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Vorwort

Dieses Skript entstand aus dem Zyklus der Vorlesungen über Statistik, die ich in den Jahren
2005–2012 an der Universität Ulm gehalten habe. Dabei handelt es sich um die erste Einführung
in die Statistik, die durch die aufbauende Vorlesung Stochastik III ergänzt wird.

Dieses Skript gibt eine Übersicht über die typischen Fragestellungen und Methoden der ma-
thematischen Statistik. Es stellt einen Versuch dar, einen Mittelweg zwischen praktisch orien-
tierten (aber mathematisch oft sehr dürftigen) Statistik-Monographien einerseits und trockenen
Büchern über die mathematische Statistik andererseits einzuschlagen. Ob es mir gelungen ist,
soll der Leser beurteilen.

Ich möchte gerne meinen Kollegen aus dem Institut für Stochastik, Herrn Prof. Volker
Schmidt und Herrn Dipl.-Math. Malte Spiess, für ihre Unterstützung und anregenden Diskus-
sionen während der Entstehung des Skriptes danken. Herr Tobias Brosch hat eine hervorragende
Arbeit beim Tippen des Skriptes und bei der Erstellung zahlreicher Abbildungen, die den Text
begleiten, geleistet. Dafür gilt ihm mein herzlicher Dank.

Ulm, den 19.04.2012 Evgeny Spodarev
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1 Einführung

1.1 Typische Fragestellungen, Aufgaben und Ziele der Statistik

Im alltäglichen Sprachgebrauch versteht man unter „Statistik“ eine Darstellung von Ergebnissen
des Zusammenzählens von Daten und Fakten jeglicher Art, wie z.B. ökonomischen Kenngrö-
ßen, politischen Umfragen, Daten der Marktforschung, klinischen Studien in der Biologie und
Medizin, usw.

Die mathematische Statistik jedoch kann viel mehr. Sie arbeitet mit Daten-Stichproben, die
nach einem bestimmten Zufallsmechanismus aus der Grundgesamtheit aller Daten, die in Folge
von Beobachtung, Experimenten (reale Daten) oder Computersimulation (synthetische Daten)
erhoben wurden. Dabei beschäftigt sich die mathematische Statistik mit folgenden Fragestel-
lungen:

1. Wie sollen die Daten gewonnen werden? (Design von Experimenten)

2. Wie sollen (insbesondere riesengroße) Datensätze beschrieben werden, um die Gesetzmä-
ßigkeiten und Strukturen in ihnen entecken zu können? (Beschreibende (deskriptive) und
explorative Statistik)

3. Welche Schlüsse kann man aus den Daten ziehen? (Schließende oder induktive Statistik)

Statistik

++��ss

Design von Experimenten Beschreibende Statistik Schließende Statistik

In dieser einführenden Vorlesung werden wir Teile der beschreibenden und schließenden Sta-
tistik kennelernen, wobei die Datenerhebung aus Platzgründen ausgelassen wird. Die Arbeits-
weise eines Statistikers sieht folgendermaßen aus:

1. Datenerhebung

2. Visualisierung und beschreibende Datenanalyse

3. Datenbereinigung (z.B. Erkennung fehlerhafter Messungen, Ausreißern, usw.)

4. Explorative Datenanalyse (Suche nach Gesetzmäßigkeiten)

5. Modellierung der Daten mit Methoden der Stochastik

6. Modellanpassung (Schätzung der Modellparameter)

7. Modellvalidierung (wie gut war die Modellanpassung?)

1



2 1 Einführung

Pflanze 1 2 3 4 5 6 7 8 9 10
rund 45 27 24 19 32 26 88 22 28 25

kantig 12 8 7 10 11 6 24 10 6 7
Verhältnis . . . : 1 3,8 3,4 3,4 1,9 2,9 4,3 3,7 2,2 4,7 3,6

Tab. 1.1: Ergebnisse für die 10 Pflanzen des ersten Versuchs von Mendel

8. Schließende Datenanalyse:

• Konstruktion von Vertrauensintervallen (Konfidenzintervallen) für Modellparameter
und deren Funktionen,

• Tests statistischer Hypothesen,

• Vorhersage von Zielgrößen (z.B. auf Basis modellbezogener Computersimulation).

Uns werden in diesem Vorlesungsskript vor allem die Arbeitspunkte 2), 4)–6) und 8) beschäf-
tigen.

Beispiel 1.1.1
Nachfolgend geben wir einige typische Fragestellungen der Statistik an Beispielen von Daten-
sätzen:

1. Statistische Herleitung von Grundsätzen der biologischen Evolution (Mendel, 1865):

Es wurden Nachkommen von zwei Erbsensorten, die sich in der Samenform unterscheiden,
gezüchtet: die erste Sorte hat runde, die zweite kantige Erbsen. Johann Gregor Mendel
hat festgestellt, dass sich runde Samen dominant vererben. Dabei werden bei einer Be-
stäubung von Pflanzen der einen Sorte mit Pollen der anderen alle Nachkommen runde
Samen zeigen, die genetisch heterozygot sind, d.h., beide Allele aufweisen. Kreuzt man
diese hybriden Pflanzen, so zeigen sie runde und kantige Samen im Verhältnis 3 : 1
(Spaltungs- und Dominanzregeln von Mendel). Bei der statistischen Überprüfung seiner
Vermutungen erhielt Mendel 5475 runde und 1850 kantige Samen, die somit im Verhältnis
2, 96 : 1 stehen. In der Tabelle 1.1 sind Ergebnisse für die ersten 10 Pflanzen gezeigt. Man
sieht, dass das oben genannte Verhältnis zufällig um 3 : 1 schwankt. Durch die Bildung
des Mittels über das Gesamtkollektiv der Daten wird die Gesetzmäßigkeit 3 : 1 gefunden
(explorative Statistik).

2. Kreditwürdigkeit bei Kreditvergabe

Die Banken sind offensichtlich daran interessiert, Bankkredite an Kunden zu vergeben,
die in der Zukunft solvent bleiben, also die Kreditraten regelmäßig zurückzahlen können.
Um die Kreditwürdigkeit zu überprüfen, werden Umfragen gemacht, wobei die Antworten
unter anderem in folgenden Variablen kodiert werden:

• X1 Laufendes Konto bei der Bank (1 = nein, 2 = ja und durchschnittlich geführt,
3 = ja und gut geführt)

• X2 Laufzeit des Kredits in Monaten

• X3 Kredithöhe in e

• X4 Rückzahlung früherer Kredite (gut/ schlecht)
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Y
X1: laufendes Konto 1 0

nein 45, 0 19, 9
gut 15, 3 49, 7

mittel 39, 7 30, 2
X3: Kredithöhe in e 1 0

0 < . . . ≤ 500 1, 00 2, 14
500 < . . . ≤ 1000 11, 33 9, 14

1000 < . . . ≤ 1500 17, 00 19, 86
1500 < . . . ≤ 2500 19, 67 24, 57
2500 < . . . ≤ 5000 25, 00 28, 57
5000 < . . . ≤ 7500 11, 33 9, 71
7500 < . . . ≤ 10000 6, 67 3, 71

10000 < . . . ≤ 15000 7, 00 2, 00
15000 < . . . ≤ 20000 1, 00 0, 29
X4: Frühere Kredite 1 0

gut 82, 33 94, 85
schlecht 17, 66 5, 15

X5: Verwendungszweck 1 0
privat 57, 53 69, 29

beruflich 42, 47 30, 71

Tab. 1.2: Lernstichprobe zur Vergabe von Krediten

• X5 Verwendungszweck (privat / geschäftlich)

• X6 Geschlecht (weiblich / männlich)

Um an Hand eines ausgefüllten Fragebogens wie diesem eine Entscheidung über die Ver-
gabe des Kredits treffen zu können, werden Lernstichproben herangezogen, bei denen das
Ergebnis Y der erfolgten Kreditvergabe bekannt ist. Dabei bedeutet Y = 0 gut und Y = 1
schlecht. Betrachten wir eine solche Stichprobe einer süddeutschen Bank, die 1000 Umfra-
gebögen umfasst. Dabei sind 700 kreditwürdig und 300 davon nicht kreditwürdig gewesen.
Die Tabelle 1.2 zeigt Prozentzahlen dieses Datensatzes für ausgewählte Merkmale Xi.
Dabei ist es möglich, mit Hilfe statistischer Methoden (Regression) eine Kreditentschei-
dung bei einem Kunden an Hand dieser Lernprobe automatisch treffen zu können. Dieser
Vorgang wird manchmal auch „statistisches Lernen“ genannt. Fragestellungen wie diese
werden erst in Stochastik III (verallgemeinerte lineare Modelle) behandelt.

3. Korrosion von Legierungen

In diesem Beispiel wurde der Korrosionsgrad einer Kupfer-Nickel-Legierung in Abhän-
gigkeit ihres Eisengehalts untersucht. Dazu wurden 13 verschiedene Räder mit dieser
Legierung beschichtet und 60 Tage lang in Meerwasser gedreht. Danach wurde der Ge-
wichtsverlust in mg pro dm2 und Tag bestimmt. Aus dem Bild 1.1 ist zu sehen, dass die
Korrosion in Abhängigkeit vom Eisengehalt linear abnimmt. Mit statistischen Methoden
(einfache lineare Regression) kann die Geschwindigkeit dieser Abnahme geschätzt werden.
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Abb. 1.1: Korrosion von Kupfer-Nickel-Legierung

1.2 Statistische Merkmale und ihre Typen

Die Daten, die zur statistischen Analyse vorliegen, können eine oder mehrere interessierende
Größen (die auch Variablen oder Merkmale genannt werden) umfassen. Ihre Werte werden
Merkmalsausprägungen genannt. In dem nachfolgenden Diagramm werden mögliche Typen der
statistischen Merkmale gegeben.

Statistische Merkmale

qualitativ quantitativ

stetigdiskretordinalnominal

Diese Typen entstehen in Folge der Klassifikation von Wertebereichen (Skalen) der Merkmale.
Dennoch ist diese Einteilung nicht vollständig und kann bei Bedarf erweitert werden. Man un-
terscheidet qualitative und quantitative Merkmale. Quantitative Merkmale lassen sich inhaltlich
gut durch Zahlen darstellen (z.B. Kredithöhe in e, Körpergewicht und Körpergröße, Blutdruck
usw.). Sie können diskrete oder stetige Wertebereiche haben, wobei diskrete Merkmale isolier-
te Werte annehmen können (z.B. Anzahl der Schäden eines Versicherers pro Jahr). Stetige
Wertebereiche hingegen sind überabzählbar. Dennoch liegen in der Praxis stetige Merkmale in
gerundeter Form vor (z.B. Körpergröße auf cm gerundet, Geldbeträge auf e gerundet usw.).

Im Gegensatz zu den quantitativen Merkmalen sind die Inhalte der qualitativen Merkmale,
wie z.B. Blutgruppe (0, A, B und AB) oder Familienstand (ledig, verheiratet, verwitwet),
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nicht sinnvoll durch Zahlen darzustellen. Sie können zwar formell mit Zahlen kodiert werden
(z.B. bei Blutgruppen 0 = 0, A = 1, B = 2, AB = 3), aber solche Kodierungen stellen keinen
inhaltlichen Zusammenhang zwischen Ausprägungen und Zahlen-Codes dar sondern dienen
lediglich der besseren Identifikation der Merkmale auf einem Rechner. Es ist insbesondere
unsinnig, Mittelwerte und ähnliches von solchen Codes zu bilden.

Ein qualitatives Merkmal mit nur 2 Ausprägungen (z.B. männlich / weiblich, Raucher /
Nichtraucher) heißt alternativ. Ein qualitatives Merkmal kann ordinal (wenn sich eine natürli-
che lineare Ordnung in den Merkmalsausprägungen finden lässt, wie z.B. gut / mittel / schlecht
bei Qualitätsbewertung in Umfragen oder sehr gut / gut / befriedigend / ausreichend / mangel-
haft / ungenügend bei Schulnoten) oder nominal (wenn eine solche Ordnung nicht vorhanden
ist) sein. Beispiele von nominalen Merkmalen sind Fahrzeugmarken in der KFZ-Versicherung
(z.B. BMW, Peugeot, Volvo, usw.) oder Führerscheinklassen (A, B, C, . . .). Datenmerkmale
können auch mehrdimensionale Ausprägungen haben. In dieser Vorlesung behandeln wir je-
doch hauptsächlich eindimensionale Merkmale.

1.3 Statistische Daten und Stichproben

Aus den obigen Beispielen wird klar, dass ein Statistiker mit Datensätzen der Form (x1, . . . , xn)
arbeitet, wobei die Einzeleinträge xi aus einer Grundgesamtheit G ⊂ R

k stammen, die hypothe-
tisch unendlich groß ist. Der vorliegende Datensatz (x1, . . . , xn) wird auch (konkrete) Stichprobe
von Umfang n genannt. Die Menge B aller potentiell möglichen Stichproben bezeichnen wir
als Stichprobenraum und setzen zur Vereinfachung der Notation B = R

kn. In diesem Skript
werden wir meistens die univariate statistische Analyse (also k = 1, ein eindimensionales Merk-
mal) betreiben. In der beschreibenden Statistik arbeitet man mit Stichproben (x1, . . . , xn) und
ihren Funktionen, um diese Daten visualisieren zu können. Für die Aufgabe der schließen-
den Statistik jedoch reicht diese Datenebene nicht mehr aus. Daher wird die zweite Ebene
der Betrachtung eingeführt, die sogenannte Modellebene. Dabei wird angenommen, dass die
konkrete Stichprobe (x1, . . . , xn) eine Realisierung eines stochastischen Modells (X1, . . . , Xn)
darstellt, wobei X1, . . . , Xn (meistens unabhängige identisch verteilte) Zufallsvariablen auf ei-
nem (nicht näher spezifiziertem) Wahrscheinlichkeitsraum (Ω, F ,P) sind. Diese Zufallsvariablen
Xi, i = 1, . . . , n können als konsequente Beobachtungen eines Merkmals interpretiert werden.
In Bsp. 1.1.1, 1) z.B. die Erbsenform mit

Xi =

{
0, falls Erbse i rund,

1, falls Erbse i eckig,
i = 1, . . . , n .

Der Vektor (X1, . . . , Xn) wird dabei Zufallsstichprobe genannt. Man setzt weiter voraus, dass
EX2

i < ∞ ∀i = 1, . . . , n, damit man von der Varianz Var Xi der Einzeleinträge sprechen kann.
Es wird außerdem angenommen, dass ein ω ∈ Ω existiert, sodass Xi(ω) = xi ∀i = 1, . . . , n. Sei
F die Verteilungsfunktion der Zufallsvariablen Xi. Eine der wichtigsten Aufgaben der Statistik
ist die Bestimmung von F (man sagt, „Schätzung von F“) aus den konkreten Daten (x1, . . . , xn).
Dabei können auch Momente von F und ihre Funktionen (Erwartungswert, Varianz, Schiefe,
usw.) von Interesse sein.
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1.4 Stichprobenfunktionen

Um die obigen Aufgaben erfüllen zu können, braucht man gewisse Funktionen ϕ : R
n →

R
m , m ∈ N auf dem Stichprobenraum, die diese Stichprobe bewerten.

Definition 1.4.1
Eine Borel-messbare Abbildung ϕ : Rn → R

m heißt Stichprobenfunktion. Wenn man auf der
Modellebene mit einer Zufallsstichprobe (X1, . . . , Xn) arbeitet, so heißt die Zufallsvariable

ϕ(X1, . . . , Xn)

eine Statistik. In der Schätztheorie spricht man dabei von Schätzern und bei statistischen Tests
wird ϕ(X1, . . . , Xn) Teststatistik genannt.

Beispiele für Stichprobenfunktionen sind unter anderen das Stichprobenmittel

x̄n =
1

n

n∑

i=1

xi ,

die Stichprobenvarianz

s2
n =

1

n − 1

n∑

i=1

(
xi − x̄n

)2

und die Ordnungsstatistiken
x(1) ≤ x(2) ≤ . . . ≤ x(n) ,

die entstehen, wenn man eine Stichprobe, die aus quantitativen Merkmalen besteht, linear ord-
net (x(1) = mini=1,...,n xi, . . . , x(n) = maxi=1...n xi). Weitere Beispiele und ihre Charakteristiken
werden in Kapitel 2 gegeben.
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Sei eine konkrete Stichprobe (x1, . . . , xn) , xi ∈ R gegeben, wobei die xi als Realisierungen

der Zufallsvariablen Xi
d
= X mit Verteilunfsfunktion F interpretiert werden können.

2.1 Verteilungen und ihre Darstellungen

In diesem Abschnitt werden wir Methoden zur statistischen Beschreibung und grafischen Dar-
stellung der (unbekannten) Verteilung F betrachten.

2.1.1 Häufigkeiten und Diagramme

Falls das quantitative Merkmal X eine endliche Anzahl von Ausprägungen {a1, . . . , ak}, a1 <
a2 < . . . < ak, besitzt, also

P
(
X ∈ {a1, . . . , ak}) = 1 ,

dann kann eine Schätzung der Zähldichte pi = P (X = ai) von X aus den Daten (x1, . . . , xn)
grafisch dargestellt werden. Ähnliche Darstellungen sind für die Dichte f(x) von absolut ste-
tigen Merkmalen X möglich, wobei ihr Wertebereich C sich in k Klassen aufteilen lässt:
(ci−1, ci] , i = 1, . . . , k, wobei c0 = −∞, c1 < . . . < ck−1, ck = ∞ ist. Dann kann die
Zähldichte pi = P

(
X ∈ (ck−1, ck]

)
gegeben durch

pi =
∫ ci

ci−1

f(x) dxi , i = 0, . . . , k

betrachtet werden.

Definition 2.1.1

1. Die absolute Häufigkeit von Merkmalsausprägung ai bzw. Klasse (ci−1, ci] , i = 1, . . . , k
ist ni = #{xj , j = 1, . . . , n : xj = ai} bzw. ni = #{xj , j = 1, . . . , n : xj ∈ (ci−1, ci]}.

2. Die relative Häufigkeit von Merkmalsausprägung ai bzw. Klasse (ci−1, ci] ist fi = ni/n ,
i = 1, . . . , k.

Es gilt offensichtlich n =
∑k

i=1 ni , 0 ≤ fi ≤ 1 ,
∑k

i=1 fi = 1. Die absoluten und relativen
Häufigkeiten werden oft in Häufigkeitstabellen zusammengefasst. Zu ihrer Visualisierung dienen
so genannte Diagramme. Es wird grundsätzlich zwischen Histogrammen und Kreisdiagrammen
unterschieden.

1. Histogramme werden gebildet, indem man die Paare (ai, fi) (bzw. (1/2(c1 + x(1)), f1),(
1/2(ci−1 + ci), fi

)
, i = 2, . . . , k − 1, (1/2(ck−1 + x(n)), fk) im absolut stetigen Fall, wobei

hier die Bezeichnung ai = 1/2(ci−1 + ci) verwendet wird und x(1) < c1, x(n) > ck−1

angenommen wird.) auf der Koordinatenebene (x, y) folgendermaßen aufträgt:

• Stabdiagramm: fi wird als Höhe des senkrechten Strichs über ai dargestellt:

7
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✻y

✲
x0 a1 a2 a3 . . . ak

f1

f2

• Säulendiagramm: genauso wie ein Stabdiagramm, nur werden Striche durch Säulen
der Form (ci−1, ci]×fi ersetzt, wobei im diskreten Fall die Aufteilung der reellen Ach-
se −∞ = c0 < c1 < c2 < . . . < ck−1 < ck = ∞ in Intervalle beliebig vorgenommen
werden kann.

✻y

✲
x0 c1a1c2a2c3a3c4 . . . ckakck+1

f1

f2

• Balkendiagramm: genauso wie Säulendiagramm, nur mit vertikalen statt horizontaler
x-Achse.

✲
y

✻x

0

c1

a1

c2

a2

c3

a3

c4

...

ck

ak

ck+1

f1 f2

2. Kreisdiagramme (Tortendiagramme):
Ein Kreis wird in Segmente mit Öffnungswinkel αi eingeteilt, die proportional zu fi sind:
αi = 2πfi , i = 1, . . . , n.
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✁
✁
✁
✁
✁
✁

✟✟✟✟✟✟

❏
❏

❏
❏

❏❏

✡
✡

✡
✡

✡✡

❈
❈
❈
❈
❈
❈❈

f1

f2

f3

f4

f5

3. Stamm-Blatt-Diagramme (stem-leaf display):
Diese werden heutzutage relativ selten und nur für kleine Datensätze verwendet. Dabei

arbeitet man mit Stichprobenwerten, die auf ganze Zahlen gerundet sind. Sei (x1, . . . , xn)
eine Stichprobe von solchen Werten, die Ausprägungen eines quantitativen Merkmals sind.
Zunächst teilt man den Wertebereich [x(1), x(n)] in Klassen gleicher Breite 10d , d ∈ N,
wobei jede Klasse mit den ersten Ziffern der dazugehörigen Beobachtungen markiert wird.
Zum Beispiel, wenn die Klasseneinteilung so aussieht

✲
100 200 300 . . . 700

werden die Klassen [100(i − 1), 100i) mit den Zahlen i markiert und auf der y-Achse wie
folgt aufgetragen:

✲

✻y

1 3378

2 24455579

3 45

4 11133555666689...
7 178

Auf diese Weise wird der Stamm des Baumes festgelegt. In jeder Klasse ordnet man
Beobachtungen ihrer Größe nach und rundet sie auf die Stelle, die nach der gewählten
Genauigkeit des Stammes folgt. Als Beispiel erhält man aus 127 → 130, aus 652 → 650
usw. und trägt diese Beobachtungen als Blätter des Baums horizontal ihrer Reihenfolge
nach als 3 in Klasse 1 und 5 in Klasse 6 auf. Dabei darf man nicht vergessen, die Einheit
zu notieren: 1/3 = 130, um sich das Rückrechnen zu ermöglichen. Bei der Wahl der
Klassenanzahl m hält man sich an die Faustregel m ≈ 10 log10 n, um einerseits den
Dateverlust durch das unnötige Runden zu minimieren und andererseits das Diagramm
so übersichtlich wie möglich zu halten.

Bemerkung 2.1.1
Die in Abschnitt 2.1.1 betrachteten Methoden dienen der Visualisierung von (Zähl-) Dichten der
Verteilung eines beobachteten Merkmals X. Aus dem Histogramm kann z.B. die Interpretation
der Form der Dichte abgelesen werden:
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Abb. 2.1: Das Histogramm der Daten mit einer rechtssteilen (linksschiefen), symmetrischen
und linkssteilen (rechtsschiefen) Verteilung und ihre Dichte.

Ist die zugrundeliegende Verteilung FX symmetrisch bzw. linkssteil (rechtsschief) oder rechts-
steil (linksschief) (vgl. Abb. 2.1) oder ist sie unimodal (d.h. eingipflig), bimodal (d.h. mit 2
Gipfeln) oder multimodal (also mit mehreren Gipfeln) (vgl. Abb. 2.2).

Abb. 2.2: Histogramm der Daten mit der Dichte einer unimodalen, bimodalen und multimoda-
len Verteilung

2.1.2 Empirische Verteilungsfunktion

Es sei eine konkrete Stichprobe (x1, . . . , xn) gegeben, die eine Realisierung des statistischen
Modells (X1, . . . , Xn) ist, wobei X1, . . . , Xn unabhängige identisch verteilte Zufallsvariablen mit

Verteilungsfunktion FX : Xi
d
= X ∼ FX sind. Wie kann die unbekannte Verteilungsfunktion

FX aus den Daten (x1, . . . , xn) rekonstruiert (die Statistiker sagen „geschätzt“) werden? Dies
ist mit Hilfe der sogenannten empirischen Verteilungsfunktion möglich:

Definition 2.1.2

1. Die Funktion F̂n(x) = #{xi : xi ≤ x , i = 1, . . . , n}/n , ∀x ∈ R heißt empirische Vertei-
lungsfunktion der konkreten Stichprobe (x1, . . . , xn). Dabei gilt F̂n : R

n+1 → [0, 1], weil
F̂n(x) = ϕ(x1, . . . , xn, x).

2. Die mit x ∈ R indizierte Zufallsvariable F̂n : Ω ×R → [0, 1] heißt empirische Verteilungs-
funktion der Zufallsstichprobe (X1, . . . , Xn), wenn

F̂n(x, ω) = F̂n(x) =
1

n
#{Xi, i = 1, . . . , n : Xi(ω) ≤ x} , x ∈ R .
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Äquivalent zur Definition 2.1.2 kann man

F̂n(x) =
1

n

n∑

i=1

I(xi ≤ x) , x ∈ R

schreiben, wobei

I(x ∈ A) =

{
1, x ∈ A

0, sonst.

Es gilt

F̂n(x) =





1, x ≥ x(n) ,
i
n , x(i) ≤ x < x(i+1) , i = 1, . . . , n − 1 ,

0, x < x(1) .

für x(1) < x(2) < . . . < x(n).

Dabei ist die Höhe des Sprungs an Stelle x(i) gleich der relativen Häufigkeit fi des Wertes
x(i). Falls x(i) = x(i+1) für ein i ∈ {1, . . . , n}, so tritt der Wert i/n nicht auf. In Abbildung

2.3 sieht man, dass F̂n(x) eine rechtsstetige monoton nichtfallende Treppenfunktion ist, für die

✻F̂n

1

✲
xx(1) x(2) x(3)

✲
✻
❄

f1

✲❛

✻❄f2

✲❛

✻

❄
f3

✲❛ . .
.

✲❛

✲❛

✻
❄

f(n−1)

❛

✻

❄
f(n)

Abb. 2.3: Eine typische empirische Verteilungsfunktion

F̂n(x) −→
x→−∞

0 , F̂n(x) −→
x→∞

1 gilt.

Übungsaufgabe 2.1.1
Zeigen Sie, dass F̂n(x) eine Verteilungsfunktion ist.
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2.2 Beschreibung von Verteilungen

Maßzahlen einer Stichprobe

Maße für Schiefe 
und Wölbung

Konzentrations-
maße

StreuungsmaßeLagemaße

Es sei eine konkrete Stichprobe (x1, . . . , xn) gegeben. Im Folgenden werden Kennzahlen (die
sogenannten Maße) dieser Stichprobe betrachtet, welche die wesentlichen Aspekte der der Stich-
probe zugrundeliegenden Verteilung wiedergeben:

1. Wo liegen die Werte xi (Mittel, Ordnungsstatistiken, Quantile)? =⇒ Lagemaße

2. Wie stark streuen die Werte xi (Varianz) =⇒ Streuungsmaße

3. Wie stark sind die Werte xi in gewissen Bereichen von R konzentriert =⇒ Konzentrati-
onsmaße

4. Wie schief bzw. gewölbt ist die Verteilung von X =⇒ Maße für Schiefe und Wölbung

2.2.1 Lagemaße

Man unterscheidet folgende wichtige Lagemaße:

• Mittelwerte: Stichprobenmittel (arithmetisch), geometrisches und harmonisches Mittel,
gewichtetes Mittel, getrimmtes Mittel

• Ordnungsstatistiken und Quantile, insbesondere Median und Quartile

• Modus

Betrachten wir sie der Reihe nach:

1. Mittelwertbildung: Seit der Antike kennt man mindestens 3 Arten der Mittelberechnung
von n Zahlen (x1, . . . , xn):

• arithmetisch: x̄n = 1/n
∑n

i=1 xi , ∀x1, . . . , xn ∈ R,

• geometrisch: xg
n = n

√
x1 · . . . · xn , x1, . . . , xn > 0,

• harmonisch: xh
n =

(
1/n

∑n
i=1 x−1

i

)−1
, x1, . . . , xn /= 0.

a) Das arithmetische Mittel wird in der Statistik am meisten benutzt, weil es keine
Voraussetzungen über den Wertebereich von x1, . . . , xn braucht. Es wird auch Stich-
probenmittel genannt. Offensichtlich ist x̄n ein Spezialfall des sogenannten gewich-
teten Mittels xw

n =
∑n

i=1 wixi, wobei für die Gewichte wi ≥ 0 ∀i = 1, . . . , n und∑n
i=1 wi = 1 gilt. Als eine natürliche Gewichtewahl kommt wi = 1/n , ∀i = 1, . . . , n

bei einer konkreten Stichprobe (x1, . . . , xn) in Frage. Die Summe aller Abweichungen
von x̄n ist Null, denn

∑n
i=1(xi − x̄n) = nx̄n − nx̄n = 0, d.h. x̄n stellt geometrisch
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den Schwerpunkt der Werte xi dar, falls jedem Punkt eine Einheitsmasse zugeordnet
wird. Wenn es in der Stichprobe große Ausreißer gibt, so beeinflussen sie das Stich-
probenmittel entscheident und erschweren so die objektive Datenanalyse. Deshalb
verwendet man oft die robuste Version des arithmetischen Mittels, das sogenannte
getrimmte Mittel:

x̃(k)
n =

1

n − 2k

n−k∑

i=k+1

x(i) ,

bei dessen Berechnung die k kleinsten und k größten Ausreißer ausgelassen werden,
wobei k ≪ n/2.

b) Das geometrische Mittel wird hauptsächlich bei der Beobachtung von Wachstums-
und Zinsfaktoren verwendet. Sei xi = Bi/Bi−1 , i = 1, . . . , n der Wachstumsfaktor
des Merkmals Bi, das in den Jahren i = 1, . . . , n beobachtet wurde (z.B. Inflations-
faktor). Dann ist Bn = B0 · x1 · . . . · xn und somit wäre der Zins im Jahre n

Bg
n = B0 · x1 · . . . · xn = B0 · (xg

n)n .

Für das geometrische Mittel gilt

log xg
n =

1

n

n∑

i=1

log xi ≤ log

(
1

n

n∑

i=1

xi

)

wegen der Konkavität des Logarithmus, d.h. log xg
n = log xn ≤ log x̄n und somit

xg
n ≤ x̄n, wobei xg

n = x̄n genau dann, wenn x1 = . . . = xn.

c) Das harmonische Mittel wird bei der Ermittlung von z.B. durchschnittlicher Ge-
schwindigkeiten gebraucht.

Beispiel 2.2.1
Seien xi Geschwindigkeiten mit denen Bauteile eine Produktionslinie der Länge l
durchlaufen. Die gesamte Bearbeitungszeit ist l/x1 + . . . + l/xn und die Durch-
schnittslaufgeschwindigkeit

l + . . . + l

l/x1 + . . . + l/xn
= xh

n .

Es gilt x(1) ≤ xh
n ≤ xg

n ≤ xn ≤ x(n) und xh
n = (xg

n)2/xn für xi > 0, i = 1, . . . , n.

Übungsaufgabe 2.2.1
Beweisen Sie diese Relation per Induktion bzgl. n.

2. Ordnungsstatistiken und Quantile

Definition 2.2.1
Die Ordnungsstatistiken x(i) , i = 1, . . . , n der Stichprobe (x1, . . . , xn) sind durch die
messbare Permutation ϕ(x1, . . . , xn) gegeben, so dass

x(i) = min
{
xj : #{k : xk ≤ xj} ≥ i

}
, ∀i = 1, . . . , n .

Somit gilt x(1) ≤ x(2) ≤ . . . ≤ x(n). Dieselbe Definition kann auch auf der Modellebene
gegeben werden.
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Definition 2.2.2

a) Sei nun X die Zufallsvariable, die das Merkmal modelliert. Sei FX ihre Verteilungs-
funktion. Die verallgemeinerte Inverse von FX , definiert durch

F −1
X (y) = inf

{
x : FX(x) ≥ y

}
, y ∈ [0, 1] ,

heißt Quantilfunktion von FX bzw. X. Es gilt F −1
X : [0, 1] → R ∪ {±∞}. Die Zahl

F −1
X (α) , α ∈ [0, 1] wird α-Quantil von FX genannt.

b) • F −1
X (0, 25) heißt unteres Quartil,

• F −1
X (0, 75) heißt oberes Quartil,

• F −1
X (0, 5) heißt der Median der Verteilung von X.

Zwischen Ordnungsstatistiken und Quantilen besteht ein enger Zusammenhang. So bedeu-
tet F −1

X (α) , α ∈ (0, 1), dass ca. α ·100% aller Merkmalsausprägungen in der Stichprobe
(x1, . . . , xn) unter F −1

X (α) und ca. (1 − α) · 100% über F −1
X (α) liegen (im absolut steti-

gen Fall). Insbesondere gilt F −1
X (α) ≈ x([nα]), deshalb werden Ordnungsstatistiken auch

empirische Quantile genannt. Dabei ist xα definiert als

xα =

{
x([nα]+1) , nα /∈ N

1/2(x([nα]) + x([nα]+1)) , nα ∈ N
.

Dies ist die allgemeine Definition des empirischen α-Quantils.

Der empirische Median ist

xmed =





x(n+1
2

) , n ungerade

1
2

(
x(n

2

) + x(n
2

+1
)
)

, n gerade.

Somit sind mindestens 50% aller Stichprobenwerte kleiner gleich und 50% größer gleich
xmed. Der Median ist ein Lagemaß, das ein robuster Ersatz für den Mittelwert darstellt,
denn er ist bzgl. Ausreißern in der Stichprobe nicht sensibel.

Die oben genannten Statistiken werden in einem Box-Plot zusammengefasst und grafisch
dargestellt:

xmin = x(1) x0,25

❝

xmed x0,75 x0,95 xmax = x(n)

❝❝ ❝❝❝ ❝

interquartiler Abstand ✲✛

Manchmal werden x(1) und x(n) durch x0,05 und x0,95 ersetzt. Die restlichen Werte werden
darüber hinaus als Einzelpunkte auf der x-Achse abgebildet. Dann liegt ein sogenannter
modifizierter Box-Plot vor.
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3. Modus: Sei (x1, . . . , xn) eine Stichprobe, die aus n unabhängigen Realisierungen des Merk-
mals X besteht. Sei (p(x)) f(x) die (Zähl-) Dichte von X, wobei die Verteilung von X
undimodal ist.

Definition 2.2.3

a) Der Wert xmod = arg max f(x) (arg max p(x)) wird der Modus der Verteilung von X
genannt (vgl. Abb. 2.4).

b) Empirisch wird x̂mod als cm−1+cm

2 für m = arg max fi definiert, also als die Mitte des
Intervalls mit der größten Häufigkeit des Vorkommens in der Stichprobe, falls dieser
eindeutig bestimmbar ist.

✻

x
✲

y

0

❛

xmod

f(x)

Abb. 2.4: Veranschaulichung des Modus

Den Mittelwert x̄n, Median xmed und Modus xmod kann man auch wie folgt definieren:

x̄n = arg min
x∈R

n∑

i=1

(xi − x)2

xmed = arg min
x∈R

n∑

i=1

|xi − x|

x̂mod = cm−1+cm

2 , wobei m = arg minj=1,...,n

∑n
i=1 I(xi /∈ (cj−1, cj ])

Übungsaufgabe 2.2.2
Zeigen Sie die Äquivalenz der oben genannten Definitionen des Mittelwerts x̄n, Medians
xmed und des Modus xmod zu den bekannten Definitionen.

Die Größen x̄n, xmed und x̂mod können auch zur Beschreibung der Symmetrie einer unimo-
dalen Verteilung FX von Daten (x1, . . . , xn) verwendet werden, da

• bei symmetrischen Verteilung FX gilt x̄n ≈ xmed ≈ x̂mod

• bei linkssteilen Verteilung FX gilt x̂mod < xmed < x̄n

• bei rechtssteilen Verteilung FX gilt x̄n < xmed < x̂mod.



16 2 Beschreibende Statistik

2.2.2 Streuungsmaße

Bekannte Streuungsmaße einer konkreten Stichprobe (x1, . . . , xn) sind die folgenden Größen:

• Spannweite x(n) − x(1),

• empirische Varianz s̄2
n = 1

n

∑n
i=1(xi − x̄n)2,

• Stichprobenvarianz s2
n = 1

n−1

∑n
i=1(xi − x̄n)2 = n

n−1 s̄2
n,

• empirische Standardabweichungen s̄n =
√

s̄2
n , sn =

√
s2

n,

• empirischer Variationskoeffizient γn = sn/x̄n, falls x̄n > 0.

Die Spannweite zeigt die maximale Streuung in den Daten, wobei sich die empirische Varianz
mit der mittleren quadratischen Abweichung vom Stichprobenmittel auseinandersetzt. Hier sind
einige Eigenschaften von s̄2

n (bzw. s2
n, da sie sich nur durch einen Faktor unterscheiden):

Lemma 2.2.1

1. Für jedes b ∈ R gilt

n∑

i=1

(xi − b)2 =
n∑

i=1

(xi − x̄n)2 + n(x̄n − b)2

und somit für b = 0

s̄2
n =

1

n

n∑

i=1

(
x2

i − x̄2
n

)
bzw. s2

n =
1

n − 1

n∑

i=1

(
x2

i − x̄2
n

)
.

2. Transformationsregel:
Falls die Daten (x1, . . . , xn) linear transformiert werden, d.h. yi = axi + b , a /= 0 , b ∈ R,

dann gilt
s̄2

n,y = a2s̄2
n,x bzw. s̄n,y = |a|s̄n,x ,

wobei

s̄2
n,y =

1

n

n∑

i=1

(yi − ȳn)2 , s̄2
n,x =

1

n

n∑

i=1

(xi − x̄n)2

Beweis 1. Es gilt:

n∑

i=1

(xi − b)2 =
n∑

i=1

(xi − x̄n + x̄n − b)2

=
n∑

i=1

(xi − x̄n)2 + 2
n∑

i=1

(xi − x̄n) · (x̄n − b) +
n∑

i=1

(x̄n − b)2

=
n∑

i=1

(xi − x̄n)2 + 2(x̄n − b) ·
n∑

i=1

(xi − x̄n)

︸ ︷︷ ︸
=0

+n(x̄n − b)2 , ∀b ∈ R .
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2. Es gilt:

s̄2
n,y =

1

n

n∑

i=1

(axi + b − ax̄n − b)2 =
a2

n

n∑

i=1

(xi − x̄n)2 = a2s̄2
n,x .

Der Skalierungsunterschied zwischen s̄2
n und s2

n ist den Eigenschaften der Erwartungstreue
von s2

n zu verdanken, die später im Laufe dieser Vorlesung behandelt wird, und besagt, dass
für eine Zufallsstichprobe (X1, . . . , Xn) mit Xi unabhängig identisch verteilt, Xi ∼ X, Var X =
σ2 ∈ (0, ∞) gilt Es2

n = σ2, wobei Es̄2
n = n

n−1σ2 −→
n→∞

σ2. Das heißt, während bei der Verwendung

von s2
n zur Schätzung von σ2 kein Fehler „im Mittel“ gemacht wird, ist diese Aussage für s̄2

n

nur asymptotisch (für große Datenmengen n) richtig.
Aufgrund von

∑n
i=1(xi − x̄n) = 0 ist z.B. xn − x̄n durch xi − x̄n, i = 1, . . . , n − 1 bestimmt.

Somit verringert sich die Anzahl der Freiheitsgrade in der Summe
∑n

i=1(xi − x̄n)2 um 1 und
somit scheint die Normierung 1

n−1 plausibel zu sein.
Die Standardabweichungen s̄n und sn werden verwendet, damit man die selben Einheiten (und

nicht ihre Quadrate, also z.B. Euro und nicht Euro2) erhält. Für normalverteilte Stichproben
(X ∼ N(µ, σ2)) liefert s̄n auch die „k-Sigma-Regel“ (vgl. Vorlesung WR), die besagt, dass in
den Intervallen

[x̄n − s̄n, x̄n + s̄n] ca. 68% ,

[x̄n − 2s̄n, x̄n + 2s̄n] ca. 95% ,

[x̄n − 3s̄n, x̄n + 3s̄n] ca. 99%

aller Daten liegen.
Der Vorteil vom empirischen Variationskoeffizienten ist, dass er maßstabsunabhängig ist und

somit den Vergleich von Streuungseigenschaften unterschiedlicher Stichproben zulässt.

2.2.3 Konzentrationsmaße

Insbesondere in den Wirtschaftswissenschaften interessiert man sich oft für die Konzentration
von Merkmalsausprägungen in der Stichprobe, z.B. wie sich das Familieneinkommen einer de-
mographischen Einheit auf unterschiedliche Einkommensbereiche (Vielverdiener, Mittelstand,
Wenigverdiener) aufteilt, oder wie sich der Markt auf Marktanbieter aufteilt (Marktkonzentra-
tion). Dabei ist es wünschenswert, diese Relation mit Hilfe weniger Zahlen oder einer Grafik
zum Ausdruck zu bringen. Dies ist mit Hilfe folgender Stichprobenfunktionen möglich:

• Lorenzkurve L,

• Gini-Koeffizient G,

• Konzentrationsrate CRg,

• Herfindahl-Index H.

1. Die Lorenzkurve wurde von M. Lorenz am Anfang des XX. Jahrhunderts für die Cha-
rakterisierung der Vermögenskonzentration benutzt. Sei (x1, . . . , xn) eine Stichprobe, die
in aufsteigender Reihenfolge geordnet werden muss: (x(1), . . . , x(n)). Die Lorenzkurve ver-
bindet Punkte

(0, 0), (u1, v1), . . . , (un, vn), (1, 1)
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durch Liniensegmente, wobei uj = j/n der Anteil der j kleinsten Merkmalsträger und

vj =
∑j

i=1 x(i)/
∑n

i=1 xi die kumulierte relative Merkmalssumme ist. Der Grundgedanke

0 1

1

u

v

L

S1

S3

l.p.i

l.p.e

Abb. 2.5: Abbildung einer typischen Lorenzkurve

ist darzustellen, welcher Anteil des Merkmalsträgers auf welchen Anteil der Gesamtmerk-
malssumme entfällt. Zum Beispiel lassen sich dadurch Aussagen wie etwa „Auf 20% aller
Haushalte im Land entfällt 78% des Gesamteinkommens“ machen. Eine Interpretation
der Lorenzkruve L ist nur an den Knoten (uj , vj) möglich: „Auf uj · 100% der kleins-
ten Merkmalsträger konzentrieren sich vj · 100% der Merkmalssumme“. Dabei liegt L auf
[0, 1]2 immer zwischen der „line of perfect equality“ (l.p.e.) vi = ui ∀ i (Einkommen
ist absolut gleichmäßig—also „gerecht“—verteilt) und „line of perfect inequality“ (l.p.i.)
v = 0, u ∈ [0, 1) und (1, 1) (das Gesamteinkommen besitzt nur die reichste Familie) und
ist immer monoton und konvex. Auf Modellebene gibt es ein Analogon der Lorenzkurve.
Dieses ist

L =

{
(u, v) ∈ [0, 1]2 : v =

∫ u
0 F −1

X (t)dt
∫ 1

0 F −1
X (t)dt

, u ∈ [0, 1]

}
,

wobei

EX =
∫ 1

0
F −1

X (t)dt

(vgl. WR Satz 4.3.2). Dementsprechend können die Knoten (ui, vj) der oben eingeführten
empirischen Lorenzkurve als

vj =

∑j
i=1

x(i)

n

x̄n

interpretiert werden.

2. Der Gini-Koeffizient G ist gegeben durch G = S1/S2, wobei S1 die Fläche zwischen der
Lorenzkurve L und der Diagonalen v = u, S2 die Fläche zwischen der Diagonalen und
der u-Achse (= 1/2|[0, 1]2| = 1/2) ist.
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Satz 2.2.1 (Darstellung des Gini-Koeffizienten):
Es gilt

G = 2S1 =
2
∑n

i=1 ix(i)

n
∑n

i=1 xi
− n + 1

n
.

Beweis Beginnen wir damit, die Darstellung G = (n + 1)/n − 2v̄n zu zeigen. Nach
Definition ist

G =
S1

S2
=

S2 − S3

S2
= 1 − S3

S2
= 1 − 2S3 ,

wobei S3 die Fläche zwischen der Lorenzkurve und der x-Achse ist (vgl. Abb. 2.5). Be-
rechnen wir S3:

S3 =
∑n

j=1 Fj , wobei Fj = 1/n · vj−1 + 1
2

1
n · (vj − vj−1) = 1

2n(vj + vj−1) die Fläche unter
einem Liniensegment der Lorenzkurve ist (vgl. Abb. 2.6). Es gilt

vj

vj−1

uj−1 uj

Fj

✲✛
1/n

Abb. 2.6: Liniensegment der Lorenzkurve

S3 =
1

2n

n∑

j=1

(vj + vj−1) =
1

2n


2

n∑

j=1

vj − 1


 = v̄n − 1

2n
,

somit

G = 1 − 2v̄n +
1

n
=

n + 1

n
− 2v̄n .

Beweisen wir jetzt, dass

G =
2
∑n

i=1 ix(i)

n
∑n

i=1 xi
− n + 1

n

ist. Sei w =
∑n

i=1 ix(i). Aufgrund der Definition von vj gilt sj =
∑j

i=1 x(i) = sn · vj ,
∀j = 1, . . . , n und x(i) = si − si−1 , s0 = 0. Daher erhalten wir

w =
n∑

i=1

i(si − si−1) =
n∑

i=1

isi −
n−1∑

i=0

(i + 1)si = nsn −
n−1∑

i=0

si

= (n + 1)sn −
n∑

i=1

si = (n + 1)sn − sn ·
n∑

i=1

vi = (n + 1)sn − sn · nv̄n
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und somit

2ω

nsn
− n + 1

n
=

2w − (n + 1)sn

nsn
=

2(n + 1)sn − 2snnv̄n − (n + 1)sn

nsn
=

n + 1

n
− 2v̄n = G .

Es gilt G ∈ [0, (n − 1)/n], wobei

Gmin = 0 bei x1 = x2 = . . . = xn „perfect equality“,

Gmax =
n − 1

n
bei x1 = . . . = xn−1 = 0, xn /= 0 „perfect inequality“ .

Somit hängt Gmax vom Datenumfang ab. Um dies zu vermeiden, betrachtet man oft den
normierten Gini-Koeffizienten

G∗ =
G

Gmax
=

n

n − 1
G ∈ [0, 1]

(Lorenz-Münzner-Koeffizient).

3. Konzentrationsrate CRg:
In den Punkten 1) und 2) betrachteten wir die relative Konzentration, wie etwa bei der
Fragestellung „Wieviel % der Familien teilen sich wieviel % des Gesamteinkommens?“.
Dabei beantwortet die Konzentrationsrate die Frage „Wieviele Familien haben wieviel
Prozent des Gesamteinkommens?“ für die g reichsten Familien, somit wird auch die ab-
solute Anzahl aller Familien berücksichtigt.

Sei g ∈ {1, . . . , n} und seien x(1) ≤ . . . ≤ x(n) die Ordnungsstatistiken der Stichprobe
(x1, . . . , xn). Für i ∈ {1, . . . , n} sei

pi =
x(i)∑n
j=1 xj

=
x(i)

nx̄n
(2.2.1)

der Merkmalsanteil der i-ten Einheit.

Dann gibt die Konzentrationsrate CRg =
∑n

i=n−g+1 pi wieder, welcher Anteil des Ge-
samteinkommens von g reichsten Familien gehalten wird.

4. Der Herfindahl-Index ist definiert durch M =
∑n

i=1 p2
i , wobei der Merkmalsanteil pi nach

(2.2.1) definiert ist. Bei der gleichen Verteilung des Einkommens (x1 = x2 = . . . = xn) gilt
Hmin = 1/n, bei völlig ungerechter Verteilung (x1 = . . . = xn−1 = 0, xn /= 0) Hmax = 1.
Sonst gilt H ∈ [Hmin, Hmax], also 1/n ≤ H ≤ 1. H ist umso kleiner, je gerechter das
Gesamteinkommen verteilt ist.

2.2.4 Maße für Schiefe und Wölbung

Im Vorlesungsskript WR, Abschnitt 4.5 S. 99 wurden folgende Maße für Schiefe bzw. Wölbung
der Verteilung einer Zufallsvariable X eingeführt:
Schiefe oder Symmetriekoeffizient:

γ1 =
µ′

3

σ3
= E(X̃3) ,
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wobei

µ′
k = E(X − EX)k , σ2 = µ′

2 = Var X , X̃ =
X − EX

σ
.

Wölbung (Exzess):

γ2 =
µ′

4

σ4
− 3 = E(X̃4) − 3 ,

vorausgesetzt, dass E(X4) < ∞. Für ihre Bedeutung und Interpretation siehe die oben genann-
ten Seiten des WR-Vorlesungsskriptes. Falls nun das Merkmal X statistisch in einer Stichprobe
(x1, . . . , xn) beobachtet wird, wie können γ1 und γ2 aus diesen Daten geschätzt und interpretiert
werden?

Als Schätzer für das k-te zentrierte Moment µ′
k = E(X − EX)k, k ∈ N schlagen wir

µ̂′
k =

1

n

n∑

i=1

(xi − x̄n)k

vor, die Varianz σ2 wird durch

s̄2
n =

1

n

n∑

i=1

(xi − x̄n)2

geschätzt. Somit bekommt man den Momentenkoeffizient der Schiefe (engl. „skewness“)

γ̂1 =
µ̂′

3

s̄3
n

=
1
n

∑n
i=1(xi − x̄n)3

(
1
n

∑n
i=1(xi − x̄n)2

)3/2
.

Falls die Verteilung von X links schief ist, überwiegen positive Abweichungen im Zähler und
somit gilt γ̂1 > 0 für linksschiefe Verteilungen. Analog gilt γ̂1 ≈ 0 für symmetrische und γ̂1 < 0
für rechtsschiefe Verteilungen.

Das Wölbungsmaß von Fisher (engl. „kurtosis“) ist gegeben durch

γ̂2 =
µ̂′

4

s̄4
n

− 3 =
1
n

∑n
i=1(xi − x̄n)4

(
1
n

∑n
i=1(xi − x̄2

n)
)2 − 3 .

Falls γ̂2 > 0 so ist die Verteilung von X steilgipflig, für γ̂2 < 0 ist sie flachgipflig. Falls X ∼
N(µ, σ2), so gilt γ̂2 ≈ 0. Die Ursache dafür ist, dass die steilgifpligen Verteilungen schwerere
Tails haben als die flachgipfligen. Als Maß dient dabei die Normalverteilung, für die γ1 = γ2 = 0
und somit γ̂1 ≈ 0, γ̂2 ≈ 0. So definiert, sind γ̂1 und γ̂2 nicht resistent gegenüber Ausreissern.
Eine robuste Variante von γ̂1 ist beispielsweise durch den sogennanten Quantilskoeffizienten der
Schiefe

γ̂q(α) =
(x1−α − xmed) − (xmed − xα)

x1−α − xα
, α ∈ (0, 1/2)

gegeben.
Für α = 0, 25 erhält man den Quartilskoeffizienten. γ̂q(α) misst den Unterschied zwischen

der Entfernung des α- und (1 − α)-Quantils zum Median. Bei linkssteilen (bzw. rechtssteilen)
Verteilungen liegt das (untere) xα-Quantil näher an (bzw. weiter entfernt von) dem Median.
Somit gilt

• γ̂q(α) > 0 für linkssteile Verteilungen,
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• γ̂q(α) < 0 für rechtssteile Verteilungen,

• γ̂q(α) = 0 für symmetrische Verteilungen.

Durch das zusätzliche Normieren (Nenner) gilt −1 ≤ γ̂q(α) ≤ 1.

2.3 Quantilplots (Quantil-Grafiken)

Nach der ersten beschreibenden Analyse eines Datensatzes (x1, . . . , xn) soll überlegt werden, mit
welcher Verteilung diese Stichprobe modelliert werden kann. Hier sind die sogenannten Quantil-
plots behilflich, da sie grafisch zeigen, wie gut die Daten (x1, . . . , xn) mit dem Verteilungsgesetz
G übereinstimmen, wobei G die Verteilungsfunktion einer hypothetischen Verteilung ist.

Sei X eine Zufallsvariable mit (unbekannter) Verteilungsfunktion FX . Auf Basis der Daten

(X1, . . . , Xn), Xi unabhängig identisch verteilt und Xi
d
= X möchte man prüfen, ob FX = G für

eine bekannte Verteilungsfunktion G gilt. Die Methode der Quantil-Grafiken besteht darin, dass
man die entsprechenden Quantil-Funktionen F̂ −1

n und G−1 von F̂n und G grafisch vergleicht.
Hierzu

• plotte man G−1(k/n) gegen F̂ −1
n (k/n) = X(k) , k = 1, . . . , n .

• Falls die Punktwolke {(
G−1(k/n), X(k)

)
, k = 1, . . . , n

}

näherungsweise auf einer Geraden y = ax + b liegt, so sagt man, dass FX(x) ≈ G
(

x−a
b

)
,

x ∈ R.

0 G−1( 1
n) G−1( 2

n) G−1( 3
n) . . . G−1(n−1

n ) G−1(1)

X(1)

X(2)

X(3)

...

X(n−1)

X(n)

y = F̂ −1
n (t)

x = G−1(t)

y = ax + b

Abb. 2.7: Quantil-Grafik

Diese empirische Vergleichsmethode beruht auf folgenden Überlegungen:



2 Beschreibende Statistik 23

• Man ersetzt die unbekannte Funktion FX durch die aus den Daten berechenbare Funktion
F̂n. Dabei macht man einen Fehler, der allerdings asymptotisch (für n → ∞) klein ist.
Dies folgt aus dem Satz 3.3.9 von Gliwenko-Cantelli, der besagt, dass

sup
x∈R

∣∣∣F̂n(x) − FX(x)
∣∣∣ −→

n→∞ 0 .

Der Vergleich der entsprechenden Quantil-Funktionen wird durch folgendes Ergebnis be-
stärkt: Falls EX < ∞, dann gilt

sup
t∈[0,1]

∣∣∣∣
∫ t

0

(
F̂ −1

n (y) − F −1
X (y)

)
dy

∣∣∣∣
f.s.−→

n→∞
0 .

Somit setzt man bei der Verwendung der Quantil-Grafiken voraus, dass der Stichprobe-
numfang n ausreichend groß ist, um F̂ −1

n ≈ F −1
X zu gewährleisten.

• Man setzt zusätzlich voraus, dass die Gleichungen

y = ax + b ,

y = F −1
X (t) ,

x = G−1(t)

für alle t (und nicht nur näherungsweise für t = k/n, k = 1, . . . , n) gelten. Daraus folgt,

dass G(x) = t = FX(y) = FX(ax + b) für alle x, oder FX(y) = G
(

y−b
a

)
für alle y, weil

x = y−a
b ist.

Aus praktischer Sicht ist es besser, Paare
(
G−1

(
k

n+1

)
, X(k)

)
, k = 1, . . . , n zu plotten.

Dadurch wird vermieden, dass G−1(n/n) = G−1(1) = ∞ vorkommt, wie es zum Beispiel im
Falle einer Verteilung G der Fall ist, bei der F (x) < 1 gilt für alle x ∈ R. Tatsächlich gilt für

k = n, dass n
n+1 < 1 und somit G−1

(
n

n+1

)
< ∞.

Beispiel 2.3.1 (Exponential-Verteilung, G(x) = (1 − e−λx) · I(x ≥ 0)):
Es gilt G−1(ŷ) = −1/λ log(1 − y) , y ∈ (0, 1). So wird man beim Quantil-Plot Paare

(
− 1

λ
log

(
1 − k

n + 1

)
, X(k)

)
, k = 1, . . . , n

zeichnen, wobei der Faktor 1/λ für die Linearität unwesentlich ist und weggelassen werden
kann.

Beispiel 2.3.2 (Normalverteilung, G(x) = Φ(x) = 1√
2π

∫ x
−∞ e−t2/2 dt , x ∈ R):

Leider ist die analytische Berechnung von Φ−1 mit einer geschlossenen Formel nicht möglich.

Aus diesem Grund wird Φ−1
(

k
n+1

)
numerisch berechnet und in Tabellen oder statistischen

Software-Paketen (wie z.B. R) abgelegt. Um die empirische Verteilung der Daten mit der Nor-
malverteilung zu vergleichen, trägt man Punkte mit Koordinaten

(
Φ−1

(
k

n + 1

)
, X(k)

)
, k = 1, . . . , n

auf der Ebene auf und prüft, ob sie eine Gerade bilden (vgl. Abb. 2.8).
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Abb. 2.8: QQ-Plot einer Normalverteilung (a), einer linkssteilen Verteilung (b), einer rechts-
steilen Verteilung (c) und einer symmetrischen, aber stark gekrümmten Verteilung
(d)

Übungsaufgabe 2.3.1
Entwerfen Sie die Quantil-Grafiken für den Vergleich der empirischen Verteilung mit der Lo-
gnormal und der Weibull-Verteilung.

Bemerkung 2.3.1
Falls x̄n = 0 und die Verteilung FX linkssteil ist, so sind die Quantile von FX kleiner als die
von Φ. Somit ist der Normal-Quantilplot konvex. Falls x̄n = 0 und FX rechtssteil ist, so wird
der Normal-Quantilplot konkav sein.

Beispiel 2.3.3 (Haftpflichtversicherung (Belgien, 1992)):
In Abbildung 2.9 sind Ordnungsstatistiken der Stichprobe von n = 227 Schadenhöhen der
Industrie-Unfälle in Belgien im Jahr 1992 (Haftpflichtversicherung) gegen Quantile von Expo-
nential-, Pareto-, Standardnormal- und Weibull-Verteilungen geplottet. Im Bereich von Klein-
schäden zeigen die Exponential- und Pareto-Verteilungen eine gute Übereinstimmung mit den
Daten. Die Verteilung von mittelgroßen Schäden kann am besten durch die Normal- und Wei-
bul-Verteilungen modelliert werden. Für Großschäden erweist sich die Weibull-Verteilung als
geeignet.

Beispiel 2.3.4 (Rendite der BMW-Aktie):
In Abbildung 2.10 ist der Quantilplot für Renditen der BMW-Aktie beispielhaft zu sehen.
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Abb. 2.9: Ordnungsstatistiken einer Stichprobe von Schadenhöhen der Industrie-Unfälle in Bel-
gien im Jahr 1992
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Abb. 2.10: Quantilplot der Rendite der BMW-Aktie

2.4 Dichteschätzung

Sei eine Stichprobe (x1, . . . , xn) von unabhängigen Realisierungen eines absolut stetig verteilten
Merkmals X mit Dichte fX gegeben. Mit Hilfe der in Abschnitt 2.1.1 eingeführten Histogramme
lässt sich fX grafisch durch eine Treppenfunktion f̂X darstellen. Dabei gibt es zwei entschei-
dende Nachteile der Histogrammdarstellung:

1. Willkür in der Wahl der Klasseneinteilung [ci−1, ci],

2. Eine (möglicherweise) stetige Funktion fX wird durch eine Treppenfunktion f̂X ersetzt.

In diesem Abschnitt werden wir versuchen, diese Nachteile zu beseitigen, indem wir eine Klasse
von Kerndichtenschätzern einführen, die (je nach Wahl des Kerns) auch zu stetigen Schätzern
f̂X führen.
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Definition 2.4.1
Der Kern K(x) wird definiert als eine nicht-negative messbare Funktion auf R mit der Eigen-
schaft

∫
R

K(x) dx = 1.

Definition 2.4.2
Der Kerndichteschätzer der Dichte fX aus den Daten (x1, . . . , xn) mit Kernfunktion K(x) ist
gegeben durch

f̂X(x) =
1

nh

n∑

i=1

K

(
x − xi

h

)
, x ∈ R ,

wobei h > 0 die sogenannte Bandbreite ist.

Beispiele für Kerne:

1. Rechteckskern:
K(x) = 1/2 · I(x ∈ [−1, 1)) .

Dabei ist
1

h
K

(
x − xi

h

)
=

{
1/(2h) , xi − h ≤ x < xi + h ,

0 , sonst,

und somit

f̂X(x) =
1

nh

k∑

i=1

K

(
x − xi

h

)
=

#{xi ∈ [x − h, x + h)}
2nh

,

das auch gleitendes Histogramm genannt wird. Dieser Dichteschätzer ist (noch) nicht
stetig, was durch die (besonders einfache rechteckige unstetige) Form des Kerns erklärt
wird.

−1 1

K(x)

x0

1
2

2. Epanechnikov-Kern:

K(x) =

{
3/4(1 − x2) , x ∈ [−1, 1)

0 , sonst.

−1 10

K(x)
3
4

x

3. Bisquare-Kern:

K(x) =
15

16

(
(1 − x2)2 · I(x ∈ [−1, 1))

)
.
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−1 1

x

0

K(x)
15
16

4. Gauss-Kern:

K(x) =
1√
2π

e−x2/2 , x ∈ R .

K(x)

0 x

Dabei ist die Wahl der Bandbreite h entscheidend für die Qualität der Schätzung. Je größer
h > 0, desto glatter wird f̂X sein und desto mehr „Details“ werden „herausgemittelt“. Für klei-
nere h wird f̂X rauer. Dabei können aber auch Details auftreten, die rein stochastischer Natur
sind und keine Gesetzmäßigkeiten zeigen. Mit der adäquaten Wahl von h beschäftigen sich viele
wissenschaftliche Arbeiten, die empirische Faustregeln, aber auch kompliziertere Optimierungs-
methoden dafür vorschlagen. Insgesamt ist das Problem der optimalen Dichteschätzung in der
Statistik immer noch offen.

2.5 Beschreibung und Exploration von bivariaten Datensätzen

Im Gegensatz zu der Datenlage in den Abschnitten 2.1 bis 2.4 betrachten wir im Folgenden Da-
tensätze bestehend aus 2 Stichproben (x1, . . . , xn) und (y1, . . . , yn), die als Realisierungen von
stochastischen Stichproben (X1, . . . , Xn) und (Y1, . . . , Yn) aufgefasst werden, wobei X1, . . . , Xn

unabhängige identisch verteilte Zufallsvariablen mit Xi
d
= X ∼ FX , Y1, . . . , Yn unabhängige

identisch verteilte Zufallsvariablen mit Yi
d
= Y ∼ FY sind. Wir betrachten hier ausschließlich

quantitative Merkmale X und Y . Es wird ein Zusammenhang zwischen X und Y vermutet, der
an Hand von (konkreten) Stichproben (x1, . . . , xn) und (y1, . . . , yn) näher untersucht werden
soll. Mit anderen Worten, wir interessieren uns für die Eigenschaften der bivariaten Verteilung
FX,Y (x, y) = P (X ≤ x, Y ≤ y) des Zufallsvektors (X, Y )T .

2.5.1 Grafische Darstellung von bivariaten Datensätzen

Um die Verteilung von (x1, . . . , xn) und (y1, . . . , yn) zu visualisieren, betrachten wir drei Mög-
lichkeiten:

1. Streudiagramme

2. Zweidimensionale Histogramme
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3. Kerndichteschätzer (im Falle eines absolut stetig verteilten Zufallsvektors (X, Y )T )

1. Streudiagramme sind die erste sehr einfache und intuitive Visualisierungsmöglichkeit von
bivariaten Daten. Um ein Streudiagramm zu erstellen, plottet man die „Punktwolke“
(xi, yi)i=1,...,n auf einer Koordinatenebene im R

2. Dabei zeigt die Form der Punktwolke,
ob ein linearer (y = ax + b) bzw. polynomialer (y = Pd(x)) Zusammenhang in den Daten
zu erwarten ist. Später werden solche Zusammenhänge im Rahmen der Regressionstheorie
untersucht (vgl. Abschnitt 2.5.3 für die einfache lineare Regression).

0 x

y

yi

xi

Abb. 2.11: Punktwolke

2. Zweidimensionale Histogramme dienen der Darstellung der bivariaten Zähldichte p(x, y)
des Zufallsvektors (X, Y ), falls er diskret verteilt ist, bzw. seiner Dichte f(x, y) im Falle
einer absolut stetigen Verteilung von (X, Y ) aus den Daten (x1, . . . , xn) und (y1, . . . , yn).
Dabei teilt man den Wertebereich von X in Intervalle

[ci−1, ci) , i = 1, . . . , k , −∞ = c0 < c1 < . . . < ck = +∞

und den Wertebereich von Y in Intervalle

[ei−1, ei) , i = 1, . . . , m , −∞ = e0 < e1 < . . . < em = +∞ .

Bezeichnen wir

hij = #
{
(xk, yk), k = 1, . . . , n : xk ∈ [ci−1, ci), yk ∈ [ej−1, ej)

}

als die absolute Häufigkeit von (X, Y ) in [ci−1, ci) × [ej−1, ej), fij = hij/n als die relative
Häufigkeit. Das zweidimensionale Histogramm setzt sich aus den Säulen mit Grundriss
[ci−1, ci) × [ej−1, ej) und Höhe

hij

(ci − ci−1)(ej − ej−1)

für das Histogramm absoluter Häufigkeiten bzw.

fij

(ci − ci−1)(ej − ej−1)

für das Histogramm relativer Häufigkeiten zusammen, damit das Volumen dieser Säulen
hij bzw. fij ist. Dabei hat solch ein Histogramm dieselben Vor- bzw. Nachteile wie ein ein-
dimensionales, wenn es um die grafische Darstellung einer bivariaten Dichte f(x, y) geht.
Deshalb benutzt man oft Kerndichteschätzer, um eine glatte Darstellung zu bekommen.
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0 xcici−1
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Abb. 2.12: Zweidimensionales Histogramm

3. Zweidimensionale Kerndichteschätzer haben die Form

f̂(x, y) =
1

nh1h2

n∑

i=1

K

(
x − xi

h1

)
K

(
y − yi

h2

)

für die Bandbreiten h1, h2 > 0, die Glättungsparameter sind. Dabei ist K(·) eine Kern-
funktion (vgl. Abschnitt 2.4). Seine Eigenschaften übertragen sich aus dem eindimensio-
nalen Fall.

2.5.2 Zusammenhangsmaße

Jetzt wird uns die Frage beschäftigen, in welchem Maße die Merkmale X und Y voneinander
abhängig sind. Um die Cov(X, Y ) = E(X − EX)(Y − EY ) aus den Daten zu schätzen, setzt
man die sogenannte empirische Kovarianz

S2
xy =

1

n − 1

n∑

i=1

(xi − x̄n)(yi − ȳn)

ein. Dabei ist S2
xy jedoch von den Skalen von X und Y abhängig.

1. Um eine skaleninvariantes Zusammenhangsmaß zu bekommen, betrachtet man die empi-
rische Variante des Korrelationskoeffizienten

̺(X, Y ) =
Cov(X, Y )√

Var X ·
√

Var Y
,

den sogenannten Bravais-Pearson-Korrelationskoeffizienten

̺xy =
S2

xy√
S2

xx · S2
yy

,

wobei

S2
xx =

1

n − 1

n∑

i=1

(xi − x̄n)2 , S2
yy =

1

n − 1

n∑

i=1

(yi − ȳn)2
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die Stichprobenvarianzen der Stichproben (x1, . . . , xn) und (y1, . . . , yn) sind. Dabei erbt
̺xy alle Eigenschaften des Korrelationskoeffizienten ̺(X, Y ):

a) |̺xy| ≤ 1

b) ̺xy = ±1, falls ein linearer Zusammenhang in den Daten (xi, yi)i=1,...,n vorliegt, d.h.
alle Punkte (xi, yi), i = 1, . . . , n liegen auf einer Gerade mit positivem (bei ̺xy = 1)
bzw. negativem (bei ̺xy = −1) Anstieg.

c) Wenn |̺xy| klein ist (̺xy ≈ 0), so sind die Datensätze unkorreliert. Dabei wird oft
folgende grobe Einteilung vorgenommen:

Merkmale X und Y sind

• „schwach korreliert“, falls |̺xy| < 0.5,

• „stark korreliert“, falls |̺xy| ≥ 0.8.

Ansonsten liegt ein mittlerer Zusammenhang zwischen X und Y vor.

Lemma 2.5.1
Für ̺xy gilt die alternative rechengünstige Darstellung

̺xy =

∑n
i=1 xiyi − nx̄nȳn√(∑n

i=1 x2
i − nx̄2

n

) (∑n
i=1 y2

i − nȳ2
n

) . (2.5.1)

Beweis Man muss lediglich zeigen, dass

n∑

i=1

(xi − x̄n)(yi − ȳn) =
n∑

i=1

xiyi − nx̄nȳn .

Alles andere folgt daraus für xi = yi , i = 1, . . . , n. Es gilt

n∑

i=1

(xi − x̄n)(yi − ȳn) =
n∑

i=1

xiyi − x̄n

n∑

i=1

yi − ȳn

n∑

i=1

xi + nx̄nȳn

=
n∑

i=1

xiyi − nx̄nȳn − nȳnx̄n + nx̄nȳn =
n∑

i=1

xiyi − nx̄nȳn

Falls die vorliegenden Daten (x1, . . . , xn) und (y1, . . . , yn) nur 2 Ausprägungen zeigen und
somit binär kodiert werden können, d.h. xi, yi ∈ {0, 1}, dann gilt

̺xy =
h00h11 − h01h10√
h0· · h1· · h·0 · h·1

= ϕ
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(der sogenannte Phi-Koeffizient), wobei

h00 = #
{
(xi, yi) : xi = yi = 0

}

h11 = #
{
(xi, yi) : xi = yi = 1

}

h01 = #
{
(xi, yi) : xi = 0, yi = 1

}

h10 = #
{
(xi, yi) : xi = 1, yi = 0

}

h0· = h11 + h12

h·0 = h11 + h21

h1· = h22 + h21

h·1 = h22 + h12

Übungsaufgabe 2.5.1
Zeigen Sie diese Darstellungsform!

2. Spearmans Korrelationskoeffizient
Einen alternativen Korrelationskoeffizienten erhält man, wenn man die Stichprobenwerte
xi bzw. yi in ̺xy durch ihre Ränge rg(xi) bzw. rg(yi) ersetzt, die als Position dieser Werte
in den ansteigend geordneten Stichproben zu verstehen sind:
rg(xi) = j, falls xi = x(j) für ein j ∈ {1, . . . , n}, ∀i = 1, . . . , n. Es bedeutet, dass rg(x(i)) =
i ∀i = 1, . . . , n, falls xi /= xj für i /= j.

Falls die Stichprobe (x1, . . . , xn) k identische Werte xi (die sogenannten Bindungen) ent-
hält, so wird diesen Werten der sogenannte Durchschnittsrang rg(xi) zugewiesen, der als
arithmetisches Mittel der k in Frage kommenden Ränge errechnet wird. Zum Beispiel
findet folgende Zuordnung statt:

xi (3, 1, 7, 5, 3, 3)
rg(xi) (a, 1, 6, 5, a, a)

wobei der Durchschnittsrang a von Stichprobeneintrag 3 gleich a = 1/3(2 + 3 + 4) = 3
ist.
Somit wird der sogenannte Spearmans Korrelationskoeffizient (Rangkorrelationskoeffizi-
ent) der Stichproben

(x1, . . . , xn) und (y1, . . . , yn)

als der Bravais-Pearson-Koeffizient der Stichproben ihrer Ränge
(
rg(x1), . . . , rg(xn)

)
und

(
rg(y1), . . . , rg(yn)

)

definiert:

̺sp =

∑n
i=1

(
rg(xi) − rgx

)(
rg(yi) − rgy

)
√∑n

i=1

(
rg(xi) − rgx

)2∑n
i=1

(
rg(yi) − rgy

)2 ,

wobei

rgx =
1

n

n∑

i=1

rg(xi) =
1

n

n∑

i=1

rg(x(i)) =
1

n

n∑

i=1

i =
n(n + 1)

2n
=

n + 1

2
,

rgy =
1

n

n∑

i=1

rg(yi) =
n + 1

2
.
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Dieselbe Darstellung rgy gilt auch, wenn Bindungen vorhanden sind.

Dieser Koeffizient misst monotone Zusammenhänge in den Daten. Aus den Eigenschaften
der Bravais-Pearson-Koeffizienten folgt |̺sp| ≤ 1. Betrachten wir die Fälle ̺sp = ±1
gesondert:

• ̺sp = 1 bedeutet, dass die Punkte (rg(xi), rg(yi)), i = 1, . . . , n auf einer Geraden mit
positiver Steigung liegen. Da aber rg(xi), rg(yi) ∈ N, kann diese Steigung nur 1 sein.
Es bedeutet, dass dem kleinsten Wert in der Stichprobe (x1, . . . , xn) der kleinste
Wert in (y1, . . . , yn) entspricht, usw., d.h., für wachsende xi wachsen auch die yi

streng monoton: xi < xj =⇒ yi < yj ∀i /= j.

• Analog gilt dann für ̺sp = −1, dass xi < xj =⇒ yi > yj ∀i /= j.

Dies kann folgendermaßen zusammengefaßt werden:

• ̺sp > 0: gleichsinniger monotoner Zusammenhang (xi groß ⇐⇒ yi groß)

• ̺sp < 0: gegensinniger monotoner Zusammenhang (xi groß ⇐⇒ yi klein)

• ̺sp ≈ 0: kein monotoner Zusammenhang.

Da der Spearmans Korrelationskoeffizient nur Ränge von xi und yi betrachtet, eignet er
sich auch für ordinale (und nicht nur quantitative) Daten.

Lemma 2.5.2
Falls die Stichproben (x1, . . . , xn) und (y1, . . . , yn) keine Bindung enthalten (xi /= xj , yi /= yj

∀i /= j), dann gilt

̺sp = 1 − 6

(n2 − 1)n

n∑

i=1

d2
i ,

wobei di = rg(xi) − rg(yi) ∀i = 1, . . . , n.

Beweis Als Übungsaufgabe.

Satz 2.5.1 (Invarianzeigenschaften):

1. Wenn die Merkmale X und Y linear transformiert werden:

f(X) = axX + bx , ax /= 0, bx ∈ R,

g(Y ) = ayY + by , ay /= 0, by ∈ R,

dann gilt ̺f(x)g(y) = sgn(axay) · ̺xy.

2. Falls Funktionen f : R → R und g : R → R beide monoton wachsend oder beide monoton
fallend sind, dann gilt

̺sp(f(x), g(y)) = ̺sp(x, y) .

Falls f monoton wachsend und g monoton fallend (oder umgekehrt) sind, dann gilt
̺sp(f(x), g(y)) = −̺sp(x, y).

Beweis Beweisen wir nur 1), weil 2) offensichtlich ist.
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1.

̺f(x)g(y) =

∑n
i=1

(
(axxi + bx) − (axx̄n + bx)

)(
(ayyi + by) − (ayȳn + by)

)
√

a2
x

∑n
i=1(xi − x̄n)2a2

y

∑n
i=1(yi − ȳn)2

=
axay

|ax||ay| ·
∑n

i=1(xi − x̄n)(yi − ȳn)√∑n
i=1(xi − x̄n)2

∑n
i=1(yi − ȳn)2

= sgn(axay) · ̺xy .

Bemerkung 2.5.1

1. Da lineare Transformationen monoton sind, gilt Aussage 1) auch für Spearmans Korrela-
tionskoeffizienten ̺sp.

2. Der Koeffizient ̺xy erfasst lineare Zusammenhänge, während ̺sp monotone Zusammen-
hänge aufspürt.

2.5.3 Einfache lineare Regression

Wenn man den Zusammenhang von Merkmalen X und Y mit Hilfe von Streudiagrammen visua-
lisiert, wird oft ein linearer Trend erkennbar, obwohl der Bravais-Pearson-Korrelationskoeffizient
einen Wert kleiner als 1 liefert, z.B. ̺xy ≈ 0, 6 (vgl. Abb. 2.13). Dies ist der Fall, weil die Da-

Abb. 2.13: Vergleich verschiedenwertiger Bestimmtheitsmaße. Es sind Regressionsgerade, Be-
stimmtheitsmaß B und Korrelationskoeffizient ρ verschiedener (fiktiver) Punktwol-
ken vom Umfang n = 25 dargestellt. Die Beschriftung der Achsen ist weggelassen,
weil sie hier ohne Bedeutung ist.

tenpunkte (xi, yi), i = 1, . . . , n oft um eine Gerade streuen und nicht exakt auf einer Geraden



34 2 Beschreibende Statistik

X Y

Geschwindigkeit Länge des Bremswegs
Körpergröße des Vaters Körpergröße des Sohnes
Produktionsfaktor Qualität des Produktes
Spraydosen-Verbrauch Ozongehalt der Atmosphäre
Noten im Bachelor-Studium Noten im Master-Studium

Tab. 2.1: Beispiele möglicher Ausgangs- und Zielgrößen

liegen. Um solche Situationen stochastisch modellieren zu können, nimmt man den Zusammen-
hang der Form

Y = f(X) + ε

an, wobei ε die sogenannte Störgröße ist, die auf mehrere Ursachen wie z.B. Beobachtungsfehler
(Messfehler, Berechnungsfehler, usw.) zurückzuführen sein kann. Dabei nennt man die Zufalls-
variable Y Zielgröße oder Regressand, die Zufallsvariable X Einflussfaktor , Regressor oder
Ausgangsvariable. Der Zusammenhang Y = f(X) + ε wird Regression genannt, wobei man oft
über ε voraussetzt, dass Eε = 0 (kein systematischer Beobachtungsfehler). Wenn f(x) = α+βx
eine lineare Funktion ist, so spricht man von der einfachen linearen Regression. Es sind aber
durchaus andere Arten der Zusammenhänge denkbar, wie z.B.

f(x) =
n∑

i=0

αix
i

(polynomiale Regression), usw. Beispiele für mögliche Ausgangs- bzw. Zielgrößen sind in Tabelle
2.1 zusammengefasst, einige Beispiele in Abbildung 2.14.

Auf Modellebene ist damit folgende Fragestellung gegeben: Es gebe Zufallsstichproben von
Ziel- bzw. Ausgangsvariablen (Y1, . . . , Yn) und (X1, . . . , Xn), zwischen denen ein verrauschter
linearer Zusammenhang Yi = α+βXi+εi besteht, wobei εi Störgrößen sind, die nicht direkt be-
obachtbar und uns somit unbekannt sind. Meistens nimmt man an, dass E εi = 0 ∀ i = 1, . . . , n
und Cov(εi, εj) = σ2δij , d.h. ε1 . . . εn sind unkorreliert mit Var εi = σ2. Wenn wir über die
Eigenschaften der Schätzer für α, β und σ2 reden, gehen wir davon aus, dass die X-Werte
nicht zufällig sind, also Xi = xi ∀i = 1, . . . , n. Wenn man von einer konkreten Stichprobe
(y1, . . . , yn) für (Y1, . . . , Yn) ausgeht, so sollen anhand von den Stichproben (x1, . . . , xn) und
(y1, . . . , yn) Regressionsparameter α (Regressionskonstante) und β (Regressionskoeffizient) so-
wie Regressionsvarianz σ2 geschätzt werden. Dabei verwendet man die sogenannte Methode der
kleinsten Quadrate, die den mittleren quadratischen Fehler von den Datenpunkten (xi, yi)i=1,...,n

des Streudiagramms zur Regressionsgeraden y = α + βx minimiert:

(α, β) = arg min
α,β∈R

e(α, β) mit e(α, β) =
1

n

n∑

i=1

(yi − α − βxi)
2 .

Da die Darstellung yi = α + βxi + εi gilt, kann man e(α, β) = 1/n
∑n

i=1 ε2
i schreiben. Es

ist der vertikale mittlere quadratische Abstand von den Datenpunkten (xi, yi) zur Geraden
y = α + βx (vgl. Abb. 2.15). Das Minimierungsproblem e(α, β) 7→ min löst man durch das
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Abb. 2.14: Punktwolken verschiedener Merkmale der StatLab-Auswahl 1985 mit Regressions-
gerade, Bestimmtheitsmaß B und Korrelationskoeffizient ̺.

0 x

y

(xi, yi)

y = α + βx

Abb. 2.15: Methode kleinster Quadrate

zweifache Differenzieren von e(α, β). Somit erhält man α̂ = ȳn − β̂x̄n, wobei

β̂ =
S2

xy

S2
xx

, x̄n =
1

n

n∑

i=1

xi , ȳn =
1

n

n∑

i=1

yi ,

S2
xy =

1

n − 1

n∑

i=1

(xi − x̄n)(yi − ȳn) , S2
xx =

1

n − 1

n∑

i=1

(xi − x̄n)2 .

Übungsaufgabe 2.5.2
Leiten Sie die Schätzer α̂ und β̂ selbstständig her.

Die Varianz σ2 schätzt man durch σ̂2 = 1
n−2

∑n
i=1 ε̂2

i , wobei ε̂i = yi − α̂ − β̂xi , i = 1, . . . , n
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Kind i 1 2 3 4 5 6 7 8 9
Fernsehzeit xi 0,3 2,2 0,5 0,7 1,0 1,8 3,0 0,2 2,3

Tiefschlafdauer yi 5,8 4,4 6,5 5,8 5,6 5,0 4,8 6,0 6,1

Tab. 2.2: Daten von Fernsehzeit und korrespondierender Tiefschlafdauer

die sogenannten Residuen sind. Die Gründe, warum σ̂2 diese Gestalt hat, können an dieser
Stelle noch nicht angegeben werden, weil wir noch nicht die Maximum-Likelihood-Methode
kennen. Zu gegebener Zeit (in der Vorlesung Stochastik III) wird jedoch klar, dass diese Art
der Schätzung sehr natürlich ist.

Bemerkung 2.5.2
Die angegebenen Schätzer für α und β sind nicht symmetrisch bzgl. Variablen xi und yi. Wenn
man also die horizontalen Abstände (statt vertikaler) zur Bildung des mittleren quadratischen
Fehlers nimmt (was dem Rollentausch x ↔ y entspricht), so bekommt man andere Schätzer für
α und β, die mit α̂ und β̂ nicht übereinstimmen müssen:

di = yi − α − βxi 7→ d′
i = xi − (yi − α)

β
.

Ein Ausweg aus dieser asymmetrischen Situation wäre es, die orthogonalen Abstände oi von

0 x

y

(xi, yi) d′
i

di
oi

y = α + βx

Abb. 2.16: Orthogonale Abstände

(xi, yi) zur Geraden y = α + βx zu betrachten (vgl. Abb. 2.16). Diese Art der Regression, die
„errors-in-variables regression“ genannt wird, hat aber eine Reihe von Eigenschaften, die sie zur
Prognose von Zielvariablen yi durch die Ausgangsvariablen xi unbrauchbar machen. Sie sollte
zum Beispiel nur dann verwendet werden, wenn die Standardabweichungen für X und Y etwa
gleich groß sind.

Beispiel 2.5.1
Ein Kinderpsychologe vermutet, dass sich häufiges Fernsehen negativ auf das Schlafverhalten
von Kindern auswirkt. Um diese Hypothese zu überprüfen, wurden 9 Kinder im gleichen Alter
befragt, wie lange sie pro Tag fernsehen dürfen, und zusätzlich die Dauer ihrer Tiefschlafphase
gemessen. So ergibt sich der Datensatz in Tabelle 2.2 und die Regressionsgerade aus Abbildung
2.17.

Es ergibt sich für die oben genannten Stichproben (x1, . . . , x9) und (y1, . . . , y9)

x̄9 = 1, 33 , ȳ9 = 5, 56 , β̂ = −0, 45 , α̂ = 6, 16 .

Somit ist
y = 6, 16 − 0, 45x



2 Beschreibende Statistik 37

Fernsehzeit
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Abb. 2.17: Streudiagramm und Ausgleichsgerade zur Regression der Dauer des Tiefschlafs auf
die Fernsehzeit

die Regressionsgerade, die eine negative Steigung hat, was die Vermutung des Kinderpsycho-
logen bestätigt. Außerdem ist es mit Hilfe dieser Geraden möglich, Prognosen für die Dauer
des Tiefschlafs für vorgegebene Fernsehzeiten anzugeben. So wäre z.B. für die Fernsehzeit von
1 Stunde der Tiefschlaf von 6, 16 − 0, 45 · 1 = 5, 71 Stunden plausibel.

Bemerkung 2.5.3 (Eigenschaften der Regressionsgerade):

1. Es gilt sgn(β̂) = sgn(ρxy), was aus β̂ = s2
xy/s2

xx folgt. Dies bedeutet (falls s2
yy > 0):

a) Die Regressionsgerade y = α̂ + β̂x steigt an, falls die Stichproben (x1, . . . , xn) und
(y1, . . . , yn) positiv korreliert sind.

b) Die Regressionsgerade fällt ab, falls sie negativ korreliert sind.

c) Die Regressionsgerade ist konstant, falls die Stichproben unkorreliert sind.

Falls s2
yy = 0, dann ist die Regressionsgerade konstant (y = ȳn).

2. Die Regressionsgerade y = α̂+β̂x verläuft immer durch den Punkt (x̄n, ȳn): α̂+β̂x̄n = ȳn.

3. Seien ŷi = α̂ + β̂xi, i = 1, . . . , n. Dann gilt

ŷn =
1

n

n∑

i=1

ŷi = ȳn und somit
n∑

i=1

(yi − ŷi︸ ︷︷ ︸
ε̂i

) = 0 .

Dabei sind ε̂i die schon vorher eingeführten Residuen. Mit ihrer Hilfe ist es möglich, die
Güte der Regressionsprognose zu beurteilen.

Residualanalyse und Bestimmtheitsmaß

Definition 2.5.1
Der relative Anteil der Streuungsreduktion an der Gesamtstreuung S2

yy heißt das Bestimmt-
heitsmaß der Regressionsgeraden:

R2 =
S2

yy − 1
n−1

∑n
i=1 ε̂2

i

S2
yy

= 1 −
∑n

i=1(yi − ŷi)2

∑n
i=1(yi − ȳn)2

.

Es ist nur im Fall S2
xx > 0, S2

yy > 0 definiert, d.h., wenn nicht alle Werte xi bzw. yi überein-
stimmen.
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Warum R2 in dieser Form eingeführt wird, zeigt folgende Überlegung, die Streuungszerlegung
genannt wird:

Lemma 2.5.3
Die Gesamtstreuung („sum of squares total“) SQT = (n−1)S2

yy =
∑n

i=1(yi−ȳn)2 lässt sich in die
Summe der sogenannten erklärten Streuung „sum of squares explained“ SQE =

∑n
i=1(ŷi − ȳn)2

und der Residualstreuung „sum of squared residuals“ SQR =
∑n

i=1 ε̂2
i =

∑n
i=1(yi−ŷi)2 zerlegen:

SQT = SQE + SQR

bzw.

n∑

i=1

(yi − ȳn)2 =
n∑

i=1

(ŷi − ȳn)2 +
n∑

i=1

(yi − ŷi)
2 .

Beweis

SQT =
n∑

i=1

(yi − ȳn)2 =
n∑

i=1

(yi − ŷi + ŷi − ȳn)2

=
n∑

i=1

(yi − ŷi)
2

︸ ︷︷ ︸
=SQR

+2
n∑

i=1

(yi − ŷi)(ŷi − ȳn) +
n∑

i=1

(ŷi − ȳn)2

︸ ︷︷ ︸
=SQE

= SQE + SQR + 2
n∑

i=1

ŷi(yi − ŷi) − 2ȳn

n∑

i=1

(yi − ŷi)

︸ ︷︷ ︸
=0, vgl. Eig. 3 S. 37

= SQE + SQR + E ,

wobei noch zu zeigen ist, dass E = 2
∑n

i=1 ŷi(yi − ŷi) = 0, also

E = 2
n∑

i=1

(α̂ + β̂xi)(yi − α̂ − β̂xi) = 2α̂
n∑

i=1

ε̂i

︸ ︷︷ ︸
=0

+2β̂
n∑

i=1

xi(yi − α̂ − β̂xi)

= 2β̂

(
n∑

i=1

xiyi − α̂
n∑

i=1

xi − β̂
n∑

i=1

x2
i

)
=

α̂=ȳn−x̄nβ̂
2β̂

(
n∑

i=1

xiyi − nx̄nȳn

︸ ︷︷ ︸
=(n−1)S2

xy

+β̂nx̄2
n − β̂

n∑

i=1

x2
i

)

= 2β̂
(
(n − 1)S2

xy − β̂(n − 1)S2
xx

)
=

β̂=
S2

xy

S2
xx

2β̂(n − 1)

(
S2

xy − S2
xy

S2
xx

· S2
xx

)
= 0 .

Die erklärte Streuung gibt die Streuung der Regressionsgeradenwerte um ȳn an. Sie stellt
damit die auf den linearen Zusammenhang zwischen X und Y zurückgeführende Variation der
y-Werte dar. Das oben eingeführte Bestimmtheitsmaß ist somit der Anteil dieser Streuung an
der Gesamtstreuung:

R2 =
SQE

SQT
=

∑n
i=1(ŷi − ȳn)2

∑n
i=1(yi − ȳn)2

=
SQT − SQR

SQT
= 1 − SQR

SQT
.

Es folgt aus dieser Darstellung, dass R2 ∈ [0, 1] ist.
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1. R2 = 0 bedeutet SQE =
∑n

i=1(ŷi − ȳn)2 = 0 und somit ŷi = ȳn ∀i. Dies weist darauf
hin, dass das lineare Modell in diesem Fall schlecht ist, denn aus ŷi = α̂ + β̂xi = ȳn folgt

β̂ =
S2

xy

S2
xx

= 0 und somit S2
xy = 0. Also sind die Merkmale X und Y unkorreliert.

2. R2 = 1 bedingt SQR =
∑n

i=1 ε̂2
i = 0. Somit liegen alle (xi, yi) perfekt auf der Regressi-

onsgeraden. Dies bedeutet, dass die Daten xi und yi, i = 1, . . . , n perfekt linear abhängig
sind.

Faustregel zur Beurteilung der Güte der Anpassung eines linearen Modells an Hand von
Bestimmtheitsmaß R2:
R2 ist deutlich von Null verschieden (d.h. es besteht noch ein linearer Zusammenhang),
falls R2 > 4

n+2 , wobei n der Stichprobenumfang ist.

Allgemein gilt folgender Zusammenhang zwischen dem Bestimmtheitsmaß R2 und dem Bra-
vais-Pearson-Korrelationskoeffizienten ̺xy:

Lemma 2.5.4

R2 = ̺2
xy

Beweis Aus der Eigenschaft 3 S. 37 folgt ȳn = ŷn. Somit gilt

SQE =
n∑

i=1

(ŷi − ȳn)2 =
n∑

i=1

(ŷi − ŷn)2 =
n∑

i=1

(α̂ + β̂xi − α̂ − β̂x̄n)2 = β̂2
n∑

i=1

(xi − x̄n)2

und damit

R2 =
SQE

SQT
=

β̂2∑n
i=1(xi − x̄n)2

∑n
i=1(yi − ȳn)2

=
(S2

xy)2

(S2
xx)2

· (n − 1)S2
xx

(n − 1)S2
yy

=

(
S2

xy

SyySxx

)2

= ̺2
xy

Folgerung 2.5.1

1. Der Wert von R2 ändert sich bei einer Lineartransformation der Daten (x1, . . . , xn) und
(y1, . . . , yn) nicht. Grafisch kann man die Güte der Modellanpassung bei der linearen
Regression folgendermaßen überprüfen:

Man zeichnet Punktepaare (ŷi, ε̂i)i=1,...,n als Streudiagramm (der sogenannte Residual-
plot). Falls diese Punktewolke gleichmäßig um Null streut, so ist das lineare Modell gut
gewählt worden. Falls das Streudiagramm einen erkennbaren Trend aufweist, bedeutet
das, dass die Annahme des linearen Modells für diese Daten ungeeigenet sei (vgl. Abb.
2.18)

2. Da R2 = ̺2
xy, ist der Wert von R2 symmetrisch bzgl. der Stichproben (x1, . . . , xn) und

(y1, . . . , yn):
̺2

xy = R2 = ̺2
yx bzw. R2

xy = R2
yx ,

wobei R2
xy das Bestimmtheitsmaß bezeichnet, das sich aus der normalen Regression ergibt

und R2
yx das mit vertauschten Achsen.
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y

0 x

y

0 x

Abb. 2.18: Links: Gute, Rechts: Schlechte Übereinstimmung mit dem linearen Modell



3 Punktschätzer

3.1 Parametrisches Modell

Sei (x1, . . . , xn) eine konkrete Stichprobe. Es wird angenommen, dass (x1, . . . , xn) eine Realisie-
rung einer Zufallsstichprobe (X1, . . . , Xn) ist, wobei X1, . . . , Xn unabhängige identisch verteilte
Zufallsvariablen mit der unbekannten Verteilungsfunktion F sind und F zu einer bekanten pa-
rametrischen Familie {Fθ : θ ∈ Θ} gehört. Hier ist θ = (θ1, . . . , θm) ∈ Θ der m-dimensionale
Parametervektor der Verteilung Fθ und Θ ⊂ R

m der sogenannte Parameterraum (eine Borel-
Teilmenge von R

m, die die Menge aller zugelassenen Parameterwerte darstellt). Es wird vor-
ausgesetzt, dass die Parametrisierung θ → Fθ identifizierbar ist, indem Fθ1 /= Fθ2 für θ1 /= θ2

gilt.
Eine wichtige Aufgabe der Statistik, die wir in diesem Kapitel betrachten werden, besteht

in der Schätzung des Parametervektors θ (oder eines Teils von θ) an Hand von der konkreten
Stichprobe (x1, . . . , xn). In diesem Fall spricht man von einem Punktschätzer θ̂ : R

n → R
m,

der eine gültige Stichprobenfunktion ist. Meistens wird angenommen, dass

P

(
θ̂(X1, . . . , Xn) ∈ Θ

)
= 1 ,

wobei es zu dieser Regel auch Ausnahmen gibt. Bisher haben wir den Wahrscheinlichkeitsraum
(Ω, F ,P), auf dem unsere Zufallsstichprobe definiert ist, nicht näher spezifiziert. Dies kan man
aber leicht tun, indem man den sogenannten kanonischen Wahrscheinlichkeitsraum angibt,
wobei

Ω = R
∞ , F = B∞

R = BR × BR × · · ·
und das Wahrscheinlichkeitsmaß P durch

P ({ω = (ω1, . . . , ωn, . . .) ∈ R
∞ : ωi1 ≤ xi1 , . . . , ωik

≤ xik
}) = Fθ(xi1) . . . Fθ(xik

)

∀ k ∈ N, 1 ≤ i1 < . . . < ik gegeben sei. Um zu betonen, dass P vom Parameter θ abhängt,
werden wir Bezeichnungen Pθ, Eθ und Varθ für das Maß P, den Erwartungswert und die Varianz
bzgl. P verwenden.

Auf dem kanonischen Wahrscheinlichkeitsraum (Ω, F ,Pθ) gilt Xi(ω) = ωi (Projektion auf
die Koordinate i), i = 1, . . . , n,

Pθ(Xi ≤ xi) = Pθ

({ω ∈ Ω : ωi ≤ xi}
)

= Fθ(xi) , i = 1, . . . , n, xi ∈ R .

Beispiel 3.1.1

1. Sei X die Dauer des fehlerfreien Arbeitszyklus eines technischen Systems. Oft wird X ∼
Exp(λ) angenommen. Dann stellt {Fθ : θ ∈ Θ} mit m = 1, θ = λ, Θ = R+ und

Fθ(x) = (1 − e−θx) · I(x ≥ 0)

ein parametrisches Modell dar, wobei der Parameterraum eindimensional ist. Später wird
für λ der (Punkt-) Schätzer x̂(x1, . . . , xn) = 1/x̄n vorgeschlagen.

41
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2. In den Fragestellungen der statistischen Qualitätskontrolle werden n Erzeugnisse auf Män-
gel untersucht. Falls p ∈ (0, 1) die unbekannte Wahrscheinlichkeit des Mangels ist, so wird
mit X ∼ Bin(n, p) die Gesamtanzahl der mangelhaften Produkte beschrieben. Dabei wird
folgendes parametrische Modell unterstellt:

Θ = {(n, p) : n ∈ N, p ∈ (0, 1)} , θ = (n, p) , m = 2 ,

Fθ(x) = Pθ(X ≤ x) =
[x]∑

k=0

(
n

k

)
pk(1 − p)n−k · I(x ≥ 0) .

Falls n bekannt ist, kann die Wahrscheinlichkeit p des Ausschusses durch den Punktschät-
zer p̂(x1, . . . , xn) = x̄n , xi ∈ {0, 1} näherungsweise berechnet werden.

3.2 Parametrische Familien von statistischen Prüfverteilungen

In der Vorlesung Wahrscheinlichkeitsrechung wurden bereits einige parametrische Familien von
Verteilungen eingeführt. Hier geben wir weitere Verteilungsfamilien an, die in der Statistik eine
besondere Stellung einnehmen, weil sie als Referenzverteilungen in der Schätztheorie, statisti-
schen Tests und Vertrauensintervallen ihre Anwendung finden.

3.2.1 Gamma-Verteilung

Als erstes führen wir zwei spezielle Funktionen aus der Analysis ein:

1. Die Gamma-Funktion:

Γ(p) =
∫ ∞

0
xp−1e−xdx für p > 0 .

Es gelten folgende Eigenschaften:

Γ(1) = 1 , Γ(1/2) =
√

π

Γ(p + 1) = pΓ(p) ∀ p > 0 , Γ(n + 1) = n! , ∀ n ∈ N .

2. Die Beta-Funktion:

B(p, q) =
∫ 1

0
tp−1(1 − t)q−1 dt , p, q > 0 .

Es gelten folgende Eigenschaften:

B(p, q) = B(q, p) , B(p, q) =
Γ(p)Γ(q)

Γ(p + q)
, p, q > 0 .

Definition 3.2.1
Die Gamma-Verteilung mit Parametern λ > 0 und p > 0 ist eine absolut stetige Verteilung mit
der Dichte

fX(x) =





λpxp−1

Γ(p) e−λx , x ≥ 0 ,

0 , x < 0 .
(3.2.1)

Dabei verwenden wir die Bezeichnung X ∼ Γ(λ, p) für eine Zufallsvariable X, die Gamma-
verteilt mit Parametern λ und p ist. Es gilt offensichtlich X ≥ 0 fast sicher für X ∼ Γ(λ, p).
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Abb. 3.1: Dichte der Gammaverteilung

Übungsaufgabe 3.2.1
Zeigen Sie, dass (3.2.1) eine Dichte ist.

Beispiel 3.2.1

1. In der Kraftfahrzeugversicherung wird die Gamma-Verteilung oft zur Modellierung des
Gesamtschadens verwendet.

2. Falls p = 1, dann ist Γ(λ, 1) = Exp(λ).

Satz 3.2.1 (Momenterzeugende und charakteristische Funktion der Gammavertei-
lung):
Falls X ∼ Γ(λ, p), dann gilt Folgendes:

1. Die momenterzeugende Funktion der Gammaverteilung ΨX(s) ist gegeben durch

ΨX(s) = EesX =
1

(1 − s/λ)p
, s < λ .

Die charakteristische Funktion der Gammaverteilung ϕX(s) ist gegeben durch

ϕX(s) = EeisX =
1

(1 − is/λ)p
, s ∈ R .

2. k-te Momente:

EXk =
p(p + 1) · . . . · (p + k − 1)

λk
, k ∈ N .
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Beweis 1. Betrachte

ΨX(s) =
∫ ∞

0
esxfX(x) dx =

λp

Γ(p)

∫ ∞

0
xp−1e

<0︷ ︸︸ ︷
(s − λ) x dx

=
−(s−λ)x=y

λp

Γ(p)

∫ ∞

0

yp−1

−(s − λ)p
e−y dy =

λpΓ(p)

Γ(p)(λ − s)p

=
(

λ

λ − s

)p

=
1

(1 − s/λ)p , λ > s .

Falls s ∈ C, Re (s) < λ, dann ist ΨX(s) holomorph auf D = {z = x + iy ∈ C : x < λ}. Es
gilt

ΨX(s) = ϕX(−is) , s = it, t < λ

Daraus folgt

ΨX(s) = ϕX(−is) , s ∈ D =⇒ ϕX(s) =
1

(1 − is/λ)p
, s ∈ R .

2.

EXk = Ψ(k)(0) =⇒ EXk =
p · (p + 1) · . . . · (p + k − 1)

λk
, k ∈ N .

Folgerung 3.2.1 (Faltungsstabilität der Γ-Verteilung):
Falls X ∼ Γ(λ, p1) und Y ∼ Γ(λ, p2), X, Y unabhängig, dann ist X + Y ∼ Γ(λ, p1 + p2).

Beweis Es gilt

ϕX+Y (s) = ϕX(s) · ϕY (s) =
1

(1 − is/λ)p1
· 1

(1 − is/λ)p2
=
(

1

1 − is/λ

)p1+p2

= ϕΓ(λ,p1+p2)(s) .

Da die charakteristischen Funktionen die Verteilungen eindeutig bestimmen, folgt damit X +
Y ∼ Γ(λ, p1 + p2).

Beispiel 3.2.2
Seien X1, . . . , Xn ∼ Exp(λ) unabhängig. Nach der Folgerung 3.2.1 gilt X = X1 + . . . + Xn ∼
Γ(λ, 1 + . . . + 1︸ ︷︷ ︸

n

) = Γ(λ, n), denn Exp(λ) = Γ(λ, 1). Dabei heißt X Erlang-verteilt mit Parame-

tern λ und n. Man schreibt X ∼ Erl(λ, n).

Zusammengefasst: Erl(λ, n) = Γ(λ, n)

Interpretation: In der Risikotheorie z.B. sind Xi Zwischenankunftszeiten der Einzelschäden.
Dann ist X =

∑n
i=1 Xi die Ankunftszeit des n-ten Schadens, X ∼ Erl(λ, n).

Definition 3.2.2 (χ2-Verteilung):

X ist eine χ2-verteilte Zufallsvariable mit k Freiheitsgraden (X ∼ χ2
k), falls X

d
= X2

1 + . . .+X2
k ,

wobei X1, . . . , Xk ∼ N(0, 1) unabhängige identisch verteilte Zufallsvariablen sind.

Satz 3.2.2 (χ2-Verteilung: Spezialfall der Γ-Verteilung mit λ = 1/2, p = k/2):
Falls X ∼ χ2

k, dann gilt:
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Abb. 3.2: Dichte der χ2-Verteilung für k = 2, 3, 4

1. X ∼ Γ(1/2, k/2), d.h.

fX(x) =





xk/2−1e−x/2

2k/2Γ(k/2)
, x ≥ 0

0, x < 0
. (3.2.2)

2. Insbesondere ist EX = k, Var X = 2k.

Beweis 1. Sei X = X2
1 + . . . + X2

k mit Xi ∼ N(0, 1) unabhängingen identisch verteilten
Zufallsvariablen. Errechnen wir zunächst die Verteilung der X2

i :

P (X2
1 ≤ x) = P (X1 ∈ [−√

x,
√

x]) =
∫ √

x

−√
x

1√
2π

e− y2

2 dy

=
∫ √

x

0

1√
2π

e− y2

2 dy +
∫ 0

−√
x

1√
2π

e− y2

2 dy

=
y2=t

∫ x

0

1√
2π

e
−t
2

1

2
√

t
dt +

∫ 0

x

1√
2π

e−t/2 −1

2
√

t
dt

=
∫ x

0

(1/2)−1/2t1/2−1

Γ(1/2)
e−t/2 dt , x ≥ 0 .

Somit folgt X2
1 ∼ Γ(1/2, 1/2) =⇒ X ∼ Γ(1/2, 1/2 + . . . + 1/2︸ ︷︷ ︸

k

) = Γ(1/2, k/2) und daher

gilt der Ausdruck (3.2.2) für die Dichte.

2. Wegen der Additivität des Erwartungswertes und der Unabhängigkeit von Xi gilt

EX = k · EX2
1 , Var X = kVar X2

1 , E(X2
1 ) = E

(
Γ(1/2, 1/2)

)
.

Bitte zeigen Sie selbstständig, dass EX2
1 = 1 , Var X2

1 = 2.

3.2.2 Student-Verteilung (t-Verteilung)

Definition 3.2.3
Seien X, Y unabhängige Zufallsvariablen, wobei X ∼ N(0, 1) und Y ∼ χ2

r . Dann heißt die
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Zufallsvariable

U
d
=

X√
Y/r

Student- oder t-verteilt mit r Freiheitsgraden. Wir schreiben U ∼ tr.

Satz 3.2.3 (Dichte der t-Verteilung):
Falls X ∼ tr, dann gilt:

1.

fX(x) =
1

√
rB

(
r
2 , 1

2

) · 1
(
1 + x2

r

) r+1
2

, x ∈ R .

2. EX = 0 , Var X = r
r−2 , r ≥ 3.

Bemerkung 3.2.1

1. Grafik von fr: Die tr-Verteilung ist symmetrisch. Insbesondere gilt:

-2 -1 0 1 2 3 4

0.1

0.2

0.3

0.4
t(100)

t(2)

t(10)

Abb. 3.3: Dichte f̂ der t-Verteilung für r = 2, 10, 100

tr,α = −tr,1−α, α ∈ (0, 1) ,

wobei tr,α das α-Quantil der Student-Verteilung mit r Freiheitsgraden ist.

2. Falls r → ∞, dann fr(x) → 1√
2π

e− x2

2 , x ∈ R. (Übungsaufgabe)

3. Für r = 1 gilt: t1 = Cauchy(0, 1) mit Dichte f(x) = 1
π(1+x2)

. Der Erwartungswert von t1

existiert nicht.

Beweis des Satzes 3.2.3:

1. Es gilt X := ϕ(Y, Z), wobei ϕ(x, y) = x√
y/r

und V = (Y, Z) ein zweidimensionaler

Zufallsvektor ist, Y ∼ N(0, 1), Z ∼ χ2
r , Y und Z unabhängig.

Wir wollen den sogenannten Dichtetransformationssatz für Zufallsvektoren verwenden,
der besagt, dass unter bestimmten Voraussetzungen

fϕ(V )(x) = fV (ϕ−1(x))|J |
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gilt, wobei |J | = | det J |, J =
(

∂ϕ−1
i (x)
∂xj

)n

i,j=1
, ϕ = (ϕ1, . . . , ϕn) : Rn → R

n. Berechnen

wir hier ϕ−1 von ϕ : (x, y) 7→ (v, w), wobei v = x√
y/r

, w = y:

ϕ−1 : v =
x√

y
r

=⇒ x = v

√
y

r
= v

√
w

r
. Somit ϕ−1 : (v, w) 7→

(
v

√
w

r
, w

)

und die Jacobi-Matrix ist gleich

J =




∂ϕ−1
1

∂v
∂ϕ−1

2
∂w

∂ϕ−1
2

∂v
∂ϕ−1

2
∂w


 =

(√
w
r

v
2
√

wr

0 1

)
.

Falls V = (Y, Z), Y und Z unabhängig, dann

fV (x, y) = fY (x) ·fZ(y) =
1√
2π

e− x2

2 · yr/2−1e−y/2

Γ(r/2)2r/2
=

yr/2−1e− y+x2

2

2
r+1

2 Γ(1/2)Γ(r/2)
, x ∈ R , y > 0 ,

und nach dem Dichtetransformationssatz gilt

fX(v) =
∫ ∞

0
fϕ(V )(u, w)dw =

∫ ∞

0
fV (ϕ−1(v, w))|J | dw

=
∫ ∞

0

e−(v2 w
r

+w)/2wr/2−1

2
r+1

2 Γ(1/2)Γ(r/2)

√
w/r dw

=
1

√
r2

r+1
2 Γ(1/2)Γ(r/2)

·
∫ ∞

0
w

r−1
2 e

−

=t︷ ︸︸ ︷
v2

r + 1

2
· w

dw

=
w= 2t

v2/r+1

1
√

r2
r+1

2 Γ(1/2)Γ(r/2)
·
∫ ∞

0

2
r−1

2
+1t

r−1
2

(v2/r + 1)
r−1

2
+1

e−tdt

=
2

r+1
2 Γ( r+1

2 )

(v2

r + 1)
r+1

2
√

r2
r+1

2 Γ(1/2)Γ(r/2)
=

1
√

rB(r/2, 1/2)(1 + v2/r)
r+1

2

2. Übungsaufgabe

Da im WR-Skript der Dichtetransformationssatz nur für Zufallsvariablen formuliert wurde,
geben wir hier die notwendigen Begriffe und verallgemeinerten Sätze für Zufallsvektoren (ohne
Beweis). Hierbei verwenden wir die folgende Notation:

Für Vektoren x = (x1, . . . , xn)T und y = (y1, . . . , yn)T schreiben wir x ≤ y, falls xi ≤ yi

für i = 1, . . . , n. Ferner sei für einen Zufallsvektor X = (X1, . . . , Xn)T die Verteilungsfunktion
definiert als F (x) = P(X ≤ x) für x = (x1, . . . , xn)T .

Definition 3.2.4
Die Zufallsvektoren Xi : Ω → R

mi , i = 1, . . . , n sind unabhängig, falls

F(X1,...,Xn)(x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn) =
n∏

i=1

P (Xi ≤ xi) =
n∏

i=1

FXi(xi) ,

xi ∈ R
mi , i = 1, . . . , n.
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Satz 3.2.4
Falls Xi absolut stetig verteilte und unabhängige Zufallsvektoren mit Dichten fXi , i =
1, . . . , n, sind, dann ist auch (X1, . . . , Xn) absolut stetig verteilt mit Dichte

fX1,...,Xn(x1, . . . , xn) =
n∏

i=1

fXi(xi) , xi ∈ R
mi , i = 1, . . . , n .

Satz 3.2.5
Falls Xi : Ω → R

mi , i = 1, . . . , n unabhängige Zufallsvektoren sind, und ϕi : Rmi → R
ni , ∀i =

1, . . . , n Borel-messbare Funktionen, dann sind Zufallsvektoren ϕ1(X1), . . . , ϕn(Xn) unabhän-
gig.

Satz 3.2.6 (Dichtetransformationssatz für Zufallsvektoren):
Sei X = (X1, . . . , Xm)T : Ω → R

m ein absolut stetig verteilter Zufallsvektor mit Dichte fX .
Sei ϕ = (ϕ1, . . . , ϕm)T : Rm → R

m eine Borel-messbare Abbildung, die innerhalb von einem

Quader B ⊂ R
m stetig differenzierbar ist. Falls suppfX ⊂ B und det

(
∂ϕi
∂xj

)
i,j=1,...,m

/= 0 auf B,

dann ∃ϕ−1 : ϕ(B) → B stetig differenzierbar und

fϕ(X)(x) =

{
fX

(
ϕ−1(x)

) · |J |, x ∈ ϕ(B) ,

0, x /∈ ϕ(B) ,

wobei J = det

(
∂ϕ−1

i
∂xj

)

i,j=1,...,m

3.2.3 Fisher-Snedecor-Verteilung (F-Verteilung)

Definition 3.2.5
Falls X

d
= Ur/r

Us/s , wobei Ur ∼ χ2
r , Us ∼ χ2

s, r, s ∈ N, Ur, Us unabhängig, dann hat X eine
F-Verteilung mit Freiheitsgraden r, s. Bezeichnung: X ∼ Fr,s.

Lemma 3.2.1
Falls X ∼ Fr,s, dann ist X absolut stetig verteilt mit Dichte

fX(x) =
xr/2−1

B(r/2, s/2)(r/s)−r/2(1 + (r/s) · x)
r+s

2

· I(x > 0) .

Beweis Da Ur ∼ χ2
r , gilt für ihre Dichte

fUr (x) =
xr/2−1e−x/2

Γ(r/2)2r/2
, x > 0 , r ∈ N.

Somit

P (Ur/r ≤ x) = P (Ur ≤ rx) = FUr (rx)

und deshalb

fUr/r(x) = (FUr (rx))′ = r · fUr (rx) =
r(rx)r/2−1e

−rx
2

Γ(r/2)2r/2
· I(x > 0)

=
rr/2xr/2−1e−r/2·x

Γ(r/2)2r/2
· I(x > 0) .
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Abb. 3.4: Dichte der F-Verteilung für verschiedene Parameter r und s.

Nach dem Dichtetransformationssatz für das Verhältnis von zwei Zufallsvariablen (vgl. Wahr-
scheinlichkeitsskript Satz 3.15) gilt

f Ur/r
Us/s

(x) =
∫ ∞

0
tfUr/r(xt) · fUs/s(t) dt · I(x > 0) .

Somit

fX(x) =
∫ ∞

0
t
rr/2(tx)r/2−1e− rtx

2

Γ(r/2)2r/2
· ss/2ts/2−1e−st/2

Γ(s/2)2s/2
dt

=
rr/2ss/2xr/2−1

Γ(r/2)Γ(s/2)2
r+s

2

·
∫ ∞

0
tr/2+s/2−1e

−

=y︷ ︸︸ ︷
rx + s

2
t

dt

=
rr/2ss/2xr/2−1

Γ(r/2)Γ(s/2)
·
∫ ∞

0

y
r+s

2
−1

(rx + s)
r+s

2

· e−y dy

=
t= y

rx+s
2

rr/2ss/2xr/2−1

Γ(r/2)Γ(s/2)s
r+s

2 (1 + r
s · x)

r+s
2

· Γ
(

r + s

2

)

=
(r/s)r/2xr/2−1

B(r/2, s/2)(1 + r
sx)

r+s
2

· I(x > 0) .

Bemerkung 3.2.2
Sei X ∼ Fr,s, r, s ∈ N mit Dichte fX .

1. Einige Graphen der F-Verteilung sind in Abbildung 3.4 dargestellt.

2. Einige Eigenschaften der F-Verteilung:
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Lemma 3.2.2
Es gilt:

a)
EX =

s

s − 2
, s ≥ 3 .

b)

Var X =
2s2(r + s − 2)

r(s − 4)(s − 2)2
, s ≥ 5 .

c) Falls Fr,s,α das α-Quantil der Fr,s-Verteilung ist, dann gilt

Fr,s,α =
1

Fs,r,1−α
, α ∈ (0, 1) .

Übungsaufgabe 3.2.2
Beweisen Sie Lemma 3.2.2!

3. Für Quantile Fr,s,α gilt folgende Näherungsformel (Abramowitz, Stegun (1972)):

Fr,s,α ≈ eω, wobei

ω = 2

(
α(h + a)1/2

h
−
(

1

r − 1
− 1

s − 1

)
·
(

a +
5

6
− 2

3h

))
,

h = 2
(

1

r − 1
+

1

s − 1

)−1

,

a =
z2

α − 3

6

und zα das α-Quantil der N(0, 1)-Verteilung ist.

3.3 Punktschätzer und ihre Grundeigenschaften

Sei (X1, . . . , Xn) eine Zufallsstichprobe, definiert auf dem kanonischen Wahrscheinlichkeits-
raum (Ω, F ,Pθ). Seien Xi, i = 1, . . . , n unabhängige identisch verteilte Zufallsvariablen mit
Verteilungsfunktion F ∈ {Fθ : θ ∈ Θ}, Θ ⊂ R

m. Finde einen Schätzer θ̂(X1, . . . , Xn) für den
Parameter θ mit vorgegebenen Eigenschaften.

Unser Ziel im nächsten Abschnitt ist es, zunächst grundlegende Eigenschaften der Schätzer
kennenzulernen.

3.3.1 Eigenschaften von Punktschätzern

Definition 3.3.1 (Erwartungstreue):
Ein Schätzer θ̂(X1, . . . , Xn) für θ heißt erwartungstreu oder unverzerrt, falls

Eθθ̂(X1, . . . , Xn) = θ , θ ∈ Θ .

Dabei wird vorausgesetzt, dass

Eθ|θ̂(X1, . . . , Xn)| < ∞ , θ ∈ Θ .
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Der Bias (Verzerrung) eines Schätzers θ̂(X1, . . . , Xn) ist gegeben durch

Bias(θ̂) = Eθ θ̂(X1, . . . , Xn) − θ .

Falls θ̂(X1, . . . , Xn) erwartungstreu ist, dann gilt Bias(θ̂) = 0 (kein systematischer Schätzfehler).

Definition 3.3.2 (Asymptotische Erwartungstreue):
Der Schätzer θ̂(X1, . . . , Xn) für θ heißt asymptotisch erwartungstreu (oder asymptotisch unver-
zerrt), falls (für große Datenmengen)

Eθ θ̂(X1, . . . , Xn) −→
n→∞ θ .

Definition 3.3.3 (Konsistenz):
Falls

θ̂(X1, . . . , Xn) −→
n→∞ θ

in L2, stochastisch bzw. fast sicher, dann heißt der Schätzer θ̂(X1, . . . , Xn) ein konsistenter
Schätzer für θ im mittleren quadratischen, schwachen bzw. starken Sinne.

• θ̂ L2-konsistent: für Eθ θ̂2(X1, . . . , Xn) < ∞ gilt

θ̂
L2

−→
n→∞

θ ⇐⇒ Eθ|θ̂(X1, . . . , Xn) − θ|2 −→
n→∞

0 , θ ∈ Θ .

• θ̂ schwach konsistent:

θ̂
P−→

n→∞ θ ⇐⇒ Pθ(|θ̂(X1, . . . , Xn) − θ| > ε) −→
n→∞ 0 , ε > 0 , θ ∈ Θ.

• θ̂ stark konsistent:

θ̂
f.s.−→

n→∞
θ ⇐⇒ Pθ

(
lim

n→∞
θ̂(X1, . . . , Xn) = θ

)
= 1 , θ ∈ Θ.

Daraus ergibt sich folgendes Diagramm (vgl. Wahrscheinlichkeitsrechungsskript, Kapitel 6).

L2 − Konsistenz +3 schwache Konsistenz starke Konsistenzks

Definition 3.3.4 (Mittlerer quadratischer Fehler (mean squared error)):
Der mittlere quadratische Fehler eines Schätzers θ̂(X1, . . . , Xn) für θ ist definiert als

MSE(θ̂) = Eθ

∣∣θ̂(X1, . . . , Xn) − θ
∣∣2 .

Lemma 3.3.1
Falls m = 1 und Eθ θ̂2(X1, . . . , Xn) < ∞ , θ ∈ Θ, dann gilt

MSE(θ̂) = Varθ θ̂ +
(
Bias(θ̂)

)2
.

Beweis MSE(θ̂) = Eθ(θ̂ − θ)2 = Eθ(θ̂ − Eθθ̂ + Eθθ̂ − θ)2

= Eθ(θ̂ − Eθ θ̂)2

︸ ︷︷ ︸
Varθ θ̂

+2Eθ(θ̂ − Eθ θ̂)︸ ︷︷ ︸
=0

(Eθ θ̂ − θ)︸ ︷︷ ︸
=const

+ (Eθ θ̂ − θ)2

︸ ︷︷ ︸
=Bias(θ̂)2

= Varθ θ̂ +
(
Bias(θ̂)

)2
.
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Bemerkung 3.3.1
Falls θ̂ erwartungstreu für θ ist, dann gilt MSE(θ̂) = Varθ θ̂.

Definition 3.3.5 (Vergleich von Schätzern):
Seien θ̂1(X1, . . . , Xn) und θ̂2(X1, . . . , Xn) zwei Schätzer für θ. Man sagt, dass θ̂1 besser ist als
θ̂2, falls

MSE(θ̂1) < MSE(θ̂2) , θ ∈ Θ .

Falls m = 1 und die Schätzer θ̂1, θ̂2 erwartungstreu sind, so ist θ̂1 besser als θ̂2, falls θ̂1 die
kleinere Varianz besitzt. Dabei wird stets vorausgesetzt, dass Eθ θ̂2

i < ∞ , θ ∈ Θ.

Definition 3.3.6 (Asymptotische Normalverteiltheit):
Sei θ̂(X1, . . . , Xn) ein Schätzer für θ (m = 1). Falls 0 < Varθ θ̂(X1, . . . , Xn) < ∞ , θ ∈ Θ und

θ̂(X1, . . . , Xn) − Eθ θ̂(X1, . . . , Xn)√
Varθ θ̂(X1, . . . , Xn)

d−→
n→∞

Y ∼ N(0, 1) ,

dann ist θ̂(X1, . . . , Xn) asymptotisch normalverteilt.

Definition 3.3.7 (Bester erwartungstreuer Schätzer):
Der Schätzer θ̂(X1, . . . , Xn) für θ ist der beste erwartungstreue Schätzer, falls

Eθ θ̂2(X1, . . . , Xn) < ∞ , θ ∈ Θ , Eθ θ̂(X1, . . . , Xn) = θ , θ ∈ Θ ,

und θ̂ die minimale Varianz in der Klasse aller erwartungstreuen Schätzer für θ besitzt. Das
heißt, dass für einen beliebigen erwartungstreuen Schätzer θ̃(X1, . . . , Xn) mit

Eθ θ̃2(X1, . . . , Xn) < ∞ gilt Varθ θ̂ ≤ Varθ θ̃ , θ ∈ Θ .

3.3.2 Schätzer des Erwartungswertes und empirische Momente

Sei X
d
= Xi , i = 1, . . . , n ein statistisches Merkmal. Sei weiter E|Xi|k < ∞ für ein k ∈ N,

m = 1 und der zu schätzende Parameter θ = µk = EXk
i . Insbesondere gilt im Fall k = 1, dass

θ = µ1 = µ der Erwartungswert ist.

Definition 3.3.8
Das k-te empirische Moment von X wird als

µ̂k =
1

n

n∑

i=1

Xk
i

definiert. Unter dieser Definition gilt, dass µ̂1 = X̄n, also das erste empirische Moment gleich
dem Stichprobenmittel ist.

Satz 3.3.1 (Eigenschaften der empirischen Momente):
Unter obigen Voraussetzungen gelten folgende Eigenschaften:

1. µ̂k ist erwartungstreu für µk (insbesondere X̄n).

2. µ̂k ist stark konsistent.

3. Falls Eθ|X|2k < ∞ , ∀θ ∈ Θ, dann ist µ̂k asymptotisch normalverteilt.
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4. Es gilt Var X̄n = σ2

n , wobei σ2 = Varθ X. Falls Xi ∼ N(µ, σ2) , i = 1, . . . , n (eine
normalverteilte Stichprobe), dann gilt:

X̄n ∼ N

(
µ,

σ2

n

)
.

Beweis

1. Eθ µ̂k =
1

n

n∑

i=1

EθXk
i =

1

n

n∑

i=1

µk =
nµk

n
= µk .

2. Aus dem starken Gesetz der großen Zahlen folgt

1

n

n∑

i=1

Xk
i

f.s.−→
n→∞ Eθ Xk

i = µk .

3. Mit dem zentralen Grenzwertsatz gilt
∑n

i=1 Xk
i − n · EXk

√
n · Var Xk

=
1
n

∑n
i=1 Xk

i − µk

1√
n

√
Var Xk

=
√

n
µ̂k − µk√
Var Xk

d−→
n→∞ Y ∼ N(0, 1) .

Insbesondere gilt für den Spezialfall k = 1

√
n

X̄n − µ

σ
d−→

n→∞ Y ∼ N(0, 1) .

4.

Var X̄n = Var

(
1

n

n∑

i=1

Xi

)
=

Xi u.i.v.

1

n2

n∑

i=1

Var Xi =
n · σ2

n2
=

σ2

n
.

Falls Xi ∼ N(µ, σ2) , i = 1, . . . , n, dann gilt wegen der Faltungsstabilität der Normal-
verteilung X̄n ∼ N(·, ·), weil

1

n
Xi ∼ N

(
µ

n
,
σ2

n2

)
, Xi u.i.v.

Somit folgt aus 1) und 4) X̄n ∼ N
(
µ, σ2

n

)
.

Damit ist der Satz bewiesen.

Bemerkung 3.3.2
Aus Satz 3.3.1, 3) folgt

P(|X̄n − µ| > ε) = 1 − P(−ε ≤ X̄n − µ ≤ ε)

= 1 − P

(
−ε

√
n

σ
≤ √

n
X̄n − µ

σ
≤ ε

√
n

σ

)

≈
n→∞

1 −
(

Φ

(
ε
√

n

σ

)
− Φ

(
−ε

√
n

σ

))

=
Φ(−x)=1−Φ(x)

1 −
(

Φ

(
ε
√

n

σ

)
− 1 + Φ

(
ε
√

n

σ

))

= 1 −
(

2Φ

(
ε
√

n

σ

)
− 1

)
,
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wobei Φ(x) = 1√
2π

∫ x
−∞ e− t2

2 dt die Verteilungsfunktion der N(0, 1)-Verteilung ist.

Insgesamt gilt also für großes n

P
(|X̄n − µ| > ε

) ≈ 2

(
1 − Φ

(
ε
√

n

σ

))
.

3.3.3 Schätzer der Varianz

Seien Xi , i = 1, . . . , n unabhängig identisch verteilt, Xi
d
= X , Eθ X2 < ∞ ∀θ ∈ Θ , θ =

(θ1, . . . , θm)T , θi = σ2 = Varθ X für ein i ∈ {1, . . . , m}. Die Stichprobenvarianz

S2
n =

1

n − 1

n∑

i=1

(Xi − X̄n)2

ist dann ein Schätzer für σ2. Falls der Erwartungswert µ = EθX der Stichprobenvariablen
explizit benannt ist, so kann ein Schätzer für σ2 auch als

S̃2
n =

1

n

n∑

i=1

(Xi − µ)2

definiert werden.
Wir werden nun die Eigenschaften von S2

n und S̃2
n untersuchen und sie miteinander vergleichen.

Satz 3.3.2

1. Die Stichprobenvarianz S2
n ist erwartungstreu für σ2:

Eθ S2
n = σ2 , θ ∈ Θ .

2. Wenn Eθ X4 < ∞, dann gilt

Varθ S2
n =

1

n

(
µ′

4 − n − 3

n − 1
σ4
)

,

wobei µ′
4 = Eθ (X − µ)4.

Beweis 1. Aus Lemma 2.2.1 1), 2) folgt, dass

S2
n =

1

n − 1

(
n∑

i=1

X2
i − nX̄2

n

)
,

und dass man o.B.d.A. µ = EθXi = 0 annehmen kann, woraus insbesondere EθX̄n =
0 , θ ∈ Θ folgt. Dann gilt

EθS2
n =

1

n − 1

(
n∑

i=1

Eθ X2
i − nEX̄2

n

)
=

1

n − 1

(
n∑

i=1

Varθ Xi − nVar X̄n

)

=
S. 3.3.1, 4)

1

n − 1

(
nσ2 − n · σ2

n

)
= σ2 , θ ∈ Θ .
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2. Berechnen wir Varθ S2
n = Eθ(S2

n)2 − (Eθ S2
n)2 = Eθ(S2

n)2 − σ4. Es gilt

EθS4
n =

1

(n − 1)2
Eθ

(
n∑

i=1

X2
i − nX̄2

n

)2

=
1

(n − 1)2



Eθ

(
n∑

i=1

X2
i

)2

︸ ︷︷ ︸
=I1

−2nEθ

(
X̄2

n

n∑

i=1

X2
i

)

︸ ︷︷ ︸
=I2

+n2
Eθ X̄4

n︸ ︷︷ ︸
=I3




.

Dabei gilt

I1 = Eθ




n∑

i=1

X2
i

n∑

j=1

X2
j


 = Eθ




n∑

i=1

X4
i +

∑

i /=j

X2
i X2

j


 =

n∑

i=1

EθX4
i +

∑

i /=j

Eθ(X2
i X2

j )

=
Xi u.i.v, µ=0

n∑

i=1

µ′
4 +

∑

i /=j

Varθ Xi · Varθ Xj = nµ′
4 + n(n − 1)σ4 ,

I2 = Eθ



(

1

n

n∑

i=1

Xi

)2 n∑

j=1

X2
j


 =

1

n2
Eθ






n∑

i=1

X2
i +

∑

i /=j

XiXj




n∑

j=1

X2
j




=
1

n2
Eθ




n∑

i=1

X2
i

n∑

j=1

X2
j


+

1

n2
E


∑

i /=j

XiXj

n∑

k=1

X2
k




=
1

n2
I1 +

1

n2

∑

i /=j

∑

k

E

(
XiXjX2

k

)

︸ ︷︷ ︸
=0, da Xi u.i.v. und µ=0

=
I1

n2
=

µ′
4 + (n − 1)σ4

n
,

I3 = Eθ



(

1

n

n∑

i=1

Xi

)2

·

 1

n

n∑

j=1

Xj




2



=
1

n4
Eθ






n∑

k=1

X2
k +

∑

i /=j

XiXj


 ·




n∑

r=1

X2
r +

∑

s /=t

XsXt






=
1

n4
Eθ




n∑

k,r=1

X2
kX2

r + 2
n∑

k=1

X2
k

∑

i /=j

XiXj +
∑

i /=j

XiXj

∑

s /=t

XsXt




=
1

n4

(
E

( n∑

k=1

X4
k

)
+ Eθ

(∑

k /=r

X2
kX2

r

)
+ 2Eθ

( n∑

k=1

X2
k

∑

i /=j

XiXj

)

︸ ︷︷ ︸
=0, da Xi u.i.v. und µ=0

+

+ 2 Eθ

(∑

i /=j

X2
i X2

j

)

︸ ︷︷ ︸
weil (i,j) und (j,i) zählen

+Eθ


 ∑

i /=j /=t

X2
i XjXt




︸ ︷︷ ︸
=0 , da Xju.i.v. und µ=0

+Eθ

( ∑

i /=j /=s /=t

XiXjXsXt

)

︸ ︷︷ ︸
=0, da Xi u.i.v. und µ=0

)

=
1

n4


nµ′

4 + 3Eθ

∑

i /=j

X2
i X2

j


 =

nµ′
4 + 3n(n − 1)σ4

n4
=

µ′
4 + 3(n − 1)σ4

n3
.
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Somit gilt insgesamt

EθS4
n =

1

(n − 1)2

(
nµ′

4 + n(n − 1)σ4 − 2(µ′
4 + (n − 1)σ4) +

µ′
4 + 3(n − 1)σ4

n

)

=
(n2 − 2n + 1)µ′

4 + (n2 − 2n + 3)(n − 1)σ4

n(n − 1)2

=
(n − 1)2

(n − 1)2

µ2
4

n
+

n2 − 2n + 3

n(n − 1)
σ4 =

µ′
4

n
+

n2 − 2n + 3

n(n − 1)
σ4

und deshalb

Varθ S2
n =

µ′
4

n
+

n2 − 2n + 3 − n2 + n

n(n − 1)
σ4 =

µ′
4

n
− n − 3

n(n − 1)
σ4 =

1

n

(
µ′

4 − n − 3

n − 1
σ4
)

.

Satz 3.3.3 1. Der Schätzer S̃2
n für σ2 ist erwartungstreu.

2. Es gilt Varθ S̃2
n = 1/n(µ′

4 − σ4).

Beweis

1. Eθ S̃2
n =

1

n

n∑

i=1

Eθ(Xi − µ)2

︸ ︷︷ ︸
=Varθ Xi

=
1

n

n∑

i=1

σ2 = σ2 .

2. Setzen wir wie in Satz 3.3.2 o.B.d.A. µ = 0 voraus. Dann gilt

Var S̃2
n = Eθ

(
1

n

n∑

i=1

X2
i

)2

−
(
Eθ S̃2

n

)2
=

1

n2
E

(
n∑

i=1

X2
i

)
− σ4

=
I1 Beweis S. 3.3.2

nµ′
4 + n(n − 1)σ4

n2
− σ4 =

µ′
4 + (n − 1)σ4

n
− σ4 =

µ′
4 − σ4

n
.

Folgerung 3.3.1
Der Schätzer S̃2

n für σ2 ist besser als S2
n, weil beide erwartungstreu sind und

Varθ S̃2
n =

µ′
4 − σ4

n
<

µ′
4 − n−3

n−1σ4

n
= Varθ S2

n .

Diese Eigenschaft von S̃2
n im Vergleich zu S2

n ist intuitiv klar, da man in S̃2
n mehr Informationen

über die Verteilung der Stichprobenvariablen Xi (nämlich den bekannten Erwartungswert µ)
reingesteckt hat.

Satz 3.3.4
Die Schätzer S2

n bzw. S̃2
n sind stark konsistent und asymptotisch normalverteilt:

S2
n

f.s.−→
n→∞ σ2 ,

√
n

S2
n − σ2

√
µ′

4 − σ4

d−→
n→∞ Y ∼ N(0, 1) ,

S̃2
n

f.s.−→
n→∞

σ2 ,
√

n
S̃2

n − σ2

√
µ′

4 − σ4

d−→
n→∞

Y ∼ N(0, 1) ,

falls µ′
4 < ∞.
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Beweis Zeigen wir nur, dass S2
n die obigen Eigenschaften besitzt. Der Beweis für S̃2

n verläuft
analog. Die starke Konsistenz von S2

n folgt aus dem starken Gesetz der großen Zahlen, nach
dem

1

n

n∑

i=1

X2
i

f.s.−→
n→∞ EX2 und X̄n

f.s.−→
n→∞ µ

gilt und somit auch

X̄2
n

f.s.−→
n→∞

µ2 .

Dann

S2
n =

1

n − 1

(
n∑

i=1

Xi − nX̄2
n

)
=

n

n − 1

(
1

n

n∑

i=1

X2
i − X̄2

n

)

f.s.−→
n→∞ Eθ X2 − µ2 = Varθ X = σ2 ,

und die starke Konsistenz ist bewiesen. Um die asymptotische Normalverteiltheit zu beweisen,
nehmen wir o.B.d.A. an, dass µ = Eθ X = 0 . Dann folgt mit Hilfe des Satzes von Slutsky (vgl.
Sätze 6.8 - 6.9 aus dem WR-Skript)

√
n

S2
n − σ2

√
µ′

4 − σ4
=

√
n

1
n−1

∑n
i=1 X2

i − n
n−1X̄2

n − σ2

√
µ′

4 − σ4

=
√

n
1

n − 1

∑n
i=1 X2

i − nσ2

√
µ′

4 − σ4
−

√
n n

n−1X̄2
n√

µ′
4 − σ4

︸ ︷︷ ︸
=R1

n

−
(

1 − n

n − 1

)
σ2√

n√
µ′

4 − σ4

︸ ︷︷ ︸
=R2

n

d∼
n→∞

∑n
i=1 X2

i − nσ2

√
n(µ′

4 − σ4)
,

weil

R2
n =

(
1 − n

n − 1

)
σ2

√
n√

µ′
4 − σ4

= − σ2

√
µ′

4 − σ4

√
n

n − 1
f.s.−→

n→∞
0 ,

also auch stochastisch und in Verteilung. Es gilt

R1
n ∼ √

n
X̄2

n√
µ′

4 − σ4

d−→
n→∞

0 ,

weil

Eθ

(√
nX̄2

n

)
=

µ=0

√
nVarθX̄n =

S. 3.3.1, 4)

√
n

σ2

n
=

σ2

√
n

−→
n→∞

0

und somit √
n(X̄n)2 L1

−→
n→∞ 0 =⇒ √

n(X̄n)2 P−→
n→∞ 0 =⇒ √

n(X̄n)2 d−→
n→∞ 0 .

Dann gilt

lim
n→∞

√
n

S2
n − σ2

√
µ′

4 − σ4

d
= lim

n→∞

∑n
i=1 X2

i − nσ2

√
n(µ′

4 − σ4)

d
= Y ∼ N(0, 1)
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nach dem zentralen Grenzwertsatz für die Folge von unabhängigen identisch verteilten Zufalls-
variablen {X2

i }i∈N, weil Eθ X2
i =

µ=0
Varθ X = σ2 und

VarθX2
i = EθX4 − (

EθX2)2 = µ′
4 − σ4 .

Folgerung 3.3.2
Es gilt

1. √
n

X̄n − µ

Sn

d−→
n→∞ Y ∼ N(0, 1)

und somit

2.

P

(
µ ∈

[
X̄n − z1−α/2Sn√

n
, X̄n +

z1−α/2Sn√
n

])
−→

n→∞
1 − α (3.3.1)

für ein α ∈ (0, 1), wobei zα das α-Quantil der N(0, 1)-Verteilung ist.

Bemerkung 3.3.3
Das Intervall in (3.3.1) nennt man asymptotisches Konfidenz- oder Vertrauensintervall für den
Parameter µ. Falls α klein ist (z.B. α = 0, 05), so liegt µ mit einer asymptotisch großen Wahr-
scheinlichkeit 1 − α im vorgegebenen Intervall. Diese Art der Schätzung von µ stellt eine Alter-
native zu den Punktschätzern dar und wird ausführlich in der Vorlesung Satistik II behandelt.

Beweis der Folgerung 3.3.2

1. Aus Satz 3.3.4 folgt

S2
n

f.s.−→
n→∞ σ2 =⇒ σ

Sn

f.s.−→
n→∞ 1 =⇒ σ

Sn

d−→
n→∞ 1

und somit nach der Verwendung des Satzes von Slutsky

√
n

X̄n − µ

Sn
=

√
n

X̄n − µ

σ
· σ

Sn
−→

n→∞
Y · 1 = Y ∼ N(0, 1) ,

wobei wir die asymptotische Normalverteiltheit von X̄n benutzt haben.

2. Aus 1) folgt

Pθ

(
√

n
X̄n − µ

Sn
∈
[
zα/2 , z1−α/2

])
−→

n→∞
Φ
(
z1−α/2

)
− Φ

(
zα/2

)
= 1 − α

2
− α

2
= 1 − α .

Daraus folgt das Intervall (3.3.1) nach der Auflösung der Ungleichung

zα/2 ≤ √
n

X̄n − µ

Sn
≤ z1−α/2

bzgl. µ.
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Betrachten wir weiterhin den wichtigen Spezialfall der normalverteilten Stichprobenvariablen
Xi , i = 1, . . . , n, also X ∼ N(µ, σ2).

Satz 3.3.5
Falls X1, . . . , Xn normalverteilt sind mit Parametern µ und σ2, dann gilt

1. (n − 1)S2
n

σ2
∼ χ2

n−1 ,

2. nS̃2
n

σ2
∼ χ2

n .

Beweis Beweisen wir den schwierigeren Fall 1, der Beweis im Fall 2 verläuft analog.
Da Xi ∼ N(µ, σ2), gilt, dass Xi−µ

σ ∼ N(0, 1) unabhängige identisch verteilte Zufallsvariablen
für i = 1, . . . , n sind. Nach Lemma 2.2.1 gilt

n∑

i=1

(Xi − µ)2 =
n∑

i=1

(Xi − X̄n)2 + n(X̄n − µ)2

und somit

T1 =
n∑

i=1

(
Xi − µ

σ

)2

︸ ︷︷ ︸
∼χ2

n

=
n − 1

σ2
S2

n +

(√
n(X̄n − µ)

σ

)2

︸ ︷︷ ︸
=T2∼χ2

1 aus S. 3.3.1, 4)

.

In Lemma 3.3.2 wird bewiesen, dass S2
n und X̄n unabhängig sind. Somit gilt

ϕT1(s) = ϕ n−1

σ2 S2
n
(s) · ϕT2(s) , ∀s ∈ R ,

wobei ϕZ(s) die charakteristische Funktion einer Zufallsvariablen Z ist. Da nach dem Satz 3.2.1

ϕT1(s) =
1

(1 − 2is)n/2
, ϕT2(s) =

1

(1 − 2is)1/2
,

folgt

ϕ n−1

σ2 S2
n
(s) =

ϕT1(s)

ϕT2(s)
=

1

(1 − 2is)(n−1)/2
= ϕχ2

n−1
(s) .

Aus dem Satz 3.2.1 und dem Eindeutigkeitssatz für charakteristische Funktionen (vgl. Folgerung
5.1 aus dem WR-Skript) folgt

n − 1

σ2
S2

n ∼ χ2
n−1 .

Lemma 3.3.2
Falls X ∼ N(µ, σ2), X1, . . . , Xn unabhängige identisch verteilte Zufallsvariablen, Xi

d
= X, dann

sind X̄n und S2
n unabhängig.

Dieses Lemma wird unter Anderem gebraucht, um folgendes Ergebnis zu beweisen:

Satz 3.3.6
Unter den Voraussetzungen von Lemma 3.3.2 gilt

√
n(X̄n − µ)

Sn
∼ tn−1 .
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Beweis von Lemma 3.3.2 Es folgt aus Lemma 2.2.1, dass

X̄n =
1

n

n∑

i=1

X ′
i + µ und S2

n =
1

n − 1

n∑

i=1

(X ′
i − X̄ ′

n)2

für X ′
i = Xi − µ, i = 1, . . . , n. Somit kann wegen des Satzes 3.2.5 o.B.d.A. µ = 0 und σ2 = 1

angenommen werden. Um die Unabhängigkeit von X̄n und S2
n zu zeigen, stellen wir S2

n in
alternativer Form dar:

S2
n =

1

n − 1

(
(X1 − X̄n)2 +

n∑

i=2

(Xi − X̄n)2

)
=

1

n − 1



(

n∑

i=2

(Xi − X̄n)

)2

+
n∑

i=2

(Xi − X̄n)2


 ,

weil
∑n

i=1(Xi − X̄n) = 0 nach Abschnitt 2.2.1. Somit gilt

S2
n = ϕ̃(X2 − X̄n, . . . , Xn − X̄n) ,

wobei

ϕ̃(x2, . . . , xn) =
1

n − 1



(

n∑

i=2

xi

)2

+
n∑

i=2

x2
i


 , (x2, . . . , xn) ∈ R

n−1 .

Es genügt (nach Satz 3.2.5) zu zeigen, dass der Zufallsvektor (X2−X̄n, . . . , Xn−X̄n) unabhängig
von X̄n ist. Sei X = (X1, . . . , Xn)T , Xi unabhängige identisch verteilte Zufallsvariablen mit
Xi ∼ N(0, 1) nach unserer Annahme. Dann gilt

fX(x1, . . . , xn) =
1

(2π)n/2
exp

(
−1

2

n∑

i=1

x2
i

)
, (x1, . . . , xn) ∈ R

n

für die Dichte von X. Sei ϕ = (ϕ1, . . . , ϕn) : R
n → R

n die lineare Abbildung mit




ϕ1(x) = x̄n ,

ϕ2(x) = x2 − x̄n ,
...

ϕn(x) = xn − x̄n ,

x = (x1, . . . , xn) ∈ R
n .

Um die Umkehrabbildung ϕ−1 : (y1, . . . , yn) 7→ (x1, . . . , xn) zu finden, setzen wir yi = ϕi(x),
i = 1, . . . , n und schreiben





y1 = x̄n

y2 = x2 − x̄n = x2 − y1

...

yn = xn − y1

, woraus





x2 = y1 + y2

...

xn = y1 + yn

x2 + . . . + xn = (n − 1)y1 + y2 + . . . + yn

x1 + . . . + xn = ny1 = x1 + (n − 1)y1 + y2 + . . . + yn

folgt und somit x1 = y1 −∑n
i=2 yi. Es gilt insgesamt





ϕ−1
1 (y) = y1 −∑n

i=2 yi ,

ϕ−1
2 (y) = y1 + y2 ,

...

ϕ−1
n (y) = y1 + yn ,

y = (y1, . . . , yn)T ∈ R
n .
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Um den Dichtetransformationssatz 3.2.6 für ϕ(X) zu verwenden, brauchen wir die Determinante
der Jacobi-Matrix

J = det

(
∂ϕ−1

i

∂yj

)

i,j=1,...,n

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣




1 −1 −1 −1 . . . −1
1 1 0 0 . . . 0
1 0 1 0 . . . 0
...

...
. . .

. . .
. . .

...
1 0 . . . 0 1 0
1 0 . . . . . . . . 0 1




∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 1 · 1 − (−1) · 1 + (−1) · (−1) − (−1) · 1 + . . . = 1 + . . . + 1︸ ︷︷ ︸
n

= n .

Somit gilt für die Dichte von Y = ϕ(X) = (X̄n, X2 − X̄n, . . . , Xn − X̄n)

fϕ(Y )(y1, . . . , yn) = fX(ϕ−1(y)) · |J | =
n

(2π)n/2
exp



−1

2

(
y1 −

n∑

i=2

yi

)2

− 1

2

n∑

i=2

(y1 + yi)
2





=
n

(2π)n/2
exp



−1

2


y2

1 − 2y1

n∑

i=2

yi +

(
n∑

i=2

yi

)2

+
n∑

i=2

y2
i + 2y1

n∑

i=2

yi + (n − 1)y2
1







=
n

(2π)n/2
exp



−1

2


ny2

1 +

(
n∑

i=2

yi

)2

+
n∑

i=2

y2
i







=
(

n

2π

)1/2

exp
{

−1

2
ny2

1

}

︸ ︷︷ ︸
=fϕ1(X)(y1)

·
(

n

(2π)n−1

)1/2

exp



−1

2




n∑

i=2

y2
i +

(
n∑

i=2

yi

)2






︸ ︷︷ ︸
f(ϕ2(X),...,ϕn(X))(y2,...,yn)

,

woraus die Unabhängigkeit von

ϕ1(X) = X̄n ∼ N

(
µ,

σ2

n

)
=

µ=0, σ2=1
N

(
0,

1

n

)

und
(ϕ2(X), . . . , ϕn(X)) = (X2 − X̄n, . . . , Xn − X̄n)

folgt. Somit sind auch X̄n und S2
n = ϕ̃(X2 − X̄n, . . . , Xn − X̄n) unabhängig.

Beweis des Satzes 3.3.6 Aus den Sätzen 3.3.1, 4) und 3.3.5 folgt

X̄n ∼ N

(
µ,

σ2

n

)
und

(n − 1)S2
n

σ2
∼ χ2

n−1 ,

also

Y1 =
√

n
X̄n − µ

σ
∼ N(0, 1) und Y2 =

(n − 1)S2
n

σ2
∼ χ2

n−1 .

Nach dem Lemma 3.3.2 und Satz 3.2.5 sind Y1 und Y2 unabhängig. Dann gilt

T =
Y1√

Y2
n−1

∼ tn−1
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nach der Definition einer t-Verteilung, wobei

T =

√
n X̄n−µ

σ√
(n−1)S2

n
σ2(n−1)

=
√

n
X̄n − µ

Sn
.

Somit gilt
√

n
X̄n − µ

Sn
∼ tn−1 .

Bemerkung 3.3.4
Mit Hilfe des Satzes 3.3.6 kann folgendes Konfidenzintervall für den Erwartungswert µ einer
normalverteilten Stichprobe (X1, . . . , Xn) bei unbekannter Varianz σ2 (Xi ∼ N(µ, σ2) , i =
1, . . . , n) konstruiert werden:

P

(
µ ∈

[
X̄n − tn−1,1−α/2√

n
Sn , X̄n +

tn−1,1−α/2√
n

Sn

])
= 1 − α

für α ∈ (0, 1), denn

P

(
√

n
X̄n − µ

Sn
∈
[

tn−1,α/2︸ ︷︷ ︸
=−tn−1,1−α/2 wg. Sym. t-Vert.

, tn−1,1−α/2

])
= Ftn−1(tn−1,1−α/2) − Ftn−1(tn−1,α/2)

= 1 − α

2
− α

2
= 1 − α ,

(3.3.2)

wobei tn−1,α das α-Quantil der tn−1-Verteilung darstellt. Der Rest folgt aus (3.3.2) durch das
Auflösen bzgl. µ.

3.3.4 Eigenschaften der Ordnungsstatistiken

In Abschnitt 2.2.2 haben wir bereits die Ordnungsstatistiken x(1), . . . , x(n) einer konkreten
Stichprobe (x1, . . . , xn) betrachtet. Wenn wir nun auf der Modellebene arbeiten, also eine Zu-
fallsstichprobe (X1, . . . , Xn) von unabhängigen identisch verteilten Zufallsvariablen Xi mit Ver-
teilungsfunktion F (x) haben, welche Eigenschaften haben dann ihre Ordnungsstatistiken

X(1), . . . , X(n) ?

Satz 3.3.7

1. Die Verteilungsfunktion der Ordnungsstatistik X(i) , i = 1, . . . , n ist gegeben durch

FX(i)
(x) =

n∑

k=i

(
n

k

)
F k(x)(1 − F (x))n−k , x ∈ R . (3.3.3)

2. Falls Xi eine diskrete Verteilung mit Wertebereich E = {. . . , aj−1, aj , aj+1, . . .} haben,
i = 1, . . . , n, ai < aj für i < j, dann gilt für die Zähldichte von X(i), i = 1, . . . , n:

P(X(i) = aj) =
n∑

k=i

(
n

k

)(
F k(aj)

(
1 − F (aj)

)n−k − F k(aj−1)
(
1 − F (aj−1)

)n−k
)

,
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wobei

F (aj) =
∑

ak∈E, k≤j

P(Xi = ak) .

3. Falls Xi absolut stetig verteilt sind mit Dichte f , die stückweise stetig ist, dann ist auch
X(i), i = 1, . . . , n absolut stetig verteilt mit der Dichte

fX(i)
(x) =

n!

(i − 1)!(n − i)!
f(x)F i−1(x)(1 − F (x))n−i , x ∈ R .

Beweis

1. Führen wir die Zufallsvariable

Y = #{i : Xi ≤ x} =
n∑

i=1

I(Xi ≤ x) , x ∈ R

ein. Da X1, . . . , Xn unabhängig identisch verteilt mit Verteilungsfunktion F sind, gilt
Y ∼ Bin(n, F (x)). Weiterhin gilt

FX(i)
(x) = P(X(i) ≤ x) = P(Y ≥ i) =

n∑

k=i

(
n

k

)
F k(x)

(
1 − F (x)

)n−k
, x ∈ R .

2. folgt aus 1) durch

P(X(i) = aj) = P(aj−1 < X(i) ≤ aj) = FX(i)
(aj) − FX(i)

(aj−1) ∀j, i .

3. Beweisen Sie 3) als Übungsaufgabe.

Bemerkung 3.3.5

1. Für i = 1 und i = n sieht die Formel (3.3.3) besonders einfach aus:

FX(1)
(x) = 1 − (1 − F (x))n , x ∈ R

FX(n)
(x) = F n(x) , x ∈ R .

Diese Formeln lassen sich auch direkt herleiten:

FX(1)
(x) = P( min

i=1,...,n
Xi ≤ x) = 1 − P( min

i=1,...,n
Xi > x) = 1 − P(Xi ≥ x , ∀i = 1, . . . , n)

=
Xi uiv

1 −
n∏

i=1

P(Xi > x) = 1 − (1 − F (x))n ,

FX(n)
(x) = P( max

i=1,...,n
Xi ≤ x) = P(Xi ≤ x , ∀i = 1, . . . , n)

=
Xi uiv

n∏

i=1

P(Xi ≤ x) = F n(x) , x ∈ R .
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2. Falls Xi absolut stetig verteilt sind mit einer stückweise stetigen Dichte f , so lassen sich
Formeln für die gemeinsame Dichte der Verteilung von (X(i1), . . . , X(ik)) , i ≤ k ≤ n
herleiten. Insbesondere gilt für k = n

f(X(1),...,X(n))(x1, . . . , xn) =

{
n! · f(x1) · . . . · f(xn) , falls − ∞ < x1 < . . . < xn < ∞ ,

0 , sonst.

Übungsaufgabe 3.3.1
Zeigen Sie für X1, . . . , Xn unabhängig identisch verteilt, Xi ∼ U [0, θ], θ > 0, i = 1, . . . , n, dass

1. die Dichte von X(i) gleich

fX(i)
(x) =





n!
(i−1)!(n−i)!θ

−nxi−1(θ − x)n−i , x ∈ (0, θ)

0 , sonst

und

2.

EXk
(i) =

θkn!(i + k − 1)!

(n + k)!(i − 1)!
, k ∈ N , i = 1, . . . , n

sind. Insbesondere gilt EX(i) = i
n+1θ und Var X(i) = i(n−i+1)θ2

(n+1)2(n+2)
.

3.3.5 Empirische Verteilungsfunktion

Im Folgenden betrachten wir die statistischen Eigenschaften der in Abschnitt 2.1.2 eingeführten

empirischen Verteilungsfunktion F̂n(x) einer Zufallsstichprobe (X1, . . . , Xn), wobei Xi
d
= X

unabhängige identisch verteilte Zufallsvariablen mit Verteilungsfunktion F (·) sind.

Satz 3.3.8
Es gilt

1. nF̂n(x) ∼ Bin(n, F (x)) , x ∈ R.

2. F̂n(x) ist ein erwartungstreuer Schätzer für F (x), x ∈ R mit

Var F̂n(x) =
F (x)(1 − F (x))

n
.

3. F̂n(x) ist stark konsistent.

4. F̂n(x) ist asymptotisch normalverteilt:

√
n

F̂n(x) − F (x)√
F (x)(1 − F (x))

d−→ Y ∼ N(0, 1) , ∀x : F (x) ∈ (0, 1) .

Beweis 1. folgt aus der Darstellung

F̂n(x) =
1

n

n∑

i=1

I(Xi ≤ x) , x ∈ R ,
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weil I(Xi ≤ x) ∼ Bernoulli(F (x)) , ∀i = 1, . . . , n. Somit ist

n∑

i=1

I(Xi ≤ x) ∼ Bin(n, F (x)) .

2. Es folgt aus 1) {
E(nF̂n(x)) = nF (x) , x ∈ R ,

Var(nF̂n(x)) = nF (x) · (1 − F (x)) , x ∈ R ,

woraus EF̂n(x) = F (x) und Var F̂n(x) = F (x)(1 − F (x))/n folgen.

3. Da Yi = I(Xi ≤ x), i = 1, . . . , n, x ∈ R unabhängige identisch verteilte Zufallsvariablen
sind, gilt nach dem starken Gesetz der großen Zahlen

F̂n(x) =
1

n

n∑

i=1

Yi
f.s.−→

n→∞
EYi = F (x) .

4. folgt aus der Anwendung des zentralen Grenzwertsatzes auf die oben genannte Folge
{Yi}i∈N.

In Satz 3.3.8, 3) wird behauptet, dass

F̂n(x)
f.s.−→

n→∞
F (x) , ∀x ∈ R .

Der nachfolgende Satz von Gliwenko-Cantelli behauptet, dass diese Konvergenz gleichmäßig in
x ∈ R stattfindet. Um diesen Satz formulieren zu können, betrachten wir den gleichmäßigen
Abstand zwischen F̂n und F

Dn = sup
x∈R

|F̂n(x) − F (x)| .

Dieser Abstand ist eine Zufallsvariable, die auch Kolmogorow-Abstand genannt wird. Er gibt
den maximalen Fehler an, den man bei der Schätzung von F (x) durch F̂n(x) macht.

Übungsaufgabe 3.3.2
Zeigen Sie, dass

Dn = max
i∈{1,...,n}

max
{

F
(
X(i) − 0

)
− i − 1

n
,

i

n
− F

(
X(i)

)}
. (3.3.4)

Beachten Sie dabei die Tatsache, dass F̂n(x) eine Treppenfunktion mit Sprungstellen X(i),
i = 1, . . . , n ist.

Satz 3.3.9 (Gliwenko-Cantelli):

Es gilt Dn
f.s.−→

n→∞ 0.

Beweis Für alle m ∈ N wähle beliebige Zahlen −∞ = z0 < z1 < . . . < zm−1 < zm = ∞. Dann
gilt

Dn = sup
z∈R

|F̂n(z) − F (z)| = sup
j=0,...,m−1

sup
z∈[zj ,zj+1)

|F̂n(z) − F (z)| .
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Zeigen wir, dass ∀m ∈ N z0, . . . , zm existieren, für die gilt

F (zj+1 − 0) − F (zj) ≤ ε =
1

m
. (3.3.5)

Falls F stetig ist, genügt es, zj = F −1(j/m) , j = 1 . . . m − 1 gleichzusetzen. Im allgemeinen
Fall existieren n < m/2 Punkte xj mit der Eigenschaft

F (xj) − F (xj − 0) > 2ε = 2/m

(weil n · 2ε ≤ 1 sein muss) und k + 1 Punkte yj zwischen diesen Punkten xj mit Eigenschaft
(3.3.5), wobei für k gilt:

n · 2ε + (k + 1)ε ≤ 1 =⇒ 2n + k + 1 ≤ m =⇒ k ≤ m − 2n − 1 .

Setzen wir {zj} = {xj} ∪ {yj}. Für alle z ∈ [zj , zj+1) gilt

F̂n(z) − F (z) ≤ F̂n(zj+1 − 0) − F (zj) ≤ F̂n(zj+1 − 0) − F (zj+1 − 0) + ε ,

weil aus (3.3.5) folgt, dass −F (zj) ≤ ε − F (zj+1 − 0) , ∀j.
Genauso gilt

F̂n(z) − F (z) ≥ F̂n(zj) − F (zj+1 − 0) ≥ F̂n(zj) − F (zj) − ε ,

weil aus (3.3.5) für alle j folgt, dass −F (zj+1 − 0) ≥ −F (zj) − ε gilt. Für alle m ∈ N , j ∈
{0, 1, . . . , m} sei

Am,j = {ω ∈ Ω : lim
n→∞

F̂n(zj) = F (zj)} ,

A′
m,j = {ω ∈ Ω : lim

n→∞
F̂n(zj − 0) = F (zj − 0)} .

Nach dem Satz 3.3.8, 3) gilt P(Am,j) = 1. Um P(A′
m,j) = 1 zu zeigen, kann man die Verallge-

meinerung von Aussage 3.3.8, 3) auf das Maß

F̂n(B) :=
1

n

n∑

i=1

I(Xi ∈ B) , B ∈ BR

benutzen: nach dem starken Gesetz der großen Zahlen gilt nämlich

F̂n(B)
f.s.−→

n→∞
F (B) = P(X ∈ B) , B ∈ BR .

Da (−∞, zj) ∈ BR ∀j, ist P(A′
m,j) = 1 bewiesen ∀m ∀j. Für

A′
m =

m⋂

j=0

(
Am,j ∩ A′

m,j

)

gilt P(A′
m) = 1 ∀m, weil

P(A′
m) = 1 − P(Ā′

m) = 1 − P




m⋃

j=0

(
Ām,j ∪ Ā′

m,j

)

 ≥ 1 −

m∑

j=0

(
P(Ām,j)︸ ︷︷ ︸

=0

+P(Ā′
m,j)

︸ ︷︷ ︸
=0

)
= 1 .
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Weiterhin: für ε = 1/m ∀ω ∈ A′
m ∃n(ω, m) : ∀n > n(ω, m) ∀ j ∈ {0, . . . , m − 1} ∀z ∈ [zj , zj+1)

F̂n(z) − F (z) ≤ F̂n(zj+1 − 0) − F (zj+1 − 0)︸ ︷︷ ︸
<ε aus A′

m,j

+ε < 2ε ,

F̂n(z) − F (z) ≥ F̂n(zj) − F (zj)︸ ︷︷ ︸
>−ε aus Am,j

−ε > −2ε ,





=⇒ |F̂n(z) − F (z)| < 2ε .

=⇒ Dn = sup
j=0,...,m−1

sup
z∈[zj ,zj+1)

|F̂n(z) − F (z)| < 2ε .

Nun wählen wir ein beliebiges m ∈ N und betrachten A′ =
⋂∞

m=1 A′
m. Es folgt, dass P(A′) = 1

und ∀ ω ∈ A′ ∃n0 : ∀n ≥ n0

Dn < 2ε =
2

m
∀m ∈ N =⇒ Dn

f.s.−→
n→∞

0 .

Satz 3.3.10 (Ungleichung von Dvoretzky-Kiefer-Wolfowitz):
Seien X1, . . . Xn unabhängige identisch verteilte Zufallsvariablen mit Verteilungsfunktion F .
Für alle ε > 0 gilt

P(Dn > ε) ≤ 2e−2nε2
.

(ohne Beweis)

Folgerung 3.3.3 (Konfidenzband für F ):
Führen wir Statistiken

L(x) = max{F̂n(x) − εn, 0} und U(x) = min{F̂n(x) + εn, 1} , εn =

√
1

2n
log

(
2

α

)
, α ∈ (0, 1)

ein. Dann gilt
P
(
L(x) ≤ F (x) ≤ U(x) ∀ x ∈ R

) ≥ 1 − α (3.3.6)

Beweis Beweisen Sie dieses Korollar als Übungsaufgabe!

Bemerkung 3.3.6
Das simultane Konfidenzintervall {L(x) ≤ F (x) ≤ U(x) , x ∈ R} aus (3.3.6) heißt Konfidenz-
band für F zum Konfidenzniveau 1 − α (vgl. Abb. 3.5).

Falls die Verteilungsfunktion F stetig ist, kann man zeigen, dass die Zufallsvariable Dn nicht
von F abhängt, also verteilungsfrei ist.

Satz 3.3.11
Für jede stetige Verteilungsfunktion F gilt

Dn
d
= sup

y∈[0,1]

∣∣∣Ĝn(y) − y
∣∣∣ , wobei Ĝn(y) =

1

n

n∑

i=1

I (Yi ≤ y) , y ∈ R

die empirische Verteilungsfunktion der Zufallsstichprobe (Y1, . . . , Yn) mit unabhängigen iden-
tisch verteilten Zufallsvariablen Yi ∼ U [0, 1] , i = 1, . . . , n ist.
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0

y = L(x)

y = U(x) y = F (x)

x

y

Abb. 3.5: Konfidenzband für F .

Beweis Zunächst definieren wir einen sogenannten Konstanzbereich (a, b] ⊂ R einer Vertei-
lungsfunktion F als maximales Intervall mit der Eigenschaft F (a) = F (b). Sei B die Vereinigung
aller Konstanzbereiche von F . Auf BC ist F eine monoton steigende eineindeutige Funktion.
Damit folgt die Existenz ihrer Inversen F −1 : (0, 1) → BC . Gleichzeitig gilt

Dn = sup
x∈BC

|F̂n(x) − F (x)| .

Führen wir Yi = F (Xi) , i = 1, . . . , n ein. Yi sind unabhängig identisch verteilt und Yi ∼
U [0, 1], denn

P(Yi ≤ y) = P(F (Xi) ≤ y) = P(Xi ≤ F −1(y)) = F (F −1(y)) = y , y ∈ (0, 1) .

Somit gilt auch

F̂n(x) =
1

n

n∑

i=1

I(Xi ≤ x) =
1

n

n∑

i=1

I
(

F (Xi)︸ ︷︷ ︸
Yi

≤ F (x)
)

= Ĝn(F (x)) , x ∈ BC .

Hieraus folgt

Dn = sup
x∈BC

∣∣F̂n(x) − F (x)
∣∣ = sup

x∈BC

∣∣Ĝn(F (x)) − F (x)
∣∣ = sup

x∈R

∣∣Ĝn(F (x)) − F (x)
∣∣

= sup
y∈[0,1]

∣∣Ĝn(y) − y
∣∣ ,

wobei die letzte Gleichheit die Stetigkeit von F ausnützt.
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Folgerung 3.3.4
Falls F eine stetige Verteilungsfunktion ist, dann gilt

Dn
d
= max

i=1,...,n
max

{
Y(i) − i − 1

n
,

i

n
− Y(i)

}
,

wobei Y(1), . . . , Y(n) die Ordnungsstatistiken der auf [0, 1] gleichverteilten Stichprobenvariablen
Y1, . . . , Yn sind.

Beweis Benutze dazu die Darstellung (3.3.4), den Satz 3.3.11 sowie die Tatsache, dass

F (x) = x , x ∈ [0, 1]

für die Verteilungsfunktion der U [0, 1]-Verteilung ist.

Folgende Ergebnisse werden ohne Beweis angegeben:

Bemerkung 3.3.7

1. Für die Zwecke des statistischen Testens (vgl. den Anpassungstest von Kolmogorow-
Smirnow, Bemerkung 3.3.8, 3)) ist es notwendig, die Quantile der Verteilung von Dn zu
nennen. Auf Grund der Komplexität der Verteilung von Dn ist es jedoch unmöglich, sie
explizit anzugeben. Mit Hilfe des Satzes 3.3.11 ist es möglich, diese Quantile durch Monte-
Carlo-Simulationen numerisch zu berechnen. Dazu simuliert man mehrere Stichproben
(Y1, . . . , Yn) von U [0, 1]-verteilten Pseudozufallszahlen, bildet Ĝn(x) und berechnet Dn

nach Folgerung 3.3.4.

2. Für stetige Verteilungsfunktionen F kann folgende Integraldarstellung von Verteilungs-
funktion von Dn bewiesen werden:

P

(
Dn ≤ x +

1

2n

)
=





0 , x ≤ 0 ,
∫ 1

2n
+x

1
2n

−x

∫ 3
2n

+x
3

2n
−x

. . .
∫ 2n−1

2n
+x

2n−1
2n

−x
g(y1, . . . , yn) dyn . . . dy1, 0 < x < 2n−1

2n ,

1 , x ≥ 2n−1
2n .

wobei

g(y1, . . . , yn) =

{
n! , 0 < y1 < . . . < yn < 1 ,

0 , sonst

die Dichte der Ordnungsstatistiken (Y(1), . . . , Y(n)) von U [0, 1]-verteilten Stichprobenva-
riablen (Y1, . . . , Yn) sind.

Satz 3.3.12 (Kolmogorow):
Falls die Verteilungsfunktion F der unabhängigen und identisch verteilten Stichprobenvariablen
Xi, i = 1, . . . , n stetig ist, dann gilt

√
nDn

d−→
n→∞

Y ,

wobei Y eine Zufallsvariable mit der Verteilungsfunktion

K(x) =

{∑∞
k=−∞(−1)ke−2k2x2

= 1 + 2
∑∞

k=1(−1)ke−2k2x2
, x > 0 ,

0 , sonst

(Kolmogorow-Verteilung) ist.
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Bemerkung 3.3.8

1. Die Verteilung von Kolmogorow ist die Verteilung des Maximums einer Brownschen
Brücke, denn es gilt

Y
d
= sup

t∈[0,1]
|w◦(t)| ,

wobei {w◦(t) , t ∈ [0, 1]} ein stochastischer Prozess ist, der die Brownsche Brücke ge-
nannt wird. Er wird als w◦(t) = w(t)−w(1)t , t ∈ [0, 1] definiert, wobei {w(t) , t ∈ [0, 1]}
die Brownsche Bewegung ist (für die unter anderem w(t) ∼ N(0, t) gilt). Der Name
„Brücke“ ist der Tatsache w◦(0) = w◦(1) = 0 zu verdanken.

2. Aus Satz 3.3.12 folgt
P(

√
nDn ≤ x) ≈

n→∞ K(x) , x ∈ R .

Die daraus resultierende Näherungsformel

P(Dn ≤ x) ≈ K(x
√

n)

ist ab n > 40 praktisch brauchbar.

3. Kolmogorow-Smirnow-Anpassungstest: Mit Hilfe der Aussage des Satzes 3.3.12 ist es mög-
lich, folgenden asymptotischen Anpassungstest von Komogorow-Smirnow zu entwickeln.
Es wird die Haupthypothese H0 : F = F0 (die unbekannte Verteilungsfunktion der Stich-
probenvariablen X1, . . . , Xn ist gleich F0) gegen die Alternative H1 : F /= F0 getestet.
Dabei wird H0 verworfen, falls

√
nDn /∈ [kα/2 , k1−α/2]

ist, wobei
Dn = sup

x∈R

∣∣F̂n(x) − F0(x)
∣∣

und kα das α-Quantil der Kolmogorow-Verteilung ist. Somit ist die Wahrscheinlichkeit, die
richtige Hypothese H0 zu verwerfen (Wahrscheinlichkeit des Fehlers 1. Art) asymptotisch
gleich

P

(√
nDn /∈ [kα/2 , k1−α/2] | H0

)
−→

n→∞
1−K(k1−α/2)+K(kα/2) = 1−(1−α/2)+α/2 = α .

In der Praxis wird α klein gewählt, z.B. α ≈ 0, 05. Somit ist im Fall, dass H0 stimmt, die
Wahrscheinlichkeit einer Fehlentscheidung in Folge des Testens klein.

Dieser Test ist nur ein Beispiel dessen, wie der Satz von Kolmogorow in der statistischen
Testtheorie verwendet wird. Die allgemeine Philosophie des Testens wird in Statistik II
erläutert.

Mit Hilfe von F̂n lassen sich sehr viele Schätzer durch die sogenannte Plug-in-Methode kon-
struieren. Dies werden wir jetzt näher erläutern: Sei M = {Menge aller Verteilungsfunktionen}.

Definition 3.3.9
Sei ein Parameter θ der Verteilungsfunktion F als Funktional T : M → R von F gegeben:
θ = T (F ). Dann heißt θ̂ = T (F̂n) der Plug-in-Schätzer für θ.
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Definition 3.3.10
Sei F eine beliebige Verteilungsfunktion. Das Funktional T : M → R heißt linear, falls

T (aF1 + bF2) = aT (F1) + bT (F2) ∀a, b ∈ R , F1, F2 ∈ M .

Betrachten wir eine spezielle Klasse der linearen Funktionale

T (F ) =
∫

R

r(x) dF (x) ,

wobei r(x) eine beliebige stetige Funktion ist. Beispiele für solche T sind

EXk =
∫

R

xk dF (x) , k ∈ N .

Lemma 3.3.3
Der Plug-in Schätzer für θ =

∫
R

r(x) dF (x) ist durch

θ̂ =
∫

R

r(x) dF̂n(x) =
1

n

n∑

i=1

r(xi)

gegeben.

Übungsaufgabe 3.3.3
Beweisen Sie Lemma 3.3.3!

Beispiel 3.3.1 (Plug-in-Schätzer):

1. X̄n ist ein Plug-in Schätzer für den Erwartungswert µ.

2. Plug-in Schätzer für σ2 = Var X: Es gilt Var X = EX2 − (EX)2 und somit folgt

σ̂2 =
1

n

n∑

i=1

X2
i −

(
1

n

n∑

i=1

Xi

)2

=
1

n

n∑

i=1

(Xi − X̄n)2 =
n − 1

n
S2

n .

3. Schätzer für Schiefe und Wölbung γ̂1 und γ̂2 (vgl. Abschnitt 2.2.4) sind Plug-in Schätzer:
Da der Koeffizient der Schiefe als

γ1 = E

(
X − µ

σ

)3

definiert ist, wobei µ = EX, σ2 = Var X, folgt

γ̂1
µ 7→X̄n=
σ2 7→σ̂2

1
n

∑n
i=1(Xi − X̄n)3

(σ̂2
n)3/2

=
1
n

∑n
i=1(Xi − X̄n)3

(
1
n

∑n
i=1(Xi − X̄n)2

)3/2
.

Die Konstruktion von γ̂2 erfolgt analog.

4. Der empirische Korrelationskoeffizient ̺XY ist ein Plug-in Schätzer:

ˆ̺XY =
S2

XY√
S2

XX

√
S2

Y Y

=

∑n
i=1(Xi − X̄n)(Yi − Ȳn)√∑n

i=1(Xi − X̄n)2
∑n

i=1(Yi − Ȳn)2
;
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in der Tat ist

̺XY =
E(X − EX)(Y − EY )√

Var X · Var Y
=

E(XY ) − EX · EY√
(EX2 − (EX)2)(EY 2 − (EY )2)

und somit gilt für die linearen Funktionale

T1(F ) =
∫

x dF (x) , T2(F ) =
∫

x2 dF (x) , T12(F, G) =
∫

xy dF (x)dG(y) ,

̺XY =
T12(FX , FY ) − T1(FX) · T1(FY )√

(T2(FX) − (T1(FX))2) (T2(FY ) − (T1(FY ))2)
.

ˆ̺XY bekommt man, in dem man T1, T2 und T12 durch Plug-in Schätzer ersetzt:

ˆ̺XY =
T12

(
F̂n,X , F̂n,Y

)
− T1

(
F̂n,X · T1(F̂n,Y )

)

√(
T2(F̂n,X) −

(
T1(F̂n,X)

)2
)(

T2(F̂n,Y ) −
(
T1(F̂n,Y )

)2
) .

3.4 Methoden zur Gewinnung von Punktschätzern

Sei (X1, . . . , Xn) eine Stichprobe von unabhängigen identisch verteilten Zufallsvariablen Xi mit
Verteilungsfunktion F ∈ {Fθ : θ ∈ Θ}, Θ ⊂ R

m (Parametrisches Modell). Sei die Parametrisie-
rung θ 7→ Fθ unterscheidbar, d.h. Fθ /= Fθ′ ⇐⇒ θ /= θ′.

Zielstellung: Konstruiere einen Schätzer θ̂(X1, . . . , Xn) für θ = (θ1, . . . , θm).

3.4.1 Momentenschätzer

Aus der Wahrscheinlichkeitsrechung (Satz 4.8) folgt, dass unter gewissen Voraussetzungen (z.B.
Gleichverteilung auf einem kompakten Intervall) an die Verteilung F diese Verteilung aus der
Kenntnis von Momenten EXk , k ∈ N wiedergewonnen werden kann. Auf dieser Idee der
Schätzung von F aus den Momenten basiert die von Karl Pearson am Ende des XIX. Jh.
vorgeschlagene Momentenmethode.

Annahme: Es existiert ein r ≥ m, so dass Eθ|Xi|r < ∞. Seien die Momente EθXk
i = gk(θ),

k = 1, . . . , r als Funktionen des Parametervektors θ = (θ1, . . . , θm) ∈ Θ gegeben.
Momenten-Gleichungssystem: µ̂k = gk(θ) , k = 1, . . . , r, wobei µ̂k = 1

n

∑n
k=1 Xk

i die k-ten
empirischen Momente sind.

Definition 3.4.1
Falls das obige Gleichungssystem eindeutig lösbar bzgl. θ ist, so heißt die Lösung θ̂(X1, . . . , Xn)
Momentenschätzer (M-Schätzer) von θ.

Lemma 3.4.1
Falls die Funktion g = (g1, . . . , gr) : Θ → C ⊂ R

r eineindeutig und ihre Inverse g−1 : C → Θ
stetig ist, dann ist der M-Schätzer θ̂(X1, . . . , Xn) von θ stark konsistent.

Beweis Es gilt θ̂(X1, . . . , Xn) = g−1(µ̂1, . . . , µ̂r)
f.s.−→

n→∞
θ, weil µ̂k

f.s.−→
n→∞

gk(θ) , k = 1, . . . , r

(starke Konsistenz der empirischen Momente) und g−1 stetig.

Bemerkung 3.4.1



3 Punktschätzer 73

1. Unter gewissen Regularitätsbedingungen an Fθ ist der M-Schätzer θ̂(X1, . . . , Xn) für θ
asymptotisch normalverteilt:

√
n
(
θ̂(X1, . . . , Xn) − θ

)
d−→

n→∞
N(0, Σ) ,

wobei N(0, Σ) die multivariate Normalverteilung mit Kovarianzmatrix

Σ = GE(Y Y T )GT ist mit Y = (X, X2, . . . , Xr) , X
d
= Xi ,

und

G =

(
∂g−1

i

∂θj

)

i=1...r ,
j=1...m

.

2. Andere Eigenschaften gelten für M-Schätzer im Allgemeinen nicht. Zum Beispiel sind
nicht alle M-Schätzer erwartungstreu (vgl. Beispiel 3.4.1, 1)).

3. Manchmal sind r > m Gleichungen im Momentensystem notwendig, um einen M-Schätzer
zu bekommen. Dies ist zum Beispiel dann der Fall, wenn manche Funktionen gi = const
sind, d.h. sie enthalten keine Information über θ (vgl. Beispiel 3.4.1, 2)).

Beispiel 3.4.1

1. Normalverteilung: Xi
d
= X , i = 1, . . . , n , X ∼ N(µ, σ2); Gesucht ist ein M-Schätzer

für µ und σ2, also θ = (µ, σ2). Es gilt

g1(µ, σ2) = EθX = µ ,

g2(µ, σ2) = EθX2 = Varθ X + (EθX)2 = σ2 + µ2 .

Somit ergibt sich das Gleichungssystem

{
1
n

∑n
i=1 Xi = µ ,

1
n

∑n
i=1 X2

i = µ2 + σ2 .

Damit folgt

µ̂ =
1

n

n∑

i=1

Xi = X̄n ,

σ̂2 =
1

n

n∑

i=1

X2
i − µ̂2 =

1

n

n∑

i=1

X2
i − X̄2

n =
1

n

n∑

i=1

(
X2

i − X̄2
n

)

=
1

n

n∑

i=1

(
Xi − X̄n

)2
=

n − 1

n
S2

n .

Das heißt, das die M-Schätzer µ̂ = X̄n , σ̂2 = n−1
n S2

n sind. Dabei ist σ̂2 nicht erwar-
tungstreu:

Eθσ̂2 =
n − 1

n
· EθS2

n =
n − 1

n
σ2 .
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2. Gleichverteilung: Xi
d
= X , i = 1, . . . , n , X ∼ U [−θ, θ] , θ > 0. Gesucht ist ein

Momentenschätzer für θ. Es gilt

g1(θ) = EθX = 0 ,

g2(θ) = EθX2 = Varθ X =
(θ − (−θ))2

12
=

(2θ)2

12
=

θ2

3
.

Damit ergibt sich das Gleichungssystem

{
1
n

∑n
i=1 Xi = 0 unbrauchbar ,

1
n

∑n
i=1 X2

i = θ2

3 .

Es folgt, dass θ̂ =
√

3
n

∑n
i=1 X2

i der Momentenschätzer für θ ist. Wir haben somit 2
Gleichungen für die Schätzung eines einzigen Parameters θ benötigt, d.h. r = 2 > m = 1.

3.4.2 Maximum-Likelihood-Schätzer

Diese wurden von Carl Friedrich Gauss (Anfang des XIX. Jh.) und Sir Ronald Fisher (1922)
entdeckt. Seien entweder alle Verteilungen aus der parametrischen Familie {Fθ : θ ∈ Θ} diskret
oder alle absolut stetig.

Definition 3.4.2

1. Falls die Stichprobenvariablen Xi, i = 1, . . . , n absolut stetig verteilt mit Dichte fθ(x)
sind, dann heißt

L(x1, . . . , xn, θ) =
n∏

i=1

fθ(xi) , (x1, . . . , xn) ∈ R
n , θ ∈ Θ

die Likelihood-Funktion der Stichprobe (x1, . . . , xn).

2. Falls die Stichprobenvariablen Xi, i = 1, . . . , n diskret verteilt mit Zähldichte pθ(x) =
Pθ(Xi = x) , x ∈ C sind (C ist der Wertebereich von X), dann heißt

L(x1, . . . , xn, θ) =
n∏

i=1

pθ(xi) , (x1, . . . , xn) ∈ Cn , θ ∈ Θ

die Likelihood-Funktion der Stichprobe (x1, . . . , xn).

Nach dieser Definition gilt im

• diskreten Fall L(x1, . . . , xn, θ) = Pθ(X1 = x1, . . . , Xn = xn)

• absolut stetigen Fall

L(x1, . . . , xn, θ)∆x1 · . . . · ∆xn = f(X1,...,Xn),θ(x1, . . . , xn)∆x1 · . . . · ∆xn

≈ Pθ(X1 ∈ [x1 , x1 + ∆x1], . . . , Xn ∈ [xn , xn + ∆xn]) , ∆xi → 0 , i = 1, . . . , n .
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Nun wird ein Schätzer für θ so gewählt, dass die Wahrscheinlichkeit

Pθ(X1 = x1, . . . , Xn = xn) bzw. Pθ(Xi ∈ [xi, xi + ∆xi] , i = 1, . . . , n)

maximal wird. =⇒ Maximum-Likelihoodmethode:

Definition 3.4.3
Sei das Maximierungsproblem L(x1, . . . , xn, θ) 7→ maxθ∈Θ eindeutig lösbar. Dann heißt

θ̂(x1, . . . , xn) = arg max
θ∈Θ

L(x1, . . . , xn, θ)

der Maximum-Likelihood-Schätzer von θ (ML-Schätzer).

Bemerkung 3.4.2

1. In relativ wenigen Fällen ist ein ML-Schätzer θ̂ für θ explizit auffindbar. In diesen Fällen
wird meistens der konstante Faktor von L(x1, . . . , xn, θ) weggeworfen und vom Rest der
Logarithmus gebildet:

log L(x1, . . . , xn, θ) (die sog. Loglikelihood-Funktion).

Dadurch wird
n∏

i=1

fθ(xi) bzw.
n∏

i=1

pθ(xi)

zu einer Summe

n∑

i=1

log fθ(xi) bzw.
n∑

i=1

log pθ(xi) ,

die leichter bzgl. θ zu differenzieren ist. Danach betrachtet man

∂ log L(x1, . . . , xn, θ)

∂θj
= 0 , j = 1 . . . m .

Dies ist die notwendige Bedingung eines Extremums von log L (und somit von L, weil
log ր). Falls dieses System eindeutig lösbar ist, und die Lösung eine Maximum-Stelle ist,
dann wird sie zum ML-Schätzer θ̂(X1, . . . , Xn) erklärt.

2. In den meisten praxisrelevanten Fällen sind ML-Schätzer jedoch nur numerisch auffindbar.

Beispiel 3.4.2

1. Bernoulli-Verteilung: Xi
d
= X , i = 1, . . . , n, X ∼ Bernoulli(p), für ein p ∈ [0, 1]. Da

X =

{
1 , mit Wkt. p

0 , sonst

mit Zähldichte
pθ(x) = px(1 − p)1−x , x ∈ {0, 1} ,

ist die Likelihood-Funktion der Stichprobe (X1, . . . , Xn) gegeben durch

L(x1, . . . , xn, θ) =
n∏

i=1

pxi(1 − p)1−xi = p
∑n

i=1
xi(1 − p)n−

∑n

i=1
xi def.

= h(p) .
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a) Falls
∑n

i=1 xi = 0 (⇐⇒ x1 = x2 = . . . = xn = 0), es folgt h(p) = (1−p)n → maxp∈[0,1]

bei p = 0. Dann ist der ML-Schätzer p̂(0, . . . , 0) = 0.

b) Falls
∑n

i=1 xi = n (⇐⇒ x1 = x2 = . . . = xn = 1), es folgt h(p) = pn → maxp∈[0,1]

bei p = 1. Dann ist der ML-Schätzer p̂(1, 1, . . . , 1) = 1.

c) Falls 0 <
∑n

i=1 xi < n, dann gilt

log L(x1, . . . , xn, p) = nx̄n log p + n(1 − x̄n) log(1 − p) = n · g(p) .

Da g(p) −→
p→0,1

−∞ und

∂g(p)

∂p
=

x̄n

p
+

1 − x̄n

1 − p
· (−1) =

x̄n

p
+

x̄n − 1

1 − p
= 0

⇐⇒ (1 − p)x̄n + (x̄n − 1)p = 0 =⇒ p = x̄n ,

folgt aufgrund der Stetigkeit von g, dass g genau ein Extremum arg maxp g(p) = x̄n

besitzt.

Der ML-Schätzer ist also gegeben durch p̂(X1, . . . , Xn) = X̄n.

2. Gleichverteilung: X ∼ U [0, θ] , θ > 0 , (X1, . . . , Xn) unabhängig identisch verteilt,
gesucht ist ein ML-Schätzer für θ. Es gilt

fXi(x) = 1/θ · I(x ∈ [0, θ]) , i = 1, . . . , n .

Somit ist die Likelihood-Funktion durch

L(x1, . . . , xn, θ) =

{
(1/θ)n , 0 ≤ x1, . . . , xn ≤ θ

0 , sonst

=

{
(1/θ)n , falls min{x1, . . . , xn} ≥ 0 , max{x1, . . . , xn} ≤ θ

0 , sonst

= g(θ) , θ > 0

gegeben. Damit folgt θ̂ = arg maxθ>0 g(θ) = max{x1, . . . , xn} = x(n), wodurch der ML-

0

g(θ)

θ

1
θn

Abb. 3.6: Illustration der Funktion g.

Schätzer durch θ̂(X1, . . . , Xn) = X(n) gegeben ist.

Nun wollen wir zeigen, dass ML-Schätzer unter gewissen Voraussetzungen schwach konsistent
und asymptotisch normalverteilt sind.
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Definition 3.4.4
Sei

L(x, θ) =

{
fθ(x) , im absolut stetigen Fall,

pθ(x) , im diskreten Fall

die Likelihood-Funktion von x. Für θ, θ′ ∈ Θ und X
d
= Xi, Pθ(L(X, θ′) = 0) = 0 definieren

wir die Information (Abstand) H(Pθ,Pθ′) von Kullback-Leibler im absolut stetigen Fall als

H(Pθ,Pθ′) = Eθ log L(X, θ) − Eθ′ log L(X, θ′) =
∫

R

log
L(x, θ)

L(x, θ′)
· L(x, θ) dx .

Für den Fall Pθ(L(X, θ′) = 0) > 0 setzen wir H(Pθ,Pθ′) = ∞. Im diskreten Fall betrachte statt
des Integrals die Summe über die nicht trivialen pθ(x).

Wir werden gleich zeigen, dass H(· , ·) die Eigenschaften H(Pθ,Pθ′) = 0 ⇐⇒ θ = θ′ und
H(Pθ,Pθ′) ≥ 0 ∀ θ, θ′ ∈ Θ besitzt. Es ist allerdings offensichtlich, dass H(Pθ,Pθ′) nicht sym-
metrisch bzgl. θ und θ′ ist. Somit ist H(· , ·) keine Metrik.

Lemma 3.4.2
Es gilt

1. H(Pθ,Pθ′) ist wohldefiniert und ≥ 0.

2. Falls H(Pθ,Pθ′) = 0, dann gilt θ = θ′.

Beweis Wir betrachten zum Beispiel den Fall absolut stetiger Pθ , θ ∈ Θ (diskreter Fall folgt
analog).

1. Definieren wir

f(x) =





L(x,θ)
L(x,θ′) , falls L(x, θ′) > 0 ,

1 , sonst.

Betrachten wir den Fall Pθ(L(X, θ′) = 0) = 0, so folgt Pθ(L(X, θ′) > 0) = 1. Ansonsten
ist H(Pθ,Pθ′) = ∞ > 0, also positiv und wohldefiniert. Dann folgt mit Wahrscheinlichkeit
1, dass L(x, θ) = f(x) · L(x, θ′). Sei g(x) = 1 − x + x log x , x > 0. Man kann zeigen,
dass g konvex mit g(x) ≥ 0 ist. Tatsächlich, es gilt

g′(x) = −1 + log x + 1 = log x , g′′(x) = 1/x > 0 .

Somit besitzt g genau eine Nullstelle bei x = 1, die gleichzeitig ihr Minimum ist. Betrach-
ten wir g(f(X)) , X ∼ L(x, θ′). Dann gilt

0 ≤ Eθ′g(f(X)) = 1 − Eθ′f(X) + Eθ′ (f(X) log f(X))

= 1 −
∫

L(x, θ)

L(x, θ′)
· L(x, θ′) dx +

∫
L(x, θ)

L(x, θ′)
· log

L(x, θ)

L(x, θ′)
· L(x, θ′) dx = H(Pθ,P′

θ) .

Somit gilt H(Pθ,Pθ′) ≥ 0, was zu zeigen war.

2. Falls H(Pθ,Pθ′) = 0 =⇒ Eθ′g(f(X)) = 0 , g(f(X)) ≥ 0. Somit folgt θ′-fast sicher

g(f(X)) = 0 =⇒ f(X)
θ′-f.s.
= 1, damit entweder L(x, θ′) = 0 oder L(x, θ) = L(x, θ′) für

alle x und daher Pθ = Pθ′ .
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Satz 3.4.1 (Schwache Konsistenz von ML-Schätzern):
Sei m = 1 und Θ ein offenes Intervall aus R. Sei L(x1, . . . , xn, θ) unimodal, d.h. für θ̂ ML-
Schätzer für θ gilt

{
∀ θ < θ̂(x1, . . . , xn) =⇒ L(x1, . . . , xn, θ) ist steigend

∀ θ > θ̂(x1, . . . , xn) =⇒ L(x1, . . . , xn, θ) ist fallend

(d.h. es existiert genau ein maxθ∈Θ L(x1, . . . , xn, θ)). Dann gilt θ̂(X1, . . . , Xn)
P−→

n→∞
θ.

Beweis Es ist zu zeigen, dass

Pθ

(∣∣∣θ̂(X1, . . . , Xn) − θ
∣∣∣ > ε

)
−→

n→∞
0 , ε > 0 . (3.4.1)

Wählen wir beliebiges ε > 0 : θ ± ε ∈ Θ. Dann gilt H(Pθ,Pθ±ε) > δ > 0, wegen der
Unterscheidbarkeit der Parametrisierung von Pθ und Lemma 3.4.2. Betrachten wir {|θ̂−θ| ≤ ε}.
Um (3.4.1) zu zeigen, ist es hinreichend, eine untere Schranke für Pθ(|θ̂−θ| ≤ ε) zu konstruieren,
die für n → ∞ gegen 1 konvergiert. Es gilt

{
|θ̂ − θ| < ε

} Unimod
⊇ {L(X1, . . . , Xn, θ − ε) < L(X1, . . . , Xn, θ) > L(X1, . . . , Xn, θ + ε)}

=
{

L(X1, . . . , Xn, θ)

L(X1, . . . , Xn, θ ± ε)
> 1

}
δ>0=⇒enδ>1

⊇
{

L(X1, . . . , Xn, θ)

L(X1, . . . , Xn, θ ± ε)
> enδ

}

=
{

1

n
log

L(X1, . . . , Xn, θ)

L(X1, . . . , Xn, θ ± ε)
> δ

}
= A+ ∩ A− ,

wobei

A± =
{

1

n
log

L(X1, . . . , Xn, θ)

L(X1, . . . , Xn, θ ± ε)
> δ

}
.

Somit gilt also

Pθ

(
|θ̂ − θ| < ε

)
≥ Pθ(A+ ∩ A−) = Pθ(A+) + Pθ(A−) − Pθ(A+ ∪ A−) .

Wenn wir zeigen können, dass
lim

n→∞Pθ(A±) = 1 , (3.4.2)

dann folgt daraus

1 ≥ lim
n→∞

Pθ(A+ ∪ A−) ≥ lim
n→∞

Pθ(A±) = 1 =⇒ lim
n→∞

Pθ(A+ ∪ A−) = 1

und

1 ≥ lim
n→∞

Pθ

(
|θ̂ − θ| < ε

)
≥ 1 + 1 − 1 = 1 ,

womit folgt, dass

lim
n→∞Pθ

(
|θ̂ − θ| > ε

)
= 1 − lim

n→∞Pθ

(
|θ̂ − θ| < ε

)

︸ ︷︷ ︸
=1

= 0

und somit limn→∞ P(|θ̂ − θ| > ε) ≤ limn→∞ P(|θ̂ − θ| ≥ ε) = 0 , d.h., θ̂
P−→

n→∞
θ.

Jetzt zeigen wir, dass Pθ(A+) −→
n→∞

1 (für Pθ(A−) ist es analog).
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1. Sei H(Pθ,Pθ+ε) < ∞. Sei

f(x) =





L(x, θ)

L(x, θ + ε)
, falls L(x, θ + ε) > 0 ,

1 , sonst.

Dann folgt aus Definition 3.4.4, dass Pθ(x : L(x, θ + ε) > 0) = 1. Weiter gilt

1

n
log

L(X1, . . . , Xn, θ)

L(X1, . . . , Xn, θ + ε)
=

1

n

n∑

i=1

log
L(Xi, θ)

L(Xi, θ + ε)
=

1

n

n∑

i=1

log f(Xi)

f.s.−→
n→∞ Eθ log f(X1) =

∫
L(x, θ) · log

L(x, θ)

L(x, θ + ε)
dx = H(Pθ,Pθ+ε) > δ > 0

nach dem starken Gesetz der großen Zahlen, weil log f(X1) ∈ L1(Ω, F ,P) wegen

Eθ log f(X1) = H(Pθ,Pθ+ε) < ∞ =⇒ P(A+) −→
n→∞

1 .

2. Sei H(Pθ,Pθ+ε) = ∞ und Pθ(x ∈ R : L(x, θ + ε) = 0) = 0, dann folgt

f(x)
f.s.
=

L(x, θ)

L(x, θ + ε)
.

Es gilt log min{f(X1), c} ∈ L1(Ω, F ,P) für alle c > 0. Somit folgt wie in Punkt 1:

1

n

n∑

i=1

log min{f(Xi), c} f.s.−→
n→∞

Eθ log min{f(X1), c} ∈ (0, ∞) −→
c→∞

H(Pθ,Pθ+ε) = ∞

und damit

A+ ⊃
{

1

n

n∑

i=1

log min{f(Xi), c} > δ

}

=⇒ P(A+) ≥ P

(
1

n

n∑

i=1

log min{f(Xi), c} > δ

)
−→

n→∞
1 .

3. Sei H(Pθ,Pθ+ε) = ∞ und Pθ(x ∈ R : L(x, θ + ε) = 0) = a > 0, dann folgt

Pθ

(
1

n
log

L(X1, . . . , Xn, θ)

L(X1, . . . , Xn, θ + ε)
= ∞

)
= 1 − P(

1

n
log

L(X1, . . . , Xn, θ)

L(X1, . . . , Xn, θ + ε)
< ∞)

= 1 − P

(
n⋂

i=1

{L(Xi, θ + ε) > 0}
)

Xi u.i.v.
= 1 − (1 − a)n −→

n→∞ 1

Insgesamt also P(A+) −→
n→∞

1.

Definition 3.4.5
Sei X = (X1, . . . , Xn) eine Zufallsstichprobe von unabhängigen identisch verteilten Zufallsva-
riablen Xi ∼ Fθ , θ ∈ Θ. Sei L(x, θ) die Likelihood-Funktion von Xi. Dann heißt der Ausdruck

I(θ) = Eθ

(
∂

∂θ
log L(X1, θ)

)2

, θ ∈ Θ (3.4.3)

die Fisher-Information der Stichprobe (X1, . . . , Xn).
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Es wird in Zukunft vorausgesetzt, dass 0 < I(θ) < ∞. Wir stellen nun einige Bedingungen
auf, die für die asymptotische Normalverteiltheit von ML-Schätzern notwendig sind.

1. Θ ⊂ R ist ein offenes Intervall (m = 1).

2. Es gelte Pθ /= Pθ′ genau dann, wenn θ /= θ′.

3. Die Familie {Pθ, θ ∈ Θ}, θ ∈ Θ bestehe nur aus diskreten oder nur aus absolut stetigen
Verteilungen, also nicht aus Mischungen von diskreten und absolut stetigen Verteilungen.

4. B = supp L(x, θ) = {x ∈ R : L(x, θ) > 0} hängt nicht von θ ∈ Θ ab. Dabei heißt supp
(von englisch „support“) der „Träger“ einer Funktion f und ist definiert als

suppf = {x ∈ R : f(x) /= 0}

und die Likelihood-Funktion L(x, θ) ist durch

L(x, θ) =

{
p(x, θ) , im diskreten Fall,

f(x, θ) , im absolut stetigen Fall
(3.4.4)

gegeben, wobei p(x, θ) bzw. f(x, θ) die Wahrscheinlichkeitsfunktion bzw. Dichte von Pθ

ist.

5. Die Abbildung L(x, θ) ist dreimal stetig differenzierbar und es gilt

0 =
dk

dθk

∫

B
L(x, θ) dx =

∫

B

∂k

∂θk
L(x, θ) dx , k = 1, 2, θ ∈ Θ .

Da das Integral über die Dichte L(x, θ) gleich 1 ist, ist die Ableitung gleich 0. Dabei sind
im diskreten Fall die Integrale durch Summen zu ersetzen.

6. Für alle θ0 ∈ Θ existiert eine Konstante δθ0 > 0 und eine messbare Funktion gθ0 : B →
[0, ∞), so dass

∣∣∣∣∣
∂3 log L(x, θ)

∂θ3

∣∣∣∣∣ ≤ gθ0(x) , ∀x ∈ B , |θ − θ0| < δθ0 ,

wobei Eθ0 gθ0(X1) < ∞.

Bemerkung 3.4.3
Es gilt folgende Relation:

n · I(θ) = Varθ

(
∂

∂θ
log L(X1, . . . , Xn, θ)

)
,

wobei

L(X1, . . . , Xn, θ) =
n∏

i=1

L(Xi, θ) (3.4.5)

die Likelihood-Funktion der Stichprobe (X1, . . . , Xn) ist mit L(Xi, θ) nach (3.4.4).
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Beweis Es gilt

∂

∂θ
log L(X1, . . . , Xn, θ) =

∂

∂θ

n∑

i=1

log L(Xi, θ) =
n∑

i=1

∂

∂θ
log L(Xi, θ) =

n∑

i=1

L′(Xi, θ)

L(Xi, θ)
.

Ferner

Eθ

(
∂

∂θ
L(X1, . . . , Xn, θ)

)
=

n∑

i=1

Eθ
L′(Xi, θ)

L(Xi, θ)
=

n∑

i=1

∫

B

L′(X, θ)

L(X, θ)
· L(X, θ) dx

5)
= 0 .

Insgesamt gilt also

Varθ

(
∂

∂θ
log L(X1, . . . , Xn, θ)

)
= Varθ

(
n∑

i=1

∂

∂θ
log L(Xi, θ)

)

Xi unabhg.
=

n∑

i=1

Varθ

(
∂

∂θ
log L(Xi, θ)

)
Xiident.

=
vert.

n · Varθ

(
∂

∂θ
log L(X1, θ)

)

= n · Eθ

(
∂

∂θ
log L(X1, θ)

)2

= n · I(θ) .

Satz 3.4.2
Sei (X1, . . . , Xn) eine Stichprobe von Zufallsvariablen, für die die Bedingungen 1) bis 6) erfüllt
sind und 0 < I(θ) < ∞ , θ ∈ Θ. Falls θ̂(X1, . . . , Xn) ein schwach konsistenter ML-Schätzer
für θ ist, dann ist θ̂(X1, . . . , Xn) asymptotisch normalverteilt:

√
n · I(θ)

(
θ̂(X1, . . . , Xn) − θ

)
d−→

n→∞
Y ∼ N(0, 1) .

Beweis Führen wir die Bezeichnung ln(θ) = log L(X1, . . . , Xn, θ) , θ ∈ Θ ein. Sei

l(k)
n (θ) =

dk

dθk
ln(θ) , k = 1, 2, 3 .

Ist θ̂ ein ML-Schätzer, so folgt l
(1)
n (θ̂) = 0. Schreiben wir die Taylor-Entwicklung von l

(1)
n (θ̂) in

der Umgebung von θ auf:

0 = l(1)
n (θ̂) = l(1)

n (θ) + (θ̂ − θ) · l(2)
n (θ) + (θ̂ − θ)2 · l

(3)
n (θ∗)

2
,

wobei θ∗ zwischen θ und θ̂ liegt. Dabei ist

−(θ̂ − θ)

(
l(2)
n (θ) + (θ̂ − θ)

l
(3)
n (θ∗)

2

)
= l(1)

n (θ) =⇒ √
n(θ̂ − θ) =

l
(1)
n (θ)√

n

− l
(2)
n (θ)

n − (θ̂ − θ) l
(3)
n (θ∗)

2n

Falls wir zeigen können, dass

1. l
(1)
n (θ)√

n
d−→

n→∞
N(0, I(θ)) ,
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2.
− l

(2)
n (θ)

n
f.s.−→

n→∞
I(θ) ,

3.
(θ̂ − θ)

P−→
n→∞ 0 und

l
(3)
n (θ∗)

2n

beschränkt ist, das heißt

∃c > 0 : lim
n→∞

Pθ

(∣∣∣∣∣
l
(3)
n (θ∗)

2n

∣∣∣∣∣ < c

)
= 1 ,

dann konvergiert der Ausdruck

(θ̂ − θ) · l
(3)
n (θ∗)

2n
P−→

n→∞
0 , weil

∣∣∣∣∣
l
(3)
n (θ∗)

n

∣∣∣∣∣ ≤ gθ(X1) integrierbar

und somit gilt

√
n(θ̂ − θ) =

l
(1)
n (θ)√

n

− l
(2)
n (θ)

n − (θ̂ − θ) l
(3)
n (θ∗)

2n

d−→
n→∞ Z1 ∼ N

(
0,

1

I(θ)

)

nach dem Satz von Slutsky. Damit folgt
√

n
√

I(θ)(θ̂ − θ)
d−→

n→∞ Y ∼ N(0, 1)

1. Es gilt

l
(1)
n√
n

=

∑n
i=1

∂
∂θ log L(Xi, θ)√

n
−→

n→∞
Y1 ∼ N

(
0, Varθ

( ∂

∂θ
L(Xi, θ)

)

︸ ︷︷ ︸
=I(θ)

)

nach dem zentralen Grenzwertsatz, weil ∂
∂θ log L(Xi, θ) unabhängig identisch verteilte

Zufallsvariablen mit Erwartungswert 0 (siehe Bemerkung 3.4.3) sind.

2.

− 1

n
l(2)
n (θ) = − 1

n

n∑

i=1

∂2

∂θ2
log L(Xi, θ) =

1

n

n∑

i=1

(
L(1)(Xi, θ)

)2
− L(Xi, θ) · L(2)(Xi, θ)

(L(Xi, θ))2

=
1

n

n∑

i=1

(
L(1)(Xi, θ)

L(Xi, θ)

)2

− 1

n

n∑

i=1

L(2)(Xi, θ)

L(Xi, θ)

f.s.−→
n→∞ Eθ

(
L(1)(X1, θ)

L(X1, θ)

)2

− Eθ

(
L(2)(X1, θ)

L(X1, θ)

)
= I(θ) − 0 = I(θ)

nach dem Gesetz der großen Zahlen, wobei

L(k)(Xi, θ) =
∂k

∂θk
L(Xi, θ)

und

Eθ

(
L(2)(X1, θ)

L(X1, θ)

)
=
∫

B

∂2

∂θ2
L(x, θ) dx

5)
=

d2

dθ2

∫

B
L(x, θ) dx = 0 .
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3. θ̂
P−→

n→∞ θ, weil θ̂ schwach konsistent ist. Zeigen wir, dass

l
(3)
n (θ∗)

n
(θ̂ − θ)

P−→
n→∞

0 .

Aus θ̂
P−→

n→∞ θ folgt für alle ε > 0

P

(
|θ̂ − θ| ≤ ε

)
−→

n→∞
1 .

Damit folgt, dass mit asymptotisch großer Wahrscheinlichkeit |θ̂ − θ| ≤ δ , δ > 0 gilt,
welches aus der Bedingung 6) folgt. Damit gilt, dass für alle θ : |θ̂ − θ| < δ

∣∣∣∣∣
l
(3)
n (θ∗)

n

∣∣∣∣∣ ≤ 1

n

n∑

i=1

∣∣∣∣∣
∂3

∂θ3
log L(Xi, θ)

∣∣∣∣∣
︸ ︷︷ ︸

≤gθ(Xi)

≤ 1

n

n∑

i=1

gθ(Xi)
f.s.−→

n→∞
Eθ gθ(X1) < ∞ .

So folgt, dass eine Konstante c > 0 existiert, sodass

Pθ

(∣∣∣∣∣
l
(3)
n (θ∗)

n

∣∣∣∣∣ < c

)
−→

n→∞
1 und somit

l
(3)
n (θ∗)

n
(θ̂ − θ)

P−→
n→∞

0 .

Der Beweis ist beendet.

3.4.3 Bayes-Schätzer

Sei (X1, . . . , Xn) eine Zufallsstichprobe, wobei Xi unabhängige identisch verteilte Zufallsvaria-
blen mit Verteilungsfunktion Fθ , θ ∈ Θ sind. Sei Fθ entweder eine diskrete oder eine absolut
stetige Verteilung. Sei aber auch θ eine Zufallsvariable θ̃ mit Verteilung Q(·) auf dem Messraum
(Θ, BΘ), die entweder diskret mit Zähldichte q(·) oder absolut stetig mit Dichte q(·) ist. Nach
wie vor werden beide Fälle gemeinsam betrachtet, dabei entsprechen sich die Summation und
Integration im diskreten bzw. absolut stetigen Fall.

Definition 3.4.6
Die Verteilung Q(·) heißt a-priori-Verteilung des Parameters θ (von θ̃) (a-priori bedeutet hier
„vor dem Experiment (X1, . . . , Xn)“).

Definition 3.4.7
Die a-posteriori-Verteilung des Parameters θ (von θ̃) ist gegeben durch die (Zähl-)Dichte

qX1,...,Xn(θ) =

{
P(θ̃ = θ | X1 = x1, . . . , Xn = xn) , falls die Verteilung Q diskret ist,

fθ̃|X1,...,Xn
(θ, x1, . . . , xn) , falls die Verteilung Q absolut stetig ist.

Dabei ist

P(θ̃ = θ | X = x1, . . . , X = xn) =
P(θ̃ = θ, X1 = x1, . . . , Xn = xn)

P(X1 = x1, . . . , Xn = xn)

=
Pθ(Xi = xi , i = 1, . . . , n) · q(θ)∑

θ1∈Θ Pθ1(Xi = xi, i = 1, . . . , n) · q(θ1)
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die Bayesche Formel, bzw.

fθ̃|X1,...,Xn
(θ, x1, . . . , xn) =

f(θ̃,X1,...,Xn)(θ, x1, . . . , xn)

fX1,...,Xn(x1, . . . , xn)
=

L(x1, . . . , xn, θ) · q(θ)∫
Θ L(x1, . . . , xn, θ1) · q(θ1) dθ1

,

mit L(x1, . . . , xn, θ) nach (3.4.5).

Definition 3.4.8
Eine Verlustfunktion V : Θ2 → R+ ist eine Θ2-messbare Funktion.

Verlustfunktionen spielen in unseren Betrachtungen folgende Rolle: E∗V (θ̃, a) stellt den er-
warteten Verlust (mittleres Risiko) dar, der bei der Schätzung des Parameters θ durch a ent-
steht. Dabei stellt E∗ den Erwartungswert bezüglich der a-posteriori-Verteilung von θ̃ dar.
Es sind offensichtlich die konkreten Stichprobenwerte x1, . . . , xn in die a-posteriori-Verteilung
eingegangen, deshalb ist E∗V (θ̃, a) eine Funktion von a und x1, . . . , xn:

E∗V (θ̃, a) = ϕ(x1, . . . , xn, a) .

Definition 3.4.9
Ein Schätzer θ̂ heißt Bayes-Schätzer des Parameters θ, falls

θ̂(x1, . . . , xn) = arg min
a

E∗V (θ̃, a) (3.4.6)

existiert und eindeutig ist.

Bemerkung 3.4.4

1. Manchmal gilt θ̂ /∈ Θ, was mit der Existenz des Minimums von ϕ(x1, . . . , xn, a) auf Θ zu
tun hat.

2. Der Name „Bayesscher Ansatz“ stammt von dem englischen Mathematiker Thomas Bayes
(1702–1761), der die Bayessche Formel

P(Bi|A) =
P(A|Bi) · P(Bi)∑
j P(A|Bj) · P(Bj)

(3.4.7)

nur ideenhaft eingeführt hat. Der eigentliche Entdecker der Formel (3.4.7) ist Pierre-
Simon Laplace (1749–1827) (Ende des XVIII. Jahrhunderts). Diese Formel wurde bei der
Herleitung der a-posteriori-Verteilung von θ̃ implizit benutzt.

3. Die Vorgehensweise in Definition 3.4.9 ist in konkreten praxisrelevanten Fällen meistens
nur numerisch möglich. Es gibt sehr wenige Beispiele für analytische Lösungen des in
(3.4.6) gestellten Minimierungsproblems.

Beispiel 3.4.3 (Quadratische Verlustfunktion):
Ist V (θ1, θ2) = (θ1 − θ2)2, so ist

min
a

(ϕ(x1, . . . , xn, a)) = min
a

(
E∗(θ̃ − a)2

)
= min

a

(
E∗θ̃2 − 2aE∗θ̃ + a2

)
= E∗θ̃

und daher der Bayes-Schätzer θ̂(x1, . . . , xn) für θ durch E∗θ̃ gegeben.
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Beispiel 3.4.4 (Bernoulli-Verteilung):
Sei (X1, . . . , Xn) eine unabhängig identisch verteilte Stichprobe von Xi ∼ Bernoulli(p), p ∈
(0, 1). Weiter sei die a-priori-Verteilung

p̃ ∼ Beta(α, β) , α, β > 0, mit Zähldichte q(p) =
pα−1(1 − p)β−1

B(α, β)
· I(p ∈ [0, 1]) ,

die a-posteriori-Verteilung von p̃ ist dann gleich

q∗(p) = fp̃|X1=x1,...,Xn=xn
(p) =

Pp(X1 = x1, . . . , Xn = xn) · q(p)
∫ 1

0 Pp1(X1 = x1, . . . , Xn = xn) · q(p1) dp1

.

Es ist immer möglich die a-posteriori-Verteilung nicht bezüglich des Vektors (X1, . . . , Xn),
sondern bezüglich einer Funktion g(X1, . . . , Xn), zu berechnen (Komplexitätsreduktion).

Hier ist Y = g(X1, . . . , Xn) =
∑n

i=1 Xi die Gesamtanzahl aller Erfolge in n Experimenten,
wobei

Xi =

{
1 , mit Wahrscheinlichkeit p ,

0 , sonst.

Daher gilt für die a-posteriori-Verteilung bzgl. Y :

q∗(p) = fp̃|Y =k(p) =
Pp(Y = k) · q(p)

∫ 1
0 Pp1(Y = k)q(p1) dp1

Y ∼Bin(n,p),
=

falls p̃=p

(n
k

)
pk(1 − p)n−k · (B(α, β))−1 · pα−1(1 − p)β−1

(n
k)

B(α,β) · ∫ 1
0 pk+α−1

1 (1 − p1)n−k+β−1 dp1

=
pk+α−1(1 − p)n−k+β−1

B(k + α, n − k + β)
, p ∈ [0, 1] .

Daher ist die a-posteriori-Verteilung von p̃ unter der Bedingung Y = k durch

Beta(k + α, n − k + β)

gegeben.
Für den Bayes-Schätzer gilt:

p̂(x1, . . . , xn) = E∗p̃ =
∫ 1

0
p · q∗(p) dp =

∫ 1
0 pk+α(1 − p)n−k+β−1 dp

B(k + α, n − k + β)

=
B(k + α + 1, n − k + β)

B(k + α, n − k + β)
= . . . =

k + α

α + β + n
=

∑n
i=1 xi + α

α + β + n
=

α + nx̄n

α + β + n
.

Interpretation:

p̂(X1, . . . , Xn) =
n

α + β + n︸ ︷︷ ︸
=:c1

X̄n +
α + β

α + β + n︸ ︷︷ ︸
=:c2

· α

α + β
= c1 · X̄n + c2 · Eaprθ̃ ,

wobei c1 + c2 = 1 ist. Dies heißt, dass die Bayessche Methode einen Mittelweg zwischen dem
Schätzer Eaprθ̃ (in Abwesenheit der Information über die Stichprobe (X1, . . . , Xn)) und dem
M-Schätzer X̄n (in Abwesenheit der a-priori-Information über die Verteilung von p̃) für p ein-
schlägt.
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3.4.4 Resampling-Methoden zur Gewinnung von Punktschätzern

Sei (X1, . . . , Xn) eine Stichprobe im parametrischen Modell. Gesucht ist ein Schätzer θ̂ für
den Parameter θ. Um diesen Schätzer zu konstruieren, werden bei Resampling-Methoden neue
Stichproben (X∗

1 , . . . , X∗
n) durch das unabhängige Ziehen mit Zurücklegen aus der alten Stich-

probe (X1, . . . , Xn) generiert und auf ihrer Basis Mittelwerte, Stichprobenvarianzen und andere
Schätzer gebildet. Dabei ist die Dimension m des Parameterraums Θ beliebig.

Wir werden im Folgenden die Resampling-Methoden

1. Jackknife (dt. „Taschenmesser“, weist auf Mittel, die jedem immer zur Hand sein sollten)

2. Bootstrap (engl. „self-sufficient“, dt. „mit eigenen Ressourcen“)

betrachten.

1. Jackknife-Methoden zur Schätzung der Varianz bzw. der Verzerrung von Schätzern:

Als einführendes Beispiel betrachten wir θ = EX = µ bzw. θ = Var X = σ2 und ihre
(erwartungstreue) Schätzer µ̂ = X̄n bzw. σ̂2 = S2

n.

Wie wir bereits wissen, gilt

Var µ̂ =
σ2

n
, Var σ̂2 =

1

n

(
µ′

4 − n − 3

n − 1
σ4
)

.

Nun ist ein Schätzer für die Varianz von µ̂ bzw. σ̂2 gesucht. Dazu verwenden wir die
Plug-in Methode

V̂ar µ̂ =
S2

n

n
, V̂ar σ̂2 =

1

n

(
µ̂′

4 − n − 3

n − 1
S4

n

)
,

wobei µ̂′
4 das vierte zentrierte empirische Moment ist.

Im Allgemeinen sind jedoch keine Formeln von Var θ̂ bekannt. Hier kommt nun die Jack-
knife-Methode zum Einsatz:

• Sei X[i] die Stichprobe (X1, . . . , Xi−1, Xi+1, . . . , Xn) , i = 1, . . . , n. Falls

θ̂(X1, . . . , Xn) = ϕn(X1, . . . , Xn) ,

so bilden wir

θ̂[i] = ϕn−1(X[i]) , θ̄[·] =
1

n

n∑

i=1

θ̂[i] , V̂arjn(θ̂)
def.
=

n − 1

n

n∑

i=1

(
θ̂[i] − θ̄[·]

)2
.

Definition 3.4.10
Der Schätzer θ̄[·] bzw. V̂arjn(θ̂) heißt Jackknife-Schätzer für den Erwartungswert

bzw. die Varianz des Schätzers θ̂ von θ.

Beispiel 3.4.5
Sei θ = µ , θ̂ = µ̂ = X̄n, so gilt

ϕn(x1, . . . , xn) =
1

n

n∑

i=1

xi ,
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womit folgt, dass

θ̂[i] =
1

n − 1

∑

j /=i

Xj =
1

n − 1


−Xi +

n∑

j=1

Xj


 =

n

n − 1
X̄n − 1

n − 1
Xi , ∀i = 1, . . . , n ,

θ̄[·] =
1

n

n∑

i=1

θ̂[i] =
n

n − 1
X̄n − 1

n(n − 1)

n∑

i=1

Xi =
n · X̄n

n − 1
− X̄n

n − 1
=

n − 1

n − 1
X̄n = X̄n .

Daher ist ein Jackknife-Schätzer für µ gleich X̄n.

Konstruieren wir nun einen Jackknife-Schätzer der Varianz:

V̂arjn(θ̂) =
n − 1

n

n∑

i=1

(
n

n − 1
X̄n − 1

n − 1
Xi − X̄n

)2

=
n − 1

n

n∑

i=1

(
1

n − 1
(X̄n − Xi)

)2

=
n − 1

n(n − 1)2

n∑

i=1

(Xi − X̄n)2 =
1

n
S2

n ,

wobei dies genau der Plug-in Schätzer der Varianz von µ̂ ist.

• Jackknife-Schätzer für die Verzerrung eines Schätzers

Sei θ̂(X1, . . . , Xn) ein Schätzer für θ. Der Bias von θ̂ ist Eθθ̂ − θ = Bias(θ̂).

Definition 3.4.11
Ein Jackknife-Schätzer der Verzerrung (Bias) von θ̂ ist durch

B̂iasjn(θ̂) = (n − 1)(θ̄[·] − θ̂)

gegeben.

An folgenden Beispielen wird klar, dass der oben beschriebene Vorgang zur Verrin-
gerung der Verzerrung beiträgt:

Der Schätzer
θ̃ = θ̂ − B̂iasjn(θ̂) = nθ̂ − (n − 1)θ̄[·] (3.4.8)

hat in der Regel einen kleineren Bias als θ̂. Dabei ist wiederum

θ̂[i] = ϕn−1(X[i]) und θ̄[·] =
1

n

n∑

i=1

θ̂[i] mit θ̂(X1, . . . , Xn) = ϕn(X1, . . . , Xn) .

Beispiel 3.4.6

a) Ist θ = EXi = µ, so ist θ̂ = X̄n ein unverzerrter Schätzer für µ. Was ist der
Bias-korrigierte Schätzer µ̃? (Dieser sollte schließlich nicht schlechter werden!)

Es gilt θ̄[·] = X̄n, daher ist der Bias-Schätzer von Jackknife B̂iasjn(θ̂) = (n −
1)(X̄n − X̄n) = 0 und somit θ̃ = θ̂ − 0 = X̄n. Wir haben also gesehen, dass die
Jackknife-Methode die unverzerrten Schätzer (zumindest in diesem Beispiel)
richtig behandelt, indem sie keinen zusätzlichen Bias einbaut.

b) θ = σ2 = VarXi, θ̂ = σ̂2 = 1
n

∑n
i=1(Xi − X̄n)2 ein verzerrter M-Schätzer der

Varianz. Was ist θ̃ in diesem Fall?
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Übungsaufgabe 3.4.1
Zeigen Sie, dass θ̃ = S2

n = 1
n−1

∑n
i=1(Xi − X̄n)2 = n

n−1 σ̂2 ein erwartungstreuer
Schätzer der Varianz ist. Somit wurde der Bias von σ̂2 durch die Anwendung
der Jackknife-Methode vollständig beseitigt.

Beweisidee: Zeigen Sie hierzu zunächst, dass

B̂iasjn(θ̂) = − 1

n(n − 1)

n∑

i=1

(Xi − X̄n)2 .

Bemerkung 3.4.5
Die Beispiele 3.4.6 a), b), in denen sich der Jackknife-Schätzer analytisch bestimmen
ließ, sind eher eine Ausnahme als die Regel. In den meisten Fällen erfolgt die Bias-
Reduktion mit Hilfe der Monte-Carlo-Methoden auf Basis der Formel (3.4.8).

2. Bootstrap-Schätzer:

Die Bootstrap-Methode besteht in dem Erzeugen einer neuen Stichprobe (X∗
1 , . . . , X∗

n),
die aus einer approximativen Verteilung F̂ der Stichprobenvariablen Xi, i = 1, . . . , n
gewonnen wird. Seien E∗ und Var∗ die wahrscheinlichkeitstheoretischen Größen, die auf
dem Verteilungsgesetz P∗ der neuen Stichprobe (X∗

1 , . . . , X∗
n) beruhen. Dabei gibt es

folgende Möglichkeiten, F̂ zu konstruieren:

i) F̂ (x) = F̂n(x) die empirische Verteilungsfunktion von Xi, falls Xi unabängig iden-
tisch verteilt sind.

ii) F̂ ist ein parametrischer Schätzer von F , der parametrischen Verteilungsfunktion
von Xi. Das heißt, falls Xi ∼ Fθ , i = 1, . . . , n für ein θ ∈ Θ und θ̂ = θ̂(X1, . . . , Xn)
ein Schätzer für θ ist, so setzen wir F̂ = Fθ̂ (Plug-in Methode).

Definition 3.4.12
Ein Bootstrap-Schätzer für den Erwartungswert (bzw. Bias oder Varianz) von Schätzer
θ̂(X1, . . . , Xn) ist gegeben durch

a) Êboot(θ̂) = E∗θ̂(X∗
1 , . . . , X∗

n).

b) B̂iasboot(θ̂) = Êbootθ̂ − θ̂.

c) V̂arboot(θ̂) = Var∗(θ̂(X∗
1 , . . . , X∗

n)).

Beispiel 3.4.7
Sei θ = µ = EXi und F̂ = F̂n die empirische Verteilungsfunktion. Wie generiert man eine
Stichprobe X∗

1 , . . . , X∗
n, wobei X∗

i ∼ F̂n?

F̂n gewichtet jede Beobachtung xi der ursprünglichen Stichprobe mit dem Gewicht 1/n,
deshalb genügt es, einen der Einträge (x1, . . . , xn) auszuwählen (mit Wahrscheinlichkeit
1/n, Urnenmodell „Ziehen mit Zurücklegen“), um X∗

j , j = 1, . . . , n zu generieren.

Bootstrap-Schätzer für den Erwartungswert von µ̂ = X̄n:

Êbootµ̂ = E∗

(
1

n

n∑

i=1

X∗
i

)
X∗

i u.i.v.
=

1

n
· nE∗(X∗

1 ) =
∫

x dF̂n(x) =
1

n

n∑

i=1

Xi = X̄n .

Somit folgt B̂iasbootµ̂ = 0.

V̂arboot(µ̂) = Var∗

(
1

n

n∑

i=1

X∗
i

)
X∗

i u.i.v.
=

1

n2
· n · Var∗(X∗

1 ) =
1

n
· 1

n

n∑

i=1

(Xi − X̄n)2 =
σ̂2

n
,
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ein Plug-in Schätzer für VarX̄n = σ2/n.

Monte-Carlo-Methoden zur numerischen Berechnung von Bootstrap-Schätzern:

Was kann man tun, wenn keine expliziten Formeln für z.B. V̂arBoot(θ̂) vorliegen (der
Regelfall in der Statistik)?

Generiere M unabhängige Stichproben (X∗
i1, . . . , X∗

in), i = 1, . . . , M nach der Regel i)
oder ii) mit Hilfe der Monte-Carlo-Simulation. Dann berechne

θ̂i = θ̂(X∗
i1, . . . , X∗

in) , i = 1, . . . , M und setze Êbootθ̂ ≈ 1

M

M∑

i=1

θ̂i .

Ähnlich gewinnt man approximative Bootstrap-Schätzer für Bias θ̂ und Var θ̂:

B̂iasbootθ̂ ≈ Êbootθ̂ − θ̂ , V̂arbootθ̂ ≈ 1

M − 1

M∑

i=1

(
θ̂i − Êbootθ̂

)2
.

Mehr sogar, man kann die Verteilungsfunktion von X∗
ij durch die empirische Verteilungs-

funktion bestimmen:

F̂boot(x) =
1

M

M∑

i=1

1

n

n∑

j=1

I(X∗
ij ≤ x) , x ∈ R .

Ferner lassen sich mit Hilfe von oben genannten Methoden Bootstrap-Konfidenzintervalle
für θ̂ ableiten:

Dafür lassen sich Quantile von F̂boot(x) empirisch bestimmen. Damit gilt

P

(
F̂ −1

boot(α1) ≤ θ̂(X∗
1 , . . . , X∗

n) ≤ F̂ −1
boot(α2)

)
≈ 1 − α1 − α2 = 1 − α ,

wobei α = α1 + α2 klein ist. Beachte dabei, dass man hofft, dass X∗
i sehr ähnlich verteilt

ist wie Xi und somit

P

(
F̂ −1

boot(α1) ≤ θ̂(X1, . . . , Xn) ≤ F̂ −1
boot(α2)

)
≈ 1 − α1 − α2 = 1 − α

gilt.

3.5 Weitere Güteeigenschaften von Punktschätzern

3.5.1 Ungleichung von Cramér-Rao

Sei (X1, . . . , Xn) eine Stichprobe von unabhängigen identisch verteilten Zufallsvariablen Xi mit
Verteilungsfunktion Fθ, θ ∈ Θ. Sei θ̂(X1, . . . , Xn) ein Schätzer für θ. Falls θ̂ erwartungstreu ist,
dann misst man die Güte eines anderen erwartungstreuen Schätzers θ̃ von θ am Wert seiner
Varianz. Das bedeutet, falls Varθ θ̃ < Varθ θ̂, dann ist der Schätzer θ̃ besser. Wir werden uns
nun mit der Frage befassen, ob immer wieder neue, bessere Schätzer θ̃ mit immer kleinerer
Varianz konstruiert werden können. Die Antwort hierauf ist unter gewissen Voraussetzungen
negativ. Die untere Schranke der Varianz Varθ θ̂ hierzu liefert der Satz von Cramér-Rao.
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Sei L(x, θ) die Likelihood-Funktion von Xi, d.h.

L(x, θ) =

{
Pθ(x) , im diskreten Fall ,

fθ(x) , im stetigen Fall

und L(x1, . . . , xn, θ) =
∏n

i=1 L(xi, θ) die Likelihood-Funktion von der gesamten Stichprobe
(X1, . . . , Xn). Es gelten die Bedingungen 1) bis 5), die für die asymptotische Normalverteiltheit
von ML-Schätzern auf Seite 80 gestellt wurden, wobei die Bedingung 5) für k = 1 gilt.

Satz 3.5.1 (Ungleichung von Cramér-Rao):
Sei θ̂(X1, . . . , Xn) ein Schätzer für θ mit den folgenden Eigenschaften:

1. Eθθ̂2(X1, . . . , Xn) < ∞ ∀ θ ∈ Θ.

2. Für alle θ ∈ Θ existiert

d

dθ
Eθθ̂(X1, . . . , Xn) =

{∫
R

θ̂(x1, . . . , xn) ∂
∂θ L(x1, . . . , xn, θ) dx1 . . . dxn , im stetigen Fall,

∑
x1,...,xn

θ̂(x1, . . . , xn) ∂
∂θ L(x1, . . . , xn, θ) , im diskr. Fall.

Dann gilt

Varθ θ̂(X1, . . . , Xn) ≥

(
d
dθEθ θ̂(X1, . . . , Xn)

)2

n · I(θ)
, θ ∈ Θ ,

wobei I(θ) die Fisher-Information aus (3.4.3) ist.

Beweis Führen wir die Funktion

ϕθ(x1, . . . , xn) =
∂

∂θ
log L(x1, . . . , xn, θ)

ein. In Bemerkung 3.4.3 haben wir bewiesen, dass

Eθϕθ(X1, . . . , Xn) = 0 , Varθ ϕθ(X1, . . . , Xn) = n · I(θ) .

Wenden wir die Ungleichung von Cauchy-Schwarz auf Covθ(ϕθ(X1, . . . , Xn), θ̂(X1, . . . , Xn)) an:

Covθ

(
ϕθ(X1, . . . , Xn), θ̂(X1, . . . , Xn)

)
= Eθ

(
ϕθ(X1, . . . , Xn) · θ̂(X1, . . . , Xn)

)
− 0

≤
√

Varθ ϕθ(X1, . . . , Xn)
√

Varθ θ̂(X1, . . . , Xn)

Somit folgt

Varθ θ̂(X1, . . . , Xn) ≥

(
=:A︷ ︸︸ ︷

Eθ

(
ϕθ(X1, . . . , Xn) · θ̂(X1, . . . , Xn)

) )2

Varθ ϕθ(X1, . . . , Xn)
=

A2

n · I(θ)
.

Es bleibt zu zeigen, dass

A =
d

dθ
Eθ θ̂(X1, . . . , Xn) .
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Wir zeigen die Aussage für den absolut stetigen Fall (im diskreten Fall sind die Integrale durch
Summen zu ersetzen):

A =
∫

∂

∂θ
log L(x1, . . . , xn, θ) · θ̂(x1, . . . , xn) · L(x1, . . . , xn, θ) dx1 . . . dxn

=
∫

∂

∂θ
L(x1, . . . , xn, θ) · θ̂(x1, . . . , xn) dx1 . . . dxn

Vor. 2)
=

d

dθ
Eθ θ̂(X1, . . . , Xn) .

Folgerung 3.5.1
Falls θ̂ ein erwartungstreuer Schätzer für θ ist und die Voraussetzungen des Satzes 3.5.1 erfüllt
sind, so gilt

Varθ θ̂(X1, . . . , Xn) ≥ 1

n · I(θ)
.

Beweis Wende die Ungleichung von Cramér-Rao an θ̂ mit

d

dθ

(
Eθ θ̂(X1, . . . , Xn)

)
=

d

dθ
θ = 1

an.

An folgenden Beispielen werden wir sehen, dass der Schätzer X̄n des Erwartungswertes µ in
der Klasse aller Schätzer für µ, die die Voraussetzungen des Satzes 3.5.1 erfüllen, die kleinste
Varianz besitzt. Somit ist X̄n der beste erwartungstreue Schätzer in dieser Klasse für mindestens
zwei parametrische Familien von Verteilungen:

• Normalverteilung und

• Poisson-Verteilung.

Beispiel 3.5.1

1. Xi ∼ N(µ, σ2), µ̂ = X̄n als Schätzer für µ. Dabei ist µ̂ erwartungstreu mit Varµ̂ =
σ2/n. Zeigen wir, dass die Cramér-Rao-Schranke für die Varianz eines erwartungstreuen
Schätzers θ̂ für µ ebenso gleich σ2/n ist. Prüfen wir zunächst die Voraussetzungen des
Satzes 3.5.1:

Zeigen wir, dass

0 =
d

dµ

∫

R

L(x, µ) dx =
∫

R

∂

∂µ
L(x, µ) dx mit L(x, µ) =

1√
2πσ

e− 1
2 ( x−µ

σ )2

:

∂

∂µ
L(x, µ) =

2(x − µ)

2σ2
· 1√

2πσ
e− 1

2 ( x−µ
σ )2

=
x − µ

σ2
· L(x, µ) ,

∫

R

∂

∂µ
L(x, µ) dx = E

(
X − µ

σ2

)
= 0 .

Zeigen wir weiterhin die Gültikeit der Bedingung 2) des Satzes 3.5.1:

d

dµ
EX̄n =

d

dµ
(µ) = 1

?
=

1

n

∫

Rn
(x1 + . . . + xn)

∂

∂µ

(
n∏

i=1

1√
2πσ

e− 1
2

(
xi−µ

σ

)2
)

dx1 . . . dxn .

Induktion bzgl. n:
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• Induktionsanfang n = 1:

∫

R

x
∂

∂µ
L(x, µ) dx =

∫

R

x(x − µ)

σ2
L(x, µ) dx =

1

σ2

(
Eµ X2 − µ2

)
=

Varµ X

σ2
= 1 .

• Induktionshypothese: Für n gilt

∫

Rn
(x1 + . . . + xn) · ∂

∂µ
L(x1, . . . , xn, µ) dx1 . . . dxn = n .

• Induktionsschritt n → n + 1:

A =
∫

Rn+1
(x1 + . . . + xn+1)

∂

∂µ
L(x1, . . . , xn+1, µ)︸ ︷︷ ︸

=L(x1,...,xn,µ)·L(xn+1,µ)

dx1 . . . dxn+1
?
= n + 1 .

Dabei gilt für A:

A =
∫

Rn+1
(x1 + . . . + xn) ·

(
∂

∂µ
L(x1, . . . , xn, µ) · L(xn+1, µ) + L(x1, . . . , xn, µ)·

· ∂

∂µ
L(xn+1, µ)

)
dx1 . . . dxndxn+1 +

∫

Rn+1
xn+1

(
∂

∂µ
L(x1, . . . , xn, µ)·

· L(xn+1, µ) + L(x1, . . . , xn, µ) · ∂

∂µ
L(xn+1, µ)

)
dx1 . . . dxndxn+1

= n ·
∫

R

L(xn+1, µ) dxn+1

︸ ︷︷ ︸
=1

+
∫

Rn
(x1 + . . . + xn) · L(x1, . . . , xn, µ) dx1 . . . dxn·

·
∫

∂

∂µ
L(xn+1, µ) dxn+1

︸ ︷︷ ︸
=0

+
∫

R

xn+1L(xn+1, µ) dxn+1·

·
∫

Rn

∂

∂µ
L(x1, . . . , xn, µ) dx1 . . . dxn

︸ ︷︷ ︸
=0

+
∫

R

xn+1
∂

∂µ
L(xn+1, µ) dxn+1

︸ ︷︷ ︸
= d

dµ
EµX= d

dµ
µ=1

·

·
∫

Rn
L(x1, . . . , xn, µ) dx1 . . . dxn

︸ ︷︷ ︸
=1

= n + 1 .

Nachdem alle Voraussetzungen erfüllt sind, berechnen wir die Schranke

1

n · I(µ)
mit I(µ) = Eµ

(
∂

∂µ
log L(X, µ)

)2

.

Es gilt

∂

∂µ
log L(x, µ) =

∂

∂µ

(
− log

√
2πσ2 − 1

2

(
x − µ

σ

)2
)

= −2(x − µ)

2σ2
· (−1) =

x − µ

σ2
,
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woraus folgt, dass

I(µ) =
1

σ4
Eµ(X − µ)2 =

1

σ4
· Varµ X =

σ2

σ4
=

1

σ2
=⇒ n · I(µ) =

n

σ2
.

Insgesamt gilt also

Varµ θ̂ ≥ 1
n
σ2

=
σ2

n
= Varµ X̄n

für einen beliebigen erwartungstreuen Schätzer θ̂ für µ, der die Voraussetzungen des Satzes
3.5.1 erfüllt.

2. Das zweite Beispiel sei folgende Übungsaufgabe:

Übungsaufgabe 3.5.1
Seien Xi ∼ Poisson(λ) , i = 1, . . . , n. Zeigen Sie, dass die Schranke von Cramér-Rao

1

n · I(λ)
=

λ

n
= Varλ X̄n

ist. Dies bedeutet, dass auch hier X̄n der beste erwartungstreue Schätzer ist, der die
Voraussetzungen des Satzes 3.5.1 erfüllt.

An Hand des nächsten Beispiels wollen wir zeigen, dass die Konstruktion von Schätzern mit
einer Varianz, die kleiner als die Cramér-Rao-Schranke ist, möglich ist, falls die Voraussetzungen
von Satz 3.5.1 nicht erfüllt sind.

Beispiel 3.5.2
Seien Xi ∼ U [0, θ], θ > 0. Dann ist die Bedingung „suppfθ(x) = [0, θ] unabhängig von θ“
verletzt und auch eine weitere Bedingung:

0 /=
∫

R

∂

∂θ
L(x, θ) dx =

∫ θ

0

(
1

θ

)′
dx = − 1

θ2
· θ = −1

θ
.

Sei θ̂ ein erwartungstreuer Schätzer für θ, so würde nach der Ungleichung von Cramér-Rao
folgen, dass Varθ θ̂ ≥ (n · I(θ))−1, wobei

I(θ) = E

(
∂

∂θ
log L(X, θ)

)2

=
∫ θ

0

1

θ

(
∂

∂θ
log

(
1

θ

))2

dx =
1

θ

∫ θ

0
dx ·

(
−1

θ

)2

=
1

θ2
.

Damit hätten wir

Varθ θ̂ ≥ θ2

n
.

Betrachten wir

θ̂(X1, . . . , Xn) =
n + 1

n
max{X1, . . . , Xn} =

n + 1

n
X(n) .

Zeigen wir, dass

Eθ θ̂(X1, . . . , Xn) = θ und Varθ θ̂(X1, . . . , Xn) <
θ2

n
.
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Berechnen wir dazu EθXk
(n), k ∈ N. Es gilt

FX(n)
(x) = F n

Xi
(x) =





xn

θn , x ∈ [0, θ] ,

1 , x ≥ θ ,

0 , x < 0 ,

fX(n)
(x) = F ′

X(n)
(x) =

nxn−1

θn
· I(x ∈ [0, θ]) ,

EθXk
(n) =

∫ θ

0
xk nxn−1

θn
dx =

n

θn

∫ θ

0
xn+k−1 dx =

n · θn+k

θn · (n + k)
=

nθk

n + k
.

Damit folgt

Eθ θ̂ =
n + 1

n
· EθX(n) =

n + 1

n
· nθ

n + 1
= θ ,

das heißt, θ̂ ist erwartungstreu. Weiterhin gilt

Varθ θ̂ =
(

n + 1

n

)2

· Varθ X(n) =
(

n + 1

n

)2

·
(

nθ2

n + 2
− n2θ2

(n + 1)2

)2

=
(n + 1)2

n2
· n(n + 1)2 − n2(n + 2)

(n + 2)(n + 1)2
· θ2

=
θ2

n(n + 2)
(n2 + 2n + 1 − n2 − 2n) =

θ2

n(n + 2)

und somit

Varθ θ̂ =
θ2

n(n + 2)
<

θ2

n
.

3.5.2 Bedingte Erwartung

Seien X und Y zwei Zufallsvariablen, wobei Y eine absolut stetige Verteilung besitzt. Dann
folgt P(Y = y) = 0 ∀ y ∈ R. Deshalb kann die bedingte Wahrscheinlichkeit P(X ∈ B | Y = y)
auf dem gewöhnlichen Wege

P(X ∈ B|Y = y) =
P(X ∈ B, Y = y)

P(Y = y)

nicht definiert werden. Aus der Praxis ist aber eine Reihe von Fragestellungen bekannt (z.B.
Bayessche Analyse), in denen Wahrscheinlichkeiten P(X ∈ B|Y = y) ausgewertet werden müs-
sen. Deswegen werden wir eine neue Definition der bedingten Wahrscheinlichkeit geben, die
solche Situationen berücksichtigt. Diese Definition erfolgt durch die Definition der bedingten
Erwartung.

Schema:

1. Es wird die bedingte Erwartung von der Zufallsvariablen X bzgl. der σ-Algebra B als
Zufallsvariable E(X|B) eingeführt, wobei B eine Teil-σ-Algebra von F und (Ω, F ,P) der
Wahrscheinlichkeitsraum ist.
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2. Die bedingte Erwartung von X unter der Bedingung Y wird als E(X|Y ) = E(X|σY )
eingeführt, wobei σY die von Y erzeugte σ-Algebra ist.

3. P(X ∈ B|Y = y) wird als Zufallsvariable E(I(X ∈ B)|Y ) auf der Menge {ω ∈ Ω : Y (ω) =
y} eingeführt.

Gehen wir nun dieses Schema im Detail durch:

1. Sei (Ω, F ,P) ein Wahrscheinlichkeitsraum und B eine Teil-σ-Algebra von F , d.h. B ⊆ F .

Definition 3.5.1
Der bedingte Erwartungswert einer Zufallsvariablen X definiert auf dem Wahrscheinlich-
keitsraum (Ω, F ,P) bezüglich einer σ-Algebra B ⊆ F ist in dem Fall E|X| < ∞ als eine
B-messbare Zufallsvariable Y definiert, die die Eigenschaft

∫

B
Y (ω)P(dω) =

∫

B
X P(dω) , ∀ B ∈ B

besitzt. Dabei wird die Bezeichnung Y = E(X|B) verwendet.

Warum existiert diese Zufallsvariable Y ?

• Zerlegen wir X in den positiven X+ und negativen X− Anteil X = X+ − X−
und beweisen die Existenz von E(X±|B). Danach setzen wir E(X|B) = E(X+|B) −
E(X−|B).

• Somit genügt es zu zeigen, dass der Erwartungswert E(X|B) einer nicht negativen
Zufallsvariablen X ≥ 0 fast sicher existiert.

• Sei Q(B) =
∫

B X(ω)P(dω). Man kann zeigen, dass Q(·) ein Maß auf (Ω, F) ist.
Dabei folgt aus P(B) = 0 die Gleichheit Q(B) = 0 für B ∈ BR (bzw. B ∈ B). Somit
ist Q absolut stetig bzgl. P. Weiter existiert nach dem Satz von Radon-Nikodym
eine Dichte Y (ω), die messbar bzgl. B ist und für die

Q(B) =
∫

B
Y (ω)P(dω) =⇒ Y (ω) = E(X|B)

gilt.

Bemerkung 3.5.1
Aus der obigen Beweisskizze wird ersichtlich, dass Y (ω) = E(X|B) nur P-fast sicher
definiert ist. Somit kann man mehrere Versionen von Y (ω) angeben, die sich auf einer
Menge der Wahrscheinlichkeit 0 unterscheiden.

Satz 3.5.2 (Eigenschaften des bedingten Erwartungswertes):
Seien X und Y Zufallsvariablen auf dem Wahrscheinlichkeitsraum (Ω, F ,P) mit der Ei-
genschaft E|X| < ∞, E|Y | < ∞ und E|XY | < ∞ (dies kann noch ein wenig abgeschwächt
werden, ist hier allerdings ausreichend). Seien B, B1 und B2 Teil-σ-Algebren von F . Es
gelten folgende Eigenschaften (im fast sicheren Sinne):

a) E(X|{∅, Ω}) = EX, E(X|F) = X fast sicher.

b) Falls X ≤ Y fast sicher, dann gilt ebenso E(X|B) ≤ E(Y |B) fast sicher.

c) Es gilt E(XY |B) = X · E(Y |B), falls X B-messbar ist.

d) E(c|B) = c für c = const.
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e) Es gilt E(E(X|B2)|B1) = E(X|B1) und E(E(X|B1)|B2) = E(X|B1), falls B1 ⊆ B2.

f) Falls X unabhängig von B ist (d.h., die σ-Algebren σX = X−1(BR) und B sind
unabhängig), dann gilt E(X|B) = EX.

Ohne Beweis (siehe Beweis in [26]).

Beispiel 3.5.3
Sei B = σ({A1, . . . , An}), wobei {A1, . . . , An} eine messbare Zerlegung des Wahrschein-
lichkeitsraumes (Ω, F ,P) ist, d.h.

⋃n
i=1 Ai = Ω, Ai∩Aj = ∅ , i /= j, P(Ai) > 0 , i = 1, . . . , n.

Was ist E(X|B)? Da E(X|B) B-messbar ist, können wir die allgemeine Form der Funktio-
nen ausnutzen, die messbar bzgl. einer endlich erzeugten σ-Algebra B = σ({A1, . . . , An})
sind: E(X(ω)|B) =

∑n
i=1 kiI(ω ∈ Ai) (ohne Beweis).

Berechnen wir ki: Aus der Definition 3.5.1 folgt für B = Aj

∫

B
E(X|B)P(dω) =

∫

Aj

n∑

i=1

ki · I(ω ∈ Ai)P(dω) = kj · P(Aj)

=
∫

B
X P(dω) =

∫

Aj

X P(dω) = E(X · IAj )

=⇒ kj =
E(X · IAj )

P(Aj)
, j = 1, . . . , n .

=⇒ E(X(ω)|B) =
E(X · IAj )

P(Aj)
, falls ω ∈ Aj , j = 1, . . . , n .

2. Bedingte Erwartung bzgl. einer Zufallsvariablen Y :

Definition 3.5.2
Seien X und Y zwei Zufallsvariablen definiert auf dem Wahrscheinlichkeitsraum (Ω, F ,P).
Der bedingte Erwartungswert von X unter der Bedingung Y wird als E(X|Y ) = E(X|σY )
eingeführt, wobei σY die von Y erzeugte σ-Algebra ist: σY = Y −1(BR).

Lemma 3.5.1
Es existiert eine Borel-messbare Funktion g : R → R, für die gilt, dass E(X|Y ) = g(Y )
fast sicher (Ohne Beweis).

Daher wird die Schreibweise E(X|Y = y) als g(y) verstanden: E(X|Y = y) = g(y) oder
E(X|Y = y) ist der Wert von E(X|Y ) auf der Menge {ω ∈ Ω : Y (ω) = y}.

3. Bedingte Wahrscheinlichkeit bzgl. einer σ-Algebra bzw. einer Zufallsvariable.

Definition 3.5.3
Die bedingte Wahrscheinlichkeit von A ∈ F unter der Bedingung B ist gegeben durch
P(A|B) = E(IA|B) fast sicher. Analog dazu definieren wir P(A|Y ) = E(IA|Y ) für eine
Zufallsvariable Y .

Bemerkung 3.5.2
Die so definierte Familie von Zufallsvariablen P(·|B) erfüllen (fast sicher) nicht die Eigen-
schaften eines Maßes: Es gilt

0 ≤ P(A|B) ≤ 1 , ∀ A ∈ F fast sicher,
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aber die Eigenschaft der σ-Additivität

P(
∞⋃

i=1

Ai|B)
f.s.
=

∞∑

i=1

P(Ai|B)

für disjunkte {Ai} hängt von der Version P(·|B) ab. Das bedeutet, es existiert kein M ∈
F : P(M) = 0, so dass die obige Eigenschaft für alle ω ∈ MC gilt.

3.5.3 Suffizienz

Sei (X1, . . . , Xn) eine Stichprobe von unabhängigen identisch verteilten Zufallsvariablen Xi

mit Verteilungsfunktion Fθ , θ ∈ Θ ⊆ R
m. Wenn man von der vollen Information {X1 =

x1, . . . , Xn = xn} zum Schätzer θ̂(X1, . . . , Xn) des Parameters θ übergeht, dann entsteht durch
die Abbildung

θ̂ : Rn → R
m , m ≪ n

ein Informationsverlust, weil man normalerweise (X1, . . . , Xn) nicht aus θ̂(X1, . . . , Xn) zurück-
rechnen kann. Die sogenannten suffizienten Schätzer minimieren diesen Informationsverlust im
stochastischen Sinne:

Definition 3.5.4

1. Seien Zufallsvariablen X1, . . . , Xn und θ̂(X1, . . . , Xn) diskret verteilt. Ein Schätzer θ̂ des
Parameters θ heißt suffizient, falls

Pθ

(
X1 = x1, . . . , Xn = xn

∣∣ θ̂(X1, . . . , Xn) = t
)

nicht von θ abhängt für beliebige x1, . . . , xn und t aus den Trägern der Zähldichten von
(X1, . . . , Xn) bzw. θ̂(X1, . . . , Xn).

2. Falls X1, . . . , Xn und θ̂(X1, . . . , Xn) absolut stetig verteilt sind, dann heißt der Schätzer
θ̂ suffizient für θ, falls die Wahrscheinlichkeit

P

(
(X1, . . . , Xn) ∈ B

∣∣ θ̂(X1, . . . , Xn) = t
)

für beliebige B ∈ BRn und t ∈ suppfθ̂ nicht von θ ∈ Θ abhängt, wobei fθ̂ die Dichte von

θ̂ ist.

Bemerkung 3.5.3

1. Betrachten wir im diskreten Fall die bedingte Likelihood-Funktion

Lθ̂(x1, . . . , xn, θ) = Pθ

(
X1 = x1, . . . , Xn = xn

∣∣ θ̂(X1, . . . , Xn) = t
)

.

Aus Definition 3.5.4 folgt, dass wir keinen neuen ML-Schätzer für θ aus dieser beding-
ten Likelihood Lθ(x1, . . . , xn, θ) gewinnen werden können, da sie nicht von θ abhängt.
Das heißt, der Schätzer θ̂ enthält bereits die volle Information über θ, die man aus der
Stichprobe (x1, . . . , xn) gewinnen kann.
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2. Falls g : R
m → R

m eine bijektive Borel-messbare Abbildung und θ̂(X1, . . . , Xn) ein
suffizienter Schätzer von θ ∈ Θ ⊂ R

m ist, dann ist der Schätzer g(θ̂(X1, . . . , Xn)) auch
ein suffizienter Schätzer für θ. Dies wird aus der Tatsache ersichtlich, dass

{
ω ∈ Ω : g

(
θ̂(X1, . . . , Xn)

)
= t
}

=
{

ω ∈ Ω : θ̂(X1, . . . , Xn) = g−1(t)
}

, ∀ t .

Lemma 3.5.2 (Suffizienz):
Seien Zufallsvariablen X1, . . . , Xn und θ̂(X1, . . . , Xn) entweder alle diskret oder absolut stetig
verteilt mit den Likelihood-Funktionen

L(x1, . . . , xn, θ) =

{
Pθ(X1 = x1, . . . , Xn = xn) , im diskreten Fall,

fX1,...,Xn(x1, . . . , xn) , im absolut stetigen Fall,

Lθ̂(t, θ) =

{
Pθ(θ̂(X1, . . . , Xn) = t) , im diskreten Fall,

fθ̂(t, θ) , im absolut stetigen Fall.

Seien die Träger um L bzw. Lθ̂ gegeben durch

suppL = {(x1, . . . , xn) ∈ R
n : L(x1, . . . , xn, θ) > 0} ,

suppLθ̂ = {t ∈ R : Lθ̂(t, θ) > 0} .

Der Schätzer θ̂ ist suffizient für θ genau dann, wenn

L(x1, . . . , xn, θ)

Lθ̂(θ̂(x1, . . . , xn), θ)
(3.5.1)

nicht von θ abhängig ist für alle (x1, . . . , xn) ∈ suppL.

Beweis Wir beweisen lediglich den diskreten Fall:

„=⇒“ Ist θ̂ suffizient, so überprüfen wir, ob damit folgt, dass (3.5.1) von θ abhängt für alle
(x1, . . . , xn) ∈ suppL. Es gilt:

Pθ(X1 = x1, . . . , Xn = xn | θ̂(X1, . . . , Xn) = t)

=
Pθ(X1 = x1, . . . , Xn = xn, θ̂(X1, . . . , Xn) = t)

Pθ(θ̂(X1, . . . , Xn) = t)

=





0 , falls θ̂(x1, . . . , xn) /= t
Pθ(X1=x1,...,Xn=xn)

Pθ(θ̂(X1,...,Xn)=θ̂(x1,...,xn))
, falls θ̂(x1, . . . , xn) = t .

Somit hängt (3.5.1) nicht von θ ab.

„⇐=“ Folgt aus dem 1.Fall durch Betrachtung von hinten.

Beispiel 3.5.4
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1. Bernoulli-Verteilung: Seien Xi ∼ Bernoulli(p), p ∈ [0, 1], i = 1, . . . , n, p̂ = X̄n ein
erwartungstreuer Schätzer für p. Wir zeigen nun, dass p̂ suffizient ist. Es gilt

p̂ = X̄n =
1

n

n∑

i=1

Xi =
1

n
Y ,

wobei Y ∼ Bin(n, p). Es genügt nach Bemerkung 3.5.3 2) zu zeigen, dass Y ein suffizienter
Schätzer für p ist. Nach Lemma 3.5.2 gilt für xi ∈ {0, 1} , i = 1, . . . , n

P(X1 = x1, . . . , Xn = xn) =
n∏

i=1

pxi(1 − p)1−xi = p
∑n

i=1
xi(1 − p)n−

∑n

i=1
xi .

Definieren wir nun LY als

LY (y, p) =

(
n

y

)
py(1 − p)1−y , y = 0, . . . , n .

Setzen wir nun statt y die Summe
∑n

i=1 xi ein und betrachten

L(x1, . . . , xn, p)

LY (
∑n

i=1 xi, p)
=

p
∑n

i=1
xi(1 − p)n−

∑n

i=1
xi

( n∑n

i=1
xi

)
p
∑n

i=1
xi(1 − p)n−

∑n

i=1
xi

=
1( n∑n

i=1
xi

) .

Dies hängt offensichtlich nicht von p ab, womit folgt, dass Y und somit p̂ suffizient sind.

2. Normalverteilung mit bekannter Varianz: Seien Xi ∼ N(µ, σ2) , i = 1, . . . , n, σ2 be-
kannt. So ist µ̂ = X̄n ein erwartungstreuer Schätzer für µ. Zeigen wir nun, dass µ̂ suffizient
ist: Betrachten wir

L(x1, . . . , xn, µ) =
n∏

i=1

1√
2πσ

exp

(
−1

2

(
xi − µ

σ

)2
)

=
1

(2πσ2)n/2
· exp

(
−
∑n

i=1(xi − µ)2

2σ2

)

und nach Lemma 2.2.1

=
1

(2πσ2)n/2
· exp

(
−
∑n

i=1(xi − x̄n)2 + n(x̄n − µ)2

2σ2

)
.

Ferner gilt bekanntermaßen µ̂ ∼ N(µ, σ2/n), und somit

Lµ̂(x, µ) =

√
n√

2πσ
· exp

(
−n

2

(
x − µ

σ

)2
)

,

L(x1, . . . , xn, µ)

Lµ̂(x̄n, µ)
=

1
(2πσ2)n/2 · exp

(
−
∑n

i=1
(xi−x̄n)2+n(x̄n−µ)2

2σ2

)

√
n√

2πσ
· exp

(
−n(x̄n−µ)2

2σ2

)

=

√
n

(2πσ2)n/2−1
· exp

(
− 1

2σ2

n∑

i=1

(xi − x̄n)

)
,

was von µ unabhängig ist. Somit folgt nach Lemma 3.5.2, dass µ̂ = X̄n ein suffizienter
Schätzer für µ ist.
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Mit Hilfe des nächsten Satzes von Neyman-Fisher wird es möglich sein zu zeigen, dass bei
unbekannter Varianz der Schätzer (X̄n, S2

n) für (µ, σ2) suffizient ist.

Satz 3.5.3 (Faktorisierungssatz von Neyman-Fisher):
Unter den Voraussetzungen von Lemma 3.5.2 ist θ̂(X1, . . . , Xn) ein suffizienter Schätzer für θ
genau dann, wenn zwei messbare Funktionen g : Rm×Θ → R und h : Rn → R existieren, so dass
folgende Faktorisierung der Likelihood-Funktion L(x1, . . . , xn, θ) der Stichprobe (X1, . . . , Xn)
gilt:

L(x1, . . . , xn, θ) = g
(
θ̂(x1, . . . , xn), θ

)
· h(x1, . . . , xn) , (x1, . . . , xn) ∈ suppL , θ ∈ Θ .

Beweis Wir beweisen nur den diskreten Fall.

1. Falls θ̂ suffizient ist, dann hängt nach Lemma 3.5.2

L(x1, . . . , xn, θ)

Lθ̂(θ̂(x1, . . . , xn), θ)
︸ ︷︷ ︸

=g(θ̂(x1,...,xn),θ)

= h(x1, . . . , xn)

nicht von θ ab. Somit bekommen wir die Faktorisierung von Neyman-Fisher.

2. Sei nun L(x1, . . . , xn, θ) = g(θ̂(x1, . . . , xn), θ) · h(x1, . . . , xn) für alle (x1, . . . , xn) ∈ suppL,
θ ∈ Θ. Führen wir eine Menge

C = {(y1, . . . , yn) ∈ R
n : θ̂(y1, . . . , yn) = θ̂(x1, . . . , xn)} = θ̂−1

(
θ̂ (x1, . . . , xn)

)

ein. So gilt

Pθ(X1 = x1, . . . , Xn = xn)

Lθ(θ̂(x1, . . . , xn), θ)︸ ︷︷ ︸
=Pθ(θ̂(X1,...,Xn)=θ̂(x1,...,xn))

=
g(θ̂(x1, . . . , xn), θ) · h(x1, . . . , xn)∑

(y1,...,yn)∈C Pθ(X1 = y1, . . . , Xn = yn)

=
g(θ̂(x1, . . . , xn), θ) · h(x1, . . . , xn)

∑
(y1,...,yn)∈C g(θ̂(y1, . . . , yn)︸ ︷︷ ︸

=θ̂(x1,...,xn)

, θ) · h(y1, . . . , yn)

=
h(x1, . . . , xn)∑

(y1,...,yn)∈C h(y1, . . . , yn)
,

welches nicht von θ abhängt. Daher ist θ̂ nach Lemma 3.5.2 suffizient.
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Beispiel 3.5.5

1. Poisson-Verteilung: Seien Xi ∼ Poisson(λ) , λ > 0, λ̂ = X̄n ein erwartungstreuer
Schätzer für λ. Zeigen wir, dass λ̂ suffizient ist. Es gilt für xi ∈ {0, 1, 2, . . .}, i = 1, . . . , n

L(x1, . . . , xn, λ) =
n∏

i=1

e−λ λxi

xi!
=

e−λn · λ
∑n

i=1
xi

x1! · . . . · xn!
=

e−nλλnx̄n

x1! · . . . · xn!

= g(x̄n, λ) · h(x1, . . . , xn) ,

wobei g(x̄n, λ) = e−nλ · λnx̄n , h(x1, . . . , xn) = 1
x1!·...·xn! ist. Somit ist λ̂ = X̄n nach Satz

3.5.3 suffizient.

2. Exponentialverteilung: Seien Xi ∼ Exp(λ), λ > 0, λ̂ = X̄−1
n ein Momentenschätzer für

λ, der zwar nicht erwartungstreu ist, jedoch stark konsistent, denn X̄n
f.s.−→

n→∞ EXi = 1
λ

nach dem starken Gesetz der großen Zahlen. Zeigen wir, dass λ̂ suffizient ist. Für x1 ≥
0, . . . , xn ≥ 0 gilt

L(x1, . . . , xn, λ) =
n∏

i=1

λe−λxi = λne−λ
∑n

i=1
xi = λne−λnx̄n

= λne
− λn

λ̂ = g
(
λ̂, λ

)
· h(x1, . . . , xn)︸ ︷︷ ︸

=1

,

wobei g(λ̂, λ) = λne
− λn

λ̂ und h(x1, . . . , xn) ≡ 1 ist. Somit ist λ̂ nach dem Satz 3.5.3
suffizient.

Übungsaufgabe 3.5.2
Zeigen Sie mit Hilfe des Satzes 3.5.3, dass der Schätzer (X̄n, S2

n) suffizient für (µ, σ2) im Falle
der normal und unabhängig identisch verteilten Stichprobe (X1, . . . , Xn), Xi ∼ N(µ, σ2) ist.

Bemerkung 3.5.4
Der Vorteil des Satzes von Neyman-Fisher ist, dass man für die Überprüfung der Suffizienzei-
genschaft von θ̂ die Likelihood-Funktion von θ̂ nicht explizit zu kennen braucht. Dies ist insbe-
sondere in den Fällen vorteilhaft, in denen der Schätzer θ̂ kompliziert ist und seine Likelihood-
Funktion nicht analytisch angegeben werden kann (bzw. unbekannt ist).

3.5.4 Vollständigkeit

Definition 3.5.5
Ein Schätzer θ̂(X1, . . . , Xn) des Parameters θ ∈ Θ ⊂ R

m heißt vollständig, falls für beliebige
messbare Funktionen g : Rm → R mit der Eigenschaft Eθg(θ̂(X1, . . . , Xn)) = 0 , θ ∈ Θ folgt

g
(
θ̂ (X1, . . . , Xn)

)
f.s.≡ 0 .

Bemerkung 3.5.5

1. Seien g1, g2 : Rm → R Funktionen, für die ∀θ ∈ Θ gilt

Eθ

∣∣∣gi

(
θ̂ (X1, . . . , Xn)

)∣∣∣ < ∞ , Eθg1

(
θ̂ (X1, . . . , Xn)

)
= Eθg2

(
θ̂ (X1, . . . , Xn)

)
,
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wobei θ̂ vollständig ist. So folgt aus der Definition 3.5.5

g1

(
θ̂ (X1, . . . , Xn)

)
= g2

(
θ̂(X1, . . . , Xn)

)

fast sicher (nehme g = g1 − g2).

Fazit: Die Eigenschaft der Vollständigkeit erlaubt aus dem Vergleich der Schätzer g1(θ̂)
und g2(θ̂) im Mittel eine Aussage über ihre fast sichere Gleichheit zu machen.

2. Falls θ̂ ein vollständiger Schätzer für θ ist, dann ist auch g(θ̂) ein vollständiger Schätzer
für θ für eine beliebige messbare Funktion g : Rm → R

n.

Beispiel 3.5.6

1. Bernoulli-Verteilung: Seien Xi ∼ Bernoulli(p), p ∈ [0, 1]. Zeigen wir, dass p̂ = X̄n

vollständig ist:

Sei g eine beliebige Funktion R → R. Es genügt zu zeigen, dass Y =
∑n

i=1 Xi vollständig
ist. Es gilt Y ∼ Bin(n, p), womit folgt, dass

Epg(Y ) =
n∑

k=0

g(k)

(
n

k

)
pk(1 − p)n−k .

Weiter gilt Epg(Y ) = 0 genau dann, wenn

n∑

k=0

g(k)

(
n

k

)(
p

1 − p︸ ︷︷ ︸
=t

)k

= pn(t) = 0

für p ∈ (0, 1), also t ∈ (0, ∞). pn(t) ist ein Polynom des Grades n, womit folgt

g(k)

(
n

k

)
= 0 für alle k =⇒ g(k) = 0, k = 0, . . . , n =⇒ g(Y ) = 0 Pp-fast sicher.

Somit ist Y vollständig und daher auch p̂ = X̄n.

2. Gleichverteilung: Sei Xi ∼ U [0, θ] , i = 1, . . . , n. Wie wir bereits gezeigt haben, ist der
Schätzer θ̂(X1, . . . , Xn) = n+1

n X(n) erwartungstreu. Zeigen wir nun, dass er ein vollständi-
ger Schätzer ist. Es genügt zu zeigen, dass X(n) = maxi=1,...,n Xi vollständig ist. Es ist zu
zeigen, dass für alle messbaren g : R → R aus Eθg(X(n)) = 0 folgt g(X(n)) = 0 fast sicher.

Die Dichte von X(n) ist nach Beispiel 3.5.2 gegeben durch fX(n)
(x) = nxn−1

θn · I[0,θ](x).

0 =
d

dθ
Eθg(X(n)) =

d

dθ

∫ θ

0
g(x)fX(n)

(x) dx =
d

dθ

1

θn

∫ θ

0
nxn−1g(x) dx

= −n
1

θn+1

∫ θ

0
g(x)nxn−1 dx +

1

θn
nθn−1g(θ) = −n

θ
Eθg(X(n))︸ ︷︷ ︸

=0

+
n

θ
g(θ)

=
n

θ
g(θ) = 0 , θ > 0 =⇒ g(x) = 0 , x > 0.

Daher gilt g(X(n)) = 0 fast sicher.
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3.5.5 Bester erwartungstreuer Schätzer

Aus Definition 3.3.7 folgt: Sei (X1, . . . , Xn) eine Zufallsstrichprobe, Xi ∼ Fθ, θ ∈ Θ ⊂ R

(m = 1), Xi unabhängig identisch verteilte Zufallsvariablen. Dann heißt θ̂(X1, . . . , Xn) bester
erwartungstreuer Schätzer, falls

Eθθ̂2(X1, . . . , Xn) < ∞ Eθθ̂(X1, . . . , Xn) = θ, θ ∈ Θ.

und θ̂ die minimale Varianz unter allen erwartungstreuen Schätzern besitzt.

Lemma 3.5.3 (Eindeutigkeit der besten erwartungstreuen Schätzer):
Falls θ̂ ein bester erwartungstreuer Schätzer für θ ist, dann ist er eindeutig bestimmt.

Beweis Sei θ̂ = θ̂(X1, . . . , Xn) ein bester erwartungstreuer Schätzer für θ und θ̃ ein weiterer
bester erwartungstreuer Schätzer für θ. Zeigen wir, dass θ̂ = θ̃.

Ex adverso: Nehmen wir an, dass θ̂ /= θ̃ ist und betrachten θ∗ = 1/2(θ̂ + θ̃). Offensichtlich ist
θ∗ erwartungstreu. Untersuchen wir

Varθθ∗ =
1

4
Varθ(θ̂ + θ̃) =

1

4
Varθθ̂ +

1

4
Varθθ̃ +

1

2
Covθ(θ̂, θ̃) .

Da θ̂, θ̃ beste erwartungstreue Schätzer sind und mit der Ungleichung von Cauchy-Schwarz

|Covθ(θ̂, θ̃)| ≤
√

Varθθ̂ · Varθθ̃ = Varθθ̂ gilt, folgt

Varθθ∗ ≤ 1

2
Varθθ̂ +

1

2
Varθθ̂ = Varθθ̂ .

Da θ̂ der beste erwartungstreue Schätzer ist folgt Varθθ∗ = Varθθ̂ und somit ̺(θ̂, θ̃) = 1 =⇒ θ̂
und θ̃ sind linear abhängig, d.h. es existieren Konstanten a und b, für die gilt θ̂ = aθ̃ + b.
Es folgt a = 1 aus Varθθ̂ = a2Varθ̃ = Varθθ̂ und b = 0, weil θ̂ und θ̃ erwartungstreu sind:
θ = Eθθ̂ = Eθθ̃ + b = θ + b. Das bedeutet, dass θ̂ = θ̃.

Lemma 3.5.4
Ein erwartungstreuer Schätzer θ̂, dessen zweites Moment endlich ist, ist genau dann der beste
erwartungstreue Schätzer für θ, wenn Covθ(θ̂, ϕ) = 0 , θ ∈ Θ für eine beliebige Stichproben-
funktion ϕ : Rn → R mit der Eigenschaft Eθϕ(X1, . . . , Xn) = 0 , ∀θ ∈ Θ.

Beweis Wir beweisen den Satz für beide Richtungen getrennt:

„=⇒“ Sei θ̂ der beste erwartungstreue Schätzer für θ, ϕ(X1, . . . , Xn) eine Stichprobenfunktion
mit Eθϕ(X1, . . . , Xn) = 0 , ∀θ ∈ Θ. So ist zu zeigen, dass Covθ(θ̂, ϕ) = Eθ(θ̂ϕ) = 0 , θ ∈
Θ gilt.

Definieren wir θ̃ = θ̂ + aϕ , a ∈ R. Berechnen wir

Varθθ̃ = Varθθ̂ + a2Varθϕ + 2aCovθ(θ̂, ϕ)

für a ∈ R. Sei g(a) = a2Varθϕ + 2aCovθ(ϕ, θ̂). Falls Covθ(ϕ, θ̂) /= 0, dann existiert ein
a ∈ R mit g(a) < 0. Da θ̃ ein erwartungstreuer Schätzer für θ ist (Eθθ̃ = Eθθ̂ + aEθϕ =
θ + 0 = θ) folgt Varθθ̃ ≥ Varθθ̂ für alle a ∈ R. Dies ist jedoch ein Widerspruch mit
g(a) < 0 für ein a ∈ R. Damit folgt Covθ(ϕ, θ̂) = 0 , θ ∈ Θ.
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„⇐=“ Sei θ̂ erwartunsgtreu, Eθθ̂2 < ∞, θ ∈ Θ, Covθ(ϕ, θ̂) = 0 , θ ∈ Θ, falls Eθϕ = 0, θ ∈
Θ. Sei θ̃ ein anderer erwartungstreuer Schätzer für θ. Zeigen wir, dass Varθθ̃ ≥ Varθθ̂. Es
gilt

θ̃ = θ̂ + (θ̃ − θ̂︸ ︷︷ ︸
=:ϕ

) , Eθϕ = Eθθ̃ − Eθθ̂ = θ − θ = 0 , ∀θ ∈ Θ .

Somit
Varθθ̃ = Varθθ̂ + Varθϕ︸ ︷︷ ︸

≥0

+2 Covθ(θ̂, ϕ)︸ ︷︷ ︸
=0

≥ Varθθ̂ ,

woraus folgt, dass θ̂ der beste Erwartungstreuer Schätzer für θ ist.

Satz 3.5.4 (Lehmann-Scheffé):
Sei θ̂ ein erwartungstreuer vollständiger und suffizienter Schätzer für θ, Eθθ̂2 < ∞ , ∀θ ∈ Θ.
Dann ist θ̂ der beste erwartungstreue Schätzer für θ.

Beweis Nach Lemma 3.5.4 ist zu zeigen, dass Covθ(θ̂, ϕ) = Eθ(θ̂ϕ) = 0 , θ ∈ Θ, falls Eθϕ =
0 , θ ∈ Θ. Es ist

Eθ(θ̂ϕ) = Eθ(E(θ̂ϕ|θ̂))
θ̂ σ(θ̂)-messbar

= Eθ(θ̂ · Eθ(ϕ|θ̂)) = Eθ(θ̂ · g(θ̂))
?
= 0 ,

falls g(θ̂) = 0 fast sicher. Da θ̂ suffizient ist, ist g(t) = Eθ(ϕ | θ̂ = t) unabhängig von θ. Betrachten
wir Eθg(θ̂). Wir wollen zeigen, dass Eθg(θ̂) = 0 , θ ∈ Θ. Daraus und aus der Vollständigkeit
von θ̂ wird folgen, dass g(θ̂) = 0 fast sicher für alle θ ∈ Θ.

Eθg(θ̂) = Eθ(Eθ(ϕ|θ̂)) = Eθϕ = 0

nach Voraussetzung. Somit folgt Eθ(ϕθ̂) = 0 und θ̂ ist unkorreliert mit ϕ : Eθϕ = 0 , θ ∈ Θ,
womit folgt, dass nach Lemma 3.5.4 θ̂ der beste erwartungstreue Schätzer ist.

Satz 3.5.5
Sei θ̂ ein erwartungstreuer Schätzer für θ, Eθθ̂2 < ∞, θ ∈ Θ. Sei θ̃ ein vollständiger und suf-
fizienter Schätzer für θ. Dann ist der Schätzer θ∗ = E(θ̂ | θ̃) der beste erwartungstreue Schätzer
für θ.

Beweis 1. Zeigen wir, dass Eθθ∗2 < ∞ ∀θ ∈ Θ. Es gilt

Eθ

(
θ∗2
)

= Eθ

(
E

(
θ̂ | θ̃

))2
≤ Eθ

(
E

(
θ̂2 | θ̃

))
= Eθθ̂2 < ∞ ,

da mit der Ungleichung von Jensen für bedingte Erwartung gilt

f(E(X | B))
f.s.
≤ E(f(X) | B)

für jede Zufallsvariable X, σ-Algebra B und konvexe Funktion f .

2. Zeigen wir, dass θ∗ erwartungstreu ist: Eθθ∗ = Eθ(E(θ̂ | θ̃)) = Eθθ̂ = θ, θ ∈ Θ, weil θ̂
erwartungstreu ist.



3 Punktschätzer 105

3. Nach Lemma 3.5.4 genügt es zu zeigen, dass Eθ(θ∗ϕ) = 0 für θ ∈ Θ, falls Eθϕ = 0,
θ ∈ Θ.

Eθ(θ∗ϕ) = Eθ

(
E
(
θ̂ | θ̃

)
︸ ︷︷ ︸

=g(θ̃), θ̃ suf.

ϕ
)

= Eθ

(
g
(
θ̃
)
ϕ
)

= Eθ

(
E
(
g
(
θ̃
)
ϕ | θ̃

))

g(θ̃) θ̃-messbar
= Eθ

(
g(θ̃) · E(ϕ | θ̃)︸ ︷︷ ︸

=g1(θ̃)

)
= 0 ,

falls g1(θ̃)
f.s.
= 0, θ ∈ Θ. Zeigen wir, dass Eθg1(θ̃) = 0. Es gilt Eθg1(θ̃) = Eθ(E(ϕ | θ̃)) =

Eθϕ = 0 nach Voraussetzung. Daraus und aus der Vollständigkeit von θ̃ folgt genauso wie
im Beweis des Satzes 3.5.4, dass g1(θ̃) = 0 fast sicher.

Lemma 3.5.5 (Ungleichung von Blackwell-Rao):
Sei θ̂ ein erwartungstreuer Schätzer für θ, Eθθ̂2 < ∞ , θ ∈ Θ. Sei θ̃ ein suffizienter Schätzer für
θ. Dann besitzt der erwartungstreue Schätzer θ∗ := E(θ̂ | θ̃) eine Varianz, die kleiner oder gleich
als Varθθ̂ ist.

Beweis Siehe Beweis des Satzes 3.5.5. Dabei folgt die Erwartungstreue von θ∗ aus Beweispunkt
2) des Satzes 3.5.5 und Varθθ∗ = Eθθ∗2 −θ2 ≤ Eθθ̂2 −θ2 = Varθθ̂ aus Beweispunkt 1) des Satzes
3.5.5.

Bemerkung 3.5.6
Die Suffizienz θ̃ kommt im Beweis des Lemmas 3.5.5 explizit nicht vor. Dennoch ist sie notwen-
dig, damit der Schätzer θ∗ = E(θ̂ | θ̃) = g(θ̃) nicht von θ abhängt.

Folgerung 3.5.2
Falls θ̂ ein vollständiger und suffizienter Schätzer für θ ist und falls eine Funktion g : R → R

so existiert, dass Eθg(θ̂) = θ ∀θ ∈ Θ, dann ist g(θ̂) der beste erwartungstreue Schätzer für θ.

Beweis g(θ̂) = E(g(θ̂) | θ̂), welcher nach Satz 3.5.5 der beste erwartungstreue Schätzer ist.



4 Konfidenzintervalle

4.1 Einführung

Konfidenz- oder Vertrauensintervalle wurden bereits in Kapitel 3 exemplarisch behandelt (vgl.
Folgerung 3.3.2 und Bemerkung 3.3.4 des). In diesem Kapitel werden wir eine formale Definiti-
on eines Konfidenzintervalles angeben, um Vertrauensintervalle in größerer Tiefe studieren zu
können. Dabei werden sowohl Ein- als auch Zweistichprobenprobleme behandelt.

Rufen wir uns die Annahmen eines parametrischen Modells in Erinnerung: es sei eine Stich-
probe (X1, . . . , Xn) von unabhängigen, identisch verteilten Zufallsvariablen mit Xi ∼ Fθ ge-
geben, wobei Fθ eine Verteilungsfunktion aus einer parametrischen Familie von Verteilungen
{Fθ : θ ∈ Θ}, Θ ⊂ R

m ist, dem m-dimensionalen Parameterraum, m ≥ 1.
Die Punktschätzer von θ liefern jeweils einen Wert für den Parametervektor. Es wäre al-

lerdings auch vorteilhaft, die Genauigkeit solcher Schätzansätze zu nennen, das heißt, einen
Bereich anzugeben, in dem θ mit hoher Wahrscheinlichkeit 1 − α liegt. Dabei heißt α Irrtums-
wahrscheinlichkeit; übliche Werte für α sind α = 0, 01; 0, 05; 0, 1. Die Wahrscheinlichkeit 1 − α,
daß θ im vorgegebenen Konfidenzintervall liegt, heißt dann Überdeckungswahrscheinlichkeit
oder Konfidenzniveau und soll dann entsprechend hoch ausfallen, z.B. 0, 99; 0, 95; 0, 9.

Definition 4.1.1
Es sei 1 − α ein Konfidenzniveau und θ : Rn → R = R ∪ {±∞}, θ : Rn → R zwei Stichproben-
funktionen mit der Eigenschaft

θ(x1, . . . xn) ≤ θ(x1, . . . , xn) ∀(x1, . . . xn) ∈ R
n.

Falls

1. Pθ

(
θ ∈

[
θ(X1, . . . , Xn), θ(X1, . . . Xn)

])
≥ 1 − α, θ ∈ Θ

2. inf
θ∈Θ

Pθ

(
θ ∈

[
θ(X1, . . . , Xn), θ(X1, . . . , Xn)

])
= 1 − α

3. lim
n→∞

Pθ

(
θ ∈

[
θ(X1, . . . , Xn), θ(X1, . . . , Xn)

])
= 1 − α, θ ∈ Θ

dann heißt I =
[
θ(X1, . . . , Xn), θ(X1, . . . Xn)

]
ein

1. Konfidenzintervall

2. minimales Konfidenzintervall

3. asymptotisches Konfidenzintervall

zum Konfidenzniveau 1−α. Dabei heißt lθ(X1, . . . Xn) = θ(X1, . . . Xn)−θ(X1, . . . Xn) die Länge
des Konfidenzintervalls. Es ist erwünscht, möglichst kleine Konfidenzintervalle (mit minimaler
Länge) bei großem Konfidenzniveau für θ zu konstruieren.

106
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Wie bereits bei den Beispielen im Statistik I-Skript ersichtlich ist, folgt die Konstruktion
eines Konfidenzintervalls einem bestimmten Muster, das wir jetzt genauer studieren werden:

1. Finde eine Statistik T (X1, . . . , Xn, θ), die

• vom Parameter θ abhängt und

• eine bekannte (Prüf-) Verteilung F besitzt (möglicherweise asymptotisch für n →
∞).

2. Bestimme von der Verteilung F die Quantile F −1(α1) und F −1(1 − α2) für Niveaus α1

und 1 − α2, sodaß α1 + α2 = α.

3. Löse (falls möglich) die Ungleichung F −1(α1) ≤ T (X1, . . . , Xn, θ) ≤ F −1(1 − α2) bzgl. θ
auf. Das entsprechende Ergebnis I =

[
T −1(F −1(α)), T −1(F −1(1 − α2))

]
(im Falle einer

monoton in θ steigenden Statistik T ) ist ein Konfidenzintervall für θ zum Niveau 1 − α,
denn es gilt

Pθ (θ ∈ I) = Pθ

(
T −1

θ (F −1(α1)) ≤ θ ≤ T −1(F −1(1 − α2))
)

= Pθ

(
F −1(α1) ≤ Tθ(X1, . . . , Xn, θ) ≤ F −1(1 − α2)

)

= F (F −1(1 − α2)) − F (F −1(α1))

= 1 − α2 − α1

= 1 − α für alle θ ∈ Θ.

Für asymptotische Konfidenzintervalle soll überall noch lim
n→∞

geschrieben werden: lim
n→∞

Pθ(θ ∈
I) = . . . = 1 − α. Hierbei ist T −1

θ die Inverse von T (X1, . . . , Xn, θ) bezüglich θ. Grafisch kann
dies auf Abb. 4.1 veranschaulicht werden.

Definition 4.1.2

1. Falls α1 = α2 = α/2, dann heißt das Konfidenzintervall I =
[
T −1(F −1(α

2 )), T −1(F −1(1 − α
2 ))
]

symmetrisch.

2. Falls α1 = 0 (bzw. θ(X1, . . . , Xn) = −∞), dann heißt das Konfidenzintervall(
−∞, θ(X1, . . . , Xn)

]
einseitig. Das selbe gilt für α2 = 0 (bzw. θ(X1, . . . , Xn) = +∞)

und das Vertrauensintervall [θ(X1, . . . , Xn), +∞).

In der Zukunft werden wir oft, ohne Beschränkung der Allgemeinheit, symmetrische Konfi-
denzintervalle konstruieren, obwohl man auch ein allgemeineres, nicht-symmetrisches Intervall
leicht angeben kann.

Bemerkung 4.1.1
Man sieht leicht, daß der Algorithmus zur Konstruktion eines Vertrauensbereiches sich sehr dem
eines statistischen Tests ähnelt. Im letzten Fall heißt T (X1, . . . , Xn) Teststatistik. Im Allgemei-
nen kann man für jedes Konfidenzintervall einen entsprechenden statistischen Test angeben,
aber nicht umgekehrt. In der Vorlesung Stochastik III werden wir einige Beispiele dieser Über-
tragung „Konfidenzintervall 7→ Test“ sehen.
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Abb. 4.1: asymptotisches Konfidenzintervall

4.2 Ein-Stichproben-Probleme

In diesem Abschnitt werden wir einige Beispiele von Vertrauensbereichen für Parameter einiger
bekannter Verteilungen nach dem oben genannten Schema konstruieren. Dabei werden wir
immer mit einer Stichprobe (X1, . . . , Xn) wie in Abschnitt 4.1 arbeiten.

4.2.1 Normalverteilung

Es seien X1, . . . , Xn unabhängig, identisch verteilt, mit Xi ∼ N(µ, σ2).

Konfidenzintervalle für den Erwartungswert µ

• bei bekannter Varianz σ2 Wenn wir annehmen, daß σ2 bekannt ist, so ermöglicht uns
der Satz 3.3.1, 4., ein exaktes Konfidenzintervall für µ zum Niveau 1 − α zu berechnen.
Denn es gilt Xn ∼ N

(
µ, σ2/n

)
und somit

T (X1, . . . , Xn, µ) =
√

n
Xn − µ

σ
∼ N(0, 1)

Es seien zα1 und z1−α2 Quantile der N(0, 1)-Verteilung, α1 + α2 = α und 1 − α das
vorgegebene Konfidenzniveau.

Dann gilt

1 − α = P (zα1 ≤ T (X1, . . . , Xn, µ) ≤ z1−α2)

= P

(
zα1 ≤ √

n
Xn − µ

σ
≤ z1−α2

)

(−zα1 =z1−α1 )
= P

(
Xn − z1−α2σ√

n
≤ µ ≤ Xn +

z1−α1σ√
n

)
.

Somit ist
[
θ(X1, . . . , Xn), θ(X1, . . . , Xn)

]
mit θ(X1, . . . , Xn) = Xn − z1−α2

σ√
n

und

θ(X1, . . . , Xn) = Xn + z1−α1
σ√
n

ein exaktes Konfidenzintervall für µ zum Niveau 1 − α.

Es hat die Länge lµ(X1, . . . , Xn) = σ√
n

(z1−α2 + z1−α1). Es gilt lµ(X1, . . . , Xn) → 0, für

n → ∞ was bedeutet, daß bei wachsendem Informationsumfang (n → ∞) die Präzision
der Schätzung immer besser wird.

Im Symmetriefall (α1 = α2 = α/2) müssen wir schreiben θ(X1, . . . , Xn) = Xn−z1−α/2
σ√
n

,

θ(X1, . . . , Xn) = Xn + z1−α/2
σ√
n

und lµ(X1, . . . , Xn) = 2σ√
n

z1−α/2.
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Daraus folgt, daß man bei vorgegebener Länge ε > 0 die Anzahl der Beobachtungen n
bestimmen kann, die dann notwendig sind, um die vorgegebene Präzision zu erreichen:

2σ√
n

z1−α/2 ≤ ε ⇐⇒ n ≥
(

2σz1−α/2

ε

)2

(4.2.1)

Für α1 = 0 bzw. α2 = 0 kann man einseitige Intervalle
(
−∞, Xn + z1−α

σ√
n

]
und[

Xn − z1−α
σ√
n

, +∞
)

genauso angeben.

• bei unbekannter Varianz σ2: siehe Bemerkung 3.3.4.

Dort wurde das Konfidenzintervall
[
Xn − tn−1,1−α/2√

n
Sn, Xn +

tn−1,1−α/2√
n

Sn

]
für µ zum

Konfidenzniveau 1 − α konstruiert, wobei tn−1,1−α/2 das (1 − α
2 )-Quantil der tn−1- Ver-

teilung ist.

Wie man sieht, ist sie Länge des Konfidenzintervalls zufällig: lµ(X1, . . . Xn) = 2Sn√
n

tn−1,1−α/2,
somit macht es Sinn, mit erwarteter Länge

E lµ(X1, . . . Xn) =
2√
n
ESntn−1,1−α/2

zu arbeiten, um zum Beispiel die Frage nach der notwendigen Anzahl n von Beobachtun-
gen bei vorgegebener Genauigkeit ε > 0 (vergleiche Gleichung (4.2.1)) zu beantworten.

Konfidenzintervalle für die Varianz σ2

• bei bekanntem Erwartungswert µ:

Betrachten wir den Schätzer S̃2
n = 1

n

n∑
i=1

(Xi − µ)2 für σ2. Aus Satz 3.3.5, 2. folgt nS̃2
n

σ2 ∼ χ2
n.

Wir setzen T (X1, . . . , Xn, σ2) = nS̃2
n

σ2 und bekommen

P

(
χ2

n,α2
≤ nS̃n

2

σ2
≤ χ2

n,1−α1

)
= P

(
nS̃2

n

χ2
n,1−α1

≤ σ2 ≤ nS̃2
n

χ2
n,α2

)
= 1 − α.

Somit ist
[

nS̃2
n

χ2
n,1−α1

, nS̃2
n

χ2
n,α2

]
ein Konfidenzintervall für σ2 zum Niveau 1 − α, α = α1 +

α2 mit der mittleren Länge E lσ2 = nσ2

(
1

χ2
n,α2

− 1
χ2

n,1−α1

)
. Da die χ2-Verteilung nicht

symmetrisch ist, ist auch das Konfidenzintervall nicht symmetrisch.

• bei unbekanntem Erwartungswert µ:

Ähnlich wie oben beschrieben folgt das Konfidenzintervall
[

(n−1)S2
n

χ2
n−1,1−α1

, (n−1)S2
n

χ2
n−1,α2

]
zum Ni-

veau 1−α, α = α1 +α2 aus Satz 3.3.5, 1., weil (n−1)S2
n

σ2 ∼ χ2
n−1 für die Stichprobenvarianz

S2
n = 1

n−1

n∑
i=1

(
Xi − Xn

)2
. Die erwartete Länge ist E lσ2 = (n−1)σ2

(
1

χ2
n−1,α2

− 1
χ2

n−1,1−α1

)
.
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4.2.2 Konfidenzintervalle aus stochastischen Ungleichungen

Eine alternative Methode zur Gewinnung von Konfidenzintervallen besteht in der Anwendung
stochastischer Ungleichungen. So kann man zum Beispiel bei einer Stichprobe (X1, . . . , Xn) von
unabhängigen und identisch verteilten Zufallsvariablen mit EXi = µ, Var Xi = σ2 ∈ (0, ∞) die
Ungleichung von Tschebyschew benutzen, um ein einfaches, aber grobes Konfidenzintervall für
µ zu konstruieren:

P

(
|Xn − µ| > ε

)
≤ Var Xn

ε2
=

σ2

nε2
= α

⇒ für ε =
σ√
nα

gilt: 1 − α = P

(
|Xn − µ| ≤ ε

)

= P

(
− σ√

nα
≤ −Xn + µ ≤ σ√

nα

)

= P

(
Xn − σ√

nα
≤ µ ≤ Xn +

σ√
nα

)
.

Das Konfidenzintervall
[
Xn − σ√

nα
, Xn + σ√

nα

]
für µ bei bekannter Varianz σ2 ist verteilungs-

unabhängig, da keinerlei Annahmen über die Verteilung von Xi gemacht wurden.
Präzisere Konfidenzintervalle können bei der Verwendung folgender Ungleichung von Hoeff-

ding konstruiert werden:

Satz 4.2.1 (Ungleichung von Hoeffding):
Es seien Y1, . . . , Yn unabhängige Zufallsvariablen mit EYi = 0, ai ≤ Yi ≤ bi fast sicher, i =
1, . . . , n. Für alle ε > 0 gilt

P

(
n∑

i=1

Yi ≥ ε

)
≤ exp


− 2ε2

n∑
i=1

(bi − ai)2




(ohne Beweis).

Diese Ungleichung ist schärfer als die Tschebyschew-Ungleichung. Falls man spezielle Annah-
men über die Verteilung von Yi macht, kann man mit ihrer Hilfe auf gute Konfidenzintervalle
unter Verwendung des Satzes 4.2.1 kommen.

Nehmen wir z.B. an, daß X1, . . . , Xn unabhängige, identisch verteilte Zufallsvariablen sind,
Xi ∼ Bernoulli(p), p ∈ (0, 1). Wir wollen ein Konfidenzintervall für p bestimmen.

Folgerung 4.2.1
Es seien X1, . . . , Xn unabhängige Bernoulli(p)-verteilte Zufallsvariablen. Dann gilt P

(
|Xn − p| > ε

)
≤

2e−2nε2
, ε > 0.

Beweis Es gilt

Xn − p =
1

n

n∑

i=1

(Xi − p)︸ ︷︷ ︸
Yi

, Yi ∈ [−p, 1 − p],
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das heißt ai = −p, bi = 1 − p, bi − ai = 1, i = 1, . . . , n, EYi = p − p = 0. Dann gilt:

Pp

(
|Xn − p| > ε

)
≤ Pp

(∣∣∣∣∣
n∑

i=1

Yi

∣∣∣∣∣ ≥ εn

)

= Pp

(
n∑

i=1

Yi ≥ εn

)
+ Pp

(
n∑

i=1

(−Yi) ≥ εn

)

(Satz 4.2.1)

≤ 2e− 2ε2n2

n = 2e−2ε2n,

wobei man den Satz 4.2.1 sowohl für die Folge {Yi} als auch {−Yi} anwendet. Damit ist die
Behauptung bewiesen.

Bemerkung 4.2.1
Die Form der Ungleichung von Hoeffding ähnelt sehr der von Dvoretzky-Kiefer-Wolfowitz, Satz
3.3.10.

Nun fixieren wir α > 0 und wählen εn =
√

1
2n log 2

α . Durch Anwendung von Folgerung 4.2.1

mit diesem εn erhalten wir Pp

(
|Xn − p| > εn

)
≤ α, somit Pp

(
|Xn − p| ≤ εn

)
≥ 1 − α und

darum ist
[
Xn −

√
1

2n log 2
α , Xn +

√
1

2n log 2
α

]
ein Konfidenzintervall für p zum Niveau 1 − α.

4.2.3 Asymptotische Konfidenzintervalle

Die Philosophie der Konstruktion von asymptotischen Konfidenzintervallen ist relativ einfach:
Wir erläutern sie am Beispiel eines asymptotisch normalverteilten Schätzers θ̂ für einen Para-
meter θ.

Sei (X1, . . . , Xn) eine Stichprobe von unabhängigen und identisch verteilten Zufallsvariablen,
Xi ∼ Fθ, θ ∈ Θ ⊆ R. Sei θ̂n = θ̂(X1, . . . , Xn) ein Schätzer für θ, der asymptotisch normalverteilt
ist. Dann gilt für erwartungstreue θ̂n

θ̂n − θ

σ̂n

d−→ Y ∼ N(0, 1),

wobei σ̂n ein konsistenter Schätzer der asymptotischen Varianz von θ̂n ist.

lim
n→∞Pθ

(
zα/2 ≤ θ̂n − θ

σ̂n
≤ z1−α/2

)

= lim
n→∞

Pθ

(
θ ∈

[
θ̂n − z1−α/2σ̂n, θ̂n + z1−α/2σ̂n

])
= 1 − α.

Somit ist
[
θ̂n − z1−α/2σ̂n, θ̂n + z1−α/2σ̂n

]
ein asymptotisches Konfidenzintervall für θ zum

Niveau 1 − α.
Diese Vorgehensweise werden wir jetzt anhand von zwei Beispielen klar machen:

• Bernoulli-Verteilung:

Seien Xi ∼ Bernoulli(p)-verteilt, i = 1, . . . , n. Dann gilt θ = p, θ̂n = p̂n = Xn. Ep p̂n =

p, Varp p̂n = p(1−p)
n . Wir wählen σ̂2 = 1

n p̂(1 − p̂n) = Xn
n (1 − Xn) als Plug-In-Schätzer
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für σ2. Dann gilt nach dem zentralen Grenzwertsatz (Satz 7.2.1, WR) und dem Satz von
Slutzky (Satz 6.4.2, 3. WR):

√
n

Xn − p√
Xn(1 − Xn)

d−→
n→∞ Y ∼ N(0, 1),

das heißt p ∈
[
Xn − z1−α/2

√
Xn(1−Xn)

n , Xn + z1−α/2

√
Xn(1−Xn)

n

]
stellt ein asymptoti-

sches Konfidenzintervall für p zum Niveau 1−α dar. Da aber p ∈ [0, 1] sein soll, betrachtet
man

p(X1, . . . , Xn) = max



0, Xn − z1−α/2

√
Xn(1 − Xn)

n





und

p(X1, . . . , Xn) = min



1, Xn + z1−α/2

√
Xn(1 − Xn)

n



 .

Bemerkung 4.2.2
Ein anderes asymptotisches Konfidenzintervall für den Parameter p der Bernoulli-Verteilung
bekommt man, wenn man die Aussage des zentralen Grenzwertsatzes

lim
n→∞

Pp

(
−z1−α/2 ≤ √

n Xn−p√
p(1−p)

≤ z1−α/2

)
= 1 − α nimmt und die quadratische Unglei-

chung dann bezüglich p auflöst.

Übungsaufgabe 4.2.1
Lösen Sie die Ungleichung auf!

• Poissonverteilung:

Es seien Xi ∼ Poisson(λ), i = 1, . . . , n, dann gilt θ = λ, θ̂n = λ̂ = Xn. Da Eλ Xi =
Varλ Xi = λ, kann man den zentralen Grenzwertsatz (Satz 7.2.1, WR) anwenden

√
n

Xn − λ√
λ

d−→
n→∞ Y ∼ N(0, 1),

Da Xn stark konsistent für λ ist, gilt nach dem Satz von Slutsky (Satz 6.4.2, 4, WR)

√
n

Xn − λ√
Xn

d−→
n→∞ Y ∼ N(0, 1).

Daraus folgt ein asymptotisches Konfidenzintervall


Xn − z1−α/2

√
Xn

n
, Xn + z1−α/2

√
Xn

n




für den Parameter λ zum Konfidenzniveau 1 − α.
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Bemerkung 4.2.3 1. Ähnlich wie in Bemerkung 4.2.2 angegeben, kann man durch
Auflösen der quadratischen Ungleichung in

lim
n→∞Pλ

(
√

n
Xn − λ√

λ
∈ [−z1−α/2, z1−α/2]

)
= 1 − α

bezüglich λ ein alternatives asymptotisches Konfidenzintervall für λ angeben.

Übungsaufgabe 4.2.2
Bitte führen Sie diese Berechnungen durch.

2. Da λ > 0 ist, kann man die untere Schranke diesbezüglich korrigieren:

λ(X1, . . . , Xn) = max



0, Xn − z1−α/2

√
Xn

n





4.3 Zwei-Stichproben-Probleme

In diesem Abschnitt werden Charakteristiken bzw. Parameter von zwei unterschiedlichen Stich-
proben miteinander verglichen, indem man Konfidenzintervalle für einfache Funktionen dieser
Parameter konstruiert.

Betrachten wir zwei Zufallsstichproben Y1 = (X11, . . . , X1n1), Y2 = (X21, . . . , X2n2) von
Zufallsvariablen Xi1, . . . Xini , i = 1, 2, die innerhalb der Stichprobe Yi jeweils unabhängig und

identisch verteilt sind, Xij
d
= Xi, j = 1, . . . ni, i = 1, 2 und die Prototyp-Zufallsvariable Xi ∼

Fθi
, θi ∈ Θ ⊂ R

m. Es wird im Allgemeinen nicht gefordert, daß Y1 und Y2 unabhängig sind. Falls
sie voneinander abhängen, spricht man von verbundenen Stichproben Y1 und Y2. Betrachten wir
eine Funktion g : R2m → R von den Parametervektoren θ1 und θ2. In diesem Skript werden
dabei meistens die Fälle m = 1, 2, g(θ1, θ2) = θ1j − θ2j , g(θ1, θ2) = θ1j

θ2j
untersucht, wobei

θi = (θi1, . . . , θim), i = 1, 2.
Unsere Zielstellung wird sein, ein (möglicherweise asymptotisches) Konfidenzintervall für

g(θ1, θ2) mit Hilfe der Stichprobe (Y1, Y2) zu gewinnen.
Dabei wird die selbe Philosophie wie in Abschnitt 4.1 beschrieben verfolgt. Es wird eine

Statistik T (Y1, Y2, g(θ1, θ2)) gesucht, die eine (möglicherweise asymptotische) Prüfverteilung F
besitzt und von g(θ1, θ2) explizit abhängt.

Durch das Auflösen der Ungleichung F −1
α1

≤ T (Y1, Y2, g(θ1, θ2)) ≤ F −1
1−α2

bzgl. g(θ1, θ2) be-
kommt man dann ein (möglicherweise asymptotisches) Konfidenzintervall zum Niveau 1 −
α, α = α1 + α2.

4.3.1 Normalverteilte Stichproben

Hier wird angenommen, daß Xi ∼ N(µi, σ2
i ), i = 1, 2.

Konfidenzintervall für die Differenz µ1 − µ2 bei bekannten Varianzen σ2
1 und σ2

2 und
unabhängigen Stichproben

Seien Y1 und Y2 voneinander unabhängig und σ2
1, σ2

2 bekannt. Wir betrachten die Parame-

terfunktion g(µ1, µ2) = µ1 − µ2. Es seien Xini = 1
ni

ni∑
j=1

Xij , i = 1, 2 die Stichprobenmit-

tel der Stichproben Y1 und Y2. Es gilt Xini ∼ N(µi,
σ2

i
ni

), i = 1, 2. Nach Satz 3.3.3, 4)
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sind X1n1 und X2n2 unabhängig. Dann ist wegen der Faltungsstabilität der Normalvertei-

lung X1n1 − X2n2 ∼ N
(
µ1 − µ2,

σ2
1

n1
+

σ2
2

n2

)
. Nach dem Normieren erhält man die Statistik

T (Y1, Y2, µ1 − µ2) =
X1n1 −X2n2√

σ2
1

n1
+

σ2
2

n2

∼ N(0, 1). Daraus bekommt man das Konfidenzintervall


X1n1 − X2n2 − z1− α

2

√
σ2

1

n1
+

σ2
2

n2
, X1n1 − X2n2 + z1− α

2

√
σ2

1

n1
+

σ2
2

n2




für µ1 − µ2 zum Niveau 1 − α.

Konfidenzintervall für den Quotienten
σ2

1

σ2
2

bei unbekannten Erwartungswerten µ1 und µ2

und unabhängigen Stichproben

Seien Y1 und Y2 voneinander unabhängig. Sei g(σ1, σ2) =
σ2

1

σ2
2
. Wir konstruieren die Statistik

T (Y1, Y2,
σ2

1

σ2
2
) folgendermaßen: Seien S2

ini
= 1

ni−1

ni∑
j=1

(
Xij − Xini

)
, i = 1, 2 die Stichprobenva-

rianzen der Stichproben Y1 und Y2. Dann gilt
(ni−1)S2

ini

σ2
i

∼ χ2
ni−1, i = 1, 2 nach Satz 3.3.5.

Da die S2
ini

voneinander unabhängig sind, gilt

T

(
Y1, Y2,

σ2
1

σ2
2

)
=

(n2−1)S2
2n2

(n2−1)σ2
2

(n1−1)S2
1n1

(n1−1)σ2
1

=
S2

2n2

S2
1n1

· σ2
1

σ2
2

∼ Fn2−1, n1−1

nach der Definition der F - Verteilung. Daraus ergibt sich das Konfidenzintervall
[

S2
1n1

S2
2n2

Fn2−1, n1−1, α1 ,
S2

1n1

S2
2n2

Fn2−1, n1−1, 1−α2

]

für
σ2

1

σ2
2

zum Niveau 1 − α.

Konfidenzintervall für die Differenz µ1 − µ2 der Erwartungswerte bei verbundenen
Stichproben

Dieses Mal seien Y1 und Y2 verbunden, X1 − X2 ∼ N(µ1 − µ2, σ2) für ein unbekanntes σ2 > 0,
n1 = n2 = n. Da Xij , j = 1, . . . , n unabhängig und identisch verteilt sind, gilt Zj = X1j −X2j ∼
N(µ1 − µ2, σ2), j = 1, . . . , n.

Unser Ziel ist es, ein Konfidenzintervall für µ1 − µ2 zu bekommen. Wenn wir die Stichprobe
(Z1, . . . , Zn) betrachten, und Ergebnisse des Abschnittes 4.2.1, 2. anwenden, so erhalten wir
sofort folgendes Konfidenzintervall:

[
Zn − tn−1,1− α

2

Sn√
n

, Zn + tn−1,1− α
2

Sn√
n

]

für µ1 − µ2 zum Niveau 1 − α
2 , wobei Zn = 1

n

n∑
j=1

Zj = 1
n

n∑
j=1

(X1j − X2j) = X1n − X2n,

S2
n = 1

n−1

n∑
j=1

(
Zj − Zn

)2
= 1

n−1

n∑
j=1

(
X1j − X2j − X1n + X2n

)2
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4.3.2 Poissonverteilte Stichproben

Wir nehmen jetzt an, daß die Stichproben Y1 und Y2 unabhängig sind, und Xi ∼ Poisson(λi), i =
1, 2. Konstruieren wir asymptotische Konfidenzintervalle für g(λ1, λ2) = λ1−λ2 und g(λ1, λ2) =

n2λ2
n1λ1+n2λ2

= λ2
ρλ1+λ2

, ρ = n1
n2

= const, wobei n1, n2 → ∞.

Asymptotisches Konfidenzintervall für λ1 − λ2

Um zu einer Statistik T (Y1, Y2, λ1−λ2) zu kommen, die asymptotisch (für n1, n2 → ∞) N(0, 1)-
verteilt ist, verwenden wir den zentralen Grenzwertsatz von Ljapunow (vergleiche Satz 7.2.6,
WR).

Lemma 4.3.1
Es gilt

X1n1 − X2n2 − λ1 + λ2√
λ1
n1

+ λ2
n2

d−→
n1→∞
n2→∞

Y ∼ N(0, 1)

Beweis Führen wir die Zufallsvariable

Znk =





X1k−λ1

n1

√
λ1
n1

+
λ2
n2

, k = 1, . . . , n1

− X2k−n1
−λ2

n2

√
λ1
n1

+
λ2
n2

, k = n1 + 1, . . . , n1 + n2

ein, wobei n = n1 + n2. Es gilt: EZnk = 0 für alle k = 1, . . . , n, und

0 < σ2
nk = Var Znk =





Var X1k

n2
1

(
λ1
n1

+
λ2
n2

) = λ1

n2
1

(
λ1
n1

+
λ2
n2

) , k = 1, . . . , n1,

λ2

n2
2

(
λ1
n1

+
λ2
n2

) , k = n1 + 1, . . . , n,

somit

n∑

k=1

σ2
nk =

(
λ1

n2
1

n1 +
λ2

n2
2

n2

)
1

λ1
n1

+ λ2
n2

= 1.

Außerdem gilt für δ > 0 und n1, n2 → ∞:

lim
n→∞

n∑

k=1

E (|Znk|)2+δ = lim
n1,n2→∞




E (|X11 − λ1|2+δ)

n1+δ
1

(
λ1
n1

+ λ2
n2

)(2+δ)/2
+

E (|X21 − λ2|)2+δ

n1+δ
2

(
λ1
n1

+ λ2
n2

)(2+δ)/2
i


 = 0

Somit ist die Ljapunow-Bedingung erfüllt und nach Satz 7.2.6 (WR) gilt

n∑

k=1

Znk
d−→

n1→∞
n2→∞

Y ∼ N(0, 1).

Es gilt aber auch
n∑

n=1
Znk =

X1n1 −X2n2 −λ1+λ2√
λ1
n1

+
λ2
n2

, somit ist das Lemma bewiesen.
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Da Xini

f.s.−→ λi, i = 1, 2 nach dem starken Gesetz der großen Zahlen, gilt mit Hilfe des Satzes
von Slutsky

T (Y1, Y2, λ1 − λ2) =
X1n1 − X2n2 − λ1 + λ2√

X1n1/n1 + Xn2/n2

d−→
n1,n2→∞ Y ∼ N(0, 1)

Daraus läßt sich sofort das asymptotische Konfidenzintervall für λ1 − λ2 zum Niveau 1 − α
ableiten:


X1n1 − X2n2 − z1−α/2

√
X1n1

n1
+

X2n2

n2
, X1n1 − X2n2 + z1−α/2

√
X1n1

n1
+

X2n2

n2




Asymptotisches Konfidenzintervall für n2λ2
n1λ1+n2λ2

Es sei n1/n2 = ρ = const und g(λ1, λ2) = n2λ2
n1λ1+n2λ2

= λ2
βλ1+λ2

Def.
= p. Es wird ein asymptotisches

Konfidenzintervall für p gesucht. Wir führen die Statistik

T (Y1, Y2, p) =
S2n2 − p(S1n1 + S2n2)√
p̂(1 − p̂)(S1n1 + S2n2))

ein, wobei Sini =
ni∑

j=1
Xij , i = 1, 2 und

p̂ =
S2n2

S1n1 + S2n2

=
n2X2n2

n1X1n1 + n2X2n2

f.s.−→
n1,n2→∞ p

ein konsistenter Schätzer für p (wegen des starken Gesetzes der großen Zahlen) ist. Falls wir zei-

gen können, daß T (Y1, Y2, p)
d−→

n1,n2→∞
Y ∼ N(0, 1), so wird daraus folgendes Konfidenzintervall

ableitbar: Aus

lim
n1→∞
n2→∞

P


−z1−α/2 ≤

S2n2
S1n1 +S2n2

− p
√

S1n1 · S2n2

· (S1n1 + S2n2)3/2 ≤ z1−α/2


 = 1 − α

folgt, daß
[
θ(Y1, Y2), θ(Y1, Y2)

]

mit

θ(λ1, λ2) =
S2n2

S1n1 + S2n2

− z1−α/2 ·
√√√√√

S1n1
· S2n2(

S1n1
+ S2n2

)3

θ(λ1, λ2) =
S2n2

S1n1 + S2n2

+ z1−α/2 ·
√√√√√

S1n1
· S2n2(

S1n1
+ S2n2

)3

ein asymptotisches Konfidenzintervall für p zum Niveau 1 − α ist.
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Da 0 < p < 1 sein soll, können die Schranken des Intervalls diesbezüglich korrigiert werden:

θ∗(Y1, Y2) = max{0, θ(Y1, Y2)},

θ
∗
(Y1, Y2) = min{1, θ(Y1, Y2)}.

Nun soll die asymptotische Normalverteiltheit von T (Y1, Y2, p) gezeigt werden. Sie folgt aus
dem Satz von Slutsky und folgendem Lemma:

Lemma 4.3.2
Es gilt:

S2n2 − p(S1n1 + S2n2)√
p(1 − p)(S1n1 + S2n2)

d−→
n1→∞

Y ∼ N(0, 1)

Beweis Um die Aussage des Lemmas zu zeigen, verwenden wir einen zentralen Grenzwertsatz
für Summen von Zufallsvariablen in zufälliger Anzahl (vgl. Satz 7.2.2 (WR)). Führen wir die
Folge Nn = S1n1 + S2n2 von nichtnegativen Zufallsvariablen ein. Die Summe ist monoton
wachsend. Gleichzeitig setzen wir an2 = n1λ1 + n2λ2. Offensichtlich gilt

Nn

an2

=
S1n1

n1λ1 + n2λ2
+

S2n2

n1λ1 + n2λ2

=
X1n1

λ1 + ρ−1λ2
+

X2n2

ρλ1 + λ2

f.s.−→
n1,n2→∞

λ1

λ1 + ρ−1λ2
+

λ2

ρλ1 + λ2

=
ρλ1

ρλ1 + λ2
+

λ2

ρλ1 + λ2
= 1

Außerdem gilt:

P (S2n2 = k | Nn = m) =
P (S2n2 = k, S1n1 + S2n2 = m)

P (S1n1 + S2n2 = m)

=
P (S2n2 = k, S1n1 = m − k)

P
(
S1n1 + S2n−2 = m

)

=
e−n2λ2 (λ2n2)k

k! · e−n1λ1 (n1λ1)m−k

(m−k)!

e−n1λ1−n2λ2
(n1λ1+n2λ2)m

m!

=
m!

(m − k)!k!

(
n2λ2

n1λ1 + n2λ2

)m ( n1λ1

n1λ1 + n2λ2

)m−k

=

(
m

k

)
pk(1 − p)m−k

was bedeutet, daß S2n2 | Nn = m ∼ Bin(m, p). Dann gilt
S2n2 −mp√

mp(1−p)
| Nn = m

d
= Sm−mp√

mp(1−p)
,

wobei Sm =
m∑

i=1
Zi eine Summe von unabhängigen, identisch verteilten Zufallsvariablen Zi ∼

Bernoulli(p) ist. Nach Satz 7.2.2 (WR) gilt dann

SNn − Nnp√
Nnp(1 − p)

d−→ Y ∼ N(0, 1) ⇐⇒ S2n2 − Nnp√
Nnp(1 − p)

d−→ Y ∼ N(0, 1).
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1 Allgemeine Theorie der zufälligen Funktionen

1.1 Zufällige Funktionen

Sei (Ω,A,P) ein Wahrscheinlichkeitsraum und (S,B) ein meßbarer Raum, Ω,S 6= ∅.

Definition 1.1.1
Ein zufälliges Element X : Ω → S ist eine A|B-meßbare Abbildung (Bezeichnung: X ∈ A|B),
d.h.,

X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ A, B ∈ B.

Falls X ein zufälliges Element ist, dann ist X(ω) eine Realisierung von X für beliebige ω ∈ Ω.

Wir sagen, dass die σ-Algebra B von Teilmengen von S durch das Mengensystem M erzeugt
wird (M enthält ebenso Teilmengen von S als seine Elemente), wenn

B =
⋂

F⊃M
F-σ-Algebra auf S

F

(Bezeichnung: B = σ(M)).
Falls S ein topologischer oder metrischer Raum ist, dann wählt man oft M als Klasse aller

offenen Mengen von S und nennt σ(M) Borelsche σ-Algebra (Bezeichnung: B = B(S)).

Beispiel 1.1.1 1. Falls S = R, B = B(R), dann heißt ein zufälliges Element X eine Zufalls-
variable.

2. Falls S = Rm, B = B(Rm), m > 1, dann heißt X Zufallsvektor. Zufallsvariablen und
Zufallsvektoren betrachtet man oft in den Vorlesungen „Elementare Wahrscheinlichkeits-
rechnung und Statistik“ und „Stochastik I“.

3. Sei S die Klasse aller abgeschlossenen Mengen von Rm. Sei

M = {{A ∈ S : A ∩B 6= ∅} , B – beliebiges Kompaktum aus Rm} .
Dann ist X : Ω → S eine zufällige abgeschlossene Menge.

Als Beispiel betrachten wir n unabhängige gleichverteilte Punkte Y1, . . . , Yn ∈ [0, 1]m und
R1, . . . , Rn > 0 fast sicher unabhängige Zufallsvariablen, die auf dem selben Wahrscheinlich-
keitsraum (Ω,A,P) wie Y1, . . . , Yn definiert sind. Betrachten wir X = ∪ni=1BRi

(Yi). Dies ist
offensichtlich eine zufällige Menge. Eine beispielhafte Realisierung liefert Abbildung 1.1.

Aufgabe 1.1.1
Seien (Ω,A) und (S,B) meßbare Räume, B = σ(M), wobei M eine Klasse von Teilmengen von
S ist. Zeigen Sie, dass X : Ω → S genau dann A|B-meßbar ist, wenn X−1(C) ∈ A, C ∈ M.

Definition 1.1.2
Sei T eine beliebige Indexmenge und (St,Bt)t∈T eine Familie von meßbaren Räumen. Eine
Familie X = {X(t), t ∈ T} von Zufallselementen X(t) : Ω → St definiert auf (Ω,A,P) und
A|Bt-meßbar für alle t ∈ T heißt zufällige Funktion (assoziiert mit (St,Bt)t∈T ).

1



2 1 Allgemeine Theorie der zufälligen Funktionen

Abbildung 1.1: Beispiel einer zufälligen Menge X = ∪6
i=1BRi

(Yi)

Es gilt alsoX : Ω×T → (St, t ∈ T ), d.h.X(ω, t) ∈ St für alle ω ∈ Ω, t ∈ T undX(·, t) ∈ A|Bt,
t ∈ T . Sehr oft wird ω in der Bezeichnung unterlassen und man schreibt X(t) an Stelle von
X(ω, t). In den meisten Fällen hängt auch (St,Bt) nicht von t ∈ T ab: (St,Bt) = (S,B) für alle
t ∈ T .

Spezialfälle zufälliger Funktionen:

1. T ⊆ Z : X heißt dann zufällige Folge oder stochastischer Prozess in diskreter Zeit.
Beispiel: T = Z, N.

2. T ⊆ R : X heißt stochastischer Prozess in stetiger Zeit.
Beispiel: T = R+, [a, b], −∞ < a < b < ∞, R.

3. T ⊆ Rd, d ≥ 2 : X heißt zufälliges Feld.
Beispiel: T = Zd, Rd+, Rd, [a, b]d.

4. T ⊆ B(Rd) : X heißt Mengen-indizierter Prozess.
Falls X(t) fast sicher nichtnegativ und σ-additiv auf der σ-Algebra T ist, dann wird X
zufälliges Maß genannt.

Die Tradition, die Indexmenge durch T zu bezeichnen, kommt von der Interpretation von
t ∈ T in den Fällen 1 und 2 als Zeitparameter.

Für jedes ω ∈ Ω heißt {X(ω, t), t ∈ T} eine Trajektorie bzw. ein Pfad der zufälligen Funktion
X.

Wir möchten zeigen, dass die zufällige Funktion X = {X(t), t ∈ T} ein zufälliges Element
im entsprechenden Funktionsraum ist, welcher mit einer σ-Algebra ausgestattet ist, die jetzt
spezifiziert wird.

Sei ST =
∏

t∈T St das kartesische Produkt von St, t ∈ T , d.h., X ∈ ST falls X(t) ∈ St, t ∈ T .
Die elementare Zylindermenge in ST wird definiert als

CT (Bt) = {X ∈ St : X(t) ∈ Bt} ,

wobei t ∈ T ein ausgewählter Punkt aus T und Bt ∈ Bt eine Teilmenge in Bt ist. CT (Bt) enthält
also alle Trajektorien X, die durch das „Tor“ Bt gehen, siehe Abbildung 1.2.
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Abbildung 1.2: Trajektorien, die ein „Tor“ Bt passieren.

Definition 1.1.3
Die zylindrische σ-Algebra BT wird eingeführt als eine σ-Algebra erzeugt in ST durch die Familie
von allen Elementarzylindern. Man bezeichnet sie durch BT = ⊗t∈TBt. Falls Bt = B für alle
t ∈ T , dann schreibt man BT an Stelle von BT .

Lemma 1.1.1
Die Familie {X = X(t), t ∈ T} ist eine zufällige Funktion auf (Ω,A,P) mit Phasenräumen
(St,Bt)t∈T genau dann, wenn für jedes ω ∈ Ω die Abbildung ω 7→ X(ω, ·) A|BT -meßbar ist.

Aufgabe 1.1.2
Beweisen Sie Lemma 1.1.1.

Definition 1.1.4
Sei X ein zufälliges Element: X : Ω → S, d.h. X sei A|B-meßbar. Die Verteilung von X ist das
Wahrscheinlichkeitsmaß PX auf (S,B), so dass PX(B) = P(X−1(B)), B ∈ B.

Lemma 1.1.2
Ein beliebiges Wahrscheinlichkeitsmaß µ auf (S,B) kann als die Verteilung eines Zufallselemen-
tes X betrachtet werden.

Beweis Setze Ω = S, A = B, P = µ und X(ω) = ω, ω ∈ Ω.

Wann existiert eine zufällige Funktion mit vorgegebenen Eigenschaften? Eine zufällige Funk-
tion, die aus unabhängigen Zufallselementen besteht, existiert immer. Diese Behauptung ist
bekannt.

Theorem 1.1.1 (Lomnicki, Ulam):
Sei (St,Bt, µt)t∈T eine Folge von Wahrscheinlichkeitsräumen. Es existiert eine zufällige Folge
X = {X(t), t ∈ T} auf einem Wahrscheinlichkeitsraum (Ω,A,P) (assoziiert mit (St,Bt)t∈T ),
so dass

1. X(t), t ∈ T unabhängige Zufallselemente sind.

2. PX(t) = µt auf (St,Bt), t ∈ T .

Viele wichtige Zufallsprozesse sind auf Basis von unabhängigen zufälligen Elementen konstru-
iert; vgl. Beispiele im Abschnitt 1.2.
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Definition 1.1.5
Sei X = {X(t), t ∈ T} eine zufällige Funktion auf (Ω,A,P) mit Phasenraum (St,Bt)t∈T . Die
endlich-dimensionalen Verteilungen von X werden definiert als das Verteilungsgesetz Pt1,...,tn

von (X(t1), . . . , X(tn))T auf (St1,...,tn ,Bt1,...,tn), für beliebige n ∈ N, t1, . . . , tn ∈ T , wobei
St1,...,tn = St1 × . . . × Stn und Bt1,...,tn = Bt1 ⊗ . . . ⊗ Btn , die σ-Algebra in St1,...,tn ist, die
von allen Mengen Bt1 × . . . × Btn , Bti ∈ Bti , i = 1, . . . , n, erzeugt wird, d.h., Pt1,...,tn(C) =
P((X(t1), . . . , X(tn))T ∈ C), C ∈ Bt1,...,tn . Insbesondere für C = B1 × . . .×Bn, Bk ∈ Btk :

Pt1,...,tn(B1 × . . .×Bn) = P(X(t1) ∈ B1, . . . , X(tn) ∈ Bn).

Aufgabe 1.1.3
Zeigen Sie, dass Xt1,...,tn = (X(t1), . . . , X(tn))T ein A|Bt1,...,tn-meßbares Zufallselement ist.

Definition 1.1.6
Sei St = R für alle t ∈ T . Die zufällige Funktion X = {X(t), t ∈ T} heißt symmetrisch, falls
alle ihre endlich-dimensionalen Verteilungen symmetrische Wahrscheinlichkeitsmaße sind, d.h.,
Pt1,...,tn(A) = Pt1,...,tn(−A) für A ∈ Bt1,...,tn und alle n ∈ N, t1, . . . , tn ∈ T . Dabei bedeutet
Pt1,...,tn(−A) = P((−X(t1), . . . ,−X(tn))T ∈ A).

Aufgabe 1.1.4
Zeigen Sie, dass die endlich-dimensionalen Verteilungen einer zufälligen Funktion X folgende
Eigenschaften besitzen: für beliebiges n ∈ N, n ≥ 2, {t1, . . . , tn} ⊂ T , Bk ∈ Stk , k = 1, . . . , n
und eine beliebige Permutation (i1, . . . , in) von (1, . . . , n) gilt:

1. Symmetrie: Pt1,...,tn(B1 × . . .×Bn) = Pti1
,...,tin

(Bi1 × . . .×Bin)

2. Konsistenz: Pt1,...,tn(B1 × . . .×Bn−1 × Stn) = Pt1,...,tn−1(B1 × . . .×Bn−1)

Folgender Satz zeigt, dass diese Eigenschaften hinreichend sind, um die Existenz einer zufäl-
ligen Funktion X mit vorgegebenen endlich-dimensionalen Verteilungen zu beweisen.

Theorem 1.1.2 (Kolmogorov):
Sei {Pt1,...,tn , n ∈ N, {t1, . . . , tn} ⊂ T} eine Familie von Wahrscheinlichkeitsmaßen auf (Rm ×
. . .×Rm,B(Rm)⊗. . .⊗B(Rm)), welche die Bedingungen 1 und 2 von Aufgabe 1.1.4 erfüllen. Dann
existiert eine zufällige Funktion X = {X(t), t ∈ T} definiert auf einem Wahrscheinlichkeitsraum
(Ω,A,P) mit endlich-dimensionalen Verteilungen Pt1,...,tn .

Beweis Siehe [13], Abschnitt II.9.

Dieser Satz gilt auch auf allgemeineren (jedoch nicht beliebigen!) Räumen als Rm, auf sog.
Borel-Räumen, die in einem gewissen Sinne isomorph zu ([0, 1] ,B [0, 1]) oder einem Teilraum
davon sind.

Definition 1.1.7
Sei X = {X(t), t ∈ T} eine zufällige Funktion mit Werten in (S,B), d.h., X(t) ∈ S fast sicher
für beliebige t ∈ T . X heißt meßbar, falls die Abbildung X : (ω, t) 7→ X(ω, t) ∈ S, (ω, t) ∈ Ω×T ,
A ⊗ C|B-meßbar ist.

Somit liefert die Definition 1.1.7 nicht nur die Meßbarkeit von X bzgl. ω ∈ Ω: X(·, t) ∈ A|B
für alle t ∈ T , sondern X(·, ·) ∈ A ⊗ C|B als Funktion von (ω, t). Die Meßbarkeit von X ist
dann von Bedeutung, wenn X(ω, t) zu zufälligen Zeitpunkten τ : Ω → T betrachtet wird:
X(ω, τ(ω)). Dies ist insbesondere in der Martingaltheorie der Fall, wenn τ eine sog. Stoppzeit
für X ist. Denn die Verteilung von X(ω, τ(ω)) kann stark von der Verteilung von X(ω, t), t ∈ T ,
abweichen.
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1.2 Elementare Beispiele

Für die explizite Konstruktion kann der Satz von Kolmogorov nur in wenigen Fällen direkt
benutzt werden, da bei vielen zufälligen Funktionen ihre endlich-dimensionalen Verteilungen
nicht explizit angegeben werden können. In diesen Fällen konstruiert man eine neue zufällige
Funktion X = {X(t), t ∈ T} als X(t) = g(t, Y1, Y2, . . .), t ∈ T , wobei g eine meßbare Funktion
ist und {Yn} eine Folge von Zufallselementen (auch zufälligen Funktionen) ist, deren Existenz
bereits sichergestellt wurde. Hier geben wir einige Beispiele dafür.

Sei X = {X(t), t ∈ T} eine reellwertige zufällige Funktion mit einem Wahrscheinlichkeits-
raum (Ω,A,P).

1. Weißes Rauschen:

Definition 1.2.1
Die zufällige Funktion X = {X(t), t ∈ T} heißt weißes Rauschen, falls alle X(t), t ∈ T ,
unabhängige und identisch verteilte (u.i.v.) Zufallsvariablen sind.

Weißes Rauschen existiert nach dem Satz 1.1.1. Es wird verwendet um das Rauschen in
(elektromagnetischen oder akustischen) Signalen darzustellen. Falls X(t) ∼ Ber(p), p ∈
(0, 1), t ∈ T , so spricht man von Salt-and-pepper Rauschen, also vom binären Rauschen,
das bei Übertragung von binären Daten in Computer-Netzwerken auftritt. Falls X(t) ∼
N (0, σ2), σ2 > 0, t ∈ T , so wird X Gauß’sches weißes Rauschen genannt. Es tritt z.B. in
akustischen Signalen auf.

2. Gauß’sche zufällige Funktion:

Definition 1.2.2
Die zufällige Funktion X = {X(t), t ∈ T} heißt Gauß’sch, falls alle ihre endlich-dimen-
sionalen Verteilungen Gauß’sch sind, d.h. für alle n ∈ N, t1, . . . , tn ⊂ T gilt

Xt1,...,tn = ((X(t1), . . . , X(tn))⊤ ∼ N (µt1,...,tn ,
∑

t1,...,tn

),

wobei der Mittelwert durch µt1,...,tn = (EX(t1), . . . ,EX(tn))⊤ und die Kovarianzmatrix
durch

∑

t1,...,tn
= ((cov(X(ti), X(tj))ni,j=1 gegeben ist.

Aufgabe 1.2.1
Zeigen Sie, dass die Verteilung einer Gauß’schen zufälligen Funktion X eindeutig durch ih-
re Mittelwertfunktion µ(t)=EX(t), t ∈ T , bzw. Kovarianzfunktion C(s, t)=E[X(s)X(t)],
s, t ∈ T , bestimmt wird.

Als Beispiel eines Gauß’schen Prozesses kann der sog. Wiener-Prozess (oder Brown’sche
Bewegung) X = {X(t), t ≥ 0} dienen, der den Erwartungswert Null (µ(t) ≡ 0, t ≥ 0)
und die Kovarianzfunktion C(s, t) = min {s, t}, s, t ≥ 0 hat. Normalerweise fordert man
zusätzlich, dass die Pfade von X stetige Funktionen sind.

Die Regularitätseigenschaften der Pfade von zufälligen Funktionen werden wir detaillier-
ter im Abschnitt 1.3 erforschen. Jetzt können wir sagen, dass ein solcher Prozess mit
Wahrscheinlichkeit 1 (mit fast sicher stetigen Trajektorien) existiert.

Aufgabe 1.2.2
Zeigen Sie, dass Gauß’sches Weißes Rauschen eine Gauß’sche Zufallsfunktion ist.
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3. Lognormal- und χ2-Funktionen:
Die zufällige Funktion X = {X(t), t ∈ T} heißt lognormal, falls X(t) = eY (t), wobei
Y = {Y (t), t ∈ T} eine Gauß’sche zufällige Funktion ist.X heißt χ2-Funktion, fallsX(t) =
‖Y (t)‖2, wobei Y = {Y (t), t ∈ T} eine Gauß’sche zufällige Funktion mit Werten in Rn

ist, für die Y (t) ∼ N (0, I), t ∈ T ; hier ist I die (n × n)-Einheitsmatrix. Es gilt dann
X(t) ∼ χ2

n, t ∈ T .

4. Kosinus-Welle:
X = {X(t), t ∈ R} wird definiert durch X(t) =

√
2 cos(2πY + tZ), wobei Y ∼ U([0, 1])

und Z eine Zufallsvariable ist, die von Y unabhängig ist.

Aufgabe 1.2.3
Seien X1, X2, . . . u.i.v. Kosinus-Wellen. Bestimmen Sie den schwachen Grenzwert der

endlich dimensionalen Verteilungen der zufälligen Funktion
{

1√
n

∑n
k=1Xk(t), t ∈ R

}

für
n → ∞.

5. Poisson-Prozess:
Sei {Yn}n∈N eine Folge von u.i.v. Zufallsvariablen Yn ∼ Exp(λ), λ > 0. Der stochasti-
sche Prozess X = {X(t), t ≥ 0} definiert als X(t) = max {n ∈ N :

∑n
k=1 Yk ≤ t} heißt

Poisson-Prozess mit Intensität λ > 0. X(t) zählt die Anzahl gewisser Ereignisse bis zum
Zeitpunkt t > 0, wobei das typische Intervall zwischen zwei solchen Ereignissen eine
Exp(λ)-Verteilung besitzt. Diese Ereignisse können z.B. eine Schadensmeldung eines Ver-
sicherers, das Registrieren eines Elementarteilchens im Geigerzähler, usw. sein. Dann ist
X(t) die Schaden- bzw. Teilchenanzahl im Zeitintervall [0, t].

1.3 Regularitätseigenschaften von Trajektorien

Der Satz von Kolmogorov gibt die Existenz der Verteilung einer zufälligen Funktion mit vorgege-
benen endlich-dimensionalen Verteilungen an. Jedoch er sagt nichts über die Pfadeigenschaften
von X aus. Dies ist auch verständlich, denn alle zufälligen Objekte sind in der Wahrscheinlich-
keitstheorie im fast sicheren Sinne (f.s.) definiert, also bis auf eine Menge A ⊂ Ω mit P(A) = 0.

Beispiel 1.3.1
Sei (Ω,A,P) = ([0, 1] ,B([0, 1]), ν1), wobei ν1 das Lebesgue-Maß auf [0, 1] ist. Definieren wir
{X = X(t), t ∈ [0, 1]} durch X(t) ≡ 0, t ∈ [0, 1] und Y = {Y (t), t ∈ [0, 1]} durch

Y (t) =

{

1, t = U,
0, sonst,

wobei U(ω) = ω, ω ∈ [0, 1], eine U([0, 1])-verteilte Zufallsvariable definiert auf (Ω,A,P) ist. Da

P(Y (t) = 0) = 1, t ∈ T , ist, weil P(U = t) = 0, t ∈ T , ist es klar, dass X
d
= Y . Dennoch besitzen

X und Y unterschiedliche Pfadeigenschaften, da X stetige und Y sprunghafte Trajektorien hat,
und P(X(t) = 0, ∀t ∈ T ) = 1, wobei P(Y (t) = 0, ∀t ∈ T ) = 0.

Es kann sein, dass die „Ausnahmemenge“ A (siehe oben) für X(t) für jedes t ∈ T sehr
unterschiedlich ist. Deshalb fordert man, dass alle X(t), t ∈ T , simultan auf einer Teilmenge
Ω0 ⊆ N mit P(Ω0) = 1 definiert sind. Die so definierte zufällige Funktion X̃ : Ω0 × T → R

heißt Modifikation von X : Ω×T → R. X und X̃ unterscheiden sich auf einer Menge Ω/Ω0 von
Wahrscheinlichkeit Null. Deshalb meinen wir später, wenn wir sagen, dass „Zufällige Funktion
X eine Eigenschaft C besitzt“ dass eine Modifikation von X mit dieser Eigenschaft C existiert.
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Definition 1.3.1
Die zufälligen Funktionen X = {X(t), t ∈ T} und Y = {Y (t), t ∈ T} definiert auf demselben
Wahrscheinlichkeitsraum (Ω,A,P) heißen (stochastisch) äquivalent, falls

Bt = {ω ∈ Ω : X(ω, t) 6= Y (ω, t)} ∈ A, t ∈ T,

und P(Bt) = 0, t ∈ T .

Man sagt auch, dass X und Y Versionen einer und derselben zufälligen Funktion sind. Es ist
klar, dass alle Modifikationen (oder Versionen) von X äquivalent zu X sind.

Aufgabe 1.3.1
Beweisen Sie, dass die zufälligen Funktionen X und Y im Beispiel 1.3.1 stochastisch äquivalent
sind.

Definition 1.3.2
Die zufälligen Funktionen X = {X(t), t ∈ T} und Y = {Y (t), t ∈ T} (nicht unbedingt auf
demselben Wahrscheinlichkeitsraum definiert) heißen äquivalent in Verteilung, falls PX = PY

auf (St,Bt). Bezeichnung: X
d
= Y .

Nach dem Satz 1.1.2 ist es ausreichend für die Äquivalenz in Verteilung von X und Y , wenn
sie dieselben endlich-dimensionalen Verteilungen besitzen. Es ist klar, dass die stochastische
Äquivalenz die Äquivalenz in Verteilung impliziert, jedoch nicht umgekehrt.

Definition 1.3.3
Die zufälligen Funktionen X = {X(t), t ∈ T} und Y = {Y (t), t ∈ T} definiert auf demsel-
ben Wahrscheinlichkeitsraum (Ω,A,P) assoziiert mit (St,Bt)t∈T haben äquivalente Trajektorien
(oder heißen auch stochastisch ununterscheidbar), falls

A = {ω ∈ Ω : X(ω, t) 6= Y (ω, t) für ein t ∈ T} ∈ A

und P(A) = 0.

Dieser Begriff bedeutet, das X und Y Pfade haben, die mit Wahrscheinlichkeit 1 überein-
stimmen. Falls der Raum (Ω,A,P) vollständig ist (d.h. aus A ∈ A : P(A) = 0 folgt für alle
B ⊂ A: B ∈ A (und dann P(B) = 0)), dann sind ununterscheidbare Prozesse stochastisch
äquivalent.

Seien nun T und S Banach-Räume mit den Normen | · |T bzw. | · |S . Die zufällige Funktion
X = {X(t), t ∈ T} sei nun auf (Ω,A,P) definiert mit Werten in (S,B).

Definition 1.3.4
Die zufällige Funktion X = {X(t), t ∈ T} heißt

a) stochastisch stetig auf T , falls X(s)
P−−→
s→t

X(t), für beliebige t ∈ T , d.h.

P(|X(s) −X(t)|S > ε) −−→
s→t

0, für alle ε > 0.

b) Lp-stetig auf T , p ≥ 1, falls X(s)
Lp

−−→
s→t

X(t), t ∈ T , d.h. E|X(s) − X(t)|p −−→
s→t

0. Für

p = 2 benutzt man die spezielle Bezeichnung „Stetigkeit im quadratischen Mittel“.

c) f.s. stetig auf T , falls X(s)
f.s.−−→
s→t

X(t), t ∈ T , d.h., P(X(s) −−→
s→t

X(t)) = 1, t ∈ T .
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d) stetig, falls alle Trajektorien von X stetige Funktionen sind.

In Anwendungen interessiert man sich für die Fälle c) und d), obwohl die schwächste Form
der Stetigkeit die stochastische Stetigkeit ist.

Lp-Stetigkeit =⇒ Stochastische Stetigkeit ⇐= f.s. Stetigkeit ⇐= Stetigkeit aller Pfade

Warum sind Fälle c) und d) wichtig? Betrachten wir ein Beispiel.

Beispiel 1.3.2
Sei T = [0, 1] und (Ω,A,P) sei ein kanonischer Wahrscheinlichkeitsraum mit Ω = R[0,1], d.h.
Ω =

∏

t∈[0,1] R. Sei X = {X(t), t ∈ [0, 1]} ein stochastischer Prozess auf (Ω,A,P). Nicht alle
Ereignisse sind aber Elemente von A, wie z.B. A = {ω ∈ Ω : X(ω, t) = 0 für alle t ∈ [0, 1]} =
∩t∈[0,1] {X(ω, t) = 0}, weil dies ein Schnitt von messbaren Ereignissen aus A in überzählbarer
Anzahl ist. Falls allerdings X stetig ist, dann sind auch alle seine Pfade stetige Funktionen und
man kann A = ∩t∈D {X(ω, t) = 0} darstellen lassen, wobei D eine dichte abzählbare Teilmenge
von [0, 1] ist, z.B., D = Q ∩ [0, 1]. Dann gilt aber A ∈ A.

Es ist allerdings in vielen Anwendungen (wie z.B. in der Finanzmathematik) nicht realistisch,
stochastische Prozesse mit stetigen Pfaden als Modelle für reale Phänomene zu betrachten.
Deshalb wird eine größere Klasse von möglichen Trajektorien von X erlaubt: die sog. càdlàg-
Klasse (càdlàg = continue à droite, limitée à gonche (fr.)).

Definition 1.3.5
Ein stochastischer Prozess X = {X(t), t ∈ R} heißt càdlàg, wenn alle seine Trajektorien rechts-
seitig stetige Funktionen sind, die linksseitige Grenzwerte besitzen.

Jetzt wollen wir die Eigenschaften der oben eingeführten Stetigkeitsbegriffen näher betrach-
ten. Es stellt sich z.B. fest, dass die stochastische Stetigkeit eine Eigenschaft der zweidimensio-
nalen Verteilung Ps,t von X ist, wie folgendes Lemma zeigt.

Lemma 1.3.1
Sei X = {X(t), t ∈ T} eine zufällige Funktion assoziiert mit (S,B), wobei S und T Banach-
Räume sind. Folgende Aussagen sind äquivalent:

a) X(s)
P−−−→

s→t0
Y ,

b) Ps,t
d−−−−→

s,t→t0
P(Y,Y ),

wobei t0 ∈ T und Y ein B-Zufallselement ist. Für die stochastische Stetigkeit von X sollen
t0 ∈ T beliebig und Y = X(t0) gewählt werden.

Beweis a) ⇒ b)

X(s)
P−−−→

s→t0
Y bedeutet (X(s), X(t))⊤ P−−−−→

s,t→t0
(Y, Y )⊤. Daraus folgt Ps,t

d→ P(Y,Y ), weil
P→-

Konvergenz strenger als
d→-Konvergenz ist.

b) ⇒ a)
Für beliebiges ε > 0 betrachten wir eine stetige Funktion gε : R → [0, 1] mit gε(0) = 0,
gε(x) = 1, x /∈ Bε(0). Es gilt für alle s, t ∈ T , dass

Egε(|X(s) −X(t)|S) = P(|X(s) −X(t)|S > ε) + E(gε(|X(s) −X(t)|S)E(|X(s) −X(t)|S ≤ ε)),
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daher P(|X(s) − X(t)|S > ε) ≤ Egε(|X(s) − X(t)|S) =
∫

S

∫

S
gε(|x − y|S)Ps,t(d(x, y)) −−−→

s→t0
t→t0∫

S

∫

S
gε(|x − y|S)P(Y,Y )(d(x, y)) = 0, weil P(Y,Y ) auf

{
(x, y) ∈ S2 : x = y

}
konzentriert ist und

gε(0) = 0. Daher ist {X(s)}s→t0
eine fundamentale Folge (in Wahrscheinlichkeit), weshalb

X(s)
P−−−→

s→t0
Y.

Es kann sein, dass X stochastisch stetig ist, obwohl alle Pfade von X Sprünge haben, d.h. X
kann keine f.s. stetige Modifikation besitzen. Die anschauliche Erklärung dessen ist, dass solche
X mit Wahrscheinlichkeit Null einen Sprung für konkretes t ∈ T haben können. Deshalb treten
Sprünge der Pfade von X immer an anderen Stellen t ∈ T auf.

Aufgabe 1.3.2
Zeigen Sie, dass der Poisson-Prozess stochastisch stetig ist, obwohl er keine f.s. stetige Modifi-
kation besitzt.

Aufgabe 1.3.3
Sei T kompakt. Zeigen Sie, dass fallsX stochastisch stetig auf T ist, dann ist es auch gleichmäßig
stochastisch stetig, d.h., für alle ε, η > 0 ∃δ > 0, so dass für alle s, t ∈ T mit |s − t|T < δ gilt:
P(|X(s) −X(t)|S > ε) < η.

Nun sei S = R, EX2(t) < ∞, t ∈ T , EX(t) = 0, t ∈ T . Sei C(s, t) = E [X(s)X(t)] die
Kovarianzfunktion von X.

Lemma 1.3.2
Für alle t0 ∈ T und eine Zufallsvariable Y mit EY 2 < ∞ sind folgende Behauptungen äquivalent:

a) X(s)
L2

−−−→
s→t0

Y

b) C(s, t) −−−−→
s,t→t0

EY 2

Beweis a) ⇒ b)
Die Behauptung folgt aus der Ungleichung von Cauchy-Schwarz:

|C(s, t) − EY 2| = |E(X(s)X(t)) − EY 2)| = |E [(X(s) − Y + Y )(X(t) − Y + Y )] − EY 2|
≤ E|(X(s) − Y )(X(t) − Y )| + E|(X(s) − Y )Y | + E|(X(t) − Y )Y |
≤

√
√
√
√

E(X(s) − Y )2

︸ ︷︷ ︸

||X(s)−Y ||2
L2 ·||X(t)−Y ||2

L2

E(X(t) − Y )2

+
√
√
√
√

EY 2 E(X(s) − Y )2

︸ ︷︷ ︸

||X(s)−Y ||2
L2

+
√
√
√
√

EY 2 E(X(t) − Y )2

︸ ︷︷ ︸

||X(t)−Y ||2
L2

−−−−→
s,t→t0

0

nach Voraussetzung a).
b) ⇒ a)

E(X(s) −X(t))2 = E(X(s))2 − 2E[X(s)X(t)] + E(X(t))2

= C(s, s) + C(t, t) − 2C(s, t) −−−−→
s,t→t0

2EY 2 − 2EY 2 = 0.

Daher ist {X(s), s → t0} eine fundamentale Folge im L2-Sinne, und es folgt X(s)
L2

−−−→
s→t0

Y .



10 1 Allgemeine Theorie der zufälligen Funktionen

Eine zufällige Funktion X, die stetig im mittleren quadratischen Sinne ist, kann immer noch
unstetige Trajektorien besitzen. In den meisten Fällen, die praktische Relevanz besitzen, hat
X jedoch eine f.s. stetige Modifikation. Dies werden wir später in Form eines Satzes präziser
machen.

Folgerung 1.3.1
Die zufällige Funktion X, die den Voraussetzungen des Lemmas 1.3.2 genügt, ist stetig auf T im
mittleren quadratischen Sinne genau dann, wenn ihre Kovarianzfunktion C : T 2 → R stetig auf
der Diagonalen diagT 2 =

{
(s, t) ∈ T 2 : s = t

}
ist, d.h., lims,t→t0 C(s, t) = C(t) für alle t0 ∈ T.

Beweis Wähle Y = X(t0) in Lemma 1.3.2.

Bemerkung 1.3.1
Falls X nicht zentriert ist, dann fordert man die Stetigkeit von µ(·) zusammen mit der Stetigkeit
von C auf diagT 2, um die L2-Stetigkeit von X auf T zu gewährleisten.

Aufgabe 1.3.4
Geben Sie ein Beispiel eines stochastischen Prozesses mit f.s. unstetigen Trajektorien, der L2-
stetig ist.

Nun betrachten wir die Eigenschaft der (f.s.) Stetigkeit etwas näher. Wie vorher erwähnt,
können wir lediglich von einer stetigen Modifikation oder Version eines Prozesses sprechen. Die
Möglichkeit,eine solche Version zu besitzen, hängt ebenso von den Eigenschaften der zweidi-
mensionalen Verteilungen des Prozesses ab, wie folgender Satz (ursprünglich bewiesen von A.
Kolmogorov) zeigt.

Theorem 1.3.1
Sei X = {X(t), t ∈ [a, b]}, −∞ < a < b ≤ +∞, ein reellwertiger stochastischer Prozess X hat
eine stetige Version, falls es Konstanten α, c, δ > 0 gibt, so dass

E|X(t+ h) −X(t)|α < c|h|1+δ, t ∈ (a, b), (1.3.1)

für ausreichend kleine |h|.

Beweis Siehe, z.B. [7], Theorem 2.23.

Nun wenden wir uns den Prozessen mit càdlàg-Trajektorien zu. Sei (Ω,A,P) ein vollständiger
Wahrscheinlichkeitsraum.

Theorem 1.3.2
Sei X = {X(t), t ≥ 0} ein reellwertiger stochastischer Prozess und D eine abzählbare dichte
Teilmenge von [0,∞). Falls

a) X stochastisch rechtsseitig stetig ist, d.h., X(t+ h)
P−−−−→

h→+0
X(t), t ∈ [0,+∞),

b) die Trajektorien von X für jedes t ∈ D endliche rechts- und linksseitige Grenzwerte haben,
d.h., ∃ limh→±0X(t+ h), t ∈ D f.s.,

dann hat X eine Version mit f.s. càdlàg-Pfaden.

Ohne Beweis.
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Lemma 1.3.3
Seien X = {X(t), t ≥ 0} und {Y = Y (t), t ≥ 0} zwei Versionen einer zufälligen Funktion,
beide definiert auf dem Wahrscheinlichkeitsraum (Ω,A,P), mit der Eigenschaft, dass X und Y
f.s. rechtsseitig stetige Trajektorien haben. Dann sind X und Y ununterscheidbar.

Beweis Seien ΩX ,ΩY „Ausnahmemengen“, für die die Trajektorien von X bzw. von Y nicht
rechtsseitig stetig sind. Es gilt P(ΩX) = P(ΩY ) = 0. BetrachteAt = {ω ∈ Ω : X(ω, t) 6= Y (ω, t)},
t ∈ [0,+∞) und A = ∪t∈Q+At, wobei Q+ = Q ∩ [0,+∞). Da X und Y stochastisch äquivalent
sind, gilt P(A) = 0 und deshalb P (Ã) = P(A∪ ΩX ∪ ΩY ) ≤ P(A) + P(ΩX) + P(ΩY ) = 0, wobei
Ã = A ∪ ΩX ∪ ΩY . Somit gilt X(ω, t) = Y (ω, t) für t ∈ Q+ und ω ∈ Ω \ Ã. Wir beweisen
dies nun für alle t ≥ 0. Für beliebiges t ≥ 0 existiert eine Folge {tn} ⊂ Q+, so dass tn ↓ t.
Da X(ω, tn) = Y (ω, tn) für alle n ∈ N und ω ∈ Ω \ Ã, gilt X(ω, t) = limn→∞X(ω, tn) =
limn→∞ Y (ω, tn) = Y (ω, t) für t ≥ 0 und ω ∈ Ω \ Ã. Deshalb sind X und Y ununterscheidbar.

Folgerung 1.3.2
Falls càdlàg-Prozesse X = {X(t), t ≥ 0} und Y = {Y (t), t ≥ 0} Versionen einer zufälligen
Funktion sind, dann sind sie ununterscheidbar.

1.4 Differenzierbarkeit von Trajektorien

Sei T ein linearer normierter Raum.

Definition 1.4.1
Eine reellwertige zufällige Funktion X = {X(t), t ∈ T} ist differenzierbar auf T in Richtung
h ∈ T stochastisch, im Lp-Sinne, p ≥ 1, oder f.s., falls es

lim
l→0

X(t+ hl) −X(t)

l
= X

′
h(t), t ∈ T

existiert im entsprechenden Sinne, also stochastisch, im Lp-Raum oder f.s..

Die Lemmata 1.3.2 - 1.3.3 zeigen, dass die stochastische Differenzierbarkeit eine Eigenschaft
ist, die durch dreidimensionale Verteilungen von X bestimmt ist (weil die gemeinsame Vertei-

lung von X(t+hl)−X(t)
l

und X(t+hl
′
)−X(t)

l
′ schwach konvergieren soll), wobei die Differenzierbarkeit

im mittleren quadratischen Sinne durch die Glattheit der Kovarianzfunktion C(s, t) bestimmt
wird.

Aufgabe 1.4.1
Zeigen Sie, dass

1. der Wiener-Prozess nicht stochastisch differenzierbar auf [0,∞) ist.

2. der Poisson-Prozess stochastisch differenzierbar auf [0,∞) ist, jedoch nicht im Lp-Mittel,
p ≥ 1.

Lemma 1.4.1
Eine zentrierte zufällige Funktion X = {X(t), t ∈ T} (d.h., EX(t) ≡ 0, t ∈ T ), ist L2-
differenzierbar in t ∈ T in Richtung h ∈ T , falls ihre Kovarianzfunktion C zweimal diffe-

renzierbar in (t, t) in Richtung h ist, d.h., falls C
′′
hh(t, t) = ∂2C(s,t)

∂sh∂th

∣
∣
∣
s=t

. X
′
h(t) ist L2-stetig in
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t ∈ T , falls C
′′
hh(s, t) = ∂2C(s,t)

∂sh∂th
stetig in s = t ist. Daher ist C

′′
hh(s, t) die Kovarianzfunktion von

X
′
h = {X ′

h(t), t ∈ T}.

Beweis Nach Lemma 1.3.3 reicht es zu zeigen, dass

I = lim
l,l

′ →0
E

(

X(t+ lh) −X(t)

l
· X(s+ l

′
h) −X(s)

l′

)

existiert für s = t. In der Tat erhalten wir

I =
1

ll′
(

C(t+ lh, s+ l
′
h) − C(t+ lh, s) − C(t, s+ l

′
h) + C(t, s)

)

=
1

l

(

C(t+ lh, s+ l
′
h) − C(t+ lh, s)

l′
− C(t, s+ l

′
h) − C(t, s)

l′

)

−−−−→
l,l

′ →0
C

′′
hh (s, t) .

Alle anderen Aussagen des Lemmas folgen aus dieser Relation.

Bemerkung 1.4.1
Die Eigenschaften der L2-Differenzierbarkeit und der f.s. Differenzierbarkeit von zufälligen
Funktionen sind definiert im folgenden Sinne: es gibt stochastische Prozesse, die L2-differen-
zierbare Pfade haben, obwohl sie f.s. unstetig sind, und umgekehrt sind Prozesse mit f.s. diffe-
renzierbaren Pfaden nicht immer L2-differenzierbar, weil z.B. die erste Ableitung ihrer Kova-
rianzfunktion nicht stetig ist.

Aufgabe 1.4.2
Geben Sie entsprechende Beispiele an!

1.5 Momente und Kovarianz

Sei X = {X(t), t ∈ T} eine zufällige Funktion, die reellwertig ist, und sei T ein beliebiger
Indexraum.

Definition 1.5.1
Das gemischte Moment µ(j1,...,jn)(t1, . . . , tn) vonX der Ordnung (j1, . . . , jn) ∈ Nn, t1, . . . , tn ∈ T
ist gegeben durch µ(j1,...,jn)(t1, . . . , tn) = E

[
Xj1(t1) · . . . ·Xjn(tn)

]
, vorausgesetzt, dass die-

ser Erwartungswert existiert und endlich ist. Dann ist es ausreichend vorauszusetzen, dass
E|X(t)|j < ∞ für alle t ∈ T und j = j1 + . . .+ jn.

Wichtige Spezialfälle:

1. µ (t) = µ(1)(t) = EX(t), t ∈ T – Mittelwertfunktion von X.

2. µ(1,1) (s, t) = E [X(s)X(t)] = C(s, t) – (nicht-zentrierte) Kovarianzfunktion von X. Sie
ist zu unterscheiden von der zentrierten Kovarianzfunktion: K(s, t) = cov((X(s), X(t)) =
µ(1,1)(s, t) − µ(s)µ(t), s, t ∈ T .

Aufgabe 1.5.1
Zeigen Sie, dass die zentrierte Kovarianzfunktion einer reellwertigen zufälligen Funktion X

1. symmetrisch ist, d.h., K(s, t) = K(t, s), s, t ∈ T .
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2. positiv semidefinit ist, d.h., für alle n ∈ N, t1, . . . , tn ∈ T , z1, . . . , zn ∈ R gilt

n∑

i,j=1

K(ti, tj)zizj ≥ 0.

3. K(t, t) = varX(t) erfüllt, t ∈ T .

Die Eigenschaft 2) gilt auch für die nicht-zentrierte Kovarianzfunktion C(s, t).

Die Mittelwertfunktion µ(t) zeigt einen (nicht zufälligen) Trend dar. Falls sie bekannt ist,
kann die zufällige Funktion X zentriert werden, indem man eine zufällige Funktion Y =
{Y (t), t ∈ T} mit Y (t) = X(t) − µ(t), t ∈ T betrachtet.

Die Kovarianzfunktion K(s, t) bzw. C(s, t) enthält Informationen über die Abhängigkeitss-

truktur von X. Manchmal wird statt K bzw. C die Korrelationsfunktion R(s, t) = K(s,t)√
K(s,s)K(t,t)

verwendet, für alle s, t ∈ T : K(s, s) = varX(s) > 0, K(t, t) = varX(t) > 0. Durch die Unglei-
chung von Cauchy-Schwarz gilt |R(s, t)| ≤ 1, s, t ∈ T . Die Menge aller gemischten Momente
legt die Verteilung einer zufälligen Funktion im Allgemeinen nicht (eindeutig) fest.

Aufgabe 1.5.2
Geben Sie Beispiele von verschiedenen zufälligen Funktionen X = {X(t), t ∈ T} und Y =
{Y (t), t ∈ T}, für die gilt EX(t) = EY (t), t ∈ T und E(X(s)X(t)) = E(Y (s)Y (t)), s, t ∈ T .

Aufgabe 1.5.3
Sei µ : T → R eine beliebige Funktion undK : T×T → R eine positiv semidefinite symmetrische
Funktion. Zeigen Sie, dass eine zufällige Funktion X = {X(t), t ∈ T} existiert mit EX(t) =
µ(t), cov(X(s), X(t)) = C(s, t), s, t ∈ T .

Sei nun X = {X(t), t ∈ T} eine reellwertige zufällige Funktion mit E |X(t)|k < ∞, t ∈ T ,
für ein k ∈ N.

Definition 1.5.2
Der mittlere Zuwachs der Ordnung k von X ist gegeben durch γk(s, t) = E(X(s) − X(t))k,
s, t ∈ T .

Besondere Aufmerksamkeit gilt der Funktion γ(s, t) = 1
2γ2(s, t) = 1

2E(X(s)−X(t))2, s, t ∈ T ,
die Variogramm von X genannt wird. Das Variogramm wird in Geostatistik oft an Stelle der
Kovarianzfunktion benutzt. Oft wird dafür die Bedingung EX2(t) < ∞, t ∈ T nicht gestellt,
sondern es wird vorausgesetzt, dass γ(s, t) < ∞ für alle s, t ∈ T .

Aufgabe 1.5.4
Zeigen Sie, dass es zufällige Funktion ohne endlichen 2. Momenten mit γ(s, t) < ∞, s, t ∈ T
gibt.

Aufgabe 1.5.5
Zeigen Sie, dass für eine zufällige Funktion X = {X(t), t ∈ T} mit Mittelwertfunktion µ und
Kovarianzfunktion K gilt:

γ(s, t) =
K(s, s) +K(t, t)

2
−K(s, t) +

1

2
(µ(s) − µ(t))2, s, t ∈ T.

Falls die zufällige Funktion X komplexwertig ist, d.h., X : Ω × T → C, mit E |X(t)|2 < ∞,
t ∈ T , dann wird die Kovarianzfunktion von X als K(s, t) = E(X(s) − EX(s))(X(t) − EX(t)),
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s, t ∈ T , eingeführt, wobei z das Komplex-konjugierte von z ∈ C ist. Es gilt dann K(s, t) =
K(t, s), s, t ∈ T , und K ist positiv semidefinit, d.h., für alle n ∈ N, t1, . . . , tn ∈ T , z1, . . . , zn ∈ C

gilt
∑n
i,j=1K(ti, tj)zizj ≥ 0.

1.6 Stationarität und Unabhängigkeit

Sei T eine Teilmenge vom linearen Vektorraum mit Operationen +, − über den Raum R.

Definition 1.6.1
Die zufällige Funktion X = {X(t), t ∈ T} heißt stationär (im engen Sinne), falls für alle n ∈ N,
h, t1, . . . , tn ∈ T mit t1 + h, . . . , tn + h ∈ T gilt:

P(X(t1),...,X(tn)) = P(X(t1+h),...,X(tn+h)),

d.h., alle endlich-dimensionalen Verteilungen von X sind invariant gegenüber Verschiebungen
in T .

Definition 1.6.2
Eine (komplexwertige) zufällige Funktion X = {X(t), t ∈ T} heißt stationär 2. Ordnung (oder
im weiten Sinne), falls E|X(t)|2 < ∞, t ∈ T , und µ(t) ≡ EX(t) ≡ µ, t ∈ T , K(s, t) =
cov(X(s), X(t)) = K(s+ h, t+ h) für alle h, s, t ∈ T : s+ h, t+ h ∈ T .

Falls X stationär 2. Ordnung ist, ist es günstig eine Funktion K(t) := K(0, t), t ∈ T ,
einzuführen, wobei 0 ∈ T ist.

Stationarität im engen Sinne und 2. Ordnung folgen nicht aus einander. Es ist jedoch klar,
dass, wenn eine komplexwertige zufällige Funktion stationär im engen Sinne ist und endliche
2. Momente besitzt, dann ist sie auch stationär 2. Ordnung.

Definition 1.6.3
Eine reellwertige zufällige Funktion X = {X(t), t ∈ T} ist intrinsisch stationär 2. Ordnung,
falls γk(s, t), s, t ∈ T existieren für k ≤ 2, und es gilt für alle s, t, h ∈ T , s+ h, t+ h ∈ T , dass
γ1(s, t) = 0, γ2(s, t) = γ2(s+ h, t+ h).

Die intrinsische Stationarität 2. Ordnung ist für reellwertige zufällige Funktionen etwas all-
gemeiner als Stationarität 2. Ordnung, da die Existenz von E|X(t)|2, t ∈ T , nicht gefordert
wird.

Es gibt aber auch das Analogon der Stationarität der Zuwächse von X im engen Sinne.

Definition 1.6.4
Sei X = {X(t), t ∈ T} ein reellwertiger stochastischer Prozess, T ⊂ R. Man sagt, dass X

1. stationäre Zuwächse besitzt, falls für alle n ∈ N, h, t0, t1, t2, . . . , tn ∈ T , mit t0 < t1 < t2 <
. . . < tn, ti + h ∈ T , i = 0, . . . , n die Verteilung von (X(t1 + h) − X(t0 + h), . . . , X(tn +
h) −X(tn−1 + h))⊤ nicht von h abhängt.

2. unabhängige Zuwächse besitzt, falls für alle n ∈ N, t0, t1, . . . , tn ∈ T mit t0 < t1 < . . . < tn
die Zufallsvariablen X(t0), X(t1) −X(t0), . . . , X(tn) −X(tn−1) paarweise unabhängig.

Seien (S1,B1) und (S2,B2) meßbare Räume. Generell sagt man, dass zwei zufällige Elemente
X : Ω → S1 und X : Ω → S2 auf dem selben Wahrscheinlichkeitsraum (Ω,A,P) unabhängig
sind, wenn P(X ∈ A1, Y ∈ A2) = P(X ∈ A1)P(Y ∈ A2) für alle A1 ∈ B1, A2 ∈ B2.
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Diese Definition läßt sich übertragen auf die Unabhängigkeit von zufälligen Funktionen X
und Y mit dem Phasenraum (ST ,BT ), da sie als zufällige Elemente angesehen werden können,
mit S1 = S2 = ST , B1 = B2 = BT (vgl. Lemma 1.1.1). Dasselbe gilt für die Unabhängigkeit
eines zufälligen Elementes (bzw. einer zufälligen Funktion) X und einer Teil-σ-Algebra G ∈ A:
dies ist der Fall, wenn P({X ∈ A}∩G) = P(X ∈ A)P(G), für alle A ∈ B1, G ∈ G (bzw. A ∈ BT ,
G ∈ G).

1.7 Prozesse mit unabhängigen Zuwächsen

In diesem Abschnitt wollen wir auf die Eigenschaften und Existenz der Prozesse mit unabhän-
gigen Zuwächsen eingehen.

Sei {ϕs,t, s, t ≥ 0} eine Familie von charakteristischen Funktionen der Wahrscheinlichkeits-
maße Qs,t, s, t ≥ 0 auf B(R), d.h., für z ∈ R, s, t ≥ 0 gilt ϕs,t(z) =

∫

R e
izxQs,t(dx).

Theorem 1.7.1
Es existiert ein stochastischer Prozess X = {X(t), t ≥ 0} mit unabhängigen Zuwächsen mit
der Eigenschaft, dass für alle s, t ≥ 0 die charakteristische Funktion von X(t)−X(s) gleich ϕs,t
ist, genau dann, wenn

ϕs,t = ϕs,uϕu,t (1.7.1)

für alle 0 ≤ s < u < t < ∞. Dabei kann die Verteilung von X(0) beliebig gewählt werden.

Beweis Die Notwendigkeit der Bedingung 1.7.1 ist klar, weil für alle s ∈ (0,∞) : s < u < t gilt:
X(t) −X(s) = X(t) −X(u)

︸ ︷︷ ︸

Y1

+X(u) −X(s)
︸ ︷︷ ︸

Y2

und X(t) −X(u) und X(u) −X(s) sind paarweise

unabhängig. Dann gilt ϕs,t = ϕY1+Y2 = ϕY1ϕY2 = ϕs,uϕu,t.
Nun beweisen wir die Suffizienz.
Falls die Existenz eines ProzessesX mit unabhängigen Zuwächsen und Eigenschaft ϕX(t)−X(s) =
ϕs,t auf einem Wahrscheinlichkeitsraum (Ω,A,P) bereits bewiesen wäre, könnte man die charak-
teristischen Funktionen aller seiner endlich-dimensionalen Verteilungen wie folgt durch {ϕs,t}
angeben.
Sei n ∈ N, 0 = t0 < t1 < . . . < tn < ∞ und Y = (X(t0), X(t1) −X(t0), . . . , X(tn) −X(tn−1))⊤.
Aus der Unabhängigkeit der Zuwächse folgt

ϕY (z0, z1, . . . , zn
︸ ︷︷ ︸

z

) = Eei〈z,Y 〉 = ϕX(t0)(z0)ϕt0,t1(z1) . . . ϕtn−1,tn(zn), z ∈ Rn+1,

wobei die Verteilung von X(t0) ein beliebiges Wahrscheinlichkeitsmaß Q0 auf B(R) ist. Für
Xt0,...,tn = (X(t0), X(t1), . . . , X(tn))⊤ gilt allerdings Xt0,...,tn = AY , wobei

A =










1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
. . . . . . . . . . . . . . .
1 1 1 . . . 1










.

Dann gilt ϕXt0,...,tn
(z) = ϕAY (z) = Eei〈z,AY 〉 = Eei〈A⊤z,Y 〉 = ϕY (A⊤z). Deshalb hat die

endlich-dimensionale Verteilung von Xt0,...,tn die charakteristische Funktion ϕXt0,...,tn
(z) =
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ϕQ0(l0)ϕt0,t1(l1) . . . ϕtn−1,tn(ln), wobei l = (l1, l1, . . . , ln)⊤ = A⊤z, also






l0 = z0 + . . .+ zn
l1 = z1 + . . .+ zn

...
ln = zn

Dabei gilt ϕX(t0) = ϕQ0 und ϕXt1,...,tn
(z1, . . . , zn) = ϕXt0,...,tn

(0, z1, . . . , zn) für alle zi ∈ R.
Nun beweisen wir die Existenz eines solchen Prozesses X.
Dabei konstruieren wir die Familie der charakteristischen Funktionen

{ϕt0 , ϕt0,t1,...,tn , ϕt1,...,tn , 0 = t0 < t1 < . . . < tn < ∞, n ∈ N}

aus ϕQ0 und {ϕs,t, 0 ≤ s < t} wie oben, also

ϕt0 = ϕQ0 , ϕt1,...,tn(0, z1, . . . , zn) = ϕt0,t1,...,tn(0, z1, . . . , zn), zi ∈ R,

ϕt0,...,tn(z) = ϕt0(z1 + . . .+ zn)ϕt0,t1(z1 + . . .+ zn) . . . ϕtn−1,tn(zn).

Nun sollten wir prüfen, dass die Wahrscheinlichkeitsmaße, denen diese charakteristische Funk-
tionen entsprechen, die Bedingungen des Theorems 1.1.2 erfüllen. Dies werden wir in äquivalen-
ter Form tun, denn nach Aufgabe ... des Übungsblattes ... sind die Bedingungen der Symmetrie
und der Konsistenz im Theorem 1.1.2 äquivalent zu:

a) ϕti0
,...,tin

(zi0 , . . . , zin) = ϕt0,...,tn(z0, . . . , zn) für eine beliebige Permutation (0, 1, . . . , n) 7→
(i0, i1, . . . , in),

b) ϕt0,...,tm−1,tm+1,...,tn(z0, . . . , zm−1, zm+1, . . . , zn) = ϕt0,...,tn(z0, . . . , 0, . . . , zn), für alle
z0, . . . , zn ∈ R, m ∈ {1, . . . , n}.

Die erste Bedingung a) ist offensichtlich. Es gilt b), weil

ϕtm−1,tm(0 + zm+1 + . . .+ zn)ϕtm,tm+1(zm+1 + . . .+ zn) = ϕtm−1,tm+1(zm+1, . . . , zn)

für alle m ∈ {1, . . . , n}. Damit ist die Existenz von X bewiesen.

Beispiel 1.7.1 1. Falls T = N0 = N ∪ {0}, dann hat X = {X(t), t ∈ N0} unabhängige

Zuwächse genau dann, wenn X(n)
d
=
∑n
i=0 Yi, wobei {Yi} unabhängige Zufallsvariablen

sind und Yn
d
= X(n) −X(n− 1), n ∈ N. Ein solcher Prozess X heißt zufällige Irrfahrt. Er

kann auch für Yi mit Werten in Rm definiert werden.

2. Der Poisson-Prozess mit Intensität λ hat unabhängige Zuwächse, wie wir es später zeigen
werden.

3. Der Wiener-Prozess besitzt unabhängige Zuwächse.

Aufgabe 1.7.1
Beweisen Sie es!

Aufgabe 1.7.2
Sei X = {X(t), t ≥ 0} ein Prozess mit unabhängigen Zuwächsen und g : [0,∞) → R eine
beliebige (deterministische) Funktion. Zeigen Sie, dass der Prozess Y = {Y (t), t ≥ 0} mit
Y (t) = X(t) + g(t), t ≥ 0, ebenso unabhängige Zuwächse besitzt.



1 Allgemeine Theorie der zufälligen Funktionen 17

1.8 Ergänzende Aufgaben

Aufgabe 1.8.1
Beweisen Sie folgende Behauptung: Die Familie von Wahrscheinlichkeitsmaßen Pt1,...,tn auf
(Rn,B(Rn)), n ≥ 1, t = (t1, . . . , tn)⊤ ∈ Tn erfüllt die Bedingungen des Theorems von Kol-
mogorov genau dann, wenn für alle n ≥ 2 und für alle s = (s1, . . . , sn)⊤ ∈ Rn die folgenden
Bedingungen erfüllt sind:

a) ϕPt1,...,tn
((s1, . . . , sn)⊤) = ϕPtπ(1),...,tπ(n)

((sπ(1), . . . , sπ(n))
⊤) für alle π ∈ Sn.

b) ϕPt1,...,tn−1
((s1, . . . , sn−1)⊤) = ϕPt1,...,tn

((s1, . . . , sn−1, 0)⊤).

Bemerkung: ϕ(·) bezeichnet die charakteristische Funktion des jeweiligen Maßes. Sn bezeichnet
die Gruppe aller Permutationen π : {1, . . . , n} → {1, . . . , n}.

Aufgabe 1.8.2
Zeigen Sie die Existenz einer zufälligen Funktion, deren endlich-dimensionale Verteilungen mul-
tivariat normalverteilt sind, und geben Sie die messbaren Räume (Et1,...,tn , Et1,...,tn) explizit an.

Aufgabe 1.8.3
Geben Sie ein Beispiel für eine Familie von Wahrscheinlichkeitsmaßen Pt1,...,tn , welche nicht die
Bedingungen des Theorems von Kolmogorov erfüllt.

Aufgabe 1.8.4
Seien X = {X(t), t ∈ T} und Y = {Y (t), t ∈ T} zwei stochastische Prozesse, die auf dem selben
vollständigen Wahrscheinlichkeitsraum (Ω,F ,P) definiert sind und Werte in einem messbaren
Raum (S,B) annehmen.

a) Beweisen Sie: X und Y sind stochastisch äquivalent =⇒ PX = PY .

b) Geben Sie ein Beispiel zweier Prozesse X und Y an, für die gilt: PX = PY , aber X und
Y sind nicht stochastisch äquivalent.

c) Beweisen Sie: X und Y sind stochastisch ununterscheidbar =⇒ X und Y sind stochastisch
äquivalent.

d) Beweisen Sie im Falle der Abzählbarkeit von T : X und Y sind stochastisch äquivalent
=⇒ X und Y sind stochastisch ununterscheidbar.

e) Geben Sie im Falle der Überzählbarkeit von T ein Beispiel zweier Prozesse X und Y an, für
die gilt: X und Y sind stochastisch äquivalent, aber nicht stochastisch ununterscheidbar.

Aufgabe 1.8.5
Sei W = {W (t), t ∈ R} ein Wiener-Prozess. Welche der folgenden Prozesse sind ebenfalls
Wiener-Prozesse?

a) W1 = {W1(t) := −W (t), t ∈ R},

b) W2 = {W2(t) :=
√
tW (1), t ∈ R},

c) W3 = {W3(t) := W (2t) −W (t), t ∈ R}.
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Aufgabe 1.8.6
Es sei der stochastische Prozess X = {X(t), t ∈ [0, 1]} gegeben, welcher aus identischen und
unabhängig verteilten Zufallsvariablen mit einer Dichte f(x), x ∈ R, besteht. Zeigen Sie, dass
ein solcher Prozess nicht stochastisch stetig in t ∈ [0, 1] sein kann.

Aufgabe 1.8.7
Geben Sie ein Beispiel eines stochastischen Prozesses X = {X(t), t ∈ T} an, welcher stochas-
tisch stetig auf T ist, aber nicht fast sicher stetig auf T , und beweisen Sie, warum dies so
ist.

Aufgabe 1.8.8
Im Zusammenhang mit der Stetigkeit von stochastischen Prozessen spielt das sogenannte Krite-
rium von Kolmogorov eine zentrale Rolle (siehe auch Satz 1.3.1 im Skript): Sei X = {X(t), t ∈
[a, b]} ein reellwertiger stochastischer Prozess. Falls Konstanten α, ε > 0 und C := C(α, ε) > 0
existieren, so dass

E|X(t+ h) −X(t)|α ≤ C|h|1+ε (1.8.1)

für ausreichend kleines h, dann besitzt der Prozess X eine stetige Modifikation. Zeigen Sie:

a) Falls man in Bedingung (1.8.1) die Variable ε = 0 fixiert, dann reicht diese Bedingung
im Allgemeinen nicht zur Existenz einer stetigen Modifikation aus. Tipp: Betrachten Sie
den Poisson-Prozess.

b) Der Wiener-Prozess W = {W (t), t ∈ [0,∞)} besitzt eine stetige Modifikation. Tipp:
Betrachten Sie den Fall α = 4.

Aufgabe 1.8.9
Zeigen Sie, dass der Wiener-Prozesses W an keiner Stelle t ∈ [0,∞) stochastisch differenzierbar
ist.

Aufgabe 1.8.10
Zeigen Sie, dass die Kovarianzfunktion C(s, t) eines komplexwertigen stochastischen Prozesses
X = {X(t), t ∈ T}

a) symmetrisch ist, d.h. C(s, t) = C(t, s), s, t ∈ T ,

b) die Identität C(t, t) = varX(t), t ∈ T , erfüllt,

c) positiv semidefinit ist, d.h. für alle n ∈ N, t1, . . . , tn ∈ T , z1, . . . , zn ∈ C gilt:

n∑

i=1

n∑

j=1

C(ti, tj)ziz̄j ≥ 0.

Aufgabe 1.8.11
Zeigen Sie, dass es eine zufällige Funktion X = {X(t), t ∈ T} gibt, die gleichzeitig folgende
Bedingungen erfüllt:

• Das zweite Moment EX2 existiert nicht.

• Das Variogramm γ(s, t) ist endlich für alle s, t ∈ T .
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Aufgabe 1.8.12
Geben Sie ein Beispiel für einen stochastischen Prozess X = {X(t), t ∈ T} an, dessen Pfade
gleichzeitig L2-differenzierbar, aber nicht fast sicher differenzierbar sind, und beweisen Sie,
warum dies so ist.

Aufgabe 1.8.13
Geben Sie ein Beispiel für einen stochastischen Prozess X = {X(t), t ∈ T} an, dessen Pfade
gleichzeitig fast sicher differenzierbar, aber nicht L1-differenzierbar sind, und beweisen Sie,
warum dies so ist.

Aufgabe 1.8.14
Beweisen Sie, dass der Wiener-Prozess unabhängige Zuwächse besitzt.

Aufgabe 1.8.15
Beweisen Sie: Ein (reellwertiger) stochastischer Prozess X = {X(t), t ∈ [0,∞)} mit unabhängi-
gen Zuwächsen hat bereits dann stationäre Zuwächse, wenn die Verteilung der Zufallsvariablen
X(t+ h) −X(h) unabhängig von h ist.
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Hier werden einige Beispiele von stochastischen Prozessen betrachtet, die das Zählen von Er-
eignissen modellieren und daher stückweise konstante Pfade besitzen.

Sei (Ω,A,P) ein Wahrscheinlichkeitsraum und sei {Sn}n∈N eine nichtfallende Folge von f.s.
nicht-negativen Zufallsvariablen, d.h. 0 ≤ S1 ≤ S2 ≤ . . . ≤ Sn ≤ . . ..

Definition 2.0.1
Der stochastische Prozess N = {N(t), t ≥ 0} wird Zählprozess genannt, falls

N(t) =
∞∑

n=1

1(Sn ≤ t),

wobei 1(A) die Indikatorfunktion eines Ereignisses A ∈ A ist.

N(t) zählt die Ereignisse, die zu Zeitpunkten Sn bis zur Zeit t eintreten. Sn können z.B.
Zeitpunkte des Eintretens

1. des n-ten Elementarteilchens im Geigerzähler sein, oder

2. eines Schadens in der Sachschadenversicherung, oder

3. eines Datenpakets beim Server in einem Computernetzwerk, usw.

Einen Spezialfall der Zählprozesse bilden die sog. Erneuerungsprozesse.

2.1 Erneuerungsprozesse

Definition 2.1.1
Sei {Tn}n∈N eine Folge von u.i.v. nicht-negativen Zufallsvariablen mit P(T1 > 0) > 0. Ein Zähl-
prozess N = {N(t), t ≥ 0} mit N(0) = 0 f.s., Sn =

∑n
k=1 Tk, n ∈ N, wird Erneuerungsprozess

genannt. Dabei heißt Sn der n-te Erneuerungszeitpunkt, n ∈ N.

Den Namen „Erneuerungsprozess“ leitet man von folgender Interpretation ab. Die „Zwi-
schenankunftszeiten“ Tn werden als Lebensdauer eines technischen Ersatzteils bzw. Mecha-
nismus in einem System interpretiert, somit sind Sn die Zeitpunkte des n-ten Versagens des
Systems. Das defekte Teil wird sofort durch ein neues baugleiches Teil ersetzt (wie z.B. beim
Auswechseln einer kaputten Glühbirne). Somit ist N(t) die Anzahl der Reparaturen (die sog.
„Erneuerungen“) des Systems bis zur Zeit t.

Bemerkung 2.1.1 1. Man setzt N(t) = ∞, falls Sn ≤ t für alle n ∈ N.

2. Oft wird vorausgesetzt, dass nur T2, T3, . . . identisch verteilt sind mit ETn < ∞. Die
Verteilung von T1 ist dann beliebig wählbar. Ein solcher Prozess N = {N(t), t ≥ 0} wird
verzögerter Erneuerungsprozess (mit Verzögerung T1) genannt.

3. Manchmal wird die Forderung Tn ≥ 0 weggelassen.

20
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Abbildung 2.1: Konstruktion und Trajektorien eines Erneuerungsprozesses

4. Es ist klar, dass {Sn}n∈N0 mit S0 = 0 f.s., Sn =
∑n
k=1 Tk, n ∈ N eine zufällige Irrfahrt

ist.

5. Wenn man voraussetzt, dass das n-te Auswechseln des defekten Teils im System eine Zeit
T ′
n dauert, so wird durch T̃n = Tn + T ′

n, n ∈ N ein anderer Erneuerungsprozess gegeben,
der von seiner stochastischen Beschaffenheit sich nicht von dem in der Definition 2.1.1
gegebenen Prozess unterscheidet.

Im weiteren Verlauf der Vorlesung wird vorausgesetzt, dass µ = ETn ∈ (0,∞), n ∈ N.

Theorem 2.1.1 (Individueller Ergodensatz):
Sei N = {N(t), t ≥ 0} ein Erneuerungsprozess. Dann gilt:

lim
t→∞

N(t)

t
=

1

µ
f.s..

Beweis Für alle t ≥ 0 und n ∈ N gilt {N(t) = n} = {Sn ≤ t < Sn+1}, deshalb SN(t) ≤ t <
SN(t)+1 und

SN(t)

N(t)
≤ t

N(t)
≤ SN(t)+1

N(t) + 1
· N(t) + 1

N(t)
.

Wenn wir zeigen könnten, dass
SN(t)

N(t)

f.s−−−→
t→∞

µ und N(t)
f.s.−−−→
t→∞

∞, dann gilt t
N(t)

f.s−−−→
t→∞

µ und

deshalb gilt die Aussage des Theorems.
Nach dem Starken Gesetz der Großen Zahlen von Kolmogorov (vgl. Skript „Wahrscheinlich-

keitsrechnung“ (WR), Satz 7.4) gilt Sn

n

f.s.−−−→
n→∞ µ, also Sn

f.s.−−−→
n→∞ ∞ und daher P(N(t) < ∞) = 1,

weil P(N(t) = ∞) = P( Sn ≤ t,∀n) = 1 − P(∃n : ∀m ∈ N0 Sn+m > t)
︸ ︷︷ ︸

=1, falls Sn

f.s−−−→
n→∞

∞

= 1 − 1 = 0. Dann ist

N(t), t ≥ 0, eine echte Zufallsvariable.

Zeigen wir, dass N(t)
f.s.−−−→
t→∞

∞. Alle Trajektorien von N(t) sind monoton nichtfallend in t ≥ 0,
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also ∃ limt→∞N(ω, t) für alle ω ∈ Ω. Außerdem gilt

P( lim
t→∞

N(t) < ∞) = lim
n→∞

P( lim
t→∞

N(t) < n)
(∗)
= lim

n→∞
lim
t→∞

P(N(t) < n)

= lim
n→∞

lim
t→∞

P(Sn > t) = lim
n→∞

lim
t→∞

P(
n∑

k=1

Tk > t)

≤ lim
n→∞

lim
t→∞

n∑

k=1

P(Tk >
t

n
)

︸ ︷︷ ︸

−−−→
t→∞

0

= 0.

Der Übergang (∗) gilt, weil {limt→∞N(t) < n} = {∃t0 ∈ Q+ : ∀t ≥ t0 N(t) < n} =
∪t0∈Q+ ∩t∈Q+

t≥t0
{N(t) < n} = lim inft∈Q+

t→∞
{N(t) < n}, und dann benutzt man die Stetigkeit

des Wahrscheinlichkeitsmaßes, wobei Q+ = Q ∩ R+ = {q ∈ Q : q ≥ 0}. Da für jedes ω ∈ Ω gilt

limn→∞ Sn

n
= limt→∞

SN(t)

N(t) (der Wertebereich einer Realisierung von N(·) ist ja eine Teilfolge

von N), gilt limt→∞
SN(t)

N(t)

f.s
= µ.

Bemerkung 2.1.2
Der Ergodensatz lässt sich verallgemeinern auf den Fall von nicht identisch verteilten Tn. Dabei
wird gefordert, dass µn = ETn, {Tn − µn}n∈N gleichmäßig integrierbar sind und 1

n

∑n
k=1 µk −−−→

n→∞
µ > 0. Dann kann bewiesen werden, dass N(t)

t

P−−−→
t→∞

1
µ

(vgl. [2], S. 276).

Theorem 2.1.2 (Zentraler Grenzwertsatz):
Falls µ ∈ (0,∞), σ2 = var T1 ∈ (0,∞), dann gilt

µ
3
2 ·

N(t) − t
µ

σ
√
t

d−−−→
t→∞

Y,

wobei Y ∼ N (0, 1).

Beweis Nach dem zentralen Grenzwertsatz für Summen von u.i.v. Zufallsvariablen (vgl. Satz
7.5, WR) gilt

Sn − nµ√
nσ2

d−−−→
n→∞

Y. (2.1.1)

Sei [x] der ganze Teil von x ∈ R. Es gilt für a = σ2

µ3 , dass

P

(
N(t) − t

µ√
at

≤ x

)

= P

(

N(t) ≤ x
√
at+

t

µ

)

= P

(

Sm(t) > t
)

,

wobei m(t) =
[

x
√
at+ t

µ

]

+ 1, t ≥ 0, und limt→∞m(t) = ∞. Deshalb folgt, dass

∣
∣
∣
∣
∣
P

(
N(t) − t

µ√
at

≤ x

)

− ϕ(x)

∣
∣
∣
∣
∣

=
∣
∣
∣P

(

Sm(t) > t
)

− ϕ(x)
∣
∣
∣

=

∣
∣
∣
∣
∣
P

(

Sm(t) − µm(t)

σ
√

m(t)
>
t− µm(t)

σ
√

m(t)

)

− ϕ(x)

∣
∣
∣
∣
∣

:= It(x)



2 Zählprozesse 23

für beliebiges t ≥ 0 und x ∈ R, wobei ϕ die Verteilungsfunktion der N (0, 1)-Verteilung ist. Für

festes x ∈ R führen wir Zt = − t−µm(t)

σ
√
m(t)

− x, t ≥ 0, ein. Es gilt dann

It(x) =

∣
∣
∣
∣
∣
P

(

Sm(t) − µm(t)

σ
√

m(t)
+ Zt > −x

)

− ϕ(x)

∣
∣
∣
∣
∣
.

Wenn wir zeigen könnten, dass Zt −−−→
t→∞

0, dann würde nach (2.1.1) und dem Satz von Slutsky

(Satz 6.4.1, WR) folgen, dass
Sm(t)−µm(t)

σ
√
m(t)

+Zt
d−−−→

t→∞
Y ∼ N (0, 1), denn aus Zt −−−→

t→∞
0 f.s. folgt

Zt
d−−−→

t→∞
0. Deshalb könnte man schreiben It(x) −−−→

t→∞
|ϕ̄(−x) − ϕ(x)| = |ϕ(x) − ϕ(x)| = 0,

wobei ϕ̄(x) = 1−ϕ(x) die Tail-Funktion der N (0, 1)-Verteilung ist, und man hier die Symmetrie-
Eigenschaft von N (0, 1) : ϕ̄(−x) = ϕ(x), x ∈ R benutzt hat.

Zeigen wir nun, dass Zt −−−→
t→∞

0, also t−µm(t)

σ
√
m(t)

−−−→
t→∞

−x. Es gilt m(t) = x
√
at + t

µ
+ ε(t),

wobei ε(t) ∈ [0, 1). Dann gilt

t− µm(t)

σ
√

m(t)
=

t− µx
√
at− t− µε(t)

σ
√

m(t)
= −x

√
at− µ

σ
√

x
√
at+ t

µ
+ ε(t)

− µε(t)

σ
√

m(t)

= − xµ

σ

√

x√
at

+ 1
µa

+ ε(t)
at

− µ− ε(t)

σ
√

m(t)

= − xµ
σ

√

µ2

σ2 + x√
at

+ ε(t)
at

︸ ︷︷ ︸

−−−→
t→∞

−x

− µε(t)

σ
√

m(t)
︸ ︷︷ ︸

−−−→
t→∞

0

−−−→
t→∞

−x.

Bemerkung 2.1.3
Der zentrale Grenzwertsatz läßt sich in Lindeberg-Form auch für nicht identisch verteilte Tn
beweisen, vgl. [2], S. 276 - 277.

Definition 2.1.2
Die Funktion H(t) = EN(t), t ≥ 0 heißt Erneuerungsfunktion des Prozesses N (oder der Folge
{Sn}n∈N).

Sei FT (x) = P(T1 ≤ x), x ∈ R die Verteilungsfunktion von T1. Für beliebige Verteilungsfunk-
tionen F,G : R → [0, 1] sei die Faltung F ∗G definiert als F ∗G(x) =

∫ x
−∞ F (x− y)dG(y). Die

k-fache Faltung F ∗k der Verteilungfunktion F mit sich selbst, k ∈ N0, wird induktiv definiert:

F ∗0(x) = 1(x ∈ [0,∞)), x ∈ R,

F ∗1(x) = F (x), x ∈ R,

F ∗(k+1)(x) = F ∗k ∗ F (x), x ∈ R.

Lemma 2.1.1
Die Erneuerungsfunktion H eines Erneuerungsprozesses N ist monoton nichtfallend und rechts-
seitig stetig auf R+. Außerdem gilt

H(t) =
∞∑

n=1

P(Sn ≤ t) =
∞∑

n=1

F ∗n
T (t), t ≥ 0. (2.1.2)
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Beweis Die Monotonie und rechtsseitige Stetigkeit von H folgt aus der fast sicheren Monotonie
und rechtsseitigen Stetigkeit der Trajektorien von N . Nun beweisen wir (2.1.2):

H(t) = EN(t) = E

∞∑

n=1

1(Sn ≤ t)
(∗)
=

∞∑

n=1

E1(Sn ≤ t) =
∞∑

n=1

P(Sn ≤ t) =
∞∑

n=1

F ∗n
T (t),

weil P(Sn ≤ t) = P(T1 + . . .+ Tn ≤ t) = F ∗n
T (t), t ≥ 0. Die Gleichung (∗) gilt für alle partiellen

Summen auf beiden Seiten, also auch im Grenzwert.

Bis auf Ausnahmefälle ist es unmöglich, die Erneuerungsfunktion H durch die Formel (2.1.2)
analytisch zu berechnen. Deshalb benutzt man oft in Berechnungen die Laplace-Transformierte
von H.
Für eine monotone (z.B. monoton nichtfallende) rechtsseitig stetige Funktion G : [0,∞) → R

ist ihre Laplace-Transformierte definiert als l̂G(s) =
∫∞

0 e−sxdG(x), s ≥ 0. Hier ist das Integral
als Lebesgue-Stieltjes-Integral zu verstehen, also als ein Lebesgue-Integral bzgl. des Maßes µG
auf BR+ definiert durch µG((x, y]) = G(y)−G(x), 0 ≤ x < y < ∞, falls G monoton nichtfallend
ist.
Zur Erinnerung, für eine Zufallsvariable X ≥ 0 ist ihre Laplace-Transformierte l̂X definiert
durch l̂X(s) =

∫∞
0 e−sxdFX(x), s ≥ 0.

Lemma 2.1.2
Für s > 0 gilt:

l̂H(s) =
l̂T1(s)

1 − l̂T1(s)
.

Beweis Es gilt:

l̂H(s) =
∫ ∞

0
e−sxdH(x)

(2.1.2)
=

∫ ∞

0
e−sxd

( ∞∑

n=1

F ∗n
T (x)

)

=
∞∑

n=1

∫ ∞

0
e−sxdF ∗n(x)

=
∞∑

n=1

l̂T1+...+Tn(s) =
∞∑

n=1

(

l̂T1(s)
)n

=
l̂T1(s)

1 − l̂T1(s)
,

wobei für s > 0 gilt l̂T1(s) < 1 und somit konvergiert die geometrische Reihe
∑∞
n=1

(

l̂T1(s)
)n

.

Bemerkung 2.1.4
Falls N = {N(t), t ≥ 0} ein verzögerter Erneuerungsprozess (mit Verzögerung T1) ist, dann
gelten die Aussagen der Lemmas 2.1.1 - 2.1.2 in folgender Form:

1.

H(t) =
∞∑

n=0

(FT1 ∗ F ∗n
T2

)(t), t ≥ 0,

wobei FT1 bzw. FT2 die Verteilungsfunktionen von T1 bzw. Tn, n ≥ 2 sind.

2.

l̂H(s) =
l̂T1(s)

1 − l̂T2(s)
, s ≥ 0, (2.1.3)

wobei l̂T1 und l̂T2 die Laplace-Transformierten der Verteilung von T1 bzw. Tn, n ≥ 2 sind.
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Für weitere Betrachtungen brauchen wir einen Satz (von Wald) über den Erwartungswert
einer Summe (in zufälliger Anzahl) von unabhängigen Zufallsvariablen.

Definition 2.1.3
Sei ν eine N-wertige Zufallsvariable und sei {Xn}n∈N eine Folge von Zufallsvariablen, definiert
auf demselben Wahrscheinlichkeitsraum. ν heißt unabhängig von der Zukunft, falls für alle n ∈ N

das Ereignis {ν ≤ n} nicht von der σ-Algebra σ({Xk, k > n}) abhängt.

Theorem 2.1.3 (Waldsche Identität):
Sei {Xn}n∈N eine Folge von Zufallsvariablen mit sup E|Xn| < ∞, EXn = a, n ∈ N und sei ν
eine N-wertige Zufallsvariable, die von der Zukunft unabhängig ist, mit Eν < ∞. Dann gilt

E(
ν∑

n=1

Xn) = a · Eν.

Beweis Berechne Sn =
∑n
k=1Xk, n ∈ N. Da Eν =

∑∞
n=1 P(ν ≥ n), so folgt die Aussage aus

dem Lemma 2.1.3.

Lemma 2.1.3 (Kolmogorov-Prokhorov):
Sei ν eine N-wertige Zufallsvariable, die nicht von der Zukunft abhängt, und es gelte

∞∑

n=1

P(ν ≥ n)E|Xn| < ∞. (2.1.4)

Dann gilt ESν =
∑∞
n=1 P(ν ≥ n)EXn. Falls Xn ≥ 0 f.s., dann braucht man die Bedingung

(2.1.4) nicht.

Beweis Es gilt Sν =
∑ν
n=1Xn =

∑∞
n=1Xn1(ν ≥ n). Führen wir die Bezeichnung Sν,n =

∑n
k=1Xk1(ν ≥ k), n ∈ N, ein. Beweisen wir das Lemma zunächst für Xn ≥ 0 f.s., n ∈ N. Es gilt

Sν,n ↑ Sν , n → ∞ für jedes ω ∈ Ω, und so gilt nach dem Satz über die monotone Konvergenz:
ESν = limn→∞ ESν,n = lim

∑n
k=1 E(Xk1(ν ≥ k)). Da allerdings {ν ≥ k} = {ν ≤ k − 1}c nicht

von σ(Xk) ⊂ σ({Xn, n ≥ k}) abhängt, gilt E(Xk1(ν ≥ k)) = EXkP(ν ≥ k), k ∈ N, und daher
ESν =

∑∞
n=1 P(ν ≥ n)EXn.

Sei nun Xn beliebig. Setze Yn = |Xn|, Zn =
∑n
n=1 Yn, Zν,n =

∑n
k=1 Yk1(ν ≥ k), n ∈ N. Da

Yn ≥ 0, n ∈ N, gilt EZν =
∑∞
n=1 E(Xn | P(ν ≥ k)) < ∞ aus (2.1.4). Da allerdings |Sν,n| ≤

Zν,n ≤ Zν , n ∈ N, dann gilt nach dem Satz von Lebesgue über die dominierte Konvergenz, dass
ESν = limn→∞ ESν,n =

∑∞
n=1 EXnP(ν ≥ n), wobei diese Reihe absolut konvergiert.

Folgerung 2.1.1 1. Für eine beliebige Borel-messbare Funktion g : R+ → R+ und den
Erneuerungsprozess N = {N(t), t ≥ 0} mit Zwischenankuftszeiten {Tn}, Tn u.i.v., µ =
ETn ∈ (0,∞) gilt

E





N(t)+1
∑

k=1

g(Tn)



 = (1 +H(t))Eg(T1), t ≥ 0.

2. H(t) < ∞, t ≥ 0.

Beweis 1. Für jedes t ≥ 0 hängt ν = 1 + H(t) offensichtlich nicht von der Zukunft von
{Tn}n∈N ab, und der Rest folgt aus dem Theorem 2.1.3 mit Xn = g(Tn), n ∈ N.
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2. Für s > 0 betrachte T (s)
n = min{Tn, s}, n ∈ N. Wähle s > 0 so, dass für beliebig gewähltes

(aber festes) ε > 0 : µ(s) = ET
(s)
1 ≥ µ−ε > 0. Sei N (s) der Erneuerungsprozess, der auf der

Folge {T (s)
n }n∈N von Zwischenankunftszeiten aufgebaut wird: N (s)(t) =

∑∞
n=1 1(T (s)

n ≤ t),
t ≥ 0. Es gilt N(t) ≤ N (s)(t), t ≥ 0, f.s., dabei nach der Folgerung 2.1.1:

(µ− ε)(EN (s)(t) + 1) ≤ µ(s)(EN (s)(t) + 1) = ES
(s)

N(s)(t)+1
= E(S(s)

N(s)(t)
︸ ︷︷ ︸

≤t

+T
(s)

N(s)(t)+1
︸ ︷︷ ︸

≤s

) ≤ t+ s,

t ≥ 0, wobei S(s)
n = T

(s)
1 + . . . + T

(s)
n , n ∈ N. Daher H(t) = EN(t) ≤ EN (s)(t) ≤ t+s

µ−ε ,

t ≥ 0. Da ε > 0 beliebig ist, gilt lim supt→∞
H(t)
t

≤ 1
µ

, und unsere Aussage H(t) < ∞,
t ≥ 0.

Folgerung 2.1.2 (Elementarer Erneuerungssatz):
Für einen Erneuerungsprozess N wie in Folgerung 2.1.1, 1) gilt:

lim
t→∞

H(t)

t
=

1

µ
.

Beweis In der Folgerung 2.1.1, Teil 2) ist bereits bewiesen worden, dass lim supt→∞
H(t)
t

≤ 1
µ

.

Zeigen wir, dass lim inft→∞
H(t)
t

≥ 1
µ

, dann ist unsere Aussage bewiesen. Nach Theorem 2.1.1

gilt N(t)
t

−−−→
t→∞

1
µ

f.s., daher nach Fatou’s Lemma

1

µ
= E lim inf

t→∞
N(t)

t
≤ lim inf

t→∞
EN(t)

t
= lim inf

t→∞
H(t)

t
.

Bemerkung 2.1.5 1. Man kann auch zeigen, dass es sich im Falle des endlichen 2. Mo-
mentes von Tn (µ2 = ET 2

1 < ∞) eine genauere Asymptotik für H(t), t → ∞ herleiten
läßt:

H(t) =
t

µ
+

µ2

2µ2
+ o(1), t → ∞.

2. Der elementare Erneuerungssatz gilt auch für verzögerte Erneuerungsprozesse, wobei µ =
ET2. Definieren wir das Erneuerungsmaß H auf B(R+) durch H(B) =

∑∞
n=1

∫

B dF
∗n
T (x),

B ∈ B(R+). Es gilt H((−∞, t]) = H(t), H((s, t]) = H(t) − H(s), s, t ≥ 0, wenn man
durch H sowohl die Erneuerungsfunktion als auch das Erneuerungsmaß bezeichnet.

Theorem 2.1.4 (Hauptsatz der Erneuerungstheorie):
Sei N = {N(t), t ≥ 0} ein (verzögerter) Erneuerungsprozess assoziiert mit der Folge {Tn}n∈N,
wobei Tn, n ∈ N unabhängig sind, {Tn, n ≥ 2} identisch verteilt, und die Verteilung von
T2 nicht arithmetisch ist, also nicht auf einem regelmäßigen Gitter mit Wahrscheinlichkeit 1
konzentriert ist. Die Verteilung von T1 sei beliebig. Sei ET2 = µ ∈ (0,∞). Dann gilt

∫ t

0
g(t− x)dH(x) −−−→

t→∞
1

µ

∫ ∞

0
g(x)dx,

wobei g : R+ → R Riemann-integrierbar auf [0, n] ist, für alle n ∈ N, und
∑∞
n=0 maxn≤x≤n+1 |g(x)| <

∞.
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Ohne Beweis.

Insbesondere gilt H((t− u, t]) −−−→
t→∞

u
µ

, für ein beliebiges u ∈ R+, also verhält sich H asympto-

tisch (für t → ∞) wie das Lebesgue-Maß.

Abbildung 2.2:

Definition 2.1.4
Die Zufallsvariable χ(t) = SN(t)+1 − t heißt Exzess von N zum Zeitpunkt t ≥ 0.

Es gilt offensichtlich χ(0) = T1. Geben wir nun ein Beispiel eines Erneuerungsprozesses mit
stationären Zuwächsen.
Sei N = {N(t), t ≥ 0} ein verzögerter Erneuerungsprozess assoziiert mit Folge von Zwischenan-
kuftszeiten {Tn}n∈N. Sei FT1 bzw. FT2 die Verteilungsfunktion der Verzögerung T1 bzw. von
Tn, n ≥ 2. Wir nehmen an, dass µ = ET2 ∈ (0,∞), FT2(0) = 0, also T2 > 0 f.s. und

FT1(x) =
1

µ

∫ x

0
F̄T2(y)dy, x ≥ 0. (2.1.5)

In diesem Fall sagt man, dass FT1 die integrierte Tailverteilungsfunktion von T2 ist.

Theorem 2.1.5
Unter den obigen Voraussetzungen ist N ein Prozess mit stationären Zuwächsen.

Abbildung 2.3:

Beweis Sei n ∈ N, 0 ≤ t0 < t1 < . . . < tn < ∞. Wegen Unabhängigkeit von Tn, n ∈ N hängt
die gemeinsame Verteilung von (N(t1 + t) −N(t0 + t), . . . , N(tn + t) −N(tn−1 + t))⊤ nicht von

t ab, falls die Verteilung von χ(t) unabhängig von t ist, also χ(t)
d
= χ(0) = T1, t ≥ 0, siehe

Abbildung ....
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Zeigen wir, dass FT1 = FX(t), t ≥ 0.

Fχ(t)(x) = P(χ(t) ≤ x) =
∞∑

n=0

P(Sn ≤ t, t < Sn+1 ≤ t+ x)

= P(S0 = 0 ≤ t, t < S1 = T1 ≤ t+ x)

+
∞∑

n=1

E(E(1(Sn ≤ t, t < Sn + Tn+1 ≤ t+ x) | Sn))

= FT1(t+ x) − FT1(t) +
∞∑

n=1

∫ t

0
P(t− y < Tn+1 ≤ t+ x− y)dFSn(y)

= FT1(t+ x) − FT1(t) +
∫ t

0
P(t− y < T2 ≤ t+ x− y)d(

∞∑

n=1

FSn(y)

︸ ︷︷ ︸

H(y)

).

Falls wir zeigen könnten, dass H(y) = y
µ

, y ≥ 0, dann hätten wir

Fχ(t)(x) = FT1(t+ x) − FT1(t) +
1

µ

∫ 0

t
(FT2(z + x) − 1 + 1 − FT2(z))d(−z)

= FT1(t+ x) − FT1(t) +
1

µ

∫ t

0
(F̄T2(z) − F̄T2(z + x))dz

= FT1(t+ x) − FT1(t) + FT1(t) − 1

µ

∫ t+x

x
F̄T2(y)dy

= FT1(t+ x) − FT1(t+ x) + FT1(x) = FT1(x), x ≥ 0,

nach der Form (2.1.5) der Verteilung von T1.
Nun soll gezeigt werden, dass H(t) = t

µ
, t ≥ 0. Dazu verwenden wir die Formel (2.1.4): es gilt

l̂T1(s) =
1

µ

∫ ∞

0
e−st(1 − FT2(t))dt =

1

µ

∫ ∞

0
e−stdt

︸ ︷︷ ︸

1
s

− 1

µ

∫ ∞

0
e−stFT2(t)dt

=
1

µs

(

1 +
∫ ∞

0
FT2(t)de−st

)

=
1

µs
(1 + e−stFT2(t)

︸ ︷︷ ︸

−FT2
(0)=0

∣
∣
∞
0

−
∫ ∞

0
e−stdFT2(t))

︸ ︷︷ ︸

l̂T2
(s)

=
1

µs
(1 − l̂T2(s)), s ≥ 0.

Mit Hilfe der Formel (2.1.4) bekommt man

l̂H(s) =
l̂T1(s)

1 − l̂T2(s)
=

1

µs
=

1

µ

∫ ∞

0
e−stdt = l̂ t

µ
(s), s ≥ 0.

Da die Laplace-Transformierte einer Funktion eindeutig diese Funktion bestimmt, gilt H(t) =
t
µ

, t ≥ 0.

Bemerkung 2.1.6
Im Beweis des Theorems 2.1.5 haben wir gezeigt, dass für den verzögerten Erneuerungsprozess
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mit Verzögerung, welche die Verteilung (2.1.5) besitzt, H(t) ∼ t
µ

nicht nur asymptotisch für

t → ∞ (wie im elementaren Erneuerungssatz), sondern es gilt H(t) = t
µ

, für alle t ≥ 0. Das

bedeutet, es finden im Mittelwert 1
µ

Erneuerungen pro Einheitszeitintervall statt. Aus diesem
Grund wird ein solcher Prozess N homogener Erneuerungsprozess genannt.

Es läßt sich auch folgendes Theorem beweisen:

Theorem 2.1.6
Falls N = {N(t), t ≥ 0} ein verzögerter Erneuerungsprozess mit beliebiger Verzögerung T1

und nicht-arithmetischer Verteilung von Tn, n ≥ 2 ist, µ = ET2 ∈ (0,∞), dann gilt

lim
t→∞

Fχ(t)(x) =
1

µ

∫ x

0
F̄T2(y)dy, x ≥ 0.

Das heißt, die Grenzwertverteilung von Exzess χ(t), t → ∞ wird bei der Definition eines
homogenen Erneuerungsprozesses als Verteilung von T1 angenommen.

2.2 Poisson-artige Prozesse

2.2.1 Poisson-Prozesse

In diesem Abschnitt werden wir die Definition eines homogenen Poisson-Prozesses (gegeben im
Abschnitt 1.2, Beispiel 5) verallgemeinern.

Definition 2.2.1
Der Zählprozess N = {N(t), t ≥ 0} heißt Poisson-Prozess mit Intensitätsmaß Λ, falls

1. N(0) = 0 f.s.

2. Λ ein lokalendliches Maß auf R+ ist, d.h., Λ : B(R+) → R+ besitzt die Eigenschaft
Λ(B) < ∞ für jede beschränkte Menge B ∈ B(R+).

3. N unabhängige Zuwächse besitzt.

4. N(t) −N(s) ∼ Pois(Λ((s, t])) für alle 0 ≤ s < t < ∞.

Manchmal wird der Poisson-Prozess N = {N(t), t ≥ 0} durch das entsprechende zufällige
Poissonsche Zählmaß N = {N(B), B ∈ B(R+)} definiert, d.h., N = ([0, t]), t ≥ 0, wobei ein
Zählmaß ein lokalendliches Maß mit Werten aus N0 ist.

Definition 2.2.2
Ein zufälliges Zählmaß N = {N(B), B ∈ B(R+)} heißt Poissonsch mit lokalendlichem Intensi-
tätsmaß Λ, falls

1. Für beliebiges n ∈ N und für beliebige paarweise disjunkte beschränkte MengenB1, B2, . . . , Bn ∈
B(R+) die Zufallsvariablen N(B1), N(B2), . . . , N(Bn) unabhängig sind.

2. N(B) ∼ Pois(Λ(B)), B ∈ B(R+), B-beschränkt.

Es ist klar, dass die Eigenschaften 3 und 4 der Definition 2.2.1 aus den Eigenschaften 1 und
2 der Definition 2.2.2 folgen. Die Eigenschaft 1 der Definition 2.2.1 ist jedoch eine eigenstän-
dige Annahme. N(B), B ∈ B(R+) wird als die Anzahl der Punkte von N in der Menge B
interpretiert.
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Bemerkung 2.2.1
Genauso wie in Definition 2.2.2 kann ein Poissonsches Zählmaß auf beliebigem topologischem
Raum E, ausgestattet mit der Borel-σ-Algebra B(E), definiert werden. Sehr häufig wird in
Anwendungen E = Rd, d ≥ 1 gewählt.

Lemma 2.2.1
Für jedes lokalendliche Maß Λ auf R+ existiert ein Poisson-Prozess mit Λ als Intensitätsmaß.

Beweis Falls so ein Poisson-Prozess existiert hätte, wäre die charakteristische Funktion ϕN(t)−N(s)(·)
des Zuwachses N(t) − N(s), 0 ≤ s < t < ∞ nach Eigenschaft 4 der Definition 2.2.1 gleich
ϕs,t(z) = ϕPois(Λ((s,t]))(z) = eΛ((s,t])(eiz−1), z ∈ R. Zeigen wir, dass die Familie von charakteristi-
schen Funktionen {ϕs,t, 0 ≤ s < t < ∞} die Eigenschaft 1.7.1 besitzt: für alle n : 0 ≤ s < u < t,

ϕs,u(z)ϕu,t(z) = eΛ((s,u])(eiz−1)eΛ((u,t])(eiz−1) = e(Λ((s,u])+Λ((u,t]))(eiz−1) = eΛ((s,t])(eiz−1) = ϕs,t(z),
z ∈ R, weil das Maß Λ additiv ist. Die Existenz des Poisson-Prozesses N folgt daher aus dem
Theorem 1.7.1.

Bemerkung 2.2.2
Die Existenz eines Poissonschen Zählmaßes kann mit Hilfe des Theorems von Kolmogorov
bewiesen werden, allerdings in einer allgemeineren Form wie im Theorem 1.1.2.

Aus den Eigenschaften der Poisson-Verteilung folgt u.A. EN(B) = varN(B) = Λ(B), B ∈
B(R+). Daher wird Λ(B) als die mittlere Anzahl der Punkte von N in der Menge B, B ∈ B(R+)
interpretiert.
Ein wichtiger Spezialfall liegt vor, wenn Λ(dx) = λdx für λ ∈ (0,∞), d.h., Λ proportional zum
Lebesgue-Maß ν1 auf R+ ist. Dann heißt λ = EN(1) die Intensität von N .
Wir werden demnächst zeigen, dass in diesem FallN ein homogener Poisson-Prozess mit Intensi-
tät λ ist. Zur Erinnerung: Im Abschnitt 1.2 wurde der homogene Poisson-Prozess als ein Erneue-
rungsprozess mit Zwischenankunftszeiten TN ∼ Exp(λ) definiert: N(t) = sup{n ∈ N Sn ≤ t},
Sn = T1 + . . .+ Tn, n ∈ N, t ≥ 0.

Aufgabe 2.2.1

Zeigen Sie, dass der homogene Poisson-Prozess ein homogener Erneuerungsprozess mit T1
d
=

T2 ∼ Exp(λ) ist. Hinweis: man soll zeigen, dass für eine beliebige Exponentialverteilte Zufalls-
variable X die integrierte Tailverteilungsfunktion von X gleich FX ist.

Theorem 2.2.1
Sei N = {N(t), t ≥ 0} ein Zählprozess. Folgende Aussagen sind äquivalent.

1. N ist ein homogener Poisson-Prozess mit Intensität λ > 0.

2. a) N(t) ∼ Pois(λt), t ≥ 0

b) für beliebiges n ∈ N, t ≥ 0, gilt dass der Zufallsvektor (S1, . . . , Sn) unter der Bedin-
gung {N(t) = n} dieselbe Verteilung besitzt, wie die Ordnungsstatistiken von u.i.v.
Zufallsvariablen Ui ∈ U([0, t]), i = 1, . . . , n.

3. a) N besitzt unabhängige Zuwächse,

b) EN(1) = λ, und

c) es gilt die Eigenschaft 2b).

4. a) N hat stationäre und unabhängige Zuwächse, und
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b) es gilt P(N(t) = 0) = 1 − λt+ o(t), P(N(t) = 1) = λt+ o(t), t ↓ 0.

5. a) N hat stationäre und unabhängige Zuwächse,

b) es gilt die Eigenschaft 2a).

Bemerkung 2.2.3 1. Es ist klar, dass die Definition 2.2.1 mit Λ(dx) = λdx, λ ∈ (0,∞)
nach Theorem 2.2.1 eine äquivalente Definition des homogenen Poisson-Prozesses ist.

2. Der homogene Poisson-Prozess N wurde am Anfang des 20. Jahrhundertes von den Phy-
sikern A. Einstein und M. Smoluchovsky eingeführt, um den Zählprozess von Elementar-
teilchen im Geigerzähler modellieren zu können.

3. Aus 4b) folgt P(N(t) > 1) = o(t), t ↓ 0.

4. Die Intensität von N hat folgende Interpretation: λ = EN(1) = 1
ETn

, also die mittlere
Anzahl der Erneuerungen von N in einem Zeitintervall der Länge 1.

5. Die Erneuerungsfunktion vom homogenen Poisson-Prozess ist H(t) = λt, t ≥ 0. Dabei
gilt offensichtlich H(t) = Λ([0, t]), t > 0.

Beweis Schema des Beweises: 1) ⇒ 2) ⇒ 3) ⇒ 4) ⇒ 5) ⇒ 1)
1) ⇒ 2):
Aus 1) folgt Sn =

∑n
k=1 Tk ∼ Erl(n, λ), weil Tk ∼ Pois(λ), n ∈ N, daher P(N(t) = 0) = P(T1 >

t) = e−λt, t ≥ 0, und für n ∈ N

P(N(t) = n) = P({N(t) ≥ n} \ {N(t) ≥ n+ 1}) = P(N(t) ≥ n) − P(N(t) ≥ n+ 1)

= P(Sn ≤ t) − P(Sn+1 ≤ t) =
∫ t

0

λnxn−1

(n− 1)!
e−λxdx−

∫ t

0

λn+1xn

n!
e−λxdx

=
∫ t

0

d

dx

(
(λx)n

n!
e−λx

)

dx =
(λt)n

n!
e−λt, t ≥ 0.

Daher ist 2a) bewiesen.
Beweisen wir nun 2b). Nach dem Transformationssatz für Zufallsvektoren (vgl. Satz 3.6.1, WR)
aus 





S1 = T1

S2 = T1 + T2
...

Sn+1 = T1 + . . .+ Tn+1

folgt, dass die Dichte f(S1,...,Sn) von (S1, . . . , Sn+1)⊤ durch die Dichte von (T1, . . . , Tn+1)⊤,
Ti ∼ Exp(λ), u.i.v., augedrückt werden kann:

f(S1,...,Sn+1)(t1, . . . , tn+1) =
n+1∏

k=1

fTk
(tk − tk−1) =

n+1∏

k=1

λe−λ(tk−tk−1) = λn+1e−λtn+1

für beliebige 0 ≤ t1 ≤ . . . ≤ tn+1, t0 = 0.
Für alle anderen t1, . . . , tn+1 gilt f(S1,...,Sn+1)(t1, . . . , tn+1) = 0.
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Deshalb

f(S1,...,Sn)(t1, . . . , tn|N(t) = n) = f(S1,...,Sn)(t1, . . . , tn|Sk ≤ t, k ≤ n, Sn+1 > t)

=

∫∞
t f(S1,...,Sn+1)(t1, . . . , tn+1)dtn+1

∫ t
0

∫ t
t1
. . .
∫ t
tn−1

∫∞
t f(S1,...,Sn+1)(t1, . . . , tn+1)dtn+1dtn . . . dt1

=

∫∞
t λn+1e−λtn+1dtn+1

∫ t
0

∫ t
t1
. . .
∫ t
tn−1

∫∞
t λn+1e−λtn+1dtn+1dtn . . . dt1

×

×I(0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ t)

=
n!

tn
I(0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ t).

Das ist genau die Dichte von n u.i.v U([0, t])-Zufallsvariablen.

Aufgabe 2.2.2
Zeigen Sie es.

2) ⇒ 3)
Aus 2a) folgt offensichtlich 3b). Jetzt soll lediglich die Unabhängigkeit der Zuwächse von N
bewiesen werden. Für beliebiges n ∈ N, x1, . . . , xn ∈ N, t0 = 0 < t1 < . . . < tn gilt für
x = x1 + . . .+ xn, dass

P(∩nk=1{N(tk) −N(tk−1) = xk}) = P(∩nk=1{N(tk) −N(tk−1) = xk}|N(tk) = x)
︸ ︷︷ ︸

x!
x1!...xn!

∏n

k=1

(
tk−tk−1

tn

)xk
nach 2c)

×

× P(N(tk) = x)
︸ ︷︷ ︸

e−λtn
(λtn)x

x!
nach 2a)

=
n∏

k=1

(λ(tk − tk−1))xk

xk!
e−λ(tk−tk−1),

weil die Wahrscheinlichkeit von (∗) die Polynomialverteilung mit Parametern n,
{
tk−tk−1

tn

}n

k=1
angehört. Denn das Ereignis (∗) ist es, beim unabhängigen gleichverteilten Werfen von x Punkte
auf [0, t], jeweils xk Punkte im Korb der Länge tk − tk−1, k = 1, . . . , n zu haben:

Abbildung 2.4:

Damit ist 3a) bewiesen, weil P(∩nk=1{N(tk) −N(tk−1) = xk}) =
∏n
k=1 P({N(tk) −N(tk−1) =

xk}).
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3) ⇒ 4)
Zeigen wir, dass N stationäre Zuwächse besitzt. Für beliebiges n ∈ N0, x1, . . . , xn ∈ N, t0 =
0 < t1 < . . . < tn und h > 0 betrachten wir I(h) = P(∩nk=1{N(tk+h)−N(tk−1 +h) = xk}) und
zeigen, dass I(h) nicht von h ∈ R abhängt. Nach der Formel der totalen Wahrscheinlichkeit gilt

I(h) =
∞∑

m=0

P(∩nk=1{N(tk + h) −N(tk−1 + h) = xk} | N(tn + h) = m) · P(N(tn + h) = m)

=
∞∑

m=0

m!

x1! . . . xn!

n∏

k=1

(
tk + h− tn−1 − h

tn + h− h

)xk

e−λ(tn+h) (λ(tn + h))

m!

=
∞∑

m=0

P(∩nk=1{N(tk) −N(tk−1) = xk | N(tn + h) = m) × P(N(tn + h) = m) = I(0).

Zeigen wir nun die Eigenschaft 4b) für h ∈ (0, 1):

P(N(h) = 0) =
∞∑

k=0

P(N(h) = 0, N(1) = k) =
∞∑

k=0

P(N(h) = 0, N(1) −N(h) = k)

=
∞∑

k=0

P(N(1) −N(h) = k,N(1) = k)

=
∞∑

k=0

P(N(1) = k)P(N(1) −N(h) = k | N(1) = k)

=
∞∑

k=0

P(N(1) = k)(1 − h)k.

Es ist zu zeigen, dass P(N(h) = 0) = 1 − λh+ o(h), d.h., limh→∞
1
h
(1 − P(N(h) = 0)) = λ. In

der Tat es gilt

1

h
(1 − P(N(h) = 0)) =

1

h

(

1 −
∞∑

k=0

P(N(1) = k)(1 − h)k
)

=
∞∑

k=1

P(N(1) = k) · 1 − (1 − h)k

h

−−−→
h→0

∞∑

k=1

P(N(1) = k) lim
h→0

1 − (1 − h)k

h
︸ ︷︷ ︸

k

=
∞∑

k=0

P(N(1) = k)k = EN(1) = λ,

weil diese Reihe gleichmäßig in h konvergiert, da sie durch
∑∞
k=0 P(N(1) = k)k = λ < ∞

dominiert wird wegen der Ungleichung (1 − h)k ≥ 1 − kh, h ∈ (0, 1), k ∈ N.

Ähnlich kann man zeigen, dass limh→0
P(N(h)=1)

h
= limh→0

∑∞
k=1 P(N(1) = k)k(1 − h)k−1 = λ.

4) ⇒ 5)
Zu zeigen ist es, dass für beliebiges n ∈ N und t ≥ 0

pn(t) = P(N(t) = n) = e−λt (λt)
n

n!
(2.2.1)

gilt. Wir beweisen dies induktiv bezüglich n. Zunächst zeigen wir, dass p0(t) = e−λt, h = 0. Dazu
betrachten wir p0(t+h) = P(N(t+h) = 0) = P(N(t) = 0, N(t+h) −N(t) = 0) = p0(t)p0(h) =
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p0(t)(1 − λh + o(h)), h → 0. Ähnlich kann man zeigen, dass p0(t) = p0(t − h)(1 − λh + o(h)),

h → 0. Somit gilt p′
0(t) = limh→0

p0(t+h)−p0(t)
h

= −λp0(t), t > 0. Da p0(0) = P(N(0) = 0) = 1,
folgt aus

{

p′
0(t) = −λp0(t)
p0(0) = 0,

dass es eine eindeutige Lösung p0(t) = e−λt, t ≥ 0 existiert. Nun sei für n die Darstellung
(2.2.1) bewiesen. Beweisen wir sie für n+ 1.

pn+1(t+ h) = P(N(t+ h) = n+ 1)

= P(N(t) = n,N(t+ h) −N(t) = 1) + P(N(t) = n+ 1, N(t+ h) −N(t) = 0)

= pn(t) − p1(h) + pn+1(t) − p0(h)

= pn(t)(λh+ o(h)) + pn+1(t)(1 − λh+ o(h)), h → 0, h > 0.

Daher {

p′
n+1(t) = −λpn+1(t) + λpn(t), t > 0
pn+1(0) = 0

(2.2.2)

Da pn(t) = e−λt (λt)n

n! , bekommt man pn+1(t) = e−λt (λt)n+1

(n+1)! als Lösung von (2.2.2). (In der Tat

pn+1(t) = C(t)e−λt ⇒ C ′(t)e−λt = λC(t)e−λt...........+ λpn(t)
C ′(t) = λn+1tn

n! ⇒ C(t) = λn+1tn+1

(n+1)! , C(0) = 0)

5) ⇒ 1)
Sei N ein Zählprozess N(t) = max{n : Sn ≤ t}, t ≥ 0, der Bedingungen 5a) und 5b) erfüllt.
Zeigen wir, dass Sn =

∑n
k=1 Tk, wobei Tk i.i.d. mit Tk ∼ Exp(λ), k ∈ N. Da Tk = Sk − Sk−1,

k ∈ N, S0 = 0, betrachten wir für b0 = 0 ≤ a1 < b1 ≤ . . . ≤ an < bn

P (∩nk=1{ak < Sk ≤ bk})

= P(∩n−1
k=1{N(ak) −N(bk−1) = 0, N(bk) −N(ak) = 1}

∩{N(an) −N(bn−1) = 0, N(bn) −N(an) ≥ 1})

=
n−1∏

k=1

(P(N(ak − bk−1) = 0)
︸ ︷︷ ︸

e
−λ(ak−bk−1)

P(N(bk − ak) = 1)
︸ ︷︷ ︸

λ(bk−ak)e−λ(bk−ak)

) ×

P(N(an − bn−1) = 0)
︸ ︷︷ ︸

e−λ(an−bn−1)

P(N(bn − an) ≥ 1)
︸ ︷︷ ︸

(1−e−λ(bn−an))

= e−λ(an−bn−1)(1 − e−λ(bn−an))
n−1∏

k=1

λ(bk − ak)e
−λ(bk−bk−1)

= λn−1(e−λan − e−λbn)
n−1∏

k=1

(bk − ak) =
∫ b1

a1

. . .

∫ bn

an

λne−λyndyn . . . y1.

Die gemeinsame Dichte von (S1, . . . , Sn)⊤ ist also gegeben durch λne−λyn1(y1 ≤ y2 ≤ . . . ≤ yn).

2.2.2 Zusammengesetzter Poisson-Prozess

Definition 2.2.3
Sei N = {N(t), t ≥ 0} ein homogener Poisson-Prozess mit Intensität λ > 0, konstruiert mit
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Hilfe der Folge {Tn}n∈N von Zwischenankunftszeiten. Sei {Un}n∈N eine Folge von u.i.v. Zufalls-
variablen, unabhängigen von {Tn}n∈N. Sei FU die Verteilungsfunktion von U1. Für beliebiges

t ≥ 0 setze X(t) =
∑N(t)
k=1 Uk. Der stochastische Prozess X = {X(t), t ≥ 0} heißt zusam-

mengesetzter Poisson-Prozess mit Parametern λ, FU . Die Verteilung von X(t) heißt dabei
zusammengesetzte Poisson-Verteilung mit Parametern λt, FU .

Zusammengesetzter Poisson-Prozess X(t), t ≥ 0 kann als Summe der „Marken“ Un eines
homogenen markierten Poisson-Prozesses (N,U) bis zur Zeit t interpretiert werden.
So wird X(t) als Gesamtarbeitsbelastung eines Servers bis zur Zeit t in der Warteschlangen-
theorie interpretiert, falls die Aufforderungen zum Service zu Zeitpunkten Sn =

∑n
k=1 Tk, n ∈ N

eingehen und mit sich den Arbeitsaufwand Un, n ∈ N mitbringen.
In der Versicherungsmathematik ist X(t), t ≥ 0 der Gesamtschaden eines Portfolios bis zum
Zeitpunkt t ≥ 0 mit Schadenanzahl N(t) und Schadenhöhen Un, n ∈ N.

Theorem 2.2.2
Sei X = {X(t), t ≥ 0} ein zusammengesetzter Poisson-Prozess mit Parametern λ, FU . Es
gelten folgende Eigenschaften:

1. X hat unabhängige stationäre Zuwächse.

2. Falls m̂U (s) = EesU1 , s ∈ R, die momenterzeugende Funktion von U1 ist, so dass m̂U (s) <
∞, s ∈ R, dann gilt

m̂X(t)(s) = eλt(m̂U (s)−1), s ∈ R, t ≥ 0, EX(t) = λtEU1, varX(t) = λtEU2
1 , t ≥ 0.

Beweis 1. Zu zeigen ist, dass für beliebige n ∈ N, 0 ≤ t0 < t1 < . . . < tn und h

P





N(t1+h)
∑

i1=N(t0+h)+1

Ui1 ≤ x1, . . . ,

N(tn+h)
∑

in=N(tn−1+h)+1

Uin ≤ xn



 =
n∏

k=1

P





N(tk)
∑

ik=N(tk−1)+1

Uik ≤ xk





für beliebige x1, . . . , xn ∈ R. In der Tat, gilt

P





N(t1+h)
∑

i1=N(t0+h)+1

Ui1 ≤ x1, . . . ,

N(tn+h)
∑

in=N(tn−1+h)+1

Uin ≤ xn





=
∞∑

k1,...,kn=0





n∏

j=1

F
∗kj
n (xj)



P (∩nm=1 {N(tm + h) −N(tm−1 + h) = km})

=
∞∑

k1,...,kn=0





n∏

j=1

F
∗kj
n (xj)





(
n∏

m=1

P(N(tm) −N(tm−1) = km)

)

=
n∏

m=1

∞∑

km=0

F ∗km
n (xm)P(N(tm) −N(tm−1) = km)

=
n∏

m=1

P





N(tm)
∑

km=N(tm−1)+1

≤ xm





2.

Aufgabe 2.2.3
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2.2.3 Cox-Prozess

Ein Cox-Prozess ist ein (im Allgemeinen inhomogener) Poisson-Prozess mit Intensitätsmaß Λ,
das an sich ein zufälliges Maß darstellt. Diese intuitive Vorstellung kann in folgender Definition
formalisiert werden.

Definition 2.2.4
Sei Λ = {Λ(B), B ∈ B(R+)} ein zufälliges f.s. lokal-endliches Maß. Das zufällige Zählmaß
N = {N(B), B ∈ B(R+)} wird Cox-Zählmaß (oder doppelt-stochastisches Poisson-Maß) mit
zufälligem Intensitätsmaß Λ genannt, falls für beliebige n ∈ N, k1, . . . , kn ∈ N0 und 0 ≤ a1 <

b1 ≤ a2 < b2 ≤ . . . ≤ an < bn gilt P(∩ni=1{N((ai, bi]) = ki}) = E

(
∏n
i=1 e

−λ((ai,bi]) Λki ((ai,bi])
ki!

)

.

Der Prozess {N(t), t ≥ 0} mit N(t) = N((0, t]) heißt Cox-Prozess (oder doppelt-stochastischer
Poisson-Prozess) mit zufälligem Intensitätsmaß Λ.

Beispiel 2.2.1 1. Falls das zufällige Maß Λ f.s. absolut stetig bzgl. des Lebesgue-Maßes ist,
d.h., Λ(B) =

∫

B λ(t)dt, B - beschränkt, B ∈ B(R+), wobei {λ(t), t ≥ 0} ein stochastischer
Prozess mit f.s. Borel-meßbaren borel-integrierbaren Trajektorien ist, λ(t) ≥ 0 f.s. für alle
t ≥ 0, der Intensitätsprozess von N genannt wird.

2. Insbesondere kann λ(t) ≡ Y sein, wobei Y eine nicht-negative Zufallsvariable ist. Dann
gilt Λ(B) = Y ν1(B), also hat N eine zufällige Intensität Y . Solche Cox-Prozesse werden
gemischte Poisson-Prozesse genannt.

Einen Cox-Prozess N = {N(t), t ≥ 0} mit Intensitätsprozess {λ(t), t ≥ 0} kann man
wie folgt explizit konstruieren. Sei Ñ = {Ñ(t), t ≥ 0} ein homogener Poisson-Prozess mit

Intensität 1, der unabhängig von {λ(t), t ≥ 0} ist. Dann ist N
d
= N1, wobei der Prozess

N1 = {N1(t), t ≥ 0} gegeben ist durch N1(t) = Ñ(
∫ t

0 λ(y)dy), t ≥ 0. Die Aussage N
d
= N1 soll

natürlich bewiesen werden. Wir werden sie jedoch ohne Beweis annehmen. Sie bildet auch die
Grundlage für die Simulation des Cox-Prozesses N .

2.3 Ergänzende Aufgaben

Aufgabe 2.3.1
Sei {Nt}t≥0 ein Erneuerungsprozess mit Zwischenankunftszeiten Ti, welche exponentialverteilt
sind, d.h. Ti ∼ Exp(λ).

a) Beweisen Sie: Nt ist Poisson-verteilt für jedes t > 0.

b) Bestimmen Sie den Parameter dieser Poisson-Verteilung.

c) Bestimmen Sie die Erneuerungsfunktion H(t) = ENt.

Aufgabe 2.3.2
Beweisen Sie: Ein (reellwertiger) stochastischer Prozess X = {X(t), t ∈ [0,∞)} mit unabhängi-
gen Zuwächsen hat bereits dann stationäre Zuwächse, wenn die Verteilung der Zufallsvariablen
X(t+ h) −X(h) unabhängig von h ist.

Aufgabe 2.3.3
Sei N = {N(t), t ∈ [0,∞)} ein Poisson-Prozess mit Intensität λ. Berechnen Sie die Wahr-
scheinlichkeiten dafür, dass im Intervall [0, s] genau i Ereignisse auftreten unter der Bedingung,
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dass im Intervall [0, t] genau n Ereignisse eintreten, d.h. P(N(s) = i | N(t) = n) für s < t,
i = 0, 1, . . . , n.

Aufgabe 2.3.4
Seien N (1) = {N (1)(t), t ∈ [0,∞)} und N (2) = {N (2)(t), t ∈ [0,∞)} unabhängige Poisson-
Prozesse mit den Intensitäten λ1 bzw. λ2. Die Unabhängigkeit soll in diesem Fall bedeuten,

dass die Folgen T (1)
1 , T

(1)
2 , . . . und T (2)

1 , T
(2)
2 , . . . unabhängig sind. Zeigen Sie, dass N = {N(t) :=

N (1)(t) +N (2)(t), t ∈ [0,∞)} ein Poisson-Prozess mit Intensität λ1 + λ2 ist.

Aufgabe 2.3.5 (Wartezeitenparadoxon):
Für einen Erneuerungsprozess N = {N(t), t ∈ [0,∞)} heißt T (t) = SN(t)+1 − t die Exzesszeit,
C(t) = t−SN(t) die aktuelle Lebenszeit und D(t) = T (t)+C(t) = TN(t)+1 die Lebensdauer zum
Zeitpunkt t > 0. Sei nun N = {N(t), t ∈ [0,∞)} ein Poisson-Prozess mit Intensität λ.

a) Berechnen Sie die Verteilung der Exzesszeit T (t).

b) Zeigen Sie, dass die Verteilung der aktuellen Lebenszeit durch P(C(t) = t) = e−λt und
die Dichte fC(t)|N(t)>0(s) = λe−λs1{s ≤ t} gegeben ist.

c) Zeigen Sie, dass P(D(t) ≤ x) = (1 − (1 + λmin{t, x})e−λx)1{x ≥ 0}.

d) Um ET (t) zu bestimmen, könnte man folgendermaßen argumentieren: Im Mittel liegt t
in der MItte des umgebenden Zwischenankuftsintervalls (SN(t), SN(t)+1), d.h. ET (t) =
1
2E(SN(t)+1 − SN(t)) = 1

2ETN(t)+1 = 1
2λ . In Anbetracht des Ergebnisses aus Teil (a) kann

dieses Argument nicht stimmen. Wo liegt der Fehler in der Argumentation?

Aufgabe 2.3.6

Gegeben sei ein zusammengesetzter Poisson-Prozess X = {X(t) :=
∑N(t)
i=1 Ui, t ≥ 0}. Sei

MN(t)(s) = EsN(t), s ∈ (0, 1), die erzeugende Funktion des Poisson-Prozesses N(t), L{U}(s) =
E exp{−sU} die Laplace-Transformierte von Ui, i ∈ N, und L{X(t)}(s) die Laplace-Transformierte
von X(t). Beweisen Sie, dass

L{X(t)}(s) = MN(t)(L{U}(s)), s ≥ 0

gilt.

Aufgabe 2.3.7
Gegeben sei ein zusammengesetzter Poisson-Prozess X = {X(t), t ∈ [0,∞)} mit Ui u.i.v.,
U1 ∼ Exp(γ), wobei die Intensität von N(t) durch λ gegeben sei. Zeigen Sie, dass für die
Laplace-Transformierte L{X(t)}(s) von X(t) gilt:

L{X(t)}(s) = exp
{

− λts

γ + s

}

.

Aufgabe 2.3.8
Schreiben Sie eine Funktion in R (alternativ: Java), der als Parameter ein Zeitpunkt t, eine
Intensität λ und ein Wert γ übergeben werden und die als Ergebnis den zufälligen Wert ei-
nes zusammengesetzten Poisson-Prozesses mit Charakteristiken (λ,Exp(γ)) zum Zeitpunkt t
ausgibt. Hinweis: die Lösungen sollen als kommentierter, strukturierter und lesbarer Ausdruck
abgegeben werden.
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Aufgabe 2.3.9
Der stochastische Prozess N = {N(t), t ∈ [0,∞)} sei ein Cox-Prozess mit Intensitätsfunktion
λ(t) = Z, wobei Z eine diskrete Zufallsvariable ist, welche die Werte λ1 und λ2 jeweils mit
Wahrscheinlichkeit 1/2 annimmt. Bestimmen Sie die momenterzeugende Funktion sowie den
Erwartungswert und die Varianz von N(t).

Aufgabe 2.3.10
Gegeben seien zwei unabhängige homogene Poisson-Prozesse N (1) = {N (1)(t), t ∈ [0,∞)}
und N (2) = {N (2)(t), t ≥ 0} mit den Intensitäten λ1 und λ2. Weiter sei X ≥ 0 eine beliebige
nichtnegative Zufallsvariable, die vonN (1) und N (2) unabhängig ist. Zeigen Sie, dass der Prozess
N = {N(t), t ≥ 0} mit

N(t) =

{

N (1)(t), t ≤ X,

N (1)(X) +N (2)(t−X), t > X

ein Cox-Prozess ist, dessen Intensitätsprozess λ = {λ(t), t ≥ 0} gegeben ist durch

λ(t) =

{

λ1, t ≤ X,

λ2, t > X.



3 Wiener-Prozess

3.1 Elementare Eigenschaften

Im Beispiel 2) des Abschnittes 1.2 haben wir die Brownsche Bewegung (oder Wiener-Prozess)
W = {W (t), t ≥ 0} definiert als einen Gaußschen Prozess mit EW (t) = 0 und cov(W (s),W (t)) =
min{s, t}, s, t ≥ 0. Geben wir jetzt eine neue (äquivalente) Definition an.

Definition 3.1.1
Ein stochastischer Prozess W = {W (t), t ≥ 0} heißt Wiener-Prozess (oder Brownsche Bewe-
gung), falls

1. W (0) = 0 f.s.

2. W hat unabhängige Zuwächse

3. W (t) −W (s) ∼ N (0, t− s), 0 ≤ s < t

Die Existenz von W nach Definition 3.1.1 folgt aus dem Satz 1.7.1, weil nämlich ϕs,t(z) =

Eeiz(W (t)−W (s)) = e− (t−s)z2

2 , z ∈ R, und e− (t−u)z2

2 e− (u−s)z2

2 = e− (t−s)z2

2 für 0 ≤ s < u < t, also
ϕs,u(z)ϕu,t(z) = ϕs,t(z), z ∈ R. Aus dem Satz 1.3.1 folgt außerdem die Existenz einer Version
mit stetigen Trajektorien.

Aufgabe 3.1.1
Zeigen Sie, dass das Theorem für α = 3, σ = 1

2 .

Der Wiener-Prozess ist nach dem Mathematiker Norbert Wiener (1894 - 1964)benannt wor-
den. Warum existiert dann die Brownsche Bewegung? Aus dem Satz von Kolmogorov (Satz
1.1.2) existiert für jede Funktion µ : R+ → R und jede positiv semi-definite Funktion C :
R+ × R+ → R ein reellwertiger Gaußscher Prozess X = {X(t), t ≥ 0} mit Mittelwert
EX(t) = µ(t), t ≥ 0, und Kovarianzfunktion cov(X(s), X(t)) = C(s, t), s, t ≥ 0. Es bleibt
lediglich zu zeigen, dass C(s, t) = min{s, t}, s, t ≥ 0 positiv-semidefinit ist.

Aufgabe 3.1.2
Zeigen Sie es.

Deswegen wird oft angenommen, dass der Wiener-Prozess stetige Pfade besitzt (man nimmt
einfach die entsprechende Version von ihm).

Theorem 3.1.1
Beide Definitionen des Wiener-Prozesses sind äquivalent.

Beweis 1. Aus der Definition im Abschnitt 1.2 folgt die Definition 3.1.1.
W (0) = 0 f.s. folgt aus var(W (0)) = min{0, 0} = 0. Beweisen wir nun, dass die Zuwächse
von W unabhängig sind. Falls Y ∼ N (µ,K) ein n-dimensionaler Gaußscher Zufallsvektor
ist und A eine (n×n)-Matrix, dann gilt AY ∼ N (Aµ,AKA⊤), dies folgt aus der expliziten
Form der charakteristischen Funktion von Y . Sei nun n ∈ N, 0 = t0 ≤ t1 < . . . < tn,

39
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Y = (W (t0),W (t1), . . . ,W (tn))⊤. Es gilt für Z = (W (t0),W (t1) − W (t0), . . . ,W (tn) −
W (tn−1))⊤, dass Z = AY , wobei

A =










1 0 0 . . . . . . 0
−1 1 0 . . . . . . 0

0 −1 1 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . −1 1










.

Daher ist Z auch Gaußsch mit einer Kovarianzmatrix, die diagonal ist. In der Tat gilt
cov(W (ti+1)−W (ti),W (tj+1)−W (tj)) = min{ti+1, tj+1}−min{ti+1, tj}−min{ti, tj+1}+
min{ti, tj} = 0 für i 6= j. Daher sind die Koordinaten von Z unkorreliert, was für die
multivariate Gaußsche Verteilung Unabhängigkeit bedeutet. Deshalb sind die Zuwächse
von W unabhängig. Weiterhin, gilt für beliebiges 0 ≤ s < t, dass W (t)−W (s) ∼ N (0, t−
s). Die Normalverteiltheit folgt aus der Tatsache, dass Z = AY Gaußsch ist, offensichtlich
gilt EW (t) − EW (s) = 0 und var(W (t) − W (s)) = var(W (t)) − 2 cov(W (s),W (t)) +
var(W (s)) = t− 2 min{s, t} + s = t− s.

2. Aus der Definition 3.1.1 folgt die Definition im Abschnitt 1.2.
DaW (t)−W (s) ∼ N (0, t−s) für 0 ≤ s < t, gilt cov(W (s),W (t)) = E[W (s)(W (t)−W (s)+
W (s))] = EW (s)E(W (t)−W (s))+varW (s) = s, daher gilt cov(W (s),W (t)) = min{s, t}.
Aus W (t) − W (s) ∼ N (0, t − s) und W (0) = 0 folgt auch, dass EW (t) = 0, t ≥ 0. Die
Tatsache, dass W ein Gaußscher Prozess ist, folgt aus der Relation Y = A−1Z, Punkt 1)
des Beweises.

Definition 3.1.2
Der Prozess {W (t), t ≥ 0}, W (t) = (W1(t), . . . ,Wd(t))⊤, t ≥ 0, heißt d-dimensionale Brown-
sche Bewegung, falls Wi = {Wi(t), t ≥ 0} unabhängige Wiener-Prozesse sind, i = 1, . . . , d.

Die obigen Definitionen und Übungsaufgabe 3.1.1 garantieren uns die Existenz eines Wiener-
Prozesses mit stetigen Pfaden. Wie kann man aber eine explizite Konstruktion dieser Pfade
angeben? Damit befassen wir uns im nächsten Abschnitt.

3.2 Explizite Konstruktion des Wiener-Prozesses

Konstruieren wir den Wiener-Prozess zunächst auf dem Intervall [0, 1]. Die Hauptidee der Kon-
struktion ist es, einen stochastischen Prozess X = {X(t), t ∈ [0, 1]} einzuführen, der auf

einem Teilwahrscheinlichkeitsraum von (Ω,A,P) definiert ist mit X
d
= W , wobei X(t) =

∑∞
n=1 cn(t)Yn, t ∈ [0, 1], {Yn}n∈N eine Folge von u.i.v. N (0, 1)-Zufallsvariablen und cn(t) =

∫ t
0 Hn(s)ds, t ∈ [0, 1], n ∈ N, ist. Hier soll {Hn}n∈N die orthonormierte Haar-Basis im L2([0, 1])

sein, die jetzt kurz eingeführt wird.

3.2.1 Haar- und Schauder-Funktionen

Definition 3.2.1
Die Funktionen Hn : [0, 1] → R, n ∈ N, heißen Haar-Funktionen, falls H1(t) = 1, t ∈ [0, 1],
H2(t) = 1[0, 1

2
](t) − 1( 1

2
,1](t), Hk(t) = 2

n
2 (1In,k

(t) − 1Jn,k
(t)), t ∈ [0, 1], 2n < k ≤ 2n+1, wobei

In,k = [an,k, an,k + 2−n−1], Jn,k = (an,k + 2−n−1, an,k + 2−n], an,k = 2−n(k − 2n − 1), n ∈ N.
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Abbildung 3.1: Haar-Funktionen

Lemma 3.2.1
Das Funktionssystem {Hn}n∈N ist eine orthonormierte Basis in L2([0, 1]) mit dem Skalarpro-
dukt < f, g >=

∫ 1
0 f(t)g(t)dt, f, g ∈ L2([0, 1]).

Beweis Die Orthonormiertheit des Systems < Hk, Hn >= δkn, k, n ∈ N folgt unmittelbar
aus der Definition 3.2.1. Zeigen wir die Vollständigkeit von {Hn}n∈N. Es genügt zu zeigen,
dass für beliebige Funktion g ∈ L2([0, 1]) mit < g,Hn >= 0, n ∈ N, g = 0 fast überall auf
[0, 1] gilt. In der Tat kann die Indikator-Funktion eines Intervalls 1[an,k,an,k+2−n−1] stets als
Linearkombination von Hn, n ∈ N aufgeschrieben werden.

1[0, 1
2

] =
(H1 +H2)

2
,

1( 1
2
,1] =

(H1 −H2)

2
,

1[0, 1
4

] =
(1[0, 1

2
] + 1√

2
H2)

2
,

1( 1
4
, 1

2
] =

(1[0, 1
2

] − 1√
2
H2)

2
,

...

1[an,k,an,k+2−n−1] =
(1an,k,an,k+2−n + 2− n

2
Hk)

2
, 2n < k ≤ 2n+1.

Daher gilt
∫ (k+1)

2n

k
2n

g(t)dt = 0, n ∈ N0, k = 1, . . . , 2n − 1, und deshalb G(t) =
∫ t

0 g(s)ds = 0 für

t = k
2n , n ∈ N0, k = 1, . . . , 2n − 1. Da G stetig auf [0, 1] ist, folgt heraus G(t) = 0, t ∈ [0, 1],

und somit g(s) = 0 für fast jedes s ∈ [0, 1].

Aus Lemma 3.2.1 folgt, dass zwei beliebige Funktionen f, g ∈ L2([0, 1]) die Darstellungen
f =

∑∞
n=1 < f,Hn > Hn und g =

∑∞
n=1 < g,Hn > Hn haben (diese Reihen konvergieren im

L2([0, 1])) und < f, g >=
∑∞
n=1 < f,Hn >< g,Hn > (Parseval-Identität).

Definition 3.2.2
Die Funtionen Sn(t) =

∫ t
0 Hn(s)ds =< 1[0,t], Hn >, t ∈ [0, 1], n ∈ N heißen Schauder-

Funktionen.
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Abbildung 3.2: Schauder-Funktionen

Lemma 3.2.2
Es gilt:

1. Sn(t) ≥ 0, t ∈ [0, 1], n ∈ N,

2.
∑2n

k=1 S2n+k(t) ≤ 1
22− n

2 , t ∈ [0, 1], n ∈ N,

3. Sei {an}n∈N eine Folge von reellen Zahlen mit an = O(nε), ε < 1
2 , n → ∞. Dann kon-

vergiert die Reihe
∑∞
n=1 anSn(t) absolut und gleichmäßig in t ∈ [0, 1] und ist folglich eine

stetige Funktion auf [0, 1].

Beweis 1. folgt unmittelbar aus Definition 3.2.2.

2. folgt aus der Tatsache, dass die Funktionen S2n+k für k = 1, . . . , 2n disjunkte Träger
haben und S2n+k(t) ≤ S2n+k(

2k−1
2n−1 ) = 2− n

2
−1, t ∈ [0, 1].

3. Es genügt zu zeigen, dass Rm = supt∈[0,1]

∑

k>2n |ak|Sk(t) −−−→
n→∞ 0. Für jedes k ∈ N und

ein c > 0 gilt |ak| ≤ ckε. Deshalb gilt für alle t ∈ [0, 1], n ∈ N

∑

2n<k≤2n+1

|ak|Sk(t) ≤ c · 2(n+1)ε ·
∑

2n<k≤2n+1

Sk(t) ≤ c · 2(n+1)ε · 2− n
2

−1 ≤ c · 2ε−n( 1
2

−ε).

Da ε < 1
2 , gilt Rm ≤ c · 2ε

∑

n≥m 2−n( 1
2

−ε) −−−−→
m→∞

0.

Lemma 3.2.3
Sei {Yn}n∈N eine Folge von (nicht unbedingt unabhängigen) Zufallsvariablen definiert auf

(Ω,A,P), Yn ∼ N (0, 1), n ∈ N. Dann gilt |Yn| = O((logn)
1
2 ), n → ∞.

Beweis Zu zeigen ist, dass für c >
√

2 und fast allen ω ∈ Ω ein n0 = n0(ω, c) ∈ N existiert, so

dass |Yn| ≤ c(logn)
1
2 für n ≥ n0. Falls Y ∼ N (0, 1), x > 0, dann gilt

P(Y > x) =
1√
2π

∫ ∞

x
e− y2

2 dy =
1√
2π

∫ ∞

x

(

−1

y

)

d

(

e− y2

2

)

=
1√
2π

(
1

x
e− y2

2 −
∫ ∞

x
e− y2

2
1

y2
dy

)

≤ 1√
2π

1

x
e− x2

2 .
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(Man kann auch zeigen, dass Φ̄(x) ∼ 1√
2π

1
x
e− x2

2 , x → ∞.) Daher gilt für c >
√

2

∑

n≥2

P(|Yn| > c(logn)
1
2 ) ≤ c−1 2√

2π

∑

n≥2

(logn)− 1
2 e− c2

2
logn =

c−1
√

2√
π

∑

n≥2

(logn)− 1
2n− c2

2 < ∞.

Nach dem Lemma von Borel-Cantelli (vgl. WR-Skript, Lemma 2.2.1) gilt P(∩n ∪k≥n Ak) = 0,

falls
∑

k P(Ak) < ∞ mit Ak = {|Yk| > e ·(log k)
1
2 }, k ∈ N. Daher tritt Ak in unendlicher Anzahl

nur mit Wahrscheinlichkeit 0, mit |Yn| ≤ c(logn)
1
2 für n ≥ n0.

3.2.2 Wiener-Prozess mit f.s. stetigen Pfaden

Lemma 3.2.4
Sei {Yn}n∈N eine Folge von unabhängigen N (0, 1)-verteilten Zufallsvariablen. Seien {an}n∈N

und {bn}n∈N Folgen von Zahlen mit
∑2m

k=1 |a2m+k| ≤ 2− m
2 ,
∑2m

k=1 |b2m+k| ≤ 2− m
2 , m ∈ N.

Dann existieren f.s. die Grenzwerte U =
∑∞
n=1 anYn und V =

∑∞
n=1 bnYn, U ∼ N (0,

∑∞
n=1 a

2
n),

V ∼ N (0,
∑∞
n=1 b

2
n), wobei cov(U, V ) =

∑∞
n=1 anbn. U und V sind genau dann unabhängig,

wenn cov(U, V ) = 0.

Beweis Aus Lemma 3.2.2 und 3.2.3 ergibt sich f.s. die Existenz der Grenzwerte U und V
(ersetze dafür an durch Yn und Sn durch z.B. bn in Lemma 3.2.2). Aus der Faltungsstabilität der
Normalverteilung folgt für U (m) =

∑m
n=1 anYn, V (m) =

∑m
n=1 bnYn, dass U (m) ∼ N (0,

∑m
n=1 a

2
n),

V (m) ∼ N (0,
∑m
n=1 b

2
n). Da U (m) d−→ U , V (m) d−→ V folgt somit U ∼ N (0,

∑∞
n=1 a

2
n), V ∼

N (0,
∑∞
n=1 b

2
n). Weiterhin, gilt

cov(U, V ) = lim
m→∞ cov(U (m), V (m))

= lim
m→∞

m∑

i,j=1

aibj cov(Yi, Yj)

= lim
m→∞

m∑

i=1

aibi =
∞∑

i=1

aibi,

nach dem Satz von Lebesgue über die majorisierte Konvergenz, denn nach Lemma 3.2.3 gilt
|Yn| ≤ c (logn)

1
2

︸ ︷︷ ︸

≤cnε, ε< 1
2

, für n ≥ N0, und die majorisierende Reihe konvergiert nach Lemma 3.2.2:

2m+1
∑

n,k=2m

anbkYnYk
f.s.

≤
2m+1
∑

n,k=2m

anbkc
2nεkε ≤ 22ε(m+1) · 2− m

2 · 2− m
2 = 2−(1−2ε)m, 1 − 2ε > 0.

Für ausreichend großes m gilt
∑∞
n,k=m anbkYnYk ≤ ∑∞

j=m 2−(1−2ε)j < ∞, und diese Reihe
konvergiert f.s.
Zeigen wir nun

cov(U, V ) = 0 ⇐⇒ U und V unabhängig

Aus der Unabhängigkeit folgt immer die Unkorelliertheit von Zufallsvariablen. Zeigen wir hier
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das Gegenteil. Aus (U (m), V (m))
d−−−−→

m→∞
(U, V ) folgt ϕ(U(m),V (m)) −−−−→

m→∞
ϕ(U,V ), also

ϕ(U(m),V (m))(s, t) = lim
m→∞ E exp{i(t

m∑

k=1

akYk + s
m∑

n=1

bnYn)}

= lim
m→∞

E exp{i
m∑

k=1

(tak + sbk)Yk} = lim
m→∞

m∏

k=1

E exp{i(tak + sbk)Yk}

= lim
m→∞

m∏

k=1

exp{−(tak + sbk)2

2
} = exp{−

∞∑

k=1

(tak + sbk)2

2
}

= exp{− t2

2

∞∑

k=1

a2
k} exp{ts

∞∑

k=1

akbk

︸ ︷︷ ︸

cov(U,V )=0

} exp{−s2

2

∞∑

k=1

b2
k} = ϕU (t)ϕV (s),

s, t ∈ R. Daher sind U und V unabhängig, falls cov(U, V ) = 0.

Theorem 3.2.1
Sei {Yn, n ∈ N} eine Folge von u.i.v. Zufallsvariablen, die N (0, 1)-verteilt sind, definiert auf
einem Wahrscheinlichkeitsraum (Ω,A,P). Dann gibt es einen Teil-Wahrscheinlichkeitsraum
(Ω0,A0,P) von (Ω,A,P) und einen stochastischen Prozess X = {X(t), t ∈ [0, 1]} darauf,

so dass X(t) =
∑∞
n=1 YnSn(t), t ∈ [0, 1], und X

d
= W . Hierbei ist {Sn}n∈N die Familie der

Schauder-Funktionen.

Beweis Nach Lemma 3.2.2, 2) erfüllen die Koeffizienten Sn(t) für jedes t ∈ [0, 1] die Bedin-
gungen des Lemmas 3.2.4. Darüberhinaus existiert nach Lemma 3.2.3 eine Teilmenge Ω0 ⊂ Ω,
Ω0 ∈ A mit P(Ω0) = 1, so dass für jedes ω ∈ Ω0 die Relation |Yn(ω)| = O(

√
logn), n → ∞,

gilt. Sei A0 = A∩Ω0. Schränken wir den Wahrscheinlichkeitsraum auf (Ω0,A0,P) ein. Dann ist
die Bedingung an = Yn(ω) = O(nε), ε < 1

2 , erfüllt, weil
√

logn < nε für ausreichend große n,
und nach Lemma 3.2.2, 3) konvergiert die Reihe

∑∞
n=1 Yn(ω)Sn(t) absolut und gleichmäßig in

t ∈ [0, 1] gegen die Funktion X(ω, t), ω ∈ Ω0, die eine stetige Funktion in t für jedes ω ∈ Ω0 ist.
X(·, t) ist eine Zufallsvariable, weil nach Lemma 3.2.4 die Konvergenz dieser Reihe fast sicher
gilt. Weiterhin, gilt X(t) ∼ N (0,

∑∞
n=1 S

2
n(t)), t ∈ [0, 1].

Zeigen wir, dass der so definierte stochastische Prozess auf (Ω0,A0,P) ein Wiener-Prozess ist.
Dazu prüfen wir die Bedingungen der Definition 3.1.1. Betrachten wir beliebige Zeitpunkte
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0 ≤ t1 < t2, t3 < t4 ≤ 1 und berechnen wir

cov(X(t2) −X(t1), X(t4) −X(t3)) = cov(
∞∑

n=1

Yn(Sn(t2) − Sn(t1)),
∞∑

n=1

Yn(Sn(t4) − Sn(t3)))

=
∞∑

n=1

(Sn(t2) − Sn(t1))(Sn(t4) − Sn(t3))

=
∞∑

n=1

(< Hn, 1[0,t2] > − < Hn, 1[0,t1] >) ×

(< Hn, 1[0,t4] > − < Hn, 1[0,t3] >)

=
∞∑

n=1

< Hn, 1[0,t2] − 1[0,t1] >< Hn, 1[0,t4] − 1[0,t3] >

= < 1[0,t2] − 1[0,t1], 1[0,t4] − 1[0,t3] >

= < 1[0,t2], 1[0,t4] > − < 1[0,t1], 1[0,t4] >

− < 1[0,t2], 1[0,t3] > + < 1[0,t1], 1[0,t3] >

= min{t2, t4} − min{t1, t4} − min{t2, t3} + min{t1, t3},

weil < 1[0,s], 1[0,t] >=
∫min{s,t}

0 du = min{s, t}, s, t ∈ [0, 1]. Falls 0 ≤ t1 < t2 ≤ t3 < t4 < 1,
dann gilt cov(X(t2) −X(t1), X(t4) −X(t3)) = t2 − t1 − t2 + t1 = 0, also sind die Zuwächse von
X (nach Lemma 3.2.4) unkorelliert. Weiterhin gilt X(0) ∼ N (0,

∑∞
n=1 S

2
n(0)) = N (0, 0), daher

X(0)
f.s.
= 0. Daraus folgt für t1 = 0, t2 = t, t3 = 0, t4 = t, dass var(X(t)) = t, t ∈ [0, 1], und für

t1 = t3 = s, t2 = t4 = t, dass var(X(t) − X(s)) = t − s − s + s = t − s, 0 ≤ s < t ≤ 1. Somit

gilt X(t) −X(s) ∼ N (0, t− s), und nach Definition 3.1.1 gilt X
d
= W .

Bemerkung 3.2.1 1. Theorem 3.2.1 bildet eine Grundlage für die approximative Simula-
tion der Pfade einer Brownschen Bewegung durch die TeilsummenX(n)(t) =

∑n
k=1 YkSk(t),

t ∈ [0, 1], für ausreichend großes n ∈ N.

2. Die Konstruktion in Theorem 3.2.1 kann verwendet werden, um den Wiener-Prozess
mit stetigen Pfaden auf einem Intervall [0, t0], für beliebiges t0 > 0 zu erzeugen. Falls
W = {W (t), t ∈ [0, 1]} ein Wiener-Prozess auf [0, 1] ist, dann ist Y = {Y (t), t ∈ [0, t0]}
mit Y (t) =

√
t0W ( t

t0
), t ∈ [0, t0], ein Wiener-Prozess auf [0, t0].

Aufgabe 3.2.1
Beweisen Sie es.

3. Der Wiener-Prozess W mit stetigen Pfaden auf R+ kann wie folgt explizit konstruiert
werden. Seien W (n) = {W (n)(t), t ∈ [0, 1]} unabhängige Kopien des Wiener-Prozesses
wie in Theorem 3.2.1. Definiere W (t) =

∑∞
n=1 1(t ∈ [n− 1, n])[

∑n−1
k=1 W

(k)(1) −W (n)(t−
(n− 1))], t ≥ 0, also,

W (t) =







W (1)(t), t ∈ [0, 1],
W (1)(1) +W (2)(t− 1), t ∈ [1, 2],
W (1)(1) +W (2)(1) +W (3)(t− 2), t ∈ [2, 3],
usw.
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Abbildung 3.3:

Aufgabe 3.2.2
Zeigen Sie, dass der so eingeführte stochastische Prozess W = {W (t), t ≥ 0} ein Wiener-Prozess
auf R+ ist.

3.3 Verteilungs- und Pfadeeigenschaften vom Wiener-Prozess

3.3.1 Verteilung des Maximums

Theorem 3.3.1
Sei W = {W (t), t ∈ [0, 1]} ein Wiener-Prozess über einem Wahrscheinlichkeitsraum (Ω,F ,P).
Dann gilt:

P

(

max
t∈[0,1]

W (t) > x

)

≤
√

2

π

∫ ∞

x
e− y2

2 dy, (3.3.1)

für alle x ≥ 0.

Die in 3.3.1 gegebene Abbildung maxt∈[0,1]W (t) : Ω → [0,∞) ist eine wohldefinierte Zu-

fallsvariable, denn es gilt: maxt∈[0,1]W (t, ω) = limn→∞ maxi=1,...,kW ( i
k
, ω) für alle ω ∈ Ω, weil

die Trajektorien von {W (t), t ∈ [0, 1]} stetig sind. Aus 3.3.1 folgt, dass maxt∈[0,1]W (t) einen
exponentiell beschränkten Tail hat: somit hat maxt∈[0,1]W (t) endliche k-te Momente.

Hilfsmittel für Beweis von Theorem 3.3.1
Sei {W (t), t ∈ [0, 1]} ein Wiener-Prozess und Z1, Z2, . . . eine Folge von unabhängigen Zufalls-
variablen mit P(Zi = 1) = P(Zi = −1) = 1

2 für alle i ≥ 1. Für jedes n ∈ N definieren wir

{W̃n(t), t ∈ [0, 1]} durch W̃n(t) =
S⌊nt⌋√
n

+ (nt− ⌊nt⌋)
Z⌊nt⌋+1√

n
, wobei Si = Z1 + . . .+ Zi, i ≥ 1,

S0 = 0.

Lemma 3.3.1
Für jedes k ≥ 1 und beliebige t1, . . . , tk ∈ [0, 1] gilt:

(

W̃ (n)(t1), . . . , W̃ (n)(tk)
)⊤ d→ (W (t1), . . . ,W (tk))

⊤ .
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Beweis Spezialfall k = 2 (für k > 2 verläuft der Beweis analog). Sei t1 < t2. Für alle s1, s2 ∈ R

gilt:

s1W̃
(n)(t1) + s2W̃

(n)(t2) = (s1 + s2)
S⌊nt1⌋√

n
+ s2

(S⌊nt2⌋ − S⌊nt1⌋+1)√
n

+Z⌊nt1⌋+1((nt1 − ⌊nt1⌋)
s1√
n

+
s2√
n

)

+Z⌊nt2⌋+1(nt2 − ⌊nt2⌋)
s2√
n
.

lim
n→∞ Eei(s1W̃

(n)(t1)+s2W̃
(n)(t2)) = lim

n→∞ Ee
i

s1+s2√
n
S⌊nt1⌋

Ee
i

s2√
n

(S⌊nt2⌋−S⌊nt1⌋+1)

=

∣
∣
∣
∣
∣
Ee

i
s1+s2√

n
s⌊nt1⌋ = ϕS⌊nt1⌋

(
s1 + s2√

n

)

=
(

ϕZ1

(
s1 + s2√

n

))⌊nt1⌋
∣
∣
∣
∣
∣

= lim
n→∞

(

ϕZ1

(
s1 + s2√

n

))⌊nt1⌋ (
ϕZ1

(
s2√
n

))⌊nt2⌋−⌊nt1⌋−1

=
∣
∣
∣
∣ lim
n→∞ϕn

(
s√
n

)

= e− s2

2

∣
∣
∣
∣

= e−(s2
1t1+2s1s2 min{t1,t2}+s2

2t2)
2

= ϕ(W (t1),W (t2))(s1, s2),

wobei ϕ(W (t1),W (t2)) die charakteristische Funktion von (W (t1),W (t2)) ist.

Lemma 3.3.2
Sei W̃ (n) = maxt∈[0,1] W̃

(n)(t). Dann gilt:

W̃ (n) =
1√
n

max
k=1,...,n

Sk, für alle n = 1, 2, . . .

und

lim
n→∞

P(W̃ (n) ≤ x) =

√

2

π

∫ x

0
e− y2

2 dy, für alle x ≥ 0.

Ohne Beweis

Beweis von Theorem 3.3.1
Aus Lemma 3.3.1 folgt für x ≥ 0, k ≥ 1 und t1, . . . , tn ∈ [0, 1]

lim
n→∞ P

(

max
t∈{t1,...,tk}

W̃ (n)(t) > x

)

= P

(

max
t∈{t1,...,tk}

W (t) > x

)

⇒ P

(

max
t∈[0,1]

W̃ (n)(t) > x

)

≥ P

(

max
t∈{t1,...,tk}

W (t) > x

)

.

Mit (t1, . . . , tk)
⊤ =

(
1
k
, . . . , k

k

)⊤
und maxt∈[0,1]W (t, ω) = limk→∞ maxi=1,...,kW

(
1
k
, ω
)

gilt

lim
n→∞

P

(

max
t∈[0,1]

W̃ (n)(t) > x

)

≥ P

(

max
t∈[0,1]

W (t) > x

)

.

Aus Lemma 3.3.2 folgt die Behauptung.
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Korollar 3.3.1
Sei {W (t), t ∈ [0, 1]} ein Wiener-Prozess. Dann gilt:

P

(

lim
t→∞

W (t)

t
= 0

)

= 1.

Beweis
∣
∣
∣
∣

W (t)

t
− W (n)

n

∣
∣
∣
∣ ≤

∣
∣
∣
∣

W (t)

t
− W (n)

t

∣
∣
∣
∣+

∣
∣
∣
∣

W (n)

t
− W (n)

n

∣
∣
∣
∣

≤ |W (n)|
∣
∣
∣
∣

1

t
− 1

n

∣
∣
∣
∣+

1

n
sup

t∈[n,n+1]
|W (t) −W (n)|

≤ 2

n
|W (n)| − Z(n)

n
,

wobei Z(n) = supt∈[0,1] |W (n+ t) −W (n)|, t ∈ [n, n+ 1). Es gilt

2

n
|W (n)| =

2

n

∣
∣
∣
∣
∣

∞∑

i=1

(W (i) −W (i− 1))

∣
∣
∣
∣
∣

f.s.−−→ 2 |EW (1)| = 0.

Wir zeigen, dass EZ(1) < ∞.

P (Z(1) > x) ≤ P

(

max
t∈[0,1]

W (t) > x

)

+ P

(

max
t∈[0,1]

(−W (t)) > x

)

= 2P

(

max
t∈[0,1]

W (t) > x

)

,

weil {−W (t), t ∈ [0, 1]} auch ein Wiener-Prozess ist. Es gilt

P (Z(1) > x) ≤ 2

√

2

π

∫ ∞

x
e− y2

2 dy und somit
Z(n)

n

f.s.−−→ 0 für n → ∞.

Daraus folgt W (t)
t

f.s.−−→ 0 für t → ∞.

3.3.2 Invarianzeigenschaften

Bestimmte Transformationen des Wiener-Prozesses führen wieder zu einem Wiener-Prozess.

Theorem 3.3.2
Sei {W (t), t ≥ 0} ein Wiener-Prozess. Dann sind die stochastischen Prozesse {Y (i)(t), t ≥ 0},
i = 1, . . . , 4, mit

Y (1)(t) = −W (t), (Symmetrie)
Y (2)(t) = W (t+ t0) −W (t0) für ein t0 > 0, (Verschiebung des Nullpunktes)
Y (3)(t) =

√
cW ( t

c
) für ein c > 0, (Skalierung)

Y (4)(t) =

{

tW (1
t
), t > 0,
0, t = 0.

(Spiegelung bei t = 0)

ebenfalls Wiener-Prozesse.

Beweis 1. Y (i), i = 1, . . . , 4, haben unabhängige Zuwächse mit Y (i)(t2)−Y (i)(t1) ∼ N (0, t2−
t1).
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2. Y (i)(0) = 0, i = 1, . . . , 4.

3. Y (i), i = 1, . . . , 3, haben stetige Trajektorien. {Y (i)(t), t ≥ 0} hat stetige Trajektorien für
t > 0.

4. Es ist zu zeigen, dass limt→0 tW (1
t
) = 0.

limt→0 tW (1
t
) = limt→∞

W (t)
t

f.s.
= 0 wegen Korollar 3.3.1.

Korollar 3.3.2
Sei {W (t), t ≥ 0} ein Wiener-Prozess. Dann gilt:

P

(

sup
t≥0

W (t) = ∞
)

= P

(

inf
t≥0

W (t) = −∞
)

= 1.

Beweis Für x, c > 0 gilt:

P

(

sup
t≥0

W (t) > x

)

= P

(

sup
t≥0

W

(
t

c

)

>
x√
c

)

= P

(

sup
t≥0

W (t) >
x√
c

)

⇒ P

(

{sup
t≥0

W (t) = 0} ∪ {sup
t≥0

W (t) = ∞}
)

= P(sup
t≥0

W (t) = 0) + P(sup
t≥0

W (t) = ∞) = 1.

Weiterhin gilt

P

(

sup
t≥0

W (t) = 0

)

= P

(

sup
t≥0

W (t) ≤ 0

)

≤ P

(

W (t) ≤ 0, sup
t≥1

W (t) ≤ 0

)

= P

(

W (1) ≤ 0, sup
t≥1

(W (t) −W (1)) ≤ −W (1)

)

=
∫ 0

−∞
P

(

sup
t≥1

W (t) −W (1) ≤ −W (t) | W (1) = x

)

P (W (1) ∈ dx)

=
∫ 0

−∞
P

(

sup
t≥0

(W (t) −W (1)) ≤ −x | W (1) = x

)

P (W (1) ∈ dx)

=
∫ 0

−∞
P

(

sup
t≥0

W (t) = 0

)

P (W (1) ∈ dx)

= P

(

sup
t≥0

W (t) = 0

)

1

2
,

also P

(

supt≥0W (t) = 0
)

= 0 und somit P

(

supt≥0W (t) = ∞
)

= 1.

Analog kann man zeigen, dass P (inft≥0W (t) = −∞) = 1.

Bemerkung 3.3.1

P

(

supt≥0X(t) = ∞, inft≥0X(t) = −∞
)

= 1 bedeutet, dass die Trajektorien von W unendlich

oft zwischen positiven und negativen Werten auf [0,∞) oszillieren.

Korollar 3.3.3
Sei {W (t), t ≥ 0} ein Wiener-Prozess. Dann gilt

P (ω ∈ Ω : W (ω) ist nirgendwo differenzierbar in [0,∞)) = 1.
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Beweis

{ω ∈ Ω : W (ω) ist nirgendwo differenzierbar in [0,∞)}
= ∩∞

n=0{ω ∈ Ω : W (ω) ist nirgendwo diffenrenzierbar in [n, n+ 1)}.

Es genügt zu zeigen, dass P(ω ∈ Ω : W (ω) differenzierbar für ein t0 = t0(ω) ∈ [0, 1]) = 0.
Definiere die Menge

Anm =
{

ω ∈ Ω : es gibt ein t0 = t0(ω) ∈ [0, 1] mit |X(t0ω + h, ω) −W (t0(ω, ω))| ≤ mh, ∀h ∈
[

0,
4

k

]}

.

Dann gilt

{ω ∈ Ω : W (ω) differenzierbar für ein t0 = t0(ω)} = ∪m≥1 ∪n≥1 Anm.

Zu zeigen bleibt P(∪m≥1 ∪n≥1 Anm) = 0.
Sei k0(ω) = mink=1,2,...{ kn ≥ t0(ω)}. Dann gilt für ω ∈ Anm und j = 0, 1, 2

∣
∣
∣
∣W

(
k0(ω) + j + 1

n
, ω

)

−W

(
k0(ω) + j

n
, ω

)∣
∣
∣
∣ ≤

∣
∣
∣
∣W

(
k0(ω) + j + 1

n
, ω

)

−W (t0(ω), ω)
∣
∣
∣
∣

+
∣
∣
∣
∣W

(
k0(ω) + j

n
, ω

)

−W (t1(ω), ω)
∣
∣
∣
∣

≤ 8m

n
.

Sei ∆0(k) = W (k+1
n

) −W ( k
n

). Dann gilt

P(Anm) ≤ P

(

∪nk=0 ∪2
j=0 |∆n(k + j)| ≤ 8m

n

)

≤
n∑

k=0

P

(

∩2
j=0 |∆n(k + j)| ≤ 8m

n

)

= P

(

|∆n(0)| ≤ 8m

n

)

≤ (n+ 1)
(

16m√
2πn

)3

→ 0, n → ∞,

und weil Anm ⊂ An+1,m gilt, folgt P (Anm) = 0.

Korollar 3.3.4
Mit Wahrscheinlichkeit 1 gilt:

sup
n≥1

sup
0≤t0<...<tn≤1

n∑

i=1

|W (ti) −W (ti−1)| = ∞,

d.h. {W (t), t ∈ [0, 1]} hat f.s. Trajektorien mit unbeschränkter Variation.

Beweis Weil jede stetige Funktion g : [0, 1] → R mit beschränkter Variation fast überall diffe-
renzierbar ist, ergibt sich die Behauptung aus Korollar 3.3.3.

Alternativer Beweis
Es genügt zu zeigen, dass limn→∞

∑2n

i=1

∣
∣
∣W

(
it
2n

)

−W
(

(i−1)t
2n

)∣
∣
∣ = ∞.
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Sei Zn =
∑2n

i=1

(

W
(
it
2n

)

−W
(

(i−1)t
2n

))2
− t. Daraus folgt EZn = 0 und EZ2

n = t22−n+1 und

mit der Tschebyschev-Ungleichung

P (|Zn| < ε) ≤ EZ2
n

ε2
=
(
t

ε

)2

2−n+1, d.h.
∞∑

i=1

P (|Zn| > ε)
f.s.
= 0.

Aus dem Lemma von Borel-Cantelli ergibt sich, dass limn→∞ Zn = 0 fast sicher und somit

0 ≤ t ≤
2n
∑

i=1

(

W

(
it

2n

)

−W

(
(i− 1)t

2n

))2

≤ lim inf
n→∞

max
1≤k≤2n

∣
∣
∣
∣W

(
kt

2n

)

−W

(
(k − 1)t

2n

)∣
∣
∣
∣

2n
∑

i=1

∣
∣
∣
∣W

(
it

2n

)

−W

(
(i− 1)t

2n

)∣
∣
∣
∣ .

Daraus folgt die Behauptung, weil W stetige Trajektorien hat und deshalb

lim
n→∞ max

1≤k≤2n

∣
∣
∣
∣W

(
kt

2n

)

−W

(
(k − 1)t

2n

)∣
∣
∣
∣ = 0.

3.4 Ergänzende Aufgaben

Aufgabe 3.4.1
Geben Sie eine intuitive (exakte!) Methode an um Trajektorien eines Wiener-Prozesses W =
{W (t), t ∈ [0, 1]} zu realisieren. Nutzen Sie dabei die Unabhängigkeit und die Verteilung der
Zuwächse von W . Schreiben Sie zudem ein Programm in R zur Simulation von Pfaden von W .
Zeichnen Sie drei Pfade t 7→ W (t, ω) für t ∈ [0, 1] in ein gemeinsames Schaubild.

Aufgabe 3.4.2
Es sei der Wiener-Prozess W = {W (t), t ∈ [0, 1]} gegeben und L := argmaxt∈[0,1]W (t). Zeigen
Sie, dass gilt:

P(L ≤ x) =
2

π
arcsin

√
x, x ∈ [0, 1].

Hinweis: Verwenden Sie die Beziehung maxr∈[0,t]W (r)
d
= |W (t)|.

Aufgabe 3.4.3
Zur Simulation eines Wiener-Prozesses W = {W (t), t ∈ [0, 1]} können wir auch die Approxi-
mation

Wn(t) =
n∑

k=1

Sk(t)zk

verwenden, wobei die Sk(t), t ∈ [0, 1], k ≥ 1 die Schauder-Funktionen sind, sowie zk ∼ N (0, 1)
u.i.v. Zufallsvariablen, und die Reihe fast sicher für alle t ∈ [0, 1] konvergiert (n → ∞).

a) Zeigen Sie, dass für alle t ∈ [0, 1] die Approximation Wn(t) auch im L2-Sinne gegen W (t)
konvergiert.

b) Schreiben Sie ein Programm in R (alternativ: C) zur Simulation des Wiener-Prozesses
W ={W (t), t ∈ [0, 1]}.
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c) Simulieren Sie drei Pfade t 7→ W (t, ω) für t ∈ [0, 1] und zeichnen Sie diese in ein ge-
meinsames Schaubild. Betrachten Sie hierbei die Stützstellen tk = k

n
, k = 0, . . . , n mit

n = 28 − 1.

Aufgabe 3.4.4
Für den Wiener-Prozess W = {W (t), t ≥ 0} definieren wir den Prozess des Maximums, welcher
gegeben ist durch M = {M(t) := maxs∈[0,t]W (s), t ≥ 0}. Zeigen Sie, dass dann gilt:

a) Die Dichte fM(t) des Maximums M(t) ist gegeben durch

fM(t)(x) =

√

2

πt
exp

{

−x2

2t

}

1{x ≥ 0}.

Hinweis: Verwenden Sie die Eigenschaft P(M(t) > x) = 2P(W (t) > x).

b) Erwartungswert und Varianz von M(t) sind gegeben durch

EM(t) =

√

2t

π
, varM(t) = t(1 − 2/π).

Nun definieren wir τ(x) := argmin s∈R{W (s) = x} als den ersten Zeitpunkt, zu dem der
Wiener-Prozess den Wert x annimmt.

c) Bestimmen Sie die Dichte von τ(x) und zeigen Sie: Eτ(x) = ∞.

Aufgabe 3.4.5
Sei W = {W (t), t ≥ 0} ein Wiener-Prozess. Zeigen Sie, dass die folgenden Prozesse ebenfalls
Wiener-Prozesse sind:

W1(t) =

{

0, t = 0,

tW (1/t), t > 0,
W2(t) =

√
cW (t/c), c > 0.

Aufgabe 3.4.6
Es sei der Wiener-Prozess W = {W (t), t ≥ 0} gegeben. Die Größe Q(a, b) bezeichne die
Wahrscheinlichkeit, dass der Prozess die Halbgerade y = at + b, t ≥ 0, a, b > 0 überschreitet.
Beweisen Sie:

a) Q(a, b) = Q(b, a) und Q(a, b1 + b2) = Q(a, b1)Q(a, b2),

b) Q(a, b) ist gegeben durch Q(a, b) = exp{−2ab}.



4 Lèvy Prozesse

4.1 Lèvy-Prozesse

Definition 4.1.1
Ein stochastischer Prozess {X(t), t ≥ 0} heißt Lèvy-Prozess, wenn

1. X(0) = 0,

2. {X(t)} hat stationäre und unabhängige Zuwächse,

3. {X(t)} stochastisch stetig ist, d.h. für beliebiges ε > 0, t0 ≥ 0:

lim
t→t0

P(|X(t) −X(t0)| > ε) = 0.

Beachte

• Man kann sich leicht überlegen, dass zusammengesetzte Poisson-Prozesse die 3 Bedin-
gungen erfüllen, denn für bel. ε > 0 gilt

P (|X(t) −X(t0)| < ε) ≥ P (|X(t) −X(t0)| > 0) ≤ 1 − e−λ|t−t0| −−−→
t→t0

0.

• Ferner gilt für den Wiener-Prozess für bel. ε > 0

P (|X(t) −X(t0)| > ε) =

√

2

π(t− t0)

∫ ∞

t
exp

(

− y2

2(t− t0)

)

dy

x= y√
t−t0

=
2

π

∫ ∞

t√
t−t0

e− x2

2 dx −−−→
t→t0

0.

4.1.1 Unbegrenzte Teilbarkeit

Definition 4.1.2
Sei X : Ω → R eine beliebige Zufallsvariable. Dann nennt man X unbegrenzt teilbar, wenn für

bel. n ∈ N Zufallsvariablen Y1, Y2, . . . , Yn existieren mit X
d
= Y

(n)
1 + . . .+ Y

(n)
n .

Theorem 4.1.1
Sei {X(t), t ≥ 0} ein Lèvy-Prozess. Dann ist die Zufallsvariable X(t) für jedes t ≥ 0 unbegrenzt
teilbar.

Beweis Für bel. t ≥ 0 und n ∈ N gilt offenbar, dass

X (t) = X

(
t

n

)

+
(

X

(
2t

n

)

−X

(
t

n

))

+ . . .+
(

X

(
nt

n

)

−X

(
(n− 1)t

n

))

.

Da {X(t)} unabhängige stationäre Zuwächse hat, sind Summanden offenbar unabhängige iden-
tisch verteilte Zufallsvariablen.

53
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Lemma 4.1.1
Die Zufallsvariable X : Ω → R ist genau dann unbegrenzt teilbar, wenn sich die charakteristi-
sche Funktion ϕX von X für jedes n ≥ 1 darstellen läßt in der Form

ϕX(s) = (ϕn(s))n für alle s ∈ R,

wobei ϕn charakteristische Funktionen von Zufallsvariablen sind.

Beweis „ ⇒ “

Y
(n)

1 , . . . , Y
(n)
n u.i.v., X

d
= Y

(n)
1 + . . . + Y

(n)
n . Daraus folgt, dass ϕX(s) =

∏n
i=1 ϕY (n)

i

(s) =

(ϕn(s))n.
“ ⇐ “

ϕX(s) = (ϕn(s))n ⇒ existiert Y (n)
1 , . . . , Y

(n)
n u.i.v. mit charakteristischer Funktion ϕn und

ϕY1,...,Yn(s) = (ϕn(s))n = ϕX(s). Mit dem Eindeutigkeitssatz für charakteristische Funktionen

folgt, dass X
d
= Y

(n)
1 + . . .+ Y

(n)
n .

Lemma 4.1.2
Sei X1, X2, . . . : Ω → R eine Folge von Zufallsvariablen. Falls es eine Funktion ϕ : R → C

gibt, so dass ϕ(s) stetig in s = 0 ist und limn→∞ ϕXn(s) = ϕ(s) für alle s ∈ R, dann ist ϕ die

charakteristische Funktion einer Zufallsvariable X und es gilt Xn
d−→ X.

Definition 4.1.3
Sei ν ein Maß über den Meßraum (R,B(R)). Dann nennt man ν ein Lèvy-Maß, wenn ν({0}) = 0
und ∫

R

min
{

y2, 1
}

ν(dy) < ∞.

Abbildung 4.1:

Beachte

• Offenbar ist jedes Lèvy-Maß σ-endlich und

ν ((−ε, ε)c) < ε, für alle ε > 0, (4.1.1)

wobei (−ε, ε)c = R | (−ε, ε).

• Insbesondere ist jedes endliche Maß ν ein Lèvy-Maß, falls ν({0}) = 0.
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• Eine zu (4.1.1) equivalente Bedingung ist

∫

R

y2

1 + y2
ν(dy) < ∞, denn

y2

1 + y2
≤ min

{

y2, 1
}

≤ 2
y2

1 + y2
. (4.1.2)

Theorem 4.1.2
Seien a ∈ R, b ≥ 0 beliebig und sei ν ein beliebiges Lèvy-Maß. Dann ist durch die Funktion
ϕ : R → C mit

ϕ(s) = exp

{

ias− bs2

2
+
∫

R

(

eisy − 1 − isy1(y ∈ (−1, 1))
)

ν(dy)

}

für alle s ∈ R, (4.1.3)

die charakteristische Funktion einer unbegrenzt teilbaren Zufallsvariable gegeben.

Bemerkung 4.1.1 • Die Formel (4.1.3) wird auch Lèvy-Chintschin-Formel genannt.

• Die Umkehrung vom Theorem 4.1.2 gilt auch, es hat also jede unbegrezt teilbare Zufalls-
variable eine solche Darstellung. Deshalb nennt man das charakteristische Tripel (a, b, ν)
auch Lèvy-Charakteristik einer unbegrenzt teilbaren Zufallsvariable.

Beweis des Theorems 4.1.2 1. Schritt
Zeige, dass ϕ eine charakteristische Funktion ist.

•
∣
∣
∣eisy − 1 − isy

∣
∣
∣ =

∣
∣
∣
∣
∣

∞∑

k=0

(isy)k

k!
− 1 − isy

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∞∑

k=2

(isy)k

k!

∣
∣
∣
∣
∣

≤ y2

∣
∣
∣
∣
∣

∞∑

k=2

sk

k!

∣
∣
∣
∣
∣

︸ ︷︷ ︸

:=c

≤ y2c

Damit folgt mit (4.1.1) und (4.1.2), dass das Integral in (4.1.3) existiert und somit wohl-
definiert ist.

• Sei nun {cn} eine beliebige Zahlenfolge mit cn > cn+1 > . . . > 0 und limn→∞ cn = 0.
Dann ist die Funktion ϕn : R → C mit

ϕn(s) := exp

{

is

(

a−
∫

[−cn,cn]c∩(−1,1)
yν(dy)

)

− bs2

2

}

exp

{
∫

[−cn,cn]c

(

eisy − 1
)

ν(dy)

}

die charakteristische Funktion der Summe von Z(n)
1 und Z(n)

2 , 2 unabhängigen Zufallsva-
riablen, denn

– der erste Faktor ist die charakteristische Funktion der Normalverteilung mit Erwar-
tungswert a− ∫

[−cn,cn]c∩(−1,1) yν(dy) und Varianz b.

– der zweite Faktor ist die charakteristische Funktion der zusammengesetzten Poisson-
Verteilung mir den Charakteristiken

λ = ν([−cn, cn]c) und PU (·) = ν(· ∩ [−cn, cn]c/ν([−cn, cn]c))

ist.
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• Außerdem gilt limn→∞ ϕn(s) = ϕ(s) für alle s ∈ R, wobei offenbar ϕ stetig in 0 ist, den
für die Funktion ϕ : R → C im Exponent von (4.1.3), also

ψ(s) =
∫

R

(

eisy − 1 − isy1 (y ∈ (−1, 1))
)

ν(dy) für alle s ∈ R

gilt |ψ(s)| = cs2
∫

(−1,1) y
2ν(dy)+

∫

(−1,1)c

∣
∣eisy − 1

∣
∣ ν(dy). Hieraus und aus (4.1.2) folgt mit

Satz von Lebesgue, dass lims→∞ ψ(s) = 0.

• Aus Lemma 4.1.2 ergibt sich, dass die in (4.1.3) gegebene Funktion ϕ die charakteristische
Funktion einer Zufallsvariable ist.

2. Schritt
Die unbegrenzte Teilbarkeit dieser Zufallsvariable folgt aus dem Lemma 4.1.1 und daraus, dass
für beliebige n ∈ N auch ν

n
ein Lèvy-Maß ist und dass

ϕ(s) = exp

{

i
a

n
s−

b
n
s2

2
+
∫

R

(

eisy − 1 − isy1(y ∈ (−1, 1))
)(ν

n

)

(dy)

}

für alle s ∈ R.

Bemerkung 4.1.2
Die Abbildung η : R → C mit

η(s) = ias− bs2

2
+
∫

R

(

eisy − 1 − isy1(y ∈ (−1, 1))
)

ν(dy)

aus (4.1.3) heißt Lèvy-Exponent dieser unbegrezt teilbaren Verteilung.

4.1.2 Lèvy-Chintschin-Darstellung

{X(t), t ≥ 0} – Lèvy-Prozess. Wir wollen die charakteristische Funktion von X(t), t ≥ 0, durch
die Lèvy-Chintschin-Formel darstellen.

Lemma 4.1.3
Sei {X(t), t ≥ 0} ein stochastisch stetiger Prozess, d.h. für alle ε > 0 und t0 ≥ 0 gelte
limt→t0 P(|X(t) − X(t0)| > ε) = 0. Dann ist für jedes s ∈ R durch t 7−→ ϕX(t)(s) eine ste-
tige Abbildung von [0,∞) nach C.

Beweis • y 7−→ eisy stetig in 0, d.h. für alle ε > 0 existiert δ1 > 0, so dass

sup
y∈(−δ1,δ1)

∣
∣
∣eisy − 1

∣
∣
∣ <

ε

2
.

• {X(t), t ≥ 0} ist stochastisch stetig, d.h. für alle t0 ≥ 0 existiert δ2 > 0, so dass

sup
t≥0, |t−t0|<δ2

P (|X(t) −X(t0)| > δ1) <
ε

4
.
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Daraus folgt, dass für alle s ∈ R, t ≥ 0 und |t− t0| < δ2 gilt
∣
∣
∣ϕX(t)(s) − ϕX(t0)(s)

∣
∣
∣ =

∣
∣
∣E

(

eisX(t) − eisX(t0)
)∣
∣
∣ ≤ E

∣
∣
∣eisX(t0)

(

eis(X(t)−X(t0)) − 1
)∣
∣
∣

≤ E

∣
∣
∣eis(X(t)−X(t0)) − 1

∣
∣
∣ =

∫

R

∣
∣
∣eisy − 1

∣
∣
∣PX(t)−X(t0)(dy)

≤
∫

(−δ1,δ1)

∣
∣
∣eisy − 1

∣
∣
∣PX(t)−X(t0)(dy)

+
∫

(−δ1,δ1)c

∣
∣
∣eisy − 1

∣
∣
∣

︸ ︷︷ ︸

=2

PX(t)−X(t0)(dy)

≤ sup
y∈(−δ1,δ1)

∣
∣
∣eisy − 1

∣
∣
∣+ 2P (|X(t) −X(t0)| > δ1) ≤ ε.

Theorem 4.1.3
Sei {X(t), t ≥ 0} ein Lèvy-Prozess. Für alle t ≥ 0 gilt

ϕX(t)(s) = etη(s), s ∈ R,

wobei η : R → C eine stetige Funktion ist. Insbesondere gilt

ϕX(t)(s) = etη(s) =
(

eη(s)
)t

=
(

ϕX(1)(s)
)t
, für alle s ∈ R, t ≥ 0.

Beweis

ϕX(t+t′)(s) = EeisX(t+t′) = E

(

eisX(t)eis(X(t+t′)−X(t))
)

= ϕX(t)(s)ϕX(t′)(s)

Sei gs : [0,∞) → C definiert durch gs(t) = ϕX(t)(s), s ∈ R, gs(t + t′) = gs(t)gs(t′), t, t′ ≥ 0.
X(0) = 0.







gs(t+ t′) = gs(t)gs(t′), t, t′ ≥ 0,
gs(0) = 1,
gs : [0,∞) → C stetig.

Daraus folgt: existiert η : R → C, so dass gs(t) = eη(s)t für alle s ∈ R, t ≥ 0. ϕX(1)(s) = eη(s)

und es folgt, dass η stetig ist.

Lemma 4.1.4
Sei µ1, µ2, . . . eine Folge von endlichen Maßen (auf B(R)) mit

1. supn≥1 µn(R) < c, c = const < ∞ (gleichmäßig beschränkt)

2. für alle ε > 0 existiert Bε ∈ B(R) kompakt, so dass supn≥1 µn(Bc
ε) ≤ ε. Daraus folgt, dass

es eine Teilfolge µn1 , µn2 , . . . und ein endliches Maß über B(R) existiert, so dass für alle
f : R → C, beschränkt, stetig, gilt

lim
k→∞

∫

R

f(y)µnk
(dy) =

∫

R

lim
k→∞

f(y)µnk
(dy) =

∫

R

f(y)µ(dy)

Beweis Siehe [14], S. 122 - 123.
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Theorem 4.1.4
Sei {X(t), t ≥ 0} ein Lèvy-Prozess. Dann gibt es a ∈ R, b ≥ 0 und ein Lèvy-Maß ν, so dass

ϕX(1)(s) = eias−
bs2

2 +
∫

R

(

eisy − 1 − iy1(y ∈ (−1, 1))
)

ν(dy), für alle s ∈ R.

Beweis Für alle Nullfolgen t1, t2, . . . gilt

η(s) =
(

etη(s)
)′
∣
∣
∣
∣
t=0

= lim
n→∞

etnη(s) − 1

tn
= lim

n→∞
ϕX(tn)(s) − 1

tn
. (4.1.4)

η : R → C stetig ⇒ Die Konvergenz in (4.1.4) ist gleichmäßig in s ∈ [−t0, t0] für ein s0 > 0
(Taylor-Entwicklung von etnη(s)). Sei tn = 1

n
und Pn die Verteilung von X( 1

n
). Daraus folgt,

dass

lim
n→∞n

∫

R

(eisy − 1)Pn(ds) = lim
n→∞n

ϕX( 1
n

)(s) − 1
1
n

= η(s)

lim
n→∞

∫

R

n

∫ s0

−s0

(

eisy − 1
)

Pn(dy)ds =
∫ s0

−s0

η(s)ds

⇒ lim
n→∞n

∫

R

(

1 − sin(s0y)

s0y

)

Pn(dy) = − 1

2s0

∫ s0

−s0

η(s)ds

η : R → C ist stetig mit η(0) = 0 und daraus folgt, dass es für alle ε > 0 δ0 > 0 existiert, so

dass
∣
∣
∣− 1

2s0

∫ s0
−s0

η(s)ds
∣
∣
∣ < ε. Weil 1 − sin(s0y)

s0y
≥ 1

2 , |s0y| ≥ 2, gilt: für alle ε > 0 existiert s0 > 0,

n0 > 0, so dass

lim sup
n→∞

n

2

∫

{

y:|y|≥ 2
s0

} Pn(dy) ≤ lim sup
n→∞

n

∫

R

(

1 − sin(s0y)

s0y

)

Pn(dy) < ε.

Für alle ε > 0 existiert s0 > 0, n0 > 0, so dass

n

∫

{

y:|y|≥ 2
s0

} Pn(dy) ≤ 4ε, für alle n ≥ n0.

Durch Verkleinerung von s0 erhält man

n

∫

{

y:|y|≥ 2
s0

} Pn(dy) ≤ 4ε, für alle n ≥ 1.

y2

1 + y2
≤ c

(

1 − sin y

y

)

, für alle y 6= 0 und ein c > 0.

Daraus folgt, dass

sup
n≥1

n

∫

R

y2

1 + y2
Pn(dy) ≤ c′ für ein c′ < ∞.

Sei nun µn : B(R) → [0,∞) definiert durch

µn(B) = n

∫

B

y2

1 + y2
Pn(dy) für alle B ∈ B(R).
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Es folgt, dass {µn}n∈N gleichmäßig beschränkt ist, supn≥1 µn(R) < c′. Außerdem gilt y2

1+y2 ≤ 1,

supn≥1 µn
({

y : |y| > 2
s0

})

≤ 4ε und {µn}n∈N ist relativ kompakt. Nach dem Lemma 4.1.3 gilt:

existiert {µnk
}k∈N

, so dass

lim
k→∞

∫

R

f(y)µnk
(dy) =

∫

R

f(y)µ(dy)

für ein Maß µ und f stetig und beschränkt. Sei für s ∈ R die Funktion fs : R → C definiert
durch

fs(y) =

{ (
eisy − 1 − isy

) 1+y2

y2 , y 6= 0,

− s2

2 , sonst.

Daraus folgt, dass fs beschränkt und stetig ist und

η(s) = lim
n→∞

∫

R

(

eisy − 1
)

Pn(dy)

= lim
n→∞

(∫

R

fs(y)µn(dy) + isn

∫

R

sin yPn(dy)
)

= lim
n→∞

(∫

R

fs(y)µnk
(dy) + isnk

∫

R

sin yPnk
(dy)

)

=
∫

R

fs(y)µ(dy) + lim
k→∞

isnk

∫

R

sin yPnk
(dy)

η(s) = ia′s− bs2

2
+
∫

R

(

eisy − 1 − is sin y
)

ν(dy),

für alle s ∈ R mit a′ = limk→∞ isnk
∫

R sin yPnk
(dy), b = µ ({0}), ν : B(R) → [0,∞),

ν(dy) =

{
1+y2

y2 µ(dy), y 6= 0,

0 , y = 0.

∫

R

|y1(y ∈ (−1, 1)) − sin y| ν(dy) < ∞.

|y1(y ∈ (−1, 1)) − sin y| 1 + y2

y2
< c′′, für alle y 6= 0 und ein c′′ > 0.

Daraus folgt, dass

η(s) = ias− bs2

2
+
∫

R

(

eisy − 1 − isy1 (y ∈ (−1, 1))
)

ν(dy), für alle s ∈ R.

a = a′ +
∫

R

(y1(y ∈ (−1, 1)) − sin y) ν(dy).

4.1.3 Beispiele

1. Wiener-Prozess (es genügt X(1) zu betrachten)

X(1) ∼ N (0, 1), ϕX(1)(s) = e− s2

2 und daraus folgt

(a, b, ν) = (0, 1, 0).
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Sei X = {X(t), t ≥ 0} ein Wiener-Prozess mit Drift µ, d.h. X(t) = µt + σW (t), W =
{W (t), t ≥ 0} – Brownsche Bewegung. Es folgt

(a, b, ν) = (µ, σ2, 0).

ϕX(1)(s) = EeisX(1) = Ee(µ+σW (1))is = eµisϕW (1)(σs) = eisµ−σ2 s2

2 , s ∈ R.

2. Zusammengesetzter Poisson-Prozess mit Parametern (λ,Pn)

X(t) =
∑N(t)
i=1 Ui, N(t) ∼ Pois(λt), Ui u.i.v. ∼ PU .

ϕX(1)(s) = exp
{

λ

∫

R

(

eisX − 1
)

PU (dx)
}

= exp
{

λis

∫

R

x1(x ∈ [−1, 1])PU (dx) + λ

∫

R

(

eisx − 1 − isx1(x ∈ [−1, 1])
)

PU (dx)
}

= exp
{

λis

∫ 1

−1
xPU (dx) + λ

∫

R

(

eisx − 1 − isx1(x ∈ [−1, 1])
)

PU (dx)
}

, s ∈ R.

Daraus folgt

(a, b, ν) =
(

λ

∫ 1

−1
xPU (dx), 0, λPU

)

, PU – endlich auf R.

3. Prozesse von Gauß-Poisson-Typ
X = {X(t), t ≥ 0}, X(t) = X1(t) +X2(t), t ≥ 0.
X1 = {X1(t), t ≥ 0} und X2 = {X2(t), t ≥ 0} unabhängig.
X1 – Wiener-Prozess mit Drift µ und Varianz σ2,
X2 – Zusammengesetzter-Poisson-Prozess mit Parametern λ,PU .

ϕX(t)(s) = ϕX1(t)(s)ϕX2(t)(s)

= exp

{

is

(

µ+ λ

∫ 1

−1
xPU (dx)

)

− σ2s2

2

+
∫

R

λ
(

eisx − 1 − isx1(x ∈ [−1, 1])
)

PU (dx)
}

, s ∈ R.

Daraus folgt

(a, b, ν) =
(

µ+ λ

∫ 1

−1
xPU (dx), σ2, λPU

)

.

4. Stabile Lèvy-Prozesse
X = {X(t), t ≥ 0} – Lèvy-Prozess mit X(t) ∼ α stabile Verteilung, α ∈ (0, 2]. Falls
X = W (Wiener-Prozess), dann X(1) ∼ N (0, 1). Seien Y, Y1, . . . , Yn u.i.v. N (µ, σ2)-
Variablen. Nach Faltungstabilität der Normalverteilung gilt

Y1 + . . .+ Yn ∼ N (nµ, nσ2)
d
=

√
nY + nµ− √

nµ

=
√
nY + µ

(
n− √

n
)

= n
1
2Y + µ

(

n
2
2 − n

1
2

)

, α = 2.
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Definition 4.1.4
Die Verteilung einer Zufallsvariable Y heißt α-stabil, falls für alle n ∈ N nur Kopien Y1, . . . , Yn
gibt (von Y )

Y1 + . . .+ Yn
d
= n

1
αY + dn,

wobei dn deterministisch ist (also eine Konstante bzgl. W , d.h. nicht zufällig). Dabai heißt
α ∈ (0, 2] Stabilitätsindex.

dn =

{

µ
(

n− n
1
α

)

, α 6= 1,

µn logn , α = 1.

Ohne Beweis

Beispiel 4.1.1 • α = 2: Normalverteilung

• α = 1: Cauchy-Verteilung mit Parametern (µ, σ2). Die Dichte:

fY (x) =
σ

π
(

(x− µ)2 + σ2
) , x ∈ R.

Dabei gilt EY 2 = ∞, EY existiert nicht.

• α = 1
2 : Lèvy-Verteilung mit Parametern (µ, σ2). Die Dichte:

fY (x) =







(
σ
2π

) 1
2 1

(x−µ)
3
2

exp
{

− σ
2(x−µ)

}

, x > µ,

0 , sonst.

Diese Beispiele sind die wenigen Beispiele von α-stabilen Verteilungen, die eine explizite
Form der Dichte besitzen. Für andere α ∈ (0, 2), α 6= 1

2 , 1, wird die α-stabile Verteilung durch
ihre charakteristische Funktionen eingeführt. Generell gilt: Falls Y α-stabil, α ∈ (0, 2], dann
E|Y |p < ∞, 0 < p < α.

Definition 4.1.5
Die Verteilung einer Zufallsvariable heißt symmetrisch, falls Y

d
= −Y , falls Y eine symmetrische

α-stabile Verteilung besitzt, α ∈ (0, 2],

ϕY (s) = exp {−c |s|α} .
In der Tat, aus der Stabilität von Y folgt

(ϕY (s))n = eidnsϕY
(

n
1
α s
)

, s ∈ R.

Daraus folgt, dass dn = 0, denn ϕ−Y (s) = ϕY (s). Es gilt: eidns = e−idns, s ∈ R und dn = 0.
Der Rest ist eine Übungsaufgabe.

Lemma 4.1.5
Lèvy-Chintschin-Darstellung der charakteristischen Funktion ist eine stabile Verteilung. Eine
Lèvy-Charakteristik (a, b, ν), a ∈ R beliebig.

b =

{

σ2, α = 2,
0 , α < 2.

ν(dx) =







0 , α = 2,
c1

x1+α 1(x ≥ 0)dx+ c2
|x|1+α 1(x < 0)dx, α < 2,

c1, c2 ≥ 0 : c1 + c2 > 0 ,
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Ohne Beweis
Man kann zeigen, dass

P (|Y | ≥ x) ∼
x→∞

{

e− x2

2σ2 , α = 2,
c
xα , α < 2.

Definition 4.1.6
Der Lèvy-Prozess X = {X(t), t ≥ 0} heißt stabil, wenn X(1) eine α-stabile Verteilung besitzt,
α ∈ (0, 2] (α = 2: Brownsche Bewegung (mit Drift)).

4.1.4 Subordinatoren

Definition 4.1.7
Ein Lèvy-Prozess X = {X(t), t ≥ 0} heißt Subordinator, falls für alle 0 < t1 < t2, X(t1) ≤
X(t2) f.s. gilt

X(0) = 0 f.s. ⇒ X(t) ≥ 0, t ≥ 0.

Diese Klasse von Lèvy-Prozessen ist deshalb wichtig, weil man leicht
∫ b
a g(t)dX(t) einführen

kann als Lebesgue-Stiltjes-Integrale.

Theorem 4.1.5
Der Lèvy-Prozess X = X(t), t ≥ 0 ist genau dann ein Subordinator, wenn die Lèvy-Chintschin-
Darstellung in der Form sich darstellen läßt

ϕX(t)(s) = exp
{

ias+
∫

R

(

eisx − 1
)

ν(dx)
}

, s ∈ R,

wobei ν das Lèvy-Maß ist, mit

ν ((−∞, 0)) = 0,
∫ ∞

0
min

{

1, y2
}

ν(dy) < ∞.

Beweis Hinlänglichkeit
Es ist zu zeigen, dass X(t2) ≥ X(t1) f.s., falls t2 ≥ t1 ≥ 0.
Zunächst zeigen wir, dass X(1) ≥ 0 f.s.. Falls ν ≡ 0, dann X(1) = a f.s., daher

ϕX(t)(s) =

(

ϕ(s)
X(t)

)t

= eiats, s ∈ R.

X(t) = at f.s. und daraus folgt, dass X(t) ↑ und X ist ein Subordinator. Falls ν([0,∞)) > 0,

dann existiert N > 0, so dass n ≥ N , 0 < ν
([

1
n
,∞
))

< ∞. Es folgt

ϕX(t)(s) = exp

{

ias+ lim
n→∞

∫ ∞

1
n

(

eisx − 1
)

ν(dx)

}

= eias lim
n→∞

ϕn(s), s ∈ R,

wobei ϕn(s) =
∫∞

1
n

(
eisx − 1

)
ν(dx) die charakteristische Funktion einer zusammengesetzter

Poisson-Verteilung mit Parametern
(

ν
([

1
n
,∞
))

,
ν(∩[ 1

n
,∞))

ν([ 1
n
,∞))

)

für alle n ∈ N ist. Sei Zn die Zu-

fallsvariable mit charakteristischer Funktion ϕn. Es gilt: Zn =
∑Nn
i=1 Ui,Nn ∼ Pois

(

ν
([

1
n
,∞
)))

,
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Ui ∼ ν(∩[ 1
n
,∞))

ν([ 1
n
,∞))

und daraus folgt Zn ≥ 0 f.s. und X(1) = a
︸︷︷︸

=0

+ limZn
︸ ︷︷ ︸

≥0

≥ 0 f.s. Da X ein Lèvy-

Prozess ist, gilt

X (1) = X

(
1

n

)

+
(

X

(
2

n

)

−X

(
1

n

))

+ . . .+
(

X

(
n

n

)

−X

(
n− 1

n

))

,

wobei wegen Stationarität und Unabhängigkeit der Zuwächse X
(
k
n

)

− X
(
k−1
n

) f.s.

≥ 0 für 1 ≤
k ≤ n für alle n. X(q2) −X(q1) ≥ 0 f.s. für alle q1, q2 ∈ Q, q2 ≥ q1 ≥ 0. Nun seien t1, t2 ∈ Q, so

dass 0 ≤ t1 ≤ t2. Seien
{

q
(n)
1 , q

(n)
2

}

Folgen von Zahlen aus Q mit q(n)
1 ≤ q

(n)
2 . q(n)

1 ↓ t1, q(n)
2 ↑ t2,

n → ∞. Für ε > 0

P (X(t2) −X(t1) < −ε) = P

(

X(t2) −X
(

q
(n)
2

)

+X
(

q
(n)
2

)

−X
(

q
(n)
1

)

+X
(

q
(n)
1

)

−X (t1) < −ε
)

≤ P

(

X(t2) −X
(

q
(n)
2

)

+X
(

q
(n)
1

)

−X (t1) < −ε
)

≤ P

(

X(t2) −X
(

q
(n)
2

)

< −ε
)

+ P

(

X
(

q
(n)
1

)

−X(t1) ≤ −ε

2

)

−−−→
n→∞ 0.

⇒ P (X(t2) −X(t1) < ε) = 0 für alle ε > 0

⇒ P (X(t2) −X(t1) < 0) = lim
ε→+0

P (X(t2) −X(t1) < ε) = 0

⇒ X(t2) ≥ X(t1) f.s.

Notwendigkeit
Sei X ein Lèvy-Prozess, der ein Subordinator ist. Es ist zu zeigen, dass ϕX1(t)(·) die obige Form
hat.
Nach der Lèvy-Chintschin-Darstellung für X1(t) gilt

ϕX(1)(s) = exp

{

ias− b2s2

2
+
∫ ∞

0

(

eisx − 1 − isx1(x ∈ [−1, 1])
)

ν(dx)

}

, s ∈ R.

Das Maß ν ist auf [0,∞) konzentriert, weil X(1)
f.s.

≥ 0 und aus dem Beweis des Theorems 4.1.4
ν ((−∞, 0)) = 0 gewählt werden kann.

ϕX(1)(s) ≤ exp

{

ias− b2s2

2

}

︸ ︷︷ ︸

:=ϕY1(s)

exp
{∫ ∞

0

(

eisx − 1 − isx1 (x ∈ [−1, 1])
)

ν(dx)
}

︸ ︷︷ ︸

:=ϕY2(s)

Daraus folgt, dass X(1) = Y1 + Y2, Y1 und Y2 unabhängig, Y1 ∼ N (a, b2) und deswegen b = 0.
Für alle ε ∈ (0, 1)

ϕX1(s) = exp
{

is

(

a−
∫ 1

ε
xν(dx)

)

+
∫ ε

0

(

eisx − 1 − isx
)

ν(dx) +
∫ ∞

0

(

eisx − 1
)

ν(dx)
}

Es ist zu zeigen, dass für ε → 0 gilt, dass
∫∞
ε

(
eisx − 1

)
ν(dx) → ∫∞

0

(
eisx − 1

)
ν(dx) < ∞ mit

∫ 1
0 min {x, 1} ν(dx) < ∞. ϕX(1)(s) = exp

{

is
(

a− ∫ 1
ε xν(dx)

)}

ϕZ1(s)ϕZ2(s), wobei Z1 und Z2

unabhängig, ϕZ1(s) = exp
{(
eisx − 1 − isx

)
ν(dx)

}
, ϕZ2(s) = exp

{∫∞
ε

(
eisx − 1

)
ν(dx)

}
, s ∈ R.
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X(1)
d
= a−∫ 1

ε xν(dx)+Z1+Z2. Es existiert ϕ(2)
Z1

(0) =
−EZ2

1
2 < ∞, ϕ(1)

Z1
(0) = 0 = iEZ1 und daraus

ergibt sich, dass EZ1 = 0 und P(Z1 ≤ 0) > 0. Andererseits, hat Z2 eine zusammengesetzte

Poisson-Verteilung mit Parametern
(

ν ([ε,∞)) , ν(∩[ε,+∞])
ν([ε,+∞))

)

, ε ∈ (0, 1).

⇒ P (Z2 ≤ 0) > 0

⇒ P (Z1 + Z2 ≤ 0) ≥ P (Z1 ≤ 0, Z2 ≤ 0) = P (Z1 ≤ 0) P (Z2 ≤ 0) > 0

⇒ a−
∫ 1

ε
xν(dx) ≥ 0 für alle ε ∈ (0, 1)

⇒
∫ a

0
min {x, 1} dx < ∞

⇒ für ε → ∞ Z1
d→ 0

ϕX(1)(s) = exp
{

is

(

a−
∫ 1

0
xν(dx)

)

+
∫ ∞

0

(

eisx − 1
)

ν(dx)
}

, s ∈ R.

Beispiel 4.1.2 (α-stabiler Subordinator):
X = {X(t), t ≥ 0} ein Lèvy-Prozess, Subordinator, mit a = 0 – Lévy-Maß.

ν(dx) =

{
α

Γ(1−α)
1

x1+αdx , x > 0,

0 · 1
x1+αdx = 0, x ≤ 0.

Daraus folgt, dass X ein α-stabiler Lèvy-Prozess ist.
Zeigen wir, dass l̂X(·)(s) = Ee−sX(t) = e−tsα

für alle s, t ≥ 0.

ϕX(t)(s) =
(

ϕX(1)(s)
)t

= exp
{

t

∫ ∞

0

(

eisx − 1
) α

Γ(1 − α)

1

x1+α
dx

}

, s ∈ R.

Es ist zu zeigen, dass

Ud =
α

Γ(1 − α)

∫ ∞

0

(
1 − e−ux) dx

x1+α
, u ≥ 0.

Das genügt, weil ϕX(t)(·) analytisch auf {Z ∈ C : ℑZ ≥ 0} fortgesetzt werden kann, d.h. ϕX(t)(iu) =

l̂X(t), u ≥ 0. In der Tat gilt
∫ ∞

0

(
1 − e−ux) dx

x1+d
=

∫ ∞

0
u

∫ x

0
e−uydyx−1−αdx

=
∫ ∞

0

∫ ∞

y
ue−uyx−1−αdxdy

=
∫ ∞

0

∫ ∞

y
x−1−αdxue−uydy

=
u

α

∫ ∞

0
e−uyy−αdy

=
u

α

∫ ∞

0
e−zz−α 1

u−αd
(
z

u

)

=
uα

α

∫ ∞

0
e−zz(1−α)−1dz

=
uα

α
Γ(1 − α)

und daraus folgt l̂X(t)(s) = e−tsα
, t, s ≥ 0.
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4.2 Ergänzende Aufgaben

Aufgabe 4.2.1
Gegeben sei eine reellwertige Zufallsvariable X mit Verteilungsfunktion F und charakteristi-
scher Funktion ϕ. Zeigen Sie, dass dann die folgenden Aussagen gelten:

a) Falls X unbegrenzt teilbar ist, dann gilt ϕ(t) 6= 0 für alle t ∈ R. Hinweis: Zeigen Sie, dass
limn→∞ |ϕn(s)|2 = 1 für alle s ∈ R, falls ϕ(s) = (ϕn(s))n. Beachten Sie außerdem, dass

|ϕn(s)|2 wiederum eine charakteristische Funktion ist und limn→∞ x
1
n = 1 für x > 0 gilt.

b) Geben Sie ein Beispiel (mit Begründung) für eine Verteilung an, die nicht unbegrenzt
teilbar ist.

Aufgabe 4.2.2
Sei X = {X(t), t ≥ 0} ein Lévy-Prozess. Zeigen Sie, dass dann die Zufallsvariable X(t) für
jedes t ≥ 0 unbegrenzt teilbar ist.

Aufgabe 4.2.3
Zeigen Sie, dass die Summe von zwei unabhängigen Lévy-Prozessen wieder ein Lévy-Prozess
ist, und geben Sie die zugehörige Lévy-Charakteristik an.

Aufgabe 4.2.4
Betrachten Sie die folgende Funktion ϕ : R → C mit

ϕ(t) = eψ(t), wobei ψ(t) = 2
∞∑

k=−∞
2−k(cos(2kt) − 1).

Zeigen Sie, dass ϕ(t) die charakteristische Funktion einer unbegrenzt teilbaren Verteilung ist.
Hinweis: Betrachten Sie die Lévy-Chintschin-Darstellung mit Maß ν({±2k}) = 2−k, k ∈ Z.

Aufgabe 4.2.5
Der Lévy-Prozess {X(t), t ≥ 0} sei ein Gamma-Prozess mit Parametern b, p > 0, das heißt,
für jedes t ≥ 0 gelte X(t) ∼ Γ(b, pt). Zeige, dass {X(t), t ≥ 0} ein Subordinator ist mit dem
Laplace-Exponenten ξ(u) =

∫∞
0 (1 − e−uy)ν(dy) für ν(dy) = py−1e−bydy, y > 0. (Der Laplace-

Exponent von {X(t), t ≥ 0} ist die Funktion ξ : [0,∞) → [0,∞), für die Ee−uX(t) = e−tξ(u) für
beliebige t, u ≥ 0 gilt)

Aufgabe 4.2.6
Sei {X(t), t ≥ 0} ein Lévy-Prozess mit charakteristischem Lévy-Exponenten η und {τ(s), s ≥ 0}
ein unabhängiger Subordinator mit charakteristischem Lévy-Exponenten γ. Der stochastische
Prozess Y sei definiert durch Y = {X(τ(s)), s ≥ 0}.

(a) Zeige, dass

E

(

eiθY (τ(s))
)

= eγ(−iη(θ))s, θ ∈ R,

wobei ℑz den Imaginärteil von z bezeichnet.

Hinweis: Weil τ ein Prozess mit nicht-negativen Werten ist, gilt Eeiθτ(s) = eγ(θ)s für alle
θ ∈ {z ∈ C : ℑz ≥ 0} durch analytische Fortsetzung in Theorem 4.1.3.

(b) Zeige, dass Y ein Lèvy-Prozess mit charakteristischem Lèvy-Exponenten γ(−iη(·)) ist.
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Aufgabe 4.2.7
Sei {X(t), t ≥ 0} ein zusammengesetztet Poisson-Prozess mit L‘evy-Maß

ν(dx) =
λ

√
2

σ
√
π
e− x2

2σ2 dx, x ∈ R,

wobei λ, σ > 0. Zeigen Sie, dass {σW (N(t)), t ≥ 0} die gleichen endlich-dimensionalen Vertei-
lungen wie X hat, wobei {N(s), s ≥ 0} ein Poisson-Prozess mit Intensität 2λ und W ein von
N unabhängiger Standard-Wiener-Prozess ist.

Hinweise zu Aufgabe 4.2.6 a) und Aufgabe 4.2.7

• Zur Berechnung des Erwartungswertes für die charakteristische Funktion kann die Iden-
tität E(X) = E(E(X|Y )) =

∫

R E(X|Y = y)FY (dy) für zwei Zufallsvariablen X und Y
benutzt werden. Dabei sollte auf τ(s) bedingt werden.

• ∫∞
−∞ cos(sy)e− y2

2a dy =
√

2πa · e− as2

2 für a > 0 und s ∈ R.

Aufgabe 4.2.8
Sei W ein Standard-Wiener-Prozess und τ ein unabhängiger α

2 -stabiler Subordinator, wobei
α ∈ (0, 2). Zeige, dass {W (τ(s)), s ≥ 0} ein α-stabiler Lévy-Prozess ist.

Aufgabe 4.2.9
Zeige, dass der Subordinator T mit Randdichte

fT (t)(s) =
t

2
√
π
s− 3

2 e− t2

4s 1{s > 0}

ein 1
2 -stabiler Subordinator ist. (Hinweis: Differenziere die Laplace-Transformierte von T (t) und

löse die Differentialgleichung)
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5.1 Grundbegriffe

Sei (Ω,F ,P) ein vollständiger Wahrscheinlichkeitsraum.

Definition 5.1.1
Sei {Ft, t ≥ 0} eine Familie von σ-Algebra Ft ⊂ F . Sie heißt

1. eine Filtration, falls Fs ⊆ Ft, 0 ≤ s < t.

2. eine vollständige Filtration, falls sie eine Filtration ist, so dass F0 (und somit alle Fs,
s > 0) sämtliche Mengen des Wahrscheinlichkeitsmaßes Null enthält.
Später werden wir immer voraussetzen, dass wir mit einer vollständigen Filtration zu tun
haben.

3. eine rechtsseitig stetige Filtration, falls für alle t ≥ 0 Ft = ∩s>tFs.

4. eine natürliche Filtration für einen stochastischen Prozess {X(t), t ≥ 0}, falls sie durch
die Vergangenheit des Prozesses bis zum Zeitpunkt t ≥ 0 erzeugt wird, d.h. für alle t ≥ 0
Ft ist die kleinste σ-Algebra (⊂ Ft), die Mengen {ω ∈ Ω : (X(t1), . . . , X(tn))⊤ ⊂ B}
enthält, für alle n ∈ N, 0 ≤ t1, . . . , tn ≤ t, B ∈ B(Rn).

Eine Zufallsvariable τ : Ω → R+ heißt Stoppzeit (bzgl. der Filtration {Ft, t ≥ 0}), falls
für alle t ≥ 0 {ω ∈ Ω : τ(ω) ≤ t} ∈ Ft, d.h. aus den Beobachtungen des Prozesses X (bis
natürlicher Filtration {Ft, t ≥ 0}) kann man beurteilen, ob der Moment τ eingetreten ist.

Lemma 5.1.1
Sei {Ft, t ≥ 0} eine rechtsseitig stetige Filtration. τ ist eine Stoppzeit bzgl. {Ft, t ≥ 0} genau
dann, wenn {τ < t} ∈ Ft

︸ ︷︷ ︸

{ω∈Ω:τ(ω)≤t}∈Ft

, für alle t ≥ 0.

Beweis „ ⇐ “
Sei {τ < t} ∈ Ft, t ≥ 0. Zu zeigen: {τ ≤ t} ∈ Ft.
{τ ≤ t} = ∩s∈(t,t+ε){τ < s} für alle ε > 0 ⇒ {τ ≤ t} ∈ ∩s>tFs = Ft

„ ⇒ “
Zu zeigen: {τ ≤ t} ∈ Ft, t ≥ 0 ⇒ {τ < t} ∈ Ft, t ≥ 0.
{τ < t} = ∪s∈(0,t){τ ≤ t− s} ∈ ∪s∈(0,t)Ft−s ⊂ Ft

Definition 5.1.2
Sei (Ω,F ,P) ein Wahrscheinlichkeitsraum, {Ft, t ≥ 0} eine Filtration (Ft ⊂ F , t ≥ 0) und
X = {X(t), t ≥ 0} ein stochastischer Prozess auf (Ω,F ,P). X ist adaptiert bzgl. der Filtration
{Ft, t ≥ 0}, falls X(t) Ft-meßbar ist, für alle t ≥ 0, d.h., für alle B ⊂ B(R) {X(t) ∈ B} ∈ Ft.

67
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Definition 5.1.3
Der Zeitpunkt τB(ω) = inf{t ≥ 0 : X(t) ∈ B}, ω ∈ Ω, heißt Ersterreichungszeit der Menge
B ∈ B(R) durch den stochastischen Prozess X = {X(t), t ≥ 0} (engl. first passage time, first
entrance/hitting time).

Theorem 5.1.1
Sei {Ft, t ≥ 0} eine rechtsseitig stetige Filtration und X = {X(t), t ≥ 0} ein adaptierter (bzgl.
{Ft, t ≥ 0}) càdlàg-Prozess. Für offenes B ⊂ R ist τB eine Stoppzeit. Falls B abgeschlossen
ist, dann ist τ̃B(ω) = inf{t ≥ 0 : X(t) ∈ B oder X(t−) ∈ B} eine Stoppzeit, wobei X(t−) =
lims↑tX(s).

Beweis 1. Sei B ∈ B(R) offen.
Wegen Lemma 5.1.1 genügt zu zeigen, dass {τB < t} ∈ Ft, t ≥ 0. Wegen rechtsseitiger
Stetigkeit der Trajektorien von X gilt:

{τB < t} = ∪s∈Q∩(0,t){X(s) ∈ B} ∈ ∪s∈Q∩(0,t)Fs ⊆ Ft, weil Fs ⊆ Ft, s < t.

2. Sei B ∈ B(R) abgeschlossen.
Für alle ε > 0. Sei Bε = {x ∈ R : d(x,B) < ε} – Parallelmenge von B, wobei d(x,B) =
infy∈B |x− y|. Bε ist offen, für alle t ≥ 0.
{τ̃B ≤ t} = {X(t) ∈ B} ∪ ∩n≥1,s∈Q∩(0,t) ∪ {X(s) ∈ B 1

n
} ∈ Ft, weil X adaptiert bzgl.

{Ft, t ≥ 0} ist.

Lemma 5.1.2
Seien τ1, τ2 Stoppzeiten bzgl. der Filtration {Ft, t ≥ 0}. Dann sind min{τ1, τ2}, τ1 + τ2 und
ατ1, α ≥ 1, Stoppzeiten (bzgl. {Ft, t ≥ 0}).

Beweis Für alle t ≥ 0 gilt:
{min{τ1, τ2} ≤ t} = {τ1 ≤ t}

︸ ︷︷ ︸

∈Ft

∪ {τ2 ≤ t}
︸ ︷︷ ︸

∈Ft

∈ Ft,

{max{τ1, τ2} ≤ t} = {τ1 ≤ t} ∩ {τ2 ≤ t} ∈ Ft,
{ατ1 ≤ t} = {τ1 ≤ t

α
} ∈ F t

α
⊂ Ft, weil t

α
≤ t,

{τ1 + τ2 ≤ t} = {τ1 > t}
︸ ︷︷ ︸

∈Ft

∪ {τ2 > t}
︸ ︷︷ ︸

∈Ft

∪ τ1 ≥ t, τ2 > 0
︸ ︷︷ ︸

Ft

∪{0 < τ2 < t, τ1 − τ2 > t},

Zu zeigen: {0 < τ2 < t, τ1 − τ2 > t} ∈ Ft.
{0 < τ2 < t, τ1 + τ2 > t} = ∪s∈Q∩(0,t){s < τ1 < t, τ2 > t− s} ∈ Ft

Theorem 5.1.2
Sei τ eine f.s. endliche Stoppzeit bzgl. der Filtration {Ft, t ≥ 0} auf dem Wahrscheinlich-
keitsraum (Ω,F ,P), d.h. P(τ = ∞) = 1. Dann existiert eine Folge von diskreten Stoppzeiten
{τn}n∈N, τ1 ≥ τ2 ≥ τ3 ≥ . . ., so dass τn ↓ τ , n → ∞ f.s.

Beweis Für alle n ∈ N sei

τn =

{

0, falls τ(ω) = 0
k+1
2n , falls k

2n < τ(ω) ≤ k+1
2n , für ein k ∈ N0

Für alle t ≥ 0 und für alle n ∈ N ∃k ∈ N0 : k
2n ≤ t ≤ k+1

2n gilt {τn ≤ t} = {τn ≤ k
2n } = {τ ≤

k
2n } ∈ F k

2n
⊂ Ft ⇒ τn ist eine Stoppzeit. Es ist also klar, dass τn ↓ τ , n → ∞ f.s.



5 Martingale 69

Folgerung 5.1.1
Sei τ eine f.s. endliche Stoppzeit bzgl. der Filtration {Ft, t ≥ 0} und X = {X(t), t ≥ 0}
ein càdlàg-Prozess über (Ω,F ,P), Ft ⊂ F für alle t ≥ 0. Dann ist X(ω, τ(ω)), ω ∈ Ω, eine
Zufallsvariable auf (Ω,F ,P).

Beweis Zu zeigen: X(τ) : Ω → R meßbar, d.h. für alle B ∈ B(R) {X(τ) ∈ B} ∈ F . Sei τn ↓ τ ,
n → ∞ wie im Satz 5.1.2. Da X càdlàg ist, gilt X(τn) −−−→

n→∞
X(τ) f.s. X(τ) ist dann F-meßbar

als Grenzwert von X(τn), die ihrerseits F-meßbar sind. Für alle B ∈ B(R) gilt

{X(τn) ∈ B} = ∪∞
k=0({τn =

k

2n
}

︸ ︷︷ ︸

∈F

∩ {X(
k

2n
) ∈ B}

︸ ︷︷ ︸

∈F

) ∈ F

5.2 (Sub-, Super-)Martingale

Definition 5.2.1
Sei X = {X(t), t ≥ 0} ein stochastischer Prozess adaptiert bzgl. einer Filtration {Ft, t ≥ 0},
Ft ⊂ F , t ≥ 0, auf dem Wahrscheinlichkeitsraum (Ω,F ,P), E |X(t)| < ∞, t ≥ 0. X heißt

Martingal (bzw. Sub- oder Supermartingal), falls E(X(t) | Fs)
≥
= X(s) für alle s, t ≥ 0 mit

t ≥ s: ⇒ E(X(t)) = E(X(s)) = const für alle s, t.

Beispiele

Sehr oft werden Martingale auf Basis eines stochastischen Prozesses Y = {Y (t), t ≥ 0} wie
folgt konstruiert: X(t) = Y (t) − EY (t).

1. Poisson-Prozess
Sei Y = {Y (t), t ≥ 0} der homogene Poisson-Prozess mit Intensität λ > 0. EY (t) =
var Y (t) = λt, weil Y (t) ∼ Pois(λt), t ≥ 0.

a) X(t) = Y (t) − λt, t ≥ 0 ⇒ X(t) ist ein Martingal bzgl. natürlicher Filtration
{Fs, s ≥ 0}.

E(X(t) | Fs)s≤t = E(Y (t) − λt− (Y (s) − λs+ (Y (s) − λs)) | Fs)
= Y (s) − λs+ E(Y (t) − Y (s) − λ(t− s) | Fs)
= Y (s) − λs+ E(Y (t) − Y (s)) + Y (s) − λs

= Y (s) − λs+ E(Y (t− s))
︸ ︷︷ ︸

=λ(t−s)

−λ(t− s)

= Y (s) − λ
f.s.
= X(s)

b) X ′(t) = X2(t) − λ(t), t ≥ 0 ⇒ X ′(t) ist ein Martingal bzgl. {Fs, s ≥ 0}.

E(X ′(t) | Fs) = E(X2(t) − λt | Fs) = E((X(t) −X(s) +X(s))2 − λt | Fs)
= E((X(t) −X(s))2 + 2((X(t) −X(s))X(s)) +X2(s) − λs− λ(t− s) | Fs)
= X ′(s) + E((X(t) −X(s)))2

︸ ︷︷ ︸

=var(Y (t)−Y (s))=λ(t−s)

+2X(s) E(X(t) −X(s))
︸ ︷︷ ︸

=0

−λ(t− s)

f.s.
= X ′(s), s ≤ t.
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2. Zusammengesetzter Poisson-Prozess

Y (t) =
∑N(t)
i=1 Ui, t ≥ 0, N – homogener Poisson-Prozess mit Intensität λ > 0, Ui –

unabhängige identisch verteilte Zufallsvariablen, E|Ui| < ∞, {Ui} unabhängig von N .
X(t) = Y (t) − EY (t) = Y (t) − λtEU1, t ≥ 0.

Aufgabe 5.2.1
Zeigen Sie, dass X = {X(t), t ≥ 0} ein Martingal bzgl. der natürlichen Filtration ist.

3. Wiener-Prozess
Sei W = {W (t), t ≥ 0} ein Wiener-Prozess, {Fs, s ≥ 0} sei die natürliche Filtration.

a) Y = {Y (t), t ≥ 0}
Y (t) = W 2(t) − EW 2(t) = W 2(t) − t, t ≥ 0, ist ein Martingal bzgl. {Fs, s ≥ 0}.

E(Y (t) | Fs) = E((W (t) −W (s) +W (s))2 − s− (t− s) | Fs)
= siehe Beispiel 1b, benutze die Unabhängigkeit und Stationarität der Zuwächse v

= W 2(s) − s
f.s.
= Y (s), s ≤ t.

b) Y ′(t) = euW (t)−u2 t
2 , t ≥ 0 und ein fixiertes u ∈ R.

E|Y ′(t)| = e−u2 t
2 EeuW (t) = eu

2 t
2 eu

2 t
2 = 1 < ∞. Zeigen wir, dass Y ′ = {Y ′(t), t ≥ 0}

ein Martingal bzgl. {Fs, s ≥ 0} ist.

E(Y ′(t) | Fs) = E(eu(W (t)−W (s)+W (s))−u2 s
2

−u2 (t−s)
2 | Fs)

= e−u2 s
2 euW (s)

︸ ︷︷ ︸

=Y ′(s)

e−u2 (t−s)
2 E(eu(W (t)−W (s)) | Fs)
︸ ︷︷ ︸

=E(euW (t−s))=eu2 (t−s)
2

= Y ′(s)e−u2 (t−s)
2 eu

2 (t−s)
2 = Y ′(s), s ≤ t.

4. Abgeschlossenes Martingal
Sei X eine Zufallsvariable (auf (Ω,F ,P)) mit E|X| < ∞. Sei {Fs, s ≥ 0} eine Filtration
auf (Ω,F ,P).
Y (t) = E(X | Ft), t ≥ 0. Y = {Y (t), t ≥ 0} ist ein Martingal.
E|Y (t)| = E|E(X | Ft)| ≤ E(E(X | Ft)) = E|X| < ∞, t ≥ 0.

E(Y (t) | Fs) = E((X | Ft) | Fs) = E(X | Fs)
f.s.
= Y (s), s ≤ t ⇒ Fs ⊆ Ft.

5. Lèvy-Prozesse
Sei X = {X(t), t ≥ 0} ein Lèvy-Prozess mit Lèvy-Exponenten η und natürlicher Filtra-
tion {Fs, s ≥ 0}.

a) Falls E|X(1)| < ∞, definiere Y (t) = X(t) − tEX(1)
︸ ︷︷ ︸

=EX(t)

, t ≥ 0. Es kann wie in obigen

Fällen gezeigt werden, dass Y = {Y (t), t ≥ 0} ein Martingal bzgl. der Filtration
{Fs, s ≥ 0} ist.

b) Benutze die Kombination aus Beispiel 3b – normiere die charakteristische Funktion

von X(t) ohne Erwartung durch deren Wert. Y (t) = eiuX(t)

ϕ
(u)

X(t)

= eiuX(t)

tη(u) = eiuX(t)−tη(u),

t ≥ 0, u ∈ R.
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Zu zeigen: Y = {Y (t), t ≥ 0} ist ein komplexwertiges Martingal.
E|Y (t)| = |e−tη(u)| < ∞, weil η : R+ → C. EY (t) = 1, t ≥ 0.

E(Y (t) | Fs) = E(eiu(X(t)−X(s))(t−s)η(u)eiuX(s)−sη(u) | Fs)
= eiuX(s)−sη(u)e−(t−s)η(u)

E(eiu(X(t)−X(s)))

= Y (s)e−(t−s)η(u)e(t−s)η(u) f.s.= Y (s)

6. Submartingale/Supermartingale
Jeder integrierbare stochastische Prozess X = {X(t), t ≥ 0}, der bzgl. einer Filtration
{Fs, s ≥ 0} adaptiert ist und f.s. monoton nichtfallende (bzw. nichtsteigende) Trajekto-
rien besitzt, ist ein Sub- (bzw. ein Super-)Martingal.

Tatsächlich, es gilt X(t)
f.s.

≥ X(s), t ≥ s ⇒ E(X(t) | Fs)
f.s.

≥ E(X(s) | Fs)
f.s.
= X(s).

Insbesondere ist jeder Subordinator ein Submartingal.

Lemma 5.2.1
Sei X = {X(t), t ≥ 0} ein stochastischer Prozess, der bzgl. einer Filtration {Ft, t ≥ 0}
adaptiert ist und sei f : R → R konvex, so dass E|f(X(t))| < ∞, t ≥ 0. Dann ist Y =
{f(X(t), t ≥ 0)} ein Submartingal, falls

a) X ein Submartingal ist, oder

b) X ein Submartingal und f monoton nichtfallend ist.

Beweis Benutze die Ungleichung von Jensen für die bedingten Erwartungen. E(f(X(t)) |
Fs) ≥ f(E(X(t)Fs)

︸ ︷︷ ︸

≥X(s)

) ≥ f(X(s)), weil f monoton nichtfallend (Fall b)) oder es gilt die Gleichung

(Fall a)).

5.3 Gleichgradige Integrierbarkeit

Frage: Man weiss, dass im Allg. ausXn
f.s.−−−→
n→∞

X nichtXn
L1−−−→

n→∞
X folgt. Hier sindX,X1, X2, . . .

Zufallsvariablen, definiert auf dem Wahrscheinlichkeitsraum (Ω,F ,P). Wann gilt „Xn
L1−−−→

n→∞
X“

⇒ „Xn
L1−−−→

n→∞
X“? Die Antwort darauf liefert der Begriff der gleichgradigen Integrierbarkeit

von {Xn, n ∈ N}.

Definition 5.3.1
Die Folge {Xn, n ∈ N} von Zufallsvariablen heißt gleichgradig integrierbar, falls E|Xn| < ∞,
n ∈ N, und supn E(|Xn|1(|Xn| > ε)) −−−−→

ε→+∞
0.

Lemma 5.3.1
Die Folge {Xn, n ∈ N} von Zufallsvariablen ist gleichgradig integrierbar genau dann, wenn

1. supn E|Xn| < ∞ (gleichmäßige Beschränktheit),

2. wenn es für jedes ε > 0 ein δ > 0 gibt, so dass E(|Xn|1(A)) < ε für alle n ∈ N und alle
A ∈ F mit P(A) < δ.
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Beweis Sei {Xn} eine Folge von Zufallsvariablen.
Es ist zu zeigen, dass

sup
n

E(|Xn|1(|Xn| > x)) −−−→
n→∞

0 ⇐⇒ 1) supn E|Xn| < ∞
2) ∀ε > 0 ∃δ > 0 : E(|Xn|1(A)) < ε ∀A ∈ F : P(A) < δ

„⇐“
An = {|Xn| > x}. Aus der Markov-Ungleichung: P(An) ≤ 1

x
E|Xn| für alle n ⇒ supn P(An) ≤

1
x

supn E|Xn| ≤ c
x

−−−→
x→∞

0 ⇒ ∃N > 0 : ∀x > N P(An) < δ
2)⇒ supn E(|Xn|1(An)) ≤ ε ⇒ weil

ε > 0 beliebig klein gewählt werden kann ⇒ supn E(|Xn|1(|Xn| > x)) −−−→
x→∞

0.

„⇒“

1.

sup
n

E|Xn| ≤ sup
n

(E(|Xn|1(|Xn| > x)) + E(|Xn|1(|Xn| ≤ x)))

≤ sup
n

(E(|Xn|1(|Xn| > x)) + xP(|Xn| ≤ x)
︸ ︷︷ ︸

≤1

)

≤ ε+ x < ∞

2.

E(|Xn|1(A)) = E(|Xn|
︸ ︷︷ ︸

≤x

1(|Xn| ≤ x)
︸ ︷︷ ︸

≤1

1(A)) + E(|Xn|1(|Xn| > x) 1(A)
︸ ︷︷ ︸

≤1

)

≤ xP(A)
︸ ︷︷ ︸

≤ ε
2

+ E(|Xn|1(|Xn| > x))
︸ ︷︷ ︸

≤ ε
2

,

für alle ε > 0 ∃x > 0, so dass E(|Xn|1(|Xn| > x)) < ε
2 wegen gleichgradiger Integrierbar-

keit. Wähle δ > 0, xδ < ε
2 .

Lemma 5.3.2

Sei {Xn}n∈N eine Folge von Zufallsvariablen mit E|Xn| < ∞, n ∈ N, Xn
f.s.−−−→
n→∞ X. Xn

L1

−−−→
n→∞ X

genau dann, wenn {Xn}n∈N gleichgradig integrierbar ist. Insbesondere folgt aus Xn
L1

−−−→
n→∞

X

die Konvergenz EXn −−−→
n→∞

EX.

Beweis Sei {Xn}n∈N gleichgradig integrierbar. Es ist zu zeigen, dass E|Xn −X| −−−→
n→∞ 0.

Xn
f.s.−−−→
n→∞ X ⇒ Xn

P−−−→
n→∞ X ⇒ P(|Xn −X| > ε) −−−→

n→∞ 0 für alle ε.

E |Xn −X| ≤ E (|Xn −X| 1 (|Xn −X| ≤ ε)) + E (|Xn −X| 1 (|Xn −X| > ε))

≤ ε+ E (|Xn −X| 1 (|Xn −X| > ε))
︸ ︷︷ ︸

−−−→
n→∞

0, wegen Lemma 5.3.1, 2) für An={|Xn−X|>ε}

+ E (|X| 1 (|Xn −X| > ε))
︸ ︷︷ ︸

−−−→
n→∞

0, weil E|X|<∞, nach dem Satz von Lebesgue

−−−→
n→∞

0
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Warum E|X| < ∞? Es gilt Xn
f.s.−−−→
n→∞

X, aus Lemma 5.3.1, 1): supn E|Xn| < ∞. Nach dem

Lemma von Fatou gilt E|X| < ∞, denn für alle ε0 > 0 ∃N : für alle n > N |Xn − X| < ε0 ⇒
Xn ≤ η1, η1 = |X| + ε0, Xn ≥ η2, η2 = |X| − ε0, für alle n > N . E|X| = E| limn→∞Xn| ≤
limn→∞ E|Xn| < ∞. Somit haben wir bewiesen, dass Xn

L1

−−−→
n→∞

X.

Jetzt sei E|Xn −X| −−−→
n→∞

0. Es sind die Eigenschaften 1) und 2) des Lemmas 5.3.1 zu zeigen.

1. supn E|Xn| ≤ supn E|Xn −X| + E|X| < ∞, wegen Xn
L1

−→ X.

2. Für alleA ⊂ F , P(A) ≤ δ: E(|Xn|1(A)) ≤ E(|Xn−X| 1(A)
︸ ︷︷ ︸

≤1

)+E(|X|1(A)) ≤ E|Xn −X|
︸ ︷︷ ︸

< ε
2

+ ε
2 =

ε bei entsprechender Wahl von δ, weil E|X| < ∞ und weil für alle ε > 0 ∃N , so dass für
alle n > N E|Xn −X| < ε

2 .

5.4 Gestoppte Martingale

Bezeichnung: x+ = (x)+ = max(x, 0), x ∈ R.

Theorem 5.4.1 (Ungleichung von Doob):
Sei X = {X(t), t ≥ 0} ein càdlàg-Prozess, adaptiert bzgl. der Filtration {F , t ≥ 0}. Sei X ein
Submartingal. Dann gilt für beliebige t > 0 und beliebige x > 0:

P

(

sup
0≤s≤t

X(x) > x

)

≤ E(X(t))+

x

Beweis O.B.d.A. setze X(t) ≥ 0, t ≥ 0 f.s. voraus.
P(sup0≤s≤tX(s) > x) = P(sup0≤s≤t((X(s))+ > x)), für alle t ≥ 0, x > 0.A = {supt1,...,tn X(s) >
x}, 0 ≤ t1 < t2 < . . . < tn ≤ t – beliebige Zeitpunkte. A = ∪nk=1Ak,

A1 = {X(t1) > x}
A2 = {X(t2) ≤ x,X(t2) > x}

...
Ak = {X(t1) ≤ x,X(t1) ≤ x, . . . ,X(tk−1) ≤ x,X(tk) > x},

k = 2, . . . , n, Ai ∩Aj = ∅, i 6= j.

Es ist zu seigen, dass P(A) ≤ E(X(tn))
x

.
E(X(tn)) ≥ E(X(tn)1(A)) =

∑n
k=1 E(X(tn)1(Ak)) ≥ x

∑n
k=1 P(Ak) = xP(A), k = 1, . . . , n− 1,

weil X ein Martingal ist und daraus folgt, dass E(X(tn)1(Ak)) ≥ E(X(tk)1(Ak)) ≥ E(x1(Ak)) =
xP(Ak), k = 1, . . . , n− 1, tn > tk.
Sei B ⊂ [0, t] eine endliche Teilmenge, 0 ∈ B, t ∈ B ⇒ es wird ähnlich bewiesen, dass

P(maxs∈B X(s) > x) ≤ EX(t)
x

.
Q ist dicht in R ⇒ [0, t) ∩ Q ∪ {t} = ∪∞

k=1Bk, Bk ⊂ [0, t) ∩ Q ∪ {t} endlich, Bk ⊂ Bn, k < n.
Wegen Monotonie des Wahrscheinlichkeitsmaßes gilt:

lim
n→∞

P

(

max
s∈B

X(s) ≥ x

)

= P

(

∪n{max
s∈Bn

X(s) > x}
)

= P

(

sup
s∈∪nBn

X(s) > x

)

≤ EX(t)

x

Wegen der rechtsseitigen Stetigkeit der Pfade von X gilt P(sup0≤s≤tX(s) > x) ≤ EX(t)
x

.
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Folgerung 5.4.1
Für Wiener-Prozess W = {W (t), t ≥ 0} betrachten wir den Wiener-Prozess mit negativer
Drift: Y (t) = W (t) − µt, µ > 0, t ≥ 0. Aus dem Beispiel Nr.3 des Abschnitts 5.3 ist X(t) =
exp{u(Y (t)+tµ)− u2t

2 }, t ≥ 0, ein Martingal bzgl. der natürlichen Filtration für W . Für u = 2µ
gilt

X(t) = exp{2µY (t)}, t ≥ 0.

P

{

sup0≤s≤t Y (s) > x
}

= P

{

sup0≤s≤t e
2µY (s) > e2µx

}

≤ Ee2µY (t)

e2µx = e−2µx, x > 0

⇒ limt→∞ P{sup0≤s≤t Y (s) > x}. Aus Beispiel Nr.3 gilt Ee2µY (t) = P(supt≥0 Y (t) > x) ≤ e−2µx.

Theorem 5.4.2
Sei X = {X(t), t ≥ 0} ein Martingal bzgl. der Filtration {Ft, t ≥ 0} mit càdlàg-Pfaden. Falls
T : Ω → [0,∞) eine endliche Stoppzeit bzgl. der Filtration {Ft, t ≥ 0} ist, dann ist auch der
stochastische Prozess {XT∧t(t) ≥ 0} ein Martingal, das auch ein gestopptes Martingal genannt
wird. Dabei ist a ∧ b = min{a, b}.

Lemma 5.4.1
Sei X = {X(t), t ≥ 0} ein Martingal mit càdlàg-Trajektorien bzgl. der Filtration {Ft, t ≥ 0}.
Sei T eine endliche Stoppzeit und sei {Tn}n∈N die Folge von diskreten Stoppzeiten aus dem
Theorem 5.1.2, für die Tn ↓ T , n → ∞, gilt. Dann ist {X(Tn ∧ t)}n∈N gleichgradig integrierbar
für jedes t ≥ 0.

Beweis

Tn =

{

0 , falls T = 0
k+1
2n , falls k

2n < T ≤ k+1
2n , für ein k ∈ N0

1. Es ist zu zeigen: E|X(Tn ∧ t)| < ∞ für alle n.
E|X(Tn ∧ t)| ≤ ∑

k: k
2n<t

E|X( k
2n )| + E|X(t)| < ∞, weil X ein Martingal ist, also integrier-

bar.

2. Es ist zu zeigen: supn E(|X(Tn ∧ t)|1(|X(Tn ∧ t)| > x
︸ ︷︷ ︸

An

)) −−−→
x→∞ 0.

sup
n

E(|X(Tn ∧ t)|1(An))

= sup
n






∑

k: k
2n<t

E

(∣
∣
∣
∣X

(
k

2n

)∣
∣
∣
∣ 1

({

Tn =
k

2n

}

∩An

))

+ E (|X(t)| 1 (Tn > t) 1 (An))






≤ sup
n






∑

k: k
2n<t

E

(

|X(t)| 1

({

Tn =
k

2n

}

∩An

))

+ E (|X(t)| 1 ({Tn > t} ∩An))






= sup
n

E (|X(t)| 1 (An)) ≤ sup
n

E (|X(t)| 1 (Y > x))

= E (|X(t)| 1 (Y > x)) ,

wobei 1(An) ≤ 1(sup
n

|X(Tn ∧ t)|
︸ ︷︷ ︸

Y

> x). Es ist zu zeigen: P(Y > x) −−−→
n→∞

0 mit Hilfe von

der Ungleichung von Doob.
P(Y > x) ≤ P(sup0≤s≤t |X(s)| > x) ≤ E|X(t)|

x
−−−−→
x→+∞

0. Da E|X(t)| < ∞ für alle
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t ≥ 0 und P(Y > x) −−−→
x→∞

0, ergibt sich E(|X(t)|1(Y > x)) −−−→
n→∞

0 ⇒ supn E|X(Tn ∧
t)1(A)| −−−→

x→∞
0 {X(Tn ∧ t)}n∈N ist gleichgradig integrierbar.

Beweis vom Theorem 5.4.2
Es ist zu zeigen, dass {X(T ∧ t), t ≥ 0} ein Martingal ist.

1. E|X(T ∧ t)| < ∞ für alle t ≥ 0. Wie in der Folgerung 5.1.1 approximiert man Tn ↓ T ,

n → ∞ ⇒ X(Tn ∧ t)
f.s.−−−→
n→∞

X(T ∧ t), da aber E|X(Tn ∧ t)| < ∞ für alle n folgt

E|X(T ∧ t)| < ∞ wegen Lemma 5.4.1, weil aus der gleichgradigen Integrierbarkeit die
L1-Konvergenz folgt.

2. Martingal Eigneschaft
Es ist zu zeigen:

E(X(T ∧ t) | Fs)
f.s.
= X(T ∧ s), s ≤ t
m

E(X(T ∧ t)1(A))
f.s.
= E(X(T ∧ s)1(A)), A ∈ Fs

Zunächst zeigen wir, dass E(|X(Tn ∧ t)|1(A)) = E(|X(Tn ∧ s)|1(A)), A ∈ Fs, n ∈ N.
Seien t1, . . . , tk ∈ (s, t) diskrete Werte, die Tn mit positiver Wahrscheinlichkeit in (s, t)
annimmt.

E(X(Tn ∧ t) | Fs) = E(E(X(Tn ∧ t) | Ftk) | Fs)
= E(E(X(Tn ∧ t)

︸ ︷︷ ︸

X(tk)

1(Tn ≤ tk) | Ftk) | Fs)

+E(E(X(Tn ∧ t)
︸ ︷︷ ︸

X(t)

1(Tn > tk) | Ftk) | Fs)

= E(X(tk)1(Tn ≤ tk) | Fs) + E(1(Tn > tk)E(X(t) | Ftk) | Fs)
= E(X(tk ∧ Tn) | Fs) = . . . = E(X(tk−1 ∧ Tn) | Fs) = . . .

= E(X(t1 ∧ Tn) | Fs) = . . . = E(X(Tn ∧ s) | Fs)
f.s.
= X(Tn ∧ s)

Da X càdlàg ist und Tn ↓ T , n → ∞, gilt X(Tn ∧ t)
f.s.−−−→
n→∞ X(Tn ∧ t). Dazu sind

{X(Tn ∧ t)}n∈N gleichgradig integrierbar wegen L1-Konvergenz. Daraus folgt

E(X(Tn ∧ t)1(A)) = E(X(Tn ∧ s)1(A)) für alle A ∈ Fs
↓ ↓

E(X(T ∧ t)1(A)) = E(X(T ∧ s)1(A))

⇒ {X(T ∧ t), t ≥ 0} ist ein Martingal.

Definition 5.4.1
Sei T : Ω → R+ eine Stoppzeit bzgl. der Filtration {Ft, t ≥ 0}, Ft ⊂ F , t ≥ 0. Die „gestoppte“
σ-Algebra FT wird definiert durch A ∈ FT ⇒ A ∩ {T ≤ t} ∈ Ft für alle t ≥ 0.
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Lemma 5.4.2 1. Seien S, T – Stoppzeiten bzgl. der Filtration {Ft, t ≥ 0}, S
f.s.

≤ T . Dann
gilt FS ⊂ FT .

2. Sei X = {X(t), t ≥ 0} ein Martingal mit càdlàg-Trajektorien bzgl. der Filtration {Ft, t ≥
0} und sei T eine Stoppzeit bzgl. {Ft, t ≥ 0}. Dann ist X(T ) FT -meßbar.

Beweis 1. A ∈ Fs ⇒ A ∩ {S ≤ t} ∈ Ft, t ≥ 0. A ∩ {T ≤ t} = A ∩ {S ≤ t}
︸ ︷︷ ︸

∈Ft

∩ {T ≤ t}
︸ ︷︷ ︸

∈Ft

∈ Ft

für alle t ≥ 0 ⇒ A ∈ FT .

2. X(T ) = g ◦ f , f : Ω → Ω × R+, f(ω) = (ω, T (ω)), g : Ω × R+ → R, g(ω, s) = X(s, ω).
Es ist zu zeigen: f -F | F ×BR+-meßbar, g-F ×BR+ | FT -meßbar ⇒ g ◦f -F | FT -meßbar.
f -F | F × BR+-meßbar ist offensichtlich, weil T eine Zufallsvariable ist. Betrachten wir
die Einschränkung von X = {X(s), s ≥ 0} auf s ∈ [0, t], t ≥ 0.
Es ist zu zeigen: {X(T ) ∈ B} ∩ {T ≤ t} ∈ Ft für alle t ≥ 0, B ∈ B(R).
X – càdlàg ⇒ X(s, ω) = X(0, ω)1(s = 0) + limn→∞

∑2n

k=1X(t k2n , ω)1(k−1
2n t < s ≤ k

2n t) ⇒
X(s, ω) ist B[0,t] × Ft-meßbar ⇒ X(T ) ist F | FT -meßbar.

Theorem 5.4.3 (Optionales Sampling-Theorem):
Sei X = {X(t), t ≥ 0} ein Martingal mit càdlàg-Trajektorien bzgl. einer Filtration {Ft, t ≥ 0}
und Sei T eine endliche Stoppzeit bzgl. {Ft, t ≥ 0} ⇒ E(X(t) | FT )

f.s.
= X(T ∧ t), t > 0.

Beweis Zeigen wir zunächst, dass E(X(t) | FTn)
f.s.
= X(Tn ∧ t), t ≥ 0, n ∈ N, wobei die

diskrete Approximation von T ist, Tn ↓ T , n → ∞. Sei t1 ≤ t2 ≤ . . . ≤ tk = t die Werte, die
Tn∧ t mit positiven Wahrscheinlichkeiten annimmt. Es ist zu zeigen, dass für alle A ∈ FTn gilt:
E(X(t)1(A)) = E(X(Tn ∧ t)1(A)).

(X(t) −X(Tn ∧ t))1(A) =
k−1∑

i=1

X(tk) −X(ti)1({Tn ∧ t = ti} ∩A)

=
k∑

i=2

(X(ti) −X(ti−1))1(A)1({Tn ∧ t < ti})

E((X(t) −X(Tn ∧ t))1(A)) =
k∑

i=2

E((X(ti) −X(ti−1))1(Tn ∧ t < ti)1(A))

=
k∑

i=2

E(E(X(ti) −X(ti−1))1(Tn ∧ t < ti)1(A) | Fti−1)

=
k∑

i=2

E(1(Tn ∧ t < ti)1(A))E((X(ti) −X(ti−1)) | Fti−1) = 0

E(X(t) | FTn)
f.s.
= E(X(Tn ∧ t) | FTn)

f.s.
= X(Tn ∧ t), denn X(Tn) ist FTn-meßbar. T ≤ Tn ⇒

FT ⊆ FTn . Da {X(Tn ∧ t)}n∈N für t ∈ [0,∞) gleichgradig integrierbar ist, gilt

E(X(t) | FT ) = E(X(t) | FTn) = lim
n→∞

E(X(Tn ∧ t) | FTn) = lim
n→∞

X(Tn ∧ t) = X(T ∧ t),

weil X càdlàg ist.
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Folgerung 5.4.2
Sei X = {X(t), t ≥ 0} ein càdlàg-Martingal und seien S, T endliche Stoppzeiten, so dass

P(S ≤ T ) = 1. Dann gilt E(X(t∧T ) | Fs)
f.s.
= E(X(S∧t)), t ≥ 0. Insbesondere gilt E(X(T∧t))) =

E(X(0)).

Beweis X – Martingal. Aus dem Theorem 5.4.2 ist {X(T ∧ t), t > 0} auch ein Martingal.
Wende den Satz 5.4.3 an dieses treue Martingal an:

E(X(T ∧ t) | Fs)
f.s.
= X(T ∧ S ∧ t)

f.s.
= X(S ∧ t),

weil S
f.s.

≤ T . Setze S = 0, dann E(E(X(T ∧ t) | F0)) = EX(0 ∧ t) = EX(0).

5.5 Lèvy-Prozesse und Martingale

Theorem 5.5.1
Sei X = {X(t), t ≥ 0} ein Lèvy-Prozess mit Charakteristiken (a, b, ν).

1. Es existiert eine càdlàg-Modifikation von X̃ = {X̃(t), t ≥ 0} von X mit denselben
Charakteristiken (a, b, ν).

2. Die natürliche Filtration eines càdlàg-Lèvy-Prozesses ist rechtsseitig stetig.

Ohne Beweis

Theorem 5.5.2 (Regenerationssatz für Lèvy-Prozesse):
Sei X = {X(t), t > 0} ein càdlàg-Lèvy-Prozess mit natürlicher Filtration {FX

t , t ≥ 0} und sei
T eine endliche Stoppzeit bzgl. {FX

t , t ≥ 0}. Der Prozess Y = {Y (t), t ≥ 0}, gegeben durch
Y (t) = X(T + t) − X(T ), t ≥ 0, ist ebenfalls ein Lèvy-Prozess, adaptiert bzgl. der Filtration
{FX

T+t, t ≥ 0}, der unabhängig von FX
T ist und dieselben Charakteristiken, wie X besitzt. T

wird Regenerationszeitpunkt genannt, da Y
d
= X, Y unabhängig von FX

T .

Abbildung 5.1:
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Beweis 1. Annahmne: Es ∃c > 0, so dass P(T ≤ c) = 1. Seien u1, . . . , un ∈ R. Nach
dem Beispiel Nr.5 im Abschnitt 5.2 ist Ỹj = {Ỹj(t) = exp{iujX(t) − tη(uj)}, t ≥ 0},
j = 1, . . . , n, ein komplexwertiges Martingal, wobei η(·) die Lèvy-Exponente von X(t) ist.
Seien 0 ≤ t0 < t1 < . . . < tn beliebige Zeitpunkte. Für alle A ∈ FX

T gilt

E(1(A) exp{
n∑

j=1

iuj(Y (tj) − Y (tj−1))})
Z.z.
= P(A)E(exp{

n∑

j=1

iuj(X(tj) −X(tj−1))})

E(1(A) exp{
n∑

j=1

iuj(Y (tj) − Y (tj−1))})

= E(1(A) exp{
n∑

j=1

iuj(X(T + tj) −X(T ) −X(T + tj−1) −X(T )))})

= E



1(A)
n∏

j=1

Ỹj(T + tj)

Ỹj(T + tj−1)

exp{η(uj)(T + tj)}
exp{η(uj)(T + tj−1)}





= E



E



1(A)
n∏

j=1

Ỹj(T + tj)

Ỹj(T + tj−1)
exp{(tj − tj−1)η(uj)} | FX

T+tj−1









= E



1(A)
n−1∏

j=1

Ỹj(T + tj)

Ỹj(T + tj−1)
e(tj−tj−1)η(uj) e

(tn−tn−1)η(un)

Ỹn(T + tn−1)
E(Ỹn(T + tn) | FX

T+tn−1
)





= E



1(A)
n−1∏

j=1

Ỹj(T + tj)

Ỹj(T + tj−1)
e(tj−tj−1)η(uj) · . . . · e(tn−tn−1)η(un)





= . . . = E(1(A)
n∏

j=1

e(tj−tj−1)η(uj)) = P(A)
n∏

j=1

e(tj−tj−1)η(uj)

= P(A)E(exp{i
n∑

j=1

(uj(X(tj) −X(tj−1)))})

Folgerung 5.5.1
T1 = T + tn, S1 = T + tn−1 ≤ T1 f.s., T1, S1 ≤ t, weil t > c+ tn, T ≥ c.

Aufgabe 5.5.1
Zeigen Sie, dass aus E(1(A) exp{∑n

j=1 iuj(Y (tj) − Y (tj−1))}) = P(A)E(exp{∑n
j=1 iuj(X(tj) −

X(tj−1))}) die Aussage des Satzes folgt.

5.6 Martingale und Wiener-Prozesse

Unser Ziel: Falls W = {W (t), t ≥ 0} ein Wiener-Prozess ist, dann gilt

P( max
s∈[0,t]

W (s) > x) =

√

2

πt

∫ +∞

x
e− y2

2t dy, für alle x ≥ 0.
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Theorem 5.6.1 (Reflexionsprinzip):
Sei T eine beliebige Stoppzeit bzgl. der natürlichen Filtration {FW

t , t ≥ 0}. Sei X = {X(t), t ≥
0} der reflektierte Wiener-Prozess zum Zeitpunkt T , d.h. X(t) = W (T ∧t)−(W (t)−W (T ∧t)),
t ≥ 0. Dann gilt X

d
= W .

Abbildung 5.2:

Beweis Sei X1(t) = W (T ∧ t), X2(t) = W (T + t)−W (T ), t ≥ 0. Aus dem Theorem 5.5.2 folgt,
dass X2 unabhängig von (T1, X1) ist (W – Lèvy-Prozess und T – Regenerationszeitpunkt). Es

gilt W (t)
g
= X1(t) +X2((t− T )+), X(t)

g
= X1(t) −X2((t− T )+), t ≥ 0. Aus dem Satz ?? folgt

(T1, X1, X2)
d
= (T,X1,−X2)

↓ ↓
W

d
= X

Sei W = {W (t), t ≥ 0} ein Wiener-Prozess auf (Ω,F ,P), sei {FW
t , t ≥ 0} die natürliche

Filtration bzgl. W . Für z ∈ R sei TW{z} = inf{t ≥ 0 : W (t) = z}. TW{z} := TWz ist eine f.s. endliche

Stoppzeit bzgl. {FW
t , t ≥ 0}, z > 0. Offensichtlich, es gilt {FW

z ≤ t} ∈ FW
t . Da W stetige

Pfade (f.s.) besitzt, ist {FW
t , t ≥ 0} rechtsseitig stetig.

Folgerung 5.6.1
Sei Mt = maxs∈[0,t]W (s), t ≥ 0. Dann gilt für alle z > 0, y ≥ 0, dass P(Mt ≥ z,W (t) ≤
z − y) = P(W (t) > y + z).

Beweis Mt sei eine Zufallsvariable, weil W stetige Pfade hat. T := TWz . Nach dem Theorem

5.6.1 gilt: für Y (t) = W (T ∧ t) − (W (t) −W (T ∧ t)), t ≥ 0, Y
d
= W bzw. {TWz ,W} d

= {T Yz , Y },
weil W (t) = z, TWz = T Yz . Deshalb

P(T ≤ t,W (t) < z − y) = P(T Yz ≤ t, Y (t) < z − y)
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{T Yz ≤ t} ∩ {Y (t) < z − y} = {T Yz ≤ t} ∩ {2z − W (t) < z − y}. Falls T = T Yz ≤ t, dann
Y (t) = W (T ) −W (t) +W (T ) = 2z −W (t) und daraus folgt

P(T ≤ t,W (t) < z−y) = P(T ≤ t, 2z−W (t) < z−y) = P(T ≤ t,W (t) > z+y) = P(W (t) > z+y)

Per Definition im T = TWz gilt:

P(T ≤ t,W (t) < z − y) = P(Mt ≥ z,W (t) < z − y) = P(W (t) > y + z)

⇒ TWz ≤ t ⇐⇒ maxs∈[0,t]W (s) ≥ z

Theorem 5.6.2 (Verteilung des Maximums von W ):
Für t > 0 und x ≥ 0 gilt

P(Mt > x) =

√

2

πt

∫ ∞

x
e− y2

2t dy

Beweis In Folgerung 5.6.1 setze y = 0 ⇒ P(Mt ≥ z,W (t) < z) = P(W (t) > z). Es gilt
P(W (t) > z) = P(W (t) ≥ z) für alle t und alle z, weil W (t) ∼ N (0, t), also atomfrei
⇒ P(Mt ≥ z,W (t) < z) + P(W (t) ≥ z) = P(W (t) > z) + P(W (t) > z)
⇒ P(Mt ≥ z,W (t) < z) + P(Mt ≥ z,W (t) ≥ z) = P(Mt ≥ z) = 2P(W (t) > z)

⇒ P(Mt > z) = 2P(W (t) > z) = 2 1√
2πt

∫∞
z e− y2

2z dy =
√

2
πt

∫∞
z e− y2

2t dy

Sei X(t) = W (t) − tµ, t ≥ 0, µ > 0, der Wiener-Prozess mit negativer Drift. Betrachte
P(supt≥0X(t) > x) = e−2µx, x ≥ 0.

Motivation Berechnung der Ruin-Wahrscheinlichkeiten in der Risikotheorie.

Annahmen Startkapital x ≥ 0. Sei µ das Prämienvolumen per Zeiteinheit.⇒ µt – Prämien-
annahmen zum Zeitpunkt t ≥ 0. Sei W (t) der Prozess der Verluste (Preisentwicklung). ⇒
Y (t) = x + tµ − W (t) – Restkapital zum Zeitpunkt t. Die Wahrscheinlichkeit des Ruins ist
P(inft≥0 Y (t) < 0) = P(x− supt≥0X(t) < 0) = P(supt≥0X(t) > x)

Theorem 5.6.3
Es gilt

P(sup
t≥0

X(t) > x) = e−2µx, x ≥ 0, µ > 0.

Beweis Sei T = TXz = inf{t ≥ 0 : X(t) = z}. Es ist bekannt, dass Y (t) = exp{uX(t) − t(u
2

2 −
µu)}, t ≥ 0, u ≥ 0, ein Martingal ist. Sei T ′ = T ∧t – eine endliche Stoppzeit bzgl. {FX

t , t ≥ 0}.
Aus Folgerung 5.4.1: EY (T ′) = EY (0) = Ee0 = 1

⇒ E(Y (T ′)1(T < t)) + E(Y (T ′)1(T ≥ t)) = E(Y (T )1(T < t)) + E(Y (T ′)1(t ≥ t))

Es ist zu zeigen, dass E(Y (T ′)1(T ≥ t)) −−−→
t→∞

0.

Aus der Folgerung ?? ist bekannt, dass

W (t)

t

f.s.−−−→
t→∞

0 ⇒ lim
t→∞

X(t)

t
= lim

t→∞
W (t)

t
− µ = −µ ⇒ X(t)

f.s.−−−−→
t→+∞

−∞
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Y (T ′)1(T ≥ t) = exp{uX(t) − t(u
2

2 − µu)}1(T ≥ t)
f.s.−−−−→

t→+∞
0, falls u2

2 − µu > 0 ⇒ u ≥ 2µ.

Anderseits, Y (T ′)1(T ≤ t) ≤ exp{uz} ⇒ nach dem Satz von Lebesgue gilt:

E(Y (T ′)1(T ≥ t)) −−−−→
t→+∞

0

⇒ lim
t→+∞

E(Y (T )1(T < t)) = 1, Y (T ) = exp{uz − T (
u2

2
− µu)}

⇒ lim
t→+∞

E(exp{−T (
u2

2
− µu)}1(T < t)) = e−uz

u=2µ⇒ lim
t→+∞

P(T < t) = P(T < ∞) = e−2µz

⇒ P(sup
t≥0

X(t) > z) = P(TXz < ∞) = e−2µz

Theorem 5.6.4
Sei µ ∈ R, δ > 0, T (t) = inf{s ≥ 0 : W (s) + µs = δt}, t ≥ 0. Dann ist T = {T (t), t ≥ 0} ein
Lèvy-Prozess mit m̂T (t)(z) = Ee−zT (t) = exp{−tδ(

√

2z + µ2 − µ)}, t ≥ 0, z ≥ 0.
Spezialfall: Für µ = 0, δ = 1√

2
ist T = {T (t), t ≥ 0} ein 1

2 -stabiler Subordinator, der

auch manchmal Lèvy-Subordinator genannt wird. Hier gilt m̂X(t)(z) = e−t√z. (Für α-stabile
Subordinatoren gilt: m̂T (t)(z) = e−tzα

, α ∈ (0, 1))

Zur Erinnerung: Das Lèvy-Maß eines α-stabilen Subordinators ist

ν(dx) =
α

Γ(1 − α)

dx

x1+α
1(x > 0), α ∈ (0, 1).

Beweis des Satzes 5.6.4 im Spezialfall (allgemein geht analog)
Sei T (t) = inf{s ≥ 0 : W (s) = t√

2
}, t ≥ 0. Es ist zu zeigen, dass T = {T (t), t ≥ 0} ein

Lèvy-Prozess ist.

T (0)
f.s.
= 0. Aus dem Theorem 5.5.2 folgt, dass T unabhängige und stationäre Zuwächse hat. T

ist stochastisch stetig, denn

lim
t→0

P(T (t) > ε) = lim
t→∞

P( max
s∈[0,ε]

W (s) <
t√
2

) = lim
t→0

(1 −
√

2

πε

∫ ∞

t√
2

e− y2

2ε dy) = 1 − 1 = 0.

Somit haben wir bewiesen, dass T ein Lèvy-Prozess ist.
Es ist noch zu zeigen, dass T (t) α-stabil für α = 1

2 ist, d.h. Ee−zT (t) = e−t√z, für alle z und t ≥ 0.
Ähnlich zum Beweis des Theorems 5.6.3 betrachten wir das Martingal X = {X(s), s ≥ 0},
X(s) = exp{zW (s) − s z

2

2 }, s ≥ 0.
Sei Yn,t = T (t) ∧ n, für alle n ∈ N, t ≥ 0, eine Folge von Stoppzeiten bzgl. {Ft, t ≥ 0}. Aus
Folgerung 5.4.1 ist {X(Yn,t), n ∈ N} für alle t, z > 0, ebenfalls ein Martingal.

EX(Yn,t) = EX(Y0,t) = EX(0) = ez0 = 1
E(X(Yn,z)1(T (t) < n)) + E(X(Yn,t))1(T (t) ≥ n)

= E(exp{zW (T (t))
︸ ︷︷ ︸

= t√
2

−T (t) z
2

2 }1(T (t) < n)) + E(exp{zW (n) − n z
2

2 1(T (t) ≥ n))
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Es ist zu zeigen, dass E(exp{zW (n) − n z
2

2 }1(T (t) ≥ n)) −−−→
n→∞ 0. Daraus wird folgen, dass

1 = limn→∞ E(exp{z t√
2

− T (t) z
2

2 } 1(T (t) < n)
︸ ︷︷ ︸

f.s.−−−→
n→∞

1

) = E exp{z t√
2

− T (t) z
2

2 }, weil T (t) eine endliche

Stoppzeit ist, d.h. P(T (t) < ∞) = 1 für alle t ≥ 0.
Die obige Konvergenz gilt nach Lebesgueschem Satz über die majorisierte Konvergenz

⇒ E exp{−T (t)
z2

2
︸︷︷︸

=u

} − e
−t z√

2 ⇒ Ee−uT (t) = e−t√u, u ≥ 0.

Es ist noch zu zeigen, dass E(exp{zW (n) − n z
2

2 } 1(T (t) ≥ n)
︸ ︷︷ ︸

f.s.−−−→
n→∞

0

) −−−→
n→∞ 0.

Zusätzlich gilt: T (t) ≥ n ⇒ W (n) ≤ t√
2
.

exp{zW (n) − n z
2

2 }1(T (t) ≥ n) ≤ exp{t t√
2
} für alle n ∈ N0.

⇒ Die Konvergenz ergibt sich aus dem Satz von Lebesgue.

Bemerkung 5.6.1
Falls T (t) = min{s ≥ 0 : W (s) + µs = δt}, µ ∈ R, δ > 0, t ≥ 0, dann kann die Laplace-
Transformierte in T (t) (vgl. Theorem 5.6.4) Ee−zT (t) = exp{−tδ(

√

2z + µ2 − µ)} explizit in-
ventiert werden: die Dichte von T (t) läßt sich schreiben als

fT (t)(x) =
δt√
2π
eδtµx− 3

2 exp{−1

2
(t2δ2 1

x
+ µ2x)}1(x ≥ 0).

Das ist die Dichte der sogennanten inversen Gauß-Verteilung.

Theorem 5.6.5
Sei X = {X(t), t ≥ 0} ein Lèvy-Prozess und sei T = {T (t), t ≥ 0} ein Subordinator, die beide
auf einem Wahrscheinlichkeitsraum (Ω,F ,P) definiert sind. Seien X und T unabhängig. Dann
ist Y = {Y (t), t ≥ 0} definiert durch Y (t) = X(T (t)), t ≥ 0, ebenfalls ein Lèvy-Prozess.

Ohne Beweis

5.7 Ergänzende Aufgaben

Aufgabe 5.7.1
Seien X,Y : Ω → R beliebige Zufallsvariablen über (Ω,F ,P) mit

E|X| < ∞, E|Y | < ∞, E|XY | < ∞,

und sei G ⊂ F eine beliebige Teil-σ-Algebra von F . Dann gilt

(a) E(X|{∅,Ω}) = EX,E(X|F) = X,

(b) E(aX + bY |G) = aE(X|G) + bE(Y |G) für beliebige a, b ∈ R,

(c) E(X|G) ≤ E(Y |G), falls X ≤ Y ,

(d) E(XY |G) = Y E(X|G), falls Y eine (G,B(R))-messbare Zufallsvariable ist,
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(e) E(E(X|G2)|G1) = E(X|G1), falls G1 und G2 Teil-σ-Algebren von F sind mit G1 ⊂ G2,

(f) E(X|G) = EX, falls die σ-Algebra G und σ(X) = X−1(B(R)) unabhängig sind, d. h., falls
P(A ∩A′) = P(A)P(A′) für beliebige A ∈ G und A′ ∈ σ(X).

(g) E(f(X)|G) ≥ f(E(X|G)), falls f : R → R eine konvexe Funktion ist, so dass E|f(X)| < ∞.

Aufgabe 5.7.2
Betrachte die zwei ZufallsvariablenX und Y über dem Wahrscheinlichkeitsraum ([−1, 1],B([−1, 1]), 1

2ν)
mit E|X| < ∞, wobei ν das Lebesguemaß auf [−1, 1] bezeichnet. Bestimme für die folgenden
Zufallsvariablen jeweils σ(Y ) und eine Version der bedingten Erwartung E(X|Y ).

(a) Y (ω) = ω5 (Hinweis: Zeige zunächst, dass σ(Y ) = B([−1, 1]))

(b) Y (ω) = (−1)k für ω ∈
[
k−3

2 , k−2
2

)

, k = 1, . . . , 4 und Y (1) = 1

(Hinweis: Es gilt E(X|B) = E(X1B)
P(B) für B ∈ σ(Y ) mit P(B) > 0)

(c) Berechne die Verteilung von E(X|Y ) in (a) und (b), falls X ∼ U [−1, 1].

Aufgabe 5.7.3
Seien X und Y Zufallsvariablen über einem Wahrscheinlichkeitsraum (Ω,F ,P). Die bedingte
Varianz var(Y |X) ist definiert durch

var(Y |X) = E((Y − E(Y |X))2|X).

Zeige, dass
var Y = E(var(Y |X)) + var(E(Y |X)).

Aufgabe 5.7.4
Für eine Stoppzeit τ definieren wir die gestoppte σ-Algebra Fτ wie folgt:

Fτ = {B ∈ F : B ∩ {τ ≤ t} ∈ Ft für beliebige t ≥ 0}.

Seien nun S und T Stoppzeiten bzgl. der Filtration {Ft, t ≥ 0}. Zeige:

(a) A ∩ {S ≤ T} ∈ FT ∀A ∈ FS

(b) Fmin{S,T} = FS ∩ FT

Aufgabe 5.7.5 (a) Sei {X(t), t ≥ 0} ein Martingal. Zeige, dass EX(t) = EX(0) für alle t ≥ 0
gilt.

(b) Sei {X(t), t ≥ 0} ein Sub- bzw. Supermartingal. Zeige, dass EX(t) ≥ EX(0) bzw. EX(t) ≤
EX(0) für alle t ≥ 0 gilt.

Aufgabe 5.7.6
Der stochastische Prozess X = {X(t), t ≥ 0} sei adaptiert und càdlàg. Zeige, dass

P( sup
0≤v≤t

X(v) > x) ≤ EX(t)2

x2 + EX(t)2

für beliebige x > 0 und t ≥ 0 gilt, falls X ein Submartingal mit EX(t) = 0 und EX(t)2 < ∞
ist.
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Aufgabe 5.7.7 (a) Sei g : [0,∞) → [0,∞) eine monoton wachsende Funktion mit

g(x)

x
→ ∞, x → ∞.

Zeige, dass die Folge X1, X2, . . . von Zufallsvariablen gleichgradig integrierbar ist, falls
supn∈N Eg(|Xn|) < ∞.

(b) Sei X = {X(n), n ∈ N} ein Martingal. Zeige, dass die Folge von Zufallsvariablen X(T ∧
1), X(T ∧2), . . . für jede endliche Stoppzeit T gleichgradig integrierbar ist, falls E|X(T )| <
∞ und E(|X(n)|1{T>n}) → 0 für n → ∞.

Aufgabe 5.7.8
Sei S = {Sn = a +

∑n
i=1Xi, n ∈ N} eine symmetrische zufällige Irrfahrt mit a > 0 und

P(Xi = 1) = P(Xi = −1) = 1/2 für i ∈ N. Die zufällige Irrfahrt wird zu demjenigen Zeitpunkt
T gestoppt, bei dem sie zum ersten Mal einen der beiden Werte 0 und K > a unter- bzw.
überschreitet, d. h.

T = min
k≥0

{Sk ≤ 0 oder Sk ≥ K}.

Zeige, dass Mn =
∑n
i=0 Si − 1

3S
3
n ein Martingal ist und E(

∑T
i=0 Si) = 1

3(K2 − a2)a+ a gilt.

Hinweis: Für die Berechnung von E(Mn|FM
m ), n > m, kann E(

∑l
i=kXi)3 = 0, 1 ≤ k ≤ l,

Mn =
∑m
r=0 Sr +

∑n
r=m+1 Sr − 1

3S
3
n und Sn = Sn − Sm + Sm verwendet werden.

Ein diskretes Martingal bezüglich einer Filtration {Fn}n∈N ist eine Folge von Zufallsvaria-
blen {Xn}n∈N über einem Wahrscheinlichkeitsraum {Ω,F ,P), so dass Xn bezüglich {Fn}n∈N

messbar ist und E(Xn+1|Xn) = Xn für alle n ∈ N. Eine diskrete Stoppzeit bezüglich {Fn}n∈N

ist eine Zufallsvariable T : Ω → N ∪ {∞}, so dass {T ≤ n} ∈ Fn für alle n ∈ N ∪ {∞}, wobei
F∞ = σ{⋃∞

n=1 Fn}.

Aufgabe 5.7.9
Seien {Xn}n∈N ein diskretes Martingal und T eine diskrete Stoppzeit bezüglich {Fn}n∈N. Zeige,
dass auch {Xmin{T,n}}n∈N ein Martingal bezüglich {Fn}n∈N ist.

Aufgabe 5.7.10
Sei {Sn}n∈N eine symmetrische zufällige Irrfahrt mit Sn =

∑n
i=1Xi für eine Folge von unab-

hängigen und identisch verteilten Zufallsvariablen X1, X2, . . ., so dass P(X1 = 1) = P(X1 =
−1) = 1

2 . Sei T = inf{n : |Sn| > √
n} und Fn = σ{X1, . . . , Xn}, n ∈ N.

(a) Zeige, dass T eine Stoppzeit bezüglich {Fn}n∈N ist.

(b) Zeige, dass {Gn}n∈N mit Gn = S2
min{T,n} − min{T, n} ein Martingal bezüglich {Fn}n∈N

ist. (Hinweis: Verwende Aufgabe 5.7.9)

(c) Zeige, dass |Gn| ≤ 4T für alle n ∈ N gilt.
(Hinweis: Es gilt |Gn| ≤ |S2

min{T,n}| + | min{T, n}| ≤ S2
min{T,n} + T )

Aufgabe 5.7.11
SeiX1, X2, . . . eine Folge von unabhängigen und identisch verteilten Zufallsvariablen mit E|X1| <
∞. Sei Fn = σ{X1, . . . , Xn}, n ∈ N, und sei T eine Stoppzeit bezüglich {Fn}n∈N mit ET < ∞.

(a) Sei T unabhängig von X1, X2, . . .. Leite eine Formel für die charakteristische Funktion
von ST =

∑T
i=1Xi her und weise damit die Waldsche Identität nach, d. h. EST = ETEX1.
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(b) Sei zusätzlich EX1 = 0 und T = inf{n : Sn < 0}. Verwende Theorem 2.1.3 aus der
Vorlesung, um zu zeigen, dass ET = ∞. (Hinweis: Widerspruchsbeweis)



6 Stationäre Folgen von Zufallsvariablen

6.1 Reihen von unabhängigen Zufallsvariablen

Es ist bekannt, dass die Reihe

∑∞
n=1

1
nα < ∞ ⇐⇒ α > 1,

∑∞
n=1

(−1)n

nα < ∞ ⇐⇒ α > 0,

weil die Drift der banachbarten Glieder die Ordnung 1
n1+α haben.

Wann (für welche α > 0) konvergiert die Reihe
∑∞
n=1

δn

nα , wobei δn u.i.v. Zufallsvariablen
sind mit Eδn = 0, z.B. P(δn = ±1) = 1

2?
Allgemeinere Frage: Unter welchen Bedingungen konvergiert (f.s.) die Reihe

∑∞
n=1Xn, wobei

Xn unabhängig sind?

Man weiss, dass für eine Folge von Zufallsvariablen {Yn} aus Yn
f.s.−−−→
n→∞

Y gilt, dass Yn
P−−−→

n→∞
Y . Das Gegenteil gilt im Allg. nicht.

Theorem 6.1.1
Seien Xn, n ∈ N, unabhängige Zufallsvariablen. Falls Sn =

∑n
i=1Xi

P−−−→
n→∞

S, dann Sn
f.s.−−−→
n→∞

S.

Ohne Beweis

Folgerung 6.1.1
Falls die Folgen Xn, n ∈ N, unabhängig sind, varXn < ∞, n ∈ N, EXn = 0,

∑∞
n=1 varXn < ∞,

dann konvergiert
∑∞
n=1Xn f.s.

Beweis Sn =
∑n
i=1Xi, S =

∑∞
i=1Xi, m < n,

E(Sn − Sm)2 = ‖Sn − Sm‖2
L2 =

n∑

i=m+1

varXi −−−−−→
n,m→∞

0,

weil
∑∞
i=1 varXi < ∞ ⇒ {Sn}n∈N ist eine Cauchy-Folge in L2(Ω,F ,P)

⇒ ∃S = lim
n→∞

Sn =
∞∑

i=1

Xi ⇒ Sn
P−−−→

n→∞
S

Theorem 6.1.1⇒ Sn
f.s.−−−→
n→∞

S.

Folgerung 6.1.2
Falls

∑∞
n=1 a

2
n < ∞, wobei {an}n∈N eine deterministische Folge ist, und {δn} eine Folge von

u.i.v. Zufallsvariablen ist mit Eδn = 0, var δn = σ2 < ∞, n ∈ N, dann konvergiert die Reihe
∑∞
n=1 anδn f.s.

Aufgabe 6.1.1
Leiten Sie die Folgerung 6.1.2 aus dem Theorem 6.1.1 ab.

86
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Bei uns: δn u.i.v., Eδn = 0, var δn = σ2 > 0 (z.B. δn ∼ Bernouli(1
2)), an = 1

nα , n ∈ N.
∑∞
n=1

1
nα < ∞, falls

∑∞
n=1

1
n2α < ∞, d.h. für α < 1

2 .

Folgerung 6.1.3
Sei {Xn}n∈N eine Folge von unabhängigen Zufallsvariablen mit

∑∞
n=1 EXn,

∑∞
n=1 varXn < ∞

⇒ ∑∞
n=1Xn

f.s.
< ∞.

Beweis Sei Yn = Xn − EXn, daher ist Xn = EXn
︸ ︷︷ ︸

=an

+Yn, n ∈ N, und EYn = 0,
∑∞
n=1 an <

∞ nach Voraussetzung.
∑∞
n=1 Yn

f.s.
< ∞ nach Folgerung 6.1.1, weil varXn = var Yn, n ∈ N,

∑∞
n=1 varXn < ∞ ⇒ ∑

nXn =
∑

n an +
∑

n Yn
f.s.
< ∞.

6.2 Stationarität im engeren Sinne und Ergodentheorie

6.2.1 Grundbegriffe

Sei {Xn}n∈N ein stationäre im engeren Sinne Folge von Zufallsvariablen, d.h. für alle n, k ∈ N

die Verteilung von (Xn, . . . , Xn+k)⊤ unabhängig von n ∈ N ist. Insbesondere heißt es, dass alle
Xn identisch verteilt sind. In der Sprache des Theorems von Kolmogorov:

P((Xn, Xn+1, . . .) ∈ B) = P((X1, X2, . . .) ∈ B),

für alle n ∈ N, für alle B ∈ B(R∞), R∞ = R × R × . . .× . . ..

Beispiel 6.2.1 (von stationären Folgen von Zufallsvariablen): 1. Sei {Xn}n∈N eine
Folge von u.i.v. Zufallsvariablen, dann ist {Xn}n∈N stationär.

2. Sei Yn = a0Xn + . . . + akXn+k, k – fixierte Zahl aus N, {Xn}n∈N aus 1), a0, . . . , ak ∈ R

(fixiert), n ∈ N. Yn sind nicht mehr unabhängig, aber identisch verteilt. Die Folge {Yn}n∈N

ist stationär.

3. Sei Yn =
∑∞
j=0 ajXn+j für beliebiges n ∈ N. Die Folge {aj}j∈N ist eine Zahlenfolge aus R

mit der Eigenschaft, dass
∑∞
j=1 |aj | < ∞ und EXn = 0,

∑∞
n=1 varXn < ∞,

∑∞
j=1 a

2
j < ∞

(vgl. Folgerung 6.1.2).
Es ist offensichtlich, dass {Yn}n∈N eine stationäre Folge ist. (Diese Konstruktion ist wichtig
für die autoregressiven Zeitreihen (AR-Prozesse), z.B. in der Ökonometrie).

4. Sei Yn = g(Xn, Xn+1, . . .), n ∈ N, g : R∞ → R meßbar, {Xn}n∈N aus 1). Dann ist {Yn}n∈N

stationär.

Bemerkung 6.2.1 1. Eine beliebige stationäre Folge von Zufallsvariablen X = {Xn}n∈N

kann man erweitern zu einer stationären Folge X̄ = {Xn}n∈Z. Tatsächlich kann die endlich
dimensionale Verteilung von X̄ nach dem Satz von Kolmogorov durch die von X definiert
werden:

(Xn, . . . , Xn+k)
d
= (X1, . . . , Xk+1), n ∈ Z, k ∈ N.

Deshalb (nach dem Satz von Kolmogorov) existiert ein Wahrscheinlichkeitsraum und eine
Folge {Yn}n∈Z mit der obigen Verteilung. Wir setzen X̄ = {Yn}n∈Z und daraus folgt, dass

{Yn}n∈N
d
= {Xn}n∈N.
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2. Wir definieren eine Koordinatenverschiebung. Sei x ∈ R∞
−∞, x = (xk, k ∈ N), x = (xk, k ∈

Z). Definiere die Abbildung θ : R∞
−∞ → R∞

−∞, (θx)k = xk+1 (Verschiebung der Koordi-
naten um 1), k ∈ N, k ∈ Z. Falls θ auf R∞

−∞ betrachtet wird, so ist sie bijektiv und die
Umkehrabbildung wäre (θ−1x)k = xk−1, k ∈ Z.
Sei nun X = {Xn, n ∈ Z} eine stationäre Folge von Zufallsvariablen. Sei X̄ = θX. Es ist

offensichtlich, dass X̄ wieder stationär ist und X̄
d
= X. Daraus folgt, dass

P(θX ∈ B) = P(X ∈ B), B ∈ B(R∞
−∞).

θ wird eine maßerhaltende Abbildung genannt. Es gibt aber auch andere Abbildungen,
die maßerhaltend wirken.

Definition 6.2.1
Sei (Ω,F ,P) ein beliebiger Wahrscheinlichkeitsraum. Eine Abbildung T : Ω → Ω heißt maßer-
haltend, falls

1. T meßbar ist, d.h. T−1A ∈ F für alle A ∈ F ,

2. P(T−1A) = P(A), A ∈ F .

Lemma 6.2.1
Sei T eine maßerhaltende Abbildung undX0 – eine Zufallsvariable. Wir definieren eine Folge von
Zufallsvariablen Xn. Sei Abbildung UY (ω) = Y (T (ω)), ω ∈ Ω, für eine beliebige Zufallsvariable
Z auf (Ω,F ,P). Definiere Xn(ω) = UnX0(ω) = X0(Tn(ω)), ω ∈ Ω, n ∈ N. Dann ist die Folge
von Zufallsvariablen X = {X0, X1, X2, . . .} stationär.

Beweis Sei B ∈ B(R∞), A = {ω ∈ Ω : X(ω) ∈ B}, A1 = {ω ∈ Ω : θX(ω) ∈ B}.

X(ω) = (X0(ω), X0(T (ω)), X0(T 2(ω)), . . .)
θX(ω) = (X0(T (ω)), X0(T 2(ω)), . . .)

Deshalb ω ∈ A1 ⇔ T (ω) ∈ A. Weil P(T−1A) = P(A), gilt P(A1) = P(A). Für An = {ω ∈ Ω :
θnX(ω) ∈ B} gilt dasselbe, P(An) = P(A), n ∈ N (Induktion). Und daraus folgt, dass die Folge
X stationär ist.

Die Folge X in Lemma 6.2.1 wird die Folge, die von T erzeugt wird, genannt.

Definition 6.2.2
Eine Abbildung T : Ω → Ω heißt maßerhaltend in beide Richtungen, falls

1. T bijektiv ist und T (Ω) = Ω,

2. T und T−1 meßbar sind,

3. P(T−1A) = P(A), A ∈ F , und, folglich, P(TA) = P(A).

Somit können wir genau wie in Lemma 6.2.1 stationäre Folgen von Zufallsvariablen mit
Zeitparameter n ∈ Z konstruieren:

X(ω) = {X0(Tn(ω))}n∈N, ω ∈ Ω,

wobei T eine maßerhaltende Abbildung (in beide Richtungen) ist, X0(T 0(ω)) = X0(ω), (T 0 =
Id).
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Lemma 6.2.2
Für eine beliebige stationäre Folge von Zufallsvariablen X = (X0, X1, . . .) existiert eine maßer-
haltende Abbildung T und eine Zufallsvariable Y0, so dass Y (ω) = {Y0(Tn(ω))}n∈N dieselbe

Verteilung wie X besitzt: X
d
= Y . Dieselbe Aussage gilt für Folgen mit dem Zeitparameter

n ∈ Z.

Beweis Betrachten wir den kanonischen Wahrscheinlichkeitsraum (R∞,B(R∞),PX), Y (ω) =
ω, ω ∈ R, T = θ. Damit ist Y konstruiert, weil PX(A) = PY (A) = PX(Y ∈ A), A ∈ B(R∞).

Beispiel 6.2.2 (Maßerhaltende Abbildungen): 1. Sei Ω = {ω1, . . . , ωk}, k ≥ 2, F =
2Ω, P(ωi) = 1

k
, i = 1, . . . , k, ein Laplacescher Wahrscheinlichkeitsraum. Tωi = ωi+1 für

alle i = 1, . . . , k − 1, Tωk = ω1.

2. Sei Ω = [0, 1), F = B([0, 1)), P = ν1 – Lebesgue-Maß auf [0, 1). Tω = (ω + s) mod 1,
s ≥ 0. T ist maßerhaltend in beide Richtungen.

Folgen von Zufallsvariablen, die in diesen Beispielen durch die Abbildung T erzeugt werden
können, sind meistens deterministisch bzw. zyklisch. Im Beispiel 1) können wir eine Zufallsva-
riable X0 : Ω → R betrachten, so dass X(ωi) = xi alle von einander verschieden sind. Deswegen
Xn(ω) = X0(Tn(ω)) wird eindeutig den Wert von Xn+1(ω) = X0(Tn+1(ω)) definieren, für alle
n ∈ N.

Bemerkung 6.2.2
Maßerhaltende Abbildungen spielen eine große Rolle auch in der Physik. Dort wird T als die
Veränderung des Zustandes von einem physikalischem System interpretiert und das Maß kann
z.B. das Volumen sein. (Bsp.: T – Veränderung der Temperatur, Maß P – Volumen vom Gas.)
Deswegen ist die zu entwickelte Ergodentheorie auf manche physikalische Vorgänge übertragen.

Theorem 6.2.1 (Poincarè):
Falls T eine maßerhaltende Abbildung auf (Ω,F ,P) ist, A ∈ F , dann für fast alle ω ∈ A die
Relation {Tn(ω) ∈ A} gilt für unendlich viele n ∈ N.

Das heißt, dass die Trajektorie {Tn(ω), n ∈ N} kehrt unendlich oft zu A zurück, falls ω ∈ Ω,
P(A) > 0.

Beweis Es ist zu zeigen, dass A ∈ F , T : Ω → Ω maßerhaltend. Zeige, dass für fast alle ω ∈ Ω,
T (ω) ∈ A für unendlich viele n ∈ N. Sei N = {ω ∈ A : Tn(ω) /∈ A∀n ≥ 1}. Es ist klar, dass
N ∈ F , weil {ω ∈ Ω : Tn(ω) /∈ A} ∈ F für alle n ≥ 1. N ∩ T ( − n)N = ∅ für alle n ≥ 1.
Tatsächlich, falls ω ∈ N ∩ T ( − n)N , dann ω ∈ A, T (n)(ω) /∈ A für alle n ≥ 1, ω1 = Tn(ω),
ω1 ∈ N . Daraus folgt, dass ω1 ∈ A und Tn(ω) ∈ A. Das ist Widerspruch.
T ( − n)N = {ω ∈ Ω : Tn(ω) ∈ N}. Für beliebige m ∈ N gilt

T ( −m)N ∩ T ( − (n+m))N = T ( −m)(N ∩ T ( − n)N) = T ( −m)(∅) = ∅.

Daraus folgt, dass die Mengen T ( − n)N , n ∈ N, paarweise disjunkt sind, zu F gehören und
P(T ( − n)N) = P(A) = a ≥ 0 haben.

1 ≥ P(∪nT ( − n)N) =
∑

P(T ( − n)N) =
∞∑

n=0

a ⇒ a = 0 ⇒ P(N) = 0.

Daraus folgt, dass für fast alle ω ∈ A (ω ∈ A{}N) ein n1 = n1(ω) existiert, so dass T (m)(ω) ∈ A.
Sei nun T k an Stelle von T , k ∈ N. Es gilt P(Nk) = 0 und für alle ω ∈ A{}Nk existiert
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nk = nk(ω), so dass (T k)(nk)(ω) ∈ A. Da knk ≥ k folgt für fast alle ω ∈ A, dass T (n)(ω) ∈ A
für unendlich viele n.

Folgerung 6.2.1
Sei X ≥ 0 eine Zufallsvariable, A = {ω ∈ Ω : X(ω) > 0}. Dann für fast alle ω ∈ Ω gilt
∑∞
n=0X(T (n)(ω)) = +∞, wobei T eine maßerhaltende Abbildung ist.

Aufgabe 6.2.1
Beweisen Sie es.

Bemerkung 6.2.3
Der Beweis des Theoremes 6.2.1 gilt für Mengen A ∈ F : P(A) ≥ 0. Falls jedoch P(A) = 0,
kann es sein, dass A{}N = ∅ und somit ist die Aussage des Theoremes trivial.
Als Beispiel betrachten wir Ω = [0, 1), F = B([0, 1)), P = ν1 – Lebesgue-Maß, T (ω) = ω + s
mod 1, s ∈ Q. Als Menge A betrachten wir A = ω0, ω0 ∈ Ω. Dann gilt Tn(ω0) 6= ω0 für alle n,
denn sonst existiert k,m ∈ N, so dass ω0 + ks − m = ω0 und daraus folgt s = m

k
∈ Q. Somit

bekommen wir einen Widerspruch.

6.2.2 Mischungseigenschaften und Ergodizität

Hier studieren wir die Abhängigkeitsstruktur in einer stationären Folge von Zufallsvariablen,
die durch eine maßerhaltende Abbildung T erzeugt wird.

Sei X = {Xn}n∈N eine stationäre Folge (im engen Sinne) von Zufallsvariablen. Dann existiert

eine maßerhaltende Abbildung T : Ω → Ω, so dass Xn(ω)
d
= X0(T (n)(ω)) und Xn

d
= X0,

und somit gibt Xs die Randverteilung der Folge X an. Dafür ist die Abbildung T für die
Abhängigkeiten innerhalb von X zuständig (sie gibt Eigenschaften von mehrdimensionalen
Verteilungen an). Deshalb werden wir jetzt die Abhängigkeitseigenschaften untersuchen, die
von T erzeugt werden.

Definition 6.2.3 1. EreignisA ∈ F heißt invariant bzgl. (einer maßerhaltenden Abbildung)
T : Ω → Ω, falls T−1A = A.

2. Ereignis A ∈ F heißt fast invariant bzgl. T , falls P(T−1A△A) = 0. △ bedeutet die
symmetrische Differenz.

Aufgabe 6.2.2
Zeigen Sie, dass die Menge aller (fast) invarianten Ereignisse bzgl. T eine σ-Algebra J(J∗) ist.

Lemma 6.2.3
Sei A ∈ J∗. Dann existiert B ∈ J∗, so dass P(A△B) = 0

Beweis Sei B = lim supn→∞ TnA = ∩∞
n=1∪∞

k=nT
−kA. Es ist zu zeigen, dass B ∈ J , P(A△B) =

0. Es ist klar, dass T−1(B) = lim supn→∞ T−(n+1)A = B und daraus folgt, dass B ∈ J .
Es ist leicht zu sehen, dass A△B ⊂ ∪∞

k=0(T−kA△T−(k+1)A). Da P(T−kA△T−(k+1)A) = 0 für
alle k ≥ 1 wegen A ∈ J∗, folgt, dass P(A△B) = 0.

Definition 6.2.4 1. Die maßerhaltende Abbildung T : Ω → Ω heißt ergodisch, falls für
jedes A ∈ J

P(A) =

{

0
1
.



6 Stationäre Folgen von Zufallsvariablen 91

2. Die stationäre Folge von Zufallsvariablen X = {Xn}n∈N heißt ergodisch, falls die maßer-
haltende Abbildung T : Ω → Ω, die X erzeugt, ergodisch ist.

Lemma 6.2.4
Die maßerhaltende Abbildung T ist ergodisch genau dann, wenn die Wahrscheinlichkeit belie-
biger fast invarianten Mengen

P(A) =

{

0
1

für alle A ∈ J∗.

Beweis „ ⇐ “
Klar, weil beliebige invariante Menge auch fast invariant ist, d.h. J ⊂ J∗

„ ⇒ “
T – ergodisch. Sei A ∈ J∗. Es folgt, dass es B ∈ J existiert, so dass P(A△B) = 0 nach Lemma
6.2.3. T – ergodisch und daraus folgt

P(B) =

{

0
1

und P(A) =

{

0
1
.

Definition 6.2.5
Eine Zufallsvariable Y : Ω → R heiß (fast) invariant bzgl. T : Ω → Ω (maßerhaltende Abbil-
dung), falls Y (ω) = Y (T (ω)) für (fast) alle ω ∈ Ω.

Theorem 6.2.2
Sei T : Ω → R eine maßerhaltende Abbildung. Folgende Aussagen sind äquivalent:

1. T – ergodisch

2. Falls Y invariant bzgl. T ist, dann Y = const f.s.

3. Falls Y fast invarinat bzgl. T ist, dann Y = const f.s.

Beweis 1) ⇒ 2) ⇒ 3) ⇒ 1)
1) ⇒ 2)

T – ergodisch, Y – fast invariant. Es ist zu zeigen, dass Y (ω) = const für fast alle ω ∈ Ω.
Y (T (ω)) = Y (ω) fast sicher. Sei Av = {ω ∈ Ω : Y (ω) ≤ ω}, ω ∈ R. Daraus folgt, dass Av ∈ J∗

für alle v ∈ R und nach dem Lemma 6.2.4

P(Av) =

{

0
1

für alle v.

Sei c = sup {v : P(Av) = 0}. Zeige, dass P(Y = c) = 1.
Av ↑ Ω, v → ∞, Av ↓ ∅, v → −∞ ⇒ |c| < ∞.

P(Y < c) = P

(

∪∞
n=1

{

Y ≤ c− 1

n

})

≤
∞∑

n=1

P

(

Ac− 1
n

)

= 0.

Genauso P(Y > c) = 0 und P(Y = c) = 1.
2) ⇒ 3)

Offensichtlich.
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3) ⇒ 1) Es ist zu zeigen, dass T ergodisch ist, d.h. für alle A ∈ J P(A) =

{

0
1

.

Sei Y = 1A – invariant bzgl. T , folgt daraus, dass 1A = const =

{

0
1

und P(A) =

{

0
1
.

Bemerkung 6.2.4 1. Die Aussage des Theorems 6.2.2 bleibt gültig, wenn man 3) für f.s.
beschränkte Zufallsvariablen Y fordert.

2. Falls Y invariant bzgl. T ist, dann ist Yn = min {Y, n}, n ∈ N, auch invariant bzgl. T .

Beispiel 6.2.3 1. Sei Ω = {ω1, . . . , ωd}, F = 2Ω, P({ωi}) = 1
d
, i = 1, . . . , d. Sei T (ωi) =

ωi+1 mod d, d.h. ωd
T7−→ ω1. T ist offensichtlich ergodisch und jede invariante Zufallsva-

riable ist konstant.

2. Sei Ω = [0, 1), F = B[0,1), P = ν1, T (ω) = (ω + s) mod 1. Zeige, dass T ergodisch ⇐⇒
s /∈ Q.

Beweis „ ⇐ “
Sei s /∈ Q, Y – eine beliebige invariante Zufallsvariable. Sei EY 2 < ∞. Zerlegen wir die
Zufallsvariable Y in eine Furier-Reihe. Die Furier-Reihe von Y ist Y (ω) =

∑∞
n=0 ane

2πinw. Wir
wollen zeigen, dass an = 0, n > 0, und daraus folgt dann, dass Y (ω) = a0 f.s.. Dann ist T
ergodisch nach dem Theorem 6.2.2.

an =< Y (ω), e2πinw >L2= E(Y (ω)e−2πinw) = E(Y (T (ω))e−2πinw)e−2πins = e−2πinsan,

s /∈ Q ⇒ an = 0.
„ ⇒“

Falls s = m
n

∈ Q, dann ist T nicht ergodisch, d.h. existiert A ∈ J , so dass 0 < P (A) < 1.

Sei A = ∪n−1
k=0

{

ω ∈ Ω : 2k
2n ≤ ω < 2k+1

2n

}

und P(A) = 1
2 . A ist invariant, weil T (A) =

(

A+ 2m
2n

)

mod 1 = A.

Definition 6.2.6 1. Die maßerhaltende Abbildung T : Ω → Ω heißt mischend, falls für alle
A1, A2 ∈ F gilt: P(A1 ∩ T−nA2) −−−→

n→∞
P(A1)P(A2), d.h. bei wiederholten Anwendungen

von T auf A2 werden A1 und A2 asymptotisch unabhängig.

2. Sei X = {Xn}n∈N0
eine stationäre Folge von Zufallsvariablen die von Zufallsvariable X0

und einer maßerhaltenden Abbildung T erzeugt wird. X heißt schwach abhängig, falls
Zufallsvariable Xk und Xk+n für n → ∞ asymptotisch unabhängig werden, d.h. für alle
B1, B2 ∈ BR

P(Xk ∈ B1, Xk+n ∈ B2) −−−→
n→∞

P(X0 ∈ B1)P(X0 ∈ B2).

Theorem 6.2.3
Eine stationäre Folge von Zufallsvariablen X = {Xn}n∈N0

, erzeugt durch die maßerhaltende
Abbildung T , ist schwach abhängig im Mittel genau dann, wenn T mischend im Mittel ist.

Aufgabe 6.2.3
Beweisen Sie das Theorem.

Theorem 6.2.4
Sei T eine maßerhaltende Abbildung. Sie ist ergodisch genau dann, wenn sie mischend im Mittel
ist.
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Beweis „ ⇐ “
Es ist zu zeigen, dass wenn T mischend im Mittel ist, folgt daraus, dass T ergodisch ist,

d.h. für alle A ∈ J gilt P(A) =

{

0
1

. A1 ∈ F , A2 = A = J , 1
n

∑n
k=1 P(A1 ∩ T−n(A2)

︸ ︷︷ ︸

=A2

) =

P(A1 ∩ A2) −−−→
n→∞ P(A1)P(A2). P(A1 ∩ A2) = P(A1)P(A2) für A1 = A, P(A) = P2(A) und

P(A) =

{

0
1

„ ⇒ “
Später.

Jetzt geben wir die Motivation die Motivation an für den Begriff „mischende Abbildung“.

Theorem 6.2.5
Sei A ∈ F , P(A) > 0. Die maßerhaltende Abbildung T : Ω → Ω ist ergodisch (d.h. mischend
im Mittel) genau dann, wenn

P
(∪∞

n=0T
−nA

)
= 1.

D.h. die Urbilder T−nA, n ∈ N0, decken fast das ganze Ω ab.

Beweis „ ⇐ “
Sei B = ∪∞

n=0T
−nA. Offensichtlich, T−1B = ∪∞

n=1T
−nA ⊂ B. Da T maßerhaltend ist, d.h.

P(T−1B) = P(B), folgt, dass P(T−1B△B) = 0, B ∈ J∗ (B – fast invariant bzgl. T ) und

P(B) =

{

0
1

. P(B) ≥ P(A) > 0 ⇒ P(B) = 1.

„ ⇒ “
Sei T nicht ergodisch. Es ist zu zeigen, dass P(B) < 1.
Wenn T nicht ergodisch ist, dann existiert A ∈ J , so dass 0 < P(A) < 1. B = ∪∞

n=0T
−nA = A

und P(B) < 1.

Bemerkung 6.2.5
Bisher wurde niemals explizit die Tatsache genutzt, dass die Zufallsvariablen X reellwertig sind.
Deshalb kann man die obigen Betrachtungen ohne Veränderung auf Folgen von Zufallselementen
mit Werten in einem bel. meßbaren Raum M übertragen.

6.2.3 Ergodensatz

Sei X = {Xn}∞
n=0 eine Folge von Zufallsvariablen auf dem Wahrscheinlichkeitsraum (Ω,F ,P).

Falls Xn u.i.v. sind, dann

1

n

n−1∑

k=0

Xk
f.s.−−−→
n→∞ EX0, E|X0| < ∞.

Wir wollen eine ähnliche Aussage über stationäre Folgen beweisen.

Theorem 6.2.6 (Ergodensatz, Birkkoff-Kchintchin):
Sei X = {Xn}n∈N0

eine stationäre Folge von Zufallsvariablen, erzeugt von der Zufallsvariable
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X0 und einer maßerhaltenden Abbildung T : Ω → Ω. Sei J die σ-Algebra der invarianten
Mengen von T , d.h. E|X0| < ∞. Dann

1

n

n−1∑

k=0

Xk
f.s.−−−→
n→∞

E(X0 | J).

Falls X schwach abhängig im Mittel ist (d.h. T – ergodisch), dann E(X0 | J) = E(X0).

Lemma 6.2.5
Seien {Xn}, T wie oben. Sei Sn(ω) =

∑n−1
k=0 X0(T k(ω)), Mk(ω) = max {0, S1(ω), . . . , Sk(ω)}.

Unter der Bedingung des Theorems 6.2.6 gilt

E(X01(Mn > 0)) ≥ 0, n ∈ N.

Beweis Für alle k ≤ n gilt Sk(ω)
︸ ︷︷ ︸

Sk(T (ω))

≤ Mn(ω)
︸ ︷︷ ︸

Mn(T (ω))

. Wir können noch X0 hinzuaddieren und

bekommen
X0(ω) +Mn(T (ω)) ≥ X0(ω) + Sk(T (ω)) = Sk+1(ω).

Für k = 0 gilt X0(ω) ≥ S1(ω)−Mn(T (ω)). Dasselbe gilt für k = 0, . . . , n−1. Daraus folgt, dass
X0(ω) ≥ max {S1(ω), . . . , Sn(ω)}

︸ ︷︷ ︸

=Mn(ω)

−Mn(T (ω)). Da Mn(ω) > 0, dann Mn = max {S1, . . . , Sn}.

Es folgt, dass

E(X01(Mn > 0)) ≥ E((Mn −Mn(T ))1(Mn > 0)) ≥ E(Mn −Mn(Tω)) = 0.

Beweis des Ergordensatzes Die Aussage E(X0 | J) = E(X0) ist trivial, weil für ergodische
T gilt J = {∅,Ω}. O.B.d.A. sei E(X0 | J) = 0, sonst betrachte X0 = E(X | J).

Es ist zu zeigen: limn→∞ Sn

n

f.s.
= 0, Sn =

∑n−1
k=0 Xk. Es genügt zu zeigen, dass

0 ≤ lim inf
n→∞

Sn
n

≤ lim sup
n→∞

Sn
n

≤ 0.

Zunächst zeigen wir, dass S = lim supn→∞
Sn

n
≤ 0. Es reicht zu zeigen, dass P(S > ε

︸ ︷︷ ︸

Aε

) = 0 für

alle ε > 0. Seien X∗
0 = (X0 − ε)1Aε , S∗

k =
∑k−1
j=0 X

∗
0 (T j(ω)), M∗

k = max{0, S∗
1 , . . . , S

∗
k}. Aus

Lemma 6.2.5 folgt E(X∗
0 1(M∗

n > 0)) ≥ 0 für alle n ≥ 1. Aber,

{M∗
n > 0} =

{

max
1≤k≤n

S∗
k > 0

}

↑n→∞

{

sup
k≥1

S∗
k > 0

}

=

{

sup
k≥1

S∗
k

k
> 0

}

=

{

sup
k≥1

Sk
k
> ε

}

∩Aε = Aε,

weil
{

supk≥1
Sk

k
> ε

}

⊃
{

S > ε
}

= Aε. Nach dem Lebesgue-Satz: 0 ≤ E(X∗
0 1(M∗

n > 0)) −−−→
n→∞

E(X∗
0 1Aε), weil E|X∗

0 | ≤ E|X0| + ε. Deshalb 0 ≤ E(X∗
0 1Aε) = E((X0 − ε)1Aε) = E(X01Aε) −

εP(Aε) = E(E(X01Aε | J)) − εP(Aε) = E(1Aε E(X0 | J)
︸ ︷︷ ︸

=0

) − εP(Aε) = −εP(Aε) und daraus folgt

P(Aε) ≤ 0 und P(Aε) = 0 für alle ε > 0.
Um 0 ≤ lim infn→∞ Sn

n
= S zu zeigen genügt es −X0 stattX0 zu betrachten, denn lim supn→∞(−Sn

n
) =

lim infn→∞(Sn

n
). Da P(−S ≤ 0) = 1 gilt P(S ≥ 0) = 1.
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Bemerkung 6.2.6
Die Besonderheit des Ergordensatzes 6.2.6 liegt, im Vergleich zu dem üblichen Gesetz der großen

Zahlen, in der Tatsache, dass der Grenzwert limn→∞ 1
n

∑n
k=1Xk

f.s.−→ E(X0 | J) zufällig ist.

Beispiel 6.2.4
Betrachten wir den Wahrscheinlichkeitsraum aus dem Beispiel 6.2.3 a). Ω = {ω1, . . . , ωd},
d = 2l ∈ N. T : Ω → Ω sei definiert durch







T (ωi) = ωi+2 , i = 1, . . . , d− 2,
T (ωd−1) = ω1 ,
T (ωd) = ω2 .

Seien A1 = {ω1, ω3, . . . , ω2l−1}, A2 = {ω2, ω4, . . . , ω2l}. Da (Ω,F ,P) ein Laplacescher Wahr-
scheinlichkeitsraum (P({ωi}) = 1

d
, für alle i) folgt, dass P(Ai) = 1

2 , i = 1, 2. Andererseits,
A1, A2 ∈ J bzgl. T und deswegen ist T nicht ergodisch. Für eine beliebige Zufallsvariable
X0 : Ω → R gilt

1

n

n−1∑

k=0

(Tn(ω)) −−−→
n→∞

{
2
d

∑l−1
j=0X0(ω2j+1), mit Wahrscheinlichkeit 1

2 , falls ω ∈ A1,
2
d

∑l
j=1X0(ω2j) , mit Wahrscheinlichkeit 1

2 , falls ω ∈ A2.

Beweis des Theorems 6.2.4 Es ist zu zeigen: Falls T : Ω → Ω ergodisch, dann ist T mischend
im Mittel, d.h. für alle A1, A2 ∈ F

1

n

n−1∑

k=0

P(A1 ∩ T−kA2) −−−→
n→∞

P(A1)P(A2).

Sei Yn = 1
n

∑n−1
k=0 1(T−kA2)

Thoerem 6.2.6−−−−−−−−−→
n→∞ P(A2), weil T ergodisch ist, somit auch die Folge

{

1(T−kA2)
}

k∈N
. Nach dem Satz von Lebesgue aus 1(A1)Yn −−−→

n→∞ 1(A1)P(A2) folgt

E(1(A1)Yn) =
1

n

n−1∑

k=0

P(A1 ∩ T−kA2) −−−→
n→∞

P(A1)P(A2).

Lemma 6.2.6
Falls {Xn}n∈N eine gleichgradig integrierbare Folge von Zufallsvariablen ist und pn,i ≥ 0, so dass
∑n
i=1 pn,i = 1 für alle n ∈ N, dann ist auch die Folge von Zufallsvariablen Yn =

∑n
i=1 pn,i |Xi|,

n ∈ N, gleichgradig integrierbar.

Ohne Beweis

Folgerung 6.2.2
Unter den Voraussetzungen des Theorems 6.2.6 gilt

1

n

n−1∑

k=0

Xk
L2

−−−→
n→∞

E(X0 | J)

bzw.
1

n

n−1∑

k=0

Xk
L2

−−−→
n→∞ E(X0)

im ergodischen Fall.
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Beweis Falls {Xn}n∈N0 stationär, dann gilt supn E(|Xn|1(|Xn| > ε)) = E(|X0|1(|X0| > ε)) −−−→
ε→0

0, weil E|X0| < ∞. Sei Sn = 1
n

∑n−1
k=0 Xk =

∑n
i=1 pn,iXi−1, pn,i = 1

n
, S̃n = 1

n

∑n−1
k=0 Xk =

∑n
i=1 pn,i|Xi−1|. Aus dem Lemma 6.2.6 ist auch

{

S̃n
}

n∈Z
gleichgradig integrierbar und nach

dem Lemma 5.3.2 aus Sk
f.s.−−−→
k→∞

0 folgt E|Sn| ≤ 1
n

∑n−1
k=0 E|Xk| −−−→

n→∞
0.

6.3 Stationarität im weiteren Sinne

Sei {Xn}n∈Z eine Folge von Zufallsvariablen, die stationär im weiteren Sinne ist: E|Xn|2 < ∞,
n ∈ N. E|Xn| = const, n ∈ N, cov(Xn, Xm) = C(n−m), n,m ∈ Z.

6.3.1 Korrelationstheorie

Theorem 6.3.1 (Herglotz):
Sei C : Z → R eine positiv semi-definite Funktion. Dann existiert ein endliches Maß µ auf
(−π, π), so dass

C(n) =
∫ π

−π
einxµ(dx), n ∈ Z.

µ heißt Spektralmaß von C.

Bemerkung 6.3.1
Da die Kovarianzfunktion einer stationären Folge positiv semi-definit ist, gilt die obige Darstel-
lung für eine beliebige Kovarianzfunktion C.

Definition 6.3.1
Eine Familie {Qλ, λ ∈ Λ} von Wahrscheinlichkeitsmaßen heißt schwach relativ kompakt, falls
eine beliebige Folge von Maßen {Qλn}n∈N eine Teilfolge {Qλnk

}n∈N
besitzt, die schwach kon-

vergiert.

Definition 6.3.2
Eine Familie von Wahrscheinlichkeitsmaßen Q = {Qλ, λ ∈ Λ} auf (S,B), B – Borelsche σ-
Algebra auf einem metrischen Raum S heißt dicht, falls für alle ε > 0 ein Kompaktum existiert,
so dass Kε ∈ B und Qλ(Kε) > 1 − ε für alle λ ∈ Λ.

Theorem 6.3.2 (Prokhorov):
Falls die Familie von Wahrscheinlichkeitsmaßen Q = {Qλ, λ ∈ Λ} auf dem metrischen messba-
ren Raum (S,B) dicht ist, dann ist sie schwach relativ kompakt. Falls S ein Banachraum ist,
dann ist jede schwach relativ kompakte Familie Q = {Qλ, λ ∈ Λ} von Maßen auch dicht.

Ohne Beweis

Der Satz von Prokhorov wird verwendet um die schwache Konvergenz einer Folge von Wahr-
scheinlichkeitsmaßen zu beweisen, indem man unter anderem ihre Dichtheit prüft. Insbesonde-
re, falls S kompakt ist, ist jede Familie von Wahrscheinlichkeitsmaßen auf (S,B) dicht, denn
Kε = S für alle ε > 0.

Beweis des Theorems 6.3.2 „ ⇐ “
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Falls C(n) =
∫ π

−π e
inxµ(dx), n ∈ Z, dann für alle n ∈ N, für alle z1, . . . , zn ∈ C und t1, . . . , tn ∈ Z

n∑

i,j=1

zj z̄jC(ti − tj) =
∫ π

−π

∣
∣
∣
∣
∣

n∑

i=1

zie
izix

∣
∣
∣
∣
∣

2

µ(dx) ≥ 0.

Daraus folgt, dass C positiv semi-definit ist.
„ ⇒ “

Für alle N ≥ 1, x ∈ [−π, π], definiere die Funktion gN (x) = 1
2πN

∑N
k,j=1C(k − j)e−ikxeijx ≥ 0,

die stetig in x ist, weil C positiv semi-definit ist. Es gilt

gN (x) =
1

2π

∑

|n|<N

(

1 − |n|
N

)

C(n)e−inx,

weil es N − |n| Paare (k, j) ∈ {1, . . . , N}2 gibt, so dass k − j = n. Definiere Maß µN auf
([−π, π],B[−π,π]) durch µN (B) =

∫
gN (x)dx, B ∈ B([−π, π]).

∫ π

−π
einxQN (dx) =

∫ π

−π
einxgN (x)dx =

{ (

1 − |n|
N

)

C(n), |n| < N,

0, sonst,

weil
{
einx

}

n∈Z
ein orthogonales System in L2[−π, π] ist. Für n = 0 gilt QN ([−π, π]) = C(0) <

∞, deshalb ist
{
QN

C(0)

}

n∈N
eine Familie von Wahrscheinlichkeitsmaßen, die dicht ist. Nach dem

Theorem 6.3.2 existiert eine Teilfolge {Nk}k∈N, so dass QN
ω−−−→

k→∞
µ. µ – endliches Maß auf

[−π, π] und daraus folgt

lim
k→∞

∫ π

−π
einxgN (x)dx = lim

k→∞

(

1 − |n|
Nk

)

C(n) = C(n), für alle n ∈ Z.

Sei X = {Xn}n∈Z eine stationäre im weiten Sinne Folge von Zufallsvariablen. Dann gilt
folgende Spektraldarstellung:

Xn
d
=
∫ π

−π
einxZ(dx), n ∈ Z,

wobei Z ein orthogonales Zufallsmaß auf ([−π, π],B([−π, π])) ist. Daher soll sowohl Z als auch
I(f) =

∫ π
−π f(x)Z(dx) für deterministische Funktionen f : [−π, π] → C eingeführt werden.

6.3.2 Orthogonale Zufallsmaße

Konstruktionsschema von Z bzw. I(·):

1. Z wird auf einem Simering K (der Teilmengen von Λ) definiert.

2. Z wird erweitert auf die Algebra A, die von K erzeugt wird.

3. Definiere das Integral I bzgl. Z für einfache Funktionen auf σ(A), wenn das Maß µ(Λ) <
∞, µ – gegebenes Maß.
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4. Definiere I als limn→∞ I(fn) für beliebige meßbare Funktionen f , f = limn→∞ fn, fn
einfach, µ(Λ) < ∞.

5. Definiere I auf einem σ-endlichem Raum Λ = ∪nΛn, µ(Λn) < ∞, Λn ∩ Λm = ∅,
n 6= m, als I(f) =

∑

n I(f | Λn), In – Integral bzgl. Z auf Λn. Dadurch sind Z auf
{A ∈ σ(A) : µ(A) < ∞} erweitert als Z(A) = I(1(A)).

Schritt 1
Sei K ein Semiring der Teilmengen von Λ (Λ – beliebiger Raum), d.h. für alle A,B ∈ K

gilt A ∩ B ∈ K; falls A ⊂ B, dann existieren A1, . . . , An ∈ K, Ai ∩ Aj = ∅, i 6= j, so dass
B = A ∪ ∪ni=1Ai.

Definition 6.3.3 1. Ein komplexwertiges signiertes Zufallsmaß Z = {Z(B), B ∈ K}, ge-
geben auf dem Wahrscheinlichkeitsraum (Ω,F ,P), heißt orthogonal, wenn

a) alle Z(B) ∈ L2(Ω,F ,P), B ∈ K,

b) A,B ∈ K, A ∩B = ∅ ⇒ 〈Z(A), Z(B)〉L2(Ω,F ,P) = E(Z(A), Z(B)) = 0,

c) als Zufallsmaß gilt die σ-Additivität von Z: Falls B,B1, . . . , Bn, . . . ∈ K, B = ∪nBn,

Bi ∩ Bj = ∅, i 6= j, Z(B)
f.s.
=

∑

n Z(Bn), wobei die Konvergenz dieser Reihe im
L2(Ω,F ,P)-Sinne zu verstehen ist.

2. Die Größe µ = {µ(B), B ∈ K} definiert durch µ(B) = E|Z(B)|2 = 〈Z(B), Z(B)〉L2(Ω,F ,P),
B ∈ K, heißt Strukturmaß von Z. Es ist leicht zu sehen, dass µ tatsächlich ein Maß auf K
ist. Falls Λ ∈ K, dann ist µ endlich, ansonsten σ-endlich, Λ = ∪nΛn, Λn ∈ K, Λn∩Λm = ∅,
so dass µ(Λn) < ∞.

3. Das orthogonale Zufallsmaß Z heißt zentriert, falls EZ(B) = 0, B ∈ K.

Beispiel 6.3.1
Sei Λ = [0,∞), K = {[a, b), 0 ≤ a < b < ∞}, Z([a, b)) = W (b) − W (a), 0 ≤ a < b < ∞,
wobei W = {W (t), t ≥ 0} der Wiener-Prozess ist. Z ist ein orthogonales Zufallsmaß auf
K, weil W unabhängige Zuwächse hat. Analog kann diese Definition auf einem beliebigen
quadratisch integrierbaren stochastischen Prozess X mit unabhängigen Zuwächsen an Stelle
von W übertragen werden.

Schritt 2

Theorem 6.3.3
Sei µ ein σ-endliches Maß auf der Algebra A, die von K erzeugt wird (nach dem Theorem
von Caratheodon wird µ eindeutig auf σ(A) fortgesetzt). Dann existiert ein Wahrscheinlich-
keitsraum (Ω,F ,P) und ein zentriertes orthogonales Zufallsmaß Z auf (Ω,F ,P), definiert auf
{B ∈ A : µ(B) < ∞}, mit Strukturmaß (oder Kontrollmaß) µ.

Ohne Beweis
Zur Definition von Z auf A: für B ∈ A, B = ∪ni=1Bi, Bi ∈ K, Bi ∩ Bj = ∅, i 6= j, wird

Z(B) =
∑n
i=1 Z(Bi) gesetzt.

6.3.3 Integral bezüglich eines orthogonalen Zufallsmaßes

Schritt 3
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Sei f : Λ → C eine einfache Funktion, d.h. f(x) =
∑n
i=1 ci1(x ∈ Bi), für ci ∈ C und Bi ∈ E ,

i = 1, . . . , n, so dass ∪ni=1Bi = Λ, Bi ∩ Bj = ∅, i 6= j, und (Λ, E , µ) ein meßbarer Raum mit
µ(Λ) < ∞.

Definition 6.3.4
Das Integral von f bezüglich eines orthogonalen Zufallsmaßes Z definiert auf (Ω,F ,P) ist
gegeben durch I(f) :=

∫

Λ f(x)Z(dx) =
∑n
i=1 ciZ(Bi).

Aufgabe 6.3.1
Zeigen Sie, dass die Definition korrekt ist, d.h. I(f) hängt nicht von der Darstellung von f als
einfache Funktion ab.

Lemma 6.3.1 (Eigenschaften von I):
Sei I(·) das Integral bzgl. des orthogonalen Zufallsmaßes, definiert auf einer einfachen Funktion
Λ → C wie oben. Es gelten folgende Eigenschaften:

1. Isometrie: 〈I(t), I(g)〉L2(Ω) = 〈f, g〉L2(Ω), wobei f und g einfache Funktionen Λ → C sind,

〈f, g〉L2(Ω) =
∫

Λ f(x)g(x)Λ(dx).

2. Linearität: Für jede einfache Funktion f, g : Λ → C gilt I(f + g)
f.s.
= I(f) + I(g).

Aufgabe 6.3.2
Beweisen Sie es.

Schritt 4
Sei nun f ∈ L2(Ω, E , µ). Dann existiert eine Folge von einfachen Funktionen fn : Λ → C, so

dass fn
L2(Λ)−−−→
n→∞

f (einfache Funktion ist dicht im L2(Λ)). Dann definiere I(f) = limn→∞ I(fn),

wobei dieser Grenzwert in L2(Ω,F ,P)-Sinne zu verstehen ist. Man kann zeigen, dass die Defi-
nition von I(f) unabhängig von der Wahl der Folge {fn} ist.

Lemma 6.3.2
Die Aussagen des Lemmas 6.3.1 gelten im allgemeinen Fall.

Beweis Benutze die Stetigkeit 〈·, ·〉.

Bemerkung 6.3.2
Falls Z zentriert ist, dann gilt EI(f) = 0 für beliebige Funktionen f ∈ L2(Λ, E , µ).

Schritt 5
Sei nun Λ σ-endlich, d.h. Λ = ∪nΛn, µ(Λn) < ∞, Λn ∩ Λm = ∅, n 6= m. Dann für alle

f ∈ L2(Λ, E , µ) gilt f =
∑

n f |Λn
. Auf L2(Λn, E ∩ Λn, µ) wird das Integral In bzgl. Z wie im 1)-

4) definiert. Dann setze I(f) :=
∑

n In(f |Λn
).

Theorem 6.3.4
Die Abbildung g : L2(Λ, E , µ) → L2(Ω,F ,P) ist eine Isometrie. Insbesondere kann dadurch das
Zufallsmaß Z auf {B ∈ ε : µ(B) < E} fortgesetzt werden als Z(B) := I(1B), B ∈ E : µ(B) < ∞.

6.3.4 Spektraldarstellung

Sei X = {X(t), t ∈ T} ein beliebiger komplexwertiger stochastischer Prozess auf (Ω,F ,P), T
– eine beliebige Indexmenge, E|X(t)|2 < ∞, t ∈ T , EX(t) = 0, t ∈ T (o.B.d.A., sonst betrachte
X̃(t) = X(t) − EX(t)), t ∈ T , mit C(s, t) = E(X(s), X(t)), s, t ∈ T ).
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Theorem 6.3.5 (Karhunen):
X hat die Spektraldarstellung X(t) =

∫

Λ f(t, x)Z(dx), t ∈ T (d.h., es existiert ein zentriertes
orthogonales Zufallsmaß auf {B ∈ E : µ(B) < ∞}, wobei L2(Λ, E , µ) ein wie oben definierter
Raum ist), genau dann, wenn es ein System der Funktionen f(t, ·) ∈ L2(Λ, E , µ), t ∈ T , existiert,
so dass C(s, t) =

∫

Λ f(s, x)f(t, x)µ(dx), s, t ∈ T , und dieses System F vollständig in L2(Λ, E , µ)
ist (d.h. 〈f(t, ·), ψ〉L2(Ω) = 0, ψ ∈ L2(Ω, E , µ), für alle t ∈ T und ψ ≡ 0, µ fast überall).

Ohne Beweis

Theorem 6.3.6
Sei {Xn, n ∈ Z} eine zentrierte komplexwertige stationäre im weiten Sinne Folge von Zufallsva-
riablen auf (Ω,F ,P). Dann existiert ein orthogonales zentriertes Zufallsmaß auf ([−π, π],B([−π, π]))

(definiert auf (Ω,F ,P)), so dass Xn
f.s.
=
∫ π

−π e
inxZ(dx), n ∈ Z.

Beweis Sei F = {einx, x ∈ [−π, π], n ∈ Z}. Dieses System ist vollständig auf L2([−π, π]) (vgl.
die Theorie der Fourier-Reihen). Aus dem Theorem von Herglotz folgt, dass

C(n,m) = E(XnXm) =
∫ π

−π
einxeimxµ(dx),

wobei µ das Spektralmaß von X ist, also ein endliches Maß auf ([−π, π],B([−π, π])). Nach dem

Theorem 6.3.5 existiert ein orthogonales Zufallsmaß auf (Ω,F ,P), so dass Xn
f.s.
=
∫ π

−π e
inxZ(dx),

n ∈ Z.

Theorem 6.3.7 (Ergodensatz für stationäre (im weiten Sinne) Folgen von Zufalls-
variablen):
Unter den Voraussetzungen des Theorems 6.3.6 gilt

1

n

n−1∑

k=0

Xk
L2(Ω)−−−−→ Z({0}).

Insbesondere wennX nicht zentriert ist, d.h. EXn = a, n ∈ Z, dann konvergiert 1
n

∑n−1
k=0 Xk

L2(Ω)−−−−→
a dann, wenn E|Z({0})|2

︸ ︷︷ ︸

µ({0})

= 0, also Z und somit µ hat kein Atom im Null.

Beweis Sn = 1
n

∑n−1
k=0 Xk =

∫ 1

n

n−1∑

k=0

eikx

︸ ︷︷ ︸

ψn(x)

Z(dx). ψn(x) =

{
1
n

1−einx

1−eix , x 6= 0
1, x = 0

, für alle n ∈

N. Sn − Z({0}) =
∫ π

−π (ψn(x) − 1(x = 0))
︸ ︷︷ ︸

ϕn(x)

Z(dx) =
∫ π

−π ϕn(x)Z(dx). ‖Sn − Z({0})‖2
L2(Ω) =

‖ϕn(x)‖2
L2([−π,π],µ) =

∫ π
−π |ϕn(x)|2µ(dx) −−−→

n→∞ 0 nach dem Theorem von Lebesgue, weil |ϕn(x)| ≤
2

n|1−eix| −−−→
n→∞

0 für alle x ∈ [−π, π].

6.4 Ergänzende Aufgaben

Aufgabe 6.4.1
Sei Z1, Z2, . . . eine Folge von Zufallsvariablen, so dass die Reihe

∑∞
i=1 Zi fast sicher konvergiert.
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Sei a1, a2, . . . eine monoton wachsende Folge positiver (deterministischer) Zahlen mit an → ∞,
n → ∞. Zeige, dass

1

an

n∑

k=1

akZk
f.s.→ 0, n → ∞.

Aufgabe 6.4.2
Sei X eine nicht-negative Zufallsvariable über einem Wahrscheinlichkeitsraum (Ω,F ,P) und
T : Ω → Ω eine maßerhaltende Abbildung. Zeige, dass

∞∑

k=0

X(T k(ω)) = ∞ f.s.

für fast alle ω ∈ Ω mit X(w) > 0.

Aufgabe 6.4.3
Sei X eine Zufallsvariable über einem Wahrscheinlichkeitsraum (Ω,F ,P) und T : Ω → Ω eine
maßerhaltende Abbildung. Zeige, dass EX = E(X ◦ T ), d. h.

∫

Ω
X(T (ω))P(dω) =

∫

Ω
X(ω)P(dω).

(Hinweis: algebraische Induktion)

Aufgabe 6.4.4
Sei (Ω,F ,P) ein Wahrscheinlichkeitsraum, wobei Ω = [0, 1), F = B([0, 1)) und P das Lebes-
guemaß ist. Sei λ ∈ (0, 1).

(a) Zeige, dass T (x) = (x+ λ) mod 1 eine maßerhaltende Abbildung ist, wobei
a mod m = a− ⌊

a
b

⌋
m für a ∈ R und b ∈ Z und ⌊⌋ die Gaußklammer bezeichnet.

(b) Zeige, dass T (x) = λx und T (x) = x2 keine maßerhaltende Abbildungen sind.
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❱♦r✇♦rt

❉✐❡s❡s ❙❦r✐♣t ❡♥tst❛♥❞ ❛✉s ❞❡♠ ❩②❦❧✉s ❞❡r ❱♦r❧❡s✉♥❣❡♥ ü❜❡r ❙t❛t✐st✐❦✱ ❞✐❡ ✐❝❤ ✐♥ ❞❡♥
❏❛❤r❡♥ ✷✵✵✻✲✷✵✶✵ ❛♥ ❞❡r ❯♥✐✈❡rs✐tät ❯❧♠ ❣❡❤❛❧t❡♥ ❤❛❜❡✳ ❉❛❜❡✐ ❤❛♥❞❡❧t ❡s s✐❝❤ ✉♠ ❞✐❡
❛✉❢❜❛✉❡♥❞❡ ❱♦r❧❡s✉♥❣ ❙t♦❝❤❛st✐❦ ■■■✱ ❞✐❡ ❛✉❢ ❞❡r ❱♦r❧❡s✉♥❣ ❙t♦❝❤❛st✐❦ ■ ❜❛s✐❡rt✳
■❝❤ ♠ö❝❤t❡ ❣❡r♥❡ ♠❡✐♥❡♥ ❑♦❧❧❡❣❡♥ ❛✉s ❞❡♠ ■♥st✐t✉t ❢ür ❙t♦❝❤❛st✐❦✱ ❍❡rr♥ Pr♦❢✳ ❱♦❧❦❡r

❙❝❤♠✐❞t ✉♥❞ ❍❡rr♥ ❉✐♣❧✳✲▼❛t❤✳ ▼❛❧t❡ ❙♣✐❡ss✱ ❢ür ✐❤r❡ ❯♥t❡rstüt③✉♥❣ ✉♥❞ ❛♥r❡❣❡♥❞❡♥
❉✐s❦✉ss✐♦♥❡♥ ✇ä❤r❡♥❞ ❞❡r ❊♥tst❡❤✉♥❣ ❞❡s ❙❦r✐♣t❡s ❞❛♥❦❡♥✳ ❍❡rr ▼❛r❝♦ ❇❛✉r ❤❛t ❡✐♥❡
❤❡r✈♦rr❛❣❡♥❞❡ ❆r❜❡✐t ❜❡✐♠ ❚✐♣♣❡♥ ❞❡s ❙❦r✐♣t❡s ✉♥❞ ❜❡✐ ❞❡r ❊rst❡❧❧✉♥❣ ③❛❤❧r❡✐❝❤❡r ❆❜✲
❜✐❧❞✉♥❣❡♥✱ ❞✐❡ ❞❡♥ ❚❡①t ❜❡❣❧❡✐t❡♥✱ ❣❡❧❡✐st❡t✳ ❉❛❢ür ❣✐❧t ✐❤♠ ♠❡✐♥ ❤❡r③❧✐❝❤❡r ❉❛♥❦✳

❯❧♠✱ ❞❡♥ ✷✵✳✶✵✳✷✵✶✶
❊✈❣❡♥② ❙♣♦❞❛r❡✈
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✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

■♥ ❞❡r ❱♦r❧❡s✉♥❣ ❙t♦❝❤❛st✐❦ ■ ❤❛❜❡♥ ✇✐r s❝❤♦♥ ❇❡✐s♣✐❡❧❡ ✈♦♥ st❛t✐st✐s❝❤❡♥ ❚❡sts ❦❡♥✲
♥❡♥❣❡❧❡r♥t✱ ✇✐❡ ❡t✇❛ ❞❡♥ ❑♦❧♠♦❣♦r♦✇✲❙♠✐r♥♦✇✲❚❡st ✭✈❡r❣❧❡✐❝❤❡ ❇❡♠❡r❦✉♥❣ ✸✳✸✳✸✽✱ ✸✮✱
❙❦r✐♣t ❙t♦❝❤❛st✐❦ ■✮✳ ❏❡t③t s♦❧❧❡♥ st❛t✐st✐s❝❤❡ ❙✐❣♥✐✜❦❛♥③t❡sts ❢♦r♠❛❧ ❡✐♥❣❡❢ü❤rt ✉♥❞ ✐❤r❡
❊✐❣❡♥s❝❤❛❢t❡♥ ✉♥t❡rs✉❝❤t ✇❡r❞❡♥✳

✶✳✶ ❆❧❧❣❡♠❡✐♥❡ P❤✐❧♦s♦♣❤✐❡ ❞❡s ❚❡st❡♥s

❊s s❡✐ ❡✐♥❡ ❩✉❢❛❧❧sst✐❝❤♣r♦❜❡ (X1, . . . , Xn) ✈♦♥ ✉♥❛❜❤ä♥❣✐❣❡♥✱ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t❡♥ ❩✉✲
❢❛❧❧s✈❛r✐❛❜❧❡♥ Xi ❣❡❣❡❜❡♥✱ ♠✐t ❱❡rt❡✐❧✉♥❣s❢✉♥❦t✐♦♥ F ∈ Λ✱ ✇♦❜❡✐ Λ ❡✐♥❡ ❑❧❛ss❡ ✈♦♥ ❱❡r✲
t❡✐❧✉♥❣s❢✉♥❦t✐♦♥❡♥ ✐st✳ ❊s s❡✐ (x1, . . . , xn) ❡✐♥❡ ❦♦♥❦r❡t❡ ❙t✐❝❤♣r♦❜❡✱ ❞✐❡ ❛❧s ❘❡❛❧✐s✐❡r✉♥❣
✈♦♥ (X1, . . . , Xn) ✐♥t❡r♣r❡t✐❡rt ✇✐r❞✳ ■♥ ❞❡r ❚❤❡♦r✐❡ ❞❡s st❛t✐st✐s❝❤❡♥ ❚❡st❡♥s ✇❡r❞❡♥ ❍②✲
♣♦t❤❡s❡♥ ü❜❡r ❞✐❡ ❇❡s❝❤❛✛❡♥❤❡✐t ❞❡r ✭✉♥❜❡❦❛♥♥t❡♥✮ ❱❡rt❡✐❧✉♥❣s❢✉♥❦t✐♦♥ F ❣❡st❡❧❧t ✉♥❞
❣❡♣rü❢t✳ ❉❛❜❡✐ ✉♥t❡rs❝❤❡✐❞❡t ♠❛♥

❙t❛t✐st✐s❝❤❡ ❚❡sts

tt **

♣❛r❛♠❡tr✐s❝❤❡ ❚❡sts ♥✐❝❤t♣❛r❛♠❡tr✐s❝❤❡ ❚❡sts

❢❛❧❧s Λ = {Fθ, θ ∈ Θ}✱
✇♦❜❡✐ Θ ⊆ R

m ✐st✳
s♦♥st✳

❇❡✐ ♣❛r❛♠❡tr✐s❝❤❡♥ ❚❡sts ♣rü❢t ♠❛♥✱ ♦❜ ❞❡r P❛r❛♠❡t❡r θ ❜❡st✐♠♠t❡ ❲❡rt❡ ❛♥♥✐♠♠t
✭③✉♠ ❇❡✐s♣✐❡❧ θ = 0✮✳ ❇❡❦❛♥♥t❡ ❇❡✐s♣✐❡❧❡ ✈♦♥ ♥✐❝❤t♣❛r❛♠❡tr✐s❝❤❡♥ ❚❡sts s✐♥❞ ❆♥♣❛s✲
s✉♥❣st❡sts✱ ❜❡✐ ❞❡♥❡♥ ♠❛♥ ♣rü❢t✱ ♦❜ ❞✐❡ ❱❡rt❡✐❧✉♥❣s❢✉♥❦t✐♦♥ F ❣❧❡✐❝❤ ❡✐♥❡r ✈♦r❣❡❣❡❜❡♥❡♥
❋✉♥❦t✐♦♥ F0 ✐st✳
❋♦r♠❛❧✐s✐❡r❡♥ ✇✐r ③✉♥ä❝❤st ❞❡♥ ❇❡❣r✐✛ ❍②♣♦t❤❡s❡✳ ❉✐❡ ▼❡♥❣❡ Λ ✈♦♥ ③✉❧äss✐❣❡♥ ❱❡rt❡✐✲

❧✉♥❣s❢✉♥❦t✐♦♥❡♥ F ✇✐r❞ ✐♥ ③✇❡✐ ❞✐s❥✉♥❦t❡ ❚❡✐❧♠❡♥❣❡♥ Λ0 ✉♥❞ Λ1 ③❡r❧❡❣t✱ Λ0 ∪ Λ1 = Λ✳
❉✐❡ ❆✉ss❛❣❡

✒▼❛♥ t❡st❡t ❞✐❡ ❍❛✉♣t❤②♣♦t❤❡s❡ H0 : F ∈ Λ0 ❣❡❣❡♥ ❞✐❡ ❆❧t❡r♥❛t✐✈❡ H1 : F ∈ Λ1,✏

❜❡❞❡✉t❡t✱ ❞❛ÿ ♠❛♥ ❛♥ ❍❛♥❞ ❞❡r ❦♦♥❦r❡t❡♥ ❙t✐❝❤♣r♦❜❡ (x1, . . . , xn) ✈❡rs✉❝❤t✱ ❡✐♥❡ ❊♥t✲
s❝❤❡✐❞✉♥❣ ③✉ ❢ä❧❧❡♥✱ ♦❜ ❞✐❡ ❱❡rt❡✐❧✉♥❣s❢✉♥❦t✐♦♥ ❞❡r ❩✉❢❛❧❧s✈❛r✐❛❜❧❡ Xi ③✉ Λ0 ♦❞❡r ③✉ Λ1

❣❡❤ört✳ ❉✐❡s ♣❛ss✐❡rt ❛✉❢ ●r✉♥❞ ❡✐♥❡r st❛t✐st✐s❝❤❡♥ ❊♥ts❝❤❡✐❞✉♥❣sr❡❣❡❧

ϕ : Rn → [0, 1],

✸



✹ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

❞✐❡ ❡✐♥❡ ❙t❛t✐st✐❦ ♠✐t ❢♦❧❣❡♥❞❡r ■♥t❡r♣r❡t❛t✐♦♥ ✐st✿
❉❡r ❙t✐❝❤♣r♦❜❡♥r❛✉♠ R

n ✇✐r❞ ✐♥ ❞r❡✐ ❞✐s❥✉♥❦t❡ ❇❡r❡✐❝❤❡ K0,K01 ✉♥❞ K1 ✉♥t❡rt❡✐❧t✱
s♦❞❛ÿ R

n = K0 ∪K01 ∪K1✱ ✇♦❜❡✐

K0 = ϕ−1({0}) = {x ∈ R
n : ϕ(x) = 0} ,

K1 = ϕ−1({1}) = {x ∈ R
n : ϕ(x) = 1} ,

K01 = ϕ−1((0, 1)) = {x ∈ R
n : 0 < ϕ(x) < 1} .

❉❡♠❡♥ts♣r❡❝❤❡♥❞ ✇✐r❞ H0 : F ∈ Λ0

• ✈❡r✇♦r❢❡♥✱ ❢❛❧❧s ϕ(x) = 1✱ ❛❧s♦ x ∈ K1✱

• ♥✐❝❤t ✈❡r✇♦r❢❡♥✱ ❢❛❧❧s ϕ(x) = 0✱ ❛❧s♦ x ∈ K0❀

• ❢❛❧❧s ϕ(x) ∈ (0, 1)✱ ❛❧s♦ x ∈ K01✱ ✇✐r❞ ϕ(x) ❛❧s ❇❡r♥♦✉❧❧✐✲❲❛❤rs❝❤❡✐♥❧✐❝❤❦❡✐t ✐♥✲
t❡r♣r❡t✐❡rt✱ ✉♥❞ ❡s ✇✐r❞ ❡✐♥❡ ❩✉❢❛❧❧s✈❛r✐❛❜❧❡ Y ∼ ❇❡r♥♦✉❧❧✐(ϕ(x)) ❣❡♥❡r✐❡rt✱ ❢ür ❞✐❡
❣✐❧t✿

Y =

{
1 =⇒ H0 ✇✐r❞ ✈❡r✇♦r❢❡♥
0 =⇒ H0 ✇✐r❞ ♥✐❝❤t ✈❡r✇♦r❢❡♥

❋❛❧❧s K01 6= ∅✱ ✇✐r❞ ❡✐♥❡ s♦❧❝❤❡ ❊♥ts❝❤❡✐❞✉♥❣sr❡❣❡❧ r❛♥❞♦♠✐s✐❡rt ❣❡♥❛♥♥t✳ ❇❡✐ K01 = ∅✱
❛❧s♦ R

n = K0 ∪K1 s♣r✐❝❤t ♠❛♥ ❞❛❣❡❣❡♥ ✈♦♥ ♥✐❝❤t✲r❛♥❞♦♠✐s✐❡rt❡♥ ❚❡sts✳ ❉❛❜❡✐ ❤❡✐ÿt K0

❜③✇✳ K1 ❆♥♥❛❤♠❡❜❡r❡✐❝❤ ❜③✇✳ ❆❜❧❡❤♥✉♥❣s❜❡r❡✐❝❤ ✭❦r✐t✐s❝❤❡r ❇❡r❡✐❝❤✮ ✈♦♥ H0✳ K01 ❤❡✐ÿt
❘❛♥❞♦♠✐s✐❡r✉♥❣s❜❡r❡✐❝❤✳

❇❡♠❡r❦✉♥❣ ✶✳✶✳✶✳ ✶✳ ▼❛♥ s❛❣t ❛❜s✐❝❤t❧✐❝❤ ✒H0 ✇✐r❞ ♥✐❝❤t ✈❡r✇♦r❢❡♥✏✱ st❛tt ✒H0

✇✐r❞ ❛❦③❡♣t✐❡rt✏✱ ✇❡✐❧ ❞✐❡ s❝❤❧✐❡ÿ❡♥❞❡ ❙t❛t✐st✐❦ ❣❡♥❡r❡❧❧ ❦❡✐♥❡ ♣♦s✐t✐✈❡♥✱ s♦♥❞❡r♥ ♥✉r
♥❡❣❛t✐✈❡ ❊♥ts❝❤❡✐❞✉♥❣❡♥ tr❡✛❡♥ ❦❛♥♥✳ ❉✐❡s ✐st ❣❡♥❡r❡❧❧ ❡✐♥ ♣❤✐❧♦s♦♣❤✐s❝❤❡s Pr♦✲
❜❧❡♠ ❞❡r ❋❛❧s✐✜③✐❡r❜❛r❦❡✐t ✈♦♥ ❍②♣♦t❤❡s❡♥ ♦❞❡r ✇✐ss❡♥s❝❤❛❢t❧✐❝❤❡♥ ❚❤❡♦r✐❡♥✱ ✈♦♥
❞❡♥❡♥ ❛❜❡r ❦❡✐♥❡r ❜❡❤❛✉♣t❡♥ ❦❛♥♥✱ ❞❛ÿ s✐❡ ❞❡r ❲❛❤r❤❡✐t ❡♥ts♣r❡❝❤❡♥ ✭✈❡r❣❧❡✐❝❤❡
❞✐❡ ✇✐ss❡♥s❝❤❛❢t❧✐❝❤❡ ❊r❦❡♥♥t♥✐st❤❡♦r✐❡ ✈♦♥ ❑❛r❧ P♦♣♣❡r ✭✶✾✵✷✲✶✾✾✹✮✮✳

✷✳ ❉✐❡ r❛♥❞♦♠✐s✐❡rt❡♥ ❚❡sts s✐♥❞ ❤❛✉♣tsä❝❤❧✐❝❤ ✈♦♥ t❤❡♦r❡t✐s❝❤❡♠ ■♥t❡r❡ss❡ ✭✈❡r❣❧❡✐❝❤❡
❆❜s❝❤♥✐tt ✷✳✸✮✳ ■♥ ❞❡r Pr❛①✐s ✇❡r❞❡♥ ♠❡✐st❡♥s ♥✐❝❤tr❛♥❞♦♠✐s✐❡rt❡ ❘❡❣❡❧♥ ✈❡r✇❡♥❞❡t✱
❜❡✐ ❞❡♥❡♥ ♠❛♥ ❛✉s ❞❡r ❙t✐❝❤♣r♦❜❡ (x1, . . . , xn) ❛❧❧❡✐♥ ❞✐❡ ❊♥ts❝❤❡✐❞✉♥❣ ü❜❡r H0

tr❡✛❡♥ ❦❛♥♥✳ ❍✐❡r ❣✐❧t ϕ(x) = IK1 , x = (x1, . . . , xn) ∈ R
n✳

■♥ ❞✐❡s❡♠ ✉♥❞ ✐♥ ❢♦❧❣❡♥❞❡♠ ❆❜s❝❤♥✐tt ❜❡tr❛❝❤t❡♥ ✇✐r ❛✉ss❝❤❧✐❡ÿ❧✐❝❤ ♥✐❝❤tr❛♥❞♦♠✐s✐❡rt❡
❚❡sts✱ ✉♠ ✐♥ ❆❜s❝❤♥✐tt ✷✳✸ ③✉ ❞❡r ❛❧❧❣❡♠❡✐♥❡♥ ❙✐t✉❛t✐♦♥ ③✉rü❝❦③✉❦❡❤r❡♥✳

❉❡✜♥✐t✐♦♥ ✶✳✶✳✶✳ ▼❛♥ s❛❣t✱ ❞❛ÿ ❞✐❡ ♥✐❝❤t✲r❛♥❞♦♠✐s✐❡rt❡ ❚❡str❡❣❡❧ ϕ : R
n → {0, 1}

❡✐♥❡♥ ✭♥✐❝❤tr❛♥❞♦♠✐s✐❡rt❡♥✮ st❛t✐st✐s❝❤❡♥ ❚❡st ③✉♠ ❙✐❣♥✐✜❦❛♥③♥✐✈❡❛✉ α ❛♥❣✐❜t✱ ❢❛❧❧s ❢ür
F ∈ Λ0 ❣✐❧t

PF (ϕ(X1, . . . , Xn) = 1) = P (H0 ✈❡r✇❡r❢❡♥ | H0 r✐❝❤t✐❣ ) ≤ α.



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✺

❉❡✜♥✐t✐♦♥ ✶✳✶✳✷✳ ✶✳ ❲❡♥♥ ♠❛♥ H0 ✈❡r✇✐r❢t✱ ♦❜✇♦❤❧ H0 r✐❝❤t✐❣ ✐st✱ ❜❡❣❡❤t ♠❛♥ ❞❡♥
s♦❣❡♥❛♥♥t❡♥ ❋❡❤❧❡r ✶✳ ❆rt✳ ❉✐❡ ❲❛❤rs❝❤❡✐♥❧✐❝❤❦❡✐t

αn(F ) = PF (ϕ(x1, . . . , xn) = 1) , F ∈ Λ0

❤❡✐ÿt ❞✐❡❲❛❤rs❝❤❡✐♥❧✐❝❤❦❡✐t ❞❡s ❋❡❤❧❡rs ✶✳ ❆rt ✉♥❞ s♦❧❧ ✉♥t❡r ❞❡♠ ◆✐✈❡❛✉ α ❜❧❡✐❜❡♥✳

✷✳ ❉❡♥ ❋❡❤❧❡r ✷✳ ❆rt ❜❡❣❡❤t ♠❛♥✱ ✇❡♥♥ ♠❛♥ ❞✐❡ ❢❛❧s❝❤❡ ❍②♣♦t❤❡s❡ H0 ♥✐❝❤t ✈❡r✇✐r❢t✳
❉❛❜❡✐ ✐st

βn(F ) = PF (ϕ(x1, . . . , xn) = 0) , F ∈ Λ1

❞✐❡ ❲❛❤rs❝❤❡✐♥❧✐❝❤❦❡✐t ❞❡s ❋❡❤❧❡rs ✷✳ ❆rt✳

❊✐♥❡ ❩✉s❛♠♠❡♥❢❛ss✉♥❣ ❛❧❧❡r ▼ö❣❧✐❝❤❦❡✐t❡♥ ✇✐r❞ ✐♥ ❢♦❧❣❡♥❞❡r ❚❛❜❡❧❧❡ ❢❡st❣❡❤❛❧t❡♥✿

H0 r✐❝❤t✐❣ H0 ❢❛❧s❝❤
H0 ✈❡r✇❡r❢❡♥ ❋❡❤❧❡r ✶✳ ❆rt✱ ❲❛❤rs❝❤❡✐♥✲

❧✐❝❤❦❡✐t αn(F ) ≤ α
r✐❝❤t✐❣❡ ❊♥ts❝❤❡✐❞✉♥❣

H0 ♥✐❝❤t ✈❡r✇❡r✲
❢❡♥

r✐❝❤t✐❣❡ ❊♥ts❝❤❡✐❞✉♥❣ ❋❡❤❧❡r ✷✳ ❆rt ♠✐t ❲❛❤r✲
s❝❤❡✐♥❧✐❝❤❦❡✐t βn(F )

❉❛❜❡✐ s♦❧❧❡♥ αn ✉♥❞ βn ♠ö❣❧✐❝❤st ❦❧❡✐♥ s❡✐♥✱ ✇❛s ❣❡❣❡♥❧ä✉✜❣❡ ❚❡♥❞❡♥③❡♥ ❞❛rst❡❧❧t✱
✇❡✐❧ ❜❡✐♠ ❑❧❡✐♥✇❡r❞❡♥ ✈♦♥ α ❞✐❡ ❲❛❤rs❝❤❡✐♥❧✐❝❤❦❡✐t ❞❡s ❋❡❤❧❡rs ✷✳ ❆rt ♥♦t✇❡♥❞✐❣❡r✇❡✐s❡
✇ä❝❤st✳

❉❡✜♥✐t✐♦♥ ✶✳✶✳✸✳ ✶✳ ❉✐❡ ❋✉♥❦t✐♦♥

Gn(F ) = PF (ϕ(X1, . . . , Xn) = 1) , F ∈ Λ

❤❡✐ÿt ●üt❡❢✉♥❦t✐♦♥ ❡✐♥❡s ❚❡sts ϕ✳

✷✳ ❉✐❡ ❊✐♥s❝❤rä♥❦✉♥❣ ✈♦♥ Gn ❛✉❢ Λ1 ❤❡✐ÿt ❙tär❦❡✱ ❙❝❤är❢❡ ♦❞❡r ▼❛❝❤t ✭❡♥❣❧✐s❝❤
♣♦✇❡r✮ ❞❡s ❚❡sts ϕ✳

❊s ❣✐❧t
{

Gn(F ) = αn(F ) ≤ α, F ∈ Λ0

Gn(F ) = 1− βn(F ), F ∈ Λ1

❇❡✐s♣✐❡❧ ✶✳✶✳✶✳ P❛r❛♠❡tr✐s❝❤❡ ❚❡sts✳ ❲✐❡ s✐❡❤t ❡✐♥ ♣❛r❛♠❡tr✐s❝❤❡r ❚❡st ❛✉s❄ ❉❡r
P❛r❛♠❡t❡rr❛✉♠ Θ ✇✐r❞ ❛❧s Θ0 ∪ Θ1 ❞❛r❣❡st❡❧❧t✱ ✇♦❜❡✐ Θ0 ∩ Θ1 = ∅✳ ❊s ❣✐❧t Λ0 = {Fθ :
θ ∈ Θ0}✱ Λ1 = {Fθ : θ ∈ Θ1}✳ PF ✇✐r❞ ③✉ Pθ✱ αn, Gn ✉♥❞ βn ✇❡r❞❡♥ st❛tt ❛✉❢ Λ ❛✉❢ Θ
❞❡✜♥✐❡rt✳

❲❡❧❝❤❡ ❍②♣♦t❤❡s❡♥ H0 ✉♥❞ H1 ❦♦♠♠❡♥ ♦❢t ❜❡✐ ♣❛r❛♠❡tr✐s❝❤❡♥ ❚❡sts ✈♦r❄ ❩✉r ❊✐♥✲
❢❛❝❤❤❡✐t ❜❡tr❛❝❤t❡♥ ✇✐r ❞❡♥ ❙♣❡③✐❛❧❢❛❧❧ Θ = R✳

✶✳ H0 : θ = θ0 ✈s✳ H1 : θ 6= θ0



✻ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

✷✳ H0 : θ ≥ θ0 ✈s✳ H1 : θ < θ0

✸✳ H0 : θ ≤ θ0 ✈s✳ H1 : θ > θ0

✹✳ H0 : θ ∈ [a, b] ✈s✳ H1 : θ /∈ [a, b]

■♠ ❋❛❧❧ ✭✶✮ ❤❡✐ÿt ❞❡r ♣❛r❛♠❡tr✐s❝❤❡ ❚❡st ③✇❡✐s❡✐t✐❣✱ ✐♥ ❞❡♥ ❋ä❧❧❡♥ ✭✷✮ ✉♥❞ ✭✸✮ ❡✐♥s❡✐t✐❣
✭r❡❝❤ts✲ ❜③✇✳ ❧✐♥❦ss❡✐t✐❣✮✳ ■♥ ❋❛❧❧ ✭✹✮ s♣r✐❝❤t ♠❛♥ ✈♦♥ ❞❡r ■♥t❡r✈❛❧❧❤②♣♦t❤❡s❡ H0✳
❇❡✐ ❡✐♥❡♠ ③✇❡✐s❡✐t✐❣❡♥ ❜③✇✳ ❡✐♥s❡✐t✐❣❡♥ ❚❡st ❦❛♥♥ ❞✐❡ ●üt❡❢✉♥❦t✐♦♥ ✇✐❡ ✐♥ ❆❜❜✐❧❞✉♥❣

✶✳✶ ✭❛✮ ❜③✇✳ ✶✳✶ ✭❜✮ ❛✉ss❡❤❡♥✱

❆❜❜✐❧❞✉♥❣ ✶✳✶✿ ●üt❡❢✉♥❦t✐♦♥

✭❛✮ ❡✐♥❡s ③✇❡✐s❡✐t✐❣❡♥ ❚❡sts ✭❜✮ ❡✐♥❡s ❡✐♥s❡✐t✐❣❡♥ ❚❡sts

❇❡✐ ❡✐♥❡♠ ❛❧❧❣❡♠❡✐♥❡♥ ✭♥✐❝❤t ♥♦t✇❡♥❞✐❣❡r✇❡✐s❡ ♣❛r❛♠❡tr✐s❝❤❡♥✮ ▼♦❞❡❧❧ ❦❛♥♥ ♠❛♥ ❞✐❡
✐❞❡❛❧❡ ●üt❡❢✉♥❦t✐♦♥ ✇✐❡ ✐♥ ❆❜❜✐❧❞✉♥❣ ✶✳✷ s❝❤❡♠❛t✐s❝❤ ❞❛rst❡❧❧❡♥✳

❆❜❜✐❧❞✉♥❣ ✶✳✷✿ ❙❝❤❡♠❛t✐s❝❤❡ ❉❛rst❡❧❧✉♥❣ ❞❡r ✐❞❡❛❧❡♥ ●üt❡❢✉♥❦t✐♦♥

• ▼❛♥ s✐❡❤t ❛✉s ❉❡✜♥✐t✐♦♥ ✶✳✶✳✷✱ ❞❡♠ ❋❡❤❧❡r ✶✳ ✉♥❞ ✷✳ ❆rt ✉♥❞ ❞❡r ❆❜❧❡❤♥✉♥❣sr❡❣❡❧✱
❞❛ÿ ❞✐❡ ❍②♣♦t❤❡s❡♥ H0 ✉♥❞ H1 ♥✐❝❤t s②♠♠❡tr✐s❝❤ ❜❡❤❛♥❞❡❧t ✇❡r❞❡♥✱ ❞❡♥♥ ♥✉r ❞✐❡



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✼

❲❛❤rs❝❤❡✐♥❧✐❝❤❦❡✐t ❞❡s ❋❡❤❧❡rs ✶✳ ❆rt ✇✐r❞ ❦♦♥tr♦❧❧✐❡rt✳ ❉✐❡s ✐st ❞❡r ●r✉♥❞ ❞❛❢ür✱
❞❛ÿ ❙t❛t✐st✐❦❡r ❞✐❡ ❡✐❣❡♥t❧✐❝❤ ✐♥t❡r❡ss✐❡r❡♥❞❡ ❍②♣♦t❤❡s❡ ♥✐❝❤t ❛❧s H0✱ s♦♥❞❡r♥ ❛❧s
H1 ❢♦r♠✉❧✐❡r❡♥✱ ❞❛♠✐t✱ ✇❡♥♥ ♠❛♥ s✐❝❤ ❢ür H1 ❡♥ts❝❤❡✐❞❡t✱ ♠❛♥ ♠✐t ❙✐❝❤❡r❤❡✐t s❛❣❡♥
❦❛♥♥✱ ❞❛ÿ ❞✐❡ ❲❛❤rs❝❤❡✐♥❧✐❝❤❦❡✐t ❞❡r ❋❡❤❧❡♥ts❝❤❡✐❞✉♥❣ ✉♥t❡r ❞❡♠ ◆✐✈❡❛✉ α ❧✐❡❣t✳

• ❲✐❡ ✇✐r❞ ❡✐♥ st❛t✐st✐s❝❤❡r✱ ♥✐❝❤t r❛♥❞♦♠✐s✐❡rt❡r ❚❡st ♣r❛❦t✐s❝❤ ❦♦♥str✉✐❡rt❄ ❉✐❡
❑♦♥str✉❦t✐♦♥ ❞❡r ❆❜❧❡❤♥✉♥❣sr❡❣❡❧ ϕ ä❤♥❡❧t s✐❝❤ s❡❤r ❞❡r ✈♦♥ ❑♦♥✜❞❡♥③✐♥t❡r✈❛❧❧❡♥✿

✶✳ ❋✐♥❞❡ ❡✐♥❡ ❚❡stst❛t✐st✐❦ T : Rn → R✱ ❞✐❡ ✉♥t❡r H0 ❡✐♥❡ ✭♠ö❣❧✐❝❤❡r✇❡✐s❡ ❛s②♠✲
♣t♦t✐s❝❤ ❢ür n→∞✮ ❜❡st✐♠♠t❡ Prü❢✈❡rt❡✐❧✉♥❣ ❤❛t✳

✷✳ ❉❡✜♥✐❡r❡ B0 = [tα1 , t1−α2 ]✱ ✇♦❜❡✐ tα1 ✉♥❞ t1−α2 ◗✉❛♥t✐❧❡ ❞❡r Prü❢✈❡rt❡✐❧✉♥❣
✈♦♥ T s✐♥❞✱ α1 + α2 = α ∈ [0, 1]✳

✸✳ ❋❛❧❧s T (X1, . . . , Xn) ∈ R \ B0 = B1✱ s❡t③❡ ϕ(X1, . . . , Xn) = 1✳ H0 ✇✐r❞ ✈❡r✲
✇♦r❢❡♥✳ ❆♥s♦♥st❡♥ s❡t③❡ ϕ(X1, . . . , Xn) = 0✳

• ❋❛❧❧s ❞✐❡ ❱❡rt❡✐❧✉♥❣ ✈♦♥ T ♥✉r ❛s②♠♣t♦t✐s❝❤ ❜❡st✐♠♠t ✇❡r❞❡♥ ❦❛♥♥✱ s♦ ❤❡✐ÿt ϕ
❛s②♠♣t♦t✐s❝❤❡r ❚❡st✳

• ❙❡❤r ♦❢t ❛❜❡r ✐st ❛✉❝❤ ❞✐❡ ❛s②♠♣t♦t✐s❝❤❡ ❱❡rt❡✐❧✉♥❣ ✈♦♥ T ♥✐❝❤t ❜❡❦❛♥♥t✳ ❉❛♥♥
✈❡r✇❡♥❞❡t ♠❛♥ s♦❣❡♥❛♥♥t❡ ▼♦♥t❡✲❈❛r❧♦ ❚❡sts✱ ✐♥ ❞❡♥❡♥ ❞❛♥♥ ◗✉❛♥t✐❧❡ tα ♥ä❤❡✲
r✉♥❣s✇❡✐s❡ ❛✉s s❡❤r ✈✐❡❧❡♥ ▼♦♥t❡✲❈❛r❧♦✲❙✐♠✉❧❛t✐♦♥❡♥ ✈♦♥ T ✭✉♥t❡r H0✮ ❜❡st✐♠♠t
✇❡r❞❡♥✿ ❋❛❧❧s ti, i = 1, . . . ,m ❞✐❡ ❲❡rt❡ ✈♦♥ T ✐♥ m ✉♥❛❜❤ä♥❣✐❣❡♥ ❙✐♠✉❧❛t✐♦♥s✈♦r✲
❣ä♥❣❡♥ s✐♥❞✱ ❞❛s ❤❡✐ÿt ti = T (xi1, . . . , x

i
n)✱ x

i
j s✐♥❞ ✉♥❛❜❤ä♥❣✐❣❡ ❘❡❛❧✐s✐❡r✉♥❣❡♥ ✈♦♥

Xj ∼ F ∈ Λ0✱ j = 1, . . . , n✱ i = 1, . . . ,m ❞❛♥♥ ❜✐❧❞❡t ♠❛♥ ✐❤r❡ ❖r❞♥✉♥❣sst❛t✐st✐❦❡♥
t(1), . . . , t(m) ✉♥❞ s❡t③t tα ≈ t(⌊α·m⌋), α ∈ [0, 1]✱ ✇♦❜❡✐ t(0) = −∞✳

❇❡♠❡r❦✉♥❣ ✶✳✶✳✷✳ ▼❛♥ s✐❡❤t ❞❡✉t❧✐❝❤✱ ❞❛ÿ ❛✉s ❡✐♥❡♠ ❜❡❧✐❡❜✐❣❡♥ ❑♦♥✜❞❡♥③✐♥t❡r✈❛❧❧

Iθ =
[
Iθ1 (X1, . . . , Xn), I

θ
2 (X1, . . . , Xn)

]

③✉♠ ◆✐✈❡❛✉ 1 − α ❢ür ❡✐♥❡♥ P❛r❛♠❡t❡r θ ∈ R ❡✐♥ ❚❡st ❢ür θ ❦♦♥str✉✐❡r❜❛r ✐st✳ ❉✐❡
❍②♣♦t❤❡s❡ H0 : θ = θ0 ✈s✳ H1 : θ 6= θ0 ✇✐r❞ ♠✐t ❢♦❧❣❡♥❞❡r ❊♥ts❝❤❡✐❞✉♥❣sr❡❣❡❧ ❣❡t❡st❡t✿

ϕ(X1, . . . , Xn) = 1, ❢❛❧❧s θ0 6∈
[
Iθ01 (X1, . . . , Xn), I

θ0
2 (X1, . . . , Xn)

]
.

❉❛s ❙✐❣♥✐✜❦❛♥③♥✐✈❡❛✉ ❞❡s ❚❡sts ✐st α✳

❇❡✐s♣✐❡❧ ✶✳✶✳✷✳ ◆♦r♠❛❧✈❡rt❡✐❧✉♥❣✱ ❚❡st ❞❡s ❊r✇❛rt✉♥❣s✇❡rt❡s ❜❡✐ ❜❡❦❛♥♥t❡r ❱❛r✐❛♥③✳ ❊s
s❡✐❡♥

X1, . . . , Xn ∼ N(µ, σ2)

♠✐t ❜❡❦❛♥♥t❡r ❱❛r✐❛♥③ σ2✳ ❊✐♥ ❑♦♥✜❞❡♥③✐♥t❡r✈❛❧❧ ❢ür µ ✐st

Iµ = [Iµ1 (X1, . . . , Xn), I
µ
2 (X1, . . . , Xn)] =

[
Xn −

z1−α/2 · σ√
n

, Xn +
z1−α/2 · σ√

n

]



✽ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

✭✈❡r❣❧❡✐❝❤❡ ❙t♦❝❤❛st✐❦ ■✱ ✹✳✷✳✶✮ H0 ✇✐r❞ ✈❡r✇♦r❢❡♥✱ ❢❛❧❧s |µ0 − Xn| > z1−α/2·σ√
n

✳ ■♥ ❞❡r
❚❡sts♣r❛❝❤❡ ❜❡❞❡✉t❡t ❡s✱ ❞❛ss

ϕ(x1, . . . , xn) = I ((x1, . . . xn) ∈ K1) ,

✇♦❜❡✐

K1 =

{
(x1, . . . , xn) ∈ R

n : |µ0 − xn| >
σz1−α/2√

n

}

❞❡r ❆❜❧❡❤♥✉♥❣s❜❡r❡✐❝❤ ✐st✳ ❋ür ❞✐❡ ❚❡stst❛t✐st✐❦ T (X1, . . . , Xn) ❣✐❧t✿

T (X1, . . . , Xn) =
Xn − µ0

σ

√
n ∼ N(0, 1) | ✉♥t❡r H0,

αn(µ) = α.

❇❡r❡❝❤♥❡♥ ✇✐r ♥✉♥ ❞✐❡ ●üt❡❢✉♥❦t✐♦♥ ✭✈❡r❣❧❡✐❝❤❡ ❆❜❜✐❧❞✉♥❣ ✶✳✸✮✳

Gn(µ) = Pµ

(
|µ0 −Xn| >

z1−α/2√
n

)
= 1− Pµ

(∣∣Xn − µ0

∣∣ ≤
σz1−α/2√

n

)

= 1− Pµ

(∣∣∣∣
√
n
Xn − µ

σ
+

µ− µ0

σ

√
n

∣∣∣∣ ≤ z1−α/2

)

= 1− Pµ

(
−z1−α/2 −

µ− µ0

σ

√
n ≤ √nXn − µ

σ
≤ z1−α/2 −

µ− µ0

σ

√
n

)

= 1− Φ

(
z1−α/2 −

µ− µ0

σ

√
n

)
+Φ

(
−z1−α/2 −

µ− µ0

σ

√
n

)

= Φ

(
−z1−α/2 +

µ− µ0

σ

√
n

)
+Φ

(
−z1−α/2 −

µ− µ0

σ

√
n

)
.

❆❜❜✐❧❞✉♥❣ ✶✳✸✿ ●üt❡❢✉♥❦t✐♦♥ ❢ür ❞❡♥ ③✇❡✐s❡✐t✐❣❡♥ ❚❡st ❞❡s ❊r✇❛rt✉♥❣s✇❡rt❡s ❡✐♥❡r ◆♦r✲
♠❛❧✈❡rt❡✐❧✉♥❣ ❜❡✐ ❜❡❦❛♥♥t❡r ❱❛r✐❛♥③

❉✐❡ ✒❏❛✲◆❡✐♥ ✏✲ ❊♥ts❝❤❡✐❞✉♥❣ ❞❡s ❚❡st❡♥s ✇✐r❞ ♦❢t ❛❧s ③✉ ❣r♦❜ ❡♠♣❢✉♥❞❡♥✳ ❉❡s✇❡❣❡♥
✈❡rs✉❝❤t ♠❛♥✱ ❡✐♥ ❢❡✐♥❡r❡s ▼❛ÿ ❞❡r ❱❡rträ❣❧✐❝❤❦❡✐t ❞❡r ❉❛t❡♥ ♠✐t ❞❡♥ ❍②♣♦t❤❡s❡♥ H0

✉♥❞ H1 ③✉ ❜❡st✐♠♠❡♥✳ ❉✐❡s ✐st ❞❡r s♦❣❡♥❛♥♥t❡ p✲❲❡rt✱ ❞❡r ✈♦♥ ❞❡♥ ♠❡✐st❡♥ ❙t❛t✐st✐❦✲
❙♦❢t✇❛r❡♣❛❦❡t❡♥ ❛✉s❣❡❣❡❜❡♥ ✇✐r❞✳



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✾

❉❡✜♥✐t✐♦♥ ✶✳✶✳✹✳ ❊s s❡✐ (x1, . . . , xn) ❞✐❡ ❦♦♥❦r❡t❡ ❙t✐❝❤♣r♦❜❡ ✈♦♥ ❉❛t❡♥✱ ❞✐❡ ❛❧s ❘❡❛❧✐s✐❡✲
r✉♥❣ ✈♦♥ (X1, . . . , Xn) ✐♥t❡r♣r❡t✐❡rt ✇✐r❞ ✉♥❞ T (X1, . . . , Xn) ❞✐❡ ❚❡stst❛t✐st✐❦✱ ♠✐t ❞❡r❡♥
❍✐❧❢❡ ❞✐❡ ❊♥ts❝❤❡✐❞✉♥❣sr❡❣❡❧ ϕ ❦♦♥str✉✐❡rt ✇✉r❞❡✳ ❉❡r p✲❲❡rt ❞❡s st❛t✐st✐s❝❤❡♥ ❚❡sts ϕ
✐st ❞❛s ❦❧❡✐♥st❡ ❙✐❣♥✐✜❦❛♥③♥✐✈❡❛✉✱ ③✉ ❞❡♠ ❞❡r ❲❡rt t = T (x1, . . . , xn) ③✉r ❱❡r✇❡r❢✉♥❣ ❞❡r
❍②♣♦t❤❡s❡ H0 ❢ü❤rt✳
■♠ ❇❡✐s♣✐❡❧ ❡✐♥❡s ❡✐♥s❡✐t✐❣❡♥ ❚❡sts ♠✐t ❞❡♠ ❆❜❧❡❤♥✉♥❣s❜❡r❡✐❝❤ B1 = (t,∞) s❛❣t ♠❛♥

❣r♦❜✱ ❞❛ÿ

p = ✒P (T (X1, . . . , Xn) ≥ t | H0) ✏ ,

✇♦❜❡✐ ❞✐❡ ❆♥❢ü❤r✉♥❣s③❡✐❝❤❡♥ ❜❡❞❡✉t❡♥✱ ❞❛ÿ ❞✐❡s ❦❡✐♥❡ ❦❧❛ss✐s❝❤❡✱ s♦♥❞❡r♥ ❡✐♥❡ ❜❡❞✐♥❣t❡
❲❛❤rs❝❤❡✐♥❧✐❝❤❦❡✐t ✐st✱ ❞✐❡ s♣ät❡r ♣rä③✐s❡ ❛♥❣❡❣❡❜❡♥ ✇✐r❞✳

❇❡✐ ❞❡r ❱❡r✇❡♥❞✉♥❣ ❞❡s p✲❲❡rt❡s ✈❡rä♥❞❡rt s✐❝❤ ❞✐❡ ❆❜❧❡❤♥✉♥❣sr❡❣❡❧✿ ❞✐❡ ❍②♣♦t❤❡s❡
H0 ✇✐r❞ ③✉♠ ❙✐❣♥✐✜❦❛♥③♥✐✈❡❛✉ α ❛❜❣❡❧❡❤♥t✱ ❢❛❧❧s α ≥ p✳ ❋rü❤❡r ❤❛t ♠❛♥ ❞✐❡ ❙✐❣♥✐✜❦❛♥③
❞❡r ❚❡st❡♥ts❝❤❡✐❞✉♥❣ ✭❆❜❧❡❤♥✉♥❣ ✈♦♥ H0✮ ❛♥ ❍❛♥❞ ❢♦❧❣❡♥❞❡r ❚❛❜❡❧❧❡ ❢❡st❣❡s❡t③t✿

p✲❲❡rt ■♥t❡r♣r❡t❛t✐♦♥
p ≤ 0, 001 s❡❤r st❛r❦ s✐❣♥✐✜❦❛♥t

0, 001 < p ≤ 0, 01 st❛r❦ s✐❣♥✐✜❦❛♥t
0, 01 < p ≤ 0, 05 s❝❤✇❛❝❤ s✐❣♥✐✜❦❛♥t

0, 05 < p ♥✐❝❤t s✐❣♥✐✜❦❛♥t

❉❛ ❛❜❡r ❤❡✉t❡ ❞❡r p✲❲❡rt ❛♥ s✐❝❤ ✈❡r✇❡♥❞❡t ✇❡r❞❡♥ ❦❛♥♥✱ ❦❛♥♥ ❞❡r ❆♥✇❡♥❞❡r ❞❡r
❚❡sts ❜❡✐ ✈♦r❣❡❣❡❜❡♥❡♠ p✲❲❡rt s❡❧❜st ❡♥ts❝❤❡✐❞❡♥✱ ③✉ ✇❡❧❝❤❡♠ ◆✐✈❡❛✉ ❡r s❡✐♥❡ ❚❡sts
❞✉r❝❤❢ü❤r❡♥ ✇✐❧❧✳

❇❡♠❡r❦✉♥❣ ✶✳✶✳✸✳ ✶✳ ❉❛s ❙✐❣♥✐✜❦❛♥③♥✐✈❡❛✉ ❞❛r❢ ♥✐❝❤t ✐♥ ❆❜❤ä♥❣✐❣❦❡✐t ✈♦♥ p ❢❡st✲
❣❡❧❡❣t ✇❡r❞❡♥✳ ❉✐❡s ✇ür❞❡ ❞✐❡ ❛❧❧❣❡♠❡✐♥❡ ❚❡st♣❤✐❧♦s♦♣❤✐❡ ③❡rstör❡♥✦

✷✳ ❉❡r p✲❲❡rt ✐st ❦❡✐♥❡ ❲❛❤rs❝❤❡✐♥❧✐❝❤❦❡✐t✱ s♦♥❞❡r♥ ❡✐♥❡ ❩✉❢❛❧❧s✈❛r✐❛❜❧❡✱ ❞❡♥♥ ❡r ❤ä♥❣t
✈♦♥ (X1, . . . , Xn) ❛❜✳ ❉❡r ❆✉s❞r✉❝❦ p = P (T (X1, . . . , Xn) ≥ t | H0)✱ ❞❡r ✐♥ ❉❡✜♥✐t✐✲
♦♥ ✶✳✶✳✹ ❢ür ❞❡♥ p✲❲❡rt ❡✐♥❡s ❡✐♥s❡✐t✐❣❡♥ ❚❡sts ♠✐t ❚❡stst❛t✐st✐❦ T ❣❡❣❡❜❡♥ ✇✉r❞❡✱
s♦❧❧ ❞❡♠♥❛❝❤ ❛❧s Ü❜❡rs❝❤r❡✐t✉♥❣s✇❛❤rs❝❤❡✐♥❧✐❝❤❦❡✐t ✐♥t❡r♣r❡t✐❡rt ✇❡r❞❡♥✱ ❞❛ÿ ❜❡✐
❲✐❡❞❡r❤♦❧✉♥❣ ❞❡s ❩✉❢❛❧❧s❡①♣❡r✐♠❡♥ts ✉♥t❡r H0 ❞❡r ❲❡rt t = T (x1, . . . , xn) ♦❞❡r
❡①tr❡♠❡r❡ ❲❡rt❡ ✐♥ ❘✐❝❤t✉♥❣ ❞❡r ❍②♣♦t❤❡s❡ H1 ❜❡tr❛❝❤t❡t ✇❡r❞❡♥✿

p = P
(
T (X ′

1, . . . , X
′
n) ≥ T (x1, . . . , xn) | H0

)
,

✇♦❜❡✐ (X ′
1, . . . , X

′
n)

d
= (X1, . . . , Xn)✳ ❋❛❧❧s ✇✐r ✈♦♥ ❡✐♥❡r ❦♦♥❦r❡t❡♥ ❘❡❛❧✐s✐❡r✉♥❣

(x1, . . . , xn) ③✉r ❩✉❢❛❧❧sst✐❝❤♣r♦❜❡ (X1, . . . , Xn) ü❜❡r❣❡❤❡♥✱ ❡r❤❛❧t❡♥ ✇✐r

p = p(X1, . . . , Xn) = P
(
T (X ′

1, . . . , X
′
n) ≥ T (X1, . . . , Xn) | H0

)

✸✳ ❋ür ❛♥❞❡r❡ ❍②♣♦t❤❡s❡♥ H0 ✇✐r❞ ❞❡r p✲❲❡rt ❛✉❝❤ ❡✐♥❡ ❛♥❞❡r❡ ❋♦r♠ ❤❛❜❡♥✳ ❩✉♠
❇❡✐s♣✐❡❧ ❢ür



✶✵ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

❛✮ ❡✐♥❡♥ s②♠♠❡tr✐s❝❤❡♥ ③✇❡✐s❡✐t✐❣❡♥ ❚❡st ✐st

B0 =
[
−t1−α/2, t1−α/2

]

❞❡r ❆❦③❡♣t❛♥③❜❡r❡✐❝❤ ❢ür H0✳

⇒ p = P
(
|T (X ′

1, . . . , X
′
n)| ≥ t | H0

)
, t = T (X1, . . . Xn)

❜✮ ❡✐♥❡♥ ❧✐♥❦ss❡✐t✐❣❡♥ ❚❡st ♠✐t B0 = [tα,∞] ❣✐❧t

p = P (T (X ′
1, . . . , X

′
n) ≤ t|H0), t = T (X1, . . . , Xn)

❝✮ ❉❛s ❱❡r❤❛❧t❡♥ ❞❡s p✲❲❡rt❡s ❦❛♥♥ ❢♦❧❣❡♥❞❡r♠❛ÿ❡♥ ✉♥t❡rs✉❝❤t ✇❡r❞❡♥✿
▲❡♠♠❛ ✶✳✶✳✶✳ ❋❛❧❧s ❞✐❡ ❱❡rt❡✐❧✉♥❣s❢✉♥❦t✐♦♥ F ✈♦♥ Xi st❡t✐❣ ✉♥❞ str❡♥❣ ♠♦✲
♥♦t♦♥ st❡✐❣❡♥❞ ✐st ✭❞✐❡ ❱❡rt❡✐❧✉♥❣ ✈♦♥ T ✐st ❛❜s♦❧✉t st❡t✐❣ ♠✐t ③✉♠ ❇❡✐s♣✐❡❧
st❡t✐❣❡r ❉✐❝❤t❡✮✱ ❞❛♥♥ ✐st p ∼ U [0, 1]✳

❇❡✇❡✐s✳ ❲✐r ③❡✐❣❡♥ ❡s ❛♠ s♣❡③✐❡❧❧❡♥ ❇❡✐s♣✐❡❧ ❞❡s r❡❝❤tss❡✐t✐❣❡♥ ❚❡sts✳

P (p ≤ α | H0) = P
(
F T (T (X1, . . . , Xn)) ≤ α | H0

)

= P (FT (T (X1, . . . , Xn)) ≥ 1− α | H0)

= P (U ≥ 1− α) = 1− (1− α) = α, α ∈ [0, 1],

❞❛ FT (T (X1, . . . , Xn))
d
= U ∼ U [0, 1] ✉♥❞ FT ❛❜s♦❧✉t st❡t✐❣ ✐st✳

Ü❜✉♥❣ ✶✳✶✳✶✳ ❩❡✐❣❡♥ ❙✐❡✱ ❞❛ÿ ❢ür ❡✐♥❡ ❜❡❧✐❡❜✐❣❡ ❩✉❢❛❧❧s✈❛r✐❛❜❧❡ X ♠✐t ❛❜s♦❧✉t
st❡t✐❣❡r ❱❡rt❡✐❧✉♥❣ ✉♥❞ str❡♥❣ ♠♦♥♦t♦♥ st❡✐❣❡♥❞❡r ❱❡rt❡✐❧✉♥❣s❢✉♥❦t✐♦♥ FX

❣✐❧t✿

FX(X) ∼ U [0, 1]

❋❛❧❧s ❞✐❡ ❱❡rt❡✐❧✉♥❣ ✈♦♥ T ❞✐s❦r❡t ✐st✱ ♠✐t ❞❡♠ ❲❡rt❡❜❡r❡✐❝❤ {t1, . . . , tn}✱ ti <
tj ❢ür i < j✱ s♦ ✐st ❛✉❝❤ ❞✐❡ ❱❡rt❡✐❧✉♥❣ ✈♦♥ p ❞✐s❦r❡t✱ s♦♠✐t ❣✐❧t ♥✐❝❤t p ∼ U [0, 1]✳
■♥ ❞✐❡s❡♠ ❋❛❧❧ ✐st FT (x) ❡✐♥❡ ❚r❡♣♣❡♥❢✉♥❦t✐♦♥✱ ❞✐❡ ❞✐❡ ●❡r❛❞❡ y = u ✐♥ ❞❡♥

P✉♥❦t❡♥ u =
k∑

i=1
P(T (X1, . . . , Xn) = ti)✱ k = 1 . . . n ❜❡rü❤rt ✭✈❣❧✳ ❆❜❜✐❧❞✉♥❣

✶✳✹✮✳

❉❡✜♥✐t✐♦♥ ✶✳✶✳✺✳ ✶✳ ❋❛❧❧s ❞✐❡ ▼❛❝❤t Gn(·) ❡✐♥❡s ❚❡sts ϕ ③✉♠ ◆✐✈❡❛✉ α ❞✐❡ ❯♥❣❧❡✐✲
❝❤✉♥❣

Gn(F ) ≥ α, F ∈ Λ1

❡r❢ü❧❧t✱ ❞❛♥♥ ❤❡✐ÿt ❞❡r ❚❡st ✉♥✈❡r❢ä❧s❝❤t✳



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✶✶

❆❜❜✐❧❞✉♥❣ ✶✳✹✿ ❱❡rt❡✐❧✉♥❣ ✈♦♥ p ❢ür ❞✐s❦r❡t❡ T

✷✳ ❊s s❡✐❡♥ ϕ ✉♥❞ ϕ∗ ③✇❡✐ ❚❡sts ③✉♠ ◆✐✈❡❛✉ α ♠✐t ●üt❡❢✉♥❦t✐♦♥❡♥ Gn(·) ✉♥❞ G∗
n(·)✳

▼❛♥ s❛❣t✱ ❞❛ÿ ❞❡r ❚❡st ϕ ❜❡ss❡r ❛❧s ϕ∗ ✐st✱ ❢❛❧❧s ❡r ❡✐♥❡ ❣röÿ❡r❡ ▼❛❝❤t ❜❡s✐t③t✿

Gn(F ) ≥ G∗
n(F ) ∀F ∈ Λ1

✸✳ ❉❡r ❚❡st ϕ ❤❡✐ÿt ❦♦♥s✐st❡♥t✱ ❢❛❧❧s Gn(F ) −→
n→∞

1 ❢ür ❛❧❧❡ F ∈ Λ1✳

❇❡♠❡r❦✉♥❣ ✶✳✶✳✹✳ ✶✳ ❉✐❡ ❡✐♥s❡✐t✐❣❡♥ ❚❡sts ❤❛❜❡♥ ♦❢t ❡✐♥❡ ❣röÿ❡r❡ ▼❛❝❤t ❛❧s ✐❤r❡
③✇❡✐s❡✐t✐❣❡♥ ❱❡rs✐♦♥❡♥✳

❇❡✐s♣✐❡❧ ✶✳✶✳✸✳ ❇❡tr❛❝❤t❡♥ ✇✐r ③✉♠ ❇❡✐s♣✐❡❧ ❞❡♥ ●❛✉ÿ✲❚❡st ❞❡s ❊r✇❛rt✉♥❣s✇❡rt❡s
❞❡r ◆♦r♠❛❧✈❡rt❡✐❧✉♥❣ ❜❡✐ ❜❡❦❛♥♥t❡r ❱❛r✐❛♥③✳ ❇❡✐♠ ③✇❡✐s❡✐t✐❣❡♥ ❚❡st

H0 : µ = µ0 ✈s✳ H1 : µ 6= µ0.

❡r❤❛❧t❡♥ ✇✐r ❞✐❡ ●üt❡❢✉♥❦t✐♦♥

Gn(µ) = Φ

(
−z1−α/2 +

√
n
µ− µ0

σ

)
+Φ

(
−z1−α/2 −

√
n
µ− µ0

σ

)
.

❇❡✐♠ ❡✐♥s❡✐t✐❣❡♥ ❚❡st ϕ∗ ❞❡r ❍②♣♦t❤❡s❡♥

H∗
0 : µ ≤ µ0 ✈s✳ H∗

1 : µ > µ0

✐st s❡✐♥❡ ●üt❡❢✉♥❦t✐♦♥ ❣❧❡✐❝❤

G∗
n(µ) = Φ

(
−z1−α +

√
n
µ− µ0

σ

)

❇❡✐❞❡ ❚❡sts s✐♥❞ ♦✛❡♥s✐❝❤t❧✐❝❤ ❦♦♥s✐st❡♥t✱ ❞❡♥♥ Gn(µ) →
n→∞

1✱ G∗
n(µ) →n→∞

1✳ ❉❛❜❡✐

✐st ϕ∗ ❜❡ss❡r ❛❧s ϕ✳ ❇❡✐❞❡ ❚❡sts s✐♥❞ ✉♥✈❡r❢ä❧s❝❤t ✭✈❡r❣❧❡✐❝❤❡ ❆❜❜✐❧❞✉♥❣ ✶✳✺✮✳



✶✷ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

❆❜❜✐❧❞✉♥❣ ✶✳✺✿ ●üt❡❢✉♥❦t✐♦♥❡♥ ❡✐♥❡s ❡✐♥✲ ❜③✇✳ ③✇❡✐s❡✐t✐❣❡♥ ❚❡sts ❞❡r ❊r✇❛rt✉♥❣s✇❡rt❡s
❡✐♥❡r ◆♦r♠❛❧✈❡rt❡✐❧✉♥❣

✷✳ ❇❡✐♠ ❚❡st❡♥ ❡✐♥❡r ■♥t❡r✈❛❧❧❤②♣♦t❤❡s❡ H0 : θ ∈ [a, b] ✈s✳ H1 : θ /∈ [a, b] ③✉♠ ◆✐✈❡❛✉
α ❦❛♥♥ ♠❛♥ ✇✐❡ ❢♦❧❣t ✈♦r❣❡❤❡♥✿ ❚❡st❡

❛✮ Ha
0 : θ ≥ a ✈s✳ Ha

1 : θ < a ③✉♠ ◆✐✈❡❛✉ α/2.

❜✮ Hb
0 : θ ≤ b ✈s✳ Hb

1 : θ > b ③✉♠ ◆✐✈❡❛✉ α/2.

H0 ✇✐r❞ ♥✐❝❤t ❛❜❣❡❧❡❤♥t✱ ❢❛❧❧s Ha
0 ✉♥❞ Hb

0 ♥✐❝❤t ❛❜❣❡❧❡❤♥t ✇❡r❞❡♥✳ ❉✐❡ ❲❛❤rs❝❤❡✐♥✲
❧✐❝❤❦❡✐t ❞❡s ❋❡❤❧❡rs ✶✳ ❆rt ✐st ❤✐❡r α✳ ❉✐❡ ▼❛❝❤t ❞✐❡s❡s ❚❡sts ✐st ✐♠ ❆❧❧❣❡♠❡✐♥❡♥
s❝❤❧❡❝❤t✳

✸✳ ❏❡ ♠❡❤r P❛r❛♠❡t❡r ❢ür ❞❡r ❆✉❢❜❛✉ ❞❡r ❚❡stst❛t✐st✐❦ T ❣❡s❝❤ät③t ✇❡r❞❡♥ ♠üss❡♥✱
❞❡st♦ ❦❧❡✐♥❡r ✇✐r❞ ✐♥ ❞❡r ❘❡❣❡❧ ❞✐❡ ▼❛❝❤t✳

✶✳✷ ◆✐❝❤tr❛♥❞♦♠✐s✐❡rt❡ ❚❡sts

✶✳✷✳✶ P❛r❛♠❡tr✐s❝❤❡ ❙✐❣♥✐✜❦❛♥③t❡sts

■♥ ❞✐❡s❡♠ ❆❜s❝❤♥✐tt ❣❡❜❡♥ ✇✐r ❇❡✐s♣✐❡❧❡ ❡✐♥✐❣❡r ❚❡sts✱ ❞✐❡ ♠❡✐st❡♥s ❛✉s ❞❡♥ ❡♥ts♣r❡❝❤❡♥✲
❞❡♥ ❑♦♥✜❞❡♥③✐♥t❡r✈❛❧❧❡♥ ❢ür ❞✐❡ P❛r❛♠❡t❡r ✈♦♥ ❱❡rt❡✐❧✉♥❣❡♥ ❡♥tst❡❤❡♥✳ ❉❡s❤❛❧❜ ✇❡r❞❡♥
✇✐r s✐❡ ♥✉r ❦✉r③ ❜❡❤❛♥❞❡❧♥✳

✶✳ ❚❡sts ❢ür ❞✐❡ P❛r❛♠❡t❡r ❞❡r ◆♦r♠❛❧✈❡rt❡✐❧✉♥❣ N(µ, σ2)

❛✮ ❚❡st ✈♦♥ µ ❜❡✐ ✉♥❜❡❦❛♥♥t❡r ❱❛r✐❛♥③

• ❍②♣♦t❤❡s❡♥✿ H0 : µ = µ0 ✈s✳ H1 : µ 6= µ0✳



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✶✸

• ❚❡stst❛t✐st✐❦✿

T (X1, . . . , Xn) =
Xn − µ0

Sn
∼ tn−1 | H0

• ❊♥ts❝❤❡✐❞✉♥❣sr❡❣❡❧✿

ϕ(X1, . . . , Xn) = 1, ❢❛❧❧s |T (X1, . . . , Xn)| > tn−1,1−α/2.

❜✮ ❚❡st ✈♦♥ σ2 ❜❡✐ ❜❡❦❛♥♥t❡♠ µ

• ❍②♣♦t❤❡s❡♥✿ H0 : σ
2 = σ2

0 ✈s✳ H1 : σ
2 6= σ2

0✳

• ❚❡stst❛t✐st✐❦✿

T (X1, . . . , Xn) =
nS̃2

n

σ2
0

∼ χ2
n | H0

♠✐t S̃2
n = 1

n

n∑
i=1

(Xi − µ)2✳

• ❊♥ts❝❤❡✐❞✉♥❣sr❡❣❡❧✿

ϕ(X1, . . . , Xn) = 1, ❢❛❧❧s T (X1, . . . , Xn) /∈
[
χ2
n,α/2, χ

2
n,1−α/2

]
.

• ●üt❡❢✉♥❦t✐♦♥✿

Gn(σ
2) = 1− Pσ2

(
χ2
n,α/2 ≤

nS̃2
n

σ2
0

≤ χ2
n,1−α/2

)

= 1− Pσ2

(
χ2
n,α/2σ

2
0

σ2
≤ nS̃2

n

σ2
≤

χ2
n,1−α/2σ

2
0

σ2

)

= 1− Fχ2
n

(
χ2
n,1−α/2

σ2
0

σ2

)
+ Fχ2

n

(
χ2
n,α/2

σ2
0

σ2

)

❝✮ ❚❡st ✈♦♥ σ2 ❜❡✐ ✉♥❜❡❦❛♥♥t❡♠ µ

• ❍②♣♦t❤❡s❡♥✿ H0 : σ
2 = σ2

0 ✈s✳ H1 : σ
2 6= σ2

0✳

• ❚❡stst❛t✐st✐❦✿

T (X1, . . . , Xn) =
(n− 1)S2

n

σ2
0

∼ χ2
n−1 | H0,

✇♦❜❡✐ S2
n = 1

n−1

n∑
i=1

(
Xi −Xn

)2
✳

• ❊♥ts❝❤❡✐❞✉♥❣sr❡❣❡❧✿

ϕ(X1, . . . , Xn) = 1, ❢❛❧❧s T (X1, . . . , Xn) /∈
[
χ2
n−1,α/2, χ

2
n−1,1−α/2

]
.



✶✹ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

Ü❜✉♥❣ ✶✳✷✳✶✳ ✭✐✮ ❋✐♥❞❡♥ ❙✐❡ Gn(·) ❢ür ❞✐❡ ❡✐♥s❡✐t✐❣❡ ❱❡rs✐♦♥ ❞❡r ♦❜✐❣❡♥
❚❡sts✳

✭✐✐✮ ❩❡✐❣❡♥ ❙✐❡✱ ❞❛ÿ ❞✐❡s❡ ❡✐♥s❡✐t✐❣❡♥ ❚❡sts ✉♥✈❡r❢ä❧s❝❤t s✐♥❞✱ ❞✐❡ ③✇❡✐s❡✐✲
t✐❣❡♥ ❛❜❡r ♥✐❝❤t✳

✷✳ ❆s②♠♣t♦t✐s❝❤❡ ❚❡sts

❇❡✐ ❛s②♠♣t♦t✐s❝❤❡♥ ❚❡sts ✐st ❞✐❡ ❱❡rt❡✐❧✉♥❣ ❞❡r ❚❡stst❛t✐st✐❦ ♥✉r ♥ä❤❡r✉♥❣s✇❡✐s❡
✭❢ür ❣r♦ÿ❡ n✮ ❜❡❦❛♥♥t✳ ❊❜❡♥s♦ ❛s②♠♣t♦t✐s❝❤ ✇✐r❞ ❞❛s ❑♦♥✜❞❡♥③♥✐✈❡❛✉ α ❡rr❡✐❝❤t✳
■❤r❡ ❑♦♥str✉❦t✐♦♥ ❜❛s✐❡rt ♠❡✐st❡♥s ❛✉❢ ❱❡r✇❡♥❞✉♥❣ ❞❡r ●r❡♥③✇❡rtsät③❡✳

❉✐❡ ❛❧❧❣❡♠❡✐♥❡ ❱♦r❣❡❤❡♥s✇❡✐s❡ ✇✐r❞ ✐♠ s♦❣❡♥❛♥♥t❡♥ ❲❛❧❞✲❚❡st ✭❣❡♥❛♥♥t ♥❛❝❤ ❞❡♠
❙t❛t✐st✐❦❡r ❆❜r❛❤❛♠ ❲❛❧❞ ✭✶✾✵✷✲✶✾✽✵✮✮ ✜①✐❡rt✿

• ❙❡✐ (X1, . . . , Xn) ❡✐♥❡ ❩✉❢❛❧❧sst✐❝❤♣r♦❜❡✱ Xi s❡✐❡♥ ✉♥❛❜❤ä♥❣✐❣ ✉♥❞ ✐❞❡♥t✐s❝❤
✈❡rt❡✐❧t ❢ür i = 1, . . . , n✱ ♠✐t Xi ∼ Fθ✱ θ ∈ Θ ⊆ R✳

• ❲✐r t❡st❡♥ H0 : θ = θ0 ✈s✳ H1 : θ 6= θ0✳ ❊s s❡✐ θ̂n = θ̂(X1, . . . , Xn) ❡✐♥
❡r✇❛rt✉♥❣str❡✉❡r✱ ❛s②♠♣t♦t✐s❝❤ ♥♦r♠❛❧✈❡rt❡✐❧t❡r ❙❝❤ät③❡r ❢ür θ✳

θ̂n − θ0
σ̂n

d−→
n→∞

Y ∼ N(0, 1) | H0,

✇♦❜❡✐ σ̂2
n ❡✐♥ ❦♦♥s✐st❡♥t❡r ❙❝❤ät③❡r ❢ür ❞✐❡ ❱❛r✐❛♥③ ✈♦♥ θ̂n s❡✐✳

❉✐❡ ❚❡stst❛t✐st✐❦ ✐st

T (X1, . . . , Xn) =
θ̂n(X1, . . . , Xn)− θ0

σ̂n
.

• ❉✐❡ ❊♥ts❝❤❡✐❞✉♥❣sr❡❣❡❧ ❧❛✉t❡t✿ H0 ✇✐r❞ ❛❜❣❡❧❡❤♥t✱ ✇❡♥♥ |T (X1, . . . , Xn)| >
z1−α/2✱ ✇♦❜❡✐ z1−α/2 = Φ−1(1 − α/2)✳ ❉✐❡s❡ ❊♥ts❝❤❡✐❞✉♥❣sr❡❣❡❧ s♦❧❧ ♥✉r ❜❡✐
❣r♦ÿ❡♥ n ✈❡r✇❡♥❞❡t ✇❡r❞❡♥✳ ❉✐❡ ❲❛❤rs❝❤❡✐♥❧✐❝❤❦❡✐t ❞❡s ❋❡❤❧❡rs ✶✳ ❆rt ✐st
❛s②♠♣t♦t✐s❝❤ ❣❧❡✐❝❤ α✱ ❞❡♥♥ P(|T (X1, . . . , Xn)| > z1−α/2 | H0) →

n→∞
α ✇❡❣❡♥

❞❡r ❛s②♠♣t♦t✐s❝❤❡♥ ◆♦r♠❛❧✈❡rt❡✐❧✉♥❣ ✈♦♥ ❚✳

❉✐❡ ●üt❡❢✉♥❦t✐♦♥ ❞❡s ❚❡sts ✐st ❛s②♠♣t♦t✐s❝❤ ❣❧❡✐❝❤

lim
n→∞

Gn(θ) = 1− Φ

(
z1−α/2 +

θ0 − θ

σ

)
+Φ

(
−z1−α/2 +

θ0 − θ

σ

)
,

✇♦❜❡✐ σ̂2
n

P−→
n→∞

σ2✳

❙♣❡③✐❛❧❢ä❧❧❡ ❞❡s ❲❛❧❞✲❚❡sts s✐♥❞ ❛s②♠♣t♦t✐s❝❤❡ ❚❡sts ❞❡r ❊r✇❛rt✉♥❣s✇❡rt❡ ❜❡✐
❡✐♥❡r P♦✐ss♦♥✲ ♦❞❡r ❇❡r♥♦✉❧❧✐✈❡rt❡✐❧t❡♥ ❙t✐❝❤♣r♦❜❡✳

❇❡✐s♣✐❡❧ ✶✳✷✳✶✳ ❛✮ ❇❡r♥♦✉❧❧✐✈❡rt❡✐❧✉♥❣

❊s s❡✐❡♥ Xi ∼ ❇❡r♥♦✉❧❧✐(p)✱ p ∈ [0, 1] ✉♥❛❜❤ä♥❣✐❣❡✱ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t❡ ❩✉❢❛❧❧s✲
✈❛r✐❛❜❧❡♥✳



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✶✺

• ❍②♣♦t❤❡s❡♥✿ H0 : p = p0 ✈s✳ H1 : p 6= p0✳

• ❚❡stst❛t✐st✐❦✿

T (X1, . . . , Xn) =

{ √
n Xn−p0√

Xn(1−Xn)
, ❢❛❧❧s Xn 6= 0, 1,

0, s♦♥st✳

❯♥t❡r H0 ❣✐❧t✿ T (X1, . . . , Xn)
d−→

n→∞
Y ∼ N(0, 1)✳

❜✮ P♦✐ss♦♥✈❡rt❡✐❧✉♥❣

❊s s❡✐❡♥ Xi ∼ P♦✐ss♦♥(λ)✱ λ > 0 ✉♥❛❜❤ä♥❣✐❣❡✱ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t❡ ❩✉❢❛❧❧s✈❛r✐❛✲
❜❧❡♥✳

• ❍②♣♦t❤❡s❡♥✿ H0 : λ = λ0 ✈s✳ H1 : λ 6= λ0

• ❚❡stst❛t✐st✐❦✿

T (X1, . . . , Xn) =

{ √
nXn−λ0√

Xn

, ❢❛❧❧s Xn > 0,

0, s♦♥st✳

❯♥t❡r H0 ❣✐❧t✿ T (X1, . . . , Xn)
d→

n→∞
Y ∼ N(0, 1)

✸✳ ❩✇❡✐✲❙t✐❝❤♣r♦❜❡♥✲Pr♦❜❧❡♠❡

●❡❣❡❜❡♥ s❡✐❡♥ ③✇❡✐ ❩✉❢❛❧❧sst✐❝❤♣r♦❜❡♥

Y1 = (X11, . . . , X1n1), Y2 = (X21, . . . , X2n2), n = max{n1, n2}.

Xij s❡✐❡♥ ✉♥❛❜❤ä♥❣✐❣ ❢ür j = 1, . . . , ni, Xij ∼ Fθi ✱ i = 1, 2✳

❛✮ ❚❡st ❞❡r ●❧❡✐❝❤❤❡✐t ③✇❡✐❡r ❊r✇❛rt✉♥❣s✇❡rt❡ ❜❡✐ ♥♦r♠❛❧✈❡rt❡✐❧t❡♥
❙t✐❝❤♣r♦❜❡♥

• ❜❡✐ ❜❡❦❛♥♥t❡♥ ❱❛r✐❛♥③❡♥

❊s s❡✐❡♥ Xij ∼ N(µi, σ
2
i ), i = 1, 2, j = 1, . . . , n✳ ❉❛❜❡✐ s❡✐❡♥ σ2

1, σ
2
2 ❜❡✲

❦❛♥♥t✱ Xij s❡✐❡♥ ✉♥❛❜❤ä♥❣✐❣ ✈♦♥❡✐♥❛♥❞❡r ❢ür ❛❧❧❡ i, j✳

❉✐❡ ❍②♣♦t❤❡s❡♥ s✐♥❞ H0 : µ1 = µ2 ✈s✳ H1 : µ1 6= µ2✳ ❲✐r ❜❡tr❛❝❤t❡♥ ❞✐❡
❚❡stst❛t✐st✐❦✿

T (Y1, Y2) =
X1n1 −X2n2√

σ2
1

n1
+

σ2
2

n2

❯♥t❡r H0 ❣✐❧t✿ T (Y1, Y2) ∼ N(0, 1)✳ ❆❧s ❊♥ts❝❤❡✐❞✉♥❣sr❡❣❡❧ ❣✐❧t✿ H0 ✇✐r❞
❛❜❣❡❧❡❤♥t✱ ❢❛❧❧s |T (Y1, Y2)| > z1−α/2✳



✶✻ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

• ❜❡✐ ✉♥❜❡❦❛♥♥t❡♥ ✭❥❡❞♦❝❤ ❣❧❡✐❝❤❡♥✮ ❱❛r✐❛♥③❡♥

❊s s❡✐❡♥ Xij ∼ N(µi, σ
2
i ), i = 1, 2, j = 1, . . . , n✳ ❉❛❜❡✐ s❡✐❡♥ σ2

1, σ
2
2 ✉♥❜❡✲

❦❛♥♥t✱ σ2
1 = σ2

2 ✉♥❞ Xij s❡✐❡♥ ✉♥❛❜❤ä♥❣✐❣ ✈♦♥❡✐♥❛♥❞❡r ❢ür ❛❧❧❡ i, j✳

❉✐❡ ❍②♣♦t❤❡s❡♥ s✐♥❞✿ H0 : µ1 = µ2 ✈s✳ H1 : µ1 6= µ2✳ ❲✐r ❜❡tr❛❝❤t❡♥ ❞✐❡
❚❡stst❛t✐st✐❦

T (Y1, Y2) =
X1n1 −X2n2

Sn1n2

√
n1n2

n1 + n2
,

✇♦❜❡✐

S2
n1n2

=
1

n1 + n2 − 2
·




n1∑

j=1

(
X1j −X1n1

)2
+

n2∑

j=1

(
X2j −X2n2

)2

 .

▼❛♥ ❦❛♥♥ ③❡✐❣❡♥✱ ❞❛ÿ ✉♥t❡r H0 ❣✐❧t✿ T (Y1, Y2) ∼ tn1+n2−2✳ ❉✐❡ ❊♥ts❝❤❡✐✲
❞✉♥❣sr❡❣❡❧ ❧❛✉t❡t✿ H0 ❛❜❧❡❤♥❡♥✱ ❢❛❧❧s |T (Y1, Y2)| > tn1+n2−2,1−α/2✳

❜✮ ❚❡st ❞❡r ●❧❡✐❝❤❤❡✐t ✈♦♥ ❊r✇❛rt✉♥❣s✇❡rt❡♥ ❜❡✐ ✈❡r❜✉♥❞❡♥❡♥ ❙t✐❝❤✲
♣r♦❜❡♥

❊s s❡✐❡♥ Y1 = (X11, . . . , X1n) ✉♥❞ Y2 = (X21, . . . , X2n)✱ n1 = n2 = n✱

Zj = X1j −X2j ∼ N(µ1 − µ2, σ
2), j = 1, . . . , n

✉♥❛❜❤ä♥❣✐❣ ✉♥❞ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t ♠✐t µi = EXij ✱ i = 1, 2✳ ❉✐❡ ❍②♣♦t❤❡✲
s❡♥ s✐♥❞✿ H0 : µ1 = µ2 ✈s✳ H1 : µ1 6= µ2 ❜❡✐ ✉♥❜❡❦❛♥♥t❡r ❱❛r✐❛♥③ σ2✳ ❆❧s
❚❡stst❛t✐st✐❦ ✈❡r✇❡♥❞❡♥ ✇✐r

T (Z1, . . . , Zn) =
√
n
Zn

Sn
,

✇♦❜❡✐

S2
n =

1

n− 1

n∑

j=1

(
Zj − Zn

)2
.

❯♥t❡r H0 ❣✐❧t ❞❛♥♥✿ T (Z1, . . . , Zn) ∼ tn−1✳ ❉✐❡ ❊♥ts❝❤❡✐❞✉♥❣sr❡❣❡❧ ❧❛✉t❡t✿ H0

✇✐r❞ ❛❜❣❡❧❡❤♥t✱ ❢❛❧❧s |T (z1, . . . , zn)| > tn−1,1−α/2✳

❝✮ ❚❡st ❞❡r ●❧❡✐❝❤❤❡✐t ✈♦♥ ❱❛r✐❛♥③❡♥ ❜❡✐ ✉♥❛❜❤ä♥❣✐❣❡♥ ●❛✉ÿs❝❤❡♥
❙t✐❝❤♣r♦❜❡♥

❊s s❡✐❡♥ Y1 = (X11, . . . , X1n1) ✉♥❞ Y2 = (X21, . . . , X2n2) ✉♥❛❜❤ä♥❣✐❣ ✉♥❞
✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t ♠✐t Xij ∼ N(µi, σ

2
i )✱ ✇♦❜❡✐ µi ✉♥❞ σ2

i ❜❡✐❞❡ ✉♥❜❡❦❛♥♥t s✐♥❞✳
❉✐❡ ❍②♣♦t❤❡s❡♥ s✐♥❞✿ H0 : σ2

1 = σ2
2 ✈s✳ H1 : σ2

1 6= σ2
2✳ ❆❧s ❚❡stst❛t✐st✐❦

✈❡r✇❡♥❞❡♥ ✇✐r

T (Y1, Y2) =
S2
2n2

S2
1n1

,



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✶✼

✇♦❜❡✐

S2
ini

=
1

ni − 1

n∑

j=1

(
Xij −Xini

)2
, i = 1, 2.

❯♥t❡r H0 ❣✐❧t✿ T (Y1, Y2) ∼ Fn2−1,n1−1✳ ❉✐❡ ❊♥ts❝❤❡✐❞✉♥❣sr❡❣❡❧ ❧❛✉t❡t✿ H0 ✇✐r❞
❛❜❣❡❧❡❤♥t✱ ❢❛❧❧s T (Y1, Y2) /∈

[
Fn2−1,n1−1,α/2, Fn2−1,n1−1,1−α/2

]
✳

❞✮ ❆s②♠♣t♦t✐s❝❤❡ ❩✇❡✐✲❙t✐❝❤♣r♦❜❡♥✲❚❡sts

• ❜❡✐ ❇❡r♥♦✉❧❧✐✲✈❡rt❡✐❧t❡♥ ❙t✐❝❤♣r♦❜❡♥

❊s ❣✐❧t Xij ∼ ❇❡r♥♦✉❧❧✐(pi)✱ j = 1, . . . , ni✱ i = 1, 2✳ ❉✐❡ ❍②♣♦t❤❡s❡♥ s✐♥❞
H0 : p1 = p2 ✈s✳ H1 : p1 6= p2✳ ❆❧s ❚❡stst❛t✐st✐❦ ✈❡r✇❡♥❞❡♥ ✇✐r

T (Y1, Y2) =
(X1n1 −X2n2)(1− I(X1n1 = o,X2n2 = o))√

X1n1 (1−X1n1 )

n1
+

X2n2 (1−X2n2 )

n2

❯♥t❡r H0 ❣✐❧t✿ T (Y1, Y2)
d→

n1,n2→∞
Y ∼ N(0, 1)✳ ❉✐❡ ❊♥ts❝❤❡✐❞✉♥❣sr❡❣❡❧

❧❛✉t❡t✿ H0 ✇✐r❞ ✈❡r✇♦r❢❡♥✱ ❢❛❧❧s |T (Y1, Y2)| > z1−α/2✳ ❉✐❡s ✐st ❡✐♥ ❚❡st
③✉♠ ❛s②♠♣t♦t✐s❝❤❡♥ ❙✐❣♥✐✜❦❛♥③♥✐✈❡❛✉ α✳

• ❜❡✐ P♦✐ss♦♥✲✈❡rt❡✐❧t❡♥ ❙t✐❝❤♣r♦❜❡♥

❊s s❡✐❡♥ Xij ✉♥❛❜❤ä♥❣✐❣✱ Xij ∼ P♦✐ss♦♥(λi), i = 1, 2✳ ❉✐❡ ❍②♣♦t❤❡s❡♥
s✐♥❞✿ H0 : λ1 = λ2 ✈s✳ H1 : λ1 6= λ2✳ ❆❧s ❚❡stst❛t✐st✐❦ ✈❡r✇❡♥❞❡♥ ✇✐r✿

T (Y1, Y2) =
X1n1 −X2n2√
X1n1
n1

+
X2n2
n2

❉✐❡ ❊♥ts❝❤❡✐❞✉♥❣sr❡❣❡❧ ❧❛✉t❡t✿ H0 ❛❜❧❡❤♥❡♥✱ ❢❛❧❧s |T (Y1, Y2)| > z1−α/2✳
❉✐❡s ✐st ❡✐♥ ❚❡st ③✉♠ ❛s②♠♣t♦t✐s❝❤❡♥ ◆✐✈❡❛✉ α✳

❇❡♠❡r❦✉♥❣ ✶✳✷✳✶✳ ❆s②♠♣t♦t✐s❝❤❡ ❚❡sts ❞ür❢❡♥ ♥✉r ❢ür ❣r♦ÿ❡ ❙t✐❝❤♣r♦❜❡♥✉♠✲
❢ä♥❣❡ ✈❡r✇❡♥❞❡t ✇❡r❞❡♥✳ ❇❡✐ ✐❤r❡r ❱❡r✇❡♥❞✉♥❣ ❢ür ❦❧❡✐♥❡ ❙t✐❝❤♣r♦❜❡♥ ❦❛♥♥ ❞❛s
❛s②♠♣t♦t✐s❝❤❡ ❙✐❣♥✐✜❦❛♥③♥✐✈❡❛✉ ♥✐❝❤t ❣❛r❛♥t✐❡rt ✇❡r❞❡♥✳

✶✳✸ ❘❛♥❞♦♠✐s✐❡rt❡ ❚❡sts

■♥ ❞✐❡s❡♠ ❆❜s❝❤♥✐tt ✇❡r❞❡♥ ✇✐r ❦❧❛ss✐s❝❤❡ ❊r❣❡❜♥✐ss❡ ✈♦♥ ◆❡②♠❛♥✲P❡❛rs♦♥ ü❜❡r ❞✐❡
❜❡st❡♥ ❚❡sts ♣räs❡♥t✐❡r❡♥✳ ❉❛❜❡✐ ✇❡r❞❡♥ r❛♥❞♦♠✐s✐❡rt❡ ❚❡sts ❡✐♥❡ ✇✐❝❤t✐❣❡ ❘♦❧❧❡ s♣✐❡❧❡♥✳

✶✳✸✳✶ ●r✉♥❞❧❛❣❡♥

●❡❣❡❜❡♥ s❡✐ ❡✐♥❡ ❩✉❢❛❧❧sst✐❝❤♣r♦❜❡ (X1, . . . , Xn) ✈♦♥ ✉♥❛❜❤ä♥❣✐❣❡♥ ✉♥❞ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧✲
t❡♥ ❩✉❢❛❧❧s✈❛r✐❛❜❧❡♥ Xi ♠✐t ❦♦♥❦r❡t❡r ❆✉s♣rä❣✉♥❣ (x1, . . . , xn)✳ ❙❡✐ ✉♥s❡r ❙t✐❝❤♣r♦❜❡♥✲
r❛✉♠ (B,B) ❡♥t✇❡❞❡r (Rn,BRn) ♦❞❡r (Nn

0 ,BNn
0
)✱ ❥❡ ♥❛❝❤❞❡♠✱ ♦❜ ❞✐❡ ❙t✐❝❤♣r♦❜❡♥✈❛r✐❛❜❧❡♥

Xi, i = 1, . . . , n ❛❜s♦❧✉t st❡t✐❣ ♦❞❡r ❞✐s❦r❡t ✈❡rt❡✐❧t s✐♥❞✳



✶✽ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

❍✐❡r ✇✐r❞ ③✉r ❊✐♥❢❛❝❤❤❡✐t ✐♠ ❋❛❧❧❡ ❡✐♥❡r ❞✐s❦r❡t ✈❡rt❡✐❧t❡♥ ❩✉❢❛❧❧s✈❛r✐❛❜❧❡ Xi ✐❤r ❞✐s✲
❦r❡t❡r ❲❡rt❡❜❡r❡✐❝❤ ♠✐t N0 = N∪{0} ❣❧❡✐❝❤❣❡s❡t③t✳ ❉❡r ❲❡rt❡❜❡r❡✐❝❤ s❡✐ ♠✐t ❡✐♥❡♠ ▼❛ÿ
µ ✈❡rs❡❤❡♥✱ ✇♦❜❡✐

µ =

{
▲❡❜❡s❣✉❡✲▼❛ÿ ❛✉❢ R, ❢❛❧❧s B = R

n,
❩ä❤❧♠❛ÿ ❛✉❢ N0, ❢❛❧❧s B = N

n
0 .

❉❡♠❡♥ts♣r❡❝❤❡♥❞ ❣✐❧t

∫
g(x)µ(dx) =

{∫
R
g(x)dx, ✐♠ ❛❜s♦❧✉t st❡t✐❣❡♥ ❋❛❧❧,

∑
x∈N0

g(x), ✐♠ ❞✐s❦r❡t❡♥ ❋❛❧❧.

❊s s❡✐ ③✉sät③❧✐❝❤ Xi ∼ Fθ✱ θ ∈ Θ ⊆ R
m✱ i = 1, . . . , n ✭♣❛r❛♠❡tr✐s❝❤❡s ▼♦❞❡❧❧✮✳ ❋ür

Θ = Θ0 ∪Θ1✱ Θ0 ∩Θ1 = ∅ ❢♦r♠✉❧✐❡r❡♥ ✇✐r ❞✐❡ ❍②♣♦t❤❡s❡♥ H0 : θ ∈ Θ0 ✈s✳ H1 : θ ∈ Θ1✱
❞✐❡ ♠✐t ❍✐❧❢❡ ❡✐♥❡s r❛♥❞♦♠✐s✐❡rt❡♥ ❚❡sts

ϕ(x) =





1, x ∈ K1,
γ ∈ (0, 1), x ∈ K01 x = (x1, . . . , xn),
0, x ∈ K0

❣❡t❡st❡t ✇❡r❞❡♥✳
■♠ ❋❛❧❧❡ x ∈ K01 ✇✐r❞ ♠✐t ❍✐❧❢❡ ❡✐♥❡r ❩✉❢❛❧❧s✈❛r✐❛❜❧❡ Y ∼ ❇❡r♥♦✉❧❧✐(ϕ(x)) ❡♥ts❝❤✐❡❞❡♥✱

♦❜ H0 ✈❡r✇♦r❢❡♥ ✇✐r❞ ✭Y = 1✮ ♦❞❡r ♥✐❝❤t ✭Y = 0✮✳

❉❡✜♥✐t✐♦♥ ✶✳✸✳✶✳ ✶✳ ❉✐❡ ●üt❡❢✉♥❦t✐♦♥ ❡✐♥❡s r❛♥❞♦♠✐s✐❡rt❡♥ ❚❡sts ϕ s❡✐

Gn(θ) = Gn(ϕ, θ) = Eθ ϕ(X1, . . . , Xn), θ ∈ Θ.

✷✳ ❉❡r ❚❡st ϕ ❤❛t ❞❛s ❙✐❣♥✐✜❦❛♥③♥✐✈❡❛✉ α ∈ [0, 1]✱ ❢❛❧❧s Gn(ϕ, θ) ≤ α, ∀ θ ∈ Θ0 ✐st✳
❉✐❡ ❩❛❤❧

sup
θ∈Θ0

Gn(ϕ, θ)

✇✐r❞ ❯♠❢❛♥❣ ❞❡s ❚❡sts ϕ ❣❡♥❛♥♥t✳ ❖✛❡♥s✐❝❤t❧✐❝❤ ✐st ❞❡r ❯♠❢❛♥❣ ❡✐♥❡s ◆✐✈❡❛✉✲α✲
❚❡sts ❦❧❡✐♥❡r ❣❧❡✐❝❤ α✳

✸✳ ❙❡✐ Ψ(α) ❞✐❡ ▼❡♥❣❡ ❛❧❧❡r ❚❡sts ③✉♠ ◆✐✈❡❛✉ α✳ ❉❡r ❚❡st ϕ1 ∈ Ψ(α) ✐st ✭❣❧❡✐❝❤♠äÿ✐❣✮
❜❡ss❡r ❛❧s ❚❡st ϕ2 ∈ Ψ(α)✱ ❢❛❧❧s Gn(ϕ1, θ) ≥ Gn(ϕ2, θ), θ ∈ Θ1✱ ❛❧s♦ ❢❛❧❧s ϕ1 ❡✐♥❡
❣röÿ❡r❡ ▼❛❝❤t ❜❡s✐t③t✳

✹✳ ❊✐♥ ❚❡st ϕ∗ ∈ Ψ(α) ✐st ✭❣❧❡✐❝❤♠äÿ✐❣✮ ❜❡st❡r ❚❡st ✐♥ Ψ(α)✱ ❢❛❧❧s

Gn(ϕ
∗, θ) ≥ Gn(ϕ, θ), ❢ür ❛❧❧❡ ❚❡sts ϕ ∈ Ψ(α), θ ∈ Θ1.



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✶✾

❇❡♠❡r❦✉♥❣ ✶✳✸✳✶✳ ✶✳ ❉❡✜♥✐t✐♦♥ ✶✳✸✳✶ ✶✮ ✐st ❡✐♥❡ ♦✛❡♥s✐❝❤t❧✐❝❤❡ ❱❡r❛❧❧❣❡♠❡✐♥❡r✉♥❣
❞❡r ❉❡✜♥✐t✐♦♥ ✶✳✶✳✸ ❞❡r ●üt❡❢✉♥❦t✐♦♥ ❡✐♥❡s ♥✐❝❤t✲r❛♥❞♦♠✐s✐❡rt❡♥ ❚❡sts ϕ✳ ◆ä♠❧✐❝❤✱
❢ür ϕ(x) = I(x ∈ K1) ❣✐❧t✿

Gn(ϕ, θ) = Eθ ϕ(X1, . . . , Xn)

= Pθ ((X1, . . . , Xn) ∈ K1)

= Pθ (H0 ❛❜❧❡❤♥❡♥) , θ ∈ Θ.

✷✳ ❊✐♥ ❜❡st❡r ❚❡st ϕ∗ ✐♥ Ψ(α) ❡①✐st✐❡rt ♥✐❝❤t ✐♠♠❡r✱ s♦♥❞❡r♥ ♥✉r ✉♥t❡r ❣❡✇✐ss❡♥ ❱♦r✲
❛✉ss❡t③✉♥❣❡♥ ❛♥ Pθ,Θ0,Θ1 ✉♥❞ Ψ(α)✳

✶✳✸✳✷ ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡sts ❜❡✐ ❡✐♥❢❛❝❤❡♥ ❍②♣♦t❤❡s❡♥

■♥ ❞✐❡s❡♠ ❆❜s❝❤♥✐tt ❜❡tr❛❝❤t❡♥ ✇✐r ❡✐♥❢❛❝❤❡ ❍②♣♦t❤❡s❡♥

H0 : θ = θ0 ✈s✳ H1 : θ = θ1 ✭✶✳✸✳✶✮

✇♦❜❡✐ θ0, θ1 ∈ Θ, θ1 6= θ0✳
❉❡♠❡♥ts♣r❡❝❤❡♥❞ s✐♥❞ Θ0 = {θ0}✱ Θ1 = {θ1}✳ ❲✐r s❡t③❡♥ ✈♦r❛✉s✱ ❞❛ÿ Fθi ❡✐♥❡ ❉✐❝❤t❡

gi(x) ❜❡③ü❣❧✐❝❤ µ ❜❡s✐t③t✱ i = 0, 1✳ ❋ü❤r❡♥ ✇✐r ❡✐♥✐❣❡ ❛❜❦ür③❡♥❞❡ ❇❡③❡✐❝❤♥✉♥❣❡♥ P0 = Pθ0 ✱
P1 = Pθ1 ✱ E0 = Eθ0 ✱ E1 = Eθ1 ❡✐♥✳ ❙❡✐ fi(x) =

∏n
j=1 gi(xj)✱ x = (x1, . . . , xn)✱ i = 0, 1 ❞✐❡

❉✐❝❤t❡ ❞❡r ❙t✐❝❤♣r♦❜❡ ✉♥t❡r H0 ❜③✇✳ H1✳

❉❡✜♥✐t✐♦♥ ✶✳✸✳✷✳ ❊✐♥ ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡st ✭◆P✲❚❡st✮ ❞❡r ❡✐♥❢❛❝❤❡♥ ❍②♣♦t❤❡s❡♥ ✐♥
✭✶✳✸✳✶✮ ✐st ❣❡❣❡❜❡♥ ❞✉r❝❤ ❞✐❡ ❘❡❣❡❧

ϕ(x) = ϕK(x) =





1, ❢❛❧❧s f1(x) > Kf0(x),
γ, ❢❛❧❧s f1(x) = Kf0(x),
0, ❢❛❧❧s f1(x) < Kf0(x)

✭✶✳✸✳✷✮

❢ür ❑♦♥st❛♥t❡♥ K > 0 ✉♥❞ γ ∈ [0, 1]✳

❇❡♠❡r❦✉♥❣ ✶✳✸✳✷✳ ✶✳ ▼❛♥❝❤♠❛❧ ✇❡r❞❡♥ K = K(x) ✉♥❞ γ = γ(x) ❛❧s ❋✉♥❦t✐♦♥❡♥
✈♦♥ x ✉♥❞ ♥✐❝❤t ❛❧s ❑♦♥st❛♥t❡♥ ❜❡tr❛❝❤t❡t✳

✷✳ ❉❡r ❆❜❧❡❤♥✉♥❣s❜❡r❡✐❝❤ ❞❡s ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡sts ϕK ✐st

K1 = {x ∈ B : f1(x) > Kf0(x)}.

✸✳ ❉❡r ❯♠❢❛♥❣ ❞❡s ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡sts ϕK ✐st

E0 ϕK(X1, . . . , Xn) = P0

(
f1(X1, . . . , Xn) > Kf0(X1, . . . Xn)

)

+ γP0

(
f1(X1, . . . , Xn) = Kf0(X1, . . . , Xn)

)



✷✵ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

✹✳ ❉✐❡ ❉❡✜♥✐t✐♦♥ ✶✳✸✳✷ ❦❛♥♥ ♠❛♥ äq✉✐✈❛❧❡♥t ❢♦❧❣❡♥❞❡r♠❛ÿ❡♥ ❣❡❜❡♥✿ ❲✐r ❞❡✜♥✐❡r❡♥
❡✐♥❡ ❚❡stst❛t✐st✐❦

T (x) =

{
f1(x)
f0(x)

, x ∈ B : f0(x) > 0,

∞, x ∈ B : f0(x) = 0.

❉❛♥♥ ✇✐r❞ ❞❡r ♥❡✉❡ ❚❡st

ϕ̃K(x) =





1, ❢❛❧❧s T (x) > K,
γ, ❢❛❧❧s T (x) = K,
0, ❢❛❧❧s T (x) < K

❡✐♥❣❡❢ü❤rt✱ ❞❡r ❢ür P0✲ ✉♥❞ P1✲ ❢❛st ❛❧❧❡ x ∈ B äq✉✐✈❛❧❡♥t ③✉ ϕk ✐st✳ ■♥ ❞❡r ❚❛t ❣✐❧t
ϕK(x) = ϕ̃K(x) ∀x ∈ B \ C✱ ✇♦❜❡✐ C = {x ∈ B : f0(x) = f1(x) = 0} ❞❛s P0✲ ❜③✇✳
P1✲▼❛ÿ ◆✉❧❧ ❜❡s✐t③t✳

■♥ ❞❡r ♥❡✉❡♥ ❋♦r♠✉❧✐❡r✉♥❣ ✐st ❞❡r ❯♠❢❛♥❣ ✈♦♥ ϕ ❜③✇✳ ϕ̃K ❣❧❡✐❝❤

E0 ϕ̃K = P0(T (X1, . . . , Xn) > K) + γ · P0 (T (X1, . . . , Xn) = K) .

❙❛t③ ✶✳✸✳✶✳ ❖♣t✐♠❛❧✐tätss❛t③
❊s s❡✐ ϕK ❡✐♥ ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡st ❢ür ❡✐♥ K > 0 ✉♥❞ γ ∈ [0, 1]✳ ❉❛♥♥ ✐st ϕK ❞❡r

❜❡st❡ ❚❡st ③✉♠ ◆✐✈❡❛✉ α = E0 ϕK s❡✐♥❡s ❯♠❢❛♥❣s✳

❇❡✇❡✐s✳ ❙❡✐ ϕ ∈ Ψ(α)✱ ❛❧s♦ E0 (ϕ(X1, . . . , Xn)) ≤ α✳ ❯♠ ③✉ ③❡✐❣❡♥✱ ❞❛ÿ ϕK ❜❡ss❡r ❛❧s
ϕ ✐st✱ ❣❡♥ü❣t ❡s ❜❡✐ ❡✐♥❢❛❝❤❡♥ ❍②♣♦t❤❡s❡♥ H0 ✉♥❞ H1 ③✉ ③❡✐❣❡♥✱ ❞❛ÿ E1 ϕK(X1, . . . , Xn)
≥ E1 ϕ(X1, . . . , Xn)✳ ❲✐r ❢ü❤r❡♥ ❞❛③✉ ❞✐❡ ❢♦❧❣❡♥❞❡♥ ▼❡♥❣❡♥ ❡✐♥✿

M+ = {x ∈ B : ϕK(x) > ϕ(x)}
M− = {x ∈ B : ϕK(x) < ϕ(x)}
M= = {x ∈ B : ϕK(x) = ϕ(x)}

❊s ❣✐❧t ♦✛❡♥s✐❝❤t❧✐❝❤ x ∈M+ ⇒ ϕK(x) > 0⇒ f1(x) ≥ Kf0(x)✱

x ∈M− ⇒ ϕK(x) < 1⇒ f1(x) ≤ Kf0(x) ✉♥❞ B = M+ ∪M− ∪M=.

❆❧s ❋♦❧❣❡r✉♥❣ ❡r❤❛❧t❡♥ ✇✐r

E1 (ϕK(X1, . . . , Xn)− ϕ(X1, . . . , Xn)) =

∫

B
(ϕK(x)− ϕ(x))f1(x)µ(dx)

=

(∫

M+
+

∫

M−

+

∫

M=

)
(ϕK(x)− ϕ(x))f1(x)µ(dx)

≥
∫

M+

(ϕK(x)− ϕ(x))Kf0(x)µ(dx)

+

∫

M−

(ϕK(x)− ϕ(x))Kf0(x)µ(dx)

=

∫

B
(ϕK(x)− ϕ(x))Kf0(x)µ(dx)

= K [E0 ϕK(X1, . . . , Xn)− E0 ϕ(X1, . . . , Xn)]

≥ K(α− α) = 0,



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✷✶

✇❡✐❧ ❜❡✐❞❡ ❚❡sts ❞❛s ◆✐✈❡❛✉ α ❤❛❜❡♥✳ ❉❛♠✐t ✐st ❞✐❡ ❇❡❤❛✉♣t✉♥❣ ❜❡✇✐❡s❡♥✳

❇❡♠❡r❦✉♥❣ ✶✳✸✳✸✳ ✶✳ ❉❛ ✐♠ ❇❡✇❡✐s γ ♥✐❝❤t ✈♦r❦♦♠♠t✱ ✇✐r❞ ❞❡rs❡❧❜❡ ❇❡✇❡✐s ✐♠
❋❛❧❧❡ ✈♦♥ γ(x) 6= ❝♦♥st ❣❡❧t❡♥✳

✷✳ ❆✉s ❞❡♠ ❇❡✇❡✐s ❢♦❧❣t ❞✐❡ ●ü❧t✐❣❦❡✐t ❞❡r ❯♥❣❧❡✐❝❤✉♥❣
∫

B
(ϕK(x)− ϕ(x)) (f1(x)−Kf0(x))µ(dx) ≥ 0

✐♠ ❋❛❧❧❡ ❞❡s ❦♦♥st❛♥t❡♥ K✱ ❜③✇✳

E1 (ϕK(X1, . . . , Xn)− ϕ(X1, . . . , Xn)) ≥
∫

B
(ϕK(x)− ϕ(x))K(x)f0(x)µ(dx)

✐♠ ❛❧❧❣❡♠❡✐♥❡♥ ❋❛❧❧✳

❙❛t③ ✶✳✸✳✷✳ ✭❋✉♥❞❛♠❡♥t❛❧❧❡♠♠❛ ✈♦♥ ◆❡②♠❛♥✲P❡❛rs♦♥✮

✶✳ ❩✉ ❡✐♥❡♠ ❜❡❧✐❡❜✐❣❡♥ α ∈ (0, 1) ❣✐❜t ❡s ❡✐♥❡♥ ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡st ϕK ♠✐t ❯♠❢❛♥❣
α✱ ❞❡r ❞❛♥♥ ♥❛❝❤ ❙❛t③ ✶✳✸✳✶ ❞❡r ❜❡st❡ ◆✐✈❡❛✉✲α✲❚❡st ✐st✳

✷✳ ■st ϕ ❡❜❡♥❢❛❧❧s ❜❡st❡r ❚❡st ③✉♠ ◆✐✈❡❛✉ α✱ s♦ ❣✐❧t ϕ(x) = ϕK(x) ❢ür µ✲❢❛st ❛❧❧❡
x ∈ K0 ∪K1 ❂ {x ∈ B : f1(x) 6= Kf0(x)} ✉♥❞ ϕK ❛✉s ❚❡✐❧ ✶✮✳

❇❡✇❡✐s✳ ✶✳ ❋ür ϕK(x) ❣✐❧t

ϕK(x) =





1, ❢❛❧❧s x ∈ K1 = {x : f1(x) > K · f0(x)} ,
γ, ❢❛❧❧s x ∈ K01 = {x : f1(x) = K · f0(x)} ,
0, ❢❛❧❧s x ∈ K0 = {x : f1(x) < K · f0(x)} .

❉❡r ❯♠❢❛♥❣ ✈♦♥ ϕK ✐st

P0 (T (X1, . . . , Xn) > K) + γP0 (T (X1, . . . , Xn) = K) = α, ✭✶✳✸✳✸✮

✇♦❜❡✐

T (x1, . . . , xn) =

{
f1(x1,...,xn)
f0(x1,...,xn)

, ❢❛❧❧s f0(x1, . . . , xn) > 0,

∞, s♦♥st✳

◆✉♥ s✉❝❤❡♥ ✇✐r ❡✐♥ K > 0 ✉♥❞ ❡✐♥ γ ∈ [0, 1]✱ s♦❞❛ÿ ●❧❡✐❝❤✉♥❣ ✭✶✳✸✳✸✮ st✐♠♠t✳ ❊s s❡✐
F̃0(x) = P0(T (X1, . . . , Xn) ≤ x)✱ x ∈ R ❞✐❡ ❱❡rt❡✐❧✉♥❣s❢✉♥❦t✐♦♥ ✈♦♥ T ✳ ❉❛ T ≥ 0
✐st✱ ❣✐❧t F̃0(x) = 0✱ ❢❛❧❧s x < 0✳ ❆✉ÿ❡r❞❡♠ ✐st P0(T (X1, . . . , Xn) < ∞) = 1✱ ❞❛s
❤❡✐ÿt F̃−1(α) ∈ [0,∞), α ∈ (0, 1)✳ ❉✐❡ ●❧❡✐❝❤✉♥❣ ✭✶✳✸✳✸✮ ❦❛♥♥ ❞❛♥♥ ❢♦❧❣❡♥❞❡r♠❛ÿ❡♥
✉♠❣❡s❝❤r✐❡❜❡♥ ✇❡r❞❡♥✿

1− F̃0(K) + γ
(
F̃0(K)− F̃0(K−)

)
= α, ✭✶✳✸✳✹✮

✇♦❜❡✐ F̃0(K−) = lim
x→K−0

F̃0(x)✳

❙❡✐ K = F̃−1
0 (1− α)✱ ❞❛♥♥ ❣✐❧t✿



✷✷ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

❛✮ ❋❛❧❧s K ❡✐♥ ❙t❡t✐❣❦❡✐ts♣✉♥❦t ✈♦♥ F̃0 ✐st✱ ✐st ●❧❡✐❝❤✉♥❣ ✭✶✳✸✳✹✮ ❡r❢ü❧❧t ❢ür ❛❧❧❡
γ ∈ [0, 1]✱ ③✉♠ ❇❡✐s♣✐❡❧ γ = 0✳

❜✮ ❋❛❧❧s K ❦❡✐♥ ❙t❡t✐❣❦❡✐ts♣✉♥❦t ✈♦♥ F̃0 ✐st✱ ❞❛♥♥ ✐st F̃0(K) − F̃0(K−) > 0✱
✇♦r❛✉s ❢♦❧❣t

γ =
α− 1 + F̃0(K)

F̃0(K)− F̃0(K−)
⇒ ❡s ❣✐❜t ❡✐♥❡♥ ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡st ③✉♠ ◆✐✈❡❛✉ α✳

✷✳ ❲✐r ❞❡✜♥✐❡r❡♥ M 6= = {x ∈ B : ϕ(x) 6= ϕK(x)}✳ ❊s ♠✉ss ❣❡③❡✐❣t ✇❡r❞❡♥✱ ❞❛ÿ

µ
(
(K0 ∪K1) ∩M 6=

)
= 0.

❉❛③✉ ❜❡tr❛❝❤t❡♥ ✇✐r

E1 ϕ(X1, . . . , Xn)− E1 ϕK(X1, . . . , Xn) = 0 (ϕ ✉♥❞ ϕK s✐♥❞ ❜❡st❡ ❚❡sts)

E0 ϕ(X1, . . . , Xn)− E0 ϕK(X1, . . . , Xn) ≤ 0 (ϕ ✉♥❞ ϕK s✐♥❞ α✲❚❡sts

♠✐t ❯♠❢❛♥❣ ✈♦♥ ϕK = α)

⇒
∫

B
(ϕ− ϕK) · (f1 −K · f0)µ(dx) ≥ 0.

■♥ ❇❡♠❡r❦✉♥❣ ✶✳✸✳✸ ✇✉r❞❡ ❜❡✇✐❡s❡♥✱ ❞❛ÿ
∫

B
(ϕ− ϕK)(f1 −K · f0)dµ ≤ 0

⇒
∫

B
(ϕ− ϕK)(f1 −K · f0)dµ = 0 =

∫

M 6= ∩ (K0 ∪K1)

(ϕ− ϕK)(f1 −Kf0)dµ.

❊s ❣✐❧t µ(M 6= ∩ (K0 ∪K1)) = 0✱ ❢❛❧❧s ❞❡r ■♥t❡❣r❛♥❞ (ϕK − ϕ)(f1 −Kf0) > 0 ❛✉❢
M 6= ✐st✳ ❲✐r ③❡✐❣❡♥✱ ❞❛ÿ

(ϕK − ϕ)(f1 −Kf0) > 0 ❢ür x ∈M 6= ✭✶✳✸✳✺✮

✐st✳ ❊s ❣✐❧t

f1 −Kf0 > 0⇒ ϕK − ϕ > 0,

f1 −Kf0 < 0⇒ ϕK − ϕ < 0,

✇❡✐❧

f1(x) > Kf0(x)⇒ ϕK(x) = 1

✉♥❞ ♠✐t ϕ(x) < 1⇒ ϕK(x)− ϕ(x) > 0 ❛✉❢ M 6=.

f1(x) < Kf0(x)⇒ ϕK(x) = 0

✉♥❞ ♠✐t ϕ(x) > 0⇒ ϕK(x)− ϕ(x) < 0 ❛✉❢ M 6=.



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✷✸

❉❛r❛✉s ❢♦❧❣t ❞✐❡ ●ü❧t✐❣❦❡✐t ❞❡r ❯♥❣❧❡✐❝❤✉♥❣ ✭✶✳✸✳✺✮ ✉♥❞ s♦♠✐t

µ
(
(K0 ∪K1) ∩M 6=

)
= 0.

❇❡♠❡r❦✉♥❣ ✶✳✸✳✹✳ ❋❛❧❧s ϕ ✉♥❞ ϕK ❜❡st❡ α✲❚❡sts s✐♥❞✱ ❞❛♥♥ s✐♥❞ s✐❡ P0✲ ❜③✇✳ P1✲ ❢❛st
s✐❝❤❡r ❣❧❡✐❝❤✳

❇❡✐s♣✐❡❧ ✶✳✸✳✶ ✭◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡st ❢ür ❞❡♥ P❛r❛♠❡t❡r ❞❡r P♦✐ss♦♥✈❡rt❡✐❧✉♥❣✮✳ ❊s s❡✐
(X1, . . . , Xn) ❡✐♥❡ ❩✉❢❛❧❧sst✐❝❤♣r♦❜❡ ♠✐t Xi ∼ P♦✐ss♦♥(λ), λ > 0✱ ✇♦❜❡✐ Xi ✉♥❛❜❤ä♥❣✐❣
✉♥❞ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t s✐♥❞ ❢ür i = 1, . . . , n✳ ❲✐r t❡st❡♥ ❞✐❡ ❍②♣♦t❤❡s❡♥ H0 : λ = λ0 ✈s✳
H1 : λ = λ1✳ ❉❛❜❡✐ ✐st

gi(x) = e−λi
λx
i

x!
, x ∈ N0, i = 0, 1,

fi(x) = fi(x1, . . . , xn) =

n∏

j=1

gi(xj) =

n∏

j=1

e−λi
λ
xj

i

xj !
= e−nλi · λ

∑n
j=1 xj

i

(x1! · . . . · xn!)

❢ür i = 0, 1✳ ❉✐❡ ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡stst❛t✐st✐❦ ✐st

T (x1, . . . , xn) =

{
f1(x)
f0(x)

= e−n(λ1−λ0) · (λ1/λ0)
∑n

j=1 xj , ❢❛❧❧s x1, . . . , xn ∈ N0,

∞, s♦♥st✳
.

❉✐❡ ◆❡②♠❛♥✲P❡❛rs♦♥✲❊♥ts❝❤❡✐❞✉♥❣sr❡❣❡❧ ❧❛✉t❡t

ϕK(x1, . . . , xn) =





1, ❢❛❧❧s T (x1, . . . , xn) > K,
γ, ❢❛❧❧s T (x1, . . . , xn) = K,
0, ❢❛❧❧s T (x1, . . . , xn) < K.

❲✐r ✇ä❤❧❡♥ K > 0✱ γ ∈ [0, 1]✱ s♦❞❛ÿ ϕK ❞❡♥ ❯♠❢❛♥❣ α ❤❛t✳ ❉❛③✉ ❧ös❡♥ ✇✐r

α = P0(T (X1, . . . , Xn) > K) + γP0(T (X1, . . . , Xn) = K)

❜❡③ü❣❧✐❝❤ γ ✉♥❞ K ❛✉❢✳

P0(T (X1, . . . , Xn) > K) = P0(log T (X1, . . . , Xn) > logK)

= P0


−n(λ1 − λ0) +

n∑

j=1

Xj · log
(
λ1

λ0

)
> logK


 = P0




n∑

j=1

Xj > A




✇♦❜❡✐ A :=

⌊
logK + n · (λ1 − λ0)

log λ1
λ0

⌋
,

❢❛❧❧s ③✉♠ ❇❡✐s♣✐❡❧ λ1 > λ0✳ ■♠ ❋❛❧❧❡ λ1 < λ0 ä♥❞❡rt s✐❝❤ ❞❛s > ❛✉❢ < ✐♥ ❞❡r ❲❛❤rs❝❤❡✐♥✲
❧✐❝❤❦❡✐t✳



✷✹ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

❲❡❣❡♥ ❞❡r ❋❛❧t✉♥❣sst❛❜✐❧✐tät ❞❡r P♦✐ss♦♥✈❡rt❡✐❧✉♥❣ ✐st ✉♥t❡r H0

n∑

j=1

Xi ∼ P♦✐ss♦♥(nλ0),

❛❧s♦ ✇ä❤❧❡♥ ✇✐r K ❛❧s ♠✐♥✐♠❛❧❡✱ ♥✐❝❤t♥❡❣❛t✐✈❡ ❩❛❤❧✱ ❢ür ❞✐❡ ❣✐❧t✿ P0

(∑n
j=1Xj > A

)
≤ α✱

✉♥❞ s❡t③❡♥

γ =
α− P0(

∑n
j=1Xj > A)

P0(
∑n

j=1Xj = A)
,

✇♦❜❡✐

P0




n∑

j=1

Xj > A


 = 1−

A∑

j=0

e−λ0n (λ0n)
j

j!
,

P0




n∑

j=1

Xj = A


 = e−λ0n (λ0n)

A

A!
.

❙♦♠✐t ❤❛❜❡♥ ✇✐r ❞✐❡ P❛r❛♠❡t❡rK ✉♥❞ γ ❣❡❢✉♥❞❡♥ ✉♥❞ ❞❛♠✐t ❡✐♥❡♥ ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡st
ϕK ❦♦♥str✉✐❡rt✳

✶✳✸✳✸ ❊✐♥s❡✐t✐❣❡ ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡sts

❇✐s❤❡r ❜❡tr❛❝❤t❡t❡♥ ✇✐r ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡sts ❢ür ❡✐♥❢❛❝❤❡ ❍②♣♦t❤❡s❡♥ ❞❡r ❋♦r♠ Hi :
θ = θi✱ i = 0, 1✳ ■♥ ❞✐❡s❡♠ ❆❜s❝❤♥✐tt ✇♦❧❧❡♥ ✇✐r ❡✐♥s❡✐t✐❣❡ ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡sts ❡✐♥❢ü❤✲
r❡♥✱ ❢ür ❍②♣♦t❤❡s❡♥ ❞❡r ❋♦r♠ H0 : θ ≤ θ0 ✈s✳ H1 : θ > θ0✳
❩✉♥ä❝❤st ❦♦♥str✉✐❡r❡♥ ✇✐r ❡✐♥❡♥ ❚❡st ❢ür ❞✐❡s❡ ❍②♣♦t❤❡s❡♥✿ ❙❡✐ (X1, . . . , Xn) ❡✐♥❡ ❩✉✲

❢❛❧❧sst✐❝❤♣r♦❜❡✱ Xi s❡✐❡♥ ✉♥❛❜❤ä♥❣✐❣ ✉♥❞ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t ♠✐t

Xi ∼ Fθ ∈ Λ = {Fθ : θ ∈ Θ},

✇♦❜❡✐ Θ ⊂ R ♦✛❡♥ ✐st ✉♥❞ Λ ❡✐♥❞❡✉t✐❣ ♣❛r❛♠❡tr✐s✐❡rt✱ ❞❛s ❤❡✐ÿt

θ 6= θ′ ⇒ Fθ 6= Fθ′ .

❋❡r♥❡r ❜❡s✐t③❡ Fθ ❡✐♥❡ ❉✐❝❤t❡ gθ ❜❡③ü❣❧✐❝❤ ❞❡s ▲❡❜❡s❣✉❡✲▼❛ÿ❡s ✭❜③✇✳ ❩ä❤❧♠❛ÿ❡s✮ ❛✉❢ R
✭❜③✇✳ N0✮✳ ❉❛♥♥ ✐st

fθ(x) =

n∏

j=1

gθ(xj), x = (x1, . . . , xn)

❡✐♥❡ ❉✐❝❤t❡ ✈♦♥ (X1, . . . , Xn) ❜❡③ü❣❧✐❝❤ µ ❛✉❢ B✳



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✷✺

❉❡✜♥✐t✐♦♥ ✶✳✸✳✸✳ ❊✐♥❡ ❱❡rt❡✐❧✉♥❣ ❛✉❢ B ♠✐t ❉✐❝❤t❡ fθ ❣❡❤ört ③✉r ❑❧❛ss❡ ✈♦♥ ❱❡rt❡✐✲
❧✉♥❣❡♥ ♠✐t ♠♦♥♦t♦♥❡♥ ❉✐❝❤t❡❦♦❡✣③✐❡♥t❡♥ ✐♥ T ✱ ❢❛❧❧s ❡s ❢ür ❛❧❧❡ θ < θ′ ❡✐♥❡ ❋✉♥❦t✐♦♥
h : R × Θ2 → R ∪∞✱ ❞✐❡ ♠♦♥♦t♦♥ ✇❛❝❤s❡♥❞ ✐♥ t ∈ R ✐st ✉♥❞ ❡✐♥❡ ❙t❛t✐st✐❦ T : B → R

❣✐❜t✱ ♠✐t ❞❡r ❊✐❣❡♥s❝❤❛❢t

fθ′(x)

fθ(x)
= h(T (x), θ, θ′),

✇♦❜❡✐

h(T (x), θ, θ′) =∞ ❢ür ❛❧❧❡ x ∈ B : fθ(x) = 0, fθ′(x) > 0.

❉❡r ❋❛❧❧ fθ(x) = fθ′(x) = 0 tr✐tt ♠✐t PΘ✲ ❜③✇✳ PΘ′✲❲❛❤rs❝❤❡✐♥❧✐❝❤❦❡✐t 0 ❛✉❢✳

❉❡✜♥✐t✐♦♥ ✶✳✸✳✹✳ ❊s s❡✐ Qθ ❡✐♥❡ ❱❡rt❡✐❧✉♥❣ ❛✉❢ (B,B) ♠✐t ❞❡r ❉✐❝❤t❡ fθ ❜③❣❧✳ µ✳ Qθ

❣❡❤ört ③✉r ❡✐♥♣❛r❛♠❡tr✐s❝❤❡♥ ❊①♣♦♥❡♥t✐❛❧❦❧❛ss❡ (θ ∈ Θ ⊂ R ♦✛❡♥)✱ ❢❛❧❧s ❞✐❡ ❉✐❝❤t❡
❢♦❧❣❡♥❞❡ ❋♦r♠ ❤❛t✿

fθ(x) = exp {c(θ) · T (x) + a(θ)} · l(x), x = (x1, . . . , xn) ∈ B,

✇♦❜❡✐ c(θ) ❡✐♥❡ ♠♦♥♦t♦♥ st❡✐❣❡♥❞❡ ❋✉♥❦t✐♦♥ ✐st✱ ✉♥❞ ❱❛rθ T (X1, . . . , Xn) > 0, θ ∈ Θ✳

▲❡♠♠❛ ✶✳✸✳✶✳ ❱❡rt❡✐❧✉♥❣❡♥ ❛✉s ❞❡r ❡✐♥♣❛r❛♠❡tr✐s❝❤❡♥ ❊①♣♦♥❡♥t✐❛❧❢❛♠✐❧✐❡ ❜❡s✐t③❡♥ ❡✐♥❡♥
♠♦♥♦t♦♥❡♥ ❉✐❝❤t❡❦♦❡✣③✐❡♥t❡♥✳

❇❡✇❡✐s✳ ❊s s❡✐ Qθ ❛✉s ❞❡r ❡✐♥♣❛r❛♠❡tr✐s❝❤❡♥ ❊①♣♦♥❡♥t✐❛❧❢❛♠✐❧✐❡ ♠✐t ❞❡r ❉✐❝❤t❡

fθ(x) = exp {c(θ) · T (x) + a(θ)} · l(x).

❋ür θ < θ′ ✐st ❞❛♥♥

fθ′(x)

fθ(x)
= exp

{
(c(θ′)− c(θ)) · T (x) + a(θ′)− a(θ)

}

♠♦♥♦t♦♥ ❜❡③ü❣❧✐❝❤ T ✱ ✇❡✐❧ c(θ′) − c(θ) > 0 ✇❡❣❡♥ ❞❡r ▼♦♥♦t♦♥✐❡ ✈♦♥ c(θ)✳ ❆❧s♦ ❜❡s✐t③t
fθ ❡✐♥❡♥ ♠♦♥♦t♦♥❡♥ ❉✐❝❤t❡❦♦❡✣③✐❡♥t❡♥✳

❇❡✐s♣✐❡❧ ✶✳✸✳✷✳ ✶✳ ◆♦r♠❛❧✈❡rt❡✐❧t❡ ❙t✐❝❤♣r♦❜❡♥✈❛r✐❛❜❧❡♥

❊s s❡✐❡♥ Xi ∼ N(µ, σ2
0)✱ i = 1, . . . , n✱ ✉♥❛❜❤ä♥❣✐❣❡✱ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧❡ ❩✉❢❛❧❧s✈❛r✐❛✲

❜❧❡♥✱ ♠✐t ✉♥❜❡❦❛♥♥t❡♠ P❛r❛♠❡t❡r µ ✉♥❞ ❜❡❦❛♥♥t❡r ❱❛r✐❛♥③ σ2
0 ✭❍✐❡r ✇✐r❞ µ ❢ür ❞✐❡

❇❡③❡✐❝❤♥✉♥❣ ❞❡s ❊r✇❛rt✉♥❣s✇❡rt❡s ✈♦♥ Xi ✉♥❞ ♥✐❝❤t ❞❡s ▼❛ÿ❡s ❛✉❢ Rn ✈❡r✇❡♥❞❡t✳



✷✻ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

✭✇✐❡ ❢rü❤❡r✮✮✳ ❉✐❡ ❉✐❝❤t❡ ❞❡s ❩✉❢❛❧❧s✈❡❦t♦rs X = (X1, . . . , Xn)
⊤ ✐st ❣❧❡✐❝❤

fµ(x) =
n∏

i=1

gµ(xi) =
n∏

i=1

1√
2πσ2

0

e
− (xi−µ)2

2σ2
0

=
1

(2πσ2
0)

n/2
exp

{
− 1

2σ2
0

n∑

i=1

(xi − µ)2

}

=
1

(2πσ2
0)

n/2
exp

{
− 1

2σ2
0

(
n∑

i=1

x2i − 2µ
n∑

i=1

xi + µ2n

)}

= exp
( µ

σ2
0︸︷︷︸

c(µ)

·
n∑

i=1

xi

︸ ︷︷ ︸
T (x)

− µ2n

2σ2
0︸︷︷︸

a(µ)

)
· 1

(2πσ2
0)

n/2
exp


−

n∑
i=1

x2i

2σ2
0




︸ ︷︷ ︸
l(x)

.

❆❧s♦ ❣❡❤ört N(µ, σ2
0) ③✉r ❡✐♥♣❛r❛♠❡tr✐s❝❤❡♥ ❊①♣♦♥❡♥t✐❛❧❦❧❛ss❡ ♠✐t c(µ) = µ

σ2
0
✉♥❞

T (x) =
n∑

i=1
xi✳

✷✳ ❇✐♥♦♠✐❛❧✈❡rt❡✐❧t❡ ❙t✐❝❤♣r♦❜❡♥✈❛r✐❛❜❧❡♥

❊s s❡✐❡♥ Xi ∼ ❇✐♥(k, p) ✉♥❛❜❤ä♥❣✐❣ ✉♥❞ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t✱ i = 1, . . . , n✳ ❉❡r P❛✲
r❛♠❡t❡r p s❡✐ ✉♥❜❡❦❛♥♥t✳ ❉✐❡ ❩ä❤❧❞✐❝❤t❡ ❞❡s ❩✉❢❛❧❧s✈❡❦t♦rs X = (X1, . . . , Xn)

⊤

✐st

fp(x) = Pp (Xi = xi, i = 1, . . . , n)

=

n∏

i=1

(
k

xi

)
pxi(1− p)k−xi = p

n∑
i=1

xi · (1− p)nk

(1− p)

n∑
i=1

xi

·
n∏

i=1

(
k

xi

)

= exp
{( n∑

i=1

xi

︸ ︷︷ ︸
T (x)

)
· log

(
p

1− p

)

︸ ︷︷ ︸
c(p)

+nk · log(1− p)︸ ︷︷ ︸
a(p)

}
·

n∏

i=1

(
k

xi

)

︸ ︷︷ ︸
l(x)

,

❛❧s♦ ❣❡❤ört ❇✐♥(n, p) ③✉r ❡✐♥♣❛r❛♠❡tr✐s❝❤❡♥ ❊①♣♦♥❡♥t✐❛❧❦❧❛ss❡ ♠✐t

c(p) = log

(
p

1− p

)

✉♥❞

T (x) =

n∑

i=1

xi.



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✷✼

▲❡♠♠❛ ✶✳✸✳✷✳ ❋❛❧❧s ϕK ❞❡r ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡st ❞❡r ❍②♣♦t❤❡s❡♥ H0 : θ = θ0 ✈s✳
H1 : θ = θ1 ✐st✱ ❞❛♥♥ ❣✐❧t✿

µ({x ∈ B : f1(x) 6= Kf0(x)}︸ ︷︷ ︸
K0∪K1

) > 0.

❇❡✇❡✐s✳ ❲❡❣❡♥ θ0 6= θ1 ✉♥❞ ❞❡r ❡✐♥❞❡✉t✐❣❡♥ P❛r❛♠❡tr✐s✐❡r✉♥❣ ❣✐❧t f0 6= f1 ❛✉❢ ❡✐♥❡r
▼❡♥❣❡ ♠✐t µ✲▼❛ÿ > 0✳
◆✉♥ s❡✐ µ(K0 ∪K1) = 0✳ ❉❛r❛✉s ❢♦❧❣t✱ ❞❛ÿ f1(x) = K · f0(x) µ✲❢❛st s✐❝❤❡r✳ ❉❛s ❤❡✐ÿt

1 =

∫

B
f1(x)dx = K ·

∫

B
f0(x)dx,

✇♦r❛✉s ❢♦❧❣t✱ ❞❛ÿ K = 1 ✉♥❞ f1(x) = f0(x) µ✲❢❛st s✐❝❤❡r✱ ✇❛s ❛❜❡r ❡✐♥ ❲✐❞❡rs♣r✉❝❤ ③✉r
❡✐♥❞❡✉t✐❣❡♥ P❛r❛♠❡tr✐s✐❡r✉♥❣ ✐st✳

■♠ ❋♦❧❣❡♥❞❡♥ s❡✐ (X1, . . . , Xn) ❡✐♥❡ ❙t✐❝❤♣r♦❜❡ ✈♦♥ ✉♥❛❜❤ä♥❣✐❣❡♥✱ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t❡♥
❩✉❢❛❧❧s✈❛r✐❛❜❧❡♥ ♠✐t Xi ∼ ❉✐❝❤t❡ gθ✱ i = 1, . . . , n ✉♥❞

(X1, . . . , Xn) ∼ ❉✐❝❤t❡ fθ(x) =

n∏

i=1

gθ(xi)

❛✉s ❞❡r ❑❧❛ss❡ ❞❡r ❱❡rt❡✐❧✉♥❣❡♥ ♠✐t ♠♦♥♦t♦♥❡♥ ❉✐❝❤t❡❦♦❡✣③✐❡♥t❡♥ ✉♥❞ ❡✐♥❡r ❙t❛t✐st✐❦
T (X1, . . . , Xn)✳
❲✐r ❜❡tr❛❝❤t❡♥ ❞✐❡ ❍②♣♦t❤❡s❡♥ H0 : θ ≤ θ0 ✈s✳ H1 : θ > θ0 ✉♥❞ ❞❡♥ ◆❡②♠❛♥✲P❡❛rs♦♥✲

❚❡st✿

ϕ∗
K∗(x) =





1, ❢❛❧❧s T (x) > K∗,
γ∗, ❢❛❧❧s T (x) = K∗,
0, ❢❛❧❧s T (x) < K∗

✭✶✳✸✳✻✮

❢ür K∗ ∈ R ✉♥❞ γ∗ ∈ [0, 1]✳ ❉✐❡ ●üt❡❢✉♥❦t✐♦♥ ✈♦♥ ϕ∗
K∗ ❜❡✐ θ0 ✐st

Gn(θ0) = E0 ϕ
∗
K∗ = P0 (T (X1, . . . , Xn) > K∗) + γ∗ · P0 (T (X1, . . . , Xn) = K∗)

❙❛t③ ✶✳✸✳✸✳ ✶✳ ❋❛❧❧s α = E0 ϕ
∗
K∗ > 0✱ ❞❛♥♥ ✐st ❞❡r s♦❡❜❡♥ ❞❡✜♥✐❡rt❡ ◆❡②♠❛♥✲P❡❛r✲

s♦♥✲❚❡st ❡✐♥ ❜❡st❡r ❚❡st ❞❡r ❡✐♥s❡✐t✐❣❡♥ ❍②♣♦t❤❡s❡♥ H0 ✈s✳ H1 ③✉♠ ◆✐✈❡❛✉ α✳

✷✳ ❩✉ ❥❡❞❡♠ ❑♦♥✜❞❡♥③♥✐✈❡❛✉ α ∈ (0, 1) ❣✐❜t ❡s ❡✐♥ K∗ ∈ R ✉♥❞ γ∗ ∈ [0, 1]✱ s♦❞❛ÿ ϕ∗
K∗

❡✐♥ ❜❡st❡r ❚❡st ③✉♠ ❯♠❢❛♥❣ α ✐st✳

✸✳ ❉✐❡ ●üt❡❢✉♥❦t✐♦♥ Gn(θ) ✈♦♥ ϕ∗
K∗(θ) ✐st ♠♦♥♦t♦♥ ✇❛❝❤s❡♥❞ ✐♥ θ✳ ❋❛❧❧s 0 < Gn(θ) <

1✱ ❞❛♥♥ ✐st s✐❡ s♦❣❛r str❡♥❣ ♠♦♥♦t♦♥ ✇❛❝❤s❡♥❞✳

❇❡✇❡✐s✳ ✶✳ ❲ä❤❧❡ θ1 > θ0 ✉♥❞ ❜❡tr❛❝❤t❡ ❞✐❡ ❡✐♥❢❛❝❤❡♥ ❍②♣♦t❤❡s❡♥ H ′
0 : θ = θ0 ✉♥❞

H ′
1 : θ = θ1✳ ❙❡✐

ϕK(x) =





1, f1(x) > Kf0(x),
γ, f1(x) = Kf0(x),
0, f1(x) < Kf0(x)



✷✽ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

❞❡r ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡st ❢ür H ′
0, H

′
1 ♠✐t K > 0✳ ❉❛ fθ ❞❡♥ ♠♦♥♦t♦♥❡♥ ❉✐❝❤t❡❦♦✲

❡✣③✐❡♥t❡♥ ♠✐t ❙t❛t✐st✐❦ T ❜❡s✐t③t✱

f1(x)

f0(x)
= h(T (x), θ0, θ1),

❡①✐st✐❡rt ❡✐♥ K > 0✱ s♦ ❞❛ss
{
x : f1(x)/f0(x)

> K
< K

}
⊂
{
T (x)

> K∗

< K∗

}
♠✐t K = h(K∗, θ0, θ1).

ϕK ✐st ❡✐♥ ❜❡st❡r ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡st ③✉♠ ◆✐✈❡❛✉ α = E0 ϕK = E0 ϕ
∗
K∗ ✳ ❆✉s

α > 0 ❢♦❧❣t K <∞✱ ❞❡♥♥ ❛✉s K =∞ ✇ür❞❡ ❢♦❧❣❡♥

0 < α = E0 ϕK ≤ P0 (T (X1, . . . , Xn) ≥ K∗) ≤ P0

(
f1(X1, . . . , Xn)

f0(X1, . . . , Xn)
=∞

)

= P0 (f1(X1, . . . , Xn) > 0, f0(X1, . . . , Xn) = 0)

=

∫

B
I (f1(x) > 0, f0(x) = 0) · f0(x)µ(dx) = 0.

❋ür ❞❡♥ ❚❡st ϕ∗
K∗ ❛✉s ✭✶✳✸✳✻✮ ❣✐❧t ❞❛♥♥

ϕ∗(x) =





1, ❢❛❧❧s f1(x)/f0(x) > K,
γ∗(x), ❢❛❧❧s f1(x)/f0(x) = K,
0, ❢❛❧❧s f1(x)/f0(x) < K,

✇♦❜❡✐ γ∗(x) ∈ {γ∗, 0, 1}✳ ❉❛r❛✉s ❢♦❧❣t✱ ❞❛ÿ ϕ∗
K∗ ❡✐♥ ❜❡st❡r ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡st ✐st

❢ür H ′
0 ✈s✳ H

′
1 ✭✈❡r❣❧❡✐❝❤❡ ❇❡♠❡r❦✉♥❣ ✶✳✸✳✷✱ ✶✳✮ ✉♥❞ ❇❡♠❡r❦✉♥❣ ✶✳✸✳✸✮ ❢ür ❜❡❧✐❡❜✐❣❡

θ1 > θ0✳ ❉❡s❤❛❧❜ ✐st ϕ∗
K∗ ❡✐♥ ❜❡st❡r ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡st ❢ür H ′′

0 : θ = θ0 ✈s✳
H ′′

1 : θ > θ0 ✐st✳

❉✐❡ s❡❧❜❡ ❇❡❤❛✉♣t✉♥❣ ❡r❤❛❧t❡♥ ✇✐r ❛✉s ❞❡♠ ❚❡✐❧ ✸✳ ❞❡s ❙❛t③❡s ❢ür H0 : θ ≤ θ0 ✈s✳
H1 : θ > θ0✱ ✇❡✐❧ ❞❛♥♥ Gn(θ) ≤ Gn(θ0) = α ❢ür ❛❧❧❡ θ < θ0✳

✷✳ ❙✐❡❤❡ ❇❡✇❡✐s ③✉ ❙❛t③ ✶✳✸✳✷✱ ✶✳✮✳

✸✳ ❲✐r ♠üss❡♥ ③❡✐❣❡♥✱ ❞❛ÿ Gn(θ) ♠♦♥♦t♦♥ ✐st✳ ❉❛③✉ ✇ä❤❧❡♥ ✇✐r θ1 < θ2 ✉♥❞ ③❡✐❣❡♥✱
❞❛ÿ α1 = Gn(θ1) ≤ Gn(θ2)✳ ❲✐r ❜❡tr❛❝❤t❡♥ ❞✐❡ ♥❡✉❡♥✱ ❡✐♥❢❛❝❤❡♥ ❍②♣♦t❤❡s❡♥ H ′′

0 :
θ = θ1 ✈s✳ H ′′

1 : θ = θ2✳ ❉❡r ❚❡st ϕ∗
K∗ ❦❛♥♥ ❣❡♥❛✉s♦ ✇✐❡ ✐♥ ✶✳ ❛❧s ◆❡②♠❛♥✲P❡❛rs♦♥✲

❚❡st ❞❛r❣❡st❡❧❧t ✇❡r❞❡♥ ✭❢ür ❞✐❡ ❍②♣♦t❤❡s❡♥ H ′′
0 ✉♥❞ H ′′

1 ✮✱ ❞❡r ❡✐♥ ❜❡st❡r ❚❡st ③✉♠
◆✐✈❡❛✉ α1 ✐st✳ ❇❡tr❛❝❤t❡♥ ✇✐r ❡✐♥❡♥ ✇❡✐t❡r❡♥ ❦♦♥st❛♥t❡♥ ❚❡st ϕ(x) = α1✳ ❉❛♥♥ ✐st
α1 = Eθ2 ϕ ≤ Eθ2 ϕ

∗
K∗ = Gn(θ2)✳ ❉❛r❛✉s ❢♦❧❣t✱ ❞❛ÿ Gn(θ1) ≤ Gn(θ2)✳

◆✉♥ ③❡✐❣❡♥ ✇✐r✱ ❞❛ÿ ❢ür Gn(θ) ∈ (0, 1) ❣✐❧t✿ Gn(θ1) < Gn(θ2)✳ ❲✐r ♥❡❤♠❡♥ ❛♥✱ ❞❛ÿ
α1 = Gn(θ1) = Gn(θ2) ✉♥❞ θ1 < θ2 ❢ür α ∈ (0, 1)✳ ❊s ❢♦❧❣t✱ ❞❛ÿ ϕ(x) = α1 ❛✉❝❤ ❡✐♥
❜❡st❡r ❚❡st ❢ür H ′′

0 ✉♥❞ H ′′
1 ✐st✳ ❆✉s ❙❛t③ ✶✳✸✳✷✱ ✷✳✮ ❢♦❧❣t

µ({x ∈ B : ϕ(x)︸︷︷︸
=α1

6= ϕ∗
K∗(x)}) = 0 ❛✉❢ K0 ∪K1 = {f1(x) 6= Kf0(x)},



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✷✾

✇❛s ❡✐♥ ❲✐❞❡rs♣r✉❝❤ ③✉r ❇❛✉❛rt ❞❡s ❚❡sts ϕK∗ ✐st✱ ❞❡r ❛✉❢ K0 ∪ K1 ♥✐❝❤t ❣❧❡✐❝❤
α1 ∈ (0, 1) s❡✐♥ ❦❛♥♥✳

❇❡♠❡r❦✉♥❣ ✶✳✸✳✺✳ ✶✳ ❉❡r ❙❛t③ ✶✳✸✳✸ ✐st ❣❡♥❛✉s♦ ❛✉❢ ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡sts ❞❡r ❡✐♥✲
s❡✐t✐❣❡♥ ❍②♣♦t❤❡s❡♥

H0 : θ ≥ θ0 ✈s✳ H1 : θ < θ0

❛♥✇❡♥❞❜❛r✱ ♠✐t ❞❡♠ ❡♥ts♣r❡❝❤❡♥❞❡♥ ❯♥t❡rs❝❤✐❡❞

θ 7→ −θ
T 7→ −T

❙♦♠✐t ❡①✐st✐❡rt ❞❡r ❜❡st❡ α✲❚❡st ❛✉❝❤ ✐♥ ❞✐❡s❡♠ ❋❛❧❧✳

✷✳ ▼❛♥ ❦❛♥♥ ③❡✐❣❡♥✱ ❞❛ÿ ❞✐❡ ●üt❡❢✉♥❦t✐♦♥ Gn(ϕ
∗
K∗ , θ) ❞❡s ❜❡st❡♥ ◆❡②♠❛♥✲P❡❛rs♦♥✲

❚❡sts ❛✉❢ Θ0 = (−∞, θ0) ❢♦❧❣❡♥❞❡ ▼✐♥✐♠❛❧✐täts❡✐❣❡♥s❝❤❛❢t ❜❡s✐t③t✿

Gn(ϕ
∗
K∗ , θ) ≤ Gn(ϕ, θ) ∀ϕ ∈ Ψ(α), θ ≤ θ0

❇❡✐s♣✐❡❧ ✶✳✸✳✸✳ ❲✐r ❜❡tr❛❝❤t❡♥ ❡✐♥❡ ♥♦r♠❛❧✈❡rt❡✐❧t❡ ❙t✐❝❤♣r♦❜❡ (X1, . . . , Xn) ✈♦♥ ✉♥❛❜✲
❤ä♥❣✐❣❡♥ ✉♥❞ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t❡♥ ❩✉❢❛❧❧s✈❛r✐❛❜❧❡♥ Xi✱ ✇♦❜❡✐ Xi ∼ N(µ, σ2

0) ✉♥❞ σ2
0 s❡✐

❜❡❦❛♥♥t✳ ❊s ✇❡r❞❡♥ ❞✐❡ ❍②♣♦t❤❡s❡♥

H0 : µ ≤ µ0 ✈s✳ H1 : µ > µ0,

❣❡t❡st❡t✳ ❆✉s ❇❡✐s♣✐❡❧ ✶✳✶✳✷ ❦❡♥♥❡♥ ✇✐r ❞✐❡ ❚❡st❣röÿ❡

T (X1, . . . , Xn) =
√
n
Xn − µ0

σ0
,

✇♦❜❡✐ ✉♥t❡r H0 ❣✐❧t✿ T (X1, . . . , Xn) ∼ N(0, 1)✳ H0 ✇✐r❞ ✈❡r✇♦r❢❡♥✱ ❢❛❧❧s

T (X1, . . . , Xn) > z1−α, ✇♦❜❡✐ α ∈ (0, 1).

❲✐r ③❡✐❣❡♥ ❥❡t③t✱ ❞❛ÿ ❞✐❡s❡r ❚❡st ❞❡r ❜❡st❡ ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡st ③✉♠ ◆✐✈❡❛✉ α ✐st✳ ❆✉s
❇❡✐s♣✐❡❧ ✶✳✸✳✷ ✐st ❜❡❦❛♥♥t✱ ❞❛ÿ ❞✐❡ ❉✐❝❤t❡ fn ✈♦♥ (X1, . . . , Xn) ❛✉s ❞❡r ❡✐♥♣❛r❛♠❡tr✐s❝❤❡♥
❊①♣♦♥❡♥t✐❛❧❦❧❛ss❡ ✐st✱ ♠✐t

T̃ (X1, . . . , Xn) =

n∑

i=1

Xi.

❉❛♥♥ ❣❡❤ört fµ ✈♦♥ (x1, . . . , xn) ③✉r ❡✐♥♣❛r❛♠❡tr✐s❝❤❡♥ ❊①♣♦♥❡♥t✐❛❧❦❧❛ss❡ ❛✉❝❤ ❜❡③ü❣❧✐❝❤
❞❡r ❙t❛t✐st✐❦

T (X1, . . . , Xn) =
√
n
Xn − µ

σ0



✸✵ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

❊s ❣✐❧t ♥ä♠❧✐❝❤

fµ(x) = exp
( µ

σ2
0︸︷︷︸

c̃(µ)

·
n∑

i=1

xi

︸ ︷︷ ︸
T̃

−µ2n

2σ2
0︸ ︷︷ ︸

ã(µ)

)
· l(x)

= exp
( µ
√
n

σ0︸ ︷︷ ︸
c(µ)

· √nxn − µ

σ0︸ ︷︷ ︸
T

+
µ2n

2σ2
0︸︷︷︸

a(µ)

)
· l(x).

❉✐❡ ❙t❛t✐st✐❦ T ❦❛♥♥ ❛❧s♦ ✐♥ ❞❡r ❑♦♥str✉❦t✐♦♥ ❞❡s ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡sts ✭●❧❡✐❝❤✉♥❣
✭✶✳✸✳✻✮✮ ✈❡r✇❡♥❞❡t ✇❡r❞❡♥✿

ϕK∗(x) =





1, ❢❛❧❧s T (x) > z1−α,
0, ❢❛❧❧s T (x) = z1−α,
0, ❢❛❧❧s T (x) < z1−α

✭♠✐t K∗ = z1−α ✉♥❞ γ∗ = 0✮✳ ◆❛❝❤ ❙❛t③ ✶✳✸✳✸ ✐st ❞✐❡s❡r ❚❡st ❞❡r ❜❡st❡ ◆❡②♠❛♥✲P❡❛rs♦♥✲
❚❡st ③✉♠ ◆✐✈❡❛✉ α ❢ür ✉♥s❡r❡ ❍②♣♦t❤❡s❡♥✿

Gn(ϕK∗ , µ0) = P0 (T (X1, . . . , Xn) > z1−α) + 0 · P0 (T (X1, . . . , Xn) ≤ z1−α)

= 1− Φ(z1−α) = 1− (1− α) = α.

✶✳✸✳✹ ❯♥✈❡r❢ä❧s❝❤t❡ ③✇❡✐s❡✐t✐❣❡ ❚❡sts

❊s s❡✐ (X1, . . . , Xn) ❡✐♥❡ ❙t✐❝❤♣r♦❜❡ ✈♦♥ ✉♥❛❜❤ä♥❣✐❣❡♥ ✉♥❞ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t❡♥ ❩✉❢❛❧❧s✲
✈❛r✐❛❜❧❡♥ ♠✐t ❞❡r ❉✐❝❤t❡

fθ(x) =

n∏

i=1

gθ(xi).

❊s ✇✐r❞ ❡✐♥ ③✇❡✐s❡✐t✐❣❡r ❚❡st ❞❡r ❍②♣♦t❤❡s❡♥

H0 : θ = θ0 ✈s✳ H1 : θ 6= θ0

❜❡tr❛❝❤t❡t✳ ❋ür ❛❧❧❡ α ∈ (0, 1) ❦❛♥♥ ❡s ❥❡❞♦❝❤ ❦❡✐♥❡♥ ❜❡st❡♥ ❚❡st ϕ ③✉♠ ◆✐✈❡❛✉ α ❢ür H0

✈s✳ H1 ❣❡❜❡♥✳ ❉❡♥♥✱ ♥❡❤♠❡♥ ✇✐r ❛♥✱ ϕ ✇är❡ ❞❡r ❜❡st❡ ❚❡st ③✉♠ ◆✐✈❡❛✉ α ❢ür H0 ✈s✳ H1✱
❞❛♥♥ ✇är❡ ϕ ❞❡r ❜❡st❡ ❚❡st ❢ür ❞✐❡ ❍②♣♦t❤❡s❡♥

✶✳ H ′
0 : θ = θ0 ✈s✳ H ′

1 : θ > θ0

✷✳ H ′′
0 : θ = θ0 ✈s✳ H ′′

1 : θ < θ0✳

❉❛♥♥ ✐st ♥❛❝❤ ❙❛t③ ✶✳✸✳✸✱ ✸✳ ❞✐❡ ●üt❡❢✉♥❦t✐♦♥

✶✳ Gn(ϕ, θ) < α ❛✉❢ θ < θ0✱ ❜③✇✳



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✸✶

✷✳ Gn(ϕ, θ) > α ❛✉❢ θ < θ0✱

✇❛s ❡✐♥ ❲✐❞❡rs♣r✉❝❤ ✐st✦
❉❛r✉♠ ✇❡r❞❡♥ ✇✐r ❞✐❡ ❑❧❛ss❡ ❛❧❧❡r ♠ö❣❧✐❝❤❡♥ ❚❡sts ❛✉❢ ✉♥✈❡r❢ä❧s❝❤t❡ ❚❡sts ✭❉❡✜♥✐t✐♦♥

✶✳✶✳✺✮ ❡✐♥❣r❡♥③❡♥✳ ❉❡r ❚❡st ϕ ✐st ✉♥✈❡r❢ä❧s❝❤t ❣❡♥❛✉ ❞❛♥♥✱ ✇❡♥♥

Gn(ϕ, θ) ≤ α ❢ür θ ∈ Θ0

Gn(ϕ, θ) ≥ α ❢ür θ ∈ Θ1

❇❡✐s♣✐❡❧ ✶✳✸✳✹✳ ✶✳ ϕ(x) ≡ α ✐st ✉♥✈❡r❢ä❧s❝❤t✳

✷✳ ❉❡r ③✇❡✐s❡✐t✐❣❡ ●❛✉ÿ✲❚❡st ✐st ✉♥✈❡r❢ä❧s❝❤t✱ ✈❡r❣❧❡✐❝❤❡ ❇❡✐s♣✐❡❧ ✶✳✶✳✷✿ Gn(ϕ, µ) ≥ α
❢ür ❛❧❧❡ µ ∈ R✳

■♠ ❋♦❧❣❡♥❞❡♥ s❡✐❡♥Xi ✉♥❛❜❤ä♥❣✐❣ ✉♥❞ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t✳ ❉✐❡ ❉✐❝❤t❡ fθ ✈♦♥ (X1, . . . , Xn)
❣❡❤ör❡ ③✉r ❡✐♥♣❛r❛♠❡tr✐s❝❤❡♥ ❊①♣♦♥❡♥t✐❛❧❦❧❛ss❡✿

fθ(x) = exp {c(θ) · T (x) + a(θ)} · l(x), ✭✶✳✸✳✼✮

✇♦❜❡✐ c(θ) ✉♥❞ a(θ) st❡t✐❣ ❞✐✛❡r❡♥③✐❡r❜❛r ❛✉❢ Θ s❡✐♥ s♦❧❧❡♥✱ ♠✐t

c′(θ) > 0 ✉♥❞ ❱❛rθ T (X1, . . . , Xn) > 0

❢ür ❛❧❧❡ θ ∈ Θ✳ ❙❡✐ fΦ(x) st❡t✐❣ ✐♥ (x,Θ) ❛✉❢ B ×Θ✳

Ü❜✉♥❣s❛✉❢❣❛❜❡ ✶✳✸✳✶✳ ❩❡✐❣❡♥ ❙✐❡✱ ❞❛ÿ ❢♦❧❣❡♥❞❡ ❘❡❧❛t✐♦♥ ❣✐❧t✿

a′(θ) = −c′(θ)Eθ T (X1, . . . , Xn).

▲❡♠♠❛ ✶✳✸✳✸✳ ❊s s❡✐ ϕ ❡✐♥ ✉♥✈❡r❢ä❧s❝❤t❡r ❚❡st ③✉♠ ◆✐✈❡❛✉ α ❢ür

H0 : θ = θ0 ✈s✳ H1 : θ 6= θ0.

❉❛♥♥ ❣✐❧t✿

✶✳ α = E0 ϕ(X1, . . . , Xn) = Gn(ϕ, θ0)

✷✳ E0 [T (X1, . . . , Xn)ϕ(X1, . . . , Xn)] = α · E0 T (X1, . . . , Xn)

❇❡✇❡✐s✳ ✶✳ ❉✐❡ ●üt❡❢✉♥❦t✐♦♥ ✈♦♥ ϕ ✐st

Gn(ϕ, θ) =

∫

B
ϕ(x)fθ(x)µ(dx)

❉❛ fθ ❛✉s ❞❡r ❡✐♥♣❛r❛♠❡tr✐s❝❤❡♥ ❊①♣♦♥❡♥t✐❛❧❦❧❛ss❡ ✐st✱ ✐st Gn(ϕ, θ) ❞✐✛❡r❡♥③✐❡r❜❛r
✭✉♥t❡r ❞❡♠ ■♥t❡❣r❛❧✮ ❜❡③ü❣❧✐❝❤ θ✳ ❲❡❣❡♥ ❞❡r ❯♥✈❡r❢ä❧s❝❤t❤❡✐t ✈♦♥ ϕ ❣✐❧t

Gn(ϕ, θ0) ≤ α, Gn(ϕ, θ) ≥ α, θ 6= θ0

✉♥❞ ❞❛r❛✉s ❢♦❧❣t Gn(ϕ, θ0) = α ✉♥❞ θ0 ✐st ❡✐♥ ▼✐♥✐♠✉♠♣✉♥❦t ✈♦♥ Gn✳ ❙♦♠✐t ✐st ✶✮
❜❡✇✐❡s❡♥✳



✸✷ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

✷✳ ❉❛ θ0 ❞❡r ▼✐♥✐♠✉♠♣✉♥❦t ✈♦♥ Gn ✐st✱ ❣✐❧t

0 = G′
n(ϕ, θ0) =

∫

B
ϕ(x)(c′(θ0)T (x) + a′(θ0))f0(x)µ(dx)

= c′(θ0) · E0 [ϕ(X1, . . . Xn)T (X1, . . . , Xn)] + a′(θ) ·Gn(ϕ, θ0)

= c′(θ0) · E0 [ϕ(X1, . . . , Xn)T (X1, . . . , Xn)] + αa′(θ0)

✭Ü❜✉♥❣ ✶✳✸✳✶✮
= c′(θ0) (E0 (ϕ · T )− αE0 T )

❉❛r❛✉s ❢♦❧❣t E0 (ϕT ) = αE0 T ✉♥❞ ❞❛♠✐t ✐st ❞❛s ▲❡♠♠❛ ❜❡✇✐❡s❡♥✳

❲✐r ❞❡✜♥✐❡r❡♥ ❥❡t③t ❞✐❡ ♠♦❞✐✜③✐❡rt❡♥ ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡sts ❢ür ❡✐♥❢❛❝❤❡ ❍②♣♦t❤❡s❡♥

H0 : θ = θ0 ✈s✳ H ′
1 : θ = θ1, θ1 6= θ0.

❋ür λ,K ∈ R✱ γ : B → [0, 1] ❞❡✜♥✐❡r❡♥ ✇✐r

ϕK,λ(x) =





1, ❢❛❧❧s f1(x) > (K + λT (x))f0(x),
γ(x), ❢❛❧❧s f1(x) = (K + λT (x))f0(x),
0, ❢❛❧❧s f1(x) < (K + λT (x))f0(x),

✭✶✳✸✳✽✮

✇♦❜❡✐ T (x) ❞✐❡ ❙t❛t✐st✐❦ ❛✉s ❞❡r ❉❛rst❡❧❧✉♥❣ ✭✶✳✸✳✼✮ ✐st✳
❊s s❡✐ Ψ̃(α) ❞✐❡ ❑❧❛ss❡ ❛❧❧❡r ❚❡sts✱ ❞✐❡ ❆✉ss❛❣❡♥ ✶✮ ✉♥❞ ✷✮ ❞❡s ▲❡♠♠❛s ✶✳✸✳✸ ❡r❢ü❧❧❡♥✳

❆✉s ▲❡♠♠❛ ✶✳✸✳✸ ❢♦❧❣t ❞❛♥♥✱ ❞❛ÿ ❞✐❡ ▼❡♥❣❡ ❞❡r ✉♥✈❡r❢ä❧s❝❤t❡♥ ❚❡sts ③✉♠ ◆✐✈❡❛✉ α ❡✐♥❡
❚❡✐❧♠❡♥❣❡ ✈♦♥ Ψ̃(α) ✐st✳

❙❛t③ ✶✳✸✳✹✳ ❉❡r ♠♦❞✐✜③✐❡rt❡ ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡st ϕK,λ ✐st ❞❡r ❜❡st❡ α✲❚❡st ✐♥ Ψ̃(α)
❢ür ❍②♣♦t❤❡s❡♥ H0 ✈s✳ H ′

1 ③✉♠ ◆✐✈❡❛✉ α = E0 ϕK,λ✱ ❢❛❧❧s ϕK,λ ∈ Ψ̃(α)✳

❇❡✇❡✐s✳ ❊s ✐st ③✉ ③❡✐❣❡♥✱ ❞❛ÿ E1 ϕK,λ ≥ E1 ϕ ❢ür ❛❧❧❡ ϕ ∈ Ψ̃(α)✱ ❜③✇✳ E1 (ϕK,λ −ϕ) ≥ 0.
❊s ❣✐❧t

E1 (ϕK,λ − ϕ) =

∫

B
(ϕK,λ(x)− ϕ(x))f1(x)µ(dx)

✭❇❡♠✳ ✶✳✸✳✸✱ ✷✳✮✮
≥

∫

B
(ϕK,λ(x)− ϕ(x))(K + λT (x))f0(x)µ(dx)

= K
(
E0 ϕK,λ︸ ︷︷ ︸

=α

−E0 ϕ︸︷︷︸
=α

)
+ λ

(
E0 (ϕK,λ · T )︸ ︷︷ ︸

αE0 T

−E0 (ϕ · T )︸ ︷︷ ︸
=α·E0 T

)

= 0,

✇❡✐❧ ϕ,ϕK,λ ∈ Ψ̃(α)✳

❲✐r ❞❡✜♥✐❡r❡♥ ❢♦❧❣❡♥❞❡ ❊♥ts❝❤❡✐❞✉♥❣sr❡❣❡❧✱ ❞✐❡ s♣ät❡r ③✉♠ ❚❡st❡♥ ❞❡r ③✇❡✐s❡✐t✐❣❡♥
❍②♣♦t❤❡s❡♥

H0 : θ = θ0 ✈s✳ H1 : θ 6= θ0



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✸✸

✈❡r✇❡♥❞❡t ✇✐r❞✿

ϕc(x) =





1, ❢❛❧❧s T (x) /∈ (c1, c2),
γ1, ❢❛❧❧s T (x) = c1,
γ2, ❢❛❧❧s T (x) = c2,
0, ❢❛❧❧s T (x) ∈ (c1, c2),

✭✶✳✸✳✾✮

❢ür c1 ≤ c2 ∈ R✱ γ1, γ2 ∈ [0, 1] ✉♥❞ ❞✐❡ ❙t❛t✐st✐❦ T (x)✱ x = (x1, . . . , xn) ∈ B✱ ❞✐❡ ✐♥ ❞❡r
❉✐❝❤t❡ ✭✶✳✸✳✼✮ ✈♦r❦♦♠♠t✳ ❩❡✐❣❡♥ ✇✐r✱ ❞❛ÿ ϕc s✐❝❤ ❛❧s ♠♦❞✐✜③✐❡rt❡r ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡st
s❝❤r❡✐❜❡♥ ❧ässt✳
❋ür ❞✐❡ ❉✐❝❤t❡

fθ(x) = exp{c(θ)T (x) + a(θ)} · l(x)

✇✐r❞ ✭✇✐❡ ✐♠♠❡r✮ ✈♦r❛✉s❣❡s❡t③t✱ ❞❛ÿ l(x) > 0✱ c′(x) > 0 ✉♥❞ a′(x) ❡①✐st✐❡rt ❢ür θ ∈ Θ✳

▲❡♠♠❛ ✶✳✸✳✹✳ ❊s s❡✐ (X1, . . . , Xn) ❡✐♥❡ ❙t✐❝❤♣r♦❜❡ ✈♦♥ ✉♥❛❜❤ä♥❣✐❣❡♥✱ ✐❞❡♥t✐s❝❤ ✈❡r✲
t❡✐❧t❡♥ ❩✉❢❛❧❧s✈❛r✐❛❜❧❡♥ ♠✐t ❣❡♠❡✐♥s❛♠❡r ❉✐❝❤t❡ fθ(x), x ∈ B✱ ❞✐❡ ③✉r ❡✐♥♣❛r❛♠❡tr✐s❝❤❡♥
❊①♣♦♥❡♥t✐❛❧❢❛♠✐❧✐❡ ❣❡❤ört✳ ❙❡✐ T (x) ❞✐❡ ❞❛③✉❣❡❤ör✐❣❡ ❙t❛t✐st✐❦✱ ❞✐❡ ✐♠ ❊①♣♦♥❡♥t❡♥ ❞❡r
❉✐❝❤t❡ fθ ✈♦r❦♦♠♠t✳ ❋ür ❜❡❧✐❡❜✐❣❡ r❡❡❧❧❡ ❩❛❤❧❡♥ c1 ≤ c2✱ γ1, γ2 ∈ [0, 1] ✉♥❞ P❛r❛♠❡t❡r✲
✇❡rt❡ θ0, θ1 ∈ Θ : θ0 6= θ1 ❧äÿt s✐❝❤ ❞❡r ❚❡st ϕc ❛✉s ✭✶✳✸✳✾✮ ❛❧s ♠♦❞✐✜③✐❡rt❡r ◆❡②♠❛♥✲
P❡❛rs♦♥✲❚❡st ϕK,λ ❛✉s ✭✶✳✸✳✽✮ ♠✐t ❣❡❣❡❜❡♥❡♥ K,λ ∈ R✱ γ(x) ∈ [0, 1] s❝❤r❡✐❜❡♥✳

❇❡✇❡✐s✳ ❋❛❧❧s ✇✐r ❞✐❡ ❇❡③❡✐❝❤♥✉♥❣

fθi(x) = fi(x), i = 0, 1

✈❡r✇❡♥❞❡♥✱ ❞❛♥♥ ❣✐❧t

f1(x)

f0(x)
= exp

{
(c(θ1)− c(θ0))︸ ︷︷ ︸

c

T (x) + a(θ1)− a(θ0)︸ ︷︷ ︸
a

}
,

✉♥❞ s♦♠✐t

{x ∈ B : f1(x) > (K + λT (x)) f0(x)} = {x ∈ B : exp (cT (x) + a) > K + λT (x)} .

❋✐♥❞❡♥ ✇✐r s♦❧❝❤❡ K ✉♥❞ λ ❛✉s R✱ ❢ür ❞✐❡ ❞✐❡ ●❡r❛❞❡ K + λt✱ t ∈ R ❞✐❡ ❦♦♥✈❡①❡ ❑✉r✈❡
exp{ct + a} ❣❡♥❛✉ ❛♥ ❞❡♥ ❙t❡❧❧❡♥ c1 ✉♥❞ c2 s❝❤♥❡✐❞❡t ✭❢❛❧❧s c1 6= c2✮ ❜③✇✳ ❛♥ ❞❡r ❙t❡❧❧❡
t = c1 ❜❡rü❤rt ✭❢❛❧❧s c1 = c2✮✳ ❉✐❡s ✐st ✐♠♠❡r ♠ö❣❧✐❝❤✱ s✐❡❤❡ ❆❜❜✐❧❞✉♥❣ ✶✳✶✳
❋❡r♥❡r s❡t③❡♥ ✇✐r γ(x) = γi ❢ür {x ∈ B : T (x) = ci}✳ ■♥s❣❡s❛♠t ❣✐❧t ❞❛♥♥

{x : exp (cT (x) + a) > K + λT (x)} = {x : T (x) /∈ [c1, c2]}

✉♥❞

{x : exp (cT (x) + a) < K + λT (x)} = {x : T (x) ∈ (c1, c2)} .

❉❛♠✐t ✐st ❞❛s ▲❡♠♠❛ ❜❡✇✐❡s❡♥✳



✸✹ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

❆❜❜✐❧❞✉♥❣ ✶✳✶✿

❇❡♠❡r❦✉♥❣ ✶✳✸✳✻✳ ✶✳ ❉✐❡ ❯♠❦❡❤r✉♥❣ ❞❡s ▲❡♠♠❛s st✐♠♠t ♥✐❝❤t✱ ❞❡♥♥ ❜❡✐ ✈♦r❣❡✲
❣❡❜❡♥❡♥ ❑✉r✈❡♥ y = K + λt ✉♥❞ y = exp{ct + a} ♠✉ss ❡s ❞✐❡ ❙❝❤♥✐tt♣✉♥❦t❡ c1
✉♥❞ c2 ♥✐❝❤t ✉♥❜❡❞✐♥❣t ❣❡❜❡♥✳ ❙♦ ❦❛♥♥ ❞✐❡ ●❡r❛❞❡ ✈♦❧❧stä♥❞✐❣ ✉♥t❡r ❞❡r ❑✉r✈❡
y = exp{ct+ a} ❧✐❡❣❡♥✳

✷✳ ❉❡r ❚❡st ϕc ♠❛❝❤t ✈♦♥ ❞❡♥ ❲❡rt❡♥ θ0 ✉♥❞ θ1 ♥✐❝❤t ❡①♣❧✐③✐t ●❡❜r❛✉❝❤✳ ❉✐❡s ✉♥t❡r✲
s❝❤❡✐❞❡t ✐❤♥ ✈♦♠ ❚❡st ϕK,λ✱ ❢ür ❞❡♥ ❞✐❡ ❉✐❝❤t❡♥ f0 ✉♥❞ f1 ❣❡❜r❛✉❝❤t ✇❡r❞❡♥✳

❏❡t③t s✐♥❞ ✇✐r ❜❡r❡✐t✱ ❞❡♥ ❍❛✉♣ts❛t③ ü❜❡r ③✇❡✐s❡✐t✐❣❡ ❚❡sts ③✉♠ Prü❢❡♥ ❞❡r ❍②♣♦t❤❡s❡♥

H0 : θ = θ0 ✈s✳ H1 : θ 6= θ0

③✉ ❢♦r♠✉❧✐❡r❡♥ ✉♥❞ ③✉ ❜❡✇❡✐s❡♥✳

❙❛t③ ✶✳✸✳✺✳ ✭❍❛✉♣ts❛t③ ü❜❡r ③✇❡✐s❡✐t✐❣❡ ❚❡sts✮
❯♥t❡r ❞❡♥ ❱♦r❛✉ss❡t③✉♥❣❡♥ ❞❡s ▲❡♠♠❛s ✶✳✸✳✹ s❡✐ ϕc ❡✐♥ ❚❡st ❛✉s ✭✶✳✸✳✾✮✱ ❢ür ❞❡♥ ϕc ∈
Ψ̃(α) ❣✐❧t✳ ❉❛♥♥ ✐st ϕc ❜❡st❡r ✉♥✈❡r❢ä❧s❝❤t❡r ❚❡st ③✉♠ ◆✐✈❡❛✉ α ✭✉♥❞ ❞❛❞✉r❝❤ ❜❡st❡r ❚❡st
✐♥ Ψ̃(α)✮ ❞❡r ❍②♣♦t❤❡s❡♥

H0 : θ = θ0 ✈s✳ H1 : θ 6= θ0.

❇❡✇❡✐s✳ ❲ä❤❧❡♥ ✇✐r ❡✐♥ ❜❡❧✐❡❜✐❣❡s θ1 ∈ Θ✱ θ1 6= θ0✳ ◆❛❝❤ ▲❡♠♠❛ ✶✳✸✳✹ ✐st ϕc ❡✐♥ ♠♦❞✐✲
✜③✐❡rt❡r ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡st ϕK,λ ❢ür ❡✐♥❡ s♣❡③✐❡❧❧❡ ❲❛❤❧ ✈♦♥ K ✉♥❞ λ ∈ R✳ ϕK,λ ✐st
❛❜❡r ♥❛❝❤ ❙❛t③ ✶✳✸✳✹ ❜❡st❡r ❚❡st ✐♥ Ψ̃(α) ❢ür H0 : θ = θ0 ✈s✳ H ′

1 : θ = θ1. ❉❛ ϕc ♥✐❝❤t ✈♦♥
θ1 ❛❜❤ä♥❣t✱ ✐st ❡s ❜❡st❡r ❚❡st ✐♥ Ψ̃(α) ❢ür H1 : θ 6= θ0. ❉❛ ✉♥✈❡r❢ä❧s❝❤t❡ ◆✐✈❡❛✉✲α✲❚❡sts
✐♥ Ψ̃(α) ❧✐❡❣❡♥✱ ♠üss❡♥ ✇✐r ♥✉r ③❡✐❣❡♥✱ ❞❛ÿ ϕc ✉♥✈❡r❢ä❧s❝❤t ✐st✳ ❉❛ ϕc ❞❡r ❜❡st❡ ❚❡st ✐st✱
✐st ❡r ♥✐❝❤t s❝❤❧❡❝❤t❡r ❛❧s ❞❡r ❦♦♥st❛♥t❡ ✉♥✈❡r❢ä❧s❝❤t❡ ❚❡st ϕ = α✱ ❞❛s ❤❡✐ÿt

Gn(ϕc, θ) ≥ Gn(ϕ, θ) = α, θ 6= θ0.

❙♦♠✐t ✐st ❛✉❝❤ ϕc ✉♥✈❡r❢ä❧s❝❤t✳ ❉❡r ❇❡✇❡✐s ✐st ❜❡❡♥❞❡t✳



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✸✺

❇❡♠❡r❦✉♥❣ ✶✳✸✳✼✳ ❲✐r ❤❛❜❡♥ ❣❡③❡✐❣t✱ ❞❛ÿ ϕc ❞❡r ❜❡st❡ ❚❡st s❡✐♥❡s ❯♠❢❛♥❣s ✐st✳ ❊s
✇är❡ ❥❡❞♦❝❤ ♥♦❝❤ ③✉ ③❡✐❣❡♥✱ ❞❛ÿ ❢ür ❜❡❧✐❡❜✐❣❡s α ∈ (0, 1)❑♦♥st❛♥t❡♥ c1, c2, γ1, γ2 ❣❡❢✉♥❞❡♥
✇❡r❞❡♥✱ ❢ür ❞✐❡ E0 ϕc = α ❣✐❧t✳ ❉❛ ❞❡r ❇❡✇❡✐s s❝❤✇✐❡r✐❣ ✐st✱ ✇✐r❞ ❡r ❤✐❡r ❛✉s❣❡❧❛ss❡♥✳ ■♠
❢♦❧❣❡♥❞❡♥ ❇❡✐s♣✐❡❧ ❥❡❞♦❝❤ ✇✐r❞ ❡s ❦❧❛r✱ ✇✐❡ ❞✐❡ P❛r❛♠❡t❡r c1, c2, γ1, γ2 ③✉ ✇ä❤❧❡♥ s✐♥❞✳

❇❡✐s♣✐❡❧ ✶✳✸✳✺ ✭❩✇❡✐s❡✐t✐❣❡r ●❛✉ÿ✲❚❡st✮✳ ■♠ ❇❡✐s♣✐❡❧ ✶✳✶✳✷ ❤❛❜❡♥ ✇✐r ❢♦❧❣❡♥❞❡♥ ❚❡st
❞❡s ❊r✇❛rt✉♥❣s✇❡rt❡s ❡✐♥❡r ♥♦r♠❛❧✈❡rt❡✐❧t❡♥ ❙t✐❝❤♣r♦❜❡ (X1, . . . , Xn) ♠✐t ✉♥❛❜❤ä♥❣✐❣❡♥
✉♥❞ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t❡♥ Xi ✉♥❞ Xi ∼ N(µ, σ2

0) ❜❡✐ ❜❡❦❛♥♥t❡♥ ❱❛r✐❛♥③❡♥ σ2
0 ❜❡tr❛❝❤t❡t✳

●❡t❡st❡t ✇❡r❞❡♥ ❞✐❡ ❍②♣♦t❤❡s❡♥

H0 : µ = µ0 ✈s✳ H1 : µ 6= µ0.

❉❡r ❚❡st ϕ(x) ❧❛✉t❡t

ϕ(x) = I
(
x ∈ R

n : |T (x)| > z1−α/2

)
,

✇♦❜❡✐

T (x) =
√
n
xn − µ0

σ0
.

❩❡✐❣❡♥ ✇✐r✱ ❞❛ÿ ϕ ❞❡r ❜❡st❡ ❚❡st ③✉♠ ◆✐✈❡❛✉ α ✐♥ Ψ̃(α) ✭✉♥❞ s♦♠✐t ❜❡st❡r ✉♥✈❡r❢ä❧s❝❤t❡r
❚❡st✮ ✐st✳ ◆❛❝❤ ❙❛t③ ✶✳✸✳✺ ♠üss❡♥ ✇✐r ❧❡❞✐❣❧✐❝❤ ♣rü❢❡♥✱ ❞❛ÿ ϕ ❛❧s ϕc ♠✐t ✭✶✳✸✳✾✮ ❞❛r❣❡st❡❧❧t
✇❡r❞❡♥ ❦❛♥♥✱ ✇❡✐❧ ❞✐❡ ♥✲❞✐♠❡♥s✐♦♥❛❧❡ ◆♦r♠❛❧✈❡rt❡✐❧✉♥❣ ♠✐t ❉✐❝❤t❡ fµ ✭s✐❡❤❡ ❇❡✐s♣✐❡❧
✶✳✸✳✸✮ ③✉ ❞❡r ❡✐♥♣❛r❛♠❡tr✐s❝❤❡♥ ❊①♣♦♥❡♥t✐❛❧❢❛♠✐❧✐❡ ♠✐t ❙t❛t✐st✐❦

T (x) =
√
n
xn − µ

σ0

❣❡❤ört✳ ❙❡t③❡♥ ✇✐r c1 = z1−α/2✱ c2 = −z1−α/2✱ γ1 = γ2 = 0✳ ❉❛♠✐t ✐st

ϕ(x) = ϕc(x) =

{
1, ❢❛❧❧s |T (x)| > z1−α/2,

0, ❢❛❧❧s |T (x)| ≤ z1−α/2.

✉♥❞ ❞✐❡ ❇❡❤❛✉♣t✉♥❣ ✐st ❜❡✇✐❡s❡♥✱ ✇❡✐❧ ❛✉s ❞❡r ✐♥ ❇❡✐s♣✐❡❧ ✶✳✶✳✷ ❡r♠✐tt❡❧t❡♥ ●üt❡❢✉♥❦t✐♦♥
Gn(ϕ, θ) ✈♦♥ ϕ ❡rs✐❝❤t❧✐❝❤ ✐st✱ ❞❛ÿ ϕ ❡✐♥ ✉♥✈❡r❢ä❧s❝❤t❡r ❚❡st ③✉♠ ◆✐✈❡❛✉ α ✐st ✭✉♥❞ s♦♠✐t
ϕ ∈ Ψ̃(α)✮✳

❇❡♠❡r❦✉♥❣ ✶✳✸✳✽✳ ❇✐s❤❡r ❤❛❜❡♥ ✇✐r ✐♠♠❡r ✈♦r❛✉s❣❡s❡t③t✱ ❞❛ÿ ♥✉r ❡✐♥ P❛r❛♠❡t❡r ❞❡r
❱❡rt❡✐❧✉♥❣ ❞❡r ❙t✐❝❤♣r♦❜❡ (X1, . . . , Xn) ✉♥❜❡❦❛♥♥t ✐st✱ ✉♠ ❞✐❡ ❚❤❡♦r✐❡ ❞❡s ❆❜s❝❤♥✐tt❡s
✶✳✸ ü❜❡r ❞✐❡ ❜❡st❡♥ ✭◆❡②♠❛♥✲P❡❛rs♦♥✲✮ ❚❡sts ✐♠ ❋❛❧❧ ❞❡r ❡✐♥♣❛r❛♠❡tr✐s❝❤❡♥ ❊①♣♦♥❡♥✲
t✐❛❧❢❛♠✐❧✐❡ ❛✉❢st❡❧❧❡♥ ③✉ ❦ö♥♥❡♥✳ ❯♠ ❥❡❞♦❝❤ ❞❡♥ ❋❛❧❧ ✇❡✐t❡r❡r ✉♥❜❡❦❛♥♥t❡♥ P❛r❛♠❡t❡r
❜❡tr❛❝❤t❡♥ ③✉ ❦ö♥♥❡♥ ✭✇✐❡ ✐♠ ❇❡✐s♣✐❡❧ ❞❡r ③✇❡✐s❡✐t✐❣❡♥ ❚❡sts ❞❡s ❊r✇❛rt✉♥❣s✇❡rt❡s ❞❡r
♥♦r♠❛❧✈❡rt❡✐❧t❡♥ ❙t✐❝❤♣r♦❜❡ ❜❡✐ ✉♥❜❡❦❛♥♥t❡r ❱❛r✐❛♥③ ✭❞❡r s♦❣✳ t✲❚❡st✱ ✈❡r❣❧❡✐❝❤❡ ❆❜✲
s❝❤♥✐tt ✶✳✷✳✶✱ ✶ ✭❛✮✮✱ ❜❡❞❛r❢ ❡s ❡✐♥❡r t✐❡❢❡r❣❡❤❡♥❞❡r❡♥ ❚❤❡♦r✐❡✱ ❞✐❡ ❛✉s ❩❡✐t❣rü♥❞❡♥ ✐♥
❞✐❡s❡r ❱♦r❧❡s✉♥❣ ♥✐❝❤t ❜❡❤❛♥❞❡❧t ✇✐r❞✳ ❉❡r ✐♥t❡r❡ss✐❡rt❡ ▲❡s❡r ✜♥❞❡t ❞❛s ▼❛t❡r✐❛❧ ❞❛♥♥
✐♠ ❇✉❝❤ ❬✶✹❪✳



✸✻ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

✶✳✹ ❆♥♣❛ss✉♥❣st❡sts

❙❡✐ ❡✐♥❡ ❙t✐❝❤♣r♦❜❡ ✈♦♥ ✉♥❛❜❤ä♥❣✐❣❡♥✱ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t❡♥ ❩✉❢❛❧❧s✈❛r✐❛❜❧❡♥ (X1, . . . , Xn)
❣❡❣❡❜❡♥ ♠✐t Xi ∼ F ✭❱❡rt❡✐❧✉♥❣s❢✉♥❦t✐♦♥✮ ❢ür i = 1, . . . , n✳ ❇❡✐ ❞❡♥ ❆♥♣❛ss✉♥❣st❡sts
✇✐r❞ ❞✐❡ ❍②♣♦t❤❡s❡

H0 : F = F0 ✈s✳ H1 : F 6= F0

ü❜❡r♣rü❢t✱ ✇♦❜❡✐ F0 ❡✐♥❡ ✈♦r❣❡❣❡❜❡♥❡ ❱❡rt❡✐❧✉♥❣s❢✉♥❦t✐♦♥ ✐st✳
❊✐♥❡♥ ❚❡st ❛✉s ❞✐❡s❡r ❑❧❛ss❡ ❤❛❜❡♥ ✇✐r ❜❡r❡✐ts ✐♥ ❞❡r ❱♦r❧❡s✉♥❣ ❙t♦❝❤❛st✐❦ ■ ❦❡♥♥❡♥❣❡✲

❧❡r♥t✿ ❞❡♥ ❑♦❧♠♦❣♦r♦✇✲❙♠✐r♥♦✈✲❚❡st ✭✈❡r❣❧❡✐❝❤❡ ❇❡♠❡r❦✉♥❣ ✸✳✸✳✽✳ ✸✮✱ ❱♦r❧❡s✉♥❣ss❦r✐♣t
❙t♦❝❤❛st✐❦ ■✮✳
❏❡t③t ✇❡r❞❡♥ ✇❡✐t❡r❡ ♥✐❝❤t♣❛r❛♠❡tr✐s❝❤❡ ❆♥♣❛ss✉♥❣st❡sts ❡✐♥❣❡❢ü❤rt✳ ❉❡r ❡rst❡ ✐st ❞❡r

χ2✲❆♥♣❛ss✉♥❣s✲t❡st ✈♦♥ ❑✳ P❡❛rs♦♥✳

✶✳✹✳✶ χ2✲❆♥♣❛ss✉♥❣st❡st

❉❡r ❚❡st ✈♦♥ ❑♦❧♠♦❣♦r♦✈✲❙♠✐r♥♦✈ ❜❛s✐❡rt❡ ❛✉❢ ❞❡♠ ❆❜st❛♥❞

Dn = sup
x∈R
| F̂n(x)− F0(x) |

③✇✐s❝❤❡♥ ❞❡r ❡♠♣✐r✐s❝❤❡♥ ❱❡rt❡✐❧✉♥❣s❢✉♥❦t✐♦♥ ❞❡r ❙t✐❝❤♣r♦❜❡ (X1, . . . , Xn) ✉♥❞ ❞❡r ❱❡r✲
t❡✐❧✉♥❣s❢✉♥❦t✐♦♥ F0✳ ■♥ ❞❡r Pr❛①✐s ❥❡❞♦❝❤ ❡rs❝❤❡✐♥t ❞✐❡s❡r ❚❡st ③✉ ❢❡✐♥❢ü❤❧✐❣✱ ❞❡♥♥ ❡r ✐st
③✉ s❡♥s✐❜❡❧ ❣❡❣❡♥ü❜❡r ❯♥r❡❣❡❧♠äÿ✐❣❦❡✐t❡♥ ✐♥ ❞❡♥ ❙t✐❝❤♣r♦❜❡♥ ✉♥❞ ✈❡r✇✐r❢t H0 ③✉ ♦❢t✳
❊✐♥❡♥ ❆✉s✇❡❣ ❛✉s ❞✐❡s❡r ❙✐t✉❛t✐♦♥ st❡❧❧t ❞✐❡ ❱❡r❣rö❜❡r✉♥❣ ❞❡r ❍❛✉♣t❤②♣♦t❤❡s❡ H0 ❞❛r✱
❛✉❢ ✇❡❧❝❤❡r ❞❡r ❢♦❧❣❡♥❞❡ χ2✲❆♥♣❛ss✉♥❣st❡st ❜❡r✉❤t✳
▼❛♥ ③❡r❧❡❣t ❞❡♥ ❲❡rt❡❜❡r❡✐❝❤ ❞❡r ❙t✐❝❤♣r♦❜❡♥✈❛r✐❛❜❧❡♥ Xi ✐♥ r ❑❧❛ss❡♥ (aj , bj ]✱ j =

1, . . . , r ♠✐t ❞❡r ❊✐❣❡♥s❝❤❛❢t

−∞ ≤ a1 < b1 = a2 < b2 = . . . = ar < br ≤ ∞.

❆♥st❡❧❧❡ ✈♦♥ Xi, i = 1, . . . , n ❜❡tr❛❝❤t❡♥ ✇✐r ❞✐❡ s♦❣❡♥❛♥♥t❡♥ ❑❧❛ss❡♥stär❦❡♥ Zj ✱ j =
1, . . . , r✱ ✇♦❜❡✐

Zj = #{i : aj < Xi ≤ bj , 1 ≤ i ≤ n}.

▲❡♠♠❛ ✶✳✹✳✶✳ ❉❡r ❩✉❢❛❧❧s✈❡❦t♦r Z = (Z1, . . . , Zr)
⊤ ✐st ♠✉❧t✐♥♦♠✐❛❧✈❡rt❡✐❧t ♠✐t P❛r❛✲

♠❡t❡r✈❡❦t♦r

p = (p1, . . . , pr−1)
⊤ ∈ [0, 1]r−1,

✇♦❜❡✐

pj = P(aj < X1 ≤ bj) = F (bj)− F (aj), j = 1, . . . , r − 1, pr = 1−
r−1∑

j=1

pj .

❙❝❤r❡✐❜✇❡✐s❡✿

Z ∼Mr−1(n, p)



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✸✼

❇❡✇❡✐s✳ ❊s ✐st ③✉ ③❡✐❣❡♥✱ ❞❛ÿ ❢ür ❛❧❧❡ ❩❛❤❧❡♥ k1, . . . kr ∈ N0 ♠✐t k1 + . . .+ kr = n ❣✐❧t✿

P(Zi = ki, i = 1, . . . , r) =
n!

k1! · . . . · kr!
pk11 · . . . · pkrr . ✭✶✳✹✳✶✮

❉❛ Xi ✉♥❛❜❤ä♥❣✐❣ ✉♥❞ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t s✐♥❞✱ ❣✐❧t

P
(
Xj ∈ (aij , bij ], j = 1, . . . , n

)
=

n∏

j=1

P
(
aij < X1 ≤ bij

)
= pk11 · . . . · pkrr ,

❢❛❧❧s ❞✐❡ ❋♦❧❣❡ ✈♦♥ ■♥t❡r✈❛❧❧❡♥ (aij , bij ]j=1,...,n ❞❛s ■♥t❡r✈❛❧❧ (ai, bi] ki ▼❛❧ ❡♥t❤ä❧t✱ i =
1, . . . , r✳ ❉✐❡ ❋♦r♠❡❧ ✭✶✳✹✳✶✮ ❡r❣✐❜t s✐❝❤ ❛✉s ❞❡♠ ❙❛t③ ❞❡r t♦t❛❧❡♥ ❲❛❤rs❝❤❡✐♥❧✐❝❤❦❡✐t ❛❧s
❙✉♠♠❡ ü❜❡r ❞✐❡ P❡r♠✉t❛t✐♦♥❡♥ ✈♦♥ ❋♦❧❣❡♥ (aij , bij ]j=1,...,n ❞✐❡s❡r ❆rt✳

■♠ ❙✐♥♥❡ ❞❡s ▲❡♠♠❛s ✶✳✹✳✶ ✇❡r❞❡♥ ♥❡✉❡ ❍②♣♦t❤❡s❡♥ ü❜❡r ❞✐❡ ❇❡s❝❤❛✛❡♥❤❡✐t ✈♦♥ F
❣❡♣rü❢t✳

H0 : p = p0 ✈s✳ H1 : p 6= p0,

✇♦❜❡✐ p = (p1, . . . , pr−1)
⊤ ❞❡r P❛r❛♠❡t❡r✈❡❦t♦r ❞❡r ▼✉❧t✐♥♦♠✐❛❧✈❡rt❡✐❧✉♥❣ ✈♦♥ Z ✐st✱ ✉♥❞

p0 = (p01, . . . , p0,r−1)
⊤ ∈ (0, 1)r−1 ♠✐t

r−1∑
i=1

p0i < 1. ■♥ ❞✐❡s❡♠ ❋❛❧❧ ✐st

Λ0 = {F ∈ Λ : F (bj)− F (aj) = p0j , j = 1, . . . , r − 1} ,

Λ1 = Λ\Λ0✱ ✇♦❜❡✐ Λ ❞✐❡ ▼❡♥❣❡ ❛❧❧❡r ❱❡rt❡✐❧✉♥❣s❢✉♥❦t✐♦♥❡♥ ✐st✳ ❯♠ H0 ✈s✳ H1 ③✉ t❡st❡♥✱
❢ü❤r❡♥ ✇✐r ❞✐❡ P❡❛rs♦♥✲❚❡stst❛t✐st✐❦

Tn(x) =
r∑

j=1

(zj − np0j)
2

np0j

❡✐♥✱ ✇♦❜❡✐ x = (x1, . . . , xn) ❡✐♥❡ ❦♦♥❦r❡t❡ ❙t✐❝❤♣r♦❜❡ ❞❡r ❉❛t❡♥ ✐st ✉♥❞ zj ✱ j = 1, . . . , r
✐❤r❡ ❑❧❛ss❡♥stär❦❡♥ s✐♥❞✳
❯♥t❡r H0 ❣✐❧t

EZj = np0j , j = 1, . . . , r,

s♦♠✐t s♦❧❧ H0 ❛❜❣❡❧❡❤♥t ✇❡r❞❡♥✱ ❢❛❧❧s Tn(X) ✉♥❣❡✇ö❤♥❧✐❝❤ ❣r♦ÿ❡ ❲❡rt❡ ❛♥♥✐♠♠t✳
■♠ ♥ä❝❤st❡♥ ❙❛t③ ③❡✐❣❡♥ ✇✐r✱ ❞❛ÿ T (X1, . . . , Xn) ❛s②♠♣t♦t✐s❝❤ ✭❢ür n → ∞✮ χ2

r−1✲
✈❡rt❡✐❧t ✐st✱ ✇❛s ③✉ ❢♦❧❣❡♥❞❡♠ ❆♥♣❛ss✉♥❣st❡st ✭χ2✲❆♥♣❛ss✉♥❣st❡st✮ ❢ü❤rt✿

H0 ✇✐r❞ ✈❡r✇♦r❢❡♥✱ ❢❛❧❧s Tn(x1, . . . , xn) > χ2
r−1,1−α.

❉✐❡s❡r ❚❡st ✐st ♥❛❝❤ s❡✐♥❡♠ ❊♥t❞❡❝❦❡r ❑❛r❧ P❡❛rs♦♥ ✭✶✽✺✼✲✶✾✸✻✮ ❜❡♥❛♥♥t ✇♦r❞❡♥✳

❙❛t③ ✶✳✹✳✶✳ ❯♥t❡r H0 ❣✐❧t

lim
n→∞

Pp0

(
Tn(X1, . . . , Xn) > χ2

r−1,1−α

)
= α, α ∈ (0, 1),

❞❛s ❤❡✐ÿt✱ ❞❡r χ2✲P❡❛rs♦♥✲❚❡st ✐st ❡✐♥ ❛s②♠♣t♦t✐s❝❤❡r ❚❡st ③✉♠ ◆✐✈❡❛✉ α✳



✸✽ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

❇❡✇❡✐s✳ ❋ü❤r❡♥ ✇✐r ❞✐❡ ❇❡③❡✐❝❤♥✉♥❣ Znj ❂ Zj(X1, . . . , Xn) ❞❡r ❑❧❛ss❡♥stär❦❡♥ ❡✐♥✱ ❞✐❡
❛✉s ❞❡r ❙t✐❝❤♣r♦❜❡ (X1, . . . , Xn) ❡♥tst❡❤❡♥✳ ◆❛❝❤ ▲❡♠♠❛ ✶✳✹✳✶ ✐st

Zn = (Zn1, . . . , Znr) ∼Mr−1(n, p0) ✉♥t❡r H0.

■♥s❜❡s♦♥❞❡r❡ s♦❧❧ EZnj = np0j ✉♥❞

❈♦✈(Zni, Znj) =

{
np0j(1− p0j), i = j,
−np0ip0j , i 6= j

❢ür ❛❧❧❡ i, j = 1, . . . , r ❣❡❧t❡♥✳ ❉❛

Znj =

n∑

i=1

I(aj < Xi ≤ bj), j = 1, . . . , r,

✐st Zn = (Zn1, . . . , Zn,r−1) ❡✐♥❡ ❙✉♠♠❡ ✈♦♥ n ✉♥❛❜❤ä♥❣✐❣❡♥ ✉♥❞ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t❡♥
❩✉❢❛❧❧s✈❡❦t♦r❡♥ Yi ∈ R

r−1 ♠✐t ❑♦♦r❞✐♥❛t❡♥ Yij = I(aj < Xi ≤ bj)✱ j = 1, . . . , r − 1✳
❉❛❤❡r ❣✐❧t ♥❛❝❤ ❞❡♠ ♠✉❧t✐✈❛r✐❛t❡♥ ●r❡♥③✇❡rts❛t③ ✭❞❡r ✐♥ ▲❡♠♠❛ ✶✳✹✳✷ ❜❡✇✐❡s❡♥ ✇✐r❞✮✱
❞❛ÿ

Z ′
n =

Zn − EZn√
n

=

n∑
i=1

Yi − nEY1
√
n

d−→
n→∞

Y ∼ N(0,K),

♠✐t N(0,K) ❡✐♥❡ (r − 1)✲❞✐♠❡♥s✐♦♥❛❧❡ ♠✉❧t✐✈❛r✐❛t❡ ◆♦r♠❛❧✈❡rt❡✐❧✉♥❣ ✭✈❡r❣❧❡✐❝❤❡ ❱♦r❧❡✲
s✉♥❣ss❦r✐♣t ❲❘✱ ❇❡✐s♣✐❡❧ ✸✳✹✳✶✳ ✸✳✮ ♠✐t ❊r✇❛rt✉♥❣s✇❡rt✈❡❦t♦r ◆✉❧❧ ✉♥❞ ❑♦✈❛r✐❛♥③♠❛tr✐①
K = (σ2

ij)✱ ✇♦❜❡✐

σ2
ij =

{
−p0ip0j , i 6= j,
p0i(1− p0j), i = j

❢ür i, j = 1, . . . , r − 1 ✐st✳ ❉✐❡s❡ ▼❛tr✐① K ✐st ✐♥✈❡rt✐❡r❜❛r ♠✐t K−1 = A = (aij)✱

aij =

{
1
p0r

, i 6= j,
1
p0i

+ 1
p0r

, i = j.

❆✉ÿ❡r❞❡♠ ✐st K ✭❛❧s ❑♦✈❛r✐❛♥③♠❛tr✐①✮ s②♠♠❡tr✐s❝❤ ✉♥❞ ♣♦s✐t✐✈ ❞❡✜♥✐t✳ ❆✉s ❞❡r ❧✐♥❡❛✲
r❡♥ ❆❧❣❡❜r❛ ✐st ❜❡❦❛♥♥t✱ ❞❛ÿ ❡s ❡✐♥❡ ✐♥✈❡rt✐❡r❜❛r❡ (r− 1)× (r− 1)✲▼❛tr✐① A1/2 ❣✐❜t✱ ♠✐t
❞❡r ❊✐❣❡♥s❝❤❛❢t A = A1/2(A1/2)⊤✳ ❉❛r❛✉s ❢♦❧❣t✱

K = A−1 = ((A1/2)⊤)−1 · (A1/2)−1.

❲❡♥♥ ✇✐r (A1/2)⊤ ❛✉❢ Z ′
n ❛♥✇❡♥❞❡♥✱ s♦ ❜❡❦♦♠♠❡♥ ✇✐r

(A1/2)⊤ · Z ′
n

d−→
n→∞

(A1/2)⊤ · Y,



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✸✾

✇♦❜❡✐

(A1/2)⊤ · Y ∼ N
(
0, (A1/2)⊤ ·K ·A1/2

)
= N (0, Ir−1)

♥❛❝❤ ❞❡r ❊✐❣❡♥s❝❤❛❢t ❞❡r ♠✉❧t✐✈❛r✐❛t❡♥ ◆♦r♠❛❧✈❡rt❡✐❧✉♥❣✱ ❞✐❡ ✐♠ ❑❛♣✐t❡❧ ✷✱ ❙❛t③ ✷✳✶✳✸
❜❡❤❛♥❞❡❧t ✇✐r❞✳ ❉❡s ❲❡✐t❡r❡♥ ✇✉r❞❡ ❤✐❡r ❞❡r ❙t❡t✐❣❦❡✐tss❛t③ ❛✉s ❞❡r ❲❛❤rs❝❤❡✐♥❧✐❝❤❦❡✐ts✲
r❡❝❤♥✉♥❣ ❜❡♥✉t③t✱ ❞❛ÿ

Yn
d−→

n→∞
Y =⇒ ϕ(Yn)

d−→
n→∞

ϕ(Y )

❢ür ❜❡❧✐❡❜✐❣❡ ❩✉❢❛❧❧s✈❡❦t♦r❡♥ {Yn}✱ Y ∈ R
m ✉♥❞ st❡t✐❣❡ ❆❜❜✐❧❞✉♥❣❡♥ ϕ : R→ R✳ ❉✐❡s❡♥

❙❛t③ ❤❛❜❡♥ ✇✐r ✐♥ ❲❘ ❢ür ❩✉❢❛❧❧s✈❛r✐❛❜❧❡♥ ❜❡✇✐❡s❡♥ ✭❙❛t③ ✻✳✹✳✸✱ ❱♦r❧❡s✉♥❣ss❦r✐♣t ❲❘✮✳
❉✐❡ ❡r♥❡✉t❡ ❆♥✇❡♥❞✉♥❣ ❞❡s ❙t❡t✐❣❦❡✐tss❛t③❡s ❡r❣✐❜t

∣∣∣(A1/2)⊤Z ′
n

∣∣∣
2 d−→
n→∞

|Y |2 = R ∼ χ2
r−1.

❩❡✐❣❡♥ ✇✐r✱ ❞❛ÿ

Tn(X1, . . . , Xn) =
∣∣∣(A1/2)⊤Z ′

n

∣∣∣
2
.

❊s ❣✐❧t✿
∣∣∣(A1/2)⊤Z ′

n

∣∣∣
2
= ((A1/2)⊤Z ′

n)
⊤((A1/2)⊤Z ′

n) = Z ′⊤
n ·A1/2 · (A1/2)⊤︸ ︷︷ ︸

A

Z ′
n = Z ′⊤

n AZ ′
n

= n
r−1∑

j=1

1

p0j

(
Znj

n
− p0j

)2

+
n

p0r

r−1∑

i=1

r−1∑

j=1

(
Zni

n
− p0i

)(
Znj

n
− p0j

)

=
r−1∑

j=1

(Znj − np0j)
2

np0j
+

n

p0r




r−1∑

j=1

(
Znj

n
− p0j

)


2

=
r−1∑

j=1

(Znj−np0j )
2

np0j
+

n

p0r

(
Znr

n
− p0r

)2

=
r∑

j=1

(Znj − np0j)
2

np0j
= Tn(X1, . . . , Xn),

✇❡✐❧

r−1∑

j=1

Znj = n− Znr,

r−1∑

j=1

p0j = 1− p0r.



✹✵ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

▲❡♠♠❛ ✶✳✹✳✷ ✭▼✉❧t✐✈❛r✐❛t❡r ③❡♥tr❛❧❡r ●r❡♥③✇❡rts❛t③✮✳ ❙❡✐ {Yn}n∈N ❡✐♥❡ ❋♦❧❣❡ ✈♦♥ ✉♥✲
❛❜❤ä♥❣✐❣❡♥ ✉♥❞ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t❡♥ ❩✉❢❛❧❧s✈❡❦t♦r❡♥✱ ♠✐t EY1 = µ ✉♥❞ ❑♦✈❛r✐❛♥③♠❛tr✐①
❑✳ ❉❛♥♥ ❣✐❧t

n∑
i=1

Yi − nµ

√
n

d−→
n→∞

Y ∼ N(0,K). ✭✶✳✹✳✷✮

❇❡✇❡✐s✳ ❙❡✐ Yj = (Yj1, . . . , Yjm)⊤✳ ◆❛❝❤ ❞❡♠ ❙t❡t✐❣❦❡✐tss❛t③ ❢ür ❝❤❛r❛❦t❡r✐st✐s❝❤❡ ❋✉♥❦✲
t✐♦♥❡♥ ✐st ❞✐❡ ❑♦♥✈❡r❣❡♥③ ✭✶✳✹✳✷✮ äq✉✐✈❛❧❡♥t ③✉

ϕn(t) −→
n→∞

ϕ(t) t ∈ R
m, ✭✶✳✹✳✸✮

✇♦❜❡✐

ϕn(t) = E eitSn = E exp



i

m∑

j=1

tj
Y1j + . . .+ Ynj − nµj√

n





❞✐❡ ❝❤❛r❛❦t❡r✐st✐s❝❤❡ ❋✉♥❦t✐♦♥ ✈♦♠ ❩✉❢❛❧❧s✈❡❦t♦r

Sn =

n∑
i=1

Yi − nµ

√
n

✉♥❞

ϕ(t) = e−t⊤Kt/2

❞✐❡ ❝❤❛r❛❦t❡r✐st✐s❝❤❡ ❋✉♥❦t✐♦♥ ❞❡r N(0,K)✲❱❡rt❡✐❧✉♥❣ ✐st✳ ❉✐❡ ❋✉♥❦t✐♦♥ ϕn(t) ❦❛♥♥ ✐♥
❞❡r ❋♦r♠

ϕn(t) = E exp




i

n∑

i=1

m∑
i=1

tj(Yij − µj)

√
n





, t = (t1, . . . , tm)⊤ ∈ R
m

✉♠❣❡s❝❤r✐❡❜❡♥ ✇❡r❞❡♥✱ ✇♦❜❡✐ ❢ür ❞✐❡ ❩✉❢❛❧❧s✈❛r✐❛❜❧❡

Li :=
m∑

j=1

tj(Yij − µj)

❣✐❧t✿

ELi = 0,

❱❛rLi = E




m∑

k,j=1

tj(Yij − µj)(Yik−µk
)tk


 = t⊤Kt, i ∈ N.



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✹✶

❋❛❧❧s t⊤Kt = 0✱ ❞❛♥♥ ❣✐❧t Li = 0 ❢❛st s✐❝❤❡r✱ ❢ür ❛❧❧❡ i ∈ N✳ ❍✐❡r❛✉s ❢♦❧❣t ϕn(t) = ϕ(t) = 1✱
❛❧s♦ ❣✐❧t ❞✐❡ ❑♦♥✈❡r❣❡♥③ ✶✳✹✳✷✳
❋❛❧❧s ❥❡❞♦❝❤ t⊤Kt > 0✱ ❞❛♥♥ ❦❛♥♥ ϕn(t) ❛❧s ❝❤❛r❛❦t❡r✐st✐s❝❤❡ ❋✉♥❦t✐♦♥ ❞❡r ❩✉❢❛❧❧s✈❛✲

r✐❛❜❧❡♥
n∑

i=1

Li/
√
n

❛♥ ❙t❡❧❧❡ ✶✱ ✉♥❞ ϕ(t) ❛❧s ❝❤❛r❛❦t❡r✐st✐s❝❤❡ ❋✉♥❦t✐♦♥ ❞❡r ❡✐♥❞✐♠❡♥s✐♦♥❛❧❡♥ ◆♦r♠❛❧✈❡rt❡✐✲
❧✉♥❣ N(0, t⊤Kt) ❛♥ ❙t❡❧❧❡ 1 ✐♥t❡r♣r❡t✐❡rt ✇❡r❞❡♥✳ ❆✉s ❞❡♠ ③❡♥tr❛❧❡♥ ●r❡♥③✇❡rts❛t③ ❢ür
❡✐♥❞✐♠❡♥s✐♦♥❛❧❡ ❩✉❢❛❧❧s✈❛r✐❛❜❧❡♥ ✭✈❡r❣❧❡✐❝❤❡ ❙❛t③ ✼✳✷✳✶✱ ❱♦r❧❡s✉♥❣ss❦r✐♣t ❲❘✮ ❣✐❧t

n∑

i=1

Li√
n

d−→
n→∞

L ∼ N(0, t⊤Kt)

✉♥❞ s♦♠✐t

ϕn(t) = ϕ(
∑n

i=1 Li/
√
n)(1) −→n→∞

ϕL(1) = ϕ(t).

❙♦♠✐t ✐st ❞✐❡ ❑♦♥✈❡r❣❡♥③ ✭✶✳✹✳✷✮ ❜❡✇✐❡s❡♥✳

❇❡♠❡r❦✉♥❣ ✶✳✹✳✶✳ ✶✳ ❉✐❡ ✐♠ ❧❡t③t❡♥ ❇❡✇❡✐s ✈❡r✇❡♥❞❡t❡ ▼❡t❤♦❞❡ ❞❡r ❘❡❞✉❦t✐♦♥
❡✐♥❡r ♠❡❤r❞✐♠❡♥s✐♦♥❛❧❡♥ ❑♦♥✈❡r❣❡♥③ ❛✉❢ ❞❡♥ ❡✐♥❞✐♠❡♥s✐♦♥❛❧❡♥ ❋❛❧❧ ♠✐t ❍✐❧❢❡ ✈♦♥
▲✐♥❡❛r❦♦♠❜✐♥❛t✐♦♥❡♥ ✈♦♥ ❩✉❢❛❧❧s✈❛r✐❛❜❧❡♥ trä❣t ❞❡♥ ◆❛♠❡♥ ✈♦♥ ❈r❛♠ér✲❲♦❧❞✳

✷✳ ❉❡r χ2✲P❡❛rs♦♥✲❚❡st ✐st ❛s②♠♣t♦t✐s❝❤✱ ❛❧s♦ ❢ür ❣r♦ÿ❡ ❙t✐❝❤♣r♦❜❡♥✉♠❢ä♥❣❡✱ ❛♥③✉✲
✇❡♥❞❡♥✳ ❆❜❡r ✇❡❧❝❤❡s n ✐st ❣r♦ÿ ❣❡♥✉❣❄ ❆❧s ✒❋❛✉str❡❣❡❧✏ ❣✐❧t✿ np0j s♦❧❧ ❣röÿ❡r
❣❧❡✐❝❤ a s❡✐♥✱ a ∈ (2,∞)✳ ❋ür ❡✐♥❡ ❣röÿ❡r❡ ❑❧❛ss❡♥❛♥③❛❤❧ r ≥ 10 ❦❛♥♥ s♦❣❛r a = 1
✈❡r✇❡♥❞❡t ✇❡r❞❡♥✳ ❲✐r ③❡✐❣❡♥ ❥❡t③t✱ ❞❛ÿ ❞❡r χ2✲❆♥♣❛ss✉♥❣st❡st ❦♦♥s✐st❡♥t ✐st✳

▲❡♠♠❛ ✶✳✹✳✸✳ ❉❡r χ2✲P❡❛rs♦♥✲❚❡st ✐st ❦♦♥s✐st❡♥t✱ ❞❛s ❤❡✐ÿt

∀p ∈ [0, 1]r−1, p 6= p0 ❣✐❧t✿ lim
n→∞

Pp

(
Tn(X1, . . . , Xn) > χ2

r−1,1−α

)
= 1

❇❡✇❡✐s✳ ❯♥t❡r H1 ❣✐❧t

Znj/n =

n∑
i=1

I(aj < Xi ≤ bj)

n

f.s−→
n→∞

E I(aj < X1 ≤ bj)︸ ︷︷ ︸
=pj

♥❛❝❤ ❞❡♠ st❛r❦❡♥ ●❡s❡t③ ❞❡r ❣r♦ÿ❡♥ ❩❛❤❧❡♥✳ ❲✐r ✇ä❤❧❡♥ j s♦✱ ❞❛ÿ pj 6= p0j ✳ ❊s ❣✐❧t

Tn(X1, . . . , Xn) ≥
(Znj − np0j)

2

np0j
≥ n

(
Znj

n
− p0j

)2

︸ ︷︷ ︸
∼n(pj−p0j)2

f.s−→
n→∞

∞.

❙♦♠✐t ✐st ❛✉❝❤

Pp

(
Tn(X1, . . . , Xn) > χ2

r−1,1−α

) f.s.−→
n→∞

1.



✹✷ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

✶✳✹✳✷ χ2✲❆♥♣❛ss✉♥❣st❡st ✈♦♥ P❡❛rs♦♥✲❋✐s❤❡r

❊s s❡✐ (X1, . . . , Xn) ❡✐♥❡ ❙t✐❝❤♣r♦❜❡ ✈♦♥ ✉♥❛❜❤ä♥❣✐❣❡♥ ✉♥❞ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t❡♥ ❩✉❢❛❧❧s✲
✈❛r✐❛❜❧❡♥ Xi✱ i = 1, . . . , n✳ ❲✐r ✇♦❧❧❡♥ t❡st❡♥✱ ♦❜ ❞✐❡ ❱❡rt❡✐❧✉♥❣s❢✉♥❦t✐♦♥ F ✈♦♥ Xi ③✉
❡✐♥❡r ♣❛r❛♠❡tr✐s❝❤❡♥ ❋❛♠✐❧✐❡

Λ0 = {Fθ : θ ∈ Θ}, Θ ⊂ R
m

❣❡❤ört✳ ❙❡✐❡♥ ❞✐❡ ❩❛❤❧❡♥ ai, bi✱ i = 1, . . . , r ✈♦r❣❡❣❡❜❡♥ ♠✐t ❞❡r ❊✐❣❡♥s❝❤❛❢t

−∞ ≤ a1 < b1 = a2 < b2 = . . . = ar < br ≤ ∞

✉♥❞

Zj = #{Xi, i = 1, . . . , n : aj < Xi ≤ bj}, j = 1, . . . , r,

Z = (Z1, . . . , Zr)
⊤.

◆❛❝❤ ▲❡♠♠❛ ✶✳✹✳✶ ❣✐❧t✿ Z ∼ Mr−1(n, p)✱ p = (p0, . . . , pr−1)
⊤ ∈ [0, 1]r−1✳ ❯♥t❡r ❞❡r

❍②♣♦t❤❡s❡ H0 : F ∈ Λ0 ❣✐❧t✿ p = p(θ)✱ θ ∈ Θ ⊂ R
m✳ ❲✐r ✈❡r❣rö❜❡r♥ ❞✐❡ ❍②♣♦t❤❡s❡ H0

✉♥❞ ✇♦❧❧❡♥ ❢♦❧❣❡♥❞❡ ♥❡✉❡ ❍②♣♦t❤❡s❡ t❡st❡♥✿

H0 : p ∈ {p(θ) : θ ∈ Θ} ✈s✳ H1 : p /∈ {p(θ) : θ ∈ Θ} .

❯♠ ❞✐❡s❡s ❍②♣♦t❤❡s❡♥♣❛❛r ③✉ t❡st❡♥✱ ✇✐r❞ ❞❡r χ2✲P❡❛rs♦♥✲❋✐s❤❡r✲❚❡st ✇✐❡ ❢♦❧❣t ❛✉❢❣❡✲
❜❛✉t✿

✶✳ ❊✐♥ ✭s❝❤✇❛❝❤ ❦♦♥s✐st❡♥t❡r✮ ▼❛①✐♠✉♠✲▲✐❦❡❧✐❤♦♦❞✲❙❝❤ät③❡r θ̂n = θ̂(X1, . . . , Xn) ❢ür

θ ✇✐r❞ ❣❡❢✉♥❞❡♥✿ θ̂n
P→

n→∞
θ✳ ❉❛❜❡✐ ♠✉ÿ {θ̂n}n∈N ❛s②♠♣t♦t✐s❝❤ ♥♦r♠❛❧✈❡rt❡✐❧t s❡✐♥✳

✷✳ ❊s ✇✐r❞ ❞❡r P❧✉❣✲■♥✲❙❝❤ät③❡r p(θ̂n) ❢ür p(θ) ❣❡❜✐❧❞❡t✳

✸✳ ❉✐❡ ❚❡st❣röÿ❡

T̂n(X1, . . . , Xn) =

r∑

j=1

(
Znj − npj(θ̂)

)2

npj(θ̂)

P−→
n→∞

η ∼ χ2
r−m−1

✉♥t❡r H0 ✉♥❞ ❣❡✇✐ss❡♥ ❱♦r❛✉ss❡t③✉♥❣❡♥✳

✹✳ H0 ✇✐r❞ ✈❡r✇♦r❢❡♥✱ ❢❛❧❧s T̂n(X1, . . . , Xn) > χ2
r−m−1,1−α✳ ❉✐❡s ✐st ❡✐♥ ❛s②♠♣t♦t✐s❝❤❡r

❚❡st ③✉♠ ◆✐✈❡❛✉ α✳

❇❡♠❡r❦✉♥❣ ✶✳✹✳✷✳ ✶✳ ❇❡✐ ❡✐♥❡♠ χ2✲P❡❛rs♦♥✲❋✐s❤❡r✲❚❡st ✇✐r❞ ✈♦r❛✉s❣❡s❡t③t✱ ❞❛ÿ ❞✐❡
❋✉♥❦t✐♦♥ p(θ) ❡①♣❧✐③✐t ❜❡❦❛♥♥t ✐st✱ θ ❥❡❞♦❝❤ ✉♥❜❡❦❛♥♥t✳ ❉❛s ❜❡❞❡✉t❡t✱ ❞❛ÿ ❢ür ❥❡❞❡
❑❧❛ss❡ ✈♦♥ ❱❡rt❡✐❧✉♥❣❡♥ Λ0 ❞✐❡ ❋✉♥❦t✐♦♥ p(·) ❜❡r❡❝❤♥❡t ✇❡r❞❡♥ s♦❧❧✳



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✹✸

✷✳ ❲❛r✉♠ ❦❛♥♥ T̂n ❞✐❡ ❍②♣♦t❤❡s❡ H0 ✈♦♥ H1 ✉♥t❡rs❝❤❡✐❞❡♥❄ ◆❛❝❤ ❞❡♠ ●❡s❡t③ ❞❡r
❣r♦ÿ❡♥ ❩❛❤❧❡♥ ❣✐❧t

1

n
Znj − pj(θ̂n) =

1

n
Znj − pj(θ)

︸ ︷︷ ︸
P→0

− (pj(θ̂n)− pj(θ))︸ ︷︷ ︸
P→0

P−→
n→∞

0,

❢❛❧❧s θ̂n s❝❤✇❛❝❤ ❦♦♥s✐st❡♥t ✐st ✉♥❞ pj(·) ❡✐♥❡ st❡t✐❣❡ ❋✉♥❦t✐♦♥ ❢ür ❛❧❧❡ j = 1, . . . , r
✐st✳

❉❛s ❤❡✐ÿt✱ ✉♥t❡r H0 s♦❧❧ T̂n(X1, . . . , Xn) r❡❧❛t✐✈ ❦❧❡✐♥❡ ❲❡rt❡ ❛♥♥❡❤♠❡♥✳ ❊✐♥❡ s✐✲
❣♥✐✜❦❛♥t❡ ❆❜✇❡✐❝❤✉♥❣ ✈♦♥ ❞✐❡s❡♠ ❱❡r❤❛❧t❡♥ s♦❧❧ ③✉r ❆❜❧❡❤♥✉♥❣ ✈♦♥ H0 ❢ü❤r❡♥✱
✈❡r❣❧❡✐❝❤❡ P✉♥❦t ✹✳

❋ür ❞✐❡ ❱❡rt❡✐❧✉♥❣ Fθ ✈♦♥ Xi ❣❡❧t❡♥ ❢♦❧❣❡♥❞❡ ❘❡❣✉❧❛r✐täts✈♦r❛✉ss❡t③✉♥❣❡♥ ✭✈❡r❣❧❡✐❝❤❡
❙❛t③ ✸✳✹✳✷✱ ❱♦r❧❡s✉♥❣ss❦r✐♣t ❙t♦❝❤❛st✐❦ ■✮✳

✶✳ ❉✐❡ ❱❡rt❡✐❧✉♥❣s❢✉♥❦t✐♦♥ Fθ ✐st ❡♥t✇❡❞❡r ❞✐s❦r❡t ♦❞❡r ❛❜s♦❧✉t st❡t✐❣ ❢ür ❛❧❧❡ θ ∈ Θ✳

✷✳ ❉✐❡ P❛r❛♠❡tr✐s✐❡r✉♥❣ ✐st ❡✐♥❞❡✉t✐❣✱ ❞❛s ❤❡✐ÿt✿ θ 6= θ1 ⇔ Fθ 6= Fθ1 ✳

✸✳ ❉❡r ❚rä❣❡r ❞❡r ▲✐❦❡❧✐❤♦♦❞✲❋✉♥❦t✐♦♥

L(x, θ) =

{
Pθ(X1 = x), ✐♠ ❋❛❧❧❡ ✈♦♥ ❞✐s❦r❡t❡♥ Fθ,
fθ(x), ✐♠ ❛❜s♦❧✉t st❡t✐❣❡♥ ❋❛❧❧✳

❙✉♣♣L(x, θ) = {x ∈ R : L(x, θ) > 0} ❤ä♥❣t ♥✐❝❤t ✈♦♥ θ ❛❜✳

✹✳ L(x, θ) s❡✐ ✸ ▼❛❧ st❡t✐❣ ❞✐✛❡r❡♥③✐❡r❜❛r✱ ✉♥❞ ❡s ❣❡❧t❡ ❢ür k = 1, . . . , 3 ✉♥❞ i1, . . . , ik ∈
{1 . . .m}✱ ❞❛ÿ

(∑)∫ ∂kL(x, θ)

∂θi1 · . . . · ∂θik
dx =

∂k

∂θi1 · . . . · ∂θik

(∑)∫
L(x, θ)dx = 0.

✺✳ ❋ür ❛❧❧❡ θ0 ∈ Θ ❣✐❜t ❡s ❡✐♥❡ ❑♦♥st❛♥t❡ cθ0 ✉♥❞ ❡✐♥❡ ♠❡ss❜❛r❡ ❋✉♥❦t✐♦♥ gθ0 :
❙✉♣♣L→ R+✱ s♦❞❛ÿ

∣∣∣∣
∂3 logL(x, θ)

∂θi1∂θi2∂θi3

∣∣∣∣ ≤ gθ0(x), |θ − θ0| < cθ0

✉♥❞

Eθ0 gθ0(X1) <∞.

❲✐r ❞❡✜♥✐❡r❡♥ ❞✐❡ ■♥❢♦r♠❛t✐♦♥s♠❛tr✐① ✈♦♥ ❋✐s❤❡r ❞✉r❝❤

I(θ) =

(
E

[
∂ logL(X1, θ)

∂θi

∂ logL(X1, θ)

∂θj

])

i,j=1,...,m

. ✭✶✳✹✳✹✮



✹✹ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

❙❛t③ ✶✳✹✳✷ ✭❛s②♠♣t♦t✐s❝❤❡ ◆♦r♠❛❧✈❡rt❡✐❧t❤❡✐t ✈♦♥ ❦♦♥s✐st❡♥t❡♥ ▼▲✲❙❝❤ät③❡r♥ θ̂n✱ ♠✉❧✲
t✐✈❛r✐❛t❡r ❋❛❧❧ m > 1✮✳ ❊s s❡✐❡♥ X1, . . . , Xn ✉♥❛❜❤ä♥❣✐❣ ✉♥❞ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t ♠✐t
▲✐❦❡❧✐❤♦♦❞✲❋✉♥❦t✐♦♥ L✱ ❞✐❡ ❞❡♥ ❘❡❣✉❧❛r✐täts❜❡❞✐♥❣✉♥❣❡♥ ✶✲✺ ❣❡♥ü❣t✳ ❙❡✐ I(θ) ♣♦s✐t✐✈
❞❡✜♥✐t ❢ür ❛❧❧❡ θ ∈ Θ ⊂ R

m✳ ❙❡✐ θ̂n = θ̂(X1, . . . , Xn) ❡✐♥❡ ❋♦❧❣❡ ✈♦♥ s❝❤✇❛❝❤ ❦♦♥s✐st❡♥t❡♥
▼❛①✐♠✉♠✲▲✐❦❡❧✐❤♦♦❞✲❙❝❤ät③❡r♥ ❢ür θ✳ ❉❛♥♥ ❣✐❧t✿

√
n(θ̂n − θ)

d−→
n→∞

N(0, I−1(θ)).

❖❤♥❡ ❇❡✇❡✐s❀ s✐❡❤❡ ❞❡♥ ❇❡✇❡✐s ❞❡s ❙❛t③❡s ✸✳✹✳✷✱ ❱♦r❧❡s✉♥❣ss❦r✐♣t ❙t♦❝❤❛st✐❦ ■✳

❋ür ✉♥s❡r❡ ✈❡r❣rö❜❡rt❡ ❍②♣♦t❤❡s❡ H0 : p ∈ {p(θ), θ ∈ Θ} st❡❧❧❡♥ ✇✐r ❢♦❧❣❡♥❞❡✱ stü❝❦✲
✇❡✐s❡ ❦♦♥st❛♥t❡✱ ▲✐❦❡❧✐❤♦♦❞✲❋✉♥❦t✐♦♥ ❛✉❢✿

L(x, θ) = pj(θ), ❢❛❧❧s x ∈ (aj , bj ].

❉❛♥♥ ✐st ❞✐❡ ▲✐❦❡❧✐❤♦♦❞✲❋✉♥❦t✐♦♥ ❞❡r ❙t✐❝❤♣r♦❜❡ (x1, . . . , xn) ❣❧❡✐❝❤

L(x1, . . . , xn, θ) =
r∏

j=1

pj(θ)
Zj(x1,...,xn)

⇒ logL(x1, . . . , xn, θ) =

r∑

j=1

Zj(x1, . . . , xn) · log pj(θ).

θ̂n = θ̂(x1, . . . , xn) = ❛r❣♠❛①
θ∈Θ

logL(x1, . . . , xn, θ)

⇒
r∑

j=1

Zj(x1, . . . , xn)
∂pj(θ)

∂θi
· 1

pj(θ)
= 0, i = 1, . . . ,m.

❆✉s
∑r

j=1 pj(θ) = 1 ❢♦❧❣t

r∑

j=1

∂pj(θ)

∂θi
= 0⇒

r∑

j=1

Zj(x1, . . . , xn)− npj(θ)

pj(θ)
· ∂pj(θ)

∂θi
= 0, i = 1, . . . ,m.

▲❡♠♠❛ ✶✳✹✳✹✳ ■♠ ♦❜✐❣❡♥ ❋❛❧❧ ❣✐❧t I(θ) = C⊤(θ) ·C(θ)✱ ✇♦❜❡✐ C(θ) ❡✐♥❡ (r×m)✲▼❛tr✐①
♠✐t ❊❧❡♠❡♥t❡♥

cij(θ) =
∂pi(θ)

∂θj
· 1√

pi(θ)
✐st✳



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✹✺

❇❡✇❡✐s✳

E0

[
∂ logL(X1, θ)

∂θi
· ∂ logL(X1, θ)

∂θj

]
=

r∑

k=1

∂ log pk(θ)

∂θi
· ∂ log pk(θ)

∂θj
· pk(θ)

=

r∑

k=1

∂pk(θ)

∂θi

1

pk(θ)
· ∂pk(θ)

∂θj
· 1

pk(θ)
· pk(Θ)

=
(
C⊤(θ) · C(θ)

)

ij
,

❞❡♥♥ logL(X1, θ) =

r∑

i=1

log pj(θ) · I (x ∈ (aj , bj ]) .

❉❡s❤❛❧❜ ❣✐❧t ❞✐❡ ❋♦❧❣❡r✉♥❣ ❛✉s ❙❛t③ ✶✳✹✳✷✿

❋♦❧❣❡r✉♥❣ ✶✳✹✳✶✳ ❙❡✐ θ̂n = θ̂(X1, . . . , Xn) ❡✐♥ ▼❛①✐♠✉♠✲▲✐❦❡❧✐❤♦♦❞✲❙❝❤ät③❡r ✈♦♥ θ ✐♠
✈❡r❣rö❜❡rt❡♥ ▼♦❞❡❧❧✱ ❞❡r s❝❤✇❛❝❤ ❦♦♥s✐st❡♥t ✐st ✉♥❞ ❞❡♥ ♦❜✐❣❡♥ ❘❡❣✉❧❛r✐täts❜❡❞✐♥❣✉♥❣❡♥
❣❡♥ü❣t✳ ❙❡✐ ❞✐❡ ■♥❢♦r♠❛t✐♦♥s♠❛tr✐① ✈♦♥ ❋✐s❤❡r I(θ) = C⊤(θ) ·C(θ) ❢ür ❛❧❧❡ θ ∈ Θ ♣♦s✐t✐✈
❞❡✜♥✐t✳ ❉❛♥♥ ✐st θ̂ ❛s②♠♣t♦t✐s❝❤ ♥♦r♠❛❧✈❡rt❡✐❧t✿

√
n
(
θ̂n − θ

)
d−→

n→∞
Y ∼ N

(
0, I−1(θ)

)

❙❛t③ ✶✳✹✳✸✳ ❊s s❡✐ θ̂n ❡✐♥ ▼❛①✐♠✉♠✲▲✐❦❡❧✐❤♦♦❞✲❙❝❤ät③❡r ✐♠ ✈❡r❣rö❜❡rt❡♥ ▼♦❞❡❧❧ ❢ür θ✱
❢ür ❞❡♥ ❛❧❧❡ ❱♦r❛✉ss❡t③✉♥❣❡♥ ❞❡r ❋♦❧❣❡r✉♥❣ ✶✳✹✳✶ ❡r❢ü❧❧t s✐♥❞✳ ❉✐❡ ❚❡stst❛t✐st✐❦

T̂n(X1, . . . , Xn) =

r∑

j=1

(Zj(X1, . . . , Xn)− npj(θ̂n))
2

npj(θ̂n)

✐st ✉♥t❡r H0 ❛s②♠♣t♦t✐s❝❤ χ2
r−m−1✲✈❡rt❡✐❧t✿

lim
n→∞

Pθ

(
T̂n(X1, . . . , Xn) > χ2

r−m−1,1−α

)
= α.

♦❤♥❡ ❇❡✇❡✐s ✭s✐❡❤❡ ❬✶✺❪✮✳

❆✉s ❞✐❡s❡♠ ❙❛t③ ❢♦❧❣t✱ ❞❛ÿ ❞❡r χ2✲P❡❛rs♦♥✲❋✐s❤❡r✲❚❡st ❡✐♥ ❛s②♠♣t♦t✐s❝❤❡r ❚❡st ③✉♠
◆✐✈❡❛✉ α ✐st✳

❇❡✐s♣✐❡❧ ✶✳✹✳✶✳ ✶✳ χ2✲P❡❛rs♦♥✲❋✐s❤❡r✲❚❡st ❞❡r ◆♦r♠❛❧✈❡rt❡✐❧✉♥❣

❙❡✐ (X1, . . . , Xn) ❡✐♥❡ ❩✉❢❛❧❧sst✐❝❤♣r♦❜❡✳ ❊s s♦❧❧ ❣❡♣rü❢t ✇❡r❞❡♥✱ ♦❜ Xi ∼ N(µ, σ2)✳
❊s ❣✐❧t

θ = (µ, σ2) ∈ Θ = R× R+.



✹✻ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

❙❡✐ (aj , bj ]j=1,...,r ❡✐♥❡ ❜❡❧✐❡❜✐❣❡ ❆✉❢t❡✐❧✉♥❣ ✈♦♥ R ✐♥ r ❞✐s❥✉♥❦t❡ ■♥t❡r✈❛❧❧❡✳ ❙❡✐

fθ(x) =
1√
2πσ2

e−
1
2(

x−µ
σ )

2

❞✐❡ ❉✐❝❤t❡ ❞❡r N(µ, σ2)✲❱❡rt❡✐❧✉♥❣✳

pj(θ) = P0 (aj < X1 ≤ bj) =

∫ bj

aj

fθ(x)dx, j = 1, . . . , r

♠✐t ❞❡♥ ❑❧❛ss❡♥stär❦❡♥

Zj = # {i : Xi ∈ (aj , bj ]} .

❲✐r s✉❝❤❡♥ ❞❡♥ ▼❛①✐♠✉♠✲▲✐❦❡❧✐❤♦♦❞✲❙❝❤ät③❡r ✐♠ ✈❡r❣rö❜❡rt❡♥ ▼♦❞❡❧❧✿

∂pj(θ)

∂µ
=

∫ bj

aj

∂

∂µ
fθ(x)dx =

1√
2πσ2

·
∫ bj

aj

x− µ

σ2
· e− 1

2(
x−µ
σ )

2

dx

∂pj(θ)

∂σ2
=

∫ bj

aj

∂

∂σ2
fθ(x)dx

=
1√
2π

∫ bj

aj

[
−1

2
· 1

(σ2)3/2
e−

1
2(

x−µ
σ )

2

+
1√
σ2

e−
1
2(

x−µ
σ )

2

·
(
(x− µ)2

2(σ2)2

)]
dx

= −1

2

1

σ2

∫ bj

aj

fθ(x)dx+
1

2(σ2)2

∫ bj

aj

(x− µ)2fθ(x)dx

❉✐❡ ♥♦t✇❡♥❞✐❣❡♥ ❇❡❞✐♥❣✉♥❣❡♥ ❞❡s ▼❛①✐♠✉♠s s✐♥❞✿

r∑

i=1

Zj

bj∫
aj

xfθ(x)dx

bj∫
aj

fθ(x)dx

− µ
r∑

j=1

Zj

︸ ︷︷ ︸
=n

= 0,

1

σ2

r∑

j=1

Zj

bj∫
aj

(x− µ)2fθ(x)dx

bj∫
aj

fθ(x)dx

−
r∑

j=1

Zj

︸ ︷︷ ︸
=n

= 0.



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✹✼

❉❛r❛✉s ❢♦❧❣❡♥ ❞✐❡ ▼❛①✐♠✉♠✲▲✐❦❡❧✐❤♦♦❞✲❙❝❤ät③❡r µ̂ ✉♥❞ σ̂2 ❢ür µ ✉♥❞ σ2✿

µ̂ =
1

n

r∑

j=1

Zj

bj∫
aj

xfθ(x)dx

bj∫
aj

fθ(x)dx

,

σ̂2 =
1

n

r∑

j=1

Zj

bj∫
aj

(x− µ)2fθ(x)dx

bj∫
aj

fθ(x)dx

.

❲✐r ❦♦♥str✉✐❡r❡♥ ❡✐♥❡ ◆ä❤❡r✉♥❣ ③✉ µ̂ ✉♥❞ σ̂2 ❢ür r →∞✳ ❋❛❧❧s r →∞ ✭✉♥❞ s♦♠✐t
❛✉❝❤ n→∞✮✱ ❞❛♥♥ ✐st bj − aj ❦❧❡✐♥ ✉♥❞ ♥❛❝❤ ❞❡r ❡✐♥❢❛❝❤❡♥ ◗✉❛❞r❛t✉rr❡❣❡❧ ❣✐❧t✿

∫ bj

aj

xfθ(x)dx ≈ (bj − aj) yjfθ(yj),

∫ bj

aj

fθ(x)dx ≈ (bj − aj) fθ(yj),

✇♦❜❡✐ y1 = b1✱ yr = br−1 = ar✱

yj = (bj+1 + bj)/2, j = 2, . . . , r − 1.

❉❛r❛✉s ❢♦❧❣❡♥ ❢ür ❞✐❡ ▼❛①✐♠✉♠✲▲✐❦❡❧✐❤♦♦❞✲❙❝❤ät③❡r µ̂ ✉♥❞ σ̂2✿

µ̂ ≈ 1

n

r∑

j=1

yj · Zj = µ̃

σ̂2 ≈ 1

n

r∑

j=1

(yj − µ̃)2 Zj = σ̃2,

θ̃ =
(
µ̃, σ̃2

)
.

❉❡r χ2✲P❡❛rs♦♥✲❋✐s❤❡r✲❚❡st ❧❛✉t❡t ❞❛♥♥✿ H0 ✇✐r❞ ❛❜❣❡❧❡❤♥t✱ ❢❛❧❧s

T̂n =

r∑
j=1

(
Zj − npj(θ̃)

)2

npj(θ̃)
> χ2

r−3,1−α.

✷✳ χ2✲P❡❛rs♦♥✲❋✐s❤❡r✲❚❡st ❞❡r P♦✐ss♦♥✈❡rt❡✐❧✉♥❣

❊s s❡✐ (X1, . . . , Xn) ❡✐♥❡ ❙t✐❝❤♣r♦❜❡ ✈♦♥ ✉♥❛❜❤ä♥❣✐❣❡♥ ✉♥❞ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧❡♥ ❩✉✲
❢❛❧❧s✈❛r✐❛❜❧❡♥✳ ❲✐r ✇♦❧❧❡♥ t❡st❡♥✱ ♦❜ Xi ∼ P♦✐ss♦♥(λ), λ > 0✳ ❊s ❣✐❧t θ = λ ✉♥❞
Θ = (0,+∞)✳ ❉✐❡ ❱❡r❣rö❜❡r✉♥❣ ✈♦♥ Θ ❤❛t ❞✐❡ ❋♦r♠

−∞ = a1 < b1︸︷︷︸
=0

= a2 < b2︸︷︷︸
=1

= a3 < . . . < br−1︸︷︷︸
=r−2

= ar < br = +∞.



✹✽ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

❉❛♥♥ ✐st

pj(λ) = Pλ (X1 = j − 1) = e−λ λj−1

(j − 1)!
, j = 1, . . . , r − 1,

pr(λ) =
∞∑

i=r−1

e−λλ
i

i!
,

dpj(λ)

dλ
= −e−λ λj−1

(j − 1)!
+ (j − 1)

λj−2

(j − 1)!
e−λ = e−λ λj−1

(j − 1)!

(
j − 1

λ
− 1

)

= pj(λ) ·
(
j − 1

λ
− 1

)
, j = 1, . . . , r − 1

dpr(λ)

dλ
=
∑

i≥r−1

pi(λ)

(
i− 1

λ
− 1

)
.

❉✐❡ ▼❛①✐♠✉♠✲▲✐❦❡❧✐❤♦♦❞✲●❧❡✐❝❤✉♥❣ ❧❛✉t❡t

0 =

r−1∑

j=1

Zj ·
(
j − 1

λ
− 1

)
+ Zr

∑
i≥r−1

pi(λ)
(
i−1
λ − 1

)

pr(λ)

❋❛❧❧s r −→ ∞✱ s♦ ✜♥❞❡t s✐❝❤ r(n) ❢ür ❥❡❞❡s n✱ ❢ür ❞❛s Zr(n) = 0✳ ❉❡s❤❛❧❜ ❣✐❧t ❢ür
r > r(n)✿

r−1∑

j=1

(j − 1)Zj − λ
r∑

j=1

Zj

︸ ︷︷ ︸
=n

= 0,

✇♦r❛✉s ❞❡r ▼❛①✐♠✉♠✲▲✐❦❡❧✐❤♦♦❞✲❙❝❤ät③❡r

1

n

r−1∑

j=1

(j − 1)Zj =
1

n

n∑

j=1

Xj = Xn

❢♦❧❣t✳ ❉❡r χ2✲P❡❛rs♦♥✲❋✐s❤❡r✲❚❡st ❧❛✉t❡t✿ H0 ✇✐r❞ ✈❡r✇♦r❢❡♥✱ ❢❛❧❧s

T̂n =

r∑

j=1

(
Zj − npλ(Xn)

)2
(
npj(Xn)

)2 > χ2
r−2,1−α.

✶✳✹✳✸ ❆♥♣❛ss✉♥❣st❡st ✈♦♥ ❙❤❛♣✐r♦

❊s s❡✐ (X1, . . . , Xn) ❡✐♥❡ ❙t✐❝❤♣r♦❜❡ ✈♦♥ ✉♥❛❜❤ä♥❣✐❣❡♥✱ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t❡♥ ❩✉❢❛❧❧s✈❛r✐❛✲
❜❧❡♥✱ Xi ∼ F ✳ ●❡t❡st❡t ✇❡r❞❡♥ s♦❧❧ ❞✐❡ ❍②♣♦t❤❡s❡

H0 : F ∈ {N(µ, σ2) : µ ∈ R, σ2 > 0} ✈s✳ H1 : F /∈ {N(µ, σ2), µ ∈ R, σ2 > 0}.



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✹✾

❉✐❡ ✐♥ ❞❡♥ ❆❜s❝❤♥✐tt❡♥ ✶✳✹✳✶ ✲ ✶✳✹✳✷ ✈♦r❣❡st❡❧❧t❡♥ χ2✲❚❡sts s✐♥❞ ❛s②♠♣t♦t✐s❝❤❀ ❞❡s❤❛❧❜
❦ö♥♥❡♥ s✐❡ ❢ür r❡❧❛t✐✈ ❦❧❡✐♥❡ ❙t✐❝❤♣r♦❜❡♥✉♠❢ä♥❣❡ ♥✐❝❤t ✈❡r✇❡♥❞❡t ✇❡r❞❡♥✳
❉❡r ❢♦❧❣❡♥❞❡ ❚❡st ✇✐r❞ ❞✐❡s❡ ▲ü❝❦❡ ❢ü❧❧❡♥ ✉♥❞ ❡✐♥❡ ❚❡st❡♥ts❝❤❡✐❞✉♥❣ ü❜❡r H0 s❡❧❜st

❜❡✐ ❦❧❡✐♥❡♥ ❙t✐❝❤♣r♦❜❡♥ ❡r♠ö❣❧✐❝❤❡♥✳
▼❛♥ ❜✐❧❞❡t ❖r❞♥✉♥❣sst❛t✐st✐❦❡♥ X(1), . . . , X(n)✱ X(1) ≤ X(2) ≤ . . . ,≤ X(n) ✉♥❞ ✈❡r✲

❣❧❡✐❝❤t ✐❤r❡ ❑♦rr❡❧✐❡rt❤❡✐t ♠✐t ❞❡♥ ▼✐tt❡❧✇❡rt❡♥ ❞❡r ❡♥ts♣r❡❝❤❡♥❞❡♥ ❖r❞♥✉♥❣sst❛t✐st✐❦❡♥
❞❡r N(0, 1)✲❱❡rt❡✐❧✉♥❣✳ ❙❡✐ (Y1, . . . , Yn) ❡✐♥❡ ❙t✐❝❤♣r♦❜❡ ✈♦♥ ✉♥❛❜❤ä♥❣✐❣❡♥ ✉♥❞ ✐❞❡♥t✐s❝❤
✈❡rt❡✐❧t❡♥ ❩✉❢❛❧❧s✈❛r✐❛❜❧❡♥✱ Y1 ∼ N(0, 1)✳ ❊s s❡✐ ai = EY(i)✱ i = 1, . . . , n✳ ❋❛❧❧s ❞❡r ❡♠♣✐✲
r✐s❝❤❡ ❑♦rr❡❧❛t✐♦♥s❦♦❡✣③✐❡♥t ρaX ③✇✐s❝❤❡♥ (a1, . . . , an) ✉♥❞ (X(1), . . . , X(n)) ❜❡✐ 1 ❧✐❡❣t✱
❞❛♥♥ ✐st ❞✐❡ ❙t✐❝❤♣r♦❜❡ ♥♦r♠❛❧✈❡rt❡✐❧t✳ ❋♦r♠❛❧✐s✐❡r❡♥ ✇✐r ❞✐❡s❡ ❍❡✉r✐st✐❦✿
❊s s❡✐ bi ❞❡r ❊r✇❛rt✉♥❣s✇❡rt ❞❡r i✲t❡♥ ❖r❞♥✉♥❣sst❛t✐st✐❦ ✐♥ ❡✐♥❡r ❙t✐❝❤♣r♦❜❡ ✈♦♥

N(µ, σ2)✲✈❡rt❡✐❧t❡♥✱ ✉♥❛❜❤ä♥❣✐❣❡♥ ❩✉❢❛❧❧s✈❛r✐❛❜❧❡♥ Zi✿ bi = EZ(i)✱ i = 1, . . . , n✳ ❊s ❣✐❧t✿
bi = µ+ σai✱ i = 1, . . . , n✳ ❇❡tr❛❝❤t❡♥ ✇✐r ❞❡♥ ❑♦rr❡❧❛t✐♦♥s❦♦❡✣③✐❡♥t❡♥

ρbX =

n∑
i=1

(
bi − bn

) (
X(i) −Xn

)

√
n∑

i=1

(
bi − bn

)2 n∑
i=1

(
X(i) −Xn

)2
. ✭✶✳✹✳✺✮

❉❛ ρ ✐♥✈❛r✐❛♥t ❜❡③ü❣❧✐❝❤ ▲✐♥❡❛rtr❛♥s❢♦r♠❛t✐♦♥❡♥ ✐st ✉♥❞

n∑

i=1

ai =

n∑

i=1

EYi = E

(
n∑

i=1

Yi

)
= 0, ❣✐❧t✿

ρbX
✭❙t♦❝❤❛st✐❦ ■✮

= ρaX =

n∑
i=1

ai
(
X(i) −Xn

)

√
n∑

i=1
a2i

n∑
i=1

(
Xi −Xn

)2
=

n∑
i=1

aiX(i) −Xn

=0︷ ︸︸ ︷
n∑

i=1

ai

√
n∑

i=1
a2i

n∑
i=1

(
Xi −Xn

)2

=

n∑
i=1

aiX(i)

√
n∑

i=1
a2i ·

n∑
i=1

(
Xi −Xn

)2

❉✐❡ ❚❡stst❛t✐st✐❦ ❧❛✉t❡t✿

Tn =

n∑
i=1

aiX(i)

√
n∑

i=1
a2i

n∑
i=1

(
Xi −Xn

)2
✭❙❤❛♣✐r♦✲❋r❛♥❝✐❛✲❚❡st✮

❉✐❡ ❲❡rt❡ ai s✐♥❞ ❜❡❦❛♥♥t ✉♥❞ ❦ö♥♥❡♥ ❞❡♥ ❚❛❜❡❧❧❡♥ ❜③✇✳ ❞❡r ❙t❛t✐st✐❦✲❙♦❢t✇❛r❡ ❡♥t♥♦♠✲
♠❡♥ ✇❡r❞❡♥✳ ❊s ❣✐❧t✿ |Tn| ≤ 1✳



✺✵ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

H0 ✇✐r❞ ❛❜❣❡❧❡❤♥t✱ ❢❛❧❧s Tn ≤ qn,α✱ ✇♦❜❡✐ qn,α ❞❛s α✲◗✉❛♥t✐❧ ❞❡r ❱❡rt❡✐❧✉♥❣ ✈♦♥ Tn

✐st✳ ❉✐❡s❡ ◗✉❛♥t✐❧❡ s✐♥❞ ❛✉s ❞❡♥ ❚❛❜❡❧❧❡♥ ❜❡❦❛♥♥t✱ ❜③✇✳ ❦ö♥♥❡♥ ❞✉r❝❤ ▼♦♥t❡✲❈❛r❧♦✲
❙✐♠✉❧❛t✐♦♥❡♥ ❜❡r❡❝❤♥❡t ✇❡r❞❡♥✳

❇❡♠❡r❦✉♥❣ ✶✳✹✳✸✳ ❊✐♥❡♥ ❛♥❞❡r❡♥✱ ✇❡✐t ✈❡r❜r❡✐t❡t❡♥ ❚❡st ❞✐❡s❡r ❆rt ❜❡❦♦♠♠t ♠❛♥✱
✇❡♥♥ ♠❛♥ ❞✐❡ ▲✐♥❡❛rtr❛♥s❢♦r♠❛t✐♦♥ bi = µ+σai ❞✉r❝❤ ❡✐♥❡ ❛♥❞❡r❡ ▲✐♥❡❛rtr❛♥s❢♦r♠❛t✐♦♥
❡rs❡t③t✿

(
a′1, . . . , a

′
n

)⊤
= K−1 · (a1, . . . , an) ,

✇♦❜❡✐ K = (kij)
n
j=1 ❞✐❡ ❑♦✈❛r✐❛♥③♠❛tr✐① ✈♦♥

(
Y(1), . . . , Y(n)

)
✐st✿

kij = E
(
Y(i) − ai

) (
Y(j) − aj

)
, i, j = 1, . . . , n,

❉❡r s♦ ❦♦♥str✉✐❡rt❡ ❚❡st trä❣t ❞❡♥ ◆❛♠❡♥ ❙❤❛♣✐r♦✲❲✐❧❦✲❚❡st✳

✶✳✺ ❲❡✐t❡r❡✱ ♥✐❝❤t ♣❛r❛♠❡tr✐s❝❤❡ ❚❡sts

✶✳✺✳✶ ❇✐♥♦♠✐❛❧t❡st

❊s s❡✐ (X1, . . . , Xn) ❡✐♥❡ ❙t✐❝❤♣r♦❜❡ ✈♦♥ ✉♥❛❜❤ä♥❣✐❣❡♥✱ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t❡♥ ❩✉❢❛❧❧s✈❛r✐❛✲
❜❧❡♥✱ ✇♦❜❡✐ Xi ∼ ❇❡r♥♦✉❧❧✐(p)✳ ●❡t❡st❡t ✇❡r❞❡♥ s♦❧❧✿

H0 : p = p0 ✈s✳ H1 : p 6= p0

❉✐❡ ❚❡stst❛t✐st✐❦ ❧❛✉t❡t

Tn =
n∑

i=1

Xi ∼
H0

❇✐♥(n, p0),

✉♥❞ ❞✐❡ ❊♥ts❝❤❡✐❞✉♥❣sr❡❣❡❧ ✐st✿ H0 ✇✐r❞ ✈❡r✇♦r❢❡♥✱ ❢❛❧❧s

Tn /∈ [❇✐♥(n, p0)α/2, ❇✐♥(n, p0)1−α/2],

✇♦❜❡✐ ❇✐♥(n, p)α ❞❛s α✲◗✉❛♥t✐❧ ❞❡r ❇✐♥(n, p)✲❱❡rt❡✐❧✉♥❣ ✐st✳
❋ür ❛♥❞❡r❡ H0✱ ✇✐❡ ③✉♠ ❇❡✐s♣✐❡❧ p ≤ p0 ✭p ≥ p0✮ ♠✉ss ❞❡r ❆❜❧❡❤♥✉♥❣s❜❡r❡✐❝❤ ❡♥t✲

s♣r❡❝❤❡♥❞ ❛♥❣❡♣❛sst ✇❡r❞❡♥✳
❉✐❡ ◗✉❛♥t✐❧❡ ❇✐♥(n, p)α ❡r❤ä❧t ♠❛♥ ❛✉s ❚❛❜❡❧❧❡♥ ♦❞❡r ❛✉s ▼♦♥t❡✲❈❛r❧♦✲❙✐♠✉❧❛t✐♦♥❡♥✳

❋❛❧❧s n ❣r♦ÿ ✐st✱ ❦ö♥♥❡♥ ❞✐❡s❡ ◗✉❛♥t✐❧❡ ❞✉r❝❤ ❞✐❡ ◆♦r♠❛❧❛♣♣r♦①✐♠❛t✐♦♥ ❜❡r❡❝❤♥❡t ✇❡r❞❡♥✿
◆❛❝❤ ❞❡♠ ③❡♥tr❛❧❡♥ ●r❡♥③✇❡rts❛t③ ✈♦♥ ❉❡▼♦✐✈r❡✲▲❛♣❧❛❝❡ ❣✐❧t✿

P (Tn ≤ x) = P

(
Tn − np0√
np0(1− p0)

≤ x− np0√
np0(1− p0)

)
≈

n→∞
Φ

(
x− np0√
np0(1− p0)

)
.



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✺✶

❉❛r❛✉s ❢♦❧❣t✿

zα ≈
❇✐♥(n, p0)α − np0√

np0(1− p0)

⇒ ❇✐♥(n, p0)α ≈
√

np0(1− p0) · zα + np0

◆❛❝❤ ❞❡r P♦✐ss♦♥✲❆♣♣r♦①✐♠❛t✐♦♥ ✭❢ür n→∞, np0 → λ0✮ ❣✐❧t✿

❇✐♥(n, p0)α/2 ≈ P♦✐ss♦♥(λ0)α/2,

❇✐♥(n, p0)1−α/2 ≈ P♦✐ss♦♥(λ0)1−α/2, ✇♦❜❡✐ λ0 = np0.

❩✐❡❧st❡❧❧✉♥❣✿ ❲✐❡ ❦❛♥♥ ♠✐t ❍✐❧❢❡ ❞❡s ♦❜❡♥ ❜❡s❝❤r✐❡❜❡♥❡♥ ❇✐♥♦♠✐❛❧t❡sts ❞✐❡ ❙②♠♠❡tr✐❡✲
❡✐❣❡♥s❝❤❛❢t ❡✐♥❡r ❱❡rt❡✐❧✉♥❣ ❣❡t❡st❡t ✇❡r❞❡♥❄
❊s s❡✐ (Y1, . . . , Yn) ❡✐♥❡ ❙t✐❝❤♣r♦❜❡ ✈♦♥ ✉♥❛❜❤ä♥❣✐❣❡♥ ✉♥❞ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧❡♥ ❩✉❢❛❧❧s✲

✈❛r✐❛❜❧❡♥ ♠✐t ❱❡rt❡✐❧✉♥❣s❢✉♥❦t✐♦♥ F ✳ ●❡t❡st❡t ✇❡r❞❡♥ s♦❧❧✿

H0 : F ✐st s②♠♠❡tr✐s❝❤ ✈s✳ H1 : ❋ ✐st ♥✐❝❤t s②♠♠❡tr✐s❝❤.

❊✐♥❡ s②♠♠❡tr✐s❝❤❡ ❱❡rt❡✐❧✉♥❣ ❜❡s✐t③t ❞❡♥ ▼❡❞✐❛♥ ❜❡✐ ◆✉❧❧✳ ❉❡s✇❡❣❡♥ ✈❡r❣rö❜❡r♥ ✇✐r ❞✐❡
❍②♣♦t❤❡s❡ H0 ✉♥❞ t❡st❡♥✿

H ′
0 : F

−1(0, 5) = 0 ✈s✳ H ′
1 : F

−1(0, 5) 6= 0.

◆♦❝❤ ❛❧❧❣❡♠❡✐♥❡r✿ ❋ür ❡✐♥ β ∈ [0, 1]✿

H ′′
0 : F−1(β) = γβ ✈s✳ H ′′

1 : F−1(β) 6= γβ .

H ′′
0 ✈s✳ H ′′

1 ✇✐r❞ ♠✐t ❍✐❧❢❡ ❞❡s ❇✐♥♦♠✐❛❧t❡sts ✇✐❡ ❢♦❧❣t ❣❡t❡st❡t✿ ❙❡✐ Xi = I (Yi ≤ γβ)✳ ❯♥t❡r
H ′′

0 ❣✐❧t✿

Xi ∼ ❇❡r♥♦✉❧❧✐(F (γβ)) = ❇❡r♥♦✉❧❧✐(β).

❙❡✐❡♥ a1 = −∞✱ b1 = γα✱ a2 = b1✱ b2 = +∞ ③✇❡✐ ❞✐s❥✉♥❦t❡ ❑❧❛ss❡♥ (a1, b1]✱ (a2, b2] ✐♥
❞❡r ❙♣r❛❝❤❡ ❞❡s χ2✲P❡❛rs♦♥✲❚❡sts✳ ❉✐❡ ❚❡st❣röÿ❡ ✐st✿

Tn =
n∑

i=1

Xi = # {Yi : Yi ≤ γβ} ∼ Bin(n, β), p = F (γβ)

❉✐❡ ❍②♣♦t❤❡s❡ F−1(β) = γβ ✐st äq✉✐✈❛❧❡♥t ③✉ H ′′′
0 : p = β✳ ❉✐❡ ❊♥ts❝❤❡✐❞✉♥❣sr❡❣❡❧ ❧❛✉t❡t

❞❛♥♥✿ H ′′′
0 ✇✐r❞ ✈❡r✇♦r❢❡♥✱ ❢❛❧❧s Tn /∈

[
❇✐♥(n, β)α/2,❇✐♥(n, β)1−α/2]

]
✳ ❉✐❡s ✐st ❡✐♥ ❚❡st

③✉♠ ◆✐✈❡❛✉ α✳



✺✷ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

✶✳✺✳✷ ■t❡r❛t✐♦♥st❡sts ❛✉❢ ❩✉❢ä❧❧✐❣❦❡✐t

■♥ ♠❛♥❝❤❡♥ ❋r❛❣❡st❡❧❧✉♥❣❡♥ ❞❡r ❇✐♦❧♦❣✐❡ ✉♥t❡rs✉❝❤t ♠❛♥ ❡✐♥❡ ❋♦❧❣❡ ✈♦♥ 0 ♦❞❡r 1 ❛✉❢ ✐❤r❡
✒❩✉❢ä❧❧✐❣❦❡✐t✏ ❜③✇✳ ❱♦r❤❛♥❞❡♥s❡✐♥ ✈♦♥ ❣röÿ❡r❡♥ ❈❧✉st❡r♥ ✈♦♥ 0 ♦❞❡r 1✳ ❉✐❡s❡ ❍②♣♦t❤❡s❡♥
❦❛♥♥ ♠❛♥ ♠✐t ❍✐❧❢❡ ❞❡r s♦❣❡♥❛♥♥t❡♥ ■t❡r❛t✐♦♥st❡sts st❛t✐st✐s❝❤ ü❜❡r♣rü❢❡♥✳

❙❡✐ ❡✐♥❡ ❙t✐❝❤♣r♦❜❡ Xi✱ i = 1, . . . , n ❣❡❣❡❜❡♥✱ Xi ∈ {0, 1}✱
n∑

i=1
Xi = n1 ❞✐❡ ❆♥③❛❤❧ ❞❡r

❊✐♥s❡♥✱ n2 = n − n1 ❞✐❡ ❆♥③❛❤❧ ❞❡r ◆✉❧❧❡♥✱ n1, n2 ✈♦r❣❡❣❡❜❡♥✳ ❊✐♥❡ ❘❡❛❧✐s✐❡r✉♥❣ ✈♦♥
(X1, . . . , Xn) ♠✐t n = 18, n1 = 12 ✇är❡ ③✉♠ ❇❡✐s♣✐❡❧

x = (0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1)

❊s s♦❧❧ ❣❡t❡st❡t ✇❡r❞❡♥✱ ♦❜

H0 : ❥❡❞❡ ❋♦❧❣❡ x ✐st ❣❧❡✐❝❤✇❛❤rs❝❤❡✐♥❧✐❝❤ ✈s✳

H1 : ❊s ❣✐❜t ❜❡✈♦r③✉❣t❡ ❋♦❧❣❡♥ ✭❈❧✉st❡r❜✐❧❞✉♥❣✮

st✐♠♠t✳
❙❡✐

Ω =

{
x = (x1, . . . , xn) : xi = 0 ♦❞❡r 1, i = 1, . . . , n,

n∑

i=1

xi = n1

}

❞❡r ❙t✐❝❤♣r♦❜❡♥r❛✉♠✳ ❉❛♥♥ ✐st ❞❡r ❘❛✉♠ (Ω,F ,P) ♠✐t F = P(Ω)✱

P (x) =
1

|Ω| =
1(
n
n1

)

❡✐♥ ▲❛♣❧❛❝❡s❝❤❡r ❲❛❤rs❝❤❡✐♥❧✐❝❤❦❡✐tsr❛✉♠✳
❙❡✐

Tn(X) = #{■t❡r❛t✐♦♥❡♥ ✐♥ X} = #{❚❡✐❧❢♦❧❣❡♥ ❞❡r ◆✉❧❧❡♥ ♦❞❡r ❊✐♥s❡♥}
= #{❲❡❝❤s❡❧st❡❧❧❡♥ ✈♦♥ ✵ ❛✉❢ ✶ ♦❞❡r ✈♦♥ ✶ ❛✉❢ ✵}+ 1.

❩✉♠ ❇❡✐s♣✐❡❧ ✐st ❢ür x = (0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0)✱ Tn(x) = 7 = 6 + 1✳
Tn(X) ✇✐r❞ ❢♦❧❣❡♥❞❡r♠❛ÿ❡♥ ❛❧s ❚❡stst❛t✐st✐❦ ❢ürH0 ✈s✳H1 ❜❡♥✉t③t✳H0 ✇✐r❞ ❛❜❣❡❧❡❤♥t✱

❢❛❧❧s T (x) ❦❧❡✐♥ ✐st✱ ❞❛s ❤❡✐ÿt✱ ❢❛❧❧s Tn(x) < F−1
Tn

(α)✳ ❉✐❡s ✐st ❡✐♥ ❚❡st ③✉♠ ◆✐✈❡❛✉ α✳ ❲✐❡

❜❡r❡❝❤♥❡♥ ✇✐r ❞✐❡ ◗✉❛♥t✐❧❡ F−1
Tn

❄

❙❛t③ ✶✳✺✳✶✳ ❯♥t❡r H0 ❣❡❧t❡♥ ❢♦❧❣❡♥❞❡ ❆✉ss❛❣❡♥✿

✶✳

P (Tn = k) =





2(n1−1
i−1 )(

n2−1
i−1 )

( n
n1
)

, ❢❛❧❧s k = 2i,

(n1−1
i )·(n2−1

i−1 )+(
n1−1
i−1 )·(

n2−1
i )

( n
n1
)

, ❢❛❧❧s k = 2i+ 1.



✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥ ✺✸

✷✳

ETn = 1 +
2n1n2

n

✸✳

❱❛r (Tn) =
2n1n2(2n1n2 − n)

n2(n− 1)

❇❡✇❡✐s✳ ✶✳ ❲✐r ♥❡❤♠❡♥ ❛♥✱ ❞❛ÿ k = 2i ✭❞❡r ✉♥❣❡r❛❞❡ ❋❛❧❧ ✐st ❛♥❛❧♦❣✮✳ ❲✐❡ ❦ö♥♥❡♥
i ❑❧✉♠♣❡♥ ✈♦♥ ❊✐♥s❡♥ ❣❡✇ä❤❧t ✇❡r❞❡♥❄ ❉✐❡ ❆♥③❛❤❧ ❞✐❡s❡r ▼ö❣❧✐❝❤❦❡✐t❡♥ ❂ ❞✐❡
❆♥③❛❤❧ ❞❡r ▼ö❣❧✐❝❤❦❡✐t❡♥✱ ✇✐❡ n1 ❚❡✐❧❝❤❡♥ ❛✉❢ i ❑❧❛ss❡♥ ✈❡rt❡✐❧t ✇❡r❞❡♥✳

0|00| . . . |0| (n1)

❉✐❡s ✐st ❣❧❡✐❝❤ ❞❡r ❆♥③❛❤❧ ❛♥ ▼ö❣❧✐❝❤❦❡✐t❡♥✱ ✇✐❡ i − 1 ❚r❡♥♥✇ä♥❞❡ ❛✉❢ n1 − 1
P♦s✐t✐♦♥❡♥ ✈❡rt❡✐❧t ✇❡r❞❡♥ ❦ö♥♥❡♥ ❂

(
n1−1
i−1

)
✳ ❉❛s s❡❧❜❡ ❣✐❧t ❢ür ❞✐❡ ◆✉❧❧❡♥✳

✷✳ ❙❡✐ Yj = I {Xj−1 6= Xj}j=2,...,n✳

⇒ ETn(X) = 1 +
n∑

j=2

EYj = 1 +
n∑

j=2

P (Xj−1 6= Xj) .

P (Xj−1 6= Xj) =
2
(
n−2
n1−1

)
(
n
n1

) = 2 ·
(n−2)!

(n−2−(n1−1))!(n1−1)!

n!
(n−n1)!n1!

=
2n1(n− n1)

(n− 1)n

=
2n1n2

n(n− 1)
.

❉❛r❛✉s ❢♦❧❣t

ETn = 1 + (n− 1)
2n1n2

n(n− 1)
= 1 + 2

n1n2

n
.

✸✳

Ü❜✉♥❣s❛✉❢❣❛❜❡ ✶✳✺✳✶✳ ❇❡✇❡✐s❡♥ ❙✐❡ P✉♥❦t ✸✳

❇❡✐s♣✐❡❧ ✶✳✺✳✶ ✭❚❡st ✈♦♥ ❲❛❧❞✲❲♦❧❢♦✇✐t③ ✮✳ ❙❡✐❡♥ Y = (Y1, . . . , Yn)✱ Z = (Z1, . . . , Zn)
✉♥❛❜❤ä♥❣✐❣❡ ❙t✐❝❤♣r♦❜❡♥ ✈♦♥ ✉♥❛❜❤ä♥❣✐❣❡♥ ✉♥❞ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t❡♥ ❩✉❢❛❧❧s✈❛r✐❛❜❧❡♥✱
Yi ∼ F ✱ Zi ∼ G✳ ●❡t❡st❡t ✇❡r❞❡♥ s♦❧❧✿

H0 : F = G ✈s✳ H1 : F 6= G.



✺✹ ✶ ❚❡sts st❛t✐st✐s❝❤❡r ❍②♣♦t❤❡s❡♥

❙❡✐ (Y, Z) = (Y1, . . . , Yn, Z1, . . . , Zn) ✉♥❞ s❡✐❡♥ X ′
i ❙t✐❝❤♣r♦❜❡♥✈❛r✐❛❜❧❡♥ ✈♦♥ (Y, Z)✱ i =

1, . . . , n✱ n = n1 + n2✳ ❲✐r ❜✐❧❞❡♥ ❞✐❡ ❖r❞♥✉♥❣sst❛t✐st✐❦❡♥ X ′
(i)✱ i = 1, . . . , n ✉♥❞ s❡t③❡♥

Xi =

{
1, ❢❛❧❧s X ′

(i) = Yj ❢ür ❡✐♥ j = 1, . . . , n1,

0, ❢❛❧❧s X ′
(i) = Zj ❢ür ❡✐♥ j = 1, . . . , n2.

❯♥t❡r H0 s✐♥❞ ❞✐❡ ❙t✐❝❤♣r♦❜❡♥✇❡rt❡ ✐♥ (Y, Z) ❣✉t ❣❡♠✐s❝❤t✱ ❞❛s ❤❡✐ÿt ❥❡❞❡ ❑♦♠❜✐♥❛t✐♦♥
✈♦♥ 0 ✉♥❞ 1 ✐♥ (X1, . . . , Xn) ✐st ❣❧❡✐❝❤✇❛❤rs❝❤❡✐♥❧✐❝❤✳ ❉❛r✉♠ ❦ö♥♥❡♥ ✇✐r ❞❡♥ ■t❡r❛t✐♦♥st❡st
❛✉❢ ❩✉❢ä❧❧✐❣❦❡✐t ❛♥✇❡♥❞❡♥✱ ✉♠ H0 ✈s✳ H1 ③✉ t❡st❡♥✿ H0 ✇✐r❞ ✈❡r✇♦r❢❡♥✱ ❢❛❧❧s Tn(x) ≤
F−1(α)✱ x = (x1, . . . , xn)✳
❲✐❡ ❦ö♥♥❡♥ ❞✐❡ ◗✉❛♥t✐❧❡ ✈♦♥ FTn ❢ür ❣r♦ÿ❡ n ❜❡r❡❝❤♥❡t ✇❡r❞❡♥❄ ❋❛❧❧s

n1

n1 + n2
−→
n→∞

p ∈ (0, 1),

❞❛♥♥ ✐st Tn ❛s②♠♣t♦t✐s❝❤ ♥♦r♠❛❧✈❡rt❡✐❧t✳

❙❛t③ ✶✳✺✳✷✳ ❯♥t❡r ❞❡r ♦❜✐❣❡♥ ❱♦r❛✉ss❡t③✉♥❣ ❣✐❧t✿

lim
n→∞

ETn

n
= 2p(1− p)

lim
n→∞

1

n
❱❛rTn = 4p2(1− p)2

Tn − 2p(1− p)

2
√
np(1− p)

d−→
n→∞

Y ∼ N(0, 1), ❢❛❧❧s
n1

n1 + n2
−→ p ∈ (0, 1).

❙♦ ❦ö♥♥❡♥ ◗✉❛♥t✐❧❡ ✈♦♥ Tn ♥ä❤❡r✉♥❣s✇❡✐s❡ ❢ür ❣r♦ÿ❡ n ❢♦❧❣❡♥❞❡r♠❛ÿ❡♥ ❜❡r❡❝❤♥❡t ✇❡r❞❡♥✿

α = P
(
Tn ≤ F−1

Tn
(α)
)
= P

(
Tn − 2np(1− p)

2
√
np(1− p)

≤ x− 2np(1− p)

2
√
np(1− p)

) ∣∣∣∣
x=F−1

Tn
(α)

≈ Φ

(
F−1
Tn

(α)− 2np(1− p)

2
√
np(1− p)

)

⇒ zα ≈
F−1
Tn

(α)− 2np(1− p)

2
√
np(1− p)

❉❛♠✐t ❡r❤❛❧t❡♥ ✇✐r ❢ür ❞✐❡ ◗✉❛♥t✐❧❡✿

F−1
Tn

(α) ≈ 2np(1− p) + 2
√
np(1− p) · zα

■♥ ❞❡r Pr❛①✐s s❡t③t ♠❛♥ p̂ = n1
n1+n2

❢ür p ❡✐♥✳



✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥

■♥ ❙t♦❝❤❛st✐❦ ■ ❜❡tr❛❝❤t❡t❡♥ ✇✐r ❞✐❡ ❡✐♥❢❛❝❤❡ ❧✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥ ❞❡r ❋♦r♠

Yi = β0 + β1xi + εi, i = 1, . . . , n.

■♥ ▼❛tr✐①✲❋♦r♠ s❝❤r❡✐❜❡♥ ✇✐r Y = Xβ + ε✱ ✇♦❜❡✐ Y = (Y1, . . . , Yn)
⊤ ❞❡r ❱❡❦t♦r ❞❡r

❩✐❡❧③✉❢❛❧❧s✈❛r✐❛❜❧❡♥ ✐st✱

X =




1 x1
1 x2
✳✳✳

✳✳✳
1 xn




❡✐♥❡ (n×2)✲▼❛tr✐①✱ ❞✐❡ ❞✐❡ ❆✉s❣❛♥❣s✈❛r✐❛❜❧❡♥ xi, i = 1, . . . , n ❡♥t❤ä❧t ✉♥❞ ❞❡s❤❛❧❜❉❡s✐❣♥✲
▼❛tr✐① ❣❡♥❛♥♥t ✇✐r❞✱ β = (β0, β1)

⊤ ❞❡r P❛r❛♠❡t❡r✈❡❦t♦r ✉♥❞ ε = (ε1, . . . , εn)
⊤ ❞❡r

❱❡❦t♦r ❞❡r ❙tör❣röÿ❡♥✳ ❇✐s❤❡r ✇❛r❡♥ ♦❢t εi ∼ N(0, σ2) ❢ür i = 1, . . . , n ✉♥❞ ε ∼ N(0, I ·
σ2) ♠✉❧t✐✈❛r✐❛t ♥♦r♠❛❧✈❡rt❡✐❧t✳
❉✐❡ ♠✉❧t✐✈❛r✐❛t❡ ✭❞❛s ❜❡❞❡✉t❡t✱ ♥✐❝❤t ❡✐♥❢❛❝❤❡✮ ❧✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥ ❧ässt ❡✐♥❡ ❜❡❧✐❡❜✐❣❡

(n×m)✲❉❡s✐❣♥✲▼❛tr✐①

X = (xij)
i=1,...,n
j=1,...,m

✉♥❞ ❡✐♥❡♥m✲❞✐♠❡♥s✐♦♥❛❧❡♥ P❛r❛♠❡t❡r✈❡❦t♦r β = (β1, . . . , βm)⊤ ③✉✱ ❢ürm ≥ 2✳ ❉❛s ❤❡✐ÿt✱
❡s ❣✐❧t

Y = Xβ + ε, ✭✷✳✵✳✶✮

✇♦❜❡✐ ε ∼ N(0,K) ❡✐♥ ♠✉❧t✐✈❛r✐❛t ♥♦r♠❛❧✈❡rt❡✐❧t❡r ❩✉❢❛❧❧s✈❡❦t♦r ❞❡r ❙tör❣röÿ❡♥ ♠✐t
❑♦✈❛r✐❛♥③♠❛tr✐① K ✐st✱ ❞✐❡ ✐♠ ❆❧❧❣❡♠❡✐♥❡♥ ♥✐❝❤t ✉♥❛❜❤ä♥❣✐❣ ✈♦♥❡✐♥❛♥❞❡r s✐♥❞✿

K 6= ❞✐❛❣
(
σ2
1, . . . , σ

2
n

)
.

❉❛s ❩✐❡❧ ❞✐❡s❡s ❑❛♣✐t❡❧s ✐st ❡s✱ ❙❝❤ät③❡r ✉♥❞ ❚❡sts ❢ür β ③✉ ❡♥t✇✐❝❦❡❧♥✳ ❩✉✈♦r ♠üss❡♥
❥❡❞♦❝❤ ❞✐❡ ❊✐❣❡♥s❝❤❛❢t❡♥ ❞❡r ♠✉❧t✐✈❛r✐❛t❡♥ ◆♦r♠❛❧✈❡rt❡✐❧✉♥❣ ✉♥t❡rs✉❝❤t ✇❡r❞❡♥✳

✷✳✶ ▼✉❧t✐✈❛r✐❛t❡ ◆♦r♠❛❧✈❡rt❡✐❧✉♥❣

■♠ ❱♦r❧❡s✉♥❣ss❦r✐♣t ❲❛❤rs❝❤❡✐♥❧✐❝❤❦❡✐tsr❡❝❤♥✉♥❣ ✇✉r❞❡ ❞✐❡ ♠✉❧t✐✈❛r✐❛t❡ ◆♦r♠❛❧✈❡rt❡✐✲
❧✉♥❣ ✐♥ ❇❡✐s♣✐❡❧ ✸✳✹✳✶ ❢♦❧❣❡♥❞❡r♠❛ÿ❡♥ ❡✐♥❣❡❢ü❤rt✿

✺✺



✺✻ ✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥

❉❡✜♥✐t✐♦♥ ✷✳✶✳✶✳ ❊s s❡✐ X = (X1, . . . , Xn)
⊤ ❡✐♥ n✲❞✐♠❡♥s✐♦♥❛❧❡r ❩✉❢❛❧❧s✈❡❦t♦r✱ µ ∈ R

n✱
K ❡✐♥❡ s②♠♠❡tr✐s❝❤❡✱ ♣♦s✐t✐✈ ❞❡✜♥✐t❡ (n × n)✲▼❛tr✐①✳ X ✐st ♠✉❧t✐✈❛r✐❛t ♥♦r♠❛❧✈❡rt❡✐❧t
♠✐t ❞❡♥ P❛r❛♠❡t❡r♥ µ ✉♥❞ K ✭X ∼ N(µ,K)✮✱ ❢❛❧❧s X ❛❜s♦❧✉t st❡t✐❣ ✈❡rt❡✐❧t ✐st ♠✐t ❞❡r
❉✐❝❤t❡

fX(x) =
1

(2π)n/2
1√

det(K)
exp

{
−1

2
(x− µ)⊤K−1(x− µ)

}
, x = (x1, . . . , xn)

⊤ ∈ R
n.

❲✐r ❣❡❜❡♥ ❞r❡✐ ✇❡✐t❡r❡ ❉❡✜♥✐t✐♦♥❡♥ ✈♦♥ N(µ,K) ❛♥ ✉♥❞ ✇♦❧❧❡♥ ❞✐❡ ❩✉s❛♠♠❡♥❤ä♥❣❡
③✇✐s❝❤❡♥ ✐❤♥❡♥ ✉♥t❡rs✉❝❤❡♥✿

❉❡✜♥✐t✐♦♥ ✷✳✶✳✷✳ ❉❡r ❩✉❢❛❧❧s✈❡❦t♦r X = (X1, . . . , Xn)
⊤ ✐st ♠✉❧t✐✈❛r✐❛t ♥♦r♠❛❧✈❡rt❡✐❧t

✭X ∼ N(µ,K)✮ ♠✐t P❛r❛♠❡t❡r♥ µ ∈ R
n ✉♥❞K ✭❡✐♥❡ s②♠♠❡tr✐s❝❤❡✱ ♥✐❝❤t✲♥❡❣❛t✐✈ ❞❡✜♥✐t❡

(n × n)✲▼❛tr✐①✮✱ ❢❛❧❧s ❞✐❡ ❝❤❛r❛❦t❡r✐st✐s❝❤❡ ❋✉♥❦t✐♦♥ ϕX(t) = E ei(t,X)✱ t ∈ R
n✱ ❣❡❣❡❜❡♥

✐st ❞✉r❝❤

ϕX(t) = exp

{
it⊤µ− 1

2
t⊤Kt

}
, t ∈ R

n.

❉❡✜♥✐t✐♦♥ ✷✳✶✳✸✳ ❉❡r ❩✉❢❛❧❧s✈❡❦t♦r X = (X1, . . . , Xn)
⊤ ✐st ♠✉❧t✐✈❛r✐❛t ♥♦r♠❛❧✈❡rt❡✐❧t

✭X ∼ N(µ,K)✮ ♠✐t P❛r❛♠❡t❡r♥ µ ∈ R
n ✉♥❞ ❡✐♥❡r s②♠♠❡tr✐s❝❤❡♥✱ ♥✐❝❤t ♥❡❣❛t✐✈ ❞❡✜♥✐t❡♥

(n× n)✲▼❛tr✐① K✱ ❢❛❧❧s

∀a ∈ R
n : ❞✐❡ ❩✉❢❛❧❧s✈❛r✐❛❜❧❡ (a,X) = a⊤X ∼ N(a⊤µ, a⊤Ka)

❡✐♥❞✐♠❡♥s✐♦♥❛❧ ♥♦r♠❛❧✈❡rt❡✐❧t ✐st✳

❉❡✜♥✐t✐♦♥ ✷✳✶✳✹✳ ❊s s❡✐ µ ∈ R
n✱ K ❡✐♥❡ ♥✐❝❤t✲♥❡❣❛t✐✈ ❞❡✜♥✐t❡✱ s②♠♠❡tr✐s❝❤❡ (n × n)✲

▼❛tr✐①✳ ❊✐♥ ❩✉❢❛❧❧s✈❡❦t♦r X = (X1, . . . , Xn)
⊤ ✐st ♠✉❧t✐✈❛r✐❛t ♥♦r♠❛❧✈❡rt❡✐❧t ♠✐t P❛r❛✲

♠❡t❡r♥ µ ✉♥❞ K ✭X ∼ N(µ,K)✮✱ ❢❛❧❧s

X
d
= µ+ C · Y,

✇♦❜❡✐ C ❡✐♥❡ (n×m) ✲ ▼❛tr✐① ♠✐t r❛♥❣✭C) = m✱ K = C ·C⊤ ✉♥❞ Y ∼ N(0, I) ∈ R
m ❡✐♥

m✲❞✐♠❡♥s✐♦♥❛❧❡r ❩✉❢❛❧❧s✈❡❦t♦r ♠✐t ✉♥❛❜❤ä♥❣✐❣❡♥ ✉♥❞ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t❡♥ ❑♦♦r❞✐♥❛t❡♥
Yj ∼ N(0, 1) ✐st✱ j = 1, . . . ,m✳

❇❡♠❡r❦✉♥❣✿ ❉✐❡s ✐st ❞❛s ❆♥❛❧♦❣♦♥ ✐♠ ❡✐♥❞✐♠❡♥s✐♦♥❛❧❡♥ ❋❛❧❧✿ Y ∼ N(µ, σ2) ⇔ Y
d
=

µ+ σX ♠✐t X ∼ N(0, 1)✳

Ü❜✉♥❣s❛✉❢❣❛❜❡ ✷✳✶✳✶✳ Prü❢❡♥ ❙✐❡✱ ❞❛ÿ ❞✐❡ ✐♥ ❉❡✜♥✐t✐♦♥ ✷✳✶✳✶ ❛♥❣❡❣❡❜❡♥❡ ❉✐❝❤t❡

fX(x) =
1

(2π)n/2
1√

det(K)
exp

{
−1

2
(x− µ)⊤K−1(x− µ)

}
, x ∈ R

n

t❛tsä❝❤❧✐❝❤ ❡✐♥❡ ❱❡rt❡✐❧✉♥❣s❞✐❝❤t❡ ❞❛rst❡❧❧t✳



✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥ ✺✼

▲❡♠♠❛ ✷✳✶✳✶✳ ❊s s❡✐❡♥ X ✉♥❞ Y n✲❞✐♠❡♥s✐♦♥❛❧❡ ❩✉❢❛❧❧s✈❡❦t♦r❡♥ ♠✐t ❝❤❛r❛❦t❡r✐st✐s❝❤❡♥
❋✉♥❦t✐♦♥❡♥

ϕX(t) = E ei(t,X) = E eit
⊤X

ϕY (t) = E ei(t,Y ) = E eit
⊤Y

❢ür t ∈ R
n✳ ❊s ❣❡❧t❡♥ ❢♦❧❣❡♥❞❡ ❊✐❣❡♥s❝❤❛❢t❡♥✿

✶✳ ❊✐♥❞❡✉t✐❣❦❡✐tss❛t③✿

X
d
= Y ⇔ ϕX(t) = ϕY (t), t ∈ R

n

✷✳ ❋❛❧❧s X ✉♥❞ Y ✉♥❛❜❤ä♥❣✐❣ s✐♥❞✱ ❞❛♥♥ ❣✐❧t✿

ϕX+Y (t) = ϕX(t) · ϕY (t), t ∈ R
n.

♦❤♥❡ ❇❡✇❡✐s✿ ✈❡r❣❧❡✐❝❤❡ ❞❡♥ ❇❡✇❡✐s ❞❡s ❙❛t③❡s ✺✳✶✳✶ ✭✺✮✱ ❋♦❧❣❡r✉♥❣ ✺✳✶✳✶✱ ❱♦r❧❡s✉♥❣ss❦r✐♣t
❲❘✳

❙❛t③ ✷✳✶✳✶✳ ✶✳ ❉✐❡ ❉❡✜♥✐t✐♦♥❡♥ ✷✳✶✳✷ ✲ ✷✳✶✳✹ ❞❡r ♠✉❧t✐✈❛r✐❛t❡♥ ◆♦r♠❛❧✈❡rt❡✐❧✉♥❣ s✐♥❞
äq✉✐✈❛❧❡♥t✳

✷✳ ❉✐❡ ❉❡✜♥✐t✐♦♥❡♥ ✷✳✶✳✶ ✉♥❞ ✷✳✶✳✹ s✐♥❞ ✐♠ ❋❛❧❧❡ n = m äq✉✐✈❛❧❡♥t✳

❇❡♠❡r❦✉♥❣ ✷✳✶✳✶✳ ✶✳ ❋❛❧❧s ❞✐❡ ▼❛tr✐① K ✐♥ ❉❡✜♥✐t✐♦♥ ✷✳✶✳✹ ❞❡♥ ✈♦❧❧❡♥ ❘❛♥❣ n ❜❡✲
s✐t③t✱ s♦ ❜❡s✐t③t s✐❡ ❞✐❡ ❉✐❝❤t❡ ❛✉s ❉❡✜♥✐t✐♦♥ ✷✳✶✳✶✳ ❙✐❡ ✇✐r❞ ✐♥ ❞❡♠ ❋❛❧❧ r❡❣✉❧är
❣❡♥❛♥♥t✳

✷✳ ❋❛❧❧s ❘❛♥❣(K) = m < n✱ ❞❛♥♥ ✐st ❞✐❡ ❱❡rt❡✐❧✉♥❣ N(µ,K) ❧❛✉t ❉❡✜♥✐t✐♦♥ ✷✳✶✳✹ ❛✉❢
❞❡♠ m✲❞✐♠❡♥s✐♦♥❛❧❡♥ ❧✐♥❡❛r❡♥ ❯♥t❡rr❛✉♠

{y ∈ R
n : y = µ+ Cx, x ∈ R

m}

❦♦♥③❡♥tr✐❡rt✳ N(µ,K) ✐st ✐♥ ❞✐❡s❡♠ ❋❛❧❧ ♦✛❡♥s✐❝❤t❧✐❝❤ ♥✐❝❤t ❛❜s♦❧✉tst❡t✐❣ ✈❡rt❡✐❧t
✉♥❞ ✇✐r❞ ❞❛❤❡r s✐♥❣✉❧är ❣❡♥❛♥♥t✳

❇❡✇❡✐s✳ ❲✐r ❜❡✇❡✐s❡♥✿ ❉❡✜♥✐t✐♦♥ ✷✳✶✳✸ ⇔ ✷✳✶✳✷ ⇔ ✷✳✶✳✹✳

✶✳ ❛✮ ❲✐r ③❡✐❣❡♥✿ ❉✐❡ ❉❡✜♥✐t✐♦♥❡♥ ✷✳✶✳✷ ✉♥❞ ✷✳✶✳✸ s✐♥❞ äq✉✐✈❛❧❡♥t✳ ❉❛③✉ ✐st ③✉ ③❡✐✲
❣❡♥✿ ❋ür ❞✐❡ ❩✉❢❛❧❧s✈❛r✐❛❜❧❡ X ♠✐t ❞❡r ❝❤❛r❛❦t❡r✐st✐s❝❤❡♥ ❋✉♥❦t✐♦♥

ϕX(t) = exp{it⊤µ− 1

2
t⊤Kt} ⇔ ∀a ∈ R

n : a⊤X ∼ N(a⊤µ, a⊤Ka).

❊s ❣✐❧t✿

ϕt⊤X(1) = E eit
⊤X·1 ϕN(µ,σ2)

= exp{it⊤µ− 1

2
t⊤Kt} = ϕX(t) ∀t ∈ R.

✭❉✐❡s ♥❡♥♥t ♠❛♥ ❞❛s ❱❡r❢❛❤r❡♥ ✈♦♥ ❈r❛♠ér✲❲♦❧❞✱ ✈❡r❣❧❡✐❝❤❡ ❞❡♥ ♠✉❧t✐✈❛r✐❛✲
t❡♥ ③❡♥tr❛❧❡♥ ●r❡♥③✇❡rts❛t③✮✳



✺✽ ✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥

❜✮ ❲✐r ③❡✐❣❡♥✿ ❉✐❡ ❉❡✜♥✐t✐♦♥❡♥ ✷✳✶✳✸ ✉♥❞ ✷✳✶✳✹ s✐♥❞ äq✉✐✈❛❧❡♥t✳ ❉❛③✉ ✐st ③✉ ③❡✐✲
❣❡♥✿ X = µ + C · Y ✭♠✐t µ✱ C✱ ✉♥❞ Y ✇✐❡ ✐♥ ❉❡✜♥✐t✐♦♥ ✷✳✶✳✹✮ ⇔ ϕX(t) =
exp{it⊤µ− 1

2 t
⊤Kt}✱ ✇♦❜❡✐ K = C · C⊤✳ ❊s ❣✐❧t✿

ϕµ+CY (t) = E ei(t,µ+CY ) = E eit
⊤µ+it⊤CY = eit

⊤µ · E ei(

y︷︸︸︷
C⊤t,Y )

Y∼N(0,I)
= eit

⊤µ · exp
(
−1

2
y⊤ · y

)
= exp

{
it⊤µ− 1

2
t⊤C · C⊤t

}

= exp

{
it⊤µ− 1

2
t⊤Kt

}
, t ∈ R

n.

✷✳ ❩✉ ③❡✐❣❡♥ ✐st✿ ❆✉s X ∼ N(µ,K) ✐♠ ❙✐♥♥❡ ✈♦♥ ❉❡✜♥✐t✐♦♥ ✷✳✶✳✹✱ Y ∼ N(µ,K) ✐♠
❙✐♥♥❡ ❞❡r ❉❡✜♥✐t✐♦♥ ✷✳✶✳✶✱ ❘❛♥❣(K) = n ❢♦❧❣t✱ ❞❛ÿ ϕX = ϕY ✳

❆✉s ❞❡r ❉❡✜♥✐t✐♦♥ ✷✳✶✳✷ ✭❞✐❡ äq✉✐✈❛❧❡♥t ③✉ ❉❡✜♥✐t✐♦♥ ✷✳✶✳✹ ✐st✮ ❢♦❧❣t✱ ❞❛ÿ

ϕX(t) = exp

{
it⊤µ− 1

2
t⊤Kt

}
, t ∈ R

n,

ϕY (t) = E eit
⊤Y =

∫

Rn

eit
⊤y 1

(2π)n/2
1√

detK
· exp

{
− 1

2

x︷ ︸︸ ︷
(y − µ)⊤K−1

x︷ ︸︸ ︷
(y − µ)

}
dy

= eit
⊤µ ·

∫

Rn

1

(2π)n/2
√
detK

· exp
{
it⊤x− 1

2
x⊤K−1x

}
dx

❲✐r ❞✐❛❣♦♥❛❧✐s✐❡r❡♥ K : ∃ ♦rt❤♦❣♦♥❛❧❡ (n×n)✲▼❛tr✐① V : V ⊤ = V −1 ✉♥❞ V ⊤KV =
❞✐❛❣(λ1, . . . , λn)✱ ✇♦❜❡✐ λi > 0✱ i = 1, . . . , n✳ ▼✐t ❞❡r ♥❡✉❡♥ ❙✉❜st✐t✉t✐♦♥✿ x = V z✱
t = V s ❡r❤❛❧t❡♥ ✇✐r✿

ϕY (t) =
eit

⊤µ

(2π)n/2
√
detK

·
∫

Rn

exp

{
is⊤V ⊤V z − 1

2
z⊤V ⊤K−1V z

}
dz

=
eit

⊤µ

√
(2π)nλ1 · . . . · λn

·
∫

R

. . .

∫

R

exp

{
is⊤z − 1

2

n∑

i=1

z2i
λi

}
dz1 . . . dzn

= eit
⊤µ

n∏

i=1

∫

R

1√
2πλi

e
isizi−

z2i
(2λi)dzi = eit

⊤µ ·
n∏

i=1

ϕN(0,λi)(si) = eit
⊤µ

n∏

i=1

e
−s2i λi

2

= exp

{
it⊤µ− 1

2
s⊤❞✐❛❣(λ1, . . . , λn)s

}
= exp

{
it⊤µ− 1

2
(V ⊤t)⊤V ⊤KV V ⊤t

}

= exp



it⊤µ− 1

2
t⊤ V V ⊤
︸ ︷︷ ︸

I
K V V ⊤
︸ ︷︷ ︸

I
t



 = exp

{
it⊤µ− 1

2
t⊤Kt

}
, t ∈ R

n.



✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥ ✺✾

✷✳✶✳✶ ❊✐❣❡♥s❝❤❛❢t❡♥ ❞❡r ♠✉❧t✐✈❛r✐❛t❡♥ ◆♦r♠❛❧✈❡rt❡✐❧✉♥❣

❙❛t③ ✷✳✶✳✷✳ ❊s s❡✐ X = (X1, . . . , Xn) ∼ N(µ,K)✱ µ ∈ R
n✱ K s②♠♠❡tr✐s❝❤ ✉♥❞ ♥✐❝❤t✲

♥❡❣❛t✐✈ ❞❡✜♥✐t✳ ❉❛♥♥ ❣❡❧t❡♥ ❢♦❧❣❡♥❞❡ ❊✐❣❡♥s❝❤❛❢t❡♥✿

✶✳ µ ✐st ❞❡r ❊r✇❛rt✉♥❣s✇❡rt✈❡❦t♦r ✈♦♥ X✿

EX = µ, ❞❛s ❤❡✐ÿt✿ EXi = µi, i = 1, . . . , n.

K ✐st ❞✐❡ ❑♦✈❛r✐❛♥③♠❛tr✐① ✈♦♥ X✿

K = (kij), ♠✐t kij = ❈♦✈(Xi, Xj).

✷✳ ❏❡❞❡r ❚❡✐❧✈❡❦t♦r X ′ = (Xi1 , . . . , Xik)
⊤ ✭1 ≤ i1 < . . . < ik ≤ n✮ ✈♦♥ X ✐st

❡❜❡♥s♦ ♠✉❧t✐✈❛r✐❛t ♥♦r♠❛❧✈❡rt❡✐❧t✱ X ′ ∼ N(µ′,K ′)✱ ✇♦❜❡✐ µ′ = (µi1 , . . . , µik)
⊤✱

K ′ = (k′jl) = (❈♦✈(Xij , Xil))✱ j, l = 1, . . . , k✳ ■♥s❜❡s♦♥❞❡r❡ s✐♥❞ Xi ∼ N(µi, kii)✱
✇♦❜❡✐ kii = ❱❛rXi✱ i = 1, . . . , n✳

✸✳ ❩✇❡✐ ❚❡✐❧✈❡❦t♦r❡♥ ✈♦♥ X s✐♥❞ ✉♥❛❜❤ä♥❣✐❣ ❣❡♥❛✉ ❞❛♥♥✱ ✇❡♥♥ ❡♥ts♣r❡❝❤❡♥❞❡ ❊❧❡✲
♠❡♥t❡ kij ✈♦♥ K✱ ❞✐❡ ✐❤r❡ ❑r❡✉③❦♦✈❛r✐❛♥③❡♥ ❞❛rst❡❧❧❡♥✱ ◆✉❧❧ s✐♥❞✱ ❞❛s ❤❡✐ÿt✿ X ′ =
(X1, . . . , Xk)

⊤✱X ′′ = (Xk+1, . . . , Xn) ✉♥❛❜❤ä♥❣✐❣ ✭✇♦❜❡✐ ❞✐❡ ❘❡✐❤❡♥❢♦❧❣❡ ♥✉r ✇❡❣❡♥
❞❡r ❊✐♥❢❛❝❤❤❡✐t s♦ ❣❡✇ä❤❧t ✇✉r❞❡✱ ❛❜❡r ✉♥❡r❤❡❜❧✐❝❤ ✐st✮ ⇔ kij = 0 ❢ür 1 ≤ i ≤ k✱
j > k ♦❞❡r i > k✱ 1 ≤ j ≤ k✳

K =

(
K ′ 0

0 K ′′

)

K ′ ✉♥❞ K ′′ s✐♥❞ ❑♦✈❛r✐❛♥③♠❛tr✐③❡♥ ✈♦♥ X ′ ❜③✇✳ X ′′✳

✹✳ ❋❛❧t✉♥❣sst❛❜✐❧✐tät✿ ❋❛❧❧s X ✉♥❞ Y ✉♥❛❜❤ä♥❣✐❣❡✱ n✲❞✐♠❡♥s✐♦♥❛❧❡ ❩✉❢❛❧❧s✈❡❦t♦r❡♥ ♠✐t
X ∼ N(µ1,K1) ✉♥❞ Y ∼ N(µ2,K2) s✐♥❞✱ ❞❛♥♥ ✐st

X + Y ∼ N(µ1 + µ2,K1 +K2).

Ü❜✉♥❣s❛✉❢❣❛❜❡ ✷✳✶✳✷✳ ❇❡✇❡✐s❡♥ ❙✐❡ ❙❛t③ ✷✳✶✳✷✳

❙❛t③ ✷✳✶✳✸ ✭▲✐♥❡❛r❡ ❚r❛♥s❢♦r♠❛t✐♦♥ ✈♦♥ N(µ,K)✮✳ ❙❡✐ X ∼ N(µ,K) ❡✐♥ n✲❞✐♠❡♥s✐✲
♦♥❛❧❡r ❩✉❢❛❧❧s✈❡❦t♦r✱ A ❡✐♥❡ (m × n)✲▼❛tr✐① ♠✐t ❘❛♥❣(A) = m ≤ n✱ b ∈ R

m✳ ❉❛♥♥ ✐st
❞❡r ❩✉❢❛❧❧s✈❡❦t♦r Y = AX + b ♠✉❧t✐✈❛r✐❛t ♥♦r♠❛❧✈❡rt❡✐❧t✿

Y ∼ N(Aµ+ b, AKA⊤).

❇❡✇❡✐s✳ ❖❤♥❡ ❇❡s❝❤rä♥❦✉♥❣ ❞❡r ❆❧❧❣❡♠❡✐♥❤❡✐t s❡t③❡♥ ✇✐r µ = 0 ✉♥❞ b = 0✱ ✇❡✐❧ ϕY−a(t) =

e−it⊤a · ϕY (t)✱ ❢ür a = Aµ+ b✳ ❊s ✐st ③✉ ③❡✐❣❡♥✿

Y = AX, X ∼ N(0,K)⇒ Y ∼ N(0, AKA⊤)



✻✵ ✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥

❊s ✐st

ϕY (t) = ϕAX(t) = E eit
⊤AX = E ei(X,

:=s︷︸︸︷
A⊤t)

✭❉❡❢✳ ✷✳✶✳✷✮
= exp

{
−1

2
s⊤Ks

}
= exp

{
−1

2
t⊤AKA⊤t

}
, t ∈ R

n

⇒ Y ∼ N
(
0, AKA⊤

)
.

✷✳✶✳✷ ▲✐♥❡❛r❡ ✉♥❞ q✉❛❞r❛t✐s❝❤❡ ❋♦r♠❡♥ ✈♦♥ ♥♦r♠❛❧✈❡rt❡✐❧t❡♥
❩✉❢❛❧❧s✈❛r✐❛❜❧❡♥

❉❡✜♥✐t✐♦♥ ✷✳✶✳✺✳ ❙❡✐❡♥ X = (X1, . . . , Xn)
⊤ ✉♥❞ Y = (Y1, . . . , Yn)

⊤ ❩✉❢❛❧❧s✈❡❦t♦r❡♥ ❛✉❢
(Ω,F , P )✱ A ❡✐♥❡ (n× n)✲▼❛tr✐① ❛✉s Rn2

✱ ❞✐❡ s②♠♠❡tr✐s❝❤ ✐st✳

✶✳ Z = AX ❤❡✐ÿt ❧✐♥❡❛r❡ ❋♦r♠ ✈♦♥ X ♠✐t ▼❛tr✐① A✳

✷✳ Z = Y ⊤AX ❤❡✐ÿt ❜✐❧✐♥❡❛r❡ ❋♦r♠ ✈♦♥ X ✉♥❞ Y ♠✐t ▼❛tr✐① A✱

Z =

n∑

i=1

n∑

j=1

aijXjYi.

✸✳ ❉✐❡ ❩✉❢❛❧❧s✈❛r✐❛❜❧❡ Z = X⊤AX ✭❞✐❡ ❡✐♥❡ ❜✐❧✐♥❡❛r❡ ❋♦r♠ ❛✉s ✷✳ ♠✐t Y = X ✐st✮
❤❡✐ÿt q✉❛❞r❛t✐s❝❤❡ ❋♦r♠ ✈♦♥ X ♠✐t ▼❛tr✐① A✳

❙❛t③ ✷✳✶✳✹✳ ❙❡✐ Z = Y ⊤AX ❡✐♥❡ ❜✐❧✐♥❡❛r❡ ❋♦r♠ ✈♦♥ ❩✉❢❛❧❧s✈❡❦t♦r❡♥ X,Y ∈ R
n ❜③❣❧✳ ❞❡r

s②♠♠❡tr✐s❝❤❡♥ ▼❛tr✐① A✳ ❋❛❧❧s µX = EX✱ µY = EY ✉♥❞ KXY = (❈♦✈(Xi, Yj))i,j=1,...,n
❞✐❡ ❑r❡✉③❦♦✈❛r✐❛♥③♠❛tr✐① ✈♦♥ X ✉♥❞ Y ✐st✱ ❞❛♥♥ ❣✐❧t✿

EZ = µ⊤
Y AµX + ❙♣✉r(AKXY ).

❇❡✇❡✐s✳

EZ = E ❙♣✉r(Z) = E ❙♣✉r(Y ⊤AX) (✇❡❣❡♥ ❙♣✉r(AB) = ❙♣✉r(BA))

= E ❙♣✉r(AXY ⊤) = ❙♣✉r(AE (XY ⊤)) (✇♦❜❡✐ XY ⊤ = (XiYj)i,j=1,...,n)

= ❙♣✉r
(
AE

(
(X − µX) · (Y − µY )

⊤ + µXY ⊤ +Xµ⊤
Y − µXµ⊤

Y

))

= ❙♣✉r
(
A(KXY + µXµ⊤

Y + µXµ⊤
Y − µXµ⊤

Y )
)
= ❙♣✉r

(
AKXY +AµXµ⊤

Y

)

= ❙♣✉r(AKXY ) + ❙♣✉r
(
AµX · µ⊤

Y

)

= ❙♣✉r
(
µ⊤
Y AµX

)
+ ❙♣✉r (AKXY ) = µ⊤

Y AµX + ❙♣✉r (AKXY ) .



✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥ ✻✶

❋♦❧❣❡r✉♥❣ ✷✳✶✳✶✳ ❋ür q✉❛❞r❛t✐s❝❤❡ ❋♦r♠❡♥ ❣✐❧t

E (X⊤AX) = µ⊤
XAµX + ❙♣✉r(A ·K),

✇♦❜❡✐ µX = EX ✉♥❞ K ❞✐❡ ❑♦✈❛r✐❛♥③♠❛tr✐① ✈♦♥ X ✐st✳

❙❛t③ ✷✳✶✳✺ ✭❑♦✈❛r✐❛♥③ q✉❛❞r❛t✐s❝❤❡r ❋♦r♠❡♥✮✳ ❊s s❡✐ X ∼ N(µ,K) ❡✐♥ n✲❞✐♠❡♥s✐♦♥❛❧❡r
❩✉❢❛❧❧s✈❡❦t♦r ✉♥❞ A,B ∈ R

n2
③✇❡✐ s②♠♠❡tr✐s❝❤❡ (n×n)✲▼❛tr✐③❡♥✳ ❉❛♥♥ ❣✐❧t ❋♦❧❣❡♥❞❡s✿

❈♦✈
(
X⊤AX,X⊤BX

)
= 4µ⊤AKBµ+ 2 · ❙♣✉r(AKBK).

▲❡♠♠❛ ✷✳✶✳✷ ✭❣❡♠✐s❝❤t❡ ▼♦♠❡♥t❡✮✳ ❊s s❡✐ Y = (Y1, . . . , Yn)
⊤ ∼ N(0,K) ❡✐♥ ❩✉❢❛❧❧s✲

✈❡❦t♦r✳ ❉❛♥♥ ❣✐❧t ❋♦❧❣❡♥❞❡s✿

E (YiYjYk) = 0,

E (YiYjYkYl) = kij · kkl + kik · kjl + kjk · kil, 1 ≤ i, j, k, l ≤ n,

✇♦❜❡✐ K = (kij)i,j=1,...,n ❞✐❡ ❑♦✈❛r✐❛♥③♠❛tr✐① ✈♦♥ Y ✐st✳

Ü❜✉♥❣s❛✉❢❣❛❜❡ ✷✳✶✳✸✳ ❇❡✇❡✐s❡♥ ❙✐❡ ❞✐❡s❡s ▲❡♠♠❛✳



✻✷ ✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥

❇❡✇❡✐s ✈♦♥ ❙❛t③ ✷✳✶✳✺✳

❈♦✈(X⊤AX,X⊤BX) = E

(
X⊤AX ·X⊤BX

)
− E

(
X⊤AX

)
· E
(
X⊤BX

)

✭❋♦❧❣❡r✉♥❣ ✷✳✶✳✶✮
= E

(
(

:=Y︷ ︸︸ ︷
X − µ+µ)⊤A(

=Y︷ ︸︸ ︷
X − µ+µ) · (

=Y︷ ︸︸ ︷
X − µ+µ)⊤B(

=Y︷ ︸︸ ︷
X − µ+µ)

)

−
(
µ⊤Aµ+ ❙♣✉r(AK)

)(
µ⊤Bµ+ ❙♣✉r(BK)

)

= E

[(
Y ⊤AY + 2µ⊤AY + µ⊤Aµ

)(
Y ⊤BY + 2µ⊤BY + µ⊤Bµ

)]

− µ⊤Aµ · µ⊤Bµ− µ⊤Aµ · ❙♣✉r(BK)− µ⊤Bµ · ❙♣✉r(AK)

− ❙♣✉r(AK) · ❙♣✉r(BK)

= E

(
Y ⊤AY · Y ⊤BY

)
+ 2E

(
Y ⊤AY · µ⊤BY

)
+ E

(
Y ⊤AY

)
· µ⊤Bµ

+ 2E
(
µ⊤AY · Y ⊤BY

)
+ 4E

(
µ⊤AY · µ⊤BY

)
+ 2E

(
µ⊤AY

)

︸ ︷︷ ︸
=0

µ⊤Bµ

+ µ⊤Aµ · E
(
Y ⊤BY

)
+ 2µ⊤Aµ · Eµ⊤BY+︸ ︷︷ ︸

=0

µ⊤Aµ · µ⊤Bµ− µ⊤Aµ · µ⊤Bµ

− µ⊤Aµ · ❙♣✉r(BK)− µ⊤Bµ · ❙♣✉r(AK)− ❙♣✉r(AK) · ❙♣✉r(BK)

= E

(
Y ⊤AY · Y ⊤BY

)
+ 2µ⊤B

=0 ✭▲❡♠♠❛ ✷✳✶✳✷✮︷ ︸︸ ︷
E

(
Y · Y ⊤AY

)
+µ⊤Bµ · ❙♣✉r(AK)

+ 2µ⊤A

=0︷ ︸︸ ︷
E

(
Y · Y ⊤BY

)
+4µ⊤A

=K︷ ︸︸ ︷
E

(
Y Y ⊤

)
Bµ+ µ⊤Aµ · ❙♣✉r(BK)

− µ⊤Aµ · ❙♣✉r(BK)− µ⊤Bµ · ❙♣✉r(AK)− ❙♣✉r(AK)❙♣✉r(BK)

= E

(
Y ⊤AY · Y ⊤BY

)
+ 4µ⊤AKBµ− ❙♣✉r(AK) · ❙♣✉r(BK).

❲❡❣❡♥

E

(
Y ⊤AY · Y ⊤BY

)
= E




n∑

i,j=1

aijYiYj ·
n∑

k,l=1

bklYkYl


 =

n∑

i,j,k,l=1

aijbklE (YiYjYkYl)

(▲❡♠♠❛ ✷✳✶✳✷)
=

n∑

i,j,k,l=1

aijbkl (kij · kkl + kik · kjl + kjk · kil)

=
n∑

i,j=1

aijkij ·
n∑

k,l=1

bkl · kkl + 2
n∑

i,j,k,l=1

aij · kjl · blk · kki

= 2 · ❙♣✉r (AKBK) + ❙♣✉r (AK) · ❙♣✉r (BK)



✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥ ✻✸

❢♦❧❣t✿

❈♦✈
(
X⊤AX,X⊤BX

)

= 2 · ❙♣✉r (AKBK) + ❙♣✉r (AK) · ❙♣✉r (BK) + 4µ⊤AKBµ

− ❙♣✉r (AK) · ❙♣✉r (BK) = 4µ⊤AKBµ+ 2 · ❙♣✉r(AKBK).

❋♦❧❣❡r✉♥❣ ✷✳✶✳✷✳

❱❛r
(
X⊤AX

)
= 4µ⊤AKAµ+ 2 · ❙♣✉r

(
(AK)2

)

❙❛t③ ✷✳✶✳✻✳ ❊s s❡✐❡♥ X ∼ N(µ,K) ✉♥❞ A,B ∈ R
n2

③✇❡✐ s②♠♠❡tr✐s❝❤❡ ▼❛tr✐③❡♥✳ ❉❛♥♥
❣✐❧t✿

❈♦✈(BX,X⊤AX) = 2BKAµ

❇❡✇❡✐s✳

❈♦✈(BX,X⊤AX)
✭❋♦❧❣❡r✉♥❣ ✷✳✶✳✶✮

= E

[
(BX −Bµ)(X⊤AX − µ⊤Aµ− ❙♣✉r(AK))

]

= E

[
B(X − µ)

(
(X − µ)⊤A(X − µ) + 2µ⊤AX − 2µ⊤Aµ− ❙♣✉r(AK)

)]
,

❞❡♥♥

(X − µ)⊤A(X − µ) = X⊤AX − µ⊤AX −X⊤Aµ+ µ⊤Aµ

✉♥❞ ♠✐t ❞❡r ❙✉❜st✐t✉t✐♦♥ Z = X − µ ✭✉♥❞ ❞❛♠✐t EZ = 0✮

❈♦✈(BX,X⊤AX) = E

[
BZ(Z⊤AZ + 2µ⊤AZ − ❙♣✉r(AK))

]

= E (BZ · Z⊤AZ) + 2E (BZ · µ⊤AZ)− ❙♣✉r(AK) ·
=BEZ=0︷ ︸︸ ︷
E (BZ)

= 2E (BZ · Z⊤Aµ) + E (BZZ⊤AZ) = 2B E (ZZ⊤)︸ ︷︷ ︸
❈♦✈X=K

Aµ

+B · E (ZZ⊤AZ)︸ ︷︷ ︸
=0

= 2BKAµ,

✇❡❣❡♥ Z ∼ N(0,K) ✉♥❞ ▲❡♠♠❛ ✷✳✶✳✷ ✉♥❞ ❞❡♠ ❇❡✇❡✐s ✈♦♥ ❙❛t③ ✷✳✶✳✺✳

❉❡✜♥✐t✐♦♥ ✷✳✶✳✻✳ ❊s s❡✐❡♥ Xi ∼ N(µi, 1)✱ i = 1, . . . , n ✉♥❛❜❤ä♥❣✐❣✳ ❉❛♥♥ ❜❡s✐t③t ❞✐❡
❩✉❢❛❧❧s✈❛r✐❛❜❧❡

Y = X2
1 + . . .+X2

n



✻✹ ✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥

❞✐❡ s♦❣❡♥❛♥♥t❡ ♥✐❝❤t✲③❡♥tr❛❧❡ χ2
n,µ✲❱❡rt❡✐❧✉♥❣ ♠✐t n ❋r❡✐❤❡✐ts❣r❛❞❡♥ ✉♥❞ ❞❡♠ ◆✐❝❤t③❡♥✲

tr❛❧✐täts♣❛r❛♠❡t❡r

µ =
n∑

i=1

µ2
i .

✭✐♥ ❙t♦❝❤❛st✐❦ ■ ❜❡tr❛❝❤t❡t❡♥ ✇✐r ❞❡♥ ❙♣❡③✐❛❧❢❛❧❧ ❞❡r ③❡♥tr❛❧❡♥ χ2
n✲❱❡rt❡✐❧✉♥❣ ♠✐t µ = 0✮✳

■♥ ❇❡♠❡r❦✉♥❣ ✺✳✷✳✶✱ ❱♦r❧❡s✉♥❣ss❦r✐♣t ❲❘✱ ❤❛❜❡♥ ✇✐r ♠♦♠❡♥t❡r③❡✉❣❡♥❞❡ ❋✉♥❦t✐♦♥❡♥
✈♦♥ ❩✉❢❛❧❧s✈❛r✐❛❜❧❡♥ ❡✐♥❣❡❢ü❤rt✳ ❏❡t③t ❜❡♥öt✐❣❡♥ ✇✐r ❢ür ❞❡♥ ❇❡✇❡✐s ❞❡s ❙❛t③❡s ✷✳✶✳✼
❢♦❧❣❡♥❞❡♥ ❊✐♥❞❡✉t✐❣❦❡✐tss❛t③✿

▲❡♠♠❛ ✷✳✶✳✸ ✭❊✐♥❞❡✉t✐❣❦❡✐tss❛t③ ❢ür ♠♦♠❡♥t❡r③❡✉❣❡♥❞❡ ❋✉♥❦t✐♦♥❡♥✮✳ ❊s s❡✐❡♥ X1 ✉♥❞
X2 ③✇❡✐ ❛❜s♦❧✉tst❡t✐❣❡ ❩✉❢❛❧❧s✈❛r✐❛❜❧❡♥ ♠✐t ♠♦♠❡♥t❡r③❡✉❣❡♥❞❡♥ ❋✉♥❦t✐♦♥❡♥

MXi(t) = E etXi , i = 1, 2,

❞✐❡ ❛✉❢ ❡✐♥❡♠ ■♥t❡r✈❛❧❧ (a, b) ❞❡✜♥✐❡rt s✐♥❞✳ ❋❛❧❧s f1 ✉♥❞ f2 ❞✐❡ ❉✐❝❤t❡♥ ❞❡r ❱❡rt❡✐❧✉♥❣
✈♦♥ X1 ✉♥❞ X2 s✐♥❞✱ ❞❛♥♥ ❣✐❧t

f1(x) = f2(x) ❢ür ❢❛st ❛❧❧❡ x ∈ R⇔MX1(t) = MX2(t), t ∈ (a, b).

❖❤♥❡ ❇❡✇❡✐s✳

❙❛t③ ✷✳✶✳✼✳ ❉✐❡ ❉✐❝❤t❡ ❡✐♥❡r χ2
n,µ✲✈❡rt❡✐❧t❡♥ ❩✉❢❛❧❧s✈❛r✐❛❜❧❡ X ✭♠✐t n ∈ N ✉♥❞ µ > 0✮ ✐st

❣❡❣❡❜❡♥ ❞✉r❝❤ ❞✐❡ ▼✐s❝❤✉♥❣ ❞❡r ❉✐❝❤t❡♥ ✈♦♥ χ2
n+2J ✲❱❡rt❡✐❧✉♥❣❡♥ ♠✐t ▼✐s❝❤✉♥❣s✈❛r✐❛❜❧❡

J ∼ P♦✐ss♦♥(µ/2)✿

fX(x) =





∞∑
j=0

e−µ/2 (µ/2)
j

j! · e−x/2x
n+2j

2 −1

Γ(n+2j
2 )·2

n+2j
2

, x ≥ 0,

0, x < 0.

✭✷✳✶✳✶✮

❇❡✇❡✐s✳ ✶✳ ❲✐r ❜❡r❡❝❤♥❡♥ ③✉❡rst MX(t)✱ X ∼ χ2
n,µ✿

MX(t) = E (etX) = E exp

{
t

n∑

i=1

X2
i

}

=
n∏

i=1

1√
2π
·

∞∫

−∞

etx
2
i · e−

(xi−µi)
2

2 dxi

(
t <

1

2
, Xi ∼ N(µi, 1)

)



✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥ ✻✺

❊s ❣✐❧t✿

tx2i −
(xi − µi)

2

2
=

1

2
(2tx2i − x2i + 2xiµi − µ2

i )

= −1

2

(
x2i (1− 2t)− 2xiµi +

µ2
i

(1− 2t)
− µ2

i

(1− 2t)
+ µ2

i

)

= −1

2

((
xi ·
√
1− 2t− µi√

1− 2t

)2

+ µ2
i

(
1− 1

1− 2t

))

= −1

2

(
(xi(1− 2t)− µi)

2

1− 2t
− µ2

i ·
2t

1− 2t

)

❲✐r s✉❜st✐t✉✐❡r❡♥

yi =
(xi · (1− 2t)− µi)√

1− 2t

✉♥❞ ❡r❤❛❧t❡♥

MX(t) = (1− 2t)−
n
2

n∏

i=1

exp

{
µ2
i ·
(

t

1− 2t

)}
· 1√

2π

∞∫

−∞

e−
y2i
2 dyi

︸ ︷︷ ︸
=1

= (1− 2t)−
n
2 · exp

{
t

1− 2t
·

n∑

i=1

µ2
i

}
=

1

(1− 2t)n/2
· exp

{
µt

1− 2t

}
, t <

1

2
.

✷✳ ❊s s❡✐ Y ❡✐♥❡ ❩✉❢❛❧❧s✈❛r✐❛❜❧❡ ♠✐t ❞❡r ❉✐❝❤t❡ ✭✷✳✶✳✶✮✳ ❲✐r ❜❡r❡❝❤♥❡♥ MY (t)✿

MY (t) =

∞∑

j=0

e−
µ
2
(µ/2)j

j!
·

∞∫

0

ext · e−
x
2 · xn+2j

2
−1

Γ
(
n+2j
2

)
· n+2j

2

dx

︸ ︷︷ ︸
=M

χ2
n+2j

(t)= 1

(1−2t)(n+2j)/2
✭❙t♦❝❤❛st✐❦ ■✱ ❙❛t③ ✸✳✷✳✶✮

=
e−

µ
2

(1− 2t)
n
2

·
∞∑

j=1

(
µ

2(1− 2t)

)j

· 1
j!

=
1

(1− 2t)
n
2

· exp
{
−µ

2
+

µ

2(1− 2t)

}
=

1

(1− 2t)
n
2

· exp
{
µ · (1− (1− 2t))

2 · (1− 2t)

}

= (1− 2t)−
n
2 · exp

{
µt

1− 2t

}

=⇒ MX(t) = MY (t), t <
1

2

◆❛❝❤ ▲❡♠♠❛ ✷✳✶✳✸ ❣✐❧t ❞❛♥♥✱ fX(x) = fY (x) ❢ür ❢❛st ❛❧❧❡ x ∈ R✳



✻✻ ✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥

❇❡♠❡r❦✉♥❣ ✷✳✶✳✷✳ ✶✳ ❉✐❡ ❉❡✜♥✐t✐♦♥ ✷✳✶✳✻ ❦❛♥♥ ✐♥ ❢♦❧❣❡♥❞❡r ❋♦r♠ ✉♠❣❡s❝❤r✐❡❜❡♥
✇❡r❞❡♥✿

❋❛❧❧s X ∼ N(~µ, I)✱ ~µ = (µ1, . . . , µn)
⊤✱ ❞❛♥♥ ❣✐❧t |X|2 = X⊤X ∼ χ2

n,µ✱ ✇♦❜❡✐

µ = |~µ|2✳

✷✳ ❉✐❡ ♦❜✐❣❡ ❊✐❣❡♥s❝❤❛❢t ❦❛♥♥ ❛✉❢ X ∼ N(~µ,K)✱ ♠✐t ❡✐♥❡r s②♠♠❡tr✐s❝❤❡♥✱ ♣♦s✐t✐✈
❞❡✜♥✐t❡♥ (n× n)✲▼❛tr✐① K ✈❡r❛❧❧❣❡♠❡✐♥❡rt ✇❡r❞❡♥✿

X⊤K−1X ∼ χ2
n,µ̃, ✇♦❜❡✐ µ̃ = ~µ⊤K−1~µ,

❞❡♥♥ ✇❡✐❧ K ♣♦s✐t✐✈ ❞❡✜♥✐t ✐st✱ ❣✐❜t ❡s ❡✐♥ K
1
2 ✱ s♦❞❛ÿ K = K

1
2K

1
2
⊤✳ ❉❛♥♥ ❣✐❧t

Y = K− 1
2X ∼ N(K− 1

2µ, I), ✇❡✐❧ K− 1
2KK− 1

2
⊤ = K− 1

2 ·K 1
2 ·K 1

2
⊤ ·K− 1

2
⊤ = I

✉♥❞ ❞❛❤❡r

Y ⊤Y
P✉♥❦t ✶∼ χ2

n,µ̃, ♠✐t µ̃ =
(
K− 1

2 ~µ
)⊤

K− 1
2 ~µ = ~µ⊤K− 1

2
⊤K− 1

2 ~µ = ~µ⊤K−1~µ.

❙❛t③ ✷✳✶✳✽✳ ❊s s❡✐ X ∼ N(µ,K)✱ ✇♦❜❡✐ K ❡✐♥❡ s②♠♠❡tr✐s❝❤❡✱ ♣♦s✐t✐✈ ❞❡✜♥✐t❡ (n × n)✲
▼❛tr✐① ✐st✱ ✉♥❞ s❡✐ A ❡✐♥❡ ✇❡✐t❡r❡ s②♠♠❡tr✐s❝❤❡ (n × n)✲▼❛tr✐① ♠✐t ❞❡r ❊✐❣❡♥s❝❤❛❢t
AK = (AK)2 ✭■❞❡♠♣♦t❡♥③✮ ✉♥❞ ❘❛♥❣(A) = r ≤ n✳ ❉❛♥♥ ❣✐❧t✿

X⊤AX ∼ χ2
r,µ̃, ✇♦❜❡✐ µ̃ = µ⊤Aµ.

❇❡✇❡✐s✳ ❲✐r ③❡✐❣❡♥✱ ❞❛ÿ A ♥✐❝❤t ♥❡❣❛t✐✈ ❞❡✜♥✐t ✐st✳

AK = (AK)2 = AK ·AK | K−1

=⇒ A = AKA⇒ ∀x ∈ R
n : x⊤Ax = x⊤AKAx

= ( Ax︸︷︷︸
=y

)⊤K( Ax︸︷︷︸
=y

) ≥ 0 ✇❡❣❡♥ ❞❡r ♣♦s✐t✐✈❡♥ ❉❡✜♥✐t❤❡✐t ✈♦♥ K✳

=⇒ ❆ ✐st ♥✐❝❤t ♥❡❣❛t✐✈ ❞❡✜♥✐t✳

=⇒ ∃H : ❡✐♥❡ (n× r)✲▼❛tr✐① ♠✐t ❘❛♥❣(H) = r : A = HH⊤

❙♦♠✐t ❣✐❧t

X⊤AX = X⊤H ·H⊤X = (H⊤X︸ ︷︷ ︸
=Y

)⊤ ·H⊤X = Y ⊤Y

❊s ❣✐❧t✿ Y ∼ N(H⊤µ, Ir)✱ ❞❡♥♥ ♥❛❝❤ ❙❛t③ ✷✳✶✳✸ ✐st Y ∼ N(H⊤µ,H⊤KH) ✉♥❞ ❘❛♥❣(H) =
r✳ ❉❛s ❤❡✐ÿt✱ H⊤H ✐st ❡✐♥❡ ✐♥✈❡rt✐❡r❜❛r❡ (r × r)✲▼❛tr✐①✱ ✉♥❞

H⊤KH = (H⊤H)−1(H⊤H ·H⊤KH · (H⊤
︸ ︷︷ ︸

=AKA=A

H)(H⊤H)−1

= (H⊤H)−1H⊤ · A︸︷︷︸
=HHT

·H(H⊤H)−1

= Ir



✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥ ✻✼

❉❛♥♥ ✐st

X⊤AX =| Y |2∼ χ2
r,µ̃ ♠✐t µ̃ = (H⊤µ)2 = µ⊤H ·H⊤µ = µ⊤Aµ.

❙❛t③ ✷✳✶✳✾ ✭❯♥❛❜❤ä♥❣✐❣❦❡✐t✮✳ ❊s s❡✐ X ∼ N(µ,K) ✉♥❞ K ❡✐♥❡ s②♠♠❡tr✐s❝❤❡✱ ♥✐❝❤t✲
♥❡❣❛t✐✈ ❞❡✜♥✐t❡ (n× n)✲▼❛tr✐①✳

✶✳ ❊s s❡✐❡♥ A,B (r1 × n) ❜③✇✳ (r2 × n)✲▼❛tr✐③❡♥✱ r1, r2 ≤ n ♠✐t AKB⊤ = 0✳ ❉❛♥♥
s✐♥❞ ❞✐❡ ❱❡❦t♦r❡♥ AX ✉♥❞ BX ✉♥❛❜❤ä♥❣✐❣✳

✷✳ ❙❡✐ ❢❡r♥❡r C ❡✐♥❡ s②♠♠❡tr✐s❝❤❡✱ ♥✐❝❤t✲♥❡❣❛t✐✈ ❞❡✜♥✐t❡ (n × n)✲▼❛tr✐① ♠✐t ❞❡r ❊✐✲
❣❡♥s❝❤❛❢t AKC = 0✳ ❉❛♥♥ s✐♥❞ AX ✉♥❞ X⊤CX ✉♥❛❜❤ä♥❣✐❣✳

❇❡✇❡✐s✳ ✶✳ ◆❛❝❤ ❙❛t③ ✷✳✶✳✷✱ ✸✮ ❣✐❧t✿ AX ✉♥❞ BX s✐♥❞ ✉♥❛❜❤ä♥❣✐❣⇐⇒ ϕ(AX,BX)(t) =

ϕAX(t) · ϕBX(t)✱ t = (t1, t2)
⊤ ∈ R

r1+r2 ✱ t1 ∈ R
r1 ✱ t2 ∈ R

r2 ✳ ❊s ✐st ③✉ ③❡✐❣❡♥✿

ϕ(AX,BX)(t) = E e(it
⊤
1 A+t⊤2 B)·X !

= E eit
⊤
1 AX · E eit

⊤
2 BX .

❊s ❣✐❧t

ϕ(AX,BX)(t) = E ei(t
⊤
1 A+t⊤2 B)·X (Def.2.1.2)

= ei(t
⊤
1 A+t⊤2 B)·µ− 1

2
·(t⊤1 A+t⊤2 B)·K·(t⊤1 A+t⊤2 B)

⊤

,

✉♥❞ ♠✐t
(
t⊤1 A+ t⊤2 B

)
·K ·

(
t⊤1 A+ t⊤2 B

)⊤

=
(
t⊤1 A

)
K
(
t⊤1 A

)⊤
+
(
t⊤1 A

)⊤
K
(
t⊤2 B

)
+
(
t⊤2 B

)
K
(
t⊤1 A

)⊤
+
(
t⊤2 B

)
K
(
t⊤2 B

)⊤

= t⊤1 AKA⊤t1 + t⊤1 ·AKB⊤
︸ ︷︷ ︸

=0

·t2 + t⊤2 · BKA⊤
︸ ︷︷ ︸

=(AKB⊤)⊤=0

·t1 + t⊤2 BKB⊤t2

✐st

ϕ(AX,BX)(t) = eit
⊤A− 1

2
t⊤1 AKA⊤t1 · eit⊤2 B− 1

2
t⊤2 BKB⊤t2

= ϕAX(t1) · ϕBX(t2), t1 ∈ R
r1 , t2 ∈ R

r2

✷✳ C ✐st s②♠♠❡tr✐s❝❤✱ ♥✐❝❤t✲♥❡❣❛t✐✈ ❞❡✜♥✐t =⇒ ❊s ❣✐❜t ❡✐♥❡ (n × r)✲▼❛tr✐① H ♠✐t
❘❛♥❣(H) = r ≤ n ✉♥❞ C = HH⊤✱ =⇒ H⊤H ❤❛t ❘❛♥❣ r ✉♥❞ ✐st s♦♠✐t ✐♥✈❡rt✐❡r❜❛r✳
❉❛♥♥ ❣✐❧t✿

X⊤CX = X⊤HH⊤X = (H⊤X)⊤ ·H⊤X = |H⊤X|2.

❋❛❧❧s AX ✉♥❞ H⊤X ✉♥❛❜❤ä♥❣✐❣ s✐♥❞✱ ❞❛♥♥ s✐♥❞ ❛✉❝❤ AX ✉♥❞ X⊤CX = |H⊤X|2
✉♥❛❜❤ä♥❣✐❣✱ ♥❛❝❤ ❞❡♠ ❚r❛♥s❢♦r♠❛t✐♦♥ss❛t③ ❢ür ❩✉❢❛❧❧s✈❡❦t♦r❡♥✳ ◆❛❝❤ ✶✮ s✐♥❞ AX
✉♥❞ H⊤X ✉♥❛❜❤ä♥❣✐❣✱ ❢❛❧❧s AK(H⊤)⊤ = AKH = 0✳ ❉❛ ♥❛❝❤ ❱♦r❛✉ss❡t③✉♥❣

AKC = AKH ·H⊤ = 0 =⇒ AKH ·H⊤H = 0,



✻✽ ✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥

❞❛ ❛❜❡r ∃(H⊤H)−1✱ ❢♦❧❣t✱ ❞❛ÿ

0 = AKH ·H⊤H · (H⊤H)−1 = AKH =⇒ AKH = 0

=⇒ AX ✉♥❞ H⊤X s✐♥❞ ✉♥❛❜❤ä♥❣✐❣

=⇒ AX ✉♥❞ X⊤CX s✐♥❞ ✉♥❛❜❤ä♥❣✐❣✳

✷✳✷ ▼✉❧t✐✈❛r✐❛t❡ ❧✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥s♠♦❞❡❧❧❡ ♠✐t ✈♦❧❧❡♠ ❘❛♥❣

❉✐❡ ♠✉❧t✐✈❛r✐❛t❡ ❧✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥ ❤❛t ❞✐❡ ❋♦r♠

Y = Xβ + ε,

✇♦❜❡✐ Y = (Y1, . . . , Yn)
⊤ ❞❡r ❩✉❢❛❧❧s✈❡❦t♦r ❞❡r ❩✐❡❧✈❛r✐❛❜❧❡♥ ✐st✱

X = (xij)
i=1,...,n
j=1,...,m

✐st ❡✐♥❡ ❞❡t❡r♠✐♥✐st✐s❝❤❡ ❉❡s✐❣♥✲▼❛tr✐① ♠✐t ✈♦❧❧❡♠ ❘❛♥❣✱ ❘❛♥❣(X) = r = m ≤ n✱
β = (β1, . . . , βm)⊤ ✐st ❞❡r P❛r❛♠❡t❡r✈❡❦t♦r ✉♥❞ ε = (ε1, . . . , εn)

⊤ ✐st ❞❡r ❩✉❢❛❧❧s✈❡❦t♦r
❞❡r ❙tör❣röÿ❡♥✱ ♠✐t E εi = 0✱ ❱❛r εi = σ2 > 0✳ ❉❛s ❩✐❡❧ ❞✐❡s❡s ❆❜s❝❤♥✐tt❡s ✇✐r❞ s❡✐♥✱ β
✉♥❞ σ2 ❣❡❡✐❣♥❡t ③✉ s❝❤ät③❡♥✳

✷✳✷✳✶ ▼❡t❤♦❞❡ ❞❡r ❦❧❡✐♥st❡♥ ◗✉❛❞r❛t❡

❙❡✐ X = (X1, . . . , Xm)✱ ✇♦❜❡✐ ❞✐❡ ❞❡t❡r♠✐♥✐st✐s❝❤❡♥ ❱❡❦t♦r❡♥ Xj = (x1j , x2j , . . . , xnj)
⊤✱

j = 1, . . . ,m ❡✐♥❡♥ m✲❞✐♠❡♥s✐♦♥❛❧❡♥ ❧✐♥❡❛r❡♥ ❯♥t❡rr❛✉♠ LX = 〈X1, . . . , Xm〉 ❛✉❢s♣❛♥✲
♥❡♥✳ ❙❡✐

e(β) =
1

n
|Y −Xβ|2 = 1

n

n∑

i=1

(Yi − xi1β1 − . . .− ximβm)2

❞✐❡ ♠✐tt❧❡r❡ q✉❛❞r❛t✐s❝❤❡ ❆❜✇❡✐❝❤✉♥❣ ③✇✐s❝❤❡♥ Y ✉♥❞ Xβ✳
❉❡r ▼❑◗✲❙❝❤ät③❡r β̂ ❢ür β ✐st ❞❡✜♥✐❡rt ❞✉r❝❤

β̂ = ❛r❣♠✐♥(e(β)). ✭✷✳✷✳✶✮

❲❛r✉♠ ❡①✐st✐❡rt ❡✐♥❡ ▲ös✉♥❣ β ∈ R
m ❞❡s q✉❛❞r❛t✐s❝❤❡♥ ❖♣t✐♠✐❡r✉♥❣s♣r♦❜❧❡♠s ✭✷✳✷✳✶✮❄

●❡♦♠❡tr✐s❝❤ ❦❛♥♥Xβ̂ ❛❧s ❞✐❡ ♦rt❤♦❣♦♥❛❧❡ Pr♦❥❡❦t✐♦♥ ❞❡s ❉❛t❡♥✈❡❦t♦rs Y ❛✉❢ ❞❡♥ ❧✐♥❡❛r❡♥
❯♥t❡rr❛✉♠ LX ✐♥t❡r♣r❡t✐❡rt ✇❡r❞❡♥✳ ❋♦r♠❛❧ ③❡✐❣❡♥ ✇✐r ❞✐❡ ❊①✐st❡♥③ ❞❡r ▲ös✉♥❣ ♠✐t
❢♦❧❣❡♥❞❡♠ ❙❛t③✳



✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥ ✻✾

❆❜❜✐❧❞✉♥❣ ✷✳✶✿ Pr♦❥❡❦t✐♦♥ ❛✉❢ ❞❡♥ ❧✐♥❡❛r❡♥ ❯♥t❡rr❛✉♠ LX

❙❛t③ ✷✳✷✳✶✳ ❯♥t❡r ❞❡♥ ♦❜✐❣❡♥ ❱♦r❛✉ss❡t③✉♥❣❡♥ ❡①✐st✐❡rt ❞❡r ❡✐♥❞❡✉t✐❣ ❜❡st✐♠♠t❡ ▼❑◗✲
❙❝❤ät③❡r β̂✱ ❞❡r ❞✐❡ ▲ös✉♥❣ ❞❡r s♦❣❡♥❛♥♥t❡♥ ◆♦r♠❛❧❡♥❣❧❡✐❝❤✉♥❣ ✐st✿

X⊤Xβ = X⊤Y. ✭✷✳✷✳✷✮

❉❛❤❡r ❣✐❧t✿

β̂ =
(
X⊤X

)−1
X⊤Y.

❇❡✇❡✐s✳ ❉✐❡ ♥♦t✇❡♥❞✐❣❡ ❇❡❞✐♥❣✉♥❣ ❢ür ❞✐❡ ❊①✐st❡♥③ ❞❡s ▼✐♥✐♠✉♠s ✐st e′(β) = 0✱ ❞❛s
❤❡✐ÿt

e′(β) =

(
∂e(β)

∂β1
, . . . ,

∂e(β)

∂βm

)⊤
= 0.

❊s ❣✐❧t✿

e′(β) =
2

n

(
X⊤Xβ −X⊤Y

)

=⇒ β̂ ✐st ❡✐♥❡ ▲ös✉♥❣ ❞❡r ◆♦r♠❛❧❡♥❣❧❡✐❝❤✉♥❣ X⊤Xβ = X⊤Y ✳ ❲✐r ③❡✐❣❡♥ ❞✐❡ ❤✐♥r❡✐❝❤❡♥✲
❞❡ ❇❡❞✐♥❣✉♥❣ ❞❡s ▼✐♥✐♠✉♠s✿

e′′(β) =

(
∂2e(β)

∂βi∂βj

)

i,j=1,...,m

=
2

n
X⊤X.

X⊤X ✐st s②♠♠❡tr✐s❝❤ ✉♥❞ ♣♦s✐t✐✈ ❞❡✜♥✐t✱ ✇❡✐❧ X ❡✐♥❡♥ ✈♦❧❧❡♥ ❘❛♥❣ ❤❛t✿

∀y 6= 0, y ∈ R
m : y⊤X⊤Xy = (Xy)⊤Xy = |Xy|2 > 0
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✉♥❞ ❛✉s y 6= 0 =⇒ Xy 6= 0✱ ❢♦❧❣t✱ ❞❛ÿ e′′(β) ♣♦s✐t✐✈ ❞❡✜♥✐t ✐st✳ ❆❧s♦ ✐st X⊤X ✐♥✈❡rt✐❡r✲

❜❛r✳ ❉❛s ❤❡✐ÿt✱ β̂ ✐st ❞❡r ▼✐♥✐♠✉♠♣✉♥❦t ✈♦♥ e(β)✳ ❉❡♥ ❙❝❤ät③❡r β̂ =
(
X⊤X

)−1
X⊤Y ❜❡✲

❦♦♠♠t ♠❛♥✱ ✐♥❞❡♠ ♠❛♥ ❞✐❡ ◆♦r♠❛❧❡♥❣❧❡✐❝❤✉♥❣ X⊤Xβ = X⊤Y ✈♦♥ ❧✐♥❦s ♠✐t
(
X⊤X

)−1

♠✉❧t✐♣❧✐③✐❡rt✳

❇❡✐s♣✐❡❧ ✷✳✷✳✶✳ ✶✳ ❊✐♥❢❛❝❤❡ ❧✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥

X =




1 x1
1 x2
✳✳✳

✳✳✳
1 xn


 m = 2, β = (β1, β2)

⊤ , Y = Xβ + ε

β̂ =
(
β̂1, β̂2

)
❡r❣✐❜t ❞❡♥ ▼❑◗✲❙❝❤ät③❡r ❛✉s ❞❡r ❙t♦❝❤❛st✐❦ ■

β̂2 =
S2
XY

S2
XX

, β̂1 = Y n −Xnβ̂2,

✇♦❜❡✐

Xn =
1

n

n∑

i=1

Xi, Y n =
1

n

n∑

i=1

Yi

S2
XY =

1

n− 1

n∑

i=1

(
Xi −Xn

) (
Yi − Y n

)

S2
XX =

1

n− 1

n∑

i=1

(
Xi −Xn

)2

Ü❜✉♥❣s❛✉❢❣❛❜❡ ✷✳✷✳✶✳ ❇❡✇❡✐s❡♥ ❙✐❡ ❞✐❡s✦

✷✳ ▼✉❧t✐♣❧❡ ❧✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥

Y = Xβ + ε ♠✐t ❉❡s✐❣♥♠❛tr✐①

X =




1 x11 · · · x1m
✳✳✳

✳✳✳
✳✳✳

✳✳✳
1 xn1 · · · xnm


 ❢ür β = (β0, β1, . . . , βm)⊤ .

❉❡r ▼❑◗✲❙❝❤ät③❡r β̂ = (X⊤X)−1X⊤Y ✐st ♦✛❡♥s✐❝❤t❧✐❝❤ ❡✐♥ ❧✐♥❡❛r❡r ❙❝❤ät③❡r ❜❡③ü❣✲
❧✐❝❤ Y ✳
❲✐r ✇❡r❞❡♥ ❥❡t③t ③❡✐❣❡♥✱ ❞❛ÿ β̂ ❞❡r ❜❡st❡ ❧✐♥❡❛r❡✱ ❡r✇❛rt✉♥❣str❡✉❡ ❙❝❤ät③❡r ✈♦♥ β ✭✐♠

❊♥❣❧✐s❝❤❡♥ ❇▲❯❊ ❂ ❜❡st ❧✐♥❡❛r ✉♥❜✐❛s❡❞ ❡st✐♠❛t♦r ✮ ✐♥ ❞❡r ❑❧❛ss❡

L =
{
β̃ = AY + b : E β̃ = β

}

❛❧❧❡r ❧✐♥❡❛r❡♥ ❡r✇❛rt✉♥❣str❡✉❡♥ ❙❝❤ät③❡r ✐st✳
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❙❛t③ ✷✳✷✳✷ ✭●üt❡❡✐❣❡♥s❝❤❛❢t❡♥ ❞❡s ▼❑◗✲❙❝❤ät③❡rs β̂✮✳ ❊s s❡✐ Y = Xβ + ε ❡✐♥ ♠✉❧t✐✈❛✲
r✐❛t❡s ❧✐♥❡❛r❡s ❘❡❣r❡ss✐♦♥s♠♦❞❡❧❧ ♠✐t ✈♦❧❧❡♠ ❘❛♥❣ m ✉♥❞ ❙tör❣röÿ❡♥ ε = (ε1, . . . , εn)

⊤✱
❞✐❡ ❢♦❧❣❡♥❞❡ ❱♦r❛✉ss❡t③✉♥❣❡♥ ❡r❢ü❧❧❡♥✿

E ε = 0, ❈♦✈(εi, εj) = σ2δij , i, j = 1, . . . , n ❢ür ❡✐♥ σ2 ∈ (0,∞).

❉❛♥♥ ❣✐❧t ❋♦❧❣❡♥❞❡s✿

✶✳ ❉❡r ▼❑◗✲❙❝❤ät③❡r β̂ =
(
X⊤X

)−1
X⊤Y ✐st ❡r✇❛rt✉♥❣str❡✉✿ E β̂ = β.

✷✳ ❈♦✈(β̂) = σ2
(
X⊤X

)−1

✸✳ β̂ ❜❡s✐t③t ❞✐❡ ♠✐♥✐♠❛❧❡ ❱❛r✐❛♥③✿

∀β̃ ∈ L : ❱❛r β̃j ≥ ❱❛r β̂j , j = 1, . . . ,m.

❇❡✇❡✐s✳ ✶✳ ❊s ❣✐❧t✿

E β̂ = E

[(
X⊤X

)−1
X⊤ (Xβ + ε)

]

=
(
X⊤X

)−1
·X⊤X · β +

(
X⊤X

)−1
X⊤ · E ε︸︷︷︸

=0

= β ∀β ∈ R
m.

✷✳ ❋ür ❛❧❧❡ β̃ = AY + b ∈ L ❣✐❧t✿

β = E β̃ = AEY + b = AXβ + b ∀β ∈ R
m.

=⇒ b = 0, AX = I.
=⇒ β̃ = AY = A (Xβ + ε) = AXβ +Aε

= β +Aε.

❋ür

β̂ =
(
X⊤X

)−1
X⊤

︸ ︷︷ ︸
=A

Y

❣✐❧t✿

❈♦✈β̂ =
(
E

((
β̂i − βi

)(
β̂j − βj

)))

i,j=1,...,m

= E

(
Aε · (Aε)⊤

)
= E

(
Aεε⊤A⊤

)
= AE

(
εε⊤

)
·A⊤

= A · σ2IA⊤ = σ2AA⊤ = σ2
(
X⊤X

)−1
X⊤

((
X⊤X

)−1
X⊤
)⊤

= σ2
(
X⊤X

)−1
X⊤X

(
X⊤X

)−1
= σ2

(
X⊤X

)−1
.
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✸✳ ❙❡✐ β̃ ∈ L✱ β̃ = β +Aε✳ ❩✉ ③❡✐❣❡♥ ✐st✱ ❞❛ÿ

(
❈♦✈(β̃)

)

ii
= σ2(AA⊤)ii ≥

(
❈♦✈(β̂)

)

ii
= σ2(X⊤X)−1

ii , i = 1, . . . ,m.

❙❡✐ D = A− (X⊤X)−1X⊤✱ ❞❛♥♥ ❢♦❧❣t✿ A = D + (X⊤X)−1X⊤✱

AA⊤ =

(
D +

(
X⊤X

)−1
X⊤
)(

D⊤ +X
(
X⊤X

)−1⊤
)

= DD⊤ +
(
X⊤X

)−1
, ✇❡✐❧

DX
(
X⊤X

)−1
=
(
AX︸︷︷︸
=I
−
(
X⊤X

)−1
X⊤X

︸ ︷︷ ︸
=I

)(
X⊤X

)−1
= 0

(
X⊤X

)−1
X⊤D⊤ =

(
X⊤X

)−1
X⊤

(
A⊤ −X

(
X⊤X

)−1⊤
)

=
(
X⊤X

)−1 (
(AX)⊤︸ ︷︷ ︸

=I

−X⊤X
(
X⊤X

)−1

︸ ︷︷ ︸
=I

)
= 0.

=⇒
(
AA⊤

)

ii
=
(
DD⊤

)

ii︸ ︷︷ ︸
≥0

+
(
X⊤X

)−1

ii
≥
(
X⊤X

)−1

ii

=⇒ ❱❛r β̂i ≤ ❱❛r β̃i, i = 1, . . . ,m.

❙❛t③ ✷✳✷✳✸✳ ❊s s❡✐ β̂n ❞❡r ▼❑◗✲❙❝❤ät③❡r ✐♠ ♦❜❡♥ ❡✐♥❣❡❢ü❤rt❡♥ ♠✉❧t✐✈❛r✐❛t❡♥ ❧✐♥❡❛r❡♥
❘❡❣r❡ss✐♦♥s♠♦❞❡❧❧✳ ❙❡✐ {an}n∈N ❡✐♥❡ ❩❛❤❧❡♥❢♦❧❣❡ ♠✐t an 6= 0✱ n ∈ N✱ an → 0 (n → ∞)✳
❊s ✇✐r❞ ✈♦r❛✉s❣❡s❡t③t✱ ❞❛ÿ ❡✐♥❡ ✐♥✈❡rt✐❡r❜❛r❡ (m×m)✲▼❛tr✐① Q ❡①✐st✐❡rt ♠✐t

Q = lim
n→∞

an

(
X⊤

n Xn

)
.

❉❛♥♥ ✐st β̂n s❝❤✇❛❝❤ ❦♦♥s✐st❡♥t✿

β̂n
p−→

n→∞
β.

❇❡✇❡✐s✳

β̂n
p−→

n→∞
β ⇐⇒ P

(∣∣∣β̂n − β
∣∣∣ > ε

)
−→
n→∞

0 ∀ε > 0.
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P

(∣∣∣β̂n − β
∣∣∣ > ε

)
= P

(∣∣∣β̂n − β
∣∣∣
2
> ε2

)

= P

(
m∑

i=1

∣∣∣β̂in − βi

∣∣∣
2
> ε2

)
≤ P

(
m⋃

i=1

{∣∣∣β̂in − βi

∣∣∣
2
>

ε2

m

})

≤
m∑

i=1

P

(∣∣∣β̂in − βi

∣∣∣ >
ε√
m

)

≤ m
m∑

i=1

❱❛r β̂in
ε2

−→
n→∞

0, ✭❛✉s ❞❡r ❯♥❣❧❡✐❝❤✉♥❣ ✈♦♥ ❚s❝❤❡❜②s❝❤❡✇✮

❢❛❧❧s ❱❛r β̂in −→
n→∞

0, i = 1, . . . ,m.

❱❛r β̂in ✐st ❡✐♥ ❉✐❛❣♦♥❛❧❡✐♥tr❛❣ ✈♦♥ ❞❡r ▼❛tr✐①

❈♦✈β̂n
(Satz2.2.2)

= σ2
(
X⊤

n Xn

)−1
.

❲❡♥♥ ✇✐r ③❡✐❣❡♥✱ ❞❛ÿ ❈♦✈β̂n −→
n→∞

0✱ ✐st ❞❡r ❙❛t③ ❜❡✇✐❡s❡♥✳

❊s ❡①✐st✐❡rt

Q−1 = lim
n→∞

1

an

(
X⊤

n Xn

)−1

✉♥❞ ❞❛♠✐t ❣✐❧t✿

lim
n→∞

❈♦✈β̂n = σ2 lim
n→∞

(
X⊤

n Xn

)−1
= σ2 lim

n→∞
an ·

1

an

(
X⊤

n Xn

)−1

= 0 ·Q−1 · σ2 = 0.

✷✳✷✳✷ ❙❝❤ät③❡r ❞❡r ❱❛r✐❛♥③ σ2

❲✐r ❢ü❤r❡♥ ❞❡♥ ❙❝❤ät③❡r σ̂2 ❢ür ❞✐❡ ❱❛r✐❛♥③ σ2 ❞❡r ❙tör❣röÿ❡♥ εi ❢♦❧❣❡♥❞❡r♠❛ÿ❡♥ ❡✐♥✿

σ̂2 =
1

n−m

∣∣∣Y −Xβ̂
∣∣∣
2
. ✭✷✳✷✳✸✮

❉✐❡s ✐st ❡✐♥❡ ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❱❡rs✐♦♥ ❞❡s ❱❛r✐❛♥③s❝❤ät③❡rs ❛✉s ❞❡r ❡✐♥❢❛❝❤❡♥ ❧✐♥❡❛r❡♥
❘❡❣r❡ss✐♦♥✱ ❞✐❡ ✇✐r ❜❡r❡✐ts ✐♥ ❙t♦❝❤❛st✐❦ ■ ❦❡♥♥❡♥❧❡r♥t❡♥✳ ❉❛❜❡✐ ✐st Ŷ = Y − Xβ̂ ❞❡r
❱❡❦t♦r ❞❡r ❘❡s✐❞✉❡♥✳

❙❛t③ ✷✳✷✳✹ ✭❊r✇❛rt✉♥❣str❡✉❡✮✳ ❉❡r ❱❛r✐❛♥③s❝❤ät③❡r

σ̂2 =
1

n−m

∣∣∣Y −Xβ̂
∣∣∣
2

✐st ❡r✇❛rt✉♥❣str❡✉✳ ❉❛s ❤❡✐ÿt✱

E σ̂2 = σ2.
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❇❡✇❡✐s✳

σ̂2 =
1

n−m

(
Y −Xβ̂

)⊤ (
Y −Xβ̂

)

=
1

n−m

(
Y −X(X⊤X)−1XTY

)⊤(
Y −X

(
X⊤X

)−1
X⊤Y

)

=
1

n−m
(DY )⊤DY

✇♦❜❡✐ D = I −X(X⊤X)−1X⊤ ❡✐♥❡ (n× n)✲▼❛tr✐① ✐st✳ ❉❛♥♥ ✐st

σ̂2 =
1

n−m
Y ⊤D⊤DY =

1

n−m
Y ⊤D2Y =

1

n−m
Y ⊤DY, ❢❛❧❧s

D⊤ = D ✉♥❞ D2 = D ✭❞❛s ❤❡✐ÿt✱ ❞❛ÿ D s②♠♠❡tr✐s❝❤ ✉♥❞ ✐❞❡♠♣♦t❡♥t ✐st✮✳ ❚❛tsä❝❤❧✐❝❤
❣✐❧t✿

D⊤ = I −
(
X⊤
)⊤ (

X⊤X
)⊤−1

X⊤ = I −X
(
X⊤X

)−1
X⊤ = D.

D2 =
(
I −X(X⊤X)−1XT

)(
I −X

(
X⊤X

)−1
X⊤
)

= I − 2X
(
X⊤X

)−1
X⊤ +X

(
X⊤X

)−1
X⊤X

(
X⊤X

)−1
X⊤

= I −X
(
X⊤X

)−1
X⊤ = D.

❲❡✐t❡r❤✐♥ ❣✐❧t✿

σ̂2 =
1

n−m
· ❙♣✉r

(
Y ⊤DY

)
=

1

n−m
· ❙♣✉r

(
DY Y ⊤

)

=⇒E σ̂2 =
1

n−m
· ❙♣✉r

(
DE

(
Y Y ⊤

))
=

σ2

n−m
· ❙♣✉r (D) ,

❞❡♥♥

❙♣✉r
(
D · E

(
Y Y ⊤

))

= ❙♣✉r
(
D(Xβ)(Xβ)⊤ +DXβ E ε⊤︸︷︷︸

=0

+D E ε︸︷︷︸
=0

(Xβ)⊤ +D · E εε⊤︸ ︷︷ ︸
= ❈♦✈ε = σ2 · I

)

✉♥❞

DX =

(
I −X

(
X⊤X

)−1
XT

)
X

= X −X
(
X⊤X

)−1
X⊤X = X −X = 0.



✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥ ✼✺

❊s ❜❧❡✐❜t ③✉ ③❡✐❣❡♥✱ ❞❛ÿ ❙♣✉r(D) = n−m✿

❙♣✉r(D) = ❙♣✉r

(
I −X

(
X⊤X

)−1
X⊤
)

= ❙♣✉r(I)− ❙♣✉r

(
X
(
X⊤X

)−1
X⊤
)

= n− ❙♣✉r
(
X⊤X ·

(
X⊤X

)−1

︸ ︷︷ ︸
❡✐♥❡ (m×m)✲▼❛tr✐①

)
= n−m.

✷✳✷✳✸ ▼❛①✐♠✉♠✲▲✐❦❡❧✐❤♦♦❞✲❙❝❤ät③❡r ❢ür β ✉♥❞ σ2

❯♠▼❛①✐♠✉♠✲▲✐❦❡❧✐❤♦♦❞✲❙❝❤ät③❡r ❢ür β ✉♥❞ σ2 ❜③✇✳ ❱❡rt❡✐❧✉♥❣s❡✐❣❡♥s❝❤❛❢t❡♥ ❞❡r ▼❑◗✲
❙❝❤ät③❡r β̂ ✉♥❞ σ̂2 ❤❡r❧❡✐t❡♥ ③✉ ❦ö♥♥❡♥✱ ♠✉ÿ ❞✐❡ ❱❡rt❡✐❧✉♥❣ ✈♦♥ ε ❜③✇✳ Y ♣rä③✐s✐❡rt
✇❡r❞❡♥✳ ❲✐r ✇❡r❞❡♥ ❛❜ s♦❢♦rt ♥♦r♠❛❧✈❡rt❡✐❧t❡ ❙tör❣röÿ❡♥ ❜❡tr❛❝❤t❡♥✱ ❞✐❡ ✉♥❛❜❤ä♥❣✐❣
✉♥❞ ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t s✐♥❞✿

ε ∼ N
(
0, σ2I

)
, σ2 > 0.

❉❛r❛✉s ❢♦❧❣t✿

Y ∼ N
(
Xβ, σ2I

)
.

❲✐❡ s✐❡❤t ❞✐❡ ❱❡rt❡✐❧✉♥❣ ❞❡r ▼❑◗✲❙❝❤ät③❡r β̂ ✉♥❞ σ̂2 ❛✉s❄ ❉❛ β̂ =
(
X⊤X

)−1
X⊤Y ❧✐♥❡❛r

✈♦♥ Y ❛❜❤ä♥❣t✱ ❡r✇❛rt✉♥❣str❡✉ ✐st ✉♥❞ ❞✐❡ ❈♦✈β̂ = σ̂2
(
X⊤X

)−1
❜❡s✐t③t✱ ❣✐❧t✿

β̂ ∼ N

(
β, σ2

(
X⊤X

)−1
)

❇❡r❡❝❤♥❡♥ ✇✐r ♥✉♥ ▼❛①✐♠✉♠✲▲✐❦❡❧✐❤♦♦❞✲❙❝❤ät③❡r ❢ür β ✉♥❞ σ2✱ ✉♥❞ ③✇❛r β̃ ✉♥❞ σ̃2✳
❉❛♥♥ ③❡✐❣❡♥ ✇✐r✱ ❞❛ÿ s✐❡ ✐♠ ❲❡s❡♥t❧✐❝❤❡♥ ♠✐t ❞❡♥ ▼❑◗✲❙❝❤ät③❡r♥ ü❜❡r❡✐♥st✐♠♠❡♥✳

β̃ = β̂,

σ̃2 =
n−m

n
σ̂2.

❇❡tr❛❝❤t❡♥ ✇✐r ③✉♥ä❝❤st ❞✐❡ ▲✐❦❡❧✐❤♦♦❞✲❋✉♥❦t✐♦♥ ✈♦♥ Y ✿

L(y, β, σ2) = fY (y) =
1(√
2πσ

)n · exp
{
− 1

2σ2
(y −Xβ)⊤ (y −Xβ)

}

✉♥❞ ❞✐❡ ▲♦❣✲▲✐❦❡❧✐❤♦♦❞✲❋✉♥❦t✐♦♥

logL(y, β, σ2) = −n

2
log (2π)−n

2
log
(
σ2
)
− 1

2σ2
|y −Xβ|2

︸ ︷︷ ︸
:=g

.

❉✐❡ ▼❛①✐♠✉♠✲▲✐❦❡❧✐❤♦♦❞✲❙❝❤ät③❡r s✐♥❞ ❞❛♥♥
(
β̃, σ̃2

)
= argmax

β∈Rm, σ2>0

logL(y, β, σ2),

s♦❢❡r♥ s✐❡ ❡①✐st✐❡r❡♥✳
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❙❛t③ ✷✳✷✳✺ ✭▼❛①✐♠✉♠✲▲✐❦❡❧✐❤♦♦❞✲❙❝❤ät③✉♥❣ ✈♦♥ β̃ ✉♥❞ σ̃2✮✳ ❊s ❡①✐st✐❡r❡♥ ❡✐♥❞❡✉t✐❣ ❜❡✲
st✐♠♠t❡ ▼❛①✐♠✉♠✲▲✐❦❡❧✐❤♦♦❞✲❙❝❤ät③❡r ❢ür β ✉♥❞ σ2✱ ❞✐❡ ❢♦❧❣❡♥❞❡r♠❛ÿ❡♥ ❛✉ss❡❤❡♥✿

β̃ = β̂ =
(
X⊤X

)−1
X⊤Y

σ̃2 =
n−m

n
σ̂2 =

1

n

∣∣∣Y −Xβ̃
∣∣∣
2
.

❇❡✇❡✐s✳ ❲✐r ✜①✐❡r❡♥ σ2 > 0 ✉♥❞ s✉❝❤❡♥

β̃ = argmax
β∈Rm

logL(Y, β, σ2) = argmin
β∈Rm

|Y −Xβ|2 ,

✇♦r❛✉s ❢♦❧❣t✱ ❞❛ÿ β̃ ♠✐t ❞❡♠ ❜❡❦❛♥♥t❡♥ ▼❑◗✲❙❝❤ät③❡r β̂ =
(
X⊤X

)−1
X⊤Y ✐❞❡♥t✐s❝❤

✐st✱ ❞❡r ♥✐❝❤t ✈♦♥ σ2 ❛❜❤ä♥❣t✳ ❇❡r❡❝❤♥❡♥ ✇✐r ❥❡t③t

σ̃2 = argmax
σ2>0

logL
(
Y, β̃, σ2

)
= argmax

σ2>0

g(σ2).

❊s ❣✐❧t

g
(
σ2
)
−→

σ2→+∞
−∞, g

(
σ2
)
−→
σ2→0

−∞,

✇❡✐❧ |Y −Xβ|2 6= 0✱ ❞❛❞✉r❝❤✱ ❞❛ÿ Y ∼ N
(
Xβ, σ2I

)
∈ {Xy : y ∈ R

m} ♠✐t ❲❛❤rs❝❤❡✐♥✲
❧✐❝❤❦❡✐t ◆✉❧❧✳ ❉❛

g′(σ2) = −n

2

1

σ2
+
|Y −Xβ|
2 (σ2)2

= 0, ✐st σ̃2 =
1

n

∣∣∣Y −Xβ̃
∣∣∣
2

❡✐♥ ▼❛①✐♠✉♠♣✉♥❦t ✈♦♥ g(σ2)✱ ❞❛s ❤❡✐ÿt✱ σ̃2 ✐st ❡✐♥ ▼❛①✐♠✉♠✲▲✐❦❡❧✐❤♦♦❞✲❙❝❤ät③❡r ❢ür
σ2✳

❙❛t③ ✷✳✷✳✻✳ ❯♥t❡r ❞❡♥ ♦❜✐❣❡♥ ❱♦r❛✉ss❡t③✉♥❣❡♥ ❣✐❧t✿

✶✳ E σ̃2 = n−m
n σ2✱ ❞❛s ❤❡✐ÿt✱ σ̃2 ✐st ♥✐❝❤t ❡r✇❛rt✉♥❣str❡✉❀ ❛❧❧❡r❞✐♥❣s ✐st ❡r ❛s②♠♣t♦t✐s❝❤

✉♥✈❡r③❡rrt✳

✷✳ n
σ2 σ̃

2 ∼ χ2
n−m✱

n−m
σ2 σ̂2 ∼ χ2

n−m.

❇❡✇❡✐s✳ ✶✳ ❚r✐✈✐❛❧ ✭✈❡r❣❧❡✐❝❤❡ ❞❡♥ ❇❡✇❡✐s ✈♦♥ ❙❛t③ ✷✳✷✳✹✮

✷✳ ❲✐r ③❡✐❣❡♥ ❞❡♥ ❙❛t③ ♥✉r ❢ür σ̂2✳

n−m

σ2
σ̂2 =

1

σ2

∣∣∣Y −Xβ̂
∣∣∣
2

=
1

σ2
Y ⊤ D︸︷︷︸

=D2

Y ✭♥❛❝❤ ❞❡♠ ❇❡✇❡✐s ✈♦♥ ❙❛t③ ✷✳✷✳✹✮

=
1

σ2
(DY )⊤DY =

1

σ2
(D (Xβ + ε))⊤ ·D (Xβ + ε)

=
1

σ2
(Dε)⊤Dε =

(
ε

σ

⊤
)
D
( ε
σ

)
,
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✇♦❜❡✐
( ε
σ

)
∼ N (0, I) .

◆❛❝❤ ❙❛t③ ✷✳✶✳✽ ❣✐❧t

ε⊤

σ
D

ε

σ
∼ χ2

r ,

✇♦❜❡✐ r = ❘❛♥❣(D)✱ ✇❡✐❧ DI = D ✐❞❡♠♣♦t❡♥t ✐st✳ ❋❛❧❧s r = n−m✱ ❞❛♥♥ ✐st n−m
σ̂2 ∼

χ2
n−m✳ ❩❡✐❣❡♥ ✇✐r✱ ❞❛ÿ ❘❛♥❣(D) = r = n−m✳ ❆✉s ❞❡r ❧✐♥❡❛r❡♥ ❆❧❣❡❜r❛ ✐st ❜❡❦❛♥♥t✱

❞❛ÿ ❘❛♥❣(D) = n−dim(❑❡r♥(D))✳ ❲✐r ③❡✐❣❡♥✱ ❞❛ÿ ❑❡r♥(D) = {Xx : x ∈ R
m} ✉♥❞

❞❛♠✐t dim(❑❡r♥(D)) = m✱ ✇❡✐❧ ❘❛♥❣(X) = m✳ ❊s ✐st {Xx : x ∈ R
n} ⊆ ❑❡r♥(D)✱

❞❛

DX = (I −X(X⊤X)−1X⊤)X = X − (X⊤X)−1X⊤X = 0.

✉♥❞ ❑❡r♥(D) ⊆ {Xx : x ∈ R
m}✱ ✇❡✐❧

∀y ∈ ❑❡r♥(D) : Dy = 0⇐⇒ (I −X(X⊤X)−1X⊤)y = 0

⇐⇒ y = X · (X⊤X)−1X⊤Y︸ ︷︷ ︸
x

= Xx ∈ {Xx : x ∈ R
m} .

❙❛t③ ✷✳✷✳✼✳ ❙❡✐ Y = Xβ + ε ❡✐♥ ♠✉❧t✐✈❛r✐❛t❡s ❧✐♥❡❛r❡s ❘❡❣r❡ss✐♦♥s♠♦❞❡❧❧ ♠✐t Y =
(Y1, . . . , Yn)

⊤✱ ❉❡s✐❣♥♠❛tr✐① X ♠✐t ❘❛♥❣(X) = m✱ β = (β1, . . . , βm)⊤✱ ε ∼ N(0, σ2I)✳
❉❛♥♥ s✐♥❞ ❞✐❡ ❙❝❤ät③❡r β̂ = (X⊤X)−1X⊤Y ❢ür β ❜③✇✳ σ̂2 = 1

n−m |Y − Xβ̂|2 ❢ür σ2

✉♥❛❜❤ä♥❣✐❣ ✈♦♥❡✐♥❛♥❞❡r✳

❇❡✇❡✐s✳ ■♥ ❞✐❡s❡♠ ❇❡✇❡✐s ✈❡r✇❡♥❞❡♥ ✇✐r ❞❡♥ ❙❛t③ ✷✳✶✳✾✱ ❢ür ❞❡ss❡♥ ❆♥✇❡♥❞✉♥❣ ✇✐r β̂ ❛❧s
❧✐♥❡❛r❡ ✉♥❞ σ̂2 ❛❧s q✉❛❞r❛t✐s❝❤❡ ❋♦r♠ ✈♦♥ ε ❞❛rst❡❧❧❡♥✳ ❊s ✐st ✐♥ ❞❡♥ ❇❡✇❡✐s❡♥ ❞❡r ❙ät③❡
✷✳✷✳✷ ✉♥❞ ✷✳✷✳✻ ❣❡③❡✐❣t ✇♦r❞❡♥✱ ❞❛ÿ

β̂ = β + (X⊤X)−1X⊤
︸ ︷︷ ︸

=A

ε,

σ̂2 =
1

n−m
ε⊤Dε, ✇♦❜❡✐ D = I −X(X⊤X)−1X⊤.

❩✉sät③❧✐❝❤ ❣✐❧t AD = 0✱ ✇❡✐❧ ♥❛❝❤ ❞❡♠ ❇❡✇❡✐s ❞❡s ❙❛t③❡s ✷✳✷✳✹

(AD)⊤ = D⊤A⊤ = D ·X︸ ︷︷ ︸
=0

((X⊤X)−1)⊤ = 0.

❉❛ ε ∼ N(0, σ2I)✱ ❢♦❧❣t ❞❛r❛✉s

Aσ2ID = 0.

❉❡s❤❛❧❜ s✐♥❞ ❞✐❡ ❱♦r❛✉ss❡t③✉♥❣❡♥ ❞❡s ❙❛t③❡s ✷✳✶✳✾ ❡r❢ü❧❧t✱ ✉♥❞ β̂ ✉♥❞ σ̂2 s✐♥❞ ✉♥❛❜❤ä♥❣✐❣✳
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✷✳✷✳✹ ❚❡sts ❢ür ❘❡❣r❡ss✐♦♥s♣❛r❛♠❡t❡r

■♥ ❞✐❡s❡♠ ❆❜s❝❤♥✐tt ✇✐r❞ ③✉♥ä❝❤st ❞✐❡ ❍②♣♦t❤❡s❡

H0 : β = β0 ✈s✳ H1 : β 6= β0

❢ür ❡✐♥ β0 ∈ R
m ❣❡t❡st❡t✳ ❉❛❢ür ❞❡✜♥✐❡r❡♥ ✇✐r ❞✐❡ ❚❡st❣röÿ❡

T =

(
β̂ − β0

)⊤
X⊤X

(
β̂ − β0

)

mσ̂2
.

▼❛♥ ❦❛♥♥ ③❡✐❣❡♥ ✭✈❡r❣❧❡✐❝❤❡ ❙❛t③ ✷✳✷✳✽✮✱ ❞❛ÿ ✉♥t❡r H0 ❣✐❧t✿

T ∼ Fm,n−m.

❉❛r❛✉s ❢♦❧❣t✱ ❞❛ÿ H0 ❛❜❣❡❧❡❤♥t ✇❡r❞❡♥ s♦❧❧✱ ❢❛❧❧s T > Fm,n−m,1−α✱ ✇♦❜❡✐ Fm,n−m,1−α ❞❛s
(1−α)✲◗✉❛♥t✐❧ ❞❡r Fm,n−m✲❱❡rt❡✐❧✉♥❣ ❞❛rst❡❧❧t✳ ❉✐❡s ✐st ❡✐♥ ❚❡st ③✉♠ ◆✐✈❡❛✉ α ∈ (0, 1)✳

❙♣❡③✐❛❧❢❛❧❧✿ ❉❡r ❋❛❧❧ β0 = 0 ❜❡s❝❤r❡✐❜t ❡✐♥❡♥ ❚❡st ❛✉❢ ❩✉s❛♠♠❡♥❤❛♥❣ ❀ ❞❛s ❤❡✐ÿt✱ ♠❛♥
t❡st❡t✱ ♦❜ ❞✐❡ P❛r❛♠❡t❡r β1, . . . , βm ❢ür ❞✐❡ ❇❡s❝❤r❡✐❜✉♥❣ ❞❡r ❉❛t❡♥ Y r❡❧❡✈❛♥t s✐♥❞✳

❇❡♠❡r❦✉♥❣ ✷✳✷✳✶✳ ✶✳ ❲✐❡ ❦❛♥♥ ♠❛♥ ✈❡rst❡❤❡♥✱ ❞❛ÿ ❞✐❡ ❚❡st❣röÿ❡ T t❛tsä❝❤❧✐❝❤ H0

✈♦♥ H1 ✉♥t❡rs❝❤❡✐❞❡♥ s♦❧❧❄ ❋ü❤r❡♥ ✇✐r ❞✐❡ ❇❡③❡✐❝❤♥✉♥❣

Ỹ = Y − Xβ̂︸︷︷︸
:=Ŷ

❡✐♥❀ ❞❛❜❡✐ ❣✐❧t✿

σ̂2 =
1

n−m

∣∣∣Ỹ
∣∣∣
2

✉♥❞ Ỹ ✐st ❞❡r ❱❡❦t♦r ❞❡r ❘❡s✐❞✉❡♥✳

❖❤♥❡ ❇❡s❝❤rä♥❦✉♥❣ ❞❡r ❆❧❧❣❡♠❡✐♥❤❡✐t s❡t③❡♥ ✇✐r β0 = 0✳ ❋❛❧❧s H0 ♥✐❝❤t ❣❡❧t❡♥ s♦❧❧✱
❞❛♥♥ ✐st β 6= 0✱ ✉♥❞ s♦♠✐t

|Xβ|2 = (Xβ)⊤Xβ = β⊤X⊤Xβ > 0,

✇❡✐❧ X ❞❡♥ ✈♦❧❧❡♥ ❘❛♥❣ ❤❛t✳ ❉❛r❛✉s ❢♦❧❣t✱ ❞❛ÿ H0 ❛❜❣❡❧❡❤♥t ✇❡r❞❡♥ s♦❧❧✱ ❢❛❧❧s
∣∣∣Ŷ
∣∣∣
2
=
∣∣∣Xβ̂

∣∣∣
2
= β̂⊤X⊤Xβ̂ ≫ 0.

■♥ ❞❡r ❚❡st❣röÿ❡ |Xβ̂|2 s✐♥❞ ❛❧❧❡r❞✐♥❣s ❞✐❡ ❙❝❤✇❛♥❦✉♥❣❡♥ ❞❡r ❙❝❤ät③✉♥❣ ✈♦♥ β ♥✐❝❤t
❜❡rü❝❦s✐❝❤t✐❣t✳ ❉❡s✇❡❣❡♥ t❡✐❧t ♠❛♥ |Xβ̂|2 ❞✉r❝❤ σ̂2✿

T =
β̂⊤X⊤Xβ̂

m · σ̂2
=

∣∣∣Ŷ
∣∣∣
2

m
n−m

∣∣∣Y − Ŷ
∣∣∣
2 .
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❉❡r ❙❛t③ ✈♦♥ P②t❤❛❣♦r❛s ❧✐❡❢❡rt

|Y |2 =
∣∣∣Ỹ
∣∣∣
2
+
∣∣∣Ŷ
∣∣∣
2
,

✇♦❜❡✐ ✉♥t❡r H0

E |Ŷ |2 = E |Y |2 − E |Y − Ŷ |2 = nσ2 − E |Ỹ |2 ❣✐❧t✱ ✉♥❞ s♦♠✐t

E |Ŷ |2

E

(
m

n−m

∣∣∣Ỹ
∣∣∣
2
) (H0)

=
nσ2 − E |Ỹ |2

m
n−mE |Ỹ |2

=
n−m

m

(
nσ2

E |Ỹ |2
− 1

)
,

✇❡✐❧ E |Y |2 = E

(
Y ⊤Y

)
= σ2 · n, ✇❡❣❡♥ Y ∼ N(0, σ2I).

=⇒ ❉✐❡ ❚❡st❣röÿ❡ T ✐st s❡♥s✐❜❡❧ ❣❡❣❡♥ü❜❡r ❆❜✇❡✐❝❤✉♥❣❡♥ ✈♦♥ H0.

✷✳ ❉✐❡ ●röÿ❡
∣∣∣Ỹ
∣∣∣
2
=
∣∣∣Y − Ŷ

∣∣∣
2

✇✐r❞ ❘❡ststr❡✉✉♥❣ ❣❡♥❛♥♥t✳ ▼✐t ❞❡r❡♥ ❍✐❧❢❡ ❦❛♥♥ ❞❡r ❇❡❣r✐✛ ❞❡s ❇❡st✐♠♠t❤❡✐ts♠❛✲
ÿ❡s R2 ❛✉s ❞❡r ❙t♦❝❤❛st✐❦ ■ ✇✐❡ ❢♦❧❣t ✈❡r❛❧❧❣❡♠❡✐♥❡rt ✇❡r❞❡♥✿

R2 = 1− |Ỹ |2
∣∣Y − Y n · e

∣∣2 ,

✇♦❜❡✐ e = (1, . . . , 1)⊤✱ Y n = 1
n

n∑
i=1

Yi✳

❙❛t③ ✷✳✷✳✽✳ ❯♥t❡r H0 : β = β0 ❣✐❧t

T =

(
β̂ − β0

)⊤
X⊤X

(
β̂ − β0

)

mσ̂2
∼ Fm,n−m.

❇❡✇❡✐s✳ ❊s ❣✐❧t

β̂ ∼ N

(
β0, σ

2
(
X⊤X

)−1
)

=⇒ β̂ − β0 ∼ N
(
0, σ2(X⊤X)−1

︸ ︷︷ ︸
:=K

)
.

❋❛❧❧s A = X⊤X
σ2 ✱ ❞❛♥♥ ✐st AK = I ✐❞❡♠♣♦t❡♥t✳ ❉❛♥♥ ❣✐❧t ♥❛❝❤ ❙❛t③ ✷✳✶✳✽

(
β̂ − β0

)⊤
A
(
β̂ − β0

)
H0∼ χ2

m

✭❩✉r ■♥❢♦r♠❛t✐♦♥✿ ❯♥t❡r H1 ✇är❡ (β̂ − β0)
⊤A(β̂ − β0) ♥✐❝❤t✲③❡♥tr❛❧ χ2✲✈❡rt❡✐❧t✮✳
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❊s ❣✐❧t ③✉sät③❧✐❝❤✿

n−m

σ2
σ̂2 ∼ χ2

n−m.

❆✉s ❙❛t③ ✷✳✷✳✼ ❢♦❧❣t ❞✐❡ ❯♥❛❜❤ä♥❣✐❣❦❡✐t ✈♦♥ (β̂ − β0)
⊤A(β̂ − β0) ✉♥❞ n−m

σ2 σ̂2✳

=⇒ T =
(β̂ − β0)

⊤(X⊤X)(β̂ − β0)/m

(n−m)σ̂2/(n−m)
∼ Fm,n−m

♥❛❝❤ ❞❡r ❉❡✜♥✐t✐♦♥ ❞❡r F ✲❱❡rt❡✐❧✉♥❣✳

❏❡t③t ✇✐r❞ ❞✐❡ ❘❡❧❡✈❛♥③ ❞❡r ❡✐♥③❡❧♥❡♥ P❛r❛♠❡t❡r βj ❣❡t❡st❡t✿

H0 : βj = β0j ✈s✳ H1 : βj 6= β0j .

❙❛t③ ✷✳✷✳✾✳ ❯♥t❡r H0 : βj = β0j ❣✐❧t✿

Tj =
β̂j − β0j

σ̂
√
xjj

∼ tn−m, ✇♦❜❡✐

(
X⊤X

)−1
=
(
xij
)
i,j=1,...,m

.

❇❡✇❡✐s✳ ❆✉s β̂
H0∼ N(β0, σ

2(X⊤X)−1) ❢♦❧❣t β̂j
H0∼ N(β0j , σ

2xjj) ✉♥❞ s♦♠✐t β̂j − β0j ∼
N(0, σ2xjj)✳ ❉❛♥♥ ✐st β̂j−β0j

σ
√
xjj
∼ N(0, 1)✳ ❩✉sät③❧✐❝❤ ❣✐❧t✿ (n−m)σ̂2

σ2

H0∼ χ2
n−m✱ ✉♥❞ ♥❛❝❤ ❙❛t③

✷✳✷✳✼ s✐♥❞ ❜❡✐❞❡ ●röÿ❡♥ ✉♥❛❜❤ä♥❣✐❣✳ ❉❛r❛✉s ❢♦❧❣t✿

Tj =

β̂j−β0j

σ
√
xjj√

(n−m)σ̂2

(n−m)σ2

∼ tn−m.

❙♦♠✐t ✇✐r❞ H0 : βj = βj0 ❛❜❣❡❧❡❤♥t✱ ❢❛❧❧s |T | > tn−m,1−α/2✳ ❉✐❡s ✐st ❡✐♥ ❚❡st ✈♦♥ H0

✈s✳ H1 ③✉♠ ◆✐✈❡❛✉ α✳
❙❡✐ ♥✉♥

H0 : βj1 = β0j1 , . . . , βjl = β0jl ✈s✳ H1 : ∃i ∈ {1, . . . , l} : βji 6= β0ji

❞✐❡ ③✉ t❡st❡♥❞❡ ❍②♣♦t❤❡s❡✳

Ü❜✉♥❣s❛✉❢❣❛❜❡ ✷✳✷✳✷✳ ❩❡✐❣❡♥ ❙✐❡✱ ❞❛ÿ ✉♥t❡r H0 ❢♦❧❣❡♥❞❡ ❱❡rt❡✐❧✉♥❣s❛✉ss❛❣❡ ❣✐❧t✿

T =
(β̂′ − β′

0)
⊤K ′(β̂′ − β′

0)

lσ̂2
∼ Fl,n−m,
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✇♦❜❡✐

β̂′ = (β̂j1 , . . . , β̂jl),

β′
0 = (β0j1 , . . . , β0jl),

K ′ =




xj1j1 · · · xj1jl

✳✳✳
✳✳✳

✳✳✳
xjlj1 · · · xjljl




−1

.

❑♦♥str✉✐❡r❡♥ ❙✐❡ ❞❡♥ ❞❛③✉❣❡❤ör✐❣❡♥ F ✲❚❡st✦

❚❡st ❛✉❢ ▲✐♥❡❛r❦♦♠❜✐♥❛t✐♦♥ ✈♦♥ P❛r❛♠❡t❡r♥

❙❡✐ ♥✉♥

H0 : Hβ = c ✈s✳ H1 : Hβ 6= c,

✇♦❜❡✐ H ❡✐♥❡ (r ×m)✲▼❛tr✐① ✉♥❞ c ∈ R
r s✐♥❞✳

❙❛t③ ✷✳✷✳✶✵✳ ❯♥t❡r H0 ❣✐❧t

T =
(Hβ̂ − c)⊤(H(X⊤X)−1H⊤)−1(Hβ̂ − c)

rσ̂2
∼ Fr,n−m.

❉❡s❤❛❧❜ ✇✐r❞ H0 : Hβ = c ❛❜❣❡❧❡❤♥t✱ ❢❛❧❧s T > Fr,n−m,1−α✳

Ü❜✉♥❣s❛✉❢❣❛❜❡ ✷✳✷✳✸✳ ❇❡✇❡✐s❡♥ ❙✐❡ ❙❛t③ ✷✳✷✳✶✵✦

✷✳✷✳✺ ❑♦♥✜❞❡♥③❜❡r❡✐❝❤❡

✶✳ ❑♦♥✜❞❡♥③✐♥t❡r✈❛❧❧ ❢ür βj

■♠ ❙❛t③ ✷✳✷✳✾ ❤❛❜❡♥ ✇✐r ❣❡③❡✐❣t✱ ❞❛ÿ

β̂j − βj

σ̂ ·
√
xjj
∼ tn−m,

✇♦❜❡✐ (X⊤X)−1 = (xij)i,j=1,...,m✳ ❉❛r❛✉s ❦❛♥♥ ♠✐t ❞❡♥ ü❜❧✐❝❤❡♥ Ü❜❡r❧❡❣✉♥❣❡♥
❢♦❧❣❡♥❞❡s ❑♦♥✜❞❡♥③✐♥t❡r✈❛❧❧ ❢ür βj ③✉♠ ◆✐✈❡❛✉ 1− α ❛❜❣❡❧❡✐t❡t ✇❡r❞❡♥✿

P

(
β̂j − tn−m,1−α/2 · σ̂

√
xjj ≤ βj ≤ β̂j + tn−m,1−α/2 · σ̂

√
xjj
)
= 1− α.

✷✳ ❙✐♠✉❧t❛♥❡r ❑♦♥✜❞❡♥③❜❡r❡✐❝❤ ❢ür β = (β1, . . . , βm)⊤

❋❛❧❧s Aj ✇✐❡ ✉♥t❡♥ ❞❡✜♥✐❡rt ✐st✱ ❞❛♥♥ ❡r❤ä❧t ♠❛♥ ♠✐t ❍✐❧❢❡ ❢♦❧❣❡♥❞❡r ❇♦♥❢❡rr♦♥✐✲
❯♥❣❧❡✐❝❤✉♥❣

P




m⋂

j=1

Aj


 ≥

m∑

j=1

P (Aj)− (m− 1),



✽✷ ✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥

❞❛ÿ

P

(
β̂j − tn−m,1−α/(2m) · σ̂

√
xjj ≤ βj ≤ β̂j + tn−m,1−α/(2m) · σ̂

√
xjj

︸ ︷︷ ︸
:=Aj

, j = 1, . . . ,m

)

✭❇♦♥❢❡rr♦♥✐✮
≥

m∑

j=1

P (Aj)− (m− 1) = m ·
(
1− α

m

)
−m+ 1 = 1− α.

❉❛r❛✉s ❢♦❧❣t✱ ❞❛ÿ
{
β = (β1, . . . , βm)⊤ : βj ∈

[
β̂j − tn−m,1−α/(2m) · σ̂

√
xjj , β̂ + tn−m,1−α/(2m) · σ̂

√
xjj
]}

❡✐♥ s✐♠✉❧t❛♥❡r ❑♦♥✜❞❡♥③❜❡r❡✐❝❤ ❢ür β ③✉♠ ◆✐✈❡❛✉ 1− α ✐st✳

✸✳ ❑♦♥✜❞❡♥③❡❧❧✐♣s♦✐❞ ❢ür β✳

■♥ ❙❛t③ ✷✳✷✳✽ ❤❛❜❡♥ ✇✐r ❜❡✇✐❡s❡♥✱ ❞❛ÿ

T =
(β̂ − β)⊤(X⊤X)(β̂ − β)

mσ̂2
∼ Fm,n−m.

❉❛r❛✉s ❢♦❧❣t✱ ❞❛ÿ

P (T ≤ Fm,n−m,1−α) = 1− α ✉♥❞

E =

{
β ∈ R

m :
(β̂ − β)⊤(X⊤X)(β̂ − β)

mσ̂2
≤ Fm,n−m,1−α

}

❡✐♥ ❑♦♥✜❞❡♥③❡❧❧✐♣s♦✐❞ ③✉♠ ◆✐✈❡❛✉ 1− α ✐st✱ s✐❡❤❡ ❆❜❜✐❧❞✉♥❣ ✷✳✷✳

❆❜❜✐❧❞✉♥❣ ✷✳✷✿ ❑♦♥✜❞❡♥③❡❧❧✐♣s♦✐❞

❉❛ ❡✐♥ ❊❧❧✐♣s♦✐❞ ✐♥ ❞❛s ♠✐♥✐♠❛❧❡ P❛r❛❧❧❡❧❡♣✐♣❡t P ❡✐♥❣❡❜❡tt❡t ✇❡r❞❡♥ ❦❛♥♥✱ s♦❞❛ÿ
❞✐❡ ❙❡✐t❡♥❧ä♥❣❡♥ ✈♦♥ P ❣❧❡✐❝❤ 2× ❞❡r ❍❛❧❜❛❝❤s❡♥❧ä♥❣❡♥ ✈♦♥ E s✐♥❞✱ ❡r❣✐❜t s✐❝❤
❢♦❧❣❡♥❞❡r s✐♠✉❧t❛♥❡r ❑♦♥✜❞❡♥③❜❡r❡✐❝❤ ❢ür β = (β1, . . . , βm)⊤✿

P =

{
β : β̂j − σ̂

√
mxjjFm,n−m,1−α ≤ βj ≤ β̂j + σ̂

√
mxjjFm,n−m,1−α

}

j = 1, . . . ,m✳



✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥ ✽✸

✹✳ ❑♦♥✜❞❡♥③✐♥t❡r✈❛❧❧ ❢ür ❞❡♥ ❡r✇❛rt❡t❡♥ ❩✐❡❧✇❡rt x01β1 + . . .+ x0mβm✳

❙❡✐ Y0 = x01β1 + . . .+ x0mβm + ε0 ❡✐♥❡ ♥❡✉❡ ❩✐❡❧✈❛r✐❛❜❧❡ ♠✐t E ε0 = 0. ❉❛♥♥ ✐st

EY0 =

n∑

i=1

x0iβi.

❲✐r ❦♦♥str✉✐❡r❡♥ ❡✐♥ ❑♦♥✜❞❡♥③✐♥t❡r✈❛❧❧ ❢ür EY0✳ ❉❛③✉ ✈❡r✇❡♥❞❡♥ ✇✐r ❞✐❡ ❇❡✇❡✐s✲
✐❞❡❡ ❞❡s ❙❛t③❡s ✷✳✷✳✾ ❦♦♠❜✐♥✐❡rt ♠✐t ❙❛t③ ✷✳✷✳✶✵ ♠✐t H = (x01, . . . , x0m) = x⊤0 ✱
r = 1✳ ❉❛♥♥ ✐st

T =

m∑
i=1

β̂ix0i −
m∑
i=1

βix0i

σ̂
√
x⊤0 (X

⊤X)−1x0

∼ tn−m.

❉❛r✉♠ ✐st
{
β = (β1, . . . , βm)⊤ :

m∑

i=1

x0iβ̂i − σ̂
√
x⊤0 (X

⊤X)−1x0 · tn−m,1−α/2

≤
m∑

i=1

x0iβi ≤
m∑

i=1

x0iβ̂i + σ̂
√

x⊤0 (X
⊤X)−1x0 · tn−m,1−α/2

}

❡✐♥ ❑♦♥✜❞❡♥③✐♥t❡r✈❛❧❧ ❢ür
m∑
i=1

x0iβi ③✉♠ ◆✐✈❡❛✉ 1− α✳

✺✳ Pr♦❣♥♦s❡✐♥t❡r✈❛❧❧ ❢ür ❞✐❡ ❩✐❡❧✈❛r✐❛❜❧❡ Y0✳

❋ür Y0 =
m∑
i=1

x0iβi + ε0 ♠✐t ε0 ∼ N(0, σ2)✱ ε0 ✉♥❛❜❤ä♥❣✐❣ ✈♦♥ ε1, . . . , εn✱ ❣✐❧t✿

x⊤0 β̂ − Y0 ∼ N(0, σ2(1 + x⊤0 (X
⊤X)−1x0))

=⇒ x⊤0 β̂ − Y0

σ
√
1 + x⊤0 (X

⊤X)−1x0

∼ N(0, 1)

=⇒ x⊤0 β̂ − Y0

σ̂
√

1 + x⊤0 (X
⊤X)−1x0

∼ tn−m

❆❧s♦ ✐st
(
x⊤0 β̂ + c, x⊤0 β̂ − c

)

♠✐t c = σ̂
√

1 + x⊤0 (X
⊤X)−1 · x0 · tn−m,1−α/2

❡✐♥ Pr♦❣♥♦s❡✐♥t❡r✈❛❧❧ ❢ür ❞✐❡ ❩✐❡❧✈❛r✐❛❜❧❡ Y0 ③✉♠ ◆✐✈❡❛✉ 1− α✳



✽✹ ✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥

✻✳ ❑♦♥✜❞❡♥③❜❛♥❞ ❢ür ❞✐❡ ❘❡❣r❡ss✐♦♥s❡❜❡♥❡ y = β1+
m∑
i=2

xiβi ✐♠ ♠✉❧t✐♣❧❡♥ ❘❡❣r❡ss✐♦♥s✲

♠♦❞❡❧❧✳

❊s s❡✐ Y = Xβ + ε✱ ✇♦❜❡✐

X =




1 x12 · · · x1m
1 x22 · · · x2m
✳✳✳

✳✳✳
✳✳✳

✳✳✳
1 xn2 · · · xnm


 ✉♥❞ ε ∼ N(0, σ2 · I).

❲✐r ✇♦❧❧❡♥ ❡✐♥ ③✉❢ä❧❧✐❣❡s ❑♦♥✜❞❡♥③❜❛♥❞ B(x) ❢ür y ❛♥❣❡❜❡♥✳ ❊s ❣✐❧t

P

(
y = β1 +

m∑

i=2

βixi ∈ B(x)

)
= 1− α ∀x ∈ R

m−1
1 , ✇♦❜❡✐

Rm−1
1 =

{
(1, x2, . . . , xm)⊤ ∈ R

m
}
.

❙❛t③ ✷✳✷✳✶✶✳ ❊s ❣✐❧t✿

P

(
max

x∈Rm−1
1

(
xT β̂ −

=y︷ ︸︸ ︷
(
β1 +

m∑

i=2

βixi

))2

σ̂2x⊤(X⊤X)−1x
≤ m · Fm,n−m,1−α

)
= 1− α.

❖❤♥❡ ❇❡✇❡✐s✳

✷✳✸ ▼✉❧t✐✈❛r✐❛t❡ ❧✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥ ♠✐t ❘❛♥❣(X) < m

❊s s❡✐ Y = Xβ + ε✱ Y ∈ R
n✱ ✇♦❜❡✐ X ❡✐♥❡ (n ×m)✲▼❛tr✐① ♠✐t ❘❛♥❣(X) = r < m ✐st✱

β = (β1, . . . , βm)⊤✱ ε ∈ R
n✱ E ε = 0✱ E (εiεj) = δijσ

2✱ i, j = 1, . . . , n✱ σ2 > 0✳

❉❡r ▼❑◗✲❙❝❤ät③❡r β̂ ✐st ♥❛❝❤ ✇✐❡ ✈♦r ❡✐♥❡ ▲ös✉♥❣ ❞❡r ◆♦r♠❛❧❡♥❣❧❡✐❝❤✉♥❣

(
X⊤X

)
β = X⊤Y.

X⊤X ✐st ❛❜❡r ♥✐❝❤t ♠❡❤r ✐♥✈❡rt✐❡r❜❛r✱ ✇❡✐❧

❘❛♥❣(X⊤X) ≤ min
{
❘❛♥❣(X),❘❛♥❣(X⊤)

}
= r < m.

❯♠ β̂ ❛✉s ❞❡r ◆♦r♠❛❧❡♥❣❧❡✐❝❤✉♥❣ ③✉ ❣❡✇✐♥♥❡♥✱ s♦❧❧❡♥ ❜❡✐❞❡ ❙❡✐t❡♥ ❞❡r ●❧❡✐❝❤✉♥❣ ♠✐t ❞❡r
s♦❣❡♥❛♥♥t❡♥ ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡♥ ■♥✈❡rs❡♥ ✈♦♥ X⊤X ♠✉❧t✐♣❧✐③✐❡rt ✇❡r❞❡♥✳



✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥ ✽✺

✷✳✸✳✶ ❱❡r❛❧❧❣❡♠❡✐♥❡rt❡ ■♥✈❡rs❡

❉❡✜♥✐t✐♦♥ ✷✳✸✳✶✳ ❙❡✐ A ❡✐♥❡ (n ×m)✲▼❛tr✐①✳ ❊✐♥❡ (m × n)✲▼❛tr✐① A− ❤❡✐ÿt ✈❡r❛❧❧❣❡✲
♠❡✐♥❡rt❡ ■♥✈❡rs❡ ✈♦♥ A✱ ❢❛❧❧s

AA−A = A ❣✐❧t✳

❉✐❡ ▼❛tr✐① A− ✐st ♥✐❝❤t ❡✐♥❞❡✉t✐❣ ❜❡st✐♠♠t✱ ✇❛s ❞✐❡ ❢♦❧❣❡♥❞❡♥ ❍✐❧❢ssät③❡ ③❡✐❣❡♥✳

▲❡♠♠❛ ✷✳✸✳✶✳ ❙❡✐ A ❡✐♥❡ (n×m)✲▼❛tr✐①✱ m ≤ n ♠✐t ❘❛♥❣(A) = r ≤ m✳ ❊s ❡①✐st✐❡r❡♥
✐♥✈❡rt✐❡r❜❛r❡ ▼❛tr✐③❡♥ P ✭n× n✮ ✉♥❞ Q ✭m×m✮✱ s♦❞❛ÿ

PAQ =

(
Ir 0
0 0

)
, ✇♦❜❡✐ Ir = ❞✐❛❣(1, . . . , 1︸ ︷︷ ︸

r ▼❛❧

). ✭✷✳✸✳✶✮

❋♦❧❣❡r✉♥❣ ✷✳✸✳✶✳ ❋ür ❡✐♥❡ ❜❡❧✐❡❜✐❣❡ (n ×m)✲▼❛tr✐① A ♠✐t n ≥ m✱ ❘❛♥❣✭❆✮ r =≤ m
❣✐❧t

A− = Q

(
Ir A2

A1 A3

)
P, ✭✷✳✸✳✷✮

✇♦❜❡✐ P ✉♥❞ Q ▼❛tr✐③❡♥ ❛✉s ❞❡r ❉❛rst❡❧❧✉♥❣ ✭✷✳✸✳✶✮ s✐♥❞✱ Ir = ❞✐❛❣(

r ▼❛❧︷ ︸︸ ︷
1, . . . , 1)✱ ✉♥❞ A1✱

A2✱ A3 ❜❡❧✐❡❜✐❣❡ ((m− r)× r)✱ (r × (n− r)) ❜③✇✳ ((m− r)× (n− r))✲▼❛tr✐③❡♥ s✐♥❞✳
■♥s❜❡s♦♥❞❡r❡ ❦❛♥♥

A1 = 0,

A2 = 0,

A3 = ❞✐❛❣(1, . . . , 1︸ ︷︷ ︸
s−r ▼❛❧

, 0, . . . , 0),

s ∈ {r, . . . ,m}
❣❡✇ä❤❧t ✇❡r❞❡♥✱ ❞❛s ❤❡✐ÿt✱ ❘❛♥❣(A−) = s ∈ {r, . . . ,m} ❢ür

A− = Q

(
Is 0
0 0

)
P.

❇❡✇❡✐s✳ ❩❡✐❣❡♥ ✇✐r✱ ❞❛ÿ ❢ür A− ✇✐❡ ✐♥ ✭✷✳✸✳✷✮ ❣❡❣❡❜❡♥✱ AA−A = A ❣✐❧t✳ ❆✉s ▲❡♠♠❛
✷✳✸✳✶ ❢♦❧❣t✱ ❞❛ÿ

A = P−1 · ❞✐❛❣(1, . . . , 1, 0, . . . , 0) ·Q−1 ✉♥❞ s♦♠✐t

AA−A = P−1

(
Ir 0
0 0

)
Q−1Q ·

(
Ir A2

A1 A3

)
PP−1

(
Ir 0
0 0

)
Q−1

= P−1

(
Ir 0
0 0

)(
Ir A2

A1 A3

)(
Ir 0
0 0

)
Q−1 = P−1

(
Ir 0
0 0

)
Q−1

= A.
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▲❡♠♠❛ ✷✳✸✳✷✳ ❙❡✐ A ❡✐♥❡ ❜❡❧✐❡❜✐❣❡ (n×m)✲▼❛tr✐① ♠✐t ❘❛♥❣(A) = r ≤ m✱ m ≤ n✳

✶✳ ❋❛❧❧s (A⊤A)− ❡✐♥❡ ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡ ■♥✈❡rs❡ ✈♦♥ A⊤A ✐st✱ ❞❛♥♥ ✐st
(
(A⊤A)−

)⊤

❡❜❡♥❢❛❧❧s ❡✐♥❡ ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡ ■♥✈❡rs❡ ✈♦♥ A⊤A✳

✷✳ ❊s ❣✐❧t ❞✐❡ ❉❛rst❡❧❧✉♥❣

(A⊤A)(A⊤A)−A⊤ = A⊤ ❜③✇✳

A(A⊤A)−(A⊤A) = A.

❇❡✇❡✐s✳ ✶✳ A⊤A ✐st s②♠♠❡tr✐s❝❤✱ ❛❧s♦

(
A⊤A(A⊤A)−A⊤A

)⊤

︸ ︷︷ ︸
=A⊤A((A⊤A)−)

⊤
A⊤A

=
(
A⊤A

)⊤
= A⊤A.

❆❧s♦ ✐st
(
(A⊤A)−

)⊤
❡✐♥❡ ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡ ■♥✈❡rs❡ ✈♦♥ A⊤A✳

✷✳ ❊s s❡✐ B = (A⊤A)(A⊤A)−A⊤−A⊤✳ ❲✐r ③❡✐❣❡♥✱ ❞❛ÿ B = 0✱ ✐♥❞❡♠ ✇✐r ③❡✐❣❡♥✱ ❞❛ÿ
BB⊤ = 0✳

BB⊤ =
(
(A⊤A)(A⊤A)−A⊤ −A⊤

)(
A
(
(A⊤A)−

)⊤
A⊤A−A

)

= A⊤A(A⊤A)−A⊤A
(
(A⊤A)−

)⊤
A⊤A−A⊤A(A⊤A)−A⊤A︸ ︷︷ ︸

=A⊤A

−A⊤A
(
(A⊤A)−

)⊤
·A⊤A

︸ ︷︷ ︸
=A⊤A

+A⊤A = A⊤A− 2A⊤A+A⊤A = 0.

❉✐❡ ❆✉ss❛❣❡ A(A⊤A)−A⊤A = A ❡r❤ä❧t ♠❛♥✱ ✐♥❞❡♠ ♠❛♥ ❞✐❡ ▼❛tr✐③❡♥ ❛♥ ❜❡✐❞❡♥
❙❡✐t❡♥ ❞❡r ●❧❡✐❝❤✉♥❣ A⊤A(A⊤A)−A⊤ = A⊤ tr❛♥s♣♦♥✐❡rt✳

✷✳✸✳✷ ▼❑◗✲❙❝❤ät③❡r ❢ür β

❙❛t③ ✷✳✸✳✶✳ ❊s s❡✐ X ❡✐♥❡ (n×m)✲❉❡s✐❣♥♠❛tr✐① ♠✐t ❘❛♥❣(X) = r ≤ m ✐♥ ❞❡r ❧✐♥❡❛r❡♥
❘❡❣r❡ss✐♦♥ Y = Xβ + ε✳ ❉✐❡ ❛❧❧❣❡♠❡✐♥❡ ▲ös✉♥❣ ❞❡r ◆♦r♠❛❧❡♥❣❧❡✐❝❤✉♥❣

(
X⊤X

)
β = X⊤Y

s✐❡❤t ❢♦❧❣❡♥❞❡r♠❛ÿ❡♥ ❛✉s✿

β =
(
X⊤X

)−
X⊤Y +

(
Im −

(
X⊤X

)−
X⊤X

)
z, z ∈ R

m. ✭✷✳✸✳✸✮
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❇❡✇❡✐s✳ ✶✳ ❩❡✐❣❡♥ ✇✐r✱ ❞❛ÿ β ✇✐❡ ✐♥ ✭✷✳✸✳✸✮ ❛♥❣❡❣❡❜❡♥✱ ❡✐♥❡ ▲ös✉♥❣ ❞❡r ◆♦r♠❛❧❡♥❣❧❡✐✲
❝❤✉♥❣ ❞❛rst❡❧❧t✳

X⊤Xβ = (X⊤X)(X⊤X)−X⊤
︸ ︷︷ ︸
=X⊤( ▲❡♠♠❛ ✷✳✸✳✷✱ ✷✳✮)

Y +

(
X⊤X −X⊤X(X⊤X)−X⊤X︸ ︷︷ ︸

=X⊤X

)
z

= X⊤Y

✷✳ ❩❡✐❣❡♥ ✇✐r✱ ❞❛ÿ ❡✐♥❡ ❜❡❧✐❡❜✐❣❡ ▲ös✉♥❣ β′ ❞❡r ◆♦r♠❛❧❡♥❣❧❡✐❝❤✉♥❣ ❞✐❡ ❋♦r♠ ✭✷✳✸✳✸✮
❜❡s✐t③t✳ ❙❡✐ β ❞✐❡ ▲ös✉♥❣ ✭✷✳✸✳✸✮✳ ❲✐r ❜✐❧❞❡♥ ❞✐❡ ❉✐✛❡r❡♥③ ❞❡r ●❧❡✐❝❤✉♥❣❡♥

(X⊤X)β′ = X⊤Y
− (X⊤X)β = X⊤Y

(X⊤X)(β′ − β) = 0

β′ = (β′ − β) + β

= β′ − β + (X⊤X)−X⊤Y +
(
Im − (X⊤X)−X⊤X

)
z

= (X⊤X)−X⊤Y +
(
Im − (X⊤X)−X⊤X

)
z + (β′ − β)− (X⊤X)−X⊤X(β′ − β)︸ ︷︷ ︸

=0

= (X⊤X)−X⊤Y +
(
Im − (X⊤X)−X⊤X

)(
z + β′ − β︸ ︷︷ ︸

=z0

)

=⇒ β′ ❜❡s✐t③t ❞✐❡ ❉❛rst❡❧❧✉♥❣ ✭✷✳✸✳✸✮✳

❇❡♠❡r❦✉♥❣ ✷✳✸✳✶✳ ❉❡r ❙❛t③ ✷✳✸✳✶ ❧✐❡❢❡rt ❞✐❡ ▼❡♥❣❡ ❛❧❧❡r ❊①tr❡♠❛❧♣✉♥❦t❡ ❞❡r ▼❑◗✲
▼✐♥✐♠✐❡r✉♥❣s❛✉❢❣❛❜❡

e(β) =
1

n
|Y −Xβ|2 −→ min

β
.

❉❡s❤❛❧❜ s♦❧❧ ❞✐❡ ▼❡♥❣❡ ❛❧❧❡r ▼❑◗✲❙❝❤ät③❡r ✈♦♥ β ✐♥ ✭✷✳✸✳✸✮ ③✉sät③❧✐❝❤❡ ❆♥❢♦r❞❡r✉♥❣❡♥
❡r❢ü❧❧❡♥✳

❙❛t③ ✷✳✸✳✷✳ ✶✳ ❆❧❧❡ ▼❑◗✲❙❝❤ät③❡r ✈♦♥ β ❤❛❜❡♥ ❞✐❡ ❋♦r♠

β =
(
X⊤X

)−
X⊤Y, ✇♦❜❡✐

(X⊤X)− ❡✐♥❡ ❜❡❧✐❡❜✐❣❡ ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡ ■♥✈❡rs❡ ✈♦♥ X⊤X ✐st✳

✷✳ β ✐st ♥✐❝❤t ❡r✇❛rt✉♥❣str❡✉✱ ❞❡♥♥

Eβ =
(
X⊤X

)−
X⊤Xβ.
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✸✳ ❊s ❣✐❧t✿

❈♦✈β = σ2
(
X⊤X

)− (
X⊤X

)(
(X⊤X)−

)⊤
.

❇❡✇❡✐s✳ ✶✳ ❩❡✐❣❡♥ ✇✐r✱ ❞❛ÿ e(β) ≥ e(β) ∀β ∈ R
m✳

n · e(β) = |Y −Xβ|2 = (Y −Xβ +X(β − β))⊤(Y −Xβ +X(β − β))

= (Y −Xβ)⊤(Y −Xβ) +
(
X(β − β)

)⊤ (
X(β − β)

)

+ 2(β − β)⊤X⊤(Y −Xβ)

= n · e(β) + 2 · (β − β)⊤(X⊤Y − (X⊤Xβ))︸ ︷︷ ︸
=0

+
∣∣X(β − β)

∣∣2

≥ n · e(β) + 0 = n · e(β), ❞❡♥♥

β ❤❛t ❞✐❡ ❋♦r♠ ✭✷✳✸✳✸✮ ♠✐t z = 0 ✉♥❞ ✐st s♦♠✐t ❡✐♥❡ ▲ös✉♥❣ ❞❡r ◆♦r♠❛❧❡♥❣❧❡✐❝❤✉♥❣✳

✷✳ ❊s ❣✐❧t✿

Eβ = E

(
(X⊤X)−X⊤Y

)
=
(
X⊤X

)−
X⊤

EY

= (X⊤X)−X⊤Xβ, ✇❡✐❧ ❛✉s

Y = Xβ + ε, E ε = 0 ❞✐❡ ❘❡❧❛t✐♦♥ EY = Xβ ❢♦❧❣t✳

❲❛r✉♠ ✐st β ♥✐❝❤t ❡r✇❛rt✉♥❣str❡✉❄ ❆❧s♦ ✇❛r✉♠ ✐st (X⊤X)−X⊤Xβ 6= β, β ∈ R
m❄

❉❛ ❘❛♥❣(X) = r < m✱ ✐st ❘❛♥❣(X⊤X) < m ✉♥❞ ❞❛♠✐t ❘❛♥❣((X⊤X)−X⊤X) <
m✳ ❉❛r✉♠ ❡①✐st✐❡rt ❡✐♥ β 6= 0✱ ❢ür ❞❛s ❣✐❧t✿

(
X⊤X

)−
X⊤Xβ = 0 6= β,

❛❧s♦ ✐st β ♥✐❝❤t ❡r✇❛rt✉♥❣str❡✉✳ ❊s ❣✐❧t s♦❣❛r✱ ❞❛ÿ ❛❧❧❡ ▲ös✉♥❣❡♥ ✈♦♥ ✭✷✳✸✳✸✮ ❦❡✐♥❡ ❡r✲
✇❛rt✉♥❣str❡✉❡♥ ❙❝❤ät③❡r s✐♥❞✳ ❲❡♥♥ ✇✐r ❞❡♥ ❊r✇❛rt✉♥❣s✇❡rt ❛♥ ✭✷✳✸✳✸✮ ❛♥✇❡♥❞❡♥✱
s♦ ❡r❤✐❡❧t❡♥ ✇✐r ✐♠ ❋❛❧❧❡ ❞❡r ❊r✇❛rt✉♥❣str❡✉❡✿

∀β ∈ R
m : β = (X⊤X)−X⊤Xβ +

(
Im − (X⊤X)−(X⊤X)

)
z, z ∈ R

m.

=⇒
(
Im − (X⊤X)−(X⊤X)

)
(z − β) = 0 ∀z, β ∈ R

m

=⇒ (X⊤X)−(X⊤X)(β − z) = β − z, ∀z, β ∈ R
m.

❉❛ ❞✐❡s❡ ●❧❡✐❝❤✉♥❣ ♥✐❝❤t ❢ür ❛❧❧❡ β ∈ R
m ❣❡❧t❡♥ ❦❛♥♥ ✭s✐❡❤❡ ♦❜❡♥✮✱ ❢ü❤rt ❞✐❡

❆♥♥❛❤♠❡ ❞❡r ❊r✇❛rt✉♥❣str❡✉❡ ③✉♠ ❲✐❞❡rs♣r✉❝❤✳
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✸✳ ❊s ❣✐❧t✿

❈♦✈
(
βi, βj

)
= ❈♦✈

((
(X⊤X)−X⊤
︸ ︷︷ ︸

:=A=(akl)

Y
)

i
,
(
(X⊤X)−X⊤Y

)

j

)

= ❈♦✈

(
n∑

k=1

aikYk,
n∑

l=1

ajlYl

)

=
n∑

k,l=1

aikajl ❈♦✈
(
Yk, Yl

)

︸ ︷︷ ︸
=σ2·δkl

= σ2
n∑

k=1

aikajk =
(
σ2AA⊤

)

i,j

=

(
σ2(X⊤X)−X⊤X

(
(X⊤X)−

)⊤)

i,j.

✷✳✸✳✸ ❊r✇❛rt✉♥❣str❡✉ s❝❤ät③❜❛r❡ ❋✉♥❦t✐♦♥❡♥

❉❡✜♥✐t✐♦♥ ✷✳✸✳✷✳ ❊✐♥❡ ▲✐♥❡❛r❦♦♠❜✐♥❛t✐♦♥ a⊤β ✈♦♥ β1, . . . , βm✱ a ∈ R
m ❤❡✐ÿt ✭❡r✇❛r✲

t✉♥❣str❡✉✮ s❝❤ät③❜❛r✱ ❢❛❧❧s

∃ c ∈ R
n : E

(
c⊤Y

)
= a⊤β,

❞❛s ❤❡✐ÿt✱ ❢❛❧❧s ❡s ❡✐♥❡♥ ❧✐♥❡❛r❡♥✱ ❡r✇❛rt✉♥❣str❡✉❡♥ ❙❝❤ät③❡r c⊤Y ❢ür a⊤β ❣✐❜t✳

❙❛t③ ✷✳✸✳✸✳ ❉✐❡ ❋✉♥❦t✐♦♥ a⊤β✱ a ∈ R
m ✐st ❣❡♥❛✉ ❞❛♥♥ ❡r✇❛rt✉♥❣str❡✉ s❝❤ät③❜❛r✱ ✇❡♥♥

❡✐♥❡ ❞❡r ❢♦❧❣❡♥❞❡♥ ❇❡❞✐♥❣✉♥❣❡♥ ❡r❢ü❧❧t ✐st✿

✶✳ ∃ c ∈ R
n : a⊤ = c⊤X✳

✷✳ a ❡r❢ü❧❧t ❞✐❡ ●❧❡✐❝❤✉♥❣

a⊤
(
X⊤X

)−
X⊤X = a⊤. ✭✷✳✸✳✹✮

❇❡✇❡✐s✳ ✶✳ ✒=⇒ ✏✿ ❋❛❧❧s a⊤β s❝❤ät③❜❛r✱ ❞❛♥♥ ❡①✐st✐❡rt ❡✐♥ d ∈ R
n ♠✐t E (d⊤Y ) =

a⊤β ∀β ∈ R
m✳ ❆❧s♦

a⊤β = d⊤EY = d⊤Xβ ⇒
(
a⊤ − d⊤X

)
β = 0, ∀β ∈ R

m

=⇒ a⊤ = d⊤X,

s❡t③❡ c = d✱ ❞❛♠✐t ✐st ❞✐❡ ❡rst❡ ❘✐❝❤t✉♥❣ ❜❡✇✐❡s❡♥✳

✒⇐= ✏✿ E (c⊤Y ) = c⊤EY = c⊤Xβ = a⊤β, ❛❧s♦ ✐st a⊤β ❡r✇❛rt✉♥❣str❡✉ s❝❤ät③❜❛r✳
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✷✳ ✒=⇒ ✏✿ ❋❛❧❧s a⊤β ❡r✇❛rt✉♥❣str❡✉ s❝❤ät③❜❛r ✐st✱ ❞❛♥♥ ❣✐❧t✿

a⊤(X⊤X)−X⊤X
P✉♥❦t ✶
= c⊤X · (X⊤X)−X⊤X︸ ︷︷ ︸

=X ✭▲❡♠♠❛ ✷✳✸✳✷✮

= c⊤X
✭P✉♥❦t ✶✮

= a⊤.

❆❧s♦ ✐st ✭✷✳✸✳✹✮ ❡r❢ü❧❧t✳

✒⇐= ✏✿ ❋❛❧❧s a⊤(X⊤X)−X⊤X = a⊤✱ ❞❛♥♥ ❣✐❧t ♠✐t c = (a⊤(X⊤X)−X⊤)⊤ ♥❛❝❤
P✉♥❦t ✶✱ ❞❛ÿ a⊤β s❝❤ät③❜❛r ✐st✳

❇❡♠❡r❦✉♥❣ ✷✳✸✳✷✳ ■♠ ❋❛❧❧❡ ❞❡r ❘❡❣r❡ss✐♦♥ ♠✐t ❘❛♥❣(X) = m ✐st ❞✐❡ ●❧❡✐❝❤✉♥❣ ✭✷✳✸✳✹✮
✐♠♠❡r ❡r❢ü❧❧t✱ ❞❡♥♥ (X⊤X)− = (X⊤X)−1 ✉♥❞ ❞❛♠✐t ✐st a⊤β s❝❤ät③❜❛r ❢ür ❛❧❧❡ a ∈ R

m✳

❙❛t③ ✷✳✸✳✹ ✭❇❡✐s♣✐❡❧❡ s❝❤ät③❜❛r❡r ❋✉♥❦t✐♦♥❡♥✮✳ ❋❛❧❧s ❘❛♥❣(X) = r < m✱ ❞❛♥♥ s✐♥❞
❢♦❧❣❡♥❞❡ ▲✐♥❡❛r❦♦♠❜✐♥❛t✐♦♥❡♥ ✈♦♥ β s❝❤ät③❜❛r✿

✶✳ ❉✐❡ ❑♦♦r❞✐♥❛t❡♥
m∑
j=1

xijβj ✱ i = 1, . . . , n ❞❡s ❊r✇❛rt✉♥❣s✇❡rt✈❡❦t♦rs EY = Xβ✳

✷✳ ❇❡❧✐❡❜✐❣❡ ▲✐♥❡❛r❦♦♠❜✐♥❛t✐♦♥❡♥ s❝❤ät③❜❛r❡r ❋✉♥❦t✐♦♥❡♥✳

❇❡✇❡✐s✳ ✶✳ ❋ü❤r❡ ❞✐❡ ❇❡③❡✐❝❤♥✉♥❣ x̃i = (xi1, . . . , xim)✱ i = 1, . . . , n ❡✐♥✳ ❉❛♥♥ ✐st

m∑

j=1

xijβj
= x̃⊤i β ∀i = 1, . . . , n,

Xβ = (x̃1, x̃2, . . . , x̃n)
⊤ β.

x̃iβ ✐st s❝❤ät③❜❛r✱ ❢❛❧❧s x̃i ❞✐❡ ●❧❡✐❝❤✉♥❣ ✭✷✳✸✳✹✮ ❡r❢ü❧❧t✱ ❞✐❡ ❢ür ❛❧❧❡ i = 1, . . . , n
❢♦❧❣❡♥❞❡r♠❛ÿ❡♥ ✐♥ ▼❛tr✐①❢♦r♠ ❞❛r❣❡st❡❧❧t ✇❡r❞❡♥ ❦❛♥♥✿

X
(
X⊤X

)−
X⊤X = X,

✇❛s ♥❛❝❤ ▲❡♠♠❛ ✷✳✸✳✷ ●ü❧t✐❣❦❡✐t ❜❡s✐t③t✳

✷✳ ❋ür a1, . . . , ak ∈ R
m s❡✐❡♥ a⊤1 β, . . . , a

⊤
k β s❝❤ät③❜❛r❡ ❋✉♥❦t✐♦♥❡♥✳ ❋ür ❛❧❧❡ λ =

(λ1, . . . , λk)
⊤ ∈ R

k ③❡✐❣❡♥ ✇✐r✱ ❞❛ÿ
k∑

i=1
λi · a⊤i β = λ⊤Aβ s❝❤ät③❜❛r ✐st✱ ✇♦❜❡✐

A = (a1, . . . , ak)
⊤✳ ❩✉ ③❡✐❣❡♥ ❜❧❡✐❜t✿ b = (λ⊤A)⊤ ❡r❢ü❧❧t ✭✷✳✸✳✹✮✱ ❛❧s♦

λ⊤A
(
X⊤X

)−
X⊤X = λ⊤A.

❉✐❡s❡ ●❧❡✐❝❤✉♥❣ st✐♠♠t✱ ✇❡✐❧ a⊤i (X
⊤X)−X⊤X = a⊤i ✱ i = 1, . . . , k✳ ◆❛❝❤ ❙❛t③ ✷✳✸✳✸✱

✷✳✮ ✐st λ⊤Aβ s❝❤ät③❜❛r✳



✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥ ✾✶

❙❛t③ ✷✳✸✳✺ ✭●❛✉ÿ✲▼❛r❦♦✈✮✳ ❊s s❡✐ a⊤β ❡✐♥❡ s❝❤ät③❜❛r❡ ❋✉♥❦t✐♦♥✱ a ∈ R
m ✐♠ ❧✐♥❡❛r❡♥

❘❡❣r❡ss✐♦♥s♠♦❞❡❧❧ Y = Xβ + ε ♠✐t ❘❛♥❣(X) ≤ m✳

✶✳ ❉❡r ❜❡st❡ ❧✐♥❡❛r❡ ❡r✇❛rt✉♥❣str❡✉❡ ❙❝❤ät③❡r ✭❡♥❣❧✳ ❇▲❯❊ ✲ ❜❡st ❧✐♥❡❛r ✉♥❜✐❛s❡❞
❡st✐♠❛t♦r✮ ✈♦♥ a⊤β ✐st ❞✉r❝❤ a⊤β ❣❡❣❡❜❡♥✱ ✇♦❜❡✐

β =
(
X⊤X

)−
X⊤Y

❡✐♥ ▼❑◗✲❙❝❤ät③❡r ❢ür β ✐st✳

✷✳ ❱❛r (a⊤β) = σ2a⊤(X⊤X)−a✳

❇❡✇❡✐s✳ ❉✐❡ ▲✐♥❡❛r✐tät ✈♦♥ a⊤β = a⊤(X⊤X)−X⊤Y ❛❧s ❋✉♥❦t✐♦♥ ✈♦♥ Y ✐st ❦❧❛r✳ ❩❡✐❣❡♥
✇✐r ❞✐❡ ❊r✇❛rt✉♥❣str❡✉❡✿

E (a⊤β) = a⊤Eβ = a⊤(X⊤X)−X⊤Xβ

= c⊤X(X⊤X)−X⊤X︸ ︷︷ ︸
=X ✭▲❡♠♠❛ ✷✳✸✳✷✮

β = c⊤X︸︷︷︸
=a⊤

β = a⊤β ∀β ∈ R
m.

❇❡r❡❝❤♥❡♥ ✇✐r ❱❛r (a⊤β) ✭❛❧s♦ ❜❡✇❡✐s❡♥ ✇✐r P✉♥❦t ✷✮✱ ✉♥❞ ③❡✐❣❡♥✱ ❞❛ÿ s✐❡ ♠✐♥✐♠❛❧ ✐st✳

❱❛r (a⊤β) = ❱❛r

(
m∑

i=1

aiβi

)
=

m∑

i,j=1

aiaj · ❈♦✈
(
βi, βj

)

= a⊤❈♦✈
(
β
)
a

(❙❛t③ ✷✳✸✳✷)
= a⊤σ2

(
(X⊤X)−X⊤X(X⊤X)−

)⊤
a

= σ2 · a⊤
(
(X⊤X)−

)⊤

︸ ︷︷ ︸
=(X⊤X)−

X⊤X
(
(X⊤X)−

)⊤

︸ ︷︷ ︸
(X⊤X)−

a

▲❡♠♠❛ ✷✳✸✳✷✱ ✶✳✮
= σ2a⊤(X⊤X)−X⊤X(X⊤X)−a

❙❛t③ ✷✳✸✳✸✱ ✶✳✮
= σ2 · c⊤X · (X⊤X)X⊤X︸ ︷︷ ︸

=X

(X⊤X)−X⊤c

= σ2 c⊤X︸︷︷︸
=a⊤

(X⊤X)−X⊤c︸︷︷︸
=a

= σ2a⊤(X⊤X)−a.

❏❡t③t ③❡✐❣❡♥ ✇✐r✱ ❞❛ÿ ❢ür ❡✐♥❡♥ ❜❡❧✐❡❜✐❣❡♥ ❧✐♥❡❛r❡♥✱ ❡r✇❛rt✉♥❣str❡✉❡♥ ❙❝❤ät③❡r b⊤Y ✈♦♥
a⊤β ❣✐❧t✿ ❱❛r (b⊤Y ) ≥ ❱❛r (a⊤β)✳ ❲❡✐❧ b⊤Y ❡r✇❛rt✉♥❣str❡✉ ✐st✱ ❣✐❧t✿ E (b⊤Y ) = a⊤β✳
◆❛❝❤ ❙❛t③ ✷✳✸✳✸ ❣✐❧t✿ a⊤ = b⊤X✳ ❇❡tr❛❝❤t❡♥ ✇✐r ❞✐❡ ❱❛r✐❛♥③ ✈♦♥

0 ≤ ❱❛r
(
b⊤Y − a⊤β

)
= ❱❛r

(
b⊤Y

)
− 2❈♦✈

(
b⊤Y, a⊤β

)
+❱❛r

(
a⊤β

)

= ❱❛r (b⊤Y )− 2σ2a⊤(X⊤X)−a+ σ2a⊤(X⊤X)−a = ❱❛r (b⊤Y )−❱❛r
(
a⊤β

)



✾✷ ✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥

♠✐t

❈♦✈
(
b⊤Y, a⊤β

)
= ❈♦✈

(
b⊤Y, a⊤(X⊤X)−X⊤Y

)
= σ2a⊤(X⊤X)−X⊤b︸︷︷︸

=a

= σ2a⊤(X⊤X)−a.

❉❛♠✐t ✐st ❱❛r
(
b⊤Y

)
≥ ❱❛r

(
a⊤β

)
✉♥❞ a⊤β ✐st ❡✐♥ ❜❡st❡r✱ ❧✐♥❡❛r❡r✱ ❡r✇❛rt✉♥❣str❡✉❡r

❙❝❤ät③❡r ❢ür a⊤β✳

❇❡♠❡r❦✉♥❣ ✷✳✸✳✸✳ ✶✳ ❋❛❧❧s ❘❛♥❣(X) = m✱ ❞❛♥♥ ✐st a⊤β̂ ❞❡r ❜❡st❡ ❧✐♥❡❛r❡✱ ❡r✇❛r✲
t✉♥❣str❡✉❡ ❙❝❤ät③❡r ❢ür a⊤β✱ a ∈ R

m✳

✷✳ ❲✐❡ ✐♠ ❢♦❧❣❡♥❞❡♥ ❙❛t③ ❣❡③❡✐❣t ✇✐r❞✱ ❤ä♥❣t ❞❡r ❙❝❤ät③❡r a⊤β = a⊤(X⊤X)−X⊤Y
♥✐❝❤t ✈♦♥ ❞❡r ❲❛❤❧ ❞❡r ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡♥ ■♥✈❡rs❡♥ ❛❜✳

❙❛t③ ✷✳✸✳✻✳ ❉❡r ❜❡st❡ ❧✐♥❡❛r❡✱ ❡r✇❛rt✉♥❣str❡✉❡ ❙❝❤ät③❡r a⊤β ❢ür a⊤β ✐st ❡✐♥❞❡✉t✐❣ ❜❡✲
st✐♠♠t✳

❇❡✇❡✐s✳

a⊤β = a⊤(X⊤X)−X⊤Y
❙❛t③ ✷✳✸✳✸✱ ✶✳✮

= c⊤X(X⊤X)−X⊤Y.

❲✐r ③❡✐❣❡♥✱ ❞❛ÿX(X⊤X)−X⊤ ♥✐❝❤t ✈♦♥ ❞❡r ❲❛❤❧ ✈♦♥ (X⊤X)− ❛❜❤ä♥❣t✳ ❩❡✐❣❡♥ ✇✐r✱ ❞❛ÿ
❢ür ❜❡❧✐❡❜✐❣❡ ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡ ■♥✈❡rs❡ A1 ✉♥❞ A2 ✈♦♥ (X⊤X) ❣✐❧t✿ XA1X

⊤ = XA2X
⊤✳

◆❛❝❤ ▲❡♠♠❛ ✷✳✸✳✷✱ ✷✳✮ ❣✐❧t✿

XA1X
⊤X = X = XA2X

⊤X.

▼✉❧t✐♣❧✐③✐❡r❡♥ ✇✐r ❛❧❧❡ ❚❡✐❧❡ ❞❡r ●❧❡✐❝❤✉♥❣ ♠✐t A1X
⊤ ✈♦♥ r❡❝❤ts✿

XA1X
⊤XA1X

⊤
︸ ︷︷ ︸

=X⊤

= XA1X
⊤ = XA2X

⊤XA1X
⊤

︸ ︷︷ ︸
=X⊤

❆❧s♦ ✐st XA1X
⊤ = XA2X

⊤✳

✷✳✸✳✹ ◆♦r♠❛❧✈❡rt❡✐❧t❡ ❙tör❣röÿ❡♥

❙❡✐ Y = Xβ+ε ❡✐♥ ❧✐♥❡❛r❡s ❘❡❣r❡ss✐♦♥s♠♦❞❡❧❧ ♠✐t ❘❛♥❣(X) = r < m ✉♥❞ ε ∼ N(0, σ2I)✳
●❡♥❛✉s♦ ✇✐❡ ✐♥ ❆❜s❝❤♥✐tt ✷✳✷✳✸ ❦ö♥♥❡♥ ▼❛①✐♠✉♠✲▲✐❦❡❧✐❤♦♦❞✲❙❝❤ät③❡r β̃ ✉♥❞ σ̃2 ❢ür β
✉♥❞ σ2 ❤❡r❣❡❧❡✐t❡t ✇❡r❞❡♥✳ ❯♥❞ ❣❡♥❛✉s♦ ✇✐❡ ✐♠ ❙❛t③ ✷✳✷✳✺ ❦❛♥♥ ❣❡③❡✐❣t ✇❡r❞❡♥✱ ❞❛ÿ

β̃ = β = (X⊤X)−X⊤Y ✉♥❞

σ̃2 =
1

n

∣∣Y −Xβ
∣∣2 .

❏❡t③t ✇❡r❞❡♥ ❞✐❡ ❱❡rt❡✐❧✉♥❣s❡✐❣❡♥s❝❤❛❢t❡♥ ✈♦♥ β ✉♥❞ σ̃2 ✉♥t❡rs✉❝❤t✳ ❲✐r ❜❡❣✐♥♥❡♥ ♠✐t
❞❡r ❊r✇❛rt✉♥❣str❡✉❡ ✈♦♥ σ̃2✳ ❲✐r ③❡✐❣❡♥✱ ❞❛ÿ σ̃2 ♥✐❝❤t ❡r✇❛rt✉♥❣str❡✉ ✐st✱ ❞❛❢ür ✐st ❛❜❡r
❞❡r ❦♦rr✐❣✐❡rt❡ ❙❝❤ät③❡r

σ2 =
1

n− r
|Y −Xβ|2 = n

n− r
σ̃2

❡r✇❛rt✉♥❣str❡✉✳
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❙❛t③ ✷✳✸✳✼✳ ❉❡r ❙❝❤ät③❡r σ2 ✐st ❡r✇❛rt✉♥❣str❡✉ ❢ür σ2.

❉❡r ❇❡✇❡✐s ❞❡s ❙❛t③❡s ✷✳✸✳✼ ❢♦❧❣t ❞❡♠ ❇❡✇❡✐s ❞❡s ❙❛t③❡s ✷✳✷✳✹✱ ✐♥ ❞❡♠ β̂ = (X⊤X)−1X⊤Y
✉♥❞ σ̂2 = 1

n−m |Y − Xβ|2 ✐♠ ❋❛❧❧ ❘❛♥❣(X) = m ❜❡tr❛❝❤t❡t ✇✉r❞❡♥✳ ❙♦♠✐t ✐st ❞✐❡
❆✉ss❛❣❡ ❞❡s ❙❛t③❡s ✷✳✷✳✹ ❡✐♥ ❙♣❡③✐❛❧❢❛❧❧ ❞❡s ❙❛t③❡s ✷✳✸✳✼✳ ❋ü❤r❡♥ ✇✐r ❞✐❡ ▼❛tr✐① D =
I −X(X⊤X)−X⊤ ❡✐♥✳



✾✹ ✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥

▲❡♠♠❛ ✷✳✸✳✸✳ ❋ür D ❣❡❧t❡♥ ❢♦❧❣❡♥❞❡ ❊✐❣❡♥s❝❤❛❢t❡♥✿

✶✳ D⊤ = D ✭❙②♠♠❡tr✐❡✮✱

✷✳ D2 = D ✭■❞❡♠♣♦t❡♥③✮✱

✸✳ DX = 0✱

✹✳ ❙♣✉r(D) = n− r.

❇❡✇❡✐s✳ ✶✳ ❊s ❣✐❧t✿

D⊤ =
(
I −X(X⊤X)−X⊤

)⊤
= I −X

(
(X⊤X)−

)⊤
X⊤

= I −X(X⊤X)−X⊤ = D,

✇❡✐❧
(
(X⊤X)−

)⊤
❛✉❝❤ ❡✐♥❡ ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡ ■♥✈❡rs❡ ✈♦♥ X⊤X ✐st ✭✈❡r❣❧❡✐❝❤❡ ▲❡♠✲

♠❛ ✷✳✸✳✷✱ ✶✳✮✮✳

✷✳ ❊s ❣✐❧t✿

D2 =
(
I −X(X⊤X)−X⊤

)2
= I − 2X(X⊤X)−X⊤ + X(X⊤X)−X⊤X︸ ︷︷ ︸

=X✭▲❡♠♠❛ ✷✳✸✳✷✱ ✷✳✮✮

(X⊤X)−X⊤

= I −X(X⊤X)−X⊤ = D.

✸✳ DX = X − X(X⊤X)−X⊤X︸ ︷︷ ︸
=X ✭▲❡♠♠❛ ✷✳✸✳✷✱ ✷✳✮✮

= X −X = 0✳

✹✳ ❊s ❣✐❧t✿

❙♣✉r(D) = ❙♣✉r(I)− ❙♣✉r
(
X(X⊤X)−X⊤

)
= n− ❙♣✉r

(
X(X⊤X)−X⊤

)
.

❱❡r✇❡♥❞❡♥ ✇✐r ❞✐❡ ❊✐❣❡♥s❝❤❛❢t ❞❡r s②♠♠❡tr✐s❝❤❡♥ ✐❞❡♠♣♦t❡♥t❡♥ ▼❛tr✐③❡♥ A ❛✉s
❞❡r ❧✐♥❡❛r❡♥ ❆❧❣❡❜r❛✱ ❞❛ÿ ❙♣✉r(A) = ❘❛♥❣(A)✳ ❉❛ X(X⊤X)−X⊤ s②♠♠❡tr✐s❝❤ ✉♥❞
✐❞❡♠♣♦t❡♥t ✐st✱ ❣❡♥ü❣t ❡s ③✉ ③❡✐❣❡♥✱ ❞❛ÿ ❘❛♥❣(X(X⊤X)−X⊤) = r✳ ◆❛❝❤ ▲❡♠♠❛
✷✳✸✳✷ ✷✳✮ ❣✐❧t✿

❘❛♥❣(X) = r = ❘❛♥❣(X(X⊤X)−X⊤X)

≤ min
{
❘❛♥❣(X(X⊤X)−X⊤), ❘❛♥❣(X)︸ ︷︷ ︸

=r

}

≤ ❘❛♥❣
(
X(X⊤X)−X⊤

)
≤ ❘❛♥❣(X) = r

=⇒ ❘❛♥❣
(
X(X⊤X)−X⊤

)
= r

=⇒ ❙♣✉r
(
X(X⊤X)−X⊤

)
= r.



✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥ ✾✺

❇❡✇❡✐s ❞❡s ❙❛t③❡s ✷✳✸✳✼✳ ▼✐t ❍✐❧❢❡ ❞❡s ▲❡♠♠❛s ✷✳✸✳✸ ❜❡❦♦♠♠t ♠❛♥

σ2 =
1

n− r

∣∣Y −Xβ
∣∣2 = 1

n− r

∣∣∣Y −X(X⊤X)−X⊤Y
∣∣∣
2
=

1

n− r

∣∣DY
∣∣2

=
1

n− r

∣∣∣DX︸︷︷︸
=0

β +Dε
∣∣∣
2
=

1

n− r
|Dε|2 = 1

n− r
ε⊤ D⊤D︸ ︷︷ ︸

=D2=D

ε =
1

n− r
ε⊤Dε.

❉❡s❤❛❧❜ ❣✐❧t✿

Eσ2 =
1

n− r
E

(
ε⊤Dε

)
=

1

n− r
E ❙♣✉r

(
ε⊤Dε

)
=

1

n− r
❙♣✉r

(
D · E

(
εε⊤︸︷︷︸
σ2I

))

=
σ2

n− r
· ❙♣✉r(D) = σ2 ♥❛❝❤ ▲❡♠♠❛ ✷✳✸✳✸✱ ✹✳✮✱ ✇❡✐❧ E εε⊤ = σ2I

✇❡❣❡♥ ε ∼ N(0, σ2I).

❙❛t③ ✷✳✸✳✽✳ ❊s ❣❡❧t❡♥ ❢♦❧❣❡♥❞❡ ❱❡rt❡✐❧✉♥❣s❡✐❣❡♥s❝❤❛❢t❡♥✿

✶✳ β ∼ N
(
(X⊤X)−X⊤Xβ, σ2(X⊤X)−(X⊤X)

(
(X⊤X)−

)⊤)
✱

✷✳ (n−r)σ2

σ2 ∼ χ2
n−r✱

✸✳ β ✉♥❞ σ2 s✐♥❞ ✉♥❛❜❤ä♥❣✐❣✳

❇❡✇❡✐s✳ ✶✳ ❊s ❣✐❧t✿

β = (X⊤X)−X⊤Y = (X⊤X)−X⊤(Xβ + ε) = (X⊤X)−X⊤Xβ︸ ︷︷ ︸
=µ

+(X⊤X)−X⊤
︸ ︷︷ ︸

=A

ε

✉♥❞ ♠✐t ❞❡r ❉❡✜♥✐t✐♦♥ ✈♦♥ N(·, ·) ❜❡❦♦♠♠t ♠❛♥

β ∼ N
(
µ, σ2AA⊤

)
= N

(
(X⊤X)−X⊤Xβ, σ2(X⊤X)−X⊤X((X⊤X)−)⊤

)

♠✐t AA⊤ = (X⊤X)−X⊤X((X⊤X)−)⊤

✷✳ ❊s ❣✐❧t σ2 = 1
n−rε

⊤Dε ❛✉s ❞❡♠ ❇❡✇❡✐s ❞❡s ❙❛t③❡s ✷✳✸✳✼✳ ❉❡s❤❛❧❜

(n− r)σ2

σ2
=
( ε
σ

)⊤

︸ ︷︷ ︸
∼N(0,I)

D
( ε
σ

)
✭❙❛t③ ✷✳✶✳✽✮∼ χ2

n−r.

✸✳ ❇❡tr❛❝❤t❡♥ ✇✐r Aε ✉♥❞ ε⊤Dε✳ ❊s ❣❡♥ü❣t ③✉ ③❡✐❣❡♥✱ ❞❛ÿ s✐❡ ✉♥❛❜❤ä♥❣✐❣ s✐♥❞✱ ✉♠
❞✐❡ ❯♥❛❜❤ä♥❣✐❣❦❡✐t ✈♦♥ β ✉♥❞ σ2 ③✉ ❜❡✇❡✐s❡♥✱ ✇❡✐❧ β = µ + Aε✱ σ2 = 1

n−rε
⊤Dε✳

❊s ❣✐❧t✿ A · σ2I ·D = 0✳ ◆❛❝❤ ❙❛t③ ✷✳✶✳✾ s✐♥❞ ❞❛♥♥ Aε ✉♥❞ ε⊤Dε ✉♥❛❜❤ä♥❣✐❣✳
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✷✳✸✳✺ ❍②♣♦t❤❡s❡♥t❡sts

❇❡tr❛❝❤t❡♥ ✇✐r ❞✐❡ ❍②♣♦t❤❡s❡♥ H0 : Hβ = d ✈s✳ H1 : Hβ 6= d✱ ✇♦❜❡✐ H ❡✐♥❡ (s ×m)✲
▼❛tr✐① ✭s ≤ m✮ ♠✐t ❘❛♥❣(H) = s ✐st✱ ✉♥❞ d ∈ R

s✳
■♠ ❙❛t③ ✷✳✷✳✶✵ ❤❛❜❡♥ ✇✐r ✐♠ ❋❛❧❧ ❘❛♥❣(X) = r = m ❢♦❧❣❡♥❞❡ ❚❡st❣röÿ❡ ❞❛❢ür ❜❡tr❛❝❤✲

t❡t✿

T =
(Hβ̂ − d)⊤(H(X⊤X)−1H⊤)−1(Hβ̂ − d)

sσ̂2

(H0)∼ Fs,n−m.

■♠ ❛❧❧❣❡♠❡✐♥❡♥ ❋❛❧❧ ❜❡tr❛❝❤t❡♥ ✇✐r

T =
(Hβ − d)⊤(H(X⊤X)−H⊤)−1(Hβ − d)

sσ2 . ✭✷✳✸✳✺✮

❲✐r ✇♦❧❧❡♥ ③❡✐❣❡♥✱ ❞❛ÿ T
(H0)∼ Fs,n−r✳ ❉❛♥♥ ✇✐r❞ H0 ✈❡r✇♦r❢❡♥✱ ❢❛❧❧s T > Fs,n−r,1−α✳ ❉✐❡s

✐st ❡✐♥ ❚❡st ③✉♠ ◆✐✈❡❛✉ α ∈ (0, 1)✳

❉❡✜♥✐t✐♦♥ ✷✳✸✳✸✳ ❉✐❡ ❍②♣♦t❤❡s❡ H0 : Hβ = d ❤❡✐ÿt t❡st❜❛r ✱ ❢❛❧❧s ❛❧❧❡ ❑♦♦r❞✐♥❛t❡♥ ❞❡s
❱❡❦t♦rs Hβ s❝❤ät③❜❛r❡ ❋✉♥❦t✐♦♥❡♥ s✐♥❞✳

❙❛t③ ✷✳✸✳✸ ❣✐❜t ❇❡❞✐♥❣✉♥❣❡♥ ❛♥ H ❛♥✱ ✉♥t❡r ❞❡♥❡♥ H0 : Hβ = d t❡st❜❛r ✐st✳ ❉✐❡s❡
✇❡r❞❡♥ ✐♠ ❢♦❧❣❡♥❞❡♠ ▲❡♠♠❛ ❢♦r♠✉❧✐❡rt✿

▲❡♠♠❛ ✷✳✸✳✹✳ ❉✐❡ ❍②♣♦t❤❡s❡ H0 : Hβ = d ✐st t❡st❜❛r ❣❡♥❛✉ ❞❛♥♥✱ ✇❡♥♥

✶✳ ∃ (s× n)✲▼❛tr✐① C : H = CX✱ ♦❞❡r

✷✳ H(X⊤X)−X⊤X = H✳

❲✐r ③❡✐❣❡♥✱ ❞❛ÿ ❞✐❡ ❚❡st❣röÿ❡ T ✐♥ ✭✷✳✸✳✺✮ ✇♦❤❧❞❡✜♥✐❡rt ✐st✱ ❞❛s ❤❡✐ÿt✱ ❞✐❡ (s × s)✲
▼❛tr✐① H(X⊤X)−H⊤ ♣♦s✐t✐✈ ❞❡✜♥✐t ✉♥❞ ❞❛♠✐t ✐♥✈❡rt✐❡r❜❛r ✐st✳ ❆✉s ❋♦❧❣❡r✉♥❣ ✷✳✸✳✶

❤❛❜❡♥ ✇✐r X⊤X = P−1

(
Ir 0
0 0

)
P−1 ❢ür ❡✐♥❡ (m×m)✲▼❛tr✐① P ✱ ❞✐❡ ✐♥✈❡rt✐❡r❜❛r ✉♥❞

s②♠♠❡tr✐s❝❤ ✐st✳ ❉❡s❤❛❧❜ ❣✐❧t

(X⊤X)− = P ·
(
Ir 0
0 Im−r

)
P = P · P,

❞❛s ❤❡✐ÿt✱ ❞❛ÿ ❡s ❡✐♥❡ ❡✐♥❞❡✉t✐❣❡ ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡ ■♥✈❡rs❡ ✈♦♥X⊤X ♠✐t ❞✐❡s❡r ❉❛rst❡❧❧✉♥❣
❣✐❜t✳ ❉❛r❛✉s ❢♦❧❣t✱ ❞❛ÿ ❞✐❡ (s× s)✲▼❛tr✐① HPPH⊤ = (PH⊤)⊤ ·PH⊤ ♣♦s✐t✐✈ ❞❡✜♥✐t ✐st✱
✇❡✐❧ ❘❛♥❣(PH⊤) = s✳ ❙❡✐ ♥✉♥ (X⊤X)− ❡✐♥❡ ❜❡❧✐❡❜✐❣❡ ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡ ■♥✈❡rs❡ ✈♦♥X⊤X✳
❉❛♥♥ ✐st ♠✐t ▲❡♠♠❛ ✷✳✸✳✹

H(X⊤X)−H⊤ = CX(X⊤X)−X⊤C⊤ = CXPPX⊤C⊤ = HPPH⊤,

❞❡♥♥X(X⊤X)−X⊤ ✐st ✐♥✈❛r✐❛♥t ❜❡③ü❣❧✐❝❤ ❞❡r ❲❛❤❧ ✈♦♥ (X⊤X)−✱ ❧❛✉t ❇❡✇❡✐s ❞❡s ❙❛t③❡s
✷✳✸✳✻✳ ❆❧s♦ ✐st H

(
X⊤X

)−
H⊤ ♣♦s✐t✐✈ ❞❡✜♥✐t ❢ür ❡✐♥❡ ❜❡❧✐❡❜✐❣❡ ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡ ■♥✈❡rs❡(

X⊤X
)−

✉♥❞ ❞✐❡ ❚❡st❣röÿ❡ T s♦♠✐t ✇♦❤❧❞❡✜♥✐❡rt✳



✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥ ✾✼

❙❛t③ ✷✳✸✳✾✳ ❋❛❧❧s H0 : Hβ = d t❡st❜❛r ✐st✱ ❞❛♥♥ ❣✐❧t T
(H0)∼ Fs,n−r✳

❇❡✇❡✐s✳ ➘❤♥❧✐❝❤✱ ✇✐❡ ✐♥ ❙❛t③ ✷✳✷✳✶✵ ❣✐❧t

Hβ − d = H(X⊤X)−X⊤(Xβ + ε)− d = H(X⊤X)−X⊤Xβ − d︸ ︷︷ ︸
=µ

+H(X⊤X)−X⊤
︸ ︷︷ ︸

=B

ε.

❩❡✐❣❡♥ ✇✐r✱ ❞❛ÿ µ
(H0)
= 0✳

µ
✭▲❡♠♠❛ ✷✳✸✳✹✮

= C · X(X⊤X)−X⊤X︸ ︷︷ ︸
=X ✭▲❡♠♠❛ ✷✳✸✳✷✱ ✷✳✮✮

·β − d = CXβ − d = Hβ − d
(H0)
= 0.

◆❛❝❤ ❙❛t③ ✷✳✸✳✽ s✐♥❞ (Hβ − d)⊤
(
H(X⊤X)−H⊤)−1 (

Hβ − d
)
✉♥❞ s · σ2 ✉♥❛❜❤ä♥❣✐❣✱

(n−r)σ2

σ2 ∼ χ2
n−r✳ ❆❧s♦ ❜❧❡✐❜t ♥✉r ♥♦❝❤ ③✉ ③❡✐❣❡♥✱ ❞❛ÿ

(
Hβ − d︸ ︷︷ ︸
=ε⊤B⊤

)⊤ (
H(X⊤X)−H⊤

)−1 (
Hβ − d︸ ︷︷ ︸

=Bε

)
(H0)∼ χ2

s.

❊s ❣✐❧t

ε⊤B⊤
(
H(X⊤X)−H⊤

)−1
Bε

= ε⊤X
(
(X⊤X)−

)⊤
H⊤

(
H(X⊤X)−H⊤

)−1
H(X⊤X)−X⊤

︸ ︷︷ ︸
A

ε

▼❛♥ ❦❛♥♥ ❧❡✐❝❤t ③❡✐❣❡♥✱ ❞❛ÿ A s②♠♠❡tr✐s❝❤✱ ✐❞❡♠♣♦t❡♥t ✉♥❞ ❘❛♥❣(A) = s ✐st✳ ❩❡✐❣❡♥
✇✐r ③✉♠ ❇❡✐s♣✐❡❧ ❞✐❡ ■❞❡♠♣♦t❡♥③✿

A2 = X
(
(X⊤X)−

)⊤
H⊤

(
H(X⊤X)−H⊤

)−1
H(X⊤X)−X⊤X︸ ︷︷ ︸
H ✭▲❡♠♠❛ ✷✳✸✳✹✱ ✷✳✮✮

(
(X⊤X)−

)T
H⊤·

·
(
H(X⊤X)−H⊤

)−1
H(X⊤X)−X⊤

= X
(
(X⊤X)−

)⊤
H⊤

(
H(X⊤X)−H⊤

)−1
H(X⊤X)−X⊤ = A,

✇❡✐❧
(
(X⊤X)−

)⊤
❛✉❝❤ ❡✐♥❡ ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡ ■♥✈❡rs❡ ✈♦♥ X⊤X ✐st ✭♥❛❝❤ ▲❡♠♠❛ ✷✳✸✳✷✮✳

❙♦♠✐t ❤ä♥❣t ❛✉❝❤H(X⊤X)−H⊤ = CX(X⊤X)−X⊤C⊤ ♥✐❝❤t ✈♦♥ ❞❡r ❲❛❤❧ ✈♦♥ (X⊤X)−

❛❜✱ ✈❣❧✳ ❞❡♥ ❇❡✇❡✐s ❞❡s ❙❛t③❡s ✷✳✸✳✻✳ ◆❛❝❤ ❙❛t③ ✷✳✶✳✽ ✐st ε⊤

σ A ε
σ ∼ χ2

s✱ ✇❡❣❡♥ ε ∼ N(0, σ2I)
✉♥❞ s♦♠✐t T

H0∼ Fs,n−r✳
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✷✳✸✳✻ ❑♦♥✜❞❡♥③❜❡r❡✐❝❤❡

➘❤♥❧✐❝❤ ✇✐❡ ✐♥ ❆❜s❝❤♥✐tt ✷✳✷✳✺ ✇❡r❞❡♥ ✇✐r ❑♦♥✜❞❡♥③❜❡r❡✐❝❤❡ ❢ür ✉♥t❡rs❝❤✐❡❞❧✐❝❤❡ ❋✉♥❦✲
t✐♦♥❡♥ ✈♦♠ P❛r❛♠❡t❡r✈❡❦t♦r β ❛♥❣❡❜❡♥✳ ❆✉s ❞❡♠ ❙❛t③ ✷✳✸✳✾ ❡r❣✐❜t s✐❝❤ ✉♥♠✐tt❡❧❜❛r
❢♦❧❣❡♥❞❡r ❑♦♥✜❞❡♥③❜❡r❡✐❝❤ ③✉♠ ◆✐✈❡❛✉ 1− α ∈ (0, 1)✿

❋♦❧❣❡r✉♥❣ ✷✳✸✳✶✳ ❙❡✐ Y = Xβ + ε ❡✐♥ ♠✉❧t✐✈❛r✐❛t❡s ❘❡❣r❡ss✐♦♥s♠♦❞❡❧❧ ♠✐t ❘❛♥❣(X) =
r < m✱ H ❡✐♥❡ (s × m)✲▼❛tr✐① ♠✐t ❘❛♥❣(H) = s✱ s ∈ {1, . . . ,m} ✉♥❞ H0 : Hβ = d
t❡st❜❛r ∀d ∈ R

s✳ ❉❛♥♥ ✐st

{
d ∈ R

s :

(
Hβ − d

)⊤ (
H(X⊤X)−H⊤)−1 (

Hβ − d
)

s · σ2 ≤ Fs, n−r, 1−α

}

❡✐♥ ❑♦♥✜❞❡♥③❜❡r❡✐❝❤ ❢ür Hβ ③✉♠ ◆✐✈❡❛✉ 1− α✳

❋♦❧❣❡r✉♥❣ ✷✳✸✳✷✳ ❙❡✐ h⊤β ❡✐♥❡ s❝❤ät③❜❛r❡ ❧✐♥❡❛r❡ ❋✉♥❦t✐♦♥ ✈♦♥ β✱ h ∈ R
m✳ ❉❛♥♥ ✐st

(
h⊤β − tn−r, 1−α/2 · σ

√
h⊤(X⊤X)−h, h⊤β + tn−r, 1−α/2 · σ

√
h⊤(X⊤X)−h

)

❡✐♥ ❑♦♥✜❞❡♥③✐♥t❡r✈❛❧❧ ❢ür h⊤β ③✉♠ ◆✐✈❡❛✉ 1− α✳

❇❡✇❡✐s✳ ❙❡t③❡♥ ✇✐r s = 1 ✉♥❞ H = h⊤✳ ❆✉s ❙❛t③ ✷✳✸✳✾ ❢♦❧❣t

T =

(
h⊤β − d

)⊤ (
h⊤(X⊤X)−h

)−1 (
h⊤β − d

)

σ2 =

(
h⊤β − d

) (
h⊤β − d

)

σ2 (h⊤(X⊤X)−h)

=

(
h⊤β − d

)2

σ2 (h⊤(X⊤X)−h)
∼ F1, n−r

✉♥t❡r ❞❡r ❱♦r❛✉ss❡t③✉♥❣ h⊤β = d✱ ✇❡✐❧ h⊤
(
X⊤X

)−
h ❡✐♥❞✐♠❡♥s✐♦♥❛❧ ✭❡✐♥❡ ❩❛❤❧✮ ✐st✳

❉❡s❤❛❧❜ ❣✐❧t

√
T =

h⊤β − h⊤β

σ
√
h⊤(X⊤X)−h

∼ tn−r

✉♥❞ s♦♠✐t

P

(
−tn−r,1−α/2 ≤

√
T ≤ tn−r,1−α/2

)
= 1− α.

❉❛r❛✉s ❢♦❧❣t ❞❛s ♦❜✐❣❡ ❑♦♥✜❞❡♥③✐♥t❡r✈❛❧❧✳

▼❛♥ ❦❛♥♥ s♦❣❛r ❡✐♥❡ stär❦❡r❡ ❱❡rs✐♦♥ ✈♦♥ ✷✳✸✳✷ ❜❡✇❡✐s❡♥✱ ❞✐❡ ❢ür ❛❧❧❡ h ❛✉s ❡✐♥❡♠
❧✐♥❡❛r❡♥ ❯♥t❡rr❛✉♠ ❣✐❧t✿
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❙❛t③ ✷✳✸✳✶✵ ✭❑♦♥✜❞❡♥③❜❛♥❞ ✈♦♥ ❙❝❤❡✛é✮✳ ❙❡✐ H = (h1, . . . , hs)
⊤✱ h1, . . . , hs ∈ R

m✱
1 ≤ s ≤ m ✉♥❞ H0 : Hβ = d t❡st❜❛r ∀d ∈ R

s✳ ❙❡✐ ❘❛♥❣(H) = s ✉♥❞ L =< h1, . . . , hs >
❞❡r ❧✐♥❡❛r❡ ❯♥t❡rr❛✉♠✱ ❞❡r ✈♦♥ ❞❡♥ ❱❡❦t♦r❡♥ h1, . . . , hs ❛✉❢❣❡s♣❛♥♥t ✇✐r❞✳ ❉❛♥♥ ❣✐❧t✿

P

(
max
h∈L

{ (
h⊤β − h⊤β

)2

σ2h⊤(X⊤X)−h

}
≤ sFs, n−r, 1−α

)
= 1− α

❙♦♠✐t ✐st
[
h⊤β −

√
sFs, n−r, 1−α · σ

√
h⊤(X⊤X)−h, h⊤β +

√
sFs, n−r, 1−α · σ

√
h⊤(X⊤X)−h

]

❡✐♥ ✭❣❧❡✐❝❤♠äÿ✐❣❡s ❜③❣❧✳ h ∈ L✮ ❑♦♥✜❞❡♥③✐♥t❡r✈❛❧❧ ❢ür h⊤β✳

❇❡✇❡✐s✳ ❆✉s ❞❡♠ ❙❛t③ ✷✳✸✳✾ ❢♦❧❣t ∀α ∈ (0, 1)✿

P

( (
Hβ −Hβ

)⊤ (
H(X⊤X)−H⊤

)−1 (
Hβ −Hβ

)

︸ ︷︷ ︸
T1

≤ s · σ2Fs, n−r, 1−α

)
= 1− α.

❋❛❧❧s ✇✐r ③❡✐❣❡♥ ❦ö♥♥❡♥✱ ❞❛ÿ

T1 = max
x∈Rs, x 6=0

{ (
x⊤
(
Hβ −Hβ

))2

x⊤ (H(X⊤X)−H⊤)x

}
, ✭✷✳✸✳✻✮

❞❛♥♥ ✐st ❞❡r ❙❛t③ ❜❡✇✐❡s❡♥✱ ❞❡♥♥

1− α = P

(
T1 ≤ sσ2Fs, n−r, 1−α︸ ︷︷ ︸

t

)
= P

(
max

x∈Rs, x 6=0

{ (
x⊤
(
Hβ −Hβ

))2

x⊤ (H(X⊤X)−H⊤)x

}
≤ t

)

= P

(
max

x∈Rs, x 6=0

{(
(H⊤x)⊤β − (H⊤x)⊤β

)2

(H⊤x)⊤(X⊤X)−(H⊤x)

}
≤ t

)
✉♥❞ ✇❡✐❧ H⊤x = h ∈ L

= P

(
max
h∈L

{(
h⊤β − h⊤β

)2

h⊤(X⊤X)−h

}
≤ sσ2Fs, n−r, 1−α

)
.

❆❧s♦✱ ③❡✐❣❡♥ ✇✐r ❞✐❡ ●ü❧t✐❣❦❡✐t ✈♦♥ ✭✷✳✸✳✻✮✳ ❊s ❣❡♥ü❣t ③✉ ③❡✐❣❡♥✱ ❞❛ÿ T1 ❞✐❡ ♦❜❡r❡ ❙❝❤r❛♥❦❡
✈♦♥

(
x⊤(Hβ −Hβ)

)2

x⊤ (H(X⊤X)−H⊤)x

❞❛rst❡❧❧t✱ ❞✐❡ ❛✉❝❤ ❛♥❣❡♥♦♠♠❡♥ ✇✐r❞✳ ❉❛ H(X⊤X)−H⊤ ♣♦s✐t✐✈ ❞❡✜♥✐t ✐st ✉♥❞ ✐♥✲
✈❡rt✐❡r❜❛r✱ ❡①✐st✐❡rt ❡✐♥❡ ✐♥✈❡rt✐❡r❜❛r❡ (s × s)✲▼❛tr✐① B ♠✐t ❞❡r ❊✐❣❡♥s❝❤❛❢t BB⊤ =
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H(X⊤X)−H⊤✳ ❉❛♥♥ ❣✐❧t
(
x⊤(Hβ −Hβ)

)2
=
(

x⊤B︸︷︷︸
(B⊤x)⊤

·B−1(Hβ −Hβ)
)2

≤ |B⊤x|2 · |B−1(Hβ −Hβ)|2 ✭✇❡❣❡♥ ❞❡r ❯♥❣❧❡✐❝❤✉♥❣ ✈♦♥ ❈❛✉❝❤②✲❙❝❤✇❛r③✮

= x⊤BB⊤x
(
Hβ −Hβ

)⊤ · (B−1)⊤B−1

︸ ︷︷ ︸
= (B⊤)−1B−1 = (BB⊤)−1

(Hβ −Hβ)

= x⊤H(X⊤X)−H⊤x ·
(
Hβ −Hβ

)⊤ (
H(X⊤X)−H⊤

)−1
(Hβ −Hβ).

❙♦♠✐t ❣✐❧t
(
x⊤(Hβ −Hβ)

)2

x⊤ (H(X⊤X)−H⊤)x
≤
(
Hβ −Hβ

)⊤ (
H(X⊤X)−H⊤

)−1 (
Hβ −Hβ

)
= T1.

▼❛♥ ❦❛♥♥ ❧❡✐❝❤t ♣rü❢❡♥✱ ❞❛ÿ ❞✐❡s❡ ❙❝❤r❛♥❦❡ ❢ür x =
(
H(X⊤X)−H⊤)−1 (

Hβ −Hβ
)

❛♥❣❡♥♦♠♠❡♥ ✇✐r❞✳

✷✳✸✳✼ ❊✐♥❢ü❤r✉♥❣ ✐♥ ❞✐❡ ❱❛r✐❛♥③❛♥❛❧②s❡

■♥ ❞✐❡s❡♠ ❆❜s❝❤♥✐tt ❣❡❜❡♥ ✇✐r ❡✐♥ ❇❡✐s♣✐❡❧ ❢ür ❞✐❡ ❱❡r✇❡♥❞✉♥❣ ❧✐♥❡❛r❡r ▼♦❞❡❧❧❡ ♠✐t
❉❡s✐❣♥✲▼❛tr✐①✱ ❞✐❡ ❦❡✐♥❡♥ ✈♦❧❧❡♥ ❘❛♥❣ ❜❡s✐t③t✳ ❉❛❜❡✐ ❤❛♥❞❡❧t ❡s s✐❝❤ ✉♠ ❞✐❡ ❆✉ss❛❣❡ ❞❡r
❱❛r✐❛❜✐❧✐tät ❞❡r ❊r✇❛rt✉♥❣s✇❡rt❡ ✐♥ ❞❡r ❙t✐❝❤♣r♦❜❡ Y = (Y1, . . . , Yn)

⊤✱ ❞✐❡ ❛✉❢ ❡♥❣❧✐s❝❤
❛♥❛❧②s✐s ♦❢ ✈❛r✐❛♥❝❡✱ ❦✉r③ ❆◆❖❱❆✱ ❤❡✐ÿt✳ ❙♣ät❡r ✇❡r❞❡♥ ✇✐r ❛✉❝❤ ❞❡♥s❡❧❜❡♥ ❇❡❣r✐✛
❱❛r✐❛♥③❛♥❛❧②s❡ ❞❛❢ür ✈❡r✇❡♥❞❡♥✳
❇❡tr❛❝❤t❡♥ ✇✐r ③✉♥ä❝❤st ❞✐❡ ❡✐♥❢❛❦t♦r✐❡❧❧❡ ❱❛r✐❛♥③❛♥❛❧②s❡✱ ❜❡✐ ❞❡r ♠❛♥ ❞❛✈♦♥ ❛✉s✲

❣❡❤t✱ ❞❛ÿ ❞✐❡ ❙t✐❝❤♣r♦❜❡ ✭Y1, . . . , Yn) ✐♥ k ❤♦♠♦❣❡♥❡ ❚❡✐❧❦❧❛ss❡♥ (Yij , j = 1, . . . , ni)✱
i = 1, . . . , k ③❡r❧❡❣❜❛r ✐st✱ ♠✐t ❞❡♥ ❊✐❣❡♥s❝❤❛❢t❡♥✿

✶✳ E (Yij) = µi = µ+ αi, j = 1, . . . , ni, i = 1, . . . , k.

✷✳ ni > 1, i = 1, . . . , k✱
k∑

i=1
ni = n✱

k∑
i=1

niαi = 0✳

❉❛❜❡✐ ✐st µ ❡✐♥ ❋❛❦t♦r✱ ❞❡r ❛❧❧❡♥ ❑❧❛ss❡♥ ❣❡♠❡✐♥s❛♠ ✐st✱ ✉♥❞ αi ✈❡r❦ör♣❡rt ❞✐❡ ❦❧❛s✲
s❡♥s♣❡③✐✜s❝❤❡♥ ❉✐✛❡r❡♥③❡♥ ③✇✐s❝❤❡♥ ❞❡♥ ❊r✇❛rt✉♥❣s✇❡rt❡♥ µ1, . . . , µk✳ ❉✐❡ ◆✉♠♠❡r
i = 1, . . . , k ❞❡r ❑❧❛ss❡♥ ✇✐r❞ ❛❧s ❙t✉❢❡ ❡✐♥❡s ❊✐♥✢✉ss❢❛❦t♦rs ✭③✉♠ ❇❡✐s♣✐❡❧ ❞✐❡ ❉♦s✐s
❡✐♥❡s ▼❡❞✐❦❛♠❡♥ts ✐♥ ❡✐♥❡r ❦❧✐♥✐s❝❤❡♥ ❙t✉❞✐❡✮ ✉♥❞ αi✱ i = 1, . . . , k ❛❧s ❊✛❡❦t ❞❡r i✲

t❡♥ ❙t✉❢❡ ❣❡❞❡✉t❡t✳ ❉✐❡ ◆❡❜❡♥❜❡❞✐♥❣✉♥❣
k∑

i=1
niαi = 0 ❜❡✇✐r❦t✱ ❞❛ÿ ❞✐❡ ❯♠r❡❝❤♥✉♥❣

(µ1, . . . , µk) ←→ (µ, α1, . . . , αk) ❡✐♥❞❡✉t✐❣ ✇✐r❞ ✉♥❞ ❞❛ÿ µ = 1
n

k∑
i=1

ni∑
j=1

EYij ✳ ❊s ✇✐r❞

✈♦r❛✉s❣❡s❡t③t✱ ❞❛ÿ µi ♠✐t ✉♥❦♦rr❡❧✐❡rt❡♥ ▼❡ÿ❢❡❤❧❡r♥ εij ❣❡♠❡ss❡♥ ✇❡r❞❡♥ ❦❛♥♥✱ ❞❛s ❤❡✐ÿt

Yij = µi + εij = µ+ αi + εij , i = 1, . . . , k, j = 1, . . . , ni ✭✷✳✸✳✼✮

E εij = 0, ❱❛r εij = σ2, εij ✉♥❦♦rr❡❧✐❡rt✱ i = 1, . . . , k, j = 1, . . . , ni. ✭✷✳✸✳✽✮



✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥ ✶✵✶

❊s s♦❧❧ ❞✐❡ ❦❧❛ss✐s❝❤❡ ❆◆❖❱❆✲❍②♣♦t❤❡s❡ ❣❡t❡st❡t ✇❡r❞❡♥✱ ❞❛ÿ ❦❡✐♥❡ ❱❛r✐❛❜✐❧✐tät ✐♥ ❞❡♥
❊r✇❛rt✉♥❣s✇❡rt❡♥ µi ❛✉✣♥❞❜❛r ✐st✿

H0 : µ1 = µ2 = . . . = µk,

✇❛s ❜❡❞❡✉t❡t✱ ❞❛ÿ

H0 : α1 = α2 = . . . = αk.

❆✉s ❞❡r ◆❡❜❡♥❜❡❞✐♥❣✉♥❣

k∑

i=1

niαi = 0.

❢♦❧❣t✿ αi = 0

❉✐❡ Pr♦❜❧❡♠st❡❧❧✉♥❣ ✭✷✳✸✳✼✮ ❦❛♥♥ ✐♥ ❞❡r ❋♦r♠ ❞❡r ♠✉❧t✐✈❛r✐❛t❡♥ ❧✐♥❡❛r❡♥ ❘❡❣r❡ss✐♦♥
❢♦❧❣❡♥❞❡r♠❛ÿ❡♥ ✉♠❣❡s❝❤r✐❡❜❡♥ ✇❡r❞❡♥✿

Y = Xβ + ε, ✇♦❜❡✐ Y = (Y11, . . . , Y1n1 , Y21, . . . , Y2n2 , . . . , Yk1, . . . , Yknk
)⊤ ,

β = (µ, α1, . . . , αk)
⊤,

ε = (ε11, . . . , ε1n1 , . . . , εk1, . . . , εknk
)⊤ ,

X =




1 1 0 . . . . . . 0
1 1 0 . . . . . . 0
✳✳✳
1 1 0 . . . . . . 0
1 0 1 0 . . . 0
✳✳✳
1 0 1 0 . . . 0
✳✳✳
1 0 . . . . . . 0 1
✳✳✳
1 0 . . . . . . 0 1








n1





n2

✳✳✳}
nk

❉✐❡ (n × (k + 1))✲▼❛tr✐① X ❤❛t ❞❡♥ ❘❛♥❣ k < m = k + 1✱ s♦♠✐t ✐st ❞✐❡ ❚❤❡♦r✐❡ ✈♦♥
❆❜s❝❤♥✐tt ✷✳✸ ❛✉❢ ❞✐❡s❡s ▼♦❞❡❧❧ ❦♦♠♣❧❡tt ❛♥✇❡♥❞❜❛r✳

Ü❜✉♥❣s❛✉❢❣❛❜❡ ✷✳✸✳✶✳ ❩❡✐❣❡♥ ❙✐❡✱ ❞❛ss ❞✐❡ ❆◆❖❱❆✲❍②♣♦t❤❡s❡

H0 : αi = 0, ∀i = 1, . . . , k

♥✐❝❤t t❡st❜❛r ✐st✦



✶✵✷ ✷ ▲✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥

❯♠ ❡✐♥❡ äq✉✐✈❛❧❡♥t❡ t❡st❜❛r❡ ❍②♣♦t❤❡s❡ ❛✉❢③✉st❡❧❧❡♥✱ ❜❡♥✉t③t ♠❛♥

H0 : α1 − α2 = 0, . . . , α1 − αk = 0 ❜③✇✳ H0 : Hβ = 0

❢ür ❞✐❡ (k − 1)× (k + 1)✲▼❛tr✐①

H =




0 1 −1 0 . . . 0
0 1 0 −1 . . . 0
✳✳✳
0 1 0 . . . −1 0
0 1 0 . . . 0 −1




.

✭❩❡✐❣❡♥ ❙✐❡ ❡s✦✮

❇❡✐ ❞❡r ③✇❡✐❢❛❦t♦r✐❡❧❧❡♥ ❱❛r✐❛♥③❛♥❛❧②s❡ ✇✐r❞ ❞✐❡ ❙t✐❝❤♣r♦❜❡ (Y1, . . . , Yn) ✐♥ ❆❜❤ä♥❣✐❣✲
❦❡✐t ✈♦♥ ✷ ❋❛❦t♦r❡♥ ✐♥ k1 · k2 ❤♦♠♦❣❡♥❡ ●r✉♣♣❡♥ ❛✉❢❣❡t❡✐❧t✿

Yi1i2j , j = 1, . . . , ni1i2

❢ür i1 = 1, . . . , k1✱ i2 = 1, . . . , k2✱ s♦❞❛ÿ

k1∑

i1=1

k2∑

i2=1

ni1i2 = n.

❍✐❡r ✇✐r❞ ❛♥❣❡♥♦♠♠❡♥✱ ❞❛ÿ

EYi1i2j = µi1i2 = µ+ αi1 + βi2 + γi1i2 , i1 = 1, . . . , k1, i2 = 1, . . . , k2,

s♦♠✐t st❡❧❧t ♠❛♥ ❢♦❧❣❡♥❞❡s ❧✐♥❡❛r❡s ▼♦❞❡❧❧ ❛✉❢✿

Yi1i2j = µi1i2 + εi1i2j = µ+ αi1 + βi2 + γi1i2 + εi1i2j ,

j = 1, . . . , ni1i2 , i1 = 1, . . . , k1, i2 = 1, . . . , k2.

Ü❜✉♥❣s❛✉❢❣❛❜❡ ✷✳✸✳✷✳ ❙❝❤r❡✐❜❡♥ ❙✐❡ ❞✐❡ ❉❡s✐❣♥✲▼❛tr✐① X ❢ür ❞✐❡s❡♥ ❋❛❧❧ ❡①♣❧✐③✐t ❛✉❢✦
❩❡✐❣❡♥ ❙✐❡✱ ❞❛ÿ s✐❡ ✇✐❡❞❡r ❦❡✐♥❡♥ ✈♦❧❧❡♥ ❘❛♥❣ ❜❡s✐t③t✳

✯



✸ ❱❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡ ▼♦❞❡❧❧❡

❊✐♥❡ ❛♥❞❡r❡ ❑❧❛ss❡ ✈♦♥ ❘❡❣r❡ss✐♦♥s♠♦❞❡❧❧❡♥ ❡r❧❛✉❜t ❡✐♥❡rs❡✐ts ❡✐♥❡♥ ❜❡❧✐❡❜✐❣❡♥ ❢✉♥❦t✐♦✲
♥❡❧❧❡♥ ❩✉s❛♠♠❡♥❤❛♥❣ g ③✇✐s❝❤❡♥ ❞❡♠▼✐tt❡❧✇❡rt ❞❡r ❩✐❡❧✈❛r✐❛❜❧❡♥ EYi ✉♥❞ ❞❡♠ ❧✐♥❡❛r❡♥
❚❡✐❧ Xβ✱ ❞❡r ❛✉s ❧✐♥❡❛r❡♥ ❑♦♠❜✐♥❛t✐♦♥❡♥ ❞❡r ❊✐♥trä❣❡ ❞❡r ❉❡s✐❣♥♠❛tr✐① X = (xij) ✉♥❞
❞❡s P❛r❛♠❡t❡r✈❡❦t♦rs β = (β1, . . . , βm)⊤ ❜❡st❡❤t❀ ❛♥❞❡r❡rs❡✐ts ❧ässt s✐❡ ❛♥❞❡r❡ ❱❡rt❡✐✲
❧✉♥❣❡♥ ✈♦♥ Yi ③✉✱ ❞✐❡ ♥✐❝❤t ♥♦t✇❡♥❞✐❣❡r✇❡✐s❡ ❛✉❢ ❞❡r ◆♦r♠❛❧✈❡rt❡✐❧✉♥❣ ✭✉♥❞ ❋✉♥❦t✐♦♥❡♥
❞❛✈♦♥✮ ❜❛s✐❡r❡♥✳ ❙♦ ✐st ❡s ♠ö❣❧✐❝❤✱ ❉❛t❡♥ Yi ③✉ ❜❡tr❛❝❤t❡♥✱ ❞✐❡ ❡✐♥❡ ❡♥❞❧✐❝❤❡ ❆♥③❛❤❧ ✈♦♥
❆✉s♣rä❣✉♥❣❡♥ ❤❛❜❡♥ ✭③✳❇✳ ✒❏❛✏ ✉♥❞ ✒◆❡✐♥✏ ✐♥ ö❦♦♥♦♠✐s❝❤❡♥ ▼❡✐♥✉♥❣s✉♠❢r❛❣❡♥✮✳ ❉✐❡
❑❧❛ss❡ ❛❧❧❡r ♠ö❣❧✐❝❤❡♥ ❱❡rt❡✐❧✉♥❣❡♥ ✇✐r❞ ❞✉r❝❤ ❞✐❡ s♦❣✳ ❊①♣♦♥❡♥t✐❛❧❢❛♠✐❧✐❡ ❜❡❣r❡♥③t✱ ❞✐❡
✇✐r ✐♥ ❑ür③❡ ❡✐♥❢ü❤r❡♥ ✇❡r❞❡♥✳
❙❡✐ Y1, . . . , Yn ❡✐♥❡ ❩✉❢❛❧❧sst✐❝❤♣r♦❜❡ ❞❡r ❩✐❡❧✈❛r✐❛❜❧❡♥ ❞❡s ▼♦❞❡❧❧s ✉♥❞ s❡✐

X = (xij) i=1,...,n
j=1,...,m

❞✐❡ ❉❡s✐❣♥♠❛tr✐① ❞❡r ❆✉s❣❛♥❣s✈❛r✐❛❜❧❡♥✱ ❞✐❡ ❤✐❡r ♥✐❝❤t ③✉❢ä❧❧✐❣ s✐♥❞✳

❉❡✜♥✐t✐♦♥ ✸✳✵✳✹✳ ❉❛s ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡ ▼♦❞❡❧❧ ✐st ❣❡❣❡❜❡♥ ❞✉r❝❤

(
g(EY1), . . . , g(EYn)

)⊤
= Xβ ♠✐t β = (β1, . . . , βm)⊤ , ✭✸✳✵✳✶✮

✇♦❜❡✐ g : G ⊂ R → R ❞✐❡ s♦❣✳ ▲✐♥❦❢✉♥❦t✐♦♥ ♠✐t ❞❡♠ ❉❡✜♥✐t✐♦♥s❜❡r❡✐❝❤ G ✐st✳ ❉❡r
❘❛♥❣ (X) = m✳

❯♥t❡r ❞❡r ❆♥♥❛❤♠❡✱ ❞❛ss g ❡①♣❧✐③✐t ❜❡❦❛♥♥t ✐st✱ s♦❧❧ ❤✐❡r ❞❡r P❛r❛♠❡t❡r✈❡❦t♦r β ❛✉s
(Y1, . . . , Yn) ❣❡s❝❤ät③t ✇❡r❞❡♥✳ ❲✐r s❡t③❡♥ ✈♦r❛✉s✱ ❞❛ss Yi , i = 1, . . . , n✱ ✉♥❛❜❤ä♥❣✐❣✱
❛❜❡r ♥✐❝❤t ✉♥❜❡❞✐♥❣t ✐❞❡♥t✐s❝❤ ✈❡rt❡✐❧t s✐♥❞✳ ■❤r❡ ❱❡rt❡✐❧✉♥❣ ❣❡❤ört ❥❡❞♦❝❤ ③✉r ❢♦❧❣❡♥❞❡♥
❑❧❛ss❡ ✈♦♥ ❱❡rt❡✐❧✉♥❣❡♥✿

✸✳✶ ❊①♣♦♥❡♥t✐❛❧❢❛♠✐❧✐❡ ✈♦♥ ❱❡rt❡✐❧✉♥❣❡♥

❉❡✜♥✐t✐♦♥ ✸✳✶✳✶✳ ❉✐❡ ❱❡rt❡✐❧✉♥❣ ❡✐♥❡r ❩✉❢❛❧❧s✈❛r✐❛❜❧❡ Y ❣❡❤ört ③✉r ❊①♣♦♥❡♥t✐❛❧❢❛♠✐❧✐❡✱
❢❛❧❧s ❡s ❋✉♥❦t✐♦♥❡♥ a : R× R+ → R ✉♥❞ b : Θ→ R ❣✐❜t✱ ❢ür ❞✐❡

• ✐♠ ❛❜s♦❧✉tst❡t✐❣❡♥ ❋❛❧❧ ❞✐❡ ❉✐❝❤t❡ ✈♦♥ Y ❣❡❣❡❜❡♥ ✐st ❞✉r❝❤

fθ(y) = exp
{ 1

τ2
(
yθ + a(y, τ)− b(θ)

)}
, y ∈ R ✭✸✳✶✳✶✮

✶✵✸



✶✵✹ ✸ ❱❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡ ▼♦❞❡❧❧❡

• ✐♠ ❞✐s❦r❡t❡♥ ❋❛❧❧ ❞✐❡ ❩ä❤❧❞✐❝❤t❡ ✈♦♥ Y ❣❡❣❡❜❡♥ ✐st ❞✉r❝❤

Pθ(Y = y) = exp
{ 1

τ2
(
yθ + a(y, τ)− b(θ)

)}
, y ∈ C , ✭✸✳✶✳✷✮

✇♦❜❡✐ C ❞❡r ✭❤ö❝❤st❡♥s✮ ❛❜③ä❤❧❜❛r❡❲❡rt❡❜❡r❡✐❝❤ ✈♦♥ Y ✱ τ2 ❞❡r s♦❣✳ ❙tör♣❛r❛♠❡t❡r✱
θ ∈ Θ ⊂ R ❡✐♥ P❛r❛♠❡t❡r ✉♥❞

Θ =
{
θ ∈ R :

∫

R

exp
{
yθ+a(y,τ)

τ2

}
dy <∞

}

❜③✇✳ ✐♠ ❞✐s❦r❡t❡♥ ❋❛❧❧✿

Θ =
{
θ ∈ R :

∑

y∈C
exp

{
yθ+a(y,τ)

τ2

}
<∞

}

❞❡r ♥❛tür❧✐❝❤❡ P❛r❛♠❡t❡rr❛✉♠ ✐st✱ ❞❡r ♠✐♥❞❡st❡♥s ③✇❡✐ ✈❡rs❝❤✐❡❞❡♥❡ ❊❧❡♠❡♥t❡ ❡♥t✲
❤ä❧t✳

▲❡♠♠❛ ✸✳✶✳✶✳ Θ ✐st ❡✐♥ ■♥t❡r✈❛❧❧✳

❇❡✇❡✐s✳ ❩❡✐❣❡♥ ✇✐r✱ ❞❛ss Θ ⊂ R ❦♦♥✈❡① ✐st✳ ❉❛♥♥ ✐st ❡s ♥♦t✇❡♥❞✐❣❡r✇❡✐s❡ ❡✐♥ ✭♠ö❣❧✐❝❤❡r✲
✇❡✐s❡ ✉♥❞❡♥❞❧✐❝❤❡s✮ ■♥t❡r✈❛❧❧✳ ❋ür ❜❡❧✐❡❜✐❣❡ θ1✱ θ2 ∈ Θ ✭♠✐♥❞❡st❡♥s ❡✐♥ s♦❧❝❤❡s P❛❛r ❣✐❜t
❡s ♥❛❝❤ ❉❡✜♥✐t✐♦♥ ✸✳✶✳✶✮ ③❡✐❣❡♥ ✇✐r✱ ❞❛ss αθ1+(1−α)θ2 ∈ Θ ❢ür ❛❧❧❡ α ∈ (0, 1)✳ ◆❡❤♠❡♥
✇✐r ❛♥✱ ❞❛ss ❞✐❡ ❱❡rt❡✐❧✉♥❣ ✈♦♥ Y ❛❜s♦❧✉t st❡t✐❣ ✐st✳ ❉❛ θi ∈ Θ✱ ❡s ❣✐❧t

∫

R

exp

{
1

τ2

(
yθi + a(y, τ)

)}
dy <∞, i = 1, 2.

❉✉r❝❤ ❞✐❡ ♦✛❡♥s✐❝❤t❧✐❝❤❡ ❯♥❣❧❡✐❝❤✉♥❣

αx1 + (1− α)x2 ≤ max{x1, x2}, x1, x2 ∈ R α ∈ (0, 1)

❡r❤❛❧t❡♥ ✇✐r

exp

{
1

τ2

(
y
(
αθ1 + (1− α)θ2

)
+ a(y, τ)

)}

= exp

{
α
1

τ2

(
yθ1 + a(y, τ)

)
+ (1− α)

1

τ2

(
yθ2 + a(y, τ)

)}

≤ max
i=1,2

exp

{
1

τ2

(
yθi + a(y, τ)

)}
≤ exp

{
1

τ2

(
yθ1 + a(y, τ)

)}
+ exp

{
1

τ2

(
yθ2 + a(y, τ)

)}
,

s♦ ❞❛ss

∫

R

exp

{
1

τ2

(
y
(
αθ1 + (1− α)θ2

)
+ a(y, τ)

)}
dy ≤

2∑

i=1

∫

R

exp

{
1

τ2

(
yθi + a(y, τ)

)}
dy <∞
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♥❛❝❤ ❱♦r❛✉ss❡t③✉♥❣❡♥ ❞❡s ▲❡♠♠❛s✳

⇒ αθ1 + (1− α)θ2 ∈ Θ,

✉♥❞ Θ ✐st ❡✐♥ ■♥t❡r✈❛❧❧✳

❇❡✐s♣✐❡❧ ✸✳✶✳✶✳ ❲❡❧❝❤❡ ❱❡rt❡✐❧✉♥❣❡♥ ❣❡❤ör❡♥ ③✉r ❊①♣♦♥❡♥t✐❛❧❢❛♠✐❧✐❡❄

✶✳ ◆♦r♠❛❧✈❡rt❡✐❧✉♥❣✿ ❋❛❧❧s Y ∼ N (µ, σ2)✱ ❞❛♥♥ ✐st ❞❡r ❊r✇❛rt✉♥❣s✇❡rt µ ❞❡r ✉♥s
✐♥t❡r❡ss✐❡r❡♥❞❡ P❛r❛♠❡t❡r✱ σ2 ✐st ❞❛❣❡❣❡♥ ❞❡r ❙tör♣❛r❛♠❡t❡r✳ ❊s ❣✐❧t✿

fµ(y) =
1√
2πσ2

· e−
(y−µ)2

2σ2

= exp

{
−1

2 log(2πσ
2)− 1

2

(
y2

σ2 − 2yµ
σ2 + µ2

σ2

)}

= exp

{
1
σ2

(
yµ− y2

2 −
(
µ2

2 + σ2

2 log(2πσ2)
))}

,

s♦ ❞❛ss

θ = µ , τ = σ , a(y, τ) = −y2

2
− σ2

2
log(2πσ2) ✉♥❞ b(µ) = b(θ) =

µ2

2
.

✷✳ ❇❡r♥♦✉❧❧✐✲❱❡rt❡✐❧✉♥❣✿ Y ∼ ❇❡r♥♦✉❧❧✐✭p✮✱ p ∈ [0; 1] .

❙✐❡ ✇✐r❞ ❡t✇❛ ✐♠ ❋❛❧❧❡ ✈♦♥ ▼❡✐♥✉♥❣s✉♠❢r❛❣❡♥ ✐♥ ❞❡r ▼❛r❦t❢♦rs❝❤✉♥❣ ✈❡r✇❡♥❞❡t✱
✐♥ ❞❡♥❡♥

Y =

{
1, ❢❛❧❧s ❞✐❡ ❆♥t✇♦rt ✒ ❥❛✏

0, ❢❛❧❧s ❞✐❡ ❆♥t✇♦rt ✒♥❡✐♥✏
❛✉❢ ❡✐♥❡ ❋r❛❣❡ ❞❡r ❊♥q✉❡t❡ ❣❡❣❡❜❡♥ ✇✉r❞❡✳

❉❛❜❡✐ ✐st ❞✐❡ ❲❛❤rs❝❤❡✐♥❧✐❝❤❦❡✐t P (Y = 1) = p, P (Y = 0) = 1 − p✳ ❉❛♥♥ ❣✐❧t ❢ür
y ∈ {0, 1}✿

Pθ(Y = y) = py(1− p)1−y = ey log p+(1−y) log(1−p)

= e
y log p

1−p
−(− log(1−p))

.

❙♦♠✐t ❣❡❤ört ❞✐❡ ❇❡r♥♦✉❧❧✐✲❱❡rt❡✐❧✉♥❣ ③✉r ❊①♣♦♥❡♥t✐❛❧❢❛♠✐❧✐❡ ♠✐t

θ = log
p

1− p
, τ = 1 , a(y, τ) = 0 , b(θ) = − log(1− p) = log(1 + eθ) .
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✸✳ P♦✐ss♦♥✲❱❡rt❡✐❧✉♥❣✿ ❋❛❧❧s Y ∼ P♦✐ss♦♥✭λ✮✱ λ > 0✱ ❞❛♥♥ ❣✐❧t ❢ür y ∈ N0

Pθ(Y = y) = e−λ · λ
y

y!
= ey log λ−log(y!)−λ .

❙♦♠✐t ❣❡❤ört ❞✐❡ P♦✐ss♦♥✲❱❡rt❡✐❧✉♥❣ ③✉r ❊①♣♦♥❡♥t✐❛❧❢❛♠✐❧✐❡ ♠✐t

θ = log λ , τ = 1 , a(y, τ) = − log(y!) , b(θ) = λ = eθ .

▲❡♠♠❛ ✸✳✶✳✷✳ ❋❛❧❧s ❞✐❡ ❱❡rt❡✐❧✉♥❣ ✈♦♥ Y ③✉r ❊①♣♦♥❡♥t✐❛❧❢❛♠✐❧✐❡ ❣❡❤ört✱ EY 2 <∞ ✉♥❞
b : Θ→ R ③✇❡✐♠❛❧ st❡t✐❣ ❞✐✛❡r❡♥③✐❡r❜❛r ✐st ♠✐t b′′(θ) > 0 ❢ür ❛❧❧❡ θ ∈ Θ✱ ❞❛♥♥ ❣✐❧t

EY = b′(θ) , ❱❛rY = τ2b′′(θ) .

❇❡✇❡✐s✳ ✶✳ ❋ü❤r❡♥ ✇✐r ❞❡♥ ❇❡✇❡✐s ❢ür ❞❡♥ ❋❛❧❧ ❞❡r ❛❜s♦❧✉t st❡t✐❣❡♥ ❱❡rt❡✐❧✉♥❣ ✈♦♥ Y ✳
❉❡r ❞✐s❦r❡t❡ ❋❛❧❧ ❧äÿt s✐❝❤ ❛♥❛❧♦❣ ❜❡❤❛♥❞❡❧♥✱ ✇❡♥♥ ♠❛♥ ❞❛s

∫
✲❩❡✐❝❤❡♥ ❞✉r❝❤

∑

❡rs❡t③t✳ ❊s ❣✐❧t

EY =

∫

R

yfθ(y)dy =

∫

R

y exp

{
1

τ2

(
yθ + a(y, τ)− b(θ)

)}
dy

= e−
b(θ)

τ2 · τ2
∫

R

∂

∂θ
exp

{
1

τ2

(
yθ + a(y, τ)

)}
dy

= e−
b(θ)

τ2 · τ2 ∂

∂θ

∫

R

exp

{
1

τ2

(
yθ + a(y, τ)

)}
dy

= e−
b(θ)

τ2 · τ2 ∂

∂θ



e

b(θ)

τ2

∫

R

exp

{
1

τ2

(
yθ + a(y, τ)− b(θ)

)}
dy

︸ ︷︷ ︸∫
R
fθ(y)dy=1




= e−
b(θ)

τ2 τ2
∂

∂θ

(
e

b(θ)

τ2

)
= e−

b(θ)

τ2 · τ2 b
′(θ)
τ2

e
b(θ)

τ2 = b′(θ).

✷✳ ❊s ❜❧❡✐❜t ♥♦❝❤ ③✉ ③❡✐❣❡♥✿

Ü❜✉♥❣s❛✉❢❣❛❜❡ ✸✳✶✳✶✳ ❇❡✇❡✐s❡♥ ❙✐❡ ❞✐❡ ❋♦r♠❡❧

❱❛rY = τ2b′′(θ) ✭❛♥❛❧♦❣ ③✉ ✶✮✳
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✸✳✷ ▲✐♥❦❢✉♥❦t✐♦♥

❉✐❡ ❩✐❡❧❣röÿ❡♥ Yi, i = 1, . . . , n s❡✐❡♥ ❛❧s♦ ✉♥❛❜❤ä♥❣✐❣ ✈❡rt❡✐❧t ♠✐t ❡✐♥❡r ❱❡rt❡✐❧✉♥❣✱ ❞✐❡
③✉r ❊①♣♦♥❡t✐❛❧❢❛♠✐❧✐❡ ❣❡❤ört ✉♥❞ ❡✐♥❡r ✭❩ä❤❧✮❉✐❝❤t❡ ✇✐❡ ✐♥ ✭✸✳✶✳✶✮ ❜③✇✳ ✭✸✳✶✳✷✮✳ ❙❡t③❡♥
✇✐r ✈♦r❛✉s✱ ❞❛ss b : Θ→ R ③✇❡✐♠❛❧ st❡t✐❣ ❞✐✛❡r❡♥③✐❡r❜❛r ✐st ♠✐t b′′(θ) > 0 ❢ür ❛❧❧❡ θ ∈ Θ✳
❙❡✐ ❡✐♥ ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡s ❧✐♥❡❛r❡s ▼♦❞❡❧❧ ✭✸✳✵✳✶✮ ❣❡❣❡❜❡♥✳

❉❡✜♥✐t✐♦♥ ✸✳✷✳✶✳ ✭◆❛tür❧✐❝❤❡ ▲✐♥❦❢✉♥❦t✐♦♥✮
❉✐❡ ▲✐♥❦❢✉♥❦t✐♦♥ g : G→ R ❤❡✐ÿt ♥❛tür❧✐❝❤✱ ❢❛❧❧s g = (b′)−1, G = {b′(θ) : θ ∈ Θ} ✉♥❞

g ③✇❡✐♠❛❧ st❡t✐❣ ❞✐✛❡r❡♥③✐❡r❜❛r ✐st ♠✐t g′(x) 6= 0 ❢ür ❛❧❧❡ x ∈ G✳

❉✐❡ ❋r❛❣❡✱ ✇❛r✉♠ ❞✐❡ ♥❛tür❧✐❝❤❡ ▲✐♥❦❢✉♥❦t✐♦♥ s♦ ❤❡✐ÿt✱ ❜❡❛♥t✇♦rt❡t ❢♦❧❣❡♥❞❡s ▲❡♠♠❛✿

▲❡♠♠❛ ✸✳✷✳✶✳ ❋❛❧❧s ❞❛s ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡ ▼♦❞❡❧❧ ✭✸✳✵✳✶✮ ❞✐❡ ♥❛tür❧✐❝❤❡ ▲✐♥❦❢✉♥❦✲
t✐♦♥ ❜❡s✐t③t✱ ❞❛♥♥ ❣✐❧t (θ1, . . . , θn)⊤ = Xβ✳

❇❡✇❡✐s✳ ❲❡❣❡♥ b′′(θ) > 0 ✐st b′(θ) ♠♦♥♦t♦♥ st❡✐❣❡♥❞✱ ❛❧s♦ ✐♥✈❡rt✐❡r❜❛r✳ ❋ü❤r❡♥ ✇✐r ❢♦❧✲
❣❡♥❞❡ ❇❡③❡✐❝❤♥✉♥❣❡♥ ❡✐♥✿

µi = EYi , ηi = x⊤i β , xi = (xi1, . . . , xim)⊤ , i = 1, . . . , n

❉❛ g ✐♥✈❡rt✐❡r❜❛r ✐st✱ ❣✐❧t

µi = g−1(x⊤i β) = g−1(ηi) , i = 1, . . . , n

❆♥❞❡r❡rs❡✐ts ❢♦❧❣t µi = b′(θi) ❛✉s ▲❡♠♠❛ ✸✳✶✳✷✱ s♦ ❞❛ss

b′(θi) = g−1(ηi)
❉❡✜♥✐t✐♦♥ ✸✳✷✳✶

= b′(ηi) , i = 1, . . . , n .

❲❡❣❡♥ ❞❡r ▼♦♥♦t♦♥✐❡ ✈♦♥ b′ ❢♦❧❣t ❞✐❡ ❇❡❤❛✉♣t✉♥❣ θi = ηi , i = 1, . . . , n.

❇❡✐s♣✐❡❧ ✸✳✷✳✶✳ ❇❡r❡❝❤♥❡♥ ✇✐r ❞✐❡ ♥❛tür❧✐❝❤❡♥ ▲✐♥❦❢✉♥❦t✐♦♥❡♥ ❢ür ❞✐❡ ❱❡rt❡✐❧✉♥❣❡♥ ✈♦♥
❇❡✐s♣✐❡❧ ✸✳✶✳✶✳

✶✳ ◆♦r♠❛❧✈❡rt❡✐❧✉♥❣✿ ❞❛ b(µ) = µ2

2 ✱ ❣✐❧t

b′(x) =
2x

2
= x ✉♥❞ s♦♠✐t g(x) = (b′)−1(x) = x .

❉✐❡ ♥❛tür❧✐❝❤❡ ▲✐♥❦❢✉♥❦t✐♦♥ ✐st g(x) = x✱ s♦♠✐t ❣✐❧t ❤✐❡r

(µ1, . . . , µn)
⊤ = (EY1, . . . ,EYn)

⊤ = Xβ .

❉❛s ✐st ❣❡♥❛✉ ❞❡r ❋❛❧❧ ❞❡r ❧✐♥❡❛r❡♥ ❘❡❣r❡ss✐♦♥✳
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✷✳ ❇❡r♥♦✉❧❧✐✲❱❡rt❡✐❧✉♥❣✿ ❞❛ b(θ) = log(1 + eθ)✱ ❣✐❧t

b′(x) =
1

1 + ex
· ex = y

⇔ 1

e−x + 1
= y

⇔ 1

y
− 1 = e−x

⇔ x = − log
1− y

y
= log

y

1− y

⇒ g(x) = (b′)−1(x) = log
x

1− x
.

❉❛s ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥s♠♦❞❡❧❧ ✐♠ ❋❛❧❧❡ ❞❡r ❇❡r♥♦✉❧❧✐✲❱❡rt❡✐❧✉♥❣
✇✐r❞ ❜✐♥är❡ ✭❦❛t❡❣♦r✐❛❧❡✮ ❘❡❣r❡ss✐♦♥ ❣❡♥❛♥♥t✳ ❋❛❧❧s s✐❡ ♠✐t ❞❡r ♥❛tür❧✐❝❤❡♥ ▲✐♥❦✲
❢✉♥❦t✐♦♥ ✈❡r✇❡♥❞❡t ✇✐r❞✱ ♥❡♥♥t ♠❛♥ s✐❡ ❧♦❣✐st✐s❝❤❡ ❘❡❣r❡ss✐♦♥✳ ■♥ ❞✐❡s❡♠ ❋❛❧❧ ❣✐❧t

(p1, . . . , pn)
⊤ = (EY1, . . . ,EYn)

⊤

θi = log
pi

1− pi
= x⊤i β , i = 1, . . . , n

⇔ eθi =
pi

1− pi

⇔ pi =
eθi

1 + eθi

⇔ pi =
ex

⊤
i β

1 + ex
⊤
i β

, i = 1, . . . , n .

❉❛s ❱❡r❤ä❧t♥✐s
pi

1− pi
=

P (Yi = 1)

P (Yi = 0)
, i = 1, . . . , n

✇✐r❞ ✐♥ ❞❡r ❡♥❣❧✐s❝❤s♣r❛❝❤✐❣❡♥ ▲✐t❡r❛t✉r ❖❞❞ ❣❡♥❛♥♥t✳ ❉❡r ▲♦❣❛r✐t❤♠✉s ❞❡s ❖❞❞s
❤❡✐ÿt ▲♦❣✐t ✿

log
pi

1− pi
, i = 1, . . . , n .

▲♦❣✐ts s✐♥❞ ❛❧s♦ ❤✐❡r ✒♥❡✉❡ ❩✐❡❧✈❛r✐❛❜❧❡♥✏✱ ❞✐❡ ❞✉r❝❤ ▲✐♥❡❛r❦♦♠❜✐♥❛t✐♦♥❡♥ x⊤i β ❣❡✲
s❝❤ät③t ✇❡r❞❡♥✳
❊✐♥❡ ❛❧t❡r♥❛t✐✈❡ ▲✐♥❦❢✉♥❦t✐♦♥✱ ❞✐❡ ♦❢t ❜❡♥✉t③t ✇✐r❞✱ ✐st g(x) = Φ−1(x)✱ ❞✐❡ ◗✉❛♥✲
t✐❧❢✉♥❦t✐♦♥ ❞❡r ◆♦r♠❛❧✈❡rt❡✐❧✉♥❣ ✳ ❙✐❡ ✐st ❦❡✐♥❡ ♥❛tür❧✐❝❤❡ ▲✐♥❦❢✉♥❦t✐♦♥✳ ▼✐t ✐❤r❡r
❍✐❧❢❡ ❜❡❦♦♠♠t ♠❛♥ ❞❛s s♦❣✳ Pr♦❜✐t✲▼♦❞❡❧❧ ✿

pi = Φ(x⊤i β) , i = 1, . . . , n .



✸ ❱❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡ ▼♦❞❡❧❧❡ ✶✵✾

✸✳ P♦✐ss♦♥✲❱❡rt❡✐❧✉♥❣✿ ❞❛ b(θ) = eθ✱ ✐st ✐♥ ❞✐❡s❡♠ ❋❛❧❧

g(x) = (b′)−1(x) = log x , x > 0

❞✐❡ ♥❛tür❧✐❝❤❡ ▲✐♥❦❢✉♥❦t✐♦♥✳ ❙♦♠✐t ❤❛t ❞❛s ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡ ▼♦❞❡❧❧ ♠✐t ❞❡r
♥❛tür❧✐❝❤❡♥ ▲✐♥❦❢✉♥❦t✐♦♥ ❢♦❧❣❡♥❞❡ ❉❛rst❡❧❧✉♥❣

(log λ1, . . . , log λn)
⊤ = Xβ ♦❞❡r λi = ex

⊤
i β , i = 1, . . . , n .

✸✳✸ ▼❛①✐♠✉♠✲▲✐❦❡❧✐❤♦♦❞✲❙❝❤ät③✉♥❣ ✈♦♥ β

❉❛ ❞✐❡ ✭❩ä❤❧✮❉✐❝❤t❡ ✈♦♥ Yi ❞✐❡ ●❡st❛❧t

exp
{

1
τ2

(
yθi + a(y, τ)− b(θi)

)}

❤❛t ✉♥❞ Yi ✉♥❛❜❤ä♥❣✐❣ s✐♥❞✱ ❦❛♥♥ ♠❛♥ ❞✐❡ ▲♦❣✲▲✐❦❡❧✐❤♦♦❞✲❋✉♥❦t✐♦♥ ❞❡r ❙t✐❝❤♣r♦❜❡
Y = (Y1, . . . , Yn) ✐♥ ❢♦❧❣❡♥❞❡r ❋♦r♠ ❛✉❢s❝❤r❡✐❜❡♥✿

logL(Y, θ) = log
n∏

i=1

fθi(Yi) =
1

τ2

n∑

i=1

(
Yiθi + a(Yi, τ)− b(θi)

)
. ✭✸✳✸✳✶✮

❆✉s ❞❡♠ ❇❡✇❡✐s ❞❡s ▲❡♠♠❛s ✸✳✷✳✶ ❢♦❧❣t✱ ❞❛ss

θi = (b′)−1(g−1(x⊤i β)) , i = 1, . . . , n , ✭✸✳✸✳✷✮

✇❛s ❜❡❞❡✉t❡t✱ ❞❛ss ❞✐❡ ❋✉♥❦t✐♦♥ logL(Y, θ) ❡✐♥❡ ❋✉♥❦t✐♦♥ ✈♦♥ P❛r❛♠❡t❡r β ✐st✳ ■♥ ❞❡r
❩✉❦✉♥❢t s❝❤r❡✐❜❡♥ ✇✐r logL(Y, β)✱ ✉♠ ❞✐❡s❡ ❚❛ts❛❝❤❡ ③✉ ✉♥t❡rstr❡✐❝❤❡♥✳
❯♥s❡r ❩✐❡❧ ✐st ❡s✱ ❞❡♥ ▼❛①✐♠✉♠✲▲✐❦❡❧✐❤♦♦❞✲❙❝❤ät③❡r β̂ ❢ür β ③✉ ❜❡r❡❝❤♥❡♥✿

β̂ = argmax
β

logL(Y, β) .

❉❛❢ür ✇✐r❞ ❞✐❡ ♥♦t✇❡♥❞✐❣❡ ❇❡❞✐♥❣✉♥❣ ❞❡s ❊①tr❡♠✉♠s

∂ logL(Y, β)

∂βi
= 0 , i = 1, . . . ,m ,

✉♥t❡rs✉❝❤t✳ ❱❡r✇❡♥❞❡♥ ✇✐r ❢♦❧❣❡♥❞❡ ❇❡③❡✐❝❤♥✉♥❣❡♥✿

Ui(β) =
∂ logL(Y, β)

∂βi
, i = 1, . . . ,m ,

U(β) = (U1(β), . . . , Um(β))⊤ ,

Iij(β) = E [Ui(β)Uj(β)] , i, j = 1, . . . ,m .



✶✶✵ ✸ ❱❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡ ▼♦❞❡❧❧❡

❉❡✜♥✐t✐♦♥ ✸✳✸✳✶✳ ✶✳ ❉✐❡ ▼❛tr✐① I(β) = (Iij(β))
m
i,j=1 ❤❡✐ÿt ❋✐s❤❡r✲■♥❢♦r♠❛t✐♦♥s♠❛tr✐① ✳

✷✳ ❋ü❤r❡♥ ✇✐r ❞✐❡ s♦❣✳ ❍❡ss❡✲▼❛tr✐① W (β) ❛❧s ③✉❢ä❧❧✐❣❡ ▼❛tr✐①

W (β) = (Wij(β))
m
i,j=1 ♠✐t Wij(β) =

∂2

∂βi∂βj
logL(Y, β)

❡✐♥✳ ❉✐❡s❡ (m×m)✲▼❛tr✐① ❡♥t❤ä❧t ❞✐❡ ♣❛rt✐❡❧❧❡♥ ❆❜❧❡✐t✉♥❣❡♥ ✷✳ ❖r❞♥✉♥❣ ❞❡r ▲♦❣✲
▲✐❦❡❧✐❤♦♦❞✲❋✉♥❦t✐♦♥✱ ❞✐❡ ❢ür ❞✐❡ ♥✉♠❡r✐s❝❤❡ ▲ös✉♥❣ ❞❡r ▼❛①✐♠✐❡r✉♥❣s❛✉❢❣❛❜❡

logL(Y, β)→ max
β

✈♦♥ ❇❡❞❡✉t✉♥❣ s❡✐♥ ✇❡r❞❡♥✳

❙❛t③ ✸✳✸✳✶✳ ▼❛♥ ❦❛♥♥ ③❡✐❣❡♥✱ ❞❛ss U(β) ✉♥❞ I(β) ❢♦❧❣❡♥❞❡ ❡①♣❧✐③✐t❡ ❋♦r♠ ❤❛❜❡♥✿

✶✳ ❊s ❣✐❧t

Uj(β) =
n∑

i=1

xij (Yi − µi(β))
∂g−1(ηi)

∂ηi

1

σ2
i (β)

, j = 1, . . . ,m ,

✷✳ ❊s ❣✐❧t

Ijk(β) =
n∑

i=1

xijxik

(
∂g−1(ηi)

∂ηi

)2
1

σ2
i (β)

, j, k = 1, . . . ,m ,

✇♦❜❡✐ ηi = x⊤i β , µi(β) = g−1(x⊤i β) ❞❡r ❊r✇❛rt✉♥❣s✇❡rt ✈♦♥ Yi ✉♥❞

σ2
i (β)

▲❡♠♠❛ ✸✳✶✳✷
= τ2b′′(θi)

✭✸✳✸✳✷✮
= τ2b′′((b′)−1(g−1(x⊤i β))) , i = 1, . . . , n

❞✐❡ ❱❛r✐❛♥③ ✈♦♥ Yi ✐st✳

❇❡✇❡✐s✳ ✶✳ ❋ü❤r❡♥ ✇✐r ❞✐❡ ❇❡③❡✐❝❤♥✉♥❣

li(β) =
1

τ2
(Yiθi + a (Yi, τ)− b(θi)) , i = 1, . . . , n ❡✐♥.

❙♦♠✐t ❣✐❧t

Uj(β) =
n∑

i=1

∂li(β)

∂βj
, j = 1, . . . ,m.

❉✉r❝❤ ❞✐❡ ♠❡❤r❢❛❝❤❡ ❆♥✇❡♥❞✉♥❣ ❞❡r ❑❡tt❡♥r❡❣❡❧ ❡r❣✐❜t s✐❝❤
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∂li(β)

∂βj
=

∂li(β)

∂θi
· ∂θi
∂µi
· ∂µi

∂ηi
· ∂ηi
∂βj

, i = 1, . . . , n, j = 1, . . . ,m

❉❛

∂li(β)

∂θi
=

1

τ2

(
Yi − b′(θi)

)
▲❡♠♠❛ ✸✳✶✳✷

=
1

τ2

(
Yi − µi(β)

)
,

∂θi
∂µi

=

(
∂µi

∂θi

)−1

=
((

b′(θi)
)′)−1

=
(
b′′(θi)

)−1 ▲❡♠♠❛ ✸✳✶✳✷
=

(
σ2
i (β)

τ2

)−1

=
τ2

∂2
i (β)

,

∂µi

∂ηi
=

∂g−1(ηi)

∂ηi

✇❡❣❡♥ µi = EYi = g−1(ηi)✱

∂ηi
∂βj

=
∂(x⊤i β)
∂βj

= xij , i = 1, . . . , n, j = 1, . . . ,m,

❜❡❦♦♠♠❡♥ ✇✐r

Uj(β) =
1

τ2

n∑

i=1

xij (Yi − µi(β)) ·
τ2

σ2
i (β)

· ∂g
−1(ηi)

∂ηi

=

n∑

i=1

xij(Yi − µi(β))
∂g−1(ηi)

∂ηi
· 1

σ2
i (β)

, j = 1, . . . ,m.

✷✳ ❋ür ❛❧❧❡ i, j = 1, . . . ,m ❣✐❧t✿

Iij(β) = E(Ui(β)Uj(β)) =
n∑

k,l=1

xkixlj ❈♦✈(Yk, Yl)︸ ︷︷ ︸
δklσ

2
k(β)

·∂g
−1(ηk)

∂ηk

∂g−1(ηl)

∂ηl

1

σ2
k(β)σ

2
l (β)

=

n∑

k=1

xkixkj

(
∂g−1(ηk)

∂ηk

)2
1

σ2
k(β)

.

❇❡♠❡r❦✉♥❣ ✸✳✸✳✶✳ ■♠ ❋❛❧❧❡ ❞❡r ♥❛tür❧✐❝❤❡♥ ▲✐♥❦❢✉♥❦t✐♦♥ ✈❡r❡✐♥❢❛❝❤❡♥ s✐❝❤ ❞✐❡ ♦❜✐❣❡♥
●❧❡✐❝❤✉♥❣❡♥✳ ❙♦ s✐❡❤t ❞✐❡ ▲♦❣✲▲✐❦❡❧✐❤♦♦❞✲❋✉♥❦t✐♦♥ ❢♦❧❣❡♥❞❡r♠❛ÿ❡♥ ❛✉s✿



✶✶✷ ✸ ❱❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡ ▼♦❞❡❧❧❡

logL(Y, β) =
1

τ2

n∑

i=1

(
Yix

⊤
i β + a(Yi, τ)− b(x⊤i β)

)
.

❉❛ ✐♥ ❞✐❡s❡♠ ❋❛❧❧ g−1(ηi) = b′(ηi) , ηi = x⊤i β = θi ❣✐❧t

∂g−1(ηi)

∂ηi
= b′′(θi)

▲❡♠♠❛ ✸✳✶✳✷
=

1

τ2
σ2
i (β)

✉♥❞ s♦♠✐t

Uj(β) =
1

τ2

n∑

i=1

xij (Yi − µi(β)) , j = 1, . . . ,m ,

Ijk(β) =
1

τ4

n∑

i=1

xijxikσ
2
i (β) , j, k = 1, . . . ,m .

❙❛t③ ✸✳✸✳✷✳ ❊s ❣✐❧t

Wjk(β) =
n∑

i=1

xijxik

((
Yi − µi(β)

)
νi − u2i

1

σ2
i (β)

)
, j, k = 1, . . . ,m ,

✇♦❜❡✐

ui =
∂g−1(ηi)

∂ηi
✉♥❞ νi =

1

τ2
· ∂

2((b′)−1 ◦ g−1(ηi))

∂η2i
, i = 1, . . . , n,

µi(β) = EYi, σ2
i (β) = ❱❛rYi, ηi = x⊤i β.

❇❡✇❡✐s✳ ❋ür ❜❡❧✐❡❜✐❣❡ j, k = 1, . . . ,m ❣✐❧t

Wjk(β) =
∂

∂βk
Uj(β)

❙❛t③ ✸✳✸✳✶
=

∂

∂βk

n∑

i=1

xij (Yi − µi(β))
∂g−1(ηi)

∂ηi

1

σ2
i (β)

=
n∑

i=1

xij

(
(Yi − µi(β))

∂

∂βk

(
∂g−1(ηi)

∂ηi

1

σ2
i (β)

)
− ∂g−1(ηi)

∂ηi

1

σ2
i (β)

∂µi(β)

∂βk

)

=
n∑

i=1

(
xij(Yi − µi(β))

∂

∂βk

(
τ2b′′((b′)−1(g−1(ηi)))((b

′)−1 ◦ g−1)′(ηi)
τ2b′′((b′)−1(g−1(ηi)))

)

−
(
∂g−1(ηi)

∂ηi

)2
1

σ2
i (β)

xik

)

=
n∑

i=1

xijxik

(
(Yi − µi(β))νi − u2i

1

σ2
i (β)

)
,



✸ ❱❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡ ▼♦❞❡❧❧❡ ✶✶✸

✇♦❜❡✐

∂g−1(ηi)

∂ηi
· 1

σ2
i (β)

▲❡♠♠❛ ✸✳✶✳✷
=

✉♥❞ ❙❛t③ ✸✳✸✳✶

∂b′(θi)
∂ηi

· 1
τ2
· 1

b′′(θi)
=

∂b′(θi)
∂θi

· ∂θi
∂ηi

1

τ2
1

b′′(θi)
=

1

τ2
∂θi
∂ηi

✉♥❞

∂

∂βk

(
∂g−1(ηi)

∂ηi
· 1

σ2
i (β)

)
=

1

τ2
∂2θi
∂η2i

· ∂ηi
∂βk

ηi=x⊤
i β

=
1

τ2
∂2θi
∂η2i

· xik,

❞❛❜❡✐ ✐st

∂

µi(β)︷ ︸︸ ︷
g−1(ηi)

∂βk
=

∂g−1(ηi)

∂ηi
· ∂ηi
∂βk

=
∂g−1(ηi)

∂ηi
· xik

✉♥❞ θi = (b′)−1 ◦ g−1(ηi)✱ i = 1, . . . , n✳

❋ür ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡ ▼♦❞❡❧❧❡ ♠✐t ♥❛tür❧✐❝❤❡♥ ▲✐♥❦❢✉♥❦t✐♦♥❡♥ ❣✐❧t ✐♥s❜❡s♦♥❞❡r❡

W (β) = −I(β) = − 1

τ4

n∑

i=1

xijxikσ
2
i (β) , ✭✸✳✸✳✸✮

✇❡✐❧ ✐♥ ❞✐❡s❡♠ ❋❛❧❧ νi = 0 ❢ür ❛❧❧❡ i = 1, . . . , n✳ W (β) ✐st ❛❧s♦ ❞❡t❡r♠✐♥✐st✐s❝❤✳ ❚❛tsä❝❤✲
❧✐❝❤ ✐st ♥❛❝❤ ▲❡♠♠❛ ✸✳✷✳✶ θi = x⊤i β = ηi ✉♥❞ s♦♠✐t ∂2θi

∂η2i
= 0✱ i = 1, . . . , n✳

❆✉s ❇❡♠❡r❦✉♥❣ ✸✳✸✳✶ ❛✉ÿ❡r❞❡♠✿ u2i =
1
τ4
σ4
i (β)✳

❇❡✐s♣✐❡❧ ✸✳✸✳✶✳ ❲✐❡ s❡❤❡♥ U(β), I(β) ✉♥❞ W (β) ❢ür ✉♥s❡r❡ ▼♦❞❡❧❧❡ ❛✉s ❇❡✐s♣✐❡❧ ✷✳✻✳✷
✭♥❛tür❧✐❝❤❡ ▲✐♥❦❢✉♥❦t✐♦♥❡♥✮ ❛✉s❄

✶✳ ◆♦r♠❛❧✈❡rt❡✐❧✉♥❣✿ ❞✐❡s❡r ❋❛❧❧ ❡♥ts♣r✐❝❤t ❞❡r ü❜❧✐❝❤❡♥ ♠✉❧t✐✈❛r✐❛t❡♥ ❧✐♥❡❛r❡♥ ❘❡✲
❣r❡ss✐♦♥ ♠✐t ♥♦r♠❛❧✈❡rt❡✐❧t❡♥ ❙tör❣röÿ❡♥✳ ■♥ ❞✐❡s❡♠ ❋❛❧❧ ❣✐❧t µ = Xβ, τ2 = σ2✳

❆✉s ❇❡♠❡r❦✉♥❣ ✸✳✸✳✶ ❢♦❧❣t

U(β) =
1

σ2
X⊤(Y −Xβ) ,

I(β) = (E (Ui(β) · Uj(β)))i,j=1,...,m =
1

σ2
X⊤X ,

W (β) = −I(β) .



✶✶✹ ✸ ❱❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡ ▼♦❞❡❧❧❡

✷✳ ▲♦❣✐st✐s❝❤❡ ❘❡❣r❡ss✐♦♥✿ ❤✐❡r ❣✐❧t τ2 = 1, µi = pi, σ2
i = pi(1− pi),

i = 1, . . . , n, pi ∈ (0, 1) ✉♥❞ s♦♠✐t

U(β) = X⊤(Y − p) ,

I(β) = X⊤diag(pi(1− pi))X ,

W (β) = −I(β) ,

✇♦❜❡✐ p = (p1, . . . , pn)
⊤✳

✸✳ P♦✐ss♦♥✲❘❡❣r❡ss✐♦♥✿ ❡s ❣✐❧t τ2 = 1, µi = λi = σ2
i , i = 1, . . . , n ✉♥❞ s♦♠✐t

U(β) = X⊤(Y − λ) , ,

I(β) = X⊤diag(λi)X ,

W (β) = −I(β) ,

✇♦❜❡✐ λ = (λ1, . . . , λn)
⊤ .

❲❛♥♥ ✐st ❞✐❡ ▲ös✉♥❣ ❞❡s ●❧❡✐❝❤✉♥❣ss②st❡♠s U(β) = 0 ❛✉❝❤ ❡✐♥ ▼❛①✐♠✉♠✲P✉♥❦t ❞❡r
❋✉♥❦t✐♦♥ logL(Y, β)❄
▼✐t ❛♥❞❡r❡♥ ❲♦rt❡♥✿ ❲❛♥♥ ❡①✐st✐❡rt ❞❡r ▼▲✲❙❝❤ät③❡r β̂ ✈♦♥ β✱ ❞❡r ❡✐♥❞❡✉t✐❣ ❜❡st✐♠♠t

✐st❄

β̂ = argmax
β

logL(Y, β)

❆♥ ❞❡r ❤✐♥r❡✐❝❤❡♥❞❡♥ ❇❡❞✐♥❣✉♥❣ ❡✐♥❡s ▼❛①✐♠✉♠s ❢♦❧❣t✱ ❞❛ss ❞✐❡ ❍❡ss❡✲▼❛tr✐① W (β)
♥❡❣❛t✐✈ ❞❡✜♥✐t s❡✐♥ ♠✉ss✳
❇❡tr❛❝❤t❡♥ ✇✐r ❞❡♥ ❙♣❡③✐❛❧❢❛❧❧ ❞❡r ♥❛tür❧✐❝❤❡♥ ▲✐♥❦❢✉♥❦t✐♦♥✳
❉❛♥♥ ❣✐❧t ♥❛❝❤ ❇❡♠❡r❦✉♥❣ ✸✳✸✳✶✿

• ❉❛s ●❧❡✐❝❤✉♥❣ss②st❡♠ U(β) = 0 s❝❤r❡✐❜t s✐❝❤ U(β) = 1
τ2
X⊤(Y − µ(β)) = 0

• ❉✐❡ ▼❛tr✐① W (β) = − 1
τ4
X⊤diag(σ2

i (β))X ✐st ♥❡❣❛t✐✈ ❞❡✜♥✐t✱ ❢❛❧❧s ③✉sät③❧✐❝❤
rg(X) = m ✉♥❞ 0 < σ2

i (β) <∞ ❢ür ❛❧❧❡ i = 1, . . . , n✳

❯♥t❡r ❞✐❡s❡♥ ❇❡❞✐♥❣✉♥❣❡♥ ❡①✐st✐❡rt ❛❧s♦ ❡✐♥ ❡✐♥❞❡✉t✐❣❡r ▼▲✲❙❝❤ät③❡r β̂ ❢ür β✳

●❡❜❡♥ ✇✐r ❥❡t③t ❱❡r❢❛❤r❡♥ ❛♥✱ ❞✐❡ ❞❛s ✭✐♠ ❆❧❧❣❡♠❡✐♥❡♥ ♥✐❝❤t ❧✐♥❡❛r❡✮ ●❧❡✐❝❤✉♥❣ss②st❡♠
U(β) = 0 ♥✉♠❡r✐s❝❤ ❧ös❡♥✳ ❉✐❡s❡ ❆♥sät③❡ s✐♥❞ ✐t❡r❛t✐✈✱ ❞✳❤✳ s✐❡ ♥ä❤❡r♥ s✐❝❤ s❝❤r✐tt✇❡✐s❡
❞❡♠ ▼▲✲❙❝❤ät③❡r β̂ ❛♥✳



✸ ❱❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡ ▼♦❞❡❧❧❡ ✶✶✺

✶✳ ◆❡✇t♦♥✲❱❡r❢❛❤r❡♥

❲ä❤❧❡ ❡✐♥❡♥ ❣❡❡✐❣♥❡t❡♥ ❙t❛rt✇❡rt β̂0 ∈ R
m✳

■♠ ❙❝❤r✐tt k + 1✱ ❜❡r❡❝❤♥❡ β̂k+1 ❛✉s β̂k, k = 0, 1, . . . ❛✉❢ ❢♦❧❣❡♥❞❡ ❆rt ✉♥❞
❲❡✐s❡✿

• ◆✐♠♠ ❞✐❡ ❚❛②❧♦r✲❊♥t✇✐❝❦❧✉♥❣ ✈♦♥ U(β) ❜✐s ③✉r ❡rst❡♥ ❖r❞♥✉♥❣ ❛♥ ❞❡r ❙t❡❧❧❡
β̂k : U(β) ≈ U(β̂k) +W (β̂k)(β − β̂k✮✳

• ❙❡t③❡ s✐❡ ❣❧❡✐❝❤ ◆✉❧❧✿ U(β̂k) +W (β̂k)(β − β̂k) = 0

• ❉✐❡ ▲ös✉♥❣ ❞✐❡s❡s ●❧❡✐❝❤✉♥❣ss②st❡♠s ✐st β̂k+1 :

β̂k+1 = β̂k −W−1(β̂k) · U(β̂k) , k = 0, 1, 2, . . . ,

✈♦r❛✉s❣❡s❡t③t✱ ❞❛ss W (β̂k) ✐♥✈❡rt✐❡r❜❛r ✐st✳

❇r❡❝❤❡ ❞❡♥ ■t❡r❛t✐♦♥s♣r♦③❡ss ❛❜✱ s♦❜❛❧❞ |β̂k+1 − β̂k| < δ ❢ür ❡✐♥❡ ✈♦r❣❡❣❡❜❡♥❡
●❡♥❛✉✐❣❦❡✐t δ > 0 ✐st✳

❉❛s ❑♦♥✈❡r❣❡♥③✈❡r❤❛❧t❡♥ ❞✐❡s❡s ❱❡r❢❛❤r❡♥s ❤ä♥❣t ❡♥ts❝❤❡✐❞❡♥❞ ✈♦♥ ❞❡r ❲❛❤❧ ✈♦♥ β̂0
❛❜✱ ❢ür ❞❡ss❡♥ ❑♦♥✈❡r❣❡♥③ β̂0 ♥❛❤ ❣❡♥✉❣ ❜❡✐ β̂ ❧✐❡❣❡♥ ♠✉ss✳ ❊✐♥ ✇❡✐t❡r❡r ◆❛❝❤t❡✐❧ ❞✐❡s❡s
❱❡r❢❛❤r❡♥s ✐st✱ ❞❛ss ❞✐❡ ③✉❢ä❧❧✐❣❡ ▼❛tr✐① W (β) ✉♥t❡r ❯♠stä♥❞❡♥ ♥✐❝❤t ✐♥✈❡rt✐❡r❜❛r ✐st✳
❉❡s✇❡❣❡♥ s❝❤❧❛❣❡♥ ✇✐r ❥❡t③t ❡✐♥❡ ▼♦❞✐✜❦❛t✐♦♥ ❞❡s ◆❡✇t♦♥✲❱❡r❢❛❤r❡♥s ✈♦r✱ ❜❡✐ ❞❡r W (β)
❞✉r❝❤ ❞❡♥ ❊r✇❛rt✉♥❣s✇❡rt

EW (β) = −I(β) ✭✸✳✸✳✹✮

❡rs❡t③t ✇✐r❞✳ ❉❛ss ❞✐❡ ■❞❡♥t✐tät ✭✸✳✸✳✸✮ st✐♠♠t✱ ❢♦❧❣t ❛✉s ❞❡♠ ❙❛t③ ✸✳✸✳✷✱ ✉♥❞ ❞❡r
❚❛ts❛❝❤❡✱ ❞❛ss EYi = µi, i = 1, . . . , n✳ ❲❡♥♥ ♠❛♥ ✈♦r❛✉ss❡t③t✱ ❞❛ss rg(X) = m ✉♥❞
ui 6= 0, i = 1, . . . , n✱ s♦ ✐st ♥❛❝❤ ❙❛t③ ✸✳✸✳✶ I(β) ✐♥✈❡rt✐❡r❜❛r✳ ❉✐❡s❡s ❱❡r❢❛❤r❡♥ ✇✐r❞
❋✐s❤❡r ❙❝♦r✐♥❣ ❣❡♥❛♥♥t✳
❉❡r ❡✐♥③✐❣❡ ❯♥t❡rs❝❤✐❡❞ ③✉ ❞❡♥ ❙❝❤r✐tt❡♥ ❞❡s ◆❡✇t♦♥✲❱❡r❢❛❤r❡♥s ❜❡st❡❤t ❜❡✐♠ ❋✐s❤❡r

❙❝♦r✐♥❣ ❞❛r✐♥✱ ❞❛ss ♠❛♥ ✐♥ ❙❝❤r✐tt ✷ ❞✐❡ ✐t❡r❛t✐✈❡ ●❧❡✐❝❤✉♥❣

β̂k+1 = β̂k + I−1(β̂k)U(β̂k) , k = 0, 1, . . .

❡✐♥s❡t③t✳
■♠ ❋❛❧❧❡ ❡✐♥❡r ♥❛tür❧✐❝❤❡♥ ▲✐♥❦❢✉♥❦t✐♦♥ ❣✐❧t ♥❛❝❤ ❇❡♠❡r❦✉♥❣ ✸✳✸✳✶

β̂k+1 = β̂k + τ4
(
X⊤diag(σ2

i (β̂k))X
)−1 1

τ2

(
X⊤(Y − µ(β̂k))

)

= β̂k + τ2
(
X⊤diag(σ2

i (β̂k))X
)−1(

X⊤(Y − µ(β̂k))
)
.



✶✶✻ ✸ ❱❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡ ▼♦❞❡❧❧❡

✸✳✹ ❆s②♠♣t♦t✐s❝❤❡ ❚❡sts ❢ür β

❉❛s ❩✐❡❧ ❞✐❡s❡s ❆❜s❝❤♥✐tt❡s ✐st ❡s✱ ❡✐♥❡ ❚❡str❡❣❡❧ ❢ür ❞✐❡ ❍②♣♦t❤❡s❡

H0 : β = β0 ✈s✳ H1 : β 6= β0 ♠✐t β = (β1, . . . , βm)⊤ , β0 = (β01, . . . , β0m)⊤

③✉ ❦♦♥str✉✐❡r❡♥✳ ■♥s❜❡s♦♥❞❡r❡ s✐♥❞ ❞✐❡ ❍❛✉♣t❤②♣♦t❤❡s❡♥ H0 : β = 0 ❜③✇✳ H0 : βj = 0
✈♦♥ ■♥t❡r❡ss❡✱ ✇❡✐❧ s✐❡ ❞✐❡ ❚❛ts❛❝❤❡ r❡✢❡❦t✐❡r❡♥✱ ❞❛ss ❞✐❡ ❩✐❡❧✈❛r✐❛❜❧❡♥ Y = (Y1, . . . , Yn)

⊤

✈♦♥ ❡✐♥✐❣❡♥ ❆✉s❣❛♥❣s✈❛r✐❛❜❧❡♥ ✭③✳❇✳ (x1j , . . . , xnj)⊤ ✐♠ ❋❛❧❧❡ ❞❡r ❍②♣♦t❤❡s❡ βj = 0✮
✉♥❛❜❤ä♥❣✐❣ s✐♥❞✳
❯♠ s♦❧❝❤❡ ❍②♣♦t❤❡s❡♥ t❡st❡♥ ③✉ ❦ö♥♥❡♥✱ ✇❡r❞❡♥ ❚❡stst❛t✐st✐❦❡♥ Tn ✈♦r❣❡s❝❤❧❛❣❡♥✱ ❞✐❡

❛s②♠♣t♦t✐s❝❤ ✭❢ür n → ∞✮ ❡✐♥❡ ❜❡❦❛♥♥t❡ Prü❢✈❡rt❡✐❧✉♥❣ ✭③✳❇✳ ♠✉❧t✐✈❛r✐❛t❡ ◆♦r♠❛❧✈❡r✲
t❡✐❧✉♥❣ ♦❞❡r χ2 ✲ ❱❡rt❡✐❧✉♥❣✮ ❜❡s✐t③❡♥✳ ❉❛❢ür s✐♥❞ ❣❡✇✐ss❡ ❱♦r❛r❜❡✐t❡♥ ♥♦t✇❡♥❞✐❣✳
❙❡✐

g(EYi) = Xiβ , i = 1, . . . , n ,

❡✐♥ ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡s ❧✐♥❡❛r❡s ▼♦❞❡❧❧ ♠✐t ♥❛tür❧✐❝❤❡r ▲✐♥❦❢✉♥❦t✐♦♥ g✳ ❙❡✐❡♥ L(Y, β) , U(β)
✉♥❞ I(β) ❞✐❡ ▲✐❦❡❧✐❤♦♦❞✲❋✉♥❦t✐♦♥✱ ❞❡r ❱❡❦t♦r ❞❡r ♣❛rt✐❡❧❧❡♥ ❆❜❧❡✐t✉♥❣❡♥ ✈♦♥ logL(Y, β)
❜③✇✳ ❞✐❡ ❋✐s❤❡r✲■♥❢♦r♠❛t✐♦♥s♠❛tr✐① ✐♥ ❞✐❡s❡♠ ▼♦❞❡❧❧✳
❉✉r❝❤ β̂n = β̂(Y1, . . . , Yn, X) ❜❡③❡✐❝❤♥❡ ♠❛♥ ❡✐♥❡ ❋♦❧❣❡ ✈♦♥ ❙❝❤ät③❡r♥ ❢ür β✳
❊s ❣❡❧t❡♥ ❢♦❧❣❡♥❞❡ ❱♦r❛✉ss❡t③✉♥❣❡♥✿

✶✳ ∃ ❑♦♠♣❛❦t✉♠ K ⊂ R
m✱ s♦ ❞❛ss ❛❧❧❡ ❩❡✐❧❡♥ Xi✱ i = 1, . . . , n✱ n ∈ N✱ ✈♦♥ X ✐♥ K

❧✐❡❣❡♥✳ ❉❛❜❡✐ s♦❧❧ θ = x⊤β ∈ Θ ❢ür ❛❧❧❡ β ∈ R
m ✉♥❞ x ∈ K✳

✷✳ ❊s ❡①✐st✐❡rt ❡✐♥❡ ❋♦❧❣❡ {Γn}n∈N ✈♦♥ ❞✐❛❣♦♥❛❧❡♥ (m×m)✲▼❛tr✐③❡♥ Γn = Γn(β) ♠✐t
♣♦s✐t✐✈❡♥ ❉✐❛❣♦♥❛❧❡❧❡♠❡♥t❡♥ ✉♥❞ ❞❡♥ ❊✐❣❡♥s❝❤❛❢t❡♥ lim

n→∞
Γn = 0✱ lim

n→∞
Γ⊤
n In(β)Γn =

K−1(β)✱ ✇♦❜❡✐ K(β) ❡✐♥❡ s②♠♠❡tr✐s❝❤❡ ♣♦s✐t✐✈ ❞❡✜♥✐t❡ (m×m)✲▼❛tr✐① ✐st✱ ∀β ∈
R
m✳

❙❛t③ ✸✳✹✳✶✳ ❯♥t❡r ♦❜✐❣❡♥ ❱♦r❛✉ss❡t③✉♥❣❡♥ ❣✐❧t✿
❡s ❡①✐st✐❡rt ❡✐♥❡ Γn✲❑♦♥s✐t❡♥t❡ ❋♦❧❣❡ ✈♦♥ ▼▲✲❙❝❤ät③❡r♥ {β̂n} ❢ür β✱
✭❞✳❤✳ P

(
Γ−1
n |β̂n − β| ≤ ε, U(β̂n) = 0

)
→ 1 ❢ür n→∞✮✱ s♦ ❞❛ss

✶✳ T ∗
n = Γ−1

n (β̂n − β)
d−−−→

n→∞
N (0,K(β)) ✉♥❞

✷✳ Tn = 2(logL(Y, β̂n)− logL(Y, β))
d−−−→

n→∞
χ2
m , m = dimβ

❇❡♠❡r❦✉♥❣ ✸✳✹✳✶✳ ✭✈❣❧✳ ❬✶✺❪✱ ❙✳✷✽✽✲✷✾✷✮

✶✳ ❖❢t ✇ä❤❧t ♠❛♥ Γn = diag
(

1√
n
, . . . , 1√

n

)

✷✳ ❇✐s❤❡r ✇✉r❞❡ st❡ts ❛♥❣❡♥♦♠♠❡♥✱ ❞❛ss ❞❡r ❙tör♣❛r❛♠❡t❡r τ2 ❜❡❦❛♥♥t ✐st✳ ❋❛❧❧s ❡s
♥✐❝❤t ❞❡r ❋❛❧❧ ✐st✱ ❦❛♥♥ τ2 ❞✉r❝❤



✸ ❱❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡ ▼♦❞❡❧❧❡ ✶✶✼

τ̂2 =
1

n−m

n∑

i=1

(
Yi − µi(β̂n)

)2

b′′(θ̂ni)

❣❡s❝❤ät③t ✇❡r❞❡♥✱ ✇♦❜❡✐ θ̂ni = (b′)−1(µi(β̂n))✱ i = 1, . . . , n ✐st✳ ❉✐❡s❡r ❙❝❤ät③❡r ✐st
❡✐♥ ❡♠♣✐r✐s❝❤❡s ❆♥❛❧♦❣♦♥ ❞❡r ●❧❡✐❝❤✉♥❣ τ2 = ❱❛rYi

b′′(θi)
❛✉s ▲❡♠♠❛ ✸✳✶✳✷✳

✸✳ ❉✐❡ ❆✉ss❛❣❡ ✷✳ ❞❡s ❙❛t③❡s ✸✳✹✳✶ ❣✐❧t ❛✉❝❤✱ ✇❡♥♥ ♠❛♥ ❞❡♥ ✉♥❜❡❦❛♥♥t❡♥ P❛r❛♠❡t❡r
τ2 ❞✉r❝❤ ❡✐♥❡♥ ❦♦♥s✐st❡♥t❡♥ ❙❝❤ät③❡r τ2n ❡rs❡t③t✳

❲✐❡ ✈❡r✇❡♥❞❡t ♠❛♥ ♥✉♥ ❞❡♥ ❙❛t③ ✸✳✹✳✶ ③✉♠ ❚❡st❡♥ ❞❡r ❍②♣♦t❤❡s❡♥

H0 : β = β0 ✈s✳ H1 : β 6= β0 ,

♦❞❡r ❦♦♠♣♦♥❡♥t❡♥✇❡✐s❡

H0 : βj = βj 0 , j = 1, . . . ,m ✈s✳ H1 : ∃j1 : βj1 6= βj 10 ?

❙❡✐

g(EYi) =
m∑

j=1

xijβj , i = 1, . . . , n ,

❡✐♥ ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡s ❧✐♥❡❛r❡s ▼♦❞❡❧❧ ♠✐t ♥❛tür❧✐❝❤❡r ▲✐♥❦❢✉♥❦t✐♦♥ g✳
◆❛❝❤ ❇❡♠❡r❦✉♥❣ ✸✳✸✳✶ ❣✐❧t

logL(Y, β) =
1

τ2

n∑

i=1

(
Yix

⊤
i β + a(Yi, τ)− b(x⊤i β)

)

✇♦❜❡✐ Y = (Y1, . . . , Yn)
⊤ ✉♥❞ xi = (xi1, . . . , xim)⊤✳ ❉❡s❤❛❧❜ ❣✐❧t

Tn =
2

τ2

n∑

i=1

(
Yix

⊤
i (β̂n − β0)− b(x⊤i β̂n) + b(x⊤i β0)

)

❇❡✐ ❱♦r❣❛❜❡ ❡✐♥❡s ❊①♣♦♥❡♥t✐❛❧✲▼♦❞❡❧❧s ✭τ, b ✲ ❜❡❦❛♥♥t✮✱ ❞❡r ❙t✐❝❤♣r♦❜❡ ❞❡r ❩✐❡❧✈❛r✐❛✲
❜❧❡♥ Y ✉♥❞ ❞❡r ❉❡s✐❣♥♠❛tr✐① X ✇✐r❞ H0 ✈❡r✇♦r❢❡♥✱ ❢❛❧❧s Tn > χ2

m,1−α✱ ✇♦❜❡✐ m ❞✐❡
❆♥③❛❤❧ ❞❡r P❛r❛♠❡t❡r ✐♠ ▼♦❞❡❧❧✱ χ2

m,1−α ❞❛s ✭1 − α✮✲◗✉❛♥t✐❧ ❞❡r χ2
m ✲ ❱❡rt❡✐❧✉♥❣ ✉♥❞

α ∈ (0, 1) ❞❛s ❙✐❣♥✐✜❦❛♥③♥✐✈❡❛✉ ❞❡s ❛s②♠♣t♦t✐s❝❤❡♥ ❚❡sts ✐st✳ ❉✐❡s❡r ❚❡st ✐st ♥✉r ❢ür
r❡❧❛t✐✈ ❣r♦ÿ❡ n ❛♥✇❡♥❞❜❛r✳ ❉❡r ❋❡❤❧❡r ✶✳ ❆rt ❤❛t ❞❛❜❡✐ ✭❢ür n → ∞✮ ❞✐❡ ❛s②♠♣t♦t✐s❝❤❡
❲❛❤rs❝❤❡✐♥❧✐❝❤❦❡✐t α✳ ❋❛❧❧s ❡✐♥❡ ❡✐♥❢❛❝❤❡ ❍②♣♦t❤❡s❡

H0 : βj = 0 ✈s✳ H1 : βj 6= 0

❣❡t❡st❡t ✇❡r❞❡♥ s♦❧❧✱ ❜❡♥✉t③t ♠❛♥ ❞✐❡ ❛✉s ❞❡r ❙t❛t✐st✐❦ T ∗
n ❛❜❣❡❧❡✐t❡t❡ ❚❡stst❛t✐st✐❦ T 1

n ✿
H0 ✇✐r❞ ✈❡r✇♦r❢❡♥✱ ❢❛❧❧s



✶✶✽ ✸ ❱❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡ ▼♦❞❡❧❧❡

|T 1
n | =

|β̂nj |
(Γn(β̂n))jj

> z1−α
2
,

✇♦❜❡✐ z1−α
2
❞❛s ✭1− α

2 ✮✲◗✉❛♥t✐❧ ❞❡r N (0, 1) ✲ ❱❡rt❡✐❧✉♥❣ ✐st✳ ❍✐❡r❜❡✐ ✐st {Γn} s♦ ❣❡✇ä❤❧t
✇♦r❞❡♥✱ ❞❛ss K(β) = Id ✐st✱ ∀β ∈ R

m✳ ❉✐❡s ✐st ❡✐♥ ❛s②♠♣t♦t✐s❝❤❡r ❚❡st ③✉♠ ◆✐✈❡❛✉ α✱
✇❡✐❧

PH0(|T 1
n | > z1−α

2
) = 1− PH0(|T ∗

n | ≤ z1−α
2
) −−−→

n→∞
1− Φ(z1−α

2
) + Φ(−z1−α

2
)

︸ ︷︷ ︸
1−Φ(z1−α

2
)

= 1−
(
1− α

2

)
+ 1−

(
1− α

2

)
= α ,

✇♦❜❡✐

Φ(x) =
1√
2π

x∫

−∞

e−
t2

2 dt

❞✐❡ ❱❡rt❡✐❧✉♥❣s❢✉♥❦t✐♦♥ ❞❡r N (0, 1) ✲ ❱❡rt❡✐❧✉♥❣ ✐st✳

❇❡✐s♣✐❡❧ ✸✳✹✳✶✳ ✭❑r❡❞✐tr✐s✐❦♦♣rü❢✉♥❣✮
✈❣❧✳ ❋❛❤r♠❡✐r✱ ▲✳✱ ❑♥❡✐❜✱ ❚✳✱ ▲❛♥❣✱ ❙✳ ✲ ❘❡❣r❡ss✐♦♥✱ ❙✳✷✵✽✛
❊s ❧✐❡❣t ❢♦❧❣❡♥❞❡r ❉❛t❡♥s❛t③ ❡✐♥❡r sü❞❞❡✉ts❝❤❡♥ ❇❛♥❦ ❛✉s ❞❡♥ ✶✾✾✵❡r ❏❛❤r❡♥ ✈♦r✿
❊s ✇❡r❞❡♥ ❊r❣❡❜♥✐ss❡ ❞❡r ❑r❡❞✐tr✐s✐❦♦♣rü❢✉♥❣ ✈♦♥ n = 1000 ❑r❡❞✐t❛♥trä❣❡♥ ✭❝❛✳ ✼✵✵

❣✉t❡ ✉♥❞ ✸✵✵ s❝❤❧❡❝❤t❡ ❑r❡❞✐t❡✮ ❛♥❛❧②s✐❡rt✿

❩✐❡❧✈❛r✐❛❜❧❡ Yi =

{
0 , ❢❛❧❧s ❞❛s ❉❛r❧❡❤❡♥ ✈♦♠ ❑✉♥❞❡♥ i ③✉rü❝❦❣❡③❛❤❧t ✇✉r❞❡

1 , ❢❛❧❧s ❞❛s ❉❛r❧❡❤❡♥ ✈♦♠ ❑✉♥❞❡♥ i ♥✐❝❤t ③✉rü❝❦❣❡③❛❤❧t ✇✉r❞❡
❉✐❡ ❉❡s✐❣♥♠❛tr✐① X ❡♥t❤ä❧t ❢♦❧❣❡♥❞❡ ❩✉s❛t③✐♥❢♦r♠❛t✐♦♥❡♥ ü❜❡r ❞❡♥ ❑✉♥❞❡♥✿

xi1 ✲ ❑♦♥t♦❢ü❤r✉♥❣ ❞❡s ❑♦♥t♦s ❜❡✐ ❞❡r ❇❛♥❦✿ =

{
1 , ❦❡✐♥ ❑♦♥t♦

0 , s♦♥st

xi2 ✲ ❇❡✇❡rt✉♥❣ ❞❡r ❑♦♥t♦❢ü❤r✉♥❣✿ =

{
1 , ❣✉t❡s ❑♦♥t♦

0 , ❦❡✐♥ ♦❞❡r s❝❤✇❛❝❤❡s ❑♦♥t♦
xi3 ✲ ▲❛✉❢③❡✐t ❞❡s ❑r❡❞✐ts ✐♥ ▼♦♥❛t❡♥
xi4 ✲ ❍ö❤❡ ❞❡s ❑r❡❞✐ts ✐♥ ❉▼

xi5 ✲ ❩❛❤❧✉♥❣s✈❡r❤❛❧t❡♥ ❜❡✐♠ ❑✉♥❞❡♥ ✿ =

{
1 , ❣✉t

0 , s♦♥st

xi6 ✲ ❱❡r✇❡♥❞✉♥❣s③✇❡❝❦✿ =

{
1 , ♣r✐✈❛t

0 , ❣❡s❝❤ä❢t❧✐❝❤

❋r❛❣❡✿ ❲✐❡ s♦❧❧ β̂ ❣❡s❝❤ät③t ✇❡r❞❡♥❄

❆❧s ▼♦❞❡❧❧ ✇✐r❞ ❞❛s ▲♦❣✐t✲▼♦❞❡❧❧ ❣❡✇ä❤❧t ♠✐t pi = P (Yi = 1), i = 1, . . . , n✿



✸ ❱❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡ ▼♦❞❡❧❧❡ ✶✶✾

Y = 1 Y = 0

x1 ❦❡✐♥ ❑♦♥t♦ ✹✺✳✵ ✷✵✳✵
x2 ❣✉t ✶✺✳✸ ✹✾✳✽

s❝❤❧❡❝❤t ✸✾✳✼ ✸✵✳✷
x4 ❑r❡❞✐t❤ö❤❡ Y = 1 Y = 0

0 < . . . ≤ 500 ✶✳✵✵ ✷✳✶✹
500 < . . . ≤ 1000 ✶✶✳✸✸ ✾✳✶✹
1000 < . . . ≤ 1500 ✶✼✳✵✵ ✶✾✳✽✻
1500 < . . . ≤ 2500 ✶✾✳✻✼ ✷✹✳✺✼
2500 < . . . ≤ 5000 ✷✺✳✵✵ ✷✽✳✺✼
5000 < . . . ≤ 7500 ✶✶✳✸✸ ✾✳✼✶
7500 < . . . ≤ 10000 ✻✳✻✼ ✸✳✼✶
10000 < . . . ≤ 15000 ✼✳✵✵ ✷✳✵✵
15000 < . . . ≤ 20000 ✶✳✵✵ ✵✳✷✾

x5 ❋rü❤❡r❡ ❑r❡❞✐t❡ Y = 1 Y = 0

❣✉t ✽✷✳✸✸ ✾✹✳✾✺
s❝❤❧❡❝❤t ✶✼✳✻✻ ✺✳✶✺

x6 ❱❡r✇❡♥❞✉♥❣s③✇❡❝❦ Y = 1 Y = 0

♣r✐✈❛t ✺✼✳✺✸ ✻✾✳✷✾
❜❡r✉✢✐❝❤ ✹✷✳✹✼ ✸✵✳✼✶

❚❛❜❡❧❧❡ ✸✳✶✿ ❆✉s③✉❣ ❛✉s ❞❡♠ ❖r✐❣✐♥❛❧❞❛t❡♥s❛t③

x1 x2 x3 x4 x5 x6

✵✳✷✼✹ ✵✳✸✾✸ ✷✵✳✾✵✸ ✸✷✼✶ ✵✳✾✶✶ ✵✳✻✺✼

❚❛❜❡❧❧❡ ✸✳✷✿ ▼✐tt❡❧✇❡rt❡ xj ✈♦♥ xij ✐♠ ❉❛t❡♥s❛t③

log
pi

1− pi
= β0 + xi1β1 + xi2β2 + xi3β3 + xi4β4 + xi5β5 + xi6β6 ❢ür i = 1, . . . , n ,

✇♦❜❡✐ β = (β0, . . . , β6)
⊤ , m = 7 .

❩✐❡❧✿ ❙❝❤ät③❡ β0, . . . , β6 ✉♥❞ ♣rü❢❡✱ ✇❡❧❝❤❡ ❋❛❦t♦r❡♥ ❢ür ❞✐❡ ❦ü♥❢t✐❣❡ ❑r❡❞✐t✈❡r❣❛❜❡
r❡❧❡✈❛♥t s✐♥❞✳

H0 : βi = 0 ✭▼❡r❦♠❛❧ xi ❜❡❡✐♥✢✉sst ❞✐❡ ❑r❡❞✐t✈❡r❣❛❜❡ ♥✐❝❤t✮ ✇✐r❞ ❛❜❣❡❧❡❤♥t✱ ❢❛❧❧s
♣✲❲❡rt ≤ α✳ ▼❛♥ s✐❡❤t✱ ❞❛ss ✉✳❛✳ ❛✉❝❤ β4 ❢ür ❞✐❡ ❑r❡❞✐t✈❡r❣❛❜❡ ♥✐❝❤t r❡❧❡✈❛♥t ✐st✱ ✇❛s
❞❡r ■♥t✉✐t✐♦♥ ✇✐❞❡rs♣r✐❝❤t✳ ❊✐♥❡ ❱❡r❢❡✐♥❡r✉♥❣ ❞❡s ▼♦❞❡❧❧s ✐st ♥♦t✇❡♥❞✐❣✿



✶✷✵ ✸ ❱❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡ ▼♦❞❡❧❧❡

❲❡rt
√
(I−1

n (β̂))ii T 1
n ♣✲❲❡rt

β0 ✵✳✷✽✶ ✵✳✸✵✸ ✲✵✳✾✹ ✵✳✸✹✼
β1 ✵✳✻✶✽ ✵✳✶✼✺ ✸✳✺✸ < 0.001
β2 ✲✶✳✸✸✽ ✵✳✷✵✶ ✲✻✳✻✺ < 0.001
β3 ✵✳✵✸✸ ✵✳✵✵✽ ✹✳✷✾ < 0.001
β4 ✵✳✵✷✸ ✵✳✵✸✸ ✵✳✼✷ ✵✳✹✼✹
β5 ✲✵✳✾✽✻ ✵✳✷✺✶ ✲✸✳✾✸ < 0.001
β6 ✲✵✳✹✷✻ ✵✳✷✻✻ ✲✷✳✻✾ ✵✳✵✵✼

❚❛❜❡❧❧❡ ✸✳✸✿ ❊r❣❡❜♥✐s ③✉r ▼▲✲❙❝❤ät③✉♥❣ ❞✉r❝❤ ❞❛s ❋✐s❤❡r ❙❝♦r✐♥❣ ❱❡r❢❛❤r❡♥✱ ✇♦❜❡✐√
(I−1

n (β̂))ii ❛❧s ❛s②♠♣t♦t✐s❝❤❡ ❙t❛♥❞❛r❞❛❜✇❡✐❝❤✉♥❣ ✈♦♥ β̂i ✐♥t❡r♣r❡t✐❡rt

✇✐r❞✳ ❙✐❣♥✐✜❦❛♥③♥✐✈❡❛✉✿ α = 0.001

◆❡✉❡s ▼♦❞❡❧❧✿

g(EYi) = β0 + β1xi1 + β2xi2 + β1
3xi3 + β2

3x
2
i3 + β1

4xi4 + β2
4x

2
i4 + β5xi5 + β6xi6

❲❡rt
√
(I−1

n (β̂))ii T 1
n ♣✲❲❡rt

β0 ✲✵✳✹✽✽ ✵✳✸✾✵ ✲✶✳✷✺ ✵✳✷✶✶
β1 ✵✳✻✶✽ ✵✳✶✼✻ ✸✳✺✶ < 0.001
β2 ✲✶✳✸✸✼ ✵✳✷✵✷ ✲✻✳✻✶ < 0.001
β1
3 ✵✳✵✾✷ ✵✳✵✷✺ ✸✳✻✹ < 0.001

β2
3 ✲✵✳✵✵✶ < 0.001 ✲✷✳✷✵ ✵✳✵✷✽

β1
4 ✲✵✳✷✻✹ ✵✳✵✾✾ ✲✷✳✻✽ ✵✳✵✵✼

β1
4 ✵✳✵✷✸ ✵✳✵✵✼ ✸✳✵✼ ✵✳✵✵✷

β5 ✲✵✳✾✾✺ ✵✳✷✺✺ ✲✸✳✾✵ < 0.001
β6 ✲✵✳✹✵✹ ✵✳✶✻✵ ✲✷✳✺✷ ✵✳✵✶✷

❚❛❜❡❧❧❡ ✸✳✹✿ p✲❲❡rt❡ ❢ür ❞✐❡ ❘❡❣r❡ss✐♦♥s❦♦❡✣③✐❡♥t❡♥ ❞❡s ♥❡✉❡♥ ▼♦❞❡❧❧s

❋r❛❣❡✿ ❲❡❧❝❤❡s ▼♦❞❡❧❧ ✐st ❜❡ss❡r❄
▼✐t ❛♥❞❡r❡♥ ❲♦rt❡♥✱ ✇✐r t❡st❡♥

H0 : β
2
3 = 0 ✭❧✐♥❡❛r❡s ▼♦❞❡❧❧✮ ✈s✳ H1 : β

2
3 6= 0 ✭q✉❛❞r❛t✐s❝❤❡s ▼♦❞❡❧❧✮ ❜③✇✳

H0 : β
2
4 = 0 ✭❧✐♥❡❛r❡s ▼♦❞❡❧❧✮ ✈s✳ H1 : β

2
4 6= 0 ✭q✉❛❞r❛t✐s❝❤❡s ▼♦❞❡❧❧✮ .

❉❛❜❡✐ ✈❡r❛❧❧❣❡♠❡✐♥❡r♥ ✇✐r ❞✐❡ ❆rt ❞❡r st❛t✐st✐s❝❤❡♥ ❍②♣♦t❤❡s❡♥ ✇✐❡ ❢♦❧❣t✿ ❡s ✇✐r❞

H0 : Cβ = d ✈s✳ H1 : Cβ 6= d



✸ ❱❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡ ▼♦❞❡❧❧❡ ✶✷✶

❣❡t❡st❡t✱ ✇♦❜❡✐ C ❡✐♥❡ (r ×m) ✲ ▼❛tr✐① ♠✐t rg C = r ≤ m ✐st ✉♥❞ d ∈ R
r✳

❩✉♠ ❱❡r❣❧❡✐❝❤✿ ❢rü❤❡r ❤❛❜❡♥ ✇✐r

H0 : β = β0 ✈s✳ H1 : β 6= β0 , β, β0 ∈ R
m

❣❡t❡st❡t✳ ◆❛tür❧✐❝❤ ✐st β = β0 ❡✐♥ ❙♣❡③✐❛❧❢❛❧❧ ✈♦♥ Cβ = d ♠✐t C = ■❞✱ d = β0✳ ❉✐❡ ♥❡✉❡♥
❍②♣♦t❤❡s❡♥ ❜❡✐♥❤❛❧t❡♥ ❆✉ss❛❣❡♥ ü❜❡r ❞✐❡ ▲✐♥❡❛r❦♦♠❜✐♥❛t✐♦♥❡♥ ❞❡r P❛r❛♠❡t❡r✇❡rt❡✳ ❲✐❡
s♦❧❧ H0 ✈s✳ H1 ❣❡t❡st❡t ✇❡r❞❡♥❄
❙❡✐ β̃n ❞❡r ▼▲✲❙❝❤ät③❡r ✈♦♥ β ✉♥t❡r H0✱ ❞✳❤✳ β̃n = argmax

β ∈ Rm: Cβ=d
logL(Y, β)

❙❡✐ β̂n ❞❡r ▼▲✲❙❝❤ät③❡r ✈♦♥ β ✉♥r❡str✐♥❣✐❡rt✱ ❞✳❤✳ β̂n = argmax
β ∈ Rm

logL(Y, β)✳

❉✐❡ ■❞❡❡ ❞❡r ❢♦❧❣❡♥❞❡♥ ❚❡sts ✐st ❡s✱ β̃n ♠✐t β̂n ③✉ ✈❡r❣❧❡✐❝❤❡♥✳ ❋❛❧❧s ❞✐❡ ❆❜✇❡✐❝❤✉♥❣ β̂n−β̃n
❣r♦ÿ ✐st✱ s♦❧❧ H0 ❛❜❣❡❧❡❤♥t ✇❡r❞❡♥✳

❙❛t③ ✸✳✹✳✷✳ ❙❡✐ logL(Y, β) ❞✐❡ ▲♦❣✲▲✐❦❡❧✐❤♦♦❞✲❋✉♥❦t✐♦♥ ❞❡r ❙t✐❝❤♣r♦❜❡ ❞❡r ❩✐❡❧✈❛r✐❛❜❧❡♥
Y = (Y1, . . . , Yn)

⊤✱ In(β) ❞✐❡ ❋✐s❤❡r✲■♥❢♦r♠❛t✐♦♥s♠❛tr✐①✱ U(β) ❞✐❡ ❙❝♦r❡✲❋✉♥❦t✐♦♥ ❞❡s
✈❡r❛❧❧❣❡♠❡✐♥❡rt❡♥ ❧✐♥❡❛r❡♥ ▼♦❞❡❧❧s ♠✐t ♥❛tür❧✐❝❤❡r ▲✐♥❦❢✉♥❦t✐♦♥

g : g(EYi) = Xiβ , i = 1, . . . , n .

❲✐r ❢ü❤r❡♥ ❢♦❧❣❡♥❞❡ ❚❡stst❛t✐st✐❦❡♥ ❡✐♥✿

✶✳ ▲✐❦❡❧✐❤♦♦❞✲❘❛t✐♦✲❚❡stst❛t✐st✐❦✿

T̃n = 2(logL(Y, β̂n)− logL(Y, β̃n))

✷✳ ❲❛❧❞✲❙t❛t✐st✐❦✿

T̃ ∗
n = (Cβ̂n − d)⊤(CI−1

n (β̂n)C
⊤)−1(Cβ̂n − d)

✸✳ ❙❝♦r❡✲❙t❛t✐st✐❦✿
T
∗
n = U(β̃n)

⊤I−1
n (β̃n)U(β̃n)

❯♥t❡r ❣❡✇✐ss❡♥ ❇❡❞✐♥❣✉♥❣❡♥ ❛♥ ❞✐❡ ❙❝❤ät③❡r β̂ ✉♥❞ β̃ ✭✈❣❧✳ ❙❛t③ ✸✳✹✳✶✮ s✐♥❞ ❞✐❡ ❚❡st✲
st❛t✐st✐❦❡♥ ✶ ✲ ✸ ❛s②♠♣t♦t✐s❝❤ χ2

m✲✈❡rt❡✐❧t✿ ③✳❇✳ ❣✐❧t ❢ür ❞✐❡ ▲✐❦❡❧✐❤♦♦❞✲❘❛t✐♦✲❚❡stst❛t✐st✐❦

T̃n
d−−−→

n→∞
χ2
m .

❋♦❧❣❡r✉♥❣ ✸✳✹✳✶✳ ❉❡r ❙❛t③ ✷✳✻✳✹ ❧✐❡❢❡rt ✉♥s ❢♦❧❣❡♥❞❡ ❊♥ts❝❤❡✐❞✉♥❣sr❡❣❡❧✿ H0 ✇✐r❞ ❛❜❣❡✲
❧❡❤♥t✱ ❢❛❧❧s

T̃n(T̃
∗
n , Tn) > χ2

m,1−α .

❉✐❡s ✐st ❡✐♥ ❛s②♠♣t♦t✐s❝❤❡r ❚❡st ③✉♠ ❙✐❣♥✐✜❦❛♥③♥✐✈❡❛✉ α✳

❇❡✐s♣✐❡❧ ✸✳✹✳✷ ✭❋♦rts❡t③✉♥❣✮✳ ❊s ❡r❣❡❜❡♥ s✐❝❤ ❢♦❧❣❡♥❞❡ ❲❡rt❡ ❢ür ❞✐❡ ❚❡stst❛t✐st✐❦❡♥✿
T̃n = 12.44 , ♣✲❲❡rt✿ ✵✳✵✵✷✵

T̃ ∗
n = 11.47 , ♣✲❲❡rt✿ ✵✳✵✵✸✷ .
❋ür α = 0.005 ❣✐❧t ♣✲❲❡rt ≤ α✱ s♦♠✐t ✇✐r❞ H0 : β

2
4 = 0 ❛❜❣❡❧❡❤♥t ⇒ ❞❛s q✉❛❞r❛t✐s❝❤❡

✈❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡ ▼♦❞❡❧❧ ✐st ❜❡ss❡r✳



✶✷✷ ✸ ❱❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡ ▼♦❞❡❧❧❡

✸✳✺ ❑r✐t❡r✐❡♥ ③✉r ▼♦❞❡❧❧✇❛❤❧ ❜③✇✳ ▼♦❞❡❧❧❛♥♣❛ss✉♥❣

❊s ✐st ❜❡❦❛♥♥t✱ ❞❛ss ❞✐❡ ●üt❡ ❞❡r ❆♥♣❛ss✉♥❣ ❡✐♥❡s ♣❛r❛♠❡tr✐s❝❤❡♥ ▼♦❞❡❧❧s ❛♥ ❞✐❡ ❉❛t❡♥
✐♠ ❆❧❧❣❡♠❡✐♥❡♥ st❡✐❣t✱ ✇❡♥♥ ❞✐❡ ❆♥③❛❤❧ ❞❡r P❛r❛♠❡t❡r ❡r❤ö❤t ✇✐r❞✳ ❉✐❡ ❆✉❢❣❛❜❡ ❡✐♥❡s
❙t❛t✐st✐❦❡rs ✐st ❡s ❛❜❡r✱ ❡✐♥ ❣✉t ♣❛ss❡♥❞❡s ▼♦❞❡❧❧ ♠✐t ❡✐♥❡r ♠ö❣❧✐❝❤st ❦❧❡✐♥❡♥ ❆♥③❛❤❧
❛♥ P❛r❛♠❡t❡r♥ ③✉ ✜♥❞❡♥✳ ❉❡s❤❛❧❜ ✈❡r✇❡♥❞❡t ♠❛♥ ❢♦❧❣❡♥❞❡s ■♥❢♦r♠❛t✐♦♥s❦r✐t❡r✐✉♠ ✈♦♥
❆❦❛✐❦❡✱ ✉♠ ▼♦❞❡❧❧❡ ♠✐t ✭♠ö❣❧✐❝❤❡r✇❡✐s❡✮ ✉♥t❡rs❝❤✐❡❞❧✐❝❤❡♥ P❛r❛♠❡t❡rsät③❡♥ ③✉ ✈❡r❣❧❡✐✲
❝❤❡♥✳
■♥❢♦r♠❛t✐♦♥s❦♦❡✣③✐❡♥t ✈♦♥ ❆❦❛✐❦❡✿

❆■❈ = −2 logL(Y, β̂) + 2m ,

✇♦❜❡✐ Y = (Y1, . . . , Yn) ❞✐❡ ❙t✐❝❤♣r♦❜❡ ❞❡r ❩✐❡❧✈❛r✐❛❜❧❡♥ ✐♠ ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡♥ ❧✐♥❡❛✲
r❡♥ ▼♦❞❡❧❧ ✉♥❞ β̂ ❞❡r ❞❛③✉❣❡❤ör✐❣❡ ▼▲✲❙❝❤ät③❡r s❡✐✳ ❉❡r ❲❡rt ✈♦♥ ❆■❈ ❜❡rü❝❦s✐❝❤t✐❣t
❡✐♥❡rs❡✐ts ❞✐❡ ❋♦r❞❡r✉♥❣ ❞❡r ▼❛①✐♠❛❧✐tät ❞❡r ▲♦❣✲▲✐❦❡❧✐❤♦♦❞✲❋✉♥❦t✐♦♥ logL(Y, β̂)✱ ❛♥❞❡✲
r❡rs❡✐ts ❜❡str❛❢t ❡r ▼♦❞❡❧❧❡ ♠✐t ❡✐♥❡r ❣r♦ÿ❡♥ ❆♥③❛❤❧ ✈♦♥ P❛r❛♠❡t❡r♥ m✳ ❉❛s ▼♦❞❡❧❧ ♠✐t
❞❡♠ ❦❧❡✐♥❡r❡♥ ❆■❈ ✐st ❛❧s ❜❡ss❡r❡s ▼♦❞❡❧❧ ❡✐♥③✉st✉❢❡♥✳ ▼❛♥❝❤♠❛❧ ✈❡r✇❡♥❞❡t ♠❛♥ st❛tt
❆■❈ ❞❡♥ ♥♦r♠✐❡rt❡♥ ❑♦❡✣③✐❡♥t❡♥ ❆■❈✴n✳

❇❡✐s♣✐❡❧ ✸✳✺✳✶ ✭❋♦rts❡t③✉♥❣✮✳ ❇❡r❡❝❤♥❡♥ ✇✐r ❞❡♥ ■♥❢♦r♠❛t✐♦♥s❦♦❡✣③✐❡♥t❡♥ ✈♦♥ ❆❦❛✐❦❡
❢ür ❞❛s ❧✐♥❡❛r❡ ✉♥❞ q✉❛❞r❛t✐s❝❤❡ ▲♦❣✐t✲▼♦❞❡❧❧ ✐♠ ❇❡✐s♣✐❡❧ ❞❡r ❑r❡❞✐tr✐s✐❦♦♣rü❢✉♥❣✿

▲✐♥❡❛r❡s ▼♦❞❡❧❧ : ❆■❈ = 1043.815

◗✉❛❞r❛t✐s❝❤❡s ▼♦❞❡❧❧ : ❆■❈ = 1035.371

▼❛♥ s✐❡❤t ❛♥❤❛♥❞ ❞❡s ❆■❈✱ ❞❛ss ❞✐❡ ❲❛❤❧ ③✉ ●✉♥st❡♥ ❞❡s q✉❛❞r❛t✐s❝❤❡♥ ▼♦❞❡❧❧s ❛✉s❢ä❧❧t✳

❉❡r ◆❛❝❤t❡✐❧ ❞❡r ♦❜❡♥ ❜❡s❝❤r✐❡❜❡♥❡♥ ❆■❈✲❘❡❣❡❧ ❧✐❡❣t ❞❛r✐♥✱ ❞❛ss ❞✐❡ ❡♥❞❣ü❧t✐❣❡ ❊♥t✲
s❝❤❡✐❞✉♥❣ ❞❡♠ ❙t❛t✐st✐❦❡r ü❜❡r❧❛ss❡♥ ❜❧❡✐❜t✳ ❉❡s❤❛❧❜ ✐st ❡s ✇ü♥s❝❤❡♥s✇❡rt✱ ❡✐♥❡♥ st❛t✐✲
st✐s❝❤❡♥ ❚❡st ③✉ ❦♦♥str✉✐❡r❡♥✱ ❞❡r ❞✐❡ ●üt❡ ❞❡r ▼♦❞❡❧❧❛♥♣❛ss✉♥❣ ❜❡✉rt❡✐❧❡♥ ❦❛♥♥✳
❲✐r ✇❡r❞❡♥ ❥❡t③t ❞❡♥ χ2✲❚❡st ❜❡s❝❤r❡✐❜❡♥✳
❙❡✐

g(EYi) = Xiβ , i = 1, . . . , n ,

❡✐♥ ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡s ❧✐♥❡❛r❡s ▼♦❞❡❧❧ ♠✐t ▲✐♥❦❢✉♥❦t✐♦♥ g ✉♥❞ P❛r❛♠❡t❡r✈❡❦t♦r β =
(β1, . . . , βm)⊤✳ ❚❡✐❧❡♥ ✇✐r ❞✐❡ ❩✐❡❧✈❛r✐❛❜❧❡♥ Y1, . . . , Yn ✐♥ k ●r✉♣♣❡♥ ❛✉❢✱ s♦ ❞❛ss s✐❡ ♠ö❣✲
❧✐❝❤st ❤♦♠♦❣❡♥ ✐♥ ❇❡③✉❣ ❛✉❢ ❞✐❡ ③✉ s❝❤ät③❡♥❞❡♥ P❛r❛♠❡t❡r s✐♥❞✳ ❙♦ ❧✐❡❣t ③✳❇✳ ❡✐♥❡ s♦❧❝❤❡
❆✉❢t❡✐❧✉♥❣ ✈♦r✱ ✇❡♥♥ ❞❡r ❲❡rt❡❜❡r❡✐❝❤ ❞❡r ❩✐❡❧✈❛r✐❛❜❧❡♥ Yi ✒❣❡s❝❤✐❝❦t✏ ✐♥ k > m ✶ ■♥t❡r✲
✈❛❧❧❡ ✭al, bl❪ ✉♥t❡rt❡✐❧t ✇✐r❞✿

−∞ ≤ a1 < b1 = a2 < b2 = a3 < . . . < bk−1 = ak < bk ≤ +∞
✶k ≤ m ⇒ D

d
−−−−→
n→∞

χ2

k −m− 1
︸ ︷︷ ︸

<0



✸ ❱❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡ ▼♦❞❡❧❧❡ ✶✷✸

■♥ ❞✐❡ ●r✉♣♣❡ l ❢❛❧❧❡♥ ❛❧❧❡ ❇❡♦❜❛❝❤t✉♥❣❡♥ Yi✱ ❞✐❡ ③✉ ✭al, bl❪ ❣❡❤ör❡♥✳ ❉❛❜❡✐ ♠üss❡♥
✭al, bl❪ s♦ ❣❡✇ä❧t ✇❡r❞❡♥✱ ❞❛ss µ̂j = g−1(Xj β̂) ✐♥♥❡r❤❛❧❜ ❡✐♥❡r ●r✉♣♣❡ ❦♦♥st❛♥t ✇✐r❞✿
µ̂j ≡ µ̂l ∀ j ❛✉s ●r✉♣♣❡ l✳✷ ❙❡✐

• nl ❂ # {Yj : Yj ∈ (al, bl]} ❞✐❡ ❑❧❛ss❡♥stär❦❡ ❞❡r ❑❧❛ss❡ l

• Y l =
1
nl

∑
Yj ❞❛s ❛r✐t❤♠❡t✐s❝❤❡ ▼✐tt❡❧ ✐♥♥❡r❤❛❧❜ ❞❡r ❑❧❛ss❡ l

• β̂ ❞❡r ▼▲✲❙❝❤ät③❡r ✈♦♥ β✱ ❞❡r ❛✉s Y ❣❡✇♦♥♥❡♥ ✇✉r❞❡

• ll(β) =
∑

log fθ(Yj) ❞✐❡ ▲♦❣✲▲✐❦❡❧✐❤♦♦❞✲❋✉♥❦t✐♦♥ ❞❡r ❩✐❡❧✈❛r✐❛❜❧❡♥ Yi ✐♥♥❡r❤❛❧❜
❞❡r ●r✉♣♣❡ l

• µ̂l = g−1(Xlβ̂) ✉♥❞ v(µ̂l) ❞❡r ❊r✇❛rt✉♥❣s✇❡rt✲ ❜③✇✳ ❞❡r ❱❛r✐❛♥③s❝❤ät③❡r ✈♦♥ µl =
EYl✱ ❞✐❡ ❛✉s ❞❡♠ ▼▲✲❙❝❤ät③❡r β̂ ❣❡✇♦♥♥❡♥ ✇✉r❞❡♥

❉❛❜❡✐ ✐st v(µ̂l) = τ2b′′(b′−1(µ̂l))✱ ✇♦❜❡✐ b(·) ❞❡r ❡♥ts♣r❡❝❤❡♥❞❡ ❑♦❡✣③✐❡♥t ✐♥ ❞❡r ❉✐❝❤t❡
fθ ❛✉s ❞❡r ❊①♣♦♥❡♥t✐❛❧❢❛♠✐❧✐❡ ✐st✳ ▼❛♥ ❜✐❧❞❡t ❢♦❧❣❡♥❞❡ ❚❡stst❛t✐st✐❦❡♥✿

χ2 =

k∑

l=1

(Y l − µ̂l)
2

v(µ̂l)/nl

D = −2τ2
k∑

l=1

(
ll(µ̂l)− ll(Y l)

)

❙❛t③ ✸✳✺✳✶✳
❋❛❧❧s n → ∞ ✉♥❞ ❞✐❡ ❆♥③❛❤❧ nl → ∞ ∀ l✱ ❞❛♥♥ ❣✐❧t ✉♥t❡r ❣❡✇✐ss❡♥ ❱♦r❛✉ss❡t③✉♥❣❡♥

❋♦❧❣❡♥❞❡s✿

χ2 d−−−→
n→∞

χ2
k−m−1

D
d−−−→

n→∞
χ2
k−m−1

✷❉✐❡s ✐st ❡✐♥❡ ✐♥❢♦r♠❡❧❧❡ ❇❡s❝❤r❡✐❜✉♥❣ ❞❡s ❱♦r❣❛♥❣s✱ ❜❡✐ ❞❡♠ ❢ür ❥❡❞❡s Yi ni ✉♥❛❜❤ä♥❣✐❣❡ ❑♦♣✐❡♥ ✈♦♥
Yi ❡r③❡✉❣t ✇❡r❞❡♥✱ ❞✐❡ ❞✐❡ i✲t❡ ❑❧❛ss❡ ❜✐❧❞❡♥✳



✶✷✹ ✸ ❱❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡ ▼♦❞❡❧❧❡

❋♦❧❣❡r✉♥❣ ✸✳✺✳✶✳
▼✐t ❍✐❧❢❡ ❞❡r ❇❡❤❛✉♣t✉♥❣❡♥ ❞❡s ❙❛t③❡s ✷✳✻✳✺ ❦ö♥♥❡♥ ❞✐❡ ❍②♣♦t❤❡s❡♥

H0 : Y = (Y1, . . . , Yn) st❛♠♠t ❛✉s ❞❡♠ ▼♦❞❡❧❧ g(EYi) = Xiβ , i = 1, . . . , n

✈s✳

H1 : Y = (Y1, . . . , Yn) st❛♠♠t ♥✐❝❤t ❛✉s ❞❡♠ ▼♦❞❡❧❧ g(EYi) = Xiβ , i = 1, . . . , n

❢♦❧❣❡♥❞❡r♠❛ÿ❡♥ ❣❡t❡st❡t ✇❡r❞❡♥✿
H0 ✇✐r❞ ✭❢ür ❣r♦ÿ❡ n✮ ③✉♠ ❛s②♠♣t♦t✐s❝❤❡♥ ❙✐❣♥✐✜❦❛♥③♥✐✈❡❛✉ α ✈❡r✇♦r❢❡♥✱ ❢❛❧❧s

χ2 > χ2
k−m−1,1−α ❜③✇✳ D > χ2

k−m−1,1−α .

❉✐❡s❡ ❚❡sts s♦❧❧t❡♥ ❛❜❡r ♥✐❝❤t ✈❡r✇❡♥❞❡t ✇❡r❞❡♥✱ ❢❛❧❧s ❞✐❡ ❑❧❛ss❡♥stär❦❡♥ nl ❦❧❡✐♥ s✐♥❞✳

❇❡✐s♣✐❡❧ ✸✳✺✳✷✳
❲✐❡ s❡❤❡♥ ❞✐❡ ♦❜❡♥ ❜❡s❝❤r✐❡❜❡♥❡♥ ❚❡sts ✐♠ ❋❛❧❧❡ ❞❡r ▲♦❣✐t✲ ❜③✇✳ P♦✐ss♦♥✲❘❡❣r❡ss✐♦♥

❛✉s❄

✶✳ ▲♦❣✐t✲▼♦❞❡❧❧✿ Yi ∼ ❇❡r♥♦✉❧❧✐(pi), i = 1, . . . , n

⇒ ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡s ❧✐♥❡❛r❡s ▼♦❞❡❧❧ log
pi

1− pi
= Xiβ , i = 1, . . . , n

❲✐r t❡✐❧❡♥ Y1, . . . , Yn ✐♥ k ❑❧❛ss❡♥ ❛✉❢✱ s♦ ❞❛ss ❞✐❡ ❲❛❤rs❝❤❡✐♥❧✐❝❤❦❡✐t ❞❡s ❆✉❢tr❡t❡♥s
✈♦♥ ✶ ✐♥ ❥❡❞❡r ❑❧❛ss❡ ♠ö❣❧✐❝❤st ❣✉t ❞✉r❝❤ Y l =

1
nl

∑
Yi ❣❡s❝❤ät③t ✇✐r❞✳ ❙♦♠✐t ❣✐❧t

♠✐t µ̂l = p̂l = g−1(Xlβ̂) =
eX

⊤
l β̂

1+e
X⊤

l
β̂
, v(p̂l) = p̂l(1− p̂l)

⇒ χ2 =

k∑

l=1

(Y l − p̂l)
2

p̂l(1− p̂l)/nl

✷✳ P♦✐ss♦♥✲▼♦❞❡❧❧✿ Yi ∼ P♦✐ss♦♥✭λ✮✱

⇒ ✈❡r❛❧❧❣❡♠❡✐♥❡rt❡s ❧✐♥❡❛r❡s ▼♦❞❡❧❧ log λi = Xiβ , i = 1, . . . , n

❙♦♠✐t ❣✐❧t ♠✐t µ̂l = λ̂l = eXlβ̂ , v(λ̂l) = λ̂l

⇒ χ2 =

k∑

l=1

(Y l − λ̂l)
2

λ̂l/nl



✹ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❛♥❛❧②s❡

■♥ ❞✐❡s❡♠ ❑❛♣✐t❡❧ ✇❡r❞❡♥ ▼❡t❤♦❞❡♥ ③✉r ❘❡❞✉❦t✐♦♥ ❞❡r ❑♦♠♣❧❡①✐tät ✈♦♥ s❡❤r ❣r♦ÿ❡♥
st❛t✐st✐s❝❤❡♥ ❉❛t❡♥sät③❡♥ ✈♦r❣❡st❡❧❧t✱ ❞✐❡ ❛❧s ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❛♥❛❧②s❡ ✭❍❑❆✮ ❜❡❦❛♥♥t
s✐♥❞ ✭❡♥❣❧✳ Pr✐♥❝✐♣❛❧ ❈♦♠♣♦♥❡♥t ❆♥❛❧②s✐s✱ P❈❆✮✳ ▼✐t ✐❤r❡r ❍✐❧❢❡ ✐st ❡s ♠ö❣❧✐❝❤ ❡✐♥❡♥
s❡❤r ❤♦❝❤❞✐♠❡♥s✐♦♥❛❧❡♥ ❉❛t❡♥s❛t③ X = (X1, . . . , Xn)

T ∈ R
n ❛✉❢ ✇❡♥✐❣❡ ✇✐r❦❧✐❝❤ ✇✐❝❤✲

t✐❣❡ ❑♦♠♣♦♥❡♥t❡♥ ϕ = AX ∈ R
d ③✉rü❝❦③✉❢ü❤r❡♥✱ d ≪ n✱ ❞✐❡ ❛❜❡r ❞❛❜❡✐ ❞✐❡ ♠❡✐st❡

❱❛r✐❛❜✐❧✐tät ❞❡s ♦r✐❣✐♥❛❧❡♥ ❉❛t❡♥s❛t③❡s X ❜❡✐❜❡❤❛❧t❡♥✳ A ✐st ❞❛❜❡✐ ❡✐♥❡ (d × n)✲▼❛tr✐①✱
❞✐❡ ③✉ ✜♥❞❡♥ ✐st✱ ✇❡♥♥ ❣❡✇✐ss❡ ✭✐♥ ✹✳✷✳✶ ❛♥❣❡❣❡❜❡♥❡✮ ◆❡❜❡♥❜❡❞✐♥❣✉♥❣❡♥ ❡r❢ü❧❧t s✐♥❞✳
❆♥❞❡r❡ ❇❡✐s♣✐❡❧❡ ✈♦♥ ❆♥✇❡♥❞✉♥❣❡♥ s✐♥❞ ❱✐s✉❛❧✐s✐❡r✉♥❣ ✈♦♥ ❦♦♠♣❧❡①❡♥ ❉❛t❡♥sät③❡♥✱
❆✉sr❡✐ÿ❡r✲❊r❦❡♥♥✉♥❣✱ ❈❧✉st❡r✲❆♥❛❧②s❡ ✉✳s✳✇✳✳ ❋ür ❡✐♥❡ Ü❜❡rs✐❝❤t s✐❡❤❡ ③✳❇✳ ❬✽❪✳

✹✳✶ ❊✐♥❢ü❤r✉♥❣

❯♠ ♥❛❝❤❢♦❧❣❡♥❞❡ Pr♦❜❧❡♠st❡❧❧✉♥❣❡♥ ③✉ ♠♦t✐✈✐❡r❡♥✱ ❜❡tr❛❝❤t❡♥ ✇✐r ❡✐♥ ❇❡✐s♣✐❡❧ ❞❡s ❚❡①t
▼✐♥✐♥❣ ❛✉s ❞❡r ❆✉t♦✐♥❞✉str✐❡✿

❇❡✐s♣✐❡❧ ✹✳✶✳✶✳ ❊✐♥ ❆✉t♦❤❡rst❡❧❧❡r ✐st ❞❛r❛♥ ✐♥t❡r❡ss✐❡rt✱ s❡✐♥❡ ❱❡r❧✉st❡✱ ❞✐❡ ✐♥ ❋♦❧❣❡
✈♦♥ ❇❡tr✉❣ ✉♥❞ ■♥❦♦♠♣❡t❡♥③ s❡✐t❡♥s s❡✐♥❡r ◆✐❡❞❡r❧❛ss✉♥❣❡♥ ❜❡✐ ●❛r❛♥t✐❡✲❘❡♣❛r❛t✉r❡♥
❛✉❢tr❡t❡♥✱ ③✉ ♠✐♥✐♠✐❡r❡♥✳ ❉❡s❤❛❧❜ ♠ö❝❤t❡ ❡r ❡✐♥❡ ❆✉❢ä❧❧✐❣❦❡✐ts❛♥❛❧②s❡ ✈♦♥ ❘❡♣❛r❛t✉r✲
❜❡s✐❝❤t✐❣✉♥❣❡♥ ❛✉s ●❛r❛♥t✐❡✲❲❡r❦stätt❡♥ ❜❡tr❡✐❜❡♥✱ ❞✐❡ ❞❛③✉ ❢ü❤r❡♥ s♦❧❧t❡✱ ❝♦♠♣✉t❡r❣❡✲
stüt③t✱ ✈❡r❞ä❝❤t✐❣❡ ▼❡❧❞✉♥❣❡♥ ③✉ ✜♥❞❡♥✱ ❞✐❡ ♥❛❝❤❤❡r ♠❛♥✉❡❧❧ ✉♥❞ ❡✐♥③❡❧♥ ✇❡✐t❡r ❣❡♣rü❢t
✇❡r❞❡♥✳ ❊✐♥ ✇❡✐t❡r❡r ❆♥r❡✐③ ❢ür ❞✐❡ ❛✉t♦♠❛t✐s❝❤❡♥ ❋rü❤❡r❦❡♥♥✉♥❣ ✈♦♥ ❆✉✛ä❧❧✐❣❦❡✐t❡♥
❜❡st❡❤t ❞❛r✐♥✱ ❞❛ss ✢ä❝❤❡♥❞❡❝❦❡♥❞❡ Prü❢✉♥❣❡♥ ♥✉r ❢ür ✇❡♥✐❣❡ ◆✐❡❞❡r❧❛ss✉♥❣❡♥ ✉♥❞ ✐♥
✉♥r❡❣❡❧♠äÿ✐❣❡♥ ❩❡✐t❛❜stä♥❞❡♥ ✭❛✉s ❑♦st❡♥❣rü♥❞❡♥✮ ♠ö❣❧✐❝❤ s✐♥❞✱ ✉♥❞ s❡❧❜st ❞✐❡ ❦ö♥♥t❡
♠❛♥ s✐❝❤ s♣❛r❡♥✳ ❊✐♥ t②♣✐s❝❤❡r ❚❡①t✱ ❞❡r ❡✐♥❡ ●❛r❛♥t✐❡✲❘❡♣❛r❛t✉r ❜❡s❝❤r❡✐❜t✱ ✈❡r✇❡♥✲
❞❡t ♠❛①✐♠❛❧ ✸✵✵✳✵✵✵ ❲ört❡r ❛✉s ❡✐♥❡♠ ❋❛❝❤✇♦rts❝❤❛t③✳ ❉❛❤❡r ✇❡r❞❡♥ s♦❧❝❤❡ ❚❡①t❡ ❛❧s
❱❡❦t♦r❡♥ x = (x1, . . . , xn)

T ❞❡r ▲ä♥❣❡ n = 300.000 ❞❛r❣❡st❡❧❧t✱ ✇♦❜❡✐

xi =

{
1 ✱ ❢❛❧❧s ❞❛s ❲♦rt i ✐♠ ❚❡①t x ✈♦r❦♦♠♠t
0 ✱ s♦♥st

❉✐❡s❡ ❱❡❦t♦r❡♥ x ✇❡r❞❡♥ ♥♦r♠✐❡rt✱ s♦ ❞❛ss s✐❡ ❛✉❢ ❞❡r ❙♣❤är❡ Sn−1 ❧✐❡❣❡♥✳ ■♥♥❡r❤❛❧❜
❡✐♥❡s ❏❛❤r❡s ❡♥tst❡❤t ❞❛❞✉r❝❤ ❡✐♥❡ r✐❡s✐❣❡ ❉❛t❡♥❜❛♥❦ s♦❧❝❤❡r ❱❡❦t♦r❡♥ x ♠✐t ♠❡❤r❡r❡♥
▼✐❧❧✐♦♥❡♥ ❊✐♥trä❣❡♥✳ ❉✐❡ ❆✉❢❣❛❜❡ ❡✐♥❡s ❙t❛t✐st✐❦❡rs ❜❡st❡❤t ✐♥ ❞❡r ❞r❛st✐s❝❤❡♥ ❘❡❞✉❦✲
t✐♦♥ ❞❡r ❉✐♠❡♥s✐♦♥ n − 1 ❞❡s ❉❛t❡♥s❛t③❡s✱ s♦ ❞❛ss ❡✐♥❡ ❱✐s✉❛❧✐s✐❡r✉♥❣ ❞❡s ❉❛t❡♥s❛t③❡s
♠ö❣❧✐❝❤ ✇✐r❞✳ ❊✐♥❡ ♠ö❣❧✐❝❤❡ ▲ös✉♥❣ ❧✐❡❣t ✐♥ ❞❡r ❱❡r✇❡♥❞✉♥❣ ✈♦♥ ❍❑❆✳ ❉✐❡ ❍❑❆ ❣❡❤t
✐♥ ✐❤r❡♥ ❯rs♣rü♥❣❡♥ ❛✉❢ ❞✐❡ ❆r❜❡✐t❡♥ ✈♦♥ ❇❡❧tr❛♥ ✭✶✽✼✸✮ ✉♥❞ ❏♦r❞❛♥ ✭✶✽✼✹✮ ③✉rü❝❦✱ ❞✐❡

✶✷✺



✶✷✻ ✹ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❛♥❛❧②s❡

❞✐❡ ❙✐♥❣❧❡ ❱❛❧✉❡ ❉❡❝♦♠♣♦s✐t✐♦♥ ✈❡r✇❡♥❞❡t❡♥✳ ■♥ ❞❡r ♠❡❤r ♦❞❡r ♠✐♥❞❡r ♠♦❞❡r♥❡♥ ❋♦r♠
✭✈❣❧✳ ✹✳✷✳✶✮ ❡rs❝❤❡✐♥t s✐❡ ❡rst ✐♥ ❞❡♥ ❆r❜❡✐t❡♥ ✈♦♥ ❑✳ P❡❛rs♦♥ ✭✶✾✵✶✮ ✉♥❞ ❍✳ ❍♦t❡❧❧✐♥❣
✭✶✾✸✸✮✳ ❆✉❝❤ ❞❡r ◆❛♠❡ ❍❑❆ st❛♠♠t ✈♦♥ ❍♦t❡❧❧✐♥❣✳ ❊✐♥❡ ❲❡✐t❡r❡♥t✇✐❝❦❧✉♥❣ ❞❡r ▼❡✲
t❤♦❞❡♥ ✐st ●✐rs❤✐❝❦ ✭✶✾✸✾✮✱ ❆♥❞❡rs♦♥ ✭✶✾✻✸✮✱ ❘❛♦ ✭✶✾✻✹✮ ✉♥❞ ❛♥❞❡r❡♥ ③✉ ✈❡r❞❛♥❦❡♥✳
❊rst ♥❛❝❤ ❞❡r ❊✐♥❢ü❤r✉♥❣ ❞❡r P❈s ✐st ❛❜❡r ❞✐❡s❡ ▼❡t❤♦❞♦❧♦❣✐❡ r✐❝❤t✐❣ ❛♥❣❡✇❛♥❞t ❣❡✇♦r✲
❞❡♥✳ ❉❡♥♥ ♦❤♥❡ ❈♦♠♣✉t❡r ✐st ❞✐❡ ❇❡r❡❝❤♥✉♥❣ ✈♦♥ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥ ❢ür n > 4 s❡❤r
s❝❤✇✐❡r✐❣✳ ❙❡✐t ❞❡♥ ✶✾✽✵❡r ❏❛❤r❡♥ ❣✐❜t ❡s ❡✐♥❡♥ r❛s❛♥t❡♥ ❆♥st✐❡❣ ❞❡r ❆♥✇❡♥❞✉♥❣❡♥ ✈♦♥
❍❑❆ ✐♥ ❛❧❧❡♥ ❲✐ss❡♥s❜❡r❡✐❝❤❡♥ ✭✈♦r ❛❧❧❡♠ ✐♥ ■♥❣❡♥✐❡✉r✇✐ss❡♥s❝❤❛❢t❡♥✮✱ ✇♦ ♠✉❧t✐✈❛r✐❛t❡
❉❛t❡♥sät③❡ ❛♥❛❧②s✐❡rt ✇❡r❞❡♥ s♦❧❧❡♥✳

✹✳✷ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❛♥❛❧②s❡ ❛✉❢ ▼♦❞❡❧❧❡❜❡♥❡

■♥ ❞✐❡s❡♠ ❆❜s❝❤♥✐tt ✇♦❧❧❡♥ ✇✐r ❞❛s ❍❛✉♣t♣r♦❜❧❡♠ ❞❡r ❍❑❆ ❢ür ❩✉❢❛❧❧sst✐❝❤♣r♦❜❡♥ X =
(X1, . . . , Xn)

T ♠✐t ❜❡❦❛♥♥t❡r ❑♦✈❛r✐❛♥③str✉❦t✉r ❡✐♥❢ü❤r❡♥✳ ❙❡✐ X = (X1, . . . , Xn)
T ❡✐♥❡

❩✉❢❛❧❧sst✐❝❤♣r♦❜❡ ✈♦♥ ❩✉❢❛❧❧s③❛❤❧❡♥ Xi ♠✐t ❜❡❦❛♥♥t❡r ❑♦✈❛r✐❛♥③♠❛tr✐① Σ ✉♥❞ ❱❛rXi ∈
(0,∞)✱ i = 1, . . . , n✳ ❙❡✐❡♥ λ1 > λ2 > . . . > λn > 0 ❞✐❡ ❊✐❣❡♥✇❡rt❡ ✈♦♥ Σ✱ ❞✐❡ ✐♥
❛❜st❡✐❣❡♥❞❡r ❘❡✐❤❡♥❢♦❧❣❡ ❣❡♦r❞♥❡t ✉♥❞ ❛❧❧❡ ✈♦♥ ❡✐♥❛♥❞❡r ✈❡rs❝❤✐❡❞❡♥ s✐♥❞✳ ❲✐r s✉❝❤❡♥
▲✐♥❡❛r❦♦♠❜✐♥❛t✐♦♥❡♥ αTX ✈♦♥ Xi✱ ❞✐❡ ❞✐❡ ♠❛①✐♠❛❧❡ ❱❛r✐❛♥③ ❜❡s✐t③❡♥✱ ✇♦❜❡✐ ❞❡r ❱❡❦t♦r
α ❡♥ts♣r❡❝❤❡♥❞ ♥♦r♠✐❡rt ✐st ③✳❇✳✱ s♦ ❞❛ss α ∈ Sn−1 ✐♥ ❞❡r ❊✉❦❧✐❞✐s❝❤❡♥ ◆♦r♠✳

❉❡✜♥✐t✐♦♥ ✹✳✷✳✶✳ ❉✐❡ ▲✐♥❡❛r❦♦♠❜✐♥❛t✐♦♥ αT
i X✱ i = 1, . . . , n✱ ❤❡✐ÿt i✲t❡ ❍❛✉♣t❦♦♠♣♦✲

♥❡♥t❡ ✈♦♥ X✱ ❢❛❧❧s s✐❡ ❞✐❡ ♠❛①✐♠❛❧❡ ❱❛r✐❛♥③ ❜❡s✐t③t ✉♥t❡r ❞❡r ❇❡❞✐♥❣✉♥❣✱ ❞❛ss αi ∈ Sn−1

✉♥❞ αT
1 X,αT

2 X, . . . , αT
i−1X ✉♥❞ αT

i X ✉♥❦♦rr❡❧✐❡rt s✐♥❞✿




❱❛r αTX → max
α

|α| = 1

❈♦✈(αTX,αT
j X) = 0, j = 1, . . . , i− 1

✭✹✳✷✳✶✮

❉❛❜❡✐ ❤❡✐ÿt αi ❞❡r ❑♦❡✣③✐❡♥t❡♥✈❡❦t♦r ❞❡r i✲t❡♥ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡ αT
i X✳

❙❛t③ ✹✳✷✳✶✳ ❉✐❡ i✲t❡ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡ ✈♦♥ X ✐st ❣❡❣❡❜❡♥ ❞✉r❝❤

Yi = αT
i X,

✇♦❜❡✐ αi ❞❡r ❊✐❣❡♥✈❡❦t♦r ✈♦♥ Σ ♠✐t ❊✐❣❡♥✇❡rt λi ✐st✳ ❉❛❜❡✐ ❣✐❧t

❱❛r(Yi) = λi, i = 1, . . . , n.

❇❡✇❡✐s✳ ❩❡✐❣❡♥ ✇✐r✱ ❞❛ss ❞✐❡ ❆✉ss❛❣❡ ❞❡s ❙❛t③❡s ❣✐❧t ❢ür i = 1, 2✳ ❋ür i > 2 ✐st ❞❡r ❇❡✇❡✐s
❛♥❛❧♦❣✳

❋ür i = 1 ❣✐❜t ❡s ❡✐♥❡ ◆❡❜❡♥❜❡❞✐♥❣✉♥❣ |α| = 1 ✐♥ ✭✹✳✷✳✶✮✱ ❞✐❡ ✐♥ ❞✐❡ ▲❛❣r❛♥❣❡✲
❩✐❡❧❢✉♥❦t✐♦♥

f(α) = ❱❛r(αTX) + λ(|α|2 − 1)



✹ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❛♥❛❧②s❡ ✶✷✼

ü❜❡r♥♦♠♠❡♥ ✇✐r❞✳ ❉❛❜❡✐ ❣✐❧t

❱❛r(αTX) = E

(
αTX − EαTX

)2
= E

(
αT (X − EX)

)2
= EαT (X − EX)(X − EX)Tα

= αT
E(X − EX)(X − EX)Tα = αTΣα,

|α|2 = αT · α✱ ✉♥❞ f(α) = αTΣα+ λ(αTα− 1)✳
❉✐❡ ♥♦t✇❡♥❞✐❣❡ ❇❡❞✐♥❣✉♥❣ ❞❡s ▼❛①✐♠✉♠s ✐st

∂f

∂α
= 0,

∂f

∂λ
= 0,

✇♦❜❡✐ ❞✐❡ ③✇❡✐t❡ ●❧❡✐❝❤✉♥❣ ❡✐♥❢❛❝❤ ❞✐❡ ◆❡❜❡♥❜❡❞✐♥❣✉♥❣ |α| = 1 r❡♣räs❡♥t✐❡rt✳
∂f
∂α =

(
∂f
∂α1 , . . . ,

∂f
∂αn

)
✱ ✇♦❜❡✐ α = (α1, . . . , αn)T ✉♥❞ ∂f

∂α = 0 s❝❤r❡✐❜t s✐❝❤ Σα−λα = 0 ✐♥

❱❡❦t♦r❢♦r♠ ♦❞❡r Σα = λα✱ ✇❛s ❤❡✐ÿt✱ ❞❛ss α ❡✐♥ ❊✐❣❡♥✈❡❦t♦r ✈♦♥ Σ ♠✐t ❞❡♠ ❊✐❣❡♥✇❡rt
λ ✐st✳ ❉❛ ❱❛r(αTX) = αTΣα ♠❛①✐♠❛❧ s❡✐♥ s♦❧❧✱ ❣✐❧t

❱❛r(αTX) = αTλα = λαTα︸︷︷︸
1

= λ

✉♥❞ λ = λ1 > λ2 > . . . > λn ⇒ λ = λ1 ✉♥❞ α = α1✳
❋ür i = 2✱ s♦❧❧ ❞✐❡ ▼❛①✐♠✐❡r✉♥❣s❛✉❢❣❛❜❡





αTΣα→ max
α

αT · α = 1
❈♦✈(αT

1 X,αTX) = 0

❜❡③ü❣❧✐❝❤ α ❣❡❧öst ✇❡r❞❡♥✱ ✇♦❜❡✐

❈♦✈(α1X,αTX) = αT
1 Σα = αTΣα1 = αTλ1α1 = λ1α

Tα1.

❉❛s ❤❡✐ÿt✱ ❢♦❧❣❡♥❞❡ ❋✉♥❦t✐♦♥ s♦❧❧ ♠❛①✐♠✐❡rt ✇❡r❞❡♥✿

f(α) = αTΣα+ λ(αTα− 1) + δαTα1.

●❡♥❛✉ ✇✐❡ ♦❜❡♥ ❜❡❦♦♠♠t ♠❛♥

∂f

∂α
= Σα+ λα+ δα1 = 0

❉✉r❝❤ ❞✐❡ ◆❡❜❡♥❜❡❞✐♥❣✉♥❣❡♥ αT
1 Σα = 0 ✉♥❞ αT

1 α = 0 ✭s✐❡❤❡ ♦❜❡♥✮ ❜❡❦♦♠♠t ♠❛♥

αT
1

∂f

∂α
= δ αT

1 α1︸ ︷︷ ︸
1

= δ = 0,

✇❛s ❜❡❞❡✉t❡t✱ ❞❛ss Σα = λα ✉♥❞ α ✐st ✇✐❡❞❡r ❡✐♥ ❊✐❣❡♥✈❡❦t♦r ✈♦♥ Σ ♠✐t ❊✐❣❡♥✇❡rt λ✳
❉❛ α ♦rt❤♦❣♦♥❛❧ ③✉ α1 s❡✐♥ s♦❧❧ ✉♥❞ ❱❛r(αTX) = λ ♠❛①✐♠❛❧ s❡✐♥ s♦❧❧✱ ❜❡❦♦♠♠t ♠❛♥



✶✷✽ ✹ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❛♥❛❧②s❡

α = α2 ✉♥❞ λ = λ2 ⇒ Y2 = αT
2 X✳

Ü❜✉♥❣s❛✉❢❣❛❜❡ ✹✳✷✳✶✳ ❋ü❤r❡♥ ❙✐❡ ❞❡♥ ❇❡✇❡✐s ❢ür i > 2 ❞✉r❝❤✦

❙❡✐ ♥✉♥ A = (α1, . . . , αn)✳ ❉✐❡s ✐st ❡✐♥❡ ♦rt❤♦❣♦♥❛❧❡ (n × n)✲▼❛tr✐①✱ ❢ür ❞✐❡ ❣✐❧t ✭❛✉s
❞❡♠ ❙❛t③ ✹✳✷✳✶✮✱ ❞❛ss

ΣA = AΛ, Λ = ❞✐❛❣(λ1, . . . , λn),

♦❞❡r✱ äq✉✐✈❛❧❡♥t ❞❛③✉✱

ATΣA = Λ, Σ = AΛAT ✭✹✳✷✳✷✮

❙❛t③ ✹✳✷✳✷✳ ❋ür ❡✐♥❡ (n × m)✲▼❛tr✐① B✱ ♠✐t ♦rt❤♦❣♦♥❛❧❡♥ ❙♣❛❧t❡♥ bi✱ i = 1, . . . ,m✱
m ≤ n✱ s❡✐ Y = BTX ✉♥❞ ΣY = ❈♦✈(Y ) = BTΣB ❞✐❡ ❑♦✈❛r✐❛♥③♠❛tr✐① ✈♦♥ Y ✳ ❉❛♥♥
❣✐❧t

Am = argmax
B

❙♣✉r(ΣY ),

✇♦❜❡✐ Am = (α1, . . . , αm)✳

❇❡✇❡✐s✳ ❉❛ α1, . . . , αn ❡✐♥❡ ❇❛s✐s ✐♥ R
n ❜✐❧❞❡♥✱ ❣✐❧t

bk =
n∑

i=1

cikαi, k = 1, . . . ,m,

✇♦❜❡✐ B = (b1, . . . , bm)✱ ♦❞❡r✱ ✐♥ ▼❛tr✐①❢♦r♠✱ B = AC✱ ♠✐t C = (cij)✱ i = 1, . . . , n✱
j = 1, . . . ,m✳ ❉❛❤❡r ❣✐❧t

ΣY = BTΣB = CT ATΣA︸ ︷︷ ︸
Λ

C = CTΛC =

n∑

j=1

λjcjc
T
j ,

✇♦❜❡✐ cTj ❞✐❡ j✲t❡ ❩❡✐❧❡ ✈♦♥ C ✐st✳ ❉❡s❤❛❧❜ ❣✐❧t

❙♣✉r(ΣY ) =
n∑

j=1

λj❙♣✉r(cjc
T
j ) =

n∑

j=1

λj❙♣✉r(c
T
j cj) =

n∑

j=1

λj |cj |2.

❉❛ C = A−1B = ATB✱ ❣✐❧t

CTC = BT AAT
︸ ︷︷ ︸
In

B = BTB︸ ︷︷ ︸
Im

= Im,

✇♦❜❡✐

Ik = ❞✐❛❣(1, . . . , 1︸ ︷︷ ︸
k

).
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❙♦♠✐t

n∑

i=1

m∑

j=1

c2ij = m,

✉♥❞ ❞✐❡ ❙♣❛❧t❡♥ ✈♦♥ C s✐♥❞ ♦rt❤♦♥♦r♠❛❧✳ ❉❛❤❡r ❦❛♥♥ C ❛❧s ❡✐♥ ❚❡✐❧ ✭❡rst❡m ❙♣❛❧t❡♥✮ ❡✐♥❡r
♦rt❤♦♥♦r♠❛❧❡♥ (n×n)✲▼❛tr✐① D ❣❡s❡❤❡♥ ✇❡r❞❡♥✳ ❉❛ ❛✉❝❤ ❞✐❡ ❩❡✐❧❡♥ ✈♦♥ D ♦rt❤♦♥♦r♠❛❧❡
❱❡❦t♦r❡♥ s✐♥❞ ✉♥❞ cTi ❞✐❡ ❡rst❡♥ m ❊❧❡♠❡♥t❡ ❞❡r ❩❡✐❧❡♥ ✈♦♥ D ❜✐❧❞❡♥✱ ❣✐❧t

cTi ci =
m∑

j=1

c2ij ≤ 1, i = 1, . . . , n.

❉❛

❙♣✉r(ΣY ) =

n∑

i=1

λi

m∑

j=1

c2ij

︸ ︷︷ ︸
βi

=

n∑

i=1

βiλi,

✇♦❜❡✐ βi ≤ 1✱ i = 1, . . . , n✱
∑n

i=1 βi = m✱ ✉♥❞

λ1 > λ2 > . . . > λn,

n∑

i=1

βiλi → max

❢ür β1 = . . . = βm = 1✱ βm+1 = . . . = βn = 0✳ ❆❜❡r ✇❡♥♥ B = Am✱ ❞❛♥♥ ❣✐❧t

cij =

{
1 , 1 ≤ i = j ≤ m
0 , s♦♥st

,

✇♦r❛✉s β1 = . . . = βm = 1✱ βm+1 = . . . = βn = 0 ❢♦❧❣t✳ ❙♦♠✐t ✐st Am ❞✐❡ ▲ös✉♥❣ ✈♦♥
❙♣✉r(ΣY )→ maxB✳

❉✐❡ ❇❡❤❛✉♣t✉♥❣ ❞❡s ❙❛t③❡s ✹✳✷✳✷ ❜❡❞❡✉t❡t✱ ❞❛ss

❱❛r

(
m∑

i=1

Yi

)
= ❱❛r

(
m∑

i=1

αT
i X

)

♠❛①✐♠❛❧ ✐st ❢ür ∀m = 1, . . . , n✱ ❢❛❧❧s Yi ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥ ✈♦♥ X s✐♥❞✳

❋♦❧❣❡r✉♥❣ ✹✳✷✳✶✳ ✭❙♣❡❦tr❛❧❞❛rst❡❧❧✉♥❣ ✈♦♥ Σ✮✳ ❊s ❣✐❧t

Σ =

n∑

i=1

λi · αi · αT
i ✭✹✳✷✳✸✮

❇❡✇❡✐s✳ ❉✐❡ ❉❛rst❡❧❧✉♥❣ ❢♦❧❣t ❛✉s ✭✹✳✷✳✷✮✱ ✇❡✐❧

Σ = (α1, . . . , αn) · ❞✐❛❣(λ1, . . . , λn) · (α1, . . . , αn)
T
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❇❡♠❡r❦✉♥❣ ✹✳✷✳✶✳ ✶✳ ❉❛ λ1 > λ2 > . . . > λn ♠✐t |αi| = 1✱ ∀i✱ ❢♦❧❣t ❛✉s ❞❡r ❉❛rst❡❧✲
❧✉♥❣ ✭✹✳✷✳✸✮✱ ❞❛ss ❞✐❡ ❡rst❡♥ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥ ♥✐❝❤t ♥✉r ❞❡♥ ❍❛✉♣t❜❡✐tr❛❣ ③✉r
❱❛r✐❛♥③ ✈♦♥ Xi✱ s♦♥❞❡r♥ ❛✉❝❤ ③✉ ❞❡♥ ❑♦✈❛r✐❛♥③❡♥ ❧✐❡❢❡r♥✳ ❉✐❡s❡r ❇❡✐tr❛❣ ✇✐r❞ ♠✐t
st❡✐❣❡♥❞❡♠ i = 1, . . . , n ✐♠♠❡r ❣❡r✐♥❣❡r✳

✷✳ ❋❛❧❧s ❘❛♥❣(Σ) = r < n✱ ❞❛♥♥ ❜❡❞❡✉t❡t ✭✹✳✷✳✸✮✱ ❞❛ss Σ ❦♦♠♣❧❡tt ❛✉s ✐❤r❡♥ ❡rst❡♥ r
❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥ ✉♥❞ ❑♦❡✣③✐❡♥t❡♥✈❡❦t♦r❡♥ ❜❡st✐♠♠t ✇❡r❞❡♥ ❦❛♥♥✳

▲❡♠♠❛ ✹✳✷✳✶✳ ❙❡✐ Σ ❡✐♥❡ ♣♦s✐t✐✈ ❞❡✜♥✐t❡ s②♠♠❡tr✐s❝❤❡ (n×n)✲▼❛tr✐① ♠✐t ❊✐❣❡♥✇❡rt❡♥
λ1 > λ2 > . . . > λn > 0 ✉♥❞ ❡♥ts♣r❡❝❤❡♥❞❡♥ ❊✐❣❡♥✈❡❦t♦r❡♥ α1, . . . , αn✱ |αi| = 1✱ i =
1, . . . , n✳ ❉❛♥♥ ❣✐❧t

λk = sup
α∈Sk,α 6=0

αTΣα

|α|2 ,

✇♦❜❡✐ Sk = 〈α1, . . . , αk−1〉⊥ ❢ür ❜❡❧✐❡❜✐❣❡ k = 1, . . . , n✳

❇❡✇❡✐s✳ ❙❡✐

c = sup
α∈Sk

αTΣα

|α|2 .

❩❡✐❣❡♥ ✇✐r✱ ❞❛ss λk ≤ c ≤ λk✳

✶✳ c ≥ λk✿ ❋ür α = αk ❜❡✇❡✐st ♠❛♥

c ≥ αT
kΣαk

αT
k αk

=
λkα

T
k αk

αT
k αk

= λk

✷✳ c ≤ λk✿ ❊s ✐st ③✉ ③❡✐❣❡♥✱ ❞❛ss

αTΣα ≤ λk|α|2, ∀α ∈ Sk, α 6= 0, ∀α ∈ R
n α =

n∑

i=1

ciαi,

✇❡✐❧ {αi}ni=1 ❡✐♥❡ ♦rt❤♦♥♦r♠❛❧❡ ❇❛s✐s ❜✐❧❞❡♥✳

α ∈ Sk ⇒ c1 = . . . = ck−1 = 0,

❞❛ss ❤❡✐ÿt

α =
n∑

i=k

ciαi, Σα =
n∑

i=1

ciΣαi =
n∑

i=1

ciλiαi, αTΣα =

(
n∑

i=1

ciαi

)T ( n∑

i=1

λiciαi

)

=
n∑

i,j=1

cicjλi α
T
j αi︸ ︷︷ ︸
δij

=
n∑

i=1

c2iλi, |α|2 =
n∑

i=1

c2i



✹ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❛♥❛❧②s❡ ✶✸✶

❉❡s❤❛❧❜ ❣✐❧t ❢ür α ∈ Sk

αTΣα =
n∑

i=k

c2iλi ≤
n∑

i=k

λkc
2
i = λk

n∑

i=k

c2i = λk|α|2,

✉♥❞ c ≤ λk ✇❡✐❧ λk > λj , j > k✳

❙❛t③ ✹✳✷✳✸✳ ❙❡✐❡♥ B✱ Y ✉♥❞ ΣY ✇✐❡ ✐♥ ❙❛t③ ✹✳✷✳✷✳ ❉❛♥♥ ❣✐❧t

Am = argmax
B

det(ΣY ),

✇♦❜❡✐ Am = (α1, . . . , αm)✳

❇❡✇❡✐s✳ ❙❡✐ k ∈ {1, . . . ,m} ✜①✐❡rt✳ ❋ü❤r❡♥ ✇✐r Sk = 〈α1, . . . , αk−1〉⊥ ⊂ R
k ❡✐♥ ✭✇✐❡ ✐♥

▲❡♠♠❛ ✹✳✷✳✶✮✳ ❙❡✐❡♥ µ1 > µ2 > . . . > µm ❊✐❣❡♥✇❡rt❡ ✈♦♥ ΣY = BTΣB ♠✐t ❡♥ts♣r❡❝❤❡♥✲
❞❡♥ ❊✐❣❡♥✈❡❦t♦r❡♥ γ1, . . . , γm✱ ❞✐❡ ♦rt❤♦♥♦r♠✐❡rt s✐♥❞✳ ❙❡✐ Tk = 〈γk+1, . . . , γm〉 ⊂ R

m✳ ❊s
❣✐❧t ♦✛❡♥s✐❝❤t❧✐❝❤

❉✐♠(Sk) = n− k + 1, ❉✐♠Tk = k.

●❡♥❛✉ ✇✐❡ ✐♥ ▲❡♠♠❛ ✹✳✷✳✶ ❦❛♥♥ ❣❡③❡✐❣t ✇❡r❞❡♥✱ ❞❛ss ∀γ 6= 0✱ γ ∈ Tk ❣✐❧t

γTΣγ

|γ|2 ≥ µk.

❇❡tr❛❝❤t❡♥ ✇✐r S̃k = B(Tk) ⊂ R
n✳ ❉❛ B ❡✐♥❡ ♦rt❤♦♥♦r♠❛❧❡ ❚r❛♥s❢♦r♠❛t✐♦♥ ✐st✱ ✐st s✐❡

❡✐♥❞❡✉t✐❣ ✉♥❞ s♦♠✐t ❉✐♠(S̃k) = ❉✐♠(Tk) = k✳ ❆✉s ❞❡r ❋♦r♠❡❧

❉✐♠(Sk ∪ S̃k) +❉✐♠(Sk ∩ S̃k) = ❉✐♠Sk +❉✐♠S̃k

❢♦❧❣t

❉✐♠(Sk ∩ S̃k) = ❉✐♠Sk︸ ︷︷ ︸
n−k+1

+❉✐♠S̃k︸ ︷︷ ︸
k

−❉✐♠(Sk ∪ S̃k)︸ ︷︷ ︸
≤n

≥ n− k + 1 + k − n = 1

❞❛s ❤❡✐ÿt✱ ∃α ∈ Sk ∩ S̃k✱ α 6= 0✳ ❋ür ❞✐❡s❡s α ❣✐❧t α = Bγ✱ γ ∈ Tk ✉♥❞ ❞❡s❤❛❧❜

µk ≤
γTΣγ2

|γ|2 =
γTBTΣBγ

γTγ︸︷︷︸
γTBTBγ

=
αTΣα

αTα
≤ λk

♥❛❝❤ |γ| = |Bγ|✱ ✇❡✐❧ B ❉✐st❛♥③❡♥ ❜❡✐❜❡❤ä❧t✳ ❉❡s❤❛❧❜ ❣✐❧t µk ≤ λk ❢ür ❛❧❧❡ k = 1, . . . ,m✱
✉♥❞
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det(ΣY ) =

m∏

i=1

µk ≤
m∏

k=1

λk ⇒ max
B

det(ΣY ) ≤
m∏

k=1

λk.

❆❧❧❡r❞✐♥❣s ❣✐❧t ❢ür B = Am✱ µk = λk✱ k = 1, . . . ,m✱ ❞❡s❤❛❧❜

Am = argmax
B

det(ΣY ).

◆✉♥ ❜❡tr❛❝❤t❡♥ ✇✐r ❣❡♦♠❡tr✐s❝❤❡ ❊✐❣❡♥s❝❤❛❢t❡♥ ✈♦♥ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥✳

Pr♦♣♦s✐t✐♦♥ ✹✳✷✳✶✳ ❉✐❡ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❦♦❡✣③✐❡♥t❡♥ α1, . . . , αn s✐♥❞ ❞✐❡ ❍❛✉♣t❛❝❤✲
s❡♥ ❞❡s ❊❧❧✐♣s♦✐❞s xTΣ−1x = c✱ ♠✐t ❍❛❧❜❛❝❤s❡♥❧ä♥❣❡♥

√
cλi✱ i = 1, . . . , n✳

❇❡✇❡✐s✳ ❉✐❡ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥ ✈♦♥ X s✐♥❞ ❣❡❣❡❜❡♥ ❞✉r❝❤ Z = ATX✱ ✇♦❜❡✐ A =
(α1, . . . , αn) ❡✐♥❡ ♦rt❤♦♥♦r♠❛❧❡ ❚r❛♥s❢♦r♠❛t✐♦♥ ✐st✱ ❞❡s❤❛❧❜ AT = A−1✱ X = AZ✳ ❉❛❤❡r
❣✐❧t ❢ür ✉♥s❡r ❊❧❧✐♣s♦✐❞

xTΣ−1x =︸︷︷︸
Subst.x=Az

zTATΣ−1Az = zTΛ−1z = c,

✇♦❜❡✐

ATΣ−1A = Λ−1 = ❞✐❛❣

(
1

λ1
, . . . ,

1

λn

)
, Λ = ❞✐❛❣(λ1, . . . , λn),

✇❡✐❧ Σ−1 ❞✐❡s❡❧❜❡♥ ❊✐❣❡♥✈❡❦t♦r❡♥ ♠✐t ❊✐❣❡♥✇❡rt❡♥ 1
λi

❤❛t✳ ❉❛❤❡r ❦❛♥♥ ❞❛s ❊❧❧✐♣s♦✐❞

zTΛ−1z = c ✐♥ s❡✐♥❡r ♥♦r♠✐❡rt❡♥ ❋♦r♠ ❛❧s

n∑

k=1

z2k
cλk

= 1

❞❛r❣❡st❡❧❧t ✇❡r❞❡♥✳ ❉❛r❛✉s ❢♦❧❣t✱ ❞❛ss αi ✐♥ ❞✐❡ ❘✐❝❤t✉♥❣❡♥ s❡✐♥❡r ❍❛✉♣t❛❝❤s❡♥ ③❡✐❣❡♥
✉♥❞✱ ❞❛ss s❡✐♥❡ ❍❛❧❜❛❝❤s❡♥❧ä♥❣❡♥ ❣❧❡✐❝❤

√
cλi s✐♥❞✳

❇❡♠❡r❦✉♥❣ ✹✳✷✳✷✳ ✭▼✉❧t✐✈❛r✐❛t❡ ◆♦r♠❛❧✈❡rt❡✐❧✉♥❣✮✳ ❋❛❧❧s X ∼ N(0,Σ) ❣✐❧t✱ ❞❛♥♥ ✐st
xTΣ−1x = c ❡✐♥ ❊❧❧✐♣s♦✐❞ ❞❡r ❦♦♥st❛♥t❡♥ ❲❛❤rs❝❤❡✐♥❧✐❝❤❦❡✐t ❢ür X✱ ✇❡✐❧ ❞✐❡ ❉✐❝❤t❡ ✈♦♥
X

fX(x) =
1√
detΣ

exp

{
−1

2
xTΣ−1x

}
· 1

(2π)
n
2

, x ∈ R
n,

❛✉❢ ❞✐❡s❡♠ ❊❧❧✐♣s♦✐❞ ❦♦♥st❛♥t ❜❧❡✐❜t✳ ❙♦♥st ❞❡✜♥✐❡rt xTΣ−1x = c ❑♦♥t✉r❡♥ ❞❡r ❦♦♥st❛♥✲
t❡♥ ❲❛❤rs❝❤❡✐♥❧✐❝❤❦❡✐t ❢ür X✳ ❉❛❜❡✐ ③❡✐❣t ❞❡r ❱❡❦t♦r α1 ✐♥ ❞✐❡ ❘✐❝❤t✉♥❣ ❞❡r ❣röÿt❡♥
❱❛r✐❛♥③ ✈♦♥ αTX ✭❡s ✐st ❞✐❡ ❣röÿt❡ ❍❛✉♣t❛❝❤s❡ ♠✐t ▲ä♥❣❡

√
cλ1 ❞❡s ❊❧❧✐♣s♦✐❞s✮❀ α2 ③❡✐❣t

✐♥ ❞✐❡ ❘✐❝❤t✉♥❣ ❞❡r ③✇❡✐t ❣röÿt❡♥ ❱❛r✐❛♥③ ✭❍❛❧❜❛❝❤s❡
√
cλ2✮✱ ✉s✇✳ ✭✈❣❧✳ ❇❡❞✐♥❣✉♥❣ ✹✳✷✳✶✮✳
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❇❡♠❡r❦✉♥❣ ✹✳✷✳✸✳ ❊✐♥❡ ❛♥❞❡r❡ ❋♦r♠ ✈♦♥ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❛♥❛❧②s❡ ✐st ♠ö❣❧✐❝❤✱ ✇❡♥♥
♠❛♥ st❛tt X = (X1, . . . , Xn)

T ❞✐❡ ♥♦r♠✐❡rt❡ ❙t✐❝❤♣r♦❜❡ Xω = (X1/ω1, . . . , Xn/ωn)
T

❜❡♥✉t③t✱ ✇♦❜❡✐ ●❡✇✐❝❤t❡ ω = (ω1, . . . , ωn)
T ❡✐♥❡ ❣❡✇✐ss❡ Prä❢❡r❡♥③ ✐♥ ❞❡r ❆♥❛❧②s❡ ③✉♠

❆✉s❞r✉❝❦ ❜r✐♥❣❡♥ ✉♥❞ s♦♠✐t ❱♦r✐♥❢♦r♠❛t✐♦♥❡♥ ❡♥t❤❛❧t❡♥✳ ❊✐♥❡ ❤ä✉✜❣❡ ❲❛❤❧ ✐st

ωi =
√
σii =

√
❱❛rXi,

✇❛s ③✉r ❍❑❆ ✈♦♥ X∗ = (X∗
1 , . . . , X

∗
n)✱ X

∗
i = Xi√

❱❛rXi
✱ i = 1, . . . , n ♠✐t ❍✐❧❢❡ ❞❡r ❑♦rr❡❧❛✲

t✐♦♥s♠❛tr✐① Σ∗ = (❈♦rr(Xj , Xi))i,j=1 ❢ü❤rt

❈♦rr(Xi, Xj) =
❈♦✈(Xi, Xj)√
❱❛rXi❱❛rXj

= ❈♦✈(X∗
i , X

∗
j ), i, j = 1, . . . , n.

❉❛❜❡✐ ❦♦♠♠t ♠❛♥ ❛✉❢ ❛♥❞❡r❡ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥ α∗T
i X∗✱ ❢ür ❞✐❡ α∗

i 6= αi ❣✐❧t✱ i =
1, . . . , n✳

❲❛s s✐♥❞ ❞❛♥♥ ❱♦r✲ ❜③✇✳ ◆❛❝❤t❡✐❧❡ ✈♦♥ ❍❑❆ ❜❛s✐❡r❡♥❞ ❛✉❢ (X,Σ) ✉♥❞ (X∗,Σ∗)❄
◆❛❝❤t❡✐❧❡ ✈♦♥ (X,Σ)✲❍❑❆✿

✶✳ ❉✐❡ ❍❑❆ ❜❛s✐❡r❡♥❞ ❛✉❢ (X∗,Σ∗) ❤ä♥❣t ♥✐❝❤t ✈♦♥ ❞❡r ❲❛❤❧ ❞❡r ▼❛ÿ❡✐♥❤❡✐t❡♥ ✈♦♥
X ❛❜✳ ❙♦♠✐t s✐♥❞ ❱❡r❣❧❡✐❝❤❡ ❞❡r ❊r❣❡❜♥✐ss❡ ✈♦♥ ❍❑❆ ✈♦♥ ♠❡❤❡r❡r❡♥ ❙t✐❝❤♣r♦❜❡♥
✉♥t❡rs❝❤✐❡❞❧✐❝❤❡r ❍❡r❦✉♥❢t ♠ö❣❧✐❝❤✳

✷✳ ❋❛❧❧s ❞✐❡ ❱❛r✐❛♥③❡♥ ✈♦♥ Xi s❡❤r ✉♥t❡rs❝❤✐❡❞❧✐❝❤ s✐♥❞✱ s♦ ✇❡r❞❡♥ ❞✐❡ ❱❛r✐❛❜❧❡♥ Xi

♠✐t ❣röÿt❡♥ ❱❛r✐❛♥③❡♥ ❛✉❝❤ ❞✐❡ ❡rst❡♥ ❍❑ ❜❡st✐♠♠❡♥✱ ✇❛s ❡✐♥❞❡✉t✐❣ ❡✐♥❡♥ ◆❛❝❤t❡✐❧
❞❛rst❡❧❧t✳ ❉✐❡ ❍❑❆ ❜❛s✐❡r❡♥❞ ❛✉❢ (X∗,Σ∗) ✐st ❢r❡✐ ✈♦♥ ❞✐❡s❡♠ ◆❛❝❤t❡✐❧✳ ❉✐❡ (X,Σ)✲
❍❑❆ ✐st ✐♥ s♦❧❝❤❡♥ ❋ä❧❧❡♥ ♥✐❝❤t ❛✉ss❛❣❡❦rä❢t✐❣✱ ✇❡✐❧ s✐❡ ✭✐♥ ❧❡✐❝❤t ✈❡rä♥❞❡rt❡r ❋♦r♠✮
❡✐♥❢❛❝❤ ❞✐❡ ❱❛r✐❛❜❧❡♥ Xi ✐♥ ❞❡r ❘❡✐❤❡♥❢♦❧❣❡ ❛❜st❡✐❣❡♥❞❡r ❱❛r✐❛♥③❡♥ ♦r❞♥❡t✳

❇❡✐s♣✐❡❧ ✹✳✷✳✶✳ ❙❡✐ X = (X1, X2)✱ ✇♦❜❡✐ X1 ❞✐❡ ▲ä♥❣❡ ❞❛rst❡❧❧t ✉♥❞ X2 ❞❛s
●❡✇✐❝❤t✳ X1 ❦❛♥♥ ✐♥ ❝♠ ♦❞❡r ♠ ❣❡♠❡ss❡♥ ✇❡r❞❡♥✱ X2 ❛❧❧❡r❞✐♥❣s ♥✉r ✐♥ ❦❣✳ ■♥
❞✐❡s❡♥ ③✇❡✐ ❋ä❧❧❡♥ s❡✐❡♥ ❞✐❡ ❑♦✈❛r✐❛♥③♠❛tr✐③❡♥ ✈♦♥ X ❣❡❣❡❜❡♥ ❞✉r❝❤

Σ1 =

(
80 44
44 80

)
❜③✇✳ Σ2 =

(
8000 4400
4400 8800

)
.

❉✐❡ ❇❡r❡❝❤♥✉♥❣ ❞❡r ❡rst❡♥ ❍❑ ❡r❣✐❜t ✐♥ ❜❡✐❞❡♥ ❋ä❧❧❡♥

αT
1 X = 0, 707X1 + 0, 707X2 ❢ür Σ1 ❜③✇✳ α

T
1 X = 0, 998X1 + 0, 055X2 ❢ür Σ2.

❩✉ ❜❡♠❡r❦❡♥ ✐st✱ ❞❛ss ✐♠ ❡rst❡♥ ❋❛❧❧X1 ✉♥❞X2 ❣❧❡✐❝❤❡ ❇❡✐trä❣❡ ③✉r ✶✳ ❍❑ ❜❡s✐t③❡♥✱
✇♦❜❡✐ ✐♠ ✷✳ ❋❛❧❧ X1 ❞❡♥ ❞♦♠✐♥✐❡r❡♥❞❡♥ ❊✐♥✢✉ss ❛✉sü❜t✳ ❉❛③✉ ❣✐❧t λ1

λ1+λ2
· 100% =

77, 5% ✐♠ ❡rst❡♥ ❋❛❧❧ ✉♥❞ λ1
λ1+λ2

· 100% = 99, 3% ✐♠ ✷✳ ❋❛❧❧ ✭❡s ✐st ❞❡r ❆♥t❡✐❧ ❞❡r
❱❛r✐❛t✐♦♥ ❞❡r ❡rst❡♥ ❍❑ ✈♦♥ ❞❡r ❣❡s❛♠t❡♥ ❱❛r✐❛♥③✮✳
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✸✳ ❋❛❧❧s ❩✉❢❛❧❧s✈❛r✐❛❜❧❡ Xi ✐♥ X ✉♥t❡rs❝❤✐❡❞❧✐❝❤❡r ❍❡r❦✉♥❢t s✐♥❞ ✭✇✐❡ ✐♠ ♦❜✐❣❡♥ ❇❡✐✲
s♣✐❡❧✮✱ ❞❛♥♥ ✐st ❞✐❡ ■♥t❡r♣r❡t❛t✐♦♥ ❞❡s ❆♥t❡✐❧s ❞❡r ❱❛r✐❛t✐♦♥ ♣r♦❜❧❡♠❛t✐s❝❤✱ ✇❡✐❧ ✐♥
❞❡r ❙✉♠♠❡ λ1 + . . . + λn ♠2✱ ❦❣2✱ ✉s✇✳ ❛✉❢s✉♠♠✐❡rt ✇❡r❞❡♥✳ ❉✐❡ ❍❑❆ ❜❛s✐❡r❡♥❞
❛✉❢ (X∗,Σ∗) ❞❛❣❡❣❡♥ ❜❡tr❛❝❤t❡t ♠❛ÿ❧♦s❡ ●röÿ❡♥✱ s♦ ❞❛ss ❞✐❡ ❙✉♠♠❡ λ1 + . . .+ λn

❞✉r❝❤❛✉s ✐♥t❡r♣r❡t✐❡r❜❛r ✐st✳

❱♦rt❡✐❧❡ ✈♦♥ (X,Σ)✲❍❑❆✿

✶✳ ❋❛❧❧s st❛tt Σ ❜③✇✳ Σ∗ ✐❤r❡ ❡♠♣✐r✐s❝❤❡ ❆♥❛❧♦❣❛ Σ̂ ❜③✇✳ Σ̂∗ ❜❡♥✉t③t ✇❡r❞❡♥ ✭✇❡♥♥
Σ(Σ∗) ♥✐❝❤t ❜❡❦❛♥♥t s✐♥❞✱ ♠üss❡♥ s✐❡ ❛✉s ❞❡♥ ❉❛t❡♥ ❣❡s❝❤ät③t ✇❡r❞❡♥✮✱ ❞❛♥♥ ❤❛t
(X, Σ̂)✲❍❑❆ ❱♦rt❡✐❧❡✱ ✇❡✐❧ ❞✐❡ st❛t✐st✐s❝❤❡♥ ▼❡t❤♦❞❡♥ ❤✐❡r ❡✐♥❢❛❝❤❡r s✐♥❞ ❛❧s ❜❡✐
(X∗, Σ̂∗)✲❍❑❆✳

✷✳ ❲❡♥♥ Xi ✐♥ X ❛❧❧❡ ❞✐❡s❡❧❜❡ ▼❛ÿ❡✐♥❤❡✐t ❜❡s✐t③❡♥✱ ❞❛♥♥ ✐st ❞✐❡ ❍❑❆ ❜❛s✐❡r❡♥❞
❛✉❢ (X,Σ) ♠❛♥❝❤♠❛❧ ✈♦rt❡✐❧❤❛❢t❡r✱ ✇❡✐❧ ❜❡✐ ❞❡r ❙t❛♥❞❛r❞✐s✐❡r✉♥❣ ✈♦♥ (X,Σ) ❛✉❢
(X∗,Σ∗) ❞❡r ❇❡③✉❣ ③✉ ❞❡♥ ❊✐♥❤❡✐t❡♥✱ ✐♥ ❞❡♥❡♥ X ❣❡♠❡ss❡♥ ✇✉r❞❡✱ ✈❡r❧♦r❡♥ ❣❡❤t✳

❇❡♠❡r❦✉♥❣ ✹✳✷✳✹✳ ▼❛♥❝❤♠❛❧ ✇✐r❞ ✐♥ ❉❡✜♥✐t✐♦♥ ✹✳✷✳✶ st❛tt |α| = 1 ❞✐❡ ◆♦r♠✐❡r✉♥❣
|αk| =

√
λk✱ k = 1, . . . , n ❜❡♥✉t③t ✭s✐❡❤❡ ❖♣t✐♠✐❡r✉♥❣s❛✉❢❣❛❜❡ ✭✹✳✷✳✶✮✮✳ ❉✐❡s ✐st ✐♥s❜❡s♦♥✲

❞❡r❡ ❞❡r ❋❛❧❧ ✐♥ ❞❡r ❦♦rr❡❧❛t✐♦♥s❜❛s✐❡rt❡♥ ❍❑❆✳

❇❡♠❡r❦✉♥❣ ✹✳✷✳✺✳ ✭●❧❡✐❝❤❡ ❊✐❣❡♥✇❡rt❡ λi✮✳ ❋❛❧❧s ❡✐♥✐❣❡ ❊✐❣❡♥✇❡rt❡ ✈♦♥ Σ ❣❧❡✐❝❤ s✐♥❞✱
③✳❇✳ λ1 = λ2 = . . . = λk > λk+1 > . . . > λm✱ ❜❡❞❡✉t❡t ❞✐❡s✱ ❞❛ss ❡s ❡✐♥❡♥ ❧✐♥❡❛r❡♥ ❯♥✲
t❡rr❛✉♠ ❞❡r ❉✐♠❡♥s✐♦♥ k ❣✐❜t✱ ✐♥ ❞❡♥❡♥ ❡✐♥❡ ❜❡❧✐❡❜✐❣❡ ❇❛s✐s ❞✐❡ ❡rst❡♥ k ❊✐❣❡♥✈❡❦t♦r❡♥
❞❛rst❡❧❧t✳ ❉✐❡s ❜❡❞❡✉t❡t✱ ❞❛ss ❢ür ❞✐❡ ❍❑❆ ❞✐❡ ❡rst❡♥ k ❊✐❣❡♥✈❡❦t♦r❡♥ ♥✐❝❤t ❡✐♥❞❡✉t✐❣ ❞❡✜✲
♥✐❡rt ✇❡r❞❡♥ ❦ö♥♥❡♥✳ ●❡♦♠❡tr✐s❝❤ ✐♥t❡r♣r❡t✐❡rt✿ ❉✐❡ ❡rst❡♥ k ❍❛❧❜❛❝❤s❡♥ ✈♦♥ xTΣ−1x = c
s✐♥❞ ❣❧❡✐❝❤✱ ❞✳❤✳✱ ❞❛s ❊❧❧✐♣s♦✐❞ xTΣ−1x = c ❤❛t ❡✐♥❡♥ s♣❤är✐s❝❤❡♥ k✲❞✐♠❡♥s✐♦♥❛❧❡♥ ❉✉r❝❤✲
s❝❤♥✐tt ❞✉r❝❤ ❞❡♥ ❯rs♣r✉♥❣✱ ✐♥ ❞❡♠ ❞✐❡ ❘✐❝❤t✉♥❣❡♥ ❞❡r ❍❛❧❜❛❝❤s❡♥ ❜❡❧✐❡❜✐❣ ✭♦rt❤♦❣♦♥❛❧
③✉❡✐♥❛♥❞❡r✮ ❣❡✇ä❤❧t ✇❡r❞❡♥ ❦ö♥♥❡♥✳

❇❡♠❡r❦✉♥❣ ✹✳✷✳✻ ✭λi = 0✮✳ ❲❡♥♥ λ1 > . . . > λn−k > λn−k+1 = . . . = λn = 0✱ ❞❛♥♥
❣✐❜t ❡s ✐♥ ❞❡r ❙t✐❝❤♣r♦❜❡X ❧❡❞✐❣❧✐❝❤ n−k ❧✐♥❡❛r ✉♥❛❜❤ä♥❣✐❣❡ ❩✉❢❛❧❧s✈❡❦t♦r❡♥Xi✳ ❉❡s❤❛❧❜
s♦❧❧t❡♥ ♥✉r ❞✐❡s❡ n− k ❱❛r✐❛❜❧❡♥ ③✉r ❆♥❛❧②s❡ ❜❡♥✉t③t ✇❡r❞❡♥✳

✹✳✸ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❛♥❛❧②s❡ ❛✉❢ ❉❛t❡♥❡❜❡♥❡

❇❡✐ ❞✐❡s❡♠ ❆❜s❝❤♥✐tt ✇✐r❞ ♥✐❝❤t ♠❡❤r ✈♦r❛✉s❣❡s❡t③t✱ ❞❛ss ❞✐❡ ❑♦✈❛r✐❛♥③♠❛tr✐① Σ ❜❡✲
❦❛♥♥t ✐st✳ ❉❡s❤❛❧❜ s♦❧❧ s✐❡ ❞✉r❝❤ ❞✐❡ ❡♠♣✐r✐s❝❤❡ ❑♦✈❛r✐❛♥③♠❛tr✐① Σ̂ ❡rs❡t③t ✇❡r❞❡♥✳
❙❡✐❡♥ X1, X2, . . . , Xm ✉♥❛❜❤ä♥❣✐❣❡ ❘❡❛❧✐s✐❡r✉♥❣❡♥ ❡✐♥❡s n✲❞✐♠❡♥s✐♦♥❛❧❡♥ ❩✉❢❛❧❧s✈❡❦t♦rs
X = (X1, . . . , Xn)

T ✱ Xi = (Xi
1, . . . , X

i
n)

T ✱ i = 1, . . . ,m✳ Xi ✇✐r❞ ❛❧s ❇❡♦❜❛❝❤t✉♥❣ ✈♦♥ X
✐♥t❡r♣r❡t✐❡rt✳



✹ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❛♥❛❧②s❡ ✶✸✺

❉❡✜♥✐t✐♦♥ ✹✳✸✳✶✳ ❉❡✜♥✐❡r❡ ❞❡♥ n✲❞✐♠❡♥s✐♦♥❛❧❡♥ ❩✉❢❛❧❧s✈❡❦t♦r ak ❞✉r❝❤

ak = argmax
a∈Rn

1

m− 1

m∑

i=1

(Yi − Y )2

♠✐t ◆❡❜❡♥❜❡❞✐♥❣✉♥❣❡♥ |a| = 1✱ a ✉♥❦♦r❡❧❧✐❡rt ♠✐t a1, . . . , ak−1 ❢ür ❛❧❧❡ k = 1, . . . , n✱
✇♦❜❡✐

Yi = aTXi, i = 1, . . . ,m, Y =
1

m

m∑

i=1

Yi.

❙♦ ❞❡✜♥✐❡rt aTkX ❞✐❡ k✲t❡♥ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥ ✈♦♥ X ♠✐t ❑♦❡✣③✐❡♥t❡♥✈❡❦t♦r ak✱ Yik =
aTkX

i ✐st ❞✐❡ ❆✉s✇❡rt✉♥❣ ❞❡r k✲t❡♥ ❍❑ ❛✉❢ ❞❡r i✲t❡♥ ❇❡♦❜❛❝❤t✉♥❣ Xi ✈♦♥ Xi✱ i =
1, . . . ,m✱ k = 1, . . . , n✳

▲❡♠♠❛ ✹✳✸✳✶✳ ❊s ❣✐❧t

1

m− 1

m∑

i=1

(Yik − Y k)
2 = lk, k = 1, . . . , n,

✇♦❜❡✐

Y k =
1

m

m∑

i=1

Yik, Xk =
1

m

m∑

i=1

Xi
k, k = 1, . . . , n

✉♥❞ lk ❞❡r ❊✐❣❡♥✇❡rt ❞❡r ❡♠♣✐r✐s❝❤❡♥ ❑♦✈❛r✐❛♥③♠❛tr✐① Σ̂ = (σ̂ij)
n
i,j=1 ✐st✱

σ̂ij =
1

m− 1

m∑

t=1

(Xt
i −Xi)(X

t
j −Xj), i, j = 1, . . . , n, l1 > l2 > . . . > ln.

ak ✐st ❞❡r ❊✐❣❡♥✈❡❦t♦r ✈♦♥ Σ̂ ♠✐t ❊✐❣❡♥✇❡rt lk✱ k = 1, . . . , n✳

❇❡✇❡✐s✳

Ü❜✉♥❣s❛✉❢❣❛❜❡ ✹✳✸✳✶✳ ❱❡r❣❧❡✐❝❤❡ ❞❡♥ ❇❡✇❡✐s ❞❡s ❙t❛t③❡s ✹✳✷✳✶✳

■♠ ❋♦❧❣❡♥❞❡♥ ✇❡r❞❡♥ ✇✐r Xi ❞✉r❝❤ Xi − X ❡rs❡t③❡♥ ✉♥❞ ❞❛❜❡✐ ❞✐❡ ❇❡③❡✐❝❤✉♥❣ Xi

❜❡✐❜❡❤❛❧t❡♥✱ i = 1, . . . , n✳

❇❡♠❡r❦✉♥❣ ✹✳✸✳✶✳ ❉✐❡ ❊✐❣❡♥s❝❤❛❢t❡♥ ❞❡r ❍❑❆ ❢♦r♠✉❧✐❡rt ✐♥ ❙❛t③ ✹✳✷✳✷✱ ❋♦❧❣❡r✉♥❣
✹✳✷✳✶✱ ❙❛t③ ✹✳✷✳✸✱ Pr♦♣♦s✐t✐♦♥ ✹✳✷✳✶ ❜❧❡✐❜❡♥ ❛✉❝❤ ✐♥ ✐❤r❡r st❛t✐st✐s❝❤❡♥ ❱❡rs✐♦♥ ✭❉❡✜♥✐t✐♦♥
✹✳✸✳✶✮ ❡r❤❛❧t❡♥✱ ♠✐t ❢♦❧❣❡♥❞❡♥ ♦✛❡♥s✐❝❤t❧✐❝❤❡♥ ▼♦❞✐✜❦❛t✐♦♥❡♥✿ Σ ✇✐r❞ ❡rs❡t③t ❞✉r❝❤ Σ̂✱
A = (α1, . . . , αn) ❞✉r❝❤ A = (a1, . . . , an)✱ Am = (α1, . . . , αm) ❞✉r❝❤ Am = (a1, . . . , am)✱
ΣY ❞✉r❝❤ ❞✐❡ ❡♠♣✐r✐s❝❤❡ ❑♦✈✐❛r✐❛♥③♠❛tr✐① Σ̂Y ✈♦♥ Y ✳ ❙♦ ❜❡♥✉t③t ❜❡✐s♣✐❡❧s✇❡✐s❡ ❞✐❡
❙♣❡❦tr❛❧❞❛rst❡❧❧✉♥❣ ✈♦♥ Σ̂



✶✸✻ ✹ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❛♥❛❧②s❡

Σ̂ =
n∑

i=1

liaia
T
i ✭✹✳✸✳✶✮

Ü❜✉♥❣s❛✉❢❣❛❜❡ ✹✳✸✳✷✳ ❩❡✐❣❡♥ ❙✐❡ ❡s✦

❩❡✐❣❡♥ ✇✐r ❡✐♥❡ ✇❡✐t❡r❡ ❊✐❣❡♥s❝❤❛❢t ❞❡r ❡♠♣✐r✐s❝❤❡♥ ❍❑❆✱ ❞✐❡ ❛✉❝❤ ❛❧s ❡✐♥❡ äq✉✐✈❛❧❡♥t❡
❉❡✜♥✐t✐♦♥ ❜❡tr❛❝❤t❡t ✇❡r❞❡♥ ❦❛♥♥✿

❙❛t③ ✹✳✸✳✶✳ ❙❡✐ B ❡✐♥❡ (n × p)✲▼❛tr✐①✱ p ≤ n✱ ♠✐t ♦rt❤♦❣♦♥❛❧❡♥ ❙♣❛❧t❡♥✳ ❙❡✐❡♥ Zi =
BTXi✱ i = 1, . . . ,m Pr♦❥❡❦t✐♦♥❡♥ ✈♦♥ Xi✱ i = 1, . . . ,m✱ ❛✉❢ ❡✐♥❡♥ p✲❞✐♠❡♥s✐♦♥❛❧❡♥ ❯♥✲
t❡rr❛✉♠ LB✳ ❉❡✜♥✐❡r❡

G(B) =

m∑

i=1

∣∣Xi − Zi

∣∣2 .

❉❛♥♥ ❣✐❧t

Ap = (a1, . . . , ap) = argmin
B

G(B).

❇❡✇❡✐s✳ ◆❛❝❤ ❞❡♠ ❙❛t③ ✈♦♥ P②t❤❛❣♦r❛s ❣✐❧t
∣∣Xi
∣∣2 = |Zi|2 + |Xi − Zi|2✱ ❞❡s❤❛❧❜

G(B) =

m∑

i=1

∣∣Xi
∣∣2 −

m∑

i=1

|Zi|2 → min

❢❛❧❧s

G̃(B) =
m∑

i=1

|Zi|2 =
m∑

i=1

ZT
i Zi =

m∑

i=1

XiTBBTXi → max
B

.

❊s ❣✐❧t

G̃(B) = ❙♣✉r

(
m∑

i=1

(
XiTBBTXi

)
)

=

m∑

i=1

❙♣✉r
(
XiTBBTXi

)
=

m∑

i=1

❙♣✉r
(
BTXiXiTB

)

= ❙♣✉r



BT

(
m∑

i=1

XiXiT

)

︸ ︷︷ ︸
✶(m−1)Σ̂

B




= (m− 1)❙♣✉r(BT Σ̂B)

❩✉s❛♠♠❡♥❣❡❢❛sst ❣✐❧t

G̃(B) = (m− 1)❙♣✉r
(
BT Σ̂B

)
,

❞✐❡ ♥❛❝❤ ❇❡♠❡r❦✉♥❣ ✹✳✸✳✶ ✉♥❞ ❙❛t③ ✹✳✷✳✷ ♠❛①✐♠❛❧ ✇✐r❞✱ ❢❛❧❧s B = Ap✳

✶❉❛ Xi ❞✉r❝❤ Xi
−X ❡rs❡t③t ✇✉r❞❡✳



✹ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❛♥❛❧②s❡ ✶✸✼

❇❡♠❡r❦✉♥❣ ✹✳✸✳✷✳ ❲✐❡ ❦❛♥♥ ❙❛t③ ✹✳✸✳✶ ❛❧s äq✉✐✈❛❧❡♥t❡ ❉❡✜♥✐t✐♦♥ ❞❡r ❡♠♣✐r✐s❝❤❡♥ ❍❑❆
❜❡♥✉t③t ✇❡r❞❡♥❄ ai ✇❡r❞❡♥ ❛❧s ♦rt❤♦❣♦♥❛❧❡ ❱❡❦t♦r❡♥ ❞❡✜♥✐❡rt✱ ❞✐❡ ❡✐♥❡♥ ❧✐♥❡❛r❡♥ ❯♥t❡r✲
r❛✉♠ Lp = 〈a1, . . . , ap〉 ❛✉❢s♣❛♥♥❡♥✱ p = 1, . . . , n−1✱ ♠✐t ❞❡r ❊✐❣❡♥s❝❤❛❢t✱ ❞❛ss ❞✐❡ ❙✉♠♠❡
❞❡r q✉❛❞r❛t✐s❝❤❡♥ ♦rt❤♦❣♦♥❛❧❡♥ ❆❜stä♥❞❡ ✈♦♥ Xi ③✉ Lp ♠✐♥✐♠❛❧ ✇✐r❞✳ ❙♦ ✇är❡ ❡s ③✳❇✳
❢ür p = 1 L1 ❞✐❡ ❜❡st❡ ●❡r❛❞❡✱ ❞✐❡ ❞❡♥ ❉❛t❡♥s❛t③ X1, . . . , Xm ❛♣♣r♦①✐♠✐❡rt✱ ❢ür p = n−1
✇är❡ Ln−1 ❞✐❡ ❜❡st❡ ❍②♣❡r❡❜❡♥❡ ♠✐t ❞❡rs❡❧❜❡♥ ❊✐❣❡♥s❝❤❛❢t ✭✈❣❧✳ ❧✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥✮✳

❉❡r ❢♦❧❣❡♥❞❡ ❙❛t③ ❣✐❜t ✉♥s ❣❧❡✐❝❤③❡✐t✐❣ ❡✐♥❡ ❡✣③✐❡♥t❡ ❇❡r❡❝❤♥✉♥❣s♠❡t❤♦❞❡ ✉♥❞ ❡✐♥❡
♥❡✉❡ ■♥t❡r♣r❡t❛t✐♦♥ ❞❡r ❍❑ ❛♥✳

❙❛t③ ✹✳✸✳✷ ✭❙✐♥❣✉❧är✇❡rt③❡r❧❡❣✉♥❣✮✳ ❙❡✐ X̃ =
(
X1 −X,X2 −X, . . . ,Xm −X

)T
❡✐♥❡

(m × n)✲▼❛tr✐①✱ ❞✐❡ ③❡♥tr✐❡rt❡ ❇❡♦❜❛❝❤t✉♥❣❡♥ Xi ✈♦♥ X ❡♥t❤ä❧t✳ ❙❡✐ ❘❛♥❣(X̃) = r ≤
n,m✳ ❊s ❣✐❧t ❢♦❧❣❡♥❞❡ ❩❡r❧❡❣✉♥❣✿

X̃ = ULAT
r , ✭✹✳✸✳✷✮

✇♦❜❡✐ U ❡✐♥❡ (m× r)✲▼❛tr✐① ♠✐t ♦rt❤♦♥♦r♠❛❧❡♥ ❙♣❛❧t❡♥ ✐st

L = ❞✐❛❣(l̃1, . . . , l̃r) ✇♦❜❡✐ l̃i =
√
(m− 1)li

❞✐❡ ❲✉r③❡❧ ❛✉s ❞❡♠ i✲t❡♥ ✭♥✐❝❤t tr✐✈✐❛❧❡♥✮ ❊✐❣❡♥✇❡rt ✈♦♥ X̃T X̃ = (m − 1)Σ̂ ✐st✱ i =
1, . . . , r✳ Ar = (a1, . . . , ar) ✐st ❞✐❡ (n× r)✲▼❛tr✐① ♠✐t ❙♣❛❧t❡♥ ai

❇❡✇❡✐s✳ ❉❡✜♥✐❡r❡ U = (u1, . . . , ur) ♠✐t ❙♣❛❧t❡♥ ui = X̃ ai
l̃i
✱ i = 1, . . . , r✳ ❩❡✐❣❡♥ ✇✐r✱ ❞❛ss

❞✐❡ ❉❛rst❡❧❧✉♥❣ ✭✹✳✸✳✷✮ ❣✐❧t✳ ▲❛✉t ❙♣❡❦tr❛❧❞❛rst❡❧❧✉♥❣ ✭✹✳✸✳✶✮ ❣✐❧t

(m− 1)Σ̂ = X̃T X̃ =
r∑

i=1

l̃2i aia
T
i , ✇❡✐❧ li = 0, i = r + 1, . . . , n.

❉❡s❤❛❧❜

ULAT
r = U




l̃1a
T
1
✳✳✳

l̃ra
T
r


 =

r∑

i=1

X̃
ai

l̃i
l̃ia

T
i =

r∑

i=1

X̃aia
T
i

li=0,i>r
=

n∑

i=1

X̃aia
T
i

X̃ai = 0✱ i = r+1, . . . , n✱ ✇❡❣❡♥ rang(X̃) = r ✉♥❞ ❩❡♥tr✐❡r✉♥❣ ❞❡r ❙♣❛❧t❡♥ ✈♦♥ X̃ ❞✉r❝❤
X✳ ❉❛ ❞✐❡ ❱❡❦t♦r❡♥ ai ♦rt❤♦♥♦r♠❛❧ s✐♥❞✱ ❣✐❧t

ULAT
r = X̃

n∑

i=1

aia
T
i = X̃I = X̃.

❇❡♠❡r❦✉♥❣ ✹✳✸✳✸✳ ❉✐❡ ▼❛tr✐① U ❧✐❡❢❡rt ❢♦❧❣❡♥❞❡ ❱❡rs✐♦♥❡♥ ✈♦♥ ❆✉s✇❡rt✉♥❣❡♥

Yik = aTkX
i = XiTak, Yik = uik l̃k, i = 1, . . . ,m, k = 1, . . . , n



✶✸✽ ✹ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❛♥❛❧②s❡

❊s ❣✐❧t

❱❛r(uik) =
❱❛r(Yik)

l̃2k
=

lk
(m− 1)lk

=
1

m− 1
, ∀i, k

✹✳✹ ❆s②♠♣t♦t✐s❝❤❡ ❱❡rt❡✐❧✉♥❣ ✈♦♥ ❍❑ ❜❡✐ ♥♦r♠❛❧✈❡rt❡✐❧t❡♥

❙t✐❝❤♣r♦❜❡♥

❙❡✐ ♥✉♥ X ∼ N(µ,Σ)✱ Σ ❤❛❜❡ ❊✐❣❡♥✇❡rt❡ λ1 > λ2 > . . . > λn > 0 ✉♥❞ ❡♥ts♣r❡❝❤❡♥❞❡
❊✐❣❡♥✈❡❦t♦r❡♥ αk✱ k = 1, . . . , n✳ ❇❡r❡❝❤♥❡

λ = (λ1, . . . , λn)
T , l = (l1, . . . , ln)

T , αk = (αk1, . . . , αkn)
T , ak = (ak1, . . . , akn)

T ,

k = 1, . . . , n

❙❛t③ ✹✳✹✳✶✳ ✶✳ l ✐st ❛s②♠♣t♦t✐s❝❤ ✭❢ür m→∞✮ ✉♥❛❜❤ä♥❣✐❣ ✈♦♥ ak✱ k = 1, . . . , n✳

✷✳ l ✉♥❞ ak✱ k = 1, . . . , n s✐♥❞ ❛s②♠♣t♦t✐s❝❤ m → ∞ ♠✉❧t✐✈❛r✐❛t ♥♦r♠❛❧✈❡rt❡✐❧t✱ ♠✐t
❛s②♠♣t♦t✐s❝❤❡♥ ❊r✇❛rt✉♥❣s✇❡rt❡♥

lim
m→∞

E(l) = λ ✉♥❞ lim
m→∞

E(ak) = αk, k = 1, . . . , n.

✸✳ ❊s ❣✐❧t

❈♦✈(lk, lk′) ∼
{

2λ2
k

m−1 , k = k′

0, k 6= k′
❢ür m→∞

❈♦✈(akj , ak′j′) ∼





λk
m−1

∑n
l=1,l 6=k

λlαljαlj′

(λl−lk)2
, k = k′

− λkλk′αkjαk′j′

(m−1)(λk−λk′ )
2 , k 6= k′

❢ür m→∞.

❖❤♥❡ ❇❡✇❡✐s✦
❉✐❡ ❆✉ss❛❣❡♥ ✈♦♥ ❙❛t③ ✹✳✹✳✶ ❦ö♥♥❡♥ ❞❛③✉ ❜❡♥✉t③t ✇❡r❞❡♥✱ ▼▲✲❙❝❤ät③❡r s♦✇✐❡ ❑♦♥✜✲

❞❡♥③✐♥t❡r✈❛❧❧❡ ❢ür λ ✉♥❞ αk ③✉ ❦♦♥str✉✐❡r❡♥✳

Ü❜✉♥❣s❛✉❢❣❛❜❡ ✹✳✹✳✶✳ ✶✳ ❩❡✐❣❡✱ ❞❛ss ❡✐♥ ▼▲✲❙❝❤ät③❡r ❢ür Σ ❞✉r❝❤ m−1
m Σ̂ ❣❡❣❡❜❡♥

✐st✳

✷✳ ❩❡✐❣❡✱ ❞❛ss ❞❡r ▼▲✲❙❝❤ät③❡r

{
❢ür λ ✐st λ̂ = m−1

m l.
❢ür αk ✐st α̂k = ak, k = 1, . . . , n.



✹ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❛♥❛❧②s❡ ✶✸✾

✸✳ ❩❡✐❣❡✱ ❞❛ss ❞✐❡ ▼▲✲❙❝❤ät③❡r ✐♥ ✷✳ ♠✐t ▼♦♠❡♥t❡♥✲❙❝❤ät③❡r♥ ❢ür λ ✉♥❞ αk ü❜❡r❡✐♥✲
st✐♠♠❡♥✱ ❞✐❡ ❛✉s ❞❡♠ ❙❛t③ ✹✳✹✳✶ ❣❡✇♦♥♥❡♥ ✇❡r❞❡♥ ❦ö♥♥❡♥✳

❋♦❧❣❡r✉♥❣ ✹✳✹✳✶ ✭❑♦♥✜❞❡♥③✐♥t❡r✈❛❧❧❡ ❢ür λk✮✳ ❊✐♥ ❛s②♠♣t♦t✐s❝❤❡s ❑♦♥✜❞❡♥③✐♥t❡r✈❛❧❧
❢ür λk (m→∞) ③✉♠ ◆✐✈❡❛✉ 1− α ✐st ❣❡❣❡❜❡♥ ❞✉r❝❤


lk

(
1−

√
2

m− 1
zα

2

)−1

, lk

(
1 +

√
2

m− 1
zα

2

)−1

 ,

✇♦❜❡✐ m s♦ ❣r♦ÿ ✐st✱ ❞❛ss −
√

2
m−1zα

2
< 1✳

❇❡✇❡✐s✳ ❉❛ lk ∼ N
(
λk,

2λ2
k

m−1

)
❢ür m→∞ ❛✉s ❙❛t③ ✹✳✹✳✶✱ ✷✳ ✉♥❞ ✸✳✱ ❣✐❧t

lk − λk√
2

m−1λk

∼ N(0, 1) ❢ür m→∞.

❉❛r❛✉s ❢♦❧❣t

lim
m→∞

P

(
zα

2
≤ lk − λk

λk

√
m− 1

2
≤ z1−α

2

)
= 1− α,

♦❞❡r ❢ür m→∞
√

2

m− 1
zα

2
≤ lk

λk
− 1 ≤

√
2

m− 1
z1−α

2︸ ︷︷ ︸
=−zα

2

,

lk

1−
√

2
m−1zα

2

≤ λk ≤
lk

1 +
√

2
m−1zα

2

♠✐t ❲❛❤rs❝❤❡✐♥❧✐❝❤❦❡✐t 1− α✳

❉❛ ❛❧❧❡ lk✱ k = 1, . . . , n ❛s②♠♣t♦t✐s❝❤ (m → ∞) ✉♥❛❜❤ä♥❣✐❣ s✐♥❞✱ ❦❛♥♥ ❡✐♥ s✐♠✉❧t❛✲
♥❡r ❑♦♥✜❞❡♥③❜❡r❡✐❝❤ ❢ür l ❛❧s ❦❛rt❡s✐s❝❤❡s Pr♦❞✉❦t ❞❡r ❑♦♥✜❞❡♥③✐♥t❡r✈❛❧❧❡ ❢ür lk ❛✉s
❋♦❧❣❡r✉♥❣ ✹✳✹✳✶ ❛♥❣❡❣❡❜❡♥ ✇❡r❞❡♥✳

▲❡♠♠❛ ✹✳✹✳✶✳ ❊s ❣✐❧t

(m− 1)αT
k

(
lkΣ̂

−1 + l−1
k Σ̂− 2In

)
αk

d−−−−→
m→∞

χ2
n−1

❖❤♥❡ ❇❡✇❡✐s✦
❉❛r❛✉s ❢♦❧❣t ❞❛s ✭❛s②♠♣t♦t✐s❝❤❡✮ ❑♦♥✜❞❡♥③❡❧❧✐♣s♦✐❞ ❢ür αk ③✉♠ ◆✐✈❡❛✉ 1− β

{
y ∈ R

n : (m− 1)yT
(
lkΣ̂

−1 + l−1
k Σ̂− 2In

)
y ≤ χ2

n−1,β

}
.



✶✹✵ ✹ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❛♥❛❧②s❡

❇❡♠❡r❦✉♥❣ ✹✳✹✳✶✳ ❋♦❧❣❡r✉♥❣ ✹✳✹✳✶ ❜③✇✳ ▲❡♠♠❛ ✹✳✹✳✶ ❦ö♥♥❡♥ ③✉r ❑♦♥str✉❦t✐♦♥ ✈♦♥
st❛t✐st✐s❝❤❡♥ ❚❡sts ❢ür λk ❜③✇✳ αk ❢♦❧❣❡♥❞❡r♠❛ÿ❡♥ ✈❡r✇❡♥❞❡t ✇❡r❞❡♥✿

✶✳ ❚❡st❡♥ ✈♦♥ H0 : λk = λko ✈✳s✳ H1 : λk 6= λk0

❉✐❡ ❍②♣♦t❤❡s❡ H0 ✇✐r❞ ✈❡r✇♦r❢❡♥✱ ❢❛❧❧s

∣∣∣∣∣∣
lk − λk0√

2
m−1λk0

> zα
2

∣∣∣∣∣∣
.

❉✐❡s ✐st ❡✐♥ ❛s②♠♣t♦t✐s❝❤❡r ❚❡st (m→∞) ③✉♠ ◆✐✈❡❛✉ α✳

✷✳ ❚❡st❡♥ ✇✐r H0 : αk = αk0 ✈✳s✳ H1 : αk 6= αk0

❉✐❡ ❍②♣♦t❤❡s❡ H0 ✇✐r❞ ❛❜❣❡❧❡❤♥t✱ ❢❛❧❧s

(m− 1)αT
k0

(
lkΣ̂

−1 + l−1
k Σ̂− 2In

)
αk0 ≥ χ2

n−1,α.

❉✐❡s ✐st ❡✐♥ ❛s②♠♣t♦t✐s❝❤❡r (m→∞) ❚❡st ③✉♠ ◆✐✈✐❡❛✉ α✳

✹✳✺ ❆✉sr❡✐ÿ❡r❡r❦❡♥♥✉♥❣

■♥ ❞✐❡s❡♠ ❆❜s❝❤♥✐tt ❣❡❤❡♥ ✇✐r ❞❛✈♦♥ ❛✉s✱ ❞❛ss ✉♥s❡r❡ ❙t✐❝❤♣r♦❜❡ X1, X2, . . . , Xm ❡✐♥✐❣❡
❆✉sr❡✐ÿ❡r ❡♥t❤❛❧t❡♥ ❦❛♥♥✳ ❲❛s ❛❜❡r ✐st ❡✐♥ ❆✉sr❡✐ÿ❡r❄ ■♥ ❞❡r st❛t✐st✐s❝❤❡♥ ▲✐t❡r❛t✉r ❣✐❜t
❡s ❞❛③✉ ❦❡✐♥❡ ❡✐♥❤❡✐t❧✐❝❤❡ ▼❡✐♥✉♥❣✳ ❆❧❧❣❡♠❡✐♥ ✇ür❞❡♥ ✇✐r s❛❣❡♥✱ ❞❛ss ❞✐❡ ❇❡♦❜❛❝❤t✉♥❣
Xi ❡✐♥ ❆✉sr❡✐ÿ❡r ✐st✱ ✇❡♥♥ s✐❡ ❡✐♥❡♥ ✉♥t②♣✐s❝❤❡♥ ❲❡rt ✭✐♥ ❇❡③✉❣ ❛✉❢ ❞✐❡ ❱❡rt❡✐❧✉♥❣ ✈♦♥X✮
❛♥♥✐♠♠t✳ ❊s ❦❛♥♥ ③✳❇✳ ❡✐♥ ✉♥❣❡✇ö❤♥❧✐❝❤ ❤♦❤❡r ❜③✇✳ ♥✐❡❞r✐❣❡r ❲❡rt ✈♦♥ ❡✐♥✐❣❡♥ ❑♦♦r❞✐✲
♥❛t❡♥ ✈♦♥ Xi s❡✐♥✳ ❊s ❦❛♥♥ ❛❜❡r ❛✉❝❤ ❡✐♥❡ ✉♥❣❡✇ö❤❧✐❝❤❡ ❑♦♠❜✐♥❛t✐♦♥ ✈♦♥ ❣❡✇ö❤♥❧✐❝❤❡♥
❑♦♦r❞✐♥❛t❡♥✇❡rt❡♥ ❡✐♥✐❣❡r ❑♦♦r❞✐♥❛t❡♥ ✈♦♥ Xi s❡✐♥✳ ❉❡r ●r✉♥❞ ❢ür s♦❧❝❤❡ ✉♥t②♣✐s❝❤❡♥
❲❡rt❡ Xi ❦❛♥♥ ❡✐♥ ▼❡ÿ❢❡❤❧❡r✱ ❛❜❡r ❛✉❝❤ ❡✐♥❡ ❆♥♦♠❛❧✐❡ ✐♠ ❉❛t❡♥s❛t③ s❡✐♥✳

❇❡✐s♣✐❡❧ ✹✳✺✳✶✳ ❙❡✐ X = (X1, X2)✱ ✇♦❜❡✐ X1 =✧❑ör♣❡r❣röÿ❡✧✭✐♥ ❝♠✮ ✉♥❞ X2 = ✏●❡✲
✇✐❝❤t✑ ✭✐♥ ❦❣✮ ✈♦♥ ❑✐♥❞❡r♥ ✐♠ ❆❧t❡r ✈♦♥ ✺ ❜✐s ✶✺ ❏❛❤r❡♥ s✐♥❞✳ ❉❛s ▼❡r❦♠❛❧ X ✇✐r❞ ✐♥
❡✐♥❡r ♠❡❞✐③✐♥✐s❝❤❡♥ ❙t✉❞✐❡ n ♠❛❧ ❣❡♠❡ss❡♥✳ ❉❛❜❡✐ s✐♥❞ ❇❡♦❜❛❝❤t✉♥❣❡♥ Xi = (250, 80)
✉♥❞ Xj = (175, 25) ❛❧s ❆✉sr❡✐ÿ❡r ❦❧❛ss✐✜③✐❡rt ✇♦r❞❡♥✱ ✉♥❞ ③✇❛r ❞❛❤❡r✱ ✇❡✐❧ Xi = 250❝♠
❡✐♥❡ ✉♥✈♦rst❡❧❧❜❛r❡ ❑ör♣❡r❣röÿ❡ ✐st✱ ❜❡✐ Xj s✐♥❞ s♦✇♦❤❧ Xj

1 = 175 ❛❧s ❛✉❝❤ Xj
2 = 25 ✐♠

♠✐tt❧❡r❡♥ ❲❡rt❡❜❡r❡✐❝❤ ✈♦♥X1 ✉♥❞X2✱ ✐❤r❡ ❑♦♠❜✐♥❛t✐♦♥ ❥❡❞♦❝❤ ✐st ♣r❛❦t✐s❝❤ ✉♥♠ö❣❧✐❝❤✳

❲✐❡ ❦ö♥♥t❡ ♠❛♥ ❆✉sr❡✐ÿ❡r ❡♥tt❛r♥❡♥❄ ◆♦r♠❛❧❡r✇❡✐s❡ ✇❡r❞❡♥ ✉♥t②♣✐s❝❤❡ ❲❡rt❡ ✈♦♥ Xi

❛♥❤❛♥❞ ✈♦♥ P❧♦ts ❞❡s ❉❛t❡♥s❛t③❡s X1, . . . , Xm ❛❧s ❊✐♥③❡❧♣✉♥❦t❡✱ ❞✐❡ ♥✐❝❤t ✐♥ ❞❡r ❣r♦ÿ❡♥
P✉♥❦t✇♦❧❦❡ ❧✐❡❣❡♥✱ ✐❞❡♥t✐✜③✐❡rt✳ ❇❡✐ ❤♦❤❡r ❉✐♠❡♥s✐♦♥ n ✈♦♥ X ✐st ❡s ❥❡❞♦❝❤ s❝❤✇✐❡r✐❣✱ s♦
❡✐♥❡♥ ❉❛t❡♥s❛t③ ③✉ ✈✐s✉❛❧✐s✐❡r❡♥✳ ❉❡s❤❛❧❜ ❦❛♥♥ ♠❛♥ ✈♦rs❝❤❧❛❣❡♥ ❡✐♥❡♥ ❉❛t❡♥♣✉♥❦t ❞❡r
❡rst❡♥ ✷✲✸ ❍❑ ✈♦♥ (X1, . . . , Xm) ③✉ ❡rst❡❧❧❡♥✳ ❉❛♥♥ ✇❡r❞❡♥ ❞♦rt ✉♥❣❡✇ö❤♥❧✐❝❤ ❣r♦ÿ❡ ❜③✇✳
❦❧❡✐♥❡ ❲❡rt❡ ✈♦♥ Xi

k s♦❢♦rt ❡r❦❡♥♥❜❛r✳ ❯♠ ❥❡❞♦❝❤ ❡✐♥❡ ✉♥❣❡✇ö❤♥❧✐❝❤❡ ❩✉s❛♠♠❡♥s❡t③✉♥❣
✈♦♥ ❣❡✇ö❤♥❧✐❝❤❡♥ ❑♦♦r❞✐♥❛t❡♥✇❡rt❡♥ Xi

k ③✉ ❡♥t❞❡❝❦❡♥✱ ❜❡❞❛r❢ ❡s ❞❡r ❧❡t③t❡♥ ❍❑✳ ❉❛③✉
✇✐r❞ ❞✐❡ ❆✉s✇❡rt✉♥❣ ❢♦❧❣❡♥❞❡r ❙t❛t✐st✐❦❡♥ ❡♠♣❢♦❤❧❡♥✿



✹ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❛♥❛❧②s❡ ✶✹✶

❙❡✐❡♥ a1, . . . , an ❞✐❡ ❑♦❡✣③✐❡♥t❡♥✈❡❦t♦r❡♥ ❞❡r ❍❑ ✈♦♥ (X1, . . . , Xm)✳ ❙❡✐❡♥ Yik = aTkX
i✱

i = 1, . . . ,m✱ k = 1, . . . , n ❞✐❡ ❆✉s✇❡rt✉♥❣❡♥ ❞❡r ❍❑ ③✉ ❞❡♥ ❇❡♦❜❛❝❤t✉♥❣❡♥ Xi✳ ❙❡✐❡♥
lk✱ k = 1, . . . , n ❞✐❡ ❊✐❣❡♥✇❡rt❡ ❞❡r ❡♠♣✐r✐s❝❤❡♥ ❑♦✈❛r✐❛♥③♠❛tr✐① Σ̂ ✈♦♥ (X1, . . . , Xm)✳
❋ür ❡✐♥ 1 ≤ n0 ≤ n✱ ❞❡✜♥✐❡r❡♥ ✇✐r ❞✐❡ ❙t❛t✐st✐❦❡♥

d
(1)
i (n0) =

n∑

k=n−n0+1

Y 2
ik, d

(2)
i (n0) =

n∑

k=n−n0+1

Y 2
ik

lk
, d

(3)
i (n0) =

n∑

k=n−n0+1

lkY
2
ik,

d
(4)
i (n0) = max

n−n0+1≤k≤n

|Yik|√
lk

, i = 1, . . . ,m.

▲❡♠♠❛ ✹✳✺✳✶✳ ❊s ❣✐❧t

d
(2)
j (n) =

(
Xi −X

)T
Σ̂−1

(
Xi −X

)
, i = 1, . . . ,m,

✇♦❜❡✐ Yik ❛♥ ✐❤r❡♥ ❡♠♣✐r✐s❝❤❡♥ ▼✐tt❡❧ ❣❡♠❡ss❡♥ ✇❡r❞❡♥✱ ❞❛s ❤❡✐ÿt✱ Yik ✇❡r❞❡♥ ❞✉r❝❤
Yik − Yk ❡rs❡t③t✱ k = 1, . . . , n✱ i = 1, . . . ,m✳

❇❡✇❡✐s✳ ❊s ❣✐❧t

Σ̂ = ALAT , ✇♦❜❡✐ L = ❞✐❛❣(l1, . . . , ln) ✉♥❞ A = (a1, . . . , an).

❉❛❤❡r

Σ̂−1 = AL−1AT ♠✐t L−1 = ❞✐❛❣(l−1
1 , . . . , l−1

n ).

❉❛ ③✉sät③❧✐❝❤ Yi = ATXi ❢ür Yi = (Yi1, . . . , Yin)
T ✱ i = 1, . . . , n✱ ❡s ❣✐❧t

Xi = AT−1
Yi = AYi, XiT = Y T

i AT , i = 1, . . . , n

✉♥❞ ❞❡s❤❛❧❜

X =
1

m

m∑

i=1

Xi = AY , Y =
1

m

m∑

i=1

Y i, X
T
= Y

T
AT .

❉❛❤❡r ❣✐❧t

(
Xi −X

)T
Σ̂−1

(
Xi −X

)
=
(
Yi − Y

)T
ATA︸ ︷︷ ︸

I

L−1ATA︸ ︷︷ ︸
I

(
Yi − Y

)

=
(
Yi − Y

)T
L−1

(
Yi − Y

)
=

n∑

k=1

Y 2
ik

lk
= d

(2)
i (n).



✶✹✷ ✹ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❛♥❛❧②s❡

❯♠ ♥✉♥ ❆✉sr❡✐ÿ❡r ✐♥ (X1, . . . , Xm) ③✉ ❡r❦❡♥♥❡♥✱ ✇❡r❞❡♥ ❲❡rt❡ d
(j)
i (n)✱ i = 1, . . . ,m✱

j = 1, . . . , n ❢ür n = 1, 2, 3 ❜❡r❡❝❤♥❡t✳ ❇❡♦❜❛❝❤t✉♥❣❡♥ Xi ♠✐t ❞❡♥ ❣röÿt❡♥ ❲❡rt❡♥ d
(j)
i (n)

✇❡r❞❡♥ ❛❧s ♠ö❣❧✐❝❤❡ ❆✉sr❡✐ÿ❡r ❡✐♥❣❡st✉❢t✳ ❩✉sät③❧✐❝❤ ❦❛♥♥ ❡✐♥ P❧♦t ✈♦♥ ❡✐♥❡r P✉♥❦t❡✇♦❧❦❡

D =
{(

d
(2)
i (n)− d

(2)
i (n0), d

(2)
i (n0)

)
, i = 1, . . . ,m

}

❞❛❜❡✐ ❜❡❤✐❧✢✐❝❤ s❡✐♥✳ Xi ✇✐r❞ ❤✐❡r ❛❧s ❆✉sr❡✐ÿ❡r ❡r❦❛♥♥t✱ ✇❡♥♥
(
d
(2)
i (n)− d

(2)
i (n0), d

(2)
i (no)

)

✐s♦❧✐❡rt ✈♦♥ ❞❡r ü❜r✐❣❡♥ P✉♥❦t✇♦❧❦❡ D ❧✐❡❣t✳

❇❡♠❡r❦✉♥❣ ✹✳✺✳✶✳ ❋❛❧❧s X ∼ N(µ,Σ) ♠✐t ❜❡❦❛♥♥t❡♥ µ ✉♥❞ Σ✱ ✉♥❞ ❍❑❆ ❛✉❢ ▼♦❞❡❧❧❡✲

❜❡♥❡ ❞✉r❝❤❣❡❢ü❤rt ✇✐r❞✱ ❦ö♥♥❡♥ ❱❡rt❡✐❧✉♥❣❡♥ ✈♦♥ d
(j)
i (n0) ❡①♣❧✐③✐t ❛♥❣❡❣❡❜❡♥ ✇❡r❞❡♥✳ ❊s

s✐♥❞ ✭❛✉ÿ❡r d
(4)
i ✮ ●❛♠♠❛✲❱❡rt❡✐❧✉♥❣❡♥ ♠✐t ❜❡❦❛♥♥t❡♥ P❛r❛♠❡t❡r♥ ③✳❇✳ d(2)i (n0) ∼ χ2

n0
✱

i = 1, . . . ,m✳ ❉✐❡ ❱❡rt❡✐❧✉♥❣s❢✉♥❦t✐♦♥ ✈♦♥ d
(4)
j (n0) ✐st Φn0(x)✱ ✇♦❜❡✐ Φ(x) ❞✐❡ ❱❡rt❡✐✲

❧✉♥❣s❢✉♥❦t✐♦♥ ❞❡r N(0, 1)✲❱❡rt❡✐❧✉♥❣ ✐st✳ ❉❛♥♥ ❦ö♥♥❡♥ ❑♦♥✜❞❡♥③✐♥t❡r✈❛❧❧❡ ❢ür d
(j)
i (n0)

❡✐♥❡ ❢♦r♠❛❧❡ ❊♥ts❝❤❡✐❞✉♥❣sr❡❣❡❧ ❞❛❢ür ❧✐❡❢❡r♥✱ ♦❜ Xi ❡✐♥❡♥ ❆✉sr❡✐ÿ❡r ❞❛rst❡❧❧t✳ ❉✐❡s❡
❱♦r❣❡❤❡♥s✇❡✐s❡ ❜❛s✐❡rt ③✇❛r ❛✉❢ ❡✐♥❡r ❢❡st❡♥ ♠❛t❤❡♠❛t✐s❝❤❡♥ ●r✉♥❞❧❛❣❡✱ ✐st ❛❜❡r ✐♥ ❞❡r
Pr❛①✐s ✇❡♥✐❣ ❡✐♥s❡t③❜❛r✱ ❞❛ ❞❡r ❋❛❧❧ ✈♦♥ ♥♦r♠❛❧✈❡rt❡✐❧t❡♥ ❉❛t❡♥ ✭✉♥❞ ❞❛③✉ ♠✐t ❜❡❦❛♥♥t❡♥
P❛r❛♠❡t❡r♥ µ ✉♥❞ Σ✦✮ ä✉ÿ❡rst s❡❧t❡♥ ✈♦r❧✐❡❣t✳

❇❡♠❡r❦✉♥❣ ✹✳✺✳✷✳ ❙t❛t✐st✐❦❡♥ d
(2)
i , d

(4)
i ❜❡t♦♥❡♥ ❞✐❡ ❧❡t③t❡♥ ❙t❛t✐st✐❦❡♥ ♠❡❤r ❛❧s d

(1)
i

✭✇❡❣❡♥ ❞❡r ❡♥ts♣r❡❝❤❡♥❞❡♥ ◆♦r♠✐❡r✉♥❣✮✳ ❉❡s❤❛❧❜ s✐♥❞ s✐❡ ③✉r ❊♥t❞❡❝❦✉♥❣ ✈♦♥ ✉♥❣❡✲
✇ö❤♥❧✐❝❤❡♥ ❑♦rr❡❧❛t✐♦♥❡♥ ✐♥ ❞❡♥ ❉❛t❡♥ ❣❡❡✐❣♥❡t ✭✇✐❡ ❡t✇❛ ✐♥ ❇❡✐s♣✐❡❧ ✹✳✺✳✶✱ ❇❡♦❜❛❝❤t✉♥❣

Xj = (175, 25)✮✳ ❙t❛t✐st✐❦ d
(3)
j ❜❡t♦♥t ❞✐❡ ❡rst❡♥ ❍❑✳ ❉❛❤❡r ✐st s✐❡ ❛♥③✉✇❡♥❞❡♥✱ ✉♠ ✉♥✲

❣❡✇ö❤♥❧✐❝❤ ❣r♦ÿ❡ ✭❦❧❡✐♥❡✮ ❲❡rt❡ ✈♦♥ ❑♦♦r❞✐♥❛t❡♥ Xi
k ③✉ ❡♥t❞❡❝❦❡♥ ✭Xi

1 =✷✺✵ ✐♠ ❇❡✐s♣✐❡❧
✹✳✺✳✶✮✳

✹✳✻ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❛♥❛❧②s❡ ✉♥❞ ❘❡❣r❡ss✐♦♥

❙❡✐ ❢♦❧❣❡♥❞❡s ♠✉❧t✐✈❛r✐❛t❡s ❧✐♥❡❛r❡s ❘❡❣r❡ss✐♦♥s♠♦❞❡❧❧ ❣❡❣❡❜❡♥✿ Y = Xβ + ε✱ ✇♦❜❡✐
Y = (Y1, . . . , Yn)

T ❞❡r ❱❡❦t♦r ❞❡r ❩✐❡❧✈❛r✐❛❜❧❡♥ ✐st✱ X = (Xij)i=1,...,n,j=1,...,m ❞✐❡ (n×m)✲
▼❛tr✐① ❞❡r ❆✉s❣❛♥❣s✈❛r✐❛❜❧❡♥✱ ❘❛♥❣(X) = m✱ ε = (ε1, . . . , εn)

T ❞❡r ❱❡❦t♦r ❞❡r ❙tör❣rö✲
ÿ❡♥✱ ✇♦❜❡✐ εi ✉♥❛❜❤ä♥❣✐❣ s✐♥❞ ♠✐t Eεi = 0✱ ❱❛rεi = σ2✱ i = 1, . . . , n✳ ❖✳❇✳❞✳❆✳ ✇❡r❞❡♥
✇✐r ✈♦r❛✉ss❡t③❡♥✱ ❞❛ss X ✭✇✐❡ ✐♥ ❙❛t③ ✹✳✸✳✷✮ ③❡♥tr✐❡rt ✐st✱ ❞✳❤✳✱ ❞❛s ❡♠♣✐r✐s❝❤❡ ▼✐tt❡❧ ❞❡r
❩❡✐❧❡♥ ✈♦♥ X ✐st ◆✉❧❧✱ ♦❞❡r✱ ❡t✇❛s ❞❡t❛✐❧❧✐❡rt❡r✱ Xij ✇✐r❞ ❡rst❡❧❧t ❞✉r❝❤ Xij −Xj ✱ ✇♦❜❡✐

Xj =
1

n

n∑

i=1

Xij , j = 1, . . . ,m.

❲❡♥♥ ❡✐♥✐❣❡ ❱❛r✐❛❜❧❡♥ Xij ✐♥ X ♥❛❤❡③✉ ❧✐♥❡❛r ❛❜❤ä♥❣✐❣ s✐♥❞✱ ❞❛s ❤❡✐ÿt det(XTX) ≈ 0✱
❞❛♥♥ ✇✐r❦t ❡s s✐❝❤ ❛✉❢ ❞❡♥ ❙❝❤ät③❡r β̂ ✈♦♥ β ❛❧s ❤♦❤❡ ■♥st❛❜✐❧✐tät ✐♥ s❡✐♥❡r ❇❡r❡❝❤♥✉♥❣
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❛✉s✱ ✇❡✐❧ ❈♦✈(β̂) = σ2(XTX)−1 ✭✈❣❧✳ ❙❛t③ ✹✳✸✳✷✮ s❡❤r ❣❡r✐♥❣❡ ❱❛r✐❛♥③❡♥ ✈♦♥ β̂j ❡♥t❤❛❧t❡♥
✇✐r❞✳ ❊✐♥ ❆✉s✇❡❣ ❛✉s ❞✐❡s❡r ❙✐t✉❛t✐♦♥ ✇✐r❞ ❞✐❡ ❱❡r✇❡♥❞✉♥❣ ✈♦♥ ❱❡r❛❧❧❣❡♠❡✐♥❡r✉♥❣❡♥
s❡✐♥ ✇✐❡ ✐♥ ❑❛♣✐t❡❧ ✹✳✸✳ ❊✐♥❡ ❛♥❞❡r❡ ▼ö❣❧✐❝❤❦❡✐t ✐st ❡s✱ ❞✐❡ ❍❑❆ ❢ür X ③✉ ✈❡r✇❡♥❞❡♥✱ ✉♠
s♦ ❧✐♥❡❛r❡ ❆❜❤ä♥❣✐❣❦❡✐t❡♥ ✐♥ X ❞✉r❝❤ ❞✐❡ ❧❡t③t❡♥ ❍❑ ③✉ ❞❡t❡❦t✐❡r❡♥ ✉♥❞ ❡✐♥✐❣❡ ❱❛r✐❛❜❧❡♥
βj ❛✉s ❞❡r ❘❡❣r❡ss✐♦♥ ❛✉s③✉s❝❤❧✐❡ÿ❡♥✳ ●❡♥❛✉ ❞✐❡s❡ ▼ö❣❧✐❝❤❦❡✐t ✇❡r❞❡♥ ✇✐r ✐♥ ❞✐❡s❡♠
❆❜s❝❤♥✐tt ♥ä❤❡r ❜❡s❝❤r❡✐❜❡♥
❙❡✐❡♥ a1, . . . , am ❞✐❡ ❑♦❡✣③✐❡♥t❡♥✈❡❦t♦r❡♥ ❞❡r ❍❑ ✭❞❛s ❤❡✐ÿt ❊✐❣❡♥✈❡❦t♦r❡♥✮ ✈♦♥ XTX✳
❙❡✐ Zik = aTkX

i ❞✐❡ ❆✉s✇❡rt✉♥❣ ❞❡r k✲t❡♥ ❍❑ ❞❡r i✲t❡♥ ❩❡✐❧❡ Xi ✈♦♥ X✱ i = 1, . . . , n✱
k = 1, . . . ,m✳ ▼✐t Z = (Zik) ❣✐❧t Z = XA✱ ✇♦❜❡✐ A = (a1, . . . , am) ❡✐♥❡ ♦rt❤♦❣♦♥❛❧❡
(m ×m)✲▼❛tr✐① ✐st✳ ❙t❡❧❧❡♥ ✇✐r ❞✐❡ ❘❡❣r❡ss✐♦♥s❣❧❡✐❝❤✉♥❣ Y = Xβ + E ❢♦❧❣❡♥❞❡r♠❛ÿ❡♥
❞❛r✿

Y = X AAT
︸ ︷︷ ︸

I

β + E = XA︸︷︷︸
Z

ATβ︸︷︷︸
γ

+E = Zγ + E , ✇♦❜❡✐ γ = ATβ ✐st. ✭✹✳✻✳✶✮

❙♦♠✐t ❤❛t ♠❛♥ ❞✐❡ ❛❧t❡♥ ❆✉s❣❛♥❣s✈❛r✐❛❜❧❡♥ β ❞✉r❝❤ ✐❤r❡ ❚r❛♥s❢♦r♠✐❡rt❡ γ = ATβ ❡rs❡t③t✳
◆✉♥ ❢♦❧❣t ❞✐❡ ❙❝❤ät③✉♥❣ ✈♦♥ γ ❛✉s ❙❛t③ ✷✳✷✳✶✿

γ̂ =
(
ZTZ

)−1
ZTY = L−1ZTY, ✭✹✳✻✳✷✮

✇♦❜❡✐ L = ❞✐❛❣(l1, . . . , lm) ❞✐❡ ❊✐❣❡♥✇❡rt❡ li ✈♦♥ XTX ❡♥t❤ä❧t✳ ❉✐❡s ❣✐❧t✱ ✇❡✐❧ Z ♦rt❤♦✲
❣♦♥❛❧❡ ❙♣❛❧t❡♥ ❜❡s✐t③t✳ ❉❛❤❡r ❣✐❧t

β̂ = Aγ̂ = AL−1ZTY = AL−1AT
︸ ︷︷ ︸
(XTX)−1

XTY =

m∑

k=1

l−1
k aka

T
kX

TY,

✇♦❜❡✐ ✇✐r ✐♥ ❞❡r ❧❡t③t❡♥ ●❧❡✐❝❤✉♥❣s♠❡tr✐❦ ❋♦r♠❡❧♥ ✭✹✳✻✳✶✮✱ ✭✹✳✻✳✷✮ ✉♥❞ ❞✐❡ ❙♣❡❦tr❛❧❞❛r✲
st❡❧❧✉♥❣ ✭❋♦❧❣❡r✉♥❣ ✹✳✷✳✶✮ ✈♦♥ (XTX)−1 ❜❡♥✉t③t ❤❛❜❡♥✳ ❆✉s ❙❛t③ ✹✳✷✳✷ ❢♦❧❣t ❛✉ÿ❡r❞❡♠✱
❞❛ss

❈♦✈(β̂) = σ2
m∑

k=1

l−1
k aka

T
k .

❙♦♠✐t ❤❛❜❡♥ ✇✐r ❢♦❧❣❡♥❞❡s ❊r❣❡❜♥✐s ❜❡✇✐❡s❡♥✿

▲❡♠♠❛ ✹✳✻✳✶✳ ❉✐❡ ▼❑◗✲▲ös✉♥❣ ❞❡r ❘❡❣r❡ss✐♦♥s❣❧❡✐❝❤✉♥❣ Y = Xβ + E ✐st ❣❡❣❡❜❡♥
❞✉r❝❤

β̂ =
m∑

k=1

l−1
k aka

T
kX

TY.

❉❛❜❡✐ ❣✐❧t

❈♦✈(β̂) = σ2
m∑

k=1

l−1
k aka

T
k .
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❇❡♠❡r❦✉♥❣ ✹✳✻✳✶✳ ❲❛s s✐♥❞ ❞✐❡ ❱♦rt❡✐❧❡ ❞❡r ✐♥ ✭✹✳✻✳✶✮✲✭✹✳✻✳✷✮❡✐♥❣❡❢ü❤rt❡♥ ❱♦r❣❡❤❡♥s✲
✇❡✐s❡❄

✶✳ ◆❛❝❤ ❞❡♠ ❇❡st✐♠♠❡♥ ❞❡r ❍❑ ✈♦♥ XTX ✐st ❞✐❡ ❇❡r❡❝❤♥✉♥❣ ✈♦♥ γ̂ = L−1ZTY
❡✐♥❢❛❝❤ ✉♥❞ s❝❤♥❡❧❧✱ ✇❡✐❧ ✭✹✳✻✳✷✮ ❦❡✐♥❡ ■♥✈❡rs❡♥ ▼❛tr✐③❡♥ ♠❡❤r ❡♥t❤ä❧t ✭L−1 =
❞✐❛❣(l−1

1 , . . . , l−1
m ) ✐st ❞❛♥♥ ❡①♣❧✐③✐t ❜❡❦❛♥♥t✮✳

✷✳ ❲❡♥♥ ❡✐♥✐❣❡ lk s❡❤r ♥❛❤❡ ❜❡✐ ◆✉❧❧ s✐♥❞ ♦❞❡r s♦❣❛r ❘❛♥❣(X) < m ✐st✱ ❦ö♥♥❡♥ ❡✐♥✐❣❡
❞❡r ❧❡t③t❡♥ ❍❑ ✭♠✐t ❱❛r✐❛♥③❡♥✱ ❞✐❡ s❡❤r ❦❧❡✐♥ ♦❞❡r ❣❛r ◆✉❧❧ s✐♥❞✮ ✈♦♥ XTX ❡✐♥❢❛❝❤
✈♦♥ ❞❡r ❘❡❣r❡ss✐♦♥ ❛✉s❣❡s❝❤❧♦ss❡♥ ✇❡r❞❡♥✳ ❉✐❡s ✇✐r❞ ❞✉r❝❤ ❞❡♥ ♥❡✉❡♥ ❙❝❤ät③❡r

β̃ =

p∑

k=1

l−1
k aka

T
kX

TY

❡rr❡✐❝❤t✱ p < m✳

▲❡♠♠❛ ✹✳✻✳✷✳ ❙❡✐ Rang(X) = m✿

✶✳ ❉❡r ❙❝❤ät③❡r β̃ ✐st ✈❡r③❡rrt✿

Eβ̃ =


I −

m∑

k=p+1

aka
T
k


β

✷✳ ❊s ❣✐❧t✿

❈♦✈(β̃) = σ2
p∑

k=1

l−1
k aka

T
k

❇❡✇❡✐s✳ ✶✳ ❉❛

β̃ = β̂ −
m∑

k=p+1

l−1
k aka

T
kX

TY

✐st ✉♥❞ β̂ ❡r✇❛rt✉♥❣str❡✉ ✐st✱ ❣✐❧t

Eβ̃ = Eβ̂ −
m∑

k=p+1

l−1
k aka

T
kX

T
EY = β −

m∑

k=p+1

l−1
k ak a

T
kX

TX︸ ︷︷ ︸
lka

T
k

β = β −
m∑

k=p+1

aka
T
k β

=


I −

m∑

k==p+1

aka
T
k


β

✷✳ ❲✐r❞ ❣❡③❡✐❣t ✐♥✿
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Ü❜✉♥❣s❛✉❢❣❛❜❡ ✹✳✻✳✶✳

●❡❜❡♥ ✇✐r ♥♦❝❤ ❡✐♥❡ äq✉✐✈❛❧❡♥t❡ ❋♦r♠✉❧✐❡r✉♥❣ ❞❡r ❘❡❣r❡ss✐♦♥ ♠✐t ❍✐❧❢❡ ❞❡r ❍❑❆✳ ❙t❛tt
γ = ATβ ③✉ ✈❡r✇❡♥❞❡♥✱ ✇❡r❞❡♥ ✇✐r ❞✐❡s♠❛❧ ✈♦♥ ❞❡r ❙✐♥❣✉❧är✇❡rt③❡r❧❡❣✉♥❣ ✭❙❛t③ ✹✳✸✳✷✮
❢ür X ●❡❜r❛✉❝❤ ♠❛❝❤❡♥✿

X = UL
1
2AT ,

✇♦❜❡✐ U ❡✐♥❡ (n×m)✲▼❛tr✐① ♠✐t ♦rt❤♦♥♦r♠❛❧❡♥ ❙♣❛❧t❡♥ ✐st ✭❞✐❡ ♥♦r♠✐❡rt❡ ❆✉s✇❡rt✉♥❣❡♥
✈♦♥ ❍❑ ❛♥ ❩❡✐❧❡♥ ✈♦♥ X ❡♥t❤❛❧t❡♥✮ ✉♥❞ L

1
2 = ❞✐❛❣(

√
l1, . . . ,

√
lm)✳ ❋ü❤r❡♥ ✇✐r ❞✐❡

❇❡③❡✐❝❤♥✉♥❣

δ = L
1
2ATβ ✭✹✳✻✳✸✮

❡✐♥✱ s♦ ❣✐❧t

Y = Xβ + E = U L
1
2ATβ︸ ︷︷ ︸
δ

+E = Uδ + E .

❉❡r ▼❑◗✲❙❝❤ät③❡r ❢ür δ ✇är❡

δ̂ = (UTU)−1

︸ ︷︷ ︸
I

UTY = UTY,

✇❡✐❧ U ♦rt❤♦♥♦r♠❛❧❡ ❙♣❛❧t❡♥ ❜❡s✐t③t✳ ❆✉s ✭✹✳✻✳✸✮ ❢♦❧❣t β = AL− 1
2 δ ✉♥❞ ❞❡s❤❛❧❜

β̂ = AL− 1
2 δ̂ = AL− 1

2UTY.

❉❛❜❡✐ ✐st ❞❡r ❩✉s❛♠♠❡♥❤❛♥❣ ③✇✐s❝❤❡♥ γ ✉♥❞ δ ❢♦❧❣❡♥❞❡r✿

γ = ATβ = AT
(
AL− 1

2 δ
)
= ATA︸ ︷︷ ︸

I

L− 1
2 δ = L− 1

2 δ

❲✐r ❤❛❜❡♥ s♦♠✐t ❢♦❧❣❡♥❞❡s ▲❡♠♠❛ ❜❡✇✐❡s❡♥✿

▲❡♠♠❛ ✹✳✻✳✸✳ ❉✐❡ ❍❑✲❋♦r♠ Y = Uδ + E ❞❡r ❘❡❣r❡ss✐♦♥ Y = Xβ + E ❤❛t ❞✐❡ ▼❑◗✲
▲ös✉♥❣ δ̂ = UTY ❜③✇✳

β̂ = AL− 1
2UTY. ✭✹✳✻✳✹✮

❉❛❜❡✐ ✐st ❞❡r P❛r❛♠❡t❡r✈❡❦t♦r δ ❡✐♥❢❛❝❤ ❡✐♥❡ ♥♦r♠✐❡rt❡ ❱❡rs✐♦♥ ✈♦♥ γ✿ δ = L
1
2 γ

❇❡♠❡r❦✉♥❣ ✹✳✻✳✷✳ ✶✳ ❉❛ ❡s ❡✣③✐❡♥t❡ ❆❧❣♦r✐t❤♠❡♥ ③✉r ❇❡r❡❝❤♥✉♥❣ ❞❡r ❙✐♥❣✉❧är✲
✇❡rt③❡r❧❡❣✉♥❣ ❣✐❜t✱ ❜✐❡t❡t ❞✐❡ ❇❡r❡❝❤♥✉♥❣s❢♦r♠❡❧ ✭✹✳✻✳✹✮ ❦❧❛r❡ ❘❡❝❤❡♥✈♦rt❡✐❧❡ ❣❡✲
❣❡♥ü❜❡r ❞❡r ❣❡✇ö❤♥❧✐❝❤❡♥ ❋♦r♠✉❧✐❡r✉♥❣ β̂ = (XTX)−1XTY ✱ ✐♥ ❞❡rXTX ✐♥✈❡rt✐❡rt
✇❡r❞❡♥ ♠✉ss✳



✶✹✻ ✹ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❛♥❛❧②s❡

✷✳ ❙t❛tt ❞✐❡ ❧❡t③t❡♥ m− p ❍❑ ✈♦♥ XTX ❛✉s ❞❡r ❘❡❣r❡ss✐♦♥ ❛✉s③✉s❝❤❧✐❡ÿ❡♥ ✭✈❣❧✳ ❇❡✲
♠❡r❦✉♥❣ ✹✳✻✳✶✱ ✷✳✮✱ ✐st ❡s ❛❧❧❣❡♠❡✐♥❡r ♠ö❣❧✐❝❤ ❞❡♥ ❙❝❤ät③❡r β̃ ü❜❡r ❡✐♥❡r ❚❡✐❧♠❡♥❣❡
M ✈♦♥ {1, . . . ,m} ③✉ ❜❡r❡❝❤♥❡♥✿

β̃M =
∑

k∈M
l−1
k aka

T
kX

TY.

❉✐❡s ❜❡♥✉t③t✱ ❞❛ss ♥✉r ❍❑ ♠✐t ❱❛r✐❛♥③❡♥ lk✱ k ∈M ✱ ❢ür ❞✐❡ ❙❝❤ät③✉♥❣ ❜❡rü❝❦s✐❝❤✲
t✐❣t ✇❡r❞❡♥✳ ❉❛♥♥ ❣✐❧t ❛✉❝❤

❈♦✈(β̃M ) = σ2
∑

k∈M
l−1
k aka

T
k ,

✈❣❧✳ Ü❜✉♥❣s❛✉❢❣❛❜❡ ✹✳✻✳✶✳ ❉✐❡s❡ ❱♦r❣❡❤❡♥s✇❡✐s❡ ❜❡♥✉t③t ❞❡♥ ❆✉s❝❤❧✉ss ❞❡r ❑♦♠✲
♣♦♥❡♥t❡♥ γk✱ k /∈ M ✈♦♥ γ = (γ1, . . . , γm)T ❛✉s ❞❡r ▼❑◗✲❙❝❤ät③✉♥❣✳ ➘q✉✐✈❛❧❡♥t
❦❛♥♥ ♠❛♥ ✈♦♠ ❆✉ss❝❤❧✉ss ❞❡r ❑♦♠♣♦♥❡♥t❡♥ δk✱ k /∈ M ✈♦♥ δ = (δ1, . . . , δm)T

r❡❞❡♥✱ ✇❡✐❧ δ = L
1
2 ✱ ❛❧s♦ δk =

√
lkγk ∀k ✐st✳

❲❛s s✐♥❞ ♠ö❣❧✐❝❤❡ ❙tr❛t❡❣✐❡♥ ③✉r ❲❛❤❧ ❞❡r ■♥❞❡①♠❡♥❣❡ ▼❄

✶✳ M = {k : lk > l∗} ❢ür ❡✐♥❡♥ ✈♦r❣❡❣❡❜❡♥❡♥ ❙❝❤✇❡❧❧❡♥✇❡rt l∗ > 0✳ ❲❡♥♥

l =
1

m

m∑

i=1

li

❜❡✐ ✶ ❧✐❡❣t✱ s♦ ❦❛♥♥ l∗ ∈ (0, 01; 0, 1)✳ ❉❡r ◆❛❝❤t❡✐❧ ❞✐❡s❡s ❱❡r❢❛❤r❡♥s ❧✐❡❣t ❞❛r✐♥✱
❞❛ss ♠❛♥❝❤❡ ❍❑✱ ❞✐❡ ✇✐❝❤t✐❣ ❢ür ❞✐❡ ❱♦r❤❡rs❛❣❡ ✈♦♥ Y s✐♥❞✱ ♦❢t ❦❧❡✐♥❡ ❱❛r✐❛♥③❡♥
❜❡s✐t③❡♥ ✉♥❞ s♦♠✐t ❤✐❡r ❛✉s ❞❡r ❇❡tr❛❝❤t✉♥❣ ❛✉s❣❡s❝❤❧♦ss❡♥ ✇✉r❞❡♥✳

✷✳ ❙❡✐ σ2
ii ❞❛s i✲t❡ ❉✐❛❣♦♥❛❧❡❧❡♠❡♥t ✈♦♥ (XTX)−1✳ ❊s ❣✐❧t ♦✛❡♥s✐❝❤t❧✐❝❤ σ2

ii = ❱❛rβ̂i

σ2

✭✈❣❧✳ ❙❛t③ ✹✳✷✳✷✮✱ i = 1, . . . ,m✳ ❉❛♥♥ ❦❛♥♥ ♠❛♥ M = {k : σ2
kk > σ∗} ✇ä❤❧❡♥

❢ür ❡✐♥❡♥ ❣❡❡✐❣♥❡t❡♥ ❙❝❤✇❡❧❧❡♥✇❡rt σ∗✳ ❩✉r ❲❛❤❧ ✈♦♥ σ∗ s✐❡❤❡ ❬✽❪✱ ❙✳ ✶✼✹✳ ❉✐❡s❡
▼❡t❤♦❞❡ ❜❡s✐t③t ❞❡♥s❡❧❜❡♥ ◆❛❝❤t❡✐❧ ✇✐❡ ✶✳✳

✸✳ M = {1, . . . , p}✱ ✇♦❜❡✐ p ✐st ❞✐❡ ❣röÿt❡ ❩❛❤❧ ≤ m✱ ❢ür ❞✐❡ ❡✐♥❡s ❞❡r ❢♦❧❣❡♥❞❡♥
❑r✐t❡r✐❡♥ ❡r❢ü❧❧t ✇✐r❞✿

❛✮ ❊s ❣✐❧t✿

m∑

i=1

E(β̃Mi − βi)
2 ≤

m∑

i=1

E(β̂i − βi)
2, ∀β = (β1, . . . , βm)T ∈ R

m ✭✹✳✻✳✺✮

❜✮ ❊s ❣✐❧t✿

E(cT β̃M − cTβ)2 ≤ E(cT β̂ − cTβ)2 ∀β ∈ R
m, c ∈ Rm



✹ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❛♥❛❧②s❡ ✶✹✼

❝✮ ❊s ❣✐❧t✿

E

∣∣∣Xβ̃M −Xβ

∣∣∣
2
≤ E

∣∣∣Xβ̂ −Xβ
∣∣∣
2

❉❛❜❡✐ ♦r✐❡♥t✐❡rt s✐❝❤ ❞❛s ❑r✐t❡r✐✉♠ ❛✮ ❛♥ ❞❡r ❆✉❢❣❛❜❡✱ β ♠ö❣❧✐❝❤st ♣rä③✐s❡ ③✉
s❝❤ät③❡♥✳ ❑r✐t❡r✐❡♥ ❜✮ ✉♥❞ ❝✮ ❞❛❣❡❣❡♥ ❡r③✐❡❧❡♥ ❞❛s ❜❡st❡ ❊r❣❡❜♥✐s ❜❡✐ ❞❡r ❱♦r❤❡rs❛❣❡
✈♦♥ EY = Xβ ❞✉r❝❤Xβ̂M ❜③✇✳Xβ̂✳ ❆❧❧❡ ●röÿ❡♥ ✐♥ ❛✮✲❝✮ s✐♥❞ ♠✐tt❧❡r❡ q✉❛❞r❛t✐s❝❤❡
❋❡❤❧❡r✱ ❞✐❡ s♦✇♦❤❧ ❞❡♥ ❇✐❛s ❛❧s ❛✉❝❤ ❞✐❡ ❱❛r✐❛♥③❡♥ ✈♦♥ β̃M ❜❡rü❝❦s✐❝❤t✐❣❡♥✳

■♥ ❞❡r st❛t✐st✐s❝❤❡♥ ▲✐t❡r❛t✉r s✐♥❞ ✈✐❡❧❡ ✇❡✐t❡r❡ ❙tr❛t❡❣✐❡♥ ❜❡s❝❤r✐❡❜❡♥✱ ❞✐❡ ✐♥ ❦♦♥❦r❡t❡♥
❙✐t✉❛t✐♦♥❡♥ ❡✐♥❡♥ ✈❡r❜❡ss❡rt❡♥ ❙❝❤ät③❡r β̃M ✐♠ ❱❡r❣❧❡✐❝❤ ③✉ β̂ ❡r③✐❡❧❡♥✳ ❉✐❡ ❋r❛❣❡st❡❧❧✉♥❣
❞❡r ♦♣t✐♠❛❧❡♥ ❲❛❤❧ ✈♦♥ M ✐st ❥❡❞♦❝❤ ✐♠♠❡r ♥♦❝❤ ♦✛❡♥✳

❊✐♥❡ ❆❧t❡r♥❛t✐✈❡ ③✉r ❊✐♥s❝❤rä♥❦✉♥❣ ❞❡r ▼❡♥❣❡ ✈♦♥ ❍❑ ✐♥ ❞❡r ❘❡❣r❡ss✐♦♥ ✭❞❛s ❤❡✐ÿt
③✉♠ ❆✉ss❝❤❧✉ss ✈♦♥ ❍❑ ♠✐t lk ≈ 0✮ ✐st ❞❡r ❢♦❧❣❡♥❞❡ ❙❝❤ät③❡r β̃R✿

β̃R =
m∑

k=1

(lk +Kk)
−1aka

T
kX

TY,

✇♦❜❡✐ K1, . . . ,Km > 0 ●❡✇✐❝❤t❡ s✐♥❞✱ ❞✐❡ ❡✐♥❡ ③✉sät③❧✐❝❤❡ ❆✉s✇❛❤❧ ✈♦♥ ❊✐♥✢✉ss❣röÿ❡♥
✐♥ ❞❡r ❘❡❣r❡ss✐♦♥ ❞❛rst❡❧❧❡♥✳ ❉✉r❝❤ ❞✐❡s❡ ●❡✇✐❝❤t❡ ✇✐r❞ ❡rr❡✐❝❤t✱ ❞❛ss lk ≈ 0 ❦❡✐♥❡♥
❞❡st❛❜✐❧✐s✐❡r❡♥❞❡♥ ❊✐♥✢✉ss ❛✉❢ ❞✐❡ ❙❝❤ät③✉♥❣ ♠❡❤r ❛✉sü❜❡♥✳

Ü❜✉♥❣s❛✉❢❣❛❜❡ ✹✳✻✳✷✳ ❩❡✐❣❡♥ ❙✐❡✱ ❞❛ss ✷✮

❈♦✈(β̃R) = σ2
m∑

k=1

lk
(lk +Kk)2

aka
T
k

✶✮ β̃R ✐st ❡✐♥ ✈❡r③❡rrt❡r ❙❝❤ät③❡r ✈♦♥ β✳ ❋✐♥❞❡♥ ❙✐❡ ❞❡♥ ❇✐❛s ✈♦♥ β̃R✦

❉✐❡ ❇❡③❡✐❝❤♥✉♥❣ β̃R st❡❤t ❢ür ✭❊♥❣❧✳✮ ❘✐❞❣❡ ❘❡❣r❡ss✐♦♥✳ ❍✐❡r st❡❧❧t s✐❝❤ ❞✐❡ ❋r❛❣❡ ❞❡r
❲❛❤❧ ✈♦♥ Kk✱ k = 1, . . . ,m✳ ■♥ ❞❡r Pr❛①✐s ✇✐r❞ ♦❢t ❡♠♣❢♦❤❧❡♥✱ Kk = K✱ k = 1, . . . ,m✱
✇♦❜❡✐ K ❦❧❡✐♥ ✐st✱ ③✉ ✇ä❤❧❡♥✳

◆♦❝❤ ❡✐♥❡ ❆♥✇❡♥❞✉♥❣ ❞❡r ❍❑❆ ✐♥ ❞❡r ❘❡❣r❡ss✐♦♥ ✇✐r❞ ❞✉r❝❤ ❞✐❡ s♦❣❡❛♥♥t❡ ❧❛t❡♥t❡
❲✉r③❡❧✲❘❡❣r❡ss✐♦♥ ✭❊♥❣❧✳ ❧❛t❡♥t r♦♦t r❡❣r❡ss✐♦♥✮ ❣❡❣❡❜❡♥✳ ❉✐❡s❡ ❆rt ❞❡r ❘❡❣r❡ss✐♦♥ ✈❡r✲
s✉❝❤t✱ ♥✉r s♦❧❝❤❡ ❍❑❆ ③✉ ❡❧✐♠✐♥✐❡r❡♥✱ ❞✐❡ ❣❧❡✐❝❤③❡✐t✐❣ ❦❧❡✐♥❡ ❱❛r✐❛♥③❡♥ lk ❜❡s✐t③❡♥ ✉♥❞
❦❡✐♥❡♥ ❲❡rt ❢ür ❞✐❡ ❱♦r❤❡rs❛❣❡ ✈♦♥ EY ❞✉r❝❤ Xβ ❞❛rst❡❧❧❡♥✳ ❉❛❜❡✐ ✇✐r❞ ❞✐❡ ❍❑❆ ❛♥
❞❡r (m+1)× (m+1)✲▼❛tr✐① X̃T X̃ ♠✐t X̃ = (Y,X) ❞✉r❝❤❣❡❢ü❤rt✳ ❙❡✐❡♥ ãk✱ k = 0, . . . ,m
❞✐❡ ❑♦❡✣③✐❡♥t❡♥ ❞❡r ❍❑ ✈♦♥ X̃T X̃✱ ♠✐t ❡♥ts♣r❡❝❤❡♥❞❡♥ ❊✐❣❡♥✇❡rt❡♥ l̃k✱ k = 0, . . . ,m✳
❙❡✐ ❞❛❜❡✐ ãk = (ak0, . . . , akm)T ✱ k = 0, . . . ,m✳
❉❡✜♥✐❡r❡♥ ✇✐r ❞✐❡ ■♥❞❡①♠❡♥❣❡ ❞❡r ❛✉s③✉s❝❤❧✐❡ÿ❡♥❞❡♥ ❍❑ ❛❧s ML = {k = 0, . . . ,m : l̃k ≤
l∗, |ak0| ≤ a∗}✳ ❉✐❡s ✐st ❞✐❡ ■♥❞❡①♠❡♥❣❡ ✈♦♥ s♦❧❝❤❡♥ ❍❑✱ ❞✐❡ ❦❧❡✐♥❡ ❱❛r✐❛♥③❡♥ ❜❡s✐t③❡♥
✉♥❞ ❦❡✐♥❡♥ ❣r♦ÿ❡♥ ❊✐♥✢✉ss ❛✉❢ ❞✐❡ Pr♦❣♥♦s❡ ✈♦♥ Y ❛✉sü❜❡♥✳ ❙❡✐ M = {0, . . . ,m}\ML✳
❉❡✜♥✐❡r❡



✶✹✽ ✹ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❛♥❛❧②s❡

β̂L =
∑

k∈M
c̃kãk, ✇♦❜❡✐ {c̃k, k ∈M} = argmin

β
|Y −Xβ|2 , ♠✐t β =

∑

k∈M
ckãk

❙❛t③ ✹✳✻✳✶✳ ❊s ❣✐❧t

c̃k = −
ak0

√∑n
i=1

(
Yi − Y

)2

l̃k
∑

i∈M
a2i0
l̃i

, k ∈M

❖❤♥❡ ❇❡✇❡✐s✦

❙❝❤✇❡❧❧❡♥✇❡rt❡ l∗ ✉♥❞ a∗ s✐♥❞ ✐♠♠❡r ♥♦❝❤ ❡♠♣✐r✐s❝❤ ③✉ ✇ä❤❧❡♥✳

✹✳✼ ◆✉♠❡r✐s❝❤❡ ❇❡r❡❝❤♥✉♥❣ ❞❡r ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥

❯♠ ③✉ ✈❡rst❡❤❡♥✱ ✇❛s st❛t✐st✐s❝❤❡ ❙♦❢t✇❛r❡✲P❛❦❡t❡ ❜❡✐ ❞❡r ❇❡r❡❝❤♥✉♥❣ ✈♦♥ ❍❑ t✉♥✱ ✐st
❡s ✇✐❝❤t✐❣✱ ❡✐♥✐❣❡ ❆❧❣♦r✐t❤♠❡♥ ❞❛③✉ ③✉ ❦❡♥♥❡♥✳ ❉❛❜❡✐ ✇✐r❞ ♠❛♥ s✐❝❤ ❞❛rü❜❡r ✐♠ ❑❧❛✲
r❡♥✱ ✇❛r✉♠ ♠❛♥❝❤♠❛❧ ❞✐❡ ❊r❣❡❜♥✐ss❡ s❝❤❧❡❝❤t s✐♥❞ ✭③✳❇✳ ❜❡✐ ❊✐❣❡♥✇❡rt❡♥✱ ❞✐❡ ❢❛st ❣❧❡✐❝❤
s✐♥❞✮ ♦❞❡r ✇❡❧❝❤❡ ❊✐♥s❝❤rä♥❦✉♥❣❡♥ ❞✐❡s❡ ❆❧❣♦r✐t❤♠❡♥ ❛♥ ❞✐❡ ●röÿ❡ ❞❡r ③✉ ❜❡❛r❜❡✐t❡♥❞❡♥
❉❛t❡♥sät③❡ ✭✐♥ ❙♣❡✐❝❤❡r ✉♥❞✴♦❞❡r ▲❛✉❢③❡✐t✮ ✐♠♣❧✐③✐❡r❡♥✳ ❲✐r ✇❡r❞❡♥ ❤✐❡r ❡✐♥❡ ❦✉r③❡ Ü❜❡r✲
s✐❝❤t ❞✐❡s❡r ▼❡t❤♦❞❡♥ ❣❡❜❡♥✳ ❉❛ ❞✐❡ ❍❑❆ ✐♠ ❲❡s❡♥t❧✐❝❤❡♥ ❞❛r❛✉❢ ❜❛s✐❡rt✱ ❊✐❣❡♥✇❡rt❡
λi ✉♥❞ ❊✐❣❡♥✈❡❦t♦r❡♥ αi ❡✐♥❡r ♣♦s✐t✐✈ s❡♠✐✲❞❡✜♥✐t❡♥ (m × m)✲▼❛tr✐① Σ ③✉ ❜❡r❡❝❤♥❡♥✱
✇❡r❞❡♥ ✇✐r ✉♥s ♠✐t ❞✐❡s❡r ❇❡r❡❝❤♥✉♥❣ ❜❡s❝❤ä❢t✐❣❡♥✳

❙❡✐ ❛❧s♦ Σ ❡✐♥❡ (m ×m)✲▼❛tr✐① ♠✐t ❞❡♥ ❊✐❣❡♥✈❡❦t♦r❡♥ α1, . . . , αm ✉♥❞ ❊✐❣❡♥✇❡rt❡♥
λ1, . . . , λm✱ ❞✐❡ ♣♦s✐t✐✈ s❡♠✐✲❞❡✜♥✐t ✐st✳ ■♥ ❞❡r ❋❛❝❤❧✐t❡r❛t✉r s✐♥❞ ♠✐♥❞❡st❡♥s ✹ ▼❡t❤♦❞❡♥
③✉r ❇❡r❡❝❤♥✉♥❣ ✈♦♥ αi ✉♥❞ λi ❜❡❦❛♥♥t✿

✶✳ P♦t❡♥③♠❡t❤♦❞❡

✷✳ ◗❘✲❩❡r❧❡❣✉♥❣

✸✳ ❙✐♥❣✉❧är✇❡rt③❡r❧❡❣✉♥❣

✹✳ ◆❡✉r♦♥❛❧❡ ◆❡t③✇❡r❦❡

❲✐r ✇❡r❞❡♥ ❤✐❡r ❦✉r③ ♥✉r ❞✐❡ ❊ss❡♥③ ❞❡r P♦t❡♥③♠❡t❤♦❞❡ ❡r✇ä❤♥❡♥✿ ❞✐❡s❡ st❡❧❧t ❡✐♥❡♥
✐t❡r❛t✐✈❡♥ ❆❧❣♦r✐t❤♠✉s ③✉♠ ❆✉✣♥❞❡♥ ✈♦♥ λ1 ✉♥❞ α1 ❞❛r✱ ❢❛❧❧s λ1 >> λ2 > . . . > λ✳ ❙❡✐
u0 ❞❡r ❆♥❢❛♥❣s✈❡❦t♦r ❛✉s Rm✳ ❙❝❤r❡✐❜❡ ur = Σur−1 = Σru0 ❢ür ❛❧❧❡ r ∈ N✳ ❲❡♥♥

u0 =
m∑

i=1

ciαi

✐♥ ❞❡r ❖rt❤♦♥♦r♠❛❧❜❛s✐s α1, . . . , αm ❑♦♦r❞✐♥❛t❡♥ c1, . . . , cm ❜❡s✐t③t✱ ❞❛♥♥ ❣✐❧t



✹ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❛♥❛❧②s❡ ✶✹✾

ur = Σru0 =
m∑

i=1

ciΣ
rαi =

m∑

i=1

ciλ
r
iαi, r ∈ N

❙❡✐ ur = (ur1, . . . , urm)T ✱ αi = (αi1, . . . , αim)T ✳

▲❡♠♠❛ ✹✳✼✳✶✳ ❊s ❣✐❧t

uri
ur−1,i

−−−→
r→∞

λ1

❢ür i = 1, . . . ,m ✉♥❞

ur
ciλr

1

−−−→
r→∞

α1

❇❡✇❡✐s✳ ❋ür j = 1, . . . ,m ❣✐❧t

urj =
m∑

i=1

ciλ
r
iαij

✉♥❞ ❞❡s❤❛❧❜

urj
ur−1,j

=

∑m
i=1 ciλ

r
i

αij

λr−1
1∑m

i=1 ciλ
r−1
i

αij

λr−1
1

=
c1α1jλ1 +

∑m
i=2 ci

(
λi
λ1

)r−1
λiαij

c1α1j +
∑m

i=2 ci

(
λi
λ1

)r−1
αij

−−−→
r→∞

c1α1j

c1α1j
λ1 = λ1, ✇❡✐❧

λi

λ1
< 1, i = 2, . . . , n

✇❡✐t❡r❤✐♥✱

ur
uλr

1

= α1 +

m∑

i=2

ci
c1

(
λi

λ1

)r

αi−−−→
r→∞

α1.

❉✐❡ ❚❛ts❛❝❤❡✱ ❞❛ss c1 ✉♥❜❡❦❛♥♥t ✐st✱ s♦❧❧ ✉♥s ♥✐❝❤t stör❡♥✱ ❞❡♥♥ ur
λr
1
❦❛♥♥ ③✉♠ ❊✐♥✲

❤❡✐ts✈❡❦t♦r ♥♦r♠✐❡rt ✇❡r❞❡♥✳ ❆✉s ❞❡♠ ❇❡✇❡✐s ❞❡s ▲❡♠♠❛s ✹✳✻✳✸ ✇✐r❞ ❦❧❛r✱ ❞❛ss ❞✐❡
❑♦♥✈❡r❣❡♥③✲❣❡s❝❤✇✐♥❞✐❣❦❡✐t ✈♦♥ uri

ur−1,i
❣❡❣❡♥ λ1 ✉♥❞ ✈♦♥ ur

c1λr
1
❣❡❣❡♥ α1 ❣❡♥❛✉ ❞❛♥♥

s❝❤❧❡❝❤t❡r ✇✐r❞✱ ✇❡♥♥ λ1 ≈ λ2✱ ✇❡♥♥ ❛❧s♦ λ2
λ1
≈ 1✳

❲❛s ✇är❡ ❛❜❡r ✐♠ ❋❛❧❧ λ1 ≈ λ2 ③✉ t✉♥✱ ✉♠ ❞✐❡ ❑♦♥✈❡r❣❡♥③ ❞❡s ❱❡r❢❛❤r❡♥s ③✉ ❜❡s❝❤❧❡✉✲
♥✐❣❡♥❄ ❙t❛tt Σ ❦❛♥♥ ♠❛♥ ✐♥ ❞❡♥ ■t❡r❛t✐♦♥❡♥ Σ− ρI ✈❡r✇❡♥❞❡♥✱ ✉♠ ❞❛s ❱❡r❤ä❧t♥✐s λ2−ρ

λ1−ρ

❦❧❡✐♥❡r ③✉ ♠❛❝❤❡♥✳ ❖❞❡r✱ st❛tt Σ ✈❡r✇❡♥❞❡t ♠❛♥ (Σ− ρI)−1✱ ❞❛s ❤❡✐ÿt✱ ♠❛♥ ❧öst ❞❛s
●❧❡✐❝❤✉♥❣ss②st❡♠ (Σ− ρI)ur = ur−1 ❢ür ❥❡❞❡s r ∈ N✳ ❙♦♠✐t ✐st ❢ür ❞✐❡ ❣❡❡✐❣♥❡t❡ ❲❛❤❧
✈♦♥ ρ ❞✐❡ ❑♦♥✈❡r❣❡♥③ ③✉ αk✱ k = 1, . . . ,m ♠ö❣❧✐❝❤ ✭✐♠ ③✇❡✐t❡♥ ❋❛❧❧✮✳



✶✺✵ ✹ ❍❛✉♣t❦♦♠♣♦♥❡♥t❡♥❛♥❛❧②s❡

Ü❜✉♥❣s❛✉❢❣❛❜❡ ✹✳✼✳✶✳ ❑♦♥str✉✐❡r❡♥ ❙✐❡ ❞✐❡s❡ ❱❡❦t♦r❡♥ ✉♥❞ ❜❡✇❡✐s❡♥ ❙✐❡ ❞✐❡ ❑♦♥✈❡r✲
❣❡♥③✦

❊✐♥❡ ❇❡s❝❤❧❡✉♥✐❣✉♥❣ ❞❡r ❑♦♥✈❡r❣❡♥③ ❦❛♥♥ ❛✉❝❤ ❡rr❡✐❝❤t ✇❡r❞❡♥✱ ✇❡♥♥ st❛tt {ur} ❞✐❡
❋♦❧❣❡ {u2r} ❜❡tr❛❝❤t❡t ✇✐r❞✱ u2r = T 2ru0✱ r ∈ N✳ ❲❡✐t❡r❡ ▼❛ÿ♥❛❤♠❡♥ ③✉r ❱❡r❜❡ss❡r✉♥❣
❞❡s ❆❧❣♦r✐t❤♠✉s ❞❡r P♦t❡♥③♠❡t❤♦❞❡ ✜♥❞❡t ♠❛♥ ✐♥ ❬✽❪✱ ❙✳ ✹✶✵✲✹✶✶✳
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❯♥✐✈❡rs✐t② Pr❡ss✱ ✷✵✵✸

❬✶✹❪ Pr✉s❝❤❛✱ ❍✳✿ ❆♥❣❡✇❛♥❞t❡ ▼❡t❤♦❞❡♥ ❞❡r ▼❛t❤❡♠❛t✐s❝❤❡♥ ❙t❛t✐st✐❦✳ ❙t✉tt❣❛rt ✿
❚❡✉❜♥❡r✱ ✷✵✵✵
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❆❜❧❡❤♥✉♥❣s❜❡r❡✐❝❤✱ ✹
❆■❈✲❑r✐t❡r✐✉♠✱ ✶✷✷
❛♥❛❧②s✐s ♦❢ ✈❛r✐❛♥❝❡✱ s✐❡❤❡ ❱❛r✐❛♥③❛♥❛❧②✲

s❡
❆♥♥❛❤♠❡❜❡r❡✐❝❤✱ ✹
❆◆❖❱❆✱ s✐❡❤❡ ❱❛r✐❛♥③❛♥❛❧②s❡
❛s②♠♣t♦t✐s❝❤❡ ❚❡sts✱ ✶✶✺

❜❡st ❧✐♥❡❛r ✉♥❜✐❛s❡❞ ❡st✐♠❛t♦r ✭❇▲❯❊✮✱
✼✵

❜❡st❡r ❧✐♥❡❛r❡r ❡r✇❛rt✉♥❣str❡✉❡r ❙❝❤ät✲
③❡r✱ ✼✵

❇❡st✐♠♠t❤❡✐ts♠❛ÿ✱ ✼✾
❜✐❧✐♥❡❛r❡ ❋♦r♠✱ ✻✵
❇✐♥♦♠✐❛❧✈❡rt❡✐❧✉♥❣✱ ✷✻
❇♦♥❢❡rr♦♥✐✲❯♥❣❧❡✐❝❤✉♥❣✱ ✽✶

❉❡s✐❣♥✲▼❛tr✐①✱ ✺✺✱ ✻✽

❊✛❡❦t✱ ✶✵✵
❊✐♥❞❡✉t✐❣❦❡✐tss❛t③

❢ür ❝❤❛r❛❦t❡r✐st✐s❝❤❡ ❋✉♥❦t✐♦♥❡♥✱ ✺✼
❢ür ♠♦♠❡♥t❡r③❡✉❣❡♥❞❡ ❋✉♥❦t✐♦♥❡♥✱

✻✹
❡✐♥♣❛r❛♠❡tr✐s❝❤❡ ❊①♣♦♥❡♥t✐❛❧❦❧❛ss❡✱ ✷✺
❊♥ts❝❤❡✐❞✉♥❣sr❡❣❡❧✱ ✸
❊①♣♦♥❡♥t✐❛❧❢❛♠✐❧✐❡✱ ✶✵✸

❋❛❧t✉♥❣sst❛❜✐❧✐tät ❞❡r ♠✉❧t✐✈❛r✐❛t❡♥ ◆♦r✲
♠❛❧✈❡rt❡✐❧✉♥❣✱ ✺✾

❋❡❤❧❡r ✶✳ ✉♥❞ ✷✳ ❆rt✱ ✺
❋✐s❤❡r ❙❝♦r✐♥❣✱ ✶✷✵
❋✐s❤❡r✲■♥❢♦r♠❛t✐♦♥s♠❛tr✐①✱ ✹✸✱ ✶✶✵✱ ✶✷✶

●üt❡❢✉♥❦t✐♦♥✱ ✺
❙❛t③ ✈♦♥ ●❛✉ÿ✲▼❛r❦♦✈✱ ✾✶
❣❡♠✐s❝❤t❡ ▼♦♠❡♥t❡✱ ✻✶

❍❛✉♣ts❛t③ ü❜❡r ③✇❡✐s❡✐t✐❣❡ ❚❡sts✱ ✸✹
❍❡ss❡✲▼❛tr✐①✱ ✶✶✵
❍②♣♦t❤❡s❡✱ ✸

❆❧t❡r♥❛t✐✈❡✱ ✸
❍❛✉♣t❤②♣♦t❤❡s❡✱ ✸
t❡st❜❛r❡✱ ✾✻

■♥❢♦r♠❛t✐♦♥s❦♦❡✣③✐❡♥t ✈♦♥ ❆❦❛✐❦❡✱ ✶✷✷
■♥❢♦r♠❛t✐♦♥s♠❛tr✐① ✈♦♥ ❋✐s❤❡r✱ ✹✸
■t❡r❛t✐♦♥st❡st✱ ✺✷

❑❛r❧ P♦♣♣❡r✱ ✹
❦❧❛ss❡♥s♣❡③✐✜s❝❤❡ ❉✐✛❡r❡♥③❡♥✱ ✶✵✵
❑❧❛ss❡♥stär❦❡✱ ✸✻
❦❧❛ss✐s❝❤❡ ❆◆❖❱❆✲❍②♣♦t❤❡s❡✱ ✶✵✶
❦r✐t✐s❝❤❡r ❇❡r❡✐❝❤✱ s✐❡❤❡ ❆❜❧❡❤♥✉♥❣s❜❡✲

r❡✐❝❤

▲✐❦❡❧✐❤♦♦❞✲❘❛t✐♦✲❚❡st✱ ✶✷✶
❧✐♥❡❛r❡ ❋♦r♠✱ ✻✵
❧✐♥❡❛r❡ ❘❡❣r❡ss✐♦♥✱ ✺✺

❡✐♥❢❛❝❤❡✱ ✼✵
♠✉❧t✐♣❧❡✱ ✼✵
♦❤♥❡ ✈♦❧❧❡♥ ❘❛♥❣✱ ✽✹

♠✉❧t✐✈❛r✐❛t❡ ♠✐t ✈♦❧❧❡♠ ❘❛♥❣✱ ✻✽
▲✐♥❡❛r❡ ❚r❛♥s❢♦r♠❛t✐♦♥ ✈♦♥ N(µ,K)✱ ✺✾
▲✐♥❦❢✉♥❦t✐♦♥✱ ✶✵✸

♥❛tür❧✐❝❤❡✱ ✶✵✼
▲♦❣✐t✲▼♦❞❡❧❧✱ ✶✵✽✱ ✶✶✽✱ ✶✷✹

▼❡t❤♦❞❡ ❞❡r ❦❧❡✐♥st❡♥ ◗✉❛❞r❛t❡✱ ✻✽
▼❑◗✲❙❝❤ät③❡r✱ ✻✽
▼♦❞❡❧❧❡

✈❡r❛❧❧❣❡♠❡✐♥❡rt❡ ❧✐♥❡❛r❡✱ ✶✵✸
▼✉❧t✐♥♦♠✐❛❧✈❡rt❡✐❧✉♥❣✱ ✸✻
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◆❡②♠❛♥✲P❡❛rs♦♥
❋✉♥❞❛♠❡♥t❛❧❧❡♠♠❛✱ ✷✶
❖♣t✐♠❛❧✐tätss❛t③✱ ✷✵

♥✐❝❤t✲③❡♥tr❛❧❡ χ2
n,µ✲❱❡rt❡✐❧✉♥❣✱ ✻✹

◆♦r♠❛❧❡♥❣❧❡✐❝❤✉♥❣✱ ✻✾
◆♦r♠❛❧✈❡rt❡✐❧✉♥❣

♠✉❧t✐✈❛r✐❛t❡✱ ✺✺
❙✐❣♥✐✜❦❛♥③t❡sts✱ ✶✷

❖❞❞✱ ✶✵✽

p✲❲❡rt✱ ✾
P❡❛rs♦♥✲❚❡stst❛t✐st✐❦✱ ✸✼
P♦✐ss♦♥✲▼♦❞❡❧❧✱ ✶✷✹
P♦✐ss♦♥✲❘❡❣r❡ss✐♦♥✱ ✶✶✹
P♦✐ss♦♥✈❡rt❡✐❧✉♥❣✱ ✶✺✱ ✶✼

◆❡②♠❛♥✲❋✐s❤❡r✲❚❡st✱ ✹✼
◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡st✱ ✷✸

Pr♦❜✐t✲▼♦❞❡❧❧✱ ✶✵✽

q✉❛❞r❛t✐s❝❤❡ ❋♦r♠✱ ✻✵
❑♦✈❛r✐❛♥③✱ ✻✶

◗✉❛♥t✐❧❢✉♥❦t✐♦♥ ❞❡r ◆♦r♠❛❧✈❡rt❡✐❧✉♥❣✱ ✶✵✽

❘❛♥❞♦♠✐s✐❡r✉♥❣s❜❡r❡✐❝❤✱ ✹
❘❡❣r❡ss✐♦♥

❜✐♥är❡ ❦❛t❡❣♦r✐❛❧❡✱ ✶✵✽
❧♦❣✐st✐s❝❤❡✱ ✶✵✽✱ ✶✶✹

❘❡s✐❞✉✉♠✱ ✼✽
❘❡ststr❡✉✉♥❣✱ ✼✾

❙❝♦r❡✲❋✉♥❦t✐♦♥✱ ✶✷✶
❙❝♦r❡✲❙t❛t✐st✐❦✱ ✶✷✶
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❚❡st
❆♥♣❛ss✉♥❣st❡st✱ ✸✺
❆♥♣❛ss✉♥❣st❡st ✈♦♥ ❙❤❛♣✐r♦✱ ✹✽
❛s②♠♣t♦t✐s❝❤❡r✱ ✼✱ ✶✹
❛✉❢ ❩✉s❛♠♠❡♥❤❛♥❣✱ ✼✽
❜❡ss❡r❡r✱ ✶✽
❜❡st❡r✱ ✶✽
❇✐♥♦♠✐❛❧t❡st✱ ✺✵
χ2✲❆♥♣❛ss✉♥❣st❡st✱ ✸✻

χ2✲P❡❛rs♦♥✲❋✐s❤❡r✲❚❡st✱ ✹✷
❢ür ❘❡❣r❡ss✐♦♥s♣❛r❛♠❡t❡r✱ ✼✽
■t❡r❛t✐♦♥st❡st✱ ✺✷
❑♦❧♠♦❣♦r♦✈✲❙♠✐r♥♦✈✱ ✸✻
▼❛❝❤t✱ ✺
▼♦♥t❡✲❈❛r❧♦✲❚❡st✱ ✼
◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡st✱ ✶✾
❆❜❧❡❤♥✉♥❣s❜❡r❡✐❝❤✱ ✶✾
❡✐♥s❡✐t✐❣❡r✱ ✷✹
♠♦❞✐✜③✐❡rt❡r✱ ✸✷
P❛r❛♠❡t❡r ❞❡r P♦✐ss♦♥✈❡rt❡✐❧✉♥❣✱
✷✸

❯♠❢❛♥❣✱ ✶✾
◆P✲❚❡st✱ s✐❡❤❡ ◆❡②♠❛♥✲P❡❛rs♦♥✲❚❡st
P❛r❛♠❡t❡r ❞❡r ◆♦r♠❛❧✈❡rt❡✐❧✉♥❣✱ ✶✷
♣❛r❛♠❡tr✐s❝❤❡r✱ ✺
❡✐♥s❡✐t✐❣❡r✱ ✻
❧✐♥❦ss❡✐t✐❣❡r✱ ✻
r❡❝❤tss❡✐t✐❣❡r✱ ✻
③✇❡✐s❡✐t✐❣❡r✱ ✻

♣❛r❛♠❡tr✐s❝❤❡r ❙✐❣♥✐✜❦❛♥③t❡st✱ ✶✷
♣♦✇❡r✱ s✐❡❤❡ ▼❛❝❤t
r❛♥❞♦♠✐s✐❡rt❡r✱ ✹✱ ✶✼
❙❝❤är❢❡✱ ✺
✈♦♥ ❙❤❛♣✐r♦✲❋r❛♥❝✐❛✱ ✹✾
✈♦♥ ❙❤❛♣✐r♦✲❲✐❧❦✱ ✺✵
❙tär❦❡✱ ✺
❯♠❢❛♥❣✱ ✶✽
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