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Vorwort

Das vorliegende Skriptum ist anhand der von mir im Wintersemester 2006,/2007
gehaltenen Vorlesung Numerische Mathematik I entstanden. Diese Vorlesung so-
wie ihre Fortsetzung Numerische Mathematik II fiihrt in die Grundlagen der Nu-
merischen und Angewandten Mathematik ein und bietet damit einen Einstieg fiir
weiterfithrende Vorlesungen auf diesem Gebiet. Neben Grundlagen in der Fehler-
analyse und der Funktionalanalysis werden in dem hier vorliegenden ersten Teil
lineare Gleichungssysteme, nichtlineare Gleichungssysteme und die Interpolation
von Funktionen behandelt. Die eingefiihrten Methoden beschreiben Eliminations-
verfahren, Orthogonalisierungsverfahren und iterative Verfahren sowie klassische
Verfahren der Interpolation. Diese Themen werden in Numerik II mit Integrati-
on, Approximation und der numerische Lésung von gewdhnlichen Differentialglei-
chungen fortgesetzt, es wird dort auch die Lésung von Eigenwertaufgaben und
von Optimierungsproblemen kurz gestreift.

Die Zielgruppe der Numerik I sind neben Mathematik-Studierenden ab dem drit-
ten Semester auch interessierte Horerinnen und Horer aus der Informatik und
der Physik. Es sei bemerkt, dass die Vorlesung durch theoretische Ubungen und
Programmieraufgaben (mit Matlab) ergénzt wurde. Auch beim Selbststudium des
Textes ist die eigenstindige Beschéftigung mit dem Stoff und die Implementation
des einen oder anderen Verfahrens unbedingt zu empfehlen!

Ein grofer Anteil des vorliegenden Skriptes wurde mit sehr viel Sorgfalt von Anke
Uffmann und Michael Siebert erstellt: An beide dafiir ein herzliches Dankeschon!
Frau Uffmann bin ich besonders dankbar fiir die Erstellung der Graphiken; Mi-
chael Siebert beeindruckte mich durch seine oft trickreichen Ideen, mit denen es
ihm gelang, alle anfallenden Problemen (nicht nur in IXTEX) zu lésen.

Gottingen, September 2007
Anita Schobel
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Kapitel 1

The name of the game: Numerik

1.1 Einleitung
In der Wikipedia ist der Begriff Numerik folgendermafen definiert:

Die numerische Mathematik, kurz Numerik genannt, beschéftigt sich
als Teilgebiet der Mathematik mit der Konstruktion und Analyse von
Algorithmen fiir kontinuierliche mathematische Probleme.

Interesse an solchen Algorithmen besteht meist aus einem der beiden
folgenden Griinde:

e Es gibt zu dem Problem keine explizite Losungsdarstellung (so
zum Beispiel bei den Navier-Stokes-Gleichungen oder bei Inte-
gralen ohne Stammfunktion) oder

e die Losungsdarstellung existiert, ist jedoch nicht geeignet, um
die Losung schnell auszurechnen beziehungsweise sie liegt in einer
Form vor, in der Rechenfehler sich stark bemerkbar machen (zum
Beispiel bei vielen Potenzreihen).

In der angewandten Mathematik setzt man dabei noch einen Schritt friiher an:
Beschiiftigt man sich mit Anwendungen, so liegt zundchst noch kein mathema-
tisches Problem vor, sondern einzig eine von Praktikern formulierte Problem-
beschreibung. Die erste Aufgabe besteht also in der Modellierung d.h. in der
Formalisierung eines in der Natur beobachteten Phinomens oder eines 6konomi-
schen Problems durch ein sogenanntes mathematisches Modell. Mathematische
Modelle sind Systeme von Gleichungen oder Ungleichungen, durch die Bezie-
hungen zwischen bekannten und unbekannten Grofen dargestellt werden. Dabei
konnen algebraische Gleichungen (oder Ungleichungen), Differentialgleichungen
oder Integralgleichungen verwendet werden und es diirfen dabei alle Arten von
Formeln oder Grenzwerten auftreten. Gibt es zusétzlich noch ein Kriterium zur



Beurteilung der Losung (eine Zielfunktion), so liegt ein Problem der mathemati-
schen Optimierung vor und das Modell wird auch als mathematisches Programm
bezeichnet.

Klassische Disziplinen der “reinen” Mathematik wie die Algebra und Analysis
beschéftigen sich mit Fragen der Existenz und Eindeutigkeit der Losungen ma-
thematischer Modelle. Dagegen besteht das Ziel der numerischen Mathematik
darin, Verfahren zu entwickeln, mit denen sich die Losungen mathematischer
Modelle praktisch (auf derzeit verfiigharen Rechenanlagen) ermitteln lassen. Wir
veranschaulichen das an einigen Beispielen:

e Der Fundamentalsatz der Algebra besagt, dass ein reelles Polynom vom
Grad n auch n Nullstellen in der Menge der komplexen Zahlen besitzt. Der
Existenzbeweis ist jedoch nicht konstruktiv, d.h. man erhélt kein Verfahren,
wie man die entsprechenden Nullstellen bestimmen kann. Das liefert die
numerische Mathematik.

e Die Losung linearer, nicht singuldrer Gleichungssysteme kann durch die
Cramersche Regel aufgeschrieben werden. Fiir die praktische Berechnung
ist sie aber bei mehr als drei Variablen unbrauchbar.

e Der Satz von Weierstrass liefert die Aussage, dass stetige Funktionen auf
kompakten Mengen ihre Minima (oder Maxima) annehmen. Wie aber soll
man sie berechnen?

e Fiir Anfangswertprobleme einer gewohnlichen Differentialgleichung liefert
der Existenzbeweis von Picard-Lindel6f unter bestimmten Glattheitsvor-
aussetzungen ein konstruktives Iterationsverfahren. Bei der Realisierung auf
Computern ist dieses Verfahren aber nicht sonderlich effektiv.

In der vorliegenden Vorlesung: Numerik I sollen Verfahren fiir die Berechnung
mathematischer Modelle vorgestellt und diskutiert werden. Die Vorlesung richtet
sich an Studierende der Mathematik ab dem dritten Semester, und gerne auch
an interessierte Physik oder Informatik-Studierende. Die in der Vorlesung ver-
wendeten Grundlagen sind so ausgewéhlt, dass sie auch aus der “Mathematik fiir
Informatik-Anfinger” Vorlesung bekannt sein sollten. Die Vorlesung bietet den
Einstieg in den Bereich numerische Mathematik, wissenschaftliches Rechnen und
Optimierung und ist als Grundlage der meisten Vorlesungen aus diesem Bereich
zu verstehen. Die Vorlesung kann mit Numerik II oder mit Optimierung fortge-
setzt werden.

Um die numerische Mathematik richtig zu verstehen, sollte man natiirlich auch
einiges selbst programmiert und implementiert haben. Es werden in den Ubungen
daher theoretische und praktische Aufgaben gestellt, wobei die meisten Program-
mieraufgaben mit MATLAB zu bearbeiten sind. MATLAB ist eine Skriptsprache,



in der viele numerische Verfahren, Operationen und die entsprechenden Daten-
strukturen bereits zur Verfiigung stehen. Um die Schwierigkeiten zu verstehen,
auf die man stoft, wenn man ein Verfahren von Grund auf neu implementiert,
sind bei einigen Aufgaben auch “klassische” Programmiersprachen zu verwenden.
Computeralgebrasysteme (wie MuPAD, Maple, Mathematica, Singular) werden
ebenfalls gestreift.

Es gibt zahlreiche Lehrbiicher und Skripten iiber numerische Mathematik, von
denen die folgenden Quellen erwihnt werden sollen:

e J. Stoer, Numerische Mathematik I, Springer, 1989.

e J. Werner. Numerische Mathematik 1, Vieweg, Braunschweig, 1992.

P. Deuflhard und A. Hohmann. Numerische Mathematik I. Walter de Gruy-
ter, Berlin, New York, 2nd edition, 1993.

R. Krefs. Numerical Analysis. Springer, New York, 1998.

e M. Hanke-Bourgeois. Grundlagen der Numerischen Mathematik und des
wissenschaftlichen Rechnens. Teubner, Stuttgart, 2002.

R. Schaback, H. Wendland. Numerische Mathematik. Springer, Berlin, 2004.

Skriptum Numerik I von G. Lube, siehe
http://www.num.math.uni-goettingen.de/lube/NM1-04akt.pdf

Skriptum Numerik I von T. Hohage, siehe
http://www.num.math.uni-goettingen.de/hohage/Numerikl/numerik1.html
In der Vorlesung Numerik I werden die folgenden Themen behandelt:

e Lineare Gleichungssysteme

e Ausgleichsprobleme

e Nullstellensuche (eine nichtlineare Gleichung oder ein System nichtlinearer
Gleichungen)

e Interpolation

Die ,klassische Numerik beschéftigt sich vorrangig mit kontinuierlichen Proble-
men. Dagegen sind diskrete Probleme durch eine endliche Menge an moglichen Lo-
sungen gekennzeichnet. Auch sie sind ein wichtiger Bestandteil der angewandten
Mathematik, insbesondere bei 6konomischen Fragestellungen. In diesem Skript
werden wir auf diskrete Probleme aber nicht eingehen.
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1.2 Algorithmen

Ein Algorithmus fiir ein Problem (P) ist ein durch eine Abfolge von (Rechen-)-
Vorschriften beschriebenes Verfahren, das zu einer “Lésung” des Problems (P)
fiihrt. Je nach Qualitét der erzielten Losung, unterscheidet man zwischen exakten
Verfahren, konstruktiven Verfahren und Heuristiken.

Exakte Verfahren sind streng genommen nur bei diskreten mathematischen
Aufgaben moglich, in denen unter endlich vielen Mdéglichkeiten eine Losung aus-
zuwéhlen ist. Dazu gehort beispielsweise das Gebiet der ganzzahligen Program-
mierung sowie die meisten Aufgaben in Netzwerken. Dagegen ist bei kontinuier-
lichen Problemen aufgrund der beschriankten Genauigkeit der Darstellung reeller
Zahlen durch den Computer jede Lésung eine Nidherungslosung.

Ein konstruktives oder direktes Verfahren ist eine Rechenvorschrift, mit de-
ren Hilfe die numerische Losung einer mathematischen Aufgabe in endlich vielen
Rechenschritten beliebig genau ermittelt werden kann.

Lasst sich gar keine Genauigkeit angeben oder sind dieser Genauigkeit Grenzen
gesetzt, so spricht man von einer Heuristik. Kann wie im letzteren Fall zwar ei-
ne Genauigkeit angegeben werden, diese ist aber beschrinkt, so hat die Heuristik
eine Giitegarantie; man spricht dann auch von einer Approrimation. Heuristiken
werden vor allem bei sehr schweren Problemen der diskreten Optimierung ver-
wendet und fithren dort hdufig zu empirisch sinnvollen Ergebnissen.

Neben der Wohldefiniert eines numerischen Verfahrens sollte man bei jedem Ver-
fahren die folgenden Punkte diskutieren:

e Aufwand
e Fehleranalyse

e Stabilitat.

1.3 Aufwand

Ein Verfahren kann nur dann sinnvoll eingesetzt werden, wenn es auch in prakti-
kabler Zeit eine Losung ermittelt. Daher ist es wichtig, den Aufwand verschiede-
ner Verfahren fiir die gleiche Aufgabenstellung vergleichend zu diskutieren. Man
spricht auch von der Komplexitét eines Verfahrens und bezeichnet damit den
Aufwand an wesentlichen Rechenoperationen in Abhéngigkeit einer sinnvoll ge-
wahlten Eingangsgrofse.

Als wesentliche Rechenoperationen zihlen wir Additionen, Subtraktionen,
Multiplikationen, Divisionen, Vergleiche und davon getrennt Funktionsaus-
wertungen. (Zuweisungen werden nicht gezéihlt.)
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Die Eingangsgrofie kann meistens auf verschiedene Weise gewéhlt werden. Sie
sollte die Groke des Problems représentieren.

Beispiele:

e Bestimme das Minimum von n Zahlen x4,...,z,: Hier bestimmt man die
Anzahl der Rechenoperationen in Abhingigkeit der Zahl n. Fiir den einfa-
chen Algorithmus

Min := oo; For i := 1 to n do: If x; < Min then Min := x;; Output: Min

ergeben sich n Vergleiche, also eine Anzahl von A;(n) = n wesentlichen
Rechenoperationen.

e Bei der Addition von zwei Vektoren x und y der Dimension k bietet sich
als sinnvolle Eingangsgrofe die Dimension £ an. Das Verfahren

Fori:=1to k do: z; := z; + y;; Output: 2q,..., 2,
benotigt & Additionen, hat also einen Aufwand von Ay(k) = k

e Addition von zwei Matrizen A, B der Dimension k& X k (mit Elementen
aij, bijyi,J = 1,...,k): Hier kann man als Eingabegrofe & oder &% wihlen.
Das kanonische Verfahren ist das folgende.

Fori:=1 to k do:
FOI’ j =1to k‘ dOZ Cij = aij + bij;
Output: ¢;j, 3,7 =1,...,n

Die Anzahl der wesentlichen Rechenoperationen betrigt k2. Normalerweise
wird man den Aufwand in Abhéngigkeit der Anzahl der Matrixelemente
m = k* mit Az(m) = m als linear angeben. In vielen Anwendungen macht
es aber Sinn, die Dimension £ als Eingabegrdéfte zu wiahlen, was zu einem
quadratischen Aufwand A4(k) = k? fiihrt.

Bei komplizierteren Problemen sind meist verschiedene Verfahren mit jeweils un-
terschiedlichem Aufwand moglich. Hat man also z.B. einen Algorithmus A und
einen Algorithmus B zur Auswahl, und ist der Aufwand beider Verfahren durch
Funktionen A(n) beziehungsweise B(n) bekannt so wird man fiir die Problem-
groke n das Verfahren mit dem jeweils kleineren Aufwand wéhlen.

Um fiir steigende Problemgrofen den Aufwand von zwei Verfahren auf einfache
Methode zu vergleichen, bieten sich die Landau-Symbole an. Diese sind nicht nur
in der Analyse von Aufwandsabschitzungen sondern allgemeiner zur quantitati-
ven Beschreibung von Grenzprozessen ein wichtiges Hilfsmittel.

Die Landau-Symbole geben dabei an, wie sich die Grofe von zwei Funktionen
A(n), B(n) : IN — R im Verhéltnis zueinander entwickelt, wenn n — oo geht.
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Beispiel: Tabelle mit der Entwicklung von verschiedenen Funktionen in der Vor-
lesung.

Definition 1.1 Seien (ay,), (b,) reelle Zahlenfolgen. Die Landau-Symbole sind
wie folgt definiert.

1. a, = O(b,) falls es ein C € R,C > 0 und ein N € IN gibt mit

la,| < Clby,| fir alle n > N.

2. a, = Q(by,) falls es ein C € R,C > 0 und ein N € IN gibt mit

|a,| > C|by,| fiir alle n > N.

3. a, = o(by,) falls es zu jedem € > 0 ein N € IN gibt mit

la,| < elby| fir allen > N.
4. a, = 0O(by,) falls a, = O(by,) und a, = Q(by,).

Um die Bedeutung dieser Symbole zu verdeutlichen, formulieren wir die Aussagen
um, indem wir die Entwicklung des Quotienten ‘;—Z betrachten, um die Wachstums-
raten der beiden Folgen zu vergleichen. Nehmen wir dazu an, dass b,, # 0 fiir alle
n € IN. Dann erhélt man:

an = O(by) <= % < C fiir alle n > N und ein C' > 0.

a, = Qb,) <~ % > C fiir alle n > N und ein C' > 0.
a’n

a, =o(b,) <= 7|~ 0

G,

a, =0(,) <<= ;< < ( fiir alle n > N und Cy, Cy > 0.

n

Die Bedeutung der Landau-Symbole kann hier nun abgelesen werden: Ist a, =
O(by,) so wichst a, nicht schneller als b,, im Fall a, = Q(b,) wichst a, nicht
langsamer als b,. Weiterhin bedeutet a, = ©(b,), dass beide Folgen annéhernd
gleich schnell wachsen, und bei a,, = o(b,) wéchst b, viel schneller als a,,.
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Einfache Beispiele:
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Lemma 1.2 Die folgenden Aussagen gelten:
1. Alle vier Begriffe sind transitiv, d.h.
a, = O(b,), b, = O(c,) = a, = O(cy,),
analog fir 2,0 und ©.
2. © ist eine Aquivalenzrelation
3. an = O(b,) genau dann wenn b, = Qay,).
4. a, = o(b,) = a, = O(by,).
Beweis: Lisst sich leicht nachrechnen, Ubungen!
Weiterhin sollte man sich klar machen, dass

a, = 0O(b,) < a, = O(ab,) fir alle « € R\ {0}
a, = O(b,) und a,, = O(b,) = a,+a, = O(b,).

Diese Aussagen gelten auch fiir o, 2, © gilt.

Von grofer praktischer Bedeutung ist (wie in der Tabelle am Anfang gezeigt),
dass

e Logarithmisches Wachstum langsamer ist als polynomiales, in Formeln:

(logg(n))” = o(n®) fiir alle a > 0,3 > 1,7 > 0

e Polynomiales Wachstum schwicher ist als exponentielles,

n® = o(p") fir allea > 0,8 > 1
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e Exponentielles Wachstum schwécher ist als fakultatives,

B" = o(n!) fiir alle g > 1

Diese Aussagen lassen sich nun auf die Analyse von Algorithmen anwenden. Dazu
betrachten wir die folgenden beiden schematischen Algorithmen-Bruchstiicke:

e Algorithmus 1:

Schritt 1: Fiihre Verfahren A aus
Schritt 2: Fiihre Verfahren B aus

Hat Verfahren A einen Aufwand von O(a,) und Verfahren B einen Aufwand von
O(by), und gilt a,, = O(b,), so ergibt sich fiir Algorithmus 1 ein Aufwand von
O(by), das heift, bei der Hintereinanderausfithrung von Algorithmenteilen ist
immer der grofere Aufwand mafgebend.

e Algorithmus 2:

Schritt 1: Fir m =1,..., M fiithre Verfahren A aus

Hat Verfahren A einen Aufwand von O(a,), und lésst sich die Grofke der Zahl M
in Abhéngigkeit von der Eingabegrofe n durch M = O(c,) abschiitzen, so ergibt
sich fiir Algorithmus 2 ein Aufwand von O(a,, - ¢;,).

Abschliefsend erweitern wir Definition 1.1 auf beliebige Funktionen. Vor allem
O und o werden in dieser Formulierung auch héufig fiir die Abschitzung von
Restgliedern verwendet.

Definition 1.3 Seien f,g: IK — IK. Dann definiert man
o f=0(g) firx— xy falls f(x,) = O(g(x,)) fir jede Folge z,, — xy.

e Analog fir €2, o, ©.

Es ldsst sich leicht zeigen, dass obige Definition dquivalent ist zu

e f = 0(g) falls es eine Zahl C' > 0 und eine Umgebung U = U(z,) von zg
gibt, so dass | f(z)| < C|g(x)| fiir alle x € U.

e f =o0(g) falls es zu jedem € > 0 eine Umgebung U = U(xq) von xy gibt, so
dass |f(z)| < elg(z)| fiir alle z € U.

Die Umformulierungen von 2 und © erhilt man analog.
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1.4 Fehlerabschitzung und Gleitkommazahlen

Hat man ein Verfahren zur Ldsung eines mathematischen Problems entwickelt,
so sind die folgenden Fehlerquellen zu diskutieren:

e Verfahrensfehler: Dazu gehoren die folgenden beiden Typen

Abbruchfehler: Sie entstehen beim Ersetzen eines unendlichen Prozesses
durch ein endliches Verfahren, z.B. das Abbrechen beim Aufsummieren
einer konvergenten unendlichen Reihe.

Diskretisierungsfehler: Dagegen entstehen Diskretisierungsfehler, wenn
man eine kontinuierliche Menge durch eine diskrete ersetzt. Das kann
beispielsweise bei der Beschreibung einer Funktion durch endlich viele
Koeffizienten oder der Auswertung an endlich vielen Gitterpunkten
geschehen.

e Eingangsfehler sind Fehler der Eingangsgrofien (z.B. Datenfehler). Sie be-
ziehen sich auf die Qualitit der Eingabedaten, die aufgrund von Messfeh-
lern oder aufgrund statistischer Schwankungen ungenau vorliegen kénnen.
Manchmal sind Eingabegrofen auch nicht hinreichend bekannt und man ist
auf Schitzwerte (z.B. {iber Kundenverhalten) angewiesen.

e Wichtig sind auftferdem Rundungsfehler die durch die jeweilige Maschi-
nengenauigkeit bedingt werden. Rundungsfehler konnen schon bei der Uber-
setzung der (moglicherweise fehlerbehafteten) Eingangswerte auf maschi-
nenkonforme Daten auftreten.

Eingangsfehler und bei der Eingabe entstehende Rundungsfehler sind zunéchst
unabhéngig von der gewdhlten Rechenmethode, aber man muss besonders fiir
konstruktive Verfahren unbedingt abschitzen, wie sich solche Fehler im Verlauf
des Verfahrens weiterentwickeln. Dabei werden schon vorhandene Fehler in jedem
Schritt des Verfahrens iibertragen; Rundungsfehler konnen zuséitzlich bei jeder
numerischen Operation neu entstehen. Das Ziel ist, abzuschétzen, wie schlimm
sich Eingangsfehler und Rundungsfehler auf die Qualitdt des Ergebnisses aus-
wirken. Ein gut konditioniertes Problem liegt vor, wenn kleine Anderungen der
Ausgangsgrofsen auch nur kleine Losungsinderungen bewirken. Das Problem wird
dann auch robust genannt. Bei schlecht konditionierten Problemen muss man ge-
eignete Verfahren wihlen.

Im folgenden formalisieren wir, was man unter Fehler versteht.

Definition 1.4 Sei & = f(§j) die von einem Verfahren f bei (fehlerhaften) Ein-
gangsdaten § ermittelte Losung. Sei x = f(y) die exakte Losung des Problems
mit exakten Eingangsdaten y. Dann bezeichnen wir mit |t — x| den absoluten
Fehler der Losung. Im Fall x # 0 heifst |%| der relative Fehler der Lisung.
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Der absolute Verfahrensfehler eines Verfahrens f ist | f(y) — f(y)|, der rela-
tive Verfahrensfehler fir f(y) # 0 ist W . Das Verfahren f nennt man
K-Approximation, wenn es fir alle maglichen Instanzen (d.h. fir alle maogli-
chen Eingangsdaten) y eine Losung ermittelt, deren relativer Fehler maximal K
ist, wenn also fir alle y gilt:

fy) = fy)
f(y)

Der durch fehlerhafte Fingangsdaten tibertragene absolute Fehler ist | f(g)— f(y)|,

der durch fehlerhafte Eingangsdaten entstehende relative Fehler ist ’M’

()

< K.

Mit dem letztgenannten Fehler werden wir uns in Abschnitt 1.5 nidher beschéfti-
gen.

Hier schauen wir uns zunéchst die Abschitzung des Abbruchfehlers am Beispiel
der Berechnung der Exponentialfunktion exp(z) = > 72, ?—f an. Ein mogliches
Verfahren zur Berechnung von exp(z) fiir z € R besteht in der Auswerten der

n-ten Partialsumme
n

xd
Py(z) =) —.
=0 7/’

(In den Bezeichnungen von Definition 1.4 ist f(z) = P,(z) und f(z) = exp(z).)
Wir nehmen an, dass n > |z| gewdhlt wurde.
Fiir x < 0 erhélt man dann den absoluten Abbruchfehler

o0

xd
lexp(a) — P(o)] = | S0 2
j=n+1 J:
R 1 B G
(n+1! (n+2)! (n+3)! (n+4)! (n+5)!
<0 <0
< |:L,|n+1
~ (n+1)!
und fiir x > 0 kann man
L Kl gt ||t
|exp(z) — Po(2)] = — =< — = exp(z)
j;l j! ;j! (n+1)! (n+1)!

abschitzen. In einer kleinen Umgebung von Null hat man also kleine absolute

(und relative) Fehler. Das Verfahren, exp(z) durch Auswertung der n-ten Par-
_ ‘x‘n+1

(n+1)!”
Approximation. Weil |z|"™ = o ((n + 1)!), kann man die gewiinschte Zahl exp(z)
beliebig genau approximieren, indem man n wachsen l&sst.

tialsumme zu bestimmen, ist also fiir positive reelle Zahlen = eine K
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Wenden wir uns nun den in der Numerik besonders wichtigen Rundungsfehlern
und ihrer Fortpflanzung zu. Dazu miissen wir wissen, wie reelle Zahlen auf Re-
chenanlagen dargestellt werden. Ublich ist die Darstellung durch Gleitkomma-
zahlen:

Definition 1.5 Ser B > 2 eine ganze Zahl. Eine positive B-adische und m-
stellige normalisierte Gleitkommazahl hat die Form x = 0 oder

-1
=B Y aB* mitecZx_y#0,2,€{0,1,...,B=1} fiirk=—m,...,~L

k=—m

Man bezeichnet die ganze Zahl e als Exponenten, B > 2 als Basis, die x;, k =
—m, ..., —1 als Ziffern und Z;fm x,B* als Mantisse. Fiir festes m definieren
wir rd,,(x) als die auf m Stellen abgeschnittene Gleitkommadarstellung von x und
rd™(x) als die auf m Stellen gerundete Gleitkommadarstellung von x.

Beispiel: Die Zahl 123.45 lésst sich als Gleitkommazahl beziiglich der Basis B = 10
darstellen als

12345 = 1-10°+2-10'+3-10°+4-107t+5-1072
= 10°-(1-107"+2-1072+3-10%+4-107* +5-107°)
= 10%.0.12345

Der Exponent von 123.45 ist also e = 3, die Mantisse ist 0.12345 und im vorlie-
genden Fall reichen m = 5 Ziffern, um die Zahl exakt darzustellen. Fiir m = 4
ist

rd*(123.45) = 10°-(1-107'+2-1072+3-1072 +5-107%)
= 10-0.1235

rd,(123.45) = 10°-(1-107'4+2-1072+3-107° +4-107%)
= 10%.0.1234

die auf vier Stellen gerundete bzw. abgeschnittene Gleitkommadarstellung von
123.45.

In Rechnern verwendet man in der Regel B = 2 und eine Stellenzahl von m = 52,
um mit einem weiteren Vorzeichenbit und 11 Bits fiir die Exponentendarstellung
mit insgesamt 64 Bits pro Zahl aus zukommen. Gleitkommazahlen garantieren
eine feste relative Genauigkeit der Zahldarstellung.

Satz 1.6 Fir die nach m Stellen abgeschnittene B-adische Darstellung von x
gilt das Rundungsgesetz

|z — rd,(x)| < |z|eps

mit eps = B, d.h. der relative Fehler ist kleiner als #.
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Beweis: Sei z > 0 und
n(z

)
k=—o00
die B-adische Darstellung von x mit Ziffern b, € {0,...,B — 1}, Basis B > 2
und einer fithrenden Ziffer b,,;) # 0 mit einer ganzen Zahl n(z). Normierung wie
in Definition 1.5 ergibt

T :Bl+n(l‘) Z bn($)+1+kBk2’

k=—00
woraus wir berechnen konnen, dass
-1 -1
@ = rdn(z)] = BN by kB = BTN by 4000 B
k=—o00 k=—m
—m—1
= B N by B
k=—o00
—m—1
< B N (B—1)B" weilb; € {1,...,B—1} Vi
k=—o00
= BM@m giehe (¥)
< lz|BT™,

weil 2 > by B"® > B"@. Um (*) zu rechtfertigen, summieren wir auf:

k_ij;(B _)B* = (B-1) kil (é)k
- (Z6) -5 6))
- ooy ()
)G
Den Fall z < 0 behandelt man analog. QD

Heutige Rechner stellen also alle reelle Zahlen mit einem maximalen relativen
Fehler von eps = 27°! &~ 4.4409 - 10716 dar. Die 16te Dezimalstelle ist also bis auf
5 Einheiten genau. Erfreulicherweise ist auf den meisten Rechenanlagen gewihr-
leistet, dass auch alle Einzeloperationen (+.—, -,/ aber auch sin, NS .) auf
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Gleitkommazahlen mit einem maximalen relativen Fehler eps = 27°! ausgefiihrt
werden. Deshalb bezeichnet man eps auch als Maschinengenauigkeit. Den-
noch kénnen sich die entstehenden Rundungsfehler im Verlauf eines Verfahrens
vergrofern.

Der (gesamte) Rundungsfehler eines Verfahrens entsteht

e durch die Rundung der Eingabedaten auf Gleitkommazahlen,
e durch die Rundungsfehler der einzelnen Gleitkommaoperationen, sowie

e durch Fortpflanzung der Eingabefehler und der einzelnen Rundungsfehler
bei nachfolgenden Operationen.

Im nichsten Abschnitt werden wir uns daher mit der Ubertragung von Fehlern
beschéftigen.

1.5 Fehlerfortpflanzung, Kondition und Stabilitat

In der numerischen Mathematik heift ein Verfahren stabil, wenn es gegeniiber
kleinen Storungen der Daten unempfindlich ist. Insbesondere bedeutet dies, dass
sich Rundungsfehler nicht zu stark auf die Berechnung auswirken.

Die Beziehung zwischen Kondition eines Problems und Stabilitdt ldsst sich wie
folgt beschreiben: Es sei f(y) das mathematische Problem in Abhéngigkeit einer
Eingangsgrofe y und es sei f der numerische Algorithmus, sowie § die gestor-
ten Eingangsdaten. Nach Definition 1.4 interessieren wir uns fiir den folgenden
(absoluten) Fehler:

£ (@) = f()l-
Mit der Dreiecksungleichung gilt:

@) = fWl = 1f@) = F@) + F@) — )
< 1@~ F@I+17@) ~ FW)l-

Hierbei sagt der erste Fehler-Term aus, wie gut sich das Verfahren f im Vergleich
mit der exakten Losung f des Problems bei gestorten Eingangsdaten g verhilt.
Dieser Term ist klein, wenn das Verfahren stabil ist. Der zweite Term héingt
dagegen nicht von dem Verfahren ab, sondern ausschlieflich von dem Problem.
Er ist klein, wenn das Problem gut konditioniert ist. Die Stabilitéit ist also eine
Eigenschaft des Algorithmus und die Kondition eine Eigenschaft des Problems.

Im Anschluss an den letzten Abschnitt wollen wir nun den zweiten Term wei-
ter untersuchen. Wir méchten also analysieren, wie sich relative Fehler (die z.B.
durch Rundung entstanden sein koénnen) durch verschiedene Operationen fort-
pflanzen, wenn diese exakt ausgefiihrt werden. Dazu betrachten wir zunéchst die
Operationen +, -, /.
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Lemma 1.7 Seien x,y € R\ {0} mit relativen Fehlern

T—T ’gj — y'
Ex = y Sy = T/ —
T Y
Fiir den relativen Fehler bei der Addition gilt
T+y—(rv+
g—(z+y)| ) fe |V
T4y ] r+y

Beweis: Nachrechnen zeigt, dass

Tty [T+ [g—yl _ [zles +lyley _ I I
T4y |z 4y |z + y] ety Ve +yl
QFD

Haben x und y das gleiche Vorzeichen, so ergibt sich also bei der Addition der
beiden Zahlen ein relativer Fehler von hochstens €,4-¢,. Dagegen kann der relative
Fehler bei der Subtraktion von zwei Zahlen x,y gleichen Vorzeichens (also der
Addition von x und —y) den mdoglicherweise sehr grofen Wert

erreichen.
Lemma 1.8 Seien x,y € R\ {0} mit relativen Fehlern

T —x

€p =

Y-y
y gy—T.

X

Unter Vernachlissigung von Produkten von Fehlern lisst sich der relative Fehler
bei der Multiplikation abschdatzen durch

Ty —wy
Ty

und der relative Fehler bei der Division ebenfalls durch

<éeptégy

z
Y

&

< &g tey.

y

Beweis: Auch hier rechnen wir nach:

wW-ay| _ |@E-0)+e@-y)| _ & —allgl +|=llg -yl
Yy Y N |2yl
= & §'+8y:515y+6x+6y,
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wobei im letzten Schritt ausgenutzt wurde, dass

‘y‘ <ol bl e, + 1.
y lyl - 1yl
Vernachléssigen wir nun Produkte von Fehlern, erhalten wir das gewiinschte Er-

gebnis.
Es fehlt noch die Fehleriibertragung bei der Division:

<< &S

— _ |y -y oyl _|@E -2y taly—9) 1y
Y yg oz Ty y
Yy y
< gz te :’z €z T E&y),
y' |2 = e

wobei hier im letzten Schritt verwendet wurde, dass

’g’ R el 7] S 'l B ]
g 9] lyl 9]
< 1+ ciye0q y=y:<

9
<l+e,+e M<1+€y+e +e :y||
)

Vernachléssigen der Produkte von Fehlern ergibt auch hier das gewiinschte Er-

gebnis. QED

Notation 1.9 Die Kondition eines Problems ist der im ungiinstigsten Fall auf-
tretende Vergrioferungsfaktor fir den Einfluss von relativen Eingangsfehlern auf
relative Ergebnisfehler. Ist die Kondition eines Problems grofs, so spricht man
von einem schlecht konditionierten Problem.

Ist das zu betrachtende Problem die Multiplikation oder Division von zwei Zah-

len (d.h. f(z,y) = z -y oder f(z,y) = 5) so haben wir bereits gezeigt, dass

’M schlimmsten Fall ist fiir den relativen Fehler eine Ad-

flz.y)
dition der Betrédge der relativen Fehler ¢, + ¢, der Eingangsgrofen = und y zu

erwarten. Beide Probleme sind also gut konditioniert. Betrachten wir nun die Ad-
dition: Haben die beiden zu addierenden Zahlen das gleiche Vorzeichen, so sind
die Faktoren || und | 4| aus Lemma 1.7 beide durch 1 beschréinkt, so dass wir
wieder eine gute Kondltlon erhalten. Bei der Addition von Zahlen verschiedenen
Vorzeichens (also der Subtraktion von Zahlen gleichen Vorzeichens) kénnen die
beiden Faktoren |% | und |%-| dagegen beliebig grof werden. Dieses Problem
ist also schlecht kondltlomert er demonstrieren das an einem Beispiel:
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Rechnen wir mit 6-stelliger Genauigkeit und subtrahieren die beiden 6-stelligen

Zahlen r = 1234.00 und y = 1233.99. Angenommen, der relative Fehler von z

betriagt nur e, = 0.1, also z.B. £ = 1357.40 und der relative Fehler von y ist sogar

Null (g = y). Dennoch ergibt sich ein relativer Fehler der Differenz von
T—g—(xr—y) 123.41-0.01

oy = = = 12340.00
ooy T —y 0.01

und das, obwohl wir exakt gerechnet haben!

An dem Beispiel sehen wir, dass die Subtraktion von zwei Zahlen schlecht kondi-
tioniert ist, wenn die beiden zu subtrahierenden Zahlen fast gleich grof sind. Der
Effekt wird entsprechend auch als Ausloschung bezeichnet. Er ist ein ernst-
zunehmendes Problem im wissenschaftlichen Rechnen. Man sollte daher, wenn
es irgendwie moglich ist, die Differenzenbildung von fast gleich grofsen Zahlen
vermeiden, oder zumindest mdglichst zum Schluss eines Verfahrens ausfiihren!

Genauso problematisch ist die Situation bei der numerischen Berechnung von
Ableitungen einer Funktion f : R — R: Der Ausdruck

f(x+h) = fx)
h

fithrt bei kleinen Werten von h, h > 0 immer zu einer Ausléschung bei der
Differenzenbildung. Ein relativer Fehler von maximal € in der Berechnung der
f-Werte hat bei der Differenzenbildung nach Lemma 1.7 schlimmstenfalls einen
relativen Fehler von

€ f(z+h)—f(z) < f T _'_:ZJF h?f( )'5f($+h) + 'f(:r: _|_fh()x)_ f(:l?) Ef(x)
v+ h) f()
’fwh ~ () ”'f(wh)—f(x) °
£ (o )|+ f ()]
P+ h) — @)
2| f ()]
hf ()]

zur Folge. Das Problem ist also fiir kleine Werte von A (oder betragsméfig kleine
Werte von f’(x)) schlecht konditioniert. Man ist hier in einer Zwickmiihle: Fiir
kleine Werte von h ist die Ausloschung grof, fiir grofe h ist dagegen der Dis-
kretisierungsfehler grof. Einige weitere Betrachtungen fiithren zu der Faustregel
h = /e, die z.B. in [Schaback und Wendland, 2004] nachgelesen werden kann.
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Kapitel 2

Lineare Gleichungssysteme:
Eliminationsverfahren

2.1 Begriffe und Grundlagen

Wir wollen zunéchst die notigen Notationen einfiihren und dabei einige Begriffe
und Ergebnisse aus der Linearen Algebra wiederholen.

Notation 2.1 A € IK™" bezeichne eine reelle oder komplexe m x n Matrix,
d.h. eine Matrix mit m Zeilen und n Spalten. Wir schreiben

aii a12 e Q1np aq
Q21  A22 Q2n, a2
A= (aij)i=1,..m, = . = ( Ar Ay An ) -
Jj=1l,...n
Am1 Am2 ... Qmp A,

Dabei bezeichnen a;; die Elemente der Matriz A, A; die Spalten der Matriz und
a; thre Zeilen, i = 1,...,m,7 = 1,...,n. Gilt m = n so nennt man die Matriz
quadratisch.

Matrizen kann man miteinander multiplizieren, allerdings ist die Matrixmultipli-
kation nicht kommutativ. Die Einheitsmatrix beziiglich der Multiplikation von
quadratischen Matrizen ist I € IK™" mit Elementen e;; = 0 fiir alle ¢ # j,
ei; = 1,4 =1,...,n. Gibt es zu einer Matrix A eine Matrix A™! mit A- A~ =
A1 A =1, so nennt man A invertierbar.

Wir kénnen jetzt definieren, was ein lineares Gleichungssystem ist:

Definition 2.2 FEin lineares Gleichungssystem
Ar=b>
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ist gegeben durch eine Matriz A € IK™", einen Vektor b = (by,...,b,)T € IK™
und n Variablen xy,...,x,, geschrieben als Vektor x = (x1,...,2,)%. Ausge-
schrieben erhdlt man m Gleichungen

1121 + a19T9 + ... + A1pnTy, = bl
a21%1 + Q22 + ... + QopTy = b2
11 + Qoo + ...+ QT = by

Falls b =0 nennt man das Gleichungssystem homogen.
Ist m < n so heifit das Gleichungssystem unterbestimmt.

Lineare Gleichungssysteme haben ausgesprochen viele Anwendungen. Einerseits
tauchen sie direkt als praktische Probleme auf, andererseits sind sie ein wichti-
ger Baustein fiir viele numerische Verfahren, z.B. zur numerischen Losung von
Differentialgleichungen.

Wir wiederholen einige Begriffe aus der linearen Algebra. Seien A,,..., A4, € IK"
Vektoren. Dann bezeichne

p
span{A4;,..., A} = {Z%‘Ai Sy € ]K}
i=1

die Menge der von Ay, ..., A, erzeugten Linearkombinationen (die lineare Hiille
von Ay, ... Ap).

Sicherheitshalber erinnern wir noch an den Begriff der linearen Unabhéngigkeit:
Die Vektoren Ay, ..., A, heifen linear unabhéngig, falls aus » 7, oy A; = 0 folgt,
dass oy = 0 fiir ¢ = 1,...,p. Die Anzahl der linear unabhéngigen Spalten ei-
ner Matrix A definiert den Spaltenrang der Matrix und dieser entspricht ihrem
Zeilenrang, d.h. der Anzahl der linear unabhéngigen Zeilen von A.

Satz 2.3 Sei A € IK™". Die folgenden Aussagen sind dquivalent:
(i) A ist invertierbar.
(i1) det(A) # 0.

(i1i) Die Spalten Ay, ..., A, von A sind linear unabhingig.

(iv) Die Zeilen aq, ..., a, von A sind linear unabhingig.
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Die Matrix A nennt man in obigem Fall auch reguldr oder nicht singuldr. Eine
m X n Matrix A kann man als lineare Abbildung

A K" — K™

r — Ax
auffassen und man kann dementsprechend z.B. vom Kern
Kern(A) = {z € IK" : Az =0}

der Matrix sprechen.

Bevor wir numerische Verfahren zur Losung eines linearen Gleichungssystems
entwickeln, fassen wir einige Ergebnisse (die alle schon bekannt sein sollten) tiber
die Losbarkeit linearer Gleichungssysteme zusammen.

Satz 2.4

e Das Gleichungssystem Ax = b hat genau dann mindestens eine Ldésung,
wenn b € span{A4;,..., A,}.

e Das Gleichungssystem Ax = b hat genau dann héchstens eine Lisung, wenn
Ay, ..., A, linear unabhdingig sind.

e Das Gleichungssystem Ax = b ist genau dann eindeutig ldsbar, wenn die
Matriz A nicht singuldr ist. In diesem Fall ist v = A™'b die eindeutige
Losung.

Aufgabe: Beweisen Sie Satz 2.4!

Fiir unterbestimmte Gleichungssysteme gilt, dass sie — wenn sie iiberhaupt 16sbar
sind — niemals eindeutig l6sbar sein kénnen: Sei T eine Losung des Gleichungs-
systems, also Az = b. Betrachten wir nun das entsprechende homogene System

Az = 0.

Weil m < n sind die Vektoren Ay, ..., A, € IK™ linear abhéingig, also gibt es ein
y # 0 mit Ay = 0. Dementsprechend gilt = 4+ y # =, aber wegen

Az +y)=Az+Ay=b+0=0>

ist auch x4y eine Losung des Gleichungssystems. Genauer lisst sich die Losungs-
menge durch {Z 4+ y : y € Kern(A)} angeben.

Das Problem Az = b heifst schlecht gestellt, wenn es nicht eindeutig l6sbar ist.

Ubersicht iiber Verfahren zum L&sen von linearen Gleichungssystemen
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Man unterscheidet zunéchst zwischen direkten und iterativen Verfahren. Bei den
direkten Verfahren erhélt man nach endlich vielen Schritten eine Losung des
Problems. Die bekanntesten hiervon sind die sogenannten Eliminationsverfah-
ren, bei denen in jedem Schritt eine der n Unbekannten eliminiert wird. Dazu
gehoren das Gauk-Verfahren (siehe Abschnitt 2.2) und das Cholesky-Verfahren
(Abschnitt 2.3). Das QR-Verfahren ist ein Orthogonalisierungsverfahren zur Lo-
sung linearer Gleichungssysteme oder zur Behandlung von linearen Ausgleichs-
problemen. Es wird in Kapitel 4 besprochen. Iterative Verfahren starten mit ei-
ner Naherungslosung, die in jedem Schritt verbessert wird. Sie sind vor allem bei
grofsen Gleichungssystemen oder bei Gleichungssystemen mit spezieller Struktur
der Matrix A sinnvoll. Mit ihnen werden wir uns in Kapitel 5 beschéftigen.

2.2 Gaul-Verfahren und LU-Zerlegung

Idee: Betrachten wir als Beispiel ein Gleichungssystem mit

13 2 9
A={05 4|, b= 14
00 6 6

Ausgeschrieben erhilt man das folgende gestaffelte Gleichungssystem

11‘1 + 3[L‘2 + 2[L‘3 = 9
Sro +4x3 = 14
61‘3 = 0.

Die dritte Gleichung 6x3 = 6 enthilt nur eine Unbekannte; entsprechend lasst
sich der Wert z3 = 1 bestimmen. Setzt man diesen in die zweite Gleichung ein
erhélt man 5z, = 10, also x5 = 2. Setzt man abschliefend die beiden gefundenen
Werte in die erste Gleichung ein, ergibt sich x; = 1.

Die Idee des Gaufs-Verfahrens nutzt nun diese einfache Losbarkeit gestaffelter
Gleichungssysteme aus: Ein gegebenes Gleichungssystem wird in ein gestaffel-
tes Gleichungssystem transformiert und dann gelost. Formalisieren wir dazu zu-
néchst, wie man solche gestaffelten Gleichungssysteme beschreiben und l6sen
kann.

Definition 2.5 FEine quadratische Matriz A € IK™" heif$t untere Dreiecksma-
trix, falls a;; = 0 fiir allei < j. A heifit obere Dreiecksmatrix, falls a;; = 0 fiir
alle i > j. Eine Dreiecksmatriz heifit normiert, falls a; =1 firi=1,...,n. Ist
A eine Dreiecksmatriz, so bezeichnet man Ax = b als gestaffeltes Gleichungs-
system.

Bemerkung: Eine n x n-Dreiecksmatrix ist genau dann reguliar, wenn a; # 0
firalle:=1,...,n.
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Lemma 2.6 (Losen durch Riickwértselimination) Sei A eine obere Drei-
ecksmatriz mit Diagonalelementen a; # 0 fir ¢ = 1,...,n. Die Ldsung von
Ax = b lasst sich dann sukzessive durch

1 & .
.T}j:— bj—Zajk:ck s J]J=n,...,
jj

k=j+1

—_

bestimmen.

Beweis: Die Giiltigkeit der Formel iiberpriift man schnell (ausgehend von j = n).
QFED

Obiges Verfahren heifst Lisen durch Rickwdrtseinsetzen oder Rickwdrtselimina-
tion weil man mit der letzten Gleichung beginnt. Analog kann man gestaffelte
Gleichungssysteme mit unterer Dreiecksmatrix durch Vorwdrtseinsetzen 16sen:

Lemma 2.7 (Losen durch Vorwirtselimination) Sei A eine untere Dreiecks-
matriz mit Diagonalelementen a;; # 0 fir t = 1,...,n. Die Lisung von Az = b
lasst sich dann sukzessive durch

i—1
1 3 )
Ty = — bj— E QT | jzl,...,n
ajj 1

bestimmen.

Aufwand: Beim Losen durch Riickwértseinsetzen (oder Losen durch Vorwérts-

einsetzen) bendtigt man n Divisionen, sn(n — 1) Multiplikationen und $n(n — 1)
Subtraktionen, also einen Gesamtaufwand von O(n?).

Definition 2.8 FEine Faktorisierung einer Matriz A € IK™"™ der Form A = LU
mit einer requldren unteren Dreiecksmatriz L und einer requldren oberen Drei-
ecksmatriz U heifit LU -Zerlegung von A.

Ist eine LU-Zerlegung von A bekannt, so ldsst sich die Losung des Gleichungs-
systems Ax = b durch das Losen von zwei gestaffelten Gleichungssystemen be-
stimmen: Durch Vorwirtselimination 16st man zuerst das Gleichungssystem

Lz=1b
und anschliefend durch Riickwértselimination
Ur = z.
Die so erhaltene Losung x erfiillt dann
Ar=LUx =Lz =10
und ist somit eine Losung von Ax = b.

Bevor wir uns ansehen, wie man ein gegebenes Gleichungssystem in ein gestaffel-
tes Gleichungssystem verwandelt, zundchst noch folgende Beobachtung.
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Satz 2.9 Folgende Mengen sind Gruppen beziiglich der Matrizmultiplikation: Die
Menge der requldiren oberen Dreiecksmatrizen, die Menge der oberen normierten
Dreiecksmatrizen, die Menge der reqularen unteren Dreiecksmatrizen, die Menge
der unteren normierten Dreiecksmatrizen.

Beweis: Sei A eine der oben genannten Mengen. Zu zeigen ist

0) ABe A=A -BeA.

1 -(B-C)=(A-B)-Cfiralle A,B,C € A.

2) Die Einheitsmatrix I € A.

(0)
(1) A
(2)
(3) Ac A= Ate A,

(1) ist fiir alle Matrizen richtig und (2) ist klar. Wir zeigen also (0) und (3) fiir
die Menge A der (normierten) oberen Dreiecksmatrizen. (Fiir untere Dreiecks-
matrizen verliuft der Beweis analog.)

ad (0): Seien A, B € A und C = (¢;;) = AB. Dann ist

n J
Cij = E Qikbrj = E ik brj.
k=1 k=i

weil a;, = 0 fiir ¢ > k und by; = 0 fiir £ > j. Fiir ¢ > j gilt also ¢;; = 0 und
damit ist C' eine obere Dreiecksmatrix. (Man beachte, dass die Regularitit
der Matrizen A und B hierfiir nicht notig ist.)

Sind A, B weiterhin normiert, so auch C, denn
Cii = by = 1.

ad (3): Sei A € A regulér und A~' = B = (b;;) die Inverse von A. Dann gilt fiir
die Spalten By, Bs, ..., B, von der Inversen

ABk = €.

Fiir jedes k € {1,...,n} kann By = (b, bop,...,bux)T also als Lisung
von Axr = ek aufgefasst werden. Nach Lemma 2.6 folgt, dass bj; = 0 fiir
j=n,n— ,k+ 1 und by, = —, also ist B eine obere Dreiecksmatrix,
die fiir eine normlerte Matrix A auch wieder normiert ist.

QED
Man sieht hier schon direkt die folgende Aussage:

Lemma 2.10 Hat eine requlire Matriz A eine LU-Zerlequng mit normierter un-
terer Dreiecksmatriz L, so ist diese eindeutig.
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Beweis: Weil det(A) # 0 sind auch die Matrizen L, U mit A = LU reguldr. Sei
nun A = L1U; = LyUs,. Das ist wegen der Regularitit aller beteiligten Matrizen
dquivalent zu

UU; = Lt L.

Wegen Satz 2.9 steht links eine obere und rechts eine untere Dreiecksmatrix. Um
Gleichheit zu gewdhren, muss also

UWU; ' =1T=L7"L,
gelten, und dementsprechend folgern wir L.y = Ly und U; = Us. QED

Fiir Dreiecksmatrizen ist das Losen von linearen Gleichungssystemen also ein-
fach. Was aber macht man, wenn die Koeffizientenmatrix nicht in Dreiecksform
vorliegt? Die Idee des Gauf-Verfahrens besteht dann darin, die Matrix durch ele-
mentare Zeilenoperationen in eine Matrix in Dreiecksform zu transformieren. Das
kann man mit Hilfe der folgenden Matrizen formulieren:

Definition 2.11 Fiir einen Vektor I®) = (0,...,0,tjr1,...,t,)" € K" mit 1 <
k <n und dem k-ten Einheitsvektor e, € IK" ist die Gaui-Matrix M, definiert
durch

My =1, — 1Wel = 1

Sammeln wir zunéchst einige Eigenschaften der Gauf-Matrizen.

Lemma 2.12 Sei M, die Gauf-Matriz beziiglich eines Vektors (%) = (0,...,0,tp41,. ..

1. det(M;) =1
2. M7t =1, + 1l

Beweis: Da die Gauf-Matrizen untere Dreiecksmatrizen sind, folgt der erste Teil
des Lemmas. Fiir den zweiten Teil rechnet man nach

MMt = (L, = W) (L, + 1Me])
I+ 1Wel — 0T (Wl kT — 7

wobei im letzten Schritt ausgenutzt wurde, dass el [®) = 0 gilt. Analog erhilt
man M, ' M, = I, QED
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Multipliziert man eine Gauk-Matrix M; von links mit einer Matrix A, so erhélt
man als Ergebnis eine Matrix A’, die aus A entsteht, indem man das t;-te Viel-
fache der k-ten Zeile a; von A von der j-ten Zeile abzieht, fiir j = k+1,... n.
In Formeln erhédlt man also:

ai

a
M, A= K
Ajy1 — b0k

ap — tnak

Man nennt diese Operation auch die Anwendung elementarer Zeilenoperationen.
Lemma 2.12 besagt dabei, dass die Anwendung von elementaren Zeilenoperatio-
nen die Determinante der Matrix nicht verdandert.

Setzt man fiir einen Vektor b = (by,...,b,)" und eine Zahl k € {1,...,n} mit

by £ 0
b b\ 7T
1® = (o, 0 2L In
<07 ”bk,’ ’bk,

so erhalt man

Mib = (by,ba, ..., b, 0,...,0)T. (2.1)

Genau das wird im Gauf-Verfahren zur Transformation einer Matrix auf Drei-
ecksform ausgenutzt. Das folgende Verfahren ist in der angegebenen Form zur
Implementierung allerdings ungeeignet, weil Matrixoperationen rechenzeitméfig
einen hohen Aufwand bedeuten. Eine effizientere Variante wird in Algorithmus 3
auf Seite 35 beschrieben.

Algorithmus 1: Gaufi-Verfahren ohne Spaltenpivotsuche (Matrixversion)

Input: A € IK™"
Schritt 1: AM .= A4

Schritt 2: For £k=1,...,n—1 do

T
k) k
G- 0 0 ai(e+1,k agz,i)g
- b 9 b (k) AR | (k)
v mal  Ckk Ok
M, = I,—1®el
Ak+1) M, A



Ergebnis: LU Zerlegung von A mit

U = AM
L = M7' Myt Mt

n—1

Wir miissen nun zeigen, dass obiger Algorithmus hilt, was er verspricht, d.h.
dass wirklich A = LU gilt, und L eine untere und U eine obere Dreiecksmatrix
ist. Aufserdem muss die Durchfiihrbarkeit des Verfahrens untersucht werden,
die nur dann gewdhrleistet ist, wenn a,(i) # 0 fiir alle £ = 1,...,n — 1. Dazu
betrachten wir die Hauptminoren A" der Matrix A.

Satz 2.13 (Korrektheit des Gaul-Verfahrens) Sei firk=1,...,n — 1:

a1, ... Qig
det(AM) = det : : # 0. (2.2)

arr ... Qg
Dann ist Algorithmus 1 korrekt. Genauer:

1. Algorithmus 1 ist durchfihrbar, d.h.
al?) 20 fir alle k=1,...,n—1. (2.3)

2. Fir die Matrizen A®, k=1,...,n—1 gilt:
agf) =0 fir alle j < k und i > j. (2.4)
Insbesondere ist U eine obere Dreiecksmatrix.
3. L ist eine untere Dreiecksmatrix.
4. A=1LU.
Beweis:

ad 1. und 2. Wir zeigen zuerst, dass fiir jedes feste k£ (2.3) aus (2.4) folgt, d.h.

dass gilt:
(2.4) = (2.3).
Danach beweisen wir (2.4) fiir alle k& per Induktion.
Sei also agf) = 0 fiir alle j < k und ¢ > j. Wegen Lemma 2.12 wissen wir,
dass

det(A®) = det(Mj_1 A*V) = det(M;_;) det(A* D) = det(A*D)
... =det(A).
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Wendet man die elementaren Zeilenoperationen ausschlieflich auf Subma-
trizen der Form (2.2) an, gilt diese Gleichung weiterhin, d.h.

(k) (k)

k k a a
air ... Qg ag1) agk) (1)1 ab%)
det | : : = det| : =det | (2)2
(k) (k) :
g1 ... Ok a ...a
k1 Kk 0 ... 0
k k k
= . a) . a®)

wobei wir im zweiten Schritt ausgenutzt haben, dass die Matrix A®) Aus-
sage (2.4) erfiillt. Nach Voraussetzung unseres Satzes ist

det | | #0,

also a,g? # 0. Damit ist (2.3) fiir dieses k gezeigt.

Um (2.4) zu zeigen, nutzen wir diese Aussage in einem Induktionsbeweis.
Fiir den Anfang k& = 1 ist nichts zu zeigen. Fiir den Induktionsschritt & —
k 4+ 1 nehmen wir an, dass (2.4) fiir k richtig ist. Insbesondere gilt dann

nach dem ersten Teil dieses Beweises, dass agz) # 0. Der Vektor {*) ist also

definiert. Anwendung von (2.1) ergibt die geforderte Eigenschaft agjﬂ) =

0 fiir alle 7 > k fiir die k-te Spalte. Zusammen mit der Induktionsannahme
folgt (2.4) fiir A®+D,

ad 3. L ist definiert als Produkt der Mk_l. Da die M, alle untere Dreiecksma-
trizen sind, sind nach Satz 2.9 auch ihre Inversen Dreiecksmatrizen, ebenso
die Produkte ihrer Inversen, also auch L.

ad 4. Nach Algorithmus 1 gilt
U=A™ =M, (A" Y =M, M, _»-...- M;A.
Wegen L = M ' Myt M gilt weiter L™' = M,,_M,,_5--- M, also

U=L"'A oder LU = A.

Aufgabe: Eine n x n Matrixz heifit streng diagonal-dominant, falls fiir alle 1 =
1,...,n gilt:
2|CL”‘ > Z ‘CLZ'J'|.
j=1
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Zeigen Sie, dass jede streng diagonal-dominante Matrixz invertierbar ist und dass
Algorithmus 1 auch in diesem Fall korrekt ist. Das heifit, die Aussagen von
Satz 2.13 bleiben richtig, auch wenn man die bisherige Voraussetzung (2.2) durch
die Forderung nach strenger Diagonal-Dominanz ersetzt.

Lemma 2.14 Ist Algorithmus 1 durchfiihrbar, so gilt fir die Matriz L:

Beweis: Nach Definition von L und Lemma 2.12 ist

L et Ml_l.M2_1..Mn_—11
= (I+ l(l)elT)(I+ 1(2)6’5) (I F l("_l)e:_l).

Zu zeigen bleibt also, dass fiir alle m gilt:
I+ 1Wefl = (I +1Mel)(I +1Pel) - (I +1™e).
k=1

Fiir m = 1 sieht man die Behauptung direkt. Per Induktion leitet man sie dann
fiir beliebige m her: Gelte die Behauptung also fiir m — 1. Dann betrachte

(I + 1D +1®ely .. (1 +1mel)
m—1
= <[ + Z l(k)e;‘g> (I +1mel)
k=1

m—1 m—1
= T+1™el ¢ Z IWel 4 Z 1™ eL1tm eI
k=1 k=1 ~

= I+ Z 1®el
k=1

QFD

Diese Beobachtung hilft uns, das Gauf-Verfahren effizient zu organisieren: Man
speichert die Vektoren [ [ . 1("=1 jiber die erzeugten Nullen im unteren
Teil der Matrix A, wihrend der obere Teil die Matrix U enthélt.

Bevor wir aber die effizientere Variante des Gauf-Verfahrens angeben, mochten
wir das Verfahren so erweitern, dass wir es fiir alle regulédren Matrizen anwenden
konnen. Das ist in der Variante aus Algorithmus 1 leider nicht der Fall — sie
scheitert schon an einer so einfachen reguldren Matrix wie

(V1)
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Ein weiteres Problem besteht darin, dass bei kleinen, aber von Null verschiedenen
Elementen agz) grofse Rundungsfehler auftreten kdnnen, wie das folgende Beispiel
zeigt:

Sei das Gleichungssystem

() ()= ()

gegeben. Die einzige ndtige Umformung im Gaul-Verfahren fiihrt zu dem System

(0" o0 ) (22) = (o)

und entsprechend zu der exakten Losung von

1000 998

= :—%1
1= 999 T 2T 999

Angenommen, wir arbeiten mit zweistelliger Gleitkomma-Arithmetik. Dann er-
hilt man nach der ersten Umformung das auf zwei Stellen gerundete Gleichungs-

system
0.10-1072 0.10-10* Tr\ 0.10 - 10!
0 —0.1-10% ro )\ —0.10-10* /)~
dessen Losung sich (sogar bei exakter Rechnung) zu z; = 0 und x5 = 1 ergibt,
also weit von der echten Losung entfernt liegt.

Erfreulicherweise lassen sich die beiden aufgefiihrten Schwierigkeiten durch das
nun zu beschreibende Verfahren der Pivotisierung vermeiden. Im einfachsten Fall
der Zeilenpivotisierung vertauscht man wéihrend des k-ten Schritts des Gaul-
Verfahrens die k-te Zeile mit einer darunterliegenden, und zwar der, die den
betragsmifig grokten Eintrag in der k-ten Spalte aufweist. Das Ziel dabei ist,
dass nach der Vertauschung das neue Element ag? so grof wie moglich wird.
Formal wihlt man im k-ten Schritt ein j € {k,k+ 1,...,n} so dass

|a§.],?\ > |al(l,§)| fir allel =k, ..., n.

In diesem Fall nennt man ag.],? das Pivotelement. Zur formalen Beschreibung
dieser Vertauschungen benétigen wir die folgenden Matrizen.

Definition 2.15 Fine bijektive Abbildung 11 : {1,...,n} — {1,...,n} heift
Permutation der Menge {1,...,n}. Fine n x n Matriz P heifft Permutati-
onsmatrix, falls es eine Permutation I1 so gibt, dass

Pe; = eqy fiir allev=1,...,n.
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P entsteht also durch Permutation der Spalten der Einheitsmatrix. Wir sammeln
Eigenschaften von Permutationsmatrizen.

Satz 2.16 Sei die n x n-Matriz P eine Permutationsmatriz zur Permutation I1.
Dann gilt:

1. P ist invertierbar.

2. P71 st die Permutationsmatriz, die zu der Permutation 11" gehért. (Dabei
ist 7' die Umkehrabbildung von 11.)

3. P ist orthogonal, das heift, es gilt P~ = PT.
Beweis:

ad 1: P besteht aus einer Vertauschung von Spalten der Einheitsmatrix, ist also
regulér.

ad 2: Zu zeigen ist P~'(e;) = en-1(;: Dazu betrachten wir

P(en-1;) = enwm-1(3;)) nach Definition 2.15

€;.
Multiplikation beider Seiten von links mit P! liefert das Ergebnis.

ad 3: In den Spalten von P stehen die permutierten Spalten der Einheitsmatrix,
P = (enqy, €n)s - - - €nn))- Entsprechend ist die i-te Zeile von P? durch
eﬁ(i) gegeben. Um nachzuweisen, dass P orthogonal ist, miissen wir PPT =
PTP = I zeigen. Sei Q = PTP. Dann ist

1 fallsi=y
T
Qij = @) ene) = { 0 sonst ’

also ist Q = I. Analog gilt auch PPT = I. QED

Eine Erweiterung der zweiten Aussage des Satzes soll noch erwdhnt werden: Fiir
zwel Permutationen II;, ITs mit zugehorigen Permutationsmatrizen P, P, gilt we-
gen

PiPy(e;) = Pilemn,))

- €H1(H2(i)) = eH10H2(’i)7

dass P, P, die Permutationsmatrix ist, die zu der Permutation II; o II, gehort,
das heifst, die Verkettung von zwei Permutationen entspricht dem Produkt der
entsprechenden Permutationsmatrizen.
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Um das Gaufs-Verfahren zu verbessern, bendétigen wir spezielle Permutationen,
namlich solche, die genau zwei Elemente r < s vertauschen. Zu so einer Permu-
tation

M(r) = s,
II(s) =
[I(z) = i firallei¢ {r s}

gehort entsprechend die Matrix
Prs= (€1, € 1,E5,Er 11y vy €s5 1,Cr, Esilyenr,Cn).

Solche Matrizen sind symmetrisch, das heift P., = PL, und man kann sie auch
als Py = I — (e, — e,)(e, — e5)T schreiben.

Man sollte sich das folgende einprégen:

e Die Linksmultiplikation A - P, einer Matrix A mit P,, vertauscht die r-te
mit der s-ten Spalte.

e Die Rechtsmultiplikation P, - A einer Matrix A mit P, vertauscht die r-te
mit der s-ten Zeile.

Formal kénnen wir nun die Matrixversion des Gauf-Verfahrens mit Spaltenpivo-
tisierung folgendermafen beschreiben.

Algorithmus 2: Gaufi-Verfahren mit Spaltenpivotsuche (Matrixversion)

Input: A € IK™"
Schritt 1: AL := A

Schritt 2: For £k=1,...,n—1 do

Bestimme einen Pivotindex r € {k,...,n} mit |EL7("IZ)| = MaX;—k, . n ELE]I:)|.
Pk .= P,
AR . pk) (k)
SITRAN
(k) ._— , n,
l 0,...,0, =18, ..
e mal kk kk
My, = I, —1®el
ARFD . — AWK



Ergebnis: PA= LU nit

= pr=bH . . pM) eine Permutationsmatrix

P
U = A™ ist eine obere Dreiecksmatrix
L

n—1
= I—i—Z@(k)e% ist eine untere Dreiecksmatrix mit
k=1

ok) .— pn-1). . plk+1)k)

Satz 2.17 Fiir eine requlire n x n Matriz A existiert eine Permutationsmatri-
zen P € R™"™, eine normierte untere Dreiecksmatriz L € IK™™ und eine obere
Dreiecksmatriz U € IK™™ so dass PA = LU, und diese Zerlequng wird von Algo-
rithmus 2 gefunden.

Beweis: Im Beweis zeigen wir zunéchst die folgenden Eigenschaften:
1. Algorithmus 2 ist durchfiihrbar, d.h.

al) £0firk=1,...,n—1. (2.5)

2. Fiir die Matrizen A®, k=1,...,n— 1 gilt:

al) = 0fiiralle j <k und i > j. (2.6)
A® = p®prn  pED L PN PD A (2.7)
Ahnlich wie im Beweis zu Satz 2.13 zeigen wir, dass fiir jedes feste k = 1,...,n—1

aus den beiden letztgenannten Eigenschaften (2.6) und (2.7) die erstgenannte
Aussage a,(clz) # 0 folgt, und beweisen anschliefend (2.6) und (2.7) fiir alle & per
Induktion.

Gelte also (2.6) und (2.7) fiir k. Wir nehmen an, dass a,g? = 0. Nach der Definition
von P®) erfiillt die Matrix A®) = Pk AF)
oM > o] fir alle I = k, ..., n.

Wegen al®) =0 folgt daraus, dass die erste Spalte der Submatrix

kk
k k
o g
c=| : 5
o
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eine Nullspalte ist und entsprechend det(C') = 0 gilt. Wegen (2.6) gilt weiter,
dass

G i
L |
A® = 0 : * )
k
0 a/(c—)lk—l
0 C
also folgt
k) (k k
|det(A®) = al¥) a0 - det(C) = 0.

Wegen (2.7) folgt daraus det(A) = 0, ein Widerspruch zur Regularitit von A.

Jetzt zeigen wir (2.6) und (2.7) per Induktion.

Fiir beide Aussagen ist der Induktionsanfang k& = 1 klar. Fiir den Ubergang
k — k + 1 nehmen wir an, dass die Aussagen fiir k£ schon gelten. Wegen dem
ersten Teil des Beweises gilt a,gz) £ 0, also ist die Matrix A®*Y definiert.

(2.6) gilt dann fiir A®*™) wegen der Induktionsannahme fiir A®) und wegen der
alten Aussage (2.1) auf Seite 26. Fiir A®+Y) nutzen wir die Aussage fiir A®+1
zusammen mit dem Argument, dass die Transformation P**1 die ersten k Zeilen
von A+ unberiihrt ldsst. (2.7) ergibt sich schlieflich durch Einsetzen

A(kJrl) — P(kJrl)A(kJrl) — P(kJrl)MkA(k)
und der Induktionsannahme.
Damit wissen wir, dass das Verfahren durchfiihrbar ist und
U=A"™ =, POV . . p@pr,pWa

eine obere Dreiecksmatrix ist. Weil M, = I+1@eT (Lemma 2.12) und (P®)~! =
P® (Lemma 2.16) erhilt man daraus

A =PI+ 1D PO(T 1@ p® . pl=(1 4 (=D T

Wir mochten nun beide Seiten der Gleichung von links mit
p—=pr-1. | p@pl)

multiplizieren. Um den entstehenden Term zu vereinfachen, iiberlegen wir uns
zunichst, dass fiir beliebige Vektoren [ und alle j >4

POT +1eNPY) = (I + POI(PYe)T) = (I + PYleT)
gilt, weil PWe; = ¢;, falls j > i.
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Diese Aussage nutzen wir, um bei der Multiplikation von (2.8) mit P = P™ ... .
PP PO die Permutationsmatrizen P® fiir i > 3 durch das Einfiigen von Identi-
titen I = PWPO bis zum entsprechenden Faktor (I 4 1¢Vel ) P® “durchrut-

schen” zu lassen:

POA = (I+1WeHPA(I4+1Pel)PO) . POD([ 41D Ny
PAOPMA = PO +1WPO(T 41 eYPO) . .. . p=(] 41Dl U
= (I+ P(Q)l(l)elT)(I + 5(2)62T)p(3) . ,P(n—l)(I + l("_l)egfl)U
P® p@) p) 4 PO (I + p(2)l(1)elT)p(3)Jp(3) (I + 1D PO(1 + 13l .
I+P(3)1;r(2)l(1)elT 1+P®)12) T
o PO =Dl YU
= (I+ p(3)p(2)l(1)e’{)([ + P(3)l(2)62T) . ,p(n—l)(j— + l("’l)eg_l)U
— PA = ([+0We)(I+0Be]) ... (I+00 Vel U

I+ - oWel,

wobei der letzte Schritt per Induktion analog zu dem entsprechenden Schritt im
Beweis von Lemma 2.14 (auf S. 29) gezeigt wird. QED

Fiir die praktische Implementierung empfiehlt es sich, auf Matrixoperationen zu
verzichten, da diese aufwindig sind. Die folgende Variante ist effizienter. Wir
geben sie gleich in einer Form an, die man verwenden wiirde, um ein Gleichungs-
system Ax = b zu l6sen.

Algorithmus 3: Gaufi-Verfahren mit Spaltenpivotsuche

Input: A € IK™", be IK".
Schritt 1: For k=1 to n—1 do

Schritt 1.1: Finde Pivotelement ay, fir Zeile k

Schritt 1.2: Vertausche Zeilen k und r in A sowie b und b,.
Schritt 1.3: For i=k+1 to n do

Schritt 1.3.1. ay = &&

Schritt 1.3.2. For j=k+1 to n do a;; = a;j — Qi - k;j

Ergebnis: Gleichungssystem LU = Pb, wobei L und U gegeben sind durch

aj; fir ¢>j
. . . aij
lij = 1 fir 1 =3 uij:{o
0 fir 1 <j
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Das entstandene Gleichungssystem LU = Pb kann man nun leicht durch Riick-
warts - und Vorwértselemination 16sen. Man kann auch direkt wihrend des Ver-
fahrens alle elementaren Zeilenoperationen auf die rechte Seite Pb anwenden, und
erhilt dann als Ergebnis das Dreieckssystem U = L~!'Pb, so dass man sich den
Schritt der Vorwartselimination spart.

Aufwand der LU-Zerlegung nach Algorithmus 3:
Wir zéhlen hier noch einmal griindlich. Die &ufere for-Schleife wird fiir jedes
k=1,...n —1 durchlaufen. Darin werden folgende Operationen durchgefiihrt:

o Maximumsuche bei der Bestimmung des Pivotindexes: n — 1 Vergleiche
e Vertauschungen sind Zuweisungen, die wir nicht mit zdhlen

e Innere for-Schleifen: n — k Divisionen, (n — k)(n — k) Multiplikationen,
(n — k)(n — k) Additionen

Zusammen betriagt die Anzahl der bendtigten Operationen also

n—1

n—1)(n—-1)+ Z(n —k)+2(n—k)*=0(n?).
k=1
Aufgabe: Rechnen Sie die Anzahl der Operationen exakt (also ohne Abschitzung

durch O) aus. Bestimmen Sie auferdem die Anzahl der in der Matrizversion
(Algorithmus 2) bendétigten Operationen exakt und durch O. Vergleichen Sie!

Zwei einfache Anwendungen

Hat man eine LU-Zerlegung gefunden, so kann man diese fiir die folgenden beiden
Anwendungen nutzen:

Anwendung 1: Bestimmung der Inversen A~! einer Matrix A.
Sei A™! gegeben durch ihre Spalten A~' = (By, By, ..., B,). Dann gilt

ABk = €k,

und By, ergibt sich als Losung x von Ax = e;. Kennt man die LU-Zerlegung
der Matrix A, so bestimmt man also fiir K = 1,...,n zunéchst die Losung y;
des Gleichungssystems Ly, = e, und 16st anschliefsend das Gleichungssystem
Uz = yg zur Bestimmung von By, := xy.

Anwendung 2: Bestimmung der Determinante von A.

Ist A = LU eine LU-Zerlegung von A, so gilt det(A) = det(L) - det(U) = uy; -
... " Upy. Die Determinante lasst sich also als Produkt der Diagonalelemente von
U direkt berechnen.
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2.3 Das Cholesky-Verfahren

Wir betrachten auch in diesem Abschnitt Gleichungssysteme Ax = b, allerdings
nehmen wir nun an, dass die Matrix A eine symmetrische und positiv definite
Matrix ist.

Definition 2.18 FEine Matriz A € R™" heifit hermitesch falls A* = A, wobei
A* = (a@;;) die konjugiert kompleze Matriz zu A ist. Ist IK = R so nennt man A
auch symmetrisch. Fine hermitesche Matriz heif$t

e positiv definit falls 27 Az > 0 fiir alle z € R™\ {0},

e positiv semi-definit falls 27 Ax > 0 fiir alle z € R™.

Lemma 2.19 Die folgenden Aussagen gelten:

1. Eine symmetrische Matriz ist genau dann positiv definit, wenn alle ihre
Eigenwerte echt positiv sind.

2. Fine symmetrische Matriz ist genau dann positiv semi-definit, wenn alle
thre Figenwerte gréfier oder gleich Null sind.

3. Fine symmetrische Matriz ist genau dann positiv definit, wenn ithre Haupt-
minoren positiv sind, d.h. wenn fiir alle ihre linken oberen kx k- Teilmatrizen

ayp ... Qg
A = : : k=1,....,n

A1 ... Qg
gilt: det( A > 0.

Positiv definite Matrizen sind also regulir (weil det(Al") = det(A) # 0). Wir
betrachten die folgenden beiden Zerlegungen:

Definition 2.20 Fine Faktorisierung einer symmetrischen Matriz A € R™" der
Form A = LLT mit einer (regquliren) unteren Dreiecksmatriz L heifit Cholesky-
Zerlegung von A .

Definition 2.21 Fine Foktorisierung einer symmetrischen Matriz A € R™" der
Form A = LDLT mit einer normierten unteren Dreiecksmatriz L und einer

Diagonalmatriz D heifit LDL-Zerlegung von A .

Im folgenden werden wir uns u.a. mit Diagonalmatrizen beschéftigen, die wir wie
folgt bezeichnen.
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Notation 2.22 Fir einen Vektor a € IK" ist die Diagonalmatrix beziglich a
gegeben durch
ay
a2

diag(a) =

Ap—1
G,

Fiir positive definite symmetrische Matrizen sind die folgenden Aussagen bekannt.

Satz 2.23 Sei A € R™" eine positiv definite symmetrische Matrixz. Dann existiert
eine eindeutig bestimmte LDL-Zerlequng von A.

Beweis: Zunichst bestitigen wir, dass A eine eindeutige LU-Zerlegung mit nor-
mierter unterer Dreiecksmatrix L hat: Nach Satz 2.13 kann man eine LU-Zerlegung
(ohne Pivotisierung) finden, wenn die Teilmatrizen

ay ... Qik
AlF .=

Q1 ... Ak

die Bedingung (2.2) erfiillen, d.h. wenn det(A") #£ 0, k =1,...,n — 1. Weil A
positiv definit ist, gilt das nach Lemma 2.19 und zusitzlich sogar det(AM™) > 0,
also sind A, L und U regular. Entsprechend ist L eine untere normierte Dreiecks-
matrix und die Zerlegung ist eindeutig nach Lemma 2.10.

Sei daher

A=LU (2.9)
mit normierter unterer Dreiecksmatrix L und oberer Dreiecksmatrix U. Wir set-
zen D = diag(uiy,. .., uy,) als die Diagonalmatrix mit den Eintrigen aus der

Hauptdiagonalen von U. Da U regulér ist, ist auch D regulér, so dass wir
U:=D"'U
definieren kénnen. Es gilt LDU = LU = A. Wir méchten zeigen, dass U = L7
Betrachte dazu
A=AT = (LD =U"DTLT =0T - (DTLY). (2.10)

U ist nach Konstruktion eine normierte obere Dreiecksmatrix, also ist UT eine
normierte untere Dreiecksmatrix. Weiter ist D LT eine obere Dreiecksmatrix, also
ist (2.10) auch eine LU-Zerlegung von A mit normierter unterer Dreiecksmatrix.
Wegen Lemma 2.10 ist die LU-Zerlegung von A eindeutig, also folgern wir aus
dem Vergleich von (2.9) und (2.10) dass

L=U"
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und haben damit die LDL-Zerlegung von A gefunden.

Sei nun A = L'D'(L')" eine weitere LDL-Zerlegung von A mit normierter unterer
Dreiecksmatrix L, so kann man wiederum

A=L'-(D'(L)")

als LU-Zerlegung auffassen. Da die LU-Zerlegung nach Lemma 2.10 eindeutig ist,
folgt
L'=L und D' (L)' =DL",

wobei sich aus letzterem wegen der Invertierbarkeit von L = L' auch D' = D
ergibt. QED

Der Beweis des Satzes zeigt auferdem, dass die LU-Zerlegung einer symmetri-
schen und positiv definiten Matrix A ohne Pivotisierung gefunden werden kann.
Wir kommen nun auf die Cholesky-Zerlegung zuriick.

Satz 2.24 Sei A € R™" eine positiv definite symmetrische Matriz. Dann ezistiert
eine Cholesky-Zerlequng von A = LLT mit positiven Diagonalelementen von L.
Unter dieser Nebenbedingung ist L eindeutig bestimmt.

Beweis: Nach Satz 2.23 gibt es eine eindeutige LDL-Zerlegung
A=LDL"

von A. Bezeichnen wir mit A* und D wieder die linken oberen k x k Teilmatri-
zen von A und D. Weil L eine untere Dreiecksmatrix ist, gilt A¥ = LIF DI T[]
also

det(AM) = det(DF)). (2.11)

Wegen der positiven Definitheit von A (siehe Lemma 2.19) gilt det(A*) > 0.
Zusammen mit (2.11) erhalten wir

dyg ..o dgy = det(D[k}) = det(A[k‘]) = 0.

Diese Aussage gilt fiir alle k, also sind die Diagonalelemente von D positiv. Jetzt

setzen wir 3
L:L~diag(\/ d117---7\/ dnn) (212)

und erhalten aus der normierten unteren Dreiecksmatrix L eine untere Dreiecks-
matrix L mit positiven Diagonalelementen, fiir die

LLT = L -diag(\/dy1, ..., \/dpy) - diag(\/d11, ..., \/dwn) - L™ = LDLT = A

gilt. Die entsprechende Cholesky-Zerlegung ist also gefunden.
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Um die Eindeutigkeit zu zeigen, sei neben A = LLT
A=L(L)"

eine weitere Cholesky-Zerlegung mit Diagonalelementen Ay, Ay, ..., A, > 0. Mit
D' :=diag()\?,...,)2) und

~ 1 1
L =1 -di —_ . —
1ag <)\1’ 7)\n)

erhiilt man A = L'D'(L")T, also eine weitere LDL-Zerlegung von A mit normier-
ter unterer Dreiecksmatrix L’. Aus der Eindeutigkeit der LDL-Zerlegung (nach
Satz 2.23) folgt L = L' und D = D'. Letzteres bedeutet d;; = \? fiiri=1,...,n
und wegen der Positivitit der \; und d;; also

)\i:\/d>iifﬁri:1,...,n

Zusammen erhalt man

L' = L' -diag(\, ..., \)
= L-diag(\/di1,...,\/dun) Lnach (2.12).

QED

Um eine Cholesky-Zerlegung effizient ausrechnen zu kénnen, betrachten wir die
Gleichung A = LL” komponentenweise. Das ergibt ein Gleichungssystem mit
Unbekannten [;; fiir 7 > j. Bezeichnen wir dazu im folgenden mit l;‘g die Elemente
der Matrix LT. Dann ergibt sich

n k
a,k_Zz,“k D il =Y iyl fiirk=1,....n, i=k+1,....n (213)
i1 j=1

und i
j=1 j=1 7=1

Wiéhlt man die Reihenfolge geschickt aus, lassen sich die Werte [;; effizient be-
rechnen: Zunéchst ergibt sich ly; aus (2.14) fiir £ = 1 zu l;; = /a;;. Danach
lassen sich nacheinander die Werte Iy, ..., [, der ersten Spalte von L durch
(2.13) bestimmen, dann das Diagonalelement der zweiten Spalte durch (2.14)
und so weiter. Es ergibt sich das folgende Verfahren, in dem wir nur das untere
Dreieck der Matrix A benutzen und die Elemente von L gleich iiber die Werte
von A schreiben.

Algorithmus 4: Cholesky-Verfahren
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Input: A € R™" symmetrisch und positiv definit
gegeben durch Werte a;; fiir i > j.

Schritt 1: For k=1 to n do

Schritt 1.1: Akl — \/akk — Z;C;ll ]akj\z
Schritt 1.2: For i=k+1 to n do

k-1
1
ik = ik — E Qij Ak
J=1

273

a;; flir 1>

Ergebnis: L ist gegeben durch [;; :{ 0 fir i < j

2.4 Schwachbesetzte Matrizen

Die bisher beschriebenen Verfahren sind bei sehr grofen Matrizen leider ineffizi-
ent. Daher versucht man, die LU-Zerlegung an Matrizen mit spezieller Struktur
anzupassen. Einen ersten Ansatz haben wir im letzten Abschnitt bei symmetri-
schen Matrizen kennengelernt. In Anwendungen treten oft schwachbesetzte Ma-
trizen auf, in denen fiir die meisten Elemente a,;; = 0 gilt. Leider sind die bei der
LU-Zerlegung von schwachbesetzten Matrizen entstehenden Dreiecksmatrizen L
und U im allgemeinen nicht auch wieder schwach besetzt. Als Beispiel sei die
Matrix

0.1 0.1 0.1 0.1 0.1

011 0 0 O

A=101 0 1 0 O
010 0 1 O
010 0 0 1

aus dem Skriptum von G. Lube genannt, bei der die Dreiecksmatrizen ihrer LU-
Zerlegung voll besetzt sind. Es gibt aber eine Klasse von Matrizen, bei der sich die
Struktur der Matrix A auf die Struktur der Matrizen L und U ihrer LU-Zerlegung
iibertriagt. Dazu gehdren sogenannte Bandmatrizen.

Definition 2.25 Fine Matriz A = (a;;) € IK™" ist eine (p,q)-Bandmatrix,
falls fiir alle ¢ > j + p und fiir alle j > i+ q gilt: a;; = 0. Die Bandbreite von
A ist dann p+ q + 1.
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Die folgende Matrix ist ein Beispiel fiir eine (2, 1)-Bandmatrix:

32000
41100
A=]113 1 5 0
0431 2
00401

Jede untere Dreiecksmatrix ist eine (n — 1,0)-Bandmatrix, jede obere Dreiecks-
matrix ist eine (0,7 — 1)-Bandmatrix.

Satz 2.26 Sei A = LU die LU-Zerlegung einer (p, q)-Bandmatriz A mit oberer
Dretecksmatriz U und normierter unterer Dreiecksmatriz L. Dann ist L eine
(p, 0)-Bandmatriz und U eine (0, q)-Bandmatriz.

Beweis: Wir beweisen den Satz fiir feste p, ¢ mittels vollstindiger Induktion nach
n. Fiir n = 1 ist nichts zu zeigen. Fiir den Induktionsschritt n — n+1 nehmen wir
also an, dass die Aussage fiir Matrizen der Dimension n x n richtig ist. Betrachte
nun eine Matrix A € IK"*H"*! mit LU-Zerlegung A = LU. Wir partitionieren A

wie folgt
a w?
(0% )

wobei @ € IK und B eine (p, ¢)-Bandmatrix der Dimension n x n ist und die
Vektoren v, w € IK" erfiillen, dass v; = 0 fiir alle ¢ > p und w; = 0 fiir alle 57 > gq.

Sei weiterhin .
. 1 0 o Ui;p U
L_(lLl)’U_(O Ul)'

T T
_ U1l U _f a w
LU = ( Ulll ZUT +L1U1 ) o ( v B ) ’

alsoist « = uyp, w =u, [ = év. Betrachte

Es gilt

1
B— —vw?.
o
Aufgrund der Struktur von v und w ist B ebenfalls eine (p, ¢)-Bandmatrix mit
LU-Zerlegung
1
B — —’UU}T = L1U1.
o
Nach der Induktionsannahme ist also die untere Dreiecksmatrix L; eine normierte

(p, 0)-Bandmatrix und die obere Dreiecksmatrix U; eine (0, ¢)-Bandmatrix und

es gilt
L 0\ [« wh\ o wh) A
év L1 0 U1 - v B -
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eine LU-Zerlegung von A mit der geforderten Eigenschaft ist also gefunden.
QED

Mit folgendem Algorithmus kann man die LU-Zerlegung einer (p, ¢)-Bandmatrix
bestimmen (falls sie existiert).

Algorithmus 5: LU-Zerlegung einer Bandmatrix

Input: (p,q)-Bandmatrix A € IK™", fiir die eine LU-Zerlegung existiert.
Schritt 1: For k=1 to n—1, for i=k+1 to min{k+p,n} do

Schritt 1.1: Qi = ik

akk

Schritt 1.2: For j=k+1 to min{k +¢,n} do aj; := ai; — ajxak;

Ergebnis: LU-Zerlegung von A wobei L und U gegeben sind durch

CLZ']' fiir ¢ S j

aj; fir ¢>j
u”_{o fiir i > j

lij = 1 fir 1 =
0 fir 1 <y

Natiirlich sind auch Vorwirts- und Riickwértselimination fiir Bandmatrizen einfa-
cher. Abschliefend betrachten wir noch den Spezialfall von Tridiagonalmatrizen.
Dazu fithren wir die folgende Notation ein.

Notation 2.27 Fiir drei Vektoren a,b,c € IK" mit by = ¢, = 0 st die Tridia-
gonalmatrix beziglich a, b, c gegeben durch

ay ¢
by as C2
tridiag(b, a, c) =
bnfl Apn—-1 Cp—1
bn an

Nach Satz 2.26 wissen wir, dass (falls sie existieren) die Matrizen L und U der
LU-Zerlegung das folgende Aussehen haben

1 Uy G

L= U= (2.15)
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wobei durch einen ersten Koeffizientenvergleich schon ausgenutzt wurde, dass die
Werte ¢y, ..., c,_1 der oberen Nebendiagonale von A in der oberen Nebendiagona-
len von U erhalten bleiben. Es sind also die Unbekannten w4, ..., u, und l,...,1[,
zu bestimmen. Durch Multiplikation der Matrizen L und U und erneutem Koef-
fizientenvergleich mit A ergeben sich die folgenden Berechnungsvorschriften:

Start: w; = a
Fir:=2,...,n: [; =
Ui—1
U; = a; — licifl-

Man kommt also mit einer in n linearen Anzahl an Operationen aus. Bei n Un-
bekannten ist das das beste, was man erreichen kann. Allerdings lédsst sich nicht
fiir jede Tridiagonalmatrix eine LU-Zerlegung finden. Das folgende Lemma gibt
eine hinreichende Bedingung fiir die Durchfiihrbarkeit der LU-Zerlegung fiir Tri-
diagonalmatrizen.

Lemma 2.28 Fir A = tridiag(b,a,c) mit by = ¢, = 0 sei fir j = 1,...,n

lc;| < laj| und |bj| + |¢;| < |aj|. Dann gibt es eine LU-Zerlegung von A mit
Matrizen wie in (2.15).

Aufgabe: Beweisen Sie das Lemma durch Induktion!
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Kapitel 3

Storungsrechnung

3.1 Metrische und normierte Raume

Bevor wir uns mit der Fehleranalyse bei linearen Gleichungssystemen beschiftigen
konnen, benotigen wir einige Begriffe aus der Funktionalanalysis. Dazu gehort
insbesondere, dass wir messen kénnen, um wieviel sich ein Vektor x von einem
gestorten Vektor & unterscheidet. Den Unterschied

Tr—x

als Vektor anzugeben, hilft uns nicht weiter, da wir zwei verschiedene gestor-
te Vektoren Z und a2’ mangels einer Ordnung im IK" nicht vergleichen konnen.
Wir suchen also eine Funktion, die die Differenz zwischen zwei Vektoren durch
eine reelle, positive Zahl ausdriickt. Solche Funktionen nennt man auch Distanz-
funktionen. Mit beliebigen Distanzfunktionen geben wir uns aber nicht zufrieden,
sondern betrachten Metriken als spezielle Distanzfunktionen.

Definition 3.1 Sei R eine nichtleere Menge. Fine Abbildung d : R x R — R
heifst Metrik auf R falls sie die folgenden Bedingungen erfillt:

(M1) d(z,y) =0<= z =y fir allex,y € R
(M2) d(z,y) = d(y, ) fir alle x,y € R (Symmetrie)

(M3) d(z,y) < d(x,z) +d(z,y) fir alle z,y,z € R (Dreiecksungleichung)

(R,d) heifit dann metrischer Raum.

Man beachte, dass aus den Metrik-Eigenschaften sofort folgt, dass
d(xz,y) > 0 fiir alle z,y € R,
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denn

d(e.y) = 5(d(r.y) +d2.y)) = S(d(z,y) + d(y,2)) >

Eine Metrik ist z.B. der sogenannte Hamming-Abstand dy, der fir x,y € K"
gegeben ist durch

d(z,xz)=0.

DO |

dy(z,y) =#{i=A{1,...,n} :z; # y;}.

Wir wiederholen zunichst einige Begriffe, die auf jedem metrischen Raum defi-
niert sind.

Definition 3.2 Sei (R,d) ein metrischer Raum.

e FEine Folge (r,) C R konvergiert beziiglich der Metrik d, falls es ein
Element x € R g¢ibt, das folgendes erfiillt: Zu jedem € > 0 existiert eine
natirliche Zahl N(¢€), so dass

d(Z,x,) < € fir alle n > N(e).

In diesem Fall nennt man & den Grenzwert der Folge (z,). Eine nicht-
konvergente Folge heifit divergent.

e Fine Folge (x,) € R heifft Cauchy-Folge falls es zu jedem ¢ > 0 eine
natirliche Zahl N(€) gibt, so dass

d(xp, ) < € fir alle n,m > N(e).
e FEin metrischer Raum (R, d) heifit vollstindig, falls jede Cauchy-Folge kon-

vergiert. Einen vollstindigen normierten Raum nennt man auch Banach-
raum.

Lemma 3.3
o Sei (x,) eine konvergente Folge. Dann ist ihr Grenzwert eindeutig bestimmdt.
o Jede konvergente Folge ist eine Cauchy-Folge.
e Fs gibt metrische Rdaume, in denen nicht jede Cauchy-Folge konvergiert.
Ubung: Beweisen Sie Lemma 3.3!

Auf metrischen Rdumen lassen sich weitere Strukturen erarbeiten. So reichen
die Begriffe Folge und Konvergenz einer Folge insbesondere aus, um offene und
abgeschlossene Mengen zu definieren. Das bedeutet, dass jeder metrische Raum
auch ein topologischer Raum ist.

Die wichtigsten Beispiele fiir metrische Rdume sind normierte Riume, fiir die wir
allerdings als Grundmenge einen Vektorraum V' voraussetzen.
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Definition 3.4 Sei V' ein Vektorraum diber einem Koérper IK. FEine Abbildung
| -] : V — R{ heifft Norm auf V falls sie die folgenden drei Bedingungen
erfillt:

(N1) ||z|| =0 <= 2z =0 fir allex € V.
(N2) ||az|| = |a|||z| fir alle « € K,z € V. (Skalierbarkeit)
(N3) ||z + vyl < ||z|| + ||y|| fir alle x,y € V. (Dreiecksungleichung)

Der Raum (V|| - ||) heifit dann normierter Raum. Weiterhin nennt man die

Menge
By ={z eVl <1}

den Einheitskreis der Norm || - ||.

Bemerkung: Ersetzt man im Fall IK = R die Bedingung (N2) durch |laz| =
al|z|| fiir alle « € RT, x € V| so erhilt man ein reelles Minkowski-Funktional

oder einen Gauge.

Fiir Normen gilt (dhnlich wie im Fall von Metriken) dass

||| > 0 fiir alle z € V,

denn aus (N2) folgt fiir « = —1 insbesondere ||(—1)z|| = ||z||, und daraus
1 1 1 1
lzll = 5zl + llz]l) = Sl + 1 = 2]) = 5(llz + (=2)l}) = 5(0]) = 0.

Wichtige Normen auf dem K" sind die folgenden:

n
Manhattan-Norm:  ||z||; = Z ||

i=1

Maximum-Norm: ||z, = m%lx |z
1=

Euklidische Norm:

n
]|z = \ > ai=vaTla
i=1

n
> " Jaf?, fiir 1< p < oo,
i=1

lllp = i

wobei die p-Norm die drei erstgenannten Normen als Spezialfélle (p = 1, p = oo,
p = 2) enthilt.

p—Norm:
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Um einzusehen, dass es sich bei diesen Abbildungen tatséchlich um Normen han-
delt, sind die Bedingungen (N1),(N2) und (N3) zu zeigen. Dabei sind (N1) und
(N2) direkt klar. (N3) kann man fiir die Félle p = 1 und p = oo leicht nach-
rechnen; in beiden Féllen folgt die Bedingung aus der Dreiecksungleichung fiir
Betrége. Fiir p = 2 ergibt sich (N2) aus der Cauchy-Schwarzschen Ungleichung,
fiir beliebiges p € (1,00) aus der Minkowski-Ungleichung, die im folgenden be-
schrieben ist.

Lemma 3.5 Sei z,y € IK". Dann gilt

n n
S <3 Jallul < Nzl - Il
i=1 i=1

falls entweder 1 < p,q < oo und % —1—5 = 1 oder falls p = 1,q = oo oder
p=o00,q=1.

Bemerkung: Der Fall p = ¢ = 2 fiihrt ausgeschrieben zur Cauchy-Schwarz’schen
Ungleichung

n n " "
=1 =1 i=1 i=1

Normen haben verschiedene wichtige Eigenschaften. Dazu zdhlt insbesondere,
dass man aus jeder Norm durch

d(z,y) = [ly — «|

eine Metrik d definieren kann. Man nennt diese Metrik dann auch die von der
Norm || - || abgeleitete Metrik. Die Metrik-Eigenschaften lassen sich leicht durch
die Norm-Eigenschaften beweisen. Weiterhin folgt fiir alle Normen die folgende
Abschétzung.

Lemma 3.6 Sei || - || eine Norm auf V. Dann gilt fir alle x,y € V
|l = flyll | <l =yl
Beweis: Fiir alle z,y € V gilt ||z]| = ||z —y + y|| < ||z — y|| + ||y||. Daraus folgt
]| = [yl < [l = yl].
Aus Symmetriegriinden erhélt man analog

lyll = ll=ll < [l = yll,
zusammen ergibt sich die Behauptung. QED
Wir haben erwédhnt, wie man mit Hilfe einer Norm eine Metrik und damit Kon-
vergenz beziiglich einer Norm definieren kann. Die Frage ist nun, in wie weit sich

diese Konvergenz-Definitionen fiir verschiedene Normen unterscheiden. Dazu ist
die folgende Definition hilfreich.
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Definition 3.7 Zwei Normen || - ||o und || - ||p auf einem Vektorraum V heifien
Aquivalent, wenn es positive reelle Zahlen c,C gibt, so dass fiir alle x € V' gilt:

cllella < llzlls < Cllzfla

Es lisst sich leicht zeigen, dass die in der Definition genannte Aquivalenz tatsich-
lich eine Aquivalenzrelation ist. Weiterhin gilt der folgende Satz:

Satz 3.8 Zwei Normen || - ||, und || - ||y auf einem Vektorraum V sind genau
dann dquivalent, wenn jede beziiglich der Norm || - ||, konvergente Folge aus V
auch beziiglich der Norm || - ||, konvergiert.

Beweis:

e Nehmen wir zunéchst an, dass die beiden Normen || - ||, und || - ||, &quivalent
sind. Da eine Folge (z,) genau dann gegen & konvergiert, wenn z,, — T eine
Nullfolge ist, reicht es, die Aussage fiir Nullfolgen zu zeigen.

Sei dazu also z,, — 0 eine Nullfolge beziiglich || - ||, , d.h. zu jedem € > 0
existiert eine natiirliche Zahl N(e) so dass ||z,||. < € fiir alle n > N(e).
Wegen

lzalls < C - ||zn]la < Ce fiir alle n > N(€)
folgt fiir jedes €', dass ||z,|[, < € fiir alle n > N(%’), also ist =z, auch
beziiglich || - ||, eine Nullfolge.
Die Umkehrung gilt analog.

e Gelte nun die Aquivalenz der Konvergenz-Definitionen. Durch Widerspruch
zeigen wir zunéchst, dass es eine Zahl C' > 0 gibt mit

|||y < C fiir alle z € V mit ||z]|, = 1. (3.1)

Angenommen also, eine solche Zahl C' existiert nicht. Dann existiert zu

jedem C' = C(n) := n? ein z,, mit ||z,||, = 1 und ||z,||, > n?. Die Folge

T

Yn ‘= —
n

erfiillt also 1
lynlla = n und [[ya|s > n.
Das heifst, (y,,) konvergiert gegen Null beziiglich || - ||,, aber divergiert be-
ziiglich || - ||, ein Widerspruch.
Somit gibt es ein C' > 0, das (3.1) erfiillt. Damit ergibt sich fiir alle z € V:
x
lllla

die erste Ungleichung fiir die Norméquivalenz ist also erfiillt. Die zweite
Ungleichung ergibt sich durch Vertauschen der Normen. QED

T

< Cllx
el |, = 1

b

= [llla
b

]la

lally = ]
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Die obige Aussage gilt fiir alle Vektorrdume V. Wir diskutieren nun den Fall eines
endlich-dimensionalen Raums.

Satz 3.9 Set V ein endlich-dimensionaler Vektorraum. Dann sind alle Normen
tiber V' dquivalent.

Beweis: Sei vy,...v, eine Basis von V. Jedes Element x € V lisst sich also

darstellen durch .
Tr = Z AV .
k=1

Wir konstruieren nun eine Norm (die Mazimum-Norm auf V) und zeigen an-
schliefend, dass jede weitere Norm auf V' zu dieser Norm aquivalent ist. Wegen
der Transitivitit der Norméquivalenz folgt daraus die Behauptung des Satzes.

Man rechnet schnell nach, dass

el = mas o
eine Norm auf V' definiert. Sei nun also || - || eine beliebige andere Norm auf V.
Definiere
n
C:=> lul
k=1

als die Summe der Normen aller Basisvektoren. Dann folgt:

n
E (073%
k=1

< > |o|[log]| wegen (N2) und (N3)
k=1

el =

n
< D lzloollogl weil |ax] < [l]loc
k=1
= O[]l
Fiir die andere Richtung definieren wir die gesuchte Konstante ¢ durch

c:=inf{||z| : x € V und ||z||. = 1}.
Weil fiir alle z € V' \ {0} gilt, dass

x
=1
' H:UHoo‘ .
folgt daraus, dass
x
-
[1]loc
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das heift ||z|| > ¢-||7]| fiir alle z # 0. Weil fiir z = 0 nichts zu zeigen ist, ergibt
das also die Behauptung.

Allerdings bleibt noch zu zeigen, dass ¢ > 0 gilt. Dazu fithren wir einen Wider-
spruchsbeweis. Wir nehmen also an, dass ¢ = 0. Dann gibt es eine Folge (y,,) mit
lymlloo = 1 und ||y, || — O fiir m — oo. Die Basisdarstellung in V' liefert fiir jedes

Folgenglied y,,
Ym = Z A Vg,
k=1

und damit n Folgen fiir die Koeffizienten aq,,, @gm, - . ., apy aus dem zugrunde
liegende Korper. Weil ||y,,||oc = 1 fiir alle m gelten die folgenden beiden Aussagen
fiir die Koeffizienten der Folgen:

Fiir alle m : |ag,| <1 firallek=1,...,n. (3.2)

Fiir alle m existiert ein k£ € {1,...,n} so dass |ag,| = 1. (3.3)

Wegen (3.3) erfiillt mindestens eine der Koeffizienten-Folgen k, dass #{m :
|| = 1} = oo, d.h. es kommen unendlich viele Einsen (oder unendlich vie-
le — Einsen) vor. Sei oBdA k£ = 1, und #{m : ay,, = 1} = co. Wihle dann

eine Teilfolge der (y,(,i)) C (Ym), in der die Koeffizienten-Teilfolge beziiglich der
Koeffizienten o, des ersten Basisvektors nur aus Einsen besteht.
Weiterhin sind wegen (3.2) alle der n Koeffizienten-Folgen beschrinkt. Nach dem

Satz von Bolzano-Weierstrass wéhlen wir nun eine Teilfolge (yﬁs)) C (y%)) fiir die
die zweite Koeffizienten-Folge as,, eine konvergente Teilfolge ist. Aus den Indizes
dieser Folge wihlen wir wiederum eine beziiglich der dritten Koeffizienten-Folge
as, konvergente Teilfolge und so weiter, bis wir eine Teilfolge

n
n _2 : /
yr(n) — A Uk,
k=1

erhalten, fiir die alle Koeffizienten-Folgen konvergieren, d.h.
ay,, — a;=1

/

/
O = Qip.

Nach Konstruktion wissen wir, dass (a},,) nur aus Einsen besteht und also gegen

1 konvergiert. Fiir
y= Z Vg
k=1
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gilt dann nach Teil 1 dieses Beweises

5 — 91l < Cllyly) = ylloo = max {Jaf, — axl} — 0 fiir m — oo.

-----

Weil ||y, || — 0 folgt daraus y = 0, ein Widerspruch zum Grenzwert a; = 1 der
ersten Koeffizienten-Folge. QED

Der gerade bewiesene Satz zeigt, dass es auf dem IK" nicht darauf ankommt,
beziiglich welcher Norm man von Konvergenz redet. Genauso induzieren alle
Normen auf dem IK"™ die gleiche Topologie: Begriffe wie Abgeschlossenheit, Be-
schrinktheit und Kompaktheit hingen also nicht von der Wahl der Norm ab.
Allerdings sollte man beachten, dass die Konstanten ¢, C' nicht nur von den je-
weiligen Normen, sondern auch von der Dimension des Raumes n abhingen.
Weiterhin darf man nicht vergessen, dass der Satz nur fiir endlich-dimensionale
Vektorrdume gilt; auf Rdume mit unendlicher Dimension (z.B. Funktionenriume)
ldsst er sich im allgemeinen nicht {ibertragen.

Als Beispiel wollen wir abschliefend noch die p-Normen auf dem Raum der steti-
gen Funktionen C/[a, b] iiber einem Intervall [a, b] angeben. Fiir eine stetige Funk-
tion f : [a,b] — IK definiert man

1N e = (f: |f(9c)lpdx>5 falls 1 < p < oo
o maxgelqp | f(x)| falls p = oo
3.2 Normen fiir Abbildungen und Matrizen

Definition 3.10 FEs seien (V)| - ||v) und (W, |- ||w) zwei normierte Riume und
F V. — W eine lineare Abbildung. Dann heifit F' beschrankt, falls es eine
Konstante C' > 0 gibt, sodass fiir alle v € V:

[1F'(0)llw < Cllvllv.
Wir untersuchen zunéchst die Stetigkeit solcher linearen Abbildungen.

Lemma 3.11 Sei F:'V — W eine lineare Abbildung zwischen normierten Vek-
torrdumen. Dann ist F' genau dann beschrinkt, wenn F' stetig ist.

Beweis:

e [st F' beschrinkt, so folgt aus
[1F(v) = F(w)llw = [|1F'(v = w)llw < Cllv —wll,
direkt die Stetigkeit von F'.
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o Ist F stetig, so gibt es zu jedem € > 0 ein 6 > 0 so, dass || F'(v) — Fw||w < €
fiir alle v, w mit ||jv — w|ly < d. Fiir ¢ = 1 und w = 0 erhdlt man wegen
F(0) =0 also ein § > 0 so, dass

| F'(v)|lw < 1 fiir alle [Jv]]y < 6.
Fiir jedes v € V' \ {0} gilt

<4

()

o

b,

= (i)
ol |l

v
— @) = 1Y

<1

v 1
( el L, < 5l

also folgt die Beschrénktheit mit C' = %. QED

Zwischen endlich-dimensionalen Riumen stellt sich die Situation noch einfacher
dar.

Lemma 3.12 Sei F': V — W eine lineare Abbildung zwischen zwei normierten
endlich-dimensionalen Vektorrdumen. Dann ist F' beschrankt und stetig.

Beweis: Sei F': V — W linear und sei vy, ..., v, eine Basis von V. Dann gilt

vV = Z AU
k=1
— Fw)=F (Z Ozkvk> = ZakF(vk)
k=1 k=1

Z Osz(’Uk)
k=1 w

n
< maxc [ F(udllw > lowl = max 7o) v o]
=1..n Pt k=1...n

= [[F)llw =

<D lalllF (o) lw
k=1

< Clwllv,

wobei beim letzten Schritt ausgenutzt wurde, dass nach Satz 3.9 alle Normen
auf V dquivalent sind. Damit ist F' also beschrinkt und nach Lemma 3.11 auch
stetig. QED

Auf dem Raum der beschrankten linearen Abbildungen zwischen zwei normierten
Vektorrdumen definieren wir nun folgende Norm.
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Definition 3.13 FEs seien (V. ||-||v) und (W, || -|lw) zwei normierte Riume. Fiir
eine beschrinkte lineare Abbildung F :'V — W definiert man die zu || - ||y und
| - [|w zugeordnete Norm durch

F
HFHV,W ‘= sup M
venfoy  vllv

Gilt V=W und | -||lv =|"-|lw so schreiben wir auch ||F ||y statt ||F|lv.w.
Weil F als beschrinkt vorausgesetzt wurde gilt fiir alle v € V'\ {0}

IF@)lw  Clivlly _
[v]lv [vllv

Wir erhalten also ||F||y,w < co. Die Norm der Abbildung F ist also die kleinst-
mogliche Konstante C', mit der man die Beschrénktheit der Abbildung abschéitzen
kann.

Wir erwidhnen noch, dass wir auch wirklich von Normen sprechen diirfen:

Satz 3.14 Es seien (V.|| - ||lv) und (W, | - |lw) zwei normierte Riume. Dann ist
Il - lvw eine Norm auf dem Raum der beschrinkten linearen Abbildungen von

V —W.

Aufgabe: Beweisen Sie Satz 3.14!

Folgende Umformulierung erweist sich als niitzlich.

Lemma 3.15 Es seien (V.| - [|v) und (W,|| - |lw) zwei normierte Riume und
F .V — W eine beschrinkte lineare Abbildung. Dann gilt
[Fllvw = sup [[F(v)]lw- (3.4)
veV:lvfly =1

Beweis: Zunéchst ist klar, dass

sup —[[E'(0)[lw < [Fllvw-
veV:|v|ly =1

Um sup,ey o)1 1F(0)|lw > || Fllv,w zu zeigen, bemerken wir, dass wegen der
Skalierbarkeit (Eigenschaft (N2)) der Norm || - ||y fiir alle v # 0, v € V gilt:

[E@)w _ 1 v
= IE@)llw = || F :
[ollv vl [vllv/ llw
Es gibt also zu jedem v # 0 ein u mit ||lully = 1 so dass % = ||F(u)||w.

Entsprechend folgt

F(v
supwg sup |[F(v)||w

v#0 ||'U||V v:||v||y =1

)



und zusammen ergibt sich die Behauptung. QED

Betrachte nun ein beliebiges v € V. Dann gilt:
F F'
POl o 1P

[t M e
woraus wir
IE@)lw < [[Fllvw - llv]lv (3.5)
folgern. Wir sagen auch, || - ||yw ist passend zu den Normen || - ||y und || - ||w-

Diese Eigenschaft wird spéter noch wichtig werden. Eine Verallgemeinerung ist
die folgende.

Definition 3.16 FEs seien (V,||-||v) und (W, ||-|lw) zwei normierte Riume. Eine
Norm || - || auf dem Raum der beschrinkten, linearen Abbildungen von V' nach
W heifit zu den Normen || - ||y und | - || passend, oder mit den Normen
Il - |lv und || - ||w vertréaglich, falls fir alle v € V gilt:

LE ) lw < IF]] - [lollv-

Gleichung (3.5) zeigt, dass die Norm || - ||y, immer zu ihren natiirlichen oder
zugeordneten Normen || - ||y und || - ||y passt.

Aufgabe: Seien (U, ||-|lv),(V, ||-|lv) und (W, ||-||w) normierte endlich-dimensionale
Vektorraume und seien F : U — V und G :' V. — W beschrinkte lineare Abbil-
dungen. Zeigen Sie, dass dann fir Go F: U — W gilt:

|G o Flluw < |Gllvw||Flluv-

Wir mochten nun den Fall linearer Abbildungen zwischen den endlich-dimensionalen
Vektorrdumen

A K" — K™
genauer untersuchen. Jede lineare Abbildung kann dann durch eine Matrix A

repréisentiert werden, so dass wir die zugehérige Norm ||Aljyw in diesem Fall
auch Matriznorm nennen.

Im folgenden entwickeln wir Formeln fiir einige Matrixnormen, die aus den wich-
tigsten Normen auf dem IK" IK™ entstehen.

Satz 3.17 Sei A € IK™" eine lineare Abbildung vom IK" in den IK™.

1. Betrachte (IK", || - ||1) und (K™, | -||1) jeweils mit Manhattan-Norm. Dann
heif$t die die zugehirige Matriznorm Spaltensummennorm und sie ist gege-
ben durch

m
lAlli = sup  ||Az|; = max Z |a|.
k=1,...n —

z€K™:||z||1=1

26



2. Betrachte (IK", || - ||oc) und (K™, | - ||lco) jeweils mit Mazimum-Norm. Dann
heif$t die die zugehdrige Matrixnorm Zeilensummennorm und sie ist gegeben

durch

2€K™:||z]|oo=1

n
Al = sup  [JAz[lc = max > ag.
i=1,....m =1

Beweis:

ad 1: Fiir alle z € IK" gilt zunéchst, dass

m

Azl = Z|Aas -y

i=1

n
E Qi Tk

k=1

R TONTE ( o Dw) >l
k=1 i=1 -
n
= max Y faul ]
k=1,...,n P

Damit gilt also
m
Al < ikl
Al < kg{%;fnz; i
1=

Um ||A]|; > maxg—1, n Y i, |aix| zu zeigen, wihlen wir j so dass

m m
Z |ai;| = kg:c}ffnz |kl
i=1 i=1
Fiir den jten Einheitsvektor e; gilt dann
m m
[Aejllr = |41l = Z |aij| = kg:c}ffnz |-
i=1 i=1
Fiir die Norm von A folgt (mit (3.4)) daraus

1Al = sup [[Az[l = [[Ae;lly = max Zlaml

zif|zfl1=1

ad 2: Fiir die Maximums-Norm erhalten wir analog fiir x € IK"

n
|Az||.e = max |(Az);| = max Zaikxk
i=1,....,m i=1,....,m
k=1
< max Z|alk||xk| < max Z|alk|||x||oo,

o7



also
n
Al < max > |a.
i=1,....m
k=1

Fiir die “>" Richtung wéihlen wir hier den Index j als den der Zeile mit
maximaler Summe, d.h. so dass

n n
E lajk| = _max E ||
i=1,....,m
k=1 k=1
Weiterhin wihlen wir einen Vektor z € IK" passend zum Index j durch

Qik
. { Sk falls ag # 0

1 falls a;, =0
Dann gilt

a) ||zl = 1, und
ajka;k

b) airzr =
) jk~k @

= |ajx|, insbesondere ist a;;2; positiv und reell.

Fiir die Norm von Az erhalten wir daraus, dass

n
Azl = max [(A2);| = max | apz
i=1,....m i=1,....m =

n n n
Zajkzk = Z lajk| = i_nllaxmz ||
k=1 k=1 T k=1

Wie fiir die Manhattan-Norm folgern wir daraus, dass

>

n
Al > max > " ag.
i=1,....m

k=1

QED

Wir betrachten jetzt noch die Matrixnorm || A||2. Dazu benétigen wir den auch in
anderen Bereichen der Numerik wichtigen Begriff des Spektralradius einer Matrix.

Definition 3.18 Sei A € IK™".

e )\ € IK heifst Eigenwert von A falls es ein v € IK™ \ {0} g¢ibt, so dass
Av = .

v heifit dann Eigenvektor von A beziiglich des Eigenwertes \
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e Der Spektralradius p(A) einer Matriz A ist der betragsmdfig grofite Fi-
genwert von A, d.h.

p(A) = max{|\| : A € C ist Eigenwert von A}

Wir miissen zunéchst an die folgenden Begriffe aus der linearen Algebra erinnern:
Notation 3.19

e Eine Matrivc A € R™" heifit orthogonal, falls ATA = I beziehungsweise
At = AT,

e Eine Matriz A € C™" heifit unitir, falls A= = AT,

Bemerkung: Die Spalten A;,...,; A, von A von orthogonalen oder unitiren
Matrizen bilden eine Orthonormalbasis des IK". Das sieht man, indem man das
Produkt B = ATA durch Produkte der Spalten von A beschreibt. Weil B die
Einheitsmatrix ist, gilt fiir das Element

- 1 fallsi=j
b = Ai 4 { 0 sonst,
entsprechend folgt die Behauptung.
Folgenden Satz werden wir verwenden.

Satz 3.20 (Hauptachsentransformation) Sei A € IK™" eine symmetrische
(bzw. hermitesche) Matriz. Dann gibt es eine requlire orthogonale (bzw. unitdre)
Matriz @ € R™" (bzw. Q € C™") und eine Diagonalmatriz D = diag(ds, ..., d,) € R™
s0 dass

A=0QDQ".

Dabei sind dy, . .., d, die Eigenwerte der Matriz A, und die Spalten von @) bilden
eine Orthonormalbasis, die aus den zugehdérigen Figenvektoren besteht. Das heifit,
es gilt

AQ]' :dijj f’LLTj = 1,...,7’1,
Wir beweisen folgende Folgerung aus Satz 3.20.

Lemma 3.21 Sei A € IK™" eine symmetrische (bzw. hermitesche) positiv semi-
definite Matriz, und sei ™" ihr betragsmdipig kleinster und p(A) = A™% jhr
betragsmapig grofter Eigenwert. Dann gilt \™™ > 0 und alle x € IK" erfiillen die
folgende Abschdtzung:

Azl < 7T Az < Al
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Beweis: Weil A positiv semi-definit ist, sind die Eigenwerte A, ..., A, von A nicht-
negativ (siehe Definition 2.18 auf Seite 37). Sei nach Satz 3.20 weiter vy,...,v,
eine Orthonormalbasis des IK", die aus Eigenvektoren von A besteht. Wir schrei-
ben x = " | a;v; und rechnen wegen

Az Ziflziz(lﬂ% ::§§:(1p4(vﬂ ::jiz(liAﬂh
i=1 i=1 i=1

nach, dass
n

n
T oA _ T 2
' Ar = E QAR U = E || Ay,

J,k=1 j=1

wobei letztere Gleichheit aus der Orthogonalitiit der v; folgt. Weiterhin gilt ||z]|3 =

wTx =3"" | |ai|* und entsprechend folgt

n n n
AN P <O Ay < Aoyl
=1 j=1 j=1

zusammen also _
A"z < 27 Aw < A | 3.

QED

Wir kénnen nun endlich auch die Matrixnorm || A||; beziiglich der Euklidischen
Norm berechnen.

Satz 3.22 Fir A:IK" — IK™, also A € IK™" gilt

A
A= sup 1A

seKrzo |lla

p(ATA)

Man nennt | Al|s auch die Spektralnorm von A.

Beweis: Zuniichst gilt, dass ATA € IK™" eine hermitesche und positiv semi-
definite Matrix ist. Daher sind alle ihre Eigenwerte groker oder gleich Null. Sei
p(ATA) = \max der grofte Eigenwert von AT A. Es gilt

| Ax]} = (Az)' (Az) = 7 AT Ax < Xal 3,
wobei die letzte Ungleichung aus Lemma 3.21 folgt. Die Ungleichung ergibt also
[A]l2 < 4/ p(AT A).
Um Gleichheit zu zeigen, wihlen wir z als Eigenvektor zu A™* und erhalten
|Az||2 = 2T AT Az = 2T \may = \maxzly — \max| 4|2,
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Daraus ergibt sich analog zu dem Beweis von Satz 3.17, dass

A A
2

QED

Leider ist die Spektralnorm fiir gréfsere Matrizen aufwéndig zu berechnen. Daher
ersetzt man sie manchmal durch eine der folgenden Normen:

Definition 3.23

Gesamtnorm: |Allg := nmax{]a;;| : 1 <i<m,1<j<n}

Frobenius-Norm: lA|lF :=

Beides sind wirklich Normen (da sie bis auf Vorfaktoren mit [|-||, beziehungsweise

mit || - ||z auf dem IK™™ iibereinstimmen).
Lemma 3.24
1. Die Norm || - ||g ist passend zu || - ||
2. Die Norm || - || ist passend zu || - ||2.

Beweis: Nach Definition 3.16 ist fiir den ersten Teil zu zeigen, dass
[Az]loe < [|Alle - ll2]|o-
Das rechnet man leicht nach durch

n
E al-ja:j
m
Jj=1

sl = max

n
< Hx|!ooi£n1a>§12 |aij]
—n

< [eflee nmax{a;]: 1 <i <m, 1 <j <nj=[Ale-[l2]e

Fiir den zweiten Teil miissen wir uns iiberzeugen, dass
[Azlly < [[Alle - [lz]l2
Wieder rechnen wir

1Az3 = Z

=1,....,m
m n n

= D > gl Y Il = 1A% I3
i=1 j=1 j=1

und erhalten so das gewiinschte Resultat. QED

(lijZL‘j

2 m n n
< Z (Z |a;|? Z |xj|2> siehe Lemma 3.5
j=1 j=1

J=1
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3.3 Kondition

Zum Abschluss dieses Kapitels wollen wir die gewonnen Erkenntnisse anwenden,
um die Kondition einer Matrix zu definieren. Diese wird uns helfen, die Ubertra-
gung von Fehlern abzuschétzen.

Betrachten wir dazu ein lineares Gleichungssystem Az = b mit folgenden Fehlern
in den Eingangsdaten:

e AA sei der Fehler in der Matrix A,

e sowie Ab der Fehler im Ergebnisvektor b.
Lasst sich anhand dieser Daten der Fehler im Ergebnis abschétzen?
Um diese Frage zu beantworten, bemerken wir zunéchst, dass
Ar=7—=x

ist, wobei x als exakte Losung des Gleichungssystems Az = b und & durch die
gewonnene Losung

(A+AA)T=b+ Ab
definiert ist. Es gilt also
(A+ AA)(x + Azx) = b+ Ab.
Multipliziert man diese Gleichung aus und verwendet Az = b so ergibt sich
(A+ AA)Az = Ab— AAx.

Nehmen wir nun zun#chst an, dass die gestérte Matrix A+ A A invertierbar wére.
Dann kénnte man nach Az auflésen und dadurch die Norm von x abschéitzen,
also
Az = (A+AA) AL - AAx)
= [zl < [[(A+2A4)7([|Ad] + [|AAll[|z]),

wobei wir eine multiplikative und zur Vektornorm passende Matrixnorm gewéhlt
haben. Der relative Fehler ergibt sich entsprechend als

Az B Ab
182l a4 aa) (u+uAAH)
Tl el
) A aa)
= A+ AA7Y|A ( | +
It VAN e A
) NN
) —
< e+ an g (o + I
Ab AA
< (s ana) b Lol (3.6)

Vergréherungsfakt ™
CLETOBCIIMESIARION \ Lelative Fehler der Eingangsdaten
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Bevor wir den Term des Vergroferungsfaktors weiter abschitzen, beschiftigen
wir uns mit der Frage, wann die Inverse von A + AA existiert.

Lemma 3.25 Seien A,AA € IK"", A regulir und ||A7'|||AA] < 1, wobei || - ||
eine zu eine Vektornorm passende multiplikative Matriznorm ist, die ||I|| = 1
erfillt. Dann ist A+ AA requldr, und es gilt

A
= JAT[AA]

I(A+Aa4)7 <

Beweis: Schreibe

r=AYA+AA)zr - A (AA)z
= Izl < [ATMII(A + Ad)z|l + A I(AA)] ||
= el (= JATIAA]) < JAT (A + AA)a].

>0 nach Vor.

Also folgt aus (A + AA)x = 0 dass ||| = 0 und entsprechend auch z = 0. Die
Abbildung A+ AA ist somit injektiv und damit auch surjektiv, also ist die Matrix
A+ AA invertierbar.

Wir kénnen also B := (A + AA)™! definieren. Um die im Lemma genannte
Abschitzung zu erhalten, rechnen wir nach

1 = ||| = ||B(A+ AA)|| = | BA+ BAA'AA|
> || BA|| — | BA[[[A||AA]
= || BA| (1 = |ATY|[|AA]) .

N

>0
Daraus erhalten wir .
1A <
T TATAA]
und schlieflich
[(A+ A4 = |BAA < |BAYA~) < —IA T
T AT A4

QED

Definition 3.26 Fir eine Matriz A € IK™" definieren wir
cond(A) = [|A]| A7
als die Kondition von A.
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Wozu man diese Definition verwenden kann, zeigt der folgende Satz und das
anschliefiende Korollar.

Satz 3.27 Sei || - | eine Matriznorm wie in Lemma 3.25. Sei ||b|| # 0 und
|A7Y| [JAA| < 1. Sei Ax = b. Dann gilt fiir jede gestirte Lésung v + Ax des
gestorten Systems

(A+AA)zT =b+ Ab
die folgende Abschdtzung:

A 1 AA Ab
8] _ iy -
El 1= cond(A)EAL \ AT " Tl

Zunichst bemerken wir, dass der Ausdruck wegen

|AA]

1>1—cond(A) T4

=1-[|A7] A4l >0

wohldefiniert ist. Man sieht hier auch schon, dass eine kleinere Kondition zu
kleineren relativen Fehlern fiihren wird.

Beweis: Aus (3.6) und der Abschétzung aus Lemma 3.25 folgt, dass

|Az]] A~ Al (HAAH N ||Ab||)
Il = L= (AT IAAL gL XAl (ol
_ cond(A) 1AA] [ A
- I Al o
1 — cond(A) I

A
QFD

Eine einfache und oft betrachtete Anwendung dieses Ergebnisses ist das folgende
Korollar, das man auch direkt aus (3.6) ohne die Voraussetzungen aus Lem-
ma 3.25 herleiten kann.

Korollar: Hat man nur eine Stérung in b (ist also AA = 0), so iibertragen sich
die Fehler in b mit maximal der Kondition von A. Genauer:

[[Az]] |Ab]|

< cond(A)——.
all 18]

Diese Aussage ergibt sich direkt aus Satz 3.27, da die Voraussetzung || A7 [|AA|| =
0 < 1 erfiillt ist.

Abschliefsend geben wir noch zwei niitzliche Aussagen zur Bestimmung der Kon-
dition einer Matrix an.
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Lemma 3.28 Flir jede zu einer Vektornorm passend gewdhlte Matriznorm und
jede invertierbare Matriz A gilt: cond(A) > 1.

Beweis: Fiir den Beweis verwenden wir die Definition fiir passend fiir A und A~!
in folgendem Sinn. Sei x # 0. Dann gilt A~'2 # 0 und entsprechend

1Al < A7) Iz
[AAT )] < (Al (A7 )]

Zusammen ergibt sich

A 2] JJACA )| [ A ]|l
[0 I S I .

LA A= = 1Al

QED

Fiir die der Euklidischen Norm zugeordnete Spektralnorm gelten die folgenden
Aussagen.

Lemma 3.29 Sei Q) eine orthogonale (unitire) Matriz. Dann gilt
1. cond(Q) =1, und

2. cond(QA) = cond(A) = cond(AQ) fir alle Matrizen A, das heifit die Mul-
tiplikation mit Q) dndert die Kondition der Matrix A nicht.

Beweis:
1.
cond(Q) = [Ql1Q 2 = 1/p(QTQ)Y QT Q)
VoD p(QQT) = \/o(D)\/p(I) = 1
2.

1All: = 11Q"QAll2 < Q"2 QAll2 = |QA]l2
< Q2 [Allz = l[All2,

also ist || Alls = ||QA]|2- Analog ergibt sich ||A|2 = ||AQ||2, also erhélt man
cond(QA) = cond(Q) = cond(AQ).

QED
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Kapitel 4

Orthogonalisierungsverfahren

4.1 Die Q)QR-Zerlegung

Bisherige Losung von Gleichungssystemen:
A—L-A=

Dabei galt fiir die Kondition von (L - A):

cond(L - A) < [IL]| - [IL7H] - [[A] - 1A
= cond(A) - cond(L),

die Kondition vergrofert sich also um bis zu cond(L).

Idee: Die Kondition lisst sich verbessern, indem man A durch Multiplikation
mit orthogonalen bzw. unitdren Matrizen auf eine obere As-Gestalt bringt, denn
fiir orthogonale /unitire Matrizen gilt nach Lemma 3.29

cond(QA) = cond(A)
sowohl fir die Euklidische Norm als auch fir || - || r.
Lemma 4.1 Sei QQ orthogonal (bzw. unitir). Dann gilt | Qx| = ||z||2.

Beweis:
IQzl} = (Qu)* (@w) = " @ Q= x'w = |3
I
QED
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Definition 4.2 Die Zerlegung einer Matriz A € IK™" der Form A = QR mit
einer unitiren Matriz Q) € IK™™ und einer oberen As-Matriz R € TK™" heifst
QR-Zerlegung von A. Dabei hat die Matriz R folgende Gestalt:

T11 *

wobei k < min{n, m} und r11, 799, ..., "kx 7 0.

Definition 4.3 Sei h € IK" normiert, d.h. h*h = ||h||*> = 1. Dann heift

H=1-2hh"
Householder-Matrix.
Bemerkung:
hihi  hihs hih,
hy S5 S
h=| : h* = (hy,...,h,)  hh* = 2 o _
ho, i R
hohy -+ -+ hyh,

Lemma 4.4 Sei H eine Householder-Matriz. Dann gilt HH* = H*H = I und
H=H*.

Beweis:

H* = (I —2hh*)* =1 —2hh* = H
HH* = (I — 2hh*)(I — 2hh*) = I — 4hh* + 4h h*h h* = I
—~~

1

QED
Beispiel: Sei

L/3
=5 (0),

dann gilt hTh = 1. Fiir die Householder-Matrix ergibt sich daraus:

3 1 7T =24
- . T o 5 3 4 _
H=1-2nh"=1 2(§)(5 5)_—25<_24 _7)
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wobei H = H” und H? = I. Nun kann man beliebige Punkte durch Multiplikation
mit der Householder-Matrix auf andere abbilden, zum Beispiel:

m(o) =) 00) )
()G m0G) ()

Aufgrund des Bildes scheint H also eine Spiegelung an der Geraden durch den
Ursprung senkrecht zu h zu sein. Das wollen wir im folgenden begriinden:

Lemma 4.5 Die Abbildung H : R™ — R™ entspricht geometrisch einer Spiege-
lung an der zu h orthogonalen Ebene durch den Ursprung.

Sei z € R™ Wir zerlegen = in einen Anteil in Richtung ~ und einen Anteil
orthogonal zu h.
r = ah+ Bt mit t Lh (tTh=0)

[x = (hh")z + y ist geeignet, da yJ_h}
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Im Beispiel:
0y 16 1/3 +g —4
4) 5 5\4 25\ 3

H(z) = (I —2hhT) - (ah + Bt)

f— . . . . — T — T
=a-T-h+B-T-t 2ahh1h 2ﬁhh0t

Dann gilt:

= —ah+ ft

Also ist H tatséchlich eine Spiegelung an der Ebene durch den Ursprung senkrecht
zu h.

Unser Ziel ist es jetzt, die Kondition bei der Lésung von Gleichungssystemen zu
verbessern, indem man A durch Multiplikation mit orthogonalen bzw. unitiren
Matrizen auf obere Dreiecksgestalt bringt, also:

*
Q-A= :
0 *
wobei () eine orthogonale bzw. unitdre Matrix darstellt. Dazu verwenden wir
Householder-Matrizen H, fiir welche gilt:

H =1—2hh* wobei |h*|=1 H*-H=H-H*=I H'=H

Unser Ziel ist es, eine Householdermatrix A so zu bestimmen, dass die Anwendung
von H auf A zu einer Matrix fiihrt, in der die erste Spalte ein Vielfaches des
Einheitsvektors ist, also

* *

0 0
H-A = _ =)\ und HA = ]

0 0

Das néchste Lemma zeigt, wie man so eine Matrix H wéahlen muss.

Lemma 4.6 Seiz € K"\ {0}. Fir

*

1
U3=$+9€1'ﬁ-||x||2-61 und H=1-2- u*u gilt:
T uru
doe g ol
|21
€K



Beweis: Wir suchen u € IK" \ {0} mit Hx = c- e, das heifst

uu*

Hr=2-2-

=C- €.
u*u

Das ist erfiillt, falls die beiden folgenden Bedingungen gelten:

Aus (4.1) folgt:

2ux = uwueR
= w'r € R
= (x —cep)*z €R
= z*x —cr; €R
= cr1 €R (*)
= c = -1 a€R (xx)

Weiterhin gilt:

0=2u"r —uu=u"(2z —u)

(g)(:c —cey)*(x + cey)

= 2*z + 2*ce; — el x —Ccel e
=2z +cx, — cr; —|c]?
<~
€R, nach (x¥x)
=Cr1=CT1
= [ll3 = |el*
Zusammen mit (**) gilt:
(x)
[2ll2 = [e] =" |al]a:]
Nun folgt:

o < Mtz e el
|1 |1]

Daher ergeben sich als Losung:

eR

G i

||

1
und uw=2x Fzy-||z)— - €.

1]
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Die numerisch stabilere der beiden £ Variante ist u = x + x; - ﬁ Nx2|| - €1, weil

es dann in der ersten Koordinate von u zu keiner Ausléschung kommen kann.
Dieses funktioniert sogar, falls z = « - €.

Beispiel: Sei z = (‘ZZ) gegeben. Gesucht sind nun u(H) und ¢, sodass folgende
Bedingungen erfiillt sind:

2
Hr =2 — —uu'z = (C)
u*u 0

(u1 + ’I]ll)
U = L.
U + Uol

2u*x = 611y + Suy +i - (6up — 8fz)  uu = ui + U5 + uiils

Es gilt:

Wir machen nun eine Fallunterscheidung. Im ersten Fall ist u reell, im zweiten
Fall komplex. Es ergibt sich:

1. 2u*z = u*u:

(a) 6u; — 8y =0

2. (1) = ("0") = ()

(a) —cp = ug
(b) 3 - 61 - ’111
(C) 4 = U9

(d) 0=up

Aus 2(a) - 2(d) folgen folgende Werte:
Uy =0 uy = 4 aus 2(a) folgt uy =0
Aufserdem gilt:

8

605 +8-4=0+17a; +16+0 ;»afz{ )

Daraus ergeben sich fiir u die Werte:

) Y
u:(iz) oder u:(42)
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Nach Lemma 4.6 gilt nun:

x 3i .5 81 —21
u:xixl-%-elz(4)i32~§:(4) oder ( 4)

Im ersten Fall erhélt man die folgende Householder-Matrix:

uu* 2 64 32
H_I_QMu_]_ﬁi(—wil6)

S50 -]
e ()

Satz 4.7 Fir eine Matriz A € IK™" mit dem Rang n (also m > n) existiert
eine QR-Zerlequng.

Auferdem gilt:

Beweis: Die Idee ist, in Lemma 4.6 x = A; zu wahlen und anschliefend eine
Householder-Matrix H™ so zu bestimmen, dass die Gleichung HMz = «a - ¢,
erfiillt ist. Es muss also gelten:

HYA =

In dieser Darstellung ist die erste Spalte schon korrekt, der Rest interessiert uns
noch nicht. Durch weitere Iteration ergeben sich dann die restlichen Spalten der
Matrix. Seien bereits nach k Schritten die unitiren Matrizen H® ... H® so
bestimmt, dass fiir A®) gilt (A € IK™"):

AR — g . g = E Bk

*

0 [C®

wobei B®) ¢ IKF™* und C®) ¢ K" *™F und al(-f) = 0 fiir alle j < %k und
i > j gilt. Falls k = n ist, so ist A™ mit A® = H™ . . HO . A eine obere
Dreiecksmatrix und @ = H®™ . ... . H® unitdr. Ansonsten sei nun z*+t1) =
C, € IK™ . Zunichst gilt 2#+D £ 0, denn wiren die ersten k + 1 Spalten linear
abhiingig, dann wire der Rang von A®) nicht n. Aufgrund der Regularitit von
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H® wire in diesem Fall auch der Rang von A ungleich n. Nun benétigen wir
einige Definitionen:

) S )
~(k+1) . s(k+1 1 7 (k41
At = gl +WH$( I, e1
Ty
,a(kJrl) (a(kJrl))*

k1)

wie in Lemma 4.6

m—k — 2 (@k+D)* g k+D)
Durch diese Definitionen folgt:

(%

~(k+1
atcm = | 01 | e 25 e
o : ) 2

(‘) [ |

Um aber die Transformation auf ganz A%®) statt nur auf C*) anwenden zu kénnen,
definieren wir nun

0
LB+ : k
0
i k+1) } m — k
HE u(k+1)(u(k+1))* B I, ‘ 0
=1y (u(]g+1))*u(k+1) - 0 ‘H(k+1)

wobei H*+D eine m — k x n — k-Matrix ist. Mit diesen Definitionen erhilt man
jetzt fiir die Matrix A®+D:

AR+ _ ) 40 BW®)

0 TEDCH

mit der geforderten Eigenschaft, dass ag?“) =0firallej<k+1lundi>j QE
D

Algorithmus 6: QR-Verfahren (Matrixversion)

Input: A € IK™" mit Rang(A) =n
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Schritt 1: A0 := A4
Schritt 2: For k=1,...,n do

k—1 k-1) 1 N (k=12
d = afy " +a = Zagk )‘
lag, 1\ =k
u®) = (O,...O,d,agrlbl,...,agjk_l))T
g® .= 7 _QM
AR . k) g(k=1)
Ergebnis: (JR-Zerlegung mit
A = @R nit
R := A™ ist obere Dreiecksmatrix und
Q = HWY.......H"™ ist unitdre Matrix

Diese Berechnungen sind aufwindig, insbesondere die Anwendung von von H®*)
auf alle Spalten von A®). Wir suchen nun eine bessere Rechenvorschrift fiir die
Berechnung von dem Produkt Hv der Householder-Matrix H und einem beliebi-
gen Vektor v € IK™. Nun gelten:

2
H=1—-—uu" =1- fuu" mit u=x+ ﬂHxHQel und
ury |1

2 1

B2 - (4.9
wuza (]l + |])

Dann folgt:
Hv= (- puu)v = v— fuuv
= v— fuvu=v — su

mit s = fu'v e K (4.5)

Damit kann man H A, fiir die Spalten A, von A also effizient berechnen. Bei
betragsmifig kleinem 3 ergeben sich allerdings numerische Probleme. Sie kann
man mit Hilfe des folgenden Lemmas vermeiden.

Lemma 4.8 Sei H eine Householder-Matriz aus Lemma 4.6 zu x # 0 und H'
die Householder-Matriz aus Lemma 4.6 zu y = ax mit o € RT und x,y € K".
Dann gilt H = H'.
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Beweis: Zunéchst gelten folgende Gleichungen:

2
u::p+£||x||261 H=1- (e
1] uru
ax
u'=y+ ﬂHyngl = ax + —||ax ||, = au
|1 v |
Nun folgt daraus
2 2
H =1- u () =1-— uut = H
(u')*u! a’uru

QFD

Im folgenden Algorithmus wird statt = also verwendet, um die numerische

lllloo

Stabilitdt von [ aus (4.3) zu gewihrleisten.

Algorithmus 7: QR-Verfahren (Implementations-Variante)

Input: A € IK™" mit Rang(A) =n
Schritt 1: w;, :=0 fir alle i=1,...,m und k=1,...,n
Schritt 2: For k=1,...,n do

Schritt 2.1: A,™® := max;—}
Schritt 2.2: «:=
Schritt 2.3: For ¢ =k,...,m do

Schritt 2.3.1. wu; := A:i,’faw (Normierung der k-ten Restspalte)
Schritt 2.3.2. o := o + |u;|> (Norm? der k-ten Restspalte)
Schritt 2.4: a:=/«

Schritt 2.5: ﬁk = m (ﬂ aus 43)
Schritt 2.6: up, = ugr + |Z::| -« (1. Komponente von u; nach Lemma 4.6)
Schritt 2.7: Akl = —ﬁ::‘ . Akmax

Schritt 2.8: For i=k+1,...m do a;, :=0 (erste Spalte von HA,™*)
Schritt 2.9: For j=k+1,...,n do
Schritt 2.9.1. s:= 0, > ", Wra;; (s aus 4.5)

Schritt 2.9.2. For ¢ = k,...,m do a;; = a;; — 5 - u;, (Berechnung von
H A§k) nach 4.4)
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Ergebnis: (QR-Zerlegung der Originalmatrix A mit

R = A
2
Q = HY. ... .H™ nit H(k):I—*—uku}z und
uyug,
Utk
up = : fir k=1,...,n
Unk

Bemerkung:
e oft bendtigt man () nicht explizit und kann sich die Berechnung sparen

e R enthilt viele Nullen, die man zum Speichern (eines Teils) der w;; verwen-
den kann, genauer s. Beweis von Satz 4.7, und man hat nur die Diagonale
extra zu speichern

e [/ ist untere Dreiecksmatrix

Aufwand: Die Q) R-Zerlegung einer Matrix A € IK"™" mit Rang(A) = n erfordert
2 1 2
n*(m — gn) + O(mn)(= O(n*m))

wesentliche Operationen.
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Der teuerste Schritt ist 9.2 mit

n

<Z > 2Am- k>> +O0(mn) =Y 2(n—k)(m—k)+O(mn)

k=1 j=k+1 k=1

( 2nm — 2nk — 2km + 2k2> + O(mn)

k=1

=2n°m + 22]{;2 — k(n+m)+ O(mn)

h=1
1)(2 1 1
:2n2m+2n(n+ )6( n+ )—2(n+m)@+0(mn)
. ~- - N’
e Sk

3
— 2n?m + 22% — n(n +m) + O(mn) + O(n?)

=O?;1n)

=n’ <m - %n) + O(mn)

Fiir m = n ergibt sich also 2n® 4+ O(n?), das ist etwas hoher als der Aufwand von
%n:” bei dem Gauss-Verfahren. Fiir schlecht konditionierte Matrizen lohnt es sich
aber, diesen Aufwand in Kauf zu nehmen.

Bemerkung: Im Gegensatz zur LU-Zerlegung ist bei der QQ R-Zerlegung (bei Rang(A) =
n) keine Pivotisierung notig. Das gilt allerdings nicht im Fall Rang(A) < n. In
diesem Fall tauscht man in jedem Schritt & vor der Berechnung der w; und der

0, die Restspalte mit grofter Euklidischer Norm an die k-te Position.

4.2 Lineare Ausgleichsprobleme

Beim Ldésen linearer Gleichungssysteme bestand die Aufgabe darin, ein x zu fin-
den, so dass Az = b gilt. Was passiert aber nun, wenn Ax = b nicht l6sbar ist?
In diesem Fall versucht man, ein x zu finden, so dass der Ausdruck Az die rechte
Seite b moglichst gut anndhert. Verwendet man zur Bewertung der Qualitit der
Anndherung die Euklidische Norm, fiihrt das zu dem Minimierungsproblem

A
min [|Az — b,

in dem man unter allen Vektoren x € IK" den sucht, der die Euklidische Norm
von Ax — b minimiert.
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Bild(A)

Da es dquivalent ist, statt ||Az — b||; die quadratische Funktion ||Az — b||3, zu

minimieren, definieren wir das lineare Ausgleichsproblem wie folgt:

(AuP) mingekr F(x) mit F(z) = ||Az —b||3, A € K™ be K™

Beispiel:
2 1 1
A=|1 -1 b=10
1 1 1

Zwei mogliche Losungen fiir x werden im folgenden untersucht:

AN 2 1Y) - NnT
x = (3% | Losung bzgl. L 1)~ b= F(z)=|{(1 0 %) b
3 - 2
N 1 1 3 T
x = (1) Losung bzgl. L 1)~ b= F(z)= ’ (3 0 1) —b
5 - 2

Im folgenden wollen wir untersuchen, wie man die beste Losung fiir solche Aus-

gleichsprobleme findet.
Satz 4.9 Sei A € IK™", b€ IK™. Dann gilt
1. (AuP) ist losbar
2. x € K" ist Losung von (AuP) genau dann, wenn

A*Ax = A™b

(N)

Man sagt ,,x lost die Normalengleichung (N) beziiglich A und b.“

3. (AuP) ist eindeutig losbar genau dann wenn Rang(A) =n
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Beweis:
1. Sei (zy) eine so genannte Minimalfolge, d.h.

||Azy — bl — o := inf ||Az — b2
zelK™

a >0 (Falls & = 0 wire Az = b und das Gleichungssystem wére losbar.)

Ist k grof genug, so gilt ||Azy — b]|2 < 2a, d.h.
[Azllz = [[Azg = b+ blls < [|Azy = bll2 + [[bll2 < 20+ [|5]]5.

Also ist die Folge (Azy) C Bild(A) beschrinkt.

Aufgrund der Stetigkeit von A ist Bild(A) abgeschlossen. Vom Satz von
Bolzano-Weierstrass wissen wir daher, dass es eine konvergente Teilfolge
von (Axy) gibt, die gegen § € Bild(A) konvergiert. Also gibt es & mit
AZ = g und daher gilt

|47~ blls = 15~ blls = inf |4z ~ ],
relK™
also ist © Losung des Ausgleichsproblems.

2. Zunichst erinnern wir daran, dass
Bild(A*) = {A"z: z € K™}
Bild(A*A) = {A*Ax : x € IK"}.

Aus der linearen Algebra wissen wir Bild(A*) = Bild(A*A), woraus folgt
A*b € Bild(A*) = A*b € Bild(A*A). Daher existiert

zo € IK" mit A"Axy = A™D. (4.6)
Fiir jede Losung xo von (N) und fiir jedes x € IK" gilt

F(z) = F(x) = || Az — b3 — [ Azo — bI3
= (Az — b)"(Azx — b) — (Azg — b)"(Azy — 1)
= A" Ax — 2" A"D — b"Ax + b7
— A" Axg + x5 Ab + b" Axg — bD

Weil 2y (N) erfiillt ist, gilt A*0 = A*Axy bzw. b*A = xj A*A. Unter Ver-
wendung dieser Gleichungen erhilt man weiter

=" A" Ax — 2" A" Axy — 2 AT Ax
— xy A" Axg + 2y AT Az + 2 AT Az
=" A" Ax — 2" A" Axy — x{ AT Ax + oA Axg
= (z —xo) A" A(x — x0)
— [ A( — m)[3 > 0 (47)
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“= Sei xg eine Losung von (N). Dann folgt F(x) > F(xg), Vo € IK", also
ist xy eine Losung von (AuP).

“«,, Sei andererseits x Losung von (AuP). Nach (4.6) kénnen wir z, als
Losung von (N) wéhlen, d.h. A*Azy = A*b. Es folgt F'(x)—F(x¢) > 0 wegen
(4.7). Andererseits gilt F(x) < F(xg), weil = eine Losung von (AuP) ist.
Zusammen folgt F'(z) = F(xq) und daraus ||A(z —x¢)||3 =0 = || A(z — o) ||
wegen (4.7). Nach dem ersten Normaxiom haben wir dann A(z — x¢) = 0
und entsprechend A*Ax = A*Axy = A*b, also 16st x auch (N).

3. Falls Rang(A) = n ist A*A € IK™" reguldr. Also ist A*Ax = A*b eindeutig
l6sbar. Ist Rang(A) < n, so existiert wegen (4.6) eine Losung zo von (AuP)
sowie ein z € Kern(A) mit z # 0. Damit gilt:

F(zo + 2) = [[A(zo + 2) — bll; = | Ao + Az — bl = [|Azo — bl|3 = F(x0)

und xy + z # xg, also gibt es zwei verschiedene Losungen von (AuP)

Bemerkung: Ist die Losung von (AuP) nicht eindeutig, so ldsst sich aber aus
Opt* = {x € IK" : x ist Lésung von (AuP)}
ein eindeutiges Z mit minimaler Euklidischer Norm ||Z||; wéhlen. D.h.

min
z€Opt*

|2
ist eindeutig losbar.

Beweis: Opt*™ = {z € IK" : A*Ax = A*b} ist ein affin linearer Teilraum. Dieser
enthdlt genau ein Element mit minimaler Fuklidischer Lange, ndmlich die ortho-
gonale Projektion von 0 auf Opt* QED

Aufgabe: Sei L € R™ ein affin linearer Teilraum und a € R™. Zeigen Sie, dass das
Minimierungsproblem

min ||a — z|
el

eindeutig losbar ist, und zwar von der orthogonalen Projektion von a auf L.
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Losung des Ausgleichproblems

Idee 1 Nutze Kriterium 2 aus Satz 4.9 und l6se das Gleichungssystem A*Ax =
A*b durch Cholesky. Das ist schnell, aber oft ungenau.

Idee 2 Fiihre QR-Zerlegung von A durch. Man erhélt
R - : :
A=QR=0Q (T) , R obere Dreiecksmatrix

Ist Rang(A) = n, so ist R regulir. Es gilt

|Az — b||3 = |QRz — b||5 = ||Q*(QRx — b)| nach (Lemma 3.29 )
= || Rz — Q"b|l3

1 () - (S =t @

wobei (%) = @Q*Db eine Zerlegung des Vektors Q*b € K™ in ¢ € K",

de K™ ist.

Lemma 4.10 Sei ||Az — b||3 — min ein lineares Ausgleichsproblem mit A €
IK™" m > n und Rang(A) = n, und A = QR eine QR-Zerlegung von A,

R o (.c
R:(T) unde—(T)

~

r=R'c

die eindeutige Losung von (AuP) und ||d||5 der zugehérige Zielfunktionswert.

Dann st
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Beweis: Nach (4.8) wissen wir, dass || Az—bl|5 = || Rz—c||2+]|d||2. Dieser Ausdruck
wird minimal, falls ¢ = Rx. Da R reguliir, existiert so ein x, nimlich R~ 'c. Die
Zielfunktion ergibt sich als

| Az —b]|3 =0+ |d])3
also || Az — b)) = ||d]).. QED

Anwendungsbeispiel (Statistik): Es seien Messdaten (a;,b;) miti =1,...,m
gegeben, bei denen ein (unbekannter) linearer Zusammenhang besteht.

a;

Gesucht sind die Parameter «, 3, die diesen linearen Zusammenhang beschreiben.
Dabei soll b; durch die Gleichung «a; + 3 in Abhéngigkeit von a; moglichst gut
geschiitzt werden konnen, d.h. aa; + (8 soll mdglichst nahe an b; sein. Wir wollen
die Qualitit dieser Schitzung maximieren und versuchen dazu, die Summe aller
quadrierten Schétzfehler zu minimieren. Das fiihrt auf das folgende Problem:

m
i ; b;|%.
Iglﬁn; |a; + Bb]

Mit
a; 1 by
A= v = (g) b
a, 1 b,
erhalt man
a1 + ﬁ - bl n
Az — b3 = || : 15 =" loa; + 8 bil*,
an + ﬁ - bn =1

also ein lineares Ausgleichsproblem. Man nennt dies “Methode der kleinsten Qua-
drate”.
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4.3 Singularwertzerlegung

In diesem Abschnitt beschéftigen wir uns mit Orthogonalisierungsverfahren fiir
nicht quadratische Matrizen. Sei A = (a;;) € IK"™" eine solche Matrix. Wir be-
zeichnen A als Diagonalmatrix falls a;; = 0 fiir alle ¢ # j mit ¢ € {1,...,m}
und j € {1,...,n}. Mit dieser Bezeichnung fiihren wir den Begriff der Singulér-
wertzerlegung ein.

Definition 4.11 Sei A € IK™". Fine Zerlequng der Form A = UXV™ mit uni-
tdaren Matrizen U € IK™™ und V € IK™" und einer Diagonalmatriz > € IK"™"
heifit eine Singuldrwertzerlegung von A.

Wir benutzen die Dimensionsformel: Fiir A € IK™"
n = Rang(A) + dim(Kern(A)) und Kern(A) = Kern(A*A)
sowie die folgende Aussage aus der linearen Algebra.

Lemma 4.12 Se; A € IK"™". Dann gelten

Kern(A) = Kern(A*A)
Rang(A) = Rang(A*) = Rang(A*A) = Rang(AA")

Satz 4.13 Jede Matriz A € IK"™" besitzt eine Singuldrwertzerlequnyg.

Beweis: Seien \; > Ay > --- > )\, die Eigenwerte von A*A mit zugehorigen
Eigenvektoren vy,...,v,, so dass

1 falls j =k
A" Av; = \jv; und vy, = A Sj.
! 0 fallsj#k

Sei Rang(A*A) = r. Dann sind genau r der Eigenwerte positiv und die restlichen
Null. Weil ebenso r = Rang(AA*), hat also auch AA* genau r positive Eigenwerte.
Definiere 1
0j; = \/)\j und U; = —A’Uj 1 S] S r (49)
gj
Dann gilt

1 1
Aj;

1 fallsj=k

0 sonst

J = J J
00k ~ =~ 00k
AkVk

1 A
wing = vi A Av, = b Vivg = {
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Also sind ug, . .., u, ein Orthonormalsystem von Eigenvektoren zu den Eigenwer-
ten Ay > Ay > -+ >\, > 0 der Matrix AA*. Ergénze {uy,...,u,} zu einer
Orthonormalbasis {uy, ..., u,,} aus Eigenvektoren und setze

Vi=(v1,...,0,) € K" und U := (uy,...,uy,) € K™
Dann gilt
Ay, — {crjuj fir 1<j <7 wegen (4.9)
’ 0 fir r+1<j<n weil v; € Kern(A*A) = Kern(A)
Also erhélt man

AV = U¥ mit ¥ = diag(oy,...,0,, 0,...,0 ) € IK™"
——

min{n,m}—r
wobei die Matrizen V, U unitéar sind, weil ihre Spalten jeweils also orthonormal
zueinander konstruiert wurden. Es folgt A = UX V™. QED
Bemerkung:

e Die Eintrige von ¥ sind eindeutig, wenn man Positivitit verlangt.

o Ist A selber quadratisch und hermitesch, dann gilt o; = |p;| wenn p; Ei-
genwert von A ist.

Definition 4.14 Die positiven Werte o; > 0, die in der Singuldrwertzerlegung
der Matrixz A aus Satz 4.13 auftreten, heiffen Singuldrwerte von A.

Eine effiziente Berechnung der Singuldrwertzerlegung wird im Kapitel iiber Ei-
genwerte und Eigenvektoren besprochen.

4.4 Anwendung der Singularwertzerlegung auf li-
neare Ausgleichsprobleme

Bisher hatten wir zwei Methoden kennen gelernt, um lineare Ausgleichsprobleme
zu losen. In diesem Anschnitt kommt eine weitere — nédmlich durch Anwendung
der Singuldrwertzerlegung — dazu.

(AuP) min ||Az — b||3
Methode 1 Lose die Normalengleichung A*Ax = A*b durch das Cholesky-Verfahren.
Methode 2 Bestimme eine () R-Zerlegung von A und l6se

1Az = bl|3 = || Re — c|3 + || dII3
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Methode 3 Die dritte Methode beruht auf der Singulérwertzerlegung und wird
im folgenden erlautert.

Sei A = UXV™* eine Singularwertzerlegung von A. Setze y := V*z € K", ¢ :=
U*b € IK™. Es folgt

|Az — b||2 = [|[USV*z — UU*D||2

= U2y - o)l
= |2y — c||? nach Lemma 4.1 weil U unitir
= l(o1y1, 022, - - -, 044, 0, ... 0)T —¢|3
=Y oy =)+ > ¢
j=1 j=r+1

Satz 4.15 FEine Losung des linearen Ausgleichsproblems (AuP) ist gegeben durch
S LI
r = ’ JjV] + | a;Vj,
7=1 j=r+1

wobei A = UXV™, o, die Singuldrwerte, V; die Spalten von V', und ¢ = U*b sind.
Die o konnen beliebig gewdhlt werden. Fir o; = 0 erhdlt man die Losung von
(AuP) mit minimaler Euklidischer Norm.

Beweis: Um ||Ax — b||3 zu minimieren, minimieren wir

T m

2 2
d (o5 yi —e)+ )G
j=1 variabel j=r+l

Also wihle fiir beliebiges o, 7 =7r+1,...,n
% firyg=1,...,r
Yi=9 7 .
a; firj=r+1,...,n
x ergibt sich dann aus
n T C m
GRS SR o
j=1 j=1 "7 j=r+1

Die Norm von z berechnet man durch

T c 2 m
0’.
j=1 7 9 j=r+l
und dieser Ausdruck ist minimal fiir o; =0, j=r+1,...,m. QED
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Zum Abschluss vergleichen wir die drei besprochenen Methoden. Sei eine Ma-
trix A gegeben mit Rang(A) = n und Singuldrwerten oy > g9 > --+ > g, > 0.
Wir untersuchen die Kondition der drei moglichen Verfahren fiir das lineare Aus-

gleichsproblem.
Cholesky Lose A*Ax = A*D.
cond(AA) = [|AAllz - [|(AA) "
14" Allz = V/p((A*A)*(A*A)) = /p(A*AA* A)
= Vol(AAP) = /% = o,

denn fiir eine beliebige Matrix B folgt aus Bz = Az dass B?z = \2x. Weiter
gilt:

I(A*A) | = Vp(((AA) 71 (A A) 1)) = v/ p(((A*A)?) 1)

1 1
prm— )\_2:§7

denn aus Bz = Az folgt B~z = +x und auferdem gilt (B?)~' = (B~1)%
Zusammen erhalten wir

o? o1\’
cond(A*A) = L = (—1>

2
o; On

Singuldrwertzerlegung Lose Yy = ¢ und = = Vy (mit orthogonaler Matrix V')
01

cond(X) = [[Z[5[|= 7l = —

n

@ R-Zerlegung Lose Rz = Qb
cond(R) = [|Rl2[| 72

Weil A*A = (QR)*(QR) = R*Q*QR = R*R ist der grofite (bzw. kleinste)
Eigenwert von A*A auch der grofte (bzw. kleinste) Eigenwert von R*R,

also folgen
[R][2 = VA& =01
1 1
R, = =
H H2 \/)\—n o
weil (R7)*R™! = (RR*)™! Inverses von RR* mit Eigenwerten A, ..., \,.
Also

cond(R) = e

On

Die Kondition der Cholesky-Zerlegung ist also das Quadrat der Kondition aus
@ R-Verfahren oder Singuldrwertzerlegung.
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Kapitel 5

Iterationsverfahren

5.1 Das Verfahren der sukzessiven Approximati-
on

In diesem Kapitel betrachten wir nach den Eliminationsverfahren und den Or-
thogonalisierungsverfahren noch eine dritte Klasse von Verfahren, die man zur
Losung von linearen (und nichtlinearen) Gleichungssystemen verwenden kann, so
genannte iterative Verfahren. Wir betrachten dazu gleich relativ allgemein Funk-
tionen fi,..., f;, mit

fi R" =R, i=1,...,m

und bezeichnen das System

fl(l‘l,...,l‘n) = 0
fQ(.’L‘l,...,.Tn) =0

: : (5.1)
f(z1,...,xy) = 0
als nichtlineares Gleichungssystem mit den Variablen zq, ..., z,. Definiert
man
fi(z) T
xr X
Fla) = fz{ ) P
fm (@) Tn

so kann man das Gleichungssystem in Kurzform auch als
F(z)=0
schreiben.

Gilt fiir x € R™, dass F'(x) = 0, so nennt man z eine Losung des Gleichungs-
systems. Dass wir in dem Gleichungssystem die rechte Seite zu Null gesetzt

87



haben, ist keine Einschrinkung, weil man ein Gleichungssystem F(x) = b mit
b= (by,...,b,)T € R™ jederzeit zu G(z) = F(z) — b = 0 umformen kann.

Nichtlineare Gleichungssysteme lassen sich im Allgemeinen nicht durch algebrai-
sche Manipulationen exakt auflosen. Wir betrachten in diesem Kapitel daher
iterative Verfahren bzw. Iterationsverfahren, die eine gegebene Losung in jedem
Schritt verbessern, bis eine vorgegebene Genauigkeit erreicht ist. Dazu betrachten
wir Gleichungssysteme F(x) = 0, die als Fixpunktgleichung vorliegen.

Definition 5.1 Sei ® : R* — R" eine Funktion. Die Gleichung
O(x) ==z

wird als Fixpunktgleichung betrachtet. Jedes x € R™, fir das ®(x) = x gilt,
wird als Fixpunkt von ® bezeichnet.

Der Zusammenhang zwischen Fixpunktgleichungen und linearen Gleichungssys-
temen wird im folgenden Lemma beschrieben.

Lemma 5.2

1. Sei m < n und das Gleichungssystem F(x) = 0 wie in (5.1) gegeben. Sei
M : R™ — R"™ eine lineare, injektive Abbildung. Definiere

O(x) = M(F(z)) + . (5.2)

Dann ist x ein Fixpunkt von ® genau dann, wenn x das Gleichungssystem
lost. Die Fizpunktgleichung ®(z) = x ist also dquivalent zu dem Gleichungs-
system F(z) = 0.

2. Sei andererseits die Abbildung ® : R™ — R™ gegeben. Definiere
F(z) = ®(x) — .

Dann ist das Gleichungssystem F(x) = 0 dquivalent zu der Fizpunktglei-
chung ®(x) = x.

Beweis:

ad 1: Es gilt ®(z) = ©z <= M(F(x)) = 0. Wegen der Injektivitdt der linearen
Abbildung M ist das genau dann der Fall, wenn F'(x) = 0 ist.

ad 2: Es gilt F(z) =0 <= ®(z) = x. QED
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Gleichungssystem F'(z) = 0 mit m < n konnen wir also 16sen, wenn wir Fix-
punkte bestimmen kénnen. Damit werden wir uns im folgenden beschéftigen.
(Ausgleichsprobleme mit m > n behandeln wir spéter.)

Die Idee der sukzessiven Approximation ist nun die folgende. Man betrachtet fiir
ein gegebenes () die Folge

2R @(x(k)), k=0,1,2,....

Angenommen, ® ist stetig und die Folge der z(*) konvergiert. Dann gibt es einen

Grenzwert
y = lim z®,

k—o0

fiir den gilt y = ®(y), y ist also ein Fixpunkt von &.

I 1
T T3 T4 T2 T

Definition 5.3 Die Iterationsvorschrift
2HD = (0
nennt man Verfahren der sukzessiven Approximation.
Als Beispiel betrachten wir die Gleichung
f(z) = 2z — tan(z) = 0.

Wir schreiben die Gleichung als Fixpunktgleichung um.
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e In der ersten Variante schreiben wir
o(z) = f(x) + x = 3z — tan(x)
und suchen einen Fixpunkt von ¢ mittels der Folge

2D = 320 _ tan(2®)

e In einer zweiten Variante schreiben wir

t
. an(z)
2
und erhalten die Folge
g* ) = %tan(a:(k)).

o Als drittes verwenden wir
x = arctan(2z),

was zu der Folge
2+ — arctan(22%)

fiihrt.

Implementiert man in allen drei Féllen das Verfahren der sukzessiven Iteration so
ergeben sich unterschiedliche Verhalten der drei Formeln: Zum Beispiel fiir den
Startwert 1.2 geht Iterationsvorschrift 1 gegen unendlich, Iterationsvorschrift 2
gegen Null und Iterationsvorschrift 3 gegen 1.1656...

Im folgenden wollen wir untersuchen, wann solche Iterationsvorschriften konver-
gieren. Zunichst beweisen wir den folgenden Satz fiir skalare Funktionen f :
R™ — R™.

Satz 5.4 Sei [ C R ein abgeschlossenes Intervall, ¢ € [0,1) und ¢ : [ — I eine
Funktion, die fir alle x,y € 1

[0(x) — d(y)| < gqlz —y| (5.3)
erfillt. Besitzt ¢ einen Fizpunkt x* € I, so konvergiert die Folge
e Y = (™) k=0,1,...
fiir jeden Startwert (0 gegen x* und es gilt
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Beweis: Zunichst ist die Iterationsformel fiir z*) ist wohldefiniert, weil z* € I
fiir alle k. Die Aussage lisst sich dann fiir alle £ € INg durch Induktion zeigen.
Der Induktionsanfang fiir £ = 0 ist klar. Fiir den Induktionsschritt & — k + 1
rechnet man

2 7 = [o(a®) — 6(a")]| < glz® — 27| wegen (5.3)
qq"|2® — 2*| wegen der Induktionsannahme
= DO g

IN

QED

Mit Hilfe dieses Satzes konnen wir erkldren, warum die dritte Iterationsformel
2+ = arctan(2z)) in unserem Beispiel fiir jeden Startwert 2(® € I = [1,00)
konvergiert:

e Dazu iiberlegt man zunéchst, dass ¢(z) € [1,00) = [ fiir alle z € I, denn
¢(1) > 1 und ¢ ist monoton wachsend.

e Weiterhin besitzt ¢ einen Fixpunkt, denn die Funktion f(z) = = — ¢(x)
erfiillt f(1) < 0 und f(z) — oo fiir z — oco. Also hat f nach dem Zwischen-
wertsatz eine Nullstelle in / und entsprechend hat ¢ in dem Intervall einen
Fixpunkt.

e Jetzt muss noch die Kontraktions-Voraussetzung (5.3) nachgewiesen wer-
den. Dazu verwenden wir den Mittelwertsatz, von dem wir wissen, dass fiir
jedes z,y € I eine Zwischenstelle € € (z,y) existiert, so dass

¢(x) — d(y) = ¢'(e)(z — ).

Kann man nun zeigen, dass ¢'(¢) < ¢ < 1 fiir alle € € [ so ist die Kontrak-
tionsbedingung (5.3) erfiillt. In unserem Beispiel rechnet man nach, dass

weil ¢’ monoton fallend ist.

Also sind die Voraussetzungen von Satz 5.4 erfiillt und die Konvergenz der Itera-
tionsformel ist bewiesen.
5.2 Der Banach’sche Fixpunktsatz

In diesem Abschnitt werden wir die Konvergenzeigenschaften der sukzessiven
Approximation weiter untersuchen. Unser Ziel ist eine Verallgemeinerung von
Satz 5.4 aus dem letzten Abschnitt, bei der wir die Existenz eines Fixpunktes
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nicht voraussetzen miissen. Aufserdem gelingt es, den neuen Satz nicht nur fiir
skalare Funktionen ¢ sondern fiir Operatoren ® in beliebigen Banach-Ridume X
zu zeigen - d.h. die Unbekannte x € X kann nicht nur ein Vektor, sondern sogar
eine Funktion sein.

Wir erinnern zunéchst daran, dass jeder vollstindige und normierte Raum ein
Banach-Raum ist, d.h. also dass in einem Banach-Raum jede Cauchy-Folge
konvergiert. Weiterhin iibertragen wir (5.3) aus dem letzten Abschnitt auf nor-
mierte Rdume.

Definition 5.5 Sei X ein Banach-Raum mit Norm || - || und U C X eine abge-
schlossene Teilmenge von X. Eine Abbildung ® : U — X heifst kontrahierend,
falls es einen reellen Kontraktionsfaktor ¢ < 1 gibt, so dass

|(z) = (y)|| < gllw =yl fir alle z,y € U.

Wir konnen nun den Banach’schen Fixpunktsatz formulieren und beweisen.

Satz 5.6 (Banach’scher Fixpunktsatz) Sei X ein Banach-Raum mit Norm
||| und U C X eine abgeschlossene Teilmenge von X . Sei weiterhin ® : U — U
eine kontrahierende Abbildung mit Kontraktionsfaktor ¢ < 1. Dann gilt:

1. ® besitzt einen eindeutig bestimmten Fixpunkt x*.

2. Die Iterationsvorschrift der sukzessiven Approzvimation 1) = ®(z®)), k =
0,1,... konvergiert gegen x* fiir jeden Startwert 2% € U.

3. FEs gilt die a priori Fehlerschranke

k

2™ — || < |2 — 2O fir alle k =1,2... (5.4)

l—q
4. Es gilt die a posteriori Fehlerschranke

q
1—gq

lz® — 2% <

Ja®) — 2 &=V fiir alle k=1,2... (5.5

Beweis: Zuniichst ist die Folge 2*) wohldefiniert weil z*) € U fiir alle k € IN,,.
Fiir den Beweis nutzen wir aus, dass in einem Banach-Raum alle Cauchy-Folgen
konvergieren und zeigen daher als erstes, dass 2(*) eine Cauchy-Folge ist.

Schritt 1: ) ist eine Cauchy-Folge: Es gilt

1) — 2= [@(a"D) — @(2 )]
gllz® Y =2 < L <

qux(k—j) — l‘(k_j_l)H (5.6)

IA A
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fiir alle natiirlichen Zahlen j mit 0 < j < k—1. Mit Hilfe dieser Ungleichung
rechnet man nun nach, dass

2 = 2@ < o = 20D+ 2l = 2l 4 2 - 0]
S ql_kHl‘(k) . l‘(k_l)H + ql—k—1||l,(k) . l‘(k_l)H 4.
+glle® — 26|

-k
j=1

< ||x(k)_x(k—1)||ij
j=1
TN B S VTR 5.7
o) — 2L (5.7
< ¢ — 0 = L o o) (5
- l-q 1-—gq

Weil 1q—_kq — 0 fiir k — oo ist ) also eine Cauchy-Folge.
Schritt 2: Existenz des Fixpunktes. Weil 2(*) eine Cauchy-Folge ist, gibt es 2* =
limy_.o z®). Fiir 2* gilt dann
|@(z") = @(aW)|| < glla* — 2@ — 0 fiir & — oo,
entsprechend haben wir

®(z*) = lim ®(z®) = lim 2**Y = 2
k—o00 k—o0

Schritt 3: Eindeutigkeit des Fixpunktes. Angenommen, T sei ein weiterer Fix-
punkt von ®. Dann gilt

[ = 2| = |8(z7) = ®(2)]| < gll2” = 7],
Weil g < 1 folgt daraus, dass [|z* — Z|| = 0, also z* = 7.

Schritt 4: Fehlerschranken. Wir nutzen die in Schritt 1 aufgestellte Unglei-
chungskette fiir

o = = lim 2 2]

l—o00
< Ja® — a:““’””i wegen (5.7)
lL—gq
¢
lL—gq
Damit ist der Satz gezeigt. QED

< |2 — 2O wegen (5.8).
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Zum Nachweis der Kontraktion verallgemeinern wir noch das bereits fiir skalare
Funktionen verwendete Kriterium auf den R". Dabei bezeichnen wir fiir eine
Funktion F' : R® — R™ die Jacobi-Matrix von F' an der Stelle z € R"™ mit

DF(z), das heift
OB 9k oF

o1 0z o OTn
DF(x) = | :

OFy, O0Fm OFm

o1 Oxo T OTn

Fiir F': R — R bezeichnen wir den Tangentialvektor DF(x) auch einfach mit
f'(z).

Lemma 5.7 Ser U C R" eine konvexe Menge und ® : U — R" stetig diffe-
renzierbar mit | D®(z)| < ¢ < 1 fir alle x € U (wobei die Matriznorm | - ||
die der Vektornorm zugeordnete Norm sein soll). Dann ist ® kontrahierend mit
Kontraktionsfaktor q.

Beweis: Seien z,y € U. Wir definieren eine Abbildung f : R — R" durch
f(t)=@(x+t(y —x)) firtelo,1].

Dann gilt

18(y) = @(2)] = IIf(l)—f(O)||=||/0 f()dt|

nach dem Hauptsatz der Differential- und Integralrechnung

— / D®(x + t{y — )y — )dt]

nach der multivariaten Kettenregel

< / | DD + t(y — )| |1y — x|t

1
< ly—z / ¢ dt = qlle |
0
QED

Abschliefend untersuchen wir noch, wie wir bei der Approximation des Fixpunk-
tes eine Genauigkeit von ¢ garantieren konnen. Wir wollen also erreichen, dass

lz® — 2" < e

wenn k die Iteration ist, bei der wir abbrechen. Dazu konnen wir sowohl die
a-priori als auch die a-posteriori Schranke aus Satz 5.6 nutzen.
Die a-priori Schranke sagt, dass

K
2™ — z*|| < 1(] |2 — 2O fiir alle k= 1,2....
—dq
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|[2*) — 2*|| < e ist also gewihrleistet, falls

qk

e -2 <,

und das lasst sich auflosen zu

1—q)e
()
In(q) '

Ist der Kontraktionsfaktor ¢ also klein, werden weniger Iterationsschritte benétigt
als fiir einen grofen Kontraktionsfaktor g.

Um wéhrend des Verfahrens ein Abbruchkriterium zu haben, nutzt man dagegen
oft die (schérfere) a posteriori Fehlerschranke aus Satz 5.6, die besagt, dass

2™ — 2| < %Hﬂ’“) — 2| fiir alle k=1,2. .

und zu dem Abbruchkriterium

L p® D) < ¢
1—¢q -

fiihrt. Leider ist der Kontraktionsfaktor g oft nicht bekannt. In diesen Fillen
behilft man sich mit folgender Abschétzung von ¢ durch ¢:

o) — 260

qr == ||:L‘(k_1) — :E(k_Q)H'
Es gilt ¢x < g, denn
_ 2% 2 [#atY) - dat-2))
U el = E A T e ot =
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Algorithmus 8: Sukzessive Approximation mit heuristischem Abbruchkri-
terium

Input: abgeschlossene Menge U C R™, Kontraktion ®:U — U, Startwert z2(0) ¢
U, Toleranzwert .

Schritt 1: z(1) = @(x(o))
Schritt 2: £k :=1
Schritt 3: Repeat
Schritt 3.1: k:=k+1
Schritt 3.2: z*) .= & (x(k’l))
: . o lz®—a=D)
Schrltt 3.3. qr ‘= m
Schritt 3.4: If ¢, > 1 STOP: ® ist keine Kontraktion.
Until 2|2 — z;-D| < ¢
1—qi

Ergebnis: approximierter Fixpunkt z* = z()

Bemerkung: Die Fehlerschranke [z*) — 2*|| < ¢ kann nicht garantiert werden,
weil wir nur wissen, dass
e 4
=g~ 1—9¢q
Meistens konvergiert ¢, aber gegen ¢, so dass das Abbruchkriterium in der Regel
ausreichend gut funktioniert.

5.3 Iterative Verfahren fiir lineare Gleichungssys-
teme

Wir wenden nun den Banach’schen Fixpunktsatz auf lineare Operatoren an. Zu-
nichst halten wir uns weiter in Banach-Riumen auf, kommen dann aber zur
Losung linearer Gleichungssysteme (also zum endlichdimensionalen Fall) zuriick.

Satz 5.8 Sei B : X — X ein linearer beschrankter Operator in einem Banach-
Raum (X, || - ||) mit || B|| < 1 in der der Norm des Banach-Raumes zugeordneten
Matriznorm. Dann gilt

1. Der Operator I — B ist invertierbar, das heifst das System x — Bx = b hat
genau eine Losung x* fir jedes b € X.
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2. Der inverse Operator (I — B)™! ist beschrinkt mit

1

I =B) M < —77-
1Bl

3. Die Iterationsvorschrift der sukzessiven Approzimation z*+t1) = Bz 4
b, k=0,1,... konvergiert gegen x* fiir jeden Startwert 20 e X.

4. Fs gilt die a priori Fehlerschranke

2™ — z*|| < mﬂx(l) — 2O fir alle k=1,2. ..
1B

5. FEs gilt die a posteriori Fehlerschranke

18]l

l2® — 2™ < e
1B

|2®) — 2*=V|| fir alle k =1,2...

Beweis: Sei b € X beliebig aber fest. Definiere den linearen Operator ® punktweise
durch
®xr .= Bx +bfiirallex € X

Wegen ||®z — Oz|| = ||B(x — 2)|| < ||B]|||z — || ist ® kontrahierend mit ¢ :=
||B]| < 1. Satz 5.6 ergibt damit direkt die folgenden Aussagen:

ad 1. Es existiert ein eindeutiger Fixpunkt x*, der ®z* = x* erfiillt. Weil
¢r=0<=Br+b=x<= (I—-B)x=5b

gibt es also eine eindeutige Losung von x — Bx = b und (I — B) ist inver-
tierbar.

ad 3. 2D = ®z*) = Bx®) + b konvergiert gegen x* fiir jeden Startwert x(®).
ad 4. und 5. Hier folgt die Behauptung direkt mit ¢ := || B||.

Als letzter Punkt bleibt noch die zweite Aussage zu zeigen, also die Beschriankt-
heit der linearen Abbildung (I — B)~!. Dazu definieren wir die Folge x*) der
sukzessiven Approximation mit Startwert (%) := b. Es ergibt sich

29 =

2 = B 4+b=DBb+b

z® = BzW +b=DB*%+Bb+b

k
z®) = Zij.
=0
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Deswegen gilt

ol
l=®] < Z 1376 < [[bll Z IBIF < 5 =B

Weiter wissen wir von Aussage 3 und 1, dass z¥) — z* = (I — B)~!b. Daraus

folgt, dass
1]

L—[IBII
Weil b beliebig war, gilt diese Aussage fiir alle b € X. Somit erhédlt man

I(7 = B)~"b]| <

- I(7 — B)~"b|| 1
I(1 = B)~"|| = sup < :
beX 2] 1Bl

QED

Im endlich-dimensionalen Fall sind alle Normen aquivalent, so dass aus der Kon-
vergenz beziiglich einer Norm die Konvergenz in allen anderen Normen folgt. Da
es unhandlich sein kann, das Kriterium fiir verschiedene Normen zu testen, wollen
wir im folgenden ein notwendiges und hinreichendes Kriterium fiir die Konver-
genz der sukzessiven Approximation herleiten. Dieses Kriterium wird iiber den
Spektralradius p(B) der obigen Matrix B formuliert werden. Um das Kriteri-
um herleiten zu kénnen, benétigen wir das folgende Resultat aus der Linearen
Algebra.

Satz 5.9 (Lemma von Schur) Sei A € IK"™" eine Matriz. Dann gibt es eine
unitdre Matriz Q) so, dass

M1 Ti12 ... Tin
Tog ... Topn

Q"AQ =R =
0 Tnn

Mit Hilfe des Lemmas von Schur zeigen wir nun erst die folgende Aussage.

Lemma 5.10 Sei A € IK™". Dann gilt p(A) < ||Al|. Andererseits gibt es zu
jedem € > 0 eine Norm || - || auf IK" so dass

[A]le < p(A) +e.

Beweis: Zum Beweis des ersten Teils der Aussage wihlen wir einen Eigenwert A
von A mit zugehorigem normierten Eigenvektor v € IK". Dann gilt, dass

[A[l = sup [[Az]} > [[Aull = [[Aul] = |A].

aille|=1
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Das gilt fiir alle Eigenwerte A, also auch fiir den betragsméfkig grofsten.

Sei nun € > 0 gegeben. Wir konnen ohne Beschrankung der Allgemeinheit anneh-
men, dass A nicht die Nullmatrix ist. Wir werden nun die gesuchte Norm || - ||.
konstruieren.

Nach dem Lemma von Schur (Satz 5.9) finden wir eine unitédre Matrix @, so dass

M1 Ti2 ... Tin
Tog ... Top

R:=Q*AQ =
0 Ton

eine obere Dreiecksmatrix (nicht die Nullmatrix) ist. Zunéchst beobachten wir,
dass

det(A\] — A) = det(Q")det(A] — A)det(Q) = det(Q* (M — A)Q)
— det(\] — Q" AQ) = det(M — R)
= A=ri)A=ra)...(A=ru),

also sind die Eigenwerte von A als Nullstellen des charakteristischen Polynoms
genau die Diagonalelemente von R. Man definiert nun

ro= max|ry[ >0
2y

£
= ] 1 - N
) mm{ ’(n—l)'r’}’und
D = dlag(l,(s, 52’...,5n71)

Weil § > 0 ist D invertierbar und D' = diag(1,07%,672,...,5 V). Wir be-
rechnen nun

C: = D'RD
11 57‘12 527“13 R 5”717"1n 11 57‘12 527'13 c.. 5”717"1n
57‘22 527“23 e 5”71T2n T99 57‘23 . 5”72T2n
— l)_1 527’33 . 5”‘1r3n — 733 e 5n_3T3n
0 5"‘1rnn 0 Tnn

Satz 3.17 (siehe Seite 55) liefert, dass

IClle = max ) ¢

i=1,....,n
=1
< max 7+ 6r(n — 1) weil § <9
€
< p(4) + mr(n —1)=p(A) +¢
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Setze
V=D

und definiere damit
2]l := IV "2 .

Das ist eine Norm, da V' reguldr. Um zu zeigen, dass diese Norm die gewiinschte
Eigenschaft hat, bemerken wir zunéchst, dass

VAV = D'Q*AQD = D 'RD =C
gilt. Damit erhélt man schlieflich

Azl = V1Al
— oVl
< IOV el
= IClelzl,
also ist
4] = sup Le <oy = pray +e.

cek || 7|

QED
Nun kénnen wir (endlich!) das angekiindigte Kriterium fiir die Konvergenz der
sukzessiven Approximation formulieren.

Satz 5.11 Sei B € IK™". Die Folge 2**1) = Bx®) +b mit k = 0,1,2, ... konver-
giert fiir jedes b € IK"™ und jeden Startwert (¥ € IK" genau dann wenn p(B) < 1.

Beweis:

<= *“: Sei p(B) < 1. Nach Lemma 5.10 existiert eine Norm || || so dass || B||: <
p(B) + ¢ fiir jedes € > 0. Wéhle ¢ nun so, dass

p(B)+e <1,

dann konvergiert x*) beziiglich der Norm || - ||.. Da in K" alle Normen
dquivalent (Satz 3.9) sind, folgt die Konvergenz in jeder Norm.

»=—> *“: Angenommen, p(B) > 1. Dann gibt es einen Eigenwert A > 1 und einen
zugehorigen Eigenvektor v # 0. Starte das Verfahren der sukzessiven Ap-
proximation fiir b = v mit dem Startvektor z(®) = v. Man erhilt

2@ = v
sV = Bu+v=X+v
2? = Bw+v)+v=Nv+ I+

' k
z® = (ZAJ')vHoo weil A > 1.

J=0
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Also konvergiert die Folge 2*) in diesem Fall nicht. QED

Wir mochten die Ergebnisse nun konkret auf die Losung linearer Gleichungssys-
teme anwenden. Sei also ein lineares Gleichungssystem

Ax =0

mit A € IK™", b € IK" gegeben. Wir bringen das Gleichungssystem mit Hilfe einer
reguldren Matrix M in Fixpunktform und erhalten die Aquivalente Fixpunktglei-
chung

v+ MY b— Az) = x,

die zur sukzessiven Approximation
gD = 2®) 1 AL — Az™) beziehungsweise M (z* D) — ) = p — Az®)

fithrt. Numerisch kann man z*+1) in jeder Iteration durch das sukzessive Losen
der beiden Systeme

Mw* ) = b — Az® und 2D = g®) 4 qy(k+D) (5.9)

ermitteln. Allerdings macht das nur Sinn, wenn man eine Matrix M wiahlt, die
gewéhrleistet, dass das System (5.9) effizient 16sbar ist.

Wie soll man also M wihlen? Nach Satz 5.11 konvergiert die Folge x*+1) =
Bx® + b genau dann, wenn p(B) < 1. Weil in unserem Fall

g® ) = (1 — M1 A)z® 4 M~

muss also p(I — M~'A) < 1 gelten. Schreibt man M = N+ A (mit N = M — A)
so ergibt sich, dass

I-M**A=T-M'M-N)=I-M'M+M*'N=M"'N,

also die Bedingung, dass p(M~1N) < 1 gelten soll.

Fiir die folgenden Verfahren zerlegen wir die gegebenen Matrix A in

A=Ap+ AL+ Ag,

wobei Ap = diag(ai1, ass, - . ., apy,) und
0 ... 0 0 Qg5
Ap = .. |, und Ar =
ai; 0 0 0
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den Anteil des unteren und oberen Dreiecks aus A beinhalten. Weiterhin setzen
wir voraus, dass (eventuell nach Pivotisierungs-Schritten) die Inverse

Ap} existiert, (5.10)

d.h. dass alle Elemente der Hauptdiagonalen von A nicht Null sind. (Wie wir von
Gauss-Verfahren wissen, ldsst sich das bei reguldren Matrizen immer erreichen.)
Wir betrachten nun zunéchst zwei vom Konzept her sehr dhnliche Verfahren, das
Gesamtschritt- Verfahren und das Finzelschritt- Verfahren.

Gesamtschritt - oder Jacobi-Verfahren

Im so genannten Gesamtschritt-Verfahren (GSV) wéhlt man die nach unserer
Voraussetzung (5.10) reguldre Matrix M = Ap. Als Fixpunktgleichung erhilt
man

v = v+ A (b— Az) =2 — A Av + AL'b
= —A A - Ap)z + A
= —Ap (AL + Ar)x + AR'D (5.11)

Das Verfahren der sukzessiven Approximation ergibt sich folglich zu
g® ) = — ATV (AL + AR)a™ + ASM, E=0,1,2,. ..
mit der [terationsmatrix
B=1—-A'A=—A}' (AL + AR) (5.12)
Komponentenweise kann man schreiben
MaRE Y L RS T
Z et M
Das Konvergenzverhalten analysiert der folgende Satz.

Satz 5.12 Die Matriz A = (a;;) € IK" gentige einer der drei folgenden Bedin-
gqungen;:

Zeilensummenkriterium: ¢o = maXi=1_n D ico 00 i<l

Spaltensummenkriterium: ¢; = maxj—;__, Zie{l 2P} Zﬂ <1
R 33

Quadratsummenkriterium: ¢, = \/Zije{l onb i Zﬂ <1
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Dann konvergiert das Jacobi- Verfahren beziiglich jeder Norm im IK" fiir jede rech-
te Seite b € IK™ und fiir jeden Startwert 0 € IK", und zwar gegen die eindeutig
bestimmte Lisung x* von Ax* =b. Weiterhin gilt fir p € {1,2,00}:

k
e A priori Fehlerschranke: ||z — x*||, < ipqp |2 — 2O,

e A posteriori-Fehlerschranke: ||z®) — z*||, < 13’;}) |z®) — =D,

Beweis: Wir untersuchen die Norm der Iterationsmatrix
B =—A; (AL + Ag).
Nach Satz 3.17 gilt, dass
I = AR (AL + Ag)ll, = ¢p < 1 fiir p € {00, 1},
und aus Lemma 3.24 folgt, dass
| = AR (AL + ARl < | = AR (AL + AR)|[F = @2 < 1.

Wir konnen also Satz 5.8 anwenden, aus dem sich der Rest der Behauptungen
direkt ergibt. QED

Bemerkung: Die drei Konvergenzkriterien sind nicht dquivalent!

Der Algorithmus ergibt sich in kanonischer Weise:

Algorithmus 9: Jacobi-Verfahren

Input: Reguldre Matrix A € IK™" mit a; # 0 fir i =1,...,n, be K", 20 ¢
K",

Schritt 1: £:=0

Schritt 2: Repeat

Schritt 2.1: For ¢=1,...,n do: xEkH) = a%z <— Zj€{17...,n}\{i} aijxg»k) + bj>

Schritt 2.2: k£ =k +1
Until Abbruchkriterium

Ergebnis: Approximierte Ldsung z* von Az* =0b.

Ein Abbruchtest kann wie bei Algorithmus 8 besprochen mit ¢ = ¢, durchgefiihrt
werden.
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Einzelschritt - oder Gauf-Seidel-Verfahren

Im jetzt zu besprechenden Einzelschritt-Verfahren (ESV) wéhlt man M = Ap +
Ap. Nach der Voraussetzung (5.10) ist M regulér. Als Fixpunktgleichung erhalt
man

r = SL’—F(AD—FAL)il(b—A.T)
= —(AD+AL)_1<—(AD+AL)—|—A).T+(AD+AL)_1b
= —(AD+AL)_1ARI‘+ (AD+AL)_1Z) (513)

Das Verfahren der sukzessiven Approximation ergibt sich folglich zu
e ) = —(Ap + Ap) P Apa™® + (Ap + Ap) 7, kE=0,1,2,...
Die Iterationsmatrix ist entsprechend
C=1—-(Ap+ A "A=—(Ap + A) ' Ap.
Rechnerisch nutzt man die Umformulierung zu
(Ap + APz = —Apa® b k=0,1,2,... (5.14)

Um das komponentenweise zu schreiben 16st man dieses System mittels Vorwérts-
elimination auf, um die Unbekannten xl(-kﬂ) fiir e = 1,...,n zu bestimmen. Man
erhalt

—

i—

x(k+1) _ Qi
i —
Qg

—~ aj bi
g * D _ Z &x(k)—ir—, 1=1,...,n.

J J
=it Qij Qii

j=1
Die Formel stimmt fast mit der entsprechenden komponentenweisen Iterationsfor-
mel des Jacobi-Verfahrens iiberein. Der Unterschied besteht lediglich darin, dass
beim vorliegenden Gaufs-Seidel-Verfahren zur Berechnung von %™ die neuen

(und hoffentlich besseren) Werte 2% fiir j = 1,...,i — 1 herangezogen wer-

j
den anstatt der Werte xﬁ»k) wie im Jacobi-Verfahren. Das ist der Grund, warum
das Gauk-Seidel-Verfahren in den meisten Fillen schneller konvergiert als das
Jacobi-Verfahren.

Uber das Konvergenzverhalten gibt der folgende Satz Auskunft.
Satz 5.13 Die Matriz A = (a;j) € IK™" geniige dem Kriterium nach Sassenfeld:

p:= max pi <1

..... n

mit den Werten

n

4 ::Z

alj

aii

Ll \V)

1—

bi ZIZ

j=1

n

pj"_z

j=it+l

aij ;s

£

firi=2,....n
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Dann konvergiert das Gauf$-Seidel-Verfahren fiir jede rechte Seite b € IK" und
bei beliebigem 0 € IK™ gegen die eindeutig bestimmte Lisung x* von Ax* = b.
Weiterhin gilt:

o A priori-Fehlerschranke: ||2®) — 2*||o < %Hx(l) — 295
o A posteriori Fehlerschranke: ||zF) — 2¥||o < ﬁﬂx(k) — =D

Beweis: Wir wollen die Zeilensummennorm von (Ap + Ar) "' Ag abschitzen. Sei

hierzu
(AD + AL)SL’ = —ARZ s ”ZHOO = 1,

das heifst,
2]l = I = (Ap + AL) ™ Agz|oc-

Vorwértselimination ergibt

a; Qg5
T = — E —Lg; — E Lz firi=1,...,n
— Qi = Ay
7=1 Jj=i+1
Wir zeigen zunéchst, dass |z;| < p; firi=1,... n:

Induktionsanfang: ¢ = 1. Weil |z;| <1 fiir alle ¢ erhélt man:

_ 15 15 7]
o] =) | <D |zl < — | =p
— 11 - a - ai
_]:2 _]:2 _]:2
Induktionsschritt: i — 1 — 3.
i—1 a n a
_ ij ij
[l = =3 T - 3 T
— Qi = i
J=1 Jj=i+1
i—1 a n
i i
< o il + > |22 1]
=1 Gl S L
=Py >
i—1 a n
ij iy _
< o pj + E | =D
]:1 1 ]:Z+1 1

Also gilt ||z]|s < p und entsprechend fiir x(z) := (Ap + Ar) ' Agz, dass

I(Ap+AL) " Aplle = sup  [[(Ap+AL) ' Apzllo = sup  [lz(2)l|lo < p.
z€K"™:||z]|oo=1 z€K"™:||z||co=1
Weil p < 1 vorausgesetzt war, folgt die Behauptung nach Satz 5.8. QED
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Bemerkung: Erfiillt eine Matrix das Zeilensummenkriterium, so auch das Sas-
senfeldkriterium. Das heiftt, das Zeilensummenkriterium ist ebenfalls hinreichend
fiir die Konvergenz des Einzelschritt-Verfahrens.

Andererseits erfiillt nicht jede Matrix, die dem Sassenfeld-Kriterium geniigt, auch
das Zeilensummenkriterium, wie die folgende Matrix A zeigt:

2 -1
-1 2 -1
-1 2 -1
A= :
-1 2 -1
-1 2

Bemerkung: In Satz 5.17 werden wir zeigen, dass das Gauss-Seidel-Verfahren
bei Gleichungssystemen mit hermitescher und positiv definiter Koeffizientenma-
trix konvergiert.

Der Vollstandigkeit halber sei der Algorithmus des Einzelschrittverfahrens eben-
falls skizziert.

Algorithmus 10: Gaufi-Seidel-Verfahren

Input: Reguldre Matrix A € IK™" mit a; # 0 fir i =1,...,n, be K", 20 ¢
K",

Schritt 1: £:=0
Schritt 2: Repeat

Schritt 2.1: For ¢ =1,...,n do:
k+1 i—1 k-+1 k
wt Y = o <— > i aij$§ ) - > it az’j$§ 4 bj)
Schritt 2.2: k:=k+1

Until Abbruchkriterium

Ergebnis: Approximierte Ldsung z* von Ax* =b.
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Relaxations-Verfahren

Die Idee der Relaxations-Verfahren besteht darin, die Konvergenz des Gesamt-
schrittverfahrens beziehungsweise des Einzelschrittverfahrens zu verbessern, in-
dem man durch Einfiihren eines so genannten Relaxations-Parameters den Spek-
tralradius der Iterationsmatrix verkleinert.

Wir betrachten zunachst das Gesamtschritt-Verfahren. Die Iterationsvorschrift
ergibt sich nach (5.11) auf Seite 101:

g® ) = 2™ AT (b — Az™).

In jedem Tterationsschritt wird also z*) durch das Ap'-fache des Residuums
) = b — Az®) korrigiert. Dabei ist oft zu beobachten, dass die Korrektur um
einen festen Faktor zu klein ist. Deshalb kann es sinnvoll sein, den Wert um wz*)
statt um z(*) zu dndern, wobei w ein beliebiger positiver Parameter sein darf. Das
resultierende Verfahren ist das relaxierte Gesamtschrittverfahren.

Definition 5.14 Das Iterationsverfahren
2D = 2 AT (b — Az®)

heifit Gesamtschritt-Relaxationsverfahren.

Komponentenweise berechnen sich die Werte x ) durch
xEkH) :xgk)+aiii b; — Z aijxgk) i=1,...,n
JE{L,m\{i}
Es gilt
*H) = k) A_l(b — Ax k))

= (- ) *) 4 wAT 1b

= [I- wI—i—w —Ap 1A+1)} ) +wAR'

= [(1—w)I +wB]2®™ +wA;'D, (5.15)

wobei im letzten Schritt B = I — A, A die Iterationsmatrix des Gesamtschrittver-
fahrens aus (5.12) bezeichnet (siehe Seite 101). Die Iterationsmatrix des Gesamtschritt-
Relaxationsverfahrens mit Relaxationsparameter w bezeichnen wir im folgenden
mit

B,=(I—-wAp'A) = (1 —w)I +wB.
Wir bemerken, dass die Matrix des Gesamtschrittverfahrens gerade B = B; ist.

Satz 5.11 legt nahe, den Relaxationsparameter w so zu wihlen, dass der Spek-
tralradius der Iterationsmatrix B, moglichst klein wird. Der folgende Satz gibt
Auskunft dariiber, wie dieses Ziel erreicht werden kann.
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Satz 5.15 Die zum Gesamtschrittverfahren gehiorende Iterationsmatric B = I —
ALY A habe nur reelle Eigenwerte und einen Spektralradius p(B) < 1. Sei weiter-
hin —1 < Apin der kleinste Figenwert von B und Apn.x < 1 der grofite. Fiir die
Iterationsmatriz des Gesamtschritt-Relazationsverfahrens

B,=(1—-w)l+wB

qilt dann:

2
2— )\min - )\max .
Speziell erhdlt man p(B,) < p(B) falls Anin # —Amax-

p(B,,) wird minimal fir w* =

Beweis: Zunéchst bemerken wir dass fiir w # 0
Bu=M <= [(l1-w)[+wBju=[(1-w)+w\u

gilt. Das heift, A ist Eigenwert von B genau dann wenn (1 —w) + w Eigenwert
von B, ist. Weil w > 0 erhilt man insbesondere, dass

(1 —w) + wAnin der kleinste Eigenwert von B, ist, und
(1 —w) + wAmax der grofte.

Bei gegebenem w ist der Spektralradius der Matrix B,, folglich
p(Bw) = maX{—(l - w) - W)\mina (]- - w) + w>\max}

Jetzt mochten wir w so bestimmen, dass dieser Ausdruck moglichst klein wird.
Dazu iiberlegt man sich, dass die beiden Funktionen

—(1-w)—wAnimn = —14+w(l— i)
(1 —w)+whpax = 1+ wPmax — 1)

Geraden sind. Das Maximum von zwei Geraden ist eine konvexe Funktion, die
aus zwei linearen Abschnitten besteht und ihr eindeutiges Minimum genau am
Schnittpunkt der beiden Geraden annimmt, falls dieser existiert. In unserem Fall
ist das gegeben, da die beiden Steigungen der Geraden aufgrund der Bedingung
Amin < Amax < 1
I — Amin 7 Amax — 1

erfiillen; die Geraden sind also nicht parallel. Ihr eindeutiger Schnittpunkt errech-
net sich durch Auflésen der Gleichung

—(]_ - CL)) - W)\min — (1 - CU) + w>\max

und liegt entsprechend bei




Da fiir A\pin # —Amax gilt, dass w* # 1 ist, und das Minimum w* eindeutig ist,
folgt, dass

p(Bu+) < p(B),

der Spektralradius von der Iterationsmatrix des Gesamtschritt-Relaxationsverfahrens
B, ist in diesem Fall also echt kleiner als der Spektralradius der Matrix B des
(unrelaxierten) Gesamtschrittverfahrens. QED

Der optimale Relaxationskoeffizient w* liegt also im Bereich (0, co).

e [st w* < 1 so spricht man von Unterrelazation. Sie tritt auf, falls —\;, >

)\max .

e Fiir w* = 1 (also wenn —Ap;, = Apax) erhilt man das normale Gesamt-
schrittverfahren.

e Ist w* > 1 so spricht man von Uberrelazation. Sie tritt auf, falls — A, <

)\max .

Um w* zu berechnen, sind scharfe Schranken fiir die Eigenwerte der Matrix A
(inklusive Vorzeichen) notig.

Das Gesamtschritt-Relaxationsverfahren hat noch eine andere Interpretation: Be-
zeichnet man die (unrelaxierte) Iterierte aus dem Gesamtschrittverfahren mit

Z(k+1) _ B[L'(k) +AE)16,
dann gilt nach (5.15), dass

2D = (1 — w)a® 4wz kHD), (5.16)

der neue Wert z(**1) entsteht also, indem man zwischen dem letzten Wert z(*)
und dem Wert 2**1) aus dem Gesamtschrittverfahren linear interpoliert.

Wir untersuchen nun, wie man ein Relaxationsverfahren beziiglich des Einzel-
schrittverfahrens definieren kann. Im Einzelschrittverfahren (siehe (5.13)) hatten
wir die Fixpunktgleichung

v=x+ (Ap + AL) (b — Ax),
aus der sich die Iterationsmatrix
C=1—(Ap+ AL '"A=—(Ap + AL) AR
ergibt. Zur numerischen Berechnung wurde die Umformulierung

(AD + AL)ZL'(k+1) = —ARI‘(k) + b, k= 0, ]_, 2...
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angegeben, die wir jetzt weiter zu
ADSL’(k+1) =b— AL.T(kJrl) — ARSL’(k)

umformulieren. Wir definieren das Relaxationsverfahren jetzt dhnlich wie fiir das
Gesamtschrittverfahren, indem wir auch hier die auf der linken Seite im Einzel-
schrittverfahren auftretenden z*+ zu z(*+1) ymbenennen. Das heifit, wir schrei-
ben obige Gleichung als

ADZ(k+1) =b— ALSL’(k+1) — ARSL’(k) (517)
Wie in (5.16) withlen wir den relaxierten Wert fiir z(*+1) als

Diese Definition mochten wir nun in (5.17) einsetzen. Dazu multiplizieren wir
(5.17) mit w und substituieren wz* 1 durch 2*+Y — (1 — w)2® wie in (5.16)
gefordert. Man erhalt

Apz®) = (1 — W) Apz® + wb — wAL® ) — L ARe®), (5.18)
was sich zu
(Ap +wAL)T**) = [(1 — w)Ap — wAR] 2 + wb
und schlieRlich zu
2™ = (Ap + wAL) T [(1 - w)Ap — wAR] 2™ + w(Ap + wAL) b

umformulieren lasst. Daraus ergibt sich die Iterationsmatrix fiir das Einzelschritt-
Relaxationsverfahren in Abhéngigkeit von w zu

Cw = (AD + QJAL)il [(]_ - LL))AD - wAR] . (519)

Man sieht, dass auch hier C; = C' gilt, d.h. fiir den Relaxationsparameter w =1
erhalt man die Iterationsmatrix aus dem normalen Einzelschrittverfahren.

Um die Werte xz(kﬂ) komponentenweise zu bestimmen, multipliziert man (5.18)
mit von links A" und formuliert die entstehende Gleichung dann folgendermafen
um:

USSR (1- w)x(k‘) + wABlb _ wABlALI(kH) — wABlARx(k)
— 0 +wABl(b — Apa® D) — A ®) ARx(k))
2®) 4 WA (b — Apz™Y — (Ap + Ag)z™®)

Man bestimmt dann z**1 via
i—1 n
(k+1) _ (k) w (k+1) k) ; _
T, =x; +a—”<bz—zlazjl’] —Zaijxj ) 2—1,...,n.
J= Jj=

110



Das Verfahren nennt man auch Successive overrelazation, abgekiirzt als SOR-
Verfahren (obwohl man streng genommen nur fiir w > 1 von einer Uberrelaxation
sprechen sollte.)

Als néchstes untersuchen wir, fiir welche Relaxationsparameter w, wir Konvergenz
erwarten konnen. Zunéchst geben wir ein negatives Ergebnis.

Satz 5.16 Sei A € IK™" mit a;; #0 firi=1,...,n. Dann gilt
p(Cy) > Jw—1].

Insbesondere ist p(Cy,) > 1 falls w & (0,2), d.h. das SOR-Verfahren konvergiert
in diesen Fidllen im allgemeinen nicht.

Beweis: Wir schreiben die Iterationsmatrix C,, um zu

Cw = (AD + u)AL)ilADAz)l [(1 - w)AD - u)AR]
= (AN (Ap +wAL)] T [(1 = W) —wAL Ag]
= [(I+wAR' A7 [(1 = )T —wAR AR,

also dem Produkt von

e ciner nach Satz 2.9 normierten unteren Dreiecksmatrix (I + wAL'A) ™,
und

e ciner oberen Dreiecksmatrix (1 — w)I — wA;'Ap mit Diagonalelementen
(1—w).

Es gilt also
det(C,) = det(I + wAR'Ap) " det [(1 — w)] — wAR Ag] = (1 — w)™

Weil die Determinante einer Matrix gleich dem Produkt ihrer Figenwerte ist, gilt
insbesondere |det(C,)| < (p(C.,))", also

1= w]" < (p(Cu))"
und damit folgt die Behauptung. QED

Abschliefsend zeigen wir, dass die Riickrichtung der obigen Aussage zumindest fiir
hermitesche und positiv definite Matrizen richtig ist: Fiir alle Werte w € (0,2)
des Relaxationsparameter konvergiert das Verfahren.

Satz 5.17 Sei A € IK™" hermitesch und positiv definit. Dann konvergiert das
Finzelschritt- Relazationsverfahren (SOR-Verfahren) fir jeden Relazationspara-
meter w € (0,2).
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Beweis: Wir berechnen den Spektralradius der Iterationsmatrix C,,, und zeigen,
dass p(C,) < 1 gilt. Dazu sei also A ein Eigenwert von C, mit zugehorigem
Eigenvektor x. Unser Ziel ist, |A| < 1 nachzuweisen. Nach (5.19) ist C,z = Az
gleichbedeutend mit

[(1 — (,LJ)AD — (,()AR] r = )\(AD -+ LLJAL).T. (520)

Wir nutzen nun folgende beide Aussagen, die sich direkt aus A = Ay, + Ap + Agr
ergeben:

. 2—w)Ap —wA—w(Ar— AL) =2(1 —w)Ap — 2wAR
2. 2—w)Ap+wA—w(Ar — Ap) =2Ap + 2wAL
Damit folgt aus (5.20), dass
(2= w)Ap —wA — w(Ap — Az = A2~ w)Ap +wA - w(Ap — Ay)]a

Um diese Gleichung nach A\ aufzul6sen, bilden wir das Skalarprodukt durch die
Multiplikation beider Seiten von links mit z*. Um abzukiirzen, fiihren die Be-
zeichnungen

d = x"Apx
z* Az

ein, und bemerken, dass a > 0 und d > 0 gilt, weil A positiv definit ist. Die
Multiplikation von links mit 2* ergibt nun

(2—-w)d—wa—wr"(Agr — Ar)r = N[(2 —w)d +wa —wz*(Ar — Ap)x] (5.21)
Zunichst machen wir uns klar, dass

(ir*(Ar — Ap)x)" = a* (AR — A})xi
= z"(Ap — Ap)x(—1) weil A= A"
= qx* (AR — AL).T
gilt, und daher s := iz*(Agr — Ar)zx € R ist und wir (5.21) weiter umformulieren

konnen zu
2-—w)d—wa+iws=N[(2—w)d+wa-+iws|,

in der bis auf A alle auftretenden Werte w, d, a, s € R sind. Mit

a = 2-—w)d—waeR
a = (2—w)d+waeR
6 = wseR
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erhalten wir endlich
a+iB = \a+if).
Dann gilt auch fiir die Betrége, dass
o+ 86] = 1Al + i,
Wir nutzen noch aus, dass & > « (weil w € (0,2)) und erhalten
o’ + 5% = [N(&* + 8%) > [Al(a® + 5%),
also |A\| < 1. QED

Folge: Da das Einzelschrittverfahren ein Spezialfall des SOR-Verfahrens, nim-
lich mit w = 1 ist, haben wir mit dem vorliegenden Satz bewiesen, dass das
Einzelschrittverfahren ESV fiir hermitesche und positiv definite Matrizen immer
konvergiert.

5.4 Iterative Verfahren fiir nichtlineare Gleichungs-
systeme

In diesem Abschnitt betrachten wir nun endlich nichtlineare Gleichungssysteme
F(z)=0

mit einer reellen Funktion F': R" — R",

ful)

Wir nehmen zunéchst an, dass unser Gleichungssystem bereits in Fixpunktform
G(z) = x vorliegt mit einer Funktion

g1(z)
g2()

G(z) =
gn ()
Eine Fixpunktgleichung kann man z.B. durch die Funktion G mit
G(z) =2+ M (2)(F(x))

erzeugen. Dabei ist M ein linearer Operator, der von x abhéngen darf. Wie wichtig
es ist, die Funktion G sinnvoll zu wéhlen, zeigt das folgende Beispiel.

Wir betrachten die Funktion f(z) = x — cosz im Intervall [0, 1].
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e Wihle g(z) = cosz. Dann gilt f(z) = 0 genau dann wenn g(z) = =x.
Weiterhin gilt ¢ : [0,1] — [0,1]. Jetzt wollen wir noch zeigen, dass g eine
Kontraktion ist. Wir wenden Lemma 5.7 an und erhalten

q= sup |¢'(z)] = sup sinz =sinl < 1,
0<z<1 0<z<1
also ist g eine Kontraktion. Nach Satz 5.6 konvergiert also das Verfahren
r* D = cos x®), Allerdings ist die Konvergenzgeschwindigkeit unbefriedi-
gend.

e Betrachten wir nun
T — COST

g(w) =z~

Auch dann gilt f(z) = 0 genau dann wenn g(x) = z, und man sieht nach
kurzer Rechnung, dass ¢ : [0,1] — [0, 1], und dass

1-+sinz

(1 +sinz)? — (x — cosx) cos x

/
- 1-
9 @) (1+sinz)?
o1+ (:c—cos':c) CoS T
(1 +sinz)?
= 1 firz=0.

Also ist g keine Kontraktion. Das Verfahren der sukzessiven Approximation
konvergiert dennoch. Die Konvergenz mit Hilfe dieser Fixpunktgleichung ist
sogar sehr schnell!

Um die schnelle Konvergenz zu erkliren, schreibt man die Ableitung um zu

;o f(x)cosw
g'(w) = (1+ sinz)?’

Weil f eine Nullstelle z* in [0, 1] hat, gilt ¢’(z*) = 0, also gibt es eine Umge-
bung um z*, in der g eine Kontraktion ist. Der Kontraktionsfaktor in dieser
Umgebung ist nahe bei Null (also sehr klein), und das Konvergenzverhalten
daher gut.

Bevor wir diese Beobachtung im Newton-Verfahren ausnutzen, verallgemeinern
wir Satz 5.12 auf nichtlineare Funktionen und beweisen damit, dass das Verfahren
der sukzessiven Approximation unter dhnlichen Bedingungen wir im Satz 5.12
auch im nichtlinearen Fall konvergiert.

Satz 5.18 Sei U C R" eine konvexe Menge und G : U — U eine stetig differen-
zierbare Abbildung (d.h. jedes der Elemente der Jacobi-Matriz DG ist stetig in
U). Weiterhin gelte eine der folgenden Bedingungen:

n
j=1

9gi

el <1

Zeilensummenkriterium: ¢,, = sup, .y max;—1__,
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9gi

Spaltensummenkriterium: ¢; = sup,cp maxj—1,_, 5, s <1
- J
n 0 2
iterium: o, — 9i
Quadratsummenkriterium: ¢o = sup,cy (/225 =) oa| <1

Dann konvergiert das Verfahren der sukzessiven Approximation beziiglich jeder
Norm im R™ fiir jeden Startwert x© € R™, und zwar gegen die eindeutig be-
stimmte Losung x* des nichtlinearen Gleichungssystems G(z*) = x*. Ist g, < 1
fiir p € {1,2,00} so gelten fiir dieses p auflerdem die folgenden Schranken.

k
e A priori Fehlerschranke: ||x®*) — x*||, < ﬁ—’gpﬂx(l) — 2O,

e A posteriori-Fehlerschranke: ||z®) — x*||, < 13—21,”37%) — =D,

Beweis: Nach Satz 3.17 und Lemma 3.24 zeigen, dass

sup | DG(@)l, = g fiir p € {00, 1}

zelU

sup [|DG(z)]2 < ¢

xzelU
Daher ist nach Lemma 5.7 die Abbildung G : U — U kontrahierend, falls ¢, < 1
fiir ein p € {00, 1,2}. Satz 5.6 ergibt die Behauptung. QED

Unter den Voraussetzungen des letzten Satzes konvergiert also das Verfahren der
sukzessiven Approximation auch im nichtlinearen Fall. Das Verfahren

IL‘Z(-]H—l) = gi(xgk),:pgk), e ,:Eg“)) 1=1,...,n, k=0,1,2,...
nennt man auch nichtlineares Gesamtschrittverfahren, wihrend man das

Verfahren

.Z'gk—’—l) = 01 (l’gk), ey l‘glk))
xz('kJrl) = gi('rgk+1)7 s 7'TEEJ1FI)7 xgk)7 s 7xgzk)) i=2,...,n,

als nichtlineares Einzelschrittverfahren bezeichnet. Die in Abschnitt 5.3 be-
sprochenen Verfahren GSV und ESV sind Spezialfille dieser Verfahren.

Das Newton-Verfahren fiir skalare Funktionen

Wir kommen nun wieder zuriick zu dem originalen nichtlinearen Gleichungssys-
tem

F(x)=0

und entwickeln mit dem nun zu besprechenden Newton-Verfahren eine Fixpunkt-
form, die — wenn sie konvergiert — zu einem schnelleren Konvergenzverhalten
fiihrt. Wir beginnen unsere Uberlegung fiir eine reelle Funktion f : R — R.
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Gesucht ist eine Nullstelle * der Funktion f. Haben wir schon eine Schitzung
der Nullstelle (¥ und ist f stetig differenzierbar, so besteht die Idee des Newton-
Verfahrens darin, f durch seine Tangente durch den Punkt z(®)

f = f@9)+ @)z —2?)

(also der Taylorreihe bis zum linearen Glied) zu ersetzen. Man sucht also die
Nullstelle der Ndherung anstatt der Nullstelle von f. Eine Nullstelle der Naherung
F@O) + (2O (z — 2©) existiert, falls f(2(®) # 0 ist und ist in diesem Fall
gegeben durch

f'(@)
Wiederholt man das Vorgehen mit (! := z so erhilt man das Newton-Verfahren.
Erfiillt die Ableitung f(x) # 0 so erhélt man die Fixpunktgleichung

@
M=)y

Kommen wir kurz zu dem Beispiel f(z) = x — cosx von Seite 112 zuriick: Hier
wurde mit
1 f (=)

g(x) =2 — m(w— cosx) =x — )

im zweiten Versuch genau die Fixpunktform des Newton-Verfahrens verwendet.
Leider ist die Funktion g im allgemeinen keine Kontraktion auf dem gesamten zu
betrachtenden Intervall, so dass Satz 5.18 nicht anwendbar ist. Dennoch gilt die
folgende lokale Konvergenzaussage.

Satz 5.19 Sei x* eine einfache Nullstelle der f : R — R. Sei weiterhin f in
einer Umgebung von x* zwei mal stetig differenzierbar. Dann konvergiert das
Newton- Verfahren fiir jeden Startwert x(°), der hinreichend dicht bei x* liegt.

Beweis: Weil z* einfache Nullstelle ist, gilt f’(z*) # 0 und entsprechend gibt es
eine Umgebung U := U(z*) so dass f'(x) # 0 fiir alle x € U. Die Verfahrensvor-

schrift g(z) = = — J{C/((?) ist damit fiir alle z € U definiert. Die Ableitung von g
ist
/ [f'(@)]* = f(2) f"(x) f"(z)
r)=1-— = T
g() ' (x))? [f’(év)]zf( )

also ¢'(z*) = 0. Wegen der Stetigkeit von ¢’ gibt es Zahlen 6 > 0,¢q < 1 sodass
fir alle x € U’ = [2* — 0, 2" + ] N U gilt |¢'(x)| < ¢ < 1. Daraus folgt

lg(z) — z*| = |g(x) — g(z¥)] < gz — 2*| < ¢ fiir alle z € U,

das heifst, g : U — U’ ist eine Kontraktion. Satz 5.6 liefert die Behauptung.
QED
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Das Newton-Verfahren fiir mehrdimensionale Funktionen

Wir formulieren zunachst das Newton-Verfahren auch im mehrdimensionalen Fall.

Definition 5.20 Se: U C R” offen und F' : U — R" eine stetig differenzierbare
Funktion mit einer fir alle x € U reguldren Jacobimatriz DF (x). Dann heif$t das
Verfahren

2D = 2B _[DF M) FE™) k=0,1,2,...

mit Startwert x(©) € U Newton-Verfahren.

Die Motivation fiir das Newton-Verfahren ist die gleiche wie fiir skalare Funktio-
nen: Anstatt die Nullstelle F'(z) = 0 zu suchen, ersetzt man

F ~ F(z9) + (DF () (x — z©).
Existiert [DF(2(®)]7!, so kann man diese Gleichung nach x auflésen und erhilt
=29 — [DF ()] F(z)
als néchste Iterierte. Das entspricht der Fixpunktgleichung (5.2)
G(x) =x+ MF(x)

mit der regulidren Matrix M = [DF(z)]~".

Um das Newton-Verfahren numerisch zu realisieren wird zur Bestimmung von
g* D) = 2O _[DF (") TFE®) k=0,1,2,...
in jedem Schritt das lineare Gleichungssystem
DF(x(k))(x(kJrl) — x(k)) — —F(x(k))
gelost. Das geschieht durch das Losen des Systems
DF(z™)w® = —F(2®)
und anschliefendes Berechnen von

Bevor wir auf die Konvergenzeigenschaften naher eingehen, formulieren wir das
Verfahren.

Algorithmus 11: Newton-Verfahren
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Input: Offene Menge U C R"™, Differenzierbare Abbildung F' : U — R" mit
Jacobi-Matrix DF :U — R™". Startwert z(") € U, Toleranzwert ¢ > 0.

Schritt 1: £:=0
Schritt 2: Repeat
Schritt 2.1: Finde w*) als Lésung des Gleichungssystems

DF(z")w® = —F(z®).

Schritt 2.2: z*+1) .= (k) 4 (k)
Schritt 2.3: ¢ = [w®|

T =

Schritt 2.4: If ¢, > 1 oder z(**1) ¢ U STOP: Das Verfahren scheint nicht
zu konvergieren.

Schritt 2.5: £k =k +1

Until 2 |w®)| <e

Ergebnis: Approximierte Nullstelle z(¥) von F.

Leider ist die Berechnung von DF'(x) fiir groke n aufwindig, so dass man die
Jacobi-Matrix in der Praxis nicht in jedem Schritt neu berechnet, sondern héufig
die folgenden Varianten verwendet:

e Frozen Newton: Es wird nur einmal die Jacobi-Matrix berechnet, fiir die
dann mittels LU-Zerlegung alle in den Iterationen auftretende Gleichungs-
systeme effizient 16sbar sind.

e Quasi-Newton: Die Jacobi-Matrix wird in jedem Schritt (approximativ) an-
gepasst.

Um den Konvergenzbereich des Verfahrens zu vergréfern verwendet man auch das
so genannte gedampfte Newton-Verfahren, in dem man die Iterationsvorschrift

2* D = 2®) 4 Nw® N\ € [0,1]

verwendet.

Das Konvergenzverhalten des mehrdimensionalen Newton-Verfahrens lésst sich
nicht ganz so einfach analysieren wie im eindimensionalen Fall. Daher ist die
Verallgemeinerung von Satz 5.19 etwas schwieriger zu zeigen. Wir beweisen im
folgenden Satz aber mehr, ndmlich dass das Newton-Verfahren sogar quadra-
tisch konvergiert.
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Definition 5.21 Sei ) — z* eine Folge im IK™ mit o) # x* fiir alle k. Wenn
es eine Konstante q und eine Zahl M gibt, so dass

2+ = a%|| < qlla® —a*|I7 fiir alle k> M

so liegt eine Konvergenz der Konvergenzordnung p gegen x* wvor. Den Fall
p = 1 bezeichnet man als lineare Konvergenz, den Fall p = 2 als quadratische
Konvergenz.

Man beachte, dass sich die Anzahl der korrekt gefundenen Stellen einer Zahl bei
quadratischer Konvergenz in jedem Schritt etwa verdoppelt. Wir formulieren jetzt
den Satz zur Konvergenz des Newton-Verfahrens.

Satz 5.22 Sei U C R" offen und konvex und sei F': U — R" stetig differenzier-
bar. Fiir 20 € U erfille F auferdem die folgenden vier Bedingungen in einer
(beliebigen) Norm || - || auf dem R™:

B1: FEs existiert eine Nullstelle x* € U der Funktion F.
B2: DF(x) ist requldr fir alle x € U.

B3: Es gibt w > 0 so dass fiir alle x,y € U die folgenden beiden Bedingungen
gelten:

(a) |[[DF(2)]" (DF(y) — DF(2))|| < wllz —y].
(b) Fiir p:=|lz* — 2O gilt £p < 1.

Bj: Die Kugel B,(z*) := {x € R" : ||z —2*|| < p} mit Radius p um die Nullstelle
x* ist in U enthalten.

Fiir die im Newton-Verfahren definierte Folge
g* ) = &) _ [DF(zW)] 7 R (1)
gilt dann:
1. 20 € B,(z*) fiir alle k =1,2,... .
2. ) konvergiert gegen z*.

3. Firk=0,1,2,... gilt die folgende a priori Fehlerschranke

. wp 2F-1
lo® — o)) < p () (5.22)

4. Firk=0,1,2,... gilt die folgende a posteriori Fehlerschranke:

a0 — o)) < Sl ® — 2| (5.23)
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Beweis:

Teil 1:

Wir zeigen zuniichst, dass aus ) € U die a-posteriori Fehlerschranke (5.23) fiir
k folgt, danach beweisen wir die Wohldefiniertheit fiir alle k£ per Induktion.

Dazu benétigen wir zunéchst eine Funktion g : [0, 1] — R™, die wir als
g(t) = F(z™ + t(a* — 2)))
definieren. Durch die multivariate Kettenregel erhalten wir
g (t) = DF(z® 4 t(z* — 20 (2" — 20,

woraus nach dem Hauptsatz der Differential- und Integralrechnung wie in Lem-
ma 5.7 folgt, dass

F(:c*)—F(:c(k)) =g(1)—g(0) = /01 g'(t)dt = /01 DF(aj(k)+t(a:*—a:(k)))(:c*—x(k))dt.

Jetzt setzen wir wie oben beschrieben voraus, dass ) € U. Nach der Definition
der Newton-Iteration gilt dann, dass

A = gD g
= o - [ Fa™)] ' FV) -
= - [ FaM)]H(F(2™) - F(a*))
= [DF(CC N (F(a") = Fla k)) DF(zW)(z" — 2™))
= [DFE")]™ (9(1) = 9(0) = DF(a™)(a* — )
= [DF ( DF(z®™ +t(z* — ™)) (z* — 2% dt — DF () (z* — :L‘(k)))
- / [DF (™) {DF(z® + t(2* — 2®))) — DF(x®)} (27 — 2*))at

Gehen wir zur Norm davon iiber, so erhalten wir
1Al = [la®™ =2

< /1 IIDF @) H{DF@™ +t(a* —2™)) = DF@W)} | a* -« |dt

Nach der ersten Voraussetzung [B3| gilt aber, dass

[DF (") (DF(2® + t(z* — 2™)) — DF(2®))
< wlja® — (") 4 ¢(2* — 2R

= wtf|z® —z*|.
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Setzen wir dieses Ergebnis in die obige Ungleichung ein, so ergibt sich

1AL = fla® =2
1
< /‘MDPWﬁMHA(DFWﬂm+t@*—lﬁn)—luwﬂmnﬂ|W*—$wmﬂ
0
1
< /0 wt||z® — z*|| [|=® — z*||dt = /thaz(k) — o*||?dt
= Sla® —a|pP

Damit ist also gezeigt, dass (5.23) gilt, falls 2*) € U.

Teil 2:
Mit Hilfe der Aussage aus Teil 1 kénnen wir nun Satz 5.22 per Induktion beweisen.

Induktionsanfang Fiir £ = 0 sind nur (5.22) und (5.23) zu zeigen.

e (5.22): Fiir k = 0 erhélt man (“’7”)21&1 = 1. Daher gilt |2 —2*|| = p
nach der Definition von p.

e (5.23): Weil (¥ € U kénnen wir Teil 1 des Beweises verwenden. Wir
erhalten: w
|2 — & < Sll2 — 2.

Induktionsschritt: & — k+ 1. Sei also der Satz richtig fiir k. Dann ist z® € U
nach der Induktionsannahme. Wir rechnen

lz®tD) — 2| < g”x(’” — 2*||* wegen Teil 1

w wp>2(2’“—1) )

< Z(ZE

< = p
denn es gilt (5.22) nach Induktionsannahme
2k+1_1

= <%)) p < p wegen B3], Teil (b).

Aus der letzten Zeile folgt die a-priori Fehlerschranke (5.22) fiir k4 1, sowie
die Aussage V) € B,(2*). Entsprechend ist die Folge wohldefiniert, und
nach Teil 1 gilt auch (5.23) fiir k£ + 1.

Wegen (5.22) und [B3], Teil (b) erhélt man auferdem direkt die Konvergenz
gegen T*.

QED

Zum Abschluss geben wir noch einen Satz an, der zeigt, dass eine lokale quadra-
tische Konvergenz in der Nihe eine Nullstelle meistens erreicht werden kann.
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Satz 5.23 SeiU C R" offen und F': U — R"™ eine zweimal stetig differenzierbare
Funktion. Sei x* € U mit F(x*) = 0 und det(DF(z*)) # 0. Dann existiert ein
p > 0 so dass das Newton-Verfahren fiir alle Startwerte 2 € U = B,(z*)
quadratisch konvergiert.

Beweis: Im Beweis untersuchen wir die Voraussetzungen von Satz 5.22. Zunéchst
gilt [B1] nach Voraussetzung. Weil die Funktion

h(z) = [DF(z)]~"
als Matrixinversion stetig ist, gibt es p > 0 so dass
[A(@)[| = [[A(z)|| < [[h(x) = h(z")|| < € fiir alle 2 € B,(x").
Mit ¢ := |[DF(z*)] 7| ergibt das
I[DF ()] = I[DF ()] < [[DF(2*)] 7! fiir alle € By(x*),
oder, dquivalent,
||[DF(x)]_1|| < 2||[DF($*)]_1|| fiir alle x € B,(x").

Daraus folgt [B2| und mit der Definition U := B,(z*) trivialerweise [B4].

Als letztes muss also noch [B3] gezeigt werden. Hierfiir nutzt man aus, dass DF
nach Voraussetzung fiir x € U differenzierbar ist. Also gibt es eine Lipschitzkon-
stante L > 0 so dass

I[DF ()] = [DEW)]Il < Lijz — y] fir alle 2,y € U.
Wihlt man w := 2L||[DF (z*)] 7| so gilt
IIDF (@) ([DF(y)] - [DF@)DII < [[DF@)]H| || (DF@)] = [DF()])

~~ ~~

< 2[DFE)]H Lile -yl

= wllz—yll,
also gilt [B3], Teil (a). Da man immer p < 2 wihlen kann, folgt wegen £p < 1

auch Teil (b) von [B3|, und damit die quadratische Konvergenz nach Satz 5.22.
QED
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Kapitel 6

Interpolation

In diesem Kapitel beschiftigen wir uns mit der Interpolation von Funktionen.
Dazu wollen wir aus einer gegebenen Klasse von Funktionen M eine auswéhlen,
die an vorgegebenen Punkten zg,x1,...,z, ihres Definitionsbereichs gewissen
Bedingungen geniigt. Im einfachsten Fall fordert man z.B.

flz;)) =y, firi=0,...,n, z;,y; gegeben,

man kann aber auch Bedingungen an die Ableitungen in den Punkten stellen.
Ist M die Klasse der Polynome vom Grad < n, so spricht man von Polynom-
Interpolation, bei trigonometrischen Funktionen von trigonometrischer In-
terpolation und ist M die Klasse der stiickweise polynomialen Funktionen, so
nennt man das Problem Spline-Interpolation.

6.1 Polynomiale Interpolation

Definition 6.1 Ein Polynom p ist eine Funktion von der Form p(x) = a,x™ +
.. taz+ag, v € IK und Koeffizienten ag, . . ., a, € K. Ist a, # 0, so heifst n der
Grad des Polynoms. Per Definition ist der Grad von p = 0 als —1 festgesetzt.
I1,, sei die Menge aller Polynome vom Grad < n.

Aus der linearen Algebra ist bekannt, dass II, ein Vektorraum mit komponen-
tenweiser Addition und Skalarmultiplikation ist. Weiterhin wiederholen wir

Satz 6.2 (Hauptsatz der Algebra) Ist p(x) = a,x™ + ...+ a1z + ag ein komplexes
Polynom vom Grad n, so gibt es eindeutig bestimmte Zahlen by, ..., b, € C so,
dass p(x) = an(x — by) - ... (x —b,). Die Zahlen b; sind die Nullstellen von p.

Kommt der Faktor z —b; in p(z) genau k-mal vor, sagt man, die Nullstelle b; hat
die Vielfachheit k.

Bemerkung: Sei a eine Nullstelle von p. Dann hat a die Vielfachheit £ genau
dann, wenn p¥)(a) = 0 fiir j = 0,1,...,k — 1.
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Satz 6.3 Sei p(x) = a,x" + ...+ a1x + ag ein Polynom € 11,,. Hat p mehr als n
Nullstellen, so verschwindet p identisch, das heifit p = 0. Insbesondere gilt dann
a; =0 fir alle j =0,...,n.

Aus diesem Satz ldsst sich direkt ableiten, dass die Monome
My(z) =2 €I, k=0,1,...,n

als Funktionen My, : [a,b] — R, [a,b] C R, linear unabhéngig sind. Da man durch
Linearkombination der M} jedes Polynom erzeugen kann, ist

{My, My, ..., M,}

also eine Basis des II,,.
Die lineare Unabhéngigkeit der M; sieht man wie folgt:

Sei Y 1o axMi(xz) = 0 fiir alle z € [a,b]. Dann hat Y ,_, apM(x)
mehr als n Nullstellen, also sind nach Satz 6.3 alle Koeffizienten ay =
ar=...=aqa, =0.

Um Polynome auszuwerten, das heikt Werte p(x) eines Polynoms p zu berech-
nen, verwendet man das Horner-Schema. Dazu klammert man das Polynom p(x)
geschickt und erhélt:

p(z) = (...((apx + ap_1)x + apno)x+ ...+ a1)x + ag

Das fiihrt zu folgendem Verfahren:

Algorithmus 12: Horner-Schema zur Auswertung von Polynomen

Input: Koeffizienten ag,ai,...,a, eines Polynoms p = a,z"+...a121+ag € 1,
und feste Zahl z.

Schritt 1: y :=a,
Schritt 2: For k=n—1 to 0 do y:=y -z + a;

Ergebnis: p(z) =y

Die Berechnung mittels des Horner-Schemas ist effizienter als die ,normale” Aus-
wertung.
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Beispiel: Sei ein Polynom
p(z) = 20" — 42® — 527 + Tz + 11

gegeben. Gesucht ist der Wert an der Stelle z = 2. In tabellarischer Schreibweise
erhilt man:

Koeffizienten: 2 —4 -5 7 11
Summe: 2 0 -5 -3 5

Der gesuchte Wert ist also p(2) = 5.

Wir definieren nun das Problem, mit dem wir uns in diesem Abschnitt beschéf-
tigen:

Lagrange Interpolationsaufgabe: Gegeben seien n + 1 Stiitzstellen x;, ¢+ =
0,...,n und Stiitzwerte y;, ¢ = 0, ..., n. Gesucht ist ein Polynom p € II,,, so dass

p(z;) =y; firi=0,...,n. (L-Int)

Als erste Idee verwendet man die Monome als Basis des I1,, und stellt das gesuchte
Polynom dar durch

p(z) = Z a My(z).

Die Bedingungen L-Int fiihren zu folgendem Gleichungssystem mit Unbekannten
ag,...,0,:

ZakMk(:pj) =y, fiirj=0,...,n
k=0

oder, ausgeschrieben,

Zakxjk:yj fiir j =0,...,n.
k=0

Die Koeffizienten-Matrix ist die Vandermonde-Matrix

1 To .Toz ce .CL’()n
1 1 22 - "

A= 1 1 1 c I[{n—l—l,n—l—l
1z, z,2 - a,"

Das Problem ist im Allgemeinen schlecht konditioniert, aber dennoch von theo-
retischem Interesse:
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Satz 6.4 Die Lagrange Interpolationsaufgabe ist fiir n+1 paarweise verschiedene
Stitzstellen xg, . .., x, eindeutig losbar, die Lisung ist gegeben durch

k=0
wobei
L p—
lk(x):H . furk‘: ) y 1
T — T
j=0 kT
J#k

die so genannten Lagrange-Polynome sind.

1 fallsk=j
Beweis: Per Konstruktion ist L,, € II,, und es gilt wegen [;(x;) = e j
0 falls k # j

L,(x;) = Zyklk(xj) = Zyk5kj =y, fiirj=0,...,n
k=0

k=0

Es bleibt noch die Eindeutigkeit zu zeigen. Seien dazu p;, ps € II,, beides Poly-
nome, die (L-Int) erfiillen. Dann gilt fiir ihre Differenz p := p; — po, dass

p(xj) = p1(x;) —pe(z;) =y; —y; =0fiir j=0,...,n

Also hat das Polynom p (mindestens) n + 1 Nullstellen. Da p € II,, folgt daraus
nach Satz 6.3, dass p = 0, also p; = ps. QED

Beispiel: Seien drei Stiitzstellen zo = 0, x1 = 1 und x5 = 3 mit Stiitzwerten yg =
1, y1 = 3 und y, = 2 gegeben. Gesucht ist der Wert Lo(z) des interpolierenden
Lagrange-Polynoms an der Stelle 2. Es gilt:

2

Lo(x) =Y yli().

Fiir 2 — 2 gilt:
W) = e =g @D -3
0 = (oig ~ e
{0 = o "5



Praktisch hat die Lagrange-Formel allerdings wenig Relevanz, da die Hinzunah-
me einer weiteren Stiitzstelle eine komplette Neuberechnung erfordert, und das
Problem nicht gut konditioniert ist.
Mo6chte man das interpolierende Polynom an nur wenigen Stellen auswerten, bie-
tet sich das folgende Verfahren an.

Interpolation von Neville & Aitken

Definition 6.5 Fir gegebene, paarweise verschiedene Stitzstellen x; mit i =
0,...,n und Stitzwerte y; mit i = 0,...,n sei P¥ € Il das Polynom mit der
FEigenschaft:

Pir;) =y, Vi<j<i+k

Insbesondere ist Py das Interpolationspolynom zu allen Daten.

Wir bemerken, dass P wegen Satz 6.4 eindeutig bestimmt ist. Die Idee des nun
zu entwickelnden Verfahrens beruht auf dem folgenden Satz.

Satz 6.6 FEs gilt:

Pl(z) = y; €l i=0,...,n

prriy — EZmIPLE) Z @ s PIE)
Titk+1 — X4

Beweis: Wir fiihren Induktion nach k durch.

Fiir £ = 0 erfiillt P’(z) = y; gerade P2(x;) = y; fiir i = 0,...,n. Nehmen
wir nun an, die Aussage stimmt fiir k. Bezeichne mit h(x) die rechte Seite der
Rekursionsformel fiir P (z), das heift

h(z;) = (zj — xi)ﬂ%@j) — (7 — $i+k+1)Pf($]~)
! Litk+1 — Ti
Fall 1: i < j <i+k:
Nach Induktionsannahme gilt

Pi]il(xj) = y; und Pf(xj) =Yj-

Also folgt:

hz;) = (2 — xi)y; — (25 — Tivk11)y, —y,

Litk+1 — T4
Fall 2: j = i:
In diesem Fall gilt Pf(x;) = y; = y;, woraus wir aber schon folgern, dass

h({L'Z): (I‘ I’) ’L+1('r> (I‘ x+k+1>y =y

Litk+1 — T4
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Fall 3: j=k+1+ 1:
Analog zu Fall 2. QED

Wir zeigen am Beispiel n = 3, wie sich die Polynome P} effizient auswerten

lassen.
Stiitzstellen Stiitzwerte

Zo ?JO:P(%)\
Pl
EERN
" n=p{ R
Pl/ P3
1\ 0
) ?/2:P20< P12/
p
Z3 ygng?/

An unserem alten Beispiel mit {(x;,y;),7 = 0,1,2} = {(0,1), (1,3),(3,2)} sieht
das folgendermafsen aus: Gesucht ist wieder der Wert des interpolierenden Poly-
noms an r = 2. Dazu rechnet man:

T T — Tk Yk

0 2 1="F

° N
_ 23-11 __
Pi=25t =5
5 (1)
11 3:P10< R
12—(-1)3 _ 5 /
Pl = 3-1 2

3 1 2-p 7

Als Algorithmus ldsst sich das wie folgt beschreiben:
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Algorithmus 13: Neville-Aitken-Verfahren

Input: zg,z1,...,r, paarweise verschieden yi,...,y,, Punkt x, an dem das
interpolierende Polynom ausgewertet werden soll.

Schritt 1: For j=0,...,n do
Schritt 1.1: p; :=y;
Schritt 1.2: t; :=2 — z;
Schritt 2: For £=0,...,n—1 do
For j=0,....n—k—1 do
tipj+1 — tj+k+1Pj
b = titk+1

j .

Ergebnis: p(z) :=py, wobei p das Interpolationspolynom ist.

Dieses Verfahren ist sinnvoll, falls man das Interpolationspolynom an nur wenigen
Stellen auswerten mdochte.

Newtonsche Interpolationsformel

In der Newtonschen Interpolationsformel verwendet man eine weitere Basis des
II,,, ndmlich

k—1
hi(z) = [ (= — =)
i=0
wobei g, 1, ..., x, wieder die Stiitzstellen sind.
Lemma 6.7 Seien xg, x4, ..., T,_1 paarweise verschieden. Die Newton-Polynome

hi(z) = Hi:ol(x —x;) mit k=0,1,...,n bilden eine Basis des 11,,.
Die Newton-Polynome haben das folgende Aussehen:

ho(z) =1

hi(x) = (z — 20)

ho(x) = (z — x1)(x — @0)

und es gilt:
hi(z;) =0 fiir alle k > 5 und  hy(z;) # 0 fiir alle £ < j
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Beweis: (von Lemma 6.7) Sei > ;_, aiphi(x) = 0, das heifst

pa) =Y e [~ ) =0

Insbesondere gilt
0 = p(zo) = apho(x) = .

Daraus folgern wir weiter

0=p(x1) =ap+ a1(x — z9) = a1 (x — x9),
£0

also a; = 0. Induktiv erhélt man, dass alle Koeffizienten ay, ..., a, Null sind.
QED

Um das Lagrange-Interpolationsproblem zu losen, betrachtet man also das fol-

gende Gleichungssystem mit den Variablen ayp, ..., a;:
Zakhk(a:j) =y mit j =0,...,n. (6.1)
k=0

Weil 27 anhi(z;) = Soi_, awhi(z;) erhilt man die folgende Koeffizienten-
Matrix:

ho(zo) 0 0
ho(z1) hi(z1) 0 ce 0
A= | ho(xs) hi(xs) ho(xs) :
: - 0
ho(xn) hi(zn) «oooiooii.. hon ()
A ist eine untere Dreiecks-Matrix, die wegen hi(zy) # 0 fiir alle k = 0,...,n

regulér ist. Man kann die gesuchten Koeffizienten also durch Vorwiértselimination
bestimmen. Das ergibt:

Y Yo

0= o)~ 1 =W
o = hl(la:l)(yl — agho(21)) = I _1% (y1 — o)
1
Qo = h2(:1:2 (y2 - alhl(l’z) - Oéoho(372))
1 1
T " (yz r— (y1 = yo) — yo)
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Da diese Formeln recht miihsam werden, gehen wir einen anderen Weg. Dazu

definieren wir zunéchst ,,Abschnittspolynome* fiir die Losung ayq, o, ..., o, von
(6.1):
k
Q" (2) :Zajhj(:p) =agtag(r—xo)+...+ap(z —x0) o (T — Tp_q)
5=0
das heifst
QO(SU) = Qo

Q' (z) = ap + ay(x — x0)
Q*(z) = ap + ay(x — x0) + as(z — 20) (T — T1)

Es gelten die folgenden Eigenschaften:
Lemma 6.8
1. Q%(x) = P} e 11,
2. Pyti(z) = Py(2) + appahpn (@)
3. oy, ist der Koeffizient von ¥ im Polynom PF(x).

Beweis: Eigenschaft 1 folgt, weil aufgrund der Wahl der o; gilt Q*(z;) = y; fiir
j =0,...,k und die Polynom-Interpolation eindeutig ist (Satz 6.4).

2. und 3. ergeben sich fiir Q¥ aus der Konstruktion und gelten nach 1. also auch
fiir PY. QED

Wir definieren:

Definition 6.9 Seien x;,y; mit i = 0,...,n mit paarweise verschiedenen x; ge-
geben. Dann definiert man die dividierten Differenzen rekursiv durch

D?::yi mit1=20,...,n
k—1 k—1
Dk .— Diy —D;

; miti=0,1,...,.n—k
Titk — g

und k=1,2,...,n

Unser Ziel ist es nun, zu beweisen, dass
o = Dg

gilt. Wir werden das zuerst untersuchen und danach ein Schema angeben, mit
dem man Df effizient berechnen kann.
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Satz 6.10 Es gilt
PFa) =D+ D}z —x)+ ...+ DF(x —x;)- ... (z — Zisp_1)
das heift PF(x;) = y; fiir j =1,...,k+ 1. Insbesondere gilt fir i =0 und k = n:

Py(z) = DY+ Dj(x —20) + ...+ Djf(x —20) - ...+ (7 — 2p_1)
=Y Dihy(x)
5=0
st die Losung des Lagrange-Interpolationsproblemes.

Beweis: Wir induzieren iiber k. Sei k = 0, dann ist P(z) = D = y; richtig. Sei
die Aussage richtig fiir £k — 1 und k£ > 1. Wir verwenden Lemma 6.8, Teil (2),
indem wir zunéchst

Zi‘o =T;

T1 = Tit1

Tp_1 = Tiyk—1

Tk = Titk

definieren. Beziiglich der & definieren wir nun die Polynome P! Pk das Newton-
Polynom hy(z) = (x—2) - - - (x —Ty—1) und die Koeffizienten &; mit j =0, ..., k.
Dann gilt

PF = P(z) = PFY(x) + axhi(z) nach Lemma 6.8 Teil (2)

= PN (2) +ale — ) - (v = Tigpa)

Wobei a := é;, der (noch unbekannte) Koeffizient von z* im Polynom P} = P}
ist, nach 6.8 Teil (3). Nach der Induktionsannahme ist

PN @) = Df + Di(w =) + o D@ =) o (2 = @igea)
und entsprechend

PF(z) = DY+D} (x—z)+.. +DF Yo—a;) - (2 —2ipp_2)+alz—a;) - (2—ipp_1)
Es ist also a = D¥ zu zeigen. Nach Induktionsannahme gilt
e der hichste Koeffizient von P! ist DF™!

e der hochste Koeffizient von Pi’f[ll ist Df;ll
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Also ist
PE () = pla) + DEb!
Pfi'(x) = §'(z) + DI 2" mit p,p' € I
Wir verwenden nun die Nevillsche Interpolationsformel aus Satz 6.6 und erhalten
(x —2)PiH'(2) — (& —2) P (2) _  a"DEH — 2" D!

Pi(z) = =p +

Titk — X Titk — X

mit p’ € II,_;. Der hochste Koeffizient auf der rechten Seite ist also

k-1 k—1
o= Dig —D;

— Df
Titr — L4

QED

Um die D¥ zu berechnen, bendtigt man mittels des folgenden Schemas einen
Aufwand von O(n?):

To Yo = D8 N
D} N
ry oy = DY < D% .
D < D3
T2 Y2 = D(z) < D% 4
py”
T3 Ys = DS’ 4

Verwenden wir auch hier das Beispiel mit den Paaren (0,1), (1,3), (3,2), so
erhalten wir

0 1=DY
N
Dl =2
0 N\
13:D9< D=2 -5
D%:,_l/
2
5 2-py”
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und das interpolierende Polynom ergibt sich zu

Pi(z) =142 (x —xo) — 3(x — x)(x — x1)

=1+2z—3x(z—1).

An z = 2 erhalten wir wiederum P§(2) = 4. Abschliefend geben wir noch eine
andere analytische Darstellung der DF.

Lemma 6.11

itk itk i—0
DE . o
! jz:;y] HZL‘j—ZL‘r k=0,....n

T=1

r#j

Beweis: Kann durch vollstidndige Induktion gefiihrt werden.

Statt nur Funktionswerte von Punkten vorzugeben, kann man auch Bedingungen
an die Ableitungen stellen. Man erhélt das folgende Problem.

Hermite-Interpolationsproblem: Seien zy < --- < x,, € [a,b] und v, ..., y, €
R gegeben, wobei die x; nicht paarweise disjunkt sein miissen. Gesucht ist ein
Polynom p, das folgende Bedingungen erfiillt: Ist z; | < x; = ;41 = -+ =
ZTirr < Tiyri1, SO soll gelten

p(l’z) =Y
p(l) (36’@) =Yir1
(6.2)
P (i) = Yirr

Meistens wird dieses Problem gestellt, um eine (unbekannte) Funktion f zu in-
terpolieren. Sind die xy,...,z, gegeben, so bedeutet die Bedingung (6.2) das
folgende: Fallen r der xy, ..., 2, in einem Punkt z € [a, b] zusammen, so interpo-
liert p die Funktion f an der Stelle z bis zur (r —1)-ten Ableitung. Natiirlich setzt
man dabei implizit voraus, dass f auch hinreichend oft stetig differenzierbar ist.
Die meisten Ergebnisse fiir das Lagrange-Interpolationsproblem kann man auf
das Hermite-Interpolationsproblem verallgemeinern.

Satz 6.12 Es gibt genau ein Polynom p € 11,,, welches das Hermite-Interpolationsproblem
lost.

Beweis: Wir betrachten die folgende lineare Abbildung
T:C"[a,b] — R
f - (f(O)(:L‘O)a f(rl)(xl)a LR f(rn)(l‘n))

134



wobei r; = r, falls ;1 < 2; = x;41 = - -+ = x4, mit j = ¢ +r. Wenn man 7" auf
IT,, anwendet, ergibt sich
T:11, — R*!

mit dim(Il,) = n + 1. Ist T injektiv, dann auch surjektiv und jedes Hermite-
Interpolationsproblem hat genau eine Losung. Wir miissen also die Injektivitét
von T nachweisen. Sei dazu T}, = T),, p1,p2 € 1I,,. Dann ist

T(pl — pg) = Tpl — Tp2 = O € RnJrl

Also hat das Polynom p; — py € II,, mehr als n Nullstellen (mit Vielfachheiten
gezdhlt) und ist nach Satz 6.3 identisch Null, d.h. p; = ps. QED

Um das Hermite-Interpolationsproblem zu losen, betrachtet man zunéchst den
Spezialfall
To =21 = =Tk

Hier ist also ein Polynom p € Il gesucht, das vorgegebene Bedingungen an den
Funktionswert gy, und an die Werte seiner ersten k Ableitungen

p(i)(xo) =Y

erfiillt. Stellt man sich vor, dass die Werte vyq, ..., y, von einer (unbekannten) k
mal stetig differenzierbaren Funktion f kommen, d.h.

F9 (o) = wi

gilt, so sieht man, dass das interpolierende Polynom genau das Taylorpolynom

ist. Diese Beobachtung verwendet man zur Berechnung der dividierten Differen-
zen DF wie folgt.

Definition 6.13 Die dividierten Differenzen werden fiir das Hermite-Interpolationsproblem
wie folgt definiert

D) =y, mit j=min{l:z = z;} i=0,...,n

Yitk _ _ _
D B falls x; = x;p 1 = -+ - = a3,
(R e e falls x; # x;
Tigp—Ti ! itk

Mit dieser Definition kann man zeigen, dass Satz 6.10 richtig bleibt. Bei seiner
Anwendung ist allerdings zu beachten, dass manche der auftretenden Faktoren
in den Newton-Polynomen hy(z) identisch sind. Wir wollen Satz 6.10 fiir das
Hermite-Interpolationsproblem hier nicht beweisen, aber seine Anwendung an
einem Beispiel demonstrieren.

135



Beispiel:

1’0:—2 .1’1:() x2:0 T3 =

Yo =06 Yy =2 Yo =4 Y3

Il
0

Berechnung der D

-2 6=D§
D=2
0 2:09< Di=3
pi— 4 D3 =-1
0 2:Dg< pr_s’
pi= 67
0 s=p”

Das interpolierende Polynom ergibt sich entsprechend zu

pla)=6—2(x+2)+3(x+2)z—1(z+2)z
—_—— N — ———
ha(z) ha(z) hs(x)

:2+4x+§:p2—%x3
p'(a:):4+%:c—x2

und p(=2) = 6, p(0) = 2, /(0) = 4, p(1) = 8.

6.2 Abschatzung des Interpolationsfehlers und Kon-
vergenzanalyse

Sei f die “komplizierte”, stetige Funktion, die wir durch das “einfachere” Interpo-
lationspolynom L, f ersetzen. Dabei seien die Stiitzstellen xy, ..., x, gegeben, an
denen L, f und f iibereinstimmen, d.h. die Interpolationsbedingung

(Lnf)(xi) = f(23) 1=20,...,n

ist erfiillt. Den Operator
L, :Cla,b) — 11,
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nennt man auch Lagrange-Interpolationsoperator. Wir interessieren uns fiir
den Interpolationsfehler

f_Lnf-

Wir méchten die groktmogliche Differenz zwischen f und L, f untersuchen. Dazu
bezeichnen wir fiir eine Funktion g : [a,b] — R

19]loc == max [g(z)].
z€la,b]
Eine Folge von Funktionen g1, go, g3, ... konvergiert gleichméfiig gegen eine
Funktion g, falls
lg — gnlloc — 0 fiir n — oo

gilt. Wir werden das nun auf den Interpolationsfehler anwenden, und zun#chst
|f — Lnf|l« untersuchen. Danach wollen wir diesen Fehler fiir eine steigende
Anzahl an Stiitzstellen abschéitzen.

Satz 6.14 Sei f : [a,b] — R eine (n + 1)-mal stetig differenzierbare Funktion.
Dann hat das Restglied

R,f=f—-L,f
bei der Polynom-Interpolation an den n+ 1 paarweise verschiedenen Stiitzstellen
X, ..., Ty € [a,b] die Darstellung

)
(Rnf)(x) = CES kl;[()@ — ).

Das gilt fir alle x € [a,b], wobei & = £(x) eine von x abhdngige Zwischenstelle
aus [a, b] ist.

Beweis: Ist # = z; fiir ein j € {0,1,...,n}, so gilt (R,f)(xz;) = 0 und die
Aussage ist richtig. Sei nun h,41(z) = [[;_,(z — x)). Fiir festes (aber beliebiges)
€ [a,b],x # xy fiir alle K = 0,...,n definiert man die Funktion ¢ : [a,b] — R

durch
f(2) = (Lof)z)

9) = F) = (Laf)0) = hua (1) =15

Fiir g gilt:
e g ist (n + 1)-mal stetig differenzierbar.
e g hat x,x,...,x, als Nullstellen.

Der Satz von Rolle besagt nun, dass es zu je zwei Nullstellen z,, x;, von g ei-
ne Zwischenstelle & € (14, 7,) gibt mit g (¢) = 0. Also hat die Ableitung g
mindestens n + 1 paarweise verschiedene Nullstellen auf [a, b]. Sukzessive Wie-
derholung dieses Arguments ergibt die Aussage, dass ¢ mindestens n + 2 —r
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Nullstellen hat, fiir aller = 0, 1,...,n41, also hat gV eine Nullstelle auf [a, b].
Wir bezeichnen diese Nullstelle mit &£. Dann gilt:

(Ruf)(@)
. hn+1 (:L’) ’

denn L, f™*Y) = 0, weil L,f € II, gilt. Der Term (n 4 1)! ergibt sich, weil
hpy1 € 11,41 und als héchsten Koeffizienten Eins hat. Also ist

Fm0(E)
(n+1)!

0=g"* () = ")~ (n+1)

(Rnf)(x) =

hn-l-l(x)

QFD

Bemerkung: Satz 6.14 gilt auch, falls einige der x; gleich sind und statt dem
Lagrange-Problem das Hermite-Problem betrachtet wird. Im Spezialfall z, =
ry = --- = x, ist das interpolierende Polynom das Taylor-Polynom und die
Fehlerabschétzung genau das entsprechende Restglied der Taylorformel.

Aus der Darstellung des Restglieds ergibt sich folgende Abschitzung

Korollar 6.15 Sei f : [a,b] — R mindestens (n + 1)-mal stetig differenzierbar
und xg, X1, ...,T, paarweise verschiedene Stiitzstellen. Dann gilt

1
s floo £ oo-

HRanoo = ”f - Lanoo < m

Da man ||h, 11| < (b—a)"™ abschitzen kann, folgt

(b_a)n+1 n+1
(n+1)! 7

[loc.

Finite-Elemente-Methoden verbessern den Fehler durch Zerlegung von [a,b] in

kleinere Stiicke. Hat man bei den Stiitzstellen Wahlmdglichkeit, so sollte man

diese so festlegen, dass
n

H(x — )

k=0

max
z€[a,b)

moglichst klein wird. Wir betrachten nun noch die Konvergenz von Interpolati-
onspolynomen bei wachsenden Stiitzstellen.

Satz 6.16 Sei f € C™®[a,b] und ||f™||o < M fiir alle n = 0,1,.... Dann kon-
vergiert der Interpolationsfehler || R, f|s fiir n — oo gleichmdfig auf [a,b] gegen
Null.
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Beweis: Nach Korollar 6.15 gilt

M

m”b — O,HnJrl — 0 fllI' n — oQ.

[ flloo <

Leider sind die Voraussetzungen von Satz 6.14 normalerweise nicht erfiillt. Bei
nur stetigen Funktionen gilt die Aussage des Satzes nicht.

Beispiel: Sei k €0,...,n und
rsin? x€ (0,1
f<x>={ - 20,
z=0

Mit z), = #1 ist wegen f(x;) = 0 das Interpolationspolynom L, f = 0 fiir alle
n € N. Die Folge der Interpolationspolynome konvergiert also ausschlieflich an
den Stiitzstellen ) gegen die Funktion f; der Fehler

Rn o —
IR flloe = s 1)

bleibt konstant.

Allerdings kann man zeigen, dass es zu jeder stetigen Funktion eine Folge von
Stiitzstellen gibt, so dass L, f gleichméfig auf [a, b] gegen f konvergiert. Dennoch
ist fiir beliebige Stiitzstellen die Interpolation mit Polynomen hohen Grades im
Allgemeinen nicht sinnvoll.

6.3 Spline Interpolation

Wir hatten anhand des Beispiels im letzten Abschnitt gesehen, dass die Interpo-
lationspolynome nicht unbedingt gegen die zu interpolierende Funktion f kon-
vergieren. Einen Ausweg bietet die stiickweise polynomiale Interpolation durch
Splines. Anwendungen hat dieses Gebiet auch in der numerischen Integration und
bei der Diskretisierung von Differentialgleichungen.

Definition 6.17 Seia =20 < 21 < ... < x, = b eine Unterteilung des Intervalls
la,b]. Dann heifit eine Funktion

s:la,b) = R
Spline m-ten Grades, falls die folgenden beiden Bedingungen erfillt sind:

(i) s € C™ Ya,b], d.h. die Funktion und ihre ersten m — 1 Ableitungen sind
stetig differenzierbar.

(i4) 8lie;_12;) € Mmlxjor, 2] fiir j=1,...,n.
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Die Menge aller Splines m-ten Grades zu der Unterteilung a = xo < 1 < ... <
xn, = b mit n+ 1 Stitzstellen wird mit ST'[a,b] bezeichnet. Fir m =1 bezeichnet
man die Splines als linear, fiir m = 2 als quadratisch, fir m = 3 als kubisch.

Der einfachste Fall liegt fiir lineare Splines (m = 1) vor: S}[a,b] enthilt al-
le Polygonziige auf [a,b] mit maximal n — 1 Knickpunkten an den Stiitzstellen
T1,..., T, 1, und linearen Teilstiicken, die jeweils benachbarte Punkte (z;, s(z;))"
und (z;11, $(x;41))" miteinander verbinden.

Das Spline-Interpolationsproblem lésst sich wie folgt beschreiben:
Spline-Interpolationsproblem: Seien ¢ = 20 < z; < --- < z, = b und

Yo, - - -, Yn € R gegeben. Gesucht ist ein Spline s € S/*[a, b], der

s(xj) =y, fiiralle j =0,...,n

erfiillt.

Man kann leicht zeigen, dass zu gegebenen Stiitzstellen g < 1 < ... < z,
und Stiitzwerten yo,y1,...,y, der Spline s € S}[xy,z,], der die Interpolations-
bedingungen s(z;) = y;, j = 1,...,n erfiillt, eindeutig bestimmt ist (ndmlich

gerade der Polygonzug durch die Punkte (z;,v;)?, j = 1,...,n). Weiterhin gilt
fiir lineare Splines die folgende Aussage.

Lemma 6.18 Sei f € C*a,b], a = 29 < 7y < ... < x, = b eine Unterteilung
des Intervalls [a,b] und gelte

h:= max |z; —x;_1] — 0 firn — oo.
n

Jj=1,..,
Dann konvergiert der Spline s € St[a,b], der die Interpolationsbedingungen
s(xj) = f(z;),7=1,....n
erfillt, gleichmdfig gegen f.
Beweis: Betrachte fiir festes j € {1,...,n} das Teilintervall [z;_;, z;]. Dann ist
Sliajor.2;) € Tl 1, 5],
Um das Restglied auf dem Intervall [z;_;, z;] abzuschétzen, notieren wir zunéchst

1fP @)oo= sup  fP(2) = M < o0,

r:xj1<x<Tj

da f® nach Voraussetzung eine stetige Funktion auf dem kompakten Intervall
[z, ;1] ist, ihr Supremum also annimmt. Mit der Definition h; := x; — z;_;
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ergibt sich aus Korollar 6.15 entsprechend fiir das Restglied auf dem Intervall
(21, 4] 1 1

1 Bon fIl = 115 = Pllloo < 555 1FP oo < 5H*M.
Fiir n — oo geht nach Voraussetzung h — 0, entsprechend gilt |R,,f| — 0. QED

Meistens verwendet man Splines, wenn man eine Funktion f durch eine mag-
lichst “glatte” Funktion interpolieren mdchte. Dabei wird der gesuchte Spline
umso glatter, je hoher die Spline-Ordnung m gewéhlt wird. Andererseits steigt
mit der Spline-Ordnung m der Rechenaufwand zur Bestimmung eines interpo-
lierenden Splines. Kubische Splines haben sich dabei als guter Kompromiss zwi-
schen Glattheit und Rechenaufwand herausgestellt. Um Splines héherer Ordnung
zu bestimmen, suchen wir zunéchst eine Basis des Spline-Raumes. Dazu definiert
man

o { ™ fallsx >0

10 fallsx <0.

Das System der Kardinal-Splines ist dann die Menge der folgenden m + n
Funktionen

dp(z) = (x—x)* fiirk=0,...,m

Ui(z) = (x—ua))} firj=1,...,n—1. (6.3)
Unser Ziel ist es nun, zu zeigen, dass die Kardinal-Splines eine Basis des Spline-
Raumes S"[a,b] bilden. Wir zeigen zunéchst die lineare Unabhéngigkeit der
Kardinal-Splines (Lemma 6.19) und weisen dann im Beweis zu Satz 6.20 nach,

dass sie auferdem ein Erzeugendensystem fiir alle Splines mit Knickpunkten in
o, T1,...,T, bilden.

Lemma 6.19 Die n +m Kardinal-Splines sind linear unabhdngig.

Beweis: Sei
m n—1
((x) = Zak(x — xo)k + ij(a: — ;) =0 fiir alle z € [a, b].
k=0 J=1

Um die lineare Unabhéngigkeit zu zeigen, miissen wir nachweisen, dass alle Ko-
effizienten a; und b; Null sind. Wir gehen iterativ vor:

o Fiir x < zy ist Z;:ll bj(x —x;)T =0, also ist

((x) = Zak(x — 20)" = 0 fiir alle z € [a, b].
k=0

Genau wie fiir die Monome lésst sich zeigen, dass
17 (SL’ - .CL’()), (.’L‘ - xO)Qa R (.’L‘ - x(])m

eine Basis des II,, bilden. Daraus folgt, dass a;, = 0 fiir k =0,...,n.
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m

e Jetzt berechnen wir fiir x € (21, 25], dass {(z) = by (z — x1) = 0 gilt. Weil
x > x; folgt (v — x1)7 # 0, daher b; = 0.

e Analog ergibt sich fiir € (z;, x;11], dass b; =0 fiiri =2,3,...,n— 1.
QED

Der folgende Satz beweist, dass die Kardinal-Splines ein Erzeugendensystem von
S[a, b] bilden, und daher eine Basis sind.

Satz 6.20 Der Raum SI'[a,b] ist ein linearer Raum der Dimension n+ m. Ins-
besondere sind die Kardinal-Splines eine Basis des S!'[a, b].

Beweis: Die Linearitit des Raumes ist klar. Wir zeigen, dass die Kardinal-Splines
den Raum S)"[a,b] erzeugen, dann sind sie (wegen Lemma 6.19) eine Basis des
Raumes und die Dimension des Raumes ist n + m.

Um zu beweisen, dass die Kardinal-Splines ein Erzeugendensystem sind, miissen
wir zeigen, dass man jedes s € S/"[a, b] darstellen kann durch

m n—1
s(z) = Zak(:p — o)k + Z bj(z — x;)7 fiir alle z € [a, b].
k=0 j=1

Wir zeigen das mittels Induktion iiber die Anzahl der Teilintervalle n. Der In-
duktionsanfang n = 1 ergibt eine Unterteilung a = x, < x; = b, die aus einem
einzigen Intervall besteht. Entsprechend ist

ST'[a, b = 11, [a, b]

und jedes s € II,,, lisst sich durch s(z) = >7)" ar(@ — z)* darstellen.

Betrachten wir nun den Ubergang von n zu n+ 1. Sei s € S [a, b] ein beliebiger
Spline. Wir betrachten diesen Spline s auf dem Intervall [a, x,] und nennen ihn
dort 3, das heift 5(x) = s|44,]. Fiir § gilt die Induktionsannahme, also gibt es
ag, . .., 0y, und by, ..., b,_1 so dass

m n—1
S(x) = Zak(a: —x0)F + Z bj(x — ;)7 fir alle z € [a, x,].
k=0 j=1

Fiir die Differenz von s uns s,
d(x) = s(x) — 3(x)
gilt:
e d(z) =0 fir alle z € [a, x,],
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hd d|[$n7l‘n+1} € Hm[l‘naxn—f—l]-

Aufgrund der Eigenschaften des Splines ist s auf [xg,x,.1] eine (m — 1) mal
stetig differenzierbare Funktion. Weil auf [z, z,] die Splines s und § identisch
sind, miissen auch ihre (linksseitigen) Ableitungen in z,, iibereinstimmen. Wegen
der Stetigkeit von sU) gilt dann

dD(x,) = s9 () — 59 (2,,) = 0 fiir j =0,...,m — 1.

Zusammenfassend ist die Differenzfunktion d auf dem Intervall [z, x,,1] also ein
Polynom m-ten Grades mit einer m-fachen Nullstelle an x,,. Das heifst, d muss
die folgende Form

d(x) = Bz — )™
auf [z, ,1] haben, wobei [ eine (unbekannte) Konstante ist. Weil d(z) = 0 fiir
x € [a, z,] konnen wir diese Vorschrift fiir d auf ganz [a, b] fortsetzen, zu

d(z) = Bz — z,)7T.

Mit b, := ( erhilt man entsprechend

m n—1
s(x) = §(x)+d(z) = Zak@—xo)k‘i‘z bj(x—x;) +b,(x—x,)" fir alle z € [a,b].
k=0 j=1

QFD

Kommen wir nun auf das Spline-Interpolationsproblem zuriick. Bei n + 1 Stiitz-
stellen sind n + 1 Bedingungen vorgegeben. Da dim(S)*[a,b]) = n + m nach
Satz 6.20 werden also n +m — (n + 1) = m — 1 Freiheitsgrade nicht genutzt.
Einzig im Fall linearer Splines (m = 1) liegen keine Freiheitsgrade mehr vor.
Fiir m > 1 kann man also zusétzliche Bedingungen stellen, die wir aufgrund der
Symmetrie hier nur fiir ungerade m > 3 betrachten werden.

Wir nehmen zur Beschreibung der Randbedingungen an, dass wir eine hinrei-
chend oft stetig differenzierbare Funktion f durch einen Spline s € S™[a, b] in-
terpolieren wollen. Die Interpolationsbedingungen sind also

s(x;) = f(x;) =1 yj.

Weiterhin sei m eine ungerade Zahl, die wir durch m = 2{—1 mit [ > 2 darstellen.
Folgende Randbedingungen konnen betrachtet werden:

Hermite-Randbedingungen: Es werden jeweils die ersten [ — 1 Ableitungen
am Rand des Interpolationsintervalls festgelegt:

s9a) = fPa) firj=1,....1—1
sD0) = fO0) firj=1,...,01-1 (6.4)
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Natiirliche Randbedingungen: Die Ableitungen héherer Ordnung (von [, 1+
1,...m — 1) werden an beiden Réndern auf Null gesetzt:

stt)(a) =0= fOD(b) fiir j=0,...,1—2 (6.5)

Periodizitdtsbedingungen: Ist die zu interpolierende Funktion periodisch mit
Periode b — a, gilt also insbesondere f\)(a) = fU)(b), so bietet es sich an,
zu verlangen, dass

sV (a) = f9(a) = fOD) = sV (b) fiir j=1,...,1— 1. (6.6)
Das ist ein Spezialfall der Hermite-Randbedingungen.

Fiir den Fall kubischer Splines sind also jeweils zwei Bedingungen festzulegen.
Diese sind die folgenden:

Fiir (6.4):  sW(a) = fY(a) und sV (b) = fD(b).

Fiir (6.5): 5% (a) = 0 und s@(b) = 0.

Fiir (6.6):  sW(a) = fY(a) = fY(b) = sV (b).
Als néchstes wollen wir beweisen, dass mit jeder dieser Randbedingungen eine

eindeutige Losung des Spline-Interpolationsproblemes existiert. Dazu brauchen
wir folgende Vorarbeit.

Lemma 6.21 Sei f € C'a,b] firl € IN, | > 2 und sei s € S™[a,b] der interpo-
lierende Spline beziiglich der Unterteilung a = o < 1 < -+ < x, = b. Ferner
gelte eine der Randbedingungen (6.4), (6.5) oder (6.6). Dann gilt

/[f(l)(x)—s(l)(x)]2dx:/ [f(l)(a:)]2d:c—/ [8(1)(x)]2dl’-

Beweis: Ausmultiplizieren des Quadrates im ersten Integral ergibt
b
[ 189w = O @pda
) b b b
= [1@Pds - [ $O@Pde 2 [8O@Pd - [ 2100 @

a

= [P~ [0 -2 [ S@)[ @) - O @)ds.

S

~~

=:5

Durch partielles Integrieren unter Beriicksichtigung von (6.4), (6.5) oder (6.6)
kann man zeigen, dass

§=(~1)! / FO() — s ()]s (2)d.



Bevor wir noch einmal partiell integrieren, zerlegen wir das Integral in einzelne
Integrale auf jedem Teilintervall, und erhalten

S = (Y [ ) - @) )

n

= U7 Y (f@) —s@ls @, - [ ) @) s ) do

= 0,

wobei die Stammfunktion Null ergibt, weil sie ausschlieflich an Stiitzstellen z;, j =
0,...,n ausgewertet wird. QED

Aus dem Lemma leitet man ab, dass

[ 60wk < [owrae

gilt. Diese Ungleichung kann man verwenden, um zu zeigen, dass die Splines
genau die interpolierenden Funktionen mit minimaler Kriimmung sind.

Wir nutzen die Aussage des Lemmas, um den folgenden Satz zu beweisen.

Satz 6.22 Das Spline-Interpolationsproblem mit einer der Randbedingungen (6.4),
(6.5) oder (6.6) ist eindeutig lisbar fiir alle Funktionen f € C'la,b).

Beweis: Im Beweis verwenden wir die gleiche Idee wie im Beweis von Satz 6.12,
und definieren eine Funktion

a: Cla,b] — R"™™,

die jede Funktion f auf die Stiitzwerte an den Interpolationsstellen und die Ab-
leitungswerte zu den jeweiligen Randbedingungen abbildet. Fiir (6.4) erhdlt man
zum Beispiel

a(f) = (f(wo) far), - flza)s [P (@), .o, f170(a), fO), ..., FU0 ()T
Wir wenden nun « an auf S”[a, b] und erhalten entsprechend eine Abbildung
a: S™a,b] — R™™,

zwischen zwei endlich-dimensionalen Vektorrdumen gleicher Dimension. Bijekti-
vitdt von « ist weiterhin dquivalent dazu, dass das Spline-Interpolationsproblem
mit Randbedingungen fiir jede Funktion f € C?[a,b] eindeutig l6sbar ist. Wir
zeigen also, dass « injektiv (und damit bijektiv) ist:
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Dazu nehmen wir an, dass «a(s) = 0 gilt und miissen daraus folgern, dass s = 0.

Dazu betrachten wir die Nullfunktion f = 0. Weil fab[f(l) (z)]?dz = 0 gilt nach
Lemma 6.21, dass

b b b b
0< / [fO ()= (2)]Pdx = / [fO(2))2da— / [sO(2)]2dz = — / 15O (2)]2dzx < 0,

entsprechend ist
b
/ (s (x)]%dz = 0.

Daraus folgert man, dass auf [a,b] s) = 0 gilt. Weil s € C™ ![a,b] gilt al-
so s € II;_4[a,b]. Aus den Randbedingungen ergeben sich mindestens [ Be-
dingungen an (das Polynom) s, so dass wegen der Eindeutigkeit des Hermite-
Interpolationsproblemes folgt, dass s = 0. QED

Bevor wir ein Verfahren angeben, mit dem man Splines berechnen kann, wol-
len wir eine Verallgemeinerung der fiir Polynome und Splines gezeigten Sitze
andeuten. Dazu bendétigen wir den folgenden Begriff.

Definition 6.23 Ein m-dimensionaler Unterraum U C Cla, b] heifit unisolvent
beziiglich der m paarweise verschiedenen Stitzstellen xy, ...,z € [a,b], wenn
jede Funktion w € U mit Nullstellen u(x;) = 0 fir i = 1,...,m identisch ver-
schwindet.

Wir haben schon zwei Beispiele von unisolventen Ridumen kennen gelernt:

e Die Menge der Polynome mit maximalem Grad n ist unisolvent beziiglich
jeder Teilmenge X C R mit | X|>n+ 1.

e Die Menge {s € S/ : s erfiillt (6.4)} ist unisolvent beziiglich jeder Menge
X C Rmit |X| > n+1. Statt (6.4) kann man auch (6.5) oder (6.6) fordern.

Wir betrachten nun die folgende Interpolationsaufgabe:

Sei U C Cla, b] ein (n+1)-dimensionaler Unterraum, der beziiglich der paarweise
verschiedenen Stiitzstellen xg, z1, ..., x, unisolvent ist. Weiterhin seien Stiitzwer-
te Yo, Y1, - - -, Yn gegeben. Gesucht ist eine Funktion v € U, so dass

u(z;) =y; firi=0,...,n. (U-Int)

Die Losbarkeit und Eindeutigkeit von (U-Int) beschreibt der folgende Satz.
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Satz 6.24 Es sei U C Cla,b] ein (n+1)-dimensionaler Unterraum, der beziiglich
der paarweise verschiedenen Stitzstellen xg, 1, ..., x, unisolvent ist. Weiterhin
seien Stitzwerte yo, y1, - .., Yn gegeben. Dann gibt es genau ein u € U, das die
Interpolationsaufgabe (U-Int) lost.

Beweis: Betrachte a : U — R™"™ mit a(u) = (u(xg), u(xy), ..., u(x,))’ € R,
Die Interpolationsaufgabe (U-Int) ist eindeutig losbar, genau dann wenn die
Abbildung « bijektiv ist. Wegen der Voraussetzung, dass dim(U) = n + 1 =
dim(R"™™!) reicht es, die Injektivitiit von o nachzuweisen. Dazu sei a(u) = 0. Es
ist zu zeigen, dass dann u = 0 gilt. Dies ist erfiillt, weil U unisolvent beziiglich
der Stiitzstellen xg, x1,...x, ist.

QED

Der Satz enthilt die Eindeutigkeit der Lagrange-Polynomaufgabe und der Spline-
Polynomaufgabe als Spezialfille.

Wir kommen nun auf die Spline-Interpolationsaufgabe zuriick und wollen uns im
folgenden mit der Berechnung von Interpolations-Splines beschéftigen. Ein nahe
liegender Ansatz ist, die Basis-Darstellung durch die Kardinal-Splines (6.3),

m n—1
s(@) = aplz — o)+ bi(w — ;)7 fiir alle z € [a, )
k=0 j=1

zu nutzen. Die Koeffizienten a, b; kann man dann durch Losen des Gleichungs-
systems bestimmen, das aus den Interpolationsforderungen s(x;) = y; und einer
der Randbedingungen (6.4), (6.5) oder (6.6) entsteht. Die Koeffizientenmatrix
beziiglich der Interpolationsbedingungen hat das folgende Aussehen:

1 0 0 0 0 0 0
1 (1‘1 — .%'0) (.%'1 - 1‘0)2 PN (.%'1 - wo)m 0 0 0
1 (xg — xo) ($2 — 270)2 ce ($2 - xo)m ($2 - xl)m 0 0
1 (1‘3 — .%'0) (.%'3 - 1‘0)2 e (.%'3 - wo)m (.%'3 - xl)m (.%'3 - .%'Q)m 0
1 (zn—20) (Tn—20)? (T —20)™ | (x —21)™ (T —22)™ .o (T — Tp1)™

Wie man sieht, ist die Koeffizientenmatrix stark besetzt, aufserdem ist sie schlecht
konditioniert. Das liegt daran, dass ein Teil der Kardinal-Splines das gesamte In-
tervall [a, b] als Trager hat. Man versucht daher, Basisfunktionen mit einem klei-
nen Tréger zu finden, d.h. Basisfunktionen, die nur auf einem kleinen Teilintervall
von [a, b] von Null verschieden sind. Das gelingt mit den so genannten B-Splines,
die wir fiir den vereinfachten Fall dquidistanter Stiitzstellen beschreiben wollen.

Wir betrachten dazu die folgende Unterteilung a = ¢ < 21 < ... < x, = b mit
b—a

rj =a+jh und h =
n
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Notation 6.25 Die B-Splines sind reelle Funktionen, die folgendermafen de-
finiert werden. Ausgehend von

1 falls |z| <
Bo() := { 0 falls |z| >

definiert man fir m=0,1,2,. .. rekursiv

N |0 [

x+%
Bpii(x) = / B, (t)dt.

=

Als Beispiel berechnen wir B; durch

1

Bi(z) — / " Byt

1

2

[T21dt falls —1<2<0

2

1
= 2. 1dt falls0 <z <1
2

0 sonst
B 1—z| falls|z| <1
n 0 falls |z| > 1 -

Diese Funktion wird aufgrund ihrer Form auch Hutfunktion (hat function) ge-
nannt. Durch weiteres Integrieren der stiickweise definierten Funktion erhélt man
fiir By und schlieflich fiir Bs die folgenden Formeln.

[ 2o el s <)
By(z) = 3 (Jz] — 2)? falls 1 < |z| <3
0 falls |a:\ >3
L[ @e- |z|)? —4(1 —|z|)® falls |z| <1
Bs(z) = =< (2—1z|)3 falls 1 < |z < 2
61 o falls |z| > 2

Durch vollstindige Induktion lassen sich die folgenden Eigenschaften der B-Splines
fiir alle m € IN nachrechnen:

1. By, € C™Y(R).
2. By(z) > 0 fiir alle z € R.

3. By(x) =
-3 -

4. Ist m ungerade, so ist By, |;;i41] € L, ist m gerade, so ist Bm|[i7%,i+%] c1Il,,,
fiir alle ganze Zahlen 1.

alle z ¢ -2 — £, 2+ 1], d.h. der Triiger von B, ist
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Eine Basis aus den B-Splines muss, wie die Basis aus den Kardinalsplines, die
Stiitzstellen
Tp=a+khfir k=0,1,...,n, (mit h=29)

n

beriicksichtigen. Dazu definiert man fiir ganze Zahlen k die Funktionen

Bui(@) := By (x - ¢_ k) .

Fiir £ € {0,1,...,n} gilt dann

T —a k_x—a—hk:_x—xk
h N h  h
also sind die B, fiir k = 0,...,n iiber die Stiitzstellen der gegebenen Untertei-

lung definiert.

Durch Ausnutzen der oben gesammelten Eigenschaften der B-Splines und einiges
an Technik kann man das folgende Ergebnis beweisen.

Satz 6.26 Seia = 29 < 1 < ... < 2, = b mit x; = a+ jh undh:b_T“
eine dquidistante Unterteilung des Intervalls [a,b]. Sei weiterhin m = 21 — 1 mit
[l € IN. Dann ist

{Bpj:k=—-l+1,...,0,....,.n+1—1}
eine Basis des S"([a, b]).
Die Anzahl der Funktionen B, in der Basis betrigt (I —1)+1+ (n+1—1) =

2l+n—1 = m-+n und stimmt also mit der uns aus Satz 6.20 bekannten Dimension
des Raumes S [a, b] {iberein.

Die Anwendung von B-Splines soll am Fall kubischer Splines demonstriert
werden. Sei also m = 3 (entsprechend [ = 2). Seien weiterhin Stiitzstellen

rj=a+hj, j=0,...,n

mit x,, = a+hn = b beziehungsweise h = b_T“ gegeben. Gesucht wird der kubische

Spline
n+1 T — 1
s(z) = ZCng( : ])
j=—1
mit den Interpolationsbedingungen s(z;) = y; := f(x;) fiir j = 0,1,...,n sowie

den Hermite-Randbedingungen (6.4)
s'(a) = a; und §'(b) = b;.
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Wegen

n+l—1
Xr; — X
8(.1’]') = Z CkBg( J A k)

= Z cxBs(j — k) weil B(x) = 0 fiir alle |z| > 2
k=j—1
= Cj_lB(l) +C]B(0) +Cj+1B(—1).

Also berechnen wir

oy
w
—~
—
N—
Il
DI~ DI~ Wl

und erhalten

1
S(xj) = g(cj—l +4c; + Cj+1) fiir yj=0,...,n.

Wegen

By0) = 0

1

Bi(1) = —=

5(1) 5

1

Bi(-1) = =

5(=1) 5



ergibt sich weiter

1

) =s(w0) = 3 ey Bh(0—J)

j=—1
1
= E (C,18§’<1) -+ C(]Bé(()) + ClBé(—l))
1
= %(cl —c-1)
n+1 1
S(0) =5 (e) = Y ey Bin—)
Jj=n—1
1
= 5 (a1 B5(1) + ¢ B3(0) + o1 By(—1))
1
= %(qutl - Cnfl)

Die Interpolationsbedingungen s(z;) = y; und die beiden Hermite-Bedingungen
s'(a) = ay, s'(b) = by ergeben schlieflich das folgende Gleichungssystem

AC =F
mit
aq C_1
Yo Co
| o= °
Yn Cp,
by Cn+41
und der Koeffizienten-Matrix
3 3
- 0 5
1 4 1 0
] 1 4 1
6
1 4 1
0 1 4 1
3 3
- 0 %

Die Matrix A ist eine reguldre Bandmatrix, so dass das Gleichungssystem mit den
Methoden aus Abschnitt 2.4 oder mit Iterationsverfahren gelost werden kann.
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6.4 Trigonometrische Interpolation

Weift man, dass die zu interpolierende Funktion periodisch ist, so méchte man ger-
ne auch eine periodische Interpolante konstruieren. Dazu bietet sich die in diesem
Abschnitt beschriebene trigonometrische Interpolation an. Zunéchst wiederholen
wir die Definition von periodisch.

Notation 6.27 FEine Funktion f : IK — IK , heifst periodisch mit Periode
T > 0, falls fir alle t € IK gilt:

Ft+T) = f(1).

Im folgenden beschéftigen wir uns mit der Periode T' = 2m. Trigonometrische
Polynome sind dann als Linearkombinationen der trigonometrischen sin und cos
Funktionen definiert:

Notation 6.28 Die reelle Funktion q : R — R st ein trigonometrisches Po-

lynom, falls es reelle Koeffizienten ag, aq,...a, und by, ..., b, gibt, so dass
a - .
q(z) = 50 + ;(ak cos kt + by sin kt). (6.7)

Das trigonometrische Polynom q hat Grad n falls |a,| + |b,| # 0 gilt. Der Raum
der trigonometrischen Polynome mit maximalem Grad n wird mit T, bezeichnet.

Aufgrund der Additionstheoreme erhilt man, dass fiir p; € T,,, und fiir p; € T},,
gilt: p1 - po € T 4n,. Weiterhin kann man die Darstellung e = cost + isint
ausnutzen und entwickelt daraus die folgende dquivalente Darstellung

n

at) = 3 ce, (6.8)

k=—n
wobei man fiir £ = 0,...,n die Koeffizienten iiber
= o~ iby)
C. = 5 Qe 10
1 .
C_ = §<6Lk + Zbk)

(mit by := 0) erhilt.
Wir wollen das folgende Interpolationsproblem 16sen:

Sei T;, der Raum der trigonometrischen Polynome mit maximalem Grad n und
seien die paarweise verschiedenen Stiitzstellen xg,zq,...,xx sowie Stiitzwerte
Yo, Y1, - - -, yYn gegeben. Gesucht ist eine Funktion ¢ € T},, so dass

q(z;) =y; firi =0,..., N. (T-Int)
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Fiir das Interpolationsproblem ist es nach Satz 6.24 niitzlich, sich zunéchst Ge-
danken iiber die Unisolvenz des Raumes 7,, zu machen.

Lemma 6.29

e Sei q € T,, und habe ¢ mehr als 2n paarweise verschiedene Nullstellen im
Periodizitdtsintervall [0, 2m). Dann verschwindet q identisch.

e Die Funktionen cos(kz), k =0,...,n und sin(kx), k =1,...,n sind linear
unabhdingig auf dem Raum C([0,27)).

Beweis: (Idee) Man verwendet die Darstellung (6.8) und die Eindeutigkeit des
entsprechenden algebraischen Polynoms p € Iy, auf dem Einheitskreis in C.
QED

Die folgenden beiden Sétze folgen direkt aus dem Lemma.

Satz 6.30
dim(7,,) =2n+1

Satz 6.31 T, ist unisolvent beziglich jeder Menge X C [0, 27) mit | X| > 2n+1.

Aus dem letzten Satz folgt zusammen mit Satz 6.24 sofort die folgende Aussage.

Satz 6.32 Das Interpolationsproblem T-Int ist fiir N = 2n + 1 paarweise ver-
schiedene Stitzstellen xg, 1, ..., T, € [0,27) eindeutig losbar.

Ahnlich wie bei den Lagrange-Polynomen rechnet man nach, dass eine Lsung
des Interpolationsproblemes (T-Int) gegeben ist durch

mit den Lagrange-Polynomen

" osin(E(x — x))
lp(z) = 2 ! fir k=0,...,2n
(z) g sm(%(:pk —z;))
J#k
Wie auch im Fall der Interpolation mit algebraischen Polynomen ist die Lagrange-
Basis allerdings aus numerischer Sicht wenig geeignet. Man geht daher von dem
Ansatz (6.7) oder (6.8) aus und versucht, die Koeffizienten ay, by oder ¢y, effizient

zu berechnen. Fiir den Fall von dquidistanten Stiitzstellen fiihrt die Losung der
entsprechenden Gleichungssysteme zu folgendem Ergebnis.
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Satz 6.33 (n ungerade) FEs existiert genau ein trigonometrisches Polynom

a - :
pu(z) = 50 + ;(ak cos kx + by sin kx).

mit der Interpolationseigenschaft

2
n . =Yy, ) = ,...,2.
p (‘72n—|—1> Y J =0 "

Dabei sind die Koeffizienten bestimmt durch

2n
2 2
- Yy k), k=0,...
R T jzoyﬂcos(2n+1j ) ’

2n
2 2T
b, =  si ik k=1,...
k 2n—|—1]Z:%:yjsm(?n—i-l‘7 )’ ’

Im Fall, dass n gerade ist, gibt es zu den 2n+1 Freiheitsgraden eines trigonometri-
schen Polynoms aus dem Raum 7;, zundchst nur 2n Interpolationsbedingungen an
den dquidistanten Stiitzstellen x; = % fiir j =0,1,...,2n — 1. Man kann jedoch
die Basisfunktion sin nx weglassen, das sie an allen Stiitzstellen eine Nullstelle

hat. Mit relativ wenig Aufwand erhélt man das folgende Ergebnis.

Satz 6.34 (n gerade) FEs existiert genau ein trigonometrisches Polynom

3
—_

1
P,(z) = % + Y (agcoskx + by sinkx) + 50n COSTIL.

T

1

mit der Interpolationseigenschaft
LT .
Dn <j—> =vy;, J=0,...,2n— 1.
n

Dabei sind die Koeffizienten bestimmt durch

1 2n—1 -
a, = — y]cos<—jk;>, k=0,....n
n n
7=0
1 2n—1 -
b, = — y]sm<—jk>,k;—1, ,n—1
n = n
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Es gibt folgenden Zusammenhang zu den so genannten Fourier-Koeffizienten.
Zunéchst definieren wir mittels

(f.9)se = / " (gt

ein Skalarprodukt auf der Menge der quadrat-integrierbaren Funktionen. Die ent-
sprechende Norm ergibt sich zu || f| 2 := \/(f, f)z2. Dann definiert man zu einer
quadrat-integrierbaren Funktion ihre Fourierkoeffizienten durch

1 2m . 1 2
ag = —/ f(z) cos(kx)dx, by = —/ f(z)sin(kx)dz, k=0,1,...,n.
T Jo T Jo

Es gilt dann der folgende Satz.

Satz 6.35 Sei fiirn € IN

N n

P,f(z) = % + Z(dk cos kx + by, sin k)
k=1

Dann konvergiert P, gegen f in || - ||z, d.h. es gilt lim, . ||f — P,||zz = 0.

Beweis: (Idee) Man kann diese Formeln zeigen, wenn man in den Formeln fiir
ay, by aus Satz 6.33 formal den Grenziibergang n — oo ausfiihrt. QED

Man spricht im Fall von dquidistanten Stiitzstellen von der diskreten Fourier-
Transformation. Die Fourier-Koeffizienten konnen mittels des Horner-Schemas
berechnet werden. Bei grofen Werten fiir n ldsst sich der Aufwand durch die
schnelle Fourier-Transformation weiter reduzieren. Die Idee besteht darin, die
komplexen Einheitswurzeln von n = 2° geschickt zu berechnen.
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Kapitel 1

Numerische Integration

Unser Ziel ist es, eine einfache Formel zur Berechnung von

/ ()

zu finden. Eine Moglichkeit ist die Anndherung durch Rechtecke:

[ oo~ Zn;ajﬂxj).

Hierbei ist a; die Breite des jeweiligen Rechtecks und f(z;) die Hohe. Diese
Summenformel ist ,einfach® zu berechnen.

fzy)

a b

Notation 1.1 Sei 2y, ...,2, € [a,b]. Fine Abbildung Q : RI*" — R heifit Qua-
draturformel bzgl. xg, ..., x, falls gilt:

n

Q(f)zzajf(xj) fiir ag, . .., a, € R.

J=0



Bemerkung: ( ist eine lineare Abbildung.

Wir versuchen im Folgenden, Quadraturformeln ) zu finden, die Integrale I(f) :=
fbf(a:)da: annihern, d.h. Q mit Q(f) ~ I(f).

Beispiel: Die Trapezregel ist eine Vorschrift, f;f(a:)da: durch die Fléche eines
Trapezes mit den Ecken (a,0), (a, f(a)), (b, ( )), (b,0) zu approximieren:

/ fyar ~ OO (1) + o).

Die Trapezregel ist also eine Quadraturformel mit n = 1, g = a, xr1 = b und
ap = a1 = 3(b— a). Sie integriert alle affin-linearen Funktionen exakt.

f(b)
f(a)

%,

a b

Notation 1.2 FEine Quadraturformel Q heifit exakt fiir § C RI*¥, falls Q(f) =
I(f) fir alle f € § gilt.

Satz 1.3 Sei § C R ein endlich-dimensionaler Unterraum von Rl ynd
fo,---, fn eine Basis von §. Gilt dann Q(f;) = I(f;) fir allei = 0,...,N fir
eine Quadraturformel (Q, dann ist () exakt fiir §.

Beweis: Sei f € §. Dann kann man f beziiglich der Basis fy, ..., fy darstellen

als
N
[ = Z a; fi.
i=0

Es gilt nun

| |
O

N N
<Z ) = ZaiQ<fi>; da @ linear
i=0

N
= Zail fi), da @ exakt fiir f; und

-0
N
=1 (Z azfl> I(f), da Integrale linear sind.

QED



Im Folgenden betrachten wir

e Interpolationsquadraturen nach Newton-Cotes,
e Gauk’sche Quadraturformeln und

e die Rombergquadratur.

1.1 Interpolationsquadraturen

Seien zg, ..., x, € [a,b] gegeben. Eine Idee ist es, das Integral von f durch das
Integral des eindeutig bestimmten Interpolationspolynoms (L, f)(z) beziiglich
der Stiitzstellen (z;, f(z;)), j =0,...,n zu approximieren.

Definition 1.4 Eine Quadraturformel Q,(f) = Z?:o a;f(z;) heift Interpola-
tionsquadratur der Ordnung n, falls fiir alle f € Cla,b] gilt:

Q) = S wss () = [ (Eaf)la)ds = I(L.f).

Dabei ist L, f das eindeutig bestimmte Interpolationspolynom zu f beziiglich der
Stiitzstellen xg, . . ., x,.

Wir erinnern uns an Numerik I, wo wir im Kapitel 6.1 verschiedene Darstellungen
fiir L, f hergeleitet hatten. Eine war die Lagrange-Darstellung;:

(Lnf)(x) = Z f(z;)l(x) mit [;(z) = H L — Tk

Pl l‘j — T

k]
Wir werden im Folgenden die Koeffizienten a; von Interpolationsquadraturen der
Ordnung n herleiten. Kennt man diese, so kann man alle Polynome p € II,, exakt
integrieren. Erstaunlicherweise gilt auch die Umkehrung dieser Aussage:

Satz 1.5 Fine Quadraturformel Q,, ist genau dann eine Interpolationsquadratur
vom Grad n, wenn alle Polynome p € 11, [a, b] exakt integriert werden.

Beweis: ,=“ Sei Q,(f) = f;(Lnf)(x)da: eine Interpolationsquadratur der Ord-
nung n und sei f € II,[a, b]. Nach dem Satz 6.4 aus Numerik I gilt dann f = L, f,
also ist Q(f) = ff f(z)dx = I(f) und @, ist exakt fiir alle f € II,,[a, b].

<"1 Sei umgekehrt Q(f) = >7_a;f(z;) eine Quadraturformel die /(p) = Q(p)
fiir alle p € 11, [a, b] erfiillt. Sei f € Cla,b]. Dann ist L, f € II,[a,b] und es gilt

I(Lnf) = Q(Lnf) = Z a;(Lnf)(z;)
=0
=D _a;f(x;) = Q).

J=0



also ist Q(f) eine Interpolationsquadratur der Ordnung n. QED

Satz 1.6 Sei h,yi(z) = [[_o(v — ;). Seien x, ..., 2, paarweise verschieden
aus [a,b]. Dann ezistiert genau eine Interpolationsquadratur der Ordnung n zu
xg, ..., Ty, die durch die Gewichte

1 b,
a; = — / +1(x)d:c mit 7 =0,...,n
P (75) Jo @ —

gegeben ist.

Beweis: Wir zeigen zunichst die Eindeutigkeit. Seien

n

Qa(f) = Zajf(afj) und Qp(f) =Y bif(z)

=0

zwei Interpolationsquadraturen der Ordnung n. Dann gilt:

Qu(f) = / (Lof)(x)dx = Qu(f) fiir alle f € Cla, .

Wir wihlen nun zu jedem j ein f; mit f;(x;) # 0 und f;(x)) = 0 fiir alle k # j -
z.B. f; = l;, die Lagrangepolynome. Dann gilt Q4(f;) = a; = b; = Qp(f;), d.h.
die Interpolationsquadraturen sind gleich.

Zum Existenzbeweis: L, f ist stetig und deshalb integrierbar. Wir gehen iiber die
Lagrange-Darstellung:

JKLCEEY D WETSS Sy RICTE

a a

d.h. fab(Lnf)(x)dx = >0 f(z)a; mit a; = f; l;(z)dz ist tatsiichlich eine Inter-
polationsquadratur. Weiterhin gilt:

b n b
— 1 h,
aj:/ [T = / a1l g,
u T — Ty hhoi(x) Jo o —x;

k=0
k#j

wobei

gilt und insbesondere

QFD



Zur Vereinfachung der Formeln betrachten wir den Fall dquidistanter Stiitzstellen
rj=a+j-hmitj=0,...,n

Wir bemerken:

h—
Tp=a+n-h=>b, also h = e

n
Definition 1.7 Die Interpolationsquadratur der Ordnung n zu den Stitzstellen
xj=a+j -hmitj=0,...,n mit Schrittweite h = b’T“ heifit Newton-Codtes-
Formel der Ordnung n.

Lemma 1.8 Die Gewichte der Newton-Cétes-Formel der Ordnung n ergeben sich
aus

—h- A,

a; j

J

| "7 " L
mZtAj:An_j:ﬁ/@ k”(z—k;)dz firj=0,...,n.
=0
k#j

Beweis: Ubung.

Bemerkung: Die Werte A; hingen ausschliefslich von der Anzahl n der Stiitzstel-
len ab, nicht aber von den Werten x; der Stiitzstellen und auch nicht von a, b
oder h!

Einfacher als die Berechnung der A; nach Lemma 1.8 ist ihre Ermittlung tiber
die Losung eines linearen Gleichungssystems. Dazu fordert man speziell fiir die
Monome p(z) = 2* fiir k = 0,...,n, dass

n b
> ol = [ ployds

Nach Satz 1.3 folgt daraus, dass >, a;p(z;) = I(p) fiir alle p € II,, gilt.
Auf diese Weise berechnen wir nun die Koeffizienten fiir die Falle n = 1 und
n = 2.

n = 1: Nach der Bemerkung nach Lemma 1.8 kénnen wir 0.B.d.A. ¢ = —1 und
b =1 setzen. Somit gilt h = 2 und wir erhalten:

1 1
/ 2°dr = (]!, = 2 und Zajp(a:j) =ap + a1,
-1 =0

also ag + a; = 2 als erste Bedingung.
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o p(z) =
1 1
1
/1 vtdr = [%xz}_l =0 und g ajp(z;) =ap-(—1)+a -1,
_ =
also —ag + a; = 0 als zweite Bedingung.

Die Losung des Systems

ap +a; = 2

—a0+a1:O

ist ap = a; =1 (bzw. Ay = A; = 3) und man erhilt daraus

[ e 15D 41 1),

Fiir beliebige Integrationsgrenzen a, b dndern sich Ay und A; nicht, sodass wir
die auf Seite 3 schon beschriebene Trapez-Regel

b b—a
t/f@Mx% (f(a) + F(1))

2
erhalten.
n = 2: Wie schon im vorherigen Fall wihlen wir a = —1 und b = 1. Daraus erge-
ben sich nun h =1, zg = —1, 1 = 0, x5 = 1 und entsprechend die Gleichungen

1
/ 20dr =2 = ag + a1 + as,
-1

1
/ rldr =0 = —ag + ao,

1

1
/ xzdx:§:a0+a2,

1

woraus man ap = Ay = 3,

errechnet. Daraus erhélt man die Simpson-Regel

ap = A, = % und ay = Ay = % als eindeutige Losung

b
[ #ayts = 55 m0) + 47 + 02)

U (@ () ).




Die folgende Tabelle gibt die Gewichte der ersten fiinf Newton-Cotes Formeln an:

S
E
N

1 A2 Ag A4 A5 Bezeichnung

Trapez-Regel

Simpson-Regel

0O | Wk [N

O | Wl
oolw

Newton—%—Regel

64 24 64 14 :
15 15 15 15 1. Mllne—Regel

375 250 250 375 95 :
588 %3 33 o o oss | 2- Milne-Regel

SRR (o1 [coim i

St = | W N =

Leider tauchen ab n > 8 auch negative Gewichte auf, die unerwiinschte Neben-
effekte haben:

e Ausloschung ist moéglich und fiihrt zu numerischer Instabilitdt und
e es lassen sich positive Funktionen f > 0 konstruieren, sodass Q(f) < 0 gilt.

Wir betrachten nun folgendes Beispiel fiir die Simpson-Regel:

Dann gilt

denn f ist punktsymmetrisch zu (%2, 0):

(4 2) = =0 = (—a) = f(552 — ).

Wendet man die Simpson-Regel auf f an, so erhélt man

Q2(f) = 552 (f(a) + 41 (%5%) + f(b)
= 5292+ 4(0)* + (559)%) =0

also ist die Simpson-Regel fiir dieses kubische Polynom exakt. Das gilt sogar fiir
alle kubischen Polynome!

Lemma 1.9 Die Simpson-Regel Qs ist exakt fir alle p € I3]a, b].



Beweis: Nach Satz 1.3 ist eine Quadraturformel auf I3 exakt, wenn sie auf einer
Basis von II,, exakt ist. Wir wihlen als Basis

(2 — =2, (o — =27 2 — o, 1.

Im vorangehenden Beispiel haben wir bereits Qo((z — “E2)3) = I((z — 2£)3)
gezeigt und fiir die anderen Basisvektoren folgt die Exaktheit aus Satz 1.5, denn
alle Polynome aus Il [a, b] werden von einer Interpolationsquadratur der Ordnung
2 exakt integriert. QED

Man kann diese Aussage weiter verallgemeinern:

Satz 1.10 Sei Q,(f) = E;;O a;f(z;) eine Newton-Cdtes Formel mit geradem
n. Dann gilt

Qn(p) = 1(p) fiir alle p € H,44[a, b].

Beweis: Ubung.

1.2 Zusammengesetzte Newton-Cotes-Formeln

Analog zur Spline-Interpolation zerlegt man bei den zusammengesetzten Newton-
Cotes-Formeln das Integrationsintervall in m Teilintervalle und wendet auf je n
zusammenhéngenden Teilintervallen eine Quadraturformel niederer Ordnung an.
Dafiir wiahlen wir m so, dass n Teiler von m ist.

Wir erhalten auf diese Weise die zusammengesetzte Trapezregel:

/ f(@)de = Ty(f) == h (%f(xo) + i i) + %f(m)) :

i=1

mit x; = a; + th fiir i = 0,...,m, also xg = a und x,, = b. Dabei isth:b%’.

\

t— Tn(f) (schraffierte Fliche)
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Analog ergibt sich die zusammengesetzte Simpsonregel: Sei dazu xy = a <
ry < -+ < x, = b eine dquidistante Zerlegung in eine gerade Anzahl an Teil-
intervallen. Wir wenden die Simpson-Regel jeweils auf zwei aufeinander folgende
Intervalle an und erhalten:

5/ (x2)) + 5f (12551) + 3£ (22542)

1.3 Gauf’sche Integrationsformeln

Fiir die Gauk’schen Integrationsformeln sollen neben den Gewichten ag, a4, ..., a,
auch die Stiitzstellen o, ..., z, gewdhlt werden. Man hat also 2(n + 1) Freiheits-
grade. Entsprechend darf man 2n 4 2 Bedingungen stellen, z. B.

n

b
Zaip(%') = / p(z)dx fiir p(z) € {1, 2,22, ..., 2>},

=0

Sind diese Bedingungen erfiillt, kann man alle Polynome aus Il,,,; exakt inte-
grieren (Satz 1.3). Wir wollen gerne ohne dieses nichtlineare Gleichungssystem
auskommen.

Dabei ist es in verschiedenen Anwendungen giinstig, den allgemeineren Fall von
Quadraturformeln zu betrachten, ndmlich gemischte Integrale

mit einer auf (a,b) stetigen und positiven Gewichtsfunktion w. Weiterhin fordert

man, dass
b
/ w(z)z*de

Typische Beispiele fiir solche Gewichtsfunktionen sind

fiir alle k € Ny existiert.

e Gauk-Legendre: w(z) = 1 auf [a, ]

o Gauf-Tschebyscheff 1. Art: w(z) = ﬁ auf v € [—1,1].

o Gauf-Tschebyscheff 2. Art: w(z) = 1 — 2% auf x € [—1,1].

Gauf-Laguerre: w(z) = e auf [0, 00).

GauRk-Hermite: w(x) = e~ auf (—o0, 00)

11



Definition 1.11 Eine Quadraturformel Q,,(f) = > i, aif(z;) nennt man Gauf’sche
Quadraturformel der Ordnung n, wenn sie alle Polynome p € Ty, 11]a, b] ex-
akt integriert, d.h. wenn

b
Qn(p) = / w(z)p(x)dx fir alle p € Ma,41[a, b].

Lemma 1.12 Seien xy,...,z, € [a,b]. Sei L, f das Interpolationspolynom bzgl.
Xo, ..., Ty an die Funktion f. Sei weiter w eine zuldssige Gewichtsfunktion. Dann
15t

| @ Laf) @

eine Quadraturformel bzgl. xq, ..., x,. Genauer gilt:
b n
[ @ Laf)@ids =30,
a j=0

mit a; = f;w(az)lj(az)daz.

Beweis: Den Fall w = 1 haben wir in Satz 1.6 behandelt. Fiir andere w verlauft
der Beweis analog. QED

Wann ist @Q,,(f) eine Gauf’sche Quadraturformel?

Satz 1.13 Sei w eine zuldssige Gewichtsfunktion und seien xg,...,x, € [a,b]
paarweise verschieden. Sei L, f die Interpolation von f bzgl. der Stitzstellen
20, - - Ty Sei weiterhin hny1(v) = [[[_o(x —=;). Dann sind die folgenden beiden
Aussagen dquivalent:

1. Qu(f) = ffw(:c)(Lnf)(a:)dx ist eine Gauf’sche Quadraturformel der Ord-
nung n, d.h. Q,(p) = L,(p) fir alle p € Mgy, 1.

2. f:w(a:)hn+1(;1:)p(x)da: =0 fir alle p € 11,,.

Beweis: ,,1 = 2 Sei Q,(f) = I,(f) fir alle f € Ily,,;1. Sei p € II,,. Dann ist
hyi1-p € ly,4q, also gilt nach Lemma 1.12:

n

b
/ ) (2)p(@) 2 = Qulls - 2) = 3 i (3) pli5) = 0
a ———

Jj=0 =0

also gilt 2.

12



»2 = 1% Sei p € Ily,41. Betrachte L,p € 11, bzgl. zy, ..., z,. Dann hat p— L, p die
Nullstellen xy, ..., z,, also gibt es nach dem Hauptsatz der Algebra ein Polynom
q € I1,,, so dass p — L,p = h, 11 - q. Damit gilt

/abw(:c)p(:c)d:c = /abw(:c)an(a:)da: +\/abw(:c)hn+1(x)q(x)dx

S

v~

=0 nach 2. weil g€ll,

= Qn(p)a

also ist ), Gauk’sche Quadraturformel. QED

Notation 1.14 Fir f,g € C([a,b]) definieren wir

b
Gilt (f,9). =0, so bezeichnet man f und g als w-orthogonal.

Bemerkung: Der Ausdruck (f,g), existiert fiir alle Polynome f und g, wenn w
eine zuldssige Gewichtsfunktion ist. Es ldsst sich sogar zeigen, dass (f,¢), ein
Skalarprodukt ist (d.h. bilinear, symmetrisch und positiv fiir f = g, sowie streng

positiv fiir f = g # 0).
Satz 1.13 ldsst sich jetzt folgendermafen formulieren:

fabw(x)(Lnf)(x)d:p ist genau dann eine Gauf$’sche Quadraturformel der Ordnung
n, wenn (hpi1,p)e =0 fir alle p € 11,,.

Die gesuchten Stiitzstellen der Quadraturformel miissen also die Nullstellen eines
Polynoms ¢(z) = ah,1(x) € 1,41 sein, das w-orthogonal zu allen ¢ € II,, ist.
Solche Polynome wollen wir im Folgenden konstruieren.

Satz 1.15 Sei w eine zuldssige Gewichtsfunktion. Dann gilt

1. Es ezistieren Polynome p,, € 11,[a,b] fir alle n € INg mit

1 fallsn=m

(pn7pm) - 5n,m = { 0 f(l”S n 7& m fU'f’ alle n,mec H\Io.

2. Fiir alle n € INy gilt: Die Nullstellen von p, sind alle reell und liegen in
(a,0).

13



Beweis: ad 1. Die Folge p; der gesuchten Polynome lasst sich durch Anwen-
den des Schmidt’schen Orthonormalisierungsverfahrens auf die Monome kon-
struieren. Man erhélt entsprechend eine Orthonormalbasis. Die Monombasis ist
{2°, ..., 2"}. Man setzt nun

20 1
o(r) = =
P V(20 20), ,/f;w(x)dx

und erhélt (pg, po)w = 1.
Zur Konstruktion von p, nehmen wir an, dass py,...,p,_1 bereits konstruiert
sind und dass sie (p;, p;) = d;; erfiillen. Dann ergibt sich p,, € Il[a,b] aus

Pa(@) = Tn (x" - S(x",pi)wm(w)) ,

=0

wobei die (™, p;(x)), die Koeffizienten nach Schmidt sind. Das ist die Losung,
denn

o fiirm=20,...,n—1 gilt:

(pn,pm)=7n< 2", P — Z 2", i) pz,pm))

=0

= (s = 1) =0

e und ~, wird so gewihlt, dass (p,, pm)w = 1.
ad 2. Seien 1, ..., z,, die reellen Nullstellen von p, in (a,b) mit ungerader Viel-
fachheit, d.h. genau die Nullstellen mit Vorzeichenwechsel von p,,. Sei

m

Gm(x) = H(az — x;) mit go(z) := 1.

i=1

Wir wollen nun zeigen, dass m = n gilt. Angenommen, es gelte m < n. Dann gilt
Gm € Il,,]a,b] C 11, _4[a, b]. Weiter ist p,g,,(x) > 0 fiir alle x € (a,b), weil es nur
Nullstellen mit gerader Vielfachheit hat. Weil p,q,, # 0 folgt

(prw qm)w 7& 0
Weil die in Teil 1 konstruierten Polynome py, ..., p,, eine Basis von II,, bilden,
gilt andererseits
= Z A;p; mit reellen Koeffizienten \;
=0
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und nach Konstruktion der p; ist

m

(pn7 Qm>w = Z Ai(pnapi)w = 07
i=0
denn (p,, pi)w = 0, weil m < n. Das ist ein Widerspruch, also muss m = n gelten

und die Vielfachheit jeder Nullstelle ist entsprechend 1. QED

Wir fassen die Ergebnisse in folgendem Existenzsatz zusammen:

Satz 1.16 Sein € N und w eine zuldssige Gewichtsfunktion. Dann existiert eine
Gauf’sche Quadraturformel

Qn(f) = Zajf(%‘),

wobei xy < x1 < -+ <z, € (a,b) die Nullstellen des in Satz 1.15 konstruierten
bzgl. aller p € 11,, w-orthogonalen Polynoms p,+1 sind und

a; = /abw(x)lj(:p)dx

qgilt.

Beweis: Weil p,.; € 1,44 ist, gilt p,41 = ah,q mit o # 0. Nach Lemma 1.12
ist

Qulf) = / (@) (L f) (),

welches nach Satz 1.13 eine Gauk’sche Quadraturformel ist, wenn (h,,1,p) = 0
fiir alle p € II,,. Das gilt, weil

1 1 u
(hn+17p) = a(anrlvp) = a (pn+17 Z; )\ipi)

1 n
= ZO i (D1, pi) = 0.

QFD

Es gilt also Q,(p) = I,(p) fiir alle p € y,4;.

Im Gegensatz zu den Newton-Cotes-Formeln gilt fiir die Gauf’schen Quadratur-
formeln die folgende numerisch wertvolle Eigenschaft:
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Lemma 1.17 Die Gewichte a; der Gaufi’schen Quadraturformeln sind positiv.

Beweis: Seien xy,...,x, die Stiitzstellen der Quadraturformel ¢),. Nach Kon-
struktion sind sie die Nullstellen von p,,; bzgl. w. Wir definieren

Bt (z) = ﬁ(x — ;) und fi(z) = (MY i=0,....n.

5 T —
Jj=0

Es ist also f; € Ily,[a, b] und nach Satz 1.16 gilt
b
0< / w(z) fi(z)de = Qu(fi) = Zajf] x;) = a; fi(x;).
Weil f;(x;) > 0 folgt auch, dass a; > 0. QED

Ubungsaufgabe: Beweisen Sie, dass es keine Quadraturformel der Form > =0 @ fi(z5)
geben kann, die auf Ily, o exakt ist.

Zum Abschluss folgen einige Beispiele fiir Gauf-Quadraturen.

1. Sei I = [—1,1] und w = 1. Die orthogonalen Polynome pg, p1,... sind die
sogenannten Legendre-Polynome
1 d
L,(x):= — (2 —1)"
(z) 2nn! dan (@ )"
genauer:
LO =1 L3 = l‘g — %l‘
lex L4:.T4—gx2+%

L2:x2—% L5:

L; ist orthogonal auf IT; 4, d.h. fjl Li(z)p(x)dx = 0 fiir alle p € TI;_4[—1,1].

Beispiel: Es gilt

1
/ Ly(z)p(z) = 0, fiir alle p € II;[—1,1].

1
Das kann man nachrechnen:



Wie sehen die zugehdrigen Quadraturen aus?

n=>0
e Die Stiitzstellen sind die Nullstellen des orthogonalen Polynoms
aus I1; (Satz 1.16). Die einzige Nullstelle von Ly ist 2y = 0. Daraus
folgt:
Qo(f) = aof(x0) = aof(0).
e Das Gewicht ag ergibt sich dadurch, dass z.B. 1 € 1I; = Iy,
exakt integriert wird, also

2:/1 ldz = aog f(0) = ao.

1
Wir erhalten:
Qo(f) = 2£(0)
integriert alle linearen Polynome auf [—1, 1] exakt.
n=1
e Stiitzstellen sind Nullstellen von Lo, also j:\/g. Es folgt:

@5 = aof (—/3) + s (3)

e Die Gewichte folgen aus den Exaktheitsbedingungen z.B. fiir 1, x €
I C oy

1
2:/ ldx = ag + aq

1
O:/1 rdr = —ao\/gjLal\/g
-1
Es gilt also:
a0 =1(-y4)+ (V1)

integriert alle Polynome vom Grad bis 3 exakt!

:>a0:a1:1.

2. I =[-1,1] und w(z) = ﬁ Die orthogonalen Polynome sind die soge-

nannten Tschebyscheﬁ—Poly_nome
T, (x) := cos(n arccos(z)).
Mithilfe der Additionstheoreme erhélt man die folgende Darstellung:
To(x) =1
Ti(z) ==z
Toi1(z) + Th1(x) = 22T, ().
Daraus folgt T;, € II,,.
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Lemma 1.18 FEs gilt:

T n=m=2~0
Tn(@) 4 ) s >0
——dr=<Z n=m
-1 \/]_—l‘2 2
0 n#m

und die Nullstellen von T,, sind:

Mit diesen Nullstellen erhalten wir die Gauk-Tschebyscheff Quadratur:

21 +1
/ mdw ~ Qn1( Z a; f (COS 7T>.

Die Gewichte ergeben sich aus den Exaktheitsbedingungen fiir 7,,, m =
0,...,n—1und Lemma 1.18 zu a; = 7,7 =0,...,n — 1.

Ubungsaufgabe: Zeigen Sie, dass a; = Z,i=0,...,n — 1 die Gewichte
der Gauf-Tschebyscheff-Quadraturformel @,, sind!

Damit erhalt man abschlieftend

n—1
2041
n— - N
Qn—1( n2f<cos ) n e

1=

:1

Bemerkung: Analog zu Kapitel 1.2 kann man auch zusammengesetzte Gaufs-
Quadraturen (vorzugsweise niedriger Ordnung) betrachten.

1.4 Fehleranalyse

Was fiir ein Fehler entsteht, wenn man das exakte Integral durch eine Quadra-
turformel annéhert?
Seien zunéchst fiir n € N die Stiitzstellen

2 << <)
mit den zugehodrigen Gewichten a((]"), ..., a!" gegeben und sei



Der zugehérige Fehler ist dann:
b
R()i= L) = Qul) = [ wl@)f(a)ds = 3" pal).

Es werfen sich einige Fragen auf:
o Wie grofs ist R, (f) fiir festes n?
e Konvergiert R,(f) — 0 fiir n — oo?

Satz 1.19 Sei @, eine Folge von Quadraturformeln tiber dem endlichen Intervall
la,b]. Gilt

1. Q.(p) — 1,(p) fiir n — oo fiir alle Polynome p und
2. Z?:o |a§.n)\ < C fiir alle n € N mit einer Konstante C > 0,

so konvergiert die Folge Q,(f) gegen 1,(f) fir jedes f € Cla,b].

Beweis: Wir verwenden einen Satz aus der Approximationstheorie, nimlich den
Satz von Weierstrass: Jede stetige Funktion auf einem kompakten Intervall ldsst
sich beliebig gut durch Polynome anndhern. Genauer gibt es zu jedem ¢ > 0 ein
Polynom p mit || f — plle := maxuepoy | f(2) — p(z)| < e.

Sei ¢ > 0. Wéhle p so, dass || f — p||oc < € und N so, dass |I,(p) — Qn(p)| < ¢ fiir
alle n > N. Dann gilt fiir alle n > N:

L(f - p)| < / w(@)] |f(x) - p(x)| dx < ¢ / w(z)de

@u(F =) <D 10" |F") —p(a”)| < e la| < eC
Es ergibt sich:
[Bn ()] = [Ba((f = p)+p)|
= [Bu(f =) + Ba(p)]
< [Ru(f = p)| + [Ru(p)]
< [Lo(f = )|+ 1Qu(f = P)| + [Ls(p) — Qu(p)]

g(/abw(:c)d:c+0+1)-e

fiir alle n > N, also konvergiert R,(f) gegen Null. QED
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Bedingung (1) des Satzes ist erfiillt, wenn alle @,, interpolatorische Quadratur-
formeln sind. Sind weiter alle Gewichte nicht negativ, dann gilt:

n b
Z|a§-")| :Zag-")-l:/ w(z) - lde = C.
=0 “

§=0
Satz 1.20 Fir jeden stetigen Integranden auf dem Intervall [a,b] konvergiert jede
Folge von Gauf-Quadraturen Q,, gegen das Integral.

Beweis: Nach Lemma 1.17 sind die Gewichte der Gauk-Quadraturen positiv, da-
her ist .

Sl <c

§=0

erfiillt. Bedingung (1) von Satz 1.19 gilt nach Satz 1.16, also folgt die Behauptung
wegen Satz 1.19. QED

Leider ist die Aussage von Satz 1.20 fiir die Newton-Cotes-Formeln im Allgemei-
nen falsch und es lassen sich Gegenbeispiele konstruieren. (Der Grund dafiir liegt
in den negativen a;, die in den Newton-Cotes-Formeln ab Grad 8 vorkommen.)
Wir entwickeln nun Fehlerabschéitzungen fiir die Quadraturformeln auf festen
Intervallen [a, b]:

R(f) = Lo(f) = Qu(f) = L(f) = Lo(Lnf) = Lo(f = Lnf),

wobei L, f das Interpolationspolynom zu f an den n Stiitzstellen von @), ist.
Nun kann man die Fehlerabschiatzungen fiir f — L, f (Numerik I, Korollar 6.15)
heranziehen. Bessere Ergebnisse liefert aber der folgende (allgemeinere) Ansatz,
bei dem man ausnutzt, dass fiir alle p € I1,,, gilt:

R,.(p) =0,

wobei man m im Falle von Newton-Cotes < n wihlen muss, falls n ungerade ist
und m = n-+1, falls n gerade ist. Bei der Gauf-Quadratur hingegen ist m < 2n+1
moglich.

Notation 1.21 Seit € R. Dann bezeichne

(x —t)™ fallsx >t

0 sonst

(7)) = (2 =)} = {

und 1
K, (t) == ﬁRn(z;rm) mit t € |a, b]

den Peano-Kern bzgl. m und R,,.

20



Bemerkung: Wir kénnen die /", (x) sowohl als Funktion in z als auch in ¢ auf-
fassen.

Wir verwenden ZE,Lm fiir folgende Umformulierung:

[ = [FEDE e

m) m)

das heifit, um bei den im Folgenden auftretenden Integralen die obere Grenze von
x unabhéngig zu machen. Wir erhalten:

Satz 1.22 Sei @, eine auf I1,,(R) ezakte Quadraturformel. Dann gilt fir jedes

f e Ccmta,b):
/ Ko (t) £ () dt.

Wechselt K,,, auf [a,b] das Vorzeichen nicht, so existiert ein & € [a,b] so, dass

R,(f) = fimt)( /K

m+1
= szﬁﬁ’n(:cm“).

Beweis: Wir verwenden die Taylor-Entwicklung von f mit Integral-Restglied zum
Entwicklungspunkt a:

™) (g i _pm
f@) =S 0w —ap s [T ey

™) (g by
sz ( )(:c—a)J—l—/ (Gl m!t)Jrf(mH)(t)dt.

wobei im zweiten Schritt verwendet wurde, dass R,, auf II,, verschwindet und
dass man das Integral mit R, nach Fubini vertauschen darf und dass ), nur aus
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Punktauswertungen besteht. Fiir den Beweis der zweiten Aussage benutzen wir
den ersten Mittelwertsatz der Integralrechnung und erhalten

(D)= [ K@= 1) [

mit £ € (a,b), da f™*V) und K,, stetig sind und K,,(t) # 0 fiir alle t € (a,b)
gilt. Setzt man in (1.1) nun f(z) = ™" ein, so ergibt sich:

Ru(z™) = (m +1)! /b K, (t)dt,

also

Ba(e™ ) tmin) oy _ p(md ’
T e = e - [ Ko

QED

Wir betrachten im Folgenden einige Anwendungen von Satz 1.22: Wir leiten Feh-
lerschranken her fiir die Trapez-Regel, die Simpson-Regel, die zusammengesetzte
Trapez-Regel, die zusammengesetzte Simpson-Regel und fiir die Gaufs-Quadratur.
Wir beginnen mit der Trapez-Regel.

Fehlerabschitzung fiir die Trapez-Regel.

Trapez-Regel: Es ist n = 1 und sie ist exakt fiir m = 1, fiir den Peano-Kern ergibt
sich:

1
Ki(t) = ﬁRl(Z’;ﬁ)

= / (x — t)ldx — b- a[zt,l(a) + 2,1(D)]
= {%(l‘—t)ﬂt—b_a(b_t)
= [0~ (- a)b 1)
:%(b—t)[b—t—b+a]

1

= 5= t)(a—1).
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Da Ki(t) < 0 fiir alle t € [a, b] gilt, konnen wir den zweiten Teil von Satz 1.22
zum Abschitzen verwenden. Wir erhalten:

b
b
Ri(2?) = / ridr — Ta(a2 +v?)

:153 13_lb3+1a3_@ a_b2
3 3 2 2 2 2
1, 1., a®  ab
B By X B Tl
6" "6 "2 2
1
= —p)3
Ly
Also existiert zu jedem f € C?[a,b] ein & € [a, b] mit
f”<§) 1 3 h? " : b—a
_ g —b)P = —— t h = . 1.2
Ry = L0 o= ey i = 2 12)

Fehlerabschitzung fiir die Simpson-Regel.

Es sind n = 2, m = 3, dann gilt nach einiger Rechnerei:

Ko(t) = U= (g 42— 3t) fira <t < %P
T 3t — 20— b) fiir S <t <b
und Kj3(t) <0 fiir alle ¢ € [a,b]. Aukerdem gilt:

(b—a)®
120

RQ(ZL‘4) = —

Daraus folgt:

b—a

(b—=a)° iy Py ey o
FO©) =~ po ) mit h ="

2880

R2(f) - -

Fehlerabschitzung fiir die zusammengesetzte Trapez-Regel.

Seien nun z, . .., T, gegeben. Sei

Thzh-<@+;f@j>+@)

die zusammengesetzte Trapez-Regel.

Satz 1.23 Ist f € C*a,b] und 11,(f) die Niherung an fabf(a:)da: aus der zu-
sammengesetzten Trapezregel (siehe Abschnitt 1.2), so gilt fir den Fehler
h2(b — a)

2 pr(e)

R(f) = I(f) = Tu(f) = -

mit einem & aus |a, b].
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Beweis: Wir benutzen (1.2) auf jedem Teilintervall [x;, 41|, das heifit es existiert

ein & € [, ;41| mit
Tj+1
> [ s

/f

M1

Xz
J=0 "%
n—1 h h3
-3 (5(1“(%) T fzp)) - Ef”(@))
h n—1 /,
- S TRDAG
7=0
h2 b— 1 n—1
=Tuw(f) — (12 d - f1(&)
j=0

gilt und f” stetig ist, gibt es nach dem Zwischenwertsatz ein & € [a,b] mit
f(&) = c. Also folgt

[ e =0 - 0 e

und daraus schlieflich

h%(b — a)

R(P) = 1(F) = Talf) = =2 17(6).

QED

Bemerkung: Im Fall der Trapez-Regel liegt also sogar quadratische Konvergenz
vor!

Fehlerabschitzung fiir die zusammengesetzte Simpson-Regel.

Fiir die zusammengesetzte Simpson-Regel ergibt sich

hi(b — a)

50 FH(€) mit € € [a, D).

R(f) = I(f) = Su(f) = -
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Fehlerabschitzung fiir die Gaufs-Quadratur.

Lemma 1.24 Sei Q,, die GaufS-Quadratur in n + 1 Punkten aus [a,b] mit zu-
lassiger Gewichtsfunktion w. Dann hat der zugehérige Peano-Kern K,, fir 0 <
m < 2n+ 1 genau 2n + 1 — m Nullstellen in |a,b]. Insbesondere wechselt Koy, q
auf a,b] das Vorzeichen nicht.

Satz 1.25 Sei @, die Gauf-Quadratur in n+ 1 Punkten aus [a,b] mit zuldssiger
Gewichtsfunktion w. Zu f € C?""2[a,b] gibt es ein £ € [a,b] so, dass

_ e

b
Rl = L) = Q) = Tt [ @) s (a)

wobei wie Gblich hyiq1(x) =[] (x — x;).

j=0
Beweis: Wegen Lemma 1.24 darf man den 2. Teil von Satz 1.22 anwenden. Man

erhalt (2ns2)
f (S)R (SL’2n+2)

Ba(f) = 2n+2)1 "

und rechnet nach, dass

R, (£22) = / (@) (g (2))?

gilt. QED

1.5 Romberg-Verfahren

Wir benétigen folgende Begriffe.

Definition 1.26 Die Bernoulli-Polynome By, € 1l fiir k = 0,1,... sind rekursiv
definiert durch:

By(t) =1

1
und By,(t) = Bi_1(t) und / Bp(t)dt=0 k=1,2,....
0

Die Zahlen by, := k!By(0) heiffen Bernoulli-Zahlen.

Das (k + 1)-te Bernoulli-Polynom entsteht also durch Integration aus dem k-ten,
wobei die zweite Bedingung die Integrationskonstanten festlegt. Es gilt:

Bi(t)=1= Bi(t) =t +C.
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Wegen
! 1, b :
t+C= |2+ Ct| =-+C=0
0 2 2

0

folgt C' = %, also
Ahnlich ergibt sich

Lemma 1.27 Es gilt:
1. By elly firk=1,2,....
2. Bp(t) = (=1)kBi(1 —t) fiir k=0,1,2,....
3. Br(0) = Bp(1) fir k=2,3,....

4. Firm =1,2,... besitzt das Polynom Bs,, — B, (0) genau die Nullstellen
0 und 1 im Intervall [0, 1] und das Polynom Ba,,+1 genau die Nullstellen 0,
L und 1.
2

Mit Hilfe der Bernoulli-Zahlen untersuchen wir nochmals den bei der zusammen-
gesetzten Trapez-Regel entstehenden Fehler in Abhéngigkeit der Intervalllinge
h. Sei dazu wie bisher

m—1

Th(f) = h(%f(a) 3 fay) + %f(b))

j=1

mit h = b’T“ und zp = a, x; = a+jhund x,, = b der Wert der zusammengesetzten
Trapezregel.

Satz 1.28 (Euler-McLaurinsche Summenformel) Seil € N und f € C*([a,b]).
Dann gilt

~
I
—

by;h%
< (27)!

) - )] ¢ B e

fiir ein & = &(h) € (a,b).

Beweisidee: Partielle Integration von [ f(t)dt = [ Bo(5%)f(t) und Mittelwert-
satz der Integralrechnung.
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Korollar 1.29 Ist f periodisch auf [a,b] und geniigt den Voraussetzungen aus
Satz 1.28, so gibt es ein £ € (a,b), so dass

Beweis: Da f periodisch auf [a, b] ist, gilt
FO0b) = f9(a) fiir alle i = 0,1,...,2L.
QED

Im Wesentlichen besagt die Euler-McLaurinsche Formel also, dass man den Fehler
bei der zusammengesetzten Trapezregel schreiben kann als

Ti(f) — I(f) = ash® + ash* + - - + ay_oh™ " + ay (h) R

mit Koeffizienten as, ay, ..., asy_2 € R und einer Funktion ay : R — R. Genauer
gilt:
bo; - -
oy = oy (100~ 1)
b—a)b
und (k) = LD pen () (13)

(20)!

Weil f@)(¢) als stetige Funktion auf [a, b] beschriinkt ist, ist auch ay beschrinkt,
weshalb gilt

lim T3,(f) = 1(f).

Allerdings geht der Rechenaufwand fiir h — 0 gegen Unendlich. Die Idee des
Romberg-Verfahrens ist es nun, Ty(f) durch ,Extrapolation” folgendermafen ab-
zuschiitzen: Setze 7 = h? als das Quadrat der Intervallléinge.

1. Sei g(7) := Tz (f) fiir alle 7 # 0, g(0) := To(f).

2. Bestimme g(7p), ..., g(n) fiir [ + 1 Stiitzstellen 7; := h? fiir Intervalllingen
ho, ...,y mit hy = =% m; € IN.
J

3. Interpoliere g an den [ + 1 Stiitzstellen durch ein Polynom p € II;, also mit

p(Tj):g<Tj):Thj<f>7 .7:077l

4. Approximiere
b
100) = [ f)ds = lim () ~ i p(47) = p(0).
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Weil wir das Interpolationspolynom nicht selbst kennen miissen, sondern nur an
seinem Wert an der Stelle O interessiert sind, bietet sich zur Berechnung das
Verfahren von Neville-Aitken (siehe Numerik I) an.

Nach Satz 6.6 aus Numerik I kann folgende Formel verwendet werden: sei PF(7)
das Polynom, das g an den Stiitzstellen 7;, 7,11, ..., 7,1 interpoliert. Dann gilt:

(7 — Ti)Pi]fH — (7 - Ti+k+1)Pik

Pt (r) =
Tivk+1 — T4
Fiir PF := PF(0) gilt somit

k—1 k—1
TPy — T

Pk —

T
Ti — Tit+k

und die Werte lassen sich berechnen durch folgendes Schema:

ho P(%):Tho(f)

\
N
o P =T () N
p11< P
ho PQOIThQ(f)< P12/
Pl /

hs PO=To(f)

Jeder der Eintrige stellt eine eigene Quadraturformel dar. Verwendet man z.B.

T, = 2_2ih3 bZW. hz = Q_iho,
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so erhilt man aus der ersten Spalte:

B W .

P! : _
t 2—2zh% _ 2—21—2h%
- = 1— 14 = %ThiJrl (f) - %Thl<f)
4

2m;—1
_ %(%f(a) 3 fat b+ %f(b))hm
j=1

- é(%f(a) + W:lf(a + jhi) + %f(b))hi

Th,
// | —_
Z ! 7 \ T /
I \ 27 <Chitiy m; = 3
] N 2 : N/ 2
|
I I _
| | | mii1 =6
| | I
| | |
—
Gewichte: @ h; F—--- b
i+1
ter Tepm: & 4 4 4 4 4 4
erster Term: 3 3 3 3 3 3 5
) 2 2 2 2
zweiter Term: —g 0 -3 0 —35 0 —5
. 1 4 2 4 2 4 1
gesamt: 3 3 3 3 3 3 3

Man erhilt also genau die zusammengesetzte Simpson-Regel.
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Bemerkung: In der Literatur wird das Schema anders nummeriert, ndmlich durch

he Too = Th(f)

N\
T4 N
h Tio=Th(f) < Too N
15, < T33
B Too=Tiu(f) Ty~
7y~

hy Tso0 = Thy(f) 4

mit 75, = Pik—k bzw. PF = Tt und

7

2 2
hl;sz;k—l - hiTi—l,k—l
5 .
hifk —h;

Tip =

Zum Abschluss untersuchen wir, wann Romberg-Quadraturen exakt sind.

Satz 1.30 Die Romberg-Quadraturen PF(f) (bzw. Tiiyx(f)) sind exakt fiir Po-
lynome vom Grad kleiner gleich 2k.

Beweis: Ist f € Ily, so folgt, dass f*) konstant ist, also ist ag(h) in (1.3) auf
Seite 26 konstant. Es gilt asx(h) = ag;. Nach Satz 1.28 erhalten wir, dass

Tu(f) =I1(f) + agh® + agh* + -+ + a2k—2h2k_2 + azkh%

ein Polynom vom Grad kleiner gleich k in der Variablen h? ist, beziehungsweise
dass
9(r) = Tz (f) = I(f) + ax7 + @™ + -+ + a7

ein Polynom aus II, ist. Aufgrund der Eindeutigkeit der Polynominterpolation
folgt

QED
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Wie wihlt man die Schrittweiten hy = b;—k“? Dazu gibt es die

e klassische Romberg-Folge:
ng = 2k = h = %hkfl.

Der Vorteil liegt darin, dass Funktionsauswertungen von einem Schritt ¢ auf
den néchsten Schritt ¢ + 1 wiederverwendet werden kénnen. Der Nachteil
ist, dass die Folge sehr schnell wéchst!

e harmonische Folge:

Im Gegensatz zur klassischen Romberg-Folge wichst diese langsamer, doch
sind alte Funktionsauswertungen im (i+ 1)-ten Schritt unbrauchbar. Daher
wahlt man als Kompromiss die

e Burlisch-Folge:

Ng =
k
Nog—1 = 2
Nor = 3- 2k71.
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1.6 Zusammenfassung

Ziel: e Finfache Formel fiir

Interpolationsquadraturen

Seien xy, ..., x, gegeben. Sei

b
Qu(f) = / (Lo ) ()

e Quadratur @), Interpolationsquadratur < @Q,, Vp € 11,, exakt
e Q,(f) ist eindeutig bestimmt
e Newton-Cotes Formeln: Trapez-Regel, Simpson-Regel, . ..

— n ungerade: exakt auf II,

— n gerade: exakt auf 11,4

Zusammengesetzte Newton-Cotes Formeln

Tu(f) = (%f(ﬂfo) + mz_:l fla:) + %f(ﬂfm))

i=1

f(@o5) +4f(w2541) + f($2j+2))

Gault’sche Quadraturen

Wihle auch zo, ..., x,. Sei Q,(f) Gauk’sche Quadratur falls exakt Vp € Iy, 1.

e Q.(f) = ffw(:c)(Lnf)(x)dx Gauf’sche Quadratur
& [ w(@)hn i (@)p(@)de(= (hnsr, p)e) = 0.

e Konstruktion der w-orthogonalen Polynome (Orthogonalbasis)
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® Zg,...,x, sind Nullstellen des Polynoms p € I1,,, das (p,11, f) = 0,Vf € 11,
erfiillt.

e Gewichte alle > 0!

— I =[-1,1], w = 1 = Legendre-Polynome
- I=[-1,1,w(z) = \/1%7 = Tschebyscheff-Polynome
Fehleranalyse

° Qn(f) — Iw(f), Vf e C[a, b], falls Qn(p) — Iw(p)’ Vp € Tl und Z?:o |a§n)| <
C, Vn.

e Gaulk-Quadraturen konvergieren
e Newton-Cotes nicht

e Restglied R,(f) = L.(f) — Qn(f)
e Peano-Kern: K,,(t) := SR, (2,)

e (), auf II,, exakt. Dann

= [P K, (t) f"Dtdt
— Wechselt K, das Vorzeichen nicht, so existiert £ € [a, b]:

FE) 1 e
mRn(:p .

R.(f) =
e Trapez-Regel: Ri(f) = —]f—;f"(f)
e Simpson-Regel: Ry(f) = —g—gf(4) (€)

e zusammengesetzte Trapez-Regel: R(f) = hQ(b a) 7€)

e zusammengesetzte Simpson-Regel: R(f) = A ggoa fH ()

o Gauk: R,(f) = f@n”)(g) f Mg ())?dx

2n+2
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Romberg-Verfahren

e Fuler McLaurinsche Summenformel:

Tu(f) = I(f) = ash® + ash* + - - cag b a2l<h)h21

e Extrapolation:
Lo =0 g(r) :=Tu(f)
2. Bestimme g(79), ..., g(n) mit 7; = (=2)2
3. Interpoliere g durch Polynom p (Neville-Aitken)
4. Ty(h) == p(0)

e Romberg-Quadraturen PF (Interpolationen 7;, ..., 7;,x)) exakt Vp € Iy
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Kapitel 2

Approximationstheorie

In diesem Kapitel wollen wir eine Funktion f durch eine “einfache” Funktion u
(mit w € U C Cla,b], zB. U = II,, ) anndhern. Bei der Interpolation sollte
u an gegebenen Punkten mit f {ibereinstimmen (s. Numerik I, Kapitel 6). Bei
der Approximation soll u die Funktion f im ganzen Definitionsbereich “gut”
darstellen. Unter “gut” verstehen wir, dass || f — ul| klein ist und beschéftigen uns
hauptséchlich mit der Tschebyscheff-Norm || f||o := maxgejq | f ()]

2.1 Approximationssitze von Weierstrafs

In diesem Abschnitt wollen wir den in Abschnitt 1.4 schon benutzten Satz von
Weierstraf (Satz 1.19) beweisen. Dazu benutzen wir so genannte Korovkin-Operatoren.

Definition 2.1 Fine Abbildung K : Cla,b] — Cla,b] heifit monoton, falls fir
alle f,g € Cla,b] gilt

f(x) <g(z), Vxe€lab] = Kf(zr)<Kg(z), Vz€la,b.
Eine Folge K,, : C[a,b] — Cla,b], n € N heifit Korovkin-Folge, falls
(a) K, ist monotoner, linearer Operator fir alle n € N.
(b) limy, oo | Knf = flloo = 0 fiir f € {1,z,2%} (gleichmipige Konvergenz).
Bemerkung: Ist K, Korovkin-Folge, so gilt
Tim K, f — flle =0, ¥f €T,
denn: f € Il lisst sich schreiben als f(z) = ax + Sz + - 1, also ist

|Knf — fll = HaKn(:cQ) + K, (z) + 7K, (1) — ar? — Bx — v|l, da K, linear
< all Kna? — )+ |8l K — 2] + |71l — 1]

~
—0 —0 —0

— 0 fiir n — oo.
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Uberraschenderweise folgt aus der gleichmiRigen Konvergenz auf I, sogar die
gleichméfige Konvergenz fiir alle stetigen Funktionen!

Satz 2.2 Ist {K,} eine Korovkin-Folge auf Cla,b], so gilt

lim || K f — flloo = 0 fiir alle f € Cla,b].

Beweis: Ist f stetig auf [a, b], so ist f sogar gleichméRig stetig auf [a, ], d.h. zu
€ > 0 existiert ein § > 0, so dass

If(z) = fy)] < % fiir alle z,y € [0, 1] mit |z — y| < 4.

Sei nun t € [a, b] fest.
o Falls [z —t[ < § gilt also [f(z) — f(t)| < 5.

e Falls [z — ] > 4, so gilt

[f () = O < [F @)+ [FO] < 2[ flloo

z—t\
<ol (55)
—_——

Zusammen erhalten wir

3 z—t\°
VwEMﬁLLﬂ@—f@ﬂﬁ\é;Hwﬂh(—g—)- 1)

Seien nun

pmﬁzﬂﬂ—é—mum(xgﬁz

o)

@) = 10+ 5+ 2151 (T5)

Dann lésst sich (2.1) schreiben als

p(z) < f(x) < q(x), V€ la,b). (2.2)

K, ist monoton fiir alle n, also gilt K,pi(x) < K, f(x) < K,q(z). Weil p, ¢ €
I5]a, b] konvergiert die Anwendung der K, auf sie gleichméfig (in z), d.h.

|Kth(fE) - qt(x)| — 0fiirn — oo
|Knpt($) —pt(x)| — 0 firn — oo

36



fiir alle x und fiir alle t.
Wir mochten nun ein N € N, so wihlen, dass fiir alle n > N, fiir alle z € [a, ]
und fiir alle t € [a, b] gilt

[ Kngi(2) — ()] <
[ Kope () = pu()] <

Dazu ist gleichméfige Konvergenz von K, q(z) —
zeigt man fiir ¢, wie folgt:

£
3
3
—. 2.3
. (23)
a

() in x und in ¢ nétig. Diese

N2
M@=f®+§+%ﬂu@pw
_ € 27f2||f||oo (RAES (FA[ES
_1(f(t)+§+T)—4t TR it

Man beachte, dass ein Polynom vom Grad zwei in z vorliegt. Aus letzterer Uber-
legung ergibt sich:

| Knae(w) — qi(w)] = '(Knl —1) [f(t) + % n %]
+ (Kot — 1) {%] K ) [2||(J;||oo]
< 1861 = e (1511 + 5 + 241
1 — o 2 g2 gy W

mit ¢ := max{|al, |b|}. Dieser Ausdruck hingt weder von z noch von ¢ ab und

strebt gleichméfig gegen Null. Fiir p; erhdlt man analog einen dhnlichen Aus-
druck.
Damit finden wir also N € N, so dass (2.3) gilt und erhalten daraus:

pi(@) = 5 < Kof(@) < @) + 5. (24)

Es folgt fiir alle z, t und n > N:
pi(@) — aiw) = 5 < ()~ <> )

< F(@) — Kof(2), weil o f(z) < i) +

< fx) — pe(x) + %, durch py(z) — § < K, f(z) aus (2.4)

< qi(a) = pule) + =, da f(2) < gi(x) nach (2.2).

€
3’
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Insbesondere gilt das auch fiir £ = x. Wegen

Pe() = () = f(2) = 5 = 2/ flloc - 0 = f(2) = 5 = 2[[flloc - O

=2
gilt also
—2e— < flo) — Kuf(z) < 2+
oder
|f(z) = Knf(z)] < e
fiir alle n > N und z € [a, b]. QED

Jetzt kann man zeigen, dass jede stetige Funktion beliebig gut durch Polynome
approximiert werden kann, indem man eine Folge von Korovkin-Operatoren

K, : Cla,b] — 11,

angibt, die jede stetige Funktion auf ein Polynom abbilden. Das wird durch die
Bernstein-Operatoren erfiillt.

Notation 2.3
B, : C[0,1] — II,(R),

definiert durch

] n

B.f(z) := (n) f(i)xj(l —z)" 7, zel0,1]
7=0

nennt man Bernstein-Operatoren.

Satz 2.4 Die Bernsteinoperatoren bilden eine Korovkin-Folge auf C[0,1].

Beweis:
(a) Die B, sind linear und monoton, da x > 0 und 1 —z > 0 fiir alle x € [0, 1].

(b) Zu zeigen bleibt noch: B, f — f — 0 fiir n — oo fiir f € {1,z,2%}.
Wir betrachten zunéchst den Fall f(x) = 1:

Byl(z) = Xn: (”) 21— 2)" 7 =1=1(z),

=0 \J
nach dem Binomischen Lehrsatz, also ist B,1 = 1.
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Sei nun f(z) = x:

Bhx = =1 —z)"
7=1
n—1 .
=2 ( : )j ELp (1 — gyt
=\ +1 n
n—1
-1 . —1
=z (n ):pj(l x)("_l)_], denn (x)y = (x )
=\ J y)x  \y—1
N :Vl >4
=z = f(z)
Wir betrachten abschliefend f(z) = 2%, Nach etwas Rechnen erhélt man
-1
B, f(x) = "+ .
n
und somit
1 x 1 x
_ B, _|2_ 2 Ll _ L2 ¥
£(2) — Buf (@) = |z Tl = |lq2-
x? T 2
< |—l+ |- < ——=0,
nl = n
also ||f — Bnfllee — 0 fiir n — oc. QED

Damit folgt der Satz von Weierstraf:

Satz 2.5 (WeierstraBl) Zu jedem f € Cla,b] und jedem e > 0 gibt es ein Poly-
nom p so, dass || f — plle < €.

Beweis: Fiir [a,b] = [0, 1] folgt die Aussage aus Satz 2.2 und Satz 2.4. Im allge-
meinen Fall sei f € Cla, b]. Wir definieren

g(s) :== f((b—a)s+a) € C[0,1].

Zu g existiert ein Polynom ¢, so dass ||g — ql|s < €. Sei weiterhin p(t) := q(;=2),
t € [a,b]. Dann ist p ein Polynom und weil t = (b — a)s + a dquivalent ist zu

=2 = s folgt
t—a t—a
t) —p(t) = -
ft) = p(t) g(b_a> q(b_a)
und daraus
If = plloe = llg = dlle <&,
also ist p das gesuchte Polynom fiir f. QED
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Bemerkung: Fiir f € Cfa,b] definiert man die Bernstein-Operatoren vermaoge

w5 (oo (2 (55)

(. 7\

~~

e mar a,b] = [0,1] via @

abbildet.

Ubungsaufgabe: Wandeln Sie B, f so ab, dass sie eine Korovkin-Folge auf
C'la, b] erhalten. (Das ist ein alternativer Beweis zum Satz 2.5).

In Satz 2.5 haben wir den Abstand zwischen der Funktion f und ihrer Approxi-
mation durch

I =l = max |f(@) = g(a)

gemessen. Statt der Norm || - || verwenden wir im folgenden Satz die Ly[a, b]-
Normen, die durch

b
1l = { / (@) |pde

definiert sind.

Satz 2.6 Zu jedem f € Cla,b] und jedem £ > 0 gibt es ein Polynom q so, dass
If —all, <e.
Beweis: Sei e > 0. Nach Satz 2.5 gibt es ein Polynom ¢, so dass || f —q||le < &' :=

(bfa). Dann gilt
b
I —alr = / (@) = q(o)|Pda
¢ b
<|1f =gl / 1z
1 — g% (b —a) < (P —a) =<,
also || f — g, < & QD

Von Weierstraft stammt auch das folgende Approximationsresultat fiir trigono-
metrische Polynome, das wir ohne Beweis angeben:

Satz 2.7 Zu jedem f € C(R) mit Periode 2w und jedem ¢ > 0 existiert ein

trigonometrisches Polynom T so, dass ||f — T'|cc < € und || f —T||, < € fiir alle
L,[0,27]-Normen.

40



2.2 Existenzsatze

Wir verallgemeinern nun den Begriff der Approximation.

Definition 2.8 Sei V' ein normierter Vektorraum und M C 'V eine Teilmenge
von V. Sei f € V. Dann heifst u* € M beste Approxrimation an f, falls

\f—u*|| < ||f — ul| fir alle w € M.
Man nennt d(f, M) := inf,cp || f — u|| den (Minimal-)Abstand von f zu M.
Beispiele:

1. V = Cla,b], M = T4fa, b]: Approximation einer stetigen Funktion f € V
durch ein Polynom bis Grad 4.

2. V.=R" M C R™ Approximation eines Punktes durch einen (anderen)
Punkt aus M. Hierbei ist d(z, M) der Abstand des Punktes = € V' von der
Menge M.

Fir |- || = - ||2 ist u* die orthogonale Projektion von x auf M.

Punkte gleichen
Abstands

N

(5 ”
M

Fiir || - || = - ||1 ist u* wie in der Abbildung,.

CERY

3. In der linearen Ausgleichsrechnung (Numerik I, Kapitel 4.2) sind A € R™"
mit m > n und b € R™ gegeben. Gesucht ist ein z € R", sodass || Az — b||2
moglichst klein ist. Wir formulieren das Problem zu einer Approximations-
aufgabe um: Seien V. =R™, M = {Az : x € R"} und b € V gegeben. Finde
u* € M, sodass ||b — u*|| moglichst klein ist.
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Definition 2.9 Ses M C V, V normierter Vektorraum. M heifit Existenz-
menge, falls es zu jedem f € V eine beste Approzimation auf f gibt. M heifst

Tschebyscheff-Menge, falls es zu jedem f € V genau eine beste Approximation
gibt. M heift dicht in V', falls d(f, M) =0 fir alle f € V.

Beispiele:
e 11, C Cla,b] ist keine Existenzmenge, aber

e der Satz von Weierstrak (Satz 2.5) besagt, dass fiir M = Il — den Raum
aller Polynome — gilt

(. M) = inf 1f ~ al
= 0 fiir alle f € CJa, b],
also liegt I, dicht in Cf[a, b].
e Dagegen ist I4[a, b] nicht dicht in Cfa, b].
e Jede konvexe, kompakte Menge M C R™ ist Tschebyscheff-Menge bzgl. ||-||2.

e Brgl. ||-||1 ist z.B. ein gleichschenkliges Dreieck mit achsenparallelen Kanten
keine Existenzmenge.

h 45°

e Q liegt dicht in R, ist aber keine Existenzmenge.

Lemma 2.10 Sei M eine kompakte Teilmenge eines normierten Raums V. Dann
1st M Existenzmenge.

Beweis: || - || ist stetig, genauer: Sei f € V. Betrachte

p:V—-~R

v | f =
Dann gibt es fiir jedes € > 0 ein § := £, sodass
() — ()] = [If —vll = [If —ull| < flu—-v] <e

fiir alle u, v mit |ju —v|| < J. Also ist ¢ eine stetige Funktion auf einer kompakten
Menge und nimmt entsprechend ihr Minimum an. QED
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Lemma 2.11 Es gilt: |d(f, M) — d(g, M)| < ||f — g|| fir alle f,g € V, V nor-
mierter Vektorraum und M C V', d.h. der Minimalabstand hingt stetig von dem
zu approzimierenden Element ab.

Beweis: Seien f,g € V, e > 0. Wéhle u(e) € M so, dass ||g—u(e)|| < d(g, M)+e.
Dann gilt:

d(f, M) < ||f —u(@)| < |f —gll + g + ule)|]
<|f—gll+d(g,M)+e

also d(f, M) —d(g, M) < ||f — ¢g|| + €. Analog erhélt man, wenn man f und g
vertauscht:

d(g, M) —d(f, M) < |[f = gll + e

Zusammen ergibt sich:

, M)

|f — g|| + ¢ fiir alle ¢ > 0
also |d(g, M) —d(f, M) |

lf =gl

<
<

QED

Wir betrachten nun Mengen M C V mit weiteren Eigenschaften:

1. M konvexe Teilmenge von V.

2. M Unterraum von V.
Wir erinnern uns:

M konvex < Vr,y € M,VA € (0,1): Az + (1 — Ny € M.

Es gilt:

e Jeder Unterraum ist konvex.

e O ist konvex.

e My, M5 konvex = M; N M, konvex.

Im Folgenden bezeichnet 2 die Menge der besten Approximationen an f € V
aus M.

Satz 2.12 Sei V normierter Vektorraum und M C 'V konvex. Zu f € V existiere
eine beste Approzimation u* € M, d.h. LI(*f) #+ &. Dann gilt: Entwederu(*f) = {u*}
oder |U(y)| = oo und Uy ist konver.
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Beweis: Seien uq, us beides beste Approximationen an f, also

d(f,ur) = |[f —wall = If — w2l = d(f, ua).

Betrachte u := tu; + (1 — t)ug € M fiir beliebiges ¢t € [0, 1]. Dann gilt

If = ull = |(f —w)t + (f —u2)(1 = 1)
< ¢ [[f = wl[+1 =t || — ua]
N—— ——

=d(f,u1) =d(f,u2)

= d<f7 u1>7

also ist u auch beste Approximation an f und die Menge L{(*f) ist konvex. Weil
{tus + (1 — t)ug : t € [0,1]}]| = oo,

hat die Menge aller besten Approximationen — wie jede konvexe Menge mit mehr

als einem Element — unendlich viele Elemente. QED
Beispiele: V. =R% || - || =] - |1-
0 u*
u* M
M

konvexe Menge beste Genau zwei

beschreibt beste Approximation beste Approxi-

Approximation eindeutig mationen

Speziell fiir lineare Unterrdume M gilt die folgende Aussage:

Satz 2.13 Sei U ein endlich-dimensionaler Unterraum eines normierten Vek-
torraums V. Dann ist U eine Existenzmenge. Weiterhin st fir alle f € V die
Menge der besten Approrimationen Z/{(*f) konver und es gilt entweder \Z/I(*f)| =1
oder |U;)| = oo.

Beweis: Weil U ein Unterraum ist, gilt 0 € U. Sei
Up=A{ueU:|f—ul <|f-0l}

die Menge aller Elemente aus U, die f mindestens genauso gut approximieren
wie 0. Es ist also LI(*f) c Up.
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Uy ist abgeschlossen (weil || - || stetig ist) und beschriankt (weil |ul| < [Ju — f]| +
I £l < 2] f]| fiir alle u € Up). Zusammen folgt, dass Uy eine kompakte Menge ist.
Nach Lemma 2.10 existiert also eine beste Approximation an f aus Uj. Diese ist
beste Approximation an f aus U.

Weil jeder Unterraum insbesondere konvex ist, folgt der zweite Teil aus Satz 2.12.
QED

Bemerkung: Die Voraussetzung “endlich-dimensional” ist notig! Betrachte dazu
V =Cla,b] mit |- || = || - [|c und U = Il[a,b]. Sei f € Cla,b] \ IIxa,b]. Dann
gilt zwar d(f,U) = 0, aber weil f kein Polynom ist, wird dieses Infimum nie
angenommen.

Bemerkung: Man kann zeigen, dass die beste Approximation in Euklidischen
Raumen — sofern sie existiert — immer eindeutig ist.

2.3 Tschebyscheff-Approximation in Cla, b]

Wir untersuchen nun wieder die Approximation einer stetigen Funktion f &
Cla,b] durch u* € U C C|a, b]. Dabei betrachten wir als Abstand

[ = flloe = max Ju(z) — f(z)].
z€la,b]
Aus Satz 2.13 wissen wir, dass jeder endlich-dimensionale Unterraum U C C|a, b]
eine Existenzmenge ist. Um die Eindeutigkeit zu behandeln, betrachten wir uni-
solvente Rdume (siche auch Numerik I).

Definition 2.14 Sei U C Cfa,b] ein Unterraum von Cla,b] mit dim(U) = n.
Dann heifit U Haar’scher Raum der Dimension n, falls jedes u € U \ {0}
hochstens n — 1 Nullstellen in [a,b] hat.

Bemerkung: Ein Haar’scher Raum ist unisolvent beziiglich jeder Menge X C [a, 0]
mit | X| > n.

Beispiel: Es ist II,, C Cla, b] ein Haar’scher Raum der Dimension n + 1, denn
jedes nicht-verschwindende Polynom vom Grad maximal n hat hochstens n Null-
stellen in [a, b].

Die Approximation einer Funktion beziiglich der || - ||ooc-Norm soll zunéchst an
einem ausfiihrlichen Beispiel demonstriert werden.

Beispiel: Betrachte I = [0, 1] und f(z) = 2? € C|0, 1].
Wir interessieren uns fiir die beste lineare Approximation, suchen also eine Funk-
tion u*(x) = a + Sz mit minimalem Abstand ||f — u*||» zu f.
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1

keine optimale Losung

Fiir den Fehler gilt:

I = o = mivs | (@) = (@)

= max |2? — Bz — al.
z€(0,1]
Es gilt

e 22 — B2 — o wird als konvexe Funktion am Rand maximal, also fiir z = 0
oder fiir x = 1 mit Maximalwerten |a| oder |3 + a — 1].

o — 22 + Bz + a wird als konkave und differenzierbare Funktion am Rand
maximal, oder falls ihr Gradient gleich Null ist, also falls

—2x+ﬁ:0<:>x:%ﬁ.
Der Maximalwert betriigt dann |13 — 16 — a| = |a + 17|
Wir erhalten also
If = wlloc = max{|el, |8+ a — 1], Ja + 367}
Fiir welche «, 8 wird dieser Ausdruck minimal?

e Dazu miissen alle drei Terme den gleichen Wert annehmen. Man kann sich
das durch eine Fallunterscheidung leicht klarmachen: Sind die Werte nicht
gleich, gilt also zum Beispiel |a| > |34 a + 1| und |a| > |o + 157, so
kann die Losung verbessert werden, indem man « (auf Kosten von () etwas
reduziert. (Analog in den anderen Fillen.)

e Auferdem miissen die Vorzeichen der drei Terme alternieren; sonst konnte
man die Gerade ebenfalls verbessern (Skizze).
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Durch eine Skizze lassen sich beide Aussagen veranschaulichen: Ist eine der drei
Strecken ldnger als die beiden anderen, so kann man sie durch Verschieben und
Drehen von u auf Kosten der anderen verkiirzen und so u verbessern.

f

/ i 1
, 4

keine optimale Losung optimale Losung kann
durch Verschieben
erreicht werden

In unserem Beispiel erhilt man fiir den Fall

f(0) > u™(0),  f(308) <u(38) und f(1)>u’(1)
die Gleichungen
—a:a+i52:1—a—ﬁ,d.h.2a+iﬁ2:0 und 1-73=0.

woraus folgt, dass 6 = 1, « = —z und [|f — ull = g. Da das Vorzeichen
alternieren muss, gibt es nur noch einen weiteren Fall: f(0) < w*(0), f(35) >

w*(33) und f(1) < u*(1). Dieser liefert keinen besseren Wert fiir || f — u* ||, also
ist
u (x) =z — %

die beste Approximation.

1

beste Approximation
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Das Beispiel motiviert die folgende Definition:

Definition 2.15 Sei U ein Haar’scher Raum der Dimension n tber [a,b]. Fine
Menge X von n+ 1 Punkten a < 21 < 29 < -+ < 2,41 < b heifit Alternante
fir f € Cla,b] und uw € U, falls

sign(f(ay) ~ u(e) ) =010, 1<j<nt1

gilt mit einer Konstanten o € {—1,1}.

Eine Menge X ist also Alternante fiir f und w, wenn f —w in den z; alternierend
das Vorzeichen wechselt.

Satz 2.16 Sei U ein n-dimensionaler Haar’scher Raum iber [a,b]. Gibt es zu
f € Cla,b] und u* € U eine Alternante X mit

o) —w @) = 1 —wler  1Sj<n+,
so ist u* eine beste Approrimation an f aus U.
Beweis: Sei X = {z1,...,2,, x,41} Alternante mit
sign(f(z;) —u*(x;)) = o(=1) fiiralle 1<j<n+1
fiir ein festes o € {—1,1}. Sei u € U. Wir wollen zeigen, dass
1f = oo < If = ullco-
Dazu rechnen wir

17— wlle = 1) —w'Cay) fiarj=1...n+1
= (f(z;) —u*(z;))o(—1) firj=1,...,n+1

= (f(z;) — w(z;))o(=1) + (u(z;) — u*(z;))o (1)
fir j=1,...,n+1 (2.5)

Um diesen Ausdruck weiter abzuschétzen, zeigen wir zunéchst, dass es ein jy €
{1,...,n — 1} so gibt, dass

(u(zz,) — w'(25))(~1)°0 < 0. (2.6)
Dazu nehmen wir an, dass (2.6) fiir kein j, giiltig ist. Das heifst,
(u(z;) —u*(z;))(=1)70 > 0 fiir alle j € {1,2,...,n,n+ 1},
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also wiirde u —u* in jedem der n Intervalle (x;,x;11), 7 = 1,...,n das Vorzeichen
wechseln. Nach dem Zwischenwertsatz hétte die stetige Funktion u — u* also
mindestens n Nullstellen. Aber u — u* € U und U haben wir als Haar’schen
Raum der Dimension n vorausgesetzt. Somit gilt:

u—u" =0 oder u — u* hat hochstens n — 1 Nullstellen.

Daraus ergibt sich also v = u*; das aber ist ein Widerspruch zu u(z;) # u*(z;)
an den Punkten xy,...,z,.1.

Wir verwenden die eben gezeigte Aussage, um || f —u*|| in (2.5) weiter abzuschét-
zen, indem wir fiir j den Index j, wihlen, der (2.6) erfiillt. Wir erhalten:

1f = ulloe = (f (250) — ul@so))o(=1)" + (ulaj,) — u”(x;,))o(=1)"

J/

<0 nagﬁ (2.6)
< [f (o) — ulzjo)| < 1f = ulloe

QED

Um eine beste Approximation zu finden, macht es also Sinn, f zunéchst auf einer
diskreten Menge X = (x1,...,%,41) zu approximieren. Wir fithren die folgenden
Bezeichnungen ein.

Notation: Einen Vektor X = (z1,...,2,1)f ER"™ mita <2 <a9 < -+ <
Tn < Tni1 < b nennen wir Referenz. Wir definieren

= F)lxlloo o= _maxuz) = f(w0)].

-----

Gilt fir uw* € U dass

(" = lxlloo < [l(w = f)lxll

fuir alle w € U, so nennt man u* beste Approximation an f aus U auf
der Referenz X, oder diskrete Approximation auf X oder Tschebyscheff-
Approximation an f aus U auf X.

Korollar 2.17 Sei U ein Haar’scher Raum der Dimension n iber [a,b]. Gibt es
zu f € Cla,b] und u* € U eine Alternante X mit

|f(xj) —u(x;)| = const  fir allel <j<n-+1

(das heifst dann, dass | f(x;) — u*(z;)] = ||(f — u*)|x||le fiir alle1 < j <n+1),
so st u* Tschebyscheff-Approzimante auf X an f aus U.
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Beweis: Der Beweis verlduft genau analog zu dem Beweis von Satz 2.16, nur
betrachtet man statt ||f — u*||ooc den Ausdruck ||(f — u*)|x|lco beziehungsweise
statt ||f — ul|co den Ausdruck ||(f — u)|x||oo- QED

Das ergibt folgende Idee, um eine beste Approximation iterativ anzunahern.
1. Starte mit Referenz X und bestimme u* € U so, dass

e X ist Alternante fiir f und u*

o |f(x;) — u*(z;)| = const.

Dann ist u* beste diskrete Approximation an f aus U auf X (nach Korol-
lar 2.17).

2. Gilt zusétzlich, dass ||f — u*|| = const(= ||(f — u*)|x||), S0 ist u* beste
Approximante an f aus U auf ganz [a, b] (nach Satz 2.16).

3. Sonst verdndere die Referenz X und gehe zu 1.

Wir werden im Folgenden besprechen,

e wie man in Schritt 1 die diskrete Tschebyscheff-Approximante berechnen
kann, und

e wie man in Schritt 3 die Referenz X geeignet modifiziert, so dass das Ver-
fahren konvergiert.

Wir beginnen mit der Berechnung der diskreten Tschebyscheff-Approximante.

Sei uy,...,u, eine Basis von U. Sei X eine Referenz und bezeichne
px = dx(f,U) = nf [(f —u)lxlle

den Minimalabstand von f und U bzgl. der Referenz X = (z1,...,2,.1)". Wir

suchen
n
* P— . .
u = E U,
j=1

genauer also die Koeffizienten ay,...,a,. Sei ox das Vorzeichen von f(z;) —
u*(x1). Dann miissen die folgenden n + 1 Bedingungen erfiillt sein:

f(z5) —u*(z;) :pXUX<—1)i_1, Vi=1,...,n+ 1.

Das schreiben wir um zu:

flai) = ajui(zy) + (—1)" oxpx 1<i<n+1.
j; T =Ungl =i0n4l

bekannt Variable
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Als Gleichungssystem erhélt man n + 1 Gleichungen in n + 1 Variablen, wobei
wir zur Vereinfachung der Schreibweise

Upyr () = (1)

setzen. In Matrixform ergibt sich:

u(z) o un(@)  upga(a) aq f(z1)
ui(za) : Q2 _ f(z2) (2.7)
N U (Tpg1) o Un(Tnyr) un+1(.xn+1) ) Qnt1 f(#n 1)

-~

Ist dieses Gleichungssystem l6sbar? Wir benutzen den Laplaceschen Entwick-
lungssatz fiir die letzte Spalte. Sei dazu

u(z1) o up(a)
D; — u(zi1) o un(@io) c R™™,
ur(@iv1) o un(Tig)
Ur(Tpg1) o Un(Tnyr)
Dann gilt:
n+1
det(A) = (=1)" upy1(z;) det(D;)
i=1 N
=(=1)!
n+1
= det(Dy).
i=1
D; ist die zu den Punkten xy,...,2;_1,Zs11, ..., T, gechorende Interpolationsma-

trix, daher ist det D; # 0 fiir alle . Man kann sogar zeigen, dass alle det D; das
gleiche Vorzeichen haben, also gilt det A # 0. Auferdem gilt der folgende Satz:

Satz 2.18 Sei U ein Haar’scher Raum der Dimension n tber [a,b] und sei X =
a<m <x9 <+ < xpr1 =0 eine Referenz. Dann gibt es zu jedem f € Cla,b]
genau eine Losung der Tschebyscheff-Approximation. Man kann sie durch Lésen
des linearen Gleichungssystems (2.7) berechnen.

Beweisskizze:

e Weil (2.7) eindeutig l6sbar ist, folgt die Existenz der Tschebyscheff-Approximation.

ol



e Um die Eindeutigkeit nachzuweisen, muss man zeigen, dass jede Tschebyscheff-
Approximante auch Losung von (2.7) ist. Weil (2.7) eindeutig losbar ist,
folgt daraus die Behauptung.

Ubungsaufgabe: Sei U ein Haar’scher Raum der Dimension 7 iiber [a, ] und
sei X C [a,b] mit a < x; <--- <z, <b, also | X| = n. Bestimmen Sie dx(f,U)!

Bevor wir das Remes-Verfahren formulieren, machen wir uns die Idee, die beste
Approximation durch eine beste diskrete Approximation anzunihern, an folgen-
dem Lemma klar:

Lemma 2.19 Sei X eine Referenz. Dann gilt
Beweis: Sei w € U. Dann gilt

ICf = wlxlloe = _max | f(zs) —u@i)| < [If — ulle

-----

und folglich

T
inf (= wlxlle < inf [If — ]

also dx (f,U) < d(f,U). QED

Wenn man also d(f,U) durch dx(f,U) anndhern mdchte, ist die Referenz X
dafiir besser geeignet als die Referenz X', falls dx(f,U) > dx/(f,U), also falls
die Fehlerfunktion f — u% fiir die Tschebyscheff-Approximante u% beziiglich der
Referenz X moglichst grof§ ist! Diese Beobachtung wird im Remes-Verfahren wie
folgt ausgenutzt:
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Algorithmus 1: Remes-Verfahren

Input: f € Cla,b], U C Cla,b] Haar’scher Raum der Dimension n.

Schritt 1: Wihle Startreferenz X0 = {xgo),...,xgg)rl , j:=0,

Schritt 2: Bestimme die Tschebyscheff-Approximation u; auf X0U) an f. Sei
pi=dx (f;U) = [[(f = uj)lxo lloo-

Schritt 3: Falls dy()(f,U) = ||f —u}[lcc: STOP. Losung sei vj.

Schritt 4: Bestimme die neue Referenz XUt!)  die den folgenden drei
Bedingungen geniigt:
a) sign(f — u;)(xgﬂ)) = —sign(f — u;)(ngll)) fiir alle 1 <k <n.
b) |(f —u})(@lTV) > dyo) (f,U) fir alle 1 <k<n+1.

) [[(f —uj)lxu+nlloo = If = ujlloo-

Setze j:=j+ 1 und gehe zu 2.

Zunéchst analysieren wir Schritt 4:

e Bedingung a) bedeutet, dass die alte Fehlerfunktion f — u} auch auf der
neuen Referenz XU+Y alternieren soll.

e Bedingung b) besagt, dass die alte Fehlerfunktion f — u}, angewendet auf
die Punkte der neuen Referenz, nicht kleiner sein darf als an den Punkten
der alten Referenz.

e Zusammen mit Bedingung c) heifit das sogar, dass die alte Fehlerfunktion,
angewendet auf die neuen Punkte, maximal werden soll, also den Gesamt-
fehler || f — u}[| an einem der neuen Punkte annehmen muss.

Man versucht also, geméf der Aussage von Lemma (2.19), die neue Referenz so
zu wihlen, dass ihr Fehler moglichst grofs wird. Bevor wir uns mit der Konvergenz
des Remes-Verfahrens beschéftigen, zeigen wir, dass es in Schritt 4 immer eine
passende neue Referenz gibt.

Lemma 2.20 Es gibt eine Referenz XUtV die den Bedingungen von Schritt 4
geniigt, falls dxi) < || f — u}|oo-

Beweis: Die Referenz X) geniigt den Randbedingungen a) und b). Wir werden
daher nur einen Punkt aus X¥) gegen einen neuen austauschen. Dazu bestimmen

93



wir T mit
|f = uill = f(Z) — uj (%)

als einen Punkt in [a,b], an dem der Fehler maximal wird. Wegen
dxo < [If —ujlloo

ist ¥ # xy fiir k=1,...,n+ 1. Wir unterscheiden drei Falle:

1. Existiert ein k, so dass x,ij) <T< ;UI(QI, so setze a:l(gjﬂ) = 7 falls sign(f —
uj)(x,(jﬂ)) = sign(f — u})(%), sonst x,(jll := 7. Man ersetzt also entweder

a:,(gj) oder :L’,(i)rl durch z.

2. Falls 7 < xgj), setze xgjﬂ) = T. Falls sign(f — u})(z1) # sign(f — u}‘)(i),
setze aukerdem xlgjfll) .= 2 fiir k = 1,...,n. (Im ersten Fall wird also =’

aus der Referenz entfernt, im zweiten Fall xif}rl)

3. Falls z > x,(fll analog zu Fall 2.

QFD

In der Praxis ersetzt man meistens mehr als einen Punkt aus X ).

Jetzt konnen wir folgenden Satz iiber das Remes-Verfahren formulieren:

Satz 2.21 Sei U C Cla,b] ein Haar-Raum der Dimension n und sei f € Cla,b]\
U. Dann existiert genau eine beste Approzimation u* € U auf [ aus U auf |a, b].
Ferner bricht das Remes-Verfahren entweder nach endlich vielen Schritten mit
u* ab, oder es liefert Folgen {X W}, {uj} und {p;} mit folgenden Eigenschaften:

o {p;} konvergiert mindestens linear gegen || f — u*||. Genauer existiert eine
Konstante q € (0,1) mit

If =l = pjrr <q(lf =’ =p5),  T€Ng

° {u}*} konvergiert gleichmdf$ig auf I gegen die Lésung u*.

Beweis: Bricht das Verfahren nach endlich vielen Schritten ab, so gibt es ein
j € NO mit

pi = I = ujlxo lloe = I = lloc,
also ist uj beste Approximation an f auf I nach Satz (2.16).
Nehmen wir also an, das Verfahren endet nicht. Dann kann man zeigen, dass die
Folge (p;) aufgrund der Bedingungen a), b) und c) streng monoton wachsend ist.
Wegen Lemma 2.19 ist

Py < d(f? U)
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also ist die Folge nach oben beschriankt. Daraus folgt Konvergenz.
Der Nachweis der mindestens linearen Konvergenz wird hier nicht beschrieben.
Die Eindeutigkeit folgt folgendermafien: Sei

{X@W} C Menge aller Referenzen,

dann besitzt diese eine konvergente Teilfolge, die gegen eine Referenz X™ konver-
giert. Sei u* die zugehorige Tschebyscheff-Approximante, die Losung von inf,¢¢ || f—
]| ist. Sei @ eine weitere Losung des Approximationsproblems, dann ist @ auch
eine Tschebyscheff-Approximation an f aus V auf [a.b]. Nach Satz 2.18 ist diese
eindeutig, also u* = . QED

Bemerkung: Die beste Approximation u* ist eindeutig und u; — w*. Aber die

Folge der Referenzen X ) hat nur eine konvergente Teilfolge, weil es zu u* mehrere
Alternanten geben kann, als Hiufungspunkte der Referenzen auftreten konnen.

Als Folge des letzten Satzes erhalten wir die “Riickrichtung” zu Satz 2.16:

Satz 2.22 (Alternantensatz) SeiU ein n-dimensionaler Haar’scher Raum tiber
la,b]. Ein Element u* € U ist genau dann beste Approzimation an f € Cla,b),
wenn es eine Alternate X fir f und u* mit

[flzg) —u (@) = If —u'|l,  1<j<n+1
gibt. Die beste Approximation u* ist eindeutig bestimmt, die Alternante aber nicht.

Durch das Remes-Verfahren haben wir konstruktiv gezeigt, dass jeder Haar’sche
Raum eine Tschebyscheff-Menge ist. Der néchste Satz sagt, dass Haar’sche Rdume
die einzigen Tschebyscheff-Mengen sind.

Satz 2.23 Sei U ein n-dimensionaler Unterraum von Cla,b]. Dann gilt:

U ist Haar’scher Raum < U ist T'schebyscheff-Menge.
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2.4 Zusammenfassung

Ziel: e Nihere ein Objekt f (aus einem VRV ) durch ein “einfacheres Objekt”
an

o “ecinfacher”: Aus einer Menge M C'V

o ‘“anndghern” || f —u*|| < ||f —ul|, Yu € M = u* ist beste Annéiherung (beste

Approzimation,)
Beispiele
o V="=Cla,bl, | - ||cc, M z.B. II,,: Approximation von Funktionen
o V=R" ||| bel. Norm, M C R": Projektion

o V=R" M={Az:x € R"}, |- ||2: Ausgleichsrechnung (A € R™")

Existenz- und Tschebyscheff-Mengen

e M Existenzmenge, falls eine beste Approximation u* € M existiert
e M Tschebyscheff-Menge, falls genau eine beste Approximation existiert
e M kompakt = M Existenzmenge

e M konvex = 7 keine, genau eine oder unendl. viele beste Approx. und
bilden eine konvexe Menge.

Speziell fiir Ca, b]

Satz von Welerstrass

e Satz von Weierstrass:

Ve > 0,Vf € Cla,b] : Ip € U : || f — plloe < €

e Beweisskizze:
— {K,} Korovkin-Folge, falls K, linear und monoton ¥n und lim,, . || K, f—
fllso = 0 fiir f € {1,z,2%}

— Ist {K,} Korovkin-Folge, dann gilt lim,, o [|Kf — flloc = 0, Vf €
Cla, b]

— Ziel: Finde Korovkin-Folge K, : Cla,b] — Tl[a, b]

— Bernstein-Operatoren! = Beweis
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e Folge: Satz von Weierstraf gilt auch fiir || - ||,-Normen;

b
!Vhf=p/\ﬂ@mm

Tschebyscheff-Approx. in Haar’schen Raumen
e ... dh.
V = Cla,b], || flleo = m[a% |f(x)|, M ist Haar’scher Raum
z€|a,
e U ist Haar’scher Raum der Dim. n, falls jedes w € U \ {0} hichstens n — 1
Nullstellen hat.

o X ={x1 <23 < - < xp1} C [a,b] heikt Alternante fiir f und u, falls
sign(f (z;) — u(z;)) = o(-1)), 0 € {—1,1}

e Kriterium: U C V Haar’scher Raum der Dim. n, f € [a,b], u* € U: Gibt es
eine Alternante X mit |f(z;) — u*(z;)| = [|f —u*||ec, 7 =1,...,n — 1, sO
ist u* beste Approx. an f (aus V)

Diskrete Approximation

o Gegeben: X = {zy,...,z,1}. Finde u* : ||(f — v")|x]loo < [(f — )| x]|c0s
YueU.

e Kriterium: u* € U ist beste diskrete Approx., falls
[f () = ()] < 10 = u")lxllo
fiir eine Alternate X fiir f und u*.
e Losen durch ein Gleichungssystem (n + 1 Var., n + 1 Bed.)

e Losung des diskreten Approx.-Prob. ist immer existent und eindeutig

Remes-Verfahren
e Starte mit einer Referenz X, j =0
e diskrete Approx. u¥) an f in X©)

Falls u'9) beste Approx. an f ist — STOP.

e sonst: neue Referenz durch Austauschen (eines) der Punkte in X )

Wichtig: (/= ) oo < 10 = )l oo 1

Es gilt: Konvergenz (sublinear) zu eindeutiger Losung
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Alternantensatz

e U Haar’scher Raum der Dim. n, f € C[a,b], u* € U ist beste Approx. an f
aus U bzgl. ||-||oc < es ex. eine Alternante X mit ||(f—u")|x]|c = || f—t" ||

e Beweis: Kriterium + Eindeutigkeit durch Remes-Verfahren

e Bemerkung: Fiir Unterrdume U gilt: Haar’'scher Raum < Tschebyscheff-
Raum (Tschebyscheff-Menge)
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Kapitel 3

Numerik gewohnlicher
Differentialgleichungen

3.1 Einfiihrung und Notation

Wir beschéftigen uns in diesem Kapitel hauptsichlich mit gewohnlichen, explizi-
ten Differentialgleichungen erster Ordnung, gegeben durch

2'(t) = f(t, z(t)), tel=1la,b (3.1)
Dabei ist

o z : I — R eine gesuchte, differenzie/rl?are Funktion auf einem Intervall
I =a,b] CR (Kurve) und z/(t) = (5’315( )> der Tangentialvektor von x an
()
e f:DC (R xR? — R? eine gegebene Funktion.
Wir kldren zunéchst einige Begriffe.
Notation 3.1

e Fine Differentialgleichung heifit gewdhnlich, wenn die unbekannte Funk-
tion x nur von einer reellen Variablen abhingt. Hingt x von mehreren Va-
riablen ab, d.h. gilt

r:B —RY BCR,

so liegt eine partielle Differentialgleichung vor.

e Fine Differentialgleichung hat die Ordnung k, falls nur Ableitungen von
x bis zur Ordnung k vorkommen. Sie hat die Ordnung 1, falls nur die erste
Ableitung von x vorkommt.
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e Man nennt eine Differentialgleichung explizit, falls der hochste Ableitungs-
term isoliert auftaucht, ansonsten tmplizit.

o Fiir d = 1 nennt man die Differentialgleichung skalar, fir d > 1 spricht
man auch von einem System von Differentialgleichungen.

Beispiele:

o F(t,z(t),2'(t)) =0, t € I = [a,b] mit einer gegebenen Funktion F' : R x
R? x RY — R? ist eine gewthnliche, implizite Differentialgleichung erster
Ordnung.

o yB(t) = g(t,y(t),...,y*V(t)), t € I = [a,b] mit einer gesuchten Funktion
y : I — R?, die k-mal differenzierbar ist, ist eine gewchnliche, explizite
Differentialgleichung der Ordnung k.

o 7/(t) = x(t), t € [a,b] ist eine gewohnliche, explizite, skalare Differential-
gleichung erster Ordnung.

Notation 3.2 FEine gewéhnliche Differentialgleichung der Form
'(t) = f(z(1)),
bei der die rechte Seite nicht explizit von t abhdngt, heifst autonom.

Wir beschéftigen uns im Wesentlichen mit expliziten, gewohnlichen Differential-
gleichungen.

Beispiel:

ist eine gewohnliche, explizite und autonome Differentialgleichung (bzw. ein Sys-
tem von Differentialgleichungen) der Form

Eine Losung dieser Differentialgleichung ist
t
2(t) = (c?S( ))’
sin(¢)

2i(t) = cos'(t) = —sin(t) = —x(t),
oh(t) = sin'(t) = cos(t) = z(t).

denn
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Es gibt aber noch weitere Losungen, ndmlich

C - cos(t — t0)>

i(t)=C -zt —t) = (c -sin(t — to)

fiir alle o € R und C' € R, denn

C' - cos(t — to) Z1(¢)
Veranschaulichung:
Die rechte Seite der Differentialgleichung beschreibt ein Vektorfeld

e () ()
T2 I

das man durch einen Vektor a(}?) in jedem Punkt (i;) skizzieren kann. Die

Losung x(t) = (Cos(t))) beschreibt eine Kurve im R?, zu der das Vektorfeld in

sin(t
jedem Punkt tangential ist.

14 / ..... /
0t l ....... |
14 \ ...... \
Y IR G

Lemma 3.3 Jede gewdhnliche, explizite Differentialgleichung der Ordnung k kann
in eine dquivalente Differentialgleichung erster Ordnung transformiert werden.

Beweis: Sei
y® @) =gt y®t),...,.y*" V@), tel

mit einer gesuchten, k-mal differenzierbaren Funktion y : I — R? gegeben. Defi-
niere x; : [ — R? durch

z;(t) ==y (t) fiir j=0,...,k—1.
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Dann gilt:
2(t) =y (8) =y (8) = a0 (t) Fiir j = 0,... K —2
und

2 (1) = y* V() = yW () = gt y(t), ..., y* V(1) = g(t, mo(t), ..., apa(2)),

also erhilt man das System

R 5 2/ (t) : Flt, ()
), _o(t) = w1 (t)
\x;c—l(t) =g(t,wo(t),..., vp-1(t)),)

in dem nur Ableitungen der Ordnung 1 vorkommen. Sei nun eine Lésung dieses
Systems gegeben durch eine differenzierbare Funktionen x; mit j =0,...,k — 1.
Dann ist

y(t) = wo(t)
k-mal differenzierbar, da
Yy (t) = a;(t) fiir j =0,... .k —1

gilt und alle z; mindestens einmal differenzierbar sind. Weiterhin gilt:

y (1) = y* V() = ahy (8) = gt 2o(t), - i (8) = gLy (1), y"I(1).

QED

Die Losung einer Differentialgleichung ist im Allgemeinen nicht eindeutig be-
stimmt. In dem Beispiel auf Seite 59 hatten wir zum Beispiel zwei Parameter C'
und tg zu wahlen. Um die Eindeutigkeit zu erhalten, miissen die freien Variablen
durch zusétzliche Bedingungen festgelegt werden.

Notation 3.4 Ein Anfangswertproblem (AWP) einer gewohnlichen Diffe-
rentialgleichung erster Ordnung ist gegeben durch

Z'(t) = f(t,z(t)), x(to) = 0. (AWP)

Ein Randwertproblem einer gewdhnlichen Differentialgleichung zweiter Ord-
nung ist gegeben durch

2'(t) = f(t,z(t),2'(t)), wz(a)=r. x(b)=m.

Dabei sind g, 74,7, € RY.
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Bemerkung: Die Gleichung z(t) = o besteht aus d Bedingungen, sie legt also d
Parameter fest (falls sie eindeutig losbar ist).

Bemerkung: Die numerische Behandlung von Randwertproblemen und Anfangs-
wertproblemen ist unterschiedlich. In dieser Vorlesung befassen wir uns mit An-
fangswertproblemen.

Wir kommen noch einmal auf autonome Differentialgleichungen zuriick.

Lemma 3.5 Seiz: I — R? eine Lisung einer autonomen Differentialgleichung
' (t) = f(x(t)). Dann ist

y:]—>Rd,t»—>x(t—to)
auch eine Losung der Differentialgleichung und zwar fir alle ty € R.

Beweis:
y'(t) =2'(t —to) = f(z(t —t0)) = fy(?))
QED

Bemerkung: Im Beispiel auf Seite 59 haben wir die Aussage genutzt, um Losun-
gen zu erzeugen.

Bemerkung: Oft beschreibt der Parameter ¢ die Zeit. Die Aussage des Lemmas
lautet dann: Die Losung einer autonomen Differentialgleichung ist invariant ge-
geniiber Zeittransformationen.

Lemma 3.6 Jedes Anfangswertproblem der Form x'(t) = f(t,z(t)), z(ty) = xo
lasst sich in ein dquivalentes, autonomes Anfangswertproblem transformieren.

Beweis: Definiere s(t) := ¢ und y(t) = (ig))) Betrachte das autonome System

70 = (o) = (o) v90=Cn) = () ©2

e Sei z eine Losung von 2/(t) = f(t,z(t)), z(tg) = xo. Mit s(t) := t erhalten

vt = (ccg) - (f(t,i’(t))) - (f<s<t>1,x<t>>) - (f<y1<t>>)’

also eine Losung von (3.2).

e Sei nun y(t) = (ig?)) eine Losung von (3.2). Dann gilt:

s'(t) = 1, setze also s(t) = t.
Damit ist
2'(t) = fy(®) = f(s(t), z(t) = f(t, 2(1))
eine Losung von 2/(t) = f(t, x(t)).

Den Ubergang eines Anfangswertproblemes zu (3.2) nennt man auch Autono-
misierung des Anfangswertproblemes.
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Zwei praktische Anwendungen
Bewegung eines Massepunktes. Die Bewegung eines Massepunktes zur Zeit
t am Ort x kann durch die Differentialgleichung 2. Ordnung

m-x"(t) = g(t, x)

beschrieben werden. Die Funktion g beschreibt dabei die Wirkung duferer Krifte,
z.B. erhélt man bei einer einseitig gespannten Feder g(t,x) = —kz, wobei k die
Federkonstante bezeichnet. Weiterhin ist meist der Anfangspunkt xy = z(¢y) und
die Anfangsgeschwindigkeit z(, = 2/(to) vorgegeben.

Das System kann in das folgende dquivalente System 1. Ordnung verwandelt
werden:

mit Anfangsbedingungen

l‘l(to) = Xy, ZL‘Q(to) = 1‘6

Dieses System von Differentialgleichungen ist erster Ordnung, linear und auto-
nom. Die Losung ist gegeben durch

z(t) = x1(t) = x¢cos (@ t) + 2fy sin (@ t)
2'(t) = (1)
Volterra-Lottka Zyklus. Betrachte ein 6kologisches System mit zwei Arten,

bei denen die eine Art der anderen als Nahrung dient. Entsprechend bezeichnen
wir sie als “Jager” und “Beute”. Sei

xy(t) = die Groke der Jéger-Population zur Zeit ¢ und
xp(t) = die Groke der Beute-Population zur Zeit t.

Die Wachstumsrate der Populationen ergibt sich aus der Differenz der Gebur-
tenrate und der Sterberate. Dabei nehmen wir an, dass fiir die Beute-Population
geniigend Nahrung vorhanden sei, so dass sie sich (im ungestorten Fall) expo-
nentiell vermehren wiirde, die Geburtenrate also konstant ist. Mit geeigneten
Parametern a, 3 > 0 ergibt sich dann

2p(t) = awp(t) — Bap()e, (2).

Die Gleichung kann wie folgt interpretiert werden:

64



e das ungestorte eigene Wachstum der Beute-Population resultiert aus ei-
nem exponentiellen Wachstum zp = e** und ist daher durch z%3 = axp
beschrieben.

e die Anzahl der durch Jagd gestorbenen Beutetiere ist proportional zur Rate,
mit der sich Jiger und Beute treffen, auf einem begrenzten Gebiet also
proportional zu xg und proportional zu x .

Fiir die Jager-Population ergibt sich
2y (t) =y () xp(t) — dz,4(t),

ebenfalls mit geeigneten Parametern ~, 0 > 0. Die Interpretation dieser Gleichung
ist wie folgt:

e Die Jiager-Population wéchst exponentiell mit Rate v und proportional zur
Beute-Population z g,

e die natiirliche Sterberate ist (bei exponentiellem Wachstum) 2/, = —dz .

Die Losung dieses Systems von Differentialgleichungen fiihrt zu periodischen Lo-
sungen, die man auch Volterra-Lottka-Zyklen nennt. Bilder dazu finden sich z.B.
in der Wikipedia.

Wir beenden diesen einfiihrenden Abschnitt mit einer letzten Notation.

Notation 3.7 FEin System von Differentialgleichungen heif$it linear, falls

' (t) = f(t,z) == A(t)x + g(t)

gilt, wobei g : I — R? eine stetige Funktion ist und A = (ai;)ij=1...a eine d X d-
Matriz mit stetigen Eintragen a;; : I — R.

Von den beiden oben beschriebenen Anwendungsbeispielen ist das erste linear,
das Volterra-Lottka-System aber nichtlinear.

3.2 Existenz und Eindeutigkeit

In diesem Abschnitt wollen wir die Existenz und die Eindeutigkeit von Losungen
fiir Anfangswertprobleme der Form

2(t) = f(t,z(t))

l‘(to) = X

untersuchen. Wir zeigen zunéchst zwei Beispiele.
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e Das erste Beispiel zeigt, dass die Losung im Allgemeinen nicht eindeutig
sein muss. Sei folgendes Anfangswertproblem

(1) = |x@)"
z(0) = 0

fiir einen Parameter a € (0,1) gegeben. Die Differentialgleichung hat die
folgenden beiden Lésungen Z und x:

z(t) = 0

o) = (1 —a)t)T== f?rtZO
0 fiirt <0

Fiir z sieht man das direkt, fiir die zweite Losung x rechnet man nach:

0,
— 2'(t) = |x(t)|* fiir t > 0 und 2/(¢) =0 fiir t <0,

|

8
—
(=)
N~—

I

— und z(0) = 2/(0) = 0, also ist x stetig und differenzierbar.

e Das zweite Beispiel zeigt, dass keine Losung auf ganz I existieren muss:
Betrachten wir

Yt = (o)
z(0) = L

1

Die Losung z(t) = — ;=

ist nur fiir ¢ # 1 definiert und kann wegen

151'11 z(t) = o0

nicht als stetige Funktion fiir ¢ > 1 fortgesetzt werden. Tatsédchlich existiert
in diesem Fall keine Losung des Anfangswertproblemes fiir alle ¢ > 0. Der
Effekt wird auch “blow up” genannt.

Um die Frage nach Existenz und Eindeutigkeit von Losungen fiir Anfangswert-
probleme zu beantworten, formulieren wir (AWP) zu einer so genannten Integral-
gleichung um.

Lemma 3.8 Sei D C R offen, f: D — R? stetig, a <ty < b und z : [a,b] —
R? eine Funktion. Fs gelte

{(t,z(t)) : t € [a,b]} C D.
Dann sind die folgenden Aussagen dquivalent:
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1. x st stetig differenzierbar und lost das (AWP)

() = f(t,z(t)), t € la,b]
z(ty) = g

2. x ist stetig und erfillt die Integralgleichung
t
x(t) = o +/ f(r,x(1))dr, t€ [a,bl. (3.3)
to

Beweis: 1 = 2: Sei 2/(t) = f(t,x(t)), z(ty) = zo eine Losung des Anfangswert-
problemes. Nach dem Hauptsatz der Differential- und Integralrechnung gilt
dann

z(t) = x(t0)+/ 2 (7)dr

to

R /t: (7 a(r)dr.

2 = 1: Sei nun z(t) = xo + ftl; f(r,z(7))dr. Da f und x beide stetig sind, ist

fti f(r,z(7))dr stetig nach t differenzierbar. Also ist x stetig differenzierbar
und die Ableitung von x ist gegeben durch

o) =5 | frate)ar = fe.a(0)

0

nach dem Hauptsatz der Differential- und Integralrechnung. Weiter gilt:

x(to) = zo + /t ' f(r,z(7))dr =

QFD

Wozu hilft uns dieses Lemma? Der Vorteil liegt darin, dass wir durch die Inte-
gralgleichung eine Fixpunktgleichung in der unbekannten Funktion z gefunden
haben. Diese sieht wie folgt aus:

Wir definieren den Operator F, den wir auf z : I — R¢ anwenden wollen durch

(F(x))(t) ==z +/t f(r,z(7))dr.
Dann kann man die Integralgleichung (3.3) schreiben als
w(t) = (F(x))(t)
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oder, kiirzer, als
x = F(x).

Unsere gesuchte Losung x kann also als die Losung einer Fixpunktgleichung in
einem unendlich dimensionalen Raum aufgefasst werden. Wir wollen darauf nun
den Banach’schen Fixpunktsatz anwenden. Dieser wurde in Numerik I behan-
delt. Zur Wiederholung erinnern wir daran, dass jeder vollstidndige und normierte
Raum ein Banach-Raum ist, und dass fiir eine Teilmenge U eines Banachrau-
mes X eine Abbildung ® : U — X kontrahierend ist, falls es einen reellen
Kontraktionsfaktor ¢ < 1 so gibt, dass

[P(x) = (y)l| < gllz -yl fiir alle 2,y € U.

Der Banach’sche Fixpunktsatz lautet wie folgt:

Satz 3.9 (Banach’scher Fixpunktsatz) Sei X ein Banach-Raum mit Norm
| - |l und U C X eine abgeschlossene Teilmenge von X. Sei weiterhin F : U —
U eine kontrahierende Abbildung mit Kontraktionsfaktor ¢ < 1. Dann hat die
Fizpunktgleichung F(x) = = einen eindeutigen Fizpunkt x*.

Fiir den Beweis verweisen wir auf die Vorlesung Numerik I.
Im Folgenden bezeichne ||-||; die Euklidische Norm. Wir erinnern an die folgende
Bezeichnung.

Notation 3.10

o Sei f: D — RY D C R f ist Lipschitzstetig beziiglich seiner
letzten d Variablen, falls zu jedem (to,x¢) € D eine Umgebung U =
Ulto, o) € D und eine Konstante L = L(to, xo) so ezistiert, dass

1f () = [t )2 < Lllw = yll2 fiir alle (¢, ), (t,y) € U.

e Sei f : D — R D =1xR? f ist global Lipschitzstetig beziiglich
seine letzten d Variablen, falls es eine Konstante L > 0 so gibt, dass

1f(t,z) — f(t, )l < Ll — yl|o fiir allet € I und 2,y € R%

Damit formulieren wir nun das Hauptergebnis dieses Abschnitts.

Satz 3.11 (Satz von Picard-Lindelsf) Sei D C R offen und sei f : D —
R? stetig und beziiglich der letzten d Variablen Lipschitzstetig. Dann existiert zu
jedem (to,zo) € D eine Umgebung I von ty, auf der das Anfangswertproblem

w(t) = f(t,x(t), =(to) = o

eindeutig losbar ist.
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Bemerkung: Der Satz liefert nur die lokale Existenz von Losungen, also auf klei-
nen Intervallen fiir ¢ um .

Beweis: Seien (to,70) € D gegeben. Weil f Lipschitzstetig ist, existiert U :=
Ulty,z0) € D und L = L(tg, zg) so, dass

Hf<t7 .’IZ‘) - f<t7 y)H2 < L”SL’ - yH27 fiir alle (t,l’), <t7 y) ev.
Wir wéhlen nun «, 3 > 0 so, dass fiir
I,={teR: |t -ty <a}=[to— a,ty+ ]
und  Bg={z € R%: ||z — |l < B}

gilt:
Ia X Bﬁ - U

Da f stetig auf der kompakten Menge I, x Bjg ist, existiert

M = t .
L (o)
U
[a X Bﬁ

Wir wihlen o* mit
0<a* < min(%,a),
d.h. o >0, a* < aund a*M < 3. Sei weiterhin
I := [—a" + 1y, a" + 1.
Wir wollen den Banach’schen Fixpunktsatz anwenden und wéahlen dazu

e als Banachraum: X := C(I*,R?) als Menge der stetigen Funktionen von I*
nach R,

e als Norm
||| 5 := sup e 20l () |5, fiir alle z € X,
tel*

e als Teilmenge U den Unterraum

U:={z e X :suplz(t) — x| < 5}

tel*
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e und als Abbildung F' : U — X, x + F(x) den vorhin schon genannten
Operator F', der durch

(F(x))(t) := x0 +/t f(r,z(r))dr

definiert ist.
Jetzt iiberpriifen wir die Voraussetzungen des Banachschen Fixpunktsatzes.

1) X ist Vektorraum. Es ist leicht zu zeigen, dass || - || Norm auf X ist. Dass
X vollstindig ist, kann man mit Methoden der Analysis nachrechnen.

2) U ist abgeschlossen. Sei dazu (z,) mit =, € U eine Folge, die beziiglich
|| - |5 (gleichmiRig) gegen = € X konvergiert.

Wir wollen zeigen, dass «x € U. Dazu berechnen wir:
l(t) = zoll2 = || lim 2,(t) — 2olla = lim [l (2) — 2oll2,
n—oo n—oo
denn die Normfunktion ist stetig. Weil x,,, zo € U ist, gilt weiter

||xn (t) — xol|2 < [ fiir alle t € I* und alle n € N,

also
|z (t) — zol|2 = lim ||z, (t) — zollo < B fiir alle t € I™.
TL*)OO%/_/
<B Vn
Es folgt: x € U.

3) Sei F': U — U, sei x € U. Dann ist F(z) € X. Wir wollen zeigen, dass
F(x) e U, d.h.
sup | (F(@)) () — 2ol < 3

tel*

und berechnen dazu:

(3.4)

AN
T~
|
~
o
+
{E
m &
=
=
IS
=

fiir alle t € I*.

~—~
titoel* ef. Def.
von o

VAN
Q*
gY
S i (_Ex
IA
sy

In Abschitzung (3.4) darf man iiber der Menge ¢ € I*, ¥ € By maximieren,
weil

e mit ¢,{y € I* das ganze Intervall zwischen ¢ und ¢* in I* liegt, und weil
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e aus x € U folgt, dass ||z(7) — zo||2 < [ und entsprechend {z(7)

[to, t]} C Bg.
Also folgt: F(z) € U.
4) F ist Kontraktion. Wéhle z,y € U und betrachte

e 20l (F(2))(8) = (F () ()2

Der Ubersicht halber betrachten wir zunichst nur:

(E') (O]l

[(F@))(t) -
_ ] | o) = s (ear

2

< sign(t — to) / V(. 2(r) — £(ry(r) e dr
< Lsign(t = t0) [ [lo(r) = (7)o

t
< Lsign(t —ty) | 27l 27 lja(r) — y(r) g dr

t VT
0 <llz—yl 5
t
< Lsign(t — to)/ el oldr ||z — y||
to

. I——
< Ls1gn(t—t0)[ﬁe2“ to'} |z —yllB
to

1
= Lsign(t — tO)i sign(t — o) (2"l — D)z -yl
1
~ (e~ Dle =yl

Dieses setzen wir jetzt in (3.5) ein und erhalten

e Pl (F (2))(8) — (F() (@)]l2

T E

<o yuB(l —\e%'“o',) < Lz =y,

>0

—_——
<1

also gilt
1) = F)lls = sup e I(E@) @) — (E@) D]
< 3lle = olls
d.h. F' ist Kontraktion mit ¢ = %
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Somit sind alle Voraussetzungen des Banachschen Fixpunktsatzes erfiillt und wir
erhalten:
x = F(x) besitzt eine eindeutige Losung in U.

Abschliefsend miissen wir noch ausschliefen, dass F' noch einen weiteren Fixpunkt
y € X mit {(¢t,y(t)) : t € I*} C D besitzt, der nicht in U liegt. Dazu ersetzen wir
im vorhergehenden Beweis 3 durch /2 und erhalten wie unter Punkt 2):

2(t) — zolls < g fiir [t — to| < & == min(%,a).

Sei weiterhin unser ,neues“ U

U={reX: swp |at)—ul<p/2}.

t:|t—to| <&

Angenommen, so ein Fixpunkt y € X \ U existiert und 1dst damit (AWP). Wegen
y(to) = o gibt es o mit 0 < o™ < & und

ly(t) — zo|] < G fiir |t — to] < ™.

sowie z(t) # y(t) fiir mindestens ein tp mit |[ta — to| < o Weil ||z(t) — x| <
B/2 < g fir alle |t — to| < &,

[#(t) — zoll2 < B/2< 0

(8) = o]l < 3

to—a \M/ to+ @

HtA . {L‘(tA) 7é y(tA)

gibe es aber auf I'** := [—a™ + ¢y, o™ + 1] zwei verschiedene Losungen z, y der
Fixpunktgleichung, die beide in

U™ ={x e X :sup |z(t) — xoll2 < B}

liegen, was nach dem Banachschen Fixpunktsatz nicht sein kann. QED

Die globale Existenz einer Losung liefert der folgende Satz:

Satz 3.12 Sei I C R ein Intervall, sei D = I x R? und sei f : D — R? beziiglich
der letzten d Variablen global Lipschitzstetig. Dann besitzt das Anfangswertpro-
blem 2'(t) = f(t,x(t)), z(to) = xo fir alle (to, o) € D eine eindeutige Lisung
x: I — RY
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Beweis: Im Beweis des Satzes von Picard-Lindelof setzen wir I, = I, = I und
wihlen als Teilmenge U den ganzen Banachraum, also U = X. Die Konstanten
a,a*, B, M werden nun nicht mehr benétigt. Die Details werden hier nicht aus-

gefiihrt. QED

Beispiel: Wir untersuchen die Voraussetzungen der Sétze 3.11 und 3.12 am zwei-
ten Beispiel auf Seite 65,

P(t) = (2(t)
z(0) = 1.
Wir erhalten f(¢,z) = 2* und entsprechend
1f(t2) = ft )l = |2* = y*| = e+ yl- |z —y| < L- |z — y| fiir alle 2,y € T

falls
L > |z +y| fir alle z,y € [

gilt.

Das ist auf jedem beschrénkten Intervall erfiillt, nicht aber auf I = [0, 00) oder auf
I = R. Das Anfangswertproblem erfiillt daher die Voraussetzungen von Satz 3.11,
aber nicht die von Satz 3.12, was zu dem so genannten “blow up” Effekt fiihrt.

Unter den Voraussetzungen von Satz 3.12 kann dieser “blow up” Effekt nicht
auftreten.

Bemerkung: Fiir lineare Differentialgleichungen
2'(t) = A(t)x(t) + g(t)

mit ¢t € [ und f(t,z) = A(t)x + g(t) erhilt man

1f(t2) = ft )l = [[AW)z +9(t) = Al)y = 9(1)]2
= A =yl < [AD)[l2llz = yll2
< Lz =yl

falls L := sup,; [|A(t)]]2 < oo.
Die Voraussetzungen von Satz 3.12 sind fiir lineare Differentialgleichungen also
erfiillt, falls

sup ||A(t)]|2 < oo.
tel

Das gilt insbesondere auf jedem kompakten Intervall 1.
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Der Banach’sche Fixpunktsatz liefert nicht nur theoretische Aussagen iiber Exis-
tenz und Eindeutigkeit, sondern mit dem Verfahren der sukzessiven Approxi-
mation auch ein konvergentes Verfahren zur Bestimmung des Fixpunktes. Dieses
Verfahren lésst durch folgenden Iterationsschritt (so genannte Picard-Iterationen)
auf Anfangswertprobleme anwenden:

2™ (t) = 2™ (1) + / f(r,a™(r))dr

Als Startwert kann man z.B. (O (t) := x, wihlen — das resultierende Verfahren
ist allerdings durch die dazu n6tige numerische Auswertung der zahlreich auftre-
tenden Integrale ineffizient und wird in der Praxis fast nicht verwendet.

Satz 3.13 (Globale Eindeutigeit) Sind die Voraussetzungen von Satz 3.11 er-
fillt und sind x und y Losungen des (AWP)

2(t) = f(t,z(t))

l‘(to) = X9-
auf einem beliebigen Intervall I mit to € I, so gilt x(t) = y(t) fur allet € I.

Beweis: Sei I = [a,b], ty € I und seien x und y Losungen des (AWP). Wihle
I' C I als das langste Intervall mit z(t) = y(¢) fir alle t € I'.

Wir méchten zeigen, dass [ = I,

Angenommen, dies ist gilt nicht, dann sei I’ = [¢/,b'] C I. Dann ist ohne Be-
schriinkung der Allgemeinheit &’ < b. Wir betrachten das neue (AWP’)

() = [t (1))
z(t)) = ().

Nach Satz 3.11 existiert eine Umgebung U = (V' — o,V + ) mit a > 0 auf der
(AWP’) eindeutig losbar ist. Weil z und y beides Losungen fiir (AWP’) sind, folgt
also x(t) = y(t) fiir alle t € U. Das ist ein Widerspruch zur Maximalitit von I’.

QED

Abschliefsend geben wir noch ein Kriterium an, anhand dessen man die geforderte

Lipschitz-Bedingung von Satz 3.11 nachweisen kann.

Lemma 3.14 Ist f : [ x R? — R? beziiglich x stetig partiell differenzierbar, so
erfillt f die Lipschitz-Bedingung des Satzes 8.11 fiir alle (tg, z9) € I x R .

Beweis: (Vergleiche auch den Beweis von Lemma 5.7 aus Numerik I).
Weil f beziiglich x stetig partiell differenzierbar ist, existiert der Gradient

D f(t,z) : R x R" — (R%)*
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und es gilt L := sup; ;)eot,20) | P f (¢, )2 < 00, wenn die Umgebung U kom-
pakt gewiihlt wird. Wihlt man U zusitzlich konvex, so kann man mittels

9(&) == ft,x +&(y — x))

folgern, dass

1F(ty) = Ft D)l = M@%—M&Mz”lsﬂﬂw

multivariate Kettenregel
2

lél%ﬂur+7@—xﬁ-@—xwf

1
< [ IDaptt s+ oy = 2)la Ny - oladr
0

1
< / wy—me:uw—ﬂu
0

QED

Die Aussage von Satz 3.11 nutzen wir nun, um die Evolution zu definieren.

Definition 3.15 Sei D C R offen, f : D — R? stetig und Lipschitzstetig
beziiglich der letzten d Variablen. Seien to,t € I und |t — to| hinreichend klein.
Dann definiert man eine zweiparametrige Funktion

o4 R — RY

durch ®%0(xg) = x(t), wobei x(t) die eindeutige (lokale) Losung des Anfangs-
wertproblemes

Z(t) = [t x(t))
l‘(to) = X

ist. Man nennt ® die Evolution der Differentialgleichung '(t) = f(t, x(t)).

dh0 bildet den Wert der Losung x zur Zeit ty auf den Wert der gleichen Losung
zur Zeit t ab.

Beispiel: Betrachte z/(t) = (z(t))?, also f(t,z) = 2% Dann ist die eindeutige
(lokale) Losung zu (tg, zo) mit ty = 0, xg > 0 gegeben durch

x(t)

Fiir die Evolution gilt entsprechend im Fall ¢ > 0

Zo

. 1
= , flirt < —.
1-— tﬂ?o Zo

Zo .. 1
B (29 = f =
(x0) [ iir wp < -
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Lemma 3.16 Die Fvolution ® der Differentialgleichung ©'(t) = f(t, z(t)) besitzt
die folgenden Figenschaften:

(Evl) @b (z)
(Ev2) %‘bt”t(fb’o)h —o = [f(t,%o)
(Ev3) ™% (zg) = d™21 (M0 (z0))

fiir alle (to, xo) € D und |ty — tol, |ta — to| und |t — to| hinreichend klein.
Weiter ist ® durch diese drei Bedingungen eindeutig charakterisiert.

Beweis: (Ev1) gilt weil &0 (z4) = z(ty) = zo.

(Ev2) Seien xg, t fest. Sei « die Losung des Anfangswertproblemes zum Startwert
(t,z0). Definiere
g(7) == ® 7 (2g) = 2(t + 7).

Dann gilt
gt ag) = ' (r) = /(14 7) = J{t+7,0(0+7)
— Lt ) = ¢(0) = (. 2(t)) = F(t, o)

or

(Ev3) Sei x Losung von

2'(t) = [t x(t))
l‘(to) = Xy,

das heift ®H' (o) = x(¢) fiir alle ¢t nahe genug an ty. Damit gilt:

B (@0 () = B0 (a(n)
= a(ty) = D0 (ay),

wobei die vorletzte Gleichheit gilt, weil fiir ¢, — ¢y hinreichend klein = auch
Losung ist von dem Anfangswertproblem

y'(t) = [f(t,yt)
y(t) = wz(t).

(Eindeutigkeit) Sei U : R? — R? eine Funktion, die ebenfalls die drei Be-
dingungen (Ev1),(Ev2) und (Ev3) erfiillt. Sei (¢, x¢) beliebig. Definiere

2(t) == Uh ().
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Dann gilt

0
d'(t) = E‘I’Hmo (wo)|7=0

= ((% (\I,t+7,t (\I,t,to (;1:0))) |-—0 wegen (Ev3)

= f(t, U""(z9)) wegen (Ev2)
= [t =(t))
und wegen (Evl) ist auferdem z(ty) = W' (xy) = xy. Also ist nach

Satz 3.11
x(t) = ©"(xo)

die eindeutige (lokale) Losung des Anfangswertproblemes
2(t) = St ()
I(to) = X,

und entsprechend gilt Wh(xy) = db () fiir alle (tg, x9) € D und alle ¢
mit |t — o] hinreichend klein. QED

Abschliefsend fiihren wir noch den Begriff der Stabilitit ein. Dieser gibt an, wie
stark sich zwei Losungen x(t) und y(¢) derselben Differentialgleichung unterschei-
den, wenn die Anfangswerte x(ty) und y(fp) nur wenig voneinander abweichen.
Dabei interessieren wir uns fiir die Zukunft, d.h. nur fiir Werte ¢ > t,.

Definition 3.17 Sei D C R?, t, € R. Die Funktion f : [ty, 0] X D erfiillt eine
einseitige Lipschitz-Bedingung mit Konstante L™ = LT (t) € R, falls

(@ =) (f(t.2) = f(ty)) < LT|lw —yl; Vo,yeD

und fir alle t € [ty,o0]. Kann LT < 0 gewdhlt werden, so nennt man [ und die
zugehdrige Differentialgleichung ' = f(t, x) dissipativ.

Bemerkung: Aus globaler Lipschitzstetigkeit fiir ¢ > ¢, folgt die einseitige Lipschitz-
Bedingung.

Dieses zeigen wir im Folgenden.
Sei ||f(t,z) — f(t,y)|| < L - ||z —y| fiir alle z,y € D und alle t > ;. Dann gilt
nach der Cauchy-Schwarzschen Ungleichung:

(@ =) (f(t.2) = f(t,y)) < llv —yll2- [1F (8, 2) = [t y)ll2

< L"-|jz —y||3 mit LT = L.
Die Umkehrung gilt aber nicht, wie das folgende Beispiel zeigt.

7



Beispiel: f(t,z) = —uz erfiillt die einseitige Lipschitz-Bedingung mit LT = —1,
denn

(@ —y)(ft.2) = f(t.y) = (@ —y)y—2) = —(z —y)* =~z —yll2.
Dagegen ergibt die globale Lipschitz-Bedingung
[f(tx) = fty)l=ly—ax[ <Ly -zl

gilt also nur fiir L > 1.

Satz 3.18 Erfiillt f : [0,00] x D — R? eine einseitige Lipschitz-Bedingung mit
Konstante L, so gilt fiir die Evolution ® von 2/ = f(t,x):

19510 (9) — ®4 (go)[l2 < € lzg = yio|>-
Fiir dissipative Systeme gilt insbesondere, dass

|94 (20) — @ (yo) |2 < [|0 — ol

Beweis: siche Ubungen.

3.3 Einschritt-Verfahren

3.3.1 Grundlagen

Obwohl eine Losung bei stetigen Eingangsdaten immer existiert, ist sie im Allge-
meinen selbst bei skalaren Differentialgleichungen mit d = 1 nicht in geschlossener
Form darstellbar. Meist ist f auch nur durch Messwerte gegeben.

Die Grundidee der numerischen Losung von Anfangswertproblemen ist, die Lo-
sung x naherungsweise an diskreten Punkten zu ermitteln:

gesucht werden Ndherungswerte an den gesuchten Vektor x(t) fiir ¢ €
A = {to,t1,...,ty} mit tg < t; < ... < ty = T auf dem Intervall
[to, T'.

Notation 3.19 A = {to,tl, . .,tN} mittg <t < ... <ty = T hezﬁt Gitter
auf [to, T]. Die Werte T; := t;11 — t; nennt man Schrittweiten. Die Feinheit
des Gitters ist gegeben durch



Gesucht ist dann eine Gitterfunktion z : A — R? welche die Losung von
() = f(t,z(t)), 2'(to) = x¢ auf dem Gitter moglichst gut approximiert.

Bei Einschritt-Verfahren ermittelt man x o durch eine Zwei-Term-Rekursion:
ra(tj) = zaltjp),

das heifst in die Berechnung von xa(;+1) geht nur za(t;) ein, keine Werte von
t; mit ¢ < j. Dagegen gehen bei Mehr-Term-Rekursionen mehrere Werte in die
Berechnung von x(¢;11) mit ein, genauer fiir m € N:

{L‘A(tj), e ,l‘A(t]’_m) — xA(tj—f—l)-

Diese Rekursionen fiihren zu Mehrschritt-Verfahren.

Im Folgenden wird die Evolution ® der Differentialgleichung durch eine diskrete
Evolution ¥ ersetzt.

korrekte Evolution: Approximation durch diskrete Evolution:
2(tjr1) = DY (a(ty)) Ta(tj1) = U5 (2a(t)))
x(to) = xo xza(to) := xo

3.3.2 Beispiele

Um Einschritt-Verfahren herzuleiten benutzt man die Integraldarstellung des An-
fangswertproblems aus Lemma 3.8:

x(to+7) =x0 + /tHT [t z(t))dt. (3.6)

to

Explizites Euler-Verfahren

Seien zunéchst
t]’ = to +j T

dquidistante Gitterpunkte. Man approximiert z(¢;) aus (3.6) nun iterativ wie
folgt:

2(ty) = alto +7) = w0 + / " alt) )it

to
unbekannt

Um das Integral abzuschiitzen, verwendet man die Rechteck-Regel mit Funkti-
onsauswertung am linken Randpunkt und erhilt:

to+7
/ f(t,z(t))dt =~ 7 - f(to, x0).

to
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Das ergibt
x(ty) = xo + 7 - f(to, x0)

bzw. fiir unsere Approximationsfunktion
I‘A(tl) = 29 +7- f(to,l‘o).
Diese Formel ergibt sich alternativ auch aus dem Differenzenquotienten durch

altorn)=elto) o o/ (40) = f(to, zo).

T

Ist nun z(¢;) approximativ bekannt, erhélt man

x(tz) = x(t1) + /t 1 Tf(t,x(t))dt

~ I‘A(tl) +7- f(tl, ZL‘A(tl)) = I‘A(tg)
und rekursiv
Ta(tjt) = zalty) + 7 [t zally)).
Die diskrete Evolution ergibt sich entsprechend zu

\Ilg—rgﬁler<x) =T +T- f<t7 .’L’)

Etwas allgemeiner ist es mit 7; := t;,1 — t; nicht mehr nétig, dquidistante Stiitz-
stellen zu verwenden. Man erhalt

b1t
a(tjz1) = Vo (@alty)) == zalty) + 75 - f(t;, 2a(t;)).
Interpretation:

Um den Wert za(tj41) an t;1; zu bestimmen, verwendet man den
Wert in xa(t;)+7;-2'(t;, xa(t;)), also den Startwert und die Steigung
an dem Ausgangspunkt (¢, za(t;)).

Im skalaren Fall nennt man das explizite Euler-Verfahren daher auch Polygonzug-
Verfahren.

{L‘A(tg) 1

to t1 1o t3
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Beispiel: Sei folgendes Problem gegeben:

2(t) = (x(1))”

z(0) =1
ft, ) = a?
A={0,413

Dann erhilt man

I‘A(tl):l‘0+% f(O,l‘o) :1+% 1:%
wa(ts) =xa(t) + 5 f(toa(t) =5 +5-1=5+5=% =2,625
2
wa(ts) = xa(te) + 5 - [t 2a(t2) = £ +5- () = 6,07
6__
51 Die Steigung an t; ist (%)2 =2,25
4_.
31 Die Steigung an #g ist 1
(tanQ)
2_.
— (t1,21)
/]
/ 1132 3 4 5 6 7

Implizites Euler-Verfahren

Das implizite Euler-Verfahren entsteht, wenn man das Integral durch die
Rechteck-Regel am rechten Randpunkt approximiert:

ti+T7;
| Hstendt = - gt 4 et )
tj
Man erhalt:
tiv1ts
2a(tj+1) = Vipa (@a(ty) = 2aly) +75 - f(ti, maltjo))-

—— ——

bekannt unbekannt
Um za(tj11) zu bestimmen, muss also ein (nichtlineares) Gleichungssystem mit

d Unbekannten und d Gleichungen gelost werden — und das in jedem Schritt!
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Euler-Heun-Verfahren

Wiahlt man statt der Rechteck-Regel die Trapez-Regel zur Integralauswertung,
so erhélt man die Naherung:

[ x(y) + ft + 75,2 + 75))

ti+T;
/ Pt 2(0))dt ~ ¢, -

. 2
J
und es ergibt sich
tit1,ts T
za(tjr1) = Vilgom(zalty)) = $A(tj)+§j(f(tj,fEA(tj))+f(tj+1,xA(th)). (3.7)
bekannt bekannt
unbekann unbekann

Auch dieses Verfahren ist implizit, weil in jedem Zeitschritt der Vektor xa(¢;11)
aus einem (nichtlinearen) Gleichungssystem ermittelt werden muss. In diesem
Fall kann man dazu das Verfahren der sukzessiven Approximation benutzen:

Lemma 3.20 Die Funktion f(t,x) sei Lipschitzstetig beziiglich x mit Lipschitz-
konstante L. Sei weiter L - 7; < 2 fiir alle j =0,..., N — 1. Dann ldsst sich das
Gleichungssystem (3.7) durch sukzessive Approzimation

P () = aat) + 2 £t malt) + . (0)] om € Ny

losen.

Beweis: Die Fixpunktgleichung lautet x = g(x) mit

g(@) = xa(ty) + £ (L walty) + [ty )]

in jedem Schritt j. Wir miissen nachweisen, dass g eine Kontraktion ist. Es gilt:

lo(x) = 9@lle = S (t51,2) = fltser, Bl < 5 L+l = 2

=q-||lr— 7|2 mitq:%-L<1.

QFD

Pradiktor-Korrektor Variante von Euler-Heun

Hier kombiniert man das explizite Euler-Verfahren und das Euler-Heun Verfahren
mit jeweils einem Iterationsschritt der sukzessiven Approximation nach Lemma
3.20 wie folgt:

Im j-ten Schritt:
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e bestimme den Startwert (Priadiktor) nach E-Euler:
£A<tj+1) = .TA(tj) -+ Tj f(tj, ZIIA(t])> (Pradlktor)

e Wihle Z(t;41) als Startwert fiir die sukzessive Approximation von Euler-
Heun und fiihre darin genau einen Schritt der sukzessiven Approximation
nach Lemma 3.20 aus (Korrektor-Schritt):

2atinn) = Coitony (28 (t3)) = 2at)+ | (b, 2a(t) S (i, Faltin) >}.
N——

aus (Pridiktor)

Das Verfahren erreicht gewdhnlich eine hohere Genauigkeit als das explizite Euler-
Verfahren.

3.3.3 Konsistenz und Eindeutigkeit

Wir untersuchen nun das Konvergenzverhalten von Einschritt-Verfahren theore-
tisch. Dazu fordern wir zunéchst die ersten beiden der drei Eigenschaften einer
Evolution (aus Lemma 3.16) auch fiir die diskrete Evolution W.

Definition 3.21 Fine diskrete Evolution VU heifit konsistent zur Differential-
gleichung «' = f(t,x), falls fir alle (to,x0) € D gilt:

yloto (l’o) = 29 (38)

d
und E\I’m“’to (z0)lr=0 = f(to, o). (3.9)

FEin Einschritt- Verfahren heifit konsistent, falls es jeder hinreichend glatten Funk-
tion [ eine konsistente diskrete Evolution V[f] zuordnet.

Zwei dquivalente Konsistenzkriterien sind die folgenden.

Lemma 3.22 Die diskrete Evolution Wt (x0) sei fir alle (to,z0) € D und
hinreichend kleines T differenzierbar. Dann sind die folgenden Aussagen dquiva-
lent:

(i) W ist konsistent.

(ii) Es gibt eine beziiglich T stetige Verfahrensfunktion ¢ = ¢(to, xo,7) mit den
Eigenschaften:

Photmo(g0) = o+ 7 - ¢(to, 2o, T) (3.10)
Qb(to,ﬂfo,()) = f(to,ﬂfo) (311)
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(i1i) Es gilt:
1
lim = || WF70 (zg) — PFT(2)]| = 0. (3.12)

T—0 T
Beweis:
(1) = (4i): Sei ¥ konsistent. Definiere
L (lotnto(g0) — 2) falls 7 # 0.
¢(t0, o, T) T { f(to, ZII()) falls 7 =0

Dann sind (3.10) und (3.11) direkt erfiillt und es muss nur die Stetigkeit
von ¢ gezeigt werden. Dazu betrachten wir

1 . Wttt () — Yoo ()
lli%; (Wrot™o(2g) — z9) = 112% - wegen (3.8)
= FUPTT0(2g)],—o, wegen (3.9)
= f(t07 xo),

also ist ¢ stetig.

(i1) = (7ii): Sei ¢ eine Verfahrensfunktion, die (3.10) und (3.11) erfiillt. Dann

gilt
1
lim — [[ W70 (279) — @UOFTO () |
7—0 T
~ lim Ptot+7to (xo) — T B (I)to-l-’r,to(x(]) — X0
7—0 T T

= ||p(to, z0,0) — f(to, zo)|| wegen (3.10) und [Ev2| im Lemma 3.16
= 0 wegen (3.11)

(141) = (4): Sei nun (3.12) erfiillt. Eine Taylorentwicklung bis zum Grad 1 liefert
wegen [Ev2|
PFTI0 (20) = o + 7 f(to, w0) + o(7) fiir 7 — 0.

Weiter ist U nach Voraussetzung fiir hinreichend kleines 7 differenzierbar
beziiglich 7. Das ergibt

YFT0 (1) = Wl (3g) 4+ 72 W0 (4|, g + o(7) fiir T — 0.

Fiir 7 — 0 sind die linken Seiten dieser beiden Gleichungen wegen (3.12)
gleich, also auch die rechten Seiten und durch einen Koeffizientenvergleich
folgt zo = W' (zq) und f(t,z0) = ZW*™| _o; (3.8) und (3.9) gelten
also und WV ist konsistent. QED
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Ist eine diskrete Evolution konsistent, so ist der lokale Fehler, den wir in jedem
Schritt bei der Berechnung der Gitterfunktion machen, klein. Interessanter ist
aber der globale Fehler

ma [l (1) — ()]
der moglichst klein sein soll — zumindest wenn das Gitter A fein genug ist.

Notation 3.23 Ein FEinschritt-Verfahren heifit konvergent, falls

lim sup max||za(t) —z(t)]| =0
T=0 Airp=1

Dabei bezeichnet Ta = max;—o.. n—1lj11 —t; wie schon zu Beginn des Abschnit-
tes 3.3.1 die Feinheit des Gitters A = {to,...,tn}.

Der folgende Satz zeigt, dass aus der Konsistenz unter einer zusdtzlichen Sta-
bilitdtsannahme die Konvergenz von Einschritt-Verfahren folgt. Dabei miissen
wir die Konsistenzbedingung allerdings verstirken: Wir verwenden (3.12) und
verlangen, dass die Bedingung gleichméfig erfiillt ist, also fiir alle x(¢) auf der
Losungskurve.

Satz 3.24 Die diskrete Fvolution V sei in einer Umgebung U der Trajektorie
{(t,z(t)) : t € [to, T} definiert und gentiige den folgenden Bedingungen.

Stabilitdtsbedingung: FEs gibt Konstanten Ly > 0 und 79 > 0 so, dass
[ (1) = T (2) || < €721 — |
fir alle (t,x1), (t,22) € U und alle 0 < 7 < 7.

Konsistenzbedingung: FEs gibt eine monoton wachsende Funktion err : [0, 19] —
[0, 00) mit lim, _gerr(T) =0 so, dass

|95 (@(t)) — ¥ (x (1)) < 7 erx(r)
fiir alle t € [0,T7.

Dann gibt es ein 7, € [0,70] so, dass fir jedes Gitter A = {to,...,tn} auf [to, T
mit Feinheit o < 7 die Gitterfunktion xa durch die diskrete Evolution

za(tjn) =V (zaty),  walto) = o

wohldefiniert ist, und der Fehler fir allet € A der Abschditzung

eLw(t—tg) _q
eI‘I‘(TA)i falls Ly >0
t _ t < = L
[za(t) = z(t)]| < r(7a) { err(7a)(t — L%) falls Ly =0

geniigt.
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Der Satz sagt auf abstrakter Ebene, dass Konsistenz und Stabilitit zusammen
Konvergenz ergeben.

Beweis: Wir wiihlen 7; so klein, dass fiir alle ¢ € [0, 7] und fiir alle z; € R? gilt:
|lzy —z()| < r(n) = (t,z1) € U.

Sei A ein beliebiges Gitter mit 74 < 73. Wir mochten nachweisen, dass die Ab-
schitzung

lza(t) — x| < r(7a)

fiir alle tg,t1,...,ty des Gitters A erfiillt ist.

Insbesondere gilt dann ||xa(t) — z(t)|| < (7)), woraus wir wegen der Definition
von 7 folgern, dass (t;,za(t;)) € U. Entsprechend kann man also za(tj41) =
Whittli(zA(t;)) berechnen und za(;) ist wohldefiniert.

Zum Nachweis der Abschitzung verwenden wir Induktion nach j, gehen also der
Reihe nach alle Punkte tg,tq,...,ty des Gitters A durch.

Fiir j = 0 gilt za(ty) = xo = 2(ty), die Abschétzung gilt also wegen r(74) > 0.
Sei nun |[za(t;) — x(t;)|| < r(7a) fiir alle j* < j erfiillt. Wir betrachten ¢;,;.
Dazu unterscheiden wir zwei Fille.

Fall 1: Sei Ly > 0. Dann gilt

|za(tjs1) — 2(tjz)ll
Wi+ (2p (1)) — @+1Y (A (L))
Wil (2 p () — W ((ty)) || + [[5Y (2(t;) — @5+1Y (a(ty)) ]

IAINA

IN

err(7a) (eFwltn=ti) (elwlti=to) — 1) 4 Ly (t;11 — t;)) Induktionsannahme
v

= % (eL‘I’(tj+1_t0) —elwti—ty) | Ly(tj — tj))
W N >4

TV
<-—1, denn e*>a+1

eI‘I‘(TA) (eL\p(tj+1—t0) _ 1) — T(TA)

<
= Le

Fall 2: Sei Ly = 0. Dann geht man vor wie oben, allerdings ergibt die Indukti-
onsvoraussetzung, dass

|za(tjr) —z(ti)ll < err(ra)(t; —to) +err(ta)(tjs1 — t5)

= err(7a)(t31 — to)

QED
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Ein weiterer Begriff ist die Konsistenzordnung, welche hilft, die Konvergenzge-
schwindigkeit eines Einschritt-Verfahrens abzuschitzen.

Definition 3.25

e Fine diskrete Evolution U fir eine Differentialgleichung x'(t) = f(t,z(t)),
f D — RY besitzt die Konsistenzordnung p > 0, falls es fiir jede
kompakte Teilmenge K C D eine Konstante C' > 0 so gibt, dass

H\I,tJrT,t(x) o (I)t+T’t(.r)|’ S C . 7_p+1
fiir alle (t,x) € K und alle hinreichend kleinen T > 0.

o Fin Einschritt-Verfahren besitzt die Konsistenzordnung p > 0, falls fiir jede
rechte Seite f € C°(D,RY) die zugeordnete diskrete Evolution ¥ = W[f]
die Konsistenzordnung p besitzt.

o Fin Einschritt-Verfahren besitzt die Konvergenzordnung p > 0, falls fir
jede Lisung x : [tg, T] — R? eines Anfangswertproblemes mit rechter Seite
f € C=(D,R%) der globale Fehler der durch das Verfahren bestimmten
Liosung xa auf einem Gitter A mit hinreichend kleiner Gitterfeinheit Ta
die Abschdtzung .

max [|za(t) —a(f)|| < - 74"

erfiillt, wobei C nicht von A abhingt.

Lemma 3.26 Besitzt ein Finschritt-Verfahren die Konsistenzordnung p und er-
fiillt es die Stabilititsbedingung aus Satz 3.24, so besitzt es die Konvergenzordnung
p.
Beweis: Sei f € C*(D,R?) beliebig. Weil das Verfahren die Konsistenzordnung
p hat, gilt fiir die diskrete Evolution ¥, dass

|97 @) — B (@) < € 7.

Die Funktion err(r) := C - 7P erfiillt dann wegen lim, o C' - 77 = 0 die Konsis-
tenzbedingung aus Satz 3.24. Wir konnen also Satz 3.24 anwenden und erhalten

eLw(t—tg) _q
err(Ta) - &—————— Ly >0
lea(t) — 2(t)] < r(ra) = { (o) === Lo

err(7a) - (t — to) Ly =0.
Es folgt nun
- % L\I/ >

C-(T—ty) Lg=0
QED

- AP mit C =
ItréaAXHxA(t) z(t)|| < C - 7AP mit C {

Satz 3.27 Die diskrete FEvolution des expliziten Euler-Verfahrens ist fiir stetig
differenzierbare Seiten f konsistent von der Ordnung 1.

Beweis: Ubung.
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3.3.4 Explizite Runge-Kutta-Verfahren
Euler-Verfahren

Approximiere das Integral durch die Rechteckregel, d.h.

/HT f(s, @ (z))ds =~ 1 f(t,z).
! z(s)

Dabei ist der Fehler nach Satz 3.27 von der Groke O(72).

Verfahren von Runge (explizite Mittelpunktregel)

Die Idee ist, dass man eine Quadraturformel héherer Ordnung verwendet, zum
Beispiel die Mittelpunktregel:

/HT f(s, @ (z))ds ~ 7 f(t+ I, di2t(2))

mit einem Fehler von O(7%). Allerdings kennen wir den Wert ®*3(z) nicht. Es
reicht aber, ihn mit einer Genauigkeit von O(7?) auszuwerten, weil er noch mit
7 multipliziert wird. Dazu verwendet man

O (x) =z + T f(t,2)
nach dem Euler-Verfahren mit O(72). Man erhilt
V() =+ f(E+ 5 e+ S f ()
oder, algorithmisch:

ki = f(t,x)
]{ZQ = f(t-'-%,l’-'-%kl)
\I’H_T’t(l’) =x4+T- ]{;2

Dieses Verfahren hat Konsistenzordnung 2.

Runge-Kutta-Verfahren

Seien
i—1
ki:ki(t,l’,T) :f(t‘i‘CiT,fL'—'—Tzaijkj), fiir 1 = 1,...,8

j=1

Uiy =+ 7 Z bik;(t,z,7) =x+71 Z bik;.
P =1
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k; heifst die i-te Stufe des Runge-Kutta-Verfahrens. Man benutzt folgende Nota-
tion:

0 0
asn 0 by c1
A=|as azx 0 , b= : |, c=
: bs Cs
T

Mit der Vereinbarung, dass a,; := 0 fiir 7 > i ist, vereinfachen wir die Summen-
schreibweise. Wir erhalten

k@:f(t—l—CZT,:C—i—TZawk]), ’i:lj.__’sl

Jj=1

Dabei heiftt s die Stufenzahl des Runge-Kutta-Verfahrens und beschreibt die
Tiefe der Schachtelungen von f-Auswertungen. Man gibt ein Verfahren oft durch
folgendes Butcher-Schema an:

c|lA
b
Beispiele:
1. Explizites Euler-Verfahren:
00
1
also
ki=f(t+ar,2+0)
=f(t+0,z+0)= f(t, x)
und

\I’H_T’t(l’) =z +71hki =2+ Tf(t, 37)

2. Verfahren von Runge:

NoI= O

0
1

O~ O

3. ,Klassisches Runge-Kutta-Verfahren der Ordnung 4:

0110
iz Y
310 3 0
1lo 010
T 1T T 1
6 3 3 6

oo
Ne)



Ausfiihrliche Notation:

ki = f(t,x)
ko = f(t+ 37,2 + 37k)
= f(t+ 37,2+ 7ko)
k4 f(t+7' x + Tks)
U (z) = a + T(kk1 + $ho + Sk3 + Ska)

Lemma 3.28 Fin Runge-Kutta-Verfahren (A, b, c) ist genau dann konsistent fir
alle f € C(D,RY), falls

> b=1.

j=1

Beweis: Wir benutzen die beiden Bedingungen (3.10) und (3.11) aus Lemma 3.22

und definieren
o(t,x,7) = Zb k; (t,z,T)

Dann gilt (3.10), denn:

Uiy =+ 1 Z bik;(t,z,T)
j=1
=z +o(t,z,T).

Weiterhin gilt &;(¢, z,0) = f(¢, x) fiir alle j, also

o(t, x,0) Zbkmo F(t,2)> b,

Da die Bedingung (3.11) ¢(¢,x,0) = f(t, x) fordert, ist (3.11) genau dann erfiillt,
wenn >, b; = 1 gilt. QED

Lemma 3.29 Besitzt ein s-stufiges Runge-Kutta-Verfahren fiir alle f € C>(D,R%)
die Konsistenzordnung p, so gilt p < s.

Beweis: Betrachte (AWP)

Die Losung ist
O(1) = "L+ 74 F72 + - L7+ O(rP).

Fiir die Konsistenzordnung wollen wir ®*+7(z) mit U"*™(z) vergleichen — fiir
f(t,z) = x(t) und t = 0, z = 1. Die echte Evolution ® kennen wir schon. Um
auch W™ (z) zu verstehen, betrachten wir die k;.
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Behauptung: £;(0, 1, 7) ist ein Polynom in 7 vom Grad < j—1, also k; € II;_;.
Vollstidndige Induktion iiber j:
o j=1:k(0,1,7) = f(t+ 17, 2) = x € 1y, da konstant in 7.
e j—J+1:
J
kjt1(0,1,7) = f (t +cT, e+ T Z ajlkl)
1=1

J
=x+T Z a;ik; € 11;, da k; € IT;_; nach der Induktionsannahme.
=1

ell;j 1

Also ist ¥™0(1) € TI(s). Damit erhalten wir:

et - @) I<er
T ———
clls

1+T+"'+éTS+O(TS+1)

Folglich kann die Konsistenzordnung héchstens s sein. QED

Bei der Konstruktion vom Runge-Kutta-Verfahren hat man also zunéchst viele
Wahlmoglichkeiten. Wir stellen aber die folgenden Bedingungen an das Verfahren:

1. Invarianz gegen Autonomisierung und
2. Konsistenzordnung p fiir vorgegebenes p.

Diese Bedingungen formulieren wir im Folgenden als Bedingungen an die Ko-
effizienten (A, b,c) des Verfahrens. Wir betrachten zuerst die Invarianz gegen
Autonomisierung.

Seien 2/(t) = f(t,z(t)) ein (AWP) im R¢ und z(to) = zp. Nach Lemma 3.6 lisst
sich das in ein dquivalentes System im R*!, nimlich in

AW 0= (g) 0w ()

umwandeln. Dabei gelten die folgenden Aussagen:
e Ist x Losung von (AWP), so ist (¢, z(¢))? eine Losung von (A/VV\P)

o Ist (s,z)T eine Losung von (A/VV\P), so folgt s(t) =t und z ist Losung von

(AWP).
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Formal lésst sich die Aquivalenz der beiden Anfangswertprobleme durch die Evo-
lution ® von 3 = (1, f(y))* und ® von 2’ = f(t, ) folgendermaRen schreiben:

b7\ _ gt (1
o (z) ) )

Diese Eigenschaft soll dann auch fiir diskrete Evolutionen ¥ und U gelten; sie
soll also gewissermafen vererbt werden. Fiir die Evolution ¥ (bzw. U fiir das
erweiterte System) bedeutet

(\I,f—l—j_,tz—x)) = g (D (3.13)

dass man das gleiche Ergebnis erhilt, egal, ob man ein durch ¥ gegebenes Einschritt-
Verfahren direkt auf die gegebene Differentialgleichung anwendet, oder ob man
das gleiche Verfahren mittels U auf die autonomisierte Differentialgleichung an-
wendet. Man nennt das Verfahren dann invariant gegeniiber Autonomisie-
rung.

Lemma 3.30 FEin explizites Runge-Kutta Verfahren ist genau dann invariant
gegen Autonomisierung, wenn es konsistent ist und es

s
C;, = E aijfﬁrjzl,...,s
j=1

erfillt.

Beweis: Sei 3’ = f(y(t)) die autonomisierte Differentialgleichung mit

7((2) = ()

wobei y(t) — ((xft))) und f autonom ist, also f(t,y(t)) = f(y(t)) gilt. Be-

zeichnen wir nun mit K; = ((1{;))’ 1=1,...,s die Stufen von \i/, so gilt:

7

~ ~

Ki = f(t-'-CiT,y—FTZCLijIA(j),

= f(y+7'Zaw_f(j)
() (1)

1
_ 5 - s 7 1=1,...,8,
( f<t+TZj:1 aijlj,l’+72j:1 k]) )

92



das heikt, {; = 1 und k; = f(t + TY i agl;, o + T i1 agk;) fir i =1,...,s.
Fiir ein Runge-Kutta Verfahren gilt weiter fiir die diskrete Evolution, dass

()= () ez (@) - ((C7E0)

Nach (3.13) ist das Verfahren invariant gegen Autonomisierung genau dann wenn

((280)) = ()

= t+T:t+Tij und WU (z) :x—l—Tijl%j
=1

J=1

= ijzlundx+7’ijk:j:x+Tijl%j
=1 j=1 j=1
< konsistent und k; = k; fiir alle ¢ = 1,...,s.

Letzteres ist genau dann der Fall, wenn

f <t+cz~7,:p+72a,~jk‘j> =f <t+7'zaij,$+7'zaijkj> 5
j=1 j=1 j=1

also genau dann wenn ¢; = > 7, aj;. QED

Gegen Autonomisierung invariante Runge-Kutta Verfahren bezeichnen wir kurz
mit (A,b) und wir schreiben dann auch V7 (z) = ¥ (z), da man ¢ von der
Matrix A abhéngig ist.

Folgende Bedingungen an die Koeffizienten eines Runge-Kutta Verfahrens haben
wir bisher erarbeitet:

e Das Verfahren ist genau dann konsistent, wenn » > b, = 1, und

e es ist genau dann invariant gegen Autonomisierung, wenn es konsistent ist

2
und ¢; = ) 5, aij.

j=1

Wir wollen nun den ersten der beiden Punkte verallgemeinern und fiir gegen
Autonomisierung invariante Runge-Kutta-Verfahren genauere Forderungen an die
Konsistenzordnung stellen. Diese werden als Ordnungsbedingungen bezeichnet.

Satz 3.31 Ein autonomisierungsinvariantes Runge-Kutta- Verfahren besitzt fiir
jede Differentialgleichung mit p-mal stetig differenzierbarer rechter Seite f die
Konsistenzordnung
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e p=1, falls 7 b, = 1.
o p =2, falls zusdtzlich Y ;_, bic; =

Lol NI

o p =3, falls zusdtzlich Y 7;_ bic; = 5 und 377 . biajc; = 1.

6

? bZC'?’ — 1 5 ) bicia/z“C' _ 1
LA 4, fClllS zusatzlich 821:1 t 4 ;Z,]:l 7€ 3
>

02 = L (s _ 1 -
’i7j:1 bla[” ] 12 Z’i7j,k:1 bza”l]a’]kick — 24

Beweis: Wir geben nur die Grundstruktur des Beweises an: Das Ziel besteht
darin, zu zeigen, dass

|07 (z) — @7 (2)|| = O(rP*) fiir 7 — 0.
Dazu geht man in drei Schritten vor:

1. Taylorentwicklung von der exakten Evolution g;(7) = ®7(z) bis zur Ord-
nung p.

2. Taylorentwicklung von der diskreten Evolution go(7) = ¥7(z) bis zur Ord-
nung p.

3. Koeffizientenvergleich der beiden Taylorentwicklungen.

Der Beweis kann z.B in den Skripten von G. Lube oder von T. Hohage nachgelesen
werden.

Betrachten wir nun die Ordnungsbedingungen genauer:
s = 1: Das Schema fiir s = 1 lautet

c1|an =20

b

Wegen ¢; = a;; = 0 folgt aus der geforderten Konsistenzordnung von p = 1,
dass by = 1 gelten muss. Das explizite Euler-Verfahren ist also das einzige
einstufige, explizite, autonomisierungsinvariante Verfahren der Ordnung 1.

s = 2: Das Schema fiir s = 2 lautet

Wegen der Invarianz gegen Autonomisierung sind ¢; = 0 und ¢y = ag
bereits festgelegt. Als Variablen verbleiben also asq, b1, bs, wobei aber die
folgenden Bedingungen beachtet werden miissen:

bi+by =
bl C1 +b202 =
=0

N[=
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Aus dem Gleichungssystem ergibt sich

Z)l:

Cy =

1—by

1
o falls b # 0.

(Fiir by = 0 ist das System nicht lsbar.) Man erhélt das folgende Butcher-
Schema fiir b # 0.

Fiir b = 1 folgt beispielsweise die explizite Mittelpunktsregel und mit b = %
die explizite Trapezregel, zu der folgendes Butcher-Schema gehort:

2 2

s = 4: Fiir s = 4 ergeben sich 10 Unbekannte und 8 Gleichungen, siche

0] 0

Co | Q21 0

c3|az azx 0

Cq |y g2 ag3 0
by by by by

Man kann sich die ¢; als Stiitzstellen der Quadraturformel vorstellen, also

fiir die Simpson-Regel etwa 0, %, 1, was man mit doppelter Stiitzstelle an %

als

ausdriicken kann. Eine darauf beruhende Losung ist das schon vorgestellte
klassische Runge-Kutta Verfahren.

s = 10: In diesem Fall erhdlt man 1.205 Bedingungen und 55 Variablen.
s = 20: Fiir den Fall s = 10 erwarten uns 20.247.374 Bedingungen .

Man erkennt leicht, dass die Anzahl der Bedingungen mit steigendem p immer
grofker wird.
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Beziehung zur numerischen Integration

Wir méchten kurz eine interessante Beziehung zu Kapitel 1 dieses Skriptes er-
ldutern: Man kann die numerische Integration einer Funktion f € C(]0, 1], R) auf
dem Intervall [0, 1] als Spezialfall des folgenden Anfangswertproblemes

2(t) = f(t)
z(0) = 0

auffassen, denn dessen Losung ist nach dem Hauptsatz der Differential- und In-
tegralrechnung gegeben durch

() = /0 )

Es entspricht also x(1) genau dem gesuchten Integral. Wendet man auf dieses
(AWP) ein Runge-Kutta Verfahren an, so erhilt man daraus eine Quadraturfor-
mel

/0 f(r)dr = x(1) = U0 ()

= Zo +\7;/ijl€j(t,$,7')

=0 =1 j=1
= D bt T ) =Y bif(cp).
i=1 =0 =1 J=1

Die jeweils erstgenannten Ordnungsbedingungen aus Satz 3.31 fiir p = 1,2,3,4
entsprechen der Forderung, dass die Monome 1,¢,¢* ¢* mit Stiitzstellen ¢; und
Gewichten b; exakt integriert werden.

Konvergenz von expliziten Runge-Kutta Verfahren

Bisher haben wir ausschlielich die Konsistenzordnung von Runge-Kutta Ver-
fahren betrachtet. Wir wollen nun die Konvergenz der Runge-Kutta Verfahren
diskutieren. Auch hierzu bendtigen wir in den Voraussetzungen nicht nur die
Konsistenz, sondern auch die Stabilitéat.

Satz 3.32 Sei f € C(Dy,R%) und geniige der Lipschitz-Bedingung
| f(x1) — f(x2)|| < Lljzy — x| fir alle x1, x5 € Dy.

Dann erfillt die diskrete Evolution ¥V eines gegen Autonomisierung invarian-
ten Runge-Kutta- Verfahrens die Stabilitdtsbedingung aus Satz 3.24 mit Konstan-
te Ly = ~vL, wobei v > 0 nur von A und b abhdngt. Ist speziell p < 4 und sind
bi,a;; > 0 fiir alle i,j so ist v = 1.
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Beweis: Der Satz ldsst sich durch wiederholtes Anwenden der Lipschitz-Bedingung
im Ausdruck

\ki(t,z, 7) — ki(t, 2, 7)]] < ||fx+7‘Za” (t,z, 7)) :L‘+7’Za,] (t,z,7))

< L(llz =& +7 ) ayllky(t 2, 7) — kj(t,xﬁ)ll)
j

nachrechnen. Auf Details gegen wir hier nicht ein. QED

3.3.5 Implizite Runge-Kutta-Verfahren
Als ,, Testproblem® bekannt ist

' (t) = \x(t)

z(0) =1

mit Parameter A € C. Die Losung ist x(t) = e*. Wir betrachten im Speziellen
A € R. Falls A < 0 ist, gilt fiir t — oo, dass die Funktion e und alle ihre
Ableitungen gegen Null konvergieren. Die Hoffnung ist, dass unsere Verfahren
schnell konvergieren. Leider ist das nicht so! Das Heun-Verfahren

ra(tjv1) = zalty) + TA2A()

liefert eine oszillierende, immer weiter ausschlagende Funktion als Lsung.

Euler-Heun Verfahren zu
T x(t) = —Tx(t), z(0) =1

+ auf dem Intervall 2 bis 5 mit Schritt-
weite h = 0, 3.
I Die echte Losung der DGL ist

A verlauft also fast entlang der z-
Achse. Die Néherung ist unbrauch-
1 bar.
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Um verniinftige Ergebnisse zu erzielen braucht man sehr kleine Schrittweiten.
Warum?

Wir erinnern uns an die Idee des Eulerverfahrens: Nutze die Rechteckregel,

b
&/fvazw—avm>

um das in der Integralgleichung

b
z(t) = xo +/ f(r,x(r))dr
auftretende Integral zu approximieren und erhalte

wa(tjsr) = zalty) +7f(t;, valty))

Benutzen wir stattdessen den rechten Rand des Integrationsintervalls, also

‘/f@MT%®—aﬁ®%

so erhalten wir

za(tjn) = waty) + 7f(tj, 2a(tjsn),
was e auch schon fiir mittlere Schrittweiten recht gut approximiert. Diese Uber-
legung fiihrt zum impliziten Euler-Verfahren.

Graphische Interpretation: Das ezplizite Euler-Verfahren nutzt die Tangen-
te der Losungskurve im jeweiligen Startpunkt ¢;. Das implizite Euler-Verfahren
nutzt die Tangente der Losungskurve im jeweiligen Zielpunkt ¢;.;. Das entspricht
dem expliziten Eulerverfahren ,yon hinten“, d.h. mit Startwert ¢y.

Wir wenden beide Verfahren auf f(z) = Az, 2(0) = 1 mit ¢t; =75, 7 =0,...,N
an.

e Explizites Eulerverfahren:

za(tizr) = zalty) + TAza(t)).

Behauptung: za(t;) = (1 4+ A7)’
Beweis: (Induktion)
J=0=aa(ty) =2(0) =1=(1+I1)°
Jr—J+ 1
ralljrn) = za(ly) + TAza(t))
=1+ M) (1 + A1) = (1+ A7)/t

woraus die Behauptung folgt.
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e Implizites Eulerverfahren

Ta(tjr1) = zalty) + TAZA(L41) = 2a(tin) = TA_@)Q, TA# L
Behauptung: za(t;) = (ﬁ)ﬂ
Beweis: (Induktion)
j=0=aalte) =2(0) =1 = ()’
J—=J+1
ra(t;) 1 1

:L’A(tj+1) = 1— 7\ (1 — )\T)j (1 —T)\)

1 j+1
- (1—)\7'> ’

woraus abermals die Behauptung folgt.

e Zum Vergleich: Die echte Losung ist x(t;) = e,
Wir untersuchen unsere Verfahren auf die Eigenschaft z(¢;) — 0 fiir j — oo der
echten Losung x(t) fir A < 0.

e Im expliziten Euler-Verfahren erhalten wir: za(¢;) — 0 falls [1 — A7| < 1.

Wegen |1+ A7| = |A|7 — 1 ist das fiir 7 < ‘—/2\| erfiillt. Besonders fiir grofe A

sind also kleine Schrittweiten erforderlich.
e Im impliziten Eulerverfahren gilt dagegen

1
= <1
14 [Al7|

1
1 -1

fiir alle Schrittweiten 7, also gilt xa (¢;) — 0 fiir j — oo fiir jede Schrittweite
7. Das erklirt das bessere Konvergenzverhalten des impliziten Eulerverfah-
rens.

Bemerkung: Der eben beschriebene Effekt tritt bei dem AWP 2/(t) = Az(t),
x(0) = 1 auch bei allen anderen Runge-Kutta-Verfahren auf, genauer

Vr>0: lim |V(1)] = oo,

|A| =00

wobei W] ein Runge-Kutta-Verfahren zu der Differentialgleichung f(x) = Az ist.
(Die Aussage gilt, weil ¥1(1) ein Polynom € II; ist.)
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Wir erinnern uns daran, dass die exakte Evolution einer Differentialgleichung die
Stabilitdtsbedingung

19540 (9) — @0 (go)[l2 < €+ |larg — oI5

erfiilllt (Satz 3.18), wobei L, die einseitige Lipschitzkonstante ist. Fiir explizi-
te Runge-Kutta-Verfahren ,erbt* die diskrete Evolution W diese Stabilitétsei-
genschaften, aber nur mit der Konstanten Ly = L (Satz 3.32), wobei L die
Lipschitzkonstante von f ist. Diese Konstante geht exponentiell in die Fehlerab-
schiatzung aus Satz 3.24

err(TA)eL‘I'(th% Ly >0

err(7a)(t — to) Ly =0

|MMO—$@H§NM)={

ein. Daher wére es gut, wenn Ly ~ L, gilt.

Das ist bei expliziten Runge-Kutta-Verfahren nicht gegeben, falls L, < L. Solche
Differentialgleichungen nennt man steif. Fiir steife Differentialgleichungen liefern
explizite Runge-Kutta-Verfahren erst fiir extrem kleine Schrittweiten verléssliche
Ergebnisse und sind daher unbrauchbar. Besser wéren Verfahren, bei denen in
die Fehlerabschéitzung nur die einseitige Lipschitz-Konstante L, (und nicht L)
einfliefit.

Steife Differentialgleichungen treten in der Praxis sehr haufig auf und kénnen (wie
in unserem Beispiel) meistens gut mit impliziten Runge-Kutta Verfahren geldst
werden.

Ein s-stufiges implizites Runge-Kutta-Verfahren ist gegeben durch die Vorschrift

ra(t +7) = U aa(t) == xat) + 7Y bik;(t, za(t),7)

j=1

ki(t,z,7):=f <t + T, T+ TZaijk:j(t, X, 7')) )

j=1
Die Werte ¢; nennt man auch Knoten, die k; Steigungen.
Das Butcher-Schema lautet:

1| a1 A2 ... QAig
C2 | G271
c|l A
bl
Cs | Qg1 Qg2 ... Agg
by by ... b
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Notation 3.33

o . A ..
o Fira;; =0,1<j ergibt i’b—T ein explizites Runge-Kutta-Verfahren

o Fir a;; = 0, i < j erhdlt man ein diagonal-implizites Runge-Kutta-
Verfahren (DIRK). Gilt sogar a; = y, so spricht man von SDIRK - Verfahren.

o Gibt es ein j > i mit a;; # 0, so nennt man das Runge-Kutta- Verfahren

voll implizit.

Bei der Implementation von impliziten Runge-Kutta-Verfahren sind in jedem
Schritt die Steigungen k; durch Lésen von

ki(t,z,T) :f(tJrciT,erTZaijk:j(t,x,T)), i=1,...,8

j=1

zu ermitteln. Leider funktionieren Fixpunktiterationen nur mit Schrittweitenbe-
schrinkungen (vgl. Euler-Heun Verfahren, Lemma 3.20 auf Seite 81). Man be-
nutzt daher das Newton-Verfahren (oder Varianten davon).

Wir wollen nun implizite Runge-Kutta Verfahren héherer Ordnung konstruieren.

e Das implizites Euler-Verfahren LH hat Ordnung 1.

e Das Mittelpunktsverfahren

T xa(ty) + m(%’ﬂ))

ealtyen) =oalty) +f 1+ 7 22

S

1
mit dem Butcher-Schema L’— hat Konsistenzordnung p = 2!

Satz 3.34 Es gelten sinngemdajf die Bedingungen fiir Konsistenz und Invarianz
gegen Autonomisierung sowie die Ordnungsbedingungen auch fir implizite Runge-
Kutta-Verfahren (Lemma 3.28, Lemma 3.30 und Satz 3.31).

Zum Festlegen der s? 4+ 2s Parameter eines impliziten Runge-Kutta-Verfahrens
werden héaufig Kollokationsverfahren verwendet: Die Idee von Kollokationsver-
fahren ist es, die Losung eines gegebenen Anfangswertproblemes durch ein Poly-
nom w zu approximieren. Dieses soll das Anfangswertproblem an vorgegebenen
Stiitzstellen 16sen. Als Stiitzstellen definiert man Kollokationspunkte ty + ¢;T,
1=1,...,s. Dann verlangt man

w’(t0+ci7') = f(to-'-CiT,u)(to—i-CiT)), 1= 1,...,8 (314)
w(to) = 2 (315)

fiir das vektorwertige Polynom w € (II5)™. Wir nennen die wesentlichen Resultate:
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Lemma 3.35 Seien fir 0 < ¢; < -+ < ¢ < 1 die Bedingungen (3.14) und
(3.15) eindeutig losbar. Dann wird durch die diskrete Evolution

Wt (g0) 1= w(ty + 7)

ein implizites Runge-Kutta- Verfahren definiert, das durch die Parameter
Q5 = / Lj(T)de?jT’i,jzl,...,S
0
1
b, = / Li(m)dr firi=1,... s
0

gegeben ist.

Lemma 3.36 FEin durch Kollokation definiertes, implizites Runge-Kutta- Verfahren
ist konsistent und invariant gegen Autonomisierung.

Der Beweis dieser Aussagen ldsst sich relativ einfach mit den Standardmitteln
dieser Vorlesung zu fiihren. Dagegen ist der folgende Satz ein etwas tiefliegenderes
Ergebnis.

Satz 3.37 Fliir gegebene Parameter cy, . . ., cs sei die Quadraturformel fol g(t)dt =~
> i big(c;) exakt fir alle Polynome in I1,_y mit p > s. Dann hat das zu cq, . . ., cs
gehorende, durch Kollokation gewonnene Runge-Kutta-Verfahren die Konsisten-
zordnung p.
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3.4 Zusammenfassung
Begriffe
e DGL: Differentialgleichung
e AWP: Anfangswerproblem = DGL + Startbedingungen
e gewohnliche/partielle DGL
e explizite, implizite DGL
e autonom

e linear

Transformationen

e jede gewohnliche, explizite DGL der Ordnung k kann in eine &quivalente
DGL erster Ordnung iiberfiihrt werden, d Gleichungen +— k- d Gleichungen

e Autonomisierung: Eine gewohnliche, explizite DGL kann man in eine dqui-
valente, autonome, gewohnliche DGL iiberfiihren

Eindeutigkeit /Losbarkeit

e Gegenbeispiel fiir eindeutige Losbarkeit

e Gegenbeispiel fiir Existenz einer Losung auf ganz [

Aquivalenz: AWP < Integralgleichung
2(t) = f(t,z(t t
D=6y g [ st
.T(t()) = X to
e Anwendung vom Banach’schen Fixpunktsatz
e Konstruktion von Einschrittverfahren

e Picard-Lindelof: f stetig + Lipschitzstetig bzgl. der letzten d Variablen.
Dann ist jedes AWP auf einer Umgebung U um den Startwert eindeutig
l16sbar.

— Die Losung eines (AWP) ist global eindeutig
— globale Losbarkeit auf ganz I, falls Lipschitzstetigkeit global
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e Folge: Definition der Evolution ® einer DGL 2’ = f(¢, ) durch
O (o) = (t),
wenn z die eindeutige Losung von (AWP)

2(t) = f(t,7)

x(to) = xo
e Evolutionen sind durch drei Eigenschaften eindeutig charakterisiert
e Stabilitét einer Evolution

|@"0 (20) — @40 (2)]| < P+ [y —
Einschritt-Verfahren

o Gitter A = {to,...,tn} gesucht:

A A — RY

za(tj1) = U (2a(t)))

e explizites Eulerverfahren

e implizites Eulerverfahren

— Euler-Heun-Verfahren (implizit, sukzessive Approximation)
— Pradiktor-Korrektor-Variante

e cxplizites Runge-Kutta-Verfahren
e implizites Runge-Kutta-Verfahren
e Konsistenz von W: drei dquivalente Bedingungen
[ Wh0 (29) — Wh (20)|| — O fiir t — ¢
e Konvergenz
|lza(t) — z(t)|| — O falls 7 — 0, gleichméfig

e Konsistenz der Ordnung p + Stabilitdt = Konvergenz der Ordnung p

Explizite Runge-Kutta-Verfahren

Butcher-Schema

Bedingung an Konsistenz und an Invarianz gegen Autonomisierung

implizite Runge-Kutta-Verfahren fiir steife DGL

Kollokationsverfahren
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Kapitel 4

Optimierung

4.1 Begriffe und Uberblick

Notation 4.1 Sei B C R" und sei f: B — R. Sei weiter P C B. Fin Optimie-
rungsproblem ist gegeben durch

(P) min f(z).

zeP

Man nennt [ Zielfunktion, B Grundmenge und P den zuldssigen Bereich von

(P).

Schreibweise: (P) wird geschrieben als min{f(x) : x € P} oder
min  f(z)
sd. re P’

Bemerkung:

e Es gibt auch Optimierungsprobleme, in denen B C R"™ nicht gilt, zum Bei-
spiel bei der Bestimmung einer Funktion.

e min,cp f(z) ist dquivalent zu — — max,ep —f(z), daher kénnen wir uns
0.B.d.A. auf Minimierungsprobleme beschrénken.

e Da ein Minimum nicht existieren muss, miisste man eigentlich inf,cp f(z)
schreiben - die Schreibweise mit min hat sich aber eingebiirgert.

Notation 4.2 Sei mingcp f(x) ein Optimierungsproblem.
o Jedes x € P heifst zulissig.
e [st P =, so nennt man das Optimierungsproblem unzuldssig.

e x € P heifit (global) optimal, falls f(x) < f(2) fiir alle ' € P gilt.

105



e © € P heifit lokal optimal, falls es eine ,verniinftig definierte® Umgebung
U(zx) C B so gibt, dass f(x) < f(2) fir alle 2’ € U(x). Wenn B =R" gilt,
so kann man immer U(z) = {2’ € R" : ||z — 2’| < e} mit einer Norm || - ||
wdhlen.

Beispiel: Ein aus der Vorlesung schon bekanntes Optimierungsproblem ist die
in Kapitel 2 behandelte Approximation in endlich-dimensionalen Rdumen:

Gegeben: P ,einfache Reprisentanten, x € X
gesucht: y € P so, dass ||z — y|| klein ist, das heift

min f(y),

wobei f(y) = ||z —yl|.

Wir betrachten jetzt systematisch verschiedene Typen von Optimierungsproble-
men.

Nicht-Restringierte, differenzierbare Optimierung

Definition: B =P =R", f : R” — R differenzierbar.
Ergebnisse:

x* lokal optimal = V f(z*) = 0.

Vf(z*) = 0 und die Hesse-Matrix H(f)(x*) ist positiv definit = z* ist
lokal optimal.

Verfahren: Verfahren des steilsten Abstiegs (,steepest descent), Newton-Verfahren.

Bemerkung: Globale Optima zu finden ist nicht trivial.

Lineare Optimierung

Definition: B =R", P C R" ist ein Polyeder, f : B — R ist linear.

Ergebnisse: Hat (P) eine Losung, so gibt es eine Ecke von P, die (global) op-
timal ist.

Verfahren: Simplex-Verfahren (probiert alle Ecken durch), Innere-Punkte-Verfahren.

Bemerkung: Lineare Optimierung ist weitestgehend verstanden; Effizienz-Steigerung
ist aber immer noch sinnvoll.
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Konvexe Optimierung

Definition: B =R", P C R” konvex, f : R" — R konvex.
Ergebnisse:

Sei x* lokales Minimum = z* ist globales Minimum.

x* ist (global) optimal auf R" < Es existiert ein Subgradient £ = 0 an
x*. Auch fiir P C R” lassen sich globale Minima durch Subgradienten

charakterisieren.
S
\
7 |
Subgradienten

Verfahren: Subgradienten-Verfahren, Volume Algorithmus

Bemerkung: Fiir spezielle Probleme gibt es effizientere Verfahren.

Konkave Optimierung

Definition: B =R", P C R" konvex, f:R" — R konkayv.

Ergebnisse: Hat (P) eine Losung, so gibt es einen Extrempunkt von P, der
optimal ist. Ist P ein Polyeder, so gibt es eine optimale Ecke. Insbesondere
gibt es eine Optimallésung z* € OP.

Verfahren: Auffinden einer endlichen Kandidatenmenge (FDS = finite domina-

ting set).

Ganzzahlige (lineare) Optimierung

Definition: B = Z™, P’ C R" ist ein Polyeder, P = PN B, f : R* — R ist
linear.

Ergebnisse: Diese liegen vor allem in Spezialfillen vor, zum Beispiel als Ergeb-
nisse im Bereich der Polyeder-Theorie.
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Verfahren: Spezialverfahren, welche die Strukturen von P’ ausnutzen (TU-Matrizen),
ansonsten Gewinnung von oberen Schranken (durch Heuristiken, wie zum
Beispiel allgemeine Heuristiken wie Simulated Annealing, genetische Algo-
rithmen, Tabu-Suche) und unteren Schranken (durch Relaxationen).

Bemerkung: Das Problem ist NP-schwer, das heifst ein exaktes Verfahren mit
polynomieller Laufzeit ist nicht zu erwarten.

Diskrete Optimierung

Definition: B endliche Menge, P C B beliebig, f : B — R.

Ergebnisse: je nach Problem

Verfahren: je nach Problem oder im Allgemeinen wie Simulated Annealing

Bemerkung: Es gibt effizient 16sbare und NP-schwere Probleme.

Beispiel: gegeben ist ein Graph mit Knoten und Kanten, wobei jede Kante eine
(positive) Lénge hat.

Kante

Start

Ecke

Aufgabe 1: Finde einen kiirzesten Weg vom Start zum Ziel.
B = {alle moglichen Wege vom Start bis zum Ziel},
P =B,
f:B—=R, f(Weg)=Linge des Weges = Z Lange(Kante).
Kanten im Weg
Dieses Problem ist effizient 16sbar in Zeit O(n?) (n sei die Anzahl der Kno-

ten im Graph).

Aufgabe 2: Finde den kiirzesten Weg vom Start bis zum Ziel, der alle Knoten
genau einmal besucht.

B = {alle moglichen Wege vom Start bis zum Ziel},
P C B enthilt die Wege, die alle Knoten genau einmal besuchen
f:B—R, f(Weg)=Linge des Weges.
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Fiir dieses Problem ist kein effizientes Verfahren bekannt. Es ist schon NP-
schwer, herauszufinden, ob P # @, d.h. ob es iiberhaupt einen Weg vom
Start bis zum Ziel gibt, der alle Knoten genau einmal besucht.

Die Umgebung eines Weges W kann man z.B. definieren als
U(W) = {Wege W', die durch Vertauschen von zwei Knoten auf dem Weg W entstehen }.

Ein Verfahren, das innerhalb von solchen ,benachbarten zulissigen Losungen
Elemente einer Losung paarweise tauscht nennt man auch zwei-opt. Das Ergebnis
eines zwei-opt Verfahrens ist immerhin lokal optimal.

Kontinuierliche, restringierte Optimierung

Definition: B=R", PCR", f: B — R.
Ergebnisse: Diese existieren nicht in dieser Allgemeinheit.

Verfahren: Barriere-Verfahren, Penalty-Verfahren (exakt), allgemeine Heuristi-
ken wie Simulated Annealing

Die genannten Klassen von Optimierungsproblemen sind allerdings keineswegs
disjunkt. So lassen sich viele diskrete Probleme als ganzzahlige Programme for-
mulieren, oder auch ganzzahlige Programme als nichtlineare Probleme.

Es soll auch nicht unerwahnt bleiben, dass es noch viele weitere Klassen von Op-
timierungsproblemen gibt. Darunter fallen u.a. quadratische Optimierungspro-
bleme, die beispielsweise mit dem Verfahren der konjugierten Gradienten gelost
werden konnen.

4.2 Iterative Optimierungsverfahren

In diesem Abschnitt soll auf einige iterative Verfahren zur Losung von Optimie-
rungsproblemen eingegangen werden. Dabei betrachten wir zuerst differenzier-
bare Probleme ohne Nebenbedingungen und stellen das Verfahren des steilsten
Abstiegs und (kurz) das Newton-Verfahren vor. Danach diskutieren wir Verfah-
ren, die man auf sehr allgemeine restringierte Probleme

min{ f(z) : x € P}
anwenden kann, ndmlich das Strafverfahren und Simulated Annealing.
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4.2.1 Differenzierbare, nicht-restringierte Probleme

In diesem Abschnitt betrachten wir die Minimierung einer differenzierbaren Funk-
tion f : R® — R iiber dem gesamten R". Wir gehen davon aus, dass uns schon
Verfahren zur Minimierung von eindimensionalen Funktionen f : R — R zur
Verfligung stehen. Solche Verfahren nennt man ,Line Search® Verfahren, darun-
ter sind zum Beispiel

Intervallhalbierungsverfahren, Dichotomous-Suche, Verfahren des gol-
denen Schnitts

oder, fiir differenzierbare Funktionen
Gradienten oder Newton-Verfahren.

Die Methode des steilsten Abstiegs in der mehrdimensionalen Optimierung be-
ruht auf der Idee, eine Losung © € P in jedem Schritt entlang einer fest gewédhlten
Richtung d durch Losen eines eindimensionalen Optimierungsproblems zu verbes-
sern, also durch Losen des eindimensionalen Problems

min f(xz+ Ad)

mit Line Search, wobei f die Zielfunktion darstellt.

._,.-"Iéj(k+1)

\
g X\‘“‘\%

W

£

Wihle 21 als den besten Punkt entlang der Richtung d. Wir diskutieren zu-
néchst, wie man die Richtung d wihlen kann.

Notation 4.3 Sei f : R" — R eine Funktion, sei x € R. Eine Richtung d € R"
ist eine Verbesserungsrichtung an x beziglich f, falls es ein 6 > 0 so gibt, dass

flz+Ad) < f(z) fir alle X € (0,9).

Das folgende Lemma gibt ein Kriterium, an dem man Verbesserungsrichtungen
leicht erkennen kann.

Lemma 4.4 Sei f : R® — R eine Funktion, seien x,d € R™. Ist die Rich-
tungsableitung f'(x,d) von x in Richtung d echt kleiner als Null, so ist d eine
Verbesserungsrichtung.
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Beweis: Es gilt

[z 4+ Ad) — f(2)
"(z,d) =1 :
fiz,d) = lim 3
Wegen f'(z,d) < 0 gilt also f'(x+ Ad) < f(z) fiir alle hinreichend kleinen A > 0.
QED

Man kann also jede Richtung d mit negativer Richtungsableitung wéihlen. Um
eine moglichst grofse Verbesserung zu erzielen, macht es Sinn, eine Richtung d zu
wihlen, bei der die Richtungsableitung so klein wie moglich ist, also die ,,Richtung
des steilsten Abstiegs”. Das folgende Lemma zeigt, wie man diese Richtung findet.
Wir bezeichnen den Gradienten einer Funktion f : R” — R an x € R" mit
Vf(z) e (R")*. Weiterhin sei || - || im Folgenden die Euklidische Norm.

Lemma 4.5 Sei f: R" — R differenzierbar und sei V f(x) # 0. Dann ist

o (Vi)

IV ()]

die normierte Richtung mit kleinster Richtungsableitung, das heifit

f'(x,d) < f'(x,d) fiir alle d € R™ mit ||d|| = 1.

Beweis: Sei d € R™ mit ||d|| = 1 beliebig. Dann gilt:

oot | St D) (@)
£, d)] = | tim S

= |V f(z)d|, weil }\ir%f(x+ M) = f(z) + AV f(x)d
< |IVf(@)|l - ||d|| nach Cauchy-Schwarz

N |/ G104 4Co) | VN
= IV = TG = V@) dl =17 D)

Weiterhin ist d eine Abstiegsrichtung wegen

o Vi) (V@)
Fod) = =G @]

= —[IVf(x)ll <0.

QFD
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Algorithmus ,,Steepest Descent*
Sei (O € R” beliebig, k = 0.
1. Sei d®) := —V f(z®). Falls Vf(z®) = 0, dann STOP.

2. Lose das eindimensionale Optimierungsproblem minyso{ f(z®+Ad®)}. Sei
x* die Losung.

3. oD .= 2* gehe zu 1.

Bemerkung: Liegen alle *) in einer kompakten Menge, so konvergiert z*) — 7
mit Vf(Z) = 0. In der Praxis macht das Verfahren in der N&he des Minimums
meistens nur sehr kleine und fast orthogonale Schritte. Man spricht auch von
wZick-Zack-Pfaden®.

Wihrend das Verfahren des steilsten Abstiegs den Gradienten und damit eine
lineare Approximation der Funktion f verwendet, nutzt das Newton-Verfahren die
quadratische Approximation an die Funktion f. Um einen Punkt x mit V f(z) =0
zu finden, wird f in jedem Schritt durch seine quadratische Approximation ersetzt
und eine Nullstelle ihrer Ableitung bestimmt.

Die quadratische Approximation von f an z*) ist

£(2) = alw) = FH) + FFE) @ — o)+ 2 - ) H )@ - o),

wobei H(z®) die Hesse-Matrix von f an z(®) ist. Wegen
Vq(x) = Vf(g;(k)) + (H(a:(k))(a: _ x(k)))t

gilt:
(Va(x))' =0 (Vf(@™)" + H(zW) (@ —2M) =0,

also falls
v =a® — (H(@W) (Y f(zM))".

Entsprechend lautet das Verfahren

Newton-Verfahren
Sei 2(® € R™ beliebig, k = 0.
1. Falls Vf(z®) = 0, dann STOP.
2. Sonst setze zF+tY) 1= 2®) — (H(2®))"H(V f(2®))t, k := k + 1, gehe zu 1.

Unter gewissen Voraussetzungen kann quadratische Konvergenz gezeigt werden.
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4.2.2 Restringierte Probleme

Wir betrachten
min{ f(z) : x € B,x € P}.

Es gibt mehrere Moglichkeiten, die Verfahren aus dem letzten Abschnitt auch
zum Losen von restringierten Problemen zu nutzen. Eine Idee besteht darin,
den berechneten Punkt 2*) in jedem Schritt zulissig zu machen, z.B. durch die
Projektion von 2*) auf P, d.h. man wihlt den Punkt z aus P, der ||z — 2*| mi-
nimiert. Das wird erfolgreich im Subgradienten-Verfahren fiir konvexe Probleme
eingesetzt. Eine andere Variante ist es, unzuléssige Losungen zu bestrafen. Man
spricht von Strafverfahren. Betrachten wir dazu

P={zxeR":¢g(xr)<0,i=1,...,mund
hj(x)=0,7=1,...,1}

als zulissige Menge unseres Optimierungsproblems. Wie kann man unzulissige
Losungen bestrafen?

Beispiel:
e Das Problem
min f(z), s.d. h(z) =0
wird umgewandelt in min f(x) + ph*(z), u grok.
Straft

e Das Problem
min f(z), s.d. g(z) <0

wird umgewandelt in min f(z) + p(max{0, g(z)})?

(.

Strafterm

Notation: Se:
(P) min{ f(x) : x € P} mit P C B.

Dann heifit a : R" — R Straffunktion fir (P), falls
a(x) =0 fir alle x € P und o(z) > 0 falls x ¢ P.
Das beziiglich o und p > 0 relazierte Problem ist dann
(B)  min{f(z)+ pa(e) v € B},

Weiterhin sei 0(p) = inf{ f(z) + pa(z) : x € B} fiir p > 0 der Zielfunktionswert
von (P,).

Es gilt:
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Lemma 4.6
min{ f(z) : x € P} > 0(u) fir alle p >0 (4.1)

Beweis: Sei 2* eine Losung von P. Dann ist z* € B, also fiir (P,) zuléssig, und
erfiillt

Fa?) = f(a7) + poa®) > min f(z) + pa(z),
\76_/ re

also ist die Losung von (P,) mindestens so gut wie z*. QED

Man kann aber noch mehr zeigen:

Lemma 4.7 Sei P # @ und existiere eine optimale Losung x,, von (P,) fir alle
1> 0. Dann gilt:

e O(u) ist monoton wachsend.

o o(X,) ist monoton fallend.

o f(X,) ist monoton wachsend.
Beweis: Ubung.
Daraus folgt schliefslich der folgende Satz:

Satz 4.8 Sei P # @ und existiere eine optimale Lisung x, von (P,) fir alle
>0 so, dass alle x,, in einer kompakten Teilmenge von B enthalten sind. Dann
gilt
min{ f(z) : x € P} =supf(u) = lim 6(u).
>0 H—00
Weiter sei A, > 0 und A\, — oo fir k — oo. Ist (x), )ren konvergent, dann ist
x = limy_.o xy, eine optimale Losung von (P).

Es ergibt sich der folgende Algorithmus:
Seiﬁ>0,[ﬁ1>0,k’:1.

1. Lose
(P..) min{ f(z) + upa(z) : x € B}

und erhalte x;; als optimale Losung.

2. Falls ppa(xpy1) < €1 Tpq ist zuldssig fiir (P) und nach (4.1) optimal. STOP.
Sonst: pgpi1 = Buk, k =k + 1, gehe zu 1.

Satz 4.8 garantiert Konvergenz zu einer Optimallosung.
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Lokale Suche

Hat man bereits eine Losung © € P gefunden, besteht die Moglichkeit, diese
mittels einer lokalen Suche zu verbessern, um ein lokales Optimum zu erreichen.
Dazu sucht man die ,Nachbarschaft* von x ab. Das Verfahren l&sst sich auch gut
auf diskrete Probleme anwenden.

Beispiel (Nachbarschaften):

o Fiir
min{ f(z): x € P}, P CR"

kann man N(z) = U.(z) N P wihlen.

e Betrachtet man
min{ f(z) : x € {0,1}"}

so kann man zum Beispiel
N(z) ={2' € {0,1}" : x und 2’ unterscheiden sich nur an hichstens &k Stellen}
wihlen, wobei k (meistens klein) fest gewahlt ist.

o [st
min{ f(P) : P Weg in Graph},

so bietet sich
N(P) = {Wege P’ die aus P durch Vertauschen von zwei Knoten entstehen }

al.

Fiir die lokale Suche sei x € P gegen.
1. Teste, ob es 2/ € N(z) mit f(z') < f(z) gibt.

2. Falls ja, setze x := 2’ und gehe zu 1.

Sonst: z’ lokal optimal, STOP.

Das Verfahren macht Sinn, wenn Schritt 1 leicht zu lsen ist. Oft kann man sogar
schnell

min{f(z') : 2’ € N(x)}

16sen, z.B. wenn die Funktion lokal konvex ist, die Mengen N (z) konkave Bereiche
sind oder lokale Konvergenz wie beim Newtonverfahren durch Durchprobieren im
diskreten Fall vorliegt.
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Simulated Annealing

Beim Simulated Annealing versucht man, die lokale Suche so abzuindern, dass
man mit hoher Wahrscheinlichkeit ein globales Optimum findet. Man erlaubt da-
zu auch Schritte, in denen sich der Zielfunktionswert verschlechtert. Dabei soll die
Wahrscheinlichkeit fiir eine Verschlechterung gréfier sein, wenn die Verschlechte-
rung nur klein ist und im Laufe des Verfahrens abnehmen.

Start
e

N\

Ergebnis bei
lokaler Suche

Wir erhalten folgenden Algorithmus:

ALgorithmus: Simulated Annealing
Input: z € P, T}, die ,Starttemperatur”, 0 < o < 1.
Solange T}, grof genug (,nicht gefroren®).

1. Wihle zufilliges 2’ € N(x).

2. Ist f(2') < f(x), setze o = 2’ und gehe zu 1.
Ist f(2') > f(z), setze x := 2’ mit Wahrscheinlichkeit

_fEH—f(=)
e T .

Setze Tyy1 := oI} und gehe zu 1.

Die Idee entstammt chemischen Abkiihlungsprozessen, bei denen bei hoher Tem-
peratur eine stabile Molekiilbewegung zu beobachten ist, beim Abkiihlen aber
energieminimale Anordnungen entstehen. Dabei macht das Verfahren nur Sinn,
wenn die Nachbarschafts-Definition die folgenden Bedingungen erfiillt:

1. x € N(z), fiir alle z.
2. z € N(@') &2’ € N(x).

3. Fiir alle x,2’ existiert eine Folge zy, so dass x € N(xy), x; € N(xit1),
i=1,...,k—1, 2 € N(«'), d.h. jeder Punkt ist von x aus erreichbar.
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Kapitel 5

Eigenwertaufgaben

5.1 Motivation

Sei u(x,t) die vertikale Auslenkung einer eingespannten Saite an der Position
x € [0, 1] zur Zeit ¢.

BV

u erfiillt ndherungsweise die Wellengleichung

0%u 1 d%u

u(0,t) =u(l,t) =0, teR,

wobei ¢ die Ausbreitungsgeschwindigkeit ist. Wir suchen zeitharmonische Losun-
gen, das heifst wir machen den Ansatz

u(z,t) = Re(v(z)e™)

mit unbekanntem w € C. Einsetzen liefert die gewohnliche Differentialgleichung

2

—"(z) = <f) o(x), € (0,1) (5.2)

c
v(0) =v(1)=0

Das ist ein Eigenwertproblem fiir den Differentialoperator

A {u € C*([0,1])|v(0) = v(1) =0} — C([0,1]),  u+ —u".
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Diskretisiert man nun dieses Problem, so erhélt man ein Matrix-Eigenwertproblem.
Betrachten wir hierzu die Gitterpunkte

1
ry=jh, j=0,...N,  h=

und approximieren die zweite Ableitung durch den Differenzenquotienten

1 .
—v"(x;) ~ ﬁ[_ v(zj1) +20(z;) —v(zrjp)], j=1,...,N—1.
=Vj-1 =vj =Vj+1

Damit bekommt die Differentialgleichung 5.2 die Form

1 w2 .
ﬁ<—’l]j,1+2vj—vj+1): (—) Vs, ] Il,,N—l
c
und man erhilt das Problem
2 -1 0 U1 (]
) -1 2 -1 : :
.. =1
0 -1 2 UN-1 UN-1

Insgesamt haben wir also das Problem 5.1 in ein Matrix-Eigenwertproblem {iber-
fiihrt.

5.2 Eigenwerte

Definition 5.1 Sei A € R™*". Eine Zahl A € R heifit Eigenwert zum Figenvektor
x € R™\ {0}, falls
Ax = Mz

qgilt.

Die einfachste Berechnung fiir den Eigenwert A benutzt das charakteristische

Polynom
©(A) = det(A — A1d).

Aus AGLA ist bekannt, dass ¢ € II,, ein Polynom ist, dessen Wurzeln die Eigen-
werte von A sind. Verfahren, die das charakteristische Polynom verwenden, heifsen
direkte Verfahren (z.B. Newton-Verfahren auf ¢ angewendet). Im Allgemeinen ist
die Berechnung des charakteristischen Polynoms durch die Determinante jedoch
sehr aufwindig, also werden wir im Folgenden Verfahren betrachten, welche die
Berechung von ¢ vermeiden. Diese Verfahren heifen iterative Verfahren.
Grundsitzlich gibt es viele verschiedene Aufgabenstellungen:
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e Berechnung des grofiten bzw. kleinsten Eigewertes
e Berechnung aller Eigenwerte
e Berechnung einiger Eigenwerte mit zugehorigen Eigenvektoren

e Berechnung aller Eigenwerte mit zugehorigen Eigenvektoren

In der Vorlesung werden wir die erste und die vierte Aufgabenstellung betrachten
und fiir diese jeweils ein Beispiel angeben.

5.3 Lokalisierungssatz

Satz 5.2 (Lokalisierungssatz) Ist ||-|| eine zu einer Vektornorm passende Ma-
triznorm, so gilt fiir jeden Figenwert X von A die Abschditzung

A < p(A) <||All (siehe Numerik I).
Weiterhin gilt der folgenden Satz.

Satz 5.3 (Gerschgorin) Fir A = (a;,) € IK"*" definieren wir die Gerschgorin-
Kreise als

GjZI AelK \)\—ajj|§2\ajk\ s jzl,...,n
k=1
k#j ),
und .
Gr=QAeK|A—aml < lagl p, k=1,....n
=1
oo

Dann gilt fir alle Eigenwerte A\ von A:
el Ja, wd xel G

Beweis: Sei Ar = Az und ||z||c = 1. Wihle einen Index j mit |z;| = ||z||o = 1.
Dann gilt

[A—aj;| = [(A—az;)z;| = [(Az); —aja;] = Zaakﬂfk < Z |aji||zi] < Z |ajl.
k#] k#] k#a

Daraus folgt A\ € U;.Lzl Gj. Da A* die komplex konjugierten Eigenwerte von A
besitzt, folgt nun auch A € |J;_, G;. QED
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Im Folgenden wollen wir untersuchen, ob die Eigenwerte von A* stetig von den
Matrixeintrédgen abhingen. Zudem werden wir untersuchen, was man iiber die La-
ge eines Eigenwertes sagen kann, wenn man ,ungefihr” einen Eigenvektor kennt.
Wir werden hier nur den Fall von symmetrischen Matrizen untersuchen.

Die Resultate gelten in dhnlicher Form auch fiir normale Matrizen (AAT = AT A).
Bei nicht-normalen Matrizen muss man mit extremer Empfindlichkeit der Eigen-
werte bei ungenauen Daten rechnen.

Satz 5.4 (Rayleigh) Sei A € R™" symmetrisch. Seien \y > Xy > ...\, die

FEigenwerte von A mit zugehorigen, orthonormalen FEigenvektoren xq,...,x,. Sei
Vi=R" und V; = {x € R"|z'x), = 0 fiir alle 1 < k < j—1}. Dann gilt
tAx
Aj = max - fiir alle 1 < 7 <n.

. . . . . n .
Beweis: Sei x € V; \ {0}. Dann ldsst sich  schreiben als x = 7. cpay, mit
¢y = x'xy, da der Raum Vj von den z;, . . ., x,, aufgespannt wird und die z, ..., x,
orthonormal sind. Also gelten z'z = ZZ:J. 2 und Az = ZZ:J. c\pTrp. Man

rechnet nun nach, dass

n 2 n 2

sPAT D O - Aj D e Ch

t n 2 = n 2

L Zk:j Ck Zk:j Ck

Daraus folgt nun, dass

g

x'Ax
max p
zeV;\{0} T'x

<\

gilt. Fiir den Eigenvektor z; zu \; gilt die Gleichheit, also wird das Maximum
auch angenommen. QED

Satz 5.5 (Courant) Sei A € R™" symmetrisch und seien \y > ... > A, die
FEigenwerte von A. Dann gilt

t

Aj = min max
U;eM; xz€U; rtx
z#0
Rayleigh
Quotient

fiir alle 1 < 5 < n,

wobei M; die Menge aller (n+ 1 — j)-dimensionalen Unterriume von R™ bezeich-
net.

Beweis: Seien z1,...,xz, orthogonale Eigenvektoren und die V; wie in Satz 5.4.
Aus V; € M; folgt

) xtAx
min  max —
U;eM; ecU\{0} Ttz

Umgekehrt gibt es fiir jedes U; € M; ein x € U; \ {0} mit 2’z = 0 fiir j + 1 <
k < n. Also wird das Minimum angenommen.

j.
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Korollar 5.6 Seien A, B € R™" symmetrisch. Seien A\ (A),..., \i(A) bzw.
M(B), ..., \(B) die zu A bzw. B gehdrenden Figenwerte. Dann gilt fiir jede
beliebige natirliche Matriznorm:

[A;(A) = X (B)| < [[A = B,

Beweis: Ubung.
Tip: Zeige A\;(A) < \j(B) + ||A — B|| und verstausche die Rolle von A und B.

5.4 Verfahren von Mises
Sei A € R"*™ diagonalisierbar und habe einen dominanten Eigenwert, das heifst es
gilt [A1] > |2 > ... > |\, fiir einen Eigenwert A\;. Sei z1,...,x, eine Basis aus

Eigenvektoren, dann hat jedes x € R™ eine eindeutige Darstellung z = Z?Zl ;T
mit aq,...,a, € R. Nun gilt

Ame = A" =Y apha = A | anm+ ) (ﬁ) zi [ (5.3)
j=1 j=1 J=2

J/

-~

=:Rm
Man erkennt nun, dass R,, — 0 fiir m — oco. Also erhalten wir, falls a; # 0, dass
A
AT
Das Problem ist jetzt, dass A\; unbekannt ist. Auferdem konvergiert A™x nur fiir

|A1] < 1. Ein Ausweg aus dieser Situation ist, dass man eine andere Normierung
vornimmt. Wir betrachten

— 1.

n 2
1A™ ], = <Z ajammxm> = A" (o |21 ]l2 + 7). (5.4)
dk=1
mit R 3 r,, — 0 fiir m — oo. Dann folgt
A Liglly AT o )
= . by | T . 5.5
Ay~ papt Amgy T Pl fiirm oo (5.5)

Definition 5.7 Bei dem Mises-Verfahren (auch Potenzmethode genannt) wird
2(0)

ein Startvektor x(©) = Z?Zl a;xj, oy # 0 gewdhlt und y(0) = TeO] gesetzt. Fir
m > 1 wird dann definiert

™ = Ay(m=1)

(m)
ym = % mit o, € {—1,1} so, dass y(m)ty(m_l) > 0.
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Dabei bedeutet die Vorzeichenwahl, dass der Winkel zwischen y™ und y™=1 im
Intervall [0, 5] liegt, also dass es beim Ubergang von y™ Y zu y™ keinen Sprung
gibt. Um oy # 0 miissen wir uns keine Sorgen machen, denn Rundungsfehler
stellen die Bedingung meist sicher.

Satz 5.8 (Konvergenzbeweis fiir von Mises) Sei A € R"*" diagonalisier-
bar und habe einen dominanten Eigenwert A\, dann gilt:

o [z = [Ad] fiir m — oo,

o y™ Lkonvergiert fiir m — oo gegen einen Eigenvektor von A zum Eigenwert
)\1)

o 0™ — sign(\y), das heifit o™ = sign(\y) fiir m grof genug.

Beweis: Durch Induktion kann man zeigen, dass

A(m) ,(0)

(m) _ ;m), 0, =~
A (DF P

firm=1,2,....

Einsetzen ergibt dann

A(m+1) 1,0)

(m+1) — Ay — 5m) .. ;1)
N ¥ OO

Aus (5.5) folgt nun, dass

m+1

|2 |y — | Ay] fiir m — oo

gilt. Wir nehmen nun ohne Einschrinkungen an, dass ||z;||> = 1, dann gilt:

) )\T(alxl + Rm)
(Al (lea] 4 7m)
= O'(m) . 0-(1) . Sign()\l)m Sign(gl)xl —+ P

Y = gm0 mit (5.4) und (5.3)

wobei p,, — 0 fiir m — oo. Daraus folgt, wenn o™ konstant ist fiir groke m,
dass y™ gegen einen Eigenvektor von A zum Eigenwert \; konvergiert. Dieses
gilt, weil

o A" Haz' + Ry ') (o + Ry)
(A Cm=D (e | + 7 ) (loa | +7m)
ar>+ oz Ry + a1 Ry 1'v1 + R 1" R
a2+ |ea | (Tim—1 + 7)) + 17

0 < ym=Dlym) — Gm)ym-1) . mit (5.4) und (5.3)

= o™ sign()\;) -

TV
—1 fiir m—oo
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Wielandt-Verfahren (Inverse Iteration, Nachiteration)

Sei A diagonalisierbar und A; ein einfacher Eigenwert von A. Sei A kein Eigenwert
von A und eine Néherung an \;, das heifst

|A-—-Aj|<<|k-—lkk|ﬁh‘k #éj

Es folgt: (A — A1d) ist nichtsingulér und (A — A1d)~" hat die Eigenwerte gz mit
Ai = x5~ Also hat die Matrix (A — ATId)~" einen dominanten Eigenwert ); und
die von Mises Iteration ist anwendbar.

Jakobiverfahren

Sei A € R™*™ gymmetrisch. Wir betrachten die Frobenius-Norm

1Al = [Z |aij|2]

1,j=1

Lemma 5.9
1. ||A]|r = spur(AT A) = spur(AAT)
2. |Allr = 1QTAQ||F, Q orthogonal
Beweis:
1. Da fiir die Spur eines Matrixprodukts AB mit A, B € R™*"™ gilt
spur(AB) Z a;;bj = z": bija;; = spur(BA),
ij=1 ij=1

bekommen wir insbesondere

spur(ATA) = spur(AAT) = Z |ag;]?.

2,7=1

2. Wir nutzen die Eigenschaft einer orthogonalen Matrix @ € R™™: Q~! =
Q.

1QTAQ|IF = spur(Q" AQQ" AT Q) = spur(Q"AATQ) = spur(A"QQ" A)
ur(ATA) = || Allr.

QED
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Ist A € R™™ symmetrisch, so lasst sich A nach dem Spektralsatz mit einer
orthogonalen Transformation auf Diagonalgestalt bringen. Zusammen mit dem

Lemma folgern wir
n n

1Al = lal® =D Il

ij=1 i=1

Definition 5.10 FEine Aulennorm ist eine Abbildung

N :R™™ 5 R
n n
A=Y agl = A1 =D Jaul®
i =1 i=1
i#£]

Bemerkung: Die Aufsennorm ist keine Norm!

Trivialerweise verschwindet die Aufennorm fiir Diagonalmatrizen. Sei a;; ein
Nichtdiagonalelement, d.h. ¢ # j, ungleich Null. Wir betrachten eine Teilmatrix
unserer symmetrischen Matrix A, ndmlich:

Qi Qg
@ij  Qjj

Wir wollen nur mithilfe von Rotationen die Nichtdiagonalelemente eliminieren.

bi bi;\ [ cosp sing Qi; A cosp —singp
bi; bjj)]  \—sing cosp) \a; a;;) \sing cosy
[ cosp sing @3 COS P — A SN A5 COS P — Ay SIN P
~ \—sing cosy/) \a;jcosp+ajjsing ajjcosp — a;;sing
Also ldsst sich das transformierte Matrixelement b;; auf folgende Art und Weise
berechnen:
bij == ai; cos? Y — a;; cos @ sin @ + @5 SN (P COS Y — Ay sin? ¢
= (aj; — a;;) sin p cos ¢ + a;j(cos® p — sin® p)
= %(ajj — aii) sin 2g0 + a;; COS 2g0
Wollen wir es verschwinden lassen, folgt
cot 2¢ = i — A5
2(12‘]'
Um Kosinus und Sinus als Winkelfunktionen zu vermeiden, definiert man 7 :=
cos(2p) = cos?p — sin®, ¢ € [—m/4,m/4]. Dann gilt: cosp = /(1+7)/2,
sing =0+/(1 —7)/2, o(p) € —1,1. Sei ¢ so gewihlt, dass

g
aijT + (ajj — aii)gv 1-— T2 =0.
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Eine Moglichkeit ist
Qi — Qjj

T = , o = sign(ai;)
\/ daf; + (ai — aj;)?

wihlen. Das Vorzeichen ¢ ergibt sich wegen des Zahlers von 7. Statt der Rotati-
onsmatrix konnen wir also die Transformationsmatrix

c —s it B 14+7 ds— 1—7
s ¢ mi c= 5 und s = o 7

verwenden. Wir gehen von der Teilmatrix zur gesamten Matrix iiber.

Definition 5.11 Sei 1 <1i < j < n. Dann nennen wir die Matrix

1
1 mit
¢ . 5 ¢ = cos p,
5 = —sinp,
1 Ggii = gj; = COS ©,
s c 9ij = —gji = sing,
1 ansonsten Identitdt
1

eine Givens-Rotation bzw. eine Jakobi-Transformation.
Offensichtlich gilt:
Lemma 5.12 Die Givens-Rotation ist orthogonal.
Satz 5.13 Sei A € R™" symmetrisch, i # j mit a;; # 0. Die Matriz
B = G;AG],

1. ist wieder symmetrisch,

2. es gilt bj; =0,

3. A und B unterscheiden sich nur in der i-ten bzw. j-ten Spalte/Zeile

4. und N(B) = N(A) — 2a3;.
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Beweis: Aussagen 1-3 folgen aus den bisherigen Uberlegungen. Weil die Frobeni-
usnorm unter orthogonalen Transformationen invariant ist, gilt

L] ()
aij ajj) || bij by
Uber diese Gleichheit und b;j—q erhalten wir durch Quadrieren a? + a?; 4 242, =

by, + b3;. Wir konnen — da alle anderen Diagonalelemente von A und B gleich
bleiben — auf die Aufennorm zuriickschliefen.

F

n n

N(B) =Bl = > bl = A7 =) lbwil®
k=1 k=1
= N(A) + ) (larl* — [brl)
k=1
= N(A) - 2a;;.

QED

Aus diesen Ergebnissen formulieren wir das Jakobi-Verfahren:

Definition 5.14 Sei A € R™" symmetrisch. Im klassischen Jakobi-Verfahren
wird zundchst AQ = A gesetzt und fir m = 1,2, ... iteriert mit A™ = (al(,zn)):

1. Suche i # j mit \ag;n)| = max |a”| und setze G = G,

2. setze A1) — Gm) Am) Gm)"

Das Verfahren sucht also das grofte Element aus der Matrix heraus und transfor-
miert es auf Null. Weil wir mit symmetrischen Matrizen arbeiten, miissen wir nur
eine obere Dreicksmatrix durchsuchen. Obwohl bei jeder Transformation Nullen
wieder verschwinden konnen, liegt Konvergenz vor.

Satz 5.15 Das klassische Jakobi-Verfahren konvergiert zumindest linear in der
Auflennorm.

Beweis: Wir betrachten ein festes m und erwéhnen es daher nicht. Da wir |a;;| =
max;.y, |ai;| gesetzt haben, kénnen wir damit N(A) abschétzen:

N(A) = Ja* <n(n — 1)ay|*,
Lh=1
Ik

woraus folgt
N(A)
Qg5 > —
n(n —1)
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Jetzt betrachten wir einen Iterationsschritt

N(B) = M)~ 2l < (1- 2 ) )

und stellen lineare Konvergenz fest, da der Exponent von ¢ gleich 1 ist.  QED

Zwar wissen wir nun, dass die Aufennormen beim Jakobi-Verfahren gegen Null
konvergieren, doch wissen wir nicht, ob dann auf der Diagonalen auch wirklich
die Eigenwerte stehen. Dieses Problem wollen wir nun klaren:

Korollar 5.16 Sind \; > --- > A\, die Eigenwerte der symmetrischen Matrix
A € R™™ und ist aﬁ”) > > d%) eine Umsortierung der Diagonalelemente

von A so gilt
A — @™ | < \/N(A = 0 fiir m — .

Beweis: Aus Korollar 5.6 mit A = A™ und B = diag(a!?”,...,al") sowie der
cuklidischen Norm erhalten wir, da A und A" die gleichen Eigenwerte besitzen:

I\ — @] = Ni(An) = M(B)] < [|A™ — By < |A™ — Bllp = 1/ N(A0m).

QED

Auf die Eigenvektoren kénnen wir schliefen, da sich A" schreiben lisst als
A+l — qlm) g m™ g, M. 4.0 gmT = g g9

wobei Q™) orthogonal ist und A+ niherungsweise diagonal. Also bestehen die
Zeilen von Q™ niherungsweise aus Eigenvektoren von A. Es gibt noch weitere
Verfeinerungen des Verfahrens:

e Gerade, da das Aufsuchen des Maximums in jedem Schritt mit n(n — 1)
Vergleichen O(n?) wiegt, bei groken Matrizen sehr teuer sein kann. Bei-
spielsweise kann man die Reihenfolge, in der die Paare (7,j) durchlaufen
werden, vorher festlegen. Dies nennt man zyklisches Jakobi- Verfahren.

e Setzt man zusitzlich einen Schwellenwert, ab dem man sich mit dem a;;
zufrieden gibt, spricht man vom zyklischen Jakobi-Verfahren mit Schwel-
lenwert.
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