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VorwortDas vorliegende Skriptum ist anhand der von mir im Wintersemester 2006/2007gehaltenen Vorlesung Numeris
he Mathematik I entstanden. Diese Vorlesung so-wie ihre Fortsetzung Numeris
he Mathematik II führt in die Grundlagen der Nu-meris
hen und Angewandten Mathematik ein und bietet damit einen Einstieg fürweiterführende Vorlesungen auf diesem Gebiet. Neben Grundlagen in der Fehler-analyse und der Funktionalanalysis werden in dem hier vorliegenden ersten Teillineare Glei
hungssysteme, ni
htlineare Glei
hungssysteme und die Interpolationvon Funktionen behandelt. Die eingeführten Methoden bes
hreiben Eliminations-verfahren, Orthogonalisierungsverfahren und iterative Verfahren sowie klassis
heVerfahren der Interpolation. Diese Themen werden in Numerik II mit Integrati-on, Approximation und der numeris
he Lösung von gewöhnli
hen Di�erentialglei-
hungen fortgesetzt, es wird dort au
h die Lösung von Eigenwertaufgaben undvon Optimierungsproblemen kurz gestreift.Die Zielgruppe der Numerik I sind neben Mathematik-Studierenden ab dem drit-ten Semester au
h interessierte Hörerinnen und Hörer aus der Informatik undder Physik. Es sei bemerkt, dass die Vorlesung dur
h theoretis
he Übungen undProgrammieraufgaben (mit Matlab) ergänzt wurde. Au
h beim Selbststudium desTextes ist die eigenständige Bes
häftigung mit dem Sto� und die Implementationdes einen oder anderen Verfahrens unbedingt zu empfehlen!Ein groÿer Anteil des vorliegenden Skriptes wurde mit sehr viel Sorgfalt von AnkeU�mann und Mi
hael Siebert erstellt: An beide dafür ein herzli
hes Dankes
hön!Frau U�mann bin i
h besonders dankbar für die Erstellung der Graphiken; Mi-
hael Siebert beeindru
kte mi
h dur
h seine oft tri
krei
hen Ideen, mit denen esihm gelang, alle anfallenden Problemen (ni
ht nur in LATEX) zu lösen.
Göttingen, September 2007Anita S
höbel

1



Inhaltsverzei
hnis
1 The name of the game: Numerik 31.1 Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2 Algorithmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.3 Aufwand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.4 Fehlerabs
hätzung und Gleitkommazahlen . . . . . . . . . . . . . 111.5 Fehlerfortp�anzung, Kondition und Stabilität . . . . . . . . . . . 152 Lineare Glei
hungssysteme: Eliminationsverfahren 192.1 Begri�e und Grundlagen . . . . . . . . . . . . . . . . . . . . . . . 192.2 Gauÿ-Verfahren und LU-Zerlegung . . . . . . . . . . . . . . . . . 222.3 Das Cholesky-Verfahren . . . . . . . . . . . . . . . . . . . . . . . 372.4 S
hwa
hbesetzte Matrizen . . . . . . . . . . . . . . . . . . . . . . 413 Störungsre
hnung 453.1 Metris
he und normierte Räume . . . . . . . . . . . . . . . . . . . 453.2 Normen für Abbildungen und Matrizen . . . . . . . . . . . . . . . 523.3 Kondition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614 Orthogonalisierungsverfahren 654.1 Die QR-Zerlegung . . . . . . . . . . . . . . . . . . . . . . . . . . . 654.2 Lineare Ausglei
hsprobleme . . . . . . . . . . . . . . . . . . . . . 764.3 Singulärwertzerlegung . . . . . . . . . . . . . . . . . . . . . . . . 824.4 Anwendung der Singulärwertzerlegung auf lineare Ausglei
hsprobleme 835 Iterationsverfahren 865.1 Das Verfahren der sukzessiven Approximation . . . . . . . . . . . 865.2 Der Bana
h's
he Fixpunktsatz . . . . . . . . . . . . . . . . . . . . 905.3 Iterative Verfahren für lineare Glei
hungssysteme . . . . . . . . . 955.4 Iterative Verfahren für ni
htlineare Glei
hungssysteme . . . . . . . 1126 Interpolation 1226.1 Polynomiale Interpolation . . . . . . . . . . . . . . . . . . . . . . 1226.2 Abs
hätzung des Interpolationsfehlers und Konvergenzanalyse . . 1352



6.3 Spline Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 1386.4 Trigonometris
he Interpolation . . . . . . . . . . . . . . . . . . . . 151

3



Kapitel 1The name of the game: Numerik
1.1 EinleitungIn der Wikipedia ist der Begri� Numerik folgendermaÿen de�niert:Die numeris
he Mathematik, kurz Numerik genannt, bes
häftigt si
hals Teilgebiet der Mathematik mit der Konstruktion und Analyse vonAlgorithmen für kontinuierli
he mathematis
he Probleme.Interesse an sol
hen Algorithmen besteht meist aus einem der beidenfolgenden Gründe:

• Es gibt zu dem Problem keine explizite Lösungsdarstellung (sozum Beispiel bei den Navier-Stokes-Glei
hungen oder bei Inte-gralen ohne Stammfunktion) oder
• die Lösungsdarstellung existiert, ist jedo
h ni
ht geeignet, umdie Lösung s
hnell auszure
hnen beziehungsweise sie liegt in einerForm vor, in der Re
henfehler si
h stark bemerkbar ma
hen (zumBeispiel bei vielen Potenzreihen).In der angewandten Mathematik setzt man dabei no
h einen S
hritt früher an:Bes
häftigt man si
h mit Anwendungen, so liegt zunä
hst no
h kein mathema-tis
hes Problem vor, sondern einzig eine von Praktikern formulierte Problem-bes
hreibung. Die erste Aufgabe besteht also in der Modellierung d.h. in derFormalisierung eines in der Natur beoba
hteten Phänomens oder eines ökonomi-s
hen Problems dur
h ein sogenanntes mathematis
hes Modell. Mathematis
heModelle sind Systeme von Glei
hungen oder Unglei
hungen, dur
h die Bezie-hungen zwis
hen bekannten und unbekannten Gröÿen dargestellt werden. Dabeikönnen algebrais
he Glei
hungen (oder Unglei
hungen), Di�erentialglei
hungenoder Integralglei
hungen verwendet werden und es dürfen dabei alle Arten vonFormeln oder Grenzwerten auftreten. Gibt es zusätzli
h no
h ein Kriterium zur4



Beurteilung der Lösung (eine Zielfunktion), so liegt ein Problem der mathemati-s
hen Optimierung vor und das Modell wird au
h als mathematis
hes Programmbezei
hnet.Klassis
he Disziplinen der �reinen� Mathematik wie die Algebra und Analysisbes
häftigen si
h mit Fragen der Existenz und Eindeutigkeit der Lösungen ma-thematis
her Modelle. Dagegen besteht das Ziel der numeris
hen Mathematikdarin, Verfahren zu entwi
keln, mit denen si
h die Lösungen mathematis
herModelle praktis
h (auf derzeit verfügbaren Re
henanlagen) ermitteln lassen. Wirverans
hauli
hen das an einigen Beispielen:
• Der Fundamentalsatz der Algebra besagt, dass ein reelles Polynom vomGrad n au
h n Nullstellen in der Menge der komplexen Zahlen besitzt. DerExistenzbeweis ist jedo
h ni
ht konstruktiv, d.h. man erhält kein Verfahren,wie man die entspre
henden Nullstellen bestimmen kann. Das liefert dienumeris
he Mathematik.
• Die Lösung linearer, ni
ht singulärer Glei
hungssysteme kann dur
h dieCramers
he Regel aufges
hrieben werden. Für die praktis
he Bere
hnungist sie aber bei mehr als drei Variablen unbrau
hbar.
• Der Satz von Weierstrass liefert die Aussage, dass stetige Funktionen aufkompakten Mengen ihre Minima (oder Maxima) annehmen. Wie aber sollman sie bere
hnen?
• Für Anfangswertprobleme einer gewöhnli
hen Di�erentialglei
hung liefertder Existenzbeweis von Pi
ard-Lindelöf unter bestimmten Glattheitsvor-aussetzungen ein konstruktives Iterationsverfahren. Bei der Realisierung aufComputern ist dieses Verfahren aber ni
ht sonderli
h e�ektiv.In der vorliegenden Vorlesung: Numerik I sollen Verfahren für die Bere
hnungmathematis
her Modelle vorgestellt und diskutiert werden. Die Vorlesung ri
htetsi
h an Studierende der Mathematik ab dem dritten Semester, und gerne au
han interessierte Physik oder Informatik-Studierende. Die in der Vorlesung ver-wendeten Grundlagen sind so ausgewählt, dass sie au
h aus der �Mathematik fürInformatik-Anfänger� Vorlesung bekannt sein sollten. Die Vorlesung bietet denEinstieg in den Berei
h numeris
he Mathematik, wissens
haftli
hes Re
hnen undOptimierung und ist als Grundlage der meisten Vorlesungen aus diesem Berei
hzu verstehen. Die Vorlesung kann mit Numerik II oder mit Optimierung fortge-setzt werden.Um die numeris
he Mathematik ri
htig zu verstehen, sollte man natürli
h au
heiniges selbst programmiert und implementiert haben. Es werden in den Übungendaher theoretis
he und praktis
he Aufgaben gestellt, wobei die meisten Program-mieraufgaben mit MATLAB zu bearbeiten sind. MATLAB ist eine Skriptspra
he,5



in der viele numeris
he Verfahren, Operationen und die entspre
henden Daten-strukturen bereits zur Verfügung stehen. Um die S
hwierigkeiten zu verstehen,auf die man stöÿt, wenn man ein Verfahren von Grund auf neu implementiert,sind bei einigen Aufgaben au
h �klassis
he� Programmierspra
hen zu verwenden.Computeralgebrasysteme (wie MuPAD, Maple, Mathemati
a, Singular) werdenebenfalls gestreift.Es gibt zahlrei
he Lehrbü
her und Skripten über numeris
he Mathematik, vondenen die folgenden Quellen erwähnt werden sollen:
• J. Stoer, Numeris
he Mathematik I, Springer, 1989.
• J. Werner. Numeris
he Mathematik 1, Vieweg, Brauns
hweig, 1992.
• P. Deu�hard und A. Hohmann. Numeris
he Mathematik I. Walter de Gruy-ter, Berlin, New York, 2nd edition, 1993.
• R. Kreÿ. Numeri
al Analysis. Springer, New York, 1998.
• M. Hanke-Bourgeois. Grundlagen der Numeris
hen Mathematik und deswissens
haftli
hen Re
hnens. Teubner, Stuttgart, 2002.
• R. S
haba
k, H. Wendland. Numeris
he Mathematik. Springer, Berlin, 2004.
• Skriptum Numerik I von G. Lube, siehehttp://www.num.math.uni-goettingen.de/lube/NM1-04akt.pdf
• Skriptum Numerik I von T. Hohage, siehehttp://www.num.math.uni-goettingen.de/hohage/Numerik1/numerik1.htmlIn der Vorlesung Numerik I werden die folgenden Themen behandelt:
• Lineare Glei
hungssysteme
• Ausglei
hsprobleme
• Nullstellensu
he (eine ni
htlineare Glei
hung oder ein System ni
htlinearerGlei
hungen)
• InterpolationDie �klassis
he� Numerik bes
häftigt si
h vorrangig mit kontinuierli
hen Proble-men. Dagegen sind diskrete Probleme dur
h eine endli
he Menge an mögli
hen Lö-sungen gekennzei
hnet. Au
h sie sind ein wi
htiger Bestandteil der angewandtenMathematik, insbesondere bei ökonomis
hen Fragestellungen. In diesem Skriptwerden wir auf diskrete Probleme aber ni
ht eingehen.6



1.2 AlgorithmenEin Algorithmus für ein Problem (P) ist ein dur
h eine Abfolge von (Re
hen-)-Vors
hriften bes
hriebenes Verfahren, das zu einer �Lösung� des Problems (P)führt. Je na
h Qualität der erzielten Lösung, unters
heidet man zwis
hen exaktenVerfahren, konstruktiven Verfahren und Heuristiken.Exakte Verfahren sind streng genommen nur bei diskreten mathematis
henAufgaben mögli
h, in denen unter endli
h vielen Mögli
hkeiten eine Lösung aus-zuwählen ist. Dazu gehört beispielsweise das Gebiet der ganzzahligen Program-mierung sowie die meisten Aufgaben in Netzwerken. Dagegen ist bei kontinuier-li
hen Problemen aufgrund der bes
hränkten Genauigkeit der Darstellung reellerZahlen dur
h den Computer jede Lösung eine Näherungslösung.Ein konstruktives oder direktes Verfahren ist eine Re
henvors
hrift, mit de-ren Hilfe die numeris
he Lösung einer mathematis
hen Aufgabe in endli
h vielenRe
hens
hritten beliebig genau ermittelt werden kann.Lässt si
h gar keine Genauigkeit angeben oder sind dieser Genauigkeit Grenzengesetzt, so spri
ht man von einer Heuristik. Kann wie im letzteren Fall zwar ei-ne Genauigkeit angegeben werden, diese ist aber bes
hränkt, so hat die Heuristikeine Gütegarantie; man spri
ht dann au
h von einer Approximation. Heuristikenwerden vor allem bei sehr s
hweren Problemen der diskreten Optimierung ver-wendet und führen dort häu�g zu empiris
h sinnvollen Ergebnissen.Neben der Wohlde�niert eines numeris
hen Verfahrens sollte man bei jedem Ver-fahren die folgenden Punkte diskutieren:
• Aufwand
• Fehleranalyse
• Stabilität.1.3 AufwandEin Verfahren kann nur dann sinnvoll eingesetzt werden, wenn es au
h in prakti-kabler Zeit eine Lösung ermittelt. Daher ist es wi
htig, den Aufwand vers
hiede-ner Verfahren für die glei
he Aufgabenstellung verglei
hend zu diskutieren. Manspri
ht au
h von der Komplexität eines Verfahrens und bezei
hnet damit denAufwand an wesentli
hen Re
henoperationen in Abhängigkeit einer sinnvoll ge-wählten Eingangsgröÿe.Als wesentli
he Re
henoperationen zählen wir Additionen, Subtraktionen,Multiplikationen, Divisionen, Verglei
he und davon getrennt Funktionsaus-wertungen. (Zuweisungen werden ni
ht gezählt.)7



Die Eingangsgröÿe kann meistens auf vers
hiedene Weise gewählt werden. Siesollte die Gröÿe des Problems repräsentieren.Beispiele:
• Bestimme das Minimum von n Zahlen x1, . . . , xn: Hier bestimmt man dieAnzahl der Re
henoperationen in Abhängigkeit der Zahl n. Für den einfa-
hen Algorithmus

Min := ∞; For i := 1 to n do: If xi < Min then Min := xi; Output: Minergeben si
h n Verglei
he, also eine Anzahl von A1(n) = n wesentli
henRe
henoperationen.
• Bei der Addition von zwei Vektoren x und y der Dimension k bietet si
hals sinnvolle Eingangsgröÿe die Dimension k an. Das VerfahrenFor i := 1 to k do: zi := xi + yi; Output: z1, . . . , znbenötigt k Additionen, hat also einen Aufwand von A2(k) = k

• Addition von zwei Matrizen A, B der Dimension k × k (mit Elementen
aij , bij, i, j = 1, . . . , k): Hier kann man als Eingabegröÿe k oder k2 wählen.Das kanonis
he Verfahren ist das folgende.For i := 1 to k do:For j = 1 to k do: cij := aij + bij ;Output: cij, i, j = 1, . . . , nDie Anzahl der wesentli
hen Re
henoperationen beträgt k2. Normalerweisewird man den Aufwand in Abhängigkeit der Anzahl der Matrixelemente
m = k2 mit A3(m) = m als linear angeben. In vielen Anwendungen ma
htes aber Sinn, die Dimension k als Eingabegröÿe zu wählen, was zu einemquadratis
hen Aufwand A4(k) = k2 führt.Bei komplizierteren Problemen sind meist vers
hiedene Verfahren mit jeweils un-ters
hiedli
hem Aufwand mögli
h. Hat man also z.B. einen Algorithmus A undeinen Algorithmus B zur Auswahl, und ist der Aufwand beider Verfahren dur
hFunktionen A(n) beziehungsweise B(n) bekannt so wird man für die Problem-gröÿe n das Verfahren mit dem jeweils kleineren Aufwand wählen.Um für steigende Problemgröÿen den Aufwand von zwei Verfahren auf einfa
heMethode zu verglei
hen, bieten si
h die Landau-Symbole an. Diese sind ni
ht nurin der Analyse von Aufwandsabs
hätzungen sondern allgemeiner zur quantitati-ven Bes
hreibung von Grenzprozessen ein wi
htiges Hilfsmittel.Die Landau-Symbole geben dabei an, wie si
h die Gröÿe von zwei Funktionen

A(n), B(n) : IN → R im Verhältnis zueinander entwi
kelt, wenn n → ∞ geht.8



Beispiel: Tabelle mit der Entwi
klung von vers
hiedenen Funktionen in der Vor-lesung.De�nition 1.1 Seien (an), (bn) reelle Zahlenfolgen. Die Landau-Symbole sindwie folgt de�niert.1. an = O(bn) falls es ein C ∈ R, C > 0 und ein N ∈ IN gibt mit
|an| ≤ C|bn| für alle n ≥ N.2. an = Ω(bn) falls es ein C ∈ R, C > 0 und ein N ∈ IN gibt mit
|an| ≥ C|bn| für alle n ≥ N.3. an = o(bn) falls es zu jedem ε > 0 ein N ∈ IN gibt mit
|an| ≤ ε|bn| für alle n ≥ N.4. an = Θ(bn) falls an = O(bn) und an = Ω(bn).Um die Bedeutung dieser Symbole zu verdeutli
hen, formulieren wir die Aussagenum, indem wir die Entwi
klung des Quotienten an

bn
betra
hten, um die Wa
hstums-raten der beiden Folgen zu verglei
hen. Nehmen wir dazu an, dass bn 6= 0 für alle

n ∈ IN. Dann erhält man:
an = O(bn) ⇐⇒

∣
∣
∣
∣

an

bn

∣
∣
∣
∣
≤ C für alle n ≥ N und ein C > 0.

an = Ω(bn) ⇐⇒
∣
∣
∣
∣

an

bn

∣
∣
∣
∣
≥ C für alle n ≥ N und ein C > 0.

an = o(bn) ⇐⇒
∣
∣
∣
∣

an

bn

∣
∣
∣
∣
→ 0

an = Θ(bn) ⇐⇒ C1 ≤
∣
∣
∣
∣

an

bn

∣
∣
∣
∣
≤ C2 für alle n ≥ N und C1, C2 > 0.Die Bedeutung der Landau-Symbole kann hier nun abgelesen werden: Ist an =

O(bn) so wä
hst an ni
ht s
hneller als bn, im Fall an = Ω(bn) wä
hst an ni
htlangsamer als bn. Weiterhin bedeutet an = Θ(bn), dass beide Folgen annäherndglei
h s
hnell wa
hsen, und bei an = o(bn) wä
hst bn viel s
hneller als an.9



Einfa
he Beispiele:
n2 = O(n3)

n2 = O( 1
1000

n3)

n3 = Ω(n2)

n2 = O(1
3
n2)

n2 = Ω(1
3
n2)

n2 = Θ(1
3
n2)

n2 = o( 1
1000

n3)

n2 6= o(1
3
n2)Lemma 1.2 Die folgenden Aussagen gelten:1. Alle vier Begri�e sind transitiv, d.h.

an = O(bn), bn = O(cn) =⇒ an = O(cn),analog für Ω, o und Θ.2. Θ ist eine Äquivalenzrelation3. an = O(bn) genau dann wenn bn = Ω(an).4. an = o(bn) =⇒ an = O(bn).Beweis: Lässt si
h lei
ht na
hre
hnen, Übungen!Weiterhin sollte man si
h klar ma
hen, dass
an = O(bn) ⇐⇒ an = O(αbn) für alle α ∈ R \ {0}

an = O(bn) und a′
n = O(bn) =⇒ an + a′

n = O(bn).Diese Aussagen gelten au
h für o, Ω, Θ gilt.Von groÿer praktis
her Bedeutung ist (wie in der Tabelle am Anfang gezeigt),dass
• Logarithmis
hes Wa
hstum langsamer ist als polynomiales, in Formeln:

(logβ(n))γ = o(nα) für alle α > 0, β > 1, γ > 0

• Polynomiales Wa
hstum s
hwä
her ist als exponentielles,
nα = o(βn) für alle α > 0, β > 110



• Exponentielles Wa
hstum s
hwä
her ist als fakultatives,
βn = o(n!) für alle β > 1Diese Aussagen lassen si
h nun auf die Analyse von Algorithmen anwenden. Dazubetra
hten wir die folgenden beiden s
hematis
hen Algorithmen-Bru
hstü
ke:

• Algorithmus 1:S
hritt 1: Führe Verfahren A ausS
hritt 2: Führe Verfahren B ausHat Verfahren A einen Aufwand von O(an) und Verfahren B einen Aufwand von
O(bn), und gilt an = O(bn), so ergibt si
h für Algorithmus 1 ein Aufwand von
O(bn), das heiÿt, bei der Hintereinanderausführung von Algorithmenteilen istimmer der gröÿere Aufwand maÿgebend.

• Algorithmus 2:S
hritt 1: Für m = 1, . . . , M führe Verfahren A ausHat Verfahren A einen Aufwand von O(an), und lässt si
h die Gröÿe der Zahl Min Abhängigkeit von der Eingabegröÿe n dur
h M = O(cn) abs
hätzen, so ergibtsi
h für Algorithmus 2 ein Aufwand von O(an · cn).Abs
hlieÿend erweitern wir De�nition 1.1 auf beliebige Funktionen. Vor allem
O und o werden in dieser Formulierung au
h häu�g für die Abs
hätzung vonRestgliedern verwendet.De�nition 1.3 Seien f, g : IK → IK. Dann de�niert man

• f = O(g) für x → x0 falls f(xn) = O(g(xn)) für jede Folge xn → x0.
• Analog für Ω, o, Θ.Es lässt si
h lei
ht zeigen, dass obige De�nition äquivalent ist zu
• f = O(g) falls es eine Zahl C > 0 und eine Umgebung U = U(x0) von x0gibt, so dass |f(x)| ≤ C|g(x)| für alle x ∈ U .
• f = o(g) falls es zu jedem ε > 0 eine Umgebung U = U(x0) von x0 gibt, sodass |f(x)| ≤ ε|g(x)| für alle x ∈ U .Die Umformulierungen von Ω und Θ erhält man analog.11



1.4 Fehlerabs
hätzung und GleitkommazahlenHat man ein Verfahren zur Lösung eines mathematis
hen Problems entwi
kelt,so sind die folgenden Fehlerquellen zu diskutieren:
• Verfahrensfehler: Dazu gehören die folgenden beiden TypenAbbru
hfehler: Sie entstehen beim Ersetzen eines unendli
hen Prozessesdur
h ein endli
hes Verfahren, z.B. das Abbre
hen beim Aufsummiereneiner konvergenten unendli
hen Reihe.Diskretisierungsfehler: Dagegen entstehen Diskretisierungsfehler, wennman eine kontinuierli
he Menge dur
h eine diskrete ersetzt. Das kannbeispielsweise bei der Bes
hreibung einer Funktion dur
h endli
h vieleKoe�zienten oder der Auswertung an endli
h vielen Gitterpunktenges
hehen.
• Eingangsfehler sind Fehler der Eingangsgröÿen (z.B. Datenfehler). Sie be-ziehen si
h auf die Qualität der Eingabedaten, die aufgrund von Messfeh-lern oder aufgrund statistis
her S
hwankungen ungenau vorliegen können.Man
hmal sind Eingabegröÿen au
h ni
ht hinrei
hend bekannt und man istauf S
hätzwerte (z.B. über Kundenverhalten) angewiesen.
• Wi
htig sind auÿerdem Rundungsfehler die dur
h die jeweilige Mas
hi-nengenauigkeit bedingt werden. Rundungsfehler können s
hon bei der Über-setzung der (mögli
herweise fehlerbehafteten) Eingangswerte auf mas
hi-nenkonforme Daten auftreten.Eingangsfehler und bei der Eingabe entstehende Rundungsfehler sind zunä
hstunabhängig von der gewählten Re
henmethode, aber man muss besonders fürkonstruktive Verfahren unbedingt abs
hätzen, wie si
h sol
he Fehler im Verlaufdes Verfahrens weiterentwi
keln. Dabei werden s
hon vorhandene Fehler in jedemS
hritt des Verfahrens übertragen; Rundungsfehler können zusätzli
h bei jedernumeris
hen Operation neu entstehen. Das Ziel ist, abzus
hätzen, wie s
hlimmsi
h Eingangsfehler und Rundungsfehler auf die Qualität des Ergebnisses aus-wirken. Ein gut konditioniertes Problem liegt vor, wenn kleine Änderungen derAusgangsgröÿen au
h nur kleine Lösungsänderungen bewirken. Das Problem wirddann au
h robust genannt. Bei s
hle
ht konditionierten Problemen muss man ge-eignete Verfahren wählen.Im folgenden formalisieren wir, was man unter Fehler versteht.De�nition 1.4 Sei x̃ = f̃(ỹ) die von einem Verfahren f̃ bei (fehlerhaften) Ein-gangsdaten ỹ ermittelte Lösung. Sei x = f(y) die exakte Lösung des Problemsmit exakten Eingangsdaten y. Dann bezei
hnen wir mit |x̃ − x| den absolutenFehler der Lösung. Im Fall x 6= 0 heiÿt | x̃−x

x
| der relative Fehler der Lösung.12



Der absolute Verfahrensfehler eines Verfahrens f̃ ist |f̃(y)− f(y)|, der rela-tive Verfahrensfehler für f(y) 6= 0 ist ∣∣∣ f̃(y)−f(y)
f(y)

∣
∣
∣. Das Verfahren f̃ nennt manK-Approximation, wenn es für alle mögli
hen Instanzen (d.h. für alle mögli-
hen Eingangsdaten) y eine Lösung ermittelt, deren relativer Fehler maximal Kist, wenn also für alle y gilt:

∣
∣
∣
∣
∣

f̃(y) − f(y)

f(y)

∣
∣
∣
∣
∣
≤ K.Der dur
h fehlerhafte Eingangsdaten übertragene absolute Fehler ist |f(ỹ)−f(y)|,der dur
h fehlerhafte Eingangsdaten entstehende relative Fehler ist ∣∣∣f(ỹ)−f(y)

f(y)

∣
∣
∣.Mit dem letztgenannten Fehler werden wir uns in Abs
hnitt 1.5 näher bes
häfti-gen.Hier s
hauen wir uns zunä
hst die Abs
hätzung des Abbru
hfehlers am Beispielder Bere
hnung der Exponentialfunktion exp(x) =

∑∞
j=0

xj

j!
an. Ein mögli
hesVerfahren zur Bere
hnung von exp(x) für x ∈ R besteht in der Auswerten der

n-ten Partialsumme
Pn(x) =

n∑

j=0

xj

j!
.(In den Bezei
hnungen von De�nition 1.4 ist f̃(x) = Pn(x) und f(x) = exp(x).)Wir nehmen an, dass n > |x| gewählt wurde.Für x < 0 erhält man dann den absoluten Abbru
hfehler

| exp(x) − Pn(x)| =

∣
∣
∣
∣
∣

∞∑

j=n+1

xj

j!

∣
∣
∣
∣
∣

≤ |x|n+1

(n + 1)!
− |x|n+2

(n + 2)!
+

|x|n+3

(n + 3)!
︸ ︷︷ ︸

≤0

− |x|n+4

(n + 4)!
+

|x|n+5

(n + 5)!
︸ ︷︷ ︸

≤0

. . .

≤ |x|n+1

(n + 1)!und für x ≥ 0 kann man
| exp(x) − Pn(x)| =

∞∑

j=n+1

xj

j!
≤

∞∑

j=0

xj

j!
· xn+1

(n + 1)!
= exp(x)

|x|n+1

(n + 1)!abs
hätzen. In einer kleinen Umgebung von Null hat man also kleine absolute(und relative) Fehler. Das Verfahren, exp(x) dur
h Auswertung der n-ten Par-tialsumme zu bestimmen, ist also für positive reelle Zahlen x eine K = |x|n+1

(n+1)!
-Approximation. Weil |x|n+1 = o ((n + 1)!), kann man die gewüns
hte Zahl exp(x)beliebig genau approximieren, indem man n wa
hsen lässt.13



Wenden wir uns nun den in der Numerik besonders wi
htigen Rundungsfehlernund ihrer Fortp�anzung zu. Dazu müssen wir wissen, wie reelle Zahlen auf Re-
henanlagen dargestellt werden. Übli
h ist die Darstellung dur
h Gleitkomma-zahlen:De�nition 1.5 Sei B ≥ 2 eine ganze Zahl. Eine positive B-adis
he und m-stellige normalisierte Gleitkommazahl hat die Form x = 0 oder
x = Be

−1∑

k=−m

xkB
k mit e ∈ ZZ, x−1 6= 0, xk ∈ {0, 1, . . . , B−1} für k = −m, . . . ,−1.Man bezei
hnet die ganze Zahl e als Exponenten, B ≥ 2 als Basis, die xk, k =

−m, . . . ,−1 als Zi�ern und∑−1
k=−m xkB

k als Mantisse. Für festes m de�nierenwir rdm(x) als die auf m Stellen abges
hnittene Gleitkommadarstellung von x und
rdm(x) als die auf m Stellen gerundete Gleitkommadarstellung von x.Beispiel: Die Zahl 123.45 lässt si
h als Gleitkommazahl bezügli
h der BasisB = 10darstellen als

123.45 = 1 · 102 + 2 · 101 + 3 · 100 + 4 · 10−1 + 5 · 10−2

= 103 · (1 · 10−1 + 2 · 10−2 + 3 · 10−3 + 4 · 10−4 + 5 · 10−5)

= 103 · 0.12345Der Exponent von 123.45 ist also e = 3, die Mantisse ist 0.12345 und im vorlie-genden Fall rei
hen m = 5 Zi�ern, um die Zahl exakt darzustellen. Für m = 4ist
rd4(123.45) = 103 · (1 · 10−1 + 2 · 10−2 + 3 · 10−3 + 5 · 10−4)

= 103 · 0.1235

rd4(123.45) = 103 · (1 · 10−1 + 2 · 10−2 + 3 · 10−3 + 4 · 10−4)

= 103 · 0.1234die auf vier Stellen gerundete bzw. abges
hnittene Gleitkommadarstellung von
123.45.In Re
hnern verwendet man in der Regel B = 2 und eine Stellenzahl von m = 52,um mit einem weiteren Vorzei
henbit und 11 Bits für die Exponentendarstellungmit insgesamt 64 Bits pro Zahl aus zukommen. Gleitkommazahlen garantiereneine feste relative Genauigkeit der Zahldarstellung.Satz 1.6 Für die na
h m Stellen abges
hnittene B-adis
he Darstellung von xgilt das Rundungsgesetz

|x − rdm(x)| ≤ |x|epsmit eps = B1−m, d.h. der relative Fehler ist kleiner als 1
Bm−1 .14



Beweis: Sei x > 0 und
x =

n(x)
∑

k=−∞

bkB
kdie B-adis
he Darstellung von x mit Zi�ern bk ∈ {0, . . . , B − 1}, Basis B ≥ 2und einer führenden Zi�er bn(x) 6= 0 mit einer ganzen Zahl n(x). Normierung wiein De�nition 1.5 ergibt

x = B1+n(x)

−1∑

k=−∞

bn(x)+1+kB
k,woraus wir bere
hnen können, dass

|x − rdm(x)| = B1+n(x)

−1∑

k=−∞

bn(x)+1+kB
k − B1+n(x)

−1∑

k=−m

bn(x)+1+kB
k

= B1+n(x)

−m−1∑

k=−∞

bn(x)+1+kB
k

≤ B1+n(x)

−m−1∑

k=−∞

(B − 1)Bk weil bi ∈ {1, . . . , B − 1} ∀i

= B1+n(x)−m siehe (*)
≤ |x|B1−m,weil x ≥ bn(x)B

n(x) ≥ Bn(x). Um (*) zu re
htfertigen, summieren wir auf:
−m−1∑

k=−∞

(B − 1)Bk = (B − 1)
∞∑

k=m+1

(
1

B

)k

= (B − 1)

(
∞∑

k=0

(
1

B

)k

−
m∑

k=0

(
1

B

)k
)

= (B − 1)

(

1

1 −
(

1
B

) − 1 −
(

1
B

)m+1

(
1 − 1

B

)

)

= (B − 1)
1

1 − 1
B

(
1

B

)m+1

=

(
1

B

)m

.Den Fall x < 0 behandelt man analog. QEDHeutige Re
hner stellen also alle reelle Zahlen mit einem maximalen relativenFehler von eps = 2−51 ≈ 4.4409 · 10−16 dar. Die 16te Dezimalstelle ist also bis auf5 Einheiten genau. Erfreuli
herweise ist auf den meisten Re
henanlagen gewähr-leistet, dass au
h alle Einzeloperationen (+.−, ·, / aber au
h sin,√, exp . . .) auf15



Gleitkommazahlen mit einem maximalen relativen Fehler eps = 2−51 ausgeführtwerden. Deshalb bezei
hnet man eps au
h als Mas
hinengenauigkeit. Den-no
h können si
h die entstehenden Rundungsfehler im Verlauf eines Verfahrensvergröÿern.Der (gesamte) Rundungsfehler eines Verfahrens entsteht
• dur
h die Rundung der Eingabedaten auf Gleitkommazahlen,
• dur
h die Rundungsfehler der einzelnen Gleitkommaoperationen, sowie
• dur
h Fortp�anzung der Eingabefehler und der einzelnen Rundungsfehlerbei na
hfolgenden Operationen.Im nä
hsten Abs
hnitt werden wir uns daher mit der Übertragung von Fehlernbes
häftigen.1.5 Fehlerfortp�anzung, Kondition und StabilitätIn der numeris
hen Mathematik heiÿt ein Verfahren stabil, wenn es gegenüberkleinen Störungen der Daten unemp�ndli
h ist. Insbesondere bedeutet dies, dasssi
h Rundungsfehler ni
ht zu stark auf die Bere
hnung auswirken.Die Beziehung zwis
hen Kondition eines Problems und Stabilität lässt si
h wiefolgt bes
hreiben: Es sei f(y) das mathematis
he Problem in Abhängigkeit einerEingangsgröÿe y und es sei f̃ der numeris
he Algorithmus, sowie ỹ die gestör-ten Eingangsdaten. Na
h De�nition 1.4 interessieren wir uns für den folgenden(absoluten) Fehler:

|f̃(ỹ) − f(y)|.Mit der Dreie
ksunglei
hung gilt:
|f̃(ỹ) − f(y)| = |f̃(ỹ) − f(ỹ) + f(ỹ) − f(y)|

≤ |f̃(ỹ) − f(ỹ)| + |f(ỹ) − f(y)|.Hierbei sagt der erste Fehler-Term aus, wie gut si
h das Verfahren f̃ im Verglei
hmit der exakten Lösung f des Problems bei gestörten Eingangsdaten ỹ verhält.Dieser Term ist klein, wenn das Verfahren stabil ist. Der zweite Term hängtdagegen ni
ht von dem Verfahren ab, sondern auss
hlieÿli
h von dem Problem.Er ist klein, wenn das Problem gut konditioniert ist. Die Stabilität ist also eineEigens
haft des Algorithmus und die Kondition eine Eigens
haft des Problems.Im Ans
hluss an den letzten Abs
hnitt wollen wir nun den zweiten Term wei-ter untersu
hen. Wir mö
hten also analysieren, wie si
h relative Fehler (die z.B.dur
h Rundung entstanden sein können) dur
h vers
hiedene Operationen fort-p�anzen, wenn diese exakt ausgeführt werden. Dazu betra
hten wir zunä
hst dieOperationen +, ·, /. 16



Lemma 1.7 Seien x, y ∈ R \ {0} mit relativen Fehlern
εx =

∣
∣
∣
∣

x̃ − x

x

∣
∣
∣
∣
, εy =

∣
∣
∣
∣

ỹ − y

y

∣
∣
∣
∣
.Für den relativen Fehler bei der Addition gilt

∣
∣
∣
∣

x̃ + ỹ − (x + y)

x + y

∣
∣
∣
∣
≤ εx

∣
∣
∣
∣

x

x + y

∣
∣
∣
∣
+ εy

∣
∣
∣
∣

y

x + y

∣
∣
∣
∣
.Beweis: Na
hre
hnen zeigt, dass

∣
∣
∣
∣

x̃ + ỹ − (x + y)

x + y

∣
∣
∣
∣
≤ |x̃ − x| + |ỹ − y|

|x + y| =
|x|εx + |y|εy

|x + y| = εx

∣
∣
∣
∣

x

x + y

∣
∣
∣
∣
+ εy

∣
∣
∣
∣

y

x + y

∣
∣
∣
∣
.QEDHaben x und y das glei
he Vorzei
hen, so ergibt si
h also bei der Addition derbeiden Zahlen ein relativer Fehler von hö
hstens εx+εy. Dagegen kann der relativeFehler bei der Subtraktion von zwei Zahlen x, y glei
hen Vorzei
hens (also derAddition von x und −y) den mögli
herweise sehr groÿen Wert

εx

∣
∣
∣
∣

x

x − y

∣
∣
∣
∣
+ εy

∣
∣
∣
∣

y

x − y

∣
∣
∣
∣errei
hen.Lemma 1.8 Seien x, y ∈ R \ {0} mit relativen Fehlern

εx =

∣
∣
∣
∣

x̃ − x

x

∣
∣
∣
∣
, εy =

∣
∣
∣
∣

ỹ − y

y

∣
∣
∣
∣
.Unter Verna
hlässigung von Produkten von Fehlern lässt si
h der relative Fehlerbei der Multiplikation abs
hätzen dur
h

∣
∣
∣
∣

x̃ỹ − xy

xy

∣
∣
∣
∣
≤ εx + εyund der relative Fehler bei der Division ebenfalls dur
h

∣
∣
∣
∣
∣

x̃
ỹ
− x

y
x
y

∣
∣
∣
∣
∣
≤ εx + εy.Beweis: Au
h hier re
hnen wir na
h:

∣
∣
∣
∣

x̃ỹ − xy

xy

∣
∣
∣
∣

=

∣
∣
∣
∣

(x̃ − x)ỹ + x(ỹ − y)

xy

∣
∣
∣
∣
≤ |x̃ − x||ỹ| + |x||ỹ − y|

|xy|

= εx

∣
∣
∣
∣

ỹ

y

∣
∣
∣
∣
+ εy = εxεy + εx + εy,17



wobei im letzten S
hritt ausgenutzt wurde, dass
∣
∣
∣
∣

ỹ

y

∣
∣
∣
∣
≤ |ỹ − y|

|y| +
|y|
|y| = εy + 1.Verna
hlässigen wir nun Produkte von Fehlern, erhalten wir das gewüns
hte Er-gebnis.Es fehlt no
h die Fehlerübertragung bei der Division:

∣
∣
∣
∣
∣

x̃
ỹ
− x

y
x
y

∣
∣
∣
∣
∣

=

∣
∣
∣
∣

x̃y − xỹ

yỹ
· y

x

∣
∣
∣
∣
=

∣
∣
∣
∣

(x̃ − x)y + x(y − ỹ)

x · y · ỹ

∣
∣
∣
∣
· |y|

≤ εx

∣
∣
∣
∣

y

ỹ

∣
∣
∣
∣
+ εy

∣
∣
∣
∣

y

ỹ

∣
∣
∣
∣
= (εx + εy),wobei hier im letzten S
hritt verwendet wurde, dass

∣
∣
∣
∣

y

ỹ

∣
∣
∣
∣

≤ |ỹ − y| + |ỹ|
|ỹ| = 1 +

|ỹ − y|
|y| · |y||ỹ|

≤ 1 + εy
|y|
|ỹ| ≤ 1 + εy(1 + εy

|y|
|ỹ| ≤

= ≤ 1 + εy + ε2
y

|y|
|ỹ| ≤ 1 + εy + ε2

y + ε3 |y|
|ỹ| ≤ . . .Verna
hlässigen der Produkte von Fehlern ergibt au
h hier das gewüns
hte Er-gebnis. QEDNotation 1.9 Die Kondition eines Problems ist der im ungünstigsten Fall auf-tretende Vergröÿerungsfaktor für den Ein�uss von relativen Eingangsfehlern aufrelative Ergebnisfehler. Ist die Kondition eines Problems groÿ, so spri
ht manvon einem s
hle
ht konditionierten Problem.Ist das zu betra
htende Problem die Multiplikation oder Division von zwei Zah-len (d.h. f(x, y) = x · y oder f(x, y) = x

y
) so haben wir bereits gezeigt, dass

∣
∣
∣
f(x̃,ỹ)−f(x,y)

f(x,y)

∣
∣
∣ klein ist: Im s
hlimmsten Fall ist für den relativen Fehler eine Ad-dition der Beträge der relativen Fehler εy + εy der Eingangsgröÿen x und y zuerwarten. Beide Probleme sind also gut konditioniert. Betra
hten wir nun die Ad-dition: Haben die beiden zu addierenden Zahlen das glei
he Vorzei
hen, so sinddie Faktoren | x

x+y
| und | y

x+y
| aus Lemma 1.7 beide dur
h 1 bes
hränkt, so dass wirwieder eine gute Kondition erhalten. Bei der Addition von Zahlen vers
hiedenenVorzei
hens (also der Subtraktion von Zahlen glei
hen Vorzei
hens) können diebeiden Faktoren | x

x−y
| und | y

x−y
| dagegen beliebig groÿ werden. Dieses Problemist also s
hle
ht konditioniert. Wir demonstrieren das an einem Beispiel:18



Re
hnen wir mit 6-stelliger Genauigkeit und subtrahieren die beiden 6-stelligenZahlen x = 1234.00 und y = 1233.99. Angenommen, der relative Fehler von xbeträgt nur εx = 0.1, also z.B. x̃ = 1357.40 und der relative Fehler von y ist sogarNull (ỹ = y). Denno
h ergibt si
h ein relativer Fehler der Di�erenz von
εx−y =

x̃ − ỹ − (x − y)

x − y
=

123.41 − 0.01

0.01
= 12340.00und das, obwohl wir exakt gere
hnet haben!An dem Beispiel sehen wir, dass die Subtraktion von zwei Zahlen s
hle
ht kondi-tioniert ist, wenn die beiden zu subtrahierenden Zahlen fast glei
h groÿ sind. DerE�ekt wird entspre
hend au
h als Auslös
hung bezei
hnet. Er ist ein ernst-zunehmendes Problem im wissens
haftli
hen Re
hnen. Man sollte daher, wennes irgendwie mögli
h ist, die Di�erenzenbildung von fast glei
h groÿen Zahlenvermeiden, oder zumindest mögli
hst zum S
hluss eines Verfahrens ausführen!Genauso problematis
h ist die Situation bei der numeris
hen Bere
hnung vonAbleitungen einer Funktion f : R → R: Der Ausdru
k

f(x + h) − f(x)

hführt bei kleinen Werten von h, h > 0 immer zu einer Auslös
hung bei derDi�erenzenbildung. Ein relativer Fehler von maximal ε in der Bere
hnung der
f -Werte hat bei der Di�erenzenbildung na
h Lemma 1.7 s
hlimmstenfalls einenrelativen Fehler von

εf(x+h)−f(x) ≤
∣
∣
∣
∣

f(x + h)

f(x + h) − f(x)

∣
∣
∣
∣
εf(x+h) +

∣
∣
∣
∣

f(x)

f(x + h) − f(x)

∣
∣
∣
∣
εf(x)

≤
∣
∣
∣
∣

f(x + h)

f(x + h) − f(x)

∣
∣
∣
∣
ε +

∣
∣
∣
∣

f(x)

f(x + h) − f(x)

∣
∣
∣
∣
ε

=
|f(x + h)| + |f(x)|
|f(x + h) − f(x)| ε

≈ 2ε|f(x)|
|hf ′(x)|zur Folge. Das Problem ist also für kleine Werte von h (oder betragsmäÿig kleineWerte von f ′(x)) s
hle
ht konditioniert. Man ist hier in einer Zwi
kmühle: Fürkleine Werte von h ist die Auslös
hung groÿ, für groÿe h ist dagegen der Dis-kretisierungsfehler groÿ. Einige weitere Betra
htungen führen zu der Faustregel

h ≈ √
ε, die z.B. in [S
haba
k und Wendland, 2004℄ na
hgelesen werden kann.
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Kapitel 2Lineare Glei
hungssysteme:Eliminationsverfahren
2.1 Begri�e und GrundlagenWir wollen zunä
hst die nötigen Notationen einführen und dabei einige Begri�eund Ergebnisse aus der Linearen Algebra wiederholen.Notation 2.1 A ∈ IKm,n bezei
hne eine reelle oder komplexe m × n Matrix,d.h. eine Matrix mit m Zeilen und n Spalten. Wir s
hreiben
A = (aij)i=1,...,m,

j=1,...,n
=








a11 a12 . . . a1n

a21 a22 . . . a2n... ... . . . ...
am1 am2 . . . amn








=
(

A1 A2 . . . An

)
=








a1

a2...
am








.Dabei bezei
hnen aij die Elemente der Matrix A, Aj die Spalten der Matrix und
ai ihre Zeilen, i = 1, . . . , m, j = 1, . . . , n. Gilt m = n so nennt man die Matrixquadratis
h.Matrizen kann man miteinander multiplizieren, allerdings ist die Matrixmultipli-kation ni
ht kommutativ. Die Einheitsmatrix bezügli
h der Multiplikation vonquadratis
hen Matrizen ist I ∈ IKn,n mit Elementen eij = 0 für alle i 6= j,
eii = 1, i = 1, . . . , n. Gibt es zu einer Matrix A eine Matrix A−1 mit A · A−1 =
A−1 · A = I, so nennt man A invertierbar.Wir können jetzt de�nieren, was ein lineares Glei
hungssystem ist:De�nition 2.2 Ein lineares Glei
hungssystem

Ax = b20



ist gegeben dur
h eine Matrix A ∈ IKm,n, einen Vektor b = (b1, . . . , bm)T ∈ IKmund n Variablen x1, . . . , xn, ges
hrieben als Vektor x = (x1, . . . , xn)T . Ausge-s
hrieben erhält man m Glei
hungen
a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2... ...
am1x1 + am2x2 + . . . + amnxn = bm.Falls b = 0 nennt man das Glei
hungssystem homogen.Ist m < n so heiÿt das Glei
hungssystem unterbestimmt.Lineare Glei
hungssysteme haben ausgespro
hen viele Anwendungen. Einerseitstau
hen sie direkt als praktis
he Probleme auf, andererseits sind sie ein wi
hti-ger Baustein für viele numeris
he Verfahren, z.B. zur numeris
hen Lösung vonDi�erentialglei
hungen.Wir wiederholen einige Begri�e aus der linearen Algebra. Seien A1, . . . , Ap ∈ IKnVektoren. Dann bezei
hne

span{A1, . . . , Ap} =

{ p
∑

i=1

αiAi : αi ∈ IK

}die Menge der von A1, . . . , Ap erzeugten Linearkombinationen (die lineare Hüllevon A1, . . . Ap).Si
herheitshalber erinnern wir no
h an den Begri� der linearen Unabhängigkeit:Die Vektoren A1, . . . , Ap heiÿen linear unabhängig, falls aus∑p
i=1 αiAi = 0 folgt,dass αi = 0 für i = 1, . . . , p. Die Anzahl der linear unabhängigen Spalten ei-ner Matrix A de�niert den Spaltenrang der Matrix und dieser entspri
ht ihremZeilenrang, d.h. der Anzahl der linear unabhängigen Zeilen von A.Satz 2.3 Sei A ∈ IKn,n. Die folgenden Aussagen sind äquivalent:(i) A ist invertierbar.(ii) det(A) 6= 0.(iii) Die Spalten A1, . . . , An von A sind linear unabhängig.(iv) Die Zeilen a1, . . . , an von A sind linear unabhängig.21



Die Matrix A nennt man in obigem Fall au
h regulär oder ni
ht singulär. Eine
m × n Matrix A kann man als lineare Abbildung

A : IKn → IKm

x 7→ Axau�assen und man kann dementspre
hend z.B. vom Kern
Kern(A) = {x ∈ IKn : Ax = 0}der Matrix spre
hen.Bevor wir numeris
he Verfahren zur Lösung eines linearen Glei
hungssystemsentwi
keln, fassen wir einige Ergebnisse (die alle s
hon bekannt sein sollten) überdie Lösbarkeit linearer Glei
hungssysteme zusammen.Satz 2.4

• Das Glei
hungssystem Ax = b hat genau dann mindestens eine Lösung,wenn b ∈ span{A1, . . . , An}.
• Das Glei
hungssystem Ax = b hat genau dann hö
hstens eine Lösung, wenn

A1, . . . , An linear unabhängig sind.
• Das Glei
hungssystem Ax = b ist genau dann eindeutig lösbar, wenn dieMatrix A ni
ht singulär ist. In diesem Fall ist x = A−1b die eindeutigeLösung.Aufgabe: Beweisen Sie Satz 2.4!Für unterbestimmte Glei
hungssysteme gilt, dass sie � wenn sie überhaupt lösbarsind � niemals eindeutig lösbar sein können: Sei x̄ eine Lösung des Glei
hungs-systems, also Ax̄ = b. Betra
hten wir nun das entspre
hende homogene System

Ax = 0.Weil m < n sind die Vektoren A1, . . . , An ∈ IKm linear abhängig, also gibt es ein
y 6= 0 mit Ay = 0. Dementspre
hend gilt x̄ + y 6= x̄, aber wegen

A(x̄ + y) = Ax̄ + Ay = b + 0 = bist au
h x̄+y eine Lösung des Glei
hungssystems. Genauer lässt si
h die Lösungs-menge dur
h {x̄ + y : y ∈ Kern(A)} angeben.Das Problem Ax = b heiÿt s
hle
ht gestellt, wenn es ni
ht eindeutig lösbar ist.Übersi
ht über Verfahren zum Lösen von linearen Glei
hungssystemen22



Man unters
heidet zunä
hst zwis
hen direkten und iterativen Verfahren. Bei dendirekten Verfahren erhält man na
h endli
h vielen S
hritten eine Lösung desProblems. Die bekanntesten hiervon sind die sogenannten Eliminationsverfah-ren, bei denen in jedem S
hritt eine der n Unbekannten eliminiert wird. Dazugehören das Gauÿ-Verfahren (siehe Abs
hnitt 2.2) und das Cholesky-Verfahren(Abs
hnitt 2.3). Das QR-Verfahren ist ein Orthogonalisierungsverfahren zur Lö-sung linearer Glei
hungssysteme oder zur Behandlung von linearen Ausglei
hs-problemen. Es wird in Kapitel 4 bespro
hen. Iterative Verfahren starten mit ei-ner Näherungslösung, die in jedem S
hritt verbessert wird. Sie sind vor allem beigroÿen Glei
hungssystemen oder bei Glei
hungssystemen mit spezieller Strukturder Matrix A sinnvoll. Mit ihnen werden wir uns in Kapitel 5 bes
häftigen.2.2 Gauÿ-Verfahren und LU-ZerlegungIdee: Betra
hten wir als Beispiel ein Glei
hungssystem mit
A =





1 3 2
0 5 4
0 0 6



 , b =





9
14
6



 .Ausges
hrieben erhält man das folgende gesta�elte Glei
hungssystem
1x1 + 3x2 + 2x3 = 9

5x2 + 4x3 = 14

6x3 = 6.Die dritte Glei
hung 6x3 = 6 enthält nur eine Unbekannte; entspre
hend lässtsi
h der Wert x3 = 1 bestimmen. Setzt man diesen in die zweite Glei
hung einerhält man 5x2 = 10, also x2 = 2. Setzt man abs
hlieÿend die beiden gefundenenWerte in die erste Glei
hung ein, ergibt si
h x1 = 1.Die Idee des Gauÿ-Verfahrens nutzt nun diese einfa
he Lösbarkeit gesta�elterGlei
hungssysteme aus: Ein gegebenes Glei
hungssystem wird in ein gesta�el-tes Glei
hungssystem transformiert und dann gelöst. Formalisieren wir dazu zu-nä
hst, wie man sol
he gesta�elten Glei
hungssysteme bes
hreiben und lösenkann.De�nition 2.5 Eine quadratis
he Matrix A ∈ IKn,n heiÿt untere Dreie
ksma-trix, falls aij = 0 für alle i < j. A heiÿt obere Dreie
ksmatrix, falls aij = 0 füralle i > j. Eine Dreie
ksmatrix heiÿt normiert, falls aii = 1 für i = 1, . . . , n. Ist
A eine Dreie
ksmatrix, so bezei
hnet man Ax = b als gesta�eltes Glei
hungs-system.Bemerkung: Eine n × n-Dreie
ksmatrix ist genau dann regulär, wenn aii 6= 0für alle i = 1, . . . , n. 23



Lemma 2.6 (Lösen dur
h Rü
kwärtselimination) Sei A eine obere Drei-e
ksmatrix mit Diagonalelementen aii 6= 0 für i = 1, . . . , n. Die Lösung von
Ax = b lässt si
h dann sukzessive dur
h

xj =
1

ajj

(

bj −
n∑

k=j+1

ajkxk

)

, j = n, . . . , 1bestimmen.Beweis: Die Gültigkeit der Formel überprüft man s
hnell (ausgehend von j = n).QEDObiges Verfahren heiÿt Lösen dur
h Rü
kwärtseinsetzen oder Rü
kwärtselimina-tion weil man mit der letzten Glei
hung beginnt. Analog kann man gesta�elteGlei
hungssysteme mit unterer Dreie
ksmatrix dur
h Vorwärtseinsetzen lösen:Lemma 2.7 (Lösen dur
h Vorwärtselimination) Sei A eine untere Dreie
ks-matrix mit Diagonalelementen aii 6= 0 für i = 1, . . . , n. Die Lösung von Ax = blässt si
h dann sukzessive dur
h
xj =

1

ajj

(

bj −
j−1
∑

k=1

ajkxk

)

, j = 1, . . . , nbestimmen.Aufwand: Beim Lösen dur
h Rü
kwärtseinsetzen (oder Lösen dur
h Vorwärts-einsetzen) benötigt man n Divisionen, 1
2
n(n− 1) Multiplikationen und 1

2
n(n− 1)Subtraktionen, also einen Gesamtaufwand von O(n2).De�nition 2.8 Eine Faktorisierung einer Matrix A ∈ IKn,n der Form A = LUmit einer regulären unteren Dreie
ksmatrix L und einer regulären oberen Drei-e
ksmatrix U heiÿt LU-Zerlegung von A.Ist eine LU-Zerlegung von A bekannt, so lässt si
h die Lösung des Glei
hungs-systems Ax = b dur
h das Lösen von zwei gesta�elten Glei
hungssystemen be-stimmen: Dur
h Vorwärtselimination löst man zuerst das Glei
hungssystem

Lz = bund ans
hlieÿend dur
h Rü
kwärtselimination
Ux = z.Die so erhaltene Lösung x erfüllt dann

Ax = LUx = Lz = bund ist somit eine Lösung von Ax = b.Bevor wir uns ansehen, wie man ein gegebenes Glei
hungssystem in ein gesta�el-tes Glei
hungssystem verwandelt, zunä
hst no
h folgende Beoba
htung.24



Satz 2.9 Folgende Mengen sind Gruppen bezügli
h der Matrixmultiplikation: DieMenge der regulären oberen Dreie
ksmatrizen, die Menge der oberen normiertenDreie
ksmatrizen, die Menge der regulären unteren Dreie
ksmatrizen, die Mengeder unteren normierten Dreie
ksmatrizen.Beweis: Sei ∆ eine der oben genannten Mengen. Zu zeigen ist(0) A, B ∈ ∆ ⇒ A · B ∈ ∆.(1) A · (B · C) = (A · B) · C für alle A, B, C ∈ ∆.(2) Die Einheitsmatrix I ∈ ∆.(3) A ∈ ∆ ⇒ A−1 ∈ ∆.(1) ist für alle Matrizen ri
htig und (2) ist klar. Wir zeigen also (0) und (3) fürdie Menge ∆ der (normierten) oberen Dreie
ksmatrizen. (Für untere Dreie
ks-matrizen verläuft der Beweis analog.)ad (0): Seien A, B ∈ ∆ und C = (cij) = AB. Dann ist
cij =

n∑

k=1

aikbkj =

j
∑

k=i

aikbkj ,weil aik = 0 für i > k und bkj = 0 für k > j. Für i > j gilt also cij = 0 unddamit ist C eine obere Dreie
ksmatrix. (Man bea
hte, dass die Regularitätder Matrizen A und B hierfür ni
ht nötig ist.)Sind A, B weiterhin normiert, so au
h C, denn
cii = aiibii = 1.ad (3): Sei A ∈ ∆ regulär und A−1 = B = (bij) die Inverse von A. Dann gilt fürdie Spalten B1, B2, . . . , Bn von der Inversen

ABk = ek.Für jedes k ∈ {1, . . . , n} kann Bk = (b1k, b2k, . . . , bnk)
T also als Lösungvon Ax = ek aufgefasst werden. Na
h Lemma 2.6 folgt, dass bjk = 0 für

j = n, n− 1, . . . , k + 1 und bkk = 1
akk

, also ist B eine obere Dreie
ksmatrix,die für eine normierte Matrix A au
h wieder normiert ist. QEDMan sieht hier s
hon direkt die folgende Aussage:Lemma 2.10 Hat eine reguläre Matrix A eine LU-Zerlegung mit normierter un-terer Dreie
ksmatrix L, so ist diese eindeutig.25



Beweis: Weil det(A) 6= 0 sind au
h die Matrizen L, U mit A = LU regulär. Seinun A = L1U1 = L2U2. Das ist wegen der Regularität aller beteiligten Matrizenäquivalent zu
U1U

−1
2 = L−1

1 L2.Wegen Satz 2.9 steht links eine obere und re
hts eine untere Dreie
ksmatrix. UmGlei
hheit zu gewähren, muss also
U1U

−1
2 = I = L−1

1 L2gelten, und dementspre
hend folgern wir L1 = L2 und U1 = U2. QEDFür Dreie
ksmatrizen ist das Lösen von linearen Glei
hungssystemen also ein-fa
h. Was aber ma
ht man, wenn die Koe�zientenmatrix ni
ht in Dreie
ksformvorliegt? Die Idee des Gauÿ-Verfahrens besteht dann darin, die Matrix dur
h ele-mentare Zeilenoperationen in eine Matrix in Dreie
ksform zu transformieren. Daskann man mit Hilfe der folgenden Matrizen formulieren:De�nition 2.11 Für einen Vektor l(k) = (0, . . . , 0, tk+1, . . . , tn)T ∈ IKn mit 1 ≤
k ≤ n und dem k-ten Einheitsvektor ek ∈ IKn ist die Gauÿ-Matrix Mk de�niertdur
h

Mk := In − l(k)eT
k =














1
1 . . .

1
−tk+1 1... . . .
−tn 1














.

Sammeln wir zunä
hst einige Eigens
haften der Gauÿ-Matrizen.Lemma 2.12 Sei Mk die Gauÿ-Matrix bezügli
h eines Vektors l(k) = (0, . . . , 0, tk+1, . . . , tn)T .1. det(Mk) = 12. M−1
k = In + l(k)eT

kBeweis: Da die Gauÿ-Matrizen untere Dreie
ksmatrizen sind, folgt der erste Teildes Lemmas. Für den zweiten Teil re
hnet man na
h
MkM

−1
k = (In − l(k)eT

k )(In + l(k)eT
k )

= In + l(k)eT
k − l(k)eT

k − l(k)eT
k l(k)eT

k = In,wobei im letzten S
hritt ausgenutzt wurde, dass eT
k l(k) = 0 gilt. Analog erhältman M−1

k Mk = In QED26



Multipliziert man eine Gauÿ-Matrix Mk von links mit einer Matrix A, so erhältman als Ergebnis eine Matrix A′, die aus A entsteht, indem man das tj-te Viel-fa
he der k-ten Zeile ak von A von der j-ten Zeile abzieht, für j = k + 1, . . . , n.In Formeln erhält man also:
Mk A =












a1...
ak

ak+1 − tk+1ak...
an − tnak












.

Man nennt diese Operation au
h die Anwendung elementarer Zeilenoperationen.Lemma 2.12 besagt dabei, dass die Anwendung von elementaren Zeilenoperatio-nen die Determinante der Matrix ni
ht verändert.Setzt man für einen Vektor b = (b1, . . . , bn)T und eine Zahl k ∈ {1, . . . , n} mit
bk 6= 0

l(k) =

(

0, . . . , 0,
bk+1

bk

, . . . ,
bn

bk

)Tso erhält man
Mkb = (b1, b2, . . . , bk, 0, . . . , 0)T . (2.1)Genau das wird im Gauÿ-Verfahren zur Transformation einer Matrix auf Drei-e
ksform ausgenutzt. Das folgende Verfahren ist in der angegebenen Form zurImplementierung allerdings ungeeignet, weil Matrixoperationen re
henzeitmäÿigeinen hohen Aufwand bedeuten. Eine e�zientere Variante wird in Algorithmus 3auf Seite 35 bes
hrieben.Algorithmus 1: Gauÿ-Verfahren ohne Spaltenpivotsu
he (Matrixversion)Input: A ∈ IKn,nS
hritt 1: A(1) := AS
hritt 2: For k = 1, . . . , n − 1 do

l(k) :=



0, . . . , 0
︸ ︷︷ ︸

k mal ,
a

(k)
k+1,k

a
(k)
kk

, . . . ,
a

(k)
n,k

a
(k)
kk





T

Mk := In − l(k)eT
k

A(k+1) := MkA
(k)27



Ergebnis: LU Zerlegung von A mit
U := A(n)

L := M−1
1 · M−1

2 · · ·M−1
n−1Wir müssen nun zeigen, dass obiger Algorithmus hält, was er verspri
ht, d.h.dass wirkli
h A = LU gilt, und L eine untere und U eine obere Dreie
ksmatrixist. Auÿerdem muss die Dur
hführbarkeit des Verfahrens untersu
ht werden,die nur dann gewährleistet ist, wenn a

(k)
kk 6= 0 für alle k = 1, . . . , n − 1. Dazubetra
hten wir die Hauptminoren A[k] der Matrix A.Satz 2.13 (Korrektheit des Gauÿ-Verfahrens) Sei für k = 1, . . . , n − 1:

det(A[k]) = det






a11 . . . a1k... ...
ak1 . . . akk




 6= 0. (2.2)Dann ist Algorithmus 1 korrekt. Genauer:1. Algorithmus 1 ist dur
hführbar, d.h.

a
(k)
kk 6= 0 für alle k = 1, . . . , n − 1. (2.3)2. Für die Matrizen A(k), k = 1, . . . , n − 1 gilt:

a
(k)
ij = 0 für alle j < k und i > j. (2.4)Insbesondere ist U eine obere Dreie
ksmatrix.3. L ist eine untere Dreie
ksmatrix.4. A = LU .Beweis:ad 1. und 2. Wir zeigen zuerst, dass für jedes feste k (2.3) aus (2.4) folgt, d.h.dass gilt:

(2.4) =⇒ (2.3).Dana
h beweisen wir (2.4) für alle k per Induktion.Sei also a
(k)
ij = 0 für alle j < k und i > j. Wegen Lemma 2.12 wissen wir,dass

det(A(k)) = det(Mk−1A
(k−1)) = det(Mk−1) det(A(k−1)) = det(A(k−1))

= . . . = det(A). 28



Wendet man die elementaren Zeilenoperationen auss
hlieÿli
h auf Subma-trizen der Form (2.2) an, gilt diese Glei
hung weiterhin, d.h.
det






a11 . . . a1k... ...
ak1 . . . akk




 = det






a
(k)
11 . . . a

(k)
1k... ...

a
(k)
k1 . . . a

(k)
kk




 = det








a
(k)
11 a

(k)
12 . . . a

(k)
1k

0 a
(k)
22 . . . a

(k)
2k... 0

. . . ...
0 . . . 0 a

(k)
kk








= a
(k)
11 · a(k)

22 · . . . · a(k)
kk ,wobei wir im zweiten S
hritt ausgenutzt haben, dass die Matrix A(k) Aus-sage (2.4) erfüllt. Na
h Voraussetzung unseres Satzes ist

det






a11 . . . a1k... ...
ak1 . . . akk




 6= 0,also a

(k)
kk 6= 0. Damit ist (2.3) für dieses k gezeigt.Um (2.4) zu zeigen, nutzen wir diese Aussage in einem Induktionsbeweis.Für den Anfang k = 1 ist ni
hts zu zeigen. Für den Induktionss
hritt k →

k + 1 nehmen wir an, dass (2.4) für k ri
htig ist. Insbesondere gilt dannna
h dem ersten Teil dieses Beweises, dass a
(k)
kk 6= 0. Der Vektor l(k) ist alsode�niert. Anwendung von (2.1) ergibt die geforderte Eigens
haft a

(k+1)
ik =

0 für alle i > k für die k-te Spalte. Zusammen mit der Induktionsannahmefolgt (2.4) für A(k+1).ad 3. L ist de�niert als Produkt der M−1
k . Da die Mk alle untere Dreie
ksma-trizen sind, sind na
h Satz 2.9 au
h ihre Inversen Dreie
ksmatrizen, ebensodie Produkte ihrer Inversen, also au
h L.ad 4. Na
h Algorithmus 1 gilt

U = A(n) = Mn−1A
(n−1) = Mn−1Mn−2 · . . . · M1A.Wegen L = M−1

1 · M−1
2 · · ·M−1

n−1 gilt weiter L−1 = Mn−1Mn−2 · · ·M1, also
U = L−1A oder LU = A.Aufgabe: Eine n × n Matrix heiÿt streng diagonal-dominant, falls für alle i =

1, . . . , n gilt:
2|aii| >

n∑

j=1

|aij|.29



Zeigen Sie, dass jede streng diagonal-dominante Matrix invertierbar ist und dassAlgorithmus 1 au
h in diesem Fall korrekt ist. Das heiÿt, die Aussagen vonSatz 2.13 bleiben ri
htig, au
h wenn man die bisherige Voraussetzung (2.2) dur
hdie Forderung na
h strenger Diagonal-Dominanz ersetzt.Lemma 2.14 Ist Algorithmus 1 dur
hführbar, so gilt für die Matrix L:
L = I +

n−1∑

k=1

l(k)eT
k .Beweis: Na
h De�nition von L und Lemma 2.12 ist

L = M−1
1 · M−1

2 · · ·M−1
n−1

= (I + l(1)eT
1 )(I + l(2)eT

2 ) · · · (I + l(n−1)eT
n−1).Zu zeigen bleibt also, dass für alle m gilt:

I +

m∑

k=1

l(k)eT
k = (I + l(1)eT

1 )(I + l(2)eT
2 ) · · · (I + l(m)eT

m).Für m = 1 sieht man die Behauptung direkt. Per Induktion leitet man sie dannfür beliebige m her: Gelte die Behauptung also für m − 1. Dann betra
hte
(I + l(1)eT

1 )(I + l(2)eT
2 ) · · · (I + l(m)eT

m)

=

(

I +

m−1∑

k=1

l(k)eT
k

)

(I + l(m)eT
m)

= I + l(m)eT
m +

m−1∑

k=1

l(k)eT
k +

m−1∑

k=1

l(k) eT
k l(m)

︸ ︷︷ ︸

=0

eT
m

= I +

m∑

k=1

l(k)eT
k . QEDDiese Beoba
htung hilft uns, das Gauÿ-Verfahren e�zient zu organisieren: Manspei
hert die Vektoren l(1), l(2), . . . , l(n−1) über die erzeugten Nullen im unterenTeil der Matrix A, während der obere Teil die Matrix U enthält.Bevor wir aber die e�zientere Variante des Gauÿ-Verfahrens angeben, mö
htenwir das Verfahren so erweitern, dass wir es für alle regulären Matrizen anwendenkönnen. Das ist in der Variante aus Algorithmus 1 leider ni
ht der Fall � sies
heitert s
hon an einer so einfa
hen regulären Matrix wie
(

0 1
1 1

)

.30



Ein weiteres Problem besteht darin, dass bei kleinen, aber von Null vers
hiedenenElementen a
(k)
kk groÿe Rundungsfehler auftreten können, wie das folgende Beispielzeigt:Sei das Glei
hungssystem

(
0.001 1

1 1

)(
x1

x2

)

=

(
1
2

)gegeben. Die einzige nötige Umformung im Gauÿ-Verfahren führt zu dem System
(

0.001 1
0 −999

)(
x1

x2

)

=

(
1

−998

)und entspre
hend zu der exakten Lösung von
x1 =

1000

999
≈ 1, x2 =

998

999
≈ 1.Angenommen, wir arbeiten mit zweistelliger Gleitkomma-Arithmetik. Dann er-hält man na
h der ersten Umformung das auf zwei Stellen gerundete Glei
hungs-system

(
0.10 · 10−2 0.10 · 101

0 −0.1 · 104

)(
x1

x2

)

=

(
0.10 · 101

−0.10 · 104

)

,dessen Lösung si
h (sogar bei exakter Re
hnung) zu x1 = 0 und x2 = 1 ergibt,also weit von der e
hten Lösung entfernt liegt.Erfreuli
herweise lassen si
h die beiden aufgeführten S
hwierigkeiten dur
h dasnun zu bes
hreibende Verfahren der Pivotisierung vermeiden. Im einfa
hsten Fallder Zeilenpivotisierung vertaus
ht man während des k-ten S
hritts des Gauÿ-Verfahrens die k-te Zeile mit einer darunterliegenden, und zwar der, die denbetragsmäÿig gröÿten Eintrag in der k-ten Spalte aufweist. Das Ziel dabei ist,dass na
h der Vertaus
hung das neue Element a
(k)
kk so groÿ wie mögli
h wird.Formal wählt man im k-ten S
hritt ein j ∈ {k, k + 1, . . . , n} so dass

|a(k)
jk | ≥ |a(k)

lk | für alle l = k, . . . , n.In diesem Fall nennt man a
(k)
jk das Pivotelement. Zur formalen Bes
hreibungdieser Vertaus
hungen benötigen wir die folgenden Matrizen.De�nition 2.15 Eine bijektive Abbildung Π : {1, . . . , n} → {1, . . . , n} heiÿtPermutation der Menge {1, . . . , n}. Eine n × n Matrix P heiÿt Permutati-onsmatrix, falls es eine Permutation Π so gibt, dass

Pei = eΠ(i) für alle i = 1, . . . , n.31



P entsteht also dur
h Permutation der Spalten der Einheitsmatrix. Wir sammelnEigens
haften von Permutationsmatrizen.Satz 2.16 Sei die n×n-Matrix P eine Permutationsmatrix zur Permutation Π.Dann gilt:1. P ist invertierbar.2. P−1 ist die Permutationsmatrix, die zu der Permutation Π−1 gehört. (Dabeiist Π−1 die Umkehrabbildung von Π.)3. P ist orthogonal, das heiÿt, es gilt P−1 = P T .Beweis:ad 1: P besteht aus einer Vertaus
hung von Spalten der Einheitsmatrix, ist alsoregulär.ad 2: Zu zeigen ist P−1(ei) = eΠ−1(i): Dazu betra
hten wir
P (eΠ−1(i)) = eΠ(Π−1(i)) na
h De�nition 2.15

= ei.Multiplikation beider Seiten von links mit P−1 liefert das Ergebnis.ad 3: In den Spalten von P stehen die permutierten Spalten der Einheitsmatrix,
P = (eΠ(1), eΠ(2), . . . eΠ(n)). Entspre
hend ist die i-te Zeile von P T dur
h
eT
Π(i) gegeben. Um na
hzuweisen, dass P orthogonal ist, müssen wir PP T =

P TP = I zeigen. Sei Q = P TP . Dann ist
Qij = eT

Π(i)eΠ(j) =

{
1 falls i = j
0 sonst ,also ist Q = I. Analog gilt au
h PP T = I. QEDEine Erweiterung der zweiten Aussage des Satzes soll no
h erwähnt werden: Fürzwei Permutationen Π1, Π2 mit zugehörigen Permutationsmatrizen P1,P2 gilt we-gen

P1P2(ei) = P1(eΠ2(i))

= eΠ1(Π2(i)) = eΠ1◦Π2(i),dass P1P2 die Permutationsmatrix ist, die zu der Permutation Π1 ◦ Π2 gehört,das heiÿt, die Verkettung von zwei Permutationen entspri
ht dem Produkt derentspre
henden Permutationsmatrizen.32



Um das Gauÿ-Verfahren zu verbessern, benötigen wir spezielle Permutationen,nämli
h sol
he, die genau zwei Elemente r < s vertaus
hen. Zu so einer Permu-tation
Π(r) = s,

Π(s) = r,

Π(i) = i für alle i 6∈ {r, s}gehört entspre
hend die Matrix
Prs = (e1, . . . , er−1, es, er+1, . . . , es−1, er, es+1, . . . , en).Sol
he Matrizen sind symmetris
h, das heiÿt Prs = P T

rs, und man kann sie au
hals Prs = I − (er − es)(er − es)
T s
hreiben.Man sollte si
h das folgende einprägen:

• Die Linksmultiplikation A · Prs einer Matrix A mit Prs vertaus
ht die r-temit der s-ten Spalte.
• Die Re
htsmultiplikation Prs ·A einer Matrix A mit Prs vertaus
ht die r-temit der s-ten Zeile.Formal können wir nun die Matrixversion des Gauÿ-Verfahrens mit Spaltenpivo-tisierung folgendermaÿen bes
hreiben.Algorithmus 2: Gauÿ-Verfahren mit Spaltenpivotsu
he (Matrixversion)Input: A ∈ IKn,nS
hritt 1: Ã(1) := AS
hritt 2: For k = 1, . . . , n − 1 doBestimme einen Pivotindex r ∈ {k, . . . , n} mit |ã(k)

rk | = maxi=k,...,n |ã(k)
ik |.

P (k) := Pkr

A(k) := P (k)Ã(k)

l(k) :=



0, . . . , 0
︸ ︷︷ ︸

k mal ,
a

(k)
k+1,k

a
(k)
kk

, . . .
a

(k)
n,k

a
(k)
kk





T

Mk := In − l(k)eT
k

Ã(k+1) := MkA
(k)33



Ergebnis: PA = LU mit
P := P (n−1) · . . . · P (1) eine Permutationsmatrix
U := Ã(n) ist eine obere Dreie
ksmatrix
L := I +

n−1∑

k=1

Θ(k)eT
k ist eine untere Dreie
ksmatrix mit

Θ(k) := P (n−1) · . . . · P (k+1)l(k).

Satz 2.17 Für eine reguläre n × n Matrix A existiert eine Permutationsmatri-zen P ∈ R
n,n, eine normierte untere Dreie
ksmatrix L ∈ IKn,n und eine obereDreie
ksmatrix U ∈ IKn,n so dass PA = LU , und diese Zerlegung wird von Algo-rithmus 2 gefunden.Beweis: Im Beweis zeigen wir zunä
hst die folgenden Eigens
haften:1. Algorithmus 2 ist dur
hführbar, d.h.

a
(k)
kk 6= 0 für k = 1, . . . , n − 1. (2.5)2. Für die Matrizen A(k), k = 1, . . . , n − 1 gilt:

a
(k)
ij = 0 für alle j < k und i > j. (2.6)

A(k) = P (k)Mk−1P
(k−1) · . . . · P (2)M1P

(1)A (2.7)Ähnli
h wie im Beweis zu Satz 2.13 zeigen wir, dass für jedes feste k = 1, . . . , n−1aus den beiden letztgenannten Eigens
haften (2.6) und (2.7) die erstgenannteAussage a
(k)
kk 6= 0 folgt, und beweisen ans
hlieÿend (2.6) und (2.7) für alle k perInduktion.Gelte also (2.6) und (2.7) für k. Wir nehmen an, dass a

(k)
kk = 0. Na
h der De�nitionvon P (k) erfüllt die Matrix A(k) = P (k)Ã(k)

|a(k)
kk | ≥ |a(k)

lk | für alle l = k, . . . , n.Wegen a
(k)
kk = 0 folgt daraus, dass die erste Spalte der Submatrix

C =






a
(k)
kk . . . a

(k)
kn... ...

a
(k)
nk . . . a

(k)
nn




34



eine Nullspalte ist und entspre
hend det(C) = 0 gilt. Wegen (2.6) gilt weiter,dass
A(k) =










a
(k)
11 . . . a

(k)
1k−1

0 a
(k)
22 . . . a

(k)
2k−1... 0

. . . ... ∗
0 . . . a

(k)
k−1k−1

0 C










,also folgt
| det(A(k))| = a

(k)
11 · a(k)

22 · . . . · a(k)
k−1k−1 · det(C) = 0.Wegen (2.7) folgt daraus det(A) = 0, ein Widerspru
h zur Regularität von A.Jetzt zeigen wir (2.6) und (2.7) per Induktion.Für beide Aussagen ist der Induktionsanfang k = 1 klar. Für den Übergang

k → k + 1 nehmen wir an, dass die Aussagen für k s
hon gelten. Wegen demersten Teil des Beweises gilt a
(k)
kk 6= 0, also ist die Matrix A(k+1) de�niert.(2.6) gilt dann für Ã(k+1) wegen der Induktionsannahme für A(k) und wegen deralten Aussage (2.1) auf Seite 26. Für A(k+1) nutzen wir die Aussage für Ã(k+1)zusammen mit dem Argument, dass die Transformation P (k+1) die ersten k Zeilenvon Ã(k+1) unberührt lässt. (2.7) ergibt si
h s
hlieÿli
h dur
h Einsetzen

A(k+1) = P (k+1)Ã(k+1) = P (k+1)MkA
(k)und der Induktionsannahme.Damit wissen wir, dass das Verfahren dur
hführbar ist und

U = Ã(n) = Mn−1P
(n−1) · . . . · P (2)M1P

(1)Aeine obere Dreie
ksmatrix ist. WeilM−1
j = I+l(j)eT

j (Lemma 2.12) und (P (k))−1 =

P (k) (Lemma 2.16) erhält man daraus
A = P (1)(I + l(1)eT

1 )P (2)(I + l(2)eT
2 )P (3) · . . . · P (n−1)(I + l(n−1)eT

n−1)U. (2.8)Wir mö
hten nun beide Seiten der Glei
hung von links mit
P = P (n−1) · . . . · P (2)P (1)multiplizieren. Um den entstehenden Term zu vereinfa
hen, überlegen wir unszunä
hst, dass für beliebige Vektoren l und alle j > i

P (j)(I + leT
i )P (j) = (I + P (j)l(P (j)ei)

T ) = (I + P (j)leT
i )gilt, weil P (j)ei = ei, falls j > i. 35



Diese Aussage nutzen wir, um bei der Multiplikation von (2.8) mit P = P (n) · . . . ·
P (2)P (1) die Permutationsmatrizen P (i) für i ≥ 3 dur
h das Einfügen von Identi-täten I = P (i)P (i) bis zum entspre
henden Faktor (I + l(i−1)eT

i−1)P
(i) �dur
hrut-s
hen� zu lassen:

P (1)A = (I + l(1)eT
1 )P (2)(I + l(2)eT

2 )P (3) · . . . ·P (n−1)(I + l(n−1)eT
n−1)U

P (2)P (1)A = P (2)(I + l(1)eT
1 )P (2)(I + l(2)eT

2 )P (3) · . . . ·P (n−1)(I + l(n−1)eT
n−1)U

= (I + P (2)l(1)eT
1 )(I + l(2)eT

2 )P (3) · . . . ·P (n−1)(I + l(n−1)eT
n−1)U

P (3)P (2)P (1)A = P (3)(I + P (2)l(1)eT
1 )P (3)

︸ ︷︷ ︸

I+P (3)P (2)l(1)eT
1

P (3)(I + l(2)eT
2 )P (3)

︸ ︷︷ ︸

I+P (3)l(2)eT
2

(I + l(3)eT
3 ) · . . .

. . . ·P (n−1)(I + l(n−1)eT
n−1)U

= (I + P (3)P (2)l(1)eT
1 )(I + P (3)l(2)eT

2 ) · . . . ·P (n−1)(I + l(n−1)eT
n−1)U... ...

=⇒ PA = (I + Θ(1)eT
1 )(I + Θ(2)eT

2 ) · . . . · (I + Θ(n−1)eT
n−1)U

= I +
∑n−1

k=1 Θ(k)eT
k ,wobei der letzte S
hritt per Induktion analog zu dem entspre
henden S
hritt imBeweis von Lemma 2.14 (auf S. 29) gezeigt wird. QEDFür die praktis
he Implementierung emp�ehlt es si
h, auf Matrixoperationen zuverzi
hten, da diese aufwändig sind. Die folgende Variante ist e�zienter. Wirgeben sie glei
h in einer Form an, die man verwenden würde, um ein Glei
hungs-system Ax = b zu lösen.Algorithmus 3: Gauÿ-Verfahren mit Spaltenpivotsu
heInput: A ∈ IKn,n, b ∈ IKn.S
hritt 1: For k = 1 to n − 1 doS
hritt 1.1: Finde Pivotelement akr für Zeile kS
hritt 1.2: Vertaus
he Zeilen k und r in A sowie bk und br.S
hritt 1.3: For i = k + 1 to n doS
hritt 1.3.1. aik = aik

akkS
hritt 1.3.2. For j = k + 1 to n do aij = aij − aik · akjErgebnis: Glei
hungssystem LU = Pb, wobei L und U gegeben sind dur
h
lij =







aij für i > j

1 für i = j

0 für i < j

uij =

{
aij für i ≤ j

0 für i > j36



Das entstandene Glei
hungssystem LU = Pb kann man nun lei
ht dur
h Rü
k-wärts - und Vorwärtselemination lösen. Man kann au
h direkt während des Ver-fahrens alle elementaren Zeilenoperationen auf die re
hte Seite Pb anwenden, underhält dann als Ergebnis das Dreie
kssystem U = L−1Pb, so dass man si
h denS
hritt der Vorwärtselimination spart.Aufwand der LU-Zerlegung na
h Algorithmus 3:Wir zählen hier no
h einmal gründli
h. Die äuÿere for-S
hleife wird für jedes
k = 1, . . . n − 1 dur
hlaufen. Darin werden folgende Operationen dur
hgeführt:

• Maximumsu
he bei der Bestimmung des Pivotindexes: n − 1 Verglei
he
• Vertaus
hungen sind Zuweisungen, die wir ni
ht mit zählen
• Innere for-S
hleifen: n − k Divisionen, (n − k)(n − k) Multiplikationen,

(n − k)(n − k) AdditionenZusammen beträgt die Anzahl der benötigten Operationen also
(n − 1)(n − 1) +

n−1∑

k=1

(n − k) + 2(n − k)2 = O(n3).Aufgabe: Re
hnen Sie die Anzahl der Operationen exakt (also ohne Abs
hätzungdur
h O) aus. Bestimmen Sie auÿerdem die Anzahl der in der Matrixversion(Algorithmus 2) benötigten Operationen exakt und dur
h O. Verglei
hen Sie!Zwei einfa
he AnwendungenHat man eine LU-Zerlegung gefunden, so kann man diese für die folgenden beidenAnwendungen nutzen:Anwendung 1: Bestimmung der Inversen A−1 einer Matrix A.Sei A−1 gegeben dur
h ihre Spalten A−1 = (B1, B2, . . . , Bn). Dann gilt
ABk = ek,und Bk ergibt si
h als Lösung x von Ax = ek. Kennt man die LU-Zerlegungder Matrix A, so bestimmt man also für k = 1, . . . , n zunä
hst die Lösung ykdes Glei
hungssystems Lyk = ek und löst ans
hlieÿend das Glei
hungssystem

Uxk = yk zur Bestimmung von Bk := xk.Anwendung 2: Bestimmung der Determinante von A.Ist A = LU eine LU-Zerlegung von A, so gilt det(A) = det(L) · det(U) = u11 ·
. . . · unn. Die Determinante lässt si
h also als Produkt der Diagonalelemente von
U direkt bere
hnen. 37



2.3 Das Cholesky-VerfahrenWir betra
hten au
h in diesem Abs
hnitt Glei
hungssysteme Ax = b, allerdingsnehmen wir nun an, dass die Matrix A eine symmetris
he und positiv de�niteMatrix ist.De�nition 2.18 Eine Matrix A ∈ Rn,n heiÿt hermites
h falls A∗ = A, wobei
A∗ = (aji) die konjugiert komplexe Matrix zu A ist. Ist IK = R so nennt man Aau
h symmetris
h. Eine hermites
he Matrix heiÿt

• positiv de�nit falls xT Ax > 0 für alle x ∈ Rn \ {0},
• positiv semi-de�nit falls xT Ax ≥ 0 für alle x ∈ Rn.Lemma 2.19 Die folgenden Aussagen gelten:1. Eine symmetris
he Matrix ist genau dann positiv de�nit, wenn alle ihreEigenwerte e
ht positiv sind.2. Eine symmetris
he Matrix ist genau dann positiv semi-de�nit, wenn alleihre Eigenwerte gröÿer oder glei
h Null sind.3. Eine symmetris
he Matrix ist genau dann positiv de�nit, wenn ihre Haupt-minoren positiv sind, d.h. wenn für alle ihre linken oberen k×k-Teilmatrizen

A[k] :=






a11 . . . a1k... ...
ak1 . . . akk




 , k = 1, . . . , ngilt: det(A[k]) > 0.Positiv de�nite Matrizen sind also regulär (weil det(A[n]) = det(A) 6= 0). Wirbetra
hten die folgenden beiden Zerlegungen:De�nition 2.20 Eine Faktorisierung einer symmetris
hen Matrix A ∈ Rn,n derForm A = LLT mit einer (regulären) unteren Dreie
ksmatrix L heiÿt Cholesky-Zerlegung von A .De�nition 2.21 Eine Faktorisierung einer symmetris
hen Matrix A ∈ Rn,n derForm A = LDLT mit einer normierten unteren Dreie
ksmatrix L und einerDiagonalmatrix D heiÿt LDL-Zerlegung von A .Im folgenden werden wir uns u.a. mit Diagonalmatrizen bes
häftigen, die wir wiefolgt bezei
hnen. 38



Notation 2.22 Für einen Vektor a ∈ IKn ist die Diagonalmatrix bezügli
h agegeben dur
h diag(a) =










a1

a2 . . .
an−1

an










.Für positive de�nite symmetris
he Matrizen sind die folgenden Aussagen bekannt.Satz 2.23 Sei A ∈ Rn,n eine positiv de�nite symmetris
he Matrix. Dann existierteine eindeutig bestimmte LDL-Zerlegung von A.Beweis: Zunä
hst bestätigen wir, dass A eine eindeutige LU-Zerlegung mit nor-mierter unterer Dreie
ksmatrix L hat: Na
h Satz 2.13 kann man eine LU-Zerlegung(ohne Pivotisierung) �nden, wenn die Teilmatrizen
A[k] :=






a11 . . . a1k... ...
ak1 . . . akk




die Bedingung (2.2) erfüllen, d.h. wenn det(A[k]) 6= 0, k = 1, . . . , n − 1. Weil Apositiv de�nit ist, gilt das na
h Lemma 2.19 und zusätzli
h sogar det(A[n]) > 0,also sind A, L und U regulär. Entspre
hend ist L eine untere normierte Dreie
ks-matrix und die Zerlegung ist eindeutig na
h Lemma 2.10.Sei daher

A = LU (2.9)mit normierter unterer Dreie
ksmatrix L und oberer Dreie
ksmatrix U . Wir set-zen D = diag(u11, . . . , unn) als die Diagonalmatrix mit den Einträgen aus derHauptdiagonalen von U . Da U regulär ist, ist au
h D regulär, so dass wir
Ũ := D−1Ude�nieren können. Es gilt LDŨ = LU = A. Wir mö
hten zeigen, dass Ũ = LT :Betra
hte dazu

A = AT = (LDŨ)T = ŨT DT LT = ŨT · (DT LT ). (2.10)
Ũ ist na
h Konstruktion eine normierte obere Dreie
ksmatrix, also ist ŨT einenormierte untere Dreie
ksmatrix. Weiter ist DT LT eine obere Dreie
ksmatrix, alsoist (2.10) au
h eine LU-Zerlegung von A mit normierter unterer Dreie
ksmatrix.Wegen Lemma 2.10 ist die LU-Zerlegung von A eindeutig, also folgern wir ausdem Verglei
h von (2.9) und (2.10) dass

L = ŨT39



und haben damit die LDL-Zerlegung von A gefunden.Sei nun A = L′D′(L′)T eine weitere LDL-Zerlegung von A mit normierter untererDreie
ksmatrix L, so kann man wiederum
A = L′ · (D′(L′)T )als LU-Zerlegung au�assen. Da die LU-Zerlegung na
h Lemma 2.10 eindeutig ist,folgt

L′ = L und D′(L′)T = DLT ,wobei si
h aus letzterem wegen der Invertierbarkeit von L = L′ au
h D′ = Dergibt. QEDDer Beweis des Satzes zeigt auÿerdem, dass die LU-Zerlegung einer symmetri-s
hen und positiv de�niten Matrix A ohne Pivotisierung gefunden werden kann.Wir kommen nun auf die Cholesky-Zerlegung zurü
k.Satz 2.24 Sei A ∈ Rn,n eine positiv de�nite symmetris
he Matrix. Dann existierteine Cholesky-Zerlegung von A = LLT mit positiven Diagonalelementen von L.Unter dieser Nebenbedingung ist L eindeutig bestimmt.Beweis: Na
h Satz 2.23 gibt es eine eindeutige LDL-Zerlegung
A = LDLTvon A. Bezei
hnen wir mit A[k] und D[k] wieder die linken oberen k×k Teilmatri-zen von A und D. Weil L eine untere Dreie
ksmatrix ist, giltA[k] = L[k]D[k](LT )[k],also

det(A[k]) = det(D[k]). (2.11)Wegen der positiven De�nitheit von A (siehe Lemma 2.19) gilt det(A[k]) > 0.Zusammen mit (2.11) erhalten wir
d11 · . . . · dkk = det(D[k]) = det(A[k]) > 0.Diese Aussage gilt für alle k, also sind die Diagonalelemente von D positiv. Jetztsetzen wir

L̃ = L · diag(
√

d11, . . . ,
√

dnn) (2.12)und erhalten aus der normierten unteren Dreie
ksmatrix L eine untere Dreie
ks-matrix L̃ mit positiven Diagonalelementen, für die
L̃L̃T = L · diag(

√

d11, . . . ,
√

dnn) · diag(
√

d11, . . . ,
√

dnn) · LT = LDLT = Agilt. Die entspre
hende Cholesky-Zerlegung ist also gefunden.40



Um die Eindeutigkeit zu zeigen, sei neben A = L̃L̃T

A = L̃′(L̃′)Teine weitere Cholesky-Zerlegung mit Diagonalelementen λ1, λ2, . . . , λn > 0. Mit
D′ := diag(λ2

1, . . . , λ
2
n) und

L′ := L̃′ · diag

(
1

λ1
, . . . ,

1

λn

)erhält man A = L′D′(L′)T , also eine weitere LDL-Zerlegung von A mit normier-ter unterer Dreie
ksmatrix L′. Aus der Eindeutigkeit der LDL-Zerlegung (na
hSatz 2.23) folgt L = L′ und D = D′. Letzteres bedeutet dii = λ2
i für i = 1, . . . , nund wegen der Positivität der λi und dii also

λi =
√

dii für i = 1, . . . , n.Zusammen erhält man
L̃′ = L′ · diag(λ1, . . . , λn)

= L · diag(
√

d11, . . . ,
√

dnn) = L̃ na
h (2.12). QEDUm eine Cholesky-Zerlegung e�zient ausre
hnen zu können, betra
hten wir dieGlei
hung A = LLT komponentenweise. Das ergibt ein Glei
hungssystem mitUnbekannten lij für i ≥ j. Bezei
hnen wir dazu im folgenden mit lTij die Elementeder Matrix LT . Dann ergibt si
h
aik =

n∑

j=1

lijl
T
jk =

n∑

j=1

lijlkj =
k∑

j=1

lijlkj für k = 1, . . . , n, i = k + 1, . . . , n (2.13)und
akk =

n∑

j=1

lkjl
T
jk =

n∑

j=1

lkjlkj =

k∑

j=1

l2kj für k = 1, . . . , n. (2.14)Wählt man die Reihenfolge ges
hi
kt aus, lassen si
h die Werte lij e�zient be-re
hnen: Zunä
hst ergibt si
h l11 aus (2.14) für k = 1 zu l11 =
√

a11. Dana
hlassen si
h na
heinander die Werte l21, . . . , ln1 der ersten Spalte von L dur
h(2.13) bestimmen, dann das Diagonalelement der zweiten Spalte dur
h (2.14)und so weiter. Es ergibt si
h das folgende Verfahren, in dem wir nur das untereDreie
k der Matrix A benutzen und die Elemente von L glei
h über die Wertevon A s
hreiben.Algorithmus 4: Cholesky-Verfahren41



Input: A ∈ R
n,n symmetris
h und positiv definitgegeben dur
h Werte aij für i ≥ j.S
hritt 1: For k = 1 to n doS
hritt 1.1: akk =

√

akk −
∑k−1

j=1 |akj |2S
hritt 1.2: For i = k + 1 to n do
aik =

1

akk

(

aik −
k−1∑

j=1

aijakj

)

Ergebnis: L ist gegeben dur
h lij =

{
aij für i ≥ j

0 für i < j

2.4 S
hwa
hbesetzte MatrizenDie bisher bes
hriebenen Verfahren sind bei sehr groÿen Matrizen leider ine�zi-ent. Daher versu
ht man, die LU-Zerlegung an Matrizen mit spezieller Strukturanzupassen. Einen ersten Ansatz haben wir im letzten Abs
hnitt bei symmetri-s
hen Matrizen kennengelernt. In Anwendungen treten oft s
hwa
hbesetzte Ma-trizen auf, in denen für die meisten Elemente aij = 0 gilt. Leider sind die bei derLU-Zerlegung von s
hwa
hbesetzten Matrizen entstehenden Dreie
ksmatrizen Lund U im allgemeinen ni
ht au
h wieder s
hwa
h besetzt. Als Beispiel sei dieMatrix
A =









0.1 0.1 0.1 0.1 0.1
0.1 1 0 0 0
0.1 0 1 0 0
0.1 0 0 1 0
0.1 0 0 0 1







aus dem Skriptum von G. Lube genannt, bei der die Dreie
ksmatrizen ihrer LU-Zerlegung voll besetzt sind. Es gibt aber eine Klasse von Matrizen, bei der si
h dieStruktur der Matrix A auf die Struktur der Matrizen L und U ihrer LU-Zerlegungüberträgt. Dazu gehören sogenannte Bandmatrizen.De�nition 2.25 Eine Matrix A = (aij) ∈ IKn,n ist eine (p, q)-Bandmatrix,falls für alle i > j + p und für alle j > i + q gilt: aij = 0. Die Bandbreite von

A ist dann p + q + 1. 42



Die folgende Matrix ist ein Beispiel für eine (2, 1)-Bandmatrix:
A =









3 2 0 0 0
4 1 1 0 0
1 3 1 5 0
0 4 3 1 2
0 0 4 0 1







Jede untere Dreie
ksmatrix ist eine (n − 1, 0)-Bandmatrix, jede obere Dreie
ks-matrix ist eine (0, n − 1)-Bandmatrix.Satz 2.26 Sei A = LU die LU-Zerlegung einer (p, q)-Bandmatrix A mit obererDreie
ksmatrix U und normierter unterer Dreie
ksmatrix L. Dann ist L eine

(p, 0)-Bandmatrix und U eine (0, q)-Bandmatrix.Beweis: Wir beweisen den Satz für feste p, q mittels vollständiger Induktion na
h
n. Für n = 1 ist ni
hts zu zeigen. Für den Induktionss
hritt n → n+1 nehmen wiralso an, dass die Aussage für Matrizen der Dimension n×n ri
htig ist. Betra
htenun eine Matrix A ∈ IKn+1,n+1 mit LU-Zerlegung A = LU . Wir partitionieren Awie folgt

A =

(
α wT

v B

)

,wobei α ∈ IK und B eine (p, q)-Bandmatrix der Dimension n × n ist und dieVektoren v, w ∈ IKn erfüllen, dass vi = 0 für alle i > p und wj = 0 für alle j > q.Sei weiterhin
L =

(
1 0
l L1

)

, U =

(
u11 uT

0 U1

)

.Es gilt
LU =

(
u11 uT

v11l luT + L1U1

)

=

(
α wT

v B

)

,also ist α = u11, w = u, l = 1
α
v. Betra
hte

B − 1

α
vwT .Aufgrund der Struktur von v und w ist B ebenfalls eine (p, q)-Bandmatrix mitLU-Zerlegung

B − 1

α
vwT = L1U1.Na
h der Induktionsannahme ist also die untere Dreie
ksmatrix L1 eine normierte

(p, 0)-Bandmatrix und die obere Dreie
ksmatrix U1 eine (0, q)-Bandmatrix undes gilt (
1 0
1
α
v L1

)

·
(

α wT

0 U1

)

=

(
α wT

v B

)

= A,43



eine LU-Zerlegung von A mit der geforderten Eigens
haft ist also gefunden.QEDMit folgendem Algorithmus kann man die LU-Zerlegung einer (p, q)-Bandmatrixbestimmen (falls sie existiert).Algorithmus 5: LU-Zerlegung einer BandmatrixInput: (p, q)-Bandmatrix A ∈ IKn,n, für die eine LU-Zerlegung existiert.S
hritt 1: For k = 1 to n − 1, for i = k + 1 to min{k + p, n} doS
hritt 1.1: aik := aik

akkS
hritt 1.2: For j = k + 1 to min{k + q, n} do aij := aij − aikakjErgebnis: LU-Zerlegung von A wobei L und U gegeben sind dur
h
lij =







aij für i > j

1 für i = j

0 für i < j

uij =

{
aij für i ≤ j

0 für i > j

Natürli
h sind au
h Vorwärts- und Rü
kwärtselimination für Bandmatrizen einfa-
her. Abs
hlieÿend betra
hten wir no
h den Spezialfall von Tridiagonalmatrizen.Dazu führen wir die folgende Notation ein.Notation 2.27 Für drei Vektoren a, b, c ∈ IKn mit b1 = cn = 0 ist die Tridia-gonalmatrix bezügli
h a, b, c gegeben dur
h
tridiag(b, a, c) =










a1 c1

b2 a2 c2. . . . . .
bn−1 an−1 cn−1

bn an








Na
h Satz 2.26 wissen wir, dass (falls sie existieren) die Matrizen L und U derLU-Zerlegung das folgende Aussehen haben

L =










1
l2 1. . . . . .

ln−1 1
ln 1










U =










u1 c1

u2 c2. . . . . .
un−1 cn−1

un










(2.15)
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wobei dur
h einen ersten Koe�zientenverglei
h s
hon ausgenutzt wurde, dass dieWerte c1, . . . , cn−1 der oberen Nebendiagonale von A in der oberen Nebendiagona-len von U erhalten bleiben. Es sind also die Unbekannten u1, . . . , un und l1, . . . , lnzu bestimmen. Dur
h Multiplikation der Matrizen L und U und erneutem Koef-�zientenverglei
h mit A ergeben si
h die folgenden Bere
hnungsvors
hriften:Start: u1 := a1Für i = 2, . . . , n: li :=
bi

ui−1

ui := ai − lici−1.Man kommt also mit einer in n linearen Anzahl an Operationen aus. Bei n Un-bekannten ist das das beste, was man errei
hen kann. Allerdings lässt si
h ni
htfür jede Tridiagonalmatrix eine LU-Zerlegung �nden. Das folgende Lemma gibteine hinrei
hende Bedingung für die Dur
hführbarkeit der LU-Zerlegung für Tri-diagonalmatrizen.Lemma 2.28 Für A = tridiag(b, a, c) mit b1 = cn = 0 sei für j = 1, . . . , n
|cj| < |aj| und |bj | + |cj| ≤ |aj |. Dann gibt es eine LU-Zerlegung von A mitMatrizen wie in (2.15).Aufgabe: Beweisen Sie das Lemma dur
h Induktion!
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Kapitel 3Störungsre
hnung
3.1 Metris
he und normierte RäumeBevor wir uns mit der Fehleranalyse bei linearen Glei
hungssystemen bes
häftigenkönnen, benötigen wir einige Begri�e aus der Funktionalanalysis. Dazu gehörtinsbesondere, dass wir messen können, um wieviel si
h ein Vektor x von einemgestörten Vektor x̃ unters
heidet. Den Unters
hied

x̃ − xals Vektor anzugeben, hilft uns ni
ht weiter, da wir zwei vers
hiedene gestör-te Vektoren x̃ und x′ mangels einer Ordnung im IKn ni
ht verglei
hen können.Wir su
hen also eine Funktion, die die Di�erenz zwis
hen zwei Vektoren dur
heine reelle, positive Zahl ausdrü
kt. Sol
he Funktionen nennt man au
h Distanz-funktionen. Mit beliebigen Distanzfunktionen geben wir uns aber ni
ht zufrieden,sondern betra
hten Metriken als spezielle Distanzfunktionen.De�nition 3.1 Sei R eine ni
htleere Menge. Eine Abbildung d : R × R → Rheiÿt Metrik auf R falls sie die folgenden Bedingungen erfüllt:(M1) d(x, y) = 0 ⇐⇒ x = y für alle x, y ∈ R(M2) d(x, y) = d(y, x) für alle x, y ∈ R (Symmetrie)(M3) d(x, y) ≤ d(x, z) + d(z, y) für alle x, y, z ∈ R (Dreie
ksunglei
hung)
(R, d) heiÿt dann metris
her Raum.Man bea
hte, dass aus den Metrik-Eigens
haften sofort folgt, dass

d(x, y) ≥ 0 für alle x, y ∈ R,46



denn
d(x, y) =

1

2
(d(x, y) + d(x, y)) =

1

2
(d(x, y) + d(y, x)) ≥ 1

2
d(x, x) = 0.Eine Metrik ist z.B. der sogenannte Hamming-Abstand dH , der für x, y ∈ IKngegeben ist dur
h

dH(x, y) = #{i = {1, . . . , n} : xi 6= yi}.Wir wiederholen zunä
hst einige Begri�e, die auf jedem metris
hen Raum de�-niert sind.De�nition 3.2 Sei (R, d) ein metris
her Raum.
• Eine Folge (xn) ⊆ R konvergiert bezügli
h der Metrik d, falls es einElement x̄ ∈ R gibt, das folgendes erfüllt: Zu jedem ǫ > 0 existiert einenatürli
he Zahl N(ǫ), so dass

d(x̄, xn) < ǫ für alle n ≥ N(ǫ).In diesem Fall nennt man x̄ den Grenzwert der Folge (xn). Eine ni
ht-konvergente Folge heiÿt divergent.
• Eine Folge (xn) ⊆ R heiÿt Cau
hy-Folge falls es zu jedem ǫ > 0 einenatürli
he Zahl N(ǫ) gibt, so dass

d(xn, xm) < ǫ für alle n, m ≥ N(ǫ).

• Ein metris
her Raum (R, d) heiÿt vollständig, falls jede Cau
hy-Folge kon-vergiert. Einen vollständigen normierten Raum nennt man au
h Bana
h-raum.Lemma 3.3
• Sei (xn) eine konvergente Folge. Dann ist ihr Grenzwert eindeutig bestimmt.
• Jede konvergente Folge ist eine Cau
hy-Folge.
• Es gibt metris
he Räume, in denen ni
ht jede Cau
hy-Folge konvergiert.Übung: Beweisen Sie Lemma 3.3!Auf metris
hen Räumen lassen si
h weitere Strukturen erarbeiten. So rei
hendie Begri�e Folge und Konvergenz einer Folge insbesondere aus, um o�ene undabges
hlossene Mengen zu de�nieren. Das bedeutet, dass jeder metris
he Raumau
h ein topologis
her Raum ist.Die wi
htigsten Beispiele für metris
he Räume sind normierte Räume, für die wirallerdings als Grundmenge einen Vektorraum V voraussetzen.47



De�nition 3.4 Sei V ein Vektorraum über einem Körper IK. Eine Abbildung
‖ · ‖ : V → R

+
0 heiÿt Norm auf V falls sie die folgenden drei Bedingungenerfüllt:(N1) ‖x‖ = 0 ⇐⇒ x = 0 für alle x ∈ V .(N2) ‖αx‖ = |α|‖x‖ für alle α ∈ IK, x ∈ V . (Skalierbarkeit)(N3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ für alle x, y ∈ V . (Dreie
ksunglei
hung)Der Raum (V, ‖ · ‖) heiÿt dann normierter Raum. Weiterhin nennt man dieMenge

B‖·‖ = {x ∈ V : ‖x‖ ≤ 1}den Einheitskreis der Norm ‖ · ‖.Bemerkung: Ersetzt man im Fall IK = R die Bedingung (N2) dur
h ‖αx‖ =
α‖x‖ für alle α ∈ R+, x ∈ V , so erhält man ein reelles Minkowski-Funktionaloder einen Gauge.Für Normen gilt (ähnli
h wie im Fall von Metriken) dass

‖x‖ ≥ 0 für alle x ∈ V,denn aus (N2) folgt für α = −1 insbesondere ‖(−1)x‖ = ‖x‖, und daraus
‖x‖ =

1

2
(‖x‖ + ‖x‖) =

1

2
(‖x‖ + ‖ − x‖) ≥ 1

2
(‖x + (−x)‖) =

1

2
(‖0‖) = 0.Wi
htige Normen auf dem IKn sind die folgenden:Manhattan-Norm: ‖x‖1 =

n∑

i=1

|xi|Maximum-Norm: ‖x‖∞ =
n

max
i=1

|xi|Euklidis
he Norm: ‖x‖2 =

√
√
√
√

n∑

i=1

x2
i =

√
xT x

p�Norm: ‖x‖p = p

√
√
√
√

n∑

i=1

|x|pi , für 1 ≤ p ≤ ∞,wobei die p�Norm die drei erstgenannten Normen als Spezialfälle (p = 1, p = ∞,
p = 2) enthält. 48



Um einzusehen, dass es si
h bei diesen Abbildungen tatsä
hli
h um Normen han-delt, sind die Bedingungen (N1),(N2) und (N3) zu zeigen. Dabei sind (N1) und(N2) direkt klar. (N3) kann man für die Fälle p = 1 und p = ∞ lei
ht na
h-re
hnen; in beiden Fällen folgt die Bedingung aus der Dreie
ksunglei
hung fürBeträge. Für p = 2 ergibt si
h (N2) aus der Cau
hy-S
hwarzs
hen Unglei
hung,für beliebiges p ∈ (1,∞) aus der Minkowski-Unglei
hung, die im folgenden be-s
hrieben ist.Lemma 3.5 Sei x, y ∈ IKn. Dann gilt
n∑

i=1

xiyi ≤
n∑

i=1

|xi||yi| ≤ ‖x‖p · ‖y‖qfalls entweder 1 < p, q < ∞ und 1
p

+ 1
q

= 1 oder falls p = 1, q = ∞ oder
p = ∞, q = 1.Bemerkung: Der Fall p = q = 2 führt ausges
hrieben zur Cau
hy-S
hwarz's
henUnglei
hung

n∑

i=1

xiyi ≤
n∑

i=1

|xi||yi| ≤

√
√
√
√

n∑

i=1

x2
i

√
√
√
√

n∑

i=1

y2
i .Normen haben vers
hiedene wi
htige Eigens
haften. Dazu zählt insbesondere,dass man aus jeder Norm dur
h

d(x, y) = ‖y − x‖eine Metrik d de�nieren kann. Man nennt diese Metrik dann au
h die von derNorm ‖ · ‖ abgeleitete Metrik. Die Metrik-Eigens
haften lassen si
h lei
ht dur
hdie Norm-Eigens
haften beweisen. Weiterhin folgt für alle Normen die folgendeAbs
hätzung.Lemma 3.6 Sei ‖ · ‖ eine Norm auf V . Dann gilt für alle x, y ∈ V

| ‖x‖ − ‖y‖ | ≤ ‖x − y‖.Beweis: Für alle x, y ∈ V gilt ‖x‖ = ‖x − y + y‖ ≤ ‖x − y‖ + ‖y‖. Daraus folgt
‖x‖ − ‖y‖ ≤ ‖x − y‖.Aus Symmetriegründen erhält man analog
‖y‖ − ‖x‖ ≤ ‖x − y‖,zusammen ergibt si
h die Behauptung. QEDWir haben erwähnt, wie man mit Hilfe einer Norm eine Metrik und damit Kon-vergenz bezügli
h einer Norm de�nieren kann. Die Frage ist nun, in wie weit si
hdiese Konvergenz-De�nitionen für vers
hiedene Normen unters
heiden. Dazu istdie folgende De�nition hilfrei
h. 49



De�nition 3.7 Zwei Normen ‖ · ‖a und ‖ · ‖b auf einem Vektorraum V heiÿenäquivalent, wenn es positive reelle Zahlen c, C gibt, so dass für alle x ∈ V gilt:
c‖x‖a ≤ ‖x‖b ≤ C‖x‖aEs lässt si
h lei
ht zeigen, dass die in der De�nition genannte Äquivalenz tatsä
h-li
h eine Äquivalenzrelation ist. Weiterhin gilt der folgende Satz:Satz 3.8 Zwei Normen ‖ · ‖a und ‖ · ‖b auf einem Vektorraum V sind genaudann äquivalent, wenn jede bezügli
h der Norm ‖ · ‖a konvergente Folge aus Vau
h bezügli
h der Norm ‖ · ‖b konvergiert.Beweis:

• Nehmen wir zunä
hst an, dass die beiden Normen ‖·‖a und ‖·‖b äquivalentsind. Da eine Folge (xn) genau dann gegen x̄ konvergiert, wenn xn − x̄ eineNullfolge ist, rei
ht es, die Aussage für Nullfolgen zu zeigen.Sei dazu also xn → 0 eine Nullfolge bezügli
h ‖ · ‖a , d.h. zu jedem ǫ > 0existiert eine natürli
he Zahl N(ǫ) so dass ‖xn‖a ≤ ǫ für alle n ≥ N(ǫ).Wegen
‖xn‖b ≤ C · ‖xn‖a ≤ Cǫ für alle n ≥ N(ǫ)folgt für jedes ǫ′, dass ‖xn‖b ≤ ǫ′ für alle n ≥ N( ǫ′

C
), also ist xn au
hbezügli
h ‖ · ‖b eine Nullfolge.Die Umkehrung gilt analog.

• Gelte nun die Äquivalenz der Konvergenz-De�nitionen. Dur
h Widerspru
hzeigen wir zunä
hst, dass es eine Zahl C > 0 gibt mit
‖x‖b ≤ C für alle x ∈ V mit ‖x‖a = 1. (3.1)Angenommen also, eine sol
he Zahl C existiert ni
ht. Dann existiert zujedem C = C(n) := n2 ein xn mit ‖xn‖a = 1 und ‖xn‖b > n2. Die Folge

yn :=
xn

nerfüllt also
‖yn‖a =

1

n
und ‖yn‖b > n.Das heiÿt, (yn) konvergiert gegen Null bezügli
h ‖ · ‖a, aber divergiert be-zügli
h ‖ · ‖b, ein Widerspru
h.Somit gibt es ein C > 0, das (3.1) erfüllt. Damit ergibt si
h für alle x ∈ V :

‖x‖b =

∥
∥
∥
∥
‖x‖a

x

‖x‖a

∥
∥
∥
∥

b

= ‖x‖a

∥
∥
∥
∥

x

‖x‖a

∥
∥
∥
∥

b

≤ C‖x‖a,die erste Unglei
hung für die Normäquivalenz ist also erfüllt. Die zweiteUnglei
hung ergibt si
h dur
h Vertaus
hen der Normen. QED50



Die obige Aussage gilt für alle Vektorräume V . Wir diskutieren nun den Fall einesendli
h-dimensionalen Raums.Satz 3.9 Sei V ein endli
h-dimensionaler Vektorraum. Dann sind alle Normenüber V äquivalent.Beweis: Sei v1, . . . vn eine Basis von V . Jedes Element x ∈ V lässt si
h alsodarstellen dur
h
x =

n∑

k=1

αkvk.Wir konstruieren nun eine Norm (die Maximum-Norm auf V ) und zeigen an-s
hlieÿend, dass jede weitere Norm auf V zu dieser Norm äquivalent ist. Wegender Transitivität der Normäquivalenz folgt daraus die Behauptung des Satzes.Man re
hnet s
hnell na
h, dass
‖x‖∞ := max

k=1,...,n
|αk|eine Norm auf V de�niert. Sei nun also ‖ · ‖ eine beliebige andere Norm auf V .De�niere

C :=

n∑

k=1

‖vk‖als die Summe der Normen aller Basisvektoren. Dann folgt:
‖x‖ =

∥
∥
∥
∥
∥

n∑

k=1

αkvk

∥
∥
∥
∥
∥

≤
n∑

k=1

|αk|‖vk‖ wegen (N2) und (N3)
≤

n∑

k=1

‖x‖∞‖vk‖ weil |αk| ≤ ‖x‖∞

= C · ‖x‖∞.Für die andere Ri
htung de�nieren wir die gesu
hte Konstante c dur
h
c := inf{‖x‖ : x ∈ V und ‖x‖∞ = 1}.Weil für alle x ∈ V \ {0} gilt, dass

∥
∥
∥
∥

x

‖x‖∞

∥
∥
∥
∥
∞

= 1folgt daraus, dass ∥
∥
∥
∥

x

‖x‖∞

∥
∥
∥
∥
≥ c,51



das heiÿt ‖x‖ ≥ c · ‖x‖∞ für alle x 6= 0. Weil für x = 0 ni
hts zu zeigen ist, ergibtdas also die Behauptung.Allerdings bleibt no
h zu zeigen, dass c > 0 gilt. Dazu führen wir einen Wider-spru
hsbeweis. Wir nehmen also an, dass c = 0. Dann gibt es eine Folge (ym) mit
‖ym‖∞ = 1 und ‖ym‖ → 0 für m → ∞. Die Basisdarstellung in V liefert für jedesFolgenglied ym

ym =
n∑

k=1

αkmvk,und damit n Folgen für die Koe�zienten α1m, α2m, . . . , αnm aus dem zugrundeliegende Körper. Weil ‖ym‖∞ = 1 für alle m gelten die folgenden beiden Aussagenfür die Koe�zienten der Folgen:Für alle m : |αkm| ≤ 1 für alle k = 1, . . . , n. (3.2)Für alle m existiert ein k ∈ {1, . . . , n} so dass |αkm| = 1. (3.3)Wegen (3.3) erfüllt mindestens eine der Koe�zienten-Folgen k̄, dass #{m :
|αk̄m| = 1} = ∞, d.h. es kommen unendli
h viele Einsen (oder unendli
h vie-le − Einsen) vor. Sei oBdA k̄ = 1, und #{m : α1m = 1} = ∞. Wähle danneine Teilfolge der (y

(1)
m ) ⊆ (ym), in der die Koe�zienten-Teilfolge bezügli
h derKoe�zienten α1m des ersten Basisvektors nur aus Einsen besteht.Weiterhin sind wegen (3.2) alle der n Koe�zienten-Folgen bes
hränkt. Na
h demSatz von Bolzano-Weierstrass wählen wir nun eine Teilfolge (y

(2)
m ) ⊆ (y

(1)
m ) für diedie zweite Koe�zienten-Folge a2m eine konvergente Teilfolge ist. Aus den Indizesdieser Folge wählen wir wiederum eine bezügli
h der dritten Koe�zienten-Folge

a3m konvergente Teilfolge und so weiter, bis wir eine Teilfolge
y(n)

m =

n∑

k=1

α′
kmvk,erhalten, für die alle Koe�zienten-Folgen konvergieren, d.h.

α′
1m → α1 = 1

α′
2m → α2...

α′
nm → αn.Na
h Konstruktion wissen wir, dass (a′

1m) nur aus Einsen besteht und also gegen
1 konvergiert. Für

y =
n∑

k=1

αkvk52



gilt dann na
h Teil 1 dieses Beweises
‖y(n)

m − y‖ ≤ C‖y(n)
m − y‖∞ = max

k=1,...,n
{|α′

km − αk|} → 0 für m → ∞.Weil ‖ym‖ → 0 folgt daraus y = 0, ein Widerspru
h zum Grenzwert α1 = 1 derersten Koe�zienten-Folge. QEDDer gerade bewiesene Satz zeigt, dass es auf dem IKn ni
ht darauf ankommt,bezügli
h wel
her Norm man von Konvergenz redet. Genauso induzieren alleNormen auf dem IKn die glei
he Topologie: Begri�e wie Abges
hlossenheit, Be-s
hränktheit und Kompaktheit hängen also ni
ht von der Wahl der Norm ab.Allerdings sollte man bea
hten, dass die Konstanten c, C ni
ht nur von den je-weiligen Normen, sondern au
h von der Dimension des Raumes n abhängen.Weiterhin darf man ni
ht vergessen, dass der Satz nur für endli
h-dimensionaleVektorräume gilt; auf Räume mit unendli
her Dimension (z.B. Funktionenräume)lässt er si
h im allgemeinen ni
ht übertragen.Als Beispiel wollen wir abs
hlieÿend no
h die p-Normen auf dem Raum der steti-gen Funktionen C[a, b] über einem Intervall [a, b] angeben. Für eine stetige Funk-tion f : [a, b] → IK de�niert man
‖f‖Lp[a,b] :=







(∫ b

a
|f(x)|pdx

) 1
p falls 1 ≤ p < ∞

maxx∈[a,b] |f(x)| falls p = ∞3.2 Normen für Abbildungen und MatrizenDe�nition 3.10 Es seien (V, ‖ · ‖V ) und (W, ‖ · ‖W ) zwei normierte Räume und
F : V → W eine lineare Abbildung. Dann heiÿt F bes
hränkt, falls es eineKonstante C > 0 gibt, sodass für alle v ∈ V :

‖F (v)‖W ≤ C‖v‖V .Wir untersu
hen zunä
hst die Stetigkeit sol
her linearen Abbildungen.Lemma 3.11 Sei F : V → W eine lineare Abbildung zwis
hen normierten Vek-torräumen. Dann ist F genau dann bes
hränkt, wenn F stetig ist.Beweis:
• Ist F bes
hränkt, so folgt aus

‖F (v) − F (w)‖W = ‖F (v − w)‖W ≤ C‖v − w‖vdirekt die Stetigkeit von F . 53



• Ist F stetig, so gibt es zu jedem ǫ > 0 ein δ > 0 so, dass ‖F (v)−Fw‖W < ǫfür alle v, w mit ‖v − w‖V ≤ δ. Für ǫ = 1 und w = 0 erhält man wegen
F (0) = 0 also ein δ > 0 so, dass

‖F (v)‖W < 1 für alle ‖v‖V ≤ δ.Für jedes v ∈ V \ {0} gilt
∥
∥
∥
∥
δ

v

‖v‖V

∥
∥
∥
∥

V

≤ δ

=⇒
∥
∥
∥
∥
F

(

δ
v

‖v‖V

)∥
∥
∥
∥

W

≤ 1

=⇒ ‖F (v)‖W =
‖v‖V

δ

∥
∥
∥
∥
F

(

δ
v

‖v‖V

)∥
∥
∥
∥

W

≤ 1

δ
‖v‖V ,also folgt die Bes
hränktheit mit C = 1

δ
. QEDZwis
hen endli
h-dimensionalen Räumen stellt si
h die Situation no
h einfa
herdar.Lemma 3.12 Sei F : V → W eine lineare Abbildung zwis
hen zwei normiertenendli
h-dimensionalen Vektorräumen. Dann ist F bes
hränkt und stetig.Beweis: Sei F : V → W linear und sei v1, . . . , vn eine Basis von V . Dann gilt

v =
n∑

k=1

αkvk

=⇒ F (v) = F

(
n∑

k=1

αkvk

)

=
n∑

k=1

αkF (vk)

=⇒ ‖F (v)‖W =

∥
∥
∥
∥
∥

n∑

k=1

αkF (vk)

∥
∥
∥
∥
∥

W

≤
n∑

k=1

|αk|‖F (vk)‖W

≤ max
k=1...n

‖F (vk)‖W

n∑

k=1

|αk| = max
k=1...n

‖F (vk)‖W‖v‖1

≤ C‖v‖V ,wobei beim letzten S
hritt ausgenutzt wurde, dass na
h Satz 3.9 alle Normenauf V äquivalent sind. Damit ist F also bes
hränkt und na
h Lemma 3.11 au
hstetig. QEDAuf dem Raum der bes
hränkten linearen Abbildungen zwis
hen zwei normiertenVektorräumen de�nieren wir nun folgende Norm.54



De�nition 3.13 Es seien (V, ‖ · ‖V ) und (W, ‖ · ‖W ) zwei normierte Räume. Füreine bes
hränkte lineare Abbildung F : V → W de�niert man die zu ‖ · ‖V und
‖ · ‖W zugeordnete Norm dur
h

‖F‖V,W := sup
v∈V \{0}

‖F (v)‖W

‖v‖V
.Gilt V = W und ‖ · ‖V = ‖ · ‖W so s
hreiben wir au
h ‖F‖V statt ‖F‖V,W .Weil F als bes
hränkt vorausgesetzt wurde gilt für alle v ∈ V \ {0}

‖F (v)‖W

‖v‖V
≤ C‖v‖V

‖v‖V
= C.Wir erhalten also ‖F‖V,W < ∞. Die Norm der Abbildung F ist also die kleinst-mögli
he Konstante C, mit der man die Bes
hränktheit der Abbildung abs
hätzenkann.Wir erwähnen no
h, dass wir au
h wirkli
h von Normen spre
hen dürfen:Satz 3.14 Es seien (V, ‖ · ‖V ) und (W, ‖ · ‖W ) zwei normierte Räume. Dann ist

‖ · ‖V,W eine Norm auf dem Raum der bes
hränkten linearen Abbildungen von
V → W .Aufgabe: Beweisen Sie Satz 3.14!Folgende Umformulierung erweist si
h als nützli
h.Lemma 3.15 Es seien (V, ‖ · ‖V ) und (W, ‖ · ‖W ) zwei normierte Räume und
F : V → W eine bes
hränkte lineare Abbildung. Dann gilt

‖F‖V,W = sup
v∈V :‖v‖V =1

‖F (v)‖W . (3.4)Beweis: Zunä
hst ist klar, dass
sup

v∈V :‖v‖V =1

‖F (v)‖W ≤ ‖F‖V,W .Um supv∈V :‖v‖V =1 ‖F (v)‖W ≥ ‖F‖V,W zu zeigen, bemerken wir, dass wegen derSkalierbarkeit (Eigens
haft (N2)) der Norm ‖ · ‖W für alle v 6= 0, v ∈ V gilt:
‖F (v)‖W

‖v‖V
=

1

‖v‖V
‖F (v)‖W =

∥
∥
∥
∥
F

(
v

‖v‖V

)∥
∥
∥
∥

W

.Es gibt also zu jedem v 6= 0 ein u mit ‖u‖V = 1 so dass ‖F (v)‖W

‖v‖V
= ‖F (u)‖W .Entspre
hend folgt

sup
v 6=0

‖F (v)‖W

‖v‖V

≤ sup
v:‖v‖V =1

‖F (v)‖W55



und zusammen ergibt si
h die Behauptung. QEDBetra
hte nun ein beliebiges v ∈ V . Dann gilt:
‖F (v)‖W

‖v‖V
≤ sup

v′∈V \{0}

‖F (v′)‖W

‖v′‖V
= ‖F‖V,W ,woraus wir

‖F (v)‖W ≤ ‖F‖V,W · ‖v‖V (3.5)folgern. Wir sagen au
h, ‖ · ‖V,W ist passend zu den Normen ‖ · ‖V und ‖ · ‖W .Diese Eigens
haft wird später no
h wi
htig werden. Eine Verallgemeinerung istdie folgende.De�nition 3.16 Es seien (V, ‖·‖V ) und (W, ‖·‖W ) zwei normierte Räume. EineNorm ‖ · ‖ auf dem Raum der bes
hränkten, linearen Abbildungen von V na
h
W heiÿt zu den Normen ‖ · ‖V und ‖ · ‖W passend, oder mit den Normen
‖ · ‖V und ‖ · ‖W verträgli
h, falls für alle v ∈ V gilt:

‖F (v)‖W ≤ ‖F‖ · ‖v‖V .Glei
hung (3.5) zeigt, dass die Norm ‖ · ‖V,W immer zu ihren natürli
hen oderzugeordneten Normen ‖ · ‖V und ‖ · ‖W passt.Aufgabe: Seien (U, ‖·‖U),(V, ‖·‖V ) und (W, ‖·‖W ) normierte endli
h-dimensionaleVektorräume und seien F : U → V und G : V → W bes
hränkte lineare Abbil-dungen. Zeigen Sie, dass dann für G ◦ F : U → W gilt:
‖G ◦ F‖UW ≤ ‖G‖V W‖F‖UV .Wir mö
hten nun den Fall linearer Abbildungen zwis
hen den endli
h-dimensionalenVektorräumen

A : IKn → IKmgenauer untersu
hen. Jede lineare Abbildung kann dann dur
h eine Matrix Arepräsentiert werden, so dass wir die zugehörige Norm ‖A‖V,W in diesem Fallau
h Matrixnorm nennen.Im folgenden entwi
keln wir Formeln für einige Matrixnormen, die aus den wi
h-tigsten Normen auf dem IKn, IKm entstehen.Satz 3.17 Sei A ∈ IKm,n eine lineare Abbildung vom IKn in den IKm.1. Betra
hte (IKn, ‖ · ‖1) und (Km, ‖ · ‖1) jeweils mit Manhattan-Norm. Dannheiÿt die die zugehörige Matrixnorm Spaltensummennorm und sie ist gege-ben dur
h
‖A‖1 = sup

x∈IKn:‖x‖1=1

‖Ax‖1 = max
k=1,...,n

m∑

i=1

|aik|.56



2. Betra
hte (IKn, ‖ · ‖∞) und (Km, ‖ · ‖∞) jeweils mit Maximum-Norm. Dannheiÿt die die zugehörige Matrixnorm Zeilensummennorm und sie ist gegebendur
h
‖A‖∞ = sup

x∈IKn:‖x‖∞=1

‖Ax‖∞ = max
i=1,...,m

n∑

k=1

|aik|.Beweis:ad 1: Für alle x ∈ IKn gilt zunä
hst, dass
‖Ax‖1 =

m∑

i=1

|(Ax)i| =
m∑

i=1

∣
∣
∣
∣
∣

n∑

k=1

aikxk

∣
∣
∣
∣
∣

≤
n∑

k=1

|xk|
m∑

i=1

|aik| ≤
(

max
k=1,...,n

m∑

i=1

|aik|
)

n∑

k=1

|xk|

= max
k=1,...,n

n∑

i=1

|aik|‖x‖1.Damit gilt also
‖A‖1 ≤ max

k=1,...,n

m∑

i=1

|aik|.Um ‖A‖1 ≥ maxk=1,...,n

∑m
i=1 |aik| zu zeigen, wählen wir j so dass

m∑

i=1

|aij| = max
k=1,...,n

m∑

i=1

|aik|.Für den jten Einheitsvektor ej gilt dann
‖Aej‖1 = ‖Aj‖1 =

m∑

i=1

|aij | = max
k=1,...,n

m∑

i=1

|aik|.Für die Norm von A folgt (mit (3.4)) daraus
‖A‖1 = sup

x:‖x‖1=1

‖Ax‖1 ≥ ‖Aej‖1 = max
k=1,...,n

m∑

i=1

|aik|.ad 2: Für die Maximums-Norm erhalten wir analog für x ∈ IKn

‖Ax‖∞ = max
i=1,...,m

|(Ax)i| = max
i=1,...,m

∣
∣
∣
∣
∣

n∑

k=1

aikxk

∣
∣
∣
∣
∣

≤ max
i=1,...,m

n∑

k=1

|aik||xk| ≤ max
i=1,...,m

n∑

k=1

|aik|‖x‖∞,57



also
‖A‖∞ ≤ max

i=1,...,m

n∑

k=1

|aik|.Für die �≥� Ri
htung wählen wir hier den Index j als den der Zeile mitmaximaler Summe, d.h. so dass
n∑

k=1

|ajk| = max
i=1,...,m

n∑

k=1

|aik|.Weiterhin wählen wir einen Vektor z ∈ IKn passend zum Index j dur
h
zk =

{
ājk

|ajk |
falls ajk 6= 0

1 falls ajk = 0Dann gilta) ‖z‖∞ = 1, undb) ajkzk =
ajk ¯ajk

|ajk |
= |ajk|, insbesondere ist ajkzk positiv und reell.Für die Norm von Az erhalten wir daraus, dass

‖Az‖∞ = max
i=1,...,m

|(Az)i| = max
i=1,...,m

∣
∣
∣
∣
∣

n∑

k=1

aikzk

∣
∣
∣
∣
∣

≥
∣
∣
∣
∣
∣

n∑

k=1

ajkzk

∣
∣
∣
∣
∣
=

n∑

k=1

|ajk| = max
i=1,...,m

n∑

k=1

|aik|.Wie für die Manhattan-Norm folgern wir daraus, dass
‖A‖∞ ≥ max

i=1,...,m

n∑

k=1

|aik|. QEDWir betra
hten jetzt no
h die Matrixnorm ‖A‖2. Dazu benötigen wir den au
h inanderen Berei
hen der Numerik wi
htigen Begri� des Spektralradius einer Matrix.De�nition 3.18 Sei A ∈ IKn,n.
• λ ∈ IK heiÿt Eigenwert von A falls es ein v ∈ IKn \ {0} gibt, so dass

Av = λv.

v heiÿt dann Eigenvektor von A bezügli
h des Eigenwertes λ58



• Der Spektralradius ρ(A) einer Matrix A ist der betragsmäÿig gröÿte Ei-genwert von A, d.h.
ρ(A) = max{|λ| : λ ∈ C ist Eigenwert von A}Wir müssen zunä
hst an die folgenden Begri�e aus der linearen Algebra erinnern:Notation 3.19

• Eine Matrix A ∈ Rn,n heiÿt orthogonal, falls AT A = I beziehungsweise
A−1 = AT .

• Eine Matrix A ∈ Cn,n heiÿt unitär, falls A−1 = ĀT .Bemerkung: Die Spalten A1, . . . , An von A von orthogonalen oder unitärenMatrizen bilden eine Orthonormalbasis des IKn. Das sieht man, indem man dasProdukt B = ĀT A dur
h Produkte der Spalten von A bes
hreibt. Weil B dieEinheitsmatrix ist, gilt für das Element
bij = ĀT

i Aj =

{
1 falls i = j
0 sonst,entspre
hend folgt die Behauptung.Folgenden Satz werden wir verwenden.Satz 3.20 (Haupta
hsentransformation) Sei A ∈ IKn,n eine symmetris
he(bzw. hermites
he) Matrix. Dann gibt es eine reguläre orthogonale (bzw. unitäre)Matrix Q ∈ Rn,n (bzw. Q ∈ Cn,n) und eine Diagonalmatrix D = diag(d1, . . . , dn) ∈ Rn,nso dass

A = QDQ−1.Dabei sind d1, . . . , dn die Eigenwerte der Matrix A, und die Spalten von Q bildeneine Orthonormalbasis, die aus den zugehörigen Eigenvektoren besteht. Das heiÿt,es gilt
AQj = djjQj für j = 1, . . . , nWir beweisen folgende Folgerung aus Satz 3.20.Lemma 3.21 Sei A ∈ IKn,n eine symmetris
he (bzw. hermites
he) positiv semi-de�nite Matrix, und sei λmin ihr betragsmäÿig kleinster und ρ(A) = λmax ihrbetragsmäÿig gröÿter Eigenwert. Dann gilt λmin ≥ 0 und alle x ∈ IKn erfüllen diefolgende Abs
hätzung:
λmin‖x‖2

2 ≤ x̄T Ax ≤ λmax‖x‖2
2.59



Beweis: Weil A positiv semi-de�nit ist, sind die Eigenwerte λ1, . . . , λn von A ni
ht-negativ (siehe De�nition 2.18 auf Seite 37). Sei na
h Satz 3.20 weiter v1, . . . , vneine Orthonormalbasis des IKn, die aus Eigenvektoren von A besteht. Wir s
hrei-ben x =
∑n

i=1 αivi und re
hnen wegen
Ax = A

n∑

i=1

αivi =
n∑

i=1

αiA(vi) =
n∑

i=1

αiλivina
h, dass
x̄T Ax =

n∑

j,k=1

ᾱjαkλkv̄
T
j vk =

n∑

j=1

|αj|2λj ,wobei letztere Glei
hheit aus der Orthogonalität der vi folgt. Weiterhin gilt ‖x‖2
2 =

xT x =
∑n

i=1 |αi|2 und entspre
hend folgt
λmin

n∑

j=1

|αj|2 ≤
n∑

j=1

|αj |2λj ≤ λmax
n∑

j=1

|αj|2,zusammen also
λmin‖x‖2

2 ≤ x̄T Ax ≤ λmax‖x‖2
2. QEDWir können nun endli
h au
h die Matrixnorm ‖A‖2 bezügli
h der Euklidis
henNorm bere
hnen.Satz 3.22 Für A : IKn → IKm, also A ∈ IKm,n gilt

‖A‖2 = sup
x∈IKn:x 6=0

‖Ax‖2

‖x‖2
=
√

ρ(ĀT A)Man nennt ‖A‖2 au
h die Spektralnorm von A.Beweis: Zunä
hst gilt, dass ĀT A ∈ IKn,n eine hermites
he und positiv semi-de�nite Matrix ist. Daher sind alle ihre Eigenwerte gröÿer oder glei
h Null. Sei
ρ(ĀT A) = λmax der gröÿte Eigenwert von ĀT A. Es gilt

‖Ax‖2
2 = (Ax)

T
(Ax) = x̄T ĀT Ax ≤ λmax‖x‖2

2,wobei die letzte Unglei
hung aus Lemma 3.21 folgt. Die Unglei
hung ergibt also
‖A‖2 ≤

√

ρ(ĀT A).Um Glei
hheit zu zeigen, wählen wir z als Eigenvektor zu λmax und erhalten
‖Az‖2

2 = z̄T ĀT Az = z̄T λmaxz = λmaxz̄T z = λmax‖z‖2
2.60



Daraus ergibt si
h analog zu dem Beweis von Satz 3.17, dass
‖A‖2 = sup

x 6=0

‖Ax‖2

‖x‖2
≥ ‖Az‖2

‖z‖2
=

√
λmax =

√

ρ(ĀT A). QEDLeider ist die Spektralnorm für gröÿere Matrizen aufwändig zu bere
hnen. Daherersetzt man sie man
hmal dur
h eine der folgenden Normen:De�nition 3.23Gesamtnorm: ‖A‖G := n max{|aij| : 1 ≤ i ≤ m, 1 ≤ j ≤ n}Frobenius-Norm: ‖A‖F :=

√
√
√
√

m∑

i=1

n∑

j=1

|aij |2Beides sind wirkli
h Normen (da sie bis auf Vorfaktoren mit ‖·‖∞ beziehungsweisemit ‖ · ‖2 auf dem IKn·m übereinstimmen).Lemma 3.241. Die Norm ‖ · ‖G ist passend zu ‖ · ‖∞.2. Die Norm ‖ · ‖F ist passend zu ‖ · ‖2.Beweis: Na
h De�nition 3.16 ist für den ersten Teil zu zeigen, dass
‖Ax‖∞ ≤ ‖A‖G · ‖x‖∞.Das re
hnet man lei
ht na
h dur
h

‖Ax‖∞ = max
i=1,...,m

∣
∣
∣
∣
∣

n∑

j=1

aijxj

∣
∣
∣
∣
∣
≤ ‖x‖∞ max

i=1...m

n∑

j=1

|aij |

≤ ‖x‖∞ n max{|aij | : 1 ≤ i ≤ m, 1 ≤ j ≤ n} = ‖A‖G · ‖x‖∞.Für den zweiten Teil müssen wir uns überzeugen, dass
‖Ax‖2 ≤ ‖A‖F · ‖x‖2.Wieder re
hnen wir

‖Ax‖2
2 =

∑

i=1,...,m

∣
∣
∣
∣
∣

n∑

j=1

aijxj

∣
∣
∣
∣
∣

2

≤
m∑

i=1

(
n∑

j=1

|aij|2
n∑

j=1

|xj |2
) siehe Lemma 3.5

=
m∑

i=1

n∑

j=1

|aij|2
n∑

j=1

|xj |2 = ‖A‖2
F ‖x‖2

2und erhalten so das gewüns
hte Resultat. QED61



3.3 KonditionZum Abs
hluss dieses Kapitels wollen wir die gewonnen Erkenntnisse anwenden,um die Kondition einer Matrix zu de�nieren. Diese wird uns helfen, die Übertra-gung von Fehlern abzus
hätzen.Betra
hten wir dazu ein lineares Glei
hungssystem Ax = b mit folgenden Fehlernin den Eingangsdaten:
• ∆A sei der Fehler in der Matrix A,
• sowie ∆b der Fehler im Ergebnisvektor b.Lässt si
h anhand dieser Daten der Fehler im Ergebnis abs
hätzen?Um diese Frage zu beantworten, bemerken wir zunä
hst, dass

∆x = x̃ − xist, wobei x als exakte Lösung des Glei
hungssystems Ax = b und x̃ dur
h diegewonnene Lösung
(A + ∆A)x̃ = b + ∆bde�niert ist. Es gilt also

(A + ∆A)(x + ∆x) = b + ∆b.Multipliziert man diese Glei
hung aus und verwendet Ax = b so ergibt si
h
(A + ∆A)∆x = ∆b − ∆Ax.Nehmen wir nun zunä
hst an, dass die gestörte Matrix A+∆A invertierbar wäre.Dann könnte man na
h ∆x au�ösen und dadur
h die Norm von x abs
hätzen,also

∆x = (A + ∆A)−1(∆b − ∆Ax)

=⇒ ‖x‖ ≤ ‖(A + ∆A)−1‖(‖∆b‖ + ‖∆A‖‖x‖),wobei wir eine multiplikative und zur Vektornorm passende Matrixnorm gewählthaben. Der relative Fehler ergibt si
h entspre
hend als
‖∆x‖
‖x‖ ≤ ‖(A + ∆A)−1‖

(‖∆b‖
‖x‖ + ‖∆A‖

)

= ‖(A + ∆A)−1‖‖A‖
( ‖∆b‖
‖A‖‖x‖ +

‖∆A‖
‖A‖

)

≤ ‖(A + ∆A)−1‖‖A‖
(‖∆b‖
‖Ax‖ +

‖∆A‖
‖A‖

)

≤ ‖(A + ∆A)−1‖‖A‖
︸ ︷︷ ︸Vergröÿerungsfaktor ‖∆b‖

‖b‖ +
‖∆A‖
‖A‖

︸ ︷︷ ︸relative Fehler der Eingangsdaten








(3.6)62



Bevor wir den Term des Vergröÿerungsfaktors weiter abs
hätzen, bes
häftigenwir uns mit der Frage, wann die Inverse von A + ∆A existiert.Lemma 3.25 Seien A, ∆A ∈ IKn,n, A regulär und ‖A−1‖‖∆A‖ < 1, wobei ‖ · ‖eine zu eine Vektornorm passende multiplikative Matrixnorm ist, die ‖I‖ = 1erfüllt. Dann ist A + ∆A regulär, und es gilt
‖(A + ∆A)−1‖ ≤ ‖A−1‖

1 − ‖A−1‖‖∆A‖ .Beweis: S
hreibe
x = A−1(A + ∆A)x − A−1(∆A)x

=⇒ ‖x‖ ≤ ‖A−1‖‖(A + ∆A)x‖ + ‖A−1‖‖(∆A)‖‖x‖
=⇒ ‖x‖ (1 − ‖A−1‖‖∆A‖)

︸ ︷︷ ︸

>0 na
h Vor. ≤ ‖A−1‖‖(A + ∆A)x‖.Also folgt aus (A + ∆A)x = 0 dass ‖x‖ = 0 und entspre
hend au
h x = 0. DieAbbildung A+∆A ist somit injektiv und damit au
h surjektiv, also ist die Matrix
A + ∆A invertierbar.Wir können also B := (A + ∆A)−1 de�nieren. Um die im Lemma genannteAbs
hätzung zu erhalten, re
hnen wir na
h

1 = ‖I‖ = ‖B(A + ∆A)‖ = ‖BA + BAA−1∆A‖
≥ ‖BA‖ − ‖BA‖‖A−1‖‖∆A‖
= ‖BA‖ (1 − ‖A−1‖‖∆A‖)

︸ ︷︷ ︸

>0

.Daraus erhalten wir
‖BA‖ ≤ 1

1 − ‖A−1‖‖∆A‖und s
hlieÿli
h
‖(A + ∆A)−1‖ = ‖BAA−1‖ ≤ ‖BA‖‖A−1‖ ≤ ‖A−1‖

1 − ‖A−1‖‖∆A‖ . QEDDe�nition 3.26 Für eine Matrix A ∈ IKn,n de�nieren wir
cond(A) := ‖A‖ ‖A−1‖als die Kondition von A. 63



Wozu man diese De�nition verwenden kann, zeigt der folgende Satz und dasans
hlieÿende Korollar.Satz 3.27 Sei ‖ · ‖ eine Matrixnorm wie in Lemma 3.25. Sei ‖b‖ 6= 0 und
‖A−1‖ ‖∆A‖ < 1. Sei Ax = b. Dann gilt für jede gestörte Lösung x + ∆x desgestörten Systems

(A + ∆A)x̃ = b + ∆bdie folgende Abs
hätzung:
‖∆x‖
‖x‖ ≤ 
ond(A)

1

1 − 
ond(A)‖∆A‖
‖A‖

(‖∆A‖
‖A‖ +

‖∆b‖
‖b‖

)Zunä
hst bemerken wir, dass der Ausdru
k wegen
1 > 1 − 
ond(A)

‖∆A‖
‖A‖ = 1 − ‖A−1‖ ‖∆A‖ > 0wohlde�niert ist. Man sieht hier au
h s
hon, dass eine kleinere Kondition zukleineren relativen Fehlern führen wird.Beweis: Aus (3.6) und der Abs
hätzung aus Lemma 3.25 folgt, dass

‖∆x‖
‖x‖ ≤ ‖A−1‖

1 − ‖A−1‖ ‖∆A‖ · ‖A‖
‖A‖
‖A‖

(‖∆A‖
‖A‖ +

‖∆b‖
‖b‖

)

=

ond(A)

1 − 
ond(A)‖∆A‖
‖A‖

(‖∆A‖
‖A‖ +

‖∆b‖
‖b‖

)

. QEDEine einfa
he und oft betra
htete Anwendung dieses Ergebnisses ist das folgendeKorollar, das man au
h direkt aus (3.6) ohne die Voraussetzungen aus Lem-ma 3.25 herleiten kann.Korollar: Hat man nur eine Störung in b (ist also ∆A = 0), so übertragen si
hdie Fehler in b mit maximal der Kondition von A. Genauer:
‖∆x‖
‖x‖ ≤ 
ond(A)

‖∆b‖
‖b‖ .Diese Aussage ergibt si
h direkt aus Satz 3.27, da die Voraussetzung ‖A−1‖ ‖∆A‖ =

0 < 1 erfüllt ist.Abs
hlieÿend geben wir no
h zwei nützli
he Aussagen zur Bestimmung der Kon-dition einer Matrix an. 64



Lemma 3.28 Für jede zu einer Vektornorm passend gewählte Matrixnorm undjede invertierbare Matrix A gilt: 
ond(A) ≥ 1.Beweis: Für den Beweis verwenden wir die De�nition für passend für A und A−1in folgendem Sinn. Sei x 6= 0. Dann gilt A−1x 6= 0 und entspre
hend
‖A−1x‖ ≤ ‖A−1‖ ‖x‖

‖A(A−1x)‖ ≤ ‖A‖ ‖(A−1x)‖Zusammen ergibt si
h
‖A‖ ‖A−1‖ ≥ ‖A‖‖A

−1x‖
‖x‖ ≥ ‖A(A−1x)‖

‖A−1x‖
‖A−1x‖
‖x‖ =

‖x‖
‖x‖ = 1. QEDFür die der Euklidis
hen Norm zugeordnete Spektralnorm gelten die folgendenAussagen.Lemma 3.29 Sei Q eine orthogonale (unitäre) Matrix. Dann gilt1. 
ond(Q) = 1, und2. 
ond(QA) = 
ond(A) = 
ond(AQ) für alle Matrizen A, das heiÿt die Mul-tiplikation mit Q ändert die Kondition der Matrix A ni
ht.Beweis:1. 
ond(Q) = ‖Q‖2‖Q−1‖2 =

√

ρ(Q̄T Q)

√

ρ(Q̄−1T
Q−1)

=
√

ρ(I)
√

ρ(QQ̄T ) =
√

ρ(I)
√

ρ(I) = 12.
‖A‖2 = ‖QT QA‖2 ≤ ‖QT‖2 ‖QA‖2 = ‖QA‖2

≤ ‖Q‖2 ‖A‖2 = ‖A‖2,also ist ‖A‖2 = ‖QA‖2. Analog ergibt si
h ‖A‖2 = ‖AQ‖2, also erhält man
ond(QA) = 
ond(Q) = 
ond(AQ). QED
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Kapitel 4Orthogonalisierungsverfahren
4.1 Die QR-ZerlegungBisherige Lösung von Glei
hungssystemen:

A → L · A =







. . . ∗. . .
0

. . . Dabei galt für die Kondition von (L · A):
cond(L · A) ≤ ‖L‖ · ‖L−1‖ · ‖A‖ · ‖A−1‖

= cond(A) · cond(L),die Kondition vergröÿert si
h also um bis zu cond(L).Idee: Die Kondition lässt si
h verbessern, indem man A dur
h Multiplikationmit orthogonalen bzw. unitären Matrizen auf eine obere ∆s-Gestalt bringt, dennfür orthogonale/unitäre Matrizen gilt na
h Lemma 3.29
cond(QA) = cond(A)sowohl für die Euklidis
he Norm als au
h für ‖ · ‖F .Lemma 4.1 Sei Q orthogonal (bzw. unitär). Dann gilt ‖Qx‖2 = ‖x‖2.Beweis:

‖Qx‖2
2 = (Qx)∗(Qx) = x∗ Q∗Q

︸︷︷︸

I

x = x∗x = ‖x‖2
2 QED66



De�nition 4.2 Die Zerlegung einer Matrix A ∈ IKm,n der Form A = QR miteiner unitären Matrix Q ∈ IKm,m und einer oberen ∆s-Matrix R ∈ IKm,n heiÿt
QR-Zerlegung von A. Dabei hat die Matrix R folgende Gestalt:

R =










r11 ∗ 














n







m

. . .
0 rkk

0
. . .

0wobei k ≤ min{n, m} und r11, r22, ..., rkk 6= 0.De�nition 4.3 Sei h ∈ IKn normiert, d.h. h∗h = ‖h‖2 = 1. Dann heiÿt
H = I − 2hh∗Householder-Matrix.Bemerkung:

h =






h1...
hn




 h∗ = (h1, . . . , hn) hh∗ =








h1h1 h1h2 · · · h1hn

h2h1
. . . ...... . . . ...

hnh1 · · · · · · hnhn






Lemma 4.4 Sei H eine Householder-Matrix. Dann gilt HH∗ = H∗H = I und

H = H∗.Beweis:
H∗ = (I − 2hh∗)∗ = I − 2hh∗ = H

HH∗ = (I − 2hh∗)(I − 2hh∗) = I − 4hh∗ + 4h h∗h
︸︷︷︸

1

h∗ = I QEDBeispiel: Sei
h =

1

5

(
3
4

)

,dann gilt hT h = 1. Für die Householder-Matrix ergibt si
h daraus:
H = I − 2hhT = I − 2

(3
5
4
5

)
(

3
5

4
5

)
=

1

25

(
7 −24

−24 −7

)67



wobei H = HT und H2 = I. Nun kann man beliebige Punkte dur
h Multiplikationmit der Householder-Matrix auf andere abbilden, zum Beispiel:
H

(
3

4

)

=

(−3

−4

)

H

(

λ

(
3

4

))

=−λ

(
3

4

)

H

(
4

−3

)

=

(
4

3

)

H

(

λ

(
4

−3

))

=λ

(
4

−3

)

1 2 3 4 5−1−2−3−4−5

1

2

3

4

5

−1

−2

−3

−4

−5

b

(
3
4

)

(−4
3

)

Aufgrund des Bildes s
heint H also eine Spiegelung an der Geraden dur
h denUrsprung senkre
ht zu h zu sein. Das wollen wir im folgenden begründen:Lemma 4.5 Die Abbildung H : Rn → Rn entspri
ht geometris
h einer Spiege-lung an der zu h orthogonalen Ebene dur
h den Ursprung.Sei x ∈ Rn. Wir zerlegen x in einen Anteil in Ri
htung h und einen Anteilorthogonal zu h.
x = αh + βt mit t⊥h (tT h = 0)
[
x = (hhT )x + y ist geeignet, da y⊥h

]68



Im Beispiel: (
0

4

)

=
16

5
· 1

5

(
3

4

)

+
12

25

(−4

3

)Dann gilt:
H(x) = (I − 2hhT ) · (αh + βt)

= α · I · h + β · I · t − 2αh hT h
︸︷︷︸

1

−2βh hT t
︸︷︷︸

0

= −αh + βtAlso ist H tatsä
hli
h eine Spiegelung an der Ebene dur
h den Ursprung senkre
htzu h.Unser Ziel ist es jetzt, die Kondition bei der Lösung von Glei
hungssystemen zuverbessern, indem man A dur
h Multiplikation mit orthogonalen bzw. unitärenMatrizen auf obere Dreie
ksgestalt bringt, also:
Q · A =






∗ . . .
0 ∗




wobei Q eine orthogonale bzw. unitäre Matrix darstellt. Dazu verwenden wirHouseholder-Matrizen H , für wel
he gilt:

H = I − 2hh∗, wobei ‖h∗‖ = 1 H∗ · H = H · H∗ = I H∗ = HUnser Ziel ist es, eine Householdermatrix A so zu bestimmen, dass die Anwendungvon H auf A zu einer Matrix führt, in der die erste Spalte ein Vielfa
hes desEinheitsvektors ist, also
H · A1 =








∗
0...
0








= λ · e1 und HA =








∗ *0...
0






Das nä
hste Lemma zeigt, wie man so eine Matrix H wählen muss.Lemma 4.6 Sei x ∈ IKn \ {0}. Für

u := x + x1 ·
1

|x1|
· ‖x‖2 · e1 und H = I − 2 · uu∗

u∗u
gilt:

Hx = −x1 ·
‖x‖2

|x1|
︸ ︷︷ ︸

∈IK

·e169



Beweis: Wir su
hen u ∈ IKn \ {0} mit Hx = c · e1, das heiÿt
Hx = x − 2 · uu∗

u∗u
= c · e1.Das ist erfüllt, falls die beiden folgenden Bedingungen gelten:

2u∗x

u∗u
= 1 (4.1)

u = x − c · e1 (4.2)Aus (4.1) folgt:
2u∗x = u∗u ∈ R

⇒ u∗x ∈ R

(4.2)⇒ (x − ce1)
∗x ∈ R

⇒ x∗x − cx1 ∈ R

⇒ cx1 ∈ R (∗)
⇒ c = α · x1 α ∈ R (∗∗)Weiterhin gilt:

0 = 2u∗x − u∗u = u∗(2x − u)

(4.2)
= (x − ce1)

∗(x + ce1)

= x∗x + x∗ce1 − ceT
1 x − cceT

1 e1

= x∗x + cx1 − cx1
︸︷︷︸

∈R, na
h (∗∗)

⇒cx1=cx1

−|c|2

= ‖x‖2
2 − |c|2Zusammen mit (**) gilt:

‖x‖2 = |c| (∗∗)
= |α||x1|Nun folgt:

|α| =
‖x‖2

|x1|
also α = ±‖x‖2

|x1|
∈ RDaher ergeben si
h als Lösung:

c
(∗∗)
= ±x1 ·

‖x‖2

|x| und u = x ∓ x1 · ‖x‖2
1

|x1|
· e1. QED70



Die numeris
h stabilere der beiden ± Variante ist u = x + x1 · 1
|x1|

· ‖x2‖ · e1, weiles dann in der ersten Koordinate von u zu keiner Auslös
hung kommen kann.Dieses funktioniert sogar, falls x = α · e1.Beispiel: Sei x =
(
3i
4

) gegeben. Gesu
ht sind nun u(H) und c, sodass folgendeBedingungen erfüllt sind:
Hx = x − 2

u∗u
uu∗x =

(
c

0

)

u =

(
u1 + ũ1i

u2 + ũ2i

)Es gilt:
2u∗x = 6ũ1 + 8u2 + i · (6u1 − 8ũ2) u∗u = u2

1 + ũ2
2 + u2

2ũ
2
2Wir ma
hen nun eine Fallunters
heidung. Im ersten Fall ist u reell, im zweitenFall komplex. Es ergibt si
h:1. 2u∗x = u∗u:(a) 6u1 − 8ũ2 = 0(b) 6ũ1 + 8u2 = u2

1 + ũ2
1u

2
2 + ũ22. (3i

4

)
−
(

c1+c̃1i
0

)
=
(

u1+ũ1i
u2+ũ2i

)(a) −c1 = u1(b) 3 − c̃1 = ũ1(
) 4 = u2(d) 0 = ũ2Aus 2(a) - 2(d) folgen folgende Werte:
ũ2 = 0 u2 = 4 aus 2(a) folgt u1 = 0Auÿerdem gilt:

6ũ2
1 + 8 · 4 = 0 + ũ2

1 + 16 + 0 ⇒ ũ2
1 =

{

8

−2Daraus ergeben si
h für u die Werte:
u =

(
8i

4

) oder u =

(−2i

4

)71



Na
h Lemma 4.6 gilt nun:
u = x ± x1 ·

‖x‖2

|x1|
· e1 =

(
3i

4

)

± 3i · 5

3
=

(
8i

4

) oder (−2i

4

)Im ersten Fall erhält man die folgende Householder-Matrix:
H = I − 2

uu∗

u∗u
= I − 2

80
·
(

64 32i
−32i 16

)

=
1

10
·
[(

10 0
0 10

)

−
(

16 8i
−8i 4

)]

=
1

5
·
(
−3 4i
−4i 3

)Auÿerdem gilt:
Hx =

(−5i

0

)Satz 4.7 Für eine Matrix A ∈ IKm,n mit dem Rang n (also m ≥ n) existierteine QR-Zerlegung.Beweis: Die Idee ist, in Lemma 4.6 x = A1 zu wählen und ans
hlieÿend eineHouseholder-Matrix H(1) so zu bestimmen, dass die Glei
hung H (1)x = α · e1erfüllt ist. Es muss also gelten:
H(1)A =








α1

0... ∗
0








.In dieser Darstellung ist die erste Spalte s
hon korrekt, der Rest interessiert unsno
h ni
ht. Dur
h weitere Iteration ergeben si
h dann die restli
hen Spalten derMatrix. Seien bereits na
h k S
hritten die unitären Matrizen H (1), . . .H(1) sobestimmt, dass für A(k) gilt (A ∈ IKm,n):
A(k) = H(k) · . . . · H(1) · A =








∗












k. . . B(k)

∗
0 C(k)wobei B(k) ∈ IKk,m−k und C(k) ∈ IKn−k,m−k und a

(k)
ij = 0 für alle j ≤ k und

i > j gilt. Falls k = n ist, so ist A(n) mit A(n) = H(n) · . . . · H(1) · A eine obereDreie
ksmatrix und Q = H(n) · . . . · H(1) unitär. Ansonsten sei nun x̃(k+1) =
C1 ∈ IKm−k. Zunä
hst gilt x̃(k+1) 6= 0, denn wären die ersten k + 1 Spalten linearabhängig, dann wäre der Rang von A(k) ni
ht n. Aufgrund der Regularität von72



H(i) wäre in diesem Fall au
h der Rang von A unglei
h n. Nun benötigen wireinige De�nitionen:
ũ(k+1) := x̃(k+1) +

x̃
(k+1)
1

|x̃(k+1)
1 |

∥
∥x̃(k+1)

∥
∥

2
e1

H̃(k+1) := Im−k − 2
ũ(k+1)(ũ(k+1))∗

(ũ(k+1))∗ũ(k+1)
wie in Lemma 4.6Dur
h diese De�nitionen folgt:

H̃(k+1)C(k) =








α *0...
0








mit α =
−x̃

(k+1)
1

|x̃(k+1)
1 |

‖x̃(k+1)‖2Um aber die Transformation auf ganz A(k) statt nur auf C(k) anwenden zu können,de�nieren wir nun
u(k+1) :=








0












k...

0
ũ(k+1)

}
m − k

H(k+1) := Im − 2
u(k+1)(u(k+1))∗

(u(k+1))∗u(k+1)
=

(
Ik 0

0 H̃(k+1)

)wobei H̃(k+1) eine m − k × n − k-Matrix ist. Mit diesen De�nitionen erhält manjetzt für die Matrix A(k+1):
A(k+1) = H(k) · A(k) =








∗ . . . B(k)

∗
0 H̃(k+1)C(k)






mit der geforderten Eigens
haft, dass a

(k+1)
ij = 0 für alle j ≤ k + 1 und i > j. QEDAlgorithmus 6: QR-Verfahren (Matrixversion)Input: A ∈ IKm,n mit Rang(A) = n 73



S
hritt 1: A(0) := AS
hritt 2: For k = 1, . . . , n do
d := a

(k−1)
kk + a

(k−1)
kk

1

|a(k−1)
kk |

√
√
√
√

m∑

i=k

∣
∣
∣a

(k−1)
ik

∣
∣
∣

2

u(k) := (0, . . . 0, d, a
(k−1)
k+1,k, . . . , a

(k−1)
mk )T

H(k) := Im − 2
u(k)(u(k))∗

(u(k))∗u(k)

A(k) := H(k)A(k−1)Ergebnis: QR-Zerlegung mit
A := QR mit
R := A(n) ist obere Dreie
ksmatrix und
Q := H(1) · . . . · · ·H(n) ist unitäre Matrix

Diese Bere
hnungen sind aufwändig, insbesondere die Anwendung von von H (k)auf alle Spalten von A(k). Wir su
hen nun eine bessere Re
henvors
hrift für dieBere
hnung von dem Produkt Hv der Householder-Matrix H und einem beliebi-gen Vektor v ∈ IKm. Nun gelten:
H = I − 2

u∗u
uu∗ = I − βuu∗ mit u = x +

x1

|x1|
‖x‖2e1 und

β =
2

u∗u
=

1

‖x‖2(‖x‖2 + |x1|)
(4.3)Dann folgt:

Hv = (I − βuu∗)v = v − βuu∗v

= v − βu∗vu = v − su (4.4)mit s = βu∗v ∈ IK (4.5)Damit kann man HAk für die Spalten Ak von A also e�zient bere
hnen. Beibetragsmäÿig kleinem β ergeben si
h allerdings numeris
he Probleme. Sie kannman mit Hilfe des folgenden Lemmas vermeiden.Lemma 4.8 Sei H eine Householder-Matrix aus Lemma 4.6 zu x 6= 0 und H ′die Householder-Matrix aus Lemma 4.6 zu y = αx mit α ∈ R+ und x, y ∈ IKn.Dann gilt H = H ′. 74



Beweis: Zunä
hst gelten folgende Glei
hungen:
u = x +

x1

|x1|
‖x‖2e1 H = I − 2

u∗u
uu∗

u′ = y +
y1

|y1|
‖y‖2e1 = αx +

αx1

|αx1|
‖αx1‖2 = αuNun folgt daraus

H ′ = I − 2

(u′)∗u′
u′(u′)∗ = I − 2

α2u∗u
α2uu∗ = H QEDIm folgenden Algorithmus wird statt x also x

‖x‖∞
verwendet, um die numeris
heStabilität von β aus (4.3) zu gewährleisten.Algorithmus 7: QR-Verfahren (Implementations-Variante)Input: A ∈ IKm,n mit Rang(A) = nS
hritt 1: uik := 0 für alle i = 1, . . . ,m und k = 1, . . . , nS
hritt 2: For k = 1, . . . , n doS
hritt 2.1: Ak

max := maxi=k,...,m |aik|S
hritt 2.2: α := 0S
hritt 2.3: For i = k, . . . ,m doS
hritt 2.3.1. uik := aik

Ak
max (Normierung der k-ten Restspalte)S
hritt 2.3.2. α := α + |uik|2 (Norm2 der k-ten Restspalte)S
hritt 2.4: α :=

√
αS
hritt 2.5: βk := 1

α(α+|ukk |)
(β aus 4.3)S
hritt 2.6: ukk = ukk + akk

|akk |
· α (1. Komponente von uk na
h Lemma 4.6)S
hritt 2.7: akk := − akk

|akk|
· Ak

maxS
hritt 2.8: For i = k + 1, . . . m do aik := 0 (erste Spalte von HAk
max)S
hritt 2.9: For j = k + 1, . . . , n doS
hritt 2.9.1. s := βk

∑m
i=k uikaij (s aus 4.5)S
hritt 2.9.2. For i = k, . . . ,m do aij = aij − s · uik (Bere
hnung vonH A

(k)
j na
h 4.4) 75



Ergebnis: QR-Zerlegung der Originalmatrix A mit
R := A

Q := H(1) · . . . · H(n) mit H(k) = I − 2

u∗
kuk

uku
∗
k und

uk =






u1k...
unk




 für k = 1, . . . , n

Bemerkung:
• oft benötigt man Q ni
ht explizit und kann si
h die Bere
hnung sparen
• R enthält viele Nullen, die man zum Spei
hern (eines Teils) der uik verwen-den kann, genauer s. Beweis von Satz 4.7, und man hat nur die Diagonaleextra zu spei
hern











∗
0 ∗... 0

. . .... ... . . .
0 0

. . .










• U ist untere Dreie
ksmatrixAufwand: Die QR-Zerlegung einer Matrix A ∈ IKm,n mitRang(A) = n erfordert
n2(m − 1

3
n) + O(mn)(= O(n2m))wesentli
he Operationen. 76



Der teuerste S
hritt ist 9.2 mit
(

n∑

k=1

n∑

j=k+1

2(m − k)

)

+ O(mn) =

n∑

k=1

2(n − k)(m − k) + O(mn)

=

(
n∑

k=1

2nm − 2nk − 2km + 2k2

)

+ O(mn)

= 2n2m + 2
n∑

k=1

k2 − k(n + m) + O(mn)

= 2n2m + 2
n(n + 1)(2n + 1)

6
︸ ︷︷ ︸

P

k2

−2(n + m)
n(n + 1)

2
︸ ︷︷ ︸

P

k

+O(mn)

= 2n2m + 2
2n3

6
− n2(n + m) + O(mn) + O(n2)

︸ ︷︷ ︸

=O(mn)

= n2

(

m − 1

3
n

)

+ O(mn)Für m = n ergibt si
h also 2
3
n3 +O(n2), das ist etwas höher als der Aufwand von

1
3
n3 bei dem Gauss-Verfahren. Für s
hle
ht konditionierte Matrizen lohnt es si
haber, diesen Aufwand in Kauf zu nehmen.Bemerkung: Im Gegensatz zur LU-Zerlegung ist bei der QR-Zerlegung (beiRang(A) =

n) keine Pivotisierung nötig. Das gilt allerdings ni
ht im Fall Rang(A) < n. Indiesem Fall taus
ht man in jedem S
hritt k vor der Bere
hnung der uk und der
βk die Restspalte mit gröÿter Euklidis
her Norm an die k-te Position.4.2 Lineare Ausglei
hsproblemeBeim Lösen linearer Glei
hungssysteme bestand die Aufgabe darin, ein x zu �n-den, so dass Ax = b gilt. Was passiert aber nun, wenn Ax = b ni
ht lösbar ist?In diesem Fall versu
ht man, ein x zu �nden, so dass der Ausdru
k Ax die re
hteSeite b mögli
hst gut annähert. Verwendet man zur Bewertung der Qualität derAnnäherung die Euklidis
he Norm, führt das zu dem Minimierungsproblem

min
x∈IKn

‖Ax − b‖2,in dem man unter allen Vektoren x ∈ IKn den su
ht, der die Euklidis
he Normvon Ax − b minimiert. 77



b

b

b

A(x)

Bild(A)

Da es äquivalent ist, statt ‖Ax − b‖2 die quadratis
he Funktion ‖Ax − b‖2
2, zuminimieren, de�nieren wir das lineare Ausglei
hsproblem wie folgt:(AuP) minx∈IKn F (x) mit F (x) = ‖Ax − b‖2

2, A ∈ IKm,n, b ∈ IKmBeispiel:
A =





2 1
1 −1
1 1



 b =





1
0
1



Zwei mögli
he Lösungen für x werden im folgenden untersu
ht:
x =

(
1
3
1
3

) Lösung bzgl. (2 1
1 −1

)

= b ⇒ F (x) =
∥
∥
∥

(
1 0 2

3

)T − b
∥
∥
∥

2
= (1

3
)2

x =

(
1
2
1
2

) Lösung bzgl. (1 1
1 −1

)

= b ⇒ F (x) =
∥
∥
∥

(
3
2

0 1
)T − b

∥
∥
∥

2
= (1

2
)2Im folgenden wollen wir untersu
hen, wie man die beste Lösung für sol
he Aus-glei
hsprobleme �ndet.Satz 4.9 Sei A ∈ IKm,n, b ∈ IKm. Dann gilt1. (AuP) ist lösbar2. x ∈ IKn ist Lösung von (AuP) genau dann, wenn

A∗Ax = A∗b (N)Man sagt �x löst die Normalenglei
hung (N) bezügli
h A und b.�3. (AuP) ist eindeutig lösbar genau dann wenn Rang(A) = n78



Beweis:1. Sei (xk) eine so genannte Minimalfolge, d.h.
‖Axk − b‖2 → α := inf

x∈IKn
‖Ax − b‖2

α > 0 (Falls α = 0 wäre Ax = b und das Glei
hungssystem wäre lösbar.)Ist k groÿ genug, so gilt ‖Axk − b‖2 < 2α, d.h.
‖Axk‖2 = ‖Axk − b + b‖2 ≤ ‖Axk − b‖2 + ‖b‖2 < 2α + ‖b‖2.Also ist die Folge (Axk) ⊆ Bild(A) bes
hränkt.Aufgrund der Stetigkeit von A ist Bild(A) abges
hlossen. Vom Satz vonBolzano-Weierstrass wissen wir daher, dass es eine konvergente Teilfolgevon (Axk) gibt, die gegen ỹ ∈ Bild(A) konvergiert. Also gibt es x̃ mit

Ax̃ = ỹ und daher gilt
‖Ax̃ − b‖2 = ‖ỹ − b‖2 = inf

x∈IKn
‖Ax − b‖2,also ist x̃ Lösung des Ausglei
hsproblems.2. Zunä
hst erinnern wir daran, dass

Bild(A∗) = {A∗z : z ∈ IKm}
Bild(A∗A) = {A∗Ax : x ∈ IKn}.Aus der linearen Algebra wissen wir Bild(A∗) = Bild(A∗A), woraus folgt

A∗b ∈ Bild(A∗) ⇒ A∗b ∈ Bild(A∗A). Daher existiert
x0 ∈ IKn mit A∗Ax0 = A∗b. (4.6)Für jede Lösung x0 von (N) und für jedes x ∈ IKn gilt

F (x) − F (x0) = ‖Ax − b‖2
2 − ‖Ax0 − b‖2

2

= (Ax − b)∗(Ax − b) − (Ax0 − b)∗(Ax0 − b)

= x∗A∗Ax − x∗A∗b − b∗Ax + b∗b

− x∗
0A

∗Ax0 + x∗
0A

∗b + b∗Ax0 − b∗bWeil x0 (N) erfüllt ist, gilt A∗b = A∗Ax0 bzw. b∗A = x∗
0A

∗A. Unter Ver-wendung dieser Glei
hungen erhält man weiter
= x∗A∗Ax − x∗A∗Ax0 − x∗

0A
∗Ax

− x∗
0A

∗Ax0 + x∗
0A

∗Ax0 + x∗
0A

∗Ax0

= x∗A∗Ax − x∗A∗Ax0 − x∗
0A

∗Ax + x∗
0A

∗Ax0

= (x − x0)
∗A∗A(x − x0)

= ‖A(x − x0)‖2
2 ≥ 0 (4.7)79



�⇒� Sei x0 eine Lösung von (N). Dann folgt F (x) ≥ F (x0), ∀x ∈ IKn, alsoist x0 eine Lösung von (AuP).�⇐� Sei andererseits x Lösung von (AuP). Na
h (4.6) können wir x0 alsLösung von (N) wählen, d.h. A∗Ax0 = A∗b. Es folgt F (x)−F (x0) ≥ 0 wegen(4.7). Andererseits gilt F (x) ≤ F (x0), weil x eine Lösung von (AuP) ist.Zusammen folgt F (x) = F (x0) und daraus ‖A(x−x0)‖2
2 = 0 = ‖A(x−x0)‖wegen (4.7). Na
h dem ersten Normaxiom haben wir dann A(x − x0) = 0und entspre
hend A∗Ax = A∗Ax0 = A∗b, also löst x au
h (N).3. Falls Rang(A) = n ist A∗A ∈ IKn,n regulär. Also ist A∗Ax = A∗b eindeutiglösbar. Ist Rang(A) < n, so existiert wegen (4.6) eine Lösung x0 von (AuP)sowie ein z ∈ Kern(A) mit z 6= 0. Damit gilt:

F (x0 + z) = ‖A(x0 + z) − b‖2
2 = ‖Ax0 + Az − b‖2

2 = ‖Ax0 − b‖2
2 = F (x0)und x0 + z 6= x0, also gibt es zwei vers
hiedene Lösungen von (AuP)Bemerkung: Ist die Lösung von (AuP) ni
ht eindeutig, so lässt si
h aber aus

Opt∗ = {x ∈ IKn : x ist Lösung von (AuP)}ein eindeutiges x̃ mit minimaler Euklidis
her Norm ‖x̃‖2 wählen. D.h.
min

x∈Opt∗
‖x‖2ist eindeutig lösbar.Beweis: Opt∗ = {x ∈ IKn : A∗Ax = A∗b} ist ein a�n linearer Teilraum. Dieserenthält genau ein Element mit minimaler Euklidis
her Länge, nämli
h die ortho-gonale Projektion von 0 auf Opt∗ QED

Aufgabe: Sei L ∈ Rn ein a�n linearer Teilraum und a ∈ Rn. Zeigen Sie, dass dasMinimierungsproblem
min
x∈L

‖a − x‖eindeutig lösbar ist, und zwar von der orthogonalen Projektion von a auf L.80



×

×

b

0

x̃

Opt∗

Lösung des Ausglei
hproblemsIdee 1 Nutze Kriterium 2 aus Satz 4.9 und löse das Glei
hungssystem A∗Ax =
A∗b dur
h Cholesky. Das ist s
hnell, aber oft ungenau.Idee 2 Führe QR-Zerlegung von A dur
h. Man erhält

A = QR = Q

(
R̂
0

)

, R̂ obere Dreie
ksmatrixIst Rang(A) = n, so ist R̂ regulär. Es gilt
‖Ax − b‖2

2 = ‖QRx − b‖2
2 = ‖Q∗(QRx − b)‖ na
h (Lemma 3.29 )

= ‖Rx − Q∗b‖2
2

= ‖
(

R̂x
0

)

−
(

c
d

)

‖2
2 = ‖R̂x − c‖2

2 + ‖d‖2
2 (4.8)wobei ( c

d

)

= Q∗b eine Zerlegung des Vektors Q∗b ∈ IKm in c ∈ IKn,
d ∈ IKm−n ist.Lemma 4.10 Sei ‖Ax − b‖2

2 → min ein lineares Ausglei
hsproblem mit A ∈
IKm,n, m ≥ n und Rang(A) = n, und A = QR eine QR-Zerlegung von A,

R =

(
R̂
0

) und Q∗b =

(
c
d

)Dann ist
x = R̂−1cdie eindeutige Lösung von (AuP) und ‖d‖2

2 der zugehörige Zielfunktionswert.81



Beweis: Na
h (4.8) wissen wir, dass ‖Ax−b‖2
2 = ‖R̂x−c‖2

2+‖d‖2
2. Dieser Ausdru
kwird minimal, falls c = R̂x. Da R̂ regulär, existiert so ein x, nämli
h R̂−1c. DieZielfunktion ergibt si
h als

‖Ax − b‖2
2 = 0 + ‖d‖2

2also ‖Ax − b‖2 = ‖d‖2. QEDAnwendungsbeispiel (Statistik): Es seien Messdaten (ai, bi) mit i = 1, . . . , mgegeben, bei denen ein (unbekannter) linearer Zusammenhang besteht.
b b

b

b

b

b

b
b

b

b

b

b

b

b

b
b

b

b

b

b

b

ai

bi

Gesu
ht sind die Parameter α, β, die diesen linearen Zusammenhang bes
hreiben.Dabei soll bi dur
h die Glei
hung αai + β in Abhängigkeit von ai mögli
hst gutges
hätzt werden können, d.h. αai + β soll mögli
hst nahe an bi sein. Wir wollendie Qualität dieser S
hätzung maximieren und versu
hen dazu, die Summe allerquadrierten S
hätzfehler zu minimieren. Das führt auf das folgende Problem:
min
α,β

m∑

i=1

|αai + βbi|2.Mit
A =






a1 1...
an 1




 x =

(
α
β

)

b =






b1...
bn




erhält man

‖Ax − b‖2
2 = ‖






a1α + β − b1...
anα + β − bn




 ‖2

2 =
n∑

i=1

|αai + β − bi|2,also ein lineares Ausglei
hsproblem. Man nennt dies �Methode der kleinsten Qua-drate�. 82



4.3 SingulärwertzerlegungIn diesem Abs
hnitt bes
häftigen wir uns mit Orthogonalisierungsverfahren fürni
ht quadratis
he Matrizen. Sei A = (aij) ∈ IKm,n eine sol
he Matrix. Wir be-zei
hnen A als Diagonalmatrix falls aij = 0 für alle i 6= j mit i ∈ {1, . . . , m}und j ∈ {1, . . . , n}. Mit dieser Bezei
hnung führen wir den Begri� der Singulär-wertzerlegung ein.De�nition 4.11 Sei A ∈ IKm,n. Eine Zerlegung der Form A = UΣV ∗ mit uni-tären Matrizen U ∈ IKm,m und V ∈ IKn,n und einer Diagonalmatrix Σ ∈ IKm,nheiÿt eine Singulärwertzerlegung von A.Wir benutzen die Dimensionsformel: Für A ∈ IKm,n

n = Rang(A) + dim(Kern(A)) und Kern(A) = Kern(A∗A)sowie die folgende Aussage aus der linearen Algebra.Lemma 4.12 Sei A ∈ IKm,n. Dann gelten
Kern(A) = Kern(A∗A)

Rang(A) = Rang(A∗) = Rang(A∗A) = Rang(AA∗)Satz 4.13 Jede Matrix A ∈ IKm,n besitzt eine Singulärwertzerlegung.Beweis: Seien λ1 ≥ λ2 ≥ · · · ≥ λn die Eigenwerte von A∗A mit zugehörigenEigenvektoren v1, . . . , vn, so dass
A∗Avj = λjvj und v∗

j vk =

{

1 falls j = k

0 falls j 6= kSei Rang(A∗A) = r. Dann sind genau r der Eigenwerte positiv und die restli
henNull. Weil ebenso r = Rang(AA∗), hat also au
h AA∗ genau r positive Eigenwerte.De�niere
σj =

√

λj und uj =
1

σj
Avj 1 ≤ j ≤ r (4.9)Dann gilt

AA∗uj =
1

σj
A A∗Avj
︸ ︷︷ ︸

λjvj

=
1

σj
λjAvj = λjuj 1 ≤ j ≤ r

u∗
juk =

1

σjσk
v∗

j A∗Avk
︸ ︷︷ ︸

λkvk

=
λk

σjσk
v∗

j vk =

{

1 falls j = k

0 sonst83



Also sind u1, . . . , ur ein Orthonormalsystem von Eigenvektoren zu den Eigenwer-ten λ1 ≥ λ2 ≥ · · · ≥ λn > 0 der Matrix AA∗. Ergänze {u1, . . . , ur} zu einerOrthonormalbasis {u1, . . . , um} aus Eigenvektoren und setze
V := (v1, . . . , vn) ∈ IKn,n und U := (u1, . . . , um) ∈ IKm,mDann gilt

Avj =

{

σjuj für 1 ≤ j ≤ r wegen (4.9)
0 für r + 1 ≤ j ≤ n weil vj ∈ Kern(A∗A) = Kern(A)Also erhält man

AV = UΣ mit Σ = diag(σ1, . . . , σr, 0, . . . , 0
︸ ︷︷ ︸

min{n,m}−r

) ∈ IKm,n,wobei die Matrizen V, U unitär sind, weil ihre Spalten jeweils also orthonormalzueinander konstruiert wurden. Es folgt A = UΣV ∗. QEDBemerkung:
• Die Einträge von Σ sind eindeutig, wenn man Positivität verlangt.
• Ist A selber quadratis
h und hermites
h, dann gilt σj = |µj| wenn µj Ei-genwert von A ist.De�nition 4.14 Die positiven Werte σj > 0, die in der Singulärwertzerlegungder Matrix A aus Satz 4.13 auftreten, heiÿen Singulärwerte von A.Eine e�ziente Bere
hnung der Singulärwertzerlegung wird im Kapitel über Ei-genwerte und Eigenvektoren bespro
hen.4.4 Anwendung der Singulärwertzerlegung auf li-neare Ausglei
hsproblemeBisher hatten wir zwei Methoden kennen gelernt, um lineare Ausglei
hsproblemezu lösen. In diesem Ans
hnitt kommt eine weitere � nämli
h dur
h Anwendungder Singulärwertzerlegung � dazu.(AuP) min ‖Ax − b‖2

2Methode 1 Löse die Normalenglei
hungA∗Ax = A∗b dur
h das Cholesky-Verfahren.Methode 2 Bestimme eine QR-Zerlegung von A und löse
‖Ax − b‖2

2 = ‖R̂x − c‖2
2 + ‖d‖2

284



Methode 3 Die dritte Methode beruht auf der Singulärwertzerlegung und wirdim folgenden erläutert.Sei A = UΣV ∗ eine Singulärwertzerlegung von A. Setze y := V ∗x ∈ IKn, c :=
U∗b ∈ IKm. Es folgt

‖Ax − b‖2
2 = ‖UΣV ∗x − UU∗b‖2

2

= ‖U(Σy − c)‖2
2

= ‖Σy − c‖2
2 na
h Lemma 4.1 weil U unitär

= ‖(σ1y1, σ2y2, . . . , σryr, 0, . . . 0)T − c‖2
2

=
r∑

j=1

(σjyj − cj)
2 +

m∑

j=r+1

c2
jSatz 4.15 Eine Lösung des linearen Ausglei
hsproblems (AuP) ist gegeben dur
h

x =
r∑

j=1

cj

σj
Vj +

m∑

j=r+1

αjVj ,wobei A = UΣV ∗, σj die Singulärwerte, Vj die Spalten von V , und c = U∗b sind.Die αj können beliebig gewählt werden. Für αj = 0 erhält man die Lösung von(AuP) mit minimaler Euklidis
her Norm.Beweis: Um ‖Ax − b‖2
2 zu minimieren, minimieren wir

r∑

j=1

(σj yj
︸︷︷︸variabel−cj)

2 +

m∑

j=r+1

c2
jAlso wähle für beliebiges αj , j = r + 1, . . . , n

yj =

{
cj

σj
für j = 1, . . . , r

αj für j = r + 1, . . . , n

x ergibt si
h dann aus
x = V y =

n∑

j=1

Vjyj =

r∑

j=1

cj

σj
Vj +

m∑

j=r+1

αjVj .Die Norm von x bere
hnet man dur
h
‖x‖2

2 = x∗x = · · · =

∥
∥
∥
∥
∥

r∑

j=1

cj

σj
Vj

∥
∥
∥
∥
∥

2

2

+

m∑

j=r+1

α2
jund dieser Ausdru
k ist minimal für αj = 0, j = r + 1, . . . , m. QED85



Zum Abs
hluss verglei
hen wir die drei bespro
henen Methoden. Sei eine Ma-trix A gegeben mit Rang(A) = n und Singulärwerten σ1 ≥ σ2 ≥ · · · ≥ σn > 0.Wir untersu
hen die Kondition der drei mögli
hen Verfahren für das lineare Aus-glei
hsproblem.Cholesky Löse A∗Ax = A∗b.
cond(A∗A) = ‖A∗A‖2 · ‖(A∗A)−1‖2

‖A∗A‖2 =
√

ρ((A∗A)∗(A∗A)) =
√

ρ(A∗AA∗A)

=
√

ρ((A∗A)2) =
√

λ2
1 = σ2

1,denn für eine beliebige Matrix B folgt aus Bx = λx dass B2x = λ2x. Weitergilt:
‖(A∗A)−1‖ =

√

ρ(((A∗A)−1(A∗A)−1)) =
√

ρ(((A∗A)2)−1)

=

√

1

λ2
n

=
1

σ2
n

,denn aus Bx = λx folgt B−1x = 1
λ
x und auÿerdem gilt (B2)−1 = (B−1)2.Zusammen erhalten wir

cond(A∗A) =
σ2

1

σ2
n

=

(
σ1

σn

)2Singulärwertzerlegung Löse Σy = c und x = V y (mit orthogonaler Matrix V )
cond(Σ) = ‖Σ‖2‖Σ−1‖2 =

σ1

σn

QR-Zerlegung Löse R̂x = Q∗b

cond(R) = ‖R‖2‖R−1‖2Weil A∗A = (QR)∗(QR) = R∗Q∗QR = R∗R ist der gröÿte (bzw. kleinste)Eigenwert von A∗A au
h der gröÿte (bzw. kleinste) Eigenwert von R∗R,also folgen
‖R‖2 =

√

λ1 = σ1

‖R−1‖2 =
1√
λn

=
1

σn

,weil (R−1)∗R−1 = (RR∗)−1 Inverses von RR∗ mit Eigenwerten λ1, . . . , λn.Also
cond(R) =

σ1

σnDie Kondition der Cholesky-Zerlegung ist also das Quadrat der Kondition aus
QR-Verfahren oder Singulärwertzerlegung.86



Kapitel 5Iterationsverfahren
5.1 Das Verfahren der sukzessiven Approximati-onIn diesem Kapitel betra
hten wir na
h den Eliminationsverfahren und den Or-thogonalisierungsverfahren no
h eine dritte Klasse von Verfahren, die man zurLösung von linearen (und ni
htlinearen) Glei
hungssystemen verwenden kann, sogenannte iterative Verfahren. Wir betra
hten dazu glei
h relativ allgemein Funk-tionen f1, . . . , fm mit

fi : R
n → R, i = 1, . . . , mund bezei
hnen das System

f1(x1, . . . , xn) = 0

f2(x1, . . . , xn) = 0... ... (5.1)
fm(x1, . . . , xn) = 0als ni
htlineares Glei
hungssystem mit den Variablen x1, . . . , xn. De�niertman

F (x) =








f1(x)
f2(x)...
fm(x)








, x =








x1

x2...
xn






so kann man das Glei
hungssystem in Kurzform au
h als

F (x) = 0s
hreiben.Gilt für x ∈ Rn, dass F (x) = 0, so nennt man x eine Lösung des Glei
hungs-systems. Dass wir in dem Glei
hungssystem die re
hte Seite zu Null gesetzt87



haben, ist keine Eins
hränkung, weil man ein Glei
hungssystem F (x) = b mit
b = (b1, . . . , bm)T ∈ Rm jederzeit zu G(x) = F (x) − b = 0 umformen kann.Ni
htlineare Glei
hungssysteme lassen si
h im Allgemeinen ni
ht dur
h algebrai-s
he Manipulationen exakt au�ösen. Wir betra
hten in diesem Kapitel daheriterative Verfahren bzw. Iterationsverfahren, die eine gegebene Lösung in jedemS
hritt verbessern, bis eine vorgegebene Genauigkeit errei
ht ist. Dazu betra
htenwir Glei
hungssysteme F (x) = 0, die als Fixpunktglei
hung vorliegen.De�nition 5.1 Sei Φ : Rn → Rn eine Funktion. Die Glei
hung

Φ(x) = xwird als Fixpunktglei
hung betra
htet. Jedes x ∈ Rn, für das Φ(x) = x gilt,wird als Fixpunkt von Φ bezei
hnet.Der Zusammenhang zwis
hen Fixpunktglei
hungen und linearen Glei
hungssys-temen wird im folgenden Lemma bes
hrieben.Lemma 5.21. Sei m ≤ n und das Glei
hungssystem F (x) = 0 wie in (5.1) gegeben. Sei
M : Rm → Rn eine lineare, injektive Abbildung. De�niere

Φ(x) = M(F (x)) + x. (5.2)Dann ist x ein Fixpunkt von Φ genau dann, wenn x das Glei
hungssystemlöst. Die Fixpunktglei
hung Φ(x) = x ist also äquivalent zu dem Glei
hungs-system F (x) = 0.2. Sei andererseits die Abbildung Φ : Rn → Rn gegeben. De�niere
F (x) = Φ(x) − x.Dann ist das Glei
hungssystem F (x) = 0 äquivalent zu der Fixpunktglei-
hung Φ(x) = x.Beweis:ad 1: Es gilt Φ(x) = x ⇐⇒ M(F (x)) = 0. Wegen der Injektivität der linearenAbbildung M ist das genau dann der Fall, wenn F (x) = 0 ist.ad 2: Es gilt F (x) = 0 ⇐⇒ Φ(x) = x. QED88



Glei
hungssystem F (x) = 0 mit m ≤ n können wir also lösen, wenn wir Fix-punkte bestimmen können. Damit werden wir uns im folgenden bes
häftigen.(Ausglei
hsprobleme mit m > n behandeln wir später.)Die Idee der sukzessiven Approximation ist nun die folgende. Man betra
htet fürein gegebenes x(0) die Folge
x(k+1) = Φ(x(k)), k = 0, 1, 2, . . . .Angenommen, Φ ist stetig und die Folge der x(k) konvergiert. Dann gibt es einenGrenzwert

y = lim
k→∞

x(k),für den gilt y = Φ(y), y ist also ein Fixpunkt von Φ.

|| || |
x0x1 x2x3 x4

De�nition 5.3 Die Iterationsvors
hrift
x(k+1) = Φ(x(k))nennt man Verfahren der sukzessiven Approximation.Als Beispiel betra
hten wir die Glei
hung

f(x) = 2x − tan(x) = 0.Wir s
hreiben die Glei
hung als Fixpunktglei
hung um.89



• In der ersten Variante s
hreiben wir
φ(x) = f(x) + x = 3x − tan(x)und su
hen einen Fixpunkt von φ mittels der Folge

x(k+1) = 3x(k) − tan(x(k))

• In einer zweiten Variante s
hreiben wir
x =

tan(x)

2und erhalten die Folge
x(k+1) =

1

2
tan(x(k)).

• Als drittes verwenden wir
x = arctan(2x),was zu der Folge

x(k+1) = arctan(2x(k))führt.Implementiert man in allen drei Fällen das Verfahren der sukzessiven Iteration soergeben si
h unters
hiedli
he Verhalten der drei Formeln: Zum Beispiel für denStartwert 1.2 geht Iterationsvors
hrift 1 gegen unendli
h, Iterationsvors
hrift 2gegen Null und Iterationsvors
hrift 3 gegen 1.1656...Im folgenden wollen wir untersu
hen, wann sol
he Iterationsvors
hriften konver-gieren. Zunä
hst beweisen wir den folgenden Satz für skalare Funktionen f :
Rn → Rn.Satz 5.4 Sei I ⊆ R ein abges
hlossenes Intervall, q ∈ [0, 1) und φ : I → I eineFunktion, die für alle x, y ∈ I

|φ(x) − φ(y)| ≤ q|x − y| (5.3)erfüllt. Besitzt φ einen Fixpunkt x∗ ∈ I, so konvergiert die Folge
x(k+1) = φ(x(k)), k = 0, 1, . . .für jeden Startwert x(0) gegen x∗ und es gilt

|x(k) − x∗| ≤ qk|x(0) − x∗| für k = 0, 1, 2, . . .90



Beweis: Zunä
hst ist die Iterationsformel für x(k) ist wohlde�niert, weil xk ∈ Ifür alle k. Die Aussage lässt si
h dann für alle k ∈ IN0 dur
h Induktion zeigen.Der Induktionsanfang für k = 0 ist klar. Für den Induktionss
hritt k → k + 1re
hnet man
|x(k+1) − x∗| = |φ(x(k)) − φ(x∗)| ≤ q|x(k) − x∗| wegen (5.3)

≤ qqk|x(0) − x∗| wegen der Induktionsannahme
= q(k+1)|x(0) − x∗| QEDMit Hilfe dieses Satzes können wir erklären, warum die dritte Iterationsformel

x(k+1) = arctan(2x(k)) in unserem Beispiel für jeden Startwert x(0) ∈ I = [1,∞)konvergiert:
• Dazu überlegt man zunä
hst, dass φ(x) ∈ [1,∞) = I für alle x ∈ I, denn

φ(1) > 1 und φ ist monoton wa
hsend.
• Weiterhin besitzt φ einen Fixpunkt, denn die Funktion f(x) = x − φ(x)erfüllt f(1) < 0 und f(x) → ∞ für x → ∞. Also hat f na
h dem Zwis
hen-wertsatz eine Nullstelle in I und entspre
hend hat φ in dem Intervall einenFixpunkt.
• Jetzt muss no
h die Kontraktions-Voraussetzung (5.3) na
hgewiesen wer-den. Dazu verwenden wir den Mittelwertsatz, von dem wir wissen, dass fürjedes x, y ∈ I eine Zwis
henstelle ǫ ∈ (x, y) existiert, so dass

φ(x) − φ(y) = φ′(ǫ)(x − y).Kann man nun zeigen, dass φ′(ǫ) ≤ q < 1 für alle ǫ ∈ I so ist die Kontrak-tionsbedingung (5.3) erfüllt. In unserem Beispiel re
hnet man na
h, dass
φ′(x) =

2

1 + 4x2
≤ φ′(1) =

2

5
< 1,weil φ′ monoton fallend ist.Also sind die Voraussetzungen von Satz 5.4 erfüllt und die Konvergenz der Itera-tionsformel ist bewiesen.5.2 Der Bana
h's
he FixpunktsatzIn diesem Abs
hnitt werden wir die Konvergenzeigens
haften der sukzessivenApproximation weiter untersu
hen. Unser Ziel ist eine Verallgemeinerung vonSatz 5.4 aus dem letzten Abs
hnitt, bei der wir die Existenz eines Fixpunktes91



ni
ht voraussetzen müssen. Auÿerdem gelingt es, den neuen Satz ni
ht nur fürskalare Funktionen φ sondern für Operatoren Φ in beliebigen Bana
h-Räume Xzu zeigen - d.h. die Unbekannte x ∈ X kann ni
ht nur ein Vektor, sondern sogareine Funktion sein.Wir erinnern zunä
hst daran, dass jeder vollständige und normierte Raum einBana
h-Raum ist, d.h. also dass in einem Bana
h-Raum jede Cau
hy-Folgekonvergiert. Weiterhin übertragen wir (5.3) aus dem letzten Abs
hnitt auf nor-mierte Räume.De�nition 5.5 Sei X ein Bana
h-Raum mit Norm ‖ · ‖ und U ⊆ X eine abge-s
hlossene Teilmenge von X. Eine Abbildung Φ : U → X heiÿt kontrahierend,falls es einen reellen Kontraktionsfaktor q < 1 gibt, so dass
‖Φ(x) − Φ(y)‖ ≤ q‖x − y‖ für alle x, y ∈ U.Wir können nun den Bana
h's
hen Fixpunktsatz formulieren und beweisen.Satz 5.6 (Bana
h's
her Fixpunktsatz) Sei X ein Bana
h-Raum mit Norm

‖ · ‖ und U ⊆ X eine abges
hlossene Teilmenge von X. Sei weiterhin Φ : U → Ueine kontrahierende Abbildung mit Kontraktionsfaktor q < 1. Dann gilt:1. Φ besitzt einen eindeutig bestimmten Fixpunkt x∗.2. Die Iterationsvors
hrift der sukzessiven Approximation x(k+1) = Φ(x(k)), k =
0, 1, . . . konvergiert gegen x∗ für jeden Startwert x(0) ∈ U .3. Es gilt die a priori Fehlers
hranke

‖x(k) − x∗‖ ≤ qk

1 − q
‖x(1) − x(0)‖ für alle k = 1, 2 . . . (5.4)4. Es gilt die a posteriori Fehlers
hranke

‖x(k) − x∗‖ ≤ q

1 − q
‖x(k) − x(k−1)‖ für alle k = 1, 2 . . . (5.5)Beweis: Zunä
hst ist die Folge x(k) wohlde�niert weil x(k) ∈ U für alle k ∈ IN0.Für den Beweis nutzen wir aus, dass in einem Bana
h-Raum alle Cau
hy-Folgenkonvergieren und zeigen daher als erstes, dass x(k) eine Cau
hy-Folge ist.S
hritt 1: x(k) ist eine Cau
hy-Folge: Es gilt

‖x(k) − x(k−1)‖ = ‖Φ(x(k−1)) − Φ(x(k−2))‖
≤ q‖x(k−1) − x(k−2)‖ ≤ . . . ≤
≤ qj‖x(k−j) − x(k−j−1)‖ (5.6)92



für alle natürli
hen Zahlen j mit 0 ≤ j ≤ k−1. Mit Hilfe dieser Unglei
hungre
hnet man nun na
h, dass
‖x(l) − x(k)‖ ≤ ‖x(l) − x(l−1)‖ + ‖x(l−1) − x(l−2)‖ + . . . + ‖x(k+1) − x(k)‖

≤ ql−k‖x(k) − x(k−1)‖ + ql−k−1‖x(k) − x(k−1)‖ + . . .

. . . + q‖x(k) − x(k−1)‖

= ‖x(k) − x(k−1)‖
l−k∑

j=1

qj

≤ ‖x(k) − x(k−1)‖
∞∑

j=1

qj

= ‖x(k) − x(k−1)‖ q

1 − q
(5.7)

≤ qk−1‖x(1) − x(0)‖ q

1 − q
=

qk

1 − q
‖x(1) − x(0)‖. (5.8)Weil qk

1−q
→ 0 für k → ∞ ist x(k) also eine Cau
hy-Folge.S
hritt 2: Existenz des Fixpunktes. Weil x(k) eine Cau
hy-Folge ist, gibt es x∗ =

limk→∞ x(k). Für x∗ gilt dann
‖Φ(x∗) − Φ(x(k))‖ ≤ q‖x∗ − x(k)‖ → 0 für k → ∞,entspre
hend haben wir

Φ(x∗) = lim
k→∞

Φ(x(k)) = lim
k→∞

x(k+1) = x∗S
hritt 3: Eindeutigkeit des Fixpunktes. Angenommen, x̃ sei ein weiterer Fix-punkt von Φ. Dann gilt
‖x∗ − x̃‖ = ‖Φ(x∗) − Φ(x̃)‖ ≤ q‖x∗ − x̃‖.Weil q < 1 folgt daraus, dass ‖x∗ − x̃‖ = 0, also x∗ = x̃.S
hritt 4: Fehlers
hranken. Wir nutzen die in S
hritt 1 aufgestellte Unglei-
hungskette für

‖x∗ − x(k)‖ = lim
l→∞

‖x(l) − x(k)‖

≤ ‖x(k) − x(k−1)‖ q

1 − q
wegen (5.7)

≤ qk

1 − q
‖x(1) − x(0)‖ wegen (5.8).Damit ist der Satz gezeigt. QED93



Zum Na
hweis der Kontraktion verallgemeinern wir no
h das bereits für skalareFunktionen verwendete Kriterium auf den Rn. Dabei bezei
hnen wir für eineFunktion F : R
n → R

m die Ja
obi-Matrix von F an der Stelle x ∈ R
n mit

DF (x), das heiÿt
DF (x) =






∂F1

∂x1

∂F1

∂x2
. . . ∂F1

∂xn... ...
∂Fm

∂x1

∂Fm

∂x2
. . . ∂Fm

∂xn




 .Für F : Rn → R bezei
hnen wir den Tangentialvektor DF (x) au
h einfa
h mit

f ′(x).Lemma 5.7 Sei U ⊆ Rn eine konvexe Menge und Φ : U → Rn stetig di�e-renzierbar mit ‖DΦ(x)‖ ≤ q < 1 für alle x ∈ U (wobei die Matrixnorm ‖ · ‖die der Vektornorm zugeordnete Norm sein soll). Dann ist Φ kontrahierend mitKontraktionsfaktor q.Beweis: Seien x, y ∈ U . Wir de�nieren eine Abbildung f : R → Rn dur
h
f(t) = Φ(x + t(y − x)) für t ∈ [0, 1].Dann gilt

‖Φ(y) − Φ(x)‖ = ‖f(1) − f(0)‖ = ‖
∫ 1

0

f ′(t)dt‖na
h dem Hauptsatz der Di�erential- und Integralre
hnung
= ‖

∫ 1

0

DΦ(x + t(y − x))(y − x)dt‖na
h der multivariaten Kettenregel
≤

∫ 1

0

‖DΦ(x + t(y − x))‖ ‖y − x‖dt

≤ ‖y − x‖
∫ 1

0

q dt = q‖x − y‖. QEDAbs
hlieÿend untersu
hen wir no
h, wie wir bei der Approximation des Fixpunk-tes eine Genauigkeit von ε garantieren können. Wir wollen also errei
hen, dass
‖x(k) − x∗‖ ≤ εwenn k die Iteration ist, bei der wir abbre
hen. Dazu können wir sowohl diea-priori als au
h die a-posteriori S
hranke aus Satz 5.6 nutzen.Die a-priori S
hranke sagt, dass

‖x(k) − x∗‖ ≤ qk

1 − q
‖x(1) − x(0)‖ für alle k = 1, 2 . . . .94



‖x(k) − x∗‖ ≤ ε ist also gewährleistet, falls
qk

1 − q
‖x(1) − x(0)‖ ≤ ε,und das lässt si
h au�ösen zu

k ≥
ln
(

(1−q)ε

‖x(1)−x(0)‖

)

ln(q)
.Ist der Kontraktionsfaktor q also klein, werden weniger Iterationss
hritte benötigtals für einen groÿen Kontraktionsfaktor q.Um während des Verfahrens ein Abbru
hkriterium zu haben, nutzt man dagegenoft die (s
härfere) a posteriori Fehlers
hranke aus Satz 5.6, die besagt, dass

‖x(k) − x∗‖ ≤ q

1 − q
‖x(k) − x(k−1)‖ für alle k = 1, 2 . . .und zu dem Abbru
hkriterium

q

1 − q
‖x(k) − x(k−1)‖ ≤ εführt. Leider ist der Kontraktionsfaktor q oft ni
ht bekannt. In diesen Fällenbehilft man si
h mit folgender Abs
hätzung von q dur
h q̂k:

q̂k :=
‖x(k) − x(k−1)‖
‖x(k−1) − x(k−2)‖ .Es gilt q̂k ≤ q, denn

q̂k =
‖x(k) − x(k−1)‖
‖x(k−1) − x(k−2)‖ =

‖Φ(x(k−1)) − Φ(x(k−2))‖
‖x(k−1) − x(k−2)‖ ≤ q.
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Algorithmus 8: Sukzessive Approximation mit heuristis
hem Abbru
hkri-teriumInput: abges
hlossene Menge U ⊆ R
n, Kontraktion Φ : U → U, Startwert x(0) ∈

U, Toleranzwert ε.S
hritt 1: x(1) := Φ(x(0))S
hritt 2: k := 1S
hritt 3: RepeatS
hritt 3.1: k := k + 1S
hritt 3.2: x(k) := Φ
(
x(k−1)

)S
hritt 3.3: qk := ‖x(k)−x(k−1)‖

‖x(k−1)−x(k−2)‖S
hritt 3.4: If qk ≥ 1 STOP: Φ ist keine Kontraktion.Until qk

1−qk
‖x(k) − x(k−1)‖ ≤ εErgebnis: approximierter Fixpunkt x∗ = x(k)

Bemerkung: Die Fehlers
hranke ‖x(k) − x∗‖ ≤ ε kann ni
ht garantiert werden,weil wir nur wissen, dass
qk

1 − qk
≤ q

1 − q
.Meistens konvergiert qk aber gegen q, so dass das Abbru
hkriterium in der Regelausrei
hend gut funktioniert.5.3 Iterative Verfahren für lineare Glei
hungssys-temeWir wenden nun den Bana
h's
hen Fixpunktsatz auf lineare Operatoren an. Zu-nä
hst halten wir uns weiter in Bana
h-Räumen auf, kommen dann aber zurLösung linearer Glei
hungssysteme (also zum endli
hdimensionalen Fall) zurü
k.Satz 5.8 Sei B : X → X ein linearer bes
hränkter Operator in einem Bana
h-Raum (X, ‖ · ‖) mit ‖B‖ < 1 in der der Norm des Bana
h-Raumes zugeordnetenMatrixnorm. Dann gilt1. Der Operator I − B ist invertierbar, das heiÿt das System x − Bx = b hatgenau eine Lösung x∗ für jedes b ∈ X.96



2. Der inverse Operator (I − B)−1 ist bes
hränkt mit
‖(I − B)−1‖ ≤ 1

1 − ‖B‖ .3. Die Iterationsvors
hrift der sukzessiven Approximation x(k+1) = Bx(k) +
b, k = 0, 1, . . . konvergiert gegen x∗ für jeden Startwert x(0) ∈ X.4. Es gilt die a priori Fehlers
hranke

‖x(k) − x∗‖ ≤ ‖B‖k

1 − ‖B‖‖x
(1) − x(0)‖ für alle k = 1, 2 . . .5. Es gilt die a posteriori Fehlers
hranke

‖x(k) − x∗‖ ≤ ‖B‖
1 − ‖B‖‖x

(k) − x(k−1)‖ für alle k = 1, 2 . . .Beweis: Sei b ∈ X beliebig aber fest. De�niere den linearen OperatorΦ punktweisedur
h
Φx := Bx + b für alle x ∈ XWegen ‖Φx − Φx̃‖ = ‖B(x − x̃)‖ ≤ ‖B‖‖x − x̃‖ ist Φ kontrahierend mit q :=

‖B‖ < 1. Satz 5.6 ergibt damit direkt die folgenden Aussagen:ad 1. Es existiert ein eindeutiger Fixpunkt x∗, der Φx∗ = x∗ erfüllt. Weil
Φx = x ⇐⇒ Bx + b = x ⇐⇒ (I − B)x = bgibt es also eine eindeutige Lösung von x − Bx = b und (I − B) ist inver-tierbar.ad 3. x(k+1) = Φx(k) = Bx(k) + b konvergiert gegen x∗ für jeden Startwert x(0).ad 4. und 5. Hier folgt die Behauptung direkt mit q := ‖B‖.Als letzter Punkt bleibt no
h die zweite Aussage zu zeigen, also die Bes
hränkt-heit der linearen Abbildung (I − B)−1. Dazu de�nieren wir die Folge x(k) dersukzessiven Approximation mit Startwert x(0) := b. Es ergibt si
h
x(0) = b

x(1) = Bx(0) + b = Bb + b

x(2) = Bx(1) + b = B2b + Bb + b...
x(k) =

k∑

j=0

Bjb.97



Deswegen gilt
‖x(k)‖ ≤

k∑

j=0

‖Bjb‖ ≤ ‖b‖
k∑

j=0

‖B‖j ≤ ‖b‖
1 − ‖B‖Weiter wissen wir von Aussage 3 und 1, dass x(k) → x∗ = (I − B)−1b. Darausfolgt, dass

‖(I − B)−1b‖ ≤ ‖b‖
1 − ‖B‖ .Weil b beliebig war, gilt diese Aussage für alle b ∈ X. Somit erhält man

‖(I − B)−1‖ = sup
b∈X

‖(I − B)−1b‖
‖b‖ ≤ 1

1 − ‖B‖ . QEDIm endli
h-dimensionalen Fall sind alle Normen äquivalent, so dass aus der Kon-vergenz bezügli
h einer Norm die Konvergenz in allen anderen Normen folgt. Daes unhandli
h sein kann, das Kriterium für vers
hiedene Normen zu testen, wollenwir im folgenden ein notwendiges und hinrei
hendes Kriterium für die Konver-genz der sukzessiven Approximation herleiten. Dieses Kriterium wird über denSpektralradius ρ(B) der obigen Matrix B formuliert werden. Um das Kriteri-um herleiten zu können, benötigen wir das folgende Resultat aus der LinearenAlgebra.Satz 5.9 (Lemma von S
hur) Sei A ∈ IKn,n eine Matrix. Dann gibt es eineunitäre Matrix Q so, dass
Q∗AQ = R =








r11 r12 . . . r1n

r22 . . . r2n. . . ...
0 rnn






Mit Hilfe des Lemmas von S
hur zeigen wir nun erst die folgende Aussage.Lemma 5.10 Sei A ∈ IKn,n. Dann gilt ρ(A) ≤ ‖A‖. Andererseits gibt es zujedem ε > 0 eine Norm ‖ · ‖ε auf IKn so dass

‖A‖ε ≤ ρ(A) + ε.Beweis: Zum Beweis des ersten Teils der Aussage wählen wir einen Eigenwert λvon A mit zugehörigem normierten Eigenvektor u ∈ IKn. Dann gilt, dass
‖A‖ = sup

x:‖x‖=1

‖Ax‖ ≥ ‖Au‖ = ‖λu‖ = |λ|.98



Das gilt für alle Eigenwerte λ, also au
h für den betragsmäÿig gröÿten.Sei nun ε > 0 gegeben. Wir können ohne Bes
hränkung der Allgemeinheit anneh-men, dass A ni
ht die Nullmatrix ist. Wir werden nun die gesu
hte Norm ‖ · ‖εkonstruieren.Na
h dem Lemma von S
hur (Satz 5.9) �nden wir eine unitäre Matrix Q, so dass
R := Q∗AQ =








r11 r12 . . . r1n

r22 . . . r2n. . . ...
0 rnn






eine obere Dreie
ksmatrix (ni
ht die Nullmatrix) ist. Zunä
hst beoba
hten wir,dass

det(λI − A) = det(Q∗) det(λI − A) det(Q) = det(Q∗(λI − A)Q)

= det(λI − Q∗AQ) = det(λI − R)

= (λ − r11)(λ − r22) . . . (λ − rnn),also sind die Eigenwerte von A als Nullstellen des 
harakteristis
hen Polynomsgenau die Diagonalelemente von R. Man de�niert nun
r := max

i,j
|rij | > 0

δ := min

{

1,
ε

(n − 1)r

}

, und
D := diag(1, δ, δ2, . . . , δn−1)Weil δ > 0 ist D invertierbar und D−1 = diag(1, δ−1, δ−2, . . . , δ−(n−1)). Wir be-re
hnen nun

C : = D−1RD

= D−1










r11 δr12 δ2r13 . . . δn−1r1n

δr22 δ2r23 . . . δn−1r2n

δ2r33 . . . δn−1r3n. . . ...
0 δn−1rnn










=










r11 δr12 δ2r13 . . . δn−1r1n

r22 δr23 . . . δn−2r2n

r33 . . . δn−3r3n. . . ...
0 rnn










.Satz 3.17 (siehe Seite 55) liefert, dass
‖C‖∞ = max

i=1,...,n

n∑

j=1

cij

≤ max
i=1,...,n

rii + δr(n − 1) weil δj ≤ δ

≤ ρ(A) +
ε

(n − 1)r
r(n − 1) = ρ(A) + ε99



Setze
V := QDund de�niere damit

‖x‖ε := ‖V −1x‖∞.Das ist eine Norm, da V regulär. Um zu zeigen, dass diese Norm die gewüns
hteEigens
haft hat, bemerken wir zunä
hst, dass
V −1AV = D−1Q∗AQD = D−1RD = Cgilt. Damit erhält man s
hlieÿli
h

‖Ax‖ε = ‖V −1Ax‖∞
= ‖CV −1x‖∞
≤ ‖C‖∞‖V −1x‖∞
= ‖C‖∞‖x‖ε,also ist

‖A‖ε = sup
x∈IKn

‖Ax‖ε

‖x‖ε

≤ ‖C‖∞ = ρ(A) + ε. QEDNun können wir (endli
h!) das angekündigte Kriterium für die Konvergenz dersukzessiven Approximation formulieren.Satz 5.11 Sei B ∈ IKn,n. Die Folge x(k+1) = Bx(k) +b mit k = 0, 1, 2, . . . konver-giert für jedes b ∈ IKn und jeden Startwert x(0) ∈ IKn genau dann wenn ρ(B) < 1.Beweis:�⇐= �: Sei ρ(B) < 1. Na
h Lemma 5.10 existiert eine Norm ‖·‖ε so dass ‖B‖ε ≤
ρ(B) + ε für jedes ε > 0. Wähle ε nun so, dass

ρ(B) + ε < 1,dann konvergiert x(k) bezügli
h der Norm ‖ · ‖ε. Da in IKn alle Normenäquivalent (Satz 3.9) sind, folgt die Konvergenz in jeder Norm.�=⇒ �: Angenommen, ρ(B) ≥ 1. Dann gibt es einen Eigenwert λ ≥ 1 und einenzugehörigen Eigenvektor v 6= 0. Starte das Verfahren der sukzessiven Ap-proximation für b = v mit dem Startvektor x(0) = v. Man erhält
x(0) = v

x(1) = Bv + v = λv + v

x(2) = B(λv + v) + v = λ2v + λv + v...
x(k) =

(
k∑

j=0

λj

)

v → ∞ weil λ ≥ 1.100



Also konvergiert die Folge x(k) in diesem Fall ni
ht. QEDWir mö
hten die Ergebnisse nun konkret auf die Lösung linearer Glei
hungssys-teme anwenden. Sei also ein lineares Glei
hungssystem
Ax = bmit A ∈ IKn,n, b ∈ IKn gegeben. Wir bringen das Glei
hungssystem mit Hilfe einerregulären Matrix M in Fixpunktform und erhalten die äquivalente Fixpunktglei-
hung

x + M−1(b − Ax) = x,die zur sukzessiven Approximation
x(k+1) = x(k) + M−1(b − Ax(k)) beziehungsweise M(x(k+1) − x(k)) = b − Ax(k)führt. Numeris
h kann man x(k+1) in jeder Iteration dur
h das sukzessive Lösender beiden Systeme

Mw(k+1) = b − Ax(k) und x(k+1) = x(k) + w(k+1) (5.9)ermitteln. Allerdings ma
ht das nur Sinn, wenn man eine Matrix M wählt, diegewährleistet, dass das System (5.9) e�zient lösbar ist.Wie soll man also M wählen? Na
h Satz 5.11 konvergiert die Folge x(k+1) =
Bx(k) + b genau dann, wenn ρ(B) < 1. Weil in unserem Fall

x(k+1) = (I − M−1A)x(k) + M−1bmuss also ρ(I −M−1A) < 1 gelten. S
hreibt man M = N + A (mit N = M −A)so ergibt si
h, dass
I − M−1A = I − M−1(M − N) = I − M−1M + M−1N = M−1N,also die Bedingung, dass ρ(M−1N) < 1 gelten soll.Für die folgenden Verfahren zerlegen wir die gegebenen Matrix A in

A = AD + AL + AR,wobei AD = diag(a11, a22, . . . , ann) und
AL =






0 . . . 0. . . ...
aij 0




 , und AR =






0 aij... . . .
0 . . . 0




101



den Anteil des unteren und oberen Dreie
ks aus A beinhalten. Weiterhin setzenwir voraus, dass (eventuell na
h Pivotisierungs-S
hritten) die Inverse
A−1

D existiert, (5.10)d.h. dass alle Elemente der Hauptdiagonalen von A ni
ht Null sind. (Wie wir vonGauss-Verfahren wissen, lässt si
h das bei regulären Matrizen immer errei
hen.)Wir betra
hten nun zunä
hst zwei vom Konzept her sehr ähnli
he Verfahren, dasGesamts
hritt-Verfahren und das Einzels
hritt-Verfahren.Gesamts
hritt - oder Ja
obi-VerfahrenIm so genannten Gesamts
hritt-Verfahren (GSV) wählt man die na
h unsererVoraussetzung (5.10) reguläre Matrix M = AD. Als Fixpunktglei
hung erhältman
x = x + A−1

D (b − Ax) = x − A−1
D Ax + A−1

D b

= −A−1
D (A − AD)x + A−1

D b

= −A−1
D (AL + AR)x + A−1

D b (5.11)Das Verfahren der sukzessiven Approximation ergibt si
h folgli
h zu
x(k+1) = −A−1

D (AL + AR)x(k) + A−1
D b, k = 0, 1, 2, . . .mit der Iterationsmatrix

B = I − A−1
D A = −A−1

D (AL + AR) (5.12)Komponentenweise kann man s
hreiben
x

(k+1)
i = −

∑

j∈{1,...,n}\{i}

aij

aii
xk

j +
bi

aii
, i = 1, . . . , n.Das Konvergenzverhalten analysiert der folgende Satz.Satz 5.12 Die Matrix A = (aij) ∈ IKn genüge einer der drei folgenden Bedin-gungen:Zeilensummenkriterium: q∞ = maxi=1,...,n

∑

j∈{1,...,n}\{i}

∣
∣
∣
aij

aii

∣
∣
∣ < 1Spaltensummenkriterium: q1 = maxj=1,...,n

∑

i∈{1,...,n}\{j}

∣
∣
∣

aij

ajj

∣
∣
∣ < 1Quadratsummenkriterium: q2 =

√
∑

i,j∈{1,...,n},i6=j

∣
∣
∣
aij

aii

∣
∣
∣

2

< 1102



Dann konvergiert das Ja
obi-Verfahren bezügli
h jeder Norm im IKn für jede re
h-te Seite b ∈ IKn und für jeden Startwert x(0) ∈ IKn, und zwar gegen die eindeutigbestimmte Lösung x∗ von Ax∗ = b. Weiterhin gilt für p ∈ {1, 2,∞}:
• A priori Fehlers
hranke: ‖x(k) − x∗‖p ≤ qk

p

1−qp
‖x(1) − x(0)‖p

• A posteriori-Fehlers
hranke: ‖x(k) − x∗‖p ≤ qp

1−qp
‖x(k) − x(k−1)‖pBeweis: Wir untersu
hen die Norm der Iterationsmatrix

B = −A−1
D (AL + AR).Na
h Satz 3.17 gilt, dass

‖ − A−1
D (AL + AR)‖p = qp < 1 für p ∈ {∞, 1},und aus Lemma 3.24 folgt, dass

‖ − A−1
D (AL + AR)‖2 ≤ ‖ − A−1

D (AL + AR)‖F = q2 < 1.Wir können also Satz 5.8 anwenden, aus dem si
h der Rest der Behauptungendirekt ergibt. QEDBemerkung: Die drei Konvergenzkriterien sind ni
ht äquivalent!Der Algorithmus ergibt si
h in kanonis
her Weise:Algorithmus 9: Ja
obi-VerfahrenInput: Reguläre Matrix A ∈ IKn,n mit aii 6= 0 für i = 1, . . . , n, b ∈ IKn, x(0) ∈
IKn.S
hritt 1: k := 0S
hritt 2: RepeatS
hritt 2.1: For i = 1, . . . , n do: x

(k+1)
i := 1

aii

(

−∑j∈{1,...,n}\{i} aijx
(k)
j + bj

)S
hritt 2.2: k := k + 1Until Abbru
hkriteriumErgebnis: Approximierte Lösung x∗ von Ax∗ = b.Ein Abbru
htest kann wie bei Algorithmus 8 bespro
hen mit q = qp dur
hgeführtwerden. 103



Einzels
hritt - oder Gauÿ-Seidel-VerfahrenIm jetzt zu bespre
henden Einzels
hritt-Verfahren (ESV) wählt man M = AD +
AL. Na
h der Voraussetzung (5.10) ist M regulär. Als Fixpunktglei
hung erhältman

x = x + (AD + AL)−1(b − Ax)

= −(AD + AL)−1(−(AD + AL) + A)x + (AD + AL)−1b

= −(AD + AL)−1ARx + (AD + AL)−1b (5.13)Das Verfahren der sukzessiven Approximation ergibt si
h folgli
h zu
x(k+1) = −(AD + AL)−1ARx(k) + (AD + AL)−1b, k = 0, 1, 2, . . .Die Iterationsmatrix ist entspre
hend

C = I − (AD + AL)−1A = −(AD + AL)−1AR.Re
hneris
h nutzt man die Umformulierung zu
(AD + AL)x(k+1) = −ARx(k) + b, k = 0, 1, 2, . . . (5.14)Um das komponentenweise zu s
hreiben löst man dieses System mittels Vorwärts-elimination auf, um die Unbekannten x

(k+1)
i für i = 1, . . . , n zu bestimmen. Manerhält

x
(k+1)
i = −

i−1∑

j=1

aij

aii

x
(k+1)
j −

n∑

j=i+1

aij

aii

x
(k)
j +

bi

aii

, i = 1, . . . , n.Die Formel stimmt fast mit der entspre
henden komponentenweisen Iterationsfor-mel des Ja
obi-Verfahrens überein. Der Unters
hied besteht ledigli
h darin, dassbeim vorliegenden Gauÿ-Seidel-Verfahren zur Bere
hnung von x
(k+1)
i die neuen(und ho�entli
h besseren) Werte x

(k+1)
j für j = 1, . . . , i − 1 herangezogen wer-den anstatt der Werte x

(k)
j wie im Ja
obi-Verfahren. Das ist der Grund, warumdas Gauÿ-Seidel-Verfahren in den meisten Fällen s
hneller konvergiert als dasJa
obi-Verfahren.Über das Konvergenzverhalten gibt der folgende Satz Auskunft.Satz 5.13 Die Matrix A = (aij) ∈ IKn,n genüge dem Kriterium na
h Sassenfeld:

p := max
i=1,...,n

pi < 1mit den Werten
p1 :=

n∑

j=2

∣
∣
∣
∣

a1j

a11

∣
∣
∣
∣

pi :=
i−1∑

j=1

∣
∣
∣
∣

aij

aii

∣
∣
∣
∣
pj +

n∑

j=i+1

∣
∣
∣
∣

aij

aii

∣
∣
∣
∣
für i = 2, . . . , n104



Dann konvergiert das Gauÿ-Seidel-Verfahren für jede re
hte Seite b ∈ IKn undbei beliebigem x(0) ∈ IKn gegen die eindeutig bestimmte Lösung x∗ von Ax∗ = b.Weiterhin gilt:
• A priori-Fehlers
hranke: ‖x(k) − x∗‖∞ ≤ pk

1−p
‖x(1) − x(0)‖∞

• A posteriori Fehlers
hranke: ‖x(k) − x∗‖∞ ≤ p
1−p

‖x(k) − x(k−1)‖∞Beweis: Wir wollen die Zeilensummennorm von (AD + AL)−1AR abs
hätzen. Seihierzu
(AD + AL)x = −ARz , ‖z‖∞ = 1,das heiÿt,
‖x‖∞ = ‖ − (AD + AL)−1ARz‖∞.Vorwärtselimination ergibt

xi = −
i−1∑

j=1

aij

aii

xj −
n∑

j=i+1

aij

aii

zj für i = 1, . . . , nWir zeigen zunä
hst, dass |xi| ≤ pi für i = 1, . . . , n:Induktionsanfang: i = 1. Weil |zi| ≤ 1 für alle i erhält man:
|x1| =

∣
∣
∣
∣
∣

n∑

j=2

a1j

a11
zj

∣
∣
∣
∣
∣
≤

n∑

j=2

∣
∣
∣
∣

a1j

a11

∣
∣
∣
∣
|zj| ≤

n∑

j=2

∣
∣
∣
∣

a1j

a11

∣
∣
∣
∣
= p1Induktionss
hritt: i − 1 → i.

|xi| =

∣
∣
∣
∣
∣
−

i−1∑

j=1

aij

aii
xj −

n∑

j=i+1

aij

aii
zj

∣
∣
∣
∣
∣

≤
i−1∑

j=1

∣
∣
∣
∣

aij

aii

∣
∣
∣
∣
|xj |
︸︷︷︸

≤pj

+

n∑

j=i+1

∣
∣
∣
∣

aij

aii

∣
∣
∣
∣
|zj |
︸︷︷︸

≤1

≤
i−1∑

j=1

∣
∣
∣
∣

aij

aii

∣
∣
∣
∣
pj +

n∑

j=i+1

∣
∣
∣
∣

aij

aii

∣
∣
∣
∣
= piAlso gilt ‖x‖∞ ≤ p und entspre
hend für x(z) := (AD + AL)−1ARz, dass

‖(AD+AL)−1AR‖∞ = sup
z∈IKn:‖z‖∞=1

‖(AD+AL)−1ARz‖∞ = sup
z∈IKn:‖z‖∞=1

‖x(z)‖∞ ≤ p.Weil p < 1 vorausgesetzt war, folgt die Behauptung na
h Satz 5.8. QED105



Bemerkung: Erfüllt eine Matrix das Zeilensummenkriterium, so au
h das Sas-senfeldkriterium. Das heiÿt, das Zeilensummenkriterium ist ebenfalls hinrei
hendfür die Konvergenz des Einzels
hritt-Verfahrens.Andererseits erfüllt ni
ht jede Matrix, die dem Sassenfeld-Kriterium genügt, au
hdas Zeilensummenkriterium, wie die folgende Matrix A zeigt:
A =












2 −1
−1 2 −1

−1 2 −1. . . . . . . . .
−1 2 −1

−1 2










Bemerkung: In Satz 5.17 werden wir zeigen, dass das Gauss-Seidel-Verfahrenbei Glei
hungssystemen mit hermites
her und positiv de�niter Koe�zientenma-trix konvergiert.Der Vollständigkeit halber sei der Algorithmus des Einzels
hrittverfahrens eben-falls skizziert.Algorithmus 10: Gauÿ-Seidel-VerfahrenInput: Reguläre Matrix A ∈ IKn,n mit aii 6= 0 für i = 1, . . . , n, b ∈ IKn, x(0) ∈

IKn.S
hritt 1: k := 0S
hritt 2: RepeatS
hritt 2.1: For i = 1, . . . , n do:
x

(k+1)
i := 1

aii

(

−∑i−1
j=1 aijx

(k+1)
j −∑n

j=i+1 aijx
(k)
j + bj

)S
hritt 2.2: k := k + 1Until Abbru
hkriteriumErgebnis: Approximierte Lösung x∗ von Ax∗ = b.
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Relaxations-VerfahrenDie Idee der Relaxations-Verfahren besteht darin, die Konvergenz des Gesamt-s
hrittverfahrens beziehungsweise des Einzels
hrittverfahrens zu verbessern, in-dem man dur
h Einführen eines so genannten Relaxations-Parameters den Spek-tralradius der Iterationsmatrix verkleinert.Wir betra
hten zunä
hst das Gesamts
hritt-Verfahren. Die Iterationsvors
hriftergibt si
h na
h (5.11) auf Seite 101:
x(k+1) = x(k) + A−1

D (b − Ax(k)).In jedem Iterationss
hritt wird also x(k) dur
h das A−1
D -fa
he des Residuums

z(k) = b − Ax(k) korrigiert. Dabei ist oft zu beoba
hten, dass die Korrektur umeinen festen Faktor zu klein ist. Deshalb kann es sinnvoll sein, den Wert um ωz(k)statt um z(k) zu ändern, wobei ω ein beliebiger positiver Parameter sein darf. Dasresultierende Verfahren ist das relaxierte Gesamts
hrittverfahren.De�nition 5.14 Das Iterationsverfahren
x(k+1) = x(k) + ωA−1

D (b − Ax(k))heiÿt Gesamts
hritt-Relaxationsverfahren.Komponentenweise bere
hnen si
h die Werte x
(k+1)
i dur
h

x
(k+1)
i = x

(k)
i +

ω

aii



bi −
∑

j∈{1,...,n}\{i}

aijx
(k)
j



 , i = 1, . . . , nEs gilt
x(k+1) = x(k) + ωA−1

D (b − Ax(k))

= (I − ωA−1
D A)x(k) + ωA−1

D b

=
[
I − ωI + ω(−A−1

D A + I)
]
x(k) + ωA−1

D b

= [(1 − ω)I + ωB]x(k) + ωA−1
D b, (5.15)wobei im letzten S
hritt B = I−A−1

D A die Iterationsmatrix des Gesamts
hrittver-fahrens aus (5.12) bezei
hnet (siehe Seite 101). Die Iterationsmatrix des Gesamts
hritt-Relaxationsverfahrens mit Relaxationsparameter ω bezei
hnen wir im folgendenmit
Bω = (I − ωA−1

D A) = (1 − ω)I + ωB.Wir bemerken, dass die Matrix des Gesamts
hrittverfahrens gerade B = B1 ist.Satz 5.11 legt nahe, den Relaxationsparameter ω so zu wählen, dass der Spek-tralradius der Iterationsmatrix Bω mögli
hst klein wird. Der folgende Satz gibtAuskunft darüber, wie dieses Ziel errei
ht werden kann.107



Satz 5.15 Die zum Gesamts
hrittverfahren gehörende Iterationsmatrix B = I −
A−1

D A habe nur reelle Eigenwerte und einen Spektralradius ρ(B) < 1. Sei weiter-hin −1 < λmin der kleinste Eigenwert von B und λmax < 1 der gröÿte. Für dieIterationsmatrix des Gesamts
hritt-Relaxationsverfahrens
Bω = (1 − ω)I + ωBgilt dann:

ρ(Bω) wird minimal für ω∗ =
2

2 − λmin − λmax
.Speziell erhält man ρ(Bω) < ρ(B) falls λmin 6= −λmax.Beweis: Zunä
hst bemerken wir dass für ω 6= 0

Bu = λu ⇐⇒ [(1 − ω)I + ωB] u = [(1 − ω) + ωλ]ugilt. Das heiÿt, λ ist Eigenwert von B genau dann wenn (1 − ω) + ωλ Eigenwertvon Bω ist. Weil ω > 0 erhält man insbesondere, dass
(1 − ω) + ωλmin der kleinste Eigenwert von Bω ist, und
(1 − ω) + ωλmax der gröÿte.Bei gegebenem ω ist der Spektralradius der Matrix Bω folgli
h

ρ(Bω) = max{−(1 − ω) − ωλmin, (1 − ω) + ωλmax}Jetzt mö
hten wir ω so bestimmen, dass dieser Ausdru
k mögli
hst klein wird.Dazu überlegt man si
h, dass die beiden Funktionen
−(1 − ω) − ωλmin = −1 + ω(1 − λmin)

(1 − ω) + ωλmax = 1 + ω(λmax − 1)Geraden sind. Das Maximum von zwei Geraden ist eine konvexe Funktion, dieaus zwei linearen Abs
hnitten besteht und ihr eindeutiges Minimum genau amS
hnittpunkt der beiden Geraden annimmt, falls dieser existiert. In unserem Fallist das gegeben, da die beiden Steigungen der Geraden aufgrund der Bedingung
λmin < λmax < 1

1 − λmin 6= λmax − 1erfüllen; die Geraden sind also ni
ht parallel. Ihr eindeutiger S
hnittpunkt erre
h-net si
h dur
h Au�ösen der Glei
hung
−(1 − ω) − ωλmin = (1 − ω) + ωλmaxund liegt entspre
hend bei

w∗ =
2

2 − λmin − λmax

.108



Da für λmin 6= −λmax gilt, dass ω∗ 6= 1 ist, und das Minimum ω∗ eindeutig ist,folgt, dass
ρ(Bω∗) < ρ(B),der Spektralradius von der Iterationsmatrix des Gesamts
hritt-Relaxationsverfahrens

Bω∗ ist in diesem Fall also e
ht kleiner als der Spektralradius der Matrix B des(unrelaxierten) Gesamts
hrittverfahrens. QEDDer optimale Relaxationskoe�zient ω∗ liegt also im Berei
h (0,∞).
• Ist ω∗ < 1 so spri
ht man von Unterrelaxation. Sie tritt auf, falls −λmin >

λmax.
• Für ω∗ = 1 (also wenn −λmin = λmax) erhält man das normale Gesamt-s
hrittverfahren.
• Ist ω∗ > 1 so spri
ht man von Überrelaxation. Sie tritt auf, falls −λmin <

λmax.Um ω∗ zu bere
hnen, sind s
harfe S
hranken für die Eigenwerte der Matrix A(inklusive Vorzei
hen) nötig.Das Gesamts
hritt-Relaxationsverfahren hat no
h eine andere Interpretation: Be-zei
hnet man die (unrelaxierte) Iterierte aus dem Gesamts
hrittverfahren mit
z(k+1) = Bx(k) + A−1

D b,dann gilt na
h (5.15), dass
x(k+1) = (1 − ω)x(k) + ωz(k+1), (5.16)der neue Wert x(k+1) entsteht also, indem man zwis
hen dem letzten Wert x(k)und dem Wert z(k+1) aus dem Gesamts
hrittverfahren linear interpoliert.Wir untersu
hen nun, wie man ein Relaxationsverfahren bezügli
h des Einzel-s
hrittverfahrens de�nieren kann. Im Einzels
hrittverfahren (siehe (5.13)) hattenwir die Fixpunktglei
hung
x = x + (AD + AL)−1(b − Ax),aus der si
h die Iterationsmatrix

C = I − (AD + AL)−1A = −(AD + AL)−1ARergibt. Zur numeris
hen Bere
hnung wurde die Umformulierung
(AD + AL)x(k+1) = −ARx(k) + b, k = 0, 1, 2 . . .109



angegeben, die wir jetzt weiter zu
ADx(k+1) = b − ALx(k+1) − ARx(k)umformulieren. Wir de�nieren das Relaxationsverfahren jetzt ähnli
h wie für dasGesamts
hrittverfahren, indem wir au
h hier die auf der linken Seite im Einzel-s
hrittverfahren auftretenden x(k+1) zu z(k+1) umbenennen. Das heiÿt, wir s
hrei-ben obige Glei
hung als
ADz(k+1) = b − ALx(k+1) − ARx(k). (5.17)Wie in (5.16) wählen wir den relaxierten Wert für x(k+1) als

x(k+1) = (1 − ω)x(k) + ωz(k+1).Diese De�nition mö
hten wir nun in (5.17) einsetzen. Dazu multiplizieren wir(5.17) mit ω und substituieren ωz(k+1) dur
h x(k+1) − (1 − ω)x(k) wie in (5.16)gefordert. Man erhält
ADx(k+1) = (1 − ω)ADx(k) + ωb − ωALx(k+1) − ωARx(k), (5.18)was si
h zu

(AD + ωAL)x(k+1) = [(1 − ω)AD − ωAR] x(k) + ωbund s
hlieÿli
h zu
x(k+1) = (AD + ωAL)−1 [(1 − ω)AD − ωAR] x(k) + ω(AD + ωAL)−1bumformulieren lässt. Daraus ergibt si
h die Iterationsmatrix für das Einzels
hritt-Relaxationsverfahren in Abhängigkeit von ω zu

Cw = (AD + ωAL)−1 [(1 − ω)AD − ωAR] . (5.19)Man sieht, dass au
h hier C1 = C gilt, d.h. für den Relaxationsparameter ω = 1erhält man die Iterationsmatrix aus dem normalen Einzels
hrittverfahren.Um die Werte x
(k+1)
i komponentenweise zu bestimmen, multipliziert man (5.18)mit von links A−1

D und formuliert die entstehende Glei
hung dann folgendermaÿenum:
x(k+1) = (1 − ω)x(k) + ωA−1

D b − ωA−1
D ALx(k+1) − ωA−1

D ARx(k)

= x(k) + ωA−1
D (b − ALx(k+1) − ADx(k) − ARx(k))

= x(k) + ωA−1
D (b − ALx(k+1) − (AD + AR)x(k))Man bestimmt dann x(k+1) via

x
(k+1)
i = x

(k)
i +

ω

aii

(

bi −
i−1∑

j=1

aijx
(k+1)
j −

n∑

j=i

aijx
(k)
j

)

i = 1, . . . , n.110



Das Verfahren nennt man au
h Su

essive overrelaxation, abgekürzt als SOR-Verfahren (obwohl man streng genommen nur für ω > 1 von einer Überrelaxationspre
hen sollte.)Als nä
hstes untersu
hen wir, für wel
he Relaxationsparameterw, wir Konvergenzerwarten können. Zunä
hst geben wir ein negatives Ergebnis.Satz 5.16 Sei A ∈ IKn,n mit aii 6= 0 für i = 1, . . . , n. Dann gilt
ρ(Cw) ≥ |ω − 1|.Insbesondere ist ρ(Cw) ≥ 1 falls ω 6∈ (0, 2), d.h. das SOR-Verfahren konvergiertin diesen Fällen im allgemeinen ni
ht.Beweis: Wir s
hreiben die Iterationsmatrix Cω um zu

Cω = (AD + ωAL)−1ADA−1
D [(1 − ω)AD − ωAR]

=
[
A−1

D (AD + ωAL)
]−1 [

(1 − ω)I − ωA−1
D AR

]

=
[
(I + ωA−1

D AL)
]−1 [

(1 − ω)I − ωA−1
D AR

]
,also dem Produkt von

• einer na
h Satz 2.9 normierten unteren Dreie
ksmatrix (I + ωA−1
D AL)−1,und

• einer oberen Dreie
ksmatrix (1 − ω)I − ωA−1
D AR mit Diagonalelementen

(1 − ω).Es gilt also
det(Cω) = det(I + ωA−1

D AL)−1 det
[
(1 − ω)I − ωA−1

D AR

]
= (1 − ω)n.Weil die Determinante einer Matrix glei
h dem Produkt ihrer Eigenwerte ist, giltinsbesondere | det(Cω)| ≤ (ρ(Cω))n, also

|1 − ω|n ≤ (ρ(Cω))nund damit folgt die Behauptung. QEDAbs
hlieÿend zeigen wir, dass die Rü
kri
htung der obigen Aussage zumindest fürhermites
he und positiv de�nite Matrizen ri
htig ist: Für alle Werte ω ∈ (0, 2)des Relaxationsparameter konvergiert das Verfahren.Satz 5.17 Sei A ∈ IKn,n hermites
h und positiv de�nit. Dann konvergiert dasEinzels
hritt-Relaxationsverfahren (SOR-Verfahren) für jeden Relaxationspara-meter ω ∈ (0, 2). 111



Beweis: Wir bere
hnen den Spektralradius der Iterationsmatrix Cω, und zeigen,dass ρ(Cω) < 1 gilt. Dazu sei also λ ein Eigenwert von Cω mit zugehörigemEigenvektor x. Unser Ziel ist, |λ| < 1 na
hzuweisen. Na
h (5.19) ist Cωx = λxglei
hbedeutend mit
[(1 − ω)AD − ωAR] x = λ(AD + ωAL)x. (5.20)Wir nutzen nun folgende beide Aussagen, die si
h direkt aus A = AL + AD + ARergeben:1. (2 − ω)AD − ωA − ω(AR − AL) = 2(1 − ω)AD − 2ωAR2. (2 − ω)AD + ωA − ω(AR − AL) = 2AD + 2ωALDamit folgt aus (5.20), dass

[(2 − ω)AD − ωA − ω(AR − AL)] x = λ [(2 − ω)AD + ωA − ω(AR − AL)]xUm diese Glei
hung na
h λ aufzulösen, bilden wir das Skalarprodukt dur
h dieMultiplikation beider Seiten von links mit x∗. Um abzukürzen, führen die Be-zei
hnungen
d := x∗ADx

a := x∗Axein, und bemerken, dass a > 0 und d > 0 gilt, weil A positiv de�nit ist. DieMultiplikation von links mit x∗ ergibt nun
(2 − ω)d − ωa − ωx∗(AR − AL)x = λ [(2 − ω)d + ωa − ωx∗(AR − AL)x] (5.21)Zunä
hst ma
hen wir uns klar, dass

(ix∗(AR − AL)x)∗ = x∗(A∗
R − A∗

L)x̄i

= x∗(AL − AR)x(−i) weil A = A∗

= ix∗(AR − AL)xgilt, und daher s := ix∗(AR − AL)x ∈ R ist und wir (5.21) weiter umformulierenkönnen zu
(2 − ω)d − ωa + i ωs = λ [(2 − ω)d + ωa + i ws] ,in der bis auf λ alle auftretenden Werte ω, d, a, s ∈ R sind. Mit

α := (2 − ω)d − ωa ∈ R

α̃ := (2 − ω)d + ωa ∈ R

β := ωs ∈ R112



erhalten wir endli
h
α + iβ = λ(α̃ + iβ).Dann gilt au
h für die Beträge, dass
|α + iβ| = |λ||α̃ + iβ|.Wir nutzen no
h aus, dass α̃ > α (weil ω ∈ (0, 2)) und erhalten

α2 + β2 = |λ|(α̃2 + β2) > |λ|(α2 + β2),also |λ| < 1. QEDFolge: Da das Einzels
hrittverfahren ein Spezialfall des SOR-Verfahrens, näm-li
h mit ω = 1 ist, haben wir mit dem vorliegenden Satz bewiesen, dass dasEinzels
hrittverfahren ESV für hermites
he und positiv de�nite Matrizen immerkonvergiert.5.4 Iterative Verfahren für ni
htlineare Glei
hungs-systemeIn diesem Abs
hnitt betra
hten wir nun endli
h ni
htlineare Glei
hungssysteme
F (x) = 0mit einer reellen Funktion F : R

n → R
n,

F (x) =








f1(x)
f2(x)...
fn(x)






Wir nehmen zunä
hst an, dass unser Glei
hungssystem bereits in Fixpunktform

G(x) = x vorliegt mit einer Funktion
G(x) =








g1(x)
g2(x)...
gn(x)








.Eine Fixpunktglei
hung kann man z.B. dur
h die Funktion G mit
G(x) = x + M−1(x)(F (x))erzeugen. Dabei ist M ein linearer Operator, der von x abhängen darf. Wie wi
htiges ist, die Funktion G sinnvoll zu wählen, zeigt das folgende Beispiel.Wir betra
hten die Funktion f(x) = x − cos x im Intervall [0, 1].113



• Wähle g(x) = cosx. Dann gilt f(x) = 0 genau dann wenn g(x) = x.Weiterhin gilt g : [0, 1] → [0, 1]. Jetzt wollen wir no
h zeigen, dass g eineKontraktion ist. Wir wenden Lemma 5.7 an und erhalten
q = sup

0≤x≤1
|g′(x)| = sup

0≤x≤1
sin x = sin 1 < 1,also ist g eine Kontraktion. Na
h Satz 5.6 konvergiert also das Verfahren

x(k+1) = cosx(k). Allerdings ist die Konvergenzges
hwindigkeit unbefriedi-gend.
• Betra
hten wir nun

g(x) = x − x − cos x

1 + sin xAu
h dann gilt f(x) = 0 genau dann wenn g(x) = x, und man sieht na
hkurzer Re
hnung, dass g : [0, 1] → [0, 1], und dass
g′(x) = 1 − (1 + sin x)2 − (x − cos x) cos x

(1 + sin x)2

= 1 − 1 +
(x − cos x) cos x

(1 + sin x)2

= 1 für x = 0.Also ist g keine Kontraktion. Das Verfahren der sukzessiven Approximationkonvergiert denno
h. Die Konvergenz mit Hilfe dieser Fixpunktglei
hung istsogar sehr s
hnell!Um die s
hnelle Konvergenz zu erklären, s
hreibt man die Ableitung um zu
g′(x) =

f(x) cosx

(1 + sin x)2
.Weil f eine Nullstelle x∗ in [0, 1] hat, gilt g′(x∗) = 0, also gibt es eine Umge-bung um x∗, in der g eine Kontraktion ist. Der Kontraktionsfaktor in dieserUmgebung ist nahe bei Null (also sehr klein), und das Konvergenzverhaltendaher gut.Bevor wir diese Beoba
htung im Newton-Verfahren ausnutzen, verallgemeinernwir Satz 5.12 auf ni
htlineare Funktionen und beweisen damit, dass das Verfahrender sukzessiven Approximation unter ähnli
hen Bedingungen wir im Satz 5.12au
h im ni
htlinearen Fall konvergiert.Satz 5.18 Sei U ⊆ R

n eine konvexe Menge und G : U → U eine stetig di�eren-zierbare Abbildung (d.h. jedes der Elemente der Ja
obi-Matrix DG ist stetig in
U). Weiterhin gelte eine der folgenden Bedingungen:Zeilensummenkriterium: q∞ = supx∈U maxi=1,...,n

∑n
j=1

∣
∣
∣

∂gi

∂xj

∣
∣
∣ < 1114



Spaltensummenkriterium: q1 = supx∈U maxj=1,...,n

∑n
i=1

∣
∣
∣

∂gi

∂xj

∣
∣
∣ < 1Quadratsummenkriterium: q2 = supx∈U

√
∑n

i,j=1

∣
∣
∣

∂gi

∂xj

∣
∣
∣

2

< 1Dann konvergiert das Verfahren der sukzessiven Approximation bezügli
h jederNorm im Rn für jeden Startwert x(0) ∈ Rn, und zwar gegen die eindeutig be-stimmte Lösung x∗ des ni
htlinearen Glei
hungssystems G(x∗) = x∗. Ist qp < 1für p ∈ {1, 2,∞} so gelten für dieses p auÿerdem die folgenden S
hranken.
• A priori Fehlers
hranke: ‖x(k) − x∗‖p ≤ qk

p

1−qp
‖x(1) − x(0)‖p

• A posteriori-Fehlers
hranke: ‖x(k) − x∗‖p ≤ qp

1−qp
‖x(k) − x(k−1)‖pBeweis: Na
h Satz 3.17 und Lemma 3.24 zeigen, dass

sup
x∈U

‖DG(x)‖p = qp für p ∈ {∞, 1}

sup
x∈U

‖DG(x)‖2 ≤ q2Daher ist na
h Lemma 5.7 die Abbildung G : U → U kontrahierend, falls qp < 1für ein p ∈ {∞, 1, 2}. Satz 5.6 ergibt die Behauptung. QEDUnter den Voraussetzungen des letzten Satzes konvergiert also das Verfahren dersukzessiven Approximation au
h im ni
htlinearen Fall. Das Verfahren
x

(k+1)
i = gi(x

(k)
1 , x

(k)
2 , . . . , x(k)

n ) i = 1, . . . , n, k = 0, 1, 2, . . .nennt man au
h ni
htlineares Gesamts
hrittverfahren, während man dasVerfahren
x

(k+1)
1 = g1(x

(k)
1 , . . . , x(k)

n )

x
(k+1)
i = gi(x

(k+1)
1 , . . . , x

(k+1)
i−1 , x

(k)
i , . . . , x(k)

n ) i = 2, . . . , n,als ni
htlineares Einzels
hrittverfahren bezei
hnet. Die in Abs
hnitt 5.3 be-spro
henen Verfahren GSV und ESV sind Spezialfälle dieser Verfahren.Das Newton-Verfahren für skalare FunktionenWir kommen nun wieder zurü
k zu dem originalen ni
htlinearen Glei
hungssys-tem
F (x) = 0und entwi
keln mit dem nun zu bespre
henden Newton-Verfahren eine Fixpunkt-form, die � wenn sie konvergiert � zu einem s
hnelleren Konvergenzverhaltenführt. Wir beginnen unsere Überlegung für eine reelle Funktion f : R → R.115



Gesu
ht ist eine Nullstelle x∗ der Funktion f . Haben wir s
hon eine S
hätzungder Nullstelle x(0) und ist f stetig di�erenzierbar, so besteht die Idee des Newton-Verfahrens darin, f dur
h seine Tangente dur
h den Punkt x(0)

f ≈ f(x(0)) + f ′(x(0))(x − x(0))(also der Taylorreihe bis zum linearen Glied) zu ersetzen. Man su
ht also dieNullstelle der Näherung anstatt der Nullstelle von f . Eine Nullstelle der Näherung
f(x(0)) + f ′(x(0))(x − x(0)) existiert, falls f(x(0)) 6= 0 ist und ist in diesem Fallgegeben dur
h

x = x(0) − f(x(0))

f ′(x(0))Wiederholt man das Vorgehen mit x(1) := x so erhält man das Newton-Verfahren.Erfüllt die Ableitung f(x) 6= 0 so erhält man die Fixpunktglei
hung
g(x) = x − f(x)

f ′(x)
.Kommen wir kurz zu dem Beispiel f(x) = x − cos x von Seite 112 zurü
k: Hierwurde mit

g(x) = x − 1

1 + sin x
(x − cos x) = x − f(x)

f ′(x)im zweiten Versu
h genau die Fixpunktform des Newton-Verfahrens verwendet.Leider ist die Funktion g im allgemeinen keine Kontraktion auf dem gesamten zubetra
htenden Intervall, so dass Satz 5.18 ni
ht anwendbar ist. Denno
h gilt diefolgende lokale Konvergenzaussage.Satz 5.19 Sei x∗ eine einfa
he Nullstelle der f : R → R. Sei weiterhin f ineiner Umgebung von x∗ zwei mal stetig di�erenzierbar. Dann konvergiert dasNewton-Verfahren für jeden Startwert x(0), der hinrei
hend di
ht bei x∗ liegt.Beweis: Weil x∗ einfa
he Nullstelle ist, gilt f ′(x∗) 6= 0 und entspre
hend gibt eseine Umgebung U := U(x∗) so dass f ′(x) 6= 0 für alle x ∈ U . Die Verfahrensvor-s
hrift g(x) = x − f(x)
f ′(x)

ist damit für alle x ∈ U de�niert. Die Ableitung von gist
g′(x) = 1 − [f ′(x)]2 − f(x)f ′′(x)

[f ′(x)]2
=

f ′′(x)

[f ′(x)]2
f(x),also g′(x∗) = 0. Wegen der Stetigkeit von g′ gibt es Zahlen δ > 0, q < 1 sodassfür alle x ∈ U ′ = [x∗ − δ, x∗ + δ] ∩ U gilt |g′(x)| ≤ q < 1. Daraus folgt

|g(x) − x∗| = |g(x) − g(x∗)| ≤ q|x − x∗| ≤ δ für alle x ∈ U ′,das heiÿt, g : U ′ → U ′ ist eine Kontraktion. Satz 5.6 liefert die Behauptung.QED116



Das Newton-Verfahren für mehrdimensionale FunktionenWir formulieren zunä
hst das Newton-Verfahren au
h immehrdimensionalen Fall.De�nition 5.20 Sei U ⊆ Rn o�en und F : U → Rn eine stetig di�erenzierbareFunktion mit einer für alle x ∈ U regulären Ja
obimatrix DF (x). Dann heiÿt dasVerfahren
x(k+1) = x(k) − [DF (x(k))]−1F (x(k)) k = 0, 1, 2, . . .mit Startwert x(0) ∈ U Newton-Verfahren.Die Motivation für das Newton-Verfahren ist die glei
he wie für skalare Funktio-nen: Anstatt die Nullstelle F (x) = 0 zu su
hen, ersetzt man

F ≈ F (x(0)) + (DF (x(0)))(x − x(0)).Existiert [DF (x(0))]−1, so kann man diese Glei
hung na
h x au�ösen und erhält
x = x(0) − [DF (x(0))]−1F (x(0))als nä
hste Iterierte. Das entspri
ht der Fixpunktglei
hung (5.2)

G(x) = x + MF (x)mit der regulären Matrix M = [DF (x)]−1.Um das Newton-Verfahren numeris
h zu realisieren wird zur Bestimmung von
x(k+1) = x(k) − [DF (x(k))]−1F (x(k)) k = 0, 1, 2, . . .in jedem S
hritt das lineare Glei
hungssystem

DF (x(k))(x(k+1) − x(k)) = −F (x(k))gelöst. Das ges
hieht dur
h das Lösen des Systems
DF (x(k))w(k) = −F (x(k))und ans
hlieÿendes Bere
hnen von

x(k+1) = x(k) + w(k).Bevor wir auf die Konvergenzeigens
haften näher eingehen, formulieren wir dasVerfahren.Algorithmus 11: Newton-Verfahren117



Input: Offene Menge U ⊆ R
n, Differenzierbare Abbildung F : U → R

n mitJa
obi-Matrix DF : U → R
n,n. Startwert x(0) ∈ U, Toleranzwert ε > 0.S
hritt 1: k := 0S
hritt 2: RepeatS
hritt 2.1: Finde w(k) als Lösung des Glei
hungssystems
DF (x(k))w(k) = −F (x(k)).S
hritt 2.2: x(k+1) := x(k) + w(k)S
hritt 2.3: qk := ‖w(k)‖

‖w(k−1)‖S
hritt 2.4: If qk ≥ 1 oder x(k+1) 6∈ U STOP: Das Verfahren s
heint ni
htzu konvergieren.S
hritt 2.5: k := k + 1Until qk

1−qk
‖w(k)‖ ≤ εErgebnis: Approximierte Nullstelle x(k) von F.

Leider ist die Bere
hnung von DF (x) für groÿe n aufwändig, so dass man dieJa
obi-Matrix in der Praxis ni
ht in jedem S
hritt neu bere
hnet, sondern häu�gdie folgenden Varianten verwendet:
• Frozen Newton: Es wird nur einmal die Ja
obi-Matrix bere
hnet, für diedann mittels LU-Zerlegung alle in den Iterationen auftretende Glei
hungs-systeme e�zient lösbar sind.
• Quasi-Newton: Die Ja
obi-Matrix wird in jedem S
hritt (approximativ) an-gepasst.Um den Konvergenzberei
h des Verfahrens zu vergröÿern verwendet man au
h dasso genannte gedämpfte Newton-Verfahren, in dem man die Iterationsvors
hrift

x(k+1) = x(k) + λkw
(k), λk ∈ [0, 1]verwendet.Das Konvergenzverhalten des mehrdimensionalen Newton-Verfahrens lässt si
hni
ht ganz so einfa
h analysieren wie im eindimensionalen Fall. Daher ist dieVerallgemeinerung von Satz 5.19 etwas s
hwieriger zu zeigen. Wir beweisen imfolgenden Satz aber mehr, nämli
h dass das Newton-Verfahren sogar quadra-tis
h konvergiert. 118



De�nition 5.21 Sei x(k) → x∗ eine Folge im IKn mit x(k) 6= x∗ für alle k. Wennes eine Konstante q und eine Zahl M gibt, so dass
‖x(k+1) − x∗‖ ≤ q‖x(k) − x∗‖p für alle k ≥ Mso liegt eine Konvergenz der Konvergenzordnung p gegen x∗ vor. Den Fall

p = 1 bezei
hnet man als lineare Konvergenz, den Fall p = 2 als quadratis
heKonvergenz.Man bea
hte, dass si
h die Anzahl der korrekt gefundenen Stellen einer Zahl beiquadratis
her Konvergenz in jedem S
hritt etwa verdoppelt. Wir formulieren jetztden Satz zur Konvergenz des Newton-Verfahrens.Satz 5.22 Sei U ⊆ R
n o�en und konvex und sei F : U → R

n stetig di�erenzier-bar. Für x(0) ∈ U erfülle F auÿerdem die folgenden vier Bedingungen in einer(beliebigen) Norm ‖ · ‖ auf dem Rn:B1: Es existiert eine Nullstelle x∗ ∈ U der Funktion F .B2: DF (x) ist regulär für alle x ∈ U .B3: Es gibt ω > 0 so dass für alle x, y ∈ U die folgenden beiden Bedingungengelten:(a) ‖[DF (x)]−1(DF (y)− DF (x))‖ ≤ ω‖x − y‖.(b) Für ρ := ‖x∗ − x(0)‖ gilt ω
2
ρ < 1.B4: Die Kugel Bρ(x

∗) := {x ∈ Rn : ‖x−x∗‖ < ρ} mit Radius ρ um die Nullstelle
x∗ ist in U enthalten.Für die im Newton-Verfahren de�nierte Folge

x(k+1) := x(k) − [DF (x(k))]−1F (x(k))gilt dann:1. x(k) ∈ Bρ(x
∗) für alle k = 1, 2, . . . .2. x(k) konvergiert gegen x∗.3. Für k = 0, 1, 2, . . . gilt die folgende a priori Fehlers
hranke

‖x(k) − x∗‖ ≤ ρ
(ωρ

2

)2k−1 (5.22)4. Für k = 0, 1, 2, . . . gilt die folgende a posteriori Fehlers
hranke:
‖x(k+1) − x∗‖ ≤ ω

2
‖x(k) − x∗‖2 (5.23)119



Beweis:Teil 1:Wir zeigen zunä
hst, dass aus x(k) ∈ U die a-posteriori Fehlers
hranke (5.23) für
k folgt, dana
h beweisen wir die Wohlde�niertheit für alle k per Induktion.Dazu benötigen wir zunä
hst eine Funktion g : [0, 1] → Rn, die wir als

g(t) = F (x(k) + t(x∗ − x(k)))de�nieren. Dur
h die multivariate Kettenregel erhalten wir
g′(t) = DF (x(k) + t(x∗ − x(k)))(x∗ − x(k)),woraus na
h dem Hauptsatz der Di�erential- und Integralre
hnung wie in Lem-ma 5.7 folgt, dass

F (x∗)−F (x(k)) = g(1)−g(0) =

∫ 1

0

g′(t)dt =

∫ 1

0

DF (x(k)+t(x∗−x(k)))(x∗−x(k))dt.Jetzt setzen wir wie oben bes
hrieben voraus, dass x(k) ∈ U . Na
h der De�nitionder Newton-Iteration gilt dann, dass
A := x(k+1) − x∗

= x(k) − [DF (x(k))]−1F (x(k)) − x∗

= x(k) − x∗ − [DF (x(k))]−1(F (x(k)) − F (x∗))

= [DF (x(k))]−1
(
F (x∗) − F (x(k)) − DF (x(k))(x∗ − x(k))

)

= [DF (x(k))]−1
(
g(1) − g(0) − DF (x(k))(x∗ − x(k))

)

= [DF (x(k))]−1

(∫ 1

0

DF (x(k) + t(x∗ − x(k)))(x∗ − x(k))dt − DF (x(k))(x∗ − x(k))

)

=

∫ 1

0

[DF (x(k))]−1
{
DF (x(k) + t(x∗ − x(k))) − DF (x(k))

}
(x∗ − x(k))dtGehen wir zur Norm davon über, so erhalten wir

‖A‖ = ‖x(k+1) − x∗‖

≤
∫ 1

0

‖[DF (x(k))]−1
{
DF (x(k) + t(x∗ − x(k))) − DF (x(k))

}
‖ ‖x∗ − x(k)‖dtNa
h der ersten Voraussetzung [B3℄ gilt aber, dass

[DF (x(k))]−1
(
DF (x(k) + t(x∗ − x(k))) − DF (x(k))

)

≤ ω‖x(k) − (x(k) + t(x∗ − x(k)))‖
= ωt‖x(k) − x∗‖. 120



Setzen wir dieses Ergebnis in die obige Unglei
hung ein, so ergibt si
h
‖A‖ = ‖x(k+1) − x∗‖

≤
∫ 1

0

‖[DF (x(k))]−1
(
DF (x(k) + t(x∗ − x(k))) − DF (x(k))

)
‖ ‖x∗ − x(k)‖dt

≤
∫ 1

0

ωt‖x(k) − x∗‖ ‖x(k) − x∗‖dt =

∫

ωt‖x(k) − x∗‖2dt

=
ω

2
‖x(k) − x∗‖2.Damit ist also gezeigt, dass (5.23) gilt, falls x(k) ∈ U .Teil 2:Mit Hilfe der Aussage aus Teil 1 können wir nun Satz 5.22 per Induktion beweisen.Induktionsanfang Für k = 0 sind nur (5.22) und (5.23) zu zeigen.

• (5.22): Für k = 0 erhält man (ωρ
2

)2k−1
= 1. Daher gilt ‖x(0) − x∗‖ = ρna
h der De�nition von ρ.

• (5.23): Weil x(0) ∈ U können wir Teil 1 des Beweises verwenden. Wirerhalten:
‖x(1) − x∗‖ ≤ ω

2
‖x(0) − x∗‖2.Induktionss
hritt: k → k +1. Sei also der Satz ri
htig für k. Dann ist x(k) ∈ Una
h der Induktionsannahme. Wir re
hnen

‖x(k+1) − x∗‖ ≤ ω

2
‖x(k) − x∗‖2 wegen Teil 1

≤ ω

2

(ωρ

2

)2(2k−1)

ρ2denn es gilt (5.22) na
h Induktionsannahme
=

(ωρ

2

)2k+1−1

ρ < ρ wegen [B3℄, Teil (b).Aus der letzten Zeile folgt die a-priori Fehlers
hranke (5.22) für k+1, sowiedie Aussage x(k+1) ∈ Bρ(x
∗). Entspre
hend ist die Folge wohlde�niert, undna
h Teil 1 gilt au
h (5.23) für k + 1.Wegen (5.22) und [B3℄, Teil (b) erhält man auÿerdem direkt die Konvergenzgegen x∗. QEDZum Abs
hluss geben wir no
h einen Satz an, der zeigt, dass eine lokale quadra-tis
he Konvergenz in der Nähe eine Nullstelle meistens errei
ht werden kann.121



Satz 5.23 Sei U ⊆ Rn o�en und F : U → Rn eine zweimal stetig di�erenzierbareFunktion. Sei x∗ ∈ U mit F (x∗) = 0 und det(DF (x∗)) 6= 0. Dann existiert ein
ρ > 0 so dass das Newton-Verfahren für alle Startwerte x(0) ∈ U := Bρ(x

∗)quadratis
h konvergiert.Beweis: Im Beweis untersu
hen wir die Voraussetzungen von Satz 5.22. Zunä
hstgilt [B1℄ na
h Voraussetzung. Weil die Funktion
h(x) = [DF (x)]−1als Matrixinversion stetig ist, gibt es ρ > 0 so dass

‖h(x)‖ − ‖h(x∗)‖ ≤ ‖h(x) − h(x∗)‖ ≤ ε für alle x ∈ Bρ(x
∗).Mit ε := ‖[DF (x∗)]−1‖ ergibt das

‖[DF (x)]−1‖ − ‖[DF (x∗)]−1‖ ≤ ‖[DF (x∗)]−1‖ für alle x ∈ Bρ(x
∗),oder, äquivalent,

‖[DF (x)]−1‖ ≤ 2‖[DF (x∗)]−1‖ für alle x ∈ Bρ(x
∗).Daraus folgt [B2℄ und mit der De�nition U := Bρ(x

∗) trivialerweise [B4℄.Als letztes muss also no
h [B3℄ gezeigt werden. Hierfür nutzt man aus, dass DFna
h Voraussetzung für x ∈ U di�erenzierbar ist. Also gibt es eine Lips
hitzkon-stante L > 0 so dass
‖[DF (x)] − [DF (y)]‖ ≤ L‖x − y‖ für alle x, y ∈ U.Wählt man ω := 2L‖[DF (x∗)]−1‖ so gilt

‖[DF (x)]−1([DF (y)] − [DF (x)])‖ ≤ ‖[DF (x)]−1‖
︸ ︷︷ ︸

‖ ([DF (y)]− [DF (x)])
︸ ︷︷ ︸

‖

≤ 2‖[DF (x∗)]−1‖ L‖x − y‖
= ω‖x− y‖,also gilt [B3℄, Teil (a). Da man immer ρ < 2

ω
wählen kann, folgt wegen ω

2
ρ < 1au
h Teil (b) von [B3℄, und damit die quadratis
he Konvergenz na
h Satz 5.22.QED
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Kapitel 6InterpolationIn diesem Kapitel bes
häftigen wir uns mit der Interpolation von Funktionen.Dazu wollen wir aus einer gegebenen Klasse von Funktionen M eine auswählen,die an vorgegebenen Punkten x0, x1, . . . , xn ihres De�nitionsberei
hs gewissenBedingungen genügt. Im einfa
hsten Fall fordert man z.B.
f(xi) = yi für i = 0, . . . , n, xi, yi gegeben,man kann aber au
h Bedingungen an die Ableitungen in den Punkten stellen.Ist M die Klasse der Polynome vom Grad ≤ n, so spri
ht man von Polynom-Interpolation, bei trigonometris
hen Funktionen von trigonometris
her In-terpolation und ist M die Klasse der stü
kweise polynomialen Funktionen, sonennt man das Problem Spline-Interpolation.6.1 Polynomiale InterpolationDe�nition 6.1 Ein Polynom p ist eine Funktion von der Form p(x) = anxn +

. . .+a1x+a0, x ∈ IK und Koe�zienten a0, . . . , an ∈ IK. Ist an 6= 0, so heiÿt n derGrad des Polynoms. Per De�nition ist der Grad von p ≡ 0 als −1 festgesetzt.
Πn sei die Menge aller Polynome vom Grad ≤ n.Aus der linearen Algebra ist bekannt, dass Πn ein Vektorraum mit komponen-tenweiser Addition und Skalarmultiplikation ist. Weiterhin wiederholen wirSatz 6.2 (Hauptsatz der Algebra) Ist p(x) = anx

n + . . .+a1x+a0 ein komplexesPolynom vom Grad n, so gibt es eindeutig bestimmte Zahlen b1, . . . , bn ∈ C so,dass p(x) = an(x − b1) · . . . · (x − bn). Die Zahlen bj sind die Nullstellen von p.Kommt der Faktor x− bj in p(x) genau k-mal vor, sagt man, die Nullstelle bj hatdie Vielfa
hheit k.Bemerkung: Sei a eine Nullstelle von p. Dann hat a die Vielfa
hheit k genaudann, wenn p(j)(a) = 0 für j = 0, 1, . . . , k − 1.123



Satz 6.3 Sei p(x) = anxn + . . . + a1x + a0 ein Polynom ∈ Πn. Hat p mehr als nNullstellen, so vers
hwindet p identis
h, das heiÿt p ≡ 0. Insbesondere gilt dann
aj = 0 für alle j = 0, . . . , n.Aus diesem Satz lässt si
h direkt ableiten, dass die Monome

Mk(x) := xk ∈ Πk, k = 0, 1, . . . , nals Funktionen Mk : [a, b] → R, [a, b] ⊆ R, linear unabhängig sind. Da man dur
hLinearkombination der Mk jedes Polynom erzeugen kann, ist
{M0, M1, . . . , Mn}also eine Basis des Πn.Die lineare Unabhängigkeit der Mj sieht man wie folgt:Sei ∑n

k=0 αkMk(x) = 0 für alle x ∈ [a, b]. Dann hat ∑n
k=0 αkMk(x)mehr als n Nullstellen, also sind na
h Satz 6.3 alle Koe�zienten α0 =

α1 = . . . = αn = 0.Um Polynome auszuwerten, das heiÿt Werte p(x) eines Polynoms p zu bere
h-nen, verwendet man das Horner-S
hema. Dazu klammert man das Polynom p(x)ges
hi
kt und erhält:
p(x) = (. . . ((anx + an−1)x + an−2)x + . . . + a1)x + a0Das führt zu folgendem Verfahren:Algorithmus 12: Horner-S
hema zur Auswertung von PolynomenInput: Koeffizienten a0, a1, . . . , an eines Polynoms p = anxn + . . . a1x1 +a0 ∈ Πnund feste Zahl x.S
hritt 1: y := anS
hritt 2: For k = n − 1 to 0 do y := y · x + akErgebnis: p(x) := y

Die Bere
hnung mittels des Horner-S
hemas ist e�zienter als die �normale� Aus-wertung. 124



Beispiel: Sei ein Polynom
p(x) = 2x4 − 4x3 − 5x2 + 7x + 11gegeben. Gesu
ht ist der Wert an der Stelle x = 2. In tabellaris
her S
hreibweiseerhält man: Koe�zienten: 2 −4 −5 7 11Zahl: x = 2 ·2ր 4 ·2ր 0 ·2ր −10 ·2ր −6Summe: 2 0 −5 −3 5Der gesu
hte Wert ist also p(2) = 5.Wir de�nieren nun das Problem, mit dem wir uns in diesem Abs
hnitt bes
häf-tigen:Lagrange Interpolationsaufgabe: Gegeben seien n + 1 Stützstellen xi, i =

0, . . . , n und Stützwerte yi, i = 0, . . . , n. Gesu
ht ist ein Polynom p ∈ Πn, so dass
p(xi) = yi für i = 0, . . . , n. (L-Int)Als erste Idee verwendet man die Monome als Basis des Πn und stellt das gesu
htePolynom dar dur
h

p(x) =
n∑

k=0

αkMk(x).Die Bedingungen L-Int führen zu folgendem Glei
hungssystem mit Unbekannten
α0, . . . , αn:

n∑

k=0

αkMk(xj) = yj für j = 0, . . . , noder, ausges
hrieben,
n∑

k=0

αkxj
k = yj für j = 0, . . . , n.Die Koe�zienten-Matrix ist die Vandermonde-Matrix

A =








1 x0 x0
2 · · · x0

n

1 x1 x1
2 · · · x1

n... ... ... ...
1 xn xn

2 · · · xn
n








∈ IKn+1,n+1.Das Problem ist im Allgemeinen s
hle
ht konditioniert, aber denno
h von theo-retis
hem Interesse: 125



Satz 6.4 Die Lagrange Interpolationsaufgabe ist für n+1 paarweise vers
hiedeneStützstellen x0, . . . , xn eindeutig lösbar, die Lösung ist gegeben dur
h
Ln(x) =

n∑

k=0

yklk(x)wobei
lk(x) =

n∏

j=0

j 6=k

x − xj

xk − xj

für k = 0, . . . , ndie so genannten Lagrange-Polynome sind.Beweis: Per Konstruktion ist Ln ∈ Πn und es gilt wegen lk(xj) =

{

1 falls k = j

0 falls k 6= j
:

Ln(xj) =
n∑

k=0

yklk(xj) =
n∑

k=0

ykδkj
= yj für j = 0, . . . , nEs bleibt no
h die Eindeutigkeit zu zeigen. Seien dazu p1, p2 ∈ Πn beides Poly-nome, die (L-Int) erfüllen. Dann gilt für ihre Di�erenz p := p1 − p2, dass

p(xj) = p1(xj) − p2(xj) = yj − yj = 0 für j = 0, . . . , nAlso hat das Polynom p (mindestens) n + 1 Nullstellen. Da p ∈ Πn folgt darausna
h Satz 6.3, dass p ≡ 0, also p1 ≡ p2. QEDBeispiel: Seien drei Stützstellen x0 = 0, x1 = 1 und x2 = 3 mit Stützwerten y0 =
1, y1 = 3 und y2 = 2 gegeben. Gesu
ht ist der Wert L2(x) des interpolierendenLagrange-Polynoms an der Stelle 2. Es gilt:

L2(x) =

2∑

k=0

yklk(x).Für x = 2 gilt:
l0(x) =

(x − 1)(x − 3)

(0 − 1)(0 − 3)
=

1

3
· (x − 1) · (x − 3)

l1(x) =
(x − 0)(x − 3)

(1 − 0)(1 − 3)
= −1

2
· x · (x − 3)

l2(x) =
(x − 0)(x − 1)

(3 − 0)(3 − 1)
=

1

6
· x · (x − 1)

⇒ L2(2) = 1 · l0(2) + 3 · l1(2) + 2 · l2(2)

= −1
3

+ 3 + 2
3

= 10
3126



Praktis
h hat die Lagrange-Formel allerdings wenig Relevanz, da die Hinzunah-me einer weiteren Stützstelle eine komplette Neubere
hnung erfordert, und dasProblem ni
ht gut konditioniert ist.Mö
hte man das interpolierende Polynom an nur wenigen Stellen auswerten, bie-tet si
h das folgende Verfahren an.Interpolation von Neville & AitkenDe�nition 6.5 Für gegebene, paarweise vers
hiedene Stützstellen xi mit i =
0, . . . , n und Stützwerte yi mit i = 0, . . . , n sei P k

i ∈ Πk das Polynom mit derEigens
haft:
P k

i (xj) = yj ∀i ≤ j ≤ i + kInsbesondere ist P n
0 das Interpolationspolynom zu allen Daten.Wir bemerken, dass P k

i wegen Satz 6.4 eindeutig bestimmt ist. Die Idee des nunzu entwi
kelnden Verfahrens beruht auf dem folgenden Satz.Satz 6.6 Es gilt:
P 0

i (x) = yi ∈ Π0 i = 0, . . . , n

P k+1
i (x) =

(x − xi)P
k
i+1(x) − (x − xi+k+1)P

k
i (x)

xi+k+1 − xi
0 ≤ i ≤ n − k − 1Beweis: Wir führen Induktion na
h k dur
h.Für k = 0 erfüllt P 0

i (x) = yi gerade P 0
i (xi) = yi für i = 0, . . . , n. Nehmenwir nun an, die Aussage stimmt für k. Bezei
hne mit h(x) die re
hte Seite derRekursionsformel für P k+1

i (x), das heiÿt
h(xj) =

(xj − xi)P
k
i+1(xj) − (xj − xi+k+1)P

k
i (xj)

xi+k+1 − xiFall 1: i < j ≤ i + k:Na
h Induktionsannahme gilt
P k

i+1(xj) = yj und P k
i (xj) = yj .Also folgt:

h(xj) =
(xj − xi)yj − (xj − xi+k+1)yj

xi+k+1 − xi

= yjFall 2: j = i:In diesem Fall gilt P k
i (xj) = yj = yi, woraus wir aber s
hon folgern, dass

h(xi) =
(xi − xi)P

k
i+1(xi) − (xi − xi+k+1)yi

xi+k+1 − xi
= yi127



Fall 3: j = k + i + 1:Analog zu Fall 2. QEDWir zeigen am Beispiel n = 3, wie si
h die Polynome P k
i e�zient auswertenlassen. Stützstellen Stützwerte

x0 y0 = P 0
0 ց

P 1
0 ց

x1 y1 = P 0
1

ր
ց P 2

0 ց
P 1

1

ր
ց P 3

0

x2 y2 = P 0
2

ր
ց P 2

1

ր

P 1
2

ր

x3 y3 = P 0
3

րAn unserem alten Beispiel mit {(xi, yi), i = 0, 1, 2} = {(0, 1), (1, 3), (3, 2)} siehtdas folgendermaÿen aus: Gesu
ht ist wieder der Wert des interpolierenden Poly-noms an x = 2. Dazu re
hnet man:
xk x − xk yk

0 2 1 = P 0
0 ց

P 1
0 = 2·3−1·1

1−0
= 5 ց

1 1 3 = P 0
1

ր
ց P 2

0 =
2· 5

2
−(−1)·5

3−0
= 10

3

P 1
1 = 1·2−(−1)·3

3−1
= 5

2

ր

3 −1 2 = P 0
2

րAls Algorithmus lässt si
h das wie folgt bes
hreiben:
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Algorithmus 13: Neville-Aitken-VerfahrenInput: x0, x1, . . . , xn paarweise vers
hieden y1, . . . , yn, Punkt x, an dem dasinterpolierende Polynom ausgewertet werden soll.S
hritt 1: For j = 0, . . . , n doS
hritt 1.1: pj := yjS
hritt 1.2: tj := x − xjS
hritt 2: For k = 0, . . . , n − 1 doFor j = 0, . . . , n − k − 1 do
pj :=

tjpj+1 − tj+k+1pj

tj − tj+k+1Ergebnis: p(x) := p0, wobei p das Interpolationspolynom ist.Dieses Verfahren ist sinnvoll, falls man das Interpolationspolynom an nur wenigenStellen auswerten mö
hte.Newtons
he InterpolationsformelIn der Newtons
hen Interpolationsformel verwendet man eine weitere Basis des
Πn, nämli
h

hk(x) =

k−1∏

i=0

(x − xi)wobei x0, x1, . . . , xn wieder die Stützstellen sind.Lemma 6.7 Seien x0, x1, . . . , xn−1 paarweise vers
hieden. Die Newton-Polynome
hk(x) =

∏k−1
i=0 (x − xi) mit k = 0, 1, . . . , n bilden eine Basis des Πn.Die Newton-Polynome haben das folgende Aussehen:

h0(x) = 1

h1(x) = (x − x0)

h2(x) = (x − x1)(x − x0)...und es gilt:
hk(xj) = 0 für alle k > j und hk(xj) 6= 0 für alle k ≤ j129



Beweis: (von Lemma 6.7) Sei ∑n
k=0 αkhk(x) = 0, das heiÿt

p(x) =
n∑

k=0

αk

k−1∏

i=0

(x − xi) = 0Insbesondere gilt
0 = p(x0) = α0h0(x) = α0.Daraus folgern wir weiter

0 = p(x1) = α0 + α1(x − x0) = α1 (x − x0)
︸ ︷︷ ︸

6=0

,also α1 = 0. Induktiv erhält man, dass alle Koe�zienten α0, . . . , αn Null sind.QEDUm das Lagrange-Interpolationsproblem zu lösen, betra
htet man also das fol-gende Glei
hungssystem mit den Variablen α0, . . . , αn:
n∑

k=0

αkhk(xj) = yj mit j = 0, . . . , n. (6.1)Weil ∑n
k=0 αkhk(xj) =

∑j
k=0 αkhk(xj) erhält man die folgende Koe�zienten-Matrix:

A =










h0(x0) 0 . . . . . . . . . . . . 0
h0(x1) h1(x1) 0 . . . . 0

h0(x2) h1(x2) h2(x2) . . . .
...... . . . 0

h0(xn) h1(xn) . . . . . . . . . . . . hn(xn)










A ist eine untere Dreie
ks-Matrix, die wegen hk(xk) 6= 0 für alle k = 0, . . . , nregulär ist. Man kann die gesu
hten Koe�zienten also dur
h Vorwärtseliminationbestimmen. Das ergibt:
α0 =

y0

h0(x0)
=

y0

1
= y0

α1 =
1

h1(x1)
(y1 − α0h0(x1)) =

1

x − x0
(y1 − y0)

α2 =
1

h2(x2)
(y2 − α1h1(x2) − α0h0(x2))

=
1

(x2 − x0)(x2 − x1)

(

y2 −
1

x − x0
(y1 − y0) − y0

)... 130



Da diese Formeln re
ht mühsam werden, gehen wir einen anderen Weg. Dazude�nieren wir zunä
hst �Abs
hnittspolynome� für die Lösung α0, α1, . . . , αn von(6.1):
Qk(x) =

k∑

j=0

αjhj(x) = α0 + α1(x − x0) + . . . + αk(x − x0) · · · . . . · · · (x − xk−1)das heiÿt
Q0(x) = α0

Q1(x) = α0 + α1(x − x0)

Q2(x) = α0 + α1(x − x0) + α2(x − x0)(x − x1)...Es gelten die folgenden Eigens
haften:Lemma 6.81. Qk(x) = P k
0 ∈ Πk2. P k+1

0 (x) = P k
0 (x) + αk+1hk+1(x)3. αk ist der Koe�zient von xk im Polynom P k

0 (x).Beweis: Eigens
haft 1 folgt, weil aufgrund der Wahl der αi gilt Qk(xj) = yj für
j = 0, . . . , k und die Polynom-Interpolation eindeutig ist (Satz 6.4).2. und 3. ergeben si
h für Qk aus der Konstruktion und gelten na
h 1. also au
hfür P k

0 . QEDWir de�nieren:De�nition 6.9 Seien xi, yi mit i = 0, . . . , n mit paarweise vers
hiedenen xi ge-geben. Dann de�niert man die dividierten Di�erenzen rekursiv dur
h
D0

i := yi mit i = 0, . . . , n

Dk
i :=

Dk−1
i+1 − Dk−1

i

xi+k − xi

mit i = 0, 1, . . . , n − kund k = 1, 2, . . . , nUnser Ziel ist es nun, zu beweisen, dass
αk = Dk

0gilt. Wir werden das zuerst untersu
hen und dana
h ein S
hema angeben, mitdem man Dk
i e�zient bere
hnen kann.131



Satz 6.10 Es gilt
P k

i (x) = D0
i + D1

i (x − xi) + . . . + Dk
i (x − xi) · . . . · (x − xi+k−1)das heiÿt P k

i (xj) = yj für j = i, . . . , k + i. Insbesondere gilt für i = 0 und k = n:
P n

0 (x) = D0
0 + D1

0(x − x0) + . . . + Dn
0 (x − x0) · . . . · (x − xn−1)

=

n∑

j=0

Dj
0hj(x)ist die Lösung des Lagrange-Interpolationsproblemes.Beweis: Wir induzieren über k. Sei k = 0, dann ist P 0

i (x) = D0
i = yi ri
htig. Seidie Aussage ri
htig für k − 1 und k ≥ 1. Wir verwenden Lemma 6.8, Teil (2),indem wir zunä
hst

x̃0 := xi

x̃1 := xi+1...
x̃k−1 := xi+k−1

x̃k := xi+kde�nieren. Bezügli
h der x̃ de�nieren wir nun die Polynome P̃ k−1
0 , P̃ k

0 , das Newton-Polynom h̃k(x) = (x− x̃0) · · · (x− x̃k−1) und die Koe�zienten α̃j mit j = 0, . . . , k.Dann gilt
P k

i = P̃ k
0 (x) = P̃ k−1

0 (x) + α̃kh̃k(x) na
h Lemma 6.8 Teil (2)
= P k−1

i (x) + a(x − xi) · · · (x − xi+k−1)Wobei a := α̃k der (no
h unbekannte) Koe�zient von xk im Polynom P̃ k
0 = P k

iist, na
h 6.8 Teil (3). Na
h der Induktionsannahme ist
P k−1

i (x) = D0
i + D1

i (x − xi) + . . . + Dk−1
i (x − xi) . . . (x − xi+k−2)und entspre
hend

P k
i (x) = D0

i +D1
i (x−xi)+. . .+Dk−1

i (x−xi) · · · (x−xi+k−2)+a(x−xi) · · · (x−xi+k−1)Es ist also a = Dk
i zu zeigen. Na
h Induktionsannahme gilt

• der hö
hste Koe�zient von P k−1
i ist Dk−1

i

• der hö
hste Koe�zient von P k−1
i+1 ist Dk−1

i+1132



Also ist
P k−1

i (x) = p̃(x) + Dk−1
i xk−1

P k−1
i+1 (x) = p̃′(x) + Dk−1

i+1 xk−1 mit p̃, p̃′ ∈ Πk−2Wir verwenden nun die Nevills
he Interpolationsformel aus Satz 6.6 und erhalten
P k

i (x) =
(x − xi)P

k−1
i+1 (x) − (x − xi+k)P

k−1
i (x)

xi+k − xi
= p′ +

xkDk−1
i+1 − xkDk−1

i

xi+k − ximit p′ ∈ Πk−1. Der hö
hste Koe�zient auf der re
hten Seite ist also
a =

Dk−1
i+1 − Dk−1

i

xi+k − xi
= Dk

i QEDUm die Dk
i zu bere
hnen, benötigt man mittels des folgenden S
hemas einenAufwand von O(n2):

x0 y0 = D0
0 ց

D1
0 ց

x1 y1 = D0
1

ր
ց D2

0 ց
D1

1

ր
ց D3

0

x2 y2 = D0
2

ր
ց D2

1

ր

D1
2

ր

x3 y3 = D3
0

րVerwenden wir au
h hier das Beispiel mit den Paaren (0, 1), (1, 3), (3, 2), soerhalten wir
0 1 = D0

0 ց
D1

0 = 2 ց
1 3 = D0

1

ր
ց D2

0 = −5/2
3

= −5
6

D1
1 = −1

2

ր

3 2 = D0
2

ր 133



und das interpolierende Polynom ergibt si
h zu
P 2

0 (x) = 1 + 2 · (x − x0) − 5
6
(x − x0)(x − x1)

= 1 + 2x − 5
6
x(x − 1).An x = 2 erhalten wir wiederum P 2

0 (2) = 10
3
. Abs
hlieÿend geben wir no
h eineandere analytis
he Darstellung der Dk

i .Lemma 6.11
Dk

i =
i+k∑

j=i

yj






i+k∏

r=i

r 6=j

1

xj − xr






i = 0, . . . , n − k

k = 0, . . . , nBeweis: Kann dur
h vollständige Induktion geführt werden.Statt nur Funktionswerte von Punkten vorzugeben, kann man au
h Bedingungenan die Ableitungen stellen. Man erhält das folgende Problem.Hermite-Interpolationsproblem: Seien x0 ≤ · · · ≤ xn ∈ [a, b] und y0, . . . , yn ∈
R gegeben, wobei die xi ni
ht paarweise disjunkt sein müssen. Gesu
ht ist einPolynom p, das folgende Bedingungen erfüllt: Ist xi−1 < xi = xi+1 = · · · =
xi+r < xi+r+1, so soll gelten

p(xi) = yi

p(1)(xi) = yi+1...
p(r)(xi) = yi+r

(6.2)
Meistens wird dieses Problem gestellt, um eine (unbekannte) Funktion f zu in-terpolieren. Sind die x0, . . . , xn gegeben, so bedeutet die Bedingung (6.2) dasfolgende: Fallen r der x0, . . . , xn in einem Punkt z ∈ [a, b] zusammen, so interpo-liert p die Funktion f an der Stelle z bis zur (r−1)-ten Ableitung. Natürli
h setztman dabei implizit voraus, dass f au
h hinrei
hend oft stetig di�erenzierbar ist.Die meisten Ergebnisse für das Lagrange-Interpolationsproblem kann man aufdas Hermite-Interpolationsproblem verallgemeinern.Satz 6.12 Es gibt genau ein Polynom p ∈ Πn, wel
hes das Hermite-Interpolationsproblemlöst.Beweis: Wir betra
hten die folgende lineare Abbildung

T : Cn[a, b] → R
n+1

f → (f (0)(x0), f
(r1)(x1), . . . , f

(rn)(xn))134



wobei rj = r, falls xi−1 < xi = xi+1 = · · · = xi+r mit j = i + r. Wenn man T auf
Πn anwendet, ergibt si
h

T : Πn → R
n+1mit dim(Πn) = n + 1. Ist T injektiv, dann au
h surjektiv und jedes Hermite-Interpolationsproblem hat genau eine Lösung. Wir müssen also die Injektivitätvon T na
hweisen. Sei dazu Tp1 = Tp2, p1, p2 ∈ Πn. Dann ist

T (p1 − p2) = Tp1 − Tp2 = 0 ∈ R
n+1Also hat das Polynom p1 − p2 ∈ Πn mehr als n Nullstellen (mit Vielfa
hheitengezählt) und ist na
h Satz 6.3 identis
h Null, d.h. p1 ≡ p2. QEDUm das Hermite-Interpolationsproblem zu lösen, betra
htet man zunä
hst denSpezialfall

x0 = x1 = · · · = xkHier ist also ein Polynom p ∈ Πk gesu
ht, das vorgegebene Bedingungen an denFunktionswert y0 und an die Werte seiner ersten k Ableitungen
p(i)(x0) = yierfüllt. Stellt man si
h vor, dass die Werte y0, . . . , yk von einer (unbekannten) kmal stetig di�erenzierbaren Funktion f kommen, d.h.
f (i)(x0) = yigilt, so sieht man, dass das interpolierende Polynom genau das Taylorpolynom

p(x) =
k∑

i=0

(x − x0)
i

i!
f (i)(x0)ist. Diese Beoba
htung verwendet man zur Bere
hnung der dividierten Di�eren-zen Dk

i wie folgt.De�nition 6.13 Die dividierten Di�erenzen werden für das Hermite-Interpolationsproblemwie folgt de�niert
D0

i = yi mit j = min{l : xl = xi} i = 0, . . . , n

Dk
i =

{
yi+k

k!
falls xi = xi+1 = · · · = xk

Dk−1
i+1 −Dk−1

i

xi+k−xi
falls xi 6= xi+kMit dieser De�nition kann man zeigen, dass Satz 6.10 ri
htig bleibt. Bei seinerAnwendung ist allerdings zu bea
hten, dass man
he der auftretenden Faktorenin den Newton-Polynomen hk(x) identis
h sind. Wir wollen Satz 6.10 für dasHermite-Interpolationsproblem hier ni
ht beweisen, aber seine Anwendung aneinem Beispiel demonstrieren. 135



Beispiel:
x0 = −2 x1 = 0 x2 = 0 x3 = 1

y0 = 6 y1 = 2 y2 = 4 y3 = 8Bere
hnung der Dk
i

−2 6 = D0
0 ց

D1
0 = −2 ց

0 2 = D0
1

ր
ց D2

0 = 3 ց
D1

1 = 4
ր
ց D3

0 = −1
3

0 2 = D0
2

ր
ց D2

1 = 2
ր

D1
2 = 6

ր

0 8 = D0
3

րDas interpolierende Polynom ergibt si
h entspre
hend zu
p(x) = 6 − 2 (x + 2)

︸ ︷︷ ︸

h1(x)

+3 (x + 2)x
︸ ︷︷ ︸

h2(x)

−1
3
(x + 2)x · x
︸ ︷︷ ︸

h3(x)

= 2 + 4x + 7
3
x2 − 1

3
x3

p′(x) = 4 + 14
3
x − x2und p(−2) = 6, p(0) = 2, p′(0) = 4, p(1) = 8.6.2 Abs
hätzung des Interpolationsfehlers und Kon-vergenzanalyseSei f die �komplizierte�, stetige Funktion, die wir dur
h das �einfa
here� Interpo-lationspolynom Lnf ersetzen. Dabei seien die Stützstellen x0, . . . , xn gegeben, andenen Lnf und f übereinstimmen, d.h. die Interpolationsbedingung

(Lnf)(xi) = f(xi) i = 0, . . . , nist erfüllt. Den Operator
Ln : C[a, b] → Πn136



nennt man au
h Lagrange-Interpolationsoperator. Wir interessieren uns fürden Interpolationsfehler
f − Lnf.Wir mö
hten die gröÿtmögli
he Di�erenz zwis
hen f und Lnf untersu
hen. Dazubezei
hnen wir für eine Funktion g : [a, b] → R

‖g‖∞ := max
x∈[a,b]

|g(x)|.Eine Folge von Funktionen g1, g2, g3, . . . konvergiert glei
hmäÿig gegen eineFunktion g, falls
‖g − gn‖∞ → 0 für n → ∞gilt. Wir werden das nun auf den Interpolationsfehler anwenden, und zunä
hst

‖f − Lnf‖∞ untersu
hen. Dana
h wollen wir diesen Fehler für eine steigendeAnzahl an Stützstellen abs
hätzen.Satz 6.14 Sei f : [a, b] → R eine (n + 1)-mal stetig di�erenzierbare Funktion.Dann hat das Restglied
Rnf := f − Lnfbei der Polynom-Interpolation an den n + 1 paarweise vers
hiedenen Stützstellen

x0, . . . , xn ∈ [a, b] die Darstellung
(Rnf)(x) =

f (n+1)(ξ)

(n + 1)!

n∏

k=0

(x − xk).Das gilt für alle x ∈ [a, b], wobei ξ = ξ(x) eine von x abhängige Zwis
henstelleaus [a, b] ist.Beweis: Ist x = xj für ein j ∈ {0, 1, . . . , n}, so gilt (Rnf)(xj) = 0 und dieAussage ist ri
htig. Sei nun hn+1(x) =
∏n

k=0(x− xk). Für festes (aber beliebiges)
x ∈ [a, b], x 6= xk für alle k = 0, . . . , n de�niert man die Funktion g : [a, b] → Rdur
h

g(y) = f(y) − (Lnf)(y) − hn+1(y)
f(x) − (Lnf)(x)

hn+1(x)
.Für g gilt:

• g ist (n + 1)-mal stetig di�erenzierbar.
• g hat x, x0, . . . , xn als Nullstellen.Der Satz von Rolle besagt nun, dass es zu je zwei Nullstellen xa, xb von g ei-ne Zwis
henstelle ξ ∈ (xa, xb) gibt mit g(1)(ξ) = 0. Also hat die Ableitung g(1)mindestens n + 1 paarweise vers
hiedene Nullstellen auf [a, b]. Sukzessive Wie-derholung dieses Arguments ergibt die Aussage, dass g(r) mindestens n + 2 − r137



Nullstellen hat, für alle r = 0, 1, . . . , n+1, also hat g(n+1) eine Nullstelle auf [a, b].Wir bezei
hnen diese Nullstelle mit ξ. Dann gilt:
0 = g(n+1)(ξ) = f (n+1)(ξ) − (n + 1)!

(Rnf)(x)

hn+1(x)
,denn Lnf (n+1) = 0, weil Lnf ∈ Πn gilt. Der Term (n + 1)! ergibt si
h, weil

hn+1 ∈ Πn+1 und als hö
hsten Koe�zienten Eins hat. Also ist
(Rnf)(x) =

f (n+1)(ξ)

(n + 1)!
hn+1(x) QEDBemerkung: Satz 6.14 gilt au
h, falls einige der xj glei
h sind und statt demLagrange-Problem das Hermite-Problem betra
htet wird. Im Spezialfall x0 =

x1 = · · · = xn ist das interpolierende Polynom das Taylor-Polynom und dieFehlerabs
hätzung genau das entspre
hende Restglied der Taylorformel.Aus der Darstellung des Restglieds ergibt si
h folgende Abs
hätzungKorollar 6.15 Sei f : [a, b] → R mindestens (n + 1)-mal stetig di�erenzierbarund x0, x1, . . . , xn paarweise vers
hiedene Stützstellen. Dann gilt
‖Rnf‖∞ = ‖f − Lnf‖∞ ≤ 1

(n + 1)!
‖hn+1‖∞‖fn+1‖∞.Da man ‖hn+1‖ ≤ (b − a)n+1 abs
hätzen kann, folgt

‖f − Lnf‖∞ ≤ (b − a)n+1

(n + 1)!
‖f (n+1)‖∞.Finite-Elemente-Methoden verbessern den Fehler dur
h Zerlegung von [a, b] inkleinere Stü
ke. Hat man bei den Stützstellen Wahlmögli
hkeit, so sollte mandiese so festlegen, dass

max
x∈[a,b]

∣
∣
∣
∣
∣

n∏

k=0

(x − xk)

∣
∣
∣
∣
∣mögli
hst klein wird. Wir betra
hten nun no
h die Konvergenz von Interpolati-onspolynomen bei wa
hsenden Stützstellen.Satz 6.16 Sei f ∈ C∞[a, b] und ‖f (n)‖∞ ≤ M für alle n = 0, 1, . . .. Dann kon-vergiert der Interpolationsfehler ‖Rnf‖∞ für n → ∞ glei
hmäÿig auf [a, b] gegenNull. 138



Beweis: Na
h Korollar 6.15 gilt
‖Rnf‖∞ ≤ M

(n + 1)!
‖b − a‖n+1 → 0 für n → ∞.Leider sind die Voraussetzungen von Satz 6.14 normalerweise ni
ht erfüllt. Beinur stetigen Funktionen gilt die Aussage des Satzes ni
ht.Beispiel: Sei k ∈ 0, . . . , n und

f(x) =

{

x sin π
x

x ∈ (0, 1]

0 x = 0
.Mit xk = 1

k+1
ist wegen f(xk) = 0 das Interpolationspolynom Lnf ≡ 0 für alle

n ∈ N. Die Folge der Interpolationspolynome konvergiert also auss
hlieÿli
h anden Stützstellen xk gegen die Funktion f ; der Fehler
‖Rnf‖∞ = max

x∈[0,1]
|f(x)|bleibt konstant.Allerdings kann man zeigen, dass es zu jeder stetigen Funktion eine Folge vonStützstellen gibt, so dass Lnf glei
hmäÿig auf [a, b] gegen f konvergiert. Denno
hist für beliebige Stützstellen die Interpolation mit Polynomen hohen Grades imAllgemeinen ni
ht sinnvoll.6.3 Spline InterpolationWir hatten anhand des Beispiels im letzten Abs
hnitt gesehen, dass die Interpo-lationspolynome ni
ht unbedingt gegen die zu interpolierende Funktion f kon-vergieren. Einen Ausweg bietet die stü
kweise polynomiale Interpolation dur
hSplines. Anwendungen hat dieses Gebiet au
h in der numeris
hen Integration undbei der Diskretisierung von Di�erentialglei
hungen.De�nition 6.17 Sei a = x0 < x1 < . . . < xn = b eine Unterteilung des Intervalls

[a, b]. Dann heiÿt eine Funktion
s : [a, b] → RSpline m-ten Grades, falls die folgenden beiden Bedingungen erfüllt sind:(i) s ∈ Cm−1[a, b], d.h. die Funktion und ihre ersten m − 1 Ableitungen sindstetig di�erenzierbar.(ii) s|[xj−1,xj ] ∈ Πm[xj−1, xj ] für j = 1, . . . , n.139



Die Menge aller Splines m-ten Grades zu der Unterteilung a = x0 < x1 < . . . <
xn = b mit n + 1 Stützstellen wird mit Sm

n [a, b] bezei
hnet. Für m = 1 bezei
hnetman die Splines als linear, für m = 2 als quadratis
h, für m = 3 als kubis
h.Der einfa
hste Fall liegt für lineare Splines (m = 1) vor: S1
n[a, b] enthält al-le Polygonzüge auf [a, b] mit maximal n − 1 Kni
kpunkten an den Stützstellen

x1, . . . , xn−1, und linearen Teilstü
ken, die jeweils bena
hbarte Punkte (xj , s(xj))
Tund (xj+1, s(xj+1))

T miteinander verbinden.Das Spline-Interpolationsproblem lässt si
h wie folgt bes
hreiben:Spline-Interpolationsproblem: Seien a = x0 < x1 < · · · < xn = b und
y0, . . . , yn ∈ R gegeben. Gesu
ht ist ein Spline s ∈ Sm

n [a, b], der
s(xj) = yj für alle j = 0, . . . , nerfüllt.Man kann lei
ht zeigen, dass zu gegebenen Stützstellen x0 < x1 < . . . < xnund Stützwerten y0, y1, . . . , yn der Spline s ∈ S1

n[x0, xn], der die Interpolations-bedingungen s(xj) = yj , j = 1, . . . , n erfüllt, eindeutig bestimmt ist (nämli
hgerade der Polygonzug dur
h die Punkte (xj , yj)
T , j = 1, . . . , n). Weiterhin giltfür lineare Splines die folgende Aussage.Lemma 6.18 Sei f ∈ C2[a, b], a = x0 < x1 < . . . < xn = b eine Unterteilungdes Intervalls [a, b] und gelte

h := max
j=1,...,n

|xj − xj−1| → 0 für n → ∞.Dann konvergiert der Spline s ∈ S1
n[a, b], der die Interpolationsbedingungen

s(xj) = f(xj), j = 1, . . . , nerfüllt, glei
hmäÿig gegen f .Beweis: Betra
hte für festes j ∈ {1, . . . , n} das Teilintervall [xj−1, xj ]. Dann ist
s|[xj−1,xj ] ∈ Π1[xj−1, xj].Um das Restglied auf dem Intervall [xj−1, xj ] abzus
hätzen, notieren wir zunä
hst

‖f (2)(x)‖∞ = sup
x:xj−1≤x≤xj

f (2)(x) =: M < ∞,da f (2) na
h Voraussetzung eine stetige Funktion auf dem kompakten Intervall
[xj , xj−1] ist, ihr Supremum also annimmt. Mit der De�nition hj := xj − xj−1140



ergibt si
h aus Korollar 6.15 entspre
hend für das Restglied auf dem Intervall
[xj−1, xj ]:

‖Rmf‖ = ‖(s − f)‖∞ ≤ 1

2!
h2

j‖f (2)‖∞ ≤ 1

2
h2M.Für n → ∞ geht na
h Voraussetzung h → 0, entspre
hend gilt |Rmf | → 0. QEDMeistens verwendet man Splines, wenn man eine Funktion f dur
h eine mög-li
hst �glatte� Funktion interpolieren mö
hte. Dabei wird der gesu
hte Splineumso glatter, je höher die Spline-Ordnung m gewählt wird. Andererseits steigtmit der Spline-Ordnung m der Re
henaufwand zur Bestimmung eines interpo-lierenden Splines. Kubis
he Splines haben si
h dabei als guter Kompromiss zwi-s
hen Glattheit und Re
henaufwand herausgestellt. Um Splines höherer Ordnungzu bestimmen, su
hen wir zunä
hst eine Basis des Spline-Raumes. Dazu de�niertman

xm
+ :=

{
xm falls x ≥ 0
0 falls x < 0.Das System der Kardinal-Splines ist dann die Menge der folgenden m + nFunktionen

Φk(x) := (x − x0)
k für k = 0, . . . , m

Ψj(x) := (x − xj)
m
+ für j = 1, . . . , n − 1. (6.3)Unser Ziel ist es nun, zu zeigen, dass die Kardinal-Splines eine Basis des Spline-Raumes Sm

n [a, b] bilden. Wir zeigen zunä
hst die lineare Unabhängigkeit derKardinal-Splines (Lemma 6.19) und weisen dann im Beweis zu Satz 6.20 na
h,dass sie auÿerdem ein Erzeugendensystem für alle Splines mit Kni
kpunkten in
x0, x1, . . . , xn bilden.Lemma 6.19 Die n + m Kardinal-Splines sind linear unabhängig.Beweis: Sei

ζ(x) =

m∑

k=0

ak(x − x0)
k +

n−1∑

j=1

bj(x − xj)
m
+ = 0 für alle x ∈ [a, b].Um die lineare Unabhängigkeit zu zeigen, müssen wir na
hweisen, dass alle Ko-e�zienten ak und bj Null sind. Wir gehen iterativ vor:

• Für x < x1 ist ∑n−1
j=1 bj(x − xj)

m
+ = 0, also ist

ζ(x) =

m∑

k=0

ak(x − x0)
k = 0 für alle x ∈ [a, b].Genau wie für die Monome lässt si
h zeigen, dass

1, (x − x0), (x − x0)
2, . . . , (x − x0)

meine Basis des Πm bilden. Daraus folgt, dass ak = 0 für k = 0, . . . , n.141



• Jetzt bere
hnen wir für x ∈ (x1, x2], dass ζ(x) = b1(x− x1)
m
+ = 0 gilt. Weil

x > x1 folgt (x − x1)
m
+ 6= 0, daher b1 = 0.

• Analog ergibt si
h für x ∈ (xi, xi+1], dass bi = 0 für i = 2, 3, . . . , n − 1.QEDDer folgende Satz beweist, dass die Kardinal-Splines ein Erzeugendensystem von
Sm

n [a, b] bilden, und daher eine Basis sind.Satz 6.20 Der Raum Sm
n [a, b] ist ein linearer Raum der Dimension n + m. Ins-besondere sind die Kardinal-Splines eine Basis des Sm

n [a, b].Beweis: Die Linearität des Raumes ist klar. Wir zeigen, dass die Kardinal-Splinesden Raum Sm
n [a, b] erzeugen, dann sind sie (wegen Lemma 6.19) eine Basis desRaumes und die Dimension des Raumes ist n + m.Um zu beweisen, dass die Kardinal-Splines ein Erzeugendensystem sind, müssenwir zeigen, dass man jedes s ∈ Sm

n [a, b] darstellen kann dur
h
s(x) =

m∑

k=0

ak(x − x0)
k +

n−1∑

j=1

bj(x − xj)
m
+ für alle x ∈ [a, b].Wir zeigen das mittels Induktion über die Anzahl der Teilintervalle n. Der In-duktionsanfang n = 1 ergibt eine Unterteilung a = xo < x1 = b, die aus einemeinzigen Intervall besteht. Entspre
hend ist

Sm
1 [a, b] = Πm[a, b]und jedes s ∈ Πm lässt si
h dur
h s(x) =

∑m
k=0 ak(x − x0)

k darstellen.Betra
hten wir nun den Übergang von n zu n+1. Sei s ∈ Sm
n+1[a, b] ein beliebigerSpline. Wir betra
hten diesen Spline s auf dem Intervall [a, xn] und nennen ihndort s̃, das heiÿt s̃(x) = s|[a,xn]. Für s̃ gilt die Induktionsannahme, also gibt es

a0, . . . , am und b1, . . . , bn−1 so dass
s̃(x) =

m∑

k=0

ak(x − x0)
k +

n−1∑

j=1

bj(x − xj)
m
+ für alle x ∈ [a, xn].Für die Di�erenz von s uns s̃,

d(x) = s(x) − s̃(x)gilt:
• d(x) = 0 für alle x ∈ [a, xn], 142



• d|[xn,xn+1] ∈ Πm[xn, xn+1].Aufgrund der Eigens
haften des Splines ist s auf [x0, xn+1] eine (m − 1) malstetig di�erenzierbare Funktion. Weil auf [x0, xn] die Splines s und s̃ identis
hsind, müssen au
h ihre (linksseitigen) Ableitungen in xn übereinstimmen. Wegender Stetigkeit von s(j) gilt dann
d(j)(xn) = s(j)(xn) − s̃(j)(xn) = 0 für j = 0, . . . , m − 1.Zusammenfassend ist die Di�erenzfunktion d auf dem Intervall [xn, xn+1] also einPolynom m-ten Grades mit einer m-fa
hen Nullstelle an xn. Das heiÿt, d mussdie folgende Form

d(x) = β(x − xn)mauf [xn, xn+1] haben, wobei β eine (unbekannte) Konstante ist. Weil d(x) = 0 für
x ∈ [a, xn] können wir diese Vors
hrift für d auf ganz [a, b] fortsetzen, zu

d(x) = β(x − xn)m
+ .Mit bn := β erhält man entspre
hend

s(x) = s̃(x)+d(x) =

m∑

k=0

ak(x−x0)
k+

n−1∑

j=1

bj(x−xj)
m
++bn(x−xn)m

+ für alle x ∈ [a, b].QEDKommen wir nun auf das Spline-Interpolationsproblem zurü
k. Bei n + 1 Stütz-stellen sind n + 1 Bedingungen vorgegeben. Da dim(Sm
n [a, b]) = n + m na
hSatz 6.20 werden also n + m − (n + 1) = m − 1 Freiheitsgrade ni
ht genutzt.Einzig im Fall linearer Splines (m = 1) liegen keine Freiheitsgrade mehr vor.Für m > 1 kann man also zusätzli
he Bedingungen stellen, die wir aufgrund derSymmetrie hier nur für ungerade m ≥ 3 betra
hten werden.Wir nehmen zur Bes
hreibung der Randbedingungen an, dass wir eine hinrei-
hend oft stetig di�erenzierbare Funktion f dur
h einen Spline s ∈ Sm

n [a, b] in-terpolieren wollen. Die Interpolationsbedingungen sind also
s(xj) = f(xj) =: yj.Weiterhin sei m eine ungerade Zahl, die wir dur
h m = 2l−1 mit l ≥ 2 darstellen.Folgende Randbedingungen können betra
htet werden:Hermite-Randbedingungen: Es werden jeweils die ersten l − 1 Ableitungenam Rand des Interpolationsintervalls festgelegt:

s(j)(a) = f (j)(a) für j = 1, . . . , l − 1

s(j)(b) = f (j)(b) für j = 1, . . . , l − 1 (6.4)143



Natürli
he Randbedingungen: Die Ableitungen höherer Ordnung (von l, l +
1, . . .m − 1) werden an beiden Rändern auf Null gesetzt:

s(l+j)(a) = 0 = f (l+j)(b) für j = 0, . . . , l − 2 (6.5)Periodizitätsbedingungen: Ist die zu interpolierende Funktion periodis
h mitPeriode b − a, gilt also insbesondere f (j)(a) = f (j)(b), so bietet es si
h an,zu verlangen, dass
s(j)(a) = f (j)(a) = f (j)(b) = s(j)(b) für j = 1, . . . , l − 1. (6.6)Das ist ein Spezialfall der Hermite-Randbedingungen.Für den Fall kubis
her Splines sind also jeweils zwei Bedingungen festzulegen.Diese sind die folgenden:Für (6.4): s(1)(a) = f (1)(a) und s(1)(b) = f (1)(b).Für (6.5): s(2)(a) = 0 und s(2)(b) = 0.Für (6.6): s(1)(a) = f (1)(a) = f (1)(b) = s(1)(b).Als nä
hstes wollen wir beweisen, dass mit jeder dieser Randbedingungen eineeindeutige Lösung des Spline-Interpolationsproblemes existiert. Dazu brau
henwir folgende Vorarbeit.Lemma 6.21 Sei f ∈ C l[a, b] für l ∈ IN, l ≥ 2 und sei s ∈ Sm

n [a, b] der interpo-lierende Spline bezügli
h der Unterteilung a = x0 < x1 < · · · < xn = b. Fernergelte eine der Randbedingungen (6.4), (6.5) oder (6.6). Dann gilt
∫ b

a

[f (l)(x) − s(l)(x)]2dx =

∫ b

a

[f (l)(x)]2dx −
∫ b

a

[s(l)(x)]2dx.Beweis: Ausmultiplizieren des Quadrates im ersten Integral ergibt
∫ b

a

[f (l)(x) − s(l)(x)]2dx

=

∫ b

a

[f (l)(x)]2dx −
∫ b

a

[s(l)(x)]2dx + 2

∫ b

a

[s(l)(x)]2dx −
∫ b

a

2f (l)(x)s(l)(x)dx

=

∫ b

a

[f (l)(x)]2dx −
∫ b

a

[s(l)(x)]2dx − 2

∫ b

a

s(l)(x)[f (l)(x) − s(l)(x)]dx

︸ ︷︷ ︸

=:S

.Dur
h partielles Integrieren unter Berü
ksi
htigung von (6.4), (6.5) oder (6.6)kann man zeigen, dass
S = (−1)l−1

∫ b

a

[f (1)(x) − s(1)(x)]s(m)(x)dx.144



Bevor wir no
h einmal partiell integrieren, zerlegen wir das Integral in einzelneIntegrale auf jedem Teilintervall, und erhalten
S = (−1)l−1

n∑

j=1

∫ xj

xj−1

[f (1)(x) − s(1)(x)]s(m)(x)dx

= (−1)l−1
n∑

j=1



[f(x) − s(x)]
︸ ︷︷ ︸

=0

s(m)(x)|xj

xj−1
−
∫ xj

xj−1

[f(x) − s(x)] s(m+1)(x)
︸ ︷︷ ︸

=0

dx





= 0,wobei die Stammfunktion Null ergibt, weil sie auss
hlieÿli
h an Stützstellen xj , j =
0, . . . , n ausgewertet wird. QEDAus dem Lemma leitet man ab, dass

∫ b

a

[s(l)(x)]2dx ≤
∫ b

a

[f (l)(x)]2dxgilt. Diese Unglei
hung kann man verwenden, um zu zeigen, dass die Splinesgenau die interpolierenden Funktionen mit minimaler Krümmung sind.Wir nutzen die Aussage des Lemmas, um den folgenden Satz zu beweisen.Satz 6.22 Das Spline-Interpolationsproblemmit einer der Randbedingungen (6.4),(6.5) oder (6.6) ist eindeutig lösbar für alle Funktionen f ∈ C l[a, b].Beweis: Im Beweis verwenden wir die glei
he Idee wie im Beweis von Satz 6.12,und de�nieren eine Funktion
α : C l[a, b] → R

n+m,die jede Funktion f auf die Stützwerte an den Interpolationsstellen und die Ab-leitungswerte zu den jeweiligen Randbedingungen abbildet. Für (6.4) erhält manzum Beispiel
α(f) = (f(x0), f(x1), . . . , f(xn), f (1)(a), . . . , f (l−1)(a), f (1)(b), . . . , f (l−1)(b))T .Wir wenden nun α an auf Sm

n [a, b] und erhalten entspre
hend eine Abbildung
α : Sm

n [a, b] → R
n+m,zwis
hen zwei endli
h-dimensionalen Vektorräumen glei
her Dimension. Bijekti-vität von α ist weiterhin äquivalent dazu, dass das Spline-Interpolationsproblemmit Randbedingungen für jede Funktion f ∈ C2[a, b] eindeutig lösbar ist. Wirzeigen also, dass α injektiv (und damit bijektiv) ist:145



Dazu nehmen wir an, dass α(s) = 0 gilt und müssen daraus folgern, dass s ≡ 0.Dazu betra
hten wir die Nullfunktion f ≡ 0. Weil ∫ b

a
[f (l)(x)]2dx = 0 gilt na
hLemma 6.21, dass

0 ≤
∫ b

a

[f (l)(x)−s(l)(x)]2dx =

∫ b

a

[f (l)(x)]2dx−
∫ b

a

[s(l)(x)]2dx = −
∫ b

a

[s(l)(x)]2dx ≤ 0,entspre
hend ist
∫ b

a

[s(l)(x)]2dx = 0.Daraus folgert man, dass auf [a, b] s(l) ≡ 0 gilt. Weil s ∈ Cm−1[a, b] gilt al-so s ∈ Πl−1[a, b]. Aus den Randbedingungen ergeben si
h mindestens l Be-dingungen an (das Polynom) s, so dass wegen der Eindeutigkeit des Hermite-Interpolationsproblemes folgt, dass s ≡ 0. QEDBevor wir ein Verfahren angeben, mit dem man Splines bere
hnen kann, wol-len wir eine Verallgemeinerung der für Polynome und Splines gezeigten Sätzeandeuten. Dazu benötigen wir den folgenden Begri�.De�nition 6.23 Ein m-dimensionaler Unterraum U ⊆ C[a, b] heiÿt unisolventbezügli
h der m paarweise vers
hiedenen Stützstellen x1, . . . , xm ∈ [a, b], wennjede Funktion u ∈ U mit Nullstellen u(xi) = 0 für i = 1, . . . , m identis
h ver-s
hwindet.Wir haben s
hon zwei Beispiele von unisolventen Räumen kennen gelernt:
• Die Menge der Polynome mit maximalem Grad n ist unisolvent bezügli
hjeder Teilmenge X ⊆ R mit |X| ≥ n + 1.
• Die Menge {s ∈ Sm

n : s erfüllt (6.4)} ist unisolvent bezügli
h jeder Menge
X ⊂ R mit |X| ≥ n+1. Statt (6.4) kann man au
h (6.5) oder (6.6) fordern.Wir betra
hten nun die folgende Interpolationsaufgabe:Sei U ⊆ C[a, b] ein (n+1)-dimensionaler Unterraum, der bezügli
h der paarweisevers
hiedenen Stützstellen x0, x1, . . . , xn unisolvent ist. Weiterhin seien Stützwer-te y0, y1, . . . , yn gegeben. Gesu
ht ist eine Funktion u ∈ U , so dass

u(xi) = yi für i = 0, . . . , n. (U-Int)Die Lösbarkeit und Eindeutigkeit von (U-Int) bes
hreibt der folgende Satz.146



Satz 6.24 Es sei U ⊆ C[a, b] ein (n+1)-dimensionaler Unterraum, der bezügli
hder paarweise vers
hiedenen Stützstellen x0, x1, . . . , xn unisolvent ist. Weiterhinseien Stützwerte y0, y1, . . . , yn gegeben. Dann gibt es genau ein u ∈ U , das dieInterpolationsaufgabe (U-Int) löst.Beweis: Betra
hte α : U → R
n+1 mit α(u) = (u(x0), u(x1), . . . , u(xn))T ∈ R

n+1.Die Interpolationsaufgabe (U-Int) ist eindeutig lösbar, genau dann wenn dieAbbildung α bijektiv ist. Wegen der Voraussetzung, dass dim(U) = n + 1 =
dim(Rn+1) rei
ht es, die Injektivität von α na
hzuweisen. Dazu sei α(u) = 0. Esist zu zeigen, dass dann u ≡ 0 gilt. Dies ist erfüllt, weil U unisolvent bezügli
hder Stützstellen x0, x1, . . . xn ist. QEDDer Satz enthält die Eindeutigkeit der Lagrange-Polynomaufgabe und der Spline-Polynomaufgabe als Spezialfälle.Wir kommen nun auf die Spline-Interpolationsaufgabe zurü
k und wollen uns imfolgenden mit der Bere
hnung von Interpolations-Splines bes
häftigen. Ein naheliegender Ansatz ist, die Basis-Darstellung dur
h die Kardinal-Splines (6.3),

s(x) =

m∑

k=0

ak(x − x0)
k +

n−1∑

j=1

bj(x − xj)
m
+ für alle x ∈ [a, b]zu nutzen. Die Koe�zienten ak, bj kann man dann dur
h Lösen des Glei
hungs-systems bestimmen, das aus den Interpolationsforderungen s(xj) = yj und einerder Randbedingungen (6.4), (6.5) oder (6.6) entsteht. Die Koe�zientenmatrixbezügli
h der Interpolationsbedingungen hat das folgende Aussehen:












1 0 0 . . . 0 0 0 . . . 0
1 (x1 − x0) (x1 − x0)

2 . . . (x1 − x0)
m 0 0 . . . 0

1 (x2 − x0) (x2 − x0)
2 . . . (x2 − x0)

m (x2 − x1)
m 0 . . . 0

1 (x3 − x0) (x3 − x0)
2 . . . (x3 − x0)

m (x3 − x1)
m (x3 − x2)

m . . . 0... ... ...
1 (xn − x0) (xn − x0)

2 . . . (xn − x0)
m (xn − x1)

m (xn − x2)
m . . . (xn − xn−1)

m










Wie man sieht, ist die Koe�zientenmatrix stark besetzt, auÿerdem ist sie s
hle
htkonditioniert. Das liegt daran, dass ein Teil der Kardinal-Splines das gesamte In-tervall [a, b] als Träger hat. Man versu
ht daher, Basisfunktionen mit einem klei-nen Träger zu �nden, d.h. Basisfunktionen, die nur auf einem kleinen Teilintervallvon [a, b] von Null vers
hieden sind. Das gelingt mit den so genannten B-Splines,die wir für den vereinfa
hten Fall äquidistanter Stützstellen bes
hreiben wollen.Wir betra
hten dazu die folgende Unterteilung a = x0 < x1 < . . . < xn = b mit

xj = a + jh und h =
b − a

n
.147



Notation 6.25 Die B-Splines sind reelle Funktionen, die folgendermaÿen de-�niert werden. Ausgehend von
B0(x) :=

{
1 falls |x| ≤ 1

2

0 falls |x| > 1
2de�niert man für m=0,1,2,. . . rekursiv

Bm+1(x) :=

∫ x+ 1
2

x− 1
2

Bm(t)dt.Als Beispiel bere
hnen wir B1 dur
h
B1(x) =

∫ x+ 1
2

x− 1
2

B0(t)dt

=







∫ x+ 1
2

− 1
2

1dt falls − 1 < x ≤ 0
∫ 1

2

x− 1
2

1dt falls 0 < x ≤ 1

0 sonst
=

{
1 − |x| falls |x| ≤ 1
0 falls |x| > 1

.Diese Funktion wird aufgrund ihrer Form au
h Hutfunktion (hat fun
tion) ge-nannt. Dur
h weiteres Integrieren der stü
kweise de�nierten Funktion erhält manfür B2 und s
hlieÿli
h für B3 die folgenden Formeln.
B2(x) :=

1

2







2 − (|x| − 1
2
)2 − (|x| + 1

2
)2 falls |x| ≤ 1

2

(|x| − 3
2
)2 falls 1

2
< |x| ≤ 3

2

0 falls |x| > 3
2

B3(x) :=
1

6







(2 − |x|)3 − 4(1 − |x|)3 falls |x| ≤ 1
(2 − |x|)3 falls 1 < |x| ≤ 2
0 falls |x| > 2Dur
h vollständige Induktion lassen si
h die folgenden Eigens
haften der B-Splinesfür alle m ∈ IN na
hre
hnen:1. Bm ∈ Cm−1(R).2. Bm(x) ≥ 0 für alle x ∈ R.3. Bm(x) = 0 für alle x 6∈ [−m

2
− 1

2
, m

2
+ 1

2
], d.h. der Träger von Bm ist

(−m
2
− 1

2
, m

2
+ 1

2
).4. Ist m ungerade, so ist Bm|[i,i+1] ∈ Πm, ist m gerade, so ist Bm|[i− 1

2
,i+ 1

2
] ∈ Πm,für alle ganze Zahlen i. 148



Eine Basis aus den B-Splines muss, wie die Basis aus den Kardinalsplines, dieStützstellen
xk = a + kh für k = 0, 1, . . . , n, (mit h = b−a

n
)berü
ksi
htigen. Dazu de�niert man für ganze Zahlen k die Funktionen

Bm,k(x) := Bm

(
x − a

h
− k

)

.Für k ∈ {0, 1, . . . , n} gilt dann
x − a

h
− k =

x − a − hk

h
=

x − xk

h
,also sind die Bm,k für k = 0, . . . , n über die Stützstellen der gegebenen Untertei-lung de�niert.Dur
h Ausnutzen der oben gesammelten Eigens
haften der B-Splines und einigesan Te
hnik kann man das folgende Ergebnis beweisen.Satz 6.26 Sei a = x0 < x1 < . . . < xn = b mit xj = a + jh und h = b−a

neine äquidistante Unterteilung des Intervalls [a, b]. Sei weiterhin m = 2l − 1 mit
l ∈ IN. Dann ist

{Bm,k : k = −l + 1, . . . , 0, . . . , n + l − 1}eine Basis des Sm
n ([a, b]).Die Anzahl der Funktionen Bm,k in der Basis beträgt (l − 1) + 1 + (n + l − 1) =

2l+n−1 = m+n und stimmt also mit der uns aus Satz 6.20 bekannten Dimensiondes Raumes Sn
m[a, b] überein.Die Anwendung von B-Splines soll am Fall kubis
her Splines demonstriertwerden. Sei also m = 3 (entspre
hend l = 2). Seien weiterhin Stützstellen

xj = a + hj, j = 0, . . . , nmit xn = a+hn = b beziehungsweise h = b−a
n

gegeben. Gesu
ht wird der kubis
heSpline
s(x) =

n+1∑

j=−1

cjB3

(
x − xj

h

)mit den Interpolationsbedingungen s(xj) = yj := f(xj) für j = 0, 1, . . . , n sowieden Hermite-Randbedingungen (6.4)
s′(a) = a1 und s′(b) = b1.149



Wegen
xj − xk

h
=

a + jh − a − kh

h
= j − kkann man s(xj) bere
hnen zu

s(xj) =
n+l−1∑

k=−l+1

ckB3

(
xj − xk

h

)

=
n+1∑

k=1

ckB3(j − k)

=

j+1
∑

k=j−1

ckB3(j − k) weil B(x) = 0 für alle |x| ≥ 2

= cj−1B(1) + cjB(0) + cj+1B(−1).Also bere
hnen wir
B3(0) =

2

3

B3(1) =
1

6

B3(−1) =
1

6und erhalten
s(xj) =

1

6
(cj−1 + 4cj + cj+1) für j = 0, . . . , n.Wegen

B′
3(0) = 0

B′
3(1) = −1

2

B′
3(−1) =

1

2150



ergibt si
h weiter
s′(a) = s′(x0) =

1∑

j=−1

cj
1

h
B′

3(0 − j)

=
1

h
(c−1B

′
3(1) + c0B

′
3(0) + c1B

′
3(−1))

=
1

2h
(c1 − c−1)

s′(b) = s′(xn) =

n+1∑

j=n−1

cj
1

h
B′

3(n − j)

=
1

h
(cn−1B

′
3(1) + cnB

′
3(0) + cn+1B

′
3(−1))

=
1

2h
(cn+1 − cn−1)Die Interpolationsbedingungen s(xj) = yj und die beiden Hermite-Bedingungen

s′(a) = a1, s′(b) = b1 ergeben s
hlieÿli
h das folgende Glei
hungssystem
AC = Fmit

F =












a1

y0

y1...
yn

b1












, C =












c−1

c0

c1...
cn

cn+1










und der Koe�zienten-Matrix

A =
1

6














− 3
h

0 3
h

1 4 1 0
1 4 1. . . . . . . . .

1 4 1
0 1 4 1

− 3
h

0 3
h














.

Die Matrix A ist eine reguläre Bandmatrix, so dass das Glei
hungssystem mit denMethoden aus Abs
hnitt 2.4 oder mit Iterationsverfahren gelöst werden kann.151



6.4 Trigonometris
he InterpolationWeiÿ man, dass die zu interpolierende Funktion periodis
h ist, so mö
hte man ger-ne au
h eine periodis
he Interpolante konstruieren. Dazu bietet si
h die in diesemAbs
hnitt bes
hriebene trigonometris
he Interpolation an. Zunä
hst wiederholenwir die De�nition von periodis
h.Notation 6.27 Eine Funktion f : IK → IK , heiÿt periodis
h mit Periode
T > 0, falls für alle t ∈ IK gilt:

f(t + T ) = f(t).Im folgenden bes
häftigen wir uns mit der Periode T = 2π. Trigonometris
hePolynome sind dann als Linearkombinationen der trigonometris
hen sin und cosFunktionen de�niert:Notation 6.28 Die reelle Funktion q : R → R ist ein trigonometris
hes Po-lynom, falls es reelle Koe�zienten a0, a1, . . . an und b1, . . . , bn gibt, so dass
q(x) =

a0

2
+

n∑

k=1

(ak cos kt + bk sin kt). (6.7)Das trigonometris
he Polynom q hat Grad n falls |an|+ |bn| 6= 0 gilt. Der Raumder trigonometris
hen Polynome mit maximalem Grad n wird mit Tn bezei
hnet.Aufgrund der Additionstheoreme erhält man, dass für p1 ∈ Tn1 und für p2 ∈ Tn2gilt: p1 · p2 ∈ Tn1+n2 . Weiterhin kann man die Darstellung eit = cos t + i sin tausnutzen und entwi
kelt daraus die folgende äquivalente Darstellung
q(t) =

n∑

k=−n

cke
ikt, (6.8)wobei man für k = 0, . . . , n die Koe�zienten über

ck =
1

2
(ak − ibk)

c−k =
1

2
(ak + ibk)(mit b0 := 0) erhält.Wir wollen das folgende Interpolationsproblem lösen:Sei Tn der Raum der trigonometris
hen Polynome mit maximalem Grad n undseien die paarweise vers
hiedenen Stützstellen x0, x1, . . . , xN sowie Stützwerte

y0, y1, . . . , yN gegeben. Gesu
ht ist eine Funktion q ∈ Tn, so dass
q(xi) = yi für i = 0, . . . , N. (T-Int)152



Für das Interpolationsproblem ist es na
h Satz 6.24 nützli
h, si
h zunä
hst Ge-danken über die Unisolvenz des Raumes Tn zu ma
hen.Lemma 6.29
• Sei q ∈ Tn und habe q mehr als 2n paarweise vers
hiedene Nullstellen imPeriodizitätsintervall [0, 2π). Dann vers
hwindet q identis
h.
• Die Funktionen cos(kx), k = 0, . . . , n und sin(kx), k = 1, . . . , n sind linearunabhängig auf dem Raum C([0, 2π)).Beweis: (Idee) Man verwendet die Darstellung (6.8) und die Eindeutigkeit desentspre
henden algebrais
hen Polynoms p ∈ Π2n auf dem Einheitskreis in C.QEDDie folgenden beiden Sätze folgen direkt aus dem Lemma.Satz 6.30

dim(Tn) = 2n + 1Satz 6.31 Tn ist unisolvent bezügli
h jeder Menge X ⊆ [0, 2π) mit |X| ≥ 2n+1.Aus dem letzten Satz folgt zusammen mit Satz 6.24 sofort die folgende Aussage.Satz 6.32 Das Interpolationsproblem T-Int ist für N = 2n + 1 paarweise ver-s
hiedene Stützstellen x0, x1, . . . , x2n ∈ [0, 2π) eindeutig lösbar.Ähnli
h wie bei den Lagrange-Polynomen re
hnet man na
h, dass eine Lösungdes Interpolationsproblemes (T-Int) gegeben ist dur
h
pn(x) =

2n∑

k=0

yklk(x)mit den Lagrange-Polynomen
lk(x) =

n∏

j=0

j 6=k

sin(1
2
(x − xj))

sin(1
2
(xk − xj))

für k = 0, . . . , 2nWie au
h im Fall der Interpolation mit algebrais
hen Polynomen ist die Lagrange-Basis allerdings aus numeris
her Si
ht wenig geeignet. Man geht daher von demAnsatz (6.7) oder (6.8) aus und versu
ht, die Koe�zienten ak, bk oder ck e�zientzu bere
hnen. Für den Fall von äquidistanten Stützstellen führt die Lösung derentspre
henden Glei
hungssysteme zu folgendem Ergebnis.153



Satz 6.33 (n ungerade) Es existiert genau ein trigonometris
hes Polynom
pn(x) =

a0

2
+

n∑

k=1

(ak cos kx + bk sin kx).mit der Interpolationseigens
haft
pn

(

j
2π

2n + 1

)

= yj, j = 0, . . . , 2n.Dabei sind die Koe�zienten bestimmt dur
h
ak =

2

2n + 1

2n∑

j=0

yj cos

(
2π

2n + 1
jk

)

, k = 0, . . . , n

bk =
2

2n + 1

2n∑

j=0

yj sin

(
2π

2n + 1
jk

)

, k = 1, . . . , nIm Fall, dass n gerade ist, gibt es zu den 2n+1 Freiheitsgraden eines trigonometri-s
hen Polynoms aus dem Raum Tn zunä
hst nur 2n Interpolationsbedingungen anden äquidistanten Stützstellen xj = jπ
n
für j = 0, 1, . . . , 2n− 1. Man kann jedo
hdie Basisfunktion sin nx weglassen, das sie an allen Stützstellen eine Nullstellehat. Mit relativ wenig Aufwand erhält man das folgende Ergebnis.Satz 6.34 (n gerade) Es existiert genau ein trigonometris
hes Polynom

Pn(x) =
a0

2
+

n−1∑

k=1

(ak cos kx + bk sin kx) +
1

2
an cos nx.mit der Interpolationseigens
haft

pn

(

j
π

n

)

= yj, j = 0, . . . , 2n − 1.Dabei sind die Koe�zienten bestimmt dur
h
ak =

1

n

2n−1∑

j=0

yj cos
(π

n
jk
)

, k = 0, . . . , n

bk =
1

n

2n−1∑

j=0

yj sin
(π

n
jk
)

, k = 1, . . . , n − 1154



Es gibt folgenden Zusammenhang zu den so genannten Fourier-Koe�zienten.Zunä
hst de�nieren wir mittels
(f, g)L2 :=

∫ 2π

0

f(t)g(t)dtein Skalarprodukt auf der Menge der quadrat-integrierbaren Funktionen. Die ent-spre
hende Norm ergibt si
h zu ‖f‖L2 :=
√

(f, f)L2. Dann de�niert man zu einerquadrat-integrierbaren Funktion ihre Fourierkoe�zienten dur
h
âk =

1

π

∫ 2π

0

f(x) cos(kx)dx, b̂k =
1

π

∫ 2π

0

f(x) sin(kx)dx, k = 0, 1, . . . , n.Es gilt dann der folgende Satz.Satz 6.35 Sei für n ∈ IN

Pnf(x) =
â0

2
+

n∑

k=1

(âk cos kx + b̂k sin kx)Dann konvergiert Pn gegen f in ‖ · ‖L2, d.h. es gilt limn→∞ ‖f − Pn‖L2 = 0.Beweis: (Idee) Man kann diese Formeln zeigen, wenn man in den Formeln für
ak, bk aus Satz 6.33 formal den Grenzübergang n → ∞ ausführt. QEDMan spri
ht im Fall von äquidistanten Stützstellen von der diskreten Fourier-Transformation. Die Fourier-Koe�zienten können mittels des Horner-S
hemasbere
hnet werden. Bei groÿen Werten für n lässt si
h der Aufwand dur
h dies
hnelle Fourier-Transformation weiter reduzieren. Die Idee besteht darin, diekomplexen Einheitswurzeln von n = 2s ges
hi
kt zu bere
hnen.
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Kapitel 1Numeris
he IntegrationUnser Ziel ist es, eine einfa
he Formel zur Bere
hnung von
∫ b

a

f(x)dxzu �nden. Eine Mögli
hkeit ist die Annäherung dur
h Re
hte
ke:
∫ b

a

f(x)dx ≈
n∑

j=1

ajf(xj).Hierbei ist aj die Breite des jeweiligen Re
hte
ks und f(xj) die Höhe. DieseSummenformel ist �einfa
h� zu bere
hnen.
f(xj)

aj

a bNotation 1.1 Sei x0, . . . , xn ∈ [a, b]. Eine Abbildung Q : R[a,b] → R heiÿt Qua-draturformel bzgl. x0, . . . , xn falls gilt:
Q(f) =

n∑

j=0

ajf(xj) für a0, . . . , an ∈ R.3



Bemerkung: Q ist eine lineare Abbildung.Wir versu
hen im Folgenden, QuadraturformelnQ zu �nden, die Integrale I(f) :=
∫ b

a
f(x)dx annähern, d.h. Q mit Q(f) ≈ I(f).Beispiel: Die Trapezregel ist eine Vors
hrift, ∫ b

a
f(x)dx dur
h die Flä
he einesTrapezes mit den E
ken (a, 0), (a, f(a)), (b, f(b)), (b, 0) zu approximieren:

∫ b

a

f(x)dx ≈ (b − a)

2
(f(a) + f(b)).Die Trapezregel ist also eine Quadraturformel mit n = 1, x0 = a, x1 = b und

a0 = a1 = 1
2
(b − a). Sie integriert alle a�n-linearen Funktionen exakt.

a b

f(b)

f(a)

Notation 1.2 Eine Quadraturformel Q heiÿt exakt für F ⊆ R[a,b], falls Q(f) =
I(f) für alle f ∈ F gilt.Satz 1.3 Sei F ⊆ R[a,b] ein endli
h-dimensionaler Unterraum von R[a,b] und
f0, . . . , fN eine Basis von F. Gilt dann Q(fi) = I(fi) für alle i = 0, . . . , N füreine Quadraturformel Q, dann ist Q exakt für F.Beweis: Sei f ∈ F. Dann kann man f bezügli
h der Basis f0, . . . , fN darstellenals

f =
N∑

i=0

aifi.Es gilt nun
Q(f) = Q

(
N∑

i=0

aifi

)

=

N∑

i=0

aiQ(fi), da Q linear
=

N∑

i=0

aiI(fi), da Q exakt für fi und
= I

(
N∑

i=0

aifi

)

= I(f), da Integrale linear sind. QED4



Im Folgenden betra
hten wir
• Interpolationsquadraturen na
h Newton-C�tes,
• Gauÿ's
he Quadraturformeln und
• die Rombergquadratur.1.1 InterpolationsquadraturenSeien x0, . . . , xn ∈ [a, b] gegeben. Eine Idee ist es, das Integral von f dur
h dasIntegral des eindeutig bestimmten Interpolationspolynoms (Lnf)(x) bezügli
hder Stützstellen (xj , f(xj)), j = 0, . . . , n zu approximieren.De�nition 1.4 Eine Quadraturformel Qn(f) =

∑n

j=0 ajf(xj) heiÿt Interpola-tionsquadratur der Ordnung n, falls für alle f ∈ C[a, b] gilt:
Qn(f) =

n∑

j=0

ajf(xj) =

∫ b

a

(Lnf)(x)dx = I(Lnf).Dabei ist Lnf das eindeutig bestimmte Interpolationspolynom zu f bezügli
h derStützstellen x0, . . . , xn.Wir erinnern uns an Numerik I, wo wir im Kapitel 6.1 vers
hiedene Darstellungenfür Lnf hergeleitet hatten. Eine war die Lagrange-Darstellung:
(Lnf)(x) =

n∑

j=0

f(xj)lj(x) mit lj(x) =
n∏

k=0
k 6=j

x − xk

xj − xk

.Wir werden im Folgenden die Koe�zienten aj von Interpolationsquadraturen derOrdnung n herleiten. Kennt man diese, so kann man alle Polynome p ∈ Πn exaktintegrieren. Erstaunli
herweise gilt au
h die Umkehrung dieser Aussage:Satz 1.5 Eine Quadraturformel Qn ist genau dann eine Interpolationsquadraturvom Grad n, wenn alle Polynome p ∈ Πn[a, b] exakt integriert werden.Beweis: �⇒�: Sei Qn(f) =
∫ b

a
(Lnf)(x)dx eine Interpolationsquadratur der Ord-nung n und sei f ∈ Πn[a, b]. Na
h dem Satz 6.4 aus Numerik I gilt dann f = Lnf ,also ist Q(f) =

∫ b

a
f(x)dx = I(f) und Qn ist exakt für alle f ∈ Πn[a, b].�⇐�: Sei umgekehrt Q(f) =

∑n
j=0 aif(xj) eine Quadraturformel die I(p) = Q(p)für alle p ∈ Πn[a, b] erfüllt. Sei f ∈ C[a, b]. Dann ist Lnf ∈ Πn[a, b] und es gilt

I(Lnf) = Q(Lnf) =
n∑

j=0

aj(Lnf)(xj)

=

n∑

j=0

ajf(xj) = Q(f),5



also ist Q(f) eine Interpolationsquadratur der Ordnung n. QEDSatz 1.6 Sei hn+1(x) =
∏n

j=0(x − xj). Seien x0, . . . , xn paarweise vers
hiedenaus [a, b]. Dann existiert genau eine Interpolationsquadratur der Ordnung n zu
x0, . . . , xn, die dur
h die Gewi
hte

aj =
1

h′
n+1(xj)

∫ b

a

hn+1(x)

x − xj

dx mit j = 0, . . . , ngegeben ist.Beweis: Wir zeigen zunä
hst die Eindeutigkeit. Seien
QA(f) =

n∑

j=0

ajf(xj) und QB(f) =

n∑

j=0

bjf(xj)zwei Interpolationsquadraturen der Ordnung n. Dann gilt:
QA(f) =

∫ b

a

(Lnf)(x)dx = QB(f) für alle f ∈ C[a, b].Wir wählen nun zu jedem j ein fj mit fj(xj) 6= 0 und fj(xk) = 0 für alle k 6= j �z.B. fj = lj , die Lagrangepolynome. Dann gilt QA(fj) = aj = bj = QB(fj), d.h.die Interpolationsquadraturen sind glei
h.Zum Existenzbeweis: Lnf ist stetig und deshalb integrierbar. Wir gehen über dieLagrange-Darstellung:
∫ b

a

(Lnf)(x)dx =

∫ b

a

n∑

j=0

f(xj)lj(x)dx =

n∑

j=0

f(xj)

∫ b

a

lj(x)dx,d.h. ∫ b

a
(Lnf)(x)dx =

∑n

j=0 f(xj)aj mit aj =
∫ b

a
lj(x)dx ist tatsä
hli
h eine Inter-polationsquadratur. Weiterhin gilt:

aj =

∫ b

a

n∏

k=0
k 6=j

x − xk

xj − xk

dx =
1

h′
n+1(xj)

∫ b

a

hn+1(x)

x − xj

dx,wobei
h′

n+1(x) =

n∑

k=0

n∏

i=0
i6=k

(x − xi)gilt und insbesondere
h′

n+1(xj) =

n∏

i=0
i6=j

(xj − xi). QED6



Zur Vereinfa
hung der Formeln betra
hten wir den Fall äquidistanter Stützstellen
xj = a + j · h mit j = 0, . . . , n.Wir bemerken:

xn = a + n · h = b, also h =
b − a

n
.De�nition 1.7 Die Interpolationsquadratur der Ordnung n zu den Stützstellen

xj = a + j · h mit j = 0, . . . , n mit S
hrittweite h = b−a
n

heiÿt Newton-C�tes-Formel der Ordnung n.Lemma 1.8 Die Gewi
hte der Newton-C�tes-Formel der Ordnung n ergeben si
haus
aj = h · Ajmit Aj = An−j =

(−1)n−j

j!(n − j)!

∫ n

0

n∏

k=0
k 6=j

(z − k)dz für j = 0, . . . , n.Beweis: Übung.Bemerkung: Die Werte Aj hängen auss
hlieÿli
h von der Anzahl n der Stützstel-len ab, ni
ht aber von den Werten xj der Stützstellen und au
h ni
ht von a, boder h!Einfa
her als die Bere
hnung der Aj na
h Lemma 1.8 ist ihre Ermittlung überdie Lösung eines linearen Glei
hungssystems. Dazu fordert man speziell für dieMonome p(x) = xk für k = 0, . . . , n, dass
n∑

i=0

aip(xi) =

∫ b

a

p(x)dx.Na
h Satz 1.3 folgt daraus, dass ∑n

i=0 aip(xi) = I(p) für alle p ∈ Πn gilt.Auf diese Weise bere
hnen wir nun die Koe�zienten für die Fälle n = 1 und
n = 2.
n = 1: Na
h der Bemerkung na
h Lemma 1.8 können wir o.B.d.A. a = −1 und
b = 1 setzen. Somit gilt h = 2 und wir erhalten:

• p(x) = x0:
∫ 1

−1

x0dx = [x]1−1 = 2 und 1∑

j=0

ajp(xj) = a0 + a1,also a0 + a1 = 2 als erste Bedingung.7



• p(x) = x:
∫ 1

−1

x1dx =
[

1
2
x2
]1

−1
= 0 und 1∑

j=0

ajp(xj) = a0 · (−1) + a1 · 1,also −a0 + a1 = 0 als zweite Bedingung.Die Lösung des Systems
a0 + a1 = 2

−a0 + a1 = 0ist a0 = a1 = 1 (bzw. A0 = A1 = 1
2
) und man erhält daraus

∫ 1

−1

f(x)dx ≈ 1 · f(−1) + 1 · f(1).Für beliebige Integrationsgrenzen a, b ändern si
h A0 und A1 ni
ht, sodass wirdie auf Seite 3 s
hon bes
hriebene Trapez-Regel
∫ b

a

f(x)dx ≈ b − a

2
(f(a) + f(b))erhalten.

n = 2: Wie s
hon im vorherigen Fall wählen wir a = −1 und b = 1. Daraus erge-ben si
h nun h = 1, x0 = −1, x1 = 0, x2 = 1 und entspre
hend die Glei
hungen
∫ 1

−1

x0dx = 2 = a0 + a1 + a2,

∫ 1

−1

x1dx = 0 = −a0 + a2,

∫ 1

−1

x2dx = 2
3

= a0 + a2,woraus man a0 = A0 = 1
3
, a1 = A1 = 4

3
und a2 = A2 = 1

3
als eindeutige Lösungerre
hnet. Daraus erhält man die Simpson-Regel

∫ b

a

f(x)dx ≈ h

3
(f(x0) + 4f(x1) + f(x2))

=
b − a

6

(

f(a) + 4f

(
a + b

2

)

+ f(b)

)

.8



| | |

| | |

a a+b
2

b

h h

Die folgende Tabelle gibt die Gewi
hte der ersten fünf Newton-C�tes Formeln an:
n A0 A1 A2 A3 A4 A5 Bezei
hnung1 1

2
1
2

Trapez-Regel2 1
3

4
3

1
3

Simpson-Regel3 3
8

9
8

9
8

3
8

Newton-3
8
-Regel4 14

45
64
45

24
45

64
45

14
45

1. Milne-Regel5 95
288

375
288

250
288

250
288

375
288

95
288

2. Milne-RegelLeider tau
hen ab n ≥ 8 au
h negative Gewi
hte auf, die unerwüns
hte Neben-e�ekte haben:
• Auslös
hung ist mögli
h und führt zu numeris
her Instabilität und
• es lassen si
h positive Funktionen f ≥ 0 konstruieren, sodass Q(f) < 0 gilt.Wir betra
hten nun folgendes Beispiel für die Simpson-Regel:

f(x) =

(

x − a + b

2

)3

.Dann gilt
∫ b

a

f(x)dx = 0,denn f ist punktsymmetris
h zu (a+b
2

, 0):
−f(a+b

2
+ x) = −x3 = (−x)3 = f(a+b

2
− x).Wendet man die Simpson-Regel auf f an, so erhält man

Q2(f) = b−a
6

(f(a) + 4f(a+b
2

) + f(b))

= b−a
6

((a−b
2

)3 + 4(0)3 + ( b−a
2

)3) = 0also ist die Simpson-Regel für dieses kubis
he Polynom exakt. Das gilt sogar füralle kubis
hen Polynome!Lemma 1.9 Die Simpson-Regel Q2 ist exakt für alle p ∈ Π3[a, b].9



Beweis: Na
h Satz 1.3 ist eine Quadraturformel auf Π3 exakt, wenn sie auf einerBasis von Πn exakt ist. Wir wählen als Basis
(x − a+b

2
)3, (x − a+b

2
)2, x − a+b

2
, 1.Im vorangehenden Beispiel haben wir bereits Q2((x − a+b

2
)3) = I((x − a+b

2
)3)gezeigt und für die anderen Basisvektoren folgt die Exaktheit aus Satz 1.5, dennalle Polynome aus Π2[a, b] werden von einer Interpolationsquadratur der Ordnung2 exakt integriert. QEDMan kann diese Aussage weiter verallgemeinern:Satz 1.10 Sei Qn(f) =

∑n
j=0 ajf(xj) eine Newton-C�tes Formel mit geradem

n. Dann gilt
Qn(p) = I(p) für alle p ∈ Πn+1[a, b].Beweis: Übung.1.2 Zusammengesetzte Newton-C�tes-FormelnAnalog zur Spline-Interpolation zerlegt man bei den zusammengesetzten Newton-C�tes-Formeln das Integrationsintervall in m Teilintervalle und wendet auf je nzusammenhängenden Teilintervallen eine Quadraturformel niederer Ordnung an.Dafür wählen wir m so, dass n Teiler von m ist.Wir erhalten auf diese Weise die zusammengesetzte Trapezregel:

∫ b

a

f(x)dx ≈ Th(f) := h

(

1
2
f(x0) +

m−1∑

i=1

f(xi) + 1
2
f(xm)

)

,mit xi = ai + ih für i = 0, . . . , m, also x0 = a und xm = b. Dabei ist h = b−a
m
.

Th(f) (s
hra�erte Flä
he)
10



Analog ergibt si
h die zusammengesetzte Simpsonregel: Sei dazu x0 = a <
x1 < · · · < xm = b eine äquidistante Zerlegung in eine gerade Anzahl an Teil-intervallen. Wir wenden die Simpson-Regel jeweils auf zwei aufeinander folgendeIntervalle an und erhalten:

∫ b

a

f(x)dx ≈ Sh(f) =
h

3

m
2
−1
∑

j=0

1
3
f(x2j) + 4

3
f(x2j+1) + 1

3
f(x2j+2)1.3 Gauÿ's
he IntegrationsformelnFür die Gauÿ's
hen Integrationsformeln sollen neben den Gewi
hten a0, a1, . . . , anau
h die Stützstellen x0, . . . , xn gewählt werden. Man hat also 2(n+ 1) Freiheits-grade. Entspre
hend darf man 2n + 2 Bedingungen stellen, z. B.

n∑

i=0

aip(xi) =

∫ b

a

p(x)dx für p(x) ∈ {1, x, x2, . . . , x2n+1}.Sind diese Bedingungen erfüllt, kann man alle Polynome aus Π2n+1 exakt inte-grieren (Satz 1.3). Wir wollen gerne ohne dieses ni
htlineare Glei
hungssystemauskommen.Dabei ist es in vers
hiedenen Anwendungen günstig, den allgemeineren Fall vonQuadraturformeln zu betra
hten, nämli
h gemis
hte Integrale
Iw(f) :=

∫ b

a

ω(x)f(x)dxmit einer auf (a, b) stetigen und positiven Gewi
htsfunktion ω. Weiterhin fordertman, dass
∫ b

a

ω(x)xkdxfür alle k ∈ N0 existiert.Typis
he Beispiele für sol
he Gewi
htsfunktionen sind
• Gauÿ-Legendre: ω(x) = 1 auf [a, b]

• Gauÿ-Ts
hebys
he� 1. Art: ω(x) = 1√
1−x2 auf x ∈ [−1, 1].

• Gauÿ-Ts
hebys
he� 2. Art: ω(x) =
√

1 − x2 auf x ∈ [−1, 1].
• Gauÿ-Laguerre: ω(x) = e−x auf [0,∞).
• Gauÿ-Hermite: ω(x) = e−x2 auf (−∞,∞)11



De�nition 1.11 Eine Quadraturformel Qn(f) =
∑n

i=0 aif(xi) nennt manGauÿ's
heQuadraturformel der Ordnung n, wenn sie alle Polynome p ∈ Π2n+1[a, b] ex-akt integriert, d.h. wenn
Qn(p) =

∫ b

a

ω(x)p(x)dx für alle p ∈ Π2n+1[a, b].Lemma 1.12 Seien x0, . . . , xn ∈ [a, b]. Sei Lnf das Interpolationspolynom bzgl.
x0, . . . , xn an die Funktion f . Sei weiter ω eine zulässige Gewi
htsfunktion. Dannist

∫ b

a

ω(x)(Lnf)(x)dxeine Quadraturformel bzgl. x0, . . . , xn. Genauer gilt:
∫ b

a

ω(x)(Lnf)(x)dx =

n∑

j=0

ajf(xj)mit aj =
∫ b

a
ω(x)lj(x)dx.Beweis: Den Fall ω ≡ 1 haben wir in Satz 1.6 behandelt. Für andere ω verläuftder Beweis analog. QEDWann ist Qn(f) eine Gauÿ's
he Quadraturformel?Satz 1.13 Sei ω eine zulässige Gewi
htsfunktion und seien x0, . . . , xn ∈ [a, b]paarweise vers
hieden. Sei Lnf die Interpolation von f bzgl. der Stützstellen

x0, . . . , xn. Sei weiterhin hn+1(x) =
∏n

j=0(x−xj). Dann sind die folgenden beidenAussagen äquivalent:1. Qn(f) :=
∫ b

a
ω(x)(Lnf)(x)dx ist eine Gauÿ's
he Quadraturformel der Ord-nung n, d.h. Qn(p) = Iw(p) für alle p ∈ Π2n+1.2. ∫ b

a
ω(x)hn+1(x)p(x)dx = 0 für alle p ∈ Πn.Beweis: �1 ⇒ 2�: Sei Qn(f) = Iw(f) für alle f ∈ Π2n+1. Sei p ∈ Πn. Dann ist

hn+1 · p ∈ Π2n+1, also gilt na
h Lemma 1.12:
∫ b

a

ω(x)hn+1(x)p(x)dx = Qn(hn+1 · p) =
n∑

j=0

aj hn+1(xj)
︸ ︷︷ ︸

=0

p(xj) = 0,also gilt 2. 12



�2 ⇒ 1�: Sei p ∈ Π2n+1. Betra
hte Lnp ∈ Πn bzgl. x0, . . . , xn. Dann hat p−Lnp dieNullstellen x0, . . . , xn, also gibt es na
h dem Hauptsatz der Algebra ein Polynom
q ∈ Πn, so dass p − Lnp = hn+1 · q. Damit gilt

∫ b

a

ω(x)p(x)dx =

∫ b

a

ω(x)Lnp(x)dx +

∫ b

a

ω(x)hn+1(x)q(x)dx

︸ ︷︷ ︸

=0 na
h 2. weil q∈Πn

= Qn(p),also ist Qn Gauÿ's
he Quadraturformel. QEDNotation 1.14 Für f, g ∈ C([a, b]) de�nieren wir
(f, g)ω :=

∫ b

a

ω(x)f(x)g(x)dx.Gilt (f, g)ω = 0, so bezei
hnet man f und g als ω-orthogonal.Bemerkung: Der Ausdru
k (f, g)ω existiert für alle Polynome f und g, wenn ωeine zulässige Gewi
htsfunktion ist. Es lässt si
h sogar zeigen, dass (f, g)ω einSkalarprodukt ist (d.h. bilinear, symmetris
h und positiv für f = g, sowie strengpositiv für f = g 6= 0).Satz 1.13 lässt si
h jetzt folgendermaÿen formulieren:
∫ b

a
ω(x)(Lnf)(x)dx ist genau dann eine Gauÿ's
he Quadraturformel der Ordnung

n, wenn (hn+1, p)ω = 0 für alle p ∈ Πn.Die gesu
hten Stützstellen der Quadraturformel müssen also die Nullstellen einesPolynoms q(x) = αhn+1(x) ∈ Πn+1 sein, das ω-orthogonal zu allen q ∈ Πn ist.Sol
he Polynome wollen wir im Folgenden konstruieren.Satz 1.15 Sei ω eine zulässige Gewi
htsfunktion. Dann gilt1. Es existieren Polynome pn ∈ Πn[a, b] für alle n ∈ IN0 mit
(pn, pm) = δn,m =

{
1 falls n = m
0 falls n 6= m

für alle n, m ∈ IN0.2. Für alle n ∈ IN0 gilt: Die Nullstellen von pn sind alle reell und liegen in
(a, b). 13



Beweis: ad 1. Die Folge pi der gesu
hten Polynome lässt si
h dur
h Anwen-den des S
hmidt's
hen Orthonormalisierungsverfahrens auf die Monome kon-struieren. Man erhält entspre
hend eine Orthonormalbasis. Die Monombasis ist
{x0, . . . , xn}. Man setzt nun

p0(x) =
x0

√

(x0, x0)ω

=
1

√
∫ b

a
ω(x)dxund erhält (p0, p0)ω = 1.Zur Konstruktion von pn nehmen wir an, dass p0, . . . , pn−1 bereits konstruiertsind und dass sie (pi, pj) = δij erfüllen. Dann ergibt si
h pn ∈ Π[a, b] aus

pn(x) = γn

(

xn −
n−1∑

i=0

(xn, pi)ωpi(x)

)

,wobei die (xn, pi(x))ω die Koe�zienten na
h S
hmidt sind. Das ist die Lösung,denn
• für m = 0, . . . , n − 1 gilt:

(pn, pm) = γn

(

(xn, pm)ω −
n−1∑

i=0

(xn, pi)ω(pi, pm)

)

= γn

(

(xn, pm)ω − (xn, pm)ω · 1
)

= 0

• und γn wird so gewählt, dass (pn, pm)ω = 1.ad 2. Seien x1, . . . , xm die reellen Nullstellen von pn in (a, b) mit ungerader Viel-fa
hheit, d.h. genau die Nullstellen mit Vorzei
henwe
hsel von pn. Sei
qm(x) =

m∏

i=1

(x − xi) mit q0(x) := 1.Wir wollen nun zeigen, dass m = n gilt. Angenommen, es gelte m < n. Dann gilt
qm ∈ Πm[a, b] ⊆ Πn−1[a, b]. Weiter ist pnqm(x) ≥ 0 für alle x ∈ (a, b), weil es nurNullstellen mit gerader Vielfa
hheit hat. Weil pnqm 6= 0 folgt

(pn, qm)ω 6= 0.Weil die in Teil 1 konstruierten Polynome p0, . . . , pm eine Basis von Πm bilden,gilt andererseits
qm =

m∑

i=0

λipi mit reellen Koe�zienten λi14



und na
h Konstruktion der pi ist
(pn, qm)ω =

m∑

i=0

λi(pn, pi)ω = 0,denn (pn, pi)ω = 0, weil m < n. Das ist ein Widerspru
h, also muss m = n geltenund die Vielfa
hheit jeder Nullstelle ist entspre
hend 1. QEDWir fassen die Ergebnisse in folgendem Existenzsatz zusammen:Satz 1.16 Sei n ∈ N und ω eine zulässige Gewi
htsfunktion. Dann existiert eineGauÿ's
he Quadraturformel
Qn(f) =

n∑

j=0

ajf(xj),wobei x0 < x1 < · · · < xn ∈ (a, b) die Nullstellen des in Satz 1.15 konstruiertenbzgl. aller p ∈ Πn ω-orthogonalen Polynoms pn+1 sind und
aj =

∫ b

a

ω(x)lj(x)dxgilt.Beweis: Weil pn+1 ∈ Πn+1 ist, gilt pn+1 = αhn+1 mit α 6= 0. Na
h Lemma 1.12ist
Qn(f) =

∫ b

a

ω(x)(Lnf)(x)dx,wel
hes na
h Satz 1.13 eine Gauÿ's
he Quadraturformel ist, wenn (hn+1, p) = 0für alle p ∈ Πn. Das gilt, weil
(hn+1, p) =

1

α
(pn+1, p) =

1

α

(

pn+1,
n∑

i=0

λipi

)

=
1

α

n∑

i=0

λi(pn+1, pi) = 0. QEDEs gilt also Qn(p) = Iω(p) für alle p ∈ Π2n+1.Im Gegensatz zu den Newton-C�tes-Formeln gilt für die Gauÿ's
hen Quadratur-formeln die folgende numeris
h wertvolle Eigens
haft:15



Lemma 1.17 Die Gewi
hte ai der Gauÿ's
hen Quadraturformeln sind positiv.Beweis: Seien x0, . . . , xn die Stützstellen der Quadraturformel Qn. Na
h Kon-struktion sind sie die Nullstellen von pn+1 bzgl. ω. Wir de�nieren
hn+1(x) :=

n∏

j=0

(x − xj) und fi(x) =

(
hn+1(x)

x − xi

)2

, i = 0, . . . , n.Es ist also fi ∈ Π2n[a, b] und na
h Satz 1.16 gilt
0 <

∫ b

a

ω(x)fi(x)dx = Qn(fi) =
n∑

j=0

ajfj(xj) = aifi(xi).Weil fi(xi) > 0 folgt au
h, dass ai > 0. QEDÜbungsaufgabe: Beweisen Sie, dass es keine Quadraturformel der Form∑n
j=0 ajfj(xj)geben kann, die auf Π2n+2 exakt ist.Zum Abs
hluss folgen einige Beispiele für Gauÿ-Quadraturen.1. Sei I = [−1, 1] und ω ≡ 1. Die orthogonalen Polynome p0, p1, . . . sind diesogenannten Legendre-Polynome

Ln(x) :=
1

2nn!

dn

dxn
(x2 − 1)n,genauer:

L0 = 1

L1 = x

L2 = x2 − 1
3

L3 = x3 − 3
5
x

L4 = x4 − 6
7
x2 + 3

35

L5 = . . .

Li ist orthogonal auf Πi−1, d.h. ∫ 1

−1
Li(x)p(x)dx = 0 für alle p ∈ Πi−1[−1, 1].Beispiel: Es gilt

∫ 1

−1

L2(x)p(x) = 0, für alle p ∈ Π1[−1, 1].Das kann man na
hre
hnen:
∫ 1

−1

L2(x)p(x)dx =

∫ 1

−1

(x2 − 1
3
)(ax + b)dx

=

∫ 1

−1

ax3 + bx2 − 1
3
ax − 1

3
bdx

=

[
a

4
x4 +

b

3
x3 − a

6
x2 − b

3
x

]1

−1

=
a

4
+

b

3
− a

6
− b

3
−
(

a

4
− b

3
− a

6
+

b

3

)

= 0.16



Wie sehen die zugehörigen Quadraturen aus?
n = 0

• Die Stützstellen sind die Nullstellen des orthogonalen Polynomsaus Π1 (Satz 1.16). Die einzige Nullstelle von L1 ist x0 = 0. Darausfolgt:
Q0(f) = a0f(x0) = a0f(0).

• Das Gewi
ht a0 ergibt si
h dadur
h, dass z.B. 1 ∈ Π1 = Π2n+1exakt integriert wird, also
2 =

∫ 1

−1

1dx = a0f(0) = a0.Wir erhalten:
Q0(f) = 2f(0)integriert alle linearen Polynome auf [−1, 1] exakt.

n = 1

• Stützstellen sind Nullstellen von L2, also ±
√

1
3
. Es folgt:

Q1(f) = a0f

(

−
√

1
3

)

+ a1f

(√
1
3

)

.

• Die Gewi
hte folgen aus den Exaktheitsbedingungen z.B. für 1, x ∈
Π1 ⊆ Π2n+1:

2 =

∫ 1

−1

1dx = a0 + a1

0 =

∫ 1

−1

xdx = −a0

√
1
3

+ a1

√
1
3







⇒ a0 = a1 = 1.Es gilt also:
Q1(f) = f

(

−
√

1
3

)

+ f

(√
1
3

)integriert alle Polynome vom Grad bis 3 exakt!2. I = [−1, 1] und ω(x) = 1√
1−x2 . Die orthogonalen Polynome sind die soge-nannten Ts
hebys
he�-Polynome

Tn(x) := cos(n arccos(x)).Mithilfe der Additionstheoreme erhält man die folgende Darstellung:
T0(x) = 1

T1(x) = x

Tn+1(x) + Tn−1(x) = 2xTn(x).Daraus folgt Tn ∈ Πn. 17



Lemma 1.18 Es gilt:
∫ 1

−1

Tn(x)Tm(x)√
1 − x2

dx =







π n = m = 0
π
2

n = m > 0

0 n 6= mund die Nullstellen von Tn sind:
xi = cos

(
2i + 1

2n
π

)

i = 0, . . . , n − 1.Mit diesen Nullstellen erhalten wir die Gauÿ-Ts
hebys
he� Quadratur:
∫ 1

−1

f(x)√
1 − x2

dx ≈ Qn−1(f) =

n−1∑

i=0

aif

(

cos
2i + 1

2n
π

)

.Die Gewi
hte ergeben si
h aus den Exaktheitsbedingungen für Tm, m =
0, . . . , n − 1 und Lemma 1.18 zu ai = π

n
, i = 0, . . . , n − 1.Übungsaufgabe: Zeigen Sie, dass ai = π

n
, i = 0, . . . , n − 1 die Gewi
hteder Gauÿ-Ts
hebys
he�-Quadraturformel Qn sind!Damit erhält man abs
hlieÿend

Qn−1(f) =
π

n

n−1∑

i=0

f

(

cos
2i + 1

2n
π

)

, n ∈ N.Bemerkung: Analog zu Kapitel 1.2 kann man au
h zusammengesetzte Gauÿ-Quadraturen (vorzugsweise niedriger Ordnung) betra
hten.1.4 FehleranalyseWas für ein Fehler entsteht, wenn man das exakte Integral dur
h eine Quadra-turformel annähert?Seien zunä
hst für n ∈ N die Stützstellen
x

(n)
0 < x

(n)
1 < · · · < x(n)

nmit den zugehörigen Gewi
hten a
(n)
0 , . . . , a

(n)
n gegeben und sei

Qn(f) =
n∑

j=0

a
(n)
j f(x

(n)
j ).18



Der zugehörige Fehler ist dann:
Rn(f) := Iω(f) − Qn(f) =

∫ b

a

ω(x)f(x)dx −
n∑

j=0

a
(n)
j f(x

(n)
j ).Es werfen si
h einige Fragen auf:

• Wie groÿ ist Rn(f) für festes n?
• Konvergiert Rn(f) → 0 für n → ∞?Satz 1.19 Sei Qn eine Folge von Quadraturformeln über dem endli
hen Intervall

[a, b]. Gilt1. Qn(p) → Iω(p) für n → ∞ für alle Polynome p und2. ∑n
j=0 |a

(n)
j | ≤ C für alle n ∈ N mit einer Konstante C > 0,so konvergiert die Folge Qn(f) gegen Iω(f) für jedes f ∈ C[a, b].Beweis: Wir verwenden einen Satz aus der Approximationstheorie, nämli
h denSatz von Weierstrass: Jede stetige Funktion auf einem kompakten Intervall lässtsi
h beliebig gut dur
h Polynome annähern. Genauer gibt es zu jedem ε > 0 einPolynom p mit ‖f − p‖∞ := maxx∈[a,b] |f(x) − p(x)| < ε.Sei ε > 0. Wähle p so, dass ‖f − p‖∞ < ε und N so, dass |Iω(p)−Qn(p)| < ε füralle n ≥ N . Dann gilt für alle n ≥ N :

|Iω(f − p)| ≤
∫ b

a

|ω(x)| |f(x) − p(x)|
︸ ︷︷ ︸

<ε

dx < ε

∫ b

a

ω(x)dx

|Qn(f − p)| ≤
n∑

j=0

|a(n)
j | |f(x

(n)
j ) − p(x

(n)
j )|

︸ ︷︷ ︸

<ε

< ε

n∑

j=0

|a(n)
j | ≤ εCEs ergibt si
h:

|Rn(f)| = |Rn((f − p) + p)|
= |Rn(f − p) + Rn(p)|
≤ |Rn(f − p)| + |Rn(p)|
≤ |Iω(f − p)| + |Qn(f − p)| + |Iω(p) − Qn(p)|

≤
(∫ b

a

ω(x)dx + C + 1

)

· εfür alle n ≥ N , also konvergiert Rn(f) gegen Null. QED19



Bedingung (1) des Satzes ist erfüllt, wenn alle Qn interpolatoris
he Quadratur-formeln sind. Sind weiter alle Gewi
hte ni
ht negativ, dann gilt:
n∑

j=0

|a(n)
j | =

n∑

j=0

a
(n)
j · 1 =

∫ b

a

ω(x) · 1dx = C.Satz 1.20 Für jeden stetigen Integranden auf dem Intervall [a, b] konvergiert jedeFolge von Gauÿ-Quadraturen Qn gegen das Integral.Beweis: Na
h Lemma 1.17 sind die Gewi
hte der Gauÿ-Quadraturen positiv, da-her ist
n∑

j=0

|a(n)
j | ≤ Cerfüllt. Bedingung (1) von Satz 1.19 gilt na
h Satz 1.16, also folgt die Behauptungwegen Satz 1.19. QEDLeider ist die Aussage von Satz 1.20 für die Newton-C�tes-Formeln im Allgemei-nen fals
h und es lassen si
h Gegenbeispiele konstruieren. (Der Grund dafür liegtin den negativen ai, die in den Newton-C�tes-Formeln ab Grad 8 vorkommen.)Wir entwi
keln nun Fehlerabs
hätzungen für die Quadraturformeln auf festenIntervallen [a, b]:

Rn(f) = Iω(f) − Qn(f) = Iω(f) − Iω(Lnf) = Iω(f − Lnf),wobei Lnf das Interpolationspolynom zu f an den n Stützstellen von Qn ist.Nun kann man die Fehlerabs
hätzungen für f − Lnf (Numerik I, Korollar 6.15)heranziehen. Bessere Ergebnisse liefert aber der folgende (allgemeinere) Ansatz,bei dem man ausnutzt, dass für alle p ∈ Πm gilt:
Rn(p) = 0,wobei man m im Falle von Newton-C�tes ≤ n wählen muss, falls n ungerade istund m = n+1, falls n gerade ist. Bei der Gauÿ-Quadratur hingegen ist m ≤ 2n+1mögli
h.Notation 1.21 Sei t ∈ R. Dann bezei
hne

z+
t,m(x) = (x − t)m

+ =

{

(x − t)m falls x ≥ t

0 sonstund
Km(t) :=

1

m!
Rn(z+

t,m) mit t ∈ [a, b]den Peano-Kern bzgl. m und Rn. 20



Bemerkung: Wir können die z+
t,m(x) sowohl als Funktion in x als au
h in t auf-fassen.Wir verwenden z+

t,m für folgende Umformulierung:
∫ x

a

(x − t)m

m!
f (m+1)(t)dt =

∫ b

a

(x − t)m
+

m!
f (m+1)(t)dt,das heiÿt, um bei den im Folgenden auftretenden Integralen die obere Grenze von

x unabhängig zu ma
hen. Wir erhalten:Satz 1.22 Sei Qn eine auf Πm(R) exakte Quadraturformel. Dann gilt für jedes
f ∈ Cm+1[a, b]:

Rn(f) =

∫ b

a

Km(t)f (m+1)(t)dt.We
hselt Km auf [a, b] das Vorzei
hen ni
ht, so existiert ein ξ ∈ [a, b] so, dass
Rn(f) = f (m+1)(ξ)

∫ b

a

Km(t)dt

=
f (m+1)(ξ)

(m + 1)!
Rn(xm+1).Beweis: Wir verwenden die Taylor-Entwi
klung von f mit Integral-Restglied zumEntwi
klungspunkt a:

f(x) =
m∑

j=0

f (j)(a)

j!
(x − a)j +

∫ x

a

(x − t)m

m!
f (m+1)(t)dt

=

m∑

j=0

f (j)(a)

j!
(x − a)j +

∫ b

a

(x − t)m
+

m!
f (m+1)(t)dt.Daraus folgt:

Rn(f) = Rn

(
m∑

j=0

f (j)(a)

j!
(x − a)j

)

+ Rn

(∫ b

a

z+
t,m

m!
f (m+1)(t)dt

)

= 0 +

∫ b

a

1

m!
Rn(z+

t,m)f (m+1)(t)dt

=

∫ b

a

Km(t)f (m+1)(t)dt,wobei im zweiten S
hritt verwendet wurde, dass Rn auf Πm vers
hwindet unddass man das Integral mit Rn na
h Fubini vertaus
hen darf und dass Qn nur aus21



Punktauswertungen besteht. Für den Beweis der zweiten Aussage benutzen wirden ersten Mittelwertsatz der Integralre
hnung und erhalten
Rn(f) =

∫ b

a

Km(t)f (m+1)(t)dt = f (m+1)(ξ) ·
∫ b

a

Km(t)dt (1.1)mit ξ ∈ (a, b), da f (m+1) und Km stetig sind und Km(t) 6= 0 für alle t ∈ (a, b)gilt. Setzt man in (1.1) nun f(x) = xm+1 ein, so ergibt si
h:
Rn(xm+1) = (m + 1)!

∫ b

a

Km(t)dt,also
Rn(xm+1)

(m + 1)!
· f (m+1)(ξ) = f (m+1)(ξ) ·

∫ b

a

Km(t)dt. QEDWir betra
hten im Folgenden einige Anwendungen von Satz 1.22: Wir leiten Feh-lers
hranken her für die Trapez-Regel, die Simpson-Regel, die zusammengesetzteTrapez-Regel, die zusammengesetzte Simpson-Regel und für die Gauÿ-Quadratur.Wir beginnen mit der Trapez-Regel.Fehlerabs
hätzung für die Trapez-Regel.Trapez-Regel: Es ist n = 1 und sie ist exakt für m = 1, für den Peano-Kern ergibtsi
h:
K1(t) =

1

1!
R1(z

+
t,1)

=

∫ b

t

(x − t)1dx − b − a

2
[zt,1(a)
︸ ︷︷ ︸

=0

+ zt,1(b)
︸ ︷︷ ︸

=(b−t)

]

=

[
1

2
(x − t)2

]b

t

− b − a

2
(b − t)

=
1

2

[
(b − t)2 − (b − a)(b − t)

]

=
1

2
(b − t)[b − t − b + a]

=
1

2
(b − t)(a − t).22



Da K1(t) ≤ 0 für alle t ∈ [a, b] gilt, können wir den zweiten Teil von Satz 1.22zum Abs
hätzen verwenden. Wir erhalten:
R1(x

2) =

∫ b

a

x2dx − b − a

2
(a2 + b2)

=
1

3
b3 − 1

3
a3 − 1

2
b3 +

1

2
a3 − a2b

2
+

ab2

2

=
1

6
a3 − 1

6
b3 − a2b

2
+

ab2

2

=
1

6
(a − b)3.Also existiert zu jedem f ∈ C2[a, b] ein ξ ∈ [a, b] mit

R1(f) =
f ′′(ξ)

2
· 1

6
(a − b)3 = −h3

12
f ′′(ξ) mit h =

b − a

1
. (1.2)Fehlerabs
hätzung für die Simpson-Regel.Es sind n = 2, m = 3, dann gilt na
h einiger Re
hnerei:

K3(t) =

{

− (t−a)3

72
(a + 2b − 3t) für a ≤ t ≤ a+b

2

− (b−t)3

72
(3t − 2a − b) für a+b

2
≤ t ≤ bund K3(t) ≤ 0 für alle t ∈ [a, b]. Auÿerdem gilt:

R2(x
4) = −(b − a)5

120
.Daraus folgt:

R2(f) = −(b − a)5

2880
f (4)(ξ) = −h5

90
f (4)(ξ) mit h =

b − a

2
.Fehlerabs
hätzung für die zusammengesetzte Trapez-Regel.Seien nun x0, . . . , xn gegeben. Sei

Th = h ·
(

f(a)

2
+

n−1∑

j=1

f(xj) +
f(b)

2

)die zusammengesetzte Trapez-Regel.Satz 1.23 Ist f ∈ C2[a, b] und Πn(f) die Näherung an ∫ b

a
f(x)dx aus der zu-sammengesetzten Trapezregel (siehe Abs
hnitt 1.2), so gilt für den Fehler

R(f) = I(f) − Th(f) = −h2(b − a)

12
f ′′(ξ)mit einem ξ aus [a, b]. 23



Beweis: Wir benutzen (1.2) auf jedem Teilintervall [xj , xj+1], das heiÿt es existiertein ξj ∈ [xj , xj+1] mit
∫ b

a

f(x)dx =

n−1∑

j=0

∫ xj+1

xj

f(x)dx

=
n−1∑

j=0

(
h

2
(f(xj) + f(xj+1)) −

h3

12
f ′′(ξj)

)

= Th(f) − h3

12
·

n−1∑

j=0

f ′′(ξj)

= Th(f) − h2(b − a)

12
· 1

n

n−1∑

j=0

f ′′(ξj)Sei 1
n

∑n−1
j=0 f ′′(ξj) =: c. Weil

min
j=0,...,n−1

f ′′(ξj) ≤ c ≤ max
j=0,...,n−1

f ′′(ξj)gilt und f ′′ stetig ist, gibt es na
h dem Zwis
henwertsatz ein ξ ∈ [a, b] mit
f(ξ) = c. Also folgt

∫ b

a

f(x)dx = Th(f) − h2(b − a)

12
· f ′′(ξ)und daraus s
hlieÿli
h

R(f) = I(f) − Th(f) = −h2(b − a)

12
· f ′′(ξ). QEDBemerkung: Im Fall der Trapez-Regel liegt also sogar quadratis
he Konvergenzvor!Fehlerabs
hätzung für die zusammengesetzte Simpson-Regel.Für die zusammengesetzte Simpson-Regel ergibt si
h

R(f) = I(f) − Sh(f) = −h4(b − a)

180
f (4)(ξ) mit ξ ∈ [a, b].24



Fehlerabs
hätzung für die Gauÿ-Quadratur.Lemma 1.24 Sei Qn die Gauÿ-Quadratur in n + 1 Punkten aus [a, b] mit zu-lässiger Gewi
htsfunktion ω. Dann hat der zugehörige Peano-Kern Km für 0 ≤
m ≤ 2n + 1 genau 2n + 1 − m Nullstellen in [a, b]. Insbesondere we
hselt K2n+1auf [a, b] das Vorzei
hen ni
ht.Satz 1.25 Sei Qn die Gauÿ-Quadratur in n+1 Punkten aus [a, b] mit zulässigerGewi
htsfunktion ω. Zu f ∈ C2n+2[a, b] gibt es ein ξ ∈ [a, b] so, dass

Rn(f) = Iω(f) − Qn(f) =
f (2n+2)(ξ)

(2n + 2)!

∫ b

a

ω(x)(hn+1(x))2dx,wobei wie übli
h hn+1(x) =
∏n

j=0(x − xj).Beweis: Wegen Lemma 1.24 darf man den 2. Teil von Satz 1.22 anwenden. Manerhält
Rn(f) =

f (2n+2)(ξ)

(2n + 2)!
Rn(x2n+2)und re
hnet na
h, dass

Rn(x2n+2) =

∫ b

a

ω(x)(hn+1(x))2gilt. QED1.5 Romberg-VerfahrenWir benötigen folgende Begri�e.De�nition 1.26 Die Bernoulli-Polynome Bk ∈ Πk für k = 0, 1, . . . sind rekursivde�niert dur
h:
B0(t) := 1und B′

k(t) = Bk−1(t) und ∫ 1

0

Bk(t)dt = 0 k = 1, 2, . . . .Die Zahlen bk := k!Bk(0) heiÿen Bernoulli-Zahlen.Das (k + 1)-te Bernoulli-Polynom entsteht also dur
h Integration aus dem k-ten,wobei die zweite Bedingung die Integrationskonstanten festlegt. Es gilt:
B′

1(t) = 1 ⇒ B1(t) = t + C.25



Wegen
∫ 1

0

t + C =

[
1

2
t2 + Ct

]1

0

=
1

2
+ C

!
= 0folgt C = 1

2
, also

B1(t) = t − 1

2Ähnli
h ergibt si
h
B2(t) =

1

2
t2 − 1

2
t +

1

12
.Lemma 1.27 Es gilt:1. Bk ∈ Πk für k = 1, 2, . . ..2. Bk(t) = (−1)kBk(1 − t) für k = 0, 1, 2, . . ..3. Bk(0) = Bk(1) für k = 2, 3, . . ..4. Für m = 1, 2, . . . besitzt das Polynom B2m − B2m(0) genau die Nullstellen

0 und 1 im Intervall [0, 1] und das Polynom B2m+1 genau die Nullstellen 0,
1
2
und 1.Mit Hilfe der Bernoulli-Zahlen untersu
hen wir no
hmals den bei der zusammen-gesetzten Trapez-Regel entstehenden Fehler in Abhängigkeit der Intervalllänge

h. Sei dazu wie bisher
Th(f) = h

(

1
2
f(a) +

m−1∑

j=1

f(xj) + 1
2
f(b)

)mit h = b−a
n

und x0 = a, xj = a+jh und xm = b der Wert der zusammengesetztenTrapezregel.Satz 1.28 (Euler-M
Laurins
he Summenformel) Sei l ∈ N und f ∈ C2l([a, b]).Dann gilt
Th(f) = I(f) +

l−1∑

j=1

b2jh
2j

(2j)!

[

f (2j−1)(b) − f (2j−1)(a)

]

+
(b − a)b2lh

2l

(2l)!
f (2l)(ξ)für ein ξ = ξ(h) ∈ (a, b).Beweisidee: Partielle Integration von ∫ f(t)dt =

∫
B0(

t−a
h

)f(t) und Mittelwert-satz der Integralre
hnung. 26



Korollar 1.29 Ist f periodis
h auf [a, b] und genügt den Voraussetzungen ausSatz 1.28, so gibt es ein ξ ∈ (a, b), so dass
Th(f) = I(f) +

(b − a)b2lh
2l

(2l)!
f (2l)(ξ).Beweis: Da f periodis
h auf [a, b] ist, gilt

f (i)(b) = f (i)(a) für alle i = 0, 1, . . . , 2l. QEDImWesentli
hen besagt die Euler-M
Laurins
he Formel also, dass man den Fehlerbei der zusammengesetzten Trapezregel s
hreiben kann als
Th(f) − I(f) = a2h

2 + a4h
4 + · · ·+ a2l−2h

2l−2 + a2l(h)h2lmit Koe�zienten a2, a4, . . . , a2l−2 ∈ R und einer Funktion a2l : R → R. Genauergilt:
a2j =

b2j

(2j)!

(

f (2j−1)(b) − f (2j−1)(a)

)und a2l(h) =
(b − a)b2l

(2l)!
f (2l)(ξ(h)). (1.3)Weil f (2l)(ξ) als stetige Funktion auf [a, b] bes
hränkt ist, ist au
h a2l bes
hränkt,weshalb gilt

lim
h→0

Th(f) = I(f).Allerdings geht der Re
henaufwand für h → 0 gegen Unendli
h. Die Idee desRomberg-Verfahrens ist es nun, T0(f) dur
h �Extrapolation� folgendermaÿen ab-zus
hätzen: Setze τ = h2 als das Quadrat der Intervalllänge.1. Sei g(τ) := T√
τ (f) für alle τ 6= 0, g(0) := T0(f).2. Bestimme g(τ0), . . . , g(τl) für l + 1 Stützstellen τj := h2

j für Intervalllängen
h0, . . . , hl mit hj = b−a

mj
, mj ∈ IN.3. Interpoliere g an den l + 1 Stützstellen dur
h ein Polynom p ∈ Πl, also mit

p(τj) = g(τj) = Thj
(f), j = 0, . . . , l.4. Approximiere

I(f) =

∫ b

a

f(x)dx = lim
h→0

Th(f) ≈ lim
h→0

p(h2) = p(0).27



Weil wir das Interpolationspolynom ni
ht selbst kennen müssen, sondern nur anseinem Wert an der Stelle 0 interessiert sind, bietet si
h zur Bere
hnung dasVerfahren von Neville-Aitken (siehe Numerik I) an.Na
h Satz 6.6 aus Numerik I kann folgende Formel verwendet werden: sei P k
i (τ)das Polynom, das g an den Stützstellen τi, τi+1, . . . , τi+k interpoliert. Dann gilt:

P k+1
i (τ) =

(τ − τi)P
k
i+1 − (τ − τi+k+1)P

k
i

τi+k+1 − τi

.Für P k
i := P k

i (0) gilt somit
P k

i =
τiP

k−1
i+1 − τi+kP

k−1
i

τi − τi+kund die Werte lassen si
h bere
hnen dur
h folgendes S
hema:
h0 P 0

0 = Th0(f) ց
P 1

0 ց
h1 P 0

1 = Th1(f)
ր
ց P 2

0 ց
P 1

1

ր
ց P 3

0

h2 P 0
2 = Th2(f)

ր
ց P 2

1

ր

P 1
2

ր

h3 P 0
3 = Th3(f)

ր

Jeder der Einträge stellt eine eigene Quadraturformel dar. Verwendet man z.B.
τi = 2−2ih2

0 bzw. hi = 2−ih0,28



so erhält man aus der ersten Spalte:
P 1

i =
2−2ih2

0P
0
i+1 − 2−2i−2h2

0P
0
i

2−2ih2
0 − 2−2i−2h2

0

=
Thi+1

(f) − 1
4
Thi

(f)

1 − 1
4

= 4
3
Thi+1

(f) − 1
3
Thi

(f)

= 4
3

(

1
2
f(a) +

2mi−1∑

j=1

f(a + 1
2
jhi) + 1

2
f(b)

)

hi+1

− 1
3

(

1
2
f(a) +

mi−1∑

j=1

f(a + jhi) + 1
2
f(b)

)

hi

= hi+1

(

1
3
f(a) + 4

3
f(a + 1

2
jhi) + 2

3
f(a + jhi)

+4
3
f(a + 3

2
jhi) + · · ·+ 1

3
f(b)

)

,wobei wir im letzten S
hritt hi

hi+1
= 2 verwendet haben.

hi hi+1

a b

Thi

Thi+1 mi = 3

mi+1 = 6

4
6

4
3

4
3

4
3

4
3

4
3

4
6

−2
6 0 −2

3 0 −2
3 0 −2

6

1
3

4
3

2
3

4
3

2
3

4
3

1
3

Gewi
hte:erster Term:zweiter Term:gesamt:
Man erhält also genau die zusammengesetzte Simpson-Regel.29



Bemerkung: In der Literatur wird das S
hema anders nummeriert, nämli
h dur
h
h2

0 T0,0 = Th0(f) ց
T1,1 ց

h2
1 T1,0 = Th1(f)

ր
ց T2,2 ց

T2,1
ր
ց T3,3

h2
2 T2,0 = Th2(f)

ր
ց T3,2

ր

T3,1
ր

h2
3 T3,0 = Th3(f)

րmit Ti,k = P k
i−k bzw. P k

i = Ti+k,k und
Ti,k =

h2
i−kTi,k−1 − h2

i Ti−1,k−1

h2
i−k − hi

.Zum Abs
hluss untersu
hen wir, wann Romberg-Quadraturen exakt sind.Satz 1.30 Die Romberg-Quadraturen P k
i (f) (bzw. Ti+k,k(f)) sind exakt für Po-lynome vom Grad kleiner glei
h 2k.Beweis: Ist f ∈ Π2k, so folgt, dass f (2k) konstant ist, also ist a2k(h) in (1.3) aufSeite 26 konstant. Es gilt a2k(h) = a2k. Na
h Satz 1.28 erhalten wir, dass

Th(f) = I(f) + a2h
2 + a4h

4 + · · · + a2k−2h
2k−2 + a2kh

2kein Polynom vom Grad kleiner glei
h k in der Variablen h2 ist, beziehungsweisedass
g(τ) = T√

τ (f) = I(f) + a2τ + a4τ
2 + · · ·+ a2kτ

kein Polynom aus Πk ist. Aufgrund der Eindeutigkeit der Polynominterpolationfolgt
p(τ) ≡ g(τ).Insbesondere gilt p(0) = g(0), also

P k
i (f) = p(0) = g(0) = T0(f) = I(f). QED30



Wie wählt man die S
hrittweiten hk = b−a
nk

? Dazu gibt es die
• klassis
he Romberg-Folge:

nk = 2k ⇒ hk = 1
2
hk−1.Der Vorteil liegt darin, dass Funktionsauswertungen von einem S
hritt i aufden nä
hsten S
hritt i + 1 wiederverwendet werden können. Der Na
hteilist, dass die Folge sehr s
hnell wä
hst!

• harmonis
he Folge:
nk = k + 1.Im Gegensatz zur klassis
hen Romberg-Folge wä
hst diese langsamer, do
hsind alte Funktionsauswertungen im (i+1)-ten S
hritt unbrau
hbar. Daherwählt man als Kompromiss die

• Burlis
h-Folge:
n0 = 1

n2k−1 = 2k

n2k = 3 · 2k−1.

31



1.6 ZusammenfassungZiel: • Einfa
he Formel für
Iω(f) =

∫ b

a

ω(x)f(x)dx

• �einfa
h�: Quadraturformeln
Qn(f) :=

n∑

i=0

aif(xi)InterpolationsquadraturenSeien x0, . . . , xn gegeben. Sei
Qn(f) :=

∫ b

a

(Lnf)(x)dx.

• Quadratur Qn Interpolationsquadratur ⇔ Qn ∀p ∈ Πn exakt
• Qn(f) ist eindeutig bestimmt
• Newton-C�tes Formeln: Trapez-Regel, Simpson-Regel, . . .� n ungerade: exakt auf Πn� n gerade: exakt auf Πn+1Zusammengesetzte Newton-C�tes Formeln

Th(f) = h

(

1
2
f(x0) +

m−1∑

i=1

f(xi) + 1
2
f(xm)

)

Sh(f) =
h

3

(m
2
−1
∑

j=0

f(x2j) + 4f(x2j+1) + f(x2j+2)

)

Gauÿ's
he QuadraturenWähle au
h x0, . . . , xn. Sei Qn(f) Gauÿ's
he Quadratur falls exakt ∀p ∈ Π2n+1.
• Qn(f) :=

∫ b

a
ω(x)(Lnf)(x)dx Gauÿ's
he Quadratur

⇔
∫ b

a
ω(x)hn+1(x)p(x)dx(= (hn+1, p)ω) = 0.

• Konstruktion der ω-orthogonalen Polynome (Orthogonalbasis)32



• x0, . . . , xn sind Nullstellen des Polynoms p ∈ Πn, das (pn+1, f) = 0, ∀f ∈ Πnerfüllt.
• Gewi
hte alle > 0!� I = [−1, 1], ω ≡ 1 ⇒ Legendre-Polynome� I = [−1, 1], ω(x) = 1√

1−x2 ⇒ Ts
hebys
he�-PolynomeFehleranalyse
• Qn(f) → Iω(f), ∀f ∈ C[a, b], fallsQn(p) → Iω(p), ∀p ∈ Π∞ und∑n

j=0 |a
(n)
j | ≤

C, ∀n.
• Gauÿ-Quadraturen konvergieren
• Newton-C�tes ni
ht
• Restglied Rn(f) = Iω(f) − Qn(f)

• Peano-Kern: Km(t) := 1
m!

Rn(z+
t,m)

• Qn auf Πm exakt. Dann� Rn(f) =
∫ b

a
Km(t)f (m+1)tdt� We
hselt Km das Vorzei
hen ni
ht, so existiert ξ ∈ [a, b]:

Rn(f) =
f (m+1)(ξ)

(m + 1)!
Rn(xm+1).

• Trapez-Regel: R1(f) = −h3

12
f ′′(ξ)

• Simpson-Regel: R2(f) = −h5

90
f (4)(ξ)

• zusammengesetzte Trapez-Regel: R(f) = −h2(b−a)
12

f ′′(ξ)

• zusammengesetzte Simpson-Regel: R(f) = −h4(b−a)
180

f (4)(ξ)

• Gauÿ: Rn(f) = f(2n+2)(ξ)
(2n+2)!

∫ b

a
ω(x)(hn+1(x))2dx33



Romberg-Verfahren
• Euler M
Laurins
he Summenformel:

Th(f) − I(f) = a2h
2 + a4h

4 + · · ·a2l+2h
2l−2 + a2l(h)h2l

• Extrapolation:1. τ = h2, g(τ) := Th(f)2. Bestimme g(τ0), . . . , g(τl) mit τj = ( b−a
mj

)23. Interpoliere g dur
h Polynom p (Neville-Aitken)4. T0(h) := p(0)

• Romberg-Quadraturen P k
i (Interpolationen τi, . . . , τi+k)) exakt ∀p ∈ Π2k
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Kapitel 2ApproximationstheorieIn diesem Kapitel wollen wir eine Funktion f dur
h eine �einfa
he� Funktion u(mit u ∈ U ⊆ C[a, b], z.B. U = Πn ) annähern. Bei der Interpolation sollte
u an gegebenen Punkten mit f übereinstimmen (s. Numerik I, Kapitel 6). Beider Approximation soll u die Funktion f im ganzen De�nitionsberei
h �gut�darstellen. Unter �gut� verstehen wir, dass ‖f −u‖ klein ist und bes
häftigen unshauptsä
hli
h mit der Ts
hebys
he�-Norm ‖f‖∞ := maxx∈[a,b] |f(x)|.2.1 Approximationssätze von WeierstraÿIn diesem Abs
hnitt wollen wir den in Abs
hnitt 1.4 s
hon benutzten Satz vonWeierstraÿ (Satz 1.19) beweisen. Dazu benutzen wir so genannte Korovkin-Operatoren.De�nition 2.1 Eine Abbildung K : C[a, b] → C[a, b] heiÿt monoton, falls füralle f, g ∈ C[a, b] gilt

f(x) ≤ g(x), ∀x ∈ [a, b] ⇒ Kf(x) ≤ Kg(x), ∀x ∈ [a, b].Eine Folge Kn : C[a, b] → C[a, b], n ∈ N heiÿt Korovkin-Folge, falls(a) Kn ist monotoner, linearer Operator für alle n ∈ N.(b) limn→∞ ‖Knf − f‖∞ = 0 für f ∈ {1, x, x2} (glei
hmäÿige Konvergenz).Bemerkung: Ist Kn Korovkin-Folge, so gilt
lim

n→∞
‖Knf − f‖∞ = 0, ∀f ∈ Π2,denn: f ∈ Π2 lässt si
h s
hreiben als f(x) = αx + βx + γ · 1, also ist

‖Knf − f‖ = ‖αKn(x
2) + βKn(x) + γKn(1) − αx2 − βx − γ‖, da Kn linear

≤ |α|‖Knx
2 − x2‖

︸ ︷︷ ︸

→0

+ |β|‖Knx − x‖
︸ ︷︷ ︸

→0

+ |γ|‖Kn1 − 1‖
︸ ︷︷ ︸

→0

→ 0 für n → ∞. 35



Überras
henderweise folgt aus der glei
hmäÿigen Konvergenz auf Π2 sogar dieglei
hmäÿige Konvergenz für alle stetigen Funktionen!Satz 2.2 Ist {Kn} eine Korovkin-Folge auf C[a, b], so gilt
lim

n→∞
‖Knf − f‖∞ = 0 für alle f ∈ C[a, b].Beweis: Ist f stetig auf [a, b], so ist f sogar glei
hmäÿig stetig auf [a, b], d.h. zu

ε > 0 existiert ein δ > 0, so dass
|f(x) − f(y)| ≤ ε

3
für alle x, y ∈ [0, 1] mit |x − y| < δ.Sei nun t ∈ [a, b] fest.

• Falls |x − t| < δ gilt also |f(x) − f(t)| < ε
3
.

• Falls |x − t| ≥ δ, so gilt
|f(x) − f(t)| ≤ |f(x)| + |f(t)| ≤ 2‖f‖∞

≤ 2‖f‖∞
(

x − t

δ

)2

︸ ︷︷ ︸

≥1

.Zusammen erhalten wir
∀x ∈ [a, b] : |f(x) − f(t)| ≤ ε

3
︸︷︷︸

≥0

+ 2‖f‖∞
(

x − t

δ

)2

︸ ︷︷ ︸

≥0

. (2.1)Seien nun
pt(x) = f(t) − ε

3
− 2‖f‖∞

(
x − t

δ

)2

qt(x) = f(t) +
ε

3
+ 2‖f‖∞

(
x − t

δ

)2

.Dann lässt si
h (2.1) s
hreiben als
pt(x) ≤ f(x) ≤ qt(x), ∀x ∈ [a, b]. (2.2)

Kn ist monoton für alle n, also gilt Knpt(x) ≤ Knf(x) ≤ Knqt(x). Weil pt, qt ∈
Π2[a, b] konvergiert die Anwendung der Kn auf sie glei
hmäÿig (in x), d.h.

|Knqt(x) − qt(x)| → 0 für n → ∞
|Knpt(x) − pt(x)| → 0 für n → ∞36



für alle x und für alle t.Wir mö
hten nun ein N ∈ N, so wählen, dass für alle n ≥ N , für alle x ∈ [a, b]und für alle t ∈ [a, b] gilt
|Knqt(x) − qt(x)| ≤ ε

3

|Knpt(x) − pt(x)| ≤ ε

3
. (2.3)Dazu ist glei
hmäÿige Konvergenz von Knqt(x)− qt(x) in x und in t nötig. Diesezeigt man für qt wie folgt:

qt(x) = f(t) +
ε

3
+ 2‖f‖∞

(x − t)2

δ2

= f(t) +
ε

3
+

2‖f‖∞
δ2

(x2 − 2tx + t2)

= 1

(

f(t) +
ε

3
+

2t2‖f‖∞
δ2

)

− 4tx
‖f‖∞

δ2
+ 2x2‖f‖∞

δ2
.Man bea
hte, dass ein Polynom vom Grad zwei in x vorliegt. Aus letzterer Über-legung ergibt si
h:

|Knqt(x) − qt(x)| =

∣
∣
∣
∣
∣
(Kn1 − 1)

[

f(t) +
ε

3
+

2t2‖f‖∞
δ2

]

+ (Knx − x)

[−4t‖f‖∞
δ2

]

+(Knx
2 − x2)

[
2‖f‖∞

δ2

]∣∣
∣
∣
∣

≤ ‖Kn1 − 1‖∞
(

‖f‖∞ +
ε

3
+

2c2‖f‖∞
δ2

)

+ ‖Knx − x‖∞
4c‖f‖∞

δ2
+ ‖Knx

2 − x2‖∞
2‖f‖∞

δ2mit c := max{|a|, |b|}. Dieser Ausdru
k hängt weder von x no
h von t ab undstrebt glei
hmäÿig gegen Null. Für pt erhält man analog einen ähnli
hen Aus-dru
k.Damit �nden wir also N ∈ N, so dass (2.3) gilt und erhalten daraus:
pt(x) − ε

3
≤ Knf(x) ≤ qt(x) +

ε

3
. (2.4)Es folgt für alle x, t und n > N :

pt(x) − qt(x) − ε

3
≤ f(x) − qt(x) − ε

3
, denn pt(x) ≤ f(x) na
h (2.2)

≤ f(x) − Knf(x), weil Knf(x) ≤ qt(x) + ε
3
na
h (2.4)

≤ f(x) − pt(x) +
ε

3
, dur
h pt(x) − ε

3
≤ Knf(x) aus (2.4)

≤ qt(x) − pt(x) +
ε

3
, da f(x) ≤ qt(x) na
h (2.2).37



Insbesondere gilt das au
h für t = x. Wegen
px(x) − qx(x) = f(x) − ε

3
− 2‖f‖∞ · 0 − f(x) − ε

3
− 2‖f‖∞ · 0

= −2
3
εgilt also

−2
3
ε − ε

3
≤ f(x) − Knf(x) ≤ 2

3
ε + ε

3oder
|f(x) − Knf(x)| ≤ εfür alle n ≥ N und x ∈ [a, b]. QEDJetzt kann man zeigen, dass jede stetige Funktion beliebig gut dur
h Polynomeapproximiert werden kann, indem man eine Folge von Korovkin-Operatoren
Kn : C[a, b] → Πnangibt, die jede stetige Funktion auf ein Polynom abbilden. Das wird dur
h dieBernstein-Operatoren erfüllt.Notation 2.3

Bn : C[0, 1] → Πn(R),de�niert dur
h
Bnf(x) :=

n∑

j=0

(
n

j

)

f

(
j

n

)

xj(1 − x)n−j, x ∈ [0, 1]nennt man Bernstein-Operatoren.Satz 2.4 Die Bernsteinoperatoren bilden eine Korovkin-Folge auf C[0, 1].Beweis:(a) Die Bn sind linear und monoton, da x ≥ 0 und 1− x ≥ 0 für alle x ∈ [0, 1].(b) Zu zeigen bleibt no
h: Bnf − f → 0 für n → ∞ für f ∈ {1, x, x2}.Wir betra
hten zunä
hst den Fall f(x) = 1:
Bn1(x) =

n∑

j=0

(
n

j

)

xj(1 − x)n−j = 1 = 1(x),na
h dem Binomis
hen Lehrsatz, also ist Bn1 = 1.38



Sei nun f(x) = x:
Bnx =

n∑

j=1

(
n

j

)
j

n
xj(1 − x)n−j

=
n−1∑

j=0

(
n

j + 1

)
j + 1

n
xj+1(1 − x)n−j−1

= x
n−1∑

j=0

(
n − 1

j

)

xj(1 − x)(n−1)−j

︸ ︷︷ ︸

=1

, denn (x

y

)
y

x
=

(
x − 1

y − 1

)

= x = f(x).Wir betra
hten abs
hlieÿend f(x) = x2. Na
h etwas Re
hnen erhält man
Bnf(x) =

n − 1

n
x2 +

x

n
,und somit

|f(x) − Bnf(x)| =

∣
∣
∣
∣
x2 − n − 1

n
x2 − x

n

∣
∣
∣
∣
=

∣
∣
∣
∣

1

n
x2 − x

n

∣
∣
∣
∣

≤
∣
∣
∣
∣

x2

n

∣
∣
∣
∣
+

∣
∣
∣
∣

x

n

∣
∣
∣
∣
≤ 2

n
→ 0,also ‖f − Bnf‖∞ → 0 für n → ∞. QEDDamit folgt der Satz von Weierstraÿ:Satz 2.5 (Weierstraÿ) Zu jedem f ∈ C[a, b] und jedem ε > 0 gibt es ein Poly-nom p so, dass ‖f − p‖∞ < ε.Beweis: Für [a, b] = [0, 1] folgt die Aussage aus Satz 2.2 und Satz 2.4. Im allge-meinen Fall sei f ∈ C[a, b]. Wir de�nieren

g(s) := f((b − a)s + a) ∈ C[0, 1].Zu g existiert ein Polynom q, so dass ‖g − q‖∞ < ε. Sei weiterhin p(t) := q( t−a
b−a

),
t ∈ [a, b]. Dann ist p ein Polynom und weil t = (b − a)s + a äquivalent ist zu
t−a
b−a

= s folgt
f(t) − p(t) = g

(
t − a

b − a

)

− q

(
t − a

b − a

)und daraus
‖f − p‖∞ = ‖g − q‖∞ < ε,also ist p das gesu
hte Polynom für f . QED39



Bemerkung: Für f ∈ C[a, b] de�niert man die Bernstein-Operatoren vermöge
Bnf(x) =

n∑

j=0

(
n

j

)

f

(

a + (b − a)
j

n

)(
x − a

b − a

)j

︸ ︷︷ ︸

=:y

(
b − x

b − a

)n−j

︸ ︷︷ ︸

=1−y

=
1

(b − a)n

n∑

j=0

(
n

j

)

f

(

a + (b − a)
j

n

)

(x − a)j(b − x)jindem man
[a, b] → [0, 1] via x → x − a

b − aabbildet.Übungsaufgabe: Wandeln Sie Bnf so ab, dass sie eine Korovkin-Folge auf
C[a, b] erhalten. (Das ist ein alternativer Beweis zum Satz 2.5).In Satz 2.5 haben wir den Abstand zwis
hen der Funktion f und ihrer Approxi-mation dur
h

‖f − p‖∞ := max
x∈[a,b]

|f(x) − g(x)|gemessen. Statt der Norm ‖ · ‖∞ verwenden wir im folgenden Satz die Lp[a, b]-Normen, die dur
h
‖f‖p :=

p

√
∫ b

a

|f(x)|pdxde�niert sind.Satz 2.6 Zu jedem f ∈ C[a, b] und jedem ε > 0 gibt es ein Polynom q so, dass
‖f − q‖p < ε.Beweis: Sei ε > 0. Na
h Satz 2.5 gibt es ein Polynom q, so dass ‖f − q‖∞ < ε′ :=

ε
(b−a)

. Dann gilt
‖f − q‖p

p =

∫ b

a

|f(x) − q(x)|pdx

≤ ‖f − q‖p
∞

∫ b

a

1dx

= ‖f − q‖p
∞(b − a) < (ε′)p(b − a) = εp,also ‖f − q‖p ≤ ε. QEDVon Weierstraÿ stammt au
h das folgende Approximationsresultat für trigono-metris
he Polynome, das wir ohne Beweis angeben:Satz 2.7 Zu jedem f ∈ C(R) mit Periode 2π und jedem ε > 0 existiert eintrigonometris
hes Polynom T so, dass ‖f − T‖∞ < ε und ‖f − T‖p < ε für alle

Lp[0, 2π]-Normen. 40



2.2 ExistenzsätzeWir verallgemeinern nun den Begri� der Approximation.De�nition 2.8 Sei V ein normierter Vektorraum und M ⊆ V eine Teilmengevon V . Sei f ∈ V . Dann heiÿt u∗ ∈ M beste Approximation an f , falls
‖f − u∗‖ ≤ ‖f − u‖ für alle u ∈ M.Man nennt d(f, M) := infu∈M ‖f − u‖ den (Minimal-)Abstand von f zu M .Beispiele:1. V = C[a, b], M = Π4[a, b]: Approximation einer stetigen Funktion f ∈ Vdur
h ein Polynom bis Grad 4.2. V = Rn, M ⊆ Rn: Approximation eines Punktes dur
h einen (anderen)Punkt aus M . Hierbei ist d(x, M) der Abstand des Punktes x ∈ V von derMenge M .Für ‖ · ‖ = ‖ · ‖2 ist u∗ die orthogonale Projektion von x auf M .Punkte glei
henAbstands

b

b

u∗
x

M

b

b

u∗

x

MFür ‖ · ‖ = ‖ · ‖1 ist u∗ wie in der Abbildung.
b bu∗ xM

M

bxb

u∗

3. In der linearen Ausglei
hsre
hnung (Numerik I, Kapitel 4.2) sind A ∈ Rm,nmit m > n und b ∈ Rm gegeben. Gesu
ht ist ein x ∈ Rn, sodass ‖Ax − b‖2mögli
hst klein ist. Wir formulieren das Problem zu einer Approximations-aufgabe um: Seien V = Rm, M = {Ax : x ∈ Rn} und b ∈ V gegeben. Finde
u∗ ∈ M , sodass ‖b − u∗‖ mögli
hst klein ist.41



De�nition 2.9 Sei M ⊆ V , V normierter Vektorraum. M heiÿt Existenz-menge, falls es zu jedem f ∈ V eine beste Approximation auf f gibt. M heiÿtTs
hebys
he�-Menge, falls es zu jedem f ∈ V genau eine beste Approximationgibt. M heiÿt di
ht in V , falls d(f, M) = 0 für alle f ∈ V .Beispiele:
• Π∞ ⊆ C[a, b] ist keine Existenzmenge, aber
• der Satz von Weierstraÿ (Satz 2.5) besagt, dass für M = Π∞ � den Raumaller Polynome � gilt

d(f, M) = inf
p∈M

‖f − q‖∞

= 0 für alle f ∈ C[a, b],also liegt Π∞ di
ht in C[a, b].
• Dagegen ist Π4[a, b] ni
ht di
ht in C[a, b].
• Jede konvexe, kompakte Menge M ⊆ Rn ist Ts
hebys
he�-Menge bzgl. ‖·‖2.
• Bzgl. ‖·‖1 ist z.B. ein glei
hs
henkliges Dreie
k mit a
hsenparallelen Kantenkeine Existenzmenge.

b

45◦

45◦

• Q liegt di
ht in R, ist aber keine Existenzmenge.Lemma 2.10 Sei M eine kompakte Teilmenge eines normierten Raums V . Dannist M Existenzmenge.Beweis: ‖ · ‖ ist stetig, genauer: Sei f ∈ V . Betra
hte
ϕ :V → R

v 7→ ‖f − v‖.Dann gibt es für jedes ε > 0 ein δ := ε, sodass
|ϕ(v) − ϕ(u)| = |‖f − v‖ − ‖f − u‖| ≤ ‖u − v‖ ≤ εfür alle u, v mit ‖u−v‖ ≤ δ. Also ist ϕ eine stetige Funktion auf einer kompaktenMenge und nimmt entspre
hend ihr Minimum an. QED42



Lemma 2.11 Es gilt: |d(f, M) − d(g, M)| ≤ ‖f − g‖ für alle f, g ∈ V , V nor-mierter Vektorraum und M ⊆ V , d.h. der Minimalabstand hängt stetig von demzu approximierenden Element ab.Beweis: Seien f, g ∈ V , ε > 0. Wähle u(ε) ∈ M so, dass ‖g−u(ε)‖ ≤ d(g, M)+ε.Dann gilt:
d(f, M) ≤ ‖f − u(ε)‖ ≤ ‖f − g‖ + ‖g + u(ε)‖

≤ ‖f − g‖ + d(g, M) + εalso d(f, M) − d(g, M) ≤ ‖f − g‖ + ε. Analog erhält man, wenn man f und gvertaus
ht:
d(g, M) − d(f, M) ≤ ‖f − g‖ + ε.Zusammen ergibt si
h:

|d(g, M) − d(f, M)| ≤ ‖f − g‖ + ε für alle ε > 0also |d(g, M) − d(f, M)| ≤ ‖f − g‖. QEDWir betra
hten nun Mengen M ⊆ V mit weiteren Eigens
haften:1. M konvexe Teilmenge von V .2. M Unterraum von V .Wir erinnern uns:
M konvex ⇔ ∀x, y ∈ M, ∀λ ∈ (0, 1) : λx + (1 − λ)y ∈ M.Es gilt:

• Jeder Unterraum ist konvex.
• ∅ ist konvex.
• M1, M2 konvex ⇒ M1 ∩ M2 konvex.Im Folgenden bezei
hnet U∗

(f) die Menge der besten Approximationen an f ∈ Vaus M .Satz 2.12 Sei V normierter Vektorraum und M ⊆ V konvex. Zu f ∈ V existiereeine beste Approximation u∗ ∈ M , d.h. U∗
(f) 6= ∅. Dann gilt: Entweder U∗

(f) = {u∗}oder |U∗
(f)| = ∞ und U∗

(f) ist konvex. 43



Beweis: Seien u1, u2 beides beste Approximationen an f , also
d(f, u1) = ‖f − u1‖ = ‖f − u2‖ = d(f, u2).Betra
hte u := tu1 + (1 − t)u2 ∈ M für beliebiges t ∈ [0, 1]. Dann gilt
‖f − u‖ = ‖(f − u1)t + (f − u2)(1 − t)‖

≤ |t| ‖f − u1‖
︸ ︷︷ ︸

=d(f,u1)

+|1 − t| ‖f − u2‖
︸ ︷︷ ︸

=d(f,u2)

= d(f, u1),also ist u au
h beste Approximation an f und die Menge U∗
(f) ist konvex. Weil

|{tu1 + (1 − t)u2 : t ∈ [0, 1]}| = ∞,hat die Menge aller besten Approximationen � wie jede konvexe Menge mit mehrals einem Element � unendli
h viele Elemente. QEDBeispiele: V = R2, ‖ · ‖ = ‖ · ‖1.
bf

Mkonvexe Mengebes
hreibt besteApproximation
bb fu∗

MbesteApproximationeindeutig
bb

b

f

u∗

u∗

MGenau zweibeste Approxi-mationenSpeziell für lineare Unterräume M gilt die folgende Aussage:Satz 2.13 Sei U ein endli
h-dimensionaler Unterraum eines normierten Vek-torraums V . Dann ist U eine Existenzmenge. Weiterhin ist für alle f ∈ V dieMenge der besten Approximationen U∗
(f) konvex und es gilt entweder |U∗

(f)| = 1oder |U∗
(f)| = ∞.Beweis: Weil U ein Unterraum ist, gilt 0 ∈ U . Sei

U0 = {u ∈ U : ‖f − u‖ ≤ ‖f − 0‖}die Menge aller Elemente aus U , die f mindestens genauso gut approximierenwie 0. Es ist also U∗
(f) ⊂ U0. 44



U0 ist abges
hlossen (weil ‖ · ‖ stetig ist) und bes
hränkt (weil ‖u‖ ≤ ‖u − f‖ +
‖f‖ ≤ 2‖f‖ für alle u ∈ U0). Zusammen folgt, dass U0 eine kompakte Menge ist.Na
h Lemma 2.10 existiert also eine beste Approximation an f aus U0. Diese istbeste Approximation an f aus U .Weil jeder Unterraum insbesondere konvex ist, folgt der zweite Teil aus Satz 2.12.QEDBemerkung: Die Voraussetzung �endli
h-dimensional� ist nötig! Betra
hte dazu
V = C[a, b] mit ‖ · ‖ = ‖ · ‖∞ und U = Π∞[a, b]. Sei f ∈ C[a, b] \ Π∞[a, b]. Danngilt zwar d(f, U) = 0, aber weil f kein Polynom ist, wird dieses In�mum nieangenommen.Bemerkung: Man kann zeigen, dass die beste Approximation in Euklidis
henRäumen � sofern sie existiert � immer eindeutig ist.2.3 Ts
hebys
he�-Approximation in C[a, b]Wir untersu
hen nun wieder die Approximation einer stetigen Funktion f ∈
C[a, b] dur
h u∗ ∈ U ⊆ C[a, b]. Dabei betra
hten wir als Abstand

‖u − f‖∞ = max
x∈[a,b]

|u(x) − f(x)|.Aus Satz 2.13 wissen wir, dass jeder endli
h-dimensionale Unterraum U ⊆ C[a, b]eine Existenzmenge ist. Um die Eindeutigkeit zu behandeln, betra
hten wir uni-solvente Räume (siehe au
h Numerik I).De�nition 2.14 Sei U ⊆ C[a, b] ein Unterraum von C[a, b] mit dim(U) = n.Dann heiÿt U Haar's
her Raum der Dimension n, falls jedes u ∈ U \ {0}hö
hstens n − 1 Nullstellen in [a, b] hat.Bemerkung: Ein Haar's
her Raum ist unisolvent bezügli
h jeder Menge X ⊂ [a, b]mit |X| ≥ n.Beispiel: Es ist Πn ⊆ C[a, b] ein Haar's
her Raum der Dimension n + 1, dennjedes ni
ht-vers
hwindende Polynom vom Grad maximal n hat hö
hstens n Null-stellen in [a, b].Die Approximation einer Funktion bezügli
h der ‖ · ‖∞-Norm soll zunä
hst aneinem ausführli
hen Beispiel demonstriert werden.Beispiel: Betra
hte I = [0, 1] und f(x) = x2 ∈ C[0, 1].Wir interessieren uns für die beste lineare Approximation, su
hen also eine Funk-tion u∗(x) = α + βx mit minimalem Abstand ‖f − u∗‖∞ zu f .45



| | |

+

+

+

1

1

keine optimale Lösung

f

Für den Fehler gilt:
‖f − u∗‖∞ = max

x∈[0,1]
|f(x) − u∗(x)|

= max
x∈[0,1]

|x2 − βx − α|.Es gilt
• x2 − βx − α wird als konvexe Funktion am Rand maximal, also für x = 0oder für x = 1 mit Maximalwerten |α| oder |β + α − 1|.
• −x2 + βx + α wird als konkave und di�erenzierbare Funktion am Randmaximal, oder falls ihr Gradient glei
h Null ist, also falls

−2x + β = 0 ⇔ x = 1
2
β.Der Maximalwert beträgt dann |1

4
β2 − 1

2
β2 − α| = |α + 1

4
β2|.Wir erhalten also

‖f − u∗‖∞ = max{|α|, |β + α − 1|, |α + 1
4
β2|}.Für wel
he α, β wird dieser Ausdru
k minimal?

• Dazu müssen alle drei Terme den glei
hen Wert annehmen. Man kann si
hdas dur
h eine Fallunters
heidung lei
ht klarma
hen: Sind die Werte ni
htglei
h, gilt also zum Beispiel |α| > |β + α + 1| und |α| > |α + 1
4
β2|, sokann die Lösung verbessert werden, indem man α (auf Kosten von β) etwasreduziert. (Analog in den anderen Fällen.)

• Auÿerdem müssen die Vorzei
hen der drei Terme alternieren; sonst könnteman die Gerade ebenfalls verbessern (Skizze).46



Dur
h eine Skizze lassen si
h beide Aussagen verans
hauli
hen: Ist eine der dreiStre
ken länger als die beiden anderen, so kann man sie dur
h Vers
hieben undDrehen von u auf Kosten der anderen verkürzen und so u verbessern.
| | |

+

+

+

1

1

keine optimale Lösung | | |

+

+

+

1

1

optimale Lösung kanndur
h Vers
hiebenerrei
ht werden

f f

u∗

In unserem Beispiel erhält man für den Fall
f(0) > u∗(0), f(1

2
β) < u∗(1

2
β) und f(1) > u∗(1)die Glei
hungen

−α = α + 1
4
β2 = 1 − α − β, d.h. 2α + 1

4
β2 = 0 und 1 − β = 0.woraus folgt, dass β = 1, α = −1

8
und ‖f − u‖∞ = 1

8
. Da das Vorzei
henalternieren muss, gibt es nur no
h einen weiteren Fall: f(0) < u∗(0), f(1

2
β) >

u∗(1
2
β) und f(1) < u∗(1). Dieser liefert keinen besseren Wert für ‖f − u∗‖∞, alsoist

u∗(x) = x − 1
8die beste Approximation.

| | |

+

+

+

1

1

beste Approximation

f

u∗

47



Das Beispiel motiviert die folgende De�nition:De�nition 2.15 Sei U ein Haar's
her Raum der Dimension n über [a, b]. EineMenge X von n + 1 Punkten a ≤ x1 < x2 < · · · < xn+1 ≤ b heiÿt Alternantefür f ∈ C[a, b] und u ∈ U , falls
sign

(

f(xj) − u(xj)

)

= σ(−1)j , 1 ≤ j ≤ n + 1gilt mit einer Konstanten σ ∈ {−1, 1}.Eine Menge X ist also Alternante für f und u, wenn f −u in den xj alternierenddas Vorzei
hen we
hselt.Satz 2.16 Sei U ein n-dimensionaler Haar's
her Raum über [a, b]. Gibt es zu
f ∈ C[a, b] und u∗ ∈ U eine Alternante X mit

|f(xj) − u∗(xj)| = ‖f − u∗‖∞, 1 ≤ j ≤ n + 1,so ist u∗ eine beste Approximation an f aus U .Beweis: Sei X = {x1, . . . , xn, xn+1} Alternante mit
sign(f(xj) − u∗(xj)) = σ(−1)j für alle 1 ≤ j ≤ n + 1für ein festes σ ∈ {−1, 1}. Sei u ∈ U . Wir wollen zeigen, dass

‖f − u∗‖∞ ≤ ‖f − u‖∞.Dazu re
hnen wir
‖f − u∗‖∞ = |f(xj) − u∗(xj)| für j = 1, . . . , n + 1

= (f(xj) − u∗(xj))σ(−1)j für j = 1, . . . , n + 1

= (f(xj) − u(xj))σ(−1)j + (u(xj) − u∗(xj))σ(−1)jfür j = 1, . . . , n + 1 (2.5)Um diesen Ausdru
k weiter abzus
hätzen, zeigen wir zunä
hst, dass es ein j0 ∈
{1, . . . , n − 1} so gibt, dass

(u(xj0) − u∗(xj0))(−1)j0σ ≤ 0. (2.6)Dazu nehmen wir an, dass (2.6) für kein j0 gültig ist. Das heiÿt,
(u(xj) − u∗(xj))(−1)jσ > 0 für alle j ∈ {1, 2, . . . , n, n + 1},48



also würde u−u∗ in jedem der n Intervalle (xj , xj+1), j = 1, . . . , n das Vorzei
henwe
hseln. Na
h dem Zwis
henwertsatz hätte die stetige Funktion u − u∗ alsomindestens n Nullstellen. Aber u − u∗ ∈ U und U haben wir als Haar's
henRaum der Dimension n vorausgesetzt. Somit gilt:
u − u∗ ≡ 0 oder u − u∗ hat hö
hstens n − 1 Nullstellen.Daraus ergibt si
h also u ≡ u∗; das aber ist ein Widerspru
h zu u(xj) 6= u∗(xj)an den Punkten x1, . . . , xn+1.Wir verwenden die eben gezeigte Aussage, um ‖f −u∗‖ in (2.5) weiter abzus
hät-zen, indem wir für j den Index j0 wählen, der (2.6) erfüllt. Wir erhalten:

‖f − u∗‖∞ = (f(xj0) − u(xj0))σ(−1)j0 + (u(xj0) − u∗(xj0))σ(−1)j0

︸ ︷︷ ︸

≤0 na
h (2.6)

≤ |f(xj0) − u(xj0)| ≤ ‖f − u‖∞. QEDUm eine beste Approximation zu �nden, ma
ht es also Sinn, f zunä
hst auf einerdiskreten Menge X = (x1, . . . , xn+1) zu approximieren. Wir führen die folgendenBezei
hnungen ein.Notation: Einen Vektor X = (x1, . . . , xn+1)
T ∈ Rn+1 mit a ≤ x1 < x2 < · · · <

xn < xn+1 ≤ b nennen wir Referenz. Wir de�nieren
‖(u − f)|X‖∞ := max

i=1,...,n+1
|u(xi) − f(xi)|.Gilt für u∗ ∈ U dass

‖(u∗ − f)|X‖∞ ≤ ‖(u − f)|X‖∞für alle u ∈ U , so nennt man u∗ beste Approximation an f aus U aufder Referenz X, oder diskrete Approximation auf X oder Ts
hebys
he�-Approximation an f aus U auf X.Korollar 2.17 Sei U ein Haar's
her Raum der Dimension n über [a, b]. Gibt eszu f ∈ C[a, b] und u∗ ∈ U eine Alternante X mit
|f(xj) − u∗(xj)| = 
onst für alle 1 ≤ j ≤ n + 1(das heiÿt dann, dass |f(xj) − u∗(xj)| = ‖(f − u∗)|X‖∞ für alle 1 ≤ j ≤ n + 1),so ist u∗ Ts
hebys
he�-Approximante auf X an f aus U .49



Beweis: Der Beweis verläuft genau analog zu dem Beweis von Satz 2.16, nurbetra
htet man statt ‖f − u∗‖∞ den Ausdru
k ‖(f − u∗)|X‖∞ beziehungsweisestatt ‖f − u‖∞ den Ausdru
k ‖(f − u)|X‖∞. QEDDas ergibt folgende Idee, um eine beste Approximation iterativ anzunähern.1. Starte mit Referenz X und bestimme u∗ ∈ U so, dass
• X ist Alternante für f und u∗

• |f(xi) − u∗(xi)| = 
onst.Dann ist u∗ beste diskrete Approximation an f aus U auf X (na
h Korol-lar 2.17).2. Gilt zusätzli
h, dass ‖f − u∗‖∞ = 
onst(= ‖(f − u∗)|X‖∞), so ist u∗ besteApproximante an f aus U auf ganz [a, b] (na
h Satz 2.16).3. Sonst verändere die Referenz X und gehe zu 1.Wir werden im Folgenden bespre
hen,
• wie man in S
hritt 1 die diskrete Ts
hebys
he�-Approximante bere
hnenkann, und
• wie man in S
hritt 3 die Referenz X geeignet modi�ziert, so dass das Ver-fahren konvergiert.Wir beginnen mit der Bere
hnung der diskreten Ts
hebys
he�-Approximante.Sei u1, . . . , un eine Basis von U . Sei X eine Referenz und bezei
hne

ρX = dX(f, U) = inf
u∈U

‖(f − u)|X‖∞den Minimalabstand von f und U bzgl. der Referenz X = (x1, . . . , xn+1)
T . Wirsu
hen

u∗ =

n∑

j=1

αjuj,genauer also die Koe�zienten α1, . . . , αn. Sei σX das Vorzei
hen von f(x1) −
u∗(x1). Dann müssen die folgenden n + 1 Bedingungen erfüllt sein:

f(xi) − u∗(xi) = ρXσX(−1)i−1, ∀i = 1, . . . , n + 1.Das s
hreiben wir um zu:
f(xi) =

n∑

j=1

αjuj(xi) + (−1)i−1

︸ ︷︷ ︸
:=un+1bekannt σXρX

︸ ︷︷ ︸
=:αn+1Variable 1 ≤ i ≤ n + 1.50



Als Glei
hungssystem erhält man n + 1 Glei
hungen in n + 1 Variablen, wobeiwir zur Vereinfa
hung der S
hreibweise
un+1(xi) := (−1)i−1setzen. In Matrixform ergibt si
h:








u1(x1) · · · un(x1) un+1(x1)

u1(x2)
. . . ...... . . . ...

u1(xn+1) · · · un(xn+1) un+1(xn+1)








︸ ︷︷ ︸

=:A








α1

α2...
αn+1








=








f(x1)
f(x2)...

f(xn+1)








. (2.7)
Ist dieses Glei
hungssystem lösbar? Wir benutzen den Lapla
es
hen Entwi
k-lungssatz für die letzte Spalte. Sei dazu

Di =












u1(x1) · · · un(x1)... ...
u1(xi−1) · · · un(xi−1)
u1(xi+1) · · · un(xi+1)... ...
u1(xn+1) · · · un(xn+1)












∈ Rn,n.

Dann gilt:
det(A) =

n+1∑

i=1

(−1)i un+1(xi)
︸ ︷︷ ︸

=(−1)i−1

det(Di)

=

n+1∑

i=1

det(Di).

Di ist die zu den Punkten x1, . . . , xi−1, xx+1, . . . , xn gehörende Interpolationsma-trix, daher ist det Di 6= 0 für alle i. Man kann sogar zeigen, dass alle det Di dasglei
he Vorzei
hen haben, also gilt det A 6= 0. Auÿerdem gilt der folgende Satz:Satz 2.18 Sei U ein Haar's
her Raum der Dimension n über [a, b] und sei X =
a ≤ x1 < x2 < · · · ≤ xn+1 = b eine Referenz. Dann gibt es zu jedem f ∈ C[a, b]genau eine Lösung der Ts
hebys
he�-Approximation. Man kann sie dur
h Lösendes linearen Glei
hungssystems (2.7) bere
hnen.Beweisskizze:

• Weil (2.7) eindeutig lösbar ist, folgt die Existenz der Ts
hebys
he�-Approximation.51



• Um die Eindeutigkeit na
hzuweisen, muss man zeigen, dass jede Ts
hebys
he�-Approximante au
h Lösung von (2.7) ist. Weil (2.7) eindeutig lösbar ist,folgt daraus die Behauptung.Übungsaufgabe: Sei U ein Haar's
her Raum der Dimension n über [a, b] undsei X ⊆ [a, b] mit a ≤ x1 ≤ · · · ≤ xn ≤ b, also |X| = n. Bestimmen Sie dX(f, U)!Bevor wir das Remes-Verfahren formulieren, ma
hen wir uns die Idee, die besteApproximation dur
h eine beste diskrete Approximation anzunähern, an folgen-dem Lemma klar:Lemma 2.19 Sei X eine Referenz. Dann gilt
dX(f, U) ≤ d(f, U).Beweis: Sei u ∈ U . Dann gilt

‖(f − u)|X‖∞ = max
i=1,...,n+1

|f(xi) − u(xi)| ≤ ‖f − u‖∞und folgli
h
inf
u∈U

‖(f − u)|X‖∞ ≤ inf
u∈U

‖f − u‖∞,also dX(f, U) ≤ d(f, U). QED
Wenn man also d(f, U) dur
h dX(f, U) annähern mö
hte, ist die Referenz Xdafür besser geeignet als die Referenz X ′, falls dX(f, U) ≥ dX′(f, U), also fallsdie Fehlerfunktion f − u∗

X für die Ts
hebys
he�-Approximante u∗
X bezügli
h derReferenz X mögli
hst groÿ ist! Diese Beoba
htung wird im Remes-Verfahren wiefolgt ausgenutzt: 52



Algorithmus 1: Remes-VerfahrenInput: f ∈ C[a, b], U ⊆ C[a, b] Haar's
her Raum der Dimension n.S
hritt 1: Wähle Startreferenz X(0) = {x(0)
1 , . . . , x

(0)
n+1}, j := 0,S
hritt 2: Bestimme die Ts
hebys
heff-Approximation u∗

j auf X(j) an f. Sei
pj=dX(j)(f, U) = ‖(f − u∗

j )|X(j)‖∞.S
hritt 3: Falls dX(j)(f, U) = ‖f − u∗
j‖∞: STOP. Lösung sei v∗j.S
hritt 4: Bestimme die neue Referenz X(j+1), die den folgenden dreiBedingungen genügt:a) sign(f − u∗

j )(x
(j+1)
k ) = − sign(f − u∗

j )(x
(j+1)
k+1 ) für alle 1 ≤ k ≤ n.b) |(f − u∗

j )(x
(j+1)
k )| ≥ dX(j)(f, U) für alle 1 ≤ k ≤ n + 1.
) ‖(f − u∗

j)|X(j+1)‖∞ = ‖f − u∗
j‖∞.Setze j := j + 1 und gehe zu 2.Zunä
hst analysieren wir S
hritt 4:

• Bedingung a) bedeutet, dass die alte Fehlerfunktion f − u∗
j au
h auf derneuen Referenz X(j+1) alternieren soll.

• Bedingung b) besagt, dass die alte Fehlerfunktion f − u∗
j , angewendet aufdie Punkte der neuen Referenz, ni
ht kleiner sein darf als an den Punktender alten Referenz.

• Zusammen mit Bedingung 
) heiÿt das sogar, dass die alte Fehlerfunktion,angewendet auf die neuen Punkte, maximal werden soll, also den Gesamt-fehler ‖f − u∗
j‖∞ an einem der neuen Punkte annehmen muss.Man versu
ht also, gemäÿ der Aussage von Lemma (2.19), die neue Referenz sozu wählen, dass ihr Fehler mögli
hst groÿ wird. Bevor wir uns mit der Konvergenzdes Remes-Verfahrens bes
häftigen, zeigen wir, dass es in S
hritt 4 immer einepassende neue Referenz gibt.Lemma 2.20 Es gibt eine Referenz X(j+1), die den Bedingungen von S
hritt 4genügt, falls dX(j) < ‖f − u∗

j‖∞.Beweis: Die Referenz X(j) genügt den Randbedingungen a) und b). Wir werdendaher nur einen Punkt aus X(j) gegen einen neuen austaus
hen. Dazu bestimmen53



wir x̃ mit
‖f − u∗

j‖ = f(x̃) − u∗
j(x̃)als einen Punkt in [a, b], an dem der Fehler maximal wird. Wegen

dX(j) < ‖f − u∗
j‖∞ist x̃ 6= xk für k = 1, . . . , n + 1. Wir unters
heiden drei Fälle:1. Existiert ein k, so dass x

(j)
k < x̃ < x

(j)
k+1, so setze x

(j+1)
k := x̃ falls sign(f −

u∗
j)(x

(j+1)
k ) = sign(f − u∗

j)(x̃), sonst x
(j)
k+1 := x̃. Man ersetzt also entweder

x
(j)
k oder x

(j)
k+1 dur
h x̃.2. Falls x̃ < x
(j)
1 , setze x

(j+1)
1 := x̃. Falls sign(f − u∗

j)(x1) 6= sign(f − u∗
j)(x̃),setze auÿerdem x

(j+1)
k+1 := x

(j)
k für k = 1, . . . , n. (Im ersten Fall wird also x

(j)
1aus der Referenz entfernt, im zweiten Fall x

(j)
n+1.)3. Falls x̃ > x

(j)
n+1 analog zu Fall 2. QEDIn der Praxis ersetzt man meistens mehr als einen Punkt aus X(j).Jetzt können wir folgenden Satz über das Remes-Verfahren formulieren:Satz 2.21 Sei U ⊆ C[a, b] ein Haar-Raum der Dimension n und sei f ∈ C[a, b]\

U . Dann existiert genau eine beste Approximation u∗ ∈ U auf f aus U auf [a, b].Ferner bri
ht das Remes-Verfahren entweder na
h endli
h vielen S
hritten mit
u∗ ab, oder es liefert Folgen {X(j)}, {u∗

j} und {pj} mit folgenden Eigens
haften:
• {pj} konvergiert mindestens linear gegen ‖f − u∗‖. Genauer existiert eineKonstante q ∈ (0, 1) mit

‖f − u∗‖ − pj+1 ≤ q(‖f − u∗‖ − pj), j ∈ N0

• {u∗
j} konvergiert glei
hmäÿig auf I gegen die Lösung u∗.Beweis: Bri
ht das Verfahren na
h endli
h vielen S
hritten ab, so gibt es ein

j ∈ N0 mit
ρj = ‖(f − u∗

j)|X(j)‖∞ = ‖f − u∗
j‖∞,also ist u∗

j beste Approximation an f auf I na
h Satz (2.16).Nehmen wir also an, das Verfahren endet ni
ht. Dann kann man zeigen, dass dieFolge (pj) aufgrund der Bedingungen a), b) und 
) streng monoton wa
hsend ist.Wegen Lemma 2.19 ist
ρj ≤ d(f, U)54



also ist die Folge na
h oben bes
hränkt. Daraus folgt Konvergenz.Der Na
hweis der mindestens linearen Konvergenz wird hier ni
ht bes
hrieben.Die Eindeutigkeit folgt folgendermaÿen: Sei
{X(j)} ⊆ Menge aller Referenzen,dann besitzt diese eine konvergente Teilfolge, die gegen eine Referenz X∗ konver-giert. Sei u∗ die zugehörige Ts
hebys
he�-Approximante, die Lösung von infu∈U ‖f−

u‖∞ ist. Sei ũ eine weitere Lösung des Approximationsproblems, dann ist ũ au
heine Ts
hebys
he�-Approximation an f aus V auf [a.b]. Na
h Satz 2.18 ist dieseeindeutig, also u∗ = ũ. QEDBemerkung: Die beste Approximation u∗ ist eindeutig und u∗
j → u∗. Aber dieFolge der Referenzen X(j) hat nur eine konvergente Teilfolge, weil es zu u∗ mehrereAlternanten geben kann, als Häufungspunkte der Referenzen auftreten können.Als Folge des letzten Satzes erhalten wir die �Rü
kri
htung� zu Satz 2.16:Satz 2.22 (Alternantensatz) Sei U ein n-dimensionaler Haar's
her Raum über

[a, b]. Ein Element u∗ ∈ U ist genau dann beste Approximation an f ∈ C[a, b],wenn es eine Alternate X für f und u∗ mit
|f(xj) − u∗(xj)| = ‖f − u∗‖∞, 1 ≤ j ≤ n + 1gibt. Die beste Approximation u∗ ist eindeutig bestimmt, die Alternante aber ni
ht.Dur
h das Remes-Verfahren haben wir konstruktiv gezeigt, dass jeder Haar's
heRaum eine Ts
hebys
he�-Menge ist. Der nä
hste Satz sagt, dass Haar's
he Räumedie einzigen Ts
hebys
he�-Mengen sind.Satz 2.23 Sei U ein n-dimensionaler Unterraum von C[a, b]. Dann gilt:

U ist Haar's
her Raum ⇔ U ist Ts
hebys
he�-Menge.
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2.4 ZusammenfassungZiel: • Nähere ein Objekt f (aus einem VR V ) dur
h ein �einfa
heres Objekt�an
• �einfa
her�: Aus einer Menge M ⊆ V

• �annähern�: ‖f −u∗‖ ≤ ‖f −u‖, ∀u ∈ M ⇒ u∗ ist beste Annäherung (besteApproximation)Beispiele
• V = C[a, b], ‖ · ‖∞, M z.B. Πn: Approximation von Funktionen
• V = Rn, ‖ · ‖ bel. Norm, M ⊆ Rn: Projektion
• V = Rn, M = {Ax : x ∈ Rn}, ‖ · ‖2: Ausglei
hsre
hnung (A ∈ Rm,n)Existenz- und Ts
hebys
he�-Mengen
• M Existenzmenge, falls eine beste Approximation u∗ ∈ M existiert
• M Ts
hebys
he�-Menge, falls genau eine beste Approximation existiert
• M kompakt ⇒ M Existenzmenge
• M konvex ⇒ ∃ keine, genau eine oder unendl. viele beste Approx. undbilden eine konvexe Menge.Speziell für C[a, b]Satz von Weierstrass
• Satz von Weierstrass:

∀ε > 0, ∀f ∈ C[a, b] : ∃p ∈ Π∞ : ‖f − p‖∞ < ε

• Beweisskizze:� {Kn}Korovkin-Folge, fallsKn linear und monoton ∀n und limn→∞ ‖Knf−
f‖∞ = 0 für f ∈ {1, x, x2}� Ist {Kn} Korovkin-Folge, dann gilt limn→∞ ‖Knf − f‖∞ = 0, ∀f ∈
C[a, b]� Ziel: Finde Korovkin-Folge Kn : C[a, b] → Π∞[a, b]� Bernstein-Operatoren! ⇒ Beweis56



• Folge: Satz von Weierstraÿ gilt au
h für ‖ · ‖Lp
-Normen;

‖f‖Lp
=

p

√
∫ b

a

|f(x)|pdxTs
hebys
he�-Approx. in Haar's
hen Räumen
• . . . , d.h.

V = C[a, b], ‖f‖∞ = max
x∈[a,b]

|f(x)|, M ist Haar's
her Raum
• U ist Haar's
her Raum der Dim. n, falls jedes u ∈ U \ {0} hö
hstens n− 1Nullstellen hat.
• X = {x1 < x2 < · · · < xn+1} ⊆ [a, b] heiÿt Alternante für f und u, falls

sign(f(xj) − u(xj)) = σ(−1)j , σ ∈ {−1, 1}

• Kriterium: U ⊆ V Haar's
her Raum der Dim. n, f ∈ [a, b], u∗ ∈ U : Gibt eseine Alternante X mit |f(xj) − u∗(xj)| = ‖f − u∗‖∞, j = 1, . . . , n − 1, soist u∗ beste Approx. an f (aus V )Diskrete Approximation
• Gegeben: X = {x1, . . . , xn+1}. Finde u∗ : ‖(f − u∗)|X‖∞ ≤ ‖(f − u)|X‖∞,
∀u ∈ U .

• Kriterium: u∗ ∈ U ist beste diskrete Approx., falls
|f(xj) − u∗(xj)| ≤ ‖(f − u∗)|X‖∞für eine Alternate X für f und u∗.

• Lösen dur
h ein Glei
hungssystem (n + 1 Var., n + 1 Bed.)
• Lösung des diskreten Approx.-Prob. ist immer existent und eindeutigRemes-Verfahren
• Starte mit einer Referenz X(0), j = 0

• diskrete Approx. u(j) an f in X(j)

• Falls u(j) beste Approx. an f ist → STOP.
• sonst: neue Referenz dur
h Austaus
hen (eines) der Punkte in X(j)

• Wi
htig: ‖(f − u∗
j)|X(j)‖∞ < ‖(f − u∗

j+1)|X(j+1)‖∞
• Es gilt: Konvergenz (sublinear) zu eindeutiger Lösung57



Alternantensatz
• U Haar's
her Raum der Dim. n, f ∈ C[a, b], u∗ ∈ U ist beste Approx. an faus U bzgl. ‖·‖∞ ⇔ es ex. eine Alternante X mit ‖(f−u∗)|X‖∞ = ‖f−u∗‖∞

• Beweis: Kriterium + Eindeutigkeit dur
h Remes-Verfahren
• Bemerkung: Für Unterräume U gilt: Haar's
her Raum ⇔ Ts
hebys
he�-Raum (Ts
hebys
he�-Menge)
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Kapitel 3Numerik gewöhnli
herDi�erentialglei
hungen
3.1 Einführung und NotationWir bes
häftigen uns in diesem Kapitel hauptsä
hli
h mit gewöhnli
hen, explizi-ten Di�erentialglei
hungen erster Ordnung, gegeben dur
h

x′(t) = f(t, x(t)), t ∈ I = [a, b] (3.1)Dabei ist
• x : I → Rd eine gesu
hte, di�erenzierbare Funktion auf einem Intervall

I = [a, b] ⊆ R (Kurve) und x′(t) =

(
x′

1(t)...
x′

d
(t)

) der Tangentialvektor von x an
t.

• f : D ⊆ (R × Rd) → Rd eine gegebene Funktion.Wir klären zunä
hst einige Begri�e.Notation 3.1
• Eine Di�erentialglei
hung heiÿt gewöhnli
h, wenn die unbekannte Funk-tion x nur von einer reellen Variablen abhängt. Hängt x von mehreren Va-riablen ab, d.h. gilt

x : B → Rd, B ⊆ Rk,so liegt eine partielle Di�erentialglei
hung vor.
• Eine Di�erentialglei
hung hat die Ordnung k, falls nur Ableitungen von

x bis zur Ordnung k vorkommen. Sie hat die Ordnung 1, falls nur die ersteAbleitung von x vorkommt. 59



• Man nennt eine Di�erentialglei
hung explizit, falls der hö
hste Ableitungs-term isoliert auftau
ht, ansonsten implizit.
• Für d = 1 nennt man die Di�erentialglei
hung skalar, für d > 1 spri
htman au
h von einem System von Di�erentialglei
hungen.Beispiele:
• F (t, x(t), x′(t)) = 0, t ∈ I = [a, b] mit einer gegebenen Funktion F : R ×

Rd × Rd → Rd ist eine gewöhnli
he, implizite Di�erentialglei
hung ersterOrdnung.
• y(k)(t) = g(t, y(t), . . . , y(k−1)(t)), t ∈ I = [a, b] mit einer gesu
hten Funktion

y : I → R2, die k-mal di�erenzierbar ist, ist eine gewöhnli
he, expliziteDi�erentialglei
hung der Ordnung k.
• x′(t) = x(t), t ∈ [a, b] ist eine gewöhnli
he, explizite, skalare Di�erential-glei
hung erster Ordnung.Notation 3.2 Eine gewöhnli
he Di�erentialglei
hung der Form

x′(t) = f(x(t)),bei der die re
hte Seite ni
ht explizit von t abhängt, heiÿt autonom.Wir bes
häftigen uns im Wesentli
hen mit expliziten, gewöhnli
hen Di�erential-glei
hungen.Beispiel:
x′

1(t) = −x2(t)

x′
2(t) = x1(t)ist eine gewöhnli
he, explizite und autonome Di�erentialglei
hung (bzw. ein Sys-tem von Di�erentialglei
hungen) der Form
x′(t) = f(t, x(t))mit f(t, x(t)) =

(−x2(t)

x1(t)

)

.Eine Lösung dieser Di�erentialglei
hung ist
x(t) =

(
cos(t)

sin(t)

)

,denn
x′

1(t) = cos′(t) = − sin(t) = −x2(t),
x′

2(t) = sin′(t) = cos(t) = x1(t).60



Es gibt aber no
h weitere Lösungen, nämli
h
x̃(t) = C · x(t − t0) =

(
C · cos(t − t0)

C · sin(t − t0)

)für alle t0 ∈ R und C ∈ R, denn
x̃′(t) =

(−C · sin(t − t0)

C · cos(t − t0)

)

=

(−x̃2(t)

x̃1(t)

)

.Verans
hauli
hung:Die re
hte Seite der Di�erentialglei
hung bes
hreibt ein Vektorfeld
f : R2 → R2,

(
x1

x2

)

7→
(−x2

x1

)

,das man dur
h einen Vektor α
(−x2

x1

) in jedem Punkt ( x1
x2

) skizzieren kann. DieLösung x(t) =
( cos(t)

sin(t)

) bes
hreibt eine Kurve im R2, zu der das Vektorfeld injedem Punkt tangential ist.

| | | | |

+

+

+

+

+

−2 −1 0 1 2

−2

−1

0

1

2

Lemma 3.3 Jede gewöhnli
he, explizite Di�erentialglei
hung der Ordnung k kannin eine äquivalente Di�erentialglei
hung erster Ordnung transformiert werden.Beweis: Sei
y(k)(t) = g(t, y(t), . . . , y(k−1)(t)), t ∈ Imit einer gesu
hten, k-mal di�erenzierbaren Funktion y : I → Rd gegeben. De�-niere xj : I → Rd dur
h

xj(t) := y(j)(t) für j = 0, . . . , k − 1.61



Dann gilt:
x′

j(t) = y(j)′(t) = y(j+1)(t) = xj+1(t) für j = 0, . . . , k − 2und
x′

k−1(t) = y(k−1)′(t) = y(k)(t) = g(t, y(t), . . . , y(k−1)(t)) = g(t, x0(t), . . . , xk−1(t)),also erhält man das System
Rkd ∋ x′(t)







x′
0(t) = x1(t)

x′
1(t) = x2(t)...

x′
k−2(t) = xk−1(t)

x′
k−1(t) = g(t, x0(t), . . . , xk−1(t)),







f(t, x(t))

in dem nur Ableitungen der Ordnung 1 vorkommen. Sei nun eine Lösung diesesSystems gegeben dur
h eine di�erenzierbare Funktionen xj mit j = 0, . . . , k − 1.Dann ist
y(t) = x0(t)

k-mal di�erenzierbar, da
y(j)(t) = xj(t) für j = 0, . . . , k − 1gilt und alle xj mindestens einmal di�erenzierbar sind. Weiterhin gilt:

y(k)(t) = y(k−1)′(t) = x′
k−1(t) = g(t, x0(t), . . . , xk−1(t)) = g(t, y(t), . . . , y(k−1)(t)).QEDDie Lösung einer Di�erentialglei
hung ist im Allgemeinen ni
ht eindeutig be-stimmt. In dem Beispiel auf Seite 59 hatten wir zum Beispiel zwei Parameter Cund t0 zu wählen. Um die Eindeutigkeit zu erhalten, müssen die freien Variablendur
h zusätzli
he Bedingungen festgelegt werden.Notation 3.4 Ein Anfangswertproblem (AWP) einer gewöhnli
hen Di�e-rentialglei
hung erster Ordnung ist gegeben dur
h

x′(t) = f(t, x(t)), x(t0) = x0. (AWP)Ein Randwertproblem einer gewöhnli
hen Di�erentialglei
hung zweiter Ord-nung ist gegeben dur
h
x′′(t) = f(t, x(t), x′(t)), x(a) = ra, x(b) = rb.Dabei sind x0, ra, rb ∈ Rd. 62



Bemerkung: Die Glei
hung x(t) = x0 besteht aus d Bedingungen, sie legt also dParameter fest (falls sie eindeutig lösbar ist).Bemerkung: Die numeris
he Behandlung von Randwertproblemen und Anfangs-wertproblemen ist unters
hiedli
h. In dieser Vorlesung befassen wir uns mit An-fangswertproblemen.Wir kommen no
h einmal auf autonome Di�erentialglei
hungen zurü
k.Lemma 3.5 Sei x : I → Rd eine Lösung einer autonomen Di�erentialglei
hung
x′(t) = f(x(t)). Dann ist

y : I → Rd, t 7→ x(t − t0)au
h eine Lösung der Di�erentialglei
hung und zwar für alle t0 ∈ R.Beweis:
y′(t) = x′(t − t0) = f(x(t − t0)) = f(y(t)) QEDBemerkung: Im Beispiel auf Seite 59 haben wir die Aussage genutzt, um Lösun-gen zu erzeugen.Bemerkung: Oft bes
hreibt der Parameter t die Zeit. Die Aussage des Lemmaslautet dann: Die Lösung einer autonomen Di�erentialglei
hung ist invariant ge-genüber Zeittransformationen.Lemma 3.6 Jedes Anfangswertproblem der Form x′(t) = f(t, x(t)), x(t0) = x0lässt si
h in ein äquivalentes, autonomes Anfangswertproblem transformieren.Beweis: De�niere s(t) := t und y(t) =

(
s(t)
x(t)

). Betra
hte das autonome System
y′(t) =

(
s′(t)

x′(t)

)

=

(
1

f(y(t))

)

, y(t0) =

(
s(t0)

x(t0)

)

=

(
t0
x0

)

. (3.2)
• Sei x eine Lösung von x′(t) = f(t, x(t)), x(t0) = x0. Mit s(t) := t erhaltenwir

y′(t) =

(
s′(t)

x′(t)

)

=

(
1

f(t, x(t))

)

=

(
1

f(s(t), x(t))

)

=

(
1

f(y(t))

)

,also eine Lösung von (3.2).
• Sei nun y(t) =

(
s(t)
x(t)

) eine Lösung von (3.2). Dann gilt:
s′(t) = 1, setze also s(t) = t.Damit ist

x′(t) = f(y(t)) = f(s(t), x(t)) = f(t, x(t))eine Lösung von x′(t) = f(t, x(t)).Den Übergang eines Anfangswertproblemes zu (3.2) nennt man au
h Autono-misierung des Anfangswertproblemes.63



Zwei praktis
he AnwendungenBewegung eines Massepunktes. Die Bewegung eines Massepunktes zur Zeit
t am Ort x kann dur
h die Di�erentialglei
hung 2. Ordnung

m · x′′(t) = g(t, x)bes
hrieben werden. Die Funktion g bes
hreibt dabei die Wirkung äuÿerer Kräfte,z.B. erhält man bei einer einseitig gespannten Feder g(t, x) = −kx, wobei k dieFederkonstante bezei
hnet. Weiterhin ist meist der Anfangspunkt x0 = x(t0) unddie Anfangsges
hwindigkeit x′
0 = x′(t0) vorgegeben.Das System kann in das folgende äquivalente System 1. Ordnung verwandeltwerden:
x′

1(t) = x2(t)

x′
2(t) = − k

m
x1(t),mit Anfangsbedingungen

x1(t0) = x0, x2(t0) = x′
0.Dieses System von Di�erentialglei
hungen ist erster Ordnung, linear und auto-nom. Die Lösung ist gegeben dur
h

x(t) = x1(t) = x0 cos

(√
k
m

t

)

+ x′
0 sin

(√
k
m

t

)

x′(t) = x2(t)Volterra-Lottka Zyklus. Betra
hte ein ökologis
hes System mit zwei Arten,bei denen die eine Art der anderen als Nahrung dient. Entspre
hend bezei
hnenwir sie als �Jäger� und �Beute�. Sei
xJ(t) = die Gröÿe der Jäger-Population zur Zeit t und
xB(t) = die Gröÿe der Beute-Population zur Zeit t.Die Wa
hstumsrate der Populationen ergibt si
h aus der Di�erenz der Gebur-tenrate und der Sterberate. Dabei nehmen wir an, dass für die Beute-Populationgenügend Nahrung vorhanden sei, so dass sie si
h (im ungestörten Fall) expo-nentiell vermehren würde, die Geburtenrate also konstant ist. Mit geeignetenParametern α, β > 0 ergibt si
h dann

x′
B(t) = αxB(t) − βxB(t)xJ(t).Die Glei
hung kann wie folgt interpretiert werden:64



• das ungestörte eigene Wa
hstum der Beute-Population resultiert aus ei-nem exponentiellen Wa
hstum xB = eαx und ist daher dur
h x′
B = αxBbes
hrieben.

• die Anzahl der dur
h Jagd gestorbenen Beutetiere ist proportional zur Rate,mit der si
h Jäger und Beute tre�en, auf einem begrenzten Gebiet alsoproportional zu xB und proportional zu xJ .Für die Jäger-Population ergibt si
h
x′

J(t) = γxJ (t)xB(t) − δxJ(t),ebenfalls mit geeigneten Parametern γ, δ > 0. Die Interpretation dieser Glei
hungist wie folgt:
• Die Jäger-Population wä
hst exponentiell mit Rate γ und proportional zurBeute-Population xB,
• die natürli
he Sterberate ist (bei exponentiellem Wa
hstum) x′

J = −δxJ .Die Lösung dieses Systems von Di�erentialglei
hungen führt zu periodis
hen Lö-sungen, die man au
h Volterra-Lottka-Zyklen nennt. Bilder dazu �nden si
h z.B.in der Wikipedia.Wir beenden diesen einführenden Abs
hnitt mit einer letzten Notation.Notation 3.7 Ein System von Di�erentialglei
hungen heiÿt linear, falls
x′(t) = f(t, x) := A(t)x + g(t)gilt, wobei g : I → Rd eine stetige Funktion ist und A = (aij)i,j=1,...,d eine d × d-Matrix mit stetigen Einträgen aij : I → R.Von den beiden oben bes
hriebenen Anwendungsbeispielen ist das erste linear,das Volterra-Lottka-System aber ni
htlinear.3.2 Existenz und EindeutigkeitIn diesem Abs
hnitt wollen wir die Existenz und die Eindeutigkeit von Lösungenfür Anfangswertprobleme der Form

x′(t) = f(t, x(t))

x(t0) = x0untersu
hen. Wir zeigen zunä
hst zwei Beispiele.65



• Das erste Beispiel zeigt, dass die Lösung im Allgemeinen ni
ht eindeutigsein muss. Sei folgendes Anfangswertproblem
x′(t) = |x(t)|α

x(0) = 0für einen Parameter α ∈ (0, 1) gegeben. Die Di�erentialglei
hung hat diefolgenden beiden Lösungen x̃ und x:
x̃(t) ≡ 0

x(t) =

{

((1 − α)t)
1

1−α für t ≥ 0
0 für t < 0Für x̃ sieht man das direkt, für die zweite Lösung x re
hnet man na
h:� x(0) = 0,� x′(t) = |x(t)|α für t ≥ 0 und x′(t) = 0 für t < 0,� und x(0) = x′(0) = 0, also ist x stetig und di�erenzierbar.

• Das zweite Beispiel zeigt, dass keine Lösung auf ganz I existieren muss:Betra
hten wir
x′(t) = (x(t))2

x(0) = 1.Die Lösung x(t) = − 1
t−1

ist nur für t 6= 1 de�niert und kann wegen
lim
t→1

x(t) = ∞ni
ht als stetige Funktion für t ≥ 1 fortgesetzt werden. Tatsä
hli
h existiertin diesem Fall keine Lösung des Anfangswertproblemes für alle t > 0. DerE�ekt wird au
h �blow up� genannt.Um die Frage na
h Existenz und Eindeutigkeit von Lösungen für Anfangswert-probleme zu beantworten, formulieren wir (AWP) zu einer so genannten Integral-glei
hung um.Lemma 3.8 Sei D ⊆ Rd+1 o�en, f : D → Rd stetig, a ≤ t0 ≤ b und x : [a, b] →
Rd eine Funktion. Es gelte

{(t, x(t)) : t ∈ [a, b]} ⊆ D.Dann sind die folgenden Aussagen äquivalent:66



1. x ist stetig di�erenzierbar und löst das (AWP)
x′(t) = f(t, x(t)), t ∈ [a, b]

x(t0) = x02. x ist stetig und erfüllt die Integralglei
hung
x(t) = x0 +

∫ t

t0

f(τ, x(τ))dτ, t ∈ [a, b]. (3.3)Beweis: 1 =⇒ 2: Sei x′(t) = f(t, x(t)), x(t0) = x0 eine Lösung des Anfangswert-problemes. Na
h dem Hauptsatz der Di�erential- und Integralre
hnung giltdann
x(t) = x(t0) +

∫ t

t0

x′(τ)dτ

= x0 +

∫ t

t0

f(τ, x(τ))dτ.

2 =⇒ 1: Sei nun x(t) = x0 +
∫ t

t0
f(τ, x(τ))dτ . Da f und x beide stetig sind, ist

∫ t

t0
f(τ, x(τ))dτ stetig na
h t di�erenzierbar. Also ist x stetig di�erenzierbarund die Ableitung von x ist gegeben dur
h

x′(t) =
d

dt

∫ t

t0

f(τ, x(τ))dτ = f(t, x(t))na
h dem Hauptsatz der Di�erential- und Integralre
hnung. Weiter gilt:
x(t0) = x0 +

∫ t0

t0

f(τ, x(τ))dτ = x0 QEDWozu hilft uns dieses Lemma? Der Vorteil liegt darin, dass wir dur
h die Inte-gralglei
hung eine Fixpunktglei
hung in der unbekannten Funktion x gefundenhaben. Diese sieht wie folgt aus:Wir de�nieren den Operator F , den wir auf x : I → Rd anwenden wollen dur
h
(F (x))(t) := x0 +

∫ t

t0

f(τ, x(τ))dτ.Dann kann man die Integralglei
hung (3.3) s
hreiben als
x(t) = (F (x))(t)67



oder, kürzer, als
x = F (x).Unsere gesu
hte Lösung x kann also als die Lösung einer Fixpunktglei
hung ineinem unendli
h dimensionalen Raum aufgefasst werden. Wir wollen darauf nunden Bana
h's
hen Fixpunktsatz anwenden. Dieser wurde in Numerik I behan-delt. Zur Wiederholung erinnern wir daran, dass jeder vollständige und normierteRaum ein Bana
h-Raum ist, und dass für eine Teilmenge U eines Bana
hrau-mes X eine Abbildung Φ : U → X kontrahierend ist, falls es einen reellenKontraktionsfaktor q < 1 so gibt, dass

‖Φ(x) − Φ(y)‖ ≤ q‖x − y‖ für alle x, y ∈ U.Der Bana
h's
he Fixpunktsatz lautet wie folgt:Satz 3.9 (Bana
h's
her Fixpunktsatz) Sei X ein Bana
h-Raum mit Norm
‖ · ‖ und U ⊆ X eine abges
hlossene Teilmenge von X. Sei weiterhin F : U →
U eine kontrahierende Abbildung mit Kontraktionsfaktor q < 1. Dann hat dieFixpunktglei
hung F (x) = x einen eindeutigen Fixpunkt x∗.Für den Beweis verweisen wir auf die Vorlesung Numerik I.Im Folgenden bezei
hne ‖ ·‖2 die Euklidis
he Norm. Wir erinnern an die folgendeBezei
hnung.Notation 3.10

• Sei f : D → Rd, D ⊆ Rd+1. f ist Lips
hitzstetig bezügli
h seinerletzten d Variablen, falls zu jedem (t0, x0) ∈ D eine Umgebung U :=
U(t0, x0) ⊆ D und eine Konstante L = L(t0, x0) so existiert, dass

‖f(t, x) − f(t, y)‖2 ≤ L‖x − y‖2 für alle (t, x), (t, y) ∈ U.

• Sei f : D → Rd, D = I × Rd. f ist global Lips
hitzstetig bezügli
hseine letzten d Variablen, falls es eine Konstante L > 0 so gibt, dass
‖f(t, x) − f(t, y)‖2 ≤ L‖x − y‖2 für alle t ∈ I und x, y ∈ Rd.Damit formulieren wir nun das Hauptergebnis dieses Abs
hnitts.Satz 3.11 (Satz von Pi
ard-Lindelöf) Sei D ⊆ Rd+1 o�en und sei f : D →

Rd stetig und bezügli
h der letzten d Variablen Lips
hitzstetig. Dann existiert zujedem (t0, x0) ∈ D eine Umgebung I von t0, auf der das Anfangswertproblem
x′(t) = f(t, x(t)), x(t0) = x0eindeutig lösbar ist. 68



Bemerkung: Der Satz liefert nur die lokale Existenz von Lösungen, also auf klei-nen Intervallen für t um t0.Beweis: Seien (t0, x0) ∈ D gegeben. Weil f Lips
hitzstetig ist, existiert Ū :=
U(t0, x0) ⊆ D und L = L(t0, x0) so, dass

‖f(t, x) − f(t, y)‖2 ≤ L‖x − y‖2, für alle (t, x), (t, y) ∈ Ū .Wir wählen nun α, β > 0 so, dass für
Iα = {t ∈ R : |t − t0| ≤ α} = [t0 − α, t0 + α]und Bβ = {x ∈ Rd : ‖x − x0‖2 ≤ β}gilt:

Iα × Bβ ⊆ Ū .Da f stetig auf der kompakten Menge Iα × Bβ ist, existiert
M := max

(t,x)∈Iα×Bβ

‖f(t, x)‖2.

Ū

Iα × BβWir wählen α∗ mit
0 < α∗ ≤ min

(
β

M
, α

)

,d.h. α∗ > 0, α∗ ≤ α und α∗M ≤ β. Sei weiterhin
I∗ := [−α∗ + t0, α

∗ + t0].Wir wollen den Bana
h's
hen Fixpunktsatz anwenden und wählen dazu
• als Bana
hraum: X := C(I∗, Rd) als Menge der stetigen Funktionen von I∗na
h Rd,
• als Norm

‖x‖B := sup
t∈I∗

e−2L|t−t0|‖x(t)‖2, für alle x ∈ X,

• als Teilmenge U den Unterraum
U := {x ∈ X : sup

t∈I∗
‖x(t) − x0‖2 ≤ β}69



• und als Abbildung F : U → X, x 7→ F (x) den vorhin s
hon genanntenOperator F , der dur
h
(F (x))(t) := x0 +

∫ t

t0

f(τ, x(τ))dτde�niert ist.Jetzt überprüfen wir die Voraussetzungen des Bana
hs
hen Fixpunktsatzes.1) X ist Vektorraum. Es ist lei
ht zu zeigen, dass ‖ · ‖B Norm auf X ist. Dass
X vollständig ist, kann man mit Methoden der Analysis na
hre
hnen.2) U ist abges
hlossen. Sei dazu (xn) mit xn ∈ U eine Folge, die bezügli
h
‖ · ‖B (glei
hmäÿig) gegen x ∈ X konvergiert.Wir wollen zeigen, dass x ∈ U . Dazu bere
hnen wir:

‖x(t) − x0‖2 = ‖ lim
n→∞

xn(t) − x0‖2 = lim
n→∞

‖xn(t) − x0‖2,denn die Normfunktion ist stetig. Weil xn, x0 ∈ U ist, gilt weiter
‖xn(t) − x0‖2 ≤ β für alle t ∈ I∗ und alle n ∈ N,also

‖x(t) − x0‖2 = lim
n→∞

‖xn(t) − x0‖2
︸ ︷︷ ︸

≤β ∀n

≤ β für alle t ∈ I∗.Es folgt: x ∈ U .3) Sei F : U → U , sei x ∈ U . Dann ist F (x) ∈ X. Wir wollen zeigen, dass
F (x) ∈ U , d.h.

sup
t∈I∗

‖(F (x))(t) − x0‖2 ≤ βund bere
hnen dazu:
‖(F (x))(t) − x0‖2 =

∥
∥
∥
∥

∫ t

t0

f(τ, x(τ))dτ

∥
∥
∥
∥

2

≤ |t − t0| + max
t̃∈I∗,x̃∈Bβ

‖f(t̃, x̃)‖2 (3.4)
≤ α∗
︸︷︷︸

t,t0∈I∗

· M
︸︷︷︸Def.von M

≤ β
︸︷︷︸Def.von α∗

für alle t ∈ I∗.In Abs
hätzung (3.4) darf man über der Menge t̃ ∈ I∗, x̃ ∈ Bβ maximieren,weil
• mit t, t0 ∈ I∗ das ganze Intervall zwis
hen t und t∗ in I∗ liegt, und weil70



• aus x ∈ U folgt, dass ‖x(τ) − x0‖2 ≤ β und entspre
hend {x(τ) : τ ∈
[t0, t]} ⊆ Bβ.Also folgt: F (x) ∈ U .4) F ist Kontraktion. Wähle x, y ∈ U und betra
hte

e−2L|t−t0|‖(F (x))(t) − (F (y))(t)‖2. (3.5)Der Übersi
ht halber betra
hten wir zunä
hst nur:
‖(F (x))(t) − (F (y))(t)‖2

=

∥
∥
∥
∥

∫ t

t0

f(τ, x(τ)) − f(τ, y(τ))dτ

∥
∥
∥
∥

2

≤ sign(t − t0)

∫ t

t0

‖f(τ, x(τ)) − f(τ, y(τ))‖2 dτ

≤ L sign(t − t0)

∫ t

t0

‖x(τ) − y(τ)‖2dτ

≤ L sign(t − t0)

∫ t

t0

e2L|τ−t0| e−2L|τ−t0|‖x(τ) − y(τ)‖2
︸ ︷︷ ︸

≤‖x−y‖B

dτ

≤ L sign(t − t0)

∫ t

t0

e2L|τ−t0|dτ‖x − y‖B

≤ L sign(t − t0)

[
1

2L
e2L|t−t0|

]t

t0

‖x − y‖B

= L sign(t − t0)
1

2L
sign(t − t0)(e

2L|t−t0| − 1)‖x − y‖B

=
1

2
(e2L|t−t0| − 1)‖x − y‖B.Dieses setzen wir jetzt in (3.5) ein und erhalten

e−2L|t−t0|‖(F (x))(t) − (F (y))(t)‖2

≤ 1
2
‖x − y‖B

(

1 − e−2L|t−t0|
︸ ︷︷ ︸

≥0
︸ ︷︷ ︸

≤1

)

≤ 1
2
‖x − y‖B,also gilt

‖F (x) − F (y)‖B = sup
t∈I∗

e−2L|t−t0|‖(F (x))(t) − (F (y))(t)‖2

≤ 1
2
‖x − y‖B,d.h. F ist Kontraktion mit q = 1

2
.71



Somit sind alle Voraussetzungen des Bana
hs
hen Fixpunktsatzes erfüllt und wirerhalten:
x = F (x) besitzt eine eindeutige Lösung in U.Abs
hlieÿend müssen wir no
h auss
hlieÿen, dass F no
h einen weiteren Fixpunkt

y ∈ X mit {(t, y(t)) : t ∈ I∗} ⊆ D besitzt, der ni
ht in U liegt. Dazu ersetzen wirim vorhergehenden Beweis β dur
h β/2 und erhalten wie unter Punkt 2):
‖x(t) − x0‖2 ≤

β

2
für |t − t0| ≤ α̃ := min

(
β

2M
, α

)

.Sei weiterhin unser �neues� U

Ũ = {x ∈ X : sup
t:|t−t0|<α̃

‖x(t) − x0‖2 ≤ β/2}.Angenommen, so ein Fixpunkt y ∈ X \ Ũ existiert und löst damit (AWP). Wegen
y(t0) = x0 gibt es α∗∗ mit 0 < α∗∗ < α̃ und

‖y(t) − x0‖ ≤ β für |t − t0| < α∗∗.sowie x(t) 6= y(t) für mindestens ein t∆ mit |t∆ − t0| < α∗∗. Weil ‖x(t) − x0‖ ≤
β/2 ≤ β für alle |t − t0| < α̃,

| | ||

t0 − α̃ t∆ t0 t0 + α̃

‖y(t) − x0‖2 ≤ β

‖x(t) − x0‖2 ≤ β/2 ≤ β

∃t∆ : x(t∆) 6= y(t∆)gäbe es aber auf I∗∗ := [−α∗∗ + t0, α
∗∗ + t0] zwei vers
hiedene Lösungen x, y derFixpunktglei
hung, die beide in

U∗∗ = {x ∈ X : sup
t∈I∗∗

‖x(t) − x0‖2 ≤ β}liegen, was na
h dem Bana
hs
hen Fixpunktsatz ni
ht sein kann. QEDDie globale Existenz einer Lösung liefert der folgende Satz:Satz 3.12 Sei I ⊆ R ein Intervall, sei D = I ×Rd und sei f : D → Rd bezügli
hder letzten d Variablen global Lips
hitzstetig. Dann besitzt das Anfangswertpro-blem x′(t) = f(t, x(t)), x(t0) = x0 für alle (t0, x0) ∈ D eine eindeutige Lösung
x : I → Rd. 72



Beweis: Im Beweis des Satzes von Pi
ard-Lindelöf setzen wir Iα = I∗ = I undwählen als Teilmenge U den ganzen Bana
hraum, also U = X. Die Konstanten
α, α∗, β, M werden nun ni
ht mehr benötigt. Die Details werden hier ni
ht aus-geführt. QEDBeispiel: Wir untersu
hen die Voraussetzungen der Sätze 3.11 und 3.12 am zwei-ten Beispiel auf Seite 65,

x′(t) = (x(t))2

x(0) = 1.Wir erhalten f(t, x) = x2 und entspre
hend
‖f(t, x) − f(t, y)‖2 = |x2 − y2| = |x + y| · |x − y| ≤ L · |x − y| für alle x, y ∈ Ifalls

L ≥ |x + y| für alle x, y ∈ Igilt.Das ist auf jedem bes
hränkten Intervall erfüllt, ni
ht aber auf I = [0,∞) oder auf
I = R. Das Anfangswertproblem erfüllt daher die Voraussetzungen von Satz 3.11,aber ni
ht die von Satz 3.12, was zu dem so genannten �blow up� E�ekt führt.Unter den Voraussetzungen von Satz 3.12 kann dieser �blow up� E�ekt ni
htauftreten.Bemerkung: Für lineare Di�erentialglei
hungen

x′(t) = A(t)x(t) + g(t)mit t ∈ I und f(t, x) = A(t)x + g(t) erhält man
‖f(t, x) − f(t, y)‖2 = ‖A(t)x + g(t) − A(t)y − g(t)‖2

= ‖A(t)(x − y)‖2 ≤ ‖A(t)‖2‖x − y‖2

≤ L‖x − y‖2,falls L := supt∈I ‖A(t)‖2 < ∞.Die Voraussetzungen von Satz 3.12 sind für lineare Di�erentialglei
hungen alsoerfüllt, falls
sup
t∈I

‖A(t)‖2 < ∞.Das gilt insbesondere auf jedem kompakten Intervall I.73



Der Bana
h's
he Fixpunktsatz liefert ni
ht nur theoretis
he Aussagen über Exis-tenz und Eindeutigkeit, sondern mit dem Verfahren der sukzessiven Approxi-mation au
h ein konvergentes Verfahren zur Bestimmung des Fixpunktes. DiesesVerfahren lässt dur
h folgenden Iterationss
hritt (so genannte Pi
ard-Iterationen)auf Anfangswertprobleme anwenden:
x(n+1)(t) := x(n)(t0) +

∫ t

t0

f(τ, x(n)(τ))dτAls Startwert kann man z.B. x(0)(t) := x0 wählen � das resultierende Verfahrenist allerdings dur
h die dazu nötige numeris
he Auswertung der zahlrei
h auftre-tenden Integrale ine�zient und wird in der Praxis fast ni
ht verwendet.Satz 3.13 (Globale Eindeutigeit) Sind die Voraussetzungen von Satz 3.11 er-füllt und sind x und y Lösungen des (AWP)
x′(t) = f(t, x(t))

x(t0) = x0.auf einem beliebigen Intervall I mit t0 ∈ I, so gilt x(t) = y(t) für alle t ∈ I.Beweis: Sei I = [a, b], t0 ∈ I und seien x und y Lösungen des (AWP). Wähle
I ′ ⊆ I als das längste Intervall mit x(t) = y(t) für alle t ∈ I ′.Wir mö
hten zeigen, dass I = I ′.Angenommen, dies ist gilt ni
ht, dann sei I ′ = [a′, b′] ⊂ I. Dann ist ohne Be-s
hränkung der Allgemeinheit b′ < b. Wir betra
hten das neue (AWP')

z′(t) = f(t, z(t))

z(b′) = x(b′).Na
h Satz 3.11 existiert eine Umgebung U = (b′ − α, b′ + α) mit α > 0 auf der(AWP') eindeutig lösbar ist. Weil x und y beides Lösungen für (AWP') sind, folgtalso x(t) = y(t) für alle t ∈ U . Das ist ein Widerspru
h zur Maximalität von I ′.QEDAbs
hlieÿend geben wir no
h ein Kriterium an, anhand dessen man die geforderteLips
hitz-Bedingung von Satz 3.11 na
hweisen kann.Lemma 3.14 Ist f : I × Rd → Rd bezügli
h x stetig partiell di�erenzierbar, soerfüllt f die Lips
hitz-Bedingung des Satzes 3.11 für alle (t0, x0) ∈ I × Rd .Beweis: (Verglei
he au
h den Beweis von Lemma 5.7 aus Numerik I).Weil f bezügli
h x stetig partiell di�erenzierbar ist, existiert der Gradient
Dxf(t, x) : R × Rd → (Rd)∗74



und es gilt L := sup(t,x)∈Ū (t0,x0) ‖Dxf(t, x)‖2 < ∞, wenn die Umgebung Ū kom-pakt gewählt wird. Wählt man Ū zusätzli
h konvex, so kann man mittels
g(ξ) := f(t, x + ξ(y − x))folgern, dass

‖f(t, y) − f(t, x)‖2 = ‖g(1) − g(0)‖2 =

∥
∥
∥
∥

∫ 1

0

g′(τ)dτ

∥
∥
∥
∥

=

∥
∥
∥
∥

∫ 1

0

Dxf(t, x + τ(y − x)) · (y − x)dτ

∥
∥
∥
∥

2

multivariate Kettenregel
≤

∫ 1

0

‖Dxf(t, x + τ(y − x))‖2 · ‖y − x‖2dτ

≤
∫ 1

0

L‖y − x‖2dτ = L‖y − x‖2. QEDDie Aussage von Satz 3.11 nutzen wir nun, um die Evolution zu de�nieren.De�nition 3.15 Sei D ⊆ Rd+1 o�en, f : D → Rd stetig und Lips
hitzstetigbezügli
h der letzten d Variablen. Seien t0, t ∈ I und |t − t0| hinrei
hend klein.Dann de�niert man eine zweiparametrige Funktion
Φt,t0 : Rd → Rddur
h Φt,t0(x0) := x(t), wobei x(t) die eindeutige (lokale) Lösung des Anfangs-wertproblemes

x′(t) = f(t, x(t))

x(t0) = x0ist. Man nennt Φ die Evolution der Di�erentialglei
hung x′(t) = f(t, x(t)).
Φt,t0 bildet den Wert der Lösung x zur Zeit t0 auf den Wert der glei
hen Lösungzur Zeit t ab.Beispiel: Betra
hte x′(t) = (x(t))2, also f(t, x) = x2. Dann ist die eindeutige(lokale) Lösung zu (t0, x0) mit t0 = 0, x0 > 0 gegeben dur
h

x(t) =
x0

1 − tx0
, für t <

1

x0
.Für die Evolution gilt entspre
hend im Fall t > 0

Φt,0(x0) =
x0

1 − tx0
für x0 <

1

t
.75



Lemma 3.16 Die Evolution Φ der Di�erentialglei
hung x′(t) = f(t, x(t)) besitztdie folgenden Eigens
haften:(Ev1) Φt0,t0(x0) = x0(Ev2) ∂
∂τ

Φt+τ,t(x0)|τ=0 = f(t, x0)(Ev3) Φt2,t0(x0) = Φt2,t1(Φt1,t0(x0))für alle (t0, x0) ∈ D und |t1 − t0|, |t2 − t0| und |t − t0| hinrei
hend klein.Weiter ist Φ dur
h diese drei Bedingungen eindeutig 
harakterisiert.Beweis: (Ev1) gilt weil Φt0,t0(x0) = x(t0) = x0.(Ev2) Seien x0, t fest. Sei x die Lösung des Anfangswertproblemes zum Startwert
(t, x0). De�niere

g(τ) := Φt+τ,t(x0) = x(t + τ).Dann gilt
∂

∂τ
Φt+τ,t(x0) = g′(τ) = x′(t + τ) = f(t + τ, x(t + τ))

=⇒ ∂

∂τ
Φt+τ,t(x0)|τ=0 = g′(0) = f(t, x(t)) = f(t, x0)(Ev3) Sei x Lösung von

x′(t) = f(t, x(t))

x(t0) = x0,das heiÿt Φt,t0(x0) = x(t) für alle t nahe genug an t0. Damit gilt:
Φt2,t1(Φt1,t0(x0)) = Φt2,t1(x(t1))

= x(t2) = Φt2,t0(x0),wobei die vorletzte Glei
hheit gilt, weil für t2 − t0 hinrei
hend klein x au
hLösung ist von dem Anfangswertproblem
y′(t) = f(t, y(t))

y(t1) = x(t1).(Eindeutigkeit) Sei Ψt,t0 : Rd → Rd eine Funktion, die ebenfalls die drei Be-dingungen (Ev1),(Ev2) und (Ev3) erfüllt. Sei (t0, x0) beliebig. De�niere
x(t) := Ψt,t0(x0).76



Dann gilt
x′(t) =

∂

∂τ
Ψt+τ,t0(x0)|τ=0

=
∂

∂τ

(
Ψt+τ,t

(
Ψt,t0(x0)

))
|τ=0 wegen (Ev3)

= f(t, Ψt,t0(x0)) wegen (Ev2)
= f(t, x(t))und wegen (Ev1) ist auÿerdem x(t0) = Ψt0,t0(x0) = x0. Also ist na
hSatz 3.11

x(t) = Φt,t0(x0)die eindeutige (lokale) Lösung des Anfangswertproblemes
x′(t) = f(t, x(t))

x(t0) = x0,und entspre
hend gilt Ψt,t0(x0) = Φt,t0(x0) für alle (t0, x0) ∈ D und alle tmit |t − t0| hinrei
hend klein. QEDAbs
hlieÿend führen wir no
h den Begri� der Stabilität ein. Dieser gibt an, wiestark si
h zwei Lösungen x(t) und y(t) derselben Di�erentialglei
hung unters
hei-den, wenn die Anfangswerte x(t0) und y(t0) nur wenig voneinander abwei
hen.Dabei interessieren wir uns für die Zukunft, d.h. nur für Werte t ≥ t0.De�nition 3.17 Sei D ⊂ Rd, t0 ∈ R. Die Funktion f : [t0,∞] × D erfüllt eineeinseitige Lips
hitz-Bedingung mit Konstante L+ = L+(t) ∈ R, falls
(x − y)T (f(t, x) − f(t, y)) ≤ L+‖x − y‖2

2 ∀x, y ∈ Dund für alle t ∈ [t0,∞]. Kann L+ ≤ 0 gewählt werden, so nennt man f und diezugehörige Di�erentialglei
hung x′ = f(t, x) dissipativ.Bemerkung: Aus globaler Lips
hitzstetigkeit für t ≥ t0 folgt die einseitige Lips
hitz-Bedingung.Dieses zeigen wir im Folgenden.Sei ‖f(t, x) − f(t, y)‖ ≤ L · ‖x − y‖ für alle x, y ∈ D und alle t ≥ t0. Dann giltna
h der Cau
hy-S
hwarzs
hen Unglei
hung:
(x − y)T (f(t, x) − f(t, y)) ≤ ‖x − y‖2 · ‖f(t, x) − f(t, y)‖2

≤ L+ · ‖x − y‖2
2 mit L+ = L.Die Umkehrung gilt aber ni
ht, wie das folgende Beispiel zeigt.77



Beispiel: f(t, x) = −x erfüllt die einseitige Lips
hitz-Bedingung mit L+ = −1,denn
(x − y)(f(t, x) − f(t, y)) = (x − y)(y − x) = −(x − y)2 = −‖x − y‖2

2.Dagegen ergibt die globale Lips
hitz-Bedingung
|f(t, x) − f(t, y)| = |y − x| ≤ L · |y − x|,gilt also nur für L ≥ 1.Satz 3.18 Erfüllt f : [0,∞] × D → Rd eine einseitige Lips
hitz-Bedingung mitKonstante L+, so gilt für die Evolution Φ von x′ = f(t, x):

‖Φt,t0(x0) − Φt,t0(y0)‖2 ≤ eL+(t−t0)‖x0 − y0‖2.Für dissipative Systeme gilt insbesondere, dass
‖Φt,t0(x0) − Φt,t0(y0)‖2 ≤ ‖x0 − y0‖2.Beweis: siehe Übungen.3.3 Eins
hritt-Verfahren3.3.1 GrundlagenObwohl eine Lösung bei stetigen Eingangsdaten immer existiert, ist sie im Allge-meinen selbst bei skalaren Di�erentialglei
hungen mit d = 1 ni
ht in ges
hlossenerForm darstellbar. Meist ist f au
h nur dur
h Messwerte gegeben.Die Grundidee der numeris
hen Lösung von Anfangswertproblemen ist, die Lö-sung x näherungsweise an diskreten Punkten zu ermitteln:gesu
ht werden Näherungswerte an den gesu
hten Vektor x(t) für t ∈

∆ := {t0, t1, . . . , tN} mit t0 < t1 < . . . < tN = T auf dem Intervall
[t0, T ].Notation 3.19 ∆ := {t0, t1, . . . , tN} mit t0 < t1 < . . . < tN = T heiÿt Gitterauf [t0, T ]. Die Werte Tj := tj+1 − tj nennt man S
hrittweiten. Die Feinheitdes Gitters ist gegeben dur
h

τ∆ := max
j=0,...,N−1

Tj.78



Gesu
ht ist dann eine Gitterfunktion x∆ : ∆ → Rd, wel
he die Lösung von
x′(t) = f(t, x(t)), x′(t0) = x0 auf dem Gitter mögli
hst gut approximiert.Bei Eins
hritt-Verfahren ermittelt man x∆ dur
h eine Zwei-Term-Rekursion:

x∆(tj) → x∆(tj+1),das heiÿt in die Bere
hnung von x∆(tj+1) geht nur x∆(tj) ein, keine Werte von
ti mit i < j. Dagegen gehen bei Mehr-Term-Rekursionen mehrere Werte in dieBere
hnung von x∆(tj+1) mit ein, genauer für m ∈ N:

x∆(tj), . . . , x∆(tj−m) → x∆(tj+1).Diese Rekursionen führen zu Mehrs
hritt-Verfahren.Im Folgenden wird die Evolution Φ der Di�erentialglei
hung dur
h eine diskreteEvolution Ψ ersetzt.korrekte Evolution:
x(tj+1) = Φtj+1,tj (x(tj))

x(t0) = x0

Approximation dur
h diskrete Evolution:
x∆(tj+1) := Ψtj+1,tj (x∆(tj))

x∆(t0) := x03.3.2 BeispieleUm Eins
hritt-Verfahren herzuleiten benutzt man die Integraldarstellung des An-fangswertproblems aus Lemma 3.8:
x(t0 + τ) = x0 +

∫ t0+τ

t0

f(t, x(t))dt. (3.6)Explizites Euler-VerfahrenSeien zunä
hst
tj := t0 + j · τäquidistante Gitterpunkte. Man approximiert x(tj) aus (3.6) nun iterativ wiefolgt:

x(t1) = x(t0 + τ) = x0 +

∫ t0+τ

t0

f(t, x(t)
︸︷︷︸unbekannt)dt,Um das Integral abzus
hätzen, verwendet man die Re
hte
k-Regel mit Funkti-onsauswertung am linken Randpunkt und erhält:

∫ t0+τ

t0

f(t, x(t))dt ≈ τ · f(t0, x0).79



Das ergibt
x(t1) ≈ x0 + τ · f(t0, x0)bzw. für unsere Approximationsfunktion

x∆(t1) = x0 + τ · f(t0, x0).Diese Formel ergibt si
h alternativ au
h aus dem Di�erenzenquotienten dur
h
x(t0+τ)−x(t0)

τ
≈ x′(t0) = f(t0, x0).Ist nun x(t1) approximativ bekannt, erhält man

x(t2) = x(t1) +

∫ t1+τ

t1

f(t, x(t))dt

≈ x∆(t1) + τ · f(t1, x∆(t1)) =: x∆(t2)und rekursiv
x∆(tj+1) = x∆(tj) + τ · f(tj, x∆(tj)).Die diskrete Evolution ergibt si
h entspre
hend zu

Ψt+τ,tE-Euler(x) = x + τ · f(t, x).Etwas allgemeiner ist es mit τi := ti+1 − ti ni
ht mehr nötig, äquidistante Stütz-stellen zu verwenden. Man erhält
x∆(tj+1) = Ψ

tj+1,tjE-Euler(x∆(tj)) := x∆(tj) + τj · f(tj , x∆(tj)).Interpretation:Um den Wert x∆(tj+1) an tj+1 zu bestimmen, verwendet man denWert in x∆(tj)+τj ·x′(tj , x∆(tj)), also den Startwert und die Steigungan dem Ausgangspunkt (tj, x∆(tj)).Im skalaren Fall nennt man das explizite Euler-Verfahren daher au
h Polygonzug-Verfahren.
| | | |

+

+

+

+

t0 t1 t2 t3

x0

x∆(t1)

x∆(t2)

x∆(t3)

b

b

b

b
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Beispiel: Sei folgendes Problem gegeben:
x′(t) = (x(t))2

x(0) = 1

f(t, x) = x2

∆ = {0, 1
2
, 1, 3

2
}Dann erhält man

x∆(t1) = x0 + 1
2
· f(0, x0) = 1 + 1

2
· 1 = 3

2

x∆(t2) = x∆(t1) + 1
2
· f(t1, x∆(t1)) = 3

2
+ 1

2
· 9

4
= 12

8
+ 9

8
= 21

8
= 2, 625

x∆(t3) = x∆(t2) + 1
2
· f(t2, x∆(t2)) = 21

8
+ 1

2
·
(

21
8

)2 ≈ 6, 07.

| | | | | | | | |

+

+

+

+

+

+

1
2

1 3
2

2 3 4 5 6 72

1

2

3

4

5

6

b

b

b

b

(t1, x1)

(t2, x2)

Die Steigung an t0 ist 1

Die Steigung an t1 ist (3
2

)2
= 2, 25

Implizites Euler-VerfahrenDas implizite Euler-Verfahren entsteht, wenn man das Integral dur
h dieRe
hte
k-Regel am re
hten Randpunkt approximiert:
∫ tj+τj

tj

f(t, x(t))dt ≈ τj · f(tj + τj , x(tj + τ)).Man erhält:
x∆(tj+1) = Ψ

tj+1,tjI-Euler(x∆(tj)) = x∆(tj)
︸ ︷︷ ︸bekannt +τj · f(tj+1, x∆(tj+1)

︸ ︷︷ ︸unbekannt ).Um x∆(tj+1) zu bestimmen, muss also ein (ni
htlineares) Glei
hungssystem mit
d Unbekannten und d Glei
hungen gelöst werden � und das in jedem S
hritt!81



Euler-Heun-VerfahrenWählt man statt der Re
hte
k-Regel die Trapez-Regel zur Integralauswertung,so erhält man die Näherung:
∫ tj+τj

tj

f(t, x(t))dt ≈ tj ·
f(tj, x(tj)) + f(tj + τj , x(tj + τj))

2und es ergibt si
h
x∆(tj+1)
︸ ︷︷ ︸unbekannt = Ψ

tj+1,tjE-Heun(x∆(tj)) := x∆(tj)+
τj

2
(f(tj, x∆(tj))+f(tj+1, x∆(tj+1)

︸ ︷︷ ︸unbekannt ). (3.7)Au
h dieses Verfahren ist implizit, weil in jedem Zeits
hritt der Vektor x∆(tj+1)aus einem (ni
htlinearen) Glei
hungssystem ermittelt werden muss. In diesemFall kann man dazu das Verfahren der sukzessiven Approximation benutzen:Lemma 3.20 Die Funktion f(t, x) sei Lips
hitzstetig bezügli
h x mit Lips
hitz-konstante L. Sei weiter L · τj < 2 für alle j = 0, . . . , N − 1. Dann lässt si
h dasGlei
hungssystem (3.7) dur
h sukzessive Approximation
x

(m+1)
∆ (tj+1) := x∆(tj) +

τj

2

[

f(tj , x∆(tj)) + f(tj+1, x
(m)
∆ (tj+1))

]

, m ∈ N0lösen.Beweis: Die Fixpunktglei
hung lautet x = g(x) mit
g(x) = x∆(tj) +

τj

2
[f(tj , x∆(tj)) + f(tj+1, x)]in jedem S
hritt j. Wir müssen na
hweisen, dass g eine Kontraktion ist. Es gilt:

‖g(x) − g(x̃)‖2 =
τj

2
‖f(tj+1, x) − f(tj+1, x̃)‖2 ≤

τj

2
· L · ‖x − x̃‖2

= q · ‖x − x̃‖2 mit q =
τj

2
· L < 1. QEDPrädiktor-Korrektor Variante von Euler-HeunHier kombiniert man das explizite Euler-Verfahren und das Euler-Heun Verfahrenmit jeweils einem Iterationss
hritt der sukzessiven Approximation na
h Lemma3.20 wie folgt:Im j-ten S
hritt: 82



• bestimme den Startwert (Prädiktor) na
h E-Euler:
x̃∆(tj+1) := x∆(tj) + τj · f(tj, x∆(tj)) (Prädiktor)

• Wähle x̃∆(tj+1) als Startwert für die sukzessive Approximation von Euler-Heun und führe darin genau einen S
hritt der sukzessiven Approximationna
h Lemma 3.20 aus (Korrektor-S
hritt):
x∆(tj+1) = Ψ

tj+1,tjPre-Kor-V(x∆(tj)) = x∆(tj)+
τj

2

[

f(tj, x∆(tj))+f(tj+1, x̃∆(tj+1)
︸ ︷︷ ︸aus (Prädiktor))].Das Verfahren errei
ht gewöhnli
h eine höhere Genauigkeit als das explizite Euler-Verfahren.3.3.3 Konsistenz und EindeutigkeitWir untersu
hen nun das Konvergenzverhalten von Eins
hritt-Verfahren theore-tis
h. Dazu fordern wir zunä
hst die ersten beiden der drei Eigens
haften einerEvolution (aus Lemma 3.16) au
h für die diskrete Evolution Ψ.De�nition 3.21 Eine diskrete Evolution Ψ heiÿt konsistent zur Di�erential-glei
hung x′ = f(t, x), falls für alle (t0, x0) ∈ D gilt:

Ψt0,t0(x0) = x0 (3.8)und d

dτ
Ψt0+τ,t0(x0)|τ=0 = f(t0, x0). (3.9)Ein Eins
hritt-Verfahren heiÿt konsistent, falls es jeder hinrei
hend glatten Funk-tion f eine konsistente diskrete Evolution Ψ[f ] zuordnet.Zwei äquivalente Konsistenzkriterien sind die folgenden.Lemma 3.22 Die diskrete Evolution Ψt0+τ,t0(x0) sei für alle (t0, x0) ∈ D undhinrei
hend kleines τ di�erenzierbar. Dann sind die folgenden Aussagen äquiva-lent:(i) Ψ ist konsistent.(ii) Es gibt eine bezügli
h τ stetige Verfahrensfunktion φ = φ(t0, x0, τ) mit denEigens
haften:

Ψt0+τ,t0(x0) = x0 + τ · φ(t0, x0, τ) (3.10)
φ(t0, x0, 0) = f(t0, x0) (3.11)83



(iii) Es gilt:
lim
τ→0

1

τ

∥
∥Ψt0+τ,t0(x0) − Φt0+τ,t0(x0)

∥
∥ = 0. (3.12)Beweis:

(i) =⇒ (ii): Sei Ψ konsistent. De�niere
φ(t0, x0, τ) :=

{
1
τ

(Ψt0+τ,t0(x0) − x0) falls τ 6= 0.
f(t0, x0) falls τ = 0Dann sind (3.10) und (3.11) direkt erfüllt und es muss nur die Stetigkeitvon φ gezeigt werden. Dazu betra
hten wir

lim
τ→0

1

τ

(
Ψt0+τ,t0(x0) − x0

)
= lim

τ→0

Ψt0+τ,t0(x0) − Ψt0,t0(x0)

τ
, wegen (3.8)

= ∂
∂τ

Ψt0+τ,t0(x0)|τ=0, wegen (3.9)
= f(t0, x0),also ist φ stetig.

(ii) =⇒ (iii): Sei φ eine Verfahrensfunktion, die (3.10) und (3.11) erfüllt. Danngilt
lim
τ→0

1

τ
‖Ψt0+τ,t0(x0) − Φt0+τ,t0(x0)‖

= lim
τ→0

∥
∥
∥
∥

Ψt0+τ,t0(x0) − x0

τ
− Φt0+τ,t0(x0) − x0

τ

∥
∥
∥
∥

= ‖φ(t0, x0, 0) − f(t0, x0)‖ wegen (3.10) und [Ev2℄ im Lemma 3.16
= 0 wegen (3.11)

(iii) =⇒ (i): Sei nun (3.12) erfüllt. Eine Taylorentwi
klung bis zum Grad 1 liefertwegen [Ev2℄
Φt0+τ,t0(x0) = x0 + τf(t0, x0) + o(τ) für τ → 0.Weiter ist Ψ na
h Voraussetzung für hinrei
hend kleines τ di�erenzierbarbezügli
h τ . Das ergibt

Ψt0+τ,t0(x0) = Ψt0,t0(x0) + τ ∂
∂τ

Ψt0+τ,t0(x0)|τ=0 + o(τ) für τ → 0.Für τ → 0 sind die linken Seiten dieser beiden Glei
hungen wegen (3.12)glei
h, also au
h die re
hten Seiten und dur
h einen Koe�zientenverglei
hfolgt x0 = Ψt0,t0(x0) und f(t0, x0) = ∂
∂τ

Ψt0+τ,t0 |τ=0; (3.8) und (3.9) geltenalso und Ψ ist konsistent. QED84



Ist eine diskrete Evolution konsistent, so ist der lokale Fehler, den wir in jedemS
hritt bei der Bere
hnung der Gitterfunktion ma
hen, klein. Interessanter istaber der globale Fehler
max
t∈∆

‖x∆(t) − x(t)‖,der mögli
hst klein sein soll � zumindest wenn das Gitter ∆ fein genug ist.Notation 3.23 Ein Eins
hritt-Verfahren heiÿt konvergent, falls
lim
τ→0

sup
∆:τ∆=τ

max
t∈∆

‖x∆(t) − x(t)‖ = 0Dabei bezei
hnet τ∆ = maxj=0,...,N−1 tj+1 − tj wie s
hon zu Beginn des Abs
hnit-tes 3.3.1 die Feinheit des Gitters ∆ = {t0, . . . , tN}.Der folgende Satz zeigt, dass aus der Konsistenz unter einer zusätzli
hen Sta-bilitätsannahme die Konvergenz von Eins
hritt-Verfahren folgt. Dabei müssenwir die Konsistenzbedingung allerdings verstärken: Wir verwenden (3.12) undverlangen, dass die Bedingung glei
hmäÿig erfüllt ist, also für alle x(t) auf derLösungskurve.Satz 3.24 Die diskrete Evolution Ψ sei in einer Umgebung U der Trajektorie
{(t, x(t)) : t ∈ [t0, T ]} de�niert und genüge den folgenden Bedingungen.Stabilitätsbedingung: Es gibt Konstanten LΨ ≥ 0 und τ0 > 0 so, dass

‖Ψt+τ,t(x1) − Ψt+τ,t(x2)‖ ≤ eLΨτ‖x1 − x2‖für alle (t, x1), (t, x2) ∈ U und alle 0 ≤ τ ≤ τ0.Konsistenzbedingung: Es gibt eine monoton wa
hsende Funktion err : [0, τ0] →
[0,∞) mit limτ→0 err(τ) = 0 so, dass

‖Φt+τ,t(x(t)) − Ψt+τ,t(x(t))‖ ≤ τ err(τ)für alle t ∈ [0, T ].Dann gibt es ein τ1 ∈ [0, τ0] so, dass für jedes Gitter ∆ = {t0, . . . , tN} auf [t0, T ]mit Feinheit τ∆ ≤ τ1 die Gitterfunktion x∆ dur
h die diskrete Evolution
x∆(tj+1) = Ψtj+1,tj (x∆(tj)), x∆(t0) = x0wohlde�niert ist, und der Fehler für alle t ∈ ∆ der Abs
hätzung

‖x∆(t) − x(t)‖ ≤ r(τ∆) :=

{

err(τ∆) eLΨ(t−t0)−1
LΨ

falls LΨ > 0

err(τ∆)(t − t0) falls LΨ = 0genügt. 85



Der Satz sagt auf abstrakter Ebene, dass Konsistenz und Stabilität zusammenKonvergenz ergeben.Beweis: Wir wählen τ1 so klein, dass für alle t ∈ [0, T ] und für alle x1 ∈ Rd gilt:
‖x1 − x(t)‖ ≤ r(τ1) =⇒ (t, x1) ∈ U.Sei ∆ ein beliebiges Gitter mit τ∆ ≤ τ1. Wir mö
hten na
hweisen, dass die Ab-s
hätzung

‖x∆(t) − x(t)‖ ≤ r(τ∆)für alle t0, t1, . . . , tN des Gitters ∆ erfüllt ist.Insbesondere gilt dann ‖x∆(t) − x(t)‖ ≤ r(τ1), woraus wir wegen der De�nitionvon τ1 folgern, dass (tj, x∆(tj)) ∈ U . Entspre
hend kann man also x∆(tj+1) =
Ψtj+1,tj (x∆(tj)) bere
hnen und x∆(tj) ist wohlde�niert.Zum Na
hweis der Abs
hätzung verwenden wir Induktion na
h j, gehen also derReihe na
h alle Punkte t0, t1, . . . , tN des Gitters ∆ dur
h.Für j = 0 gilt x∆(t0) = x0 = x(t0), die Abs
hätzung gilt also wegen r(τ∆) ≥ 0.Sei nun ‖x∆(tj′) − x(tj′)‖ ≤ r(τ∆) für alle j′ ≤ j erfüllt. Wir betra
hten tj+1.Dazu unters
heiden wir zwei Fälle.Fall 1: Sei LΨ > 0. Dann gilt

‖x∆(tj+1) − x(tj+1)‖
= ‖Ψtj+1,tj (x∆(tj)) − Φtj+1,tj (x∆(tj))‖
≤ ‖Ψtj+1,tj (x∆(tj)) − Ψtj+1,tj (x(tj))‖ + ‖Ψtj+1,tj (x(tj)) − Φtj+1,tj(x(tj))‖
≤ eLΨ(tj+1−tj)‖x∆(tj) − x(tj)‖ + (tj+1 − tj)err(τ∆) wegen Stabilität und Konsistenz
≤ err(τ∆)

LΨ

(
eLΨ(tj+1−tj)

(
eLΨ(tj−t0) − 1

)
+ LΨ(tj+1 − tj)

) Induktionsannahme
=

err(τ∆)

LΨ

(

eLΨ(tj+1−t0) −eLΨ(tj+1−tj) + LΨ(tj+1 − tj)
︸ ︷︷ ︸

≤−1, denn ea≥a+1

)

≤ err(τ∆)

LΨ

(
eLΨ(tj+1−t0) − 1

)
= r(τ∆).Fall 2: Sei LΨ = 0. Dann geht man vor wie oben, allerdings ergibt die Indukti-onsvoraussetzung, dass

‖x∆(tj+1) − x(tj+1)‖ ≤ err(τ∆)(tj − t0) + err(τ∆)(tj+1 − tj)

= err(τ∆)(tj+1 − t0) QED86



Ein weiterer Begri� ist die Konsistenzordnung, wel
he hilft, die Konvergenzge-s
hwindigkeit eines Eins
hritt-Verfahrens abzus
hätzen.De�nition 3.25
• Eine diskrete Evolution Ψ für eine Di�erentialglei
hung x′(t) = f(t, x(t)),

f : D → Rd, besitzt die Konsistenzordnung p > 0, falls es für jedekompakte Teilmenge K ⊆ D eine Konstante C > 0 so gibt, dass
‖Ψt+τ,t(x) − Φt+τ,t(x)‖ ≤ C · τ p+1für alle (t, x) ∈ K und alle hinrei
hend kleinen τ ≥ 0.

• Ein Eins
hritt-Verfahren besitzt die Konsistenzordnung p > 0, falls für jedere
hte Seite f ∈ C∞(D, Rd) die zugeordnete diskrete Evolution Ψ = Ψ[f ]die Konsistenzordnung p besitzt.
• Ein Eins
hritt-Verfahren besitzt die Konvergenzordnung p > 0, falls fürjede Lösung x : [t0, T ] → Rd eines Anfangswertproblemes mit re
hter Seite

f ∈ C∞(D, Rd) der globale Fehler der dur
h das Verfahren bestimmtenLösung x∆ auf einem Gitter ∆ mit hinrei
hend kleiner Gitterfeinheit τ∆die Abs
hätzung
max
t∈∆

‖x∆(t) − x(t)‖ ≤ C̃ · τ∆
perfüllt, wobei C̃ ni
ht von ∆ abhängt.Lemma 3.26 Besitzt ein Eins
hritt-Verfahren die Konsistenzordnung p und er-füllt es die Stabilitätsbedingung aus Satz 3.24, so besitzt es die Konvergenzordnung

p.Beweis: Sei f ∈ C∞(D, Rd) beliebig. Weil das Verfahren die Konsistenzordnung
p hat, gilt für die diskrete Evolution Ψ, dass

‖Ψt+τ,t(x) − Φt+τ,t(x)‖ ≤ C · τ p+1.Die Funktion err(τ) := C · τ p erfüllt dann wegen limτ→0 C · τ p = 0 die Konsis-tenzbedingung aus Satz 3.24. Wir können also Satz 3.24 anwenden und erhalten
‖x∆(t) − x(t)‖ ≤ r(τ∆) =

{

err(τ∆) · eLΨ(t−t0)−1
LΨ

LΨ > 0

err(τ∆) · (t − t0) LΨ = 0.Es folgt nun
max
t∈∆

‖x∆(t) − x(t)‖ ≤ C̃ · τ∆
p mit C̃ =

{

C · eLΨ(T−t0)−1
LΨ

LΨ > 0

C · (T − t0) LΨ = 0
. QEDSatz 3.27 Die diskrete Evolution des expliziten Euler-Verfahrens ist für stetigdi�erenzierbare Seiten f konsistent von der Ordnung 1.Beweis: Übung. 87



3.3.4 Explizite Runge-Kutta-VerfahrenEuler-VerfahrenApproximiere das Integral dur
h die Re
hte
kregel, d.h.
∫ t+τ

t

f(s, Φs,t(x)
︸ ︷︷ ︸

x(s)

)ds ≈ τ · f(t, x).Dabei ist der Fehler na
h Satz 3.27 von der Gröÿe O(τ 2).Verfahren von Runge (explizite Mittelpunktregel)Die Idee ist, dass man eine Quadraturformel höherer Ordnung verwendet, zumBeispiel die Mittelpunktregel:
∫ t+τ

t

f(s, Φs,t(x))ds ≈ τ · f(t + τ
2
, Φt+ τ

2
,t(x))mit einem Fehler von O(τ 3). Allerdings kennen wir den Wert Φt+ τ

2
,t(x) ni
ht. Esrei
ht aber, ihn mit einer Genauigkeit von O(τ 2) auszuwerten, weil er no
h mit

τ multipliziert wird. Dazu verwendet man
Φt+ τ

2
,t(x) = x + τ

2
f(t, x)na
h dem Euler-Verfahren mit O(τ 2). Man erhält

Ψt+τ,t(x) = x + τ · f(t + τ
2
, x + τ

2
f(t, x))oder, algorithmis
h:

k1 := f(t, x)

k2 := f(t + τ
2
, x + τ

2
· k1)

Ψt+τ,t(x) := x + τ · k2Dieses Verfahren hat Konsistenzordnung 2.Runge-Kutta-VerfahrenSeien
ki = ki(t, x, τ) = f

(

t + ciτ, x + τ
i−1∑

j=1

aijkj

)

, für i = 1, . . . , s

Ψt+τ,t(x) = x + τ

s∑

j=1

bjkj(t, x, τ) = x + τ

s∑

j=1

bjkj .88



ki heiÿt die i-te Stufe des Runge-Kutta-Verfahrens. Man benutzt folgende Nota-tion:
A =










0 0
a21 0
a31 a32 0... ... . . . . . .
as1 · · · · · · as,s−1 0










, b =






b1...
bs




 , c =






c1...
cs




 .Mit der Vereinbarung, dass aij := 0 für j ≥ i ist, vereinfa
hen wir die Summen-s
hreibweise. Wir erhalten

ki = f

(

t + ciτ, x + τ
s∑

j=1

aijkj

)

, i = 1, . . . , s.Dabei heiÿt s die Stufenzahl des Runge-Kutta-Verfahrens und bes
hreibt dieTiefe der S
ha
htelungen von f -Auswertungen. Man gibt ein Verfahren oft dur
hfolgendes But
her-S
hema an:
c A

btBeispiele:1. Explizites Euler-Verfahren:
0 0

1also
k1 = f(t + c1τ, x + 0)

= f(t + 0, x + 0) = f(t, x)und
Ψt+τ,t(x) = x + τb1k1 = x + τf(t, x).2. Verfahren von Runge:

0 0
1
2

1
2

0
0 13. �Klassis
hes� Runge-Kutta-Verfahren der Ordnung 4:

0 0
1
2

1
2

0
1
2

0 1
2

0
1 0 0 1 0

1
6

1
3

1
3

1
689



Ausführli
he Notation:
k1 := f(t, x)

k2 := f(t + 1
2
τ, x + 1

2
τk1)

k3 := f(t + 1
2
τ, x + 1

2
τk2)

k4 := f(t + τ, x + τk3)

Ψt+τ,t(x) := x + τ(1
6
k1 + 1

3
k2 + 1

3
k3 + 1

6
k4)Lemma 3.28 Ein Runge-Kutta-Verfahren (A, b, c) ist genau dann konsistent füralle f ∈ C(D, Rd), falls

s∑

j=1

bj = 1.Beweis: Wir benutzen die beiden Bedingungen (3.10) und (3.11) aus Lemma 3.22und de�nieren
φ(t, x, τ) :=

s∑

j=1

bjkj(t, x, τ).Dann gilt (3.10), denn:
Ψt+τ,t(x) = x + τ

s∑

j=1

bjkj(t, x, τ)

= x + φ(t, x, τ).Weiterhin gilt kj(t, x, 0) = f(t, x) für alle j, also
φ(t, x, 0) =

s∑

j=1

bjkj(t, x, 0) = f(t, x)

s∑

j=1

bj .Da die Bedingung (3.11) φ(t, x, 0) = f(t, x) fordert, ist (3.11) genau dann erfüllt,wenn ∑s
j=1 bj = 1 gilt. QEDLemma 3.29 Besitzt ein s-stu�ges Runge-Kutta-Verfahren für alle f ∈ C∞(D, Rd)die Konsistenzordnung p, so gilt p ≤ s.Beweis: Betra
hte (AWP)

x′(t) = x(t), x(0) = 1.Die Lösung ist
Φτ,0(1) = eτ1 + τ + 1

2!
τ 2 + · · ·+ 1

p!
τp + O(τ p+1).Für die Konsistenzordnung wollen wir Φt+τ,t(x) mit Ψt+τ,t(x) verglei
hen � für

f(t, x) = x(t) und t = 0, x = 1. Die e
hte Evolution Φ kennen wir s
hon. Umau
h Ψt+τ,t(x) zu verstehen, betra
hten wir die kj.90



Behauptung: kj(0, 1, τ) ist ein Polynom in τ vom Grad ≤ j−1, also kj ∈ Πj−1.Vollständige Induktion über j:
• j = 1: k(0, 1, τ) = f(t + c1τ, x) = x ∈ Π0, da konstant in τ .
• j 7→ j + 1:

kj+1(0, 1, τ) = f

(

t + cjτ, x + τ

j
∑

l=1

ajlkl

)

= x + τ

j
∑

l=1

ajlkl

︸ ︷︷ ︸

∈Πj−1

∈ Πj , da kl ∈ Πl−1 na
h der Induktionsannahme.
Also ist Ψτ,0(1) ∈ Π(s). Damit erhalten wir:

‖Ψτ,0(1)
︸ ︷︷ ︸

∈Πs

− Φτ,0(1)
︸ ︷︷ ︸

1+τ+···+ 1
s!

τs+O(τs+1)

‖ ≤ c τ s+1.Folgli
h kann die Konsistenzordnung hö
hstens s sein. QEDBei der Konstruktion vom Runge-Kutta-Verfahren hat man also zunä
hst vieleWahlmögli
hkeiten.Wir stellen aber die folgenden Bedingungen an das Verfahren:1. Invarianz gegen Autonomisierung und2. Konsistenzordnung p für vorgegebenes p.Diese Bedingungen formulieren wir im Folgenden als Bedingungen an die Ko-e�zienten (A, b, c) des Verfahrens. Wir betra
hten zuerst die Invarianz gegenAutonomisierung.Seien x′(t) = f(t, x(t)) ein (AWP) im Rd und x(t0) = x0. Na
h Lemma 3.6 lässtsi
h das in ein äquivalentes System im Rd+1, nämli
h in
̂(AWP) y′(t) =

(
1

f(y(t))

)

, y(t0) = y0 :=

(
t0
x0

)umwandeln. Dabei gelten die folgenden Aussagen:
• Ist x Lösung von (AWP), so ist (t, x(t))T eine Lösung von ̂(AWP).
• Ist (s, x)T eine Lösung von ̂(AWP), so folgt s(t) = t und x ist Lösung von(AWP). 91



Formal lässt si
h die Äquivalenz der beiden Anfangswertprobleme dur
h die Evo-lution Φ̂ von y′ = (1, f(y))T und Φ von x′ = f(t, x) folgendermaÿen s
hreiben:
(

t + τ
Φt+τ,t(x)

)

= Φ̂t+τ,t

(
t
x

)

.Diese Eigens
haft soll dann au
h für diskrete Evolutionen Ψ und Ψ̂ gelten; siesoll also gewissermaÿen vererbt werden. Für die Evolution Ψ (bzw. Ψ̂ für daserweiterte System) bedeutet
(

t + τ
Ψt+τ,t(x)

)

= Ψ̂t+τ,t

(
t
x

) (3.13)dass man das glei
he Ergebnis erhält, egal, ob man ein dur
h Ψ gegebenes Eins
hritt-Verfahren direkt auf die gegebene Di�erentialglei
hung anwendet, oder ob mandas glei
he Verfahren mittels Ψ̂ auf die autonomisierte Di�erentialglei
hung an-wendet. Man nennt das Verfahren dann invariant gegenüber Autonomisie-rung.Lemma 3.30 Ein explizites Runge-Kutta Verfahren ist genau dann invariantgegen Autonomisierung, wenn es konsistent ist und es
ci =

s∑

j=1

aij für j = 1, . . . , serfüllt.Beweis: Sei y′ = f̂(y(t)) die autonomisierte Di�erentialglei
hung mit
f̂

((
t
x

))

=

((
1

f(t, x)

))

,wobei y(t) =

((
t

x(t)

)) und f̂ autonom ist, also f̂(t, y(t)) = f̂(y(t)) gilt. Be-zei
hnen wir nun mit K̂i =

((
l̂i
k̂i

)), i = 1, . . . , s die Stufen von Ψ̂, so gilt:
K̂i = f̂(t + ciτ, y + τ

s∑

j=1

aijK̂j),

= f̂(y + τ

s∑

j=1

aijK̂j)

= f̂

((
t
x

)

+ τ
s∑

j=1

aij

(
l̂j
k̂j

))

=

(
1

f(t + τ
∑s

j=1 aij l̂j, x + τ
∑s

j=1 k̂j)

)

i = 1, . . . , s,92



das heiÿt, l̂i = 1 und k̂i = f(t + τ
∑s

j=1 aij l̂j , x + τ
∑s

j=1 aij k̂j) für i = 1, . . . , s.Für ein Runge-Kutta Verfahren gilt weiter für die diskrete Evolution, dass
Ψ̂t+τ,t

((
t
x

))

=

((
t
x

))

+ τ

s∑

j=1

bj

((
l̂j
k̂j

))

=

((
t + τ

∑s
j=1 bj

x + τ
∑s

j=1 bj k̂j

))

.Na
h (3.13) ist das Verfahren invariant gegen Autonomisierung genau dann wenn
((

t + τ
Ψt+τ,t(x)

))

= Ψ̂t+τ,t

((
t
x

))

⇐⇒ t + τ = t + τ
s∑

j=1

bj und Ψt+τ,t(x) = x + τ
s∑

j=1

bj k̂j

⇐⇒
s∑

j=1

bj = 1 und x + τ

s∑

j=1

bjkj = x + τ

s∑

j=1

bj k̂j

⇐⇒ konsistent und ki = k̂i für alle i = 1, . . . , s.Letzteres ist genau dann der Fall, wenn
f

(

t + ciτ, x + τ

s∑

j=1

aijkj

)

= f

(

t + τ

s∑

j=1

aij , x + τ

s∑

j=1

aijkj

)

,also genau dann wenn ci =
∑s

j=1 aij . QEDGegen Autonomisierung invariante Runge-Kutta Verfahren bezei
hnen wir kurzmit (A, b) und wir s
hreiben dann au
h Ψτ (x) = Ψt+τ,t(x), da man c von derMatrix A abhängig ist.Folgende Bedingungen an die Koe�zienten eines Runge-Kutta Verfahrens habenwir bisher erarbeitet:
• Das Verfahren ist genau dann konsistent, wenn ∑s

i=1 bi = 1, und
• es ist genau dann invariant gegen Autonomisierung, wenn es konsistent istund ci =

∑2
j=1 aij .Wir wollen nun den ersten der beiden Punkte verallgemeinern und für gegenAutonomisierung invariante Runge-Kutta-Verfahren genauere Forderungen an dieKonsistenzordnung stellen. Diese werden als Ordnungsbedingungen bezei
hnet.Satz 3.31 Ein autonomisierungsinvariantes Runge-Kutta-Verfahren besitzt fürjede Di�erentialglei
hung mit p-mal stetig di�erenzierbarer re
hter Seite f dieKonsistenzordnung 93



• p = 1, falls ∑s

i=1 bi = 1.
• p = 2, falls zusätzli
h ∑s

i=1 bici = 1
2
.

• p = 3, falls zusätzli
h ∑s

i=1 bic
2
i = 1

3
und ∑s

i,j=1 biaijcj = 1
6
.

• p = 4, falls zusätzli
h ∑s

i=1 bic
3
i = 1

4

∑s

i,j=1 biciaijcj = 1
8∑s

i,j=1 biaijc
2
j = 1

12

∑s
i,j,k=1 biaijajkck = 1

24

.Beweis: Wir geben nur die Grundstruktur des Beweises an: Das Ziel bestehtdarin, zu zeigen, dass
‖Ψτ (x) − Φτ (x)‖ = O(τ p+1) für τ → 0.Dazu geht man in drei S
hritten vor:1. Taylorentwi
klung von der exakten Evolution g1(τ) = Φτ (x) bis zur Ord-nung p.2. Taylorentwi
klung von der diskreten Evolution g2(τ) = Ψτ (x) bis zur Ord-nung p.3. Koe�zientenverglei
h der beiden Taylorentwi
klungen.Der Beweis kann z.B in den Skripten von G. Lube oder von T. Hohage na
hgelesenwerden.Betra
hten wir nun die Ordnungsbedingungen genauer:

s = 1: Das S
hema für s = 1 lautet
c1 a11 = 0

b1Wegen c1 = a11 = 0 folgt aus der geforderten Konsistenzordnung von p = 1,dass b1 = 1 gelten muss. Das explizite Euler-Verfahren ist also das einzigeeinstu�ge, explizite, autonomisierungsinvariante Verfahren der Ordnung 1.
s = 2: Das S
hema für s = 2 lautet

c1 0
c2 a21 0

b1 b2Wegen der Invarianz gegen Autonomisierung sind c1 = 0 und c2 = a21bereits festgelegt. Als Variablen verbleiben also a21, b1, b2, wobei aber diefolgenden Bedingungen bea
htet werden müssen:
b1 + b2 = 1

b1 c1
︸︷︷︸

=0

+b2c2 = 1
2
.94



Aus dem Glei
hungssystem ergibt si
h
b1 = 1 − b2

c2 =
1

2b2

, falls b2 6= 0.(Für b2 = 0 ist das System ni
ht lösbar.) Man erhält das folgende But
her-S
hema für b 6= 0.
0 0
1
2b

1
2b

0
1 − b bFür b = 1 folgt beispielsweise die explizite Mittelpunktsregel und mit b = 1

2die explizite Trapezregel, zu der folgendes But
her-S
hema gehört:
0 0
1 1 0

1
2

1
2

s = 4: Für s = 4 ergeben si
h 10 Unbekannte und 8 Glei
hungen, siehe
0 0
c2 a21 0
c3 a31 a32 0
c4 a41 a42 a43 0

b1 b2 b3 b4Man kann si
h die ci als Stützstellen der Quadraturformel vorstellen, alsofür die Simpson-Regel etwa 0, 1
2
, 1, was man mit doppelter Stützstelle an 1

2als
ct = (0, 1

2
, 1

2
, 1)ausdrü
ken kann. Eine darauf beruhende Lösung ist das s
hon vorgestellteklassis
he Runge-Kutta Verfahren.

s = 10: In diesem Fall erhält man 1.205 Bedingungen und 55 Variablen.
s = 20: Für den Fall s = 10 erwarten uns 20.247.374 Bedingungen .Man erkennt lei
ht, dass die Anzahl der Bedingungen mit steigendem p immergröÿer wird. 95



Beziehung zur numeris
hen IntegrationWir mö
hten kurz eine interessante Beziehung zu Kapitel 1 dieses Skriptes er-läutern: Man kann die numeris
he Integration einer Funktion f ∈ C([0, 1], R) aufdem Intervall [0, 1] als Spezialfall des folgenden Anfangswertproblemes
x′(t) = f(t)

x(0) = 0au�assen, denn dessen Lösung ist na
h dem Hauptsatz der Di�erential- und In-tegralre
hnung gegeben dur
h
x(t) =

∫ t

0

f(τ)dτ.Es entspri
ht also x(1) genau dem gesu
hten Integral. Wendet man auf dieses(AWP) ein Runge-Kutta Verfahren an, so erhält man daraus eine Quadraturfor-mel
∫ 1

0

f(τ)dτ = x(1) ≈ Ψt0+τ,t0(x0)

= x0
︸︷︷︸

=0

+ τ
︸︷︷︸

=1

s∑

j=1

bjkj(t, x, τ)

=

s∑

i=1

bjf( t
︸︷︷︸

=0

+cj τ
︸︷︷︸

=1

) =

s∑

j=1

bjf(cj).Die jeweils erstgenannten Ordnungsbedingungen aus Satz 3.31 für p = 1, 2, 3, 4entspre
hen der Forderung, dass die Monome 1, t, t2, t3 mit Stützstellen cj undGewi
hten bj exakt integriert werden.Konvergenz von expliziten Runge-Kutta VerfahrenBisher haben wir auss
hlieÿli
h die Konsistenzordnung von Runge-Kutta Ver-fahren betra
htet. Wir wollen nun die Konvergenz der Runge-Kutta Verfahrendiskutieren. Au
h hierzu benötigen wir in den Voraussetzungen ni
ht nur dieKonsistenz, sondern au
h die Stabilität.Satz 3.32 Sei f ∈ C(D0, R
d) und genüge der Lips
hitz-Bedingung

‖f(x1) − f(x2)‖ ≤ L‖x1 − x2‖ für alle x1, x2 ∈ D0.Dann erfüllt die diskrete Evolution Ψ eines gegen Autonomisierung invarian-ten Runge-Kutta-Verfahrens die Stabilitätsbedingung aus Satz 3.24 mit Konstan-te LΨ = γL, wobei γ ≥ 0 nur von A und b abhängt. Ist speziell p ≤ 4 und sind
bi, aij ≥ 0 für alle i, j so ist γ = 1. 96



Beweis: Der Satz lässt si
h dur
h wiederholtes Anwenden der Lips
hitz-Bedingungim Ausdru
k
‖ki(t, x, τ) − ki(t, x̃, τ)‖ ≤ ‖f(x + τ

∑

j

aijkj(t, x, τ)) − f(x̃ + τ
∑

j

aijkj(t, x̃, τ))‖

≤ L(‖x − x̃‖ + τ
∑

j

aij‖kj(t, x, τ) − kj(t, x̃, τ)‖)na
hre
hnen. Auf Details gegen wir hier ni
ht ein. QED3.3.5 Implizite Runge-Kutta-VerfahrenAls �Testproblem� bekannt ist
x′(t) = λx(t)

x(0) = 1mit Parameter λ ∈ C. Die Lösung ist x(t) = eλx. Wir betra
hten im Speziellen
λ ∈ R. Falls λ < 0 ist, gilt für t → ∞, dass die Funktion eλt und alle ihreAbleitungen gegen Null konvergieren. Die Ho�nung ist, dass unsere Verfahrens
hnell konvergieren. Leider ist das ni
ht so! Das Heun-Verfahren

x∆(tj+1) = x∆(tj) + τλx∆(tj)liefert eine oszillierende, immer weiter auss
hlagende Funktion als Lösung.
Euler-Heun Verfahren zu

x(t) = −7x(t), x(0) = 1auf dem Intervall 2 bis 5 mit S
hritt-weite h = 0, 3.Die e
hte Lösung der DGL ist
x(t) = e−7t ≈ 0,verläuft also fast entlang der x-A
hse. Die Näherung ist unbrau
h-bar.
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Um vernünftige Ergebnisse zu erzielen brau
ht man sehr kleine S
hrittweiten.Warum?Wir erinnern uns an die Idee des Eulerverfahrens: Nutze die Re
hte
kregel,
∫ b

a

f(τ)dτ ≈ (b − a)f(a)um das in der Integralglei
hung
x(t) = x0 +

∫ b

a

f(τ, x(τ))dτauftretende Integral zu approximieren und erhalte
x∆(tj+1) = x∆(tj) + τf(tj , x∆(tj)).Benutzen wir stattdessen den re
hten Rand des Integrationsintervalls, also

∫ b

a

f(τ)dτ ≈ (b − a)f(b),so erhalten wir
x∆(tj+1) = x∆(tj) + τf(tj+1, x∆(tj+1)),was eλt au
h s
hon für mittlere S
hrittweiten re
ht gut approximiert. Diese Über-legung führt zum impliziten Euler-Verfahren.Graphis
he Interpretation: Das explizite Euler-Verfahren nutzt die Tangen-te der Lösungskurve im jeweiligen Startpunkt tj . Das implizite Euler-Verfahrennutzt die Tangente der Lösungskurve im jeweiligen Zielpunkt tj+1. Das entspri
htdem expliziten Eulerverfahren �von hinten�, d.h. mit Startwert tN .Wir wenden beide Verfahren auf f(x) = λx, x(0) = 1 mit tj = τj, j = 0, . . . , Nan.

• Explizites Eulerverfahren:
x∆(tj+1) = x∆(tj) + τλx∆(tj).Behauptung: x∆(tj) = (1 + λτ)j .Beweis: (Induktion)

j = 0 ⇒ x∆(t0) = x(0) = 1 = (1 + λτ)0

j 7→ j + 1:
x∆(tj+1) = x∆(tj) + τλx∆(tj)

= (1 + λτ)j(1 + λτ) = (1 + λτ)j+1,woraus die Behauptung folgt. 98



• Implizites Eulerverfahren
x∆(tj+1) = x∆(tj) + τλx∆(tj+1) ⇒ x∆(tj+1) =

x∆(tj)

1 − λτ
, τλ 6= 1.Behauptung: x∆(tj) =

(
1

1−λτ

)jBeweis: (Induktion)
j = 0 ⇒ x∆(t0) = x(0) = 1 =

(
1

1−λτ

)0

j 7→ j + 1

x∆(tj+1) =
x∆(tj)

1 − τλ
=

1

(1 − λτ)j

1

(1 − τλ)

=

(
1

1 − λτ

)j+1

,woraus abermals die Behauptung folgt.
• Zum Verglei
h: Die e
hte Lösung ist x(tj) = eλtj .Wir untersu
hen unsere Verfahren auf die Eigens
haft x(tj) → 0 für j → ∞ dere
hten Lösung x(t) für λ < 0.
• Im expliziten Euler-Verfahren erhalten wir: x∆(tj) → 0 falls |1 − λτ | < 1.Wegen |1 + λτ | = |λ|τ − 1 ist das für τ < 2

|λ| erfüllt. Besonders für groÿe λsind also kleine S
hrittweiten erforderli
h.
• Im impliziten Eulerverfahren gilt dagegen

∣
∣
∣
∣

1

1 − λτ

∣
∣
∣
∣
=

1

|1 + |λ|τ | < 1für alle S
hrittweiten τ , also gilt x∆(tj) → 0 für j → ∞ für jede S
hrittweite
τ . Das erklärt das bessere Konvergenzverhalten des impliziten Eulerverfah-rens.Bemerkung: Der eben bes
hriebene E�ekt tritt bei dem AWP x′(t) = λx(t),

x(0) = 1 au
h bei allen anderen Runge-Kutta-Verfahren auf, genauer
∀τ > 0 : lim

|λ|→∞
|Ψτ

λ(1)| = ∞,wobei Ψτ
λ ein Runge-Kutta-Verfahren zu der Di�erentialglei
hung f(x) = λx ist.(Die Aussage gilt, weil Ψτ

λ(1) ein Polynom ∈ Πs ist.)99



Wir erinnern uns daran, dass die exakte Evolution einer Di�erentialglei
hung dieStabilitätsbedingung
‖Φt,t0(x0) − Φt,t0(y0)‖2 ≤ eL+(t−t0)‖x0 − y0‖2erfüllt (Satz 3.18), wobei L+ die einseitige Lips
hitzkonstante ist. Für explizi-te Runge-Kutta-Verfahren �erbt� die diskrete Evolution Ψ diese Stabilitätsei-gens
haften, aber nur mit der Konstanten LΨ = γL (Satz 3.32), wobei L dieLips
hitzkonstante von f ist. Diese Konstante geht exponentiell in die Fehlerab-s
hätzung aus Satz 3.24

‖x∆(t) − x(t)‖ ≤ r(τ∆) =

{

err(τ∆) eLΨ(t−t0)−1
LΨ

LΨ > 0

err(τ∆)(t − t0) LΨ = 0ein. Daher wäre es gut, wenn LΨ ≈ L+ gilt.Das ist bei expliziten Runge-Kutta-Verfahren ni
ht gegeben, falls L+ ≪ L. Sol
heDi�erentialglei
hungen nennt man steif. Für steife Di�erentialglei
hungen liefernexplizite Runge-Kutta-Verfahren erst für extrem kleine S
hrittweiten verlässli
heErgebnisse und sind daher unbrau
hbar. Besser wären Verfahren, bei denen indie Fehlerabs
hätzung nur die einseitige Lips
hitz-Konstante L+ (und ni
ht L)ein�ieÿt.Steife Di�erentialglei
hungen treten in der Praxis sehr häu�g auf und können (wiein unserem Beispiel) meistens gut mit impliziten Runge-Kutta Verfahren gelöstwerden.Ein s-stu�ges implizites Runge-Kutta-Verfahren ist gegeben dur
h die Vors
hrift
x∆(t + τ) := Ψt+τ,t(x∆(t)) := x∆(t) + τ

s∑

j=1

bjkj(t, x∆(t), τ)mit
ki(t, x, τ) := f

(

t + ciτ, x + τ
s∑

j=1

aijkj(t, x, τ)

)

.Die Werte ci nennt man au
h Knoten, die ki Steigungen.Das But
her-S
hema lautet:
c A

bT =

c1 a11 a12 . . . a1s

c2 a21
. . . . . . ...... ... . . . . . . ...

cs as1 as2 . . . ass

b1 b2 . . . bs100



Notation 3.33
• Für aij = 0, i ≤ j ergibt c A

bT ein explizites Runge-Kutta-Verfahren
• Für aij = 0, i < j erhält man ein diagonal-implizites Runge-Kutta-Verfahren (DIRK). Gilt sogar aii = y, so spri
ht man von SDIRK-Verfahren.
• Gibt es ein j > i mit aij 6= 0, so nennt man das Runge-Kutta-Verfahrenvoll implizit.Bei der Implementation von impliziten Runge-Kutta-Verfahren sind in jedemS
hritt die Steigungen ki dur
h Lösen von

ki(t, x, τ) = f

(

t + ciτ, x + τ
s∑

j=1

aijkj(t, x, τ)

)

, i = 1, . . . , szu ermitteln. Leider funktionieren Fixpunktiterationen nur mit S
hrittweitenbe-s
hränkungen (vgl. Euler-Heun Verfahren, Lemma 3.20 auf Seite 81). Man be-nutzt daher das Newton-Verfahren (oder Varianten davon).Wir wollen nun implizite Runge-Kutta Verfahren höherer Ordnung konstruieren.
• Das implizites Euler-Verfahren 1 1

1
hat Ordnung 1.

• Das Mittelpunktsverfahren
x∆(tj+1) = x∆(tj) + τf

(

tj +
τ

2
,
x∆(tj) + x∆(tj+1)

2

)mit dem But
her-S
hema 1
2

1
2

1
hat Konsistenzordnung p = 2!Satz 3.34 Es gelten sinngemäÿ die Bedingungen für Konsistenz und Invarianzgegen Autonomisierung sowie die Ordnungsbedingungen au
h für implizite Runge-Kutta-Verfahren (Lemma 3.28, Lemma 3.30 und Satz 3.31).Zum Festlegen der s2 + 2s Parameter eines impliziten Runge-Kutta-Verfahrenswerden häu�g Kollokationsverfahren verwendet: Die Idee von Kollokationsver-fahren ist es, die Lösung eines gegebenen Anfangswertproblemes dur
h ein Poly-nom ω zu approximieren. Dieses soll das Anfangswertproblem an vorgegebenenStützstellen lösen. Als Stützstellen de�niert man Kollokationspunkte t0 + ciτ ,

i = 1, . . . , s. Dann verlangt man
ω′(t0 + ciτ) = f(t0 + ciτ, ω(t0 + ciτ)), i = 1, . . . , s (3.14)

ω(t0) = x0 (3.15)für das vektorwertige Polynom ω ∈ (Πs)
n. Wir nennen die wesentli
hen Resultate:101



Lemma 3.35 Seien für 0 ≤ c1 < · · · < cs ≤ 1 die Bedingungen (3.14) und(3.15) eindeutig lösbar. Dann wird dur
h die diskrete Evolution
Ψt0+τ,t(x0) := ω(t0 + τ)ein implizites Runge-Kutta-Verfahren de�niert, das dur
h die Parameter

aij =

∫ ci

0

Lj(τ)dτ für i, j = 1, . . . , s

bi =

∫ 1

0

Li(τ)dτ für i = 1, . . . , sgegeben ist.Lemma 3.36 Ein dur
h Kollokation de�niertes, implizites Runge-Kutta-Verfahrenist konsistent und invariant gegen Autonomisierung.Der Beweis dieser Aussagen lässt si
h relativ einfa
h mit den Standardmittelndieser Vorlesung zu führen. Dagegen ist der folgende Satz ein etwas tie�iegenderesErgebnis.Satz 3.37 Für gegebene Parameter c1, . . . , cs sei die Quadraturformel ∫ 1

0
g(t)dt ≈

∑s

i=1 big(ci) exakt für alle Polynome in Πp−1 mit p ≥ s. Dann hat das zu c1, . . . , csgehörende, dur
h Kollokation gewonnene Runge-Kutta-Verfahren die Konsisten-zordnung p.
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3.4 ZusammenfassungBegri�e
• DGL: Di�erentialglei
hung
• AWP: Anfangswerproblem = DGL + Startbedingungen
• gewöhnli
he/partielle DGL
• explizite, implizite DGL
• autonom
• linearTransformationen
• jede gewöhnli
he, explizite DGL der Ordnung k kann in eine äquivalenteDGL erster Ordnung überführt werden, d Glei
hungen 7→ k · d Glei
hungen
• Autonomisierung: Eine gewöhnli
he, explizite DGL kann man in eine äqui-valente, autonome, gewöhnli
he DGL überführenEindeutigkeit/Lösbarkeit
• Gegenbeispiel für eindeutige Lösbarkeit
• Gegenbeispiel für Existenz einer Lösung auf ganz IÄquivalenz: AWP ⇔ Integralglei
hung

x′(t) = f(t, x(t))

x(t0) = x0

⇔ x(t) = x0 +

∫ t

t0

f(τ, x(τ))dτ

• Anwendung vom Bana
h's
hen Fixpunktsatz
• Konstruktion von Eins
hrittverfahren
• Pi
ard-Lindelöf: f stetig + Lips
hitzstetig bzgl. der letzten d Variablen.Dann ist jedes AWP auf einer Umgebung U um den Startwert eindeutiglösbar.� Die Lösung eines (AWP) ist global eindeutig� globale Lösbarkeit auf ganz I, falls Lips
hitzstetigkeit global103



• Folge: De�nition der Evolution Φ einer DGL x′ = f(t, x) dur
h
Φt,t0(x0) = x(t),wenn x die eindeutige Lösung von (AWP)
x′(t) = f(t, x)

x(t0) = x0

• Evolutionen sind dur
h drei Eigens
haften eindeutig 
harakterisiert
• Stabilität einer Evolution

‖Φt,t0(x0) − Φt,t0(x)‖ ≤ eL+(t−t0)‖x0 − x‖Eins
hritt-Verfahren
• Gitter ∆ = {t0, . . . , tN} gesu
ht:

x∆ : ∆ → Rd

x∆(tj+1) := Ψtj+1,tj (x∆(tj))

• explizites Eulerverfahren
• implizites Eulerverfahren� Euler-Heun-Verfahren (implizit, sukzessive Approximation)� Prädiktor-Korrektor-Variante
• explizites Runge-Kutta-Verfahren
• implizites Runge-Kutta-Verfahren
• Konsistenz von Ψ: drei äquivalente Bedingungen

‖Ψt,t0(x0) − Ψt,t0(x0)‖ → 0 für t → t0

• Konvergenz
‖x∆(t) − x(t)‖ → 0 falls τ → 0, glei
hmäÿig

• Konsistenz der Ordnung p + Stabilität ⇒ Konvergenz der Ordnung pExplizite Runge-Kutta-Verfahren
• But
her-S
hema
• Bedingung an Konsistenz und an Invarianz gegen Autonomisierung
• implizite Runge-Kutta-Verfahren für steife DGL
• Kollokationsverfahren 104



Kapitel 4Optimierung
4.1 Begri�e und Überbli
kNotation 4.1 Sei B ⊆ Rn und sei f : B → R. Sei weiter P ⊆ B. Ein Optimie-rungsproblem ist gegeben dur
h

(P ) min
x∈P

f(x).Man nennt f Zielfunktion, B Grundmenge und P den zulässigen Berei
h von
(P ).S
hreibweise: (P ) wird ges
hrieben als min{f(x) : x ∈ P} oder

min f(x)
s.d. x ∈ P

.Bemerkung:
• Es gibt au
h Optimierungsprobleme, in denen B ⊆ Rn ni
ht gilt, zum Bei-spiel bei der Bestimmung einer Funktion.
• minx∈P f(x) ist äquivalent zu − − maxx∈P −f(x), daher können wir unso.B.d.A. auf Minimierungsprobleme bes
hränken.
• Da ein Minimum ni
ht existieren muss, müsste man eigentli
h infx∈P f(x)s
hreiben - die S
hreibweise mit min hat si
h aber eingebürgert.Notation 4.2 Sei minx∈P f(x) ein Optimierungsproblem.
• Jedes x ∈ P heiÿt zulässig.
• Ist P = ∅, so nennt man das Optimierungsproblem unzulässig.
• x ∈ P heiÿt (global) optimal, falls f(x) ≤ f(x′) für alle x′ ∈ P gilt.105



• x ∈ P heiÿt lokal optimal, falls es eine �vernünftig de�nierte� Umgebung
U(x) ⊆ B so gibt, dass f(x) ≤ f(x′) für alle x′ ∈ U(x). Wenn B = Rn gilt,so kann man immer U(x) = {x′ ∈ Rn : ‖x − x′‖ ≤ ε} mit einer Norm ‖ · ‖wählen.Beispiel: Ein aus der Vorlesung s
hon bekanntes Optimierungsproblem ist diein Kapitel 2 behandelte Approximation in endli
h-dimensionalen Räumen:Gegeben: P �einfa
he Repräsentanten�, x ∈ Xgesu
ht: y ∈ P so, dass ‖x − y‖ klein ist, das heiÿt

min
y∈P

f(y),wobei f(y) = ‖x − y‖.Wir betra
hten jetzt systematis
h vers
hiedene Typen von Optimierungsproble-men.Ni
ht-Restringierte, di�erenzierbare OptimierungDe�nition: B = P = Rn, f : Rn → R di�erenzierbar.Ergebnisse:
x∗ lokal optimal ⇒ ∇f(x∗) = 0.
∇f(x∗) = 0 und die Hesse-Matrix H(f)(x∗) ist positiv de�nit ⇒ x∗ istlokal optimal.Verfahren: Verfahren des steilsten Abstiegs (�steepest des
ent�), Newton-Verfahren.Bemerkung: Globale Optima zu �nden ist ni
ht trivial.Lineare OptimierungDe�nition: B = Rn, P ⊆ Rn ist ein Polyeder, f : B → R ist linear.Ergebnisse: Hat (P ) eine Lösung, so gibt es eine E
ke von P , die (global) op-timal ist.Verfahren: Simplex-Verfahren (probiert alle E
ken dur
h), Innere-Punkte-Verfahren.Bemerkung: Lineare Optimierung ist weitestgehend verstanden; E�zienz-Steigerungist aber immer no
h sinnvoll. 106



Konvexe OptimierungDe�nition: B = Rn, P ⊆ Rn konvex, f : Rn → R konvex.Ergebnisse:Sei x∗ lokales Minimum ⇒ x∗ ist globales Minimum.
x∗ ist (global) optimal auf Rn ⇔ Es existiert ein Subgradient ξ = 0 an

x∗. Au
h für P ( Rn lassen si
h globale Minima dur
h Subgradienten
harakterisieren.
Subgradienten

f

Verfahren: Subgradienten-Verfahren, Volume AlgorithmusBemerkung: Für spezielle Probleme gibt es e�zientere Verfahren.Konkave OptimierungDe�nition: B = Rn, P ⊆ Rn konvex, f : Rn → R konkav.Ergebnisse: Hat (P ) eine Lösung, so gibt es einen Extrempunkt von P , deroptimal ist. Ist P ein Polyeder, so gibt es eine optimale E
ke. Insbesonderegibt es eine Optimallösung x∗ ∈ ∂P .Verfahren: Au�nden einer endli
hen Kandidatenmenge (FDS = �nite domina-ting set).Ganzzahlige (lineare) OptimierungDe�nition: B = Zn, P ′ ⊆ Rn ist ein Polyeder, P = P ′ ∩ B, f : Rn → R istlinear.Ergebnisse: Diese liegen vor allem in Spezialfällen vor, zum Beispiel als Ergeb-nisse im Berei
h der Polyeder-Theorie.107



Verfahren: Spezialverfahren, wel
he die Strukturen von P ′ ausnutzen (TU-Matrizen),ansonsten Gewinnung von oberen S
hranken (dur
h Heuristiken, wie zumBeispiel allgemeine Heuristiken wie Simulated Annealing, genetis
he Algo-rithmen, Tabu-Su
he) und unteren S
hranken (dur
h Relaxationen).Bemerkung: Das Problem ist NP-s
hwer, das heiÿt ein exaktes Verfahren mitpolynomieller Laufzeit ist ni
ht zu erwarten.Diskrete OptimierungDe�nition: B endli
he Menge, P ⊆ B beliebig, f : B → R.Ergebnisse: je na
h ProblemVerfahren: je na
h Problem oder im Allgemeinen wie Simulated AnnealingBemerkung: Es gibt e�zient lösbare und NP-s
hwere Probleme.Beispiel: gegeben ist ein Graph mit Knoten und Kanten, wobei jede Kante eine(positive) Länge hat.
b

bStart ZielKante
E
keAufgabe 1: Finde einen kürzesten Weg vom Start zum Ziel.

B = {alle mögli
hen Wege vom Start bis zum Ziel},
P = B,

f : B → R, f(Weg) = Länge des Weges =
∑Kanten im WegLänge(Kante).Dieses Problem ist e�zient lösbar in Zeit O(n2) (n sei die Anzahl der Kno-ten im Graph).Aufgabe 2: Finde den kürzesten Weg vom Start bis zum Ziel, der alle Knotengenau einmal besu
ht.

B = {alle mögli
hen Wege vom Start bis zum Ziel},
P ⊆ B enthält die Wege, die alle Knoten genau einmal besu
hen
f : B → R, f(Weg) = Länge des Weges.108



Für dieses Problem ist kein e�zientes Verfahren bekannt. Es ist s
hon NP-s
hwer, herauszu�nden, ob P 6= ∅, d.h. ob es überhaupt einen Weg vomStart bis zum Ziel gibt, der alle Knoten genau einmal besu
ht.Die Umgebung eines Weges W kann man z.B. de�nieren als
U(W ) = {Wege W ′, die dur
h Vertaus
hen von zwei Knoten auf dem Weg W entstehen}.Ein Verfahren, das innerhalb von sol
hen �bena
hbarten� zulässigen LösungenElemente einer Lösung paarweise taus
ht nennt man au
h zwei-opt. Das Ergebniseines zwei-opt Verfahrens ist immerhin lokal optimal.Kontinuierli
he, restringierte OptimierungDe�nition: B = Rn, P ⊆ Rn, f : B → R.Ergebnisse: Diese existieren ni
ht in dieser Allgemeinheit.Verfahren: Barriere-Verfahren, Penalty-Verfahren (exakt), allgemeine Heuristi-ken wie Simulated AnnealingDie genannten Klassen von Optimierungsproblemen sind allerdings keineswegsdisjunkt. So lassen si
h viele diskrete Probleme als ganzzahlige Programme for-mulieren, oder au
h ganzzahlige Programme als ni
htlineare Probleme.Es soll au
h ni
ht unerwähnt bleiben, dass es no
h viele weitere Klassen von Op-timierungsproblemen gibt. Darunter fallen u.a. quadratis
he Optimierungspro-bleme, die beispielsweise mit dem Verfahren der konjugierten Gradienten gelöstwerden können.4.2 Iterative OptimierungsverfahrenIn diesem Abs
hnitt soll auf einige iterative Verfahren zur Lösung von Optimie-rungsproblemen eingegangen werden. Dabei betra
hten wir zuerst di�erenzier-bare Probleme ohne Nebenbedingungen und stellen das Verfahren des steilstenAbstiegs und (kurz) das Newton-Verfahren vor. Dana
h diskutieren wir Verfah-ren, die man auf sehr allgemeine restringierte Probleme

min{f(x) : x ∈ P}anwenden kann, nämli
h das Strafverfahren und Simulated Annealing.109



4.2.1 Di�erenzierbare, ni
ht-restringierte ProblemeIn diesem Abs
hnitt betra
hten wir die Minimierung einer di�erenzierbaren Funk-tion f : Rn → R über dem gesamten Rn. Wir gehen davon aus, dass uns s
honVerfahren zur Minimierung von eindimensionalen Funktionen f : R → R zurVerfügung stehen. Sol
he Verfahren nennt man �Line Sear
h� Verfahren, darun-ter sind zum BeispielIntervallhalbierungsverfahren, Di
hotomous-Su
he, Verfahren des gol-denen S
hnittsoder, für di�erenzierbare FunktionenGradienten oder Newton-Verfahren.Die Methode des steilsten Abstiegs in der mehrdimensionalen Optimierung be-ruht auf der Idee, eine Lösung x ∈ P in jedem S
hritt entlang einer fest gewähltenRi
htung d dur
h Lösen eines eindimensionalen Optimierungsproblems zu verbes-sern, also dur
h Lösen des eindimensionalen Problems
min
λ≥0

f(x + λd)mit Line Sear
h, wobei f die Zielfunktion darstellt.
b

b

x(k)

x(k+1)Ri
htung d

Wähle x(k+1) als den besten Punkt entlang der Ri
htung d. Wir diskutieren zu-nä
hst, wie man die Ri
htung d wählen kann.Notation 4.3 Sei f : Rn → R eine Funktion, sei x ∈ R. Eine Ri
htung d ∈ Rnist eine Verbesserungsri
htung an x bezügli
h f , falls es ein δ > 0 so gibt, dass
f(x + λd) < f(x) für alle λ ∈ (0, δ).Das folgende Lemma gibt ein Kriterium, an dem man Verbesserungsri
htungenlei
ht erkennen kann.Lemma 4.4 Sei f : Rn → R eine Funktion, seien x, d ∈ Rn. Ist die Ri
h-tungsableitung f ′(x, d) von x in Ri
htung d e
ht kleiner als Null, so ist d eineVerbesserungsri
htung. 110



Beweis: Es gilt
f ′(x, d) = lim

λ→0+

f(x + λd) − f(x)

λ
.Wegen f ′(x, d) < 0 gilt also f ′(x + λd) < f(x) für alle hinrei
hend kleinen λ > 0.QEDMan kann also jede Ri
htung d mit negativer Ri
htungsableitung wählen. Umeine mögli
hst groÿe Verbesserung zu erzielen, ma
ht es Sinn, eine Ri
htung d zuwählen, bei der die Ri
htungsableitung so klein wie mögli
h ist, also die �Ri
htungdes steilsten Abstiegs�. Das folgende Lemma zeigt, wie man diese Ri
htung �ndet.Wir bezei
hnen den Gradienten einer Funktion f : Rn → R an x ∈ Rn mit

∇f(x) ∈ (Rn)∗. Weiterhin sei ‖ · ‖ im Folgenden die Euklidis
he Norm.Lemma 4.5 Sei f : Rn → R di�erenzierbar und sei ∇f(x) 6= 0. Dann ist
d = −(∇f(x))t

‖∇f(x)‖die normierte Ri
htung mit kleinster Ri
htungsableitung, das heiÿt
f ′(x, d) ≤ f ′(x, d) für alle d ∈ Rn mit ‖d‖ = 1.Beweis: Sei d ∈ Rn mit ‖d‖ = 1 beliebig. Dann gilt:

|f ′(x, d)| =

∣
∣
∣
∣
lim

λ→0+

f(x + λd) − f(x)

λ

∣
∣
∣
∣

= |∇f(x)d|, weil lim
λ→0

f(x + λd) = f(x) + λ∇f(x)d

≤ ‖∇f(x)‖ · ‖d‖ na
h Cau
hy-S
hwarz
= ‖∇f(x)‖ =

|∇f(x)(∇f(x))t|
‖∇f(x)‖ = |∇f(x) · d| = |f ′(x, d)|.Weiterhin ist d eine Abstiegsri
htung wegen

f ′(x, d) = −∇f(x) · (∇f(x))t

‖∇f(x)‖ = −‖∇f(x)‖ < 0. QED111



Algorithmus �Steepest Des
ent�Sei x(0) ∈ Rn beliebig, k = 0.1. Sei d(k) := −∇f(x(k)). Falls ∇f(x(k)) = 0, dann STOP.2. Löse das eindimensionale Optimierungsproblemminλ≥0{f(x(k)+λd(k))}. Sei
x∗ die Lösung.3. x(k+1) := x∗, gehe zu 1.Bemerkung: Liegen alle x(k) in einer kompakten Menge, so konvergiert x(k) → xmit ∇f(x) = 0. In der Praxis ma
ht das Verfahren in der Nähe des Minimumsmeistens nur sehr kleine und fast orthogonale S
hritte. Man spri
ht au
h von�Zi
k-Za
k-Pfaden�.Während das Verfahren des steilsten Abstiegs den Gradienten und damit einelineare Approximation der Funktion f verwendet, nutzt das Newton-Verfahren diequadratis
he Approximation an die Funktion f . Um einen Punkt x mit∇f(x) = 0zu �nden, wird f in jedem S
hritt dur
h seine quadratis
he Approximation ersetztund eine Nullstelle ihrer Ableitung bestimmt.Die quadratis
he Approximation von f an x(k) ist

f(x) ≈ q(x) = f(x(k)) + ∇f(x(k))(x − x(k)) +
1

2
(x − x(k))tH(x(k))(x − x(k)),wobei H(x(k)) die Hesse-Matrix von f an x(k) ist. Wegen

∇q(x) = ∇f(x(k)) + (H(x(k))(x − x(k)))tgilt:
(∇q(x))t = 0 ⇔ (∇f(x(k)))t + H(x(k))(x − x(k)) = 0,also falls

x = x(k) − (H(x(k)))−1(∇f(x(k)))t.Entspre
hend lautet das VerfahrenNewton-VerfahrenSei x(0) ∈ Rn beliebig, k = 0.1. Falls ∇f(x(k)) = 0, dann STOP.2. Sonst setze x(k+1) := x(k) − (H(x(k)))−1(∇f(x(k)))t, k := k + 1, gehe zu 1.Unter gewissen Voraussetzungen kann quadratis
he Konvergenz gezeigt werden.112



4.2.2 Restringierte ProblemeWir betra
hten
min{f(x) : x ∈ B, x ∈ P}.Es gibt mehrere Mögli
hkeiten, die Verfahren aus dem letzten Abs
hnitt au
hzum Lösen von restringierten Problemen zu nutzen. Eine Idee besteht darin,den bere
hneten Punkt x(k) in jedem S
hritt zulässig zu ma
hen, z.B. dur
h dieProjektion von x(k) auf P , d.h. man wählt den Punkt x aus P , der ‖x − xk‖ mi-nimiert. Das wird erfolgrei
h im Subgradienten-Verfahren für konvexe Problemeeingesetzt. Eine andere Variante ist es, unzulässige Lösungen zu bestrafen. Manspri
ht von Strafverfahren. Betra
hten wir dazu

P = {x ∈ Rn : gi(x) ≤ 0, i = 1, . . . , m und
hj(x) = 0, j = 1, . . . , l}als zulässige Menge unseres Optimierungsproblems. Wie kann man unzulässigeLösungen bestrafen?Beispiel:

• Das Problem
min f(x), s.d. h(x) = 0wird umgewandelt in min f(x) + µh2(x)

︸ ︷︷ ︸Strafterm, µ groÿ.
• Das Problem

min f(x), s.d. g(x) ≤ 0wird umgewandelt in min f(x) + µ(max{0, g(x)})p

︸ ︷︷ ︸StraftermNotation: Sei
(P ) min{f(x) : x ∈ P} mit P ⊆ B.Dann heiÿt α : Rn → R Stra�unktion für (P ), falls

α(x) = 0 für alle x ∈ P und α(x) > 0 falls x /∈ P.Das bezügli
h α und µ ≥ 0 relaxierte Problem ist dann
(Pµ) min{f(x) + µα(x) : x ∈ B}.Weiterhin sei θ(µ) = inf{f(x) + µα(x) : x ∈ B} für µ ≥ 0 der Zielfunktionswertvon (Pµ).Es gilt: 113



Lemma 4.6
min{f(x) : x ∈ P} ≥ θ(µ) für alle µ ≥ 0 (4.1)Beweis: Sei x∗ eine Lösung von P . Dann ist x∗ ∈ B, also für (Pµ) zulässig, underfüllt

f(x∗) = f(x∗) + µ α(x∗)
︸ ︷︷ ︸

=0

≥ min
x∈B

f(x) + µα(x),also ist die Lösung von (Pµ) mindestens so gut wie x∗. QEDMan kann aber no
h mehr zeigen:Lemma 4.7 Sei P 6= ∅ und existiere eine optimale Lösung xµ von (Pµ) für alle
µ ≥ 0. Dann gilt:

• θ(µ) ist monoton wa
hsend.
• α(Xµ) ist monoton fallend.
• f(Xµ) ist monoton wa
hsend.Beweis: Übung.Daraus folgt s
hlieÿli
h der folgende Satz:Satz 4.8 Sei P 6= ∅ und existiere eine optimale Lösung xµ von (Pµ) für alle

µ ≥ 0 so, dass alle xµ in einer kompakten Teilmenge von B enthalten sind. Danngilt
min{f(x) : x ∈ P} = sup

µ≥0
θ(µ) = lim

µ→∞
θ(µ).Weiter sei λk ≥ 0 und λk → ∞ für k → ∞. Ist (xλk

)k∈N konvergent, dann ist
x := limk→∞ xλk

eine optimale Lösung von (P ).Es ergibt si
h der folgende Algorithmus:Sei β > 0, µ1 > 0, k = 1.1. Löse
(Pµk

) min{f(x) + µkα(x) : x ∈ B}und erhalte xk+1 als optimale Lösung.2. Falls µkα(xk+1) < ε: xk+1 ist zulässig für (P ) und na
h (4.1) optimal. STOP.Sonst: µk+1 = βµk, k := k + 1, gehe zu 1.Satz 4.8 garantiert Konvergenz zu einer Optimallösung.114



Lokale Su
heHat man bereits eine Lösung x ∈ P gefunden, besteht die Mögli
hkeit, diesemittels einer lokalen Su
he zu verbessern, um ein lokales Optimum zu errei
hen.Dazu su
ht man die �Na
hbars
haft� von x ab. Das Verfahren lässt si
h au
h gutauf diskrete Probleme anwenden.Beispiel (Na
hbars
haften):
• Für

min{f(x) : x ∈ P}, P ⊆ Rnkann man N(x) = Uε(x) ∩ P wählen.
• Betra
htet man

min{f(x) : x ∈ {0, 1}n}so kann man zum Beispiel
N(x) = {x′ ∈ {0, 1}n : x und x′ unters
heiden si
h nur an hö
hstens k Stellen}wählen, wobei k (meistens klein) fest gewählt ist.

• Ist
min{f(P ) : P Weg in Graph},so bietet si
h

N(P ) = {Wege P ′ die aus P dur
h Vertaus
hen von zwei Knoten entstehen}an.Für die lokale Su
he sei x ∈ P gegen.1. Teste, ob es x′ ∈ N(x) mit f(x′) < f(x) gibt.2. Falls ja, setze x := x′ und gehe zu 1.Sonst: x′ lokal optimal, STOP.Das Verfahren ma
ht Sinn, wenn S
hritt 1 lei
ht zu lösen ist. Oft kann man sogars
hnell
min{f(x′) : x′ ∈ N(x)}lösen, z.B. wenn die Funktion lokal konvex ist, die Mengen N(x) konkave Berei
hesind oder lokale Konvergenz wie beim Newtonverfahren dur
h Dur
hprobieren imdiskreten Fall vorliegt. 115



Simulated AnnealingBeim Simulated Annealing versu
ht man, die lokale Su
he so abzuändern, dassman mit hoher Wahrs
heinli
hkeit ein globales Optimum �ndet. Man erlaubt da-zu au
h S
hritte, in denen si
h der Zielfunktionswert vers
hle
htert. Dabei soll dieWahrs
heinli
hkeit für eine Vers
hle
hterung gröÿer sein, wenn die Vers
hle
hte-rung nur klein ist und im Laufe des Verfahrens abnehmen.PSfrag repla
ements StartErgebnis beilokaler Su
heWir erhalten folgenden Algorithmus:ALgorithmus: Simulated AnnealingInput: x ∈ P , Tk die �Starttemperatur�, 0 < α < 1.Solange Tk groÿ genug (�ni
ht gefroren�).1. Wähle zufälliges x′ ∈ N(x).2. Ist f(x′) < f(x), setze x = x′ und gehe zu 1.Ist f(x′) ≥ f(x), setze x := x′ mit Wahrs
heinli
hkeit
e−

f(x′)−f(x)
T .Setze Tk+1 := αTk und gehe zu 1.Die Idee entstammt 
hemis
hen Abkühlungsprozessen, bei denen bei hoher Tem-peratur eine stabile Molekülbewegung zu beoba
hten ist, beim Abkühlen aberenergieminimale Anordnungen entstehen. Dabei ma
ht das Verfahren nur Sinn,wenn die Na
hbars
hafts-De�nition die folgenden Bedingungen erfüllt:1. x ∈ N(x), für alle x.2. x ∈ N(x′) ⇔ x′ ∈ N(x).3. Für alle x, x′ existiert eine Folge xk, so dass x ∈ N(x1), xi ∈ N(xi+1),

i = 1, . . . , k − 1, xk ∈ N(x′), d.h. jeder Punkt ist von x aus errei
hbar.
116



Kapitel 5Eigenwertaufgaben
5.1 MotivationSei u(x, t) die vertikale Auslenkung einer eingespannten Saite an der Position
x ∈ [0, 1] zur Zeit t.

|

10

u erfüllt näherungsweise die Wellenglei
hung
∂2u

∂t2
(x, t) =

1

c2
· ∂2u

∂x2
(x, t), x ∈ (0, 1), t ∈ R (5.1)

u(0, t) = u(1, t) = 0, t ∈ R,wobei c die Ausbreitungsges
hwindigkeit ist. Wir su
hen zeitharmonis
he Lösun-gen, das heiÿt wir ma
hen den Ansatz
u(x, t) = Re(v(x)eiωt)mit unbekanntem ω ∈ C. Einsetzen liefert die gewöhnli
he Di�erentialglei
hung

−v′′(x) =

(
ω

c

)2

v(x), x ∈ (0, 1) (5.2)
v(0) = v(1) = 0Das ist ein Eigenwertproblem für den Di�erentialoperator

A : {u ∈ C2([0, 1])|v(0) = v(1) = 0} → C([0, 1]), u 7→ −u′′.117



Diskretisiert man nun dieses Problem, so erhält man ein Matrix-Eigenwertproblem.Betra
hten wir hierzu die Gitterpunkte
xj = jh, j = 0, . . . , N, h =

1

Nund approximieren die zweite Ableitung dur
h den Di�erenzenquotienten
−v′′(xj) ≈

1

h2
[− v(xj−1)
︸ ︷︷ ︸

=:vj−1

+2 v(xj)
︸ ︷︷ ︸

=:vj

− v(xj+1)
︸ ︷︷ ︸

=:vj+1

], j = 1, . . . , N − 1.Damit bekommt die Di�erentialglei
hung 5.2 die Form
1

h2
(−vj−1 + 2vj − vj+1) =

(
ω

c

)2

vj , j = 1, . . . , N − 1und man erhält das Problem
c2

h2










2 −1 0
−1 2 −1. . . . . . . . .. . . . . . −1
0 −1 2




















v1.........
vN−1











= ω2











v1.........
vN−1











.Insgesamt haben wir also das Problem 5.1 in ein Matrix-Eigenwertproblem über-führt.5.2 EigenwerteDe�nition 5.1 Sei A ∈ Rn×n. Eine Zahl λ ∈ R heiÿt Eigenwert zum Eigenvektor
x ∈ Rn \ {0}, falls

Ax = λxgilt.Die einfa
hste Bere
hnung für den Eigenwert λ benutzt das 
harakteristis
hePolynom
ϕ(λ) = det(A − λ Id).Aus AGLA ist bekannt, dass ϕ ∈ Πn ein Polynom ist, dessen Wurzeln die Eigen-werte von A sind. Verfahren, die das 
harakteristis
he Polynom verwenden, heiÿendirekte Verfahren (z.B. Newton-Verfahren auf ϕ angewendet). Im Allgemeinen istdie Bere
hnung des 
harakteristis
hen Polynoms dur
h die Determinante jedo
hsehr aufwändig, also werden wir im Folgenden Verfahren betra
hten, wel
he dieBere
hung von ϕ vermeiden. Diese Verfahren heiÿen iterative Verfahren.Grundsätzli
h gibt es viele vers
hiedene Aufgabenstellungen:118



• Bere
hnung des gröÿten bzw. kleinsten Eigewertes
• Bere
hnung aller Eigenwerte
• Bere
hnung einiger Eigenwerte mit zugehörigen Eigenvektoren
• Bere
hnung aller Eigenwerte mit zugehörigen EigenvektorenIn der Vorlesung werden wir die erste und die vierte Aufgabenstellung betra
htenund für diese jeweils ein Beispiel angeben.5.3 LokalisierungssatzSatz 5.2 (Lokalisierungssatz) Ist ‖·‖ eine zu einer Vektornorm passende Ma-trixnorm, so gilt für jeden Eigenwert λ von A die Abs
hätzung

|λ| ≤ ρ(A) ≤ ‖A‖ (siehe Numerik I).Weiterhin gilt der folgenden Satz.Satz 5.3 (Gers
hgorin) Für A = (ajk) ∈ IKn×n de�nieren wir die Gers
hgorin-Kreise als
Gj :=







λ ∈ IK

∣
∣
∣
∣
∣
∣
∣

|λ − ajj| ≤
n∑

k=1
k 6=j

|ajk|







, j = 1, . . . , nund
G∗

k :=







λ ∈ IK

∣
∣
∣
∣
∣
∣
∣
∣

|λ − akk| ≤
n∑

j=1
j 6=k

|ajk|







, k = 1, . . . , n.Dann gilt für alle Eigenwerte λ von A:
λ ∈

n⋃

j=1

Gj und λ ∈
n⋃

k=1

G∗
k.Beweis: Sei Ax = λx und ‖x‖∞ = 1. Wähle einen Index j mit |xj | = ‖x‖∞ = 1.Dann gilt

|λ−ajj| = |(λ−ajj)xj | = |(Ax)j −ajjxj | =

∣
∣
∣
∣
∣
∣
∣

n∑

k=1
k 6=j

ajkxk

∣
∣
∣
∣
∣
∣
∣

≤
n∑

k=1
k 6=j

|ajk||xk| ≤
n∑

k=1
k 6=j

|ajk|.Daraus folgt λ ∈
⋃n

j=1 Gj. Da A∗ die komplex konjugierten Eigenwerte von Abesitzt, folgt nun au
h λ ∈ ⋃n

k=1 G∗
k. QED119



Im Folgenden wollen wir untersu
hen, ob die Eigenwerte von A∗ stetig von denMatrixeinträgen abhängen. Zudem werden wir untersu
hen, was man über die La-ge eines Eigenwertes sagen kann, wenn man �ungefähr� einen Eigenvektor kennt.Wir werden hier nur den Fall von symmetris
hen Matrizen untersu
hen.Die Resultate gelten in ähnli
her Form au
h für normale Matrizen (AAT = AT A).Bei ni
ht-normalen Matrizen muss man mit extremer Emp�ndli
hkeit der Eigen-werte bei ungenauen Daten re
hnen.Satz 5.4 (Rayleigh) Sei A ∈ Rn×n symmetris
h. Seien λ1 ≥ λ2 ≥ . . . λn dieEigenwerte von A mit zugehörigen, orthonormalen Eigenvektoren x1, . . . , xn. Sei
V1 = Rn und Vj = {x ∈ Rn|xtxk = 0 für alle 1 ≤ k ≤ j − 1}. Dann gilt

λj = max
x∈Vj

x 6=0

xtAx

xtx
für alle 1 ≤ j ≤ n.Beweis: Sei x ∈ Vj \ {0}. Dann lässt si
h x s
hreiben als x =

∑n
k=j ckxk mit

ck = xtxk, da der Raum Vj von den xj , . . . , xn aufgespannt wird und die x1, . . . , xnorthonormal sind. Also gelten xtx =
∑n

k=j ck
2 und Ax =

∑n
k=j ckλkxk. Manre
hnet nun na
h, dass

xtAx

xtx
=

∑n
k=j ck

2λk
∑n

k=j ck
2

≤
λj

∑n
k=j ck

2

∑n

k=j ck
2

= λj.Daraus folgt nun, dass
max

x∈Vj\{0}

xtAx

xtx
≤ λjgilt. Für den Eigenvektor xj zu λj gilt die Glei
hheit, also wird das Maximumau
h angenommen. QEDSatz 5.5 (Courant) Sei A ∈ Rn×n symmetris
h und seien λ1 ≥ . . . ≥ λn dieEigenwerte von A. Dann gilt

λj = min
Uj∈Mj

max
x∈Uj

x 6=0

xtAx

xtx
︸ ︷︷ ︸RayleighQuotient für alle 1 ≤ j ≤ n,wobei Mj die Menge aller (n+1− j)-dimensionalen Unterräume von Rn bezei
h-net.Beweis: Seien x1, . . . , xn orthogonale Eigenvektoren und die Vj wie in Satz 5.4.Aus Vj ∈ Mj folgt

min
Uj∈Mj

max
x∈Uj\{0}

xtAx

xtx
≤ λj .Umgekehrt gibt es für jedes Uj ∈ Mj ein x ∈ Uj \ {0} mit xtxk = 0 für j + 1 ≤

k ≤ n. Also wird das Minimum angenommen.120



Korollar 5.6 Seien A, B ∈ Rn×n symmetris
h. Seien λ1(A), . . . , λn(A) bzw.
λ1(B), . . . , λn(B) die zu A bzw. B gehörenden Eigenwerte. Dann gilt für jedebeliebige natürli
he Matrixnorm:

|λj(A) − λj(B)| ≤ ‖A − B‖.Beweis: Übung.Tip: Zeige λj(A) ≤ λj(B) + ‖A − B‖ und verstaus
he die Rolle von A und B.5.4 Verfahren von MisesSei A ∈ Rn×n diagonalisierbar und habe einen dominanten Eigenwert, das heiÿt esgilt |λ1| ≫ |λ2| ≥ . . . ≥ |λn| für einen Eigenwert λ1. Sei x1, . . . , xn eine Basis ausEigenvektoren, dann hat jedes x ∈ Rn eine eindeutige Darstellung x =
∑n

j=1 αjxjmit α1, . . . , αn ∈ R. Nun gilt
Amx =

n∑

j=1

αjA
mxj =

n∑

j=1

αjλjxj = λm
1









α1x1 +

n∑

j=2

αj

(
λj

λ1

)m

xj

︸ ︷︷ ︸

=:Rm









. (5.3)Man erkennt nun, dass Rm → 0 für m → ∞. Also erhalten wir, falls α1 6= 0, dass
Amx

λm
1

→ α1x1.Das Problem ist jetzt, dass λ1 unbekannt ist. Auÿerdem konvergiert Amx nur für
|λ1| < 1. Ein Ausweg aus dieser Situation ist, dass man eine andere Normierungvornimmt. Wir betra
hten

‖Amx‖2 =

(
n∑

j,k=1

αjαkλ
m
j λm

k xj
txk

) 1
2

=: |λ1|m(|α1|‖x1‖2 + rm). (5.4)mit R ∋ rm → 0 für m → ∞. Dann folgt
‖Am+1x‖2

‖Amx‖2

=
‖Am+1x‖
|λ1|m+1

· |λ1|m
‖Amx‖ · |λ1| → |λ1| für m → ∞. (5.5)De�nition 5.7 Bei dem Mises-Verfahren (au
h Potenzmethode genannt) wirdein Startvektor x(0) =

∑n

j=1 αjxj, α1 6= 0 gewählt und y(0) = x(0)

‖x(0)‖ gesetzt. Für
m ≥ 1 wird dann de�niert

x(m) = Ay(m−1)

y(m) =
σmx(m)

‖x(m)‖ mit σm ∈ {−1, 1} so, dass y(m)ty(m−1) ≥ 0.121



Dabei bedeutet die Vorzei
henwahl, dass der Winkel zwis
hen y(m) und y(m−1) imIntervall [0, π
2
] liegt, also dass es beim Übergang von y(m−1) zu y(m) keinen Sprunggibt. Um α1 6= 0 müssen wir uns keine Sorgen ma
hen, denn Rundungsfehlerstellen die Bedingung meist si
her.Satz 5.8 (Konvergenzbeweis für von Mises) Sei A ∈ Rn×n diagonalisier-bar und habe einen dominanten Eigenwert λ1, dann gilt:

• ‖x(m)‖ → |λ1| für m → ∞,
• y(m) konvergiert für m → ∞ gegen einen Eigenvektor von A zum Eigenwert

λ1,
• σ(m) → sign(λ1), das heiÿt σ(m) = sign(λ1) für m groÿ genug.Beweis: Dur
h Induktion kann man zeigen, dass

y(m) = σ(m) · · ·σ(1) · A(m)x(0)

‖A(m)x(0)‖2
für m = 1, 2, . . . .Einsetzen ergibt dann

x(m+1) = Ay(m) = σ(m) · · ·σ(1) · A(m+1)x(0)

‖A(m)x(0)‖2
.Aus (5.5) folgt nun, dass

‖x(m+1)‖2 → |λ1| für m → ∞gilt. Wir nehmen nun ohne Eins
hränkungen an, dass ‖x1‖2 = 1, dann gilt:
y(m) = σ(m) · · ·σ(1) · λm

1 (α1x1 + Rm)

|λ1|m(|α1| + rm)
mit (5.4) und (5.3)

= σ(m) · · ·σ(1) · sign(λ1)
m sign(α1)x1 + ρm,wobei ρm → 0 für m → ∞. Daraus folgt, wenn σ(m) konstant ist für groÿe m,dass y(m) gegen einen Eigenvektor von A zum Eigenwert λ1 konvergiert. Diesesgilt, weil

0 ≤ y(m−1)ty(m) = σ(m)σ(m−1) · · ·σ(1) · λ2m−1
1 (α1x1

t + Rm−1
t)(α1x1 + Rm)

|λ1|(2m−1)(|α1| + rm−1)(|α1| + rm)
mit (5.4) und (5.3)

= σ(m) sign(λ1) ·
α1

2 + α1x1
tRm + α1Rm−1

tx1 + Rm−1
tRm

|α1|2 + |α1|(rm−1 + rm) + rm−1rm
︸ ︷︷ ︸

→1 für m→∞122



Wielandt-Verfahren (Inverse Iteration, Na
hiteration)Sei A diagonalisierbar und λj ein einfa
her Eigenwert von A. Sei λ kein Eigenwertvon A und eine Näherung an λj, das heiÿt
|λ − λj | ≪ |λ − λk| für k 6= j.Es folgt: (A − λ Id) ist ni
htsingulär und (A − λ Id)−1 hat die Eigenwerte λ̃i mit

λ̃i = 1
λi−λ

. Also hat die Matrix (A − λ Id)−1 einen dominanten Eigenwert λ̃j unddie von Mises Iteration ist anwendbar.JakobiverfahrenSei A ∈ Rm×m symmetris
h. Wir betra
hten die Frobenius-Norm
‖A‖F =

[ n∑

i,j=1

|aij |2
] 1

2

.Lemma 5.91. ‖A‖F = spur(AT A) = spur(AAT )2. ‖A‖F = ‖QT AQ‖F, Q orthogonalBeweis:1. Da für die Spur eines Matrixprodukts AB mit A, B ∈ Rm×m gilt
spur(AB) =

n∑

i,j=1

aijbji =
n∑

i,j=1

bijaji = spur(BA),bekommen wir insbesondere
spur(AT A) = spur(AAT ) =

n∑

i,j=1

|aij|2.2. Wir nutzen die Eigens
haft einer orthogonalen Matrix Q ∈ Rm×m: Q−1 =
QT .
‖QT AQ‖2F = spur(QT AQQT AT Q) = spur(QT AAT Q) = spur(AT QQT A)

= spur(AT A) = ‖A‖F. QED123



Ist A ∈ Rm×m symmetris
h, so lässt si
h A na
h dem Spektralsatz mit einerorthogonalen Transformation auf Diagonalgestalt bringen. Zusammen mit demLemma folgern wir
‖A‖2F =

n∑

i,j=1

|aij|2 =
n∑

i=1

|λi|2.De�nition 5.10 Eine Auÿennorm ist eine Abbildung
N : Rm×m → R

A 7→
n∑

i,j=1
i6=j

|aij|2 = ‖A‖2
F −

n∑

i=1

|aii|2.Bemerkung: Die Auÿennorm ist keine Norm!Trivialerweise vers
hwindet die Auÿennorm für Diagonalmatrizen. Sei aij einNi
htdiagonalelement, d.h. i 6= j, unglei
h Null. Wir betra
hten eine Teilmatrixunserer symmetris
hen Matrix A, nämli
h:
((

aii aij

aij ajj

))

.Wir wollen nur mithilfe von Rotationen die Ni
htdiagonalelemente eliminieren.
(

bii bij

bij bjj

)

:=

(
cos ϕ sin ϕ
− sin ϕ cos ϕ

)(
aii aij

aij ajj

)(
cos ϕ − sin ϕ
sin ϕ cos ϕ

)

=

(
cos ϕ sin ϕ
− sin ϕ cos ϕ

)(
aii cos ϕ − aij sin ϕ aij cos ϕ − aii sin ϕ
aij cos ϕ + ajj sin ϕ ajj cos ϕ − aij sin ϕ

)Also lässt si
h das transformierte Matrixelement bij auf folgende Art und Weisebere
hnen:
bij := aij cos2 ϕ − aii cos ϕ sin ϕ + ajj sin ϕ cos ϕ − aij sin2 ϕ

= (ajj − aii) sin ϕ cosϕ + aij(cos2 ϕ − sin2 ϕ)

= 1
2
(ajj − aii) sin 2ϕ + aij cos 2ϕ.Wollen wir es vers
hwinden lassen, folgt

cot 2ϕ =
aii − ajj

2aij

.Um Kosinus und Sinus als Winkelfunktionen zu vermeiden, de�niert man τ :=
cos(2ϕ) = cos2 ϕ − sin2 ϕ, ϕ ∈ [−π/4, π/4]. Dann gilt: cos ϕ =

√

(1 + τ)/2,
sin ϕ = σ

√

(1 − τ)/2, σ(ϕ) ∈ −1, 1. Sei ϕ so gewählt, dass
aijτ + (ajj − aii)

σ

2

√
1 − τ 2 = 0.124



Eine Mögli
hkeit ist
τ =

aii − ajj
√

4a2
ij + (aii − ajj)2

, σ = sign(aij)wählen. Das Vorzei
hen σ ergibt si
h wegen des Zählers von τ . Statt der Rotati-onsmatrix können wir also die Transformationsmatrix
(

c −s
s c

) mit c =

√

1 + τ

2
und s = σ

√

1 − τ

2
.verwenden. Wir gehen von der Teilmatrix zur gesamten Matrix über.De�nition 5.11 Sei 1 ≤ i < j ≤ n. Dann nennen wir die Matrix























1 . . .
1

c −s
1 . . .

1
s c

1 . . .
1























mit
c = cosϕ,

s = − sin ϕ,

gii = gjj = cos ϕ,

gij = −gji = sin ϕ,ansonsten Identität
eine Givens-Rotation bzw. eine Jakobi-Transformation.O�ensi
htli
h gilt:Lemma 5.12 Die Givens-Rotation ist orthogonal.Satz 5.13 Sei A ∈ Rn×n symmetris
h, i 6= j mit aij 6= 0. Die Matrix

B = GijAGT
ij1. ist wieder symmetris
h,2. es gilt bij = 0,3. A und B unters
heiden si
h nur in der i-ten bzw. j-ten Spalte/Zeile4. und N(B) = N(A) − 2a2

ij. 125



Beweis: Aussagen 1-3 folgen aus den bisherigen Überlegungen. Weil die Frobeni-usnorm unter orthogonalen Transformationen invariant ist, gilt
∥
∥
∥
∥

(
aii aij

aij ajj

)∥
∥
∥
∥F =

∥
∥
∥
∥

(
bii bij

bij bjj

)∥
∥
∥
∥F.Über diese Glei
hheit und bij=0 erhalten wir dur
h Quadrieren a2

ii + a2
jj + 2a2

ij =
b2
ii + b2

jj. Wir können � da alle anderen Diagonalelemente von A und B glei
hbleiben � auf die Auÿennorm zurü
ks
hlieÿen.
N(B) = ‖B‖2F − n∑

k=1

|bkk|2 = ‖A‖2F − n∑

k=1

|bkk|2

= N(A) +

n∑

k=1

(|akk|2 − |bkk|2)

= N(A) − 2a2
ij . QEDAus diesen Ergebnissen formulieren wir das Jakobi-Verfahren:De�nition 5.14 Sei A ∈ Rn×n symmetris
h. Im klassis
hen Jakobi-Verfahrenwird zunä
hst A(0) = A gesetzt und für m = 1, 2, . . . iteriert mit A(m) = (a

(m)
lk ):1. Su
he i 6= j mit |a(m)

ij | = maxl 6=k |a(m)
lk | und setze G(m) := Gij,2. setze A(m+1) = G(m)A(m)G(m)T .Das Verfahren su
ht also das gröÿte Element aus der Matrix heraus und transfor-miert es auf Null. Weil wir mit symmetris
hen Matrizen arbeiten, müssen wir nureine obere Drei
ksmatrix dur
hsu
hen. Obwohl bei jeder Transformation Nullenwieder vers
hwinden können, liegt Konvergenz vor.Satz 5.15 Das klassis
he Jakobi-Verfahren konvergiert zumindest linear in derAuÿennorm.Beweis: Wir betra
hten ein festes m und erwähnen es daher ni
ht. Da wir |aij | =

maxl 6=k |alk| gesetzt haben, können wir damit N(A) abs
hätzen:
N(A) =

n∑

l,k=1
l 6=k

|alk|2 ≤ n(n − 1)|aij|2,woraus folgt
aij ≥

N(A)

n(n − 1)
.126



Jetzt betra
hten wir einen Iterationss
hritt
N(B) = N(A) − 2|aij|2 ≤

(

1 − 2

n(n − 1)

)1

︸ ︷︷ ︸

=:q<1

N(A)und stellen lineare Konvergenz fest, da der Exponent von q glei
h 1 ist. QEDZwar wissen wir nun, dass die Auÿennormen beim Jakobi-Verfahren gegen Nullkonvergieren, do
h wissen wir ni
ht, ob dann auf der Diagonalen au
h wirkli
hdie Eigenwerte stehen. Dieses Problem wollen wir nun klären:Korollar 5.16 Sind λ1 ≥ · · · ≥ λn die Eigenwerte der symmetris
hen Matrix
A ∈ Rn×n und ist ã

(m)
11 ≥ · · · ≥ ã

(m)
nn eine Umsortierung der Diagonalelementevon A(m), so gilt

|λi − ã
(m)
ii | ≤

√

N(A(m) → 0 für m → ∞.Beweis: Aus Korollar 5.6 mit A = A(m) und B = diag(a
(m)
11 , . . . , a

(m)
nn ) sowie dereuklidis
hen Norm erhalten wir, da A und A(m) die glei
hen Eigenwerte besitzen:

|λi − ã
(m)
ii | = |λi(Am) − λi(B)| ≤ ‖A(m) − B‖2 ≤ ‖A(m) − B‖F =

√

N(A(m).QEDAuf die Eigenvektoren können wir s
hlieÿen, da si
h A(m) s
hreiben lässt als
A(m+1) = G(m)A(m)G(m)T = · · · = G(m)·. . .·G(1)·A·G(1)T ·. . .·G(m)T =: Q(m)AQ(m)T ,wobei Q(m) orthogonal ist und A(m+1) näherungsweise diagonal. Also bestehen dieZeilen von Q(m) näherungsweise aus Eigenvektoren von A. Es gibt no
h weitereVerfeinerungen des Verfahrens:

• Gerade, da das Aufsu
hen des Maximums in jedem S
hritt mit n(n − 1)Verglei
hen O(n2) wiegt, bei groÿen Matrizen sehr teuer sein kann. Bei-spielsweise kann man die Reihenfolge, in der die Paare (i, j) dur
hlaufenwerden, vorher festlegen. Dies nennt man zyklis
hes Jakobi-Verfahren.
• Setzt man zusätzli
h einen S
hwellenwert, ab dem man si
h mit dem aijzufrieden gibt, spri
ht man vom zyklis
hen Jakobi-Verfahren mit S
hwel-lenwert. 127
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