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Vorwort

Dieses Skript entstand aus dem Zyklus der Vorlesungen iiber Statistik, die ich in den Jahren
2005-2012 an der Universitdt Ulm gehalten habe. Dabei handelt es sich um die erste Einfiihrung
in die Statistik, die durch die aufbauende Vorlesung Stochastik III ergénzt wird.

Dieses Skript gibt eine Ubersicht iiber die typischen Fragestellungen und Methoden der ma-
thematischen Statistik. Es stellt einen Versuch dar, einen Mittelweg zwischen praktisch orien-
tierten (aber mathematisch oft sehr diirftigen) Statistik-Monographien einerseits und trockenen
Bichern iiber die mathematische Statistik andererseits einzuschlagen. Ob es mir gelungen ist,
soll der Leser beurteilen.

Ich méchte gerne meinen Kollegen aus dem Institut fiir Stochastik, Herrn Prof. Volker
Schmidt und Herrn Dipl.-Math. Malte Spiess, fiir ihre Unterstiitzung und anregenden Diskus-
sionen wihrend der Entstehung des Skriptes danken. Herr Tobias Brosch hat eine hervorragende
Arbeit beim Tippen des Skriptes und bei der Erstellung zahlreicher Abbildungen, die den Text
begleiten, geleistet. Dafiir gilt ihm mein herzlicher Dank.

Ulm, den 19.04.2012 Evgeny Spodarev
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1 Einfiihrung

1.1 Typische Fragestellungen, Aufgaben und Ziele der Statistik

Im alltéglichen Sprachgebrauch versteht man unter ,,Statistik* eine Darstellung von Ergebnissen
des Zusammenzéihlens von Daten und Fakten jeglicher Art, wie z.B. 6konomischen Kenngro-
Ben, politischen Umfragen, Daten der Marktforschung, klinischen Studien in der Biologie und
Medizin, usw.

Die mathematische Statistik jedoch kann viel mehr. Sie arbeitet mit Daten-Stichproben, die
nach einem bestimmten Zufallsmechanismus aus der Grundgesamtheit aller Daten, die in Folge
von Beobachtung, Experimenten (reale Daten) oder Computersimulation (synthetische Daten)
erhoben wurden. Dabei beschaftigt sich die mathematische Statistik mit folgenden Fragestel-
lungen:

1. Wie sollen die Daten gewonnen werden? (Design von Experimenten)

2. Wie sollen (insbesondere riesengrofie) Datensitze beschrieben werden, um die Gesetzmé-
Bigkeiten und Strukturen in ihnen entecken zu konnen? (Beschreibende (deskriptive) und
explorative Statistik)

3. Welche Schliisse kann man aus den Daten ziehen? (Schliefende oder induktive Statistik)

Statistik

Design von Experimenten‘ | Beschreibende Statistik| ~ |Schliefende Statistik |

In dieser einfithrenden Vorlesung werden wir Teile der beschreibenden und schliefenden Sta-
tistik kennelernen, wobei die Datenerhebung aus Platzgrinden ausgelassen wird. Die Arbeits-
weise eines Statistikers sieht folgendermafien aus:

1. Datenerhebung

2. Visualisierung und beschreibende Datenanalyse

3. Datenbereinigung (z.B. Erkennung fehlerhafter Messungen, Ausreiflern, usw.)
4. Ezplorative Datenanalyse (Suche nach GesetzméafBigkeiten)

5. Modellierung der Daten mit Methoden der Stochastik

6. Modellanpassung (Schatzung der Modellparameter)

7. Modellvalidierung (wie gut war die Modellanpassung?)
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Pflanze 1 2 3 4 5 6 7 8 9 10

rund | 45 27 24 19 32 26 88 22 28 25

kantig | 12 8 7 10 11 6 24 10 6 7
Verhéltnis ...:1 |38 34 34 19 29 43 3,7 22 47 3,6

Tab. 1.1: Ergebnisse fiir die 10 Pflanzen des ersten Versuchs von Mendel

8. Schlieffende Datenanalyse:

e Konstruktion von Vertrauensintervallen (Konfidenzintervallen) fiir Modellparameter
und deren Funktionen,

o Tests statistischer Hypothesen,

e Vorhersage von Zielgrofien (z.B. auf Basis modellbezogener Computersimulation).

Uns werden in diesem Vorlesungsskript vor allem die Arbeitspunkte 2), 4)-6) und 8) beschaf-
tigen.

Beispiel 1.1.1
Nachfolgend geben wir einige typische Fragestellungen der Statistik an Beispielen von Daten-
satzen:

1. Statistische Herleitung von Grundsdtzen der biologischen Evolution (Mendel, 1865):

Es wurden Nachkommen von zwei Erbsensorten, die sich in der Samenform unterscheiden,
geziichtet: die erste Sorte hat runde, die zweite kantige Erbsen. Johann Gregor Mendel
hat festgestellt, dass sich runde Samen dominant vererben. Dabei werden bei einer Be-
stdubung von Pflanzen der einen Sorte mit Pollen der anderen alle Nachkommen runde
Samen zeigen, die genetisch heterozygot sind, d.h., beide Allele aufweisen. Kreuzt man
diese hybriden Pflanzen, so zeigen sie runde und kantige Samen im Verhéltnis 3 : 1
(Spaltungs- und Dominanzregeln von Mendel). Bei der statistischen Uberpriifung seiner
Vermutungen erhielt Mendel 5475 runde und 1850 kantige Samen, die somit im Verhéltnis
2,96 : 1 stehen. In der Tabelle 1.1 sind Ergebnisse fiir die ersten 10 Pflanzen gezeigt. Man
sieht, dass das oben genannte Verhéltnis zuféllig um 3 : 1 schwankt. Durch die Bildung
des Mittels iiber das Gesamtkollektiv der Daten wird die GesetzméaBigkeit 3 : 1 gefunden
(explorative Statistik).

2. Kreditwirdigkeit bei Kreditvergabe

Die Banken sind offensichtlich daran interessiert, Bankkredite an Kunden zu vergeben,
die in der Zukunft solvent bleiben, also die Kreditraten regelméafig zuriickzahlen kénnen.
Um die Kreditwiirdigkeit zu iiberpriifen, werden Umfragen gemacht, wobei die Antworten
unter anderem in folgenden Variablen kodiert werden:

e X; Laufendes Konto bei der Bank (1 = nein, 2 = ja und durchschnittlich gefiihrt,
3 = ja und gut gefiihrt)

e X5 Laufzeit des Kredits in Monaten
e X3 Kredithohe in €
e X, Riickzahlung fritherer Kredite (gut/ schlecht)
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Y

X1: laufendes Konto 1 0
nein 45,0 19,9
gut 15,3 49,7
mittel 39,7 30,2

X3: Kredithohe in € 1 0
0<...<500 1,00 2,14
500 < ... <1000 11,33 9,14
1000 < ... <1500 17,00 19, 86
1500 < ... < 2500 19,67 24,57
2500 < ... < 5000 25,00 28,57
5000 < ... < 7500 11,33 9,71
7500 < ... < 10000 6,67 3,71
10000 < ... < 15000 7,00 2,00
15000 < ... < 20000 1,00 0,29

X4: Frithere Kredite 1 0
gut 82,33 94, 85
schlecht 17,66 5,15

X5: Verwendungszweck 1 0
privat 57,53 69, 29
beruflich 42,47 30,71

Tab. 1.2: Lernstichprobe zur Vergabe von Krediten

e X5 Verwendungszweck (privat / geschéftlich)
o X Geschlecht (weiblich / méannlich)

Um an Hand eines ausgefiillten Fragebogens wie diesem eine Entscheidung tiber die Ver-
gabe des Kredits treffen zu kénnen, werden Lernstichproben herangezogen, bei denen das
Ergebnis Y der erfolgten Kreditvergabe bekannt ist. Dabei bedeutet Y = 0gut und Y =1
schlecht. Betrachten wir eine solche Stichprobe einer siiddeutschen Bank, die 1000 Umfra-
gebogen umfasst. Dabei sind 700 kreditwiirdig und 300 davon nicht kreditwiirdig gewesen.
Die Tabelle 1.2 zeigt Prozentzahlen dieses Datensatzes fiir ausgewéhlte Merkmale X;.
Dabei ist es moglich, mit Hilfe statistischer Methoden (Regression) eine Kreditentschei-
dung bei einem Kunden an Hand dieser Lernprobe automatisch treffen zu kénnen. Dieser
Vorgang wird manchmal auch ,statistisches Lernen® genannt. Fragestellungen wie diese
werden erst in Stochastik III (verallgemeinerte lineare Modelle) behandelt.

3. Korrosion von Legierungen

In diesem Beispiel wurde der Korrosionsgrad einer Kupfer-Nickel-Legierung in Abhén-
gigkeit ihres Eisengehalts untersucht. Dazu wurden 13 verschiedene Rader mit dieser
Legierung beschichtet und 60 Tage lang in Meerwasser gedreht. Danach wurde der Ge-
wichtsverlust in mg pro dm? und Tag bestimmt. Aus dem Bild 1.1 ist zu sehen, dass die
Korrosion in Abhédngigkeit vom Eisengehalt linear abnimmt. Mit statistischen Methoden
(einfache lineare Regression) kann die Geschwindigkeit dieser Abnahme geschétzt werden.
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Abb. 1.1: Korrosion von Kupfer-Nickel-Legierung

1.2 Statistische Merkmale und ihre Typen

Die Daten, die zur statistischen Analyse vorliegen, kénnen eine oder mehrere interessierende
Groflen (die auch Variablen oder Merkmale genannt werden) umfassen. Thre Werte werden
Merkmalsauspriagungen genannt. In dem nachfolgenden Diagramm werden mdégliche Typen der
statistischen Merkmale gegeben.

Statistische Merkmale

[ nominal ] [ ordinal ] [ diskret J [ stetig ]

Diese Typen entstehen in Folge der Klassifikation von Wertebereichen (Skalen) der Merkmale.
Dennoch ist diese Einteilung nicht vollstdndig und kann bei Bedarf erweitert werden. Man un-
terscheidet qualitative und quantitative Merkmale. Quantitative Merkmale lassen sich inhaltlich
gut durch Zahlen darstellen (z.B. Kredithohe in €, Kérpergewicht und Kérpergrofie, Blutdruck
usw.). Sie konnen diskrete oder stetige Wertebereiche haben, wobei diskrete Merkmale isolier-
te Werte annehmen konnen (z.B. Anzahl der Schidden eines Versicherers pro Jahr). Stetige
Wertebereiche hingegen sind iiberabzéhlbar. Dennoch liegen in der Praxis stetige Merkmale in
gerundeter Form vor (z.B. Korpergrofie auf cm gerundet, Geldbetrage auf € gerundet usw.).
Im Gegensatz zu den quantitativen Merkmalen sind die Inhalte der qualitativen Merkmale,
wie z.B. Blutgruppe (0, A, B und AB) oder Familienstand (ledig, verheiratet, verwitwet),
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nicht sinnvoll durch Zahlen darzustellen. Sie kénnen zwar formell mit Zahlen kodiert werden
(z.B. bei Blutgruppen 0 =0, A = 1, B =2, AB = 3), aber solche Kodierungen stellen keinen
inhaltlichen Zusammenhang zwischen Auspridgungen und Zahlen-Codes dar sondern dienen
lediglich der besseren Identifikation der Merkmale auf einem Rechner. Es ist insbesondere
unsinnig, Mittelwerte und dhnliches von solchen Codes zu bilden.

Ein qualitatives Merkmal mit nur 2 Ausprdgungen (z.B. ménnlich / weiblich, Raucher /
Nichtraucher) heifit alternativ. Ein qualitatives Merkmal kann ordinal (wenn sich eine natiirli-
che lineare Ordnung in den Merkmalsauspriagungen finden lésst, wie z.B. gut / mittel / schlecht
bei Qualitatsbewertung in Umfragen oder sehr gut / gut / befriedigend / ausreichend / mangel-
haft / ungentigend bei Schulnoten) oder nominal (wenn eine solche Ordnung nicht vorhanden
ist) sein. Beispiele von nominalen Merkmalen sind Fahrzeugmarken in der KFZ-Versicherung
(z.B. BMW, Peugeot, Volvo, usw.) oder Fiihrerscheinklassen (A, B, C, ...). Datenmerkmale
kénnen auch mehrdimensionale Auspragungen haben. In dieser Vorlesung behandeln wir je-
doch hauptséchlich eindimensionale Merkmale.

1.3 Statistische Daten und Stichproben

Aus den obigen Beispielen wird klar, dass ein Statistiker mit Datensétzen der Form (xy, ..., )
arbeitet, wobei die Einzeleintriige ; aus einer Grundgesamtheit G C R¥ stammen, die hypothe-
tisch unendlich gro$ ist. Der vorliegende Datensatz (1, .. ., z,) wird auch (konkrete) Stichprobe
von Umfang n genannt. Die Menge B aller potentiell méglichen Stichproben bezeichnen wir
als Stichprobenraum und setzen zur Vereinfachung der Notation B = RF”. In diesem Skript
werden wir meistens die univariate statistische Analyse (also & = 1, ein eindimensionales Merk-
mal) betreiben. In der beschreibenden Statistik arbeitet man mit Stichproben (z1, ..., x,) und
ihren Funktionen, um diese Daten visualisieren zu koénnen. Fir die Aufgabe der schliefien-
den Statistik jedoch reicht diese Datenebene nicht mehr aus. Daher wird die zweite Ebene
der Betrachtung eingefiihrt, die sogenannte Modellebene. Dabei wird angenommen, dass die
konkrete Stichprobe (x1,...,z,) eine Realisierung eines stochastischen Modells (X7, ..., X))
darstellt, wobei X7, ..., X,, (meistens unabhéngige identisch verteilte) Zufallsvariablen auf ei-
nem (nicht naher spezifiziertem) Wahrscheinlichkeitsraum (€2, F,P) sind. Diese Zufallsvariablen
X;, t=1,...,n konnen als konsequente Beobachtungen eines Merkmals interpretiert werden.
In Bsp. 1.1.1, 1) z.B. die Erbsenform mit

1i=1,...,n.

0, falls Erbse i rund,
L 1, falls Erbse ¢ eckig,

Der Vektor (X1,...,X,) wird dabei Zufallsstichprobe genannt. Man setzt weiter voraus, dass
EX? < oo Vi=1,...,n, damit man von der Varianz Var X; der Einzeleintriige sprechen kann.
Es wird auBerdem angenommen, dass ein w € € existiert, sodass X;(w) =x; Vi=1,...,n. Sei
F die Verteilungsfunktion der Zufallsvariablen X;. Eine der wichtigsten Aufgaben der Statistik
ist die Bestimmung von F' (man sagt, ,Schétzung von F“) aus den konkreten Daten (x1, ..., zy).
Dabei konnen auch Momente von F' und ihre Funktionen (Erwartungswert, Varianz, Schiefe,
usw.) von Interesse sein.
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1.4 Stichprobenfunktionen

Um die obigen Aufgaben erfiillen zu koénnen, braucht man gewisse Funktionen ¢ : R" —
R™, m € N auf dem Stichprobenraum, die diese Stichprobe bewerten.

Definition 1.4.1
Fine Borel-messbare Abbildung ¢ : R™ — R™ heifit Stichprobenfunktion. Wenn man auf der
Modellebene mit einer Zufallsstichprobe (X7, ..., X,,) arbeitet, so heifit die Zufallsvariable

o(X1,..., Xp)

eine Statistik. In der Schétztheorie spricht man dabei von Schétzern und bei statistischen Tests
wird (X1, ..., X,) Teststatistik genannt.

Beispiele fir Stichprobenfunktionen sind unter anderen das Stichprobenmittel
_ 1 &
Tn=—>) x,
n n ; 7

die Stichprobenvarianz

und die Ordnungsstatistiken
L) S L) <. S Ty,

die entstehen, wenn man eine Stichprobe, die aus quantitativen Merkmalen besteht, linear ord-
net (:L'(l) =MmiNj=1__nTi- ., T(n) = MAXj=1_n x;). Weitere Beispiele und ihre Charakteristiken
werden in Kapitel 2 gegeben.
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Sei eine konkrete Stichprobe (zi,...,x,), x; € R gegeben, wobei die z; als Realisierungen

der Zufallsvariablen X; 2 X mit Verteilunfsfunktion F interpretiert werden kénnen.

2.1 Verteilungen und ihre Darstellungen

In diesem Abschnitt werden wir Methoden zur statistischen Beschreibung und grafischen Dar-
stellung der (unbekannten) Verteilung F' betrachten.

2.1.1 Haufigkeiten und Diagramme

Falls das quantitative Merkmal X eine endliche Anzahl von Auspriagungen {ai,...,a;}, a1 <
as < ... < ay, besitzt, also
P(X € {a1,...,ax}) =1,

dann kann eine Schétzung der Zahldichte p; = P(X = a;) von X aus den Daten (z1,...,z,)
grafisch dargestellt werden. Ahnliche Darstellungen sind fiir die Dichte f(x) von absolut ste-
tigen Merkmalen X moglich, wobei ihr Wertebereich C sich in k Klassen aufteilen lésst:
(ci—1,¢i], i = 1,...,k, wobei ¢g = —o0, ¢1 < ... < €1, ¢y = 00 ist. Dann kann die
Zahldichte p; = P(X € (cx—1,ck]) gegeben durch

pZ:/Z f(.’IJ)d.’EZ, i1=0,...,k
Ci—1

betrachtet werden.

Definition 2.1.1

1. Die absolute Haufigkeit von Merkmalsauspragung a; bzw. Klasse (¢;—1,¢], i=1,...,k
ist n, =#{x;,j=1,...,n:2;=a;} baw. n; = #{xj, j=1,....,n: xj € (¢i—1,¢]}.

2. Die relative Hdaufigkeit von Merkmalsauspragung a; bzw. Klasse (¢;—1,¢;] ist f; = n;/n,
i=1,...,k.

Es gilt offensichtlich n = Zle n;, 0<f;<1, Zle fi = 1. Die absoluten und relativen
Héufigkeiten werden oft in Haufigkeitstabellen zusammengefasst. Zu ihrer Visualisierung dienen
so genannte Diagramme. Es wird grundsétzlich zwischen Histogrammen und Kreisdiagrammen
unterschieden.

L. Histogramme werden gebildet, indem man die Paare (a;, f;) (bzw. (1/2(c1 + z(1)), f1),
(1/2(cic1+¢i), fi), i =2,..., k=1, (1/2(ck—1 + (), fi) im absolut stetigen Fall, wobei
hier die Bezeichnung a; = 1/2(c;—1 + ¢;) verwendet wird und Ty < C1,  Tp) > k-1
angenommen wird.) auf der Koordinatenebene (z,y) folgendermaflen auftragt:

e Stabdiagramm: f; wird als Hohe des senkrechten Strichs iiber a; dargestellt:
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(/R
fa T
T | |
! >
0 a; az as e aj X

e Sdulendiagramm: genauso wie ein Stabdiagramm, nur werden Striche durch Sdulen
der Form (¢;_1, ¢;] x f; ersetzt, wobei im diskreten Fall die Aufteilung der reellen Ach-
se —o0 =c¢p < ] <cg <...<cp1<cp =00 in Intervalle beliebig vorgenommen
werden kann.

y 'y
for
fir
0 ciraicoasczascs ... CLAKCK+1 T

e Balkendiagramm: genauso wie Sdulendiagramm, nur mit vertikalen statt horizontaler
x-Achse.

C4
as T

a2
Cc2
ar T

0 fi fo oy

2. Kreisdiagramme (Tortendiagramme):
Ein Kreis wird in Segmente mit Offnungswinkel «; eingeteilt, die proportional zu f; sind:
041':271"}0@‘, i:1,...,n.
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N/

3. Stamm-Blatt-Diagramme (stem-leaf display):

Diese werden heutzutage relativ selten und nur fiir kleine Datensétze verwendet. Dabei
arbeitet man mit Stichprobenwerten, die auf ganze Zahlen gerundet sind. Sei (x1, ..., z,)
eine Stichprobe von solchen Werten, die Auspriagungen eines quantitativen Merkmals sind.
Zunachst teilt man den Wertebereich [x(l), x(n)] in Klassen gleicher Breite 10¢, d € N,
wobei jede Klasse mit den ersten Ziffern der dazugehoérigen Beobachtungen markiert wird.
Zum Beispiel, wenn die Klasseneinteilung so aussieht

100 200 300 ... 700

werden die Klassen [100(¢7 — 1), 100¢) mit den Zahlen ¢ markiert und auf der y-Achse wie
folgt aufgetragen:

y A

113378

921 24455579

31 45

41 1113355566668
71178

Auf diese Weise wird der Stamm des Baumes festgelegt. In jeder Klasse ordnet man
Beobachtungen ihrer Grofie nach und rundet sie auf die Stelle, die nach der gewéhlten
Genauigkeit des Stammes folgt. Als Beispiel erhdlt man aus 127 — 130, aus 652 — 650
usw. und trigt diese Beobachtungen als Bléatter des Baums horizontal ihrer Reihenfolge
nach als 3 in Klasse 1 und 5 in Klasse 6 auf. Dabei darf man nicht vergessen, die Einheit
zu notieren: 1/3 = 130, um sich das Riickrechnen zu ermoglichen. Bei der Wahl der
Klassenanzahl m hélt man sich an die Faustregel m ~ 10log;yn, um einerseits den
Dateverlust durch das unnétige Runden zu minimieren und andererseits das Diagramm
so iibersichtlich wie moglich zu halten.

Bemerkung 2.1.1

Die in Abschnitt 2.1.1 betrachteten Methoden dienen der Visualisierung von (Zahl-) Dichten der
Verteilung eines beobachteten Merkmals X. Aus dem Histogramm kann z.B. die Interpretation
der Form der Dichte abgelesen werden:
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Abb. 2.1: Das Histogramm der Daten mit einer rechtssteilen (linksschiefen), symmetrischen
und linkssteilen (rechtsschiefen) Verteilung und ihre Dichte.

Ist die zugrundeliegende Verteilung F'x symmetrisch bzw. linkssteil (rechtsschief) oder rechts-
steil (linksschief) (vgl. Abb. 2.1) oder ist sie unimodal (d.h. eingipflig), bimodal (d.h. mit 2
Gipfeln) oder multimodal (also mit mehreren Gipfeln) (vgl. Abb. 2.2).

Abb. 2.2: Histogramm der Daten mit der Dichte einer unimodalen, bimodalen und multimoda-
len Verteilung

2.1.2 Empirische Verteilungsfunktion

Es sei eine konkrete Stichprobe (z1,...,x,) gegeben, die eine Realisierung des statistischen
Modells (X1, ..., X,) ist, wobei X1, ..., X,, unabhéngige identisch verteilte Zufallsvariablen mit
Verteilungsfunktion Fx : X; Ix~F 'x sind. Wie kann die unbekannte Verteilungsfunktion
Fx aus den Daten (x1,...,x,) rekonstruiert (die Statistiker sagen , geschétzt“) werden? Dies
ist mit Hilfe der sogenannten empirischen Verteilungsfunktion moglich:

Definition 2.1.2
1. Die Funktion Fn(:c) =#{x;: z;<xz,i=1,...,n}/n, Vz € R heiBt empirische Vertei-
lungsfunktion der konkreten Stichprobe (x1,...,x,). Dabei gilt F, : R™1 — [0,1], weil
E(z) = o(x1,...,2n, 7).

2. Die mit z € R indizierte Zufallsvariable F, : Q@ x R — [0, 1] heiit empirische Verteilungs-
funktion der Zufallsstichprobe (Xy,...,X,), wenn

A

- 1
Fo(z,w) = F,(z) = E#{Xi’i: 1,...,n: Xj(w) <z}, zeR.
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Aquivalent zur Definition 2.1.2 kann man

schreiben, wobei

Es gilt
L, =>4,
Fn(x): %a JJ(Z')SI<CC(7;+1), =1, ,n—1,
0, z< (1)

fiir Ty <Te) <...<Ip).

Dabei ist die Hohe des Sprungs an Stelle x(;) gleich der relativen Héufigkeit f; des Wertes
z(y. Falls z() = x4 fiir ein 4 € {1,...,n}, so tritt der Wert i/n nicht auf. In Abbildung
2.3 sieht man, dass E, (z) eine rechtsstetige monoton nichtfallende Treppenfunktion ist, fir die

Fn A
11 —
fn)
Jin-1) ]
o—p
)—"' g
f3
Rl
fi
Ty ) I r

Abb. 2.3: Eine typische empirische Verteilungsfunktion

F,(x) T 0, Fo(z) =2 Leilt,
Ubungsaufgabe 2.1.1
Zeigen Sie, dass F,(x) eine Verteilungsfunktion ist.
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2.2 Beschreibung von Verteilungen

MaBzahlen einer Stichprobe

VAN

LagemaBe Streuun smaBe Konzentrations- MaBe fiir Schiefe
| ¥ maBe und Wélbung
Es sei eine konkrete Stichprobe (z1,...,x,) gegeben. Im Folgenden werden Kennzahlen (die

sogenannten Mafle) dieser Stichprobe betrachtet, welche die wesentlichen Aspekte der der Stich-
probe zugrundeliegenden Verteilung wiedergeben:

1. Wo liegen die Werte x; (Mittel, Ordnungsstatistiken, Quantile)? =—> Lagemafle
2. Wie stark streuen die Werte z; (Varianz) = Streuungsmafe

3. Wie stark sind die Werte z; in gewissen Bereichen von R konzentriert = Konzentrati-
onsmafle

4. Wie schief bzw. gewolbt ist die Verteilung von X = Mafle fiir Schiefe und Wélbung

2.2.1 LagemaBe

Man unterscheidet folgende wichtige Lagemafe:

e Mittelwerte: Stichprobenmittel (arithmetisch), geometrisches und harmonisches Mittel,
gewichtetes Mittel, getrimmtes Mittel

e Ordnungsstatistiken und Quantile, insbesondere Median und Quartile
e Modus
Betrachten wir sie der Reihe nach:
1. Mittelwertbildung: Seit der Antike kennt man mindestens 3 Arten der Mittelberechnung
von n Zahlen (z1,...,xy,):
o arithmetisch: Tp, =1/n> 0" x;, Vri,...,2, €R,

o geometrisch: x9 = Yx1 .. xn, X1,...,Tn >0,
-1
e harmonisch: z!' = (l/n Yoy :ri_l) y Xl,...,xp F 0.

a) Das arithmetische Mittel wird in der Statistik am meisten benutzt, weil es keine
Voraussetzungen iiber den Wertebereich von x1, ..., z, braucht. Es wird auch Stich-
probenmittel genannt. Offensichtlich ist z, ein Spezialfall des sogenannten gewich-
teten Mittels zl¥ = "' | w;z;, wobei fir die Gewichte w; > 0 Vi = 1,...,n und
>, w; = 1 gilt. Als eine natiirliche Gewichtewahl kommt w; = 1/n, Vi=1,...,n
bei einer konkreten Stichprobe (x1, ..., z,) in Frage. Die Summe aller Abweichungen
von T ist Null, denn > (x; — Z,,) = n&, — nx, = 0, d.h. ,, stellt geometrisch
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den Schwerpunkt der Werte x; dar, falls jedem Punkt eine Einheitsmasse zugeordnet
wird. Wenn es in der Stichprobe grofie Ausreifler gibt, so beeinflussen sie das Stich-
probenmittel entscheident und erschweren so die objektive Datenanalyse. Deshalb
verwendet man oft die robuste Version des arithmetischen Mittels, das sogenannte
getrimmte Mittel:

*) 1 n—k
~(k)
Ty~ = n— 2k i§1$(2)7

bei dessen Berechnung die k kleinsten und k grofiten Ausreifler ausgelassen werden,
wobei k < n/2.

b) Das geometrische Mittel wird hauptsichlich bei der Beobachtung von Wachstums-
und Zinsfaktoren verwendet. Sei x; = B;/B;—1, i=1,...,n der Wachstumsfaktor
des Merkmals B;, das in den Jahren ¢ = 1,...,n beobachtet wurde (z.B. Inflations-
faktor). Dann ist B, = By - x1 - ... &, und somit wire der Zins im Jahre n

Fir das geometrische Mittel gilt

1 & 1 &
long:—Zngiglog —Z:z:i
n s

=1

wegen der Konkavitdt des Logarithmus, d.h. logzd = logz, < logz, und somit
z9 < Zp, wobei 9 = Z,, genau dann, wenn x; = ... = Iy,

c) Das harmonische Mittel wird bei der Ermittlung von z.B. durchschnittlicher Ge-
schwindigkeiten gebraucht.

Beispiel 2.2.1

Seien z; Geschwindigkeiten mit denen Bauteile eine Produktionslinie der Léange [
durchlaufen. Die gesamte Bearbeitungszeit ist [/x1 + ... 4+ I/z, und die Durch-
schnittslaufgeschwindigkeit

okl
oy +...+ 1z, 7

Es gilt 21y < oh <29 <7, < T(y) und xh = (29)%/z, firz; >0,i=1,...,n.

Ubungsaufgabe 2.2.1
Beweisen Sie diese Relation per Induktion bzgl. n.

2. Ordnungsstatistiken und Quantile

Definition 2.2.1
Die Ordnungsstatistiken x(;y, i = 1,...,n der Stichprobe (z1,...,z,) sind durch die
messbare Permutation ¢(z1,...,x,) gegeben, so dass

zgy =min{z;: #{k: 2y <a;} >4}, Vi=1,...,n.

Somit gilt 1) S x@) <. < Ty Dieselbe Definition kann auch auf der Modellebene
gegeben werden.
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Definition 2.2.2

a) Sei nun X die Zufallsvariable, die das Merkmal modelliert. Sei Fx ihre Verteilungs-
funktion. Die verallgemeinerte Inverse von F'x, definiert durch

Fy'l(y) =inf{z: Fx(x) 2y}, ye[0,1],
heiBt Quantilfunktion von Fx bzw. X. Es gilt F;' : [0,1] — R U {+o0}. Die Zahl
Fil(@), a €(0,1] wird a-Quantil von Fx genannt.
b) e Fy'(0,25) heiBt unteres Quartil,
° Fgl(O, 75) heifit oberes Quartil,
o F1(0,5) heift der Median der Verteilung von X.
Zwischen Ordnungsstatistiken und Quantilen besteht ein enger Zusammenhang. So bedeu-
tet F' );l(a) ,  a€(0,1), dass ca. a-100% aller Merkmalsauspriagungen in der Stichprobe
(21,...,2,) unter F5'(a) und ca. (1 — «) - 100% iiber Fy'(a) liegen (im absolut steti-

gen Fall). Insbesondere gilt F’ )}1(04) N T([na])> deshalb werden Ordnungsstatistiken auch
empirische Quantile genannt. Dabei ist x, definiert als

€T, = {x([na]Jrl) ’ no ¢ N )
1/2(2 (fna)) + T(jnal+1)) » n €N

Dies ist die allgemeine Definition des empirischen a-Quantils.

Der empirische Median ist

) n ungerade

% (m(g) +x(g+1)) , n gerade.

Somit sind mindestens 50% aller Stichprobenwerte kleiner gleich und 50% grofler gleich
Tmed- Der Median ist ein Lagemafl, das ein robuster Ersatz fiir den Mittelwert darstellt,
denn er ist bzgl. Ausreiflern in der Stichprobe nicht sensibel.

Die oben genannten Statistiken werden in einem Boz-Plot zusammengefasst und grafisch

dargestellt:
interquartiler Abstand
}7 D 4{ O a®» e)
Tmin = T(1) 0,25 Tmed 0,75 0,95  Tmax = T(n)

Manchmal werden z() und T(n) durch zg o5 und zg g5 ersetzt. Die restlichen Werte werden
dariiber hinaus als Einzelpunkte auf der x-Achse abgebildet. Dann liegt ein sogenannter
modifizierter Boz-Plot vor.
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3. Modus: Sei (x1, ..., x,) eine Stichprobe, die aus n unabhéngigen Realisierungen des Merk-
mals X besteht. Sei (p(z)) f(x) die (Zahl-) Dichte von X, wobei die Verteilung von X
undimodal ist.

Definition 2.2.3

a) Der Wert 2,0 = argmax f(z) (argmax p(z)) wird der Modus der Verteilung von X
genannt (vgl. Abb. 2.4).

b) Empirisch wird Z,,,,q als W fiir m = argmax f; definiert, also als die Mitte des
Intervalls mit der grofiten Haufigkeit des Vorkommens in der Stichprobe, falls dieser
eindeutig bestimmbar ist.

0 Tmod T

Abb. 2.4: Veranschaulichung des Modus

Den Mittelwert Z,,, Median ,,.q und Modus z,,,q kann man auch wie folgt definieren:

n
Tp = argminZ(:ﬁi —xz)?
z€R i=1

n

Tmed = arg min E |x; — x|
z€R i=1

Emod = cm%—l—cm’ wobei m = arg minj:l n E?:l H(xl ¢ (Cj—l’ Cj])

90

Ubungsaufgabe 2.2.2
Zeigen Sie die Aquivalenz der oben genannten Definitionen des Mittelwerts z,, Medians
Tmeq Und des Modus x,,,,¢ zu den bekannten Definitionen.

Die Groflen Ty, Timeq und Zy0q konnen auch zur Beschreibung der Symmetrie einer unimo-
dalen Verteilung F'x von Daten (x1,...,x,) verwendet werden, da

e bei symmetrischen Verteilung Fx gilt Z,, & Tmed & Tmod
e bei linkssteilen Verteilung Fy gilt Zip0d < Tmed < Tn

e bei rechtssteilen Verteilung F'x gilt T, < Tymed < Tmod-
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2.2.2 Streuungsmale

Bekannte Streuungsmafle einer konkreten Stichprobe (z1,...,z,) sind die folgenden Grofien:

o Spannweite T () — T(1),

e empirische Varianz 52 = Tll " (2 — Tp)?,

r )2 — _n 32
e Stichprobenvarianz s% = 5 S (x; — Zp)? = L4582,

e empirische Standardabweichungen S, = \/82 , $n = \/S2

ns

o empirischer Variationskoeffizient v, = sy, /Zn, falls Z,, > 0.

Die Spannweite zeigt die mazimale Streuung in den Daten, wobei sich die empirische Varianz
mit der mittleren quadmtischen Abweichung vom Stichprobenmittel auseinandersetzt. Hier sind
einige Eigenschaften von 52 (bzw. s2, da sie sich nur durch einen Faktor unterscheiden):

Lemma 2.2.1

1. Fiir jedes b € R gilt

n n

2. Transformationsregel:
Falls die Daten (x1,...,z,) linear transformiert werden, d.h. y; = az; +b,a # 0, b € R,

dann gilt
2 _ 22 = .=
Spy = a8, 4 bzw. Sny = |alsn g,
wobei
1 & 1<
2 — \2 2 = 2
Sn,y - E Z(yl - y’n) ’ Snx — ﬁ Z(:El - .In)
i=1 i=1

Beweis 1. Es gilt:

=1 =1

=Y (@i —Tn)?+2) (xi—Tn) (Tn—b)+ D _(Zn —b)?
=1 =1 =1

= (@i — n)? +2(Tn — ) - > (25 — &) +n(Ty — b)*, VbER.
i=1 i=1




2 Beschreibende Statistik 17

2. Es gilt:

) 1 - a’ B _
s?hy = E Z(amz +b—ax, — b)2 = ; Z(l’z - l‘n)2 = CLZSZ,m :
i=1 i=1

O

Der Skalierungsunterschied zwischen 52 und s2 ist den Eigenschaften der Erwartungstreue
von s2 zu verdanken, die spiter im Laufe dieser Vorlesung behandelt wird, und besagt, dass
fiir eine Zufallsstichprobe (X1, ..., X,,) mit X; unabhingig identisch verteilt, X; ~ X, Var X =

o2 € (0,00) gilt Es?2 = 02, wobei E52 = %02 — o2. Das heifit, wihrend bei der Verwendung
n o
2

2 zur Schitzung von o2 kein Fehler ,im Mittel“ gemacht wird, ist diese Aussage fiir 52
nur asymptotisch (fiir grofie Datenmengen n) richtig.

Aufgrund von > 7 (x; — zp,) = 0 ist z.B. z, — &y, durch x; — z,, i = 1,...,n — 1 bestimmt.
Somit verringert sich die Anzahl der Freiheitsgrade in der Summe > (; — Z,,)? um 1 und
somit scheint die Normierung ﬁ plausibel zu sein.

Die Standardabweichungen s, und s,, werden verwendet, damit man die selben Einheiten (und
nicht ihre Quadrate, also z.B. Euro und nicht EuroQ) erhélt. Fir normalverteilte Stichproben
(X ~ N(u,0?)) liefert 5, auch die ,k-Sigma-Regel“ (vgl. Vorlesung WR), die besagt, dass in
den Intervallen

von s

[Zn, — Sn, Tn + Sn] ca. 68% ,
[Ty, — 28p, T, + 255, ca. 95%,
[Ty, — 3Sp, T, + 354 ca. 99%

aller Daten liegen.
Der Vorteil vom empirischen Variationskoeffizienten ist, dass er majfstabsunabhdngig ist und
somit den Vergleich von Streuungseigenschaften unterschiedlicher Stichproben zulésst.

2.2.3 KonzentrationsmaBe

Insbesondere in den Wirtschaftswissenschaften interessiert man sich oft fiir die Konzentration
von Merkmalsauspriagungen in der Stichprobe, z.B. wie sich das Familieneinkommen einer de-
mographischen Einheit auf unterschiedliche Einkommensbereiche (Vielverdiener, Mittelstand,
Wenigverdiener) aufteilt, oder wie sich der Markt auf Marktanbieter aufteilt (Marktkonzentra-
tion). Dabei ist es wiinschenswert, diese Relation mit Hilfe weniger Zahlen oder einer Grafik
zum Ausdruck zu bringen. Dies ist mit Hilfe folgender Stichprobenfunktionen méglich:

e Lorenzkurve L,
o Gini-Koeffizient G,
o Konzentrationsrate C Ry,

e Herfindahl-Index H.

1. Die Lorenzkurve wurde von M. Lorenz am Anfang des XX. Jahrhunderts fiir die Cha-
rakterisierung der Vermogenskonzentration benutzt. Sei (z1,...,x,) eine Stichprobe, die
in aufsteigender Reihenfolge geordnet werden muss: (z(q), . .- ,x(n)). Die Lorenzkurve ver-
bindet Punkte

(0,0), (ul,vl), eey (un,vn), (1,1)
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durch Liniensegmente, wobei u; = j/n der Anteil der j kleinsten Merkmalstréger und
v; = Yol x(y/ Yoiey @ die kumulierte relative Merkmalssumme ist. Der Grundgedanke

vl _ o _ ___
1
|
|
l.p.e |
|
|
S1 |
|
L |
Sy |
|
|
0 © Llpi ' 1 u

Abb. 2.5: Abbildung einer typischen Lorenzkurve

ist darzustellen, welcher Anteil des Merkmalstriagers auf welchen Anteil der Gesamtmerk-
malssumme entfillt. Zum Beispiel lassen sich dadurch Aussagen wie etwa ,,Auf 20% aller
Haushalte im Land entfillt 78% des Gesamteinkommens® machen. Eine Interpretation
der Lorenzkruve L ist nur an den Knoten (uj,v;) moglich: ,Auf u; - 100% der kleins-
ten Merkmalstrager konzentrieren sich v; - 100% der Merkmalssumme*. Dabei liegt L auf
[0,1])? immer zwischen der ,line of perfect equality* (l.p.e.) v; = u; Vi (Einkommen
ist absolut gleichméfBig—also ,,gerecht“—verteilt) und ,line of perfect inequality” (1.p.i.)
v=0,u€[0,1) und (1,1) (das Gesamteinkommen besitzt nur die reichste Familie) und
ist immer monoton und konvex. Auf Modellebene gibt es ein Analogon der Lorenzkurve.
Dieses ist

B e FEXM(at
L= {(u,v) €0,1?: v= 71% F;El(t)dt ., uelo, 1]} ,

wobei

1
IEX:/ Fl(t)at
0

(vgl. WR Satz 4.3.2). Dementsprechend koénnen die Knoten (u;,v;) der oben eingefiihrten
empirischen Lorenzkurve als
i rG
T =1 n
J Z,

interpretiert werden.

. Der Gini-Koeffizient G ist gegeben durch G = S1/Ss, wobei S; die Fliche zwischen der

Lorenzkurve L und der Diagonalen v = u, Ss die Fliche zwischen der Diagonalen und
der u-Achse (=1/2|[0,1)%| = 1/2) ist.
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Satz 2.2.1 (Darstellung des Gini-Koeffizienten):

Es gilt
23 iz 1
G =25 = 2=t _ntl
nYy X n
Beweis Beginnen wir damit, die Darstellung G = (n + 1)/n — 20, zu zeigen. Nach
Definition ist
Sl SQ — 53 53
G=—= =1-—=1-28
So Sy Sy *

wobei S3 die Fliche zwischen der Lorenzkurve und der z-Achse ist (vgl. Abb. 2.5). Be-
rechnen wir S3:

S3 = 377y F}j, wobei Fj =1/n-vj_1 + 1L (v; —vj_1) = & (v; + vj_1) die Fliche unter
einem Liniensegment der Lorenzkurve ist (vgl. Abb. 2.6). Es gilt

Uj—1 1/TL Uj

Abb. 2.6: Liniensegment der Lorenzkurve

S1= 52 D) = g (2 n -1 —m g
3 an:1 gt 2n J " on’
somit

1 1
G=1-25,+-="F
n

Beweisen wir jetzt, dass
2% sirg) n+1
G= —
ny i T n

ist. Sei w = 37 iz(;). Aufgrund der Definition von v; gilt s; = Zgzl T() = Sn - V5,

Vi=1,...,nund Ty =8 —Si—1, So=0. Daher erhalten wir
n n—1
= i(si — Si—1) ZZSz Zz—l—lsz—nsn ZS,
i=1 =0

:(n—l—l)sn—z =(Mn+1)s, — sn- Z”l_ n+1)s, — sp - no,
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und somit
2w n+l 2w—(n+1)s, _ 2(n+ 1)s, — 28,00, — (n+ 1)s, _n+1 % —a.
nsy n nsy nsy n
O
Es gilt G € [0, (n — 1)/n], wobei
Gmin=0 bei z1=z9=...=2, »perfect equality“,
Gmaz = n ; L bei z1=...=x,-1=0,2, %0 ,perfect inequality* .

Somit héngt Gye: vom Datenumfang ab. Um dies zu vermeiden, betrachtet man oft den
normierten Gini-Koeffizienten
G n

G G- :n—lG € [0,1]

(Lorenz-Munzner-Koeffizient).

. Konzentrationsrate CRgy:

In den Punkten 1) und 2) betrachteten wir die relative Konzentration, wie etwa bei der
Fragestellung ,,Wieviel % der Familien teilen sich wieviel % des Gesamteinkommens?*,
Dabei beantwortet die Konzentrationsrate die Frage ,,Wieviele Familien haben wieviel
Prozent des Gesamteinkommens?“ fiir die g reichsten Familien, somit wird auch die ab-
solute Anzahl aller Familien beriicksichtigt.

Sei g € {1,...,n} und seien z(;) < ... < z(,) die Ordnungsstatistiken der Stichprobe
(x1,...,@y). Firi e {1,...,n} sei
0) L)

= = 221

der Merkmalsanteil der i-ten Einheit.

Dann gibt die Konzentrationsrate CRy = Z?:n_g 41 pi wieder, welcher Anteil des Ge-
samteinkommens von g reichsten Familien gehalten wird.

. Der Herfindahl-Index ist definiert durch M = "I | p?  wobei der Merkmalsanteil p; nach

(2.2.1) definiert ist. Bei der gleichen Verteilung des Einkommens (x1 = 29 = ... = x,,) gilt
Hpin = 1/n, bei vollig ungerechter Verteilung (z1 = ... = xp—1 =0, 2, # 0) Hpar = 1.
Sonst gilt H € [Hpmin, Hmaz|, also 1/n < H < 1. H ist umso kleiner, je gerechter das
Gesamteinkommen verteilt ist.

2.2.4 MabBe fiir Schiefe und Wdélbung

Im Vorlesungsskript WR, Abschnitt 4.5 S. 99 wurden folgende Mafe fiir Schiefe bzw. Wélbung
der Verteilung einer Zufallsvariable X eingefiihrt:
Schiefe oder Symmetriekoeffizient:
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wobei
pp =BE(X —EX)*, o?=ph=VarX, X=

Wélbung (Exzess):

vorausgesetzt, dass E(X*) < oco. Fiir ihre Bedeutung und Interpretation siehe die oben genann-
ten Seiten des WR-Vorlesungsskriptes. Falls nun das Merkmal X statistisch in einer Stichprobe
(x1,...,2y) beobachtet wird, wie kdnnen 7, und 7, aus diesen Daten geschétzt und interpretiert
werden?

Als Schitzer fiir das k-te zentrierte Moment ), = E(X — EX)*, k € N schlagen wir

1 n
rﬁ‘;ﬂ = - Z(:c, jn)k
i
vor, die Varianz o2 wird durch
_ 1 & _
31 = Z(LU@ xn)Q
s

geschétzt. Somit bekommt man den Momentenkoeffizient der Schiefe (engl. ,skewness®)

N ﬂé . % (i — jn)g

A a2)”

Falls die Verteilung von X links schief ist, {iberwiegen positive Abweichungen im Zahler und
somit gilt 47 > 0 fiir linksschiefe Verteilungen. Analog gilt 47 =~ 0 fiir symmetrische und 41 < 0
fiir rechtsschiefe Verteilungen.

Das Wolbungsmafl von Fisher (engl.  kurtosis“) ist gegeben durch

~ 1 =~ \4
’AYQZM—ZL— = 52?:1(351'_55”)2_3'

(Ao a)

Falls 42 > 0 so ist die Verteilung von X steilgipflig, fiir 42 < 0 ist sie flachgipflig. Falls X ~
N(u,0?), so gilt 42 =~ 0. Die Ursache dafiir ist, dass die steilgifpligen Verteilungen schwerere
Tails haben als die flachgipfligen. Als Mafl dient dabei die Normalverteilung, fiir die y; = v = 0
und somit 47 = 0, 42 = 0. So definiert, sind 47 und 49 nicht resistent gegentiber Ausreissern.
Eine robuste Variante von 4 ist beispielsweise durch den sogennanten Quantilskoeffizienten der
Schiefe

g(0) = e = Tned) = Enea 2 20) - (9,19
Tl—a — Lo

gegeben.

Fir a = 0,25 erhélt man den Quartilskoeffizienten. 4,(a)) misst den Unterschied zwischen
der Entfernung des a- und (1 — «)-Quantils zum Median. Bei linkssteilen (bzw. rechtssteilen)
Verteilungen liegt das (untere) x,-Quantil ndher an (bzw. weiter entfernt von) dem Median.
Somit gilt

A

e Y4(c) > 0 fiir linkssteile Verteilungen,
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A

e J4(c) < 0 fiir rechtssteile Verteilungen,

e 9,(c) = 0 fiir symmetrische Verteilungen.

Durch das zusétzliche Normieren (Nenner) gilt —1 < 4,4(a) < 1.

2.3 Quantilplots (Quantil-Grafiken)

Nach der ersten beschreibenden Analyse eines Datensatzes (x1, . .., ;) soll iberlegt werden, mit
welcher Verteilung diese Stichprobe modelliert werden kann. Hier sind die sogenannten Quantil-
plots behilflich, da sie grafisch zeigen, wie gut die Daten (z1, ..., x,) mit dem Verteilungsgesetz

G tbereinstimmen, wobei G die Verteilungsfunktion einer hypothetischen Verteilung ist.
Sei X eine Zufallsvariable mit (unbekannter) Verteilungsfunktion Fx. Auf Basis der Daten

(Xq,...,X,), X; unabhéngig identisch verteilt und X; 2 X méchte man priifen, ob Fx = G fir
eine bekannte Verteilungsfunktion G gilt. Die Methode der Quantil-Grafiken besteht darin, dass
man die entsprechenden Quantil-Funktionen ;! und G=! von [}, und G grafisch vergleicht.
Hierzu

e plotte man G—'(k/n) gegen F;(k/n) = Xy, k=1,...,n.

e Falls die Punktwolke
{(¢7k/m), X)), k=1,....n}

niherungsweise auf einer Geraden y = ax + b liegt, so sagt man, dass Fx(z) ~ G (%3%) ,
xz €R.
y=FE(1)
N
Xep - - - - — - — = ==
Xe-y T — — — T T T T T > < |
: I
Xy T — — — — — = I
Xop - — — 21N I I
Xy [ I I I
_ -1
| | | I it Y
0 leid) e 6@ el 6

Abb. 2.7: Quantil-Grafik

Diese empirische Vergleichsmethode beruht auf folgenden Uberlegungen:
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e Man ersetzt die unbekannte Funktion F'x durch die aus den Daten berechenbare Funktion
F,,. Dabei macht man einen Fehler, der allerdings asymptotisch (fiir n — oo) klein ist.
Dies folgt aus dem Satz 3.3.9 von Gliwenko-Cantelli, der besagt, dass

Fu(@) = Fx(x)| — 0.

su
D n—00

zeR

Der Vergleich der entsprechenden Quantil-Funktionen wird durch folgendes Ergebnis be-
starkt: Falls EX < oo, dann gilt

t
N _ f.s.
sup/ Fnly—Fly dy| — 0.

Somit setzt man bei der Verwendung der Quantil-Grafiken voraus, dass der Stichprobe-
numfang n ausreichend groB ist, um F;! ~ Fy 1 2u gewéhrleisten.

e Man setzt zusétzlich voraus, dass die Gleichungen

y=ax+b,

y=Fx'(1),

r=Gt)
fir alle ¢t (und nicht nur ndherungsweise fiir t = k/n, k = 1,...,n) gelten. Daraus folgt,
dass G(z) =t = Fx(y) = Fx(ax + b) fir alle z, oder Fx(y) = G (yT_b) fir alle y, weil
r = Y52 ist.

Aus praktischer Sicht ist es besser, Paare (G_l (n—_’il) ,X(k)) , k =1,...,n zu plotten.

Dadurch wird vermieden, dass G~'(n/n) = G71(1) = co vorkommt, wie es zum Beispiel im

Falle einer Verteilung G der Fall ist, bei der F'(z) < 1 gilt fiir alle x € R. Tatséchlich gilt fiir
k =n, dass RLH < 1 und somit G~! (niﬂ) < 00.

Beispiel 2.3.1 (Exponential-Verteilung, G(z) = (1 — e™*%) - I(z > 0)):
Es gilt G71(§) = —1/Alog(1 —y), vy € (0,1). So wird man beim Quantil-Plot Paare

1 k
(_)\log(l_n,—’—]_>7X(k)>7 k:].,...,'n

zeichnen, wobei der Faktor 1/A fiir die Linearitidt unwesentlich ist und weggelassen werden
kann.

Beispiel 2.3.2 (Normalverteilung, G(z) = ®(z) = \/% I e 124tz eR):
Leider ist die analytische Berechnung von ®~! mit einer geschlossenen Formel nicht méglich.
Aus diesem Grund wird ®~! (niJrl

Software-Paketen (wie z.B. R) abgelegt. Um die empirische Verteilung der Daten mit der Nor-
malverteilung zu vergleichen, trigt man Punkte mit Koordinaten

k
-1
(CI) (n—i—l)’X(k))? k‘Zl,...,n

auf der Ebene auf und priift, ob sie eine Gerade bilden (vgl. Abb. 2.8).

) numerisch berechnet und in Tabellen oder statistischen
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Abb. 2.8: QQ-Plot einer Normalverteilung (a), einer linkssteilen Verteilung (b), einer rechts-
steilen Verteilung (c) und einer symmetrischen, aber stark gekriimmten Verteilung

(d)

Ubungsaufgabe 2.3.1
Entwerfen Sie die Quantil-Grafiken fiir den Vergleich der empirischen Verteilung mit der Lo-
gnormal und der Weibull-Verteilung.

Bemerkung 2.3.1

Falls z,, = 0 und die Verteilung F'x linkssteil ist, so sind die Quantile von F'x kleiner als die
von ®. Somit ist der Normal-Quantilplot konvex. Falls z, = 0 und Fx rechtssteil ist, so wird
der Normal-Quantilplot konkav sein.

Beispiel 2.3.3 (Haftpflichtversicherung (Belgien, 1992)):

In Abbildung 2.9 sind Ordnungsstatistiken der Stichprobe von n = 227 Schadenhéhen der
Industrie-Unfélle in Belgien im Jahr 1992 (Haftpflichtversicherung) gegen Quantile von Expo-
nential-, Pareto-, Standardnormal- und Weibull-Verteilungen geplottet. Im Bereich von Klein-
schiiden zeigen die Exponential- und Pareto-Verteilungen eine gute Ubereinstimmung mit den
Daten. Die Verteilung von mittelgrofen Schiden kann am besten durch die Normal- und Wei-
bul-Verteilungen modelliert werden. Fiir Grofischdden erweist sich die Weibull-Verteilung als
geeignet.

Beispiel 2.3.4 (Rendite der BMW-Aktie):
In Abbildung 2.10 ist der Quantilplot fiir Renditen der BMW-Aktie beispielhaft zu sehen.
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Abb. 2.9: Ordnungsstatistiken einer Stichprobe von Schadenhdhen der Industrie-Unfélle in Bel-
gien im Jahr 1992
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Abb. 2.10: Quantilplot der Rendite der BMW-Aktie

2.4 Dichteschatzung

Sei eine Stichprobe (x1, ..

., Zn) von unabhéngigen Realisierungen eines absolut stetig verteilten
Merkmals X mit Dichte fx gegeben. Mit Hilfe der in Abschnitt 2.1.1 eingefiihrten Histogramme
lasst sich fx grafisch durch eine Treppenfunktion fX darstellen. Dabei gibt es zwei entschei-
dende Nachteile der Histogrammdarstellung;:

1. Willkiir in der Wahl der Klasseneinteilung [c;—1, ¢;],

2. Eine (moglicherweise) stetige Funktion fx wird durch eine Treppenfunktion fX ersetzt.

In diesem Abschnitt werden wir versuchen, diese Nachteile zu beseitigen, indem wir eine Klasse
von Kerndichtenschétzern einfiihren, die (je nach Wahl des Kerns) auch zu stetigen Schétzern

f x fithren.
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Definition 2.4.1
Der Kern K (z) wird definiert als eine nicht-negative messbare Funktion auf R mit der Eigen-

schaft [p K(x)dx = 1.

Definition 2.4.2
Der Kerndichteschdtzer der Dichte fx aus den Daten (z1,...,x,) mit Kernfunktion K (z) ist
gegeben durch

1 n

— > K
" nh Z (

i=1

> r€R,

wobei h > 0 die sogenannte Bandbreite ist.

Beispiele fiir Kerne:

1. Rechteckskern:
K(z)=1/2 -I(z € [-1,1)).

Dabei ist

1 <x9:l) 1/(2h), z—h<zx<z;+h,
—K =
h 0, sonst,

und somit

fX(x):12K<$—xi) _ #{x;€lx—h,x+h)}

nh — h 2nh ’

das auch gleitendes Histogramm genannt wird. Dieser Dichteschétzer ist (noch) nicht
stetig, was durch die (besonders einfache rechteckige unstetige) Form des Kerns erklért
wird.

— -V

2. Epanechnikov-Kern:

0, sonst
N
Jrw@
T
N
7
-1 0 1

3. Bisquare-Kern:
15

K(ac)—l—G

((1 — 2?2 I(z € [-1, 1))) .
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15
16

R\ /S

4. Gauss-Kern:

Dabei ist die Wahl der Bandbreite h entscheidend fiir die Qualitit der Schitzung. Je grofer
h > 0, desto glatter wird f x sein und desto mehr ,Details* werden ,herausgemittelt®. Fiir klei-
nere h wird f x rauer. Dabei kénnen aber auch Details auftreten, die rein stochastischer Natur
sind und keine Gesetzméafigkeiten zeigen. Mit der addquaten Wahl von h beschéaftigen sich viele
wissenschaftliche Arbeiten, die empirische Faustregeln, aber auch kompliziertere Optimierungs-
methoden dafiir vorschlagen. Insgesamt ist das Problem der optimalen Dichteschétzung in der
Statistik immer noch offen.

2.5 Beschreibung und Exploration von bivariaten Datensatzen

Im Gegensatz zu der Datenlage in den Abschnitten 2.1 bis 2.4 betrachten wir im Folgenden Da-
tensitze bestehend aus 2 Stichproben (z1,...,2,) und (y1,...,yn), die als Realisierungen von
stochastischen Stichproben (X7,...,X,,) und (Y1,...,Y,) aufgefasst werden, wobei X;,..., X,
unabhéngige identisch verteilte Zufallsvariablen mit X; 4 X ~ Fx, Yy,...,Y, unabhéngige
identisch verteilte Zufallsvariablen mit Y; Ly ~ Fy sind. Wir betrachten hier ausschlie3lich
quantitative Merkmale X und Y. Es wird ein Zusammenhang zwischen X und Y vermutet, der
an Hand von (konkreten) Stichproben (x1,...,x,) und (yi,...,¥y,) nidher untersucht werden
soll. Mit anderen Worten, wir interessieren uns fiir die Eigenschaften der bivariaten Verteilung
Fxy(z,y) = P(X <2,Y <y) des Zufallsvektors (X,Y)T.

2.5.1 Grafische Darstellung von bivariaten Datensatzen

Um die Verteilung von (z1,...,zy,) und (y1,...,¥y,) zu visualisieren, betrachten wir drei Mog-
lichkeiten:

1. Streudiagramme

2. Zweidimensionale Histogramme



2 Beschreibende Statistik

3. Kerndichteschitzer (im Falle eines absolut stetig verteilten Zufallsvektors (X,Y)7)

1. Streudiagramme sind die erste sehr einfache und intuitive Visualisierungsmoglichkeit von
bivariaten Daten. Um ein Streudiagramm zu erstellen, plottet man die ,Punktwolke®
(i, Yi)i=1,...n auf einer Koordinatenebene im R2. Dabei zeigt die Form der Punktwolke,
ob ein linearer (y = ax +b) bzw. polynomialer (y = P;(z)) Zusammenhang in den Daten
zu erwarten ist. Spater werden solche Zusammenhénge im Rahmen der Regressionstheorie
untersucht (vgl. Abschnitt 2.5.3 fiir die einfache lineare Regression).

Abb. 2.11: Punktwolke

2. Zweidimensionale Histogramme dienen der Darstellung der bivariaten Zéhldichte p(z,y)
des Zufallsvektors (X,Y), falls er diskret verteilt ist, bzw. seiner Dichte f(x,y) im Falle
einer absolut stetigen Verteilung von (X,Y’) aus den Daten (x1,...,z,) und (y1,...,Yn)-
Dabei teilt man den Wertebereich von X in Intervalle

[ci—1,¢i), i=1,...,k, —oco=c<c1<...<c=+4x0

und den Wertebereich von Y in Intervalle

lei—1,€), 1=1,....m, —oco=ey<e;<...<ep=%400.
Bezeichnen wir

hij = #{(xr,y), k=1,...,n: xp € [cim1,¢), Yr € [ej-1,€5) }
als die absolute Héufigkeit von (X,Y) in [¢;—1, ¢;) X [ej—1,€;), fij = hij/n als die relative
Héufigkeit. Das zweidimensionale Histogramm setzt sich aus den Sdulen mit Grundriss
[ci—1,¢i) X [ej—1,€j) und Hohe

(ci —ci—1)(ej —ej-1)
fiir das Histogramm absoluter Haufigkeiten bzw.
fij

(ci —ci—1)(ej —€j-1)

fiir das Histogramm relativer Haufigkeiten zusammen, damit das Volumen dieser Séulen
hij bzw. f;; ist. Dabei hat solch ein Histogramm dieselben Vor- bzw. Nachteile wie ein ein-
dimensionales, wenn es um die grafische Darstellung einer bivariaten Dichte f(z,y) geht.
Deshalb benutzt man oft Kerndichteschétzer, um eine glatte Darstellung zu bekommen.
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Abb. 2.12: Zweidimensionales Histogramm

3. Zweidimensionale Kerndichteschdtzer haben die Form

s 1 & T -z y— yz)
=——)> K K
fe.v) nhihy — < hy ) ( ho

fiir die Bandbreiten hj, he > 0, die Glattungsparameter sind. Dabei ist K (-) eine Kern-
funktion (vgl. Abschnitt 2.4). Seine Eigenschaften tibertragen sich aus dem eindimensio-
nalen Fall.

2.5.2 ZusammenhangsmaBe

Jetzt wird uns die Frage beschéftigen, in welchem Mafle die Merkmale X und Y voneinander
abhéngig sind. Um die Cov(X,Y) = E(X — EX)(Y — EY) aus den Daten zu schétzen, setzt
man die sogenannte empirische Kovarianz

82, = 1 (@i = 35 — )

ein. Dabei ist Sgy jedoch von den Skalen von X und Y abhéngig.

1. Um eine skaleninvariantes Zusammenhangsmaf} zu bekommen, betrachtet man die empi-
rische Variante des Korrelationskoeffizienten

Cov(X,Y)
X,V = ,
o ) VVar X - VVarY

den sogenannten Bravais-Pearson-Korrelationskoeffizienten
2
Sy

Ozy = s
2 .Q2
NGRS

_ 1 & _
Z(xz - xn)2 ) Sgy = m_1 Z(yz - yn)2
=1

wobei
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die Stichprobenvarianzen der Stichproben (z1,...,2,) und (y1,...,¥y,) sind. Dabei erbt
0y alle Eigenschaften des Korrelationskoeffizienten o(X,Y):

a) |Qxy’ <1

b) 0.y = *£1, falls ein linearer Zusammenhang in den Daten (x;, y;)i=1,... n vorliegt, d.h.
alle Punkte (2;,y;), ¢ = 1,...,n liegen auf einer Gerade mit positivem (bei g, = 1)
bzw. negativem (bei ¢,y = —1) Anstieg.

c) Wenn |g,,| klein ist (0zy = 0), so sind die Datensétze unkorreliert. Dabei wird oft
folgende grobe Einteilung vorgenommen:

Merkmale X und Y sind
o schwach korreliert”, falls |0,y| < 0.5,
e stark korreliert”, falls |og,| > 0.8.

Ansonsten liegt ein mittlerer Zusammenhang zwischen X und Y vor.

Lemma 2.5.1
Fiir o,y gilt die alternative rechengiinstige Darstellung

n . P oy ~l
Oay = 2iz1 TiYli — Nngn . (2.5.1)
V(S 27 — n32) (S, y? — ni)

Beweis Man muss lediglich zeigen, dass

n

n
Y (@i = Z0) (Wi — Un) = D @ity — nnn -
i=1

=1
Alles andere folgt daraus fir ; = y;, i=1,...,n. Es gilt
n n n
S (@i —Tn) (Wi — Un) = DTl — Tn D Yi — Un 9 Ti + NEnn
; i=1 i=1 i=1

n n
= Z TiYi — NTnlYn — NYnTn + NTpYn = Z TilYi — NTnlYn
i=1 =1

Falls die vorliegenden Daten (x1,...,z,) und (yi,...,y,) nur 2 Auspragungen zeigen und
somit bindr kodiert werden koénnen, d.h. z;, y; € {0,1}, dann gilt

- hooh11 — hothio _
Y Vho. ki he - ha
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(der sogenannte Phi-Koeffizient), wobei

hoo = #{(zs,y:) © i =y; =0}
hi = #{(xs,5:) 0 zi=yi=1}
hor = #{(@i,yi) : 2 =0,y; =1}
hio = #{(zs,ys) : i =1,y =0}
ho. = hi1 + hio

ho = hi1 + ha

hi. = hao + ho1

ha = haa + hi2

Ubungsaufgabe 2.5.1
Zeigen Sie diese Darstellungsform!

2. Spearmans Korrelationskoeffizient
Einen alternativen Korrelationskoeffizienten erhélt man, wenn man die Stichprobenwerte
x; bzw. y; in gy durch ihre Rdnge rg(x;) bzw. rg(y;) ersetzt, die als Position dieser Werte
in den ansteigend geordneten Stichproben zu verstehen sind:
rg(z;) = j, falls 7, = x(;) fiirein j € {1,...,n}, Vi =1,...,n. Es bedeutet, dass rg(z(;)) =
iVi=1,...,n, falls x; # z; fir i # j.
Falls die Stichprobe (z1,...,z,) k identische Werte x; (die sogenannten Bindungen) ent-
hélt, so wird diesen Werten der sogenannte Durchschnittsrang rg(x;) zugewiesen, der als
arithmetisches Mittel der k& in Frage kommenden Rénge errechnet wird. Zum Beispiel
findet folgende Zuordnung statt:

zi | (3,1,7,5,3,3)
rg(l‘z) ‘ (a71a6a5aa7a)

wobei der Durchschnittsrang a von Stichprobeneintrag 3 gleich ¢ = 1/3(2+3+4) =3
ist.
Somit wird der sogenannte Spearmans Korrelationskoeffizient (Rangkorrelationskoeffizi-
ent) der Stichproben

(x1,...,2y) und  (Y1,...,Yn)

als der Bravais-Pearson-Koeffizient der Stichproben ihrer Rénge

(rg(z1),...,rg(zn)) und (rg(y1),..-,18(yn))

definiert:
- i1 (rg(zi) — 18,) (re(y:) — T8,)
Osp = - N p— 5
\/ >y (re(wi) —18,)" 2iny (ve(vi) — T8y)
wobei
1L R 1. nn+1) n+l
rgx_ﬁzzzlrg(xl)_ nzzzlrg(x(l))_ nizzlll_ 2n - 2 ’

_ 1 & n+1
g, = — > () = ——-
=1
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Dieselbe Darstellung Tg, gilt auch, wenn Bindungen vorhanden sind.

Dieser Koeffizient misst monotone Zusammenhénge in den Daten. Aus den Eigenschaften
der Bravais-Pearson-Koeffizienten folgt |0sp| < 1. Betrachten wir die Falle o5, = +1
gesondert:

e 0sp = 1 bedeutet, dass die Punkte (rg(z;),rg(yi)), ¢ = 1,...,n auf einer Geraden mit
positiver Steigung liegen. Da aber rg(z;),rg(y;) € N, kann diese Steigung nur 1 sein.
Es bedeutet, dass dem kleinsten Wert in der Stichprobe (x1,...,z,) der kleinste
Wert in (y1,...,y,) entspricht, usw., d.h., fiir wachsende x; wachsen auch die y;
streng monoton: z; < x; = y; <y; Vi F J.

e Analog gilt dann fiir g5 = —1, dass x; < z; = y; > y; Vi #j.
Dies kann folgendermaflen zusammengefafit werden:
e 0 > 0: gleichsinniger monotoner Zusammenhang (z; grofl <= y; grof})
e 05y < 0: gegensinniger monotoner Zusammenhang (z; grof <= y; klein)
® 0, ~ 0: kein monotoner Zusammenhang.
Da der Spearmans Korrelationskoeffizient nur Rénge von z; und y; betrachtet, eignet er

sich auch fiir ordinale (und nicht nur quantitative) Daten.

Lemma 2.5.2
Falls die Stichproben (z1,...,2,) und (y1,...,ys) keine Bindung enthalten (z; # z;, y; # y;
Vi #+ j), dann gilt
6 “
Osp =1 — m Z di

wobei d; = rg(z;) —rg(yi) Vi=1,...,n.
Beweis Als Ubungsaufgabe. O

Satz 2.5.1 (Invarianzeigenschaften):

1. Wenn die Merkmale X und Y linear transformiert werden:

f(X) =0, X +b;, az#0,0b; €R,
g(Y):ayY+bya ay#oa byeRa

dann gilt 0f(yg(y) = sgn(azay) - 0zy-

2. Falls Funktionen f : R — R und g : R — R beide monoton wachsend oder beide monoton
fallend sind, dann gilt

0sp(f(2),9(y)) = 0sp(,y) .

Falls f monoton wachsend und g monoton fallend (oder umgekehrt) sind, dann gilt
esp(f (), 9(y)) = —osp(,y)-

Beweis Beweisen wir nur 1), weil 2) offensichtlich ist.
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Yit1 ((aei + ba) — (aa@in + be)) ((ayyi + by) — (ay¥n + by))
Vi (wi = 2a)2a3 S0 (yi — §a)?
_ agay S (i = ) (Yi — Un) _ sen(aaay) - 0uy -

aallayl /ST (@ — 20)? o (Ui — Gn)?

Of(x)g(y) =

Bemerkung 2.5.1

1. Da lineare Transformationen monoton sind, gilt Aussage 1) auch fiir Spearmans Korrela-
tionskoeffizienten o).

2. Der Koeffizient g,, erfasst lineare Zusammenhange, wahrend oy, monotone Zusammen-
hénge aufspiirt.

2.5.3 Einfache lineare Regression

Wenn man den Zusammenhang von Merkmalen X und Y mit Hilfe von Streudiagrammen visua-
lisiert, wird oft ein linearer Trend erkennbar, obwohl der Bravais-Pearson-Korrelationskoeffizient
einen Wert kleiner als 1 liefert, z.B. g,y = 0,6 (vgl. Abb. 2.13). Dies ist der Fall, weil die Da-

B=95%, p=+0.98 B=80% , p=-0.89 B=60%, p=+0.77

Abb. 2.13: Vergleich verschiedenwertiger Bestimmtheitsmafle. Es sind Regressionsgerade, Be-
stimmtheitsmafl B und Korrelationskoeffizient p verschiedener (fiktiver) Punktwol-
ken vom Umfang n = 25 dargestellt. Die Beschriftung der Achsen ist weggelassen,
weil sie hier ohne Bedeutung ist.

tenpunkte (x;,y;), i = 1,...,n oft um eine Gerade streuen und nicht exakt auf einer Geraden
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X Y

Geschwindigkeit Lange des Bremswegs
Korpergrofle des Vaters Korpergrofle des Sohnes
Produktionsfaktor Qualitat des Produktes
Spraydosen-Verbrauch Ozongehalt der Atmosphére
Noten im Bachelor-Studium | Noten im Master-Studium

Tab. 2.1: Beispiele moglicher Ausgangs- und Zielgrofien

liegen. Um solche Situationen stochastisch modellieren zu kénnen, nimmt man den Zusammen-
hang der Form

Y=f(X)+e¢

an, wobei ¢ die sogenannte Storgrofle ist, die auf mehrere Ursachen wie z.B. Beobachtungsfehler
(Messfehler, Berechnungsfehler, usw.) zuriickzufiithren sein kann. Dabei nennt man die Zufalls-
variable Y Zielgréfie oder Regressand, die Zufallsvariable X FEinflussfaktor, Regressor oder
Ausgangsvariable. Der Zusammenhang Y = f(X) + e wird Regression genannt, wobei man oft
tiber € voraussetzt, dass Ec = 0 (kein systematischer Beobachtungsfehler). Wenn f(z) = a+ Sz
eine lineare Funktion ist, so spricht man von der einfachen linearen Regression. Es sind aber
durchaus andere Arten der Zusammenhénge denkbar, wie z.B.

(polynomiale Regression), usw. Beispiele fiir mogliche Ausgangs- bzw. Zielgrofien sind in Tabelle
2.1 zusammengefasst, einige Beispiele in Abbildung 2.14.

Auf Modellebene ist damit folgende Fragestellung gegeben: Es gebe Zufallsstichproben von
Ziel- bzw. Ausgangsvariablen (Y7,...,Y,) und (X1,...,X,), zwischen denen ein verrauschter
linearer Zusammenhang Y; = a+ 8X;+¢; besteht, wobei ; Storgrofien sind, die nicht direkt be-
obachtbar und uns somit unbekannt sind. Meistens nimmt man an, dassEe; =0 Vi=1,...,n
und Cov(ej, g5) = 025@-, d.h. €1...g, sind unkorreliert mit Vare; = 2. Wenn wir iiber die
Eigenschaften der Schiitzer fiir o, # und o2 reden, gehen wir davon aus, dass die X-Werte

nicht zuféllig sind, also X; = x; Vi = 1,...,n. Wenn man von einer konkreten Stichprobe
(y1,...,yn) fur (Y1,...,Y,) ausgeht, so sollen anhand von den Stichproben (zi,...,x,) und
(y1,---,Yn) Regressionsparameter « (Regressionskonstante) und 3 (Regressionskoeffizient) so-

wie Regressionsvarianz o® geschitzt werden. Dabei verwendet man die sogenannte Methode der
kleinsten Quadrate, die den mittleren quadratischen Fehler von den Datenpunkten (x;, y;i)i=1,... n
des Streudiagramms zur Regressionsgeraden y = o + Sz minimiert:

n

(0, B) = argmine(a, 5) mit e(a,f) = — > (4 —a — fa;)*.

1
a,BeER ni3

Da die Darstellung y; = o + S; + ¢; gilt, kann man e(a, 8) = 1/n 31", &2 schreiben. Es
ist der vertikale mittlere quadratische Abstand von den Datenpunkten (x;,y;) zur Geraden
y = o+ Bz (vgl. Abb. 2.15). Das Minimierungsproblem e(«, ) — min l6st man durch das
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StatLab 1985: n=100 Kinder

Statlab 1985. n=100 Kinder
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Statlab 1985 n=100 Kinder

127 B=64%, p=+0.80 B=58%, p=+076 127 B=0.6%, p=-0.31
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Abb. 2.14: Punktwolken verschiedener Merkmale der StatLab-Auswahl 1985 mit Regressions-
gerade, Bestimmtheitsmafi B und Korrelationskoeffizient o.

y=a+px

Vv

Abb. 2.15: Methode kleinster Quadrate

zweifache Differenzieren von e(av, 8). Somit erhiilt man & = g, — 3%,, wobei

1 & 1 &
i‘ = — €T; s Uy — — )
n= ;:1 i Yn n ;:1 Yi

A

5= S

1
n—1

2
Sty

Ubungsaufgabe 2.5.2

n

Z(:Ez - jn)(yz - gn) ) S:%x -

i=1

Leiten Sie die Schitzer & und j selbststéindig her.

Die Varianz o? schiitzt man durch 62 = ﬁ S 2 wobeid =yi—a— P, i=1,...
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Kindi | 1 2 3 4 5 6 7 8 9
Fernsehzeit z; | 0,3 2,2 0,5 0,7 1,0 18 30 02 23
Tiefschlafdaver y; | 58 4,4 65 58 56 50 48 6,0 6,1

Tab. 2.2: Daten von Fernsehzeit und korrespondierender Tiefschlafdauer

die sogenannten Residuen sind. Die Griinde, warum 62 diese Gestalt hat, konnen an dieser
Stelle noch nicht angegeben werden, weil wir noch nicht die Maximum-Likelihood-Methode
kennen. Zu gegebener Zeit (in der Vorlesung Stochastik III) wird jedoch klar, dass diese Art
der Schéitzung sehr natiirlich ist.

Bemerkung 2.5.2

Die angegebenen Schétzer fiir & und g sind nicht symmetrisch bzgl. Variablen x; und y;. Wenn
man also die horizontalen Abstande (statt vertikaler) zur Bildung des mittleren quadratischen
Fehlers nimmt (was dem Rollentausch = <+ y entspricht), so bekommt man andere Schétzer fiir
«a und S, die mit & und /3 nicht iibereinstimmen miissen:

(yi — @)
S

Ein Ausweg aus dieser asymmetrischen Situation wére es, die orthogonalen Absténde o; von

di:yi—a—ﬁxib—)dgzxi—

N

Abb. 2.16: Orthogonale Absténde

(x4,9;) zur Geraden y = a + fx zu betrachten (vgl. Abb. 2.16). Diese Art der Regression, die
yerrors-in-variables regression* genannt wird, hat aber eine Reihe von Eigenschaften, die sie zur
Prognose von Zielvariablen y; durch die Ausgangsvariablen z; unbrauchbar machen. Sie sollte
zum Beispiel nur dann verwendet werden, wenn die Standardabweichungen fiir X und Y etwa
gleich grof} sind.

Beispiel 2.5.1
Fin Kinderpsychologe vermutet, dass sich haufiges Fernsehen negativ auf das Schlafverhalten
von Kindern auswirkt. Um diese Hypothese zu tiberpriifen, wurden 9 Kinder im gleichen Alter
befragt, wie lange sie pro Tag fernsehen diirfen, und zusétzlich die Dauer ihrer Tiefschlafphase
gemessen. So ergibt sich der Datensatz in Tabelle 2.2 und die Regressionsgerade aus Abbildung
2.17.

Es ergibt sich fiir die oben genannten Stichproben (z1,...,29) und (y1,...,y9)

To=1,33, §9=5,56, B=-0,45, a=6,16.

Somit ist
y=6,16 —0,45x
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Tiefschlafdauer
(9,1
W

d+/§x

OjS 1 1.5 2 2.5 3
Fernsehzeit

Abb. 2.17: Streudiagramm und Ausgleichsgerade zur Regression der Dauer des Tiefschlafs auf
die Fernsehzeit

die Regressionsgerade, die eine negative Steigung hat, was die Vermutung des Kinderpsycho-
logen bestétigt. Auflerdem ist es mit Hilfe dieser Geraden moglich, Prognosen fiir die Dauer
des Tiefschlafs fiir vorgegebene Fernsehzeiten anzugeben. So wére z.B. fiir die Fernsehzeit von
1 Stunde der Tiefschlaf von 6,16 — 0,45 -1 = 5,71 Stunden plausibel.

Bemerkung 2.5.3 (Eigenschaften der Regressionsgerade):
1. Es gilt sgn(ﬁ) = sgN(pgy), Was aus B= s%y/six folgt. Dies bedeutet (falls szy > 0):
a) Die Regressionsgerade y = & + Bx steigt an, falls die Stichproben (x1,...,2y) und
(Y1, ..,Yn) positiv korreliert sind.
b) Die Regressionsgerade fallt ab, falls sie negativ korreliert sind.
c¢) Die Regressionsgerade ist konstant, falls die Stichproben unkorreliert sind.

Falls szy = 0, dann ist die Regressionsgerade konstant (y = ).
2. Die Regressionsgerade y = &+ Bz verlauft immer durch den Punkt (Zn, Yn): G+ B:En = UYn.

3. Seien §; = & + Baji, 1=1,...,n. Dann gilt

n n

Z Ui = yn und somit Z(yl —3i)=0.
i=1 =1 Y

Dabei sind &; die schon vorher eingefiithrten Residuen. Mit ihrer Hilfe ist es moglich, die
Giite der Regressionsprognose zu beurteilen.

Residualanalyse und Bestimmtheitsmal}

Definition 2.5.1
Der relative Anteil der Streuungsreduktion an der Gesamtstreuung Sgy heif3t das Bestimmi-
heitsmafs der Regressionsgeraden:

2 1 A .
Syy ~ w1 iz € —1_ 1 (yi — 9i)°
Siy i=1(Yi — Un)?

R? =

Es ist nur im Fall S2, > 0, Sgy > 0 definiert, d.h., wenn nicht alle Werte z; bzw. y; liberein-

stimmen.
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Warum R? in dieser Form eingefiihrt wird, zeigt folgende Uberlegung, die Streuungszerlequng
genannt wird:

Lemma 2.5.3

Die Gesamtstreuung (,,sum of squares total“) SQT = (n—l)Sgy =" (yi—yn)? ldsst sich in die
Summe der sogenannten erkliarten Streuung ,,sum of squares explained“ SQE = 30 1 (9 — 9n)?
und der Residualstreuung ,,sum of squared residuals SQR = S°1 ;2 = 3" | (y; —§i)? zerlegen:

SQT = SQE + SQR

bzw.

=SQR =SQE
n
=SQE+SQR+2> 9i(yi — 9) —20n Y _(¥i— %) =SQE+SQR+E,
=1 =1
=0, vgl. Eig. 3 S. 37

wobei noch zu zeigen ist, dass F =23 ", §;(y; — 9:) = 0, also

=1 i=1 i=1
~——
=0
= 2B (Z Ty — & Z T — BZ ﬂ?%) (Z ZiYi — NTpYn +an$z - B Z l‘?)
=1 i=1 =1 a={jn—n 3 i=1
=(n—1)53,
A 2 A 2 A 2 S% 2
=208 ((n - 1>S:1:y - ﬁ(n - 1)5:1:1:) :82 2/8(77’ - 1) (Sxy Sgy Sa:x) =0
B: S;y xrx

O

Die erklarte Streuung gibt die Streuung der Regressionsgeradenwerte um ¢, an. Sie stellt
damit die auf den linearen Zusammenhang zwischen X und Y zuriickgefithrende Variation der
y-Werte dar. Das oben eingefiihrte Bestimmtheitsmaf ist somit der Anteil dieser Streuung an
der Gesamtstreuung:

SQE _ S0, (5 —9n)® _ SQT—SQR _  SQR
SQT ~ Sii(yi—9)?  SQT SQT

Es folgt aus dieser Darstellung, dass R? € [0, 1] ist.

R? =
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1. R? = 0 bedeutet SQE = " 1 (§; — ¥n)? = 0 und somit §; = ¥, Vi. Dies weist darauf
hin, dass das lineare Modell in diesem Fall schlecht ist, denn aus ¢; = & + Sx; = y, folgt
B = 5% = 0 und somit Sgy = 0. Also sind die Merkmale X und Y unkorreliert.

TT

2. R? = 1 bedingt SQR = .7, €2 = 0. Somit liegen alle (x;,3;) perfekt auf der Regressi-
onsgeraden. Dies bedeutet, dass die Daten x; und y;, i = 1,...,n perfekt linear abhéngig
sind.

Faustregel zur Beurteilung der Giite der Anpassung eines linearen Modells an Hand von
Bestimmtheitsmafl R?:
R? ist deutlich von Null verschieden (d.h. es besteht noch ein linearer Zusammenhang),

falls R? > ni”, wobei n der Stichprobenumfang ist.

Allgemein gilt folgender Zusammenhang zwischen dem Bestimmtheitsmaf8 R? und dem Bra-
vais-Pearson-Korrelationskoeffizienten g, :

Lemma 2.5.4

R2 = Qiy

Beweis Aus der Eigenschaft 3 S. 37 folgt ¥, = §,,. Somit gilt

n n n n
SQE =) (5 —9n)* =D (5 — 9n)* = D _(a + Pai — & — fzn)’ = 5 (25 — Tp)°
i=1 i=1 i=1 =1
und damit
N _ 2
g SQE _ BPyii@i—z)? _(55)° (n-US, (S5, ) .
QT YLi(wi—wm)* (52 (n—=155,  \ SyySee xy
[
Folgerung 2.5.1
1. Der Wert von R? indert sich bei einer Lineartransformation der Daten (z1, ..., ;) und
(y1,...,Yn) nicht. Grafisch kann man die Giite der Modellanpassung bei der linearen

Regression folgendermaflen iiberpriifen:

Man zeichnet Punktepaare (9;,&;)i=1,..n als Streudiagramm (der sogenannte Residual-
plot). Falls diese Punktewolke gleichméfig um Null streut, so ist das lineare Modell gut
gewéhlt worden. Falls das Streudiagramm einen erkennbaren Trend aufweist, bedeutet
das, dass die Annahme des linearen Modells fir diese Daten ungeeigenet sei (vgl. Abb.
2.18)

2. Da R? = ng, ist der Wert von R? symmetrisch bzgl. der Stichproben (z1,...,z,) und
(Y15 Un): ) . ) ,
0y = R° =0y, bzw. Ry, =R

wobei Rfﬂy das Bestimmtheitsmaf} bezeichnet, das sich aus der normalen Regression ergibt
und RZI das mit vertauschten Achsen.
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Abb. 2.18: Links: Gute, Rechts: Schlechte Ubereinstimmung mit dem linearen Modell



3 Punktschatzer

3.1 Parametrisches Modell

Sei (x1,...,xy,) eine konkrete Stichprobe. Es wird angenommen, dass (z1, ..., Z,) eine Realisie-
rung einer Zufallsstichprobe (X1, ..., X,,) ist, wobei X7, ..., X, unabhéngige identisch verteilte
Zufallsvariablen mit der unbekannten Verteilungsfunktion F' sind und F' zu einer bekanten pa-
rametrischen Familie {Fy : 6 € ©} gehort. Hier ist 6§ = (61,...,0,) € O der m-dimensionale
Parametervektor der Verteilung Fy und © C R™ der sogenannte Parameterraum (eine Borel-
Teilmenge von R™, die die Menge aller zugelassenen Parameterwerte darstellt). Es wird vor-
ausgesetzt, dass die Parametrisierung 6 — Fy identifizierbar ist, indem Fp, # Fp, fiir 61 # 0
gilt.

Eine wichtige Aufgabe der Statistik, die wir in diesem Kapitel betrachten werden, besteht
in der Schitzung des Parametervektors 6 (oder eines Teils von #) an Hand von der konkreten
Stichprobe (z1,...,x,). In diesem Fall spricht man von einem Punktschatzer 6: R" — R™,
der eine giiltige Stichprobenfunktion ist. Meistens wird angenommen, dass

P(é(Xl,...,Xn)ee)zl,

wobei es zu dieser Regel auch Ausnahmen gibt. Bisher haben wir den Wahrscheinlichkeitsraum
(Q, F,P), auf dem unsere Zufallsstichprobe definiert ist, nicht néher spezifiziert. Dies kan man
aber leicht tun, indem man den sogenannten kanonischen Wahrscheinlichkeitsraum angibt,
wobei

Q:ROO, JT'.:BHOQO:BRXBRX”'
und das Wahrscheinlichkeitsmaf3 P durch
P{w=(wi1,...,wn,...) ER®:wy, <xj,... wi, <z }) = Fy(xi,) ... Fp(zi,)

VkeN, 1< <...<i gegeben sei. Um zu betonen, dass P vom Parameter 6 abhingt,
werden wir Bezeichnungen Py, Eg und Vary fir das Mafl P, den Erwartungswert und die Varianz
bzgl. P verwenden.

Auf dem kanonischen Wahrscheinlichkeitsraum (€2, F,Py) gilt X;(w) = w; (Projektion auf
die Koordinate i), i = 1,...,n,

Pg(Xini):P9<{w€Q:wigwiD:Fg(.%'i), 1=1,...,n, =z €R.
Beispiel 3.1.1

1. Sei X die Dauer des fehlerfreien Arbeitszyklus eines technischen Systems. Oft wird X ~
Exp()\) angenommen. Dann stellt {Fy: § € O} mit m=1,60 =X, © =R, und

Fy(z) = (1 — ™) - I(x > 0)

ein parametrisches Modell dar, wobei der Parameterraum eindimensional ist. Spater wird
fir A der (Punkt-) Schatzer Z(x1,...,z,) = 1/Z, vorgeschlagen.

41
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2. In den Fragestellungen der statistischen Qualitdtskontrolle werden n Erzeugnisse auf Mén-
gel untersucht. Falls p € (0, 1) die unbekannte Wahrscheinlichkeit des Mangels ist, so wird
mit X ~ Bin(n,p) die Gesamtanzahl der mangelhaften Produkte beschrieben. Dabei wird
folgendes parametrische Modell unterstellt:

©={(n,p):neN, pe (0,1}, 0=(n,p), m=2,
[]
Fop(z) =Py(X <x) = Z <Z>pk(1 —p)"F . I(z > 0).

k=0

Falls n bekannt ist, kann die Wahrscheinlichkeit p des Ausschusses durch den Punktschét-
zer Pp(x1,...,%n) =Tpn, ;€ {0,1} ndherungsweise berechnet werden.

3.2 Parametrische Familien von statistischen Priifverteilungen

In der Vorlesung Wahrscheinlichkeitsrechung wurden bereits einige parametrische Familien von
Verteilungen eingefithrt. Hier geben wir weitere Verteilungsfamilien an, die in der Statistik eine
besondere Stellung einnehmen, weil sie als Referenzverteilungen in der Schétztheorie, statisti-
schen Tests und Vertrauensintervallen ihre Anwendung finden.

3.2.1 Gamma-Verteilung

Als erstes fithren wir zwei spezielle Funktionen aus der Analysis ein:

1. Die Gamma-Funktion:
o0
I'(p) = / P e % dy fir p > 0.
0

Es gelten folgende Eigenschaften:

ra =t, r1/2) =vr
T'(p+1) =pl(p) Vp>0, F(n+1)=n!, VneN.

2. Die Beta-Funktion:
1
B(p,q) = / P (1—t)"dt, p,g>0.
0

Es gelten folgende Eigenschaften:

I'(p)I'(q)

Blp,a)=Bla.p),  Bl.a) =105

s p,g>0.

Definition 3.2.1

Die Gamma- Verteilung mit Parametern A > 0 und p > 0 ist eine absolut stetige Verteilung mit
der Dichte

APgP—1l g

e , x>0,

fx(z)={ @ (3.2.1)
0, z<0.

Dabei verwenden wir die Bezeichnung X ~ I'(\,p) fir eine Zufallsvariable X, die Gamma-
verteilt mit Parametern A und p ist. Es gilt offensichtlich X > 0 fast sicher fir X ~ T'(A,p).
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Abb. 3.1: Dichte der Gammaverteilung

Ubungsaufgabe 3.2.1
Zeigen Sie, dass (3.2.1) eine Dichte ist.

Beispiel 3.2.1

1. In der Kraftfahrzeugversicherung wird die Gamma-Verteilung oft zur Modellierung des
Gesamtschadens verwendet.

2. Falls p =1, dann ist I'(\, 1) = Exzp(A).
Satz 3.2.1 (Momenterzeugende und charakteristische Funktion der Gammavertei-

lung):
Falls X ~ I'(\,p), dann gilt Folgendes:

1. Die momenterzeugende Funktion der Gammaverteilung W x (s) ist gegeben durch

1
i —ReSX = — - .
X(S) e (1—8/)\)177 s <

Die charakteristische Funktion der Gammaverteilung ¢ x (s) ist gegeben durch

: 1
=Ee"X = ——— R.
2. k-te Momente:
EXk:p(erl)‘...-(erk—l) LeN.

AF ’
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Beweis 1. Betrachte

<0

00 p 00 ——
Ux(s) :/0 e fx(x)dx = I’)(\p)/o PLle(s = A gy
v eyt )
—(s—;);t:y F(p) /() —(S — )\)p dy = F(p)()\ — S)p

- (Ais)p: (1—15/A)p’ Az

Falls s € C, Re(s) < A, dann ist Ux(s) holomorph auf D = {z =z +iy € C: x < A\}. Es

gilt
Ux(s) = px(—is), s=it,t <A
Daraus folgt
. 1
Ux(s) = px(—is), SGD:NPX(S):W, seR.

p+1)-...-(p+k—1)

p .
Ex*® = oW (0) = EX* = ( G ,

keN.

Folgerung 3.2.1 (Faltungsstabilitéit der I'-Verteilung):
Falls X ~T'(\,p1) und Y ~ T'(\, p2), X,Y unabhéngig, dann ist X +Y ~ T'(\, p1 + p2).

Beweis Es gilt

1 1 1 p1+p2
px+v(s) = px(s) - v(s) = A is/0m A —is/m (1 — Z.S/A) = Or(\p1+p2) () -

Da die charakteristischen Funktionen die Verteilungen eindeutig bestimmen, folgt damit X +
Y ~ (A, p1+ p2). o

Beispiel 3.2.2
Seien X1,...,X, ~ Ezp()\) unabhéngig. Nach der Folgerung 3.2.1 gilt X = X1 + ...+ X, ~
'\ 1+...4+1)=T(\n),denn Exzp(\) =T'(A\,1). Dabei heifit X Erlang-verteilt mit Parame-

tern A und n. Man schreibt X ~ Erl(A,n).
Zusammengefasst: Erl(A,n) =T(\,n)

Interpretation: In der Risikotheorie z.B. sind X; Zwischenankunftszeiten der Einzelschéden.
Dann ist X = Y7 | X; die Ankunftszeit des n-ten Schadens, X ~ Erl(A,n).
Definition 3.2.2 (y2-Verteilung):

X ist eine x*-verteilte Zufallsvariable mit k Freiheitsgraden (X ~ x3), falls X 4 x 2+ X
wobei X71,..., X, ~ N(0,1) unabhéngige identisch verteilte Zufallsvariablen sind.

Satz 3.2.2 (x2-Verteilung: Spezialfall der I'-Verteilung mit A\ = 1/2, p = k/2):
Falls X ~ X%, dann gilt:
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0,54
04 \ k=2

0,31

Abb. 3.2: Dichte der y2-Verteilung fiir k = 2, 3,4

1. X ~T(1/2,k/2), d.h

Zk/2=1g—z/2
- >

fx(z) =< 2k/21(k/2) ’ v=0 : (3.2.2)
0, z <0

2. Insbesondere ist EX = k, Var X = 2k.
Beweis 1. Sei X = X? + ...+ X? mit X; ~ N(0,1) unabhéngingen identisch verteilten

Zufallsvariablen. Errechnen wir zunéchst die Verteilung der X?:

vE 2
P(Xt <) = PO € [vEVE) = [ ey

/ﬁ 1 ,ﬁd +/0 1 ,ﬁd
= 76 2 —e 2
0 Y f\/271' Y

7t/2 -1 dt
Vit

0 27T

—1/2 1/2 1
—/ 1/2 t —t/th, z>0.
r'(1/2)

Somit folgt X? ~ I'(1/2,1/2) = X ~T'(1/2,1/2+...+1/2) =T(1/2,k/2) und daher
—_————
gilt der Ausdruck (3.2.2) fur die Dichte.
2. Wegen der Additivitdt des Erwartungswertes und der Unabhéngigkeit von X; gilt
EX =k -EX?, VarX =kVarX?, E(X})=E([(1/2,1/2)).

Bitte zeigen Sie selbststindig, dass EX? =1, Var X? = 2.

3.2.2 Student-Verteilung (t-Verteilung)

Definition 3.2.3
Seien X,Y unabhingige Zufallsvariablen, wobei X ~ N(0,1) und Y ~ x2. Dann heifit die
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Zufallsvariable
X

Y/r
Student- oder t-verteilt mit r Freiheitsgraden. Wir schreiben U ~ t,.

Satz 3.2.3 (Dichte der ¢-Verteilung):
Falls X ~ t,., dann gilt:

UL

1.

2. EX=0, VarX = r > 3.

T
r—27
Bemerkung 3.2.1

1. Grafik von f,: Die t,-Verteilung ist symmetrisch. Insbesondere gilt:

0.

3 x| 0 T 2 3 7

Abb. 3.3: Dichte f der t-Verteilung fiir r = 2,10, 100

tr,a = _tr,l—a, o€ (0, 1),

wobei ¢, , das a-Quantil der Student-Verteilung mit r Freiheitsgraden ist.

(172 .

2. Falls r — oo, dann f,.(z) — \/%6_7 , x € R. (Ubungsaufgabe)

3. Fur r =1 gilt: t; = Cauchy(0, 1) mit Dichte f(x)
existiert nicht.

= m Der Erwartungswert von ¢;

Beweis des Satzes 3.2.3:

T

1. Es gilt X = (Y, Z), wobei ¢p(z,y) = T und V = (Y, Z) ein zweidimensionaler
y/r
Zufallsvektor ist, Y ~ N(0,1), Z ~ x2, Y und Z unabhiingig.

Wir wollen den sogenannten Dichtetransformationssatz fiir Zufallsvektoren verwenden,
der besagt, dass unter bestimmten Voraussetzungen

For (@) = fr(e™ (@)]J]
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-1 n
gilt, wobei |J| = |det J|, J = <6%zj(x)) , 0 = (p1,...,0,) : R — R™. Berechnen
ij=1

wir hier ¢!

von ¢ : (x,y) — (v, w), wobei v = \/%, w=y:
y/r

@_I:U:x:xzv\/yszw. Somit ¢ : (v, w) — (U w,w)
r r r

und die Jacobi-Matrix ist gleich

RS

Falls V = (Y,Z), Y und Z unabhéngig, dann

f ( ) f ( ) f ( ) 1 2 yr/Zflefy/Z yr/2—16_y+212 .
viz,y)=Jfr(x) fz(y) = —=e 2 - = r , T E ay>07
oL D(r/2)2r/2 9% 1(1/2)0(r/2)

und nach dem Dichtetransformationssatz gilt

v = /Oofgo(v(%w)dw: | e i de

ooe— Ttw)/2 7“/2 1
_/ w/rdw
I'(1/2)L(r/2)
=t
= — 1 / wTe 2 wdw
V22 T(1/2)L(r/2) Jo
_ 1 ./°° 271“’521 e~tdt
TA/20(r/2) S0 (02/r+1)7
_ 2 er rid) _ 1
(2 + 1) V2B T(1/20(/2)  VrB(r/2,1/2)(1+v2/r)F

2. Ubungsaufgabe
]

Da im WR-Skript der Dichtetransformationssatz nur fiir Zufallsvariablen formuliert wurde,
geben wir hier die notwendigen Begriffe und verallgemeinerten Sétze fiir Zufallsvektoren (ohne
Beweis). Hierbei verwenden wir die folgende Notation:

Fiir Vektoren z = (x1,...,2,)7 und y = (y1,...,yn)? schreiben wir z < y, falls 2; < y;
fiir i = 1,...,n. Ferner sei fiir einen Zufallsvektor X = (X1,...,X,,)T die Verteilungsfunktion
definiert als F(z) = P(X < 2) fiir z = (21,...,2,)7.

Definition 3.2.4
Die Zufallsvektoren X; : Q — R™ 4§ =1,...,n sind unabhdngig, falls

n

n
Fixy. xpy (@, an) = P(X1 <@, Xy < wn) = [[P(XG < @) = [ Fxa (@),
1=1 =1
eR™, 4=1,...,n.
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Satz 3.2.4
Falls X; absolut stetig verteilte und unabhéngige Zufallsvektoren mit Dichten fx,, i =
1,...,n, sind, dann ist auch (X1,...,X,,) absolut stetig verteilt mit Dichte

n
le,...,Xn(xlv-"awn):Hin(xi)a xiERmiv ZZlvvn
=1
Satz 3.2.5
Falls X; : Q@ — R™i ¢ =1,...,n unabhéngige Zufallsvektoren sind, und ¢; : R™ — R™ Vi =
1,...,n Borel-messbare Funktionen, dann sind Zufallsvektoren ¢1(X1),..., ¢, (X,) unabhin-
gig.

Satz 3.2.6 (Dichtetransformationssatz fiir Zufallsvektoren):
Sei X = (X1,...,Xm)T : Q — R™ ein absolut stetig verteilter Zufallsvektor mit Dichte fx.
Sei ¢ = (¢1,...,0m)" : R™ — R™ eine Borel-messbare Abbildung, die innerhalb von einem

Quader B C R™ stetig differenzierbar ist. Falls suppfx C B und det (gfj) o
1,]=

ey

dann 3o~ : p(B) — B stetig differenzierbar und

_ [ Ix (7M@) ]z e (B,
Fa =1 v g olB).

. Op:
wobei J = det( 50’_ )
X j ..
i,j=1,....m

3.2.3 Fisher-Snedecor-Verteilung (F-Verteilung)

Definition 3.2.5

Falls X < g’;;;, wobei U, ~ x2, Us ~ x2, r,s € N, U,,Us unabhiingig, dann hat X eine
F-Verteilung mit Freiheitsgraden r, s. Bezeichnung: X ~ F,. ;.

Lemma 3.2.1

Falls X ~ F, g, dann ist X absolut stetig verteilt mit Dichte

I‘T/Q_l
f T) = r+s ]I('r 0 .
X B(r/2,s/2)(r/s)""/2(L+ (r/s) - x) 2 -0

Beweis Da U, ~ x2, gilt fiir ihre Dichte
$r/2—1e—x/2

fUT(x):W7

x>0, reN.

Somit
P(U,/r <z)=P(U, <rx)=Fy,(rx)

und deshalb

r/2—1672m

r(rx)

W-]I(x>0)

fu,r(x) = (Fu,(ra)) =r- fu,(rz) =

TT/er/Q—le—r/Z;t
= i .
Ty >0
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1.0

—r=2,8=2
r=2,s=5
© |
o —r=5s=2
r=5,s=5
©
=
w
= <
o
N
o
o
=
I T T T 1
0 1 2 3 4

Abb. 3.4: Dichte der F-Verteilung fiir verschiedene Parameter r und s.

Nach dem Dichtetransformationssatz fiir das Verhéltnis von zwei Zufallsvariablen (vgl. Wahr-
scheinlichkeitsskript Satz 3.15) gilt

Foum (@) = /0 Tt e (wt) - fos(£) dt -z > 0).

Us/s

Somit

0o 1/2 r/2—1,—"2  5/215/2-1 ,—st/2
fX(m)Z/ P ) ¢z T e dt
0 [ (r/2)2r/2 ['(s/2)2s/2

=Y

r/2.5/2,.r/2—1 00 _ L"’S
e [T T2
I(r/2)l(s/2)22 Jo
rr/2g8/27/2-1 0 y%q -
= — / p - e ydy
L(r/2T(s/2) " Jo (rgt )

pr/2g8/2,m/2—1 r4s

- T+s r+s F ( )
t=x T(r/2)l(s/2)s 7 (145 2)2 2
(T/S)r/2$r/2—1

- r+s

B(r/2,5/2)(1 + tx) 2

-I(x > 0).

Bemerkung 3.2.2
Sei X ~ F, s, r,s € N mit Dichte fx.

1. Einige Graphen der F-Verteilung sind in Abbildung 3.4 dargestellt.

2. Einige Eigenschaften der F-Verteilung:
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Lemma 3.2.2
Es gilt:
a) s
EX = , s>3
s—2
b
) 252(r +s5—2)

Var X = s>5.

r(s—4)(s —2)2’
c) Falls F, ;o das a-Quantil der F) ;-Verteilung ist, dann gilt

1
Fs,r,lfa

, a€(0,1).

.S, —

Ubungsaufgabe 3.2.2
Beweisen Sie Lemma 3.2.2!

3. Fir Quantile F; 5 o gilt folgende Néherungsformel (Abramowitz, Stegun (1972)):

F, .o =~ €, wobei

. [a(h+a)/? 1 1 5 2
w—2< h _<r1_sl>.<a+6_3h) ’

1 1 \7!
h=2
<T—1+8—1> ’

22 -3
6

und z, das a-Quantil der N(0, 1)-Verteilung ist.

3.3 Punktschatzer und ihre Grundeigenschaften

Sei (X1,...,X,) eine Zufallsstichprobe, definiert auf dem kanonischen Wahrscheinlichkeits-
raum (Q, F,Pp). Seien X;, i = 1,...,n unabhingige identisch verteilte Zufallsvariablen mit
Verteilungsfunktion F' € {Fy : § € ©}, © C R™. Finde einen Schétzer é(Xl, ..., Xp) fur den
Parameter 6 mit vorgegebenen Eigenschaften.

Unser Ziel im néchsten Abschnitt ist es, zundchst grundlegende Eigenschaften der Schétzer
kennenzulernen.

3.3.1 Eigenschaften von Punktschatzern

Definition 3.3.1 (Erwartungstreue):
Ein Schétzer 6(X1,...,X,) fir 0 heifit erwartungstreu oder unverzerrt, falls

Egd(X1,...,Xn) =0, 6co.
Dabei wird vorausgesetzt, dass

Eol0(X1,...,X,)| <o0, He€O.
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Der Bias (Verzerrung) eines Schitzers (X1, ..., X,) ist gegeben durch
Bias(d) = B¢ 0(X1,...,X,) — 6.

A

Falls (X1, ..., X,) erwartungstreu ist, dann gilt Bias(f) = 0 (kein systematischer Schitzfehler).

Definition 3.3.2 (Asymptotische Erwartungstreue):
Der Schétzer 0(X1, ..., X,,) fir  heiBt asymptotisch erwartungstreu (oder asymptotisch unver-
zerrt), falls (fiir grofle Datenmengen)

EgO(X1,...,X,) — 0.

n—oo

Definition 3.3.3 (Konsistenz):

Falls
Q(Xl,...,Xn) — 0
n—o0
in L?, stochastisch bzw. fast sicher, dann heifit der Schétzer é(Xl, ..., Xy,) ein konsistenter

Schdtzer fur 0 im mittleren quadratischen, schwachen bzw. starken Sinne.

o O L2-konsistent: fiir B9 0%(X1,...,X,) < oo gilt

0 L% 0= Eold(Xy,.... X))~ 02 — 0, 6eo.

n—oo n—oo

e O schwach konsistent:

A

0 5 0= P(0(X1,....Xp)—0]>c) — 0, e>0, 6coO.

n—oo n—oo

o 0 stark konsistent:

6 =5 0= Py (lim 0(X1,...,X,)=0)=1, 0€6.
n—0o0 n—oo

Daraus ergibt sich folgendes Diagramm (vgl. Wahrscheinlichkeitsrechungsskript, Kapitel 6).

’ L? — Konsistenz ‘:;% schwache Konsistenz k:’ starke Konsistenz ‘

Definition 3.3.4 (Mittlerer quadratischer Fehler (mean squared error)):
Der mittlere quadratische Fehler eines Schéatzers 6(X7y, ..., X,,) fir 0 ist definiert als

MSE(B) =Eg|l0(X1, ..., X,) — 0]

Lemma 3.3.1
Falls m = 1 und Ey 0%(X1,...,X,) < oo, 6¢€ O, dann gilt

MSE(0) = Varg 0 + (Bias.(é))2 :

Beweis MSE(0) =Eg(f — 0)* = Eg(0 — Eg + Egf) — 0)?
= Eg(f —Eg0)> +2Eg(0 —Eg 0) (Eg 0 — 0) + (Eg 0 — 0)?
Varg 0 =0 =const =Bias(6)2

= Vary 0 + (Bias(é))2 .
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Bemerkung 3.3.1
Falls 0 erwartungstreu fiir 6 ist, dann gilt M SE(f) = Vary 6.

Definition 3.3.5 (Vergleich von Schitzern):
Seien él(Xl, ..., Xp) und ég(Xl, ..., Xp) zwei Schitzer fir §. Man sagt, dass 0, besser ist als
0, falls

MSE(0)) < MSE(,), 60€©.

Falls m = 1 und die Schétzer él, ég erwartungstreu sind, so ist él besser als éz, falls él die
kleinere Varianz besitzt. Dabei wird stets vorausgesetzt, dass Eg0? < co, 6 € O.

Definition 3.3.6 (Asymptotische Normalverteiltheit):
Sei 0(X1,...,Xy) ein Schétzer fiir § (m = 1). Falls 0 < Varg0(X1,...,X,) <oco, 6 € O und

A

0(X1,....Xn) —EpO(X1,..., X,
(X1, -+, )A 0 0(X1 )i>Y~N(O,1),
VVarg (X1, ..., X)

n—oo

dann ist 9(X1, ..., X)) asymptotisch normalverteilt.

Definition 3.3.7 (Bester erwartungstreuer Schitzer):
Der Schétzer 0(X1, ..., X,) fir 0 ist der beste erwartungstreue Schitzer, falls

Eg6%(X1,...,Xn) <oco, H€O, EpO(X1,...,Xn) =0, 0cO,

und f die minimale Varianz in der Klasse aller erwartungstreuen Schétzer fiir  besitzt. Das
heifit, dass fiir einen beliebigen erwartungstreuen Schétzer 6(Xy,..., X, ) mit

E9(§2(X1,...,Xn)<00 gilt Varg 6 < Varg 0, 0 eO.

3.3.2 Schatzer des Erwartungswertes und empirische Momente

Sei X 2 X;, 4i=1,...,n ein statistisches Merkmal. Sei weiter E|X;|* < oo fiir ein k € N,
m = 1 und der zu schitzende Parameter 0 = u; = ]EXf. Insbesondere gilt im Fall £ = 1, dass
0 = p1 = p der Erwartungswert ist.

Definition 3.3.8
Das k-te empirische Moment von X wird als

1 n
e =~ XF
ni:l

definiert. Unter dieser Definition gilt, dass ji; = X,,, also das erste empirische Moment gleich
dem Stichprobenmittel ist.

Satz 3.3.1 (Eigenschaften der empirischen Momente):
Unter obigen Voraussetzungen gelten folgende Eigenschaften:

1. fu, ist erwartungstreu fiir p (insbesondere X,,).
2. [ ist stark konsistent.

3. Falls Ey| X |?* < 00, V60 € O, dann ist ji; asymptotisch normalverteilt.
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4. Es gilt VarX,, = %2, wobei 02 = Varg X. Falls X; ~ N(u,0%), i = 1,...,n (eine
normalverteilte Stichprobe), dann gilt:

Beweis
L Egjin = -3 BoXt = 23 = M _
0 Mk n 2 0% n M n M -
2. Aus dem starken Gesetz der grofien Zahlen folgt

—ZX"‘ —) Eg XF = 1.

3. Mit dem zentralen Grenzwertsatz gilt

i XE—n-EXF 53 Xk_#k:_ fik —

n VntE— k4, y  N(0,1).
Vn - Var Xk %\/Var Var Xk n—oo 1)
Insbesondere gilt fiir den Spezialfall k£ = 1
X, —
Jnon B Ay N, ).

o n—oo

Var X,, = Var

n
g
; )XUIV TLQZVEHX_ :?

Falls X; ~ N(u, 0?), i=1,...,n, dann gilt wegen der Faltungsstabilitit der Normal-
verteilung X,, ~ N(-,-), weil

B\H

2
v on <” "2> X uiv.
n n'n

Somit folgt aus 1) und 4) X,, ~ N (u, %2) .
Damit ist der Satz bewiesen. O

Bemerkung 3.3.2
Aus Satz 3.3.1, 3) folgt

P(X,—p| >¢) = 1—B(—£ < X, —p <e)
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2
wobei ®(z) = \/% - e~z dt die Verteilungsfunktion der N (0, 1)-Verteilung ist.

Insgesamt gilt also fiir grofles n
P(| X, — | > ¢) m2<1—<1><5\/ﬁ>> .
o

3.3.3 Schatzer der Varianz

Seien X;, ¢=1,...,n unabhéngig identisch verteilt, X; 4 X, EyX?<o0 V€O, 6=
(01,...,0)T, 0; = 0? = Vary X fiir ein i € {1,...,m}. Die Stichprobenvarianz

1
n—1

52 = > (X — Xn)?
=1

ist dann ein Schitzer fiir o2. Falls der Erwartungswert u = E¢X der Stichprobenvariablen
explizit benannt ist, so kann ein Schéitzer fiir 02 auch als

definiert werden.
Wir werden nun die Eigenschaften von S2 und S? untersuchen und sie miteinander vergleichen.

Satz 3.3.2

1. Die Stichprobenvarianz S? ist erwartungstreu fiir o2:

]EgSZ:Oj, fecO.

2. Wenn Eg X* < 00, dann gilt

1 n—3
Varg SEL = E (/.lﬁl - U4> )

wobei ) = Eg (X — p)*.
Beweis 1. Aus Lemma 2.2.1 1), 2) folgt, dass

1

n
Si: 1 (ZXZQ—’I”LXEL) ,
i=1

und dass man 0.B.d.A. u = E¢X; = 0 annehmen kann, woraus insbesondere EyX,, =
0, 6 € © folgt. Dann gilt

1 (& _ 1 (& _
EpS2 = — (Z FEg X7 — nIEXﬁ) = — (Z Varg X; — nVar Xn>
=1 i=1

2
! <n02—n‘0>202, feO.

S.331,4) n—1 n
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2. Berechnen wir Varp S2 = Eg(S%)Q — (B S2)? = E¢(S2)? — 0. Es gilt

2

=1

2
1 2 G2\~ 2 21 4
ST Eg (2){) —2nEy (anlei +n’Ey X1
- - —
=1 =I5
Dabei gilt
n n n n
L=F [ X2 X2 =B [ X+ X2X2 | =S EoX{ + Y Eg(X?PX?)
=1 j=1 i=1 i#j i=1 itj
n
_ / , R 4
0w OZ 4+ZVar9Xl-Var9X] =npy +n(n—1)o

i=1 i#j

(<ii V5= (S S

= (f: f:xf)Jr E(ZXX Zxk)

i#j k=1
1 9 I Wy + (n— 1)04
=51 ZZ E (X, X;X}) ==t
k
i#i =0, da X; u.i.v. und pu=0
1o N\ (e )
I3 =Ey (ZXZ) =YX
n n <
i=1 j=1
1 & -
= B | | X2 4> XX | [ X2+ 3 XX,
" k=1 oy r=1 At

k,r=1 k=1 i#j i#j s#t

- (zn: X,§X2+22XkZXX +> XX ZXXt>
(ﬁ:xg>+E9<ZX,§X3>+2E9<ZX§ZXin>+

k=1 kr k=1 i)

=0, da X; u.i.v. und pu=0
+2 Eg(ZXfo) +Eqg ( > X}Xth) +]E9< > XZ-XjXSXt) )
i izt iAot
weil (4,7) und (j,3) zéhlen =0, da X u.i.v. und p=0 =0, da X; u.i.v. und p=0

1 npy +3n(n—1 W+ 3(n—1)ot
L (WH?)EG 2X2X2> it nln =)o _ p 30
i#]
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Somit gilt insgesamt

1 wy +3(n—1)0t
4 _ / 4 / 4 4
EpS,, = =12 <nﬂ4+n(n—1)0’ —2(pg + (n—1)0%) + -
_ (n®=2n+4 1)+ (n? —2n+ 3)(n — 1)o?
B n(n —1)2
_(n=1)%43 n2—2n—|—304_/£1 n?—-2n+3 ,
C(n—1)2n n(n —1) S n n(n—1)

und deshalb

! 2 2 /
g NnE—=2n+3-n"+n 4 n—3 4 1(, n—3 4)
Varg S = — =m0 = g
Ao on =7 + n(n—1) 7 n n(n—l)a n\M T 1?
O
Satz 3.3.3 1. Der Schiitzer S2 fiir o2 ist erwartungstreu.
2. Es gilt Varg 52 = 1/n(u}, — o%).
Beweis
1 1 1
: EgS2 == Eo(X;—p)?==> o*=0".
6 n n ;M n ; g g
= :Varg Xi =
2. Setzen wir wie in Satz 3.3.2 0.B.d.A. y = 0 voraus. Dann gilt
- 1& 2 N2 1 L
Var 52 = Ky (n ZXE) - (B0 82) = —E <Z Xf) — ot
i=1 i=1
B L A R ) LA s
I) Beweis S. 3.3.2 n? B n oo
O

Folgerung 3.3.1
Der Schitzer S2 fiir o2 ist besser als S2, weil beide erwartungstreu sind und

n—3 -4
nflJ

o _ M=ot 4
Varg S2 = < = Vary S2.
n

3

Diese Eigenschaft von S2 im Vergleich zu S2 ist intuitiv klar, da man in 52 mehr Informationen
iiber die Verteilung der Stichprobenvariablen X; (ndmlich den bekannten Erwartungswert p)
reingesteckt hat.

Satz 3.3.4
Die Schitzer S2 bzw. S2 sind stark konsistent und asymptotisch normalverteilt:
. S2 2
52 sy 52 Jnn— 2 1y L N(0,1),

" n—oo ’ 4 n—00
Hy — 0

~ 5@7 2
G2 Esy 52 Vnn T Ly L N(0, 1),

" pn—soo / 4 M—00
Hy — 0

falls p) < .
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Beweis Zeigen wir nur, dass S2 die obigen Eigenschaften besitzt. Der Beweis fiir 5'721 verlauft
analog. Die starke Konsistenz von S2 folgt aus dem starken Gesetz der grofien Zahlen, nach
dem

1 §
S X S EX? und X, -
n “ n—00

=1

n—0o0

gilt und somit auch

Dann

n 1 & -

X; —nX -y X2- X2

ot (Snomt) =i (RS -
n;)O}EgX —;L = Vary X =0~

und die starke Konsistenz ist bewiesen. Um die asymptotische Normalverteiltheit zu beweisen,
nehmen wir 0.B.d.A. an, dass u = Ey X = 0. Dann folgt mit Hilfe des Satzes von Slutsky (vgl.
Sétze 6.8 - 6.9 aus dem WR-Skript)

\/552/_2 _\Fnlz Ll 3_02
py — ot py —
— it 1 21)(2—710—2 \/ﬁnl’lﬁ_<1_ n > o%y/n
Y e RN n—1) Jr o
=Ry, =R

weil

(i ;
n—1 /M4—U /Mﬁ;—04n 1 n—oo
also auch stochastisch und in Verteilung. Es gilt

XQ
R~ yn—2— 50,

/ 4 M—00
\VHye — O

weil ) )
Bs <\/HXT2Z> uiO VVar X, S. 3.?1, 4) \/ﬁ% B % njo 0
und somit
V(X By 0= Va(X,)? S 0= Va(X,)? 0.
Dann gilt
lim /7% 0= 4y, L XD - not 2y ~ N(0,1)

RV et " =)
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nach dem zentralen Grenzwertsatz fiir die Folge von unabhéngigen identisch verteilten Zufalls-

variablen {X?};cn, weil Eg X? = Varg X = 02 und
IJ/:

VargX? = EgX* — (EgX?)* = iy — 0.

O
Folgerung 3.3.2
Es gilt
L. Jn ’g;“n%oywjv(o,l)
und somit
2.
P(ue{)‘(n—zl‘“\//;&l,)‘(n+zl‘“\/g&‘bn§>o1—a (3.3.1)

fiir ein a € (0, 1), wobei z, das a-Quantil der N (0, 1)-Verteilung ist.

Bemerkung 3.3.3

Das Intervall in (3.3.1) nennt man asymptotisches Konfidenz- oder Vertrauensintervall fiir den
Parameter u. Falls o klein ist (z.B. a = 0,05), so liegt p mit einer asymptotisch grofen Wahr-
scheinlichkeit 1 — « im vorgegebenen Intervall. Diese Art der Schéitzung von p stellt eine Alter-
native zu den Punktschitzern dar und wird ausfiihrlich in der Vorlesung Satistik II behandelt.

Beweis der Folgerung 3.3.2
1. Aus Satz 3.3.4 folgt

9 fs. 2 0 fs. g d
S, — 0=+ S 1= - — 1
n—oo n n—oo n n—oo

und somit nach der Verwendung des Satzes von Slutsky

X, —p Xn—p o
= = 5 Y-1=Y ~N(0,1
Sn \/ﬁ o Snnﬁoo (7)?

NG
wobei wir die asymptotische Normalverteiltheit von X,, benutzt haben.
2. Aus 1) folgt

(67 «

P, (Wgcns—u ¢ [rap Zl_m]) b (s1agn) @ () =1 2= S —1-a

n n—00 2

Daraus folgt das Intervall (3.3.1) nach der Auflésung der Ungleichung

X, —
Sn

Za/Q é \/ﬁ

< Zl—a/?

bzgl. u.
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Betrachten wir weiterhin den wichtigen Spezialfall der normalverteilten Stichprobenvariablen
X;, i=1,...,n,also X ~ N(u,0?).

Satz 3.3.5
Falls X1, ..., X, normalverteilt sind mit Parametern y und o2, dann gilt
1. (n— 1)5721 o2
0_2 Xn—l )
2. ns”rzz 2
2 ~ Xn

Beweis Beweisen wir den schwierigeren Fall 1, der Beweis im Fall 2 verlduft analog.
Da X; ~ N(u,0?), gilt, dass % ~ N(0, 1) unabhéngige identisch verteilte Zufallsvariablen
fir i = 1,...,n sind. Nach Lemma 2.2.1 gilt

n n

Z(Xz - /1«)2 = Z(Xz - Xn)Q + n(Xn - N)Q
=1 =1

und somit

g

- ; — n — n(X, — ?
Tl:Z<XZ u)2: g (ﬂXu)>
—_——

~X3A =To~x? aus S. 3.3.1, 4)

In Lemma 3.3.2 wird bewiesen, dass S2 und X,, unabhéngig sind. Somit gilt

eri(s) = @L;ls%(s) o1, (s), Vs eR,
wobei ¢z(s) die charakteristische Funktion einer Zufallsvariablen Z ist. Da nach dem Satz 3.2.1
(5) . pp—
§)= —— §)= —
o (1—2isy2 7P (1—2is)1/2”
folgt
_pn(s) _ 1 B
410%7215% (S) - (pTQ(S) - (1 - 2@5)(”‘1)/2 — SOX?L—I(S) .

Aus dem Satz 3.2.1 und dem Eindeutigkeitssatz fiir charakteristische Funktionen (vgl. Folgerung
5.1 aus dem WR-Skript) folgt
n—1

2 2
o2 Sn ~ Xn—1-

O

Lemma 3.3.2
Falls X ~ N(p, o?), X1, ..., X,, unabhingige identisch verteilte Zufallsvariablen, X; 4 x , dann
sind X,, und S2? unabhingig.

Dieses Lemma wird unter Anderem gebraucht, um folgendes Ergebnis zu beweisen:

Satz 3.3.6
Unter den Voraussetzungen von Lemma 3.3.2 gilt

\/H(Xn — )

~tp—1.
Sn n—1
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Beweis von Lemma 3.3.2 Es folgt aus Lemma 2.2.1, dass

_ 1 1 & _
Xn:gZXZH—M und SELZHZ(X{—X%)Z
=1 =1
fir X! = X; — p, i = 1,...,n. Somit kann wegen des Satzes 3.2.5 0.B.d.A. pp = 0 und o2 =1
angenommen werden. Um die Unabhingigkeit von X,, und S? zu zeigen, stellen wir S2 in

alternativer Form dar:

n n 2 n
S2 = IQM—&ﬂQJ&Jmﬁ—I «Z%—&0+2Wﬁﬁy»

n—1 i=2 n—1 i=2 i=2

weil 3", (X; — X,,) = 0 nach Abschnitt 2.2.1. Somit gilt
Sp=¢(Xo— Xy, X — Xp)

wobei

=2

2
B 1 n n B
80(-T27---,:En)=n_1 ((Zl‘z> +ZSE?) , (x2,...,zy) €ER" L
i=2

Es geniigt (nach Satz 3.2.5) zu zeigen, dass der Zufallsvektor (Xo—X,,...,X,—X,) unabhingig
von X, ist. Sei X = (Xy,... ,Xn)T, X; unabhéngige identisch verteilte Zufallsvariablen mit
X; ~ N(0,1) nach unserer Annahme. Dann gilt

1 1<,
Ey) = —— i .. %) ERY

fiir die Dichte von X. Sei ¢ = (¢1,...,¢n) : R — R™ die lineare Abbildung mit

SOI(IB) = Tn,

po(x) = 29 — Iy
" = (x1,...,2y) € R".

on(x) = Ty — Tp,

Um die Umkehrabbildung o= : (y1,...,yn) + (21,...,2,) zu finden, setzen wir y; = @;(x),
i =1,...,n und schreiben

_ T2 = Y1 + Y2
Y1 = Tn .

Y2 =22 —Tp = T2 — Y1
. 3 woraus xn — yl + yn

o+ ... +xp=Mm—-—Dy1+y+...+un

= T —_
Yn n ri+ ... +rp=nyi=xz1+Mn—-—Dy1+y2+...+yn

folgt und somit x; = y; — > i ¥;. Es gilt insgesamt
1Y) =y — i v,

-1
0y (y) =y1 + 2,
. Y= (y1,....,yn)" €R".

o (y) =1+ yn,
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Um den Dichtetransformationssatz 3.2.6 fiir ¢(X) zu verwenden, brauchen wir die Determinante
der Jacobi-Matrix

1 -1 -1 -1 ... -1
1 1.0 0 ... 0
N 1 0 1 0 ... 0
J = dt<5g ) e
Vi Jij=1,.m Don
1 0 ........ 0 1
R A A A AR

Somit gilt fiir die Dichte von Y = ¢(X) = (X, Xo — Xp, ..., X — X;)

n 2 n
fﬂnwh~w%02ﬁﬂw4@»~UF=@Swgwp{—;@n-}Zm) ;ij+yz}
= =2

n
n

1 n n
:Wexp{—Q(y%—2y1;yi+<;yz> +Zyl+2ylzyz (n—1)y )}

e Aot (5) )
(@) bt} () " 5 (5 () )}

=for(x)(¥1)

F(00(X) e von (X)) (Y25--Un)

woraus die Unabhéngigkeit von

(X) =X, ~N i N(O 1)
P1 — An 12 n u:07_02:1 ”I’L

(02(X); -+ s 0n(X)) = (X2 — Xy, X — Xi)
folgt. Somit sind auch X,, und S2 = (X3 — X, ..., X,, — X,,) unabhingig. O

und

Beweis des Satzes 3.3.6 Aus den Sétzen 3.3.1, 4) und 3.3.5 folgt

_ 2 —1)8?

o
also _ )
X — -1)S
Vi = vt M U N@0,1)  und YgszXi_y
o o
Nach dem Lemma 3.3.2 und Satz 3.2.5 sind Y; und Y unabhéngig. Dann gilt
Y;
=y i

n—1
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nach der Definition einer ¢-Verteilung, wobei

T— \/ﬁXnU_# _ Xn — M
(n—1)S2 Sh
o2(n—1)
Somit gilt -
Xn — M

Vvn

~tp_1-

Sn
O

Bemerkung 3.3.4

Mit Hilfe des Satzes 3.3.6 kann folgendes Konfidenzintervall fiir den Erwartungswert p einer
normalverteilten Stichprobe (X7,..., X,,) bei unbekannter Varianz o2 (X; ~ N(u,0%), i =
1,...,n) konstruiert werden:

> th—11-a
S, . X, 4 nblze/2 /254) —1-a

]P(,U,G|:Xn—t NG

fir o € (0,1), denn

Sn

X, — p
]P)<\/T>L ; € |:tn_17a/2’ tn—l,l—a/2:|> = Ftn—l (tn—l,l—a/2) - Ft7l_1(tn—1’a/2)
——
=—tp_1,1-a/2 V8 Sym. t-Vert. (3.3.2)

—1-2 % g,
2 2

wobei t,_1 o das a-Quantil der t,_;-Verteilung darstellt. Der Rest folgt aus (3.3.2) durch das
Auflésen bzgl. pu.
3.3.4 Eigenschaften der Ordnungsstatistiken

In Abschnitt 2.2.2 haben wir bereits die Ordnungsstatistiken x(y),...,x(,) einer konkreten
Stichprobe (z1,...,z,) betrachtet. Wenn wir nun auf der Modellebene arbeiten, also eine Zu-
fallsstichprobe (X1, ..., X,) von unabhéngigen identisch verteilten Zufallsvariablen X; mit Ver-
teilungsfunktion F'(x) haben, welche Eigenschaften haben dann ihre Ordnungsstatistiken

X(l), R 7X(n) ?
Satz 3.3.7

1. Die Verteilungsfunktion der Ordnungsstatistik X(;), ¢=1,...,n ist gegeben durch
n n o
Fx, (z) = Z (k) FFz)(1 - F(z)"*, rER. (3.3.3)

2. Falls X; eine diskrete Verteilung mit Wertebereich £ = {...,a;_1,a;,a;4+1,...} haben,
i=1,...,n, a; <aj fir i <j, dann gilt fir die Zéhldichte von X;), i=1,...,m:

P(X( = a) = Y (Z) (@) (1 = F(a)" ™" = F¥a;-) (1 = Flaj-0)"") .
k=

7



3 Punktschétzer 63

wobei

ZP —CLk

akEE k<j

3. Falls X; absolut stetig verteilt sind mit Dichte f, die stiickweise stetig ist, dann ist auch
Xy, © =1,...,n absolut stetig verteilt mit der Dichte

n! (@) FY2)(1 - F(@)", zeR.

P @) =G i =y

Beweis

1. Fihren wir die Zufallsvariable

Y=#{i: X;<a2}=> I(X;<=z), z€cR
=1

ein. Da Xi,...,X,, unabhingig identisch verteilt mit Verteilungsfunktion F' sind, gilt
Y ~ Bin(n, F(z)). Weiterhin gilt
. " (n n—k
2. folgt aus 1) durch
P(X@) = a;) =Plaj—1 < X < a5) = Fx, (a;) — Fx; (aj-1)  Vj,i.

3. Beweisen Sie 3) als Ubungsaufgabe.

O
Bemerkung 3.3.5
1. Fir ¢ = 1 und i = n sieht die Formel (3.3.3) besonders einfach aus:
Fx,@=1-(1-F@)", zeR
Fx(n)(:v):F"(:c), reR.
Diese Formeln lassen sich auch direkt herleiten:
Fy,(z)=P( mn X;<z)=1-P( mn X;>z)=1-P(X;>2, Vi=1,...,n)

i=1,...,n i=1,...,n

- 1_ﬁP(Xi>x):1—(1—F(33))"7

X; ui
5 uiv i1

Fx,,(z) =P(max X;<z)=P(X; <z, VYi=1,...,n)

z—l, LN

HPX <z)=F"(x), zeR.
XUIV.:
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2. Falls X; absolut stetig verteilt sind mit einer stiickweise stetigen Dichte f, so lassen sich
Formeln fiir die gemeinsame Dichte der Verteilung von (X(;,),..., X)), @ <k <n
herleiten. Insbesondere gilt fir k =n

nl-flxr)-...- f(zp), falls—co<z <...<zp <00,
f(X(1>7...7X(n))(:U17 ce ,an) = {

0, sonst.

Ubungsaufgabe 3.3.1
Zeigen Sie fir X, ..., X,, unabhingig identisch verteilt, X; ~ U[0,6], § > 0, i =1,...,n, dass

1. die Dichte von X(;) gleich

fX(i) (z) =

sonst

{n!_.!e—w—l(e — )",z € (0,0)

und

po 0Fnl(i+k— 1)

EXG) = (n+k)!@G—1)""

keN, i=1,...,n

sind. Insbesondere gilt EX ;) = 7#19 und Var X;) = %

3.3.5 Empirische Verteilungsfunktion

Im Folgenden betrachten wir die statistischen Eigenschaften der in Abschnitt 2.1.2 eingefiihrten

empirischen Verteilungsfunktion Fn(a;) einer Zufallsstichprobe (Xi,...,X,), wobei X; 4 x
unabhéngige identisch verteilte Zufallsvariablen mit Verteilungsfunktion F'(-) sind.

Satz 3.3.8
Es gilt

1. nk,(z) ~ Bin(n, F(z)), z€R.

2. F,(x) ist ein erwartungstreuer Schétzer fir F(z), z € R mit

Fa)(1- F())

Var F),(z) =
n

3. F,(x) ist stark konsistent.

4. Fy,(z) ist asymptotisch normalverteilt:

o (2) — Fl)
VE(@)(1 - F(z))

Beweis 1. folgt aus der Darstellung

NG 4y ~N(0,1), Va: F(z)e(0,1).
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weil I(X; < x) ~ Bernoulli(F(z)), Yi=1,...,n. Somit ist

n

Z]I(Xi < x) ~ Bin(n, F(x)).

2. Es folgt aus 1)
{E(n Fo(2) = nF(2), z€R,
Var(nF,(z)) =nF(z) - (1 - F(z)), xz€R,

woraus EE, (z) = F(z) und Var E,(z) = F(z)(1 — F(z))/n folgen.

3. DayY;, =1(X; <z),i=1,...,n, z € R unabhéngige identisch verteilte Zufallsvariablen
sind, gilt nach dem starken Gesetz der groflen Zahlen

17’1,
=YV % BY; = F().
n_ n—oo

4. folgt aus der Anwendung des zentralen Grenzwertsatzes auf die oben genannte Folge
{Yi}ien.
O

In Satz 3.3.8, 3) wird behauptet, dass

A~ f.

F,(x) nﬁo F(z), VzeR.
Der nachfolgende Satz von Gliwenko-Cantelli behauptet, dass diese Konvergenz gleichméfig in
x € R stattfindet. Um diesen Satz formulieren zu kénnen, betrachten wir den gleichmdfsigen
Abstand zwischen F;,, und F

Dy, = sup |Fy(z) — F(z)].
rz€R

Dieser Abstand ist eine Zufallsvariable, die auch Kolmogorow-Abstand genannt wird. Er gibt
den maximalen Fehler an, den man bei der Schitzung von F(z) durch F),(z) macht.

Ubungsaufgabe 3.3.2
Zeigen Sie, dass

D, = max max {F (X —0) - =l g (X(i))} . (3.3.4)

i€{1,...,n} n n

Beachten Sie dabei die Tatsache, dass Fn(x) eine Treppenfunktion mit Sprungstellen X;),
i=1,...,n ist.
Satz 3.3.9 (Gliwenko-Cantelli):
Es gilt D,, =5 0.
n—oo

Beweis Fiir alle m € N wahle beliebige Zahlen —co = 29 < 21 < ... < Zm—1 < 2z = 00. Dann
gilt
Dy =sup|Fn(2) — F(2)| = sup sup  |Fn(2) — F(2)].
z€R 7=0,....m—1 zG[Z]',ZjJ,_l)
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Zeigen wir, dass Vm € N 2z, ..., z,, existieren, fiir die gilt

Fzjin —0)— F(z) <e = % . (3.3.5)

Falls F stetig ist, geniigt es, z; = F~1(j/m), j=1...m —1 gleichzusetzen. Im allgemeinen
Fall existieren n < m/2 Punkte z; mit der Eigenschaft

F(z;) — F(xzj —0) > 2 =2/m

(weil n - 2e < 1 sein muss) und k + 1 Punkte y; zwischen diesen Punkten z; mit Eigenschaft
(3.3.5), wobei fiir k gilt:

n-2+k+1)e<1 = 2n+k+1<m =— k<m-2n-1.
Setzen wir {z;} = {z;} U{y;}. Fiir alle z € [z}, zj41) gilt
Fo(2) = F(2) < Fu(zj41 = 0) = F(z)) < Fo(zj11 = 0) = F(zj41 = 0) + ¢,

weil aus (3.3.5) folgt, dass —F(z;) <e— F(zj41 —0), Vj.
Genauso gilt

weil aus (3.3.5) fiir alle j folgt, dass —F(zj41 —0) > —F(z;) — e gilt. Fir alle m e N, j €
{0,1,...,m} sei

Amj={weQ: lim F(z) = F(z)},

Ay ={weQ: JLI%OFH(Z] —0)=F(z;—0)}.

Nach dem Satz 3.3.8, 3) gilt P(A;, ;) = 1. Um P(A], ;) = 1 zu zeigen, kann man die Verallge-
meinerung von Aussage 3.3.8, 3) auf das Mafl

E,(B) := 12]1(& €B), BebBg
=1

benutzen: nach dem starken Gesetz der grofien Zahlen gilt ndmlich

L F(B)=P(X € B), BecBg.

n—oo

Fu(B)

Da (—00,zj) € Bg  Vj, ist P(4;, ;) = 1 bewiesen Vm Vj. Fiir

gilt P(A4],) =1 ¥Ym, weil

P(A,) =1~ P(4,) =1~ P (L"J (Angv A;n,j)) >1-3 (Bl +BO,) ) =1
Ema) + Em)

=0 =0
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Weiterhin: fir e = 1/m Yw € A}, In(w,m) : Vn > n(w,m) Vj € {0,...,m — 1} Vz € [z, zj4+1)

Fn(z) — F(Z) < Fn(Zj_H — 0) — F(Zj+1 — 0) +e < 2¢,

) | <caws Al — |E,(2) — F(2)| < 2e.
Fo(2) — F(2) > Fy(zj) — F(zj) —e > —2¢,
—_———

>—c aus Ap, j

— D, = sup sup | F(z) — F(2)] < 2¢.

J=0,...m—1z€(z5,zj41)

Nun wéhlen wir ein beliebiges m € N und betrachten A" = (o_; A/ . Es folgt, dass P(A") =1
und Vw € A" Ing : Vn > ng

Dn<2g:3 Ym e N = D, 0.
m

n—oo

Satz 3.3.10 (Ungleichung von Dvoretzky-Kiefer-Wolfowitz):
Seien X7,...X,, unabhéngige identisch verteilte Zufallsvariablen mit Verteilungsfunktion F.
Fiir alle € > 0 gilt

P(D, > ¢) < 22"

(ohne Beweis)

Folgerung 3.3.3 (Konfidenzband fiir F):
Fiihren wir Statistiken

. A 1 2
L(z) = max{F,(x) — &,,0} und U(z) = min{F,(z) + &,,1}, &, = o log (a) ,a€(0,1)
ein. Dann gilt
P(L(z) < F(z) <U(z) VzeR)>1—« (3.3.6)
Beweis Beweisen Sie dieses Korollar als Ubungsaufgabe! O

Bemerkung 3.3.6
Das simultane Konfidenzintervall {L(z) < F(z) < U(z), =z € R} aus (3.3.6) heifit Konfidenz-
band fiir F' zum Konfidenzniveau 1 — a (vgl. Abb. 3.5).

Falls die Verteilungsfunktion F' stetig ist, kann man zeigen, dass die Zufallsvariable D,, nicht
von F abhéngt, also verteilungsfrei ist.

Satz 3.3.11
Fiir jede stetige Verteilungsfunktion F' gilt

n

N A 1
Dni sup |Gn(y) —y| , wobei Gn(y):EZH(YiSy), yeR

y€[0,1] i=1

die empirische Verteilungsfunktion der Zufallsstichprobe (Y7, ...,Y;) mit unabhéngigen iden-
tisch verteilten Zufallsvariablen Y; ~ U[0,1], i=1,...,n ist.
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Abb. 3.5: Konfidenzband fur F.

Beweis Zunéchst definieren wir einen sogenannten Konstanzbereich (a,b] C R einer Vertei-
lungsfunktion F' als maximales Intervall mit der Eigenschaft F'(a) = F'(b). Sei B die Vereinigung
aller Konstanzbereiche von F. Auf B¢ ist F eine monoton steigende eineindeutige Funktion.
Damit folgt die Existenz ihrer Inversen F~!: (0,1) — B¢. Gleichzeitig gilt

Dy = sup |Eu(x) — F(a)].
xzeBC¢

Fithren wir YV; = F(X;), i = 1,...,n ein. Y; sind unabhéngig identisch verteilt und Y; ~
UJ0,1], denn

P(Yi<y) =P(F(X;) <y) =P(X; < F'(y) =F(F'(y)) =y, ye(0,1).

Somit gilt auch

n n

1 R
I(X; <z)==Y [(F(X;) < F(z)) = Gn(F(z)), z € BC.
;( >nizl<<n> (x)) (F(z)) €

Hieraus folgt

Du = sup [F(e) = F@)] = sup [GulF (&) — F(&)| = sup |Ga(P(2)) — F(0)
x€BC xeBC z€R

= sup |Gn(y) —yl,
ye[o,l]

wobei die letzte Gleichheit die Stetigkeit von F' ausniitzt. O
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Folgerung 3.3.4
Falls F' eine stetige Verteilungsfunktion ist, dann gilt

Dni max max{Y(Z) Z_l,Z—Y(i)},

i=1,...,n n n
wobei Y(yy, ..., Y(y) die Ordnungsstatistiken der auf [0, 1] gleichverteilten Stichprobenvariablen
Yi,...,Y, sind.
Beweis Benutze dazu die Darstellung (3.3.4), den Satz 3.3.11 sowie die Tatsache, dass
F(z)=xz, x€]0,1]
fir die Verteilungsfunktion der UJ0, 1]-Verteilung ist. O

Folgende Ergebnisse werden ohne Beweis angegeben:

Bemerkung 3.3.7

1. Fir die Zwecke des statistischen Testens (vgl. den Anpassungstest von Kolmogorow-
Smirnow, Bemerkung 3.3.8, 3)) ist es notwendig, die Quantile der Verteilung von D,, zu
nennen. Auf Grund der Komplexitit der Verteilung von D, ist es jedoch unmdoglich, sie
explizit anzugeben. Mit Hilfe des Satzes 3.3.11 ist es moglich, diese Quantile durch Monte-
Carlo-Simulationen numerisch zu berechnen. Dazu simuliert man mehrere Stichproben
(Y1,...,Y,) von U[0,1]-verteilten Pseudozufallszahlen, bildet G, (z) und berechnet D,
nach Folgerung 3.3.4.

2. Fiir stetige Verteilungsfunktionen F' kann folgende Integraldarstellung von Verteilungs-
funktion von D,, bewiesen werden:

0, <0,
1 tz 2n—1+x
P(Dn < $+2n> = filf:r fi’”iw 232:1 g(yl,,yn) dyndyl, 0<x < 2n s
2n—1
]-7 X > TQLn .

wobei
nl, 0<y1<...<y,<1,

g(yl,---,yn)Z{

die Dichte der Ordnungsstatistiken (Y(1y,...,Y,)) von UJ0, 1]-verteilten Stichprobenva-
riablen (Y7,...,Y,) sind.

Satz 3.3.12 (Kolmogorow):
Falls die Verteilungsfunktion F' der unabhingigen und identisch verteilten Stichprobenvariablen
X;, 1 =1,...,n stetig ist, dann gilt

0, sonst

vnD, -4y
n
wobei Y eine Zufallsvariable mit der Verteilungsfunktion

K(.’E) Zkf—oo( )k —2k*a? =1+ 22211(_1)k6_2k2x2 , T > 07
0, sonst

(Kolmogorow-Verteilung) ist.



70 3 Punktschétzer

Bemerkung 3.3.8

1. Die Verteilung von Kolmogorow ist die Verteilung des Maximums einer Brownschen

Briicke, denn es gilt
Y £ sup fur(t)],
t€[0,1]

wobei {w°(t), ¢ € [0,1]} ein stochastischer Prozess ist, der die Brownsche Briicke ge-
nannt wird. Er wird als w°(t) = w(t) —w(1)t, t € [0, 1] definiert, wobei {w(t), t € [0, 1]}
die Brownsche Bewegung ist (fiir die unter anderem w(t) ~ N(0,t¢) gilt). Der Name
,Briicke“ ist der Tatsache w°(0) = w°(1) = 0 zu verdanken.

2. Aus Satz 3.3.12 folgt
P(vnD, <z) ~ K(z), z€R.

n—oo

Die daraus resultierende Naherungsformel
P(Dy < x) = K(zv/n)
ist ab n > 40 praktisch brauchbar.

3. Kolmogorow-Smirnow-Anpassungstest: Mit Hilfe der Aussage des Satzes 3.3.12 ist es mog-
lich, folgenden asymptotischen Anpassungstest von Komogorow-Smirnow zu entwickeln.
Es wird die Haupthypothese Hy : F' = Fj (die unbekannte Verteilungsfunktion der Stich-
probenvariablen Xj,..., X, ist gleich Fy) gegen die Alternative H; : F #+ Fy getestet.
Dabei wird Hy verworfen, falls

\/ﬁDn ¢ [ka/Za klfa/2]

ist, wobei
D, = sup |Fu(@) — Fo(a)|
r€R
und k, das a-Quantil der Kolmogorow-Verteilung ist. Somit ist die Wahrscheinlichkeit, die
richtige Hypothese Hy zu verwerfen (Wahrscheinlichkeit des Fehlers 1. Art) asymptotisch
gleich

P (\/ﬁDn & [kaj2s ki—ayal | HO) v 1= K(ki—ap) +K(kqp) =1-(1-a/2)+a/2 = a.

In der Praxis wird « klein gewahlt, z.B. o =~ 0,05. Somit ist im Fall, dass Hy stimmt, die
Wahrscheinlichkeit einer Fehlentscheidung in Folge des Testens klein.

Dieser Test ist nur ein Beispiel dessen, wie der Satz von Kolmogorow in der statistischen
Testtheorie verwendet wird. Die allgemeine Philosophie des Testens wird in Statistik 11
erlautert.

Mit Hilfe von £}, lassen sich sehr viele Schitzer durch die sogenannte Plug-in-Methode kon-
struieren. Dies werden wir jetzt naher erlautern: Sei M = {Menge aller Verteilungsfunktionen}.

Definition 3.3.9
Sei ein Parameter 6 der Verteilungsfunktion F' als Funktional T': M — R von F gegeben:
0 = T(F). Dann heifit § = T'(F,,) der Plug-in-Schdtzer fir 6.
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Definition 3.3.10

Sei F' eine beliebige Verteilungsfunktion. Das Funktional T': M — R heifit linear, falls
T(CLF1+bF2) ZGT(F1)+bT(F2> Ya,be R, I, Fh, e M.

Betrachten wir eine spezielle Klasse der linearen Funktionale
T(F) = [ r(a)dP(a),
wobei r(z) eine beliebige stetige Funktion ist. Beispiele fiir solche 7" sind
EX’“:/kadF(x), keN.

Lemma 3.3.3
Der Plug-in Schétzer fiir § = [ r(x) dF () ist durch

~ 1
9:/1"3: — r(x;)
R( n; ‘

gegeben.

Ubungsaufgabe 3.3.3
Beweisen Sie Lemma 3.3.3!

Beispiel 3.3.1 (Plug-in-Schitzer):
1. X,, ist ein Plug-in Schitzer fiir den Erwartungswert .

2. Plug-in Schitzer fiir 0> = Var X: Es gilt Var X = EX? — (EX)? und somit folgt

n

—:LZ”:X?—< ZX) zlz(X X,)% = ;152.
=1

=1
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3. Schdtzer fiir Schiefe und Wolbung 41 und 4o (vgl. Abschnitt 2.2.4) sind Plug-in Schétzer:

Da der Koeffizient der Schiefe als

X — 3
-y
o
definiert ist, wobei = EX, 02 = Var X, folgt
p=Xn 5 i1 (Xi — X)_ i (X — Xn)®

1 02;62 (6—%)3/2 (l nﬁl(Xi - Xn)2) 3/2 "

Die Konstruktion von 4o erfolgt analog.
4. Der empirische Korrelationskoeffizient oxy ist ein Plug-in Schétzer:

Skv iy (Xi — X)) (Vi — Ya)

RGBT TR S s
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in der Tat ist

_ E(X —EX)(Y —EY) _ E(XY) - EX -EY
YT T A X Vary | J(EXZ - EX)DEY? _ (EY)D)

und somit gilt fiir die linearen Funktionale

T\(F) = / vdF(z), Tu(F)= / 2dF(z),  Ti(F.G) = / 2y dF (2)dG(y) ,
oxy = Tyo(Fx, Fy) —Ti(Fx) - T1(Fy)
T Ty - (ME))?) BFy) — ()P

O0xy bekommt man, in dem man 77, T5 und T} durch Plug-in Schétzer ersetzt:

AP (Fn,X7 Fn,Y) -1 (Fn,X : TI(Fn,Y))

Oxy = '
()~ (11050)°) (1)~ (1))

3.4 Methoden zur Gewinnung von Punktschatzern

Sei (X1, ..., X,) eine Stichprobe von unabhéngigen identisch verteilten Zufallsvariablen X; mit
Verteilungsfunktion F' € {Fy: 6 € ©}, © C R™ (Parametrisches Modell). Sei die Parametrisie-
rung 6 — Fy unterscheidbar, d.h. Fy & Fp < 6 £ 6.

Zielstellung: Konstruiere einen Schétzer é(Xl, vy X)) fiir 0 = (61, ..,0m).

3.4.1 Momentenschatzer

Aus der Wahrscheinlichkeitsrechung (Satz 4.8) folgt, dass unter gewissen Voraussetzungen (z.B.
Gleichverteilung auf einem kompakten Intervall) an die Verteilung F' diese Verteilung aus der
Kenntnis von Momenten EX*, %k € N wiedergewonnen werden kann. Auf dieser Idee der
Schiatzung von F' aus den Momenten basiert die von Karl Pearson am Ende des XIX. Jh.
vorgeschlagene Momentenmethode.
Annahme: Es existiert ein © > m, so dass Eg|X;|" < co. Seien die Momente Eg XF = g5 (),
k=1,...,r als Funktionen des Parametervektors 6 = (01,...,60,,) € © gegeben.
Momenten-Gleichungssystem: fi, = gp(6), k =1,...,r, wobei fi = %Zzzl XF die k-ten
empirischen Momente sind.
Definition 3.4.1

Falls das obige Gleichungssystem eindeutig 16sbar bzgl. 6 ist, so heifit die Losung é(X Loy Xn)
Momentenschdtzer (M-Schdtzer) von 6.

Lemma 3.4.1
Falls die Funktion g = (g1,...,9) : © — C C R" eineindeutig und ihre Inverse ¢! : C — ©
stetig ist, dann ist der M-Schétzer 6(X;, ..., X,) von 6 stark konsistent.

Beweis Es gilt 0(X1,...,X,) = ¢ (i1, ..., fin) H%O 0, weil fi n%o g0, k=1,...,r

(starke Konsistenz der empirischen Momente) und g—! stetig. O

Bemerkung 3.4.1
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1. Unter gewissen Regularititsbedingungen an Fy ist der M-Schétzer é(Xl, oo, Xp) fir 6
asymptotisch normalverteilt:

\/ﬁ(é(xl,...,xn) - 9) 45 N(0,%),

n—o0
wobei N(0,X) die multivariate Normalverteilung mit Kovarianzmatrix
S =GEYYT)GT  istmit Y =(X,X%... X", XZ<Xx;,

und

2. Andere Eigenschaften gelten fiir M-Schétzer im Allgemeinen nicht. Zum Beispiel sind
nicht alle M-Schétzer erwartungstreu (vgl. Beispiel 3.4.1, 1)).

3. Manchmal sind > m Gleichungen im Momentensystem notwendig, um einen M-Schétzer
zu bekommen. Dies ist zum Beispiel dann der Fall, wenn manche Funktionen g; = const
sind, d.h. sie enthalten keine Information iiber 6 (vgl. Beispiel 3.4.1, 2)).

Beispiel 3.4.1

1. Normalverteilung: X; 4 X, i=1,...,n, X ~ N(u,0%); Gesucht ist ein M-Schitzer
fiir g und 02, also 6 = (u,0?). Es gilt

gl(,U:, 02) = EQX =K,
92(p,0%) = EgX? = Varg X + (EgX)* = 0 + 1i°.

Somit ergibt sich das Gleichungssystem

% 7"L:1AXri:,u7
S I

n

Damit folgt

Xi:Xna

-

S|

b=
1

n n

(2

1 1 oo 1 v

2= NP Y NP XE— 3 (XF-X2)
=1 i=1 =1

n

1 _\2
:nZZ(XZ-—Xn) =——5;.

—_

Das heift, das die M-Schitzer i = X,,, 62 = ”TASEL sind. Dabei ist 62 nicht erwar-

tungstreu:
-1
O LI =
n
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2. Gleichverteilung: X; 4 X, i=1,....,n, X ~U[-6,0], 6 > 0. Gesucht ist ein
Momentenschétzer fir 6. Es gilt
g1(0) =EpX =0,

g2(0) =FyX? = Varg X = 0 - = = .

Damit ergibt sich das Gleichungssystem

n

1 n 2 _ 62
n i:lXiii'

{1 1 X =0 unbrauchbar,

Es folgt, dass 6 = V237 X2 der Momentenschitzer fiir  ist. Wir haben somit 2
Gleichungen fiir die Schétzung eines einzigen Parameters 6 benotigt, d.h. r =2 > m = 1.

3.4.2 Maximum-Likelihood-Schatzer

Diese wurden von Carl Friedrich Gauss (Anfang des XIX. Jh.) und Sir Ronald Fisher (1922)
entdeckt. Seien entweder alle Verteilungen aus der parametrischen Familie {F} : 6 € O} diskret
oder alle absolut stetig.

Definition 3.4.2

1. Falls die Stichprobenvariablen X;, i = 1,...,n absolut stetig verteilt mit Dichte fp(x)
sind, dann heif}t

L(xl,...,:nn,ﬁ):Hfg(xi), (x1,...,2,) €ER", €O
i=1
die Likelihood-Funktion der Stichprobe (z1,...,Zy).
2. Falls die Stichprobenvariablen X;, ¢ = 1,...,n diskret verteilt mit Zahldichte py(xz) =
Py(X; =x), x € C sind (C ist der Wertebereich von X), dann heifit
L(:L‘l,...,{l}n,g):Hpe(ZL‘i), (1,...,2p) €C", H€0O
i=1

die Likelihood-Funktion der Stichprobe (x1,...,%y,).
Nach dieser Definition gilt im
e diskreten Fall L(x1,...,2n,0) =Pg(X1 =21,..., X, = xp)

e absolut stetigen Fall

L(z1,. 20, 0)Az1 - - Az = fix, o x0),0(T15 - T0) ATy - Ay,
~Py(Xy € [z1, x1 + Axy],..., Xy € [xn, xy + Azy]), Az; =0, i=1,...,n.
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Nun wird ein Schétzer fiir 6 so gewéhlt, dass die Wahrscheinlichkeit
Po(X1 =21,...,Xpn=x,) bzw. Py(X; € [z, x; +Ax], i=1,...,n)
maximal wird. = Maximum-Likelihoodmethode:

Definition 3.4.3

Sei das Maximierungsproblem L(z1, ..., 2y, 0) — maxpco eindeutig 1osbar. Dann heifit
O(x1,...,xn) = argmax L(z1, ..., &, 0)
USS]

der Mazimum-Likelihood-Schétzer von 6 (ML-Schatzer).
Bemerkung 3.4.2

1. In relativ wenigen Féllen ist ein ML-Schétzer g fiir 6 explizit auffindbar. In diesen Féllen
wird meistens der konstante Faktor von L(xy,...,zy,0) weggeworfen und vom Rest der
Logarithmus gebildet:

log L(x1,...,2p,0) (die sog. Loglikelihood-Funktion).
Dadurch wird

H fo(x;) bzw. Hpg(:vi)
i=1 i=1
zu einer Summe

S log fo(w:) baw. Y logps(as),
=1 =1

die leichter bzgl. 6 zu differenzieren ist. Danach betrachtet man

Olog L(z1,...,xy,0)
00;

=0, j=1l...m.

Dies ist die notwendige Bedingung eines Extremums von log L (und somit von L, weil
log ). Falls dieses System eindeutig l6sbar ist, und die Losung eine Maximum-Stelle ist,
dann wird sie zum ML-Schétzer 0(X1, ..., X,,) erklart.

2. In den meisten praxisrelevanten Fallen sind ML-Schétzer jedoch nur numerisch auffindbar.

Beispiel 3.4.2
1. Bernoulli- Verteilung: X; 4 X, i=1,...,n, X ~ Bernoulli(p), fir ein p € [0,1]. Da

¥ — 1, mit Wkt. p
0, sonst
mit Zahldichte
p@(x> :px<1_p)1iw7 HARS {071}7
ist die Likelihood-Funktion der Stichprobe (X1,...,X,) gegeben durch

- €T; —x; "z n=S " x; def.
L(w1,.. o, 0) = [[ 9™ (1 = p) !5 = pleiza ™ (1 = p)"~2ima ™ = h(p)
=1
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a) Falls 370 v, =0 (&= 21 =22 = ... = 2, = 0), es folgt h(p) = (1—p)" — max,cp
bei p = 0. Dann ist der ML-Schétzer p(0,...,0) = 0.
b) Falls 371" 7, = n (&= o1 =22 = ... = 2, = 1), es folgt h(p) = p" — max,¢(o ]

bei p = 1. Dann ist der ML-Schétzer p(1,1,...,1) = 1.
c) Falls 0 < }i"; x; < n, dann gilt

log L(z1,...,%n,p) = nZylogp +n(l — z,)log(l —p) =n-g(p).

Da g(p) — —oo und

p—0,1

_ 1— 7 - -1
09(p) _ Zn In py=Tny Il
op D 1-p P I1—-p

— 1-p)Tp+ (T —1p=0 = p=2a,,

folgt aufgrund der Stetigkeit von g, dass g genau ein Extremum argmax, g(p) = 7n
besitzt.

Der ML-Schiitzer ist also gegeben durch p(X7,..., X,) = X,.

2. Gleichverteilung: X ~ U[0,0], 6 > 0, (Xi,...,X,,) unabhéngig identisch verteilt,
gesucht ist ein ML-Schétzer fiir 6. Es gilt

Ifx,(x)=1/6-I(z € [0,0]), i=1,...,n.
Somit ist die Likelihood-Funktion durch

1/6)™ < oy <
,mn,9)2{< /0) ’ 0_$17 y L _9

L(xq,..
(@1 0, sonst

_jaje)r, falls min{zy,...,2,} >0, max{zi,...,z,} <0
0, sonst
=g@), 6>0
gegeben. Damit folgt = arg maxyq g(0) = max{ri,...,2n} = (), wodurch der ML-

N
9(0)

A\

ol 0

Abb. 3.6: llustration der Funktion g.

Schitzer durch 0(X1, ..., X,) = X(n) gegeben ist.

Nun wollen wir zeigen, dass ML-Schétzer unter gewissen Voraussetzungen schwach konsistent
und asymptotisch normalverteilt sind.
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Definition 3.4.4

Sei
(2,0) {f@(ﬂ?) , im absolut stetigen Fall,
€T =

po(x), im diskreten Fall

die Likelihood-Funktion von z. Fiir 0,6 € © und X < X, Py(L(X,0") = 0) = 0 definieren
wir die Information (Abstand) H(Py,Py) von Kullback-Leibler im absolut stetigen Fall als

H(Py,Py) = Eglog L(X,0) — Eg log L(X, ") /1 L(z,0)dx.

L(x, 0’ '
Fiir den Fall Pg(L(X,6) = 0) > 0 setzen wir H (Pp,Py) = co. Im diskreten Fall betrachte statt
des Integrals die Summe iiber die nicht trivialen pg(z).

Wir werden gleich zeigen, dass H(-, -) die Eigenschaften H(Py,Pp) = 0 <= 6 = 6’ und
H(Py,Pyr) >0 V60,0 € O besitzt. Es ist allerdings offensichtlich, dass H(Py, Py/) nicht sym-
metrisch bzgl.  und ¢ ist. Somit ist H (-, -) keine Metrik.

Lemma 3.4.2
Es gilt

1. H(Py,Py) ist wohldefiniert und > 0.
2. Falls H(Py,Py) = 0, dann gilt 6 = 6.

Beweis Wir betrachten zum Beispiel den Fall absolut stetiger Py, 6 € © (diskreter Fall folgt
analog).

1. Definieren wir

‘o) { Hed) | falls L(z, @) > 0
T) = '

1, sonst.

Betrachten wir den Fall Pg(L(X,6") = 0) = 0, so folgt Py(L(X,6’) > 0) = 1. Ansonsten
ist H(Pg,Pp/) = 0o > 0, also positiv und wohldefiniert. Dann folgt mit Wahrscheinlichkeit
1, dass L(z,0) = f(x)- L(x,0"). Sei g(x) =1 —x + zlogx, x > 0. Man kann zeigen,
dass g konvex mit g(z) > 0 ist. Tatséchlich, es gilt

d(@)=-1+logz+1=logz,d"(z) =1/ >0.

Somit besitzt g genau eine Nullstelle bei z = 1, die gleichzeitig ihr Minimum ist. Betrach-
ten wir g(f(X)), X ~ L(z,¢). Dann gilt

0<Egg(f(X))=1—Egf(X)+Eg (f(X )logf(X))

a;@ L(z,0) , B ,
/L Y dae +/L 9, og gy L) dx = H(By.BY).

Somit gilt H(Pg,Py:) > 0, was zu zeigen war.

2. Falls H(Py,Py) =0 = Epg(f(X)) =0, g(f(X)) > 0. Somit folgt #'-fast sicher
9g(f(X) =0 = f(X) Ots. 1, damit entweder L(z,0") = 0 oder L(z,0) = L(z,0") fur
alle x und daher Py = Py.
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O]

Satz 3.4.1 (Schwache Konsistenz von ML-Schitzern):
Sei m = 1 und O ein offenes Intervall aus R. Sei L(x1,...,%n,0) unimodal, d.h. fiir § ML-
Schétzer fiir 6 gilt

VO < 0O(z1,...,20) = L(x1,...,2,,0) ist steigend
V0> 0(xy,...,2,) = L(x1,...,2,,0) ist fallend

(d.h. es existiert genau ein maxgee L(x1,...,2y,0)). Dann gilt é(Xl, oo Xn) % 0.
n o
Beweis Es ist zu zeigen, dass
Pg(‘@(Xl,...,Xn)—H’ >5) — 0, £>0. (3.4.1)

Wiéhlen wir beliebiges ¢ > 0 @ 6+ e € O. Dann gilt H(Pg,Pgrc) > 6 > 0, wegen der
Unterscheidbarkeit der Parametrisierung von Py und Lemma 3.4.2. Betrachten wir {|0—6| < ¢}.
Um (3.4.1) zu zeigen, ist es hinreichend, eine untere Schranke fiir Py(|d—6| < ¢) zu konstruieren,
die fir n — oo gegen 1 konvergiert. Es gilt

N Unimod
{0-0l<e} S {L(X1,..., Xp,0— &) < L(X1,..., X0, 0) > L(X1, .., X, 0 + 6)}

:{ L(X1,..., X, 0) >1}6>0=>em5>1{ L(X1,...,Xp,0) >e”5}
L(X1,...,X,,0+¢) L(X1,..., Xn,0%¢)

{11 L(X1,..., X0, 0)
= — 10
n B L(X1, .. Xn0+e

)>5}:A+ﬂA,

wobei

| L(Xy..... X
Ai:{nlog (X, ‘9))>5}.

L(X1,..., Xp,0te
Somit gilt also
Py (10— 0] <) > Py(Ar NA) =Py(Ay) + Po(A_) — Py(A; UA).

Wenn wir zeigen konnen, dass

n11_>1r010 Pyp(As) =1, (3.4.2)
dann folgt daraus

1> JLHSOPQ(A"‘ U A_) > nh_{ngIP’g(Ai) =1 = nll_)l’IgOP,g(A+ U A_) =1
und

1> lim Py (|0—60] <) >1+1-1=1,
womit folgt, dass
lim Py (|0 - 0]>¢) =1- lim Py (|0 —0] <) =0

n—oo

=1

und somit limy_e0 P(|0 — 8] > €) < limpoo P(I0 — 0] > ) =0, dh., 6 25 0.

n—oo

Jetzt zeigen wir, dass Py(A4) — 1 (fiir Py(A_) ist es analog).
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1. Sei H(Py,Pyye) < 00. Sei
L(x,0)
@)= { Lo+

1, sonst.

falls L(xz,0 +¢) >0,

Dann folgt aus Definition 3.4.4, dass Pg(x : L(z,0 4+ ¢) > 0) = 1. Weiter gilt
%log L(I)/gi(h ngi o) ; Z 8T ngi &) n Zlogf
(907 9)
L(z,0+¢)
nach dem starken Gesetz der grofen Zahlen, weil log f(X1) € L'(Q, F,P) wegen
Eglog f(X1) = HPy,Pgie) <0 = P(A44) — 1.

n—00

=25 Bylog f(X1) = /L(wﬁ) log dz = H(Po,Poe) > >0

2. Sei H(Py,Pyp;c) = co und Py(x € R: L(z,0 +¢) = 0) = 0, dann folgt

ts.  L(z,0)
J(@) = L(z,0+¢)

Es gilt logmin{ f(X1),c} € LY(Q, F,P) fiir alle ¢ > 0. Somit folgt wie in Punkt 1:
1< s
- Zlogmin{f(Xi),c} n%o Eglog min{ f(X1),c} € (0,00) =2 H(Pg,Pgic) = o0

und damit

Ay D {iﬁ:logmin{f(Xi),c} > (5}

= P(Ay) >IP< Zlogmm{f i), c}>5> 2 1

3. Sei H(Py,Pyp;c) = oo und Py(x € R: L(z,0 +¢) =0) = a > 0, dann folgt
L(X1,...,Xn,0) > L(X1,...,Xn,0)
Py [ —1 = =1-P(=1
"(n (X1, Xt O Gl T X050

:1—P<ﬁ{L(Xi,0+6) >0}> XV (e — 1

! n—00
=1

< 00)

Insgesamt also P(A;) — 1.

n—oo

O]

Definition 3.4.5
Sei X = (X1,...,X,) eine Zufallsstichprobe von unabhéngigen identisch verteilten Zufallsva-
riablen X; ~ Fp, 6 € O. Sei L(z,0) die Likelihood-Funktion von X;. Dann heifit der Ausdruck

1(0) = Ey ((;99 log L(X1,9))2 L 9eco (3.4.3)

die Fisher-Information der Stichprobe (X1,...,X,).
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Es wird in Zukunft vorausgesetzt, dass 0 < I(f) < oo. Wir stellen nun einige Bedingungen
auf, die fir die asymptotische Normalverteiltheit von ML-Schétzern notwendig sind.

1. ©® C R ist ein offenes Intervall (m = 1).
2. Es gelte Py # Py genau dann, wenn 6 = 6’

3. Die Familie {Py, 6 € O}, 6 € © bestehe nur aus diskreten oder nur aus absolut stetigen
Verteilungen, also nicht aus Mischungen von diskreten und absolut stetigen Verteilungen.

4. B = supp L(z,0) = {x € R : L(z,0) > 0} hangt nicht von # € © ab. Dabei heifit supp
(von englisch ,support®) der , Trager“ einer Funktion f und ist definiert als

suppf = {z € R: f(z) # 0}

und die Likelihood-Funktion L(z, ) ist durch

(2.0) = {p(x,@), im diskreten Fall, (3.4.4)

f(z,0), im absolut stetigen Fall

gegeben, wobei p(x,0) bzw. f(z,0) die Wahrscheinlichkeitsfunktion bzw. Dichte von Py
ist.

5. Die Abbildung L(z, ) ist dreimal stetig differenzierbar und es gilt

dek/LxH /09’“ L(z,0)dz, k=1,2,0€0.

Da das Integral iiber die Dichte L(z,0) gleich 1 ist, ist die Ableitung gleich 0. Dabei sind
im diskreten Fall die Integrale durch Summen zu ersetzen.

6. Fiir alle 0y € © existiert eine Konstante dp, > 0 und eine messbare Funktion gg, : B —
[0,00), so dass

93 log L(x,0)

S8 < go,(7), Ve e B, |0—06 <dg,,

wobei EQO 96, (Xl) < oQ.

Bemerkung 3.4.3
Es gilt folgende Relation:

n - I(0) = Vary (8

50 log L(X1, .. .,Xn,ﬁ)) ,

wobei
n

L(X1,..., X5, 0) = [] L(X;,0) (3.4.5)
=1

die Likelihood-Funktion der Stichprobe (X7, ..., X,) ist mit L(Xj;,#) nach (3.4.4).
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Beweis Es gilt

) 0 "9 " L(X;,0)
log L(X1, ..., X, 0) log L(X;, —log L(X;,0) =Y —=—2"1
99 108 (X1, X0, 0) 92 & 0) = ;ae og L(X:,0) ; L(X;,9)
Ferner
) L'(Xi,0) & [ L'(X,0) 5)
Eg (aeL(Xl,. : ) ZEQ L(X..6) ;1:/3 L(X.0) -L(X,0)dz = 0.

Insgesamt gilt also
Var ( 0 log L(X X 9)) = Var iglo L(X;,0)
0 90 g 1y An, - 0 gt 90 g i)

Xi unabhe. ZVarg (889 log L(X;, (9)) et Vary ( 0
i=1

Sloe L(%1.0))

2
=n-Ey (;)elogL(Xl,H)) =n-1(0).
t

Satz 3.4.2

Sei (X7, ...,X,) eine Stichprobe von Zufallsvariablen, fiir die die Bedingungen 1) bis 6) erfiillt
sind und 0 < I(f) < oo, 6 € O. Falls (Xy,...,X,) ein schwach konsistenter ML-Schétzer
fir 6 ist, dann ist (X1, ..., X,) asymptotisch normalverteilt:

n-1(0) (0(X1,..., X,) = 0) =5 ¥ ~ N(0,1).
Beweis Fiihren wir die Bezeichnung 1,,(0) = log L(X1,...,Xp,0), 6 € © ein. Sei

1) () = jekz 0, k=1,23.

Ist 6 ein ML-Schitzer, so folgt lg)(é) = 0. Schreiben wir die Taylor-Entwicklung von l%l)(é) in
der Umgebung von 6 auf:

(3)
—000) = 10) + (- 0)-190) + (G- 02 L)

2 )
wobei 6* zwischen 6 und 6 liegt. Dabei ist
(1)
(3) / ps " (0)
-0 (100 + 0 -0 ) =) = Va0 = 5
2 _u2O) _ (g _ g)Lle)
n 2n

Falls wir zeigen konnen, dass

1. 17(11)(0) i>
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2. (2)
(U
n n—00
(9—0)&0 und n (07)
n—o0 2n
beschréinkt ist, das heif3t
(3) g+
Je>0: limI%(ln (0)<c>:1,
n—00 2n

dann konvergiert der Ausdruck

®) (g 13 g+
0—20)- 251 ) n%@ 0, weil é ) < go(X1) integrierbar
und somit gilt
1 (0) .
Vil —0) = —5—" L 7~ N (o, )
112 (0 A 13 (9%) n—oo I1(6
IO (§ )0 (0)
nach dem Satz von Slutsky. Damit folgt v/n\/T(0)(6 — 6) n%))O Y ~ N(0,1)
1. Es gilt
1 2 log L(X;,6) )
N N — Vi~ N ()Varg(ae (X:,0))
—1(0)

nach dem zentralen Grenzwertsatz, weil %log L(X;,0) unabhéngig identisch verteilte
Zufallsvariablen mit Erwartungswert 0 (siehe Bemerkung 3.4.3) sind

(L0 x;, 9))2 — L(X.,0) - L?(X,,0)

2.
Lo I = Ly
ln (0)_ nZ:ZIC{mQI gL(XHQ)_ nZ:ZI (L(Xi,(g))g
1 (LO(XL0)) 1 LO(X,,0)
_n;< L(X;,0) ) _E; L(X;,0)
£ LW (X,,0) LOXL0\ _ oo
N ( e ) _Ee( s >_I<9> 0= 100)

nach dem Gesetz der grofien Zahlen, wobei
k

LW (X;,0) = ggkL(X 0)

und @ ) ,
L ()(1, 0) N 0 5) d / B
Eg (L( 0) ) (‘3«92L( ,0)dx = 102 L(z,0)dz=0.
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A

3.0 — j 0, weil 6 schwach konsistent ist. Zeigen wir, dass
n o

l’(lg)(a*)(é—e) =5 0.

n n—oo

Aus én%o 0 folgt fiir alle & > 0

P(l0-0/<e) — 1.

n—oo

Damit folgt, dass mit asymptotisch grofer Wahrscheinlichkeit |§ — 0] < &, & > 0 gilt,
welches aus der Bedingung 6) folgt. Damit gilt, dass fir alle 6 : [0 — 0| < §

17‘[,
< =

(")
n

83
log L(X;, 0)
063 8

f.s.
de i) —2 Byge(Xy) < o0

<g6(Xi)

So folgt, dass eine Konstante ¢ > 0 existiert, sodass

(3) g* (3) o
Py <|ln (6") < c) — 1 und somit (6 )(9 —0) 0
n n—00 n n—o0

Der Beweis ist beendet.

3.4.3 Bayes-Schatzer

Sei (X7i,...,X,) eine Zufallsstichprobe, wobei X; unabhéngige identisch verteilte Zufallsvaria-
blen mit Verteilungsfunktion Fy, 6 € © sind. Sei Fy entweder eine diskrete oder eine absolut
stetige Verteilung. Sei aber auch 6 eine Zufallsvariable § mit Verteilung Q(+) auf dem Messraum
(0, Be), die entweder diskret mit Zahldichte ¢(-) oder absolut stetig mit Dichte ¢(-) ist. Nach
wie vor werden beide Fille gemeinsam betrachtet, dabei entsprechen sich die Summation und
Integration im diskreten bzw. absolut stetigen Fall.

Definition 3.4.6 .
Die Verteilung Q(-) heiBt a-priori-Verteilung des Parameters 6 (von ) (a-priori bedeutet hier
wvor dem Experiment (X,...,X,)%).

Definition 3.4.7 3
Die a-posteriori- Verteilung des Parameters 6 (von ) ist gegeben durch die (Zahl-)Dichte

PO =6|X,=x1,...,X, =x,), fallsdie Verteilung Q diskret ist,
fé\Xl,...,an’ Tlyeeey Tn), falls die Verteilung @) absolut stetig ist.

ax,,..x,(0) = {

Dabei ist
CPO=0,X1=a1,...,Xn =)
]P’(Xl :.’Ijl,...,Xn :an)
_ Pg(XlZJIZ,Z:l,,TL)q(H)
YocoPo, (Xi =, i=1,...,n)-q(01)
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die Bayesche Formel, bzw.

f~ (0 T z ) o f(é,X1,...7Xn)(9’ L1y ,:L‘n) - L(.’L’l, R 9) . q(@)
01 X1, X\ 1s---5Tn le,--.,Xn(xlv-.-,xTL) f@ L($17,,,’$n’01) Q(‘gl) d91 ’

mit L(xq,...,xy,,0) nach (3.4.5).
Definition 3.4.8
Eine Verlustfunktion V : ©2 — R ist eine ©?-messbare Funktion.

Verlustfunktionen spielen in unseren Betrachtungen folgende Rolle: E*V(é, a) stellt den er-
warteten Verlust (mittleres Risiko) dar, der bei der Schitzung des Parameters 6 durch a ent-
steht. Dabei stellt E, den Erwartungswert beziiglich der a-posteriori- Verteilung von 6 dar.
Es sind offensichtlich die konkreten Stichprobenwerte x1,...,x, in die a-posteriori-Verteilung
eingegangen, deshalb ist E,V (6, a) eine Funktion von a und z1, ..., z,:

E*V(év a) = (10(%'17 s ,xn,a) :

Definition 3.4.9
Ein Schéitzer 0 heifit Bayes-Schdtzer des Parameters 6, falls

A~

O(x1,...,1,) =argminE,V (0, a) (3.4.6)
a
existiert und eindeutig ist.
Bemerkung 3.4.4
1. Manchmal gilt § ¢ O, was mit der Existenz des Minimums von ¢(x1,...,Z,,a) auf © zu

tun hat.

2. Der Name ,,Bayesscher Ansatz* stammt von dem englischen Mathematiker Thomas Bayes
(1702-1761), der die Bayessche Formel

_ P(A|B;) - P(By)
PBIA) = 5o BB, (3.4.7)

nur ideenhaft eingefiihrt hat. Der eigentliche Entdecker der Formel (3.4.7) ist Pierre-
Simon Laplace (1749-1827) (Ende des XVIIL. Jahrhunderts). Diese Formel wurde bei der
Herleitung der a-posteriori- Verteilung von 6 implizit benutzt.

3. Die Vorgehensweise in Definition 3.4.9 ist in konkreten praxisrelevanten Fallen meistens
nur numerisch moglich. Es gibt sehr wenige Beispiele fiir analytische Lésungen des in
(3.4.6) gestellten Minimierungsproblems.

Beispiel 3.4.3 (Quadratische Verlustfunktion):
Ist V(@l,gg) = (91 — 92)2, So ist

min (p(z1,...,2pn,0)) = min (E*(H - a)2> = min (E*ég — 20,0 + a2> =E.0

a

und daher der Bayes-Schdtzer é(xl, ..., xy) fiir @ durch E.f gegeben.
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Beispiel 3.4.4 (Bernoulli-Verteilung):
Sei (X1,...,X,) eine unabhéngig identisch verteilte Stichprobe von X; ~ Bernoulli(p), p €
(0,1). Weiter sei die a-priori-Verteilung

p ~ Beta(a, ), «,8 >0, mit Zahldichte ¢(p) = B) I(p € 0,1]),

die a-posteriori-Verteilung von p ist dann gleich

P =m,. . Xn = 2a) - 4(p)
fOl ]P)m (Xl =T1,...,Xp = xn) ) Q(pl)dpl

Es ist immer moglich die a-posteriori-Verteilung nicht beziiglich des Vektors (Xji,...,X,),
sondern beziiglich einer Funktion g(X7i,...,X,), zu berechnen (Komplexititsreduktion).

Hier ist Y = g(X1,...,Xn) = Yiv; X; die Gesamtanzahl aller Erfolge in n Experimenten,
wobei

q* (p) = ff)|X1::E1,...,Xn=£En (p)

X {1 , mit Wahrscheinlichkeit p,
P =

0, sonst.

Daher gilt fiir die a-posteriori-Verteilung bzgl. Y:

_ B =k -ap)
fol Py, (Y = k)q(p1) dpr
yeBin(np). (pF(L=p)"*- (B(a,8)) - p* 1 (1—p)°!

falls p= " 1 _ k4B
e ng?ﬁ) Jo PEFOTHL = pr)n kAL dpy

_ pk+a71(1 _p)n*k+ﬁfl
Bk+a,n—k+p3) "’

q (p) = f;ﬁ\Y:k(p)

p e [0,1].

Daher ist die a-posteriori-Verteilung von p unter der Bedingung ¥ = k durch
Beta(k + a,n —k + )

gegeben.
Fir den Bayes-Schdtzer gilt:

f01 kara(l _ p)nfk+ﬁfl dp
B(k+a,n—k+p)

1
ﬁ(xl,...,m:w:/(] p-q*(p)dp =

_ Blk+a+1ln—k+p3) kt+a  Ylizita  atn,
 Blk+an—k+p) 7 a+p+n  a+B+n  a+pB4+n’
Interpretation:
n — a+ « _ ~
p(Xq,...,. X)) =—X . =c-X - Eqpr0
p( 1, 5 n) OZ+B+TL n+a—|—5—|—n Oé‘i‘ﬁ C1 n T C2 apr¥ ,
—_—— —_———

=:C1 =Cc2

wobei ¢1 + ¢ = 1 ist. Dies heifft, dass die Bayessche Methode einen Mittelweg zwischen dem
Schéitzer Eqp6) (in Abwesenheit der Information iiber die Stichprobe (Xi,...,X;)) und dem
M-Schétzer X,, (in Abwesenheit der a-priori-Information iiber die Verteilung von p) fiir p ein-
schlégt.
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3.4.4 Resampling-Methoden zur Gewinnung von Punktschadtzern

Sei (X1,...,X,) eine Stichprobe im parametrischen Modell. Gesucht ist ein Schétzer 0 fiir
den Parameter §. Um diesen Schétzer zu konstruieren, werden bei Resampling-Methoden neue
Stichproben (X7, ..., X}) durch das unabhéngige Ziehen mit Zuriicklegen aus der alten Stich-
probe (X1, ..., X,) generiert und auf ihrer Basis Mittelwerte, Stichprobenvarianzen und andere
Schétzer gebildet. Dabei ist die Dimension m des Parameterraums © beliebig.

Wir werden im Folgenden die Resampling-Methoden

1. Jackknife (dt. ,Taschenmesser®, weist auf Mittel, die jedem immer zur Hand sein sollten)
2. Bootstrap (engl. ,self-sufficient”, dt. ,,mit eigenen Ressourcen®)

betrachten.

1. Jackknife-Methoden zur Schdtzung der Varianz bzw. der Verzerrung von Schétzern:

Als einfithrendes Beispiel betrachten wir § = EX = p bzw. § = Var X = o2 und ihre
(erwartungstreue) Schiitzer i = X,, bzw. 62 = S2.
Wie wir bereits wissen, gilt
2
1 -3
Varﬂza—, Var62:<,uﬁl—n 0'4> .
n n

n—1

Nun ist ein Schitzer fiir die Varianz von i bzw. 62 gesucht. Dazu verwenden wir die
Plug-in Methode

— S?2 — 1 -3
Var i = —2 | Varé? = = <ﬂg— ”Sﬁ) ,
n n n—1

wobei fiy das vierte zentrierte empirische Moment ist.

Im Allgemeinen sind jedoch keine Formeln von Var § bekannt. Hier kommt nun die Jack-
knife-Methode zum Einsatz:

e Sei X|; die Stichprobe (X1,..., X;—1, Xit1,..., X)), i=1,...,n. Falls
é(Xla"'aXn) :gpn(le"'vXn)7

so bilden wir

o 1
O = Pn—1(X7) =

n

n_o - ~ do 1, _ 2
Z@Z], Var]n G)df r Z(@[ﬂ—e[]) .

Definition 3.4.10 -
Der Schitzer 0) bzw. Varj,(0) heifit Jackknife-Schitzer fiir den Erwartungswert

bzw. die Varianz des Schitzers 6 von 6.

Beispiel 3.4.5 B
Seif=p, 60=p=X,,sogilt

1
QOn(Iﬂl,...,xn) = *szﬁ
nia
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womit folgt, dass

n n - 1 .
M_ 1(—XZ-+ZX]-):”_1X”—”_1X¢, Vi=1,...,n,
J#z j=1
A n - 1 " n-X, X, n—1_ —
=—) Oy= Xp————7=) X;= — = X, =X
n; b= =1 n(n—l); ‘n—-1 n-1 n-1"" "

Daher ist ein Jackknife-Schétzer fiir p gleich X,.

Konstruieren wir nun einen Jackknife-Schdtzer der Varianz:

— o on—1¢ n oo 1 ~\2 n-1 2
Varjn(0) = n Z(n—an_ Xi_X) B Z(n—l XZ))

i=1 =1

n—1 <& _ 1
- Z(XZ - Xﬂ)z = ESTZL7

n(n —1)? =
wobei dies genau der Plug-in Schétzer der Varianz von ji ist.

o Jackknife-Schdtzer fir die Verzerrung eines Schdtzers
Sei é(Xl, ..., X,) ein Schétzer fiir §. Der Bias von 0 ist Egb — 0 = Bias(é).
Definition 3.4.11 A
Ein Jackknife-Schitzer der Verzerrung (Bias) von 6 ist durch
Bias;j,(0) = (n — 1)(6;; — 0)
gegeben.

An folgenden Beispielen wird klar, dass der oben beschriebene Vorgang zur Verrin-
gerung der Verzerrung beitragt:

Der Schdtzer . e -
0 = 0 — Bias;,(0) = nf — (n — 1)0, (3.4.8)

hat in der Regel einen kleineren Bias als 0. Dabei ist wiederum

A

_ 1A A N
Oy = o1 (X)) wmd Oy =~ 0y mit O(X1,..o, Xn) = on(X1,..0, Xn)

Beispiel 3.4.6

a) Ist § = EX; = p, so ist 6 = X, ein unverzerrter Schitzer fiir . Was ist der
Bias-korrigierte Schétzer fi? (Dieser sollte schliefllich nicht schlechter werden!)
Es gilt 5[.] = X,,, daher ist der Bias-Schiitzer von Jackknife ]igsjn(é) = (n—
1)(X,, — X,,) = 0 und somit 6 =60 —0=X,. Wir haben also gesehen, dass die
Jackknife-Methode die unverzerrten Schétzer (zumindest in diesem Beispiel)
richtig behandelt, indem sie keinen zusétzlichen Bias einbaut.

b) 0 =02 = VarXi,~é =62 = 15" (X; — X,)? ein verzerrter M-Schitzer der
Varianz. Was ist 0 in diesem Fall?
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Ubungsaufgabe 3.4.1 B
Zeigen Sie, dass § = S2 = ﬁ S (X - Xp)? = %6’2 ein erwartungstreuer
Schétzer der Varianz ist. Somit wurde der Bias von 2 durch die Anwendung

der Jackknife-Methode vollstandig beseitigt.

Beweisidee: Zeigen Sie hierzu zunéchst, dass

=T (A 1 = =
BlaSjn(g) = —m (X’L — Xn)2 .
i=1

(2

Bemerkung 3.4.5

Die Beispiele 3.4.6 a), b), in denen sich der Jackknife-Schétzer analytisch bestimmen
lief3, sind eher eine Ausnahme als die Regel. In den meisten Féllen erfolgt die Bias-
Reduktion mit Hilfe der Monte-Carlo-Methoden auf Basis der Formel (3.4.8).

2. Bootstrap-Schdatzer:

Die Bootstrap-Methode besteht in dem Erzeugen einer neuen Stichprobe (X7,...,X}),
die aus einer approximativen Verteilung F der Stichprobenvariablen X;, i = 1,...,n
gewonnen wird. Seien E, und Var, die wahrscheinlichkeitstheoretischen Gréfien, die auf
dem Verteilungsgesetz P, der neuen Stichprobe (X7,...,X) beruhen. Dabei gibt es
folgende Moglichkeiten, F zu konstruieren:
i) F(z) = F,(z) die empirische Verteilungsfunktion von X;, falls X; unabéngig iden-
tisch verteilt sind.
ii) F' ist ein parametrischer Schétzer von F', der parametrischen Verteilungsfunktion
von X;. Das heift, falls X; ~ Fy, i=1,...,nfireinf e ©und = 0(Xy,...,X,)
ein Schiétzer fiir § ist, so setzen wir F' = Fj (Plug-in Methode).

Definition 3.4.12
Ein Bootstrap-Schdtzer fiir den Erwartungswert (bzw. Bias oder Varianz) von Schétzer

A

0(X1,...,X,) ist gegeben durch

a) %t(é) =E.0(X*, ..., X").

b) Biaspeot(0) = Epoott — 6.

¢) Varpo:(A) = Var, (A(X7,..., X))
Beispiel 3.4.7

Sei 0 = u = EX; und F' = F}, die empirische Verteilungsfunktion. Wie generiert man eine
Stichprobe X7, ..., X}, wobei X ~ F,?

A

F,, gewichtet jede Beobachtung z; der urspringlichen Stichprobe mit dem Gewicht 1/n,
deshalb gentigt es, einen der Eintrdge (x1,...,2,) auszuwahlen (mit Wahrscheinlichkeit
1/n, Urnenmodell ,,Ziehen mit Zuriicklegen“), um X i J=1,...,n zu generieren.

Bootstrap-Schitzer fir den Erwartungswert von ji = X,:

A 1 n X*uwiv. 1 N
Epootft = B (n ZXj) = nBl(XT) = /a:an(x) =
=1

n

Somit folgt P;;sbootﬂ =0.

SRS

\//f;'boot(,a) = Var, <
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ein Plug-in Schitzer fiir VarX,, = o2 /n.

Monte-Carlo-Methoden zur numerischen Berechnung von Bootstrap-Schétzern:

Was kann man tun, wenn keine expliziten Formeln fir z.B. @Boot(é) vorliegen (der
Regelfall in der Statistik)?

Generiere M unabhéngige Stichproben (X7,..., X ), i = 1,..., M nach der Regel i)
oder ii) mit Hilfe der Monte-Carlo-Simulation. Dann berechne

S

1 A,

0; =0(X%,...,X5), i=1,...,M und setze Ebootézﬁ
i

)
1

Ahnlich gewinnt man approximative Bootstrap-Schétzer fiir Biasf und Var 6:

M
o N
Biaspoottd & Epoot) — 0,  Varyee = M—1 12::1 (92 - Ebomﬁ) .

Mehr sogar, man kann die Verteilungsfunktion von X;; durch die empirische Verteilungs-
funktion bestimmen:

M n
A 1 .
Fboot(x):MZﬁZH(XiijE), Tz €R.

Ferner lassen sich mit Hilfe von oben genannten Methoden Bootstrap-Konfidenzintervalle
fiir 6 ableiten:

Dafiir lassen sich Quantile von Fboot(l‘) empirisch bestimmen. Damit gilt

P (Fb;;t(al) < é(Xf,..,,X;’;) < Fb;})t(O‘Q)) ~l-ar—ar=1-qa,
wobei oo = a1 + g klein ist. Beachte dabei, dass man hofft, dass X" sehr dhnlich verteilt
ist wie X; und somit

P (szit(al) S é(Xl, . ,Xn) S Fb_o;t(oa)) ~1-— Al — Qg = 11—«

gilt.

3.5 Weitere Giiteeigenschaften von Punktschatzern

3.5.1 Ungleichung von Cramér-Rao

Sei (X1,...,X,) eine Stichprobe von unabhingigen identisch verteilten Zufallsvariablen X; mit
Verteilungsfunktion Fy, 0 € ©. Sei é(X 1,--.,Xp) ein Schétzer fiir 0. Falls 0 erwartungstreu ist,
dann misst man die Giite eines anderen erwartungstreuen Schitzers 6 von @ am Wert seiner
Varianz. Das bedeutet, falls Vary 6 < Varg é, dann ist der Schitzer 6 besser. Wir werden uns
nun mit der Frage befassen, ob immer wieder neue, bessere Schétzer 6 mit immer kleinerer
Varianz konstruiert werden kénnen. Die Antwort hierauf ist unter gewissen Voraussetzungen
negativ. Die untere Schranke der Varianz Varg § hierzu liefert der Satz von Cramér-Rao.
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Sei L(z,0) die Likelihood-Funktion von X;, d.h.

Py(z), im diskreten Fall,
fo(x), 1im stetigen Fall

L(x,0) = {

und L(z1,...,2n,0) = [[i=q L(x;,0) die Likelihood-Funktion von der gesamten Stichprobe
(X1,...,X,). Es gelten die Bedingungen 1) bis 5), die fiir die asymptotische Normalverteiltheit
von ML-Schitzern auf Seite 80 gestellt wurden, wobei die Bedingung 5) fiir & = 1 gilt.

Satz 3.5.1 (Ungleichung von Cramér-Rao):
Sei (X1, ...,Xy) ein Schétzer fiir # mit den folgenden Eigenschaften:

1. Bgf2(Xy,...,X,) <oo VHeO.
2. Fir alle 0 € O existiert

Jr é(xl, el xn)%L(ml, oy Ty, 0)dry...dr,, im stetigen Fall,

. 0(x1,. .. ,xn)%L(xl, ceey T, 0), im diskr. Fall.

d ~
—Epb(X1,...,Xp) =
a0 0 ( 1 ) ) {

Dann gilt

Varg 0(X1,...,X,) >

wobei I(6) die Fisher-Information aus (3.4.3) ist.

Beweis Fihren wir die Funktion

0
wo(x1,...,2pn) = 2 log L(x1,...,2,,0)
ein. In Bemerkung 3.4.3 haben wir bewiesen, dass
Eoppo(X1,...,Xn) =0, Vargpe(Xi,...,Xpn) =n-1(0).

Wenden wir die Ungleichung von Cauchy-Schwarz auf Covg(wg(X1, ..., X,),0(X1,..., X,)) an:

A

Covg (cp.g(X1, LX), 00X, .,Xn)) — &, (gpg(Xl, LX) 0(X, .,Xn)) —0

S \/Varg SOQ(XL sty Xn)\/vare é(Xlu st 7X’fl>

Somit folgt

=:A
~ 2
Vs B(Xe X > (Eo (X1, Xa) - 0(X1,. ., X)) ) 12
I LX) > = .
o b Varg oo(X1,...,Xn) n-1(0)

Es bleibt zu zeigen, dass

d ~
A= —FEp0(Xq,...,X,).
4o 0 ( 1 ) )
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Wir zeigen die Aussage fiir den absolut stetigen Fall (im diskreten Fall sind die Integrale durch
Summen zu ersetzen):

A

A:/aaalogL(xla..-yxnae)- (xl,-.-,xn)-L(.T)l,...,.fn,e)dxl“.dxn

0 A Vor. 2) d A
:/%L(xl,...,xn,ﬂ)'G(xl,...,a:n)dajl...dxn = )@EQG(XM...,X”).

O

Folgerung 3.5.1
Falls 6 ein erwartungstreuer Schatzer fiir 6 ist und die Voraussetzungen des Satzes 3.5.1 erfiillt
sind, so gilt

N 1
0(X1,....,Xn) > .
V&I‘g ( 1, ) ) = n- 1(9)
Beweis Wende die Ungleichung von Cramér-Rao an 6 mit
d A d
— (Eg0(Xyq,...,. X)) =—0=1
40 < 0 9( 1, ) )) d@e
an. O

An folgenden Beispielen werden wir sehen, dass der Schétzer X,, des Erwartungswertes p in
der Klasse aller Schéitzer fiir y, die die Voraussetzungen des Satzes 3.5.1 erfiillen, die kleinste
Varianz besitzt. Somit ist X, der beste erwartungstreue Schétzer in dieser Klasse fiir mindestens
zwei parametrische Familien von Verteilungen:

e Normalverteilung und

e Poisson-Verteilung.

Beispiel 3.5.1

1. X; ~ N(u,0%), i = X, als Schitzer fiir p. Dabei ist fi erwartungstreu mit Varj =
o2 /n. Zeigen wir, dass die Cramér-Rao-Schranke fiir die Varianz eines erwartungstreuen
Schétzers 6 fiir v ebenso gleich 02 /n ist. Priifen wir zunichst die Voraussetzungen des
Satzes 3.5.1:

Zeigen wir, dass

0= CZL/RL(%M) dm—/RaaﬂL(x,u) dr mit Lz, p) = e

oLz = B2 i

0 B X —p\
/RaML(a:,u)de< 3 )0.

Zeigen wir weiterhin die Giiltikeit der Bedingung 2) des Satzes 3.5.1:

_ n o —p\2
—EXn:—(/,L):lél/ ($1+...+xn)a<H ! e_%( o ))dxl...dwn.
n Jrn TR

Induktion bzgl. n:
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e Induktionsanfang n = 1:

0 x(r — 1) 1 9 9 Var, X
/RxwL(x,M)dx—AﬂL(x,u)dx == (E#X —p ) =5 = 1.
e Induktionshypothese: Fiir n gilt
0
/ (x14 ...+ ) - aL(azl,...,xn,u)dm...dmn =n.
e Induktionsschritt n — n + 1:
0 ?
A= (x1+ ...+ xpy1)=— L(z1,...,Tps1,p) doy...depy; =n+1.
Rn+1 a'u
:L(ml»~~-,$m#)'L(fEn+1»H)
Dabei gilt fiir A:
0
A= (r14+...+x) - | =—L(x1, .-y xn, ) - L(pg1, 1) + L(xy, ooy Ty )
Rn+1 8,[1,

0 0
) wL(mnH,u)) dry...dxpdr,1 + /Rn+1 Tpal ((auL(xl, ey Ty )

0
cL(xpg1, 1) + L(x1, .oy Ty ) - 8ML(aanrl,,u)> dry ...dx,dr, 1

:n-/RL(an,u)dan%—/Rn(:L‘l—|—...+xn)-L(ml,...,xn,u)dle...d:pn-

=1

0
'/(BTL(%H»M) d$n+1+/ Tn1 L(Tpg1, 1) AT g1
" R

=0

0 0
. / —L(x1,...,xn, p)dzy ... day, +/ Tpp1 = L(@pp1, o) dTpgq -
n R 8H

_d _d
=L, X=Fpu=1

Nachdem alle Voraussetzungen erfiillt sind, berechnen wir die Schranke

1
n-I(p)

2
mit I(p) =E, (88“ log L(X, ,u)> .

Es gilt

0 o[ 5 l(z—p 2 2@ T
&LLIOgL(x"u)_f),u< log V2710 2( . )) ———(-1) = ——,
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woraus folgt, dass

1 2 1 02 1 n
I(M):;EM(X—M) Zg'Vaqu=;=§ — n-I(,u):?,
Insgesamt gilt also
A 1 o2 _
Varue > 12 = ; = VarMXn
g

fiir einen beliebigen erwartungstreuen Schatzer 0 fiir 1, der die Voraussetzungen des Satzes
3.5.1 erfiillt.

2. Das zweite Beispiel sei folgende Ubungsaufgabe:

Ubungsaufgabe 3.5.1
Seien X; ~ Poisson(\), i=1,...,n. Zeigen Sie, dass die Schranke von Cramér-Rao

ist. Dies bedeutet, dass auch hier X,, der beste erwartungstreue Schitzer ist, der die
Voraussetzungen des Satzes 3.5.1 erfiillt.

An Hand des néchsten Beispiels wollen wir zeigen, dass die Konstruktion von Schétzern mit
einer Varianz, die kleiner als die Cramér-Rao-Schranke ist, moglich ist, falls die Voraussetzungen
von Satz 3.5.1 nicht erfiillt sind.

Beispiel 3.5.2
Seien X; ~ U[0,0], & > 0. Dann ist die Bedingung ,suppfp(xz) = [0, 0] unabhéngig von 6
verletzt und auch eine weitere Bedingung:

0 o1\’ 1 1

Sei 6 ein erwartungstreuer Schitzer fiir 8, so wiirde nach der Ungleichung von Cramér-Rao
folgen, dass Vargf > (n - I(0))~!, wobei

1(0) :IE<§910gL(X,9)>2 :/06; (gelog <;>>2 dx = ;/09 dz - (_;)2 _ %

Damit hatten wir
2

Vargéz —.
n

Betrachten wir

N 1 1
0(X1,...,Xp) = n;il— max{X1,..., X, } = n

Zeigen wir, dass

Eg0(X1,...,X,) =60 und Vargf(Xy,...,X,) < —.
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Berechnen wir dazu EgX g“n), k € N. Es gilt

g, zel0,0],
Fy, (z)=Fx (z)=41, x>0,
0, x<0,
n—1

Damit folgt

das heifit, 0 ist erwartungstreu. Weiterhin gilt

A n+1)\2 n+1\2 no? n262 2
Vargﬁ—( n ) ‘VargX(n)—< n ) '<n+2_(n+1)2

(n+1)2 n(n+ 1)2 —n?(n+2)

w2 (n+2)(n+1)?
92 5 5 92
= — 2 1-n"-2n)= ——
n(n +2) (" +2n+ " n) n(n +2)
und somit
A 62 02
Varg = —— < —.
nn+2) n

3.5.2 Bedingte Erwartung

Seien X und Y zwei Zufallsvariablen, wobei Y eine absolut stetige Verteilung besitzt. Dann
folgt P(Y =y) =0 Vy € R. Deshalb kann die bedingte Wahrscheinlichkeit P(X € B|Y = y)
auf dem gewohnlichen Wege

P(X € B,Y =y)

P(X € BlY =y) = =

nicht definiert werden. Aus der Praxis ist aber eine Reihe von Fragestellungen bekannt (z.B.
Bayessche Analyse), in denen Wahrscheinlichkeiten P(X € B|Y = y) ausgewertet werden miis-
sen. Deswegen werden wir eine neue Definition der bedingten Wahrscheinlichkeit geben, die
solche Situationen beriicksichtigt. Diese Definition erfolgt durch die Definition der bedingten
Erwartung.

Schema:

1. Es wird die bedingte Erwartung von der Zufallsvariablen X bzgl. der o-Algebra B als
Zufallsvariable E(X|B) eingefiihrt, wobei B eine Teil-o-Algebra von F und (2, F,P) der
Wabhrscheinlichkeitsraum ist.
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2. Die bedingte Erwartung von X unter der Bedingung Y wird als E(X|Y) = E(X|oy)
eingefiihrt, wobei oy die von Y erzeugte o-Algebra ist.

3. P(X € BJY = y) wird als Zufallsvariable E(I(X € B)|Y) auf der Menge {w € Q: Y (w) =
y} eingefiihrt.

Gehen wir nun dieses Schema im Detail durch:

1. Sei (2, F,P) ein Wahrscheinlichkeitsraum und B eine Teil-o-Algebra von F, d.h. B C F.

Definition 3.5.1

Der bedingte Erwartungswert einer Zufallsvariablen X definiert auf dem Wahrscheinlich-
keitsraum (2, F,P) beziiglich einer o-Algebra B C F ist in dem Fall E|X| < oo als eine
B-messbare Zufallsvariable Y definiert, die die Eigenschaft

/ Y (w) P(dw) = / XP(dw), VBeB
B B
besitzt. Dabei wird die Bezeichnung Y = E(X|B) verwendet.

Warum existiert diese Zufallsvariable Y7

e Zerlegen wir X in den positiven X, und negativen X_ Anteil X = X, — X_
und beweisen die Existenz von E(X4|B). Danach setzen wir E(X|B) = E(X4|B) —
E(X_|B).

e Somit geniigt es zu zeigen, dass der Erwartungswert E(X|B) einer nicht negativen
Zufallsvariablen X > 0 fast sicher existiert.

e Sei Q(B) = [ X(w)P(dw). Man kann zeigen, dass Q(-) ein Mafl auf (2, F) ist.
Dabei folgt aus P(B) = 0 die Gleichheit Q(B) = 0 fiir B € Bg (bzw. B € B). Somit
ist @ absolut stetig bzgl. P. Weiter existiert nach dem Satz von Radon-Nikodym
eine Dichte Y (w), die messbar bzgl. B ist und fiir die

QB) = [ Y@)PA) = V() =E(X|B)

gilt.

Bemerkung 3.5.1

Aus der obigen Beweisskizze wird ersichtlich, dass Y(w) = E(X|B) nur P-fast sicher
definiert ist. Somit kann man mehrere Versionen von Y (w) angeben, die sich auf einer
Menge der Wahrscheinlichkeit 0 unterscheiden.

Satz 3.5.2 (Eigenschaften des bedingten Erwartungswertes):

Seien X und Y Zufallsvariablen auf dem Wahrscheinlichkeitsraum (€2, F,P) mit der Ei-
genschaft E|X| < oo, E|Y| < 0o und E|XY| < oo (dies kann noch ein wenig abgeschwécht
werden, ist hier allerdings ausreichend). Seien B, B; und By Teil-o-Algebren von F. Es
gelten folgende Eigenschaften (im fast sicheren Sinne):

a) E(X[{0,Q}) =EX, E(X|F) = X fast sicher.

b) Falls X <Y fast sicher, dann gilt ebenso E(X|B) < E(Y|B) fast sicher.
c) Esgilt E(XY|B) = X - E(Y|B), falls X B-messbar ist.

d) E(c|B) = ¢ fiir ¢ = const.
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e) Es gilt E(E(X|BQ)’81) = E(X‘Bl) und E(E(X’Bl)‘[)’g) = E(X‘Bl), falls Bl - BQ.

f) Falls X unabhiingig von B ist (d.h., die o-Algebren ox = X 1(Bg) und B sind
unabhéngig), dann gilt E(X|B) =

Ohne Beweis (siehe Beweis in [26]).

Beispiel 3.5.3
Sei B = o({A1,...,A,}), wobei {Al, ..., Ay} eine messbare Zerlegung des Wahrschein-

lichkeitsraumes (2, F,P) ist, d.h. Ui A; = Q, AiNA; =0,i# j,P(4;) >0,i=1,.
Was ist E(X|B)? Da E(X|B) B-messbar 1st konnen wir die allgemeine Form der Funktlo-
nen ausnutzen, die messbar bzgl. einer endlich erzeugten o-Algebra B = o({A1,...,An})

sind: E(X (w)|B) = Y ivy kil(w € A;) (ohne Beweis).
Berechnen wir k;: Aus der Definition 3.5.1 folgt fiir B = A;

/IEX\B P(dw) = /Zk I(w € A;)P(dw) = k; - P(A;)

J =1

/XIP’dw /XIP’dw E(X -14,)

" _E(X - Iy,) .
s ki — =
P(4;)
E(X -14)
— EX(w)|B)= ——F, fallsweAd;, j=1,...,n.
(X)IB) = =5 j

. Bedingte Erwartung bzgl. einer Zufallsvariablen Y :

Definition 3.5.2

Seien X und Y zwei Zufallsvariablen definiert auf dem Wahrscheinlichkeitsraum (2, F, P).
Der bedingte Erwartungswert von X unter der Bedingung Y wird als E(X|Y) = E(X|oy)
eingefiihrt, wobei oy die von Y erzeugte o-Algebra ist: oy = Y ~!(Bg).

Lemma 3.5.1

Es existiert eine Borel-messbare Funktion ¢ : R — R, fiir die gilt, dass E(X|Y) = g(Y)
fast sicher (Ohne Beweis).

Daher wird die Schreibweise E(X|Y = y) als g(y) verstanden: E(X|Y = y) = g(y) oder
E(X|Y = y) ist der Wert von E(X|Y") auf der Menge {w € 2 : Y (w) = y}.

. Bedingte Wahrscheinlichkeit bzgl. einer o-Algebra bzw. einer Zufallsvariable.

Definition 3.5.3
Die bedingte Wahrscheinlichkeit von A € F unter der Bedingung B ist gegeben durch
P(A|B) = E(I4|B) fast sicher. Analog dazu definieren wir P(A|Y) = E(I4]Y) fiir eine
Zufallsvariable Y.

Bemerkung 3.5.2
Die so definierte Familie von Zufallsvariablen P(-|B) erfiillen (fast sicher) nicht die Eigen-
schaften eines Mafles: Es gilt

0<P(A|B) <1, VAEF fast sicher,
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aber die Eigenschaft der o-Additivitéit

P(J A4ilB) = Y P(A|B)
=1

i=1

fiir disjunkte {A;} héangt von der Version P(-|B) ab. Das bedeutet, es existiert kein M €
F : P(M) = 0, so dass die obige Eigenschaft fiir alle w € M¢ gilt.

3.5.3 Suffizienz

Sei (X1,...,X,) eine Stichprobe von unabhéngigen identisch verteilten Zufallsvariablen X;
mit Verteilungsfunktion Fp, 6 € © C R™. Wenn man von der vollen Information {X; =
xi,..., X, = xp} zum Schétzer é(Xl, ..., X,,) des Parameters 6 tibergeht, dann entsteht durch
die Abbildung

6:R" — R™, m&En

ein Informationsverlust, weil man normalerweise (X7, ..., X, ) nicht aus 0(X1, ..., X,,) zuriick-
rechnen kann. Die sogenannten suffizienten Schitzer minimieren diesen Informationsverlust im
stochastischen Sinne:

Definition 3.5.4

1. Seien Zufallsvariablen Xy,..., X, und é(X 1,...,Xp) diskret verteilt. Ein Schétzer 6 des
Parameters 0 heifit suffizient, falls

Pg(Xl::rl,...,Xn:xn|§(X1,...,Xn):t)

nicht von 6 abhé’mg} fiir beliebige x1,...,x, und ¢ aus den Tragern der Zdhldichten von
(X1,...,X,) bzw. 0(Xq,...,Xp).

2. Falls X1,..., X, und é(Xl, ..., X,,) absolut stetig verteilt sind, dann heifit der Schétzer
0 suffizient fir 60, falls die Wahrscheinlichkeit

]P’((Xl,...,Xn) eB\é(Xl,...,Xn)zt)

fir beliebige B € Bgn und t € suppf; nicht von 6 € © abhingt, wobei f; die Dichte von
0 ist.

Bemerkung 3.5.3
1. Betrachten wir im diskreten Fall die bedingte Likelihood-Funktion
Ly(x1,. .., w0, 0) = Py (X1 =21, Xy = a0 |0(X1, ..., X)) :t> .
Aus Definition 3.5.4 folgt, dass wir keinen neuen ML-Schétzer fiir # aus dieser beding-
ten Likelihood Lg(x1,...,z,,0) gewinnen werden konnen, da sie nicht von 6 abhéngt.

Das heifit, der Schétzer 6 enthilt bereits die volle Information iiber 0, die man aus der
Stichprobe (x1,...,z,) gewinnen kann.
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2. Falls g : R™ — R™ eine bijektive Borel-messbare Abbildung und 6(X1,. .., X,) ein
suffizienter Schétzer von § € © C R™ ist, dann ist der Schétzer ¢(0(X1,...,X,)) auch
ein suffizienter Schétzer fiir 6. Dies wird aus der Tatsache ersichtlich, dass

fwe:g (00X, Xn)) =t} ={weQ: 0(X1,.... Xa) =g~ 'O}, Vt.

Lemma 3.5.2 (Suffizienz):
Seien Zufallsvariablen X,..., X,, und 6(Xy,...,X,,) entweder alle diskret oder absolut stetig
verteilt mit den Likelihood-Funktionen

Po(Xy = z1,..., X, =x,,), im diskreten Fall,
Ixi o xp (@1, 2n), im absolut stetigen Fall,

L(':Ula"'awnae) :{

(.0) {Pg(é(Xl, ..., Xp)=1t), im diskreten Fall,
g\

L;(t,0) =
f3(t,0), im absolut stetigen Fall.
Seien die Trager um L bzw. L; gegeben durch

suppL = {(x1,...,z,) € R" :  L(z1,...,24,0) > 0},
suppL; = {t € R :  Ly(t,0) > 0}.

Der Schiitzer 6 ist suffizient fiir 6 genau dann, wenn

7:177170)

L(z
(9(331, ), 0) (3.5.1)

nicht von 6 abhéngig ist fiir alle (z1,...,2,) € suppL.

Beweis Wir beweisen lediglich den diskreten Fall:

,—“ Ist @ suffizient, so iiberpriifen wir, ob damit folgt, dass (3.5.1) von @ abhingt fiir alle
(z1,...,2p) € suppL. Es gilt:

Po(X1 =21,...,Xp =2, |0(X1,..., X,) =)

Pg(Xl—xl,... n—xn,G(Xl,...,Xn):t)
Po(O(X1,...,X,) =t)
0, falls O(xy, ..., 2z,) # t
P" (Xy =21, Xn=cn) falls O(xq, ... xp) =t.

0(X1, Xn)=0(21,....7n)) ’
Somit héngt (3.5.1) nicht von 6 ab.

,<=" Folgt aus dem 1.Fall durch Betrachtung von hinten.

Beispiel 3.5.4
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1. Bernoulli- Verteilung: Seien X; ~ Bernoulli(p), p € [0,1], ¢ = 1,...,n, p = X,, ein
erwartungstreuer Schétzer fiir p. Wir zeigen nun, dass p suffizient ist. Es gilt

A—X—lixz—ly
b= nEa K=Y

wobei Y ~ Bin(n,p). Es geniigt nach Bemerkung 3.5.3 2) zu zeigen, dass Y ein suffizienter
Schétzer fiir p ist. Nach Lemma 3.5.2 gilt fiir z; € {0,1}, i=1,...,n

n
P(X1 =21y, Xy = a0) = [[p7(1 = p)' % = plimi @ (1 — ) 2oima @1
i=1

Definieren wir nun Ly als

n P
LY(%P):(y)py(l—p)l v y=20,...,n.

Setzen wir nun statt y die Summe »7 ; z; ein und betrachten

L(l‘l, .. ,SL‘n,p) pzyzl 551(1 — p)”—Z:;l Zi 1

Ly(3Xr i, p) (s

i=1T1

ST ST o

=17 1)
Dies héngt offensichtlich nicht von p ab, womit folgt, dass Y und somit p suffizient sind.

2. Normalverteilung mit bekannter Varianz: Seien X; ~ N(u,0%), i=1,...,n, 0% be-
kannt. So ist i = X, ein erwartungstreuer Schétzer fiir . Zeigen wir nun, dass i suffizient
ist: Betrachten wir

=1 1 (2 —p\?
L("Elw"axnaﬂ)znmaexp(_Q( P ))

SN > N
(2mo2)n/2 P 202

und nach Lemma 2.2.1

= # cexp | — Z?:l(xi — jn)z + n(a_:n - N)2
(2mo2)n/2 957 .

Ferner gilt bekanntermaBen i ~ N(u, 0% /n), und somit

Ly(z,p) = vn - exp (—Z (x — M>2> )

2o o
1 Yo (@i—=En)?+n(Zn—p)?
L(wla ceo s Ty :u) (27r02)n/2 (P <_ 1 207
(T - J/n —n(@n—p)?
Ly(%p, ) 2:(7 - exp (T)

vn L 5 .
:W'GXP _T‘_Q;(xi_xn) )

was von g unabhingig ist. Somit folgt nach Lemma 3.5.2, dass i = X,, ein suffizienter
Schétzer fiir p ist.
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Mit Hilfe des néchsten Satzes von Neyman-Fisher wird es moglich sein zu zeigen, dass bei
unbekannter Varianz der Schitzer (X,,, S2) fiir (u, 0?) suffizient ist.

Satz 3.5.3 (Faktorisierungssatz von Neyman-Fisher):

Unter den Voraussetzungen von Lemma 3.5.2 ist é(X 1,...,Xp) ein suffizienter Schétzer fiir ¢
genau dann, wenn zwei messbare Funktionen g : R™x© — R und h : R® — R existieren, so dass
folgende Faktorisierung der Likelihood-Funktion L(x1,...,xzy,0) der Stichprobe (Xi,...,X,)
gilt:

L(zy,...,2n,0) =g (é(ml,...,mn),e) “h(x1,...,2n), (x1,...,2,) EsuppLl, 6H€0O.
Beweis Wir beweisen nur den diskreten Fall.

1. Falls § suffizient ist, dann héngt nach Lemma 3.5.2

LE-rl?"'?xn’e) :h(l’l,--')xn)
Lé(e(xl, ce ,xn)79)

=g(0(z1,...,w1),0)

nicht von # ab. Somit bekommen wir die Faktorisierung von Neyman-Fisher.

A

2. Sei nun L(x1,...,2n,0) = g(0(x1,...,2y),0) h(x1,...,zy,) fir alle (z1,...,z,) € suppL,
f € ©. Fithren wir eine Menge

A A

C={(y1,.-- yn) ER": O(y1,...,9yn) zé(ml,...,xn)} =6! (é(xl,,mn))

ein. So gilt
PG(Xlzmla-"vXn::Un) — g(é(mla"'axn)79)'h(xla"'amn)
L@(@(ml, ce. ,xn)7 9) Z(y17_._7y,n)ec' ]P)G(Xl =Yi,y--- 7XTL = ?/n)

=Py (0(X1,.... Xn)=0(x1,...,Tn))

g(0(z1,...,2,),0) - h(x1,...,25)
E(yl,...,yn)ec g(e(yla sy yn)a 9) ' h(yla s 7yn)
—_———

:9(1'1,...,:[")

h(%l, . ,xn)
Z(y1,-..7yn)eC h(y1,-..,yn) ’

welches nicht von 6 abhéngt. Daher ist 6 nach Lemma 3.5.2 suffizient.
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Beispiel 3.5.5

1. Poisson-Verteilung: Seien X; ~ Poisson(\), A > 0, A = X, ein erwartungstreuer
Schétzer fiir \. Zeigen wir, dass A suffizient ist. Es gilt fir z; € {0,1,2,...},i=1,...,n

)\)\xi e\ . )\22;1 Zi e~ A \Tn

n
L(:Ul,...,azn,)\):He_ xi!: 1!y :xll-...-xn!

= g(Zn, \) - h(x1,...,20),

3.5.3 suffizient.

2. Ezponentialverteilung: Seien X; ~ Exp(\), A > 0, A= X! ein Momentenschétzer fiir

A, der zwar nicht erwartungstreu ist, jedoch stark konsistent, denn X, L5 EX; = %

n— o0
nach dem starken Gesetz der grofien Zahlen. Zeigen wir, dass \ suffizient ist. Fiir z1 >
0,...,2y, >0 gilt

L(z1,...,%0,N) =[] Ae ™A = \PemA L1 T = \memAndn
i=1
= )\”6_% =g (5\,/\) ch(x1,... @),
—_———

=1

wobei g(\, \) = Ate” % und h(zxy,...,x,) = 1 ist. Somit ist A nach dem Satz 3.5.3

suffizient.

Ubungsaufgabe 3.5.2 -
Zeigen Sie mit Hilfe des Satzes 3.5.3, dass der Schitzer (X, S2) suffizient fiir (y,0?) im Falle
der normal und unabhingig identisch verteilten Stichprobe (X1, ..., X,), X; ~ N(u,0?) ist.

Bemerkung 3.5.4

Der Vorteil des Satzes von Neyman-Fisher ist, dass man fiir die Uberpriifung der Suffizienzei-
genschaft von 6 die Likelihood-Funktion von 8 nicht explizit zu kennen braucht. Dies ist insbe-
sondere in den Féllen vorteilhaft, in denen der Schétzer 0 kompliziert ist und seine Likelihood-
Funktion nicht analytisch angegeben werden kann (bzw. unbekannt ist).

3.5.4 Volistandigkeit

Definition 3.5.5
Ein Schétzer 0(X1,...,X,) des Parameters § € © C R™ heifit vollstindig, falls fiir beliebige

A

messbare Funktionen g : R™ — R mit der Eigenschaft Egg(0(X1,...,X,)) =0, 6 ¢€ O folgt

A fs.
g(H(Xl,...,Xn)> =,
Bemerkung 3.5.5
1. Seien g1, g2 : R™ — R Funktionen, fiir die V0 € © gilt

Eo

gi (é(Xl,...,Xn)>’ <00, Eeq (é(Xl,...,Xn)) = Eggs (é(Xl,...,Xn)) ,
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wobei 6 vollsténdig ist. So folgt aus der Definition 3.5.5
g1 (é (Xl, e ,Xn)) = g2 (é(Xl, ceey Xn)>

fast sicher (nehme g = g1 — ¢2).

Fuazit: Die Eigenschaft der Vollstéandigkeit erlaubt aus dem Vergleich der Schétzer gl(é)
und g2(6) im Mittel eine Aussage iiber ihre fast sichere Gleichheit zu machen.

2. Falls § ein vollstandiger Schétzer fiir 6 ist, dann ist auch g(é) ein vollstdndiger Schétzer
fiir 6 fiir eine beliebige messbare Funktion g : R™ — R™.

Beispiel 3.5.6

1. Bernoulli-Verteilung: Seien X; ~ Bernoulli(p), p € [0,1]. Zeigen wir, dass p = X,
vollstéandig ist:

Sei g eine beliebige Funktion R — R. Es geniigt zu zeigen, dass Y = 7' ; X; vollstandig
ist. Es gilt Y ~ Bin(n,p), womit folgt, dass

Epg(Y) = zn: g(k) (Z)p’“(l —p)" "

fir p € (0,1), also t € (0,00). p,(t) ist ein Polynom des Grades n, womit folgt

(k) (Z) =0 firallk = g(k)=0, k=0,....n = g(Y)=0 P, fast sicher.

Somit ist Y vollstdndig und daher auch p =

2. Gleichverteilung: Sei X; ~ U[0,0], i=1,...,n. Wie wir bereits gezeigt haben, ist der
Schatzer é(X Lyeooy Xp) = "T‘HX (n) €rwartungstreu. Zeigen wir nun, dass er ein vollstandi-
ger Schétzer ist. Es geniigt zu zeigen, dass X (n) = MaXj=1,. n X; vollstandig ist. Es ist zu
zeigen, dass fiir alle messbaren g : R — R aus Egg(X ;) = 0 folgt g(X(,,)) = 0 fast sicher.

n—1

Die Dichte von X, ist nach Beispiel 3.5.2 gegeben durch fx (z) = "G Tp,9 (7).

0= dIE / z)f ddl/e "lg(x)d
a0 09(X 7 X(n> x 2007 J, nx" “g(x)dr
1 0 n—1 1 n—1 n n
:—nw/o g(z)nx d:U—I—e—nnH g(Q)Z—EEeg(X(n))+59(9)
=0
=29(0)=0, 9>0=g)=0, =>0.

Daher gilt g(X(,)) = 0 fast sicher.
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3.5.5 Bester erwartungstreuer Schatzer

Aus Definition 3.3.7 folgt: Sei (Xi,...,X,) eine Zufallsstrichprobe, X; ~ Fp, 6 € © C R
(m = 1), X; unabhéngig identisch verteilte Zufallsvariablen. Dann heifit 6( X1, ..., X,) bester
erwartungstreuer Schétzer, falls

Egf*(X1,...,X,) <oco  Egf(Xy,...,X,) =0, 6ecO.

und 4 die minimale Varianz unter allen erwartungstreuen Schétzern besitzt.

Lemma 3.5.3 (Eindeutigkeit der besten erwartungstreuen Schitzer):
Falls 0 ein bester erwartungstreuer Schétzer fiir 0 ist, dann ist er eindeutig bestimmt.

Beweis Sei § = 0(X1,...,X,) ein bester erwartungstreuer Schétzer fir § und 6 ein weiterer
bester erwartungstreuer Schitzer fiir . Zeigen wir, dass 6=4.

Ez adverso: Nehmen wir an, dass 6 # 0 ist und betrachten §* = 1/2(8 +6). Offensichtlich ist
0* erwartungstreu. Untersuchen wir

Vargd* = iVarg(HA + 9~) = %Vargé + iVargé + %Cove(é, 9~) )

Da é,é beste erwartungstreue Schétzer sind und mit der Ungleichung von Cauchy-Schwarz

]Cove(é, é)] </ Vargf - Vargd = Vargl gilt, folgt

~ 1 A A
Vargf™ < —Vargf + §Var9c9 = Varg0 .

N | =

Da 0 der beste erwartungstreue Schétzer ist folgt Vargd* = Vargf und somit o(f, 9) =1=14
und 6 sind linear abhang1g, d.h. es existieren Konstanten a und b, fiir die gilt 0 = af + .
Es folgt a = 1 aus Vargd = a?Varf = Varg und b = 0, weil  und 6 erwartungstreu sind:
0 = Egf = Egf + b = 0 + b. Das bedeutet, dass 6 = 6. O

Lemma 3.5.4
Ein erwartungstreuer Schéitzer 0, dessen zweites Moment endlich ist, ist genau dann der beste

erwartungstreue Schétzer fiir 6, wenn Cove(é, v) =0, 6 € O fir eine beliebige Stichproben-
funktion ¢ : R”™ — R mit der Eigenschaft Egp(X1,...,X,) =0, Vfe€ 6.

Beweis Wir beweisen den Satz fiir beide Richtungen getrennt:

.= Sei 0 der beste erwartungstreue Schétzer fir 6, p(Xi,...,X,) eine Stichprobenfunktion
mit Egp(X1,...,X,) =0, V0 € 0O. So ist zu zeigen, dass Covyg(0, p) = Ey(Op) =0,0 €
O gilt.

Definieren wir § = 6 + ap, a € R. Berechnen wir
Vargf = Varg + a*Vargp + 2aCove(§, ©)

fir a € R. Sei g(a) = aQVargcp + 2aCovy(ep, 0). Falls Covg(ep,d) # 0, dann existiert ein
a € R mit g(a) < 0. Da @ ein erwartungstreuer Schitzer fiir 6 ist (Egf = Egf + aFgp =
0+ 0 = 0) folgt Vargd > Vargf fiir alle @ € R. Dies ist jedoch ein Widerspruch mit
g(a) < 0 fiir ein a € R. Damit folgt Covg(p,0) =0, 6 € O.
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A

=" Sei 0 erwartunsgtreu, Egf? < 0o, 6 € O, Covg(p,0) =0, 6 € 0O, falls Egp =0, 0€
O. Sei 0 ein anderer erwartungstreuer Schéatzer fiir 8. Zeigen wir, dass Vargf > Vargf. Es

gilt
0=0+(0—-0), Egp=Egd—FEgd=60—-0=0, VOecO.
Somit
Vargf = Vargf + Vargp +2 Covg(6, ) > Varyl,
>0 =0

woraus folgt, dass 6 der beste Erwartungstreuer Schétzer fiir 0 ist.

Satz 3.5.4 (Lehmann-Scheffé):
Sei 6 ein erwartungstreuer vollstindiger und suffizienter Schétzer fiir 0, Egf? < oo, V6 € O.
Dann ist 6 der beste erwartungstreue Schétzer fir 6.

Beweis Nach Lemma 3.5.4 ist zu zeigen, dass Covg(0, ) = Eg(fp) =0, 6 € O, falls Egp =
0, 0€0O.Esist

0 U(é)inessbar ~ ?

Eo(Ap) = Eo(E(8p|d)) Eg(f - Eg(¢l0)) = Eg(d- g(0)) =0,

falls g(f) = 0 fast sicher. Da 0 suffizient ist, ist g(¢) = Eg(p | § = t) unabhiingig von 6. Betrachten

A A

wir IEEgg(H). Wir wollen zeigen, dass Egg(0) =0, 6 € O. Daraus und aus der Vollstdndigkeit
von # wird folgen, dass g(#) = 0 fast sicher fiir alle 6 € ©.

Eog(0) = Eg(Eg(¢|0)) = Egp =0

nach Voraussetzung. Somit folgt Eg(¢f) = 0 und 6 ist unkorreliert mit ¢ : Egp =0, 6 € O,
womit folgt, dass nach Lemma 3.5.4 6 der beste erwartungstreue Schétzer ist. O

Satz 3.5.5 }

Sei  ein erwartungstreuer Schitzer fiir 6, Egh? < oo, 0 € ©. Sei § ein vollstandiger und suf-
fizienter Schétzer fir 6. Dann ist der Schitzer 0* = E(6|0) der beste erwartungstreue Schétzer
fir 6.

Beweis 1. Zeigen wir, dass Egf*2 < co V6 € ©. Es gilt
B (6°*) =B (E (9] é))2 <Ey (E(02]0)) = Egb? < o0,

da mit der Ungleichung von Jensen fiir bedingte Erwartung gilt

-

.S.

FEX|B)) < E(f(X)|B)
fiir jede Zufallsvariable X, o-Algebra B und konvexe Funktion f.

2. Zeigen wir, dass 6* erwartungstreu ist: Eg0* = Eg(E(0]0)) = E¢f = 0, 60 € O, weil 0
erwartungstreu ist.



3 Punktschatzer 105

3. Nach Lemma 3.5.4 geniigt es zu zeigen, dass Ey(6*p) = 0 fir 6 € O, falls Egp = 0,
0 cO.

falls g1(0) =2 0,0 € ©. Zeigen wir, dass Egg1(f) = 0. Es gilt Egg1 () = Eg(E(¢|8)) =

Egp = 0 nach Voraussetzung. Daraus und aus der Vollsténdigkeit von 6 folgt genauso wie

im Beweis des Satzes 3.5.4, dass g1(0) = 0 fast sicher.
O

Lemma 3.5.5 (Ungleichung von Blackwell-Rao):

Sei 6 ein erwartungstreuer Schétzer fiir 6, Eyf? < oo .0 € ©. Sei 0 ein suffizienter Schitzer fiir
0. Dann besitzt der erwartungstreue Schétzer 6* := E(f | ) eine Varianz, die kleiner oder gleich
als Vargé ist.

Beweis Siehe Beweis des Satzes 3.5.5. Dabei folgt die Erwartungstreue von 8* aus Beweispunkt
2) des Satzes 3.5.5 und Vargf* = Eg0*2 — 0% < EgH% — % = Varpf aus Beweispunkt 1) des Satzes
3.5.5. 0

Bemerkung 3.5.6
Die Suffizienz 8 kommt im Beweis des Lemmas 3.5.5 explizit nicht vor. Dennoch ist sie notwen-
dig, damit der Schétzer 6* = E(6|6) = g(#) nicht von § abhéngt.

Folgerung 3.5.2
Falls € ein vollsténdiger und suffizienter Schétzer fiir  ist und falls eine Funktion g : R — R

A A

so existiert, dass Egg(0) =60 V0 € O, dann ist g(f) der beste erwartungstreue Schatzer fiir 6.

Beweis ¢(0) = E(g(0) | §), welcher nach Satz 3.5.5 der beste erwartungstreue Schitzer ist. [



4 Konfidenzintervalle

4.1 Einfithrung

Konfidenz- oder Vertrauensintervalle wurden bereits in Kapitel 3 exemplarisch behandelt (vgl.
Folgerung 3.3.2 und Bemerkung 3.3.4 des). In diesem Kapitel werden wir eine formale Definiti-
on eines Konfidenzintervalles angeben, um Vertrauensintervalle in grofierer Tiefe studieren zu
konnen. Dabei werden sowohl Fin- als auch Zweistichprobenprobleme behandelt.

Rufen wir uns die Annahmen eines parametrischen Modells in Erinnerung: es sei eine Stich-
probe (Xi,...,X,) von unabhingigen, identisch verteilten Zufallsvariablen mit X; ~ Fp ge-
geben, wobei Fy eine Verteilungsfunktion aus einer parametrischen Familie von Verteilungen
{Fy:0 €0}, ©®CR™ ist, dem m-dimensionalen Parameterraum, m > 1.

Die Punktschétzer von 6 liefern jeweils einen Wert fiir den Parametervektor. Es wére al-
lerdings auch vorteilhaft, die Genauigkeit solcher Schétzansétze zu nennen, das heifit, einen
Bereich anzugeben, in dem 6 mit hoher Wahrscheinlichkeit 1 — « liegt. Dabei heifit o Irrtums-
wahrscheinlichkeit; iibliche Werte fiir « sind o = 0,01;0, 05; 0, 1. Die Wahrscheinlichkeit 1 —
da 6 im vorgegebenen Konfidenzintervall liegt, heifit dann Uberdeckungswahrscheinlichkeit
oder Konfidenzniveau und soll dann entsprechend hoch ausfallen, z.B. 0,99; 0, 95;0, 9.

Definition 4.1.1
Es sei 1 — a ein Konfidenzniveau und 6 : R* — R = RU {400},  : R™ — R zwei Stichproben-
funktionen mit der Eigenschaft

0(z1,...2p) <O(z1,..., 1) V(x1,...7,) € R™
Falls
1. P (ae [Q(Xl,...,Xn),?(Xl,...Xn)D >1—a, #cO
2. jnf Py (ee [Q(Xl,...,Xn),@(Xl,...,Xn)D —1-a
3. lim Py (ee [Q(Xl,...,Xn),?(Xl,...,Xn)Dzl—a, 0co

dann heifit [ = {Q(Xl, oo Xn),0(X, ... Xn)} ein
1. Konfidenzintervall
2. minimales Konfidenzintervall

3. asymptotisches Konfidenzintervall

zum Konfidenzniveau 1—a. Dabei heifit lo( X1, ... X,,) = 0(Xq,... X,)—0(X1, ... X,,) die Linge
des Konfidenzintervalls. Es ist erwiinscht, moglichst kleine Konfidenzintervalle (mit minimaler
Lénge) bei groBem Konfidenzniveau fiir 6 zu konstruieren.

106
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Wie bereits bei den Beispielen im Statistik I-Skript ersichtlich ist, folgt die Konstruktion
eines Konfidenzintervalls einem bestimmten Muster, das wir jetzt genauer studieren werden:

1. Finde eine Statistik T'(X7,. .., X,,0), die
e vom Parameter 6 abhéngt und

e cine bekannte (Priif-) Verteilung F' besitzt (moglicherweise asymptotisch fir n —
00).

2. Bestimme von der Verteilung F' die Quantile F~!(a;) und F~1(1 — as) fiir Niveaus oy
und 1 — a, sodall a1 + as = a.

3. Lose (falls moglich) die Ungleichung F~!(a1) < T(Xq,...,X,,0) < F71(1 — ag) bzgl. 6
auf. Das entsprechende Ergebnis I = [T~1(F~!(a)), T"Y(F~}(1 — as))] (im Falle einer
monoton in # steigenden Statistik ") ist ein Konfidenzintervall fiir § zum Niveau 1 — a,
denn es gilt

Py (0 € 1) =Pp (T, (Fon) <O < THF (1 - )
=Py (F~ (1) < Ty(X1,..., Xp,0) < F71(1 = )
= F(F (1 —ag)) = F(F (1))

:1—a2—a1
=1—q« fir alle 6 € O.

Fiir asymptotische Konfidenzintervalle soll iberall noch lim geschrieben werden: lim Py(6 €
n—oo n—oo

I) =...=1— «. Hierbei ist T, ' die Inverse von T'(X1,..., X,,0) beziiglich §. Grafisch kann
dies auf Abb. 4.1 veranschaulicht werden.

Definition 4.1.2

1. Falls a; = ay = /2, dann heifit das Konfidenzintervall I = [T(F~1(%)), T (F~*(1- %
symmetrisch.

2. Falls a1 =0 (bzw. (X1,...,X,,) = —00), dann heifit das Konfidenzintervall
(—oo, 0(X,... ,Xn)} einseitig. Das selbe gilt fiir ag = 0 (bzw. 0(X1,...,X,,) = +00)
und das Vertrauensintervall [0(X1, ..., X,), +00).

In der Zukunft werden wir oft, ohne Beschrankung der Allgemeinheit, symmetrische Konfi-
denzintervalle konstruieren, obwohl man auch ein allgemeineres, nicht-symmetrisches Intervall
leicht angeben kann.

Bemerkung 4.1.1

Man sieht leicht, daf§ der Algorithmus zur Konstruktion eines Vertrauensbereiches sich sehr dem
eines statistischen Tests dhnelt. Im letzten Fall heifit T'(X1, ..., X,,) Teststatistik. Im Allgemei-
nen kann man fir jedes Konfidenzintervall einen entsprechenden statistischen Test angeben,
aber nicht umgekehrt. In der Vorlesung Stochastik III werden wir einige Beispiele dieser Uber-
tragung ,,Konfidenzintervall — Test“ sehen.
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oy

Fﬁl((ll) F71(1 —a2)

Abb. 4.1: asymptotisches Konfidenzintervall

4.2 Ein-Stichproben-Probleme

In diesem Abschnitt werden wir einige Beispiele von Vertrauensbereichen fiir Parameter einiger
bekannter Verteilungen nach dem oben genannten Schema konstruieren. Dabei werden wir
immer mit einer Stichprobe (X7i,..., X, ) wie in Abschnitt 4.1 arbeiten.

4.2.1 Normalverteilung

Es seien X71,..., X, unabhingig, identisch verteilt, mit X; ~ N(u,o?).

Konfidenzintervalle fiir den Erwartungswert 1

e bei bekannter Varianz ¢?> Wenn wir annehmen, da8 02 bekannt ist, so erméglicht uns
der Satz 3.3.1, 4., ein exaktes Konfidenzintervall fir p zum Niveau 1 — a zu berechnen.
Denn es gilt X,, ~ N (11, 0%/n) und somit

X, -
T(X1,o X ) = V=" £ N,1)

Es seien z,, und 21—, Quantile der N(0,1)-Verteilung, a; + a2 = a und 1 — « das
vorgegebene Konfidenzniveau.

Dann gilt

l—a=P (20, <T(X1,..., X0, 1t) < 21—qy)

X, —
=P (Zal < \/ﬁ n_ K < Zl—ag)

g

(—zay=%1-0ay)

P (Xn Al o <X, Zl“’“") .

vn vn

Somit ist [Q(Xl, LX), 0(X, . .,Xn)} mit (X1, ..., Xp) = Xp — 210, % und

0(X1,....,Xn) = Xpn+ 210, ﬁ ein exaktes Konfidenzintervall fiir g zum Niveau 1 — a.

Es hat die Lange 1,(X1,...,X,) = ﬁ (Z1—as + 21—ay)- Es gilt 1,(Xq,...,X,) — 0, fir

n — oo was bedeutet, dafl bei wachsendem Informationsumfang (n — oo) die Prézision
der Schitzung immer besser wird.
Im Symmetriefall (ay = a2 = «/2) miissen wir schreiben §(X7,...,X,) = Yn—zl,aﬂ%,

O0(X1,...,Xn) =X, + Z1ma/r g und Ly (X1, ., X)) = L\/%zl,m.
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Daraus folgt, daf§ man bei vorgegebener Lénge € > 0 die Anzahl der Beobachtungen n
bestimmen kann, die dann notwendig sind, um die vorgegebene Prézision zu erreichen:

20 2021_q)2\?
%zl_a/z S E<—>nN Z (EO[/) (421)
Fir a1 = 0 bzw. ap = 0 kann man einseitige Intervalle (—oo, Yn+z1—aﬁ} und

[Yn — Z1—aﬁ7 —i—oo) genauso angeben.

e bei unbekannter Varianz o?: siche Bemerkung 3.3.4.

th—1,1-a/2 ~ tho1,1-a/2 ..
—%Sm Xn_,_%sn} fir ;1 zum

Konfidenzniveau 1 — a konstruiert, wobei ¢, _; 1_,/2 das (1 — §)-Quantil der ¢,_;- Ver-
teilung ist.

Dort wurde das Konfidenzintervall |X,,

Wie man sieht, ist sie Lange des Konfidenzintervalls zuféllig: [,,( X1, ... X,,) = %tn_u_a/%
somit macht es Sinn, mit erwarteter Lange

2
Elu(Xl, e Xn) - ﬁE Sntnfl,lfa/Z

zu arbeiten, um zum Beispiel die Frage nach der notwendigen Anzahl n von Beobachtun-
gen bei vorgegebener Genauigkeit ¢ > 0 (vergleiche Gleichung (4.2.1)) zu beantworten.

Konfidenzintervalle fiir die Varianz o2

e bei bekanntem Erwartungswert p:

Betrachten wir den Schitzer S2 = 1 f: (X; — p)? fiir 0. Aus Satz 3.3.5, 2. folgt "Uﬁ ~ X2

i=1
32
Wir setzen T(X1,..., X,,0%) = 2% und bekommen
g
A nG ., n@
P Xnao S "5 < Xnjg-a =P %SUSTR =l-a
o Xn,lfal Xn,ozg
o ng2  ng2 ] . . . . B
Somit ist |——2—, 2| ein Konfidenzintervall fiir ¢ zum Niveau 1 — a,a = a1 +
n,l—aq n,ao
a mit der mittleren Linge El,> = no? x21 s ! . Da die y2-Verteilung nicht
n,a n,l—aq

symmetrisch ist, ist auch das Konfidenzintervall nicht symmetrisch.

e bei unbekanntem Erwartungswert u:

Ahnlich wie oben beschrieben folgt das Konfidenzintervall [X(Qn_l)sz , (nz—l)s,%] zum Ni-

n—1,1—aq Xn—l,a2
| (n=1)S3
2
[en

veau 1 —a, @ = a1 + ag aus Satz 3.3.5, 1., wei ~ x2_, fiir die Stichprobenvarianz

n —_\2
S2 = L > (X@- — Xn) . Die erwartete Linge ist El,2 = (n—1)0? < S L — )

anl,ag anl,lfocl
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4.2.2 Konfidenzintervalle aus stochastischen Ungleichungen

Eine alternative Methode zur Gewinnung von Konfidenzintervallen besteht in der Anwendung
stochastischer Ungleichungen. So kann man zum Beispiel bei einer Stichprobe (X71,...,X,) von
unabhéngigen und identisch verteilten Zufallsvariablen mit E X; = u, Var X; = o2 € (0, 00) die
Ungleichung von Tschebyschew benutzen, um ein einfaches, aber grobes Konfidenzintervall fiir
w zu konstruieren:

— Var X o?
P (X0 —pl>¢) < =T —a
= fﬁrs:Lgilt:1—oz:]P’(|Yn—,u|<e)
vno o

<
IN

—P< L< X, + U)
B no n T H Vo

— [ g
:P<Xnm_M§Xn+\/m)-

E

Das Konfidenzintervall {Yn — \/%, X, + \/%] fiir  bei bekannter Varianz o2 ist verteilungs-
unabhéingig, da keinerlei Annahmen tber die Verteilung von X; gemacht wurden.
Prézisere Konfidenzintervalle konnen bei der Verwendung folgender Ungleichung von Hoeff-

ding konstruiert werden:

Satz 4.2.1 (Ungleichung von Hoeffding):
Es seien Yi,...,Y, unabhéingige Zufallsvariablen mit EY; = 0,a; < Y; < b; fast sicher, ¢ =
1,...,n. Fir alle ¢ > 0 gilt

n 262
P ZYz el <exp|——F——
i—1 > (b — a;)?

i=1

(ohne Beweis).

Diese Ungleichung ist scharfer als die Tschebyschew-Ungleichung. Falls man spezielle Annah-
men iiber die Verteilung von Y; macht, kann man mit ihrer Hilfe auf gute Konfidenzintervalle
unter Verwendung des Satzes 4.2.1 kommen.

Nehmen wir z.B. an, dafl X1, ..., X,, unabhéngige, identisch verteilte Zufallsvariablen sind,
X ~ Bernoulli(p), p € (0,1). Wir wollen ein Konfidenzintervall fiir p bestimmen.

Folgerung 4.2.1
Es seien X1, ..., X,, unabhéngige Bernoulli(p)-verteilte Zufallsvariablen. Dann gilt P (\Yn —p| > 5) <

26_2”52, e>0.

Beweis Es gilt

_ 1
n-zlﬁf—/
Y;
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das heilt a; = —p, b;=1—p, b;j—a; =1,i=1,...,n, EY; = p— p = 0. Dann gilt:

Py (X0 —pl >¢) <P,

wobei man den Satz 4.2.1 sowohl fiir die Folge {Y;} als auch {—Y;} anwendet. Damit ist die
Behauptung bewiesen. O

Bemerkung 4.2.1
Die Form der Ungleichung von Hoeffding &hnelt sehr der von Dvoretzky-Kiefer-Wolfowitz, Satz
3.3.10.

Nun fixieren wir o > 0 und wiahlen g, = 1/% log % Durch Anwendung von Folgerung 4.2.1

mit diesem ¢, erhalten wir P, (]Yn —p| > 5n) < «, somit P, (|Yn —p| < 5n> > 11—« und

darum ist [Yn — ,/% log %7 X, + \/% log %} ein Konfidenzintervall fiir p zum Niveau 1 — a.

4.2.3 Asymptotische Konfidenzintervalle

Die Philosophie der Konstruktion von asymptotischen Konfidenzintervallen ist relativ einfach:
Wir erldutern sie am Beispiel eines asymptotisch normalverteilten Schétzers 0 fiir einen Para-
meter 6.

Sei (X1, ...,X,) eine Stichprobe von unabhéngigen und identisch verteilten Zufallsvariablen,
X; ~Fp,0 €©® CR.Seif, = é(Xl, ..., X,,) ein Schétzer fiir 6, der asymptotisch normalverteilt
ist. Dann gilt fiir erwartungstreue 0,

0, — 0
¥ ~ N(0,1),

A

On

wobei &, ein konsistenter Schétzer der asymptotischen Varianz von 6, ist.

: O — 0
nh—>H<}oP0 <Za/2 < 5 < Zla/2>

n

= nhﬁngo Py (9 € [én = 21-a/20n, 0, + zl_a/gc}nD =1-oq.

Somit ist |6, — Z1—a/20n, 0, + Z1—a /26',1} ein asymptotisches Konfidenzintervall fiir § zum
Niveau 1 — a.
Diese Vorgehensweise werden wir jetzt anhand von zwei Beispielen klar machen:

¢ Bernoulli-Verteilung:

Seien X; ~ Bernoulli(p)-verteilt, i = 1,...,n. Dann gilt 6 = p, On = P, = Xp. E, pn =

p, Vary p, = p(lin_p). Wir wihlen 62 = %ﬁ(l — Pp) = %(1 — X,) als Plug-In-Schitzer
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fiir 02. Dann gilt nach dem zentralen Grenzwertsatz (Satz 7.2.1, WR) und dem Satz von
Slutzky (Satz 6.4.2, 3. WR):

X, —

das heifit p € {Xn = 21-a/2 @, X, + Z1_a/2\ X"(lnx’l)} stellt ein asymptoti-

sches Konfidenzintervall fiir p zum Niveau 1—« dar. Da aber p € [0, 1] sein soll, betrachtet
man

vn

und
Tj(le s 7XTL) = min {17 Yn + Rl—a/2

Bemerkung 4.2.2
FEin anderes asymptotisches Konfidenzintervall fiir den Parameter p der Bernoulli-Verteilung
bekommt man, wenn man die Aussage des zentralen Grenzwertsatzes

nh_)n(go P, (—zla/Q < \/ﬁ% < Zla/2> =1 — a nimmt und die quadratische Unglei-
chung dann beziiglich p auflost.
Ubungsaufgabe 4.2.1

Losen Sie die Ungleichung auf!

e Poissonverteilung:

Es seien X; ~ Poisson(\), i = 1,...,n, dann gilt § = X\, 6, = A = X,,. Da E\ X; =
Vary) X; = A, kann man den zentralen Grenzwertsatz (Satz 7.2.1, WR) anwenden

X, — A
Ly ~ N(0,1),
\f)\ n—00

Da X, stark konsistent fiir A ist, gilt nach dem Satz von Slutsky (Satz 6.4.2, 4, WR)

vn

X, — A
n 2 4y N(0,1).

\/i n—00

Daraus folgt ein asymptotisches Konfidenzintervall

- I X, I X,
[Xn ~ Al-af2\| Xn+21-a/2 o

fir den Parameter A zum Konfidenzniveau 1 — «.

vn
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Bemerkung 4.2.3 1. Ahnlich wie in Bemerkung 4.2.2 angegeben, kann man durch
Auflésen der quadratischen Ungleichung in

. Xn—A
lim Py (\/ﬁ \/X € [_Zl—a/2> Zl—a/2]> =l-a

n—oo

bezuglich \ ein alternatives asymptotisches Konfidenzintervall fiir A angeben.

Ubungsaufgabe 4.2.2
Bitte fiihren Sie diese Berechnungen durch.

2. Da A > 0 ist, kann man die untere Schranke diesbeziiglich korrigieren:

— X,
)\(Xl,...,Xn):maX{O, Xn_zl—a/2 n}

4.3 Zwei-Stichproben-Probleme

In diesem Abschnitt werden Charakteristiken bzw. Parameter von zwei unterschiedlichen Stich-
proben miteinander verglichen, indem man Konfidenzintervalle fiir einfache Funktionen dieser
Parameter konstruiert.

Betrachten wir zwei Zufallsstichproben Y7 = (Xi1,...,X1pn,), Yo = (Xo1,...,X2,,) von
Zufallsvariablen Xji,...X,,, @« = 1,2, die innerhalb der Stichprobe Y; jeweils unabhangig und

identisch verteilt sind, Xj; 4 X;,j=1,...n; 1 = 1,2 und die Prototyp-Zufallsvariable X; ~
Fy,, 0; € © C R™. Es wird im Allgemeinen nicht gefordert, dal Y7 und Y, unabhéngig sind. Falls
sie voneinander abhéngen, spricht man von verbundenen Stichproben Y7 und Ys. Betrachten wir
eine Funktion g : R*™ — R von den Parametervektoren ¢; und 6. In diesem Skript werden
dabei meistens die Félle m = 1,2, g(61,02) = 61; — 025, g(61,02) = %j untersucht, wobei
0; = (0in,...,0im), i =1,2.

Unsere Zielstellung wird sein, ein (moglicherweise asymptotisches) Konfidenzintervall fiir
g(01,62) mit Hilfe der Stichprobe (Y1, Y2) zu gewinnen.

Dabei wird die selbe Philosophie wie in Abschnitt 4.1 beschrieben verfolgt. Es wird eine
Statistik T'(Y1, Y2, g(01,62)) gesucht, die eine (moglicherweise asymptotische) Priifverteilung F
besitzt und von g(61, 62) explizit abhingt.

Durch das Auflosen der Ungleichung Fojll < T(Y1,Y2,9(01,62)) < Fl_faQ bzgl. g(61,02) be-
kommt man dann ein (moglicherweise asymptotisches) Konfidenzintervall zum Niveau 1 —
a, o=qo1+ as.

4.3.1 Normalverteilte Stichproben

Hier wird angenommen, da X; ~ N(u;,02), i =1,2.

Konfidenzintervall fiir die Differenz ;11 — ;2 bei bekannten Varianzen o? und ¢35 und
unabhangigen Stichproben

Seien Y7 und Y voneinander unabhiingig und o%,0% bekannt. Wir betrachten die Parame-

_ n;
terfunktion g(p1, pe) = p1 — p2. Es seien Xy, = ni > Xij, i = 1,2 die Stichprobenmit-
0 j=1
2

tel der Stichproben Y; und Ys. Es gilt X;n, ~ N(ui, %), i = 1,2. Nach Satz 3.3.3, 4)
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sind X1,, und Xso,, unabhingig. Dann ist wegen der Faltungsstabilitit der Normalvertei-
2 2
lung X1n, — Xop, ~ N (Ml — U2, % + %) Nach dem Normieren erhilt man die Statistik
T(Y1,Ya, p1 — p2) = % ~ N(0,1). Daraus bekommt man das Konfidenzintervall
1,.%

nyp o n2

{Xl’” ~ Koy =21 g | D+ 2, Ky~ Ko+ 15| L+ 2

fir g1 — po zum Niveau 1 — .

bei unbekannten Erwartungswerten p; und po

mqw‘wqw

Konfidenzintervall fiir den Quotienten
und unabhangigen Stichproben

2
Seien Y7 und Ys voneinander unabhéngig. Sei g(o1,02) = Z—% Wir konstruieren die Statistik
2

n; _
T (Y1, Yo, Z—z) folgendermafien: Seien S2, = n_l_l > (Xl-j — Xmi) , 1 = 1,2 die Stichprobenva-
2 4 Z jzl
. . . (ni—l)S?n. 2 .
rianzen der Stichproben Y7 und Y. Dann gilt ———* ~ x5, 4, ¢ = 1,2 nach Satz 3.3.5.

7

Da die Sfm voneinander unabhéngig sind, gilt

(n2—1)S2
o DS,
T(Vv,Ys 1) _ _(me=loy Py T1 F, 1 1
I 9 2 - _ 2 - 2 2 nag—1L,ng—
) (m=DSL, S5, 03
(n1—1)o%

nach der Definition der F' - Verteilung. Daraus ergibt sich das Konfidenzintervall

2 2
Sln1 I Slnl F
S2 no—1,n1—1,a1> 52 no—1,n1—1,1—as
2n9 2n9
. 0'2 .
fir ~% zum Niveau 1 — «.
2

Konfidenzintervall fiir die Differenz p; — o der Erwartungswerte bei verbundenen
Stichproben

Dieses Mal seien Y] und Ys verbunden, X; — Xy ~ N (u1 — u2, 02) fiir ein unbekanntes o2 > 0,
ny = ng = n. Da X;;,j = 1,...,n unabhéngig und identisch verteilt sind, gilt Z; = X1; — Xg; ~
N(uy — p2,0%),j=1,...,n.

Unser Ziel ist es, ein Konfidenzintervall fiir 47 — p2 zu bekommen. Wenn wir die Stichprobe
(Z1,...,Zy) betrachten, und Ergebnisse des Abschnittes 4.2.1, 2. anwenden, so erhalten wir
sofort folgendes Konfidenzintervall:

Sn = Sn ]

[Zn —th1,1-g Nk o

— n n —
fir 11 — p2 zum Niveau 1 — §, wobei Z, = % Zl Zj = % Zl(le — Xoj) = Xin — Xop,
Jj= j=

2 1y = \2 1\ . 7. )2
Sn:mgl(zj—zn) :mj;(le—ng—XanrXQn)
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4.3.2 Poissonverteilte Stichproben

Wir nehmen jetzt an, daf§ die Stichproben Y7 und Y5 unabhéngig sind, und X; ~ Poisson()\;), i =
1, 2. Konstruieren wir asymptotische Konfidenzintervalle fiir g(A1, A2) = A1 —Ag und g(A1, \2) =

noA2 _ A2 _ni o :
Taine T g P T o = const, wobei ny,ny — oco.

Asymptotisches Konfidenzintervall fiir A\; — )\

Um zu einer Statistik T'(Y1, Y2, A1 —A2) zu kommen, die asymptotisch (fir ny, ne — oo) N(0,1)-
verteilt ist, verwenden wir den zentralen Grenzwertsatz von Ljapunow (vergleiche Satz 7.2.6,

WR).

Lemma 4.3.1
Es gilt

Xin, — Xon, — M1+ A2 d

— Y ~ N(0,1)
. A1 =+ Az n1—00
m n2 ng—r0o0
Beweis Fihren wir die Zufallsvariable
_ XM _
\/ﬁ’ k= 1, ..

(VAT
1 2
Znk = Xok—ny —A2

L = k=m1+1,...,n1+ns

e

ein, wobei n = ny + ns. Es gilt: EZ,;, =0 fir alle k = 1,...,n, und
Var X _ A1 E=1..

)
n2(*1+A2) n2(>\1+/\2)
2 1\ nq no 1\ ny ' ng
0<oy,, =VarZ,, = Ay

.y,

k=n1+1,...,n,

somit

Auflerdem gilt fiir 6 > 0 und ny,ne — oo:

n E (| X1 — A[*H0 E (| X1 — Ag|)"°
lim > E(|Zu)*" = lim (X0 = M) (X = 2D =
n—00 n1,n2—00 146 (A Ao (2+9)/2 146 (M Ao (249)/2
= mi*? (3 +32) (3 32)
Somit ist die Ljapunow-Bedingung erfiillt und nach Satz 7.2.6 (WR) gilt
- d
> Zu - Y ~N(0,1).
k=1 n1—00
ng—00
" _
Es gilt aber auch Y Z,;. = X1"17X2"27)‘1+)‘2, somit ist das Lemma bewiesen. O

A A
n=1 ESEES )
1 +"2
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Da Xn, f—s> Ai, © = 1,2 nach dem starken Gesetz der groflen Zahlen, gilt mit Hilfe des Satzes
von Slutsky

Xin, — Xony, — A1+ A2 R

T(Yla Y27 >\1 - )\2) = — — ni,n2—00
\/Xlnl/n1+Xn2/n2 ’

Y ~ N(0,1)

Daraus 148t sich sofort das asymptotische Konfidenzintervall fiir Ay — Ao zum Niveau 1 — «
ableiten:

T [ X1 | Xony — = [ X1n, | Xo
[Xlrn - X2n2 — Rl-a/2 nfl + n;wu X1n1 - X2n2 + RZl—a/2 nlnl + T;Q

naA2
n1A1+n2A2

Asymptotisches Konfidenzintervall fiir

Es sei n1/ng = p = const und g(A1, A2) = mﬂz\éh = B/\I\?H\z Def: p. Es wird ein asymptotisches

Konfidenzintervall fiir p gesucht. Wir fithren die Statistik

SQn _p(Sln + SQn )
T(Y1, Ya, p) = —22 ! 2
O Y P = =) Smr T o))

n;
ein, wobei S, = > Xjj, 4= 1,2 und
j=1

. Sy, n2 X on, fs,
P G + Somy  miX o, nim
1y + 952,  mXip, +neXopy, mmn2—oo

ein konsistenter Schétzer fiir p (wegen des starken Gesetzes der grofien Zahlen) ist. Falls wir zei-
gen konnen, dafl T'(Y1, Ya, p) 4y oN (0,1), so wird daraus folgendes Konfidenzintervall

ni,n2—oo
ableitbar: Aus

S2n2
. S1p, +Sap, N 3/2
lim P|—z_40<——2—— - (S1p, + Son < Zi_a =1-a
1o 1-a/2 \/m ( 1ng 2 2) 1-a/2
ng—r00
folgt, daf3
[0(v1,72), 0014, Va)|
mit
SQTL Sln S2n2
B, 2) = Sin, +2‘92n2 e (S 1+ S )
1"1 2ng
Son S1,, - Son
O(A1,A2) = e+ Z1-a/2 ' :
Siny + S2n, (Slnl + S2n2)

ein asymptotisches Konfidenzintervall fiir p zum Niveau 1 — « ist.
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Da 0 < p < 1 sein soll, konnen die Schranken des Intervalls diesbeziiglich korrigiert werden:
6*(Y1,Y2) = max{0, 8(Y1,Y2)},
0" (Y1,Y2) = min{1, (Y1, Ya)}.
Nun soll die asymptotische Normalverteiltheit von T'(Y1, Ya, p) gezeigt werden. Sie folgt aus
dem Satz von Slutsky und folgendem Lemma:

Lemma 4.3.2
Es gilt:

SQnQ - (Slnl + San) d
—
\/p 1-— Slnl + SQn ) n1—00

Beweis Um die Aussage des Lemmas zu zeigen, verwenden wir einen zentralen Grenzwertsatz
fiir Summen von Zufallsvariablen in zufélliger Anzahl (vgl. Satz 7.2.2 (WR)). Fithren wir die

Folge N,, = Sin, + Sapn, von nichtnegativen Zufallsvariablen ein. Die Summe ist monoton
wachsend. Gleichzeitig setzen wir a,, = ni1A1 + naAa. Offensichtlich gilt
& _ Sln1 SQng
(py,  MIAL +N2A2 N1+ N2A2
_ y1n1 Y2112
A+ pA+ X
ﬁ) )\1 )\2
ni,n2—00 \1 + p_l)\g PAL + Ao
PA1 A2

B PAL + A2 +P/\1+)\2
AuBlerdem gilt:
P (5271,2 =k, Slnl + San = m)
P (Slnl + 52n2 = m)
. IP)(SQTLQ = k, Slnl =m — k‘)
P (Slnl + S2n72 = m)
k

e~ 22 (Aan2)* e~ (niA1)™~
7l (m—H)!

67n1/\17n2/\2 (nl)‘1+77;2)‘2)m
m:

. m)! ( N9 A9 )m ( N1 )m—k
- (m — k)!k! niA1 + nao N1A1L + Nodg

m _
= <k>pk(1—p)m "
Song—mp_ | N, d _Sm—mp

was bedeutet, dal Sop, | N, = m ~ Bin(m,p). Dann gilt ) =M= )

P (Sop, = k | N, = m) =

m
wobei S, = Y. Z; eine Summe von unabhéngigen, identisch verteilten Zufallsvariablen Z; ~

1=1
Bernoulli(p) ist. Nach Satz 7.2.2 (WR) gilt dann
SN, — Nap i> '

n

N(0,1) s 22 = NP d

Nol—p No(—p) N1
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1 Allgemeine Theorie der zufalligen Funktionen

1.1 Zufallige Funktionen

Sei (€2, A, P) ein Wahrscheinlichkeitsraum und (S, B) ein mebarer Raum, Q,S # (.

Definition 1.1.1
Ein zufilliges Element X : ) — S ist eine A|B-mefibare Abbildung (Bezeichnung: X € A|B),
dh.,

X' B)={weQ:X(w)eBc A BeB.

Falls X ein zufilliges Element ist, dann ist X (w) eine Realisierung von X fiir beliebige w € .

Wir sagen, dass die o-Algebra B von Teilmengen von S durch das Mengensystem M erzeugt
wird (M enthélt ebenso Teilmengen von S als seine Elemente), wenn

B= N F

FOM
F-o-Algebra auf S

(Bezeichnung: B = o(M)).
Falls S ein topologischer oder metrischer Raum ist, dann wahlt man oft M als Klasse aller
offenen Mengen von § und nennt o(M) Borelsche o-Algebra (Bezeichnung: B = B(S)).

Beispiel 1.1.1 1. Falls S = R, B = B(R), dann heif}t ein zufilliges Element X eine Zufalls-
variable.

2. Falls § = R™, B = B(R™), m > 1, dann heifit X Zufallsvektor. Zufallsvariablen und
Zufallsvektoren betrachtet man oft in den Vorlesungen , Elementare Wahrscheinlichkeits-
rechnung und Statistik“ und ,,Stochastik I

3. Sei S die Klasse aller abgeschlossenen Mengen von R™. Sei
M={{AeS:ANB # 0}, B - beliebiges Kompaktum aus R™} .

Dann ist X : Q — S eine zufdllige abgeschlossene Menge.

Als Beispiel betrachten wir n unabhéngige gleichverteilte Punkte Y7,...,Y;, € [0,1]™ und
Ri,..., R, > 0 fast sicher unabhéngige Zufallsvariablen, die auf dem selben Wahrscheinlich-
keitsraum (9, A, P) wie Y,...,Y,, definiert sind. Betrachten wir X = U}, Bpg,(Y;). Dies ist
offensichtlich eine zuféllige Menge. Eine beispielhafte Realisierung liefert Abbildung 1.1.

Aufgabe 1.1.1
Seien (€2, A) und (S, B) meBbare Rédume, B = o(M), wobei M eine Klasse von Teilmengen von
S ist. Zeigen Sie, dass X :  — S genau dann A|B-mefbar ist, wenn X ~1(C) € A, C € M.

Definition 1.1.2

Sei T eine beliebige Indexmenge und (S, Bi)ier eine Familie von mefibaren Rdumen. Eine
Familie X = {X(¢),t € T} von Zufallselementen X (t) : @ — S; definiert auf (£2,.4,P) und
A|Bi-mefibar fiir alle t € T heifit zufdllige Funktion (assoziiert mit (Sg, By)ier).
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Abbildung 1.1: Beispiel einer zufilligen Menge X = US_; Bg.(Y;)

Esgiltalso X : QxT — (S, t € T),d.h. X(w,t) € S;firallew € Q, ¢t € Tund X (-, t) € A|B,
t € T. Sehr oft wird w in der Bezeichnung unterlassen und man schreibt X (¢) an Stelle von
X (w,t). In den meisten Féllen héngt auch (S, B) nicht von t € T ab: (S, By) = (S, B) fiir alle
tefT.

Spezialfille zufilliger Funktionen:

1. T CZ: X heifit dann zufillige Folge oder stochastischer Prozess in diskreter Zeit.
Beispiel: T'=7Z, N.

2. T CR: X heifit stochastischer Prozess in stetiger Zeit.
Beispiel: T'= Ry, [a,b], —00 < a < b < o0, R.

3. TCRY d>2: X heift zufilliges Feld.
Beispiel: T = 2%, R%, R?, [a,b]".

4. T C B(R%) : X heiBlt Mengen-indizierter Prozess.
Falls X (t) fast sicher nichtnegativ und o-additiv auf der o-Algebra T ist, dann wird X
zufdlliges Maf$ genannt.

Die Tradition, die Indexmenge durch T zu bezeichnen, kommt von der Interpretation von
t € T in den Féllen 1 und 2 als Zeitparameter.

Fiir jedes w € Q heifit { X (w,t), t € T} eine Trajektorie bzw. ein Pfad der zufélligen Funktion
X.

Wir méchten zeigen, dass die zufillige Funktion X = {X(¢), t € T'} ein zufilliges Element
im entsprechenden Funktionsraum ist, welcher mit einer o-Algebra ausgestattet ist, die jetzt
spezifiziert wird.

Sei St = [],cr Si das kartesische Produkt von S, t € T, d.h., X € S falls X(t) € S;, t € T.
Die elementare Zylindermenge in Sy wird definiert als

CT(Bt) = {X € St : X(t) S Bt},

wobei t € T ein ausgewéahlter Punkt aus T und By € B, eine Teilmenge in 5, ist. Cp(B;) enthélt
also alle Trajektorien X, die durch das ,, Tor* B; gehen, siehe Abbildung 1.2.
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v

T

Abbildung 1.2: Trajektorien, die ein ,, Tor“ B; passieren.

Definition 1.1.3

Die zylindrische o-Algebra By wird eingefiihrt als eine o-Algebra erzeugt in Sy durch die Familie
von allen Elementarzylindern. Man bezeichnet sie durch By = Qe B;. Falls B, = B fiir alle
t € T, dann schreibt man BT an Stelle von Br.

Lemma 1.1.1
Die Familie {X = X (t), t € T} ist eine zufillige Funktion auf (€2, A, P) mit Phasenrdumen
(St, Bi)ter genau dann, wenn fiir jedes w € Q die Abbildung w — X (w, -) A|Bp-mefibar ist.

Aufgabe 1.1.2
Beweisen Sie Lemma 1.1.1.

Definition 1.1.4
Sei X ein zufélliges Element: X : Q — S, d.h. X sei A|B-meBbar. Die Verteilung von X ist das
Wahrscheinlichkeitsma8l Px auf (S, B), so dass Px(B) = P(X~1(B)), B € B.

Lemma 1.1.2
Ein beliebiges Wahrscheinlichkeitsmaf i auf (S, B) kann als die Verteilung eines Zufallselemen-
tes X betrachtet werden.

Beweis Setze 0 =S, A=B,P =pund X(w) =w, w € Q. |

Wann existiert eine zuféllige Funktion mit vorgegebenen Eigenschaften? Eine zufallige Funk-
tion, die aus unabhéngigen Zufallselementen besteht, existiert immer. Diese Behauptung ist
bekannt.

Theorem 1.1.1 (Lomnicki, Ulam):

Sei (S, By, pit)ter eine Folge von Wahrscheinlichkeitsraumen. Es existiert eine zufillige Folge
X = {X(t), t € T} auf einem Wahrscheinlichkeitsraum (2,4, P) (assoziiert mit (S, By)er),
so dass

1. X(t), t € T unabhéngige Zufallselemente sind.
2. PX(t) = [t auf (St,Bt), teT.

Viele wichtige Zufallsprozesse sind auf Basis von unabhéngigen zufélligen Elementen konstru-
iert; vgl. Beispiele im Abschnitt 1.2.
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Definition 1.1.5

Sei X = {X(t),t € T} eine zufillige Funktion auf (€, .A, P) mit Phasenraum (S;, B:)ier. Die
endlich-dimensionalen Verteilungen von X werden definiert als das Verteilungsgesetz Py, 4,
von (X(t1),..., X (t,))" auf (St1,...tns Bty,..t,,), fiir beliebige n € N, ¢1,...,t, € T, wobei
Stitn = Sty X ... X S,ound By 4, = By ® ... ® By, die o-Algebra in S, 4, ist, die
von allen Mengen By, X ... x By, By, € By, i = 1,...,n, erzeugt wird, d.h., P, 4. (C) =
P(X(t1),...,X(#t.))T € C), C € By, .4, Insbesondere fiir C = By X ... x B, By € By, :

Ptytn(B1 X ... X By) =P(X(t1) € By,...,X(tn) € Bp).

Aufgabe 1.1.3
Zeigen Sie, dass Xy, 4, = (X(t1),... , X (ty)T ein A|By, ... +,-meBbares Zufallselement ist.

Definition 1.1.6

Sei §; = R fur alle ¢ € T. Die zufillige Funktion X = {X(¢),t € T'} heifit symmetrisch, falls
alle ihre endlich-dimensionalen Verteilungen symmetrische Wahrscheinlichkeitsmafle sind, d.h.,
Pitn(A) = Py 1 (—A) fur A € By,,.+, und alle n € N, ¢y,...,t, € T. Dabei bedeutet
Pitn(—A) =P((=X(t1),...,—X(t,))T € A).

Aufgabe 1.1.4

Zeigen Sie, dass die endlich-dimensionalen Verteilungen einer zufilligen Funktion X folgende
Eigenschaften besitzen: fiir beliebiges n € N, n > 2, {t1,...,t,} CT, By € S, k=1,...,n
und eine beliebige Permutation (iy,...,4,) von (1,...,n) gilt:

1. Symmetrie: Py, 4. (B1 X ... X By) = Ptil,...,tin(Bil X ...X Bj)
2. Konsistenz: Py, 4, (B1 X ... X Bp_1 X 8,) =Py .4, ,(B1 X ... x Bp_1)

Folgender Satz zeigt, dass diese Eigenschaften hinreichend sind, um die Existenz einer zufél-
ligen Funktion X mit vorgegebenen endlich-dimensionalen Verteilungen zu beweisen.

Theorem 1.1.2 (Kolmogorov):

Sei {P¢, .t,, n €N, {t1,...,t,} C T} eine Familie von Wahrscheinlichkeitsmafien auf (R™ x
. xXR™ B(R™)®...@B(R™)), welche die Bedingungen 1 und 2 von Aufgabe 1.1.4 erfiillen. Dann
existiert eine zuféllige Funktion X = {X (¢),¢ € T'} definiert auf einem Wahrscheinlichkeitsraum
(2, A, P) mit endlich-dimensionalen Verteilungen Py, 4.

Beweis Siehe [13], Abschnitt I1.9. 0

Dieser Satz gilt auch auf allgemeineren (jedoch nicht beliebigen!) Raumen als R™, auf sog.
Borel-Rdumen, die in einem gewissen Sinne isomorph zu ([0, 1],510,1]) oder einem Teilraum
davon sind.

Definition 1.1.7

Sei X = {X(t), t € T} eine zufillige Funktion mit Werten in (S, B), d.h., X(t) € S fast sicher
fiir beliebige t € T'. X heifit mefbar, falls die Abbildung X : (w,t) — X(w,t) € S, (w,t) € QT
A @ C|B-meBbar ist.

Somit liefert die Definition 1.1.7 nicht nur die Mefibarkeit von X bzgl. w € Q: X(-,t) € A|B
fir alle t € T, sondern X(+,-) € A® C|B als Funktion von (w,t). Die Mefbarkeit von X ist
dann von Bedeutung, wenn X (w,t) zu zufilligen Zeitpunkten 7 : Q — T betrachtet wird:
X (w,7(w)). Dies ist insbesondere in der Martingaltheorie der Fall, wenn 7 eine sog. Stoppzeit
fiir X ist. Denn die Verteilung von X (w, 7(w)) kann stark von der Verteilung von X (w,t),t € T,
abweichen.
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1.2 Elementare Beispiele

Fir die explizite Konstruktion kann der Satz von Kolmogorov nur in wenigen Féllen direkt
benutzt werden, da bei vielen zufélligen Funktionen ihre endlich-dimensionalen Verteilungen
nicht explizit angegeben werden konnen. In diesen Féllen konstruiert man eine neue zufillige
Funktion X = {X(t),t € T} als X(t) = g(t,Y1,Y2,...), t € T, wobei g eine mefibare Funktion
ist und {Y,,} eine Folge von Zufallselementen (auch zufélligen Funktionen) ist, deren Existenz
bereits sichergestellt wurde. Hier geben wir einige Beispiele dafiir.

Sei X = {X(t),t € T} eine reellwertige zuféllige Funktion mit einem Wahrscheinlichkeits-
raum (2, A, P).

1. Weifles Rauschen:

Definition 1.2.1
Die zuféllige Funktion X = {X(¢),t € T'} heiit weiffes Rauschen, falls alle X (t), t € T,
unabhéngige und identisch verteilte (u.i.v.) Zufallsvariablen sind.

Weifles Rauschen existiert nach dem Satz 1.1.1. Es wird verwendet um das Rauschen in
(elektromagnetischen oder akustischen) Signalen darzustellen. Falls X (¢) ~ Ber(p), p €
(0,1), t € T, so spricht man von Salt-and-pepper Rauschen, also vom binédren Rauschen,
das bei Ubertragung von biniren Daten in Computer-Netzwerken auftritt. Falls X (¢) ~
N(0,0%),0%2>0,t €T, sowird X Gaufy’sches weifes Rauschen genannt. Es tritt z.B. in
akustischen Signalen auf.

2. Gauf’sche zufdllige Funktion:

Definition 1.2.2
Die zufillige Funktion X = {X(¢), t € T'} heiBt Gauf§’sch, falls alle ihre endlich-dimen-
sionalen Verteilungen Gaufi’sch sind, d.h. fiir allen € N, ¢1,...,t, C T gilt

Xty = (X (1), X (1) T~ N (s D )5

t1,..tn

wobei der Mittelwert durch i, ;. = (EX(t1),...,EX(¢,))" und die Kovarianzmatrix
durch 37, 4 = ((cov(X(t;), X (¢;))i ;=1 gegeben ist.

Aufgabe 1.2.1

Zeigen Sie, dass die Verteilung einer Gaufy’schen zufélligen Funktion X eindeutig durch ih-
re Mittelwertfunktion u(t)=EX(t),t € T, bzw. Kovarianzfunktion C(s,t)=E[X (s) X (¢)],
s,t € T, bestimmt wird.

Als Beispiel eines Gaufi’schen Prozesses kann der sog. Wiener-Prozess (oder Brown’sche
Bewegung) X = {X(t),t > 0} dienen, der den Erwartungswert Null (u(t) = 0,t > 0)
und die Kovarianzfunktion C(s,t) = min {s,t}, s,t > 0 hat. Normalerweise fordert man
zusétzlich, dass die Pfade von X stetige Funktionen sind.

Die Regularitétseigenschaften der Pfade von zufilligen Funktionen werden wir detaillier-
ter im Abschnitt 1.3 erforschen. Jetzt konnen wir sagen, dass ein solcher Prozess mit
Wahrscheinlichkeit 1 (mit fast sicher stetigen Trajektorien) existiert.

Aufgabe 1.2.2
Zeigen Sie, dass Gaufy’sches Weifles Rauschen eine Gauf’sche Zufallsfunktion ist.
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3. Lognormal- und x?-Funktionen:
Die zufillige Funktion X = {X(t), t € T} heifit lognormal, falls X(t) = e¥® wobei
Y = {Y(t),t € T} eine GauB’sche zufillige Funktion ist. X heifit x?-Funktion, falls X (t) =
Y (t)]|?, wobei Y = {Y(t),t € T} eine Gaufi’sche zufillige Funktion mit Werten in R"
ist, fiir die Y(¢) ~ N (0,1), t € T; hier ist I die (n x n)-Einheitsmatrix. Es gilt dann
X(t)~x2,teT.

4. Kosinus- Welle:
X = {X(t),t € R} wird definiert durch X (t) = v/2cos(27Y +tZ), wobei Y ~ U([0,1])
und Z eine Zufallsvariable ist, die von Y unabhéngig ist.

Aufgabe 1.2.3

Seien X7, Xo,... w.i.v. Kosinus-Wellen. Bestimmen Sie den schwachen Grenzwert der
endlich dimensionalen Verteilungen der zufilligen Funktion {ﬁ Y1 Xk(t), te R} fiir
n — 00.

5. Poisson-Prozess:

Sei {Y,},cn eine Folge von u.i.v. Zufallsvariablen Y;, ~ Exp(A),A > 0. Der stochasti-
sche Prozess X = {X(t),t > 0} definiert als X (¢f) = max{n € N: Y 7, ¥ <t} heifit
Poisson-Prozess mit Intensitdat A > 0. X (¢) zéhlt die Anzahl gewisser Ereignisse bis zum
Zeitpunkt ¢ > 0, wobei das typische Intervall zwischen zwei solchen Ereignissen eine
Exp(A)-Verteilung besitzt. Diese Ereignisse konnen z.B. eine Schadensmeldung eines Ver-
sicherers, das Registrieren eines Elementarteilchens im Geigerzédhler, usw. sein. Dann ist
X (t) die Schaden- bzw. Teilchenanzahl im Zeitintervall [0, ¢].

1.3 Regularitatseigenschaften von Trajektorien

Der Satz von Kolmogorov gibt die Existenz der Verteilung einer zufélligen Funktion mit vorgege-
benen endlich-dimensionalen Verteilungen an. Jedoch er sagt nichts iiber die Pfadeigenschaften
von X aus. Dies ist auch verstédndlich, denn alle zufélligen Objekte sind in der Wahrscheinlich-
keitstheorie im fast sicheren Sinne (f.s.) definiert, also bis auf eine Menge A C Q mit P(A) = 0.

Beispiel 1.3.1
Sei (2, 4,P) = ([0,1
[X = X(1), te[01]

1, B([0,1]),v1), wobei 11 das Lebesgue-Maf3 auf [0, 1] ist. Definieren wir
} durch X(¢) =0,t€[0,1]] und Y = {Y(¢), t € [0,1]} durch

1, =1,
Y() = { 0, sonst,

wobei U(w) = w, w € [0, 1], eine U([0, 1])-verteilte Zufallsvariable definiert auf (€2, A, P) ist. Da
PY(t)=0)=1,te T, ist,weil P(U =t) =0,t € T, ist es klar, dass X 2 Y. Dennoch besitzen
X und Y unterschiedliche Pfadeigenschaften, da X stetige und Y sprunghafte Trajektorien hat,
und P(X(t) =0, Vt € T) =1, wobei P(Y(¢t) =0, Vt € T) = 0.

Es kann sein, dass die ,,Ausnahmemenge“ A (siehe oben) fiir X(¢) fir jedes t € T sehr
unterschiedlich ist. Deshalb fordert man, dass alle X (¢), t € T, simultan auf einer Teilmenge
Qo € N mit P(Qg) = 1 definiert sind. Die so definierte zufillige Funktion X : Qg x T' — R
heiBt Modifikation von X : Q x T — R. X und X unterscheiden sich auf einer Menge Q/Q von
Wahrscheinlichkeit Null. Deshalb meinen wir spéter, wenn wir sagen, dass ,,Zufillige Funktion
X eine Eigenschaft C besitzt* dass eine Modifikation von X mit dieser Eigenschaft C existiert.
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Definition 1.3.1
Die zufélligen Funktionen X = {X(¢), t € T} und Y = {Y(¢), t € T'} definiert auf demselben
Wahrscheinlichkeitsraum (€2, A, P) heiflen (stochastisch) dquivalent, falls

Bi={weQ: X(w,t) ZY (w,t)} € A, t €T,

und P(B;) =0, t € T.

Man sagt auch, dass X und Y Versionen einer und derselben zufélligen Funktion sind. Es ist
klar, dass alle Modifikationen (oder Versionen) von X &quivalent zu X sind.

Aufgabe 1.3.1
Beweisen Sie, dass die zufélligen Funktionen X und Y im Beispiel 1.3.1 stochastisch dquivalent
sind.

Definition 1.3.2
Die zufélligen Funktionen X = {X(¢t), t€ T} und Y = {Y(¢), t € T} (nicht unbedingt auf
demselben Wahrscheinlichkeitsraum definiert) heiflen dquivalent in Verteilung, falls Px = Py

auf (S, By). Bezeichnung: X Ly,
Nach dem Satz 1.1.2 ist es ausreichend fiir die Aquivalenz in Verteilung von X und Y, wenn

sie dieselben endlich-dimensionalen Verteilungen besitzen. Es ist klar, dass die stochastische
Aquivalenz die Aquivalenz in Verteilung impliziert, jedoch nicht umgekehrt.

Definition 1.3.3

Die zufélligen Funktionen X = {X(¢), t € T} und Y = {Y(¢), t € T'} definiert auf demsel-
ben Wahrscheinlichkeitsraum (€2, A, P) assoziiert mit (S, B;)ter haben dquivalente Trajektorien
(oder heiflen auch stochastisch ununterscheidbar), falls

A={weQ: X(w,t) #Y(w,t) fireinteT} e A

und P(A4) = 0.

Dieser Begriff bedeutet, das X und Y Pfade haben, die mit Wahrscheinlichkeit 1 iiberein-
stimmen. Falls der Raum (2, A, P) wollstindig ist (d.h. aus A € A : P(A) = 0 folgt fiir alle
B C A: B € A (und dann P(B) = 0)), dann sind ununterscheidbare Prozesse stochastisch
dquivalent.

Seien nun 7' und & Banach-Rdume mit den Normen |- |7 bzw. | - |s. Die zufillige Funktion
X ={X(t), t € T} sei nun auf (9,4, P) definiert mit Werten in (S, B).

Definition 1.3.4
Die zufillige Funktion X = {X(t), t € T'} heifit

a) stochastisch stetig auf T, falls X(s) % X (), fir beliebige ¢t € T', d.h.
P(IX(s) = X(t)ls > &) — 0, fiir alle € > 0.

b) LP-stetig auf T, p > 1, falls X(s) L—”t> X(1), t € T, dh. E|X(s) = X(1)]) —> 0. Fiir
s S—

p = 2 benutzt man die spezielle Bezeichnung ,Stetigkeit im quadratischen Mittel*.

¢) f.s. stetig auf T, falls X (s) % X(t),teT, dh., P(X(s) — X(t))=1,teT.

s—t
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d) stetig, falls alle Trajektorien von X stetige Funktionen sind.

In Anwendungen interessiert man sich fiir die Falle ¢) und d), obwohl die schwéchste Form
der Stetigkeit die stochastische Stetigkeit ist.

‘L”—Stetigkeit ‘ — ’ Stochastische Stetigkeit ‘ — ‘f.s. Stetigkeit ‘ — ’ Stetigkeit aller Pfade

Warum sind Félle ¢) und d) wichtig? Betrachten wir ein Beispiel.

Beispiel 1.3.2

Sei T = [0,1] und (9, .A,P) sei ein kanonischer Wahrscheinlichkeitsraum mit © = RI%1 d.h.
Q = Il R Sei X = {X(¢), t €[0,1]} ein stochastischer Prozess auf (£2,.A, P). Nicht alle
Ereignisse sind aber Elemente von A, wie z.B. A = {w € Q: X(w,t) =0 fir alle t € [0,1]} =
Neefo, {X (w, ) = 0}, weil dies ein Schnitt von messbaren Ereignissen aus A in {iberzéhlbarer
Anzahl ist. Falls allerdings X stetig ist, dann sind auch alle seine Pfade stetige Funktionen und
man kann A = Nep {X (w,t) = 0} darstellen lassen, wobei D eine dichte abzéhlbare Teilmenge
von [0, 1] ist, z.B., D = QN [0, 1]. Dann gilt aber A € A.

Es ist allerdings in vielen Anwendungen (wie z.B. in der Finanzmathematik) nicht realistisch,
stochastische Prozesse mit stetigen Pfaden als Modelle fiir reale Phdnomene zu betrachten.
Deshalb wird eine grofiere Klasse von moglichen Trajektorien von X erlaubt: die sog. cadldg-
Klasse (cadlag = continue a droite, limitée a gonche (fr.)).

Definition 1.3.5
Ein stochastischer Prozess X = {X(t), t € R} heiit cadlag, wenn alle seine Trajektorien rechts-
seitig stetige Funktionen sind, die linksseitige Grenzwerte besitzen.

Jetzt wollen wir die Eigenschaften der oben eingefithrten Stetigkeitsbegriffen ndher betrach-
ten. Es stellt sich z.B. fest, dass die stochastische Stetigkeit eine Eigenschaft der zweidimensio-
nalen Verteilung P ; von X ist, wie folgendes Lemma zeigt.

Lemma 1.3.1
Sei X = {X(t), t € T'} eine zufillige Funktion assoziiert mit (S, B), wobei S und T' Banach-
Réume sind. Folgende Aussagen sind dquivalent:

P

a) X(S) m Y,
b) Ps7t stoto P(Y,Y)7

wobei tg € T und Y ein B-Zufallselement ist. Fiir die stochastische Stetigkeit von X sollen
to € T beliebig und Y = X (ty) gewahlt werden.

Beweis a) = b)
X(s) % Y bedeutet (X(s),X(t))" AN (Y,Y)T. Daraus folgt Ps, A Pivy), weil L
s—to

s,t—to
Konvergenz strenger als i>—Konvergenz ist.
b) = a)
Fiir beliebiges ¢ > 0 betrachten wir eine stetige Funktion g. : R — [0,1] mit ¢-(0) = 0,
ge(x) =1, x ¢ B:(0). Es gilt fiir alle s,¢ € T, dass

Ege(|X(s) — X(#)ls) = P(1X(s) = X(t)|s > ) + E(g=(|X(s) — X (t)|s)E(|X(s) = X(t)]s <€),
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daher P(|X(s) — X(t)ls > ¢) < Bge(IX(s) = X(t)ls) = Js [s 9e( =~ yls)Pse(d(z,y)) =

Js Js ge(lz — yls)Pvyy(d(z,y)) = 0, weil Pyy) auf {(z,y) € S?:zx= y} konzentriert ist und
9:(0) = 0. Daher ist {X(s)}, ,;, eine fundamentale Folge (in Wahrscheinlichkeit), weshalb

X(s) —— Y. 0

s—to

Es kann sein, dass X stochastisch stetig ist, obwohl alle Pfade von X Spriinge haben, d.h. X
kann keine f.s. stetige Modifikation besitzen. Die anschauliche Erklarung dessen ist, dass solche
X mit Wahrscheinlichkeit Null einen Sprung fiir konkretes ¢t € T haben kénnen. Deshalb treten
Springe der Pfade von X immer an anderen Stellen ¢t € T" auf.

Aufgabe 1.3.2
Zeigen Sie, dass der Poisson-Prozess stochastisch stetig ist, obwohl er keine f.s. stetige Modifi-
kation besitzt.

Aufgabe 1.3.3
Sei T kompakt. Zeigen Sie, dass falls X stochastisch stetig auf 7" ist, dann ist es auch gleichméfig
stochastisch stetig, d.h., fiir alle e, > 0 30 > 0, so dass fiir alle s,t € T mit |s — t|p < 0 gilt:
P(|X(s) — X(t)|ls >¢) <n.

Nun sei S = R, EX2(t) < oo, t € T, EX(t) = 0, t € T. Sei C(s,t) = E[X(5)X(¢)] die
Kovarianzfunktion von X.

Lemma 1.3.2
Fiir alle tg € T und eine Zufallsvariable Y mit EY? < oo sind folgende Behauptungen fdquivalent:

) X(s) Eoy
s—to

b) C(s,t) —— EY?

s,t—to

Beweis a) = b)
Die Behauptung folgt aus der Ungleichung von Cauchy-Schwarz:

|C(s,t) —EY?| = |E(X(5)X(t)) —EY?)|=|E[(X(s) =Y +Y)(X(t)-Y +Y)] — EY?|
E[(X(s) = Y)(X() —Y)|[+E[(X(s) - Y)Y[+E[(X() - Y)Y]

E(X(s)-Y)* E(X(t)-Y)?
—_——
1X(5)=Y |12, 1X(0)=Y12,

IN

IN

s,t—to

w EYZE(X(s) — V)% + J EY2E(X(t) — V)2 —— 0
—_— —_—

X ()= Y12, IX(0)-Y]2,

nach Voraussetzung a).

b) = a)

E(X(s) = X(t))* = E(X(s))® - 2E[X(s)X(t)] + E(X(1))?
= C(s,s)+C(t,t) —20(s,t) — 2EY? — 2EY? = 0.

s,t—to

2
Daher ist {X(s), s — to} eine fundamentale Folge im L2-Sinne, und es folgt X (s) % Y. O
s—to
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Eine zufillige Funktion X, die stetig im mittleren quadratischen Sinne ist, kann immer noch
unstetige Trajektorien besitzen. In den meisten Féllen, die praktische Relevanz besitzen, hat
X jedoch eine f.s. stetige Modifikation. Dies werden wir spiter in Form eines Satzes praziser
machen.

Folgerung 1.3.1

Die zuféllige Funktion X, die den Voraussetzungen des Lemmas 1.3.2 geniigt, ist stetig auf 7" im
mittleren quadratischen Sinne genau dann, wenn ihre Kovarianzfunktion C : T? — R stetig auf
der Diagonalen diagT? = {(s,t) € T? : s = t} ist, d.h., limg ¢y, C(s,t) = C(2) fiir alle ¢y € T.

Beweis Wihle Y = X (¢p) in Lemma 1.3.2. O

Bemerkung 1.3.1
Falls X nicht zentriert ist, dann fordert man die Stetigkeit von p(-) zusammen mit der Stetigkeit
von C auf diag T2, um die L2-Stetigkeit von X auf T zu gewéhrleisten.

Aufgabe 1.3.4
Geben Sie ein Beispiel eines stochastischen Prozesses mit f.s. unstetigen Trajektorien, der L2-
stetig ist.

Nun betrachten wir die Eigenschaft der (f.s.) Stetigkeit etwas ndher. Wie vorher erwéahnt,
koénnen wir lediglich von einer stetigen Modifikation oder Version eines Prozesses sprechen. Die
Moéglichkeit,eine solche Version zu besitzen, hingt ebenso von den Eigenschaften der zweidi-
mensionalen Verteilungen des Prozesses ab, wie folgender Satz (urspriinglich bewiesen von A.
Kolmogorov) zeigt.

Theorem 1.3.1
Sei X ={X(t), t € [a,b]}, —00 < a < b < +00, ein reellwertiger stochastischer Prozess X hat
eine stetige Version, falls es Konstanten «, ¢,d > 0 gibt, so dass

EIX(t+h) — X (t)|* < c|h|'™, t € (a,b), (1.3.1)
fiir ausreichend kleine |A].
Beweis Siehe, z.B. [7], Theorem 2.23. 0

Nun wenden wir uns den Prozessen mit cadlag-Trajektorien zu. Sei (£2,.4, P) ein vollstandiger
Wahrscheinlichkeitsraum.

Theorem 1.3.2
Sei X = {X(t), t > 0} ein reellwertiger stochastischer Prozess und D eine abzé&hlbare dichte
Teilmenge von [0, c0). Falls

a) X stochastisch rechtsseitig stetig ist, d.h., X (¢ + h) ﬁ X(t),t €]0,400),
ﬁ

b) die Trajektorien von X fiir jedes t € D endliche rechts- und linksseitige Grenzwerte haben,
d.h., limp_,4g X(t + h), teDfs.,

dann hat X eine Version mit f.s. cadlag-Pfaden.

Ohne Beweis.
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Lemma 1.3.3

Seien X = {X(t), t >0} und {Y =Y (¢), t > 0} zwei Versionen einer zufélligen Funktion,
beide definiert auf dem Wahrscheinlichkeitsraum (€2, A, P), mit der Eigenschaft, dass X und YV
f.s. rechtsseitig stetige Trajektorien haben. Dann sind X und Y ununterscheidbar.

Beweis Seien Qx,Qy ,,Ausnahmemengen®, fiir die die Trajektorien von X bzw. von Y nicht
rechtsseitig stetig sind. Es gilt P(Qx) = P(Q2y') = 0. Betrachte A; = {w € Q : X(w,t) # Y(w,t)},
t € [0,+00) und A = Uieq, Ay, wobei Qp = QN [0,400). Da X und Y stochastisch dquivalent
sind, gilt P(A) = 0 und deshalb P(A) = P(AUQx UQy) < P(A) +P(Qx) + P(Qy) = 0, wobei
A= AUQyx UQy. Somit gilt X(w,t) = Y(w,t) fir t € Q; und w € Q\ A. Wir beweisen
dies nun fir alle t > 0. Fiir beliebiges ¢t > 0 existiert eine Folge {t,} C Q, so dass t, | t.
Da X (w,t,) = Y(w,t,) fir allen € Nund w € Q\ A, gilt X(w,t) = lim, o X(w,t,) =
limy, oo Y (W, t,) = Y (w, t) fiir t > 0 und w € O\ A. Deshalb sind X und Y ununterscheidbar.
O

Folgerung 1.3.2
Falls cadlag-Prozesse X = {X(t), t >0} und Y = {Y(¢), t > 0} Versionen einer zufilligen
Funktion sind, dann sind sie ununterscheidbar.

1.4 Differenzierbarkeit von Trajektorien

Sei T ein linearer normierter Raum.

Definition 1.4.1
Eine reellwertige zufillige Funktion X = {X(t), t € T'} ist differenzierbar auf T in Richtung
h € T stochastisch, im LP-Sinne, p > 1, oder f.s., falls es

i X(E+ R = X (1)

150 l :Xh<t), tGT

existiert im entsprechenden Sinne, also stochastisch, im LP-Raum oder f.s..

Die Lemmata 1.3.2 - 1.3.3 zeigen, dass die stochastische Differenzierbarkeit eine Eigenschaft
ist, die durch dreidimensionale Verteilungen von X bestimmt ist (weil die gemeinsame Vertei-

lung von X(thl)_x(t) und X=X o hwach konvergieren soll), wobei die Differenzierbarkeit

im mittleren quadratischen Sinne durch die Glattheit der Kovarianzfunktion C(s,t) bestimmt
wird.

Aufgabe 1.4.1
Zeigen Sie, dass

1. der Wiener-Prozess nicht stochastisch differenzierbar auf [0, c0) ist.

2. der Poisson-Prozess stochastisch differenzierbar auf [0, 00) ist, jedoch nicht im LP-Mittel,
p=>1

Lemma 1.4.1
Eine zentrierte zufillige Funktion X = {X(¢), t € T} (d.h., EX(t) = 0, t € T), ist L%
differenzierbar in ¢ € T in Richtung h € T, falls ihre Kovarianzfunktion C' zweimal diffe-

renzierbar in (¢,t) in Richtung h ist, d.h., falls C}, (t,t) = a;schgti) . X, (t) ist L*-stetig in
s=
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7 2 "
teT, falls Cp (s, t) = aaschg?i) stetig in s = ¢ ist. Daher ist C; (s, t) die Kovarianzfunktion von

X, = {X,(t), teT}.

Beweis Nach Lemma 1.3.3 reicht es zu zeigen, dass

I= lim E(X(t+lh)_X(t) X(s+l/h)—X(s>>

L' =0

l U

existiert fiir s = ¢t. In der Tat erhalten wir

I = % (C’(t +1lh,s+1'h)—C(t+1h,s) — C(t,s +1 h) + C(t, s))
1 (C@t+1h,s+1h)—C(t+1h,s) C(t,s+1h)—C(ts)

_ : _ - c, s, ).
l ( l l ) l,ll~)0 hh( )

Alle anderen Aussagen des Lemmas folgen aus dieser Relation. O

Bemerkung 1.4.1

Die Eigenschaften der L2-Differenzierbarkeit und der f.s. Differenzierbarkeit von zufilligen
Funktionen sind definiert im folgenden Sinne: es gibt stochastische Prozesse, die L2-differen-
zierbare Pfade haben, obwohl sie f.s. unstetig sind, und umgekehrt sind Prozesse mit f.s. diffe-
renzierbaren Pfaden nicht immer L?-differenzierbar, weil z.B. die erste Ableitung ihrer Kova-
rianzfunktion nicht stetig ist.

Aufgabe 1.4.2
Geben Sie entsprechende Beispiele an!

1.5 Momente und Kovarianz

Sei X = {X(t), t € T} eine zuféllige Funktion, die reellwertig ist, und sei T' ein beliebiger
Indexraum.

Definition 1.5.1

Das gemischte Moment pt-+37)(ty, ... t,) von X der Ordnung (ji,...,jn) € N? t1,...,t, €T
ist gegeben durch plUt-dn)(ty,.. . t,) = E[XJ1(t;)-...- XIn(t,)], vorausgesetzt, dass die-
ser Erwartungswert existiert und endlich ist. Dann ist es ausreichend vorauszusetzen, dass
E[X(¢)]) < oo fiirallet € T und j = j1 + ...+ jn.

Wichtige Spezialfille:
L op(t) =pM(t) =EX(t), t € T — Mittelwertfunktion von X.

2. b (s,1) = E[X(s)X(t)] = C(s,t) — (nicht-zentrierte) Kovarianzfunktion von X. Sie
ist zu unterscheiden von der zentrierten Kovarianzfunktion: K (s,t) = cov((X(s), X (t)) =
pD (s,1) — p(s)u(t), s,t € T.

Aufgabe 1.5.1
Zeigen Sie, dass die zentrierte Kovarianzfunktion einer reellwertigen zufélligen Funktion X

1. symmetrisch ist, d.h., K(s,t) = K(t,s), s,t € T.
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2. positiv semidefinit ist, d.h., fir allen € N, t1,...,t, €T, z1,...,2, € R gilt

n
Z K(ti,tj)ZiZj > 0.
3,j=1

3. K(t,t) =var X(t) erfillt, t € T

Die Eigenschaft 2) gilt auch fir die nicht-zentrierte Kovarianzfunktion C(s,t).

Die Mittelwertfunktion pu(t) zeigt einen (nicht zufélligen) Trend dar. Falls sie bekannt ist,
kann die zufillige Funktion X zentriert werden, indem man eine zufillige Funktion Y =
{Y(t), t € T} mit Y(t) = X(t) — p(t), t € T betrachtet.

Die Kovarianzfunktion K (s,t) bzw. C(s,t) enthélt Informationen iiber die Abhéngigkeitss-

truktur von X. Manchmal wird statt K bzw. C' die Korrelationsfunktion R(s,t) = %
S,S s

verwendet, fiir alle s,t € T: K(s,s) = var X(s) > 0, K(t,t) = var X(t) > 0. Durch die Unglei-
chung von Cauchy-Schwarz gilt |R(s,t)| < 1, s,t € T. Die Menge aller gemischten Momente
legt die Verteilung einer zufilligen Funktion im Allgemeinen nicht (eindeutig) fest.

Aufgabe 1.5.2
Geben Sie Beispiele von verschiedenen zufélligen Funktionen X = {X(¢), t€ T} und ¥V =
{Y(t), t € T}, fiir die gilt EX(t) = EY (t), t € T und E(X(5)X(t)) = E(Y(s)Y (t)), s,t € T

Aufgabe 1.5.3
Sei i : T' — R eine beliebige Funktion und K : T'xT — R eine positiv semidefinite symmetrische
Funktion. Zeigen Sie, dass eine zuféllige Funktion X = {X(t), t € T} existiert mit EX(t) =
p(t), cov(X(s), X(t)) = C(s,t), s,t €T.

Sei nun X = {X(t), t € T'} eine reellwertige zufillige Funktion mit E|X (¢)|* < oo, t € T,
fiir ein k € N.

Definition 1.5.2
Der mittlere Zuwachs der Ordnung k von X ist gegeben durch 7y (s,t) = E(X(s) — X (),
s,teT.

Besondere Aufmerksamkeit gilt der Funktion (s, t) = 372(s,t) = SE(X(s)— X (t))%, s,t € T,
die Variogramm wvon X genannt wird. Das Variogramm wird in Geostatistik oft an Stelle der
Kovarianzfunktion benutzt. Oft wird dafiir die Bedingung EX?(t) < oo, t € T nicht gestellt,
sondern es wird vorausgesetzt, dass (s, t) < oo fiir alle s,t € T.

Aufgabe 1.5.4

Zeigen Sie, dass es zufillige Funktion ohne endlichen 2. Momenten mit (s, t) < oo, s,t € T
gibt.

Aufgabe 1.5.5

Zeigen Sie, dass fiir eine zufillige Funktion X = {X(¢), ¢t € T'} mit Mittelwertfunktion p und
Kovarianzfunktion K gilt:

K(s,s)+ K(t,t)
2

A (s,1) = ~ K(s,1) + 5(uls) ~ (1) s,tET

Falls die zuféllige Funktion X komplezwertig ist, d.h., X : Q x T — C, mit E | X (¢)]* < o0,
t € T, dann wird die Kovarianzfunktion von X als K(s,t) = E(X(s) — EX(s))(X(t) — EX(¢)),
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s,t € T, eingefiithrt, wobei z das Komplex-konjugierte von z € C ist. Es gilt dann K(s,t) =
K(t,s), s,t € T, und K ist positiv semidefinit, d.h., firallen € N, t1,...,t, € T, z1,...,2, € C
gilt 32351 K(ti, t5)zi7; = 0.

1.6 Stationaritat und Unabhangigkeit

Sei T' eine Teilmenge vom linearen Vektorraum mit Operationen +, — {iber den Raum R.

Definition 1.6.1
Die zufallige Funktion X = {X (¢), t € T} heifit stationdr (im engen Sinne), falls fir alle n € N,
hoti,...,tp € T mit t; + h,...,t, + h €T gilt:

PX(t1), X (tn)) = PX(t14R) e, X (tnth))

d.h., alle endlich-dimensionalen Verteilungen von X sind invariant gegeniiber Verschiebungen
inT.

Definition 1.6.2

Eine (komplexwertige) zuféllige Funktion X = {X(¢), ¢t € T} heifit stationdar 2. Ordnung (oder
im weiten Sinne), falls E[X(#)]> < oo, t € T, und u(t) = EX(t) = u, t € T, K(s,t) =
cov(X(s),X(t)) = K(s+ h,t +h) fir alle h,s,t € T : s+ h,t+heT.

Falls X stationdr 2. Ordnung ist, ist es gilinstig eine Funktion K(t) := K(0,t), t € T,
einzufiithren, wobei 0 € T ist.

Stationaritdt im engen Sinne und 2. Ordnung folgen nicht aus einander. Es ist jedoch klar,
dass, wenn eine komplexwertige zufillige Funktion stationdr im engen Sinne ist und endliche
2. Momente besitzt, dann ist sie auch stationédr 2. Ordnung.

Definition 1.6.3

Eine reellwertige zuféllige Funktion X = {X(t), t € T'} ist intrinsisch stationdr 2. Ordnung,
falls v (s,t), s,t € T existieren fir k < 2, und es gilt fiir alle s,t,h € T, s+ h,t + h € T, dass
71(s,t) =0, ya(s,t) = y2(s + h,t + h).

Die intrinsische Stationaritdt 2. Ordnung ist fiir reellwertige zuféllige Funktionen etwas all-
gemeiner als Stationaritdt 2. Ordnung, da die Existenz von E|X(¢)|?, t € T, nicht gefordert
wird.

Es gibt aber auch das Analogon der Stationaritdt der Zuwéchse von X im engen Sinne.

Definition 1.6.4
Sei X = {X(t), t € T} ein reellwertiger stochastischer Prozess, T'C R. Man sagt, dass X

1. stationdre Zuwdchse besitzt, falls fir allen € N, h, tg,t1,t0,...,t, € T, mit tg < t1 < to <
o<ty ti+heT,i=0,...,n die Verteilung von (X (t1 +h) — X(to + h),..., X(tn +
h) — X(t,_1 + h)) " nicht von h abhéingt.

2. unabhdngige Zuwdchse besitzt, falls fir allen € N, tg,t1,...,t, € Tmit tg <t1 < ... <ty
die Zufallsvariablen X (to), X(t1) — X (to), ..., X (tn) — X (tn—1) paarweise unabhéngig.

Seien (S1, B1) und (S2, B2) mefibare Raume. Generell sagt man, dass zwei zuféllige Elemente
X:Q— 8 und X : Q — Sy auf dem selben Wahrscheinlichkeitsraum (€2, A, P) unabhdngig
sind, wenn P(X € A;,Y € Ag) = P(X € A;)P(Y € Ay) fiir alle A € By, Az € Bs.
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Diese Definition 148t sich tibertragen auf die Unabhéngigkeit von zufélligen Funktionen X
und Y mit dem Phasenraum (S, Br), da sie als zuféllige Elemente angesehen werden konnen,
mit S = Sy = Sy, By = By = By (vgl. Lemma 1.1.1). Dasselbe gilt fiir die Unabhéngigkeit
eines zufélligen Elementes (bzw. einer zufélligen Funktion) X und einer Teil-o-Algebra G € A:
dies ist der Fall, wenn P({X € A}NG) = P(X € A)P(G), fiir alle A € By, G € G (bzw. A € Br,
G eg).

1.7 Prozesse mit unabhdngigen Zuwachsen

In diesem Abschnitt wollen wir auf die Eigenschaften und Existenz der Prozesse mit unabhén-
gigen Zuwichsen eingehen.

Sei {@st, s,t > 0} eine Familie von charakteristischen Funktionen der Wahrscheinlichkeits-
mafBle Qs¢, s,t > 0 auf B(R), d.h., fiir 2 € R, s,t > 0 gilt p;.(2) = [ €*7Qs¢(dx).

Theorem 1.7.1

Es existiert ein stochastischer Prozess X = {X(¢), ¢ > 0} mit unabhéngigen Zuwéchsen mit
der Eigenschaft, dass fiir alle s, > 0 die charakteristische Funktion von X () — X (s) gleich ¢
ist, genau dann, wenn

Pst = PsuPut (1.7.1)
fiir alle 0 < s < u < t < oo. Dabei kann die Verteilung von X (0) beliebig gewéhlt werden.

Beweis Die Notwendigkeit der Bedingung 1.7.1 ist klar, weil fiir alle s € (0,00) : s < u < t gilt:

X(t)—X(s)=X(t) — X(u) + X(u) — X(s) und X(t) — X (u) und X (u) — X(s) sind paarweise
Y3 Ya

unabhéngig. Dann gilt Ps,t = PY1+Ys = PY1PYs = PsuPut-

Nun beweisen wir die Suffizienz.

Falls die Existenz eines Prozesses X mit unabhéngigen Zuwéchsen und Eigenschaft o x ;) x(s) =

©s.+ auf einem Wahrscheinlichkeitsraum (€2, A, P) bereits bewiesen wére, konnte man die charak-

teristischen Funktionen aller seiner endlich-dimensionalen Verteilungen wie folgt durch {¢s+}

angeben.

SeineN,0=ty<t; <...<t,<ooundY = (X(tg), X (t1) — X (to), ..., X (tn) — X(tn_1))".

Aus der Unabhéngigkeit der Zuwéchse folgt

Oy (20, 215+, 2n) = Eel(Y) — (pX(to)(ZO)(ptO,tl(Zl) e Pt it (2n), 2 € R
————

z

wobei die Verteilung von X (to) ein beliebiges Wahrscheinlichkeitsmafi Q¢ auf B(R) ist. Fiir
Xty = (X(t0), X (t1),..., X (tn)) " gilt allerdings Xy, 4, = AY, wobei

100 ... 0
110 0
A=|1 1 1 0
111 1

Dann gilt ¢x, ., (2) = pay(z) = Eei(=AY) — Eei(AT=Y) _ @y (AT z). Deshalb hat die
endlich-dimensionale Verteilung von Xy, . 4, die charakteristische Funktion ¢x, .. (2) =

-----
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0o (10) Pt (1) - Pty 40 (In), wobei I = (I1,1q,. .., ln)T = ATz, also

l() = Zo+...+ 2n
lh = z14+...4 2z,
ln, = 2zn

AAAAA

Nun beweisen wir die Existenz eines solchen Prozesses X.
Dabei konstruieren wir die Familie der charakteristischen Funktionen

Dabei gilt ©x (1) = v, und px, .. (21,--120) = ©x;, 4, (0,215, 2,) filr alle z; € R.

{@tor Ptotrrtns Pr,tns, 0=t <t1 <...<t, <oo, n€N}
aus ¢, und {s;, 0 < s <t} wie oben, also
Dte = PQo> Ptiyetn (052155 2n) = Pttt (0,21, .., 20), 28 ER,

Pro,tn (2) = Pro (21 + o4 20) 0,0 (21 + oA 20) ot (20)-

Nun sollten wir priifen, dass die Wahrscheinlichkeitsmafle, denen diese charakteristische Funk-
tionen entsprechen, die Bedingungen des Theorems 1.1.2 erfiillen. Dies werden wir in dquivalen-
ter Form tun, denn nach Aufgabe ... des Ubungsblattes ... sind die Bedingungen der Symmetrie
und der Konsistenz im Theorem 1.1.2 dquivalent zu:

a) Ptigseontin (Zigs -+ -+ Zin) = Pto,...tn (20 - - -, 2p) fiir eine beliebige Permutation (0,1,...,n) —
(i()ail? ey 7’71)7
b) Gttt stmitsestn (205 - - - s Zm—1s Zma1s - - -+ Zn) = Ptg,tn (205 - -5 0,.. ., 2y), fiir alle

20y---,2n ER;me{l,...,n}.

Die erste Bedingung a) ist offensichtlich. Es gilt b), weil

Ctom1,tm (0 F Zmg1 + oo 4 20) Pttt (Zma1 + oo 4 20) = Cron_1 tmsr (Zma1s - -5 Zn)
fiir alle m € {1,...,n}. Damit ist die Existenz von X bewiesen. O

Beispiel 1.7.1 1. Falls T = Ny = NU {0}, dann hat X = {X(¢), t € Ngo} unabhéngige

Zuwichse genau dann, wenn X (n) 4 oY, wobei {Y;} unabhéngige Zufallsvariablen

sind und Y, < X(n)—X(n—1), n € N. Ein solcher Prozess X heifit zufdllige Irrfahrt. Ex
kann auch fiir Y; mit Werten in R™ definiert werden.

2. Der Poisson-Prozess mit Intensitat A hat unabhéngige Zuwéchse, wie wir es spater zeigen
werden.

3. Der Wiener-Prozess besitzt unabhéngige Zuwéchse.

Aufgabe 1.7.1
Beweisen Sie es!

Aufgabe 1.7.2

Sei X = {X(t), t >0} ein Prozess mit unabhéngigen Zuwéchsen und g : [0,00) — R eine
beliebige (deterministische) Funktion. Zeigen Sie, dass der Prozess Y = {Y'(t), ¢t > 0} mit
Y(t) = X(t) + g(t), t > 0, ebenso unabhéngige Zuwéchse besitzt.
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1.8 Erganzende Aufgaben

Aufgabe 1.8.1

Beweisen Sie folgende Behauptung: Die Familie von Wahrscheinlichkeitsmaflen Py, . ;. auf
(R", B(R")), n > 1, t = (t1,...,t,)" € T™ erfiillt die Bedingungen des Theorems von Kol-
mogorov genau dann, wenn fiir alle n > 2 und fiir alle s = (s1,...,8,) € R" die folgenden
Bedingungen erfiillt sind:

a) PPy tn((sl’ ceey Sn)T) = ((Sﬂ(l), ce ,Sw(n))—r) fir alle m € S,,.

b) wp, o ((s1,--580-1) ") =p, (51,0, 80-1,0)7).

Bemerkung: ¢(-) bezeichnet die charakteristische Funktion des jeweiligen Mafes. S,, bezeichnet
die Gruppe aller Permutationen 7 : {1,...,n} — {1,...,n}.

Aufgabe 1.8.2
Zeigen Sie die Existenz einer zufilligen Funktion, deren endlich-dimensionale Verteilungen mul-
tivariat normalverteilt sind, und geben Sie die messbaren Réume (Ey, . +,, & .1, ) €xplizit an.

Aufgabe 1.8.3
Geben Sie ein Beispiel fiir eine Familie von Wahrscheinlichkeitsmaflen Py, ;. , welche nicht die
Bedingungen des Theorems von Kolmogorov erfiillt.

Aufgabe 1.8.4

Seien X = {X(t), t € T} und Y = {Y (t), t € T'} zwei stochastische Prozesse, die auf dem selben
vollstandigen Wahrscheinlichkeitsraum (2, F, P) definiert sind und Werte in einem messbaren
Raum (S, B) annehmen.

a) Beweisen Sie: X und Y sind stochastisch dquivalent = Px = Py-.

b) Geben Sie ein Beispiel zweier Prozesse X und Y an, fir die gilt: Px = Py, aber X und
Y sind nicht stochastisch dquivalent.

c) Beweisen Sie: X und Y sind stochastisch ununterscheidbar = X und Y sind stochastisch
dquivalent.

d) Beweisen Sie im Falle der Abzdhlbarkeit von 7: X und Y sind stochastisch &dquivalent
—> X und Y sind stochastisch ununterscheidbar.

e) Geben Sie im Falle der Uberzihlbarkeit von T ein Beispiel zweier Prozesse X und Y an, fiir
die gilt: X und Y sind stochastisch &dquivalent, aber nicht stochastisch ununterscheidbar.

Aufgabe 1.8.5
Sei W = {W(t),t € R} ein Wiener-Prozess. Welche der folgenden Prozesse sind ebenfalls
Wiener-Prozesse?

a) Wy = {Wl(t) = —W(t), te ]R},
b) Wy = {Wz(t) = \/iW(l), te R},

¢) Wi = {Ws(t) := W(2t) — W(t), t € R}.
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Aufgabe 1.8.6

Es sei der stochastische Prozess X = {X(¢), t € [0,1]} gegeben, welcher aus identischen und
unabhéngig verteilten Zufallsvariablen mit einer Dichte f(z), = € R, besteht. Zeigen Sie, dass
ein solcher Prozess nicht stochastisch stetig in ¢ € [0, 1] sein kann.

Aufgabe 1.8.7

Geben Sie ein Beispiel eines stochastischen Prozesses X = {X (), t € T'} an, welcher stochas-
tisch stetig auf T ist, aber nicht fast sicher stetig auf 7', und beweisen Sie, warum dies so
ist.

Aufgabe 1.8.8

Im Zusammenhang mit der Stetigkeit von stochastischen Prozessen spielt das sogenannte Krite-
rium von Kolmogorov eine zentrale Rolle (siehe auch Satz 1.3.1 im Skript): Sei X = {X(¢), t €
[a,b]} ein reellwertiger stochastischer Prozess. Falls Konstanten a, ¢ > 0 und C' := C(a, ) > 0
existieren, so dass

E|X(t+h) — X(¢)|* < C|h|* (1.8.1)
flir ausreichend kleines h, dann besitzt der Prozess X eine stetige Modifikation. Zeigen Sie:

a) Falls man in Bedingung (1.8.1) die Variable ¢ = 0 fixiert, dann reicht diese Bedingung
im Allgemeinen nicht zur Existenz einer stetigen Modifikation aus. Tipp: Betrachten Sie
den Poisson-Prozess.

b) Der Wiener-Prozess W = {W(t), ¢t € [0,00)} besitzt eine stetige Modifikation. Tipp:
Betrachten Sie den Fall o = 4.

Aufgabe 1.8.9
Zeigen Sie, dass der Wiener-Prozesses W an keiner Stelle ¢ € [0, 00) stochastisch differenzierbar
ist.

Aufgabe 1.8.10
Zeigen Sie, dass die Kovarianzfunktion C(s,t) eines komplexwertigen stochastischen Prozesses
X ={X{t),teT}

a) symmetrisch ist, d.h. C(s,t) = C(t,s), s,t € T,

b) die Identitdt C(t,t) = var X(t), t € T, erfiillt,

c) positiv semidefinit ist, d.h. fur allen € N, t1,...,t, € T, 2z1,...,2, € C gilt:
n n

D Clti ty)ziz; > 0.

i=1j=1

Aufgabe 1.8.11
Zeigen Sie, dass es eine zuféllige Funktion X = {X(¢), t € T} gibt, die gleichzeitig folgende
Bedingungen erfiillt:

e Das zweite Moment EX? existiert nicht.

e Das Variogramm ~(s,t) ist endlich fiir alle s,t € T.
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Aufgabe 1.8.12
Geben Sie ein Beispiel fiir einen stochastischen Prozess X = {X(t), t € T} an, dessen Pfade
gleichzeitig L2-differenzierbar, aber nicht fast sicher differenzierbar sind, und beweisen Sie,
warum dies so ist.

Aufgabe 1.8.13
Geben Sie ein Beispiel fiir einen stochastischen Prozess X = {X(¢), t € T'} an, dessen Pfade
gleichzeitig fast sicher differenzierbar, aber nicht L!-differenzierbar sind, und beweisen Sie,
warum dies so ist.

Aufgabe 1.8.14
Beweisen Sie, dass der Wiener-Prozess unabhéngige Zuwéchse besitzt.

Aufgabe 1.8.15
Beweisen Sie: Ein (reellwertiger) stochastischer Prozess X = {X(t), ¢t € [0, 00)} mit unabhéngi-

gen Zuwéchsen hat bereits dann stationdre Zuwichse, wenn die Verteilung der Zufallsvariablen
X (t+ h) — X (h) unabhéngig von h ist.



2 Zahlprozesse

Hier werden einige Beispiele von stochastischen Prozessen betrachtet, die das Zahlen von Er-
eignissen modellieren und daher stiickweise konstante Pfade besitzen.

Sei (€2, A, P) ein Wahrscheinlichkeitsraum und sei {5y}, <y eine nichtfallende Folge von f.s.
nicht-negativen Zufallsvariablen, d.h. 0 < 571 < S5, <... <S5, < ...

Definition 2.0.1
Der stochastische Prozess N = {N(t), t > 0} wird Zahlprozess genannt, falls

N(B) = Y 1S <),
n=1

wobei 1(A) die Indikatorfunktion eines Ereignisses A € A ist.

N(t) zahlt die Ereignisse, die zu Zeitpunkten S, bis zur Zeit ¢ eintreten. S,, konnen z.B.
Zeitpunkte des Eintretens

1. des n-ten Elementarteilchens im Geigerzahler sein, oder

2. eines Schadens in der Sachschadenversicherung, oder

3. eines Datenpakets beim Server in einem Computernetzwerk, usw.

Einen Spezialfall der Zahlprozesse bilden die sog. Erneuerungsprozesse.

2.1 Erneuerungsprozesse

Definition 2.1.1

Sei {71}, }nen eine Folge von u.i.v. nicht-negativen Zufallsvariablen mit P(77 > 0) > 0. Ein Z&hl-
prozess N = {N(t), t > 0} mit N(0) =0 fs., Sp, = > -1 Tk, n € N, wird Erneuerungsprozess
genannt. Dabei heifit .S,, der n-te Erneuerungszeitpunkt, n € N.

Den Namen ,Erneuerungsprozess“ leitet man von folgender Interpretation ab. Die ,Zwi-
schenankunftszeiten“ T, werden als Lebensdauer eines technischen Ersatzteils bzw. Mecha-
nismus in einem System interpretiert, somit sind 5, die Zeitpunkte des n-ten Versagens des
Systems. Das defekte Teil wird sofort durch ein neues baugleiches Teil ersetzt (wie z.B. beim
Auswechseln einer kaputten Glithbirne). Somit ist N(¢) die Anzahl der Reparaturen (die sog.
,Erneuerungen*) des Systems bis zur Zeit t.

Bemerkung 2.1.1 1. Man setzt N(t) = oo, falls S,, < fiir alle n € N.

2. Oft wird vorausgesetzt, dass nur 75,73, ... identisch verteilt sind mit ET,, < oo. Die
Verteilung von T} ist dann beliebig wéhlbar. Ein solcher Prozess N = {N(t), t > 0} wird
verzogerter Erneuerungsprozess (mit Verzogerung T) genannt.

3. Manchmal wird die Forderung 7T,, > 0 weggelassen.

20
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Abbildung 2.1: Konstruktion und Trajektorien eines Erneuerungsprozesses

4. Es ist klar, dass {Sy}nen, mit So = 0 f.s., Sp = > 51 Tk, n € N eine zufallige Irrfahrt
ist.

5. Wenn man voraussetzt, dass das n-te Auswechseln des defekten Teils im System eine Zeit
T! dauert, so wird durch T, =T, + T!, n € N ein anderer Erneuerungsprozess gegeben,
der von seiner stochastischen Beschaffenheit sich nicht von dem in der Definition 2.1.1
gegebenen Prozess unterscheidet.

Im weiteren Verlauf der Vorlesung wird vorausgesetzt, dass u = ET,, € (0,00), n € N.

Theorem 2.1.1 (Individueller Ergodensatz):
Sei N = {N(t), t > 0} ein Erneuerungsprozess. Dann gilt:

lim M:

1

— fs.
t—oo t M

t

Beweis Fiir alle t > 0 und n € N gilt {N(t) =
SN(t)+1 und

= {8, <t < Spy1}, deshalb Sy <t <

Snw ot _ Svwsr N +1

N({t) — N(@) ~ Nt)+1 N(t)
Wenn wir zeigen kénnten, dass ?}v((;)) tfs wund N (t) —> 00, dann gilt N(t) f—> w1 und

deshalb gilt die Aussage des Theorems.
Nach dem Starken Gesetz der Grofien Zahlen von Kolmogorov (vgl. Skript ,,Wahrscheinlich-

keitsrechnung® (WR), Satz 7.4) gilt = Sn f—> w, also Sy, f—> oo und daher P(N(t) < 00) =1,

weil P(N(t) = o0) = P( S, §tVn)—1—P(E|n VmENoSn+m>t)—1—1—0.Dannist

=1, falls SHL)OO

n—r00

N(t), t > 0, eine echte Zufallsvariable.

Zeigen wir, dass N(t) f—s> oo. Alle Trajektorien von N (¢) sind monoton nichtfallend in ¢ > 0,
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also 3limy_yo0 N(w, t) fir alle w € Q. AuBerdem gilt

P(lim N(t) < o0) = lim P(lim N(t) <n) ¥ lim lim P(N(t) < n)

t—o00 n—oo  t—00 n—00 t—00

n—00 t—00 n—00 t—00

= lim lim P(S, >t) = lim lim P(> T} > 1)
k=1

n

t
lim lim P(T, > —) = 0.
n—o0 t—o0 n
k=1 \——r
—0

t—oo

IN

Der Ubergang (x) gilt, weil {lim;oo N(t) < n} = {3tg € Q4 : Vt > to N(t) < n} =
Utpeqs Nicoy {V(t) < n} = liminficq, {N(f) < n}, und dann benutzt man die Stetigkeit
t—r00

t>to
des WahrscheinlichkeitsmaBes, wobei Q4 = QN R = {¢g € Q: ¢ > 0}. Da fiir jedes w € Q gilt
limy, 00 %” = limy 00 S;VN(%) (der Wertebereich einer Realisierung von N(-) ist ja eine Teilfolge
von N), gilt limy_, o iVN—ét) fs L. O

Bemerkung 2.1.2

Der Ergodensatz lasst sich verallgemeinern auf den Fall von nicht identisch verteilten 7,,. Dabei

wird gefordert, dass i, = ETy, {1, — fin } ey gleichméBig integrierbar sind und % D1 Mk —
n—oo

p > 0. Dann kann bewiesen werden, dass @ %) i (vgl. [2], S. 276).

Theorem 2.1.2 (Zentraler Grenzwertsatz):
Falls p € (0,00), 02 = varT} € (0,0), dann gilt

N(t) - 1L
% () m d

pe e O'\/Z t—o0

wobei Y ~ N(0,1).

Beweis Nach dem zentralen Grenzwertsatz fiir Summen von u.i.v. Zufallsvariablen (vgl. Satz
7.5, WR) gilt

S
On 4y (2.1.1)
no2 n—oo
Sei [z] der ganze Teil von = € R. Es gilt fiir a = Z—g, dass

P(jv(f/)»a;;gx) _P<N(t)§:c\/§+;)—P<Sm(t)>t),

wobei m(t) = [:U\/a + ﬂ +1,¢t >0, und lim;_,o, m(t) = co. Deshalb folgt, dass
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fiir beliebiges ¢t > 0 und z € R, wobei ¢ die Verteilungsfunktion der A/(0, 1)-Verteilung ist. Fiir

festes = € R fithren wir Z; = —% —x, t >0, ein. Es gilt dann
Sy — um(t
Ii(x) = |P (M + Z > —x) — ().
o/m(t)

Wenn wir zeigen kénnten, dass Z; = 0, dann wirde nach (2.1.1) und dem Satz von Slutsky
— 00

S (e) —pm(t) d

(Satz 6.4.1, WR) folgen, dass py +7Z -

Zy —9 4 0. Deshalb kénnte man schreiben Ii(z) — |p(—2) — ¢(x)| = |p(x) — p(z)| = 0,
t—o0 t—o0

Y ~ N(0,1), denn aus Z; —— 0 fs. folgt

wobei ¢(x) = 1—¢(x) die Tail-Funktion der N'(0, 1)-Verteilung ist, und man hier die Symmetrie-
Eigenschaft von NV (0,1) : ¢(—z) = ¢(z), € R benutzt hat.
Zeigen wir nun, dass Z; —— 0, also tum) 3 Es gilt m(t) = zvat + L + (t),
t—00 oy/m(t) t—oo H
wobei e(t) € [0,1). Dann gilt

t—pm(t)  t—pxvat —t— pe(t) Vat — p pe(t)

o/m(t) o/m(t) :_J:U\/x\/ﬁ+i+5<t) oym(D)
_ T _ p—e(t)
U\/fﬁ+;}a+€cst) ov/m(t)
_ vy o pe(t) B
JEr g o0 e
——
100

Bemerkung 2.1.3
Der zentrale Grenzwertsatz 148t sich in Lindeberg-Form auch fiir nicht identisch verteilte T,
beweisen, vgl. [2], S. 276 - 277.

Definition 2.1.2
Die Funktion H(t) = EN(t), t > 0 heiit Erneuerungsfunktion des Prozesses N (oder der Folge

{Sn}nen)-

Sei Frr(z) = P(T1 < x), x € R die Verteilungsfunktion von 77. Fiir beliebige Verteilungsfunk-
tionen F,G : R — [0, 1] sei die Faltung F = G definiert als F'« G(z) = [ F(x — y)dG(y). Die
k-fache Faltung F** der Verteilungfunktion F' mit sich selbst, k& € Ny, wird induktiv definiert:

Fz) = lz€[0,00), z€R,
F*l(z) = F(z), z €R,
FrED () = PR« F(2), 2 e R
Lemma 2.1.1

Die Erneuerungsfunktion H eines Erneuerungsprozesses N ist monoton nichtfallend und rechts-
seitig stetig auf R;. Auflerdem gilt

H(t) = i P(S, <t) = f: M), ¢ > 0. (2.1.2)
n=1 n=1
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Beweis Die Monotonie und rechtsseitige Stetigkeit von H folgt aus der fast sicheren Monotonie
und rechtsseitigen Stetigkeit der Trajektorien von N. Nun beweisen wir (2.1.2):

H(t)=EN(t)=E i 1(S, <t) “ i E1(S, <t) = i P(S, <t)= i F7'(t),
n=1 n=1 n=1

n=1

weil P(S, <t)=P(Th+...+ T, <t) = F;"(t), t > 0. Die Gleichung (x) gilt fiir alle partiellen
Summen auf beiden Seiten, also auch im Grenzwert. O

Bis auf Ausnahmefille ist es unmoglich, die Erneuerungsfunktion H durch die Formel (2.1.2)
analytisch zu berechnen. Deshalb benutzt man oft in Berechnungen die Laplace-Transformierte
von H.

Fiir eine monotone (z.B. monoton nichtfallende) rechtsseitig stetige Funktion G : [0,00) — R
ist ihre Laplace- Transformierte definiert als lg(s) = Jo° e *"dG(z), s > 0. Hier ist das Integral
als Lebesgue-Stieltjes-Integral zu verstehen, also als ein Lebesgue-Integral bzgl. des Mafles u¢
auf Bg_ definiert durch pug((z,y]) = G(y) —G(z), 0 < x < y < o0, falls G monoton nichtfallend
ist.

Zur Erinnerung, fiir eine Zufallsvariable X > 0 ist ihre Laplace-Transformierte [x definiert
durch Ix(s) = [ e **dFx(z), s > 0.

Lemma 2.1.2
Fir s > 0 gilt:
. 2
lu(s) = o)
1-— lTl (S)

Beweis Es gilt:
7 o —sx (212) [ —sx - *1n - o —sx *n
hﬁ):/e Mm::/e dZ&@):Z/e dF*(2)
0 0 n=1 n=1 0

= Z ZT1+...+Tn (3) = Z (ZAT1 (8))n = M,
n=1 n=1

S 1-lp(s)
wobei fiir s > 0 gilt Iz, (s) < 1 und somit konvergiert die geometrische Reihe 32, (le(s)>n. 0

Bemerkung 2.1.4
Falls N = {N(t), t > 0} ein verzogerter Erneuerungsprozess (mit Verzogerung 77) ist, dann
gelten die Aussagen der Lemmas 2.1.1 - 2.1.2 in folgender Form:

1.
H(t) =Y (Fr, = Ff)(t), t >0,
n=0

wobei Frr, bzw. Fp, die Verteilungsfunktionen von 77 bzw. 1;,, n > 2 sind.

2 . lATl (3)
) )

wobei fTI und lAT2 die Laplace-Transformierten der Verteilung von T} bzw. T;,, n > 2 sind.

s >0, (2.1.3)
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Fiir weitere Betrachtungen brauchen wir einen Satz (von Wald) iiber den Erwartungswert
einer Summe (in zufélliger Anzahl) von unabhéngigen Zufallsvariablen.

Definition 2.1.3

Sei v eine N-wertige Zufallsvariable und sei { X}, o eine Folge von Zufallsvariablen, definiert
auf demselben Wahrscheinlichkeitsraum. v heifit unabhdngig von der Zukunft, falls fiir allen € N
das Ereignis {v < n} nicht von der o-Algebra o({X%, k > n}) abhéngt.

Theorem 2.1.3 (Waldsche Identitét):
Sei {Xy},cn eine Folge von Zufallsvariablen mit sup E[X,,| < oo, EX,, = a, n € N und sei v
eine N-wertige Zufallsvariable, die von der Zukunft unabhéngig ist, mit Ev < co. Dann gilt

E(Z X,) =a-Ev.
n=1

Beweis Berechne S,, = >} Xi, n € N. Da Ev = Y77 | P(v > n), so folgt die Aussage aus
dem Lemma 2.1.3. 0

Lemma 2.1.3 (Kolmogorov-Prokhorov):
Sei v eine N-wertige Zufallsvariable, die nicht von der Zukunft abhingt, und es gelte

oo
Z P(v > n)E|X,| < co. (2.1.4)
n=1
Dann gilt ES, = >7°, P(v > n)EX,,. Falls X,, > 0 f.s., dann braucht man die Bedingung
(2.1.4) nicht.
Beweis Es gilt S, = >/, X, = > 02 X,,1(v > n). Fihren wir die Bezeichnung S,, =

Yor—1 Xkl(v > k), n € N, ein. Beweisen wir das Lemma zunéchst fur X,, > 0 f.s., n € N. Es gilt
Sun T Sy, n — oo fiir jedes w € 2, und so gilt nach dem Satz iiber die monotone Konvergenz:
ES, = lim, o ES,p, = lim Y7 E(X;1(v > k)). Da allerdings {v > k} = {v < k — 1} nicht
von o(Xy) C o({X,, n > k}) abhéngt, gilt E(X31(v > k)) = EXxP(v > k), k € N, und daher
ES, =3 71 P(v > n)EX,,.

Sei nun X,, beliebig. Setze Y,, = |Xy|, Z,, = > n_1Yn, Zupn = >y Yil(v > k), n € N. Da
Y, >0,neN,gilt EZ, =7 E(X, | P(v > k)) < oo aus (2.1.4). Da allerdings |S, | <
Zyn < Zy,,n €N, dann gilt nach dem Satz von Lebesgue iiber die dominierte Konvergenz, dass
ES, =lim,, o0 ES,n = > 521 EX,,P(v > n), wobei diese Reihe absolut konvergiert. O

Folgerung 2.1.1 1. Fiir eine beliebige Borel-messbare Funktion g : Ry — Ry und den
Erneuerungsprozess N = {N(t), t > 0} mit Zwischenankuftszeiten {T,,}, T,, u.iv., u =
ET, € (0,00) gilt

N(t)+1
E ( > g(Tn)) = (1+ H(t))Eg(Ty), t > 0.
k=1

2. H(t) < oo, t>0.

Beweis 1. Fiir jedes ¢t > 0 héngt v = 1 + H(t) offensichtlich nicht von der Zukunft von
{T, }nen ab, und der Rest folgt aus dem Theorem 2.1.3 mit X,, = ¢(7,,), n € N.
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2. Fir s > 0 betrachte TT(LS) = min{7,, s}, n € N. Wéhle s > 0 so, dass fiir beliebig gewéhltes
(aber festes) e > 0 : pl®) = ETl(S) > p—e > 0. Sei N®) der Erneuerungsprozess, der auf der
Folge {T,ss)}neN von Zwischenankunftszeiten aufgebaut wird: N (t) = 3% l(TT(LS) <t),
t > 0. BEs gilt N(t) < N©)(t), t >0, f.s., dabei nach der Folgerung 2.1.1:

G _ (s) (s)
(u—e)(ENO @) +1) < I ENE (1) +1) = Esﬁ(s)(t)+1 = E(S]\f(s)(t) +T]\f(s)(t)+1) <t+s,
—_— Y
<t <s
t >0, wobei 85 = T{” + ...+ T\”, n € N. Daher H(t) = EN(t) < EN® (1) < tts,
t > 0. Da € > 0 beliebig ist, gilt lim sup,_, @ < i, und unsere Aussage H(t) < oo,
t>0.
0
Folgerung 2.1.2 (Elementarer Erneuerungssatz):
Fiir einen Erneuerungsprozess N wie in Folgerung 2.1.1, 1) gilt:
im 2 _ 1
t—oo w
Beweis In der Folgerung 2.1.1, Teil 2) ist bereits bewiesen worden, dass lim sup;_, ., @ < i
Zeigen wir, dass liminf; . @ > %, dann ist unsere Aussage bewiesen. Nach Theorem 2.1.1
gilt @ —— L fs., daher nach Fatou’s Lemma
t—oo M
1 N(t EN(t H(t
- = EliminfL < liminfﬁ = liminfﬁ.
" t—o00 t—00 t t—00
O

Bemerkung 2.1.5 1. Man kann auch zeigen, dass es sich im Falle des endlichen 2. Mo-
mentes von Tj, (u2 = ET? < 00) eine genauere Asymptotik fiir H(t), t — oo herleiten
1a8¢:

2. Der elementare Erneuerungssatz gilt auch fiir verzogerte Erneuerungsprozesse, wobei y =
ET. Definieren wir das Erneuerungsmafi H auf B(Ry) durch H(B) = Y02, [5 dFf™"(x),
B € B(R;). Es gilt H((—o0,t]) = H(t), H((s,t]) = H(t) — H(s), s,t > 0, wenn man
durch H sowohl die Erneuerungsfunktion als auch das Erneuerungsmafl bezeichnet.

Theorem 2.1.4 (Hauptsatz der Erneuerungstheorie):

Sei N = {N(t), t > 0} ein (verzogerter) Erneuerungsprozess assoziiert mit der Folge {71}, }nen,
wobei T,, n € N unabhéngig sind, {T,,, n > 2} identisch verteilt, und die Verteilung von
T5 nicht arithmetisch ist, also nicht auf einem regelméfligen Gitter mit Wahrscheinlichkeit 1
konzentriert ist. Die Verteilung von Tj sei beliebig. Sei ET, = p € (0, 00). Dann gilt

t 1 o]
t—x)dH(x) — — x)dx,
ot =) o [ )

wobei g : Ry — R Riemann-integrierbar auf [0, n] ist, fir allen € N, und >0  maxp<z<nt1|9(2)| <
0.
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Ohne Beweis.

Insbesondere gilt H((t — u, t]) == &1, fiir ein beliebiges u € R4, also verhilt sich H asympto-
—00
tisch (fir t — oo) wie das Lebesgue-Ma8.

X()

[~ 2
=
v

0 Sn t Sn+1

Abbildung 2.2:

Definition 2.1.4
Die Zufallsvariable x(t) = Sy()4+1 — t heifit Ezzess von N zum Zeitpunkt ¢ > 0.

Es gilt offensichtlich x(0) = 7. Geben wir nun ein Beispiel eines Erneuerungsprozesses mit
stationaren Zuwéchsen.
Sei N = {N(t), t > 0} ein verzogerter Erneuerungsprozess assoziiert mit Folge von Zwischenan-
kuftszeiten {1}, }nen. Sei Fr, bzw. Fr, die Verteilungsfunktion der Verzégerung T bzw. von
Ty, n > 2. Wir nehmen an, dass u = ET» € (0,00), Fr,(0) =0, also T5 > 0 f.s. und

.
Fr() = /0 Fr, (y)dy, = > 0. (2.1.5)

In diesem Fall sagt man, dass Fr, die integrierte Tailverteilungsfunktion von Ty ist.

Theorem 2.1.5
Unter den obigen Voraussetzungen ist N ein Prozess mit stationidren Zuwéchsen.

X(t5H)

L I \ ;,, | / I

ta+t tekt

Abbildung 2.3:

Beweis Sein e N, 0 <ty <t; <...<t, <oo. Wegen Unabhingigkeit von T}, n € N héngt
die gemeinsame Verteilung von (N (t; +t) — N(to +1t),...,N(t, +t) — N(t,—1 +1)) nicht von
t ab, falls die Verteilung von x(t) unabhéngig von t ist, also x() 4 x(0) = Ty, t > 0, siehe
Abbildung ....
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Zeigen wir, dass Fr, = Fix), t > 0.

Fyp(@) = P(x(t)<a)= S P(S, <t, t < Spy1 <t+x)
n=0
= P(So=0<t t<S1=T1<t+x)

+ ) E(EQ(Sy <t t < Sp+ T < t+a) | Sn))
n=1
© et
— Fp(t+)— Fr(t) + Z/O P(t—y < Tyor < t+ 1 — y)dFs. (y)
n=1

= Pr4a) - Py 4 [ POy < TS tbe (Y s, )
n=1

[ —
H(y)
Falls wir zeigen konnten, dass H(y) = %, y > 0, dann hitten wir
1 0
Fapl@) = Prt+o) = Fr(®)+~ [(Fr(+ o) -1+1 - Pr()d(-)
1/t - _
= Pt - P+, [(Fn(2) - Fr(e + )iz
1 t+x _
= FT1(t+x)_FT1(t)+FT1(t)_ﬁ FTz(y)dy

= FTl(t+$)_FT1(t+$)+FT1($>:FT1(:E)3 xz 20,

nach der Form (2.1.5) der Verteilung von T7.
Nun soll gezeigt werden, dass H (t) = ﬁ, t > 0. Dazu verwenden wir die Formel (2.1.4): es gilt

A 1 [ 1 [ 1 [o®
in(s) = — / e~*(1 — P (0))dt = / eStdt —— / e~ By, (£)dt
wJo w Jo w Jo

1
s

1 8} 1 (o) & —
= (1 [T Fnde ) = Lot En @y - [ e o)
0 ps - e~— 0

—Fr,(0)=0 A
7 (©) lr, (s)
= L ins). 520
— 115 T S)), S
Mit Hilfe der Formel (2.1.4) bekommt man
A [ 11> A
lg(s) = & e 7/ e Stdt =14 (s), s> 0.
1—lp, (8) us mJo "

Da die Laplace-Transformierte einer Funktion eindeutig diese Funktion bestimmt, gilt H(t) =
¢

L. t>0. O
wr =

Bemerkung 2.1.6
Im Beweis des Theorems 2.1.5 haben wir gezeigt, dass fiir den verzogerten Erneuerungsprozess
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mit Verzogerung, welche die Verteilung (2.1.5) besitzt, H(t) ~ ﬁ nicht nur asymptotisch fiir
t — oo (wie im elementaren Erneuerungssatz), sondern es gilt H(t) = i, fir alle t > 0. Das
bedeutet, es finden im Mittelwert + Erneuerungen pro Einheitszeitintervall statt. Aus diesem
Grund wird ein solcher Prozess N homogener Erneuerungsprozess genannt.

Es 148t sich auch folgendes Theorem beweisen:

Theorem 2.1.6
Falls N = {N(t), t > 0} ein verzogerter Erneuerungsprozess mit beliebiger Verzogerung T}
und nicht-arithmetischer Verteilung von T, n > 2 ist, u = ET» € (0, 00), dann gilt

. 1 /-
lim Py (@)=, | Py, = =0

t—o00

Das heifit, die Grenzwertverteilung von Exzess x(t), ¢ — oo wird bei der Definition eines
homogenen Erneuerungsprozesses als Verteilung von 77 angenommen.

2.2 Poisson-artige Prozesse

2.2.1 Poisson-Prozesse
In diesem Abschnitt werden wir die Definition eines homogenen Poisson-Prozesses (gegeben im
Abschnitt 1.2, Beispiel 5) verallgemeinern.
Definition 2.2.1
Der Zahlprozess N = {N(t), t > 0} heiit Poisson-Prozess mit Intensitdtsmafl A, falls
1. N(0) =0 fs.

2. A ein lokalendliches Maf§ auf Ry ist, d.h., A : B(Ry) — Ry besitzt die Eigenschaft
A(B) < oo fiir jede beschrinkte Menge B € B(R4.).

3. N unabhéngige Zuwéchse besitzt.
4. N(t) — N(s) ~ Pois(A((s,t])) fir alle 0 < s <t < 0.

Manchmal wird der Poisson-Prozess N = {N(t), ¢t > 0} durch das entsprechende zuféllige
Poissonsche Zahlmal N = {N(B), B € B(R)} definiert, d.h., N = ([0,¢]), t > 0, wobei ein
Zahlmaf ein lokalendliches Mafl mit Werten aus Ny ist.

Definition 2.2.2
Ein zufilliges Zéhlmafl N = {N(B), B € B(Ry)} heiit Poissonsch mit lokalendlichem Intensi-
tatsmaf A, falls

1. Fiir beliebiges n € N und fiir beliebige paarweise disjunkte beschrankte Mengen B1, Bs, ..., B, €
B(R;) die Zufallsvariablen N(Bj), N(Bz2),..., N(B,) unabhéngig sind.

2. N(B) ~ Pois(A(B)), B € B(Ry), B-beschrankt.

Es ist klar, dass die Eigenschaften 3 und 4 der Definition 2.2.1 aus den Eigenschaften 1 und
2 der Definition 2.2.2 folgen. Die Eigenschaft 1 der Definition 2.2.1 ist jedoch eine eigenstén-
dige Annahme. N(B), B € B(R;) wird als die Anzahl der Punkte von N in der Menge B

interpretiert.
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Bemerkung 2.2.1

Genauso wie in Definition 2.2.2 kann ein Poissonsches Zahlmafl auf beliebigem topologischem
Raum FE, ausgestattet mit der Borel-o-Algebra B(F), definiert werden. Sehr haufig wird in
Anwendungen E = R?, d > 1 gewéhlt.

Lemma 2.2.1
Fiir jedes lokalendliche Mafi A auf R existiert ein Poisson-Prozess mit A als Intensitdtsmaf.

Beweis Falls so ein Poisson-Prozess existiert hitte, wére die charakteristische Funktion ¢ ) n(s) (+)
des Zuwachses N(t) — N(s), 0 < s < t < oo nach Eigenschaft 4 der Definition 2.2.1 gleich
©st(2) = PPois(A((s,))) (2) = Mt =1) > ¢ R. Zeigen wir, dass die Familie von charakteristi-
schen Funktionen {p,+, 0 < s <t < oo} die Eigenschaft 1.7.1 besitzt: firallen : 0 < s < u < t,
Osu(2)pur(z) = eA(su]) (€ =1) GA((ut]) (e 1) — (A((sul)+A((wt])) (€% =1) — A((s;t])(e*~1) — ©s.t(2),
z € R, weil das Mafi A additiv ist. Die Existenz des Poisson-Prozesses N folgt daher aus dem
Theorem 1.7.1. O

Bemerkung 2.2.2
Die Existenz eines Poissonschen Zahlmafles kann mit Hilfe des Theorems von Kolmogorov
bewiesen werden, allerdings in einer allgemeineren Form wie im Theorem 1.1.2.

Aus den Eigenschaften der Poisson-Verteilung folgt u.A. EN(B) = var N(B) = A(B), B €
B(R4). Daher wird A(B) als die mittlere Anzahl der Punkte von N in der Menge B, B € B(Ry)
interpretiert.

Ein wichtiger Spezialfall liegt vor, wenn A(dz) = Adz fir A € (0,00), d.h., A proportional zum
Lebesgue-Mafl v; auf Ry ist. Dann heifit A = EN(1) die Intensitdt von N.
Wir werden demnéchst zeigen, dass in diesem Fall NV ein homogener Poisson-Prozess mit Intensi-
tat Aist. Zur Erinnerung: Im Abschnitt 1.2 wurde der homogene Poisson-Prozess als ein Erneue-
rungsprozess mit Zwischenankunftszeiten T ~ Exp(A) definiert: N(¢) = sup{n € N §,, < ¢},
S, =Ti+...+T,neN,t>0.
Aufgabe 2.2.1

d

Zeigen Sie, dass der homogene Poisson-Prozess ein homogener Erneuerungsprozess mit 17 =
Ty ~ Exp(\) ist. Hinweis: man soll zeigen, dass fiir eine beliebige Exponentialverteilte Zufalls-
variable X die integrierte Tailverteilungsfunktion von X gleich Fx ist.

Theorem 2.2.1
Sei N = {N(t), t > 0} ein Zé&hlprozess. Folgende Aussagen sind dquivalent.

1. N ist ein homogener Poisson-Prozess mit Intensitat A > 0.

2. a) N(t) ~Pois(At),t >0
b) fiir beliebiges n € N, ¢ > 0, gilt dass der Zufallsvektor (Si,...,.S,) unter der Bedin-
gung {N(t) = n} dieselbe Verteilung besitzt, wie die Ordnungsstatistiken von u.i.v.
Zufallsvariablen U; € U([0,t]),i=1,...,n.
) N besitzt unabhéngige Zuwéchse,
) EN(1) = A, und
c) es gilt die Eigenschaft 2b).
)

N hat stationdre und unabhéingige Zuwachse, und
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b) es gilt P(N(t) = 0) = 1 — At + o(t), P(N(t) = 1) = At + o(t), t | 0.

5. a) N hat stationire und unabhéngige Zuwéchse,

b) es gilt die Eigenschaft 2a).

Bemerkung 2.2.3 1. Es ist klar, dass die Definition 2.2.1 mit A(dz) = Adz, X\ € (0,00)
nach Theorem 2.2.1 eine dquivalente Definition des homogenen Poisson-Prozesses ist.

2. Der homogene Poisson-Prozess N wurde am Anfang des 20. Jahrhundertes von den Phy-
sikern A. Einstein und M. Smoluchovsky eingefithrt, um den Zahlprozess von Elementar-
teilchen im Geigerzéhler modellieren zu kénnen.

3. Aus 4b) folgt P(N(t) > 1) = o(t), ¢t | 0.

4. Die Intensitdt von N hat folgende Interpretation: A = EN(1) = ﬁ, also die mittlere

Anzahl der Erneuerungen von N in einem Zeitintervall der Lange 1.

5. Die Erneuerungsfunktion vom homogenen Poisson-Prozess ist H(t) = At, t > 0. Dabei
gilt offensichtlich H(t) = A([0,t]), t > 0.

Beweis Schema des Beweises: 1) = 2) = 3) = 4) = 5) = 1)

1) =2):

Aus 1) folgt S,, = Y71 T, ~ Erl(n,\), weil Ty, ~ Pois(\), n € N, daher P(N(t) = 0) = P(T1 >
t)=e M t >0, und fir n € N

P(N(t) =n) = PHN()Zn}\{N(t) >n+1}) =P(N(t) > n) - P(N(t) > n+1)

t A7 n—1 tAn+1 n
= P(S,<t)—P(Sp+1 <t)= / T ey —/ T ey
0

0o (n—1)! n!
= /t 4 (()\x)”e_)\x) dx = (Ao)" e M t>0
o dx n! n! o=

Daher ist 2a) bewiesen.
Beweisen wir nun 2b). Nach dem Transformationssatz fiir Zufallsvektoren (vgl. Satz 3.6.1, WR)
aus

S1 =T
S5 = NT+1T

Sny1 = Th+...+ T

folgt, dass die Dichte f(g, . g,) von (S1,...,Sns1)" durch die Dichte von (T%,...,Tp1)",
T; ~ Exp()), u.i.v., augedriickt werden kann:

n+1 n+1

Fs1rsmin)(tls ey tns1) = H fr(ty — te—1) = H Ne Mtr—to—1) — \nt+lo=Ania
k=1 k=1

fiir beliebige 0 <t; < ... <tp41, to = 0.
Fiir alle anderen 21, ..., tn11 gilt fs,, .. s,.0) (1, tnt1) = 0.
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Deshalb

fs1,080)E1, -t N(@E) =n) = fig, st talSk <t k<n, Spy1 >1)
I Fsn,Snin) (1 -+ s tng1 At
Jo bl I Fsrsie (t st ) At dty . dty

ftoo An+1€*/\tn+1 dtn+1

= X
JESE e A e M dt, ydt, L dty
xI0<tg <ty <...<ty <t)
n!
= tnt(OStl Stzf...ﬁtngt).
Das ist genau die Dichte von n w.i.v U(]0, t])-Zufallsvariablen.
Aufgabe 2.2.2
Zeigen Sie es.
2) = 3)
Aus 2a) folgt offensichtlich 3b). Jetzt soll lediglich die Unabhéngigkeit der Zuwéchse von N
bewiesen werden. Fiir beliebiges n € N, z1,...,2, € N, tp = 0 < t1 < ... < t, gilt fur
r=x14+...+ x,, dass
P(ME=1{N (k) = N(te-1) = z}) = PG {N(tx) — N(tp—1) = 2} N (tx) = ) X

zllf}zn! HZ:l (ik_ttfil)Zk DaCh 2C)
—_——

et AT nach 2a)

)

_ ﬁ (At — tr—1))™* e~ Mtr—tr—1)
Pl $k!

_ n
weil die Wahrscheinlichkeit von (%) die Polynomialverteilung mit Parametern n, M}

tn =1
angehort. Denn das Ereignis () ist es, beim unabhéngigen gleichverteilten Werfen von = Punkte

auf [0,t], jeweils x Punkte im Korb der Lange t; — tx_1, k = 1,...,n zu haben:

[
T — &

Abbildung 2.4:

Damit ist 3a) bewiesen, weil P(N}_{N(tx) — N(tx—1) = 2 }) = [[1=1 PN (tx) — N(tp—1) =
Tk})-
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3)=4)
Zeigen wir, dass N stationdre Zuwéchse besitzt. Fiir beliebiges n € Ny, x1,...,2, € N, tg =
0 <t <...<tyund h > 0 betrachten wir I(h) = P(N?_{{N(tx +h) — N(tx—1+h) = z1}) und
zeigen, dass I(h) nicht von h € R abhéngt. Nach der Formel der totalen Wahrscheinlichkeit gilt

I(h) = iPﬂk ANt +h) = N(tg—1 +h) =z} | N(tp, +h) =m) - P(N(t, + h) =m)
m=0
- te+h—tn 1 —h\" 5 on Atn+h
B mz_oasll xnlﬂ(k tn+h—1h > e +h)( (m! :
= iPmk AN () = N(tre1) = 2 | N(t, + h) = m) x P(N(t, + h) = m) = I1(0).
m=0

Zeigen wir nun die Eigenschaft 4b) fiir h € (0,1):
P(N(h)=0) = iP(N(h) =0,N(1) =k) :kiO:P(N(h) =0,N(1) = N(h) =k)
= =0
= kiO:P(N(l) — N(h)=Fk,N(1) = k)
=0
= iP(N(l) =kP(N(1)—=N(h)=k|NQ)=k)

= ZP k)(1— h)k.

Es ist zu zeigen, dass P(N(h) = 0) = 1 — Ah + o(h), d.h., limp_oot (1 — P(N(h) = 0)) = A. In
der Tat es gilt

oo o0 _ . k
% (1-P(N(h)=0)) = % (1 — > P(N(1) =k)(1— h)k> =S P(N(1) =k)- 1(111’1)
k=0 k=1
.- _ 1—(1—h)*
— g::l P(N(1) = k) lim —
k
= i P(N(1) = k)k = EN(1) = \,
k=0

N(1) = k)k = XA < o0
e N.
) =

weil diese Reihe gleichméBig in h konvergiert, da sie durch > 72 P(
dominiert wird wegen der Ungleichung (1 — h)* > 1 —kh, h € (0,1), k
Ahnlich kann man zeigen, dass limy, g %}1):1) = limp 0 > peq P(INV(
4) = 5)

Zu zeigen ist es, dass fiir beliebiges n € Nund ¢ > 0

) =k)k(l—-h)kF1=x

pu(t) =P(N(t) =n) = e—M(A;')n (2.2.1)

gilt. Wir beweisen dies induktiv beziiglich n. Zunichst zeigen wir, dass po(t) = e, h = 0. Dazu
betrachten wir po(t+h) = P(N(t+h) =0) = P(N(t) =0, N(t+h) — N(t) = 0) = po(t)po(h) =
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po(t)(1 — Ah +o(h)), h — 0. Ahnlich kann man zeigen, dass po(t) = po(t — h)(1 — \h + O(h))
h — 0. Somit gilt pf(t) = limy,_,o L2 — _\p(), £ > 0. Da po(0) = P(N(0) = 0) =
folgt aus

pO(O) = 0,

dass es eine eindeutige Losung po(t) = e M t > 0 existiert. Nun sei fiir n die Darstellung
(2.2.1) bewiesen. Beweisen wir sie fiir n 4 1.

{pﬁ)(t) = —Apo(t)

pnpi(t+h) = P(N(t+h)=n+1)
= P(Nt)=n,N({t+h)—N@t)=1)+P(N({t)=n+1,N(t+h)— N(t) =0)
= pa(t) = p1(h) + ppia(t) — po(h)
= pa() N+ 0(h)) + prsr () (L — Mo+ o(h)), T — 0,7 > 0.

Daher
Prp1(t) = —Appia(t) + Apa(t), t >0
2.2.2

{ pua(0) = 0 (222)
Da p,(t) = et n,) , bekommt man pn+1(t) e M (831;1 als Losung von (2.2.2). (In der Tat
Pnt+1(t) = +Cl(t) M= O (t)e )+1 i AC(t)e M. + Apn(t)
C/(t) = 25 O(t) = XL (0) — 0)
5)=1)

Sei N ein Zahlprozess N(t) = max{n : S, < t}, t > 0, der Bedingungen 5a) und 5b) erfiillt.
Zeigen wir, dass S, = Y p_; Tk, wobei T}, i.i.d. mit T ~ Exp(X), k € N. Da T}, = S;, — Sk—_1,
k €N, Sy =0, betrachten wir flir jg =0< a1 < b1 <...<a, < b,

P (Mi—1{ar < Sk < b))

= P(MZi{N(ax) = N(bg—1) = 0, N(bg) — N(az) = 1}
NN (an) = N(bp-1) = 0, N(bn) — N(an) > 1})
n—1
= J](P(WN(ak — br—1) = 0) P(N (b, — ar) = 1)) x
k=1 o~ Mag—bi_1) )\(bk—ak)e_Mbk_ak)
P(N(ap —bp—1) = 0)P(N (b, —a,) > 1)
e~ Man—bp_1) (1—e=Mbn—an))
n—1
— e*)\(an*bn—l)(l o efA(bnfan)) H A(bk - ak)ef)\(bkfbk,l)
k=1

1/ -2 Ab b1 bn A
= ANV (eTMn — e H (br, — ax) / / Ne Mrdy, ..oy
ai QAn

Die gemeinsame Dichte von (S, ..., S,) " ist also gegeben durch \"e ™ 1(y; <y < ... < yp).
O

2.2.2 Zusammengesetzter Poisson-Prozess

Definition 2.2.3
Sei N = {N(t), t > 0} ein homogener Poisson-Prozess mit Intensitat A > 0, konstruiert mit
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Hilfe der Folge {71}, }nen von Zwischenankunftszeiten. Sei {U,, } ,en eine Folge von u.i.v. Zufalls-
variablen, unabhéngigen von {T},},en. Sei Fyy die Verteilungsfunktion von Uj. Fiir beliebiges
t > 0 setze X(t) = Zg:(tl) Uk. Der stochastische Prozess X = {X(t), t > 0} heifit zusam-
mengesetzter Poisson-Prozess mit Parametern A, Fy. Die Verteilung von X(¢) heifit dabei
zusammengesetzte Poisson-Verteilung mit Parametern At, Fy;.

Zusammengesetzter Poisson-Prozess X (t), ¢ > 0 kann als Summe der ,Marken* U, eines
homogenen markierten Poisson-Prozesses (N, U) bis zur Zeit t interpretiert werden.
So wird X (t) als Gesamtarbeitsbelastung eines Servers bis zur Zeit ¢ in der Warteschlangen-
theorie interpretiert, falls die Aufforderungen zum Service zu Zeitpunkten S, = > p_; T, n € N
eingehen und mit sich den Arbeitsaufwand U,,, n € N mitbringen.
In der Versicherungsmathematik ist X (¢), ¢ > 0 der Gesamtschaden eines Portfolios bis zum
Zeitpunkt ¢t > 0 mit Schadenanzahl N(¢) und Schadenhoéhen U, n € N.

Theorem 2.2.2
Sei X = {X(t), t > 0} ein zusammengesetzter Poisson-Prozess mit Parametern A\, Fy;. Es
gelten folgende Eigenschaften:

1. X hat unabhéngige stationire Zuwéchse.

2. Falls 1y (s) = Ee*U| s € R, die momenterzeugende Funktion von Uy ist, so dass iy (s) <
00, s € R, dann gilt

i (s) = MM s e ROt >0, EX(t) = MEUy, var X(t) = MEUZ, t > 0.

Beweis 1. Zu zeigen ist, dass fiir beliebige n € N, 0 <ty <t; <...<t, und h

N(t1+h) N(tn+h) n N(tr)
P( Z Uhgxl,..., Z Uzngxn)—HP( Z Uzkﬁxk)
k=1

ilzN(to—l-h,)—‘rl in:N(tn,1+h)+1 ik:N(tk,1)+l

flir beliebige x1,...,x, € R. In der Tat, gilt

N(t1+h) N(tn+h)
P Z Uilgl‘l,..., Z UMSCL‘n

i1=N(to+h)+1 in=N(tn—1+h)+1
= L E" () | POy ANt + h) = Nty + ) = k)
k1, kn=0 \j=1
= > 11 f o () ( I P(N(tm) — N(tm-1) = km)>
k1,....kn=0 \j=1 m=1
= 11 X BF(@m)P(N(tm) — N(tm-1) = k)
m=1 k;,, =0
n N(tm)
= IIP Y. Stm
m=1 km:N(tWL71)+1

Aufgabe 2.2.3
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2.2.3 Cox-Prozess

Ein Cox-Prozess ist ein (im Allgemeinen inhomogener) Poisson-Prozess mit Intensitatsmaf A,
das an sich ein zufilliges Mafl darstellt. Diese intuitive Vorstellung kann in folgender Definition
formalisiert werden.

Definition 2.2.4

Sei A = {A(B), B € B(Ry)} ein zufilliges f.s. lokal-endliches Maf. Das zuféllige Z&hlmaf

N = {N(B), B € B(Ry)} wird Coz-Zihlmaf (oder doppelt-stochastisches Poisson-Majf) mit

zufdlligem Intensitdtsmafl A genannt, falls fiir beliebige n € N, k1,..., %k, € Ngund 0 < a1 <
i (@ b,

by <ap < by < ... <ap < by gilt POV {N((a;, bi]) = ki}) = E (H?:l efA((a“bi])W)-

k3

Der Prozess {N(t), t > 0} mit N(t) = N((0,t]) heiBt Coz-Prozess (oder doppelt-stochastischer

Poisson-Prozess) mit zufilligem Intensitdtsmafl A.

Beispiel 2.2.1 1. Falls das zufillige Maf3 A f.s. absolut stetig bzgl. des Lebesgue-Mafles ist,
d.h., A(B) = [z A(t)dt, B - beschrénkt, B € B(R,.), wobei {\(t),t > 0} ein stochastischer
Prozess mit f.s. Borel-mefibaren borel-integrierbaren Trajektorien ist, A(¢) > 0 f.s. fir alle
t > 0, der Intensitédtsprozess von N genannt wird.

2. Insbesondere kann A(t) = Y sein, wobei Y eine nicht-negative Zufallsvariable ist. Dann
gilt A(B) = Yuv1(B), also hat N eine zuféllige Intensitat Y. Solche Cox-Prozesse werden
gemischite Poisson-Prozesse genannt.

Einen Cox-Prozess N = {N(t), t > 0} mit Intensitdtsprozess {A(t), ¢ > 0} kann man
wie folgt explizit konstruieren. Sei N = {N(t), ¢ > 0} ein homogener Poisson-Prozess mit
Intensitdt 1, der unabhéngig von {\(t), t > 0} ist. Dann ist N 4 N1, wobei der Prozess
Ny = {Ny(t), t > 0} gegeben ist durch Ny(t) = N(f§ A(y)dy), t > 0. Die Aussage N < N soll
natiirlich bewiesen werden. Wir werden sie jedoch ohne Beweis annehmen. Sie bildet auch die
Grundlage fiir die Simulation des Cox-Prozesses N.

2.3 Ergdnzende Aufgaben

Aufgabe 2.3.1
Sei {N;}+>0 ein Erneuerungsprozess mit Zwischenankunftszeiten T;, welche exponentialverteilt
sind, d.h. T; ~ Exp(A).

a) Beweisen Sie: IV; ist Poisson-verteilt fur jedes ¢t > 0.
b) Bestimmen Sie den Parameter dieser Poisson-Verteilung.
c) Bestimmen Sie die Erneuerungsfunktion H(t) = E N;.

Aufgabe 2.3.2

Beweisen Sie: Ein (reellwertiger) stochastischer Prozess X = {X(t), t € [0, 00)} mit unabhéngi-
gen Zuwéachsen hat bereits dann stationdre Zuwéchse, wenn die Verteilung der Zufallsvariablen
X(t+ h) — X(h) unabhéngig von h ist.

Aufgabe 2.3.3
Sei N = {N(t),t € [0,00)} ein Poisson-Prozess mit Intensitdat A. Berechnen Sie die Wahr-
scheinlichkeiten dafiir, dass im Intervall [0, s] genau i Ereignisse auftreten unter der Bedingung,
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dass im Intervall [0,¢] genau n Ereignisse eintreten, d.h. P(N(s) =i | N(t) = n) fir s < ¢,

i=0,1,....n

Aufgabe 2.3.4

Seien NV = {NM(t), ¢t € [0,00)} und N® = {N®(t), t € [0,00)} unabhingige Poisson-

Prozesse mit den Inten81taten A1 bzw. Ag. Die Unabhanglgkeit soll in diesem Fall bedeuten,

dass die Folgen Tl(l), T2(1)7 ...und T1(2), T2(2)7 ... unabhéngig sind. Zeigen Sie, dass N = {N(t) :=

NO(#) + NA(t), t € [0,00)} ein Poisson-Prozess mit Intensitit A; + Ao ist.

Aufgabe 2.3.5 (Wartezeitenparadoxon):

Fiir einen Erneuerungsprozess N = {N(t), t € [0,00)} heiBit T'(t) = Sy()41 — t die Exzesszeit,
) =

€
C(t) =t — Sy die aktuelle Lebenszeit und D(t) = T(t)+C(t) = T4 die Lebensdauer zum
Zeitpunkt ¢ > 0. Sei nun N = {N(t), t € [0,00)} ein Poisson-Prozess mit Intensitiat A.

a) Berechnen Sie die Verteilung der Exzesszeit T'(t).

b) Zeigen Sie, dass die Verteilung der aktuellen Lebenszeit durch P(C(t) = t) = e~ und
die Dichte foyn)>o0(s) = e $1{s < t} gegeben ist.

c) Zeigen Sie, dass P(D(t) < x) = (1 — (1 + Amin{t,z})e **)1{z > 0}.

d) Um ET'(t) zu bestimmen, kénnte man folgendermafien argumentieren: Im Mittel liegt ¢
in der MItte des umgebenden Zwischenankuftsintervalls (Sy ), Sny+1), d-h. ET(t) =
%E(SN(t)H —Snw) = %ETN(t)H = % In Anbetracht des Ergebnisses aus Teil (a) kann
dieses Argument nicht stimmen. Wo liegt der Fehler in der Argumentation?

Aufgabe 2.3.6

Gegeben sei ein zusammengesetzter Poisson-Prozess X = {X(¢t) := Z Ul,t > 0}. Sei
My (s) = EsV® s € (0,1), die erzeugende Funktion des Poisson—Prozesses N(t), L{U}(s) =

E exp{—sU} die Laplace-Transformierte von U;, ¢ € N, und £{X (¢)}(s) die Laplace-Transformierte
von X (t). Beweisen Sie, dass

L{X(1)}(s) = My (L{U}(s)), =0

gilt.
Aufgabe 2.3.7
Gegeben sei ein zusammengesetzter Poisson-Prozess X = {X(t), ¢t € [0,00)} mit U; u.i.v.,

Uy ~ Exp(y), wobei die Intensitdt von N(t) durch A gegeben sei. Zeigen Sie, dass fiir die
Laplace-Transformierte £{X (¢)}(s) von X (t) gilt:

Ats
L{X(t)}(s) = exp{ popre s} .

Aufgabe 2.3.8

Schreiben Sie eine Funktion in R (alternativ: Java), der als Parameter ein Zeitpunkt ¢, eine
Intensitdt A und ein Wert v iibergeben werden und die als Ergebnis den zufélligen Wert ei-
nes zusammengesetzten Poisson-Prozesses mit Charakteristiken (A, Exp(y)) zum Zeitpunkt ¢
ausgibt. Hinweis: die Lisungen sollen als kommentierter, strukturierter und lesbarer Ausdruck
abgegeben werden.
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Aufgabe 2.3.9

Der stochastische Prozess N = {N(t), t € [0,00)} sei ein Cox-Prozess mit Intensitétsfunktion
A(t) = Z, wobei Z eine diskrete Zufallsvariable ist, welche die Werte A\; und A2 jeweils mit
Wahrscheinlichkeit 1/2 annimmt. Bestimmen Sie die momenterzeugende Funktion sowie den
Erwartungswert und die Varianz von N (t).

Aufgabe 2.3.10

Gegeben seien zwei unabhingige homogene Poisson-Prozesse N = {NM(#), ¢t € [0,00)}
und N® = {N® (), t > 0} mit den Intensititen X\; und \y. Weiter sei X > 0 eine beliebige
nichtnegative Zufallsvariable, die von N und N3 unabhingig ist. Zeigen Sie, dass der Prozess
N = {N(t), t > 0} mit

N (@), t< X,
N =13 v @ (s _
NOX)+ NO@E—X), t>X

ein Cox-Prozess ist, dessen Intensitétsprozess A = {A(t), t > 0} gegeben ist durch

A t< X
)\(t>: 1, = )
Ao, t> X,



3 Wiener-Prozess

3.1 Elementare Eigenschaften

Im Beispiel 2) des Abschnittes 1.2 haben wir die Brownsche Bewegung (oder Wiener-Prozess)
W = {W(t), t > 0} definiert als einen GauBschen Prozess mit EW (¢) = 0 und cov(W (s), W (t)) =
min{s,t}, s,t > 0. Geben wir jetzt eine neue (iquivalente) Definition an.

Definition 3.1.1
Ein stochastischer Prozess W = {W(t), ¢t > 0} heifit Wiener-Prozess (oder Brownsche Bewe-
gung), falls

1. W(0) =0 fs.
2. W hat unabhéingige Zuwichse
3. W(t)—W(s) ~N(0,t—s),0<s<t

Die Existenz von W nach Definition 3.1.1 folgt aus dem Satz 1.7.1, weil ndmlich ¢4;(2) =

) _ (t—s)2> (t—w)z? (u—s)2? (=822
Eciz(W(t)-W(s)) = ¢ 2 ,z€R, und e 2 e 2 =e 2 fir 0 < s <u <t also

Vsu(2)Put(2) = @st(2), z € R. Aus dem Satz 1.3.1 folgt auBlerdem die Existenz einer Version
mit stetigen Trajektorien.

Aufgabe 3.1.1
Zeigen Sie, dass das Theorem fir o = 3, 0 = %
Der Wiener-Prozess ist nach dem Mathematiker Norbert Wiener (1894 - 1964)benannt wor-
den. Warum existiert dann die Brownsche Bewegung? Aus dem Satz von Kolmogorov (Satz
1.1.2) existiert fiir jede Funktion g : Ry — R und jede positiv semi-definite Funktion C :
Ry x Ry — R ein reellwertiger Gaufischer Prozess X = {X(¢), t > 0} mit Mittelwert
EX(t) = wu(t), t > 0, und Kovarianzfunktion cov(X(s), X(t)) = C(s,t), s,t > 0. Es bleibt
lediglich zu zeigen, dass C(s,t) = min{s,t}, s,t > 0 positiv-semidefinit ist.

Aufgabe 3.1.2
Zeigen Sie es.

Deswegen wird oft angenommen, dass der Wiener-Prozess stetige Pfade besitzt (man nimmt
einfach die entsprechende Version von ihm).

Theorem 3.1.1
Beide Definitionen des Wiener-Prozesses sind dquivalent.

Beweis 1. Aus der Definition im Abschnitt 1.2 folgt die Definition 3.1.1.
W(0) =0 f.s. folgt aus var(W(0)) = min{0,0} = 0. Beweisen wir nun, dass die Zuwéchse
von W unabhéngig sind. Falls Y ~ N (u, K) ein n-dimensionaler Gaufischer Zufallsvektor
ist und A eine (nxn)-Matrix, dann gilt AY ~ N (Au, AKAT), dies folgt aus der expliziten
Form der charakteristischen Funktion von Y. Seinunn € N, 0 = t5 < t1 < ... < ty,

39
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Y = (W(ty), W(t1),...,W(t,))". Es gilt fir Z = (W(ty), W(t1) — W(to),..., W(ts) —
W(tn_1))T", dass Z = AY, wobei

1 00 0

-1 0 0

A= 0 -1 1 0 0
0 00 -1 1

Daher ist Z auch Gaufisch mit einer Kovarianzmatrix, die diagonal ist. In der Tat gilt
COV(W(tH_l) - W(ti), W(tj_H) - W(tj)) = min{ti_H, tj-i-l} - min{ti_H, t]'} — min{ti, tj+1}+
min{t¢;,t;} = 0 fiir ¢ # j. Daher sind die Koordinaten von Z unkorreliert, was fiir die
multivariate GauBsche Verteilung Unabhéngigkeit bedeutet. Deshalb sind die Zuwéchse
von W unabhéngig. Weiterhin, gilt fiir beliebiges 0 < s < t, dass W (t) — W (s) ~ N (0,t—
s). Die Normalverteiltheit folgt aus der Tatsache, dass Z = AY Gaufisch ist, offensichtlich
gilt EW(t) — EW(s) = 0 und var(W(t) — W(s)) = var(W(t)) — 2cov(W (s), W (t)) +
var(W(s)) =t —2min{s,t} + s =t — s.

2. Aus der Definition 3.1.1 folgt die Definition im Abschnitt 1.2.
Da W (t)—W(s) ~ N(0,t—s) fiir 0 < s < ¢, gilt cov(W (s), W(t)) = E[W (s)(W (t)—-W (s)+
W(s))] = EW(s)E(W (t) —W(s))+var W (s) = s, daher gilt cov(W (s), W (t)) = min{s, t}.
Aus W(t) — W(s) ~ N(0,t — s) und W(0) = 0 folgt auch, dass EW(t) = 0, ¢ > 0. Die
Tatsache, dass W ein Gauflscher Prozess ist, folgt aus der Relation Y = A_IZ , Punkt 1)
des Beweises.
O

Definition 3.1.2
Der Prozess {W(t), t > 0} W(t) = (Wi(t),...,Wy(t))", t > 0, heiit d-dimensionale Brown-
sche Bewegung, falls W; = {W;(t), t > 0} unabhéngige Wiener-Prozesse sind, i = 1,...,d.

Die obigen Definitionen und Ubungsaufgabe 3.1.1 garantieren uns die Existenz eines Wiener-
Prozesses mit stetigen Pfaden. Wie kann man aber eine explizite Konstruktion dieser Pfade
angeben? Damit befassen wir uns im néchsten Abschnitt.

3.2 Explizite Konstruktion des Wiener-Prozesses

Konstruieren wir den Wiener-Prozess zunachst auf dem Intervall [0, 1]. Die Hauptidee der Kon-
struktion ist es, einen stochastischen Prozess X = {X(t), ¢ € [0,1]} einzufiihren, der auf
einem Teilwahrscheinlichkeitsraum von (€2, .A,P) definiert ist mit X 4 W, wobei X(t) =
Yo en(t)Yn, t € [0,1], {Yn}nen eine Folge von u.i.v. NV (0,1)-Zufallsvariablen und ¢, (t) =
Jy Hy(s)ds, t € [0,1], n € N, ist. Hier soll {H,,},en die orthonormierte Haar-Basis im Lo([0, 1]
sein, die jetzt kurz eingefiihrt wird.

3.2.1 Haar- und Schauder-Funktionen

Definition 3.2.1

Die Funktionen H [O, 1] = R, n € N, heiflen Haar-Funktionen, falls Hy(t) = 1, t € [0,1],

HQ( ) - ]‘[O 1]( ) - ](t) ( ) - 22(1I ( ) 1Jn’k( ))7 [07 1]7 2" < k < 2n+17 wobei
1,

Ink—[ank,ank—i—Q" Inge = (i +27" an,k—&—Q*”],anyk:2*”(k—2"—1),n€N.
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Abbildung 3.1: Haar-Funktionen

Lemma 3.2.1
Das Funktionssystem {H,,},en ist eine orthonormierte Basis in L?([0, 1]) mit dem Skalarpro-

dukt < f,g >= [y f(t)g(t)dt, f,g € L*([0,1]).

Beweis Die Orthonormiertheit des Systems < Hy, H, >= 6gn, k,n € N folgt unmittelbar
aus der Definition 3.2.1. Zeigen wir die Vollstandigkeit von {H)},en. Es geniigt zu zeigen,
dass fiir beliebige Funktion g € L?([0,1]) mit < g, H,, >= 0, n € N, g = 0 fast iiberall auf
[0,1] gilt. In der Tat kann die Indikator-Funktion eines Intervalls 1j, , ., , 1o-n-1) stets als
Linearkombination von H,, n € N aufgeschrieben werden.

_ 1 2
1 - (HitHy)
[0,5} 2 )
L, = Uh—H))
(Eal} 2 ’
1
1 1 = (1[0’%] + ﬁHé)
0,31 — 92 )
1
111 = (1[0’%] _ EH2)
(73] 2 ’
1 w272
1[an a2l = ( G ks On, k2 )’ oy < 2n+1‘

2

(k+1)
Daher gilt [ > g(t)dt =0, n € Ng, k = 1,...,2" — 1, und deshalb G(t) = [i g(s)ds = 0 fiir
2n
t = 2%, n € No, k=1,...,2" — 1. Da G stetig auf [0, 1] ist, folgt heraus G(t) = 0, t € [0, 1],
und somit g(s) = 0 fiir fast jedes s € [0, 1]. 0

Aus Lemma 3.2.1 folgt, dass zwei beliebige Funktionen f,g € L?([0,1]) die Darstellungen
f=>0,<f,Hy,>H,und g =>°, < g,H, > H, haben (diese Reihen konvergieren im
L2([0,1])) und < f,g >=>0°, < f, H, >< g, H, > (Parseval-Identitiit).

Definition 3.2.2

Die Funtionen S,(t) = [I H,(s)ds =< Loy, Hn >, t € [0,1], n € N heiflen Schauder-
Funktionen.
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AS1(t) ASz() AS3()
1- n
i i e
> E /\' %
0 1 t 0 1/2 1 't 0 A K 1 t
ank apy+2"
Abbildung 3.2: Schauder-Funktionen
Lemma 3.2.2
Es gilt:

1. Su(t) >0,te€[0,1], n €N,
2. Yhl) Sony(t) < 3272, t€[0,1], n €N,

3. Sei {ap}nen eine Folge von reellen Zahlen mit a,, = O(n®), € < %, n — oo. Dann kon-
vergiert die Reihe 02 | a,, Sy (t) absolut und gleichmafig in ¢ € [0, 1] und ist folglich eine
stetige Funktion auf [0, 1].

Beweis 1. folgt unmittelbar aus Definition 3.2.2.

2. folgt aus der Tatsache, dass die Funktionen Sonj fiir & = 1,...,2" disjunkte Tréager
haben und Son(t) < SQnJrk(%]fL—ill) =231 te [0, 1].

3. Es geniigt zu zeigen, dass Ry, = SuPscjo 1] 2k>on |ak|Sk(t) —— 0. Fiir jedes k € N und
’ n—oo
ein ¢ > 0 gilt |ag| < ck®. Deshalb gilt fiir alle t € [0,1], n € N

ST JaglS(t) < e 20V 3T Sty < e- 20 7Bl < eLgen(a ),
2n<kg<2ntl on < k<on+l

9-n(3=e) .

m— 00

Da€<%,giltRm§c-252

n>m

Lemma 3.2.3
Sei {Y,}nen eine Folge von (nicht unbedingt unabhéngigen) Zufallsvariablen definiert auf

(Q, A,P), Y, ~N(0,1), n € N. Dann gilt |Y;,| = O((logn)2), n — oc.

Beweis Zu zeigen ist, dass fiir ¢ > v/2 und fast allen w € Q ein ng = ng(w, c) € N existiert, so
dass |Y,| < ¢(log n)% fur n > ng. Falls Y ~ N(0,1), 2 > 0, dann gilt

1 o0 2 1 o0 1 2
PV >2) = % / e Tdy = Nors / <_y> a <e_y2>
= —1 (161“122 — /Oo e*%id ) < —1 le*

N V21 \T z Y2 v)= V2t zx

8
S
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Man kann auch zeigen, dass ®(z) ~ —=Le ~%, 2 — 00.) Daher gilt fiir ¢ > /2
\/7x
l 2 5 2lo n 12
ZP\Y!>clogn)2 —Zlogn e~ Tlogn — Zlogn 2n” 2 < o0.
n>2 V27T 55 n>2

Nach dem Lemma von Borel-Cantelli (vgl. WR-Skript, Lemma 2.2.1) gilt P(N,, Ug>p Ax) = 0,
falls > P(Ag) < oo mit A = {|Yx| > e (log k)%}, k € N. Daher tritt A in unendlicher Anzahl
nur mit Wahrscheinlichkeit 0, mit |Y;,| < ¢(log n)% fiir n > ng. O

3.2.2 Wiener-Prozess mit f.s. stetigen Pfaden

Lemma 3.2.4

Sei {Y,, }nen eine Folge von unabhéngigen N (0, 1)-verteilten Zufallsvariablen. Seien {ay,}nen

und {b,}nen Folgen von Zahlen mit Y2 |agmyx| < 272, 22 [bamyp| < 272, m € N.

Dann existieren f.s. die Grenzwerte U = 32 a,Y,, und V = >0°, b, Y,,, U ~ N(0,35°, a2),
~ N(0,35°, b2), wobei cov(U,V) = 3% apb,. U und V sind genau dann unabhanglg,

wenn cov(U, V) = 0.

Beweis Aus Lemma 3.2.2 und 3.2.3 ergibt sich f.s. die Existenz der Grenzwerte U und V
(ersetze dafiir a,, durch Y;, und S,, durch z.B. b, in Lemma, 3 2.2). Aus der Faltungsstabilitéit der
Normalverteilung folgt fiir U(™) = n 1anYn, V( m =M b, Y, dass U™ ~ N(0, 7 a?),
VM o~ N0, 82). Da UM & U, vim 4y folgt somit U ~ (o,zn:1 a2), V ~
N(0,3°5°, b2). Weiterhin, gilt

cov(U,V) = lim cov(U™, V(M)

m—r0o0
m

= W%gnoo ‘ZI aibj COV(Y;, ij)
)=

m o
= lim Za‘b- = Za'b-
m-—o00 (A 1Yy
i=1 i=1

nach dem Satz von Lebesgue iiber die majorisierte Konvergenz, denn nach Lemma 3.2.3 gilt
|Ya| < ¢ (log n) fiir n > Np, und die majorisierende Reihe konvergiert nach Lemma 3.2.2:
E/—/

<cnf, z—:<§

2m+1 2m+1
f‘s‘ m m
S anbk VY <Y anbpc?ntht <22t 97% 97 % — 9= (172m ) 9e 0,
n,k=2m n,k=2m
Fiir ausreichend grofies m gilt >>7% _ anbp¥nYy < 3772, 27 (1-26)j < o, und diese Reihe
konvergiert f.s.

Zeigen wir nun
cov(U,V) =0 <= U und V unabhingig

Aus der Unabhéngigkeit folgt immer die Unkorelliertheit von Zufallsvariablen. Zeigen wir hier
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das Gegenteil. Aus (U™, V(™) 4, (U, V) folgt Pum ym)y === PWUV); also

m—o0

P ymy(s,t) = n}gnoo E exp{i(t Z arpYy + s Z bnYy)}

k=1 n=1

= lim E expqi kz:l(tak + b)Yy} = Jim kl_Il Eexp{i(tay + sby)Ys}

_“ t br,)? (¢ br,)?
= lim H exp{—i( ar, + sb) } =exp{— Z 7( ak + sbi) }

k=1 k=1

t2 oo ) 00 82 0o )
= eXp{_g Z ay.} exp{ts Z arby, }eXP{—E Z b} = wu(t)ev(s),
k=1 k=1 k=1
cov(U,V)=0
s,t € R. Daher sind U und V' unabhéngig, falls cov(U, V) = 0. 0

Theorem 3.2.1

Sei {Y,,, n € N} eine Folge von u.i.v. Zufallsvariablen, die N(0, 1)-verteilt sind, definiert auf
einem Wahrscheinlichkeitsraum (€2, A, P). Dann gibt es einen Teil-Wahrscheinlichkeitsraum
(Q0,Ag, P) von (£2,.A4,P) und einen stochastischen Prozess X = {X(t), t € [0,1]} darauf,
so dass X(t) = >0, YnSn(t), t € [0,1], und X < W. Hierbei ist {Sn}nen die Familie der
Schauder-Funktionen.

Beweis Nach Lemma 3.2.2, 2) erfiillen die Koeffizienten S, (t) fir jedes ¢ € [0, 1] die Bedin-
gungen des Lemmas 3.2.4. Dariiberhinaus existiert nach Lemma 3.2.3 eine Teilmenge 2y C 2,
Qo € A mit P(Q) = 1, so dass fiir jedes w € Qg die Relation |Y,,(w)| = O(y/logn), n — oo,
gilt. Sei Ag = AN . Schrianken wir den Wahrscheinlichkeitsraum auf (€, Ag, P) ein. Dann ist
die Bedingung a, = Y, (w) = O(n®), € < 3, erfiillt, weil y/logn < n® fiir ausreichend grofe n,
und nach Lemma 3.2.2, 3) konvergiert die Reihe Y 0% ; Y,,(w)S,(t) absolut und gleichméfig in
t € [0,1] gegen die Funktion X (w,t), w € Q, die eine stetige Funktion in ¢ fiir jedes w € € ist.
X(+,t) ist eine Zufallsvariable, weil nach Lemma 3.2.4 die Konvergenz dieser Reihe fast sicher
gilt. Weiterhin, gilt X (¢) ~ N(0,3222, S2(¢)), t € [0,1].

Zeigen wir, dass der so definierte stochastische Prozess auf (€9, .4¢, P) ein Wiener-Prozess ist.
Dazu priifen wir die Bedingungen der Definition 3.1.1. Betrachten wir beliebige Zeitpunkte
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0 <t) <tg,tg <ty <1 und berechnen wir

cov(X(to) — X(t1), X(tg) — X(t3)) = cov(i Yo (Sn(t2) — Sn(t1)), i Y, (Sn(tg) — Sn(ts)))
n=1 n=1

o0

= > (Sulta) = Su(t1))(Sn(ts) — Su(ts))

n=1
)

= Z(< Hm 1[0,t2} > =< Hn’ 1[0,t1] >) X

n=1

(< an 1[0,t4] > =< an 1[0,t3] >>

o
= > < Hu Lo — Low) >< Has Lpow) — Logs) >

n=1
<L) = Lpota]> Lo,ta] — Lo,t5]) >
= <l > — < Lol Lo >
— <) Lot > + < lpu) Lot >
= min{tg,t4} — min{ty, 4} — min{ta, t3} + min{ty,ts},

weil < g, Loy >= Jo™ % du = min{s, t}, s,¢ € [0,1]. Falls 0 < t; < to < t3 < t4 < 1,
dann gilt cov(X (t2) — X (t1), X (t4) — X (t3)) = ta — t1 — ta +t1 = 0, also sind die Zuwéchse von
X (nach Lemma 3.2.4) unkorelliert. Weiterhin gilt X (0) ~ A(0,3°2°, S2(0)) = N(0,0), daher
X(0) L% 0. Daraus folgt fiir t1 = 0, to =t, t3 =0, t4 = ¢, dass var(X (t)) =t, t € [0,1], und fiir
ti1=t3=s,ta =ty =1t,dassvar(X(t) — X(s)) =t —s—s+s=t—s,0<s <t <1 Somit
gilt X (t) — X (s) ~ N(0,t — s), und nach Definition 3.1.1 gilt X L. 0

Bemerkung 3.2.1 1. Theorem 3.2.1 bildet eine Grundlage fiir die approximative Simula-
tion der Pfade einer Brownschen Bewegung durch die Teilsummen X (™) (t) = S>7_; V3.Sk (1),
t € [0, 1], fur ausreichend groes n € N.

2. Die Konstruktion in Theorem 3.2.1 kann verwendet werden, um den Wiener-Prozess
mit stetigen Pfaden auf einem Intervall [0, ¢g], fiir beliebiges tg > 0 zu erzeugen. Falls
W = {W(t), t € [0,1]} ein Wiener-Prozess auf [0, 1] ist, dann ist Y = {Y (¢), t € [0,t0]}
mit Y (t) = \/tT)W(%), t € [0,to], ein Wiener-Prozess auf [0, to].

Aufgabe 3.2.1
Beweisen Sie es.

3. Der Wiener-Prozess W mit stetigen Pfaden auf R, kann wie folgt explizit konstruiert
werden. Seien W = {W®) (), t € [0,1]} unabhingige Kopien des Wiener-Prozesses
wie in Theorem 3.2.1. Definiere W (t) = 300, 1(t € [n — 1,n])[SrZ 1 W (1) — W (¢ —
(n—1))], t >0, also,

W(t) = (
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W(l)(l) -

wO+wB(1)

Y

Abbildung 3.3:

Aufgabe 3.2.2
Zeigen Sie, dass der so eingefiihrte stochastische Prozess W = {W(t), t > 0} ein Wiener-Prozess
auf Ry ist.

3.3 Verteilungs- und Pfadeeigenschaften vom Wiener-Prozess

3.3.1 Verteilung des Maximums

Theorem 3.3.1
Sei W = {W(t), t € [0,1]} ein Wiener-Prozess iiber einem Wahrscheinlichkeitsraum (2, 7, P).

Dann gilt:
2 [ 42
P (max W(t) > 1:) < \/—/ ez dy, (3.3.1)
te(0,1] T Jr

Die in 3.3.1 gegebene Abbildung max;c(o ) W(t) : Q@ — [0,00) ist eine wohldefinierte Zu-
fallsvariable, denn es gilt: max;¢(o,1) W (t,w) = limy, 00 max;—1 W(%,w) fiir alle w € Q, weil
die Trajektorien von {W(t), t € [0, 1]} stetig sind. Aus 3.3.1 folgt, dass max;c[g,1) W (t) einen
exponentiell beschréinkten Tail hat: somit hat maxcf ;) W (t) endliche k-te Momente.

Hilfsmittel fiir Beweis von Theorem 3.3.1
Sei {W(t), t € [0,1]} ein Wiener-Prozess und Z;, Zs, ... eine Folge von unabhéngigen Zufalls-
variablen mit P(Z; = 1) = P(Z; = —1) = 1 fiir alle ¢ > 1. Fiir jedes n € N definieren wir

W™ (t), t € [0,1]} durch W"(t) = Slnt) + (nt — |nt L"”“, wobei S; =21+ ...+ Z;,1 > 1,
vn NG
So = 0.

Lemma 3.3.1
Fiir jedes k£ > 1 und beliebige t1,...,t; € [0, 1] gilt:

fir alle x > 0.

(WO ), W (1)) (W (o). W)
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Beweis Spezialfall k = 2 (fiir k£ > 2 verlauft der Beweis analog). Sei t; < to. Fiir alle s1,s9 € R

gilt:
- 3 5 p »
S1W(n)(t1) +82W(n)(t2) = (s1+s92) E;%J _|_82( |nt2 ] \/ﬁ[ntlj—l—l)
(= [t ) =+ —2)
s
+Z |ty | +1(nt2 — Lntgj)\/i%'
lim Eei(slw(n)(t1)+52w(n)(t2)) lim Eei%swtﬂ E@i%(sl_ntzJ_SLntﬂJrl)
e n—o0
.5 LntlJ
_ j51ts2 S|nt1] __ S1 + S9 B s1 + $o
— Ee f t1 == 90 Lnilj \/ﬁ == SDZI \/ﬁ
- lim < <31 +32>>W1J ( <82>>Lnt2J—Lnt1J—1
= AN \PA N 07, N

2

lim " T

n—oo

()=

(s%t1+23132 min{tl,t2}+sgt2)
- 2

e

PW (1), W (t2)) (51, 82),

wobei oy (,),w(t.)) die charakteristische Funktion von (W (t1), W (t2)) ist. O
Lem~ma 3.3.2 3
Sei W = max;eo, 1] W™ (t). Dann gilt:
W = T kmax Sk, furallen=1,2,...
und
JLH;OPW(”<1‘ \/7/ _2dy, fur alle z > 0.
Ohne Beweis
Beweis von Theorem 3.3.1
Aus Lemma 3.3.1 folgt fir z >0, £k > 1 und ¢4,...,t, € [0,1]
lim P < max WM (t) > :U) =P ( max W(t) > x)
n—00 te{ti,...,tx } te{t1,...,tx }
=P (max W () > x) > P < max W(t) > m) .
te[0,1] te{t1,...,tx }
T
Mit (¢, ,tk)—r = (%, e %) und max;e(o, W (t,w) = limp_yoo max;—; W (%, w) gilt
lim P (max WM () > x) > P (max Wi(t) > ZL‘> .
n—00 te(0,1] te(0,1]
Aus Lemma 3.3.2 folgt die Behauptung. O
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Korollar 3.3.1
Sei {W(t), t € [0,1]} ein Wiener-Prozess. Dann gilt:

P(lim W(t):0> ~ 1.
t—oo ¢

Beweis
WO | (MO W) W) W
t n - t t t n
P e LG G]
< 2w -2,

wobei Z(n) = sup;ejo 1) [W(n+1t) — W(n)|, t € [n,n+1). Es gilt

[e.o]

> (W(i) = W(i—1))

i=1

2 ) =2

n

Lo o lEw (1) = 0.

Wir zeigen, dass EZ(1) < oo.

P(Z(1)>z) <P Wi(t) > P —Wi(t)) > = 2P Wi(t) > ,
(Z(1) > x) < (fg}%fﬁ (t) m) + <fél[%fﬁ( (t)) w) (Jél[%fﬁ (t) w)
weil {=W(t), t € [0,1]} auch ein Wiener-Prozess ist. Es gilt

2 [0 42 Z s,
P(Z(1) > xz) <24/ f/ e~Tdy und somit Z(n) L20 fir n — oo
7 Ja n

Daraus folgt WT(t) BN 0 fiir ¢t — oo. O

3.3.2 Invarianzeigenschaften

Bestimmte Transformationen des Wiener-Prozesses fithren wieder zu einem Wiener-Prozess.

Theorem 3.3.2
Sei {W(t), t > 0} ein Wiener-Prozess. Dann sind die stochastischen Prozesse {Y?)(t), ¢t > 0},
1=1,...,4, mit

YOty = —Wi(t), (Symmetrie)
YO(t) = W(t+tg) —Wi(ty) fiir eintg >0, (Verschiebung des Nullpunktes)
YO() = VW (L) fiir ein ¢ > 0, (Skalierung)
1
Y@We) = { tW(t())’ i i 8’ (Spiegelung bei t = 0)

ebenfalls Wiener-Prozesse.

Beweis 1. Y i =1, ... 4, haben unabhingige Zuwichse mit Y (t5) =Y @ (t;) ~ N (0, ty—
t1).
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3. Y@ i =1,...,3, haben stetige Trajektorien. {Y®)(¢), t > 0} hat stetige Trajektorien fiir
t>0
4. Es ist zu zeigen, dass lim;_q tW(%) =0.
limy_,q tW(%) = lim; 0 WT(t) L. 0 wegen Korollar 3.3.1.
O
Korollar 3.3.2
Sei {W(t), t > 0} ein Wiener-Prozess. Dann gilt:
P (sup W(t) = oo) =P <inf W(t) = oo) =1
t>0 t20
Beweis Fiir z,c > 0 gilt:
PlsupW(t) >z | =P (su I/V(t>>:C =P |su T/V(t)>i
t210) tzg & \ﬁ tzlo) \ﬁ
=P ({Sup W(t) =0} U{supW(t) = oo}) = P(supW(t) =0) + P(supW(t) = 00) = 1.
>0 >0 >0 >0
Weiterhin gilt
P (sup W(t) = 0) = P <sup W(t) < 0) <P (W(t) < 0,sup W (t) < 0)
>0 >0 t>1
- <W<1> < 0,5up(W(t) - W(1)) < —W(l))
t>1
0
= / PlsupW(t) —W(1) < -W(t) | W(1) = 3:) P(W(1) € dx)
—0o0 t>1
0
= / P{sup(W(t) —W(1)) < —z|W(Q1)= x) P(W() € dx)
—00 t>0
0
_ / P (supW(t)=0)P(W() € dx)
—00 t>0
1
= P <sup W(t) = 0) =,
>0 2
also P (suptzo W(t) = O) = 0 und somit P (SUPtzo W(t) = oo) =1
Analog kann man zeigen, dass P (inf;>o W (t) = —oc0) = 1. O

Bemerkung 3.3.1

P (suptzo X(t) = oo, infr>0 X (t) = —oo) = 1 bedeutet, dass die Trajektorien von W unendlich
oft zwischen positiven und negativen Werten auf [0, co) oszillieren.

Korollar 3.3.3

Sei {W (t), t > 0} ein Wiener-Prozess. Dann gilt

P(w e Q: W(w) ist nirgendwo differenzierbar in [0,00)) = 1.
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Beweis

{w € Q: W(w) ist nirgendwo differenzierbar in [0, c0)}
=Ny_o{w € Q: W(w) ist nirgendwo diffenrenzierbar in [n,n + 1)}.

Es geniigt zu zeigen, dass P(w € Q : W(w) differenzierbar fir ein tg = to(w) € [0,1]) = 0.
Definiere die Menge

4
Apm = {w € Q: es gibt ein tg = tg(w) € [0, 1] mit | X (tow + h,w) — W (to(w,w))| < mh, Yh € [O, } } )

Dann gilt

{w € Q: W(w) differenzierbar fiir ein tg = to(w)} = Upm>1 Up>1 Apm.

Zu zeigen bleibt P(Up,>1 Up>1 Apm) = 0.
Sei ko(w) = mink:LQ,.“{% > to(w)}. Dann gilt fir w € A, und j =0,1,2

(A1) () < (L

n n

(5950, i

8m

n

Sei Ag(k) = W (&) — W (£). Dann gilt

n . &m
P(Anm) S P (Uk:O U?:o |An(k +])‘ S )

8m 8m
< ZP< =0 [An(k + )] < n> :P<|An(0)| < n)
16m
< n+1< > —0, n— oo,
( ) V2mn
und weil Ay, C Ayprm gilt, folgt P (Apm) = 0. 0
Korollar 3.3.4
Mit Wahrscheinlichkeit 1 gilt:
sup sup Z W (t;) — W(ti—1)| = o0

n>10<to<...<tn <157
d.h. {W(t), t € [0,1]} hat f.s. Trajektorien mit unbeschrankter Variation.

Beweis Weil jede stetige Funktion g : [0, 1] — R mit beschrénkter Variation fast iiberall diffe-
renzierbar ist, ergibt sich die Behauptung aus Korollar 3.3.3.

Alternativer Beweis

27L

Es geniigt zu zeigen, dass lim, o0 > j—

W () - w (Y52)] = .



3 Wiener-Prozess 51

Sei Z, = 22, (W (4) - W (“;}”))2 — . Daraus folgt EZ, = 0 und EZ2 = 227"+ und

mit der Tschebyschev-Ungleichung

EZ2 t 2 > f.s
— —n+1 -5
P(|Zn| <) < 82" = (E) 27"t dh. ;P(]Zn\ >e) = 0.

Aus dem Lemma von Borel-Cantelli ergibt sich, dass lim,,_,., Z,, = 0 fast sicher und somit

on

it (i — 1)\
<t —) -
oz = (v (F)-v ()
kt (k= 1)t | it (i — 1)t
w () - ()l () - ()l
Daraus folgt die Behauptung, weil W stetige Trajektorien hat und deshalb

() (5 o

A

IN

liminf max
n—00 1<k<2n

lim max
n—00 1<k<2n

3.4 Erganzende Aufgaben

Aufgabe 3.4.1

Geben Sie eine intuitive (exakte!) Methode an um Trajektorien eines Wiener-Prozesses W =
{W(t), t € [0,1]} zu realisieren. Nutzen Sie dabei die Unabhéngigkeit und die Verteilung der
Zuwéchse von W. Schreiben Sie zudem ein Programm in R zur Simulation von Pfaden von W.
Zeichnen Sie drei Pfade t — W (t,w) fiir t € [0, 1] in ein gemeinsames Schaubild.

Aufgabe 3.4.2
Es sei der Wiener-Prozess W = {W (¢), t € [0,1]} gegeben und L := argmax;cjo )W (). Zeigen
Sie, dass gilt:

2
P(L < x)= —arcsin\/z, z€l0,1].
m

Hinweis: Verwenden Sie die Beziehung max,.cjo4 W (r) g |W (t)].

Aufgabe 3.4.3
Zur Simulation eines Wiener-Prozesses W = {W (¢), t € [0,1]} konnen wir auch die Approxi-
mation

Wn(t) = zn: Sk(t)zk
k=1

verwenden, wobei die Si(t), t € [0,1], k > 1 die Schauder-Funktionen sind, sowie z ~ N(0,1)
u.i.v. Zufallsvariablen, und die Reihe fast sicher fiir alle ¢ € [0, 1] konvergiert (n — o).

a) Zeigen Sie, dass fiir alle ¢ € [0, 1] die Approximation W,,(t) auch im L2-Sinne gegen W (t)
konvergiert.

b) Schreiben Sie ein Programm in R (alternativ: C) zur Simulation des Wiener-Prozesses

W={W(t),te0,1]}
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c¢) Simulieren Sie drei Pfade ¢ — W(t,w) fiir t € [0,1] und zeichnen Sie diese in ein ge-
meinsames Schaubild. Betrachten Sie hierbei die Stiitzstellen ¢ = %, k=0,...,n mit
n=2%—1.

Aufgabe 3.4.4
Fiir den Wiener-Prozess W = {WW(t), t > 0} definieren wir den Prozess des Maximums, welcher
gegeben ist durch M = {M(t) := maxycoq W(s), t > 0}. Zeigen Sie, dass dann gilt:

a) Die Dichte fy) des Maximums M (t) ist gegeben durch

Hinweis: Verwenden Sie die Eigenschaft P(M(t) > z) = 2P(W(t) > x).

b) Erwartungswert und Varianz von M () sind gegeben durch

2t
EM(t) =1/ —, varM(t) =t(1—2/m).
T
Nun definieren wir 7(x) := argminr{W(s) = z} als den ersten Zeitpunkt, zu dem der

Wiener-Prozess den Wert z annimmt.
c) Bestimmen Sie die Dichte von 7(z) und zeigen Sie: ET(x) = oc.

Aufgabe 3.4.5
Sei W = {W(t), t > 0} ein Wiener-Prozess. Zeigen Sie, dass die folgenden Prozesse ebenfalls
Wiener-Prozesse sind:

0, t=0,

tw(1/t), t>0, Wa(t) = VeW(t/c), ¢>0.

%] (t) = {

Aufgabe 3.4.6

Es sei der Wiener-Prozess W = {W (t),t > 0} gegeben. Die Grofie Q(a,b) bezeichne die
Wahrscheinlichkeit, dass der Prozess die Halbgerade y = at + b, t > 0, a,b > 0 iiberschreitet.
Beweisen Sie:

a‘) Q(CL, b) = Q(b’ CL) und Q(Cl, b1 + b2) = Q(CL, bl)Q(aa b?)u
b) Q(a,b) ist gegeben durch Q(a,b) = exp{—2ab}.
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4.1 Levy-Prozesse

Definition 4.1.1
Ein stochastischer Prozess {X(t), t > 0} heifit Lévy-Prozess, wenn

1. X(0) =0,

2. {X(t)} hat stationdre und unabhéngige Zuwiéchse,

3. {X(t)} stochastisch stetig ist, d.h. fiir beliebiges € > 0, ¢ty > 0:
lim P(1X(t) — X(to)] > &) = 0.

t—to

Beachte

e Man kann sich leicht iiberlegen, dass zusammengesetzte Poisson-Prozesse die 3 Bedin-
gungen erfiillen, denn fiir bel. € > 0 gilt

P(IX(t) — X (to)| <€) > P(|X(t) — X(to)] > 0) <1—e At=tl 0.

t—to

e Ferner gilt fiir den Wiener-Prozess fiir bel. € > 0

P (X (1) = X(to)] > <) ) S )

t t—to

4.1.1 Unbegrenzte Teilbarkeit
Definition 4.1.2

Sei X : 2 — R eine beliebige Zufallsvariable. Dann nennt man X unbegrenzt teilbar, wenn fiir
bel. n € N Zufallsvariablen Y1, Y, ..., Y, existieren mit X 4 Yl(") + ...+ Yn(n).
Theorem 4.1.1

Sei {X(t), t > 0} ein Levy-Prozess. Dann ist die Zufallsvariable X (¢) fiir jedes ¢ > 0 unbegrenzt
teilbar.

Beweis Fiir bel. ¢t > 0 und n € N gilt offenbar, dass

=) (x(2) 0 (2) e (x(2) x(252).

Da {X(t)} unabhéngige stationire Zuwéchse hat, sind Summanden offenbar unabhéngige iden-
tisch verteilte Zufallsvariablen. O

93



54 4 Lévy Prozesse

Lemma 4.1.1
Die Zufallsvariable X : 2 — R ist genau dann unbegrenzt teilbar, wenn sich die charakteristi-
sche Funktion px von X fiir jedes n > 1 darstellen 148t in der Form

ox(s) = (en(s))™ fir alle s € R,

wobei ¢, charakteristische Funktionen von Zufallsvariablen sind.

Beweis , = “

Yl("),...,Y,fn) wiv., X 4 Yl(n) +...+ Y,g"). Daraus folgt, dass px(s) = [, ¢Y.(")<S> =
(on(s))".

“ ¢ “
ex(s) = (on(s))™ = existiert Yl(n), e ,Yn(n) u.i.v. mit charakteristischer Funktion ¢, und
Ovi,..va(8) = (on(s))™ = ¢x(s). Mit dem Eindeutigkeitssatz fiir charakteristische Funktionen

folgt, dass X 4 Yl(n) + ...+ Yn(n). 0O
Lemma 4.1.2
Sei X1,Xo,...: Q — R eine Folge von Zufallsvariablen. Falls es eine Funktion ¢ : R — C

gibt, so dass ¢(s) stetig in s = 0 ist und lim,, ¢x, (s) = ¢(s) fir alle s € R, dann ist ¢ die
charakteristische Funktion einer Zufallsvariable X und es gilt X, 4 X,
Definition 4.1.3

Sei v ein Ma$ iiber den Mefiraum (R, B(R)). Dann nennt man v ein Lévy-Maf, wenn v({0}) =0
und

/Rmin {yQ, 1} v(dy) < oo.

»
>

Abbildung 4.1:
Beachte
e Offenbar ist jedes Levy-Maf} o-endlich und
v((—e,8)) <e, firallee >0, (4.1.1)
wobei (—e,e)¢ =R | (—¢,¢).

e Insbesondere ist jedes endliche Ma$ v ein Lévy-Ma$B, falls v({0}) = 0.
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e Eine zu (4.1.1) equivalente Bedingung ist

Y Y 2 v
dy) < 0o, d <min{y2 1} <27 _ 4.1.2
/ﬂgl—l-y?y( y) < 00 enn 1+y2_mln{y }_ Ty ( )

Theorem 4.1.2
Seien a € R, b > 0 beliebig und sei v ein beliebiges Levy-Maf. Dann ist durch die Funktion
¢ : R — C mit

bs?

©(s) = exp {z’as -5+ (e“y —1—isyl(y € (—1, 1))) u(dy)} fir alle s € R, (4.1.3)
R

die charakteristische Funktion einer unbegrenzt teilbaren Zufallsvariable gegeben.
Bemerkung 4.1.1 e Die Formel (4.1.3) wird auch Lévy-Chintschin-Formel genannt.
e Die Umkehrung vom Theorem 4.1.2 gilt auch, es hat also jede unbegrezt teilbare Zufalls-

variable eine solche Darstellung. Deshalb nennt man das charakteristische Tripel (a, b, v)
auch Leévy-Charakteristik einer unbegrenzt teilbaren Zufallsvariable.

Beweis des Theorems 4.1.2 1. Schritt
Zeige, dass ¢ eine charakteristische Funktion ist.

[ ]
00 /- Nk 00 /i Nk 0ok
: , (isy) : (isy) 2[5 8 2
ewy—l—zsy’zz ] —1—isy|=|> ol <y ZE <y'e
k=0 k=2 k=2
it

Damit folgt mit (4.1.1) und (4.1.2), dass das Integral in (4.1.3) existiert und somit wohl-
definiert ist.

e Sei nun {¢,} eine beliebige Zahlenfolge mit ¢, > ¢p41 > ... > 0 und lim, o ¢, = 0.
Dann ist die Funktion ¢, : R — C mit

. bs? ,
on(s) :=expqis|a— / yv(dy) | — — p exp / (e“y - 1) v(dy)
[—cnyen]en(—1,1) 2 [—cnen®

die charakteristische Funktion der Summe von an) und Zén), 2 unabhéngigen Zufallsva-
riablen, denn

— der erste Faktor ist die charakteristische Funktion der Normalverteilung mit Erwar-
tungswert a — f[fcn enlen(=1,1) yv(dy) und Varianz b.

— der zweite Faktor ist die charakteristische Funktion der zusammengesetzten Poisson-
Verteilung mir den Charakteristiken

A=v([—cn, )9 und Py() =v(-N[—cp,cn]/v([—cn, cnl))

ist.
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e AuBlerdem gilt lim,, o0 n(s) = ¢(s) fiir alle s € R, wobei offenbar ¢ stetig in 0 ist, den
fiir die Funktion ¢ : R — C im Exponent von (4.1.3), also

P(s) = /R (eisy —1—isyl(y e (-1, 1))) v(dy) firalleseR

gilt [¢(s)] = cs? S y2v(dy) + /1) le"*¥ — 1| v(dy). Hieraus und aus (4.1.2) folgt mit
Satz von Lebesgue, dass limg_, o ¢(s) = 0.

e Aus Lemma 4.1.2 ergibt sich, dass die in (4.1.3) gegebene Funktion ¢ die charakteristische
Funktion einer Zufallsvariable ist.

2. Schritt
Die unbegrenzte Teilbarkeit dieser Zufallsvariable folgt aus dem Lemma 4.1.1 und daraus, dass
fiir beliebige n € N auch 2 ein Levy-Maf} ist und dass

a b g2

o(s) = exp {ins _ n7 i A (ez‘sy —1—isyl(y € (-1, 1))) <Z> (dy)} fiir alle s € R.

Bemerkung 4.1.2
Die Abbildung n: R — C mit

52 .
n(s) = ias — % + | (e”y —1—isyl(y € (-1, 1))) v(dy)

aus (4.1.3) heifit Lévy-Exponent dieser unbegrezt teilbaren Verteilung.

4.1.2 Levy-Chintschin-Darstellung

{X(t), t > 0} — Levy-Prozess. Wir wollen die charakteristische Funktion von X (¢), ¢t > 0, durch
die Levy-Chintschin-Formel darstellen.

Lemma 4.1.3

Sei {X(t), t >0} ein stochastisch stetiger Prozess, d.h. fiir alle ¢ > 0 und ¢ty > 0 gelte
lim; 4, P(|X(t) — X (t0)| > €) = 0. Dann ist fiir jedes s € R durch t = px;)(s) eine ste-
tige Abbildung von [0, c0) nach C.

Beweis o y — Y stetig in 0, d.h. fiir alle € > 0 existiert 4; > 0, so dass

sup
y€(—01,01)

; £
18y -
e 1‘ < 5"
o {X(t), t >0} ist stochastisch stetig, d.h. fiir alle ¢y > 0 existiert d2 > 0, so dass

sup P(X(t) — X(tg)| > 1) <

£>0, |t—to|<da2

=1 m
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Daraus folgt, dass fiir alle s € R, ¢t > 0 und [t — to| < d2 gilt

’@X(t)(S) - @X(to)(s)’ = ‘E <€isX(t) _ e“X(tO)N <E
E |eis(X(6)=X(t0)) _ 1‘ _ /
R

sy _1|P _ d
/(—51,51) ¢ ‘ X (6)-X(to) (4Y)
—_——

-
(=01,01)°
=2

e 1|+ 2P (|X(t) - X(to)| > 1) <e.

eis X(to) (X (=X () _ 1)\

IN

ey — 1’ Px(t)—x(t) (dY)

IN

ey — 1’ Px(t)—x (o) (dy)

< sup
y€(—01,01)

Theorem 4.1.3
Sei {X (t), t > 0} ein Lévy-Prozess. Fiir alle ¢t > 0 gilt

Ox)(s) = etn(s)a s €R,

wobei 77 : R — C eine stetige Funktion ist. Insbesondere gilt

¢ ¢
ox)(s) = efns) — (e"(s)) = (SDX(1)(3)) , firallescR, t>0.

Beweis

@X(Ht/)(s) — EeisX(tHt) _ E (6isX(t)eiS(X(t—i-t’)—X(t))) - SOX(t)(S)SDX(t')(S)

Sei g : [0,00) — C definiert durch g(t) = @x)(s), s € R, gs(t +1') = gs(t)gs(t'), t, ' > 0.
X(0) =0.

Gt +1) = gu(Dgst), ¥ >0,

gs(0) =1,

gs : [0,00) — C stetig.

Daraus folgt: existiert 7 : R — C, so dass g(t) = e"® fiir alle s € R, t > 0. ox)(s) = e(s)
und es folgt, dass 7 stetig ist. O

Lemma 4.1.4
Sei g1, pg, . .. eine Folge von endlichen Maflen (auf B(R)) mit

L. sup,>1 pin(R) < ¢, ¢ = const < oo (gleichméBig beschrinkt)

2. fiir alle ¢ > 0 existiert B, € B(R) kompakt, so dass sup,,>1 fin(B¢) < €. Daraus folgt, dass
es eine Teilfolge fin,, fin,, - .. und ein endliches Maf iiber B(R) existiert, so dass fiir alle
f : R — C, beschrénkt, stetig, gilt

lim /R F W), (dy) = /R i f(y)hny (dy) = /R fy)u(dy)

k—o00

Beweis Siche [14], S. 122 - 123. O
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Theorem 4.1.4
Sei {X(t), t > 0} ein Levy-Prozess. Dann gibt es a € R, b > 0 und ein Levy-Ma$ v, so dass

bs2

ox)(s) = s +/ (eisy —1—iyl(y € (-1, 1))) v(dy), fir alle s € R.
R
Beweis Fiir alle Nullfolgen t1, o, ... gilt

= lim 761:””(8) -1 lim —SDX(t")(S) -1
=0 T R0 tn, T nsoo )

n(s) = ()Y (4.1.4)

n

17 : R — C stetig = Die Konvergenz in (4.1.4) ist gleichméBig in s € [—tp, to] fiir ein sp > 0
(Taylor-Entwicklung von ef»"(9)). Sei t,, = 1 und P, die Verteilung von X (). Daraus folgt,
dass

) Ox1y(s) =1
1i_>m n/(e”y —1)P,(ds) = lim nw) 7

(
n—o0 1
n

R
: 50 18y 50
nIL%OAgn/SO (e - 1) P.(dy)ds = /50 n(s)ds
= lim n/ <1 - sm(soy)) Pn(dy) = L n(s)ds
R

n—00 S0y 250 —sg

1 : R — C ist stetig mit 7(0) = 0 und daraus folgt, dass es fiir alle € > 0 dyp > 0 existiert, so
dass —ﬁ I n(s)ds‘ <e. Weil 1 — % > 1, [soy| > 2, gilt: fiir alle & > 0 existiert so > 0,
ng > 0, so dass

lim sup E/ P,(dy) < lim supn/ <1 — sm(soy)) Pn(dy) <e.
2 {yzly\z%} R

n—00 n— 00 SoY

Fiir alle € > 0 existiert sg > 0, ng > 0, so dass

n/ P.(dy) < 4e, fir alle n > nyg.
{y:ly\>l}

Zs0

Durch Verkleinerung von sg erhilt man

n/ Pn(dy) < 4e, fiir allen > 1.
{win=2}

2 .
i 2§c(1—smy>, fir alle y # 0 wund ein ¢ > 0.
1+y Y

Daraus folgt, dass

2
) , )
supn | ——=P,(dy) < flurein ¢ < oco.
sup /RHyz u(dy) <

Sei nun p,, : B(R) — [0, 00) definiert durch

2
1in(B) = n /B lj_inPn(dy) fiir alle B € B(R).
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Es folgt, dass {/in },,cy gleichmaBig beschréankt ist, sup,>q pn(R) < ¢. AuBlerdem gilt <1,

1+ 1+y2
SUD;,>1 fn ({y syl > %}) < 4e und {ptn },, ey ist relativ kompakt. Nach dem Lemma 4.1.3 gilt:

existiert {jin, } oy, SO dass

Jlim. /R W) tin, (dy) = /R f(y)u(dy)

fiir ein Maf8 p und f stetig und beschrénkt. Sei fiir s € R die Funktion fs : R — C definiert
durch

2
Y 1 — sy , y#0,
fs(y) = { ( $2 ) 7
-5 , sonst.
Daraus folgt, dass fs beschriankt und stetig ist und
ns) = Jim [ (V1) Pudy)
= lim (/ fs(y)un(dy)—l-isn/ sinyPn(dy)>
n—oo R R
= Jim ([ 2o () + s [ singPo, (d))
= /fs wu(dy) + hm zsnk/sinyPnk(dy)
R
b .
n(s) = ia's— i + (e”y —1—issin y) v(dy),
2 R

fir alle s € R mit @’ = limy_,o0 isny, [ sinyPp, (dy), b = 1 ({0}), v : B(R) — [0, c0),

1442
dy) =1 o P, y#0,
0 , y=0.

/R!:ul(y € (—1,1)) — siny| v(dy) < oo

1 2
lyl(y € (—1,1)) — siny| +2y <, fiiralley#0 und ein ¢’ > 0.
Yy

Daraus folgt, dass

2 .
n(s) = ias — b% + (e“y —1—isyl(y € (-1, 1))) v(dy), fir alle s € R.
R

a=ad +/ (yl(y € (—1,1)) —siny) v(dy).
R

4.1.3 Beispiele

1. Wiener-Prozess (es geniigt X (1

) zu betrachten)
52
X<1) ~ N(O7 1)7 @X(l)(*g) =e 2

und daraus folgt

(a,b,v) = (0,1,0).



60

4 Levy Prozesse

Sei X = {X(t), t >0} ein Wiener-Prozess mit Drift p, d.h. X(¢) = ut + cW(t), W =
{W(t), t > 0} — Brownsche Bewegung. Es folgt

(a,b,v) = (1, 0%,0).

. . . . 2
ex(1)(s) = Ee X = EelrtoW)is — etisgy, ) (0s) = 72, s eR.

. Zusammengesetzter Poisson-Prozess mit Parametern (A, P;,)

X(t) = SN U, N(t) ~ Pois(At), U; wiv. ~ Py.
oxwls) = exp{)\ /R (e 1) PU(dx)}
= exp {Ais/Razl(x € [-1,1])Py(dz) + /\/R (e —1—iszl(w € [-1,1])) PU(dac)}
= exp {/\is /_11 2Py (dx) + /\/R (e =1 —isal(z € [-1,1])) PU(dac)} , seER
Daraus folgt

1
(a,b,v) = (A / J:PU(d:n),O,)\PU) . Py - endlich auf R.
—1

. Prozesse von Gauf3-Poisson-Typ

X ={X(t), t >0}, X(t) = X1(¢t) + Xa(t), t > 0.

X1 ={Xi(t), t >0} und X2 = {X2(t), t > 0} unabhéngig.

X1 — Wiener-Prozess mit Drift  und Varianz o2,

X9 — Zusammengesetzter-Poisson-Prozess mit Parametern A, Py.

ox)(8) = vx,0)(8)Px.0)(8)

1 0242
= exp{is (,u + /\/ xPU(dx)> -
-1

~|—/R>\ (eis;v —1—iszl(x € [-1, 1])) PU(@)} . seR.

Daraus folgt
1
(a,b,v) = <u + )\/ ZE‘PU(dI'),UQ,)\PU) .
-1

. Stabile Levy-Prozesse

X = {X(t), t >0} — Lévy-Prozess mit X(t) ~ « stabile Verteilung, o € (0,2]. Falls
X = W (Wiener-Prozess), dann X (1) ~ N(0,1). Seien Y,Y1,...,Y, wiv. N(u,o?)-
Variablen. Nach Faltungstabilitdt der Normalverteilung gilt

Y1+ ...+ Y, ~ N(np,no?) 4 VY +np—/np
= VnY +p(n—+/n)
1 2 1

= n§Y+u(n5—n§>, a=2.



4 Lévy Prozesse 61

Definition 4.1.4
Die Verteilung einer Zufallsvariable Y heifit a-stabil, falls fiir alle n € N nur Kopien Y7,...,Y,

gibt (von Y)
Vit 4+ Y, Lnay +d,,
wobei d,, deterministisch ist (also eine Konstante bzgl. W, d.h. nicht zuféllig). Dabai heif3t

a € (0,2] Stabilitdtsindex.
1
d, = ,U,(’I’L*’I’La), O‘?é]-a
punlogn , a=1.
Ohne Beweis
Beispiel 4.1.1 e o = 2: Normalverteilung

e a = 1: Cauchy-Verteilung mit Parametern (u,o?). Die Dichte:

fr(z) = 7 . zeR

T ((Jc — )+ 02>

Dabei gilt EY? = 0o, EY existiert nicht.

e a = : Lévy-Verteilung mit Parametern (i1, 0%). Die Dichte:

1
g \5 1 o
o= { ' stoma) <o

0 , sonst.

Diese Beispiele sind die wenigen Beispiele von a-stabilen Verteilungen, die eine explizite
Form der Dichte besitzen. Fiir andere a € (0,2), o # %, 1, wird die a-stabile Verteilung durch
ihre charakteristische Funktionen eingefithrt. Generell gilt: Falls Y a-stabil, a € (0,2], dann
ElYP <o0,0<p<a.

Definition 4.1.5
Die Verteilung einer Zufallsvariable heiffit symmetrisch, falls Y L =Y, falls Y eine symmetrische
a-stabile Verteilung besitzt, « € (0, 2],

py (s) = exp{—c|s|*}.
In der Tat, aus der Stabilitdt von Y folgt
(v (s))" = "oy (nés) , seR
Daraus folgt, dass d, = 0, denn ¢_y(s) = @y (s). Es gilt: !¥* = ¢~ns 5 ¢ R und d,, = 0.
Der Rest ist eine Ubungsaufgabe.

Lemma 4.1.5
Levy-Chintschin-Darstellung der charakteristischen Funktion ist eine stabile Verteilung. Eine

Levy-Charakteristik (a,b,v), a € R beliebig.

0 , =2,
v(dr) = tal(z > 0)dx + mcﬁl(a: < 0)dzr, a<2,
c1,c22>20:¢1+c2>0 )
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Ohne Beweis
Man kann zeigen, dass

22

P(IY|> ) 50! € 270 =2
< a<2

xre

Definition 4.1.6
Der Levy-Prozess X = {X(t), t > 0} heift stabil, wenn X (1) eine a-stabile Verteilung besitzt,
a € (0,2] (o = 2: Brownsche Bewegung (mit Drift)).

4.1.4 Subordinatoren

Definition 4.1.7
Ein Lévy-Prozess X = {X(t), t > 0} heifit Subordinator, falls fir alle 0 < t; < to, X(t1) <
X(ta) f.s. gilt
X0)=0 fs. = X() >0, t>0.
Diese Klasse von Lévy-Prozessen ist deshalb wichtig, weil man leicht [ ; g(t)dX (t) einfithren
kann als Lebesgue-Stiltjes-Integrale.

Theorem 4.1.5
Der Lévy-Prozess X = X(t), ¢t > 0 ist genau dann ein Subordinator, wenn die Lévy-Chintschin-
Darstellung in der Form sich darstellen 143t

Ox(1)(s) = exp {z’as —I—/ (e’” — 1) u(d:v)} , scER,
R

wobei v das Levy-Maf ist, mit

v((—00,0)) =0, /OOO min {1,y2} v(dy) < oo.

Beweis Hinlénglichkeit
Es ist zu zeigen, dass X (t2) > X (1) f.s., falls to > t; > 0.
Zunéchst zeigen wir, dass X (1) > 0 f.s.. Falls v = 0, dann X (1) = a f.s., daher

X(t) = at f.s. und daraus folgt, dass X (¢) T und X ist ein Subordinator. Falls v(]0,00)) > 0,
dann existiert N > 0,sodassn > N,0<v ([%, oo)) < oo. Es folgt

©x)(s) = exp {ias + lim. s (eisx — 1) I/(dx)} = ¢las Jim on(s), seR,

wobei ¢, (s) = [1°(e®® — 1) v(dx) die charakteristische Funktion einer zusammengesetzter

1 oo
Poisson-Verteilung mit Parametern (V ({%, oo)) , IM) fir alle n € N ist. Sei Z,, die Zu-

fallsvariable mit charakteristischer Funktion ¢,,. Es gilt: Z,, = ZfV:"I U;, N,, ~ Pois (1/ ([%, oo))),
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A Gl D) _ - s
U; (EES) und daraus folgt Z,, > 0 f.s. und X (1) = \ci/+11m Zp > 0fs. Da X ein Levy-

Prozess ist, gilt

o= (2 (2 (2) - (3)) e (1(2) - (52)-

f.s.
wobei wegen Stationaritdt und Unabhéngigkeit der Zuwéchse X (%) - X (%) > 0fir1<
k <n fur alle n. X(g2) — X(q1) > 0 f.s. fiir alle q1,¢92 € Q, g2 > ¢1 > 0. Nun seien t1,t2 € Q, so
, : (n) (n) o (n) (n) (n) (n)
dass 0 <1 <ty. Seien < q; ',q5 ' ¢ Folgen von Zahlen aus Q mit ¢; * < g5 . q; ~ 1 t1, ¢~ T to,
n — oo. Fire >0

P(X(t) — X(h) < —2) = P(X(t2)— X (") + X

=P )—X(t1) <e)=0 firallee>0
= P (X(t2) — X(t1) <0) ZEEIEOP(X(tQ)_X@I) <e)=0

= X(tg) > X(tl) f.s.

Notwendigkeit
Sei X ein Levy-Prozess, der ein Subordinator ist. Es ist zu zeigen, dass ¢x, (t)(-) die obige Form
hat.
Nach der Lévy-Chintschin-Darstellung fir X (¢) gilt

b282 oo .
¢x1)(s) = exp {ias - +/ (em" —1—isxl(z € [-1, 1])) V(daz)} , seR.
0

f.s.
Das Maf v ist auf [0, 0c0) konzentriert, weil X (1) > 0 und aus dem Beweis des Theorems 4.1.4
v ((—00,0)) = 0 gewdhlt werden kann.

b2 2

ex(1)(s) <exp {z’as - 2} exp {/000 <€isx —1—iszl(z € [-1, 1])) V(dx)}

20 =PYa(s)

Daraus folgt, dass X (1) = Y] + Ys, Y7 und Y5 unabhiingig, Y7 ~ N (a,b?) und deswegen b = 0.
Fiir alle € € (0,1)

©x,(s) =exp {is (a - /51 xu(dm)) + /06 (eisz —-1- isx) v(dz) + /OOO (eis‘r — 1) V(da:)}

Es ist zu zeigen, dass fiir ¢ — 0 gilt, dass [° ("% — 1) v(dz) — [5° ("% — 1) v(dz) < oo mit
J3 min {z, 1} v(dz) < oco. ox(1)(s) = exp {is (a — /! asl/(dq:)) } 0z, (8)z,(s), wobei Z; und Zs
unabhéngig, ¢z, (s) = exp {(e"** — 1 —isx) v(dz)}, @z,(s) = exp { [Z° (" — 1) v(dz)}, s € R.
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d 1 . (2) —EZ2 (1) .
X (1) = a— [, av(dx)+Z1+Zs. Es existiert ¢, (0) = —5+ < 00, ¢, (0) = 0 = iEZ; und daraus

1
ergibt sich, dass EZ; = 0 und P(Z; < 0) > 0. Andererseits, hat Z, eine zusammengesetzte

Poisson-Verteilung mit Parametern (1/ ([g,)), %), € (0,1).

— P(Z2<0)>0
:>P(Z1+ZQSO)ZP(Z1SO,ZQSO):P(ZlSO)P(ZQSO)>O

1
:>a—/ zv(dr) >0 fir alle e € (0,1)
3
:>/ min {x,1} dz < o0
0

. d
=fire—o00 Z;—0

Px(1)(s) = exp {is (a - /01 xu(dx)) + /OOO (ei” - 1) l/(d.%')} , SER

Beispiel 4.1.2 (a-stabiler Subordinator):
X ={X(t), t > 0} ein Levy-Prozess, Subordinator, mit a = 0 — Lévy-Ma$8.

v(dz) = {

Daraus folgt, dass X ein a-stabiler Levy-Prozess ist.
Zeigen wir, dass [x(.y(s) = Ee sX(®) = =15 fijr alle s,¢ > 0.

ex(p(s) = (80)((1)(5))lt = exp {t/o (61” — 1) r(la_a)scllmdx} , s€ER.

Es ist zu zeigen, dass

ﬁﬁdl’, .%'>O,
0 —sdz =0, z<0.

o0

d @ OO —ux dx
= — 1-— > 0.
U F(la)_/o (1—e )lerOt’ u>0

Das geniigt, weil px ;) (-) analytisch auf {Z € C : 3Z > 0} fortgesetzt werden kann, d.h. px ) (iu) =
fX(t), u > 0. In der Tat gilt

/OO (1 7u:r) dx /OO /I —uy flfad
—e = u |l e x x
0 p1+d 0 0 Yy
o0 [e.9]
= / / ue” W% xdy
0 Y
o0 [e.e]
= / / 1 %zue”Wdy
0 y
o0
= g/ e Wy %y
@ Jo
e La(2)
a Jo u—e U

u® [ 1 1
= —/ e~ (Im)-1g,

a Jo

o

= %F(l —a)

und daraus folgt fX(t)(s) =e % t,5>0.
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4.2 Erganzende Aufgaben

Aufgabe 4.2.1
Gegeben sei eine reellwertige Zufallsvariable X mit Verteilungsfunktion F' und charakteristi-
scher Funktion ¢. Zeigen Sie, dass dann die folgenden Aussagen gelten:

a) Falls X unbegrenzt teilbar ist, dann gilt ¢(t) # 0 fir alle ¢t € R. Hinweis: Zeigen Sie, dass
limy, 00 |00 (8)2 = 1 fiir alle s € R, falls p(s) = (pn(s))". Beachten Sie auferdem, dass
lon(s)|> wiederum eine charakteristische Funktion ist und limy,_ oo zn =1 fir x>0 gilt.

b) Geben Sie ein Beispiel (mit Begriindung) fiir eine Verteilung an, die nicht unbegrenzt
teilbar ist.

Aufgabe 4.2.2
Sei X = {X(t),t > 0} ein Lévy-Prozess. Zeigen Sie, dass dann die Zufallsvariable X (¢) fiir
jedes t > 0 unbegrenzt teilbar ist.

Aufgabe 4.2.3
Zeigen Sie, dass die Summe von zwei unabhéingigen Lévy-Prozessen wieder ein Lévy-Prozess
ist, und geben Sie die zugehorige Lévy-Charakteristik an.

Aufgabe 4.2.4
Betrachten Sie die folgende Funktion ¢ : R — C mit

o(t) =e?® | wobei 1(t) =2 Z 27k (cos(2Ft) — 1).

k=—o00

Zeigen Sie, dass p(t) die charakteristische Funktion einer unbegrenzt teilbaren Verteilung ist.
Hinweis: Betrachten Sie die Lévy-Chintschin-Darstellung mit Maf$ v({£2*}) =27F k € 7Z.

Aufgabe 4.2.5

Der Lévy-Prozess {X(t),t > 0} sei ein Gamma-Prozess mit Parametern b,p > 0, das heifit,
fiir jedes t > 0 gelte X (t) ~ ['(b, pt). Zeige, dass {X(t),t > 0} ein Subordinator ist mit dem
Laplace-Exponenten &(u) = [7°(1 — e™")v(dy) fiir v(dy) = py~te %dy, y > 0. (Der Laplace-
Exponent von {X(t),t > 0} ist die Funktion & : [0, 00) — [0, 00), fiir die Ee™"X(®) = ¢=#(®) fijr
beliebige ¢, u > 0 gilt)

Aufgabe 4.2.6

Sei {X(t),t > 0} ein Lévy-Prozess mit charakteristischem Lévy-Exponenten n und {7(s),s > 0}
ein unabhingiger Subordinator mit charakteristischem Lévy-Exponenten ~. Der stochastische
Prozess Y sei definiert durch Y = {X(7(s)),s > 0}.

(a) Zeige, dass
E (eiW(T(S))) —=m@)s g e R

wobei &z den Imaginérteil von z bezeichnet.

Hinweis: Weil 7 ein Prozess mit nicht-negativen Werten ist, gilt Ee?7(s) = ¢7(0)s fiir alle
0 € {z € C: 3z >0} durch analytische Fortsetzung in Theorem 4.1.3.

(b) Zeige, dass Y ein Levy-Prozess mit charakteristischem Levy-Exponenten ~v(—in(+)) ist.
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Aufgabe 4.2.7
Sei {X(t), t > 0} ein zusammengesetztet Poisson-Prozess mit Léevy-Maf

W2 a2

v(dx) = e 22dzx, x€R,

O/ T

wobei A\, o > 0. Zeigen Sie, dass {cW (N (t)), t > 0} die gleichen endlich-dimensionalen Vertei-
lungen wie X hat, wobei {N(s), s > 0} ein Poisson-Prozess mit Intensitdt 2\ und W ein von
N unabhéngiger Standard-Wiener-Prozess ist.

Hinweise zu Aufgabe 4.2.6 a) und Aufgabe 4.2.7
e Zur Berechnung des Erwartungswertes fiir die charakteristische Funktion kann die Iden-

titdt E(X) = E(E(X|Y)) = R E(X|Y = y)Fy(dy) fir zwei Zufallsvariablen X und Y
benutzt werden. Dabei sollte auf 7(s) bedingt werden.

2 as?
o [ cos(sy)e” zady = 2ma - e % fir a >0 und s € R.

Aufgabe 4.2.8
Sei W ein Standard-Wiener-Prozess und 7 ein unabhéngiger §-stabiler Subordinator, wobei
a € (0,2). Zeige, dass {W(7(s)),s > 0} ein a-stabiler Lévy-Prozess ist.

Aufgabe 4.2.9
Zeige, dass der Subordinator 7" mit Randdichte

t

2y

ein 3-stabiler Subordinator ist. (Hinweis: Differenziere die Laplace-Transformierte von 7'(t) und

E t2
fT(t)(s) = s*%efﬂl{s > 0}

lose die Differentialgleichung)



5 Martingale

5.1 Grundbegriffe

Sei (2, F, P) ein vollstandiger Wahrscheinlichkeitsraum.

Definition 5.1.1
Sei {F;, t > 0} eine Familie von o-Algebra F; C F. Sie heift

1. eine Filtration, falls Fs C F, 0 < s < t.

2. eine vollstandige Filtration, falls sie eine Filtration ist, so dass Fy (und somit alle Fg,
s > 0) samtliche Mengen des Wahrscheinlichkeitsmafies Null enthélt.
Spéater werden wir immer voraussetzen, dass wir mit einer vollstandigen Filtration zu tun
haben.

3. eine rechtsseitig stetige Filtration, falls fir alle t > 0 F; = N>t Fs.

4. eine natiirliche Filtration fur einen stochastischen Prozess {X(¢), ¢ > 0}, falls sie durch
die Vergangenheit des Prozesses bis zum Zeitpunkt ¢ > 0 erzeugt wird, d.h. fiir alle ¢ > 0
F; ist die kleinste o-Algebra (C F;), die Mengen {w € Q : (X (t1),...,X(t,))" € B}
enthélt, fir allen € N, 0 <ty,...,t, <t, B € B(R").

Eine Zufallsvariable 7 :  — Ry heifit Stoppzeit (bzgl. der Filtration {F, t > 0}), falls
fir allet > 0 {w € Q: 7(w) < t} € Fi, d.h. aus den Beobachtungen des Prozesses X (bis
natiirlicher Filtration {F;, ¢t > 0}) kann man beurteilen, ob der Moment 7 eingetreten ist.

Lemma 5.1.1
Sei {Fi, t > 0} eine rechtsseitig stetige Filtration. 7 ist eine Stoppzeit bzgl. {F;, ¢ > 0} genau
dann, wenn {7 <t} € F; , fiir alle t > 0.

S

{weQ:r(w)<t}eF:

[43

Beweis ,, «
Sei {1 <t} € Fy, t > 0. Zu zeigen: {T < t} € F;.
{7 <t} = Neepppre){m < s} fiirallee > 0 = {17 <t} € Ny Fs = Fy

’ j “
Zu zeigen: {1 <t} e F, t > 0= {r <t} e F, t>0.
{r<t}= UsG(O,t){T <t-s}te UsG(O,t)Ft—s C Fi O

Definition 5.1.2

Sei (2, F,P) ein Wahrscheinlichkeitsraum, {F;, ¢ > 0} eine Filtration (F; C F, t > 0) und
X = {X(t), t > 0} ein stochastischer Prozess auf (2, F,P). X ist adaptiert bzgl. der Filtration
{Fi,t > 0}, falls X (t) Fi-meBbar ist, fiir alle t > 0, d.h., fir alle B C B(R) {X(¢t) € B} € F;.

67
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Definition 5.1.3

Der Zeitpunkt 7p(w) = inf{t > 0 : X(¢) € B}, w € Q, heiBt Ersterreichungszeit der Menge
B € B(R) durch den stochastischen Prozess X = {X(¢t), t > 0} (engl. first passage time, first
entrance/hitting time).

Theorem 5.1.1

Sei {F, t > 0} eine rechtsseitig stetige Filtration und X = {X(¢), t > 0} ein adaptierter (bzgl.
{Fi, t > 0}) cadlag-Prozess. Fiir offenes B C R ist 75 eine Stoppzeit. Falls B abgeschlossen
ist, dann ist 7p(w) = inf{t > 0 : X(¢) € B oder X(t—) € B} eine Stoppzeit, wobei X (t—) =
limgre X ().

Beweis 1. Sei B € B(R) offen.
Wegen Lemma 5.1.1 geniigt zu zeigen, dass {75 < t} € F;, t > 0. Wegen rechtsseitiger
Stetigkeit der Trajektorien von X gilt:

{TB < t} == USGQO(O,t){X(S) S B} S UsGQﬁ(O,t)fS Q ft, weil .FS g ft, s < t.

2. Sei B € B(R) abgeschlossen.
Fir alle € > 0. Sei B. = {x € R : d(z, B) < €} — Parallelmenge von B, wobei d(z, B) =
infycp |z — y|. Be ist offen, fiir alle t > 0.
{78 <t} = {X(t) € B} UMyp>15cono) U 1X(s) € Bi} € Fi, weil X adaptiert bzgl.
{F. t >0} ist. "
U

Lemma 5.1.2
Seien 71, T2 Stoppzeiten bzgl. der Filtration {F;, ¢ > 0}. Dann sind min{m, 72}, 71 + 7 und
aTy, a > 1, Stoppzeiten (bzgl. {F;, t > 0}).

Beweis Fiir alle t > 0 gilt:
{min{r, o} <t} ={n <t}U{n <t} e F,
—_————  —\—
eFt cFt

{max{m, o} <t} ={m <t} N{n <t} € F,

{ar <t} ={n < é} € Fe C JFy, weil é <t,
m+ntt={n>t}U{n>t}un >t,n>0U{0 < <t,m — T2 >t}

—_—— —— Y———

cF: cF Fi
Zu zeigen: {0 < 7o < t, 71 — T2 >t} € Fy.
{O <71 <t,T1+T2> t} = UseQﬁ(O,t){s <1 <t,m>t-— S} e F O

Theorem 5.1.2

Sei 7 eine f.s. endliche Stoppzeit bzgl. der Filtration {F;,¢ > 0} auf dem Wahrscheinlich-
keitsraum (€2, F,P), d.h. P(7 = c0) = 1. Dann existiert eine Folge von diskreten Stoppzeiten
{Tn}tnen, 1 > T2 >73>...,s0dass 7, | 7, n = oo fs.

Beweis Fir alle n € N sei

L 0, falls7(w)=0

e %, falls%<7'(w)§%, fiir ein k € Ny

Firallet >0 und firallen e NIk e Ng: £ <t < Bl gilt {7, <t} ={r, < £} = {r <

2%} € Fr CJF = T, ist eine Stoppzeit. Es ist also klar, dass 7, | 7, n = oo f.s. O
2n



5 Martingale 69

Folgerung 5.1.1

Sei 7 eine f.s. endliche Stoppzeit bzgl. der Filtration {F;, ¢ > 0} und X = {X
ein cadlag-Prozess tiber (2, F,P), F: C F fiir alle ¢ > 0. Dann ist X (w, 7(w)),
Zufallsvariable auf (2, F, P).

) > 0}

(t
w eine

Beweis Zu zeigen: X(7) : Q2 — R meBbar, d.h. fir alle B € B(R) {X(7) € B} € F. Sei 7, | T,
n — oo wie im Satz 5.1.2. Da X cadlag ist, gilt X (7,) — X(7) f.s. X (1) ist dann F-meBbar

als Grenzwert von X (7,), die ihrerseits F-mefibar sind. Fiir alle B € B(R) gilt

{X(m) € B} = Uizoim = 5 }O{X(k)EB}) €F

eF eF

5.2 (Sub-, Super-)Martingale

Definition 5.2.1

Sei X = {X(t), t > 0} ein stochastischer Prozess adaptiert bzgl. einer Filtration {F;, t > 0},
Fi C F, t > 0, auf dem Wahrscheinlichkeitsraum (Q, F,P), E|X(¢)] < oo, t > 0. X heifit
Martingal (bzw. Sub- oder Supermartingal), falls E(X(¢) | Fs) Z X(s) fur alle s,t > 0 mit
t>s: = E(X(t)) = E(X(s)) = const fiir alle s, t.

Beispiele

Sehr oft werden Martingale auf Basis eines stochastischen Prozesses Y = {Y (¢), ¢ > 0} wie
folgt konstruiert: X (t) = Y (t) — EY (¢).

1. Poisson-Prozess
Sei Y = {Y(¢), t > 0} der homogene Poisson-Prozess mit Intensitdat A > 0. EY (¢) =
varY (t) = At, weil Y (¢) ~ Pois(At), ¢ > 0.

a) X(t) = Y(t) — M, t > 0 = X(t) ist ein Martingal bzgl. natiirlicher Filtration

{Fes, s 20}
E(X(8) | Fo)s<e = E(YV(t) = At = (Y(s) = As + (Y(s) = As)) | Fs)
= Y(s) = As+EY(t)=Y(s) = At —s) | Fs)
= Y(s)=As+EY(t)—Y(s)+Y(s)— As
= Y(s) = As+EY(t—3s))=A(t—3)
—\(t—s)

— Y(s) - A2 x(s)
b) X'(t) = X2(t) — A(t), t > 0 = X'(t) ist ein Martingal bzgl. {Fs, s > 0}.
EX'(t) | Fo) = E(X*(t) = M| Fy) = E(X(t) - X(s) + X(5))* = At | Fy)

= X'(s)+ E((X(t) — X(5)))? +2X(s)E(X(t) — X(5)) =A(t — s)
=var(Y (t)—Y (s))=A(t—s) =0

X'(s), s<t.

bl
n

E((X () = X())* +2((X(t) = X(5))X () + X*(s) = As = A(t — ) | F)
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2. Zusammengesetzter Poisson-Prozess
Y(t) = Zi]i(f) U;, t > 0, N — homogener Poisson-Prozess mit Intensitat A > 0, U; —
unabhéngige identisch verteilte Zufallsvariablen, E|U;| < oo, {U;} unabhéngig von N.
X(t)=Y(t)—EY(t)=Y(t) — MEU, t > 0.

Aufgabe 5.2.1
Zeigen Sie, dass X = {X(t), t > 0} ein Martingal bzgl. der natiirlichen Filtration ist.

3. Wiener-Prozess
Sei W = {W(t), t > 0} ein Wiener-Prozess, {Fs, s > 0} sei die natiirliche Filtration.

a) Y ={Y(t), t >0}
Y (t) = W2(t) — EW2(t) = W2(t) — t, t > 0, ist ein Martingal bzgl. {Fs, s > 0}.

EY(t)| Fs) = E(W(t)=W(s)+W(s))® —s—(t—s)| F)
= siehe Beispiel 1b, benutze die Unabhéngigkeit und Stationaritit der Zuwéchse

= W?2(s)—s L2 Y(s), s<t.

b) Y'(t) = e"W(=v"3 ¢ >0 und ein fixiertes u € R.
E|Y/(t)] = e " 2Ee®W () = ¢*’5¢4"2 = | < co. Zeigen wir, dass Y/ = {Y'(t), ¢ > 0}

ein Martingal bzgl. {Fs, s > 0} ist.

EY/(t) | ) = E(eMVO-WEHWE)—ws— 5 £

_ e—u2%euW(s) e—ugg E(eu(W(t)_W(s)) | ]:s)
(N S—

=Y’ (8) —s
:E(euw<t*5>):eu2 %

2 (t?) u? (t—s)

= Y'(s)e ez =Y'(s), s<t.
4. Abgeschlossenes Martingal
Sei X eine Zufallsvariable (auf (Q2, F,P)) mit E|.X| < co. Sei {Fs, s > 0} eine Filtration
auf (Q, F,P).
Y(t)=EX|F),t>0.Y ={Y(t), t >0} ist ein Martingal.
E|Y (t)| = E|E(X | F)| < E(E(X | ) = E|X]| < o0, t > 0.
E(Y(t) | F) =E(X | F) | F) =E(X | F) 2 Y(s), s <t = F. C R

5. Lévy-Prozesse
Sei X = {X(t), t > 0} ein Levy-Prozess mit Lévy-Exponenten 7 und natiirlicher Filtra-
tion {Fs, s > 0}.
a) Falls E|X (1) < oo, definiere Y (t) = X (t) — tEX(1), t > 0. Es kann wie in obigen

———
—EX(t)

Féllen gezeigt werden, dass Y = {Y(t), t > 0} ein Martingal bzgl. der Filtration
{Fs, s >0} ist.

b) Benutze die Kombination aus Beispiel 3b — normiere die charakteristische Funktion

von X (t) ohne Erwartung durch deren Wert. Y (t) = eh:f)(t) = e;uf<)t) = eruXO)—tn(w)
Px(t) mu

t>0,ueR.
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Zu zeigen: Y = {Y (t), t > 0} ist ein komplexwertiges Martingal.
EIY(t)] = |e"W)| < oo, weil n: Ry — C. EY(t) =1, t > 0.

EY(t) | Fs) = E(eiU(X(t)—X(S))(t—S)n(U)eiuX(S)—sn(u) | Fo)
eiuX(S)—sn(U)e—(t—S)n(U)E(eiU(X(t)—X(S)))

= Y(s)e s elt=s)nw) fs. Y (s)

6. Submartingale/Supermartingale
Jeder integrierbare stochastische Prozess X = {X(¢), t > 0}, der bzgl. einer Filtration
{Fs, s > 0} adaptiert ist und f.s. monoton nichtfallende (bzw. nichtsteigende) Trajekto-
rien besitzt, ist ein Sub- (bzw. ein Super-)Martingal.

f.s. .5

f.s.
Tatsichlich, es gilt X(1) > X(s), ¢ > s = E(X() | Fs) > E(X(s) | Fo) = X(s).
Insbesondere ist jeder Subordinator ein Submartingal.

Lemma 5.2.1

Sei X = {X(¢), t > 0} ein stochastischer Prozess, der bzgl. einer Filtration {F:, ¢t > 0}
adaptiert ist und sei f : R — R konvex, so dass E|f(X(t))] < oo, t > 0. Dann ist YV
{f(X(t), t > 0)} ein Submartingal, falls

a) X ein Submartingal ist, oder
b) X ein Submartingal und f monoton nichtfallend ist.

Beweis Benutze die Ungleichung von Jensen fiir die bedingten Erwartungen. E(f(X(t)) |
Fs) > f(E(X(t)Fs)) > f(X(s)), weil f monoton nichtfallend (Fall b)) oder es gilt die Gleichung
~—_—————

>X(s)

(Fall a)). 0

5.3 Gleichgradige Integrierbarkeit

Frage: Man weiss, dass im Allg. aus X, f—5> X nicht X, b x folgt. Hier sind X, X7, Xo,...
n—oo n—oo
Zufallsvariablen, definiert auf dem Wahrscheinlichkeitsraum (€2, F, P). Wann gilt ,, X, % X«
n—oo

= ,Xn % X*? Die Antwort darauf liefert der Begriff der gleichgradigen Integrierbarkeit
n—oo
von {X,, n € N}.

Definition 5.3.1
Die Folge {X,,, n € N} von Zufallsvariablen heifit gleichgradig integrierbar, falls E|X,,| < oo,
n € N, und sup,, E(|X,,|1(|X,| > ¢)) P 0.

E—r+00

Lemma 5.3.1
Die Folge {X,,, n € N} von Zufallsvariablen ist gleichgradig integrierbar genau dann, wenn

1. sup,, E|X,| < 0o (gleichméBige Beschranktheit),

2. wenn es fiir jedes ¢ > 0 ein § > 0 gibt, so dass E(|X,,|1(A)) < ¢ fur alle n € N und alle
A€ F mit P(A) < 6.
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Beweis Sei {X,,} eine Folge von Zufallsvariablen.

Es ist zu zeigen, dass

1) sup, E|X,| <
SUp B([XnlL([Xnl > 2)) 52 0= 91 00 2035 5 01 E(XWlL(4)) < e VA € F: P(A) < &

”¢“
A, = {|Xn| > z}. Aus der Markov-Ungleichung: P(4,) < 1E|X,| fiir alle n = sup, P(4,) <

1 sup, E|X,| < £ —20=>3IN>0:Ve >N P(A,) <0 2 sup,, E(| X,,|1(4,)) < & = weil
e > 0 beliebig klein gewdhlt werden kann = sup,, E(| X,,|1(| X,| > z)) —= 0
r—00

”:>“
1.
sup E[Xn| < sup(B(|Xn[1(|Xn| > &) + E(IXnl1(1Xn| < 2)))
< sup(E(|X,[1(|Xn| > 2)) + 2 P(|Xn| <))
n N———
<1
< e+ <@
2.
E([Xn[1(A4)) = E(|Xn|1([Xn| < 2)1(A4)) + E(| X, [1(|Xn] > ) 1(A4))
—~——— ——
<z <1 <1
< 2P(A) + E(|Xn[1(| Xn| > ),
N——
<5 <s

2

fiir alle ¢ > 0 32 > 0, so dass E(|X,[1(|Xy| > x)) < § wegen gleichgradiger Integrierbar-
keit. Wéhle 6 > 0, 20 < 5.

0
Lemma 5.3.2 )
Sei { X}, }nen eine Folge von Zufallsvariablen mit E|X,,| < oo, n € N, X, 11];—500) X. X, ni—oo> X

1
genau dann, wenn { X, },en gleichgradig integrierbar ist. Insbesondere folgt aus X, niﬁ X
die Konvergenz EX,, — EX.
n oo

Beweis Sei { X, }nen gleichgradig integrierbar. Es ist zu zeigen, dass E|X,, — X| —= 0.
n—oo

X, s X=X, P » X = P(|X, — X|>¢e) —— 0 fiir alle e.
n—00 n—00 n—00

EIX,—X|] < E(|X, —X[|1(|X, - X|<¢))+E(|Xy — X[1(| X, — X[ >¢))

< e+ E(| Xy — X[1(]X,, — X[ >¢))
——0, wegen Lemma 5.3.1, 2) fir A,={|X,—X|>¢}

—0, weil E|X|<oo, nach dem Satz von Lebesgue
n— oo
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Warum E|X| < oo? Es gilt X, —> X, aus Lemma 5.3.1, 1): sup, E|X,| < co. Nach dem

Lemma von Fatou gilt E|X| < oo, denn fir alle g > 0 IN: fur alle n > N |X,, — X| < gy =
Xn < mi, m = |X|+ 0, Xn > 12, 2 = |X| — €p, fiir alle n > N. E|X| = E[limy—00 Xpn| <

lim,, o E| X},| < co. Somit haben wir bewiesen, dass X, —) X.
Jetzt sei E|X,, — X| — > 0. Es sind die Eigenschaften 1) und 2) des Lemmas 5.3.1 zu zeigen.

1
1. sup, E|X,| <sup, E|X,, — X |+ E|X| < o0, wegen X, L x.

|

2. Firalle A C F, P(A) < §: E(|X,|1(4)) < E(|X,,—X| 1(A)+E(|X|1(A)) < E|X,, — X|+§ =
<1 <7

e bei entsprechender Wahl von 6, weil E|X| < co und weil fiir alle e > 0 3N, so dass fur
allen > N E[X,, — X| < 5.

O

5.4 Gestoppte Martingale

Bezeichnung: x4 = (z)4 = max(z,0), z € R.

Theorem 5.4.1 (Ungleichung von Doob):
Sei X = {X(t), t > 0} ein cadlag-Prozess, adaptiert bzgl. der Filtration {F, ¢t > 0}. Sei X ein
Submartingal. Dann gilt fiir beliebige ¢t > 0 und beliebige x > 0:

P<Sup X(x)>:c> §m
0<s<t X

Beweis O.B.d.A. setze X (t) >0, t > 0 f.s. voraus.
P(supg<s<; X(8) > x) = P(supp<s<;((X(8))+ > x)), fiirallet > 0,z > 0. A = {sup,, _, X(s) >
x}, 0 <t <ty <...<ty, <t beliebige Zeitpunkte. A = U}_, Ay,

A1 = {X(tl) >a:}
A2 = {X(tg) < :L’,X(tg) > IL‘}

A = {X(h) <2, X(t) <2 X(tor) < 7, X(t) > 2},

k=2 AiNA;j=0,i#j.
Es ist zu seigen, dass P(A) < M

E(X (f)) > E(X (t)1(4)) = Sy E(X (t)1(A)) > 255, (A) aP(A), k=1,....,n—1,
weil X ein Martingal ist und daraus folgt, dass E(X (¢,,)1 ( k) > E(X(tr)1(Ag)) > E(z1(Ag)) =
:EP(Ak), k=1,....,n—1,1, > t.

Sei B C [0,t] eine endliche Teilmenge, 0 € B, t € B = es wird dhnlich bewiesen, dass
P(maxsep X (s) > x) < %(t)

Q ist dicht in R = [0,¢t) NQ U {t} = U2, By, By, C [0,t) N QU {t} endlich, By C By, k < n.
Wegen Monotonie des Wahrscheinlichkeitsmafles gilt:

, EX(t)

lim P X(s)>xz)=P(Un X =P X <

Jim (mé <S>—$> (U {max <S>>~’“}) (Seit%n (5>>"’”>— p
EX(1)

Wegen der rechtsseitigen Stetigkeit der Pfade von X gilt P(supy<,<; X(s) > x) <

T
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Folgerung 5.4.1
Fiir Wiener-Prozess W = {W(t), t > 0} betrachten wir den Wiener-Prozess mit negativer
Drift: Y'(t) = W(t) — pt, p > 0, t > 0. Aus dem Beispiel Nr.3 des Abschnitts 5.3 ist X (t) =
exp{u(Y (t)+tu)— “TQt}, t > 0, ein Martingal bzgl. der natiirlichen Filtration fir W. Fir u = 2
gilt

X(t) =exp{2uY (t)}, t>0.

2pY (t) _
P {Sup0<s<t Y(s) > } P {SUpogsgt e2Y(9) > 62’“} < Eeezw = 2‘“7 x>0

= limy 00 P{supg<s<; Y (s) > x}. Aus Beispiel Nr.3 gilt Ee2Y () = P(supsso Y (t) > z) < e 27

Theorem 5.4.2

Sei X = {X(t), t > 0} ein Martingal bzgl. der Filtration {F;, ¢ > 0} mit cadlag-Pfaden. Falls
T :Q — [0,00) eine endliche Stoppzeit bzgl. der Filtration {F;, t > 0} ist, dann ist auch der
stochastische Prozess {X7a:(t) > 0} ein Martingal, das auch ein gestopptes Martingal genannt
wird. Dabei ist a A b = min{a, b}.

Lemma 5.4.1

Sei X = {X(t), t > 0} ein Martingal mit cadlag-Trajektorien bzgl. der Filtration {F;, ¢ > 0}.
Sei T eine endliche Stoppzeit und sei {1}, },en die Folge von diskreten Stoppzeiten aus dem
Theorem 5.1.2, fiir die T}, | T, n — oo, gilt. Dann ist {X (7T}, A t)}nen gleichgradig integrierbar
flir jedes t > 0.

Beweis

- :{ 0 , falsT=0

k+1 k k+1 . .
;, falls 57 <T' < ;,furemkGNo

1. Es ist zu zeigen: E| X (T,, A t)\ < oo fir alle n.
EIX(T, At)] < Zk: e, EIX(£)[+E|X(t)] < oo, weil X ein Martingal ist, also integrier-
bar.

2. Es ist zu zeigen: sup,, E(| X (T, A t)|1(|X (T, At)| > x)) —— 0.
—_———

Tr—00
An

sgp E(|X(Tn N t>‘1<An)>

= s | X E(x (o)1 ({7 =5 f o) )+ EQX@OIL@ > 91 (4)

ki <t

< sw| Y E <|X(t)y 1 ({Tn _ 2";} n An)) FE(IX®) 1T, > )N A))

n kin
— swpE (X (/1 (40) < swpE(X(OL(Y > )
— E(X®I1(Y >2).

wobei 1(A,,) < 1(sup | X (T}, At)| > x). Es ist zu zeigen: P(Y > z) — - 0 mit Hilfe von
n n—00
—_—————
Y
der Ungleichung von Doob.

PY > z) < P(supgcs< [ X(s)] > z) < E'ﬁ(t”

—— 0. Da E|X(t)] < oo fiir alle

Tr—r+00
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t>0und P(Y > x) — > 0, ergibt sich E(IX ()Y > z)) — > 0= sup, E|X (T, A
t)1(A)| —=0 {X (T Nt)}nen ist gleichgradig integrierbar.

Beweis vom Theorem 5.4.2
Es ist zu zeigen, dass {X(T'At), t > 0} ein Martingal ist.
1. E|X(T At)| < oo fiir alle ¢ > 0. Wie in der Folgerung 5.1.1 approximiert man 7, | T,
n = 0o = X(T, At) L2 X(T At), da aber E[X(T, Af)| < oo fiir alle n folgt
EIX(T At)] < oo wegen Lemma 5.4.1, weil aus der gleichgradigen Integrierbarkeit die
L*-Konvergenz folgt.

2. Martingal Eigneschaft
Es ist zu zeigen:

Il
)

o 1

E(X(TAt) | Fs) X(TAs), s<t

~
n

E(X(T At)1(A)) E(X(T A s)1(A)), Ae F,

Zunéachst zeigen wir, dass E(|X (T, A t)|1(A)) = E(|X (T, A s)|1(A)), A € Fs, n € N.
Seien ti,...,t; € (s,t) diskrete Werte, die T}, mit positiver Wahrscheinlichkeit in (s, )
annimmt.
EX(ToAt) [ Fs) = EEX(TuAL) | Fy) | F)
= EEX (T A UT, < t) | Fo,) | Fs)
———

X(tr)
+E(E(X (T, A t) L(Ty, > tr) | Fr) | Fs)

—_———

X(t)

E(X () UT5 < ti) | T
E(X(tx NTy) | Fs) =
E(X(t1 AT)) | Fs)
X(T N s)

s) +EQUT > t)B(X () [ Fo) | Fs)
= E(X(thor ATo) | Fs) =
= E(X(Tw A s) | Fo)

T
n

Da X cadlag ist und 7,, | T, n — oo, gilt X(T), A t) ni—soo> X(T,, A t). Dazu sind

{X (T}, At)}nen gleichgradig integrierbar wegen L!'-Konvergenz. Daraus folgt
E(X(T, Nt)1(A)) = E(X(T,As)1(A)) firalle A€ F;
) 3
E(X(TAt)1(A)) = E(X(T As)1l(A))

= {X(T At), t > 0} ist ein Martingal.

Definition 5.4.1
Sei T': Q — R, eine Stoppzeit bzgl. der Filtration {F;, t > 0}, F; C F, t > 0. Die , gestoppte*
o-Algebra Fr wird definiert durch A € Fpr = AN{T <t} € F, fir allet > 0.
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f.s.
Lemma 5.4.2 1. Seien S, T — Stoppzeiten bzgl. der Filtration {F;, ¢t > 0}, S < T. Dann
gilt Fs C Fr.

2. Sei X = {X(t), t > 0} ein Martingal mit cadlag-Trajektorien bzgl. der Filtration {F, ¢t >
0} und sei T' eine Stoppzeit bzgl. {F;, t > 0}. Dann ist X (7") Fr-meBbar.

Beweis 1. AcF, = AN{S<t}eF,t>0. AnN{T<t}=An{S<iin{T<tleF
—_——— ~—

eFy eFi
fir allet >0 = A € Fr.

2. X(T)=gof, [: Q= OxRy, f(w) =(w,T(w)), 9: 2xRL =R, g(w,s) = X(s,w).
Es ist zu zeigen: f-F | F x Bg,-mefibar, g-F x Bg, | Fp-meSbar = go f-F | Fp-mefbar.
f-F | F x Br,-mefibar ist offensichtlich, weil T eine Zufallsvariable ist. Betrachten wir
die Einschrankung von X = {X(s), s > 0} auf s € [0,¢t], t > 0.

Es ist zu zeigen: {X(T') € B} N{T <t} € F; fir allet > 0, B € B(R).
X - cadlag = X (s,w) = X(0,w)1(s = 0) + limpyo0 S pey X (tos, w)1(52t < s < fot) =
X(s,w) ist By x Fi-mefbar = X (T) ist F | Fp-mefbar.

Theorem 5.4.3 (Optionales Sampling-Theorem):
Sei X = {X(t), t > 0} ein Martingal mit cadlag-Trajektorien bzgl. einer Filtration {F;, ¢t > 0}

und Sei T eine endliche Stoppzeit bzgl. {F:, t > 0} = E(X(¢) | Fr) L5 X(T Nt), t>0.

Beweis Zeigen wir zunéchst, dass E(X(¢) | Fr,) L X(T, Nt),t >0, n € N, wobei die
diskrete Approximation von T ist, T, | T, n — oo. Sei t1 < ¢ < ... < t;, = t die Werte, die
T, Nt mit positiven Wahrscheinlichkeiten annimmt. Es ist zu zeigen, dass fiir alle A € Fr, gilt:

E(X(1)1(A)) = E(X (T, A t)1(A)).

T
L

(X(6) — X(Tu At)L(A) = S X(t) — X(E)1{Tu At =t} 0 A)

@
Il
—

(X (1) = X(te)UAL{T, At < 1)
E((X (1) ~ X(Tu ADLA) = SE(X(t) — X(t1)) LT At < 1)1(4))

E(E(X(tz) — X(tlfl))l(Tn Nt < tl)l(A) | fti—l)

- 1 1= L

N
I
I\

E(L(Tn At < t)L(A))E((X (L) — X(ti1)) | Frioy) =0

E(X() | Fr,) L2 E(X(T, At) | Fr,) = X(Ty, At), denn X (T},) ist Fp,-meBbar. T < T,, =

f-s.
Fr C Fr,. Da {X(T,, Nt)}nen fiir t € [0,00) gleichgradig integrierbar ist, gilt

E(X (1) | Fr) = E(X(1) | F,) = Jim EQX(Tu A )| Fr,) = Jim X(TaAt) = X(T A1),

weil X cadlag ist. O
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Folgerung 5.4.2
Sei X = {X(t), t > 0} ein cadlag-Martingal und seien S,T endliche Stoppzeiten, so dass

P(S < T) = 1. Dann gilt E(X(IAT) | Fs) = E(X(SAL)), t > 0. Insbesondere gilt E(X (TAL))) =
E(X(0)).

Beweis X — Martingal. Aus dem Theorem 5.4.2 ist {X (T A t), t > 0} auch ein Martingal.
Wende den Satz 5.4.3 an dieses treue Martingal an:

E(X(TAL) | F) 2 X(TASAY) T X(SAY),

f.s.
weil S < T. Setze S =0, dann E(E(X(T'At) | Fo)) = EX(0 A t) = EX(0). 0

5.5 Lévy-Prozesse und Martingale

Theorem 5.5.1
Sei X ={X(¢), t > 0} ein Levy-Prozess mit Charakteristiken (a,b,v).

1. Es existiert eine cadlag-Modifikation von X = {X(t), t > 0} von X mit denselben
Charakteristiken (a, b, v).

2. Die natiirliche Filtration eines cadlag-Levy-Prozesses ist rechtsseitig stetig.

Ohne Beweis

Theorem 5.5.2 (Regenerationssatz fiir Levy-Prozesse):

Sei X = {X(t), t > 0} ein cadlag-Lévy-Prozess mit natiirlicher Filtration {F;X, ¢ > 0} und sei
T eine endliche Stoppzeit bzgl. {F;X, t > 0}. Der Prozess Y = {Y(t), t > 0}, gegeben durch
Y(t) = X(T+t)— X(T), t > 0, ist ebenfalls ein Leévy-Prozess, adaptiert bzgl. der Filtration
{]—"%(H, t > 0}, der unabhingig von F3¥ ist und dieselben Charakteristiken, wie X besitzt. T

wird Regenerationszeitpunkt genannt, da Y 4 x , Y unabhéngig von ]-"7)1( .

A 4

Abbildung 5.1:
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Beweis 1. Annahmne: Es 3¢ > 0, so dass P(T" < ¢) = 1. Seien uy,...,u, € R. Nach
dem Beispiel Nr.5 im Abschnitt 5.2 ist Y; = {Yj(t) = exp{iu; X (t) — tn(u;)}, t > 0},
j=1,...,n, ein komplexwertiges Martingal, wobei 7(-) die Levy-Exponente von X (¢) ist.
Seien 0 < tp < t; < ... < t, beliebige Zeitpunkte. Fiir alle A € F* gilt

A)exp{ > iy (Y (t;) = Y (t-1))}) 2 PAE(exp{Y_ iy (X (t;) = X(t;-1))})
j=1

=1

exp{z iu (Y (t;) = Y(tj-1))})

= E(L(A) exp{d_iu;(X (T +1t;) = X(T) = X(T + t;-1) — X(T)))})

DOYi(T+ty)  exp{n(u)(T +1t;)}
E{1(4) H ijéT‘i‘tjil) eXp{W(Ujg(TﬂLtj]l)})

= E|E (1(A) H EMGXP{(U —tj—1)n(u;)} | ]:7)“(+tj_1))

n—1l vy (T + tj) e(tn*tn—l)n(un)

— 1) [ =ty €T e Gy
()HE(Tthj_l)e Yo(T + tn1) (il ) Fst,)

Me(tj—tj—l)n(w) e e(t"_t"l)n(u”))

= ... :E(l(A)He(tj_tjfl H (tj—tj—1)n(u;)

Folgerung 5.5.1
Th=T+ty,, S1=T+t, 1 <Tyfs., 11,5 <t,weilt >c+1t,, T > c.

Aufgabe 5.5.1

Zeigen Sie, dass aus E(1(A) exp{>_7_; iu;(Y(¢;) — Y(tj-1))}) = P(A)E(exp{>7_; iu;(X(t;) —
X(tj—1))}) die Aussage des Satzes folgt

5.6 Martingale und Wiener-Prozesse

Unser Ziel: Falls W = {W (t), t > 0} ein Wiener-Prozess ist, dann gilt

—+o00 2
P(max W (s =4/ — / e % dy, fur alle z > 0.
s€[0,t]
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Theorem 5.6.1 (Reflexionsprinzip):
Sei T eine beliebige Stoppzeit bzgl. der natiirlichen Filtration {FV, ¢ > 0}. Sei X = {X(t),t >
0} der reflektierte Wiener-Prozess zum Zeitpunkt 7', d.h. X (¢t) = W(T'At) — (W (t) =W (T At)),

t > 0. Dann gilt X < W.

X(t)

W@

A 4

Abbildung 5.2:

Beweis Sei X;(t) = W(T At), Xao(t) = W(T+t)—W(T), t > 0. Aus dem Theorem 5.5.2 folgt,
dass X5 unabhéingig von (77, X;) ist (W — Leévy-Prozess und T' — Regenerationszeitpunkt). Es

gilt W(t) £ X1(t) + Xo((t—T)4), X(t) Z X1(t) — Xo((t = T)4), t > 0. Aus dem Satz ?? folgt

(T17X17X2) i (T7X17_X2)
\: \
d
w = X

O

Sei W = {W(t), t > 0} ein Wiener-Prozess auf (2, F,P), sei { , t > 0} die natiirliche
Filtration bzgl. W. Fiir z € R sei T{‘f} =inf{t > 0: W(t) = z}. T Gy = = TW ist eine f.s. endliche
Stoppzeit bzgl. {F}V, t > 0}, z > 0. Offensichtlich, es gilt {F)V <t} € F/V. Da W stetige
Pfade (f.s.) besitzt, ist {F}V, ¢t > 0} rechtsseitig stetig.

Folgerung 5.6.1
Sei My = maxgepoy W(s), t > 0. Dann gilt fiir alle 2 > 0, y > 0, dass P(M; > z,W(t) <
z—y)=PW(t)>y+=2).

Beweis M, sei eine Zufallsvariable, weil W stetige Pfade hat. T':= T)V. Nach dem Theorem
5.6.1 gilt: fiir Y(£) = W(T At) — (W(t) = W(T A1), t >0, Y LW baw. {TV, W} < {TY Y},
weil W (t) = z, T}V = TY. Deshalb

P(T <t,W(t)<z—y)=PTY <t,Y(t) < z—y)
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(TY <tyn{Y(#t) < z—y} = {TY <t}n{22 - W(t) < z—y}. Falls T = TY < ¢, dann
Y(t)=W(T)—-W(t)+W(T) =2z —W(t) und daraus folgt

P(T <t,W(t) < z—y) =P(T <t,22—W(t) < z—y) =P(T < t,W(t) > z+y) = P(W(t) > z+vy)
Per Definition im 7' = T}V gilt:

PT<t,W({t)<z—y)=PM >2z,W(t)<z—y)=PW({)>y+2)
=TV <t maxe(o,q W(s) > 2 0

Theorem 5.6.2 (Verteilung des Maximums von W):

Fir ¢ > 0und z > 0 gilt
2 [0 42
P(Mt>:c):1/—/ e 2dy
7t Je

Beweis In Folgerung 5.6.1 setze y = 0 = P(M; > 2, W(t) < z) = P(W(t) > z). Es gilt
P(W(t) z) =P(W(t) > z) fur alle ¢ und alle z, weil W (t) ~ N(0,t), also atomfrei
M > 2, W(t) < z)+P(W(t) > 2z) =P(W(t) > z) + P(W(t) > z)

P(
(Mt>zW()<z)+P(Mt>zW()>z)—P(Mt>z)—2P(W()>Z)
P(My > 2) = P(W (1) > ) = 21 [ e dy = |/ [ Sy :

Sei X(t) = W(t) —tu, t > 0, p > 0, der Wiener-Prozess mit negativer Drift. Betrachte
P(supy>o X () > x) = e 2%, 2 > 0.

Motivation Berechnung der Ruin-Wahrscheinlichkeiten in der Risikotheorie.

Annahmen Startkapital x > 0. Sei p das Pramienvolumen per Zeiteinheit.= ut — Pramien-
annahmen zum Zeitpunkt ¢ > 0. Sei W(t) der Prozess der Verluste (Preisentwicklung). =
Y(t) = x + tu — W(t) — Restkapital zum Zeitpunkt ¢. Die Wahrscheinlichkeit des Ruins ist
P(infs>0 Y (t) < 0) = P(z — sup;>¢ X (t) < 0) = P(sup;>o X(t) > )
Theorem 5.6.3
Es gilt

P(sup X (t) > z)=e 2", >0, u>0.

>0

Beweis Sei T = TX =inf{t > 0: X(t) = z}. Es ist bekannt, dass Y (t) = exp{uX (t) — t(“Q—2 —
pu)}, t >0, u >0, ein Martingal ist. Sei 77 = T'At — eine endliche Stoppzeit bzgl. {F/X, t > 0}.
Aus Folgerung 5.4.1: EY(T') = EY(0) = Ee® =1

= E(Y(THUT <))+ E(Y/(T"I(T > 1)) = EY(T)L(T < t)) + E(Y/(T")1(t > t))
Es ist zu zeigen, dass E(Y (T")1(T > t)) —=0
Aus der Folgerung ?? ist bekannt, dass

Wit 5. X(t Wit 5.
Lf—s>0é limﬁz limﬁ—yz—uéX(t)L—oo
t t—00 t—oo t—oo t t—+o0
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Y(T)UT > t) = exp{uX(t) — (2 — pu)}1(T > 1) f—3> 0, falls & — pu > 0 = u > 2.

Anderseits, Y(T")1(T < t) < exp{uz} = nach dem Satz von Lebesgue gilt:

EY(THUT >t) —— 0

t——+o0

2

= lim E(Y(DUT <#) =1, Y(T) = exp{uz - T(% — )}
2

: u —uz
= tilgloo E(exp{—T(? —pu)}(T <t) =e

Y2 lim P(T < t) = P(T < o0) = =22
t——+o0

=  P(supX(t) > 2) = P(TX < 00) = e 2*
>0

Theorem 5.6.4
SeipeR,6>0,T(t) =inf{s >0: W(s)+ us =d6t}, t > 0. Dann ist T' = {T'(t), t > 0} ein
Levy-Prozess mit vy (2) = = Ee*T() = exp{—t6(\/22 + p2 — p)}, t >0, 2 > 0.

Spezialfall: Fiir p = 0, § = % ist T = {T(t), t > 0} ein j-stabiler Subordinator, der

auch manchmal Levy-Subordinator genannt wird. Hier gilt 1 x ;) (2) = e~"VZ_ (Fiir a-stabile

Subordinatoren gilt: 1 (2) = e a € (0,1))

Zur Erinnerung: Das Levy-Maf eines a-stabilen Subordinators ist

« dx

Y T

I(x >0), ae(0,1).

Beweis des Satzes 5.6.4 im Spezialfall (allgemein geht analog)

Sei T'(t) = inf{s > 0 : W(s) = %}, t > 0. Es ist zu zeigen, dass T' = {T'(t), t > 0} ein
Levy-Prozess ist.

T(0) L= 0. Aus dem Theorem 5.5.2 folgt, dass T' unabhéngige und stationire Zuwéchse hat. T
ist stochastisch stetig, denn

lim P(T'(t) > ¢) = lim P(max W(s) < —=) = lim( 1—\/ / e 2sdy )=1-1=0.

t—0 t—00 s€[0,¢] t—0
Somit haben wir bewiesen, dass T ein Lévy-Prozess ist.
Es ist noch zu zeigen, dass T'(t) a-stabil fiir « = % ist, d.h. Ee=#7() = ¢=tVZ fijr alle z und ¢ > 0.
Ahnlich zum Beweis des Theorems 5.6.3 betrachten wir das Martingal X = {X(s), s > 0},
X (s) = exp{zW (s) — s%}, 5> 0.
Sei Y, = T(t) An, fiir alle n € N, ¢t > 0, eine Folge von Stoppzeiten bzgl. {F:, t > 0}. Aus
Folgerung 5.4.1 ist {X (Y,,+), n € N} fiir alle ¢, z > 0, ebenfalls ein Martingal.

EX(Yns) = EX(Yo,) = EX(0) =0 =1
EQX (Yo )L(T(t) <n)) + E(X (Y, ))l(T(t) >n) .
= E(exp{z W(T(1)) —T(t)5 }L(T(t) < n)) + E(exp{zW (n) — nZ L(T(t) > n))

t

-2
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Es ist zu zeigen, dass E(exp{zW(n) — n%}l(T(t) > n)) — > 0. Daraus wird folgen, dass
1 =limy oo E(exp{z% - T(t)%} 1(T(t) <n)) = Eexp{z% — T(t)%}, weil T'(t) eine endliche
—_———

f.s. 1

Stoppzeit ist, d.h. P(T'(t) < oo) =1 fiir alle ¢ > 0.
Die obige Konvergenz gilt nach Lebesgueschem Satz {iber die majorisierte Konvergenz

2 z
= Eexp{-T(¢) % J—e V3 = Ee T = ¢~Vu g > 0.

=Uu

n—oo

Es ist noch zu zeigen, dass E(exp{zW (n) — n%} 1(T'(t) > n)) —— 0.
—_——

f.s. 0

Zusitzlich gilt: T(t) > n = W(n) < %
exp{zW(n) — n%}l(T(t) >n) < exp{t\%} fiir alle n € Np.

= Die Konvergenz ergibt sich aus dem Satz von Lebesgue. O

Bemerkung 5.6.1

Falls T(t) = min{s > 0 : W(s) + us = 0t}, u € R d > 0,t > 0, dann kann die Laplace-
Transformierte in T(t) (vgl. Theorem 5.6.4) Ee=*T(") = exp{—td(\/22z + 2 — p)} explizit in-
ventiert werden: die Dichte von T'(¢) 148t sich schreiben als

ot
V2T

Das ist die Dichte der sogennanten inversen Gaufs- Verteilung.

Theorem 5.6.5

Sei X = {X(t), t > 0} ein Levy-Prozess und sei T' = {T'(t), t > 0} ein Subordinator, die beide
auf einem Wahrscheinlichkeitsraum (€2, F, P) definiert sind. Seien X und 7" unabhéngig. Dann
ist Y = {Y(t), t > 0} definiert durch Y (¢t) = X (T'(¢)), t > 0, ebenfalls ein Lévy-Prozess.

Ohne Beweis

Frip@) = —=c™a3 exp{— 5 (5 + p)}i(w > 0).

5.7 Erganzende Aufgaben

Aufgabe 5.7.1
Seien X,Y : 2 — R beliebige Zufallsvariablen iiber (2, F,P) mit

E|X| <oo, E|lY]|<oo, E|XY|<oo,
und sei G C F eine beliebige Teil-o-Algebra von F. Dann gilt
(a) E(XI{0,0}) = EX, E(X|F) =
(b) E(aX +bY|G) = aE(X|G) + bE(Y'|G) fiir beliebige a,b € R,
(¢) E(X|G) < E(Y|Q), falls X < Y,
(d) E(XY|G) = YE(X|G), falls Y eine (G, B(R))-messbare Zufallsvariable ist,
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()

E(E
(f) E(X|G) = EX, falls die o-Algebra G und o(X) = X ~!(B(R)) unabhingig sind, d. h., falls
P(ANA') = P(A)P(A’) fur beliebige A € G und A’ € o(X).

(X|G2)|G1) = E(X]Gh1), falls G; und Ga Teil-o-Algebren von F sind mit G; C G,

(g) E(f(X)|G) > f(E(X]|G)), falls f : R — R eine konvexe Funktion ist, so dass E|f(X)| < .
Aufgabe 5.7.2

Betrachte die zwei Zufallsvariablen X und Y tiber dem Wahrscheinlichkeitsraum ([—1, 1], B([—1, 1]),

mit E|X| < oo, wobei v das Lebesguemafl auf [—1, 1] bezeichnet. Bestimme fiir die folgenden
Zufallsvariablen jeweils o(Y) und eine Version der bedingten Erwartung E(X|Y).

(a) Y(w) = w® (Hinweis: Zeige zunichst, dass o(Y) = B([-1,1]))
(b) Y(w) = (~1)* firw e [552, 522) k=1, 4 und V(1) =

(Hinweis: Es gilt E(X|B) = ()((é’f) fir B € O'(Y) mit P(B) > 0)

(c) Berechne die Verteilung von E(XY) in (a) und (b), falls X ~ U[—1,1].

Aufgabe 5.7.3
Seien X und Y Zufallsvariablen tiber einem Wahrscheinlichkeitsraum (92, F, P). Die bedingte
Varianz var(Y|X) ist definiert durch

var(Y|X) = E((Y — E(Y]X))?X).

Zeige, dass
varY = E(var(Y|X)) + var(E(Y|X)).

Aufgabe 5.7.4
Fiir eine Stoppzeit 7 definieren wir die gestoppte o-Algebra F, wie folgt:

Fr={B e F:Bn{r <t} e F fir beliebige t > 0}.
Seien nun S und T Stoppzeiten bzgl. der Filtration {F;,t > 0}. Zeige:
(a) AN{S<T}eFrVAcFs
(b) Fmings,ry = Fs N Fr

Aufgabe 5.7.5 (a) Sei {X(t),t > 0} ein Martingal. Zeige, dass EX (t) = EX(0) fiir allet > 0
gilt.

(b) Sei{X(t),t > 0} ein Sub- bzw. Supermartingal. Zeige, dass EX () > EX(0) bzw. EX (¢) <
X (0) fur alle ¢t > 0 gilt.

Aufgabe 5.7.6
Der stochastische Prozess X = {X(t),t > 0} sei adaptiert und cadlag. Zeige, dass

EX(t)?
P X > e S —
(Oilf};t W) >2) < 5 Ex (1)

fiir beliebige > 0 und ¢ > 0 gilt, falls X ein Submartingal mit EX () = 0 und EX(¢)? < oo
ist.

2v)
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Aufgabe 5.7.7 (a) Sei g:[0,00) — [0,00) eine monoton wachsende Funktion mit

g(x)

— 00, T — Q.

Zeige, dass die Folge X1, Xs,... von Zufallsvariablen gleichgradig integrierbar ist, falls
sup,en Eg(|Xn|) < oo.

(b) Sei X = {X(n),n € N} ein Martingal. Zeige, dass die Folge von Zufallsvariablen X (7" A
1), X(T'A2),... fiir jede endliche Stoppzeit T" gleichgradig integrierbar ist, falls E|.X (T")| <
oo und E(|X (n)|1{7sny) — 0 fiir n — oo.

Aufgabe 5.7.8
Sei S = {S, = a+ Yi-; Xi,n € N} eine symmetrische zufallige Irrfahrt mit ¢ > 0 und
P(X; =1)=P(X; = —1) = 1/2 fir i € N. Die zufillige Irrfahrt wird zu demjenigen Zeitpunkt
T gestoppt, bei dem sie zum ersten Mal einen der beiden Werte 0 und K > a unter- bzw.
iiberschreitet, d. h.

T= Ikn>18{5k < 0 oder Sy > K}.

Zeige, dass M, = 31", S; — 153 ein Martingal ist und E( .8 = $(K? — a?)a+ a gilt.
Hinweis: Fiir die Berechnung von E(M,|FM), n > m, kann E(XL_, X;)? =0, 1 < k <,
My, =370 + 3 i1 Sr — %Sz und S, = S, — S, + 5, verwendet werden.

Ein diskretes Martingal beziiglich einer Filtration {F,},cn ist eine Folge von Zufallsvaria-
blen { X, }nen Uber einem Wahrscheinlichkeitsraum {2, F,P), so dass X,, beziiglich {F, },en
messbar ist und E(X,,41|X,,) = X,, fir alle n € N. Eine diskrete Stoppzeit beziiglich {F,, }nen
ist eine Zufallsvariable T': Q@ — N U {oo}, so dass {T' < n} € F, fir alle n € NU {co}, wobei
Foo = U{Uzozl }—n}

Aufgabe 5.7.9
Seien { X, }nen ein diskretes Martingal und 7" eine diskrete Stoppzeit beziiglich {F, }nen. Zeige,
dass auch {Xyin7,n} Jnen ein Martingal beziiglich {F, }nen ist.

Aufgabe 5.7.10

Sei {Sy, }nen eine symmetrische zuféllige Irrfahrt mit S, = Y- X; flir eine Folge von unab-
héngigen und identisch verteilten Zufallsvariablen X3, Xo,..., so dass P(X; = 1) = P(X; =
—1) = 3. Sei T'=inf{n : |S,| > v/n} und F,, = o{X1,..., X, }, n € N.

(a) Zeige, dass T eine Stoppzeit beztiglich {F}, },en ist.

(b) Zeige, dass {Gy}neny mit Gy, = Sr2nin{T,n} — min{7,n} ein Martingal beziiglich {F;, }nen
ist. (Hinweis: Verwende Aufgabe 5.7.9)

(c) Zeige, dass |G| < 4T fir alle n € N gilt.
(Hinweis: Es gilt |G,| < \Sﬁlin{T,n}] + | min{T,n}| < Srznin{T,n} +17)

Aufgabe 5.7.11
Sei X1, Xo, ... eine Folge von unabhéngigen und identisch verteilten Zufallsvariablen mit E| X | <
oo. Sei Fp, = 0{X1,...,X,}, n € N, und sei T eine Stoppzeit beziiglich {F}, } ey mit ET < 0.

(a) Sei T' unabhingig von Xi, Xs,.... Leite eine Formel fiir die charakteristische Funktion
von St = 23’21 X; her und weise damit die Waldsche Identitdt nach, d. h. ESp = ETEX].
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(b) Sei zusétzlich EX; = 0 und T = inf{n : S,, < 0}. Verwende Theorem 2.1.3 aus der
Vorlesung, um zu zeigen, dass ET = co. (Hinweis: Widerspruchsbeweis)



6 Stationare Folgen von Zufallsvariablen

6.1 Reihen von unabhangigen Zufallsvariablen
Es ist bekannt, dass die Reihe

X< = a>1,
<o = a>0,

o (=D
n=1 npo

weil die Drift der banachbarten Glieder die Ordnung nlﬁ haben.

Wann (fiir welche a@ > 0) konvergiert die Reihe > 02, 2—2, wobei 0, u.i.v. Zufallsvariablen
sind mit E§,, = 0, z.B. P(, = £1) = 3?

Allgemeinere Frage: Unter welchen Bedingungen konvergiert (f.s.) die Reihe > °° ; X,,, wobei
X, unabhéngig sind?

Man weiss, dass fur eine Folge von Zufallsvariablen {Y,,} aus Y, nf_>_500> Y gilt, dass Y, MLOJ
Y. Das Gegenteil gilt im Allg. nicht.

Theorem 6.1.1
Seien X,,, n € N, unabhiingige Zufallsvariablen. Falls S, = 7, X; % S, dann S, fT> S.
n o0 n oo

Ohne Beweis

Folgerung 6.1.1
Falls die Folgen X,,, n € N, unabhéngig sind, var X,, < oo, n € N, EX,, =0, > > ; var X,, < o0,
dann konvergiert Y >°; X, f.s.

Beweis S, =3 X;, S=>72, X;, m <n,

n

E(Sw = Sm)? =[S0 — Smll72 = > varX; ——— 0,

) ,1M—00
i=m+1

weil 320, var X; < 00 = {S,, }nen ist eine Cauchy-Folge in L?((2, F, P)

Theor%m 6.1.1 g f.s. g

n
n—o0

o0
=35=lim S, =Y X;= 5, —— 8

Folgerung 6.1.2
Falls >°0°, a2 < oo, wobei {ay, }nen eine deterministische Folge ist, und {4, } eine Folge von
w.i.v. Zufallsvariablen ist mit Ed, = 0, vard, = 0 < oo, n € N, dann konvergiert die Reihe

Yool andy fs.

Aufgabe 6.1.1
Leiten Sie die Folgerung 6.1.2 aus dem Theorem 6.1.1 ab.

86
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1
nao

Bei uns: 6, wi.v., E§, = 0, varé, = o> > 0 (z.B. 6, ~ Bernouli(%)), an = n € N.

21 A < oo, falls 02 - < oo, d.h. fiir a < 1.
Folgerung 6.1.3

Sei { X, }nen eine Folge von unabhéngigen Zufallsvariablen mit Y o | EX,,, > >°  var X, < oo
f.s.

Beweis Sei Y,, = X,, — EX,,, daher ist X,, = EX,,+Y,,, n € N, und EY,, = 0, Y} 7% a, <
—~—

=an
f.s.
oo nach Voraussetzung. > o2, Y, < o nach Folgerung 6.1.1, weil var X,, = varY,, n € N,

f.s.
Yo varX, <oco =y X, =>,a,+>,Y, < 0. 0

6.2 Stationaritat im engeren Sinne und Ergodentheorie

6.2.1 Grundbegriffe

Sei { X, }nen ein stationdre im engeren Sinne Folge von Zufallsvariablen, d.h. fiir alle n,k € N
die Verteilung von (X,,,..., X,,4%)' unabhiingig von n € N ist. Insbesondere heifit es, dass alle
X, identisch verteilt sind. In der Sprache des Theorems von Kolmogorov:

P((Xn,XnJrl, .. ) S B) = P((XI,XQ, .. ) c B),

fiir alle n € N, fiir alle B € B(R®), R° =R xR x ... x ....

Beispiel 6.2.1 (von stationidren Folgen von Zufallsvariablen): 1. Sei {X,}nen eine
Folge von u.i.v. Zufallsvariablen, dann ist {X,, },cn stationér.

2. Sei Y, = ap Xy, + ... + axgXptk, k — fixierte Zahl aus N, {X,, },en aus 1), ag,...,ar € R
(fixiert), n € N.'Y,, sind nicht mehr unabhéngig, aber identisch verteilt. Die Folge {Y}, }nen
ist stationar.

3. Sei Yy, = 3772 a;jXp; fiir beliebiges n € N. Die Folge {a;}jen ist eine Zahlenfolge aus R
mit der Eigenschaft, dass > 32, |a;] < oo und EX,, =0, >>52; var X, < 00, 22 aF < 00
(vgl. Folgerung 6.1.2).

Es ist offensichtlich, dass {Y}, }nen eine stationére Folge ist. (Diese Konstruktion ist wichtig
fiir die autoregressiven Zeitreihen (AR-Prozesse), z.B. in der Okonometrie).

4. SeiY, = 9(Xn, Xnt1,-..),n €N, g: R*® — R meBbar, { X, }nen aus 1). Dann ist {Y), }nen
stationar.

Bemerkung 6.2.1 1. Eine beliebige stationdre Folge von Zufallsvariablen X = { X }nen
kann man erweitern zu einer stationdren Folge X = { X, },ez. Tatséchlich kann die endlich
dimensionale Verteilung von X nach dem Satz von Kolmogorov durch die von X definiert
werden:

(Xn7~--7Xn+k)i(Xla---;XkJrl)v neZ, keN.

Deshalb (nach dem Satz von Kolmogorov) existiert ein Wahrscheinlichkeitsraum und eine
Folge {Y}, } necz mit der obigen Verteilung. Wir setzen X = {Y}, } ez und daraus folgt, dass

{Yn}nEN i {Xn}nEN-
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2. Wir definieren eine Koordinatenverschiebung. Sei x € R, z = (z, k € N), z = (xy, k €
Z). Definiere die Abbildung 0 : R¥_ — R>*_, (0z); = zx+1 (Verschiebung der Koordi-
naten um 1), k € N, k € Z. Falls 6 auf R>_ betrachtet wird, so ist sie bijektiv und die
Umkehrabbildung wére (0~'z)y = z3_1, k € Z.

Sei nun X = {X,,, n € Z} eine stationire Folge von Zufallsvariablen. Sei X = X . Es ist

offensichtlich, dass X wieder stationdr ist und X 2 X. Daraus folgt, dass
P(6X € B)=P(X € B), B e B(R>,).

0 wird eine majferhaltende Abbildung genannt. Es gibt aber auch andere Abbildungen,
die maflerhaltend wirken.

Definition 6.2.1
Sei (2, F,P) ein beliebiger Wahrscheinlichkeitsraum. Eine Abbildung 7" : Q — € heifit mafer-
haltend, falls

1. T meBbar ist, d.h. T7'A € F fiir alle A € F,
2. P(T7'A) =P(4), AcF.

Lemma 6.2.1

Sei T eine maflerhaltende Abbildung und X — eine Zufallsvariable. Wir definieren eine Folge von
Zufallsvariablen X,,. Sei Abbildung UY (w) = Y (T'(w)), w € , fiir eine beliebige Zufallsvariable
Z auf (Q, F,P). Definiere X,,(w) = U"Xp(w) = Xo(T"(w)), w € Q, n € N. Dann ist die Folge
von Zufallsvariablen X = { Xy, X1, Xo, ...} stationér.

Beweis Sei B € B(R®), A={weQ: X(w) € B}, A1 ={weN:0X(w) € B}.

X (w) = (Xo(w), Xo(T(w)), Xo(T?(w)), - )
X (w) = (Xo(T(w)), Xo(T*(w)),- - -)

Deshalb w € A1 & T(w) € A. Weil P(T71A) = P(A), gilt P(4;) = P(A). Fiir 4, = {w € Q:
0" X (w) € B} gilt dasselbe, P(A4,) = P(A), n € N (Induktion). Und daraus folgt, dass die Folge
X stationar ist. U

Die Folge X in Lemma 6.2.1 wird die Folge, die von T erzeugt wird, genannt.

Definition 6.2.2
Eine Abbildung T : Q — Q heiflt majferhaltend in beide Richtungen, falls

1. T bijektiv ist und T(2) = €,
2. T und T~! meBbar sind,
3. P(T7'A) = P(A), A € F, und, folglich, P(TA) = P(A).

Somit kénnen wir genau wie in Lemma 6.2.1 stationdre Folgen von Zufallsvariablen mit
Zeitparameter n € Z konstruieren:

X(w) ={Xo(T"(w)) }nen, w €,

wobei T eine maferhaltende Abbildung (in beide Richtungen) ist, Xo(7T%(w)) = Xo(w), (T° =
1d).
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Lemma 6.2.2
Fiir eine beliebige stationdre Folge von Zufallsvariablen X = (Xj, X7, ...) existiert eine mafier-
haltende Abbildung 7" und eine Zufallsvariable Yy, so dass Y (w) = {Yo(T"(w)) }nen dieselbe

Verteilung wie X besitzt: X 2 Y. Dieselbe Aussage gilt fiir Folgen mit dem Zeitparameter
n € Z.

Beweis Betrachten wir den kanonischen Wahrscheinlichkeitsraum (R*°, B(R*°),Px), Y (w) =
w, w € R, T = 0. Damit ist Y konstruiert, weil Px(A) = Py(A) =Px(Y € A), A€ B(R>®). O

Beispiel 6.2.2 (Maflerhaltende Abbildungen): 1. Sei Q@ = {wi,...,wi}, £ > 2, F =
292 P(w;) = %, i = 1,...,k, ein Laplacescher Wahrscheinlichkeitsraum. Tw; = w;4; fir
allei=1,....k—1, Tw, = wq.

2. Sei Q =[0,1), F = B([0,1)), P = v; — Lebesgue-Maf§ auf [0,1). Tw = (w + s) mod 1,
s > 0. T ist maflerhaltend in beide Richtungen.

Folgen von Zufallsvariablen, die in diesen Beispielen durch die Abbildung 1" erzeugt werden
konnen, sind meistens deterministisch bzw. zyklisch. Im Beispiel 1) kénnen wir eine Zufallsva-
riable X :  — R betrachten, so dass X (w;) = z; alle von einander verschieden sind. Deswegen
X (w) = Xo(T"(w)) wird eindeutig den Wert von X,,41(w) = Xo(T" ! (w)) definieren, fiir alle
n € N.

Bemerkung 6.2.2

Maferhaltende Abbildungen spielen eine grofie Rolle auch in der Physik. Dort wird 7T als die
Veranderung des Zustandes von einem physikalischem System interpretiert und das Mafl kann
z.B. das Volumen sein. (Bsp.: T' — Veranderung der Temperatur, Mal P — Volumen vom Gas.)
Deswegen ist die zu entwickelte Ergodentheorie auf manche physikalische Vorgénge iibertragen.

Theorem 6.2.1 (Poincare):
Falls T' eine maflerhaltende Abbildung auf (2, F,P) ist, A € F, dann fiir fast alle w € A die
Relation {T"(w) € A} gilt fiir unendlich viele n € N.

Das heifit, dass die Trajektorie {T™(w), n € N} kehrt unendlich oft zu A zuriick, falls w € Q,
P(A4) > 0.

Beweis Es ist zu zeigen, dass A € F, T : QQ — Q maflerhaltend. Zeige, dass fiir fast alle w € €Q,
T w) € A fiir unendlich viele n € N. Sei N = {w € A : T"(w) ¢ AVn > 1}. Es ist klar, dass
N e F,weil {weQ:T'w) ¢ A} € Ffirallen > 1. NNT(—n)N = 0 fiir alle n > 1.
Tatséchlich, falls w € NNT(—n)N, dann w € A, T(n)(w) ¢ A fiir alle n > 1, w; = T™(w),
w1 € N. Daraus folgt, dass w; € A und T"(w) € A. Das ist Widerspruch.

T(—n)N = {w € Q: T"(w) € N}. Fiir beliebige m € N gilt

TC—mNNT = (n+m))N =T —m)(NNT —n)N) =T —m)(®) = 0.
Daraus folgt, dass die Mengen T — n)N, n € N, paarweise disjunkt sind, zu F gehéren und
P(T(—n)N) = P(A) = a > 0 haben.
1>PU T =n)N) =Y P(T —n)N) =Y a=a=0=P(N)=0.
n=0

Daraus folgt, dass fiir fast allew € A (w € A{}N) ein ny = n(w) existiert, so dass T(m)(w) € A.
Sei nun T* an Stelle von T, k € N. Es gilt P(N;) = 0 und fiir alle w € A{}N} existiert



90 6 Stationdre Folgen von Zufallsvariablen

ng = np(w), so dass (T%)(ng)(w) € A. Da kny, > k folgt fiir fast alle w € A, dass Tn)(w) € A
fiir unendlich viele n. O

Folgerung 6.2.1
Sei X > 0 eine Zufallsvariable, A = {w € Q : X(w) > 0}. Dann fiir fast alle w € Q gilt
* , X(T(n)(w)) = +oo, wobei T' eine maBerhaltende Abbildung ist.

Aufgabe 6.2.1
Beweisen Sie es.

Bemerkung 6.2.3

Der Beweis des Theoremes 6.2.1 gilt fiir Mengen A € F : P(A) > 0. Falls jedoch P(A4) = 0,
kann es sein, dass A{}N = () und somit ist die Aussage des Theoremes trivial.

Als Beispiel betrachten wir 2 = [0,1), 7 = B([0,1)), P = v; — Lebesgue-Maf}, T'(w) = w + s
mod 1, s € Q. Als Menge A betrachten wir A = wy, wy € Q. Dann gilt T"(wp) # wy fiir alle n,
denn sonst existiert k,m € N, so dass wy + ks —m = wp und daraus folgt s = 7+ € Q. Somit
bekommen wir einen Widerspruch.

6.2.2 Mischungseigenschaften und Ergodizitat

Hier studieren wir die Abhéngigkeitsstruktur in einer stationdren Folge von Zufallsvariablen,
die durch eine maflerhaltende Abbildung T erzeugt wird.
Sei X = {X,,}, cn eine stationére Folge (im engen Sinne) von Zufallsvariablen. Dann existiert

eine maflerhaltende Abbildung 7' : Q@ — Q, so dass X, (w) 4 Xo(T(n)(w)) und X, 4 Xo,
und somit gibt X die Randverteilung der Folge X an. Dafiir ist die Abbildung 7' fiur die
Abhéngigkeiten innerhalb von X zustindig (sie gibt Eigenschaften von mehrdimensionalen
Verteilungen an). Deshalb werden wir jetzt die Abhéngigkeitseigenschaften untersuchen, die
von T erzeugt werden.

Definition 6.2.3 1. Ereignis A € F heifit invariant bzgl. (einer maflerhaltenden Abbildung)
T:Q—Q, falls T71A=A.

2. Ereignis A € F heiBt fast invariant bzgl. T, falls P(T"!AAA) = 0. A bedeutet die
symmetrische Differenz.

Aufgabe 6.2.2
Zeigen Sie, dass die Menge aller (fast) invarianten Ereignisse bzgl. T' eine o-Algebra J(J*) ist.

Lemma 6.2.3
Sei A € J*. Dann existiert B € J*, so dass P(AAB) =0

Beweis Sei B = limsup,,_,,, T"A = N3, U T~*A. Esist zu zeigen, dass B € J, P(AAB) =
0. Es ist klar, dass T~'(B) = limsup,,_,,, T~ ™tV A = B und daraus folgt, dass B € J.

Es ist leicht zu sehen, dass AAB C U2 (T"*AAT~ (1) A). Da P(T"FAAT~(++D A) = 0 fiir
alle k > 1 wegen A € J*, folgt, dass P(AAB) = 0. 0

Definition 6.2.4 1. Die maflerhaltende Abbildung T : Q@ — € heifit ergodisch, falls fiir
jedes A € J
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2. Die stationdre Folge von Zufallsvariablen X = {X,,}, .y heiit ergodisch, falls die mafer-
haltende Abbildung T : Q — Q, die X erzeugt, ergodisch ist.

Lemma 6.2.4
Die maflerhaltende Abbildung T ist ergodisch genau dann, wenn die Wahrscheinlichkeit belie-
biger fast invarianten Mengen

P(A) = { (1) fiir alle A € J*.

Beweis ,, < “

Klar, weil beliebige invariante Menge auch fast invariant ist, d.h. J C J*

” i o

T — ergodisch. Sei A € J*. Es folgt, dass es B € J existiert, so dass P(AAB) = 0 nach Lemma

6.2.3. T — ergodisch und daraus folgt

Definition 6.2.5
Eine Zufallsvariable Y : @ — R heif (fast) invariant bzgl. T : @ — Q (maflerhaltende Abbil-
dung), falls Y (w) = Y(T'(w)) fir (fast) alle w € Q.

Theorem 6.2.2
Sei T : 2 — R eine maflerhaltende Abbildung. Folgende Aussagen sind dquivalent:

1. T — ergodisch
2. Falls Y invariant bzgl. T ist, dann Y = const f.s.
3. Falls Y fast invarinat bzgl. T ist, dann Y = const f.s.

Beweis 1) = 2) = 3) = 1)

1) =2)
T — ergodisch, Y — fast invariant. Es ist zu zeigen, dass Y (w) = const fiir fast alle w € Q.
Y(T(w)) =Y (w) fast sicher. Sei 4, = {w € Q: Y (w) <w}, w € R. Daraus folgt, dass A, € J*
fiir alle v € R und nach dem Lemma 6.2.4

P(A,) = { (1) fiir alle v.

Sei ¢ = sup{v : P(4,) = 0}. Zeige, dass P(Y =¢) = 1.
Ay T Qv =00, Ay 1 0, v = —00 = |¢| < 0.

P(Y<c):P< ;;Ol{ygc—ib SiP(AC_%):O.
n=1

Genauso P(Y >¢) =0und P(Y =¢) = 1.
2) = 3)
Offensichtlich.
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3) = 1) Es ist zu zeigen, dass T ergodisch ist, d.h. fiir alle A € J P(A) = (1) .
. . . 0 0
Sei Y =14 — invariant bzgl. T', folgt daraus, dass 14 = const = 1 und P(A) = L 0

Bemerkung 6.2.4 1. Die Aussage des Theorems 6.2.2 bleibt giiltig, wenn man 3) fiir f.s.
beschriankte Zufallsvariablen Y fordert.

2. Falls Y invariant bzgl. T' ist, dann ist Y;, = min{Y,n}, n € N, auch invariant bzgl. T
Beispiel 6.2.3 1. Sei Q = {wi,...,wq}, F =22 P({w;}) = L, i =1,....d. Sei T(w;) =

wi+1 mod d, d.h. wy L w1. T ist offensichtlich ergodisch und jede invariante Zufallsva-
riable ist konstant.

2. Sei Q@ =10,1), F = Bp1), P =11, T(w) = (w+s) mod 1. Zeige, dass T' ergodisch <=
s ¢ Q.

Beweis ,, <
Sei s ¢ Q, Y — eine beliebige invariante Zufallsvariable. Sei EY? < oo. Zerlegen wir die
Zufallsvariable Y in eine Furier-Reihe. Die Furier-Reihe von Y ist Y (w) = 300 a,,e?™"%. Wir
wollen zeigen, dass a, = 0, n > 0, und daraus folgt dann, dass Y (w) = ag f.s.. Dann ist T
ergodisch nach dem Theorem 6.2.2.

“

a, =< Y(w), eQm’nw >po= E(Y(w)e‘2””w) — E(y(T(w))e—Qwinw)e—ans — e—27rinsam

s¢Q = a,=0.
” :>“

Falls s = ™ € Q, dann ist T nicht ergodisch, d.h. existiert A € J, so dass 0 < P(4) < 1.

Sei A= U~} {w eN:Z<u< %} und P(A4) = 1. A ist invariant, weil T(A) = (A + 2—”"”)

mod 1 = A. O

Definition 6.2.6 1. Die maflerhaltende Abbildung T : Q — Q heifit mischend, falls fiir alle
A1, Ay € F gilt: P(A1NT™Ag) — P(A1)P(As2), d.h. bei wiederholten Anwendungen

von T auf A, werden A; und As asymptotisch unabhéngig.

2. Sei X = {Xy},c, eine stationire Folge von Zufallsvariablen die von Zufallsvariable X
und einer maflerhaltenden Abbildung T erzeugt wird. X heifit schwach abhdngig, falls
Zufallsvariable Xj und X, fiir n — oo asymptotisch unabhingig werden, d.h. fiir alle
B1,Bs € Br

P(Xk S Blka:+n S BQ) m P(XO S Bl)P(Xo c Bg).

Theorem 6.2.3
Eine stationére Folge von Zufallsvariablen X = {X,}, cy,, erzeugt durch die maferhaltende
Abbildung T, ist schwach abhéngig im Mittel genau dann, wenn 7" mischend im Mittel ist.

Aufgabe 6.2.3
Beweisen Sie das Theorem.

Theorem 6.2.4
Sei T eine maflerhaltende Abbildung. Sie ist ergodisch genau dann, wenn sie mischend im Mittel
ist.
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Beweis , < ¢

Es ist zu zeigen, dass wenn T mischend im Mittel ist, folgt daraus, dass T ergodisch ist,

d.h. fiir alle A € J gilt P(A) = { (1) AL EF, Ay = A=, 20 P(AANT (Ay) =
N——

=A,
P(Al N Ag) n—>—oo> P(Al)P(Ag) P(Al N Ag) = P(Al)P(AQ) fir A1 = A, P(A) = P2<A) und
0
" i “
Spéter. O

Jetzt geben wir die Motivation die Motivation an fiir den Begriff ,mischende Abbildung*.

Theorem 6.2.5
Sei A € F, P(A) > 0. Die maflerhaltende Abbildung 7" : Q — Q ist ergodisch (d.h. mischend
im Mittel) genau dann, wenn

D.h. die Urbilder T7" A, n € Ny, decken fast das ganze ) ab.

14

Beweis ,, <
Sei B = U ,T™A. Offensichtlich, T™'B = U, T""A C B. Da T maferhaltend ist, d.h.
P(T~'B) = P(B), folgt, dass P(T"'BAB) = 0, B € J* (B — fast invariant bzgl. T) und
P(B) = { U P(B)>P(4)> 0= P(B) =1
" :> 13

Sei T nicht ergodisch. Es ist zu zeigen, dass P(B) < 1.

Wenn T nicht ergodisch ist, dann existiert A € J, so dass 0 < P(4) <1. B=U2 T "A=A
und P(B) < 1. 0

Bemerkung 6.2.5

Bisher wurde niemals explizit die Tatsache genutzt, dass die Zufallsvariablen X reellwertig sind.
Deshalb kann man die obigen Betrachtungen ohne Verdnderung auf Folgen von Zufallselementen
mit Werten in einem bel. mebaren Raum M iibertragen.

6.2.3 Ergodensatz

Sei X = {X,,}72, eine Folge von Zufallsvariablen auf dem Wahrscheinlichkeitsraum (Q, F, P).

n=0
Falls X,, u.i.v. sind, dann

1 n—1
— E X f_>_s> EXy, E|X0| < 00.
n n—o00

k=0

Wir wollen eine dhnliche Aussage iiber stationére Folgen beweisen.

Theorem 6.2.6 (Ergodensatz, Birkkoff-Kchintchin):
Sei X = {Xy},cn, eine stationéire Folge von Zufallsvariablen, erzeugt von der Zufallsvariable
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Xo und einer maflerhaltenden Abbildung 7 : @ — Q. Sei J die o-Algebra der invarianten
Mengen von T, d.h. E| X| < co. Dann

"E:QY E(Xo [ J).

Falls X schwach abhéngig im Mittel ist (d.h. 7" — ergodisch), dann E(Xj | J) = E(X)).

Lemma 6.2.5
Seien {X,}, T wie oben. Sei Sy,(w) = Y325 Xo(T*(w)), My(w) = max {0, S1(w), ..., Sk(w)}.
Unter der Bedingung des Theorems 6.2.6 gilt

E(Xol(M, >0)) >0, neN

Beweis Fiir alle & < n gilt Si(w) < Mp(w). Wir kénnen noch Xy hinzuaddieren und
—— N——

Sk(T(w)) M (T(w))

Xo(w) + Mp(T(w)) = Xo(w) + Si(T(w)) = Skt1(w)-

Fir k = 0 gilt Xo(w) > S1(w) — Mn( (w)). Dasselbe gilt fiir k = 0,...,n—1. Daraus folgt, dass
Xo(w) > max {S1(w),...,Sn(w)} =M, (T (w)). Da M, (w) > 0, dann Mn = max {S1,..., 5.}

=Mp(w)

bekommen

Es folgt, dass
E(Xo1(M, >0)) > E(M, — M,(T))1(M,, > 0)) > E(M,, — M,(Tw)) = 0.
0

Beweis des Ergordensatzes Die Aussage E(X( | J) = E(Xp) ist trivial, weil fir ergodische
T gilt J ={0,Q}. O.B.d.A. sei E(X( | J) =0, sonst betrachte Xy = E(X | J).

Es ist zu zeigen: lim, %” Ls 0, S, = ZZ;& Xi. Es geniigt zu zeigen, dass

Sh Sh
0 < liminf —= < limsup — < 0.
n—oo n n—oo N
Zunichst zeigen wir, dass S = limsup,,_, ., %L < 0. Es reicht zu zeigen, dass P(S > ¢) = 0 fiir
Ae
alle ¢ > 0. Seien X§ = (Xo —¢)la., S} = Z?;& X (T9(w)), M} = max{0,S5},...,5;}. Aus
Lemma 6.2.5 folgt E(X§1(M; > 0)) > 0 fiir alle n > 1. Aber,

Sy S

{M;, >0} = { max Sj, > 0} Thosoo $SUPSf>0p = sup £ > 03 = sup % > e $NA. = A,

1<k<n k>1 k>1 k k>1 K
weil {supk21 % > 5} > {§ > 5} = Ac. Nach dem Lebesgue-Satz: 0 < E(X51(M;: > 0)) —
E(Xg1a.), weil E[Xg| < E[Xo| + . Deshalb 0 < E(X{1a) = E((Xo — €)14.) = E(Xola.) —
eP(A;) = E(E(Xola, | J)) —eP(A;) = E(1a. E(Xo | J)) —eP(A:) = —eP(A;) und daraus folgt

=0
P(A:) <0 und P(A.) = 0 fiir alle ¢ > 0.
Sn

Um0 < lim 1nfnHOO S;L—“ = S zu zeigen geniigt es — X statt Xo zu betrachten, denn lim sup,, . (—=*) =
lim inf,, o0 (22 ). Da P(—S < 0) =1 gilt P(S >0) =1. O
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Bemerkung 6.2.6
Die Besonderheit des Ergordensatzes 6.2.6 liegt, im Vergleich zu dem iiblichen Gesetz der grofien

Zahlen, in der Tatsache, dass der Grenzwert lim,, . % Yor—1 Xk L E(Xo | J) zufillig ist.
Beispiel 6.2.4

Betrachten wir den Wahrscheinlichkeitsraum aus dem Beispiel 6.2.3 a). Q = {w1,...,wq},
d=2l € N.T:Q — Q sei definiert durch

T(wz) = Wi+2 izl,...,d—Q,

T(wg-1) = w1 ,

T(wa) = w2

Seien A1 = {wi,ws,..., w1}, As = {wo,wy,...,wy}. Da (Q,F,P) ein Laplacescher Wahr-
scheinlichkeitstaum (P({w;}) = %, fiir alle i) folgt, dass P(4;) = 3, i = 1,2. Andererseits,
Ay, As € J bzgl. T und deswegen ist T nicht ergodisch. Fiir eine beliebige Zufallsvariable
Xo:Q — R gilt

N[ ~—

1 "il (T"(w)) ézzl];%) Xo(w2j+1), m%t Wahrsche%nl%chke?t %, falls w € Ay,
n &~ n—oo | £37. 1 Xo(wzj) , mit Wahrscheinlichkeit 3, falls w € As.

Beweis des Theorems 6.2.4 Es ist zu zeigen: Falls T : Q — €2 ergodisch, dann ist 7" mischend
im Mittel, d.h. fiir alle Ay, Ay € F

1 n—1
- > P(ANT " A) —— P(A)P(4y).
k=0

Sei Y, = 13070 1(T7FAy)
{l(T*kAg)}keN. Nach dem Satz von Lebesgue aus 1(A1)Y, — 1(A1)P(Ay) folgt

Lhoerem 6.2.6, P(As2), weil T ergodisch ist, somit auch die Folge
n

n—1
E(L(A)Y:) = © 3" P(A N T dy) — 5 P(4)P(ds).
k=0

Lemma 6.2.6

Falls { X, }, oy eine gleichgradig integrierbare Folge von Zufallsvariablen ist und p, ; > 0, so dass
> i1 Pni = 1 fiir alle n € N, dann ist auch die Folge von Zufallsvariablen Y,, = >7i"; pni | Xi,
n € N, gleichgradig integrierbar.

Ohne Beweis

Folgerung 6.2.2
Unter den Voraussetzungen des Theorems 6.2.6 gilt

1
n

n—1
> X L E(Xo | )
k=0

bzw.

1 n—1 12
— E Xk —_— E(XD)
n n—00
k=0
im ergodischen Fall.
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Beweis Falls {X,, }nen, stationér, dann gilt sup,, E(|X,,|1(] X, > €)) = E(| Xo|1(|Xo| > €)) -
E—
0, weil E|Xo| < oco. Sei Sy = 33420 Xk = il pniXio1, Pni = 3 Sn = 33450 Xk =

T n

Yoty Pnyil Xi—1|. Aus dem Lemma 6.2.6 ist auch {5’”} . gleichgradig integrierbar und nach
n

dem Lemma 5.3.2 aus Sk LN folgt E|S,| < 1 S0 E[Xy| —— 0. 0
k—o0 - n—o00

6.3 Stationaritat im weiteren Sinne

Sei {Xn},,cz eine Folge von Zufallsvariablen, die stationdr im weiteren Sinne ist: E|X,|? < oo,
n € N. E|X,,| = const, n € N, cov(X,,, X;,) = C(n —m), n,m € Z.

6.3.1 Korrelationstheorie

Theorem 6.3.1 (Herglotz):
Sei C' : Z — R eine positiv semi-definite Funktion. Dann existiert ein endliches Mafl y auf
(—m,m), so dass

C(n) = /7r ™ u(dx), n €.

w heiBt Spektralmafs von C.

Bemerkung 6.3.1
Da die Kovarianzfunktion einer stationdren Folge positiv semi-definit ist, gilt die obige Darstel-
lung fiir eine beliebige Kovarianzfunktion C.

Definition 6.3.1

Eine Familie {@Q\, A € A} von Wahrscheinlichkeitsmafen heiit schwach relativ kompakt, falls
eine beliebige Folge von Maflen {Qx,},,cy €ine Teilfolge {Qxn, } besitzt, die schwach kon-
vergiert.

Definition 6.3.2
Eine Familie von Wahrscheinlichkeitsmalen Q@ = {Qx, A € A} auf (S,B), B — Borelsche o-

Algebra auf einem metrischen Raum S heif3t dicht, falls fiir alle € > 0 ein Kompaktum existiert,
so dass K. € Bund Q)\(K.:) > 1 — ¢ fur alle A € A.

Theorem 6.3.2 (Prokhorov):

Falls die Familie von Wahrscheinlichkeitsmafien @ = {Q\, A € A} auf dem metrischen messba-
ren Raum (S, B) dicht ist, dann ist sie schwach relativ kompakt. Falls S ein Banachraum ist,
dann ist jede schwach relativ kompakte Familie @ = {Qx, A € A} von Maflen auch dicht.

neN

Ohne Beweis

Der Satz von Prokhorov wird verwendet um die schwache Konvergenz einer Folge von Wahr-
scheinlichkeitsmafien zu beweisen, indem man unter anderem ihre Dichtheit priift. Insbesonde-
re, falls S kompakt ist, ist jede Familie von Wahrscheinlichkeitsmafien auf (S, B) dicht, denn
K. =S8 fur alle ¢ > 0.

Beweis des Theorems 6.3.2 | < “
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Falls C(n) = [™_e™pu(dx),n € Z, dann fiir allen € N, fiir alle z1,...,2, € Cund t1,...,t, €Z

2
p(dz) > 0.

> 2z Cti —t) = /_Tr

ij=1

n
} : ziezzix
=1

|-

Daraus folgt, dass C' positiv semi-definit ist.

7 :> “
Fiir alle N > 1, € [—, 7], definiere die Funktion gy (z) = 525 Z]k\{jzl C(k — jle~thzeliz > 0,
die stetig in x ist, weil C' positiv semi-definit ist. Es gilt

gn(z) = — Z (1 — ’;\Lf) C(n)e e,

2
[n|<N

weil es N — |n| Paare (k,j) € {1,...,N}? gibt, so dass k — j = n. Definiere MaB py auf
([—W,W],B[iﬂ.m]) durch :U’N(B) = ng(I‘)d.T, B e B([_ﬂ-vﬂ-])'

/7r " Qy (dr) = /7r gy (x)dr = { (1 - %) Cn), In| <N,

-7 -7 0, sonst,

weil {e"*} . ein orthogonales System in L?[—m, ] ist. Fiir n = 0 gilt Qn([—m,7]) = C(0) <
00, deshalb ist {%} - eine Familie von Wahrscheinlichkeitsmaflen, die dicht ist. Nach dem
n
Theorem 6.3.2 existiert eine Teilfolge {Nj},cn, so dass Qn # . i — endliches Mafl auf
— 00

[—7, 7] und daraus folgt

lim ™ gn(x)dr = lim ( - W) C(n)=C(n), furalleneZ.
k—oo J_g k—ro0 Np.

O

Sei X = {X,},cz eine stationire im weiten Sinne Folge von Zufallsvariablen. Dann gilt
folgende Spektraldarstellung;:

d [
X, = / e Z(dx), n€Z,
—T

wobei Z ein orthogonales Zufallsmafl auf ([—m, ], B([—m, 7])) ist. Daher soll sowohl Z als auch
I(f) = J", f(z)Z(dx) fiir deterministische Funktionen f : [—7, 7] — C eingefiithrt werden.

6.3.2 Orthogonale ZufallsmaBe

Konstruktionsschema von Z bzw. I(-):
1. Z wird auf einem Simering IC (der Teilmengen von A) definiert.
2. Z wird erweitert auf die Algebra A, die von K erzeugt wird.

3. Definiere das Integral I bzgl. Z fiir einfache Funktionen auf o(A), wenn das Mafl u(A) <
00, i — gegebenes Maf.
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4. Definiere I als lim,_,o I(f,) fiir beliebige mefibare Funktionen f, f = lim, o0 fn, fn
einfach, u(A) < oco.

5. Definiere I auf einem oc-endlichem Raum A = U,A,, u(A,) < oo, Ay N A, = 0,
n # m,als I(f) = >, I(f | An), In — Integral bzgl. Z auf A,. Dadurch sind Z auf
{A€o(A): p(A) < oo} erweitert als Z(A) = I(1(A)).

Schritt 1
Sei K ein Semiring der Teilmengen von A (A — beliebiger Raum), d.h. fiir alle A, B € K
gilt ANB € K; falls A C B, dann existieren Ai,..., A4, € K, AiNA; =0, ¢ # j, so dass
Definition 6.3.3 1. Ein komplexwertiges signiertes Zufallsmafl Z = {Z(B), B € K}, ge-
geben auf dem Wahrscheinlichkeitsraum (€2, F, P), heifit orthogonal, wenn

a) alle Z(B) € L*(Q,F,P), B€K,
b) A,BeK, ANB =0 = (Z(A),Z(B))2q,rp = E(Z(4),Z(B)) =0,
c) als Zufallsma8 gilt die o-Additivitat von Z: Falls B, By, ..., By,... € K, B =U, By,

BiNB; =0,i+# j, Z(B) Ls >n Z(By), wobei die Konvergenz dieser Reihe im
L*(Q, F,P)-Sinne zu verstehen ist.

2. Die GroBe p = {u(B), B € K} definiert durch u(B) = E|Z(B)|*> = (Z(B), Z(B)) r2(0,7,p)>
B € K, heifit Strukturmafl von Z. Es ist leicht zu sehen, dass u tatséchlich ein Maf3 auf IC
ist. Falls A € K, dann ist x endlich, ansonsten o-endlich, A = U, A, A, € K, A,NA,, =0,
so dass p(Ay) < oo.

3. Das orthogonale Zufallsmafl Z heifit zentriert, falls EZ(B) =0, B € K.

Beispiel 6.3.1

Sei A = [0,00), K = {[a,b), 0 < a <b < oo}, Z([a,b)) = W(b) — W(a), 0 < a <b< o0,
wobei W = {W(t), t > 0} der Wiener-Prozess ist. Z ist ein orthogonales Zufallsmafi auf
K, weil W unabhéngige Zuwéchse hat. Analog kann diese Definition auf einem beliebigen
quadratisch integrierbaren stochastischen Prozess X mit unabhéngigen Zuwéchsen an Stelle
von W iibertragen werden.

Schritt 2

Theorem 6.3.3

Sei p ein o-endliches Mafl auf der Algebra A, die von K erzeugt wird (nach dem Theorem
von Caratheodon wird p eindeutig auf o(A) fortgesetzt). Dann existiert ein Wahrscheinlich-
keitsraum (€2, F,P) und ein zentriertes orthogonales Zufallsmaf§ Z auf (2, F,P), definiert auf
{B € A: u(B) < oo}, mit Strukturmafl (oder Kontrollmaf) .

Ohne Beweis
Zur Definition von Z auf A: fir B € A, B = U] B;, B; € K, BiNB; =0, i # j, wird
Z(B) =Y1" 1 Z(B;) gesetzt.

6.3.3 Integral beziiglich eines orthogonalen ZufallsmaBes

Schritt 3
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Sei f: A — C eine einfache Funktion, d.h. f(z) =Y., ¢;1(z € B;), fiir ¢; € C und B; € &,
i=1,...,n,s0dass U B; = A, BiNBj =0, i # j, und (A, &, ) ein mefbarer Raum mit
p(A) < oo.

Definition 6.3.4
Das Integral von f beziiglich eines orthogonalen Zufallsmafies Z definiert auf (2, F,P) ist
gegeben durch I(f) := [, f(x)Z(dzx) = >Ji-; ciZ(B;).

Aufgabe 6.3.1
Zeigen Sie, dass die Definition korrekt ist, d.h. I(f) héngt nicht von der Darstellung von f als
einfache Funktion ab.

Lemma 6.3.1 (Eigenschaften von I):
Sei I(-) das Integral bzgl. des orthogonalen Zufallsmafies, definiert auf einer einfachen Funktion
A — C wie oben. Es gelten folgende Eigenschaften:

1. Isometrie: (I(t), I(g))Lg(Q) = (f, 9>L2(Q)a wobei f und g einfache Funktionen A — C sind,

(f, 9>L2(Q) = Jx f(@)g(z)A(dz).

[y

2. Linearitit: Fur jede einfache Funktion f,g: A — C gilt I(f + g) = I(f)+1(g).
Aufgabe 6.3.2
Beweisen Sie es.

Schritt 4

Sei nun f € L?(Q, &, ). Dann existiert eine Folge von einfachen Funktionen f,, : A — C, so

2
dass f, % f (einfache Funktion ist dicht im L?(A)). Dann definiere I(f) = limy, o0 I(fn),

wobei dieser Grenzwert in L?(, F, P)-Sinne zu verstehen ist. Man kann zeigen, dass die Defi-
nition von I(f) unabhéngig von der Wahl der Folge { f,,} ist.

Lemma 6.3.2
Die Aussagen des Lemmas 6.3.1 gelten im allgemeinen Fall.

Beweis Benutze die Stetigkeit (-, ). 0

Bemerkung 6.3.2
Falls Z zentriert ist, dann gilt EI(f) = 0 fiir beliebige Funktionen f € L%(A, &, u).

Schritt 5

Sei nun A o-endlich, d.h. A = U,A,,, p(A,) < oo, Ay N Ay = 0, n # m. Dann fiir alle
feL A& p) gt f =3, fla,. Auf L2(A,, EN Ay, 1) wird das Integral I, bzgl. Z wie im 1)-
4) definiert. Dann setze I(f) := >, In(f|a,)-

Theorem 6.3.4
Die Abbildung g : L?(A, &, ) — L?(Q2, F,P) ist eine Isometrie. Insbesondere kann dadurch das
Zufallsmafl Z auf {B € ¢ : u(B) < £} fortgesetzt werden als Z(B) := I(1p), B € £ : u(B) < .

6.3.4 Spektraldarstellung

Sei X = {X(t), t € T} ein beliebiger komplexwertiger stochastischer Prozess auf (Q, F,P), T
— eine beliebige Indexmenge, E| X (¢)|> < oo, t € T, EX(t) =0, t € T (0.B.d.A., sonst betrachte

X(t) = X(t) —EX(t)), t € T, mit C(s,t) = E(X(s), X (1)), s,t € T).
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Theorem 6.3.5 (Karhunen):

X hat die Spektraldarstellung X (t) = [, f(t,x)Z(dx), t € T (d.h., es existiert ein zentriertes
orthogonales Zufallsma8 auf {B € £ : u(B) < oo}, wobei L?(A,&, 1) ein wie oben definierter
Raum ist), genau dann, wenn es ein System der Funktionen f(t,-) € L2(A, &, i), t € T, existiert,
so dass C(s,t) = [ f(s,z)f(t,z)pu(dx), s,t € T, und dieses System F vollsténdig in L?(A, €, p)
ist (d.h. (f (), )2 =0, ¥ € L3(Q, &, p), fiir alle t € T und 3 = 0, p fast {iberall).

Ohne Beweis

Theorem 6.3.6
Sei {X,,, n € Z} eine zentrierte komplexwertige stationére im weiten Sinne Folge von Zufallsva-
riablen auf (§2, F, P). Dann existiert ein orthogonales zentriertes Zufallsmafl auf ([—m, 7], B([—m, 7]))

(definiert auf (2, F,P)), so dass X, L5 [T e Z(dz), n € Z.

Beweis Sei F' = {¢™* x € [~m, 7], n € Z}. Dieses System ist vollstindig auf L?([—, 7]) (vgl.
die Theorie der Fourier-Reihen). Aus dem Theorem von Herglotz folgt, dass
s

Cln,m) = E(X, X ) = / €N (dr),

—T

wobei 1 das Spektralmafl von X ist, also ein endliches Maf auf ([—m, 7], B([—7, 7])). Nach dem

Theorem 6.3.5 existiert ein orthogonales Zufallsmaf} auf (2, F, P), so dass X, L5 [T e Z(dzx),

n € 7. O

Theorem 6.3.7 (Ergodensatz fiir stationidre (im weiten Sinne) Folgen von Zufalls-
variablen):
Unter den Voraussetzungen des Theorems 6.3.6 gilt

1! L2(Q
=3 x 29 z(qoy).
=0

L2(Q
Insbesondere wenn X nicht zentriert ist, d.h. EX,, = a, n € Z, dann konvergiert % EZ;é Xk (&)

a dann, wenn E|Z({0})|> = 0, also Z und somit x hat kein Atom im Null.
—_———

n({0})
Beweis S, = 1Sl X, = flnz_:le““ Z(dz). Yp(z) = %11_—62:”590’ z70 fiur alle n €
mT on k=0 R (s s 1, z=0"
—_———
() )
N. Sy = Z({0}) = [Z; (n(x) — Lz = 0)) Z(dz) = [T on(2)Z(dx). |52 — Z({O0D)1200) =
en(x)

”90”(95)”%2([—%,74,#) = [T |on(z)Pu(dz) —0 nach dem Theorem von Lebesgue, weil |¢, ()| <
2 —— 0 fiir alle z € [—7, 7). 0

nll—e| 400

6.4 Ergdnzende Aufgaben

Aufgabe 6.4.1
Sei Zy1, Zs, . .. eine Folge von Zufallsvariablen, so dass die Reihe ) ;2 Z; fast sicher konvergiert.
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Sei a1, ag, . .. eine monoton wachsende Folge positiver (deterministischer) Zahlen mit a,, — oo,
n — oo. Zeige, dass

1 & 5.
—Zakaf%SO, n — 00.
an 1=

Aufgabe 6.4.2
Sei X eine nicht-negative Zufallsvariable tiber einem Wahrscheinlichkeitsraum (€2, F,P) und
T : Q — Q eine maflerhaltende Abbildung. Zeige, dass

ZX(Tk(w)) =00 f.s.
k=0

fir fast alle w €  mit X (w) > 0.

Aufgabe 6.4.3
Sei X eine Zufallsvariable tiber einem Wahrscheinlichkeitsraum (€2, F,P) und 7" : Q@ — 2 eine
maferhaltende Abbildung. Zeige, dass EX = E(X oT), d. h.

/Q X (T(w))P(dw) = /Q X (w)P(dw).

(Hinweis: algebraische Induktion)

Aufgabe 6.4.4
Sei (2, F,P) ein Wahrscheinlichkeitsraum, wobei Q = [0,1), F = B([0,1)) und P das Lebes-
guema$ ist. Sei A € (0,1).

(a) Zeige, dass T'(z) = (z + A) mod 1 eine maflerhaltende Abbildung ist, wobei
amodm=a— [¢|mfiracRund be Zund || die GauBklammer bezeichnet.

(b) Zeige, dass T(z) = Az und T(z) = 2? keine maferhaltende Abbildungen sind.
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1 Tests statistischer Hypothesen

In der Vorlesung Stochastik I haben wir schon Beispiele von statistischen Tests ken-
nengelernt, wie etwa den Kolmogorow-Smirnow-Test (vergleiche Bemerkung 3.3.38, 3),
Skript Stochastik I). Jetzt sollen statistische Signifikanztests formal eingefiithrt und ihre
Eigenschaften untersucht werden.

1.1 Allgemeine Philosophie des Testens

Es sei eine Zufallsstichprobe (Xi,...,X,) von unabhingigen, identisch verteilten Zu-
fallsvariablen X; gegeben, mit Verteilungsfunktion F' € A, wobei A eine Klasse von Ver-
teilungsfunktionen ist. Es sei (z1,...,z,) eine konkrete Stichprobe, die als Realisierung
von (X1,...,X,) interpretiert wird. In der Theorie des statistischen Testens werden Hy-
pothesen iiber die Beschaffenheit der (unbekannten) Verteilungsfunktion F' gestellt und
gepriift. Dabei unterscheidet man

’ Statistische Tests |

\

’parametrische Tests ’nichtparametrische Tests

falls A = {F},0 € O},
wobei © C R™ ist.

Bei parametrischen Tests priift man, ob der Parameter 6 bestimmte Werte annimmt
(zum Beispiel § = 0). Bekannte Beispiele von nichtparametrischen Tests sind Anpas-
sungstests, bei denen man priift, ob die Verteilungsfunktion F' gleich einer vorgegebenen
Funktion Fj ist.

Formalisieren wir zunéchst den Begriff Hypothese. Die Menge A von zuléssigen Vertei-
lungsfunktionen F' wird in zwei disjunkte Teilmengen Ay und A; zerlegt, Ag U A; = A.
Die Aussage

sonst.

,Man testet die Haupthypothese Hy : F' € Ag gegen die Alternative Hy : F € A1 *

bedeutet, dak man an Hand der konkreten Stichprobe (z1,...,x,) versucht, eine Ent-
scheidung zu fillen, ob die Verteilungsfunktion der Zufallsvariable X; zu Ag oder zu Ay
gehort. Dies passiert auf Grund einer statistischen Entscheidungsregel

v :R" —[0,1],
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die eine Statistik mit folgender Interpretation ist:
Der Stichprobenraum R"™ wird in drei disjunkte Bereiche Ky, K1 und K unterteilt,
sodals R"™ = Ky U K U K7, wobei

Ky =¢'({0}) ={zr€R":p(x)=0},
K1 =¢'({1}) ={zeR":p(x)=1},
Ko =9 5(0,1) ={zeR":0<¢(z)<1}.

Dementsprechend wird Hy : F' € Ag
e verworfen, falls p(z) =1, also = € K7,
e nicht verworfen, falls ¢(x) = 0, also = € Kjy;

o falls p(x) € (0,1), also = € Ko, wird ¢(z) als Bernoulli-Wahrscheinlichkeit in-
terpretiert, und es wird eine Zufallsvariable Y ~ Bernoulli(p(x)) generiert, fiir die
gilt:

v 1 = Hy wird verworfen
| 0 == Hj wird nicht verworfen

Falls Ko # 0, wird eine solche Entscheidungsregel randomisiert genannt. Bei Ko = (),
also R™ = KU K spricht man dagegen von nicht-randomisierten Tests. Dabei heifst Kg
bzw. K1 Annahmebereich bzw. Ablehnungsbereich (kritischer Bereich) von Hy. Ko heift
Randomasierungsbereich.

Bemerkung 1.1.1. 1. Man sagt absichtlich ,Hy wird nicht verworfen“, statt ,,Hy
wird akzeptiert”, weil die schliekende Statistik generell keine positiven, sondern nur
negative Entscheidungen treffen kann. Dies ist generell ein philosophisches Pro-
blem der Falsifizierbarkeit von Hypothesen oder wissenschaftlichen Theorien, von
denen aber keiner behaupten kann, daf sie der Wahrheit entsprechen (vergleiche
die wissenschaftliche Erkenninistheorie von Karl Popper (1902-1994)).

2. Die randomisierten Tests sind hauptséchlich von theoretischem Interesse (vergleiche
Abschnitt 2.3). In der Praxis werden meistens nichtrandomisierte Regeln verwendet,
bei denen man aus der Stichprobe (z1,...,z,) allein die Entscheidung iiber Hy
treffen kann. Hier gilt p(z) = Ig,,z = (z1,...,2,) € R™.

In diesem und in folgendem Abschnitt betrachten wir ausschlieflich nichtrandomisierte
Tests, um in Abschnitt 2.3 zu der allgemeinen Situation zuriickzukehren.

Definition 1.1.1. Man sagt, dak die nicht-randomisierte Testregel ¢ : R” — {0,1}
einen (nichtrandomisierten) statistischen Test zum Signifikanzniveau « angibt, falls fiir
F e A gilt

Pr (¢(X1,...,Xn) =1) = P(Hy verwerfen | Hy richtig ) < a.
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Definition 1.1.2. 1. Wenn man Hy verwirft, obwohl Hj richtig ist, begeht man den
sogenannten Fehler 1. Art. Die Wahrscheinlichkeit

an(F) =Pp(p(x1,...,2n) =1), F €Ay
heiltt die Wahrscheinlichkeit des Fehlers 1. Art und soll unter dem Niveau « bleiben.

2. Den Fehler 2. Art begeht man, wenn man die falsche Hypothese Hg nicht verwirft.
Dabei ist

Bn(F>:PF(QD($1,,J}n):O), FEAl
die Wahrscheinlichkeit des Fehlers 2. Art.

Eine Zusammenfassung aller Mdoglichkeiten wird in folgender Tabelle festgehalten:

Hy richtig Hy falsch
Hy verwerfen Fehler 1. Art, Wahrschein- | richtige Entscheidung
lichkeit o, (F) <
Hy nicht verwer- | richtige Entscheidung Fehler 2. Art mit Wahr-
fen scheinlichkeit 3, (F)

Dabei sollen «,, und B, moglichst klein sein, was gegenldufige Tendenzen darstellt,
weil beim Kleinwerden von a die Wahrscheinlichkeit des Fehlers 2. Art notwendigerweise
wichst.

Definition 1.1.3. 1. Die Funktion
heilst Giitefunktion eines Tests (.

2. Die Einschrankung von G, auf A; heikt Stdarke, Scharfe oder Macht (englisch
power) des Tests .

Es gilt

{ Gn(F)=an(F) <a, Fel
Gn(F) =1—=Bn(F), F € Ay

Beispiel 1.1.1. Parametrische Tests. Wie sieht ein parametrischer Test aus? Der
Parameterraum © wird als ©g U O dargestellt, wobei ©g N 01 = 0. Es gilt Ag = {F} :
0 €Oy}, Ay ={Fp:0 € 0O1}. Prwird zu Py, an, G, und B, werden statt auf A auf ©
definiert.

Welche Hypothesen Hg und H; kommen oft bei parametrischen Tests vor? Zur Ein-
fachheit betrachten wir den Spezialfall © = R.

1. H():G:@()VS.Hl:G#HO
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2. Hy: >0y vs. H : 0 <6,
3. Hy: 0 <6yvs. H :0 >0
4. Hy: 0 € [a,b] vs. Hy : 0 ¢ [a,b]
Im Fall (1) heift der parametrische Test zweiseitig, in den Fallen (2) und (3) einseitig

(rechts- bzw. linksseitig). In Fall (4) spricht man von der Intervallhypothese Hy.
Bei einem zweiseitigen bzw. einseitigen Test kann die Giitefunktion wie in Abbildung

(a) bzw. (b) aussehen,

Abbildung 1.1: Giitefunktion

0 0o 0

(a) eines zweiseitigen Tests

(b) eines einseitigen Tests

Bei einem allgemeinen (nicht notwendigerweise parametrischen) Modell kann man die
ideale Giitefunktion wie in Abbildung schematisch darstellen.

Abbildung 1.2: Schematische Darstellung der idealen Giitefunktion

Ao

*-————

e Man sieht aus Definition [1.1.2] dem Fehler 1. und 2. Art und der Ablehnungsregel,
daft die Hypothesen Hy und Hj nicht symmetrisch behandelt werden, denn nur die
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Wabhrscheinlichkeit des Fehlers 1. Art wird kontrolliert. Dies ist der Grund dafiir,
daft Statistiker die eigentlich interessierende Hypothese nicht als Hp, sondern als
H formulieren, damit, wenn man sich fiir H; entscheidet, man mit Sicherheit sagen
kann, dafs die Wahrscheinlichkeit der Fehlentscheidung unter dem Niveau « liegt.

e Wie wird ein statistischer, nicht randomisierter Test praktisch konstruiert? Die
Konstruktion der Ablehnungsregel ¢ dhnelt sich sehr der von Konfidenzintervallen:

1. Finde eine Teststatistik 7' : R™ — R, die unter Hy eine (moglicherweise asym-
ptotisch fiir n — oo) bestimmte Priifverteilung hat.

2. Definiere By = [taysti—ay), WObel to, und t1_,, Quantile der Priifverteilung
von T sind, a1 + a2 = o € [0, 1].

3. Falls T(X1,...,X,) € R\ By = By, setze p(X1,...,X,) = 1. Hy wird ver-
worfen. Ansonsten setze ¢(X1,...,X,) =0.

e Falls die Verteilung von T nur asymptotisch bestimmt werden kann, so heifst ¢
asymptotischer Test.

e Sehr oft aber ist auch die asymptotische Verteilung von T nicht bekannt. Dann
verwendet man sogenannte Monte-Carlo Tests, in denen dann Quantile t, nihe-
rungsweise aus sehr vielen Monte-Carlo-Simulationen von T' (unter Hy) bestimmt
werden: Falls ¢/, i = 1,...,m die Werte von T in m unabhiingigen Simulationsvor-
géngen sind, das heifit #* = T'(z¢, ..., 2%), w; sind unabhéngige Realisierungen von

Xj~FelAyj=1,...,n,i=1,...,m dann bildet man ihre Ordnungsstatistiken
tM ) und setzt o, ~ tle™) o €0, 1], wobei t(0) = —cc.

Bemerkung 1.1.2. Man sieht deutlich, daft aus einem beliebigen Konfidenzintervall
Iy = [If(Xl,...,Xn),Ig(Xl,...,Xn)

zum Niveau 1 — « fiir einen Parameter § € R ein Test fiir 6 konstruierbar ist. Die
Hypothese Hy : 0 = 6y vs. Hy : 0 # 0y wird mit folgender Entscheidungsregel getestet:

(X1, Xn) =1, falls o & [IfO(Xl,...,Xn), 10(X1,..., X0 .

Das Signifikanzniveau des Tests ist a.

Beispiel 1.1.2. Normalverteilung, Test des Erwartungswertes bei bekannter Varianz. Es
seien

X1,..., X ~ N(p, 02

mit bekannter Varianz o?. Ein Konfidenzintervall fiir j ist

~ Al—a/2' 0 = Zl-a/2 0
1= (X X, B (X X)) = | X = 22—, X 2202
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Z1—a/2°0

(vergleiche Stochastik 1, 4.2.1) Hy wird verworfen, falls |ug — X,| > — - In der
Testsprache bedeutet es, dass

(1, xn) =1((21,...2,) € K1),

wobei

Ky =< (x1,... xn)ERn:\uo—fn|>M
) ) ﬁ

der Ablehnungsbereich ist. Fiir die Teststatistik T'(X1, ..., X,,) gilt:

X _
T(Xl,...,Xn):"f“O\FNN(o,l) | unter Ho,

an(p) = a.
Berechnen wir nun die Giitefunktion (vergleiche Abbildung .

Rl—a/2

Gon1) = By ( 10 — Xl > — 1P, ([ Ko — o] < 22
H n \/ﬁ H n = \/ﬁ

< _ _
zl_m<‘¢ﬁ e NG

< zl—a/?)

_ X _ _
:1—Pu<—21—a/2—'u #O\/ES\/E = u§21_a/2_u #O\/ﬁ>

g g g

=1—- q) <Zla/2 — H ;MO\/E> + q) <_Z1a/2 — H ;MO\/E>
=0 <_Zl—a/2 + a _O_MO \/ﬁ) + o <_Z1—a/2 — a _0—/1’0 \/ﬁ) .

Abbildung 1.3: Giitefunktion fiir den zweiseitigen Test des Erwartungswertes einer Nor-
malverteilung bei bekannter Varianz

Die ,Ja-Nein “- Entscheidung des Testens wird oft als zu grob empfunden. Deswegen
versucht man, ein feineres Mal der Vertréglichkeit der Daten mit den Hypothesen Hj
und H; zu bestimmen. Dies ist der sogenannte p-Wert, der von den meisten Statistik-
Softwarepaketen ausgegeben wird.
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Definition 1.1.4. Essei (z1,. .., ;) die konkrete Stichprobe von Daten, die als Realisie-
rung von (Xi,...,X,) interpretiert wird und 7'(X7y, ..., X,) die Teststatistik, mit deren
Hilfe die Entscheidungsregel ¢ konstruiert wurde. Der p- Wert des statistischen Tests ¢
ist das kleinste Signifikanzniveau, zu dem der Wert ¢t = T'(x1, ..., x,) zur Verwerfung der
Hypothese Hy fiihrt.

Im Beispiel eines einseitigen Tests mit dem Ablehnungsbereich By = (¢, 00) sagt man
grob, daf

p=,P(T(Xy,...,X,) >t| Hy) “,

wobei die Anfiihrungszeichen bedeuten, dafs dies keine klassische, sondern eine bedingte
Wahrscheinlichkeit ist, die spéter prazise angegeben wird.

Bei der Verwendung des p-Wertes verdndert sich die Ablehnungsregel: die Hypothese
Hy wird zum Signifikanzniveau a abgelehnt, falls o > p. Friither hat man die Signifikanz
der Testentscheidung (Ablehnung von Hj) an Hand folgender Tabelle festgesetzt:

p-Wert Interpretation
p < 0,001 sehr stark signifikant
0,001 < p<0,01 stark signifikant
0,01 <p<0,05 schwach signifikant
0,06<p nicht signifikant

Da aber heute der p-Wert an sich verwendet werden kann, kann der Anwender der
Tests bei vorgegebenem p-Wert selbst entscheiden, zu welchem Niveau er seine Tests
durchfiithren will.

Bemerkung 1.1.3. 1. Das Signifikanzniveau darf nicht in Abhéngigkeit von p fest-
gelegt werden. Dies wiirde die allgemeine Testphilosophie zerstéren!

2. Der p-Wert ist keine Wahrscheinlichkeit, sondern eine Zufallsvariable, denn er héngt
von (X7i,...,Xy,)ab. Der Ausdruck p =P (T'(X1,...,X,) > t| Hp), der in Definiti-
on fiir den p-Wert eines einseitigen Tests mit Teststatistik 7' gegeben wurde,
soll demnach als Uberschreitungswahrscheinlichkeit interpretiert werden, daR bei
Wiederholung des Zufallsexperiments unter Hy der Wert ¢t = T'(x1,...,z,) oder
extremere Werte in Richtung der Hypothese H; betrachtet werden:

p:IP’(T(X{,...,X;l) ZT(ml,...,xn)\Hg),

wobei (X7,...,X]) 4 (X1,...,Xy). Falls wir von einer konkreten Realisierung
(x1,...,2y) zur Zufallsstichprobe (X1, ..., X)) iibergehen, erhalten wir

p=p(X1,....X,) =P (T(X1,..., X,,) > T(X1,...,Xn) | Ho)

3. Fiir andere Hypothesen Hy wird der p-Wert auch eine andere Form haben. Zum
Beispiel fiir
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a) einen symmetrischen zweiseitigen Test ist
By = [_tl—a/2> tl—a/Q]
der Akzeptanzbereich fiir Hy.

=p=P(T(X],....X,)| >t| Hy), t =T(Xq,... Xy)
b) einen linksseitigen Test mit By = [t4, 00] gilt
p=P(T(X],..., X)) <t|Hpy), t =T(X1,...,Xp,)
c¢) Das Verhalten des p-Wertes kann folgendermafen untersucht werden:
Lemma 1.1.1. Falls die Verteilungsfunktion F' von X; stetig und streng mo-
noton steigend ist (die Verteilung von 7' ist absolut stetig mit zum Beispiel

stetiger Dichte), dann ist p ~ U[0, 1].

Beweis. Wir zeigen es am speziellen Beispiel des rechtsseitigen Tests.

P(p < al|Hy) =P (Fr(T(X1,...,X,)) < a| Ho)
=P(Fr(T(X1,...,Xn)) 21— a| Ho)
=PU>1-a)=1-(1-a)=a, «acl0,1],

da Fp(T(X1,...,X,)) 2 U ~ U[0,1] und Pr absolut stetig ist. O

Ubung 1.1.1. Zeigen Sie, daf fiir eine beliebige Zufallsvariable X mit absolut
stetiger Verteilung und streng monoton steigender Verteilungsfunktion F'x
gilt:

Fx(X) ~U[0,1]
Falls die Verteilung von T diskret ist, mit dem Wertebereich {t1,...,t,}, t; <

t; fiir i < j, so ist auch die Verteilung von p diskret, somit gilt nicht p ~ U[0, 1].
In diesem Fall ist Fp(z) eine Treppenfunktion, die die Gerade y = u in den

k

Punkten v = Y P(T(X1,...,Xn) = t;), k = 1...n beriihrt (vgl. Abbildung
i=1

).

Definition 1.1.5. 1. Falls die Macht G,,(-) eines Tests ¢ zum Niveau a die Unglei-
chung

Gn(F)ZO[, FeA

erfiillt, dann heiftt der Test unverfalschi.
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Abbildung 1.4: Verteilung von p fiir diskrete T’

2. Es seien ¢ und ¢* zwei Tests zum Niveau o mit Giitefunktionen Gy (-) und G (+).
Man sagt, dat der Test o besser als ¢* ist, falls er eine gréfsere Macht besitzt:

Gn(F) =2 GL(F) VEF el

3. Der Test ¢ heifst konsistent, falls G,,(F) — 1 fiir alle F' € A;.

n—oo

Bemerkung 1.1.4. 1. Die einseitigen Tests haben oft eine grofere Macht als ihre
zweiseitigen Versionen.

Beispiel 1.1.3. Betrachten wir zum Beispiel den Gaufi-Test des Erwartungswertes
der Normalverteilung bei bekannter Varianz. Beim zweiseitigen Test

Hy:pp= po vs. Hy: p# po.
erhalten wir die Giitefunktion
Gn(p) = @ (—zl_a/g + \/ﬁ“;“‘)) + (—zl_a/Q - \/5“_0“0> .
Beim einseitigen Test ¢* der Hypothesen
Hy:p < povs. H : > o

ist seine Giitefunktion gleich
i) = ® (— T ﬁ“‘g‘“’)

Beide Tests sind offensichtlich konsistent, denn G,,(¢) — 1, G} (n) — 1. Dabei
n—o0 n—o0
ist p* besser als ¢. Beide Tests sind unverfilscht (vergleiche Abbildung |1.5).
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Abbildung 1.5: Giitefunktionen eines ein- bzw. zweiseitigen Tests der Erwartungswertes
einer Normalverteilung

T

Gll

2. Beim Testen einer Intervallhypothese Hy : 6 € [a,b] vs. Hy : 0 ¢ [a,b] zum Niveau
« kann man wie folgt vorgehen: Teste

a) H§ :0>avs. Hf:0 < azum Niveau o/2.
b) HY:0 <bvs. HY: 0 > b zum Niveau /2.

Hy wird nicht abgelehnt, falls H§ und Hg nicht abgelehnt werden. Die Wahrschein-
lichkeit des Fehlers 1. Art ist hier a. Die Macht dieses Tests ist im Allgemeinen
schlecht.

3. Je mehr Parameter fiir der Aufbau der Teststatistik T geschitzt werden miissen,
desto kleiner wird in der Regel die Macht.

1.2 Nichtrandomisierte Tests

1.2.1 Parametrische Signifikanztests

In diesem Abschnitt geben wir Beispiele einiger Tests, die meistens aus den entsprechen-
den Konfidenzintervallen fiir die Parameter von Verteilungen entstehen. Deshalb werden
wir sie nur kurz behandeln.

1. Tests fiir die Parameter der Normalverteilung N (1, 0?)
a) Test von i bei unbekannter Varianz

e Hypothesen: Hy : p = po vs. Hy @ p # po.
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o Teststatistik:

X _
T(Xl,...,Xn):nTlmNtn—l | Hy
n

e Entscheidungsregel:
(p(Xl, e ,Xn) =1, falls |T(X1, ceey Xn)’ > tn—l,l—a/Z-

b) Test von o2 bei bekanntem p
e Hypothesen: Hy : 02 = o vs. Hy : 02 # of.
o Teststatistik:

T(Xl,...,Xn): anxi ’H()

mit 52 = % i(XZ — ).
e Entscheidungsregel:
o(X1,..., X)) =1, falls T(Xy,...,X,) ¢ [Xi,a/27xi,lfa/2:| )
e Giitefunktion:

2 2 ”3721 2
GH(U ) =1-P, Xn,a/2 < T2 < Xn,1—a/2

o0

2 2 = 2 2
Xn,a/200 nsr,zl Xn,lfa/Zo-O
< 5 <

o2 o o2

2 i s T
:1_FX% Xn,l—oe/?? +FX% Xn,oz/QO.i2

c¢) Test von o2 bei unbekanntem
e Hypothesen: Hy : 02 = 08 vs. Hy : 0% # 08.
o Teststatistik:

n—1)52
T(le"-aXn) = (O_Q)n NX721—1 |H05
0

n J—
wobei §2 = -3 (X, - X,,)%.
i=1
e Entscheidungsregel:

P(X1,..0, Xp) =1, falls T(X1, ., Xp) € (X0 1.0/2 X 11-a/2] -
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Ubung 1.2.1. (i) Finden Sie G,,(-) fiir die einseitige Version der obigen
Tests.

(ii) Zeigen Sie, daf diese einseitigen Tests unverfilscht sind, die zweisei-
tigen aber nicht.
2. Asymptotische Tests

Bei asymptotischen Tests ist die Verteilung der Teststatistik nur niherungsweise
(fiir grofse n) bekannt. Ebenso asymptotisch wird das Konfidenzniveau « erreicht.
Ihre Konstruktion basiert meistens auf Verwendung der Grenzwertsitze.

Die allgemeine Vorgehensweise wird im sogenannten Wald-Test (genannt nach dem
Statistiker Abraham Wald (1902-1980)) fixiert:

e Sei (Xq,...,X,) eine Zufallsstichprobe, X; seien unabhéngig und identisch
verteilt fir¢=1,...,n, mit X; ~ Fy, 0 € © CR.

o Wir testen Hy : @ = 6y vs. Hy : 0 # 0y. Es sei 0, = é(Xl,...,Xn) ein
erwartungstreuer, asymptotisch normalverteilter Schitzer fiir 6.

0, — 0
0 4y~ N(0,1) |Hy,

On n—00

wobei 62 ein konsistenter Schiitzer fiir die Varianz von 6, sei.

Die Teststatistik ist

0n(X1,...,Xn) — 0o

~

On

T(X1,...,X,) =

e Die Entscheidungsregel lautet: Hy wird abgelehnt, wenn |T'(X1,...,X,)| >
Z1_q/2; WObel 21_q/0 = ®~1(1 — a/2). Diese Entscheidungsregel soll nur bei
grofsen n verwendet werden. Die Wahrscheinlichkeit des Fehlers 1. Art ist
asymptotisch gleich o, denn P(|T(X1,..., Xy)| > 21_q/2 | Ho) — «a wegen

n—oo
der asymptotischen Normalverteilung von T.

Die Giitefunktion des Tests ist asymptotisch gleich

Oy — 6 Oy — 0
lim Gn(G):1—<1>(zl_a/2+ OU >+(I>(_Zl—a/2+ OJ >7

n—o0

2
n

P o 2
— o“.
n—oo

wobei &

Spezialfille des Wald-Tests sind asymptotische Tests der Erwartungswerte bei
einer Poisson- oder Bernoulliverteilten Stichprobe.
Beispiel 1.2.1. a) Bernoulliverteilung

Es seien X; ~ Bernoulli(p), p € [0, 1] unabhéngige, identisch verteilte Zufalls-
variablen.
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e Hypothesen: Hy: p=pg vs. Hy : p 75 Do-
o Teststatistik:

_ Xn=P0o _ f5]] X, #0,1
T(Xl,...,Xn)—{ Ve s Xa 0L

0, sonst.

Unter Hy gilt: T(X1, ..., Xn) —= Y ~ N(0,1).

n—oo

b) Poissonverteilung

Es seien X; ~ Poisson(A), A > 0 unabhéngige, identisch verteilte Zufallsvaria-
blen.

e Hypothesen: Hyp: A= Xy vs. H1 : A # Xg
o Teststatistik:

XoXo  falls X,, > 0
T(Xl,...,Xn):{\/ﬁ\/Xn’ o ’

0, sonst.

Unter Hy gilt: T(X1,...,X,) 5 Y ~ N(0,1)

n—oo

3. Zwei-Stichproben-Probleme

Gegeben seien zwei Zufallsstichproben
Y1 = (XH, . ,X1n1>, }/2 = (Xgl, Ce 7X2n2)7 n = max{nl, TLQ}.

X;; seien unabhéngig fiir j =1,...,n;, X;; ~ Fy,, 1 =1,2.
a) Test der Gleichheit zweier Erwartungswerte bei normalverteilten
Stichproben
e bei bekannten Varianzen

Es seien X;; ~ N(ui,0?),i = 1,2,j = 1,...,n. Dabei seien 07,03 be-
kannt, X;; seien unabhéngig voneinander fiir alle 4, j.

Die Hypothesen sind Hg : u1 = po vs. Hy : p1 # ps. Wir betrachten die
Teststatistik:

T(Y1,Ys) =
n | ong

Unter Hy gilt: T'(Y1,Y2) ~ N(0,1). Als Entscheidungsregel gilt: Hy wird
abgelehnt, falls |[T'(Y1, Y2)| > 21_q/2-
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e bei unbekannten (jedoch gleichen) Varianzen

Es seien X;; ~ N(pi,02),i=1,2, j=1,...,n. Dabei seien 07,03 unbe-
kannt, 0 = 02 und X;; seien unabhiingig voneinander fiir alle 1, 5.

Die Hypothesen sind: Hy : 1 = pe vs. Hy : p1 # pe. Wir betrachten die

Teststatistik
T(V1,Ys) = Xlné Xon, [ ning 7
ning ny + ng
wobei
9 1 - - 2 & — \2
Sriny = PeT—— jz::l(Xu—Xml) +]z::1(X2j—X2n2)

Man kann zeigen, daf unter Hy gilt: T'(Y1,Y2) ~ tn,+n,—2. Die Entschei-
dungsregel lautet: Ho ablehnen, falls |T'(Y1,Y2)| >t 4ny—21-a/2-

Test der Gleichheit von Erwartungswerten bei verbundenen Stich-
proben

Es seien Y1 = (X117~-7X1n) und Y2 = (Xgl,...,XQn), ny=ng=n,
Zj = X1 — Xoj ~ N(p1 — pig,0%), j=1,....n

unabhéngig und identisch verteilt mit p; = E X;;, i = 1,2. Die Hypothe-
sen sind: Hy : puy = po vs. Hy @ p11 # po bei unbekannter Varianz o2. Als
Teststatistik verwenden wir

wobel

Unter Hy gilt dann: T'(Z1,...,Z,) ~ t,—1. Die Entscheidungsregel lautet: H
wird abgelehnt, falls [T'(z1,. .., 2n)| > th_11-a/2-

Test der Gleichheit von Varianzen bei unabhingigen Gaufsschen
Stichproben

Es seien Y1 = (Xi1,...,X1n,) und Yy = (Xo1,...,X2p,) unabhingig und
identisch verteilt mit X;; ~ N (p;, 01-2), wobei p; und 02-2 beide unbekannt sind.
Die Hypothesen sind: Hy : 07 = 03 vs. Hy : 0} # o3. Als Teststatistik
verwenden wir

2

Sn
T(Y1,Ys) = 525 2

Inq
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wobel

n

1
ni—l,

j=1
Unter Hy gilt: T'(Y1,Y2) ~ Fpy—1n,—1. Die Entscheidungsregel lautet: Hy wird
abgelehnt, falls T'(Y1,Y2) ¢ [FnQ_lm_La/Q, Fn2_17n1_171_a/2].
d) Asymptotische Zwei-Stichproben-Tests
e bei Bernoulli-verteilten Stichproben
Es gilt X;; ~ Bernoulli(p;), j = 1,...,n4, i = 1,2. Die Hypothesen sind
Hy : p1 = po vs. Hy : p1 # po. Als Teststatistik verwenden wir
(X1, — Xon,)(1 = 1(X 1, = 0, X2, = 0))

\/ylnl (1_Y1n1) _|_ Y27‘12 (1_Y2n2)
ni n2

TN, Y;) =

Unter Hy gilt: T'(Y1, Ya) 4 Y~ N(0,1). Die Entscheidungsregel

ni,ne—0oo
lautet: Ho wird verworfen, falls |T'(Y1,Y2)| > z1_o/2. Dies ist ein Test
zum asymptotischen Signifikanzniveau a.
e bei Poisson-verteilten Stichproben

Es seien X;; unabhingig, X;; ~ Poisson()\;), i = 1,2. Die Hypothesen
sind: Hyg : Ay = Ay vs. Hy : A\ # Ag. Als Teststatistik verwenden wir:

Xin — X
T(Y1,Ys) = ;1 ;7:2
T T e

Die Entscheidungsregel lautet: Ho ablehnen, falls [T'(Y1,Y2)| > 21_q/2-
Dies ist ein Test zum asymptotischen Niveau a.

Bemerkung 1.2.1. Asymptotische Tests diirfen nur fiir grofse Stichprobenum-
fange verwendet werden. Bei ihrer Verwendung fiir kleine Stichproben kann das
asymptotische Signifikanzniveau nicht garantiert werden.

1.3 Randomisierte Tests

In diesem Abschnitt werden wir klassische Ergebnisse von Neyman-Pearson iiber die
besten Tests présentieren. Dabei werden randomisierte Tests eine wichtige Rolle spielen.

1.3.1 Grundlagen

Gegeben sei eine Zufallsstichprobe (X1, ..., X,,) von unabhéngigen und identisch verteil-
ten Zufallsvariablen X; mit konkreter Ausprigung (x1,...,x,). Sei unser Stichproben-
raum (B, B) entweder (R", Bgn) oder (N, Byr), je nachdem, ob die Stichprobenvariablen
X;,i=1,...,n absolut stetig oder diskret verteilt sind.
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Hier wird zur Einfachheit im Falle einer diskret verteilten Zufallsvariable X; ihr dis-
kreter Wertebereich mit Ng = NU{0} gleichgesetzt. Der Wertebereich sei mit einem Mafs
1 versehen, wobei

_ | Lebesgue-Mal auf R, falls B = R",
#= Ziahlmak auf Ng,  falls B = NZ.

Dementsprechend gilt

g(z)dx,  im absolut stetigen Fall,
[ stoutas) - Jpg(@)dz, — im al
> wen, 9(z), im diskreten Fall.

Es sei zusitzlich X; ~ Fp, 6 € © C R™, i = 1,...,n (parametrisches Modell). Fiir
O = Oy UBO1, BN O = ) formulieren wir die Hypothesen Hy : 6 € ©¢ vs. Hy : 6 € Oy,
die mit Hilfe eines randomisierten Tests

1, r € Ky,
(10('1‘): 76(071)3 ZUEK(H :L‘:('Tla-"axn)y
0, z € Ky

getestet werden.
Im Falle x € K1 wird mit Hilfe einer Zufallsvariable Y ~ Bernoulli(¢(x)) entschieden,
ob Hy verworfen wird (Y = 1) oder nicht (Y = 0).

Definition 1.3.1. 1. Die Giitefunktion eines randomisierten Tests ¢ sei

Gn(0) = Gp(p,0) =Ego(X1,...,Xy), 0 € O.

2. Der Test ¢ hat das Signifikanzniveau o € [0,1], falls G,(p,0) < a, VO € Oy ist.
Die Zahl

sup Gy (g, 0)
UASISH)

wird Umfang des Tests ¢ genannt. Offensichtlich ist der Umfang eines Niveau-a-
Tests kleiner gleich a.

3. Sei ¥(«a) die Menge aller Tests zum Niveau a.. Der Test ¢ € U(«) ist (gleichmdafig)
besser als Test po € ¥(a), falls Gp(¢1,0) > Gr(p2,0), 0 € ©1, also falls ¢ eine
grofere Macht besitzt.

4. Ein Test ¢* € V() ist (gleichmdipig) bester Test in W(«), falls

Gn(9*,0) > Gn(p,0), fir alle Tests p € ¥(a), 6 € O5.
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Bemerkung 1.3.1. 1. Definition 1) ist eine offensichtliche Verallgemeinerung
der Definition der Giitefunktion eines nicht-randomisierten Tests . Namlich,
fir p(z) =1(z € K;) gilt:

Gn(p,0) =Egp(X1,...,Xp)
= ]P)g ((Xl, A ,Xn) S Kl)
= Py (Hy ablehnen), 6 € O.

2. Ein bester Test ¢* in ¥(«) existiert nicht immer, sondern nur unter gewissen Vor-
aussetzungen an Py, ©¢, ©; und ¥(a).

1.3.2 Neyman-Pearson-Tests bei einfachen Hypothesen

In diesem Abschnitt betrachten wir einfache Hypothesen
HQ 1 0= 90 V8. H1 0= 91 (1.3.1)

wobei 0,601 € O, 64 75 0.

Dementsprechend sind ©g = {0y}, ©1 = {61 }. Wir setzen voraus, daf Fj, eine Dichte
gi(z) beziiglich p besitzt, i = 0, 1. Fiihren wir einige abkiirzende Bezeichnungen Py = Py,
Pl = ]P)gl, Eo = E907 El = E91 ein. Sei fz(x) = H?:l gi(:zzj), r = (]71, cee ,a;n), 1= 0, 1 die
Dichte der Stichprobe unter Hy bzw. H;.

Definition 1.3.2. Ein Neyman-Pearson-Test (NP-Test) der einfachen Hypothesen in
(1.3.1) ist gegeben durch die Regel

17 falls fl(z) > KfO(x)7
p(x) =pr(x) =4 7, falls fi(z) = Kfo(x), (1.3.2)
0, falls fi(z) < K fo(z)
fiir Konstanten K > 0 und v € [0, 1].

Bemerkung 1.3.2. 1. Manchmal werden K = K(x) und v = 7(z) als Funktionen
von x und nicht als Konstanten betrachtet.

2. Der Ablehnungsbereich des Neyman-Pearson-Tests @ ist
Ky ={x € B: fi(x) > Kfo(z)}.

3. Der Umfang des Neyman-Pearson-Tests ¢ ist

EO QOK(X1, - ,Xn) = ]P)o(fl(Xl, .. .,Xn) > Kfo(X1, .. Xn))
+”)/]P)0(f1(X1, .. .,Xn) = Kfo(Xl, e ,Xn))
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4. Die Definition kann man &dquivalent folgendermafen geben: Wir definieren
eine Teststatistik

T(z) = { j%gg, x € B: fo(x) >0,
o0, x€B: fo(x)=0.
Dann wird der neue Test
1, falls T'(z) > K,
or(z)=<¢ v, falls T(z) =K,
0, fallsT(x) < K

eingefiithrt, der fiir Fy- und P;- fast alle x € B dquivalent zu ¢y, ist. In der Tat gilt
vr(x) = ¢ (z)Vo € B\ C, wobei C = {z € B : fy(x) = fi(z) = 0} das Py- bzw.
P1-Mafs Null besitzt.

In der neuen Formulierung ist der Umfang von ¢ bzw. @i gleich
E()@K :P(](T(Xl,,Xn) > K) +’7]P)0(T(X1,,Xn) = K)
Satz 1.3.1. Optimalititssatz

Es sei px ein Neyman-Pearson-Test fiir ein K > 0 und v € [0,1]. Dann ist ¢ der
beste Test zum Niveau o = Eg ¢ seines Umfangs.

Beweis. Sei ¢ € ¥(a), also Ey (p(X1,...,X,)) < a. Un zu zeigen, dafs px besser als
¢ ist, gentigt es bei einfachen Hypothesen Hy und H; zu zeigen, dab E; o (X1, ..., Xy)
> Eq o(X1,...,X,). Wir fiihren dazu die folgenden Mengen ein:

Mt ={x e B:ypg(z)> o)}
M~ ={z € B:yg(x) <y}
M= ={z € B:yg(z) =¢(x)}
Es gilt offensichtlich x € M = g (z) > 0= fi(z) > K fo(z),
reM = pg(r)<1l= fi(z) < Kfy(zx)und B=MTUM UM™.

Als Folgerung erhalten wir

Ei (or(X1,...,Xp) —o(X1,..., X)) = /B(@K(:c) — (@) f1 () p(de)
N (/]V[+ +/ _ + /M—) (@K(x) - @(x))fl(x)ﬂ(dx)
= / (e (x) — p(x))K fo(x)u(dr)

M+
+ [ o) — @)K fwtaa)

- /B (o () — (@)K folx)u(d)

:K[EogDK(Xl,...,Xn) —EogD(Xh...,Xn)]
> K(a—a) =0,
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weil beide Tests das Niveau a haben. Damit ist die Behauptung bewiesen. O

Bemerkung 1.3.3. 1. Da im Beweis v nicht vorkommt, wird derselbe Beweis im
Falle von 7(z) # const gelten.

2. Aus dem Beweis folgt die Giiltigkeit der Ungleichung

/B (o () — o)) (f1(2) — K fo(x)) uldz) > 0

im Falle des konstanten K, bzw.

By (pr(X1s- o0 Xn) = 0(Xas .00, X)) E/B(w(fc) = p(x)) K(z) fo(z)p(dz)

im allgemeinen Fall.
Satz 1.3.2. (Fundamentallemma von Neyman-Pearson)

1. Zu einem beliebigen o € (0,1) gibt es einen Neyman-Pearson-Test ¢ mit Umfang
«, der dann nach Satz der beste Niveau-a-Test ist.

2. Ist ¢ ebenfalls bester Test zum Niveau «, so gilt ¢(z) = px(z) fiir p-fast alle
re KgUK; ={ze€B: fi(r) # K fo(r)} und ¢k aus Teil 1).

Beweis. 1. Fiir g (z) gilt

1, fallsz e Ki ={z: fi(z) > K- fo(2)},
vr(x)=4q v, fallsz e Koy ={z: fi(z) = K - fo(z)},
0, fallsze Ko={z: fi(z) < K- fo(z)}.

Der Umfang von @k ist
Py (T(Xl, . ,Xn) > K) + Py (T(Xl, e ,Xn) = K) =, (133)
wobei

Ji(z1,...,2n)
T(xlv ey xn) = { fo(z1,....zn)’ falls fﬂ(xla R xn) > 07

00, sonst.

Nun suchen wir ein K > 0 und ein v € [0, 1], sodal Gleichung stimmt. Es sei
Fy(z) = Po(T(X1,...,X,) < z), z € R die Verteilungsfunktion von 7. Da T > 0
ist, gilt Fy(z) = 0, falls < 0. AuRerdem ist Po(T(X1,...,X,) < co) = 1, das
heift F~'(a) € [0,00), a € (0,1). Die Gleichung kann dann folgendermafen

umgeschrieben werden:
1— Fy(K) + (FO(K) - F0<K_)) = a, (1.3.4)
bei Fy(K—) = lim Fy(z).
wobei Fy(K—) lim o(z)
Sei K = Fy; '(1 — «), dann gilt:
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a) Falls K ein Stetigkeitspunkt von Fj ist, ist Gleichung (T.3.4) erfiillt fiir alle
v € 10, 1], zum Beispiel v = 0.

b) Falls K kein Stetigkeitspunkt von Fy ist, dann ist Fo(K) — Fy(K—) > 0,
woraus folgt
oa—1+ Fb(K)
V== =
Fy(K) — Fo(K—)

= es gibt einen Neyman-Pearson-Test zum Niveau a.

2. Wir definieren M7 = {x € B : p(x) # ¢x(x)}. Es muss gezeigt werden, daf
[ ((KO UKy N M¢) = 0.

Dazu betrachten wir

ElgD(Xl,...,Xn)—El(pK(Xl,...,Xn) =0
Eop(X1,..., Xn) —Egpr(X1,...,X5n) <0 (¢ und pg sind a-Tests

mit Umfang von ¢x = «)

(¢ und ¢k sind beste Tests)

:»/ (60— ox) - (Fr— K - fo) plda) > 0.
B

In Bemerkung wurde bewiesen, daf
/ (¢ —r)(fi — K- fo)du <0
B
= / (o —r)(fr — K- fo)du = 0= /(@ — k) (fr = K fo)dp.
B

M# N (KoUKi)

Es gilt u(M7 N (Ko U K1) = 0, falls der Integrand (¢x — ¢)(f1 — K fo) > 0 auf
M# ist. Wir zeigen, daf

(o — ©)(fi — K fo) > 0 fiir x € M7 (1.3.5)
ist. Es gilt
fi=Kfo>0=9x—¢>0,
fi—=Kfo<0= 9k —¢ <0,
weil

fi(x) > K fo(z) = ¢r(x) =1

und mit p(z) < 1= g (z) — o(x) > 0 auf M7,
fi(@) < Kfo(z) = ¢r(x) =0

und mit o(z) > 0 = @k (z) — p(x) < 0 auf M7,
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Daraus folgt die Giiltigkeit der Ungleichung (1.3.5)) und somit
i ((Ko UK N M?é) = 0.

O]

Bemerkung 1.3.4. Falls ¢ und pg beste a-Tests sind, dann sind sie Py- bzw. P;- fast
sicher gleich.

Beispiel 1.3.1 (Neyman-Pearson-Test fiir den Parameter der Poissonverteilung). Es sei
(X1,...,X,) eine Zufallsstichprobe mit X; ~ Poisson(\), A > 0, wobei X; unabhéngig
und identisch verteilt sind fiir ¢ = 1,...,n. Wir testen die Hypothesen Hp : A = Ag vs.
Hy : X = )\i. Dabei ist

x

A )
gi(z) = e_’\lj', x €Ng,i=0,1,

n n x] R )\Z}L:l T
()= f; . = —e N, i
fl(x> fl('rla » L I;Ig x] 1;[ ((L‘l'(L'n')
fiir ¢ = 0, 1. Die Neyman-Pearson-Teststatistik ist
N@) _ o=n(Aa=20) . (A /y,)2i=1%
Farsovan) = | B = O (T flls € B
0, sonst.

Die Neyman-Pearson-Entscheidungsregel lautet

1, falls T(z1,...,2,) > K,
Or(T1, ... Tpy) = v, falls T'(z1,...,z,) = K,
0, fallsT(z1,...,2,) < K.

Wir wéhlen K > 0, v € [0, 1], sodaf ¢x den Umfang o hat. Dazu 16sen wir
o =Po(T(X1,.... Xa) > K) + 1Po(T(X,..., X)) = )
beziiglich v und K auf.
PQ(T(Xl, - ,Xn) > K) = ]Po(logT(Xl, - ,Xn) > logK)
A n
=Py | —n(M\ — o) +ZX log</\)>logK =P [ > X;> A4
Jj=1 i=1

wobei A =

log K +n- (A1 — Ao)
Iogi—é ’

falls zum Beispiel Ay > A\g. Im Falle \; < A\g dndert sich das > auf < in der Wahrschein-
lichkeit.
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Wegen der Faltungsstabilitdt der Poissonverteilung ist unter Hy

n
Z X; ~ Poisson(n)),
j=1

also wihlen wir K als minimale, nichtnegative Zahl, fiir die gilt: Pgy (E?Zl X > A) < a,
und setzen
a—Po(3 5, X; > A)
v = )
Po(325=1 Xj = A4)

wobel

()\on)A'

n
Py ZX]- =A| =eton 7
i=1 '

Somit haben wir die Parameter K und v gefunden und damit einen Neyman-Pearson-Test
px konstruiert.

1.3.3 Einseitige Neyman-Pearson-Tests

Bisher betrachteten wir Neyman-Pearson-Tests fiir einfache Hypothesen der Form H; :
0 =06;,1=0,1. In diesem Abschnitt wollen wir einseitige Neyman-Pearson-Tests einfiih-
ren, fiir Hypothesen der Form Hg: 0 < 6y vs. Hy : 6 > 6.

Zunéchst konstruieren wir einen Test fur diese Hypothesen: Sei (Xi,...,X,) eine Zu-
fallsstichprobe, X; seien unabhingig und identisch verteilt mit

Xi~FyeAN={Fy:0c 0},
wobei © C R offen ist und A eindeutig parametrisiert, das heifit
9759’:>F975F9/.

Ferner besitze Fy eine Dichte gy beziiglich des Lebesgue-Mabes (bzw. Zahlmakes) auf R
(bzw. Np). Dann ist

folw) = [T oo(xj), == (1, .. @)
j=1

eine Dichte von (X1,..., X)) beziiglich x auf B.
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Definition 1.3.3. Eine Verteilung auf B mit Dichte fp gehort zur Klasse von Vertei-
lungen mit monotonen Dichtekoeffizienten in T, falls es fiir alle 6 < 6’ eine Funktion
h:R x ©? — RU oo, die monoton wachsend in ¢ € R ist und eine Statistik 7 : B — R
gibt, mit der Eigenschaft

for(2)
fo()

= h(T(%), 0, 0/)7

wobei

h(T(x),0,0) = oo fiir alle z € B: fo(x) =0, for(x) > 0.
Der Fall fy(x) = for(x) = 0 tritt mit Po- bzw. Po,-Wahrscheinlichkeit 0 auf.
Definition 1.3.4. Es sei Qg eine Verteilung auf (B, B) mit der Dichte fp bzgl. u. Qq

gehort zur einparametrischen Ezponentialklasse (6 € © C R offen), falls die Dichte
folgende Form hat:

fo(x) =exp{c(0) - T(x)+a(0)} -U(x), == (x1,...,25) € B,
wobei ¢(f) eine monoton steigende Funktion ist, und Varg T'(X1,...,X,) >0, 0 € ©.

Lemma 1.3.1. Verteilungen aus der einparametrischen Exponentialfamilie besitzen einen
monotonen Dichtekoeffizienten.

Beweis. Es sei (Qy aus der einparametrischen Exponentialfamilie mit der Dichte
fo(x) = exp{c(0) - T(x) 4+ a(0)} - l(x).
Fiir 0 < ¢’ ist dann

for(2)
fo()

= exp {(0(0/) —c(9))-T(z) +a(d) — a(@)}

monoton beziiglich T, weil ¢(0') — ¢(0) > 0 wegen der Monotonie von ¢(#). Also besitzt
fo einen monotonen Dichtekoeflizienten. ]

Beispiel 1.3.2. 1. Normalverteilte Stichprobenvariablen

Es seien X; ~ N(u,08), i = 1,...,n, unabhingige, identisch verteile Zufallsvaria-
blen, mit unbekanntem Parameter z und bekannter Varianz o (Hier wird p fiir die
Bezeichnung des Erwartungswertes von X; und nicht des Mafies auf R™ verwendet.
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(wie frither)). Die Dichte des Zufallsvektors X = (X1,...,X,,)" ist gleich

cw) 1) a(p)

Also gehort N(u,08) zur einparametrischen Exponentialklasse mit c(u) = £ und

T(z) = é x;.

2. Binomialverteilte Stichprobenvariablen

Es seien X; ~ Bin(k,p) unabhéngig und identisch verteilt, ¢ = 1,...,n. Der Pa-
rameter p sei unbekannt. Die Zihldichte des Zufallsvektors X = (Xy,...,X,)"

ist
fp( T) = PP(X =zi,i=1,...,n)

A P )

= o { () tos (12 ) +ok s -} TT (1),

i=1 =1
a(p) ——
T(x) c(p) I(z)

also gehort Bin(n,p) zur einparametrischen Exponentialklasse mit

und
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Lemma 1.3.2. Falls px der Neyman-Pearson-Test der Hypothesen Hg : 6 = 6y vs.
H, : 0 = 0, ist, dann gilt:

p({z € B: fi(z) # K fo(z)}) >0

KoUK,

Beweis. Wegen 6y # 61 und der eindeutigen Parametrisierung gilt fo # f1 auf einer
Menge mit p-Maf > 0.
Nun sei pu(KoU K1) = 0. Daraus folgt, dak fi(x) = K - fo(x) p-fast sicher. Das heifst

1_/f1 Jdr = K - /fo

woraus folgt, dak K =1 und fi(x) = fo(x) p-fast sicher, was aber ein Widerspruch zur
eindeutigen Parametrisierung ist. O

Im Folgenden sei (X7, ..., X)) eine Stichprobe von unabhéngigen, identisch verteilten
Zufallsvariablen mit X; ~ Dichte gy, i =1,...,n und

(X1,...,Xn) ~ Dichte fy(x Hgg

aus der Klasse der Verteilungen mit monotonen Dichtekoeffizienten und einer Statistik
T(Xq,...,X,).
Wir betrachten die Hypothesen Hy : 6 < 0y vs. Hy : 6 > 0y und den Neyman-Pearson-
Test:
1, falls T'(z) > K*,
Oi«(x) = ¢ v falls T(z) = K*, (1.3.6)
0, fallsT(x)< K*

fir K* € R und ~* € [0, 1]. Die Giitefunktion von ¢}.. bei 6y ist
Gn(bo) = Eo o+ = Po (T(X1,..., Xn) > K7) + 7" - Po (T(Xy, ..., Xyn) = K¥)

Satz 1.3.3. 1. Falls a = Eg ¢}~ > 0, dann ist der soeben definierte Neyman-Pear-
son-Test ein bester Test der einseitigen Hypothesen Hy vs. H; zum Niveau a.

2. Zu jedem Konfidenzniveau o € (0, 1) gibt es ein K* € R und v* € [0, 1], sodak ¢
ein bester Test zum Umfang « ist.

3. Die Gitefunktion G, (0) von ¢¥.(6) ist monoton wachsend in 6. Falls 0 < G, (0) <
1, dann ist sie sogar streng monoton wachsend.

Beweis. 1. Wahle 6; > 6p und betrachte die einfachen Hypothesen Hj : 6 = 6y und
H{ 10 = 91. Sei

1, fl(:c) > Kfo(x),
() =149 v, fi(z) = Kfo(x),
0, fi(x) <K fo(z)
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der Neyman-Pearson-Test fiir H), H] mit K > 0. Da fy den monotonen Dichteko-
effizienten mit Statistik 71" besitzt,

fi(z)
fo(z)

= h(T(:c), 00, 01),

existiert ein K > 0, so dass

{o:n@me 256 e {rw 2] mik = he .00,

@K ist ein bester Neyman-Pearson-Test zum Niveau a = Egpx = Eg pj.. Aus
a > 0 folgt K < 0o, denn aus K = oo wiirde folgen

AXL, ..., X)) :OO>
fo(X1, ..., Xp)
g ]PO (fl(Xl,... ,Xn) > O,fo(Xl,.. . ,Xn) = O)

- /B I(fi(2) > 0, fo(z) = 0) - fo(a)u(dz) = 0.

0<Ct:E0g0K§P0<T(X1,...,Xn)ZK*)§P0<

Fiir den Test ¢}, aus (1.3.6) gilt dann

1, falls fi(2)/fole) > K,
p*(x) =3 7(2), falls fi(2)/folx) = K,
0, falls fi(z)/fol) < K,

wobei v*(x) € {v*,0, 1}. Daraus folgt, daf ¢J.. ein bester Neyman-Pearson-Test ist
fiir H{, vs. H{ (vergleiche Bemerkung|[1.3.2] 1.) und Bemerkung [1.3.3)) fiir beliebige
61 > 6p. Deshalb ist ¢} ein bester Neyman-Pearson-Test fiir H{ : § = 6y vs.
H{/ : 0 > 0 ist.

Die selbe Behauptung erhalten wir aus dem Teil 3. des Satzes fiir Hg : 0 < 6 vs.
Hj : 0 > 6y, weil dann G,,(0) < G,,(0y) = « fiir alle § < 6.

. Siehe Beweis zu Satz[1.3.2] 1.).

. Wir miissen zeigen, daf G, (6) monoton ist. Dazu wihlen wir 61 < 02 und zeigen,

daf oy = G (01) < Gp(02). Wir betrachten die neuen, einfachen Hypothesen H{ :
0 =6y vs. H{ : 0 = 6. Der Test ¢}.. kann genauso wie in 1. als Neyman-Pearson-
Test dargestellt werden (fiir die Hypothesen H{/ und HY'), der ein bester Test zum

Niveau «; ist. Betrachten wir einen weiteren konstanten Test ¢(z) = ;. Dann ist
a1 = Ey, ¢ < Eg, pjee = Gp(2). Daraus folgt, dak G,,(61) < G, (62).

Nun zeigen wir, dak fiir G,,(0) € (0,1) gilt: G,,(01) < Gp(62). Wir nehmen an, daf
a; = Gp(61) = Gp(02) und 6; < 6 fiir a € (0, 1). Es folgt, dak ¢(z) = a1 auch ein
bester Test fiir H{ und H{ ist. Aus Satz|1.3.2] 2.) folgt

p({z € B p(x) # ¢k-(2)}) = 0 auf Ko U Ky = {fi(z) # K fo(z)},
—~—

=1
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was ein Widerspruch zur Bauart des Tests pg~ ist, der auf Ky U K; nicht gleich
ay € (0,1) sein kann.
O

Bemerkung 1.3.5. 1. Der Satz ist genauso auf Neyman-Pearson-Tests der ein-
seitigen Hypothesen

Hy:0>00vs. H : 0 <6
anwendbar, mit dem entsprechenden Unterschied
00— —0
T— -T
Somit existiert der beste a-Test auch in diesem Fall.

2. Man kann zeigen, dak die Giitefunktion Gy, (¢j+,0) des besten Neyman-Pearson-
Tests auf Oy = (—o0, fy) folgende Minimalitdtseigenschaft besitzt:

Gn(@;{*ve) S Gn(@ve) VSO € \Ij(a)a 9 S 90

Beispiel 1.3.3. Wir betrachten eine normalverteilte Stichprobe (X1, ..., X,,) von unab-
hiingigen und identisch verteilten Zufallsvariablen X;, wobei X; ~ N(u,03) und o3 sei
bekannt. Es werden die Hypothesen

Ho:p < po vs. Hy:p> po,

getestet. Aus Beispiel kennen wir die Testgrofe

X, —
T(X1,...,Xn) = ynon—H0

9]

wobei unter Hy gilt: T(X1,...,Xy) ~ N(0,1). Hy wird verworfen, falls
T(X1,...,Xn) > 21-a, wobei a€ (0,1).

Wir zeigen jetzt, dals dieser Test der beste Neyman-Pearson-Test zum Niveau a ist. Aus
Beispiel ist bekannt, daf die Dichte f,, von (X7, ..., X,) aus der einparametrischen
Exponentialklasse ist, mit

T(X1,...,X,) :anxi.
i=1

Dann gehért f, von (21, ..., xy) zur einparametrischen Exponentialklasse auch beziiglich
der Statistik

X, — 1
0o

T(X1,...,Xn) = vn
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Es gilt ndmlich

n 2
fula) =exp (L D w5 ) - Ua)
N T

:exp(’u\/ﬁ-\/ﬁxn AN
oo o0 200

M~ Y~

c(p) T a(p)

Die Statistik 7" kann also in der Konstruktion des Neyman-Pearson-Tests (Gleichung
(1.3.6))) verwendet werden:

—_

,  falls T(x) > z1—q,
vr+«(x)=4¢ 0, falls T(z) = 21_q,
0, fallsT(z) < 21-q

(mit K* = 21— und v* = 0). Nach Satz ist dieser Test der beste Neyman-Pearson-
Test zum Niveau « fiir unsere Hypothesen:

Gn((p[{*,uo) = ]P)O (T(Xl, .. ,Xn) > Zl—a) +0- PO (T(Xl, ... ,Xn) < Zl—a)
=1-P(z1q)=1-(1—-a)=qa.

1.3.4 Unverfilschte zweiseitige Tests

Es sei (X1,...,X,) eine Stichprobe von unabhéngigen und identisch verteilten Zufalls-
variablen mit der Dichte

fo(z) =[] 9o ().
i=1

Es wird ein zweiseitiger Test der Hypothesen
H019:00VS. H1:07é00

betrachtet. Fiir alle o € (0, 1) kann es jedoch keinen besten Test ¢ zum Niveau « fiir Hy
vs. Hi geben. Denn, nehmen wir an, ¢ wire der beste Test zum Niveau « fiir Hg vs. Hy,
dann wire ¢ der beste Test fiir die Hypothesen

1. Hy:0 =20y vs. H; : 0 > 0
2. Hyj :0 =06y vs. H : 0 < .
Dann ist nach Satz [1.3.3] 3. die Giitefunktion

1. Gplp,0) < aauf 6 < 6y, bzw.
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2. Gn(p,0) > o auf 0 < b,

was ein Widerspruch ist!
Darum werden wir die Klasse aller moglichen Tests auf unverféilschte Tests (Definition
1.1.5) eingrenzen. Der Test ¢ ist unverfdlscht genau dann, wenn

Gn(p,0) < afiir 0 € O
Gn(p,0) > o fiir 6 € ©,

Beispiel 1.3.4. 1. p(z) = « ist unverfilscht.

2. Der zweiseitige Gauf-Test ist unverfilscht, vergleiche Beispiel [1.1.2} Gy, (¢, 1) > «
fiir alle p € R.

Im Folgenden seien X; unabhéngig und identisch verteilt. Die Dichte fp von (X7,..., X},)
gehodre zur einparametrischen Exponentialklasse:

folw) = exp {e(6) - T(x) + a(B)} - U(x), (1.3.7)
wobei ¢(6) und a(0) stetig differenzierbar auf © sein sollen, mit
d(0)>0 und VargT(Xy,...,X,) >0
fiir alle § € O. Sei fg(x) stetig in (x,0) auf B x ©.
Ubungsaufgabe 1.3.1. Zeigen Sie, dak folgende Relation gilt:
ad(0) = (OEyT(Xy,...,X,).
Lemma 1.3.3. Es sei ¢ ein unverfilschter Test zum Niveau « fiir
Hy:0=0qgvs. Hy:0F#0.

Dann gilt:

1. a=Egp(Xi,...,Xn) = Gnle, )

2. Eo [T(X1,...,Xn)e(X1,....Xpn)]=a - EgT(Xy,...,X,)

Beweis. 1. Die Giitefunktion von ¢ ist

Glp,6) = /B (@) fo(x) ()

Da fy aus der einparametrischen Exponentialklasse ist, ist Gy, (¢, 0) differenzierbar
(unter dem Integral) beziiglich §. Wegen der Unverfilschtheit von ¢ gilt

Gn(@790) <o Gn(% 9) > a, 0 7& ‘90

und daraus folgt G, (¢, 0p) = a und 6 ist ein Minimumpunkt von G,,. Somit ist 1)
bewiesen.
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2. Da 6y der Minimumpunkt von G, ist, gilt

0= Gy (p.00) = /B () (d(00)T (x) + d'(00)) fo(x)p(dx)
= Cl(eo) -Eg [(p(Xl, - Xn)T(Xl, ce Xn)} + CL,(Q) . Gn(go, 90)
= Cl(go) - Eg [(p(Xl, ce ,Xn)T(Xl, e ,Xn)] + aa’(@o)
(Ol 1) 5y (- T) — aliy T)

Daraus folgt Eg (¢T') = aEy T und damit ist das Lemma bewiesen.
O

Wir definieren jetzt die modifizierten Neyman-Pearson-Tests fiir einfache Hypothesen
H029:90VS.H{29:91, (917590.
Fir \, K € R, 7v: B — [0,1] definieren wir

1, falls fi(x) > (K + XT'(x)) fo(z),
i) =1 (x), falls fi(z) = (K + AT(z))fo(z), (1.3.8)
0, falls fi(x) < (K + \T(2)) folx),

wobei T'(x) die Statistik aus der Darstellung ist.

Es sei ¥(«) die Klasse aller Tests, die Aussagen 1) und 2) des Lemmas erfiillen.
Aus Lemma [I.3.3] folgt dann, daf die Menge der unverfilschten Tests zum Niveau « eine
Teilmenge von U(q) ist.

Satz 1.3.4. Der modifizierte Neyman-Pearson-Test ¢ ) ist der beste a-Test in T(a)
fiir Hypothesen Hp vs. H{ zum Niveau a = Eg ¢k A, falls px \ € ¥(w).

Beweis. Es ist zu zeigen, dak Eq i ) > Eq ¢ fiir alle ¢ € (), bzw. Ey (prA—) > 0.
Es gilt
E1 (pica — 9) = [ (pralo) — elo) Aoln(da)

(Bem. ' =) /B (0ra () — (2)) (K + NT()) folz)p(dz)

= K<EOSOK,)\_EO<P) +)\<E0 (pra-T)—Eo (@'T)>
—_— =
=« =« CKIEOT :OC'EOT

=0,
weil o, pr ) € TU(a). O

Wir definieren folgende Entscheidungsregel, die spiter zum Testen der zweiseitigen
Hypothesen

H0:9:90VS.H1:97§90
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verwendet wird:

1, falls T(x) ¢ (c1,ca),
) m, fallsT(z)=¢a
pel(w) = v, falls T(x) = ca, (59
0, falls T(x) € (¢1,c2),

fir c; < 2 € R, 71,72 € [0,1] und die Statistik 7'(z), x = (z1,...,2,) € B, die in der
Dichte vorkommt. Zeigen wir, daf ¢, sich als modifizierter Neyman-Pearson-Test
schreiben ldsst.
Fiir die Dichte

fo(x) = exp{c(O)T(x) + a(0)} - l(x)
wird (wie immer) vorausgesetzt, da [(z) > 0, ¢/(x) > 0 und o' (x) existiert fiir 6 € ©.

Lemma 1.3.4. Es sei (X1,...,X,,) eine Stichprobe von unabhéngigen, identisch ver-
teilten Zufallsvariablen mit gemeinsamer Dichte fy(x),x € B, die zur einparametrischen
Exponentialfamilie gehort. Sei T'(z) die dazugehorige Statistik, die im Exponenten der
Dichte fy vorkommt. Fiir beliebige reelle Zahlen ¢; < ¢, 71,72 € [0,1] und Parameter-
werte 6p,01 € © : 6y # 01 1aht sich der Test . aus als modifizierter Neyman-
Pearson-Test ¢ » aus mit gegebenen K, \ € R, v(z) € [0, 1] schreiben.

Beweis. Falls wir die Bezeichnung

f92<x):fl(x)v 1=0,1

verwenden, dann gilt

und somit
{zr eB: fi(z) > (K+\T'(2)) fole)} ={xr € B:exp(cT'(z)+a) > K+ \'(x)}.

Finden wir solche K und A aus R, fiir die die Gerade K + At, t € R die konvexe Kurve
exp{ct + a} genau an den Stellen ¢; und ¢z schneidet (falls ¢; # c¢2) bzw. an der Stelle
t = ¢1 beriihrt (falls ¢; = ¢2). Dies ist immer moglich, siehe Abbildung

Ferner setzen wir y(x) = ; fiir {x € B : T(x) = ¢;}. Insgesamt gilt dann

{z:exp(cT(x)+a) > K+ \'(x)} ={x:T(z) ¢ [c1,c2]}
und
{z:exp(cT(z)+a) < K+ XT'(z)} ={z:T(z) € (c1,c2)}.

Damit ist das Lemma bewiesen. O
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Abbildung 1.1:

— pCtta

=K+ M

Bemerkung 1.3.6. 1. Die Umkehrung des Lemmas stimmt nicht, denn bei vorge-
gebenen Kurven y = K + At und y = exp{ct + a} muss es die Schnittpunkte ¢y
und ¢ nicht unbedingt geben. So kann die Gerade vollstindig unter der Kurve
y = exp{ct + a} liegen.

2. Der Test ¢, macht von den Werten 0y und 61 nicht explizit Gebrauch. Dies unter-
scheidet ihn vom Test g , fiir den die Dichten fo und f; gebraucht werden.

Jetzt sind wir bereit, den Hauptsatz iiber zweiseitige Tests zum Priifen der Hypothesen
H0:9:(90VS. H1:07é00
zu formulieren und zu beweisen.

Satz 1.3.5. (Hauptsatz iiber zweiseitige Tests)

Unter den Voraussetzungen des Lemmas sei @, ein Test aus , flir den . €
U (a) gilt. Dann ist ¢, bester unverfilschter Test zum Niveau o (und dadurch bester Test
in ¥(a)) der Hypothesen

H029:90VS.H1297£00.

Beweis. Wihlen wir ein beliebiges 6; € O, 6, # 6. Nach Lemma ist ¢, ein modi-
fizierter Neyman-Pearson-Test ¢ ) fiir eine spezielle Wahl von K und A € R. ¢ ) ist
aber nach Satz bester Test in W(a) fiir Hy : 8 = 6 vs. H| : § = 1. Da ¢, nicht von
61 abhiingt, ist es bester Test in W(a) fiir H : 6 # 6. Da unverfilschte Niveau-a-Tests
in ¥(a) liegen, miissen wir nur zeigen, daR ¢, unverfilscht ist. Da ¢, der beste Test ist,
ist er nicht schlechter als der konstante unverfilschte Test ¢ = «, das heist

Gn(‘Pw 9) > Gn(% 0) = qQ, 0 7& 00~

Somit ist auch ¢, unverfilscht. Der Beweis ist beendet. O
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Bemerkung 1.3.7. Wir haben gezeigt, dafl ¢, der beste Test seines Umfangs ist. Es
ware jedoch noch zu zeigen, dak fiir beliebiges « € (0, 1) Konstanten ¢y, co, v1, 72 gefunden
werden, fiir die Eg ¢, = a gilt. Da der Beweis schwierig ist, wird er hier ausgelassen. Im
folgenden Beispiel jedoch wird es klar, wie die Parameter c¢1, co, 1,72 zu wihlen sind.

Beispiel 1.3.5 (Zweiseitiger Gauft-Test). Im Beispiel haben wir folgenden Test
des Erwartungswertes einer normalverteilten Stichprobe (X1, ..., X,,) mit unabhéngigen
und identisch verteilten X; und X; ~ N(u,03) bei bekannten Varianzen o2 betrachtet.
Getestet werden die Hypothesen

Hy:po= po vs. Hy : p # po.
Der Test ¢(x) lautet
p(z) =1(z €R™ :[T(2)| > 21-a/2) ,

wobel

T(x) = \/ﬁw.

a0

Zeigen wir, daf ¢ der beste Test zum Niveau av in ¥(a) (und somit bester unverfilschter
Test) ist. Nach Satz[I.3.5 miissen wir lediglich priifen, da® ¢ als ¢, mit dargestellt
werden kann, weil die n-dimensionale Normalverteilung mit Dichte f,, (siehe Beispiel
1.3.3) zu der einparametrischen Exponentialfamilie mit Statistik

T(a) =t

g0

gehort. Setzen wir ¢1 = 21_y/9, €2 = —21_q/2, 711 = 72 = 0. Damit ist

B 1, falls [T(z)| > 21-a/2,
p(z) = pe(z) = { 0, falls [T(z)| < 21_a/2-

und die Behauptung ist bewiesen, weil aus der in Beispiel ermittelten Giitefunktion
Gn(p,0) von ¢ ersichtlich ist, dak ¢ ein unverfilschter Test zum Niveau « ist (und somit

¢ € U(a)).

Bemerkung 1.3.8. Bisher haben wir immer vorausgesetzt, dalk nur ein Parameter der
Verteilung der Stichprobe (X7i,..., X, ) unbekannt ist, um die Theorie des Abschnittes
1.3 iiber die besten (Neyman-Pearson-) Tests im Fall der einparametrischen Exponen-
tialfamilie aufstellen zu konnen. Um jedoch den Fall weiterer unbekannten Parameter
betrachten zu kénnen (wie im Beispiel der zweiseitigen Tests des Erwartungswertes der
normalverteilten Stichprobe bei unbekannter Varianz (der sog. t-Test, vergleiche Ab-
schnitt 1.2.1, 1 (a)), bedarf es einer tiefergehenderen Theorie, die aus Zeitgriinden in
dieser Vorlesung nicht behandelt wird. Der interessierte Leser findet das Material dann
im Buch [14].
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1.4 Anpassungstests

Sei eine Stichprobe von unabhéngigen, identisch verteilten Zufallsvariablen (X7, ..., X},)
gegeben mit X; ~ F (Verteilungsfunktion) fiir ¢ = 1,...,n. Bei den Anpassungstests
wird die Hypothese

H():F:F()VS.HliF#FO

iiberpriift, wobei Fy eine vorgegebene Verteilungsfunktion ist.

Einen Test aus dieser Klasse haben wir bereits in der Vorlesung Stochastik I kennenge-
lernt: den Kolmogorow-Smirnov-Test (vergleiche Bemerkung 3.3.8. 3), Vorlesungsskript
Stochastik I).

Jetzt werden weitere nichtparametrische Anpassungstests eingefithrt. Der erste ist der
x2-Anpassungs-test von K. Pearson.

1.4.1 y2-Anpassungstest
Der Test von Kolmogorov-Smirnov basierte auf dem Abstand

Dy, = sup | Fy(z) — Fo() |
zeR

zwischen der empirischen Verteilungsfunktion der Stichprobe (X1, ..., X,) und der Ver-
teilungsfunktion Fy. In der Praxis jedoch erscheint dieser Test zu feinfiihlig, denn er ist
zu sensibel gegeniiber Unregelméifiigkeiten in den Stichproben und verwirft Hy zu oft.
Einen Ausweg aus dieser Situation stellt die Vergréberung der Haupthypothese Hy dar,
auf welcher der folgende x?-Anpassungstest beruht.

Man zerlegt den Wertebereich der Stichprobenvariablen X; in r Klassen (aj,b;], j =
1,...,r mit der Eigenschaft

—o<a<bi=ay<by=...=a, < b <o0.
Anstelle von X;,¢ = 1,...,n betrachten wir die sogenannten Klassenstirken Z;, j =
1,...,7, wobei
Zj:#{i:aj<Xi§bj, 1§Z§TL}
Lemma 1.4.1. Der Zufallsvektor Z = (Z,...,Z,)" ist multinomialverteilt mit Para-
metervektor
D= (pla ce aprl)T € [07 1]7’—1’
wobei

r—1
pj:]P’(aj<X1Sbj):F(bj)—F(aj), j=1...,r—1, przl_zpj-
j=1

Schreibweise:

Z ~ Mr—l (nu p)
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Beweis. Es ist zu zeigen, dak fiir alle Zahlen kq, ...k, € Ng mit k1 + ... + k, = n gilt:

n!

. k k-
Da X; unabhéngig und identisch verteilt sind, gilt
n
P(Xj S (aij,bij], j= 1,...,n) = HIF’(aij < X; < bij) :plfl S 'pﬁr,
j=1

falls die Folge von Intervallen (a;;,b;;]j=1,..n das Intervall (a;,b;] k; Mal enthlt, i =
1,...,r. Die Formel (1.4.1)) ergibt sich aus dem Satz der totalen Wahrscheinlichkeit als
Summe iiber die Permutationen von Folgen (ai]., bi].]jzl,m,n dieser Art. O

Im Sinne des Lemmas werden neue Hypothesen {iber die Beschaffenheit von F
gepriift.
Hy:p=po vs. Hy :p # po,
wobei p = (p1,...,pr—1)! der Parametervektor der Multinomialverteilung von Z ist, und
r—1

po = (po1,---,Por—1)" € (0,1)""L mit 3 po; < 1. In diesem Fall ist
=1

Ao={F e A:F(bj)— F(aj) =poj, j=1,...,7r—1},

Ay = A\ Ag, wobei A die Menge aller Verteilungsfunktionen ist. Um Hy vs. Hj zu testen,
fiilhren wir die Pearson-Teststatistik

(3 — o)
To(x) =

non;
j=1 Poj

ein, wobei = (z1,...,xy) eine konkrete Stichprobe der Daten ist und z;, j = 1,...,r
ihre Klassenstérken sind.
Unter Hy gilt

]EZj:npoj, j:L...,T,

somit soll Hy abgelehnt werden, falls 7,,(X) ungewthnlich grofe Werte annimmt.
Im niichsten Satz zeigen wir, dak T(Xi,...,X,) asymptotisch (fiir n — oo) x2_;-
verteilt ist, was zu folgendem Anpassungstest (x?-Anpassungstest) fiihrt:

Hy wird verworfen, falls T),(x1,...,2,) > Xf-u_a-
Dieser Test ist nach seinem Entdecker Karl Pearson (1857-1936) benannt worden.
Satz 1.4.1. Unter Hj gilt

lm Py, (Th(X1,..., Xn) > Xoo11-a) = @, a € (0,1),

n—oo

das heift, der y2-Pearson-Test ist ein asymptotischer Test zum Niveau a.
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Beweis. Fiihren wir die Bezeichnung Z,; = Z;(X1,..., X)) der Klassenstérken ein, die
aus der Stichprobe (X1,...,X,,) entstehen. Nach Lemma ist

Zn = (Zniy- -y Zny) ~ My_1(n,pp) unter Hy.

Insbesondere soll E Z,,; = npy; und

npO'l_PO'a Z:]a
COV(Z"“Z””'):{ —nfoéipoj', ’ i

fiir alle 4,5 = 1,...,r gelten. Da

n
an:Z]I(aj<Xi§bj)’ j=1,...,n7
i=1

ist Z, = (Znp1,...,Znr—1) eine Summe von n unabhingigen und identisch verteilten
Zufallsvektoren Y; € R™~! mit Koordinaten Yij=1la; < X; <0b5),j=1,...,r—1.
Daher gilt nach dem multivariaten Grenzwertsatz (der in Lemma bewiesen wird),
dafs

n

 Z,-EZ, £

Yi —nEY:
1

/ d
Zn Jn NG oo ¥~ N (0, K),

mit N (0, K) eine (r — 1)-dimensionale multivariate Normalverteilung (vergleiche Vorle-
sungsskript WR, Beispiel 3.4.1. 3.) mit Erwartungswertvektor Null und Kovarianzmatrix
K= (afj), wobei

2 { —P0iPoj i # 7,
pOz( POJ); ? J

fiir i,j = 1,...,7 — 1 ist. Diese Matrix K ist invertierbar mit K1 = A = (a;;),

1 . .

) wn i # J,
Gig = L4 L
Poi por’ J

Aufberdem ist K (als Kovarianzmatrix) symmetrisch und positiv definit. Aus der linea-
ren Algebra ist bekannt, daf es eine invertierbare (r — 1) x (r — 1)-Matrix A'/? gibt, mit
der Eigenschaft A = AY2(AY?)T. Daraus folgt,

K=A1— ((AI/Q)T)—I . (AI/Q)—I'
Wenn wir (AY/2)T auf Z! anwenden, so bekommen wir

(A1/2)T . Z;L i> (Al/Q)T Y,

n—oo
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wobel
(AT ~ N (0, (AYH)T K- AY2) = N (0, T,1)

nach der Eigenschaft der multivariaten Normalverteilung, die im Kapitel 2, Satz [2.1.3]
behandelt wird. Des Weiteren wurde hier der Stetigkeitssatz aus der Wahrscheinlichkeits-
rechnung benutzt, daf

d d

Yo — Y = o(Ya) — oY)
n—oo n—oo

fiir beliebige Zufallsvektoren {Y,,}, Y € R™ und stetige Abbildungen ¢ : R — R. Diesen
Satz haben wir in WR fiir Zufallsvariablen bewiesen (Satz 6.4.3, Vorlesungsskript WR).
Die erneute Anwendung des Stetigkeitssatzes ergibt

a2z L P =R

n—o0

Zeigen wir, dafs

2
TTL(X17 s 7X’ﬂ) - ’(Al/z)TZ’;l

Es gilt:
‘(141/2)TZ7/1 2 _ ((A1/2>TZ;L)T((A1/2)TZ7/1) _ Z;T A2, (A1/2) Z/TAZ/
A
= nS ! <Z”] —po;) + nff <Zm —p01> <Z —poj)
= Poj n bor i =

r—1 2 r—1
N~ g —npog)” | n Znj ,
- - + Z n DPoj

npoj Por

= j=1
r—1 2 2
N S (an B pm)
=1 npo; Por n
r np
- 07
_Z nj ] :Tn(X1>"'7X7L)7
npoj

weil

r—1
Z an =n— Zn,
j=1
r—1
ZPOJ' = 1— por.
j=1
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Lemma 1.4.2 (Multivariater zentraler Grenzwertsatz). Sei {Y,,}nen eine Folge von un-
abhingigen und identisch verteilten Zufallsvektoren, mit EY; = g und Kovarianzmatrix
K. Dann gilt

n

> Yi—np ;

i=1
Beweis. Sei Y; = (Yj1,...,Yjm)". Nach dem Stetigkeitssatz fiir charakteristische Funk-
tionen ist die Konvergenz (1.4.2) dquivalent zu

on(t) — p(t) teR™, (1.43)
wobei
on(t) =Ee" =E exp iztj L T Ay T

vn

=1
die charakteristische Funktion vom Zufallsvektor
n
> Yi—np
S — =1
n \/ﬁ
und
(,O(t) _ e—tTKt/Q

die charakteristische Funktion der N(0, K)-Verteilung ist. Die Funktion ¢, (¢) kann in
der Form

m
n th( ij MJ)
on(t)=Eexpliy = Y t=(t,...,tm) €R™

=1

umgeschrieben werden, wobei fiir die Zufallsvariable
L= t;(Yij — )

gilt:
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Falls t " Kt = 0, dann gilt L; = 0 fast sicher, fiir alle i € N. Hieraus folgt ¢, (t) = ¢(t) = 1,
also gilt die Konvergenz [1.4.2]

Falls jedoch ¢t Kt > 0, dann kann ¢, (t) als charakteristische Funktion der Zufallsva-
riablen

> Li/vn
=1

an Stelle 1, und ¢(t) als charakteristische Funktion der eindimensionalen Normalvertei-
lung N(0,t" Kt) an Stelle 1 interpretiert werden. Aus dem zentralen Grenzwertsatz fiir
eindimensionale Zufallsvariablen (vergleiche Satz 7.2.1, Vorlesungsskript WR) gilt

n
Li d T
;\/ﬁn:;LwN(O,t Kt)

und somit
en(t) = o(on, 1yyvm) (D) 52 er(l) = o(b).
Somit ist die Konvergenz (1.4.2) bewiesen. O

Bemerkung 1.4.1. 1. Die im letzten Beweis verwendete Methode der Reduktion
einer mehrdimensionalen Konvergenz auf den eindimensionalen Fall mit Hilfe von
Linearkombinationen von Zufallsvariablen tragt den Namen von Cramér- Wold.

2. Der x?-Pearson-Test ist asymptotisch, also fiir grofe Stichprobenumfinge, anzu-
wenden. Aber welches n ist grof genug? Als ,Faustregel® gilt: npg; soll grofser
gleich a sein, a € (2,00). Fiir eine grofere Klassenanzahl » > 10 kann sogar a = 1
verwendet werden. Wir zeigen jetzt, daf der x?-Anpassungstest konsistent ist.

Lemma 1.4.3. Der y2-Pearson-Test ist konsistent, das heift
¥p € [0,1]"71, p # po gilt: lim Py (Tn(X1,..., Xn) > X7 110) =1

Beweis. Unter H; gilt

n

> I(a; < X; < bj)
Znifn = =1 L% El(a; < X1 < b))

n n—o0

=p;

nach dem starken Gesetz der grofien Zahlen. Wir wihlen j so, dal p; # po;. Es gilt

T — )2 7. 2 5
Tn<X1a---aXn)2(W2n(m—p0j> f—)oo
npoj n

Somit ist auch
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1.4.2 y*-Anpassungstest von Pearson-Fisher

Es sei (X1,...,X,,) eine Stichprobe von unabhéngigen und identisch verteilten Zufalls-
variablen X;, ¢ = 1,...,n. Wir wollen testen, ob die Verteilungsfunktion F' von X; zu
einer parametrischen Familie

Ao={Fp:0€0}, ©CR™
gehort. Seien die Zahlen a;, b;, ¢ = 1,...,r vorgegeben mit der Eigenschaft
—o<a<b=a<b=...=a<b <0
und

Zj:#{XZ‘,Z'Il,...,TL:aj<Xi§bj}, j=1...,n
Z=(Z1,....2Z)".

Nach Lemma m gilt: Z ~ M,_1(n,p), p = (po,...,pr—1)" € [0,1]"". Unter der
Hypothese Hy : F' € Ag gilt: p = p(0), 8 € © C R™. Wir vergrobern die Hypothese Hy
und wollen folgende neue Hypothese testen:

Hy:pe{p@):0€0O} vs. H :p ¢ {p(#) : 6 € O}.

Um dieses Hypothesenpaar zu testen, wird der x2-Pearson-Fisher-Test wie folgt aufge-
baut:

1. Ein (schwach konsistenter) Maximum-Likelihood-Schiitzer 6, = 0(X1,...,X,,) fiir

0 wird gefunden: 0,, _1} 0. Dabei muf {én}neN asymptotisch normalverteilt sein.
n—oo

2. Es wird der Plug-In-Schitzer p(6,) fiir p(0) gebildet.

3. Die Testgrofe

T(X1,. .., Xn) = _ — N~ X1
jz—; npj(Q) n—o00

unter Hy und gewissen Voraussetzungen.

4. Hy wird verworfen, falls T),(X1, ..., X,,) > X?—m—1,1_q- Dies ist ein asymptotischer
Test zum Niveau «.

Bemerkung 1.4.2. 1. Bei einem x?-Pearson-Fisher-Test wird vorausgesetzt, daf die
Funktion p(#) explizit bekannt ist,  jedoch unbekannt. Das bedeutet, daf fiir jede
Klasse von Verteilungen A die Funktion p(-) berechnet werden soll.
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2. Warum kann 7}, die Hypothese Hy von Hj unterscheiden? Nach dem Gesetz der
grofsen Zahlen gilt

1 S A P
—Znj = Pi(On) = —Znj = p;(0) = (i(0n) — ;(0)) — 0,
—_—— Vv
Lo 50
falls 6, schwach konsistent ist und p;(-) eine stetige Funktion fiir alle j = 1,...,r

ist.

Das heiftt, unter Hy soll T, n(X1,...,X,) relativ kleine Werte annehmen. Eine si-
gnifikante Abweichung von diesem Verhalten soll zur Ablehnung von Hj fiihren,
vergleiche Punkt 4.

Fiir die Verteilung Fy von X; gelten folgende Regularititsvoraussetzungen (vergleiche
Satz 3.4.2, Vorlesungsskript Stochastik I).

1. Die Verteilungsfunktion Fy ist entweder diskret oder absolut stetig fiir alle § € ©.
2. Die Parametrisierung ist eindeutig, das heift: 6 # 6, < Fy # Fp, .
3. Der Trager der Likelihood-Funktion

L(z,0) = Pp(X1 =), im Falle von diskreten Fp,
L fel(w), im absolut stetigen Fall.

SuppL(z,0) = {x € R: L(x,0) > 0} hingt nicht von 6 ab.

4. L(z,0) sei 3 Mal stetig differenzierbar, und es gelte fir k = 1,...,3 und i1,...,i% €
{1...m}, daB

<Z) / 8981%(37’%)0% dr = d0;, - 8k - 00;, (Z) /L(xy 0)dxr = 0.

11 "

5. Fir alle ) € © gibt es eine Konstante ¢y, und eine messbare Funktion gy, :
SuppL — R4, sodaf

031og L(x,0)

< _
56, 00,00, | < 90@: 10— ol <ca

und

Ego ggO(Xl) < 0.

Wir definieren die Informationsmatriz von Fisher durch

B Olog L(X1,0) 0log L(X1,6)
1(0) = (E [ 7, 96, - (1.4.4)
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Satz 1.4.2 (asymptotische Normalverteiltheit von konsistenten ML-Schétzern én, mul-
tivariater Fall m > 1). Es seien Xj,..., X, unabhingig und identisch verteilt mit
Likelihood-Funktion L, die den Regularitdtsbedingungen 1-5 geniigt. Sei I(0) positiv
definit fiir alle § € © C R™. Sei 6, = 9(X1, ..., X, eine Folge von schwach konsistenten
Maximum-Likelihood-Schétzern fiir §. Dann gilt:

Vb, —0) —% N(0,171(0)).

n—o0

Ohne Beweis; siche den Beweis des Satzes 3.4.2, Vorlesungsskript Stochastik I.

Fiir unsere vergroberte Hypothese Hy : p € {p(#),0 € O} stellen wir folgende, stiick-
weise konstante, Likelihood-Funktion auf:

L(LL’7 9) = pj(H), falls z € (aj, bj]

Dann ist die Likelihood-Funktion der Stichprobe (z1,...,z,) gleich

L(wl, .. 7'1.717 9) = Hpj(e)zj(xl,,l'n)
7=1

-
= log L(x1,...,2p,0) = ZZj(xl, oy p) - log p;(6).
j=1

0, = é(a:l, ..., xy) = argmaxlog L(z1, ..., x,,0)

0cO
- ap;(0) 1 .
§ Z; EAMTAN = =1,...,m.
= i(x1,.. ., 2n) 0 (0 0, 1 Se,m

j=1

Aus >%_; pj(0) =1 folgt

: 00; :
7j=1 7j=1

i Op;(0) PN i Zj(®1,...,an) —np;(0) Opj(é) B

Lemma 1.4.4. Tm obigen Fall gilt 1() = CT(6)-C(8), wobei C(0) eine (r x m)-Matrix
mit Elementen

. apz<9) ) 1

ii(0) = ist.
C]() a0, 2(0) 18
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Beweis.
Olog L(X1,0) OlogL(X1,0)] - 0logpr(0) Ologp(6)
EO[ 09; 09, _; 00); a9, PO
Opi() 1 ope(0) 1
= - pr(©
; o6, @ 06 m@
ol CHORCG) I
denn log L(X1,0) Zlogp] € (aj,b5]) .

Deshalb gilt die Folgerung aus Satz [1.4.2}

Folgerung 1.4.1. Sei 0, = é(Xl, ..., X;,) ein Maximum-Likelihood-Schétzer von 6 im
vergroberten Modell, der schwach konsistent ist und den obigen Regularitétsbedingungen
geniigt. Sei die Informationsmatrix von Fisher I(f) = CT(6) - C(9) fiir alle § € © positiv
definit. Dann ist 6 asymptotisch normalverteilt:

Jn (én _ 9) Ly ~ N (0,174(0))

n—oo

Satz 1.4.3. Es sei 0, ein Maximum-Likelihood-Schitzer im vergroberten Modell fiir 6,
fiir den alle Voraussetzungen der Folgerung erfiillt sind. Die Teststatistik

1K X) =3 (Zj(Xl"”ﬁeA))_”pj(én>>2
np;(tn

=1

ist unter Hy asymptotisch x2_, _;-verteilt:

lim Py ( (X1, ., X)) > X%—m—l,l—a) =a.

n—oo
ohne Beweis (siehe [15]).

Aus diesem Satz folgt, daf der y2-Pearson-Fisher-Test ein asymptotischer Test zum
Niveau « ist.

Beispiel 1.4.1. 1. x%-Pearson-Fisher-Test der Normalverteilung

Sei (X1,...,X,) eine Zufallsstichprobe. Es soll gepriift werden, ob X; ~ N (u, 0?).
Es gilt

0=(u,0°)cO=RxR,.
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Sei (aj, bj]jzl,__,r eine beliebige Aufteilung von R in r disjunkte Intervalle. Sei

die Dichte der N(u,o?)-Verteilung.
b
pi(0) =P (a; < X1 <bj) = / fo(x)dz, j=1,....r
aj

mit den Klassenstirken
Zj = #{Z 1 X, € (aj,bj]} .

Wir suchen den Maximum-Likelihood-Schétzer im vergréberten Modell:

apjw)_/”fa _ 1 /’”w—u ~3(zz2)”
o ), et = s, T e &
Ip;(6)

b; B p
902 _/zz]- @f@(x) L
b N2
- 12/3[_;.(21)3/26—;@“)11 e—;<u>2.<<w ) )]dw
V2T Ja o
J bj
a;

bj
- _2012/@]. folz)dz + 2(012)2/ (z = p)* fo(w)dw

Die notwendigen Bedingungen des Maximums sind:

by
. [ zfo(z)dx .
Dz ) Zj=0,
= [ fo(w)da g
(Z]' =n
by
L [(@—p)Pfo(z)dz |
ﬁz:zjj ; -y z;=o.
j=1 j=1

f fe(ﬂﬁ)dﬂﬂ \;,_/

aj =n
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Daraus folgen die Maximum-Likelihood-Schitzer 4 und 62 fiir g und o2:
bj
, [ zfo(x)dx
> 2
) J
J | fo(z)dx
aj
b
. J@—p)?fo(a)da
5? ==Y 77—

7=l i fo(x)dx

aj

=
S|

S|

Wir konstruieren eine Nitherung zu fi und 62 fiir r — oo. Falls 7 — oo (und somit
auch n — 00), dann ist b; — a; klein und nach der einfachen Quadraturregel gilt:

bj
/ zfo(z)dz ~ (b; — a;) y;fo(y;),

aj
bj

fo(z)dx ~ (bj — aj) fo(y;),
a;
wobei y1 = by, yr = b1 = ayp,

yj:(bj+1+bj)/2a j:2,...,’l“—1.

Daraus folgen fiir die Maximum-Likelihood-Schétzer f und 62:

<

1 N
o ) Vit L=
7=1
1 T
N N2 -
‘= (yj — i) ZJZU27
n 4
7j=1
= (1.5%)

Der x2-Pearson-Fisher-Test lautet dann: Hy wird abgelehnt, falls

= . > X 31 0
n npj(G) r—3,1—«a

2. x2-Pearson-Fisher-Test der Poissonverteilung

A~

Es sei (X1,...,X,) eine Stichprobe von unabhéngigen und identisch verteilen Zu-
fallsvariablen. Wir wollen testen, ob X; ~ Poisson(\), A > 0. Es gilt § = X und
© = (0,400). Die Vergréberung von © hat die Form
—co=a1< by =as< by =a3<...<b_1 =a, <b =40c0.
— —— ——
=0 =1 =r—2
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Dann ist
‘ o, N

piA) =Py (Xi=j5—-1)=e Tk j=1...,r—1,

o AZ

_ —A

pr(N) = D e

1=r—1

7j—1 Jj—2 J—1 —

dA (j—1! (j—1! =D\ A

Die Maximum-Likelihood-Gleichung lautet

S p) (5 1)
O_ZZ (5 -1) e 1ppr<A>

Falls 7 — o0, so findet sich r(n) fiir jedes n, fiir das Z,(,) = 0. Deshalb gilt fiir
r > r(n):

woraus der Maximum-Likelihood-Schitzer

(G-1)Z2 iz_: =

r—1

Jj=1

folgt. Der y2-Pearson-Fisher-Test lautet: Hg wird verworfen, falls

— npx(Xn)
= Z ) > X72"72,1704'
(”pj( ))
1.4.3 Anpassungstest von Shapiro
Es sei (X1,...,X,) eine Stichprobe von unabhéngigen, identisch verteilten Zufallsvaria-

blen, X; ~ F. Getestet werden soll die Hypothese

Hy:F € {N(u,0%): p€R, 0> >0} vs. H : F ¢ {N(u,0%),u € R, 0% > 0}.
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Die in den Abschnitten - vorgestellten x2-Tests sind asymptotisch; deshalb
koénnen sie fiir relativ kleine Stichprobenumfinge nicht verwendet werden.

Der folgende Test wird diese Liicke fiillen und eine Testentscheidung iiber Hy selbst
bei kleinen Stichproben erméglichen.

Man bildet Ordnungsstatistiken X(y),..., Xy, Xq) < Xg) < ..., < X3, und ver-
gleicht ihre Korreliertheit mit den Mittelwerten der entsprechenden Ordnungsstatistiken
der N(0,1)-Verteilung. Sei (Y1,...,Y,,) eine Stichprobe von unabhingigen und identisch
verteilten Zufallsvariablen, Y7 ~ N(0,1). Es sei a; = EY(;), i = 1,...,n. Falls der empi-
rische Korrelationskoeffizient p,x zwischen (a1,...,a,) und (X(y),..., X)) bei 1 liegt,
dann ist die Stichprobe normalverteilt. Formalisieren wir diese Heuristik:

Es sei b; der Erwartungswert der i-ten Ordnungsstatistik in einer Stichprobe von
N (u, 0?)-verteilten, unabhiingigen Zufallsvariablen Z;: b; = EZy,i=1,...,n Es gilt:
b =p+oa;, i =1,...,n. Betrachten wir den Korrelationskoeffizienten

=1 . (1.4.5)

Da p invariant beziiglich Lineartransformationen ist und

zn:ai = En:Ey; =E (f:y> =0, gilt:
=1 =1 =1

n:
n o n
(Stochastik I) Z i (X(Z) B Xn) i=1 aZX(Z) — z; i
PbX = Pax = —F— = =
n n — .9 n n — .9
a; 3 (Xi = Xn) > af 3 (Xi— Xn)
i=1 =1 i=1 =1
n
>, aiX()
_ i=1
n n — .9
> a7 3 (X — X,)
i=1 i=1
Die Teststatistik lautet:
n
T, = = (Shapiro-Francia-Test)

\/ia? anl (Xi — Xn)"

Die Werte a; sind bekannt und kénnen den Tabellen bzw. der Statistik-Software entnom-
men werden. Es gilt: |T),] < 1.
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Hy wird abgelehnt, falls T;, < g, wWobei ¢, o das a-Quantil der Verteilung von T,
ist. Diese Quantile sind aus den Tabellen bekannt, bzw. kénnen durch Monte-Carlo-
Simulationen berechnet werden.

Bemerkung 1.4.3. Einen anderen, weit verbreiteten Test dieser Art bekommt man,
wenn man die Lineartransformation b; = p+o0a; durch eine andere Lineartransformation
ersetzt:

T _
(a’l,...,agl) =K' (a1,...,a,),
wobei K = (ki;)}_; die Kovarianzmatrix von (Y(l), cel Y(n)) ist:

kij=E (Yo —ai) (Y —aj), 45=1,....n,

Der so konstruierte Test tragt den Namen Shapiro- Wilk-Test.

1.5 Weitere, nicht parametrische Tests

1.5.1 Binomialtest

Es sei (X1,...,X,) eine Stichprobe von unabhéngigen, identisch verteilten Zufallsvaria-
blen, wobei X; ~ Bernoulli(p). Getestet werden soll:

Hy:p=po vs. Hi :p# po

Die Teststatistik lautet

n
T, =Y X o Bin(n, po),

=1

und die Entscheidungsregel ist: Hy wird verworfen, falls

Ty ¢ [Bin(nap(])a/2> Bin(nvp(])l—a/Q]a

wobei Bin(n,p), das a-Quantil der Bin(n, p)-Verteilung ist.

Fiir andere Hy, wie zum Beispiel p < pg (p > po) muss der Ablehnungsbereich ent-
sprechend angepasst werden.

Die Quantile Bin(n,p), erhélt man aus Tabellen oder aus Monte-Carlo-Simulationen.
Falls n grofs ist, konnen diese Quantile durch die Normalapproximation berechnet werden:

Nach dem zentralen Grenzwertsatz von DeMoivre-Laplace gilt:

T, — —
]P’(Tngx):]P’< npo < T — npg )

N x — npo
Vrpo(L —po) — /npo(1 — po) whoe ¥ (\/ npo(1 —p0)> '
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Daraus folgt:

.~ B po)a —npo
o~
npo(1 — po)
= Bin(n,Po)a ~ /npo(l — po) © Za T NPo

Nach der Poisson-Approximation (fiir n — oo, npg — Ag) gilt:

Bin(n, po)a 2 = Poisson(Ao) a2,

Bin(n,po)1—a/2 = Poisson(Xg)1_q/2, Wobei Ao = npo.

Zielstellung: Wie kann mit Hilfe des oben beschriebenen Binomialtests die Symmetrie-
eigenschaft einer Verteilung getestet werden?

Es sei (Y7,...,Y;,) eine Stichprobe von unabhéngigen und identisch verteilen Zufalls-
variablen mit Verteilungsfunktion F'. Getestet werden soll:

Hy : F ist symmetrisch vs. Hy : F ist nicht symmetrisch.

Eine symmetrische Verteilung besitzt den Median bei Null. Deswegen vergrébern wir die
Hypothese Hy und testen:

H}: F710,5) =0 vs. H) : F~1(0,5) # 0.
Noch allgemeiner: Fiir ein 8 € [0, 1]:
HY : F71(8) =~ vs. H : F1(B) # 3.

H{ vs. H{ wird mit Hilfe des Binomialtests wie folgt getestet: Sei X; = I (Y; < 7). Unter
H{ gilt:

X; ~ Bernoulli(F(vg)) = Bernoulli(5).

Seien a; = —00, b1 = 7a, a2 = b1, by = +00 zwei disjunkte Klassen (ay,b1], (az,bs] in
der Sprache des x2-Pearson-Tests. Die Testgrofe ist:

To=Y Xi=#{Yi: Y <43} ~ Bin(n, ), p=F(y)
=1

Die Hypothese F~1(8) = 4 ist dquivalent zu H}’ : p = 8. Die Entscheidungsregel lautet
dann: H}" wird verworfen, falls T;, ¢ [Bin(n, B)Q/Q,Bin(n,ﬁ)l_a/ﬂ]. Dies ist ein Test
zum Niveau .
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1.5.2 Iterationstests auf Zufilligkeit

In manchen Fragestellungen der Biologie untersucht man eine Folge von 0 oder 1 auf ihre
Hlufilligkeit” bzw. Vorhandensein von gréfseren Clustern von 0 oder 1. Diese Hypothesen
kann man mit Hilfe der sogenannten [lferationstests statistisch iiberpriifen.

Sei eine Stichprobe X;, i = 1,...,n gegeben, X; € {0,1}, > X; = n; die Anzahl der
i=1

Eingen, nys = n — n; die Anzahl der Nullen, ny,no vorgegeben. Eine Realisierung von
(X1,...,Xy) mit n = 18, n; = 12 wire zum Beispiel

z=(0,0,0,1,1,1,0,1,1,0,1,1,1,0,1,1,1,1)
Es soll getestet werden, ob

Hy : jede Folge x ist gleichwahrscheinlich vs.
H; : Es gibt bevorzugte Folgen (Clusterbildung)

stimmt.

Sei
n
Q= {x:(acl,...,xn): x; = 0 oder l,izl,...,n,Zwi:nl}
i=1

der Stichprobenraum. Dann ist der Raum (92, F,P) mit F = P (),

ein Laplacescher Wahrscheinlichkeitsraum.
Sei

T, (X) = #{Iterationen in X } = #{Teilfolgen der Nullen oder Einsen}
= #{Wechselstellen von 0 auf 1 oder von 1 auf 0} + 1.

Zum Beispiel ist fir x = (0,1,1,1,0,0,0,1,0,1,1,1,0,0), T,(x) =7 =6 + 1.
T,,(X) wird folgendermafen als Teststatistik fiir Hy vs. H; benutzt. Hy wird abgelehnt,
falls T'(x) klein ist, das heift, falls T}, (x) < FT:Ll(a). Dies ist ein Test zum Niveau a.. Wie

berechnen wir die Quantile FT_nl?

Satz 1.5.1. Unter Hj gelten folgende Aussagen:

falls k = 21,

ny—1), (ng—1 n1—1) (ng—1
(R e M S
ny
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2.
ET, =14 "2
n
3.
2nina(2ning — n
Var (1) = 2 )
Beweis. 1. Wir nehmen an, dal k& = 2i (der ungerade Fall ist analog). Wie kénnen

i Klumpen von Einsen gewadhlt werden? Die Anzahl dieser Mdglichkeiten = die
Anzahl der Moglichkeiten, wie ny Teilchen auf ¢ Klassen verteilt werden.

0[00] ... |0] (121)

Dies ist gleich der Anzahl an Mé&glichkeiten, wie ¢ — 1 Trennwinde auf n; — 1
Positionen verteilt werden kénnen = (721__11) Das selbe gilt fiir die Nullen.

2. Sei Y} = ]I{Xj,1 75 Xj}j:2

n

SET(X)=1+Y EY;=1+) P(X;1 #X,).

j=2 J=2
2(, %) e e T
P(Xjo1 # X;) = —psls =g, 2RI =D
() (e
~ 2n3(n —n1)
 (n—1)n
. 2nming
n(n—1)
Daraus folgt
277,177,2 ning
ET,=1 —1)——=14+2
" +(n )n(n —1) + n

Ubungsaufgabe 1.5.1. Beweisen Sie Punkt 3.
O

Beispiel 1.5.1 (Test von Wald-Wolfowitz). Seien Y = (Y1,...,Y,), Z = (Z1,...,2Zy)
unabhéngige Stichproben von unabhingigen und identisch verteilten Zufallsvariablen,
Y, ~F, Z; ~ G. Getestet werden soll:

Hy: F=Gvs. H : F#G.
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Sei (V,2) = M1,...,Yn,Z1,...,Zy,) und seien X| Stichprobenvariablen von (Y, Z2), i =

1,...,n, n =n1 + ng. Wir bilden die Ordnungsstatistiken XEZ.), 1 =1,...,n und setzen

(
0, falls Xéi) =Zjfireinj=1,...,no.

o { 1, falls X’i) =Y fiireinj=1,...,n,
7
Unter Hy sind die Stichprobenwerte in (Y, Z) gut gemischt, das heift jede Kombination
von Ound 1in (X1, ..., X,,) ist gleichwahrscheinlich. Darum kénnen wir den Iterationstest
auf Zufalligkeit anwenden, um Hy vs. Hy zu testen: Hy wird verworfen, falls T, (z) <
FYa), z = (z1,...,79)-
Wie kénnen die Quantile von Fr, fiir grofse n berechnet werden? Falls

Ut

— p e (0,1),
Ea—— (0,1)

dann ist 7T, asymptotisch normalverteilt.

Satz 1.5.2. Unter der obigen Voraussetzung gilt:

ET,
lim —" =2p(1 —p)
n—oo N
1
lim —VarT,, = 4172(1 —P)2
n—oo n
T, —2p(1 —
n 2P dy oy N, falls s pe (0,1).
2v/np(l —p) noee e

So kénnen Quantile von T, ndherungsweise fiir grofse n folgendermafen berechnet werden:

(Tn —2np(1 — p) L= 2np(1 — p))
2vnp(l—p) ~ 2y/np(l—p)

. Fp ! (a) — 2np(1 — p)
2y/np(1 - p)
Fp ! (a) — 2np(1 — p)
2y/np(1 - p)

Damit erhalten wir fiir die Quantile:

ac:Fanl (o)

= 2o R

Fpl(a) = 2np(1 = p) + 2v/np(1 = p) - 24

ni

In der Praxis setzt man p = T

fiir p ein.



2 Lineare Regression

In Stochastik I betrachteten wir die einfache lineare Regression der Form
Yi=0o+ biwit+e;, i=1,...,n

In Matrix-Form schreiben wir Y = X + ¢, wobei Y = (Y3,...,Y,)" der Vektor der
Zielzufallsvariablen ist,

1 =
1 )
X = _
1 x,
eine (nx2)-Matrix, die die Ausgangsvariablen x;,7 = 1, ..., n enthdlt und deshalb Design-
Matriz genannt wird, 8 = (8o, 1) der Parametervektor und € = (e1,...,&,)" der

Vektor der Stérgrofen. Bisher waren oft g; ~ N(0, ¢2) fiir i = 1,...,n und ¢ ~ N(0,Z -
o?) multivariat normalverteilt.

Die multivariate (das bedeutet, nicht einfache) lineare Regression lédsst eine beliebige
(n x m)-Design-Matrix

X = (wzj) =1,..., n
Jj=1,...m
und einen m-dimensionalen Parametervektor 8 = (B, ..., Bm) ' zu, fiir m > 2. Das heift,
es gilt
Y =X0+c¢, (2.0.1)

wobei € ~ N(0, K) ein multivariat normalverteilter Zufallsvektor der Storgrofen mit
Kovarianzmatrix K ist, die im Allgemeinen nicht unabhéngig voneinander sind:
K # diag (a%,... 02).

rYn

Das Ziel dieses Kapitels ist es, Schitzer und Tests fiir 5 zu entwickeln. Zuvor miissen
jedoch die Figenschaften der multivariaten Normalverteilung untersucht werden.

2.1 Multivariate Normalverteilung

Im Vorlesungsskript Wahrscheinlichkeitsrechnung wurde die multivariate Normalvertei-
lung in Beispiel 3.4.1 folgendermafen eingefiihrt:

55
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Definition 2.1.1. Essei X = (X1,...,X,,) " ein n-dimensionaler Zufallsvektor, u € R™,
K eine symmetrische, positiv definite (n x n)-Matrix. X ist multivariat normalverteilt
mit den Parametern g und K (X ~ N(u, K)), falls X absolut stetig verteilt ist mit der
Dichte

1 1
(27T)”/2 det

1

T -1 o T n
(K>exp{—(x—u) K (:U—u)},x—(:rl,...,xn) e R™

fx(z) = 5

Wir geben drei weitere Definitionen von N(u, K) an und wollen die Zusammenhinge
zwischen ihnen untersuchen:

Definition 2.1.2. Der Zufallsvektor X = (Xi,...,X,,)" ist multivariat normalverteilt
(X ~ N(u, K)) mit Parametern ;1 € R™ und K (eine symmetrische, nicht-negativ definite
(n x n)-Matrix), falls die charakteristische Funktion ¢x(t) = Ee'tX) ¢ € R™, gegeben
ist durch

1
vx(t) = exp {itT,u - QtTKt} , teR"

Definition 2.1.3. Der Zufallsvektor X = (Xi,...,X,)" ist multivariat normalverteilt
(X ~ N(u, K)) mit Parametern g € R™ und einer symmetrischen, nicht negativ definiten
(n x n)-Matrix K, falls

Ya € R" : die Zufallsvariable (a, X) =a'X ~ N(a'p,a" Ka)
eindimensional normalverteilt ist.

Definition 2.1.4. Es sei p € R", K eine nicht-negativ definite, symmetrische (n x n)-
Matrix. Ein Zufallsvektor X = (Xi,...,X,)" ist multivariat normalverteilt mit Para-
metern g und K (X ~ N(u, K)), falls

xLutc-y,

wobei C eine (n x m) - Matrix mit rang(C) =m, K = C-CT und Y ~ N(0,Z) € R™ ein
m-dimensionaler Zufallsvektor mit unabhéingigen und identisch verteilten Koordinaten
Y; ~N(0,1)ist, j=1,...,m.

Bemerkung: Dies ist das Analogon im eindimensionalen Fall: Y ~ N(u,0?) < Y 4
p~+oX mit X ~ N(0,1).

Ubungsaufgabe 2.1.1. Priifen Sie, da die in Definition angegebene Dichte

1 1
(2m)"/2 | /det

= exp{—l ) Kz — M)} ,z€R"

fx(z) = 5

tatsachlich eine Verteilungsdichte darstellt.
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Lemma 2.1.1. Es seien X und Y n-dimensionale Zufallsvektoren mit charakteristischen
Funktionen

ox(t) = EeitX) _ g eit' X
oy (t) = EeitY) — Reit'Y
fiir ¢ € R". Es gelten folgende Eigenschaften:
1. Eindeutigkeitssatz:

XLy opx(t)=py(t), teR”
2. Falls X und Y unabhéngig sind, dann gilt:
x4y (t) = ox(t) - ev(t), teR™
ohne Beweis: vergleiche den Beweis des Satzes 5.1.1 (5), Folgerung 5.1.1, Vorlesungsskript

WR.

Satz 2.1.1. 1. Die Definitionen - der multivariaten Normalverteilung sind
dquivalent.

2. Die Definitionen und sind im Falle n = m &dquivalent.

Bemerkung 2.1.1. 1. Falls die Matrix K in Definition den vollen Rang n be-
sitzt, so besitzt sie die Dichte aus Definition [2.1.1} Sie wird in dem Fall requldr
genannt.

2. Falls Rang(K) = m < n, dann ist die Verteilung N (p, K) laut Definition auf

dem m-dimensionalen linearen Unterraum
{yeR":y=p+Czx,z € R}

konzentriert. N(u, K) ist in diesem Fall offensichtlich nicht absolutstetig verteilt
und wird daher singuldr genannt.

Beweis. Wir beweisen: Definition & s R2T14

1. a) Wir zeigen: Die Definitionen und sind dquivalent. Dazu ist zu zei-
gen: Fiir die Zufallsvariable X mit der charakteristischen Funktion

1
ox(t) = exp{it"p — itTKt} eVaeR":a' X ~N(a pua Ka).
Es gilt:
. PN (o 1
o, x(1) = Eeit X1 V& exp{it’ p — itTKt} =px(t) VteR.

(Dies nennt man das Verfahren von Cramér-Wold, vergleiche den multivaria-
ten zentralen Grenzwertsatz).
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b) Wir zeigen: Die Definitionen und sind dquivalent. Dazu ist zu zei-
gen: X = 4+ C-Y (mit g, C, und Y wie in Definition 2.1.4) < ¢x(t) =
exp{it" p— 3t Kt}, wobei K = C - CT. Es gilt:

=~
; : , , AT
Gurcy (t) = EelbitCY) Z et TatitTCY _ ity g i(CLY)
Y~N(0,Z) ; 1 1
:(0» ) 6th/14 - exp <_2yT . y> = exp {th,u - §tTC . CTt}

1
= exp {itTu — 2tTKt} .t e R™.

2. Zu zeigen ist: Aus X ~ N(u, K) im Sinne von Definition 2.1.4 Y ~ N(p, K) im
Sinne der Definition [2.1.1] m, Rang(K) = n folgt, dak px = py.

Aus der Definition [2.1.2| (die dquivalent zu Definition [2.1.4]ist) folgt, dafs

1
wx(t) —exp{ ,u—tTKt} t e R",

T T

o) =BTV = [ om0 g K = fa

— it / IS { T, L 1. }
=e . cexpRit x——x K "z pdx
re (27)7/2y/det K P 2

Wir diagonalisieren K : 3 orthogonale (nxn)-Matrix V : VI = V- lund VT KV =
diag(A1, ..., An), wobei A; > 0,4 =1,...,n. Mit der neuen Substitution: z = Vz,
t = Vs erhalten wir:

T
ezt

(277)"/2\/det *Jan

= - d

\/(27r)”/\1 / /exp {zs z Z)\ } 21 .
it zszz i i

= t“H/ Y <2A)dz—et“ ll_IIQONO/\ 3Z = t“He 2

1
= exp { B 58 Tdiag( A1, ..., A )s} = exp {itT,u - 2(VTt)TVTKVVTt}

1
ey (t) = exp {isTVTVz - 2,zTVTK_lv,Z} dz

1 1
. LT LT T T, _ LT n
=exp{ it u 275 VV KVV 't exp{ I 2t Kt},teR.
z z
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2.1.1 Eigenschaften der multivariaten Normalverteilung

Satz 2.1.2. Es sei X = (X1,...,Xn) ~ N, K), p € R", K symmetrisch und nicht-
negativ definit. Dann gelten folgende Eigenschaften:

1. pist der Erwartungswertvektor von X:
EX =pu, dasheibt:EX;=p;,i=1,...,n.
K ist die Kovarianzmatriz von X:

K= (kij); mit k:ij = COV(XZ',X]').

2. Jeder Teilvektor X' = (X;,...,X; )" (1 < i1 < ... < i < n) von X ist
ebenso multivariat normalverteilt, X’ ~ N(u/, K'), wobei p/' = (i, i),
K' = (K;) = (Cov(Xi;, Xy))), j,l = 1,..., k. Insbesondere sind X; ~ N(p;, ki),

wobei k“ == VarXi, 1= 1, Lo, n.

3. Zwei Teilvektoren von X sind unabhéngig genau dann, wenn entsprechende FEle-
mente k;; von K, die ihre Kreuzkovarianzen darstellen, Null sind, das heifit: X’ =
(X1,..., X)) ", X" = (X}41, ..., X,) unabhingig (wobei die Reihenfolge nur wegen
der Einfachheit so gewéhlt wurde, aber unerheblich ist) < k;; = 0 fir 1 < i <k,

j>koderi>k 1<j<k.
K| 0
o= ()

K" und K" sind Kovarianzmatrizen von X’ bzw. X”.

4. Faltungsstabilitdt: Falls X und Y unabhingige, n-dimensionale Zufallsvektoren mit
X ~ N(p1, K1) und Y ~ N(ug, K3) sind, dann ist

X+Y~N(u1+ﬂ27K1+K2).

Ubungsaufgabe 2.1.2. Beweisen Sie Satz

Satz 2.1.3 (Lineare Transformation von N(u,K)). Sei X ~ N(u, K) ein n-dimensi-
onaler Zufallsvektor, A eine (m x n)-Matrix mit Rang(A) = m < n, b € R™. Dann ist
der Zufallsvektor Y = AX + b multivariat normalverteilt:

Y ~ N(Au+b,AKAT).

Beweis. Ohne Beschriankung der Allgemeinheit setzen wir 4 = 0 und b = 0, weil py _4(t) =

—itTa

e -y (t), fiir a = Ap + b. Es ist zu zeigen:
Y =AX, X ~N(0,K)=Y ~ N(0,AKA")
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Es ist

. ) T
oy (t) = pax(t) = Bt AX = R (XA
(Def:2 1.2) exp {—QSTKS} = exp {_2tTAKATt} te R™

~Y~N <O,AKAT) .

2.1.2 Lineare und quadratische Formen von normalverteilten
Zufallsvariablen

Definition 2.1.5. Seien X = (X1,...,X,)" und Y = (Y1,...,Y;,) " Zufallsvektoren auf
(Q, F, P), A eine (n x n)-Matrix aus R, die symmetrisch ist.

1. Z = AX heikt lineare Form von X mit Matrix A.
2. Z =Y TAX heifit bilineare Form von X und Y mit Matrix A,

n o n
Z = Z ZainjY;.

i=1 j=1

3. Die Zufallsvariable Z = X T AX (die eine bilineare Form aus 2. mit ¥ = X ist)
heifst quadratische Form von X mit Matrix A.

Satz 2.1.4. Sei Z = Y " AX eine bilineare Form von Zufallsvektoren X,Y € R™ bzgl. der
symmetrischen Matrix A. Falls px = EX, py = EY und Kxy = (Cov(X;,Y5))
die Kreuzkovarianzmatrix von X und Y ist, dann gilt:

i,j=1,...,n

EZ =y Apx + Spur(AK xy).
Beweis.

E Z = ESpur(Z) = ESpur(Y "AX) (wegen Spur(AB) = Spur(BA))
= ESpur(AXY ") = Spur(AE (XY ")) (wobei XY = (X;Y;)ij=1..n)

= Spur (AE ((X —px) - (Y —py) T+ pxY T+ Xpy — MXM)T/»
= Spur (A(KXY + Xy F Xy — MXMT/)) = Spur (AKXY + AMXMJ)
= Spur(AKxy) + Spur (AHX : ,u;)

= Spur (u;AuX> + Spur (AK xy) = py-Apx + Spur (AKxy) .
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Folgerung 2.1.1. Fiir quadratische Formen gilt

E(X"AX) = ukAux + Spur(A - K),

wobei px = E X und K die Kovarianzmatrix von X ist.

Satz 2.1.5 (Kovarianz quadratischer Formen). Es sei X ~ N(u, K) ein n-dimensionaler
Zufallsvektor und A, B € R™ zwei symmetrische (n x n)-Matrizen. Dann gilt Folgendes:

Cov (XTAX, XUBX) — 44" AK By + 2 - Spur(AK BK).

Lemma 2.1.2 (gemischte Momente). Es sei Y = (Y1,...,Y,)" ~ N(0, K) ein Zufalls-
vektor. Dann gilt Folgendes:

E (YijYk) =0,
E (Y;Y;Y,Y)) = kij - kg + ka - kjy + kjie -k, 1 <4, 5,k 1 <n,

wobel K = (kjj)i j=1,..n die Kovarianzmatrix von Y ist.

Ubungsaufgabe 2.1.3. Beweisen Sie dieses Lemma.
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Beweis von Satz[2.1.5.

Cov(XTAX, X BX)=E (XTAX . XTBX) ~E (XTAX) E (XTBX)

=Y =Y =Y =Y
((m )T AKX ) (eru)TB(eru))
- (MTAM + Spur(AK)) (uTB,u + Spur(BK))

—E [(YTAY +ouT AY + ,ILTA,U,> <YTBY +2u  BY + uTBu)]

(Folgerung [2.1.1)) E

—u"Ap-p B — " Ap- Spur(BK) — w' By - Spur(AK)
— Spur(AK) - Spur(BK)
—E (YTAY . YTBY) + 2R (YTAY - ;FBY) +E (YTAY) T By
+oE (/FAY : YTBY> ) (,JAY - ;FBY) +2E (,FAY) W By
=0
oy Au-E (YTBY> v ou A Eu " BY +u  Ap- " Bu— T Ap- i By
=0
— u" Ap - Spur(BK) — pu" B - Spur(AK) — Spur(AK) - Spur(BK)
=0 (Lemma[2.1.2)
——f
—F (YTAY - YTBY> + 24 BE (Y - YTAY) 17 By - Spur(AK)
=0 =K
—_—— —
+2uT AE (Y - YTBY) 4uT AR (YYT) By + 1" Ay - Spur(BK)
— u" Ap - Spur(BK) — pu" Bu - Spur(AK) — Spur(AK)Spur(BK)
~E (YTAY : YTBY> + 44" AK By — Spur(AK) - Spur(BK).

Wegen
n n n
E(YTAY - YTBY) =E [ 3 ay¥iVy- 3 uWadi | = D aybuE (VYY)
1,7=1 k=1 1,7,k,l=1
n
L

ivjvkvlzl
n

= Zaijkij' Zbkl‘kkl+2 Z aij - kji - bk - ki

ig—1 k=1 ij kd=1
=2 - Spur (AKBK) + Spur (AK) - Spur (BK)
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folgt:

Cov (XTAX, XTBX)
= 2. Spur (AK BK) 4 Spur (AK) - Spur (BK) + 4" AK By
— Spur (AK) - Spur (BK) = 4u" AKBu + 2 - Spur(AK BK).

Folgerung 2.1.2.
Var (XTAX) = 4p" AK Ap + 2 - Spur ((AK)?)

Satz 2.1.6. Es seien X ~ N(u, K) und A, B € R zwei symmetrische Matrizen. Dann
gilt:

Cov(BX,XTAX) =2BK Ay

Beweis.

T (Folgerung 2.1.1) T T

Cov(BX, X TAX) o E [(BX - Bu)(XTAX — u" Ay — spur(AK))}
~E [B(X ~ ) ((X ) TAX — ) + 20T AX — 20 Ap — Spur(AK))} ,

denn

(X —p)TAX —p) = XTAX —puTAX — X TAp+p' Ap
und mit der Substitution Z = X — u (und damit E Z = 0)

Cov(BX,X AX)=E [BZ(ZTAZ +ouTAZ — Spur(AK))]

=E(BZ-Z"AZ)+2E(BZ - " AZ) — Spur(AK) - E(BZ)
=92R(BZ-Z"Ap)+ R (BZZ"AZ)=2B E(ZZ") An

———
CovX=K
+B-E(ZZ"AZ) = 2BK Ay,
=0
wegen Z ~ N(0, K) und Lemma und dem Beweis von Satz [2.1.5 O

Definition 2.1.6. Es seien X; ~ N(p;, 1), @ = 1,...,n unabhiingig. Dann besitzt die
Zufallsvariable

Y=X{+...+ X2
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die sogenannte nicht-zentrale X%’#—Verteilung mit n Freiheitsgraden und dem Nichtzen-
tralitdtsparameter

n
p=> .
=1

(in Stochastik I betrachteten wir den Spezialfall der zentralen x2-Verteilung mit p = 0).

In Bemerkung 5.2.1, Vorlesungsskript WR, haben wir momenterzeugende Funktionen
von Zufallsvariablen eingefiihrt. Jetzt bendtigen wir flir den Beweis des Satzes
folgenden Eindeutigkeitssatz:

Lemma 2.1.3 (Eindeutigkeitssatz fir momenterzeugende Funktionen). Es seien X und
Xo zwei absolutstetige Zufallsvariablen mit momenterzeugenden Funktionen

My, (t) =EeXi, i=1,2,

die auf einem Intervall (a,b) definiert sind. Falls f; und f> die Dichten der Verteilung
von X7 und X» sind, dann gilt

fi(z) = fa(z) fiir fast alle x € R & My, (t) = Mx,(t), t € (a,b).
Ohne Beweis.

Satz 2.1.7. Die Dichte einer X%u—verteilten Zufallsvariable X (mit n € N und p > 0) ist
gegeben durch die Mischung der Dichten von X% 1oy~ Verteilungen mit Mischungsvariable
J ~ Poisson(u/2):

) : o n42j 4
e—n/2 W27 et S, T >0,
fx(z) = ];) T (2.1.1)
0, z < 0.

Beweis. 1. Wir berechnen zuerst Mx(t), X ~ X?wt:

Mx(t) =E (%) = F exp {ti){f}

i=1

(wi—p)? 1
. / etx? e 2“ d$l <t < 57 )(2 ~ N(,LL“ 1))

—0o0

s
I
—

—.
3 -
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Es gilt:
2
i — b 1
ta? — (%QM) = 5(215:1:? — 2?4 2z — p?)
L 2 T T 2
= —= ; 1—2t — 2x; i L — L <

IR RE )

_ 1 (wi(1=2t) —p)® 5 2
2 1— 92t M 1o

(i (1—2t) — )

Wir substituieren

R e
und erhalten
e , [t 1 [
Mx(t) = (1—2t) 2H6Xp wi\ T ) 27T/€ > dy;
i=1 N
=1
(1—2t)"2 e o i 2 L e _H t < !
— [— - ex . . = . X —.
Pli—ae &M~ oo P T2 2
2. Es sel Y eine Zufallsvariable mit der Dichte (2.1.1). Wir berechnen My (t):
00 i o0 _z n+2j g
2)7 .
My(t)zZe*%(“/,,) : /em- ¢ :;? ’ - do
. n n
=0 J J T ( g J) L n4%
:MX%+2]' (t)zm (Stochastik I, Satz 3.2.1)
NI ey
T 1 _opnE 21 —28)/) 4!
(1—2t)2 = 2(1—2t) g!

R S poo Voot (=1 20))
S (1-2n)F p{ 2+2(1—2t)}_(12t)3 p{ 2. (1—2t) }

Nach Lemma gilt dann, fx(x) = fy(x) fiir fast alle z € R.
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Bemerkung 2.1.2. 1. Die Definition kann in folgender Form umgeschrieben
werden:

Falls X ~ N(i,I), i = (pa,...,p)", dann gilt |X[* = XTX ~ x2 . wobei
=

2. Die obige Eigenschaft kann auf X ~ N(f, K), mit einer symmetrischen, positiv
definiten (n x n)-Matrix K verallgemeinert werden:

XTK'X ~ X2, wobel i=j K,
denn weil K positiv definit ist, gibt es ein K%, sodaf K = K3K3'. Dann gilt
_1 _1 . _1 _1i7T _1 1 1T _1T
Y=K22X~NK 2u,Z), weil K 2KK 2 =K 2-K2-K2 K2 =7

und daher

Punkt 1 o
~Y ~
n,pm?

.
YTy mit i = (K—%ﬁ) K 3i=0"K 3 K= K[

Satz 2.1.8. Es sei X ~ N(u, K), wobei K eine symmetrische, positiv definite (n x n)-
Matrix ist, und sei A eine weitere symmetrische (n x n)-Matrix mit der Eigenschaft
AK = (AK)? (Idempotenz) und Rang(A) = r < n. Dann gilt:

XTAX ~ X%ﬂ, wobei i = pu' Ap.
Beweis. Wir zeigen, daf A nicht negativ definit ist.

AK = (AK)? = AK - AK | K}
— A=AKA= Vz eR": 2" Az = 2" AK Ax

= (Az)"K(Az) > 0 wegen der positiven Definitheit von K.
=y =y

—> A ist nicht negativ definit.
— 3H : eine (n x r)-Matrix mit Rang(H) =r: A= HH'
Somit gilt
X"AX=X"H-H'X=H"X)" H'X=Y"Y
—
=Y
Esgilt: Y ~ N(H "1, Z,), denn nach Satz[2.1.3|ist Y ~ N(H "y, H' K H) und Rang(H) =
r. Das heifit, H ' H ist eine invertierbare (r x r)-Matrix, und
H'KH=H"HWH'"H-H'KH-(H" H)(H"H)™!
—AKA=A
=H'H)'H"- A HH'H)!
<~
=HHT

=7
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Dann ist
XTAX =|Y P xipmit = (H ' p)® =p H-H p=p' Ap.
O

Satz 2.1.9 (Unabhingigkeit). Es sei X ~ N(u, K) und K eine symmetrische, nicht-
negativ definite (n x n)-Matrix.

1. Es seien A, B (r; x n) bzw. (ro X n)-Matrizen, r1,79 < n mit AKB' = 0. Dann
sind die Vektoren AX und BX unabhéngig.

2. Sei ferner C' eine symmetrische, nicht-negativ definite (n x n)-Matrix mit der Ei-
genschaft AKC = 0. Dann sind AX und X" CX unabhiingig.

Beweis. 1. Nach Satz[2.1.2} 3) gilt: AX und BX sind unabhiingig <= ¢(ax px)(t) =
oax(t) - opx(t), t = (t1,t2)T € R"1H72 ¢, € R™, ty € R™2. Es ist zu zeigen:

Pax.px)(t) = R liti A+t; B)-X L @ it] AX g ity BX

Es gilt

. . T
Poax.sx)(t) = E i(t] A+t] B)-X (DeIRLY i(t] Att] B)p—5-(¢] A+t] B)K-(t] A+t] B) 7
und mit

-
(tIA + t2TB> K- (tIA + tZTB)
T N N T T A" T TR\
=t] AKA"t; +t] -AKB' to+ty - BKA' t;+ty BKB'ty
=0 =(AKBT)T=0
ist
O(AX,BX) (t) = pit A=t AKATty ity B—5t] BKB t
=pax(t1) - ppx(t2), t1 €R™, ty €R™
2. C ist symmetrisch, nicht-negativ definit = Es gibt eine (n x r)-Matrix H mit
Rang(H) =r <nund C = HH'", = H' H hat Rang r und ist somit invertierbar.
Dann gilt:
X'"OCX=X"HH'X=H"X)" -H'X = |H"X.

Falls AX und H ' X unabhingig sind, dann sind auch AX und X 'CX = |H " X ?
unabhéngig, nach dem Transformationssatz fiir Zufallsvektoren. Nach 1) sind AX
und H "X unabhiingig, falls AK(H")" = AKH = 0. Da nach Voraussetzung

AKC=AKH -H' =0=— AKH-H"H =0,
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da aber 3(H T H)™, folgt, daf

0=AKH-H'H-(H'H)™' = AKH — AKH =0
— AX und H'X sind unabhingig
— AX und X "CX sind unabhiingig.

O]

2.2 Multivariate lineare Regressionsmodelle mit vollem Rang
Die multivariate lineare Regression hat die Form
Y =X0+c¢,

wobei Y = (Y1,...,Y,,) " der Zufallsvektor der Zielvariablen ist,

X =) ) .,

7j=1,....m
ist eine deterministische Design-Matriz mit vollem Rang, Rang(X) = r = m < n,
B = (B1,...,0m)" ist der Parametervektor und € = (e1,...,e,)" ist der Zufallsvektor

der Stérgréfien, mit Ee; = 0, Vare; = 02 > 0. Das Ziel dieses Abschnittes wird sein, /3
und o2 geeignet zu schiitzen.

2.2.1 Methode der kleinsten Quadrate

Sei X = (X1,...,Xy), wobei die deterministischen Vektoren X; = (z1;,z2;, .. .,xnj)T,
j = 1,...,m einen m-dimensionalen linearen Unterraum Lx = (Xi,...,X,,) aufspan-
nen. Sei
) =2y - xpp = 1S (i s )
€ T —;'1 i — Zi1P1 — - — Tim m)
1=

die mittlere quadratische Abweichung zwischen Y und X g.
Der MKQ-Schétzer 8 fir B ist definiert durch

B = argmin(e(f)). (2.2.1)

Warum existiert eine Losung 5 € R™ des quadratischen Optimierungsproblems ?
Geometrisch kann X § als die orthogonale Projektion des Datenvektors Y auf den linearen
Unterraum Lx interpretiert werden. Formal zeigen wir die Existenz der Losung mit
folgendem Satz.
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Abbildung 2.1: Projektion auf den linearen Unterraum L x

Satz 2.2.1. Unter den obigen Voraussetzungen existiert der eindeutig bestimmte MKQ-
Schitzer 3, der die Losung der sogenannten Normalengleichung ist:

X'xXp=Xx"y. (2.2.2)
Daher gilt:
B= (XTX)_1 xTy.
Beweis. Die notwendige Bedingung fiir die Existenz des Minimums ist €/(3) = 0, das

heifit
de(p oe(B
e,(ﬁ) = ( ;(31),..., 56(3m)> =0.

Es gilt:
¢(8) = % (XTXﬁ _ XTY)

— [ ist eine Losung der Normalengleichung X T X3 = X TY. Wir zeigen die hinreichen-
de Bedingung des Minimums:

" o 826(6) _ 2 T
¢h) = <aﬁi8/8j)i,j:1,...m B gX s

X T X ist symmetrisch und positiv definit, weil X einen vollen Rang hat:

Vy#0,yeR™: y ' XTXy=(Xy) Xy=|Xy*>0
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und aus y # 0 = Xy # 0, folgt, dak €”(B) positiv definit ist. Also ist X " X invertier-
bar. Das heifit, 3 ist der Minimumpunkt von e(). Den Schéatzer B = (XTX)_1 XTY be-

kommt man, indem man die Normalengleichung X " X3 = X TY von links mit (X X ) -
multipliziert. O

Beispiel 2.2.1. 1. Finfache lineare Regression

1 I
1 X9 -
X=1. . m=2,0=(01,P) ,Y=XB+e¢
1 =z,
B = (51, BQ) ergibt den MKQ-Schitzer aus der Stochastik 1
R S2 R - o
/BQ_S;(YJ 51: TL_—Xn/BQ,
XX
wobei

Ubungsaufgabe 2.2.1. Beweisen Sie dies!
2. Multiple lineare Regression
Y = X + ¢ mit Designmatrix

1 z11 - z1m
X=1: : + fiir 8= (Bo, B1,--+»Bm) " -

1 1 -0 Tom

Der MKQ-Schitzer 5 = (X X) ' X TY ist offensichtlich ein linearer Schitzer beziig-
lich Y.

Wir werden jetzt zeigen, daf 3 der beste lineare, erwartungstreue Schdtzer von § (im
Englischen BLUE = best linear unbiased estimator ) in der Klasse

zz{B:Ay+b:E3:5}

aller linearen erwartungstreuen Schitzer ist.
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Satz 2.2.2 (Giiteeigenschaften des MKQ)-Schitzers 3) Es sei Y = X + ¢ ein multiva-
riates lineares Regressionsmodell mit vollem Rang m und Storgrofken € = (eq,. .., sn)T
die folgende Voraussetzungen erfiillen:

7

Ee=0, Cov(ejej) = 02(5ij, i,j=1,...,n fir ein 02 € (0,00).
Dann gilt Folgendes:
1. Der MKQ-Schitzer 3 = (XTX)f1 XTY ist erwartungstreu: E 3 = .
2. Cov(B) =0 (XTX)™"
3. B besitzt die minimale Varianz:
VBeL: Varﬁj > V:MBJ-7 j=1,...,m.
Beweis. 1. Es gilt:
EB=E [(XTX>_1 XT(XB+ 5)}
- (XTX) T XTx. B+ <XTX)71XT . Ee
<=

=0
=3 VB eR™

2. Fiir alle § = AY + b € L gilt:

B=EB=AEY +b=AXB+b VBeR™
—b=0, AX=T.
— =AY = A(XB+¢) = AXB + Ae

= [+ Ae.
Fir
B= <XTX>71 xTy
—
gilt:

CovB = (B ((6—5:) (8 - 5j>>>i,j:1,...,m

=E (Aa- (AE)T) =E (AEETAT> = AE <5€T) AT
— A-0?TAT = 2447 = o2 (XTX)_l xT ((XTX)_1 XT>T

~1 —1 ~1
= 52 (XTX) xTx <XTX) = o2 <XTX> .
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3. Sei B € L, B =+ Ac. Zu zeigen ist, dak

=X (X'X);Y, i=1,...,m.

(Cov(B))i. =o2(AAT); > (COV(B)>

)

0

Sei D=A— (X"X)"'XT dann folgt: A=D+ (XTX)71XT,
-1 —1T
AAT = <D + <XTX> XT> (DT +X <XTX) )

~1
_pDT + (XTX> . weil

DX (XTX>_1 - (AX - (XTX>_1 XTX) (XTX)_l =0

=7 ~~
=7

<XTX>71 XD = (XTX)A X7 (AT - X (XTX)1T>

- (XTX>_1 ((ax)" -xTx (XTX)_1> ~0.

=T

=7

-1 -1
= (a47), = (p07) + (¥Tx) = (x7x),
2 21 2 2
>0
:>Var3i <VarfB;, i=1,...,m.

O]

Satz 2.2.3. Es sei Bn der MKQ-Schitzer im oben eingefiihrten multivariaten linearen
Regressionsmodell. Sei {a,},y eine Zahlenfolge mit a, # 0, n € N, a,, — 0 (n — o0).
Es wird vorausgesetzt, dak eine invertierbare (m x m)-Matrix @ existiert mit

Q= lim a, (X,T Xn> .
n—oo

Dann ist Bn schwach konsistent:

Beweis.
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P(‘Bn6‘>s):IP<Bn,B‘2>sQ>
:P<§:Bm 5z2>€2><P<G{Bm—ﬁi2>2}>
i=1 =1

< mz Varf n_, 0, (aus der Ungleichung von Tschebyschew)

falls Var B;, — 0, i=1,...,m.

n—oo
Var an ist ein Diagonaleintrag von der Matrix

A (Satd22.2) -1
/3 (040.2<X;L|—Xn> )

Covi,

Wenn wir zeigen, daf Coan — 0, ist der Satz bewiesen.
n—o0
Es existiert
1 -1
O '= lim — (XnT Xn)
n—00 Ay,

und damit gilt:

. —1 1 -1
lim Covf, = o2 lim (X,T Xn> =% lim a, - — (XJ Xn)
n—oo —00 n—o0

=0-Q ' s%=0.
O]
2.2.2 Schitzer der Varianz o2
Wir fithren den Schiitzer 62 fiir die Varianz o2 der Stérgrofen ¢; folgendermafien ein:
1 12
52 = ‘Y - Xﬁ‘ . (2.2.3)
n—m

Dies ist eine verallgemeinerte Version des Varianzschitzers aus der einfachen linearen
Regression, die wir bereits in Stochastik 1 kennenlernten. Dabei ist Y = Y — X3 der
Vektor der Residuen.

Satz 2.2.4 (Erwartungstreue). Der Varianzschitzer

1 (2
52 = ’Y—Xﬁ‘

n—m

ist erwartungstreu. Das heifst,
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Beweis.
52 n_lm (Y_XB)T<Y—XB)
= - E — (v- X(XTX)”XTY)T (Y - X (x7x) - XTY>
_ (DY) DY
n—m

wobei D =7 — X(XTX)7'X T eine (n x n)-Matrix ist. Dann ist

5% = LYTDTDY = LYTDW =

n—m n—m n—m

YT DY, falls

D" = D und D? = D (das heifit, daf D symmetrisch und idempotent ist). Tats#chlich
gilt:

DT =17- <XT>T (XTX>T_1XT —T-X <XTX>_1 XT=D.
D% = (I - X(XTX)*XT) <I e (XTX) o XT>
—T-2X (XTX)A XT4+x (XTX)A XTX (XTX)il X7
—T-X (XTX>_1XT ~D.

Weiterhin gilt:

ot =~ _1 — - Spur (YTDY) Spur (DYYT)
—E5? = - _1 — - Spur (DE (YYT)) = - _2m -Spur (D),
denn
Spur (D E (YYT))
- spur(D(Xﬁ)(m)T +DXBEe +D Ee(Xp) +D .@f_j)
=0 =0 =Cove =021
und

DX = <I—X(XTX)_1XT> X

—1
:X—X<XTX> X'X=X_-X=0.
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Es bleibt zu zeigen, daf Spur(D) =n —m:
-1 -1
Spur(D) = Spur (I - X <XTX) XT) = Spur(Z) — Spur <X (XTX) XT>

=n— Spur(XTX- (XTX>_1> =n-—m.

eine (m x m)-Matrix

2.2.3 Maximum-Likelihood-Schitzer fiir 8 und o2

Um Maximum-Likelihood-Schiitzer fiir 3 und o bzw. Verteilungseigenschaften der MKQ-
Schitzer B und 62 herleiten zu kénnen, muf die Verteilung von e bzw. Y prizisiert
werden. Wir werden ab sofort normalverteilte Storgrofen betrachten, die unabhéngig
und identisch verteilt sind:

e~N(0,06°Z), o*>0.
Daraus folgt:
Y ~ N (XB,0%T).

Wie sieht die Verteilung der MKQ-Schétzer B und 62 aus? Da B = (XTX) ' XTY linear
von Y abhingt, erwartungstreu ist und die Covf = 62 (XTX)_1 besitzt, gilt:

B~ N <5,02 (XTX)_1>

Berechnen wir nun Maximum-Likelihood-Schiitzer fir 8 und o2, und zwar 8 und &2.
Dann zeigen wir, dafs sie im Wesentlichen mit den MKQ-Schétzern iibereinstimmen.

=3,
n

0% =

o

Betrachten wir zunéichst die Likelihood-Funktion von Y:

B85 = 1) = e -ep{ 5 - X8 X))

und die Log-Likelihood-Funktion

n n 1
logL(y,B,a2) = —§log (2m) —§log (02) ) ly — X5|2-

=g

Die Maximum-Likelihood-Schéatzer sind dann

(575—2) = argmax IOgL(y,ﬁ,UQ),
BER™ 52>0

sofern sie existieren.
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Satz 2.2.5 (Mazimum-Likelihood-Schitzung von § und 6%). Es existieren eindeutig be-
stimmte Maximum-Likelihood-Schitzer fiir 3 und o2, die folgendermafen aussehen:

/%:B:(XTX)4X¢Y
g nm—m

1 2
52 _ #:fh—xﬂ.
n n

Beweis. Wir fixieren o2 > 0 und suchen

B = argmaxlog L(Y, 8, 0%) = argmin |V — Xﬁ|2 ,
BeER™ BeR™

woraus folgt, daR S mit dem bekannten MKQ-Schitzer B = (XTX)_l XTY identisch
ist, der nicht von o2 abhingt. Berechnen wir jetzt

2 — argmaxlog L (Y, A, 02> = argmax g(c?).

02>0 02>0

o
Es gilt

2 2
—r —00Q, — —00Q,
g (U ) 02—+00 o 9 (U ) 020 >
weil [Y — XB]% # 0, dadurch, dak Y ~ N (XB,0°T) € {Xy: y € R™} mit Wahrschein-
lichkeit Null. Da

nl Y - Xp|

QI(UQ) =—5 35t 9 (02)2

1 12
C oy =2

:—Y—X‘
52 0, ist & n’ 15}

ein Maximumpunkt von g(c?), das heifit, 52 ist ein Maximum-Likelihood-Schitzer fiir
a?. O
Satz 2.2.6. Unter den obigen Voraussetzungen gilt:
1. E¢? = %02, das heifit, 52 ist nicht erwartungstreu; allerdings ist er asymptotisch
unverzerrt.

2 2

2 n—m s 2
~ Xn—m7 o2 gm ~ Xn—m'

Beweis. 1. Trivial (vergleiche den Beweis von Satz [2.2.4])

n ~
2. pO’

2. Wir zeigen den Satz nur fiir 62.

n—m
2

1 ~12
6* = —|v - x4
(o2 (o2

1+ .
= pY D Y (nach dem Beweis von Satz [2.2.4))
=D2
1 1
:EﬂDYfDYZBEQNX5+@ﬂTLMX5+@

_F;(D@TDg__<ZT>l)<j),
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wobel
€
— | ~N(0,7).
(0> 0,1)
Nach Satz [2.1.8] gilt
-
el ¢
—D—~ X12na
c o

wobei r = Rang(D), weil DZ = D idempotent ist. Falls r = n—m, dann ist “3"

X2 _ - Zeigen wir, daft Rang(D) = r = n—m. Aus der linearen Algebra ist bekannt,
daf Rang(D) = n—dim(Kern(D)). Wir zeigen, dak Kern(D) = {Xz : € R™} und
damit dim(Kern(D)) = m, weil Rang(X) = m. Es ist {Xz: 2 € R"} C Kern(D),

da

~

DX =T-XX"X)'XxXHx=X-(X"X)"'xTx =0.
und Kern(D) C { Xz : x € R™}, weil
Vy e Kern(D): Dy=0+= (ZT-X(X'X)"'XT)y=0
Sy=X-X"X)'XY =Xz e {Xz: zcR"}.

T

O

Satz 2.2.7. Sei Y = X[ + ¢ ein multivariates lineares Regressionsmodell mit ¥ =
(Y1,...,Y,) ", Designmatrix X mit Rang(X) =m, 8 = (B1,...,8m)", € ~ N(0,0%T).
Dann sind die Schiitzer 5 = (X' X)'XTY fiir § baw. 62 = L |v — Xp)? fiir o2

n—m

unabhingig voneinander.

Beweis. In diesem Beweis verwenden wir den Satz fiir dessen Anwendung wir 3 als
lineare und 62 als quadratische Form von ¢ darstellen. Es ist in den Beweisen der Sitze

und gezeigt worden, daf

B=B+(X"X)'X"¢,
=A

1
6% = e"De, wobei D=7 - X(X"X)71xT".
n—m

Zusétzlich gilt AD = 0, weil nach dem Beweis des Satzes

(AD)' =DTAT =D - X((X"X)™HT =o.
=0
Da e ~ N(0,02%T), folgt daraus
Ac?ID = 0.

Deshalb sind die Voraussetzungen des Satzes erfiillt, und B und 42 sind unabhingig.
O
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2.2.4 Tests fiir Regressionsparameter

In diesem Abschnitt wird zunéchst die Hypothese
Ho: =B vs. Hi: B # Bo

fiir ein By € R™ getestet. Dafiir definieren wir die Testgrofie

() x7x (5 4)

maé2

Man kann zeigen (vergleiche Satz [2.2.8)), daf unter Hy gilt:

T:

T~ Fm,n—m~

Daraus folgt, dafs Hy abgelehnt werden soll, falls T' > Fy, ,—m. 1—a, Wobei Fip, p—m.1—q das

(1 —a)-Quantil der Fj, y—m-Verteilung darstellt. Dies ist ein Test zum Niveau o € (0, 1).
Spezialfall: Der Fall By = 0 beschreibt einen Test auf Zusammenhang ; das heifst, man

testet, ob die Parameter (i, ..., By, fiir die Beschreibung der Daten Y relevant sind.

Bemerkung 2.2.1. 1. Wie kann man verstehen, daf die Testgrofe 1" tatsdchlich Hy
von H;p unterscheiden soll? Fiihren wir die Bezeichnung

Y=Y- X8
~—
=Y

ein; dabei gilt:
1 <12
e
n—m

und Y ist der Vektor der Residuen.

Ohne Beschrénkung der Allgemeinheit setzen wir Sy = 0. Falls Hy nicht gelten soll,
dann ist 5 # 0, und somit

(XBI* = (XB) ' XB=5"X"X5>0,
weil X den vollen Rang hat. Daraus folgt, dafs Hy abgelehnt werden soll, falls
|2 A2 AT T A
‘Y‘ _ ‘Xﬂ‘ —ATXTX3>0.

In der Testgroke | X 3]2 sind allerdings die Schwankungen der Schétzung von f nicht
beriicksichtigt. Deswegen teilt man | X 3|2 durch 62:

2

T_BTXTXB_ Y
= 2 NTA
meo sy -
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Der Satz von Pythagoras liefert

wobei unter Hy
E |Y‘2 =E|Y]?-E|Y - 1}|2 =no?—E |17\2 gilt, und somit
EY?  (H)no®—E[Y? n-m ( no? )
e( i) =R \ERE )

well E[Y2 =E (YTY) =o%-n, wegenY ~ N(0,02T).

= Die Testgrofe T ist sensibel gegeniiber Abweichungen von Hy.

2. Die GroRe

wird Reststreuung genannt. Mit deren Hilfe kann der Begriff des Bestimmtheitsma-
Bes R? aus der Stochastik I wie folgt verallgemeinert werden:

Y[?

RQZl_fzv
|Y—Yn‘e’

wobei e =(1,...,1)", Y, = Y;.

1

S|

n
1=

Satz 2.2.8. Unter Hy : 8 = [y gilt

() (5o

mao?

m,mn—m:
Beweis. Es gilt

BN (50, o2 (XTX)_1>

— BB~ N(0,02(XT X)),
=K

Falls A = X;X , dann ist AK = 7 idempotent. Dann gilt nach Satz
. T . i
(B-t0) A(B-m)

(Zur Information: Unter H; wire (3 — fo) T A(8 — o) nicht-zentral y2-verteilt).
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Es gilt zusétzlich:

Aus Satz folgt die Unabhéngigkeit von (3 — o) T A(B — Bo) und nne,

(8= Bo) (XTX)(B— Bo)/m

= L= e (= m)

~ Fm,n—m

nach der Definition der F-Verteilung.

Jetzt wird die Relevanz der einzelnen Parameter j3; getestet:

Hy : Bj = Poj vs. Hy : B; # Boj-

Satz 2.2.9. Unter Hy : 3; = Bo; gilt:

Bj — Boj .
T, = AN tn_m, wobei
oV I

(XTX) o = (xij)i,jzl,...,m :

Beweis. Aus f3 o N(By, c%(XTX)™1) folgt Bj o N(Boj, o2297) und somit Bj — Boj ~

N(0,02277). Dann ist % ~ N(0,1). Zusétzlich gilt: (”707@02 ] X2 _m, und nach Satz
sind beide Grofen unabhéngig. Daraus folgt:
Bi—Boj
R A4 AN
T‘j (n—m)62 tn-m.
(n—m)o?

O

Somit wird Hy : 8; = Bjo abgelehnt, falls [T > t,,_,, 1_o/2. Dies ist ein Test von Hy
vs. H1 zum Niveau o.
Sei nun

H(] : le :Bojl,...,ﬁjl :Bojl VS. H1 :di € {1,,[} : ,33‘2. #ﬁoji
die zu testende Hypothese.

Ubungsaufgabe 2.2.2. Zeigen Sie, daf unter Hy folgende Verteilungsaussage gilt:

(5 — By) "K'(B' — Bp)

62

T:

~ F‘l,nfmv
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wobei
5/ = (lev cee 7/3jz)7
(/) = (50]17 s 750j1)7
I oL pdid -1
K' =
lejl - le.jl

Konstruieren Sie den dazugehérigen F-Test!

Test auf Linearkombination von Parametern
Sei nun
Hy: HB=cvs. H : HB # c,
wobei H eine (r x m)-Matrix und ¢ € R" sind.
Satz 2.2.10. Unter Hy gilt

p o WA= EXTX U =)
ro

Deshalb wird Hy : H3 = c abgelehnt, falls T'> F} . 1—a-
Ubungsaufgabe 2.2.3. Beweisen Sie Satz [2.2.10

2.2.5 Konfidenzbereiche

1. Konfidenzintervall fiir 3;
Im Satz haben wir gezeigt, daf

ﬁj - BJ ~t
— n—my
-Vl
wobei (XTX)™! = (xij)m:lw,m. Daraus kann mit den iiblichen Uberlegungen

folgendes Konfidenzintervall fiir 8; zum Niveau 1 — « abgeleitet werden:

P (,3] — tn,mJ,a/Q SOV il < /Bj < /Bj + tnfm,lfa/2 ’ &\/ﬁ> =1l-o

2. Simultaner Konfidenzbereich fiir 8= (B1,...,Bm)"

Falls A; wie unten definiert ist, dann erhdlt man mit Hilfe folgender Bonferroni-
Ungleichung

P

J

Aj| =) P(4) — (m—1),
j=1

DL
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dafs
P(/éj - tnfm,lfa/(Qm) oVl < /Bj < Bj + tnfm,lfa/(Qm) ’ &\/@7 J=1... 7m>
=A;
(Bonferroni) 4
> — —1)=m- - — | = =1-oa.
P(A;) — (m—1) m(1 m) mitl=1-a

Daraus folgt, daf
{/B - (/817 ) Bm)—r : ﬁj € [Bj - tnfm,lfa/(Qm) OV l'jja /3 + tnfm,lfa/(Zm) X wjj]}

ein simultaner Konfidenzbereich fiir 5 zum Niveau 1 — « ist.

. Konfidenzellipsoid fiir 5.

In Satz haben wir bewiesen, daf
(BB (XTX)(5 - B)

T = -
mao?2

~ Frn—m.-
Daraus folgt, daf

P(T < Fpn-mi-a)=1—a und
(B=BAT(XTX)(B-8)

mao?2

E= {B eR™: < Fm,n—m,l—a}

ein Konfidenzellipsoid zum Niveau 1 — « ist, siche Abbildung [2.2]

Abbildung 2.2: Konfidenzellipsoid

Da ein Ellipsoid in das minimale Parallelepipet P eingebettet werden kann, sodaf
die Seitenldngen von P gleich 2x der Halbachsenldngen von & sind, ergibt sich
folgender simultaner Konfidenzbereich fiir 8 = (81, ..., 8m)

P = {/8 : /éj - a—\/mxijm,n—m,l—a < Bj < /éj + 6_\/mxijm,n—nL,1—a}

j=1....m.
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4. Konfidenzintervall fiir den erwarteten Zielwert xo161 + ... + TomBm.

Sei Yo = 20181 + ... + TomBm + €0 eine neue Zielvariable mit Eeg = 0. Dann ist

n
EYo =) z0ib:-

i=1

Wir konstruieren ein Konfidenzintervall fiir E Y. Dazu verwenden wir die Beweis-
idee des Satzes kombiniert mit Satz [2.2.10| mit H = (zo1,...,%om) = =g,
r = 1. Dann ist

m m
> Bixoi — Y Bios
=1 i

=1

~ tp—m-
61/xd (XTX) g

T —

Darum ist

m
{5 = (ﬁly v 75m)T : Z inﬁi -0 \/ x(—)r(XTX)_le . tnfm,lfoz/Q
i=1
m m
<> @i <> woili + 6/af (XTX)ag - tn—m,l—a/2}
i=1 i=1

m
ein Konfidenzintervall fir ) z¢;; zum Niveau 1 — a.
i=1

5. Prognoseintervall fiir die Zielvariable Y.

m
Fiir Yy = >_ 20;8; + €0 mit eg ~ N(0,02), g9 unabhiingig von e1,. .., &, gilt:
i=1

2 B — Yo ~ N(0,0%(1 + zg (X X))

16—
— 26— Yo ~ N(0,1)
o1+ 2] (XTX) g
.
Y
N Ty B 0 ~ b

61+ 2 (XTX) g
Also ist

(a:gﬁ—i-c, xOTB—c>

mit ¢ = /14 2 (XTX) 120ty pn1-apo

ein Prognoseintervall fiir die Zielvariable Yy zum Niveau 1 — a.
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m
6. Konfidenzband fir die Regressionsebene y = 51+ > x;3; im multiplen Regressions-

i=2
modell.
Es sei Y = X + ¢, wobei
1 z12 - T1m
1 @oe -+ wopm 5
X = o ) ) und € ~ N(0, 0* - 7).
1 Tn2 - Tpm

Wir wollen ein zufélliges Konfidenzband B(z) fiir y angeben. Es gilt

P(yz&—i—ZBixieB(x)):l—a Ve € R wobei

=2
R = {(1,x2,...,xm)T c Rm}.

Satz 2.2.11. Es gilt:

=y
R m 2
<9UT5 - (51 + Zﬁz%) )
i=2
P(ﬁe?nxl T (X X) e Fm’”’”’”) S

Ohne Bewels.

2.3 Multivariate lineare Regression mit Rang(X) < m

Essel Y = X8 +¢,Y € R", wobei X eine (n x m)-Matrix mit Rang(X) = r < m ist,
B= (B Bm)", e € R Ec =0, E(eig)) = 050°, 4,5 = 1,...,n, 0° >0,

Der MKQ-Schétzer g ist nach wie vor eine Losung der Normalengleichung
(XTX> B=X"Y.
X T X ist aber nicht mehr invertierbar, weil
Rang(X ' X) < min {Rang(X),Rang(XT)} =r <m.

Um § aus der Normalengleichung zu gewinnen, sollen beide Seiten der Gleichung mit der
sogenannten verallgemeinerten Inversen von X ' X multipliziert werden.
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2.3.1 Verallgemeinerte Inverse

Definition 2.3.1. Sei A eine (n x m)-Matrix. Eine (m x n)-Matrix A~ heift verallge-
meinerte Inverse von A, falls

AATA=A gilt.
Die Matrix A~ ist nicht eindeutig bestimmt, was die folgenden Hilfssétze zeigen.

Lemma 2.3.1. Sei A eine (n x m)-Matrix, m < n mit Rang(A) = r < m. Es existieren
invertierbare Matrizen P (n x n) und @ (m x m), sodaf

I, 0 o
PAQ = ( 0 0 ) , wobei I, = diag(1,...,1). (2.3.1)

r Mal

Folgerung 2.3.1. Fiir eine beliebige (n x m)-Matrix A mit n > m, Rang(A) r =< m

gilt
(T A
_0 < o )P, (2.3.2)

r Mal
—
wobei P und () Matrizen aus der Darstellung (2.3.1)) sind, Z, = diag(1,...,1), und Ay,
Asg, As beliebige ((m — 1) x r), (r x (n —7)) bzw. ((m — 1) x (n — r))-Matrizen sind.
Insbesondere kann

A =0,

As =0,

As = diag(1,...,1,0,...,0),
——

s—r Mal
se{r,...,m}

gewihlt werden, das heift, Rang(A~) = s € {r,...,m} fiir
_ I, 0
a3 )
Beweis. Zeigen wir, da fiir A~ wie in (2.3.2]) gegeben, AA~A = A gilt. Aus Lemma
folgt, daf

A= P . diag(1,...,1,0,...,0)-Q
R A A Z,
AAA_P<OO>QQ<A

(5o

und somit
As Z. 0 1
I )PP (50)e
Z,
0

0\ - (T 0 -
0>Q1:P1(0 0>Q1

ll

P~
= A.
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Lemma 2.3.2. Sei A eine beliebige (n x m)-Matrix mit Rang(A) =r < m, m < n.

1. Falls (ATA)™ eine verallgemeinerte Inverse von A" A ist, dann ist ((ATA)_)T
ebenfalls eine verallgemeinerte Inverse von AT A.

2. Es gilt die Darstellung
(ATA)(ATA)"AT =A"  bzw.
A(ATA)"(ATA) = A.

Beweis. 1. AT A ist symmetrisch, also

(ATA(ATA)—ATA>T - (ATA)T —ATA.

—ATA((ATA)~) AT A

Also ist ((ATA)_)T eine verallgemeinerte Inverse von AT A.
2. Essei B=(ATA)(ATA)"AT — AT, Wir zeigen, dal B = 0, indem wir zeigen, daf
BB" =0.
-
BBT = ((ATA)(ATA)—AT - AT> (A ((ATA)—) ATA - A)
T
— ATAATA)"AT A ((ATA)—) ATA— ATAATA)"ATA
—ATA

.
—ATA ((ATA)*) CATA+ATA=ATA - 24TA+ ATA=0.

=ATA
Die Aussage A(ATA)"ATA = A erhilt man, indem man die Matrizen an beiden

Seiten der Gleichung AT A(ATA)~AT = AT transponiert.
O

2.3.2 MKQ-Schatzer fir 3

Satz 2.3.1. Es sei X eine (n x m)-Designmatrix mit Rang(X) = r < m in der linearen
Regression Y = X3 + ¢. Die allgemeine Losung der Normalengleichung

(XTX) B=X'Y
sieht folgendermafen aus:

B = (XTX)_ X'y + <Im — (XTX)_ XTX> z, z€R™. (2.3.3)
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Beweis. 1. Zeigen wir, da 8 wie in (2.3.3]) angegeben, eine Losung der Normalenglei-
chung darstellt.

X'Xg=X"X)(X"X)"X"Y + (XTX ~X'X(XTX)"X"TX ) z
=XT( Lemmal[2.3.2] 2.)) =XTX
=Xy

2. Zeigen wir, daR eine beliebige Losung 3’ der Normalengleichung die Form ({2.3.3))
besitzt. Sei § die Losung (2.3.3). Wir bilden die Differenz der Gleichungen

(X'xX)p =XTYy
- XTX)p =XTy
(X'X)(' -8 =0

gr=B-8+8
— 8B+ (X X) XY + (Im . (XTX)*XTX) 2
— (XTX) XY + (T~ (X X)X X) 24 (8 = 8) - (X X)X X(# - )

=0

—(XTX)XTY + (Im - (XTX)_XTX) (&ﬁ:__ﬁ)

= /3’ besitzt die Darstellung ([2.3.3).
0

Bemerkung 2.3.1. Der Satz liefert die Menge aller Extremalpunkte der MKQ-
Minimierungsaufgabe

e(8) = % Y~ X — min.

Deshalb soll die Menge aller MKQ-Schétzer von § in (2.3.3) zusétzliche Anforderungen
erfiillen.

Satz 2.3.2. 1. Alle MKQ-Schitzer von 8 haben die Form
B= (XTX) " XTY, wobei
(XTX)~ eine beliebige verallgemeinerte Inverse von X ' X ist.

2. [ ist nicht erwartungstreu, denn

EB = (XTX> T XTx3.
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3. Es gilt:

Covi = o (XTX)_ <XTX> ( (XTX)*)T

Beweis. 1. Zeigen wir, daf e(f8) > e(8) VB € R™.

@I

n-e() =YV - X8> = (Y - XB+ X(
=Y - XB)T(Y - XB) + (X(
+2(B8-8)"X"(Y - XP)
=n-e(B)+2-(B-8) (XY — (X"XB))+|X(B - B)|”
=0
>n-e(B)+0=n-e(B), denn

—-B) (Y — XB+ X(B - B))
- 8) (X(B-9)

™|

B hat die Form (2.3.3) mit z = 0 und ist somit eine Losung der Normalengleichung.

2. Es gilt:

EB=E ((XTX)*XTY) - (XTX> “X'EY
=(X"X)"X"XpB, weil aus
Y=XF+¢e, Ee=0 die Relation EY = Xg folgt.

Warum ist § nicht erwartungstreu? Also warum ist (X' X)"XT X3 # 8, 8 € R™?
Da Rang(X) = r < m, ist Rang(X " X) < m und damit Rang((X X)X TX) <
m. Darum existiert ein 5 # 0, fiir das gilt:

(XTX)_ XTXB=0+#8,

also ist B nicht erwartungstreu. Es gilt sogar, daf alle Losungen von (2.3.3)) keine er-
wartungstreuen Schitzer sind. Wenn wir den Erwartungswert an (2.3.3)) anwenden,
so erhielten wir im Falle der Erwartungstreue:

VBER™: f=(X'X) XX+ (Im - (XTX)*(XTX)) 2, zeR™
— (Zm - (XTX)—(XTX)) (:—B)=0 Vz,8eR™
= (X'X)(X"X)B-2)=B—-2 Vz,BeR™

Da diese Gleichung nicht fiir alle § € R™ gelten kann (sieche oben), fithrt die
Annahme der Erwartungstreue zum Widerspruch.
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3. Es gilt:

Cov (B, B;) = Cov(( KX XTY) ((XTX)‘XTY)j)
=A=(ay)

= Cov <Zn: aikYk, Zn: CL]‘ZYZ>
k=1 =1

n n
= > ana; Cov(Vi, ¥i) = 0* > apaze = (02447
k=1 —— k=1 I
=026y

_ (02(XTX)—XTX ((XTX)_>T)

ij.

2.3.3 Erwartungstreu schitzbare Funktionen

Definition 2.3.2. Eine Linearkombination a' S von fi, ..., Bm, a € R™ heifit (erwar-
tungstreu) schédtzbar, falls

JdeceR": E <CTY) =a'B,
das heift, falls es einen linearen, erwartungstreuen Schétzer ¢'Y fiir a' 3 gibt.

Satz 2.3.3. Die Funktion a' 3, a € R™ ist genau dann erwartungstreu schiitzbar, wenn
eine der folgenden Bedingungen erfiillt ist:

1. 3ceR*: o' =c'X.

2. a erfillt die Gleichung
ol (XTX>_ XX =a'. (2.3.4)
Beweis. 1. ,=—= “ Falls a' 8 schiitzbar, dann existiert ein d € R” mit E(d'Y) =
a'B VB eR™. Also
A B=d BY =d" X8 = (aT - dTX) B=0, V3ecR™
—q' =d'X,
setze ¢ = d, damit ist die erste Richtung bewiesen.

L= “E(c"Y)=c'EY =c"XB =a'p,also ist a' 3 erwartungstreu schitzbar.
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2. ,= “ Falls a' 8 erwartungstreu schitzbar ist, dann gilt:

dT(XTX)~XTx Pk Ty (xTx)XTx =T x P T,

=X (Lemma [2.3.2)

Also ist (2.3.4) erfiillt.
ye=“Falls o (XTX)"X"X = a', dann gilt mit ¢ = (a"(XTX)"X")T nach
Punkt 1, da a' 3 schétzbar ist.

O

Bemerkung 2.3.2. Im Falle der Regression mit Rang(X) = m ist die Gleichung ([2.3.4)
immer erfiillt, denn (X T X)~ = (X" X)~! und damit ist a' 3 schitzbar fiir alle a € R™.

Satz 2.3.4 (Beispiele schatzbarer Funktionen). Falls Rang(X) = r < m, dann sind
folgende Linearkombinationen von 3 schitzbar:

m
1. Die Koordinaten ) x;;3;, i = 1,...,n des Erwartungswertvektors EY = Xz.
j=1

2. Beliebige Linearkombinationen schéitzbarer Funktionen.

Bewess. 1. Fihre die Bezeichnung &; = (x;1,...,%im), ¢ = 1,...,n ein. Dann ist

m

~T .
Zmijﬁj =z, Vi=1,...,n,
=1

XB = (%1,82,...,%n) B

Z;0 ist schitzbar, falls Z; die Gleichung (2.3.4)) erfiillt, die fiir alle ¢ = 1,...,n
folgendermafen in Matrixform dargestellt werden kann:

X (XTX>7 XTX =X,
was nach Lemma Giiltigkeit besitzt.
2. Fir a,...,ar € R™ seien alTﬂ,...,a;B schitzbare Funktionen. Fiir alle A =
k
(M, M) T € RF zeigen wir, dak > A - a8 = ATAB schiitzbar ist, wobei
i=1
A= (ai,...,a;)". Zu zeigen bleibt: b= (AT A) T erfiillt ([2.3.4), also
NA(XTX) XTX =2TA,
Diese Gleichung stimmt, weil ¢} (X T X)"X "X =a/,i=1,...,k. Nach Satz

2.) ist AT AB schitzbar.
O
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Satz 2.3.5 (Gauf-Markov). Es sei a' 3 eine schitzbare Funktion, a € R™ im linearen
Regressionsmodell Y = X + € mit Rang(X) < m.

1. Der beste lineare erwartungstreue Schatzer (engl. BLUE - best linear unbiased
estimator) von a3 ist durch a' 3 gegeben, wobei

3= (XTX) “XTy
ein MKQ-Schétzer flir 3 ist.
2. Var(a'B) = 0% (X" X)"a.

Beweis. Die Linearitit von a' 8 =a' (X T X)X Y als Funktion von Y ist klar. Zeigen
wir die Erwartungstreue:
E@B)=a'Ef=a' (X'X)"XTXB
=c"X(X"X)"X"XB=¢"XB=0a'p VBecR™

=X (Lemma [2.3.9) =aT

Berechnen wir Var (a' 3) (also beweisen wir Punkt 2), und zeigen, daf sie minimal ist.

Var (aTB) = Var <Z azﬂi> = Z a;a; - Cov (BZ,BJ)
i=1

ij=1
= a"Cov (B) a ®EID ;T2 ((XTX)_XTX(XTX)_>T a
—o2.a’ ((XTX)*)T XTx ((XTX)*)T a
S—r— ——r

=(XTX)~ (XTX)-
bemme IR 52T (X TX) " XTX(XTX) a

SarRIB L) 2 T x (X TX)XTX(XTX) X e

=X
=2 X(XTX) " XTe=0%"(X"X)a.
~~ —~~

:(ZT =a

Jetzt zeigen wir, dak fiir einen beliebigen linearen, erwartungstreuen Schétzer b'Y von
a'B gilt: Var (b"Y) > Var (a'B). Weil b'Y erwartungstreu ist, gilt: E(b'Y) = a' 3.
Nach Satz gilt: a” = b" X. Betrachten wir die Varianz von

0 < Var (bTY — aTB) = Var (bTY) —2Cov (bTY, aTB) + Var <aTB>

=Var(b'Y) —20%" (X" X)"a+c%" (X" X)"a=Var(b'Y) — Var (aTB)
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mit

Cov (bTY, aTB) = Cov (bTY, aT(XTX)_XTY> =02 (XTX)"XTh

=02 (X" X)a.

Damit ist Var (bTY) > Var (aTB) und a'f ist ein bester, linearer, erwartungstreuer
Schitzer fiir a' 3. O

Bemerkung 2.3.3. 1. Falls Rang(X) = m, dann ist aTB der beste lineare, erwar-
tungstreue Schitzer fiir a' 8, a € R™.

2. Wie im folgenden Satz gezeigt wird, hingt der Schiitzer o' 8 = o' (X TX)" XY
nicht von der Wahl der verallgemeinerten Inversen ab.

Satz 2.3.6. Der beste lineare, erwartungstreue Schitzer a' 3 fiir a3 ist eindeutig be-
stimmt.

Beweis.

A B=a (XTx) xTy 5B 1)
Wir zeigen, daf X (X T X)~ X T nicht von der Wahl von (X " X)~ abhiingt. Zeigen wir, daf
fiir beliebige verallgemeinerte Inverse A; und As von (X TX) gilt: XA X" = XA, X 7.

Nach Lemma 2.) gilt:

X(XTX)"XTY.

XA XTX=X=XAX"X.
Multiplizieren wir alle Teile der Gleichung mit A1 X ' von rechts:
XAXTXAXT=XA4X"T=XAXTXA,XT
~—— ——
=XT =XT
Alsoist XA X T = XA, X T. O

2.3.4 Normalverteilte Storgrollen

Sei Y = X 8+¢ ein lineares Regressionsmodell mit Rang(X) =7 < mund e ~ N(0, o?T).
Genauso wie in Abschnitt kénnen Maximum-Likelihood-Schitzer 3 und &2 fiir 3
und o2 hergeleitet werden. Und genauso wie im Satz kann gezeigt werden, daf

B=B=(X"X)"X"Y und
2=y - x3P.
n

Jetzt werden die Verteilungseigenschaften von § und &2 untersucht. Wir beginnen mit
der Erwartungstreue von 52. Wir zeigen, dal 6% nicht erwartungstreu ist, dafiir ist aber
der korrigierte Schitzer

1
o = v - XpB* =

n—r n—r

no
02

erwartungstreu.



2 Lineare Regression 93

Satz 2.3.7. Der Schiitzer 2 ist erwartungstreu fiir o2.

Der Beweis des Satzes folgt dem Beweis des Satzes(2.2.4] in dem = (XTX)'1XTY
und 62 = 2|V — XB|? im Fall Rang(X) = m betrachtet wurden. Somit ist die

Aussage des Satzes ein Spezialfall des Satzes [2.3.7] Fiihren wir die Matrix D =
T-X(XTX)"X" ein.
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Lemma 2.3.3. Fiir D gelten folgende Eigenschaften:

1.
2.
3.
4.

DT = D (Symmetrie),
D? = D (Idempotenz),
DX =0,

Spur(D) =n —r.

Bewezs. 1. Es gilt:

DT = (I - X(XTX)—XT)T —7-X ((XTX)—)T X7
=7-X(X"X)"X" =D,

weil (XTX )*)T auch eine verallgemeinerte Inverse von X ' X ist (vergleiche Lem-

ma 2:33] 1.))

. Es gilt:

2
D% = (I ~ X(XTX)*XT> =7 2X(X'X) X+ X(X'X) X X (X X)" X"

=X(Lemma[2.3.2] 2.))

=7-X(X'"X)"X" =D.

DX=X- X(X"X)"X'X =X-X=0,

=X (Lemma[2.3.2] 2.))

Es gilt:
Spur(D) = Spur(I) — Spur (X(XTX)_XT> —n — Spur (X(XTX)_XT> .

Verwenden wir die Eigenschaft der symmetrischen idempotenten Matrizen A aus
der linearen Algebra, daf Spur(A) = Rang(A4). Da X (X " X)~ X" symmetrisch und
idempotent ist, geniigt es zu zeigen, daf Rang(X (X' X)~X ") = r. Nach Lemma

2.) gilt:
Rang(X) = r = Rang(X (X 'X)" X X)
< min {Rang(X(XTX)_XT), Rang(X) }
~————

=r

gRang( (X'X)"Xx ) Rang(X) =
:>Rang( X(X"X)™ )

— Spur ( XTX )
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Beweis des Satzes[2.3.7. Mit Hilfe des Lemmas [2.3.9] bekommt man

72 = v — XB|* = Y - X(XTX)" XTY‘ L |pyp
n—r n—r n—r
‘ = —|De|* = "D'De= e' De.
n—r n—r S~~~ n—r
=D2=D

Deshalb gilt:

EG? =

1 1
E (STD5> = E Spur <5TD5) = —Spur <D -E ( e ! ))
n—r n—r n—r ~~
02T
2

=7 . Spur(D) = 0% nach Lemma[2.3.3] 4.), weil Eee ' = 02T
n—r

wegen € ~ N(0,0%T).

Satz 2.3.8. Es gelten folgende Verteilungseigenschaften:
1. B~ N ((XTX)—XTXB, S2(XTX)(XTX) ((XTX)—)T),

9 (n— r‘)02

77~ X
3. B und &? sind unabhingig.
Beweis. 1. Es gilt:
B=X"X) XY= X"X)"X"(Xf4+e)=(X"X) X" XB+(X'X)"X"¢

und mit der Definition von N(-, -) bekommt man
B~N (u, aQAAT) =N ((XTX)—XTXﬁ, a?(XTX)—XTX((XTX)—)T)
mit AAT = (XTX)"XTX(Xx"XxX)")"

2. Es gilt o2 1 e De aus dem Beweis des Satzes | Deshalb

g

g

(n —r)o? (5>TD(5> (Satz Z.T) N

0-2 n—r

~N(0,2)

3. Betrachten wir Ae und sta. Es geniigt zu zeigen, dak sie unabhéngig sind, um
die Unabhiingigkeit von 3 und &2 zu beweisen, weil 8 = pu + Ae, 2 = ﬁ&TDE.

Es gilt: A-0%Z - D = 0. Nach Satz sind dann Ae und e De unabhingig.
O]
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2.3.5 Hypothesentests

Betrachten wir die Hypothesen Hy : HB = d vs. Hy : H # d, wobei H eine (s x m)-
Matrix (s < m) mit Rang(H) = s ist, und d € R®.

Im Satz[2.2.10|haben wir im Fall Rang(X) = r = m folgende Testgrofke dafiir betrach-
tet:
(HB —d)"(H(XX)""H") " (H — d) (o)

~ Fs,nfm-

T —

502
Im allgemeinen Fall betrachten wir

(HB —d) (H(XTX)"HT")"'(HB - d)

T= . .

— (2.3.5)
SO

H

Wir wollen zeigen, dafs T (Ho) Fs p—r. Dann wird Hy verworfen, falls T' > Fy ,,_ 1—q. Dies

ist ein Test zum Niveau a € (0,1).

Definition 2.3.3. Die Hypothese Hg : HSB = d heifst testbar, falls alle Koordinaten des
Vektors Hf schitzbare Funktionen sind.

Satz gibt Bedingungen an H an, unter denen Hy : HfS = d testbar ist. Diese

werden im folgendem Lemma, formuliert:

Lemma 2.3.4. Die Hypothese Hy : HS = d ist testbar genau dann, wenn
1. 3(s x n)-Matrix C': H = CX, oder
2. HXTX)"XTX =H.

Wir zeigen, daf die Testgrofe T in (2.3.5) wohldefiniert ist, das heifit, die (s x s)-
Matrix H(XTX)"H" positiv definit und damit invertierbar ist. Aus Folgerung

haben wir X ' X = P! IOT 8 P! fiir eine (m x m)-Matrix P, die invertierbar und
symmetrisch ist. Deshalb gilt
7 0
T - _ . T _ .
(X' X)"=P (O Im—'r>P P-P,

das heift, dak es eine eindeutige verallgemeinerte Inverse von X | X mit dieser Darstellung
gibt. Daraus folgt, dak die (s x s)-Matrix HPPH'" = (PH")" - PH" positiv definit ist,
weil Rang(PH ") = s. Sei nun (X " X)~ eine beliebige verallgemeinerte Inverse von X ' X.
Dann ist mit Lemma

HX'X)"H' =CX(X'X)"X'C" =CXPPX'C" = HPPH'",

denn X (X " X)~X T ist invariant beziiglich der Wahl von (X " X)~, laut Beweis des Satzes
Also ist H (X TX )_ HT positiv definit fiir eine beliebige verallgemeinerte Inverse
(X X )_ und die Testgrofhe T somit wohldefiniert.
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Satz 2.3.9. Falls Hy : HB = d testbar ist, dann gilt T (Ho)

Fs,n—r~
Beweis. Ahnlich, wie in Satz [2.2.10| gilt

HB—d=HX'X) X" (XB+e)—d=HX'X) " X' Xp-d+HX'X)"X"

(Ho)

Zeigen wir, daft p =" 0.

M(Lemm:ac' X(XTX)fXTX B—-—d=CXB—-d=HB—d Ho)

=X (Lemma[2.3.2] 2.))

0.

Nach Satz sind (HB — d)" (H(XTX)*HT)_1 (HB —d) und s -5 unabhingig,

(n_(,irz)ﬁ2 ~ x2_,. Also bleibt nur noch zu zeigen, daf
A Txy-gT) " (Ho)
(#B—a) (HXTX)"HT) (HP—d) 2
~— ——
=eTBT =Be
Es gilt

-1
eTBT (H(XTX)—HT) Be

=T X ((XU()*)T HT <H(XTX)*HT) T HXTX)XT

A

Man kann leicht zeigen, daf A symmetrisch, idempotent und Rang(A) = s ist. Zeigen
wir zum Beispiel die I[dempotenz:

A2 =X ((XTX)*)T HT (H(XTX)*HT) T HXTX)XTX ((XTX)*)THT.

H (Lemma [2.3.4] 2.))

-1
( HXTX)" ) HXTX) X7
-1
— X ((XTX) ) HT (H(XTX)—HT) HXTX)"XT = A,
weil (XX )_)T auch eine verallgemeinerte Inverse von X ' X ist (nach Lemma .

Somit hingt auch H(X " X)"H' = CX(XTX TCT nicht von der Wahl von (X X)*
ab, vgl. den Beweis des Satzesm Nach Satz|2

und somit T’ o Fopnp. O

1st6 AS ~ 2 wegene ~ N(0,0°7)



98 2 Lineare Regression

2.3.6 Konfidenzbereiche

Ahnlich wie in Abschnitt werden wir Konfidenzbereiche fiir unterschiedliche Funk-
tionen vom Parametervektor 3 angeben. Aus dem Satz [2.3.9] ergibt sich unmittelbar
folgender Konfidenzbereich zum Niveau 1 —a € (0,1):

Folgerung 2.3.1. Sei Y = X3 + ¢ ein multivariates Regressionsmodell mit Rang(X) =

r < m, H eine (s x m)-Matrix mit Rang(H) = s, s € {1,...,m} und Hy : HB = d
testbar Vd € R®. Dann ist

{d - (HB—d) (H(XTX)~HT)™" (HB - d) . 1_a}

502
ein Konfidenzbereich fiir HS zum Niveau 1 — «.

Folgerung 2.3.2. Sei h' 3 eine schiitzbare lineare Funktion von £, h € R™. Dann ist

<hTﬁ - tnfr, 1—a/2 " E\/ hT (XTX)_hv hTB + tnfr, 1-a/2 " E\/ hT(XTX)_h>

ein Konfidenzintervall fiir AT 5 zum Niveau 1 — .

Beweis. Setzen wir s =1 und H = h'. Aus Satz folgt

- (W' - d)T (W (XTX)"h) " (kT —d) _(WTB—d) (h"B—d)
B Lo G (WT(XTX)h)

_ (WB-a) P
TR (X TX)h) T

unter der Voraussetzung h'f3 = d, weil o' (XTX) h eindimensional (eine Zahl) ist.
Deshalb gilt

VT= MPhB
oV TX)

und somit
P <_tnfr,1fa/2 < \/T < tnfr,lfa/2> =l-a
Daraus folgt das obige Konfidenzintervall. O

Man kann sogar eine stirkere Version von beweisen, die fiir alle h aus einem
linearen Unterraum gilt:
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Satz 2.3.10 (Konfidenzband von Scheffé). Sei H = (hy,...,hs)", hi,...,hs € R™
1 <s<mund Hy: HB = d testbar Vd € R®. Sei Rang(H) = s und £ =< hy,...,hs >
der lineare Unterraum, der von den Vektoren hq, ..., hs aufgespannt wird. Dann gilt:

(W73 —nTB)’
< 1 =1-
F (TSZ‘{U%T(XTX)—}L = sfunorioa = 1a

Somit ist
|:hTB — 4/ SF& n—r,1—a * O\/ hT(XTX)fh, hTB + SF& n—r,1—a * O\/ hT(XTX)h:|

ein (gleichméBiges bzgl. h € £) Konfidenzintervall fiir A" 3.

Beweis. Aus dem Satz folgt Va € (0,1):

P((HB-HB)' (H(XTX)‘HT)A (HB~ HB) <5 5*Fon-r1a) =1-a.

T

Falls wir zeigen konnen, dafs

_ («7 (#5 — Hp))’
= R { 2 (HXTX)"H)az [’ (2.3.6)

dann ist der Satz bewiesen, denn

T (3 2
1—oz:IP’<T1 §552F57n471,a) :P< max { (w (Hﬁ HB)) }§t>
N————

zeRs, 220 | T (H(XTX)"H")z

t

b ( . { ((HT2)" B~ (H ) )"

sekoar0 | (H'2) (XTX) (H )

("B —nT8)? )
g <rff?§{ TXTX) g [ S e

Also, zeigen wir die Giltigkeit von ([2.3.6)). Es geniigt zu zeigen, da 77 die obere Schranke

von

}<t> und weil H'2 = h € L

(«"(HB — HB))®
2T (HXTX)"H")x

darstellt, die auch angenommen wird. Da H(XTX)"H' positiv definit ist und in-
vertierbar, existiert eine invertierbare (s x s)-Matrix B mit der Eigenschaft BBT =
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H(XTX)"H'. Dann gilt
_ 2 _ 2
(xT(HB _ Hﬁ)) - ( «"B -B~YHP - HB))
(BTa)T
<|B'z|?-|B"Y(HB — HB)|* (wegen der Ungleichung von Cauchy-Schwarz)
—2 BBz (HB— HB)' - (BY B~ (Hp — Hp)
—_————
— (BT)—IB—I — (BBT)—l
_ -1 _
=2 H(X'X)"H'z- (HF— HB)' (H(XTX)—HT) (HB — HB).
Somit gilt

(«7 (HB — HB))"
2T (HXTX)"HN)z

< (HB-HpB)' (H(XTX)*HT)_1 (HB — HB) = Th.

Man kann leicht priifen, daf diese Schranke fiir x = (H(XTX)*HT)f1 (HB— Hﬁ)
angenommen wird. O

2.3.7 Einfiihrung in die Varianzanalyse

In diesem Abschnitt geben wir ein Beispiel fiir die Verwendung linearer Modelle mit
Design-Matrix, die keinen vollen Rang besitzt. Dabei handelt es sich um die Aussage der
Variabilitit der Erwartungswerte in der Stichprobe Y = (Y1,...,Y;,)7, die auf englisch
analysis of variance, kurz ANOVA, heikt. Spiter werden wir auch denselben Begriff
Varianzanalyse dafiir verwenden.

Betrachten wir zunéchst die einfaktorielle Varianzanalyse, bei der man davon aus-
geht, daf die Stichprobe (Y1,...,Y,) in k£ homogene Teilklassen (Yj;, j = 1,...,n;),
i =1,...,k zerlegbar ist, mit den Eigenschaften:

1E(YZ]):,uZ:,u+ozZ, j=1,...,n5, 1=1,...,k.

k k
2.n;>1, i=1,...,k, > ni=n, > nja;=0.
i=1 i=1

Dabei ist @ ein Faktor, der allen Klassen gemeinsam ist, und «; verkorpert die klas-

senspezifischen Differenzen zwischen den FErwartungswerten uq,...,ug. Die Nummer
i = 1,...,k der Klassen wird als Stufe eines Einflussfaktors (zum Beispiel die Dosis
eines Medikaments in einer klinischen Studie) und «y, i = 1,...,k als Effekt der i-

k
ten Stufe gedeutet. Die Nebenbedingung > n;a; = 0 bewirkt, daf die Umrechnung
i=1

k n;

(1, i) — (w,an,...,ax) eindeutig wird und dak g = 23 S EY;;. Es wird
i=1j=1

vorausgesetzt, dafs y; mit unkorrelierten Meffehlern €;; gemessen werden kann, das heifst

}/ij:/li+5ij:/$+ai+5ij’ i=1,....k j=1,...,n (237)

Ee;j =0, Vare; =o?, & unkorreliert, i =1,...,k, j=1,...,n;. (2.3.8)
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Es soll die klassische ANOVA-Hypothese getestet werden, daf keine Variabilitéit in den

Erwartungswerten p; auffindbar ist:

was bedeutet, dafs

Aus der Nebenbedingung

folgt: a; =0

Hy:

Hol

H1 = H2

a1 = (9

k
E n;o
i=1

= i

=...=qy.

i =0.

Die Problemstellung (2.3.7) kann in der Form der multivariaten linearen Regression
folgendermaifsen umgeschrieben werden:

Y =XB+4e¢, wobei Y = (Yit, -, Ying, Ya1, -+ Yong, oo o5 Yat, -« o Yiny) |

B=(oa,..
62(511,...,€1n1,..
1 1 0
1 1 0
1 1 0
1 0 1

X=1:
1 0 1
1 0
1 0

* 7ak)T7

-y EkLy - -

0

B sknk)—r
0
0

1

N

9

ni

n2

Die (n x (k + 1))-Matrix X hat den Rang &k < m =
Abschnitt 2.3] auf dieses Modell komplett anwendbar.

k 4 1, somit ist die Theorie von

Ubungsaufgabe 2.3.1. Zeigen Sie, dass die ANOVA-Hypothese

nicht testbar ist!

Hy :

ai:O)

Vi=1,...

k
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Um eine dquivalente testbare Hypothese aufzustellen, benutzt man

H(): al—agzo,...,al—ak:O bzw. Ho: Hﬁzo
fiir die (k — 1) x (k + 1)-Matrix

01 -1 0 0

01 0 -1 0
H =

01 O -1 0

01 0 0 -1

(Zeigen Sie es!)

Bei der zweifaktoriellen Varianzanalyse wird die Stichprobe (Y1,...,Y},) in Abhingig-
keit von 2 Faktoren in k; - k2 homogene Gruppen aufgeteilt:

Yisiejs =1, Ny,

fiir 11 = 1,...,]{71, 19 = 1,...,]{32, sodafs

k1 ko

> D i =

i1=1is=1
Hier wird angenommen, dafs

EYiiyj = Hiriy = B+ @iy + Biy + Virio, 1 =1,... k1, i2 =1,... ko,

somit stellt man folgendes lineares Modell auf:

Yiviag = Mirvia + €iring = 1+ iy + Bip + Yirip + €irinjs
j:]_,...,niliQ,il:1,...,k1,’i2:1,...,k2.

Ubungsaufgabe 2.3.2. Schreiben Sie die Design-Matrix X fiir diesen Fall explizit auf!
Zeigen Sie, dafs sie wieder keinen vollen Rang besitzt.

*
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Eine andere Klasse von Regressionsmodellen erlaubt einerseits einen beliebigen funktio-
nellen Zusammenhang g zwischen dem Mittelwert der Zielvariablen E Y; und dem linearen
Teil X3, der aus linearen Kombinationen der Eintrdge der Designmatrix X = (z;;) und
des Parametervektors 8 = (B1,...,0m)" besteht; andererseits lisst sie andere Vertei-
lungen von Y; zu, die nicht notwendigerweise auf der Normalverteilung (und Funktionen
davon) basieren. So ist es moglich, Daten Y; zu betrachten, die eine endliche Anzahl von
Ausprigungen haben (z.B. . Ja* und ,Nein“ in ckonomischen Meinungsumfragen). Die
Klasse aller méglichen Verteilungen wird durch die sog. Fzponentialfamilie begrenzt, die
wir in Kiirze einfiihren werden.
Sei Y1,...,Y, eine Zufallsstichprobe der Zielvariablen des Modells und sei
X = (i)

ceey

=1,...,n
=1,....m

i
J
die Designmatrix der Ausgangsvariablen, die hier nicht zuféllig sind.

Definition 3.0.4. Das verallgemeinerte lineare Modell ist gegeben durch

(9(EY1),...,g(EY,)) = X8 mit B=(B1,...,0m) (3.0.1)

wobei g : G C R — R die sog. Linkfunktion mit dem Definitionsbereich G ist. Der
Rang (X) = m.

Unter der Annahme, dass g explizit bekannt ist, soll hier der Parametervektor 5 aus
(Y1,...,Y,) geschétzt werden. Wir setzen voraus, dass Y; ,i = 1,...,n, unabhingig,
aber nicht unbedingt identisch verteilt sind. Ihre Verteilung gehért jedoch zur folgenden
Klasse von Verteilungen:

3.1 Exponentialfamilie von Verteilungen

Definition 3.1.1. Die Verteilung einer Zufallsvariable Y gehort zur Ezponentialfamilie,
falls es Funktionen a : R x Ry — R und b: © — R gibt, fiir die

e im absolutstetigen Fall die Dichte von Y gegeben ist durch

fo(y) = exp{ ! (y@ +a(y,7) — b(@))}, yeR (3.1.1)

T2

103
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e im diskreten Fall die Zahldichte von Y gegeben ist durch

Py(Y =vy) :exp{T—lz(y9+a(y,7') —b(@))},ye c, (3.1.2)

wobei C der (hdchstens) abzihlbare Wertebereich von Y, 72 der sog. Stérparameter,
f € © C R ein Parameter und

@z{OER:/eXp{W}dy<oo}

R

bzw. im diskreten Fall:

0= {9 eR: Z exp {y9+22(y’T)} < oo}

yeC

der natirliche Parameterraum ist, der mindestens zwei verschiedene Elemente ent-
hélt.

Lemma 3.1.1. © ist ein Intervall.

Beweis. Zeigen wir, dass © C R konvex ist. Dann ist es notwendigerweise ein (mdoglicher-
weise undendliches) Intervall. Fiir beliebige 0, 6 € © (mindestens ein solches Paar gibt
es nach Definition [3.1.1)) zeigen wir, dass af; + (1 —a)f, € © fiir alle o« € (0,1). Nehmen
wir an, dass die Verteilung von Y absolut stetig ist. Da 6; € O, es gilt

1 .
/Rexp{ﬂ(yﬁi +a(y,7))}dy <oo, 1=1,2.

Durch die offensichtliche Ungleichung

ary + (1 — a)rg < max{xi,z2}, z1,22 € R a€(0,1)

erhalten wir

exp {:2 (y(oz@l + (1 - 0()92) + a(y, T)) }
= exp {a7_12 (y01 + a(y, T)) +(1- a)% (y92 + a(y, 7')) }

< max exp {712 <y9¢ + a(y, T)) } < exp {712 (y91 + aly, 7')) } + exp {712 <y02 + aly, T)) } ;

/Rexp {712<y(0491 + (1 —a)bs) + a(y,T)) } dy < ZZ;/Rexp {Tl2<y9i + a(y,T)) } dy < o
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nach Voraussetzungen des Lemmas.

= ab) + (1 — 05)02 €0,
und O ist ein Intervall. ]

Beispiel 3.1.1. Welche Verteilungen gehéren zur Exponentialfamilie?

1. Normalverteilung: Falls Y ~ A (i, 0?), dann ist der Erwartungswert p der uns
interessierende Parameter, o2 ist dagegen der Stérparameter. Es gilt:

so dass

y: o 2 w
O=p, 7=0, a(y,T):—E—?log(%m) und b(u):b(ﬁ):?.

2. Bernoulli-Verteilung: Y ~ Bernoulli(p), p € [0;1] .

Sie wird etwa im Falle von Meinungsumfragen in der Marktforschung verwendet,
in denen

1, falls die Antwort ,ja“ )
Y = { 1 ANTWOLL 5] auf eine Frage der Enquete gegeben wurde.

0, falls die Antwort ,nein“
Dabei ist die Wahrscheinlichkeit P(Y = 1) = p, P(Y = 0) = 1 — p. Dann gilt fiir
y {01}
Py(Y =5) =pY(1 fp)l—y — eylogp+(1—y)log(1—p)

— oYlos T —(=log(1-p))

Somit gehort die Bernoulli-Verteilung zur Exponentialfamilie mit

9:log1€p, =1, aly,7)=0, b)) =—log(l—p)=Ilog(l+e’).
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3. Poisson-Verteilung: Falls Y ~ Poisson(A), A > 0, dann gilt fiir y € Ny

N
= e )‘.7

— oY log A—log(y!)—A
!

Somit gehort die Poisson-Verteilung zur Exponentialfamilie mit

0=logh, 7=1, a(y,7)=—log(y!), bl ==¢".

Lemma 3.1.2. Falls die Verteilung von Y zur Exponentialfamilie gehért, EY? < oo und
b:© — R zweimal stetig differenzierbar ist mit b”(0) > 0 fiir alle § € ©, dann gilt

EY =b'(0), VarY =72%"(9).
Beweis. 1. Fiihren wir den Beweis fiir den Fall der absolut stetigen Verteilung von Y.

Der diskrete Fall 1aRt sich analog behandeln, wenn man das [-Zeichen durch )
ersetzt. Es gilt

BY = [ uha(w)dy / X{Tl?(yem( - b(H))}dy
_ o exp{712< 0+ aly, ))}dy
{

%(yeﬂz (y, 7 ))}dy

=e 72 exp

Il
)
4|
EC
\]l\ﬁ
gl
m o
ﬂw‘g
e

exp {712 (46 + aly, ) — b(6)) } dy

Je fo(y)dy=1

b0 5 9 b(9) _b(0) b(0) b
—e 27121 (e =) ) =e -2 -72¥e 2 =b(0).
’7’

2. Es bleibt noch zu zeigen:

Ubungsaufgabe 3.1.1. Beweisen Sie die Formel

VarY = 720" (6) (analog zu 1).
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3.2 Linkfunktion

Die Zielgréfsen Y;, ¢ = 1,...,n seien also unabhingig verteilt mit einer Verteilung, die
zur Exponetialfamilie gehort und einer (Zahl)Dichte wie in (3.1.1) bzw. (3.1.2). Setzen
wir voraus, dass b : © — R zweimal stetig differenzierbar ist mit b”(6) > 0 fiir alle § € ©.
Sei ein verallgemeinertes lineares Modell (3.0.1) gegeben.

Definition 3.2.1. (Natirliche Linkfunktion)
Die Linkfunktion g : G — R heikt natiirlich, falls g = ()71, G = {¢/(0) : € ©} und
g zweimal stetig differenzierbar ist mit ¢’(z) # 0 fiir alle x € G.

Die Frage, warum die natiirliche Linkfunktion so heifst, beantwortet folgendes Lemma:

Lemma 3.2.1. Falls das verallgemeinerte lineare Modell (3.0.1) die natiirliche Linkfunk-
tion besitzt, dann gilt (64,...,6,)" = XB.

Beweis. Wegen b”(0) > 0 ist &' (0) monoton steigend, also invertierbar. Fiihren wir fol-
gende Bezeichnungen ein:

T T .
NZ:}EK7 7}22%/37 Ii:(xilw"uxim) ) Zzla"'an

Da g invertierbar ist, gilt

pi=g Y&l B) =g (m), i=1,....n
Andererseits folgt u; = b'(6;) aus Lemma 3.1.2, so dass

) Definition 3.2.1

b,(gl) :9_1(771' b/(nl) ) L= 17"'7”

Wegen der Monotonie von b folgt die Behauptung 6; =n; , i=1,...,n.
O

Beispiel 3.2.1. Berechnen wir die natiirlichen Linkfunktionen fiir die Verteilungen von
Beispiel 3.1.1.

1. Normalverteilung: da b(u) = %2, gilt

V(z) = 2% =z und somit g(x) = (V') '(z) == .

Die natiirliche Linkfunktion ist g(z) = x, somit gilt hier
(H1s-- oy pmn) = (EYL, ..., EY,) = X3 .

Das ist genau der Fall der linearen Regression.
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2. Bernoulli-Verteilung: da b(6) = log(1 + ¢?), gilt

1
b/ — x:
(z) o Y
-~ L =
e*m+1_y
S -——1=e"
Yy
& = —log _yzlogly
= g(x) = (V) "\(x) = log -

Das verallgemeinerte lineare Regressionsmodell im Falle der Bernoulli-Verteilung
wird bindgre (kategoriale) Regression genannt. Falls sie mit der natiirlichen Link-
funktion verwendet wird, nennt man sie logistische Regression. In diesem Fall gilt

(plv"' 7pn)T = (EYl, 7EYn)T

Qi:loglfip:w;rﬁ, i=1,...,n
T
ol = bi
L —pi
= Di = 69”‘
Pi= e
eti B )
@pl:m, 7,:1,...,71.

Das Verhiltnis
Di P(Y;=1)

l—pi P(Y;=0)"’
wird in der englischsprachigen Literatur Odd genannt. Der Logarithmus des Odds
heifst Logit:

1=1,...,n

Di
1—p;’

log t=1,....,n.

Logits sind also hier ,neue Zielvariablen“, die durch Linearkombinationen xZT B ge-
schitzt werden.

Eine alternative Linkfunktion, die oft benutzt wird, ist g(z) = ®~1(z), die Quan-
tilfunktion der Normalverteilung. Sie ist keine natiirliche Linkfunktion. Mit ihrer
Hilfe bekommt man das sog. Probit-Modell:

pi:@(x;ﬁ), 1=1,...,n.
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3. Poisson-Verteilung: da b(f) = ¢’ ist in diesem Fall
g(z) =) Hz)=logz, >0

die natiirliche Linkfunktion. Somit hat das verallgemeinerte lineare Modell mit der
natiirlichen Linkfunktion folgende Darstellung

(log A1,...,logA\,)T = X3 oder )\i:ex;’rﬁ,izl,...,n.

3.3 Maximum-Likelihood-Schatzung von

Da die (Z&hl)Dichte von Y; die Gestalt

exp {%(y@l +a(y,7) — b(@z))}

hat und Y; unabhéngig sind, kann man die Log-Likelihood-Funktion der Stichprobe
Y = (Y1,...,Y,) in folgender Form aufschreiben:

n 1 n
log L(Y,0) =log [ | fo. (i) = 5 > (m +a(Y;,T) - b(@)) : (3.3.1)
i=1 i=1
Aus dem Beweis des Lemmas 3.2.1 folgt, dass

0, =) YWg Yl B), i=1,....n, (3.3.2)

was bedeutet, dass die Funktion log L(Y, 0) eine Funktion von Parameter /3 ist. In der
Zukunft schreiben wir log L(Y, 8), um diese Tatsache zuAunterstreichen.
Unser Ziel ist es, den Maximum-Likelihood-Schéitzer § fiir § zu berechnen:

B = argmax log L(Y, 3) .
B

Dafiir wird die notwendige Bedingung des Extremums

dlog L(Y, )
B

untersucht. Verwenden wir folgende Bezeichnungen:

=0, i=1,...,m,

_ 9log L(Y, )

Ui(B) 95, ,

UB) = (U1(B),...,Un(B) ",

I;(B) =E[U:(B)U;(B)], dj=1,....m.
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Definition 3.3.1. 1. Die Matrix I(8) = (1;;(83)){";=; heift Fisher-Informationsmatriz.

2. Fiihren wir die sog. Hesse-Matriz W () als zuféllige Matrix
2

9B:0B;

ein. Diese (m x m)-Matrix enthélt die partiellen Ableitungen 2. Ordnung der Log-
Likelihood-Funktion, die fiir die numerische Losung der Maximierungsaufgabe

W(B) = (Wi;(8))i5=1 mit Wi;(B) = log L(Y, )

log L(Y, ) — mgx

von Bedeutung sein werden.
Satz 3.3.1. Man kann zeigen, dass U(f) und I(f) folgende explizite Form haben:

1. Es gilt

89_1(771) 1 .
Z(L’z] Y MZ )) 87]1 0_12<ﬂ)7 ]—17...,7’71,

2. Es gilt

Z$1j$lk< 9 (772)> 0215)7 j7k‘:1,...,m,

On; i
wobei n; = x; I8, 1(B) = g_l(mz—»rﬁ) der Erwartungswert von Y; und

o2(g) e 342 2y gy BED o)1 12T BY))  i=1,.m

die Varianz von Y ist.

Bewezs. 1. Fiihren wir die Bezeichnung

1(8) = % (Yibs +a (Yi,7) — b(6:)), i=1,....n ein.

Somit gilt

Durch die mehrfache Anwendung der Kettenregel ergibt sich
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oli(B) _ OLi(B) 90; Ou; Omi
op; ~ 00; Ow O 0B

1=1,....n, j3=1,....m

ali(B) _ 1 (Yz _ b’(@i)) Lemma[5.12 ?12(}/@ - Mz‘(ﬁ))y

SZZ = (g’;j)_l = ((b’(ei))’)_1 = (b'(6;)) " e (0?<25>>1 _ ag(;),

o 99~ (mi)

on; on;
wegen p; = EY; = g~ (),

on; . 8(:5? B)
aB; 9B,

=z, 1=1,...,n, j=1,...,m,

bekommen wir

n 2 o
Uj(ﬁ) = % Zwij (Y; — ui(B)) - 02(6) ) aga (ni)
i=1 7 i
g '(m) 1

ZZZ:;J:Z']‘(Yi—Mi(ﬁ)) 3, ‘02(@, j=1....m.

2. Firalle¢,j =1,...,m gilt:

n -1 -1
1y(8) = EWHEU;(8)) = 3 sy Cov(vi, 1) 2 200

k=1
bk, 01(8)

R 391(77k)>2 1
B ;xkiwkj < O o (B)
]

Bemerkung 3.3.1. Im Falle der natiirlichen Linkfunktion vereinfachen sich die obigen
Gleichungen. So sieht die Log-Likelihood-Funktion folgendermafen aus:
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(Vi B+ al¥i )~ bl B)).

i=1
Da in diesem Fall g71(n;) =¥ (n;) , mi=x/B=0; gilt

log L(Y, 8) =

39_1(77i) _ b/1<9i) Lemma 3.1.2 1 2(,8)

i
T2t

und somit

1
=1
I]k(ﬁ) - % Zmijwlkal (B) ) ]7k =1
=1

Satz 3.3.2. Es gilt

waxm (Y- m@)s i gt) o k=1,

wobei

~1(p, 1 9%(()Log(n,

w = 2 Z/Z:iz_@((b) °9 (77)), i=1....n,
on; T on;

wi(B) =BY;, of(B) =VarYi, n;=z]p.

Beweis. Fiir beliebige j,k =1,...,m gilt
0 Sata [T 8 - 59‘1(771') 1
W‘ = 7U = Tij i
#(5) = 55, Uil 55 227 on o2

_ nx.. . O (9g7'(m) 1\ g '(m) 1 Ow(B)
_Z N <(YZ MZ(Bn@ﬂk( omi U?(ﬁ)) o ol (B) 35k>

i 2 (T G D) o g™ )
‘Z<”(Y’ g (e et )

g~ (mi
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wobel
ag_l(m) ) 1 Lemma T2 86/(9,) ) i . 1 . 86/(91) ) 891 i 1 . i%
on; 012(5) und Satz BT on; 72 b”(@‘) N 00; on; T2 b”(&i) 72 on;
und
0 (g '(m) 1\ _ 1% On m=alp 1 @x
o8, \ on  o2B))  TomF 9k trogp
dabei ist
wi(B)
-1 -1 -1
09 (m) _ 99" (m) Om _ 09 (m)
OBk oni OB ;i ’
und 0; = (W) tog t(m),i=1,...,n. O

Fiir verallgemeinerte lineare Modelle mit natiirlichen Linkfunktionen gilt insbesondere

1 n
W(B) =—1(8) =~ Z; zijrino; () (3.3.3)
1=
weil in diesem Fall v; = 0 fur allei = 1,...,n. W(f) ist also deterministisch. Tatsach-
lich ist nach Lemma [3.2.1|0; = :L"IB = 1n; und somit 86277921 =0,1=1,...,n.

Aus Bemerkung [3.3.1| aukerdem: u? = L of(3).

7

Beispiel 3.3.1. Wie sehen U(8),I(f) und W () fiir unsere Modelle aus Beispiel 2.6.2
(natiirliche Linkfunktionen) aus?

1. Normalverteilung: dieser Fall entspricht der iiblichen multivariaten linearen Re-
gression mit normalverteilten Stérgrofen. In diesem Fall gilt p = X3, 72 = o2

Aus Bemerkung folgt

V() = X7V - XB),

18) = (B (U8)- U9 os = S XTX

W(B) = —1(p) -
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2. Logistische Regression: hier gilt 72 =1, u; = p;, 07 = pi(1 — p;),
i=1,...,n, p; € (0,1) und somit

1(8) = X "diag(pi(1 — pi)) X |
wW(B)=-I1(8) ,

wobei p = (p1,...,0n)".

3. Poisson-Regression: es gilt 72 =1, yu; = \; = 02, i = 1,...,n und somit

77

Up)=X"(y-x, |,
1(8) = X "diag(\) X
W(B) = —1(8),

wobei A = (A\g,..., )" .

Wann ist die Losung des Gleichungssystems U(5) = 0 auch ein Maximum-Punkt der
Funktion log L(Y, 3)?

Mit anderen Worten: Wann existiert der ML-Schétzer 8 von (3, der eindeutig bestimmt
ist?

A~

B = argmaxlog L(Y, )
B

An der hinreichenden Bedingung eines Maximums folgt, dass die Hesse-Matrix W (/3)
negativ definit sein muss.

Betrachten wir den Spezialfall der natiirlichen Linkfunktion.

Dann gilt nach Bemerkung

e Das Gleichungssystem U(S) = 0 schreibt sich U(8) = 5 X T (Y — u(B)) =0

T2

e Die Matrix W(B) = —T—ﬂXTdiag(af(B))X ist negativ definit, falls zusdtzlich
rg(X)=mund 0 < 0?(B) < oo fiir alle i = 1,...,n.

Unter diesen Bedingungen existiert also ein eindeutiger ML-Schétzer B fiir 3.

Geben wir jetzt Verfahren an, die das (im Allgemeinen nicht lineare) Gleichungssystem
U(B) = 0 numerisch ldsen. Diese Ansitze sind iterativ, d.h. sie néhern sich schrittweise
dem ML-Schétzer § an.
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1. Newton-Verfahren
Wihle einen geeigneten Startwert BO e R™.

Im Schritt £ + 1, berechne Bk_l’_l aus Bk,, k =0,1,... auf folgende Art und
Weise:

e Nimm die Taylor-Entwicklung von U(3) bis zur ersten Ordnung an der Stelle
B = U(B) = U(Br) + W (Br)(B — Br)-
e Setze sie gleich Null: U (1) + W () (8 — fr) = 0

e Die Losung dieses Gleichungssystems ist Bk+1 :

Bk-‘rl:Bk’_W_l(Bk)U(Bk‘) ; k:071327"' ’
vorausgesetzt, dass W(Bk) invertierbar ist.

Breche den Iterationsprozess ab, sobald |By41 — Bk| < 6 fiir eine vorgegebene
Genauigkeit 6 > 0 ist.

Das Konvergenzverhalten dieses Verfahrens héngt entscheidend von der Wahl von Bo
ab, fiir dessen Konvergenz By nah genug bei B liegen muss. Ein weiterer Nachteil dieses
Verfahrens ist, dass die zuféllige Matrix W () unter Umsténden nicht invertierbar ist.
Deswegen schlagen wir jetzt eine Modifikation des Newton-Verfahrens vor, bei der W ()
durch den Erwartungswert

EW(B) =—-1(8) (3.3.4)
ersetzt wird. Dass die Identitdt (3.3.3) stimmt, folgt aus dem Satz 3.3.2, und der
Tatsache, dass EY; = p;, ¢ = 1,...,n. Wenn man voraussetzt, dass rg(X) = m und

u; # 0, ¢ = 1,...,n, so ist nach Satz 3.3.1 I(8) invertierbar. Dieses Verfahren wird
Fisher Scoring genannt.

Der einzige Unterschied zu den Schritten des Newton-Verfahrens besteht beim Fisher
Scoring darin, dass man in Schritt 2 die iterative Gleichung

Brv1 =B+ I B)UBE) , k=0,1,...

einsetzt.
Im Falle einer natiirlichen Linkfunktion gilt nach Bemerkung 3.3.1

B = By + 74 (X Tdiag(o?(B)X ) %5 (XT(¥ — u(Be))

72

= B+ (X Tdiago2(3)X) (X0 — u(B).
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3.4 Asymptotische Tests fiir

Das Ziel dieses Abschnittes ist es, eine Testregel fiir die Hypothese

Hy:B=PBovs. Hi: B#Bo mit B=(B1,....0m)" , Bo= Bots---sBom)"

zu konstruieren. Insbesondere sind die Haupthypothesen Hp : 8 = 0 bzw. Hy : 5; = 0
von Interesse, weil sie die Tatsache reflektieren, dass die Zielvariablen Y = (Y1,...,Y,) "
von einigen Ausgangsvariablen (7.B. (x1j,...,%,;)  im Falle der Hypothese 3; = 0)
unabhéngig sind.

Um solche Hypothesen testen zu konnen, werden Teststatistiken T;, vorgeschlagen, die
asymptotisch (fiir n — o) eine bekannte Priifverteilung (z.B. multivariate Normalver-
teilung oder x? - Verteilung) besitzen. Dafiir sind gewisse Vorarbeiten notwendig.

Sei

gEY)=X;8, i=1,...,n,

ein verallgemeinertes lineares Modell mit natiirlicher Linkfunktion g. Seien L(Y, 3) , U(f)
und I(3) die Likelihood-Funktion, der Vektor der partiellen Ableitungen von log L(Y, /)
bzw. die Fisher-Informationsmatrix in diesem Modell.
Durch 8, = B(Yl, ..., Yy, X) bezeichne man eine Folge von Schatzern fiir 5.

Es gelten folgende Voraussetzungen:

1. 4 Kompaktum K C R™, so dass alle Zeilen X;, 1 =1,...,n,n € N, von X in K
liegen. Dabei soll @ = 273 € © fiir alle 3 € R™ und z € K.

2. Es existiert eine Folge {I'; },en von diagonalen (m x m)-Matrizen I',, = Ty, () mit

positiven Diagonalelementen und den Eigenschaften lim I',, =0, lim T} I,,(8)T",, =
n—oo n—oo

K~1(B), wobei K(f3) eine symmetrische positiv definite (m x m)-Matrix ist, V3 €
R™.
Satz 3.4.1. Unter obigen Voraussetzungen gilt:

es existiert eine I',,-Konsitente Folge von ML-Schétzern {Bn} fir 3,
(d.h. P <F;1|Bn — Bl <&, U(By) = 0) — 1 fiir n — 00), so dass

1. T =T (B — B) —— N(0, K(8)) und

n—0o0

2. T, = 2(log L(Y, ) — log L(Y, B)) —2— x2, ,

n—00

Bemerkung 3.4.1. (vgl. [15], S.288-292)

m = dim 8

1. Oft wahlt man I'), = diag (ﬁ, Ceey ﬁ)

2. Bisher wurde stets angenommen, dass der Storparameter 72 bekannt ist. Falls es
nicht der Fall ist, kann 72 durch
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1 n (Yz - Hz(@n))Q

n—m P b”(9m~)

7A_2

geschiitzt werden, wobei 6,,; = (') (pi(Bn)), i = 1,...,n ist. Dieser Schitzer ist
. .. . 2 " Vary;
ein empirisches Analogon der Gleichung 7% = (e, AUS Lemma,

3. Die Aussage 2. des Satzes gilt auch, wenn man den unbekannten Parameter

72 durch einen konsistenten Schiitzer 72 ersetzt.

Wie verwendet man nun den Satz zum Testen der Hypothesen

Hy:B8=p00 vs. Hi:B# po,

oder komponentenweise
Ho:Bj=Bj0,7=1...,m vs. Hi:3j1:8; #Bj 0 7
Sei
m
j=1

ein verallgemeinertes lineares Modell mit natiirlicher Linkfunktion g.
Nach Bemerkung gilt

log L(Y, 8) = 7—12 > (Yi«TiTB +a(Y;,7) — b(ﬂf?ﬂ))

i=1

wobei Y = (Y1,...,Y,)" und 2; = (241,...,%im) " . Deshalb gilt
T, = 32 3 Yix (Bn — Bo) — b(a] Bn) + bz Bo)
T
i=1

Bei Vorgabe eines Exponential-Modells (7,b - bekannt), der Stichprobe der Zielvaria-
blen Y und der Designmatrix X wird Hy verworfen, falls 7,, > X%m—ay wobei m die
Anzahl der Parameter im Modell, X72n,1—a das (1 — a)-Quantil der x2, - Verteilung und
a € (0,1) das Signifikanzniveau des asymptotischen Tests ist. Dieser Test ist nur fiir
relativ groke n anwendbar. Der Fehler 1. Art hat dabei (fiir n — oo) die asymptotische
Wahrscheinlichkeit «. Falls eine einfache Hypothese

Ho:ﬂj:OVS.Hliﬂj#O

getestet werden soll, benutzt man die aus der Statistik 77 abgeleitete Teststatistik 7}:
Hy wird verworfen, falls
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T = ol
(Tn(Bn))ji
wobei 21 _a das (1 — §)-Quantil der AV/(0,1) - Verteilung ist. Hierbei ist {I',} so gewéhlt
worden, dass K(8) = Id ist, V5 € R™. Dies ist ein asymptotischer Test zum Niveau a,
weil

Piy(|T2 > 21-3) = 1~ Py (1T < 21-g) —— 1= B(z1g) + B(~71_3)

NI
« «
=1-(1-3)+1-(1-3) =0

1_‘13(2’17%)

wobel

1 ’ t2
@(l’) = E / e_7dt

die Verteilungsfunktion der AV(0,1) - Verteilung ist.

Beispiel 3.4.1. (Kreditrisikopriifung)

vgl. Fahrmeir, L., Kneib, T., Lang, S. - Regression, S.208ff

Es liegt folgender Datensatz einer siidddeutschen Bank aus den 1990er Jahren vor:

Es werden Ergebnisse der Kreditrisikopriifung von n = 1000 Kreditantrigen (ca. 700
gute und 300 schlechte Kredite) analysiert:

) ) 0, falls das Darlehen vom Kunden ¢ zuriickgezahlt wurde
Zielvariable Y; =
1, falls das Darlehen vom Kunden ¢ nicht zuriickgezahlt wurde

Die Designmatrix X enthilt folgende Zusatzinformationen iiber den Kunden:
1, kein Konto

x;1 - Kontofiihrung des Kontos bei der Bank: =
0, sonst

1

0, kein oder schwaches Konto

, gutes Konto
xi2 - Bewertung der Kontofiihrung: = { &

;3 - Laufzeit des Kredits in Monaten
;4 - Hohe des Kredits in DM

1 t
x;5 - Zahlungsverhalten beim Kunden : = { 8
0, sonst

1, privat

Zi6 - Verwendungszweck: = )
0, geschiftlich

Frage: Wie soll B geschétzt werden?

Als Modell wird das Logit-Modell gewéhlt mit p; = P(Y; =1), i=1,...,n:
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Y=1 Y=0

T kein Konto 45.0 20.0
Z9 gut 15.3 49.8
schlecht 39.7 30.2

T4 Kredithohe Y=1 Y=0
0<...<500 1.00 2.14

500 < ... <1000 11.33 9.14

1000 < ... <1500 17.00 19.86

1500 < ... <2500 19.67  24.57

2500 < ... < 5000 25.00  28.57

5000 < ... < 7500 11.33 9.71

7500 < ... < 10000 6.67 3.71
10000 < ... < 15000 7.00 2.00
15000 < ... < 20000 1.00 0.29

5 Friithere Kredite Y=1 Y=0
gut 82.33  94.95

schlecht 17.66 5.15

xg  Verwendungszweck Y =1 Y =0
privat 87.53  69.29

beruflich 4247  30.71

Tabelle 3.1: Auszug aus dem Originaldatensatz

X1

T2 T3 x4

5

Tg

0274 0.393 20.903 3271

0.911

0.657

Tabelle 3.2: Mittelwerte Z; von x;; im Datensatz

Di

log = = fo+ zirf1 + zi2f2 + Ti3fs + wiafa + @5 B + wie P

)

wobei 5 = (607 see 766)T 3

m=71.

firi=1,...,n,

119

Ziel: Schatze Py, ..., Ps und priife, welche Faktoren fiir die kiinftige Kreditvergabe

relevant sind.

Hy : B; = 0 (Merkmal x; beeinflusst die Kreditvergabe nicht) wird abgelehnt, falls
p-Wert < a. Man sieht, dass u.a. auch g4 fiir die Kreditvergabe nicht relevant ist, was

der Intuition widerspricht. Eine Verfeinerung des Modells ist notwendig:
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Wert \/([771(/3’))“ T!  p-Wert

Bo
B1
B2
B3
B
s
Bs

0.281 0.303 -0.94  0.347
0.618 0.175 3.53 < 0.001
-1.338 0.201 -6.65 < 0.001
0.033 0.008 429 < 0.001
0.023 0.033 0.72 0.474
-0.986 0.251 -3.93 < 0.001
-0.426 0.266 -2.69  0.007

Tabelle 3.3: Ergebnis zur

ML-Schétzung durch das Fisher Scoring Verfahren, wobei

(I I(B))” als asymptotische Standardabweichung von fJ; interpretiert

wird. Signifikanzniveau: oo = 0.001

Neues Modell:

9EY;) = Bo + Brzi1 + Paziz + Biwis + Baxiy + Bizia + Bixy + Bszis + Potic

Wert \/(Igl(ﬁ))” T!  p-Wert

Bo
p1
B2
B3
53
Bi
Bi
Bs
Bs

-0.488 0.390 -1.25  0.211
0.618 0.176 3.51 < 0.001
-1.337 0.202 -6.61 < 0.001
0.092 0.025 3.64 < 0.001
-0.001 < 0.001 -2.20  0.028
-0.264 0.099 -2.68  0.007
0.023 0.007 3.07 0.002
-0.995 0.255 -3.90 < 0.001
-0.404 0.160 -2.52  0.012

Tabelle 3.4: p-Werte fiir die Regressionskoeffizienten des neuen Modells

Frage: Welches Modell ist besser?
Mit anderen Worten, wir testen

Hy : 82 = 0 (lineares Modell) vs. Hy : 82 # 0 (quadratisches Modell) bzw.
Hy : B2 = 0 (lineares Modell) vs. Hy : 8% # 0 (quadratisches Modell) .

Dabei verallgemeinern wir die Art der statistischen Hypothesen wie folgt: es wird

Hy:CB=dvs. H : CB8#d
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getestet, wobei C' eine (r x m) - Matrix mit rg C =r < m ist und d € R".
Zum Vergleich: frither haben wir

Hy:B=povs. H : B# B0, B,6€R"

getestet. Natiirlich ist 8 = [y ein Spezialfall von C'8 = d mit C = 1d, d = . Die neuen
Hypothesen beinhalten Aussagen iiber die Linearkombinationen der Parameterwerte. Wie

soll Hy vs. Hy getestet werden?

Sei 3, der ML-Schétzer von 8 unter Hy, d.h. En = argmax logL(Y,p)
B € Rm: CB=d

Sei 3, der ML-Schitzer von 3 unrestringiert, d.h. By = argmax log L(Y, ).
B8 € Rm

Die Idee der folgenden Tests ist es, Bn mit 3, zu vergleichen. Falls die Abweichung Bn— Bn
grof ist, soll Hy abgelehnt werden.

Satz 3.4.2. Seilog L(Y, 8) die Log-Likelihood-Funktion der Stichprobe der Zielvariablen
Y = (Y1,...,Y,) ", I,(B) die Fisher-Informationsmatrix, U(3) die Score-Funktion des
verallgemeinerten linearen Modells mit natirlicher Linkfunktion

g:9gEY)=X;8, i=1,...,n.
Wir fiihren folgende Teststatistiken ein:
1. Likelihood-Ratio-Teststatistik:
T, = 2(log L(Y, B,) — log L(Y, B,))
2. Wald-Statistik:
Ty = (OB — ) (CL (B)CT) M (CBy — d)

3. Score-Statistik: B N N B
T, = U(Bn) 1, (B2)U(Br)

Unter gewissen Bedingungen an die Schétzer 3 und E (vgl. Satz D sind die Test-
statistiken 1 - 3 asymptotisch x?2,-verteilt: z.B. gilt fiir die Likelihood-Ratio-Teststatistik

T —— Xom -
n— 00

Folgerung 3.4.1. Der Satz 2.6.4 liefert uns folgende Entscheidungsregel: Hy wird abge-
lehnt, falls o
Tn(T;aTn) > Xgn,l—oz :

Dies ist ein asymptotischer Test zum Signifikanzniveau a.

Beispiel 3.4.2 (Fortsetzung). Es ergeben sich folgende Werte fiir die Teststatistiken:
T, =12.44, p-Wert: 0.0020

T =11.47, p-Wert: 0.0032 .
Fiir a = 0.005 gilt p-Wert < «, somit wird Hy : 57 = 0 abgelehnt = das quadratische

verallgemeinerte lineare Modell ist besser.
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3.5 Kiriterien zur Modellwahl bzw. Modellanpassung

Es ist bekannt, dass die Giite der Anpassung eines parametrischen Modells an die Daten
im Allgemeinen steigt, wenn die Anzahl der Parameter erh6ht wird. Die Aufgabe eines
Statistikers ist es aber, ein gut passendes Modell mit einer mdoglichst kleinen Anzahl
an Parametern zu finden. Deshalb verwendet man folgendes Informationskriterium von
Akaike, um Modelle mit (mdoglicherweise) unterschiedlichen Parametersitzen zu verglei-
chen.

Informationskoeffizient von Akaike:

AIC = —2log L(Y, B) + 2m.

wobei Y = (Y7,...,Y,) die Stichprobe der Zielvariablen im verallgemeinerten linea-
ren Modell und 3 der dazugehorige ML-Schitzer sei. Der Wert von AIC beriicksichtigt
einerseits die Forderung der Maximalitiit der Log-Likelihood-Funktion log L(Y, §), ande-
rerseits bestraft er Modelle mit einer grofsen Anzahl von Parametern m. Das Modell mit
dem kleineren AIC ist als besseres Modell einzustufen. Manchmal verwendet man statt
AIC den normierten Koeffizienten AIC/n.

Beispiel 3.5.1 (Fortsetzung). Berechnen wir den Informationskoeffizienten von Akaike
fiir das lineare und quadratische Logit-Modell im Beispiel der Kreditrisikopriifung:

Lineares Modell : AIC = 1043.815
Quadratisches Modell : AIC = 1035.371

Man sieht anhand des AIC, dass die Wahl zu Gunsten des quadratischen Modells ausféllt.

Der Nachteil der oben beschriebenen AIC-Regel liegt darin, dass die endgiiltige Ent-
scheidung dem Statistiker {iberlassen bleibt. Deshalb ist es wiinschenswert, einen stati-
stischen Test zu konstruieren, der die Giite der Modellanpassung beurteilen kann.

Wir werden jetzt den x2-Test beschreiben.

Sei

gEY) =X, i=1,...,n,

ein verallgemeinertes lineares Modell mit Linkfunktion g und Parametervektor § =
(B1,...,Bm) . Teilen wir die Zielvariablen Y7, ...,Y;, in k Gruppen auf, so dass sie mog-
lichst homogen in Bezug auf die zu schitzenden Parameter sind. So liegt z.B. eine solche
Aufteilung vor, wenn der Wertebereich der Zielvariablen Y; ,geschickt” in k > m D Inter-
valle (ag, by| unterteilt wird:

—o<a<b=a<b=a3<...<bp_1=a <b, <+

1 d 2
hsm=D m X —m -1
[ —
<0
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In die Gruppe [ fallen alle Beobachtungen Y;, die zu (a;, by| gehdren. Dabei miissen
(ar,by] so gewilt werden, dass fi; = ¢~ '(X;[3) innerhalb einer Gruppe konstant wird:
fi; = iy ¥V j aus Gruppe lEI Sei

o n = #{Y;:Y; € (a,b]} die Klassenstirke der Klasse [
oY, = n% > Y das arithmetische Mittel innerhalb der Klasse [

e /3 der ML-Schitzer von 3, der aus Y gewonnen wurde

o [;(B) = > log fp(Y;) die Log-Likelihood-Funktion der Zielvariablen Y; innerhalb
der Gruppe [

e iy =g (X;3) und v(fy) der Erwartungswert- bzw. der Varianzschiitzer von p; =
EY;, die aus dem ML-Schéitzer 8 gewonnen wurden

Dabei ist v(f1;) = 72" (0~ 1(i;)), wobei b(-) der entsprechende Koeffizient in der Dichte
fo aus der Exponentialfamilie ist. Man bildet folgende Teststatistiken:

v=Y (Vi — ju)?

2 o) [

k
D =-27> " (i(ju) — L(Y7))

=1

Satz 3.5.1.
Falls n — oo und die Anzahl n; — oo V [, dann gilt unter gewissen Voraussetzungen
Folgendes:

Dies ist eine informelle Beschreibung des Vorgangs, bei dem fiir jedes Y; n; unabhingige Kopien von
Y; erzeugt werden, die die i-te Klasse bilden.
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Folgerung 3.5.1.
Mit Hilfe der Behauptungen des Satzes 2.6.5 kdnnen die Hypothesen

Hy:Y = (Y1,...,Y,) stammt aus dem Modell g(EY;) = X;68, i=1,...,n
VS.
Hy:Y = (Y1,...,Y,) stammt nicht aus dem Modell g(EY;) = X;6, i=1,...,n

folgendermafen getestet werden:
Hy wird (fiir grofe n) zum asymptotischen Signifikanzniveau a verworfen, falls

2 2 2
X" > Xi—m—1,1-a bz2W. D> Xj 114 -
Diese Tests sollten aber nicht verwendet werden, falls die Klassenstarken n; klein sind.

Beispiel 3.5.2.
Wie sehen die oben beschriebenen Tests im Falle der Logit- bzw. Poisson-Regression
aus?

1. Logit-Modell: Y; ~ Bernoulli(p;), i =1,...,n

= verallgemeinertes lineares Modell log

:Xiﬁ, izl,...,n
—Di

Wir teilen Y7, ...,Y, in k Klassen auf, so dass die Wahrscheinlichkeit des Auftretens
von 1 in jeder Klasse mdglichst gut durch Y; = n% > Y; geschitzt wird. Somit gilt

o X1 B R R R
mit i = P = g~ (XiB) = Ay v(pr) = pi(1 — pr)

k
Z 1—171 /nl

2. Poisson-Modell: Y; ~ Poisson(\),
= verallgemeinertes lineares Modell log); = X;6, i=1,...,n
Somit gilt mit ﬂl = 5\[ = eXlﬁA, ’U(j\l) = j\l

k PR A
o2 (Vi = \)*
Ar/my



4 Hauptkomponentenanalyse

In diesem Kapitel werden Methoden zur Reduktion der Komplexitdt von sehr grofen
statistischen Datensétzen vorgestellt, die als Hauptkomponentenanalyse (HKA) bekannt
sind (engl. Principal Component Analysis, PCA). Mit ihrer Hilfe ist es moglich einen
sehr hochdimensionalen Datensatz X = (Xi,...,X,)T € R" auf wenige wirklich wich-
tige Komponenten ¢ = AX € R? zuriickzufithren, d < n, die aber dabei die meiste
Variabilitat des originalen Datensatzes X beibehalten. A ist dabei eine (d x n)-Matrix,
die zu finden ist, wenn gewisse (in angegebene) Nebenbedingungen erfiillt sind.
Andere Beispiele von Anwendungen sind Visualisierung von komplexen Datensétzen,
Ausreiker-Erkennung, Cluster-Analyse u.s.w.. Fiir eine Ubersicht siehe z.B. [§].

4.1 Einfiihrung

Um nachfolgende Problemstellungen zu motivieren, betrachten wir ein Beispiel des Text
Mining aus der Autoindustrie:

Beispiel 4.1.1. Ein Autohersteller ist daran interessiert, seine Verluste, die in Folge
von Betrug und Inkompetenz seitens seiner Niederlassungen bei Garantie-Reparaturen
auftreten, zu minimieren. Deshalb mdchte er eine Aufilligkeitsanalyse von Reparatur-
besichtigungen aus Garantie-Werkstitten betreiben, die dazu fiihren sollte, computerge-
stiitzt, verdichtige Meldungen zu finden, die nachher manuell und einzeln weiter gepriift
werden. Ein weiterer Anreiz fiir die automatischen Fritherkennung von Auffilligkeiten
besteht darin, dass flichendeckende Priifungen nur fiir wenige Niederlassungen und in
unregelmafigen Zeitabstdnden (aus Kostengriinden) moglich sind, und selbst die kénnte
man sich sparen. Ein typischer Text, der eine Garantie-Reparatur beschreibt, verwen-
det maximal 300.000 Worter aus einem Fachwortschatz. Daher werden solche Texte als
Vektoren x = (x1,...,7,)] der Linge n = 300.000 dargestellt, wobei

S 1 , falls das Wort ¢ im Text x vorkommt
1 0 , sonst

Diese Vektoren  werden normiert, so dass sie auf der Sphire S”~! liegen. Innerhalb
eines Jahres entsteht dadurch eine riesige Datenbank solcher Vektoren x mit mehreren
Millionen Eintrdgen. Die Aufgabe eines Statistikers besteht in der drastischen Reduk-
tion der Dimension n — 1 des Datensatzes, so dass eine Visualisierung des Datensatzes
moglich wird. Eine mdgliche Losung liegt in der Verwendung von HKA. Die HKA geht
in ihren Urspriingen auf die Arbeiten von Beltran (1873) und Jordan (1874) zuriick, die
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die Single Value Decomposition verwendeten. In der mehr oder minder modernen Form
(vel. erscheint sie erst in den Arbeiten von K. Pearson (1901) und H. Hotelling
(1933). Auch der Name HKA stammt von Hotelling. Eine Weiterentwicklung der Me-
thoden ist Girshick (1939), Anderson (1963), Rao (1964) und anderen zu verdanken.
Erst nach der Einfiihrung der PCs ist aber diese Methodologie richtig angewandt gewor-
den. Denn ohne Computer ist die Berechnung von Hauptkomponenten fiir n > 4 sehr
schwierig. Seit den 1980er Jahren gibt es einen rasanten Anstieg der Anwendungen von
HKA in allen Wissensbereichen (vor allem in Ingenieurwissenschaften), wo multivariate
Datensétze analysiert werden sollen.

4.2 Hauptkomponentenanalyse auf Modellebene

In diesem Abschnitt wollen wir das Hauptproblem der HKA fiir Zufallsstichproben X =
(X1,...,X,)T mit bekannter Kovarianzstruktur einfiihren. Sei X = (X1,..., X,)7 eine
Zufallsstichprobe von Zufallszahlen X; mit bekannter Kovarianzmatrix ¥ und VarX; €
(0,00), © = 1,...,n. Selen A\; > Ay > ... > A, > 0 die Eigenwerte von ¥, die in
absteigender Reihenfolge geordnet und alle von einander verschieden sind. Wir suchen
Linearkombinationen o’ X von X;, die die maximale Varianz besitzen, wobei der Vektor
a entsprechend normiert ist z.B., so dass & € S~ ! in der Euklidischen Norm.

Definition 4.2.1. Die Linearkombination oz;fFX, i = 1,...,n, heilt i-te Hauptkompo-
nente von X, falls sie die maximale Varianz besitzt unter der Bedingung, dass a; € S™~*
und of X, 0l X, ... ol | X und o] X unkorreliert sind:

Var o' X — max
o

la| =1 (4.2.1)
Cov(@"X,a] X) =0, j=1,...,i—1

Dabei heifft a; der Koeffizientenvektor der i-ten Hauptkomponente aiTX .

Satz 4.2.1. Die i-te Hauptkomponente von X ist gegeben durch
Y=ol X,
wobei «; der Eigenvektor von ¥ mit Eigenwert A; ist. Dabei gilt
Var(V;) =N, i=1,...,n.

Beweis. Zeigen wir, dass die Aussage des Satzes gilt fiir ¢ = 1, 2. Fiir ¢ > 2 ist der Beweis
analog.

Fiir ¢ = 1 gibt es eine Nebenbedingung |a] = 1 in (4.2.1), die in die Lagrange-
Zielfunktion

fla) = Var(aTX) +AJa)* = 1)
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iibernommen wird. Dabei gilt

2 2
Var(aTX) = E(aTX - EaTX> - E(aT(X - EX)) = EaT(X - EX)(X — EX)Ta
= aTE(X —EX)(X —EX)Ta =alSa,

la|? = a - o, und f(a) = aTSa + Mala —1).
Die notwendige Bedingung des Maximums ist

of _o 9 _

=0, =0,
O O\
wobei die zweite Gleichung einfach die Nebenbedingung |«| = 1 représentiert.
% = (%,...,%), wobei a = (a!,...,a™)T und % = 0 schreibt sich ¥a — Aa =0 in

Vektorform oder Ya = Aa, was heilst, dass a ein FEigenvektor von 3 mit dem Eigenwert
A ist. Da Var(a? X) = o’ Ya maximal sein soll, gilt

Var(a?X) =o' a=xaTa = A
1

und A=A >X>...> A\, => A=) und o = 3.
Fiir ¢ = 2, soll die Maximierungsaufgabe

af'Ya — max
(67

ol a=1

Cov(al X,aTX) =0

beziiglich a gelost werden, wobei

Cov(a1 X, aTX) = oleZoz =a’Ya; = o \a; = Malay.

Das heikt, folgende Funktion soll maximiert werden:

fla) =aTSa + MaTa —1)+ 6ol .

Genau wie oben bekommt man

g =Ya+ A a+da; =0
Oa
Durch die Nebenbedingungen af Ya = 0 und af a = 0 (siehe oben) bekommt man
of
ozr{% =dala; =6=0,

was bedeutet, dass Ya = Aa und « ist wieder ein Eigenvektor von ¥ mit Eigenwert .
Da « orthogonal zu «; sein soll und Var(a’ X) = A maximal sein soll, bekommt man
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a:agund)\:)\Q:YgzazTX.

O
Ubungsaufgabe 4.2.1. Fiihren Sie den Beweis fiir i > 2 durch!
Sei nun A = (aq,...,q,). Dies ist eine orthogonale (n x n)-Matrix, fiir die gilt (aus
dem Satz [4.2.1)), dass
YA =AA, A=diag(A1,...,\n),
oder, dquivalent dazu,
ATS A=A, ¥ =AAAT (4.2.2)

Satz 4.2.2. Fiir eine (n x m)-Matrix B, mit orthogonalen Spalten b;, i = 1,...,m,
m < n,sei Y = BT'X und Xy = Cov(Y) = BTYB die Kovarianzmatrix von Y. Dann
gilt

A, = argmax Spur(Xy ),
B

wobel A, = (g, ..., o).

Beweis. Da ag,...,a, eine Basis in R” bilden, gilt

n
bk:E croy, k=1,...,m,
i=1

wobei B = (b1,...,by), oder, in Matrixform, B = AC, mit C = (¢;5), i = 1,...,n,
j=1,...,m. Daher gilt

Sy =BTSB=CTATSAC =CTAC =) Nee],

A j=1
wobei c? die j-te Zeile von C ist. Deshalb gilt

Spur(Xy) = Z /\jSpur(cjc?) = Z AjSpur(c?Cj) = Z Ajlej)?.
j=1 j=1 j=1

Da C = A7'B = AT B, gilt

ctc =BT AATB=B"B =1,
S~ S~
I, Im
wobel
I, = diag(1,...,1).

~—
k
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Somit

n m
2.2 c=m
i=1 j=1
und die Spalten von C sind orthonormal. Daher kann C als ein Teil (erste m Spalten) einer
orthonormalen (n xn)-Matrix D gesehen werden. Da auch die Zeilen von D orthonormale
Vektoren sind und ¢/ die ersten m Elemente der Zeilen von D bilden, gilt

j=1
Da
n m n
Spur(Xy) = Z i 622] = Zﬁl)\’n
i=1  j=1 i=1
——
Bi

wobei 8; <1,i=1,...,n, > ., fi =m, und

AL > Ao > > Ay, Zﬁi)\i—nrnax
=1

firfr=...=8mn=1,Bm+1=... =B, =0. Aber wenn B = A,,, dann gilt

=4 L olsi=gsm

Y71 0 ,sonst ’
woraus 1 = ... = By =1, By1 = ... = By = 0 folgt. Somit ist A,, die Losung von
Spur(Xy) — maxp. O

Die Behauptung des Satzes bedeutet, dass

m m
Var (Z YZ> = Var <Z aiTX>
i=1 i=1
maximal ist fiir Vm = 1,...,n, falls Y; Hauptkomponenten von X sind.

Folgerung 4.2.1. (Spektraldarstellung von X). Es gilt

D= N-a-of (4.2.3)
=1

Beweis. Die Darstellung folgt aus (4.2.2)), weil

Y= (ai,...,0n) -diag(A, ..., \) - (a1, ..., a)T
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Bemerkung 4.2.1. 1. Da A\; > X2 > ... > A, mit |a;] = 1, Vi, folgt aus der Darstel-
lung , dass die ersten Hauptkomponenten nicht nur den Hauptbeitrag zur
Varianz von Xj;, sondern auch zu den Kovarianzen liefern. Dieser Beitrag wird mit
steigendem ¢ = 1,...,n immer geringer.

2. Falls Rang(X) = r < n, dann bedeutet (4.2.3), dass ¥ komplett aus ihren ersten r
Hauptkomponenten und Koeffizientenvektoren bestimmt werden kann.

Lemma 4.2.1. Sei ¥ eine positiv definite symmetrische (n x n)-Matrix mit Eigenwerten
A1 > A2 > ... > A, > 0 und entsprechenden Eigenvektoren o, ...,ap, |ai] = 1,0 =
1,...,n. Dann gilt

aTYa
M= sup S
€Sy ,a#£0 ’O“
wobei Si = (aq, ... ,oq.ﬁ_1>l fiir beliebige k =1,...,n
Beweis. Sei
oI'ya
€= Sup ——5—
aESk ’O[’

Zeigen wir, dass A\ < ¢ < \g.

1. ¢ > M\;: Flir a = o, beweist man

a{Eak B /\kagak

T T
Q. O Qg Qg

c> =X\

2. ¢ < A\p: Es ist zu zeigen, dass
n
a’'Sa < Mela?, VYa €Sy, a#0, YVaeR" a= Zcz-ai,
i=1

weil {a;}] ; eine orthonormale Basis bilden.

a€esS, = cp=...=cp_1=0,

dass heifst

n n n n T n
o= Z cioy, Yo = Z Cixoy = Z CiA;i vy, al'Ya = (Z ciai> (Z )\Z-c,-ozl)
=1

i=k i=1 i=1 i=1
= E CiCjA; a ozZ g 62)\1, |oz]2 E 02
t,j=1

6”
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Deshalb gilt fiir a € S,
n n n
a"Sa=> "N < > Md =MD = Mlal,
i=k i=k i=k
und ¢ < A\ weil A\ > )\j, 7> k.
O
Satz 4.2.3. Seien B, Y und Xy wie in Satz Dann gilt
A, = argmax det(Xy),
B
wobei Ay, = (a1, ..., o).
Beweis. Sei k € {1,...,m} fixiert. Fiihren wir Sy = (o,...,6_1)" C R¥ ein (wie in
Lemma . Seien p11 > g > ... > p, Eigenwerte von ¥y = BT B mit entsprechen-
den Eigenvektoren 1, ..., vm, die orthonormiert sind. Sei T, = (Vg41,---,¥m) C R™. Es

gilt offensichtlich

Dim(Sy) =n—k+1, DimTy = k.
Genau wie in Lemma kann gezeigt werden, dass Vy # 0, v € T, gilt

YTy

T2 >
]2

Betrachten wir Sy = B (Tx) € R™. Da B eine orthonormale Transformation ist, ist sie

eindeutig und somit Dim(Sy) = Dim(7}) = k. Aus der Formel

Dim(Sk U gk) + Dim(Sk N gk) = DimS}, + Dimgk
folgt
Dim(S), N Sy) = DimSy, + DimS; — Dim(S, USK) >n—k+1+k—n=1
k+1 k <
n—k+ <n

das heift, da € S N §k, a # 0. Fiir dieses a gilt o = By, v € T, und deshalb

Ty ~2 TBTy,B aTYa
S = S e S

T
7
~—

7T BT By

nach |y| = |B~|, weil B Distanzen beibehélt. Deshalb gilt p < Ay fiir alle k =1,. ..

und



132 4 Hauptkomponentenanalyse

det(Xy) = H,uk < H A = maxdet (Xy) < ﬁ
=1 k=1 k=1

Allerdings gilt fiir B = A, px = A, Kk =1,...,m, deshalb

Ay, = argmax det(Xy).

B
O

Nun betrachten wir geometrische Eigenschaften von Hauptkomponenten.
Proposition 4.2.1. Die Hauptkomponentenkoeffizienten aq, ..., a;, sind die Hauptach-

sen des Ellipsoids 7% ~'z = ¢, mit Halbachsenlingen v/c);, i =1,...,n

Beweis. Die Hauptkomponenten von X sind gegeben durch Z = ATX, wobei A =
(ai,...,ay) eine orthonormale Transformation ist, deshalb AT = A=!, X = AZ. Daher
gilt fiir unser Ellipsoid

P e = ZTATYS VA = 2TA 2 =,
Subst.x=Az

wobel

1 1

AT 1A = A1 = di — L —
lag )\17 7)\n

) . A =diag(A1, ..., ),

weil £71 dieselben Eigenvektoren mit Eigenwerten )\% hat. Daher kann das Ellipsoid

2TA=17 = ¢ in seiner normierten Form als

n.o 2
I
c\g
k=1
dargestellt werden. Daraus folgt, dass «; in die Richtungen seiner Hauptachsen zeigen

und, dass seine Halbachsenldngen gleich v/cA; sind. O

Bemerkung 4.2.2. (Multivariate Normalverteilung). Falls X ~ N(0,X) gilt, dann ist
7Ytz = ¢ ein Ellipsoid der konstanten Wahrscheinlichkeit fiir X, weil die Dichte von
X

, xeR",

1 1 gy } 1

T) = exp ——x X tx - -

fx(=) Vdet X p{ 2 (2m)2

auf diesem Ellipsoid konstant bleibt. Sonst definiert 7%~ ~'z = ¢ Konturen der konstan-
ten Wahrscheinlichkeit fiir X. Dabei zeigt der Vektor «a;q in die Richtung der gréfiten
Varianz von ol X (es ist die grofite Hauptachse mit Linge v/cA; des Ellipsoids); as zeigt
in die Richtung der zweit grokten Varianz (Halbachse v/c)Az), usw. (vgl. Bedingung4.2.1)).
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Bemerkung 4.2.3. Eine andere Form von Hauptkomponentenanalyse ist moglich, wenn
man statt X = (X1,...,X,)? die normierte Stichprobe X, = (Xj/wi,..., Xn/wn)?
benutzt, wobei Gewichte w = (wi,...,w,) eine gewisse Priiferenz in der Analyse zum
Ausdruck bringen und somit Vorinformationen enthalten. Eine hiufige Wahl ist

wi = /oy = v/ VarX;
was zur HKA von X* = (X7,..., X)), X = \/\%, 1 =1,...,n mit Hilfe der Korrela-
tionsmatrix ¥* = (Corr(X}, X;)); j=1 fithrt

COV(Xi, XJ)
\/ VarXiVaer

Dabei kommt man auf andere Hauptkomponenten az‘TX *, fir die of # «; gilt, i =
1,...,n.

Corr(X;, X;) = = Cov(X[, X]), 4,j=1,...,n

Was sind dann Vor- bzw. Nachteile von HKA basierend auf (X,¥) und (X*,¥*)?
Nachteile von (X, X)-HKA:

1. Die HKA basierend auf (X*,¥*) hiangt nicht von der Wahl der Mafeinheiten von
X ab. Somit sind Vergleiche der Ergebnisse von HKA von mehereren Stichproben
unterschiedlicher Herkunft méglich.

2. Falls die Varianzen von X; sehr unterschiedlich sind, so werden die Variablen X;
mit groften Varianzen auch die ersten HK bestimmen, was eindeutig einen Nachteil
darstellt. Die HKA basierend auf (X*, ¥*) ist frei von diesem Nachteil. Die (X, X)-
HKA ist in solchen Féllen nicht aussagekriftig, weil sie (in leicht verdnderter Form)
einfach die Variablen X; in der Reihenfolge absteigender Varianzen ordnet.

Beispiel 4.2.1. Sei X = (X3, X3), wobei X; die Lange darstellt und X5 das
Gewicht. X; kann in cm oder m gemessen werden, Xo allerdings nur in kg. In
diesen zwei Fillen seien die Kovarianzmatrizen von X gegeben durch

80 44 8000 4400
21 = ( 44 80 > baw. 2z = < 4400 8800 )

Die Berechnung der ersten HK ergibt in beiden Féllen

ol X =0,707X; +0,707X; fiir £; bzw. al X =0,998X; + 0,055X, fiir Xy.

Zu bemerken ist, dass im ersten Fall X; und X» gleiche Beitrége zur 1. HK besitzen,

wobei im 2. Fall X; den dominierenden Einfluss ausiibt. Dazu gilt )\l)jrl/\z -100% =

77,5% im ersten Fall und )\1/})\2 -100% = 99,3% im 2. Fall (es ist der Anteil der

Variation der ersten HK von der gesamten Varianz).
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3. Falls Zufallsvariable X; in X unterschiedlicher Herkunft sind (wie im obigen Bei-
spiel), dann ist die Interpretation des Anteils der Variation problematisch, weil in
der Summe A\ + ... + )\, m?, kg?, usw. aufsummiert werden. Die HKA basierend
auf (X*,X*) dagegen betrachtet maflose Gréofen, so dass die Summe A\ +...+ A,
durchaus interpretierbar ist.

Vorteile von (X, Y)-HKA:

1. Falls statt X bzw. X* ihre empirische Analoga 3 bzw. $* benutzt werden (wenn
Y (X*) nicht bekannt sind, miissen sie aus den Daten geschétzt werden), dann hat
(X,%)-HKA Vorteile, weil die statistischen Methoden hier einfacher sind als bei
(X*,%*)-HKA.

2. Wenn X; in X alle dieselbe Mafkeinheit besitzen, dann ist die HKA basierend
auf (X,Y) manchmal vorteilhafter, weil bei der Standardisierung von (X,X) auf
(X*,X*) der Bezug zu den Einheiten, in denen X gemessen wurde, verloren geht.

Bemerkung 4.2.4. Manchmal wird in Definition 4.2.1| statt |a| = 1 die Normierung
lak| = VAk, k=1,...,n benutzt (sieche Optimierungsaufgabe (4.2.1))). Dies ist insbeson-
dere der Fall in der korrelationsbasierten HKA.

Bemerkung 4.2.5. (Gleiche Figenwerte \;). Falls einige Eigenwerte von X gleich sind,
zB. A1 =X = ... =X > A\er1 > ... > A\, bedeutet dies, dass es einen linearen Un-
terraum der Dimension k gibt, in denen eine beliebige Basis die ersten k Eigenvektoren
darstellt. Dies bedeutet, dass fiir die HKA die ersten k Eigenvektoren nicht eindeutig defi-
niert werden kénnen. Geometrisch interpretiert: Die ersten k Halbachsen von 27 Y71z = ¢
sind gleich, d.h., das Ellipsoid 27 ¥ "'z = ¢ hat einen sphirischen k-dimensionalen Durch-
schnitt durch den Ursprung, in dem die Richtungen der Halbachsen beliebig (orthogonal
zueinander) gewidhlt werden kénnen.

Bemerkung 4.2.6 (\; = 0). Wenn Ay > ... > Ay > Aygr1 = ... = Ay = 0, dann
gibt es in der Stichprobe X lediglich n—Fk linear unabhéngige Zufallsvektoren X;. Deshalb
sollten nur diese n — k Variablen zur Analyse benutzt werden.

4.3 Hauptkomponentenanalyse auf Datenebene

Bei diesem Abschnitt wird nicht mehr vorausgesetzt, dass die Kovarianzmatrix ¥ be-
kannt ist. Deshalb soll sie durch die empirische Kovarianzmatrix S ersetzt werden.
Seien X!, X2 ... X™ unabhiingige Realisierungen eines n-dimensionalen Zufallsvektors
X=(X1,.... X)), Xt =(X¢,...,X))T,i=1,...,m. X' wird als Beobachtung von X
interpretiert.
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Definition 4.3.1. Definiere den n-dimensionalen Zufallsvektor a; durch

m
ap = argmax Y; —Y)?
acRn MM — 1 ;( ! )
mit Nebenbedingungen |a| = 1, a unkorelliert mit ai,...,ax_q fiir alle &k = 1,...,n,

wobel

m
Vi=d'X', i=1,....m, Y==)Y,
=1

So definiert a%X die k-ten Hauptkomponenten von X mit Koeffizientenvektor ay, Y, =

T vi
ap X
1,...,

ist die Auswertung der k-ten HK auf der i-ten Beobachtung X' von X;, i =
m,k=1,...,n.

Lemma 4.3.1. Es gilt

wobel

m

1 _
— D (Y - Y=l k=1,....n,
m—liz1

1 & 1 &
Yi=—) Yy, Xpe=—> X}, k=1,...,

und [, der FEigenwert der empirischen Kovarianzmatrix 3 = (&Zj)?j:l ist,

~ 1 t v t v ..
Uz’jZTH;<Xi—XZ’)(Xj—Xj>, hLi=1,...,n, L1 >l>...>1,.
ay, ist der Eigenvektor von 3 mit Eigenwert Iy, k =1,...,n.
Beweis.

Ubungsaufgabe 4.3.1. Vergleiche den Beweis des Statzes

O

Im Folgenden werden wir X* durch X? — X ersetzen und dabei die Bezeichung X*
beibehalten, : = 1,...,n.

Bemerkung 4.3.1. Die Eigenschaften der HKA formuliert in Satz [4.2.2] Folgerung

4.2.1
4.3.1

Satz Proposition bleiben auch in ihrer statistischen Version (Definition
erhalten, mit folgenden offensichtlichen Modifikationen: ¥ wird ersetzt durch X,

A= (a1,...,ap) durch A = (a1,...,a,), Ay = (Q1,..., ) durch Ay, = (a1,...,am),
Yy durch die empirische Koviarianzmatrix >y von Y. So benutzt beispielsweise die
Spektraldarstellung von X
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n
2 = ZliaiaiT (4.3.1)
i=1

Ubungsaufgabe 4.3.2. Zeigen Sie es!

Zeigen wir eine weitere Eigenschaft der empirischen HKA| die auch als eine dquivalente
Definition betrachtet werden kann:

Satz 4.3.1. Sei B eine (n x p)-Matrix, p < n, mit orthogonalen Spalten. Seien Z; =
BTX? i=1,...,m Projektionen von X% i = 1,...,m, auf einen p-dimensionalen Un-
terraum Lpg. Definiere

m

aB) =Y |x' -z

i=1
Dann gilt

Ay =(ai,...,ap) = argmin G(B).
B

Beweis. Nach dem Satz von Pythagoras gilt ’Xi‘Q = |Zi|* + | X" — Z;|?, deshalb

Z’XZ Z\Z\ — min
falls .
Z 1 Z;i|? ZZiTZi => X7TBBTX" - max.

=1 i=1
Es gilt

m m m
= Spur (Z XiTBBTXZ’)> => Spur (X"BBTX") =) " Spur (BT X'X'"B)
i=1 i=1 i=1

= Spur | BT (Z XiXiT> B | = (m —1)Spur(BTEB)
i=1

|
Ekm—l)f)

Zusammengefasst gilt

G(B) = (m — 1)Spur (BTi]B) ,
die nach Bemerkung und Satz maximal wird, falls B = A,,. O

'Da X* durch X* — X ersetzt wurde.
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Bemerkung 4.3.2. Wie kann Satz[4.3.1]als dquivalente Definition der empirischen HKA
benutzt werden? a; werden als orthogonale Vektoren definiert, die einen linearen Unter-
raum L, = (a1, ...,a,) aufspannen, p = 1,...,n—1, mit der Eigenschaft, dass die Summe
der quadratischen orthogonalen Abstéinde von X zu L, minimal wird. So wire es z.B.
fiir p = 1 Ly die beste Gerade, die den Datensatz X!,..., X" approximiert, fiir p = n—1
wére L, die beste Hyperebene mit derselben Eigenschaft (vgl. lineare Regression).

Der folgende Satz gibt uns gleichzeitig eine effiziente Berechnungsmethode und eine
neue Interpretation der HK an.

Satz 4.3.2 (Singulirwertzerlegung). Sei X = (X'-X,X?-X,..., X"~ Y)T eine

(m x n)-Matrix, die zentrierte Beobachtungen X* von X enthilt. Sei Rang(X) = r <
n, m. Es gilt folgende Zerlegung;:

X =ULAT, (4.3.2)
wobei U eine (m x r)-Matrix mit orthonormalen Spalten ist

L:diag(ﬂ,...,l;) wobei  [; = (m—1);

die Wurzel aus dem i-ten (nicht trivialen) Eigenwert von X7X = (m — 1)% ist, i =
1,...,7. A, = (a1,...,a,) ist die (n x r)-Matrix mit Spalten a;

Beweis. Definiere U = (uq, ..., u,) mit Spalten u; = )N(%, i=1,...,r. Zeigen wir, dass

die Darstellung (4.3.2) gilt. Laut Spektraldarstellung (4.3.1)) gilt

-
(m—l)f):)zT)?:ZZ?aiaf, weil I;=0i=r+1,...,n.

i=1
Deshalb
Ea{ r i~ T I —0. noo_
vLAt =v | ¢ | =Y XZha! =) Xae! "T=TTY Xal
l~ al i=1 i i=1 i=1
rr

)?al- =0,i=r+1,...,n, wegen rang()?) = r und Zentrierung der Spalten von X durch
X. Da die Vektoren a; orthonormal sind, gilt

Bemerkung 4.3.3. Die Matrix U liefert folgende Versionen von Auswertungen

Yie =al X' = XTay, Y =wply, i=1,....m, k=1,...,n
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Es gilt

~ Var(Yy) I 1 .
Var(u) = T’% RO, Vi, k

4.4 Asymptotische Verteilung von HK bei normalverteilten
Stichproben

Sei nun X ~ N(u,X), ¥ habe Eigenwerte \; > Ay > ... > A\, > 0 und entsprechende
Eigenvektoren ai, k= 1,...,n. Berechne

)\:(Ala"'a)\n)Ta l:(l17"'aln)T> Oék:(Oékl,...,Odkn)T, ak:(aklv"'>akn)Ta
k=1,...,n
Satz 4.4.1. 1. [ ist asymptotisch (fiir m — oo) unabhéngig von ay, k =1,...,n.
2. lund ag, k =1,...,n sind asymptotisch m — oo multivariat normalverteilt, mit

asymptotischen Erwartungswerten

lim E(l) =X und lim E(ax) =, k=1,...,n.

m—00 m—00
3. Es gilt
2X2 e
Cov(lg,lpr) ~ < m=1" " ™ fiir m — oo
0, k#K
)\ . )\lal Sy )
it Ytk pungzy F=K
COV(Cij, ak/j/) ~ fflI‘ m — 0o,
)xk)\k/akjak/j/ k # k/

(M=) = A)??

Ohne Beweis!
Die Aussagen von Satz kénnen dazu benutzt werden, ML-Schitzer sowie Konfi-
denzintervalle fiir A und o} zu konstruieren.

Ubungsaufgabe 4.4.1. 1. Zeige, dass ein ML-Schétzer fiir X durch mT_lﬁl gegeben
ist.

2. Zeige, dass der ML-Schétzer

fiir X ist A= m=1
fiir oy ist G = ap, k
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3. Zeige, dass die ML-Schétzer in 2. mit Momenten-Schétzern fiir A und oy, iiberein-
stimmen, die aus dem Satz gewonnen werden kénnen.

Folgerung 4.4.1 (Konfidenzintervalle fiir A\;). Ein asymptotisches Konfidenzintervall
fiir A, (m — o0) zum Niveau 1 — « ist gegeben durch

-1 -1
I |1 2 g [ 1+ 2
F m—1- ok m—_17: ’
wobel m so grofs ist, dass —4/ %z% <1

Beweis. Da [ ~ ()\k, — ) fiir m — oo aus Satz 4.4.1} 2. und 3., gilt

[N]1s)

MNN(O,D fiir m — oo.

Daraus folgt

. lp— A /m—1
(¥< < o == —_—
Aﬂop(%— T
oder fiir m — oo
2
e R
m — ——

l
k <\
1-— malz% 1+ 179
mit Wahrscheinlichkeit 1 — a. O
Da alle I, k = 1,...,n asymptotisch (m — oo) unabhingig sind, kann ein simulta-

ner Konfidenzbereich fiir [ als kartesisches Produkt der Konfidenzintervalle fir [, aus
Folgerung angegeben werden.

Lemma 4.4.1. Es gilt
(m — 1)k <lki}71 +IY - ZIn) ap—t—s X2
m—0o0

Ohne Beweis!
Daraus folgt das (asymptotische) Konfidenzellipsoid fiir o zum Niveau 1 — 3

{y eR™: (m— 1)y’ <lkf]_1 + llzli - QIn) y < Xi—l,ﬁ} .
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Bemerkung 4.4.1. Folgerung bzw. Lemma kénnen zur Konstruktion von
statistischen Tests fiir A\ bzw. oy folgendermalen verwendet werden:

1. Testen von Hp : A\, = Ak, v.s. Hy @ A # Ak,
Die Hypothese Hy wird verworfen, falls

Dies ist ein asymptotischer Test (m — oo) zum Niveau «.

2. Testen wir Hy : ap = ag, v.s. Hy @ oy # o,
Die Hypothese Hy wird abgelehnt, falls

(m — l)akT.O (lkffl + lk_li - 2In> Qky = ngfl,a'

Dies ist ein asymptotischer (m — 0o) Test zum Nivieau a.

4.5 AusreiBBererkennung

In diesem Abschnitt gehen wir davon aus, dass unsere Stichprobe X', X2, ..., X™ einige
Ausreifer enthalten kann. Was aber ist ein Ausreiffer? In der statistischen Literatur gibt
es dazu keine einheitliche Meinung. Allgemein wiirden wir sagen, dass die Beobachtung
X' ein Ausreifer ist, wenn sie einen untypischen Wert (in Bezug auf die Verteilung von X)
annimmt. Es kann z.B. ein ungewohnlich hoher bzw. niedriger Wert von einigen Koordi-
naten von X' sein. Es kann aber auch eine ungewdhliche Kombination von gewdhnlichen
Koordinatenwerten einiger Koordinaten von X sein. Der Grund fiir solche untypischen
Werte X* kann ein Mekfehler, aber auch eine Anomalie im Datensatz sein.

Beispiel 4.5.1. Sei X = (X, X3), wobei X; ="Korpergrofe"(in cm) und X = “Ge-
wicht” (in kg) von Kindern im Alter von 5 bis 15 Jahren sind. Das Merkmal X wird in
einer medizinischen Studie n mal gemessen. Dabei sind Beobachtungen X* = (250, 80)
und X7 = (175, 25) als Ausreifer klassifiziert worden, und zwar daher, weil X = 250cm
eine unvorstellbare Kérpergrofe ist, bei X7 sind sowohl X7 = 175 als auch XJ = 25 im
mittleren Wertebereich von X; und Xs, ihre Kombination jedoch ist praktisch unméglich.

Wie kénnte man Ausreifer enttarnen? Normalerweise werden untypische Werte von X*
anhand von Plots des Datensatzes X!,..., X™ als Einzelpunkte, die nicht in der groken
Punktwolke liegen, identifiziert. Bei hoher Dimension n von X ist es jedoch schwierig, so
einen Datensatz zu visualisieren. Deshalb kann man vorschlagen einen Datenpunkt der
ersten 2-3 HK von (X!,..., X™) zu erstellen. Dann werden dort ungewdhnlich grofie bzw.
kleine Werte von X,g sofort erkennbar. Um jedoch eine ungewthnliche Zusammensetzung
von gewdhnlichen Koordinatenwerten X}, zu entdecken, bedarf es der letzten HK. Dazu
wird die Auswertung folgender Statistiken empfohlen:
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Seien a1, ...,a, die Koeffizientenvektoren der HK von (X1!,..., X™). Seien Yj; = agXi,
i=1,....,m, k=1,...,n die Auswertungen der HK zu den Beobachtungen X'. Seien
I, k = 1,...,n die Eigenwerte der empirischen Kovarianzmatrix ¥ von (X1!,... X™).

Fiir ein 1 < ng < n, definieren wir die Statistiken

n n y2 n
@)= 3 Vi 4o = 3 5 dPmo = 3w
k=n—mno+1 k=n—ng+1 k k=n—ngp+1

Y;
d§4) (ng) = max | Zk‘

n—no+1<k<n \/

Lemma 4.5.1. Es gilt

@y — (vi -7\ - i ¥ —
d’(n) = (X'-X)" 2N (X'=X), i=1,...,m,

wobei Y, an ihren empirischen Mittel gemessen werden, das heit, Y;; werden durch
Yie — Yr ersetzt, k=1,....,n,i=1,...,m.

Beweis. Es gilt

S = ALAT,  wobei L =diag(ly,...,l,) und A= (ay,...,an).

Daher
“L=AL' AT mit L7 =diag(lyt, ..., 0.
Da zusitzlich Y; = ATX? fiir V; = (Yir,...,Yin) , i =1,...,n, es gilt
X =ATY, = Ay, x7 =vTAT, i=1,...,n
und deshalb

1 m o 77i m . 7T77T .
Ez:: AY, Y_m;Y, X =Y AT
Daher gilt

(X -X) SN (X -X)= (v, V) ATAL ' ATA (Y, - Y)

1 1

2

= -1 ZYZ’“—
k=1
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Um nun Ausreifer in (X1!,..., X™) zu erkennen, werden Werte dgj)(n), i=1,...,m,

j=1,...,nfiir n = 1,2, 3 berechnet. Beobachtungen X* mit den gréften Werten dz(j) (n)
werden als mogliche Ausreifser eingestuft. Zusétzlich kann ein Plot von einer Punktewolke

D= {(dZ@)(n) . d§2)(n0),d§2)(no)> i=1,... m}

dabei behilflich sein. X? wird hier als Ausreifier erkannt, wenn
(@) = P (n0), dP (n,))

isoliert von der iibrigen Punktwolke D liegt.

Bemerkung 4.5.1. Falls X ~ N(u,Y) mit bekannten g und ¥, und HKA auf Modelle-

bene durchgefiihrt wird, kénnen Verteilungen von dz(j )(no) explizit angegeben werden. Es

(4)

sind (aufier d;’) Gamma-Verteilungen mit bekannten Parametern z.B. d§2)(n0) ~ X2,

i = 1,...,m. Die Verteilungsfunktion von d§4) (ng) ist ®"0(x), wobei ®(x) die Vertei-

lungsfunktion der N(0,1)-Verteilung ist. Dann kénnen Konfidenzintervalle fiir dgj )(no)
eine formale Entscheidungsregel dafiir liefern, ob X' einen Ausreifier darstellt. Diese
Vorgehensweise basiert zwar auf einer festen mathematischen Grundlage, ist aber in der
Praxis wenig einsetzbar, da der Fall von normalverteilten Daten (und dazu mit bekannten
Parametern p und X!) duferst selten vorliegt.

Bemerkung 4.5.2. Statistiken dgz),d§4) betonen die letzten Statistiken mehr als dgl)
(wegen der entsprechenden Normierung). Deshalb sind sie zur Entdeckung von unge-
wohnlichen Korrelationen in den Daten geeignet (wie etwa in Beispiel , Beobachtung
X7 = (175,25)). Statistik d§3) betont die ersten HK. Daher ist sie anzuwenden, um un-

gewdhnlich grofe (kleine) Werte von Koordinaten X! zu entdecken (Xi =250 im Beispiel
151).

4.6 Hauptkomponentenanalyse und Regression

Sei folgendes multivariates lineares Regressionsmodell gegeben: Y = X5 + &, wobei
Y = (Y1,...,Y,)T der Vektor der Zielvariablen ist, X = (X;;)i=1,..n,j=1,..m die (nxm)-
Matrix der Ausgangsvariablen, Rang(X) = m, ¢ = (£1,...,6,)" der Vektor der Stérgro-
fen, wobei &; unabhingig sind mit Ee; = 0, Vare; = 02, i = 1,...,n. O.B.d.A. werden
wir voraussetzen, dass X (wie in Satz zentriert ist, d.h., das empirische Mittel der
Zeilen von X ist Null, oder, etwas detaillierter, X;; wird erstellt durch X;; — Yj, wobei

— 1 ‘
Xj:ﬁZXij’ ]:1,...,177,.
=1

Wenn einige Variablen X;; in X nahezu linear abhéingig sind, das heift det(XTX) ~ 0,
dann wirkt es sich auf den Schétzer 5 von 3 als hohe Instabilitdt in seiner Berechnung
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aus, weil Cov(f) = 02(XTX)™! (vgl. Satz sehr geringe Varianzen von Bj enthalten
wird. Ein Ausweg aus dieser Situation wird die Verwendung von Verallgemeinerungen
sein wie in Kapitel Eine andere Moglichkeit ist es, die HKA fiir X zu verwenden, um
so lineare Abhéngigkeiten in X durch die letzten HK zu detektieren und einige Variablen
Bj aus der Regression auszuschliefen. Genau diese Moglichkeit werden wir in diesem
Abschnitt ndher beschreiben

Seien ay, ..., a, die Koeffizientenvektoren der HK (das heift Eigenvektoren) von X7 X.
Sei Z;, = ani die Auswertung der k-ten HK der i-ten Zeile X* von X, i = 1,...,n,
E=1,...,m. Mit Z = (Zy) gilt Z = XA, wobei A = (ai,...,a,) eine orthogonale
(m x m)-Matrix ist. Stellen wir die Regressionsgleichung Y = X3 + £ folgendermafen
dar:

_ T _ T _ AT g
Y—XAXI4 6+5—XZAA B+E =Zy+E, wobei v = A" 3 ist. (4.6.1)
g

Somit hat man die alten Ausgangsvariablen 3 durch ihre Transformierte v = AT 3 ersetzt.
Nun folgt die Schatzung von ~ aus Satz [2.2.1}

§=(2"2)" 2%y =L 27y, (4.6.2)

wobei L = diag(ly,...,L,) die Eigenwerte I; von X7 X enthilt. Dies gilt, weil Z ortho-
gonale Spalten besitzt. Daher gilt

m
B=Ay=AL"'Z"Y = AL AT XTY = "I apaf X7,
(XTX)71 k=1
wobei wir in der letzten Gleichungsmetrik Formeln (1.6.1)), (4.6.2)) und die Spektraldar-

stellung (Folgerung von (X7 X)~! benutzt haben. Aus Satz [4.2.2| folgt auferdem,
dass

m
Cov(B) = o2 Z l,;laka{.
k=1
Somit haben wir folgendes Ergebnis bewiesen:

Lemma 4.6.1. Die MKQ-Losung der Regressionsgleichung Y = X3 + £ ist gegeben
durch

Dabei gilt
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Bemerkung 4.6.1. Was sind die Vorteile der in (4.6.1))-(4.6.2)eingefithrten Vorgehens-

weise?

1. Nach dem Bestimmen der HK von X7 X ist die Berechnung von 4 = L™'Z7Y
einfach und schnell, weil (4.6.2) keine Inversen Matrizen mehr enthilt (L~! =
diag(l;',...,1;!) ist dann explizit bekannt).

2. Wenn einige I sehr nahe bei Null sind oder sogar Rang(X) < m ist, kénnen einige
der letzten HK (mit Varianzen, die sehr klein oder gar Null sind) von X7 X einfach
von der Regression ausgeschlossen werden. Dies wird durch den neuen Schétzer

P
B = Z I tapal XY
k=1

erreicht, p < m.

Lemma 4.6.2. Sei Rang(X) = m:

1. Der Schitzer B ist verzerrt:

Eg=(1- i apar

k=p+1

2. Es gilt:

P
Cov g e Yagal
k=1

Beweis. 1. Da

m
Z 5 akakX Y

ist und B erwartungstreu ist, gilt

EF=EB— Y I 'apaf XTEY =5 — Z lklakakXTXB B— Z axay B

k=p+1 k=p+1 k=p+1
lkak

2. Wird gezeigt in:
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Ubungsaufgabe 4.6.1.
O

Geben wir noch eine dquivalente Formulierung der Regression mit Hilfe der HKA. Statt
v = AT B zu verwenden, werden wir diesmal von der Singulirwertzerlegung (Satz [4.3.2)
fiir X Gebrauch machen:

X =UL3 AT,
wobei U eine (nxm)-Matrix mit orthonormalen Spalten ist (die normierte Auswertungen
von HK an Zeilen von X enthalten) und L3 = diag(V/11, ..., VIy). Fithren wir die
Bezeichnung
§=L1AT3 (4.6.3)
ein, so gilt
Y = XB+E=UL3ATB+E =US + €.
0

Der MKQ-Schétzer fiir 6 wire

o= Uty tuty =UuTly,
I

weil U orthonormale Spalten besitzt. Aus 1' folgt 8 = AL"%6 und deshalb

B=AL"36= AL 3UTY.

Dabei ist der Zusammenhang zwischen v und § folgender:

Wir haben somit folgendes Lemma bewiesen:

Lemma 4.6.3. Die HK-Form Y = U¢ + £ der Regression Y = X3 + £ hat die MKQ-
Losung 0 = UTY bzw.

B =AL2UTY. (4.6.4)
Dabei ist der Parametervektor § einfach eine normierte Version von v: § = L%'y

Bemerkung 4.6.2. 1. Da es effiziente Algorithmen zur Berechnung der Singulér-
wertzerlegung gibt, bietet die Berechnungsformel klare Rechenvorteile ge-
geniiber der gewdhnlichen Formulierung 8 = (X7 X)"1XTY, in der X7 X invertiert
werden muss.
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2. Statt die letzten m — p HK von X7 X aus der Regression auszuschliefen (vgl. Be-

merkung 4 2.), ist es allgemeiner moglich den Schétzer B iiber einer Teilmenge
M von {1, . ,m} zu berechnen:

BM = Z l 1akakXTY
keM
Dies benutzt, dass nur HK mit Varianzen I, k € M, fiir die Schétzung beriicksich-
tigt werden. Dann gilt auch

Cov(Buy) = o2 Z I taat,
keM
vgl. Ubungsaufgabe Diese Vorgehensweise benutzt den Auschluss der Kom-
ponenten Y, k ¢ M von v = (y1,...,vm)’ aus der MKQ-Schiitzung. Aquivalent
kann man vom Ausschluss der Komponenten 03, k ¢ M von § = (01,...,0m)"

reden, weil 6 = L%, also 0 = VIpyi Vk ist.

Was sind mégliche Strategien zur Wahl der Indexmenge M?

1. M ={k: 1l > I*} fiir einen vorgegebenen Schwellenwert [* > 0. Wenn

1 m
Tt

bei 1 liegt, so kann [* € (0,01;0,1). Der Nachteil dieses Verfahrens liegt darin,
dass manche HK, die wichtig fiir die Vorhersage von Y sind, oft kleine Varianzen
besitzen und somit hier aus der Betrachtung ausgeschlossen wurden.

Sei o2 das ite Diagonalelement von (XTX)~Ll. Es gilt offensichtlich o2 = Vj—g@
(vgl. Satz 4 , i = 1,...,m. Dann kann man M = {k : o2, > o*} wihlen

fiir einen geelgneten Schwellenwert o*. Zur Wahl von o* siehe [§], S. 174. Diese
Methode besitzt denselben Nachteil wie 1..

= {1,...,p}, wobei p ist die grofte Zahl < m, fiir die eines der folgenden
Kriterien erfiillt wird:
a) Es gilt:
DB~ )" < 3 E(R =B, V8= (B Bn)T SR (465
i=1 i=1

b) Es gilt:

E(c"By — ¢"B)? <E(c"B—c"B)? VBER™ ceR™
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c) Es gilt:

~ 2 ~ 2
E‘XﬂM —Xﬂj <E ’XB - XB‘

Dabei orientiert sich das Kriterium a) an der Aufgabe, 5 moglichst prizise zu
schitzen. Kriterien b) und c¢) dagegen erzielen das beste Ergebnis bei der Vorhersage
von EY = X8 durch X 3); bzw. X 3. Alle Grofen in a)-c) sind mittlere quadratische
Fehler, die sowohl den Bias als auch die Varianzen von (3 beriicksichtigen.

In der statistischen Literatur sind viele weitere Strategien beschrieben, die in konkreten
Situationen einen verbesserten Schitzer Bys im Vergleich zu 3 erzielen. Die Fragestellung
der optimalen Wahl von M ist jedoch immer noch offen.

Eine Alternative zur Einschrinkung der Menge von HK in der Regression (das heift
zum Ausschluss von HK mit [ & 0) ist der folgende Schétzer Spr:

m

Br=> (I + Kp) arai XY,
k=1
wobei K1,...,K,, > 0 Gewichte sind, die eine zusétzliche Auswahl von Einflussgroken

in der Regression darstellen. Durch diese Gewichte wird erreicht, dass I ~ 0 keinen
destabilisierenden Einfluss auf die Schétzung mehr ausiiben.

Ubungsaufgabe 4.6.2. Zeigen Sie, dass 2)
~ s l
Cov(Bp) = 0> " aaf

1) BR ist ein verzerrter Schéitzer von . Finden Sie den Bias von BR!

Die Bezeichnung ER steht fiir (Engl.) Ridge Regression. Hier stellt sich die Frage der
Wahl von K, k = 1,...,m. In der Praxis wird oft empfohlen, K = K, k =1,...,m,
wobei K klein ist, zu wihlen.

Noch eine Anwendung der HKA in der Regression wird durch die sogeannte latente
Wurzel-Regression (Engl. latent root regression) gegeben. Diese Art der Regression ver-
sucht, nur solche HKA zu eliminieren, die gleichzeitig kleine Varianzen I besitzen und
keinen Wert fiir die Vorhersage von EY durch X darstellen. Dabei wird die HKA an
der (m+1) x (m+1)-Matrix X7 X mit X = (Y, X) durchgefiihrt. Seien ay, k =0,...,m

die Koeffizienten der HK von X7 X , mit entsprechenden Eigenwerten I, k = 0,...,m.
Sei dabei a; = (aro, .-, arm)’, k=0,...,m. N

Definieren wir die Indexmenge der auszuschliefenden HK als My, = {k =0,...,m: [} <
I*,lako| < a*}. Dies ist die Indexmenge von solchen HK, die kleine Varianzen besitzen
und keinen grofen Einfluss auf die Prognose von Y ausiiben. Sei M = {0,...,m}\ M.

Definiere
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Br = crag, wobei {cg, k€ M} =argmin|Y — XB\Q, mit 8 = Z cray,
keM B keM

Satz 4.6.1. Es gilt

a7

~ ago
2
U Zie]\/[ 7

K3

Cr = , keM

Ohne Beweis!

Schwellenwerte {* und a* sind immer noch empirisch zu wéahlen.

4.7 Numerische Berechnung der Hauptkomponenten

Um zu verstehen, was statistische Software-Pakete bei der Berechnung von HK tun, ist
es wichtig, einige Algorithmen dazu zu kennen. Dabei wird man sich dariiber im Kla-
ren, warum manchmal die Ergebnisse schlecht sind (z.B. bei Eigenwerten, die fast gleich
sind) oder welche Einschrinkungen diese Algorithmen an die Grofe der zu bearbeitenden
Datensitze (in Speicher und /oder Laufzeit) implizieren. Wir werden hier eine kurze Uber-
sicht dieser Methoden geben. Da die HKA im Wesentlichen darauf basiert, Eigenwerte
Ai und Eigenvektoren «; einer positiv semi-definiten (m x m)-Matrix ¥ zu berechnen,
werden wir uns mit dieser Berechnung beschiftigen.

Sei also ¥ eine (m x m)-Matrix mit den Eigenvektoren ay,...,a,, und Eigenwerten
Al ..., Am, die positiv semi-definit ist. In der Fachliteratur sind mindestens 4 Methoden
zur Berechnung von «; und \; bekannt:

1. Potenzmethode
2. QR-Zerlegung
3. Singuldrwertzerlegung

4. Neuronale Netzwerke

Wir werden hier kurz nur die Essenz der Potenzmethode erwdhnen: diese stellt einen
iterativen Algorithmus zum Auffinden von A; und a4 dar, falls Ay >> Ao > ... > A. Sei
ug der Anfangsvektor aus R™. Schreibe u, = Yu,_1 = X"ug fiir alle r € N. Wenn

m
ug = E C; O
=1

in der Orthonormalbasis aq, ..., o, Koordinaten ¢y, ..., ¢, besitzt, dann gilt
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m m
U = X ug = g Yoy = E cidjag, 1 €N
i=1 =

Sei ur = (Upt, -y Upm) T, @ = (i1, - oy Qi) T
Lemma 4.7.1. Es gilt

Upg

Up—1,45 T—00

fliri=1,...,m und

aq
Cz)\g r—00

Beweis. Fiir j =1,...,m gilt

m
r
urj: E ci)\iaij
=1

und deshalb

m T az]
Upj Zi:1 Cz/\z Y =T
. r—1 ag
Upr—1,5 Zz 1 Cz)\ )\T ‘7
m v r—1
Clalj)\l + Zi:Q Ci ()Ti) )\iaij C1Q )\
= > A1 = A1, Well/\ <l,1=2,...,n

r—1
m i r—00 C1014
cronj + 323l G (rl) Qg ’

weiterhin,

m T
Uy C; )\i
r:al—i—g — | ] ai— a1.
U] £~ 1 \ A1 r—o0
=2
]

Die Tatsache, dass c¢; unbekannt ist, soll uns nicht stéren, denn 3% kann zum Ein-

1
heitsvektor normiert werden. Aus dem Beweis des Lemmas wird klar, dass die

Konvergenz-geschwindigkeit von wo T egen A1 und von a j\; gegen « genau dann

schlechter wird, wenn A1 = Ao, wenn also —f ~ 1.

Was wire aber im Fall A\ &~ Ay zu tun, um die Konvergenz des Verfahrens zu beschleu-

nigen? Statt ¥ kann man in den Iterationen ¥ — pI verwenden, um das Verhiltnis iQ £

kleiner zu machen. Oder, statt ¥ verwendet man (X — pI ) , das heilt, man 18st das
Gleichungssystem (X — pI) u, = wu,—1 fiir jedes r € N. Somit ist fiir die geeignete Wahl
von p die Konvergenz zu i, k = 1,...,m moglich (im zweiten Fall).
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Ubungsaufgabe 4.7.1. Konstruieren Sie diese Vektoren und beweisen Sie die Konver-
genz!

Eine Beschleunigung der Konvergenz kann auch erreicht werden, wenn statt {u,} die
Folge {ug,} betrachtet wird, ug, = T2ru0, r € N. Weitere Mafsnahmen zur Verbesserung
des Algorithmus der Potenzmethode findet man in [§], S. 410-411.
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