ E} ∈ N

Ey := {x ∈ M | (x, y) ∈ E} ∈ M

für alle x ∈ M und y ∈ N meßbar. Damit kann man die Funktionen

fE : M → [0,∞], x 7→ ν(Ex)
gE : N → [0,∞], y 7→ µ(Ey)

definieren.

Lemma 2.3.1 : Falls µ und ν σ-endlich sind, sind die Funktionen fE und gE sind für jedes E ∈ M⊗N
meßbar.

Beweis:
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Idee: Betrachte C := {E ∈ M⊗N | fE meßbar} und zeige, daß C die Bedingungen (a) und (b) aus

Lemma 1.1.6 erfüllt. Da außerdem endliche, disjunkte Vereinigungen von Quadern der Form A × B

mit A ∈ M, B ∈ N in C sind, folgt die Behauptung.

Wir führen den Beweis für fE , der andere Fall geht analog. Betrachte das Mengensystem

C := {E ∈ M⊗N | fE meßbar}.
Wenn E = A×B mit A ∈ M, B ∈ N ein meßbarer Quader ist, dann gilt

Ex =
{

B falls x ∈ A,
∅ sonst

und

fE(x) =
{

ν(B) falls x ∈ A,
0 sonst.

B

A

Also ist fE in diesem Fall meßbar und E ∈ C. Wenn E die disjunkte Vereinigung endlich
vieler, meßbarer Quader E1, . . . , Ek ist, dann ist

fE = fE1 + . . . + fEk

meßbar und Übung 1.1.1 zeigt, daß die von den meßbaren Quadern erzeugte Algebra A in C
enthalten ist.

A1

A 2

B1

B2

Damit reicht es jetzt, zu zeigen, daß C die Bedingungen (a) und (b) aus Lemma 1.1.6 erfüllt:

Sei E1 ⊆ E2 ⊆ . . . mit Ej ∈ C und E =
⋃∞

j=1 Ej . Dann gilt für x ∈ M (vgl. Übung 2.1.1)

fE(x) = ν(Ex) = ν




∞⋃

j=1

(Ej)x


 = lim

j∈N
ν((Ej)x) = lim

j∈N
fEj (x),

was die Meßbarkeit von fE zeigt (vgl. Proposition 1.2.7).

Analog, wenn E1 ⊇ E2 ⊇ . . . mit Ej ∈ C und E =
⋂∞

j=1 Ej , dann gilt für x ∈ M (vgl. Übung
2.1.1(iv) - an dieser Stelle braucht man die σ-Endlichkeit)

fE(x) = ν(Ex) = ν




∞⋂

j=1

(Ej)x


 = lim

j∈N
ν((Ej)x) = lim

j∈N
fEj (x),

was wiederum die Meßbarkeit von fE zeigt (vgl. Proposition 1.2.7).
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Satz 2.3.2 : (M, M, µ) und (N, N, ν) seien zwei σ-endliche Maßräume. Dann ist Abbildung

µ⊗ ν : M⊗N → [0,∞], E 7→
∫

M

ν(Ex)dµ(x)

ein Maß. Weiter ist µ⊗ ν σ-endlich und es gilt

(µ⊗ ν)
(
E

)
=

∫

M

ν(Ex)dµ(x) =
∫

N

µ(Ey)dν(y).

Beweis:

Idee: Die σ-Additivität µ⊗ν(
⋃∞

j=1 Ej) =
∑∞

j=1 µ⊗ν(Ej) folgt aus dem Satz 2.2.4 von der Montonen

Konvergenz. Die σ-Endlichkeit des Maßes folgt mit Satz 2.1.3 durch zurückschneiden mit Quadern

endlichen Volumens. Die letzte Formel folgt durch Vertauschen der Rollen von µ und ν sowie erneut

dem Eindeutigkeitssatz 2.1.3.

Es ist klar, daß

(µ⊗ ν)
(∅) =

∫

M

ν(∅)dµ(x) = 0

gilt. Wenn E1, E2, . . . eine disjunkte Familie von Mengen in M ⊗ N ist und E =
⋃∞

j=1 Ej ,
dann gilt

ν(Ex) =
∞∑

j=1

ν
(
(Ej)x

)

und mit dem Satz 2.2.4 von der Monotonen Konvergenz folgt

(µ⊗ ν)
(
E

)
=

∫

M

ν(Ex)dµ(x) =
∞∑

j=1

∫

M

ν((Ej)x)dµ(x) =
∞∑

j=1

(µ⊗ ν)
(
Ej

)
.

Dies zeigt, daß µ⊗ ν ein Maß ist.

Wenn jetzt µ und ν σ-endlich sind, dann gibt es Mengen A1, A2, . . . mit Aj ∈ M, µ(Aj) < ∞
für j ∈ N und

⋃
j∈NAj = M sowie Mengen B1, B2, . . . mit Bj ∈ N, ν(Bj) < ∞ für j ∈ N und⋃

j∈NBj = N . Es folgt ⋃

j,k∈N
Aj ×Bk = M ×N

mit

(µ⊗ ν)
(
Aj ×Bk

)
=

∫

M

ν((Aj ×Bk)x)dµ(x)

=
∫

Aj

ν(Bk)dµ(x)

= ν(Bk)µ(Aj)
< ∞.

M

N
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Dies zeigt, daß µ ⊗ ν σ-endlich ist und sogar die etwas stärkere Bedingung aus Satz 2.1.3
erfüllt.

Wir wiederholen jetzt das ganze Argument für die Abbildung

M⊗N → [0,∞], E 7→
∫

N

µ(Ey)dν(y)

und finden, daß auch diese Abbildung ein σ-endliches Maß ist, für das die Mengen Aj × Bk

das Maß µ(Aj)ν(Bk) haben. Aber dann zeigt Satz 2.1.3 die Gleichheit

(µ⊗ ν)
(
E

)
=

∫

M

ν(Ex)dµ(x) =
∫

N

µ(Ey)dν(y).

Das Maß µ⊗ ν heißt das Produktmaß von µ und ν.

Man will das Verfahren aus Satz 2.3.2 iterieren und so Produktmaße von endlich vielen σ-endlichen
Maßen konstruieren. In diesem Kontext ist das folgende Korollar sehr wichtig.

Korollar 2.3.3 : Seien (Mi, Mi, µi) für i = 1, 2, 3 drei σ-endliche Maßräume. Dann gilt:

(i) (M1 ⊗M2)⊗M3 = M1 ⊗ (M2 ⊗M3) = M1 ⊗M2 ⊗M3.

(ii) (µ1 ⊗ µ2)⊗ µ3 = µ1 ⊗ (µ2 ⊗ µ3).

Beweis:

Idee: Kombiniere Satz 2.3.2 mit Satz 2.1.3.

Der erste Teil folgt sofort aus der Tatsache, daß alle drei σ-Algebren von den Mengen der
Form E1 × E2 × E3 mit Ei ∈ Mi und i = 1, 2, 3 erzeugt werden.

Da die von den Mengen der Form E1 × E2 × E3 erzeugte Algebra A mit Ei ∈ Mi und
i = 1, 2, 3 gerade die Menge der disjunkten Vereinigungen solcher Mengen ist (vgl. Übung
1.1.1), folgt der zweite Teil aus Satz 2.3.2 und Satz 2.1.3, weil die Maße auf Elementen von A
übereinstimmen.

Mit diesem Korollar können wir jetzt zu einer endlichen Familie (Mi,Mi, µi), i = 1, . . . , k von σ-
endlichen Maßräumen ein Produktmaß µ1 ⊗ . . .⊗ µk auf (M1 × . . .×Mk,M1 ⊗ . . .⊗Mk) durch

µ1 ⊗ . . .⊗ µk(M) = µ1 ⊗ (µ2 ⊗ (. . .⊗ µk) . . .)(E)

definieren.

Beispiel 2.3.4 : Betrachte den meßbaren Raum

(Rn, BRn) = (R× . . .× R,BR ⊗ . . .⊗BR).

Dann heißt das Produktmaß λn = λ1⊗ . . .⊗λ1 der Lebesgue-Maße auf R das Lebesgue-Maß auf Rn.

Satz 2.3.5 (Fubini - 1. Version): Seien (M, M, µ) und (N, N, ν) zwei σ-endliche Maßräume. Sei
f : M ×N → [0,∞] eine meßbare Abbildung. Dann gilt

∫

M

(∫

N

f(x, y)dν(y)
)

dµ(x) =
∫

N

(∫

M

f(x, y)dµ(x)
)

dν(y) =
∫

M×N

f(x, y)d(µ⊗ ν)(x, y).
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Beweis:

Idee: Für charakterische Funktionen ist dies gerade der Satz 2.3.2. Dann bildet man Linearkom-

binationen und approximiert durch einfache Funktionen gemäß Lemma 2.2.3. Die Behauptung folgt

dann aus dem Satz 2.2.4 von der Monotonen Konvergenz.

Wenn f die charakteristische Funktion einer meßbaren Menge ist, dann ist die Aussage
gerade die Gleichheit in Satz 2.3.2 plus die Definition des Produktmaßes. Da man Summen
und positive Konstanten aus den Integralen herausziehen kann, ist die Behauptung auch für
einfache Funktionen richtig.

Wähle jetzt eine approximierende Folge (φn)n∈N für f wie in Lemma 2.2.3. Dann gilt
∫

M×N

f(x, y)d(µ⊗ ν)(x, y) = lim
n→∞

∫

M×N

φn(x, y)d(µ⊗ ν)(x, y). (2.2)

Jetzt setzt man

gn(x) :=
∫

N

φn(x, y)dν(y) und hn(y) :=
∫

M

φn(x, y)dµ(x)

sowie

g(x) :=
∫

N

f(x, y)dν(y) und h(y) :=
∫

M

f(x, y)dµ(x).

Dann sind die Folgen (gn)n∈N und (hn)n∈N monoton steigende Folgen meßbarer Funktionen
und Satz 2.2.4 zeigt

gn(x) → g(x) und hn(y) → h(y).

Wieder mit Satz 2.2.4 rechnen wir jetzt
∫

M

g(x)dµ(x) = lim
n→∞

∫

M

gn(x)dµ(x)

= lim
n→∞

∫

M

(∫

N

φn(x, y)dν(y)
)

dµ(x)

= lim
n→∞

∫

M×N

φn(x, y)d(µ⊗ ν)(x, y)

= lim
n→∞

∫

N

(∫

M

φn(x, y)dµ(x)
)

dν(y)

= lim
n→∞

∫

N

hn(y)dν(y)

=
∫

N

h(y)dν(y).

Wegen (2.2) beweist diese Rechnung die Behauptung.

Beispiel 2.3.6 : Die Eulersche Beta–Funktion B : [0,∞[×[0,∞[→ [0,∞[ ist durch

B(p, q) :=
∫ ∞

0

tp−1

(1 + t)p+q
dt

definiert. Mit Satz 2.3.5 zeigt man die Identität

B(p, q) =
Γ(p)Γ(q)
Γ(p + q)

. (2.3)
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Dazu führt man in der Definition

Γ(p) =
∫ ∞

0

xp−1e−xdx

der Gamma–Funktion für p > 0 die Substitution x = ty durch und findet

Γ(p)
tp

=
∫ ∞

0

yp−1e−tydy

für t > 0. Damit rechnet man unter Zuhilfenahme von Satz 2.3.5

Γ(p + q)B(p, q) = Γ(p + q)
∫ ∞

0

tp−1

(1 + t)p+q
dt

=
∫ ∞

0

tp−1dt

∫ ∞

0

yp+q−1e−(1+t)ydy

=
∫ ∞

0

yq−1e−ydy

∫ ∞

0

(ty)p−1e−tyy dt

= Γ(q)Γ(p).

In der Wahrscheinlichkeitstheorie wird die folgende Darstellung der Betafunktion benützt, die man aus
der Substitution x = t

1+t erhält:

B(p, q) =
∫ 1

0

xp−1(1− x)q−1dx.

Durch Auswertung von (2.3) in ( 1
2 , 1

2 ) leitet man die Formel

∫ ∞

0

e−x2
dx =

∫ ∞

0

e−t

√
t
dt = Γ( 1

2 ) =
√

π

her:

Γ( 1
2 )Γ(1

2 ) = B( 1
2 , 1

2 )

=
∫ 1

0

dt√
t(1− t)

=
∫ 1

0

dt√
1
4 − (t− 1

2 )2

= arcsin
(
2(t− 1

2 )
)∣∣∣

1

0

=
π

2
+

π

2
.

Übung 2.3.1 : Sei ν ein endliches Maß auf dem meßbaren Raum ([0,∞[,B[0,∞[), und sei φ : [0,∞[→ R definiert
durch φ(t) = ν([0, t[). Weiter sei (M,M, µ) ein Maßraum und f : M → [0,∞[ meßbar. Dann gilt

∫

M

(φ ◦ f)(x)dµ(x) =

∫

[0,∞[

F (t)dν(t)

für die Funktion F : [0,∞[→ [0,∞[, t 7→ µ({x ∈ M | f(x) > t}).
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2.4 Nullmengen und Konvergenz

Sei (M, M, µ) ein Maßraum. Eine Menge E ∈ M heißt eine µ-Nullmenge, wenn µ(E) = 0. Eine
Aussage über die Punkte x ∈ M heißt µ-fast überall (µ-f.ü.) wahr, wenn sie für das Komplement einer
Nullmenge wahr ist. Manchmal sagt man auch, die Aussage gelte für µ-fast alle (f.µ-f.a.) x. Wenn das
Maß aus dem Kontext klar ist, lassen wir das µ in den obigen Bezeichnungen weg.

Seien insbesondere (M, M, µ) ein Maßraum und (N, N) ein meßbarer Raum. Dann heißen zwei meßba-
re Abbildungen f, g : M → N µ–fast überall gleich, wenn {m ∈ M | f(m) 6= g(m)} eine µ–Nullmenge
ist. Wir schreiben dann

f = g (f.ü.)

Beispiel 2.4.1 : Eine Folge von Funktionen fn : M → C konvergiert (f.ü.) gegen eine Funktion f : M →
C, wenn es eine Nullmenge A ⊆ M gibt mit

∀x ∈ M \A : lim
n→∞

fn(x) = f(x).

Proposition 2.4.2 : Sei (M, M, µ) ein Maßraum und f ∈ L+(M). Dann sind folgende Aussagen äqui-
valent:

(1)
∫

M
fdµ = 0.

(2) f = 0 (f.ü.).

Beweis:

Idee: Für einfache Funktionen ist das klar und für allgemeines f folgt
”
(2) ⇒ (1)“ sofort, weil jede

f approximierende, einfache Funktion fast überall Null sein muß. Für die Umkehrung zeigt man, daß

alle Ek := {x ∈ M | f(x) ≥ 1
k
} Nullmengen sind.

Wenn f =
∑k

j=1 ajχEj eine einfache Funktion ist, dann folgt die Behauptung sofort aus∫
f =

∑k
j=1 ajµ(Ej).

Für allgemeines f nehmen wir zunächst an, daß f = 0 (f.ü.). Wenn φ eine einfache Funktion
mit 0 ≤ φ ≤ f ist, dann ist φ = 0 (f.ü.), also gilt

∫
φ = 0. Damit folgt

∫
f = 0 nach der

Definition des Integrals.

Umgekehrt sei
∫

f = 0, dann setze

Ek := {x ∈ M | f(x) ≥ 1
k}.

Es gilt für jedes k ∈ N
µ(Ek) = k

∫

Ek

1
k ≤ k

∫
f = 0,

also impliziert
M = {x ∈ M | f(x) = 0} ∪

⋃

k∈N
Ek

die Behauptung, weil die abzählbare Vereinigung von Nullmengen selbst eine Nullmenge ist
(Übung!).
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Nach Proposition 2.4.2 ist die Menge N der meßbaren Funktionen f : M → K, die µ-fast überall
gleich Null sind, ein Untervektorraum von L1(M,K), auf dem das Integral verschwindet. Daher definiert∫

: L1(M,K) → K auch ein lineares Funktional auf dem Quotientenraum L1(M,K) := L1(M,K)/N . Es
wird auch mit

∫
bezeichnet. Da es im Kontext der Integrationstheorie meist unerheblich ist, wenn man

eine Funktion auf einer Nullmenge abändert, wird oft der Unterschied zwischen L1 und L1 nicht extra
erwähnt. Man betrachtet dann ein Element von L1(M,K) als eine Funktion, die man aber nach Belieben
auf Nullmengen abändern darf.

Wenn wir betonen wollen, über welches Maß wir integrieren, schreiben wir L1(M, µ,K) und L1(M,µ,K).
Wenn aus dem Kontext klar ist, über welchen Raum wir integrieren oder in welchem Körper die Werte
der Funktionen liegen sollen, schreiben wir auch L1(C, µ) oder L1(µ) etc.

Lemma 2.4.3 (Fatou): Sei (fn)n∈N eine Folge in L+(M). Dann gilt
∫

lim inf
n→∞

fn ≤ lim inf
n→∞

∫
fn.

Beweis:

Idee: Betrachte die monoton steigende Folge (infn≥k fn)k∈N mit punktweisem Grenzwert lim infk→∞ fk

und benütze den Satz 2.2.4 von der Monotonen Konvergenz.

Für alle k ∈ N gilt
∀j ≥ k : inf

n≥k
fn ≤ fj ,

also
∀j ≥ k :

∫
inf
n≥k

fn ≤
∫

fj .

Dies wiederum zeigt ∫
inf
n≥k

fn ≤ inf
j≥k

∫
fj .

Weil die Folge (infn≥k fn)k∈N monoton steigend mit punktweisem Grenzwert lim infk→∞ fk

ist, zeigt Satz 2.2.4 jetzt
∫

lim inf
k→∞

fk = lim
k→∞

∫
inf
n≥k

fn ≤ lim
k→∞

inf
j≥k

∫
fj = lim inf

k→∞

∫
fk.

Satz 2.4.4 (Dominierte Konvergenz): Sei (M, M, µ) ein Maßraum und (fn)n∈N eine Folge meß-
barer Funktionen M → C, die (f.ü.) gegen eine meßbare Funktion f : M → C konvergiert. Wenn es eine
Funktion g ∈ L1(M,R) mit

∀n ∈ N : |fn| ≤ g (f.ü.)

gibt, dann ist f ∈ L1(M,C), und es gilt
∫

f = lim
n→∞

∫
fn.

Beweis:

Idee: Aufspaltung in Real- und Imaginärteil und anschließend in Positiv- und Negativteil reduziert

die Behauptung auf nichtnegative Funktionen. Durch Abänderung der Funktionen auf einer Nullmen-

ge kann man außerdem annehmen, daß die Konvergenz punktweise ist. Anwendung des Lemmas 2.4.3

von Fatou auf (fn)n∈N und auf (g − fn)n∈N liefert dann die Behauptung.
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Nach Satz 2.2.6 und der Voraussetzung gilt fn ∈ L1(M,C) für alle n gilt. Wegen | Im fn|, |Re fn| ≤
|fn| gelten die Voraussetzungen automatisch auch für Real- und Imaginärteile der Funktionen.
Man kann daher annehmen, daß alle involvierten Funktionen reellwertig sind. Jetzt zeigt man
mit demselben Argument, daß wir o.B.d.A. annehmen können fn, f ∈ L+(M).

Sei jetzt A ∈ M eine Nullmenge mit

∀x ∈ M \A : lim
n→∞

fn(x) = f(x)

und
∀n ∈ N, x ∈ M \A : |fn(x)| ≤ g(x).

Indem wir fn durch min
(
fn, g(1−χA)

)
und f durch min

(
f, g(1−χA)

)
ersetzen, können wir

jetzt annehmen, daß A = ∅. Jetzt sagt das Lemma 2.4.3 von Fatou, daß
∫

f ≤ lim inf
n→∞

∫
fn ≤

∫
g.

Andererseits zeigt dasselbe Lemma
∫

g −
∫

f =
∫

(g − f) ≤ lim inf
n→∞

∫
(g − fn) =

∫
g − lim sup

n→∞

∫
fn.

Zusammen sehen wir

lim sup
n→∞

∫
fn ≤

∫
f ≤ lim inf

n→∞

∫
fn ≤ lim sup

n→∞

∫
fn,

was die Behauptung beweist.

Ein Maß µ heißt vollständig, wenn jede Teilmenge einer Nullmenge meßbar ist.

Beachte, daß der punktweise Grenzwert einer Folge von meßbaren Funktionen meßbar ist (vgl. Pro-
position 1.2.7). Wenn also die Folge (fn)n∈N überall gegen f konvergiert, so ist im Satz 2.4.4 von der
dominierten Konvergenz die Annahme, daß f meßbar ist, überflüssig. Sei jetzt A ⊆ M eine µ-Nullmenge
mit

∀x ∈ M \A : lim
n→∞

fn(x) = f(x).

Wir definieren f̃ : M → C durch

f̃(x) =
{

f(x) für x 6∈ A,
0 für x ∈ A.

Dann gilt f̃ = limn→∞ fn · (1− χA), also ist f̃ meßbar. Für E ∈ BC gilt

f−1(E) ∩ (M \A) = f̃−1(E) ∩ (M \A),

d.h.
f−1(E) = (f̃−1(E) ∩ (M \A)) ∪ (f−1(E) ∩A).

Wenn µ vollständig ist, dann ist f automatisch meßbar.

Satz 2.4.5 (Fubini - 2. Version): Seien (M, M, µ) und (N, N, ν) zwei σ-endliche Maßräume und
f : M ×N → C eine meßbare Abbildung. Wenn

∫

M×N

|f(x, y)|d(µ⊗ ν)(x, y) < ∞,

dann gilt
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(i) Die Funktionen
fx : N → C, y 7→ f(x, y)

sind für fast alle x ∈ M integrierbar.

(ii) Die Funktionen
fy : M → C, x 7→ f(x, y)

sind für fast alle y ∈ N integrierbar.

(iii) Es gilt ∫

M×N

f(x, y)d(µ⊗ ν)(x, y) =
∫

M

(∫

N

f(x, y)dν(y)
)

dµ(x)

=
∫

N

(∫

M

f(x, y)dµ(x)
)

dν(x).

Beweis:

Idee: Man zeigt, daß man sich auf nicht negative Funktionen beschränken kann, und beachtet,

daß ein Integral nur endlich sein kann, wenn der Integrand fast überall endlich ist. Dann folgt die

Behauptung aus dem Satz 2.3.5 von Fubini.

Indem wir zunächst nach Real- und Imaginärteil und dann nach positivem und negativem
Teil aufspalten, können wir o.B.d.A. annehmen, daß f ∈ L+(M). Jetzt benützen wir die Be-
zeichnungen aus dem Beweis von Satz 2.3.5. Dort wird gezeigt, daß für g(x) =

∫
N

f(x, y)dν(y)
gilt ∫

M

g(x)dµ(x) < ∞.

Dann kann es aber keine Menge positiven Maßes geben, auf der g : M → [0,∞] den Wert ∞
annimmt. Dies beweist (i). Die Behauptung (ii) folgt ganz analog. Der dritte Teil wurde schon
in Satz 2.3.5 bewiesen.

Satz 2.4.6 (Parameterabhängige Integrale): Seien (M, M, µ) ein Maßraum und f : M × [a, b] →
C eine Funktion, für die f( ·, t) : M → C für jedes t ∈ [a, b] integrierbar ist. Setze F (t) :=

∫
M

f(x, t) dµ(x).

(i) Wenn es eine integrierbare, nichtnegative Funktion g auf M mit |f(x, t)| ≤ g(x) für alle x ∈ M
und t ∈ [a, b] gibt und limt→t0 f(x, t) = f(x, t0) für alle x ∈ M ist, dann gilt auch

lim
t→t0

F (t) = F (t0).

(ii) Wenn die partielle Ableitung ∂f
∂t existiert, und es außerdem eine integrierbare, nichtnegative Funk-

tion g auf M mit |∂f
∂t (x, t)| ≤ g(x) für alle x ∈ M und t ∈ [a, b] gibt, so ist F differenzierbar in

]a, b[, und es gilt

F ′(t) =
∫

M

∂f

∂t
(x, t) dµ(x).

Beweis:

Idee: Wende den Satz 2.4.4 über die dominierte Konvergenz auf die Folgen fn(x) = f(x, tn) und
f(x,tn)−f(x,t0)

tn−t0
mit tn → t0 an (für letzteres braucht man den Mittelwertsatz).
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(i) Setze fn(x) = f(x, tn), wobei tn → t0 für n →∞. Mit dem Satz 2.4.4 über die dominierte
Konvergenz rechnen wir

F (t0) =
∫

M

f(x, t0) dµ(x)

=
∫

M

lim
n→∞

fn(x) dµ(x)

= lim
n→∞

∫

M

fn(x) dµ(x)

= lim
n→∞

∫

M

f(x, tn) dµ(x)

= lim
n→∞

F (tn).

(ii) Mit hn(x) := f(x,tn)−f(x,t0)
tn−t0

gilt limn→∞ hn(x) = ∂f
∂t (x, t0), also ist ∂f

∂t ( ·, t0) meßbar (vgl.
Proposition 1.2.7). Mit dem Mittelwertsatz sieht man, daß für jedes x ∈ M gilt

|hn(x)| ≤ sup
t∈[a,b]

∣∣∣∂f
∂t (x, t)

∣∣∣ ≤ g(x).

Jetzt rechnen wir wieder mit dem Satz 2.4.4 über die dominierte Konvergenz:
∫

M

∂f

∂t
(x, t0) dµ(x) = lim

n→∞

∫

M

hn(x) dµ(x)

= lim
n→∞

1
tn − t0

∫

M

(f(x, tn)− f(x, t0)) dµ(x)

= lim
n→∞

F (tn)− F (t0)
tn − t0

.

Übung 2.4.1 : Sei (M,M, µ) ein Maßraum. Für f, g : M → [−∞,∞] gelte f = g µ-fast überall, d.h., die Menge
{x ∈ M |f(x) 6= g(x)} ist meßbar und hat das Maß Null.

(i) Belege durch ein Beispiel, daß aus der Meßbarkeit von f im allgemeinen nicht die Meßbarkeit von g folgt.

(ii) Sei jetzt (M,M, µ) vollständig. Zeige, daß mit f auch g meßbar ist.

Übung 2.4.2 : Definiere f : [0, 1]× [0, 1] → R durch

f(x, y) :=

{
x2−y2

(x2+y2)2
falls (x, y) 6= (0, 0),

0 sonst.

(i) Zeige:

∫ 1

0

(∫ 1

0

f(x, y)dy

)
dx =

π

4
, aber

∫ 1

0

(∫ 1

0

f(x, y)dx

)
dy = −π

4
.

(ii) Folgere aus (i), daß f nicht integrierbar ist.
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Übung 2.4.3 : Definiere f : [−1, 1]× [−1, 1] → R durch

f(x, y) :=

{ x
1−y2 falls |y| 6= 1,

0 sonst.

Zeige, daß ∫ 1

−1

(∫ 1

−1

f(x, y)dx

)
dy

existiert, aber ∫ 1

−1

(∫ 1

−1

f(x, y)dy

)
dx

nicht existiert.

Übung 2.4.4 : Definiere f : [−1, 1]× [−1, 1] → R durch

f(x, y) :=

{ xy
(1−|x|)2+(1−|y|)2 falls |xy| 6= 1,

0 sonst.

Zeige:

(i) ∫ 1

−1

(∫ 1

−1

f(x, y)dy

)
dx =

∫ 1

−1

(∫ 1

−1

f(x, y)dx

)
dy = 0.

(ii) f ist nicht über [−1, 1]× [−1, 1] integrierbar.

Übung 2.4.5 : Seien (M,M, µ) ein Maßraum und A, B ⊆ M meßbar. Zeige, daß aus µ(A) = 0 folgt, daß A×B
eine Nullmenge in (M ×M,M⊗M, µ⊗ µ) ist.

Übung 2.4.6 : Sei f : [0, 1]× [0, 1] → R integrierbar. Zeige:

∫ 1

0

(∫ x

0

f(x, y)dy

)
dx =

∫ 1

0

(∫ 1

y

f(x, y)dx

)
dy.

Übung 2.4.7 : Die Funktion f : R2 → R sei definiert durch

f(x1, x2) :=

{ √
1− x2

1 − x2
2 falls x2

1 + x2
2 ≤ 1,

0 sonst.

Berechne das Integral ∫

R2
f(x1, x2) d(x1, x2).

Übung 2.4.8 : Berechne das Volumen des Kugeloktanten

K := {(x1, x2, x3) : x1, x2, x3 ≥ 0, x2
1 + x2

2 + x2
3 ≤ 1}.

Übung 2.4.9 : Sei A ⊆ R2 die rechte Hälfte des Einheiskreises und

f : R2 → R, (x1, x2) 7→ x1.

Berechne
∫

A
f(x1, xs)d(x1, x2).

Übung 2.4.10 : Für eine Menge A ⊆ Rn mit λn(A) > 0 heißt der Punkt

S :=
1

λn(A)

∫

A

x dx ∈ Rn

der Schwerpunkt von A. Berechne den Schwerpunkt des Kugeloktanten aus Aufgabe 2.4.8. (Hierbei ist die
Integration komponentenweise zu verstehen.)



2.4. NULLMENGEN UND KONVERGENZ 33

Übung 2.4.11 : Berechne die folgenden Grenzwerte:

(i)

lim
n→∞

∫ n

0

(
1− x

n

)n

ex/2dx,

(ii)

lim
n→∞

∫ n

0

(
1 +

x

n

)n

e−2xdx.
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Kapitel 3

Fortsetzung von Maßen

σ–Algebren stellen den natürlichen Definitionsbereich von Wahrscheinlichkeitsmaßen dar. Für die beiden
Maß–Fortsetzungssätze, die wir hier behandeln, erweist es sich jedoch als zweckmäßig, als Vorstufen von
σ–Algebren auch einfachere Mengensysteme zu untersuchen. Man erhält dann relativ einfache Existenz-
und Fortsetzungssätze für Maße. Insbesondere sieht man wie bestimmten Funktionen (den sogenannten
Verteilungsfunktionen) auf R Wahrscheinlichkeitsmaße zugeordnet werden können. Damit läßt sich dann
eine Vielzahl von in der Stochastik relevanten Wahrscheinlichkeitsverteilungen beschreiben.

3.1 Mengensysteme

Ω sei eine nichtleere Menge und und P(Ω) = {N | N ⊆ Ω} die Potenzmenge von Ω, d.h. die Menge aller
Teilmengen von Ω. Eine Teilmenge M ⊆ P(Ω) heißt vereinigungsstabil (geschrieben ∪-stabil), wenn
mit A,B ∈ M auch A ∪B ∈ M gilt und durchschnittsstabil oder einfach schnittstabil (geschrieben
∩-stabil), wenn mit A,B ∈ M auch A ∩B ∈ M gilt.

Ein System S von Teilmengen von Ω heißt Semiring über Ω, wenn es folgende Eigenschaften besitzt:

(a) ∅ ∈ S,

(b) S ist ∩–stabil,

(c) Zu A,B ∈ S existieren n ∈ N und paarweise disjunkte Mengen C1, . . . , Cn ∈ S mit

A\B =
n⋃
.

i=1

Ci.

Bemerkung 3.1.1 : Sei Ω = Rn, n ∈ N. Bezeichnen a = (a1, . . . , an) und b = (b1, . . . , bn) zwei Punkte
in Rn mit a ≤ b, d.h. ai ≤ bi für i = 1, . . . , n, dann versteht man unter einem linksseitig offenen und
rechtsseitig abgeschlossenen Intervall die folgende Punktmenge:

]a, b](n) := {x = (x1, . . . , xn) ∈ Rn | ai < xi ≤ bi; i = 1, . . . , n}.

Beachte, daß ]a, b](n) leer ist, falls es ein j mit bj ≤ aj gibt.
Behauptung: Das Mengensystem

In := {]a, b](n) | a, b ∈ Rn, a ≤ b}

ist ein Semiring über Ω = Rn.

(a) ∅ =]a, a](n) ∈ In.

35
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(b) Sei A =]a, b](n), B =]c, d](n) und C = A ∩B.

A

B

C

Mit ei := max{ai, ci} und fi := min{ai, ci} gilt

]a, b](n) ∩ ]c, d](n) =]e, f ](n).

(c) Sei A =]a, b](n) und B =]c, d](n).

2C1C

C3

A

B
4

C C5C

C

6

8

1 3C2C

C

7

C

A B

Mit ei := max{ai, ci} und fi := min{ai, ci} gilt ]a, b](n)\]c, d](n) =]a, b](n)\]e, f ](n), d.h., wir können
annehmen, daß

ai ≤ ci ≤ di ≤ bi ∀i = 1, . . . , n

gilt. Damit können wir dann rechnen

]a, b](n)\]c, d](n) =







a1

...
an


 ,




b1

...
bn







(n)

∖ 





c1

...
cn


 ,




d1

...
dn







(n)

=







a1

a2

...
an


 ,




c1

b2

...
bn







(n)

∪







d1

a2

...
an


 ,




b1

b2

...
bn







(n)

∪







c1

a2

a3

...
an




,




d1

c2

b3

...
bn







(n)

∪







c1

d2

a3

...
an




,




d1

b2

b3

...
bn







(n)

...

∪







c1

...
cn−1

an


 ,




d1

...
dn−1

cn







(n)

∪







c1

...
cn−1

dn


 ,




d1

...
dn−1

bn







(n)

.

Dabei sind die Vereinigungen disjunkt und manche der 2n Stücke evtl. leer (wenn nämlich nicht
ai < ci < di < bi gilt).

Ein System R von Teilmengen einer nichtleeren Menge Ω heißt ein Ring über Ω, wenn es die folgenden
Eigenschaften besitzt:
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(a) ∅ ∈ R,

(b) R ist ∪–stabil,

(c) Für A,B ∈ R gilt A\B ∈ R.

Ein System A von Teilmengen einer nichtleeren Menge Ω heißt eine Algebra über Ω, wenn gilt:

(a) Ω ∈ A,

(b) A ist ∪–stabil,

(c) Für A ∈ A gilt {A := Ω\A ∈ A.

Ein System F von Teilmengen einer nichtleeren Menge Ω heißt σ–Algebra über Ω, wenn es die
folgenden Eigenschaften besitzt:

(a) Ω ∈ F,

(b) Für A ∈ F gilt {A := Ω\A ∈ F.

(c) Für jede Folge (An)n∈N von Elementen aus F ist
⋃

n∈N
An ∈ F.

Beispiel 3.1.2 : Sei Ω 6= ∅.
(i) R = {∅} ist der kleinste Ring über Ω.

(ii) F = {∅, Ω} ist die kleinste σ–Algebra über Ω.

(iii) F = P(Ω) ist die größte σ–Algebra über Ω.

Proposition 3.1.3 : Sei Ω nicht leer. Dann gilt

(i) Ist R ein Ring über Ω, dann ist R auch ∩–stabil.

(ii) {σ–Algebra} ⊆ {Algebra} ⊆ {Ring} ⊆ {Semiring}
(iii) Ein Ring R über Ω ist genau dann eine Algebra über Ω, wenn Ω ∈ R.

(iv) Sei F eine σ–Algebra über Ω. Für jede Folge (An)n∈N von Elementen aus F ist
⋂

n∈NAn ∈ F.

Beweis:

Idee: Rechnen mit Schnitten, Vereinigungen und Komplementen von Mengen. Insbesondere braucht

man die de Morganschen Gesetze.

(i) Zunächst stellt man fest, daß aus A,B ∈ R nach Definition auch A\B ∈ R folgt. Dann
folgt aber auch A\(A\B) ∈ R. Es gilt aber

A\(A\B) = A ∩ {(A\B)
= A ∩ {(A ∩ {B)
= A ∩ ({A ∪B)
= (A ∩ {A) ∪ (A ∩B)
= A ∩B
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(ii) Die Inklusion {σ–Algebra} ⊆ {Algebra} folgt unmittelbar aus den Definitionen. Jede
Algebra A ist ein Ring, weil sie mit Ω auch ∅ = Ω\Ω enthält und aus A,B ∈ A folgt

A\B = A ∩ {B = {B ∪ {A ∈ A.

Nach (i) ist schließlich auch jeder Ring ein Semiring.

(iii) Wegen (ii) ist nur noch zu zeigen, daß ein Ring R über Ω mit Ω ∈ R eine Algebra ist.
Das ist wegen {A = Ω\A aber klar.

(iv) Aus An ∈ F folgt {An ∈ F und
⋃

n∈N
{An ∈ F. Aber dann gilt auch

{
( ⋃

n∈N
{An

)
=

⋂

n∈N
{({An) =

⋂

n∈N
An ∈ F.

Übung 3.1.1 : Man zeige durch Angabe von Beispielen, daß die Inklusionskette {σ–Algebra} ⊆ {Algebra} ⊆
{Ring} ⊆ {Semiring} für Mengensysteme in einer nichtleeren Menge Ω i.a. aus strikten Inklusionen besteht.

Ein System D von Teilmengen von Ω heißt Dynkin–System über Ω, wenn es die folgenden Eigen-
schaften hat:

(a) Ω ∈ D,

(b) Für A ∈ D gilt {A = Ω\A ∈ D,

(c) Für jede Folge (An)n∈N paarweise disjunkter Mengen aus D ist auch
⋃
.

n∈N
An ∈ D.

Für A ⊆ B in D gilt A ∪ {B ∈ D und daher {(A ∪ {B) = B \ A ∈ D. Also kann man Bedingung (b)
durch

(b′) Für A,B ∈ D mit A ⊆ B gilt B \A ∈ D.

ersetzen.

Satz 3.1.4 : D sei ein Dynkin–System über Ω. Dann sind folgende Aussagen äquivalent:

(1) D ist eine σ–Algebra.

(2) D ist ∩–stabil.

Beweis:

Idee:
”
(1)⇒(2)“ ist klar mit Proposition 3.1.3. Für die Umkehrung muß man abzählbare Ver-

einigungen in disjunkte abzählbare Vereinigungen umwandeln. Das geht mit dem Ansatz Bn :=
An\(

⋃
m<n Am).
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Da in Proposition 3.1.3 bereits gezeigt wurde, daß σ-Algebren ∩-stabil sind, ist nur noch
zu zeigen, daß für jede Folge A1, A2, . . . ∈ D (An nicht notwendig paarweise disjunkt) auch⋃

n∈NAn ∈ D ist. Betrachte dazu die disjunkten Mengen

Bn := An ∩
n−1⋂
m=1

{Am = An ∩ {
n−1⋃
m=1

Am = An\(
n−1⋃
m=1

Am).

Da D ist nach Voraussetzung ∩-stabil und abgeschlossen unter Komplementbildung ist, sind
die Bn in D. Damit folgt

⋃.
n∈NBn ∈ D und es reicht zu zeigen, daß

⋃.
n∈NBn =

⋃
n∈NAn.

Die Inklusion ”⊆“ ist offensichtlich. Für die Umkehrung wähle x0 ∈
⋃

n∈NAn. Dann gibt es
ein kleinstes n0 ∈ N mit x0 ∈ An0 und es folgt x0 ∈ An0\(

⋃
n<n0

An) = Bn0 .

Proposition 3.1.5 : Sei I eine beliebige Indexmenge und Xi für jedes i ∈ I ein Ring, eine Algebra, ein
Dynkin–System oder eine σ–Algebra über Ω. Dann ist

X :=
⋂

i∈I

Xi = {A ⊆ Ω | (∀i ∈ I) A ∈ Xi}

ein Mengensystem desselben Typs wie die Xi.

Beweis:

Idee: Prüfe direkt die Definitionen nach.

Wir beweisen den Satz exemplarisch für Ringe:

(a) Wegen ∅ ∈ Xi für alle i ∈ I gilt ∅ ∈
⋂

i∈I

Xi.

(b) Für A,B ∈
⋂

i∈I

Xi gilt A ∪B ∈ Xi für alle i ∈ I, d.h., A ∪B ∈ ⋂
i∈I

Xi.

(c) Für A,B ∈
⋂

i∈I

Xi gilt A\B ∈ Xi für alle i ∈ I, d.h., A\B ∈ ⋂
i∈I

Xi.

Bemerkung 3.1.6 : Der Durchschnitt von Semiringen ist im allgemeinen kein Semiring mehr, wie das
folgende Gegenbeispiel zeigt:

S1 = {∅, {1}, {2}, {3}, {1, 2, 3}},
S2 = {∅, {1}, {2, 3}, {1, 2, 3}}

sind zwei Semiringe über Ω = {1, 2, 3}. Der Schnitt

S = S1 ∩ S2 = {∅, {1}, {1, 2, 3}}
ist zwar gegenüber der Durchschnittsbildung abgeschlossen, doch es gilt:

S1 : {1, 2, 3}\{1} = {2, 3} = {2} ∪ {3} mit {2}, {3} ∈ S1,

S2 : {1, 2, 3}\{1} = {2, 3} ∈ S2,

S : {1, 2, 3}\{1} = {2, 3} /∈ S.



40 KAPITEL 3. FORTSETZUNG VON MASSEN

Satz 3.1.7 (Erzeugendensysteme): Sei Ω 6= ∅ und B ein beliebiges System von Teilmengen von Ω.
Dann gibt es unter den Ringen, Algebren, Dynkin–Systemen bzw. σ–Algebren, die B enthalten, jeweils
ein kleinstes solches System (symbolisch M(B) = R(B),A(B), D(B) bzw. σ(B)) nämlich

M(B) =
⋂
{M′ | M′ ⊇ B, M′ ist Ring, Algebra, Dynkin–System bzw. σ–Algebra}.

M(B) heißt das von B erzeugte System und B der Erzeuger des Systems.

Beweis:

Idee: Kombiniere Proposition 3.1.5 mit dem Umstand, daß die Potenzmenge eine σ-Algebra (eine

Algebra, ein Ring etc.) ist.

Die Existenz eines solchen Systems folgt aus der Tatsache, daß die Potenzmenge P(Ω) die
Menge B umfaßt und alle Eigenschaften eines Ringes, einer Algebra, eines Dynkin–Systems
bzw. einer σ–Algebra besitzt. Die Behauptung ergibt sich nun unmittelbar aus Proposition
3.1.5, wonach der Durchschnitt von Ringen, Algebren, Dynkin–Systemen bzw σ–Algebren
wieder ein Ring, eine Algebra, ein Dynkin–System bzw. eine σ–Algebra ist.

Satz 3.1.8 : Sei Ω eine nichtleere Menge, und E ⊆ P(Ω) sei schnittstabil, so stimmen das von E erzeugte
Dynkin–System D(E) und die von E erzeugte σ–Algebra σ(E) überein.

Beweis:

Idee: Wegen Satz 3.1.4 genügt es zu zeigen, daß D(E) schnittstabil ist. Dafür weißt man nach, daß

für jedes A ∈ D(E) das System DA := {C ⊆ Ω | A ∩ C ∈ D(E)} ein Dynkin–System ist, das D(E)

enthält. Daraus folgt dann die Behauptung.

Da jede σ–Algebra auch ein Dynkin–System ist, gilt D(E) ⊆ σ(E). Ist umgekehrt D(E) als
σ–Algebra nachgewiesen, folgt auch σ(E) ⊆ D(E) und somit D(E) = σ(E). Nach Satz 3.1.4
muß deshalb nur noch überprüft werden, ob D(E) mit je zwei Mengen A und B auch A ∩ B
enthält. Dafür zeigen wir, daß für jedes A ∈ D(E) das System

DA := {C ⊆ Ω | A ∩ C ∈ D(E)}

ein Dynkin–System ist. Wegen A ∩ Ω = A ∈ D(E) ist Ω ∈ DA. Seien weiter B,C ∈ DA mit
B ⊆ C. Dann ist (A∩C)\ (A∩B) ∈ D(E), weil A∩B ⊆ A∩C und D(E) Dynkin–System ist.
Es gilt aber (A∩C) \ (A∩B) = A∩ (C \B), so daß C \B ∈ DA. Sei nun (Dn)n∈N eine Folge
paarweise disjunkter Mengen aus DA. Da D(E) Dynkin–System ist, folgt

⋃
n∈N

(A∩Dn) ∈ D(E)

und wegen
⋃

n∈N
(A∩Dn) = A∩ ⋃

n∈N
Dn ist deshalb

⋃
n∈N

Dn ∈ DA. Damit ist nachgewiesen, daß

DA ein Dynkin–System ist. Für jedes E ∈ E gilt E ⊆ DE (weil E schnittstabil ist) und deshalb
D(E) ⊆ DE . Für jedes D ∈ D(E) und jedes E ∈ E ist also E ∩D ∈ D(E) bzw. E ⊆ DD und
somit D(E) ⊆ DD, mit anderen Worten D(E) ist ∩–stabil.

Eine σ–Algebra F heißt separabel, wenn es ein abzählbares Teilmengensystem K ⊂ P(Ω) mit σ(K) =
F gibt.
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Satz 3.1.9 (Darstellungssatz für Ringe): Ist S ein Semiring über Ω, so ist der von S erzeugte
Ring das Mengensystem K aller Mengen E ⊆ Ω, die eine endliche Zerlegung der Form

E =
n⋃
.

i=1

Ai , Ai ∈ S für i = 1, . . . , n und Ai ∩Aj = ∅ für i 6= j,

gestatten.

Beweis:

Idee: Mit Proposition 3.1.5 reduziert man die Behauptung auf die Implikation E, D ∈ K ⇒
E\D ∈ K, die durch eine Mengenumrechnung unter Ausnutzung der Zerlegungen von E und D

bewiesen wird.

Wir zeigen zunächst, daß K ein Ring ist: Wegen ∅ ∈ S folgt auch sofort ∅ ∈ K. Seien jetzt
E, D ∈ K. Dann gibt es Zerlegungen der Form

E =
m⋃
.

i=1

Ai, Ai ∈ S und D =
n⋃
.

j=1

Bj , Bj ∈ S.

Wegen E ∪ D = (E\D) ∪ D und (E\D) ∩ D = ∅ genügt es E\D ∈ K zu beweisen. Dazu
rechnen wir

E\D =

(
m⋃
.

i=1

Ai

)
\




n⋃
.

j=1

Bj




=

(
m⋃
.

i=1

Ai

)
∩ {

n⋃
.

j=1

Bj

=

(
m⋃
.

i=1

Ai

)
∩




n⋂

j=1

{Bj




=
m⋃
.

i=1

n⋂

j=1

(Ai ∩ {Bj)

=
m⋃
.

i=1

n⋂

j=1

(Ai\Bj)

=
m⋃
.

i=1

n⋂

j=1

l⋃
.

k=1

Cijk

=
m⋃
.

i=1

l⋃
.

k=1

n⋂

j=1

Cijk

︸ ︷︷ ︸
∈S

∈ K,

wobei Ai\Bj =
⋃. l

k=1 Cijk mit Cijk ∈ S eine passende Zerlegung ist. Jetzt wissen wir, daß
K ein Ring ist, der S enthält. Wenn R′ ein weiterer Ring ist, der S enthält, dann enthält
R′ auch alle Mengen der Form E =

⋃m
i=1 Ai mit Ai ∈ S, d.h. ganz K. Also ist K der von S

erzeugte Ring (vgl. Proposition 3.1.5).

Beispiel 3.1.10 :
Wir wollen jetzt noch einmal zum Semiring In = {]a, b](n) | a, b ∈ Rn} aller endlichen, links offenen

und rechts abgeschlossenen Intervalle des Rn zurückkehren und uns einen Überblick über die Elemente der
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von In erzeugten σ–Algebra σ(In) verschaffen, die auch σ–Algebra der Borelschen Mengen genannt
und mit Bn bezeichnet wird. Da es sich bei den Ergebnissen von Zufallsexperimenten in der Regel um
reelle Zahlen oder reellwertige Vektoren handelt, spielt die σ–Algebra der Borelschen Mengen in der
Wahrscheinlichkeitstheorie und deren Anwendungen naturgemäß eine besondere Rolle.

Da die Vereinigung bzw. der Durchschnitt von abzählbar vielen Mengen aus Bn wieder ein Element
aus Bn ist, gehören neben den Intervallen ]a, b](n) auch die folgenden Mengen zu Bn:

[a, b](n) := {(x1, . . . , xn) ∈ Rn | ai ≤ xi ≤ bi; i = 1, . . . , n} =
⋂

j∈N

]
a− 1

j
, b

]
(n)

∈ Bn,

]a, b[(n) := {(x1, . . . , xn) ∈ Rn | ai < xi < bi; i = 1, . . . , n} =
⋃

j∈N

]
a, b− 1

j

]
(n)

∈ Bn,

]−∞, b](n) := {x = (x1, . . . , xn) ∈ Rn | −∞ < xi ≤ bi; i = 1, . . . , n} =
⋃

m∈N
]−m, b](n) ∈ Bn,

{b} =]a, b](n)\(a, b)(n) ∈ Bn.

Proposition 3.1.11 : F sei eine σ–Algebra über Ω und Ω′ eine nichtleere Menge mit Ω′ ⊆ Ω. Dann ist
F′ := {Ω′ ∩A | A ∈ F} eine σ–Algebra über Ω′, die sogenannte Spur–σ–Algebra.

Beweis:

Idee: Wähle für jedes A′ ∈ F′ ein A ∈ F mit A′ = A∩Ω′ und nütze aus, daß F eine σ–Algebra ist.

(a) Wegen Ω′ ⊆ Ω ist Ω′ ∩ Ω = Ω′. Mit Ω ∈ F ist deshalb auch Ω′ ∈ F′.

(b) Sei A′ ∈ F′. Aufgrund der Definition von F′ gibt es ein A ∈ F mit A′ = Ω′ ∩ A. Da F
eine σ–Algebra ist, ist {A ∈ F. Dann gilt aber

Ω′\A′ = Ω′\(Ω′ ∩A) = Ω′\A = Ω′ ∩ {A ∈ F.

(c) Sei (A′n)n∈N eine Folge von Elementen aus F′. Dann gibt es aufgrund der Definition von
F′ eine Folge (An)n∈N von Elementen aus F, so daß A′n = Ω′ ∩ An für alle n ∈ N. Da F
σ–Algebra ist, ist

⋃
n∈NAn ∈ F. Aufgrund der Definition von F′ folgt weiter:

Ω′ ∩
⋃

n∈N
An ∈ F′.

Es gilt aber

Ω′ ∩
⋃

n∈N
An =

⋃

n∈N
(Ω′ ∩An) =

⋃

n∈N
A′n, also

⋃

n∈N
A′n ∈ F

Übung 3.1.2 : Zeige, daß man als Erzeugendensystem für Bn ebenso die linksseitig abgeschlossenen und rechts-
seitig offenen Intervalle des Rn hätte wählen können. Zeige weiter, daß auch die offenen bzw. die kompakten
Mengen des Rn Erzeugendensysteme der σ–Algebra der Borelschen Mengen Bn sind.

Übung 3.1.3 : Es sei {Ft | t ∈ T} ein System von σ-Algebren über einer nichtleeren Menge Ω. Welche der
folgenden Aussagen ist richtig?
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(i)
⋃

t∈T Ft ist eine σ-Algebra.

(ii)
⋂

t∈T Ft ist eine σ-Algebra.

Übung 3.1.4 : Es sei (Ωn)n∈N eine Folge von paarweise disjunkten, nichtleeren Mengen. Es sei An eine σ-
Algebra über Ωn für alle n ∈ N. Sei ferner

A :=
{ ∞⋃

n=1

An

∣∣∣ An ∈ An

}
.

(i) Zeige, daß A eine σ-Algebra über Ω :=
⋃∞

n=1 Ωn ist.

(ii) Ist A ein Dynkin-System, wenn alle An Dynkin-Systeme sind?

(iii) Kann man auf die paarweise Disjunktheit der Ωn in (i) oder (ii) verzichten?

Übung 3.1.5 : Man zeige:

(i) Das System der beschränkten Mengen des Rn ist ein Ring, aber keine Algebra.

(ii) Das System der endlichen Vereinigungen von Intervallen der Form ]a, b], ]a,∞[ und ] −∞, b] mit a, b ∈ R
ist eine Algebra, aber keine σ-Algebra.

Übung 3.1.6 : Sei Ω 6= ∅ und M ⊆ P(Ω) ein Mengensystem mit folgenden Eigenschaften:

(a) A, B ∈ M, A ∩B 6= ∅ ⇒ A ∩B ∈ M.

(b) A, B ∈ M, A ⊆ B ⇒ ∃C1, . . . , Ck paarweise disjunkt mit B\A =
⋃k

j=1 Cj .

(c) ∀A, B ∈ M ∃C ∈ M : A ⊆ C, B ⊆ C.

Zeige, daß folgende Menge R ein Ring ist:

R :=
{

A ∈ P(Ω)
∣∣∣ A =

k⋃
.

j=1

Aj , Aj ∈ M
}
∪ {∅}.

3.2 Mengenfunktionen

Wir wollen jetzt auf den Begriff des (Wahrscheinlichkeits-) Maßes zu sprechen kommen. So wie es sich
bei den bisherigen Betrachtungen als zweckmäßig erwies, neben der primär interessierenden σ–Algebra
auch Mengensysteme mit verwandten Strukturen zu untersuchen, ist es auch im folgenden nützlich, neben
Wahrscheinlichkeitsmaßen zunächst allgemeinere Mengenfunktionen zu betrachten.

Sei S ein Semiring über Ω und µ : S → R ∪ {∞} eine Funktion.

(a) µ heißt nichtnegativ, wenn µ(∅) = 0 und µ(A) ≥ 0 für alle A ∈ S.

(b) µ heißt additiv, wenn für alle A, B ∈ S mit A ∩B = ∅ und A∪.B ∈ S gilt:

µ(A ∪B) = µ(A) + µ(B).

(c) µ heißt σ–additiv, wenn für jede Folge (An)n∈N von paarweise fremden Elementen aus S (d.h.
Ai ∩Aj = ∅ für i 6= j) mit

⋃.
n∈NAn ∈ S

µ

( ⋃
.

n∈N
An

)
=

∑

n∈N
µ(An).

(d) µ heißt subadditiv, wenn für alle A,B ∈ S mit A ∪B ∈ S gilt:

µ(A ∪B) ≤ µ(A) + µ(B).
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(e) µ heißt σ–subadditiv, wenn für jede Folge (An)n∈N von Elementen aus S mit
⋃

n∈NAn∈S

µ

( ⋃

n∈N
An

)
≤

∑

n∈N
µ(An).

Die Einschränkung S → R ∪ {∞} (anstelle von S → R ∪ {−∞, +∞}) wird gemacht, um sinnlose
Ausdrücke wie∞−∞ zu vermeiden. Andererseits will man auch in der Lage sein, Mengen mit unendlichem
Maß zu behandeln und kommt daher nicht mit reellwertigen Funktionen aus.

(i) µ heißt Inhalt, wenn µ nichtnegativ und additiv ist.

(ii) µ heißt Prämaß, wenn µ nichtnegativ und σ–additiv ist.

(iii) µ heißt Maß, wenn µ Prämaß und S eine σ–Algebra ist.

(iv) µ heißt Wahrscheinlichkeitsmaß, wenn µ ein Maß und µ(Ω) = 1 ist.

Ein Inhalt µ heißt endlich, wenn µ(A) < ∞ ist für alle A ∈ S.

Beispiel 3.2.1 :

(i) Sei R ein Ring über Ω und ω ∈ Ω. Die Abbildung µ : R → R ∪ {∞} sei definiert durch

µ(A) =

{
1 ω ∈ A

0 ω 6∈ A

Dann ist µ ein endliches Prämaß. Ist R eine σ–Algebra, so ist µ ein Wahrscheinlichkeitsmaß (das
sogenannte Dirac–Maß).

Veranschaulichung: R = {∅, {1}, {2, 3}, {1, 2, 3}}.
R ist eine σ–Algebra über Ω = {1, 2, 3}. Wähle ω = 1. Dann ergibt sich µ(∅) = 0, µ({1}) = 1,
µ({2, 3}) = 0, µ({1, 2, 3}) = 1.

(ii) Sei F : R → R eine monoton wachsende Funktion. Die auf dem Semiring I1 der links offenen und
rechts abgeschlossenen Intervalle ]a, b] ⊆ R, a ≤ b durch

µ(]a, b]) = F (b)− F (a)

definierte Mengenfunktion ist ein endlicher Inhalt auf I1, denn es gilt:

(a) µ(∅) = µ(]a, a]) = F (a)− F (a) = 0.

(b) µ(]a, b]) = F (b)− F (a) ≥ 0 für a ≤ b auf Grund der Monotonie von F .

(c) Es seien ]a, b] und ]a′, b′] zwei Intervalle aus I1 mit b = a′. Die Eigenschaft b = a′ wird gefordert,
um ]a, b] ∪ ]a′, b′] =]a, b′] ∈ I1 und ]a, b] ∩ ]a′, b′] = ∅ sicherzustellen. Dann gilt:

µ(]a, b] ∪ ]a′, b′]) = µ(]a, b′])
= F (b′)− F (a)
= F (a′)− F (a) + F (b′)− F (a′)
= F (b)− F (a) + F (b′)− F (a′) (wegen b = a′)
= µ(]a, b]) + µ(]a′, b′]).
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Bemerkung 3.2.2 : Sei (µn)n∈N eine Folge von Wahrscheinlichkeitsmaßen, die alle auf einer σ–Algebra
F über Ω definiert sind. Sei weiter (αn)n∈N eine Folge von nichtnegativen reellen Zahlen mit

∑
n∈N αn = 1.

Weiter sei µ : F → R ∪ {∞} definiert durch

µ(A) :=
∑

n∈N
αn µn(A)︸ ︷︷ ︸

≤1︸ ︷︷ ︸
≤1

, ∀A ∈ F.

Dann ist µ nichtnegativ und erfüllt µ(Ω) = 1. Um zu zeigen, daß µ ein Wahrscheinlichkeitsmaß auf F ist,
muß man nur noch die σ–Additivität nachweisen:

µ

( ⋃
.

n∈N
An

)
=

∑

m∈N
αmµm

( ⋃
.

n∈N
An

)
(Def. von µ)

=
∑

m∈N
αm

∑

n∈N
µm(An) (σ–Additivität der µm)

=
∑

n∈N

∑

m∈N
αmµm(An) (Umordnungssatz für abs. konv. Reihen)

=
∑

n∈N
µ(An) (Def. von µ).

Proposition 3.2.3 : Es sei R ein Ring über Ω und µ : R → R ∪ {∞} ein Inhalt. Dann gilt:

(i) Für alle A,B ∈ R gilt µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B).

(ii) µ ist monoton, d.h. ∀A,B ∈ R mit A ⊆ B gilt µ(A) ≤ µ(B).

(iii) ∀A,B ∈ R mit A ⊆ B und µ(A) < ∞ gilt µ(B\A) = µ(B)− µ(A).

(iv) µ ist subadditiv.

(v) Ist µ ein Prämaß, dann ist µ σ–subadditiv.

Beweis:

Idee: Schreibe A ∪ B = A∪. (B\A), dann liefern die Definitionen die Punkte (i) bis (iv). Für (v)

braucht man wieder den Ansatz Bn := An\(
⋃

m<n Am).

(i) Für alle A,B ∈ R gilt A∪B = A∪(B\A) und A∩(B\A) = ∅ sowie (A∩B)∪(B\A) = B
und (A ∩B) ∩ (B\A) = ∅. Damit ergibt sich

µ(A ∪B) = µ(A) + µ(B\A), und µ(A ∩B) + µ(B\A) = µ(B).

Für µ(A∩B) < ∞ liefert dies µ(A∪B) = µ(A)+µ(B)−µ(A∩B), also die Behauptung.
Für µ(A ∩B) = ∞ folgt

µ(A) + µ(B) = µ(A)µ(A ∩B) + µ(B\A) = ∞ = µ(A ∪B) + µ(A ∩B).

(ii),(iii) Wegen A = B ∩A finden wir

µ(B) = µ(A) + µ(B\A) ≥ µ(A).

(iv) Aufgrund von (ii) rechnet man

µ(A ∪B) = µ(A) + µ(B\A) ≤ µ(A) + µ(B).
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(v) Sei (An)n∈N eine Folge von Elementen aus R mit
⋃

n∈NAn ∈ R. Wir setzen B1 := A1

und Bn := An\
n−1⋃
m=1

Am für n ≥ 2. Dann gilt
⋃.

n∈NBn =
⋃

n∈NAn, Bn ⊆ An und

Bn ∈ R für alle n. Außerdem sind die Bn paarweise disjunkt Aus der σ–Additivität und
der Monotonie von µ folgt dann

µ

( ⋃

n∈N
An

)
= µ

( ⋃
.

n∈N
Bn

)
=

∑

n∈N
µ(Bn) ≤

∑

n∈N
µ(An).

Proposition 3.2.4 : F sei eine σ–Algebra über Ω und µ : F → R ∪ {∞} ein Maß. Dann gilt:

(i) Für jede Folge (An)n∈N von Elementen aus F mit An ⊆ An+1 für alle n gilt:

µ

( ⋃

n∈N
An

)
= lim

n→∞
µ(An).

(ii) Ist µ endlich, dann gilt für jede Folge (An)n∈N von Elementen aus F mit An+1⊆An für alle n :

µ

( ⋂

n∈N
An

)
= lim

n→∞
µ(An).

Die unter (i) angegebene Eigenschaft von µ bezeichnet man als Stetigkeit von unten, die unter (ii)
als Stetigkeit von oben.
Beweis:

Idee: Mit Bn := An\An−1 und Proposition 3.2.3 bekommt man (i). Teil (ii) erhält man aus (i)

durch Komplementbildung.

(i) O.B.d.A. sei µ(An) < ∞ für alle n ∈ N (sonst ist die Aussage trivialerweise richtig).
Wir setzen B1 := A1 und Bn+1 = An+1\An für n ≥ 1. Dann gilt: Bi ∩Bj = ∅ für i 6= j
und

⋃
n∈NBn =

⋃
n∈NAn. Hieraus folgt:

µ

( ⋃

n∈N
An

)
= µ

( ⋃

n∈N
Bn

)

=
∑

n∈N
µ(Bn) (µ ist σ–additiv)

= µ(A1) +
∞∑

n=1

µ(An+1\An)

= µ(A1)+ lim
m→∞

m∑
n=1

(
µ(An+1)− µ(An)

)
(aufgrund von Proposition 3.2.3 (iii))

= lim
m→∞

µ(Am).
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(ii) Allgemein gilt:

µ

( ⋂

n∈N
An

)
= µ

(
{

⋃

n∈N
{An

)
(Regeln von de Morgan)

= µ

(
Ω\

⋃

n∈N
{An

)
(Definition des Komplements)

= µ(Ω)− µ

( ⋃

n∈N
{An

)
(aufgrund von Proposition 3.2.3 (iii))

= µ(Ω)− µ

( ⋃

n∈N
(Ω\An)

)
.

Es gilt aber Ω\A1 ⊆ Ω\A2 ⊆ Ω\A3 ⊆ · · · . Deshalb können wir (i) anwenden und erhalten

µ

( ⋃

n∈N
(Ω\An)

)
= lim

n→∞
µ(Ω\An) = µ(Ω)− lim

n→∞
µ(An).

Damit wird

µ

( ⋂

n∈N
An

)
= lim

n→∞
µ(An).

3.3 Maß–Fortsetzungssätze und äußere Maße

Es seien M1 und M2 zwei Mengensysteme über Ω mit M1 ⊆ M2. Gilt für die beiden Mengenfunktionen
ν : M1 → R∪{∞} und µ : M2 → R∪{∞} die Beziehung ν(A) = µ(A) für alle A ∈ M1, dann nennt man
µ eine Fortsetzung (Erweiterung) von ν auf M2 und ν eine Restriktion (Einschränkung) von µ
auf M1.

Satz 3.3.1 (1. Maß–Fortsetzungssatz): Sei S ein Semiring über Ω und ν : S → R ∪ {∞} ein
Inhalt. Dann gibt es eine eindeutig bestimmte Fortsetzung µ : R(S) → R ∪ {∞}, die auch ein Inhalt ist.
Sie erfüllt

µ(E) =
n∑

i=1

ν(Ai) mit E =
n⋃
.

i=1

Ai, Ai ∈ S, i = 1, . . . , n, und Ai ∩Aj = ∅ für i 6= j. (3.1)

Falls ν ein Prämaß ist, ist auch µ ein Prämaß.

Beweis:

Idee: Die Eindeutigkeit folgt aus dem Darstellungssatz 3.1.9 für Ringe. Für die Existenz zeigt man

durch Verfeinerung zuerst, daß µ(E) nicht von der Wahl der Zerlegung abhhängt. Dann verifiziert

man, daß µ ein Inhalt ist. Wieder mit dem Darstellungssatz 3.1.9 für Ringe und Verfeinerung folgert

man schließlich die σ–Additivität von µ aus der σ–Additivität von ν.

Nach dem Darstellungssatz 3.1.9 für Ringe kann jede Menge E ∈ R(S) in der Form E =⋃p
i=1 Ai, Ai ∈ S für i = 1, . . . , p und Ai ∩ Aj = ∅ für i 6= j dargestellt werden. Daher ist

µ, wenn es existiert, durch (3.1) eindeutig bestimmt. Die Existenz zeigen wir in mehreren
Schritten.
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1. Schritt: Die Darstellung von µ ist wohldefiniert, d.h. unabhängig von der gewählten Zer-
legung der Menge E ∈ R(S) in Mengen Ai aus S.
Zu zeigen: Sind E =

⋃. p
i=1 Ai und E =

⋃. q
j=1 Bj mit Ai, Bj ∈ S (i = 1, . . . , p; j =

1, . . . , q) und Ai ∩Ak = ∅ für i 6= k, Bj ∩B` = ∅ für j 6= ` zwei endliche Zerlegungen von
E, dann gilt:

p∑

i=1

ν(Ai)
!=

q∑

j=1

ν(Bj).

Offensichtlich sind

Ai = Ai ∩ E = Ai ∩
( q⋃

.
j=1

Bj

)
=

q⋃
.

j=1

(Ai ∩Bj) (i = 1, . . . , p)

Bj = E ∩Bj =
( p⋃

.
i=1

Ai

)
∩Bj =

p⋃
.

i=1

(Ai ∩Bj) (j = 1, . . . , q)

Zerlegungen von Ai und Bj in paarweise disjunkte Mengen Ai ∩Bj ∈ S für i = 1, . . . , p
und j = 1, . . . , q. Es gilt also

p∑

i=1

ν(Ai) =
p∑

i=1

ν

( q⋃
.

j=1

(Ai ∩Bj)
)

=
p∑

i=1

q∑

j=1

ν(Ai ∩Bj) (da ν additiv ist)

=
q∑

j=1

p∑

i=1

ν(Ai ∩Bj)

=
q∑

j=1

ν

(
p⋃
.

i=1

(Ai ∩Bj)

)

=
q∑

j=1

ν(Bj).

2. Schritt: µ ist ein Inhalt.
Hierfür ist zu zeigen, daß µ nichtnegativ und additiv ist. Daß µ nichtnegativ ist, folgt
unmittelbar aus der Definition von µ. Sei E = E′ ∪.E′′ mit E′ ∩E′′ = ∅ und E, E′, E′′ ∈
R(S). Dann existieren nach dem Darstellungssatz 3.1.9 für Ringe Zerlegungen

E′ =
p⋃
.

i=1

A′i, E′′ =
q⋃
.

j=1

A′′j , A′i, A
′′
j ∈ S, i = 1, . . . , p, j = 1, . . . , q,

so daß

E = E′ ∪ E′′ =
p⋃

i=1

A′i ∪
q⋃

j=1

A′′j .

Da A′i ∩A′′j = ∅ wegen E′ ∩ E′′ = ∅, gilt

µ(E) =
p∑

i=1

ν(A′i) +
q∑

j=1

ν(A′′j ) = µ(E′) + µ(E′′).

3. Schritt: Ist ν Prämaß, dann ist auch seine Erweiterung ein Prämaß, d.h., ist ν σ–additiv,
so ist auch µ σ–additiv.
Zu zeigen: Ist E =

⋃.
n∈NEn eine Zerlegung von E ∈ R(S) mit En ∈ R(S), En ∩Em = ∅

für n 6= m, so gilt:
µ(E) !=

∑

n∈N
µ(En).
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Aufgrund des Darstellungssatzes für Ringe (Satz 3.1.9) existieren für E und En Zerle-
gungen

E =
p⋃
.

i=1

Ai, Ai ∈ S, Ai ∩Aj = ∅ für i 6= j,

En =
pn⋃
.

j=1

Bnj , Bnj ∈ S, Bnj ∩Bnk = ∅ für j 6= k.

Hieraus folgt:

E =
∞⋃
.

n=1

pn⋃
.

j=1

Bnj ,

Ai = Ai ∩ E =
∞⋃
.

n=1

pn⋃
.

j=1

(Ai ∩Bnj),

Bnj = E ∩Bnj =
p⋃
.

i=1

(Ai ∩Bnj).

Die Mengen Ai ∩Bnj sind paarweise disjunkt. Folglich gilt:

µ(E) =
p∑

i=1

ν(Ai) (Definition der Erweiterung)

=
p∑

i=1

ν

( ∞⋃
.

n=1

pn⋃
.

j=1

(Ai ∩Bnj)
)

(aufgrund der speziellen Zerlegung der Ai)

=
p∑

i=1

∞∑
n=1

pn∑

j=1

ν(Ai ∩Bnj) (ν ist nach Voraussetzung σ–additiv)

=
∞∑

n=1

pn∑

j=1

p∑

i=1

ν(Ai ∩Bnj) (Umordnungssatz für abs. konv. Reihen)

=
∞∑

n=1

pn∑

j=1

ν

( p⋃
.

i=1

(Ai ∩Bnj)
)

(ν ist additiv)

=
∞∑

n=1

pn∑

j=1

ν(Bnj) (aufgrund der speziellen Zerlegung der Bnj)

=
∞∑

n=1

µ(En) (Definition von µ),

was zu zeigen war.

S sei ein Semiring über Ω und µ ein Prämaß (Inhalt) auf (Ω, S). Weiter sei M ⊆ S sei ein Mengen-
system in Ω. Dann heißt µ σ–endlich auf M, wenn es Mengen A1 ⊆ A2 ⊆ . . . ∈ M mit

⋃∞
j=1 Aj = Ω

und µ(Aj) < ∞, j ∈ N, gibt.

Der folgende Satz ist eine Verschärfung des schon bewiesenen Eindeutigkeitssatzes 2.1.3.

Satz 3.3.2 (Eindeutigkeitssatz für Maße): M sei ein ∩–stabiles System von Teilmengen von Ω.
Sind µ1 und µ2 zwei Maße auf σ(M), die auf M übereinstimmen und dort σ–endlich sind, so stimmen
sie auch auf σ(M) überein.
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Beweis:

Idee: Für jedes E ∈ M mit µ1(E) = µ2(E) < ∞ zeigt man, daß DE := {D ∈ σ(M) | µ1(E ∩
D) = µ2(E ∩ D)} ein Dynkin–System ist, das M enthält. Daraus folgert man mit Satz 3.1.8, daß

DE = σ(M). Für µi(E) = ∞ schreibe E als disjunkte Vereinigung von Mengen endlichen Maßes.

Zu zeigen ist, daß für jedes M ∈ σ(M) gilt µ1(M) = µ2(M). Für E ∈ M mit µ1(E) =
µ2(E) < ∞ setzen wir

DE := {D ∈ σ(M) | µ1(E ∩D) = µ2(E ∩D)}.

Behauptung: DE ist ein Dynkin-System, daß M enthält.

(a) Wegen µ1(E ∩ Ω) = µ1(E) = µ2(E) = µ2(E ∩ Ω) gilt Ω ∈ DE .

(b) Mit Proposition 3.2.3 rechnen wir

µ1(E ∩ {D) = µ1(E\D)
= µ1(E)− µ1(E ∩D)
= µ2(E)− µ2(E ∩D)
= µ2(E ∩ {D),

falls D ∈ DE . Also gilt {D ∈ DE .

(c) Sei (Dn)n∈N eine Folge paarweise disjunkter Elemente von DE . Dann gilt

µ1(E ∩
⋃
.

n∈N
Dn) = µ1

( ⋃
.

n∈N
(E ∩Dn)

)

=
∑

n∈N
µ1(E ∩Dn)

=
∑

n∈N
µ2(E ∩Dn)

= µ2(E ∩
⋃
.

n∈N
Dn),

also
⋃.

n∈NDn ∈ DE .

Da mit A,B ∈ M auch A ∩ B ∈ M, folgt zunächst M ⊆ DE . Damit ist die Behauptung
bewiesen. Es gilt also für das von M erzeugte Dynkin-System D(M) die Beziehung D(M) ⊆
DE und Satz 3.1.8 liefert D(M) = DE = σ(M). Wir erhalten

µ1(E ∩A) = µ2(E ∩A) für A ∈ σ(M) und E ∈ M mit µ1(E) = µ2(E) < ∞.

Aufgrund der σ–Endlichkeit von µ1 und µ2 existiert eine Folge (An)n∈N von Mengen aus M
mit

⋃
n∈N

An = Ω und µ1(An) = µ2(An) < ∞ für alle n ∈ N. Mit obigem Argument finden wir

µ1(An ∩A) = µ2(An ∩A) ∀ A ∈ σ(M), n ∈ N.

Mit Proposition 3.2.4(i) finden wir jetzt

µ1(A) = lim
n→∞

µ1(An ∩A) = lim
n→∞

µ2(An ∩A) = µ2(A) ∀ A ∈ σ(M).

Ein Maß µ auf (Rn,Bn), für welches µ(K) < ∞ für jedes kompakte K ⊆ Rn ist, heißt ein Borel–Maß
auf (Rn,Bn).
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Lemma 3.3.3 : Ein Maß µ auf (Rn, Bn) ist ein Borel–Maß genau dann, wenn es endlich auf In ist.

Beweis:

Idee: Das ist eine Konsequenz des Satzes von Heine–Borel.

Wenn µ auf In endlich ist, dann ist µ ein Borel-Maß, weil jede kompakte Teilmenge K ⊆ Rn

nach dem Satz von Heine–Borel beschränkt, also in einem Interval der Form ]a, b](n) mit
a, b ∈ Rn enthalten ist.

Umgekehrt, wenn µ ein Borel-Maß ist, dann ist µ endlich auf In weil [a, b](n) für jedes a, b ∈ Rn

kompakt ist und ]a, b](n) enthält.

Korollar 3.3.4 : Jedes Borel-Maß µ auf (Rn,Bn) ist eindeutig durch seine Werte auf In bestimmt.

Beweis:

Idee: Kombiniere den Eindeutigkeitssatz 3.3.2 mit Lemma 3.3.3.

In ist als Semiring (vgl. Bemerkung 3.1.1) ∩–stabil und µ ist nach Lemma 3.3.3 endlich auf
In. Es gilt Bn = σ(In) und außerdem haben wir

∞⋃
n=1

](−n, . . . ,−n), (n, . . . , n)](n) = Rn.

Damit ist µ σ-endlich auf In und die Behauptung folgt aus Satz 3.3.2.

Sei M eine Menge und P(M) ihre Potenzmenge, d.h. die Menge {N | N ⊆ M} aller Teilmengen von
M . Ein äußeres Maß auf M ist eine Funktion µ∗ : P(M) → [0,∞] mit folgenden Eigenschaften

(i) µ∗(∅) = 0,

(ii) µ∗(A) ≤ µ∗(B) falls A ⊆ B ⊆ Ω.

(iii) Für jede Folge (Aj)j∈N in P(Ω) gilt µ∗(
⋃

j∈NAj) ≤
∑

j∈N µ∗(Aj).

Die Bezeichnung äußeres Maß leitet sich von der folgenden Konstruktion her:

Lemma 3.3.5 : Sei ∅ ∈ E ⊆ P(Ω) und ρ : E → [0,∞] eine Abbildung mit ρ(∅) = 0. Für beliebiges
U ∈ P(Ω) definieren wir Ê(U) als das System aller Folgen A1, A2, . . . ∈ E mit U ⊆ ⋃∞

n=1 An und setzen

µ∗(U) := inf{
∞∑

n=1

ρ(An) | (An)n∈N ∈ Ê(U)}, (3.2)

wobei inf ∅ := ∞ definiert wird. Dann ist µ∗ ein äußeres Maß.

Beweis:

Idee: Die Punkte (i) und (ii) sind unmittelbare Konsequenzen der Definitionen. Für (iii) betrach-

tet man Folgen in Ê(Un), die µ∗(Un) bis auf ε
2n approximieren und benützt die Eigenschaften der

geometrischen Reihe.

(i) folgt mit (∅, ∅, . . .) ∈ Ê(∅). Die Monotonie (ii) ergibt sich, weil A ⊆ B impliziert Ê(A) ⊇
Ê(B). Um (iii) zu zeigen, müssen wir zwei Fälle unterscheiden. Falls

∑∞
n=1 µ∗(An) = ∞, dann
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ist (ii) automatisch richtig. Wir nehmen also an, daß
∑∞

n=1 µ∗(An) < ∞. Wähle ε > 0 beliebig,
aber fest. Für jedes n gibt es dann eine Folge (An,m)m∈N ∈ Ŝ(An) mit

∑∞
m=1 ρ(An,m) ≤

µ∗(An) + ε
2n . Die Folge (An,m)n,m=1,2,... (ordne die unendliche Matrix als Folge an) liegt in

Ê(
⋃∞

n=1 An). Hieraus entsteht mit dem Umordnungssatz

µ∗(
∞⋃

n=1

An) ≤
∑
m,n

ρ(An,m) ≤
∞∑

n=1

(
µ∗(An) +

ε

2n

)
≤

∞∑
n=1

µ∗(An) + ε < ∞.

Da ε > 0 beliebig ist, folgt die Behauptung.

Bemerkung 3.3.6 : Sei µ ein Prämaß auf einem Semiring S in Ω. Lemma 3.3.5 sagt dann gerade, daß
die durch (3.2) definierte Abbildung µ∗ : P(Ω) → R ∪ {∞} ein äußeres Maß auf Ω ist. Man nennt diese
Abbildung auch das vom Prämaß µ induzierte äußere Maß.

Im Folgenden werden wir die eindeutig bestimmte Fortsetzung des Prämaßes µ auf den Ring R :=
R(S) wieder mit µ bezeichnen (vgl. Satz 3.3.1).

Lemma 3.3.7 : Sei µ ein Prämaß auf einem Semiring S in Ω. Es gilt µ∗(B) = µ(B) für alle B ∈ R.

Beweis:

Idee: Die Ungleichung
”
≤“ folgt aus dem Darstellungssatz 3.1.9 für Ringe. Für die Ungleichung

”
≥“ baut man aus (An)n∈N ∈ Ŝ(B) eine disjunkte Folge mit B als Vereinigung.

Der Darstellungssatz 3.1.9 für Ringe besagt, daß man jedes B ∈ R in der Form B =
⋃. n

i=1 Ci

mit n ∈ N, Ci ∈ S, Ci ∩Cj = ∅, i 6= j darstellen kann. Daraus folgt (C1, C2, . . . , Cn, ∅, ∅, . . .) ∈
Ŝ(B) und dann µ∗(B) ≤ ∑n

i=1 µ(Ci) = µ(B).

Umgekehrt gibt es zwei Fälle: Wenn µ∗(B) = ∞, ist alles gezeigt. Wenn µ∗(B) < ∞, so gilt
Ŝ(B) 6= ∅. Es sei nun (An)n∈N ∈ Ŝ(B). Weil Ringe schnittstabil sind (vgl. Proposition 3.1.3),
folgt An ∩B ∈ R. Wegen

⋃∞
n=1 An ⊃ B gilt B =

⋃∞
n=1(An ∩B). Setze D1 := (A1 ∩B) und

Dn := (An∩B)\⋃n−1
j=1 (Aj∩B) ∈ R für n ≥ 2. Hieraus ergibt sich B =

⋃. ∞
n=1 Dn, Di∩Dj = ∅

für i 6= j. Da µ ein Prämaß ist und Dn ⊆ An für alle n ∈ N gilt, folgt µ(B) =
∑∞

n=1 µ(Dn) ≤∑∞
n=1 µ(An). Damit hat man schließlich µ(B) ≤ µ∗(B).

Wenn µ∗ ein äußeres Maß auf M ist, heißt eine Teilmenge G ⊆ M µ∗-meßbar, wenn für jedes U ⊆ M
gilt

µ∗(U) = µ∗(U ∩G) + µ∗(U ∩ (M\G)) für alle U ∈ P(M) . (3.3)

Bemerkung 3.3.8 : Sei µ∗ ein äußeres Maß auf M und A,E ⊆ M . Dann gilt

µ∗(E) ≤ µ∗(E ∩A) + µ∗(E ∩ (M \A))

nach Definition des äußeren Maßes. Um die µ∗-Meßbarkeit von A zeigen, muß man also nur die umgekehrte
Ungleichung beweisen, die im Falle µ∗(E) = ∞ trivial wird. Zu zeigen bleibt also

∀E ⊆ M,µ∗(E) < ∞ : µ∗(E) ≥ µ∗(E ∩A) + µ∗(E ∩ (M \A)).
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Satz 3.3.9 (Caratheodory): Sei µ∗ ein äußeres Maß auf M . Dann ist die Menge M aller µ∗-
meßbaren Mengen eine σ-Algebra und die Einschränkung von µ∗ auf M ist ein vollständiges Maß.

Beweis:

Idee: Sobald man die Definition der µ∗-Meßbarkeit zur Verfügung hat sind alle genannten Eigen-

schaften elementar zu verifizieren.

Da die Definition der µ∗-Meßbarkeit symmetrisch in A und M \ A ist, ist M abgeschlossen
unter Komplementbildung.

Seien jetzt A,B ∈ M und E ⊆ M , dann gilt

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩ (M \A))
= µ∗(E ∩A ∩B) + µ∗(E ∩A ∩ (M \B)) + µ∗(E ∩ (M \A) ∩B)

+µ∗(E ∩ (M \A) ∩ (M \B))
≥ µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (M \ (A ∪B))),

also nach Bemerkung 3.3.8 A ∪B ∈ M.

Wenn A,B ∈ M disjunkt sind, finden wir

µ∗(A ∪B) = µ∗((A ∪B) ∩A) + µ∗((A ∪B) ∩ (M \A)) = µ∗(A) + µ∗(B),

d.h. µ∗ ist endlich additiv auf M.

Sei jetzt (Aj)j∈N eine Folge disjunkter Mengen in M. Wir setzen Bn :=
⋃. n

j=1 Aj und B =⋃.
j∈NAj . Dann gilt für jedes E ⊆ M

µ∗(E ∩Bn) = µ∗(E ∩Bn ∩An) + µ∗(E ∩Bn ∩ (M \An))
= µ∗(E ∩An) + µ∗(E ∩Bn−1)

und mit Induktion sieht man µ∗(E ∩Bn) =
∑n

j=1 µ∗(E ∩Aj). Dies wiederum zeigt

µ∗(E) = µ∗(E ∩Bn) + µ∗(E ∩ (M \Bn)) ≥ µ∗(E ∩ (M \B)) +
n∑

j=1

µ∗(E ∩Aj).

Jetzt läßt man n gegen ∞ gehen und findet mit der σ-Subadditivität von µ∗

µ∗(E) ≥ µ∗(E ∩ (M \B)) +
∞∑

j=1

µ∗(E ∩Aj)

≥ µ∗




∞⋃

j=1

(E ∩Aj)


 + µ∗(E ∩ (M \B))

= µ∗(E ∩B) + µ∗(E ∩ (M \B))
≥ µ∗(E).

Damit gilt B ∈ M und man hat gezeigt, daß M eine σ-Algebra ist. Aber wenn man in dieser
Rechnung E = B setzt, folgt zudem

µ∗(B) =
∞∑

j=1

µ∗(B ∩Aj) =
∞∑

j=1

µ∗(Aj),

d.h. µ∗ ist σ-additiv auf M, also ein Maß.

Bleibt die Vollständigkeit zu zeigen. Wenn aber µ∗(A) = 0, dann gilt für jedes E ⊆ M

µ∗(E) ≤ µ∗(E ∩A) + µ∗(E ∩ (M \A)) = µ∗(E ∩ (M \A)) ≤ µ∗(E).

Damit gilt A ∈ M, was die Vollständigkeit zeigt.
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Wir haben unsere Aufgabe gelöst, jedes Prämaß µ auf einem Semiring S in Ω zu einem Maß auf
σ(S) fortzusetzen, wenn wir zeigen können, daß µ∗ ein Maß auf σ(S) ist. Hierzu benützen wir Konzept
der µ∗-Meßbarkeit. Wir bezeichnen mit A die Menge aller µ∗-meßbaren Teilmengen von Ω und erinnern
daran, daß nach Satz 3.3.9 diese Menge eine σ–Algebra ist. Wenn nun µ∗ das von µ induzierte äußere
Maß ist, dann müssen wir noch zeigen, daß alle A ∈ S µ∗–meßbar sind. In diesem Falle ist S ⊆ A. Hieraus
folgt σ(S) ⊆ A, und damit ist µ∗ eingeschränkt auf σ(S) ein Maß, das µ nach Lemma 3.3.7 fortsetzt. Im
allgemeinen ist A jedoch größer als σ(S). Wir zeigen:

Lemma 3.3.10 : Sei S ein Semiring über Ω und µ : S → R ∪ {∞} ein Prämaß sowie µ∗ : P(Ω) →
R ∪ {∞} das von µ induzierte äußere Maß. Dann sind alle B ∈ S µ∗-meßbar.

Beweis:

Idee: Die Ungleichung µ∗(U) ≤ µ∗(U ∩ B) + µ∗(U ∩ {B) für B ∈ S und U ⊆ Ω folgt sofort aus

Bemerkung 3.3.8, weil µ∗ eine äußeres Maß ist. Für die Umkehrung konstruiert man aus Elementen

von Ŝ(U) Elemente von Ŝ(U ∩B) und Ŝ(U\B).

Es seien B ∈ S und U ⊆ Ω beliebig. Nach Bemerkung 3.3.8 genügt es

µ∗(U) ≥ µ∗(U ∩B) + µ∗(U ∩ {B) (3.4)

zu zeigen. Ist Ŝ(U) = ∅, folgt µ∗(U) = ∞, und wir sind fertig. Wir können also o.B.d.A.
annehmen, daß Ŝ(U) 6= ∅. Es sei nun (An)n∈N ∈ Ŝ(U). Wegen Aj ∈ S findet man Dj,i ∈ S
mit Dj,i1 ∩Dj,i2 = ∅ für i1 6= i2, j ∈ N und

Aj\B =
nj⋃
.

i=1

Dj,i.

Somit folgt ∆1 := (Aj∩B)j∈N ∈ Ŝ(U∩B) und ∆2 := (Dj,i)j∈N,1≤i≤nj ∈ Ŝ(U\B) = Ŝ(U∩{B).
Da µ additiv auf S ist, ergibt sich mit dem 1. Maßfortsetzungssatz 3.3.1

µ(Aj) = µ(Aj ∩B) + µ(Aj\B) = µ(Aj ∩B) +
nj∑

i=1

µ(Dj,i)

für alle j ∈ N, wobei zu beachten ist, daß Aj \ B nich notwendigerweise in S liegt. Hieraus
folgt mit der Definition von Ŝ(U ∩B) bzw. Ŝ(U ∩ {B)

∞∑

j=1

µ(Aj) =
∑

E1∈∆1

µ(E1) +
∑

E2∈∆2

µ(E2) ≥ µ∗(U ∩B) + µ∗(U ∩ {B)

für jedes (Aj)j∈N ∈ Ŝ(U). Daraus ergibt sich durch Infimumsbildung

µ∗(U) ≥ µ∗(U ∩B) + µ∗(U ∩ {B).

Bemerkung 3.3.11 : In der Situation von Lemma 3.3.10 liefert Satz 3.3.9 wegen S ⊆ A, daß σ(S) ⊆ A.
Also ist die Restriktion von µ∗ auf σ(S) ein Maß, das µ nach Lemma 3.3.7 fortsetzt.
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Satz 3.3.12 (2. Maß–Fortsetzungssatz): Sei µ ein Prämaß auf einem Semiring S in Ω. Dann
definiert

ν(A) := inf
{ ∞∑

n=1

µ(An)
∣∣∣ (An)n∈N ∈ Ŝ(A)

}
für A ∈ σ(S)

ein Maß auf σ(S), das µ fortsetzt. Ist µ σ-endlich auf S, so ist auch ν σ-endlich. In diesem Fall ist ν
die einzige Fortsetzung von µ zu einem Maß auf σ(S).

Beweis:

Idee: Die Existenz wird durch Bemerkung 3.3.11 gesichert, die Eindeutigkeit wird durch den Ein-

deutigkeitsatz 3.3.2 gesichert.

Die Existenz von ν erhält man aus Bemerkung 3.3.11 indem man das von µ induzierte äußere
Maß auf σ(S) einschränkt. Dies liefert gleichzeitig die Formel für ν. Sei jetzt µ σ-endlich.
Dann gibt es A1 ⊆ A2 ⊆ . . . in S mit

⋃
n∈NAn = Ω und µ(An) < ∞ für alle n ∈ N. Wegen

ν(An) = µ(An) folgt damit auch die σ-Endlichkeit von ν. Die Eindeutigkeitsaussage folgt
jetzt unmittelbar aus dem Eindeutigkeitssatz 3.3.2.

Übung 3.3.1 : Sei µ ein σ-endliches Maß auf einer σ-Algebra M über Ω und µ∗ das von µ induzierte äußere
Maß. Zeige: Zu Q ∈ P(Ω) gibt es ein A ∈ M mit folgenden Eigenschaften:

(a) Q ⊆ A.

(b) µ∗(Q) ⊆ µ(A).

(c) µ(b) = 0 für alle B ∈ M mit B ⊆ A \Q.

Hinweis: Falls µ∗(Q) < ∞, finde eine Folge (An)n∈N in M mit Q ⊆ An und µ(An) ≤ µ∗(Q) + 1
n
.

Übung 3.3.2 : Zeige, daß auf dem von I1 erzeugten Ring R genau ein Inhalt µ existiert, der

µ(]a, b]) =

{
1 für a < 0 ≤ b

0 sonst

erfüllt. Ist µ σ-additiv?

Übung 3.3.3 : Sei R ein Ring und µ : R → R ein Inhalt. Setze dµ(A, B) := µ(A\B∪B\A) und zeige, daß dµ eine
Pseudometrik auf R ist, d.h. es gelten alle Axiome einer Metrik, bis auf die Implikation

”
dµ(A, B) = 0 → A = B.“

Übung 3.3.4 :

Sei µ∗ ein äußeres Maß auf Ω und M∗ die σ-Algebra aller µ∗-meßbaren Teilmengen von Ω. Weiter sei ν die
Einschränkung von µ∗ auf M∗ und ν∗ das von ν induzierte äußere Maß auf Ω. Zeige:

(i) Für E ⊆ Ω gilt µ∗(E) ≤ ν∗(E) und Gleichheit gilt genau dann, wenn es ein A ∈ M∗ mit A ⊇ E und
µ∗(A) = µ∗(E) gibt.

(ii) Wenn µ∗ das von einem Prämaß µ induzierte äußere Maß ist, dann gilt µ∗ = ν∗.

(iii) Konstruiere ein µ∗ auf Ω = {0, 1} so, daß µ∗ 6= ν∗ gilt.
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3.4 Maßdefinierende Funktionen

Eine Funktion F : R→ R heißt maßdefinierende Funktion über R, falls sie monoton steigend und
rechtsseitig stetig ist.
Eine Funktion F : R → R heißt Verteilungsfunktion über R, falls sie monoton steigend, rechtsseitig
stetig und normiert, d.h. lim

x→−∞
F (x) = 0, lim

x→+∞
F (x) = 1, ist.

Satz 3.4.1 : Zu jeder maßdefinierenden Funktion F : R → R gibt es genau ein Maß µF über (R, B1)
mit

µF (]a, b]) = F (b)− F (a) ∀a, b ∈ R mit a ≤ b (3.5)

Ist F eine Verteilungsfunktion, dann ist µF ein Wahrscheinlichkeitsmaß, das mit PF bezeichnet wird.

Beweis:

Idee: Ausgangspunkt unseres Beweises ist der Semiring I1 der links offenen und rechts abgeschlos-

senen Intervalle ]a, b], a, b ∈ R mit a ≤ b, auf dem, wie wir schon wissen, ν = ν(]a, b]) := F (b)− F (a)

einen Inhalt definiert (siehe Beispiel 3.2.1). Wir zeigen zuerst, daß ν auch σ–additiv bzw. ein Prämaß

ist, das aufgrund des ersten Fortsetzungssatzes eindeutig zu einem Prämaß ψ auf dem von I1 er-

zeugten Ring R(I1) fortgesetzt werden kann. Ist ν außerdem σ–endlich, dann existiert aufgrund des

zweiten Fortsetzungssatzes auch eine eindeutige Fortsetzung von ψ zu einem Maß µF auf der von I1

erzeugten σ–Algebra σ(I1) = B1.

Nach Beispiel 3.2.1 definiert ν = ν(]a, b]) := F (b)− F (a) einen Inhalt auf dem Semiring I1.

1. Schritt: ν ist σ–additiv, d.h. ein Prämaß auf I1.
(An)n∈N bezeichne eine Folge von paarweise disjunkten Mengen aus I1 mit der Eigen-
schaft A =

⋃.
n∈NAn ∈ I1. Mit ψ bezeichnen wir die durch den Fortsetzungssatz 3.3.1

garantierte eindeutige Fortsetzung von ν auf den von I1 erzeugten Ring R(I1). Aufgrund
der Additivität und der Monotonie von ψ gilt:

m∑
n=1

ν(An) =
m∑

n=1
ψ(An) da ν und ψ auf I1 übereinstimmen

= ψ (
⋃. m

n=1 An) da wir lediglich
⋃. m

n=1 An ∈ R(I1) voraussetzen können,
müssen wir ψ anstelle von ν heranziehen

≤ ψ (
⋃. ∞

n=1 An) aufgrund der Monotonie von ψ
= ν (

⋃. ∞
n=1 An) da

⋃. ∞
n=1 An ∈ I1 vorausgesetzt war und ν und ψ auf I1

übereinstimmen.
Hieraus folgt unmittelbar

∞∑
n=1

ν(An) = lim
m→∞

m∑
n=1

ν(An) ≤ ν

( ∞⋃
.

n=1

An

)
= ν(A). (3.6)

Wir zeigen weiter, daß auch ν(
⋃∞

n=1 An) ≤ ∑∞
n=1 ν(An) gilt, was zusammen mit der

eben bewiesenen Ungleichung die Beziehung ν(A) = ν(
⋃∞

n=1 An) =
∑∞

n=1 ν(An) und
damit die σ-Additivität von ν beweisen würde.
Wir setzen A =: ]a, b] und An =: ]an, bn] für n ∈ N, und definieren für beliebige δ > 0
und δn > 0, n = 1, 2, . . .

A′ := ]a + δ, b] und A′n := ]an, bn + δn].

Offensichtlich gilt:

A = ]a, a + δ]∪ ]a + δ, b] und A′n = ]an, bn]∪ ]bn, bn + δn].

Die Additivität von ν liefert

ν(A) = ν(]a, a + δ]) + ν(]a + δ, b]) = F (a + δ)− F (a) + ν(A′),
ν(A′n) = ν(]an, bn]) + ν(]bn, bn + δn]) = ν(An) + F (bn + δn)− F (bn).
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Da F als rechtsseitig stetig vorausgesetzt war, gibt es zu jedem ε > 0 ein δ > 0 und zu
jedem εn > 0 ein δn > 0, n = 1, 2, . . . , so daß gilt:

ν(A) ≤ ν(A′) + ε und ν(A′n) ≤ ν(An) + εn (n = 1, 2, . . . ).

Für spätere Zwecke modifizieren wir dies zu

ν(A) ≤ ν(A′) +
ε

2
und ν(A′n) ≤ ν(An) +

ε

2n+1
(n = 1, 2, . . . ). (3.7)

Man beachte weiter, daß

A′ = ]a + δ, b] ⊆ [a + δ, b] ⊆
∞⋃

n=1

]an, bn + δn[⊆
∞⋃

n=1

A′n (3.8)

und daß nach dem Überdeckungssatz von Heine–Borel endlich viele der A′n zur Über-
deckung der Menge [a + δ, b] ausreichen. Deshalb gilt

A′ ⊆
k⋃

n=1

A′n für ein k ∈ N,

womit unter Verwendung von Proposition 3.2.3 schließlich folgt:

ν(A) ≤ ν(A′) +
ε

2
= ψ(A′) +

ε

2
da ν = ψ auf I1

≤ ψ

(
k⋃

n=1

A′n

)
+

ε

2
aufgrund von (3.8)

≤
k∑

n=1

ψ(A′n) +
ε

2
da ψ subadditiv ist

=
k∑

n=1

ν(A′n) +
ε

2
da ν = ψ auf I1

≤
k∑

n=1

(
ν(An) +

ε

2n+1

)
+

ε

2
aufgrund von (3.7)

≤
∞∑

n=1

ν(An) + ε da
∞∑

n=1

ε

2n+1
=

ε

2
.

Da ε > 0 beliebig gewählt werden kann, folgt hieraus zusammen mit (3.6) die Behaup-
tung.

2. Schritt: ν ist σ-endlich.
Hierfür ist die Existenz einer Mengenfolge (An)n∈N aus I1 mit A1 ⊆ A2 ⊆ A3 ⊂ . . . ,⋃

n∈NAn = R und ν(An) < ∞ für alle n nachzuweisen. Hierfür wählen wir An := ]−n, n],
n ∈ N. Offensichtlich gilt A1 ⊆ A2 ⊆ A3 ⊆ . . . und

⋃
n∈NAn = R. Außerdem ist

ν(]− n, n]) = F (n)− F (−n) < ∞ für alle n, was zu zeigen war.

3. Schritt: Existenz von µF .
Da ν ein σ-endliches Prämaß auf I1 ist, können wir den Fortsetzungssatz 3.3.12 anwenden
und finden ein eindeutig bestimmtes Maß µF : σ(I1) → R ∪ {∞}, das ν fortsetzt und σ-
endlich ist. Wegen σ(I1) = B1 folgt die Behauptung.

4. Schritt: µF ist ein Wahrscheinlichkeitsmaß, falls F normiert ist.
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Wir müssen zeigen, daß aus den beiden Aussagen limx→−∞ F (x) = 0 und limx→+∞ F (x) =
1 die Eigenschaft µF (R) = 1 folgt. Dafür beweisen wir zunächst, daß F (x) = µF (]−∞, x])
für alle x ∈ R gilt. Da µF stetig von unten ist (siehe Proposition 3.2.4(i)), folgt:

µF (]−∞, x]) = µF

( ⋃

n∈N
]− n, x]

)

= lim
n→∞

µF (]− n, x])

= lim
n→∞

(F (x)− F (−n))

= F (x)− lim
n→∞

F (−n)

= F (x)− 0
= F (x).

Aufgrund der Darstellung R =
⋃

n∈N]−∞, n] und der Tatsache, daß µF stetig von unten
ist (siehe Proposition 3.2.4(i)), folgert man analog

µF (R) = µF

( ⋃

n∈N
]−∞, n]

)
= lim

n→∞
µF

(
]−∞, n]

)
= lim

n→∞
F (n) = 1.

Satz 3.4.2 : Gegeben sei ein Wahrscheinlichkeitsmaß P über (R, B1). Dann hat die durch F (x) :=
P (]−∞, x]) definierte Funktion F : R→ R folgende Eigenschaften:

(i) F ist monoton steigend.

(ii) F ist rechtsseitig stetig.

(iii) lim
x→−∞

F (x) = 0 und lim
x→+∞

F (x) = 1,

d.h., F ist eine Verteilungsfunktion.

Beweis:

Idee: Man übersetzt die insbesondere in Proposition 3.2.4 gewonnenen Eigenschaften von P in

Eigenschaften von F .

Die Aussage (i) folgt unmittelbar aus der Annahme, daß P monoton ist (vgl. Satz 3.4.1). Für
den Nachweis von (ii) muß man noch zeigen, daß für jede monoton fallende Folge (xn)n∈N mit
limn→∞ xn = 0 auch limn→∞

(
F (x + xn) − F (x)

)
= 0 für alle x ∈ R gilt. Da P stetig von

oben ist (siehe Proposition 3.2.4(ii)), gilt aber:

lim
n→∞

[F (x + xn)− F (x)] = lim
n→∞

P (]x, x + xn]) = P
( ∞⋂

n=1

]x, x + xn]
)

= P (∅) = 0.

Die Aussage (iii) läßt sich ebenfalls mit Hilfe von Proposition 3.2.4 beweisen:

0 = P (∅) = P (
⋂

n∈N
]−∞,−n]) = lim

n→∞
P (]−∞,−n]) = lim

n→∞
F (−n)

1 = P (R) = P (
⋃

n∈N
]−∞, n]) = lim

n→∞
P (]−∞, n]) = lim

n→∞
F (n)
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Bemerkung 3.4.3 :

(i) Die Sätze 3.4.1 und 3.4.2 besagen, daß es eine umkehrbar eindeutige Zuordnung von Verteilungs-
funktionen über R und Wahrscheinlichkeitsmaßen auf (R, B1) gibt.

(ii) Verteilungsfunktionen sind automatisch meßbar.

(iii) Wegen der Korrespondenz aus (i) spricht man häufig von Wahrscheinlichkeitsverteilungen oder
einfach nur von Verteilungen. und meint damit wahlweise das Wahrscheinlichkeitsmaß oder die
zugehörige Verteilungsfunktion.

Proposition 3.4.4 : (Rechenregeln für maßdefinierende Funktionen)
Sei F eine maßdefinierende Funktion über R und µF das korrespondierende Maß auf (R,B1), dann gilt
für alle a, b ∈ R mit a < b:

(i) µF (]a, b]) = F (b)− F (a),

(ii) µF (]a, b[) = F (b− 0)− F (a),

(iii) µF ([a, b]) = F (b)− F (a− 0),

(iv) µF ({a}) = F (a)− F (a− 0),

(v) µF ([a, b[) = F (b− 0)− F (a− 0),

wobei wir mit F (x − 0) den linksseitigen Grenzwert von F an der Stelle x bezeichnen (entsprechend
F (x + 0)).

Ist F eine Verteilungsfunktion über R und bezeichnet PF das zugehörige Wahrscheinlichkeitsmaß auf
(R, B), dann gilt für alle x ∈ R:

(vi) PF (]−∞, x]) = F (x),

(vii) PF (]−∞, x[) = F (x− 0),

(viii) PF (]x,∞[) = 1− F (x).

Beweis:

Idee: Diese Aussagen lassen sich jeweils mit kleinen Rechnungen verifizieren. Das wichtigste Hilfs-

mittel ist dabei Proposition 3.2.4.

(i) Diese Behauptung ist gleichbedeutend mit (3.5).

(ii)

µF (]a, b[) = µF

( ∞⋃
n=1

]
a, b− 1

n

]
)

3.2.4= lim
n→∞

µF

(]
a, b− 1

n

])

= lim
n→∞

F
(
b− 1

n

)− F (a)

=: F (b− 0)− F (a).
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(iii)

µF ([a, b]) = µF

( ∞⋂
n=1

]
a− 1

n , b
]
)

= lim
n→∞

µF

(]
a− 1

n , b
])

(µF ist stetig von oben (siehe Proposition 3.2.4(ii)))

= lim
n→∞

(
F (b)− F (a− 1

n )
)

= F (b)− F (a− 0).

(iv)

µF ({a}) = µF

( ∞⋂
n=1

]
a− 1

n , a
]
)

= lim
n→∞

µF

(]
a− 1

n , a
])

= lim
n→∞

(
F (a)− F (a− 1

n )
)

= F (a)− F (a− 0).

(v) µF ([a, b[) = µF (]a, b[∪{a}) = µF (]a, b[) + µF ({a}) = F (b− 0)− F (a− 0).
(vi) Wurde bereits unter (iii) im Beweis von Satz 3.4.2 gezeigt.
(vii)

PF (]−∞, x[) = PF (]−∞, x]\{x})
= PF (]−∞, x])− PF ({x})
= F (x)− (F (x)− F (x− 0))
= F (x− 0).

(viii) PF (]x,∞[) = PF (R\]−∞, x]) = PF (R)− PF (]−∞, x]) = 1− F (x).

Beispiel 3.4.5 : Die Funktion

F (x) =





0 x < 0,
1
8 0 ≤ x < 1,
4
8 1 ≤ x < 2,
7
8 2 ≤ x < 3,

1 3 ≤ x

definiert eine Verteilungsfunktion über R. Man verifiziert leicht:

PF (]− 1, 5]) = F (5)− F (−1) = 1− 0 = 1.

PF (]12 , 2]) = F (2)− F ( 1
2 ) = 7

8 − 1
8 = 3

4 .

PF ([ 32 , 3)) = F (3− 0)− F ( 1
2 − 0) = 7

8 − 4
8 = 3

8 .

PF (]0, 1[) = F (1− 0)− F (0) =
1
8
− 1

8
= 0.

PF ({2}) = F (2)− F (2− 0) =
7
8
− 4

8
=

3
8
.

PF (]−∞, 3
2 ]) = F ( 1

2 ) = 4
8 = 1

2 .

PF (]1,∞[) = 1− F (1) =
4
8

=
1
2
.
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Beispiel 3.4.6 (Lebesgue–Maß): Das mit der maßdefinierenden Funktion

F (x) = x ∀x ∈ R.

korrespondierende Maß λ = λF (vgl. Bemerkung 3.4.3) über B1 ist die eindeutig bestimmte Fortsetzung
des elementargeometrischen Inhalts

λ(]a, b]) = F (b)− F (a) = b− a, ∀a, b ∈ R, a ≤ b.

Es heißt das eindimensionale Lebesgue–Maß auf (R,B1).

Beispiel 3.4.7 (Exponential–Verteilung):
Sei λ > 0. Die Funktion F : R→ R mit

F (x) =

{
1− e−λx x ≥ 0,

0 x < 0.

definiert eine Verteilungsfunktion über R. Man nennt F Exponentialverteilung mit dem Parameter λ.
Für die Exponentialverteilung mit dem Parameter λ verwenden wir das Symbol Exp(λ).

Diese Verteilung ist von großer praktischer Bedeutung. Zum Beispiel wurde durch umfangreiche stati-
stische Erhebungen nachgewiesen, daß Einfallabstände und Gesprächsdauern im Telefonverkehr in guter
Näherung exponentialverteilt sind. Aber auch das Ausfallverhalten einer Maschine, d.h. die Zeit zwischen
zwei aufeinanderfolgenden Ausfällen, kann gut durch eine Exponentialverteilung modelliert werden.

Man beachte, daß F stetig und an allen Stellen x 6= 0 differenzierbar ist:

f(x) :=
dF (x)

dx
=

{
λe−λx x ≥ 0,

0 x < 0.

Hieraus folgt

PF (]−∞, x]) = F (x) =

x∫

−∞
f(t) dt, x ∈ R,

und

PF (]a, b]) = F (b)− F (a) =

b∫

a

f(t) dt, a, b ∈ R, a ≤ b.

Es sei f : R→ R+ eine über R integrierbare Funktion mit
∫

R

f(t)dt = 1.

Dann wird durch
F (x) :=

∫

]−∞,x]

f(t)dt, x ∈ R,

eine Verteilungsfunktion F über R und damit ein Wahrscheinlichkeitsmaß PF auf (R, B1) definiert. Die
Funktion f wird Dichte der Wahrscheinlichkeitsverteilung PF genannt.
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Beispiel 3.4.8 (Rechteckverteilung): Für jedes Paar a, b ∈ R mit a < b wird durch

f(x) =

{
1

b−a x ∈ [a, b],
0 x 6∈ [a, b]

eine Dichte über R definiert. Das zugehörige Wahrscheinlichkeitsmaß heißt Rechteck(a, b)–Verteilung
oder Gleichverteilung auf [a, b], kurz R(a, b). Die zugehörige Verteilungsfunktion lautet:

F (x) =





0 x < a,
x−a
b−a a ≤ x ≤ b,

1 x ≥ b.

Die Rechteck–Verteilung spielt bei der Erzeugung von Zufallszahlen und der Simulation stochastischer
Prozesse eine wichtige Rolle.

Beispiel 3.4.9 (Weibull-Verteilung): Für λ, β > 0 definiert

f(x) =

{
λ · β · e−λxβ

x ≥ 0
0 x < 0

eine Wahrscheinlichkeitsdichte über R. Die zugehörige Verteilungsfunktion lautet:

F (x) =
{

1− e−λxβ

x ≥ 0
0 x < 0.

Das korrespondierende Wahrscheinlichkeitsmaß PF über (R, B1) heißt Weibull–Verteilung mit den
Parametern λ, β. Die Substitution y = xβ , dy = βxβ−1dx führt auf das Integral der Exponentialverteilung.
Die Weibull–Verteilung findet Anwendung in der Zuverlässigkeitstheorie.

Beispiel 3.4.10 (Standardnormalverteilung):
Die Funktion

f(x) =
1

σ
√

2π
e−

1
2 ( x−µ

σ )2

wird als Gaußsche Glockenkurve mit den Parametern µ ∈ R und σ > 0 bezeichnet und definiert eine
Wahrscheinlichkeitsdichte über R. Die korrespondierende Verteilungsfunktion lautet

F (x) =

x∫

−∞
f(t)dt =

x∫

−∞

1
σ
√

2π
e−

1
2 ( t−µ

σ )2

dt (x ∈ R).

Die zu F (x) gehörende Verteilung PF auf (R, B) wird Normalverteilung mit dem Parameter µ
und σ genannt. Im Fall µ = 0 und σ = 1 spricht man von der Standard–Normalverteilung. Für die
Normalverteilung verwendet man das Symbol N(µ, σ). Im Falle der Standard–Normalverteilung verwendet
man anstelle von F (x) das Symbol Φ(x) und anstelle von f(x) das Symbol ϕ(x).

Um die Werte der Normalverteilung zu berechnen, genügt es, die Standard–Normalverteilung zu
kennen. Denn vermöge der Substitutionen y = (t− µ)/σ und σ · dy = dt erhält man

F (x) =

x∫

−∞
f(t) dt =

1
σ
√

2π

x∫

−∞
e−

1
2 ( x−µ

σ )2 dt =
1√
2π

x−µ
σ∫

−∞
e−y2/2 dy =

x−µ
σ∫

−∞
ϕ(y) dy. = Φ

(
x− µ

σ

)
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-2 2 4 6
x

0.1

0.2

0.3

0.4

y

Abbildung 3.1: Dichtefunktion der Normalverteilung mit Lokalisationsparameter µ = 2 und Streupara-
meter σ = 1.

Dies ist der Grund, warum in Statistik–Büchern lediglich die Standard–Normalverteilung tabelliert ist.
Für den Nachweis von

+∞∫

−∞
ϕ(x) dx = 1

benutzt man die Beziehung

( +∞∫

−∞
exp(− t2

2
) dt

)2

=

+∞∫

−∞

+∞∫

−∞
exp(−x2

2
) exp(−y2

2
) dx dy

=

+∞∫

−∞

+∞∫

−∞
exp

(
− x2 + y2

2

)
dx dy,

die man mit Hilfe von Polarkoordinaten, d.h. mit Hilfe der Substitution dx dy = r dϑ dr, in

2π∫

0

∞∫

0

exp(−r2

2
)r dr dϑ = − 2π exp(−r2

2
)
∣∣∣
∞

0
= 2π

überführen kann.

Beispiel 3.4.11 (Logarithmische Normalverteilung): Für µ ∈ R und σ > 0 definiert auch

f(x) =





1
σx
√

2π
e−(ln x−µ)2/2σ2

x > 0

0 x ≤ 0

eine Wahrscheinlichkeitsdichte über R. Das zugehörige Wahrscheinlichkeitsmaß über (R, B1) heißt loga-
rithmische Normalverteilung. Sie wird als Modellverteilung bei Lebensdauer– und Festigkeitsproble-
men eingesetzt.

Beispiel 3.4.12 (Cauchy–Verteilung):
Für λ > 0 und µ ∈ R definiert

f(x) =
1
π

λ

λ2 + (x− µ)2
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eine Wahrscheinlichkeitsdichte über R. Denn es ist

∞∫

−∞
f(x)dx =

∞∫

−∞

1
λπ

1

1 +
(

x−µ
λ

)2 dx

(
z :=

x− µ

λ
dz =

1
λ

dx

)

=

∞∫

−∞

1
π

1
1 + z2

dz

=
1
π




0∫

−∞

1
1 + z2

dz +

∞∫

0

1
1 + z2

dz




=
1
π


 lim

a→−∞

0∫

a

1
1 + z2

dz + lim
b→∞

b∫

0

1
1 + z2

dz




=
1
π

(
lim

a→−∞
(− arctan a) + lim

b→∞
(arctan b)

)

=
1
π

(π

2
+

π

2

)
= 1.

Die zu f gehörende Verteilungsfunktion heißt Cauchy–Verteilung.

Beispiel 3.4.13 (Gammaverteilung):
Seien b, p ∈ R+. Das zur Dichte

f(x) =





bp

Γ(p)
xp−1e−bx x ≥ 0

0 x < 0

mit der durch Γ(p) =

∞∫

0

xp−1e−xdx definierten Gammafunktion gehörende Wahrscheinlichkeitsmaß P

auf (R,B1) heißt Gammaverteilung mit den Parametern b und p, kurz Gamma(b, p).

Abbildung 3.2: Dichtefunktion der Gammaverteilung mit variablem Parameter b bei konstantem p (links)
bzw. variablem p bei konstantem b (rechts).

Die Tatsache, daß
∫ +∞
−∞ f(x) dx = 1, folgt aus der Beziehung

∞∫

0

bpxp−1e−bx dx =

∞∫

0

(bx)p−1e−bxb dx =

∞∫

0

zp−1e−z dz = Γ(p).
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Die Gammaverteilung wird unter anderem als Modellverteilung in der Zuverlässigkeitstheorie und der
Warteschlangentheorie verwendet. Als Spezialfälle der Gammaverteilung ergeben sich die χ2–Verteilung
und die Erlang–Verteilung (siehe unten).

Beispiel 3.4.14 (χ2–Verteilung):
Das Wahrscheinlichkeitsmaß P mit der Dichte

f(x) =





1
2

n
2 Γ

(
n
2

)x
n
2−1e−

x
2 x ≥ 0

0 x < 0,

heißt χ2–Verteilung mit n Freiheitsgraden, n ∈ N. Die χ2–Verteilung ergibt sich aus der Gammavertei-
lung, indem man p = n

2 und b = 1
2 setzt.

Abbildung 3.3: Dichtefunktion der χ2–Verteilung mit variablen Freiheitsgrad n.

Die χ2–Verteilung spielt eine zentrale Rolle in der mathematischen Statistik.

Beispiel 3.4.15 (Erlang-Verteilung):
Seien n ∈ N und b ∈ R+. Das zur Dichte

f(x) =

{
bn

(n−1)!x
n−1e−bx x ≥ 0,

0 x < 0.

gehörende Wahrscheinlichkeitsmaß P auf (R, B1) heißt Erlang–Verteilung mit den Parametern b und n,
kurz Erlang(b, n). Für diesen Spezialfall der Gammaverteilung läßt sich die zugehörige Verteilungsfunktion
F (x) in geschlossener Form darstellen:

F (x) =





1− e−bx ·
n−1∑

k=0

(bx)k

k!
x ≥ 0,

0 x < 0.

Die Behauptung läßt sich durch Differenzieren rasch verifizieren:

F
′
(x) =−

(
− b · e−bx ·

n−1∑

k=0

(bx)k

k!
+ e−bx · b ·

n−1∑

k=1

(bx)k−1

(k − 1)!

)
= b · e−bx · (bx)n−1

(n− 1)!
=

bn

(n− 1)!
xn−1 · e−bx
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für x ≥ 0. Die Erlang–Verteilung verdankt ihren Namen dem dänischen Mathematiker A.K. Erlang, der
1908 Mitarbeiter der Copenhagen Telephone Company wurde und mit seinen Arbeiten zur Leistungsbe-
wertung von Fernsprechvermittlungssystemen den Grundstein für die Warteschlangentheorie legte.

Beispiel 3.4.16 (Betaverteilung):
Das Wahrscheinlichkeitsmaß über (R,B1) mit der Dichte

f(x) =





(b− a)1−p−q

B(p, q)
(x− a)p−1(b− x)q−1 , x∈]a, b[

0 , x 6∈]a, b[

mit a, b ∈ R, a < b und p, q > 0 heißt Betaverteilung 1.Art über dem Intervall ]a, b[. Dabei steht
Ausdruck

B(p, q) :=

1∫

0

tp−1(1− t)q−1 dt

für die Eulersche Betafunktion. Für die Betaverteilung mit dem Parameter p und q verwenden wir das
Symbol Beta(p, q). Die Betaverteilung hat Anwendungen in der Netzplantechnik, wo sie zur Modellierung
von Übergangszeiten verwendet wird.

Abbildung 3.4: Dichtefunktion der Betaverteilung mit Parameter q = 4 und variablem p.



Kapitel 4

Zerlegung von Maßen

4.1 Signierte Maße

Sei (M, M) ein meßbarer Raum. Ein signiertes Maß auf (M, M) ist eine Abbildung ν : M → [−∞,∞]
mit folgenden Eigenschaften:

(i) ν(∅) = 0.

(ii) ν nimmt höchstens einen der Werte ±∞ an.

(iii) Für jede Folge (Aj)j∈N von paarweise disjunkten Elementen Aj von M gilt:

ν(
⋃

j∈N
Aj) =

∑

j∈N
ν(Aj)

und die Reihe konvergiert absolut, falls ν(
⋃

j∈NAj) ∈ R.

Damit ist jedes Maß auf (M, M) insbesondere ein signiertes Maß. Um den Unterschied zu betonen,
nennt man manchmal ein Maß auch ein positives Maß.

Beispiel 4.1.1 : Sei (M, M) ein meßbarer Raum.

(i) Für zwei Maße µ1, µ2 auf (M, M), von denen mindestens eines endlich ist, ist ν := µ1 − µ2 ein
signiertes Maß.

(ii) Sei µ ein Maß auf (M, M). Für eine meßbare Funktion f : M → [−∞,∞], für die mindestens eines
der Integrale

∫
M

f± dµ endlich ist, definiert

ν(A) :=
∫

A

f dµ

ein signiertes Maß. Wir nennen f in diesem Fall erweitert µ-integrierbar und schreiben dν :=
f dµ.

Bemerkung 4.1.2 : Sei ν ein signiertes Maß auf dem meßbaren Raum (M, M). Mit den im Beweis von
Proposition 3.2.4 (siehe auch Übung 2.1.1) benützten Argumenten erhält man die folgenden Stetigkeits-
aussagen.

(i) Aus An ∈ M, A1 ⊆ A2 ⊆ . . . folgt

lim
n→∞

ν(An) = ν

( ⋃

n∈N
An

)
.

67
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(ii) Aus An ∈ M, A1 ⊇ A2 ⊇ . . . und ν(A1) < ∞ folgt

lim
n→∞

ν(An) = ν

( ⋂

n∈N
An

)
.

(iii) Die Voraussetzung ν(A1) < ∞ in Teil (ii) ist nicht überflüssig.

Sei ν ein signiertes Maß auf dem meßbaren Raum (M, M). Eine Menge A ∈ M heißt positiv bzw.
negativ bzgl. ν, wenn für alle B ∈ M mit B ⊆ A gilt ν(B) ≥ 0 bzw. ν(B) ≤ 0. Eine Menge, die positiv
und negativ ist, heißt Nullmenge.

Beispiel 4.1.3 : In der Situation von Beispiel 4.1.1(ii) ist A bzgl. ν positiv, bzw. negativ genau dann,
wenn auf A µ-fast überall gilt f ≥ 0, bzw. f ≤ 0.

Lemma 4.1.4 : Sei ν ein signiertes Maß auf dem meßbaren Raum (M, M) und (Aj)j∈N eine Folge von
bzgl. ν positiven Mengen. Dann ist auch

⋃
j∈NAj eine bzgl. ν positive Menge.

Beweis:

Setze Bn := An \
⋃n−1

j=1 Aj . Dann ist Bn ⊆ An meßbar, also ist Bn positiv bzgl. ν. Die Bn

sind offensichtlich paarweise disjunkt. Wenn jetzt C ⊆ ⋃
j∈NAj meßbar ist, dann gilt

ν(C) =
∑

n∈N
ν(C ∩Bn) ≥ 0.

Satz 4.1.5 (Hahn–Zerlegung): Sei ν ein signiertes Maß auf dem meßbaren Raum (M, M).

(i) Es gibt eine disjunkte Zerlegung von M in eine bzgl. ν positive Menge P ∈ M und eine bzgl. ν
negative Menge N ∈ M.

(ii) Die Zerlegung aus (i) ist im wesentlichen eindeutig. Genauer, wenn P ′ ∪ N ′ = M eine weitere
solche Zerlegung ist, dann gilt

ν(P \ P ′) = ν(P ′ \ P ) = 0 = ν(N \N ′) = ν(N ′ \N).

Beweis:

Idee: Finde zu jedem A ∈ M mit ν(A) > −∞ eine positive Teilmenge PA ⊆ A mit ν(PA) ≥ ν(A).

Dabei verlangt man zunächst für die Teilmengen nicht, daß ν(B) ≥ 0, sondern nur ν(B) ≥ −ε.

Wir können o.B.d.A. annehmen, daß ν den Wert ∞ nicht annimmt (sonst betrachte −ν statt
ν). Außerdem schließen wir den trivialen Fall, daß ν konstant gleich −∞ ist, aus. Sei A ∈ M.

Behauptung 1: Wenn ν(A) > −∞, dann gibt es zu jedem ε > 0 ein B ∈ M mit B ⊆ A und

(a) ν(B) ≥ ν(A),

(b) ν(C) > −ε für alle C ∈ M mit C ⊆ B.
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Angenommen dies ist nicht der Fall. Dann gibt es ein ε > 0 so, daß für jedes B ∈ M mit
B ⊆ A und ν(B) ≥ ν(A) ein C ∈ M mit C ⊆ B und ν(C) ≤ −ε existiert. Mit B = A findet
man ein C1 ∈ M mit C1 ⊆ A und ν(C1) ≤ −ε. Wegen

ν(A \ C1) = ν(A)− ν(C1) ≥ ν(A)

findet man dann ein C2 ∈ M mit C2 ⊆ A \ C1 und ν(C2) ≤ −ε. Jetzt gilt

ν
(
A \ (C1 ∪ C2)

)
= ν((A \ C1) \ C2) = ν(A \ C1)− ν(C2) ≥ ν(A \ C1) ≥ ν(A)

und wir sehen, daß wir induktiv eine Folge (Cj)j∈N disjunkter Mengen in M finden können,
die in A enthalten sind und ν(Cj) ≤ −ε erfüllen. Aber dann gilt für C :=

⋃
j∈N Cj , daß

ν(A \ C) = ν(A)−
∑

j∈N
ν(Cj) = ∞

im Widerspruch zur Annahme.

Behauptung 2: Wenn ν(A) > −∞, dann gibt es eine bzgl. ν positive Menge PA ⊆ A mit
ν(PA) ≥ ν(A).

Setze A1 := A und definiere An induktiv wie folgt: Zu An−1 gibt es nach Behauptung 1 eine
Menge An ∈ M mit An ⊆ An−1 und ν(An) ≥ ν(An−1) sowie

C ∈ M, C ⊆ An : ν(C) > − 1
n

Dann ist PA :=
⋂

n∈NAn ⊆ A positiv bzgl. ν und mit Bemerkung 4.1.2 finden wir

ν(PA) = lim
n→∞

ν(An) ≥ ν(A),

was Behauptung 2 beweist.

Mit Behauptung 2 finden wir eine Folge (Pj)j∈N von bzgl. ν positiven Mengen, die

s := lim
j→∞

ν(Pj) = sup{ν(A) | A ∈ M}

erfüllt. Setze P :=
⋃

j∈N Pj . Dann gilt ν(P ) = s und nach Lemma 4.1.4 ist P positiv. Wenn
C ∈ M zu P disjunkt ist, dann gilt ν(P ∪ C) = ν(P ) + ν(C), also ν(C) ≤ 0. Dies zeigt, daß
N := M \ P bzgl. ν negativ ist. Damit ist (i) bewiesen.

Um (ii) zeigen, stellen wir einfach fest, daß P \ P ′ ⊆ P ∩N ′ bzgl. ν sowohl positiv als auch
negativ, also eine Nullmenge ist. Analog schließt man für P ′ \P sowie für N \N ′ und N ′ \N .

Eine disjunkte Zerlegung P ∪ N = M wie in Satz 4.1.5 heißt eine Hahn-Zerlegung für ν. Seien
jetzt ν und µ zwei positive Maße auf dem meßbaren Raum (M, M). Dann heißt ν singulär bzgl. µ, falls
es eine disjunkte Zerlegung A ∪ B = M mit A,B ∈ M und ν(A) = 0 = µ(B) gibt. Offensichtlich ist ν
singulär bzgl. µ genau dann, wenn µ singulär bzgl. ν ist. Man trägt dem Rechnung, indem man schreibt
ν⊥µ, falls ν singulär bzgl. µ ist.

Satz 4.1.6 : Sei ν ein signiertes Maß auf dem meßbaren Raum (M, M). Dann gibt es eindeutig be-
stimmte positive Maße ν+ und ν−, für die gilt

ν = ν+ − ν− und ν+⊥ν−.

Beweis:
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Idee: Betrachte für A ∈ M die Schnitte von A mit den beiden Mengen einer Hahn-Zerlegung.

Sei M = P ∪N eine Hahn-Zerlegung für ν. Wir setzen

ν+(A) := ν(A ∩ P ) und ν−(A) := −ν(A ∩N)

für A ∈ M. Dann ist es Routine zu zeigen, daß ν± positive Maße sind, die ν = ν+ − ν− und
ν+⊥ν− erfüllen.

Um die Eindeutigkeitsaussage zu beweisen, nehmen wir an, daß µ± positive Maße mit ν =
µ+−µ− und µ+⊥µ− sind. Es gibt dann nach Definition eine disjunkte Zerlegung A∪B = M
mit A,B ∈ M und µ−(A) = 0 = µ+(B). Also ist A ∪ B = M eine Hahn-Zerlegung für ν.
Nach Satz 4.1.5(ii) gilt ν(P \A ∪A \ P ) = 0. Für jedes C ∈ M finden wir also

µ+(C) = µ+(C ∩A) = ν(C ∩A) = ν(C ∩ P ) = ν+(C),

d.h. µ+ = ν+. Für µ− = ν− argumentiert man analog.

Man nennt ν± den positiven bzw. den negativen Teil von ν. Die Zerlegung ν = ν+ − ν− heißt die
Jordan-Zerlegung von ν. Das signierte Maß ν heißt endlich, wenn sowohl ν+ als auch ν− endliche
Maße sind. Das positive Maß

|ν| := ν+ + ν−

nennt man die totale Variation von ν. Schließlich setzen wir

L1(M, ν) := L1(M,R, ν+) ∩ L1(M,R, ν−)

und für f ∈ L1(M, ν) ∫
f dν :=

∫
f dν+ −

∫
f dν−.

Seien µ und ν signierte Maße auf M . Dann heißt µ ein singulär bzgl. ν, wenn dies für ihre totalen
Variationen gilt.

Übung 4.1.1 : Seien ν und µ signierte Maße auf einem meßbaren Raum (M,M) und E ∈ M.

(i) Zeige, daß ν(F ) = 0 für alle E ⊇ F ∈ M genau dann, wenn |ν|(F ) = 0 für alle E ⊇ F ∈ M.

(ii) Zeige, daß die folgenden Aussagen äquivalent sind:

(a) ν ⊥ µ.

(b) |ν| ⊥ µ.

(c) ν+ ⊥ µ und ν− ⊥ µ.

(iii) Zeige, daß |µ + ν| ≤ |ν|+ |µ|.

Übung 4.1.2 : Sei ν ein signiertes Maß auf einem meßbaren Raum (M,M) und E ∈ M. Zeige:

(i) ν+(E) = sup{ν(F ) | F ∈ M, F ⊆ E}.
(ii) ν−(E) = − inf{ν(F ) | F ∈ M, F ⊆ E}.

(iii) |ν|(E) = sup
{ ∑n

j=1 ν(Ej)
∣∣∣ Ej ∈ M, E =

⋃. n
j=1 Ej

}
.
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4.2 Der Satz von Radon-Nikodym

Sei (M, M) ein meßbarer Raum. Weiter sei ν ein signiertes Maß und µ ein positives Maß auf (M, M).
Dann heißt ν absolut stetig bzgl. µ, falls

∀A ∈ M : µ(A) = 0 ⇒ ν(A) = 0.

In diesem Fall schreibt man ν <<µ.

Beispiel 4.2.1 : Wenn µ ein positives Maß auf dem meßbaren Raum (M, M) ist und f eine erweitert
µ-integrierbare Funktion, dann ist das durch ν(A) =

∫
A

f dµ definierte signierte Maß absolut stetig bzgl.
µ. Es ist endlich, falls f ∈ L1(M,R, µ).

Bemerkung 4.2.2 : Sei (M, M) ein meßbarer Raum. Weiter sei ν ein signiertes Maß und µ ein positives
Maß auf (M, M).

(i) ν <<µ ist äquivalent zu |ν|<<µ.

(ii) ν <<µ ist äquivalent zu
ν+ <<µ und ν−<<µ.

(iii) Wenn ν <<µ und ν⊥µ, dann gilt ν = 0.

Lemma 4.2.3 : Sei (M, M) ein meßbarer Raum. Weiter sei ν ein endliches signiertes Maß und µ ein
positives Maß auf (M, M). Dann sind folgende Aussagen äquivalent:

(1) ν <<µ.

(2) Zu jedem ε > 0 gibt es ein δ > 0 mit

∀A ∈ M, µ(A) < δ : ν(A) < ε.

Beweis:

Idee: Nur
”
(1) ⇒ (2)“ erfordert Arbeit: Konstruiere aus der Negierung von (2) eine Menge B mit

µ(B) = 0, aber ν(B) ≥ ε.

Beachte, daß wir wegen

|ν(A)| = |ν+(A)− ν−(A)| ≤ ν+(A) + ν−(A) = |ν|(A)

und Bemerkung 4.2.2(i) o.B.d.A. ν als positiv annehmen können.

Die Implikation ”(2) ⇒ (1)“ ist klar. Für die Umkehrung halten wir ε > 0 fest und nehmen
an, daß es zu jedem n ∈ N ein An ∈ M mit

µ(An) < 2−n und ν(An) ≥ ε

gibt. Setze Bk :=
⋃∞

n=k An und B :=
⋂∞

k=1 Bk. Dann gilt µ(Bk) < 21−k und µ(B) =
limk→∞ µ(Bk) = 0 (vgl. Bemerkung 4.1.2). Andererseits gilt ∞ > ν(Bk) ≥ ε, also ν(B) =
limk→∞ ν(Bk) ≥ ε und ν ist nicht absolut stetig bzgl. µ.
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Bemerkung 4.2.4 : Sei (M, M, µ) Maßraum und f ∈ L1(M,R, µ). Wenn man wie in Beispiel 4.2.1 aus
f ein signiertes Maß ν auf (M, M) konstruiert, liefert Lemma 4.2.3 folgende Aussage.

Zu jedem ε > 0 gibt es ein δ > 0 mit: (∀A ∈ M, µ(A) < δ) |
∫

A

f dµ| < ε.

Die Aussage ist auch für f ∈ L1(M,C, µ) richtig, wie man sofort sieht, wenn man f in Real- und
Imaginärteil aufspaltet.

Lemma 4.2.5 : Seien ν und µ endliche, positive Maße auf dem meßbaren Raum (M, M). Dann gilt
entweder ν⊥µ oder aber es gibt ein ε > 0 und ein A ∈ M mit

(a) µ(A) > 0,

(b) ν ≥ εµ auf A, d.h. A ist positiv bzgl. ν − εµ.

Beweis:

Idee: Betrachte Hahn-Zerlegungen für ν − 1
n
µ.

Sei M = Pn∪Nn eine Hahn-Zerlegung für ν− 1
nµ. Setze P :=

⋃
n∈N Pn und N :=

⋂
n∈NNn =

M \ P . Dann ist N negativ bzgl. ν − 1
nµ für jedes n ∈ N, also gilt

0 ≤ ν(N) ≤ 1
nµ(N)

für alle n ∈ N und damit ν(N) = 0. Wenn µ(P ) = 0, dann ist µ singulär bzgl. ν. Andernfalls
gilt µ(P ) > 0 und man findet ein n ∈ N mit µ(Pn) > 0 (vgl. Bemerkung 4.1.2). Da Pn nach
Definition positiv bzgl. ν − 1

nµ ist, ist A := Pn eine Menge der gesuchten Art.

Wir nennen ein signiertes Maß σ-endlich, wenn seine totale Variation σ-endlich ist.

Satz 4.2.6 (Radon-Nikodym): Seien (M, M) ein meßbarer Raum, ν ein σ-endliches signiertes Maß
auf (M, M) und µ ein σ-endliches positives Maß auf (M, M). Dann gibt es eindeutig bestimmte σ-endliche
signierte Maße λ und ρ auf (M, M) mit

λ⊥µ, ρ <<µ, ν = λ + ρ.

Außerdem gibt es eine erweitert µ-integrierbare Funktion f : M → R mit

dρ = fdµ.

Wenn h : M → R eine weitere µ-integrierbare Funktion ist, die dρ = hdµ erfüllt, dann gilt h = f µ-fast
überall.

Beweis:

Wir nehmen zunächst an, daß µ und ν endliche positive Maße sind und setzen

F := {f : M → [0,∞] | (∀A ∈ M)
∫

A

f dµ ≤ ν(A)}.

Seien f, g ∈ F und h := max(f, g). Wenn B := {x ∈ M | f(x) ≥ g(x)} und A ∈ M, dann gilt
∫

A

f dµ =
∫

A∩B

f dµ +
∫

A\B
g dµ ≤ ν(A ∩B) + ν(A \B) = ν(A),
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also h ∈ F .

Für a := sup{∫
M

f dµ | f ∈ F} gilt a ≤ ν(M) < ∞. Wir wählen eine Folge (fn)n∈N in F
mit limn→∞

∫
M

fn dµ = a und setzen gn := max(f1, . . . , fn) ∈ F sowie f := supn∈N fn. Dann
liefert der Satz 2.2.4 von der monotonen Konvergenz

∫

M

f dµ = lim
n→∞

∫

M

gn dµ = a.

Insbesondere ist f µ-fast überall endlich und wir können o.B.d.A. annehmen, daß f : M → R.

Behauptung: Das durch dλ = dν − f dµ definierte signierte Maß λ erfüllt λ⊥µ.

Wir nehmen an, dem wäre nicht so. Dann gibt es nach Lemma 4.2.5 ein A ∈ M und ein ε > 0
mit µ(A) > 0 und λ ≥ εµ auf A. Aber dann gilt

εχA dµ ≤ dλ = dν − f dµ

und daher f + εχA ∈ F . Außerdem finden wir
∫

M

(f + εχA) dµ = a + εµ(A) > a,

im Widerspruch zur Definition von a.

Für den Beweis des Satzes für positive endliche Maße fehlt jetzt nur noch die Eindeutigkeits-
aussage. Um diese zu zeigen, nehmen wir an, daß dν = dλ′+h dµ sowie λ⊥µ und λ′⊥µ. Dann
folgt dλ − dλ′ = (f − h)dµ, also λ − λ′<<µ, und (λ − λ′)⊥µ. Aber dann gilt λ = λ′ nach
Bemerkung 4.2.2(iii).

Jetzt nehmen wir an, daß µ und ν beides σ-endliche positive Maße sind. Dann finden wir
eine Folge (Aj)j∈N von disjunkten Elementen in M mit M =

⋃
j∈NAj sowie µ(Aj) < ∞ und

ν(Aj) < ∞ für alle j ∈ N. Wir setzen µj(C) = µ(C ∩ Aj) und νj(C) = ν(C ∩ Aj) für alle
C ∈ M. Jetzt wenden wir den ersten Teil des Beweises auf Aj an und finden Maße λj und
Funktionen fj : M → R mit

dνj = dλj + fjdµj , λj⊥µj , λj(M \Aj) = 0, f |M\Aj
≡ 0.

Dann erfüllen λ :=
∑

j∈N λj und f :=
∑

j∈N fj

dν = dλ + fdµ, λ⊥µ

und die Existenzaussage des Satzes ist bewiesen. Die Eindeutigkeit folgt wie im Falle der
endlichen Maße.

Schließlich ist noch der Fall zu betrachten, in dem ν ein signiertes Maß ist. Dieser Fall folgt
aber aus obigem angewandt auf ν+ und ν−.

Die Zerlegung ν = λ + ρ mit λ⊥µ und ρ <<µ heißt die Lebesgue–Zerlegung von ν bzgl. µ. Wenn
ν <<µ, dann liefert Satz 4.2.6 eine erweitert µ-integrierbare Funktion mit dν = f dµ. Dieses, bis auf
µ-Nullmengen eindeutig bestimmte f heißt die Radon-Nikodym Ableitung von ν nach µ. Sie wird
auch mit dν

dµ bezeichnet.

Man sieht sofort, daß
d(ν1 + ν2)

dµ
=

dν1

dµ
+

dν2

dµ
,

aber es gilt z.B. auch eine Version der Kettenregel für die Radon–Nikodym Ableitung:

Proposition 4.2.7 : Sei (M, M) ein meßbarer Raum und ν ein signiertes σ-endliches Maß auf (M, M).
Seien µ und λ zwei σ-endliche Maße auf (M, M), die ν <<µ <<λ erfüllen.
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(i) Wenn g ∈ L1(M,C, ν), dann gilt g dν
dµ ∈ L1(M,C, µ) und

∫

M

g dν =
∫

M

g
dν

dµ
dµ.

(ii) Es gilt ν <<λ und
dν

dλ
=

dν

dµ

dµ

dλ
λ− fast überall.

Beweis:

(i) Wir können o.B.d.A. annehmen, daß ν ein positives Maß ist, indem wir ν± separat
behandeln. Wenn A ∈ M und g = χA, dann gilt

∫

M

g dν = ν(A) =
∫

A

dν

dµ
dµ =

∫

M

g
dν

dµ
dµ.

Dies beweist (i) für charakteristische Funktionen. Über positive Linearkombinationen
und Grenzwerte davon findet man (i) für positive integrierbare Funktionen und dann
über Linearkombinationen für alle integrierbaren Funktionen.

(ii) Sei A ∈ M und g := χA
dν
µ . Dann liefert (i)

ν(A) =
∫

A

dν

dµ
dµ =

∫

A

dν

dµ

dµ

dλ
dλ,

also (ii).

Übung 4.2.1 : Seien νj für j ∈ N und µ signierte Maße auf einem meßbaren Raum (M,M). Zeige:

(i) Wenn νj ⊥ µ für alle j ∈ N, dann gilt
∑

j∈N νj ⊥ µ.

(ii) Wenn νj << µ für alle j ∈ N, dann gilt
∑

j∈N νj << µ.

Übung 4.2.2 : Zeige durch ein Gegenbeispiel, daß in Lemma 4.2.3 nicht auf die Endlichkeit von ν als Voraus-
setzung verzichtet werden kann.

Übung 4.2.3 : Seien νi und µi für i = 1, 2 jeweils σ-endliche signierte Maße auf den meßbaren Räumen
(Mi,Mi). Zeige: Wenn νi << µi, dann gilt

(i) ν1 ⊗ ν2 << µ1 ⊗ µ2.

(ii) d(ν1⊗ν2)
d(µ1⊗µ2)

(x1, x2) = dν1
dµ1

(x1)
dν2
dµ2

(x2).

4.3 Komplexe Maße

Ein komplexes Maß auf einem meßbaren Raum (M, M) ist eine Abbildung ν : M → C mit

(a) ν(∅) = 0,

(b) Wenn (Aj)j∈N eine Folge disjunkter Mengen in M ist, dann ist die Reihe
∑

j∈N ν(Aj) absolut
konvergent und es gilt

ν(
⋃

j∈N
) =

∑

j∈N
ν(Aj).
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Insbesondere ist ein signiertes Maß nur dann ein komplexes Maß, wenn es endlich ist.

Beispiel 4.3.1 : Sei (M, M, µ) ein Maßraum und f ∈ L1(M,C, µ). Dann definiert ν(A) :=
∫

A
fdµ ein

komplexes Maß. Wir schreiben, ähnlich wie im Falles signierter Maße, dν = f dµ.

Man kann ein komplexes Maß ν in offensichtlicher Weise als eine Summe Re ν + i Im ν mit zwei
signierten endlichen Maßen Re ν und Im ν schreiben, die man dann den Realteil und den Imaginärteil
von ν nennt. Man setzt dann

L1(M,C, ν) := L1(M,C, Re ν) ∩ L1(M,C, Im ν)

und ∫
f dν :=

∫
f d(Re ν) + i

∫
f d(Im ν).

Zwei komplexe Maße ν und µ heißen zueinander singulär, geschrieben ν⊥µ, wenn

Re ν⊥Re µ, Re ν⊥ Im µ, Im ν⊥Re µ, Im ν⊥ Im µ.

Ein komplexes Maß ν heißt absolut stetig bzgl. eines positive Maßes λ, geschrieben ν <<λ, wenn
Re ν <<λ und Im ν <<λ.

Bemerkung 4.3.2 : Indem man die Resultate aus Abschnitt 4.2 auf Realteil und Imaginärteil anwendet,
findet man Verallgemeinerungen der dortigen Resultate für komplex Maße. Insbesondere hat man eine
komplexe Version des Satzes 4.2.6 von Radon-Nikodym.

Lemma 4.3.3 : Sei ν ein komplexes Maß auf dem meßbaren Raum (M, M).

(i) Es gibt ein endliches Maß µ auf (M, M) und eine Funktion f ∈ L1(M,C, µ) mit dν = f dµ.

(ii) Wenn µ1, µ2 endliches Maße auf (M, M) mit dν = f1 dµ1 = f2 dµ2 für fi ∈ L1(M,C, µi) sind,
dann gilt auch

|f1| dµ1 = |f2| dµ2.

Beweis:

(i) Setze µ := |Re ν|+ | Im ν|. Dann ist µ ein endliche Maß und es gilt ν <<µ. Der komplexe
Radon-Nikodym Satz (vgl. Bemerkung 4.3.2) liefert dann die Funktion f ∈ L1(M,C, µ)
mit dν = f dµ.

(ii) Setze λ = µ1 + µ2. Wegen µi <<λ gilt nach Proposition 4.2.7

f1
dµ1

dλ
dλ = dν = f2

dµ2

dλ
dλ.

Da aber die Funktionen dµ1
dλ nicht-negativ sind, folgt auch

|f1|dµ1 = |f1|dµ1

dλ
dλ = |f2|dµ2

dλ
dλ = |f2|dµ2.

Lemma 4.3.3 erlaubt es uns die totale Variation eines komplexen Maßes ν mit dν = fµ als

|ν| := |f | dµ

zu definieren. Da für ein endliches signiertes Maß ν gilt ν = (χP − χN )|ν|, wobei M = P ∪ N eine
Hahn-Zerlegung für ν und |ν| die totale Variation von ν ist, ist die neue Definition der totalen Variation
wegen |χP − χN | ≡ 1 kompatibel mit der alten.
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Proposition 4.3.4 : Sei ν ein komplexes Maß auf dem meßbaren Raum (M, M).

(i) ν << |ν| und
∣∣∣ dν
d|ν|

∣∣∣ ist |ν|-fast überall gleich 1.

(ii) |ν(A)| ≤ |ν|(A) für alle A ∈ M.

(iii) L1(M,C, ν) = L1(M,C, |ν|)
(iv)

∣∣∫
M

f dν
∣∣ ≤ ∫

M
|f | d|ν| für alle f ∈ L1(M,C, ν).

Beweis:

Wir beweisen nur (i), die anderen Aussagen sind dem Leser zur Übung überlassen.

ν << |ν| ist klar. Wenn dν = f dµ und g := dν
d|ν| , dann gilt

f dµ = dν = g d|ν| = g|f | dµ.

Dies zeigt f = g|f | µ-fast überall und daher auch f = g|f | ν-fast überall. Da aber |f | > 0
ν-fast überall, finden wir g = 1 ν-fast überall.



Kapitel 5

Radon-Maße

5.1 Der Rieszsche Darstellungssatz

Sei M ein lokal kompakter Hausdorff–Raum und Cc(M) der Raum der stetigen Funktionen f : M → C
mit kompaktem Träger. Ein lineares Funktional I : Cc(M) → C heißt positiv, wenn I(f) ≥ 0 falls f ≥ 0.

Proposition 5.1.1 : Sei I : Cc(M) → C ein positives lineares Funktional und K ⊆ M kompakt. Dann
gibt es eine Konstante CK mit

∀f ∈ Cc(M), supp f ⊆ K : |I(f)| ≤ CK‖f‖∞.

Beweis:

Idee: Wende das Lemma von Urysohn an.

Wir können o.B.d.A. annehmen, daß f reellwertig ist. Nach dem Lemma von Urysohn gibt
es eine Funktion ϕ ∈ Cc(M) mit Werten in [0, 1], die auf K konstant gleich 1 ist. Wenn jetzt
f ∈ Cc(M) mit supp f ⊆ K ist, dann gilt |f | ≤ ‖f‖∞ϕ. Dies liefert ‖f‖∞ϕ± f ≥ 0, also nach
Voraussetzung ‖f‖∞I(ϕ)± I(f) ≥ 0 und damit |I(f)| ≤ I(ϕ)|f |∞.

Sei jetzt BM die Borel-σ-Algebra auf dem lokal kompakten Hausdorff-Raum M . Ein Maß µ auf
(M, BM ), für das gilt

∀K ⊆ M kompakt : µ(K) < ∞,

heißt ein Borel-Maß auf M .

Wenn µ ein Borel-Maß auf (M, BM ) ist, dann gilt Cc(M) ⊆ L1(M, µ) und

I(f) :=
∫

M

f dµ

definiert ein positives lineares Funktional auf Cc(M).
Sei jetzt A ∈ BM . Dann heißt µ von außen regulär auf A, wenn

µ(A) = inf{µ(U) | A ⊆ U,U offen},

und von innen regulär auf A, wenn

µ(A) = sup{µ(K) | A ⊇ K, K kompakt}.

77
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Ein Borel-Maß, das von innen und von außen regulär auf A ist, heißt regulär auf A. Ein Radon-Maß
ist ein Borel-Maß, das auf allen Borelmengen in M von außen regulär und auf allen offenen Mengen in
M von innen regulär ist.

Satz 5.1.2 (Rieszscher Darstellungssatz): Sei M ein lokal kompakter Raum und I : Cc(M) → C
ein positives lineares Funktional. Dann gibt es ein eindeutig bestimmtes Radon-Maß µ mit

∀f ∈ Cc(M) I(f) =
∫

M

f dµ.

Das Maß hat darüber hinaus folgende Eigenschaften:

(a) Für jede offene Teilmenge U von M gilt

µ(U) = sup{I(f) | f : M → [0, 1] stetig mit supp f ⊆ U}.

(b) Für jede kompakte Teilmenge K von M gilt

µ(K) = inf{I(f) | f : M → R stetig mit f ≥ χK}.

Beweis:

Idee: Die Eindeutigkeit ist leicht zu sehen. Für die Existenz konstruiere ein äußeres Maß µ∗

via µ̃(U) := sup{I(f) | f : M → [0, 1] stetig mit supp f ⊆ U} und µ∗(A) := inf{µ̃(U) | A ⊆
U, U offen in M}. Dieses schränkt man auf BM ein.

Wir zeigen zunächst die Eindeutigkeit. Sei µ ein Radon-Maß mit I(f) =
∫

M
f dµ für alle

f ∈ Cc(M) und U ⊆ M offen. Wenn f : M → [0, 1] stetig ist mit supp f ⊆ U , dann folgt

I(f) ≤ µ(U).

Andererseits, wenn K ⊆ U kompakt ist, dann findet man mit dem Lemma von Urysohn eine
stetige Abbildung f : M → [0, 1] mit supp f ⊆ U und f |K ≡ 1. Für dieses f gilt

µ(K) ≤
∫

M

f dµ = I(f).

Da aber µ auf U von innen regulär ist, liefert dies die Eigenschaft (a). Damit sind die Werte
von µ auf den offenen Mengen vollständig durch I bestimmt. Da die offenen Mengen die Borel
σ-Algebra erzeugen, ist also µ durch I eindeutig festgelegt.

Um jetzt die Existenz von µ zu beweisen, definieren wir zunächst für jede offene Teilmenge
U von M

µ̃(U) := sup{I(f) | f : M → [0, 1] stetig mit supp f ⊆ U}
(endlich wegen Proposition 5.1.1) und dann für jede Teilmenge A ⊆ M

µ∗(A) := inf{µ̃(U) | A ⊆ U,U offen in M}.

Es ist klar, daß µ̃(U) ≤ µ̃(V ) falls U ⊆ V zwei offene Teilmengen von M sind. Damit folgt
sofort

∀U ⊆ M offen : µ̃(U) = µ∗(U).

Behauptung: Es gilt

(i) µ∗ ist ein äußeres Maß.

(ii) Jede offene Teilmenge von M ist µ∗-meßbar.
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(iii) Das durch den Satz 3.3.9 bestimmte Maß µ = µ∗|BM
erfüllt

µ(K) = inf{I(f) | f : M → R stetig mit f ≥ χK}
für jede kompakte Teilmenge K von M .

(iv) µ ist ein Radon-Maß.

(v) I(f) =
∫

M
f dµ für jedes f ∈ Cc(M).

Wenn diese Behauptungen bewiesen sind, hat man den Satz bewiesen.

Zu (i): Wir zeigen, daß für jede Folge (Uj)j∈N von offenen Mengen in M und U :=
⋃

j∈N Uj gilt
µ̃(U) ≤ ∑

j∈N µ̃(Uj). Dann folgt für E ⊆ M

µ∗(E) = inf
{ ∑

j∈N
µ̃(Uj)

∣∣∣ Uj offen, E ⊆
⋃

j∈N
Uj

}

und (i) folgt mit Lemma 3.3.5.
Sei also (Uj)j∈N eine Folge von offenen Mengen in M und U :=

⋃
j∈N Uj . Für jede stetige

Funktion f : M → [0, 1] mit K := supp (f) ⊆ U gibt es ein n ∈ N mit K ⊆ ⋃n
j=1 Uj . Wir

benützen eine Teilung der Eins auf K: Dies sind kompakt getragene stetige Funktionen
g1, . . . , gn : M → [0, 1] mit supp (gj) ⊆ Uj und

∑n
j=1 gj ≡ 1 auf K. Aber dann gilt

f =
∑n

j=1 fgj und supp (fgj) ⊆ Uj , was zu

I(f) =
n∑

j=1

I(fgj) ≤
n∑

j=1

µ̃(Uj) ≤
∞∑

j=1

µ̃(Uj)

führt. Da f mit den erwähnten Eigenschaften beliebig war, zeigt dies gerade µ̃(U) ≤∑∞
j=1 µ̃(Uj).

Zu (ii): Seien zunächst U,A ⊆ M beide offen. Dann ist A∩U offen, und zu ε > 0 finden wir eine
stetige Funktion f : M → [0, 1] mit kompaktem Träger supp (f) ⊆ A ∩ U und

I(f) > µ̃(A ∩ U)− ε.

Analog, weil A \ supp (f) offen ist, finden wir eine stetige Funktion g : M → [0, 1] mit
kompaktem Träger supp (g) ⊆ A \ supp (f) und

I(g) > µ̃(A \ supp (f))− ε.

Aber dann gilt f + g : M → [0, 1] und supp (f + g) ⊆ A, also

µ̃(A) ≥ I(f) + I(g)
> µ̃(A ∩ U) + µ(A \ supp (f))− 2ε

≥ µ∗(A ∩ U) + µ∗(A \ U)− 2ε.

Jetzt läßt man ε gegen 0 gehen und findet µ(A) ≥ µ∗(A ∩ U) + µ∗(A \ U).
Für ein allgemeines A ⊆ M mit µ∗(A) < ∞ findet man eine offene Umgebung V ⊇ A
mit µ̃(V ) ≤ µ∗(A) + ε und rechnet

µ∗(A) + ε ≥ µ̃(V )
≥ µ∗(V ∩ U) + µ∗(V \ U)
≥ µ∗(A ∩ U) + µ∗(A \ U).

Wieder mit ε gegen 0 ergibt sich µ̃(A) ≥ µ∗(A ∩ U) + µ∗(A \ U), was nach Bemerkung
3.3.8 die Gleichheit

µ̃(A) = µ∗(A ∩ U) + µ∗(A \ U)

zeigt.
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Zu (iii): Das Maß µ ist von außen regulär nach Satz 3.3.9. Sei jetzt K ⊆ M kompakt und f ∈
Cc(M) mit f ≥ χK . Für 1 > ε > 0 betrachte die offene Menge Uε := {x ∈ M | f(x) >
1 − ε}. Für jede stetige Funktion g : M → [0, 1] mit kompaktem Träger supp (g) ⊆ Uε

gilt g ≤ (1− ε)−1f , also I(g) ≤ (1− ε)−1I(f). Dies liefert

µ(K) ≤ µ(Uε) ≤ (1− ε)−1I(f)

und mit ε → 0 sogar µ(K) ≤ I(f).
Umgekehrt, für eine offene Umgebung U von K findet man mit dem Lemma von Urysohn
eine stetige Funktion f : M → [0, 1] mit kompaktem Träger supp (f) ⊆ U und f |K ≡ 1.
Es gilt also f ≥ χK und I(f) ≤ µ(U). Da µ von außen regulär ist, folgt die Behauptung.

Zu (iv): Bis jetzt haben wir gesehen, daß µ auf kompakten Mengen endliche Werte annimmt und
von außen regulär ist. Bleibt zu zeigen, daß µ auf offenen Mengen von innen regulär ist.
Sei dazu U ⊆ M offen und r ≤ µ(U). Wir wählen eine stetige Funktion f : M → [0, 1]
mit kompaktem Träger K := supp (f) ⊆ U und I(f) > r. Dann gilt nach (iii) µ(K) > r,
also die innere Regularität.

Zu (v): Es genügt zu zeigen, daß für jede kompakt getragene stetige Funktion f : M → [0, 1] gilt
I(f) =

∫
M

f dµ, da diese Menge von Funktionen ganz Cc(M) aufspannt. Sei also f so
eine Funktion. Für N ∈ N und 1 ≤ j ≤ N setze Kj := {x ∈ M | f(x) ≥ N−1j} sowie
K0 := supp (f). Wir definieren Funktionen f1, . . . , fN ∈ Cc(M) durch

fj(x) =





0 x 6∈ Kj−1

f(x)−N−1(j − 1) x ∈ Kj−1 \Kj

N−1 x ∈ Kj

oder fj = min{max{f −N−1(j − 1), 0}, N−1}. Es gilt N−1χKj ≤ fj ≤ N−1χKj−1 , also

N−1µ(Kj) ≤
∫

M

fj dµ ≤ N−1µ(Kj−1).

Da fj ∈ Cc(M), gilt für ein offenes U ⊇ Kj−1 die Ungleichung I(fj) ≤ N−1µ(U). Wegen
(iii) und der äußeren Regularität ergibt sich

N−1µ(Kj) ≤ I(fj) ≤ N−1µ(Kj−1).

Mit f =
∑N

j=1 fj finden wir jetzt

N−1
N∑

j=1

µ(Kj) ≤
∫

M

f dµ ≤ N−1
N∑

j=1

µ(Kj−1),

N−1
N∑

j=1

µ(Kj) ≤ I(f) ≤ N−1
N∑

j=1

µ(Kj−1),

und
|I(f)−

∫

M

f dµ| ≤ N−1(µ(K0)− µ(KN )) ≤ N−1µ(supp (f)).

Weil aber µ(supp (f)) < ∞ ergibt sich mit N →∞ die Behauptung.

Übung 5.1.1 : Sei M ein lokal kompakter Hausdorffraum, N eine abgeschlossene Teilmenge von M und ν ein
Radon-Maß auf N . Zeige:
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(i) I(f) :=
∫

N
f |N dν ein positives lineares Funktional I : Cc(M) → C.

(ii) Das I induzierte Maß µ auf M ist durch µ(E) = ν(E ∩N) gegeben.

Übung 5.1.2 : Sei µ ein Radon-Maß auf M .

(i) Sei N die Vereinigung aller offenen Teilmengen U ⊆ X mit µ(U) = 0. Zeige: µ(N) = 0 und für jede offene
Teilmenge V ⊆ M mit V \N 6= ∅ gilt µ(V ) > 0. Man nennt M \N den Träger von µ und bezeichnet ihn
mit supp µ.

(ii) Zeige: Es gilt x ∈ supp µ genau dann, wenn
∫

M
f dµ = 0 für alle f ∈ Cc(M, [0, 1]) mit f(x) > 0.

Übung 5.1.3 : Sei M die Einpunktkompaktifizierung einer diskreten Mengen. Zeige: wenn µ ein Radon-Maß
auf M ist, dann ist supp µ abzählbar.

Übung 5.1.4 : Sei Rd die Menge R mit der diskreten Topologie und X := R × Rd mit der zugehörigen Pro-
dukttopologie. Zeige:

(i) Eine Funktion f : X → R ist genau dann in Cc(X), wenn fy ∈ Cc(R) und fy = 0 für alle bis auf endlich
viele y (hierbei ist fy(x) = f(x, y)).

(ii) Durch I(f) :=
∑

y∈R
∫
R fy wird ein positives lineares Funktional auf Cc(X) definiert.

(iii) Das zu I gehörige Radon-Maß µ erfüllt µ(E) = ∞ für alle E ⊆ X mit E ∩ (R×{y}) 6= ∅ für überabzählbar
viele y ∈ Rd.

(iv) Sei E = {0} × Rd. Dann gilt µ(E) = ∞, aber µ(K) = 0 für jede kompakte Teilmenge K von E.

5.2 Approximationseigenschaften

Sei (M, M, µ) ein Maßraum und (fn)n∈N eine Folge meßbarer Funktionen fn : M → C. Man sagt,
(fn)n∈N konvergiert im Maß gegen eine meßbare Funktion f , geschrieben fn →µ f , falls

∀ε > 0 : µ
({

x ∈ M
∣∣ |fn(x)− f(x)| ≥ ε

}) →
n→∞

0.

Analog heißt (fn)n∈N Cauchy-Folge im Maß, falls

∀ε > 0 : µ
({

x ∈ M
∣∣ |fn(x)− fm(x)| ≥ ε

}) →
n,m→∞

0.

Wenn (fn)n∈N eine Folge in L1(M,C, µ) ist, dann sagt man (fn)n∈N konvergiert im L1-Sinn gegen
f ∈ L1, wenn

‖fn − f‖1 =
∫

M

|fn − f | dµ →
n→∞

0.

Proposition 5.2.1 : Wenn fn → f im L1-Sinn, dann konvergiert fn →µ f .

Beweis:

Idee: Betrachte An,ε =
{
x ∈ M

∣∣ |fn(x)− f(x)| ≥ ε
}
.

Setze An,ε =
{
x ∈ M

∣∣ |fn(x)− f(x)| ≥ ε
}
. Dann gilt

∫

M

|fn − f | dµ ≥
∫

An,ε

|fn − f | dµ ≥ εµ(An,ε).

Also hat man
µ(An,ε) ≤ ε−1‖fn − f‖1 →

n→∞
0,

was die Behauptung beweist.
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Satz 5.2.2 : Seien (M, M, µ) ein Maßraum und (fn)n∈N eine Cauchy-Folge im Maß. Dann gilt

(i) Es gibt eine meßbare Funktion f : M → C mit fn →µ f .

(ii) Es gibt eine Teilfolge (fnj
)j∈N die µ-fast überall gegen f konvergiert.

(iii) Wenn fn →µ g, dann gilt f = g µ-fast überall.

Beweis:

Idee: Konstruiere eine Teilfolge gj := fnj , für die Aj :=
{
x ∈ M

∣∣ |gj(x) − gj+1(x)| ≥ 2−j
}

die

Ungleichung µ(Aj) ≤ 2−j erfüllt und betrachte Fk :=
⋃∞

j=k Aj .

Wir wählen gj := fnj mit µ(Aj) ≤ 2−j für

Aj :=
{
x ∈ M

∣∣ |gj(x)− gj+1(x)| ≥ 2−j
}
.

Setze Fk :=
⋃∞

j=k Aj , dann gilt µ(Fk) ≤ ∑∞
j=k 2−j = 21−k. Für F :=

⋂
k∈N Fk folgt µ(F ) =

limk→∞ µ(Fk) = 0 mit Proposition 3.2.4.

Wenn x 6∈ Fk und i ≥ j ≥ k, findet man

(∗) |gj(x)− gi(x)| ≤
i−1∑

l=j

|gl+1(x)− gl(x)| ≤
i−1∑

l=j

2−l ≤ 21−j .

Also ist (gj)j∈N auf M \ F =
⋃

k∈NM \ Fk punktweise eine Cauchy-Folge. Wir setzen

f(x) :=

{
limj→∞ gj(x) x 6∈ F

0 x ∈ F
.

Dann liefert (∗) auch
∀x 6∈ Fk, j ≥ k : |gj(x)− f(x)| ≤ 22−j .

Wegen µ(Fk) −→
k→∞

0 folgt gj →µ f . Dann muß aber auch fn →µ f gelten, weil

{
x ∈ M

∣∣ |fn(x)−f(x)| ≥ ε
} ⊆ {

x ∈ M
∣∣ |fn(x)−gj(x)| ≥ ε

2
}∪{

x ∈ M
∣∣ |gj(x)−f(x)| ≥ ε

2
}
.

Damit sind (i) und (ii) bewiesen.

Für (iii) beachten wir, daß fn →µ g und

{
x ∈ M

∣∣ |f(x)− g(x)| ≥ ε
} ⊆ {

x ∈ M
∣∣ |f(x)− fn(x)| ≥ ε

2
}∪{

x ∈ M
∣∣ |fn(x)− g(x)| ≥ ε

2
}

die Identität µ({x ∈ M | |f(x) − g(x)| ≥ ε}) = 0 für alle ε > 0 zeigen. Mit ε = 1
k → 0 ergibt

sich f = g µ-fast überall.

Korollar 5.2.3 : Wenn fn → f in L1, dann gibt es eine Teilfolge (fnj )j∈N, die µ-fast überall gegen f
konvergiert.

Beweis:

Dies ist einfach eine Kombination von Proposition 5.2.1 und Satz 5.2.2.
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Satz 5.2.4 (Egorov): Sei (M, M, µ) ein Maßraum und µ endlich, sowie fn und f meßbare Funktio-
nen auf M . Wenn fn → f µ-fast überall, dann gibt es zu ε > 0 ein A ∈ M mit µ(A) ≤ ε und fn → f
gleichmäßig auf M \A.

Beweis:

Idee: Betrachte An(k) :=
⋃∞

m=n

{
x ∈ M

∣∣ |fm(x)− f(x)| ≥ k−1
}
.

Wir können o.B.d.A. annehmen, daß fn → f punktweise gilt. Für k, n ∈ N setze

An(k) :=
∞⋃

m=n

{
x ∈ M

∣∣ |fm(x)− f(x)| ≥ k−1
}
.

Für festes k ist die Folge (An(k))n∈N monoton fallend und es gilt
⋂

n∈NAn(k) = ∅. Weil aber
µ(M) < ∞ können wir mit Proposition 3.2.4 schließen, daß µ(An(k)) −→

n→∞
0.

Für ε > 0 und k ∈ N wählen wir jetzt nk so groß, daß µ
(
Ank

(k)
)

< ε2−k und setzen

A :=
⋃

k∈N
Ank

(k).

Dann gilt µ(A) < ε und wir haben

∀n > nk, x 6∈ A : |fn(x)− f(x)| < k−1.

Also konvergiert fn → f gleichmäßig auf M \A.

Lemma 5.2.5 : Sei M ein lokal kompakter Raum und µ ein Radon-Maß auf M . Dann ist µ auf allen
σ-endlichen Mengen von innen regulär.

Beweis:

Idee: Zeige zunächst die Regularität auf Mengen von endlichem Maß.

Sei µ(A) < ∞ und ε > 0. Dann gibt es eine offene Umgebung U ⊇ A mit µ(U) < µ(A) + ε
und eine kompakte Teilmenge B ⊆ U mit µ(B) > µ(U) − ε. Wegen µ(U \ A) < ε finden
wir auch eine offene Umgebung V ⊇ U \ A mit µ(V ) < ε. Dabei können wir annehmen, daß
V ⊆ U . Dann erfüllt die kompakte Menge K := B \ V ⊆ A

µ(K) = µ(B)− µ(B ∩ V ) > µ(A)− ε− µ(V ) > µ(A)− 2ε.

Damit ist µ von innen regulär auf A.

Wenn µ(A) = ∞, aber A =
⋃

j∈NAj , wobei (Aj)j∈N eine aufsteigende Folge in BM mit
µ(Aj) < ∞ ist, dann gilt µ(Aj) −→

j→∞
∞. Also gibt zu N ∈ N ein j ∈ N mit µ(Aj) > N und

der erste Teil des Beweises liefert eine kompakte Teilmenge K ⊆ Ej mit µ(K) > N . Damit
ist also µ auch auf so einem A von innen regulär.

Lemma 5.2.6 : Sei M lokal kompakt und µ ein σ-endliches Radon-Maß auf (M, BM ). Zu A ∈ BM

und ε > 0 gibt es eine offene Umgebung U von A und eine abgeschlossene Teilmenge F von A mit
µ(U \ F ) < ε.
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Beweis:

Idee: Überdecke Mengen Ai endlichen Maßes durch offene Mengen Ui so, daß die Reihe
∑

i µ(Ui\Ai)

konvergiert. Für abgeschlossene Menge argumentiere via Komplementbildung.

Schreibe A als disjunkte Vereinigung A =
⋃

j∈NAj mit µ(Aj) < ∞. Zu jedem Aj findet man
eine offene Umgebung Uj mit µ(Uj) < µ(Aj) + ε2−j−1 und setzt U :=

⋃
j∈N Uj . Dann ist U

offene Umgebung von A mit

µ(U \A) < ε
∑

j∈N
2−j−1 =

ε

2
.

Dasselbe Argument, angewandt auf M \ A, liefert eine offene Umgebung V von M \ A mit
µ(V ∩A) ≤ ε

2 . Für F := M \ V gilt dann F ⊆ A und

µ(U \ F ) = µ(U \A) + µ(A \ F ) = µ(U \A) + µ(A ∩ V ) < ε.

Satz 5.2.7 : Sei M lokal kompakt und jede offene Teilmenge von M sei abzählbare Vereinigung von
kompakten Mengen. Dann ist jedes Borel-Maß ist regulär und insbesondere ein Radon-Maß.

Beweis:

Idee: Konstruiere ein positives lineares Funktional aus µ und benütze die Regularitätseigenschaften

des zugehörigen Radon-Maßes ν.

Sei µ ein Borel-Maß. Da dann µ auf allen kompakten Mengen endlich ist, gilt Cc(M) ⊆
L1(M, µ) und I(f) =

∫
M

f dµ definiert ein positives lineares Funktional auf Cc(M). Sei ν
das nach dem Rieszschen Darstellungssatz 5.1.2 zugehörige Radon-Maß. Wenn U ⊆ M offen
ist, dann kann man es nach Voraussetzung als abzählbare Vereinigung U =

⋃
j∈NKj von

kompakten Mengen Kj schreiben. Wähle mit dem Lemma von Urysohn f1 ∈ Cc(M) mit
supp (f1) ⊆ U und f |K1 ≡ 1. Dann definiert man induktiv fn ∈ Cc(M) mit supp (fn) ⊆ U
und f |⋃n

j=1 Kj∪
⋃n−1

j=1 supp (fj)
≡ 1. Dann konvergieren die fn monoton und punktweise gegen

χU . Der Satz 2.2.4 von der monotonen Konvergenz liefert

µ(U) = lim
n→∞

∫

M

fn dµ = lim
n→∞

∫

M

fn dν = ν(U).

Wenn jetzt A ∈ BM und ε > 0, dann finden wir mit Lemma 5.2.6 eine offene Umgebung V
von A und eine abgeschlossene Teilmenge F ⊆ A mit ν(V \ F ) < ε. Da aber V \ F offen ist,
folgt µ(V \ F ) < ε. Insbesondere haben wir µ(V ) ≤ µ(A) + ε, was die äußere Regularität von
µ beweist. Wegen µ(F ) ≥ µ(A)− ε und der Tatsache, daß F sich als abzählbare Vereinigung
von kompakten Mengen schreiben läßt (das gilt für M statt F und dann schneidet man die
kompakten Mengen mit F ), erhalten wir auch die innere Regularität von µ.

Lemma 5.2.8 : Sei M ein lokal kompakter Raum und µ ein Radon-Maß auf M . Dann ist Cc(M) dicht
in L1(M, µ).

Beweis:
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Idee: Benütze Lemma 5.2.5 und das Lemma von Urysohn um charakteristische Funktionen zu

approximieren.

Kombiniert man Lemma 2.2.3 mit dem Satz 2.2.4 von der monotonen Konvergenz, so sieht
man (nach Aufteilung in Real- und Imaginärteil sowie anschließend in positive und negative
Teile), daß die einfachen Funktionen dicht in L1(M, µ) sind, also genügt es zu zeigen, daß für
jedes E ∈ BM mit µ(E) < ∞ die charakteristische Funktion χE in L1(M, µ) durch Elemente
von Cc(M) approximiert werden kann. Mit Lemma 5.2.5 finden wir eine kompakte Teilmenge
K ⊆ E und eine offene Umgebung U ⊇ E mit µ(U \K) < ε. Das Lemma von Urysohn liefert
dann eine stetige Funktion f : M → [0, 1] mit kompaktem Träger supp (f) ⊆ U und f |K ≡ 1.
Dies zeigt χK ≤ f ≤ χU und daher

‖χE − f‖1 ≤ µ(U \K) < ε.

Satz 5.2.9 (Lusin): Sei M ein lokal kompakter Raum und µ ein Radon-Maß auf M . Weiter sei
f : M → C eine meßbare Funktion, für die gilt µ({x ∈ M | f(x) 6= 0}) < ∞. Dann gibt es zu jedem ε > 0
ein ϕ ∈ Cc(M) mit

µ({x ∈ M | f(x) 6= ϕ(x)}) < ε.

Wenn f beschränkt ist, kann man ϕ so wählen, daß

‖ϕ‖∞ ≤ ‖f‖∞.

Beweis:

Idee: Approximiere f durch eine Folge stetiger Funktionen und betrachte eine hinreichend große

Menge, auf der die Konvergenz gleichmäßig ist.

Wir setzen E := {x ∈ M | f(x) 6= 0} und nehmen zunächst an, daß f beschränkt ist.
Dann gilt f ∈ L1(M,µ) und Lemma 5.2.8 zeigt, daß es eine Folge (gn)n∈N in Cc(M) gibt, die
in L1(M,µ) gegen f konvergiert. Mithilfe von Korollar 5.2.3 können wir annehmen (durch
Übergang zu einer Teilfolge), daß (gn)n∈N µ-fast überall gegen f konvergiert. Jetzt wenden
wir Egorovs Satz 5.2.4 an und finden eine Teilmenge A ⊆ E auf der (gn)n∈N gleichmäßig
gegen f konvergiert und für die gilt µ(E \A) < ε

3 .

Außerdem liefert Lemma 5.2.5 eine kompakte Teilmenge B ⊆ A und eine offene Umgebung
U ⊇ E mit

µ(A \B) <
ε

3
und µ(U \ E) <

ε

3
.

Da gn → f auf B gleichmäßig konvergiert und B kompakt ist, ist f |B stetig. Der Fortset-
zungsatz ?? von Tietze liefert uns eine Funktion g ∈ Cc(M) mit g|B = f |B und supp (g) ⊆ U .
Also gilt

{x ∈ M | f(x) 6= g(x)} ⊆ U \B

und letztere Menge hat Maß kleiner als ε.

Bleibt im Falle eines beschränkten f noch die Normabschätzung zu zeigen. Dazu betrachte
die stetige Funktion β : C→ C, die durch

β(z) :=

{
z |z| ≤ ‖f‖∞
z
|z|‖f‖∞ |z| > ‖f‖∞

definiert ist. Dann erfüllt ϕ := β ◦ g die Ungleichung ‖ϕ‖∞ ≤ ‖f‖∞, und es gilt ϕ = f auf
der Menge {x ∈ M | f(x) = g(x)}.
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Wenn f nicht beschränkt ist, setze An := {x ∈ M | 0 < |f(x)| ≤ n}. Dann ist (An)n∈N eine
monoton steigende Folge mit

⋃
n∈NAn = E. Also gibt es zu ε > 0 ein n ∈ Nmit µ(E\An) < ε

2 .
Der erste Teil des Beweises liefert ein ϕ ∈ Cc(M) mit ϕ = fχAn außerhalb einer Menge vom
Maß kleiner ε

2 . Damit ist also ϕ = f außerhalb einer Menge vom Maß kleiner ε.

Übung 5.2.1 : Sei (M,M, µ) ein Maßraum und fn, f : M → C meßbar für n ∈ N. Zeige, daß folgende Bedin-
gungen äquivalent sind:

(1) fn −→µ f .

(2) Zu jedem ε > 0 gibt es ein N ∈ N mit

∀n ≥ N : µ
({

x ∈ M
∣∣ |fn(x)− f(x)| ≥ ε

}
< ε

gegeben.

Übung 5.2.2 : Sei (M,M, µ) ein Maßraum sowie fn und f meßbare Funktionen auf M . Weiter sei g : M → R
integrierbar mit |fn| ≤ g für alle n ∈ N. Zeige: Wenn fn → f µ-fast überall, dann gibt es zu ε > 0 ein A ∈ M mit
µ(A) ≤ ε und fn → f gleichmäßig auf M \A.

Übung 5.2.3 : Sei (M,M, µ) ein Maßraum mit endlichem µ und f : M × [0, 1] → C eine Funktion, für die
f(·, y) : M → C meßbar ist für jedes y ∈ [0, 1] sowie f(x, ·) : [0, 1] → C stetig für jedes x ∈ M . Zeige:

(i) Für 0 < ε, δ < 1 ist die Menge

Eε,δ :=
{
x ∈ M

∣∣ |f(x, y)− f(x, 0)| ≥ ε für alle y < δ
}

meßbar.

(ii) Für jedes ε > 0 gibt es eine meßbare Teilmenge E ⊆ M mit µ(E) < ε und f(·, y) −→
y→0

f(·, 0) gleichmäßig

auf M \ E.

Übung 5.2.4 : Sei µ ein Radon-Maß auf einem lokal kompakten Hausdorffraum M und φ ∈ C(M, [0,∞[). Zeige:
Durch ν(E) :=

∫
E

φ dµ wird ein Radon-Maß ν auf M definiert. Hinweis: betrachte das Funktional f 7→ ∫
M

fφdµ.

5.3 Der Satz von Bochner

Eine stetige Funktion f : Rn → C heißt positiv definit, wenn für jede endlich Auswahl x1, . . . , xN

von Punkten in Rn die Matrix (aij)i,j=1,...,N mit

aij = f(xi − xj)

positiv semidefinit ist.

Beispiel 5.3.1 : Die Exponentialfunktionen f : Rn → C mit f(x) = eix·h, wobei h ∈ Rn fest gewählt
und x · h das euklidische innere Produkt von x und h ist, ist positiv definit. Um das zu sehen, rechnet
man

N∑

j=1

N∑

k=1

ei(xj−xk)·hzjzk =
N∑

j=1

N∑

k=1

eixj ·hzjeixk·hzk =
∣∣∣

N∑

j=1

eixj ·hzj

∣∣∣
2

≥ 0.
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Bemerkung 5.3.2 : Sei f : Rn → C positiv definit. Wähle x1 = 0 und x2 = x. Dann ist die zugehörige
positiv semidefinite Matrix gleich

A =
(

f(0) f(−x)
f(x) f(0)

)

Da A insbesondere hermitesch ist, gilt f(−x) = f(x). Nach dem Sylvesterschen Trägheitssatz hat A nur

nichtnegative Eigenwerte, also gilt 0 ≤ det(A) = f(0)2 − f(x)f(−x). Der Test gegen den Vektor
(

1
0

)

zeigt f(0) ≥ 0. Also folgt
f(0) ≥ |f(x)|.

Bemerkung 5.3.3 : Sei µ ein endliches Radon–Maß auf Rn. Dann gilt
∫

Rn

f dµ −→
‖f‖∞→0

0.

Insbesondere ist µ, betrachtet als lineares Funktional auf dem Schwartzraum S(Rn) stetig, d.h., eine
temperierte Distribution. Daher kann man die Fourier–Transformierte µ̂ eines endlichen Radon–Maßes
µ betrachten. Mit dem Satz 2.4.5 berechnet sie sich durch

〈µ̂, ϕ〉 = 〈µ, ϕ̂〉
=

∫

Rn

∫

Rn

ϕ(x)e−2πix·ξdx dµ(ξ)

=
∫

Rn

ϕ(x)
∫

Rn

e−2πix·ξdµ(ξ) dx

d.h., sie ist durch die temperierte (sogar beschränkte) Funktion

x 7→
∫

Rn

e−2πix·ξdµ(ξ)

gegeben, die wir ebenfalls mit µ̂ bezeichnen (vgl. Beispiel A.4.1).

Satz 5.3.4 (Bochner): Sei f : Rn → C eine Funktion. Dann sind die folgenden Aussagen äquivalent:

(1) f ist positiv definit.

(2) Es existiert ein endliches Radon-Maß µ mit

f(x) =
∫

Rn

e−iξ·x dµ(ξ) ∀x ∈ Rn.

Beweis:

”(2)⇒(1)“: Die Stetigkeit von f folgt sofort aus Satz 2.4.6(i) aus der Stetigkeit der beschränkten
Funktion (x, ξ) 7→ e−ix·ξ. Die Rechnung aus Beispiel 5.3.1 läßt sich ebenfalls unter das
Integral ziehen:

N∑

j=1

N∑

k=1

zjzk

∫

Rn

ei(xj−xk)·ξ dµ(ξ) =
∫

Rn




N∑

j=1

zje
ixj ·ξ







N∑

k=1

zkeixk·ξ


 dµ(ξ)

=
∫

R

∣∣∣
N∑

j=1

zje
ixj ·ξ

∣∣∣
2

dµ(ξ)

≥ 0.



88 KAPITEL 5. RADON-MASSE

”(1)⇒(2)“: Sei ϕ ∈ S(Rn) eine Schwartzfunktion. Nach Bemerkung 5.3.2 ist f beschränkt. Da ϕ
nach Bemerkung A.2.4 integrierbar ist, ist auch die Funktion

(x, y) 7→ f(x− y)ϕ(x)ϕ(y)

integrierbar. Für M ∈ N zerlege den Würfel ]−M, M ]n in Würfel W1, . . . , WN , die Trans-
late von ]− 1

M , 1
M ] sind. Die Mittelpunkte dieser Würfel seien mit x1, . . . , xN bezeichnet.

Weiter sei fM die Funktion, die auf jedem Würfel Wj konstant mit dem Wert f(xj) ist.
Analog definiert man die Funktionen ϕM . Dann konvergieren die fM punktweise gegen
f sowie die ϕM gegen ϕ und der Satz 2.4.4 von der dominierten Konvergenz zeigt, daß

∫

Rn

∫

Rn

f(x− y)ϕ(x)ϕ(y) dx dy = lim
M→∞

N∑

j=1

N∑

k=1

f(xj − xk)ϕ(xj)ϕ(xk)volWjvolWk ≥ 0,

wobei volWj = 2n

Mn das Volumen von Wj ist. Mit dem Satz 2.4.5 von Fubini ergibt sich
über die Substitution z = x− y (wegen der Translationsinvarianz des Lebesgue-Maßes)

0 ≤
∫

Rn

f(z)
∫

Rn

ϕ(x)ϕ(x− z) dx dz =
∫

Rn

f(z) (ϕ ∗ ϕ̃) (z) dz,

wobei ϕ̃(z) = ϕ(−z) ist und ϕ ∗ ϕ̃ die Faltung von ϕ und ϕ̃. Nach Bemerkung A.2.5 gilt
ϕ ∗ ϕ̃ ∈ S(Rn), deren Fourier–Transformierte nach Satz A.3.2 durch

(ϕ ∗ ϕ̃)∧ = ϕ̂ ˆ̃ϕ = ϕ̂ ϕ̂ = |ϕ̂|2

ist. Wir betrachten die Funktion f ∈ L1(Rn) gemäß Beispiel A.4.1 als temperierte Dis-
tribution. Mit der Fourier–Inversionsformel aus Bemerkung A.4.10 ergibt sich also

0 ≤ 〈f, ϕ ∗ ϕ̃〉 = 〈(f̌)∧, ϕ ∗ ϕ̃〉 = 〈f̌ , |ϕ̂|2〉.
Da ϕ eine beliebige Schwartzfunktion war und die Fouriertransformation nach Korollar
A.3.9 ein Automorphismus von S(Rn) ist, finden wir, daß

0 ≤ 〈f, |ψ|2〉

für alle ψ ∈ S(Rn). Sei jetzt g(x) = e−π|x|2 die Gauß–Funktion (vgl. Beispiel A.3.5),
0 ≤ h ∈ C∞c (Rn) und ε > 0. Dann ist h+ ε2g ∈ S(Rn) strikt positiv. Mit der Kettenregel
sieht man, daß ψ =

√
h + ε2g ∈ C∞(Rn), aber da ψ(x) außerhalb des Trägers von h

mit
√

g(x) = e−
π
2 |x|2 übereinstimmt, gilt sogar ψ ∈ S(Rn). Da ε > 0 beliebig gewählt

werden kann, liefert die sich ergebende Ungleichung

0 ≤ 〈f̌ , |ϕ̂|2〉 = 〈f̌ , h〉+ ε2〈f̌ , g〉,
daß 0 ≤ 〈f̌ , h〉 für alle 0 ≤ h ∈ C∞c (Rn). Beachte, daß f̌ nach dem Riemann-Lebesgue-
Lemma A.3.3 insbesondere temperiert ist. Also gilt nach Beispiel A.4.1, daß

〈f̌ , h〉 :=
∫

Rn

f̌h.

Aber nach dem Satz von Stone-Weierstraß (angewendet auf eine feste kompakte Teil-
menge von Rn) ist C∞c (Rn) dicht in Cc(Rn) bzgl. der gleichmäßigen Konvergenz, woraus
man ableitet, daß 0 ≤ 〈f̌ , h〉 für alle 0 ≤ h ∈ Cc(Rn).
Nach dem Rieszschen Darstellungssatz 5.1.2 bedeutet das aber gerade, daß f̌ durch ein
Radon–Maß µ via

〈f̌ , h〉 =
∫

Rn

h dµ

gegeben ist. Mit Bemerkung 5.3.3 erhalten wir

f(x) = (f̌)∧(x) = µ̂(x) =
∫

Rn

e−2πix·ξdµ(ξ),
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falls wir zeigen können, daß µ endlich ist.
Sei η := g ∗ g̃. Dann ist η̂ = |ĝ|2 = g2 = η̌ positiv und integrierbar, definiert also ein
endliches Radon-Maß. Nach dem ersten Teil des Beweises ist dann η = (η̌)∧ positiv
definit. Nach Beispiel A.3.5 gilt

η(x) = 2−
n
2 e−

π
2 |x|2 .

Betrachte die Familie

ηt(x) = t−nη
(

x
t

)
= (2t2)−

n
2 e−

π
2t2

|x|2

von dilatierten Funktionen für t > 0. Die Fourier–Transformierten dieser Funktionen
sind also durch

η̂t(ξ) = e−2t2π|ξ|2

gegeben, also insbesondere positiv und integrierbar. Damit sind die ηt positiv definit,
was man aber auch direkt aus der positiven Definitheit von η hätte ableiten können.
Beachte, daß nach Beispiel A.3.5 und Satz A.1.6 gilt

∫

Rn

ηt(x) dx = 1.

Es folgt

f(0) ≥
∫

Rn

f(x)ηt(−x) dx

= 〈f, η̃t〉
= 〈f̌ , η̂t〉
=

∫

Rn

|η̂t|2 dµ

=
∫

Rn

e−2t2π|ξ|2 dµ(ξ).

Da aber ξ 7→ e−2t2π|ξ|2 für t → 0 gleichmäßig auf Kompakta gegen 1 konvergiert, ergibt
sich µ(K) ≤ f(0) für jedes Kompaktum K ⊆ Rn. Da µ regulär ist, folgt die Behauptung.

5.4 Das Haarsche Maß

G bezeichne eine lokalkompakte topologische Gruppe, Cc(G) den Raum der stetigen Funktionen auf
G mit kompaktem Träger

supp (f) = {x ∈ G : f(x) 6= 0}
und C+

c (G) darin den Kegel der nicht-negativen Funktionen. Wir definieren eine Norm auf Cc(G) durch
||f || := max{|f(g)| : g ∈ G}. Die Gruppe G wirkt auf dem Raum Cc(G) durch

G× Cc(G) → Cc(G), (g, f) 7→ λg(f) := f ◦ λg−1

und durch
G× Cc(G) → Cc(G), (g, f) 7→ ρg(f) := f ◦ ρg,

wobei λg(h) = gh und ρg(h) = hg ist.
Angesichts des Rieszschen Darstellungssatzes 5.1.2 bezeichnen wir ein lineares Funktional µ auf Cc(G),

das auf C+
c (G) nicht-negativ ist, d.h.

µ(f) ≥ 0 ∀f ∈ C+
c (G),
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als ein positives Maß auf G. Man schreibt dann auch
∫

G

f(x)dµ(x) := µ(f).

Ein positives Maß µ auf G heißt linksinvariant, wenn
∫

G

f(gx)dµ(x) =
∫

G

f(x)dµ(x) ∀g ∈ G

und rechtsinvariant, wenn
∫

G

f(xg)dµ(x) =
∫

G

f(x)dµ(x) ∀g ∈ G.

Ein links- bzw. rechtsinvariantes positives Maß µ auf G heißt links- bzw. rechtsinvariantes Haarsches
Maß , wenn µ(f) > 0 für f ∈ C+

c (G) \ {0} gilt.

Wir setzen nun K := Cc(G),K+ := C+
c (G) und K∗

+ := K+ \ {0}. Für eine kompakte Teilmenge
C ⊆ G bezeichnen wir mit Cc(C) die Menge aller Funktionen in K, deren Träger in C enthalten ist und
setzen K∗

+(C) := Cc(C) ∩K∗
+.

Lemma 5.4.1 : Für g ∈ K∗
+ und f ∈ K existieren s1, . . . , sn ∈ G, so daß f ≤ ∑n

i=1 ciλsi
(g).

Beweis:

Sei U eine offene Teilmenge von G mit infs∈U g(s) > 0. Dann kann man supp (f) mit endlich
vielen Mengen der Gestalt sU überdecken und erhält damit die Behauptung für hinreichend
große ci.

Lemma 5.4.2 : Sei (f : g) das Infimum der Zahlen
∑n

i=1 ci für alle Systeme (c1, . . . , cn, s1, . . . , sn) mit
f ≤ ∑n

i=1 ciλsi(g). Dann gelten folgende Aussagen :

(i)
(
λsf : g) = (f : g) ∀f ∈ K, g ∈ K∗

+, s ∈ G.

(ii)
(
rf : g) = r(f : g) ∀f ∈ K, g ∈ K∗

+, r ∈ R+.

(iii)
(
(f + f ′) : g

) ≤ (f : g) + (f ′ : g) ∀f, f ′ ∈ K, g ∈ K∗
+.

(iv) (f : g) ≥ sup(f)/ sup(g) ∀f ∈ K, g ∈ K∗
+.

(v) (f : h) ≤ (f : g)(g : h) ∀f ∈ K, g, h ∈ K∗
+.

(vi) 0 < 1
(f0:f) ≤ (f :g)

(f0:g) ≤ (f : f0) ∀f, f0, g ∈ K∗
+.

(vii) Seien f, f ′, h ∈ K+ mit h(s) ≥ 1 im Träger von (f + f ′) und ε > 0. Dann existiert eine kompakte
Einsumgebung V von 1 in G, so daß

(f : g) + (f ′ : g) ≤ (
(f + f ′) : g

)
+ ε(h : g) ∀g ∈ K∗

+(V ).

Beweis:

Die Eigenschaften (i) bis (iii) sind evident.

(iv) Ist f ≤ ∑
i ciλsi(g) mit ci ≥ 0, so gilt

sup f ≤ (
∑

i

ci) sup g.
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(v) Ist f ≤ ∑
i ciλsi

(g) und g ≤ ∑
j djλtj

(h) mit ci, dj ≥ 0, so ist

f ≤
∑

i,j

cidjλsitj (h)

und somit (f : h) ≤ ∑
i,j cidj = (

∑
i ci)(

∑
j dj).

(vi) Hierzu wendet man (v) auf f0, f, g an.

(vii) Wir setzen F := f + f ′ + 1
2εh. Die Funktionen φ, φ′, die auf dem Träger von f + f ′

mit f/F , f ′/F übereinstimmen und außerhalb verschwinden, gehören zu K∗
+. Also sind sie

gleichmäßig stetig (Übung 5.4.1) und wir finden zu jedem η > 0 eine Einsumgebung V ⊆ G,
so daß

|φ(x)− φ(y)| ≤ η, |φ′(x)− φ′(y)| ≤ η, für y ∈ xV.

Sei nun g ∈ K∗
+(V ). Dann gilt φλs(g) ≤ (

φ(s) + η
)
λs(g) und φ′λs(g) ≤ (

φ′(s) + η
)
λs(g)

(Nachweis !). Sind c1, ..., cn ≥ 0 und s1, ..., sn ∈ G mit F ≤ ∑
i ciλsi

(g), so haben wir

f = φF ≤
∑

i

ciφλsi
g ≤

∑

i

ci

(
φ(si) + η

)
λsi

g

und ebenso für f ′. Damit ist

(f : g) + (f ′ : g) ≤
∑

i

ci

(
φ(si) + φ′(si) + 2η

) ≤ (1 + 2η)
∑

i

ci,

da φ + φ′ ≤ 1. Mit der Definition von F und (ii), (iii) und (v) schließen wir nun

(f : g) + (f ′ : g) ≤ (1 + 2η)(F : g)

≤ (1 + 2η)
(
((f + f ′) : g) +

1
2
ε(h : g)

)

≤ ((f + f ′) : g) +
1
2
ε(h : g) + 2η((f + f ′) : h)(h : g) + εη(h : g).

Hieraus folgt (vii) sofort, wenn man η ausreichend klein wählt.

Satz 5.4.3 : Auf einer lokalkompakten Gruppe existiert ein linksinvariantes und ein rechtsinvariantes
Haar’sches Maß.

Beweis:

Die Familie der Obermengen der Mengen K∗
+(V ) für V ∈ U(1) bilden einen Filter auf K∗

+.
Sei F ein feinerer Ultrafilter und f0 ∈ K∗

+ fest. Für f ∈ K∗
+ setzen wir

Ig(f) :=
(f : g)
(f0 : g)

und α : K∗
+ → [

1
(f0 : f)

, (f : f0)], g 7→ Ig(f)

(Lemma 5.4.2(vi)). Dann ist α(F) ein Ultrafilter auf dem kompakten Raum [ 1
(f :f0)

, (f : f0)]
(Satz B.6.9) und daher existiert I(f) := lim α(F) (Satz B.6.11) und der Limes ist eindeutig, da
Intervalle separiert sind. Nach iii) ist I(f +f ′) ≤ I(f)+I(f ′) und mit vii) folgt I(f)+I(f ′) ≤
I(f + f ′) + εI(h) für ε > 0 und für jede Funktion h ∈ K∗

+ mit h|supp (f+f ′) = 1. Die Existenz
so einer Funktion folgt aus dem Lemma von Urysohn. Also ist I(f + f ′) = I(f) + I(f ′). Ist
nun f ∈ K, so setzen wir zunächst f+ := max(0, f) und f− := f+ − f . Wir definieren nun
I(0) = 0 und I(f) := I(f+) − I(f−). Dadurch wird auf K ein lineares Funktional definiert
(Übung). Nach Lemma 5.4.2(i) gilt sogar

I(λgf) = I(f) ∀g ∈ G, f ∈ K

und damit ist I ein linksinvariantes Haarsches Maß. Die Existenz eines rechtsinvarianten
Haarschen Maßes folgt aus der Existenz des linksinvarianten für die Gruppe Gop = (G, ∗) mit
dem Produkt x ∗ y = yx.
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Unser nächstes Ziel ist es, die Eindeutigkeit bis auf einen positiven Faktor zu zeigen.

Lemma 5.4.4 : Sei µ ein positives Maß auf G. Dann gelten folgende Aussagen :

(i) µ(f) ≤ µ(f ′) für f, f ′ ∈ Cc(G) mit f ≤ f ′.

(ii) |µ(f)| ≤ µ(|f |) für f ∈ K.

(iii) Zu jeder kompakten Teilmenge V ⊆ G existiert ein CV > 0 mit

|µ(f)| ≤ CV ||f || ∀f ∈ Cc(V ).

Beweis:

(i) Das folgt aus µ(f ′)− µ(f) = µ(f ′ − f) ≥ 0.

(ii) Aus (i) folgt µ(f) ≤ µ(|f |) und −µ(f) = µ(−f) ≤ µ(|f |) und damit die Behauptung.

(iii) Nach Satz A.42 finden wir h ∈ K+ mit h|V = 1. Für f ∈ Cc(V ) ist daher |f | ≤ ||f ||h.
Also gilt

|µ(f)| ≤ µ(|f |) ≤ ||f ||µ(h).

Lemma 5.4.5 : Sind V, V1, V2 ⊆ G kompakt mit V V1 ∪ V1V
−1 ⊆ V2, so ist sind die Abbildungen

V × (
Cc(V1), || · ||

) → (
Cc(V2), || · ||

)
, (g, f) 7→ λgf

und
V × (

Cc(V1), || · ||
) → (

Cc(V2), || · ||
)
, (g, f) 7→ ρgf

stetig.

Beweis:

Wegen supp (λgf) = g supp (f) ist λgf ∈ Cc(V2) für f ∈ Cc(V1). Sei nun ε > 0 und (g, f) ∈ V×
Cc(V1). Da f gleichmäßig stetig ist (Übung 5.4.1), finden wir eine symmetrische Einsumgebung
W ⊆ G mit

|f(y−1x)− f(x)| ∀y ∈ W,x ∈ G.

Ist nun (g′, f ′) ∈ V × Cc(V1) mit g′ ∈ Wg und ||f − f ′|| ≤ ε, so folgt

||λg′f
′ − λgf || ≤ ||λg′(f ′ − f)||+ ||λg′f − λgf || ≤ ε + ε = 2ε.

Die zweite Behauptung folgt analog.

Lemma 5.4.6 : Sei h ∈ Cc(G × G) mit supp (h) ⊆ V × V für eine kompakte Menge V ⊆ G. Dann
gelten folgende Aussagen :

(i) Die Abbildungen
G → Cc(V ), g 7→ (

x 7→ h(g, x)
)

und
G → Cc(V ), g 7→ (

x 7→ h(x, g)
)

sind stetig.
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(ii) (Fubini) Sind µ und µ′ positive Maße auf G, so sind die Funktionen g 7→ ∫
G

h(x, g) dµ(x) und
g 7→ ∫

G
h(g, x) dµ′(x) stetig mit

∫

G

∫

G

h(x, y) dµ(x)dµ′(y) =
∫

G

∫

G

h(x, y) dµ′(y)dµ(x).

Beweis:

(i) Das folgt sofort aus der gleichmäßigen Stetigkeit von h (Übung 5.4.1).

(ii) Die Stetigkeit der beiden Funktionen folgt aus (i) und Lemma 5.4.4 Damit sind beide
Doppelintegrale wohldefiniert, da die Träger beider Funktionen wieder in V liegen. Nach
Lemma 5.4.4 sind die linearen Abbildungen

α : Cc(V × V ) → R, f 7→
∫

G

∫

G

f(x, y) dµ(x)dµ′(y)

und
β : Cc(V × V ) → R, f 7→

∫

G

∫

G

f(x, y) dµ′(y)dµ(x)

beide stetig bzgl. ||f || := max{|f(x, y)| : x, y ∈ V }. Wie man sofort sieht, stimmen sie auf den
Funktionen der Gestalt f(x, y) = f1(x)f2(y) überein. Nach dem Satz von Stone-Weierstraß
liegt der von diesen Funktionen aufgespannte Untervektorraum dicht in Cc(V × V ). Daher
stimmen die beiden stetigen Funktionen α und β sogar auf Cc(V × V ) überein.

Satz 5.4.7 : Sind µ und µ′ linksinvariante Haarsche Maße auf G, so existiert λ > 0 mit µ′ = λµ.

Beweis:

Sei f ∈ K mit µ(f) 6= 0. Nach Lemma 5.4.4 und Lemma 5.4.5 ist die Funktion

Df : G → R, s 7→ 1
µ(f)

∫

G

f(ts) dµ′(t)

stetig. Sei g ∈ K. Die Funktion (s, t) 7→ f(s)g(t−1s) hat kompakten Träger in G × G. Wir
setzen ǧ(x) := g(x−1). Damit folgt

µ(f)µ′(ǧ) =
∫

G

f(s) dµ(s)
∫

G

g(t−1) dµ′(t)

=
∫

G

f(s) dµ(s)
∫

G

g(t−1s) dµ′(t) Linksinvarianz von µ′

=
∫

G

∫

G

f(s)g(t−1s) dµ′(t) dµ(s)

=
∫

G

∫

G

f(s)g(t−1s) dµ(s) dµ′(t) Fubini

=
∫

G

∫

G

f(ts)g(s) dµ(s) dµ′(t) Linksinvarianz von µ

=
∫

G

g(s)
∫

G

f(ts) dµ′(t) dµ(s) Fubini

= µ(g · µ(f)Df ) = µ(f)µ(g ·Df ).

Also ist
µ′(g) = µ(ǧ ·Df ).



94 KAPITEL 5. RADON-MASSE

Aus Übung 5.4.2 folgt damit Df = Df ′ für f, f ′ ∈ K∗
+. Wir setzen D := Df . Hiermit ist

µ′(f) = D(1)µ(f) ∀f ∈ K∗
+

und damit für alle f ∈ K. Die Ungleichung D(1) > 0 folgt, weil µ′ ein linksinvariantes
Haarsches Maß ist.

Beispiel 5.4.8 :

(i) Auf den reellen Zahlen R definiert das Lebesgue-Maß ein Haarsches Maß.

(ii) Auf den ganzen Zahlen Z ist

µ(f) :=
∑

n∈Z
f(n) ∀f ∈ Cc(Z)

ein Haarsches Maß.

(iii) Auf dem Kreis R/Z definiert

µ(f) =
∫ 1

0

f(t + Z) dt ∀f ∈ C(R/Z)

ein Haarsches Maß.

(iv) Auf einer endlichen Gruppe (mit der diskreten Topologie) ist durch

µ(f) =
∑

g∈G

f(g)

ein Haarsches Maß gegeben.

Satz 5.4.9 : Sei µ ein linksinvariantes Haarsches Maß auf der lokalkompakten Gruppe G. Dann existiert
ein stetiger Homomorphismus

∆: G → R+
∗ := (R+ \ {0}, ·)

mit
µ ◦ ρg = ∆(g)µ ∀g ∈ G.

Beweis:

Zunächst ist
µ ◦ ρg(λxf) = µ(ρgλxf) = µ(λxρgf) = µ(ρgf) = µ ◦ ρg(f).

Also ist µ ◦ ρg ein linksinvariantes Haarsches Maß und es existiert ∆(g) ∈]0,∞[ mit µ ◦ ρg =
∆(g)µ. Sei f ∈ K∗

+. Dann ist

∆(g) =
1

µ(f)
µ(ρgf)

und nach Lemma 5.4.5 ist ∆ stetig. Die Homomorphie folgt sofort.

Man nennt die Funktion ∆ aus Satz 5.4.9 auch die modulare Funktion von G (sie hängt nicht von µ
ab). Eine lokalkompakte Gruppe G heißt unimodular, wenn ein linksinvariantes Haarsches Maß auf G
auch rechtsinvariant ist, d.h. wenn ∆(G) = {1} ist.
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Satz 5.4.10 :

(i) Kompakte Gruppen sind unimodular.

(ii) Abelsche lokalkompakte Gruppen sind unimodular.

(iii) Lokalkompakte Gruppen mit dichter Kommutatorgruppe G′ = (G,G) sind unimodular.

Beweis:

(i) In diesem Fall ist ∆(G) eine kompakte Untergruppe von R+
∗ und damit gleich {1}.

(ii) Klar, da ρgf = λg−1f für f ∈ Cc(G) und g ∈ G.

(iii) Die Untergruppe ∆
(
(G,G)

) ⊆ (R+
∗ ,R+

∗ ) = {1} ist dicht in ∆(G) und damit ist ∆(G) =
{1}.

Korollar 5.4.11 : Auf einer kompakten Gruppe G existiert genau ein biinvariantes Haarsches Maß µ
mit µ(1) = 1.

Beweis:

Das folgt aus Satz 5.4.10, dem Eindeutigkeitssatz und 1 ∈ K∗
+.

Wir nennen ein Haarsches Maß µ auf einer kompakten Gruppe G mit µ(G) = 1 ein normiertes
Haarsches Maß .

Eine der wichtigsten Anwendungen des Haarschen Maßes auf kompakten Gruppen ist die folgende

Satz 5.4.12 : (Weylscher Trick) Sei G eine kompakte Gruppe, V ein endlichdimensionaler Hilbertraum
mit dem Skalarprodukt (·, ·) und π : G → GL(V ) ein stetiger Homomorphismus. Dann existiert auf V ein
Skalarprodukt 〈·, ·〉, für das alle Abbildungen π(g) orthogonal sind.

Beweis:

Wir setzen
〈x, y〉 :=

∫

G

(
π(g)x, π(g)y

)
dµ(g) ∀x, y ∈ V

für ein normiertes Haarsches Maß µ auf G. Das Integral ist wohldefiniert, da alle Funktionen
g 7→ (

π(g)x, π(g)y
)

stetig sind. Man prüft sofort nach, daß 〈·, ·〉 symmetrisch und bilinear
ist. Für x = y ist 〈x, x〉 > 0, da der Integrand eine positive Funktion ist. Also ist 〈·, ·〉 ein
Skalarprodukt. Für g′ ∈ G ist

〈π(g′)x, π(g′)y〉 = 〈x, y〉
wegen der Linksinvarianz des Haarschen Maßes. Also sind die Abbildungen π(g) bzgl. 〈·, ·〉
alle orthogonal.

Übung 5.4.1 : Sei G eine lokalkompakte Gruppe und f ∈ Cc(G). Dann ist f gleichmäßig stetig in dem Sinne,
daß zu ε > 0 eine Einsumgebung V ⊆ G so existiert, daß

|f(x)− f(y)| ≤ ε für y ∈ xV.



96 KAPITEL 5. RADON-MASSE

Übung 5.4.2 : 2. Sei µ ein Haarsches Maß auf der lokalkompakten Gruppe G und h ∈ C(G) mit µ(fh) = 0 für
alle f ∈ Cc(G). Dann ist h = 0.
Hinweis: Ist f ∈ K∗

+, so ist auch µ(fh2) = 0. Man verwende nun Satz A.42, um für alle g ∈ G eine Funktion
f ∈ K∗

+ mit f(g) = 1 zu finden.

Übung 5.4.3 : Zeige, daß der Weylsche Trick für beliebige Hilberträume H funktioniert, wenn man nur vor-
aussetzt, daß die Funktionen

g 7→ π(g)y

für y ∈ H stetig sind.

Übung 5.4.4 : Sei G eine lokalkompakte Gruppe, µ ein linksinvariantes Haarsches Maß auf G und Cc(G) der
Raum der stetigen Funktionen mit kompaktem Träger auf G. Für f, h ∈ Cc(G) definiere man die Faltung

f ∗ h(g) :=

∫

G

f(gx−1)h(x) dµ(x)

und setze

||f ||1 :=

∫

G

|f(x)| dµ(x).

Man zeige:

(i) Mit dem Faltungsprodukt wird Cc(G) zu einer assoziativen R-Algebra.

(ii) Für f, h ∈ Cc(G) gilt ||f ∗ h||1 ≤ ||f ||1||h||1, d.h.
(
Cc(G), ∗, || · ||1

)
ist eine normierte Algebra.

(iii) Die Vervollständigung von Cc(G) bzgl. der Norm || · ||1 wird mit L1(G) bezeichnet. Man kann die Faltung
zu einer assoziativen Multiplikation auf L1(G) fortsetzen, so daß L1(G) zu einer Banachalgebra wird.

(iv) Man überlege sich, wie die Faltung auf einer endlichen Gruppe aussieht.

(v) Was ist L1(G) für eine diskrete Gruppe, z.B. für Z ?

Übung 5.4.5 : Wir behalten die Bezeichnungen aus Übung 5.4.4 bei. Auf Cc(G) betrachte man die Bilinearform

〈f, h〉 :=

∫

G

f(x)h(x) dµ(x).

Man zeige:

(i) Diese Bilinearform ist positiv definit auf Cc(G).

(ii) Die Vervollständigung von Cc(G) bzgl. der induzierten Norm

||f ||2 :=
√
〈f, f〉

bezeichnet man mit L2(G). Durch die Fortsetzung des Skalarprodukts auf L2(G) wird dieser Banachraum
zu einem Hilbertraum.

(iii) Man zeige, daß die Abbildungen λg : f 7→ f ◦λg−1 , Cc(G) → Cc(G) sich zu unitären Abbildungen von L2(G)
auf sich fortsetzen lassen.

Übung 5.4.6 : Zeige: das Haarsche Maß auf einer lokal kompakten Gruppe ist regulär.



Kapitel 6

Zeitmittel

6.1 Asymptotische Verteilungen und invariante Maße

Sei (M,ρ) ein metrischer Raum und f : M → M stetig. Für x ∈ M ist die Bahn unter f die
Menge {fk(x) | k ∈ N0}, wobei wir f0 := idX und fk := f ◦ fk−1 setzen. Für U ⊆ M betrachte die
Wiederkehrhäufigkeiten

FU (f, x, n) := ]{k ∈ N0 | 0 ≤ k ≤ n− 1; fk(x) ∈ U},

die sich mit der charakteristischen Funktion χU von U auch durch

FU (f, x, n) =
n−1∑

k=0

χU (fk(x))

ausdrücken läßt. Falls der Grenzwert limn→∞ 1
nFU (f, x, n) existiert, nennt man ihn die asymptotische

Dichte der Verteilung der Bahn von x unter f auf U und M \ U und bezeichnet ihn mit FU (f, x). Es
gilt dann

FU (f, x) = lim
n→∞

1
n

n−1∑

k=0

χU (fk(x)).

Der Ausdruck limn→∞ 1
n

∑n−1
k=0 χU (fk(x)) heißt auch das Zeitmittel oder Birkhoff-Mittel der Funktion

χU . Allgemein definiert man für eine Funktion ϕ : M → C das Zeitmittel Ix(ϕ) von ϕ in x durch

Ix(ϕ) := lim
n→∞

1
n

n−1∑

k=0

ϕ(fk(x))

falls der Limes existiert.

Proposition 6.1.1 : Wenn Ix(ϕ) für alle ϕ ∈ C(M,R) existiert, so gilt:

(i) Ix : C(M,R) → R ist R-linear.

(ii) |Ix(ϕ)| ≤ supy∈M |ϕ(y)|.
(iii) Ix(ϕ) ≥ 0, falls ϕ ≥ 0.

(iv) Ix(1) = 1.

(v) Ix(ϕ ◦ f) = Ix(ϕ) = If(x)(ϕ), falls ϕ beschränkt ist.

Beweis:

97
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Idee: Dies folgt direkt aus den Definitionen.

(i) Betrachte das R-lineare Funktional

I(n)
x : C(M,R) → R

ϕ 7→ 1
n

n−1∑

k=1

ϕ(fk(x)).

Dann rechnet man

Ix(rϕ + sψ) = lim
n→∞

I(n)
x (rϕ + sψ)

= lim
n→∞

(
rI(n)

x (ϕ) + sI(n)
x (ψ)

)

= r lim
n→∞

I(n)
x (ϕ) + s lim

n→∞
I(n)
x (ψ)

= rIx(ϕ) + sIx(ψ).

(ii)

|Ix(ϕ)| = | lim
n→∞

I(n)
x (ϕ)|

= lim
n→∞

|I(n)
x (ϕ)|

≤ lim
n→∞

1
n

n−1∑

k=1

|ϕ(fk(x))|

≤ sup
y∈M

|ϕ(y)|

(iii) Dies ist klar, weil für ϕ ≥ 0 auch I
(n)
x (ϕ) ≥ 0 gilt.

(iv) Dies ist offensichtlich.

(v)

Ix(ϕ ◦ f)− Ix(ϕ) = lim
n→∞

1
n

(
n−1∑

k=0

ϕ(fk+1(x))−
n−1∑

k=0

ϕ(fk(x))

)

= lim
n→∞

1
n

(ϕ(fn(x))− ϕ(x))

= 0,

wobei die letzte Gleichheit eine Konsequenz der Beschränktheit von ϕ ist.

Bemerkung 6.1.2 : Sei M kompakt und metrisierbar. Dann zeigen (i) und (ii) aus Proposition 6.1.1
zusammen mit Proposition 5.1.1, daß Ix : C(M,R) → R ein positives lineares Funktional und somit stetig
ist. Hier betrachten wir auf C(M,R) die Topologie, die durch die Norm ‖ · ‖∞ gegeben wird.

Ein Maßraum (M, M, µ) heißt ein Wahrscheinlichkeitsraum oder kurz ein W-Raum, wenn µ ein
Wahrscheinlichkeitsmaß ist, d.h. wenn µ(M) = 1.

Sei (M, M, µ) ein Maßraum und f : M → M meßbar. Dann heißt µ invariant unter f , wenn

∀A ∈ M : µ(f−1(A)) = µ(A).

Umgekehrt heißt in diesem Falle f maßerhaltend.
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Proposition 6.1.3 : Sei M kompakt und metrisierbar sowie f : M → M stetig. Falls Ix existiert, gibt
es ein Wahrscheinlichkeitsmaß µx auf (M, BM ), das unter f invariant ist.

Beweis:

Idee: Kombiniere Bemerkung 6.1.2 mit dem Rieszschen Darstellungssatz 5.1.2 und dem Satz 5.2.9

von Lusin.

Nach dem Rieszschen Darstellungssatz 5.1.2 gibt es zu Ix ein eindeutig bestimmtes Radon-
Maß µx mit

∫
M

ϕ dµx = Ix(ϕ) für alle ϕ ∈ C(M). Insbesondere gilt µx(M) = Ix(1) = 1.
Damit ist µx ein Wahrscheinlichkeitsmaß. Mit Proposition 6.1.1(v) findet man

(∗)
∫

M

(ϕ ◦ f) dµx = Ix(ϕ ◦ f) = Ix(ϕ) =
∫

M

ϕdµx

für alle ϕ ∈ C(M,R). Mit dem Satz 5.2.9 von Lusin können wir charakteristische Funktio-
nen durch stetige Funktionen approximieren und erhalten so das Analogon von (∗) auch für
charakteristische Funktionen. Damit rechnet man dann

µx(f−1(A)) =
∫

f−1(A)

1 dµx

=
∫

M

χf−1(A) dµx

=
∫

M

(χA ◦ f) dµx

=
∫

M

χA dµx

= µx(A)

und das beweist die Behauptung.

Lemma 6.1.4 : Sei M kompakt und metrisierbar. Dann gibt es eine dichte Folge (ϕn)n∈N in C(M).

Beweis:

Idee: Konstruiere eine abzählbare Basis {Uj | j ∈ N} der Topologie und betrachte die von den

Funktionen gj : M → R, x 7→ inf{ρ(x, y) | y ∈ M \ Uj}erzeugte Unteralgebra von C(M,R).

Wähle eine beliebige Metrik ρ auf M . Dann gibt es zu jedem n ∈ N eine endliche Teilmenge
Bn ⊆ M mit M =

⋃
x∈Bn

B(x; 1
n ), wobei B(x; r) die Kugel mit Radius r um x bzgl. der

gewählten Metrik ist. Die Menge B :=
⋃

n∈NBn ist dann höchstens abzählbar und wenn
x ∈ M und ε > 0, findet man ein y ∈ B mit ρ(x, y) < ε, d.h. A ist dicht in M . Die B(x; 1

n )
mit x ∈ B bilden eine abzählbare Basis {Uj | j ∈ N} der Topologie.

Betrachte jetzt die stetigen Funktionen

gj : M → R
x 7→ inf{ρ(x, y) | y ∈ M \ Uj}

Ui
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und die daraus gebildeten Monome gm1
1 · · · gmn

n mit mj für j ∈ N0. Die Familie dieser Monome
ist wieder abzählbar, kann also in eine Folge (hj)j∈N angeordnet werden. Schließlich betrachten
wir noch endliche Linearkombinationen der hj mit rationalen Koeffizienten. Diese Familie ist
immer noch abzählbar und wir ordnen sie in eine Folge (ϕj)j∈N an. Diese Folge ist dann dicht
in der Menge der Linearkombinationen der hj mit reellen Koeffizienten, also der von den gj

erzeugten Unteralgebra A von C(M,R).

Die Algebra A trennt die Punkte von M , weil für x 6= y in M eine Umgebung Uj von x existiert
mit y 6∈ Uj und daher gj(x) > 0 und gj(y) = 0. Jetzt zeigt der Satz von Stone–Weierstraß,
daß A dicht in C(M,R) liegt. Also liegt die Folge (ϕj)j∈N ebenfalls dicht in C(M,R). Dies
beweist das Lemma für C(M,R) und der Fall C(M) = C(M,C) folgt, indem man Funktionen
in Real- und Imaginärteil aufspaltet.

Satz 6.1.5 (Krylov-Bogolubov): Sei M kompakt, metrisierbar und f : M → M stetig. Dann gibt
es ein f -invariantes Wahrscheinlichkeitsmaß auf (M, BM ).

Beweis:

Idee: Kombiniere die Ideen der Propositionen 6.1.1 and 6.1.3 mit Lemma 6.1.4.

Sei x ∈ M und (ϕj)j∈N eine dichte Folge in C(M). Für jedes j ∈ N ist die Menge

{ 1
n

n−1∑

k=0

ϕj(fk(x))
∣∣∣ n ∈ N

}

beschränkt. Dann findet man jetzt eine Folge (nl)l∈N für die der Grenzwert

(∗) lim
l→∞

1
nl

nl−1∑

k=0

ϕj(fk(x)) =: J(ϕj)

für jedes j ∈ N existiert. Hier benützt man das Cantorsche Diagonalargument: wähle eine
konvergente Teilfolge n

(1)
l für j = 1, darin eine konvergente Teilfolge n

(2)
l für j = 2 etc., und

setze dann nl := n
(l)
l .

Sei jetzt ϕ ∈ C(M) beliebig und ε > 0. Dann gibt es ein j ∈ N mit ‖ϕ−ϕj‖∞ ≤ ε. Dies liefert
für alle nl

∣∣∣∣∣
1
nl

nl−1∑

k=0

ϕ(fk(x))− 1
nl

nl−1∑

k=0

ϕj(fk(x))

∣∣∣∣∣ ≤
1
nl

nl−1∑

k=0

|ϕ(fk(x))− ϕj(fk(x))| ≤ ε.

Wegen (∗) kann dann die beschränkte Folge 1
nl

∑nl−1
k=0 ϕ(fk(x)) höchstens einen Häufungs-

punkt haben, muß also konvergent sein. Setze

J(ϕ) := lim
l→∞

1
nl

nl−1∑

k=0

ϕ(fk(x)).

Wie im Beweis von Proposition 6.1.1 sieht man, daß J : C(M) → C ein positives lineares
Funktional mit J(1) = 1 ist, das unter f invariant bleibt. Dann folgt wie in Proposition 6.1.3,
daß das zu J gemäß dem Rieszschen Darstellungssatz 5.1.2 gehörige Wahrscheinlichkeitsmaß
µ unter f invariant ist.
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Bemerkung 6.1.6 : Wenn M kompakt metrisierbar ist und f : M → M ein Homöomorphismus, dann
gilt für jedes f -invariante Maß µ auf (M, BM )

∀A ∈ BM : µ(f(A)) = µ(A),

wie man leicht sieht, wenn man die Definition auf f(A) anwendet.

Sei f : M → M eine Abbildung. Wie üblich nennen wir eine Menge A ⊆ M f-invariant, wenn
f(A) := {f(x) | x ∈ A} ⊆ A gilt. Dagegen heißt A f−1-invariant, wenn f−1(A) = {x ∈ M | f(x) ∈
A} ⊆ A, d.h., f−1-Invarianz setzt die Invertierbarkeit von f nicht voraus! Wenn f invertierbar ist, fallen
die beiden Interpretationen von f−1-Invarianz zusammen. Beachte, daß folgende Bedingungen für A ⊆ M
äquivalent sind:

(1) A ist f -invariant und f−1-invariant.

(2) f−1(A) = A.

(3) χA ◦ f = χA.

Falls diese Bedingungen gelten, nennen wir A stark f-invariant.

Übung 6.1.1 : Sei (M,M, µ) ein Wahrscheinlichkeitsraum und f : M → M maßerhaltend. Zeige, daß für jedes
ϕ ∈ L1(M, µ) gilt ϕ ◦ f ∈ L1(M, µ) und

∫
M

(ϕ ◦ f) dµ =
∫

M
ϕ dµ.

Satz 6.1.7 (Birkhoffscher Ergodensatz): Sei (M, M, µ) ein Wahrscheinlichkeitsraum und f : M →
M maßerhaltend. Wenn ϕ ∈ L1(M, µ), dann existiert das Zeitmittel

ϕf (x) := lim
n→∞

1
n

n−1∑

k=0

ϕ(fk(x))

für µ-fast alle x ∈ M .

Beweis:

Idee: Mithilfe des Satzes 4.2.6 von Radon-Nikodym konstruiert man zu ϕ eine bzgl. I := {A ∈ M |
f−1(A) = A} meßbare Funktion ϕI, die ϕ dµ = ϕI dµ erfüllt. Diese ist dann µ-f.ü. gleich ϕf .

Sei h ∈ L1(M,R, µ) und I := {A ∈ M | f−1(A) = A} die σ-Algebra aller f−1-invarianten
meßbaren Mengen. Betrachte den ”f

−1-invarianten“ meßbaren Raum (M, I) und darauf die
Maße hµ und µ. Dann gilt hµ <<µ und nach dem Satz 4.2.6 von Radon-Nikodym gibt es
eine I-meßbare Funktion hI : M → C mit h dµ = hI dµ. Dann gilt aber h−1

I (z) ∈ I für jedes
z ∈ C. Dies zeigt (hI ◦ f)−1(z) = h−1

I (z) für alle z ∈ C, also hI ◦ f = hI.

Betrachte jetzt Hn := max{∑m−1
k=0 h◦fk | 1 ≤ m ≤ n}. Wegen der Identität max(a, a+b)−b =

a−min(0, b) gilt

Hn+1 −Hn ◦ f = max1≤m≤n+1

m−1∑

k=0

h ◦ fk −max1≤m≤n

m−1∑

k=0

h ◦ fk+1

= max

(
h, h + max2≤m≤n+1

m−1∑

k=1

h ◦ fk

)
−max2≤m≤n+1

m−1∑

k=1

h ◦ fk

= h−min

(
0, max2≤m≤n+1

m−1∑

k=1

h ◦ fk

)

= h−min(0,Hn ◦ f),
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wobei mit max und min für Funktionen jeweils das punktweise Maximum und Minimum
gemeint ist. Es ergibt sich

(∗) Hn+1 = h + max(0, Hn ◦ f).

Setze jetzt A := {x ∈ M | Hn(x) −→
n→∞

∞}. Dann gilt A ∈ I. Wenn nämlich y = f(x) ∈ A,

dann liefern Hn(y) −→
n→∞

∞ und (∗), daß x ∈ A. Umgekehrt, wenn x ∈ A und y = f(x),

dann zeigt (∗) zusammen mit Hn(x) −→
n→∞

∞, daß Hn(y) > 0 für große n, also Hn(y) =

Hn+1(x)−h(x) −→
n→∞

∞ und y ∈ A. Mit dem Satz 2.4.4 von der dominierten Konvergenz und
der f -Invarianz von µ findet man

0 ≤
∫

A

(Hn+1 −Hn) dµ =
∫

A

(Hn+1 −Hn ◦ f) dµ −→
n→∞

∫

A

h dµ =
∫

A

hIdµ.

Wenn insbesondere hI konstant und negativ ist, dann folgt µ(A) = 0.

Weiter gilt

(∗∗) ∀x ∈ M \A : lim sup
n→∞

1
n

n−1∑

k=0

h ◦ fk(x) ≤ lim sup
n→∞

Hn(x)
n

≤ 0.

Jetzt wähle h := ϕ− ϕI − ε. Dann gilt hI = −ε < 0, also µ(A) = 0, und wegen (∗∗)

lim sup
n→∞

( 1
n

n−1∑

k=0

ϕ ◦ fk
)
− ϕI − ε ≤ 0

µ-fast überall. Ersetzt man ϕ durch −ϕ, findet man analog

lim inf
n→∞

( 1
n

n−1∑

k=0

ϕ ◦ fk
)
≥ ϕI − ε

µ-fast überall und zusammen schließlich ϕf = ϕI µ-fast überall.

Bemerkung 6.1.8 : Der Beweis von Satz 6.1.7 zeigt insbesondere, daß das Zeitmittel ϕf einer Funktion
ϕ ∈ L1(M, µ) meßbar (nach Proposition 1.2.7) und f -invariant ist. Insbesondere folgt aus ϕf = ϕI

∫

A

ϕf dµ =
∫

A

ϕI dµ =
∫

A

ϕ dµ,

für alle A ∈ M mit f−1(A) = A.

Bemerkung 6.1.9 : Wenn f invertierbar ist, kann man Satz 6.1.7 auch auf f−1 anwenden und erhält
die µ-fast überall Konvergenz der Zeitmittel

ϕf (x) := lim
n→∞

1
n

n−1∑

k=0

ϕ(f−k(x))

für ”negative Zeiten“, also auch für die beidseitigen Zeitmittel

lim
n→∞

1
2n− 1

n−1∑

k=−n+1

ϕ(f−k(x)).

Das bringt allerdings keine neue Information, da ϕf = ϕf µ-fast überall. Wäre dem nicht so, dann könnte
man (o.B.d.A. sei ϕ ∈ L1(M,R, µ)) ein ε > 0 und eine f−1-invariante Menge A ∈ I mit µ(A) > 0 und

∀x ∈ A : ϕf (x) > ϕf (x) + ε oder ϕf (x) < ϕf (x)− ε
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finden. Aber das ist nicht möglich, denn Bemerkung 6.1.8 liefert
∫

A

ϕf dµ =
∫

A

ϕdµ =
∫

A

ϕf dµ.

Satz 6.1.10 : Sei M kompakt metrisierbar und f : M → M stetig. Dann hat die Menge

Af := {x ∈ M | (∀ϕ ∈ C(M)) existiert lim
n→∞

1
n

n−1∑

k=0

ϕ(fk(x))}

bzgl. jedes f -invarianten Borel-Wahrscheinlichkeitsmaßes das Maß 1. Wenn f ein Homöomorphismus
ist, gilt das auch für die Menge

{x ∈ M | (∀ϕ ∈ C(M)) lim
n→∞

1
n

n−1∑

k=0

ϕ(fk(x)) = lim
n→∞

1
n

n−1∑

k=0

ϕ(f−k(x))}.

Beweis:

Idee: Kombiniere den Birkhoffschen Ergodensatz 6.1.7 mit den Ideen aus Satz 6.1.5 und seinem

Beweis.

Wähle ein f -invariantes Borel-Wahrscheinlichkeitsmaß µ und eine dichte Folge (ϕj)j∈N in
C(M) (vgl. Lemma 6.1.4). Nach dem Birkhoffschen Ergodensatz 6.1.7 hat die Menge

Bf =
{

x ∈ M
∣∣∣ (∀j ∈ N) existiert lim

n→∞
1
n

n−1∑

k=0

ϕj(fk(x))
}

als abzählbarer Schnitt von Mengen mit vollem Maß selbst volles Maß. Jetzt argumentiert man
wie im Beweis von Satz 6.1.5 und zeigt, daß Bf = Af gilt. Damit folgt die erste Behauptung.
Die zweite Behauptung folgt dann aus Bemerkung 6.1.9.

Übung 6.1.2 : Zeige, daß es für die Abbildung f : [0, 1] → [0, 1], die durch

f(x) =

{
x
2

für 0 < x ≤ 1

1 für x = 0

definiert ist, kein f -invariantes Borel-Maß auf [0, 1] gibt.

Übung 6.1.3 : Sei (M,M, µ) ein Maßraum und A ∈ M erfülle µ(A) > 0. Weiter sei T : M → M maßerhaltend

und µA das durch µA(B) = µ(A∩B)
µ(A)

definierte Maß auf (A,M ∩P(A)). Für x ∈ A setze n(x) := min{n ∈ N |
T n(x) ∈ A} und TA(x) := T n(x)(x). Unter der Annahme, daß n(x) < ∞ ist für alle x ∈ A, zeige, daß TA : A → A
für µA maßerhaltend ist.

Übung 6.1.4 : Sei Ω2 :=
{
(ωj)j∈Z

∣∣ ωj ∈ {0, 1}} = {0, 1}Z mit der Produkttopologie versehen (kompakt nach
dem Satz von Tychonov). Weiter seien 0 und 1 die konstanten Folgen mit Werten 0 bzw. 1. Zeige

(i) Es gibt genau ein Borel-Wahrscheinlichkeitsmaß µ auf Ω2, das µ({0}) = µ({1}) = 1
2

erfüllt.

(ii) µ ist invariant unter der Shift-Transformation σ : Ω2 → Ω2, die durch σ(ω) = ω′ mit ω′j = ωj+1 definiert
ist.

(iii) Es gibt einen Punkt ω ∈ Ω2, der für jedes ϕ ∈ C(Ω2) die Gleichung

lim
n→±∞

1

n

n−1∑

k=0

ϕ
(
σk(ω)

)
=

1

2

(
ϕ(0) + ϕ(1)

)
=

∫

Ω2

ϕ dµ

erfüllt.
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6.2 Ergodizität

Sei (M, M) ein meßbarer Raum und f : M → M eine meßbare Abbildung. Ein f -invariantes Maß µ
auf (M, M) heißt ergodisch, wenn für jede stark f -invariante Menge A ∈ M entweder µ(A) = 0 gilt
oder µ(M \A) = 0. In diesem Fall sagt man auch, f ist ergodisch bzgl. µ.

Lemma 6.2.1 : Sei (M, M, µ) ein W-Raum und f : M → M eine maßerhaltende Abbildung. Dann sind
folgende Aussagen äquivalent

(1) f ist ergodisch bzgl. µ.

(2) Jede f -invariante meßbare Funktion ϕ : M → C ist µ-fast überall konstant.

(3) Jede beschränkte f -invariante meßbare Funktion ϕ : M → C ist µ-fast überall konstant.

Beweis:

Idee: Betrachte die Urbildmenge ϕ−1(]−∞, a[) für passendes a ∈ R.

”(3)⇒(1)“ Dies ist klar, wenn man für ϕ die charakteristische Funktion einer stark f -invarianten
Menge nimmt.

”(1)⇒(2)“ Betrachte die Borel-meßbare und monoton wachsende Funktion

g : R → [0, 1]
a 7→ µ

(
ϕ−1(]−∞, a[)

)
,

die lima→−∞ g(a) = µ(∅) = 0 und lima→∞ g(a) = µ(M) = 1 erfüllt (vgl. Proposition
3.2.4).
Wenn es ein a ∈ R mit 0 < g(a) < 1 gibt, dann haben die beiden stark f -invarianten
Mengen ϕ−1([a,∞[) und ϕ−1(] −∞, a[) beide positives Maß und f kann nicht bzgl. µ
ergodisch sein.
Also gilt g(R) ⊆ {0, 1} und wegen der Monotonie gilt mit a = inf{t ∈ R | g(t) = 1}

g(t) =

{
0 für t < a

1 für t > a.

Damit sind die Mengen An := ϕ−1([a + 1
n ,∞[) und Bn := ϕ−1(] −∞, a − 1

n [) ebenso
Nullmengen, wie ihre Vereinigung ϕ−1(M \ ϕ−1(a)). Aber dann ist ϕ µ-fast überall
konstant.

”(2)⇒(3)“ Dies ist trivial.

Übung 6.2.1 : Sei (M,M) ein meßbarer Raum und f : M → M eine meßbare Abbildung und µ 6= ν zwei bzgl.
f ergodische W -Maße. Zeige, daß µ ⊥ ν.
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Proposition 6.2.2 : Sei (M, M, µ) ein W-Raum und f : M → M ergodisch bzgl. µ. Wenn ϕ ∈ L1(M,µ),
dann gilt für µ-fast alle x ∈ M

ϕf (x) = lim
n→∞

1
n

n−1∑

k=0

ϕ(fk(x)) =
∫

M

ϕ dµ.

In anderen Worten: Für ergodische Abbildungen stimmen Zeitmittel und Ortsmittel überein.

Beweis:

Idee: Kombiniere Lemma 6.2.1 mit Bemerkung 6.1.8.

Nach Bemerkung 6.1.8 ist ϕf f -invariant, also wegen der Ergodizität nach Lemma 6.2.1 µ-fast
überall konstant. Dann zeigt dieselbe Bemerkung aber auch µ-fast überall

ϕf (x) =
∫

M

ϕf dµ =
∫

M

ϕdµ.

Die Abbildung f : M → M heißt eindeutig ergodisch, wenn es genau ein f -invariantes Wahrschein-
lichkeitsmaß auf (M, M) gibt.

Proposition 6.2.3 : Sei (M, M) ein meßbarer Raum und f : M → M eindeutig ergodisch. Dann ist
das eindeutig bestimmte f -invariante Wahrscheinlichkeitsmaß µ auf (M, M) ergodisch.

Beweis:

Idee: Betrachte das durch µA(B) := µ(B∩A)
µ(A)

für µ(A) > 0 definierte Wahrscheinlichkeitsmaß µA.

Für A ∈ M mit µ(A) > 0 und B ∈ M setze

µA(B) :=
µ(B ∩A)

µ(A)
.

Dann ist µA ein Wahrscheinlichkeitsmaß, das zudem f -invariant ist, falls A stark f -invariant
ist:

µA(f−1(B)) =
µ(f−1(B) ∩A)

µ(A)
=

µ(f−1(B) ∩ f−1(A))
µ(A)

=
µ(f−1(B ∩A))

µ(A)
=

µ(B ∩A)
µ(A)

= µA(B).

Also gilt µ = µA und das zeigt µ(A) = 1.

Man nennt das Maß µA das bedingte Maß bzgl. A.

Proposition 6.2.4 : Sei M ein kompakter metrisierbarer Raum und f : M → M eindeutig ergodisch.
Dann konvergieren für jedes ϕ ∈ C(M) die Zeitmittel

1
n

n−1∑

k=0

ϕ(fk(x))

gleichmäßig gegen c :=
∫

M
ϕdµ, wobei µ das eindeutig bestimmte f -invariante Wahrscheinlichkeitsmaß

auf (M, BM ) ist.
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Beweis:

Idee: Wenn die Behauptung für ein ϕ ∈ C(M,R) nicht zutrifft, dann findet man mit den Metho-

den von Proposition 6.1.1 und Satz 6.1.5 zwei f -invariante positive lineare Funktionale, die auf ϕ

unterschiedliche Werte annehmen.

Wir nehmen an, daß 1
n

∑n−1
k=0 ϕ(fk(x)) für ein ϕ ∈ C(M,R) nicht gleichmäßig konvergiert.

Dann gibt es ein ε > 0 und eine Folge xk ∈ M mit

(∗) ∀k ∈ N :

∣∣∣∣∣
1
k

k−1∑

l=0

ϕ(f l(xk))− c

∣∣∣∣∣ > ε.

Andererseits gibt es nach Proposition 6.2.2 ein y ∈ M mit

lim
k→∞

∣∣∣∣∣
1
k

k−1∑

l=0

ϕ(f l(y))− c

∣∣∣∣∣ = 0.

xk

ε

y

Nach Übergang zu einer Teilfolge (nk)k∈N können wir also annehmen, daß

∀k ∈ N :

∣∣∣∣∣
1
nk

nk−1∑

l=0

ϕ(f l(y))− c

∣∣∣∣∣ <
ε

2
.

Nach (∗) können wir (wieder nach Übergang zu einer Teilfolge) entweder annehmen, daß

∀k ∈ N :
1
nk

nk−1∑

l=0

ϕ(f l(xk)) > c + ε

oder, daß

∀k ∈ N :
1
nk

nk−1∑

l=0

ϕ(f l(xk)) < c− ε

gilt. Insgesamt haben wir also folgende Situation: Es gibt zwei Zahlen a, b ∈ R und zwei Folgen
(xk)k∈N, (yk)k∈N von Punkten in M sowie eine Folge (nk)k∈N mit nk →

k→∞
∞ und

1
nk

nk−1∑

l=0

ϕ
(
f l(xk)

)
< a < b <

1
nk

nk−1∑

l=0

ϕ
(
f l(yk)

)
.

Mit einem Diagonalargument vom Cantorschen Typ (vgl. Satz 6.1.5 und Satz 6.1.10) findet
nach eine Teilfolge (nkj )j∈N, für die die folgenden Grenzwerte für alle ψ ∈ C(M) existieren:

J1(ψ) := lim
j→∞

1
nkj

nkj
−1∑

l=0

ψ
(
f l(xkj )

)
und J2(ψ) := lim

j→∞
1

nkj

nkj
−1∑

l=0

ψ
(
f l(ykj )

)
.
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Wie in Proposition 6.1.1 sieht man, daß J1 und J2 f -invariante positive lineare Funktionale
mit J1(1) = 1 = J2(1) sind. Also gibt es nach dem Rieszschen Darstellungssatz 5.1.2 zwei
Radonsche Wahrscheinlichkeitsmaße µ1 und µ2 auf (M, BM ) mit J1(ψ) =

∫
M

ψ dµ1 und
J2(ψ) =

∫
M

ψ dµ2. Wie im Beweis von Satz 6.1.5 sieht man, daß µ1 und µ2 f -invariant sind.
Wegen

J1(ϕ) ≤ a < b ≤ J2(ϕ)

gilt µ1 6= µ2 im Widerspruch zur Voraussetzung.

Proposition 6.2.5 : Sei M ein kompakter metrisierbarer Raum und die stetige Abbildung f : M → M
eindeutig ergodisch. Sei µ das zugehörige f -invariante Wahrscheinlichkeitsmaß und U ⊆ M offen mit
µ(∂U) = 0. Dann konvergieren die Zeitmittel

1
n

n−1∑

k=0

χU (fk(x))

gleichmäßig gegen µ(U).

Beweis:

Idee: Approximiere χU durch stetige Funktionen und wende Proposition 6.2.4 an.

Seien ϕm ≥ χU und ϕ
m
≤ χU für m ∈ N zwei Folgen in C(M) mit

∫

M

ϕm dµ →
m→∞

µ(U) und
∫

M

ϕ
m

dµ →
m→∞

µ(U)

(vgl. z.B. Satz von Lusin 5.2.9).

φ

χ

φ

U

χ
M\U

1-

Für n ∈ N und x ∈ M gilt dann

(∗) 1
n

n−1∑

k=0

ϕ
m

(fk(x)) ≤ 1
n

n−1∑

k=0

χU (fk(x)) ≤ 1
n

n−1∑

k=0

ϕm(fk(x)).

Proposition 6.2.4 und Proposition 6.2.2 zeigen, daß die linke Seite von (∗) gegen
∫

M
ϕ

m
dµ

und die rechte Seite gegen
∫

M
ϕm dµ konvergiert. Für δ > 0 wähle jetzt ein n ∈ N mit∫

M
ϕm dµ > µ(U)− δ

2 und
∫

M
ϕ

m
dµ < µ(U) + δ

2 . Es ergibt sich für große m

µ(U)− δ ≤ 1
n

n−1∑

k=0

χU (fk(x)) ≤ µ(U) + δ

und da δ beliebig war, folgt die Behauptung.
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Proposition 6.2.6 : Sei M ein kompakter metrisierbarer Raum und f : M → M stetig. Wenn für jedes
ϕ aus einer dichten Teilmenge von C(M) die Zeitmittel

1
n

n−1∑

k=0

ϕ(fk(x))

gleichmäßig in x gegen eine Konstante konvergieren, dann ist f eindeutig ergodisch.

Beweis:

Idee: Kombiniere die Ideen von Satz 6.1.5 mit Bemerkung 6.1.8 um zu zeigen, daß die Integrale∫
M

ϕ dµ unabhängig von µ durch die entsprechende Konstanten gegeben sind.

Wie im Beweis des Satzes 6.1.5 stellt man zunächst fest, daß die gleichmäßige Konvergenz für
die Funktionen aus einer dichten Teilmenge von C(M) schon die gleichmäßige Konvergenz für
alle Funktionen in C(M) zur Folge hat.

Sei jetzt µ ein f -invariantes Borelsches Wahrscheinlichkeitsmaß. Sei ϕ ∈ C(M) und c :=
limn→∞ 1

n

∑n−1
k=0 ϕ(fk(x)), dann gilt mit Bemerkung 6.1.8

∫

M

ϕdµ = lim
n→∞

1
n

n−1∑

k=0

∫

M

ϕ(fk(x)) dµ =
∫

M

lim
n→∞

1
n

n−1∑

k=0

ϕ(fk(x)) dµ =
∫

M

c dµ = c,

d.h. das Integral ist nicht von µ abhängig. Dies beweist die Behauptung.

Übung 6.2.2 : Betrachte die durch f(x, t) = (x+α, t) mit irrationalem α definierte Abbildung f : S1× [0, 1] →
S1 × [0, 1]. Zeige: für jede stetige Funktion ϕ : S1 × [0, 1] → C konvergieren die Zeitmittel 1

n

∑n−1
k=0 ϕ

(
fk(x)

)
gleichmäßig in x gegen eine Konstante, aber f ist nicht eindeutig ergodisch.

Beispiel 6.2.7 (Irrationale Rotationen auf dem Kreis): Sei S1 := {z ∈ C | |z| = 1} = {e2πit |
t ∈ R} der Einheitskreis in C. Er ist eine kompakte topologische Gruppe bzgl. der Multiplikation auf C.
Als solche ist S1 isomorph zum eindimensionalen Torus T := R/Z via

R/Z → S1

t + Z 7→ e2πit.

Die Rotation Rα um den Winkel 2πα ist auf S1 durch

Rα(z) = e2πiαz

gegeben. Auf T wird das zu
Rα(t + Z) = (t + α + Z).

Wir benützen Proposition 6.2.6 um zu zeigen, daß die Rotation Rα für irrationales α eindeutig ergodisch
ist. Man nennt dieses Resultat auch den Gleichverteilungssatz von Kronecker und Weyl. Um ihn
zu beweisen, genügt es, zu zeigen, daß die Zeitmittel ϕRα für eine dichte Teilmenge von Funktionen in
C(T) gleichmäßig gegen eine Konstante konvergieren.

Nach dem Satz von Stone-Weierstraß sind die trigonometrischen Polynome so eine dichte Teilmenge
und da mit zwei Funktionen auch alle Linearkombinationen das passende Verhalten im Zeitmittel haben,
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brauchen wir nur die für m ∈ Z durch χm(t + Z) = e2πimt definierten Funktionen auf T zu betrachten.
Wegen

(χm ◦Rα)(t + Z) = e2πim(t+α) = e2πimαχm(t + Z)

gilt ∣∣∣∣∣
1
n

n−1∑

k=0

(χm ◦Rα)(t + Z)

∣∣∣∣∣ =

∣∣∣∣∣
1
n

n−1∑

k=0

e2πimkα

∣∣∣∣∣ =
|1− e2πimnα|
n|1− e2πimα| −→n→∞

0

für m 6= 0. Für m = 0 haben wir χm ≡ 1 und das schließt den Beweis der Behauptung ab.

Beispiel 6.2.8 (Irrationale Translationen auf dem Torus): Betrachte den n-dimensionalen To-
rus Tn = Rn/Zn und für α = (α1, . . . , αn) ∈ Rn die Abbildung

Tα : Tn → Tn

t + Zn 7→ t + α + Zn.

Wenn 1, α1, . . . , αn ∈ R rational unabhängig sind (d.h. linear unabhängig als Elemente desQ-Vektorraums
R), dann ist Tα ergodisch.

Um das einzusehen, betrachten wir eine beschränkte meßbare und Tα-invariante Funktion χ : Tn → C.
Sei

χ(t1, . . . , tn) =
∑

(k1,...,kn)∈Zn

χk1,...,kn exp


2πi

n∑

j=1

kjtj




die Fourier-Entwicklung von χ. Dann gilt

χ(Tαt) = χ(t1 + α1, . . . , tn + αn)

=
∑

(k1,...,kn)∈Zn

χk1,...,kn exp


2πi

n∑

j=1

kj(tj + αj)




=
∑

(k1,...,kn)∈Zn

χk1,...,kn exp


2πi

n∑

j=1

kjαj


 exp


2πi

n∑

j=1

kjtj


 .

Die Invarianz von χ unter Tα und die Eindeutigkeit der Fourierkoeffizienten liefert

χk1,...,kn = χk1,...,kn exp(2πi

n∑

j=1

kjtj),

also exp
(
2πi

∑n
j=1 kjαj

)
= 1 falls χk1,...,kn 6= 0. Wegen der rationalen Unabhängigkeit von 1, α1, . . . , αn

folgt χk1,...,kn = 0 für alle (k1, . . . , kn) 6= 0, d.h. χ ist konstant (bis auf eine Menge vom Maß 0). Da χ
insbesondere die charakteristische Funktion einer beliebigen T−1

α -invarianten meßbaren Menge sein kann,
liefert das die Ergodizität von Tα.

Beispiel 6.2.9 (Expansionen auf dem Torus): Für m ∈ {2, 3, . . .} ist die Abbildung

Em : T → T
t + Z 7→ mt + Z

ergodisch bzgl. des Lebesgue-Maßes µ (das gleich dem Haar-Maß ist).
Um das einzusehen, betrachte eine Em-invariante, meßbare und beschränkte Funktion ϕ : T→ C und

ihre Fourierentwicklung
ϕ(t + Z) =

∑

k∈Z
ϕke2πikt.
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Dann gilt
ϕ(t + Z) = ϕ(Em(t + Z)) =

∑

k∈Z
ϕke2πikmt,

also ϕk = ϕmk für alle m ∈ N. Nach dem Riemann–Lebesgue Lemma gilt aber limk→∞ |ϕk| = 0, was
dann ϕk = 0 für alle von Null verschiedenen k impliziert.

Bemerkung 6.2.10 : Sei M ein kompakter metrisierbarer Raum und M(M) die Menge aller Borel-
Maße auf M . Wegen der Kompaktheit ist nach Definition jedes Borel-Maß auf M endlich. Nach Satz 5.2.7
ist außerdem jedes Borel-Maß regulär. Nach dem Rieszschen Darstellungssatz 5.1.2 liefert Iµ(f) =

∫
M

f dµ
eine Inklusion

M(M) ↪→ C(M)∗

µ → Iµ,

wobei C(M)∗ den Raum der stetigen linearen Funktionale auf C(M) bezeichnet. Das Bild der Einbettung
sind genau die positiven Funktionale in C(M)∗. Damit erbt M(M) von C(M)∗ eine Topologie, die
schwach*-Topologie, die durch

In −→
n→∞

I ⇔ (∀ϕ ∈ C(M)) In(ϕ) −→
n→∞

I(ϕ)

definiert wird. Interpretiert man die Elemente von C(M)∗ also einfach als C-wertige Funktionen auf
C(M), so ist dies die Topologie der punktweisen Konvergenz. Offensichtlich ist sowohl die Teilmenge der
reellwertigen Funktionale als auch die der positive Funktionale abgeschlossen in dieser Topologie. Also
ist M(M) eine abgeschlossenen Teilmenge von C(M)∗.

Sei M1(M) := {µ ∈ M(M) | µ(M) = 1} die Menge der Borelschen Wahrscheinlichkeitsmaße auf M .
Dann ist M1(M) in der schwach*-Topologie kompakt. Um das einzusehen, betrachte für ϕ ∈ C(M) die
kompakte Menge Dϕ := {z ∈ C | |z| ≤ ‖ϕ‖∞} und setze

D :=
∏

ϕ∈C(M)

Dϕ.

Dann ist D nach dem Satz von Tychonov kompakt. Die Menge D besteht aus allen C-wertigen Funktionen
I auf C(M), die |I(ϕ)| ≤ ‖ϕ‖∞ erfüllen und die Topologie auf D ist in dieser Interpretation gerade die
Topologie der punktweisen Konvergenz. Sei

B := {I ∈ C(M)∗ | I ist positiv und (∀ϕ ∈ C(M)) |I(ϕ)| ≤ ‖ϕ‖∞}.

Dann stimmen die Topologien auf B, die einerseits von D, andererseits von der schwach*-Topologie
induziert werden überein. Da M(M) ⊆ B abgeschlossen ist, bleibt also nur zu zeigen, daß B in D
abgeschlossen ist. Das ist aber klar, weil die punktweise Addition und Multiplikation mit Skalaren stetig
in der Produkttopologie sind.

Sei M kompakt metrisierbar und f : M → M stetig. Wir bezeichnen die Menge alle f -invarianten
Elemente von M1(M) mit M1(f).

Proposition 6.2.11 : Sei M kompakt metrisierbar und f : M → M stetig. Dann sind folgende Aussagen
äquivalent:

(1) µ ∈M1(f) ist nicht ergodisch.

(2) Es gibt µ1 6= µ2 in M1(f) und ein λ ∈]0, 1[ mit µ = λµ1 + (1− λ)µ2.

Beweis:
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”(1)⇒(2)“ Sei A ∈ BM f -invariant mit 0 < µ(A) < 1, dann gilt

µ = µ(A)µA + (1− µ(A))µM\A.

”(2)⇒(1)“ Aus µ(A) = 0 folgt mit (2) auch µ1(A) = 0 = µ2(A), also gilt µi <<µ für i = 1, 2. Der
Satz 4.2.6 von Radon-Nikodym liefert Funktionen ρi mit dµi = ρi dµ. Damit schreibt
man (2) als

λρ1 + (1− λ)ρ2 = 1 µ-fast überall.

Weil aber µ1 6= µ2 zwei f -invariante Wahrscheinlichkeitsmaße sind, gilt außerdem ρi◦f =
ρi sowie

∫
G

ρi dµi = 1 und ρ1 ist nicht µ–fast überall gleich ρ2. Insbesondere können nicht
beide ρi µ-fast überall konstant sein. Nach Lemma 6.2.1 ist also µ auch nicht ergodisch.

Geometrisch sagt diese Proposition, daß die Extrempunkte der konvexen Menge M1(f) gerade die
ergodischen Maße sind.

Satz 6.2.12 : Sei M kompakt metrisierbar und f : M → M stetig. Dann gibt es ein ergodisches f -
invariantes Borelsches Wahrscheinlichkeitsmaß.

Beweis:

Sei (ϕj)j∈N eine dichte Folge in C(M,R) (vgl. Lemma 6.1.4) und definiereA0 ⊇ A1 ⊇ A2 ⊇ . . .
induktiv via A0 := M1(f) und

Aj+1 := {µ ∈ Aj |
∫

M

ϕj+1 dµ = sup
ν∈Aj

∫

M

ϕj+1 dν}.

Diese Definition sinnvoll, weil für schwach*-abgeschlossenes (also kompaktes)Aj die schwach*-
stetige Abbildung

Aj → R

ν 7→
∫

M

ϕj+1 dν

ihr Supremum annimmt und dementsprechend Aj+1 nicht leer und schwach*-abgeschlossen
ist. Damit folgt (wieder mit der Kompaktheit)

∅ 6= E :=
⋂

j∈N0

Aj .

Wir zeigen, daß E aus Extrempunkten von M1(f) besteht und schließen dann mit Proposition
6.2.11, daß alle Elemente von E ⊆M1(f) ergodisch sind.

Seien also µ1, µ2 ∈ M1(f) und λ ∈]0, 1[ so gewählt, daß µ = λµ1 + (1− λ)µ2 ∈ E . Zu zeigen
ist µ = µ1 = µ2. Wegen

∫
M

ϕdµ = λ
∫

M
ϕdµ1 + (1 − λ)

∫
M

ϕdµ2 für alle ϕ ∈ C(M) und
µ ∈ Aj+1 für j ∈ N0 finden wir

∫

M

ϕj+1 dµ ≥
∫

M

ϕj+1 dµi, i = 1, 2

und ∫

M

ϕj dµ =
∫

M

ϕj dµ1 =
∫

M

ϕj dµ2 ∀j ∈ N.

Dies zeigt µ1, µ2 ∈ Aj für alle j ∈ N. Aber dann gilt
∫

M

ϕdµ =
∫

M

ϕdµ1 =
∫

M

ϕdµ2

für alle ϕ ∈ C(M,R), weil die Folge der ϕj dicht war. Mit der Eindeutigkeitsaussage im
Rieszschen Darstellungssatz 5.1.2 folgt dann µ = µ1 = µ2.
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Beispiel 6.2.13 (Translationen auf kompakten abelschen Gruppen): Sei G eine kompakte me-
trisierbare abelsche Gruppe. Dann gibt es auf G ein eindeutig bestimmtes Borelsches Wahrscheinlickeits-
maß µG, das unter allen Linkstranslationen

λg : G → G

h 7→ gh

invariant ist. Dieses Maß heißt das Haarsche Maß. Wir zeigen, daß jedes λg, das ergodisch bzgl. µG ist,
dann schon automatisch eindeutig ergodisch ist.

Sei dazu µ ein beliebiges λg-invariantes Borelsches Wahrscheinlichkeitsmaß auf G. Da g mit allen
h ∈ G kommutiert, sind dann auch die durch

µh(A) := µ(λh(A)) ∀A ∈ BG

definierten Maße unter λg invariant. Da die Menge M1(λg) konvex und schwach*-abgeschlossen ist,
können wir für jedes E ∈ BG mit µG(E) > 0 ein λg-invariantes Maß νE auf (G,BG) durch

νE(A) :=
1

µG(E)

∫

E

µh(A) dµG(h)

definieren. Wenn E1, E2 zwei disjunkte solche Mengen sind, dann findet man

(∗) µG(E1 ∪ E2)νE1∪E2 = µG(E1)νE1 + µG(E2)νE2 .

Außerdem rechnet man

νG(λ−1
h (A)) =

∫

G

µk(λ−1
h (A)) dµG(k)

=
∫

G

µ(λkh−1(A)) dµG(k)

=
∫

G

µ(λh−1k(A)) dµG(k)

=
∫

G

µ(λk(A)) dµG(k)

=
∫

G

µk(A) dµG(k)

= νG(A)

und erhält die λh-Invarianz von νG für alle λh. Mit νG(G) = 1 liefert die Eindeutigkeit des Haarschen
Maßes die Identität νG = µG.

Wenn jetzt µ 6= µG gilt, dann gibt es eine Funktion ϕ ∈ C(G,R) mit
∫

G
ϕdµ 6= ∫

G
ϕdµG. Mit dem

Satz von Fubini finden wir

(∗∗)
∫

G

ϕdµG =
∫

G

(∫

G

ϕdµG

)
dµh =

∫

G

(∫

G

ϕdµh

)
dµG =

∫

G

(∫

G

ϕ ◦ λh dµ

)
dµG.

Betrachte die stetige Funktion

ψ : G → R

h 7→
∫

G

ϕ ◦ λh dµ.

Sei 1 ∈ G das Einselement der Gruppe. Wegen (∗∗) gilt dann ψ(1) 6= ∫
G

ψ dµG, und folglich ist ψ nicht
konstant. Also finden wir eine reelle Zahl a mit µG(ψ−1([a,∞[)) > 0 und µG(ψ−1(]−∞, a[)) > 0.
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a

ψ

G

Es folgt ∫

ψ−1([a,∞[)

ψ dµG ≥ µG(ψ−1([a,∞[))a

und ∫

ψ−1(]−∞,a[)

ψ dµG < µG(ψ−1(]−∞, a[))a

Mit E := ψ−1([a,∞[) und F = G \ E läßt sich das erst in

1
µG(F )

∫

F

ψ dµG < a ≤ 1
µG(E)

∫

E

ψ dµG

und dann mit ∫

G

η dνE =
1

µG(E)

∫

E

∫

G

η ◦ λh dµ dµG

(und der analogen Aussage für F - beides beweist man, indem man mit charakteristischen Funktionen
startet und dominierte Konvergenz anwendet) in

∫

G

ϕdνF < a ≤
∫

G

ϕdνE

umformulieren, was insbesondere νE 6= νF zeigt. Mit (∗) findet man aber

µG(E)νE + µG(F )νF = νG = µG.

Nach Proposition 6.2.11 steht dies im Widerspruch zur Ergodizität von µG.

Übung 6.2.3 : Sei S1 := R/Z. Zeige, daß die Abbildung f : S1 → S1, die durch f(x) := x + 1
10

sin2(πx) mod 1
definiert ist, eindeutig ergodisch ist.

Übung 6.2.4 : Sei (M,M, µ) ein Maßraum und T : M → M maßerhaltend.

(i) Zeige, daß der durch UT f(x) := f(Tx) definierte Operator UT : L2(M, µ) → L2(M, µ) unitär ist.

(ii) Zeige, daß folgende Aussagen äquivalent sind:

(1) T ist ergodisch bzgl. µ.

(2) 1 ist ein einfacher Eigenwert von UT .

Übung 6.2.5 : Betrachte die Abbildung Aα : T2 → T2, (x, y) 7→ (x + α, y + x) mit α ∈ R.

(i) Sei α irrational. Zeige, daß Aα eindeutig ergodisch ist.

(ii) Sei α rational. Bestimme alle Aα-invarianten Borel-Wahrscheinlichkeitsmaße auf T2.

Übung 6.2.6 : Sei L ∈ GL(m,Z) und FL : Tm → Tm definiert durch FL(x+Zn) = Lx+Zn. Zeige, daß folgende
Aussagen äquivalent sind:

(1) FL ist ergodisch.

(2) L hat keinen Eigenwert, der eine Einheitswurzel ist.
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6.3 Wiederkehr und Mischung

Satz 6.3.1 : (Poincaré-Wiederkehrsatz) Sei (M, M, µ) ein W-Raum und f : M → M eine maßerhal-
tende Abbildung. Für A ∈ M und N ∈ N gilt

µ({x ∈ A | (∀N ≤ n ∈ N) fn(x) ∈ M \A}) = 0.

M

A

Beweis:

Indem man f durch fN ersetzt, kann man o.B.d.A. annehmen, daß N = 1. Die Menge

Ã := {x ∈ A | (∀n ∈ N) fn(x) ∈ M \A} = A ∩
( ⋂

n∈N
f−n(M \A)

)

ist meßbar. Es gilt f−n(Ã) ∩ Ã = ∅ für alle n ∈ N, also auch

f−n(Ã) ∩ f−m(Ã) = ∅

für alle n 6= m in N. Da f das Maß µ erhält, gilt außerdem µ(f−n(Ã)) = µ(Ã). Wegen

1 = µ(M) ≥ µ

( ⋃

n∈N0

f−n(Ã)

)
=

∑

n∈N0

µ(f−n(Ã)) =
∑

n∈N0

µ(Ã)

folgt schließlich µ(Ã) = 0.

Sei M ein metrisierbarer Raum, der separabel ist. Das bedeutet, M enthält eine abzählbare dichte
Teilmenge. Für einen metrischen Raum ist das äquivalent dazu, daß die Topologie hat eine abzählbare
Basis hat (betrachte Kugeln mit rationalen Radii um die Punkte der dichten Folge). Für ein Borel-Maß
µ auf M definiert man den Träger supp (µ) durch

supp (µ) := {x ∈ M | (∀U offene Umgebung von x), µ(U) > 0}.

Proposition 6.3.2 : Sei µ ein Borel-Maß auf M . Dann gilt:

(i) supp (µ) ist abgeschlossen in M .

(ii) µ(M \ supp (µ)) = 0.

(iii) Für A ∈ BM mit µ(M \A) = 0 gilt supp (µ) ⊆ A.

Beweis:

(i) Wenn (xn)n∈N eine Folge in supp (µ) ist mit xn →
n→∞

x ∈ M , dann gilt für jede offene

Umgebung U von x, daß xn ∈ U für große n. Nach Definition von supp (µ) folgt µ(U) > 0.

(ii) Jeder Punkt y ∈ M\supp (µ) hat eine offene Umgebung U mit µ(U) = 0. Da M separabel
ist, kann M \ supp (µ) mit abzählbar vielen solcher Umgebungen überdeckt werden. Es
folgt µ(M \ supp (µ)) = 0.
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(iii) Für A ∈ BM mit µ(M \ A) = 0 betrachte U := M \ A ⊆ M \ A. Dann ist U offen mit
µ(U) = 0, kann also kein Element von supp (µ) enthalten. Es folgt supp (µ) ⊆ A.

Sei M ein topologischer Raum und f : M → M stetig. Ein Punkt x ∈ M heißt rekurrent bzgl. f ,
wenn es eine Folge (nj)j∈N mit nj →

j→∞
∞ und x = limj→∞ fnj (x) gibt. D.h. rekurrente Punkte sind

Häufungspunkte ihrer f–Bahnen. Der Abschluß der Menge aller bzgl. f rekurrenten Punkte wird mit
R(f) bezeichnet. Eine abgeschlossene f -invariante Teilmenge ∅ 6= A ⊆ M heißt minimal bzgl. f , wenn
sie keine abgeschlossene f -invariante echte nichtleere Teilmenge hat.

Satz 6.3.3 : Sei M ein vollständiger separabler metrisierbarer Raum und f : M → M stetig. Dann gilt

(i) supp (µ) ⊆ R(f) für jedes f -invariante Borelsche Wahrscheinlichkeitsmaß µ auf (M, BM ).

(ii) Wenn µ ergodisch ist, dann hat die Einschränkung von f auf supp (µ) eine dichte Bahn.

(iii) Wenn M kompakt ist und f |supp (µ) eindeutig ergodisch, dann ist supp (µ) eine minimale Menge
bzgl. f .

Beweis:

Idee: Man benützt Poincaré-Wiederkehrsatz 6.3.1 für (i), Proposition 6.2.2 für (ii) und den Satz

6.1.5 von Krylov-Bogolubov für (iii).

(i) Wähle eine abzählbare Basis {U1, U2, . . .} der Topologie und bezeichne mit R die Menge
der x ∈ M , für die mit x ∈ Um auch unendlich viele der fk(x) in Um liegen. Dann wendet
man den Poincaré-Wiederkehrsatz 6.3.1 auf jedes Um separat an und findet, daß R volles
Maß hat, d.h. µ(M \ R) = 0. Mit Proposition 6.3.2(iii) folgt also, daß supp (µ) ⊆ R.
Wenn x ∈ R und U eine offene Umgebung von x ist, dann gilt x ∈ Um ⊆ U für ein
m und daher sind unendlich viele fk(x) in U . Da U beliebig klein sein kann, zeigt dies
R ⊆ R(f), also supp (µ) ⊆ R ⊆ R(f).

(ii) Sei jetzt {U1, U2, . . .} eine abzählbare Basis der auf supp (µ) induzierten Topologie. Dann
gilt nach Definition des Trägers µ(Uj) > 0 für alle j ∈ N. Wir wenden Proposition 6.2.2
simultan auf jedes χUj an und finden eine Menge R ∈ BM von vollem Maß mit

∀x ∈ R, j ∈ N : lim
n→∞

1
n

n−1∑

k=0

χUj (f
k(x)) = µ(Uj) > 0.

Also schneidet die Bahn von x ∈ R jedes Uj und ist daher dicht.

(iii) Wenn Λ ⊆ supp (µ) eine echte f -invariante und abgeschlossene Teilmenge von supp (µ)
ist, dann gibt es nach dem Satz 6.1.5 von Krylov-Bogolubov ein f |Λ-invariantes Bo-
relsches Wahrscheinlichkeitsmaß ν auf Λ. Wir betrachten ν als Maß auf M indem wir
ν(M \ Λ) = 0 setzen. Dann ist supp (ν) ⊆ Λ, also insbesondere ν 6= µ. Andererseits
rechnet man sofort nach, daß ν wegen f−1(M \Λ) = M \ f1(Λ) ⊆ M \Λ invariant unter
f ist. Dies liefert einen Widerspruch zur Voraussetzung.

Sei M ein topologischer Raum und f : M → M stetig. Dann heißt f topologisch transitiv, wenn es
einen Punkt x ∈ M gibt, für den die Bahn {fn(x) | n ∈ N0} dicht in M ist.
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Lemma 6.3.4 : Sei M ein lokal kompakter separabler metrischer Raum ohne offene Punkte und f : M →
M stetig. Betrachte die folgenden Aussagen:

(1) f ist topologisch transitiv.

(2) Zu zwei nichtleeren offenen Teilmengen U, V ⊆ M gibt es ein n ∈ N0 mit fn(U) ∩ V 6= ∅.
(3) Es gibt keine zwei nichtleeren disjunkten f−1-invarianten offenen Mengen in M .

(4) Jede f -invariante Funktion in C(M) ist konstant.

Dann sind (1) bis (3) äquivalent und die ersten drei implizieren (4).

Beweis:

Idee: Die Implikation
”
(2)⇒(1)“ benützt die Characterisierung kompakter Mengen über die endliche

Schnitteigenschaft. Die anderen Implikationen können direkt aus den Definitionen abgeleitet werden.

”(1)⇒(2)“ Sei f topologisch transitiv ist und {fn(x) | n ∈ N0} dicht in M . Dann gibt es n,m ∈ N0

mit fn(x) ∈ U und fm(x) ∈ V . Wenn m ≥ n, dann gilt fm(x) = fm−n(fn(x)) ∈
fm−n(U) ∩ V und wir sind fertig. Wenn n ≥ m, wählen wir eine offene Teilmenge
V ′ ⊆ V mit fk(x) 6∈ V ′ für alle 0 ≤ k ≤ n (das geht, weil endliche Teilmengen nach
Voraussetzung nicht offen sind). Dann gibt es ein m′ ∈ N0 mit fm′

(x) ∈ V ′ ⊆ V und es
folgt m′ ≥ n, also (2) mit dem ersten Teil des Argments.

”(2)⇒(1)“ Sei U1, U2, . . . eine Basis der Topologie. Durch Verkleinern können wir annehmen, daß U1

kompakt ist. Es genügt jetzt, eine Bahn zu konstruieren, die jedes Uj schneidet. Wähle
n1 ∈ N0 mit fn1(U1) ∩ U2 6= ∅. Dann ist U1 ∩ f−n1(U2) 6= ∅ offen und wir finden eine
offene Menge V1 mit V1 ⊆ U1 ∩ f−n1(U2). Danach wähle n2 ∈ N0 mit fn2(V1) ∩ U3 6= ∅
und eine offene Menge V2 mit V2 ⊆ V1∩f−n2(U3). Induktiv finden wir eine Folge (nj)j∈N
in N0 und eine Folge (Vj)j∈N von offenen Teilmengen von M mit

Vj+1 ⊆ Vj ∩ f−nj (Uj+2).

U1

U2

U3

U4

V1

V2
V3

f

f

f

n1

n
2

n3

Da die Vj alle kompakt sind, ist K :=
⋂

j∈N Vj =
⋂

j∈N Vj 6= ∅. Mit n0 := 0 gilt dann für
x ∈ K

∀j ∈ N : fnj−1(x) ∈ Uj .

”(2)⇒(3)“ Seien U, V zwei f−1-invariante nichtleere offene Mengen. Dann gibt es nach (2) ein n ∈ N0

mit fn(U) ∩ V 6= ∅. Wegen U ⊆ f−1(U) folgt U ∩ V ⊇ fn(U) ∩ V 6= ∅ und wir haben
(3).

”(3)⇒(2)“ Wenn (2) nicht gilt, dann findet man zwei nichtleere offene Mengen U und V mit fn(U)∩
V = ∅ für alle n ∈ N0. Es gilt aber allgemein die mengentheoretische Relation

(∗) fn(U) ∩ V = ∅ ⇔ U ∩ f−n(V ) = ∅,
die für n ∈ Z. Also haben wir U∩f−n(V ) = ∅ für alle n ∈ N0. Setze V ′ :=

⋃
n∈N0

f−n(V ).
Dann ist V ′ eine nichtleere offene f−1-invariante Menge mit V ′ ∩ U = ∅. Es folgt V ′ ∩
f−n(U) = f−n(V ′ ∩ U) = ∅, d.h. U ′ :=

⋃
n∈N0

f−n(U) ist eine nichtleere offene f−1-
invariante Menge mit V ′ ∩ U ′ = ∅. Dies zeigt, daß auch (3) nicht gilt.
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”(3)⇒(4)“ Sei ϕ ∈ C(M,R) f -invariant. Dann sind für a ∈ R die Mengen ϕ−1(] − ∞, a[) und
ϕ−1(]a,∞[) offen, disjunkt und f−1-invariant. Je eine davon muß nach (3) also leer sein.
Dann ist aber ϕ konstant.

Beachte, daß die Implikation ”(1) ⇒ (2)“ in Lemma 6.3.4 für die Nachfolgerabbildung f : N→ N, x 7→
x + 1 falsch ist: Die Bahn von x = 1 ist ganz N (versehen mit der diskreten Topologie) und für V = {1}
und U = {2} gilt fk(U) ∩ V = ∅ für alle k ∈ N0.

Beispiel 6.3.5 (Irrationale Translationen auf dem Torus): Wenn 1, α1, . . . , αn ∈ R rational un-
abhängig sind, dann ist die Abbildung Tα : Tn → Tn aus Beispiel 6.2.8 topologisch transitiv. Um das
einzusehen, stellt man mit Beispiel 6.2.8 zunächst fest, daß Tα ergodisch bzgl. des Haarschen Maßes ist.
Da das Haarsche Maß auf ganz Tn getragen wird, folgt die Behauptung jetzt aus Satz 6.3.3.

Übung 6.3.1 : Sei T : [0, 1] → [0, 1] eine Abbildung, die das Lebesgue-Maß λ erhält. Zeige: für λ-fast alle
x ∈ [0, 1] gilt

lim inf
n→∞

n|T n(x)− x| ≤ 1.

Sei (M, M, µ) ein Maßraum. Dann heißt eine maßerhaltende Abbildung f : M → M mischend, wenn
gilt

∀A,B ∈ M : µ(f−n(A) ∩B) −→
n→∞

µ(A)µ(B).

Proposition 6.3.6 : Sei (M, M, µ) ein Maßraum und f : M → M mischend. Dann ist f ergodisch.

Beweis:

Sei A ∈ M stark f -invariant. Dann gilt für jedes n ∈ N

µ(f−n(A) ∩ (M \A)) = µ(A ∩ (M \A)) = 0

und weil f mischend ist, folgt µ(A)µ(M \A) = 0.

Beispiel 6.3.7 (Irrationale Translationen auf dem Torus): Keine der Translationen Tα : Tn →
Tn ist mischend bzgl. des Lebesgue-Maßes µ auf Tn. Um das einzusehen, können wir nach Proposition
6.3.6 o.B.d.A. annehmen, daß Tα ergodisch ist. Nach Satz 6.3.3 ist dann Tα topologisch transitiv und
eine Isometrie bzgl. der von Rn auf Tn induzierten Metrik. Also gibt es eine kleine Kugel B und eine
Folge (nj)j∈N in N mit nj −→

j→∞
∞ und T

−nj
α (B) ∩ B = ∅ für alle j ∈ N (betrachte z.B. ein Folge

von Punkten in der Bahn von x, die gegen einen Punkt y 6= x konvergiert). Aber dann gilt natürlich
µ(T−nj

α (B) ∩B) = 0 6= µ(B)2 und Tα kann nicht mischend sein.

Eine Familie U von meßbaren Mengen in M heißt dicht, wenn man für A ∈ M zu jedem ε > 0 ein A′ ∈ U
mit

µ(A4A′) < ε
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finden kann, wobei A4A′ := A\A′∪A′\A die symmetrische Differenz von A und A′ ist. Die Familie U
heißt ausreichend, die Vereinigungen von endlich vielen disjunkten Elementen von U eine dichte Familie
bilden.

Eine Teilmenge von L2(M, µ) heißt total, wenn der von ihr aufgespannte lineare Unterraum dicht in
L2(M, µ) liegt.

Lemma 6.3.8 : Sei (M, M, µ) ein Maßraum und f : M → M maßerhaltend.

(i) Wenn für eine ausreichende Familie C von meßbaren Mengen gilt

∀A,B ∈ C : µ(f−n(A) ∩B) −→
n→∞

µ(A)µ(B),

dann ist f mischend.

(ii) f ist mischend genau dann, wenn für eine in L2(M, µ) totale Teilmenge Φ gilt

∀ϕ,ψ ∈ Φ :
∫

M

ϕ(fn(x))ψ(x) dµ(x) −→
n→∞

(∫

M

ϕdµ

)(∫

M

ψ dµ

)
.

Beweis:

Idee: Für (i) approximiert man beliebige meßbare Mengen durch Elemente der ausreichenden

Familie, für (ii) reduziert man das Problem zunächst durch ein Approximationsargument auf den Fall

Φ = L2(M, µ) und betrachtet dann charakteristische Funktionen von Mengen.

(i) Seien A1, . . . , Ak, B1, . . . , Bl ∈ C mit Ai ∩Ai′ = ∅ für i 6= i′ und Bj ∩Bj′ = ∅ für j 6= j′.
Setze

A :=
k⋃
.

i=1

Ai und B :=
k⋃
.

j=1

Bj ,

dann gilt

µ(A) =
k∑

i=1

µ(Ai) und µ(B) =
l∑

j=1

µ(Bj).

Nach Voraussetzung gilt

µ(f−n(A) ∩B) =
k∑

i=1

l∑

j=1

µ(f−n(Ai) ∩Bj) −→
n→∞

k∑

i=1

l∑

j=1

µ(Ai)µ(Bj) = µ(A)µ(B).

Damit hat man
∀A,B ∈ U : µ(f−n(A) ∩B) −→

n→∞
µ(A)µ(B)

für die dichte Familie U, die durch endliche Vereinigungen von disjunkten Elementen in
C entsteht.
Seien jetzt A, B ∈ M und ε > 0 beliebig sowie A′, B′ ∈ U mit

µ(A4A′) <
ε

4
, µ(B4B′) <

ε

4
.

Dann rechnet man

|µ(f−n(A) ∩B)− µ(A)µ(B)| ≤ µ(f−n(A4A′) ∩B) + µ(f−n(A′) ∩ (B4B′))
+|µ(f−n(A′) ∩B′)− µ(A′)µ(B′)|
+µ(A)µ(B4B′) + µ(B′)µ(A4A′)

≤ |µ(f−n(A′) ∩B′)− µ(A′)µ(B′)|+ ε

und erhält mit ε → 0 die Behauptung.
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(ii) Wir können o.B.d.A. annehmen, daß Φ dicht in L2(M, µ), da die Ausdrücke in (ii) ses-
quilinear in ϕ und ψ sind. In der Tat können wir sogar Φ = L2(M,µ) voraussetzen, wie
das folgende Approximationsargument zeigt: Wenn ϕ,ψ ∈ L2(M, µ) und ϕ̃, ψ̃ ∈ Φ mit
‖ϕ− ϕ̃‖2 < ε und ‖ψ − ψ̃‖2 < ε (wobei ‖ · ‖2 die Norm auf L2(M, µ) ist), dann rechnet
man

∣∣∣
∫

M

ϕ(fn(x))ψ(x) dµ(x)−
∫

M

ϕdµ

∫

M

ψ dµ
∣∣∣ ≤

≤
∣∣∣
∫

M

ϕ(fn(x))(ψ(x)− ψ̃(x)) dµ(x) +
∫

M

(ϕ(fn(x))− ϕ̃(fn(x))) dµ(x)

+
∫

M

ϕ(fn(x))ψ̃(x) dµ(x)−
∫

M

ϕ̃ dµ

∫

M

ψ̃ dµ

+
∫

M

ϕ̃ dµ

∫

M

(ψ − ψ̃) dµ +
∫

M

(ϕ− ϕ̃) dµ

∫

M

ψ̃ dµ
∣∣∣

≤ ‖ϕ ◦ fn‖2‖ψ − ψ̃‖2 + ‖(ϕ− ϕ̃) ◦ fn‖2
+

∣∣∣
∫

M

ϕ̃(fn(x))ψ̃(x) dµ(x)−
∫

M

ϕ̃ dµ

∫

M

ψ̃ dµ
∣∣∣

+
∣∣∣
∫

M

ϕ̃ dµ| ‖ψ − ψ̃‖2 + ‖ϕ− ϕ̃‖2|
∫

M

ψ̃ dµ
∣∣∣

≤
∣∣∣
∫

M

ϕ̃(fn(x))ψ̃(x) dµ(x)−
∫

M

ϕ̃ dµ

∫

M

ψ̃ dµ
∣∣∣ + ε

(
‖ϕ‖+ 1 +

∣∣∣
∫

M

ϕ̃ dµ
∣∣∣ +

∣∣∣
∫

M

ψ̃ dµ
∣∣∣
)

.

Wenn aber

(∗) ∀ϕ,ψ ∈ L2(M,µ) :
∫

M

ϕ(fn(x))ψ(x) dµ(x) −→
n→∞

(∫

M

ϕdµ

)(∫

M

ψ dµ

)

gilt, braucht man nur ϕ := χA und ψ := χB zu setzen, um zu sehen, daß f mischend ist.
Umgekehrt bilden die charakteristischen Funktionen von meßbaren Mengen eine totale
Familie Φ von Funktionen in L2(M,µ), für die

∀ϕ,ψ ∈ Φ :
∫

M

ϕ(fn(x))ψ(x) dµ(x) −→
n→∞

(∫

M

ϕdµ

)(∫

M

ψ dµ

)

gilt, falls f mischend ist. Nach dem ersten Teil des Beweises gilt dann aber schon (∗)
und (ii) ist bewiesen.

Beispiel 6.3.9 (Expansionen auf dem Torus): Für m ∈ {2, 3, . . .} ist die Abbildung

Em : T → T
t + Z 7→ mt + Z

aus Beispiel 6.2.9 mischend bzgl. des Lebesgue-Maßes µ auf T.
Um das einzusehen, müssen wir nach Proposition 6.3.8(i) nur

∀A,B kleine Intervalle : µ(f−n(A) ∩B) →
n→∞

µ(A)µ(B)

zeigen. Hier soll ein kleines Intervall eine Menge der Form I + Z ⊆ T sein, wobei I ein Intervall in R der
Länge kleiner 1 ist. Das Urbild von t + Z unter En

m ist
{ t + k

mn
+ Z

∣∣∣ k = 0, 1, . . . , mn − 1
}

.
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Dementsprechend ist E−n
m (A) die disjunkte Vereinigung von mn kleinen Intervallen der Länge µ(A)

mn ,
im Abstand von 1

mn (der Anfangspunkte) gleichmäßig aufgereiht. Damit enthält B höchstens mnµ(B),
mindestens aber (mn−1)µ(B) dieser kleinen Intervalle. Es ergibt sich also, mit εn ∈ [0, 1] passend gewählt,

µ(E−n
m A ∩B) = (mn + εn)µ(B)

µ(A)
mn

→
n→∞

µ(B)µ(A).

Beispiel 6.3.10 (Hyperbolische Torus–Automorphismen): Sei L :=
(

a b
c d

)
eine ganzzahlige

Matrix mit Determinante ±1 und von ±1 verschiedenen Eigenwerten. Dann ist die Abbildung

FL : T2 → T2

(x, y) + Z2 7→ (ax + by, cx + by) + Z2

ergodisch und sogar mischend bzgl. des Lebesgue-Maßes µ auf T2.
Betrachte dazu die Charaktere

χm,n : T2 → S1

(x, y) 7→ e2πi(mx+ny)

mit m,n ∈ Z. Es gilt

χm,n(FL(x, y)) = e2πi((am+cn)x+(bm+dn)y) = χam+cn,bm+dn(x, y),

d.h., wenn man die Charaktere von T2 via χm,n ←→ (m, n) mit Z2 identfiziert, wirkt FL wie die trans-
ponierte Matrix Lt von L. Nach den Voraussetzungen an L sind alle Lt-Bahnen in Z2 unendlich außer
der von (0, 0).

Wenn jetzt ϕ eine beschränkte meßbare und FL-invariante Funktion auf T2 ist und

ϕ =
∑

(m,n)∈Z2

ϕm,nχm,n

ihre Fourier–Entwicklung, dann gilt
ϕm,n = ϕam+cn,bm+dn,

d.h. die Fourier–Koeffizienten sind konstant auf den Lt-Bahnen. Nach dem Riemann–Lebesgue Lemma
gilt

|ϕm,n| −→
m2+n2→∞

0,

also verschwinden alle ϕm,n bis auf ϕ0,0. Dies zeigt, daß ϕ (µ-fast überall) konstant ist und daher mit
Lemma 6.2.1 die Egodizität von ϕ.

Wir benützen Proposition 6.3.8(ii) um zu zeigen, daß FL sogar mischend ist. Beachte dazu, daß die
Menge der Charaktere χm,n total in L2(T2, µ) ist. Wir müssen also nur

(∗) ∀(m,n), (k, l) ∈ Z2 :
∫

T2
χm,n(FN

L (x, y))χk,l(x, y) dµ(x, y) →
N→∞

(∫

T2
χm,n dµ

)(∫

T2
χk,l dµ

)

zeigen. Wenn m = n = k = l = 0, dann sind alle Integrale in (∗) gleich 1. Wir können also (m, n) 6= (0, 0)
annehmen. Dann ist aber die rechte Seite von (∗) gleich 0, weil alle nicht-konstanten Charaktere das Inte-
gral 0 haben (Schur–Orthogonalität). Außerdem gilt (Lt)N (m,n) →

N→∞
∞ und daher (Lt)N (m,n) 6=

(k, l) für große N . Dies liefert (wieder mit Schur–Orthogonalität)
∫

T2
χm,n(FN

L (x, y))χk,l(x, y) dµ(x, y) =
∫

T2
χ(Lt)N (m,n)−(k,l) dµ = 0

und damit die Behauptung.
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Beispiel 6.3.11 (Der Bernoulli–Shift): Sei N ∈ {2, 3, . . .} und

ΩN := {ω = (ωj)j∈Z | (∀j ∈ Z) ωj ∈ {0, 1, . . . , N − 1}} = {0, 1, . . . , N − 1}Z

der Shift–Raum mit N Buchstaben. Wir versehen {0, 1, . . . , N − 1} mit der diskreten und ΩN mit
der Produkt–Topologie. Damit wird ΩN ein kompakter separabler metrisierbarer Raum. Eine mögliche
Metrik ist

dλ(ω, ω′) =
∑

n∈Z

|ωn − ω′n|
λ|n|

,

wobei λ > 1 beliebig gewählt werden kann.
Für n1 < n2 < . . . < nk in Z und α1, . . . , αk ∈ {0, 1, . . . , N − 1} betrachtet man den Zylinder

Cn1,...,nk
α1,...,αk

:= {ω ∈ ΩN | (∀i = 1, . . . , k)ωni
= αi}.

Die Zylinder bilden eine Basis der Topologie auf ΩN .
Die durch

σN (ω) = ω′, ω′n = ωn+1

definierte Abbildung σN : ΩN → ΩN ist offensichtlich bijektiv und bildet Zylinder auf Zylinder ab. Damit
wird sie zu einem Homöomorphismus, den man den beidseitigen Shift oder auch Bernoulli–Shift auf
ΩN nennt.

Wähle eine Wahrscheinlichkeitsverteilung p = (p0, . . . , pN−1) auf {0, 1, . . . , N − 1}, d.h. pi ∈ [0, 1] mit∑N−1
i=1 pi = 1. Dann kann man ein Produktmaß µp auf ΩN , das Bernoulli-Maß, definieren, das auf den

Zylindern durch

(∗) µp(Cn1,...,nk
α1,...,αk

) =
k∏

i=1

pαi

gegeben ist. Daraus kann man zunächst ein äußeres Maß und dann ein Maß konstruieren, von dem al-
lerdings nachgewiesen werden muß, daß es wirklich auf der ganzen Borel σ-Algebra von ΩN definiert ist.
Wenn wir die Existenz von µp voraussetzen (was wir hier tun wollen), dann liefert Satz 2.1.3 die Ein-
deutigkeit. Wegen (∗) impliziert dies die σN -Invarianz von µP . Wir behaupten, daß σN immer mischend
bzgl. µp ist.

Man kann zeigen, daß die Familie C der symmetrischen Zylinder

Cm
α := {ω ∈ ΩN | (∀i = −m, . . . ,m)ωni = αi}

für m ∈ N0 und α = (α−m, . . . , αm) ∈ {0, 1, . . . , N − 1}2m+1 ausreichend im Sinne von Proposition 6.3.8
ist. Es reicht daher,

µp(σ−n
N (Ck

α) ∩ Cl
β) −→

n→∞
µp(Ck

α)µp(Cl
β) =

k∏

i=−k

pαi

l∏

j=−l

pβj

für alle k, l ∈ N0 und α ∈ {0, . . . , , N − 1}2k+1, β ∈ {0, . . . , N − 1}2l−1 zu zeigen. Wegen σ−n
N (Ck

α) =
Cn−k,...,n+k

α−k,...,αk
gilt für n ≥ k + l + 1

σ−n
N (Ck

α) ∩ Cl
β = C−l,...,l,n−k,...,n+k

β−l,...,βl,α−k,...,αk

und das zeigt wegen

µ(C−l,...,l,n−k,...,n+k
β−l,...,βl,α−k,...,αk

) =
l∏

j=−l

pβj

k∏

i=−k

pαi

die Behauptung.
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Beispiel 6.3.12 (Der Markov–Shift): Seien ΩN und σN wie in Beispiel 6.3.11 definiert. Betrachte
eine stochastische Matrix Π = (πij)i,j=0,...,N−1, d.h. πij ∈ [0, 1] mit

∀j = 0, . . . , N − 1 :
N−1∑

i=0

πij = 1.

Wir nehmen an, Π ist transitiv, d.h. es gibt ein m ∈ N0, für das alle Einträge von Πm positiv sind. Dann
sagt der Satz von Perron–Frobenius, daß Π einen bis auf skalare Vielfache eindeutig bestimmten
Eigenvektor p mit positiven Einträgen hat. Der zugehörige Eigenwert ist 1 und betragsmäßig echt größer
als alle anderen Eigenwerte von Π. Wenn p = (p0, . . . , pN−1), dann normieren wir p durch

N−1∑

i=0

pi = 1,

und setzen

µΠ(Cm
α ) = pαm

m−1∏

i=−m

παiαi+1 .

Wie in Beispiel 6.3.11 erhält so ein Borel-Maß µΠ auf ΩN , das Markov–Maß zu Π. Dann ist µΠ(C0
j ) = pj

und πij repräsentiert das Maß des Anteils von C0
j , der von σN nach C0

i abgebildet wird. Wegen Πp = p
ist µΠ σN -invariant.

Sei jetzt A = (aij)i,j=0,...,N−1 eine Matrix mit Einträgen in {0, 1} und

ΩA := {ω ∈ ΩN | (∀i ∈ Z) aωiωi+1 = 1}.

Wir nehmen an, daß πi,j = 0 gilt falls aij = 0. Dann ist ΩA invariant unter σN und σ−1
N . Weiter gilt, daß

supp (µΠ) ⊆ ΩA, d.h., µΠ(ΩA) = 1. Mehr noch, σN : ΩA → ΩA, der Markov–Shift zu Π ist mischend.
Um das einzusehen, stellen wir zunächst fest, daß für n ≥ m + k gilt

σ−n
N (Cm

α ) ∩ Ck
β =

⋃

γm+1,...,γn−m−1∈{0,...,N−1}
C−k,...,k,k+1,...,n−m−1,n−m,...,n+m

β−k,...,βk,γk+1,...,γn−m−1,α−m,...,m .

Weiter gilt

µΠ(C−k,...,k,k+1,...,n−m−1,n−m,...,n+m
β−k,...,βk,γk+1,...,γn−m−1,α−m,...,m ) = µΠ(Ck

β)p−1
βk

µΠ(Cm
α )πβkγk+1

n−m−k∏
r=1

πγm+rγm+r+1πγnαm .

Die Summation ergibt dann

µΠ(σ−n
N (Cm

α ) ∩ Ck
β) = µΠ(Ck

β)µΠ(Cm
α )p−1

βk
π

βkγ
(n−m−k)
k+1

.

Aus dem Satz von Perron-Frobenius folgt, daß für Πn = (π(n)
ij )i,j=1,...,N−1 gilt π

(n)
ij −→

n→∞
pi. Damit erhält

man
µΠ(σ−n

N (Cm
α ) ∩ Cm

β ) −→
n→∞

µΠ(Cm
β )µΠ(Cm

α )

und weil die symmetrischen Zylinder eine ausreichende Familie bilden, folgt die Behauptung mit Propo-
sition 6.3.8.
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Anhang A

Die Fourier-Transformation

A.1 Die Faltung

Seien f, g : Rn → C Borel–meßbar. Die durch

f ∗ g(x) :=
∫

Rn

f(x− y)g(y) dy

definierte Funktion (für die x, für die die rechte Seite definiert ist), heißt die Faltung von f und g.

Proposition A.1.1 : Seien f, g, h : Rn → C Borel–meßbar. Dort wo alle auftretenden Integrale konver-
gieren, gelten folgende Identitäten:

(i) f ∗ g = g ∗ f .

(ii) (f ∗ g) ∗ h = f ∗ (g ∗ h).

(iii) (f ∗ g)z = fz ∗ g = f ∗ gz.

(iv) supp (f ∗ g) ⊆ supp f + supp g.

Beweis:

(i) Mit einer Substitution (vgl. Satz C.4.6) rechnet man

(f ∗ g)(x) =
∫

Rn

f(x− y)g(y) dy

=
∫

Rn

f(z)g(x− z) dz

= (g ∗ f)(x).

(ii) Hier benützt man (i) und den Satz 2.3.5 von Fubini, um zu rechnen

(
(f ∗ g) ∗ h

)
(x) =

∫

Rn

(g ∗ f)(x− y)h(y) dy

=
∫

Rn

∫

Rn

g(x− y − z)f(z)h(y) dz dy

=
∫

Rn

f(z)
∫

Rn

g(x− y − z)h(y) dy dz

=
∫

Rn

f(z)
∫

Rn

(h ∗ g)(x− z) dz

=
(
f ∗ (g ∗ h)

)
(x).
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(iii) Wegen

(f ∗ g)z(x) =
∫

Rn

f(x− z − y)g(y) dy = fz ∗ g(x)

und (i) gilt auch (f ∗ g)z = (g ∗ f)z = gz ∗ f = f ∗ gz.

(iv) Wenn x 6∈ supp f + supp g und y ∈ supp g, dann gilt x − y 6∈ supp f , was für alle y auf
f(x− y)g(y) = 0 führt. Damit gilt aber (f ∗ g)(x) = 0.

Lemma A.1.2 : (Youngsche Ungleichung) Seien f ∈ L1(Rn) und g ∈ Lp(Rn) mit 1 ≤ p ≤ ∞. Dann
existiert (f ∗ g)(x) für fast alle x ∈ Rn und f ∗ g ∈ Lp(Rn). Darüber hinaus gilt

‖f ∗ g‖p ≤ ‖f‖1 ‖g‖p.

Beweis:

Mit der Minkowskiungleichung für Integrale (vgl. Proposition ??) rechnen wir

‖f ∗ g‖p =
∥∥∥∥
∫

Rn

f(y)gy(·) dy

∥∥∥∥
p

≤
∫

Rn

|f(y)| ‖gy‖p dy

= ‖f‖1 ‖g‖p.

Proposition A.1.3 : Seien p und q konjugierte Exponenten und f ∈ Lp(Rn) sowie g ∈ Lq(Rn). Dann
existiert (f ∗ g)(x) für alle x ∈ Rn und es gilt

‖f ∗ g‖∞ ≤ ‖f‖p ‖g‖q.

Wenn 1 < p < ∞ gilt darüber hinaus f ∗ g ∈ C0(Rn), d.h. zu ε > 0 gibt es eine kompakte Teilmenge
K ⊆ Rn mit

|(f ∗ g)(x)| < ε ∀x ∈ Rn \K.

Beweis:

Mit der Hölderungleichung (vgl. Lemma ??) folgt
∫

Rn

|f(x− y)g(y)| dy ≤ ‖f‖p ‖g‖q,

also existiert (f ∗ g)(x) in der Tat für alle x ∈ Rn und erfüllt ‖f ∗ g‖∞ ≤ ‖f‖p ‖g‖q. Mit
Proposition A.1.1 rechnen wir jetzt

|(f ∗ g)y(x)− (f ∗ g)(x)| =
∣∣((fy − f) ∗ g

)
(x)

∣∣
≤ ‖fy − f‖p ‖g‖q.

Für p < ∞ konvergiert nach Proposition ?? letzterer Ausdruck mit y → 0 gegen 0, was mit
Bemerkung ?? die gleichmäßige Stetigkeit von f ∗ g liefert. Für p = ∞ vertauscht man in
diesem Argument einfach die Rollen von p und q.
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Sei jetzt 1 < p, q < ∞. Nach Lemma ?? kann man zwei Folgen (fn)n∈N und (gn)n∈N in Cc(Rn)
mit

‖fn − f‖p −→
n→∞

0 und ‖gn − g‖p −→
n→∞

0

finden. Mit Proposition A.1.1(iv) sieht man, daß supp (fn ∗ gn) kompakt ist. Die schon bewie-
sene Stetigkeit von fn ∗ gn liefert also fn ∗ gn ∈ Cc(Rn). Weiterhin rechnet man

|(fn ∗ gn)(x)− (f ∗ g)(x)| ≤ ∣∣(fn ∗ (gn − g)
)
(x)

∣∣ +
∣∣((fn − f) ∗ g

)
(x)

∣∣
≤ ‖fn‖p ‖gn − g‖q + ‖fn − f‖p ‖g‖q −→

n→∞
0.

Also konvergiert fn ∗ gn gleichmäßig gegen f ∗ g und dies beweist die Behauptung.

Lemma A.1.4 : Sei (M, M, µ) ein Maßraum und (fn)n∈N eine konvergente Folge in Lp(µ) mit Grenz-
wert f ∈ Lp(µ). Dann gibt es eine Teilfolge, die µ–fast überall gegen f konvergiert.

Beweis:

Wir nehmen zunächst an, daß p < ∞. Für n ∈ N und ε > 0 setze

En,ε := {y ∈ M | |fn(y)− f(y)| > ε}.
Dann gilt

∫
M
|fn(x)− f(x)|p ≥ εpν(En,ε), also

ν(En,ε) ≤ 1
εp
‖fn − f‖p

p −→
n→∞

0.

Wir wählen eine Teilfolge (nj)j∈N mit ν(Ej) ≤ 1
2j für Ej = {y ∈ M | |fnj (y) − f(y)| > ε}.

Dann gilt
fnj (y) −→

j→∞
g(y) ∀y ∈ M \ lim sup

j∈N
Ej ,

wobei lim supj∈NEj :=
⋂∞

k=1

(⋃∞
j=k Ej

)
. Um das einzusehen, beachte

M \ lim sup
j∈N

Ej =
∞⋃

k=1




∞⋂

j=k

(M \ Ej)


 .

Also gibt es zu y ∈ M \ lim supj∈NEj ein k ∈ N mit y 6∈ Ej für alle j ≥ k. Das bedeutet aber
gerade |fnj (y)− f(y)| ≤ 1

2j für alle j ≥ k, d.h. fnj (y) −→
j→∞

f(y). Andererseits gilt

ν




∞⋃

j=k

Ej


 ≤

∞∑

j=k

1
2j

=
1

2k+1

woraus man ν(lim supj∈NEj) = 0 schließt.

Proposition A.1.5 : (Glättung) Sei f ∈ L1(Rn) und g ∈ Ck(Rn). Wenn ∂αg für alle |α| ≤ k
beschränkt ist, dann ist g ∗ f ∈ Ck(Rn) und es gilt

∂α(g ∗ f) = ∂αg ∗ f ∀|α| ≤ k.

Beweis:
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Die Existenz von (∂αg ∗ f)(x) für alle x folgt aus

(∂αg ∗ f)(x) :=
∫

Rn

∂α
x g(x− y)f(y) dy,

weil ∂αg beschränkt ist. Mit ∂α
x g(x − y)f(y) = ∂α

x

(
g(x − y)f(y)

)
folgt die Behauptung jetzt

aus Satz 2.4.6.

Sei ϕ : Rn → C eine Funktion und t > 0. Dann setzt man

ϕt(x) =
1
tn

ϕ
(x

t

)
.

Satz A.1.6 : Sei ϕ ∈ L1(Rn) und
∫
Rn ϕ(x) dx = a. Dann gilt

(i)
∫
Rn ϕt(x) dx =

∫
M

ϕ(x) dx = a.

(ii) Sei f ∈ Lp(Rn) mit 1 ≤ p < ∞. Dann gilt f ∗ ϕt −→
t→0

af in Lp(Rn).

(iii) Wenn f beschränkt und gleichmäßig stetig ist, dann ist die Konvergenz f ∗ ϕt −→
t→0

af gleichmäßig.

(iv) Wenn f ∈ L∞(Rn) und U ⊆ Rn eine offene Teilmenge auf der f stetig ist. Dann ist die Konvergenz
f ∗ ϕt −→

t→0
af gleichmäßig auf kompakten Teilmengen von U .

Beweis:

(i) Mit der Transformationsformel (vgl. Satz C.4.6) rechnet man
∫

Rn

ϕt(x) dx =
∫

Rn

1
tn

ϕ(
x

t
) dx =

∫

Rn

ϕ(y) dy.

(ii) Mit der Rechnung

(f ∗ ϕt)(x)− af(x) =
∫

Rn

(
f(x− y)− f(x)

)
ϕt(y) dy

=
∫

Rn

(
f(x− tz)− f(x)

)
ϕt(tz)tn dz

=
∫

Rn

(
f(x− tz)− f(x)

)
ϕ(z) dz

=
∫

Rn

(
f tz(x)− f(x)

)
ϕ(z) dz

und der Minkowskiungleichung aus Proposition ?? finden wir

‖f ∗ ϕt − af‖p =
∥∥∥∥
∫

Rn

(
f tz(·)− f(·)) ϕ(z) dz

∥∥∥∥
p

≤
∫

Rn

(∫

Rn

(∣∣f tz(x)− f(x)
∣∣ |ϕ(z)|)p

dx

) 1
p

dz

=
∫

Rn

∥∥f tz − f
∥∥

p
|ϕ(z)| dz.
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Beachte, daß ‖f tz−f‖p ≤ 2‖f‖p. Nach Proposition ?? gilt ‖f tz−f‖p −→
t→0

0 falls p < ∞.

Also liefert der Satz 2.4.4 von der dominierten Konvergenz ‖f ∗ ϕt − af‖p −→
t→0

0 und
damit die Behauptung.

(iii) Dies geht genauso wie (ii), nur benötigt man die gleichmäßige Stetigkeit um ‖f tz −
f‖∞ −→

t→0
0 schließen zu können (vgl. Bemerkung ??). Dann liefert der Satz 2.4.4 von der

dominierten Konvergenz ‖f ∗ ϕt − af‖∞ −→
t→0

0 und damit die Behauptung.

(iv) Sei ε > 0 und E ⊆ Rn eine kompakte Teilmenge mit
∫
Rn\E |ϕ(x)| dx ≤ ε. Wenn jetzt

K ⊆ U eine kompakte Teilmenge ist und x ∈ K, dann gilt für z ∈ E und kleine t > 0,
daß x− tz ∈ U und (vgl. Lemma ??)

sup
x∈K,z∈E

|f(x− tz)− f(x)| ≤ ε.

Damit rechnet man

sup
x∈K

|f ∗ ϕt(x)− af(x)| ≤

≤ sup
x∈K

(∫

E

|(f(x− tz)− f(x)| |ϕ(z)| dz +
∫

Rn\E
|(f(x− tz)− f(x)| |ϕ(z)| dz

)

≤ ε

∫

Rn

|ϕ(z)| dz + 2‖f‖∞ε,

wobei t immer noch als klein angenommen wird. Damit folgt aber (iv) sofort.

A.2 Der Schwartz-Raum

Die Menge
S(Rn) := {f ∈ C∞(Rn) | ‖f‖(N,α) < ∞, ∀ N ∈ N, α ∈ Nn

0}
heißt der Schwartz–Raum, wobei

‖f‖(N,α) := sup
x∈Rn

(1 + ‖x‖)N |∂αf(x)| (A.1)

(”∂
αf fällt schneller auf Null ab als jede Potenz von ‖x‖N“) und ‖ · ‖ die euklidische Norm auf Rn ist.

Bemerkung A.2.1 : Die durch (A.1) definierten Funktionen ‖ · ‖(N,α) : S → R sind Halbnormen. Wir
versehen S(Rn) mit der von diesen Halbnormen im Sinne von Bemerkung ?? erzeugten Topologie. Sei
{fk}∞1 eine Folge in S(Rn) und f ∈ S(Rn), dann konvergiert fk → f in S(Rn) genau dann, wenn

‖fk − f‖(N,α) −→
k→∞

0 ∀(N, α).

Proposition A.2.2 : S(Rn) ist vollständig, d.h. wenn für eine Folge {fk}k∈N in S(Rn) alle ‖fk‖(N,α)

Cauchy-Folgen sind, dann konvergiert fk gegen ein f ∈ S(Rn).

Beweis:

Sei {fk}k∈N wie in der Proposition beschrieben. Da für jedes n ∈ N gilt

sup
x∈Rn

|∂αf(x)| ≤ ‖f‖(N,α),
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konvergiert ∂αfk(x) lokal gleichmäßig in x ∈ Rn. Nach Satz ?? ist die Grenzfunktion gα dann
stetig. Wir wollen zeigen, daß die Grenzfunktion g0 der fk unendlich oft differenzierbar ist
und ∂αg0 = gα erfüllt. Dazu machen wir eine Induktion über |α|.
Setze vj = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn und β = (0, . . . , 0, 1, 0, . . . , 0) ∈ Nn mit jeweils der 1 an
der j-ten Stelle. Dann gilt

fk(x + tvj)− fk(x) =

t∫

0

∂jfk(x + svj)ds

und die linke Seite konvergiert für k →∞ gegen g0(x + tvj)− g0(x), während die rechte Seite

nach dem Satz 2.4.4 von der dominierten Konvergenz gegen
t∫
0

gβ(x+svj)ds konvergiert. Aber

dann zeigt der Hauptsatz ?? der Differential- und Integralrechnung ∂βg0(x) = ∂jg0(x) = gβ .
Damit hat man den Induktionsanfang und der Induktionsschritt geht ganz analog.

Halte jetzt (N, α) fest. Zu ε > 0 findet man ein k0 ∈ N mit ‖fk−fl‖(N,α) < ε für alle k, l > k0.
Also gilt

|(1 + ‖x‖)N
(
∂αfk(x)− ∂αfl(x)

)| < ε ∀ x ∈ Rn, k, l > k0

und das liefert
|∂αfk(x)− ∂αfl(x) | ε

(1 + ‖x‖)N
∀ x ∈ Rn; k, l > k0.

Wegen gα(x) = lim
k→∞

∂αfk(x) gibt es also zu jedem x ein kx ∈ N mit |gα(x) − ∂αfl(x)| <
ε

(1+‖x‖)N für alle l > kx und man findet mit

|∂αfk(x)− gα(x)| ≤ |∂αfk(x)− ∂αfl(x)|+ |∂αfl(x)− gα| ≤ ε

(1 + ‖x‖)N
+

ε

(1 + ‖x‖)N

für alle l ≥ kx, k die Abschätzung

|∂αfk(x)− gα(x)| ≤ 2ε

(1 + ‖x‖)N
∀ k > k0.

Damit gilt dann fk → g0 in S(Rn).

Proposition A.2.3 : Für jede Funktion f ∈ C∞(Rn) sind die folgenden Aussagen äquivalent:

(1) f ∈ S(Rn).

(2) xα∂βf ist beschränkt für jede Wahl von α und β.

(3) ∂α(xβf) ist beschränkt für jede Wahl von α und β.

Beweis:

(1)⇒(2): Dies folgt sofort, weil |xβ | ≤ (1 + ‖x‖)N für alle N ≥ |β|.
(2)⇒(1): Halte N fest und setze m := min{∑n

j=1 |xj |N | ‖x‖ = 1} > 0. Indem man die
Fälle ‖x‖ ≤ 1 und ‖x‖ ≥ 1 separat betrachtet, sieht man die erste Ungleichung von

(1 + ‖x‖)N ≤ 2N (1 + ‖x‖N ) ≤ 2N


1 + 1

m

n∑

j=1

|xj |N

 ;

die zweite ist klar für ‖x‖ = 1 und folgt dann allgemein aus dem identischen Homoge-
nitätsverhalten von ‖x‖N und

∑n
j=1 |xj |N .
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(2)⇒(3): ∂α(xβf) ist nach der Produktregel eine endliche Linearkombination von Termen
der Form xγ∂δf .

(3)⇒(2): xγ∂δf ist nach der Produktregel eine endliche Linearkombination von Termen
der Form ∂α(xβf).

Bemerkung A.2.4 : Aus Proposition A.2.3 sieht man sofort, daß S(Rn) ⊆ Lp(Rn) für alle 1 ≤ p ≤ ∞.

Proposition A.2.5 : Seien f, g ∈ S(Rn). Dann gilt f ∗ g ∈ S(Rn).

Beweis:

Nach Proposition A.1.5 gilt f ∗ g ∈ C∞(Rn). Mit

1 + ‖x‖ ≤ 1 + ‖x− y‖+ ‖y‖ ≤ (1 + ‖x− y‖)(1 + ‖y‖)

rechnet man

(1 + ‖x‖)N |∂α(f ∗ g)(x)| ≤
∫

Rn

(1 + ‖x− y‖)N |∂αf(x− y)| (1 + ‖y‖)N |g(y)| dy

≤ ‖f‖(N,α)‖g‖(N+n+1,0)

∫

Rn

(1 + ‖y‖)−(n+1) dy

und eine Integration in Polarkoordinaten zeigt, daß
∫
Rn(1 + ‖y‖)−(n+1) dy < ∞.

Proposition A.2.6 : Zu jedem ϕ ∈ S(Rn) gibt es eine Folge (ϕk)k∈N in C∞c (Rn) ⊂ S(Rn) mit ϕk → ϕ
in S(Rn). Insbesondere ist C∞c (Rn) dicht in S(Rn).

Beweis:

Sei ψ ∈ C∞c (Rn) mit ψ|B ≡ 1, wobei B = {x : ‖x‖ ≤ 1}. Für k ∈ N setze ϕk(x) = ϕ(x) ψ
(

x
k

)
.

Dann gilt ϕk ∈ C∞c (Rn). Mit

∂α
(
ϕk(x)− ϕ(x)

)
= ∂α

(
ϕ(x)

(
ψ(

x

k
)− 1

))

=




∑
β+γ=α
|γ|≥1

cβ,γ
1

k|γ|
(
∂γψ(

x

k
)
)

 +

(
∂αϕ(x)

)(
ψ(

x

k
)− 1

)

findet man

(1 + |x|N∂α
(
ϕk(x)− ϕ(x)

) | ≤ 1
k

c1 + c2|ψ(
x

k
)− 1|(1 + |x|)−1

≤
{

1
k c1 x ∈ kB
1
k c1 + 1

k c2 x /∈ kB
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Bemerkung A.2.7 : Sei Ω ⊆ Rn offen. Dann gibt es zu jedem ϕ ∈ C∞(Ω) gibt es eine Folge (ϕk)k∈N
in C∞c (Ω) mit ϕk → ϕ in C∞(Ω). Insbesondere ist C∞c (Ω) dicht in C∞(Ω).

Um das einzusehen, betrachte eine Folge von offenen Mengen Uj ⊆ Ω mit folgenden Eigenschaften:

(a) Uj ⊆ Uj+1,

(b) Uj ist kompakt,

(c)
⋃

j∈N Uj = Ω.

So eine Familie existiert, wie man sich mithilfe der Distanzfunktion d(x) := infy 6∈Ω |x − y| überlegen
kann. Dann wählen wir unter Verwendung des C∞-Urysohn-Lemmas ?? Funktionen ψj ∈ C∞c (Ω) mit
ψj |Uj

≡ 1 und suppψj ⊆ Uj+1. Setzt man jetzt ϕk := ϕψk, so gilt ϕk ∈ C∞c (Ω) und die ϕk konvergieren
in Ω gleichmäßig auf Kompakta gegen ϕ.

A.3 Die Fourier–Transformation

Sei f ∈ L1(Rn). Dann heißt

Ff(ξ) := f̂(ξ) :=
∫

Rn

f(x)e−2πix·ξdx

die Fourier–Transformierte von f .
Die folgende Bemerkung ist eine unmittelbare Konsequenz der Definitionen und Satz 2.4.6.

Bemerkung A.3.1 :

(i) ‖f̂‖∞ ≤ ‖f‖1.

(ii) f̂ ist stetig.

Satz A.3.2 : Für f, g ∈ L1(Rn) gilt

(i) (fy)∧(ξ) = e−2πiy·ξ f̂(ξ) und (f̂)η = ĥ mit h(x) = e2πix·η f(x).

(ii) Wenn xαf ∈ L1(Rn) für |α| ≤ k gilt, dann hat man f̂ ∈ Ck(Rn) und

∂αf̂ =
(
(−2πix)αf

)∧
.

(iii) Wenn f ∈ Ck(Rn), ∂αf ∈ L1(Rn) für |α| ≤ k und ∂αf ∈ C0 für |α| ≤ k − 1 gilt, dann hat man

(∂αf)∧(ξ) = (2πiξ)αf̂(ξ).

(iv) Sei T ∈ GL(n,R) und f ∈ L1(Rn). Dann gilt

(f ◦ T )∧ = | detT |−1f̂ ◦ (T−1)>.

(v) (f ∗ g)∧ = f̂ ĝ.

Beweis:
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(i) Dies folgt aus

(fy)∧(ξ) =
∫

Rn

f(x− y)e−2πix·ξdx

=
∫

Rn

f(z)e−2πi(z+y)·ξdz

= e2πiy·ξ f̂(ξ)

und einer analogen Rechnung für den zweiten Teil.

(ii) Hier rechnet man

∂αf̂(ξ) = ∂α
ξ

∫

Rn

f(x)e−2πix·ξ dx

=
∫

Rn

f(x)∂α
ξ

(
e−2πix·ξ) dx

=
∫

Rn

f(x)(−2πix)αe−2πix·ξ dx

=
(
(−2πix)αf(x)

)∧(ξ).

(iii) Wir führen eine Induktion über n durch. Für n = |α| = 1, d.h. für f ∈ C0 hat man
∫

Rn

f ′(x)e−2πix·ξ dx = f(x)e−2πix·ξ
︸ ︷︷ ︸

=0

∣∣∞
−∞ −

∫

Rn

f(x)(−2πiξ)e−2πix·ξ dx(ξ)

= 2πiξf̂(ξ).

Für n beliebig und |α| = 1 ersetze f ′ in obiger Rechnung durch ∂jf . Für |α > 1 ersetze
f ′ durch ∂j(∂βf) mit |β| = |α| − 1.

(iv) Setze S := (T−1)>. Dann liefert die Transformationsformel aus Satz C.4.6

(f ◦ T )∧(ξ) =
∫

Rn

f(Tx)e−2πix·ξ dx

= | detT |−1

∫

Rn

f(y)e−2πiT−1x·ξ dy

= | detT |−1

∫

Rn

f(y)e−2πiy·Sξ dy

= | detT |−1f̂(Sξ).

(v) Mit dem Satz 2.3.5 von Fubini rechnet man

(f ∗ g)∧(ξ) =
∫

Rn

∫

Rn

f(x− y)g(y) dy e−2πix·ξ dx

=
∫

Rn

∫

Rn

f(x− y)e−2πi(x−y)·ξg(y)e−2πiy·ξ dx dy

= f̂(ξ)
∫

Rn

g(y)e−2πiy·ξ dy

= f̂(ξ) ĝ(ξ).
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Lemma A.3.3 : (Riemann–Lebesgue) F bildet L1(Rn) nach C0(Rn), dem Raum der stetigen Funktio-
nen f mit lim|x|→∞ f(x) = 0, ab.

Beweis:

Wenn f ∈ C1
c (Rn) ist, dann gilt ∂jf ∈ Cc(Rn) und Satz A.3.2(iii) zusammen mit Bemerkung

A.3.1 zeigt, daß |ξj |f̂(ξ) beschränkt ist. Damit folgt f̂ ∈ C0(Rn).

Nach Korollar ?? ist aber C1
c (Rn) dicht in L1(Rn), also können wir eine Folge (fn)n∈N in

C1
c (Rn) wählen, für die fn → f in L1(Rn). Damit erhält man

|f̂n(ξ)− f̂(ξ)| ≤
∫

Rn

|fn(x)− f(x)| dx = ‖fn − f‖1

und dies zeigt die gleichmäßige Konvergenz von f̂n gegen f̂ . Weil aber nach dem ersten Teil
des Beweises f̂n ∈ C0(Rn) gilt, folgt auch f̂ ∈ C0(Rn).

Korollar A.3.4 : F(S(Rn)) ⊂ S(Rn).

Beweis:

Wenn f ∈ S(Rn), dann gilt nach Proposition A.2.3 wegen
∫
Rn

1
1+|x|n+1 dx < ∞, daß xα∂βf ∈

L1(Rn) ∩ C0(Rn). Jetzt liefert Satz A.3.2(iv) f̂ ∈ C∞(Rn) und wir können rechnen

(xα∂βf)∧ =
(
(−2πix)α

( ∂βf

(−2πi)|α|
))∧

A.3.2= ∂α
ξ

(
∂β

x

f

(−2πi)|x|
)∧

A.3.2= ∂α
ξ

(
(2πiξ)β

( 1
(−2πi)|α|

)∧)

= ∂α
ξ

(
(2πi)|β|−|α|(−a)|α|ξβ f̂(ξ)

)

= c ∂xiα
(
ξβ f̂(ξ)

)
.

Jetzt zeigt Bemerkung A.3.1, daß ∂α
ξ (ξβ f̂) beschränkt ist und mit Proposition A.2.3 schließt

man f̂ ∈ S(Rn).

Beispiel A.3.5 : Sei a > 0 und f(x) = e−πa|x|2 . Dann gilt

f̂(ξ) = a−
n
2 e−

π
a |ξ|2 .

Für n = 1 rechnet man

(f̂)′(ξ) =
(
−2πixe−πa|x|2

)∧
(ξ)

=
(

i

a

(
e−πa|x|2

)′)∧
(ξ)

=
i

a
(2πiξ) f̂(ξ)

= −2π

a
ξf̂(ξ),
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was zunächst auf die Differentialgleichung

d

dξ
f̂(ξ) = −2π

a
ξf̂(ξ)

und dann auf
d

dξ

(
e

π
a |ξ|2 f̂(ξ)

)
= 0

führt. Also ist e
π
a |ξ|2 f̂(ξ) konstant und Auswertung in ξ = 0 liefert als Konstante

f̂(0) =
∫

R
e−πa|x|2 dx =

1√
a
.

Damit hat man den Fall n = 1 bewiesen. Für allgemeine n rechnet man jetzt mit dem Satz 2.3.5 von
Fubini

f̂(ξ) =
∫

Rn

e−aπ|x|2e−2πix·ξ dx

=
n∏

j=1

∫

R
e−aπ|xj |2e−2πixjξj dxj

=
n∏

j=1

1√
a
e−

π
a |ξj |2

=
1

a
n
2

e−
π
a |ξ|2 .

Lemma A.3.6 : Für f, g ∈ L1(Rn) gilt
∫
Rn f(x)ĝ(x) dx =

∫
Rn f̂(x)g(x) dx.

Beweis:

Dies folgt, indem man den Satz 2.4.5 auf das Integral
∫
Rn

∫
Rn f(x)g(y)e−2πiy·x dy dx anwendet.

Proposition A.3.7 : Die Fourier–Transformation F : S(Rn) → S(Rn) ist stetig.

Beweis:

Wir benützen zunächst die Kompaktheit der Einheitskugel in Rn und die Homogenität von
|ξj |N für folgende Abschätzung

(1 + |ξ|)N |∂α
ξ ϕ̂(ξ)| ≤ c1(1 + c2

∑
|ξN

j |) |∂α
ξ ϕ̂(ξ)| ≤

∑

|β|≤N

cβ,α |ξβ∂α
ξ ϕ̂(ξ)|.

Mit Lemma A.3.6 und dem Beweis des Riemann-Lebesgue-Lemmas A.3.3 findet man die
Identitäten (

ξβ∂α
ξ ϕ̂

)∧(x) = (−1)|β|(2πi)|α|−|β| ∂β
x

(
xα ϕ(−x)︸ ︷︷ ︸

(ϕ̂)∧(x)

)

und

ξβ∂α
ξ ϕ̂(ξ) Lemma A.3.6=

∫
(−1)|β|(2πi)|α|−|β|∂β

x

(
xαϕ(−1)

)
e2πix·ξdx

x 7→−x=
∫

∂β
x

(
(−x)αϕ(x)

)
(2πi)|α|−|β| e−2πix·ξdx.
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Es ergibt sich also

|ξβ∂α
ξ ϕ̂(ξ)| ≤ c

∫
|∂β

x

(
(−x)αϕ(x)

)|dx.

Wegen ∂β
x

(
(−x)αϕ(x)

)
=

∑
γ,δ

cδ,γ(xγ∂δϕ) und

|xγ∂δϕ(x)| ≤ (1 + |x|)|γ||∂δϕ(x)|
= (1 + |x|)|γ|+n+1|∂δϕ(x)| 1

(1 + |x|)n+1

≤ ‖ϕ‖(|γ|+n+1,δ)
1

1 + |x|n+1

finden wir schließlich
|ξβ∂α

ξ ϕ̂(ξ)| ≤ c1

∑
cγ,δ‖ϕ‖|γ|+n+1,δ

Satz A.3.8 : (Fourierinversion) Seien f ∈ L1(Rn) und f̂ ∈ L1(Rn). Setzt man f̌(x) = f̂(−x), so gilt

(f̂)∨ = (f̌)∧ = f f.ü..

Beweis:

Für t > 0 und x ∈ Rn setze
ϕ(ξ) := e2πix·ξ−πt2|ξ|2 .

Dann rechnet man mit Beispiel A.3.5

ϕ̂(y) =
∫

Rn

ϕ(ξ)e−2πiξ·y dξ

=
∫

Rn

e−πt2|ξ|2e−2πiξ·(y−x) dξ

=
1
tn

e
π
t2
|y−x|2

= gt(x− y),

wobei g(x) = e−π|x|2 . Es ergibt sich in der Notation von Satz A.1.6
∫

Rn

e−πt2|ξ|2e2πix·ξ f̂(ξ) dξ =
∫

Rn

f̂(y)ϕ(y) dy

=
∫

Rn

f(y)ϕ̂(y) dy

=
∫

Rn

f(y)gt(x− y) dy

= (f ∗ gt)(x).

Satz A.1.6 zeigt, daß f ∗ gt für t → 0 in L1(Rn) gegen f konvergiert. Nach Lemma A.1.4 gibt
es dann eine Folge (tn)n∈N positiver Zahlen mit limn→∞ tn = 0, für die f ∗ gtn fast überall
gegen f konvergiert.

Andererseits folgt aus f̂ ∈ L1(Rn) mit dem Satz 2.4.4 von der dominierten Konvergenz, daß

f ∗ gt(x) =
∫

Rn

e−πt2|ξ|2e2πix·ξ f̂(ξ) dξ −→
t→0

∫

Rn

e2πix·ξ f̂(ξ) dξ = (f̂)∨(x),

d.h. f und (f̂)∨ sind fast überall gleich, also f = (f̂)∨ ∈ L1(Rn). Die Identität f = (f̌)∧ ∈
L1(Rn) zeigt man völlig analog.
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Korollar A.3.9 :

(i) Wenn f ∈ L1 und f̂ = 0, dann gilt f = 0 f.ü.

(ii) F : S(Rn) → S(Rn) ist ein Isomorphismus von topologischen Vektorräumen.

Beweis:

Der Teil (i) ist klar. Für Teil (ii) benützen wir das Korollar A.3.4 um zu sehen, daß F(S(Rn)) ⊂
S(Rn). Damit gilt aber auch f̌ ∈ S(Rn) für f ∈ S(Rn), d.h. f̂ ∈ S(Rn) impliziert f = (f̂)∨ ∈
S(Rn). Die Behauptung folgt dann aus Proposition A.3.7, weil die Stetigkeit von f 7→ f̌ sofort
aus der Stetigkeit von f 7→ f̂ folgt.

Satz A.3.10 : (Plancherel) Wenn f ∈ L1 ∩L2, dann gilt f̂ ∈ L2 und F|L1∩L2 : L1 ∩L2 → L∞ ∩L2 läßt
sich zu einer bijektiven Isometrie F : L2 → L2 fortsetzen.

Beweis:

Sei X := {f ∈ L1(Rn) | f̂ ∈ L1(Rn)}. Nach der Fourier–Inversionsformel aus Satz A.3.8
und dem Riemann–Lebesgue–Lemma A.3.3 gilt X ⊆ L∞(Rn). Mit Proposition ?? liefert das
X ⊆ L∞(Rn) ∩ L1(Rn) ⊆ L2(Rn). Andererseit gilt S(Rn) ⊆ X nach Bemerkung A.2.4 und
Korollar A.3.4. Wegen Cc(Rn) ⊆ S(Rn) und Korollar ?? ist also X dicht in L2(Rn).

Seien jetzt f, g ∈ X und h := ĝ. Dann liefert die Fourier-Inversionsformel

ĥ(ξ) =
∫

Rn

e−2πix·ξ ĝ dx

=
∫

Rn

e−2πix·ξ ĝ dx

= g(ξ) f.ü.

Lemma A.3.6 liefert dann
∫

Rn

f(x)g(x) dx =
∫

Rn

f(x)ĥ(x) dx =
∫

Rn

f̂(x)h(x) dx =
∫

Rn

f̂(x)ĝ(x) dx.

Das bedeutet, F erhält das L2–Skalarprodukt. Da nach Satz A.3.8 gilt F(X ) ⊆ X , kann man
also die Abbildung F : X → X zu einer Isometrie F̃ : L2(Rn) → L2(Rn) fortsetzen.

Als nächstes zeigen wir, daß F̃ und F auf L1(Rn) ∩ L2(Rn) tatsächlich übereinstimmen. Sei
also f ∈ L1(Rn) ∩ L2(Rn). Mit g(x) = e−π|x|2 , der Youngschen Ungleichung (vgl. Lemma
A.1.2) und Satz A.1.6 findet man

‖f ∗ gt‖p ≤ ‖f‖p ‖gt‖1 = ‖f‖p ‖gt‖1,
also f ∗ gt ∈ L1(Rn) ∩ L2(Rn). Weiter rechnet man mit Satz A.3.2 und Beispiel A.3.5

(f ∗ gt)∧(ξ) = ĝt(ξ) f̂(ξ) = e−π|ξ|2t2 f̂(ξ).

Dies zeigt (f ∗ gt)∧ ∈ L1(Rn), also f ∗ gt ∈ X . Da aber f ∗ gt −→
t→0

f in L1(Rn) und L2(Rn).
Der Beweis des Riemann–Lebesgue–Lemmas A.3.3 liefert jetzt die gleichmäßige Konvergenz
(f ∗gt)∧ −→

t→0
f̂ . Andererseits gilt in L2(Rn) auch (f ∗gt)∧ = F̃ (f ∗gt) −→

t→0
F̃ (f). Nach Lemma

A.1.4 gibt es also eine Folge (tj)j∈N mit limj→∞ tj = 0 und (f ∗ gtj )
∧ −→

j→∞
F̃ (f) fast überall.

Also ergibt sich schließlich f̂ = F̃ (f) fast überall, d.h. f̂ = F̃ als L2–Funktionen.
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Wegen Korollar A.3.9(ii) wissen wir jetzt, daß F : L2(Rn) → L2(Rn) eine Isometrie mit dich-
tem Bild ist. Damit ist F automatisch injektiv, aber indem man ein f ∈ L2(Rn) durch
Vektoren im Bild approximiert, erhält man jetzt auch die Surjektivität aus der Isometrie.

Korollar A.3.11 : Sei F : L2(Rn) → L2(Rn) die Fouriertransformation. Dann ist F−1 auf L1(Rn) ∩
L2(Rn) durch die inverse Fouriertransformation f 7→ f̌ gegeben.

Beweis:

Da x 7→ −x auf allen Lp(Rn) einen isometrischen Isomorphismus induziert, verifiziert man
leicht, daß einen Plancherelsatz A.3.10 auch für die inverse Fouriertransformation. Die resul-
tierende Transformation F ] : L2(Rn) → L2(Rn) schränkt sich auf dem dichten Unterraum
L1(Rn)∩L2(Rn) zu f 7→ f̌ ein, also zeigt die Fourierinversion A.3.8, daß F ◦F ] = id. Analog
sieht man F ] ◦ F = id, d.h. es ergibt sich F ] = F−1, also die Behauptung.

A.4 Temperierte Distributionen

Ein lineares Funktional F : S(Rn) → C heißt temperierte Distributionen, wenn für fk → 0 in
S(Rn) gilt F (fk) → 0. Wir bezeichnen den Raum aller temperierten Distributionen mit S ′(Rn) und
schreiben

〈F,ϕ〉 := F (ϕ) ϕ ∈ S(Rn), F ∈ S ′(Rn).

Eine meßbare Funktion f : Rn → C heißt temperiert, wenn es ein N ∈ N mit (1 + |x|)−Nf ∈ L1(Rn)
gibt. Wir bezeichnen den Raum aller temperierten Funktionen mit T (Rn).

Beispiel A.4.1 : Sei f : Rn → C temperiert. Setze für ϕ ∈ S(Rn)

〈F, ϕ〉 :=
∫

fϕ.

Dann gilt

|〈F, ϕ〉| ≤
∫ ∣∣ f

(1 + |x|)N

∣∣ |(1 + |x|)Nϕ| ≤ ‖(1 + |x|)−Nf‖1 ‖ϕ‖(N,0)

und man sieht, daß F eine temperierte Distribution ist.
Beachte, daß jede Funktion f ∈ Lp(Rn) mit 1 ≤ p ≤ ∞ temperiert ist: Für N > n

q gilt nämlich
1

(1+|x|)N ∈ Lq(Rn) und das zeigt für q = p′ mit der Hölderungleichung aus Lemma ?? die Behauptung.
Wenn f1 und f2 fast überall gleich sind, dann gilt F1 = F2.

Beispiel A.4.2 : Für x ∈ Rn setze
〈F, ϕ〉 = ∂αϕ(x).

Dann gilt |〈F,ϕ〉| ≤ ‖ϕ‖0,α und F ist eine temperierte Distribution. Für α = 0 nennt man diese Distri-
bution die Diracsche δ-Distribution.

Proposition A.4.3 : Sei f : Rn → C temperiert und F die zugehörige temperierte Distribution (vgl.
Beispiel A.4.1). Wenn F = 0, dann ist f fast überall Null, d.h. die temperierten Funktionen können als
Teilmenge der temperierten Distributionen aufgefaßt werden.

Beweis:
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Schreibe f = |f | eiρ für eine meßbare Funktion ρ : Rn → R und wähle eine kompakte Menge
E ⊆ Rn. Dann existiert das Integral

∫
E
|f | = ∫

E
fe−iρ, weil f temperiert ist.

Nach Proposition ?? gibt es ein Folge (ϕk)k∈N in C∞c (Rn) ⊆ S(Rn) mit ϕk → χEe−iρ in Lp

und damit fast überall (evtl. nach Übergang zu einer Teilfolge, vgl. Lemma A.1.4). Mit dem
Satz 2.4.4 von der dominierten Konvergenz führt dies auf

0 =
∫

Rn

fϕk →
∫

Rn

fχEe−iρ =
∫

E

|f |,

also ist f |E und somit auch f fast überall Null.

Eine Funktion f ∈ C∞(Rn) heißt langsam wachsend, wenn es zu jedem Multiindex α ∈ Nn
0 existiert

ein N ∈ N, für das ∂αf
(1+|x|)N beschränkt ist.

Proposition A.4.4 : (Multiplikation mit Funktionen) Sei f ∈ C∞(Rn) langsam wachsend. Dann wird
durch

〈fF, ϕ〉 = 〈F, fϕ〉 F ∈ S ′(Rn), ϕ ∈ S(Rn)

eine temperierte Distribution definiert.

Beweis:

Die Abbildung ϕ 7→ fϕ ist stetig von S(Rn) → S(Rn), d.h. wenn ϕk → ϕ in S(Rn). Wir
behaupten, daß dann auch gilt fϕk → fϕ in S(Rn). Wegen

|xα∂β(fϕ)| = |xα
∑

γ+δ=β

∂γf∂δϕ|

=
∑

γ+δ=β

∣∣∣ ∂γf

(1 + |x|)Nγ

︸ ︷︷ ︸
beschränkt

∣∣∣
∣∣ (1 + |x|)Nγ+|α|∂δϕ︸ ︷︷ ︸

beschränkt

∣∣

gilt fϕ ∈ S(Rn). Analog sieht man für ϕk → 0

‖fϕk‖(N,α) = sup
(
(1 + |x|)N |∂α(fϕk)|

)

≤ sup
∑

γ+δ=α
endlich

∣∣ ∂γf

(1 + |x|)Nγ

∣∣ |(1 + |x|)Nγ+N ∂δϕk|

−→
k→∞

0,

was die Behauptung zeigt. Wenn jetzt ϕk → 0 gilt, so findet man

〈fF, ϕk〉 = 〈F, fϕk〉 → 0,

weil F eine temperierte Distribution ist. Damit also ist auch fF eine temperierte Distribution.

Proposition A.4.5 : (Translation) Sei y ∈ Rn und F ∈ S ′(Rn). Dann definiert

〈F y, ϕ〉 := 〈F, ϕ−y〉 ∀ ϕ ∈ S(Rn)

eine temperierte Distribution.
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Beweis:

Wenn ϕk → ϕ in S(Rn), dann zeigen wir zunächst ϕ−y
k → ϕ−y in S(Rn):

‖ϕ−y
k ‖(N,α) = sup

x

(
1 + |x|)N |∂αϕ−y

k (x)|

= sup
x

(
1 + |x|)N |∂αϕk(x− y)|

= sup
x

(
1 + |x− y|)N |∂αϕk(x− y)|(1 + |y|)N

=
(
1 + |y|)N‖ϕk‖(N,α).

Wenn also ϕk → 0 so gilt ϕ−y
k → 0 und das zeigt die Behauptung. Darüber hinaus sieht man

〈F y, ϕk〉 = 〈F, ϕ−y
k 〉 → 0

und die Proposition ist bewiesen.

Proposition A.4.6 : (Verknüpfung mit invertierbaren linearen Abbildungen) Sei S ∈ GL(n,R) und
F ∈ S ′(Rn). Dann definiert

〈F ◦ S, ϕ〉 :=
1

det S
〈F, ϕ ◦ S−1〉 ∀ ϕ ∈ S(Rn)

eine temperierte Distribution.

Beweis:

Wenn ϕk → ϕ in S(Rn), dann zeigen wir zunächst ϕk ◦ S−1 → ϕ ◦ S−1 in S(Rn): Mit der
Kettenregel findet man

∂α(ϕ ◦ S−1) =
∑

|β|≤|α|
cβ∂βϕ ◦ S−1

mit von S abhängigen Konstanten cβ . Wegen 0 < ‖S‖ < ∞ findet man eine Konstante C mit

‖ϕ ◦ S−1‖(N,α) ≤ C
∑

|β|≤|α|
|cβ | ‖ϕ‖(N,β),

was die Behauptung beweist. Der Rest des Beweises geht wie der Beweis von Proposition
A.4.5.

Proposition A.4.7 : (Ableiten) Sei F ∈ S ′(Rn). Durch

〈∂kF, ϕ〉 = (−1)|α|〈F, ∂αϕ〉 ∀ϕ ∈ S(Rn)

wird eine temperierte Distribution definiert.

Beweis:

Wenn ϕk → ϕ in S(Rn) so gilt nach Definition der Topologie des Schwartzraums ∂αϕk → ∂αϕ
in S(Rn). Der Rest des Beweises geht wie der Beweis von Proposition A.4.5.
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Proposition A.4.8 : (Faltung) Sei F ∈ S ′(Rn) und ψ ∈ S(Rn) sowie ψ̃(x) = ψ(−x). Durch

〈F ∗ ψ,ϕ〉 = 〈F, ϕ ∗ ψ̃〉 ∀ϕ ∈ S(Rn)

wird eine temperierte Distribution definiert.

Beweis:

Wenn ϕk → ϕ in S(Rn), so gilt ϕk ∗ ψ → ϕ ∗ ψ in S(Rn) wie man aus der Abschätzung

(1 + |x|)N |∂α(ϕk ∗ ψ)(x)| ≤ c‖ϕ‖(N,α)‖ψ‖(N+n+1,0)

sieht (vgl. Proposition A.2.5). Der Rest des Beweises geht wie der Beweis von Proposition
A.4.5.

Proposition A.4.9 : (Fourier–Transformation) Sei F ∈ S ′(Rn). Durch

〈F̂ , ϕ〉 := 〈F, ϕ̂〉 ∀ϕ ∈ S(Rn)

wird eine temperierte Distribution definiert.

Beweis:

Wenn ϕk → ϕ in S(Rn), dann gilt nach Proposition A.3.7 ϕ̂k → ϕ̂ in S(Rn). Damit ist der
Beweis Routine (vgl. Beweis von Proposition A.4.5).

Bemerkung A.4.10 : Völlig analog zu Proposition A.4.9 zeigt man, daß durch

〈F̌ , ϕ〉 := 〈F, ϕ̌〉 ∀ϕ ∈ S(Rn)

für F ∈ S ′(Rn) wird eine temperierte Distribution definiert wird. Mit der Fourier–Inversionsformel aus
Satz A.3.8 erhält man

〈(F̂ )∨, ϕ〉 = 〈F̂ , ϕ̌〉 = 〈F, (ϕ̌)∧〉 = 〈F, ϕ〉,
also (F̂ )∨ = F . Analog findet man (F̌ )∧ = F . Also ist die Fourier-Transformation F 7→ F̂ ein linearer
Isomorphismus von S ′(Rn). Wenn ein Netz (Fα)α∈A in der schwach*-Topologie von S ′(Rn) gegen F ∈
S ′(Rn) konvergiert, dann zeigt die Charakterisierung der Konvergenz in dieser Topologie aus Proposition
?? zusammen mit Proposition A.3.7, daß

〈F̂α, ϕ〉 = 〈Fα, ϕ̂〉 −→
α∈A

〈F, ϕ̂〉 = 〈F̂ , ϕ〉

und daher auch die Stetigkeit der Fourier-Transformation auf S ′(Rn). Als Ergebnis erhalten wir, daß
die Fouriertransformation ein Automorphismus des topologischen Vektorraums S ′(Rn) ist, dessen Inverse
durch die Fourier–Inversionsformel

(F̂ )∨ = (F̌ )∧ = F (A.2)

gegeben ist.

Proposition A.4.11 : Sei f : Rn → C temperiert und F die zugehörige temperierte Distribution. Dann
gilt
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(i) 〈hF, ϕ〉 =
∫

(hf)ϕ für alle langsam wachsenden Funktionen h und ϕ ∈ S(Rn).

(ii) 〈F y, ϕ〉 =
∫

fyϕ für alle y ∈ Rn und ϕ ∈ S(Rn).

(iii) 〈F ◦ S, ϕ〉 =
∫

(f ◦ S)ϕ für alle S ∈ GL(n,Rn) und ϕ ∈ S(Rn).

(iv) 〈∂αF,ϕ〉 =
∫

∂αfϕ für alle |α| ≤ k und ϕ ∈ S(Rn), wenn f ∈ Ck(Rn).

(v) 〈F ∗ ψ, ϕ〉 =
∫

(f ∗ ψ)ϕ für alle ψ ∈ S(Rn) und ϕ ∈ S(Rn).

(vi) 〈F̂ , ϕ〉 =
∫

f̂ϕ für alle ϕ ∈ S(Rn), wenn f ∈ L1(Rn).

Beweis:

(i) Dies folgt unmittelbar aus den Definitionen.

(ii) ∫
fyϕ =

∫
f(x− y)ϕ(x)dx =

∫
f(x)ϕ(x + y)dx =

∫
fϕ−y.

(iii) Mit der Transformationsformel aus Satz C.4.6 findet man
∫

(f ◦ S)ϕ = |det S|−1

∫
f (ϕ ◦ S−1).

(iv) Mit partieller Integration ergibt sich
∫

∂αfϕ = (−1)|α|
∫

f ∂αϕ.

(v) Man rechnet ∫
(f ∗ ψ)ϕ =

∫ ∫
ψ(x− y)f(y)ϕ(x)dy dx

und
∫

f(y)(ψ̃ ∗ ϕ)(y) dy =
∫ ∫

f(y)ψ̃(y − x)ϕ(x)dy dx

=
∫ ∫

f(y)ψ(x− y)ϕ(x)dy dx.

(vi) Mit Lemma A.3.6 findet man
∫

f̂ϕ =
∫

fϕ̂.

Proposition A.4.12 : Sei K ⊆ Rn kompakt und konvex. Dann gibt es zu jedem x0 ∈ Rn\K ein ξ0 ∈ Rn

und ein α0 ∈ R mit

(a) x0 · ξ0 < α0.

(b) y · ξ0 > α0 für alle y ∈ K.

Beweis:
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Nach Satz ?? gibt es ein y0 ∈ K mit 0 < |y0 − x0| = infy∈K |y− x0|. Wir setzen ξ0 := y0 − x0

und α0 := 1
2ξ0 · (x0 + y0). Dann gilt

ξ0 · x0 =
1
2
ξo ·

(
(x0 + y0) + (x0 − y0)

)

= α0 +
1
2
(x0 − y0) · (y0 − x0)

= α0 − 1
2
|x0 − y0|2

< α0.

Auf der anderen Seite gilt

ξ0 · y0 =
1
2
ξo ·

(
(x0 − y0) + (y0 − x0)

)

= α0 +
1
2
(y0 − x0) · (y0 − x0)

= α0 +
1
2
|x0 − y0|2

> α0.

Wenn jetzt y ∈ K beliebig ist, dann gilt y(t) := y0 + t(y − y0)

|y(t)− x0|2 = |y0 − x0|2 + 2t(y0 − x0) · (y − y0) + t2|y − y0|2 ≥ |y0 − x0|2 ∀t ∈ [0, 1].

Also kann die Ableitung des quadratischen Polynoms t 7→ |y(t) − x0|2 in t = 0 nicht negativ
sein. Damit gilt (y0 − x0) · (y − y0) ≥ 0, d.h.,

ξo · y = (y0 − x0) · y ≥ (y0 − x0) · y0 = ξ0 · y0 > α0.

Lemma A.4.13 : Sei K ⊆ Rn kompakt und konvex sowie H : Rn → R definiert durch H(ξ) :=
supy∈K〈y, ξ〉. Dann gilt

K = {y ∈ Rn | (∀ξ ∈ Rn) y · ξ ≤ H(ξ)}.

Beweis:

Die Inklusion ”⊆“ folgt unmittelbar aus der Definition von H. Wenn jetzt x0 ∈ Rn \K, dann
zeigt Proposition A.4.12, daß es ein ξ ∈ Rn und ein α ∈ R mit x0 · ξ > α > y · ξ für alle y ∈ K
gibt. Aber damit gilt dann x0 · ξ > H(ξ) und das zeigt ”⊇“.

Bemerkung A.4.14 : Sei f ∈ C∞c (Rn). Dann folgt aus Satz 2.4.6 und den Cauchy-Riemann Differen-
tialgleichungen (vgl. Satz ??), daß durch die Formel

f̂(ζ) :=
∫

Rn

f(x)e−2πix·ζdx

eine holomorphe Funktion f̂ : Cn → C definiert wird, die nach Bemerkung ?? durch ihre Einschränkung
auf Rn eindeutig bestimmt wird.
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Satz A.4.15 : (Paley–Wiener) Sei K ⊆ Rn kompakt und konvex sowie H : Rn → R definiert durch
H(ξ) := supx∈K〈x, ξ〉. Dann sind für jede ganze (d.h. stetige und in jeder Variablen holomorphe) Funktion
F : Cn → C die folgenden Aussagen äquivalent.

(1) F = f̂ für eine Funktion f ∈ C∞c (K).

(2) Zu jedem N ∈ N gibt es eine Konstante CN > 0 mit

|F (ξ)| ≤ CN (1 + |ζ|)−Ne2πH(Im ζ) ∀ζ ∈ Cn.

Beweis:

”(1)⇒(2)“ Nach der Definition der Fourier–Transformation ist klar, daß

|ĝ(x)| ≤ ‖g‖L1(Rn)e
2πH(Im ζ)

für jede integrierbare Funktion. Mit Satz A.3.2 findet man also

|∂αf̂(ζ)| ≤ C‖∂αf‖L1(Rn)e
2πH(Im ζ).

Dies wiederum beweist die Abschätzung in (2), weil |ζα|(1+ |ζ|)−N ≤ 1 für |α| ≤ N gilt.

”(2)⇒(1)“ Wir nehmen jetzt an, daß F die Abschätzung (2) für jedes N erfüllt. Dann ist die
Einschränkung von F auf Rn eine temperierte Funktion, also gilt nach Bemerkung A.4.10,
daß F auf Rn mit der Fourier–Transformierten der durch

f(x) =
∫

Rn

e2πix·ξF (ξ) dξ

definierten (temperierten) Funktion f : Rn → R übereinstimmt. Wenn wir jetzt zeigen
können, daß supp f ⊆ K, dann definiert die Formel für die Fourier-Transformation eine
ganze Funktion, die auf Rn mit F übereinstimmt, also (Referenz???) gleich F ist. Die
Abschätzung (2) zusammen mit dem Cauchy–Integralsatz ?? zeigt, daß für jedes η ∈ Rn

gilt

f(x) =
∫

Rn

e2πix·(ξ+iη)F (ξ + iη) dξ.

Wendet man jetzt (2) mit N = n + 1 an, so ergibt sich

|f(x)| ≤ e−2πx·η+2πH(η)Cn+1

∫
(1 + |ξ|)−n−1dξ.

Mit tη statt η gibt das im Grenzwert für t →∞

u(x) = 0 für H(η) < x · η.

Wenn aber H(η) ≥ x · η für jedes η ∈ Rn, dann gilt nach Lemma A.4.13 x ∈ K, also
folgt supp f ⊆ K.



Anhang B

Topologie

B.1 Umgebungen

Sei M eine (nichtleere) Menge und ρ : M ×M → R eine Funktion. Das Paar (M,ρ) heißt ein metri-
scher Raum, wenn für alle x, y, z ∈ M gilt:

(M1) ρ(x, y) = 0 ⇔ x = y,

(M2) ρ(x, y)− ρ(x, z) ≤ ρ(y, z) (Dreiecksungleichung).

M

x

y

z

Wir nennen die Funktion ρ eine Metrik auf M . Wenn die Metrik ρ aus dem Kontext klar ist oder ihre
speziellen Eigenschaften nicht gebraucht werden, sagen wir einfach: M ist ein metrischer Raum.

Proposition B.1.1 : Sei (M, ρ) ein metrischer Raum, dann gilt für alle x, y, z ∈ M

(i) ρ(x, y) ≥ 0.

(ii) ρ(x, y) = ρ(y, x).

(iii) ρ(x, y) ≥ |ρ(x, z)− ρ(y, z)|.

Beweis:

Idee: Dies folgt direkt aus den Definitionen.

(i): Dies folgt aus 0 (M1)= ρ(x, x)
(M2)

≤ ρ(x, y) + ρ(x, y).

(ii): Es gilt ρ(y, x)
(M2)

≤ ρ(y, y) + ρ(x, y) (M1)= ρ(x, y). Durch Vertauschen der Rollen von x und
y in diesem Argument folgt die Behauptung.

(iii): Aus ρ(x, z)
(M2)

≤ ρ(x, y)+ρ(z, y) (ii)= ρ(x, y)+ρ(y, z) folgt ρ(x, y) ≥ ρ(x, z)−ρ(y, z). Wieder
folgt die Behauptung, indem man in diesem Argument die Rollen von x und y vertauscht
und (ii) ausnutzt.

145
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Sei (M, ρ) ein metrischer Raum, x ∈ M und r > 0. Dann heißt die Menge

Bρ(x; r) := {y ∈ M | ρ(x, y) < r}
die offene Kugel um x mit Radius r. Wenn die Metrik aus dem Kontext klar ist, schreiben wir
lediglich B(x; r) statt Bρ(x; r).

x

r

Es sei x ∈ M . Eine Teilmenge U ⊆ M heißt eine Umgebung von x in M , wenn es ein r > 0 gibt
mit B(x; r) ⊆ U . Man beachte, daß x dann automatisch in U enthalten ist. Insbesondere sind also die
offenen Kugeln B(x; r) Umgebungen von x in M . Die Menge aller Umgebungen von x in M wird mit
U(x) bezeichnet.

U

x

M

r

B(x;r)

U

M

Proposition B.1.2 : Sei (M, ρ) ein metrischer Raum und x ∈ M . Dann gilt

(U1) x ∈ U für alle U ∈ U(x).

x

M

U

(U2) M ∈ U(x).

x

M

(U3) Aus U1 ∈ U(x) und U1 ⊆ U2 ⊆ M folgt U2 ∈ U(x).

U2

U1

x

M
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(U4) Aus U1, U2 ∈ U(x) folgt U1 ∩ U2 ∈ U(x).

U1

U2x

M

(U5) Wenn U1 ∈ U(x) ist, dann gibt es ein U2 ∈ U(x) mit U1 ∈ U(y) für alle y ∈ U2.

U1

U2

x

M

y

Beweis:

Idee: Dies folgt direkt aus den Definitionen. Man denke dabei in Kugeln.

(U1), (U2) und (U3) folgen unmittelbar aus den Definitionen. Wenn B(x; r1) ⊆ U1 und
B(x; r2) ⊆ U2 sind, gilt für jedes 0 < r ≤ min(r1, r2)

B(x; r) ⊆ U1 ∩ U2,

was (U4) zeigt. Um (U5) zu zeigen, wählen wir eine Kugel B(x; r) ⊆ U1 und setzen U2 :=
B(x; r). Zu jedem y ∈ U2 müssen wir nun eine Kugel B(y; r′) um y finden, die ganz in U1

liegt. Es sei also y ∈ U2. Als r′ wähle r − r0 mit ρ(x, y) < r0 < r. Für z ∈ B(y; r − r0) gilt
nun, daß

ρ(x, z) ≤ ρ(x, y) + ρ(y, z) < r0 + (r − r0) = r,

also ist z ∈ B(x; r) ⊆ U1. Insgesamt haben wir B(y; r − r0) ⊆ U1, folglich U1 ∈ U(y).

B.2 Topologische Räume

In der Analysis einer reellen Variablen entwickelt man eine Theorie der Konvergenz und Stetigkeit, die
wesentlich auf den Eigenschaften der über den Absolutbetrag definierten Abstandsmetrik beruht. Diese
Theorie läßt sich problemlos auf allgemeine metrische Räume übertragen. Da aber nicht alle Mengen,
auf denen man Konvergenz und Stetigkeit beschreiben möchte, mit einer Metrik versehen sind (man
denke z.B. an Räume von differenzierbaren Funktionen), sucht man nach alternativen Formulierungen.
Es stellt sich heraus, daß die in Proposition B.1.2 aufgeführten Eigenschaften (U1) - (U5) des Systems
aller Umgebungen von Punkten in metrischen Räumen ausreichen, um eine Theorie von Konvergenz und
Stetigkeit aufzubauen, die die Theorie für metrische Räume subsumiert. Auch wenn zunächst alle Mengen,
auf denen wir Konvergenz und Stetigkeit untersuchen wollen, metrische Räume sein werden (manchmal
ist die Metrik aber auch alles andere als kanonisch), rechtfertigen spätere Anwendungen daher die folgende
Definition:

Sei M eine Menge und
P(M) := {N ⊆ M}
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die Potenzmenge von M , d.h. die Menge aller Teilmengen von M . Ein Paar (M,U), für das

U : M → P(P(M)
)

= {N ⊆ P(M)}
x 7→ U(x)

jedem x ∈ M eine Menge von Teilmengen von M zuordnet, heißt ein topologischer Raum, wenn für
jedes x ∈ M das System U(x) die Eigenschaften (U1)-(U5) aus Proposition B.1.2 erfüllt. Wir nennen die
Elemente von U(x) wieder Umgebungen von x in M . Wenn zusätzlich die Bedingung

∀x1, x2 ∈ M :
(
x1 6= x2 ⇒ ∃U1 ∈ U(x1) ∃U2 ∈ U(x2) : U1 ∩ U2 = ∅)

gilt, dann heißt der topologische Raum nach dem Mathematiker Felix Hausdorff (1868–1942) ein Haus-
dorff–Raum.

U1

U2

M

x

x

1

2

Bemerkung B.2.1 : Seien (M1,U1) und (M2,U2) topologische Räume. Für (x, y) ∈ M1×M2 definiere

B(x, y) := {U1 × U2 | U1 ∈ U1(x), U2 ∈ U2(y)}

sowie
U(x, y) := {V ⊆ M1 ×M2 | ∃ B ∈ B(x, y) : B ⊆ V }.

Es ist nicht schwer zu zeigen, daß (M1 ×M2,U) ein topologischer Raum ist (Übung!). Man nennt diesen
Raum das topologische Produkt von (M1,U1) und (M2,U2) und U die Produkttopologie auf der
Produktmenge M1 ×M2. Es ebenfalls kein Problem, diese Konstruktion auf das Produkt endlich vieler
topologischer Räume zu übertragen.

B.3 Offene und abgeschlossene Mengen

Sei (M,U) ein topologischer Raum. Eine Teilmenge U ⊆ M heißt offen, wenn sie Umgebung jedes
Punktes ist, den sie enthält, d.h.

∀x ∈ U : U ∈ U(x).

Eine Teilmenge A ⊆ M heißt abgeschlossen, wenn ihr Komplement {A := M \A offen ist.

Proposition B.3.1 : Sei (M,U) ein topologischer Raum. Dann gilt:

(i) Vereinigungen offener Mengen in M sind offen.

(ii) Endliche Schnitte offener Mengen in M sind offen.

(iii) Schnitte abgeschlossener Mengen in M sind abgeschlossen.

(iv) Endliche Vereinigungen abgeschlossener Mengen in M sind abgeschlossen.

(v) ∅ und M sind sowohl abgeschlossen als auch offen.

Beweis:
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Idee: Die Aussagen über offene Mengen folgen sofort aus den Definitionen und die Aussagen über

abgeschlossene Mengen dann durch Komplementbildung.

Die letzte Behauptung ist klar mit den Definitionen. Seien Uγ , γ ∈ Γ, offen in M .

(i) Wenn x ∈ ⋃
γ∈Γ Uγ , dann gibt es ein γ0 mit x ∈ Uγ0 und Uγ0 ist Umgebung von x. Wegen

Uγ0 ⊆
⋃

γ∈Γ Uγ ist auch letztere Menge eine Umgebung von x.

(ii) Sei jetzt Γ endlich und x ∈ ⋂
γ∈Γ Uγ . Jedes Uγ ist Umgebung von x und mit Induktion

folgt aus der Bedingung (U4) in der Definition eines topologischen Raums, daß endliche
Schnitte von Umgebungen eines Punktes selbst Umgebungen dieses Punktes sind. Damit
folgt die Behauptung.

Die nächsten beiden Behauptungen folgen aus den ersten beiden und den de Morganschen
Formeln

M \
⋃

γ∈Γ

Uγ =
⋂

γ∈Γ

(M \ Uγ)

und
M \

⋂

γ∈Γ

Uγ =
⋃

γ∈Γ

(M \ Uγ).

Satz B.3.2 : Wenn man für einen topologischen Raum (M,U) die Menge

T := {V ⊆ M | V offen}

aller offenen Teilmengen kennt, kann man die Funktion U rekonstruieren:

U(x) = {U ⊆ M | ∃V ∈ T : x ∈ V ⊆ U}. (B.1)

M

UV

x

Beweis:

Idee: Die Inklusion
”
⊇“ folgt sofort aus den Definitionen. Für die andere Inklusion betrachte zu

U ∈ U(x) die Menge Uo := {y ∈ U | U ∈ U(y)} und zeige, daß sie offen ist.

”⊆“: Wenn U ∈ U(x), dann setze

Uo := {y ∈ M | U ∈ U(y)}.

x

y

U

V
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Es gilt x ∈ Uo ⊆ U wegen (U1), also bleibt zu zeigen, daß Uo offen ist: Sei also y ∈ Uo.
Dann gibt es nach der Eigenschaft (U5) in der Definition eines topologischen Raums (vgl.
Proposition B.1.2) ein V ∈ U(y) derart, daß

∀z ∈ V : U ∈ U(z).

Dann gilt V ⊆ Uo und daher Uo ∈ U(y).

”⊇“: Bezeichne die rechte Seite der Gleichung (B.1) mit U ′(x). Wenn U ∈ U ′(x) und V ∈ T
mit x ∈ V ⊆ U , dann gilt V ∈ U(x) und nach (U3) auch U ∈ U(x).

Auf Grund der in Satz B.3.2 beschriebenen Beziehung (B.1) zwischen Umgebungen und offenen Mengen
wird in vielen Büchern ein topologischer Raum durch Angabe seiner offenen Teilmengen definiert. Man
nennt dann die Menge T der offenen Teilmengen von M die Topologie von M . Dies führt auf die folgende
Definition:

Sei M eine Menge. Eine Topologie auf M ist eine Familie T von Teilmengen von M mit folgenden
Eigenschaften:

(T1) ∅ ∈ T , M ∈ T .

(T2) {Uα | α ∈ A} ⊂ T ⇒ (
⋃

α∈A

Uα) ∈ T .

(T3) U1, . . . , Un ∈ T ⇒ (
n⋂

i=1

Ui) ∈ T .

Natürlich ist nicht jede Menge T von Teilmengen von M eine Topologie. Aus Proposition B.3.1 folgt
aber sofort, daß die Menge der offenen Mengen in M eine Topologie ist. Ist umgekehrt auf M eine
Topologie T gegeben, so ist das durch (B.1) definierte Paar (M,U) ein topologischer Raum und T gerade
die Menge der offenen Teilmengen von (M,U) (Übung!).

Es gibt also eine leicht zu beschreibende Bijektion zwischen der Menge der Umgebungssysteme U und
den Topologien T auf M . Daher nennt man auch das Paar (M, T ) einen topologischen Raum. Ob man
U oder T zur Beschreibung des topologischen Raumes benützt, ist dann Geschmacksache und hängt ein
wenig vom Kontext ab. Wenn U und damit T (und umgekehrt) aus dem Kontext klar sind oder nicht
explizit benannt werden müssen, nennen wir einfach M einen topologischen Raum. Die Elemente von T
heißen offene Mengen.

Sei M ein topologischer Raum und B ⊆ M beliebig. Die Menge

B :=
⋂
{A | A ⊇ B, A abgeschlossen}

ist die kleinste abgeschlossene Menge, die B enthält. B heißt der Abschluß von B. Die Menge

B◦ :=
⋃
{U | U ⊆ B, U offen} = {y ∈ M | B ∈ U(y)}

(vgl. Beweis von Satz B.3.2) ist die größte offene Menge, die in B enthalten ist. B◦ heißt das Innere von
B. Die Differenz B \B◦ heißt der Rand von B und wird mit ∂B bezeichnet.

Für eine Teilmenge E ⊆ M heißt eine Menge U ⊆ M eine Umgebung von E, wenn E ⊆ U◦. Also
ist U eine Umgebung von E genau dann, wenn U eine Umgebung jeden Punktes von E ist.

Proposition B.3.3 : Sei (M, T ) ein topologischer Raum und A ⊆ M . Dann gilt:

(i) A = A ∪HP(A).
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(ii) A ist genau dann abgeschlossen, wenn HP(A) ⊆ A.

Beweis:

Idee: Dies folgt direkt aus den Definitionen.

(i) Aus x /∈ A folgt x ∈ {A ∈ T , also ist {A eine Umgebung von x. Wegen A ∩ {A = ∅ ist
dann x /∈ HP(A). Also gilt HP(A) ⊆ A und damit A ∪HP(A) ⊆ A.
Umgekehrt folgt aus x /∈ HP(A) ∪ A, daß es ein U ∈ T mit x ∈ U und A ∩ U = ∅ gibt.
Also gilt A ⊆ {U und damit x /∈ A, d.h. A ⊆ A ∪HP(A).

(ii) A ist genau dann abgeschlossen, wenn A = A, was aber nach (i) äquivalent zu HP(A) ⊆ A
ist.

B.4 Erzeugung von Topologien

Sei M eine Menge und T1 sowie T2 Topologien auf M . Dann heißt T1 gröber als T2 (und T2 feiner
als T1), wenn T1 ⊆ T2.

Bemerkung B.4.1 : Sei M eine Menge und E ⊆ P(M). Dann gibt es genau eine gröbste Topologie
T (E) auf M , die E enthält, nämlich

T (E) :=
⋂
{T ⊆ P(M) | T Topologie auf M, E ⊆ T }.

In diesem Fall heißt E auch eine Subbasis für T (E) und T (E) die von E erzeugte Topologie. (Übung:
Zeige, daß T (E) tatsächlich eine Topologie ist.)

Proposition B.4.2 : Sei M eine beliebige Menge und E ⊆ P(M). Dann ist E ′ := {⋂endlich V | V ∈ E}
eine Basis der von E erzeugten Topologie.

Beweis:

Idee: Überprüfe, daß O := {⋃β∈B Uβ | B beliebige Indexmenge,Uβ ∈ E ′} eine Topologie auf M ist,

die E enthält und zeige, daß O ⊆ T für jedes T ∈ {T ∈ P(M) | T Topologie auf M, E ⊆ T }.
Die Details seien dem Leser zur Übung überlassen.

Proposition B.4.3 : Sei M eine beliebige Menge und E ⊆ P(M). Dann gilt

T (E) =
{ ⋃

beliebig
viele

( ⋂
endlich
viele

Eα

) ∣∣∣ Eα ∈ E
}

.

Beweis:

Setze Ẽ := { ⋂
endlich
viele

Eα | Eα ∈ E}, dann folgt aus Proposition B.4.2, daß Ẽ die Basis einer

Topologie ist. Diese Topologie ist gerade
{ ⋃

beliebig
viele

Eα

∣∣∣ Eα ∈ Ẽ
}

und somit gröber als T (E), d.h. gleich T (E).
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B.5 Stetigkeit von Abbildungen

Seien (M,U) und (N,V) topologische Räume und f : M → N eine Abbildung. Dann heißt f stetig
in x0 ∈ M , wenn

∀V ∈ V(f(x0)) ∃U ∈ U(x0) : f(U) ⊆ V.

M

x

U

N

f(U)f(x)

V

fo
o

o
o

Wenn f in jedem Punkt von M stetig ist, dann sagt man einfach, f ist stetig. Die Menge der stetigen
Abbildungen f : M → N wird mit C(M, N) oder auch mit C0(M, N) bezeichnet.

Proposition B.5.1 : Seien (M,U) und (N,V) topologische Räume, x0 ∈ M und f : M → N eine
Abbildung. Dann sind folgende Aussagen äquivalent:

(1) f ist stetig in x0.

(2) Wenn V ∈ V(f(x0)), dann ist f−1(V ) = {x ∈ M | f(x) ∈ V } ∈ U(x0), d.h. Urbilder von Umge-
bungen von f(x0) sind Umgebungen von x0.

Beweis:

Idee:

o
o

M

x

N

f(x)

V

f

-1
f  (V)

”(2)⇒(1)“: Wenn aus V ∈ V(f(x0)) folgt f−1(V ) ∈ U(x0), dann zeigt f(f−1(V )) ⊆ V , daß f in x0

stetig ist.

”(1)⇒(2)“: Umgekehrt, wenn f in x0 stetig ist und V ∈ V(f(x0)), dann gibt es ein U ∈ U(x0) mit
f(U) ⊆ V . Also haben wir U ⊆ f−1(V ), was f−1(V ) ∈ U(x0) zur Folge hat.

Proposition B.5.2 : Seien (M,U) und (N,V) topologische Räume sowie f : M → N eine Abbildung.
Dann sind folgende Aussagen äquivalent:

(1) f ist stetig.

(2) Wenn V ⊆ N offen ist, dann ist f−1(V ) ⊆ M offen.

(3) Wenn V ⊆ N abgeschlossen ist, dann ist f−1(V ) ⊆ M abgeschlossen.

Beweis:

Idee: Benütze Proposition B.5.1.
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”(2)⇔(3)“: Dies folgt sofort aus der Mengengleichheit

f−1(N \A) = M \ f−1(A),

die für jede Teilmenge A ⊆ N und ohne jede Voraussetzung an f gilt.

”(2)⇒(1)“: Wenn x ∈ M und V ∈ V(f(x)), dann gilt f(x) ∈ V ◦, d.h. x ∈ f−1(V ◦), und V ◦

ist offen. Nach Voraussetzung ist f−1(V ◦) offen, also eine Umgebung von x. Damit ist
f−1(V ) ∈ U(x), also ist f nach Proposition B.5.1 stetig in x.

”(1)⇒(2)“: Sei f stetig in jedem x ∈ M . Wenn V ⊆ N offen ist, dann gilt für x ∈ f−1(V ), daß
f(x) ∈ V ist und folglich ist V ∈ V(f(x)). Wegen der Stetigkeit von f in x gibt es nach
Definition ein U ∈ U(x) mit f(U) ⊆ V , also U ⊆ f−1(V ). Damit ist f−1(V ) ∈ U(x). Da
x ∈ f−1(V ) beliebig war, ist f−1(V ) offen.

Sei X 6= ∅ eine Menge und {Yα}α∈A eine Familie von topologischen Räumen. Für eine Familie von
Abbildungen fα : X → Yα nennt man die von

{f−1
α (Uα) | Uα ⊆ Yα offen, α ∈ A}

erzeugte Topologie auf X die von {fα}α∈A erzeugte initiale oder schwache Topologie auf X. Man
nennt diese Topologie auch die von den fα induzierte Topologie auf X.

Sei {Xα}α∈A eine Familie von (als disjunkt betrachteten) Mengen, dann heißt

X :=
∏

α∈A

Xα := {f : A →
∐

α∈A

Xα | f(α) ∈ Xα}

das mengentheoretische Produkt der Xα. Dabei ist die
∐

α∈A Xα die disjunkte Vereinigung der Xα.
Man schreibt die Elemente von X als (xα)α∈A, wenn f(α) = xα.

Beispiel B.5.3 : Sei {Xα}α∈A eine Familie von topologischen Räumen, dann heißt die von den Projek-
tionen

pβ :
∏

α∈A

Xα → Xβ

(xα)α∈A 7→ xβ

auf X :=
∏

α∈A Xα erzeugte schwache Topologie auch die Produkttopologie auf X und der topologi-
sche Raum X heißt das topologische Produkt der Xα. (Übung: Man zeige, daß dies mit der Definition
der Produkttopologie in Beispiel B.2.1 kompatibel ist.)

Wenn die Indexmenge A überabzählbar ist, dann hat die Produkttopologie keine abzählbare Basis und
die Verwendung von Folgen in der Beschreibung der Konvergenz in so einem Produktraum reicht nicht
mehr aus.
Eine Gruppe G, die zugleich ein topologischer Raum ist, heißt topologische Gruppe, wenn gilt:

(a) µ : G×G → G,µ(g, h) = gh, ist stetig.

(b) ι : G → G, ι(g) = g−1, ist stetig.
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B.6 Kompakte Mengen

Sei (X, T ) ein topologischer Raum und Y ⊆ X eine beliebige Teilmenge. Eine Menge F von Teilmengen
von X heißt eine Überdeckung von Y , wenn

Y ⊆
⋃

F∈F
F.

Y

X

Eine Überdeckung F heißt offen, wenn alle F ∈ F offen in X sind. Die Menge Y heißt kompakt,
wenn jede offene Überdeckung F von Y eine endliche Teilüberdeckung hat, d.h. wenn es eine endliche
Teilmenge F ′ von F gibt, die selbst eine Überdeckung von Y ist.

In einem topologischen Raum X sagt man, eine Familie {Fα}α∈A von Teilmengen von X habe die
endliche Schnitteigenschaft, wenn für alle endlichen Teilmengen B ⊆ A gilt

⋂
β∈B

Fβ 6= ∅.

Satz B.6.1 : Seien (X, T ) und (X ′, T ′) topologische Räume. Dann gilt:

(i) Ist X kompakt und Y ⊆ X abgeschlossen, so ist auch Y kompakt.

(ii) Ist X hausdorffsch und Y ⊆ X kompakt, so ist Y abgeschlossen.

(iii) Ist X kompakt und f : X → X ′ stetig, so ist f(X) ⊆ X ′ kompakt.

(iv) Ist X kompakt, X ′ hausdorffsch sowie f : X → X ′ stetig und bijektiv, so ist auch die Umkehrabbil-
dung f−1 : X ′ → X stetig.

Beweis:

Idee: Die Aussagen (i)-(iii) folgen direkt aus den Definitionen. Teil (iv) leitet man mithilfe von

Proposition B.5.2 her.

(i) {Uα}α∈A eine Familie von offenen Teilmengen von X mit Y ⊆ ⋃
α∈A

Uα. Dann gilt X =

{Y ∪ ⋃
α∈A

Uα und davon gibt es eine endliche Teilüberdeckung, die dann auch eine endliche

Teilüberdeckung von Y ist.

(ii) Zu x ∈ X \ Y und y ∈ Y gibt es Umgebungen Uy und Vy von x und y mit Uy ∩ Vy = ∅.
Dann gilt Y ⊆ ⋃

y∈Y

Vy und es existiert eine endliche Teilüberdeckung Vy1 , . . . , Vyk
von Y .

Setze

U :=
k⋂

i=1

Uyi und V :=
k⋃

i=1

Vyi .

Dann ist U eine Umgebung von x und V ⊇ Y . Außerdem gilt U ∩ V = ∅. Dies zeigt
x ∈ U ⊆ X \ Y und damit ist X \ Y offen.

(iii) Sei f(X) ⊆ ⋃
α∈A

Vα, wobei die Vα ⊆ X ′ offen sind. Dann sind auch die f−1(Vα) offen

in X und es gilt X ⊆ ⋃
α∈A f−1(Vα). Also existiert eine endliche Teilüberdeckung X ⊆

f−1(Vα1) ∪ . . . ∪ f−1(Vαk
) so, daß f(X) ⊆ Vα1 ∪ . . . ∪ Vαk

endliche Teilüberdeckung ist.
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(iv) Wir zeigen (vgl. Proposition B.5.2)

F ⊆ X abgeschlossen ⇒ f(F ) ⊆ X ′ abgeschlossen.

Wenn also F ⊆ X abgeschlossen ist, so liefert (i), daß F kompakt ist. Nach (iii) ist dann
auch f(F ) kompakt und (ii) zeigt schließlich, daß f(F ) abgeschlossen ist.

Wir haben im Beweis von Satz B.6.1(ii) stillschweigend das Auswahlaxiom benützt.

Lemma B.6.2 : (Alexander) Seien X 6= ∅, E ⊆ P(X) und T := T (E). Dann sind folgende Aussagen
äquivalent.

(1) (X, T ) ist kompakt.

(2) Jede Überdeckung von X durch Elemente von E hat eine endliche Teilüberdeckung.

Beweis:

Idee: Die eine Richtung ist trivial, für die andere betrachte

{{Uα}α∈A | Uα offen, X =
⋃

α∈A

Uα hat keine endliche Teilüberdeckung }.

”(1) ⇒ (2)“: Diese Richtung ist trivial.

”(2) ⇒ (1)“: (X, T ) sei nicht kompakt. Die Menge

A =
{{Uα}α∈A | Uα offen, X =

⋃

α∈A

Uα hat keine endliche Teilüberdeckung }

ist durch die Inklusion partiell geordnet. Wir wollen das Zornsche Lemma anwenden
und müssen dazu zeigen, daß A induktiv geordnet ist. Sei {Aβ}β∈B eine total geordnete
Teilmenge von A und U1, . . . , Un ∈

⋃
β∈B

Aβ . Dann gibt es ein β0 ∈ B mit U1, . . . , Un ∈ Aβ0

und es gilt X 6=
n⋃

j=1

Uj . Also ist auch
⋃

β∈B

Aβ ∈ A, d.h. die total geordnete Teilmenge

{Aβ}β∈B hat eine obere Schranke in A.
Jetzt liefert das Zornsche Lemma ein maximales Element A von A. Wenn eine offene
Menge U ⊆ X nicht in A liegt, dann hat wegen der Maximalität A ∪ {U} eine endliche
Teilüberdeckung von X. Wir setzen B := A ∩ E .

Behauptung: B ist eine Überdeckung von X.

Um das zu sehen, nehmen wir an, daß es ein x ∈ X\ ⋃
B∈B

B gibt. Wähle U ∈ A mit x ∈ U ,

dann gibt es nach Proposition B.4.3 Elemente V1, . . . , Vk ∈ E mit x ∈
k⋂

j=1

Vj ⊆ U . Es folgt

Vj /∈ A für alle j, weil sonst x ∈ Vj ∈ B wäre. Also gibt es wegen der Maximalität von A
zu j = 1, . . . , k jeweils endliche Vereinigungen Wj von Elementen in A mit Wj∪Vj = X.
Damit findet man

U ∪ ( k⋃

j=1

Wj

) ⊇ ( k⋂

j=1

Vj

) ∪ ( k⋃

j=1

Wj

)
= X

so, daß A eine endliche Teilüberdeckung hat. Dieser Widerspruch beweist die Behaup-
tung.

Abschließend stellt man noch fest, daß die Überdeckung B keine endliche Teilüberdeckung
zuläßt, weil sonst auch A eine hätte, d.h. (2) gilt nicht.
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Satz B.6.3 : (Tychonoff) Sei {Xα}α∈A eine Familie kompakter topologischer Räume. Dann ist das
topologische Produkt X =

∏

α∈A

Xα kompakt.

Beweis:

Idee: Benütze das Lemma B.6.2 von Alexander für Überdeckungen durch Teilmengen der Form

p−1
α (Uα) mit offenen Uα ⊆ Xα.

Nach dem Lemma B.6.2 von Alexander genügt es zu zeigen, daß jede Überdeckung von X
durch Teilmengen der Form p−1

α (Uα) mit offenen Uα ⊆ Xα eine endliche Teilüberdeckung hat.
Sei A eine solche Überdeckung und

Aα := {U ⊆ Xα | U offen und p−1
α (U) ∈ A}.

Behauptung: Es gibt ein β ∈ A mit Xβ =
⋃

U∈Aβ

U .

Wenn nicht, dann gibt es ein x ∈ X mit pα(x) /∈ ⋃
U∈Aα

U für alle α ∈ A. Aber dann gilt

x /∈ ⋃
U∈Aα
α∈A

p−1
α (U) =

⋃
V ∈A

V und A wäre keine Überdeckung. Dieser Widerspruch beweist die

Behauptung.

Jetzt nützen wir die Kompaktheit von Xβ aus, um zu sehen, daß es U1, . . . , Uk ∈ Aβ mit

Xβ =
k⋃

j=1

Uj gibt. Aber dann gilt p−1
β (Uj) ∈ A, also hat A wegen

X = p−1
β (Xβ) = p−1

β (U1) ∪ . . . ∪ p−1
β (Uk)

eine endliche Teilüberdeckung.

Ein nichtleeres System F von Teilmengen einer Menge X heißt Filter auf X, wenn es folgende
Bedingungen erfüllt:

F1) Jede Obermenge einer Menge aus F gehört zu F .

F2) Der Durchschnitt von zwei Mengen aus F gehört zu F .

F3) Die leere Menge gehört nicht zu F .

Wegen F2) gehören sogar endliche Durchschnitte von Mengen aus F wieder zu F . Ist G ein weiterer
Filter auf X, so heißt G feiner bzw. gröber als F , wenn F ⊆ G bzw. G ⊆ F . Ein Filter U heißt
Ultrafilter, wenn es keinen von U verschiedenen Filter auf X gibt, der feiner als U ist.

Beispiel B.6.4 : Sei x ∈ X.

(a) Dann ist U(x), die Menge aller Umgebungen von x, ein Filter, der Umgebungsfilter von x.

(b) Dann ist die Menge aller Obermengen von {x} ein Ultrafilter, der feiner als U(x) ist. Die Menge
der Obermengen einer Teilmenge A ⊆ X mit mindestens zwei Elementen ist ebenfalls ein Filter,
aber kein Ultrafilter (wähle x ∈ A und betrachte alle Mengen, die x enthalten).
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Ein Filter F auf X heißt konvergent gegen x ∈ X, wenn F feiner als der Umgebungsfilter U(x) ist.
Man schreibt dafür auch kurz F → x oder x ∈ limF . Die Schreibweise x = limF bedeutet zusätzlich,
daß F nur gegen x konvergiert.

Übung B.6.1 : Sei (M, T ) ein topologischer Raum, (xn)n∈N eine Folge in M und x ∈ M . Zeige:

(i) Die Menge aller Obermengen von Mengen der Form {xm | m ≥ n} bildet einen Filter auf M , den soge-
nannten Endstücksfilter von (xn)n∈N.

(ii) Die Folge (xn)n∈N konvergiert genau dann gegen x, wenn ihr Endstücksfilter den Umgebungsfilter von x
enthält.

Übung B.6.2 : Sei (M, T ) ein topologischer Raum, E ⊆ M und x ∈ M . Zeige, daß die beiden folgenden
Aussagen äquivalent sind:

(1) x ∈ E.

(2) Es gibt einen Filter F , der E enthält und gegen x konvergiert.

Übung B.6.3 : Es sei M eine nichtleere Menge und 〈xα〉α∈A ein Netz in M . Setze

Bα := {xβ ∈ M | β % α}
für α ∈ A und betrachte die Menge F(xα) aller Obermengen der Mengen Bα, d.h.

F(xα) := {F ⊆ M | ∃α ∈ A : Bα ⊆ F}.
Zeige: F(xα) ist ein Filter auf M .

(F(xα) heißt der durch das Netz 〈xα〉α∈A erzeugte Filter.)

Übung B.6.4 : Es sei M eine nichtleere Menge und F ein Filter auf M . Zeige, dass es ein Netz 〈xα〉α∈A in M
gibt mit F(xα) = F .

Übung B.6.5 : Es sei M ein topologischer Raum. Dann gilt:

(i) Konvergiert das Netz 〈xα〉α∈A gegen x ∈ M , dann konvergiert auch F(xα) gegen x.

(ii) Konvergiert der Filter F gegen x ∈ M und ist 〈xα〉α∈A ein Netz mit F(xα) = F , dann konvergiert 〈xα〉α∈A

gegen x.

Lemma B.6.5 : In der Menge aller Filter auf X (geordnet durch Inklusion) besitzt jede Kette K eine
obere Schranke.

Beweis:

Idee: Für eine Kette K von Filtern auf X betrachte {A ⊆ X | (∃F ∈ K) A ∈ F}.
Sei K eine Kette von Filtern auf X. Wir setzen

M := {A ⊆ X | (∃F ∈ K) A ∈ F}.
Um zu beweisen, daß M ein Filter ist, zeigen wir nur F2), der Rest sei dem Leser zur Übung
überlassen. Sind F1 und F2 ∈ M, so existieren Fi ∈ K mit Fi ∈ Fi. Wir können o.B.d.A.
annehmen, daß F1 ⊆ F2. Dann ist aber Fi ∈ F2 für i = 1, 2 und daher

F1 ∩ F2 ∈ F2 ⊆M.
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Proposition B.6.6 : Zu jedem Filter gibt es einen feineren Ultrafilter.

Beweis:

Idee: Dies folgt direkt aus dem Zornschen Lemma, angewendet auf die Menge aller Filter, die feiner

sind als der vorgegebene, und Lemma B.6.5.

Lemma B.6.7 : Sei F ein Filter auf X und das Komplement der Teilmenge A von X nicht in F
enthalten. Dann existiert ein Filter G auf X, der A enthält und feiner als F ist.

Beweis:

Idee: G ∈ G, wenn es F ∈ F mit F ∩A ⊆ G gibt.

Wir definieren G als das System aller Obermengen der Schnitte der Mengen aus F mit der
Menge A und zeigen, daß G ein Filter ist. Enthielte G die leere Menge, so gäbe es in F
eine Menge F ⊆ X \ A und es wäre folglich X \ A ∈ F , was wir ausgeschlossen haben. Die
Eigenschaft F1) ist trivial. Sind G1, G2 ∈ G, so existieren F1, F2 ∈ F mit Fi ∩ A ⊆ Gi. Also
ist

F1 ∩ F2 ∩A ⊆ G1 ∩G2

und daher G1 ∩G2 ∈ G.

Satz B.6.8 : Ein Filter F auf X ist genau dann ein Ultrafilter, wenn für jede Teilmenge A von X
entweder A oder X \A zu F gehört.

Beweis:

Idee: Mit Lemma B.6.7 folgt das direkt aus den Definitionen.

Sei zuerst F ein Ultrafilter und X \A 6∈ F . Nach Lemma B.6.7 existiert ein feinerer Filter (der
dann natürlich mit F übereinstimmt), der A enthält. Folglich ist A ∈ F . Ist umgekehrt F ein
Filter auf X, der für jede Menge entweder die Menge selbst oder ihr Komplement enthält, so
ist er maximal, denn man kann keine weitere Menge zu F hinzunehmen ohne F2) oder F3)
zu verletzen.

Sei f : X → Y eine Abbildung und F ein Filter auf X. Dann bezeichnen wir mit f(F) den Filter aller
Obermengen der Bilder der Elemente von F (Übung: zeige, daß das wirklich ein Filter ist).

Korollar B.6.9 : Ist F ein Ultrafilter auf X und f : X → Y eine Abbildung, so ist f(F) ein Ultrafilter
auf Y .

Beweis:
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Idee: Mit Satz B.6.8 folgt das direkt aus den Definitionen.

Nach Satz B.6.8 ist zu zeigen, daß für jede Teilmenge A ⊆ Y entweder A oder Y \A zu f(F)
gehört. Dies folgt aber sofort daraus, daß A genau dann zu f(F) gehört, wenn f−1(A) zu F
gehört und Satz B.6.8.

Proposition B.6.10 : Eine Abbildung f : X → Y zwischen topologischen Räumen ist genau dann stetig
in x ∈ X, wenn das Bild f

(U(x)
)

als Filter gegen f(x) konvergiert.

Beweis:

Idee: Dies folgt direkt aus den Definitionen.

Sei f stetig in x und V eine Umgebung von f(x). Dann ist f−1(V ) eine Umgebung von
x und f

(
f−1(V )

) ⊆ V . Also ist V ∈ f
(U(x)

)
, und f

(U(x)
)

konvergiert gegen f(x). Sei
dies umgekehrt der Fall, O ⊆ Y offen und x ∈ f−1(O). Wir haben zu zeigen, daß f−1(O)
eine Umgebung von x ist. Wegen unserer Annahme finden wir eine Umgebung U von x mit
f(U) ⊆ O, da O eine Umgebung von f(x) ist. Damit ist aber auch x ∈ U ⊆ f−1(O).

Satz B.6.11 : Für einen topologischen Raum (X, T ) sind folgende Aussagen äquivalent:

(1) X ist kompakt.

(2) In jeder Familie abgeschlossener Teilmengen von X mit leerem Durchschnitt gibt es eine endliche
Teilfamilie, deren Durchschnitt leer ist.

(3) Jeder Ultrafilter auf X ist konvergent.

Beweis:

Idee:
”
(1)⇔(2)⇒(3)“ folgt direkt aus den Definitionen. Für

”
(3) ⇒ (2)“ sucht man einen Ultrafil-

ter, der zu einer Familie von abgeschlossenen Teilmengen mit endlicher Durchschnittseigenschaft die

endlichen Durchschnitte enthält.

”(1) ⇔ (2)“: Erhält man durch Komplementbildung.

”(2) ⇒(3)“: Sei F ein Ultrafilter auf X. Wegen (2) und F2), F3) ist der Durchschnitt aller abgeschlos-
senen Mengen in F nicht leer. Sei x in diesem Durchschnitt und U eine offene Umgebung
von x. Dann ist X \ U nicht in F und daher U ∈ F (vgl. Satz B.6.8). Also konvergiert
F gegen x.

”(3) ⇒ (2)“: Sei K eine Familie abgeschlossener Teilmengen von X mit leerem Durchschnitt und F
die Menge der Obermengen endlicher Durchschnitte von Mengen aus K. Angenommen,
keiner dieser endlichen Durchschnitte ist leer. Dann ist F ein Filter auf X, zu dem nach
Proposition B.6.6 ein feinerer Ultrafilter F ′ existiert. Nach Voraussetzung konvergiert
F ′ gegen ein x ∈ X. Sei F ∈ K und U eine Umgebung von x. Dann gehören F und U
zu F ′, also ist F ∩ U 6= ∅. Wir schließen daraus (vgl. Proposition B.3.3), daß x ∈ F ist,
im Widerspruch zu

⋂
F∈K F = ∅.
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Bemerkung B.6.12 : Die Ergebnisse über Filter erlauben einen sehr ökonomischen Beweis der Satzes
B.6.3 von Tychonoff: Sei F ein Ultrafilter auf X =

∏
α∈A Xα und pα : X → Xα die kanonische Projektio-

nen für a ∈ A. Nach Korollar B.6.9 sind die Bildfilter pα(F) Ultrafilter auf den Xα. Nach Satz B.6.11 sind
also die pα(F) konvergent (wenn man die Xα als kompakt voraussetzt). Also findet man zu jedem α ∈ A
ein xα ∈ Xα so, daß pα(F) eine Umgebungsbasis für xα in Xα enthält. Sei jetzt U eine Umgebung von
x := (xα)α∈A. Dann enthält U eine Umgebung von x der Form

∏
α∈A Uα mit Uα = Xα für alle α ∈ A\B,

wobei B ⊆ A endlich ist. Wähle Fβ ∈ F mit pβ(Fβ) ∈ Uβ für alle β ∈ B. Dann ist F :=
⋂

β∈B Fβ ∈ F
und es gilt F ⊆ U . Also konvergiert F gegen x und die Kompaktheit von X folgt aus Satz B.6.11.

B.7 Lokal kompakte Räume und Kompaktifizierungen

Ein hausdorffscher topologischer Raum X heißt lokal kompakt, wenn jeder Punkt von X eine kom-
pakte Umgebung besitzt.

Lemma B.7.1 : In einem lokal kompakten topologischen Raum X enthält jede Umgebung eines Punktes
x ∈ X eine kompakte Umgebung.

Beweis:

Idee: Betrachte den Filter der Obermengen von kompakten Umgebungen von x und zeige, daß er

gegen x konvergiert. Nutze dazu die Existenz eines dazugehörigen Ultrafilters aus, um einen Wider-

spruchsbeweis zu bauen.

Nach Voraussetzung ist die Menge F der Obermengen kompakter Umgebungen von x ein
Filter in X. Es reicht zu zeigen, daß er gegen x konvergiert. Sei K eine feste kompakte
Umgebung von x. Da es ausreicht, die Behauptung für den Filter F ∩K := {F ∩K | F ∈ F}
zu zeigen, können wir annehmen, daß X kompakt ist. Sei U eine beliebige offene Umgebung
von x. Wir nehmen an, daß keine Menge von F in U enthalten ist. Dann ist F1 := F ∩ (X \U)
ein Filter. Sei F ′1 ein Ultrafilter, der F1 verfeinert (Proposition B.6.6). Der Ultrafilter F ′1
konvergiert gegen einen Punkt y ∈ X (Satz B.6.11). Wir führen dies zu einem Widerspruch.
Zunächst ist x = y unmöglich, da U nicht in F ′1 enthalten sein kann. Also ist y 6= x und wir
finden disjunkte offene Umgebungen U1 von x und U2 von y. Dann ist X \U2 nach Satz B.6.1
eine kompakte Umgebung von x und somit ist die Menge (X \ U2) \ U = X \ (U ∪ U2) in F ′1
enthalten. Wegen U2 ∈ F ′1 liefert dies einen Widerspruch.

Lemma B.7.2 : Sei X lokal kompakt, K ⊆ X kompakt und U ⊇ K offen. Dann existiert eine kompakte
Menge V ⊆ X mit

K ⊆ V ◦ ⊆ V ⊆ U.

Beweis:

Idee: Dies folgt aus Lemma B.7.1.

Zu jedem Punkt von x ∈ K wählen wir eine kompakte Umgebung Vx ⊆ U (Lemma B.7.1).
Dann existieren endlich viele Punkte x1, . . . , xn, so daß K ⊆ ⋃n

i=1 V ◦
xi

. Wir setzen V :=⋃n
i=1 Vxi ⊆ U .
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Sei M ein topologischer Raum. Der Träger supp (f) einer stetigen Funktion f : M → C ist die kleinste
abgeschlossene Menge, auf deren Komplement f verschwindet.

Lemma B.7.3 : (Lemma von Urysohn für lokal kompakte Räume) Sei X lokal kompakt, K ⊆ X
kompakt und U ⊇ K offen. Dann existiert eine stetige Funktion h mit kompaktem Träger auf X mit

h|K = 1 und h|X\U = 0.

1

K

U

Beweis:

Idee: Konstruiere mit Lemma B.7.2 induktiv eine Folge von offenen relativ kompakten Mengen

U( k
2n ) mit U( k

2n ) ⊆ U( k+1
2n ) für k = 0, . . . , 2n − 1, ergänze dies durch U(r) :=

⋃
k
2n≤r U( k

2n ) und

setze f(x) := inf{t ∈ R | x ∈ U(t)}.
Wir setzen U(1) := U . Mit Lemma B.7.2 finden wir eine offene relativ kompakte Menge U(0)
mit K ⊆ U(0) ⊆ U(0) ⊆ U(1). Nochmalige Anwendung dieses Lemmas führt zu einer Menge
U( 1

2 ) mit
U(0) ⊆ U( 1

2 ) ⊆ U( 1
2 ) ⊆ U(1).

Mit Induktion über n finden wir für jede rationale Zahl der Gestalt k
2n ∈ [0, 1] eine offene,

relativ kompakte Menge U( k
2n ) mit

U(r) ⊆ U(r′)

für r, r′ ∈ { k
2n | n ∈ N, k = 0, . . . 2n} und r < r′. Dabei gehen wir folgendermaßen von n − 1

zu n über: Für k gerade ist mit Induktion U( k
2n ) schon bekannt. Sei k ungerade: Mit Lemma

B.7.2 finden wir eine offene relativ kompakte Menge U( k
2n ) mit

U(k−1
2n ) ⊂ U( k

2n ) ⊂ U( k
2n ) ⊂ U(k+1

2n ).

Für eine beliebige reelle Zahl r ∈ [0, 1] setzen wir nun

U(r) :=
⋃
k
2n≤r

U
( k

2n

)
.

Für r = k
2n ist dies konsistent mit der bisherigen Definition. Für t < t′ finden wir nun r = k

2n

und r′ = k+1
2n mit t < r < r′ < t′ und daher ist auch in diesem Fall

U(t) ⊆ U(r) ⊆ U(r′) ⊆ U(t′).

Wir setzen noch U(t) = ∅ für t < 0 und U(t) = X für t > 1. Wir definieren

f(x) := inf{t ∈ R | x ∈ U(t)}.

Dann ist f(K) ⊆ {0} und f(X \ U) ⊆ {1}.
Wir zeigen, daß f stetig ist. Sei dazu x0 ∈ X, f(x0) = t0 und ε > 0. Wir setzen V :=
U(t0+ε)\U(t0 − ε). Das ist eine Umgebung von x0. Aus x ∈ V ⊆ U(t0+ε) folgt f(x) ≤ t0+ε.
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Ist f(x) < t0−ε, so folgt x ∈ U(t0−ε) ⊆ U(t0 − ε), ein Widerspruch. Also ist |f(x)−f(x0)| ≤ ε
auf V und damit ist f stetig. Wir setzen h := 1− f .

Damit ist alles gezeigt bis auf die Kompaktheit von supp (h). Wenn wir aber die Konstruktion
für das V ◦ aus Lemma B.7.2 statt für U durchführen, gilt supp (h) ⊆ V und supp (h) ist als
abgeschlossene Teilmenge einer kompakten Menge nach Satz B.6.1 kompakt.



Anhang C

Spezielle Eigenschaften des
Lebesgue-Maßes

In diesem Kapitel beschäftigen wir uns speziell mit dem Lebesgue-Maß. Als erstes betrachten wir Re-
gularitätseigenschaften, die im Verlauf nützliche Anwendungen haben. Insbesondere benötigen wir die
Aussage, daß das Lebesgue-Maß einer Borelmenge E als das Infimum aller Maße der offenen Mengen,
die E enthalten, geschrieben werden kann. Damit läßt sich dann das Lebesgue-Maß aus Kapitel ?? als die
Vervollständigung des Lebesgue-Maßes aus Kapitel 2 identifizieren. Das eigentliche Hauptergebnis dieses
Kapitels ist der Transformationssatz, der eine Verallgemeinerung der Substitutionsregel ist und beschreibt,
wie sich Integrale unter stetig differenzierbaren Abbildungen verhalten.

C.1 Regularität

Für Funktionen auf R betrachten wir hier den Integrierbarkeitsbegriff, wie er in der Integralrechnung
einer reellen Variablen entwickelt wurde.

Lemma C.1.1 : Sei E ⊆ R beschränkt, und sei χE integrierbar. Dann ist E meßbar im Sinne von
Übung ?? und es gilt ∫

χE = inf{λ1(U) | E ⊆ U, U offen in R}.

Beweis:

Idee: Mit Lemma ?? findet man eine Entwicklung χE als Reihe von Stufenfunktionen, deren Be-

tragsintegrale sich zu wenig mehr als
∫

χE aufsummieren. Zerlege die Stufenfunktionen in Linear-

kombinationen von Funktionen der Form χ[ak,bk[. Dann wählt man α̃k < αk so nah an αk, daß∑∞
k=1 |αk|λ1(]ãk, bk[) <

∫
χE + ε. Mit Um = {x ∈ R | ∑m

k=1 |αk|χ]ãk,bk[(x) > 1
1+ε

} findet man dann

E ⊆ ⋃∞
m=1 Um und λ1(

⋃∞
m=1 Um) ≤ (1 + ε)(ε +

∫
χE).

Da χE integrierbar ist, gibt es nach Lemma ?? zu ε > 0 eine Folge (fk)k∈N von Stufenfunk-
tionen mit χE ' ∑∞

k=1 fk und

∞∑

k=1

∫
|fk| <

∫
χE +

ε

2
.

Indem wir jedes fk durch die endlich vielen Vielfachen von Elementarfunktionen ersetzen, die
in die kanonische Darstellung von fk eingehen, können wir o.B.d.A. annehmen, daß

(∀k ∈ N) fk = αkχ[ak,bk[.

163
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Wähle jetzt ãk < ak so, daß ∑

k

(ak − ãk)|αk| < ε

2
.

Dann gilt
∞∑

k=1

|αk|λ1(]ãk, bk[) <

∫
χE + ε.

Setze jetzt

Um = {x ∈ R |
m∑

k=1

|αk|χ]ãk,bk[(x) >
1

1 + ε
}

Dann ist Um offen und es gilt Um+1 ⊆ Um.

Sei x ∈ E. Wenn die Reihe
∑∞

k=1 αkχ[ak,bk[(x) absolut konvergiert, dann konvergiert sie gegen
1. Also ist wegen χ[ak,bk[ ≤ χ]ãk,bk[ jedes x ∈ E in einem Um enthalten, d.h.

E ⊆
∞⋃

m=1

Um =: U.

Also finden wir mit

λ1(Um) ≤ (1 + ε)
∫ m∑

k=1

|αk|χ]ãk,bk[ ≤ (1 + ε)(ε +
∫

χE),

daß

λ1(U) ≤ (1 + ε)(ε +
∫

χE).

Betrachte jetzt den Maßraum (Rn,BRn , λn).

Satz C.1.2 : Sei E ∈ BRn . Es gilt

(i) λn(E) = inf{λn(U) | E ⊆ U, U offen in Rn}.
(ii) λn(E) = sup{λn(K) | K ⊆ E, K kompakt in Rn}.

Beweis:

Idee: Als erstes zeigt man, daß es ausreicht, beschränkte Mengen zu betrachten. Dazu schneidet

man mit einer wachsenden Familie (Bk)k∈N von offenen Würfeln und approximiere darin so gut,

daß die Fehler sich immer noch zu einer kleinen Zahl summieren (geometrische Reihe). C := {F ⊆
Bk | λn(F ) = inf{λn(U) | F ⊆ U ⊆ Bk offen} die Eigenschaften (a) und (b) aus Lemma 1.1.6 hat.

Dieses Lemma liefert dann (i). Den Teil (ii) beweist man zuerst für Mengen, die abgeschlossen und

beschränkt sind (dann folgt die Behauptung trivialerweise aus dem Satz ?? von Heine–Borel), dann

für beliebige beschränkte Mengen (abschließen und (i) auf die Differenz Menge–Abschluß anwenden;

das K ist dann der Abschluß ohne die gefundene offen Menge) und schließlich für beliebige Mengen

(mit Bk+1 \ Bk schneiden, die bisherigen Ergebnisse anwenden und wieder die geometrische Reihe

benützen).

(i) Wir zeigen zunächst, daß wir o.B.d.A. annehmen können, daß E beschränkt ist und
daher endliches Maß hat. Betrachte dazu die Mengen

Bk := {(x1, . . . , xn) ∈ Rn | (∀j = 1, . . . , n) |xj | < k}.
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E

Bk

Wenn jetzt Uk ⊆ Rn offen ist mit E ∩Bk ⊆ Uk, und

λn(Uk)− λn(E ∩Bk) <
1
2k

,

dann gilt E ⊆ ⋃∞
j=k Uj =: U ′

k, und es folgt

λn(U ′
k \ E) ≤

∞∑

j=k

λn(Uk \ (E ∩Bk)) ≤
∞∑

j=k

1
2j

=
1

2k−1
.

Dies zeigt aber die Behauptung.
Sei also E ⊆ Bk. Wir zeigen, daß die Familie

C := {F ⊆ Bk | λn(F ) = inf{λn(U) | F ⊆ U ⊆ Bk offen}
die Eigenschaften (a) und (b) aus Lemma 1.1.6 hat.
Zu (a): Wenn F1 ⊆ F2 ⊆ . . . mit Fj ∈ C und F :=

⋃
j Fj , dann wähle Fj ⊆ Uj ⊆ Bk mit

λn(Uj \ Fj) ≤ 1
2j

.

Mit U ′
m :=

⋃∞
j=m Uj finden wir F ⊆ U ′

m und

λn(U ′
m \ F ) ≤

∞∑

j=m

λn(Uj \ Fj) ≤
∞∑

j=m

1
2j

=
1

2m−1
.

Dies zeigt F ∈ C.
Zu (b): Wenn F1 ⊇ F2 ⊇ . . . mit Fj ∈ C und F :=

⋂
j Fj , dann wähle wieder Fj ⊆ Uj ⊆

Bk mit

λn(Uj \ Fj) ≤ 1
j
.

Mit U ′
m :=

⋂m
j=1 Uj finden wir F ⊆ U ′

m und

λn(U ′
m \ F ) = λn(U ′

m \ Fm) + λn(Fm \ F ) ≤ λn(Um \ Fm) + λn(Fm \ F ).

Um zu zeigen, daß F ∈ C genügt es also, zu zeigen, daß

lim
m→∞

λn(Fm \ F ) = 0.

Wegen
λn(Bk \ Fm) = λn(Bk)− λn(Fm)

und
λn(Bk \ F ) = λn(Bk)− λn(F )

folgt dies aber aus Satz 2.2.4, angewendet auf die monoton steigende Folge der χBk\Fm

mit Grenzwert χBk\F .
Als nächstes stellen wir fest, daß Lemma 1.1.6 tatsächlich auf C anwendbar ist: Nach
Lemma C.1.1 sind alle meßbaren Quader Elemente von C, weil die Maße der Quader
von oben durch Maße offener Quader approximiert werden können. Nach Übung 1.1.1
besteht die von den meßbaren Quadern in Bk erzeugte Algebra aus endlichen disjunkten
Vereinigungen solcher Quader, ist also auch in C enthalten. Jetzt liefert Lemma 1.1.6,
daß C alle meßbaren Mengen in Bk, also auch E enthält. Dies beweist (i).
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(ii) Wir unterscheiden mehrere Fälle: Wenn E beschränkt und abgeschlossen ist, dann ist E
kompakt nach dem Satz ?? von Heine–Borel und die Behauptung ist trivial.
Wenn E beschränkt ist, aber nicht abgeschlossen, dann ist der Abschluß E von E ebenso
wie E \E kompakt und meßbar. Nach (i) findet man zu ε > 0 ein offenes U ⊇ E \E mit

λn(U) ≤ λn(E \ E) + ε.

Für K := E \ U ⊆ E gilt dann

λn(K) = λn(E)− λn(E ∩ U)
= λn(E)− (λn(U)− λn(U \ E))
≥ λn(E)− λn(U) + λn(E \ E)
≥ λn(E)− ε.

Schließlich sei E unbeschränkt. Setze

Ek := E ∩ (Bk+1/Bk).

Dann gibt es Kk ⊆ Ek, kompakt mit

λn(Kk) ≥ λn(Ek)− ε

2k
.

Dann ist K̃k :=
⋃k

j=1 Kj ⊆ E kompakt mit

λn(K̃k) =
k∑

j=1

λn(Kj) ≥
k∑

j=1

λn(Ej)− 2ε = λn(
k⋃

j=1

Ej)− 2ε.

Wegen λ(E) = supk∈N λn(
⋃k

j=1 Ej) folgt die Behauptung.

Die in Satz C.1.2 beschriebenen Eigenschaften des Lebesgue–Maßes lassen sich allgemein für Maße
auf lokalkompakten Räumen (mit der Borel-σ-Algebra) formulieren:

Sei (M,U) ein topologischer Hausdorff-Raum, der lokalkompakt ist, d.h., für den jeder Punkt eine
kompakte Umgebung hat. Ein Maß µ : BM → [0,∞] heißt regulär, wenn für jedes E ∈ BM gilt:

(i) µ(E) = inf{µ(U) | E ⊆ U,U offen in M}.
(ii) µ(E) = sup{µ(K) | K ⊆ E, K kompakt in M}.

C.2 Charakterisierung des Lebesgue-Maßes

Wir zeigen, daß die Integrierbarkeit einer Funktion auf R gleichbedeutend ist mit der Integrierbarkeit
bzgl. der in Übung 2.2.1 behandelten Vervollständigung (λ1)∗ des Lebesgue-Maßes λ1.

Wir beginnen mit dem Vergleich der beiden verschiedenen Begriffe von Nullmengen. Dabei schreiben
wir

∫
f für das Integral im Sinne der Integralrechnung einer Variablen und

∫
fd(λ1)∗ für das Integral

bzgl. des Maßes.

Proposition C.2.1 : Für N ⊆ R sind die folgenden Aussagen äquivalent:
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(1) N ist eine Nullmenge (vgl. Proposition ??).

(2) Es gibt eine λ1-Nullmenge Ñ ⊆ R mit N ⊆ Ñ .

(3) N ist eine (λ1)∗-Nullmenge.

Beweis:

Idee: Um die wesentliche Implikation
”
(1) ⇒ (2)“ (die Umkehrung folgt aus Proposition ??)

zu zeigen, approximiert man Nullmengen via Lemma C.1.1 durch offene Mengen vom Maß 1
n

und

schneidet diese dann.

”(1) ⇒ (2)“: Wenn N eine Nullmenge im Sinne von Proposition ?? ist, dann ist χN integrier-
bar, und es gilt

∫
χN = 0. Wir können o.B.d.A. annehmen, daß N beschränkt ist (andernfalls

betrachte N∩] − k, k[ für alle k ∈ N). Jetzt zeigt Lemma C.1.1, daß es zu jedem ε > 0 ein
offenes Uε mit N ⊆ Uε ⊆ R und

λ1(Uε) ≤
∫

χN + ε = ε

gibt. Wenn man jetzt Ñ =
⋂

n∈N U 1
n

setzt, dann gilt Ñ ∈ BR und für alle n ∈ N

λ1(Ñ) ≤ λ1(U 1
n
) ≤ 1

n
.

Damit ist Ñ aber eine λ1-Nullmenge, die N enthält.

”(2) ⇔ (3)“: Dies folgt direkt aus der Definition der Vervollständigung.

”(2) ⇒ (1)“: Wegen 0 = λ1(Ñ) =
∫

χÑ ist Ñ eine Nullmenge im Sinne von Proposition ??.
Dann zeigt diese Proposition, daß N ebenfalls eine Nullmenge im Sinne von Abschnitt ?? ist.

Beachte, daß Proposition C.2.1 insbesondere zeigt, daß (f.ü.) im Sinne von (??) dasselbe ist wie
((λ1)∗-f.ü.).

Satz C.2.2 : Sei f : R→ R. Dann sind folgende Aussagen äquivalent:

(1) f ist integrierbar (im Sinne von (??) und (??)).

(2) f ist (λ1)∗-integrierbar.

Wenn die beiden Aussagen zutreffen, dann stimmen auch die beiden Integralbegriffe überein.

Beweis:

Idee: Beide Beweisrichtungen beruhen wesentlich auf der Möglichkeit, die Funktionen durch Ele-

mentarfunktionen bzw. Stufenfunktionen zu approximieren. Dann wendet man jeweils den Satz von

der monotonen Konvergenz an.

Wir nehmen zunächst an, daß (2) gilt. Nach (2.1) sind dann auch f± bzgl. (λ1)∗ integrierbar,
und wir können annehmen, daß f : R → [0,∞[. Nach Lemma 2.2.3 gibt es eine monoton
steigende Folge (φn)n∈N nichtnegativer einfacher Funktionen, die kleiner gleich f sind und
punktweise gegen f konvergieren. Die φn sind nach Beispiel 2.1.2 alle lokal integrierbar (vgl.
Proposition ??), und es gilt

∫
φn =

∫
φndλ1 =

∫
φnd(λ1)∗.
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Wegen
∫

φnd(λ1)∗ ≤ ∫
fd(λ1)∗ zeigt der Satz 2.2.4 von der monotonen Konvergenz, daß es

eine integrierbare Funktion f̃ : R→ R gibt, gegen die (φn)n∈N (f.ü.) konvergiert mit
∫

f̃ = lim
n→∞

∫
φn.

Dann gilt auch f = f̃ (f.ü.) und somit ist f − f̃ eine Nullfunktion (d.h.
∫ |f | = 0). Jetzt zeigt

Proposition ??, daß f im integrierbar ist mit
∫

f =
∫

f̃ = lim
n→∞

∫
φn = lim

n→∞

∫
φnd(λ1)∗ =

∫
fd(λ1)∗.

Sei jetzt umgekehrt f integrierbar im Sinne von (??) und (??). Weiter sei f ' ∑∞
j=1 fj für

Stufenfunktionen fj . Mit Beispiel 2.1.2 ist klar, daß Stufenfunktionen (λ1)∗-integrierbar sind
und die beiden Integralbegriffe für solche Funktionen zusammenfallen. Setze

sn =
n∑

j=1

|fj |

und beachte, daß (sn)n∈N eine monoton steigende Folge von (λ1)∗-integrierbaren Funktionen
ist, für die gilt ∫

snd(λ1)∗ =
∫

sn ≤
∞∑

j=1

∫
|fj | < ∞.

Dann sagt der Satz 2.2.4 von der Monotonen Konvergenz, daß s := supn∈N sn eine (λ1)∗-
integrierbare Funktion ist, die

∫
s d(λ1)∗ = sup

n∈N

∫
snd(λ1)∗ < ∞

erfüllt. Setze jetzt tn :=
∑n

j=1 fj . Dann ist tn eine (λ1)∗-integrierbare Funktion, und es gilt
tn ≤ s. Weil tn nach Proposition ?? (f.ü.) gegen f konvergiert, zeigt der Satz 2.4.4 von der
Dominierten Konvergenz, daß f (λ1)∗-integrierbar ist mit

∫
fd(λ1)∗ = lim

n→∞

∫
tnd(λ1)∗ = lim

n→∞

∫
tn =

∫
f.

Korollar C.2.3 : Sei E ⊆ R. Dann sind folgende Aussagen äquivalent:

(1) E ist meßbar im Sinne von Abschnitt ??.

(2) E ist (λ1)∗-meßbar.

Beweis:

Wende Satz C.2.2 auf die charakteristischen Funktionen χE∩[−n,n] an.

Dieses Korollar zeigt zusammen mit Satz C.2.2, daß die Vervollständigung (λ1)∗ von λ1 tatsächlich
nichts anderes ist als das Lebesgue-Maß aus Abschnitt ??.

Übung C.2.1 : Projekt: Der Satz von Vitali:
”
Es gibt kein translationsinvariantes Maß auf der Potenzmenge

von R“.
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C.3 Affine Transformationen

Betrachte den Maßraum (Rn,BRn , λn). Wir untersuchen das Verhalten des Lebesgue-Maßes und von
Lebesgue-Integralen unter affinen Transformationen des Raums. Wir erinnern daran, daß jede stetige
Abbildung Φ: Rn → Rn meßbar ist. Insbesondere sind mit E alle verschobenen Mengen E + x = {y ∈
Rn | y − x ∈ E} mit x ∈ Rn meßbar.

Proposition C.3.1 : (Translationsinvarianz) Sei x ∈ Rn. Dann gilt

(∀E ∈ BRn) λn(E + x) = λn(E).

Beweis:

Idee: Man weist die Gleichheit für Quader nach und argumentiert dann mit Satz 2.1.3.

Wir definieren eine Abbildung

µ : BRn → [0,∞], E 7→ λn(E + x).

Da die Verschiebung von Mengen mit Vereinigungen vertauscht:

∞⋃

j=1

(Ej + x) =




∞⋃

j=1

Ej


 + x,

verifiziert man sofort, daß µ ein Maß auf (Rn,BRn) ist. Wenn E = A1× . . .×An ein meßbarer
Quader ist, gilt

E + x = (A1 + x1)× . . .× (An + xn)

sowie

µ(E) = λ1(A1 + x1) · . . . · λ1(An + xn) und λn(E) = λ1(A1) · . . . · λ1(An).

Da die von den meßbaren Quadern erzeugte Algebra aus disjunkten Vereinigungen von Qua-
dern besteht, erhalten wir mit Satz 2.1.3 die Gleichheit λn = µ, wenn wir die Behauptung für
n = 1 zeigen können.

Sei also n = 1. Wenn E ein Intervall oder eine endliche Vereinigung disjunkter Intervalle ist,
ist die Gleichheit µ(E) = λ1(E) offensichtlich. Also folgt die Behauptung wieder mit Satz
2.1.3, diesmal angewendet auf die von den Intervallen erzeugte Algebra, die offensichtlich aus
endlichen Vereinigungen disjunkter Intervalle besteht.

Bemerkung C.3.2 : Wenn E ∈ BR und 0 6= c ∈ R, dann zeigen dieselben Argumente wie im Beweis
von Proposition C.3.1, daß für cE = {cx ∈ R | x ∈ E} gilt

λ1(cE) = |c|λ1(E),

weil dies für Intervalle so ist. Also gilt die Formel
∫

f(x)dλ1(x) = |c|
∫

f(cx)dλ1(x)

für alle einfachen Funktionen:
∫

χcE(x)dλ1(x) = λ1(cE) = |c|λ1(E) = |c|
∫

χE(x)dλ1(x) = |c|
∫

χcE(cx)dλ1(x).

Durch Supremumsbildung folgt sie dann auch für beliebige Funktionen in L+(R) und schließlich für
f ∈ L1(R,C).
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Satz C.3.3 : Sei T ∈ HomR(Rn,Rn) invertierbar.

(i) Wenn f : Rn → C meßbar ist, dann ist auch f ◦ T meßbar.

(ii) Wenn f ∈ L+(Rn) oder f ∈ L1(Rn,C), dann gilt
∫

fdλn = | detT |
∫

(f ◦ T )dλn.

(iii) Wenn E ∈ BRn , dann gilt T (E) ∈ BRn und

λn(T (E)) = |det T |λn(E).

Beweis:

Idee: Wesentlich ist die Formel in (ii). Man beweist sie mit dem Satz 2.3.5 von Fubini für Streckun-

gen, Scherungen und Permutationen und nützt dann aus, daß sich jede invertierbare lineare Abbildung

als Produkt von solchen schreiben läßt.

Die erste Aussage folgt mit Beispiel 1.2.1 und Bemerkung 1.2.2 sofort aus der Stetigkeit von
T . Die letzte Aussage folgt aus der zweiten mit f = χE .

Durch Aufspaltung in Real- und Imaginärteil sowie anschließende Aufspaltung in positiven
und negativen Teil können wir o.B.d.A. annehmen, daß f ∈ L+(Rn).

Wenn die Gleichung aus (ii) für zwei invertierbare lineare Abbildungen T1, T2 ∈ HomR(Rn,Rn)
gilt, dann auch für T1 ◦ T2:

∫
f = | detT1|

∫
f ◦ T1

= | detT1||det T2|
∫

(f ◦ T1) ◦ T2

= | det(T1 ◦ T2)|
∫

f ◦ (T1 ◦ T2)

Der Gaußalgorithmus zeigt, daß sich jede invertierbare lineare Selbstabbildung von Rn als ein
Produkt von Abbildungen der Form

M(x1, . . . , xj−1, xj , xj+1, . . . , xn) = (x1, . . . , xj−1, cxj , xj+1, . . . , xn)

mit c 6= 0 und j ∈ {1, . . . , n} (Multiplikation),

S(x1, . . . , xj−1, xj , xj+1, . . . , xn) = (x1, . . . , xj−1, xj + dxk, xj+1, . . . , xn)

mit d ∈ R und j 6= k ∈ {1, . . . , n} (Scherung) sowie

P (x1, . . . , xj−1, xj , xj+1, . . . , xk−1, xk, xk+1, . . . , xn)
= (x1, . . . , xj−1, xk, xj+1, . . . , xk−1, xj , xk+1, . . . , xn)

mit j 6= k ∈ {1, . . . , n} (Permutation) geschrieben werden kann. Es genügt also, die Behaup-
tung für diese drei Transformationen zu beweisen.

Wir beginnen mit M . Nach dem Satz 2.3.5 von Fubini können wir zuerst nach der j-ten
Variablen integrieren:

∫

Rn

fdλn =

=
∫

Rn−1

(∫

R
(x1, . . . , xj−1, xj , xj+1, . . . , xn)dλ1(xj)

)
dλn−1(x1, . . . , xj−1, x̂j , xj+1, . . . , xn),
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wobei x̂j bedeutet, daß diese Komponente weggelassen wird. Bemerkung C.3.2 zeigt, daß
∫

R
(x1, . . . , xj−1, xj , xj+1, . . . , xn)dλ1(xj) = |c|

∫

R
(x1, . . . , xj−1, cxj , xj+1, . . . , xn)dλ1(xj),

was ∫

Rn

fdλn = |c|
∫

Rn

f(x1, . . . , xj−1, cxj , xj+1, . . . , xn)dλn(x1, . . . , xn)

zur Folge hat. Wegen det M = c zeigt dies die Behauptung für M .

Für S geht man genauso vor, benützt aber statt Bemerkung C.3.2 die Proposition C.3.1, um
∫

R
(x1, . . . , xj−1, xj , xj+1, . . . , xn)dλ1(xj) =

∫

R
(x1, . . . , xj−1, xj , xj+1 + dxk, . . . , xn)dλ1(xj)

zu zeigen, und die Relation det S = 1.

Die Behauptung für P folgt wegen det P = ±1 sofort aus Satz 2.3.5, weil es gleichgültig ist,
ob man zuerst über die Variable xj oder über die Variable xk integriert.

Übung C.3.1 : Sei A ∈ Mat(n× n,R) symmetrisch und positiv definit. Berechne
∫

Rn

e−〈Ax,x〉dx.

Übung C.3.2 : Seien a, b, c > 0. Berechne das Volumen des Ellipsoids

E :=

{
(x, y, z) ∈ R3 |

(x

a

)2

+
(y

b

)2

+
(z

c

)2

≤ 1

}
.

Übung C.3.3 : Seien a1, . . . , an Vektoren des Rn. Unter dem von a1, . . . , an aufgespannten Parallelepiped
versteht man die Menge

P :=

{
n∑

j=1

λjaj : 0 ≤ λj ≤ 1 für j = 1, . . . , n

}
.

Zeige:
λn(P ) = |det(a1, . . . , an)|.

C.4 Die Transformationsformel für Diffeomorphismen

In diesem Abschnitt beweisen wir den eigentlichen Transformationssatz. Er behandelt folgende Situa-
tion: Ω ⊆ Rn ist eine offene Menge, und Φ: Ω → Rn ist eine stetig differenzierbare Abbildung, deren Bild
Φ(Ω) ebenfalls offen ist. Außerdem soll die Umkehrabbildung Ψ: Φ(Ω) → Ω von Φ: Ω → Φ(Ω) existie-
ren und selbst stetig differenzierbar sein (eine solche Abbildung nennt man einen Diffeomorphismus).
Angestrebt wird die Transformationsformel

∫

Φ(Ω)

f dλn =
∫

Ω

(f ◦ Φ)|JΦ| dλn,

wobei JΦ die Funktionaldeterminante von Φ ist. Diese Formel reduziert sich für n = 1 und stetiges f auf
die Substitutionsregel (??).
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Die Grundidee für den Beweis ist, Φ lokal durch sein Taylorpolynom erster Ordnung, d.h. eine affine
Transformation, zu approximieren und die Resultate von Abschnitt C.3 zu benützen. Die Strategie ist,
zunächst die Ungleichung ∫

Φ(Ω)

f dλn ≤
∫

Ω

(f ◦ Φ)|JΦ| dλn

zu zeigen und diese dann auch für Ψ statt Φ zu verwenden. Genauer: Betrachte zunächst die konstante
Funktion 1. Dann wird die Ungleichung zu

λn(Φ(Ω)) ≤
∫

Ω

|JΦ|.

Wenn man so eine Ungleichung für jedes meßbare E statt Ω hat, läßt sich die gesuchte Ungleichung mit
Approximation von f durch einfache Funktionen gewinnnen.

Proposition C.4.1 : Sei U ⊆ Rn offen. Dann ist U die Vereinigung einer abzählbaren Familie
Q1, Q2, . . . von meßbaren Quadern Qj der Form

(∗) [a1, a1 + h]× . . .× [an, an + h]

mit a = (a1, . . . , an) ∈ Rn, h > 0 und

(∀j 6= k ∈ N) Qo
j ∩Qo

k = ∅.
Beweis:

Idee: Zerteile den Raum in Würfel, die durch benachbarte Punkte des Gitters 1
2kZn aufgespannt

werden. Suche diejenigen Würfel heraus, die in U liegen, verfeinere dann durch Vergrößerung von k

und wähle wieder die Würfel, die nicht in den vorherigen Würfeln, aber noch in U liegen. Für k →∞
findet man alle Punkte von U .

Für k ∈ N sei Dk die Familie der Quader von der Form (∗) mit

ai ∈ 1
2k
Zn und h =

1
2k

.

Für Q 6= Q′ ∈ ⋃∞
k=1Dk mit Qo ∩ (Q′)o 6= ∅ gilt entweder Q ⊆ Q′ oder Q′ ⊆ Q: Wenn

nämlich Q ∈ Dk, Q′ ∈ Dk′ und Q 6⊆ Q′, dann gibt es eine Ecke a von Q′, die in Qo liegt.
Also liegt a ∈ 1

2k′ Z nicht in dem Gitter 1
2kZ, und daher gilt k′ > k. Aber dann liegen auch

alle benachbarten Gitterpunkte von a in 1
2k′ Z immer noch in dem Quader Q, der ja die

Kantenlänge 1
2k hat, und folglich gilt Q′ ⊆ Q.

Jetzt definiere induktiv:
F1 :=

⋃
Q∈D1
Q⊆U

Q

und
Fk :=

⋃

Q∈Dk,Q⊆U

(∀Q′∈⋃k−1
j=1 Dk,Q′⊆Fk−1) Qo∩(Q′)o=∅

Q.

Es genügt jetzt zu zeigen, daß

U =
∞⋃

k=1

Fk,

weil man Quader, die zu Fk beitragen, aber schon in einem Quader, der zu einem der
F1, . . . , Fk−1 beigetragen hat, enthalten sind, in der Aufzählung einfach nicht berücksichtigt.

Wenn x ∈ U , dann ist
δ := inf

y 6∈U
‖x− y‖∞ > 0.

Wähle k ∈ N so, daß 1
2k < δ. Dann folgt Q ⊆ U für alle Q ∈ Dk mit x ∈ Q. Da es immer so

ein Q gibt und dieses dann in
⋃∞

k=1 Fk liegt, sehen wir, daß U ⊆ ⋃∞
k=1 Fk. Die Umkehrung ist

klar, also folgt die Behauptung.
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Wir greifen jetzt die Notation vom Anfang des Abschnitts auf und beweisen die Transformationsformel
in einer Reihe von Lemmata. Wir betrachten Rn als normierten Vektorraum mit der Maximumsnorm
‖ · ‖∞.

Lemma C.4.2 : Seien a = (a1, . . . , an) ∈ Ω, h > 0 und

Q = {x ∈ Rn | ‖a− x‖∞ ≤ h} ⊆ Ω.

Dann gilt für jedes invertierbare T ∈ HomR(Rn,Rn)

λn(Φ(Q)) ≤ | detT |λn(Q)
(

sup
y∈Q

‖T−1Φ′(y)‖op

)n

.

Beweis:

Idee: Schätze ‖Φ(x) − Φ(a)‖∞ mithilfe des Mittelwertsatz ?? für für x, a ∈ Q ab und kombiniere

das Ergebnis mit Satz C.3.3 und der Kettenregel, ?? um die Behauptung zu erhalten.

Nach dem Mittelwertsatz ?? gilt für alle x ∈ Q

‖Φ(x)− Φ(a)‖∞ ≤ h sup
y∈Q

‖Φ′(y)‖op.

2h sup(...)

Dann gilt
λn(Φ(Q)) ≤ (2h sup

y∈Q
‖Φ′(y)‖op)n = λn(Q)(sup

y∈Q
‖Φ′(y)‖op)n.

Dies beweist die Behauptung für T = id.

Für den allgemeinen Fall setze Φ̃ = T−1 ◦ Φ und rechne mit Satz C.3.3 und der Kettenregel
??

λn(Φ(Q)) = λn(T (Φ̃(Q)))

= | detT |λ(Φ̃(Q))

≤ | detT |λn(Q)(sup
y∈Q

‖Φ̃′(y)‖op)n

= | detT |λn(Q)(sup
y∈Q

‖T−1Φ′(y)‖op)n

Lemma C.4.3 : Seien a = (a1, . . . , an) ∈ Ω, h > 0 und Q = {x ∈ Rn | ‖a− x‖∞ ≤ h} ⊆ Ω. Dann gilt

λn(Φ(Q)) ≤
∫

Q

|JΦ|.

Beweis:

Idee: Zerlege den Quader in kleine Quader, auf denen man JΦ durch konstante lineare Abildungen

approximiert. Für die wendet man dann Lemma C.4.2 an.
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Wegen der Stetigkeit von Φ′ und der Kompaktheit von Q können wir zu ε > 0 ein δ > 0
wählen mit

(∀y, z ∈ Q, ‖y − z‖∞ ≤ δ) ‖Φ′(z)−1Φ′(y)‖n
op ≤ 1 + ε.

Wir schreiben Q als Vereinigung von kompakten Quadern Q1, . . . , Qm mit Seitenlänge kleiner
als δ, d.h.

(∀y, z ∈ Qj) ‖y − z‖∞ < δ.

δ

Außerdem nehmen wir an, daß

(∀i 6= j ∈ {1, . . . , m}) Qo
i ∩Qo

j = ∅.

Wähle a(j) ∈ Qj für j = 1, . . . ,m so, daß

| detΦ′(a(j))| = inf
x∈Qj

| detΦ′(x)|.

Wendet man jetzt Lemma C.4.2 auf Qj und Tj := Φ′(a(j)) an, so ergibt sich

λn(Φ(Q)) ≤
m∑

j=1

λn(Φ(Qj))

≤
m∑

j=1

|detΦ′(a(j))|λn(Qj)

(
sup
y∈Qj

‖Φ′(a(j))−1Φ′(y)‖op

)n

≤ (1 + ε)
m∑

j=1

| detΦ′(a(j))|λn(Qj)

≤ (1 + ε)
∫
| detΦ′(x)| dλn(x)

= (1 + ε)
∫
|JΦ(x)| dλn(x),

und dies beweist die Behauptung, weil ε > 0 beliebig war.

Lemma C.4.4 : Für jede offene Teilmenge U ⊆ Ω gilt

λn(Φ(U)) ≤
∫

U

|JΦ|

Beweis:

Idee: Kombiniere Proposition C.4.1 und Lemma C.4.3.
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Schreibe U =
⋃∞

j=1 Qj wie in Proposition C.4.1. Dann rechnet man mit Lemma C.4.3

λn(Φ(U)) = λn(Φ(
⋃

j

Qj)) = λn(
⋃

j

Φ(Qj))

≤
∞∑

j=1

λn(Φ(Qj))

≤
∞∑

j=1

∫

Qj

|JΦ| =
∞∑

j=1

∫

Qo
j

|JΦ|

=
∫

U

∞∑

j=1

χQo
j
|JΦ|

=
∫

U

|JΦ|,

weil alle Qj \Qo
j Nullmengen sind.

Lemma C.4.5 : Für meßbare Teilmengen E ∈ BRn von Ω gilt

λn(Φ(E)) ≤
∫

E

|JΦ|

Beweis:

Idee: Schöpfe Ω durch kompakte Mengen aus und wende auf diese den Satz C.1.2 an. Dabei kann

man die offenen Approximationen so wählen, daß die Vereinigung U der offenen Mengen
∫

U
|JΦ| ≤

ε +
∫

E
|JΦ| erfüllt. Dann folgt die Behauptung aus Lemma C.4.4.

Nach Proposition C.4.1 läßt sich Ω als Vereinigung von kompakten Mengen K1, K2, . . . schrei-
ben, wobei wir o.B.d.A. annehmen können, daß K1 ⊆ K2 ⊆ . . . gilt. Für j ∈ N setze

Ej := E ∩Kj .

Zu ε > 0 gibt es nach Satz C.1.2 offene Umgebungen Uj von Ej in Ω mit

(∀j ∈ N) λn(Uj \ Ej) < ε

(
2j sup

x∈Kj

|JΦ|
)−1

.

Daraus folgt mit
Uj ∩ (Kj \Kj−1) ⊆ (Uj \ Ej) ∪ (Ej \ Ej−1),

daß ∫

Uj∩(Kj\Kj−1)

|JΦ| ≤ ε

2j
+

∫

Ej\Ej−1

|JΦ|.

Für U :=
⋃∞

j=1 Uj liefert der Satz 2.2.4 von der monotonen Konvergenz
∫

U

|JΦ| = lim
k→∞

∫
⋃k

j=1(Uj∩(Kj\Kj−1))

|JΦ|

≤ lim
k→∞

k∑

j=1

∫

Uj∩(Kj\Kj−1)

|JΦ|

≤ lim
k→∞

k∑

j=1

(
ε

2j
+

∫

Ej\Ej−1

|JΦ|
)

= lim
k→∞

(
ε(1− 2−k) +

∫

Ek

|JΦ|
)

= ε +
∫

E

|JΦ|.
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U

E

Mit Lemma C.4.4 finden wir

λn(Φ(E)) ≤ λn(Φ(U)) ≤
∫

U

|JΦ| ≤ ε +
∫

E

|JΦ|,

und dies beweist die Behauptung, da ε > 0 beliebig war.

Satz C.4.6 : (Transformationsformel) Sei Ω ⊆ Rn eine offene Menge, und sei Φ: Ω → Rn eine
stetig differenzierbare Abbildung mit offenem Bild Φ(Ω) und stetig differenzierbarer Umkehrabbildung
Ψ: Φ(Ω) → Ω.

(i) Sei f : Φ(Ω) → C nichtnegativ oder integrierbar. Dann gilt
∫

Φ(Ω)

f =
∫

Ω

(f ◦ Φ)|JΦ|.

(ii) Wenn E ⊆ Ω meßbar ist, dann ist auch Φ(E) meßbar, und es gilt

λn(Φ(E)) =
∫

E

|JΦ|.

Beweis:

Idee: Wesentlich ist (i), und das folgt für einfache Funktionen aus Lemma C.4.5. Nichtnegative

Funktionen approximiert man durch einfache und benützt den Satz 2.2.4 von der Monotonen Kon-

vergenz. Integrierbare Funktionen spaltet man in Positiv- und Negativteil auf.

(ii) folgt mit f = χΦ(E) sofort aus (i). Für eine einfache Funktion φ =
∑

j ajχAj liefert
Lemma C.4.5, daß

∫

Φ(Ω)

φ =
∑

j

ajλ
n(Aj ∩ Φ(Ω))

≤
∑

j

aj

∫

Φ−1(Aj∩Φ(Ω))

|JΦ|

=
∫

Ω

(φ ◦ Φ)|JΦ|.

Mit Lemma 2.2.3 können wir f durch solche φ monoton approximieren, und dann liefert Satz
2.2.4 ∫

Φ(Ω)

f ≤
∫

Ω

(f ◦ Φ)|JΦ|.

Wir wenden diese Ungleichung jetzt auf Ψ und (f ◦ Φ)|JΦ| an, was wegen |JΨ(x)| = |JΦ ◦
Ψ(x)|−1 ergibt

∫

Ω

(f ◦ Φ)|JΦ| ≤
∫

Φ(Ω)

(f ◦ Φ ◦Ψ) |JΦ ◦Ψ| |JΨ|

=
∫

Φ(Ω)

f.
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Damit ist der Satz bewiesen.

Beispiel C.4.7 : (Polarkoordinaten) Betrachte die Abbildung

Φ: ]0,∞[×]0, π[×]0, 2π[→ R3, (r, θ, φ) 7→ (r sin θ cosφ, r sin θ sin φ, r cos θ).

φ
θ r

Dann ist die darstellende Matrix von Φ′(r, θ, φ) bzgl. der Standardbasis von R3:




sin θ cos φ r cos θ cosφ −r sin θ sin φ
sin θ sin φ r cos θ sin φ r sin θ cosφ

cos θ −r sin θ 0


 .

Als Funktionaldeterminante erhält man dann

JΦ(r, θ, φ) = r2 sin θ.

Will man jetzt z.B. das Volumen der euklidischen Kugel B(0; R) mit Radius R ausrechnen, so stellt man
fest, daß

Φ(]0, R[×]0, π[×]0, 2π[) = B(0; R) \ {(x, y, z) ∈ R3 | y = 0 und x > 0}.
Letzteres unterscheidet sich von B(0; R) nur durch eine Nullmenge, also gilt

λ3(B(0; R)) =
∫ R

0

∫ π

0

∫ 2π

0

r2 sin θ dφ dθ dr =
4
3
πR3.

Für die Sphäre S(0; R) = {v ∈ R3 | ‖v‖ = R} zeigt dann der Satz von der Monotonen Konvergenz, daß

λ3(S(0; R)) = lim
ε→0

4
3
π((R + ε)3 − (R− ε)3) = 0.

Also ist die Sphäre eine Lebesgue-Nullmenge.

Beispiel C.4.8 : (Zylinderkoordinaten) Betrachte die Abbildung

Φ: ]0,∞[×]0, 2π[×R→ R3, (r, φ, h) 7→ (r sin φ, r cos φ, h).

r
φ

h
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Dann ist die darstellende Matrix von Φ′(r, φ, h) bzgl. der Standardbasis von R3




sin φ r cos φ 0
cos φ −r sin φ 0

0 0 1


 .

Als Funktionaldeterminante erhält man dann

JΦ(r, φ, h) = −r.

Will man jetzt z.B. das Volumen des Zylinders

Z(R, H) := {(x, y, z) ∈ R3 | 0 < z < H, x2 + y2 < R2}
ausrechnen, so stellt man fest, daß

Φ(]0, R[×]0, 2π[×]0, h[) = Z(R, H) \ {(x, y, z) ∈ R3 | y = 0 und x > 0}.
Letzteres unterscheidet sich von Z(H,R) nur durch eine Nullmenge, also gilt

λ3(Z(H,R)) =
∫ R

0

∫ 2π

0

∫ H

0

rdr dφ dh =
1
2
πR2H.

Für die Mantelfläche M(H, R) = {(x, y, z) ∈ R3 | 0 < z < H, x2 + y2 = R2} zeigt dann der Satz von
der Monotonen Konvergenz, daß

λ3(M(H, R)) = lim
ε→0

Hπ

2
((R + ε)2 − (R− ε)2) = 0.

Also ist die Mantelfäche eine Lebesgue-Nullmenge.

Übung C.4.1 : (Polarkoordinaten) Betrachte die Abbildung

Φ: ]0,∞[×]0, π[n−2×]0, 2π[→ Rn, (r, θ, φ) 7→ x = (x1, . . . , xn),

die durch

x1 = r cos θ1

x2 = r sin θ1 cos θ2

x3 = r sin θ1 sin θ2 cos θ3

...

xn−1 = r sin θ1 sin θ2 · . . . · sin θn−2 cos θn−1

xn = r sin θ1 sin θ2 · . . . · sin θn−2 sin θn−1

gegeben ist. Fülle die Details der folgenden Rechnung ein:
Wir setzen

sj = sin θj , cj = cos θj .

Dann ist die darstellende Matrix von Φ′(r, θ1, . . . , θn−1) bzgl. der Standardbasis von Rn:



c1 −rs1 0 . . . 0
s1c2 rc1c2 −rs1s2 0 0

...
... · . . .

...
s1 · · · sn−2cn−1 rc1s2 · · · rsn−2cn−1 · · −rs1 · · · sn−1

s1 · · · sn−2sn−1 rc1s2 · · · rsn−2sn−1 · · rs1 · · · sn−2cn−1




.

Indem man die Determinante dieser Matrix durch Entwicklung nach der ersten Zeile berechnet, kommt mit
Induktion auf das Ergebnis

JΦ(r, θ, φ) = rn−1(sin θ1)
n−2(sin θ2)

n−3 · · · (sin θn−2).

(Beachte, daß es nicht so ohne weiteres möglich ist, mit diesem Resultat das Volumen der euklidischen Kugel
B(0; R) ⊆ Rn zu bestimmen).
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Übung C.4.2 : (Kugelvolumen) Für p > 0 und R > 0 setze

Bn
p (0; R) := {x ∈ Rn |

n∑
j=1

|xj |p < Rp}

und zeige

λn(Bn
p (0; R)) = Rn2n

Γ( 1
p

+ 1)

Γ(n
p

+ 1)

durch Nachprüfen der folgenden Rechnungen:

• Es genügt, die Formel für R = 1 zu verifizieren und dann die die Transformationsformel für die Streckung
x 7→ Rx anzuwenden.

• Setze αp(n) := λn(Bn
p (0; 1)) und beachte, daß für 0 < t < 1 gilt

Bn−1
p (0; (1− |t|p)

1
p = {x′ ∈ Rn−1 | (x′, t) ∈ Bn

p (0; 1)}
sowie

λn−1(Bn−1
p (0; (1− |t|p)

1
p ) = (1− |t|p)

n−1
p αp(n− 1).

• Benütze die Beta-Funktion für folgende Rechnung:

αp(n) = αp(n− 1)

∫ 1

1

(1− |t|p)
n− 1

p
dt

=
2

p
αp(n− 1)B

(
n + p− 1

p
,
1

p

)

= 2αp(n− 1)
Γ(n−1

p
+ 1)Γ( 1

p
+ 1)

Γ(n
p

+ 1)

• Zeige mit Induktion, daß

αp(n) = 2n
Γ( 1

p
+ 1)

Γ(n
p

+ 1)
.

Für den Fall p = 2 haben wir jetzt das Volumen der n-dimensionalen euklidischen Kugel berechnet:

λn(Bn
2 (0; 1)) = 2n Γ( 3

2
)

Γ(n+2
2

)
=

π
n
2

Γ(n+2
2

)
.

Mit diesen Resultaten zeigt man leicht, daß die Mengen

Sn
p (0; R) := {x ∈ Rn |

n∑
j=1

|xj |p = Rp}

Lebesgue-Nullmengen sind.

Übung C.4.3 : Sei γ > 0. Berechne den Inhalt der Fläche, die von der positiven x-Achse und der Spur der
Archimedischen Spirale

f : [0, 2π] → R2, f(t) := (γt cos t, γt sin t)

eingeschlossen wird, d.h., zu berechnen ist der Flächeninhalt von

M := {(r cos φ, r sin φ) ∈ R2 | 0 ≤ r ≤ γφ, 0 ≤ φ ≤ 2π}.

Übung C.4.4 : Beweise die bekannte Identität
∫

R
e−x2

dx =
√

π

auf folgende Weise: Sei (r, φ) → (r cos φ, r sin φ) die Transformation auf Polarkoordinaten. Berechne mit der
Transformationsformel das Integral ∫

R2
e−x2−y2

d(x, y).
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Übung C.4.5 : Berechne das Volumen des Kugelsektors

S :=
{

(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ r2;
√

x2 + y2 ≤ cz
}

,

wobei c und r positive Konstanten sind.

Übung C.4.6 : Sei M ein k-dimensionaler Teilraum des Rn mit k < n. Zeige, daß M eine Lebesgue Nullmenge
ist.
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bzgl. eines äußeren Maßes, 52
minimale Menge, 115
mischende Abbildung, 117
modulare Funktion, 94

negative Menge
bzgl. eines signierten Maßes, 68

negativer Teil
einer Funktion, 9
eines signierten Maßes, 70

nichtnegative Mengenfunktion, 43
Nikodym, Otton (1887–1974), 72
Normalverteilung, 62
normierte

maßdefinierende Funktion, 56

Nullmenge
bzgl. eines Maßes, 27
bzgl. eines signierten Maßes, 68

offene
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[Hue95] Hübner, G., Stochastik. Eine Einführung für Mathematiker, Informatiker und Ingenieure., Vie-
weg Verlag, 1995.
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