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Vorsicht Baustelle! Betreten auf eigene Gefahr!

Um Missverstidndnisse auszuschlieBen gleich vorne weg: Dieses Skript ist nicht und war
auch niemals Grundlage irgendeiner Lehrveranstaltung. Ich schreibe es aus reinem Spal} an
der Freude. Die Auswahl der Kapitel und Ergebnisse, ebenso die Anordnung sind demnach
ausschlieBlich durch meine Vorlieben bestimmt. Dieses Skript ist gewissermalen ein ”work in
progress” und wird von mit stindig iiberarbeitet und erginzt. Auf der folgenden Internetseite
gibt es eine aktuelle (und kostenlose) Version! zum downloaden.

http://mathekarsten.npage.de

Vorausgesetzt wird (ungefihr) der Stoff aus dem ersten Semester Analysis und Lineare
Algebra (alles notwendige findet man beispielsweise in Analysis I von Konrad Konigsberger
[26] bzw. in Lineare Algebra von Gerd Fischer [17].

Der Titel Mengentheoretische Topologie (oftmals auch Allgemeine Topologie) kommt daher,
da die meisten der hier behandelten Themen eher mengentheoretischer Natur sind. Ich hoffe,
ich schrecke dadurch niemanden ab! Entgegen einer hiufig vertretenden Auffassung bin ich
nimlich der Meinung, dass die Mengentheoretische Topologie quick lebendig ist! Wer das
nicht glaubt, iiberzeuge sich z.B. durch die Biicher: [2], [21], [23], [28], [33], [34], [38], [48].

Inzwischen hat aber sogar ein bischen Algebraische Topologie Einzug erhalten (in Form
eines Kapitels zur singuldren Homologietheorie). In Planung ist auBerdem eine Erweiterung
des Kapitels Einfiihrung in die Nichtstandard Topologie. Aber das wird noch ein Weilchen auf
sich warten lassen.

Da ich versucht habe die meisten Lemmas und Sitze selbstdndig zu beweisen, (angeregt
durch verschiedene Biicher), ist es natiirlich sehr wahrscheinlich, dass sich Fehler? einge-
schlichen haben (neben Tippfehlern moglicherweise auch Fehler inhaltlicher Art). Ich bitte
dies daher zu entschuldigen und freue mich natiirlich iiber jede ernstgemeinte Frage oder Kri-
tik. Kontaktieren kann man mich z.B. per email unter: karsten.evers @uni-rostock.de

- Rechtschreibfehler sind gewollt und dienen der allgemeinen Belustigung! -~

I Alle Rechte an diesem Skript gehdren mir!

2Als ich mit dem Schreiben begann, besaB ich zu Hause noch kein funktionierendes TeX-System. Ich hab den
Text mit einem gewohnlichen Editor gschrieben und das entsprechende pdf ca. einmal pro Woche in einem
PC-Pool erstellt. Insbesondere dadurch haben sich in der Anfangszeit viele Fehler eingeschlichen.
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Les structures sont les armes du mathématicien.

Nicolas Bourbaki



1 Mengentheoretische Grundlagen

”In a sense set theory can be regarded as the geometrization of logic.”
Masoud Khalkhali

1.1 EinfUhrende Bemerkungen zur Mengentheorie

Die Sitze und Definitionen dieses ersten Kapitels werden wir im Rest vom Skript (in der
Regel) OHNE explizit darauf hinzuweisen frei verwenden.

Wir setzen die Zermelo-Fraenkel-Axiome (ZF) der Mengenlehre voraus (einschlieBlich dem
Auswahlaxiom = ZFC), halten es uns aber ebenso frei den Klassenbegriff zu benutzen. Auf
die Axiome selber und die Art und Weise wie diese in die einzelnen Aussagen eingehen, gehen
wir nicht ndher ein. Der daran interessierte Leser findet all dies (und noch viel mehr) im ersten
Kapitel des sehr schonen Buchs [24] von Thomas Jech.

Die Klasse all derer x, die eine Eigenschaft ¢ (x) haben bezeichnen wir mit {x | ¢ (x)}. Wenn
wir bereits wissen, dass es sich um eine Teilmenge einer Menge y handelt, dann schreiben wir
auch {x € y | ¢(x)}. Manchmal definieren wir eine Menge indem wir einfach alle Elemente
hinschreiben wie z.B. so: {1,2,3}, die Menge mit den Elementen 1,2,3. Elemente von Men-
gen sind selber auch Mengen! Deshalb verwenden wir sowohl kleine Buchstaben, als auch
grof3e Buchstaben um Mengen zu bezeichnen (wenn wir Klassen benutzen werden wir das
deutlich kennzeichnen). Insbesondere verwenden wir keine Urelemente. Wir sagen x ist eine
Teilmenge von y, wenn jedes Element aus x auch in y ist und schreiben x C y (die Relation C
bezeichnen wir auch oft mit Inklusion). Die Menge aller Teilmengen von x bezeichnen wir mit
Z(x). Die Menge aller Elemente welche in x, aber nicht in y ist bezeichnen wir mit x \ y. Die
Menge aller Elemente welche sowohl in x, als auch in y (in wenigstens einem von beiden) sind
bezeichnen wir als den Schnitt (Vereinigung) von x mit y und schreiben x Ny (xUy). Haben
zwel Mengen keine gemeinsamen Elemente, so nennen wir sie disjunkt. Das geordnete Paar
(x,y) ist die Menge {{x},{x,y}}. Induktiv geht das dann weiter: (x,...,y,2) := ((x,...,¥),2).
Bei der Gelegenheit: Das Symbol := benutzen wir zur Definition. Der auf der Seite des Dop-
pelpunktes stehende Ausdruck wird durch den anderen Ausdruck definiert. Das Kartesische
Produkt x x y ist die Menge {(u,v) | u € x und v € y}, die Menge aller geordneten Paare, in-
duktiv dann x X ... X y X 7:= (x X ... X y) X z). Fiir das n-fache Produkt einer Menge x mit sich
selbst schreiben wir x". Eine Funktion (oder Abbildung) f zwischen zwei Mengen x, y ist eine
Teilmenge von x X y mit der Eigenschaft: Fiir alle u € x gibt es ein v € y mit (u,v) € f und
wenn (u,v) € f und (u,w) € f, dann bereits v = w in Symbolen f : x — y. Wenn (u,v) € f,
so schreiben wir auch v = f(u) (Man beachte, dass wir den Ausdruck f ist eine Funktion zwi-
schen zwei Mengen x,y g.d.w. ... definiert haben, keineswegs lediglich den Ausdruck f ist eine
Funktion g.d.w. ... .Das ist insofern wichtig, als das man sonst von einer Funktion, die lediglich
als Teilmenge irgendeines Kreuzproduktes (mit irgendwelchen Eigenschaften) definiert wére,
nicht entscheiden konnte ob sie surjektiv ist.). Eine n-stellige Relation R, iiber einer Menge
x, ist eine Teilmenge von x”. Statt (x,...,y) € R schreiben wir auch R(x, ...,y) sei erfiillt, oder
einfach nur R(x, ..., y). Fiir eine Funktion zwischen zwei Mengen definieren wir den Definiti-
onsbereich dom(f) := {x| es gibt ein y, mit (x,y) € f} und den Wertebereich rg(f) := {y | es
gibt ein x, mit (x,y) € f}, analog fiir zweistellige Relationen. f{u} := {f(a) | a € u}, fiir ein



u C xund f: x — yist als dass Bild von u unter f definiert.

Leider benutze ich diese Schreibweise nicht seit ich dieses Skript schreibe. Infolge dessen
verwende ich an einigen Stellen auch fiir das Bild von u unter f einfach die Schreibweise
f(u). Ich bemiihe mich diese Stellen nach und nach zu verbessern.

Eine Abbildung f : x — y heiBt injektiv (surjektiv; bijektiv) wenn f(u) = f(u') = u =o'
(Vv € y3u € x mit f(u) = v; injektiv + surjektiv). Ist f : x — y eine Funktion von x nach y
und z C x, so ist f|z:= fN(z xy) als die Einschrénkung von f auf z definiert f|z:z — y. Wir
schreiben |x| = |y|, wenn es eine Bijektion zwischen x und y gibt, |x| < |y| fiir eine Surjektion
von y nach x (mittels Auswahlaxiom gleichwertig zur Existenz einer Injektion von x nach y)
und |x| < |y| wenn es keine Surjektion von x nach y gibt (ndheres im Abschnitt iiber Kardinal-
zahlen). Fiir zwei Mengen x,y bezeichnet y* die Menge aller Abbildungen von x nach y. Sei /
eine nicht leere Menge und fiir jedes i € I sei x; eine Menge. Eine Familie (x;);c; von Mengen
ist dann definiert, als eine Abbildung von I in {x; | i € I}, die jedem i € I eben genau das x;
zuordnet. Wenn nun eine Familie von Mengen gegeben ist, so ist das Produkt [ [;-; x; definiert,
als die Menge aller Abbildungen von / in die Vereinigung der x;, die jedes i in x; abbilden. Mit
N,Z,Q,R, C bezeichnen wir in dieser Reihenfolge die natiirlichen, ganzen, rationalen, reellen
und komplexen Zahlen. Mit der Abkiirzung o0.B.d.A. ist ohne Beschrdnkung der Allgemeinheit
gemeint. Das bedeutet soviel wie: Es wird eine weitere Annahme getroffen, die nicht in den
Voraussetzungen des Satzes, oder was auch immer steht, aber ganz einfach gefolgert werden
kann (meistens um unnétige Fallunterscheidungen zu vermeiden). Die Lemmas, Sédtze und
Definitionen aus dem Abschnitt "Mengentheoretische Grundlagen” werden wir im Rest des
Skriptes (in der Regel), OHNE explizit darauf hinzuweisen, frei verwenden.

1.2 Ordinalzahlen

Beginnen wir diese Einfithrung mit einem kleinen Lemma (der Beweis bleibt als leicht Auf-
gabe).

1.2.1 Lemma

X, Y seien Mengen, (A;)ics, (Bj) jes Familien von Teilmengen von X bzw. Y, weiter sei
MCX,NCYund f:X — Y seieine Abbildung.

a) X \UierAi = Nies X \ A

b) X\ NiciAi = Ui/ X \ A

) f(UicrAi) = Uicr f(Ai)

d) f(NierAi) € Nier f(A)

e) ' (UjesBj) =Ujes f1(B))

0 ' (NjesBj) =Njes f ' (B))

QM C f(f(M))

b f(f'(N) SN

D \N) =X\ 1)

An den Stellen, an den C statt = steht, konnen die Inklusionen echt sein.




Bevor es mit Ordinalzahlen losgeht, kommen wir zu dem klassischen Satz von Schroder-
Bernstein. Dieser sagt aus: Wenn es zu zwei Mengen A, B injektive Abbildungen f: A — B
und g : B — A gibt, dann gibt es auch eine Bijektion & : A — B. Wir werden diesen Satz an
vielen Stellen verwenden, aber in der Regel nicht darauf hinweisen. Vorbereitet wird dieser
durch ein ebenfalls recht interessantes Lemma.

1.2.2 Lemma

Seig: P (M) — & (M) eine monotone Abbildung (d.h.A CB = g(A) C g(B), firA,B €
P (M)), dann hat g einen C-minimalen/maximalen Fixpunkt (d.h. es gibt Mengen A, B €
P (M) mit g(A) = A und g(B) = B und wann immer auch g(C) = C gilt fiir C € Z2(M),
dannist A CC CB).

Beweis: Wirsetzen X :={A CM |g(A) CA}undY := {BC M | B C g(B)}. Damit ist dann
MeXundDeY,alsoX #0#Y. Sei A :=ycxA und B := gy B'. Nun ist g monoton
und A C A, fiir jedes A’ € X und es folgt dann g(A) C g(A’), fiir jedes A’ € X, also g(A) C
Naex 8(A") CNaexA” = A. AuBerdem ist g(g(A)) C g(A) (wieder Monotonie von g), also
g(A) € X und somit A C g(A). Insgesamt demnach g(A) = A. Mit B ist es dhnlich. Wir haben
B=UgecyB CUpcyg(B) C g(UpeyB') =g(B), denn g ist monoton und B’ C gy B', also
g(B") C g(Uprey B'). Weiter ist g(B) C g(g(B)) (wieder Monotonie), also g(B) € Y und somit
g(B) C B. Auch hier also g(B) = B. Bei A und B handelt es sich also um Fixpunkte. Wenn
fiir C C M ebenfalls ein Fixpunkt ist, also g(C) = C gilt, so ist C € X und C € Y, und somit
ACCCB.

1.2.3 Satz von Schroder-Bernstein

Seien A, B zwei Mengen und f : A — B injektiv und g : B — A injektiv. Dann gibt es eine
Bijektion & : A — B.

Beweis: Definiere F : #(A) — Z(A) durch

F(P):=A\g(B\ f(P))

(mit f(P) ist natiirlich {f(p) | p € P} gemeint). Dann hat F einen Fixpunkt Py, denn die
Abbildung F' ist monoton.

Offensichtlich ist 4 : A — B definiert durch A(x) := f(x) falls x € Py und sonst i(x) := g~ (x)
wohldefiniert und bijektiv (man male sich am besten eine kleine Skizze).

1.2.4 Definition: Wohlordnung

Eine Klasse A hei3t Wohlgeordnet durch <, falls A durch < total geordnet wird (a < a fiir
acA,a<bundb<c=a<c,a<bundb<a=a=b,a,bceA = a<boderb<a),und



jede nichtleere Teilklasse von A ein kleinstes Element hat. Generell werden Ordnungsrelatio-
nen auf Mengen natiirlich als Teilmengen entsprechender Kartesischer Produkte definiert. Die
Schreibweise (x,y) €< ist ungewohnt und wir verwenden statt dessen die iibliche Schreibwei-
sex < y.

1.2.5 Lemma

Sei < eine Wohlordnung auf einer beliebigen Menge X und f : X — X eine Abbildung
mitx <y = f(x) < f(y). Dann gilt:

a)Vxe X:x < f(x).

b) f = idy ist die einzige bijektive Abbildung von X nach X mitx <y = f(x) < f(y).

¢) X ist zu keinem Anfangstiick X, := {y € X | y < x} ordnungsisomorph (zwei geord-
nete Mengen X, Y heillen ordnungsisomorph, wenn es eine bijektive Abbildung f: X — Y
gibt mitx <x' < f(x) < f(xX') fiir alle x,x" € X).

Beweis: a) Andernfalls betrachte das kleinste Element x € X } mit f(x) < x. Offensichtlich
gilt dann auch f(f(x)) < f(x) < x im Widerspruch zur Minimalitit von x.

b) Sei f: X — X bijektiv mitx <y = f(x) < f(y). Annahme: f # id. Sei x € X minimal
mit f(x) # x. Dann gilt x < f(x). Sei f(y) = x. Dann gilt auch y < f(y) (sonst y=f(y)=x und
dann x=f(x)), also y < x im Widerspruch zur Minimalitit von x.

¢) Annahme es gibtein f : X — X, bijektiv mity <z = f(y) < f(z). Fiir x ist offensichtlich
f(x) € Xy, also f(x) < x im Widerspruch zu a).

1.2.6 Transfinite Induktion

Sei < eine Wohlordnung auf der Klasse A. Fiir jedes a € A sei ¢(a) eine Aussage mit der
Eigenschaft: Va € A gilt: (Vb < a ist ¢(b) eine wahre Aussage) = ¢(a) ist eine wahre
Aussage. AuBerdem gilt (Induktionsvoraussetzung): Es gibt ein @’ € A fiir das ¢(d’) gilt.
Dann ist @(a) fiir jedes a > @’ eine wahre Aussage.

Beweis: Annahme es gibt ein a > &' fiir die ¢(a) falsch ist. Dann gibt es auch ein mini-
males a > d' fiir die @(a) falsch ist. Das heift fiir jedes b < a ist die Aussage @(b) wahr.
Nach Voraussetzung gilt dann aber auch die Aussage ¢(a). Dies ist ein Widerspruch. Also gilt
tatsichlich fiir jedes a > ' die Aussage ¢(a).

1.2.7 Definition: Ordinalzahl

Eine Menge « heiit Ordinalzahl, falls die folgenden drei Bedingungen an o erfiillt sind:

1. VB(B € a = B C a) diese Eigenschaft nennt man Transitivitit.

2. VB,y(B,ye o = (B=vyoder B €yoderyef))
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3. VA((AC aund A #0) = 3B € Amit fNA = 0)

1.2.8 Lemma

o bezeichne im Folgenden eine Ordinalzahl.

a) 36,7, mit B € d € y€ B € a. Also insbesondere ¢« € @, V(B e a = B &P)
und -3, ymitBeye P ea.

b) € definiert auf o eine Wohlordnung.

¢) Jedes B € « ist wieder eine Ordinalzahl.

d) Fiir jedes transitive B gilt: B € ¢ < B C «.

e) Fiir jede Klasse Q von Ordinalzahlen ist & := (), cq @ wieder eine Ordinalzahl. Und
es gilt sogar o € Q.

f) Fiir je zwei Ordinalzahlen o, 8 gilt entweder @ € B oder @ = 3 oder B € a.

g) Sei Q eine Menge von Ordinalzahlen. Behauptung: & := (J,cq @ ist eine Ordinal-
zahl. Offensichtlich handelt es sich um das Supremum von Q.

h) Die Klasse Ord aller Ordinalzahlen wir durch € wohlgeordnet! Desweiteren ist o U
{ o} der direkte Nachfolger von einem a € Ord und verschiedene Ordinalzahlen sind nicht
Ordnungsisomorph. Fiir o € 8 schreiben wir auch o < 3.

Beweis: a) Annahme, es gibt doch solche Elemente. Setze @ # A := {8, 7, B }. Offensichtlich
widerspricht dieses A der dritten Forderung an Ordinalzahlen.

b) Die Irreflexivitit folgt aus a). Sei 6 € y € B € o aus 1) folgt 8,7, € a und aus 2) folgt
dann 6 = B oder 6 € B oder B € . Und a) reduziert die Moglichkeiten zu 6 € . Also haben
wir die Transitivitit. Je zwei Elemente sind auBerdem schon per Definition vergleichbar. Zum
Nachweis der Wohlordnung nehmen wir uns einfach mal ein @ # A C «. Aus 3) folgern wir:
Es gibt ein B € A mit AN B = 0. Offensichtlich handelt es sich bei diesem 8 um das kleinste
Element von A. Also handelt es sich um eine Wohlordnung.

¢) Nachzuweisen sind die Eigenschaften 1) bis 3). Sei B € . Zu 1): Sei y € B. Falls 6 € v,
so folgern wir aus der Transitivitit 6 € 3, also Yy C

zu 2): Fiir 8,y € B gilt dann 8,y € a. Von « setzen wir aber voraus, dass es sich um eine
Ordinalzahl handelt. Also gilt 6 = y oder 6 € yoder y € 0.

Zu 3): Falls 0 # A C 3, so auch A C o und man folgert die Giiltigkeit fiir 3).

d) Sei B C o Dann existiert ein y € o\ B mit yN (o \ B) = 0. Also schon mal yC o\ (o \
B) = B. Nehmen wir mal an es gibt ein & € 3\ 7, also insbesondere 6 ¢ 7. Es tritt also einer
der folgenden zwei Fille ein.

Fall 1: § = v, dann aber y € 8 im Widerspruch zu y € a \ .

Fall 2: y € 6. Aus der Transitivitit folgern wir, da 0 € 8, dass dann ebenfalls y € 8 sein
muss. Also ist B\ ¥ =0 und somit 3 C 7. Insgesamt erhalten wir B = ¥ € «, also auch 8 € .
Die Riickrichtung folgt aus a).

e) Der Nachweis von 1) bis 3) folgt unmittelbar aus der Definition einer Ordinalzahl und
der Eigenschaft von Schnitten.
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Fiir jedes w € Q gilt natiirlich: & C w. Annahme, fiir alle @ gilt sogar o C ®, dann folgt:
Vo e Qgilta € m, also o € (peq® = ¢ = Widerspruch! Es muss also ein @ €  geben
mit @ = ®. Und somit o € Q.

f) Das hochstens einer der drei Fille eintreten kann ist klar. Zu zeigen bleibt, dass mindesten
einer eintritt.

Annahme sowohl o\ B # 0 als auch B\ & # 0. Dann gibtes ein y € o\ B mit yN (o \ B) =0.
Da y C a folgt das auch y C o\ (a0 \ B) = a N . Dies fiihrt zu y C 3. Wihre sogar v C f3,
dann wihre y €  im Widerspruch zu y € a \ B. Also gilt y =  und somit 8 € a., also auch
B < a. Nach Voraussetzung existiert aber auch ein § € 8\ a.. Da aber schon 8 C « fiihrt dies
zum Widerspruch.

Insgesamt erhalten wir also o \ B =0 oder B\ o =0, also o C 3 oder B C o. Die Behauptung
folgt.

g) Die Eigenschaften 1), 2), 3) miissen nachgewiesen werden. 1) ist trivial.
2): Sei B,y € . Dann gibtes @y, @, € Q mit B € @) und ¥ € @,. O.B.d.A. gilt ®; C w,. Also
B € @,. Da w, eine Ordinalzahl ist, folgern wir B = y oder B € y oder v € B.
3): Sei 0 # A C . Dann gibt es ein @ € Q mit AN ® # 0. Also existiert ein Y € AN ® mit
YyNAN®=0. Falls YN A # 0, so gibt es ein § € YN A, also auch € o (Transitivitit) und
damit § € yNAN® = Widerspruch. Also y € A und yNA = 0.
Sei auch f eine Ordinalzahl mit: V@ € Q gilt @ € B. Dann ist offensichtlich o := J,cq @ C
B, also @ = f oder a € B. Somit gilt tatséchlich o0 = sup Q.

h) Folgt sofort aus Lemma 1.2.5 und a) bis g).

1.2.9 Bemerkung

Ordinalzahlen ¢ die nicht von der Form oo = B U {fB} sind nennen wir Limesordinalzahlen.

1.2.10 Lemma

Jede wohlordenbare Menge W ist zu genau einer Ordinalzahl ordnungsisomorph.

Beweis: Wir setzen A := {x € W | W, ist ordnungsisomorph zur Ordinalzahl a,}. Offen-
sichtlich ist das kleinste Element aus W auch in A. Sei x € W und z € A, fiir jedes z < x. Wir
unterscheiden zwei Fille: 1.Fall zu jedem y < x gibt es ein z mit y < z < x. Wir wihlen dann
fiir jedes z < x die eindeutig bestimmte Ordinalzahl ¢o;; mit (eindeutig bestimmten) Ordnungs-
isomorphismus f; : W, — a, setzen ¢, := {J,., & :; und f; := J,, f; und haben somit einen
Ordnungsisomorphismus fy : W, — .

2.Fall Es gibt ein z < x, so dass fiir jedes y < x bereits y < z gilt. Dann wihlen wir wieder o,
und f; und definieren fy : Wy — o, U{ ¢, } := o durch fi(y) := f2(y), fir y < zund f,(z) := o.
Auch hier bekommen wir einen Ordnungsisomorphismus f, : W, — 0. isgesammt bekommen
wir somit A =W.

Um zu zeigen, dass auch W zu einer Ordinalzahl ordnungsisomorph ist, unterscheiden wir
wieder zwei Fille:
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1.Fall es gibt kein groBtes Element in W, dann setzen wir einfach & := J,cq 0 und f :=
Uyea fx- Aufgrund der Eindeutigkeit der f, ist f dann der gesuchte Ordnungsisomorphismus.

2.Fall Es gibt ein groBtes Element x, in W. Dann definieren wir f(x) := fy, (x), fiir x < x,
und f(xg) := 0, und erhalten so einen Ordnungsisomorphismus f: W — o, U {0, }

1.2.11 Satz von Hartog; ohne Auswahlaxiom

Zu jeder Menge A gibt es eine Ordinalzahl o mit der Eigenschaft: Es gibt keine Abbildung
f oo — A, welche injektiv ist.

Beweis: Sei A eine vorgegebene Menge (0.B.d.A. ist A unendlich). Setze dann

Q:={o | 3B C A und 3 <C B x B derart, dass < eine Wohlordnung auf B ist und «
ordnungsisomorph zu B ist }

Aus den obigen Aussagen folgt: Q ist eine Menge von Ordinalzahlen. Sei dann 8 :=Jyecq O
und o’ :=BU{B}.

Annahme es gibt ein f : &' — A injektiv. Dann konnte man auf {f(6) | 6 € &’} C A die
Wohlordnung von @’ induzieren. Und demzufolge withre o’ € Q und somit o/ C B € o' -
Widerspruch!

1.2.12 Transfinite Rekursion

Sei § eine Klasse, W eine durch < wohlgeordnete Menge. Ferner haben wir fiir jedes
x € W eine Abbildung K,, welche jeder Abbildung f von W, :={y € W | y < x} in S ein
Element K, (f) € S zuordnet. Dann gibt es eine eindeutig bestimmte Abbildung ¢ : W — §
mit @ (x) = K (@|Wy), fur jedes x € W.

Beweis: Sei x’ das kleinste Element aus W. Wir setzen A := {x € W | x=x' oder 3 ¢, : W, —
S mit Vy < x: @(y) = Ky (¢x|W,)}. Wir zeigen zuerst durch transfinite Induktion in W, dass
fur x,y € A mit y < x bereits @|W, = ¢, gilt und bezeichnen diese Eigenschaft mit (x). Es gilt
qu(x/) = Kx’((PXHWx/) = le(@) = Kx’((py|Wx’) = gDy(x’). Sei QDx(Z) = (Py(Z), fiir alle z < x" < Y.
Dann gilt @ (x") = K (@c|Wyr) = Kur (@[ Wer) = @y(x"). Also @.[Wy, = ¢y

Die Eindeutigkeit der Abbildung ¢ (im Fall der Existenz) beweist sich vollkommen analog.
kommen wir also zu Existenz:

Wir zeigen mittels transfiniter Induktion, dass A = W gilt. Bezeichnet x” den Nachfolger
von X, so sieht man x’,x” € A. Seix € W und z € A, fiir alle z < x. 1.Fall Vz < x37 € W mit
z < 7 < x, dann setze @, := J,, @,. Fiir y < x gibt es dann ein z mit y < z < x und es gilt
ox(y) = 0.(y) = K, (9:|W;) = K, (¢,|W,) (Eigenschaft (x)!). 2.Fall Es gibt ein 3z < xVy(y <
x — y < z). Definiere dann ¢, : Wy — S durch ¢@.(y) := ¢.(y), fir y < zund ¢,(z) := K;(¢;).
Dann gilt wieder ¢.(y) = K, (¢.|W,), fiir y < x. Insgesamt bekommen wir x € A und somit
A=W.
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Zur Definition von ¢ : W — § unterscheiden wir wieder zwei Fille. 1.Fall es gibt kein
groBtes Element in W. Dann setzen wir einfach ¢ := (J,c4 @.. Aus der Eigenschaft (x) folgt
unmittelbar, das ¢ sinnvoll definiert ist und die geforderte Eigenschaft besitzt. 2.Fall es gibt ein
groBtes Element x, € W. Dann definieren wir ¢(x) := @y, (x), fiir x < xg und @(xg) := Ky, (¢, ).
Das so definierte ¢ hat dann die geforderte Eigenschatft.

1.3 Aquivalente Formulierungen des Auswahlaxioms

Das Auswahlaxiom ist wohl das berithmteste unter den Axiomen der Mengenlehre. Zur Wie-
derholung. Wir nennen f : &?(A) — A eine Auswahlfunktion, wenn f(A) € A ist, fiir jedes
A € Z(A). Das Auswahlaxiom besagt nun: Jede Menge A # 0 hat eine Auswahlfunktion. Es
gibt eine ganze Reihe zum Auswahlaxiom (natiirlich auf Basis der iibrigen Axiome) dquiva-
lente Formulierungen. Einige von ihnen behandeln wir in diesem Abschnitt. Zur Abkiirzung
schreiben wir fiir Auswahlaxiom einfach AC (axiom of choice).

Im ersten der beiden nun folgenden Sitze geht es um die Aquivalenz des Auswahlaxioms zu
so genannten Maximalprinzipien. Im zweiten Satz lernen wir drei weitere wichtige Prinzipien
der Mengenlehre kennen. Zum einen den Wohordnungssatz, der besagt, dass sich auf jeder
Menge eine Wohlordnung finden ldsst. Den Multiplikationssatz, der besagt fiir unendliche
Mengen M gilt |[M x M| = |[M|. Und last but not least den Vergleichbarkeitssatz. Anschaulich
besagt jener, dass sich zwei Mengen bzgl. der ”Anzahl” ihrer Elemente immer vergleichen
lassen.

1.3.1 Satz (aquivalente Formulierungen des Auswahlaxioms I)

Folgende Aussaagen sind dquivalent:

a) Das Auswahlaxiom.

b) (Lemma von Zorn) Sei @ # M durch < partiell geordnet, mit der Eigenschaft, dass
jede total geordnete Teilmenge K von M eine obere in M gelegene Schranke besitzt. Dann
gibt es ein maximales Element in M.

c¢) (Hausdorff‘s Maximalkettensatz) In jeder partiell geordneten Menge M gibt es maxi-
male total geordnete Teilmengen.

d) (Lemma von Teichmiiller-Tuckey) Sei T # @ eine Menge mitVx (x e T < Vy (y C
x A y:endlich = y e T)), dann existiert ein C-maximales Element in 7')

Beweis: a) = b) Der Satz von Hartog liefert eine Ordinalzahl o, welche sich nicht injektiv
in M einbetten ldsst. Sei z eine Menge, mit z ¢ M. Nun ist ¢ ist eine wohlgeordnete Menge und
wir definieren fiir jedes § € a eine Abbildung K§, welche jeder Abbildung f: 6 — MU {z}
ein Element aus M U {z} nach folgender Regel zuordnet. Falls My :={m e M | V5’ € o :
f(8") < m} #0, so sei Kg(f) ein beliebiges Element aus My. Falls hingegen M; = @, dann
sei K5(f) = z (Auswahlaxiom!). Mittels transfiniter Rekursion schliet man auf die Existenz
einer Abbildung v : @ — M U {z} mit y(8) = K5(y|8). Falls 6 < 6’ und y(3),y(8') €
M, dann y(8') = Ks/(w|8’) > w(J). Es muss nun ein § < o geben, mit y(8) = z (sonst
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wire ¥ : @ — M injektiv). Wir wihlen dann das 8 € a minimal mit y(6) = z und definieren
K:={y(8')| 6’ < 6}. Dann ist K eine Kette in M und nach Voraussetzung gibt es dann ein
maximales Element y(8’) in K. Dann kann es aber kein 6” geben, mit 8’ < 6" < & (sonst
y(6') < w(8"”) und y(8"”) € M - Widerspruch). Also 6 = &’ U{d’} und somit ist ()
maximal in M (andernfalls wire (8) = Ks(y|8) # 2).

b) = d): Sei T # 0 eine Menge mitVx (x e T < Vy(yCx A y:endlich = yeT)). T
wird durch die Inklusion partiell geordnet. Sei (x;);c; eine total geordnete Teilmenge aus 7.
Setze x := [J;cyxi. Seiy C x und y: endlich, dann 37 € I mit y C x;. Nach Voraussetzung an x;
alsoy € T. Und damit auch x € T'. Offensichtlich ist x eine obere in T gelegene Schranke von
(xi)ier, nach dem Zornschen Lemma hat 7' ein maximales Element beziiglich Inklusion.

d) = c¢): Sei M durch < partiell geordnet. Setze T := {x C M | x : total geordnet }.

Falls x € T dann folgt klarerweise Vy (y C x A y:endlich = yeT).

Falls umgekehrt Vy (y Cx A y:endlich = y € T), so ist zu zeigen: x € T. Selbstverstéindlich
ist x € M und damit schon partiell geordnet. Die totale Ordnung sieht man so: z;,z2 € x =
{z1,22} C x, also {z1,z2} € T. Damit folgt 0.B.d.A. z; < 7. Also x € T. Nach Teichmiiller-
Tuckey existiert eine max. total geordnete Teilmenge in M.

¢) = b): Ist offensichtlich.

b) = a): Man betrachte eine Menge A zu der man eine Auswahlfunktion haben mochte.
Setze o :={f: #(B) — B|BCAund VC € #(B) gilt f(C) € C}. Die Menge </ wird
partiell durch die Inklusion geordnet und total geordnete Teilmengen von </ haben obere
in o/ gelegenen Schranken (man betrachte die Vereinigung einer solchen total geordneten
Teilmenge). Maximale Elemente in .« miissen dann Auswahlfunktionen fiir A sein.

1.3.2 Satz (dquivalente Formulierungen des Auswahlaxioms II)

Folgende Aussagen sind dquivalent:

a) Das Auswahlaxiom.

b) Jede Menge M lésst sich wohlordnen, d.h. es gibt eine totale Ordnung auf M mit der
Eigenschaft: Jede nichtleere Teilmenge von M hat ein minimales Element.

c) Von zwei Mengen M, N lisst sich eine stets injektiv in die andere einbetten.

d) Fiir jede unendliche Menge M gilt: |[M| = |M x M|.

Beweis: Wir fiihren aus Spa8 an der Freude keinen minimalen Kreisschluss. Der Leser ist
aufgefordert sich weitere Aquivalenzen direkt zu iiberlegen.

a) = b) Wir verwenden den Satz von Hartog und transfinite Rekursion. Sei also & so ge-
wihlt (Ordinalzahl), dass es keine injektive Abbildung f : o« — M gibt. Sei z eine Menge, mit
7z & M. Nun ist « ist eine wohlgeordnete Menge und wir definieren fiir jedes 0 € « eine Ab-
bildung K§, welche jeder Abbildung f: 6 — M U{z} ein Element aus M U {z} nach folgender
Regel zuordnet. Falls My :={m e M |Vd' € §: f(8') # m} # 0, so sei K5(f) ein beliebi-
ges Element aus M. Falls hingegen M, = 0, dann sei Ks(f) = z (Auswahlaxiom!). Mittels
transfiniter Rekursion schlieit man auf die Existenz einer Abbildung y : o — M U {z} mit
¥ (6) =Ks(y|8). Falls § < 6’ und y(3), w(6') € M, dann y(8') = Kg (y|8') e M\ {y ()},
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also y(6’) # w(8). Es muss nun ein § < a geben, mit y(8) = z (sonst wire ¥ : ot — M
injektiv). Wir wihlen dann das 6 € & minimal mit y(8) = z. Die Abbildung y engeschrinkt
auf 0, also y|6 : & — M ist dann injektiv. Sie ist aber auch surjektiv, denn sonst wire y(8) =
Kieira(W]0) € M. Also ist y|8 : § — M bijektiv und wir kénnen auf M die Wohlordnung von
0 induzieren.

a) = c¢): Seien M und N zwei Mengen. Betrachte .# := {(X,Y,f) | X CMundY CNund f:
X — Y ist bijektiv }. Durch (X,Y, f) < (X',Y’,f/) falls X C X', Y CY' und f'|X = f wird auf
A eine partielle Ordnung definiert. Offensichtlich hat jede total geordnete Teilmenge von .#
eine obere in .# gelegene Schranke. Das Zornsche Lemma (dquivalent zum Auswahlaxiom)
garantiert uns ein maximales Element (X,Y, f). Dann muss aber bereits X = M oder Y = N
sein.

c) = b) lasst sich seht einfach beweisen: Sei M eine beliebige (unendliche Menge). Aus
dem Satz von Hartog (siehe Anhang) folgern wir: Es gibt eine Ordinalzahl «, die sich nicht
injektiv in M einbetten ldsst. Aus dem Vergleichbarkeitssatz schlieBen wir dann aber, dass sich
M injektiv in o einbetten lassen muss. Auf M konnen wir also mittels f eine Wohlordnung
induzieren.

a) = d): Sei M eine unendliche Menge. Setze .# = {(X,f) | X CMund f: X — X xX
ist eine Bijektion }. Da M eine unendliche Menge ist, besitzt M eine abzihlbar unendliche
Teilmenge N. Nun ist aber offensichtlich |[N| = |N x N|. Also .# # 0. Auf .# definieren wir
durch (X, f) < (Y,g) falls X C Y und g|X = f eine partielle Ordnung. Falls (X;, f;)ics eine total
geordnete Teilmenge darstellt, dann ist ({J;c; Xi, U;cs fi) eine obere in .# gelegene Schranke.
Sei dann (X, f) ein maximales Element in .# (Zornsches Lemma). Annahme 3m € M \ X.
Dann gilt
(XU {m}) x (XU {m})| = |(X xX)U ({m} x X)U (X x {m}) U{(m,m)}| = "1 ULUY;U
{(m,m)}|, wobei |Y;| = |X| fur i = 1,2,3. Nun ist aber |Y; UY, UY3| < |X x X| = |X]|, also
YTuY,uYsU{(m,m)}| < |XU{(m,m)}| = |XU{m}| im Widerspruch zur Maximalitit von
X.

d) — b): Wir benotigen wieder den Satz von Hartog. Sei X eine beliebige Menge und «
eine Ordinalzahl mit —=(a < X) (Satz von Hartog). Es gilt nun: |X x of| < [(X x X) U (X X
o)U(axX)U(axa)l=|XUa)x (XUa)|=[XUal. Seialso f: X x o — X U eine
injektive Abbildung.

1 Fall: 3x € X mit f({x} x &) C X. Dann folgt aus |&| = |[{x} x a| und der Injektivitit von f
sofort & < X, im Widerspruch zur Voraussetzung an .

Also 2. Fall: Fiir alle x € X gilt f({x} x a) € X. Das heiBt fiir jedes x € X ist %, := {f €
o] f(x,B) € a} #0.

Fiir x € X sei g(x) das minimale Element aus 7. Also haben wir eine Abbildung #: X — o
definiert durch A(x) := f(x,g(x)). h ist dann injektiv und wir konnen auf X eine Wohlordnung
induzieren.

b) = a) Wir wihlen auf A eine Wohlordnung und wihlen fiir jedes B € &?(A) einfach das
kleinste Element aus B. Das definiert eine Auswahlfunktion.

16



1.4 Kardinalzahlen

Wir nennen eine Ordinalzahl o« Kardinalzahl, wenn V3 € o gilt -3 f : @ — B bijektiv. Die
Klasse aller Kardinalzahlen ist als Teilklasse der Ordinalzahlen natiirlich wieder wohlgeord-
net.

Zur Erinnerung: Fiir zwei Mengen X,Y hatten wir den Ausdruck |X| = |Y| als Abkiirzung
fir 3 f : X — Y bijektiv” eingefiihrt.

Wir definieren nun den Ausdruck |X|, fiir eine Menge X, als die kleinste Ordinalzahl o mit
|X| = |ot]. Ist das sinnvoll? Ja, denn X ldsst sich wohlordnen und ist somit ordnungsisomorph
zu einer Ordinalzahl 8 insbesondere also |X| = |B]|. Die Klasse A := {B | B ist Ordinalzahl
und |X| = |B|} ist also nicht leer und besitzt somit ein kleinstes Element . Damit muss o
also auch bereits eine Kardinalzahl sein!

Den Ausdruck |X| = |Y| konnen wir nun also auf zwei Weisen lesen. zum einen 3 f: X — Y
bijektiv’ und zum anderen “die X zugeordnete Kardinalzahl ist gleich der Y zugeordneten Kar-
dinalzahl”. Letztendlich bringt beides die gleiche Vorstellung iiber X und Y zu Tage, ndmlich:
X und Y haben “gleich viele Elemente”. Sprechen wir also in Zukunft von der Anzahl der
Elemente einer Menge X, so meinen wir |X|. Der Ausdruck |X| < |Y| hat also die Bedeu-
tung o < B, wenn |X| = a und |Y| = B gilt. Dies ist dquivalent dazu, dass es eine Injektion
f:X —Y gibt. |X| < |Y| hat hingegen stérker die Bedeutung o < f3, es gibt also eine Injektion
f:X —Y, aber es gibt keine Surjektion X — Y.

1.4.1 Lemma

a) A, B, C seinen Mengen, mit BNC = 0. Dann gilt: |ABYC| = |AB x AC|.
b) A, B, C seien diesmal vollkommen beliebige Mengen, dann gilt |(A8)¢| = |AB*C| und
|A€ x B€| = |(A x B)C|.

Beweis: Ubungsaufgabe!

1.4.2 Lemma

Sei X eine unendliche Menge,

A eine Menge von Mengen mit [A| < |X|und VA € A gilt [A]| < |X|,

Ci={yC ZX)\{0} | X=UrundVgi,g €vgilt (g1 #g = g1 Ng2=0)} (die
Menge aller Zerlegungen von X),

P<w(X) ={ACX|A:endlich } und Zx|(X):={A CX | |A] = [X[}.

Dann gilt:

2) UA| <[]

b) [X| = |X"| = | Z<0(X))|

0[] = 2(X)| = [{0,1}¥| = [X*| = |2y (X)

d) X xY| =max(|X|,|Y]).
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Beweis: Ubungsaufgabe!

1.4.3 Lemma (von Koénig)

(M;)ier, (Ni)ier seien zwei Familien von Mengen mit V i € I |M;| < |N;|. dann gilt:
|Uier Mi| < |TLier Nil|- Speziell erhalten wir: [X| < |2?(X)| fiir jede Menge X.

Beweis: Annahme 3 f: (J;c; M; — [];c; N surjektiv, weiter seien p; : [[;c;N; — Nj fir j €1
die natiirlichen Projektionen. Wir betrachten dann x = (x;);c; mit x; € N; \ pi(f(M;)); letztere
Menge ist # 0, wegen Vi € I |[M;| < |N;|. Also gibt es ein z € M; fiir ein i € I mit f(z) = x.
Dann ist aber x; = p;(f(z)) € pio f(M;) im Widerspruch zur Wahl von x;.

1.4.4 Definition von Summe und Produkt von Kardinalzahlen

Sei {a; | i € I'} eine Menge von Kardinalzahlen. Dann sind die Kardinale Summe und Das Kar-
dinale Produkt folgendermaBen definiert: };c; o := | U;c; 06 X {i}| bzw. [Ties ¢ := | TLies ¢il-

1.4.5 Definition: Kofinalitat

Sei A eine geordnete Menge. Eine geordnete Menge B heifit kofinal in A, wenn es eine un-
beschrinkte Funktion f: B — A gibt, also mit der Eigenschaft: Fiir alle a € A existiert ein
b € Bmit a < f(b). Fiir eine Ordinalzahl o definieren wir cf () := kleinste Ordinalzahl f3,
so dass 8 kofinal in « ist. Z.B. ¢f(0) = 0 und falls o keine Limesordinalzahl ist, also wenn

a=BU{B}soistcf(cx) =1.

1.4.6 Lemma

a) Fir alle Ordinalzahlen « gilt cf (o) < .
b) Fiir y = |cf ()] gibt es auch eine monotone unbeschrinkte Funktion f: y — a.

o) cf(cf(a)) = cf(@)

Beweis: a) Folgt aus der Definition.

b) Sei g : ¥ — o unbeschrinkt (0.B.d.A. sei o eine Limesordinalzahl). Definiere f: y — «
durch f(8) := U{g(B) | B < 0}. Wenn ndmlich § < 7y, dann ist g|6 : § — a nicht unbe-
schrinkt, also f(8) < a. Andererseits ist g : Y — o offensichtlich unbeschrinkt in ¢ und nach
Konstruktion auch monoton.

¢) Ist wieder offensichtlich.
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1.4.7 Lemma

Sei a eine unendliche Kardinalzahl. Dann ist cf (¢) die kleinste Kardinalzahl A derart,
dass eine Folge (Sy),<, von Teilmengen von a existiert mit: & = (J,.; Sy und |Sy| < &
fir alle y < A.

Beweis: Sei f: cf (&) — o unbeschrénkt. Dann ist (Sy)y<cy (o) definiert durch

Sy:=A{f(8) 16 <}

die gewiinschte Familie.

Sei andererseits A < cf (o). Nehmen wir mal an es gibt trotzdem eine entsprechende Folge
(Sy)y<n- Wegen A < cf (o) ist u:=sup{|Sy| |y <A} < a. Fir é < a sei g(8) :=inf{y<
A |0 €Sy} und fir y <A sei fy:Sy — |Sy| eine Bijektion. Dann ist aber 4 : o0 — A x p,
h(6) := (8(8), fy(s)(0)) injektiv, also & < A x u = max (A, 1) < o - ein Widerspruch.

1.4.8 Lemma

Sei o eine unendliche Kardinalzahl. Dann gilt:
a) a < ol b)a<cf(2%)

Beweis: a) Sei & = Y& 7 (q) % mit 0 < « fiir § < cf (o). Dann folgt aus dem Satz von

Konig & = Lecop (@) % < Tecer (o @ = &1,
b) Angenommen cf (2%) < a. Dann folgt mit a) 2% < (2%)¢f (2%) < (%)@ = 2ax®& — 2 _gjp
Widerspruch.
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2 Erste Topologische Konzepte

”’] am a most unhappy man. I have unwittingly ruined my country. A great industrial
nation is controlled by its system of credit. Our system of credit is concentrated. The
growth of the nation, therefore, and all our activities are in the hands of a few men.
We have come to be one of the worst ruled, one of the most completely controlled and
dominated Governments in the civilized world no longer a Government by free opinion,
no longer a Government by conviction and the vote of the majority, but a Government
by the opinion and duress of a small group of dominant men.”
Woodrow Wilson, 1919, after having been tricked to sign the Federal Reserve Act

2.1 Topologische Raume

”Wer sich keinen Punkt denken kann, der ist einfach zu faul dazu.”
Mathematiklehrer Brenneke in Eduards Traum von Wilhelm Busch

In diesem Abschnitt definieren wir den zentralen Begriff des Skriptes, den topologischen
Raum.

2.1.1 Definition grundlegender Begriffe

Ein Topologischer Raum ist ein geordnetes Paar (X, ), wobei X eine Menge ist und 7 fol-
genden Bedingungen geniigt:

1. XetC 2(X)
2. VA,BetistauchANBeE T
3. Vo Cristauch Jges S €T

Die Elemente aus 7 heiBlen offenen Mengen, deren Komplemente heiflen abgeschlossene Men-
gen. Aus 3. folgt also z.B. 0 = [Jgcp S € 7. Eine Menge V C X heifit Umgebung des Punktes
x,wenneseinU € T gibt mitx € U C V. Eine Menge o von Umgebungen eines Punktes x € X
heilt Umgebungsbasis von x, wenn es zu jedem O € Tmitx € Oein V € « gibt, mit V C O.
Analog sprechen wir von Umgebungen von Teilmengen. U ist eine Umgebung von A C X,
wenn es ein O € T gibt mitA C O C U. Analog ist eine Menge o von Umgebungen von A eine
Umgebungsbasis von A, wenn es zu jeder offenen Menge O mit A C O ein U € a gibt mit
UCoO.

Wir fithren eine wichtige Notation ein. Fiir x € X setzen wir x := {A C X | x € A}. Die
Menge aller offenen Umgebungen von x schreibt sich dann einfach als x N 7 (siehe dazu auch
den Abschnitt iiber Filter und Ultrafilter).

Wenn (X, 7) ein top. R. istund Z C X, so wird (Z, 7z) mit 77 := {ONZ| O € 1} ein topolo-
gischer Raum. 7z heifit dann die Spurtopologie und (Z, 7z) ist dann ein Teilraum von (X, 7).
Jede im Teilraum Z offene Menge U ist also von der Form U = O N Z, fiir ein in X offenes
O. Ist A eine im Teilraum Z abgeschlossene Menge, so ist Z\ A = ONZ, mit O € 7. Es folgt
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A= (X\0)NZ. Setzen wir B:= X \ O, so ist B in X abgeschlossen und es gilt A =BNZ.
Die in Z abgeschlossenen Mengen sind also ebenfalls die Spuren von in X abgeschlossenen
Mengen.

Eine Abbildung f : X — Y heift stetig beziiglich den topologischen Rdumen (X, 1), (Y, 0),
falls VO € 6 f~1(0) € 7. Wenn Klar ist welche Topologie wir auf X bzw. Y betrachten schrei-
ben wir auch einfach: Sei f : X — Y stetig. Eine bijektive Abbildung f : X — Y heif}t ein
Homoomorphismus, falls f und f~! stetig sind. Wir nennen eine Abbildung f : X — Y eine
homoomorphe Einbettung (oder auch nur eine Einbettung), wenn f : X — f(Y) ein Homgo-
morphismus (bzgl. der Spurtopologie) ist.

Wenn wir zwei Topologien 7 und ¢ auf X haben, so sagen wir 7 ist feiner als ¢ bzw. o ist
grober als 7, wenn ¢ C 7. Offensichtlich ist 7 feiner als 6 genau dann, wenn idyx : (X, 1) —
(X,0) stetig ist.

Die Potenzmenge ist offensichtlich eine Topologie und wird die diskrete Topologie genannt
(Symbol: ;). {0, X} ist offensichtlich auch eine Topologie auf einer Menge X. Sie wird die
indiskrete Topologie genannt (Symbol: 7;,;).

Wenn (X, 7) ein topologischer Raum ist, so gilt 7;,; C T C 74,. Anders gesagt ist T;,y die
grobste und 7, die feinste Topologie auf X.

Falls (X, 7) ein topologischer Raum ist und Z C 1, mit der Eigenschaft: VO € 1 3 %, C 4
derart, dass O = ¢ 2, B: dann heiBt & eine Basis von 7. Desweiteren heifit . eine Subbasis
von T, falls es eine Basis # von 7 gibt mit: VB € #3Sy,...,8, € S mit B=51N...NS,,.

Wenn der Raum X eine abzidhlbare Basis hat, dann nennen wir ihn ein A2-Raum, oder er
geniigt dem zweiten Abzédhlbarkeitsaxiom. Wenn es ein zweites Abzidhlbarkeitsaxiom gibt,
dann gibt es natiirlich auch ein erstes (zur Abkiirzung mit A1 bezeichnet); und zwar sagen wir
X ist ein Al1-Raum, wenn jeder Punkt eine abzidhlbare Umgebungsbasis hat. Jeder A2-Raum
ist also auch ein A1-Raum.

Der Schnitt von beliebig vielen Topologien auf einer Menge X ist wieder eine Topolo-
gie (Beweis?). Die Vereinigung der Topologien, muss keine Topologie mehr sein (Gegenbei-
spiel?). Allerdings gilt:

2.1.2 Satz

Sei X eine Menge und a C Z(X). Dann gibt es eine grobste Topologie top () auf X,
welche o umfasst (also a C top (o) C 7 fiir jede Topologie T mit @ C 7).

Beweis: Setze 4 := {(j_ | Ax |Ar € o firk=1..n <1} U{X} und top (o) :={UB | B C
A}. Offensichtlich top(a) C Z(X) und X € top(a). Seien JB,UB’ € top(a) dann ist
UBNUB" = Usp)cpxp BNB = Uy, wobei y:={BNB'| (B,B') € B x B'} C A. Also
UBNUP’ €rop(a). Fir o C top () gilt (offensichtlich) | Jo € top (o). Somit ist top (o)
als Topologie erkannt. Andererseits muss jede Topologie, welche o umfasst auch rop (o)
umfassen (Def. der Topologie!), also ist fop (¢) die grobste derartige Topologie (man kann
sie auch so definieren: Setze T := {7t C #(X) | 7 ist eine Topologie und o« C 7} und dann
top (¢) :=N¢er T- Da T # 0 kann hier nichts schiefgehen.).
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Wenn X = J« ist dann ist o eine Subbasis von fop ().

2.1.3 Variante des Zornschen Lemmas

Sei (X, <) eine partiell geordnete Menge. Fiir jedes Y C X setzen wir <y:=< N(Y xY)
und nennen <y die auf ¥ von X induzierte Ordnung. Sei nun X mit der Eigenschaft, dass
jede mit der induzierten Ordnung wohlgeordnete Teilmenge ¥ C X eine obere Schranke
in X hat. Dann gibt es in X maximale Elemente.

Beweis: Sei Z := {W C X | W ist durch < eingeschrinkt auf W wohlgeordnet}. Auf Z fithren
wirdurchV < W :& V C W eine partielle Ordnung ein. Ist nun (W;);<; eine Kette aus Z, dann
ist W := {J;c; W; mit der aus X induzierten Ordnung ebenfalls eine wohlgeordnete Menge, also
W € Z. Das “original” Zornsche Lemma angewendet sichert uns somit die Existenz maximaler
Elemente in Z. Sei W solch ein maximales Element aus Z. Nach Voraussetzung an X hat W
eine obere Schranke x in X. Dann muss aber bereits x € W sein (ansonsten konnte man die
Wohlordnung einfach verldngern). Und nun muss x aber auch maximal in X sein (sonst konnte
man wieder einfach die Wohlordnung verldangern).

2.1.4 Satz

Sei X # @ eine Menge und P eine Eigenschaft, die Teilmengen von X zukommen kann.
Sei ferner T C #(X) und % unendlich C & (X) mitVV € t3%y C A mitV = JHy.
AuBerdem gelte
a)Vt' Crgilt Ut €7, ODER b)VH C A gilt JHB €.

Hat nun mit jeder durch Inklusion (U <V < U C V) wohlgeordneten Menge 7’ C T,
die |7'| < o := | A erfiillt und deren Elemente alle die Eigenschaft P haben, auch |7’ die

Eigenschaft P, dann gibt es in 7 maximale Elemente mit der Eigenschaft P.

Beweis: Wir versehen o := {V € 7|V hat die Eigenschaft P} mit der Inklusion als Ordnung.
Sei 0’ eine wohlgeordnete Teilmenge von o. Fiir jedes V € o’ gibtes ein By C B mit | By =
V. Wir setzen B’ := Uy Bv C A.

Zu jedem B € 4’ gibt es ein Vp € ¢’ mit B C V3.

Es gilt U :=Jo' = U# C Upewn Ve CUo’ = U und somit ist U € 1. AuBerdem ist
o’ :={Vg | B € %'} als Teilmenge von ¢’ ebenfalls wohlgeordnet und erfiillt U = |Jo” und
|6”| < a. Somit hat nach Voraussetzung auch U die Eigenschaft P und ist natiirlich eine
obere Schranke in o fiir die Elemente aus ¢’. Aus der oben stehenden Variante des Zornschen
Lemmas schlieen wir, dass es in 0 maximale Elemente gibt.
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2.1.5 Korollar (Reduktionssatz von Brouwer)

Sei (X, 7) ein top. Raum mit einer abzihlbaren Basis % und sei P eine Eigenschaft fiir
abgeschlossenen Mengen, so dass wenn Ag 2 A; 2 A, O ... und jedes A; die Eigenschaft
P hat, auch (;cyA; die Eigenschaft P hat, dann gibt es minimale abgeschlossene Mengen,
welche die Eigenschaft P haben.

Beweis: Wir definieren eine Eigenschaft P’ fiir offene Mengen: O € 7 habe die Eigenschaft
P', wenn X \ O die Eigenschaft P hat. Aus obigem Satz folgt, dass es maximale (bzgl. Inklusi-
on) offene Mengen U gibt, mit der Eigenschaft P’. Offenbar ist A := X \ U dann eine minimale
abgeschlossene Menge mit der Eigenschaft P.

2.1.6 Lemma

Seien % und #* zwei Basen einer Topologie, mit |%*| < |#|. Dann gibt es ein ' C A
mit |Z'| < |%*| und £’ ist eine Basis derselben Topologie. Eine analoge Aussage gilt
auch fiir Subbasen.

Beweis: Fir B€ #*3f(B) C Zmit|Jf(B) =B.FiurA € f(B)3gp(A) C #* mit Ugp(A) =
A.DaUxeyp)&(A) € Z*, folgt [Uacrp) 88(A)| < |27 Fiir C € Uye s () 8(A) withle je ein
Bc € Z mit C C Bc C B. Setze dann B¢ := {Bc | C € Upc () 88(A)} und B’ := Upe - -
Dann gilt | Bp| < |%*|, also auch | %'| < |%*| und auBerdem ist #’ eine Basis der Topologie.
Denn B € #* impliziert B = J(Uac () 88(A)) = U %p und B C #'.

Fiir den zweiten Teil der Behauptung seien .| und .%, zwei Subbasen der Topologie. Fiir ein
Mengensystem .# fiihren wir folgende Schreibweise ein: ZB(.A4) := {(iL, M; | M; € . }.
Dann sind ndamlich #(.#]) und #(.#2) Basen unserer Topologie und aus dem eben bewiese-
nem folgt, dass es eine Basis %' C Z(.#]) der Topologie gibt, mit |Z’'| < | (). Fiir ein
B € %' Jein endliches Ap C H(71), mit B = ,ea, a. Setze dann g := Upc o Ap € .71. Of-
fensichtlich ist .7 dann eine Subbasis unserer Topologie, mit || < |B'| < |B(S)| = |-7|.

2.1.7 Definition des Offenen Kerns, AbschluB und Rand einer Menge

Sei Y eine Teilmenge eines topologischen Raumes (X, 7). Dann heift Y°:={x €Y |0 €1
mitx € O C Y} der offenen Kern von Y und Y := {x € X | VO € Tt mit x € O gilt ONY # 0}
der Abschluss von Y.

2.1.8 Einfachste Eigenschaften

Es gilt: Y° = Uper ocy O (folgt unmittelbar aus der Definition), also ist Y° die "groBte” offene
Menge in Y (insbesondere ist der offene Kern also offen). Analog ist Y = Mx\aer,ycaA (Be-

weis: Grundsitzlich halten wir fest: ¥ C Y. Sei nun x € Y und A abgeschlossen mit ¥ C A.
Nun ist X \ A offen. Wire x € X \ A, so wihre Y N (X \ A # 0 - ein Widerspruch. Also
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Y C Nx\aez,ycaA. Andererseits ist Y selber auch abgeschlossen, denn zu z € X \ Y gibt es
eine offenen Menge O mit z € O C X \ Y. Damit ist dann aber auch jedes 7 € O bereits im
Komplement von Y, also O C X \ Y - Y ist abgeschlossen. Damit ist ¥ selber eine der am
Schnitt von Y beteiligten Mengen; es gilt also auch Ny\scrycad CY.).

Y ist somit die “kleinste” abgeschlossene Menge, welche Y enthilt. dY :=Y \ Y° wird als
der Rand von Y definiert. Es gelten folgende Rechenregeln:

DY CYCY,2)X\Y°=X\Y3)Y*°=Y°4)Y =Y 5) Y, CY, impliziert ¥{ C ¥5 und
Y1CY6)YU,=Y U undYyNYy = (Y1NY2)°7)0° =0 und 0 =0

Die Beweise sind allesamt Routine. Wir sagen ¥ C X liegt dicht in X, falls Y =X. Je-
de nichtleere offene Menge enthilt also Punkte aus Y. Wen ein Raum eine abzéhlbare dicht
Teilmenge enthilt, so bekommt er einen extra Namen: Man nennt ihn separabel.

2.1.9 Beispiel einer interessanten Topologie auf Z

Wir betrachten Teilmengen N, 5, := {a+nb |n € Z}, mita,b € Z und b > 0, der ganzen Zahlen
und setzen 7 := {0 C Z | Ya € O3b > 0 mit N, ;, C O}. Man zeige (am besten der Reihe nach)
7 ist eine Topologie auf Z, & := {N, | a,b € Z und b > 0} ist eine Basis von 7, jede nicht
leere offene Menge ist unendlich, jede Menge N, ist abgeschlossen, Z\ {—1,1} = U ,ep No p
(P bezeichnet die Menge der Primzahlen) und folgere, dass [P unendlich sein muss.

2.1.10 Aquivalente Definition der Topologie duch Abschlussoperator

Seic: Z(X) — Z(X) eine Abbildung mit folgenden Eigenschaften: Fiir alle A,B C X gilt:
1A Cc(A)
2)c(0)=10
3) c(AUB) =c(A)Uc(B)
4) c(e(4)) = c(A), .
dann gibt es genau eine Topologie T auf X, mit der Eigenschaft: VA C X gilt ¢(A) = A
(gemeint ist der Abschluss beziiglich 7). Die Abbildung wird auch Hiillenoperator oder Ab-
schlussoperator genannt (nach Kuratowski).

Beweis: Wirsetzen 7:={U C X | ¢(X\U) =X \U}. Aus der Eigenschaft 1) folgt ¢(X) = X,
ferner gilt ¢(0) = 0, also 0, X € 1. Seien U,V € 1. Dann ¢(X \ (UNV)) =c((X\U)U (X \
V) =c(X\U)Uc(X\V)=X\U)UX\V)=X\(UNV),alsoUNV € 1. Zeigen wir als
nichstes A C B = c¢(A) C ¢(B). Dies folgt aus ¢(B) = c(AUB) = ¢(A) U¢(B). Nun konnen
wir zeigen, dass mit ¢ C 7 auch [Jo € 7 gilt. Wir haben ndmlich X \Jo C ¢(X \Uo) =
c(MveaX\V)) CNMyesX\V) =X\ 0, also ¢(X\Jo) =X\ o und damit Jo € 7. Wir
haben damit gezeigt, dass T eine Topologie ist. Zu zeigen bleibt VA C X gilt ¢(A) = A. Es ist
X\ ¢(A) € 7 (folgt aus 4)) und damit c(A) abgeschlossen!, Also A C c(A). Andererseits ist
X\ A € 1,als0 ¢c(A) C c(A) = A. Insgesamt somit c(A) = A.

2.1.11 Das Abschluss-Komplement Problem

Bereits hier ergibt sich eine interessante Frage: Wie viel verschiedene Menge kénnen wir -
ausgehend von einer fest gewéhlten Menge A - nur mit Hilfe der Abschluss-Operation, offener
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Kern-Operation und Komplementbildung bekommen. Eine solche ist z.B. X \ (X \ A)°. Diese
Frage hat eine mysteriose Antwort:

In einem beliebigen topologischen Raum (X, ) kann man maximal 14 verschiedene Mengen
auf diese Weise bekommen (ausgehend von einer fest gewihlten Menge A)!

DaA=Aund (A°)° = A° und X \ (X \ A) = A gilt, kann man sich darauf beschrinken, die
Operationen abwechselnd anzuwenden. Ferner gilt A° = X \ X \ A. Wir konnen uns schlus-
sendlich also auf abwechselnde Anwendung von Komplement und Abschluss beschrianken.
Zur besseren Ubersicht fiihren wir folgende Schreibweise ein: A~ := A und Al := X \ A. Die
Frage ist also: Haben die Folgen

AAT AT AT () und  AlLAIT AIFL L ()

unendlich viele verschiedene Folgeglieder oder nicht. Und wenn nicht, wie viele haben sie
dann? Schauen wir uns die erste Folge an:

AAT AT AT =X \A=X\ (A)°, A7 = @A), A= = (A)°, A7I-- = x\ (A)e,

AT =X\ ((A)°)°

Behauptung: (A)° = ((A)°)°. Zeigen wir dies: Offensichtlich gilt (A)° C (A)°,
((A)°)° C ((A)°)°. Andererseits gilt (auch offensichtlich) (A)° C A, also (A)° C
damit ((A)°)° C (A)°.

Das achte Folgeglied der Folge () ist also gleich dem vierten - wir haben eine Schleife! Die
Folge () hat also maximal 7 verschiedene Folgeglieder. Ersetzen wir in der Folge (x) jedes A
durch X \ A, so erhalten wir die Folge (*x). Diese hat also ebenfalls maximal 7 verschiedene
Folgeglieder. Insgesamt bekommen wir somit maximal 14 verschiedene Mengen.

Als Beispiel einer Teilmenge A eines top. Raumes, bei der tatsdchlich auch 14 verschiedene
Mengen herauskommen, moge A := {0} U (1,2) U (2,3) U ([4,5]NQ) C R dienen.

Zum AbschluB3 dieses ersten Abschnitts noch zwei wichtige Definitionen.

0 (4)° =

als ©
A = A und

2.1.12 Definition: F;-Menge und Gs-Menge

Sei (X, 7) ein topologischer Raum und A, O C X. Man nennt O eine F5-Menge, wenn es eine
Folge (A,),en abgeschlosserner Mengen gibt mit O = J,,cyA». Man nennt A eine Gg-Menge,
wenn es eine Folge (0, ),en offener Mengen gibt mit A = (),,cyy On.

2.1.13 Definition: Netzwerk

Sei (X, 7) ein top. Raum. Eine Menge o C (X)) heiit Netzwerk, wenn es zu jedem U € 7 ein
o’ C o gibt mit U = |J a’. Wir sprechen von abgeschlossenen Netzwerken, wenn die Elemente
A € o abgeschlossenen sind (von offenen Netzwerken sprechen wir nicht, dass sind nédmlich
einfach die Basen von X).

2.1.14 Bemerkung

Mochte man “Topologie” mit wenigen Wortern beschreiben, so fillt das nicht ganz leicht. Was
macht man in der Topologie? Man hat einen sehr allgemeinen Raumbegriff und untersucht
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beispielsweise Eigenschaften, die unter stetigen Abbildungen erhalten bleiben. Ganz vorsich-
tig konnte man dies also als eine Art “Stetigkeitsgeometrie” beschreiben. Gibt es zu zwei
topologischen Rdumen X und Y eine bijektive und in beiden Richtungen stetige Abbildung
f:X — Y, sosagen wir X und Y sind homdomorph. Aus topologischer Sicht unterscheiden
sie sich also nicht - sie werden ineinander deformiert. Ein kleinen Ausschnitt von dem, was
Topologie nun sein kann, erfihrt der Leser in den folgenden Kapiteln ;-)

2.2 Stetige, offene und abgeschlossene Abbildungen

Wie kann man verschiedene topologische Riume miteinander vergleichen? Die Antwort ist:
Mit Abbildungen zwischen diesen Rdumen, die mit der topologischen Struktur in einem ge-
wissen Sinn “vertrdglich” sind. Realisiert wird dies im Konzept der stetigen Abbildung.

2.2.1 Definition: Stetige, offene und abgeschlossene Abbildungen

Eine Abbildung f: X — Y zwischen zwei top. Rdumen (X, 7) und (Y, o) heiBt stetig, wenn die
Urbilder offener Mengen in Y wieder offen in X sind (statt f : X — Y schreiben wir oftmals
auch f: (X,t) — (¥,0)). Wir nennen die Abbildung offen, wenn die Bilder offener Mengen
in X offen in Y sind. Und wir nennen sie abgeschlossen, wenn die Bilder abgeschlossener
Mengen in X abgeschlossen in Y sind. In der Regel interessiert man sich nur fiir offene bzw.
abgeschlossene Abbildungen, die bereits stetig sind. Es gibt aber keinen Grund dies bereits
in der Definition einzuschrianken (wir sprechen dann halt immer von stetigen und offenen
bzw. stetigen und abgeschlossenen Abbildungen). Eine bijektive Abbildung f : X — Y heil3it
ein Homdomorphismus, falls f und f~! stetig sind. Wir nennen eine Abbildung f : X —
Y eine homdomorphe Einbettung (oder auch nur eine Einbettung), wenn f : X — f(Y) ein
Homdoomorphismus (bzgl. der Spurtopologie) ist.

2.2.2 Charakterisierungen der Stetigkeit

Sei f: X — Y eine Abbildung, dann sind folgende Aussagen dquivalent:

1) f ist stetig.

2) Die Urbilder einer Subbasis fiir ¥ sind offen in X.

3) Urbilder abgeschlossener Mengen sind abgeschlossen.

4 VM CX gilt f(M) C f(M).

5) Zu jedem x € X und zu jeder offenen Menge V mit f(x) € V gibt es eine offene
Menge U mitx € U und f(U) C V.

Beweis: 1) — 2) ist klar und fiir 2 = 1) geniigt es zu bemerken, dass Urbilder von Abbil-
dungen Schnitte und Vereinigungen respektieren (Lemma 1.2.1).

1) & 3) folgt ebenfalls aus Lemma 1.2.1.

1)=4)Seiy € f(M)undy € V, V ist offen. Dann gibt es ein x € M mitx € f~!(V), welche
auch offen ist. Also M N f~1(V) # 0. Dann aber auch f(M)NV # 0. Also y € f(M).
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f(M), also

4) = 3) Sei A abgeschlossen in Y. Setze dann M := f~!(A). Es gilt f(M) C
~1(A). Letztere

f(f~1(A)) CA = A. Dann folgt aber f~1(A) C f~!(A) und somit f~1(A) = f
Menge ist also abgeschlossen.

1) = 5) Sei x € X und V offen mit f(x) € V. Dann ist U := f~!(V) auch offen, enthilt x
und es gilt f(U) C V.

5)=1)SeiV offenin Y und x € f~! (V) (falls das Urbild lehr ist, dann ist es offen). Dann
ist f(x) € V und es gibt somit ein in X offenes U, mitx € U, und f(U,) CV, also U, C f~1(V).
Dann ist aber auch f~1(V) = Usep-1(v) Ux offen!

2.2.3 Bemerkung
Ist f: X — Y eine Abbildung zwischen den topologischen Riumen (X, 7) und (Y,c) und

ist x € X mit der Eigenschaft: YO € f(x)N63U € xNt mit f(U) C O, so sagen wir die
Abbildung f ist an der Stelle x stetig. Das obige Lemma sagt also beispielsweise: Ist f an

jeder Stelle x € X stetig, so ist sie als Abbildung zwischen X und Y stetig.

2.2.4 Klebelemma

Seien X und Y Mengen, (X;)ca eine Familie von Mengen mit X = (J,c4 X, und sei (f; :
X, — Y)aea eine Familie zugehoriger Abbildungen mit der Eigenschaft: Vo, B € A gilt
fol(XeNXg) = fg|(Xe N Xp). Dann gibt es genau eine Abbildung f: X — ¥ mit f|Xy =
fa-

Wenn X und Y zusitzlich top. Rdume sind und alle fy stetig (bzgl. der Teilraumto-
pologie) sind, dann folgt aus jeder der beiden folgenden Bedingungen die Stetigkeit von
f.

a) A ist endlich und alle X sind abgeschlossen in X,

b) alle X, sind offen in X.

Beweis: Die Existenz der Abbildung ist klar, ebenso die Eindeutigkeit. Zu zeigen bleibt die
Stetigkeit von f unter den gegebenen Bedingungen. Dies bleibt als Ubung. Man beachte, dass
eine Menge abgeschlossen in der Teiraumtopologie einer anderen abgeschlossenen Menge ist,
g.d.w. sie abgeschlossen im Gesamtraum ist (analog fiir offene Mengen) und verwende die
verschiedenen Charakterisierungen von Stetigkeit.

2.2.5 Lemma

a) Eine Abbildung f : X — Y ist genau dann abgeschlossen, wenn f(A) C f(A) ist, fiir
jede Teilmenge A C X. Mit Satz 2.2.2 ergibt sich dann: f: X — Y ist genau dann stetig
und abgeschlossen, wenn f(A) = f(A) ist fiir jedes A C X.

b) Eine Abbildung f : X — Y ist genau dann offen, wenn f(A°) C (f(A))° ist, fiir jede

Teilmenge A C X. Ferner ist f offen, wenn die Bilder einer beliebigen Basis offen sind.
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Beweis: a) f(A) ist abgeschlossen und f(A) C f(A), also auch f(A) C f(A).
b) Nun ist f(A°) offen und f(A°) C f(A) und somit auch f(A°) C (f(A))°. Da das Bild
einer Vereinigung gleich der Vereinigung der Bilder ist, folgt auch die zweite Aussage sofort.

2.2.6 Charakterisierung offener und abgeschlossener Abbildungen

a) Eine Abbildung f : (X,7) — (Y, 0) ist genau dann offen, wenn es zu jedem B C Y und
zu jedem abgeschlossenen A C X mit f~! (B) C A eine abgeschlossene Menge C C Y gibt,
mit BC Cund f~1(C) C A.

b) Eine Abbildung f: (X,7) — (¥, 0) ist genau dann abgeschlossen, wenn es zu jedem
y €Y und zu jedem U € Tt mit f~(y) CU ein V € yN o gibt, mit f~1(V) CU.

Beweis: a) Ist f offen, B C Y und A abgeschlossen mit f~!(B) CA,soistC: =Y\ f(X\A)
abgeschlossen und es gilt offensichtlich B C C und f -1 (C) C A (offensichtlich heift hier, dass
man es unmittelbar nachrechnen kann).

Zeigen wir nun, dass unter der angegebenen Bedingung die Abbildung f offen ist. Dazu sei
P € 1. Wir zeigen, dass f(P) offen ist. Dazu setzen wir B:=Y \ f(P). Setzen wir A := X \ P,
so ist A abgeschlossen und es gilt f~!(B) C A. Nach Voraussetzung gibt es dann ein in ¥
abgeschlossenes C mit B C C und f~!(C) C A. Damit bekommen wir ¥ \ f(P) C C, also
Y\CC f(P) ®)und f~1(C) CX\P,alsoPC X\ f1(C) = f~1(Y'\C) (+%). Aus () folgt
f(P) CY\C und zusammen mit (x) folgt f(P) =Y \ C. Da C abgeschlossen ist, folgern wir,
dass f(P) offen ist.

b) Sei f zunichst abgeschlossen und U € T mit f~!(y) C U, fiir y € Y. Dann ist V :=
Y\ f(X\U) €yno und es gilt f~!(V) C U (beide Behauptungen kann man problemlos
nachrechnen).

Zeigen wir nun, dass unter der angegebenen Bedingung die Abbildung f abgeschlossen
ist. Sei dazu A C X und y € f(A). Angenommen Vx € f~1(y)3U, € xN 7 mit ANU, = 0.
Dann ist U := Uye -1(y) Ux € T mit f ' (y) CUud UNA = 0. Es gibt dann ein V € yN o
mit f~!(V) C U. Dann gilt aber V N f(A) # 0, es gibt also ein x € A mit f(x) € V. Dann
folgt x € AN f~1(V) CANU = 0. Offensichtlich ist dies ein Widerspruch und somit 3x €
Y y)VU € N1t : ANU # 0. Das bedeutet aber gerade x € A und somit y = f(x) € f(A).
Damit ist f dann abgeschlossen.

2.3 Initialtopologie und Finaltopologie

Wie beschafft man sich auf einer Menge eine Topologie? Die zwei grundlegenden Konstruk-
tionen - Initialtopologie und Finaltopologie - lernen wir nun kennen. Als wichtigste Anwen-
dung der Initialtopologie werden wir dann die wichtige Produkttopologie (auf einem Produkt
von Mengen) definieren und als wichtigste Anwendung der Finaltopologie werden wir auf
einer Menge von Aquivalenzklassen die sogenannte Quotiententopologie definieren.
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2.3.1 Satz und Definition: Initialtopologie

Sei X eine Menge und (X;, 7;);cs eine Klasse von topologischen Rdumen und zugehdrigen
Abbildungen f; : X — X;.
a) Es gibt dann eine grobste Topologie 7 auf X, beziiglich derer alle f; stetig sind. Diese
Topologie heifit die Initialtopologie beziiglich der Daten (X, 7;);ic; und (f; : X — X)ier-
b) Die Initialtopologie 7 ist durch folgende universelle Eigenschaft eindeutig bestimmt:
Fiir jeden topologischen Raum (Y, o) und jede Abbildung g:Y — X gilt: g ist stetig,
genau dann wenn Vi € I f;o g stetig ist.

y —S-x

o\

Xi

Beweis: a) Setze a :=J;c;{f; 1 (0) | O € 7;} und 7 :=top (). Fiir den unwahrscheinlichen
Fall, dass I = 0 ist, setzen wir o := {X }.

b) Sei 7 die initiale Topologie auf X beziiglich der Daten (X, 7;);c; und (f; : X — X;)ies. Wir
zeigen, dass (X, 7) die universelle Eigenschaft erfiillt. Sei dazu (Y, ) ein beliebiger topologi-
scher Raum mit einer Abbildung g : ¥ — X. Falls g stetig ist, so sind auch alle Kompositionen
fiog stetig (die f; sind schlieBlich stetig). Seien nun umgekehrt alle Kompositionen f; o g ste-
tig. Wir miissen zeigen, dass dann auch g stetig ist. Nun ist ¢ offensichtlich eine Subbasis fiir
7. Es reicht also sich die Urbilder unter g von Elementen aus & anzuschauen. U € o impliziert
U = f7'(0;) fiir ein gewisses i € I (oder U = X). Dann folgt g~ (U) = go £, (0;). Letzteres
ist aber offen, da g o f; stetig ist.

Nun sei 7’ eine Topologie, welche ebenfalls die universelle Eigenschaft hat. Im ersten Schritt
sieht man, wenn man (Y,0) = (X,7’) und g = idx setzt und die universelle Eigenschaft fiir
(X, 1) verwendet, dass alle f; : (X,7") — (X;,7;) stetig sind (schlieBlich ist f; o idx = f;). Also
schon mal T C 7. Im zweiten Schritt setzt man (Y,0) = (X, ) und wieder g = idy (man ma-
le sich Diagramme). Nun wissen wir schon dass alle f; : (X,7') — (X;, 7;) stetig sind und da
fi = fioidy ist also auch idx : (X,7) — (X, 1) stetig und somit 7/ C 7. Insgesamt also T = 7’.

2.3.2 Definition: Produkttopologie

Sei (X;,T;)ics eine Familie von topologischen Rdumen. Auf X := [];c;X; wird mittels den
Daten (Xj, 7;);ec; und der Projektionen pr; : X — X; die initiale Topologie konstruiert und von
nun an Produkttopologie genannt. Die Produkttopologie bezeichnen wir mit X ;¢ 7;.

Eine Typische offene Subbasismenge hat also die Gestalt: [];c; O; mit O; = X; fiir i # j und
O; € 7; fiiri = j (j ist dabei beliebig). Eine typische Basismenge sieht dann so aus: [[;c; O; mit
O; =X, fir i € I'\ J fiir ein endliches J C I und O; € 7; fiir i € J. Wenn wir bei Produktrdumen
im Folgenden von offenen Basismengen oder offene Subbasismengen (oder vielleicht auch
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einfach nur Basismengen) reden, meinen wir Mengen dieser Bauart.

2.3.3 Lemma

Seien (X;)ier und (Y;);e; zwei Familien von topologischen Rdumen, Z ein weiterer top.
Raum und (f; : X; — Yi)ie bzw. (g; : Z — Y;)ie; zwei Familien von Abbildungen. Bezeich-
ne X (bzw. Y) den Produktraum der (X;);c; (bzw, (¥;)ics) und setze f : X — Y definiert
durch f((xi)ier) := (fi(xi))ier, bzw. g : Z — Y definiert durch g(z) := (gi(z) )ies. Dann gilt:
f ist genau dann stetig, wenn alle f; stetig sind und g ist genau dann stetig, wenn alle g;
stetig sind.

Beweis: Fiir i € [ seien im Folgenden p; : X — X; und ¢, : Y — Y; die entsprechenden Pro-
jektionsabbildungen.

Seien zunichst alle f; stetig. Offensichtlich gilt g;o f = f;o p;. Damit ist g; o f fiir jedes i € 1
stetig. Nun trdgt Y die Initialtopologie bzgl. der (g;);c; und somit ist f stetig.

Sei nun f als stetig vorausgesetzt und j € I fest gewéhlt. Fiir jedes i # j wihlen wir uns ein
festes x; € X; und definieren dann die stetige Hilfsabbildung s : X; — X durch s(x;) := (x;)ier,
fiir jedes x; € X;. Damit ist fj = g;jo f os dann stetig.

Seien nun alle g; stetig. Offensichtlich gilt g; o g = g; und somit ist g; o g fiir jedes i € [ stetig.
Da Y die Initialtopologie bzgl. der g; trigt, ist also auch g stetig.

Ist umgekehrt g stetig, so folgt aus g; = ¢g; o g unmittelbar die Stetigkeit der g;.

2.3.4 Satz und Definition: Finaltopologie

Sei X eine Menge und (X;, 7;);cs eine Klasse von topologischen Rdumen und zugehorigen
Abbildungen f; : X; — X.

a) Es gibt dann eine feinste Topologie 7 auf X, beziiglich derer alle f; stetig sind. Diese
Topologie heiBit die Finaltopologie beziiglich der Daten (X;, 7;);c; und (fi : X — X;)ier-

b) Die Finaltopologie 7 ist durch folgende universelle Eigenschaft eindeutig bestimmt:

Fiir jeden topologischen Raum (Y, 0) und jede Abbildung g: X — Y gilt: g ist stetig
genau dann, wenn Vi € I go f; stetig ist.

X,'LX

N

Y

Beweis: a) Setze 7:= {0 C X | Vi € I gilt f7'(0) € 7}
b) Ubung (dhnlich wie bei der Initialtopologie).
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2.3.5 Definition: Quotiententopologie, identifizierende Abbildungen

Sei (X,7) ein topologischer Raum und ~ eine Aquivalenzrelation auf X. Dann bezeichne
X/ ~ die Menge aller Aquivalenzklassen und 7 : X — X/ ~ die standard Projektion. Die
Finaltopologie auf X/ ~ beziiglich © nennt man Quotiententopologie. Der Raum X/ ~ mit
der entsprechenden Topologie wird auch Quotientenraum genannt. Seien (X,7) und (¥, 0)
top. Rdume und f : X — Y eine Abbildung. Man nennt f identifizierend, falls f surjektiv ist
und o die Finaltopologie bzgl. X und f ist (also O € 0 < f~1(0) € 7).

2.3.6 Definition: Verkleben topologischer Raume

verkleben von top. Riumen Seien X und Y top. Riume, mit XNY =0, ACXund f:A—Y
eine stetige Abbildung. Wir versehen X UY mit der Finaltopologie bzgl. der standard Ein-
bettungen e¢; : X — X UY und e; : Y — X UY und fiithren auf X UY folgendermallen eine
Aquivalenzrelation ein. 71 ~ 25 1= (z1 =22 V f(z1) = f(22) V f(z1) =22 V f(z2) = 21).
Der Qutientenraum (X UY')/ ~ wird als der von X und Y mittels f zusammengeklebte Raum
bezeichnet und als X Uy Y bezeichnet. Y ist iibrigens (kanonisch) als Teilraum in X U7 Y ent-
halten (Beweis als Ubung).

2.3.7 Satz

Seien X,Y,Z top. Rdume und f : X — Z bzw. ¢ : X — Y identifizierende Abbildungen
mit der zusitzlichen Eigenschaft Va,b € X : ¢(a) = ¢(b) < f(a) = f(b). Dann gibt es
genau ein Homdomorphismus g: Y — Z mitgo ¢ = f.

Beweis: y € Y = y = @(x), setze g(y) := f(x). Dann ist g wohldefiniert, bijektiv und erfiillt
go ¢ = f. Die Abbildung g ist auch stetig, denn fiir O offen in Z ist g~' (O) offen in ¥ (wegen
0 '(g71(0)) = f~1(0) und dieses ist offen).

Sei nun O offen in Y. Zu zeigen ist dann, dass g(O) offen in Z ist. Es gilt jedenfalls:

F(8(0)) = (g(e(97(0)) = f'(fl9~'(0))) 297 '(0)

Annahme: 3x€ £~ (f(¢~1(0)))\ ¢~ (0), dann folgt ¢(x) € O aber f(x) € f(¢~1(0)). Also
f(x) = f() fiir X' € ~1(0) und somit ¢(x) = ¢(x') € O - Widerspruch! Also f~!(g(0)) =
¢~ 1(0) Die letzte Menge ist aber offen, also ist auch g(0O) offen.

2.4 Metrische Raume

2.4.1 Definition: Metrische Raume

Sei X eine Menge und d : X X X — R eine Abbildung welche folgenden Bedingungen geniigt:
DHVx,yeXd(x,y)=0< x=y,
2) vx,y € X d(x,y) = d(y,x),
3)Vx,y,z € X d(x,y) <d(x,2) +d(z,y),
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dann nennen wir das Paar (X,d) einen metrischen Raum. Fiir x,y € X gilt 0 = d(x,x) <
d(x,y) +d(y,x) = 2d(x,y), also 0 < d(x,y). K(x,€) :={y € X | d(x,y) < €} nennen wir die
offene Kugel um x mit Radius €. Durch 1; :=rop ({K(x,€) | x € X und € € R} bekommen
wir eine Topologie auf X - die durch d induzierte. 4 := {K(x,1/n) |x € X und n € N\ {0}}
ist dann sogar eine Basis fiir 7; (Beweis?). Sprechen wir von irgendwelchen topologischen
Eigenschaften metrischer Raume, so beziehen wir uns auf die durch die Metrik induzierte To-
pologie. Eine Folge (x,).cn konvergiert gegen einen Punkt x, wenn es zu jedem € > 0 ein
Index N € N gibt, so dass fiir alle n > N d(x,,x) < € gilt. Beispielsweise ist A C X genau
dann abgeschlossen, wenn jede Folge aus A, die konvergent ist, auch bereits in A konver-
giert (Beweis als Ubung). Eine Abbildung f : X — Y zwischen zwei metrischen Riumen ist
genau dann im Punkt x stetig (siehe dazu den nidchsten Abschnitt iiber Stetigkeit), wenn fiir
jede Folge, die gegen x konvergiert, die Bildfolge gegen f(x) konvergiert(im Punkt x stetig,
bedeutet Satz 2.2.2 Nr.5). Fiir spitere Anwendungen definieren wir noch den Durchmesser
einer Teilmenge A von X als diam(A) := sup {d(x,y) | x,y € X } und den Abstand eines Punk-
tes X zu A als d(x,A) := inf{d(x,y) | y € A}, bzw den Abstand zweier Teilmengen A, B als
inf{d(x,y) | (x,y) € A x B}. Sprechen wir in Zukunft von metrisierbaren Rdumen, so meinen
wir topologische Raume, deren Topologie durch eine Metrik im obigen Sinn induziert wird.
In diesem Sinn kann man metrisierbare Riume also als metrische Rdume auffassen.

Haben wir statt einer Metrik lediglich eine Pseudometrik d, also ein Abbildung d : X x X —
R, die den Bedingungen

1) Vx € X giltd(x,x) =0,

2) Vx,y € X d(x,y) =d(y,x),

3) Vx,y,z€ X d(x,y) <d(x,z)+d(z,y)

geniigt, so bekommen wir genau wie bei einer Metrik eine Topologie. Pseudometriken wer-
den im Kapitel iiber parakompakte Riume eine Rolle spielen.

2.4.2 Euklidische Metrik

Auf dem R”" konnen wir zum einen die Topologie 7, (erzeugt durch die euklidische Me-
trik dyy(x,y) := /X4_; (xy — yv)?) und zum anderen die Produkttopologie Tg» (beziiglich der
durch d; auf R erzeugten Topologie) betrachten. Es gilt dann Tgr» = 7,4, . Der Beweis bleibt als
Ubung.

2.4.3 Lemma

Sei (X,d) ein metrischer Raum. Dann ist jede offene Menge eine Fs-Menge und jede
abgeschlossene Menge eine Gs-Menge.

Beweis: Zeigen wir, dass jede offene Menge eine Fs-Menge ist. Sei dazu O offen in X. Fiir
jedes n € N bilden wir die Menge A, := {y € O | d(y,X \ O) > 1/n}. Man kann dann leicht
nachrechnen, dass A, eine abgeschlossene Menge ist und O = J,,cyA, gilt. Das dann auch je-
de abgeschlossene Menge eine Gs-Menge ist, folgt leicht durch Ubergang zu Komplementen.
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2.4.4 Satz

Sei (X,d) ein metrischer Raum und o eine unendliche Kardinalzahl. Dann sind die fol-
genden Eigenschaften dquivalent.

1) Der Raum hat eine Basis % mit | 4| < a.

2) Der Raum hat ein Netzwerk N mit [N| < a.

3) Jede offene Uberdeckung ¢ von X hat eine Teiliiberdeckung ¢’ mit |¢’| < «.

4) Fiir jeden diskreten Teilraum D von X gilt |D| < a.

5) Fiir jeden abgeschlossenen diskreten Teilraum D von X gilt |D| < a.

6) Fiir jede Familie ¢ paarweise disjunkter und offener Teilmengen von X gilt |o| < c.

7) Es gibt eine dichte Teilmenge D von X mit |D| < «.

Beweis: 1) = 2 ist klar, da jede Basis auch ein Netzwerk ist.

2) = 3) Sei o eine offene Uberdeckung von X. Fiir jedes S € ¢ wihlen wir ein Ny C N mit
UNs = S. Dann bilden wir N’ := {Ns | S € 0}. Zu jedem n € N’ wiihlen wir dann ein S, € ©
mit n C S,,. Offensichtlich ist 6’ := {S, | n € N’} dann eine offene Teiliiberdeckung von ¢ mit
o' <IN < V| < e

3) = 5) Sei D ein abgeschlossener diskreter Teilraum. Fiir jeden Punkt x € D gibt es dann
eine offene Menge O, mit O, N D = {x}. Nunist aber 6 := {O, | x € D} U{X \ D} eine offene
Uberdeckung von X, die eine Teiliiberdeckung ¢’ mit |6’| < o hat. Da die Zuordnung x — Oy
injektiv ist und aus {Oy | x € D} nichts weggelassen werden kann, muss |[D| < a gelten.

4) = 5) ist offensichtlich.

5) = 4) Sei D ein diskreter Teilraum in X. Dann ist D offen in D, und somit eine Fg-
Menge in D. Es gibt also eine Folge in X abgeschlossener Mengen (A,),en mit D = e (DN
A,). Nun ist aber jedes DN A, in X abgeschlossen und Teilmenge von D, also diskret. Nach
Voraussetzung gilt dann [DNA,| < @ und somit, da @ unendlich ist, auch |D| < a.

4) = 6) ist auch klar, denn ist ¢ eine Familie paarweise disjunkter und offener Teilmengen
von X, so wihlen wir fiir jedes O € 6 ein xp € O und D := {x¢ | O € o} ist dann ein diskreter
Teilraum mit (6| = |D| < «.

6) = 7) Fiir jedes n € N bilden wir Z, := {A C X | {K(x,1/n) | x € A} ist eine Familie
paarweise disjunkter Teilmengen }. Auf Z, konnen wir mittels Inklusion eine partielle Ord-
nung einfithren. Man kann nun leicht nachrechnen, dass die Voraussetzungen des Zornschen
Lemmas erfiillt sind (ist (A;);es eine Kette in Z,, so ist |J;;A; eine in Z, gelegene obere
Schranke). Wir konnewn uns also ein bzgl. Inklusion maximales Element A, € Z, wihlen.
Nun gilt |4,| < @, fiir jedes n € N, also auch |A| < a, wobei A := [J,cyA,. Wir miissen also
nur noch zeigen, dass A dicht in X liegt. Gibe es ein x € X \ A, so gibe es ein n € x mit
K(x,1/n) C X \ A. Dann wire aber x € A,, C A - ein Widerspruch.

7) = 1) Ist D eine dichte Teilmenge von X mit |D| < ¢, so ist B := |, cn HBn, Wobei
By = {K(x,1/n) | x € D}, eine Basis von X mit |%| < a. Das |#| < o gilt ist klar. Zeigen
wir, das # eine Basis ist. Sei O offen und x € O. Dann gibt es ein n € N mit K(x,2/n) C O.
Nun gibt es aber ein y € D mity € K(x,1/n). Dann ist x € K(y,1/n) C K(x,2/n) C O. Damit
ldsst sich O als Vereinigung von Elementen aus 4 schreiben.
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3 Trennungsaxiome und Konvergenztheorie

”Unsere Gesellschaft wird von Verriickten gefiihrt, fiir verriickte Ziele. Ich glaube wir

werden von Wahnsinnigen gelenkt, zu einem wahnsinnigen Ende, und ich glaube ich

werde als Wahnsinniger eingesperrt, weil ich das sage. Das ist das wahnsinnige daran.”
John Lennon

3.1 Trennungsaxiome

Denken wir bei topologischen Riaumen an die metrischen Raume, so sind wir es gewohnt zwei
verschiedene Punkte durch disjunkte Kugelumgebungen zu “trennen”. Bei allgemeinen topo-
logische Rdumen muss dies nun keineswegs mehr moglich sein (unabhiingig davon, das wir
keinen Kugelbegriff zur Verfiigung haben; wir haben halt einfach nur Umgebungen). Als ganz
einfaches Beispiel dazu moge X := {0, 1} mit 7:= {0, {0}, X} dienen. Es gibt hier einfach kei-
ne disjunkten Umgebungen von 0 und 1 (das es sich bei T um eine Topologie auf X handelt,
ist offensichtlich). Rdume in denen sich Punkte doch von einander trennen lassen, bekommen
hier nun eigene Namen.

3.1.1 Definition der Trennungsaxiome T, T, T, (Hausdorff-Eigenschaft),
T;,reqular, T4, normal

Ein top. Raum heilit Top-Raum, wenn es zu je zwei verschiedenen Punkten eine offene Menge
gibt, die genau einen der beiden Punkte enthilt.

Ein top. Raum heifit T{-Raum, wenn alle Einpunktmengen abgeschlossen sind.

Ein toplogischer Raum (X, 7) heift Hausdorff-Raum (oder T,), wenn zu je zwei verschie-
denen Elementen x,y € X zwei disjunkte offene Mengen O, U gibt (also UNV = 0) mit x € O
und y € U. Jeder Teilraum eines Hausdorff-Raumes ist wieder ein Hausdorff-Raum (Beweis?)

Ein top. Raum heifit T3-Raum, wenn es zu jedem Punkt x € X und jeder abgeschlossenen
Menge A mit x ¢ A disjunkte offenen Mengen U,V gibt mitx € U und A C V. Ein top. Raum ist
T3, wenn jeder Punkt x € X eine Umgebungsbasis aus abgeschlossenen Mengen hat (Beweis?).
Réaume die T und T; sind, werden reguldr genannt.

Ein top. Raum heift T4-Raum, wenn es zu zwei disjunkten abgeschlossenen Mengen A, B
zwel disjunkte offene Mengen U,V gibt mit A C U und B C V. Ridume die T; und T4 sind,
werden normal genannt.

Im Zusammenhang mit Kompaktifizierungen bzw. parakompakten Riumen werden wir ein
paar weitere Trennungsaxiome kennen lernen.

3.1.2 Triviale Folgerungen

Offensichtlich gilt T, = T; = Ty. Dies sind sogar die einzigen “einfachen” Implikationen
die gelten. Allerdings gilt T44T; = T,+Tj3 (klar) und T3+Ty = Tr+T3 (Beweis: Der Raum
ist Tp, also gilt firx #y: x & m oder y ¢ @ Also beispielsweise x & m Dann folgt -
mit T3 - es gibt disjunkte offene Mengen U,V mitx € U und y € m C V. Man kann x und y
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also durch disjunkte offene Mengen trennen. Der zweite Fall lduft natiirlich analog. Insgesamt
bekommen wir so T5.).

Teilrdume von T;-Raumen sind fiir i = 0, 1,2,3 auch T;-Rdume. Fiir i = 4 muss das nicht
mehr gelten (es gibt bereits auf vierelementigen Mengen Gegenbeispiele). Allerdings haben
wir folgenden Satz.

3.1.3 Satz liber die Vererbung von T,

Sei (X, 7) ein T4-Raum und

a) A abgeschlossen C X. Dann ist auch A als Teilraum Tjy.

b) F eine Fs-Menge in X (das heiit F = [J,,cyAy,, mit in X abgeschlossenen Mengen
Ap). Dann ist F als Teilraum ebenfalls Ty4.

¢) Sei f: (X,7) — (Y,0) stetig, abgeschlossen und surjektiv, dann ist auch (¥, o) ein
T4-Raum.

Beweis: a) Seien P’ und Q' in der Teilraumtopologie von A abgeschlossen und disjunkt,
also P = PNA und Q' = QN A mit in X abgeschlossenen P und Q. Dann sind P’ und Q'
offenbar auch abgeschlossen in X. Da sie disjunkt sind gibt es disjunkte offene Obermengen
U,V.Dann sind aber U’ := U NA und V' := V NA in der Teilraumtopologie von A offene und
disjunkte Obermengen von P’ bzw Q.

b) Sei F' = |,y An, mit in X abgeschlossenen Mengen A, gegeben. Wir bilden dann F, :=
Uk<n A fiir jedes n € N. Offenbar ist jedes F, abgeschlossen und es gilt F' = |J,,cy Fr bzw.
F, C F,,11 fiir jedes n € N. Seien nun A’ und B’ abgeschlossene und disjunkte Teilmengen in
F (Teilraumtopologie). Dann gibt es in X abgeschlossene Mengen A, B mit A’ = AN F und
B'=BNF.

Es gibt nun in X offene und disjunkte U} und Vj mit ANFy C Uy und BN Fy C Vjj. Dann gibt
es aber auch (in X) offene Mengen Uy und Vo mit AN Fy C Uy C Uy C U,\Bund BNF) C
Vo C Vo C V{\ A. Es gilt dann [(ANF; ) UTp] N[(BNF;) UVp] = 0. Diese Idee verfolgen wir
nun weiter und konstruieren ausgehend bei Uy und Vjy zwei Folgen (U, ),en bzw. (Vy),en von
in X offenen Mengen mit:

1) Fir alle n € N gilt U, NV, =0,U, CX\Bund V, C X \ A.

2) Firalle n € N gilt [([ANF, 1) UU, N [(BNF,i1) UV, = 0.

3) Fiir alle n € N gilt (AN Fy,41)UU, CU,vq und (BNF,11)UV, C V.

Seien dementsprechend bereits Uy, ..., U, und Vj, ..., V,, konstruiert. Nun gilt nach Vorausset-
zung [(ANF, 1) U0, N[(BNF,41) UV,] = 0. Wir kénnen also disjunkte, in X offene Mengen
Uy, und V| wihlen, mit (ANF,41)UU, C U, und (BNF, 1)UV, CV, . Dann gibt es
aber auch offene Mengen U,,;.| bzw. V,,;.| mit

(ANFuy1) UU, C Unt1 € m - Ur,z—',—l \Bund (BNF,) UV, € Vit1 € T—H - V,Z_,_l \A.

Nun konnen wir unbeschwert U := |J,,cy U, und V :=J,,cn Vi, bilden. Dies sind dann offene
(klar) und disjunkte (Annahme x € U NV, dann x € U, NV;. O.B.d.A. giltk < [, alsox € U;NV,
- im Widerspruch zur Disjunktheit.) Teilmengen von X mit ANF C U und BNF CV (das ist
wieder offensichtlich).
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¢) Seien A, B in Y abgeschlossene und disjunkte Teilmengen. Dann sind auch f~!(A) und
f~Y(B) disjunkt und abgeschlossen. Nach Voraussetzung gibt es dann disjunkte offene Men-
gen U,V mit f~'(A) CU und f~!(B) C V. Fiir jedes a € A ist also f~!(a) C U und es gibt
somit (nach Lemma 2.2.6) ein P, € ¢ © mit f‘l(Pa) CU. Dann ist P :=J,cq Py € 0 mit
A CPund f~'(P) CU. Ananlog gibt es ein Q € 6 mit BC Q und f~!(Q) C V. Dann sind P
und Q disjunkte offene Obermengen von A und B.

3.1.4 Lemma (Folgen paarweise disjunkter offener Mengen)

Sei (X, 7) ein unendlicher Hausdorff-Raum. Dann gibt es eine Folge (O,),cn aus T mit
0,N 0y, =0 und O, # 0 fiir alle m # n € N. Insbesondere gilt fiir T demnach |7| > |R|
(unendliche Hausdorff-Rdume sind sehr reich an offenen Mengen).

Beweis: Wir nennen einen Punkt x isoliert, falls {x} offen ist. Sei E := {x € X | {x} €
t}. Falls E unendlich ist, sei (x,),cn eine Folge aus E derart, dass ({x,})nen eine Folge
paarweise disjunkter offener Mengen sind ... und wir sind fertig. Andernfalls sei E endlich.
Setze Z := X \ E. Offenbar ist Z unendlich, offen in X und enthilt keine isolierten Punkte
(Teilraumtopologie). Wir konnen also 0.B.d.A. E = 0 annehmen. Dann ist aber jedes O €
7\ {0} unendlich. Seien x,y € X mit x # y. Seien U,V € tmitx € U,y € Vund UNV = 0.
Setze O :=U. Sein € Nund (Oy)}_,, eine Folge paarweise disjunkter offener Mengen derart,
dass 3W € 7\ {0} mit W C X \ Uy_oOk. Wihle x,y € W mit x # y. Seien U,V € 7 mit
xeU,yeVund UNV = 0. Setze O, := U NW. Offenbar ist W : =W NV € 7\ {0} mit
W' C X \ UL, Ok So geht das dann weiter ...

Zeigen wir nun noch | 7| > |R|. Sei dazu (O;);cn eine Folge paarweise disjunkter nichtleerer
Mengen. Fiir jedes N C N ist Oy := [J;cn O; eine offene Menge mit N #M = Oy # Oy.
Man erhilt demnach | 7| > |Z(N)| = |R|.

3.1.5 Definition: stark Hausdorff

Wir nennen einen Raum (X, 7) stark Hausdorff, falls er Hausdorff ist und zu jeder unendli-
chen Teilmenge F C X eine Folge (O,),cn aus T mit 0O, N O, = 0 und O, N F # 0 fiir alle
m # n € N existiert.

3.1.6 Lemma

Jeder T»-T3-Raum (X, 7) ist stark Hausdorff.

Beweis: Sei F C X eine unendliche Teilmenge. Wihle a,b € F mit a # b. Seien U,V € 1
mitacU,beVundUNV =0.

Fall 1 UNF und VNF sind beide endlich. Seien U, V' € 7 derart, dass a € U’ C U’ CU und
becV' CV/'CV.Setze dann xo :=a, x; :=b, Oy :=U'"und Oy :=V".
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Fall 2 O.B.d.A. ist U N F unendlich. Setze dann xy :=bund Oy :=V.

Sei n € N und (O,)<, eine Folge aus 7, (x,)x<, eine Folge aus F mit x; € Oy N F (fiir alle
k <n), OxyNO; = 0 (fiir alle k # [) und 3W € t mit W N F unendlich und W C X \ J;_, Ok.
Wihle dann a,b € FNW mita # b. Seien U,V € tmitac U, bV und UNV = 0.

Fall 1 WNUNF und WNVNF sind beide endlich. Seien U’,V’ € 7 derart, dass a € U' C
UCWNUundbeV' CV' CWNV.Setze dann x,, 1 | :=a, X,12:=b, 0,11 :=WNU’
und O, > :=WnNV'.

Fall 2 O.B.d.A. ist W NU N F unendlich. Setze dann x,,1 :=bund O, 1 :=WNV.

3.1.7 Satz

Sei a € {0,1,2,3}. Ein Produkt X = [[;c; X; nicht leerer topologischer Raume (X;, 7;)ies
ist genau dann ein T,-Raum, wenn jeder Faktor ein T,-Raum ist.

Beweis: Exemplarisch sei der Beweis fiir T, gefiihrt. Seien alle (X;, 7;) Hausdorff-Rédume

und x = (x;);e; # y = (yi)ier zwei Punkte aus X. Dann gibt es ein j € I mit x; # y; und somit
gibt es zwei disjunkte offene Mengen U;,V; € 7; mit x; € U; und y; € V;. Dann sind aber
fjfl(Uj) und fJTI(Vj) disjunkte offene Mengen in X mit x € f;l(Uj) und y € fj-*l(Vj). Also
ist auch X ein Hausdorff-Raum.
Sei andererseits X ein Hausdorff-Raum. Also X # 0. Wihle a = (a;);c; € X und j € I und setze
Yj:={(xi)ier € X | xi = a; falls i # j}. Man kann schnell nachrechnen, dass pr;|Y;:Y; — X;
ein Homdomorphismus ist (beziiglich der Teilraumtopologie auf Y;). Da Y; als Teilraum von
X nun aber hausdorff ist, ist es auch X;.

Fiir den Nachweis von T3 sei angefiihrt, dass das Produkt abgeschlossener Mengen im Pro-
duktraum wieder abgschlossen ist und ein top. Raum ein T3-Raum ist, wenn jeder Punkt x € X
eine Umgebungsbasis aus abgeschlossenen Mengen hat.

3.1.8 Bemerkung

Produkte von T4-Rdumen miissen nicht wieder T4 sein, wie Beispiel 12.1.17 lehrt.
Wie kann man einigermallen bequem zeigen, dass ein Raum nicht T4 ist? Eine schone Mog-
lichkeit dies nachzuweisen, gibt folgendes Lemma.

3.1.9 Lemma

Sei (X,7) ein T4-Raum, A C X eine abgeschlossene diskrete Teilmenge (d.h. die Teil-
raumtopologie ist die diskrete) und D eine dichte Teilmenge (von X). Dann ist | Z?(A)| <
|Z(D)].

Falls also fiir ein top. Raum eine abgeschlossene und diskrete Teilmenge A und eine
dichte Teilmenge D existiert, mit |A| > | Z?(D)|, so kann der Raum nicht T4 sein!
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Beweis: Wenn B € #?(A), dann sind B und A \ B in A abgeschlossen und demnach auch in
X. Dassie disjunkt sind, existieren disjunkte Up, Vg € T mit BC Ugund A\ B C V. B+— UgND
definiert ein [ : Z(A) — Z(D). Zu zeigen bleibt dann noch, dass dieses f injektiv ist. Seien
dazu B # B' (B,B' C A). 0.B.d.A. 3b € B\ B'. Nun ist B C Ug, B C Up und b € V. Also
3d € UgNVp ND C f(B), aber d ¢ Up ND = f(B'). Also f(B) # f(B').

3.2 Filter, Ultrafilter und Filterkonvergenz

”Der Tod von Lincoln ist ein Ungliick fiir das Christentum. Es gibt keinen Mann in den
Vereinigten Staaten der in seine Schuhe paBt. Ich fiirchte, daB auslindische Bankiers mit
ihrer List und ihren verwundenen Tricks volle Kontrolle iiber den iippigen Reichtum von
Amerika erlangen werden und ihn systematisch dazu verwenden werden, die moderne
Zivilisation zu verderben. Sie werden nicht zogern, das gesamte Christentum in Kriege
und Chaos zu stiirzen um die Welt zu ihrem Erbe zu machen.”

Otto von Bismarck

Um auch in allgemeinen topologischen Rdumen eine verniinftige Konvergenztheorie entwi-
ckeln zu kénnen, brauchen wir den Begriff des Filters. Filter auf einer Menge X sind - wie auch
die Topologie - als gewisse Teilmengen der Potenzmenge von X erklirt. Auch auBerhalb der
Topologie finden Filter Anwendung; beispielsweise in der Logik/Modelltheorie (siehe dazu
auch den Abschnitt iiber Nichtstandard Topologie) und auch ganz allgemein in der Mengen-
theorie. Wer mehr iiber Filter erfahren mochte, der greife zu Bourbaki General Topology oder
Comfort/Negrepontis The Theory of Ultrafilters oder auch zu Chang/Keisler Model Theory.

3.2.1 Definition: Filter, Ultrafilter und endliche Schnitt Eigenschaft (eSE)

@ C Z(X) heiBt ein Filter auf X, falls ¢ folgenden Bedingungen geniigt:

DHOEo.

2)VP Q€ @ist PNQ € @, der Schnitt zweier Mengen aus ¢ ist wieder in .

3){QCX|3IPe€@mitP CQ} C ¢, jede Obermenge einer Menge aus ¢ ist wieder in ¢.

Ferner nennen wir den Filter ¢ auf einer Menge X einen Ultrafilter, falls es keinen Filter
Y auf X gibt mit ¢ C v (er ist beziiglich Inklusion also maximal).

Eine Teilmenge 0 C Z(X) hat die endliche Schnitt Eigenschaft (eSE) wenn der Schnitt
je endlich vieler Elemente aus ¢ nicht leer ist.

Fiir eine nicht leere Teilmenge 6 C Z?(X) definieren wir [0] :={AC X | 3P},...,P, €0
mit Py N...N B, CA}. Wenn o die eSE hat, dann ist [o] ein Filter mit 6 C [o] (Beweis als
Ubung).

Fiir eine einelementige Menge A = {x} schreiben wir fiir [{A}] einfach x. Es ist dann x =
{P C X | x € P}. Mit Hilfe dieser Notation schreibt sich die Menge aller offenen, den Punkt x
enthaltenen Mengen aus dem topologischen Raum (X, 7) sehr einfach als xN 7. Diese Notation
werden wir im Folgenden sehr hiufig verwenden.

Filter der Form X nenne wir zuweilen auch trivial, oder Einpunkt-Filter. Dies sind die einzi-
gen explizit angebbaren Ultrafilter.
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Fiir einen Filter ¢ nennen wir % C ¢ eine Basis, wenn es zu jedem P € ¢ ein B € % gibt
mit B C P. Wir nennen . eine Subbasis von ¢, wenn {(.¥’ | ¥/ C . und . ist endlich }
eine Basis von @ ist.

3.2.2 Ultrafiltersatz (Ultrafilter Theorem = UFT)
Wenn ¢ C #(X) die eSE hat, dann gibt es einen Ultrafilter ® auf X mit c C .

Beweis: Setze Z := {¢ C Z(X) | ¢ ist ein Filter und 6 C ¢}. Dann ist Z # 0, denn z.B.
[o] ist in Z. Nun ist Z durch C partiell geordnet, und eine Kette (@ )rcx hat - wie man leicht
nachrechnet - (Jycx @« als obere Schranke in Z. Das Zornsche Lemma verschafft uns also
maximale Elemente in Z und just diese sind die gesuchten Oberultrafilter.

3.2.3 Lemma (verschiedene Charakterisierungen von Ultrafiltern)

Fiir einen Filter ® auf X sind dquivalent:

1) @ ist ein Ultrafilter.

2)VAC X gilt A€ ®oder X \ A € .

HVn>1,A1,..,Ap CX gil: AU...UA, € ® = Tke{l,...,n} mitA; € .

4) Fiir alle n > 1 und Filter ¢y, ..., @, mit @; N...N @, C ® existierteini € {1,...,n} mit
¢ CP

Beweis: 1) = 2) Das fiir A C X hochstens eine der beiden Mengen A, X \ A in dem Filter
liegen kann ist klar. Nehmen wir an A ¢ ®. Das bedeutet kein Element P € & ist als Teilmenge
in A enthalten, jedes P € ® hat also mit X \ A einen nicht leeren Schnitt. Das System 0 := {PN
(X\A) | P € ®} hat also die eSE und ist somit in einem Ultrafilter &' enthalten. Fiir P € ® gilt
PN(X\A) € 6 CP'. Alsoist P als Obermenge von PN (X \ A) auch in @' und wir bekommen
® C @'. Da auch ® ein Ultrafilter ist, muss ® = &’ gelten. Somitist X \A =XN(X\A) € .

2) = 3) Wir zeigen die Aussage fiir n = 2. Der Rest geht dann durch vollstindige Induktion.
Sei also AUB € ®. Wiihre sowohl A ¢ @, als auch B ¢ ®, so withre X \A € ® und X \ B € .
Dann aber auch X \ (AUB) = (X \A)N (X \ B) € ® - ein Widerspruch.

3) = 2) Folgt sofort aus AU (X \A) =X € .

2) = 1) Filter mit dieser Eigenschaft sind bereits maximal!

2) = 4) Angenommen keiner der Filter ¢; ist in ® enthalten. Fiir i = 1,...,n wihlen wir
jeein P, € ¢\ ®. Esistdann X \ (PLU...UP,) = (X\P)N..N(X\B,) € . Aber auch
PU...UB, € oN...N@, C P -ein Widerspruch.

4) = 2) Sei A C X. Betrachten wir ¢; :={PCX |[ACP}und ¢ :={PC X |X\ACP}.
Dann ist ¢; N, = {X} C ®. Also z.B. ¢; C ® und damit A € P.
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3.2.4 Satz und Definition: Bildfilter

Sei ¢ ein Filter auf X und f: X — Y eine Abbildung. Dannist {Q CY | 3P € ¢ mit f(P) C
Q} ein Filter, genannt der Bildfilter, auf Y. Bezeichnung: f(¢). Falls ¢ ein Ultrafilter ist,
so ist f(¢@) auch einer.

Beweis: Sei QU Q' € f(¢). Dann gibt es ein P € ¢ mit f(P) CQUQ', also P C f~1(QU
Q") =f"1(Q)Uf1(Q). Da ¢ ein Ultrafilter ist, gilt also P C f~'(Q) oder P C f~1(Q’), also
f(P) C Qoder f(P)C Q und somit Q € f(¢@) oder Q' € f(¢).

3.2.5 Lemma

1. Seien X,Y # &, f: X — Y eine Abbildung, ¢ ein Filter auf X und y ein Ultrafilter
auf Y mit f(¢) C y. Dann 3 ein Ultrafilter ¢y auf X mit ¢ C ¢y und f(¢y) = .

2. Seien X,Y # @, y ein Filter auf X, ¢ ein Filter auf YX und & ein Ultrafilter auf ¥ mit
¢ (y) C &. Dann existieren Ultrafilter ¢, yp mit ¢ C ¢, ¥ C w und ¢o(wp) C &.

Beweis: 1. Setze o := ¢ U {f1(Q) | Q€ y}. Seien P, ...,P, € ¢ und Qy, ...,Q, € V. Wegen
f(o) Cygibteseiny e f(PLN...NP,)NQ1N...NQy. Seix € PLN...NP, mity = f(x). Es
folgtx € PLN...OP,Nf1(Q1)N...N f~1(Q,). Sei ¢y eine Ultrafilter mit o C ¢. Sei P € ¢
und Q € y. Wegen f~!(Q) € ¢ folgt PN f~1(Q) # @, also f(P)NQ # @. Da y ein Ultrafilter
ist, folgt f(¢) C y. Da aber auch f(¢p) ein Ultrafilter ist, gilt f(¢o) = .

2.Sei Q: YX x X — Y die Evaluationsabbildung Q(f,x) := f(x). Offenbar gilt nun

Q¢ xy)=¢(y) C&.

Aus 1. folgt die Existenz eines Ultrafilters n auf YX x X mit ¢ x w C i und Q(n) = &. Seien
p1:YXxX =YX, py: YX x X — X die entsprechenden Projektionen. Dann sind p1 (1), p2(1)
Ultrafilter auf YX bzw. X mit ¢ C p;(n) und v C p>(n). Setze ¢o := p1(N) und Wy := p2(n).
Fir 77,7, e n folgtn > T1NT, C pi(Th) X pa(Ta) # 2, also ¢ X Yo C n. Insgesamt bekom-
men wir damit go(yo) — (90 x yo) € (1) = €.

3.2.6 Definition: Konvergenz einer Folge und Filterkonvergenz

Sei (X, ) ein topologischer Raum und (x;),cn eine Folge. Wir sagen diese Folge konvergiert
gegeneinx € X, wenn VO € xNtdne€ NVk >n: x; € O. So kennen wir das auch schon aus
der Analysis. Bilden wir den Filter ¢ :={P C X | 3n € NVk > n: x; € P} (das es tatsichlich
ein Filter ist, kann man leicht nachrechnen), so konnten wir die Konvergenz der Folge auch
kurz schreiben als XN 7 C ¢! Derart motiviert, definieren wir nun fiir einen beliebigen Filter
¢ auf X was es heiit zu konvergieren.
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Wir sagen ¢ konvergiert gegen x € X, falls x N7 C ¢. Wir schreiben auch ¢ = x oder
kiirzer ¢ — x. Die Folgenkonvergenz ist also ein Spezialfall der Filterkonvergenz.

3.2.7 Charakterisierung abgeschlossener Mengen durch Filterkonvergenz

Ist (X, 7) ein top. Raum und ¢ ein Filter auf X. Bezeichnen wir mit K, die Menge aller Punkte
aus X, gegen die ¢ konvergiert, so gilt:

A C X ist genau dann abgeschlossen, wenn K C A, fiir jeden Filter ¢ auf X mit A € ¢ gilt.

Der Beweis bleibt als leichte Aufgabe.

Mit Hilfe der Filterkonvergenz lisst sich auch sehr leicht die Stetigkeit einer Abbildung
zwischen zwei topologischen Rdumen Ridumen beschreiben - ganz analog zur Beschreibung
der Stetigkeit in metrischen Rdumen mittels Folgenkonvergenz.

3.2.8 Charakterisierung der Stetigkeit durch Filterkonvergenz

Seien (X,7) und (Y,0) zwei topologische Riume und f : X — Y eine Abbildung. f ist
genau dann an der Stelle x € X stetig, wenn fiir jeden gegen x konvergenten Filter ¢ auch
f (@) konvergent gegen f(x) ist.

Beweis: Sei f an der Stelle x stetig und ¢ gegen x konvergent. Wir wihlen ein beliebiges
O € f(x)No. Dann ist x € f~'(0) € 1, also P := f~'(0) € xN 1. Es folgt O € f(¢), denn
f(P) € () und f(P) C O. Insgesamt also f(x) N C f().

Nehmen wir nun an, fiir jeden gegen x konvergenten Filter ¢ ist f(¢) konvergent gegen
f(x). Sei dann f(x) € O € 6. Wir bilden nun den Filter ¢ := {P C X | 3U € xNTmit U C P}.
Offensichtlich gilt ¢ — x, also auch f(¢) — f(x). Damit folgt unmittelbar O € f(¢@). Es gibt
dann ein P € ¢ mit f(P) C O. Nach Konstruktion gibt es somit auch ein U € XNt mitU C P,

also f(U) C O. Damit ist alles gezeigt.

3.2.9 Satz: Charakterisierung der Trennungsaxiome in topologischen
Raumen durch Filterkonvergenz

Fiir jeden topologischen Raum (X, 7) gilt:
TO (X,7) ist ein Tp-Raum, genau dann wenn Vx,y € X gilt: x5 y und y5 x impliziert
xX=y.
T1 (X,7) ist ein T;-Raum, genau dann wenn Vx € X gilt: |lim, X | <1.
T2 (X,7) ist ein To-Raum, genau dann wenn V¢ € .%((X) gilt: |limg, ¢| < 1.

T3 (X, ) ist ein T3-Raum, genau dann wenn V¢ € % (X) gilt: lim,y, ¢ = lim,_ ¢
Hier bezeichnet ¢ := {Q C X | 3P € ¢ mit P C Q}.
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Ferner ist fiir einen topologischen Raum (Y, ¢) dquivalent:
(1) Vx,y € Y gilt: ¥5 y impliziert % x
(2) Vx,y €Y gilt: y € {x} impliziert x € {y}
(3)VyeYVO € o gilt: y € O impliziert {y} C O

Solch einen topologischen Raum nennen wir Rp-Raum.

Beweis: (TO): Ist klar.

(T1): Ist (X, 7) ein T;-Raum und x € X, so sei x5 y. Also ).’ Nt Cx. Wire y # X, SO sei
0 €Y Nt mit x ¢ O. Folglich 0 = {x} N0 ¢ X - Widerspruch. Falls andererseits Vx € X gilt:
| limg, X | <1, so folgt fiiry € m offenbar y € lim, ;Q lim,, ).cg {x}, alsox =y.

(T2): Sei (X, 7) ein To-Raum. Annahme 3¢ € .%((X) und 3x,y € lim,, ¢ mit x # y. Seien
U,VetmitUNV =0undxcU,yeV.Offenbar sind U,V € ¢ - Widerspruch. Angenommen
Yo € Fo(X) gilt: |lim,, ¢| < 1. Sei x # y. Falls (X N7) U (Y N7) die eSE hat, dann sei ¢ ein
Ultrafilter mit ().c Nt)U ().’ Nt) C ¢. Offenbar gilt {x,y} C lim,, ¢ - Widerspruch. Also gibt es
ein U € XNt und ein V €Y Nt mit UNV = 0.

(T3): Sei (X,7) ein T3-Raum. Sei ¢ € .#(X). In topologischen Rdumen gilt natiirlich
lim,, ¢ C lim,, ¢. Sei x € lim,, ¢ und O € xN7. Sei U € Tmit xe U CU C 0. Sei P € ¢
mit P C U. Offenbar ist P C O, also O € ¢. Nehmen wir andererseits an V¢ € .7 (X) gilt:
lim,, ¢ = lim,, ¢. Sei x € O € 7. Sei ¢ := {P C X | IV € xNt mit V C P}. Offenbar ist
x € lim,_ ¢ =lim,, ¢. Es gibt also ein P € ¢ mit P C O. Zu P existiert ein V € XNTmitV CP.
AlsoxeVCV CPCO.

Zeigen wir noch die Aquivalenz von (1), (2) und (3):

(1) < (2) folgt aus der Aq_uivalenz von y EE und x2 y. (2) = (3): Angenommen es
gibt O € 6 und yp € O mit {yp} € O. Sei y; € {yo} \ O. Dann wire aber auch yy € {y;}, im
Widerspruch zu yp € O und y; ¢ O. (3) = (2): Sei y; € W und sei O € y.() No. Dann ist
{y0} C O, also y; € O und folglich yy € {y; }.

3.2.10 Lemma

Sei (X, 7) ein Hausdorff-Raum und D eine in X dichte Menge. Dann ist | X| < |.%(D)| <
|Z2(2(D))].

Beweis: Fiir ein fest gewihltes x € X ist ¢}, :={F C D |30 € kNt mit OND C F} ein
Filter auf D wie man durch Nachrechnen bestitigt. Also existiert ein Ultrafilter y;, auf D
mit ¢}, C yy},. Dieser Ultrafilter wird nun durch @}, := {A C X | 3F € y, mit F C A} zu
einem Filter auf X erweitert. Fiir O € XN 7 giltnun OND € @7, C ®},. Daraus folgt dann aber
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1Nt C Py, also $f, — x. Die Abbildung o : X — .%((D) definiert durch x — 7, ist nun aber
injektiv, denn aus y! = yp7 folgt & = P33, also ;) — x; und ®5 — x». Und damit gilt
dann x; = xp, denn X ist als Hausdorff-Raum vorausgesetzt worden. Zusammen ergibt dies
1X| < |Fo(D)| < |2(Z(D))| (die zweite Ungleichung ist trivial).

3.2.11 Lemma (Filterkonvergenz bzgl Initialtopologien)

Bezeichne 7 die initiale Topologie auf X beziiglich einer Familie (Y;, 6;);e; topologischer
Riume mit zugehorigen Abbildungen (f; : X — Y;);es. Ein Filter ¢ auf X konvergiert genau
dann gegen ein Element x € X, wenn Vi € I fi(¢) — fi(x).

Beweis: Wenn ¢ — x € X und O; € f;(0) N 1;, dann ist fiH0) exnt C g, also 0; C
fi(f71(01)) € £(@) und somit fi(@) — fi(x).
Sei andererseits Vi € I fi(¢) — fi(x). Wir zeigen ¢ — x. Sei dazu x € O € 1. Nach Defi-
nition der Initialtopologie gibt es iy, ...,i, € I mit x € (_, f~1(0;) C 0. Da f; (x) € O;,
und fj (@) — fi.(x), gibt es A;, € ¢ mit f; (A;) C O;,. Also A;, C fik_l(Oik) und somit ¢ >
Mizi Ay €Mzt f; ' (05,) € O. Folglich ist auch O € .

3.3 Fortsetzbarkeit stetiger Abbildungen (1)

Wir stellen uns die Frage (und geben eine Antwort) unter welchen Bedingungen an einen
Raum X sich eine auf einer abgeschlossenen Teilmenge A definierte stetige reellwertige Ab-
bildung f auf den ganzen Raum X fortsetzen lisst. Es stellt sich dabei heraus, dass dies genau
dann moglich ist, wenn der Raum X ein T4-Raum ist.

Eine dhnliche Frage ist, unter welchen Bedingungen sich eine auf auf einer in X dichten
Teilmenge A definierte stetige Abbildung (in einen Raum Y), auf ganz X fortsetzen lésst.
Auch hier geben wir Antworten (die von Y abhingen).

Fiir zwei Abbildungen f,g : X — R und Elemente a,b € R sind fg,af +bg : X — R durch
fg(x) := f(x)g(x) bzw. (af + bg)(x) := af(x) + bg(x) sinnvoll definiert. Abbildungen von
einer Menge X in R werden reelle Abbildungen genannt.

3.3.1 Satz (Tietze-Urysohn)

Fiir einen topologischen Raum (X, 7) sind dquivalent:
1. (X,7) ist ein T4-Raum.

2. Zu jeder abgeschlossenen Menge A und jeder offenen Menge O mit A C O gibt es
eine offenen Menge U mitA CU C U C O.
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3. Zu je zwei disjunkten abgeschlossenen Mengen A, B gibt es eine stetige Abbildung
f:X —[0,1], mit f(A) C {0} und f(B) C {1} (Lemma von Urysohn).

4. Jede auf einer abgeschlossenen Menge definierte und stetige reelle Abbildung lasst
sich zu einer reellen stetigen Abbildung auf X fortsetzen (Fortsetzungssatz von Tiet-
ze).

Beweis: 1. < 2. ist eine leichte Ubung.

1. = 3. Seien A, B disjunkte abgeschlossene Mengen in X. Es gibt dann eine disjunkte
offene Menge Uy von A mit A C Uy C Uy CU; :=X \ B. Fiir jede natiirliche Zahl n setze
P, :={re Q=" |3k <2"mit r = k/2"} und P := J,~( P,. Wir zeigen nun, dass es fiir jedes
r € P eine offene Menge U, gibt, mit r < ¥ = U, CUy. Dan<n' = P, C P, gilt und
fiir Py offensichtlich Uy, U; das gewiinschte tun, reicht es, wenn wir uns fiir die Elemente aus
P,+1\ P, entsprechende U, besorgen, die zusammen mit denen, die wir (per Induktion) bereits
fiir P, haben, dann das gewiinschte fiir P,;; tun (man mache sich klar welche Elemente in
P,+1 \ P, liegen und wie sie mit denen aus P, in Beziehung stehen). Seien also entsprechen-
de (V;);ep, gegeben und r € B, 1. Falls r = 2k/2%*!, dann setze U, := Viej2x (diese werden
also iibernommen). Falls hingegen r = (2k+1)/2°1, s0 gilt ja Vo jpiet C Viggy2) /26415 also
existiert ein offenes U mit Vzk/zkﬂ CUCUC Viok42) /261 Setze dann U, := U.

Wir sind noch nicht ganz fertig...

Fiir t € [0,1) setze V; := U,ep,<, Ur und V; := X. Fiir t < ¢’ gilt ebenfalls V; C V;r (Beweis
als Ubung). Nun konnen wir f : X — [0, 1] durch f(x) := inf {t € [0,1] | x € U;} definieren.
Dieses f ist stetig (" := {[0,q) | g € [0,1]} U{(¢,1] | g € [0,1]} ist eine Subbasis fiir T
und es giltx € f71([0,9)) & x €U, Ui, bzw. x € f1((g,1]) < Is mit f(x) > s> g und
x ¢ Uy) und aus der Konstruktion folgern wir f (Up) C {0} (man beachte Uy = Vj). Dieses f
hat dann die geforderten Eigenschaften (f(A) C {0} ist klar, und fiir f(B) C {1} beachte man
B=X\U)).

Sei ¢ > 0, und definiere g : X — [—c,c] durch g(x) := 2¢(f(x) — 1/2), dann ist g ebenfalls
stetig mit g(A) C {—c} und g(B) C {c}.

3. = 4. Wir zeigen die Aussage erst fiir beschrinkte Abbildungen. Sei also f : A — R stetig
und beschrinkt. Dann gibt es ein ¢ > 0 mit f : A — [—c,c|. Doch zunidchst noch eine kleine
Vorbemerkung:

Sei f: A — [—z,z] stetig, dann gibt es ein g : X — [—z/3,z/3] mit |f(x) — g(x)| < 2z/3
fiir x € A. Der Beweis ist einfach ( Setze A := f~'([~z,—z/3]) und A, := f~'([z/3,2]).
A Aus dem Urysohn-Lemma schlieBen wir auf die Existenz eines g : X — [—z/3,z/3] mit
g(A1) C€{—z/3} und g(A,) C {z/3}, insbesondere also | f(x) — g(x)| < 2z/3 fiir x € A.).

Sei nun also f: A — [—c,c| stetig. Dann gibt es ein go : X — [—¢/3,¢/3] mit |f(x) —
go(x)| < 2¢/3 fiir x € A. Nun ist f —go : A — [—2¢/3,2¢/3] stetig, also gibt es ein g; :
X — [—2¢/9,2¢/9] mit |f(x) — go(x) — g1(x)| < 4c¢/9 fiir x € A. Den Prozess fortgesetzt er-
gibt: f—go—...—gn: A — [—(2/3)" ¢, (2/3) 1] also existiert ein stetiges g,41 : X —
[—(2/3)"1¢/3,(2/3)" /3], mit | f(x) — go(x) — ... — gnr1(x)| < (2/3)"F2c fiir x € A. Setze
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dann noch f,(x) := go(x) + ... + gu(x) und A(x) := lim, . f,(x). Die f, sind stetig und die
Folge ist gleichmiBig konvergent, also ist auch £ stetig und offensichtlich gilt 24, = f.

Nun kommen wir zum allgemeinen Fall: Sei f : A — R stetig. Nun wird R durch ¢ : R —
(—1,1), ¢(x) := x/(1 + |x|) homdomorph auf (—1,1) abgebildet. Also gibt es ein stetiges
g:X —[-1,1] mitg =¢of. NunistB:= g '({—1,1}) abgeschlossen in X und ANB = 0.
Aus dem Urysohn-Lemma schlieen wir auf die Existenz eines k : X — [0, 1] mit k(A) C {1}
und k(B) C {0}. Also gk : X — (—1,1) (!!!). SchlieBlich ist ¢~ o (gk) : X — R die gesuchte
Fortsetzung (von dem sich der Leser mit Freuden iiberzeugt).

4. = 1. Seien A, B disjunkte (nichtleere) abgeschlossene Mengen. Dann istauch Y :=AUB
abgeschlossen und A, B sind in Y sowohl offen, als auch abgeschlossen!. Das heilit f : Y — R
definiert durch f(a) =0 und f(b) =1 fiir a € A und b € B ist stetig. Also gibt es ein stetiges
g: X —Rmitgy =f.U:= g '((~1/3,1/3)) bzw. V := g~ 1((2/3,5/3)) sind dann disjunkte
offene Obermengen.

3.3.2 Korollar

Wenn f: A — [a,b] stetig ist und A eine abgeschlossene Menge in dem T4-Raum X ist, so
ldsst sich f zu einem stetigem F : X — [a, b] fortsetzen.

Beweis: f ldsst sich zu einem stetigem G : X — R fortsetzen. Wir definieren dann g : R —
[a,b] durch g(x) = a fiir x < a, g(x) = b, fiir b < x und sonst g(x) = x. Und nun setzen wir
einfach F := goG.

Kommen wir nun zu dem Problem stetige, auf einer dichten Teilmenge D von X definierte
Abbildungen auf ganz X fortzusetzen.

3.3.3 Lemma

Seien f,g: (X,7) — (y,0) zwei stetige Abbildungen, welche auf einer in X dichten Teil-
menge D iibereinstimmen. Ferner Sei Y ein Hausdorff-Raum. Dann stimmen sie auf ganz
X iiberein.

Beweis: Annahme es gibt ein x € X mit f(x) # g(x). Dann gibt es disjunkte offene Mengen
U,V in Y, mit f(x) € U und g(x) € V. Nun enthilt aber f~!(U)Ng~!(V) das Element x,
ist also nicht leer und enthélt somit sogar ein Element d € D. Damit gilt dann f(d) € U und
g(d) € V.Daaber f(d) = g(d), ist dies ein Widerspruch.
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3.3.4 Lemma

Sei f: X — Y stetigund Y ein Hausdorff Raum. Dannist Gy := {(x,y) € X xY |y = f(x)}
(der Graph von f) abgeschlossen in X x Y.

Beweisskizze: Ay := {(y,y) | y € Y} (die Diagonale) ist abgeschlossen in ¥ x Y (¥ ist
Hausdorff). ¢ : X xY — Y x Y definiert durch ¢ (x,y) := (f(x),y) ist stetig und es gilt Gy =

¢~ '(Ay).

3.3.5 Lemma

Sei (X, 7) ein Hausdorff-Raum, (Y, o) ein beliebiger top. Raum und A C X mit A = X. Ist
f:X — Y eine stetige Abbildung, so dass f|A : A — f(A) ein Homéomorphismus ist, so

gilt £(A)Nf(X\A) =0.

Beweis: Annahme es gilt f(x) = f(a), fiir ein gewisses x € X \Aund a € A. Sei y := f(A)
und seien dann U,V offen und disjunkt mit @ € U und x € V. Aus U NV = 0 folgt auch
UNV=0WennzcUNV,dannzce U €zNtundz €V, alsoUNV #0.).

AuBerdem ist V = VNA, denn z € V und O € zN T impliziert @ # ONV € 71, also 0 #
(0ONV)NA=0N(VNA),alsoz € VNA (das VNA C V gilt, ist klar).

Da f]A : A — f(A) ein Homdomorphismus ist, haben wir f(ANU) = f(A)NU' und f(AN
V)= f(A)NV/, fiir gewisse U’,V’ € . Da f nun auch stetig ist, folgt y € (V) = f(VNA) C
fVNA)=f(A)NV".

Ausye U’ undy € f(A)NV/ folgt 0 A U'N(f(A)NV') = fF(ANU)NFANV) = f(AN
UNV) = f(0) =0 - ein Widerspruch!

3.3.6 Satz

Sei (X, 7) ein topologischer Raum, A eine in X dichte Teilmenge und f: A — Y eine stetige
Abbildung in einen T3-Raum (Y, ). Dann gibt es genau dann eine stetige Fortsetzung
g:X — Y, wennes zu jedem x € X eine stetige Fortsetzung f, : AU {x} — Y gibt.

Ist Y zusitzlich Ty, so ist die Abbildung g eindeutig bestimmt.

Beweis: Die eine Richtung ist trivial. Nehmen wir also an es gibt zu jedem x € X eine
stetige Fortsetzung fy : AU {x} — Y. Wir definieren g : X — Y durch g(x) := fi(x). Auf A
stimmt g also mit f iiberein; g ist also eine Fortsetzung auf ganz X. Zeigen wir die Stetigkeit.
Sei V offen in Y und g(x) € V. Es existiert dann ein offenes W mit g(x) e W CW C V. Wir
unterscheiden nun - zur besseren Ubersicht - zwei Fille:

1.Fallx € A. Da f stetig ist, gibtes ein U € N T mit f(ANU) CW. Angenommen g(U) Z V.
Dann gibt es ein z € UN (X \ A) mit f;(z) €Y \V C Y\ W. Die letzte Menge ist aber offen
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und f; ist stetig, es gibt also ein U’ € zN T mit £,(U'N(AU{z})) C Y \ W. Nun enthilt U’ aber
auch (mindestens) ein Element A aus A, also f;(a) = f(a) € W - ein Widerspruch!

2.Fall x € X \ A. Dann gibt es ein U € xN 7 mit f,(UN(AU{x})) C W. Wieder nehmen wir
an: g(U) € V und wieder folgt daraus die Existenz eines y € U \ (AU {x}) mit f,(y) = g(y) €
Y \ W. Dann gibt es auch wieder ein U’ € yN 7 mit f,(U'N(AU{y})) C Y\ W. Setzen wir
U":=U0NU’",sogilty € U”, also 0 # U"” und somit 3a € ANU". Es gilt dann fy(a) = fy(a)
und f(U"N(AU{x})) CW bzw. f,(U"N(AU{y})) C Y \W - wieder ein Widerspruch!

Die Abbildung g ist also stetig. Ist Y nun noch Ty, so auch T, und Lemma 3.3.3 garantiert
die Eindeutigkeit.

3.3.7 Lemma

Seien (X, 7), (Y,0) topologische Riume, D eine dichte Teilmenge von X (also D = X),
ferner (Y,0) ein T3-Raum und f : D — Y eine stetige Abbildung mit der Eigenschaft:

Vxe X3y, €Y mit f(g|D) >y,

Dann lisst sich f stetig auf ganz X fortsetzen. Hier bezeichnet ¢, den von XN T erzeugten
Filter. Ist Y zudem Ty, so ist die Fortsetzung eindeutig bestimmt.

Beweis: Wir definieren fiir jedes x € X eine stetige Fortsetzung f, : DU{x} — Y. Satz 3.3.6
erledigt dann den Rest. Wir setzen dazu

) f(d) falls z=deD
fil2) = {yx falls z=x¢D

Zeigen wir die Stetigkeit:

Seid € Dund f(d) € O € c. 1.Fall y, € O, dann gibt es ein U € dntmit f(UND) C 0,
also fi(UN(DU{x})) C 0.

2.Fall y, ¢ O. Dann ist O & f(@,|D). Es gilt £71(0) = f~1(0) =V ND, fireinV cdnr.
Wire x € V, so wire VN D € @D, also O € f(¢y|D) - ein Widerspruch. Also ist x ¢ V und
somit f~1(0) =V N (DU{x}).

Sei nun O € y,No.Dannist O € f(@,|D), es gibt also ein P € ¢, mit f(PND) C O.Zu P
gibtes ein U € xN T mit U C P. Damit gilt dann f,(UN(DU{x})) C O.

Die Stetigkeit ist damit gezeigt und der Beweis beendet.

3.3.8 Notation und Bemerkung

Sei (X, T) ein topologischer Raum und D C X mit D = X. Fiir Teilmengen A C D von D setzen
wir nun Ex(A) := X\ m Ist U in der Teilraumtopologie von D offen, gilt beispielsweise
DNEx(U) =U (Beweis: Sei z € DNEx(U). Falls z ¢ U, dann aber z € D\ U, also z € D\ U
und somit z & Ex(U) - Widerspruch. Sei andererseits z € U. Es gibtein V € tmit U =V ND.
Falls z€ D\ U, dann VN (D\U) # 0 - auch ein Widerspruch.).
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Mit dieser Notation ldsst sich ein anderes interessantes Fortsetzungskriterium beweisen.

3.3.9 Satz

Sei (X,7) ein top. Raum und D eine dichte Teilmenge, auf der eine stetige Abbildung
f:D —Y in einen T3-Raum (Y, o) gegeben ist. Sei ferner & eine Basis von 6. Genau
dann ist f stetig auf X fortsetzbar, wenn g 5 Ex (f~1(B)) = X ist, fiir jedes %' C % mit
U% =Y.IstY zudem ein Typ-Raum, so ist die Fortsetzung eindeutig bestimmt.

Beweis: Wir verwenden Lemma 3.3.7. Sei also x € X und ¢, ein Filter auf D, so dass der
Filter {P C X | 3P’ € ¢, mit P’ C P} gegen x konvergiert. Das bedeutet VO € XN T3P € ¢, mit
P C O. Nehmen wir an (um einen Widerspruch abzuleiten), dass f(¢,) in Y nicht konvergiert.

Dann gibt es zu jedem y € Y ein B, € yN% mit B, ¢ f(¢.). Nach Voraussetzung gilt dann
X = Uyey Ex (f~1(By)). Es gibt also ein y € Y mit x € Ex(f!(By)). Dann gibt es aber auch
ein P € ¢, mit P C Ex(f~'(By)). Da P C D folgt P C Ex(f~'(By))ND = f~!(B,), also
f(P) C By und somit By, € f(¢,) - Widerspruch!

Die Riickrichtung folgt aus U C Ex(U N D), fiir jedes U € t. Denn dann gilt fiir die Fort-
setzung f~'(B) C Ex(f~'(B)), fiir jedes B € 4.

3.4 Minimale topologische Raume

Stark in Zusammenhang mit den ersten Trennungsaxiomen Ty und T stehen gewisse mini-
male unendliche topologische Riaume (siehe Satz 3.4.4). Um den Hauptsatz (Satz 3.4.4) dises
Abschnitts beweisen zu konnen, benotigen wir ein Resultat iiber Ketten bzw. Antiketten in
partiell geordneten Mengen, welches seinerseits aus einen bekannten Satz von Ramsey folgt.
Fiir beide Resultate geben wir am Ende dieses Abschnitts Beweise.

Zur Erinnerung: Ist (X, <) eine partielle Ordnung, so ist eine Kette aus X eine durch <
total (oder auch linear) geordnete Teilmenge. Unter einer Antikette aus X verstehen wir eine
Teilmenge A von X mit der Eigenschaft, dass keine zwei Elemente aus A bzgl. < vergleichbar
sind.

3.4.1 Lemma

Sei (X, 1) ein unendlicher topologischer Raum. Dann gibt es eine unendliche Teilmenge
Y C X, so dass die induzierte Topologie auf Y die indiskrete ist, oder Y ist als Teilraum ein
To-Raum.

Beweis: 1.Fall 7 ist endlich. Sei dann V € 7 inklusionsminimal in der Menge aller unend-
lichen offenen Mengen. Dementsprechend ist dann ¥ := V' \ Uper, 0.2y O ebenfalls unendlich
und als Teilraum ist Y indiskret.
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2.Fall 7 ist unendlich. Wir unterscheiden nun zwei weitere Fille.

2.1 7 ist ohne auf/absteigende Folge, also ohne Folgen der Art Oy C O C ... bzw. Op D
01 D ... mit paarweise verschiedenen Elementen aus 7. Dann ist ' := {0 € t | O ist endlich }
endlich und 7y := {0 € 7\ 7’ | O ist inklusionsminimal } # 0. Fiir O € 1y istY := O\ |J{O0’ €
7|0’ C O und O' # O} somit unendlich und die entsprechende Teilraumtopologie auf Y ist
wieder indiskret.

2.2 Gibt es hingegen in 7 aufsteigende oder absteigende Folgen, also beispielsweise Og C
O; C ..., mit paarweise verschiedenen O;, so wihlen wir je ein x; € O; \ O;_1, fiir jedes i =
1,2,...und {x; | i = 1,2, ...} ist offensichtlich ein Ty-Teilraum.

3.4.2 Lemma

Sei (X, 7) ein unendlicher Tj-Raum. Dann gibt es eine unendliche Teilmenge ¥ C X, so
dass die induzierte Topologie auf Y die diskrete ist, oder Y hat als Teilraum die koendliche
Topologie: {O CY | Y \ O ist endlich }.

Beweis: Wir unterscheiden zwei Fille:

1.Fall YA C X (A: unendlich = 30 € T mit ONA # 0 und A\ O ist unendlich)

Zu X gibtes dann ein Op € T mit Oy # 0 und Ap := X \ Oy ist unendlich. Sei xp € Oy beliebig
gewdhltund A_| :=X.

Sind nun Oy, ..., 0, aus T gewihlt mit xo, ..., x, und Ay, ...,A,, wobei Ay = Ax_1 \ O, x; €
Ax_1 N Oy und jedes Ay unendlich ist, so gibtes ein 0,1 € Tmit 0,11 NA, ZOund A, | :=
Ay \ Oy41 unendlich. Wir wihlen dann x, 11 € A, N 0,4 1.

Die so konstruierten Folgen haben die Eigenschaften:

a) x, € Oy, fiir alle n.

b) x,, & Oy, fiir alle m > n.

) X & O, := Op \ {x0, ..., Xn—1 } € X, N 7T, fiir alle m < n.

Dementsprechend ist {xo, ...} als Teilraum diskret.

2.Fall 3A unendlich C X, mit der Eigenschaft VO € 7 gilt: ONA =0 oder A\ O ist endlich.
Offensichtlich hat A als Teilraum dann die koendliche Topologie.

3.4.3 Lemma

Sei (X, 7) ein unendlicher To-Raum, der keinen unendlichen T;-Teilraum besitzt. Dann
gibt es eine (abzéhlbar) unendliche Teilmenge ¥ C X, so dass Y als Teilraum zu (N, o)

homd&omorph ist, wobei
o =1{0,N,{0},{0,1},{0,1,2},...} oder c = {O,N,{1,2,...},{2,3,...},{3,4,...},...}.

Beweis: Da (X, 7) ein To-Raum ist, bekommen wir durch x <y < x € {y} eine partielle
Ordnung (die Relation ist transitiv und antisymmetrisch). Da X als Menge unendlich ist, gibt
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es somit eine unendliche Kette oder eine unendliche Antikette (Korollar 3.4.6). Gébe es eine
unendliche Antikette A C X, so gilt fiir je zwei verschiedene Elemente x,y aus A also —(x €
m) und # (y € m), als Teilraum wihre A also T;. Da das nach Voraussetzung nicht geht,
muss es also eine undliche Kette geben. Insbesondere gibt es dann auch abzihlbare Ketten.
Falls xop < x; < xp < ..., so ist A := {xg,xq,...} als Teilraum homoéomorph zu (N, o), mit
c={0,N,{1,2,...},{2,3,...},{3,4,...},...}. Falls hingegen x9 > x; > x > ..., so ist A :=
{x0,x1, ...} als Teilraum hom6éomorph zu (N, o), mit 6 = {0,N,{0},{0,1},{0,1,2},...}.

3.4.4 Satz uiber die Existenz minimaler Topologien

Jeder unendliche topologische Raum (X, 7) enthillt eine unendliche Teilmenge Y, die als
Teilraum zu einem der folgenden fiinf topologischen Riume homdomorph ist. Ferner sind
keine zwei dieser fiinf topologischen Rdume homéomorph, allerdings ist jeder dieser Réu-
me zu jedem unendlichen Teilraum von sich homdomorph. Es handelt sich bei diesen fiinf
topologischen Rdumen also um minimale unendliche topologische Rdume.

1. (N, 0'1), wobei O] = {@,N}

2. (N, (72), wobei O = QZ(N)
3. (N,03), wobei 03 = {O C N| N\ O ist endlich}
4. (N, 04), wobei o4 = {0,N,{0},{0,1},{0,1,2},...}
5. (N,05), wobei 05 = {0O,N,{1,2,...},{2,3,...},{3,4,...},...}

Beweis: Das nun jeder unendliche topologische Raum (mindestens) einen dieser fiinf topo-
logischen Ridume als Teilraum enthilt, folgt aus einer Kombination der drei vorigen Lemmas.
Das jeder unendliche Teilraum Z von (N, 0;) homdomorph zu (N, o;) ist, ist fir i = 1,2,3
unmittelbar klar. Fiir i = 4 und i = 5 kann man durch Induktion einen Homéomorphismus
konstruieren. Das keine zwei dieser fiinf topologischen Riume homdomorph sind folgt aus:

1. |o1] < |o3| = |o4| = |o5| < |02)-

2. oy ethilt mit einer Ausnahme nur endliche Mengen.

3. 05 enthilt mit einer Ausnahme nur unendliche Mengen und ist kein T{-Raum.

4. o3 enthélt mit einer Ausnahme nur unendliche Mengen und ist ein T{-Raum.

3.4.5 Satz (Ramsey)

Sei k, r € N. Fiir eine Menge X bezeichnen wir mit [X]* := {A C X | |A| = k} die Menge
aller k-elementigen Teilmengen von X und mit 7:= {{ € N |/ < r}. Ist nun f: [X|¥ — 7
eine Abbildung, so gibt es eine unendliche Teilmenge Y C X, so dass f eingeschrinkt auf
[Y]* konstant ist.

Beweis: Wir fiihren Induktion iiber k. Fiir k = 1 und unendliches X' ist die Aussage klar
(falls nicht, so bleibt dies als leichte iibung)! Nehmen wir an es wurde bewiesen, dass die
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Aussage wurde fiir k und jede unendliche Menge X’ bewiesen wurde. Sei f : [X]f*! —

gegeben. Wir wihlen ein beliebiges xy € X und definieren gg : [X \ {xo}]* — 7 durch go(A) :
f(AU{xo}). Nach Induktionsvoraussetzung existiert ein Xo C X \ {xo} und ein r, € 7, so dass
g(A) = ry ist, fiir jedes A € [Xp]*.

Sind x, ..., x, und gy, ..., g, und Xo, ..., X, bzw. ro, ..., r,, gewihlt, so definieren wir ein g, :
(X, \ {x,}]¥ — 7 durch g, 1(A) :== f(AU{x,}). Nach Induktionsvoraussetzung existiert dann
ein X, 1 C X\ {x,1} und ein r,, .| €7, so dass g(A) = ;1 ist, fiir jedes A € [X,,]*. Ferner
wihlen wir ein beliebiges x,,+1 € X,,+1. Auf diese Weise bekommen wir vier Folgen:

(xn)nen und (gn)nen und (X,),en bzw. (7)) pen-

Nun ist (r,),en eine (unendliche) Folge aus der Menge 7. Es muss also ein unendliches
J C Nund ein / € ¥ geben mit r; = [, fiir alle j € J. Wir zeigen nun noch, dass die Menge
Y :={x; | j € J} die geforderten Eigenschaften hat.

Sei also A € [Y]"! Dann ist A = {x},,...,xj,,,} mit j; < ... < ji;1 (die Elemente aus A
sind Elemente der Folge (x;),cn und wir ordnen sie einfach nach der GroBe ihres Index). Fiir
i>1ist Xj € le D) le \{le D, le+1 D) in 2 Xj;. Fiir B = {sz,...,xij} gilt nun [ = rj, =
gj,(B) = f(BU{xj,}) = f(A). Damit ist alles gezeigt.

I~

3.4.6 Korollar

Sei (X, <) eine unendliche partielle Ordnung. Dann gibt es in X eine unendliche Kette oder
eine unendliche Antikette (in einer Antikette sind keine zwei Elemente bzgl. der Ordnung
vergleichbar).

Beweis: Sei (x,),cn eine Folge paarweise verschiedener Elemente aus X. Durch [N]? =
{{i,j}li<jundx; <x;}U{{i,j}|i<jundx; >x;} U{{i,j}|i# jund ~(x; <x;) und
—(x; > x;)} bekommen wir eine Zerlegung von [N]? und damit auch eine Abbildung f : [N]? —
{0,1,2} im Sinne von Satz 3.4.5 (f(A) =0, 1 oder 2, je nachdem in welcher Zerlegungsmenge
A steckt). Damit bekommen wir dann eine unendliche Teilmenge J C N, wobei f auf [J]2
konstant ist. Es treten nun drei Fille ein:

1. [J]? € {{i,j} |i < jund x; < x;}, dann gibt es eine aufsteigende Kette.

2. 1> € {{i,j} | i< jundx; > x;}, dann gibt es eine absteigende Kette.

3. U2 C {{i,j} | i# jund —(x; < x;) und —(x; > x;)}, dann gibt es eine Antikette.

3.5 Eine Charakterisierung der A1-Raume

Welche Riaume erfiillen das erste Abzihlbarkeitsaxiom (A1), welches besagt, dass jeder Punkt
im Raum eine abzihlbare Umgebungsbasis hat. Es wird sich herausstellen, dass genau die
Bilder metrischer Rdume unter stetigen und zugleich offenen Abbildungen das erste Abzihl-
barkeitsaxiom erfiillen
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3.5.1 Beispiel (Baire-Raum mit Basis X)

Sei X eine unendliche Menge und N’ := N\ {0}. Wir werden nun auf B(X) := X~ (der Menge
aller Folgen aus X) eine interessante Metrik definieren. Dazu definieren wir fiir zwei Folgen
Z2 = (xn)nenv) und 7/ = (yn) e wie folgt eine Metrik. Falls z = 7, so setzen wir d(z,7') = 0.
Andernfalls d(z,7) := k(le’)’ wobei k(z,7') := min{n € N’ | x, # y,}. Dann ist d : B(X) x
B(X) — B(X) eine Metrik:

1) Offensichtlich ist d(z,7') = d(Z,z), fiir alle z,Z’ € B(X).

2) Ebenso offensichtlich ist d(z,7/) =0 < z =7/, fiir alle z,Z' € B(X).

3) Seien x = (xp)pen's Y = (Vn)nenw und z = (2,)nenv € B(X). Fiir den Nachweis der Drei-
ecksungleichung sei 0.B.d.A. x # y # z # x. Dann ist d(x,y) < d(x,z) +d(y,z) dquivalent zu
k(x,2)k(y,z) < k(x,y)(k(x,z) +k(y,z)). Es reicht also die zweite Ungleichung zu zeigen. Wir
setzen dazu k := k(x,y) und unterscheiden zwei Fille.

1.Fall k(x,z) < k. Damit folgt aber k(x,2)k(y,z) < k(x,y)k(y,z) < k(x,y)(k(x,z) +k(y,2)).

2.Fall k < k(x,z). Dann ist k(y,z) < k (Andernfalls wire k < k(y,z). Aber x; = z; und z; =
Yk, also auch x; = yj. Dies ist dann aber ein Widerspruch.). Damit haben wir dann k(y,z) <
k(x,y) < k(x,z) und somit k(x,2)k(y,z) < k(x,z2)k(x,y) < k(x,y)(k(x,z) +k(y,2)).

Damit ist gezeigt, dass d eine Metrik ist.

Sei m € N und (x1,...,x,) € X". Wir setzen By, ..y = {y = (Vn)nev € B(X) [ y1 =
Xlyeer,Ym = Xm}. Wie aus allgemeinen metrischen Ridumen bereits bekannt, ist K(y,€) :=
{x|d(x,y) < &} die offene Kugel um y mit Radius €. Seinuny € By, .- Dannist K(y, Ly=
B(y,....x,)- Der Beweis bleibt als leichte Ubung fiir den Leser.

Setzen wir X <® := J,cpy X, so gilt |X®| = |X|. Damit ist dann gezeigt, dass

B = {B(x,...x,) | (X1,.-,2m) € X~} eine Basis fiir (B(X),d) ist mit | %8| = | X|. Ferner sind
alle Basiselemente zugleich offen und abgeschlossen und zwei Basiselemente sind entweder
disjunkt, oder eins ist in dem anderen enthalten.

Fiir jedes n € N’ sei (X, 7,) := (X, Z(X)). Bilden wir dann den Produktraum [],cpy X;r, s0
kann man leicht sehen, dass [],,cp X, mit der Produkttopologie homdomorph zu B(X) ist. Mit
Hilfe von Lemma 2.1.6 kann man nun leicht beweisen, dass % sogar eine Basis minimaler
Kardinalitit fiir B(X) ist. Die Namensgebung Baire-Raum mit Basis X ist hierdurch und die
Tatsache, dass Baire diesen Raum als erster beschrieben hat, motiviert.

Zum Abschluss sei noch bemerkt, dass B(X) ein vollstindiger metrischer Raum ist (siche
dazu Definition 4.5.19; auch dieser leichte Beweis bleibt dem Leser iiberlassen).

3.5.2 Lemma

Sei (X, 7) ein T und ein A1-Raum und sei % eine Basis fiir 7. Dann gibt es ein Y C B(%)
mit einer stetigen, offenen und surjektiven Abbildung f: Y — X.

Beweis: Y := {(B,),crv € B(#) | (Bu)nen ist eine Umgebungsbasis eines Punktes x € X }.
Da es sich um einen Al-Raum handelt, macht das Sinn. Sei nun (B,),cn € Y. Dann gibt es
einen eindeutig bestimmten Punkt x € X, so dass (B,),cn eine Umgebungsbasis von x ist
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(denn (X, 7) ist ein To-Raum). Bezeichnen wir mit f((By),cn) diesen eindeutig bestimmten
Punkt, so haben wir damit eine Abbildung f : Y — X definiert. Offensichtlich ist f somit
surjektiv (das ist gerade die A1 Eigenschaft).

Zeigen wir, dass f stetig ist. Dazu sei x := f((By)uenv) € U € 7. Da (By),en eine Umge-
bungsbasis fiir x ist, gibt es ein N € N’ mit x € By C U. Damit gilt f(K((Bp)nen, N+_1)) cu,
denn fiir (A,)en' € K((By)nen, ﬁ) ist A, = By, furn < N und es folgt f((A,)nen) € An =
By CU. f ist somit stetig.

Zeigen wir nun, dass f offen ist. Dafiir geniigt es zu zeigen, dass f(K((Bp)uen, ﬁll)) fiir

jedes (By),cnv € Y eine in X offene Menge ist. Sei x € f(K((Bn)neN/,#)). Dann ist x =

F((Ap)pen), fiir ein (Ap)env € K((By)pen, ﬁ) Insbesondere ist Ay = By, fiir k < n. Setzen

wir B:=B1N...NBy, soistx € BC f(K((Bn)nen, Fll)) Aso ist f(K((Bn)nens #)) offen.

3.5.3 Lemma

Sei (X,7) ein Al-Raum. Dann gibt es einen T und Al-Raum (Y,0) und eine stetige,
offene und surjektive Abbildung f:Y — X.

Beweis: Wir betrachten B(X). Fiir ein x € X und ein n € N’ setzen wir A} := { (yx )ren | Vk >
n ist yr = x} und anschliefend A, := |, cpy AY. Dann ist (Ay)yex eine Familie paarweise dis-
junkter dichter Teilmengen in B(X). Wir setzen nun Y := {J,cx{x} x Ay C X x B(X). Da X
und B(X) beides A1-Riume sind, ist auch das Produkt (mit der Produkttopologie) der beiden
Réiume ein Al-Raum und somit ist es auch Y (mit Teilraumtopologie ¢). Aber Y ist sogar
noch ein Hausdorffraum, denn (x, (x)reny) 7 (0, vk Jker) € Y impliziert (xg)geny 7# (Vr) ken
und da B(X) ein metrischer Raum ist, gibt es dort disjunkte Kugelumgebungen K; und K;
Setzt man dann V := X X K| bzw. W := X X K3, so hat man disjunkte offene Obermengen von
(o, (¥ ken) bzw. (v, (Vi )ker)-

Definiert man nun f: Y — X durch f(x, (x¢)ren) := x, so ist f als Einschrinkung der steti-
gen Projektion g : X X B(X) — X auf die Menge Y also auch stetig. f ist aber auch offen, denn
fir K := K((x)kery, %) und U offen in X ist f(Y N (U x K)) = U, wie man leicht nachrech-
nen kann (hier bracht man, dass die A, dicht in B(X) sind). Fiir den Nachweis der Offenheit
braucht man nur zeigen, dass Bilder einer Basis des Grundraums offen sind.

3.5.4 Bemerkung

Der Beweis zeigt sogar, dass jeder topologische Raum (X, 7) das Bild einer stetigen und offe-
nen Abbildung eines Hausdorff-Raumes ist.

3.5.5 Satz(Charakterisierung der A1-Raume)

Ein Raum (X, 7) ist genau dann ein A1-Raum, wenn es einen metrischen Raum (Y, d) und
eine stetige, offene und surjektive Abbildung f : Y — X gibt. A1-Rdume sind also genau
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die Bilder metrischer Rdume unter stetigen und offenen Abbildungen!

Beweis: Sei (X, 7) zunichst als Al-Raum vorausgesetzt. Dann gibt es nach Lemma 3.5.3
ein Al und T,-Raum (Y’,0”) und eine stetige, offene und surjektive Abbildung /' : Y’ — X.
Nach Lemma 3.5.2 gibt es ein metrischen Raum (Y, d) und eine stetige, offene und surjektive
Abbildung f”:Y — Y’. Dannist f := f'o f” : Y — X ebenfalls stetig, offen und surjektiv!

Ist umgekehrt f: (Y,d) — (X, ) stetig, offen und surjektiv, so gibt es zu einem x € X ein
y €Y mit f(y) = x. Dann ist { f(K(y, Fll)) | n € N} eine abzédhlbare Umgebungsbasis! Denn
ist xc U e t,soisty€ f~1(U) offen, es gibt also ein n € N mit y € K(y,ﬁll) c )
und somit f(K(y, Fll)) CU.Da f(K(y, ﬁ)) offen ist und x € f(K(y, ﬁ)), ist damit alles
gezeigt!

3.6 Dichte Teilmengen in Produktraumen

Schauen wir uns die Definition der Produkttopologie nochmal an, so ist folgendes klar: Sind
X und Y topologische Raume und A, B dichte Teilmengen in X bzw. Y, so ist A x B dicht in
X x Y. Sind also X und Y beispielsweise separabel, so auch X x Y. Was ist aber wenn wir ein
groBeres Produkt [];; X; von separablen Rdumen bilden? Wie “grof3” darf / sein, damit das
Produkt noch separabel ist? Solcherlei Fragen gehen wir in diesem Abschnitt nach.

3.6.1 Dichte

Fiir einen topologischen Raum (X, 7) bezeichne d(X, t) die kleinste Kardinalzahl x, fiir die
es eine dichte Teilmenge D von X gibt mit |D| = k (besteht iiber den top. R. kein Zweifel, so
schreiben wir auch einfach d(X)).

3.6.2 Satz von Hewitt-Marczewski-Pondiczery

Sei (X4 )aep eine Familie von topologischen Riumen mit |B| < 24 und d(Xg) < A, fiir
eine unendliche Kardinalzahl A. Dann gilt: d(X) < A, wobei X := [[yep Xa-

Beweis: O.b.d.A. sei B = Z?(A). Fir a € B wihle eine dichte Teilmenge Dy C X mit
|Dy| < A und bilde D := [[yepDq- Es geniigt also zu zeigen, dass D eine dichte Teilmenge
der gewiinschten Kardinalitét enthilt.

Sei fo : A — D¢ surjektiv. Desweiteren versehen wir A mit der diskreten Topologie, also ist
f: AB — D definiert durch f((aq)aep) := (fa(aq))acs stetig und surjektiv. Es reicht also zu
zeigen, dass A® eine dichte Teilmenge der gewiinschten Kardinalitit enthlt.

Fiir J C A, J: endlich, sei eine Aquivalenzrelation ~yjauf Bdurch L ~; L, & LiNJ=L,NJ
erklart. Setze Fy := {(ar)rep | ar, = ar, fir Ly ~j Ly} und F := (J{F; | J C A, J: endlich }.
Es gilt |Fj| < |[A7V)| = |A|, also |F| < |A].

Sei O = [[4epOq cine (offene, nicht leere) typische Basismenge der Produkttopologie, also
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Oq = A fir o € B\ {ay,...,,}. Wihle z;; € o\ @j, wann immer das geht und setze J =
{zij| 1 <1i,j<n}. Dann gilt F;NO # 0 (wie man sich leicht iiberlegt) und somit auch F N O #
0. Also ist F tatsichlich dicht in A® und deshalb ist f(F) dicht in D. Natiirlich gilt auch
[f(F)| <A.

3.6.3 Korollar

Sei (Xq)aep eine Familie von topologischen Rdumen mit d(Xy) < m, fiir eine unendli-
che Kardinalzahl m. Dann ist jede Familie von paarweise disjunkten, nicht leeren offenen
Mengen in X := [[,cp X von Kardinalitidt < m.

Beweis: Annahme es gibt eine Familie von paarweise disjunkten offenen Mengen (0;);¢;
mit |I| > m; 0.B.d.A. sind dies standard Basismengen, also von der Form O; = [[ycp 0.
Wihle J C I, mit m < J < 2™. Offensichtlich sind dann auch (O;);c; paarweise disjunkt. Fiir
i €Jsetze 0;:= {a € B| O, # X, }. Jedes o; ist offensichtlich endlich und deshalb gilt
fiir 0 := U;e; 07 auch |o| < |J| < 2™, Zweifellos ist U; = [[4eq O offen in [Jycq Xo und die
(U;)iey sind paarweise disjunkt. Aus dem Hewitt-Pondiczery-Marczewski theorem folgern wir
aber d([Tgeco Xa) < m im Widerspruch zu m < J.

3.6.4 Definition: Souslin-Zahl

Fiir einen topologischen Raum (X, 7) definieren wir wie folgt die Souslin-Zahl: C(X, 1) :=
sup{|y||YCtund U #V € y — UNV = 0}. Also das Supremum der Michtigkeiten aller
Familien von paarweise disjunkten offenen Mengen.

3.6.5 Korollar

Ein beliebiges Produkt separabler Rdume hat also eine abzihlbare Souslin-Zahl.
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4 Kompaktheit und verwandte Konzepte

”Die Freiheit der Presse im Westen, wobei die viel besser ist als anderswo, ist letztlich die
Freiheit von 200 reichen Leuten ihre Meinung zu veroffentlichen.”
Peter Scholl-Latour

4.1 Kompaktheit

”’In mathematics you don’t understand things. You just get used to them.”
John von Neumann

Kompaktheit ist wohl einer der am hiufigsten verwendeten Begriffe in und auflerhalb der
Topologie. Das liegt daran, dass kompakte topologische Riaume sich noch sehr angenehm ver-
halten, ja manchmal geradezu wie endliche Rdume. Die meisten werden diesen Begriff bereits
aus der Analysis kennen. Kompakt wurden dort Mengen genannt, die abgeschlossen und be-
schrinkt sind. Gewohnlich zeigt man dann in der Analysis, dass die Eigenschaft beschrinkt +
abgeschlossen #quivalent zur Heine-Borelschen Uberdeckungseigenschaft ist (im R"). Diese
besagt, dass jede offene Uberdeckung der kompakten Menge mit offenen Intervallen (oder all-
gemeiner offenen Mengen) eine endliche Teiliiberdeckung hat (die Beweise zu diesen Dingen
“fallen” bei uns unterwegs einfach ab). Nun haben wir in allgemeinen topologischen Raumen
- im Gegensatz zum R” - keinen Abstandsbegriff zur Verfiigung und definieren den Begriff
“kompakt” somit einfach durch die Heine-Borelsche Uberdeckungseigenschaft und geben im
Anschluss weitere dquivalente Formulierungen.

4.1.1 Definition

kompakt Ein topologischer Raum (X, 7) wird kompakt genannt, wenn jede Uberdeckung
von X durch offene Mengen eine endliche Teiliiberdeckung hat (eine Uberdeckung ist eine
Menge ¢ C 7 mit X = Jpcs O). Offenbar dquivalent ist die Formulierung: Fiir jede Familie
abgeschlossener Mengen (A;);c; mit leerem Schnitt gilt, dass bereits endlich viele einen leeren
Schnitt haben.

4.1.2 Lemma

Fiir einen topologischer Raum (X, 7) ist dquivalent:

a) (X, t) ist kompakt.

b) Fiir jede transfinite Folge (d.h. durch Ordinalzahlen wohlgeordnet) (Ag)g, abge-
schlossener nicht leerer Mengen mit Ag C Agy, fiir B’ < f ist Mg, Apg # 0.

¢) Fiir jede transfinite Folge (Up)g < offener Mengen mit U8 # X und Ug C Up, fiir

B < B istUp<Ap #X.

Beweis: a) = b) ist klar. Zeigen wir nicht a) = nicht b). Ist der Raum nicht kompakt, dann
gibt es eine Familie o aus abgeschlossenen Mengen mit der endlichen Schnitt Eigenschaft
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(eSE) mit Not = 0. Setze &7 :={o C o | N’ =0} und &’ := {|d/| | &' € o7}. Sei dann
a* € o mit |a*| = min.o/'. Wir bezeichnen |a*| mit k¥ und wihlen uns eine Bijektion f : k —
. Fiir alle B < k definieren wir dann Ag := s<p f(6). Es ist gilt dann:

1) Ag # 0 ist abgeschlossen, fiir alle § < k.

2) Ag C Ap, fiiralle B’ < B < k.

3) nB<KA/3 =Na=0.

b) < ¢) bekommt man durch Ubergang zu Komplementen.

4.1.3 Lemma

Sei (X, 7) ein kompakter Raum, (¥, o) ein weiterer topologischer Raum und f: X — Y
eine stetige surjektive Abbildung, dann ist auch (¥, o) kompakt.

Beweis: Sei (V;);c; eine offene Uberdeckung von Y. Dann ist offenbar (f~!(V;));c; eine
offene Uberdeckung von X, welche eine endliche Teiliiberdeckung (f~1(V; ))7_, von X hat.
Dann ist (V;,)}_, eine endliche Teiliiberdeckung von Y. Also ist auch Y kompakt.

4.1.4 Lemma

a) Sei (X, 1) ein T,-Raum und A C X kompakt. Dann ist A abgeschlossen.
b) Ein kompakter T,-Raum ist bereits normal (d.h. T| und Ty).

Beweis: a) Sei x € X \ A. Wir wihlen zu jedem a € A offene und disjunkte Mengen U,, V,
mit a € U, und x € V,. Nun ist A kompakt. Es gibt also endlich viele ay,...,a,, mit A C
Uk=1 Uq,- Setzen wirnoch V :=V, N...NV,,, so gilt x € V C X \ A. Demnach ist X \ A offen
und A abgeschlossene.

b) Zu zeigen ist nur noch Ty4. Seien dazu A, B disjunkte abgeschlossene Teilmengen von X.
Sei a € A. Zu jedem b € B gibt es dann disjunkte U, € a¢N T und V;, € bN 7. Die {V, | b € B}
tiberdecken B und da dieser kompakt ist, tun dies bereits endlich viele {V}, , ..., V;, }. Wir bilden
dann die offenen und disjunkten Mengen F, := U, N...NUp,, und Q, :=V, U...UV,, . Es
ist a € P, und B C Q,. Dies konne wir fiir jedes a € A tun und erhalten - mit dem selben
Argument wie eben - eine endliche Teiliiberdeckung {P, ,...,P,,} von A. Bilden wir dann
U:=PF, U...UP, und V := Q, N...NQy,, so erhalten wir zwei disjunkte offene Mengen mit
A CU und B C V. Der Raum ist also Ty4.

4.1.5 Lemma

a) In einem topologischen Raum (X, 7) ist A C X genau dann kompakt, wenn jeder Ultra-
filter auf X, der A enthélt, gegen ein Element aus A konvergiert (man beachte, dass man
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fiir den Beweis nur die Existenz gewisser Ultrafilter braucht (Satz 3.2.2), nicht aber das
volle Auswahlaxiom). Insbesondere ist X kompakt, wenn jeder Ultrafilter auf X auch in X
konvergiert.

b) Konvergiert jeder Ultrafilter ¢ auf X mit A € ¢ in X (also nicht unbedingt in A) und
ist A als Teilraum von (X, 7) ein T3-Raum, so ist immerhin noch A kompakt.

Beweis: a) Sei A kompakt und ¢ ein Ultrafilter auf X mit A € ¢. Annahme: Es gibt kein
x € A mit ¢ — x. Dann betrachten wir zu jedem a € A die Menge &, := (N 1)\ ¢. Fiir jedes
a € A gilt nun a € J&,. Die Menge & := [J 4 &, ist also eine offene Uberdeckung von A, zu
der es somit eine endliche Teiliiberdeckung &’ gibt. Also A C |J&’ und somit [J&' € ¢. Uber
Ultrafilter wissen wir bereits, dass dann aber (mindestens) eines der P € & auch in ¢ liegt.
Offensichtlich ist dies dann ein Widerspruch!

Nehmen wir nun an jeder Ultrafilter auf X, der A enthélt konvergiert gegen ein Element aus
A und es gibt aber eine offene Uberdeckung (Ui)ier von A welche keine endliche Teiliiberde-
ckung hat. Dann ist ¢ := {P C X | 3ij,...i, € I mit A\ U;_, U;, C P} ein Filter(warum?), der
in einem Ultrafilter ¢ enthalten ist. Dieser konvergiert aber gegen ein Element x € A, welches
in einem der U; enthalten ist. Also ist U; € ¢. Nun ist aber auch X \ U; € ¢ C ¢ - dies ist ein
Widerspruch. Also ist die Annahme falsch und A somit kompakt.

b) Zum Beweis verwenden wir a). Sei ¢ ein Ultrafilter auf X mit A € ¢. Zeigen wir, dass (¢ N
7)U{A} die endliche Schnitt Eigenschaft (eSE) hat. Da der Schnitt endlich vieler Elemente
aus ¢ N7 wieder in ¢ N7 liegt, geniigt es ein U € ¢ N T zu withlen. In jedem Fall ist U NA # 0.
Sei x € U NA. Per Definition ist dann aber auch U NA # 0. Das geniigt fiir die eSE. Sei dann
n ein Ultrafilter auf X mit (¢ N7) U{A} C 1. Nach Voraussetzung gibt es dann ein x € X mit
N — x, also XN T C N (dieses x liegt bereits in A - Warum?). Zeigen wir nun, dass auch ¢
gegen x konvergiert. Wir wihlen dazu ein X # V € XN 7. Da A als Teilraum Tj ist, gibt es ein
W € 7 und ein in X abgeschlossenes B mit x € ANW CANBCANV. Wire V ¢ ¢, so auch
B ¢ ¢. Nun ist dann aber W := X\ B € ¢ N1, also W € n. Dan — x, istauch W € 1. Aber
W NW' = 0. Das ist ein Widerspruch. Also doch V € ¢ und somit insgesamt xN T C ¢. Der
Ultrafilter ¢ konvergiert also in A und mittels a) schlieBen wir, dass A kompakt ist.

4.1.6 Lemma (Tubenlemma)

(Tubenlemma) (X, 7) und (Y, o) seien topologische Rdume. Sei weiter X kompakt, yo € Y
und X x {yp} C U, wobei U offen in X x Y ist. Dann gibt es eine offene Umgebung V von
yomitX xV CU.

Beweis: Zu jedem x € X gibt es eine offene Menge Oy € XN T und eine offene Menge
Vi € yoN o, mit O, x Vy CU. Nun ist X kompakt und somit gibt es endlich viele xy, ..., x;, mit
X = U= Ox,. Setze nun noch V :=(;_; V,, = fertig.
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4.1.7 Satz

Fiir einen topologischen Raum (X, 7) ist d4quivalent:

1) (X, ) ist kompakt.

2) Fiir jeden Hausdorff-Raum (Y, o) ist die Projektion ¢ : X x Y — Y abgeschlossen
(d.h. Bilder abgeschlossener Mengen sind wieder abgeschlossen).

Beweis: 1) = 2) Sei A in X x Y abgeschlossen und y € Y \ g(A). Das heifit X x {y} C
(X xY)\A. Aus Lemma 4.1.6 folgt die Existenz einer in ¥ offenen Menge V mit y € V und
X xV C (X xY)\A. Dies bedeutet aber V C Y \ g(A) und g(A) ist somit abgeschlossen.

2) = 1) Sei ¢ ein Ultrafilter auf X mit (¢ = @ (Ultrafilter der Form x sind natiirlich kon-
vergent) und sei y ein Element, welches nicht in X liegt (z.B. X selber). Wir setzen dann
X' := X U{y} und bilden 7’ := Z(X)U ¢’, wobei ¢' := {PU{y} | P € ¢}. 7’ ist dann, wie
man leicht nachrechnet, eine Topologie auf X’ und (X', 7’) ist ein Hausdorff-Raum (Iésst sich
leicht nachweisen). Wir betrachten dann A := {(x,x) | x € X} C X x X/, wobei das Produkt
natiirlich mit der Produkttopologie versehen ist. Die Projektion ¢ : X x X" — X' ist abge-
schlossen und demzufolge g(A) = g(A) = X = X'. Es gibt also ein xy € X, mit (xp,y) € A.
Sei U € xpN 7 beliebig und P € ¢. Dann (xp,y) € U x (PU{y}). Letztere Menge ist aber of-
fen, also AN [U x (PU{y})] # 0. Das bedeutet UNP # 0. DaU € xoN 7 und P € ¢ beliebig
gewihlt worden folgt, dass ¢ U (xop N 7) die endliche Schnitt Eigenschaft hat. Dann gilt aber
auch XN 7 C ¢ (¢ ist ein Ultrafilter). Der Ultrafilter ¢ konvergiert also und X ist demnach
kompakt.

4.1.8 Alexanderscher Subbasissatz

Sei 3 eine Subbasis des top. Raums (X, 7). Dieser ist genau dann kompakt, wenn jede
Uberdeckung mit Elementen aus der Subbasis 3 eine endliche Teiliiberdeckung hat.

Beweis:Sei X nicht kompakt. Dann existiert ein nicht konvergenter Ultrafilter y. Das heif3t
Vx € X gibt es ein O, € XN T mit Oy € Y. Zu O, gibt es aber ein endliches B, C 3, mit
x € NBx € O,. Also auch (B, & w. Das heilt dann aber, dass es fiir x € X auch ein S, € B,
geben muss, mit x € S, & y. {S; | x € X} kann dann aber keine endliche Teiliiberdeckung
haben, Denn da X € y, wire sonst auch bereits eines der S, € ¥ (sie den Abschnitt iiber
Ultrafilter, Lemma 3.2.3). Wir haben also eine Uberdeckung mit Elementen aus 8 gefunden,
welche keine endliche Teiliiberdeckung hat.

Die andere Richtung ist trivial, denn ist X kompakt, dann hat klarerweise auch jede Uber-
deckung mit Subbasiselementen eine endliche Teiliiberdeckung.

59



4.1.9 Beispiel

Fiir eine nicht leere linear geordnete Menge (X, <) definieren wir die Intervalle: (x,y) :={z €
X|x<z<y}, [xry) ={zeX|x<z<y}, (x,y]:={z€eX |x<z<y}und [x,y] :={z €
X | x <z <y}. Setzen wir

S={{xeX[x<y}|lyeXpU{{xeX |y <x}|yeXjU{X},

so ist . die Subbasis einer Topologie 7. auf X - der Ordnungstopologie (beziiglich <).
Intervalle der Form (x,y) nennen wir offene Intervalle. Wir haben folgenden Satz:

4.1.10 Satz

Sei (X, <) eine linear geordnete Menge. Dann ist dquivalent:

a) (X, 1<) ist kompakt.

b) Zu jeder nicht leeren Menge A C X existiert inf (A) und sup (A) (in X).

¢) Zu jeder nicht leeren abgeschlossenen Menge A C X existiert min (A) und max (A).

Insbesondere folgern wir aus der Implikation b) = a), dass in den reellen Zahlen (die
euklidische Topologie ist gleich der Ordnungstopologie) jedes Intervall der Form [x,y]
kompakt ist.

Beweis: b) = c) Es existiert i := inf (A). Fiir alle x,y mit i € (x,y) gibt es somit ein a € A
mit x < i < a <y, das heiBt (x,y) NA # 0. Wir haben also i € A = A und somit i = min (A).
Analog mit max (A).

c) = b) Sei m = min(A). Offensichtlich gilt dann m = inf (A).

b) = a) Es gilt inf (X) = min(X) =: m und sup (A) = max(A) =: M. Dann ist .% :=
{(x,M] | x € X} U{[m,x) | x € X} eine Subbasis von 7. Sei X = (U,ea (x,M]) U (U ep[m,x)).
Nach dem Alexanderschen Subbasissatz reicht es aus zu zeigen, dass wir aus dieser Uber-
deckung mit Subbasielementen eine endliche Teiliiberdeckung auswihlen konnen. Wir bil-
den dazu einfach x := inf (A) und y := sup(B). Es muss x < y gelten, denn sonst wire
V& (Uzea(z,M]) U(U,eplm,z)) = X, was eindeutig ein Widerspruch ist.

Wir kénnen dann ein a € A wihlen mit a < y. Dann gibt es aber auch ein b € B mit a < b.
Offensichtlich gilt dann X = (a,M|U [m,b). Damit haben wir eine endliche Teiliiberdeckung
gefunden.

a) = ¢) Da jede abgeschlossen Menge A auch kompakt ist, reicht es also zu zeigen, dass X
ein kleinstes und ein grof3tes Element hat.

Hat X kein kleinstes Element, so ist (e (a,b))acx eine offene Uberdeckung ohne endli-
che Teiliiberdeckung - ein Widerspruch.

Hat X kein groBtes Element, so ist (,cx (a,b))pex eine offene Uberdeckung ohne endliche
Teiliiberdeckung - wieder ein Widerspruch.
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4.1.11 Satz

Sei .7 eine Subbasis des top. Raums (X, 7). Dieser ist genau dann kompakt, wenn es zu
jeder unendlichen Teilmenge M C X ein Punkt x € X gibt, mit der Eigenschaft: VO € xN.%
gilt |0NM| = |M|. Insbesondere gilt die Aussage fiir . = 7. Derartige Punkte heiflen
vollstindige Haufungspunkte (von der Teilmenge M).

Beweis: Sei (X, 7) kompakt und M eine unendliche Teilmenge von X. Gibe es zu jedem
x € X ein Oy € xN.% mit |0, NM| < |M|, so wihlen wir aus der offenen Uberdeckung
(Ox)xex eine endliche Teiliiberdeckung {Oy,,...,Ox, } aus und es wiirde |M| = [U;_; Ox, N
M| =max{|Ox, "M| | k=1,...,n} < |M]| folgen - ein Widerspruch.

Die andere Richtung ist schwieriger: Sei (X, 7) nicht kompakt. Wir konstruieren nun eine
unendliche Menge, die einen solchen Punkt nicht besitzt. Sei dazu o C . eine offene Uber-
deckung ohne endliche Teiliiberdeckung (die existiert nach Satz 4.1.8). Z := {|&| | £ C o und
U& = X} ist dann eine Menge von Kardinalzahlen und besitzt somit ein Minimum f. Sei
dann £ C o mit |§]| = B (also eine Teiliiberdeckung minimaler Kardinalitit). Wir konnen &
also schreiben als & = {Uy | @ < B} (es gibt ein bijektives f : B — & und fiir f(ot) schreiben
wir einfach Uy) und definieren nun fiir jedes o < 3 die Menge Ay, := X \ Ugs- Us- Fir jedes
o gilt dann |Ay| = B.

Beweis: Andernfalls gibe es ein o < B mit |[Ay| < B. Wir wihlen dann fiir jedes a € Ay,
ein %, > a mita € Uy,. Es folgt X = (Us- ¢ Us) U (Ugea, Uy,)- Aber @ < B und [Ay| < B und
demzufolge [{Us | 6 < a} U{U,, | a € Ag}| < B - ein Widerspruch zur minimalen Wahl von
& (man beachte auch |a| < B, schlieBlich ist 8 eine Kardinalzahl!!!).

Wir werden nun mittels transfiniter Rekursion aus jedem A, ein xy auswihlen, so dass
Xo 7 xo flir o # @' gilt. Wir starten mit einem beliebigen xo € Ag. Sei o < B und fiir jedes
o’ < a sei bereits ein xq € Ay gewihlt, die alle paarweise verschieden sind. Es ist [{xy | @’ <
al| =|a| < B = |Ay|- Wir koénnen also ein xq € Ay \ {xo | @ < a} wihlen. Mit der so
konstruierten transfiniten Folge (xq)q<p bilden wir die Menge M := {xq | @ < B}. Es gilt
jetzt ndmlich |M| = B. Sei nun x € X beliebig. Dann gibt es ein & < B mit x € Uy. Dann ist
aber Ug "M C {xy | &' < a} (dies folgt aus der Definition der A,) und letztere Menge ist
von kleinerer Kardinalitit als 3. Somit folgt |[Ug N"M| < B = |M|. Damit sind wir fertig.

4.1.12 Korollar

Sei (X, 7) ein unendlicher kompakter Hausdorf-Raum und x € X ein nicht isolierter Punkt
(d.-h. {x} ist nicht offen). Dann gibt es eine unendliche Teilmenge A von X, die x als
einzigen vollstindigen Hiufungspunkt hat.

Beweis: Y := X \ {x} ist nicht abgeschlossen und somit, da es sich bei X um einen kom-
pakten T,>-Raum handelt, nicht kompakt. Y als nicht kompakter Teilraum besitzt also eine
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unendliche Teilmenge A’, die (in Y) keinen vollstindigen Hiufungspunkt hat. Da X aber kom-
pakt ist, hat sie einen vollstindigen Haufungspunkt in X! Dies kann nur noch x sein.

4.1.13 Satz

Sei X ein kompakter und Z ein Hausdorff Raum. Ferner sei f : X — Z eine stetige sur-
jektive Abbildung. Durch x ~ ¥’ < f(x) = f(x') bekommen wir eine Aquivalenzrelation
auf X. Wenn Y den entstehenden Quotienten-Raum bezeichnet, dann gilt: ¥ und Z sind
homoomorph.

Insbesondere ist f bereits ein Homdomorphismus, falls f bijektiv ist.

Beweis: Sei ¢ : X — Y die standard Projektion (¢(x) := [x].). Definiere g : ¥ — Z durch
g([x]) := f(x). Dann ist g wohldefiniert und bijektiv (go ¢ = f). Sei O offen in Z. Dann ist
g '(0) offenin Y, denn ¢! (g1 (0)) = £~1(0) ist offen (f ist stetig). Folglich ist g stetig.
Zu zeigen bleibt, dass g auch offen ist. Da g surjektiv ist, reicht es zu zeigen, dass g abgeschlos-
sen ist. Na gut. Sei A abgeschlossen in Y. Da Y als Bild eines kompakten Raumes unter einer
stetigen Abbildung selber auch kompakt ist, folgern wir, dass A auch kompakt ist. Das heif3t
aber g(A) ist kompakt in Z. Da Z ein Hausdorff Raum ist, ist g(A) dort auch abgeschlossen.

4.2 Basen in kompakten Hausdorff-Raumen

4.2.1 Lemma

a) Sei (X, 1) ein kompakter T1-Raum (T ist kein Druckfehler), o eine unendliche Kardi-
nalzahl und 4 eine Basis mit [xN %| < a fiir jedes x € X. Dann gilt |%| < a.

b) Sei (X, 7) ein kompakter T,-Raum, o eine unendliche Kardinalzahl und y C , mit
NENy) ={x} und |xN7y| < o fiir alle x € X. Dann gilt |y| < c.

Beweis: a) Wir fithren einen Widerspruchsbeweis und nehmen dazu |%| > o an. Eine of-
fene Uberdeckung ¢ C 7 nennen wir minimal, wenn |Jo’ # X fiir alle 6/ C ¢ mit 6’ # &
gilt. Wir setzen nun I' := {0 C % | o = X und o ist minimal}. Da (X, 7) ein kompakter
Raum ist, ist jedes o € I endlich. Da (X, 7) ein kompakter T{-Raum ist, kann man leicht
nachrechnen, dass JI" = 4 gilt. Fiir jedes n € N setzen wirnun I, := {o €' | |6| = n}. Of-
fensichtlich gilt dann Z = UI' = U(U,enI'n) = Unen(UT%). Es muss also ein n € N geben
mit |JI,| > a. Da UL, = Uger, 0, folgt [T > .

Fiir jedes y C % setzen wir Iy := {oc € T, | y C ¢ }. Fiir 3 = 0 gilt also [[}°| > o und
7] = 0. Sei k < nund % C 2 mit |%| =k und [T%| > a. Dann gilt |y # X, denn k < n
und die Elemente aus ', sind minimale Uberdeckungen. Sei x € X \ J7%. Dann ist =

Uveinz V) pa XN A| < a, muss es ein V € XN A geben, mit |F2,/ku{v}] > o. Setzen
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Wir Yep1 := % U{V}, so gilt also |%,1| = k+ 1 und |[T*'| > o. Setzt man dies induktiv
fort, so erhllt man schlieBlich ein y, C % mit |y,| = nund |T}"| > o. ABER [T/ < 1 - ein
Widerspruch!

b) Wir setzen o := {(Y | ¥ C y und ¥ ist endlich} U{0,X}. Dann ist o die Basis einer
Topologie 7’ auf X, so dass (X, ') ein kompakter T;-Raum ist und |y| < |o| gilt. Ferner haben
wir [xNo| < a, fiir jedes x € X. Also folgt aus a) sofort |o| < a und damit dann |y| < .

4.2.2 Lemma

Sei (X, 7) ein unendlicher T-Raum und .4 ein Netzwerk (siehe Definition 2.1.13). Dann

gibt es eine Topologie 7/ C 7, so dass (X, ol ) ein To-Raum ist, der eine Basis % besitzt mit

Beweis: Sei P:= {(x,y) € X x X | x # y}, dann gilt |P| = |X|. Zu jedem p = (x,y) € P gibt
es (Up,Vp) €TxtmitxeU,, y€V,und U,NV, =0. Es gibt dann (N,,M),) € A x A4 mit
x €Ny, yeM,und N, CU,bzw. M, CV,. Wirsetzendann Z := {(N,M) € ¥ x A |IpEP
mit N, = N und M, = M}. Damit gilt dann |Z| < |.#7|. Fiir jedes z = (N,M) € Z konnen
wir nun seinerseits ein (U,,V;) € T x T wihlen, mit N C U, bzw. M C V, und U, NV, = 0.
Nun bilden wir 6 := {(U,,V.) z€ Z} und 6 :={U € v | IW € t mit (U,W) € o* oder
(W,U) € o*}. Offensichtlich ist Z := {6’ | 6/ C o und o’ ist endlich} eine Basis einer
Hausdorff-Topologie 7’ auf X mit | %] = |o| < |o*| < |Z| < |4

4.2.3 Lemma

Sei (X, 7) ein kompakter T,-Raum und ./ ein Netzwerk. Dann gibt es eine Basis % mit
|| < |-A/].

Beweis: Wir konnen uns auf den Fall unendlicher kompakter Hausdorff-Rdume beschrin-
ken, denn endliche kompakte T>-Ridume sind diskret. Laut Lemma 4.2.2 gibt es eine Topologie
7' C 1, s0dass (X, 7’) ein To-Raum ist, der eine Basis 2 besitzt mit | #| < |.#'|. Offensichtlich
ist die Abbildung idy : (X,7) — (X,7’) stetig und bijektiv, also nach Satz 4.1.13 ein Homéo-
morphismus. Es gilt also 7 = 7.

4.2.4 Lemma

Ist (X, 7) beliebig, (Y, c) kompakt und Hausdorff, f : X — Y stetig und surjektiv und ist
2 eine Basis fiir X, dann gibt es eine Basis ¢ von Y mit |€| < |4)|.

Beweis: Offenbar ist .4 := { f(B) | B € N} ein Netzwerk mit |./"| < | 4.
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4.2.5 Definition

Sei (X, T) ein topologischer Raum. 4 ist eine Pseudobasis, wenn 4 C 7t und {x} = ((xNA)
fiir jedes x € X gilt.

4.2.6 Lemma

Sei (X, t) ein kompakter T,-Raum und % eine Pseudobasis (siche Def. 4.2.5).

a) Dann gibt es eine Basis %' mit |%'| < | 4.

b) Gibt es eine unendliche Kardinalzahl o, so dass |xNA| < « gilt, fiir jedes x € X,
dann gibt es eine Basis £’ mit | %'| < a.

Beweis: a) Sei x € U € 7. Fiir jedes y € X \ U gibt es ein By € yN % mit x € By. Da X \U
abgeschlossen und demnach kompakt ist, gibtes yy,...,y, € X \U mit X \U C By, U...UB,, =:
B.Esfolgtxe X\BCU.

Dies beweist, dass A := {X\UZ' | ' C % und #’ ist endlich} ein Netzwerk ist mit
|| < |#|. Aus Lemma 4.2.3 folgt, dass es eine Basis %’ gibt mit | #'| < || < |4].

b) Aus a) folgt die Existenz einer Basis %’ mit | #'| <|%|. Aus Lemma 4.2.1 b) folgt fiir
die Pseudobasis Z sofort || < o. Insgesammt bekommen wir dann | #'| < a.

4.3 Fortsetzbarkeit stetiger Abbildungen (2)

Im Abschnitt Fortsetzbarkeit stetiger Abbildungen (1) hatten wir uns unter anderem mit der
Fortsetzbarkeit von stetigen Abbildungen f : D — Y, wobei D C X und D = X gilt, beschiiftigt.
Ist Y nun ein kompakter Hausdorff-Raum, so haben wir folgende interessante Ergénzungen.

4.3.1 Satz

a)Sei (X, 1) ein beliebiger und (Y, o) ein kompakter T3-Raum und sei f : D — Y stetig,
wobei D C X und D = X. Gilt nun immer f~1(B;) N f~1(B,) = 0 fiir abgeschlossene und
disjunkte By,B; C Y (hier ist der Abschluss in X gemeint, obwohl f -1 (B;) C D gilt), dann
gibt es ein stetiges f : X — Y mit f|D = f. Ist (Y, o) zusitzlich Ty, so ist f eindeutig
bestimmit.

Die Umkehrung gilt natiirlich auch (unter viel schwicheren Voraussetzungen).

b) Seien (X, 7) und (Y, 0) beliebige topologische Riume und f: X — Y eine stetige
Abbildung. Sei D C X mit D = X und sei f := f|D. Sind By, B, C Y abgeschlossen und
disjunkt, dann ist f~1(By) N f~1(B,) = 0 (gemeint ist natiirlich wieder der Abschluss in
X).

Beweis: a) Wir verwenden Lemma 3.3.7. Sei also x € X und sei ¢ ein Filter auf D, so dass
der Filter {P C X | 3P' € ¢, mit P’ C P} gegen x konvergiert. Das bedeutet VO € XN T 3P € ¢,
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mit P C O. Sei y, ein Ultrafilter auf D mit ¢, C y,. Dann ist f(¢,) ein Filter auf ¥ und
f(yy) sogar ein Ultrafilter auf Y, mit f(¢y) C f(yy). Es gibt also ein y, € Y, gegen das f(yy)
konvergiert (Kompaktheit). Zu zeigen ist noch, dass f(¢,) immer gegen y, konvergiert.

Angenommen Jx € X und f(¢,) konvergiert nicht gegen y,. Dann W € y,N o mit W ¢
f(¢,). Das bedeutet VP € ¢, ist PN f~1 (Y \ W) # 0. Nun ist (Y, 5) ein T3-Raum, es gibt also
einV € o mity, € V CV C W. Die Voraussetzung auf By :=V und B, := Y \ W angewendet
ergibt f~1(V)Nf~1(Y\W)=0.Esgiltx€ f~1(V),dennsonst 30 € xNtmit ON f~1(V) =
0, es gibt dann also auch ein P € ¢, mit PN f~1(V) = 0. Nun ist aber V € f(y), es gibt
also ein P’ € y, mit P’ C f~1(V), also PN P’ = 0 im Widerspruch zu P € . Es ist aber auch
x € f~1(Y \ W), denn sonst giibe es wieder ein P € ¢, mit PN f~1(Y \ W) = 0 im Widerspruch
ZuVPE ¢ ist PN LY \W)#0. Alsox € f~1 (V)N f~1(Y \W) = 0 - Widerspruch!

b) Nun ist f~1(B) C f~!(B), fiir jedes B C Y. Da f stetig ist und Urbilder abgeschlossener
Mengen unter stetige Abbildungen wieder abgeschlossen sind, folgt natiirlich fiir disjunk-
te und abgeschlossene By, B, C Y sofort f~1(B;) N f~!(By) = 0 und damit dann f~1(B;) N

ffl (Bz) =0.

4.3.2 Satz

Sei (X, 7) ein beliebiger top. Raum und (Y, o) ein kompakter T3-Raum. AuBerdem sei
D C X eine dichte Teilmenge (also D = X). Fiir eine stetige Abbildung f : D — Y gibt
es genau dann eine stetige Fortsetzung f : X — Y, wenn es zu jeder endlichen offenen
Uberdeckung (W;)—; vonY eine endliche offene Uberdeckung (V;)™ | von X gibt, so dass
{VinD|i=1,...,m} eine Verfeinierung von { f~1(W;) | j=1,...,n} ist. Ist (Y, 0) usitzlich
To, so ist die Abbildung eindeutig bestimmt. Die Umkehrung ist trivial (da braucht man
keine Kompaktheit und T3-Eigenschaft).

Verfeinerung bedeutet Folgendes: Sind o, B C 2(X), so nennen wir ¢ eine Verfeine-
rung von f3, wenn es zu jedem a € @ ein b € 3 gibt mit a C b.

Beweis: Wieder verwenden wir Lemma 3.3.7. Sei x € X und ¢, ein Filter auf D, so dass
{PC X |3P € ¢, mit P" C P} gegen x konvergiert. Das bedeutet VO € XN T3P € ¢, mit
P C 0. Nehmen wir an (um einen Widerspruch abzuleiten), dass f(¢,) in ¥ nicht konvergiert.

Dann gibt es zu jedem y € Y ein W, € yN o mit Wy, & f(¢,). Da (Y, o) kompakt ist, gibt es
endlich viele yy,...,y, mit Y = W, U...UW,, . Zu dieser endlichen Uberdeckung gibt es nach
Voraussetzung endlich viele Vi,...,V,, € tmit X = Viund {ViND | i = 1,..,.m} ist eine
Verfeinerung von {f*I(Wyj) |j=1,....,n}.

Sei nun x € V;, fiir ein k € {1,...,m}. Dann gibt es ein P € ¢, mit P C V}. Aufgrund der
Verfeinerungsbedingung gibt s aber auch ein / € {1,...,n} mit V,ND C f~1(W;,).

Es folgt f(P) C f(ViND) CVy,, also W,, € f(¢.) - Widerspruch!
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4.4 Der Satz von Tychonoff

”’I care not what puppet is placed upon the throne of England to rule the Empire on
which the sun never sets. The man who controls Britain’s money supply controls the
British Empire, and I control the British money supply.”

Nathan Mayer Rothschild

Jedes Produkt kompakter Riume (mit der Produkttopologie) ist wieder kompakt. Dieser
Satz ist der wohl wichtigste Satz der Mengentheoretischen Topologie und gehort definitiv zu
den wichtigsten Sétzen in der gesamten Mathematik. Der einfache Beweis mittels Ultrafilter
sollte den Leser nicht iiber die Tatsache hinwegtdauschen, dass es sich bei diesem Satz um
einen schwierigen Satz handelt (eher ist es ein Zeichen dafiir, wie stark die Charakterisierung
der Kompaktheit durch Ultrafilter ist).

Wir beweisen den Satz von Tychonoff allerdings erst fiir endliche Produkte und tun dies
einfach aus dem Grund, da man in diesem Fall kein Wissen iiber Ultrafilter oder das Zornsche
Lemma benotigt.

Im Anschluss an die Beweise geben wir eine Reihe von Beispielen in denen dem Satz von
Tychonoff eine zentrale Stellung zukommt.

Zur Wiederholung werfe man nochmal einen Blick auf das Tubenlemma (Lemma 4.1.6).

4.4.1 Satz (Kleiner Satz von Tychonoff)

Seien (X, 7) und (Y, 0) kompakte Raume. Dann ist auch X x ¥ kompakt. Per vollstéindi-
ger Induktion bekommen wir somit, dass das Produkt endlich vieler kompakter Raume
kompakt ist.

Beweis: Sei (U;);c; eine offene Uberdeckung von X x Y. Zu jedem y € Y gibt es dann
ein endliches I, C I, mit X x {y} C Uier, Ui- Aus dem Tubenlemma (Lemma 4.1.6) folgt fiir
jedes y € Y die Existenz eines V, € yN o mit X x V, C U,E,y U;. Nun iiberdecken die V), mit
y €Y aber ganz Y, es gibt also bereits endlich viele yq,...,y, mit Y =V, U...UV, . Dann
ist J := Uy 1y, endlich und es gilt X xY = J;_; X xV,, C U;c;U;. Wir haben somit eine
endliche Teiliiberdeckung gefunden.

4.4.2 Eine kleine Anwendung

Wie wir bereits gesehen haben lésst sich mit dem Alexanderschen Subbasis Satz recht einfach
zeigen, dass abgeschlossene Intervalle [a,b] kompakt sind (dies wird normalerweise auch in
dem ersten Semester Analysis ganz elementar gezeigt, bzw. ldsst sich auch leicht aus Satz
4.5.20 ableiten, denn Intervalle sind ntiirlich metrische Raume). Hieraus und aus dem kleinen
Satz von Tychonoff ergibt sich dann die viel genutzte Charakterisierung kompakter Teilmen-
gen des R": Eine Teilmenge des R” ist genau dann kompakt, wenn sie abgeschlossen und
beschrinkt ist. Der Beweis ist leicht. Wenn A C R” kompakt ist, so ist A abgeschlossen (R" ist
ein Hausdorff-Raum) und klarerweise beschriankt. Umgekehrt bette man A in einem geniigend
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groBen Wiirfel ([a,b] X ... X [c,d]) ein, der dann kompakt ist. Als abgeschlossene Teilmenge
ist nun auch A kompakt.

Ferner bekommen wir eine allgemeine Version des Satzes vom Maximum und Minimum.
Sei f: X — R stetig und X kompakt. Dann ist f(X) abgeschlossen und beschrinkt in R, also
wird das Minimum und Maximum angenommen!

Kommen wir nun zur vollen Version des Satzes von Tychonoff. Der kleine Satz von Tycho-
noff, wird fiir diesen Beweis nicht benotigt.

4.4.3 Satz von Tychonoff

Auf Basis der Axiome von Zermelo-Fraenkel (ohne Auswahlaxiom) ist dquivalent:

1. Ein Produkt X = [];c; X; topologischer Riume (Xj, 7;);c; ist genau dann kompakt,
wenn jeder Faktor kompakt ist.

2. Das Auswahlaxiom.

Beweis: 1. = 2. Sei (A;)cs eine Familie disjunkter, nichtleerer Mengen. A := | J;c;A; wird
mit der grobsten Topologie versehen, so dass alle A; in A abgeschlossen sind, d.h. 7 :=
{UicsAi | J €I und I\ J endlich }. Es folgt sehr leicht, dass (A, 7) kompakt ist. Also ist
auch A’ = [T;c; A kompakt. Fiir iy € I ist C;, := {f € AT | f(i) € A;} abgeschlossen in A’, denn
ATN\GCyy ={f € A"| f(i) € Ai} =T1je1 Uj, wobei U; = A fiir j # ip und U; = Ujep (i} Ar- Fiir
i1,...,i, €I gilt auBerdem, dass C;, N...NC;, # 0 ist (Prinzip der endlichen Auswahl). Aus der
Kompaktheit folgt 3 f € (;c;A;. Offensichtlich ist f fiir (A;)ics eine Auswahlfunktion. Damit
folgt dann sehr leicht das jede Familie eine Auswahlfunktion hat.

2. = 1. Falls nun (X, 7) kompakt ist, dann folgt aus der Surjektivitit und Stetigkeit der
Projektionsabbildungen pr; : X — X; die Kompaktheit der X;.

Sind nun umgekehrt alle (X;, 7;) kompakt, dann nehme man sich einen beliebigen Ultrafilter
¢ auf X. Zu zeigen bleibt dann: 3x € X mit ¢ — x, also XN T C ¢. Betrachte nun fiir jedes
i € I den Ultrafilter pr;(¢) auf X;. Aus der Kompaktheit der (X;, ;) folgt Vi € [3x; € X; mit
pri(®) — x;. Setzt man x = (x;);e; (hier braucht man das Auswahlaxiom), so gilt also Vi €
I pri(¢) — pri(x). Aus Lemma 3.2.11 folgt ¢ — x. Also konvergiert jeder Ultrafilter auf X
und damit ist (X, 7) kompakt.

4.4.4 Bemerkung

Einen weiteren Beweis des Satzes von Tychonoff bekommen wir im Abschnitt: Elementare
Nichtstandard Konzepte in der Topologie (Satz 14.6.13). Der Beweis ist ebenfalls ausgespro-
chen kurz, vielleicht sogar ein bischen kiirzer, die zugrunde liegende Theorie ist aber deutlich
komplizierter.

Es folgt eine starke Verallgemeinerung des Tubenlemmas (auch als Wallace-Theorem be-
kannt):

67



4.4.5 Korollar (Verallgemeinertes Tubenlemma)

Seien (X;, 7;);c topologische Raume und A; C X;, fiir jedes i € I eine kompakte Teilmenge.
Ist W eine in [];c; X; (mit der Produkttopologie) offene Menge, mit A := [];c;A; C W, so
gibt es eine standard Basismenge U mitA CU C W.

Zur Erinnerung: Standard Basismenge bedeutet: U = [];¢; Ui, mit U; = X; fiir i ¢ J und
U; € t; fiiri € J, wobei J C I und J : endlich.

Beweis: W ist als offene Menge von der Form W = U, [1ies Ui(l), fiir eine geeignete In-
dexmenge L und standard Basismengen [ [;¢; Ui(l). Da A kompakt ist, gibt es also eine endliche
Teilmenge L' C L mitA C U;ep [Tier Ul-(l). Fiir jedes i € I und a; € A; setze Uy, := ﬂ{Ui(l) [tel
und a; € Ui(l)} und U; := Uy,eq, Ug;- Wir zeigen nun U := [];c; U; ist standard offene Basis-
menge in X mitA CU CW.

1) Das U; = X; gilt - bis auf hochstens endlich viele Ausnahmen - ist klar. ebenso ist klar,
dass jedes U; offen in X; ist. U ist also eine offene standard Basismenge.

2) A C U ist auch klar!

3) Zeigen wir noch U C W. Sei (x;);c; € U. Fiir jedes i € I gibt es dann ein a; € A; mit
xi € Ug,. Nun gibtes ein [ € L' mit (a;)ier € [ic; Ul-(l). Fiir alle i € I folgt somit U,, C Ul-(l), und
damit (x,-)ig € HiEI Ul-(l) Ccw.

4.4.6 Korollar

Sei (S;);en eine Familie von endlichen, nicht leeren Mengen. Fiir jedes i > 0 sei f; : S; —
S;—1 eine Abbildung. Dann gibt es eine Folge (x;);eny mit x; € S; und fiy(x;41) = x; fur
allei € N.

1. Beweis (mit Tychonoff): Wir versehen jedes S; wieder mit der diskreten Topologie und
Z :=[l;en Si mit der Produkttopologie. Z ist demnach ein kompakter Raum. Fiir jedes n € N
bilden wir A, := {(x))ieny € Z | V1 <i < n gilt fj(x;) = x;—1}. Es ist klar, dass 4,11 C A,
gilt und die A,, zudem alle nicht leer sind. Wenn (x;);cy € Z\ Ay, gibtes alsoein 1 < j<n
mit f;(x;) # x;—1. Wir bilden dann O :=[];cy O; mit O; := {x;}, Oj_1 :={xj—1 } und O; :=
S; fur i # j, j— 1. Dann ist O offen und (x;);eny € O C Z\ A,,. Fiir jedes n € N ist A, also
abgeschlossen. Aus der Kompaktheit von Z folgt (,cnAn # 0. Jedes Element aus diesem
Schnitt erfiillt dann aber gerade die Behauptung.

2. Beweis (ohne Tychonoff): Fiir jedes n € N und k > 1 definieren wir G’,‘l ‘= fpr10...0
Foik(Snsr) € Sy und Fy := > GX C S,,. Offenbar gilt GX £ 0 und k <1 = G, C G fiir alle
neNundk,[>1. N

Zwischenbehauptung 1: Fiir alle n € N ist F, = 0.
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Beweis: Angenommen es gibt ein n € N mit F, = (. Fiir jedes x € S, gibt es dann ein k, € N
mit x & GX. Sei k := max{k, | x € S, }. Dann ist Gk C G*« fiir jedes x € S,,, also auch x ¢ GX. Das
bedeutet Gﬁ = (. Wie wir bereits bemerkt haben gilt aber immer Gﬁ = () - ein Widerspruch!

Zwischenbehauptung 2: Fiir alle n € N und x € F; ist f, +11 (x)NFyy1 #0.

Beweis: Angenommen es gibt ein n € N und x € F, mit f +11 (x) N F,+1 = 0. Fir jedes
yE fn_—i-ll (x) gibt es dann ein ky, > 1 mit y ¢ G];’;Ll. Fiir k :=max{k, |y € fnjrll (x)} folgt dann
fnjrll(x) N G’n‘Jrl =0, also x & fn+1(G’;+l) = G**1 D F, 5 x - ein Widerspruch!

Wir wihlen xo € Fp und x,,41 € f, +11 (xn) N Fy1, falls x, bereits gewéhlt wurde. Aufgrund
der beiden bewiesenen Zwischenbehauptungen kénnen wir das machen und die so konstruierte
Folge (x;)en erfillt fiy(x;i+1) = x; fir alle i € N.

4.4.7 Eine Anwendung von Tychonoff’s Satz in der Graphentheorie

Ein Graph G is ein geordnetes Paar G = (V, E) mit einer Menge V von Ecken (vertices) und
einer Menge E von Kanten (edges) (die jeweils zwischen zwei Ecken liegen), wobei wir E
als Teilmenge von [V]? := {P C V | |P| = 2} auffassen und jede Kante somit durch ihre zwei
Endpunkte reprisentieren (rein technisch wird noch V N E = 0 gefordert). Unter einem Teilgra-
phen eines gegeben Graphen G = (V, E) verstehen wir ein Graphen G' = (V/,E"), mit V' C V,
E' C E und zusiitzlich VP € E' : P C V' (nur Kanten, deren Eckpunkte zu V'’ gehéren, diirfen zu
G’ gehoren). Wenn V/ C V fiir einen Graphen G = (V, E) gilt, so nennen wir G’ = (V' V/(E))
mit V/(E):={P € E|PCV'} denvon V' in G induzierten Teilgraphen (die Forderung V' C V
kann man auch weglassen).

Sei k € N. Wir sagen ein Graph G = (V,E) ist k-firbbar, wenn es eine Abbildung f:V —
{1,...,k} gibt, so dass f(x) # f(y) fiir alle {x,y} € E gilt (durch eine Kante verbundene Ecken
haben verschiedene Farben). Die Abbildung f wird in diesem Fall eine k-Féarbung genannt.

Wir konnen nun leicht folgenden Satz beweisen:

Ein Graph G = (V,E) ist genau dann k-farbbar ist, wenn jeder durch eine endliche
Teilmenge V' von V induzierte Teilgraph k-firbbar ist.

Beweis: Wenn G k-firbbar ist, so offensichtlich auch jeder Teilgraph. Fiir die Umkehrung
konnen wir 0.B.d.A. voraussetzen, dass V unendlich ist. Auf der Menge {1,...,k} fiihren
wir die diskrete Topologie ein und auf Z := {1,...,k}" (der Menge aller Abbildungen von
{1,....,k} — V) entsprechend die Produkttopologie. Nach dem Satz von Tychonoff ist Z da-
mit ein kompakter topologischer Raum. Fiir jedes endliche A C V setzen wir nun G4 := {f €
Z | f|A ist eine k-Firbung von G4 = (A,A(E))}. Die Mengen G4 sind in Z nun abgeschlos-
sen (man kann leicht zeigen, dass das Komplement offen ist) und je endlich viele Gy, ..., Ga,
haben einen nicht leeren gemeinsamen Schnitt (das ist gerade die Voraussetzung, dass jeder
durch eine endliche Teilmenge A von V induzierte Teilgraph k-farbbar ist). Da Z kompakt ist,
ist der Schnitt von allen diesen G, also (1{Gy4 | A endlich und C V} nicht leer. Ein Element f
aus diesem Schnitt ist dann aber gerade eine gesucht k-Fiarbung von G!
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4.4.8 Eine Anwendung auf unendliche Folgen

In diesem Beispiel betrachten wir in beide Seiten unendlich fortlaufende aber vom Wert be-
schriinkte Folgen aus R. Wir definieren zu diesem Zweck B := {a = (a;)icz € RZ | AN €
NVi e N gilt |a;] < N}. Zwei solche Elemente aus B konnen wir addieren indem wir sie Kom-
ponentenweise addieren (a;);cz + (b;)icz := (a; + b;)icz. Das Ergebnis ist dann wieder eine
beschrinkte Folge. Wir konnen die Elemente aus B auch mit reellen Zahlen multiplizieren
r-(aj)icz := (r-ai)icz. Die Menge B zusammen mit diesen beiden Operationen ist demnach
ein Vektorraum iiber R.

Zur Abkiirzung fithren wir fiir @ = (a;);cz € B folgende Notation ein:

inf(a) := inf;cz(a;) und sup(a) := sup;.7(a;)

Uns interessiert nun die folgende Frage: Ist es moglich auf sinnvolle Weise jeder solchen
Folge (a;);cz einen Mittelwert zuzuordnen? Um auf diese Frage antworten zu kénnen, sollten
wir uns zuerst tiberlegen, was wir unter einem Mittelwert verstehen.

Ein Mittelwert ist eine lineare Abbildung u : B — R, mit
Va € B gilt inf(a) < u(a) < sup(a)

Derartige Abbildungen gibt es viele. Zum Beispiel i ((a;)icz) = ﬁ Y .cE an, fur jede endliche
Teilmenge E C Z. Wir gehen daher einen Schritt weiter und fragen, ob es einen Mittelwert
gibt, der auch die folgende Bedingung erfiillt:

poS=pu, wobeiS:B— Bdurch S((a;)icz) := (ai+1)icz definiert ist (Shift-Operator).

Die Antwort ist ja. Die obigen Beispiele fiir Mittelwerte sind allerdings nicht von dieser Form.
Der nun folgende Existenzbeweis ist nicht konstruktiv.

Die Menge M := {u € RB | p ist ein Mittelwert} als Teilraum von R ist kompakt (R3
bekommt die Produkttopologie).

Beweis: Es gilt M C X := [ cp[inf(a),sup(a)] und da X als Produkt kompakter Intervalle
kompakt ist, reicht es zu zeigen, dass M in X abgeschlossen ist.

Da R die Produkttopologie besitzt, ist fiir jedes a € B die Abbildung e, := R® — R definiert
durch e, (f) := f(a) stetig. Fiir a,b € Bund r € R sind somit auch (e, —e, —ep) und (e,4 —
req) als zusammengesetzte Abbildungen stetig. Die Menge M ldsst sich nun als geeigneter
Schnitt von Urbildern schreiben:

M =XN[Napep(€a+s —€a— ep) 1 (0)]N [Nacp.rer (€ra— req)~" (0)]

Da alle diese Urbilder (als Urbild der 0) abgeschlossen sind, ist es M als Schnitt auch!

Es gibt einen Mittelwert u : B — R mit g oS = . Solch einen Mittelwert nennen wir
Shift invariant.
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Beweis: Wir betrachten die Folge von Mittelwerten (U, ),cn, definiert durch

1 n
—Z fir a= (a;)iey € B.

3

Nun ist (U,)nen eine Folge aus M und da diese Menge kompakt ist, hat die Folge (y),en
einen Haufungspunkt y € M, in dem Sinn, dass jede Umgebung von u unendlich viele der
Folgeglieder u, enthiilt.

Andernfalls giibe es zu jedem u € M eine Umgebung welche nur endlich viele u,, enthilt.
Da M kompakt ist, Wiirde endlich viele dieser Umgebungen bereits ganz M iiberdecken und
es gibe insgesamt nur endlich viele u,, was natiirlich ein Widerspruch ist.

Zeigen wir, dass unser Hiaufungspunkt pt bereits der gesuchte Shift invariante Mittelwert ist.
Dazu sei a € B fest gewihlt. Sei auch € > 0 fest gewihlt. Wir setzen U :={v e M | |v(a) —
p(a)| < eund|voS(a)—puoS(a)| < e€}. Dannist U eine offene Umgebung (in der Spurtopo-
logie auf M) von u. Nun gilt: |, (a) — a0 S(a)| = t|a; —a,| < MP"ETZW"D — 0, fir n — oo.

Wir wihlen daher n so groB, dass u, € U und gleichzeitig |u,(a) — u, o S(a)| < € gilt.
Insgesamt bekommen wir damit dann:

u(a) = poS(a)| < |u(a) — pn(a)| + |tn(a) — pn o S(a)| + |tn 0 S(a) — o S(a)| < 3e.

Da ¢ beliebig war, gilt somit p(a) = poS(a). Da auch a € B beliebig war, folgt 4t = poS.

4.5 Andere Kompaktheitsbegriffe

Den Begriff der Kompaktheit kann man natiirlich in verschiedene Richtungen abschwichen.
Wichtige Verallgemeinerungen von Kompaktheit sind z.B. Hausdorff-Abgeschlossenheit, lo-
kale Kompaktheit, k-Rdaume, abzidhlbare Kompaktheit und die Folgenkompaktheit. In diesem
Abschnitt geben wir einen kleinen Uberblick iiber diese Begriffe und wie diese mit dem Be-
griff der Kompaktheit zusammenhingen. Erstaunlicherweise erweisen sich die letzten beiden
Varianten (abzédhlbare Kompaktheit und Folgenkompaktheit) in einer gewissen Weise - trotz
der Beschrinkung auf abzéhlbare Strukturen (oder vielleicht auch gerade deshalb) - als deut-
lich komplizierter als die gewohnliche Kompaktheit.

4.5.1 Definition

Hausdorff-Abgeschlossen In Anlehnung an Lemma 4.1.4 nennen wir ein top. Raum (X, 1)
Hausdorff-Abgeschlossen, wenn er ein Hausdorff-Raum ist und fiir jede Einbettung f : X — Y
in einen Hausdorff-Raum Y gilt, dass f(X) abgeschlossen in Y ist. Kurz: X ist T und wann
immer sich X als Teilraum eines T,>-Raumes realisieren lisst, ist X in diesem abgeschlos-
sen. Wie wir bereits gesehen haben, sind kompakte T>-Rdume also beispielsweise Hausdorff-
Abgeschlossen.

Fiir die Formulierung des néchsten Satzes brauchen wir Begriff des offenen Ultrafilters. Sei
(X,7) ein top. Raum. Wir nennen ¢ C 7 einen offenen Filter, wenn 1) X € ¢ und 0 & ¢ 2)
UVep =UnNVeop3d)UcpundU CV c1t = V e ¢ erfiillt sind. Genau wie beim
Ultrafiltersatz (Satz 3.2.2) zeigt man, dass jeder offener Filter in einem maximalen offenen
Filter enthalten ist. Diese nennt man dann halt offene Ultrafilter. Genau wie schon bei den
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Filtern definieren wir, was es heif3t, dass ein offener Filter konvergiert. ¢ konvergiert gegen
x € X (wir verwenden die gleiche Symbolik: ¢ — x), genau dann wenn xN 7 C @.

4.5.2 Satz

Fiir einen topologischen Raum (X, 7) ist d4quivalent:

a) (X, ) ist Hausdorff-Abgeschlossen.

b) (X, 7) ist T, und jeder offene Ultrafilter konvergiert (in X).

¢) (X, 1) ist T, und zu jeder offenen Uberdeckung & C 7 von X gibt es eine endliche
Teilmenge &' C &, mit X = Uyee/ U

Beweis: Statt a) = b) zeigen wir dazu dquivalent: nicht b) = nicht a). Bezeichnen wir mit
Y die Menge aller nicht konvergierenden offenen Ultrafiltern in X. Die Menge Z := X UY
versehen wir nun mit der Topologie 7z := top (%), wobei B :=tU{UU{¢} |U€c p €Y}
eine Basis von 77 ist. Es gilt Y # @ und X NY = 0. Die Abbildung f : X — Z, definiert durch
f(x) := x ist offensichtlich eine Einbettung. Ebenso sieht man, dass X in Z dicht liegt (jede
nicht leere offene Teilmenge aus Z hat einen nicht leeren Schnitt mit X). Da X # Z, kann X
somit nicht abgeschlossen sein. Zeigen wir noch, dass (Z, 7z) ein Hausdorff-Raum ist (dann
haben wir namlich gezeigt, dass (X, ) nicht Hausdorff-Abgeschlossen ist). Dazu seien z,7’ €
Z mit z # 7. Wir unterscheiden drei Fille:

1.Fall z,7 € X. Da X nach Voraussetzung T, ist, gibt es disjunkte U,V € 7 mit z € U und
7/ € V. Nach Konstruktion von 7z gilt offensichtlich auch U,V € 1.

2.Fall z€ X und 7/ € Y. Dann ist 7’ ein nicht konvergierender offener Ultrafilter (er kon-
vergiert somit erst recht nicht gegen z; die Konvergenz in X ist gemeint). Also gibt es ein
U € (N 1)\ 7. Da 7 ein maximaler offener Filter ist, muss es also ein V € 7’ geben, mit
UNV =0 (sonst hitte 7 U{U} die eSE und konnte zu einem offenen Ultrafilter z” erweitert
werden, der aufgrund der Maximalitiit von 7’ gleich 7’ wiire, also V € 7 - ein Widerspruch).
Dann sind aber U und V U {7’} offenen und disjunkte Umgebungen von z und 7’ in Z.

3.Fall z,7/ € Y. Dann sind z und 7’ nicht konvergierende Ultrafilter in X mit z # 7’. Es gibt
also ein U € z\ Z/. Wie im 2.Fall schlieft man auf die Existenz eines V € Z mit UNV = 0.
Dann sind U U{z} und V U {7’} die gesuchten disjunkten und offenen Umgebungen von z und
7 inZ.

b) = ¢) Angenommen es gibt eine offene Uberdeckung o C 7 von X, welche keine endliche
Teilmenge 6’ C o besitzt mit X = |J; o U. Dann bilden wir ¢’ := {X \ Uy U | 6/ C 0 und
o’ ist endlich }. Nun ist ¢’ C 7 und hat die eSE, es gibt somit einen offenen Ultrafilter ¢ mit
¢’ C ¢. Dieser konvergiert nach Voraussetzung aber gegen ein x € X. Nun gibt es aber auch
ein U € o mit x € U und da ¢ gegen x konvergiert gilt U € ¢. Nach Konstruktion gilt aber
auch X \ U € ¢ und damitauch® =U N (X \U) € ¢ - ein Widerspruch.

¢) = a) Sei (Y, 7') ein Hausdorff-Raum, der (X, 7) als Teilraum enthilt (also X C Y und die
Teilraumtopologie von X bezgl. 7’ ist gleich 7). Wir miissen zeigen, dass X in Y als Teilmenge
abgeschlossen ist. Sei also y € Y \ X. Zu jedem x € X gibt es dann ein U, € N7’ und ein V, €
yN 7' mit Uy NV, = 0. Dann aber auch U, N V; = 0. Nun gibt es x1, ...,x, € X mit X C J;_, Uy,.
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Bilden wir V :=V,, N...NV,, € yN 7, so gilt offensichtlich X NV = 0. Als Teilraum ist X in
Y also abgeschlossen.

4.5.3 Korollar

In der Klasse der reguliren Rédume (das ist T{ zusammen mit T3) fallen die Begriffe
Hausdorff-Abgeschlossen und kompakt zusammen.

Beweis: Das kompakte regulidre Riume Hausdorff-Abgeschlossen sind, ist klar! Zeigen wir,
dass regulire Hausdorff-Abgeschlossenen Riume kompakt sind. Sei dazu & eine beliebige
offene Uberdeckung (von von dem Raum (X, 7)). Zu jedem x € X gibt es dann ein U, € £ und
ein V, € T mit x € V, C V, C U,. Zu der offenen Uberdeckung y:= {V, | x € X} gibt es eine
endliche Teilmenge ¥ € ymit X = Uy, V. Zu jedem V € ¥ wihlen wir dann ein Uy € & mit
V C Uy. Es ist klar, dass dann &’ := {Uy | V € 7'} eine endliche Teiliiberdeckung von & ist.

4.5.4 Bemerkung

Die Eigenschaft Hausdorff-Abgeschlossen iibertrigt sich nicht notwendig auf abgeschlosse-
ne Unterrdume. Sie iibertrdgt sich allerdings noch auf so genannte reguldr abgeschlossene
Unterrdume. Wir nennen eine Teilmenge A C X des topologischen Raums (X, 7) regulér ab-
geschlossen, wenn A = A°. Es gilt nun die Aussage: Ist (X, 7) Hausdorff-Abgeschlossen und
A C X reguldr abgeschlossen, so ist auch A Hausdorff-Abgeschlossen.

Beweis: Das A ein Hausdorff-Raum ist, ist klar. Sei & eine offene Uberdeckung von A.
Dann ist £ U{X \ A} eine offene Uberdeckung von X. Es gibt dann eine endliche Teilmenge
&’ von &, so dass X = (Uyeer U)UX\A = (Uyee: U) U (X \A®). Also A° C Uyee U und

damit A = F g UUGg/U = UU€§/U.

4.5.5 Definition

Lindelof, lokal kompakt Wenn offene Uberdeckungen lediglich abzihlbare Teiliiberdeckung
haben, dann nennen wir X einen Lindelof-Raum
Ein topologischer Raum (X, 7) wird lokal kompakt genannt, wenn jeder Punkt eine kompakte
Umgebung hat.

Wir nennen (X, 7) stark lokal kompakt, wenn es zu jedem x € X und jedem O € XN 7 eine
kompakte Umgebung K von x gibt mitx € K C O.

4.5.6 Satz

Sei (X, ) ein lokal kompakter topologischer Raum.
1) Ist (X, 7) ein T3 Raum, so ist er stark lokal kompakt.
2) Ist (X, t) ein T, Raum, so ist er auch ein T3 Raum.

73



Beweis: 1) Sei x € U € 1. Es gibt eine kompakte Umgebung V von x (also x € V°). Dann
gibt es ein W € XNt mit W C U NV. Offenbar ist W nun eine kompakte Umgebung von x mit
WCU.

2) Sei x € O € 7. Es existiert eine kompakte Umgebung K von x. Setze V := ONK°. Fiir
y € K\ 'V existieren disjunkte Vy, Uy € T mit x € V, und y € U,. Da K kompakt ist gibt es
ViseesYn € K\V mit K CVUUy, U...UJU,,. Setze V' :=V, N...NV,, und U’ := Uy, U...UUy,.
Dann gilt x € V/ C K\ U’ C V. Da K\ U’ abgeschlossen ist folgt V/ CV C 0, also ist X ein
T3-Raum.

4.5.7 Lemma

Fiir einen topologischen Raum (X, 7) ist 4quivalent:

(1) Es gibt einen lokal kompakten Raum (Z, o) und eine surjektive Abbildung f: Z —
X mit VOCX gilt 0 €t < f1(0) € 6 (man sagt auch f ist eine identifizierende
Abbildung).

VO CX¢gil: 0O et & VK € x(X) gilt ONK ist offen in K (bzgl. der Teilraumto-
pologie), wobei k(X ) := {K C X | K ist kompakt}.

Beweis: (1) = (2) Sei O C X und VK € k(X) sei ONK offen in K. Es geniigt also
zu zeigen, dass f~'(0) offen in Z ist. Sei z € f~!(0). Dann gibt es ein kompaktes V mit
z € V°. Es folgt f(f~1(0)NV)=0Nf(V). Da f(V) kompakt ist, ist £(f~1(0)NV) also
offen in f(V). Sei g := f|V : V — f(V). Dann ist g stetig und surjektiv, also f~1(0)NV =
g '(f(f~1(0)NV)) offen in V. Es gibt somit ein offenes U in Z mit f~!(0)NV =UNV.Da
z€UNVeCUNV C f~1(0) und UNV® offen in Z ist, ist f~'(0) offen in Z und O somit
offen in X.

(2) = (1) Sei Z := Ukex(x) K x {K}. Fir jedes K € k(X) sei fk : K — Z definiert durch
fx(x) == (x,K). Sei 6 := {0 C Z | VK € x(X) ist f¢ ' (O) offen in K} (die Finaltopologie auf
Z bzgl. diesen Daten). Damit ist Z offenbar ein lokal kompakter Raum. Sei nun f:Z — X
definiert durch f(x,K) := x. Ist O offen in X, so ist f~!(O) offen in Z, denn ist K € k(X), so
folgt fi ' (f~'(0)) = ONK. Letzteres ist aber offen in K. Da K beliebig war, folgt £~ (0) ist
offen in Z. Die Abbildung f ist also stetig. Ist £~ (O) offen in Z, so folgt aus f ' (f~1(0)) =
ONK, dass ONK offen in K ist, fiir jedes K € x(X). Nach Voraussetzung an X ist O also
offen in X. Die Abbildung f ist daher identifizierend.

4.5.8 Definition

Besitzt ein topologischer Raum (X, 7) die Eigenschaft aus Lemma 4.5.7, so nennen wir ihn
einen k-Raum (oder auch kompakt-erzeugt).
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4.5.9 Korollar

Sei (X, ) ein k-Raum und (Y, o) beliebig. f : X — Y ist genau dann stetig, wenn die
Einschrinkung f|K : K — Y fiir jede kompakte Teilmenge K C X stetig ist.

4.5.10 Definition

Wir nennen einen topologischen Raum (X, 7) sequential, wenn VA C X gilt:
A ist abgeschlossen < fiir alle Folgen (x,),cn aus A ist lim(x,),en C A.

Hierbei ist im(x,) ey (= {x € X |VU € N1k e NVm >k x,, € U}.

4.5.11 Lemma

Fiir einen beliebigen topologischen Raum (X, 7) gelten folgende Implikationen:

Metrisierbar = A = sequential = k-Raum (Zur Erinnerung: A; bedeutet, dass jeder
Punkt x € X eine abzidhlbare Umgebungsbasis hat.) und kompakt = lokal kompakt =
k-Raum.

Beweis: Wir zeigen: A| = sequential = k-Raum (der Rest ist offensichtlich).

A = sequential: Sei A C X mit der Eigenschaft ¥/ (x,),cn aus A ist lim,enx, € A und
sei (Uy)nen eine abzihlbare Umgebungsbasis. Falls 3x € A\ A, so sei x, € U, NA fiir jedes
n € N. Offenbar ist dann x € lim,cy X, im Widerspruch zu x € A\ A.

sequential = k-Raum: Sei also A C X und AN K abgeschlossen in K, fiir jedes kompakte
K C X. Wir miissen zeigen, dass A abgeschlossen ist. Sei (x,),cn eine Folge aus A und x €
lim,,e x,,. Offenbar ist K := {x, | n € N} U{x} kompakt, also gibt es ein in X abgeschlossenes
B mit ANK = BNK. Da (x,),cn auch eine Folge aus B ist und B abgeschlossen ist, ist x €
B, also x e BNK = ANK, also x € A. Da (X, 7) nach Voraussetzung sequential ist, ist A

abgeschlossen.

4.5.12 Satz von Tychonoff flr lokal kompakte Raume

Ein Produkt [];c; X; lokal kompakter Rdume ist genau dann lokal kompakt, wenn alle X;
lokal kompakt sind und bis auf hochstens endlich viele Ausnahmen die X; sogar kompakt
sind

Beweis: Ist X := [];c; X; lokal kompakt und x = (x;);c; € X (beliebig fest gewihlt), so gibt
es eine kompakt Umgebung U von x. Aus der Definition der Produkttopologie folgt, dass
bis auf endlich viele Ausnahmen pr;(U) = X; gilt. Da die Projektionen pr; : X — X; stetig
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und surjektiv sind, sind also bis auf hochstens endlich viele i € I die X; kompakt. Und wenn
yj € X;, dann sei K eine kompakte Umgebung von von einem Punkt y € X mit pr;(y) =y;. Na
ja, dann ist halt pr;(K) eine kompakte Umgebung von y; (kompakt ist klar; Umgebung bleibt
als Aufgabe).

Umgekehrt seien bis auf J := {iy,...,i,} alle X; kompakt und x € X. Fiir i € J sei immerhin
noch K; eine kompakte Umgebung von x;. Dann ist [];c; K;, wobei K; = X; fiir i € I\ J, eine
kompakte Umgebung von x.

4.5.13 Satz

Satz von Whitehead Sei f : X — Y identifizierend und A stark lokal kompakt. Dann ist
auch h = f xidy : X x A — Y x A identifizierend (f X ids(x,a) := (f(x),a)).

Beweis: Das / surjektiv ist, ist klar. Zu zeigen bleibt also: W ist offenin ¥ x A < h~ (W)
ist offen in X x A. Die eine Richtung ist klar, da / stetig ist.

Sei nun 4~ (W) offen in X x A und (yo,ap) € W, mit f(x) = y, fiir ein gewisses x € X. Also
h(x,a0) = (yo,a0) € W, also (x,ag) € h~1(W). Setze Ag := {a € A | (x,a) € h~1(W)}. also
schon mal ay € A. AuBerdem ist Ao offen (wie man so sieht: Sei a € Ag = (x,a) € h~1(W).
Aber h~1(W) ist offen, = 3JU,V offen in X bzw. A, mit (x,a) € U xV C h~(W). Also
d eV = (x,d)eh (W) = & €Apund somitista €V C Ap).

Da A stark lokal kompakt ist, gibt es eine kompakte Umgebung C von ag, mit C C Ag. Nun
istxc U :={y€X|{x} xCCh'} offen, wie wir nun zeigen.

yeU = {y} xCCh™(W).Dah ! (W) offen ist, existiert ein V offen in X mit {y} x C C
V x C C h~!(W) (ein Spezialfall des so genannten Wallace Theorem).

Beweis dazu: Z := {0 x O' | 0,0’ offen in X bzw. A} ist eine Basis von X x A. Also
h=Y (W) = Uj;e; Oi x O, fiir eine gewisse Familie von Mengen aus 4. Somit auch {y} x C C
Uier Oi x O).. Da C kompakt und {y} einelementig ist, gibt es i1, ..., i, mit {y} x C C |J;_, O;, x
ng undy € O0;,, firk=1,...,n. Setzenun V := (;}_,0;, = {y} xCCV xCC U, 0; X
0§k Cch! (W). Da y beliebig, V offen und y € V C U ist, folgt U ist offen.

Nun gilt immer U C f~'(f(U)). Andererseits haben wir f~1(f(U)) = h~'(h(U x C)) C
WY (h(h=Y(W))) = h~' (W), daU x C C h~ ' (W), bzw. h surjektiv ist. Aus der Definition von
U folgt f~'(f(U)) C U. Insgesamt also U = f~'(f(U)). Da f identifizierend ist, ist f(U)
offen! Also (yg,ag) € f(U)xC=h(U xC) Ch(h~1(W))=W.Da f(U) x C eine Umgebung
von (yp,ap) ist, ist W offen.

4.5.14 Korollar

Ist (X, 1) ein k-Raum und (Y, o) stark lokal kompakt, so ist X x Y ein k-Raum.

Beweis: Sei f: Z — X identifizierend, wobei Z lokal kompakt ist. Dann ist auch 4 := f x
idy 1 ZxY — X x Y identifizierend. Da auch Z x Y lokal kompakt ist, sind wir fertig.
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4.5.15 Satz von Baire (oder auch Bairscher Kategoriensatz)

Falls X
a) ein vollstindiger metrischer Raum (Definition 4.5.19), oder
b) ein lokal kompakter Hausdorff Raum ist,
dann gilt fiir jede Folge (D,);;_, dichter offener Teilmengen: (;_; D, ist dicht in X.

Beweis: Sei U eine beliebige offene Menge in X. Setze By := U. Falls B,,_ schon definiert,
dann gibt es eine offene Menge B, mit B,, C B,,_; N D, wobei B, im Fall b) sogar kompakt ist.
im Fall a) nehme man entsprechende Kugelumgebungen und im Fall b) verwende man Satz
4.5.6 (0 # B,_1 N D, ist offen). Es gilt dann ("4 B, C U N(\r_y D, und @ # >_, B,. Die
Teilmengenbeziehung ist klar und fiir die Ungleichung benutze man im Fall a) die Vollstindig-
keit und im Fall b) die Charakterisierung kompakter Mengen durch Familien abgeschlossener
Mengen (wenn 0@ = (,; K;, fiir kompakte K;, dann gibt es ein endliches J C I mit @ = (;c; K;).

4.5.16 Definition

abzihlbar kompakt, folgenkompakt, Hiufungspunkt einer Folge (HP) Ein Raum (X, 1)
heiBt abzihlbar kompakt, wenn jede abzihlbare offene Uberdeckung eine endliche Teiliiber-
deckung hat. Er heiflt folgenkompakt, wenn jede Folge aus X eine konvergente Teilfolge hat.
Eine Teilfolge von (x,),cn hat die Gestalt (x,, )k, Wobei (1 )ken eine streng monoton stei-
gende Folge natiirlicher Zahlen ist. Ein Punkt x € X heit HP von (x,),cn, wenn fiir jede
offene Umgebung O von x die Menge {n € N | x, € O} unendlich ist.

4.5.17 Lemma

Sei (X, 7) ein topolgischer Raum. Dann sind folgende Aussagen dquivalent.
1) (X, 1) ist abzdhlbar kompakt.
2) Jeder Filter ¢ auf X mit einer abzidhlbaren Basis hat einen konvergenten Oberfilter.
3) Jede Folge aus X hat einen Haufungspunkt (HP).

Beweis: 1) = 2) Sei ¢ ein Filter mit einer abzilbaren Filterbasis ¢p. Angenommen es gibt
keinen Oberfilter von ¢, der gegen ein x € X konvergiert. Dann ist () AG%Z = ( und somit

{X\A| A € ¢} eine abziihlbare offene Uberdeckung von X. Somit gibt es Ay, ...,A, € @y mit
X =(X\A))U..U(X\A,). Also®=A;N...NA, € ¢. Das ist ein Widerspruch.

2) = 3) Sei (x,)nen eine Folge aus X. Dann hat der von @ := {{x; | k > n} | n € N} erzeug-
te Filter ¢ eine abzéhlbare Filterbasis (ndmlich ¢y), besitzt also einen konvergenten Oberfilter
y. Sei Yy — x. Dann ist x € (e {xx | kK > n}. Offensichtlich ist x ein HP von (xy,),eN.

3) = 1) Nehmen wir mal an, dass (P,),cN eine abzihlbare offene Uberdeckung von X ist,
welche keine endliche Teiliiberdeckung hat. Fiir jedes n € N wihlen wir dann x,, € X \ Uy<,, Pk
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Sei x ein HP von (x;),en. Dann gibt es ein n € N mitx € P,. Da x ein HP ist, muss {k € N | x; €
P,} aber unendlich sein. Nach Konstruktion der Folge ist {k € N | x; € P,} abe endlich - ein
Widerspruch.

4.5.18 Lemma

Sei (X, ) ein topologischer Raum. Dann gilt:

(a) Ist (X, 7) folgenkompakt, so ist er abzihlbar kompakt.

(b) Ist er abzdhlbar kompakt und geniigt dem ersten Abzdhlbarkeitsaxiom, so ist er
folgenkompakt.

Beweis: (a) = (b): Sei (x,),cn eine Folge aus X. Diese hat dann eine konvergente Teilfolge.
Ein Grenzwert dieser Teilfolge ist dann offenbar auch ein Haufungspunkt von (x,),cn und der
Raum ist somit abzihlbar kompakt.

(b) = (a): Sei (x, ) e eine Folge aus X. Diese hat dann einen Haufungspunkt x. Sei (Uy, ) e
eine abzidhlbare Umgebungsbasis von x. O.B.d.A. kann U,,;.; C U, fiir alle n € N angenommen
werden. Sei x,, € Up. Ist x,, gewihlt, so sei x,,,,, € Ury1 \ {x,, | 0 <1 < k}. Die so konstruierte
Teilfolge konvergiert nun gegen x.

4.5.19 Definition

Cauchy-Folgen und totale Beschriinktheit Sei (X,d) ein metrischer Raum. (x;),en heiBit
Cauchy-Folge, wenn es zu jedem € > 0 ein N € N gibt, sa dass d(x,,x,) < € fir alle m,n > N
gilt. Wir nennen (X,d) vollstindig, wenn jede Cauchy-Folge in X konvergiert. Der Raum
(X,d) heiBt total beschrinkr, wenn es zu jedem € > 0 eine endliche Teilmenge A C X gibt,
mit X = J,c4 K(a,€).

Erstaunlicherweise fallen fiir metrische Rdume sehr viele Kompaktheitsbegriffe zusammen
(tatsachlich fallen fiir sehr viel groflere Klassen topologischer Raume einige dieser Begriffe
zusammen; man vergleiche dazu die Kapitel iiber parakompakte Rdume und uniforme Réu-
me):

4.5.20 Aquivalente Beschreibung der Kompaktheit fiir metrische Ridume

Sei X ein metrischer Raum mit Metrik d. Dann ist dquivalent:
(a) (X,d) ist kompakt,

(b) (X,d) ist abzdhlbar kompakt,

(c) (X,d) ist folgenkompakt,

(d) (X,d) ist vollstandig und total beschrinkt.

Y

Beweis: (a) = (b) < (c) ist klar!
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(c) = (d) Offensichtlich ist X dann auch vollstindig. Wenn X nicht total beschriinkt ist, dann
gibt es ein € > 0 derart, dass keine endlich vielen Kugeln mit Radius € bereits X iiberdecken.
Wihle xg € X ... x, € X \ K(x0,€)U...UK(x,—1,€) und so weiter. Diese Folge (x,),cn hat ne
konvergente Teilfolge, was dann sofort den Widerspruch ergibt (zu dem festen €).

(d) = (a) Sei ¢ ein Ultrafilter der nicht konvergiert. Dann 3n € N mit

{K(x,1/n) |xeX}N¢ =0.

(Andernfalls wihle zu jedem n € N ein x, € X mit K(x,, 1/n) € ¢. Offenbar ist (x,),cn dann
eine Cauchyfolge. Gegen deren Grenzwert wiirde nun auch ¢ konvergieren.)

Nun gibt es xp,...,x, € X mit X = (J;_; K(xt, 1/n). Folglich 3k mit K(x;,1/n) € ¢ (wir
haben einen Ultrafilter!) - Widerspruch.

4.5.21 Beispiel

Je zwei Normen || - || und || - ||* auf einem endlich dimensionalen K-Vektorraum V (K = R
oder C) sind dquivalent (d.h. 3¢,C > 0Vx e V: c|lx| < ||x||* < C|lx|]).

Anleitung: Man zeigt die Aussage erst fiir zwei Normen || || und || - || auf dem R”. O.B.d.A.
ist || - |2 die euklidische Norm (Warum?). Im ersten Schritt sei dazu ey, ..., e, die standard Basis
und R" 3 x=Y"_, xyey. Dannist ||x|| <Y2_, [xy||lev]| < Cllx||l2, wobei C := /¥ _, |lev]|?
(Cauchy-Schwartz-Ungleichung).

Fiir die zweite Ungleichung betrachte man c := inf {||x|| | ||x||2 = 1}. Dann gilt ¢ > 0 (Kom-
paktheit der || - ||,-Kugel) und man folgere ||x||> < ¢~ !||x|.

Fiir den allgemeinen Fall eines endlich dimensionalen K-Vektorraums V benutze einen R
Isomorphismus @ : R” — V (V dabei als R-Vektorraum aufgefasst), um die Aquivalenz der
zwei Normen || - || und || - ||* zu zeigen.

hier noch ein Lemma, iiber offene Uberdeckungen in kompakten metrischen Riumen.

4.5.22 Uberdeckungslemma von Lebesgue

Sei (X,d) ein kompakter metrischer Raum und (U;);; eine offene Uberdeckung. Dann
gibt es ein positive Zahl § derart, dass jede Teilmenge A von X mit einem Durchmesser
kleiner als & bereits in einem der U; liegt.

Beweis: Jeder Punkt x € X liegt in wenigstens einem der U;. Wihle fiir jedes x € X ein 9, >
0, derart, dass die offene Kugel K(x,20,) um x mit Radius 26 bereits in einem der Uj liegt (das
geht, da die U; offen sind). Alsoist (K (x, 8;))xex auch eine offene Uberdeckung von X. Nun ist
X kompakt, also gibt es x1,...,x, € X mit X = J]_, K(xt, &y,) Setze § := min (dy,, ..., 6x,) Mit
Hilfe der Dreiecksungleichung macht man sich schnell klar, dass o die geforderte Eigenschaft
hat.
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4.5.23 Bemerkung

Wir geben nun eine stark verallgemeinerten Fassung von Korollar 4.4.6. Starke Verallgemei-
nerung deshalb, da die Mengen S; als topologische Rdume mit der diskreten Topologie und
die Abbildungen f;; : Siy1 — S; alle Voraussetzungen des nachfolgenden Lemmas erfiillen.

4.5.24 Lemma

Sei < eine Relation auf der Menge M mit folgenden Eigenschaften:

A)VaeMgilta <a.

B)Va,b,c € M gilt (a <bund b < ¢) impliziert a < c.

CO)Va,beMdceMmita<cundb <c.

D) 3P C MN, P+ 0 mit:

1) g € Pund m,n € Nmit m < n impliziert g(m) < g(n).
2) g,h € Pund g # h impliziert Vm,n € N gilt —(g(m) < h(n))..
3)VaeM3IbeN:={g(n)|g€Pundn € N} mita<b (N istkofinal in M).

Sei ferner fiir jedes a € M ein abzdhlbar kompakter topologischer Raum (X,, 7,) und fiir
jedes Paar a,b € M mit a < b eine Abbildung fb X, — X, gegeben, welche f; = fb ofy
erfiillt, fiir a,b,c e M mita < b < c.

Sind auBBerdem alle Abbildungen abgeschlossen (nicht unbedingt stetig) und ist das Ur-
bild (f2)~!(x) fiir jedes x € X, abzihlbar kompakt, dann gibt es eine Familie (x)scps mit
x4 € X, und f2(x}) = x,, fiir a,b € M mit a < b.

Beweis: Sei ¢ € P. Fiir jedes n € N definieren wir nun Fj; := (<, fg (n-+k)

(n+1)
ist F;f eine in X,(n) nicht leere abgeschlossene Menge, denn ( fg nn:lk)) (Xg(n+k))) ey st eine

fallende Folge nicht leerer in X, (,) abgeschlossener Mengen und X o(n) 18t abzéhlbar kompakt!
Zwischenbehauptung: Vn € NVx € Ff ist Ff_ N (fg (EDY=1(x) £ 0,

Beweis: Nunist £, 0 (£5"") 7! (x) = mk<1[fg::{‘< i) V) 71 ()] Fiirk > 1

'[flg (n+1) ( g(n+k) )N (f;,’((:)ﬂ))_]( ) # 0, andernfalls x gfé’(:;“ ff’ r’l’:f‘ (X n+k)) SFS o,
was ein Wlderspruch ist.

Da auch hier wieder eine absteigende Folge ( fg ::f )(x entk) N ( fg (n1)y - 1(x))z_, von in
g(n+

( fé:f )) !(x) abgeschlossenen Mengen vorliegt und (f% o(n) )) 1(x) abzahlbar kompakt ist,

(Xg(n+k)). Dann

ist somit auch der Schnitt nicht leer!
Mit dem Beweis dieser Zwischenbehauptung kénnen wir uns nun leicht induktiv eine Folge

(x%) nen basteln, mit 1) x5 € F und 2) m < n impliziert f;’((:i)) (x5) = x5
Wir starten dazu einfach mit einem x§ € F§. Sind x§, € F§,...,x5 € F gewihlt, so wihlen
wirein x| € F¥ N (fgg((:)H))’l(xﬁ) ... und so weiter.

Diese Konstruktlon funktioniert fiir jedes g € P. Nun ist N := {g(n) | g € P und n € N}
kofinal in M. Es gibt also ein n € N und genau (!) ein g, € P mit a < g,(n).

80



(Falls auch i € P mit h # g, und a < h(m), fir ein m € N, dann gibt es ein f € P und
ein k € N mit g,(n) < f(k) und h(m) < f(k). Aus der Voraussetzung an P folgt, dass dies

nicht sein kann.) Wir setzen nun x, := fa“(") (x3*) und behaupten, dass (xa)ag u die geforderte
Eigenschaft hat. Fiir den Nachweis sei a < b gewihlt. Sei dann x, := f; galn )( 74) und x;,

f ( v), fiir gewisse m,n € N. Dann muss aber g, = g, := g gelten (andernfalls 3% €
P, k € N mit g,(n) < h(k) und g,(m) < h(k), was aber zu einem Widerspruch fiihrt). Setze

[ := max(m,n) und es folgt xj = f;f((;g (+) und x5}, = fg ( ). Damit bekommen wir dann

F20) = L (5 6))) = £E (£ () = £ (08) =

4.5.25 Lemma

Sei (X;, T;)ien eine Folge nicht leerer topologischer Réume und M die Menge aller end-
lichen Teilmengen von N. Falls fiir alle a,b € M mit a C b die natiirlichen Projektionen
q : Tlicp Xi — Tl;caX; abgeschlossen sind und auBerdem ¢~ '(z) abzihlbar kompakt ist
(Vz € [lica Xi), dann ist auch X := [[;c X; (mit der Produkttopologie) abzéhlbar kompakt.

Beweis: Zunichst einmal bemerken wir, dass [];c, X; fiir jedes a € M abzihlbar kompakt ist
(fir j € N\ aist g (z) = ([Tiea Xi) % {z} abzéhlbar kompakt, wenn z € X;). Sei nun (P, ),en
eine abzihlbare offene Uberdeckung von X, wobei die P, = [];cy P offene standard Basis-
mengen sind. Fiir jedes n € N gibt es also ein endliches J, € N mit P € 1;, fiir i € J, und
P' =X;, fiir i € N\ J,. Nehmen wir an (und einen Widerspruch zu bekommen), dass (B,)qen
keine endliche Teiliiberdeckung hat. Dann konnen wir fiir jedes a € M ein f, € X \ U,c. Pu
auswiahlen. Fiir jedes a € M setzen wir nun m(a) := J,c,Jn. Dannistauch m(a) € Munda C b
impliziert m(a) C m(b). Die Einschriankung f,|m(a) von f, auf m(a) ist nun kein Element von
Unea HlEm P , also fa‘m( ) €Y, = (Hiem(a) Xi) \ (Unea Hiem(a) Pln) Damit ist dann jedes
Y, abzahlbar kompakt nicht leer und abgeschlossen in [];c(q) Xi-

Sind nun a,b € M mita C bund ist f € ¥y, so istf|m( ) € Y, (die Einschriankung auf m(a ))

Beweis dazu: Ist f € ([Ticm(p) Xi) \ (Unep [icm(p) PI') so insbesondere f & Uycq [Ticm(s)

Fiir jedes n € a gibt es somit eln in € m(b) mit f( ) ¢ P!. Fir i € m(b) \ m(a) ist nun aber
P =X;. Also ist i, € m(a). Damitist f|m(a) & [Ticm(q) P}’ fur jedes n € a.

Mit dem Beweis dieser Zwischenbehauptung konnen wir nun fiir a,b € M mit a C b eine
Abbildung g’ : Y;, — Y, durch g%(f) := f|m(a) definieren. g° ist einfach die Einschrinkung
der Projektion qa [icmp) Xi = Tliem(a) Xi auf ¥p.

Da die Projektionen nach Voraussetzung abgeschlossen sind und abzé@hlbar kompakte Ur-
bilder von Punkten besitzen, gilt dies auch fiir die entsprechenden g° (die Details kann man
sehr leicht nachrechnen). Die Menge M wird mit der Inklusion als Relation und die Abbil-
dungen gZ erfiilllen zudem alle Voraussetzungen von Lemma 4.5.24. Es gibt somitein F &€
[Mucy Yo mit g2(F (b)) = F(a), firalle a,b € M mit a C b.

Fiir jedes n € N setzen wir nun 77 := {k € N | kK < n} und anschlieBend f := |J,cnF (7).
Das macht Sinn, denn fiir n € N ist F(77) € [[icn(m) Xi auBerdem F(n+1)|m(n) = F(n) und

Unenm(n) =N, also f € [Tien Xi.
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Nun kann es kein n € N geben, mit f € P, (denn sonst f € Jic, P, mit a := 7 und somit
flm(a) € Urealliem(a) PX, aber f|m(a) = F(a) € Y, - offensichtlich ist dies ein Widerspruch).
Da (P,),cn eine offene Uberdeckung von X ist, ist das dann aber unser angestrebter Wider-
spruch zur Voraussetzung.

4.5.26 Bemerkung

Weitere (sehr wichtige) Abschwichungen des Begriffs Kompaktheit (Parakompaktheit, Meta-
kompaktheit, ...) werden wir im Kapitel "Lokal-endliche Systeme und Metrisierbarkeit” ken-
nen lernen.

4.6 Kompaktifizierungen

Wie bereits angemerkt verhalten sich kompakte Rdume sehr angenehm. Pech ist nur, dass nicht
alle Rdume kompakt sind. Was tun wir also: Wir machen sie kompakt ... Ganz so einfach geht
das natiirlich nicht und genau genommen machen wir sie auch nicht kompakt, sondern betten
sie nur in kompakte Raume ein.

4.6.1 Satz (Alexandroff-Kompaktifizierung)

Sei (X, 7) ein nicht kompakter Raum und ® ¢ X. Setze Xoo := X U{®@} und 7. := 7U{0 C
Xo | @ € O und X \ O ist kompakt+abgeschlossen in (X, 7)}. Dann gilt:

) (X, Teo) ist ein kompakter top. Raum und id : X < X, ist eine homoomorphe Ein-
bettung.

b) (Xe, Tw) ist To < (X, T) ist lokal kompakt und T.

¢) Ist auch (X U{8},0) ein kompakter To-Raum (6 ¢ X) derart, dass X mit Spurtopo-
logie homéomorph zu (X, 7) ist, so sind (X U{d},0) und (X, T ) bereits homdomorph.

Beweis: Alle Beweise liegen auf der Hand!

4.6.2 Bemerkung

Auf jeder Menge X gibt es eine kompakte T-Topologie. Fiir endliches X ist dies klar. Um dies
auch fiir unendliches X einzusehen, betrachte man auf X die diskrete Topologie T ;5 := Z(X).
Damit ist (X, 7y;,) ein lokal kompakter T,-Raum. Sei (X', 7') die Alexandroff-Kompaktifzierung.
Dann ist (X’,7’) ein kompakter T,-Raum. Offenbar ist |X| = |X’|. Mit einer bijektiven Abbil-
dung f: X’ — X bekommt man durch 7 := {f(O) | O € 7'} eine kompakte T,-Topologie auf
X.

Interessant ist folgende Verallgemeinerung von Satz 4.6.1, die die Frage nach T, Mehr-
punktkompaktifizierungen vollstdandig klirt. Der Beweis ist zwar ldnglich, aber nicht kompli-
ziert.
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4.6.3 Satz uber die Existenz von T, Mehrpunktkompaktifizierungen
(a) Fiir einen topologischen Raum (X, 7) und n € N, n > 1 ist d4quivalent:

1. Es gibt einen kompakten T,-Raum (Y, 0) mit X C Y, [Y\X|=n,X =Y

und oy := {ONX | O € o} = 1. Wir nennen (¥,0) eine n-Punkt Ts-
Kompaktifizierung.

2. (X,7) ist ein lokal kompakter T,-Raum und es gibt Vy,...,V,, € 7\ {0} mit V;NV; =0
fiir i # j derart, dass L := X \ U, V; kompakt ist, aber fiir alle k € {1,...,n} die
Menge Z; := (X \ U2, Vi) UV nicht kompakt ist.

(b) Hat Ein Raum (X, 7) eine n-Punkt T,-Kompaktifizierung und ist 1 < j < n, so hat
(X, 7) auch eine j-Punkt T,-Kompaktifizierung.

Beweis: (a) Zeigen wir 1. = 2. Sei Y \ X = {yy,...,y,} und seien Oy, ..., 0, € © paarweise
disjunkt mit y; € O; fiir alle i € {1,...,n}. Fiir jedes i setze nun V; := O; N X. Nach Vorausset-
zung ist V; € T\ {0}. Esist X \U?_, Vi =Y \ U, O, abgeschlossen in Y, also auch kompakt in
Y. Damit ist X \ i, V; aber kompakt in X. Sei j € {1,...,n}. Wire Z;j = X \ UL, ;,; Vi kom-
pakt (man beachte, dass Z C X genau dann kompakt in X ist, wenn Z kompakt in Y ist), so wire
Zj abgeschlossenin Y, also Y \ Z; offen in Y. Es istaber Y\ Z; = (UL 12; Vi) U{y1, .00} =
(U1, 01) Uiy}, also wire {y;} = 0;N (Y \ Z;) € y;N o - ein Widerspruch zu X =Y.

Zeigen wir 2. = 1. Seien y1,...,y, paarweise verschieden Mengen® mit y; ¢ X fiir alle
i €{l,...,n}. Wir definieren Y := X U{y1,...,y, } und setzen

n
B =1U U{(Zi\K)U{y,-} | K CZ;, K ist kompaktin X}
i=1

Wir definieren o dann als die von 2 erzeugte Topologie auf Y. Offenbar ist Z durchschnitts-
stabil, also eine Basis fiir o.

Zeigen wir, dass (Y, o) ein Hausdorff-Raum ist. Sei i # j. Es folgt [(Z; \ L) U{y:}|N[(Z; \
LYU{y;}| =(Z\L)N(Z;\L) = (Z;NZ;)\ L = L\ L = 0. Verschiedene Punkte aus {yi, ...,y }
konnen wir also durch disjunkte Umgebungen trennen. Verschiedene Punkte aus X kdnnen wir
auch trennen, da (X, 7) ein Hausdorff-Raum ist und 7 C o gilt. Seix € X und y; € {y1,...,ya}.
Falls x € Uj— ;2 Vi, so sind U;_; ;»; Vi und Z; entsprechend disjunkte Umgebungen. Falls
x € X \Uiz1,£;Vi = Zj, so sei K kompakt in X mit x € K°. In diesem Fall sind K° und [Z; \
(KNZ;)]U{y;} disjunkte (offene) Umgebungen. (Y, o) ist also ein T,-Raum.

Zeigen wir, dass (Y,0) kompakt ist. Sei 6’ C % eine offene Uberdeckung von Y. Fiir
jedes i € {1,...,n} sei K; C Z; und K; kompakt in X mit O; := (Z;\ K;) U {y;} € o’. Set-
ze 0 :=J._, 0,. Es folgt {y1,....,yn, JUUL;(Vi\Ki) C O, also Y\ O C X \U",(Vi\K;) C

3Was genau die y; sind, spielt fiir uns keine Rolle; wir brauchen nur irgendwelche zusitzlichen Elemente, die
nicht aus X stammen.
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(X\U~LVi)U(UL | K;). Letztere Menge ist in X aber kompakt (also auch in ¥). Demnach ist
Y \ O kompakt in Y. Es gibt also Wy,...,W,, € 6’ mit Y \ O C ;. W;. Eine endliche Teiliiber-
deckung von ¢’ ist daher {Oy,...,0,, W, ...,W, } und (Y, o) ist somit kompakt.

Zeigen wir X =Y. Sei 0 # O € %. Falls O € 1, so offenbar ONX # 0. Falls O = (Z;\
K)U{y;} fiir K kompakt in X und K C Z;, so ist K # Z;, denn Z; ist nach Voraussetzung nicht
kompakt. Es gibt also ein x € X mitx € (Z;\ K) U {y;} und somit ONX # 0.

Zeigen wir o)y :={0ONX |0 € o} =1.Da[(Z\K)U{y}|NX =Z\K,ist ox C 7. Die
Richtung 7 C o}y ist trivial. Damit ist (a) vollsténdig bewiesen.

(b) Sei ein kompakter To-Raum (Y,0) mit X C Y, [Y\X|=n, X =Y und oy := {ON
X|Oeco}=1gegeben. Sei¥Y \X = {y1,....,yp}und 1 < j <n. WirsetzenZ := X U{yj,...y;}
und definieren f : Y — Z durch

foy= 1y fllsye js s In}d
yj falls ye{yj,...,yn}
Sei & die Finaltopologie auf Z bzgl. der Abbildung f,dh. O € & < f~1(0) € 6. Dann ist
(Z,£) als Bild von Y unter der stetigen Abbildung f kompakt. Fiir O € £ ist f~1(0) € o, also
XNO=XnNf"10) € 7. Ist andererseits O € 7, so ist O € 6. Aus O = f~1(0) folgt dann
O € §. Daher gilt §y := {ONX | O € §} = 7. Zeigen wir, dass (Z, &) ein To-Raum ist. Zwei
verschiedene Punkte aus X konnen wir durch disjunkte offene Mengen trennen, da © C &.
Fir x € X und y; € {y1,...,y;} sei O € iNtund V € o mit {y;,...,y,} SV und ONV = 0.
Offenbar sind O und f(V) disjunkte, in Z offene Mengen (denn V = f~!(f(V))) mit x € O
und y; € f(V). Seiy; € {y1,...,yj} mit y; # y;. Dann gibt es disjunkte V,W € o mity; € V und
{yj,...,yn} € W. Offenbar sind f(V), f(W) € & disjunkt mit y; € f(V) und y; € f(W). Der
Nachweis der Hausdorff-Eigenschaft ist damit abgeschlossen. X = Z ist offensichtlich.

4.6.4 Satz (Stone-Cech)

Fiir jeden topologischen Raum (X, 7) existiert ein kompakter Hausdorff-Raum (BX, o)
und eine stetige Abbildung & : X — BX, so dass fiir jeden kompakten Hausdorff-Raum
(K,p) und jede stetige Abbildung f : X — K eine eindeutig bestimmte stetige Abbildung
f:BX — X existiert, mit foh = f.

X h ﬁX

N

K

Falls auch yX mit einem /' dieselben Eigenschaften hat, so sind YX und X bereits ho-
moomorph.

Beweis: Betrachte .7 := {(K,p,f) | K C Z(Z(X)), (K,p) kompakter Hausdorff-Raum

84



und f: X — K ist stetig }. Definiere weiter

heX — H K durch h(x):= (f(x>)(1(,p,f)e.//l
(K.p.f)ed

wobei [k p.f)e.« K mit der gewdhnlichen Produkttopologie versehen wird. X wird nun fol-

gendermaBen definiert: X := h(X). Aus dem Vorangehenden schlieBen wir, dass X kom-
pakt und Hausdorff ist (aus dem Abschnitt Topologische Formulierungen des Ultrafiltersatzes
entnimmt man, dass der Ultrafiltersatz (UFT) fiir diesen Schluss ausreicht). Wir zeigen nun
die Giiltigkeit der universellen Eigenschaft. Sei (K,p) ein kompakter Hausdorff-Raum und
f X — K stetig. Nun gilt |f(X)| < |X|, also nach Lemma 3.2.10 | f(X)| < |Z(Z(X)|. Man
mache sich klar, dass es dann auch ein topologischen Raum (Kp, pg) und einen Homdomor-
phismus g : Ko — f(X) gibt, wobei Ky C Z(Z(X)). Setzt man nun noch fy := g 1o f, so
liegt das Tripel (Ko, To, fo) also in .# . Das f ist jetzt schnell gefunden:

f = 89 PT(Ko.1.f0)|BX - BX — K,

wobei prx, 7, 1) die standard Projektion bezeichnet. Es gilt dann also: foh=go P (Ko, 70.fo) ©
h=gofo=]. B

Die Eindeutigkeit des f folgt daraus, dass zwei solche Abbildungen, auf der in fX dicht
liegenden Teilmenge f(X), bereits iibereinstimmen miissen.

Falls auch yX mit einem %’ dieselben Eigenschaften hat, so gibt es genau ein ¢ : BX — yX
mit ¢ oh = K’ und genau ein ¥ : YX — BX mit woh' = h, also Yo ¢ oh = h. Nun gibt es aber
auch genau ein 6 : X — BX mit 6 oh = h, ndmlich 6 = idgy. also Yo ¢ = idgy und analog
¢ oy = idyx Also ist ¢ ein Homdomorphismus.

4.6.5 Definition

Kompaktifizierung Unter einer Kompaktifizierung eines topologischen Raumes (X, 7) ver-
stehen wir ein Paar ((Y, o), f) eines kompakten topologischen Raum (Y, ©), mit einer homéo-
morphen Einbettung f: X — Y mit f(X) =Y.

4.6.6 Bemerkung

Die Alexandroff-Kompaktifizierung ist also eine Kompaktifizierung im Sinne der obigen Defi-
nition. Hingegen konnen wir das von der Konstruktion aus Satz 4.6.4 nicht unbedingt behaup-
ten. Wenn wir aber Bedingungen angeben konnten, unter dehnen die Stone-Cech-Abbildung
h: X — BX eine homoomorphe Einbettung ist, so hitten wir unsere Kompaktifizierung. Um
diese Bedingungen soll es uns im Folgenden gehen.

4.6.7 Definition

Wir sagen von einem top. R. (X, 7) er ist ein T, 1 -Raum, wenn es zu jeder abgeschlossenen
Teilmenge A und Punkt x € X \ A ein stetiges f : X — [0, 1] gibt, mit f(A) C {1} und f(x) =0.
Aquivalent ist natiirlich die Existenz eines f : X — [0,1] mit f(A) C {0} und f(x) = 1. Ein
Raum, der 77 und T, 1 ist, nennen wir vollstindig reguldr oder Tychonoff-Raum.
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4.6.8 Lemma

Teilrdaume vollstandig reguldrer Raume und beliebige Produkte vollstindig reguldrer Réu-
me sind wieder vollstindig regulér.

Beweis: Dass Teilrdume vollstidndig reguldrer Rdume wieder vollstindig regulér sind ist tri-
vial. Seien also (Xj, 7;)ies vollstindig regulire Rdume. Es gentigt zu zeigen, dass X := [[;c; X;
wieder T, 1 ist. Sei dazu A eine abgeschlossene Teilmenge von X und x € X \ A. Es gibt dann
eine (offene) Basismenge O = [];¢; O; der Produktopologie mitx € O C X \ A. Zu O gibt es ein
endliches J C I mit O; € 7; fiiri € [ und O; = X; fiiri € I\ J. Fiir i € J existiert ein f; : X; — [0, 1]
mit f;(x;) = 1 und f;(X;\ O;) C {0}. Wir setzen dann f : X — [0,1] durch f(z) := [Tics fi(zi)
(als Multiplikation in R zu verstehen). Diese f ist stetig und es gilt f(x) = 1 und f(A) C {0}.

4.6.9 Lemma

Sei (X, ) ein topologischer Raum. Dann ist dquivalent:
(a) (X, 1) ist vollstindig regulér.
(b) X lisst sich in [0, 1]’ einbetten (fiir geeignetes ).
(¢)3f : X — K mit f: homéomorphe Einbettung, (K, o): kompakter T>-Raum.

Beweis: (a) = b) Wir setzen I := C(X, [0, 1]) (zur Erinnerung: C(X,Y) :={f: X — Y| fist
stetig }). Nun definieren wir f : X — [0, 1]/ durch x + (i + i(x)). Dieses f ist dann injektiv,
denn wenn x # y, dann existiert ein i € [ mit i(x) = 0 und i(y) = 1 (man beachte, dass X
ein T1-Raum ist). Also f(x) # f(v). Die Stetigkeit reicht es auf der Subbasis nachzupriifen.
Sei also O = [];¢; O; offen in [0,1})!, mit O; = [0, 1] fiir i # iy und O;, offen in [0,1]. Dann
ist f7 1 (ITic; 0i) = iy 1(0;,). Letztere Menge ist aber offen! Als letztes zeigen wir, dass f
auch eine offene Einbettung ist. Sei dazu O offen in X und f(x) € f(0), fir x € O. Dann
gibt es ein i, € I mit i,(x) = 0 und i,(X \ O) C {1}. Daraus folgt iy '([0,1)) C O. Wir setzen
nun U := [];c;O; mit O; = [0,1) fiir i = i, und sonst O; = [0,1]. Dann ist f(x) € U und
UNF(X) C £(0) (f(y) € UN F(X) impliziert f(y)(ie) = ie(y) £ 1, also y € i; 1(0,1)) C O).
Das bedeutet aber, dass f(O) offen ist.

(b) = c¢) ist trivial.

(c) = a) Als kompakter T>-Raum ist K offensichtlich vollstindig regulir und demzufolge
auch jeder Teilraum. Also ist (X, 7) volstdndig regulir.

4.6.10 Satz

Ein topologischer Raum ist genau dann ein Tychonoff-Raum, wenn die Stone-Cech-
Abbildung /4 : X — BX eine Einbettung ist.
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Beweis: Nun ja, wenn die Abbildung / eine homdomorphe Einbettung ist, so folgt aus dem
vorigem Lemma sofort, dass X ein Tychonoff-Raum ist. Sei also umgekehrt X ein Tychonoff-
Raum. Dann gibt es ein kompakten T,-Raum K mit einer homdomorphen Einbettung f: X —
K. Wenden wir Satz 4.6.4 an, so erhalten wir f = foh. Also muss 4 schon mal injektiv

sein. Stetig ist es sowieso, also miissen wir noch zeigen, dass O offen in X, 4(O) offen in

h(X) impliziert. Nun ist 2(O) = 7_1(]‘(0)) NAh(X) und f(O) =UN f(X) fir U offen in K,

also h(0) = F ' (U)NF " (F(h(X)))Nh(X) =F ' (U)Nh(X) und letztere Menge ist offen in
h(X).

4.6.11 Definition

Jeder Raum hat also eine Kompaktifizierung (Um das einzusehen, braucht man aus einem top.
Raum (X, 7) nur durch ¥ := X U{X} und o := tU{Y} einen neuen top. Raum (¥, 5) zu ma-
chen. (Y, o) ist dann eine Kompaktifizierung von (X, 7).), aber ein Raum hat eine Hausdorff-
Kompaktifizierung dann und nur dann, wenn er ein Tychonoff-Raum ist. In diesem Fall spre-
chen wir bei der Konstruktion aus Satz 4.6.4, dann von der Stone-éech-Kompaktiﬁzierung.

Sei (X, 1) ein fest gewidhlter top. Raum. J# (X, T) bezeichne die Klasse aller Kompaktifi-
zierungen von X. Auf %7 (X, 7) konnen wir wie folgt eine Relation festlegen.

Fiir zwei Kompaktifizierungen (¢1X,c1) und (¢2X,c¢2) (hierbei sind ¢;X als die zugrunde
liegenden kompakten Rédume zu verstehen und ¢; : X — ¢;X die entsprechenden Einbettungen)
definieren wir (¢1X,c;) < (c2X,¢2) < Jein stetiges f: ;X — X mitcy = focy.

Ist (X,7) ein Tychonoff-Raum, so ist < fast eine partielle Ordnung auf der Klasse aller
Hausdorff-Kompaktifizierungen. Gilt nimlich ¢1X < ¢;X und ;X < ¢1X, so ist nicht unbe-
dingt c; X = ¢ X, aber ¢ X und ¢, X sind immerhin noch homdomorph (Beweis bleibt als leich-
te Fingeriibung. Hinweis: Lemma 3.3.3). In diesem Fall nennen wir die Kompaktifizierungen
dquivalent. Diese Begriffsbildung ist kein Zufall, denn legt man durch c1X ~ c2X & 1 X <
X und coX < c1X eine weitere Relation auf der Klasse aller Hausdorff-Kompaktifizierungen
fest, so stellt sich unmittelbar heraus, dass ~ eine Aquivalenzrelation ist. Auf der Klasse aller
Aquivalenzklassen ist < dann auch tatsichlich eine partielle Ordnung.

4.6.12 Lemma

Sei (X, 1) ein Tychonoff-Raum. Zwei Hausdorff-Kompaktifizierungen ¢ X und ¢;X von
X sind genau dann &quivalent, wenn ¢ (A)Ncj(B) =0 < c2(A) Nea(B) = 0 fiir alle
abgeschlossenen A, B C X gilt.

Beweis: Wir zeigen ¢1X < ¢ X. Aus Symmetriegriinden folgt dann ¢, X < ¢1X, also ¢ X ~
c»X . Wir verwenden dazu Satz 4.3.1 um zu zeigen, dass es ein stetiges f gibt, so dass folgendes
Diagramm kommutiert:

X A X
N
C2X
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Nun ist ¢1(X) dicht in ¢;X und g : ¢;(X) — c2X durch g(ci(x)) := ca(x) definiert, stetig.
Zeigen wir also, dass es sich stetig auf ¢1 X fortsetzen ldsst.

Seien dazu P,Q C c,X abgeschlossen mit PN Q = 0. Dann setzen wir A := ¢ ' (g~ (P))
und B:=c; '(g7'(Q)). Nun sind A und B abgeschlossen und es gilt c2(A) C P und c2(B) C Q,
also ¢2(A) Nea(B) = 0 und somit (nach Voraussetzung) auch ¢ (A) Ne¢; (B) = 0. Wir schlieBen
g 1 (P)Ng~1(Q) = 0. Somit ldsst sich g (eindeutig) zu einem f : ;X — ¢, X fortsetzen. Dieses
f erfiillt dann offenbar focy = ¢3, also c1X < ¢ X.

Sind andererseits die beiden Hausdorff-Kompaktifizierungen ¢ X und ¢, X dquivalent, so ist
die eindeutig existierende Abbildung f : c1X — ¢ X mit foc; = ¢; ein Homéomorphismus
und ¢;(A)Necp(B) =0 < c2(A)Nca(B) = 0 fiir alle abgeschlossenen A, B C X gilt klarerweise.

4.6.13 Lemma

Seien ¢1 X und ¢, X zwei Hausdorff-Kompaktifizierungen von (X, 7) und sei f : ;X — X
eine stetige Abbildung mit f ocy = ¢, dann gilt:

1) f ist surjektiv.

2) f(e1(X)) = c2(X) und f(c1X \ c1(X)) = c2X \ c2(X).

Beweis: 1) Zeigen wir zuerst, dass f abgeschlossen ist. Ist A C ¢ X abgeschlossen, so ist A
kompakt und somit auch ¢ (A). Da ¢, X ein Hausdorff-Raum ist, ist ¢; (A) dann abgeschlossen.

Nun ist ¢;(X) dicht in ¢ X, also ¢3(X) = X und es gilt ¢2(X) = f(c1(X)) C f(e1X) =
f(c1X) (da f abgeschlossen ist). Damit ist dann c;X = c5(X) C f(c1X).

2) f(c1(X)) = cp(X) ist klar. Nun gilt ¢1(X) = ¢1X und flc1(X) : c1(X) — f(a1(X)) =
c2(X) ist stetig und bijektiv. Sie ist aber auch offen, denn ist O offen in ¢ (X), so ist ¢; ' (O)
offen in X und somit £(0) = foc(c;' (0)) = ca(cy '(0)) offen in c(X). Aus Lemma 3.3.5
folgt somit f(c; (X)) N f(c1X \c1(X)) =0, also f(c1X \c1(X)) C c2X \ c2(X). Da f surjektiv
ist, gilt somit f(c1X \ ¢1(X)) = c2X \ c2(X).

4.7 BN und Dynamische Systeme

It is well enough that people of the nation do not understand our banking and monetary
system, for if they did, I believe there would be a revolution before tomorrow morning.”
Henry Ford

Wir schauen uns in diesem Abschnitt die Stone-Cech-Kompaktifizierung der natiirlichen
Zahlen - versehen mit der diskreten Topologie - genauer an und beweisen, als Anwendung,
einen wunderschonen Satz aus der Theorie der Dynamischen Systeme. Uns geht es um das so
genannte Auslander-Ellis Theorem.

Im Folgenden fassen wir die Menge N also als topologischen Raum, mit der Topologie
7:= Z(N) auf.
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Als diskreter Raum ist (N, 7) natiirlich normal und somit auch vollsténdig regulér. Es macht
also Sinn von der Stone-Cech-Kompaktifizierung des topologischen Raums (N, 1) zu spre-
chen.

Wir kénnen die Stone-Cech-Kompaktifizierung der natiirlichen Zahlen aber auch anders
beschreiben als in Satz 4.6.4: Dazu definieren wir BN als die Menge aller Ultrafilter auf N.
Fiir A C N setzen wir A* := {¢ € BN | A € ¢}. Offensichtlich gilt A*NB* = (ANB)* und
N* = BN. Demzufolge ist 4 := {A* | A C N} die Basis einer Topologie 7 auf BN.

Zeigen wir, dass (BN, 1) ein kompakter Hausdorff-Raum ist.

Fir ¢,y € BN mit ¢ # y, gibt es ein P € ¢ \ y. Dann gibt es aber auch ein Q € y mit
PN Q = 0. Offensichtlich sind P* und Q* dann disjunkte offene Umgebungen von ¢ bzw. y.

Zeigen wir noch die Kompaktheit.

Sei (A});es eine offene Uberdeckung von BN mit Basiselementen (also Elemente der Form
A*, fir A C N). Gibe es keine endliche Teiliiberdeckung, so wihre (4;);c; eine offene Uber-
deckung von N ohne endliche Teiliiberdeckung (siehe Lemma 3.2.3). Das heif}t es gibt einen
Ultrafilter ¢ mit {N\;c;A; | J C Iund J : endlich } C ¢. Dieser wiirde dann aber in einem A}
stecken, im Widerspruch zu N\ 4; € ¢.

Die Abbildung 8 : N — BN definiert durch f(n) := 7 ist stetig, da N die diskrete Topologie
trigt. AuBerdem ist {r | n € N} dicht in BN, denn firn € A C Nistn € A™.

Zeigen wir, dass der Raum (BN, 7) zusammen mit der Abbildung f die universelle Ei-
genschaft aus Satz 4.6.4 hat und somit homdomorph zur Stone-Cech-Kompaktifizierung der
natiirlichen Zahlen ist.

Sei f: N — X eine stetige Abbildung in einen kompakten Hausdorff-Raum X. Ist ¢ € BN,
so ist der Bildfilter f(¢) unter f ein in X konvergenter Ultrafilter, konvergiert also gegen ein
eindeutig bestimmtes xy € X. Wir definieren also £ : BN — X durch f(¢) := x,. Dieses f ist
stetig, denn ist V offen und x := f(q)) €V, so gibt es ein offenes U mitx €U C U C V. Nun
ist U € f(¢), es gibt also ein P € ¢ mit f(P) C U. Es folgt P* C f~!(V), denn ist y € P*,
also P € y,s0 U € f(y), also auch U € f(y) und somit f(y) € U C V. Nach Satz 2.2.2 ist f
also stetig. Offensichtlich ist fo 8 = f und somit ist f sogar eindeutig bestimmt, da die Werte
auf der dichten Teilmenge {7 | n € N} durch f vorgegeben sind. Die universelle Eigenschaft

aus Satz 4.6.4 ist somit erfiillt.

4.7.1 Bemerkung

Uberlegen wir uns einmal wie groB denn BN eigentlich ist. Dazu bieten sich zwei Moglich-
keiten an. Die erste Variante folgt aus der Beschreibung von BN mittels Ultrafiltern und Satz
9.6.2. Wir bekommen némlich sofort |BN| = | Z(Z(N))|.

Fiir die zweite Variante schauen wir uns die Konstruktion aus Satz 4.6.4 genauer an. wir
sehen dann sofort [BN| < | 22(2(N)). Andererseits enthilt beispielsweise [0, 1] nach Satz
3.6.2 eine abzdhlbare dichte Teilmenge D. Ein surjektives f : N — D als Abbildung nach
[0,1] [01] aufgefasst ist dann aber auch stetig (denn N ist mit der diskreten Topologie versehen).
Fiir die zugehorige Abbildung f folgt dann: f(BN) D f(N) = D, aber f(BN) ist abgeschlos-
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sen. Demzufolge f(BN) = [0,1]1%1, also auch |22(2(N))| = |[0,1](:1]
somit (wieder) |BN| = |2 (Z(N))|.

Die Stone-Cech-Kompaktifizierung der natiirlichen Zahlen ist also um sehr vieles groBer
als die Ausgangsmenge N.

< |BN|. Insgesamt

4.7.2 Satz

Jede unendliche abgeschlossene Teilmenge B C BN besitzt ihrerseits einen Teilraum A C
B, der homéomorph zu BN ist.

Beweis: Gemidl Lemma 3.1.6 wihlen wir uns eine Folge paarweise disjunkter offener Men-
gen (U,)nen aus BN mit Vn € N : U, N B # 0. Fiir jedes n € N sei ¢, € U, N B. Wir setzen
Ao :={¢, | n € N}. Sei nun K ein beliebiger kompakter Hausdorff-Raum und g : Ag — K ei-
g(o,) falls neU,

falls n ¢ Uy,
wobei z € K fest gewiihlt ist. Es gibt dann ein stetiges F : BN — K mit F o = f. Nun gilt
Un CUy,N{n|n e N}und fistauf U, N{n|n € N} konstant. Folglich ist F auch auf U,, kon-
stant (Lemma 3.3.3). Das ergibt Vm € N : F(¢,,) = g(¢), bzw. F|Ag = g. Sei A := Ao C B.
Die Abbildung g ldsst sich somit (auf genau eine Weise) zu einer Abbildung G : A — K fort-
setzen (ndmlich G = F|A) und A ist somit die Stone-Cech Kompaktifizierung von Ag. Da Ag
aber homoomorph zu N ist, ist A somit homdomorph zu SN.

ne stetige Abbildung. Wir definieren dann f : N — K durch f(n) :=

4.7.3 Korollar

Ist (x,)nen eine in BN konvergente Folge, so 3N € N mit x,, = x,, fiir alle m,n > N.

Beweis: Ist (x,),cn konvergent gegen x, so ist A := {x, | n € N} U {x} kompakt, also abge-
schlossen. Da BN iiberabzihlbar ist, muss A somit endlich sein.

4.7.4 Lemma

Es gibt eine Menge & von Teilmengen von N mit den Eigenschaften:
()& =|2(N)|, VA& gilt |A| = |N|und B)VA,B€{(A#B = |[ANB| < |N)).

Beweis: Zu jeder irrationalen Zahl x € R wihlen wir eine Folge rationaler Zahlen (q,(f)) neN

mit x = lim, . g, und setzen dann A, := {q,(f) | n € N}. Fiir verschiedene irrationale Zahlen
x,y gilt |[A,NA,| < |N|. AuBerdem ist jedes Ay eine unendliche Teilmenge der Rationalen
Zahlen Q und da es gerade | &?(N)|-viele irrationale Zahlen gibt, folgt |{A, | x € R\ Q}| =
| Z(N)]|. Fiir eine Bijektion f : Q — N findet sich unser & als & := {f(A,) | x € R\ Q}.
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4.7.5 Korollar

In BN\ B(N) gibt es eine Menge ¢ von paarweise disjunkten nicht leeren offenen Mengen
mit |o| = |Z(N)|.

Beweis: Sei £ wie in Lemma 4.7.4. Dann ist 0 = {A*\ B(N) |[A € £}.

4.7.6 Korollar
inf{| %8| | # : Basis von BN} = inf{|Z| | & : Basis von BN\ B(N)} = | Z(N)].

4.7.7 Lemma

Sei (By)nen eine Folge aus Z(N) mitVn e N : 0 # B, \ B(N) C B;;\ B(N). Dann gibt
es ein unendliches BC NmitVn e N : B*\ B(N) C B\ B(N).

Beweis: 1.Fall 3N € NVm,n > N : B\ B(N) = B}, \ B(N). Dann setze B := By - fertig.

2.Fall es gibt kein solches N. Sei dann 0.B.d.A. B; \ B(N) C B}, \ B(N) fiir alle m < n.
Offenbar gilt: B\ B(N) C B}, \ B(N) < B, \ By, ist endlich und B,, \ B, ist unendlich.

Fiir alle n € N sei x,, € B, \ B;+1. Setze dann B := {x,, | n € N}. Offenbar ist B unendlich und
B\ B, fiir jedes n € N endlich, insbesondere also B*\ B(N) C B\ B(N), denn y € B*\ B(N)

impliziert B € y und N\ (B\ B,,) € v, also auch B, O B\ (B\ B,) € y und somit y € B.

4.7.8 Satz

Unter der Voraussetzung inf{|a| | [N| < o} = |Z(N)] gibt es ein x € BN\ B(N) mit der
Eigenschaft, dass jeder Schnitt abzihlbar vieler Umgebungen von x wieder eine Umge-
bung von x ist.

Beweis: Sei Q die kleinste iiberabzihlbare Kardinalzahl und sei % := {B*\ B(N) | B C N}.
Aus Korollar 4.7.6 folgt, dass Z eine Basis minimaler Kardinalitdt von BN\ B(N) ist. Aus der
Voraussetzung folgt dann, dass es eine Bijektion f : Q — 2 gibt. Setze Py := f(0). Sei o € Q
und fiir alle 8 € a sei Pg € % bereits konstruiert mit 8 < § = Pg C Pg/. Da « abzihlbar ist,
gibt es laut Lemma 4.7.7 ein @ # BZ mit B C (g P3. Falls BN f(a) = 0, so setze Py := B.
Falls BN f (o) # 0, so gibtes ein® # B € Zmit B C BN f(a).

Damit haben wir eine Folge (Py)qcq aus & konstruiert mit Pyy C Py und (PN f(a) =0
oder Py C f(a)), fir alle @ < @’ € Q. Jedes P, ist von der Form Py = By \ B(N), fiir
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ein unendliches By C N. Aus der fiir unendliche A,B C N allgemein giiltigen Beziehung
A"\ B(N) C B*\ B(N) & A\ B: ist endlich, folgt, dass {By | o € Q} die endliche Schnitt
Eigenschaft (eSE) hat. Nun hat aber offensichtlich auch {By | @ € Q}U{A C N | N\ A ist
endliche } die eSE. Es gibt also einen Ultrafilter x € BN\ B(N) mit {By | a € Q} C x, also
X € Ngeq Pa- Istnun P € Z mitx € P, so gibtes ein o € Q mit f(a) = P, also f(a) NPy #0
und somit Py C f(or) = P. (Py)geq ist also eine Umgebungsbasis von x. Sind R,,, n € N ab-
zéhlbar viele Umgebungen von x, so sei Py, C R, und & := sup{a, | n € N}. Dann ist auch
o € Qund somit x € Py C (,enPa, € NpenRa-

4.7.9 Bemerkung

Derartige Punkte aus Satz 4.7.8 nennt man P-Punkte. Wie wir gesehen haben ist x € BN\ (N)
ein P-Punkt, wenn es zu jeder Folge (B,),cn aus x ein B € x gibt mit |B\ B,| < |NJ, fiir alle
n € N. Was wir gezeigt haben ist also: Die Kontinuumshypothese impliziert die Existenz von
P-Punkten. Die Annahme, dass keine P-Punkte existieren ist zusammen mit ZFC konsistent
(ein tiefligendes Resultat von S.Shelah).

Uns geht es jetzt aber um etwas anderes. Wir werden die Addition von N auf BN fortsetzen.
Dazu definieren wir eine Operation + : BN x SN — BN.

4.7.10 Definition

Fir PC Nund n € N setzen wir P—n := {m € N| m+n € P}. Seien ¢ und y Ultrafilter auf
N, also ¢,y € BN. Wirsetzendann ¢ + y :={PC N |[{neN|P—n€e ¢} € y}.

Zeigen wir, dass ¢ + y € BN ist, ¢ + y tatsdchlich also ein Ultrafilter auf N ist.
1. 0 ¢ ¢ + y, denn sonst wire 0 = {n € N |0 —n € ¢} € y. Ebenso leicht siecht man
{neN|N-neg¢}=Necy,alsoNec ¢+ y.

2. Seien P,P' € ¢ +y. Zu zeigenist {n e N| PNP' —ne ¢} € y. Nun gilt (P—n)N (P —
n)=PNP —n,also{neN|P-ne¢}nN{neN|P —neco}={neN|PNP —ne ¢},
und damit {n e N|PNP' —ne€ ¢} € .

3. SeiPec¢+wyund PC P.Dannist{n e N|P—nec ¢} € y,alsoauch{neN|p'—ne
0} € ¢ (denn P—n C P’ —n), und somit P’ € ¢ + .

4. SeiPCNundP¢Z ¢+vy.Damnist {neN|P—ned} fy,also{neN|P—n¢
o} cy.Nunist{(neN|P—n¢g ¢} ={neN|(N\P)—nec ¢} (das liegt daran, dass
N\ (P—n) = (N\P) —nist). Demnach ist N\ P € ¢ + y.

Insgesamt sehen wir, dass ¢ 4 y tatsdchlich ein Ultrafilter auf N ist.

4.7.11 Lemma
Vo,0,w e BNgilt o+ (¢ +y) = (¢ +¢)+ .
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Beweis: Da sowohl ¢ + (¢ + y), als auch (¢ + ¢) + y Ultrafilter sind, reicht es zu zeigen,
dass @+ (0 +yw) C (9+¢)+ yist. SeialsoP € ¢+ (¢ + v).

DemzufolgeistA:={neN|P—nec@}cp+y,also{neN|A—nc ¢} c y.Zuzeigen
bleibt {neN|P—ne@+¢} e y.

Zwischenbehauptung: A—nec ¢ = P—nc ¢+ 9¢.

Beweis der Zwischenbehauptung: Sei A —n € ¢. Wirsetzen B:={m N | (P—n)—m €
@}. Es gilt nun A—n C B. Denn ist m € A —n, so folgt m+n € A, also P— (m+n) € ¢.
Nun ist aber P — (m+n) = (P —n) —m, und somit m € B. Da A —n € ¢, folgt auch {m €
N|(P—n)—me @} =Bc ¢undsomitP—ne ¢+ ¢.

Da{neN|A-ne¢}lcyund{neN|A—ned} C{neN|P—nece+¢} folgt
unmittelbar {n e N|P—ne€ @+ ¢} cy,alsoP e (¢+¢)+ y.

4.7.12 Lemma
Sei ¢ € BN. Dann ist die Abbildung f, : BN — BN, definiert durch fj (y) := ¢ + v, stetig

Beweis: Es reicht die Stetigkeit auf der Basis % := {A* | A C N} nachzurechnen. FiirA C N
betrachten wir dazu f; 1(A4") = {w € BN | A € ¢ + v} und zeigen, dass sich diese Menge als

Vereinigung von Basiselementen schreiben ldsst und somit offen ist. Fiir v € fdj 1( *) folgt
somit By :={n €N |A—n¢€ ¢} € y. Zeigen wir y € By, C fq,_'(A*).
Sei § € By, also By, € §. Es folgt A € ¢ + &, also f(&) € A* und somit § € f¢_l( ).

Wir erhalten schlussendlich f, ' (A*) = U, s By,

4.7.13 Lemma

a)Sein € Nund ¢ € BN. Dann ist ¢ +7n =rn+¢.
b) Fiir alle m,n € N gilt i +1n = m+n.

Beweis: a) 0 +n={PCN|{keN|P—ke¢p}cn}={PCN|ne{keN|P—ke
0}}={PCN|P-nec¢}={PCN|{keN|n+kePtec¢}={PCN|{keN|ne
P—k}e¢}={PCN|{keN|P—ken}tecd}=n+¢

b) Es reicht wieder i+ 7 C m+n zu zeigen (da es sich auf beiden Seiten um Ultrafilter
handelt). Also, sei P € m+n. Dannist {k e N|P—kecm} €n,alsonec {ke N|P—k cm}
und somit P — n € m. Das bedeutet aber m € P —n und somit m+n € P, also P € m +n.

4.7.14 Definition (dynamisches System)

Sei (X, t) ein kompakter Hausdorff-Raum und 7 : X — X eine stetige Abbildung. Wir nen-
nen dann das Tripel (X, 7,T) ein Dynamisches System. Der Einfachheit halber schreiben wir
oftmals einfach (X, 7).
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In der topologischen Dynamik interessiert man sich fiir das Verhalten von iterierten Anwen-
dungen der Abbildung 7', also T o...oT. Mit T" ist die n-fache Nacheinander Ausfiihrung der
Abbildung 7' gemeint.

Zu diesem Zweck definiert man sich die Abbildung S : BN — BN durch S(¢) := ¢ +1 - die
stetige Fortsetzung des Shift-Operators Sy : N — N, definiert durch Sy(n) :=n+ 1.

Sei x € X ein fest gewdhltes Element. Wir bekommen eine stetige Abbildung f, : N — X
(da N mit der diskreten Topologie versehen ist), definiert durch fi(n) := T"(x). Es gibt dann
ein stetiges f; : BN — X mit fr o = f.

4.7.15 Lemma

f erfiillt die Gleichung f; oS = T o f,. Folgendes Diagramm kommutiert also.

N—P- pN 5. BN

k = |z

X4T>X

Beweis: Die Menge N := {n | n € N} liegt dicht in BN. Da BN ein Hausdorff-Raum ist und
sowohl f, 0, als auch T o f; stetig sind, reicht es also die Gleichheit auf N zu iiberpriifen. Es
folgt: froS(n) = fi(n+1)=fi(n+1) = froB(n+1)= fi(n+1) =T (x) =T o T"(x) =
Tofi(n)=To fu(i).

4.7.16 Wichtiges Beispiel

Fiir (X,7T) = (BN, S) und ¢ € BN folgt:

fo : BN — BN, mit fy oS = So f,. Induktiv schlieBen wir damit fy (1) = S"(¢) = ¢ + .

Nun kénnen wir folgern: fy(v) = ¢ + y.

Beweis: Die Abbildung g : BN — BN definiert durch g(y) = ¢ + v ist stetig (siche oben).
Fiir n € N gilt £y (71) = ¢ +7 = (). Auf der dichten Teilmenge N := {1t | n € N} stimmen die
stetigen Abbildungen fj, und g also iiberein und damit stimmen sie auch auf ganz BN iiberein
(Hausdorff-Raum!).

Es folgt also fy (y) = ¢ + w, fiir jedes y € BN. Hieraus folgt sofort fy o fiy = foiy-

Es gilt iibrigens allgemein fiir ein dynamisches System:

Jeofo = Fig)

denn beide Abbildungen sind stetig und stimmen (wie man leicht nachrechnet) auf N :=
{n| n € N} tiberein.

Dem dynamischen System (BN, S) wird im Folgenden eine herausragende Rolle bei der
Untersuchung allgemeiner dynamischer Systeme (X,7) zukommen. Die Gleichung f, 0§ =
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T o f, ist es, die es ermoglicht Eigenschaften des dynamischen Systems (BN, S) auf andere
dynamische Systeme zu iibertragen. Um einige dieser Eigenschaften zu formulieren benotigen
wir ein paar neue Begriffe.

4.7.17 Definition (rekurrent, uniform rekurrent, proximal)

Sei (X,7,T) ein dynamisches System.

Ein Punkt x € X heift rekurrent, wenn fiir jedes U € XN 7 die Menge {n € N | T"(x) e U}
unendlich ist.

Der Punkt x € X heif3t uniform rekurrent, wenn es zu jedem U € XN T ein m € N gibt, so
dass Vn € NIk < mmit T"*(x) € U.

Zwei Punkte x,y € X nennen wir proximal, wenn fiir jede Umgebung U der Diagonale
A:={(x,x) | x € X} von X x X die Menge {n € N | (T"(x),T"(y)) € U} unendlich ist.

Letztere Definition ist sinnvoll, denn die Abbildung f : X x X — X x X definiert durch
f(x,y) := (y,x) ist ein Homéomorphismus. Und fiir eine Umgebung U von AistV:=UNf(U)
ebenfalls eine Umgebung von A mit U C V und (x,y) € V < (y,x) € V. Wenn x,y proximal
sind, so also auch y, x.

Kommen wir zu einem wichtigen Satz, der die dynamischen Konzepte von eben mit Ultra-
filtern auf N beschreibt.

4.7.18 Satz

Sei (X,7,T) ein dynamisches System.

a) x € X ist genau dann rekurrent, wenn es ein ¥ # 0 gibt mit f; () = x und das ist
genau dann, wenn es ein ¢ € BN gibt mit ¢ = 0 und f,(¢) = x.

b) x € X ist genau dann uniform rekurrent, wenn es zu jedem ¢ € BN ein y € BN gibt,
mit (¢ + v) = x.

¢) Zwei Punkte x,y € X sind genau dann proximal, wenn es einen Ultrafilter ¢ gibt mit
f:(¢) = f3(). Dies ist genau dann der Fall, wenn es einen nicht-trivialen Ultrafilter ¢ gibt

(also N ¢ = 0), mit f(9) = fi(9).

Beweis: a) Sei x zunichst als rekurrent angenommen. Fiir jedes U € xN 7 ist die Menge
{n € N| T"(x) € U} also unendlich. Beachten wir 7" (x) = fy(n), so setzen wir Ay := {n €
N70 | f.(n) € U}. Es gilt dann Ay NAy = Ayny und jedes der Ay ist unendlich. Sei y ein
Ultrafilter mit {Ay | U € N1} C w. Wir zeigen f,(y) = x, indem wir zeigen, dass f,(y) € U
ist, fiir jedes U € XN T.

Also sei U € XN 1 gegeben. Es gibt dann ein V € T mitx € V CV C U. Zuniichst einmal ist
Ay € y. Fiir y € P*, also P € y wiihlen wir ein n € Ay N P. Esistdann 72 € f,"1(V), also 0 #
P*Nf; (V). Da P C y beliebig war, folgt w € i (V) C £, 1(V) und somit f,(y) €V C U.
Offensichtlich ist y # 0.

Nehmen wir mal an, dass gilt y = 7, fiir n # 0. Dann haben wir T"(x) = x, also auch
T*(x) = x, fiir jedes k € N. Sei dann ¢ € BN mit (¢ = 0 und {kn | k € N} C ¢. Dann gilt
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ebenfalls fi(¢) = x. Ist nimlich U € xN 1, so wihlen wir V € T mit x € V CV C U. Fiir
Pc¢seil € PN{kn|necN},also fi(k) =xund somit P*N f71 (V) # 0. Da P beliebig war
bekommen wir ¢ € fi (V) C £ 1(V) C £, 1(U), also fi(¢) € U. Da auch U beliebig war,
bekommen wir £;(9) € Nyeine U = {x}, also fi(9) = x.

Zeigen wir nun, dass aus f,(¢) = x, fiir () ¢ = 0 folgt, dass x rekurrent ist. Sei dazu U € xN T,
also ¢ € £, 1(U). Dann gibt es aber ein P € ¢ mit ¢ € P* C f,1(U). Da P unendlich ist
und P C {n € N| fi(n) € U}, folgt {n € N| T"(x) € U} ist auch unendlich (man beachte
f() = T"(x)). Und somit ist x rekurrent.

b) Sei x uniform rekurrent und ¢ BN gegeben. Zu jeder Umgebung U von x gibt es eine
offene Menge V mitx € V CV C U. Zu diesem V gibtes ein m € N, so dass Vn € NIk <m
mit 7"*(x) € V. Schreibt man das so {n € N | 3k < m mit T"*(x) € V} = N, so sieht
man, dass es ein k < m geben muss mit {n € N | T (x) € V} € ¢, oder dquivalent dazu
P:={neN| fi(n) € (T")"'(V)} € ¢.

Jetzt folgern wir, dass dann auch f,(¢) € (T%)~! (V) ist. Denn sonst ¢ € £, 1 (X \ (T%)~'(V)).
Da (T*)~!(V) abgeschlossen ist, gibt es somit ein P’ € ¢ mit ¢ € P* C f, - 1(X\ (T*)~1(V)).
Fiir n € PN P’ folgt dann aber n € P’* C £ 1 (X \ (T¥)~1(V)) im Widerspruch zu n € P.

Es gilt also T*o f,(¢) € U fiir unser k. Allgemeiner formuliert, bedeutet dies, dass die
Menge Yy := {k € N| T*o fi(¢) € U} # 0 ist. Offensichtlich gilt Yy N Yy = Yy~y. Es gibt
somit einen Ultrafilter y mit {Yy | U € xN 7} C .

Zeigen wir, dass fi(¢ + y) € U fiir jedes Ui N 7 gilt. Andernfalls f;o fy(y) € U. Es gibt
VeintmitxeV CV CU. Also y € f¢_1 o £y (X \ V). Damit gibt es ein P € y mit
we P C fylof (X \V) und ein n € PNYy - was aber (fast) offensichtlich nicht sein kann.
Aus fi(¢ +y) € U fiir jedes UxN 7 folgt dann f,(¢ + w) = x.

Nehmen wir nun an x ist nicht uniform rekurrent. Dann gibtes ein U € xNtVm € Ndn €
NVk <mist T""*(x) ¢ U. Fiir jedes m € N ist demnach A,, := {n € N | Vk < m ist T"*(x) ¢
U} # 0. Da auBerdem A,, 1 C A, gilt, gibt es somit einen Ultrafilter ¢ mit {A,, | m € N} C ¢.
AusA, € ¢ folgt P:={neN|T"™(x) U} € ¢ (daA, CP).Esgilt P={neN| fi(n) &
(T™)~1(U)}. Hieraus folgt nun f,(¢) & (T™)~!(U), denn sonst fi(¢) € (T™)~1(U), es giibe
also ein P’ € ¢ mit ¢ € P”* C ' ((T"™)~!(U)). Dann gibt es aber auch ein n € pN P’ (denn
0 # PN P € ¢) und es wiirde folgen: nn € P'*, also fi(12) € (T™)~'(U) im Widerspruch zu
neP.

Wir haben somit 7 o f,(¢) & U, fiir alle m € N. Anders aufgeschrieben bedeutet dies ge-
rade: Vm € Nist i1 ¢ f(p’l ofe {(U)=:V.Da fy: BN — BNund f; : BN — X stetig sind ist
V aber offen. Da {m | m € N} dicht in BN ist, muss also V = 0 gelten. Fiir jedes v € BN gilt
somit fyo fo(y) ¢ U und damit V y € BN ist fi(¢ + y) # x.

©) Sei fi(¢) = f(9), fiir ¢ = n. Dann gilt somit 7"(x) = T"(y), also fiir jedes k € N auch
T*(x) = T*(y) und damit ist fiir jede Umgebung U der Diagonalen {m € N | (T™(x),T™(y)) €
U} unendlich, x,y sind also proximal.

Sei fi(9) = £4(9), fiir V¢ = 0. Sei weiter U eine offene Umgebung von A. Dann ist U =
Uicr Ui x V; fiir gewisse in X offene U; bzw. V;. Da A kompakt ist, gibt es ein endliches J C [
mit A C J;e; Ui x Vi. Dann gilt aber X C UIGJ[U NV;] und es glbt demnach ein j € J mit
f:(9) = f,(¢) € U;NV;. Dann ist aber Q := f, {({U;NV)) ﬂfy L(U;NV;)) offen und es gilt
¢ € Q. Es gibt also ein P € ¢ mit ¢ € P* C Q. Die Menge P ist unendlich (da ¢ nicht trivial ist)
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und fiir jedes n € P gilt (i (n), fy(1)) € [U;NV}] x [U;NV,] CU, also auch (T"(x), T"(y)) € U.
Also sind auch hier x,y proximal.

Seien nun x,y als proximal vorausgesetzt. Fiir jede Umgebung U der Diagonalen ist Yy :=
{n e N|(T"(x),T"(y)) € U} unendlich und es gilt Yy NYy = Yyny. Es gibt also einen nicht-
trivialen Ultrafilter ¢ (also (¢ = @) mit {Yy | U ist Umgebung von A} C ¢.

Fiir jede abgeschlossene Umgebung U von A gilt nun (£(¢),£,(¢)) € U. Andernfalls de-
finieren wir die stetige Abbildung f := fi x f, : BN — X x X und wir bekommen phi €
f Y (X xX\U) =: Q. Da Q offen ist, gibt es somit ein P € ¢ mit ¢ € P* C Q. Dann gilt
aber PN Yy = 0 - Widerspruch!

Da der Schnitt aller abgeschlossenen Umgebungen U von A aber gerade A ist (es handelt
sich um einen kompakten Hausdorff-Raum und folglich ist dieser normal), folgern wir f,(¢) =

F(9).

4.7.19 Lemma

Wir befinden uns wieder im dynamischen System (BN, S).
a) Sei ¢ uniform rekurrent und proximal zu 0. Dann gilt ¢ + ¢ = ¢.
b) Ist ¢ + ¢ = ¢, so ist ¢ rekurrent und proximal zu 0.

Beweis: a) Nach Voraussetzung gibt es zu jedem & € BN ein y € BN, mit f (€ +y) = ¢
und es gibt ein 7 mit f (1) = fy(n).

Zu 1 gibtes also ein y mit f (1 +y) = ¢, also ¢ +1+ y = ¢. Nun bedeutet f, (1) = f5(n)
aber  +nN =0+n =n.Esfolgtalson +y =4¢.

O+n+yv=¢undn+ vy =¢ergebendann¢ + ¢ = ¢

b) Ist offensichtlich.

4.7.20 Definition

links-topologische Semigruppe, Linksideal, Rechtsideal, Ideal Sei X eine Menge zusam-
men mit einer Operation + : X x X — X, die assoziativ ist (das heiBt x+ (y+2z) = (x+y) +2).
Wir nennen (X, +) dann eine Semigruppe.

Ist 7 eine Topologie auf X, so dass fiir jedes x € X die Abbildung f, : X — X definiert
durch f,(y) := x+y stetig ist, so sprechen wir von einer links-topologischen Semigruppe und
bezeichnen diese mit (X, 7,+) (bzw. wenn klar ist welche Topologie gemeint ist auch einfach
nur mit (X, +)).

Eine Teilmenge nicht leere Teilmenge I C X einer Semigruppe hei3t Linksideal (bzw. Recht-
sideal), wenn X +1 C I (bzw. I + X C I). Sie heifit Ideal, wenn sie sowohl Linksideal, als auch
Rechtsideal ist.

(BN, +) ist also eine links-topologische Semigruppe.
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4.7.21 Lemma

Sei (X, t,+) eine kompakte Hausdorff links-topologische Semigruppe. Jedes Rechtsideal
enthilt dann ein minimales Rechtsideal (bzgl. Inklusion). Ferner sind minimale Rechts-
ideale kompakt und abgeschlossen.

Beweis: Fiir ein minimales Rechtsideal I mit a € I gilt [ = a + X, denn per Definition gilt
a+ X C I und andererseits ist a + X ebenfalls ein Rechtsideal. Aufgrund der Minimalitit also
a+X =1.Da f, : X — X definiert durch f,(x) := a+x stetig ist, ist / = f,(X) kompakt (als
Bild der kompakten Menge X) und damit, da X ein Hausdorff-Raum ist, auch abgeschlossen.

Sei nun 0 # I C X ein beliebiges Rechtsideal. Sei

Z:={JCI|J istein kompaktes Rechstsideal }.

Fir eine Kette .#° C Z (bzgl.Inklusion) ist J := (% # 0 also offensichtlich ebenfalls ein
kompaktes Rechtsideal und somit eine untere Schranke fiir #". Mit dem Zornschen Lemma
folgern wir, dass es ein minimales Element J' in Z geben muss.

Ist J” C J' ein Rechtsideal, so wihlen wir ein a € J”. Dann ist J”/ := a + X ein kompak-
tes Rechtsideal mit J” C J” C J', also J"” = J', aufgrund der Minimalitit. Damit ist J' ein
minimales Rechtsideal unterhalb von /.

4.7.22 Lemma

Es gibt ein 0 # ¢ € BN, welcher uniform rekurrent und proximal zu 0 ist (im dynamischen
System (BN, S)).

Beweis: Sei / ein minimales Rechtsideal in (8N, +) mit O ¢ I (das man solch eines withlen
kann, bleibt als leichte Aufgabe) und sei ¢ € I. Dann gilt somit I = ¢ + BN. Sei £ € BN. Dann
ist auch J := ¢ + & + BN C I ein Rechtsideal, also J = I. Da ¢ € I, gibt es also ein y € BN
mitp =9 +E&+y=Ffy(E+y)

Nach Satz 4.7.18 ist ¢ uniform rekurrent.

Nun ist 7 aber auch eine abgeschlossene Untersemigruppe von BN, denn fiir ¢ + 1 € I und
o+éclist(04+N)+(0+E)=0+(N+0+&) € ¢+ PN =1. AuBerdem ist jedes Element
aus / ebenfalls uniform rekurrent (Das ist wichtig!).

Mit dem Zornschen Lemma folgert man, dass es eine minimale abgeschlossene Untersemi-
gruppe K C I gibt (diese ist damit dann auch kompakt).

Zeigen wir, dass fiir jedes Element k aus K gilt k+k = k. Sei dazu k € K.

Wir setzen 2 :={Z C K | k € Z und Z ist abgeschlossen und Z+Z C Z}. Es ist 2 # 0,
denn K € Z. Sei € eine Kette bzgl. der Inklusion (also total geordnete Teilmenge von 2). Es
giltk €Y := (% und Y ist abgeschlossen. Fiir jedes Z € ¥ gilt auBerdem Y +Y CZ+Z CZ
und damit Y +Y C Y. Die Menge Y ist also eine untere Schranke fiir 4" in 2. Das Zornsche
Lemma liefert also minimale Element in 2.
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Sei Y ein solches minimales Element. Wir zeigen nun k + k = k. Die Menge k+Y = f;(Y)
ist als Bild der kompakten Menge Y unter der stetigen Abbildung f; selber kompakt und
damit abgeschlossen in K. AuBerdem gilt (k+Y)+ (k+Y) Ck+ (Y +Y+Y) Ck+Y. Also
k+Y € 2. Daauchk+Y CY +Y CY gilt, folgt aus der Minimalitit von Y bereits k+Y =Y.
Die Menge Z :={y €Y |k+y=k} = f,:l(k) MY ist somit nicht leer und abgeschlossen
(als Urbild der abgeschlossenen Menge {k}). AuBerdem gilt Z+Z C Z (y,z € Z impliziert
k+(y+z) =k+z=k). Somit ist Z € Z und damit Z =Y. Wir bekommen dann k € Z, also
k+k=k.

Wir wihlen nun ein beliebiges ¢ € K. Dieser Ultrafilter erfiillt dann ¢ + ¢ = ¢, nach Lemma
4.7.19 ist er also proximal zu 0. Da K C I ist ¢ aber auch uniform rekurrent! Damit ist der
Beweis beendet.

4.7.23 bemerkung

Eine leichte Abwandlung des Beweises von Lemma 4.7.22 ergibt sofort einen Beweis zu fol-
gender Aussage:

Sei (X, 7,+) eine kompakte Hausdorff links-topologische Semigruppe. Dann gibt es ein
x€X mitx+x=x.

Insbesondere ist dies dann ein einfacher Beweis dafiir, dass es einen Ultrafilter 0 £ ¢ € BN
gibt mit ¢ + ¢ = ¢.

Bevor wir nun zum angekiindigten Satz von Auslander-Ellis kommen, beweisen wir eine
andere interessante Folgerung, bekannt unter Hindmans Theorem.

4.7.24 Hindman’s Theorem

a) Sei ¢ # 0 ein Ultrafilter auf N mit ¢ + ¢ = ¢. Zu jedem A € ¢ gibt es ein unendliches
B C A derart, dass } ,,cgn € A, fiir jedes endliche E C B.

b) Wenn N = |J!'_, A;, dann existiert k € {1,...,n} und es existiert ein unendliches B C
Ay, sodass ) ,cpn € Ay, fiir jedes endliche E C B.

Beweis: a) Sei also ¢ # 0 ein Ultrafilter auf N mit ¢ + ¢ = ¢ und sei weiter A € ¢. Wir
setzen Ag :=A. Seien Ag D A1 D ... DAy und ng < ny < ... < n; aus N gewihlt mit:

DA €9, firi=0,... .k

2)ni€Ajund A; —n; € ¢ fiiri =0,...,k.

Wir setzen dann Ay := Ag N (Ag —ng). Nun ist Ay € ¢ und somit auch A} | := {n €
N|Aw 1 —n€ @} € ¢ (denn ¢ = ¢ + ¢). Wir kdnnen also ein ny € A1 NA} N{n €
N | n > n;} wihlen.

Wir zeigen im Folgenden, dass B := {n; | k € N} die geforderte Eigenschaft hat. B C A ist
jedenfalls schon mal klar.

Sei ng, <ny, <...<npmit0 <l Es giltn;, € Ay,. Sei 0 <i </ und Zé:i+]nkj €Ay, -

: l : l
Nunist A, C Ag 1 C Ag, —ny,, also Zj:i+1 ng; € Ay, — Ny, und somit Zj:inkj €Ay
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Insgesamt bekommen wir also 25.:0 ng; € Ay, CA.
b) Ist N = |, A;, dann wihlen wir einen Ultrafilter ¢ # 0, mit ¢ + ¢ = ¢. Eines der A,
muss dann in ¢ liegen (Ultrafilter!). Teil a) angewendet erledigt dann den Rest.

4.7.25 Bemerkung

Wir kdnnen sogar noch ein bischen mehr bekommen:

Sei (N, +) eine Semigruppe. Versehen wir die Menge N mit der diskreten Topologie T :=
P (N), so konnen wir genauso wie bei den natiirlichen Zahlen mit der diskreten Topologie
von der Stone-Cech-Kompaktifizierung BN sprechen. BN sind hier eben die Ultrafilter auf N.
Auch konnen wir, vollkommen analog zu den natiirlichen Zahlen, die Operation 4+ : N x N —
N auf + : BN x BN — BN fortsetzen. Die einfachen Details (formal jedes N durch ein N
ersetzen) bleiben dem Leser iiberlassen.

4.7.26 Definition

A C N nennen wir eine IP-Menge, wenn es ein unendliches B C A gibt, mit

Bg::{Zn\EQB und E endlich } CA.
nek

Die Menge By mit der gewohnlichen Addition ist somit eine Semigruppe.
Wir erhalten nun noch folgende Verallgemeinerung von Hindmans Theorem (Satz 4.7.24).

4.7.27 Satz

Sei N eine IP-Menge mit zugehorigem B C N.

a) Sei ¢ # 0 ein Ultrafilter auf By mit ¢ + ¢ = ¢. Zu jedem A € ¢ gibt es ein unendliches
B’ C A derart, dass Y ,,cgn € A, fiir jedes endliche E C B'.

b) Wenn N = (JI_ A;, dann existiert k € {1,...,n} und es existiert ein unendliches B’ C
Ay, so dass Y,,cgn € Ay, fiir jedes endliche E C B'.

Beweis: Teil a) geht genauso wie im Beweis zu Korollar 4.7.24.

b) Wir wihlen einen Ultrafilter ¢ # O auf By mit ¢ + ¢ = ¢. Wir bekommen dann By =

" (AiNBy). Es gibt somitein k € {1,...,n} mit Ay N By € ¢. Teil a) erledigt dann den Rest.
4.7.28 Bemerkung

Statt mit 4 ldsst sich natiirlich auch alles mit ”-” beweisen. Was wir benotigt haben, war
schlieBlich nur die Assoziativitédt der Operation ”+.

Kommen wir nun zum angekiindigten
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4.7.29 Satz von Auslander-Ellis

Sei (X, 7,T) ein dynamisches System. Dann gibt es zu jedem x € X ein uniform rekurren-
tes y € X, welches proximal zu x ist.

Beweis: Sei ¢ uniform rekurrent und proximal zu 0 (in (BN, S)). Dann ist y := f,(¢) uni-
form rekurrent und proximal zu x.

Beweis dazu: Es gilt fyo fp = f7 (,), denn beide Abbildungen sind stetig und stimmen (wie
man leicht nachrechnet) auf N := {5 | n € N} iiberein.

Zu beliebigen ¢ € BN gibt es, da ¢ uniform rekurrent ist, ein Y mit f(p(<p +y) = ¢, also
Feo fo(0+ W) = i(9) = v. Da fro fp = Fr. (o) olgt (8 +¥) = I () (9 + ) = y. Damit
haben wir gezeigt, dass y uniform rekurrent ist.

Zeigen wir noch, dass x,y proximal sind. Da jedenfalls ¢ proximal zu 0 ist, gibt es ein ¢
mit fp(9) = fy(¢) =0+ ¢ = 9. i o i

Wir bekommen damit fy o fo(¢) = fi(@). mit fro fo = J7.(p) und y := fx() folgt dann
fy(¢) = fi(¢) und x,y sind demnach proximal.

4.8 Cantormenge und dyadische Raume

”Die gliicklichsten Sklaven sind die erbittersten Feinde der Freiheit.”
Marie von Ebner-Eschenbach

In diesem Abschnitt schauen wir uns ein wichtiges Beispiel eines topologischen Raums
genauer an: Die Cantormenge. Anwendungen hat diese z.B. in der MaBtheorie. Im Anschluss
an die Beweise der wichtigsten Aussagen iiber dieses interessante Gebilde, fithren wir eine
wichtige Klasse topologischer Raume ein, die sogenannten dyadischen Rdume und zeigen,
dass alle kompakten metrischen Raume dyadisch sind.

Seien f,g: R — R definiert durch f(x) := %x und g(x) := %x+ % Sei Cp :=[0,1] und
Cut1:= f(C,) Ug(Cy). Die Cantormenge (auch Cantorsches Diskontinuum) ist nun definiert
als C :=,,en G- Jedes C, ist kompakt (klar fiir Cp; der Rest folgt per Induktion, denn f und
g sind stetig), also auch abgeschlossen (R ist ein T>-Raum). Demnach ist auch C als Schnitt
von abgeschlossenen Mengen selber abgeschlossen und somit auch kompakt (da C C [0, 1]).

4.8.1 Lemma
Sei o : {0,1,....n—1} — {f,g}, n > | eine beliebige Abbildung. Dann ist

1 - 0 fall —k) =
aWAhwwww@@:ﬁwzg,wmcw{ i
k=1

2 falls a(n—k)=
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Beweis: Wir beweisen dies durch vollstindige Induktion nach n. Fiir n = 1 ist alles klar.
n—n+1:Seialsoo:{0,1,....n} — {f,g} gegeben. Es ist

Wir unterscheiden nun zwei Fille. 1.Fall a(n) = f. Dann ist

1 ak n n+1 I
A= f(3_nx+ ; 3k 3n+1 X+ Z 3k+1 3n+1 X+ Z 3k

.y 0 falls k=1
wobel a; =
Aj—1 falls k 7& 1

Fiir k # 1 gilt nach Induktionsvoraussetzung

0 falls a(n—(k—1))=f ;[0 falls a(n+1—k) =f
ap_1 = also a; = .
2 falls a(n—(k—1))=g 2 falls a(n+1—-k)=g

Der Beweis von Fall 2 ist vollkommen analog und bleibt dem Leser iiberlassen.

4.8.2 Bemerkung

Fir a:{0,1,....,n—1} — {f,g} mitn > 1, also o € {f, g}", setzen wir
(n) . _ Iy - ag
Ay =a(m—1)o..oa(0)([0,1)) =[Y == =+ ) =],

wobei die a; entsprechend Lemma 4.8.1 definiert sind. Offenbar ist C,, = (J 4 (. g}nAgl ) Diese
Einsicht motiviert folgende Definition.

4.8.3 Definition
Firn>1und o : {0,....n—1} — {0,2}, also a € {0,2}", setzen wir

Fiir n = 0 und (das eindeutig bestimmte) & : @ — {0,2} sei B(O?) :=10,1].

Offenbar gilt nun auch G, = Ugefo ) Bgf ) fiir alle n € N, also

c=NG=N U B)=U(N B}, wobei P:=T]{0,2}"

neN neN ae{0,2}n feP neN neN
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4.8.4 Lemma
Sei f € Pund f(n+ 1) keine Fortsetzung von f(n). Dann ist

B(’H‘l) N B(”)

Fnrt) VB =0

Analog ist fiir verschiedene a, @’ : {0,...,n— 1} — {0,2} immer Bg:) ﬂBgl,) =0.

Beweis: Sei f(n+ 1) = o und f(n) = . Da «a keine Fortsetzung von o' ist, gibt es ein
minimales [ < n mit o(l) # o' (l). Es ist

1 n+1 n / n
(n+1) Hak—1) 1 o(k—1) o' (
By ._[k; 3T +k;—3 ] und B := k; Z

Wir unterscheiden wieder zwei Fille.

1 Hak-1) & alk—1)
1.Fall o(l)=0 und o/(I) =2 .Es folgt T +;T<;T’ denn
1 Hak-1 1 Hoak-1) 1 nEHo22 2ol (k—1)
—+ = + < + — <0< —
3t kzg:tl 3 3t k:lz+2 3 3t k:lz+23k 3t k;tl 3
1 a'(k—1) ”“a(k—l)
- /
2.Fall a(l)=2 und a'(l) =0 . Es folgt —+ Z 3— kZIT, denn
1 nooal(k—1) 1 "oal(k—1) 1 no2 2 ook —1)
gt Y S et Y Srragt Y g<gms
3 k=141 3k 3 k=142 3¢ 3 k=1+2 3¢ 3+l k=I+1 3

Bg’ ) ﬂBgZ,) = ( fiir festes n und verschiedene o, o', beweist man analog dem ersten Teil.

4.8.5 Bemerkung

Fir f € {0,2}, also f: N — {0,2} und n € N verstehen wir unter f|n die Einschriinkung
von f auf {0,...,n — 1}. Mit dieser Bezeichnung, dem Lemma von eben und der Gleichung

C= Ufep(ﬂnENB;-rgl)) , wobei P :=[],en{0,2}" ergibt sich der folgende Satz.
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4.8.6 Hauptsatz uber die Cantormenge

(a) C= U (me\n 2211 denn ﬂBﬂ

fE{O,Z}N neN neN k=1

(b) Jedes C,, ist die disjunkte Vereinigung der Bgl ), o € {0,2}". AuBerdem erhalten
wir {Bglﬂ) | a € {0,2}"1} aus {Bg') | @ € {0,2}"}, indem wir aus jedem Bgl) das
mittlere (offene) Drittel entfernen. Der verbleibende Rest besteht aus zwei (disjunkten)

Bg’,H) E;’,,Jrl (fiir gewisse o', " € {O 2)}7+1) Insbesondere bedeutet dles Cni1 CCy.

(c) Jedes B( ) hat eine Linge von 3n Dle Linge von G, ist also 2" - 3,1 = (g) . Insbe-
sondere hat C das Lebesgue-Mal A (C) =

(d) Fassen wir {0,2} = [T,en{0,2} als topologischen Raum auf, wobei wir {0,2} mit
der diskreten Topologie versehen. Dann ist die Abbildung ¢ : {0,2}Y — C definiert durch
o(f) =X 1 ein Homdomorphismus (wobei C mit der entsprechenden Teilraum-

topologie von R Versehen ist). Fiir C gilt demnach insbesondere |C| = [{0,2}"Y| = |R|.
Man beachte auch Satz 10.6.6 im Kapitel iiber Verbénde.

Beweis: (a), (b) und (c) folgen unmittelbar aus dem bisher bewiesenen.
Zeigen wir (d). Offenbar ist ¢ surjektiv. Zeigen wir, dass ¢ injektiv ist. Seien f,g € {0, Z}N
mit f # g. Sei n minimal mit f(n) # g(n). O.B.d.A. sei f(n) =2 und g(n) = 0. Es folgt

)= 8k stk
k=1 k=1

¢ ist stetig: Sei € > 0 und f € {0,2}". Es gibt ein N € N mit YN+l 3—2k < €. Setze

falls n < N
0= [[ 0 mit 0,= | U} Bllsn<N,
{0,2} falls N <n

neN

Dann folgt ¢(O0) C |o(f) — €, ¢(f) + €[ mit f € O. Da f und € beliebig, beweist dies die
Stetigkeit. Da {0,2}" kompakt und C ein T>-Raum ist, ist ¢ ein Homdomorphismus.

Co

C; I /]
¢, I I L I
C; HE =B N . N . N .
cC; EER ©ENR I ER EE BN IR ER
G mioomn nmm nn nmm mnn nmnm nn
Ce NN L1 V1 ewe o (1 1 e T

Abbildung 1: Die 7 Iterationsstufen Cy bis Cg vermitteln einen Eindruck der Cantormenge.
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4.8.7 Lemma (Selbstahnlichkeit der Cantormenge)
Es gilt C = f(C)Ug(C), mit f,g: R — R, f(x) := txund g(x) := +x+ 3.

Beweis: Fiir den Beweis greifen wir auf Resultate aus dem Abschnitt iiber die Hausdorft-
Metrik vor. Diese werden dort selbstverstdndlich unabhiingig von denen hier bewiesen. Fiir
A C[0,1] sei F(A) := f(A)Ug(A). Offenbar gilt dann F"([0,1]) = C,. Aus Satz 7.1.7 folgt,
dass es eine eindeutig bestimmte nicht leere kompakte Teilmenge C* von [0, 1] gibt mit F(C*) =
C*. Induktiv schlie3t man, dass C* C C,, ist fiir jedes N € N, also C* C C. Andererseits konver-
giert F"(]0,1]) gegen C* (bzgl. der Hausdorff-Metrik), wie man dem Fixpunktsatz von Banach
entnimmt. Fiir den Grenzwert C* von (F"([0,1])),en gilt

C*=1lim F"([0,1]) = lim C, = ] |J Gk

n—oo Nn—oo
neNk>n

wie wir dem Beweis von Satz 7.1.2 entnehmen (die Grenzwerte sind bzgl. der Hausdorft-
Metrik zu verstehen). Da C, C Uy, C; fiir jedes n € N gilt, ist C € C* und schlieBlich C = C*.

4.8.8 Lemma

Sei A abgeschlossen in C := {0,1}" (mit der Produkttopologie). Dann ist A ein Retrakt
von C (d.h. 3f: C — A stetig, mit f|A = idy).

Beweis: Wir definieren die Metrik d(x,y) := Y,;cn4 ‘|x; — yi| auf C. Offenbar induziert
diese Metrik die Produkttopologie auf C und erfiillt die (leicht nachzurechnende) Eigenschaft

d(x,y)=d(x,z) = y=z furalle x,y,z€C. (%)

Fiir x € C gibt es ein y, € A mit d(x,A) = d(x,yy) (denn A > a — d(x,a) € R ist stetig auf
der kompakten Menge A). Wegen (x) ist dieses y, eindeutig bestimmt. Wir definieren nun
f:C— Adurch f(x) :=y,. Offenbar gilt f|A = id4. Zu zeigen bleibt somit noch die Stetigkeit.

t falls i=j
{r} a l J eine typische Subbasismenge (mit ¢ €
{0,1} falls i#

{0,1} und j € N) und sei f(x) € O. Wir setzen nun V :=[[;cn V; mit V; =

Seidazu O :=[];enyO; mit O; =

{xi} falls i<y
{0,1} falls i>j
und zeigen, dass f(V) C O gilt. Angenommen dem ist nicht so. Dann gilt (f(x)); # (f(y)); fir
einy € V. Nun ist wegen (*) und der Dreiecksungleichung d(y, f(y)) < d(y, f(x)) < d(x,y) +
d(x, f(x)), also

Y 47 = (POl < Y 47 (i = il =+ xi = (f ()il

ieN ieN
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Sei dann / € N minimal mit |y; — (f(y)):]| # |xi —yi| + |21 — (f(x))s]. Da |y; — (f(»));] #

[ty =y, s — (£(x)), folet £ < jund |yi— (F())] # i — (f(x))i] (wegen x; = ). Isbeson-
=0

dere folgt auch, dass / minimal ist mit (f(x)); # (f(y));. Es folgt nun |y; — (f(y));| = 0 und

= (f(x))i| = 1, also y; = (f(v)); und x; # (f(x))s.

(Beweis: Andernfalls wire [y, — (f(y));| = 1 und |x; — (f(x))i| = 0, also Yien4™"(|x; —
Yil 4+ i = (F())il) = Eicr 4 1y = (FODil + Eimr 47 (i = yil + i = (F(0))il) < Ly 4" yi =
(fONil+Eisr 4™ =Lict4 7 yi= (f0))il +47' /3 < Lien4™Iyi— (f ()i - ein Widerspruch.)

Nun bekommen wir den gesuchten Widerspruch, denn d(x, f(y)) = Xien 4_." i — (f(¥)il =
Lict4 = ()il + Xt i = (fO))il < Eicid ™ xi = (FO))il + Eiid ™ = Kict 4™ i —
(fONil+471/3 < Liew [xi = (f(x))i] = d(x, f (x)).

4.8.9 Lemma

Sei (X, ) ein kompakter Hausdorff-Raum mit einer Basis Z4. Dann JA abgeschlossen
c {0, 1}'% (mit Produkttopologie) und 7 ein stetiges und surjektives f : A — X.

0 falls x¢B
1 falls xeB

Sei A’ := {f, | x € X} und A := A’. Offenbar ist die Abbildung x — f, injektiv (X ist ein
To-Raum), also ist g : A’ — X, f — x bijektiv. g ist aber auch stetig, denn fiir B € 4 folgt

Beweis: Fiir jedes x € X sei f, € {0,1}% definiert durch f,(B) := {

{1}  falls B'=B

{0,1} falls B #B

gil(B) = ( H OB/) ﬂA/ y wobel OB/ = {
Be#

Wir verwenden nun Satz 4.3.1, um zu zeigen, dass ein stetiges f : A — X existiert, mit f|A’ = g.
Seien Cy,C; disjunkte abgeschlossene Mengen in X. Angenommen 34 € g=1(C))Ng=1(G).

Nun gibt es endliche Teilmengen %), % C X mit C; C Y%A, C; C UH, und (U%;) N
(U%B, =0), denn (X, 7) ist kompakt und T5. Setze &' := %, U %, und

{h(B)} falls Be #
{0,1} falls B¢ #

W:= ] Vs, wobei Vp:=
Be#

Seien x,y € X mit f, € WNg~1(C)) und f, € WN g !(C,), also insbesondere x € C; und
y € C,. Es gibt dann B}, B, € %' mit x € B} und y € B;. Folglich ist y € By, also f(B1) =1
und f(B1) = 0. Dies steht im Widerspruch zu f(B1) = h(B;) = f,(B1) - wir sind fertig.

4.8.10 Definition

Ein topologischer Raum (X, 7) heifit dyadischer Raum bzw. dyadisch, falls es eine Men-
ge Y und eine stetige und surjektive Abbildung £ : {0,1}¥ — X gibt ({0,1} natiirlich mit
Produkttopologie). Da {0, 1} kompakt ist, sind dyadische Riume kompakt.
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Als interessantes Resultat haben wir nun:

4.8.11 Satz

Jeder kompakte metrische (bzw. metrisierbare) Raum ist ein stetiges Bild der Cantormenge
und damit insbesondere dyadisch.

Beweis: Nun hat ein kompakter metrischer Raum X eine abzdhlbare Basis (Satz 2.4.4).
Es gibt also eine abgeschlossene Teilmenge A von {0,1}Y und eine stetige und surjektive
Abbildung g : A — X (das ist Lemma 4.8.9). Andererseits gibt es eine stetige Abbildung f :
{0,1} — A mit f|A = idy. Die ist dann insbesondere auch surjektiv (das ist Lemma 4.8.8).
Dann ist aber go f : {0, 1} — X ebenfalls stetig und surjektiv.

4.8.12 Bemerkung

Gezeigt haben wir eigentlich, dass jeder kompakte Hausdorff-Raum mit abzédhlbarer Basis
dyadisch ist (und kompakte Metrische Rdume haben eine abzidhlbare Basis). Da aber jeder
kompakte Hausdorff-Raum mit abzidhlbarer Basis auch metrisierbar ist (Satz 12.8.3), scheint
diese Formulierung nur auf den ersten Blick stérker.

4.9 Perfekte Abbildungen

In diesem Abschnitt fithren wir eine weitere wichtige Klasse von Abbildungen ein.

4.9.1 Definition

Perfekte Abbildung Wir nennen eine Abbildung f : X — Y zwischen zwei topologischen
Riumen (X, 7) und (Y, o) fast perfekt, wenn f abgeschlossen ist und f~!(y) fiir jedes y € ¥
kompakt ist. Eine stetige und fast perfekte Abbildung nennen wir schlieBlich perfekt.

Wozu dieser Unterschied? Nun einige der folgenden Lemmas gelten eben bereits fiir in
unserem Sinne fast perfekte Abbildungen. Man braucht eben nicht iiberall die Stetigkeit. Um
dies deutlich zu machen benutzen wir von vornherein diese Abschwichung des Begriffs der
perfekten Abbildung. Das bedeutet keineswegs das an allen anderen Stellen die Stetigkeit eine
notwendige Voraussetzung ist, sondern eben nur, dass es mir an den Stellen nicht moglich war
es ohne Stetigkeit sinnvoll zu formulieren oder zu beweisen.

4.9.2 Lemma

Fiir eine Abbildung f : (X, 1) — (Z,&) sind folgende Aussagen dquivalent.
a) f ist fast perfekt.
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b) Fiir jeden T,-Raum (Y, 0) ist f x idy : X x Y — Z x Y fast perfekt.
¢) Fiir jeden To-Raum (Y, 0) ist f X idy : X XY — Z x Y abgeschlossen.
d) Fiir alle Ultrafilter ¢ auf X gilt (f(¢) — z impliziert Ix € £~ 1(z) mit ¢ — x).

Beweis: a) = b) = c) ist klar (da idy perfekt ist und fast perfekte Abbildungen auch
abgeschlossen sind).

c) = a). Offensichtlichist f : X — Z abgeschlossen (man betrachte die Einschrinkung von
f xidy auf X x {y}, firein y € Y). Zeigen wir, dass fiir ein beliebig gewihltes z € Z die Menge
f~'(z) kompakt ist. Wir verwenden dazu Satz 4.1.7. Sei also z € Z und (Y, o) ein To-Raum
und ¢ : f~'(z) x ¥ — Y die entsprechende Projektion. Um die Abgeschlossenheit von ¢ zu
zeigen, verwenden wir Lemma 2.2.6. Sei also y € Y und U offen in X x Y mit¢~!(y) CU. Da
(f xidy)~Yz,y) = ¢~ ' (), ist (f x idy)~'(y) C U und es gibt somit ein W offen in Z x ¥ mit
(z,y) € W und (f x idy)~"(W) C U. Dann ist aber W(z) := {y €Y | (z,)') € W} ebenfalls
offen mit y € W(z) und ¢~'(W(z)) C (f x idy)~'(W) C U. Damit ist g als abgeschlossen
erkannt und f~!(z) somit kompakt.

a) = d) Sei ¢ ein Ultrafilter auf X mit f(¢) — z, fiir ein z € Z. Somit gilt z € ﬂP€¢m -
Npeg f(P), denn f ist abgeschlossen (= insbesondere ist f ~!(z) # 0). Angenommen ¢ kon-
vergiert gegen kein x € f~!(z). Dann gibt es zu jedem x € f~1(z) ein O, € XN T mit O € ¢. Da
f~!(z) kompakt ist, gibt es dann endlich viele x1, ..,x, € f~1(z) mit f~1(z) C 0y, U...U Oy, =:
U € t Aus unserem Wissen iiber Ultrafilter folgern wir dann X \U € ¢. Da X \U =X \U
schlieBen wir weiter z € f(X \U), also f~!(z) N (X \U) # 0 - ein Widerspruch! Es gibt somit
doch ein x € f~1(z) mit ¢ — x.

d) = a) Zeigen wir, dass f~!(z) kompakt ist. Sei dazu ¢ ein Ultrafilter auf X mit f~!(z) € ¢.
Dann ist f(¢) = z und dieser konvergiert offensichtlich gegen z. Nach Voraussetzung gibt es
somit ein x € f~1(z) mit ¢ — x. Da ¢ beliebig gewihlt wurde bedeutet dies aber gerade die
Kompaktheit von f~!(z).

Zeigen wir, dass f abgeschlossen ist. Wir verwenden dazu Lemma 2.2.6. Sei z € Z und
f~Yz) CU € 7. Angenommen YV € zNE& ist f~!(V) keine Teilmenge von U. Dann hat
o:={f1(V)|VveznEYu{X\U} die endliche Schnitt Eigenschaft und es gibt somit einen
Ultrafilter ¢ mit ¢ C ¢. Dann konvergiert f(¢) aber gegen z und es gibt nach Voraussetzung
somit ein x € f~!(z) mit ¢ — x. Da X\ U € ¢, ist x € X \U = X \ U; aber wir haben x €
f~Y(z) C U - ein Widerspruch! Somit gibt es ein V € zN & mit f~!(V) C U und f ist daher
abgeschlossen.

4.9.3 Lemma

a) Sei f: (X, 1) — (Y, 0) fas perfekt und Z C ¥ kompakt. Dann ist auch f~!(Z) kompakt.
b) Die Nacheinanderausfiihrung fast perfekter (bzw. perfekter) Abbildungen ist fast per-
fekt (bzw. perfekt).

Beweis: a) Sei f: X — Y fast perfekt und K in Y kompakt. Sei dann ¢ ein Ultrafilter in
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X mit f~1(K) € ¢. Dann ist K € f(¢), also gibt es ein y € ¥ mit f(¢) — y. Aus Lemma
4.9.2 folgt die Existenz eines x € f~!(y) C f~!(K) mit ¢ — x. Die Menge f~!(K) ist somit
kompakt.

b) Sind f: X — Y und g: Y — Z perfekt, dann ist (go f)~!(z) = f~!(g7'(z)) kompakt,
denn g~!(z) ist kompakt und aus a) folgt, dass dann auch f~!'(g~1(z)) kompakt ist. Das die
Nacheinanderausfiihrung abgeschlossener Abbildungen wieder abgeschlossen ist, ist trivial.

4.9.4 Lemma

Sei (X, 7) ein Hausdorff-Raum, A C X mit A # X, A =X und f:A — Y eine perfekte
Abbildung. Dann gibt es keine stetige Abbildung g: X — Y mit g|A = f.

Beweis: Nehmen wir an, es gibt doch solch ein g. Sei dann x € X \ A. Da g stetig ist, ist
f(A) = g(A) dicht in g(X). Da f(A) abgeschlossen in Y ist, gilt somit f(A) = f(A) = g(A) =
g(X). Alsoist K := f~!(g(x)) # 0 und zudem kompakt. Da x ¢ K und (X, 7) ein T>-Raum ist,
gibt es disjunkte offene Mengen U,V mit K C U und x € V. Nunistaber Y\ f(A\U) offen und
g(x) €Y\ f(A\U).Es gibtalsoein W € xNtmit g(W) C Y\ f(A\U). Nach Voraussetzung
gibt es dann aber auch ein a € VNW NA. Somit folgt f(a) = g(a) € f(A\U),alsoa € U - im
Widerspruch zu U NV = 0.

4.9.5 Lemma

Sind f: (X,7) — (Y,0)und g: (Y,0) — (Z,§) stetig, ist g o f perfekt und (Y, ) Haus-
dorff, so sind f: X — Y und g|f(X) : f(X) — Z perfekt.

Beweis: Ohne Einschrinkung konnen wir voraussetzen, dass f surjektiv ist. Ist nun A
in Y abgeschlossen, so ist f~1(A) in X abgeschlossen und somit ist g(A) = g(f(f~'(A)))
in Z abgeschlossen. Fiir z € Z ist f~!(g'(z)) in X kompakt und somit ist auch g~!(z) =
f(f~'(g7'(z))) kompakt. Die Abbildung g ist also perfekt.

Zeigen wir, dass auch f perfekt ist. Fiir y € Y ist f~!(y) jedenfalls abgeschlossen und
Teilmenge von (go f)~!(y). Letztere Menge ist aber kompakt. Also ist auch f~!(y) kom-
pakt. Sei nun A C X abgeschlossen. Nehmen wir mal an, wir hitten f(A) # m Jeden-
falls ist (go f)|A : A — Z perfekt und aus dem eben bewiesenen folgern wir, dass auch
g|f(A): f(A) — Z perfekt ist. Nun ist aber g|f(A) : f(A) — Y eine stetige Fortsetzung, die
es nach Lemma 4.9.4 nicht geben kann - Widerspruch. Also ist f(A) = f(A) und f ist somit

abgeschlossen.
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4.9.6 Satz

Das Produkt [],c;fi einer Familie fast perfekter (bzw. perfekter) Abbildungen (f; :
(Xi, 7)) — (Yi,0;))ier ist genau dann fast perfekt (bzw. perfekt), wenn jedes f; fast per-
fekt (bzw. perfekt) ist. Dabei ist f := [Tic; fi : [Tict Xi — [Licr Yi durch [Tics fi((xi)icr) :=
(fi(xi))ier definiert.

1.Beweis: Seien zunichst alle f; fast perfekt. Wir verwenden Lemma 4.9.2. Sei ¢ auf X :=
[Lic; X; ein Ultrafilter und y = (y;)ics € Y :=[lic; Yi mit f(¢) — y. Sei nun j € I beliebig. Aus
der Stetigkeit der Projektionsabbildung p; folgt p;(f(¢)) — y;. Nunist p;(f(9)) = fi(p;(9))
und es gibt somit ein x; € fj-*l(yj) mit p;(¢) — x;. Fur jedes j =i € I gilt das eben gezeigte
und aus Lemma 3.2.11 folgt somit ¢ — x := (x;)ie; € f~'(y). Die Abbildung f ist also fast
perfekt. Falls alle f; auch noch stetig sind, so folgt aus Lemma 2.3.3, dass f perfekt ist.

Sei umgekehrt f fast perfekt. Sei j € I. Fir jedes i # j sei x; € X;. Wir definieren dann
die stetigen Abbildungen g;: X; — X und h; : Y; — Y durch g;(x) := (x;)icr, wobei x; :=x'
und £ (y') := (zi)ier, mit z; = fj(x;) fiir i # jund z; = y'. Sei nun ¢; ein Ultrafilter auf X; mit
[i(®j) — yj, fiirein y; € ¥;. Dann ist g ;(¢;) ein Ultrafilter auf X mit f(g;(9,)) = 1;(f;(9,)) —
hj(y;) =:y. Es gibt somit ein r = (r;)ie; € £~ (y) mit g;(9;) — r. Aus der Stetigkeit der Pro-
jektionsabbildung p; : X — X; folgt dann aber ¢; = p;(g,(9,)) — p;(r) =r; € f; ' (y;). Die
Abbildung f; ist also fast perfekt. Falls f sogar perfekt ist, folgt aus Lemma 2.3.3, dass f;
auch perfekt ist.

Dieser Satz ist ein sehr starker Satz und seine Bedeutung fiir die Theorie perfekter Abbil-
dungen ist so grof} wie die des Tychonoff Satzes fiir die kompakten Rdaume. Beispielsweise
erhalten wir den Satz von Tychonoff und auch das verallgemeinerte Tubenlemma (Korollar
4.4.5) unmittelbar als Korollar. Zuvor geben wir aber noch einen zweiten Beweis.

2.Beweis: Seien zundchst alle f; fast perfekt. Zeigen wir das fiiry € Y :=[];¢, ¥; die Menge
£~ '(y) kompakt ist. Dies folgt aber unmittelbar aus dem Satz von Tychonoff, denn fiir y =
(yi)ier ist f~1(y) =Ties ;' (v:) und die £, (;) sind nach Voraussetzung kompakt. Zu zeigen
bleibt somit noch, dass die Abbildung abgeschlossen ist. Wir verwenden dazu Lemma 2.2.6.
Sei also y = (y;)ie; € Y und U offen in X mit f~!(y) C U. Aus Korollar 4.4.5 folgt, dass es
eine Basismenge W := [T;; Wi gibt mit f~!(y) C W C U. Damit haben wir f;'(y;) C W;,
fiir jedes i € I. Dann gibt es ein V; € y; N o; mit £~1(V;) C W; (wieder fiir jedes i € I), denn
die Abbildungen f; sind schlieBlich abgeschlossen. Nun ist W eine Basismenge, es gibt also
hochstens endlich viele i € I mit W; # X;. An den Stellen, an denen also W; = X; gilt, kann man
ebenfalls V; = X; wihlen. Somit ist V := [];; V; ebenfalls eine in Y offene Menge und es gilt
y € V. Damit folgt dann f~' (V) = [Tie; £, ' (Vi) € [Tie;Wi = W C U und wir haben gezeigt,
dass f abgeschlossen ist.

Sei nun f = [];c; fi fast perfekt und j € I. Sei y; € Y;. Fiir jedes i € I\ {,} sei y; ein
beliebiges, aber fest gewihltes Element. Fiir y := (y;)ic; ist nach Voraussetzung f~!(y) =
[Tic; f; ' (v:) kompakt. Somit ist auch jeder einzelne Faktor kompakt, isbesondere also f j_l (vj)-
Sei A; eine in X; abgeschlossene Menge. Fiir jedes i # j setzen wir A; := X;. Dann ist A :=
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[Tic;Ai in X =[T;c; X; abgeschlossen (kann man ganz leicht nachrechnen), also ist auch f(A) =

[Les fi(Ai) in Y =[], Yi abgeschlossen. Aus [;; fi(Ai) = [Tier fi(Ai) = [Tics fi(Ai) folgt
dann f;(A;) = fj(A;) und f;(A;) ist demnach abgeschlossen. f; ist also eine abgeschlossene
Abbildung.

4.9.7 Korollar

1. Ein Produkt kompakter top. Rdume (Xj, 7;);es ist wieder kompakt.

2. (Verallgemeinertes Tubenlemma) Seien (Xj, T;);c topologische Rdume und A; C X;,
fiir jedes i € I eine kompakte Teilmenge. Ist W eine in X := [];c; X; (mit der Produkt-
topologie) offene Menge, mit A :=[];c;A; C W, so gibt es eine standard Basismenge
UmitACUCW.

Beweis: 1. Setzen wir Y := {0} mit ¢ := {0,Y}, so ist fiir jedes i € I die eindeutige be-
stimmte Abbildung f; : X; — Y perfekt. Somit ist auch das Produkt f :=[[;c;Xi=: X =Y
perfekt und [];c; X; = f~'(0) demnach kompakt.

2. Fiir jedes i € I sei z; ¢ X;. Wir setzen dann ¥; := (X; \ A;) U{z;} und definieren f; : X; — Y;
durch fi(x) = x, falls x € X; \ A; und f;(x) = z;, falls x € A;. AufY; fithren wir nun die grébste
Topologie o; ein, so dass f; eine abgeschlossene Abbildung ist (nicht unbedingt stetig), also
oi:=top({Y;\ fi(B) | Xi\ B € 7;}) (siehe Satz 2.1.2). Damit ist %, := {Y; \ f;(B) | X; \B € 7;}
sogar eine Basis (!) fiir o;. Fiir jedes y € ¥; ist ffl (y) offensichtlich kompakt. Die Abbildung
fi ist also fast perfekt. Damit ist auch das Produkt f :=[];c; fi : X — Y :=[]ic;Y; fast perfekt!
Setzen wir z:= (z;)ies, soist f~'(z) = A C W. Aus Lemma 2.2.6 folgt, dass es eine in ¥ offene
standard Basismenge V = [];; V; gibt, mit V; € ;und z € Vund A = f~1(z) C f~ (V) CW.
Offensichtlich ist f~'(V) = [Tic; f; ' (V;) dann eine offene standard Basismenge in X (und
das, obwohl die f; nicht unbedingt stetig sind).

4.9.8 Lemma

Sei f: (X,1) — (Y, 0) fast perfekt, surjektiv und
a) (X, 1) ein T,-Raum. Dann ist auch (Y, o) ein To-Raum.
b) f zusitzlich stetig und (X, 7) ein T3-Raum dann ist auch (Y, o) ein T3-Raum.
¢) f zusitzlich stetig und (X, 7) ein T4-Raum dann ist auch (¥, o) ein T4-Raum.

Beweis: a) Sei y; # y,. Dann sind f~! (y1) und f -1 (y2) kompakte und disjunkte Teilmengen
von (X, 7). Es gibt dann disjunkte offene Obermengen U,V (der Beweis dazu lduft analog zu
dem Beweis von Lemma 4.1.4). Also f~'(y;) C U und f~'(y;) C V. Lemma 2.2.6 folgend
bekommen wir ein U’ € y; N o und ein V'’ € y, "o mit f~1(U') CU und £~ (V') C V. Damit
sind dann U’ bzw. V' die gesuchten disjunkten offenen Umgebungen von y; und y,.
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b) Sei B in Y abgeschlossen und y € Y \ B. Dann ist f~!(y) kompakt und f~!(B) abge-
schlossen. Zu jedem x € f~!(y) gibt es dann ein O, € XN und ein U, € T mit f~!(B) C U,
und O, N U, = 0. Nun ist f~!(y) kompakt, es gibt also endlich viele xp,...,x, € f~!(y) mit
1) €0, U...UOy, = Ound f~1(B) CU, N...NU,, =:U. Es gilt natiirlich ONU = 0.
Dann gibt es jedenfalls ein O’ € yN o mit f~1(0') C 0. Zu jedem b € B gibt es dann ein
V, €bno mit f~1(V,) CU.FiirV :=UpepVp giltdann BCV € o und £~ (V) C U. Es folgt
O'NV =0 und (Y,0) ist damit Ts.

¢) Folgt aus Satz 3.1.3.

4.9.9 Lemma

Sei (X, 7) ein Tp-Raum, (¥, o) ein T3-Raum und f : X — Y eine perfekte Abbildung. Dann
ist auch (X, 7) ein T3-Raum.

Beweis: Sei x € U € 7. Fiir jedes z € f~'(f(x)) \ {x} gibt es ein U, € xN 7 und ein V, €
zNTmit U;NV, = 0. Nunist {V, | z € f~1(f(x))\ {x}}U{U} eine offene Uberdeckung der
kompakten Menge f~1(f(x)), es gilt also f~!(f(x)) CV,, U...UV,, UU, fiir gewisse z;. Zur
Abkiirzung setzen wir V : =V, U...UV, und U’ :=U; N...NU,,. Da f abgeschlossen ist,
gibt es nach Lemma 2.2.6 ein W € ¢ mit f(x) € W und f~ (W) CVUU. Da (Y,0) ein Ts-
Raum ist, gibt es ein P € ¢ mit f(x) € P CP C W, also f~!(P) C VUU. Wir setzen nun
Q:=U'Nnf ' (P)undesfolgtxc QCQC f1(P)C f'(P)CVUU.

Angenommen es ist 9NV # 0, dann ist auch QNV # 0, aberes gilt Q C U und U' NV =0
- ein Widerspruch! Also haben wir Q C U und (X, 7) ist somit auch T3.

4.9.10 Lemma

Sei (X, 7) lokal kompakt und f: (X, 7) — (Y, o) perfekt und surjektiv. Dann ist auch (Y, o)
lokal kompakt. Hat jeder Punkt x € X sogar eine Basis aus kompakten Umgebungen, so
hat auch jeder Punkt y € Y eine Basis aus kompakten Umgebungen.

Beweis: Zeigen wir die erste Aussage. Sei y € V € ¢. Dann ist f~!(y) C f~1(V) € 7. Zu
jedem x € f~!(y) gibt es somit ein U, € xN 7T und eine Kompakte Teilmenge K, mit x €
U, C K,. Da f~!(y) kompakt ist, gibt es endliche viele xi,...,x, € £~ (y) mit f~1(y) CU :=
Uy, U...UU,, C Ky, U...UK,, =: K. Somit ist U offen und K kompakt mit f~!(y) CU C K.
Aus Lemma 2.2.6 folgt, dass es ein W € yN o gibt mit f~!(W) C U. Wir bekommen dann
W= f(f~'(W)) C f(U) C f(K) und f(K) ist kompakt.

Zeigen wir die zweite Aussage. Im obigen Beweis konnen wir jedes K, und U, so wihlen,
dass K, C f~1(V) gilt. Dann folgt aber K C f~!(V) und somit W C f(K) C V.
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4.9.11 Lemma

Sei f: (X,t) — (Y,0) perfekt und surjektiv. Ist Z eine Basis von (X, 7), so gibt es eine
Basis %’ von (Y, 7) mit |%'| <|45)|.

Beweis: Seiy € V € 6. Dannist f~!(y) C f~!(V) € 7 und somit gibt es zu jedem x € £~ (y)
ein B, € # mit x € B, C f~ (V). Da f~!(y) kompakt ist, gibt es endlich viele xi,...,x, €
FH ) mit f71(y) € By, U...UB,, C f~(V). Dannist aber W := Y \ f(X\ (By, U...UBy,))
offenund y € W C V. Das beweist, dass B’ :={Y \ (X \Upecw B) | & C 2 und & endlich }

eine Basis von (Y, o) ist, mit |%'| < | 4.

4.10 Eine Ungleichung von Arkhangelskii

”Papiergeld ist eine Hypothek auf den Wohlstand, der gar nicht existiert, gedeckt durch
Pistolen, welche auf die gerichtet sind, die den Wohlstand erarbeiten miissen. Da wir
nur mit echtem Geld zu tun haben wollen, beteiligen wir uns nicht an irgendwelchen
Betrugssystemen der Zentralbanken.”

Selbstdarstellung der freien Bank der Lakota-Indianer, 2008

Wenn kompakte Rdume sich manchmal fast wie endliche verhalten, wie gro3 konnen sie
dann werden? Unter gewissen zusitzlichen Bedingungen jedenfalls nicht allzu groB3. Wie ge-
nau, das beschreibt ein tiefliegender Satz von Arkhangelskii, dem wir uns in diesem Abschnitt
zuwenden.

4.10.1 Definition

Charakter Sei (X, 7) ein topologischer Raum. x(x, (X, 7)) := inf {|#| | £ ist Umgebungs-
basis von x} ist der Charakter des Punktes x. Der Charakter des gesamten Raumes ist dann
erklirt als: x (X, 7) := sup{x(x,(X,7)) | x € X }. Falls klar ist welche Topologie gemeint ist,
so schreibt man auch einfach kurz y (x,X), bzw. x (X).

4.10.2 Lemma
Sei (X, ) ein Hausdorff-Raum, dann gilt [X| < d(X)*X).

Beweis: Fiir jedes x € X sei eine Umgebungsbasis #(x) C T gewihlt, mit |2 (x)| < x(X)
(und Z(x) > Ro). Setze o :={Y CA||Y| < x(X)} (A ist irgendeine dichte Teilmenge mit
|A| = d(X)). Also haben wir |a%| < d(X)*X),

(Allgemein gilt: Falls X unendlich und Y beliebig, dann ist [{Z C X | |Z < |Y|}| < |XY|, denn
¢ : XY - {ZCX||Z<|Y|} mit o(f) := f(Y) ist surjektiv.)
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Fiir U € %#(x) wihle a(x,U) € UNA und setze A(x) := {a(x,U) | U € B(x)}. Also A(x) € %
(klar). Setze nun noch 2% (x) := {UNA(x) |U € #(x)} C <. Dann bekommen wir |27 (x)| <
X(X) und x € UNA(x) CU (YU € HB(x)). Also aempyA = {x} = (x#y = x) #
22(y)). Wir erhalten damit dann:

X = {o(x) | xeX} < HZ C ot | 1Z < g (X))} < | ¥ < (a ()X = a(x) %)

4.10.3 Bemerkung

Fiir unendliche T-Ridume ist x(X) unendlich, oder sie sind diskret. Im nichsten Satz kénnen
wir daher 0.B.d.A x(X) als unendlich annehmen.

4.10.4 Satz von Arkhangelskii

Fiir einen unendlichen Hausdorff-Raum X mit der Eigenschaft, dass jede offene Uberde-
ckung (0;)ie; eine Teiliiberdeckung (0;);es hat, mit |[J| < x(X), gilt: |X| < 2% Insbe-
sonder gilt die Aussage also fiir kompakte und Lindel6fsche Rdume. Als besonders scho-
nen Spezielfall erhalten wir, dass fiir kompakte Hausdorff-Raume X, welche dem ersten
Abzihlbarkeitsaxiom (A1) geniigen, gilt: [X| < |R].

Beweis: Sei X unendlich, kompakt und T, und ¥(X) =: m (= X < m, klar). Fiir x € X
wihle eine Umgebungsbasis Z(x) C N7 mit |Z(x)| < m. Sei 7 := m™ die Nachfolgerkar-
dinalzahl. Wihle nun ein beliebiges a € X und setze F := {a}. Im Folgenden definieren wir
eine transfinite Folge Fy,...,Fy,..., & < T von abgeschlossenen Mengen C X, mit folgenden
Eigenschaften: Vo < 7 gilt
1) |Fy| <m, Fg C Fy fiir § < oc und
2) Fiir jedes % C U{%(x) | x € Ug<o Fp} mit |% | <mund X \UZ # 0, gilt Fo, \U% # 0.
Sei fiir alle @ < o das F, gegeben. Setze % := U{H(x) | x € Ug<qy Fa} und B :={% C
PB||%| <mund X \ % # 0}. Dann gilt: | 2B| <2™ und |HB| < |B™| <2™.

Fir % € 2 wihle nun ein x¢y € X \U% . Setze dann B :={xy, | % € £} = |B|] <2™ und
Foy :=BUUg<go Fa (= |Fap| < |BUUq<qp Fal¥X) < (2m)™ = 2m)

(F1 mit Fy auf diese Weise konstruiert, hat die Eigenschaften 1) und 2).)

Dann hat auch Fy, die Eigenschaften 1) und 2).

1) ist klar!

2) folgt ebenfalls aus der Konstruktion (Sei % C U{Z(x) | x € Ug<q, Fa} mit [%| <m
und X \U%Z # 0, dann % € AB. Also existiert ein x5 € X \ |J%, mit x5 € B und somit
Xy € Fo, \U%).

Eine Folge mit den Eigenschaften 1) und 2) existiert also!

Wir zeigen nun im Folgenden: (Jy . Fou = X.

Im ersten Schritt tiberlegen wir uns, dass J,.; Fo abgeschlossen ist. Sei dazu A C |Jy -1 Fo
mit |A| < m. Fiir ein a € A gibt es ein &, < T minimal, mit a € Fy,. Also |Ugcp @] < m
(man beachte o, < T = a, < m). Insbesondere also J,cq 0t 7# T also Q* :=J,cq 0 < 7T
und deshalb A C (J,cu Fo, € Fus, Wobei eben o < 7 gilt. Hieraus bekommen wir aber
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A C Fye = Fyy C U<z Fa- Dies heifit aber (J . Fo ist abgeschlossen (Andernfalls dx €
Ug<rFo \ Ug<r Fo- Wihle dann fiir U € A(x) je ein yy € UNUyrFo und setze ¥ :=
{yw | U € B(x)} CUgerFa- Dann gilt |Y] <m, also Y C |y Fu, aber x €Y = Wider-
spruch!)!

Mit X hat also auch |J,-; Fy die Eigenschaft, dass jede offene Uberdeckung eine Teiliiberde-
ckung von Kardinalitit < m hat. Annahme 3y € X \ U, ¢ F. Dann wihle fiir x € J, ¢ F je
ein Uy € #(x), mity ¢ Uy. Es gibtalsoein Y C g7 Fo, mit |Y| <mund Uy Fo € Uyey Us.
Nun gibt es aber auch ein & < T mit Y C g, Fp, also Z :={Uy |x €Y} C{HB(x) | x €
Up<aFp}s |%| <mund X \U% # 0; ABER Fo \U% =0 = Widerspruch!

Also gilt X = Uy, Fy und somit [X| < 2™ = 2%%) (denn 7 = m* < 2™ und Vo <
|Fo| <2™).
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5 Zusammenhang und Homotopie

7TV ist nicht die Wahrheit. TV ist ein Freizeitpark. Wir sind im Langeweiletotungsge-
schiift. Thr werdet nie die Wahrheit von uns horen. Wir erzihlen euch jeden Scheiss den
ihr wollt. Wir liigen wie gedruckt. Wir handeln mit Illusionen, nichts davon ist wahr.
Thr glaubt tatsichlich TV ist Realitit? Das ist Irrsinn. Schaut euch an, ihr macht was
TV sagt, ihr sprecht wie TV, ihr kleidet wie TV, ihr esst wie TV, ja ihr erzieht eure Kin-
der wie TV und denkt wie TV. Das ganze ist eine Massenverriicktheit! Deshalb, schaltet
diesen Kasten sofort aus. Jetzt...sofort!!!”

5.1 Zusammenhang und Wegzusammenhang

Denkt man an offene oder abgeschlossene Intervalle, so hat man intuitiv das Gefiihl, dass
diese “zusammenhédngen”. Diese Gefiihl driicken wir nun in einer prizisen Definition aus und
beweisen sodann einige wichtige Eigenschaften dieser “zusammenhéngenden” Riume.

5.1.1 Definition

Sei (X, 7) ein top. Raum. A C X heifit zusammenhéngend :< —3U,V € tmitA CU UV, AN
UNV =0, ANU # 0 #ANV. Anders formuliert: AuBler @ und A gibt es keine weiteren so-
wohl offenen, als auch abgeschlossenen Mengen in A (Teilraumtopologie). Oder noch anders
formuliert: Jede stetige Abbildung f : A — Y in einen zweielementigen Raum Y mit diskreter
Topologie ist konstant (Beweis?).

A heilit hingegen wegzusammenhingend < Va,b € A3 f :[0,1] — X stetig, mit f(0) =a
und f(1) = b. Derartige f werden als Wege bezeichnet.

5.1.2 Lemma

(X, 1) ist genau dann zusammenhiingend, wenn fiir jede offene Uberdeckung ¢ C 7 gilt:
Vx,y€e X3U,,...U,ecomitxcU;,yc U, und Uy NU; #0 < |k—1| < 1.

Beweis: Gilt fiir jede offene Uberdeckung obige Eigenschaft, so kann es keine offenen,
disjunkten, nichtleeren Mengen U,V geben mit U UV =X, denn {U,V } wire nun eine offene
Uberdeckung, die diese Eigenschaft gerade nicht hiitte.

Sei andererseits (X, 7) als zusammenhiingend vorausgesetzt und sei 6 C 7 eine offene Uber-
deckung. Fiir x € X setze D, :={y € X | 3U\,...,U, € o mitx € Uy,y € U, und U, NUy | # 0}.
Offenbar ist D, offen und D, ND, # 0 < D, = D, fiir alle x,y € X. Da X zusammenhingend
istund Z := {D, | x € X} eine Zerlegung von X in paarweise offene Mengen darstellt, gilt
2 = {X}. Seien nun x,y € X gegeben und Uy, ..., U, eine Folge minimaler Linge aus ¢ mit
x €Uy, y € U, und Uy NUy 1 # 0. Offenbar gilt dann sogar Uy NU; #0 < |[k—1] < 1.
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5.1.3 Satz und Definition

Zusammenhangskomponenten und Wegzusammenhangskomponenten Sei (X, 7) ein
top. Raum. Dann weden sowohl durch

1) x ~y < es gibt ein zusammenhédngendes A C X mit x,y € A, als auch

2)x~y < x,y € X sind durch einen Weg verbunden,

Aquivalenzrelationen auf X definiert. Die Aquivalenzklassen heifen entsprechend Zu-
sammenhangskomponenten bzw Wegzusammenhangskomponenten.

Beweis: 1) Zu zeigen ist nur die Transitivitit. Sei also x ~ y und y ~ z. Dann gibt es zusam-
menhingende A, B mitx,y € A und y,z € B. Wir zeigen AU B ist zusammenhéngend. Sei dazu
AUB CUUYV, fiir offene U,V mit UN(AUB) #0 # VN (AUB). Dann ist auch A CU UV
und B C U UV. Nehmen wir mal an U NV = @. Dann muss A und B bereits komplett in U oder
V liegen. AUB C U oder AUB CV ist aber nicht moglich. Es liegt also einer von beiden in U
und der andere in V. Dann aber y € U NV - Widerspruch.

2) bleibt als Ubung.

5.1.4 Lemma

Eine Teilmenge A des R ist genau dann zusammenhéngend, wenn sie von einer der folgen-
den Formen ist: [a,b], (a,b), (a,b],[a,D),|a,),(a,), (eo,b],(c0,b),R. Insbesondere sind
wegzusammenhidngende Teilmengen A eines topologischen Raums X auch zusammenhin-
gend.

Beweis: Der erste Teil bleibt als Ubung. Fiir den zweiten Teil nehmen wir uns eine nicht
konstante, aber stetige Abbildung f:A — Y (wobei A C X; X ist ein beliebiger top. Raum), wo-
bei Y = {y;,y, zweielementig ist und mit der diskreten Topologie versehen ist. Also f(a;) =y;
und f(az) = y». Dann gibt es eine stetige Abbildung g : [0, 1] — A mit g(0) = a; und g(1) = ay.
Dann ist aber auch fog:[0,1] — Y stetig und nicht konstant - im Widerspruch zum Zusam-
menhang von [0, 1].

5.1.5 Beispiel

Sei A eine abzihlbare Teilmenge des R” mit n > 1. Dann ist R” \ A wegzusammenhingend
(das liegt daran, dass zwei verschiedene Punkte durch iiberabzihlbar viele disjunkte - bis
auf Anfangs und Endpunkt - stetige Kurven verbunden sind, es also wenigstens eine Kurve
gibt, die keinen der abzihlbar vielen Punkte trifft), also insbesondere auch zusammenhingend
(denn wegzusammenhingende Riume auch zusammenhéngend).
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5.1.6 Lemma

Bilder zusammenhingender (bzw. wegzusammenhingender) Mengen unter stetigen Ab-
bildungen sind zusammenhingend (bzw. wegzusammenhingend).

Beweis: Sei f: X — Y stetig und A C X zusammenhingend. Wenn f(A) C U UV, mit
f(A)NU #0f(B)NV, dann offensichtlich A C f~ 1 (U)Uf~ 1 (V) mitANf~ 1 (U) A0 #AN
Y V). Also f-HUNV) = Y U)Nf~1(V) # 0 und somit UNV # 0.

Der zweite Teil bleibt als Ubung.

5.1.7 Lemma

Sei X ein top. Raum und A eine zusammenhéngende Teilmenge von X. Wenn A C B C A,
dann ist auch B zusammenhingend. Insbesondere sind somit die Zusammenhangskompo-
nenten abgeschlossen (sonst wire der Abschluss einer solchen Komponente echt grofer
und ebenfalls zusammenhéngend).

Beweis: Wenn B C UUV mit BNU # 0 # BNV, so offensichtlich ANU # 0 # ANV, also
auch ANU # 0 # ANV und demzufolge auch U NV # 0.

5.1.8 Beispiel

Sei X := {(x,sin(1/x)) | x > 0} C R x R. Dann ist X zusammenhingend, aber nicht wegzu-
sammenhingend.

Beweis: Wir haben X = {(0,y) | [y| < 1} UX. Und das X zusammenhéingend ist, folgt aus
vorigem Lemma. Annahme es gibt ein stetiges f : [0,1] — X, mit £(0) = (0,0) und f(1) =
(1/m,0). Nun ist f(t) = (f1(¢), f2(¢)) mit f, f> stetig und f1(0) = 0 bzw. fi(1) = 1. Also
existiert ein #; € [0,1) mit f1(t;) =2/((2- 14 1)7x). Also gibt es ein 1, € [0,¢1) mit fi(t) =
2/((2-241)m). ... Es gibt ein t,1| € [0,,) mit fi(ty11) =2/((2- (n+ 1)+ 1)7). (#,) ist nun
eine streng monoton fallende, nach unten durch O beschrinkte Folge. Demzufolge existiert
limt, =:t > 0.Da (f1(tn), f2(tn)) € X (f1(ta) #0), folgt f>(t,) = sin(1/(fi(t,))) = sin(w(2n+
1)/2) = (—1)". Dann wire aber f(z,) nicht konvergent - im Widerspruch zur Stetigkeit.

5.1.9 Definition

Sei X ein topologischer Raum. Die Familie (A;)¢<; von Teilmengen von X heift kettenverbun-
den in X, wenn alle A; zusammenhéngend sind und es zu zwei i, j € I endlich viele Indizes
i =ip,...,ip = j gibt derart, dass A; NA; ,, # 0 gilt (firk=0,...,.n—1).

Ik+1
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5.1.10 Lemma

a) Wenn es zu je zwei Punkten in X eine zusammenhéngende die beiden Punkte enthaltene
Teilmenge gibt, dann ist auch X zusammenhingend.
b) Wenn (A;)< kettenverbunden in X ist, dann ist A := [ J;;A; zusammenhingend.

Beweis: Bleibt auch als Ubung. Insbesondere ist also die Vereinigung zweier zusammen-
hingender Teilmengen, mit nichtleerem Schnitt, zusammenhéngend.

5.1.11 Satz

Sei (X;)ics eine Familie zusammenhingender (wegzusammenhingender) topologischer
Réume. Dann ist auch X := [];c; X; zusammenhingend (wegzusammenhéngend).

Beweisskizze: Erst zeigt man die Aussage fiir zwei zusammenhéngende topologische Réu-
me Z,Y. Wenn nidmlich (z,y),(Z,y') € Z x Y, dann (z,y),(Z,y) € (Zx {y}) U({Z} xY).
Letztere Menge ist aber zusammenhiéngend, also ist dies auch Z x Y. Durch Induktion verall-
gemeinert man auf beliebige endliche Produkte. Nun wéhlen wir ein (y;)ie; =y € [[;; X und
bilden Y := {x € X | x; = y; bis auf hochstens endlich viele Ausnahmen }. Zwei Punkte aus
Y unterscheiden sich also an hochstens endlich vielen Koordinaten, und man kann nun leicht
mit dem ersten Teil zeigen, dass es eine zusammenhingende die beiden Punkte enthaltene
Teilmenge von Y gibt. Y ist also zusammenhédngend. Noch leichter sieht man, dass ¥ auch
dicht in X liegt. Hieraus gewinnt man dann, dass auch X zusammenhingend sein muss. Das
Produkte wegzusammenhingender Rdume wieder wegzusammenhingend sind, ldsst sich sehr
viel einfacher beweisen.

5.1.12 Lemma

Seien A, B abgeschlossen und A UB, AN B zusammenhingend (in einem top. Raum (X, 7)).
Dann sind auch A und B zusammenhéngend.

Beweis: Es reicht, wenn wir zeigen, dass A zusammenhingend ist. Nehmen wir mal an es
gibt offene und disjunkte U,V mit A CUUV und ANU # 0 #ANV.DaANB zusammen-
hingend ist, konnen wir 0.B.d.A. voraussetzen, dass ANB CV (also ANBNU = 0).Setzen
wir dann P:=U N (X \B) und Q :=V U (X \ A), so kann man leicht nachrechnen, dass gilt:
AUBCPUQ,(AUB)NP#0+# (AUB)NQund (AUB)NPNQ = 0 - ein Widerspruch.
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5.1.13 Satz

Sei (X, ) ein zusammenhidngender Raum mit |X| > 2.

a) Sei A C X und A auch zusammenhingend. Sei ferner X \A=U UV mitUNV =0
und U,V : offen in X \ A. Dann ist AUU zusammenhingend (in X).

b) Sei A C X wieder zusammenhingend und B eine Zusammenhangskomponente von
X \ A, also von der Form B =J{C |a € C C X \ A, C: zusammenhingend in X \ A}, fiir
ein gewisses a € X \ A. Dann ist X \ B zusammenhingend!

c) Es gibt zwei disjunkte, nicht leere zusammenhingende Teilmengen M,N mit X =
MUN.

Beweis: a) U und V sind auch abgeschlossen in X \ A, es gibt also in X abgeschlossene
Mengen U, V' mit U =U'N (X \A) und V =V'N (X \ A). Nehmen wir nun an AUU ist
nicht zusammenhingend. Dann ist AUU = CUD, mit CND =@ und C # @ und D # @ und
C=C'N(AUU)und D=D'N(AUU), wobei C', D’ offen in X sind. O.B.d.A.istA C C (da A
zusammenhingend ist), also AND' = 0. Wir setzen nun P := (X \V’)ND'und Q0 := (X \U’)U
C’. Wir zeigen nun im Folgenden, dass P und Q nichtleere offene, aber disjunkte Mengen sind,
deren Vereinigung gleich X ist. Dies ist dann ein Widerspruch, da X zusammenhéngend ist.

Es ist D C X\ V/, denn Annahme x € D und x € V' impliziert x € V' N (X \ A) =V, also
x ¢ AUU = CUD - Widerspruch. Also D C (X \ V)N D’ und damit P # 0.

Offensichtlich ist C C Q, also Q # 0.

Berechnen wir PN Q. Es gilt PNQO = [(X \V)ND'Nn(X\UN]U[(X\V')ND'NC’]. Nun
ist X\V)ND'N(X\U")=D'Nn[X\ (U'UV')] C D' NA = 0. Andererseits erhalten wir

(X\VHYND'NC' C(X\VHNX\(AUU)]=X\V)INX\A)NX\U)=X\V)NnUU
VINX\U)C(X\V)NV =0.

Insgesamt also PN Q = 0.

Seinunx € X und x € Q. Dannist x € U’ undx € X \C' C X\C C X\ A. Alsoist x € U.
Wiihre x € V’, so also auch in V, was im Widerspruch zu U NV = 0 steht. Also istx € X \ V.
Da auBerdem x € U CAUU = CUD und x € C', folgt x € D C D’ und damit x € P. Wir
erhalten also X = PUQ.

b) Annahme X \ B ist nicht zusammenhingend, also von der Form X \ B = U UV, mit in
X \ B offenen, disjunkten und nicht leeren Mengen U, V. Nun ist auch B zusammenhzngend in
X und A C X'\ B, also 0.B.d.A. A C U (da A zusammenhingend ist). Aus a) folgt aber BUV
ist zusammenhingend und auerdem BUV C X \ A. Also ist BUV auch in X \ A zusammen-
hingend, und da B eine Komponente (in X \ A) ist, folgt V C B - ein Widerspruch!

¢) Folgt unmittelbar aus b). Fiir x € X setzen wir A := {x}. Sei dann B die Zusammenhangs-
komponente (in X \ A) eines y € X \ A. Wir setzen einfach M := Bund N := X \ B.
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5.1.14 Satz

Sei (X, ) ein lokal-kompakter T4-Raum.

a) Sei C eine kompakte Zusammenhangskomponente von X. Dann bilden die offenen
und gleichzeitig abgeschlossenen Mengen P mit C C P eine Umgebungsbasis von C.

b) Sei X nun auch zusammenhiingend, K € T mit K kompakt und C # 0 eine Zusam-
menhangskomponente von K. Dann gilt CN (X \ K) # 0 (0.B.d.A. sei K # X).

c¢) Sei wieder X zusammenhingend und K C X kompakt. Sei C eine Komponente von
K. Dann gilt Cﬂm # 0.

Beweis: Fiir jedes A C X mit C C A setzen wir ¢4(C) := {P C A | P ist offen und abge-
schlossen in A und C C P}.

Sei nun A offen, mit A kompakt und C C A (Warum existiert so ein A iiberhaupt?) Ange-
nommen C C ﬂpe%(c) P=:B.

Da C eine Zusammenhangskomponente ist, konnen wir B dann zerlegen in B = M UN,
mit M,N offen in B, M,N # 0, aber M "N = (. Da B abgeschlossen ist und M und N ab-
geschlossen in B sind, sind sie auch in X abgeschlossen. Wir finden also disjunkte und in X
offene Mengen U,V mit M C U und N C V. O.B.d.A. sei C C M. Es giltdann A\ (UUV) C
A\B = Urco.(c) (A\ P). Aus der Kompaktheit von A\ (U UV) folgern wir, dass es endlich
viele P, ..., P, € ¢5(C) gibt, mit A\ (UUV) CA\N}_, P Es giltalso P:=(_, B, CUUV.
Nun ist auch P in A sowohl offen, als auch abgeschlossen. Darum ist PN U offen in A und
PN (A\V) abgeschlossen in A. Es ist aber PNU = PN (A\V), also PNU € ¢1(C) - ein
Widerspruch! Also C = Peo(C) P-

EsistCCA,also0=CN(A\A)=(A\A)NN peg(c)- Wieder folgt aus der Kompaktheit,
dass es bereits endlich viele P[,..., P, € ¢+(C) gibt, mit (A\A)NP[N...NP), =0. Mit P' :=
P{N..NP, € ¢z(C) gilt also PN (A\ A) = 0. Nun ist P abgeschlossen und offen in A, also
auch abgeschlossen in X auBlerdem ist P C A und auch offen in A, also auch offen in X (denn
A ist offen in X). P ist also offen und abgeschlossen in X und da - wie man leicht nachrechnet
- die offenen und relativ kompakten (das heilit hier der Abschluss ist kompakt) Umgebungen
A von C eine Umgebungsbasis bilden, ist somit auch ¢y (C) eine!

b) Angenommen C N (X \ K) = 0, also C C K. Dann gibt es in X offene und disjunkte
Mengen U,V mit C CU und X \ K CV (Ty). Also auch C C U’ :=UNK € 1. Nun ist U’
auch offen in K, es gibt also ein P € ¢(C) mit C C P C U'. Daraus folgt: P ist offen und
abgeschlossen in X. Nun ist @ # P # X - ein Widerspruch dazu, dass X zusammenhéngend ist.

¢) 1.LFall X \ K = X - fertig.

2.Fall X \ K # X. Dann ist K° # 0 und K° kompakt.

Fall 2.1 Es ist C C K°. Dann folgt aus b) sofort @ # CNX\ K° =CN (X \K°) =CNX \ K.

Fall 2.2 Es ist C € K°. Dann folgt 0 £ CN (K \K°) CCN(K\K°) =CNX \K.
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5.1.15 Korollar

Sei (X, 7) kompakt, T, und zusammenhingend, U € 7 mit @ # U # X und C eine nicht
leere Komponente von U. Dann ist CN (X \ U) # 0.

Beweis: Falls C C U, so gibe es in X offene und disjunkte V, W mit CCVundX \UCW
(der Raum ist auch Ty4). Nun ist U als Teilraum lokal kompakt und C zusammenhiingend mit
C CU.Esfolgt C=C (!). Esist ferner C C V' := VNU € 7 und C kompakt. Aus dem vorigen
Lemma (einschlieBlich der dort verwendeten Notation) schliefen wir auf die Existenz eines
P € ¢y(C) mit C C P C V', Nunist P offen in U, also auch in X und P ist abgeschlossen in U,
also auch in X \W (da P C X\ W C U) und somit auch in X! Da@ #C C P CU C X, haben
wir einen Widerspruch dazu, dass X zusammenhingend ist.

5.1.16 Satz

Sei (X, 7) ein kompakter und zusammenhingender T,-Raum. Dann gibt es keine Folge
paarweise disjunkter, nicht leerer abgeschlossener Mengen A; mit X = (J;cnAi.
Interessante Spezialfille sind kompakte Intervalle [a,b] aus R.

Beweis: Angenommen es gibt doch solche A;, also X = ;A

SeiVertmitA, CVCV CX \ Ap. Fiir ein a € A| wihlen wir eine Komponente C von vV
mit a € C. Aus Satz 5.1.14 folgt CNX \ V # 0. Sei dann x € CNX \ V. Somit ist x & AgUA|,
also gibt es ein i # 0,1 mit x € A;. Das heiit [{i e N|CNA; # 0} > 2 und CNAy = 0. Da
C zusammenhingend ist, muss es aber bereits unendlich viele A; nicht leer schneiden, sonst
C = U= (CNA,;,), fiir gewisse A; und CNA;, ist in C sowohl offen, als auch abgeschlossen.

Wir setzen nun Cy := C. Seien Cy, ..., C, bereits konstruierte kompakte zusammenhingende
Mengen, mit 1) C, C ... C Cp, 2) Ct NA; = 0, fiir alle 0 < k < n und 3) jedes C; schneidet
unendlich viele A;, 1 <k <nund! € N.

Falls C,NA,+1 = 0, so setzen wir Cy,;1 := C,. Falls hingegen C, N A, # 0, dann gibt es
wie schon bei der Konstruktion von C = Cy, ein kompaktes zusammenhéngendes C,, 11 C C,
mit 1) Cy11NAp11 =Cu1 N (CrNAy 1) =0und 2) {i e N | Cp 1N (C,NA;) # 0} ist unendlich
(C,, tibernimmt die Rolle von X und C,, NA; iibernimmt die Rolle von A;).

Wir bekommen somit eine Folge (C,),ecn kompakter, nicht leerer (und zusammenhingen-
der) Mengen mit G, C C,. Das bedeutet aber (), Cy # 0 (Kompaktheit!). Andererseits gilt

aber (,enCr = (Maen Cn) N (UnenAn) = Unen[(Mien C) NAn] = 0 - ein Widerspruch!

5.1.17 Definition

Sei (X, 1) ein topologischer Raum. Unter der Quasikomponente C eines Punktes x € X ver-
stehen wir
C:=([{ACX|AX\AcT und xcA}
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also den Schnitt aller offenen und abgeschlossenen den Punkt x enthaltenden Mengen.

Offenbar sind Quasikomponenten abgeschlossen und die Menge aller Quasikomponenten
bildet eine Zerlegung von X (d.h. jeder Punkt x € X ist in einer Quasikomponente und fiir zwei
Quasikomponenten C,C’ mit CNC' # 0 gilt C = ).

5.1.18 Lemma

Ist C eine Quasikomponente und x € C, so gilt

C={yeX|Vf:X—{0,1} stetigist f(x)=f(y)}

(wir versehen {0, 1} natiirlich mit der diskreten Topologie).

Beweis: Setze D={yc X |Vf:X — {0,1} stetigist f(x)# f(y)}. Zu zeigen ist C = D.
Seiy € Cund f:X — {0,1} stetig. Dann ist A := f~1(f(x)) eine offen und abgeschlossene
Teilmenge von X mit x € A. Day € Cisty € A und somit f(y) = f(x). Ist umgekehrt y € D, so
muss auch y € C gelten. Andernfalls gibt es eine offen abgeschlossene Menge A mit x € A und
y € X \ A. Wir definieren ein stetiges f : X — {0,1} durch f(A) = {0} und f(X\A) = {1}.
Offenbar ist nun f(x) # f(y) - Widerspruch.

5.1.19 Bemerkung

Man konnte nun auf den Gedanken kommen, dass jede stetige Funktion f : C — {0, 1} kon-
stant ist - C also zusammenhéngend ist. VORSICHT: Wir wissen lediglich, dass jede stetige
Abbildung f : X — {0,1} auf der Quasikomponente C konstant ist.

5.1.20 Satz

Seien (X;, 1;), i € I Topologische Riaume und x = (x;);e; € X :=[];¢; X;. Fir jedes i € I sei
C; die Quasikomponente von x;. Dann ist [ ];c; C; die Quasikomponente von x.

Beweis: Sei C die Quasikomponente von x und C' :=[];;C;. Sei 6;:={ACX; |A,X\A €1,
und x; € A}, also C; = (€;. Fir jedes j € I sei €} := {[]ic;Ai |Aj € €jund Vi#£ j: Ai=X;}.
Die Elemente in ‘gj’ sind offen und abgeschlossen in X und enthalten alle x. Es folgt

¢ =T1¢=NN%) =NUJE) 2¢ )
J€l Jjel jel

Fiir die andere Inkusion miissen wir weiter ausholen. Wir beweisen diese erst fiir ein Produkt
von zwei Ridumen. Sei C, die Quasikomponente von x € X und C, die Quasikomponente von
y € Y. Dann ist C := Cy x Cy die Quasikomponente von (x,y) € X x Y. Beweis dazu: Sei
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f:XxY —{0,1} stetig und (¥',y') € C. Zu zeigen ist nur noch f(x,y) = f(x',)’). Dazu
definieren wir die Homdomorphismen g : X x {y} — X, (xp,y) — xo und h: {x'} xY —
Y, (x',y0) — yo. Dannsind fog™' : X — {0,1} und foh~!:Y — {0,1} stetig, also

fry)=fog '(x)=fog ' () =f(,y)=foh ' (y) = foh '(y) = f(x,Y)

Damit haben wir C C {(x',y/) e X xY |Vf: X xY — {0,1} stetigist f(x,y) = f(x',»")}.
Aus Lemma 5.1.18 und (x) folgt dass C die Quasikomponente von (x,y) ist. Per Induktion
bekommen wir, dass Cj X ... X C, die Quasikomponente von (xi,...,x,) in X| X ... X X, ist,
falls C;, i = 1,...,n die Quasikomponente von x; in X; ist.

Kommen wir nun zuriick zum allgemeinen Fall. Wir setzen dazu

D:={ye HC,- | yi = x; bis auf hochstens endlich viele Ausnahmen }.
icl
und zeigen, dass jede stetige Abbildung f : X — {0, 1} auf D konstant ist. Sei also y € D. Es
gibt dann ein endliches J C I mit y; = x; fiir alle i € I\ J. Dann gilt

i+ falls igJ

1 X, fallsieJ
g2:0 — [licsXi, (zi)ier — (2i)ies ist ein Homdomorphismus. Dann ist aber g~ ! ([];c; C;) die
Quasikomponente von x € 0. Da y € g~/ (ITicsCi) gilt fiir die stetige Einschrinkung f|O :
O — {0,1} von f auf O nach Lemma 5.1.18 aber f|O(y) = f|O(x), also f(y) = f(x).

Nun ist offenbar D = C'(=[];¢;C;) und f|C" : C' — {0, 1} hat Werte in einem T,-Raum. Da
f eingeschrinkt auf die dichte Teilmenge D konstant ist, muss auch die Einschrinkung f|C’
von f auf C’ konstant sein (Lemma 3.3.3). Mit Lemma 5.1.18 folgern wir C' C C.

5.2 Lokaler Zusammenhang, lokaler Wegzusammenhang
5.2.1 Definition

lokal zusammenhéingend, lokal wegzusammenhéingend X heif3t lokal zusammenhingend,
wenn jeder Punkt aus X eine Umgebungsbasis aus zusammenhidngenden Umgebungen hat.
Entsprechend ist lokal wegzusammenhingend definiert.

5.2.2 Satz

a) Ein Raum, der zusammenhéngend und lokal wegzusammenhéngend ist, der ist bereits
wegzusammenhédngend.

b) Ein Produkt [ [;c; X; lokal zusammenhéngender Rdume ist genau dann lokal zusammen-
hingend, wenn alle X; lokal zusammenhéngend sind und bis auf hochstens endlich viele
Ausnahmen die X; sogar zusammenhingend sind.
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Beweis: a) Die Wegzusammenhangskomponenten sind offen. Da der Raum zusammenhin-
gend ist, kann er somit nicht disjunkte Vereinigung mehrere offener Mengen sein. Es gibt also
genau eine Wegzusammenhangskomponente. b) Bleibt wieder als Ubung :-).

5.2.3 Lemma

Ein Raum (X, 7) ist genau dann lokal zusammenhingend, wenn jede Zusammenhangs-
komponente einer offenen Teilmenge offen ist. Dann ist offensichtlich die Menge Z aller
Zusammenhangskomponenten offener Mengen eine Basis der Topologie. Umgekehrt ist
natiirlich jeder topologische Raum, der eine Basis aus zusammenhéngenden Mengen hat
lokal zusammenhéngend.

Beweis: Sei (X, 7) lokal zusammenhingend und C eine Komponente von O € 7. Wir wihlen
dann ein ¢ € C. Nun ist ¢ € C C O, es gibt also eine zusammenhingende Umgebung V von
¢ mit ¢ € V C 0. Dann ist aber auch C UV zusammenhédngend und CUV C O. Damit gilt
¢ € V C C. Dann enthilt C mit jedem Punkt ¢ € C also eine Umgebung von ¢ und ist somit
offen.

Fiir die Riickrichtung nehmen wir ein x € X und ein O € xN 7. Der Punkt x steckt in einer
Komponente C von O, die offen ist. Na ja, zusammenhingen ist sie offensichtlich auch. Also
ist C eine Zusammenhédngende Umgebung (sogar eine offene) mit ¢ € C C V. Der Raum ist
also lokal zusammenhéngend.

5.2.4 Satz

Sei (X, 7) lokal zusammenhingend. Seien weiter A, B abgeschlossene Teilmengen von X.
Wenn AN B und A U B lokal zusammenhéngend sind (als Teilraum), so sind dies auch A
und B.

Beweis: Wir zeigen, dass A lokal zusammenhingend ist. Sei x € A und U € xN 7. 1.Fall
x €A\ B.Dannistauchx € U\B € tund es gibtein V € 7 mit V N (AUB) zusammenhéngend
und VN(AUB) C (U\B)N(AUB) (es ist AU B lokal zusammenhingend). Es ist VNA =
VN(AUB) C (U\B)N(AUB) CUNA.

2.Fallx e ANBund U € xNt. Sei W die Zusammenhangskomponente von x € U N (AN B)
in UN (ANB). Dann ist W offen in U N (AN B) (denn AN B ist lokal zusammenhingend).
Also W =W NUN(ANB), mit W € 1. Sei V die Zusammenhangskomponente von W in
W' NUN(AUB). Dann ist V offen in AU B (denn auch A U B ist lokal zusammenhéngend).
Wir haben (ANV)U(BNV)=(AUB)NV =V und (ANV)N(BNV)=ANBNV =W.Die
Mengen ANV und BNV sind in V abgeschlossen, also ist nach Lemma 5.1.12 auch ANV
(und auch BNV) in V zusammenhingend (und damit auch in X). Nun ist V von der Form V =
V'N(AUB), mit V' € 1. Sei dann P die Zusammenhangskomponente von V in V'. Dann ist P
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offenin X (denn X ist lokal zusammenhingend) und es giltV C PN(AUB) CV'N(AUB) =V,
also PNA=VNACUNA.

5.2.5 Korollar

Sei (X, 7) lokal zusammenhingend, ¥ C X und JY lokal zusammenhingend (dY ist der
Rand von Y). Dann ist auch Y lokal zusammenhingend.

Beweis: Setze A :=Y und B:= X \ Y. Dann sind A und B abgeschlossen, ANB = dY ist
lokal zusammenhédngend und A U B = X ist auch lokal zusammenhédngend. Die Aussage folgt
also aus dem vorigen Satz.

5.3 Homotopie

”Das Buch der Natur ist mit mathematischen Symbolen geschrieben. Genauer: Die Na-
tur spricht die Sprache der Mathematik: die Buchstaben dieser Sprache sind Dreiecke,
Kreise und andere mathematische Figuren.”

Galileo Galilei

Hat man zwei stetige Abbildungen f,g : [0, 1] — R und stellt sich die zugehorigen Graphen
einfach mal als "Gummibénder” vor, so ist es - irgendwie - klar, dass mann diese ineinander
tiberfithren kann (man zieht sie etwas in die Linge, oder staucht sie, oder legt sie einfach
etwas anders hin). Ebenso ist auch - irgendwie - klar, dass dies alles "stetig” ablaufen kann.
Der begriff der Homotopie prizisiert dieses “irgendwie”.

5.3.1 Definition

Seien X,Y topologische Riume und 7 := [0, 1]. Eine stetige Abbildung F : X x I — Y heilt
Homotopie (X x I mit Produkt-Topologie). Zwei stetige Abbildungen f,g : X — Y heilen
homotop (in Zeichen: f ~ g), wenn es eine Homotopie F : X x I — Y gibt, mit f(x) = F(x,0)
und g(x) = F(x, 1) (fiir alle x € X).

f : X — Y heif3t nullhomotop, wenn sie zu einer konstanten Abbildung X — Y homotop ist

Zwei Riume X,Y heilen homotopiedquivalent, wenn es stetige Abbildungen f: X — Y
und g:Y — X mit go f ~idx und fog ~ idy gibt.

Wir nennen A C X ein Deformationsretrakt von X, falls es eine Homotopie F : X X[ — X
gibt mit F(x,0) = x und F(x,1) € A fur alle x € X bzw. F(a, 1) = a fiir alle a € A. In diesem
Fall nennen wir F eine Deformationsretraktion von X auf A.

5.3.2 Lemma

Ist A ein Deformationsretrakt von X, so sind A, X homotopiedquivalent.
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Beweis: Sei F : X x I — X stetig mit F(x,0) = x und F(x,1) € A fiir alle x € X bzw.
F(a,1) = a fiir alle a € A. Definiere f : X — A, x+— F(x,1) und g: A — X, a — a. Dann
ist fog =1ids und go f = f. Offenbar ist F eine Homotopie von idy nach f. Fertig.

5.3.3 Lemma

(a) Die Relation f ~ g ist eine Aquivalenzrelation auf der Menge C(X,Y) aller stetigen
Funktionen von X nach Y.

(b) Homotopieiquivalent ist auch eine Aquivalenzrelation.

Beweis: (a) (1) f ~ f durch F(x,1) := f(x)

(2) f~g = g~ fdurchH(x,t) := F(x,1—1)

(3) wenn f ~ g durch F und g ~ h durch H, dann f ~ h durch G, wobei G(x,t) := F(x,2t)
fir r € [0,1/2] und G(X,t) := H(x,2t — 1) fiir t € [1/2,1]. Aus dem Klebelemma (Lemma
2.2.4) folgt, dass G stetig ist. Teil (b) bleibt als Ubung.

5.3.4 Lemma

Seien X,Y,Z top. Riume und f, /' : X — Y und g,¢’ : Y — Z stetige Abbildungen. AuBer-
dem gelte f ~ f’ durch F und g ~ g’ durch G. Dann gilt auch go f ~ g’ o f'.

Man kann nun also o : (C(X,Y)/ ~) x (C(Y,Z)/ ~) — C(X,Z)/ ~ durch [g]o [f] :=
[g o f] definieren.

Beweis H(x,1) := G(F(x,1),t) ist eine Homotopie von go f nach g’ o f”.

5.3.5 Lemma

Wenn X, Y homotopiedquivalent sind und X wegweise zusammenhédngend, dann ist auch
Y wegweise zusammenhingend.

Beweis: Es gibt stetige f: X — VY, g:Y - X, H: X XI—-Xund G:Y xI —Y, mit
H(x,0) = g(f(x)), H(x,1) = x, G(»,0) = f(g(y)) und G(y,1) = y. Seien y;,y, € ¥, dann
ist k(1) := G(y1,1 —3¢) fiir r € [0,1/3], k(¢) := f(h(3t — 1)) fir r € [1/3,2/3] und k(z) :=
G(y2,3t —2) fiirr € [2/3,1] wobei h : I — X stetig ist mit #(0) = g(y;) und A(1) = g(y2). Es
folgt dann k(0) = y; und k(1) = y,. Die Stetigkeit von k folgt leicht aus dem Klebelemma.
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5.3.6 Lemma

(a)Seia € S":={x c R"! | |x| = 1}. Dann ist "\ {a} homdomorph zu R".
(b) Sind a,b € §*, a # b, so ist §" \ {a,b} homdomorph zu R"\ {0}.
(c)Sein >0, a,b € S" mita# b. Dann ist S"\ {a,b} homotopieiquivalent zu §"~!

Beweis: (a) Sei ¢, = (0,...,0,1) € R” Dann ist & : §"\ {e,} — R", definiert durch x —
(1 —x,)""(x0,...,X,_1) ein Homdomorphismus (die Umkehrabbildung ist durch

2 2
ye (1= Hi“;:)y, Hi”b_ri) gegeben). Sei nun a € ", dann a* := {x € R*"! | . x = 0}.

Es folgt dim(a') = n und es gibt eine orthonormal Basis {aj,...,a,_1} von a*. Setzen wir
noch a, := a, so ist {ao, ...,a, } eine orthonormal Basis vom R"H!. Wir definieren nun durch
f R S R ¢ g, einen Iso. + Homdomorphismus und wie man leicht nachrechnet
gilt || £(x)||* = ||x||*>. Demzufolge ist f|S" : S — S" ein Homéomorphismus mit f(e,) = a,.
AbschlieBend haben wir also einen Homéomorphismus f|S"\ {e, } : S"\ {e,} — "\ {an}.

(b) Sei h: 8"\ {a} — R" ein Homdomorphismus. Offenbar ist dann auch i|S"\ {a,b} :
S§"\{a,b} — R"\ {h(b)} ein Homdomorphismus. Da R"\ {0} homéomorph zu R"\ {A(b)}
ist, sind wir fertig.

(c) Wir definieren eine Homotopie H : (R"\ {0}) x I — R"\ {0}, (x,¢) — (1 — t)x—H‘ﬁ—‘.
Das ist sinnvoll, denn wire (1 —t)x-i—t'jﬁ—' =0, sofolgt 1 —¢t+ ‘;—‘ =0.Dasowohl 1 —¢ > 0und

L >0, wire dies ein Widerspruch. §"~! ist somit ein Deformationsretrakt von R"\ {0}.

| |Ist allgemein A C X, H : X x I — X eine Deformationsretraktion von X auf Aund f: X —
Y ein Homdomorphismus mit f(A) =: B, so ist G :=Y x [ — Y definiert durch G(y,t) :=
f(F(f~'(y),t)) eine Deformationsretraktion von Y auf B.

Fiir einen Homdomorphismus f : R"\ {0} — "\ {a, b} bekommen wir damit, dass £(S"~ 1)
ein Deformationsretrakt von S\ {a, b} ist. Also sind £(5"~!) und §"\ {a, b} homotopiesqui-
valent. Da §"~! und f(5"~!) homdomorph sind, sind somit auch $"\ {a,b} und §"~! homo-
topiedquivalent.

5.3.7 Beispiel

Sei f: X — S" stetig, aber nicht surjektiv. Dann ist f nullhomotop. Beweis: Sei y’ € "\ f(X)
und g : §"\ {)/} — R” homéomorph. Wihle xo € X. Dann ist g|f(X) : f(X) — R" homotop
zur konstanten Abbildung & : f(X) — R" x — g(f(xo)), durch H : f(X) x I — R", (y,t) —
(1—1)g(y) +1g(f(x0)). Definiere nun G : X x I — S" durch (x,t) — g~ (H(f(x),)). Unser
G ist stetig und es gilt (x,0) — f(x) bzw. (x,1) — f(xo)

5.3.8 Definition

Ein Raum Y heif3t absolutes Retrakt (absolutes Umgebungsretrakt) wenn jede stetige Abbil-
dung f : A — Y von einer abgeschlossenen Teilmenge A, eines T4 Raums X, zu einer stetigen
Abbildung auf ganz X (auf eine offene Umgebung U von A in X) erweitert werden kann. Jedes
absolute Retrakt ist offensichtlich ein absolutes Umgebungsretrakt. Der Fortsetzungssatz von
Tietze lehrt also bespielsweise, dass die reellen Zahlen ein absolutes Retrakt sind.
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5.3.9 Lemma

Die Sphire S” ist ein absolutes Umgebungsretrakt und die Vollkugel D"*! ein absolutes
Retrakt.

Beweis: In beiden Fillen verwenden wir den Fortsetzungssatz von Tietze. Zuerst die Voll-
kugel: Wenn f : A — D"t! stetig ist, schalten wir die standard Projektionen p; dahinter und
erhalten f; = p;o f : A — [—1,1]. Diese lassen sich fortsetzen zu F; : X — [—1, 1]. Mit der ent-
sprechende Produktabbildung G : X — [—1,1]**! konstruieren wir wie folgt die Fortsetzung
von f: Wir definieren H : K — D! durch H(x) := x, falls x € D"*! und sonst H(x) := x/ | x].
H ist stetig (Klebelemma) und wir setzen dann F := H o G.

Nun zur Sphire: Sei also f: A — S" stetig. Wie eben setzen wir f durch G: X — [—1, 1]’”rl =:
K stetig fort und setzen U := F~!(K \ {0}). Die Abbildung F : U — S" definiert durch
F(x) := G(x)/||G(x)|| ist dann die gesuchte Fortsetzung.

5.3.10 Definition

Homotopieerweiterungseigenschaft: Ein Raumpaar (X,A) hat die Homotopieerweiterungs-
eigenschaft (HEE) bzgl. einem Raum Y, wenn es zu jedem stetigen g : X — Y und stetigem
G:AxI—YmitVa€A: G(a,0) = g(a) ein stetiges F : X x [ — Y existiert, mit Fi4,; = G.

5.3.11 Bemerkung

(X,A) hat die HEE beziiglich jedem Raum Y g.d.w. (A xI) U (X x {0}) ein Retrakt von X x I
ist. Der Beweis

5.3.12 Satz

Homotopieerweiterungssatz von Borsuk: Sei A eine abgeschlossene Teilmenge eines
topologischen Raums (X, 7), fiir den gilt, dass X x I ein T4-Raum ist. Dann hat (X,A) die
HEE bzgl. jedem absoluten Umgebungsretrakt Y.

Beweis: Seieng: X - YundG:AxI —Y, mitVa€A: G(a,0) = g(a), stetig. Wir setzen
G auf natiirliche Weise stetig zu H : A x TUX x {0} fort. Dann gibt es eine offene Umgebung
U von A x IUX x {0} in X x [0, 1] und eine stetige Fortsetzung K : U — Y von H. Nun ist
X x I ein T4-Raum, also gibt es ein stetiges 1 : X x I — [ welches auf A x I konstant 1 ist
und auf X x I\ U verschwindet (=0 ist). Wir setzen nun m(x) := min{n(x,t) | ¢t € I}. Fir
jedes (x,t) € X x I ist dann (x,m(x)t) € U (1F. 3ty € I mit n(x,7) = 0, dann offensichtlich
(x,m(x)t) € U und 2F. V¢’ gilt n(x,t’) # 0; dann offensichtlich {x} x I C U, also erst recht
(x,m(x)t) € U). Wir setzen nun noch F(x,7) := K(x,m(x)¢) und haben damit unsere gesuchte
Fortsetzung.
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5.3.13 Satz

Seien X,Y,Z top. Rdume und p : X — Y identifizierend. Desweiteren Sei K : Y X[ — Z
eine Abbildung, so dass H : X x I — Z definiert durch H (x,t) := K(p(x),) stetig ist. Dann
ist auch K stetig.

Beweis: Es ist H = K o (p x idj) stetig. Und da p X id; identifizierend ist (Satz von White-
head) ist K stetig (siehe Finaltopologie).

5.3.14 Satz

Seien X,Y top. Riume und 0 #A C X bzw 0 #ABCY.Setze x ~x X & x=x' V x,x €
A und bilde den Quotientenraum X/ ~x, analog mit Y/ ~y; p: X — X/ ~x bzw. q :
Y — Y/ ~y seien die standard Projektionen. Schlussendlich sei H : X x [ — Y stetig, mit
H(A x I) C B. Dann gibt es genau eine stetige Abbildung H : (X / ~x) x I — Y/ ~yderart,
dass A (p(x).1) = q(H(x,1))

Beweis: Ubung.
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6 Einfuahrung in die Singulare Homologietheorie

”So etwas wie eine freie Presse gibt es nicht. Sie wissen es, und ich weiB} es. Nicht einer
unter Thnen wiirde sich trauen, seine ehrliche Meinung zu sagen. Die eigentliche Aufgabe
des Journalisten besteht darin, die Wahrheit zu zerstoren, faustdicke Liigen zu erzihlen,
die Dinge zu verdrehen und sich selbst, sein Land und seine Rasse fiir sein tigliches
Brot zu verkaufen. Wir sind Werkzeuge und Marionetten der Reichen, die hinter den
Kulissen die Fiden in der Hand halten. Sie spielen die Melodie, nach der wir tanzen.
Unsere Talente, unsere Moglichkeiten und unser Leben befinden sich in den Hiinden
dieser Leute. Wir sind nichts weiter als intellektuelle Prostituierte.”

John Swaiton, ehem. Herausgeber der New York Times in den 70er und 80ern in seiner
Abschiedsrede

Wenn auch nicht fiir alle Definitionen und Konstruktionen notwendig, so bezeichne dennoch
R ein kommutativen Ring mit 1, der hier und jetzt fiir den Rest dieses Kapitels (Ausnahmen
sind kenntlich gemacht) fest gewéhlt wird.

6.1 Freie Moduln, Exaktheit und Homologie von Kettenkomplexen
6.1.1 Definition
Sei M ein R-Modul. Eine Abbildung x : I — M heil3t eine Basis von M, falls

VyeM3!r:I — R mit y=Zr(i)x(i)
icl

wobei r(i) = 0 bis auf endlich viele Ausnahmen. Solch einen Modul nennen wir frei (iiber 7).

Sei I eine beliebige Menge und R ein Ring. Wir setzen
R{I):={¢@:1— R | ¢(i) =0 bis auf endlich viele Ausnahmen }

und nennen R(/) den freien R-Modul mit Basis /. Das es sich bei R(/) mit Komponentenwei-
ser Addition und R-Multiplikation um einen Modul handelt, ist klar. Warum mit Basis /? Nun,
fiir i € I sei e(i) € R(I) definiert durch

1 fir i=j

(e)(7) = {0 it

Offenbar ist e : I — R(I) eine Basis fiir R(I), welche man aber mit / identifizieren kann. Wir
tun einfach so, als ob I C R(I). Das fiihrt zu keinen MiBverstindnissen.
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6.1.2 Satz

Sei I eine Menge, M ein R-Modul und f : I — M eine beliebige Abbildung. Dann existiert
genau ein Homomorphismus F : R(I) — M, so dass folgendes Diagramm kommutiert.

[——M (also Foe=f)

Beweis: Wir definieren F : R(I) — M durch F (@) := Y;c; @(i)f(i). Der Rest ist nun klar.

6.1.3 Definition

Sei (M;);er eine Familie von Moduln iiber R. Dann ist

@Mi = {(m;)ier € HMi | m; =0 bis auf endlich viele Ausnahmen}
il icl

mit Komponenterweiser Addition und Multiplikation wieder ein Modul iiber R, direkte Sum-
me der M;, i € I genannt. Fiir endliches [ gilt offenbar @;.; M; = [[;c; M;. Ferner fassen wir
den Ring R als Modul iiber sich selber auf. Fiir I = {i} folgt somit R = R(I) = @;; R.

6.1.4 Definition

Eine endliche oder unendliche Sequenz von Gruppen und Homomorphismen

KL% m

heifit exakt an der Stelle L, falls ker (g) = im (f). Die Sequenz heift exakt, wenn sie an jeder
Stelle exakt ist. Eine exakte Sequenz der Form

0 KL% m 0

nennen wir eine kurze exakte Sequenz. Gruppen werden wir im Folgenden additiv schreiben.

Das folgende Lemma (und dessen Beweis) ist typisch fiir eine ganze Reihe von Aussagen,
denen wir in diesem Kapitel begegnen werden. Die Beweise sind, obwohl sie auf den ersten
Blick vielleicht etwas lidnglich erscheinen, allesamt duBerst einfach und laufen gewissermal3en
von ganz alleine. In Lemma 6.1.5 will man beispielsweise zeigen, dass ein Homomorphismus
injektiv ist. Also nimmt man sich ein Element aus dem Kern, jagt entsprechend den Vorausset-
zungen durch das Diagramm und sammelt dabei solange Informationen, bis man weil3, dass
es sich bei diesem Element um das Nullelement handelt - die Abbildung ist also injektiv. Am
besten fiihrt man diese Beweise alle selber und schaut nur im Zweifel nach.
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6.1.5 Finferlemma

Gegeben sei das folgende kommutative Diagramm von Gruppen und zugehorigen Homo-

morphismen

o 0% o3 oy

A A Az Ay As

<P1J/ (le (P3i <P4J/ <P5l
B B B B B
1 B 2 B 3 B 4 5

1 2 3 4

mit exakten Zeilen (d.h. exakt an den Stellen Ay,A3,A4,B>,B3,By).
(1) Sind @, @4 injektiv und ¢; surjektiv, so ist @3 injektiv.
(2) Sind @, @4 surjektiv und @s injektiv, so ist @3 surjektiv.
(3) Sind @1, @2, @4, @5 Isomorphismen, so ist auch @3 ein Isomorphismus.

Beweis: (1) Sei as € ker ¢p3. Dann ist 0 = B3¢3a3 = @403a3, also azaz = 0 und somit a3 €
keraz = im . Es gibt daher ein a; mit apay = az. Aus Br@ra; = ¢300a; = @3az = 0 folgt
@ay € Ker B, = im By, also @rar = B1b; fiir gewisses by € By. Nun ist ¢; surjektiv, also gibt
es a; mit b = @a; und es folgt grar = B1@1a; = @,aa; und somit a; = aja; (denn @; ist
injektiv). Insgesamt az = ohar; = o oa; = 0 (exakte Zeile) und ¢3 ist somit injektiv.

(2) Sei b3 € B3. Da ¢y surjektiv gibt es ein aq mit B3b3 = @uay. Es folgt 0 = B4B3b3 =
Ba@yas = @s04a4, also 0 = auay und somit a4 € keray = im 3. Daher gibt es az mit azaz =
a4 und Q40303 = ﬁ3(p3a3. Es folgt [33((p3a3 — b3) =0, also Ozaz — b3 € kerﬁg, = imﬁz und
es gibt ein b, mit Brby = @3az — bs. Es gibt aber auch ein a; mit by = @ a, und es folgt
Q300a; = Boprar = Borby = @3az — bs. Insgesamt by = @3(a3z — aay) und @3 ist surjektiv.

(3) Folgt unmittelbar aus (1) und (2).

6.1.6 Lemma von Barrett-Whitehead

Gegeben sei das folgende kommutative Diagramm mit exakten Zeilen, wobei jede dritte
Abbildung A, ein Isomorphismus ist.

d
i An—l

el a e

! A/
jn n qn Cn A” n—1

Dann gibt es eine exakte Sequenz der Form

A, —%B A LB;*%GAHAH---

/
n

wobei ,ay = (inan, fnan) ; Bu(bn,dl)) := gnbn — jndl, und %,b!, := d,h; ' b,
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Beweis: Exaktheit bei Ay: Es ist 0y Y16}, | = (indni 171 Gna 1Dy, fadnir by ) 1@nia Bl s )
= (0,0). Sei andererseits (i, f,)a, = 0, also ina, = 0 und f,a, = 0. Dann gibt es ein ¢, mit
dyi1cp+1 = ap. Bs folgt Ay 1hyr1cpv1 = fudpr1cne1 = fnan = 0, also gibt es ein b:z+1 mit
Pns1Cni1 = gui1bly 1 und es folgt ¢yt = ! gui1b),, | und somit a, = dyi1hy ! gur1 by

Exaktheit bei B, ® A,: Es ist B,0,a, = gninan — jnfnan = 0. Ist andererseits fB,(by,a),) =0,
so folgt g,b, = jna,, also 0 = gy judl, = qugnbn = hupuby, und somit p,b, = 0. Es gibt daher
ein a, mit iya, = b,. Nun ist j, fudn = gninan = gnbn = jua,, und folglich j,(f,a, —a,) = 0.

Es gibt daher auch ein ¢} | mit A,yic),, | = fua, —a,,. Da h bijektiv, gibt es ein c,; | mit

C:,+1 = hyt1¢n+1 und es folgt fra, — a;,l = An+1C:1+1 = Ap1hni1Cnt1 = fudny16p41 und somit
a; = fn(an - dn+lcn+1) und b, = in(an - dn+lcn+1)-

Exaktheit bei B',: Es ist Y (b, d,) = duhy, ' gugnbn — duhy, ' qu jndl, = duhyy Y hypuby = dypaby,
= 0. Ist andererseits d,h;, 'g,b), = 0, so gibt es ein b, mit p,b, = h;'q,b, also g,b, =
hupubn = qngnbn. Also gn(gnby, — b)) = 0. Somit gibt es ein a), mit j,a), = g,b, — b}, und
es folgt b;z = gnbn — ]nail =p (bnaa;1)'

6.1.7 Lemma

Gegeben sei folgende kurze exakte Sequenz von R-Moduln:

0 PR 0

Wir definieren: A’ —> A’ @ A” £—= A" durch i(d') := (d’,0) und p(d’,d") := a’. Dann
sind folgende Behauptungen dquivalent:
(a) B hat eine Rechtsinverse (also ein Homomorphismus §” : A” — A mit BB” = idy»).
(b) Es gibt ein kommutatives Diagramm:

A/ @A”

(c) Es gibt ein kommutatives Diagramm:

A/ @AH

(d) o hat eine Linksinverse (also ein Homomorphismus o’ : A — A’ mit o’ ot = idy/).
Wenn eine der dquivalenten Bedingungen erfiillt ist, so sagt man die Sequenz spaltet.

Fiir die im Beweis erhaltenden Abbildungen gilt § = y~! und aa’ + BB = id,. Insbe-

sondere ist A isomorph zu A’ $A”. AuBerdem (das brauchen wir spiter) ist ker (o) = A”.
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Beweis: Wir geben nur die Abbildungen an. Das Nachrechnen ist trivial.
(a) = (b) Wir setzen y(d’,d") := a(d’) + B(d").

(b) = (a) Wir definieren 8" (a”) := y(0,d").

()= (d) Setze g: A’ dA" — A", q(d’,d"):=d und o' := ¢0.

(d) = (c) Setze 6(a) := (/' (a),B(a)).

(b) = (c) Betrachte das Diagramm

OHA/%A/@A//LANHO

'

0—=A'——=A——=a"—0

und wende Lemma 6.1.5 an.
(c) = (b) Betrachte das Diagramm

0——al— % oa— P gy

'

O*)AI?A/@A//?AN*)O

und wende Lemma 6.1.5 an. Die Gleichung ao’ + B”B = idy verifiziert man durch nach-
rechnen. Zeigen wir noch ker (') = A”. Definiere dazu f : ker (') — A” durch a — Ba. Ist
a € ker(By), so ist, da da := (&’a, Pa), pda=Pa=0und 0 = a’a = gba, also da = 0 und
folglich a = 0 (da § ein Iso. ist). Fiir a” € A” setze a := §~'(0,a"). Es folgt a’a = ga = 0,
also a € ker () und Bya = fa = pda=ad".

6.1.8 Definition

Ein Kettenkomplex K = (K, d,),c7, ist eine Sequenz

8}’! an
s Ky M K, Ky e
von R-Moduln (K},),c7 und Homomorphismen 9, : K, — K,,_, welche 9,0, =0 fiiralle n €
Z erfiillen. Die d, nennen wir Randoperatoren. Statt Kettenkomplex schreiben wir manchmal
kiirzer Komplex.

010,11 = 0bedeutetim (d, 1) C ker(d,). Schreiben wir kurz Z,K :=im (3,1 ) bzw. B, K :=
ker (d,), so haben wir also Z,K C B,K C K,. Es macht daher Sinn den Quotienten H,K :=
B,K/Z,K zu betrachten, den wir von nun an n-te Homologie von K nennen. Die Familie
(H,K),cz nennen wir den K zugeordneten graduierten R-Homologiemodul (oder auch ein-
fach nur graduierten Homologiemodul).

Eine Kettenabbildung f : K’ — K zwischen zwei Komplexen K’ = (K}, 9, )ncz und K =
(K, O )nez ist eine Familie f = (f,)nez, fn: K], — K, von Homomorphismen, welche

Onfn = fu_10, fiiralle n € Z
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erfiillt. Damit folgt f,,(Z,K’) C Z,K und f,,(B,K") C B,K. Durch (H, f)[Z] := [f7] bekommen
wir somit einen Homomorphismus H, f : H,K' — H,K. Offenbar gilt

Hy(ff") = Hy(f)Ha(f') und H,(idx) = idpy,k-

Sei K = (K, 0, )neyz ein Kettenkomplex und fiir jedes n € Z sei K|, ein Untermodul von
K, mit d,(K;) C K/ . Dann ist auch K’ = (K},, 9, ) ez, mit 9, := d,|Kj, ein Kettenkomplex.
In diesem Fall konnen wir fiir jedes n € Z den Quotienten K,, /K], bilden und dazu definieren
wir 9, : K, /K, — K,_1/K'_, durch d,([x]) := [du(x)] (wohldefiniert, da 9,(K}) C K ).
Offenbar gilt ebenfalls 5,15,1“ = 0. Das heif3t wir haben einen weiteren Kettenkomplex, den
Quotientenkettenkomplex K /K’ := (K,,/K’,9,)ncz. Man kann nun leicht nachrechnen, dass

oKD K/K —>0 (%)

0 K’

wobei i = (iy) ez die Einbettungen iy, : K, — K, in(x) = x und p = (py),ez die Projektionen
pn: Ky — K, /K], pn(x) = [x] sind, eine exakte Sequenz von Kettenabbildungen ist (man muss
natiirlich auch nachrechnen, dass es sich wirklich um Kettenabbildungen handelt). Hierbei ist

exakt so zu verstehen, dass die Sequenz 0 K, ‘s K, —2 K, /K, —=0 fiir jedes
n € 7 exakt ist. Umgekehrt folgt aus der Exaktheit einer Sequenz

0 K —2>K P K" 0 (%)

von Kettenkomplexen und Kettenabbildungen und dem allgemeinen Homomorphisatz
K,/im(a) = K, /ker (B,) = im(B,) und im(o,) =K.

Mit anderen Worten: () ist bis auf Isomorphie von der Bauart ().

6.1.9 Lemma

Ist 0 K —%>K P K" 0 eine exakte Sequenz von Kettenkomplexen und

Kettenabbildungen, dann ist fiir jedes n € Z die Sequenz

H,a H,B

H,K' H,K H,K"

exakt an der Stelle H, K.

Beweis: Zu zeigen ist ker (H, ) = im (H, «).
Sei [x,] € ker (H,B), also [Bux,] = H,B[x,] = 0. Das bedeutet B,x, € im(d,’, ;). Es gibt
daher ein x| € K/, | mit B,x, = d," x;|. Nun ist B, surjektiv, es gibt also ein x,| €

. /" " ot A
Ky mit By x40 = Xnt1- Es folgt Bux, = n+1ﬁn+1xn+1 = Buut1Xas1 (denn B ist eine
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Kettenabbildung) und weiter f3,(x, — dy+1xn+1) = 0. Also x,, — Iy 1X,+1 € ker (B,) = im ()
und somit gibt es ein x, € K, mit x,, — dy11X,1+1 = Oyx,. SchlieBlich bekommen wir [x,] =
[0y, + Oy 120 11] = [00ax,] = Hyat([xy]) € im (H, ).

Gilt umgekehrt [x,] € im (H, ), also [x,] = H,a([x}]) = [ax,], so folgt

HyB([xn]) = HuP ([0tnx3]) = [Bn © ] = [0] = 0, also [xz] € ker (HufB).

Fiir jedes n € Z haben wir nun solche kleinen Sequenzen, die in der Mitte exakt sind. Ist es
denn aber moglich diese vielen losen Stiicke miteinander zu verbinden? Ja! Und unser Ziel ist
es nun einen Homomorphismus 8., : H,K"” — H,_ 1K' zu konstruieren derart, dass

Hn+ 1 B 6*n+l

H
e — n+1KHHn+1K//HHnK/ n

H,B

8un
% HK - g KO Hy K

an jeder Stelle exakt ist. An den Stellen H,K, n € Z ist diese Sequenz nach Lemma 6.1.9
bereits exakt. Wir miissen also noch die Konstruktion von 68, durchfiihren und die Exaktheit
an den Stellen H,K"” und H,,_1K’ zeigen. Ans Werk:

Gegeben sei eine exakte Sequenz von Kettenkomplexen und Kettenabbildungen

0 K%k —Po g 0 (%)

Die folgende Konstruktion verfolge man an dem ausfiihrlicheren Diagramm der Sequenz ().

Inia On+2 s
K/ Oyt K ﬁn+l K//
0 n+1 ntl — = Ky —>0
Ot It Iy
Oy B
0 K K, K/ 0
I, On 9,
K/ Oy—1 ﬁn—l K//
0 n—1 K1 —>K, | —0
I On-1 91

Sei x!! € Z,K"”. Dann gibt es ein x,, € K,, mit x,, = B,x,,. Also 0 = 9)/x)! = 9/ Buxn = Bu—10uXn
und somit dyx, € ker (B,—1) =im(a,_1). Es gibt dahereinx/, ; € K/ | mit dpx, = 041X, ;.
Wir definieren daher allgemein 6, : Z,K"” — H,_1K’ durch §,(x],) := [x],_,]. Zeigen wir, dass
0, : Z,K" — H,_ 1K' auch wirklich wohldefiniert ist:

Falls x), = By, und dyyn = Qy—1y,_;, so folgt 0 = B,(x, — yn), also x, — y, = 04,2, fiir
ein gewisses z, € K;,. Es folgt o,,_10,2), = 9,02, = On(Xn —yu) = Wy—1(x,,_; —,,_;) und
somitx,, | —y, | = 0uz,, also [x/,_,] = [y, _,]. Das es sich bei §, um einen Homomorphismus
handelt ist klar.
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Nun kénnen wir 8., : H,K” — H, 1K' durch J,,([x)/]) := 8,(x)/) definieren. Das es sich um
einen Homomorphismus handelt ist klar. Zu zeigen ist nur die Wohldefiniertheit:

Sei [x] = [y], also x|, — yi = 8’+1zn+1 Sei x!) = Bux, und y)) = Byyy, also B (x, —yu) =
;' 1zny 1. Nun gibt es aber auch ein z,.| mit B, 12,41 = z,,; und es folgt &/Han =
9, 1Bat12n+1 = BuOnt12ns1, also Bu(Xy — yu — Ini12a41) = 0. Es gibt daher auch ein z;, mit
— Yn — Oni1Zn+1 = Oz, und wir erhalten x)) — y! = B, (x, — yu) = Bu(Qnz), + Onr12ns1) =
BrOnt1znt1 = ar;/qtlﬁn+lzn+l und damit [x;] = [y,].

6.1.10 Lemma

Die Sequenz

n+lﬁ

6*]1 Hn
> H, K h KHLLH,,K’ B

H,o

H,K

Osn
HnK// - nflK/ —

ist an jeder Stelle exakt.

Beweis: Exaktheit an den Stellen H,K , n € Z ist gerade in Lemma 6.1.9 bewiesen worden.

Teil 1: Es gilt im (H,3) = ker (J.,). Beweis dazu: Sei [x)/] = H,B([x,]) = [Buxn], fiir [x,] €
H,K, also x, € Z,K. Es folgt 0 = d,x, und somit J.,([x)]) = [0], da 0 = d,x, = @,_10.

Sei 0= 8., ([x]) = [x],_,], wobei Bnx, = xj, und dpx, = 01 x],_;.Es glbt daher ein x, € K},
mit d,x), = x,_,. Wir folgern o, x/, (xn,lanxn = 0,0, X), , B (xn — QX)) = X! —Bnanx =
x), und (X, — Qpx),) = O 1x],_| — 019, x), = 0. Also ist der Ausdruck [x, — Oc,,xﬁl] sinnvoll
und es gilt H, B ([x, — ox,]) = [x)].

Teil 2: Es gilt im (J,,) = ker (H,_; ). Beweis dazu: Sei [x,_1] € im (dy,), also di,([x1]) =
- 1]s X5 = Bnxn , Onn = 0tp—1y,,_y und [x, ] = [y, _,]. Es folgt Hy—y ot([y,_]) = [@—1y;, 1] =
[9px,] =0, also [x/,_,] € ker(H,_ ).

Sei [x/,_,] € ker(H,_@), also 0 = [@,_1x],_,]. Es folgt o,_1x/, | = dyx, fiir gewisses x,, €
K. Fiir x], := Bux, gilt dann 9, B,x, = Bu_10pXn = Pu—10—1x, | =0, also x|, € Z,K" und
din([x]) = [x/,_,] und somit [x/, ;] € im(J.y).

6.1.11 Lemma

Gegeben sei das folgende kommutative Diagramm von Kettenkomplexen und Kettenab-
bildungen, wobei beide Zeilen exakt sind.

0 K-Sk P g 0

ok

0—L —>L—>L'—>0
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Dann ist auch das folgende (unendliche) Diagramm kommutativ und hat exakte Zeilen.

1
Hn+1 ﬁ 6*n+1 H, HnB S*In

o —Hy 1K — H, /1| K" — H,K' @ H,K H,K" —H, \K' — -
sy
2

J/Hny lHn'/, lHnﬂ/
Hyx HaA 87

é
o ——=Hy L 4>Hn+1Ll - HnL/ H,L HnLI/ -~ Hn—lLl —_

Beweis: Es reicht die Kommutativitit in diesem Teil des Diagramms zu {iberpriifen.

1

5*n
HnK” T n—]K,
\LHH)// J/Hn”/
2

" 5*” /
H,L" —"~H, L

Sei [x)] € H,K". Schauen wir uns den oberen Weg an: Es folgt H,_1Y o 81, ([¥2])) =[v,_1x._,].

L/ 1 _ /
wobei x;, = B,x, und d, x, = o, 1x]_,.

/.11

Fiir den unteren Weg bemerken wir zunichst y/x!! = v/ B.xy = AnYuxn = Ay, mit y, :=
YuXn. Damit folgt 92y, = 92%xn = Y10 %n = Ya—10n—1X, | = Ku—1(¥,_,*, 1), also auch

82, 0 Ha (V") ([y]) = 8%,([v]) = [ 10, )-

6.2 Singulare Homologie
6.2.1 Definition

Ay = {(x0,...,xq) € R 0<x;<1,i=0,..,qund Y7 oxi = 1} heiBt der standard g¢-
Simplex. Offenbar ist A, konvex, abgeschlossen, beschrinkt (also auch kompakt). Sei (X, )
ein topologischer Raum. Eine stetige Abbildung o : A, — X bezeichnen wir als singuliires

g-Simplex ist. _
Seig > 1undi€ {0,...,q}. Wir definieren dj, : A;—; — A, durch

d;(to,...,l‘q_l) = (to,...,ti_l,(),t,‘,...,l‘q_]).

Man sieht leicht, dass o/, die Einschréinkung der linearen Abbildung d’, : R — R4*!

an](ej) _)e falls ] < l
ejr1 falls i < j

ist, wobei ¢; ein standard Basisvektor der Form (0, ...,0,1,0,...,0) ist. Als lineare Abbildung
ist d}, und damit auch die Einschréinkung d}, = d’,|A, stetig. Noch eine kleine aber wichtige

Bemerkung: Fiir alle i, j € {0, ...q} mit j < iist

o
did] | =djdi")
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(beweist man leicht durch Anwendung auf die Basisvektoren). Sei nun (X, 7) ein topologischer
Raum. Fiir alle g € Z setzen wir nun

0 falls ¢ <0

My (X)(=My(X, 7)) 1= {{G |o:A; — X iststetig} falls 0 <gq

und anschlieend S, (X) := R(M,(X)), den R-Modul der singuliéiren ¢g-Ketten. Man beach-
te unsere Konvention aus dem ersten Abschnitt: Wir fassen M, (X) als Teilmenge von S,(X)
auf (um unnotige Notationen zu vermeiden)! Fir O < i < g betrachten wir die Abbildung
0} : My(X) — M,_1(X) definiert durch 9} (c) := & od!, und deren eindeutig bestimmte Fortset-
zung auf S, (X) (Satz 6.1.2), die wir ebenfalls mit dj bezeichnen (also d; : S;(X) — S;-1(X)).
AnschlieBend definieren wir den Randoperator®

q . .
dy:S¢(X) — Sy—1(X) durch d, := Z(—l)’a; bzw. d, =0 fiir ¢ <O0.
i=0

6.2.2 Lemma

Es ist d,d,41 = O fiir alle ¢ € Z und (S4(X), d;)4cz ist somit ein Kettenkomplex.

Beweis: Wir rechnen dies auf der Basis M, (X) nach. Sei also o € M, 1(X). Es folgt

q+1 q+1

9494+1(0) = 8q(2 (—1) é+1(6)) = 3q<2 (—l)iod;

q
l+] i J
Z od}, d}
i=0 i=0 Jj=0

||M+

= Y (D)¥oddi+ ¥ (-1)*od,d]
0<j<i<g+1 0<i<j<q
= Y (- 1)l+fcd;+1dl '+ Y (-1)Yed,,,d]=0

0<j<i<g+1 0<i<j<q
Einem beliebigen topologischen Raum X haben wir seinen singuliiren Kettenkomplex SX =
(84(X),0y)4cz zugeordnet. Haben wir zwei topologische Rdume X,Y und eine stetige Ab-
bildung f : X — Y, so wire es natiirlich schon, wenn wir mittels f eine Kettenabbildung
Sf = (S¢f)gez : S(X) — S(Y) bekommen. Fiir 6 € M,(X) ist foo € My(Y). Diese Beobach-
tung fithrt im Zusammenhang mit Satz 6.1.2 zur Existenz eines eindeutig bestimmten Homo-
morphismus S, f : S;X — S,Y derart, dass S, f(0) = foo fiir alle o € M,(X) gilt. Fiir zwei

stetige Abbildungen X LyZ2z gilt (Sq8)(Sqf) = Sq(8f) und Sqidy = ids, (x)-

4Randopemtoren zu verschiedenen Riumen kennzeichnen wir durch ein hochgestellten Index (z.B. 8qX )
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6.2.3 Lemma

Fiir eine stetige Abbildung f: X — Y ist Sf := (S, f)4ez eine Kettenabbildung Sf : S(X) —
S(Y), d.h. folgendes Diagramm kommutiert.

% i
~-*>Sq+1<X) *>Sq(X) —_ qfl(X) —_— ..
iSqulf Sqf J/Sqlf
aY Y
q+1

T q+1(Y)*>Sq(Y)*q>Sq—1(Y)4>"‘

Beweis: Es reicht die Behauptung auf der Basis M, (X) zu tiberpriifen. Sei 6 € M,(X).

% ©S4f(0) =9y (fo) = fo %(fo) = f(,)(fc)dé = i)f(cd;)
q . g
— ;)fo (95(0)) = Sqf(;)aq’(o)) — S,/(0X(0)) = Syf 09X (o)

6.2.4 Definition

Unter einem Raumpaar (X,A) verstehen wir einen topologischen Raum (X, 7) mit einer Teil-
menge A C X. Die Topologie wird (da meistens klar ist welche gemeint ist) in dieser Notation
unterdriickt. Unter einer Abbildung von Raumpaaren f : (X,A) — (Y, B) verstehen wir eine
stetige Abbildung f : X — Y mit f(A) C B. Statt (X,0) schreiben wir auch einfach X. Wir
identifizieren X also mit (X,0).

Sei ein Raumpaar (X,A) mit der Inklusionsabbildung iy : A — X, is(a) = a gegeben. Of-
fenbar ist Syis injektiv und wir definieren S, (X,A) := S4(X)/S4ia(S4(A)) und p : §4(X) —
S4(X,A) als die Projektion. Tatsédchlich fassen wir S;(A) als Untermodul von S,(X) auf und
schreiben daher S, (X,A) = 5,(X)/S4(A). Da d,(S4(A)) C S;—1(A) kénnen wir den Quotien-
tenkettenkomplex S(X,A) := S(X)/S(A) bilden. Dies fiihrt zu der exakten Sequenz

0—=SA Ao 5x — - S(X,A) —>0  (+)

Offenbar ist dann S, (X) = 5,(A) ©S4(X,A) fiir jedes g € Z, das heilit die Sequenz (x) spaltet.
(Beweis: Jedes Element aus S, (X ) ldsst sich als Linearkombination von Elementen aus M, (X)
schreiben; diejenigen, deren Bild in A ist und die, deren Bild nicht in A ist.)

6.2.5 Definition

Sei (X,A) ein Raumpaar. Den zum Kettenkomplex S(X,A) zugehorigen graduierten R-Homologiemodul
(Hy(X,A))q4ecz mit Hy(X,A) := H;S(X,A) nennen wir den relativen singuliren graduierten
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R-Homologiemodul von (X,A). Fiir X = (X,0) erhalten wir den singuliiren graduierten
R-Homologiemodul (H,X),cz mit H,X := H,SX.

Eine Abbildung f: (X,A) — (Y,B) induziert ein kommutatives Diagramm (S f entsteht aus
Sf durch Ubergang zu Quotienten).

.
0 SA " gx — 2 S(X,A) —=0

LS(J"A) le J/Sf
Syi

0 SB % sy — 2o S(Y,B) —— 0

Beachten wir, dass p offenbar durch die Inklusion j : (X,0) — (X,A) induziert ist, also
Pq = SqJj, so bekommen wir mit Lemma 6.1.11 den wichtigen Satz:

6.2.6 Satz

(a) Fiir jedes Raumpaar (X,A) mit den Inklusionen i : A — X und j: X — (X,A) ist die
folgende lange Sequenz von Homomorphismen exakt.

(X 7A>

N
..*>HA HXHH(X,A)# q—lA*>"'

(b) Ist f: (X,A) — (¥,B) so bekommen wir das folgende kommutative, in den Zeilen
exakte Diagramm, wobei H, f|A := H;S(f]A) und entsprechend H, f , Hyf , Hyia, Hyj

H, 5!
o H A gx My Ay 2, A
l flf‘A lqu \Lqu lqufA
2

Hyip Hy jy

5
—~HB " HY " H (Y B)—"~H, \B—— ..

6.2.7 Beispiel

Sei P = {p} ein Einpunktraum. Dann ist M, (P) = {c : A, — P | o ist stetig} = {&,} firg > 1
auch einelementig und folglich S, (P) = R (Fiir ¢ < 0 ist M,(X) = 0). Ferner ist

Pe Eq-1 fiir ¢ gerade und g > 1
I 0 (Nullabbildung) fiir g ungerade, oder ¢ <0

Damit iiberlegt man sich dann leicht

R  firg=0
H,P =ker (d;") /im ( cﬁl)w{{o} fuiZ;«éO
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6.2.8 Lemma

Sei (X,A) ein Raumpaar und (X;)4ep eine Zerlegung von X in paarweise disjunkte offene
Mengen. Mit A, :=ANX, fiir d € Dist Hy(X,A) = @ cp Hy(X4,Aq) fiir alle g € Z.

Beweis: Wir betrachten das folgende Diagramm und verwenden das Fiinferlemma.

DicpHy(Ad) — PuyepHy(Xa) — Dycp Hy(Xa,Ad) — 0 —

s

Hy(A) H,(X) Hy(X.A)

Die horizontalen Abbildungen sind inklusionsinduziert (in der oberen Zeile in jeder Dimensi-
on d) und die vertikalen Abbildungen f,, g, h, sind alle von der Art

hg(([ca))aep) =Y, Hyia(lca]) = [ cd]

deD deD

wobei iy : (X;,A4) — (X,A) die entsprechende Inklusion ist. Um Lemma 6.1.5 anwenden zu
konnen, miissen wir nur noch zeigen, dass g, ein Isomorphismus ist. Die restlichen Voraus-
setzungen (Exaktheit, Kommutativitit, ...) sind offensichtlich erfiillt. Wir betrachten also die
Abbildung g,(([ca])aep) = XuepHqia([ca)) = [Laep ca), mit Inklusion iy : X; — X. Dass es
sich um einen wohldefinierten Homomorphismus handelt, ist klar. Da A; wegweise zusam-
menhingend ist, gilt fiir alle ¢ € M,(X) o(A;) € Xy fiir genau ein d € D. Damit sieht man
S¢(X) = ByepSqe(Xa) (x) und natiirlich auch d,(S4(Xyz)) C Sy—1(Xy) fiir alle g € Z.

Injektivitit: Sei g,(([ca])acp) = [Luepca] = 0. Dann gibt es ein b € Sy41(X) mit dyy1b =
Y 4epca- Es gibt aber auch eindeutig bestimmte by € Sy41(Xy) mitb =Y yepbg. Aus Y yepca =
9y+1b =Y 4ep 94+1b4 und der Eindeutigkeit der Darstellung (folgt aus (x)) folgt nun d,11b; =
cq. Dann folgt aber [c4] = 0 in Hy(Xy).

Surjektivitit: Sei [c] € Hy(X), mit ¢ € ker (d,). Esist ¢ =Y. ;cp ¢4 (mit eindeutig bestimmten
ca € S¢(X4)). Aus 0 = dyc = ¥ yep dycq und der Eindeutigkeit der Darstellung folgt d,cqy = 0
fur alle d € D, also [c] = g4(([c4])aep) mit ([ca])aep € Bacp Hy(Xa)-

6.3 Homotopieinvarianz
6.3.1 Definition

Seien f, g : K — K’ zwei Kettenabbildungen zwischen zwei Kettenkomplexen K = (K}, 9, ) ez,
und K’ = (K, d)) ez Eine Familie p = (py),cz von Homomorphismen p,, : K,, — KnJrl be-
zeichnet man als Kettenhomotopie von f nach g (in Zeichen p : f — g), falls d; L1Pn+
Pn_10n = fn — gy fiir alle n € Z gilt. Wir schreiben f ~ g falls solch eine Kettenhomotople

existiert und sagen f und g sind kettenhomotop.
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6.3.2 Lemma

(1) Kettenhomotop ist eine Aquivalenzrelation.
(2) Seien f,g: K — K" und f',g’ : K’ — K" Kettenabbildungen und f ~ g mittels p =

(Pn)nez bzw. f' ~ g' mittels g = (qu)nez, so ist f' o f ~ g’ og mittels (f;, ;0 pn+gno
gn)nez-
(3) Wenn f ~ g: K — K’, so gilt H, f = H,g fiir alle n € Z.

Beweis: (1) f ~ f mittels p = (0),cz (Familie von 0-Homomorphismen).

Falls p: f—g,50 —p=(—pn)nez: 8 — [
p:f—gundq:g—h,sop+q=(pntqnnez:f—h

(2) Es gilt f'o f ~ f' o g mittels p' = (f, | © pn)nez und f' o g ~ g’ o g mittels

¢ = (qn© gn)nez- Der Rest folgt aus dem Beweis der Transitivitit in (1).

(3) Sei p = (pn)nez : f — g und [x,] € H,K. Da dyx, = 0 und [0} ; pnx,] = O folgt

n

Huf ([n]) = Hug([xal) = [(fn = 8n) (¥n)] = [0 Pn¥n] + [Pn—10p%a] = 0.

6.3.3 Definition
Sei X konvex und Ay, ...,A4 € X. Dann ist [Ao, ...,A,] : A; — X definiert durch

q
[Ag, -, Ag](to, - 1q) = Y 1iAA;
i=0

Das Ziel des Rest dieses Abschnitts ist der Beweis des folgenden fundamentalen Satzes:
Sind f,g : X — Y homotop, so ist H,f = H,g fiir alle g € Z. Sind f,g : X — Y homotop, so
gibt es eine stetige Abbildung F : X xI — Y, wobei I = [0, 1] derart, dass Vx € X f(x) = F(x,0)
und g(x) = F(x,1). Definieren wir A, : X — X x I, x — (x,¢) fiir t € I, soist also f = F o Ay
und g = F o ;. Es folgt damit H, f = (H,F) o (H,A¢) und H,g = (H,F) o (H,A;). Wenn wir
also HyAg = HyAy zeigen konnen, so sind wir fertig. Nach Lemma 6.3.2 geniigt es dafiir eine
Kettenhomotopie (PqX )gez : (SqA0)gez — (S4A1)4ez zu finden. Wir definieren dazu

A?:=[(e0,0), ..., (€;,0), (€i, 1), ..., (eg, 1)] : Agp1 — Ag X I
Fiir o € M,(X) setzen wir nun
9 .
PX(0) = Y (1) (o xid;) o Af
i=0

und betrachten dann die lineare Fortsetzung auf S, (X).
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6.3.4 Lemma
Ist f: X — Y stetig, so ist das folgende Diagramm kommutativ.

X

P
Sq(X) —% Sqr1(X x1)
J/Sqf lsqﬂ(indl)
PY
Sq(Y) —=% S, (Y x1)

Beweis: Wir rechnen die Behauptung auf M, ¢(X) nach. Sei also 0 € M, (X). Es folgt
PYoSqf( o) =Y~ ) ((foo)xidy) OA" i—o(=1)'Sg41((fo0) idz)(A?)
=Sg41((fo0) xidr) (L] o(—1)'A]) = q+1(f>< idr) 0 Sq11 (0 X idp)(Sio(~1)'A7)

= Sg1(f < idp) (Lo (— )(GdeI)OA ) = Sqr1(f X idr) o P (0).

6.3.5 Lemma
Es ist

30y Py (leos v eq)) + Py 194" (€0, v eq]) = [(0, 1), s (eg, 1)] = [(€0,0), ., (e,0)]

Beweis: Es ist

q
AgxI A AyxI A AgxI /e .
9,11 Py ([eo, - eq)) = 9,11 Py (id,) = Ity (Y (= 1)/ (ida, x idy) 0 AY)
i=0
Aq><1 xd iAq 4 i Aq><1 q __
=9, (;)(—I)Ai):;)(—l) 9. Al =T +D+T;
1= 1=
mit .
I = Z (_1>i+j[(80a0>7"'7(ej:0>7~"7(ei70)(eia 1>7~"7(eQ71)]7
i,j=0,j<i
I = Z [(60,0),...,(61",\0),(8[,1),...,(eq,1)] und
0<i=j<q
q+1 o .
= Y (=1)"[(e,0), ..., (¢:,0), (€, 1), ey (¢j 1, 1), o, (g, 1)]
i, j=0,i<j
q . . ~
=— Z (=1)"*[(e0,0), ..., (€:,0), (ei, 1), ..., (ej,1),..., (e, 1)]
i, j=0,i<j
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— Z[(eo,O), oy (€0,0), (e 1), ..., (eg,1)].

i=0
9 L N
Setzen wir T3 := — Z (=1)"[(e0,0), ..., (€;,0), (e, 1), ..., (ej,1),..., (e4,1)] und
i,j=0,i<j
q .
Ty ::—Z[(eo,O),...,(ei,O),(ei,1),...,(eq,1)], so bekommen wir
i=0
AgxT pA
9,11 Py ([eo, s eq) =Ti+Ta+ T3+ T4 und Ty + Ty = [(e9,1), ..., (g, 1)] = [(e0,0), ..., (¢4,0)].
o oA A
Andererseits ist P, ",y ([eo, ..., e Z I[eg, ..y €}y -ereq))
q A 9 q-1 o 1
=Y (=12 ([eo,-,€jsreg) = Y Y (= 1) ([eq, -, 6y .. eq] X idy) 0 A]
j=0 j=01i=0
q " .
= Z (—=1)™7[(eo, 0),...,(e:,0),(ei,1),...,(ej,1),..., (eg, 1)]
1,j=0,i<j
g1 L ~
+ Y (=D"™[(e0,0), ..., (€},0),..., (€ix1,0), (€it1,1), .., (eg, 1)]
,j=0,j<i
q " .
1
= Z (—1) ][(eo, 0),...,(€;,0),(e;,1),.... (e, 1),..., (eq,1)]
,j=0,i<j
9 L ~
- Z (—1)’+][(eo,0),...,(ej,O),...,(e,-,O),(ei,l),...,(eq,l)]——T3 T1
i,j=0,j<i

6.3.6 Lemma

(P;( )qez ist eine Kettenhomotopie von (S;A0),ez nach (SgA1)4ez.

Beweis: Mit dem vorigen Lemma erhalten wir fiir 6 € S,(X)

ajjl’PX() a;‘j{PXS o(idy,) = BqHISqH(zed,)P “(idp,)

A A
= Sgr1(0 % i)y Py (ida,) = Sqe1(0 x idp) ! Py ([eo, ... eq))

= Sy (0 X i) (—P 0 (fe0.wveg]) + [(e0, 1) (s 1)] = [(€0,0). s (e O)])
= —P) 19, (0) +S4(A1)(0) =S4 () (0)
wobei wir Lemma 6.3.4 und S, (o x idy)([(eo,1), ..., (eg,1)]) = Sq(A) (o) verwendet haben.

Damit haben wir den folgenden Satz bewiesen:
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6.3.7 Homotopieinvarianz fir Raume

Sind f,g: X — Y homotop, soist H,f = H,g : H,X — H,Y fiir alle g € Z.

6.3.8 Definition

f,g: (X,A) — (Y,B) sind homotop, falls ein stetiges F : (X xI,A x I) — (Y,B) existiert mit
f(x) = F(x,0) und g(x) = F(x, 1) (fiir alle x € X).

6.3.9 Homotopieinvarianz fur Paare
Sind f,g: (X,A) — (Y,A) homotop, so ist H,f = H,g : Hy,(X,A) — H,(Y,B).

Beweis: Setze wieder A, := (X,A) — (X X [,AxI), x+— (x,s). Damit gilt wieder f = F oA
und g = FA;. Wir miissen zeigen H,Ay = H A : Hy(X,A) — H, (X x 1,A xI). Dafiir geniigt
es eine Kettenhomotopie (P, : Sq(X)/S4(A) — Sq1(X X I)/Sgs1(A X 1)) gez von (Sgho)gez
nach (S;A1),4ez zu finden. Beachten wir, dass folgendes Diagramm kommutativ ist,

Sq+1i

Sq_H(A XI) *>Sq+1(X X])

ist klar, dass es eine Quotientenabbildung Py : Sy(X)/S4(A) — Sg1(X X 1)/S4+1(A % I) gibt.

6.4 Ausschneidungssatz

6.4.1 Satz

Fiir einen topologischen Raum X ist dquivalent:

o Aussschneidung 1: Fiir alle U C A C X mit U C A° induziert die Inklusion
i:(X\U,A\U) — (X,A) fiir jedes g € Z einen Isomorphismus

H,i: Hy (X \U,A\U) — Hy(X,A)
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e Aussschneidung 2: Fiir alle X;,X; C X mit X = X UX; induziert die Inklusion
J: (X1,X1NX;) — (X,Xz) einen Isomorphismus

qu : Hq(Xl,Xl ﬂXz) — Hq(X,Xg)

Beweis: 1. = 2. Sei X = X{ UX5. Setze A :=X, und U := X \ X;. Dann ist U = X \ X} C
X5 =A°und (X\U,A\U) = (X;,X1NX;) und (X,A) = (X,X;). Die Inklusionen stimmen
iberein. Da 1. gilt, wird ein Iso. induziert.

2.=1.Sei CU CA° CACX. Wirsetzen X, :=A und X; =X\U. Dann folgt X UX; =
A°UX\UDUUX\U =X und (X;,X;NXz) = (X\U,A\U) bzw. (X,X,) = (X,A). Die
Inklusionen stimmen also wieder iiberein und da 2. gilt, wird ein Iso. induziert.

6.4.2 Definition
Fiir konvexes X C R” sei
SLy(X) := (MLy(X)), wobei ML,(X) :={[Ao,...,Aq] | Ao,....,Aq €X},
also SL,;(X) < S4(X). Dann definieren wir fiir jedes P € X durch lineare Fortsetzung
K} :SLy(X) — SLgy1(X) durch KZ([Ao,...,Aq]) := [PAg,...,Aq].

Offenbar gilt auch QqX (SLy(X)) € SLy—1(X) und (SLy(X), 85( |SLy(X))4ez konnen wir als Un-

terkomplex von (S, (X), 83( )qecz auffassen.

Ohne Probleme nachrechnen (auf ML, (X)) kann man folgendes Lemma.

6.4.3 Lemma

Sei X C R” konvex und P € X. Dann gilt:

(@) Vg > 1Vcg € SLy(X) ist (9%, 0Kp)(cq) = cg— (KL~ 09X (cy)-

(b) VC() € SL()(X) ist (31X OKg)(C()) =cCco— Sx(C()) : [P], wobei €y : S()(X) — R durch
lineare Fortsetzung von My > o — 1 definiert ist.

Fiir Ay, ...,A4 € X definieren wir den Schwerpunkt B(Ao, ...,A,) := qlﬁ Y A

Ohne Beweis noch folgende einfache aber niitzliche Bemerkung: Seien X bzw. Y konvexe
Teilmengen des R” bzw. R* und f : X — Y die Einschrinkung einer linearen Abbildung R" —

RFund B € X. Dann ist (S;11f) oK = KJ?(B) o (Syf) fiir alle g € N.
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6.4.4 Definition

Wir definieren induktiv eine Abbildung U, 5 : S¢(X) — S4(X), den sogenanten Unterteilungs-
operator durch

. {0 fir ¢ <0

. A, . 1 A A .
mit U, %idy (=K% U .9, "sz und U;%idy, := ida
I (S,0)Uy"idy, fiir >0 g da, 1=K, "Uyy0971ds, 0 1dng = ldag

Durch Induktion lassen sich dann leicht folgende Aussagen beweisen.

(1) Sgf oUY =UJ oS, f fiir alle stetigen f: X — Y.
(2) Ist X C R" konvex und ¢ > 1,6 = [Ag, .., A, so ist Uf o = Kfi o\ - ‘ ayUii9fo.
3) U;((SLq (X)) C SLy(X), falls X C R" konvex ist.

6.4.5 Lemma
UX = (U(;( :8q(X) = 84(X))gez - SX — SX ist eine Kettenabbildung.

Beweis: Wir fithren einen Indukuonsbewels Fiir q < 0 ist alles klar.

Sei g =1: 3XU¥ 6 = 30X (510)UMidy, = (506)8 \UrArida, = (S00)0, K§ Ug" 0} idy,
= (Soo)af‘KgﬁlAlidAl (Soo-)(81 1ldA1 —8)((8 ) [Bl]) = (S()G)al 1ldA1 = 8f‘(S10')idAl
=dfo=Ufdfo

. Ay . Ay, A,

Schritt g — 1 — q: 0} U 6 = 9 (S;0)Uy "ida, = (Sq-10)0y " Uy 'id,

= (S4-10)9, K}y ' U qua,fqszq = (Sq_lc)(c—Kg;18qulc)
%,_/

= (S,10)c—(S,_10) qqla 9y ids, = (Sq-10)U," 9 id,
Aq
_Uq Zaq 1
A, . .
:U;‘_l(sq_lc)aqqlqu _U;f laq (S40)ida, = U la;f

Unser nichstes Ziel ist es eine Kettenhomotopie (R)q( 1 8¢(X) — Sg41(X))g4ez von (U;‘ )qez

nach (idsq(x)) gez 7u konstruieren. Die Definition zieht sich (dhnlich wie beim Unterteilungs-
operator) induktiv iiber zwei Etappen.

6.4.6 Definition
Sei 0 € My(X). Setze dann

0 fur q<0 A A A A
Ryo = =" mit Ridy, = K (id, — UlVids, — R ,90%id
! {(Sqﬂcr)Rﬁqiqu fir g>1 a'idn, = K, (ids, = Uy "ida, = R,%, 9y "idln, )
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Und wieder lassen sich durch Induktion leicht folgende Aussagen zeigen.

6.4.7 Lemma

(1) Es gilt S, 1 fRY = RS, f fiir stetiges f: X — Y und R} (SLy(X)) C SLyy1(X).
(2) (R’q( 0 84(X) — Sg41(X))gez ist eine Kettenhomotopie von (U;( )qez. nach

(ids, (x))qez-

6.4.8 Definition
Sei 0 = [Ag, ...,A4] € ML, (R") gegeben.

D(c) := diam (5 (4,)) = sup (lo(x) —o()])
X,yEAy

bezeichnen wir als den Durchmesser von ©.

Da G( ) {Z ﬂ,iA,' ‘ (ﬂo,...,),q) S Aq} = {Z?:OliAi ‘ 0<A <1, Z?:()A'i = 1} folgt:

6.4.9 Lemma

Sei 6 = [Ag, ...,A4] fiir Ag, ...,A, € R". Dann gilt:
(1) Istx € o(A;) und y € R". Dann ist |x —y| <max{|A; —y| |0 <i<gq}.
(2)Esist D(o ) max; j<q |Ai —Ajl.

Beweis: (1) Sei x = Y7 (AiA;, mit Y7 (A =1 und 4; > 0. Also [x—y| = |LL LA —
oAy = Lo Ai(Ai — )| < Lo MilAi — y| < maxi<q|Ai — y| Lo Ai = maxi<glAi —y.
(2) Seien x,y € 6(A,). Dann folgt aus (1) |x —y| < max;<4|A; —y|. Nochmalige Anwendung
von (1) fiihrt auf max;<4|A; — y| < max; j<4|Ai —Aj|.

6.4.10 Lemma

Sei X C R” konvex, Ay, ...,A; € X und 5(([A0, +Aq]) = Loemr,(x)7's0. Dann gilt fir
allec e MLy,(X) : rs #0 = D(0) < %D([AO, Ag)).

Beweis: Fiir ¢ = 0 ist alles klar. Sei die Behauptung fiir alle k£ < g bewiesen. Nun ist

q
X 1 X X 1 X
U; [Ao, .. Ag] = Kq(Am )Uq_18q [Ag,...,Aq) = Kq(A(L 7A).§0( D)UY | [Ao, ... A, ... Ag).
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Per Induktion folgt fiir die linearen 7’s, welche in U (3(71 [Ao, A ...,A4] vorkommen

p(v) < T p(Ag, o i A) < L= LD (A0, A)).

q q

Nun sind die linearen o’s aus U;( [Ag, ...,Aq] solche, deren eine Ecke B(Ay, ...,A,) und deren

restliche Ecken von einem 7 aus der Darstellung von U;(_l [Ao, LA ...,A4] stammen. Schit-
zen wir den Abstand von B(Ay, ...,A,) zu den Ecken eines der 7’s ab. Dieser ist

< sup{|B(Ao, ..., Ag) —x | x € T(Ag—1)} < sup{|B(Ao; ... Aq) — x| x € [Ag, ., Ag)(A)}

. 1 ¢ .
< max{[B(Ao, ...,Aq) —Ai| [0 < i< q} =max{|q+1(ZAj)—Ai| |0<i<q}
i=0
< max{— Zq:\A-—A\\0<i<q}<imax{|A~—A‘]]O<ij<q}:LD([A0 Ag))
= +1i:0 ] 1 =t = _(]+1 1 J —nJ = q+1 ) iig

Zwei Ecken aus einem solchen ¢ haben also einen Abstand

9 D ((As s Ag)),—I=D([A0s s AL))) = —I—D([Ao, ... Ay))

< max( ——D
qg+1 g+1

und damit folgt dann D(0) < L5 D([A, ..., Ag]) nach Lemma 6.4.9.

6.4.11 Definition
Sei X ein topologischer Raum und I' C Z2(X) mit T = X. Wir setzen

Simp,(X,I') := {0 € My(X) | 3G €T mit 6(A;) CG} und S,(X,I’):= (Simp,(X,I)).

Offenbar gilt 9} (Sy(X,I)) € S;—1(X,T) und wir kénnen (S,(X,T),0)|S(X,I))gez als Un-
terkomplex von (S, (X), a;f)qez auffassen. Ist A C X soist S;(A) NSy (X,I") =S5,(A,T'4), wobei
Ty:={GNA|A€al.

(Beweis dazu: S,(A,T'4) C S,(A) NSy (X,I) ist Klar. Ist x € S,(A) NS,(X,T), so folgt x =
Y.oem,(x) o0, wobei rg # 0 = o € Simp,(X,I') und x = Y.5cp,(x)So 0, wobei 55 7# 0 =
0 € 84(A). Also 0= Y.sep, (x)(ro —S5)0 und somit 75 = s¢ fiir alle ¢ € My(X). Das bedeutet
aber rs #0 = o € Simp,(X,T") NS, (A) = Simp,(A,T'4) und damit offenbar x € S;(A,T'4).)

Wir bilden nun den Quotienten S(X)/S(X,I") := (S4(X) /S, (X,T), 5);) gez und beweisen im

Anschluss das folgende fundamentale Lemma.
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6.4.12 Lemma
(a) Sei X ein topologischer Raum und I' C Z(X) mit X = Jgcr G°. Dann ist

H,(S(X)/S(X,T)) =0 firalle g€ Z.

(b) Inklusion i, : S4(X,I') — S,X induziert einen Isomorphismus Hyi, : Hy(X,I') — H, X

(c) Ist zusitzlich A C X, dann induziert der durch Inklusion i, : S,(X,T") — S,(X) indu-
zierte Homomorphismus

Mg : Sq(X.T)/Sq(A,Ta) — Sq(X)/S4(A)
einen Isomorphismus der Homologiegruppen

Hon t Hy(S(X,T)/S(A,Tx)) — Hy(X,A).

Beweis>: (a) Fiir g < 0 ist alles klar. Sei ¢ > 0 und z € H,(S(X)/S(X,T)), also z = [¢/] mit
e ker(8 ). Nun ist ¢/ = ¢+ S4(X,T") und aus ¢’ € ker(gj) folgt (95% € S;—1(X,T). Wir
zeigen, dass eseinn € N gibt mit Ujc € S,(X,T).

Nun gibtes o7, ..., 0y € My(X) mitc =Y"  r;0;. Firjedesi=1,...,mist {o; '(G°) | G€T}
eine offene Uberdeckung von A,. Es gibt daher ein & > 0 derart, dass zu jedem V C A, mit
diam (V) := sup{|A — B| | A,B € V} < & ein G € [ existiert mit V C o, '(G), also 6;(V) C G.
Fiir alle V C A, mit diam (V) < € := min(éy,...,&,) und jedes i € {1,...,m} gibt es somit
ein G = G(i, V) €I mit G,(V) C G. Nach Lemma 6.4.10 enthilt U,ida, nur ©°s mit D(7) <
ﬁD(A )= q+1 v2.Da0 < -1 < 1 gibt es ein hinreichend groBes n € N mit (q+1) V2 <
€. Da Ujidp, nur 7’s enthilt m1t D(7) < (q+1> /2 und auBerdem Ugoi = (UyS,0:)idp, =
(Sq Gl)U szq gilt (einfache Induktion), folgt Uy o; € S4(X,I’) (man beachte, dass 7: A; — A,
und D(T) = diam (7(Ay))), also auch Ujc € Sq(X,F).

Nun ist (Rg)4ez eine Kettenhomotopie von (Ug)gez nach (ids, (x))gez (Lemma 6.4.7), also:

Og+1Rgc = —Ry_19,c+c—Uyc

g+ 1RqUyc = —Ry10,Uqc+Uyc — Uz c

O+ 1RUI e = —Ry_10,Ul e+ U e —Ulie
Addition der Gleichungen ergibt:

Og+1 ZRUC ZRq18Uc) c—Uje=— ZRq1 10g¢) +c—Ujc

Es ist Ujc € S4(X,T). Da dyc € S;—1(X,T") und somit auch Uc‘}l&qc € S,—1(X,T), ist auch

SWir vereinfachen die Notation ein wenig, indem wir obere Indizes teilweise fort lassen.
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S¢(X,I). Also stz = [¢] = [+ S4(X, T)] = [g+1((X} =g RgUjc) + S4(X,T))] = 0.
(b) Zur der Inklusion i, : Sy(X,I") — S4(X), g € Z gehort eine kurze exakte Sequenz

Ry 1U!_ 9yc € S4(X,T) und daher 911 (¥} RyUjc) — ¢ = —(X)=g Ry 1U}_,94c) —Ujc €

0—=SX,I') —=S(X) —=S5(X)/Sy(X,I') —=0
von entsprechenden Kettenkomplexen, zu der nach Lemma 6.1.10 die lange exakte Sequenz

e Hy(S(X)/S(X,T)) —— Hy(X,T) 2 B, (X) — H,(S(X)/S(X,T)) — > ---

gehort. Da Hy (S(X)/S(X,T)) = 0 ist fur alle ¢ € Z ist Hyiy ein Isomorphismus!

(c) Wir betrachten nun das folgende durch Inklusionen und Projektionen induzierte kom-
mutative Diagramm mit exakten Zeilen

0—— Sy(A,Ta) —= 8,(X,T) — $4(X.T)/Sy(A,T4) —=0

P

00— S4(A) S5¢(X) 84(X)/Sq(A) ——0

Dieses induziert nach Lemma 6.1.11 eine kommutative und in den Zeilen exakte “’Leiter”.
Aus (b) folgt, dass H,i und H,j Isomorphismen sind und mit dem Fiinferlemma (Lemma
6.1.5) folgt, dass Hyn : Hy,(S(X,I")/S(A,T'4)) — Hy(X,A) ein Isomorphismus ist.

6.4.13 Ausschneidungssatz

Sei (X,A) ein Raumpaar und U C X mit U C A°. Dann induziert die Inklusion e : (X \
U,A\U) — (X,A) einen Isomorphismus Hye : H,(X \U,A\U) — H,(X,A).

Beweis: " := {X \ U,A} ist eine Uberdeckung und erfiillt die Voraussetzung von Lemma
6.4.12 und H;n : H,(S(X,T")/S(A,Ta)) — Hy(X,A) ist ein Isomorphismus. Aus dem Dia-
gramm
Ja

Se(X\U)/Sq(A\U)

Sq(X,1)/S4(A;Ta)

a2

Sq(X\U)/Sq(X\U)NSg(A) — (Sg(X\U) +54(A))/S4(A;Ta)

(man beachte S;(A,T'4) =S4(A)NS,(X,T) = S,(A), da wegen A € I bereits S,(A) C S,(X,T))
folgt, dass die Inklusion induzierte Abbildung j, ein Isomorphismus ist. Da S e = 1, j, und
H,j nun auch ein Isomorphismus ist, ist auch Hye = (H,n) o (H,j) ein Isomorphismus.
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6.5 Eilenberg-Steenrod Axiome
6.5.1 Definition

Eine Kategorie % besteht aus
1. einer Klasse von Objekten, bezeichnet mit Ob (%).
2. Mengen [X, Y] von Morphismen, fiir jedes Paar X,Y von Objekten. Wenn F € [X,Y ],

dann schreiben wir auch F : X — Y. Die Klasse Mor (%) := Uy ycob (%)X, Y]+ nennen
wir die Morphismenklasse von % .

3. Abbildungen von o : [X,Y]¢ x [Y,Z]¢ — [X,Z]¢, fiir jedes geordnet Tripel X,Y,Z von
Objekten, Kompositionen genannt, welche die folgenden beiden Eigenschaften erfiillen:

(@) yo(Boa) = (yoP)oa firalle A,B,C,D € Ob(¢) mitA % B % c L D.

(b) Fiir alle X € Ob (%) existiert ein idx € [X,X|s mit o oidx = o und idy o @ = o fiir
alle @ € [X,Y]y (die idx nennen wir Identitit von X; sie ist offenabr eindeutig).

Sind ¥ und %"’ Kategorien, so ist 4" eine Unterkategorie von €, falls
(1) jedes Objekt von ¢ auch Objekt von % ist.
(2) [X,Y] C [X,Y] fiir alle X,Y € Ob(%").
(3) Bogr ot = Boga firalle X,Y;Z € Ob(¢’) und alle o € [X,Y ]y bzw. B € [Y,Z]4.
(4) Die Identitéiten aller X € Ob (%) stimmen in ¢ und ¢ iiberein.

6.5.2 Definition

Seien ¢ und ¥ Kategorien. Ein (kovarianter) Funktor 7' von % nach & (in Symbolen T :
€ — ) ist eine Abbildung T : Ob (€) UMor (%) — Ob(Z2)UMor (Z) mit

1. T(Ob(%)) COb(2)

2. T([X,Y]¢) C[T(X),T(Y)]g, fir alle X,Y € Ob(¢) mit
@ T(Boa)=T(B)oT () furalle @ € [X,Y]y, B €[Y,Z]4.
(b) T (idx ) = idrx fiir alle X € Ob (%).

Sind §: 4 — 2 und T : ¥ — & Funktoren, so kann man diese (als Abbildung aufgefasst)
offenbar nacheinander ausfiihren. Das Ergebnis 7 o § ist offenbar wieder ein Funktor.

6.5.3 Definition

Seien S, T : ¢’ — & zwei Funktoren. Eine natiirlichen Transformation ¢ = (¢x)xcop (%) von

Snach T (in Symbolen ¢ : S — T) nennen wir ein System von Morphismen ¢y € [SX,TX]q,
einen fiir jedes X € Ob (%) derart, dass jedes der folgenden Diagramme

sx %, gy

o |

TXW‘TY
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fir alle X,Y € Ob (%) und alle @ € [X,Y ], kommutiert.

Mit TOP bezeichnen wir die Kategorie, die als Objekte topologische Raume und als Mor-
phismen stetige Abbildungen hat. Mit TOP? bezeichnen wir die Kategorie, die als Objekte
Raumpaare und als Morphismen stetige Abbildungen zwischen Raumpaaren hat. Durch den
Funktor 7 : TOP — TOP? mit X € Ob(TOP) = IX := (X,0) und f € [X,Y]|yop = If :=f
konnen wir TOP als Unterkategorie von TOP? auffassen

Mit GRAD R-MODULN bezeichnen wie die Kategorie der Graduierten R-Moduln und
Familien (f;),cz von Homomorphismen als Morphismen.

Wir fassen die wichtigsten Ergebisse nun in der Sprache der Kategorientheorie zusammen.

6.5.4 Singuldare Homologietheorie

Unter einer singuldren Homologietheorie verstehen wir ein Paar (H, d,), bestehend aus einem
kovarianten Funktor

H = (H,)ycz : TOP?> — GRAD R-MODULN

und einer natiirlichen Transformation d, = (8>£X’A))(X Aycob(top?) - H — H_10J

wobei H_ := (H,_1)4ez aus H durch Indexverschiebung hervorgeht und J : TOP? — TOP?
durch J(X,A) :=(A,0) und J(f : (X,A) — (Y,B)) := f|A: (A,0) — (B,0) definiert ist, so dass
die Eilenberg-Steenrod Axiome erfiillt sind:

1. Exaktheit: Fiir jedes Raumpaar (X,A) mit den Inklusionen i : A — X und j: X =
(X,0) — (X,A) ist die folgende lange Sequenz von Homomorphismen exakt.

(X>A>

Hg,i %
a Hy(X,A) "~ Hy (A ...

Hyj

H,A " H,X
2. Homotopieinvarianz: Sind f,g: (X,A) — (Y,B) homotope Abbildungen von Raum-
paaren, soist Hf = Hg : H(X,A) — H(Y;B).

3. Ausschneidungseigenschaft: Fiir jedes Raumpaar (X,A) und jede Teilmenge U von
X mit U CA°ist He: H(X \U,A\U) — H(X,A) ein Isomorphismus; hierbei sei e :
(X\U,A\U) — (X,A) die Inklusion.

4. Dimensionseigenschaft: Ist P = {p} ein topologischer Raum, der aus einem Punkt
R fir g=0

besteht, so ist HP = (H,P mit H,P =
(HyP)gez d 0 fiir g#0

5. Additivititseigenschaft: Fiir jedes Raumpaar (X,A) und Zerlegung von X in paarweise
disjunkte offene Mengen (X;)4ep, ist Hy(X,A) = @yecp Hy(X4,A,) fur alle g € Z, wobei
Ag:=ANX,firde D
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Die Natiirlichkeit von d, : H — H_| oJ bedeutet ausfiihrlich, dass das Diagramm

Hyf

Hq(XvA) Hq(YvB)
o4 Jos
Hy1(A,0),— - Ho 1 (8,0

( (f‘A) q— ( )

fiir alle Raumpaare und Abbildungen f : (X,A) — (Y,B) und g € Z kommutiert.

Die Existenz solch einer singulidren Homologietheorie (H,d,) wurde ausfiihrlich in den
vorangehenden Abschnitten bewiesen. Fragen, die Eindeutigkeit betreffend, werden wir hier
nicht erortern. Aus der langen Sequenz

(X,x)

e HX o Hx T g (X) T  Hy X

folgt tibrigens sofort H,(X,X) = 0 fiir alle ¢ € Z.

6.6 Reduzierte Homologie und Mayer-Vietoris Sequenz

Noch eine kleine Bemerkung: Da wir jeden Raum X mit dem Paar (X, 0) identifizieren, schrei-
ben wir zuweilen statt H,(X,0) auch einfach H,(X) (und entsprechend auch fiir die gleich
definierten H,).

6.6.1 Definition

0 # A C X heif3t ein Retrakt von X, wenn es eine stetige und surjektive Abbildung r: X — A
gibt mit r|A = id4. Die Abbildung r nennen wir auch eine Retraktion.

6.6.2 Lemma
Ist A ein Retrakt von X, so ist H,X = H,(A) ® Hy(X,A) und H,(X,A) = ker (Hyr).

Beweis: Sei r: X — A eine Retraktionund i : A — X bzw. j: X = (X,0) — (X,A) Inklusio-
nen. Dann ist folgende lange Sequenz

) . (X,A)

6£q+1 Hyi Hyj g
T = Hy1(X,A) HyA HgX H,(X,A) —=H; 1A ——-..

exakt. Aus (H,r) o (Hyi) = idp,a folgt, dass Hyi injektiv und H,r surjektiv ist. Also im (diy) =
ker (H,—17) = 0 und somit im (qu) = ker (dyg) = Hy(X,A). Also ist auch H,j surjektiv und
folgende kurze Sequenz ist exakt und spaltet

Hyi Hyj

0—=HA "> HX "L H (X, A) —>0
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(H,r ist Linksinverse von H,i)! Folglich ist (wie wir allgemein in Lemma 6.1.7 gesehen haben)
H,X 2 H,A®H,(X,A) und auch H,(X,A) = ker (H,r).

Fiir den Einpunktraum P = {0} sei kx : X — P die fiir jeden topologischen Raum X eindeu-
tig bestimmte (stetige und konstante) Abbildung.

6.6.3 Definition

Unter dem g-ten reduzierten Homologiemodul H,(X,A) eines Raumpaares (X,A) verstehen
wir
Hy(X,A) fir A#0

H,(X,A) =
(X,A) {ker(qux) fir A=0

6.6.4 Lemma

Fiir jeden topologischen Raum X mit xo € X ist H,X = H,(X,{xo}) und damit H,X
Hy({xo}) & H,X . Insbesondere ist auch H,({xo}) = 0 fiir alle g € Z.
AuBerdem gilt H, f (H,X) C H,Y fiir stetiges f : X — Y und die Einschriinkung H,f :=
H,f \H X : H X — H Y definiert ein Homomorphismus.
Fiir homoomorphe Réume X,Y folgt aus dem oberen Teil iibrigens sofort H,(X) =
H,(Y) fiir alle g € Z.

Beweis: Die erste Behauptung folgt aus Lemma 6.6.2, da {xo} offenbar ein Retrakt von X
ist. Damit ist dann H,X = H,({x0}) ® Hy(X,{x0}) = H,({x0}) ® H,X.
Der Rest folgt aus (Hyry) o (Hyf) = Hyrx, denn ry o f = rx.

6.6.5 Lemma

Sei F: X xI— X stetig, AC X, ay €A, q€Z,F(x,0)=x, F(x,1) € A fiir alle x € X,
F(a,1) =afiir alle a € A und F (ap,t) = a fiir alle z € I. Dann ist Hy(X) = Hy(A).

Beweis: Definiere f: (X,{ap}) — (A,{ao}), x — F(x,1) und g : (A,{ao}) — (X,{a0}),
ar— a.Dannistgo f: (X,{ao}) — (X,{ao}) homotop zu id(x (4,1) vermdge H : (X x I,{aop} x
I) = (X,{ao}), (x,t) — F(x,t) und fog=id 4y Es folgt aus Satz 6.3.9 (H,[) o (Hyg) =
idy (A {ao)) Und (Hgg) o (Hyf) = idy, (x (ay})- Als0 ist Hyf : Hy(X,{ao}) — Hy(A, {ao}) ein
Isomorphismus. DaH 1(A,{ao}) = Hy(A) und Hy (X, {ao}) = H,(X) folgt H,(X) = H,(A).
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6.6.6 Satz

Zu jedem Raumpaar (X,A) mit A # 0 existiert die reduzierte lange exakte Homologiese-
quenz
e HA = H X —— Hy(X,A) — Hy (A ——

deren Homomorphismen Einschrinkungen der Homomorphismen aus der Homologiese-
quenz des Paares (X,A) sind.

Beweis: Aus Lemma 6.6.2 und der Dimensionseigenschaft schlieBen wir, dass es geniigt
die Exaktheit (und Wohldefiniertheit der Abbildungen) auf dem Stiick

5&4) g A)

H,(X,A) "— HoA HoX Hy(X,A) *—H_1A (%)

nachzupriifen (hier ist ég’A) = &SI(’A) |H,(X,A)). Zuk: (X,A) — (P,P) gehort das kommuta-
tive und in den Zeilen exakte Diagramm

(X,A) (X.A)

H(X,A) " — HyA HoX Hy(X,A) >~ H (A

A

0 HyP HyP 0 0

da H;(P,P) =0, Hy(P,P) = 0 und H_;P = 0. Die Wohldefiniertheit von ég’A) ist nun klar.
Ebenso sieht man nun iiber den Umweg der unteren Zeile, dass die Sequenz () exakt ist.

6.6.7 Definition
Ein Raumtripel (X,A, B) ist ein toplogischen Raum X mit BC A C X.

6.6.8 Lemma

Zu jedem Raumtripel (X, A, B) existiert eine lange exakte Sequenz
o HHQ(A7B> HHQ(XaB) 4>HQ(X7A) 4d> q—1 (AaB) -
Gibt es zudem ein kommutatives Diagramm von Raumpaaren

(A,B) —— (X,B) —— (X,A)

.

(A,,B/) . (X/,B/) . (X/,A/)
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dann gibt es ein kommutatives Diagramm mit exakten Zeilen

.. ——>H,(A,B) — H,(X,B) — H,(X,A) —%*~H, {(A,B) — ---

| | | |

-+ —Hy(A'",B') —= H,(X',B") —=H,(X",A") —A>Hq_1(A’,B’) .

Beweis: Wir konne dies auf zwei Arten beweisen. Mit den Inklusionen i, j bekommen wir

0—= S(A,B) —~S(X,B) N S(X,A) — 0 und mit Lemma 6.1.10 die Sequenz

Hgpj *q+l

. ——H, 1 (A, B) el w1 (X,B) 2 g (x,A) 2 H (A, B) - H(X,B) ——

Eine andere Moglichkeit ist eine Diagrammjagd auf Basis der Eilenberg-Steenrod Axiome.

6.6.9 Satz (Existenz der Mayer-Vietoris Sequenz)

ei X ein top. Raum und X;,X> C X mit X = X; UX5 und X; NX, # 0. Dann gibt es eine
exakte Sequenz der Form

~ [0 /7 ~ n g Yn
e (XN X)) — % A (X)) @ H, 00 Hy(X) — L, (XN X2)

Beweis: Sei xg € X| N X;. Wir betrachten das Diagramm von Inklusionen

(X1 N Xa,%0) ~— (X1,%0) —2 (X1,X1 N X2)
J{iz \Lg J{h
(X2,x0) (X,x0) (X, X2)

Obiges Lemma fiihrt zu folgendem kommutativen Diagramm mit exakten Zeilen

H,i
- — Hy(X; NXa,x0) ~— H, (Xl,xo)—>H (X1, X1 NXa) —%> H, 1 (X; NX2,%0) —>

iniz lHqg inh lqul’z
A

Hq(Xz,XO) Hq(X,xo) Hq(X,Xz) qul(Xz,xO)

q"

Die Ausschneidung liefert, dass jedes H,h ein Isomorphismus ist. Die Aussage folgt nun aus
Lemma 6.1.6 und 6.6.4.
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6.7 Anwendungen im R”

”The paradox is now fully established that the utmost abstractions are the true weapons
with which to control our thought of concrete fact.”
Alfred North Whitehead

Sei §":={x € R""! | |x| =1} und D" := {x € R" | |x| < 1}. Mit {a,b) := ¥'*_, a;b; bezeich-
nen wir das standard Skalarprodukt im R".

6.7.1 Lemma

(a) Sein >0, g € Zund a,b € S" mit a # b. Dann gilt A,(S"\ {a,b}) = H,(S" ).
(b) Sein>0,q € Zund a € S". Dann ist Hy(S" \ {a}) =0.
(c) Fiirn > 1 und g € Z ist Hy(S") = H,_;(S"1).

R falls g=n

d) Firge Zund n > 0 ist H,(S") =
(Frg "= 5=10 falls g #n

Beweis: (a) Die Abbildung H : (R"\ {0}) x I — R"\ {0}, (x,7) — (1 —t)x—I—t‘i—‘ mit X :=
R\ {0} und A := §"~! erfiillen alle Voraussetzungen von Lemma 6.6.5. Also H,(R"\ {0}) =
H,(S""1). Die Behauptung folgt nun aus Lemma 5.3.6 und 6.6.4.

(b) Sei a € R". Definiere F : R" xI — R", (x,t) — (1 —t)x+taund A := {a}. Aus Lemma
6.6.5 folgt A,(R") = 0. Die Behauptung folgt nun aus Lemma 5.3.6 und 6.6.4.

(c) Seien a,b € §" mit a # b. Setze X| := §"\ {a} und X, := §"\ {b}. Da X; N X, =
S"\{a,b} # 0 und " = X7 UX; gilt (tatsidchlich sind X;,X, sogar selbst offen), existiert
die Mayer-Vietoris Sequenz (Satz 6.6.9)

Hﬁq(xl) EB[:Iq(Xz) *>I:Iq(5n) — ~q_1(X1 ﬂXz) *>I:Iq(X1) EBI:Iq(Xz) —

Aus (a) und (b) folgt Hy(X,) ®Hy(X2) =0, Hy—1(X) @%Hq—l(le: 0und A,_; (X1 NXp) =
H,_1(S""1). Da die Sequenz exakt ist folgt schlieBlich H,(S") = H,_(S""1).

(d) Aus (c) folgt mit Lemma 6.6.4 und der Additivititseigenschaft H,(S") = H,_,(S") =
Hyn({-1,1}) = Hg—n({-1,1},{—1}) = Hg—n({—1},{—1}) ® Hy-n({1},0) = Hg—n({1})

Mit einem Verweis auf die Dimensionseigenschaft sind wir fertig.

6.7.2 Satz

S" ist kein Retrakt von D!,

Beweis: Mit Lemma 6.6.5 macht man sich sehr schnell klar, dass I:Iq(D”“) = 0 1st fiir
alle ¢ € Z. Wire r : D"*! — §" eine Retraktion und i : S — D"*! die Einbettung, so folgt
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roi=idgn, also (Hyr) o (Hyi) = idy,sn. Das heiBt Hyr ist fiir alle g € Z surjektiv. Wir kennnen
nun aber H,5" und HqDthl und sehen, dass das nicht fiir alle g € Z stimmen kann. (Der Fall
n = 0 geht elementar, da S° nicht zusammenhingend ist D' aber schon.) Man kann das Ganze
auch direkt mit Lemma 6.6.2 beweisen.

6.7.3 Fixpunktsatz von Brouwer

Jede stetige Abbildung f : D" — D", n > 0 hat einen Fixpunkt.

Beweis: Fiir n = 0 ist alles klar (elementare Analysis)! Sei n > 0. Annahme f(x) # x fiir
alle x € D". Fiir alle x € D" suche #(x) > 0 mit f(x) +¢(x)(x — f(x)) € S"7 1, dh. 1 = [f(x) +
1) (x = f ()] = | F )]+ 20(0) (F (), x = £ () +1(x)*]x — f () 2. Mit A(x) := e — f(x)]* >
0, B(x) := 2(f(x),x — f(x)) und C(x) := |f(x)|?> — 1 < 0 haben wir A(x)z(x)> + B(x)t(x) +
C(x) =0.Dat(x) > 0ist

() = —B(x) + \/B(x)2 —4A(x)C(x)
2A(x)

Setze t : D" — R, x > t(x). Dann ist ¢ stetigund r : D" — S"~ 1 r(x) := f(x) +1(x)(x — f(x))
ist eine Retraktion - Widerspruch! Einen elementaren Beweis gibt es im Kapitel Fixpunktsditze.

6.7.4 Definition
Sei r € Nund 7 := [0, 1]. Ein Raum X heift r-Zelle falls X homéomorph zul".

6.7.5 Lemma

Ist e, C S" eine r-Zelle, n > 0. Dann ist qu(S" \ e,) =0 fiir alle g € Z.

Beweis: Induktion iiber r. Fiir r = 0 ist e, = {a} und es folgt mit Lemma 6.7.1 H,(S" \ ¢,) =
H,(S"\ {a}) =0. Sei r > 1 und die Behauptung fiir alle k < r bewiesen. Sei ¢ : I" ! x I — e,
ein Homgomorphismus. Setze ¥ :=e,, ¥' := (! x[0,3]) und Y" := (I~ ! x [,1]). Dann
sind Y',Y” ebenfalls r-Zellen und Y'NY” = @(I"~! x {3}) ist eine r — 1-Zelle. Da Y’ und ¥”
kompakt sind, sind §” \ Y, §"\ Y” offen in §" \ (Y'NY"). Mit der Mayer-Vietoris Sequenz

Hy 1 (S"\(Y'NY")) —= Hy(S"\Y) —= Hy(S"\Y') @ Hy(S"\Y") —= Hy(S"\ (Y'NY"))
sehen wir, dass (H,i',H,j) : Hy(S"\Y) — Hy(S"\Y') & H,(S"\ Y”) ein Isomorphismus ist,
wobei ' : §"\ 'Y — §"\ Y’ und entsprechend j Inklusionen sind. Nehmen wir - um einen

Widerspruch zu erhalten - an, dass Hy(S"\Y) # 0 ist. Sei also 0 # z € H,(S"\ Y). Dann
ist wenigstens einer der beiden Werte H,i'z oder H, jz ungleich 0. Dieses Argument iteriert
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angewendet ergibt eine Folge (E,),cn von r-Zellen, E, = ¢(I"~! x I,) mit Intervall 1, C
I, 1,11 €1, und diam(,) = 27" und eine Folge (i, : S, \Y — S, \ E}) pery von Inklusionen
mit Hyipz # 0. Offenbar ist E := (e E, eine r — 1-Zelle und daher H,(S" \ E) = 0. Sei
die Inklusion i : "\ Y — $"\ E. Dann ist Hyiz = 0 in H,(S" \ E). Sei z = [x]. Es gibt daher
eine endliche Summe 8 =Y, 7,07 € Sy41 (8" \ E) mit dy1 1B = Syix. Nunist A := {J; 6;(Ag41)
kompakt in §"\ E = [ ,en(S" \ E;,), wobei letzteres eine aufsteigende Folge offener Mengen
ist. Es gibt somit ein p mit A C §" \ E,. Wir sind im Grunde fertig, der Rest ist nur noch
die prizise Herausschilung des offensichtlichen Widerspruches. Sei g : $"\ E, — S" \ E die
Inklusion. Zu jedem / gibt es ein eindeutiges o] : Ay 1 — S\ E, mit go 0] = 0;. Setze ' :=
Y, r0]. Mit goi, =ifolgt (S;8)(Sqip)x = Syix = dg+1P = 9g+1 (Sg+18)B' = (S48)94+1B’, also
Sqipx = dg+1 B denn S,g ist offenbar injektiv. Also Hyi,z = Hyipz = [Sqipx] = [0y41B'] =0
im Widerspruch zur Konstruktion!

6.7.6 Lemma

Sein >0, r>0und S, CS" wobei S, homéomorph zu S ist. Dann ist

R falls g=n—r—1

fiir alle g € Z.
0 falls g£n—r—1 1

A,(S"\S,) = {

Beweis: Fiir r = 0 ist S, = {a,b} mit a # b. Der Induktionsstart folgt daher aus Lemma
6.7.1.

Sei jetzt r > 0 und fiir jedes k < r sei die Aussage bewiesen. Wir setzen E4 := {(xo, ..., x,) €
S"|x, >0} und E_ := {(x0,...,x,) €S | x, <0}. Offenbarist ¢ : (E.,E; NE_) — (D",S"1),
(X0, ...y Xr) > (X0, ..., Xp—1 ) stetig und bijektiv und somit, da es sich um kompakte Hausdorffriu-
me handelt, bereits ein Homéomorphismus. Analog mit y : (E_,E; NE_) — (D",5"!). Da
wegen Lemma 11.3.18 I” homéomorph zu D" ist, ist I” auch homéomorph zu E bzw. E_ und
diese sind daher r-Zellen. Sei ¢ : S — S, ein Homdomorphismus. Wir setzen e := ¢(E)
und e_ := @(E_). Dementsprechend sind auch e und e_ r-Zellen. Da diese kompakt sind,
sind sie abgeschlossen in §" und X' := 8"\ e, X" := §"\ e_ offen in " und somit auch in
X'UX" =8"\ (exNe_). Mit Lemma 6.7.5 bekommen wir aus der Mayer-Vietoris Sequenz

Hn(X)@H X" —Hp (X' UX") —H,(X'NX") —= Hy(X") ® H, X"

sofort H,+1(X'UX") = Hy(X'NX"). Da ex Ne_ homdomorph zu $"~! folgt dann aus der
Induktionsvoraussetzung

R falls g+1=n—(r—1)—1

]:]q(S”\Sr):[f]q(X’ﬂX”)gl:lq+1(S"\(€+ﬂe_))g{0 falls g+1#n—(r—1)—1
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6.7.7 Lemma

Ist X wegzusammenhéngend und @ # A C X, so ist Hy(X,A) = 0. Insbesondere folgt aus
Lemma 6.6.4 dann Hy(X) = 0.

Beweis: Zur Erinnerung: S;(X,A) := S,(X)/S4(A) und Hy(X,A) := Kerl99) - yobei 9,

im(dyq1)

Sq¢(X,A) — S4_1(X,A). Sei xo € A. Jedes 6 € My(X) wird eindeutig durch einen Punkt x €
X reprisentiert. Wir identifizieren deshalb My(X) mit X. Sei nun B = (Y, cx rx) +So(A) €
ker (dg) = So(X,A) gegeben. Fiir jedes x € X sei o, : A| — X stetig mit o,(eg) = xo und
oy(e1) =x. Dannist ¥y := (Y,ex 7:0x) +S1(A) € $1(X,A).

Nun ist 91 (Y ex r:0x) = (Lpex X)) — (Lrex IXo), wobei Y cx rixo € So(A). Also ist

B=(Y rex)+S0(A) = (Y rex) = (Y rexo) + So(A) = 9:1(7)

xeX xeX xeX

Insgesamt demnach ker (9g) C im (9) und somit Hy(X,A) = 0.

6.7.8 Lemma

(a) S"\ e, wobei e, eine r-Zelle C S" ist, ist wegzusammenhzngend.

(b) Sei s homéomorph zu S”. Fiir r = n— 1 hat §" \ s genau zwei offene Wegzusammen-
hangskomponenten = Zusammenhangskomponenten. Fiir » # n — 1 ist $” \ s wegzusam-
menhingend.

Beweis: (a) Es ist nach Lemma 6.7.5 Hy(S" \ e,) =0, also Hy(S" \ e,) = R. Sei x € s. Nun ist
s kompakt, also abgeschlossen in S”. Demzufolge ist " \ s als offener Teilraum von "\ {x}
ebenfalls lokal wegzusammenhingend. Eine Zerlegung von S" \ s in seine Wegzusammen-
hangskomponenten (X;),cp ist daher eine Zerlegung von "\ s in paarweise offene und dis-
junkte Teilmengen. Aus der Additivitédtseigenschaft und Lemma 6.7.7 folgt R = @ ,.p R. Wir
hatten uns ganz am Anfang darauf geeinigt, dass R einen fest gewidhlten Ring bezeichnet. Set-
zen wir fiir R z.B. den Korper R ein, so kann die Gleichung R = @ ;. p R fiir ein D mit mehr als
einem Element offenbar nicht mehr gelten (Dimension von Vektorrdumen)! Folglich |D| =1
und S" \ s ist wegzusammenhingend!

(b) Sei r # n— 1. Es folgt Hy(S™\ s) = 0 und wir schlieBen wie eben. Ist r = n — 1, so sei
(X4)aep wieder die Zerlegung von S™\ s in Wegzusammenhangskomponenten. Es folgt wieder
mit Lemma 6.7.6, 6.7.7 und der Ausschneidungseigenschaft @,.pR = Ho(S" \ s) = RDR.
Fiir R = R geht dies nur fiir |[D| = 2!
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6.7.9 Trennungssatz von Jordan-Brouwer

Sei s C S" homoomorph zu S"°!. Dann hat S"\ s genau zwei offene
(Weg)Zusammenhangskomponenten U,V mit JU = dV =s.

Beweis: S” \ s hat nach Lemma 6.7.8 genau zwei offene Wegzusammenhangskomponenten
= Zusammenhangskomponenten U, V. Da V offen istund $"\ V = U Us, folgt U C U Us und
somit auch U = U \ U C s Analog mit V.

Sei x € s und W offen in §" mit x € W. Wegen 0 # W N (VUs) =WN(S"\U) bleibt
nur noch WNU # 0 zu zeigen. Sei ¢ : s — §" ! ein Homdomorphismus und a := @(x).
Es ist W N s offen in s und demnach P := @(W Ns) offen in §*~!. Sei y: 5" '\ {a} —
R"~! ebenfalls ein Homdomorphismus. Wegen R"~! = |,y K(0,k) und S"~ 1\ P C 8%~ 1\
{a} C Uren ¥ ' (K(0,k)) gibt es ein k € N mit S"~ 1\ P C w1 (K(0,k)) (beachte: "1\ P
ist kompakt). Es folgt A := s\ ¢~ (y~1(K(0,k))) C ¢! (P) = Wnsund s\ A ist eine n— 1-
Zelle, denn K (0,k) ist eine. Also Hy(S"\ (s\A)) =0 und §"\ (s \ A) = (5" \ s) NA ist daher
wegzusammenhidngend! Seiu € U und v € V. Es gibt dann ein f: I — §"\ (s\A) mit f(0) =u
und f(1) = v. Folglich f(I)NA # 0. Nun ist f(I)NA C f(I)Ns C fI)N(S"\ (s\A))Ns C
fUI)NA, also f(I)NA = f(I)Ns. Setze to :=inf{r € I | f(¢t) € s} =inf{r €1 ]| f(t) € A}.
Folglich f(ty) € f(I)NA = f(I) Ns und somit f(ty) € W.Da f(0) =u, f(1) =vund f(1p) € s
ist 0 <19 < 1. Setze J := [0,1y). Dann ist f(J) zusammenhingend und f(J) C f(I)N(S"\s) C
FHN(WUUV).Dauc f(J)folgt f(J) CU.Daty € f~1(W): offen, ist JN f~1 (W) # 0, also
f(J)NW # 0 und somit W NU # 0. Es folgt x € "\ U NU = QU und analog x € JV.

Leicht kann man dieses Ergebnis nun auch auf den R” iibertragen:

6.7.10 Korollar

Sein > 2, s C R" homdomorph zu $"—1 Dann zerfillt R" \ 5 in exakt zwei offene Wegzu-
sammenhangskomponenten = Zusammenhangskomponenten U,V mit s = dU = dV.

6.7.11 Satz von der Invarianz des Gebietes

Sind U,V homdomorphe Teilmengen von $”, von denen eine offen ist, dann ist auch die
andere offen.

Beweis: Sei U offen, h: U — V ein Homoomorphismus und y € V. Sei h(x) =y. Sei W
eine abgeschlossene zu I" (also auch D) homéomorphe Umgebung von x in U, so dass dW
homéomorph zu §"~! ist. W und A(W) sind dementsprechend n-Zellen. Nun ist 8"\ h(W)
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zusammenhingend und S" \ 7(dW) hat zwei Komponenten. Da §" \ h(dW) = (§"\ h(W)) U
(h(W)\ h(dW)) und beide Terme der rechten Seite disjunkt und zusammenhéngend sind,

handelt es sich um die Komponenten von "\ (dW). Sie sind also auch offen. insbesondere ist
h(W)\ h(dW) offen in S". Aber y € h(W)\ h(dW) C V. Also ist V offen.

Auch dieses Ergebnis ldsst sich nun leicht auf den R” iibertragen:

6.7.12 Korollar

Sind U,V C R" homdomorph und ist eine der beiden Mengen offen, so ist auch die andere
Menge offen.
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7 Hyperraume

”Die Menschheitsgeschichte wird mehr und mehr zu einem Rennen zwischen Aufkli-
rung und Katastrophe.”
H.G. Wells

7.1 Hausdorff-Metrik und Selbstahnlichkeit

Sei (E,d) ein metrischer Raum mit Metrik d und sei & := {A C E | 0 # A ist abgeschlossen und
beschrinkt}. Unser Ziel ist es o zu einem metrischen Raum zu machen (mit der sogenannten
Hausdorff-Metrik). Fiir A, B € a setzen wir dazu

0(A,B) := max(supd(x,B),supd(A,y)) wobei d(x,A):= infd(x,a).
x€A yeB acA

Man beachte, dass d(x,A) = d(A,x) fiir alle A C E und fiir alle x € E gilt. Ein Wort zur
Notation: Mit K% (x, €) bezeichnen wir in jedem metrischen Raum (E,d) die offene Kugel um
x mit Radius &, also K% (x,€) := {y € E | d(x,y) < €} (wenn klar ist um welchen Raum es sich
handelt, schreiben wir einfach K (x, €)).

7.1.1 Satz (Existenz der Hausdorff-Metrik)

0 ist eine Metrik auf o.

Beweis: (1) Die Symmetrie ist klar.

(2) Es gilt §(A,B) =0 < sup,4d(x,B) =0 =sup,pd(A,y) & ACBund BCA.Da
A,B€ aistA=Aund B=B.Esfolgt §(A,B)=0 < A=B.

(3) (Dreiecksungleichung) Seien A, B;C € «.

Sei x € A beliebig.

1.Fallx € A\C,dannVc € C : d(x,B) <d(x,c)+d(c,B),alsod(x,B) < 6(A,C)+ 6(C,B).

2.Fallx e ANC, dann d(x,B) < 6(B,C) < 6(A,C)+6(B,C).

Sei nun y € B beliebig.

L.Fally e B\C,dannVc e C : d(y,A) <d(y,c)+d(c,A), also d(y,A) < 8(B,C)+6(A,C).

2.Fally € BNC,dann d(y,A) < 8(A,C) < 8(A,C)+ 6(B,C).

Es folgt 6(A, B) := max(sup,eq d(x, B),sup,cpd(A,y)) < 6(A,C) +6(B,C).

7.1.2 Satz (Vollstandigkeit der Hausdorff-Metrik)

Ist (E,d) vollstiandig, so ist auch (@, d) vollstindig.

Beweis: Sei (A,),cn eine Cauchyfolge in a. Setze ¥, := U;>, Ax und A := (,en Vi
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1.Schritt: Alle Y, sind beschrinkt. Aulerdem ist A # (), abgeschlossen und beschrénkt.

Beweis dazu: Fire =13M e NVk, I >M : 8(A;,Ax) < 1.Sein>Mundx €Y, = >, Ax-
Dann gibt es ein ¥’ € |-, Ax mit d(x,x’) < 1. Es gibt also ein [ > n mit x’ € A; und es folgt
d(x,An) <d(x,x') +d(x',A,) < 1+ 8(A;,A,) < 2. Dax € Y, beliebig war und A, beschrinkt
ist, muss auch Y, beschrinkt sein. Also sind alle ¥;,, n > M beschrinkt. Aus der Beschrinktheit
von Y, folgt aber die Beschriinktheit von Y, denn Y), := U , Ak = Ap UUj> py1 Ak = A,U
Y, 11 und A_p ist natiirlich auch beschrinkt. Also sind auch alle Y;,, n < M beschrinkt.

Als Schnitt abgeschlossener und beschriankter Mengen ist A offenbar abgeschlossen und
beschrinkt. Zeigen wir A = 0: Fiir jedes n € NdAN, € N, N, > Ny, Ny, ...,N,_1, sodass Vk,[ >
Ny : 0(Ax,A;) < 27" Fir jedes n € N setze nun B, := Ay,. Fiir alle k,/,n € N mit k,/ > n gilt
S(Bk,Bl) = S(ANk,ANl) < 27" da Ni,N; > N,,. Wihle xq € By. Sei x, € B,, gewihlt.

1.Fall x,, € B+, dann setze x,+1 := Xx,.

2.Fall x,, € By,+1. Nun gilt §(B,,B,+1) < 27", insbesondere SUPyc, ., d(x,B,) < 27" (und
B,y1 # 0). Wihle dann x| € B, mit d(x,;,x,4+1) <27

Offenbar ist (x; )ren eine Cauchyfolge in E. Bis auf endlich viele Anfangsglieder ist (x) e
daher auch eine Cauchyfolge in jedem Y. Fiir y := lim, ...y, gilt somity € (,en Y = A.

2.Schritt: (Y,),cn ist eine Cauchyfolge in o.

Beweis dazu: Sei € > 0. Wihle N € N, so dass Vk,I > N : 8(Ay,A;) < €/2. Seien k,l > N
undy € ¥ = U,>1Ap. Dann 3y’ € K(y,€/2)N(U,>1Ap). Alsoisty € A, fiir gewisses p > k.
Esfolgtd(y,Y;) <d(y,y") +d(y',Ugz14q) =d(3Y) +d(Y,\Uyg=149) <€/2+d (Y, A)) < €/2+
0(Ap,A;) < €/2+4¢€/2 = e. Analog bekommt man d(y,Y;) < € fiir jedes y € ¥;. Damit folgt
nun aber 0 (Y;,Y;) < € furalle k,/ > N.

3.Schritt: A ist ein Haufungspunkt von (Y;),cn (das heifit zu jeder Umgebung O von A ist
{n € N| Y, € O} unendlich) und damit lim, .. 6 (¥,,A) = 0.

Beweis dazu: Fiir jedes n € Nsei N, € N, N, > No,Ny,...,N,— mitVk,l >N, : §(Y;,Y)) <
27" Fiir Z, := Yy, folgt fur alle k,l > n : 8(Z,Z;) = 8(Yy,,Yn,) <27",da Ng,N; > N,. Ange-
nommen A ist kein Haufungspunkt von (Z,),cn. Dann gibteseine >0Vn e N : 6(Z,,A) > ¢.
Wihle N € Nmit Y5 275 < g/2.

Wiihle zy € Zy mit d(zy,A) > 3£ (man beachte A C Zy). Sei z, € Z,, n > N gewihlt. Falls
Zn € Zy11, SO setze 7,11 := zp. Falls z,, € Z, 11, so ist trotzdem 6(Z,,Z,+1) < 27". Es gibt also
ein 7,41 € Zp+1 mit d(z,,2,41) < 27"

Fiir jedes k € N ist d(zyx,A) > d(zn,A) = (d(zn 1k = ansk—1) + oo+ d(ans1,2v)) > 5 —
27N 4. 42 WHk=D)y 5 38 £ — £ Nun ist (z)7_y eine Cauchyfolge in jedem ¥, (bis
auf endliche viele Ausnahmen), also z := lim, .z, € A. Es folgt d(z,,A) < d(zy,z) — 0 im
Widerspruch zu d(z,,A) > 7 fiir alle n > N. Also ist A ein Haufungspunkt von (Z,),cn und
damit auch von (¥,),en. Da (Y,),en eine Cauchyfolge ist, folgt lim, . 6(Y,,A) = 0.

4.Schritt: Es gilt lim, ... 5(4,,A) = 0.

Beweis dazu: Sei € > 0. Dann IN € NVk, I > N : 6(A;,Ax) < €. Nun ist §(A,,A) <
6(Y,,A) +0(Yy,,Ay), fiir jedes n € N. AuBerdem 6(Y,,,A,) = sup{d(x,A,) | x € Uy>, Ak}, da
An €Yy = Up=nAx- Sei nun x € (g, Ax. Dann gibt es ein x' € [J;~, Ax mit d(x,x’) < €. Es
gibt also ein / > n mit X’ € A; und es folgt d(x,A,) < d(x,x') +d(¥,A,) < €+ 8(A;,A,) < 2€
fiir n > N, also auch 8(Y,,A,) < 2¢ fiir n > N. SchlieBlich gibt es ein N’ € N mit N’ > N und
0(Yy,A) < € fir n > N'und es folgt Vn > N' : §(A,,A) < 8(Yn,A) + 0(Yn,An) < 3e.
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7.1.3 Satz

(a) Ist (E,d) total beschrinkt, so ist auch (e, d) total beschrinkt.
(b) Ist (E,d) kompakt, so ist auch (¢, §) kompakt.

Beweis: (a) Sei € > 0. Es gibt ein F C E, F: endlich mit d(x,F) < %, fiir alle x € E.
Setze .7 1= Z(F). Sei A € a. Zu jedem a € A gibt es ein f, € F mit d(a, f,) < §. Set-
ze F':= {fy | a € A}. Dann ist 6(A,F’) = max(sup,cpd(a,F’),sup crd(A, f)). Es folgt
sup,ead(a,F') < § < &. Schauen wir uns noch sup ;. d(A, f) an. Fir f € F' 3a € A mit
f = fa, folglich d(A, f) < d(a, fa) < 5. Also auch hier sup s d(A, f) < § < €. Und somit
S(AF') <€, also 6(A, . F) < efiralle A € a.

(b) Ist (E,d) kompkakt so ist (E,d) vollstdndig und total beschriinkt, also ist (o, 8) voll-
standig und total beschrinkt und somit auch kompakt.

7.1.4 Lemma

Sei (K, ),en eine Folge aus o mit 3K :=1im, .« K,,, K € a. Sind alle K,, total beschrinkt,
so ist auch K total beschrinkt.

Beweis: Sei £ > 0. Sei n € N mit §(K,,,K) < §. Da K,, total beschrinkt ist, gibt es eine
endliche Teilmenge F C K, mit Vx € K, gilt d(x,F) < §. Aus §(K,,,K) < £ folgt, dass es zu
jedem y € K ein f(y) € K, gibt mit d(y, f(y)) < §. AuBerdem gibt es zu jedem x € K, ein

g(x) € F mit d(x,g(x)) < §. Wir haben also Abbildungen K ER K, % F. Setze h:= go f. Fiir
jedesz € Fmith~'(z) #0seiy, € h~'(z) und A, := {y,}. Falls h~!(z) = 0, setze A, := 0. Sei
dann F' :=J,cp A;. Offenbar ist F endlich und F’ # 0.

Seinuny € K. Dann ist d(y, h(y)) <d(y,f(y)) +d(f(y),&(f(y))) < §+ 5 = 5. Setze z:=
h(y), also h~'(z) # 0. Folglich gibt es ein y, € F mit h(y,) = z. Es folgt d(y,y,;) < d(y,h(y)) +
d(h(y),y:) = d(y,h(y)) +d(h(y:),y:) <5+5 =&

7.1.5 Lemma

Sei k := {K C E | K kompakt und K # 0}. Ist (E,d) vollstindig, so ist (k, ) vollstindig,
wobei wir § auf k einschréinken.

Beweis: Wir zeigen, dass k ein abgeschlossener Teilraum von o ist. Da (¢, §) vollstdndig
ist, sind wir dann fertig. Sei (K,),cn eine Folge aus k, die in a konvergiert (bzgl. §), also
lim, . K, = K € o.. Nun sind alle K}, total beschrinkt (da sie kompakt sind). Folglich ist auch
K (wie eben gezeigt wurde) total beschrinkt. Da K aber auch abgeschlossen ist, ist K somit
auch kompakt, folglich K € ! Damit ist gezeigt, dass k abgeschlossen ist.
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7.1.6 Lemma

Sei (E,d) ein metrischer Raumund f; : E — E , i = 1,...,n eine Familie von Kontraktionen

(dh.Vi=1,..,nistg;:=sup,, W < 1). Dannistauch f: &« — «, definiert durch

f(A) :=UL, fi(A) eine Kontraktion.

Beweis: Setze ¢ := max(qi, ...,qx). Wir zeigen 6 (Ui, fi(A), UL, fi(B)) < ¢~ 6(A,B), fir

beheblge A,B € . Sei € > 0 beliebig gewihlt. Sei x € Ji_ f,( ). Dann gibt es ein y €

" fi(A )m1td(xy)<8 Seil € {l,....,n} unda € Amit fi(a) = y. Nun gibt es ein b € B mit
d(a b) < d(a,B)+e€. Seiz € U, f;(B) mit d(f;(b),z) < €. Es folgt

d(x,z) <d(x,y)+d(y, f1(b)) +d(fi1(D),z) < €+qd(a,b)+ € < gd(a,B)+ (2+q)e.

Da ¢ beliebig war gilt d(x, ", fi(B)) < d(x z) < gqd(a,B) < gsup,c4d(a,B). Da auch x €
U™, fi(A) beliebig war, gilt sup U fiA) (x UL, fi(B)) < gsup,c,d(a,B). Aus Symme-

triegriinden folgt damit dann 6 ( ,:1fz( ), " 1 fi(B)) <q-6(A,B).

7.1.7 Satz (Existenz selbstahnlicher Mengen)

Sei (E,d) ein vollstindiger metrischer Raum und f; : E — E, i = 1,...,n eine Familie von
Kontraktionen. Dann gibt es eine eindeutig bestimmte und nicht leere kompakte Teilmenge
K von E mit K = J_, f;(K).

Beweis: Sei wieder k := {K C E | K kompakt und K 7& K # 0}. Dann ist (x,0) vollstandig.
Satz 7.1.6 lehrt, dass f : kK — K, definiert durch f(K) :=J;_, fi(K) eine Kontraktion ist, denn

UL, fi(K) =U~L, f:(K), da alle f; stetig sind, die f;(K) somlt kompakt, also auch abgeschlos-
sen sind und daher auch J\_, f;(K) kompakt und abgeschlossen ist. Laut dem Banchschen
Fixpunktsatz gibt es genau ein K € x mit f(K) = K, also K = L, fi(K).

7.2 Vietoris-Topologie
7.2.1 Definition

Sei (X, 1) ein topologischer Raum und o := {A C X | @ # A ist abgeschlossen}. Wir werden
o nun zu einem topologischen Raum machen. Fiir Uy, ...,U, € 7\ {0} setzen wir

V(Ui,....Up) :={A€a|AC | JUy und Vk € {1,...,n} ist UcNA # 0}
k=1
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und B := {V(Ui,....,U,) | Uy,...,U, € T\ {0}}. Seien Uy,...,U,,Wy,....W, € T\ {0}. Setze
U := (U Ux) N (UL, W;). Dann ist offenbar

V(U1,...,Up) NV(Wy,...W,) =V(UNUy,..,.UNU, UNW,...,UNW,).

Die von % erzeugte Topologie 7y nennnen wir die Vietoris-Topologie auf o. Aus dem
bisher gezeigten folgt, dass 4 eine Basis fiir 7y ist. Aus

p p
V(Ui,...,Up) =V U) N VX, Ux)
k=1 k=1

folgt, dass .7 :={V(U) |U € T\ {0} } U{V(X,U) |U € ©\ {0} } eine Subbasis fiir 7y ist.

7.2.2 Satz

Ein topologischer Raum (X, 7) ist genau dann kompakt, wenn (¢, 7y ) kompakt ist.

Beweis: Sei (o, 7y) kompakt und sei (U;)ics eine offene Uberdeckung von X. Dann ist
(V(X,U;))ier offensichtlich eine offene Uberdeckung von a. Es gibt also eine endliche Teil-
iiberdeckung V (X, U;, ), ...,V (X,U;,). Dannist U;,, ..., U;, eine Uberdeckung von X, denn sonst
wire A := X \ U;_, Uj, eine nicht leere abgeschlossene Menge, also A € V(X,U;, ), fiir ein ge-
wisses k € {1,...,n} und somit A N U;, # 0 - ein Widerspruch.

Sei (X, 7) kompakt und {V(U;) | i € I} U{V(X,W,) | j € J} eine offene Uberdeckung von
a mit Elementen aus der Subbasis . (wir verwenden den Alexanderschen Subbasissatz).
Wir setzen dann B := X \ U;c; W) € @. Ist B =0, so gibt es endlich viele Wj,,...,W;, mit
X =W;, U...UW,,. Dann offensichtlich o =V (X,W;,)U...UV(X,W, ).

Gilt B # 0, so ist B dann aber in einer der Uberdeckungsmengen als Element enthalten.
Dass kann aber nur noch eine Menge der Form V(Uio) sein, fiir ein iy € 1. Also B C U;,. Das
bedeutet aber X = U;; U jc; W;. Da X kompakt ist, gibt es wieder endlich viele Wy, ..., W;, mit
X =U;,UW;, U...UW,,. Dann folgt aber leicht & = V (U;,) UV (X, W;,)U...UV (X, W, ), denn
jede abgeschlossene Menge A, die nicht Element von V (U;, ) ist, also Teilmenge von U;,, muss
bereits eines der W;, schneiden (der Grund liegt in der Gleichung X = U;, UW;, U...UW; ) und
ist somit Element von V (X, W;, ).

7.2.3 Satz

Sei (X,7) ein T;-Raum. Dann ist (X,7) genau dann zusammenhingend, wenn auch
(o, Ty ) zusammenhingend ist.

Beweis: Sei (X, ) zusammenhingend. Sei a € X fest gewihlt. Fiirn > 1 setze Y, := {f €

X fir k<n
XN Vk>nist f(n)=al,also ¥, = X(n) mitX(") =
| = f( ) } erN k k {a} fiir n < k

des Y, somit zusammenhéngend. Sei ¢, : ¥, — o definiert durch ¢,,(f) := {f(0),...,f(n—1)}.

. Offenbar ist je-
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Zeigen wir, dass ¢ stetig ist. Dies rechnen wir auf der Subbasis {V(U),V(X,U) |0 #U € v}
von Ty nach. Es ist ¢, '(V(U)) = {f € Y, | {f(0),....,f(n—1)} CU} = (ITken Ox) N Y»
U fir k<n

mit Oy := j und ¢, {(V(X,U)) = {f €Y, | Ik < n mit f(k) € U}. Fir f €
X firn<k

¢, L(V(X,U)) sei kr < nmit f(ks) € U. Dann ist f € ([TenWi) NYx C 9, L(V(X,U)), wo-
U fir k=ky
X sonst - On
o. Nun gilt D, C D, also ist auch <, D, = {A C X | 0 # A und A ist endlich} zusam-
menhingend und zudem dicht in o. Dann muss aber auch a zusammenhingend sein! Die T}
Eigenschaft braucht man damit ¢, stetig und |J; <, D, dicht in ¢ ist.

Sei umgekehrt (X, 7) nicht zusammenhingend. Dann gibt es ein offenes und abgeschlosse-
nesU CXmitd#AU #X. Aus a\V(X,U) =V(X\U) folgt, dass auch V(X,U) offen und
abgeschlossen ist. Da (X, 7) ein Tj-Raum ist, gilt 0 # V(X,U) # a.

bei Wy, 1= ist daher stetig und D,, := ¢, (Y},) somit zusammenhingend in

7.2.4 Lemma

Sei (X, 1) ein T{-Raum. Dann ist V (Uy, ...,U,) = V(Uy,...,Uy).

Beweis: Setze P :=V (Uy,...,U,) und Q :=V(Uy,...,U,). Zeigen wir, dass Q abgeschlossen
ist. SeiA € a\ Q. FallsA Z Uy U...UU,, dann A € V(X,W) C '\ Q, wobei W := X \U; U...U
U,. Falls ANU;, = 0, fiir gewisses k € {1,...,n},soist A € V(X \U;) C a\ Q. Alsoist &\ Q
offen und es folgt P C Q = Q (da P C Q). Zeigen wir die andere Inklusion. Sei A € Q und
seien Wy, ...,W,, € T gegeben, mitA € V(Wy,...,W,,). Fiiri € {1,...,n} sei a; € ANU;. Dann ist
a; € UL Wy, also UiNUL Wy # 0. Fiir j € {1,...,m} seibj € ANW,. Also b; € J;_, Uy und
somit W; NUJ{_, Ux # 0. Da (X, 7) ein Ty-Raum ist, folgt V(Uy,...,U,) NV (Wy,...,Wy,) # 0
und somit A € V(Uy,...,U,). Also auch Q C P.

7.2.5 Satz

Sei (X, T) ein topologischer Raum und & := {A C X | @ # A abgeschlossen}.
(1) (e, 7y) ist ein To-Raum.
(2) Ist (X, 7) ein T;-Raum, dann gilt: (o, 7y) ist Ty < (X, 1) ist T.
(3) Ist (X, 7) ein T;-Raum, dann gilt: (o, 7y) ist Tz < (X, 1) ist Ty.

Beweis: (1) Seien A,B € o mit A # B. Also 0.B.d.A. AN (X \ B) # 0. Setze U := X \ B.
Dannist A € V(X,U)und BZV(X,U).

(2) Ist (o, ty) ein Tp-Raum und x € X \ A, wobei A abgeschlossen (und 0.B.d.A. A #
0), so sind AU {x},A € a, es gibt also Uy,...,U,,W,... W, € 7\ {0} mit AU {x} € P:=
V(U,....Uy), A€ Q:=V(W,....W,,) und PN Q = 0. Nun ist (rein formal) PNQ =V (U N
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Ui,...,UNU, UNWy,...,UNW,), wobei U := (Ui_; Ux) N (U W;). Also existiert ein k €
{1,...,n} mit UNU; = 0. Dann muss aber x € Uy sein (andernfalls wire Uy NA # 0, also
U.NU #0).

Sei andererseits (X, 7) ein T3-Raumund A,B € a, A # B. O.B.d.A. sei x € B\ A. Dann gibt
esUWertmitxcU, ACWundUNW =0. Setze P:=V (W), Q:=V(X,U) und es folgt
A€P,BeQund PNQ = 0. Das heift (a, 1y) ist T».

(3) Sei (X,7) ein T4-Raum. Sei B € V(Uy,...,U,). Seien W; € t derart, dass W; C W; C
Ui, BCU.W;und W;NB # 0 fiir alle i € {1,...,n} (sieche Satz 12.1.8; dieser endliche Spe-
zialfall 1dsst sich aber auch leichter beweisen). Es folgt

BeV(Wi,...W,) CV(Wy,...W,) =V (Wi,....W,) CV(Uy,....Uy).

Sei andererseits (@, Ty ) ein T3-Raum. SeiA C U, alsoA € V(U). Dann gibtes Wy,..., W, € T
mit P :=V(Wi,..,W,) und A€ PCPCV(U).DaP =V (W,...,W,), folgt
AC UZ:1WI< - UZ:1Wk = UZ:1WI< cvu.

7.2.6 Lemma

(a) Sei (E,d) ein metrischer Raum, € >0und A C E. Dannist U¢(A) := {y € E | d(x,y) <
¢} eine offene Menge mit A C UZ(A).
(b) Sei K kompakt und U offen in (E,d) mit K C U. Dann 3¢ >0 mit K C U4 (K) CU.
(c) Sei (E,d) ein metrischer Raum, A abgeschlossen C E und § die zu o := {A C
E | A ist abgeschlossen und beschrinkt} gehorige Hausdorff-Metrik. Dann ist U¢(A) =
UKg (A). Ist A kompakt und beschrinken wir 6 auf k := {K C E | K ist kompakt und

K # 0}, so gilt ebenfalls UZ(A) = K5 (A).

Beweis: (a) A C UZ(A) istklar. Seiy € UZ(A) und setze r := € —d(y,A). Dann ist K (y,r) C
U¢(A), denn x € K(y,r) impliziert d(x,A) <d(x,y) +d(y,A) < r+d(y,A) = €, also x € U¢(A).

(b) Fiir jedes x € K sei & > 0 mit K(x,2¢) C U. Da K kompakt, gibt es endlich viele
X1,y Xy € K mit K C Uf_; K(xz,&,). Setze € := min(g,, ..., &, ). Zeigen wir U¢(K) C U.
Sei x € U4(K), also d(x,K) < €. Also gibt es z € K mit d(x,z) < &. Dann gibbt es aber auch
eink € {1,...,n} mit z € K(xx, &, ). Es folgt d(x,x;) < d(x,z) +d(z,x) < €+ €&, < 26, also
x € K(xg,2¢,) CU.

(c) Sei x € U4(A), also d(x,A) < €. Setze A’ := AU {x}. Dann ist auch A’ abgeschlossen
(bzw. kompakt, falls A kompakt ist). Es ist sup,c, d(y,A") =0, da A C A’ und sup,4 d(z,A) =
d(x,A), also 8(A,A") = max(sup,c d(y,A"),sup,c 4 d(z,A)) = d(x,A) < &. Demnach x € A’ C
UK (A, €).

Zux e JKg(A,e) A" € K§(A,€) mit x € A", Also max(sup,e,d(y,A’),sup,cpd(z,A)) =
8(A,A’) < €. Insbesondere d(x,A) < sup,c, d(z,A) < € und somit x € UZ (A).
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7.2.7 Satz

Sei (E,d) ein metrischer Raum, & die Hausdorff-Metrik auf o := {A C E | 0 # A ist
abgeschlossen und beschrinkt} und sei x := {K C E | 0 # K ist kompakt}. Sei 7 die
Vietoris-Topologie auf {A C E | @ # A ist abgeschlossen}. Dann stimmt die durch 7 auf
dem Teilraum x induzierte Teilraumtopologie T, mit der von der auf k eingeschrinkten
Metrik 0 induzierten Topologie iiberein. Wichtiger Spezialfall: Ist (E,d) selber kompakt,
so wird 7 von 6 induziert.

Beweis: Sei ¢ > 0 und K € k. Zeigen wir K§ (K, €) € 7. Es geniigt, wenn wir in E offene
Ui, ...,Up finden mit K € V(Uy, ...,U,) € K5 (K, €). Da K kompakt ist, gibt es x1,...,x, € K mit
K CUj_ KE (xi, 3€). Setze dann Uy := K% (x;, €). Sei K € V(Uy, ..., Uy). Bs folgt § (K, K') =
max (sup,cg d(x,K'), supycxr d(y,K)). Schitzen wir sup, g d(x,K’) ab. Sei x € K. Dann gibt
es ein k mit x € Uy. Seiy € UyNK'. Es folgt d(x,K’) < d(x,y) <2 3¢, also sup, g d(x,K’) <
%8 < €. Analog bekommen wir sup ¢ d(y,K) < €, also §(K,K’) < €.

Fiir die Riickrichtung beweisen wir, dass die Elemente der Subbasis .77 := {V(U) | U €
T\ {0} }U{V(X,U) | U € 7\ {0} } offen bzgl. 6 sind. Sei K € V(U), fiir in E offenes U. Also
K CU.Dann 3& >0 mit K C U¢(K) C U (Lemma 7.2.6). Es folgt KX(K,€) C V(U), denn
K' € K¥(K €) impliziert K’ C UK¥(K,€) = U (K) C U (wieder Lemma 7.2.6).

Sei nun K € V(X,U). Es folgt KNU # 0. Sei x € KNU und sei € > 0 mit K (x,€) CU
Offenbar istnun K € K§ (K,&) CV(X,U), denn falls K’ € K§ (K, &) mit KNU = 0, isbesondere
somit K'NKY (x,€) = 0, so wiire sup, g d(y,K') > d(x,K') > €, also §(K,K') > &.
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8 Funktionenraume

”What you need is that your brain is open.”
Paul Erdos

8.1 Der Satz von Stone-Weierstraf3

Was unterscheidet stetige Abbildungen (in R) von nicht stetigen? Man konnte sagen, sie sind
im allgemeinen etwas “ruhiger”als ihre nicht stetigen Kollegen. Stetige Abbildungen auf kom-
pakten Mengen sind sogar schon fast ”zahm”. Wie zahm sie sind, das bring z.B. der klassische
Approximationssatz von Weierstra zum Ausdruck: Jede stetige Funktion f : [0,1] — R ist
Grenzwert einer gleichmifBig konvergenten Folge von Polynomen - und Polynome sind schon
ziemlich ”zahm” ;-)

Diesen schonen Satz erhalten wir als Korollar aus einem sehr viel allgemeineren Resultat -
dem Satz von Stone-Weierstral3.

8.1.1 Definition

Grundlegendes Sei (X, 7) ein kompakter topologischer Raum. Mit C(X, 7) bezeichnen wir
die Menge aller stetigen reellwertigen Funktionen auf X, also C(X,7) :={f: X — R | f ist
stetig}. Besteht iiber die Topologie 7 kein Zweifel, so schreiben wir einfach C(X). Fiir zwei
Funktionen f,g € C(X) und reelle Zahlen a,b ist af + bg durch (af + bg)(x) := af(x) +
bg(x) sinnvoll definiert. Wir bekommen damit einen reellen Vektorraum. Ebenso ist aber
auch fg definiert durch (fg)(x) := f(x)g(x) sinnvoll und der Vektorraum C(X) (mit Ad-
dition und skalarer Multiplikation) wird mit dieser zusitzlichen Multiplikation eine reelle
(Funktionen)Algebra (das Linearkombination und Produkte reellwertiger stetiger Funktionen
wieder stetig sind, bleibt als Ubungsaufgabe). Auf C(X) fiihren wir nun die Norm |[|f]| :=
sup{|f(x)| | x € X} (ist sinnvoll, da X kompakt ist) ein und bekommen damit ein topologi-
scher Raum, dessen Topologie durch die Metrik d(f,g) := || f — gl|| erzeugt wird. Fiir zwei
f g € C(X) ist max(f,g) und min(f,g) definiert als max(f,g)(x) := max(f(x),g(x)) und
min(f,g)(x) := min(f(x),g(x)) (wieder als Ubung bleibt zu zeigen, dass max(f,g), min(f,g) €
C(X)). Unter einer Unteralgebra verstehen wir ein Cp C C(X) mit Cp # 0, und mit der Eigen-
schaft falls f,g € Co und a,b € R, dann auch af +bg € Cy und fg € Cy.

8.1.2 Bemerkung

Fiir einen kompakten Raum X ist C(X) mit der oben eingefiihrten Norm eine Banach Alge-
bra, das heif3t eine Algebra im Sinne von oben, die zudem vollstdndig ist (jede Cauchy-Folge
konvergiert). Der Nachweis der Vollstindigkeit bleibt als Ubungsaufgabe.
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8.1.3 Lemma

Sei (X, 7) ein kompakter Raum und <7 eine Teilmenge von C(X) mit den folgenden Ei-
genschaften:

1. Firallex,y € X mitx # yundalle a,b € R mita # b gibtes ein f € &7, mit f(x) =a
und f(y) = b.

2. Firalle f,g € o istmax(f,g), min(f,g) € .

Dann ist 7 dicht in C(X).

Beweis: Sei f € C(X) und € > 0. Wir miissen zeigen, dass es ein i € &7 gibt, mith € K(f,€).
Zuerst zeigen wir dass wir zu x # y und a € R auch ein f € &7 finden mit g(x) = a = g(y). Wir
finden namlich ein g’ mit g’(x) = a und g’(y) = @+ 1 und wir finden ein ¢’ mit g"(x) = a+1
und g"(y) = a. Dann ist aber g := min(g’,g") € o/ und leistet das gewiinschte. Zuriick zu f und
e. Fiir x,y € X finden wir ein gy, € ./ mit gy, (x) = f(x) und gy, (y) = f(y). Aus der Stetigkeit
von gy, — f folgern wir die Existenz von Uy, € XN T bzw. Vi, € YN T mit (gvy — f)(Uxy) €
K(0,€) und (gxy — f)(Viy) C K(0, €). Fiir festes y und "laufendes” x gilt somit X = (J,cx Uxy-
Nun ist X kompakt, also gibt es ein endliches X, C X mit X = Uxexy Uyy. Wir setzen dann
hy :=min{g., | x € X, }. Fiir z € X gilt z € Uy, fiir ¥’ € X, und somit y(z) < gy, (z) < f(z) +¢€.
Dies gilt fiir jedes y € X und wir bezeichnen dies mit (). Wir bilden nun Wy := (N, ¢y, Vy. Fiir
7€ W, gilt hy(z) > f(z) — €, da gy (z) > f(z) — € fiir jedes x € X, gilt; dies bezeichnen wir mit
(#x). Aus der Kompaktheit folgern wir nun die Existenz von y1, ..., y,, mitX =W, U...UW,,
und setzen h := max(hy,,...,hy, ). Fir z € X gilt dann z € W,, und somit nach (xx) h(z) >
hy,(z) > f(z) — €. Aus (*) hingegen folgt i(z) = hy, (z) < f(z) + €. Insgesamt also ||h — f|| < &
und somit 2 € K(f,€).

8.1.4 Lemma

Sei X (, T) wieder ein kompakter topologischer Raum und Cj eine Unteralgebra von C(X).
a) Fiir alle x # y existiert f € Co mit f(x) # f(y). AuBerdem enthalte Cy alle konstanten
Abbildungen (fiir a € R bezeichne die f, die konstante Abbildung x — a). Dann gibt es
fiir x 4 yund a,b € R ein k € C(X) mit k(x) = a und k(y) = b.
b) Ist Cp in C(X) abgeschlossen und enthilt die konstanten Abbildungen, so ist mit
f, g € Cy auch max(f,g) und min(f,g) in Cy.

Beweis: a) Seien x # y und a,b € R. Es gibt dann ein f € Cp mit f(x) # f(y). Setze
8 =J—Jrw)yh ::g~fﬁ und k := h+ f,.

b) Es gilt max(f,g)(x) = 5(f(x) +g(x) + |f(x) — g(x)]) und min(f, g)(x) = 5(f(x) +g(x) -
| f(x) —g(x)|). Es geniigt demnach zu zeigen, dass mit f € Cy auch |f| € Cy (dabei ist | f|(x) :=
|f(x)|und f € C(X) = |f] € C(X)). Wir verwenden dafiir die Reihenentwicklung von /1 —x =
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1— At — 22— 19353 — . fiir [x| < 1. AuBerdem gilt |af| = |a||f|, wir brauchen die Aussa-
113

ge also nur fiir £ mit || f|| < 1 beweisen. Wir setzen g, (h) :=1—3f — 31 f2— 1423 — . —
Lan23) pn fiir h € C(X) mit |[A]| < 1. Fiir £ € Co mit ||f]| < 1 gilt auch ||1 — f2[| < 1 und
somit g,(1 — f2) — /1 —(1—f2) = |f]. Da gu(1 — f?) € Cp und Cy abgeschlossen ist, ist

auch |f| € Cp.

8.1.5 Lemma

Sei Cy € C(X) eine Unteralgebra. Dann ist auch Cy eine Unteralgebra.

Beweis: Seien f,g € Cy und a,b € R. Dann gibt es zwei Folgen (f,),en und (g,),en aus
Co mit f, — f und g, — g. Dann ist aber auch (af, + bg,)qen eine Folge aus Cp und es gilt
lafu+bgn— (af +bg)Il < lal|| fu — fIl +6][|gn — &Il — O fiir n — oo. Also af +bg € Co.

Es gilt weiterhin || fugn — fgll < || fugn— fugll+ lfng — fell = I fullllgn— &l + llgllll.fn — f1] —
oo, da die || ;|| beschrinkt sind. Also auch fg € Cy.

8.1.6 Satz von Stone-Weierstraf3

Ist Cy C C(X) eine Unteralgebra fiir einen kompakten Raum (X, 7), enthélt Cy die kon-
stanten Abbildungen und gibt es zu je zwei Punkten x # y ein f € Cp mit f(x) # f(y),
dann liegt Cy dicht in C(X).

Beweis: C) ist nach Lemma 8.1.5 eine abgeschlossene Unteralgebra, die nach Lemma 8.1.4
alle Voraussetzungen von Lemma 8.1.3 erfiillt. Cy ist also dicht in C(X) und demnach ist auch
Co dicht in C(X).

8.1.7 Klassischer Approximationssatz von WeierstraB3

Jede stetige Funktion f : [0, 1] — R ist Grenzwert einer gleichmiBig konvergenten Folge
von Polynomen.

Beweis: Die Menge aller Polynome von [0, 1] — R erfiillt alle Voraussetzungen von Satz
8.1.6, liegt somit dicht in C([0,1]). Fir f € C(]0,1]) gibt es also eine Folge (pp)nen von
Polynomen, die gegen f konvergiert (im Sinne der Metrik von C(|[0, 1])). Dies bedeutet aber
gerade gleichméBige Konvergenz.

8.2 Allgemeines Uber Funktionenraume

Unter Funktionenrdumen versteht man im allgemeinen Mengen von Abbildungen, auf denen
einen Topologie erklart ist. Also eine Teilmenge H der Menge aller Abbildungen von X nach
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Y (H C Y¥). Natiirlich sollte die Topologie auf YX schon irgendwie mit schon vorhandenen
Strukturen auf X bzw. Y in sinnvoller Beziehung stehen. Ist z.B (Y, ) ein topologischer Raum,
so bekommen wir auf Y¥ eine natiirliche Topologie. Wir fassen YX dazu einfach als [T,cx ¥
auf und betrachten die Produkttopologie. Diese Topologie auf YX beschreibt die Punktweise
Konvergenz. Als Spezielfall von Lemma 3.2.11 erhalten wir namlich, dass ein Filter & auf YX
genau dann gegen ein Element f € YX konvergiert, wenn pr,(®) gegen f(x) € Y konvergiert
(hier ist pry : [Iyex Y — Y die x-te Projektion).

8.2.1 Definition

Seien X,Y; Z Mengen. Die natiirliche Bijektion A : Y2*X — (YX)Z definiert durch A(f)(z)(x) :=
f(z,x) bezeichnen wir als Exponentialabbildung. Die Abbildung Q : YX x X — Y defi-
niert durch Q(f,x) := f(x) bezeichnen wir als Auswertungsabbildung. Die Abbildung X :
Z¥ x YX — ZX definiert durch (g, f) := go f bezeichnet die gewohnliche Nacheinander-
ausfiihrung.

Seien (X, ) und (Y,0) zwei topologische Riaume. Die Menge aller stetigen Abbildungen
zwischen X und Y bezeichnen wir mit ¢(X,Y) (eigentlich mit ¢((X,7),(Y,0)), aber in der
Regel betrachten wir nur eine Topologie auf den Mengen X bzw. Y, so dass es nicht zu Ver-
wechslungen kommen kann; falls wir mehrere Topologien betrachten, so werden wir dass
dann eindeutig kennzeichnen).

Im Folgenden betrachten wir zunéchst Topologien auf ¢(X,Y), zwischen zwei topologi-
schen Rdumen X und Y.

Wir fiihren folgende Konvention ein. Ist f : A — B eine Abbildung und C C A, so schreiben
wir statt f|C : C — B einfach f : C — B. Betrachten wir beispielsweise die Abbildung Q
eingeschrénkt auf ¢(X,Y) x X, so schreiben wir einfach Q : ¢(X,Y) x X — Y.

8.2.2 Definition

Sei 7 eine Topologie auf ¢(X,Y). Wir nennen
a) T propper®, wenn A(c(Z x X,Y)) C ¢(Z,c(X,Y)) fiir jeden topologischen Raum Z gilt.
b) 7 admissible, wenn A~!(c(Z,c(X,Y))) C ¢(Z x Z,Y) fiir jeden top. Raum Z gilt.
c) T aktzeptabel, wenn 7 propper und admissible ist.

8.2.3 Satz

Seien X und Y topologische Riume und 7, ' zwei Topologien auf ¢(X,Y).
(1) 7 ist auf ¢(X,Y) genau dann admissible, wenn Q : ¢(X,Y) x X — Y stetig ist.
(2) Ist T’ C t und 7 propper, so ist auch 7’ propper.
(3) Ist 7 C 7’ und 7 admissible, so ist auch 7/ admissible.
(4) Ist T propper und 7’ admissible, so ist T C 7’.
(5) Auf ¢(X,Y) gibt es hochstens eine aktzeptable Topologie.

SLieber die englische Bezeichnung als eine holprige deutsche Ubersetzung.
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Beweis: (1) Sei 7 admissible. Zu zeigen ist Q € ¢(c(X,Y) x X,Y). Setzen wir in Definition
8.2.2 ¢(X,Y) fiir Z ein, so reicht es also zu zeigen, dass Q € A~!(c(c(X,Y),c(X,Y))), also
A(Q) € c(e(X,Y),c(X,Y)) ist. Nun ist A(Q)(f)(x) = f(x) und somit A(Q) = id.x y). Da
offensichtlich id.y y) € c¢(c(X,Y),c(X,Y)), sind wir fertig.

Sei andererseits Q : ¢(X,Y) x X — Y stetig. Sei Z beliebig und f : Z — ¢(X,Y) stetig. Dann
ist ATI(f) : Z x X — Y. Zu zeigen bleibt, dass A~ (f) stetig ist. Dies folgt aber aus der
Stetigkeit von f x idy und der von Q und aus der Gleichung A~!(f) = Qo (f x idy).

Die Aussagen (2) und (3) sind offensichtlich. Zeigen wir also (4). Sei Z := (¢(X,Y), 1)
und Z'" := (c(X,Y),7'). Zu zeigen ist also id,(x y) : Z' — Z ist stetig. Da 7" admissible ist, ist
Q € ¢(Z' x X,Y) und somit, da T propper ist, A(Q) € c(Z',Z). Nun ist aber A(Q) = id,(x y)-

Aussage (5) folgt nun unmittelbar aus (4).

8.3 Kompakt-offene Topologie

Neben der gewohnlichen Produkttopologie auf Y (auch Topologie der Punktweisen Konver-
genz genannt) ist die kompakt-offene Topologie wohl die wichtigste.

8.3.1 Definition

(kompakt-offene Topologie) Seien (X, 7) und (Y, 6) zwei topologische Réume und E C F :=
YX. Fiir A C X und B C Y setzen wir S(A,B) := {f € E | f(A) C B}. Seien nun o C 2 (X)
und B C P (Y) gegeben. Dann nennen wir die von der Subbasis . := {S(A,B) | A € & und
b € B} erzeugte Topologie, die von a und B erzeugte o — B-Topologie (auf E). Als einen
wichtigen Spezialfall erhalten wir so die gewohnliche Produkttopologie (die Topologie bzgl.
der Punktweisen Konvergenz) auf F = [],cx Y. Wir setzen dazu einfach a = {M C X | M :
endlich} und B = o (Beweis als leichte Aufgabe).

Von groBerer Bedeutung ist die sogenannte kompakt offene Topologie auf ¢(X,Y). Dazu
setzen wir einfach a := k := {K C X | K ist kompakt} und 8 := . Die kompakt-offene
Topologie ist dann die k¥ — ¢ Topologie.

Offenbar ist die kompakt-offene Topologie feiner als die gewohnliche Produktopologie.

8.3.2 Lemma

Seien X,Y topologische Riume, A C X und B C Y. Ist B abgeschlossen, so ist S(A,B) in
YX bzgl. der Produktopologie ebenfalls abgeschlossen. Da die kompakt-offene Topologie
feiner als die gewohnliche Produktopologie ist, ist S(A, B) auch bzgl. der kompakt offenen
Topologie abgeschlossen.

Beweis: Sei f € YX\ S(A,B). Dann Ja € A mit f(a) €Y\ B. Also ist f € S({a},Y \ B) C
YX\ S(A,B). Da S({a},Y \ B) offen ist, ist alles gezeigt.
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8.3.3 Lemma

Sei k € {0,1,2,3} und Y ein T;-Raum. Dann ist auch Y* mit der kompakt-offenen Topo-
logie ein Ty-Raum (gilt auch fiir T, 1 -Rédume, beweisen wir aber erst spiter).

Beweis: Fiir k € {0,1,2} folgt dies daher, da die kompakt-offene Topologie feiner als
die gewohnliche Produktopologie ist. Sei k = 3. Sei f € O und O offen. O.B.d.A. ist O =
S(K1,Up)N...NS(Ky,Uy). Das bedeutet f(K;) CU; firi=1,...,n. Da f(K;) kompakt und Y ein
T3-Raum ist, gibt es ein offenes V mit f(K;) CV; CV; CU;. Fir W :=S(K, V1) N...NS(Ky, Vi)
und W :=W :=S(K{, Vi) N...NS(Ky,V,) giltdann f e W CW C W' C O, denn W’ ist abge-
schlossen.

8.3.4 Satz

(1) Fiir zwei top. Rdume XY ist die kompakt-offene Topologie auf ¢(X,Y) propper.
(2) Ist X zusitzlich stark lokal kompakt, so ist die kompakt offene Topologie aktzepta-
bel.

Beweis: (1) Sei Z ein beliebiger top. Raum. Zu zeigen ist A(c(Z x X,Y)) C ¢(Z,c(X,Y)).
Seialso f:Z x X — Y stetig und z € Z fest gewéhlt. Dann ist die Einschrénkung f: {z} x X —
Y stetig und da {z} x X und X homdomorph sind, ist es auch A(f)(z) : X — Y. Demnach ist
A(f) eine Abbildung von Z — ¢(X,Y). Zu zeigen bleibt, dass A(f) stetig ist. Fiir kompaktes K
und offenes O betrachten wir dazu S(K, O) und zeigen, dass (A(f))~(S(K,0)) offen ist. Sei
z€ (A()"H(S(K,0)), also {z} x K C f~1(0). Aus dem Tubenlemma (Lemma 4.1.6) folgt,
dass es offene U und V gibt mit {z} x K CU xV C f~1(0).Esfolgtz€ U C (A(f))"'S(K,0).

(2) Zu zeigen bleibt, dass Q : ¢(X,Y) x X — Y stetig ist. Sei O offen in Y und (f,x) €
Q~1(0). Dann ist f(x) € O. Es gibt dann eine kompakte Umgebung K von x mit f(K) C O.
Dann ist W := S(K,0) x K° offen in ¢(X,Y) x X mit (f,x) € Wund W C Q1(0).

8.3.5 Satz

Seien X,Y;Z top. Rdume und Y zudem stark lokal kompakt. Dann ist X : ¢(Y,Z) x
c(X,Y) — ¢(X,Z) stetig, bzgl der kompakt offenen Topologie auf ¢(Y,Z), ¢(X,Y) und
c(X,Z).

Beweis: Zeigen wir, dass X! (S(K,0)) offen ist, fiir kompaktes K C X und offenes O C Z.
Sei (g,f) € Z71(S(K,0)), also go f(K) C O, bzw. f(K) C g~'(0). Nun ist f(K) kompakt
und Y lokal kompakt. Zu jedem y € f(K) gibt es daher eine kompakte Umgebung V von

179



y mit V C g~'(0). Dann gibt es endliche vieler solcher V mit f(K)
istU:=V U..UV; offen und L :=V; U...UV, kompakt mit U C L
S(L,0) x S(K,U) folgt damit (g, f) € W C 2~ 1(S(K, 0)).

CU...UV.. Nun

cVv
Cg 1(0). Fir W :=

8.3.6 Lemma

Sei (X, 7) ein top. Raum und K C X und K als Teilraum kompakt und T,. Sind Uy, ...,U, €
tund K C (J;_, Uy, so gibt es kompakte Ky C Uy mit K = |J;_ Ki.

Beweis: Beweisen wir den Fall n = 2. Der Rest folgt durch Induktion. Sei K C U; UU,. Dann
sind K \ U und K \ U, in K abgeschlossen und disjunkt. Es gibt somit U’, V' € T mit K\ U; C
V', K\U, CU'und KNU'NV'=0. Dann ist K := K\ V' CU; und K; := K\ U’ C U,, wobei
K; und K; in K abgeschlossen, also auch kompakt sind. Es folgt K; UK, = K\ (U'NV’) =K.

8.3.7 Lemma

Seien X und Y top. Ridume, B eine Subbasis fiir ¥ und X ein T,-Raum. Dann ist
{S(K,B) | K : kompakt und B € B} eine Subbasis fiir die kompakt-offene Topologie auf
c(X,Y).

Beweis: Sei K kompakt C X und O offen C Y. Sei f € S(K,O). Gesucht sind kompakte
Ki,....Kn € X und By,...,B, € B mit f € S(K;,B;)N...NS(Kiu,Bn) C S(K,0). Da O of-
fen und B eine Subbasis ist, gibt es eine Menge I und fiir jedes i € [ ein endliches f; C
B mit O = U;c;(NPi). Da f(K) kompakt ist, gibt es endlich viele dieser ff; mit f(K) C
(NBi,)U...u(NB;,)- Fir jedes k = 1,...,n setzen wir Uy := (B;, und Vi := f~1(Uy). Es
gilt also K C | J;_; Vi. Entsprechend Lemma 8.3.6 gibt es kompakte Teilmengen K} C Vj mit
K =Uj_ Ke. Tst B, = (B, ... BW)} fiir k = 1,...,n, so gilt f € W C S(K,0) mit W :=
ﬂk lﬂ (Kk7 ())

8.3.8 Satz

(1) Seien X,Y, Z topologische Riume und X,Z zusitzlich 7. Dann ist A : ¢(Z x X,Y) —
c(Z,c(X,Y)) eine topologische Einbettung (d.h. A: ¢(Zx X,Y) — A(c(Z x X,Y)) ist ein
Homoomorphismus) bzgl. der kompakt offenen Topologie auf ¢(X,Y).

(2) Ist X zusitzlich lokal kompakt, so ist A : c(Z x X,Y) — ¢(Z,c(X,Y)) bijektiv, die
Rdume ¢(Z x X,Y) und ¢(Z,c(X,Y)) somit sogar homomorph.

Beweis: (1) Aus Satz 8.3.4 folgt, dass die kompakt-offene Topologie propper ist. Also schon
mal A(c(Zx X,Y)) Cc(Z,c(X,Y)). Zeigen wir,dass A: c(Zx X,Y) — c(Z,c(X,Y)) stetig ist.
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Sei dazu V := S(K,W) ein typisches Subbasiselement in ¢(Z,c(X,Y)) und f € A~1(V). Aus
Lemma 8.3.7 folgt, dass wir 0.B.d.A. W = S(L,O) wihlen konnen. Dann ist f(K x L) C O
und M := K x L ist kompakt. Es folgt f € S(M,0) C A='(V).

Zeigen wir, dass A offen in A(c(Z x X,Y)) ist. Sei dazu W ein offenes Basiselement in
c(ZxX,Y). Zu zeigen ist, dass A(W) offen in A(c(Z x X,Y)) ist. Esist W = S§(K;,01)N...N
S(Ky,0,), wobei die K; kompakt in Z x X und die O; offen in Y sind. Da Lambda injektiv
ist folgt A(N;—; S(Kk,Ox)) = i~ A(S(Kk, Ok)). Es reicht also zu zeigen, dass A(S(K,O))
offen ist fiir K in Z x X kompakt und O offenin Y. Sei f € S(K,0), also K C f~1(0). Es gibt
dann Uy, V; offen in Z bzw. X mit K C J{_, Uy x Vx C f~1(0). Aus Lemma 8.3.6 folgt die
Existenz kompakter Mengen P, ..., P, C Z x X mit K = J;_; P, und P, C Uy x V. Bezeichnen
pz:ZxX — Zund px : Zx X — X die entsprechenden Projektionen, so sind K := pz(P;) und
L, = px(Pk) kompakt mit P, C K; X L; C Uy X Vi. Es folgt A(f) S [OZ:I S(Kk,S(Lk,O))] N
Alc(ZxX,Y)) CA(S(K,O)).

(2) Als lokal kompakter T>-Raum ist X stark lokal kompakt. Nach Satz 8.3.4 ist A(c(Z X
X,Y)) =c(Z,c(X,Y)). Die Behauptung folgt somit aus (1).

8.3.9 Satz

Sei o eine Kardinalzahl, € eine Basis fiir X und & eine Basis fiir Y mit |¢’| < a und
|2| < o. Ferner habe X die Eigenschaft: Vx € XVU offen mit x € U 3 offenes V mit
x €V CV CU und V ist kompakt. Dann hat auch ¢(X,Y) versehen mit der kompakt-
offenen Topologie eine Basis von Kardinalitit kleiner oder gleich o.

Beweis: Offenbar geniigt es zu zeigen, dass es eine Subbasis 8 gibt mit |B| < . Sei £ :=
{U%" | €' C € und €' ist endlich}. Dann ist auch % eine Basis von X mit |%| < a. Nach
Lemma 8.3.7 ist .7 := {S(K,U) | K: kompakt C X und U € %} eine Subbasis von ¢(X,Y).
Sei f € S(K,U). Dann gibt es zu jedem x € K ein offenes V, mitx € V, CV, C f~!(U) und
V, kompakt. Da K kompakt und % eine Basis ist, gibteseinB€ Zmit K CBCBC f -1 (U)
und B ist kompakt. Es folgt f € S(B,U) C S(K,U). Dementsprechend ist § := {S(B,U) | B €
A, U € P} eine Subbasis mit || < c.

8.4 Semiuniforme Raume und der Satz von Arzela-Ascoli

Widmen wir uns nun einem wichtigen Satz, der z.B. in der Theorie gewohnlicher Differenti-
algleichungen hiufig Anwendung findet. Bevor wir diesen formulieren, geben wir eine kleine
Einfiihrung in die Theorie der semiuniformen Riume (genauer: semiuniforme Uberdeckungs-
rdaume). Nebenbei bekommen wir auf diesem Weg auch eine interessante Charakterisierung
der T3-Rdume.

8.4.1 Definition

I'C Z(Z(X)) heiit Semiuniformitiit auf X und (X,I") heifit semiuniformer Raum (eigent-
lich miisste man I" Semiiiberdeckungsuniformitédt nennen), falls
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. VyelgiltUUy=X

2. VaC ZX)[(Uo=XundIyeTmity< o) = acl]
3. Va,peldyelmity< a,p

4. Vyel'dJoaecT'VAcadfyeTldge ymit fs(A) C g

Nochmal zur Erinnerung: Fiir a, B C Z(X) bedeutet « < <= VA€ aIB € B mitA CB.
Und mit o(A) meinen wir a/(A) := [J{B € oo | BNA # 0}. Die Beziehung zwischen y und «
in 4. bezeichnen wir kurz mit @ <™ ¥ und nennen « eine lokale Sternverfeinerung von 7.

Einem semiuniformen Raum (X,I") werden wir nun eine Topologie zuordnen. Wir setzen

dazu 70 := {0 C X |Vx € O3y eI mit y(x) C O}.

8.4.2 Lemma

Sei (X,I") ein seminuniformer Raum. Dann gilt:
(1) 7r ist eine Topologie und VA C X ist A" :={x € A | Jye ' mit y(x) CA} = A°.
2Q)VxeXVo €I'JA € o mitx € A°. Oder kiirzer: I' 5> a° := {A° |A € a} < a.
(3) (X, 1) ist ein T3-Raum.
@A) VxeXVoaeT'IyeT mit y(y(x)) C a(x).

Beweis: (1) Offenbar ist @,X € tr und mit U,V € 1 ist auch U UV € 1r. Es ist aber auch
UNV € 1, denn wenn x € UNV, so gibt es o, € I' mit o(x) C U und B(x) C V. Sei
dann y < o, 3, y € I. Offenbar ist dann y(x) C U NV. Damit haben wir gezeigt, dass 7r eine
Topologie ist.

Sei A C X. Zeigen wir zuerst A’ € 1r. Sei x € A’. Dann 3y € T’ mit y(x) C A. Sei o <™ 7.
Wir zeigen a(x) C A’. Seiy € a(x). Dann 3Ag € o mit x,y € Ag. Dann 384, € T'Ig € y mit
Ba,(Ao) C g, also Ba,(y) € A und somit y € A’. Aus A’ € 7 und A’ C A folgt A’ C A°. Fiir
die andere Inklusion nehmen wir uns ein x € A°. Dann gibt es ein B € 1 mitx € B C A°, also
Jy €T mit y(x) C B. Folglich ist y(x) C A, alsox € A’

(2) Seien x € X und o € I gegeben. Es gibt dann ein § € ' mit B <™ . Sei x € B € §. Nun
gibtes ein ¥ € T'und A € o mit yg(B) C A, also y3(x) C A und folglich x € A" = A°.

(3) Seix € O € 1r. Sei y € I’ mit y(x) C O. Dann gibt es ein o« € T mit o <* 7. Sei A € 0
mit x € A°. Behauptung: A C O. Beweis davon: Sei y € A. Nun gibt es 84 € I’ und g € ¥ mit
Ba(A) C g. Sei B € B mit y € B°. Folglich ist BNA # 0, also y € B C 4(A) C g. Da auch
x € Ba(A), folgt x,y € g und somit y € y(x) C O.

(4)Seixe X und o € T. Es gibtein f € I' mit B <™ «. Sei B € B mit x € B°. Es gibt ein
Op € I' und es gibt ein A € a mit dg(B) C A. Zu x gibt es aber auch ein n € I" mit n(x) C B°.
Sei y € I' mit v < g, n. Es folgt y(y(x)) C y(B) C 0p(B) CA C o(x), denn x € A.
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8.4.3 Lemma
Sei (X, 7) ein T3-Raum. Dann gilt:

. T;:={yC Z(X) | Ja C tmit Jo = X und o < ¥} ist eine Semiuniformitit auf
X.

2. 7 wird durch die Semiuniformitét I'; erzeugt, also 7 = 1.

Als Korollar erhalten wir, dass ein topologischer Raum (X, 7) genau dann ein T3-Raum
ist, wenn es eine Semiuniformitét I" auf X gibt mit 7 = 1.

Beweis: 1. Offenbar gilt | Jy = X fiir jedes Yy € I'. Sind 71,7 € I gegeben, so gibt es offene
Uberdeckungen o, 8 mit & < 3 und § < 9. Offenbar istdann ¢ A :={ANB|A € a, B€ B}
eine offene Uberdeckung mit & A B < 71, 7.

Sei y € I. Zu zeigen bleibt, dass es ein o € I gibt mit o <* y. Nun gilt: Vg € yVx €
g30g € Tmitx € Oy C O, C g. Setze & := {04, | g €7, x € g}. Dann ist ¢ eine lokale
Sternverfeinerung von ¥. Ist nimlich A € «, so ist A = Oy, fiir gewisses g € ¥, x € g und wir
haben B4 := {g,X \ Og} € 't mit fy(A) =g C g. B B

2.Sei O € 1. Fiirjedesx € O gibtesU € tmitxc U CU C O.Nunisty:={0,X\U} €T,
und y(x) = O C 0, also O € 1r,. Sei andererseits O € 1r,. Zu x € O gibt es ein y € I'; mit
Y(x) CO.Zuygibtesein a C Tmit Ja =X und & < 7, also T 3> a(x) C O. Es folgt O € .

8.4.4 Definition

Eine Abbildung f : X — Y zwischen zwei semiuniformen Rdumen (X,T’), (¥,X) nennen wir
semiuniform, wenn f~! (o) := {f~1(S) | S € 6} €T fiir alle & € X gilt.

8.4.5 Lemma

Ist f : X — Y semiuniform zwischen zwei semiuniformen Ridumen (X,I’), (Y,X), so ist f
stetig beziiglich (X, 1r), (¥, 7z).

Beweis: Sei O € Ts. Zu zeigen ist f~1(0) € 1r. Sei x € £71(0), also f(x) € O. Dann gibt
es ein 0 € £ mit o(f(x)) C 0. Es folgt y(x) C f~1(0) mit y:= f~ (o) €T.

Fiir die Formulierung des Satzes von Arzela-Ascoli brauen wir zwei weiter Definitionen:

8.4.6 Definition

1. Seien (X, 7) und (Y, o) topologische Riume und sei F C Y.
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Wir nennen F gleichstetig in x € X, falls
VyeYVVeynodU,cxntaW,eynoVfeF(f(x)eW, = f(Uy)CV).
2. Sei (X, 1) ein topologischer, (¥,X) ein semiuniformer Raum und sei F C Y.
Wir nennen F gleichgradig stetig in x € X, falls

VoeXdUexnt mit VfeF gilt f(U) Co(f(x)).

Wir nennen F gleichstetig bzw. gleichgradig stetig auf A C X, wenn F fiir alle a € A gleichs-
tetig bzw. gleichgradig stetig ist. Sprechen wir davon, dass F C Y¥ gleichstetig ist, wobei
(Y,X) ein semiuniformer Raum ist, so meinen wir natiirlich gleichstetig bzgl. ts.

8.4.7 Lemma

Sei (X, 7) ein topologischer, (Y, X) ein semiuniformer Raum und sei F C Y*.

1. Ist F gleichgradig stetig (in x), so ist F’ gleichstetig (in x).

2. Ist F gleichstetig (in x) und F (x) := {f(x) | f € F} relativ kompakt, so ist F gleich-
gradig stetig (in x). Relativ kompakt bedeutet hier, dass jede offene Uberdeckung
von Y eine endliche Teiliiberdeckung von F(x) besitzt.

Beweis: 1. Sei y € V € 13. Es gibt ein 6 € £ mit 6(c(y)) C V. Zu o gibt es nun ein
Uecxnrt,sodass VfeF gilt f(U) C o(f(x)). Seinun W € o mity € W°. Gilt f(x) € W°
fiir ein f € F, so folgt f(U) Co(f(x)) Co(W)Co(o(y)) CV.

2. Sei § € X gegeben. O.B.d.A. sei & = £°. Zu jedem y € Y wiihlen wir ein S, € yN&. Es
gibt nun ein Uy € xN 7 und ein Wy, € yN 7z mit V f € F gilt (f(x) e W, = f(U,) CS,). Da
F(x) relativ kompakt ist, gibt es endlich viele yi,...,y, € ¥ mit F(x) C W,, U...UW,, . Setze
U:=Uy,N..NUy, Damit gilt Vf € F : f(U) C &(f(x)). Denn fir f € F gibt es ein y; mit
f(x) € W,. Es folgt f(U) C f(Uy,) €Sy, € &(f(x)). Fr die letzte Inklusion beachte man
x € Uy, also f(x) € Sy,.

8.4.8 Lemma

Sei (X, 7) ein k-Raum, (Y, o) ein Tz3-Raum, ¢(X,Y) sei mit der kompakt-offenen Topolo-
gie versehen und F sei lokal kompakt C ¢(X,Y). Dannist Q: F x X — Y stetig.

Beweis: Da auch ¢(X,Y) ein T3-Raum ist, ist es auch F. Als lokal kompakter T3-Raum
ist F stark lokal kompakt. Daher ist auch F x X ein k-Raum. Es reicht also die Stetigkeit
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von Q auf kompakten Teilmengen K von F' x X nachzupriifen. Sei also K kompakt C F' x X.
Bezeichne p : F x X — X die Projektion (f,x) — x. Da K C F x p(K), reicht es zu zeigen, dass
Q|F x p(K) stetig ist. Sei (f,x) € F x p(K) und Q(f,x) €V € ©. Es gibt dann ein W € ¢ mit
Q(f,x) EWCW CV.DannistK’ := f~1(W)Np(K) eine kompakte Umgebung von x in p(K)
und es folgt Q(S(K',V) x [f~{(W)N p(K)]) CV, wobei (f,x) € S(K',V) x [f~1 (W) N p(K)]
offen in F x p(K) ist.

8.4.9 Lemma

Sei (X, 7) beliebig und (Y, o) ein T3-Raum. Ist F kompakt C ¢(X,Y) (bzgl. der der kom-
pakt offenen Topologie) und Q: F x X — Y stetig, so ist F' gleichstetig.

Beweis: Seixe X, yeY undV € yNo.Seidann W € yno mit W C V. Dannist S(x, W) =
{f €c(X,Y)]| f(x) € W} nach Lemma 8.3.2 abgeschlossen und F N S(x,W) demnach kom-
pakt. Nun ist [F N S(x,W)] x {x} € Q~!(V). Aus Lemma 4.1.6 (Tubenlemma) folgt die Exis-
tenz eines U € XN T mit [FNS(x,W)] x U C Q™! (V). Offenbar folgt dann Q(S({x},W) xU) C
V.

8.4.10 Lemma

Sei E C YX gleichstetig und (Y, o) ein T3-Raum und (X, 7) beliebig. Dann ist E gleichs-
tetig, wobei der AbschluB bzgl. der Produkttopologie auf YX = [],cx Y gemeint ist.

Beweis: Sei x € X, y € Y und V offen mit y € V. Es gibt dann ein P € yNo mit PC V.
AuBerdem gibtes U € xNTund W € yNomitVge Eg(x) €W = g(U) C P.Seidann f € E
mit f(x) € W. Angenommen es gibt ein z € U mit f(z) € Y \ P.

w falls a =x
Seidann O := H Y,, wobei Y,:=<Y\P falls a=z
acX Y falls a & {x,z}

Offenbar ist f € O. Es gibt somit ein g € ONE. Aus g(x) € W folgt aber g(U) C P, im
Widerspruch zu z € U und g(z) € Y \ P. Also f(U) CPCV.

8.4.11 Lemma

Seien (X, 7) und (Y, o) beliebige topologische Riume und F C Y* gleichstetig. Dann ist
Q: F x X — Y stetig (bzgl. der Produkttopologie auf Y = [[,cx Y).
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Beweis: Sei Q(f,x) €V € 0. Setze y := f(x). Dann 3U € xNtIW € yNoVg € F gilt
W falls z=x
Y falls z#x

Dann ist (f,x) € O x U und Q(O xU) CV (denn (h,a) € O x U impliziert h(x) € W, denn
h € 0, also h(U) CV und somit Q(h,a) = h(a) € V).

(g(x) € W impliziert g(U) C V). Setze O :=[],cx Yz, wobei Y, :=

8.4.12 Satz von Arzela-Ascoli

Fiir einen k-Raum (X, 7), einen semiuniformen Raum (Y, X) (den wir auch als topologi-
schen Raum (Y, 7g) auffassen) und F C ¢(X,Y) ist d4quivalent:

1. F ist kompakt (bzgl. der komkpakt offenen Topologie).

2. F ist gleichgradig stetig auf X (oder gleichstetig; sieche Lemma 8.4.7) und

fiir jedes x € X ist F(x) kompakt (wobei F (x) := {f(x) | f € F}).

Beweis: 1. = 2. Da F kompakt ist, ist es auch lokal kompakt. Aus Lemma 8.4.8 folgt, dass
Q:F x X — Y stetig ist. Aus Lemma 8.4.9 folgt, dass F gleichstetig ist. Demnach ist auch F

gleichstetig. Fiir x € X ist Q(F x {x}) kompakt. Da Y ein T3-Raum ist, ist auch Q(F x {x})

kompakt und aus F(x) C Q(F x {x}) folgt, dass F(x) kompakt ist.

2. = 1. Sei F’ der AbschluB von F bzgl. der Produkttopologie auf YX = [T,x Y (und
mit der Produkttopologie versehen). Wegen Lemma 8.4.7 und Lemma 8.4.10 ist F’ gleichs-
tetig (also auch gleichgradig stetig). Lemma 8.4.11 impliziert, dass Q : F' x X — Y stetig ist
(bzgl. Produkttopologie auf F’). Fiir K kompakt in X, V offen in Y und f € S(K,V)NF’, also
{f} x K C Q7 1(V) folgt aus Lemma 4.1.6 (Tubenlemma) die Existenz eines in F’ offenen
W mit f € Wund W x K C Q~1(V), also f € W C S(K,V). Folglich stimmt auf F’ die Pro-
dukttopologie mit der kompakt offenen Topologie iiberein. Es ist also F = F’. Da erxm
kompakt und abgeschlossen (bzgl. der Produkttopologie) ist, folgt aus F' C [],cx F(x), dass

auch F’ kompakt ist. Demzufolge ist auch F mit der kompakt offenen Topologie kompakt!

Zum Abschluss dieses Abschnitts geben wir noch eine interessante Charakterisierung der
Gleichstetigkeit. Zuvor noch etwas Notation. Fiir eine gegebene Menge X sei ®(X) die Menge
aller Filter auf X. Sei H CYX | .% € ®(H), ¢ € ®(X) und x € X. Dann definieren wir

F(x):={PCY|3IFc.F mit F(x) = {f(x) | f € F} C P}

F(o)={PCY|IFe FIAc o mit F(A)={f(a)| f€.F,acA} CP}.
Offenbar sind .% (x) und .% (@) Filter auf Y.
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8.4.13 Lemma

Seien (X, 1), (Y, o) topologische Riume und H C YX. Dann ist dquivalent:
(a) H ist gleichstetig.
b)VxeXVyeYVF e DH)Voc P(X)[(F(x) »yund ¢ —x) = Z (@) — )]

Beweis: (a) = (b): Seixe X,yeY,.# € ®(H)und ¢ € P(X) mit.Z (x) -y, ¢ — x. Sei
nunV € yNo.Dann gibtesU e xNt, W eyNomitVfe H(f(x) e W = f(U)CV).Es
istU € gund W € Z(x), es gibt also ein F € .% mit F(x) C W. Das bedeutet aber f(x) € W
fiir alle f € F und somit auch f(U) CV firalle f € F,also F(U) CV.DaF(U) € Z(¢), ist
auch V € .Z(¢). Zeigen wir (b) = (a): Angenommen

dxeX,yeY,VeynoVUexnNtVWeyno3 fyw €H mit fyw(x)eW und fyw(U)ZV

Setze Pyw :={f € H |30 exnt,IW eynomitU' CU, W CWund f = fyrw}
und . :={F CH|3U € xNt3W €yNo mit Pyw C F}. Dann ist .% ein Filter auf H.

Es gilt % (x) — y. Beweis: Fir O € yno ist Py, C O!

Es gilt Z (@) 4y, wobei ¢ :={A C X |3U € xNtmit U C A}. Beweis: Angenommen
Z (@) —y.Dann gibtesA€ @, F € Z mit F(A) CV (dennV € .Z (¢)). Also gibtes U, U’ €
xNt, Weyno mit Py yw(U) CV und somit auch Py w(U) C V. Aber fiir f € Pyryrw
gilt f(UNU’) € V (und natiirlich ist Py~ w # 0). Dies ist ein Widerspruch!
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9 Stetige Konvergenz und allgemeine
Konvergenzraume

Mein Vorschlag geht nun dahin, jedesmal, wo es vorteilhaft ist - und es ist, wie ich
glaube, mit ganz wenigen Ausnahmen immer vorteilhaft, den Begriff der gleich-
mdfligen Konvergenz in der Funktionentheorie durch den Begriff der stetigen Kon-
vergenz zu ersetzen, den H. Hahn vor einigen Jahren in die Mathematik eingefiihrt
hat und dessen Handhabung unvergleichlich einfacher ist.

Constantin Caratheodory

Der Inhalt dieses Kapitels ist aus [15].

9.1 Stetige Konvergenz, schwach stetige Abbildungen und
(S)-Raume

1921 fihrte H. Hahn den Begriff der stetigen Konvergenz von reellen Funktionen in seinem
Buch [20] offiziell in die Mathematik ein’ (genau genommen definierte er stetige Konvergenz
in einem Punkt). Caratheodory griff dieses Konzept 1929 auf (siehe [7]) und ersetzte mit
diesem den Begriff der gleichmifBigen Konvergenz in der Funktionentheorie.

9.1.1 Urspringliche Definition der stetigen Konvergenz

Eine Folge reeller Funktionen f;, : R — R konvergiert stetig gegen f : R — R, wenn fiir jede
in R gegen x € R konvergente Folge (x,),en die Folge (f,(x,))nen gegen f(x) konvergiert.
Der Begriff der stetigen Konvergenz in einem Punkt ergibt sich nun auch unmittelbar.

Ubertragen wir dieses Konzept nun auf allgemeine topologische Riume.

Fiir die reellen Zahlen oder auch fiir metrische Rdume reicht das Konzept konvergierender Fol-
gen vollig aus, um topologische Fragestellungen zu behandeln, aber eben nicht fiir allgemei-
ne topologische Riume® (Beispiele hierzu findet man in [22]). In allgemeinen topologischen
Réiumen brauchen wir daher auch allgemeine Konzepte. Definition 9.1.1 wird sich also bei
allgemeinen topologischen Riumen kaum sinnvoll anwenden lassen, da selbst so elementare
Konzepte wie die Stetigkeit nicht allein durch Folgenkonvergenz beschreibbar sind.

Definition 9.1.2 und Lemma 9.1.3 geben nun Auskunft dariiber, wie sich das obige Konzept
der stetigen Konvergenz mittels Filter beschreiben ldsst.

"Die Definition geht aber bereits auf Weierstrass zuriick und der Name stammt von P. Du Bois-Reymond

8Natiirlich sind metrische Riume nicht die groBte Klasse topologischer Riume, deren Topologie bereits durch
die Kenntnis aller Folgen (und ihrer Grenzwerte) bestimmt sind. Sinnigerweise werden diese im deutsch
sprachigen Raum als Folgen bestimmte Topologische Raume bezeichnet (bzw. als sequential spaces im Eng-
lischen).
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9.1.2 Definition: Stetige Konvergenz eines Filters

Fiir einen Filter ¢ auf @ # Z C YX und einen Filter y auf X sei ¢(y) :={ACY |3IPc
9,0 <y mit P(Q) CA}, wobei P(Q) :={g(x) | g € P und x € Q}. Seien (X,7) und (Y, 0)
topologische Raume. Wir sagen ¢ konvergiert stetig auf Z gegen f : X — Y, falls fiir alle

Filter w auf X und alle x € X gilt: |y 5 x impliziert ¢ (y) > f(x)|.

Es folgen noch ein paar Bemerkungen.

1. ¢ konvergiert offenbar genau dann stetig gegen f : X — Y, wenn zu jedem x € X und

Wef(x)yNoeinPedundV € X N7 existiert, mit P(V)CW.

2. Sei ¢ ein Filter auf @ # Z C YX und f € YX. Wir setzen ® := {A CY* | 3P € ¢ mit
P C A}. Dann gilt:

¢ konvergiert stetig auf Z gegen f < & konvergiert stetig auf Y* gegen f

Bei Bedarf kénnen wir in Definition 9.1.2 von Z = Y¥ ausgehen.

3. Sei f € YX und ¢ :=f stetig konvergent gegen f. Offenbar ist f dann stetig.

Wenn wir mochten, dass Einpunktfilter auf Z wenigstens stetig gegen ihr erzeugendes
Element konvergieren, sollten wir uns auf Z = ¢(X,Y) zuriickziehen.

9.1.3 Lemma

Seien (X, 7) und (Y, o) topologische Raume, ( f,),en eine Folge aus Z C Y und sei (X, 1)
ein Al-Raum (jeder Punkt hat abzdhlbare Umgebungsbasis). Dann ist dquivalent:

1. Der mit (fy,),en assoziierte Filter konvergiert stetig auf Z gegen f.

2. Vx e XV Folgen (x,)pen aus X mit x, — x gilt f,(x,) = f(x).
(Die urspriingliche Definition der stetigen Konvergenz von Hans Hahn.)

Beweis: 1. = 2. Sei x, — x. Sei ¢ der mit (x,),cn und ¢ der mit (f,),en assoziierte Filter.

Wegen @ — x folgt ¢ (@) = f(x). Das bedeutet zu jedem U € f(x) No existieren P € ¢, Q € @
mit P(Q) C U. Folglich gibt es N € N mit f,(x,,) € U fiir alle n,m > N. Fiir n > N gilt somit
fn(xn) € U. Diese Richtung geht also auch ohne Al.

2. = 1. Sei wieder ¢ der von ( f,)ncn induzierte Filter auf Z, x € X und @ € .Z (X) mit ¢ — x
gegeben. Zu zeigen ist (@) — f(x). Sei (A,)nen eine Umgebungsbasis von x (0.B.d.A. mit

Ani1 CA,), insbesondere {A, | n € N} C . Falls nicht ¢ (@) 2 f(x), so U € f(x) NoVk €
NVP € ¢In > kmit f,(P) Z U.
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Zu 0 und Ay gibt es ng > 0 und xp € Ag mit fy,(xo) € U.
Zuny+1lund A, ;i gibtesn; >no+1und x; € A, mit f, (x1) € U.
Zun;+1lundA, i gibtesny >n;+1undxp € A, 41 mit f,(x2) € U.

Es gibt also eine streng monoton steigende Folge (n;);cn aus N und eine Folge (x;);en aus X

mit x; — x und fp, (x;) € U. Zu jedem n € N bilden wir nun /(n) := min{/ € N | n <n;} und

Xy, = X () Offenbar gilt auch x;, — x aber nicht f,(x;,) — f(x). Dies ist ein Widerspruch!

9.1.4 Bemerkung

Definition 9.1.2 ist die Definition, mit der ich im Folgenden arbeiten werden. Sollte ich an
einer Stelle von der stetigen Konvergenz einer Funktionenfolge sprechen, so ist dies nicht
im Sinne von Definition 9.1.1, sondern ich meine die stetige Konvergenz des mit der Folge
assoziierten Filter (im Sinne von 9.1.2).

9.1.5 Definition: Schwach stetig
Wir nennen f : (X,7) — (Y, 0) schwach stetig, falls

VxGXVOGf(.x) No30 XNt mit £(Q) C O.

Offenbar ist f genau dann schwach stetig, wenn das Urbild jeder abgeschlossenen Umgebung
von f(x) eine Umgebung von x ist. Ist Y T3 und f schwach stetig, so ist f offenbar stetig.

9.1.6 Lemma
Seien (X, 7) und (Y, o) beliebige topologische Riume.
1. Ist ¢ ein Filter, der stetig gegen f : X — Y konvergiert, so ist f schwach stetig.

2. Ist f: D — Y stetig, mit D C X = D und der Eigenschaft: Vx € X 3 ein stetiges f; :
DU{x} =Y mit f,|D=f,dannistg:X — Y, x+— fi(x) schwach stetig.

Korollar in beiden Fillen: Ist (Y, o) zusitzlich T3, so ist f bzw. g stetig.

Beweis: 1. Sei U € f(x) No. Sei y der von X Nt erzeugte Filter. Wegen o(w) > f(x) gibt

esPe€ ¢,0 € f(x) No mit P(Q) C U. Angenommen f(Q) N (Y \U) # @. Wihle dann ein
z€ Qmit f(z) € Y \U. Nun gilt -5 z, also ¢ (2) > f(z). Es gibt also P’ € ¢ mit P'(z) C Y\ U.
Fiir P := PN P’ € ¢ folgt schlieBlich P"(z) C P'(z) C Y \ U. Dies ist ein Widerspruch, denn
P"(z) CP(z) CP(Q) CU und P'(z) # 2.

2. Sei x € X mit g(x) € V € 0. Es gibt nun ein U € X NT mit HUN(DU{x})) CV.
Angenommen es ist g(U) € V. Sei dann z € U mit g(z) € Y \ V. Da auch f; stetig ist, 3U’ € Z
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Nt mit £,(U' N(DU{z})) CY\V.Wegenz€ UNU' € 7 gibtes eind € UNU'ND. Es folgt
fo(d) €Y\ V, aber f:(d) = fr(d) € V!

9.1.7 Satz

Fiir jeden topologischen Raum (Y, o) sind die folgenden Eigenschaften dquivalent:
1. (Y,0) ist ein T3-Raum.

2. Fiir jeden topologischen Raum (X, 1), jeden Filter ¢ auf YX und jede Abbildung
f:X—=Yglt

k iert steti . S : 1
<¢ OIVEIBIET SIS 4 ) impliziert  (f ist stetig )

3. Jede schwach stetige Abbildung von einem topologischen Raum (X, 7) nach (¥, 0)
ist stetig.

4. Fiir jeden Raum (X, 7), jede Teilmenge D C X mit D = X und jede stetige Abbildung
f D — Y mit der Eigenschaft

Vx € X existiert eine stetige Abbildung f,: DU{x} — Y mit fi|D = f
ist die Abbildung f: X — ¥ mit f(x) := f.(x) stetig.

5. Fiir jeden Raum (X, 7), jede Teilmenge D C X mit D = X und jede stetige Abbildung
f : D — Y mit der Eigenschaft

VxeX\D Iy, cYVoe ZF(X): [([Deo und ¢ 5x) = f(@|D)>y,]

ist die Abbildung f : X — Y mit f(x) := y, fiirx € X\ D und f(x) := f(x) firx € D
stetig. (Offenbar gilt f|D = f.)

Beweis: 1. = 2. Siehe Lemma 9.1.6.

2. = 1. Beweisen wir statt dessen: —=1. = 2. SeiacY,U € anc derart, dass a keine

abgeschlossene Umgebung unterhalb U hat. Fiir jedes V € ano seiV = {We anc |WCV}.
Sei ¢ eine Menge, die in keiner bereits definierten Menge als Element vorkommt. Wir setzen

X:=(Uy ooV *x VHU{(a.0)},
= {(WNV)x{W}|W cano und V € 6},

= {(Ugew @ x {@}) U{(a.0)} | W € ano},
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P .= oy Ugh und anschlieBend 7:={JZ% | % C %}

und zeigen, dass 7 eine Topologie auf X ist. Dazu zeigen wir, dass Z das Folgende erfiillt und
damit bereits eine Basis fiir 7 ist (beachte auch | J % = X.).

VxeXVAA € B: (xe ANA" impliziert JA” € Z mit x€ A" CANA'),
Beweis dazu: (1) Sind A,A’ € &, so gilt mit A = (W NVy) x {W}, A/ = (WLN V) x {W,}
und (y,Q) € ANA’ offenbar W) = Q = W, und (y,0) € A” := (QNV;NV,) x {0} € o und
A" CANA.

(2) Sind A,A’ € @, so gilt mit W3 := W, N\Ws € ano, A = Ugew, 0 x{0})U{(a,f)} und

= (Ugew, @ x {0}) U{(a,0)} offenbar ANA" = (U ey, @ x {Q}) U{(a,0)} € 2.

(3) Sind A € o und A’ € o, so gilt mit A = (WiNV) x {Wi}, A = (U, O x {QH U
{(a,0)} und (y,z) € ANA’ offenbar z =W; € W und (y,z) € A=ANA.

Wir definieren nun f: X — Y, (y,2) — y.

fistin (a,) nicht stetig. | Beweis dazu: Nach Voraussetzung an a und U gilt V Z U, fiir alle

V € ano. Wire f doch in (a, ) stetig, so giibe es ein A € . mit f(A) CU. Sei W € a NG mit
A= (UQEWQX {0})U{(a,¥)}. Wir erhalten den Widerspruch W = f(W x {W}) C f(A) CU!

Wir werden nun einen Filter y konstruieren, der stetig gegen f konvergiert. Fiir (y,Q) € X,V €
).’ No,Q#lbzw. W € a No setze dazu

P ((3,0),V):={g: X =Y [g((QNV) x {Q}) CV}
P(W):={g: X =Y | g((Upeiy @ x{0}) U{(a,0)}) CW}
und anschlieBend

v = {R((»,Q),V) | (»Q) €X,V €¥N0, Q # L} U{P(W) | W €dna}.

Endlich viele Elemente aus W’ haben einen nicht leeren Schnitt.

Beweis dazu: Seien endlich viele Elemente Py((y;,Q;),Vi), i € J und P,(W;), i € K aus y’
gegeben (J N K = @). Setze

_@,._{«K V) x (@i}, X\[@:0V) x {0} falls i € J
U H{Ugew, @ x {01 U{(a,0)}, X\ [(Upew, @ x{@H U{(a,0)}]} falls i€ K

und anschlieBend

.@::H.@i und  &:={ () a()|ac P}

ieJUK ieJUK

Offenbar ist & eine Zerlegung von X. Wir definieren nun ein g : X — Y, welches im Schnitt
liegt. Sei dazu (y,z) € X. Es gibt nun ein o € Z mit (y,z) € ;cyux (i) Sei

Jo:={icT|a()=(0;nV;) x{0:}}
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Ko :={i€ K| a(i) = (Upew @ {0}) U{(a,0)}}
Wir unterscheiden vier Fille.
Fall 1 Jo = 9, Ko # @. Dann sei g(y,z) beliebig aus (g, Wi-
Fall 2 Jo # @, Ko = @. Dann sei g(y, z) beliebig aus ;c;, Vi
Fall 3 Jo = @, Ko = @. Dann sei g(y,z) vollkommen beliebig aus Y.

Fall 4 J, # &. Ky # <. Dann ist

2 el @nv)x{aHn[ (U @x{eh)u{(an})].

Also Q; =z =: Q' fiiralle i € Jo, und Q' € W, fiir alle i € K. Es folgt y € (Nies, Vi) N
@’ und damit @ # (Nicy, Vi) NQ € (Nicy, Vi) N (Niek, Wi)- In diesem Fall sei g(y,z)
beliebig aus (Micy, Vi) N (Miek, Wi)-

Offenbar gilt nun g € (N;cy Po((vi, i), Vi) N (Nick Pa(Wi)). Wir setzen

v:={PCY¥|3P,...P, ey mit PN...NF, CP}.

’Der Filter y konvergiert stetig gegen f. ‘ Beweis dazu: Sei f(y,z) € O € ©.
Fall 1 z= /. Dann ist y = a und fiir P := P,(0) € y gilt P((UQeaé x{0})U{(a,0)}) CO.
Fall 2 z # (, also z = Q' € a No. Damn gilt fiir P:= Ry((y,Q’),0) € ¥ in diesem Fall
P((Q'Nn0O)x{Q})co.

1. = 3.ist trivial. Also 3. = 1. Wir zeigen wieder —1. = —4. Dies folgt aber unmittelbar
aus obiger Konstruktion und Lemma 9.1.6 (siehe auch Bemerkung 9.1.8).

4. = 1. Wir zeigen —1. = —4. und kniipfen dazu an obiger Konstruktion an. Neben (X, 7)
und f : X — Y definieren wir nun noch

D:= ) 0x{Q} und g:D—Y, (y0)—y

Qe anc

Es gilt X = D. | Beweis dazu: (a,f) € D ist offensichtlich. Sei (y, Qo) € Upe ché x {0},

also y € Q. Falls (y,Q0) € A € o, so offenbar AND # @. Falls (y,Q0) € A € 4, also
A=(QyNV)x{0Qo},sofolgty e V und daher VN Qy # &. Fiiry € VN Qy folgt nun (y,Qp) €
AND.

g ldsst sich stetig auf jedes (y,z) € X fortsetzen. | Beweis dazu: Tatséchlich ist die Einschrin-

kung von f auf X \ {(a,?)} stetig. Gilt namlich (y,Qp) € X \ {(a,¢)} und f(y,Qp) € O € o,
so folgt (y,Q0) € (QyNO) x {Qo} und f((QyNO) x {Qo}) C O. Andererseits ist aber auch
die Einschriankung von f auf DU {(a,?)} (also fy := f|(DU{(a,f)})) stetig. Gilt namlich
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a= fola,l) €W € ane, so folgt fo(DN [(Ugein @ x {0} U{(a,0)}]) CW. Und gilta #y =
fo(0,0) €V €Yo, so folgt fo(DN[(@NV) x {Q}]) C V.

Bezeichnet g,y : DU{(y,2)} — Y die stetige Fortsetzung von g auf DU {(y,z)}, so gilt
f,z) = 8(v.2) (y,2). Aber f ist nicht stetig! Damit ist der Beweis beendet.

1. = 4. Folgt aus Lemma 9.1.6 zusammen mit Eigenschaft 4. aus diesem Satz.

4. = 5. Sei x € X \ D beliebig. Wir zeigen, dass sich f stetig auf DU {x} fortsetzen ldsst.

Der Filter ¢ :={P C X |3U € XNt mit UND C P} konvergiert gegen x. Wir definieren die
Abbildung

Vx falls z=x

£l2) = { f(z) falls z€D

Zeigen wir die Stetigkeit:

Seid € Dund f(d) € O € 6. 1.Fall y, € O, dann gibt es ein U € ¢ Nt mit f(UND) C O,
also fi(UN(DU{x})) CO.

2.Fall y, ¢ 0. Dann ist O & f(¢|D). Es gilt £, '(0) = f~1(0) =V D, fireinV € 4 N1.
Wire x € V, so wire VN D € ¢|D, also O € f(¢|D) - ein Widerspruch. Also ist x ¢ V und
somit f~1(0) =V N (DU{x}).

Seinun O € ¥, No. Dann ist O € f(@|D), es gibt also ein P € @|D mit f(P) C O.Zu P gibt
es ein U € X NT mit U ND C P. Damit gilt dann £,(U N (DU{x})) C 0. -

Die Stetigkeit ist damit gezeigt und folglich ist f : X — Y stetig (wobei f(z) := f.(z)).
Wegen f,(z) =y, ist alles gezeigt.

5. = 4. SeixeX\Dund ¢, :={PC X |dQ€ XNt mit Q C P}. Betrachte den auf
D U {x} eingeschriinkten Filter ¢} := {PN(DU{x}) | P € ¢,}. Nun gilt auch ¢, — x (in der
Teilraumtopologie) und folglich fi(@)) — fi(x) =: y,. Offenbar erfiillt dieses y, gerade die
Bedingung aus 5. und folglich ist £ : X — Y mit f(x) := y, stetig. Es gilt aber f,(x) = y,.

9.1.8 Bemerkungen zu Satz 9.1.7

1. Die obige Konstruktion von X := (UVE [.mv x {V})U{(a,?)} funktioniert auch in-

dem wir ¢ durch eine beliebig gewihlte Basis p von o ersetzen. Diese Einsicht ist fiir
Definition 9.1.11 und Lemma 9.1.12 wichtig.

2. Dass es in einen nicht T3-Raum eine schwach stetige Abbildung gibt, die nicht stetig ist,
sieht man leicht direkt. Sei (Y, o) ein top. Raum, y € Y und U €Y No mit V € U fiir alle

V €YNo. Nunist Z := Hz}lzeY\{pu{v v ey No} die Basis einer Topologie T
auf Y und idy : (Y,7) — (Y, o) ist nicht stetig (U = idy ' (U) ¢ 1), aber schwach stetig!

3. Betrachte den Sierpinski-Raum (¥, o) mitY :={0,1} und o := {{0},Y,0}. Seien ferner
(X,7) mit D C X vollig beliebig. Ist f : D — Y eine beliebige stetige Abbildung, so
lasst sich f stetig auf ganz X fortsetzen. Beweis: O.B.d.A. ist f nicht konstant und
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demzufolge surjektiv. Da f~!(0) offen in D ist, gibt es V € 7 mit f~1(0) =DNV.
0 fallsxeV

. Dann ist f stetie mit 7|D = f.
1 falls xeX\V J stetig mit f /

Definiere f: X — Y durch f(x) = {

4. Der Notationsaufwand beim Nachweis, dass endlich viele Elemente aus W’ einen nicht
leeren Schnitt haben, mag etwas iibertrieben sein, allerdings ist so die Konstruktion des
g besonders deutlich! Interessant ist nun ndmlich die Frage, ob sich auch ein Filter auf
c(X,Y) finden ldsst, der stetig gegen f konvergiert (das g aus dem Schnitt also immer
stetig gewdhlt werden kann)?

Nehmen wir Bemerkung 4 aus 9.1.8 als Anlass fiir das Folgende.

9.1.9 Definition: (S)-Raum
Ein topologischer Raum (Y, o) heifit (S)-Raum, falls fiir jeden topologischen Raum (X, 7),
jeden Filter ¢ auf ¢(X,Y) und jede Abbildung f: X — Y gilt:

((p konvergier! stetig f ) impliziert ( f ist stetig)

Offenbar ist jeder T3-Raum ein (S)-Raum (Satz 9.1.7). Im Folgenden betrachten wir ein Bei-
spiel eines recht gutartigen Raumes (d.h. unter anderem Tj), der kein (S)-Raum ist.

9.1.10 Alilgemeines Beispiel

Sei (Y, 0) ein topologischer Raum und A C Y nicht abgeschlossen mit der Eigenschaft

(E) VacAVUecanc3zeU\A.
Seiy € A\ A. Wir definieren die Topologie 7(0) := {U\B|U € ¢ und BC A} auf Y. Wegen
1. @,Y €T (o)
2. Ui \B1,Us\ By € T (o) impliziert (U; \ B1) N (U \ B2) = (U NU») \ (B1 UB,) € T(o)

3. U;\B; € o fiir alle i € I impliziert J;;(U; \ B;) = (U;e; Ui) \ B € T(0),
wobei B:={acA|Viel(agU; oder acB;)}

ist T (o) tatséchlich eine Topologie auf Y mit ¢ C T'(o). Der Raum (Y, T (o)) ist nicht Ts.
Beweis: A ist bzgl. T (o) abgeschlossen und y € Y \ A. Seien U,V € ¢ und B,B’ C A mit
y€U\Bund A CV\B. Folglichist B = @. Wegeny € A\ A (bzgl. 6) gibtes ein a € U NA.
Daaucha €V,3z€ (UNV)\A (wegen (E)). Folglichistze U\ Bund z € V.

Wir wenden diese Uberlegungen auf die euklidische Topologie Tr auf R mit A := {ﬁ |n e
N} an. Offenbar erfiillt A die Eigenschaft (E). Da g T, ist und g C T (7g), ist (R,7(7r))
ein Ty, aber kein T3-Raum. Ist Z eine Basis fiir die euklidische Topologie Tg, so kann man
schnell nachrechnen, dass

@’::{B\A|Be§5’}u{(B\A)u{ﬁ}|B€<@,n€N,ﬁeB}
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eine Basis fiir 7(7g) ist. Da es fiir 7g abzihlbare Basen gibt, gibt es die auch fiir T'(tg).
(Bemerkung: Offenbar kann man sich sogar auf die rationalen Zahlen (Q einschrinken, mit

der entsprechend induzierten Topologie T'(7g )|q- Also ist (Q, T (g )|q) ein abzihlbarer Raum,
mit abzihlbarer Basis, der Ty, aber nicht T3 ist. Im Folgenden bleiben wir aber bei (R, T'(gr)).)

Sei X := {# | n € N}U{0} und & die euklidische Topologie von R eingeschrinkt auf X.
Sei (ry)nen eine Folge irrationaler Zahlen mit r,, — 1 (bzgl. der euklidischen Topologie). Wir
definieren wie folgt Abbildungen f, f,, : (X, &) — (R, T(tr)).

f(x):=x und fu(x):=rx (VneN)

1. (fu)nen konvergiert stetig gegen f.
Beweis: Zum Nachweis verwenden wir (der Einfachheit halber) Lemma 9.1.3. Sei also
(xn)nen eine in (X, &) konvergente Folge, also x,, — x. Falls x # 0. Dann 3N € NVn >
N: x, =x.Furn > N folgt f,(x,) = fu(x) = rpx und damit f,(x,) — x fiir n — oo. Falls
x = 0 folgt f,(x,) = rpx, — O fiir n — oo. Man beachte, dass r,x, & A!

2. Die Abbildungen f,, sind alle stetig.

Beweis: Sei wieder (x)ien eine in (X, &) konvergente Folge, also x; — x. Falls x # 0.
Dann N € NVk > N : x; = x. Fur k > N folgt f,,(xx) = fn(x) und damit f, (xz) — fu(x).
Falls x = 0 folgt f,,(xx) = rpxx — O fiir n — co. Beachte, dass f,(X) NA = & gilt.

3. Die Abbildung f ist nicht stetig.

Beweis: Offenkundig konvergiert (ﬁ)neN in (X,&) gegen 0, aber (f (n—il) = ﬁ)neN

konvergiert in (R, 7 (tg)) nicht gegen 0. Folglich kann f nicht stetig sein.

Bemerkung: Auch in obiger allgemeiner Konstruktion mit (¥, o) und (Y, 7T (o)) konnen wir
X :=AU{y} setzen und fir U € c mit U NX # & die Menge P(U) :={g: X =Y | g(UNX) C
U\ A} definieren. Wegen Eigenschaft (E) gilt firalle U € o\ {@}: U\ A # @. Und mit einem
analogen Argument wie im Beweis zu Satz 9.1.7 sieht man, dass je endlich viele Elemente aus

o' :={P(U)|U €0 mit UNX # &}

einen nicht leeren Schnitt haben und der von ¢’ erzeugte Filter folglich stetig gegen die nicht
stetige Abbildung f: X — Y, x — x konvergiert. Genau wie in Satz 9.1.7 kann ich aber auch
hier nicht sagen, ob man immer stetige Abbildungen im Schnitt finden kann, ob also ¢’ U
{c(X,Y)} die endliche Schnitt Eigenschaft hat.

9.1.11 Definition: Stabil

Wir nennen den topologischen Raum (Y,0) an der Stelle a € Y stabil, falls eine Basis p

existiert, so dass fiiralle Q € a Np und fiir alle V..., V, € p eine stetige Abbildung f: Q — Q
existiert, mit f(QNV;) CQONV;firallei=1,...,n.
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9.1.12 Lemma

Ist der topologische Raum (Y, o) an der Stelle a € Y stabil, aber bei a nicht T3 (d.h. es gibt
U € ano, so dass V Z U furalleV € anc gilt ), so ist (¥, o) kein (S)-Raum.

Beweis: Sei p eine Basis fiir ¢, im Sinne von Definition 9.1.11 (beachte Bemerkung 9.1.8).
Wir setzen an der Konstruktion im Beweis zu Satz 9.1.7 an und zeigen: Je endlich viele Ele-
mente aus Y’ U {c(X,Y)} haben einen nicht leeren Schnitt. Der von v/ U {c(X,Y)} erzeugte
Filter konvergiert dann namlich immer noch stetig gegen das nicht stetige f, enthilt nun aber
auch ¢(X,Y). Wir miissen also zeigen, dass das g € (Nicy Po((yi,Qi),Vi)) N (Nick Pa(Wi)) ste-
tig gewdhlt werden kann.

1. Fir (a,?) setzen wir g(a,f) := a.
2. Sei Q € anp. Wir definieren giufé x {Q}. SeidazuJ':={i€J|Q; = Q}. Nun gibtes

ein stetiges Aig : 0 — Qmithy(QNV;) CV;firallei € J' und wir setzen g(y, Q) := ho(y),
fiir (,0) € 0 x {Q}.
Fiir W € a Np gilt offenbar g(UQGW(é x {0} U{(a,f)}) CW,alsoist gin (a,/) stetig. Fiir
(yv,Q) mit g(y,Q) € V' € p gibtesein V € y Np mit hp(QNV) C V. Folglich gilt g((ONV) x
{Q}) C V' und g ist auch in (y, Q) stetig. g ist natiirlich auch im Schnitt enthalten.

9.1.13 Definition: T,-Reflexion
Sei (Y, 0) ein topologischer Raum. Wir definieren folgende Aquivalenzrelation auf Y:

yi~y & VOeo gilt (ON{y,,n}#9 = {y,y2} C0)

SeiZ:=Y/~={yl~|yeY}mit]yl.:={y €Y |y~y}undqg:Y —Z, y [y]~. Setze
dann & := {0 C Z | ¢ '(0) € o}. Offenbar ist & die Quotiententopologie beziiglich ~. Wir
nennen (Z, &) im Folgenden die To-Reflexion (oder T-nullifizierung ;-)) von (Y, o).

9.1.14 Lemma

1. Die Tp-Reflexion (Z,&) eines Raumes (Y, o) ist immer Ty. Ist (¥, o) bereits selber
Ty, so lassen sich Z und Y auf offensichtliche Weise miteinander identifizieren. Fiir
O cogiltqg ' (g(0)) = 0und g~ (¢(Y\ 0)) =Y\ O. Die Abbildung ¢ ist demnach
offen und abgeschlossen.

2. (Y,0) ist genau dann T3, wenn die To-Reflexion (Z, &) ein T3-Raum ist.

3. (Y,0) ist genau dann (S), wenn die Top-Reflexion (Z,&) ein (S)-Raum ist.
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Beweis: 1. Sei O € 6. 0 C ¢ !(g(0)) ist Klar. Sei y € g~ '(g(0)), also q(y) € q(0O). Es gibt
ein y € O mit g(y) = q(y'). Also gilt y € O! Wegen ¢~ '(¢(0)) = O € & ist ¢(0) € & und
q ist offen. Sei A :=Y \ 0. A C g~ !(¢(A)) ist wieder offensichtlich. Sei y € g~ !(g(A)), also
q(y) €q(A).Es gibteina € Amit g(y) =¢q(A). Wirey € Y \A = O, so widre aucha € O =Y \ A.
Alsoist y € A. Wegen ¢~ 1(Z\ q(A)) =Y \ g 1 (q(A)) =Y\A=0¢ccist Z\q(A) € €, also
q(A) abgeschlossen. Also ist ¢ auch abgeschlossen.

Seien z,7 € Z mit z # 7/, also z = ¢g(y) und 7/ = ¢(y’). Wegen y ;£ y’ existiert ein O € ¢ mit
lON{y,y'}|=1.0.B.d.A.seiy€e Oundy & O.Setze V :=q(0) € . Es giltdann z = ¢(y) €V
und 7/ = ¢(y) € V (andernfalls g(y') = g(y"") mit y” € O, also auch y’ € O).

2.8ei (Y,0) Tund g(y) =2€ O € E.BsistyeV:=¢ 1(0)€0.5eiWcomityc W C
W C V. Da g offen und abgeschlossen ist folgt z = g(y) € g(W) C q(W) C q(W) C q(V).

Sei umgekehrt (Z, ) ein T3-Raum. Seiy € O € o. Es folgt z := ¢g(y) € ¢(0) € &. Also gibt
eseinVeEmitzeVCV CqO).BsistycU:=q '(V)eo.DaU Cq '(V)C Ound
g1 (V) abgeschlossen ist, gilty ¢ U CU C O.

3. Sei (Y, 0) ein (S)-Raum und ¢ stetig konvergent auf ¢(X,Z) gegen f : X — Z. Wir defi-
nieren wie folgt eine Abbildung o : ¢(X,Z) — ¢(X,Y)

(a) Ist h € ¢(X,Z), so wihlen wir zu jedem x € X ein y, € Y mit g(y,) = h(x).

(b) Wir definieren (k) durch o/(h)(x) := yy.

(c) g: X — Z ist stetig, genau dann wenn a(g) : X — Y stetig ist. Beweis: Sei g stetig und

O € o. Es folgt a(g)~'(0) = a(g) (g7 '(¢(0))) = g7 '(q(0)) € 7. Ist andererseits a(g)
stetig, folgt fiir U € &: g~ (U) = a(g) ' (¢~ (U)) e 7.
Zeigen wir, dass o(¢) stetig gegen a(f) konvergiert. Sei x € X und o(f)(x) € O € o. Fiir
V:=¢q(0) €& gilt f(x) =q(a(f)(x)) € q(O)=V,also gibtes Q € ¢, Ue;cﬂrmitQ(U) cv.
Dann ist aber a(Q)(U) C O, denn es gilt g(a(Q)(U)) CQU) CV =¢(0) und O € 6. Da
o(¢) stetig gegen o (f) konvergiert, ist ct(f) stetig, also auch f.

Sei umgekehrt (Z,&) ein (S)-Raum und ¢ stetig konvergent auf ¢(X,Y) gegen f: X —
Y. Definiere B : ¢(X,Y) — ¢(X,Z) durch B(h) := g o h. Definiere anschlieBend y := {P C
c(X,Z)| 30 € ¢ mit B(Q) C P}. Man rechnet leicht nach, dass y stetig gegen g o f konver-
giert, g o f also stetig ist. Dann ist aber auch f stetig (Quotiententopologie)!

9.1.15 Satz
1. Jeder (S)-Raum (Y, o) ist ein Ryp-Raum.
2. Jeder Typ-(S)-Raum (Y, o) ist auch T,.

3. Sei (Y;,0;)ics eine Familie von (S)-Rdumen und (f; : Y — Y;);e; eine Familie von
Abbildungen. Dann ist (Y, ) ein (S)-Raum, wobei ¢ die Initialtopologie ist.

4. Die topologische Summe von (S)-Ridumen ist ein (S)-Raum.
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Beweis: 1. Angenommen 3y € ¥ und O € yo NG mit {yo} € O. Sei y; € A= {yo} \ O.
Offenbar ist A in Y abgeschlossen. Sei X :=Y U{¢}, wobei £ €Y (also z.B. /=Y) und 7 :=
o U{X}. Wir erhalten einen Widerspruch, wenn wir folgende Abbildungen definieren f : X —

yo firxeX\A

Dann ist f stetig und g nicht stetig (denn
y1 firxeA

Y,x—youndg:X —Y, g(x) ::{

g '(A) = A ist nicht in X abgeschlossen), aber f konvergiert auf c(X,Y) stetig gegen g. Gilt
nimlich @ = x, so folgt f (@) = f(@) =yo-—> g(x).

2. (Y,o) ist nach 1. Ry, also wegen Ty bereits T;. Angenommen y; # y; lassen sich in ¥
nicht durch offene Mengen trennen. Wir bilden den Filter (Y ist ein T{-Raum!)

E:={QCY\ .y} |3U€yinNe,V ey no mit (UNV)\ {1y} C 0}
Fiir jedes Q € & sei Py :={g € ¢(Y,Y) | g(Y) C Q} und anschlieend
¢:={PCY'|3Q€& mit PpC P}

yi fir y#y;
y2 fir y=ys
Dann ist f : (Y,0) — (Y, o) nicht stetig (andernfalls wire {y,} = f~'(Y'\ {y1}) offen, denn
(Y,0) ist Ty und y;,y, wiren doch durch offene Mengen trennbar). Der Filter ¢ konvergiert
nun aber stetig gegen f.
Beweis: Sei ¢ € .7 (Y) mit ¢ > y.

Falls y =y, s0sei V € y.z No. Dannist Q:=V \{y1,y2} € & und es folgt Pp(Y) CQ CV,
wobei Pp € g undY € ¢. Also ¢(¢) %y = f(y).

Falls y # y,, so sei U € y; No. Dannist Q := U \ {y1,y2} € & und es folgt Pp(Y)CQCU,
wobei Pp € g und Y € ¢. Also ¢(¢) 2y =f0).

Offenbar ist ¢ ein Filter mit ¢(Y,Y) € ¢. Wir definieren f : Y — Y durch f(y) := {

3. Sei (X, 7) ein top. Raum und ¢ ein Filter auf ¢(X,Y), der stetig gegen f : X — Y konver-
giert. Zu zeigen ist, dass fjo f fiir jedes i € I stetig ist. Sei j € I. Wir betrachten o : ¢(X,Y) —
c(X,Y}), g fjog. Dannist ¢' := a(¢) ein Filter auf ¢(X,Y;), der stetig gegen f; o f kon-
vergiert. Beweis dazu: Fir x € X und fjo f(x) € U; € o; gilt f(x) € fjfl(Uj) € 0, es existiert
demnach ein P € ¢ und Q € x N7 mit P(Q) C fj.’l(Uj). Nunist P :={a(g) |g € P} € ¢' und
offenbar gilt P'(Q) C U;. Da ¢’ somit stetig gegen f; o f konvergiert, ist f; o f stetig.

4. Sei (Y;, 0;)icr eine Menge von (S)-Raumen und bezeichne (Y, o) die topologische Sum-
me. Sei (X, T) ein weiterer topologischer Raum und ¢ ein Filter auf ¢(X,Y), der stetig gegen
f:X —Y konvergiert. Sei x € X und f(x) € O € . Es gibt genau ein j € I mit f(x) € ¥; x {j}.
Sei X;:=f1(Y;x{j})und By 9,0 € X N7, mit Py(Q) C Y; x {j}. Man beachte: Y; x {;}
ist homdomorph zu Y}, also auch ein (S)-Raum.

Es gilt O C X;. Andernfalls seiz € Q mit f(z) € ¥; x {I}, j # . Es giibe dann ein P’ € ¢ und
Q' € zntmit P/(Q') C Y, x {I}. Fiir P := PyNP' € ¢ folgt dann aber P"(z) C Py(Q) C Y x{j}
und P"(z) C P'(Q') CY; x {I} - ein Widerspruch.
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Wegen O C X; und Py(Q) CY; x {j}ist ¢ := {PNc(Q,Y; x{j}) | P € ¢} ein Filter auf
c(Q,Y; x{j}), der stetig gegen f|Q: Q — Y; x { j} konvergiert. Folglich ist f|Q: Q — Y¥; x {j}
stetig und es gibt demnach ein U € x N7 mit (flO)(U) C 0. Also f(ONU) C 0.

9.1.16 Bemerkungen

1. Aus Satz 9.1.15 folgt, dass Produkte und Teilrdume von (S)-Rdaumen wieder (S)-Rdaume
sind, insbesondere also auch der inverse Limes eines inversen Systems von (S)-Rdumen
(da Teilraum des Produktes).

2. Der Quotient eines (S)-Raumes braucht selber nicht (S) sein. Betrachte dazu X := [0, 1]
mit euklidischer Topologie und die Aquivalenzrelation x ~y < {x,y} C [1,1/2) oder
{x,y} C[1/2,1]. Der Quotientenraum ist homéomorph zum Sierpinskiraum (¥, o) mit
Y :={0,1} und 0 := {@,{0},Y}. Dieser ist nicht Ry, insbesondere also nicht (S).

3. Esreicht, wegen Lemma 9.1.14 und Satz 9.1.15, die Implikation ’ T +(S) = T; ‘ zu

beweisen, um die Gleichheit | T3 = (S)| zu zeigen. Oder anders: Wenn es (S)-Ridume
gibt, die nicht T3 sind, dann gibt es auch T»-(S)-Rdume, die nicht T3 sind.

4. Sei E eine topologische Eigenschaft derart, dass T> A E = Tz gilt und wenn ein Raum
die Eigenschaft E hat, dann auch seine Ty-Reflexion (z.B. E = parakompakt or E = lokal
kompakt). Dann gilt E A = T3 = —(S).

Beweis: Sei (Y, 0) ein (S)-Raum mit Eigenschaft E. Die To-Reflextion (Z,&) von (Y, o)
ist ebenfalls Ty und (S), ist also T, und wegen E auch T3. Dann ist aber auch ¥ Tjs.

9.1.17 Beispiel
Sei (Y, o) nicht T3, aber Rg und f : (X,7) — (¥, o) nicht stetig. Sei ferner ¢ ein Filter auf YX

mit ¢(X,Y) € ¢ und ¢ Konvergiert stetig f (also z.B. der Raum aus Beispiel 9.1.10). Seien a,b ¢ Y
(irgendwelche vollkommen beliebigen Mengen). Wir setzen Z :=Y U{a,b},q:Y —Z, y+y,
a:YX —ZX h— qgohund #:=ocU{{a,b}} und schlieBlich & := { %' | #' C %}. Dann
ist (Z,&) nicht T3, nicht Ty, aber immer noch Rq und nicht (S), denn o(¢) konvergiert stetig
gegen a(f), wobei a(f) nicht stetig ist und ¢(X,Z) € a(¢).

9.1.18 Satz

Ist f: (X,7) — (Y,0) perfekt, X ein T, und Y ein (S)-Raum, so ist auch X ein (S)-Raum.
Vergleiche dazu auch Lemma 4.9.9.

Beweis: Sei g: (Z,&) — (X, 1) eine Abbildung und ¢ ein Filter auf ¢(Z,X), der stetig gegen
g konvergiert. Sei a : ¢(Z,X) — ¢(Z,Y) definiert durch o(h) := f o h. Dann konvergiert a.(¢)

o

stetig gegen a(g) = fo g, denn aus ¢ = 2 folgt (a(9))(9) = F(8(9)) % f(g(2)). wegen
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¢(9) = g(z). Folglich ist f o g stetig. Zeigen wir nun die Stetigkeit von g. Sei dazu ¢ ein
Filter auf Z mit ¢ 5, z. Sei wy € Zy(g(@)). Es reicht, wenn wir yy — g(z) zeigen (dann folgt

namlich g(z) NT C Ny,c.2,(s(0) Yo = &(9), also g(¢) = g(z)). Nach Lemma 3.2.5 gibt es

einen Ultrafilter @y € .Zo() mit g(@g) = W, also f(g(@)) — f(g(z)). Da f perfekt ist und
g(@o) ein Ultrafilter ist, gibt es ein x € f~!(f(g(z))) mit g(gy) — x. Angenommen x # g(z).
SeienU,V € tmitUNV = undx € U und g(z) € V. Seien Q,0" € ¢y und P € ¢ mit g(Q) C

U und P(Q') CV (wegen g(@p) — x ist U € g(@p), wegen ¢ (@) — g(z) ist V € ¢(¢)). Sei
20 € QN Q. Offenbar gilt ¢(z9) — g(z0) € U, folglich gibt es P’ € ¢ mit P'(z9) C U. Sei
h e PNP'. Esfolgt h(z9) € P'(z0) C U und h(zp) € P(Q') CV,im Widerspruchzu U NV = &.

9.2 Allgemeine Konvergenzstrukturen

In diesem Absachnitt stellen wir den Begriff der Konvergenz axiomatisch an den Anfang und
entwickeln systematisch Teile dieser umfangreichen Theorie. Im Anschluss daran verallge-
meinern wir einige der neuen Resultate sogleich in diesen Kontext.

Die Motivation, allgemeine topologische Rdume zu untersuchen, riihrt unter anderem da-
her, dass man mit Metriken im Allgemeinen nicht einmal die punktweise Konvergenz von
Funktionen beschreiben kann. Zur Erinnerung: Ein Filter ¢ auf Y konvergiert punktweise
gegen f € YX, wenn ¢(x) :={Q C Y | IP € ¢ mit P(x) C Q} gegen f(x) konvergiert (fiir
jedes x € X). Offenbar wird diese Konvergenz durch die Produkttopologie auf Y* = [[,cx Y
beschrieben (ein Filter auf YX konvergiert genau dann punktweise, wenn er bzgl. der Pro-
dukttopologie konvergiert). Die punktweise Konvergenz ist also immer topologisierbar, aber
nicht immer metrisierbar. Es gilt ndmlich: Ein Produkt [ ];c; X; von mindestens zweipunktigen
metrischen Raumen (X;,d;) ist genau dann metrisierbar, wenn die Indexmenge abzihlbar ist’.
Beispielsweise ist die punktweise Konvergenz auf R® folglich nicht durch eine Metrik auf
RR beschreibbar. Fiir die stetige Konvergenz ergibt sich nun als natiirliche Frage: Wann gibt
es eine Topologie &y auf ¢(X,Y), so dass ein Filter auf ¢(X,Y) genau dann stetig gegen eine
Abbildung f konvergiert, wenn er bzgl. &) gegen f konvergiert? Der folgende Satz!”

9.2.1 Satz
Sei (X, T) ein top. Raum. Mit (a), (b), ... seien folgende Eigenschaften bezeichnet.
(a) (X,t) ist stark lokal kompakt.

(b) V topologischen Riume (Y,0)ist Q:c(X,Y)xX — Y, Q(f,x) := f(x) stetig, wobei
¢(X,Y) mit der kompakt offenen Topologie versehen ist.

9Dies folgt unmittelbar aus dem Metrisationssatz von Nagata und Smirnow. Siehe dazu z.B. [16].

19Der Satz entstammt - in mehrere Teile zerlegt - den Biichern [22], gibt Antworten auf diese Frage und zeigt sehr
interessante Beziehungen zwischen (auf den ersten Blick) sehr verschiedenen topologischen Eigenschaften
auf (der Beweis dort enthilt allerdings einige Liicken, sowie kleinere Fehler).
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Bemerkung: Fiir A C X, B C Y sei S(A,B) := {f € YX | f(A) C B}. Die kompakt
offene Topologie 7, ist die durch folgende Subbasis . erzeugte Topologie.

& :={S(K,0) | K kompakt C X und O offen CY}

(c) V topologischen Rdume (Y,0) 3 grobste Topologie & auf ¢(X,Y), so dass Q :
c(X,Y) xX — Y stetig ist.

(d) V topologischen Riume (Y,0) wird die Struktur g. der stetigen Konvergenz auf
¢(X,Y) durch eine Topologie & erzeugt.

(e) V topologischen Réume (Y, o) 3 Topologie &y auf ¢(X,Y), so dass V topologischen
Riume (Z,n) die Abbildung I': ¢(X X Z,Y) — ¢(Z,c(X,Y)) bijektiv ist, wobei I'
definiert ist durch I'(f)(z)(x) := f(x,z2).

(f) V topologischen Riume (Y,0), (Z,0’) und Quotientenabbildungen g : Y — Z ist
idy x g: X XY — X x Z eine Quotientenabbildung.

(g) V topologischen T,-Réume (Y, ), (Z,0’) und Quotientenabbildungen g : ¥ — Z ist
idy X g: X xY — X x Z eine Quotientenabbildung.

Es gilt nun:
(@ = (b) = (@© = d = () = O = (g und (+T, = (a)

Die durch (c), (d) und (e) definierte Topologie ist gerade die kompakt offene Topologie.

Beweis: (a) = (b): Sei (Y, 0) ein topologischer Raum und ¢(X,Y) mit der kompakt-offenen
Topologie versehen. Sei Q(f,x) €V € o, also f(x) € V und somit x € f~1(V) € 7. Sei K
kompakt mit x € K° C K C f~1(V). Es folgt (f,x) € S(K,V) x K° und Q(S(K,V) xK°) C V.

(b) = (c): Bezeichnet 1., die kompakt-offene Topologie auf ¢(X,Y) und ist & eine Topolo-
gie auf ¢(X,Y),sodass Q:¢(X,Y) x X — Y stetig ist, so reicht es zu zeigen, dass 7., C & gilt.
Sei f € S(K,U) gegeben, also f(K) C U. Fiir jedes x € K sei O, € XNtundV, € f NE mit
Q(O0y xVy) CU. Es gibt xy,...,x, € Kmit K C O :=J}_; Oy, und V := "}_, Vi, € &. Also
Q(Vx0) CU.Wegen K C Ofolgt feV e S(K,U)und S(K,U) €&.

(c) = (d): Sei & die grobste Topologie auf ¢(X,Y), so dass Q: ¢(X,Y) x X — Y stetig
ist. Konvergiert ¢ bzgl. & auf ¢(X,Y) gegen f und ¢ auf X bzgl. T gegen x, so konvergiert

0 (@) =Q(¢ x @) gegen Q(f,x) = f(x). Folglich konvergiert ¢ stetig gegen f.
Konvergiert ¢ umgekehrt stetig gegen f, so sei

& :={0Cc(X,Y)| f£0 oder O€ ¢} =oU[P(c(X.V)\ ]

Zeigen wir die Stetigkeit von Q: ¢(X,Y) x X — Y bzgl. &;. Sei Q(g,x) € O € 0, also g(x) € O.
SeiU e1,Ve&mit(g,x) eVxUundQ(V xU)CO.
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1. Fall £ = g. Dann ist f(x) € O und folglich 3U’ € x N7 und P € ¢ mit P(U’) C O. Fiir
U":=UNU"und P := PU{g} € ¢ gilt dann P'(U") C O, also Q(P' x U") C O, mit (g,x) €
P xU".

2.Fall f#g.Setze B:={he€c(X,Y)|h(U) COund h# f}. Es folgt g € B € & und
QBxU)CO.

Aus der Stetigkeit von Q folgt nun §y C &;. Falls also A € f N&p, soauch A € &1, also A € ¢.
Das heift ¢ = .

(d) = (e): Sei & entsprechend (d) auf ¢(X,Y) gewihlt. Zeigen wir, dass T': ¢(X X Z,Y) —
c(Z,c(X,Y)) sinnvoll definiert ist. Fiir f € ¢(X x Z,Y) ist I'(f)(z) = f og,, wobei g, : X —
X X Z, x — (x,z) ist. Da g, stetig ist, ist I'(f)(z) € ¢(Z,c(X,Y)). Zu zeigen bleibt, dass I'(f)
stetig ist. Sei ¢ ein Filter auf Z mit ¢ — z. Zu zeigen ist I'(f)(¢) — I'(f)(z). Da auf ¢(X,Y)
Konvergenz bzgl. &, = stetige Konvergenz ist, geniigt es fiir jeden Filter ¢ auf X mit ¢ — x
zu zeigen, dass T'(f)(¢) (@) — T'(f)(z)(x) gilt, also f(¢@ x ¢) — f(x,z). Letzteres folgt aber
gerade aus der Stetigkeit von f. Die Injektivitit von I" ist offensichtlich.

Zeigen wir die Surjektivitit: Sei g : Z — ¢(X,Y) stetig. Definiere f : X x Z — Y durch
f(x,2) :== g(z)(x). Zu zeigen ist nur noch, dass f stetig ist. Sei ¢ ein Filter auf X x Z mit
@ — (x,z). Seien P : X X Z — X und P, : X X Z — Z die Projektionen und ¢; := P; (@) bzw.
0> =P (p). Wegen ¢ — x, ¢ — zund @1 X ¢ C @ reichtes f(@; X ¢2) — f(x,z) zu zeigen.
Da g(92) stetig gegen g(z) onvergiert, folgt ¢(92)(@1) — g(z) (x), also £(¢1 X @2) — £(x,2).

(e) = (f): Sei & entsprechend (e) eine Topologie auf ¢(X,X x Z), mit Produkttopologie p
auf X X Z, sodass I'p : ¢(X x B,X X Z) — ¢(B,c(X,X x Z)) fiir jeden topologischen Raum B
bijektiv ist. Sei & die Finaltopologie auf X x Z bzgl. idx x g. Da idx X g stetig ist bzgl. p, folgt
p C &. Zu zeigen bleibt £ C p, also die Stetigkeit von idyxz : (X X Z,p) — (X X Z,&).

Nun sind die nach (e) bijektiven Abbildungen I'p : ¢(X x B,X x Z) — ¢(B,c(X,X X Z))
natiirlich nicht nur auf ¢(X x B,X x Z) definiert, sondern auf ganz (X x Z)X*8 (fiir jeden to-
pologischen Raum B). Es reicht also zu zeigen, dass I'z(idxxz) stetig ist. Dafiir wiederum
geniigt es, die Stetigkeit von / :=I'z(idxxz) o g zu zeigen (denn g ist eine Quotientenabbil-
dung). Fiir die Bijektion I'y : ¢(X X Y, X X Z) — c(Y,c(X,X x Z)) gilt aber h = I'y (idx x g).

(g)+T, = (a): Vorweg ein paar Bezeichnungen und Bemerkungen (nur fiir diesen Beweis).
Fiir einen Filter ¢ auf X und P € ¢ sei P:={Q € ¢ | Q C P}. Setze

Xo:=oU{p} und 7p:=P(9)U{ACXy|@EA und IPE€ ¢ mit PCA}.

Ist @ ein freier Filter auf X (also ¢ = @), so ist (Xyp, Tp) ein To-Raum.
Beweis dazu: Sei P € ¢ und ¢ € X, gegeben. Sei p € P. Wegen ¢ = & gibtesein Q € ¢
mit p & Q. Fiir R:=PNQ € @ gilt RU{p} =1A € 7y, p €A, {P} € Tpund {P} NA = 2.
(X, 7) ist ein T3-Raum. | Beweis dazu: Wire er nicht T3, so gibe es ein xo € X und U € x.o T,

so dass VV € xp N7 gilt V\ U # @. Setze % :={V € xy Nt |V C U}. Fiir jedes V € % gibt
es nun einen freien Ultrafilter ¢y auf X mit

()V ey und (2) @y konvergiert gegen einen Punkt aus V\U
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Beweis dazu: Seix € V\U und ¢, :={PC X |3IW €xNt3F endlich CX mit (WNV)\
F C P}. Offenbarist V = (X NV)\ @ € ¢},. Fir W e x Nt gilt (WNV)\ @ C W, also W € ¢},

und folglich ¢{, — x. AuBerdem ist N @}, C N.ex[(XNV)\{z}] =@.FirW € XNTitWNV £
& und offen. Wire W NV endlich, so auch abgeschlossen (T;-Raum!) und demzufolge auch
W' =W\ (WnNV) offen mit x € W’. Allerdings wire nun W' NV = & im Widerspruch zu
x € V. Also ist @], ein freier Filter. Sei nun @y ein beliebiger Ultrafilter mit ¢, C @y .

Wir setzen nun:
1. Y :=Uyey X, x{V}und jy : Xg, =Y, a— (a,V)
2. 0:={0CY|VV e istj,' (0) €1y}

(Y, o) ist also die topologische Summe der (Xg,,Tp,), V € % (und damit auch T;). Auf ¥
definieren wir durch

(a,V)=(d,V) oder

(a,V)~ (d, V) & ,
a= @y und a’ = @y

eine Aquivalenzrelation und betrachten den Quotientenraum Y.. mit der Topologie 0. := {0 C
Y. | g '(0) € 6}, wobei g : Y — Y. die natiirlich Projektion y + [y] ist. Wir zeigen nun
idy x q:X xY — X x Y. ist keine Quotientenabbildung, im Widerspruch dazu, dass g: Y — Y.
eine ist (beachte auch Y. ist T5). Hierzu setzen wir

B:= [(X\U)X{(fpv,V)IVE%}]U[U{I_’X{(P,V)}IVEOZ/,PEW}

Bistin X x Y abgeschlossen. Beweis dazu: Sei (z,a,V) € (X xY)\ B.

1. Fall @ = @y. Dann ist z € X \ U, also z € U. Da @y gegen ein Element aus V \ U
konvergiert und da (X, 7) ein T-Raum ist, konvergiert @y nicht gegen z. Da ¢y ein
Ultrafilter ist, gibt es folglich ein O € zN7 und QecoymitOCUund ONQ =. Es
folgt

(z,a,V) €O x (Ax{V}) C (X xY)\B,

wobei A := QU { @y} offen in X, ist und demzufolge O x (A x {V'}) offen in X x Y ist.
2. Fall a = Py € @y. Dann ist z & Py. Fiir O := X \ Py ist O x {(Py,V)} offen in X x Y
mit (z,a,V) € O x {(Py,V)} C (X xY)\B.

C:= (idx x q)(B) istin X x Y., nicht abgeschlossen. Beweis dazu: Es ist (xo,q(¢@u,U)) € (X X
Y)\ C. Sei W x L eine offene Basisumgebung von (xp,q(¢y,U)) bzgl. der Produkttopologie.
Dann ist ¢~ ! (L) offen in ¥ mit {(¢y,V) |V € %} C g~ (L). Folglich gibt es gewisse Py € @y
mit Uyeqr (Fy U{gv}) x {V} C g~ (1). Da

(Wx[u @u{wpx{V}])mB%@

vVew
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ist auch (W x ¢~ '(L))NB # @, also

@ # (idx x q)(W x g~ ' (L)) NB) € W x q(q™'(L)) N (idx x q)(B)

J (.

CWxL =C

und folglich (W x L) NC # @. Dann kann C nicht abgeschlossen sein.

Wegen (idy x q)~!(C) = B (diese Gleichung ist offensichtlich) kann idx x ¢ keine Quotien-
tenabbildung sein - Widerspruch und (X, 7) ist daher doch Ts.

(X, 7) ist stark lokal kompakt. | Beweis dazu: Wire xy € X ein Punkt, an dem X nicht stark

lokal kompakt ist, so wire fiir alle V € xo NT der Abschluss V nicht kompakt (beachte, dass

(X,7) als T3 erkannt ist). Das heif}t, fiir alle V € x.o N7 gibt es einen Ultrafilter ¢y auf X mit
V € @y und @y konvergiert iiberhaupt nicht in X (beachte, dass @y frei ist).
Wir setzen analog zur obigen Konstruktion

l.Y:=U Xoy x{V}und jy : Xp, =Y, a (a,V)

Ve xoNT
2. 0:={0CY|VVeistj,'(0)€ 1y}

3. Y. mit entsprechender Quotiententopologie
4. B:=U{Px{(PV)} |V €xoNT, P € @y}

Bistin X x Y abgeschlossen: Beweis dazu: Sei (z,a,V) € (X xY)\B.

1. Falla = @y. Da @y nicht gegen z konvergiert und @y ein Ultrafilter ist, gibtes O € znt
und Q € @y mit ONQ = & (also auch ONQ = ©). Es folgt (z,a,V) € O x (Ax {V}) C
(X xY)\ B, wobei A :=QU{oy}.

2. Fall a = Py € @y geht genauso wie beim Nachweis von Tjs.

A := (idx % q)(B) ist in X x Y. nicht abgeschlossen. Beweis dazu: Sei W x L eine offene
Basisumgebung von (xo,q(¢x, X)) bzgl. der Produkttopologie (beachte (xo,g(@x,X)) € (X X

Y.)\A). Dannist g~ (L) offen in ¥ mit {(¢v,V) |V € xo Nt} C g~'(L). Folglich gibt es Py €
gv mit U, » (B U{gv}) x {V} C g (L). Wire (W x (U, (FU{gv}) x {V}]) 0
B = @, so wire auch WN Py = @, fiiralle V € x.o Nt. Sei Wy € x.() Nt mit Wy € W. Wegen
W N Py, = @ folgt WN Py, = @, also WoN Py, = & im Widerspruch zu Wo, Py, € @w,.
Also (W x Uy x-om(f’v U{ey}) x {V}]) NB # @ und wir schlieBen wie schon oben (W x

L)NA # @. Also ist A nicht abgeschlossen. Wegen (idy x q)~'(A) = B (offensichtlich) ist
idx x g im Widerspruch zur Voraussetzung keine Quotientenabbildung. Also ist (X, 7) stark
lokal kompakt.
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9.2.2 Bemerkung

Ist (X, 7) nicht stark lokal kompakt, aber trotzdem T, (siehe [46] oder betrachte einfach un-
endlich dimensionale Topologische Vektorrdume), so gibt es einen Raum (Y, o), so dass die
stetige Konvergenz auf ¢(X,Y) nicht durch eine Topologie erzeugt wird. Andernfalls gilt fiir
den Raum X die Eigenschaft (d)+Tj,, also ist er nach Satz 9.2.1 auch stark lokal kompakt. Es
bietet sich also an, allgemeinere Strukturen als topologische Rdume zu untersuchen und die
stetige Konvergenz in diesem Rahmen zu entwickeln:

9.2.3 Definition: Konvergenzstruktur und Konvergenzraum

Sei X eine Menge. Eine Relation ¢ C .% (X ) x X zwischen Filtern auf X und Elementen aus X

nennen wir Konvergenzstruktur. Fiir (¢, x) € g schreiben wir auch ¢ 4, x oder einfach O — x,
wenn iiber g kein Zweifel besteht. Das Paar (X, ¢) nennen wir einen Konvergenzraum.

Als Einfiihrung in die Theorie allgemeiner Konvergenzraume greife man z.B. zu [19],[39] oder
dem klassischen Artikel [17]. Im Folgenden nennen wir grob die wichtigsten Eigenschaften,
denn in obiger allgemeiner Formulierung lésst sich keine befriedigende Theorie entwickeln.

Ein paar zusitzliche Eigenschaften sind z.B.

(K0) VxeX gilt: 3¢ €.Z(X) mit ¢ > x.

(K1) Vxe X gilt: L x

(K2) VxeXVo,ye . Z(X) gilt: (¢ L xund ¢ Cy) impliziert w5 x.

(K3) VxeXV¢p € F(X) gilt: ¢ Lx impliziert ¢Nx-D x.

(K4) VxeXVo,ye . Z(X) gilt: (¢ Lxund v-5x) impliziert ¢Ny -5 x.
(K5) VxeXV¢ e ZF(X) gil: (Yye.Zo(o) gilt w-Lx) impliziert ¢ 2 x.

(K6) Vxe X gilt: 3¢ € Z(X) mit ¢ - x impliziet N{¢p €.Z(X)|¢ >x}Lx

Um z.B. zum Ausdruck zu bringen, dass (X,q) ein Konvergenzraum ist, der (K1) und (K2)
erfiillt, schreiben wir: Sei (X, q) ein (K1)-(K2)-Konvergenzraum. Fiir jedes A C X sei

cly(A):=Au{xeX |d¢ € #(X) mit A< ¢ und ¢ L x}

der g-Abschluss von A und cl, : Z(X) — & (X) der zu g gehdrige Abschlussoperator. Fiir
einen Filter ¢ fithren wir fiir die Menge seiner Konvergenzpunkte folgende Schreibweise ein:

limg :=q(¢) ={xe X |9 % x}.
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9.2.4 Bemerkung zur Notation

Schaut man sich die Artikel und Biicher zur Konvergenztheorie an, so stellt man fest, dass sich
im Gegensatz zur Theorie topologischer Rdume kaum eine einheitliche Notation durchgesetzt
hat. Jeder Autor scheint fiir sich neu festzulegen, was ein Konvergenzraum, Limesraum, etc.
ist. Diesem Umstand folgend habe ich beschlossen, nur einen Begriff zu verwenden (Konver-
genzraum, so wie oben definiert) und in jedem Satz genau jene Voraussetzungen, die notwedig
sind, um die Aussage zu beweisen, aufzuschreiben. Insofern sind viele Aussagen etwas allge-
meiner, als in der tiblichen Literatur.

9.2.5 Definition: Induzierte Konvergenzstruktur und assoziierte Topologie

Ist (X, 7) ein topologischer Raum, so sei ¢; die von 7 induzierte Konvergenzstruktur
gz ={(9,x) € F(X)x X | xNT C ¢}.

Offenbar gilt nun ¢ Sx o [0] I .

Unter der von einer Konvergenzstruktur g auf X assoziierten Topologie 7, verstehen wir
T, ={0CX|V(¢,x)cqgilt: (x€O0 = 0€c9)}.
Es gelten folgende allgemeine Beziehungen:
L. t=14,,) und qCqg,.

2. FirPC X gil: X\Pet, = P=cly(P).
Falls (X,q) ein (K2)-Konvergenzraum ist, gilt auch: P =cl,(P) = X\Pe€ 1,

Beweis: 1. Sei O € 1. Zu zeigen ist V(@,x) € g; gilt: (x€ O = O € ¢). Dies ist of-
fensichtlich. Sei andererseits O € 7(,,). Zu x € O bilden wir ¢ :={P C X [ 3U € X N7 mit

U C P}. Folglich ist (¢,x) € g;. Wegen x € O und O € 7, folgt O € ¢. Also 3U € X N7 mit
x € U C 0. Da x beliebig war, folgt O € 7.

2.Sei X\ P € 7, Falls x € cl,(P) \ P existiertein ¢ € . (X) mit P € @ 2 x, also (¢,x) € ¢
und P € ¢. Wegen x € X \ P folgt wegen (¢,x) € q aber X \ P € ¢ - Widerspruch. Also
x € P. Da P C cly(P) immer gilt, haben wir Gleichheit. Ist (X,q) (K2) und gilt P = cl,(P),
so betrachte (¢,x) € ¢ mit x € X \ P. Sei y € .Zy(¢) beliebig. Wegen (K2) folgt (y,x) € g.
Wegen x & cly(P) folgt P € y, also X \ P € y. Folglich X \ P € .%y(¢) = ¢. Schliesslich
folgt X \ P € 1.
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9.2.6 Lemma

Sei (X, q) ein (K2)-Konvergenzraum. Dann gilt fiir den zu ¢ gehorigen Abschlussoperator:
(@) cly(2) =2,
(b) VAC X istA C cly(A) und

(c) VA,BC X ist cly(AUB) = cly(A) Ucly(B).

Beweis: (a) und (b) sind trivial (und gelten fiir jeden Konvergenzraum). Sei x € cl,(AUB).
Falls x € AUB, dann x € cl,(A) Ucly(B). Sei also ¢ € .Z(X) mit AUB € ¢ und ¢ 2 x. Sei y

ein Ultrafilter mit ¢ C y. Aus (K2) folgt v 4 x.Da y ein Ultrafilter ist, ist A € y oder B € v,
also x € cly(A) Ucly(B). Die Umkehrung: cl,(A) Ucly(B) C cly,(AUB) ist trivial.

9.2.7 Satz
Seicl: Z(X) — Z(X) eine Abbildung mit
(a) cl(9) =2,
(b) VAC X ist A C cl(A) und
(c) VA,BC X istcl(AUB) = cl(A)Ucl(B).
Dann bekommen wir durch
ge ' ={(¢,x) € F(X)x X |VACX gilt: x¢Z cl(X\A) impliziert A € ¢}
eine (K1)-(K2)-(K6)-Konvergenzstruktur auf X. Ferner gilt
L. ¢l )(A) = cl(A) fiir alle A C X und
2. dicl,) =4 fiir jede (K1)-(K2)-(K6)-Konvergenzstruktur g auf X.

Insbesondere haben wir bewiesen: Eine (K1)-(K2)-(K6)-Konvergenzstruktur g wird genau
dann durch eine Topologie induziert, wenn der zugehorige Abschlussoperator idempotent
ist (das bedeutet: cl,(cly(A)) = cly(A) fiir alle A C X).

Beweis: (K1), (K2) und (K6) priift man fiir g.; schnell nach. Zeigen wir 1. Es ist

cliy)(A) =AU{x€X |39 € F(X) mit Ac ¢ und ¢ X3 x}.

el

Sei x € ¢l )(A). O.B.d.A. 3¢ € F(X) mit A € ¢ und ¢ 4 x. Falls x ¢ cl(A), dann folgt
X\ A € ¢ (denn (¢,x) € g.) - Widerspruch.
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Sei andernfalls x € cl(A). Setze B :={BC X |x & cl(X \B)}. Fir By,...,B, € B ist
n n
xQUch\Bk ) =cl( UX\Bk (X\ ([ Bk
k=1 k=1

also B1N...NB, € B. AuBerdem gilt fir B € f: ANB # &, denn andernfalls ist A C X \ B
und somit x € c/(A) C cl(A)Ucl(X\B) =cl(AU(X \B)) = cl(X \ B) - Widerspruch. Sei dann
¢ ein Filter auf X mit {A} U C ¢. Also (9,x) € g, und wegen A € ¢ istx € cliy \(A).

2.Bsist g(q,) ={(¢,x) € F(X) xX |VACX gilt: x¢&cly(X\A) impliziert A € ¢}

Sei (¢,x) € g. Sei A C X mit x & cly(X \ A). Sei ® ein Ultrafilter mit ¢ C P. Offenbar gilt
(®,x) € g. Aus der Definition von cl (X \ A) folgt fiir alle y € .7 (X):

X\A¢y oder (y,x)¢gq.

Also X\ A ¢ ® und damit A € ®. Wegen ¢ = pe 7,(9) P folgt A € ¢, also (¢,x) € g(c,).-

Sei andernfalls (¢,x) € q(.,). Setze y :=({p € F(X) | (p,x) € ¢} (sinnvoll!). Dann gilt
(y,x) € q. Wir zeigen y C ¢, dann folgt ndmlich (¢,x) € ¢. Sei A € y. Nehmen wir einmal
an, dass x € cly(X \ A) ist. Wir unterscheiden dann zwei Fille:

Fall 1: x € X\ A, dann ist aber A € y C %. Offensichtlich ist dies ein Widerspruch.
Fall 2: 3y’ € % (X) mit (y',x) €qund X \A € y/, dann ist A € y C y’' - Widerspruch.

Also x ¢ clg(X \ A). Aus (¢,x) € q(,) folgt nun A € ¢. Die letzte Behauptung tiber die to-
pologische Induktion der Konvergenzstruktur folgt aus wohl bekannten Fakten iiber die Ku-
ratowskischen Hiillenaxiome (siche z.B. [16]) und der Gleichung g; = q.;., wobei cl; der
Abschlussopearator bzgl. 7 ist.

9.2.8 Definition und Lemma: (K6*)-Konvergenzraum

Wir nennen (X, g) einen (K6*)-Konvergenzraum, wenn
o ={PCX| EIOE;COTq mit O C P} L x firalle x e X gilt.

Ist (X,q) ein (K2)-(K6*)-Konvergenzraum, so gilt cl,(cl,(A)) = cl,(A) fiir alle A C X.
AuBerdem gilt (K6*) = (K6) und (K2)+(K6 *) = (K1).

Als Korollar erhalten wir: Ein Konvergenzraum (X, ¢q) wird genau dann durch eine To-
pologie T erzeugt (also ¢ = ¢g;), wenn ¢ eine (K2)-(K6*)-Konvergenzstruktur ist, denn
die durch die Topologie erzeugte Konvergenzstruktur, stimmt offenbar mit der durch den
Abschlussoperator erzeugten iiberein (und dann Satz 9.2.7 verwenden).

Beweis: (K2)+(K6*) implizieren unmittelbar d(r,) €4 DagC 4(z,) immer gilt, folgt d(z,) =94
Folglich ist cl; der Abschlussoperator im Sinne einer Topologie und damit idempotent.
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9.2.9 Definition (noch mehr Eigenschaften allgemeiner Konvergenzraume)

[25] folgend sei fiir eine Menge J, einen Filter ¢ auf J und eine Abbildung f : J — Z#(X)

kfo:=J /()

Feo jeFr

Zeigen wir, dass K f@ ein Filter auf X ist:

1. o ¢ kfeistklar. 2. Seien A,B € kf@, also A € Njcp, f(7), B € Njep, f(J). Also A,B €
Njernp f(J). Es folgt ANB € N jepnp, f(J) und somit ANB € kf@. 3.Sei A € kfp,AC
B CX.Also A €\er f(j) und folglich B € N ;cr f(j), also B € kf¢.

Mit diesem Operator kdnnen wir ein paar weitere Eigenschaften formulieren.

K7) VfeZX)X[(VxeX: fx) 1x) = Voe Z(X)VxeX (¢ Lx = xfop L x)]
(K8) Vf e Zo(X)X[(VxeX: f(x) Lx) = Voe F(X)VxeX (9L x = Kfo - x)
(K9) VJ: Menge Vf e .Z(X)VgeXx’

(Vjed: f()) L g(i) = Vo e FU)VxeX (gp) L x = kfpx)
(K10) VJ: Menge V f € Zy(X) Vg€ X’

(Vjed: ()L e()) = Vo e FU)VxeX (gp) L x = kfpx)

9.2.10 Lemma
1. Offenbar gilt (daher ohne Beweis): (K9) = (K7) = (K8) und (K10) = (K8)

2. Se1 (X,q) ein (K1)-(K7) oder ein (K1)-(K2)-(K8)-Konvergenzraum. Dann gilt
cly(cly(A)) = cly(A) fiir jedes A C X.

)e

(X

3. Sei (X,q
Dann ist

ein (K1)-(K9) oder ein (K1)-(K2)-(K10)-Konvergenzraum.
,q) ein (K6)-Konvergenzraum.

Beweis: 2. Zu zeigen ist lediglich ¢/, (cl,(A)) C cly(A). Wir fiihren den Nachweis fiir ein (K1)-
(K2)-(K8)-Konvergenzraum (fiir (K1)-(K7) geht es analog). Sei x € cl,(cl,(A)). Wihle dann

ein ¢ € Fo(X) mit cly(A) € ¢ 4, x. Fiir jedes y € cly(A) sei ¢y € Fo(X) mitA € ¢y 2, y. Wir
definieren nun
¢y, falls y € cly(A)

:X — Z%p(X) durch
/ o(X) f0) = {éy andernfalls, wobei &, € %((X) beliebig mit &, 4y
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Nach Voraussetzung gilt K f¢ > x. Fiir B := cly(A) € ¢ folgt

AeNrymc U Nry) =«rfe,

yeB FegyeF
also x € cly(A) (wegen Kf¢ 2 xund A € Kf9).

3. Sei x € X. Zu zeigen ist V{9 € .Z(X) | ¢ - x} % x. Wir fithren den Beweis fiir den
(K2)-(K10) Konvergenzraum (der andere Fall geht analog). Sei J := {¢ € .Z(X) | ¢ 4, x} und
f:J— %y(X), ¢ — ¢,sowie g:J — X, j— xund schlieBlich ¢ := {J}. Alle Voraussetzungen

(fiir (K10)) sind erfiillt und wir erhalten kK f¢ 4 x Wegen (K2) und weil jeder Filter gleich
dem Durchschnitt seiner Oberultrafilter ist, ist der Durchschnitt aller gegen x konvergierenden

Filter gleich dem Durchschnitt aller gegen x konvergierenden Ultrafilter und das ist hier gerade
Kf @, ist alles gezeigt.

9.2.11 Definition: Trennungsaxiome

Sei (X, q) ein Konvergenzraum.

(TO) (X,q) heiBt Tp-Raum genau dann, wenn Vx,y € X gilt: X2, y und v x impliziert x = y.

(T1) (X,q) heiit T{-Raum genau dann, wenn Vx € X gilt: \limq;c | <1.
(T2) (X,q) heiit To-Raum genau dann, wenn V¢ € .% (X) gilt: |lim, ¢| < 1.
(T2)* (X,q) heiBt T5-Raum genau dann, wenn V¢ € .Zy(X) gilt: |lim, ¢| < 1.
(

(T3) (X,q) heiBt T3-Raum genau dann, wenn V¢ € .# (X) gilt: lim, ¢ = lim, cly(¢9)
Hier und im Folgenden bezeichnet cly(¢) := {Q C X | 3P € ¢ mit cly(P) C O}.

(T4) (X,q) heiit T4-Raum genau dann, wenn (X, 7,) ein T4-Raum ist.

Man beachte, dass sich im Fall topologischer Riume diese Definition mit der gwohnlichen
Definition der Trennungsaxiome (siche Anhang) deckt.

9.2.12 Bemerkung (siehe Definition 9.2.5)

Statt c/,(¢) kann man nun auch folgenden Filter betrachten:
cle,(¢) :={QCX[IP€ ¢ mit PCQ und X\P € 7}
Darauf aufbauend haben wir folgende Alternativ-Definition fiir T3:

(X,q) heiBit T3;-Raum genau dann, wenn V¢ € 7 (X) gilt: lim¢ = limcl (9).
q q

Es gelten folgende Beziehungen:
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1. Jeder T3,-(K2)-Konvergenzraum ist auch Ts.
Beweis: Folgt aus cl;, (¢) C cly(¢). Siehe dazu Definition 9.2.5.

2. Jeder T3-(K2)-Konvergenzraum mit idempotenten Abschlussoperator c/, ist auch Ts;.
Beweis: Folgt aus cl; (¢) = cl;(¢). Siehe wieder Definition 9.2.5.

9.2.13 Definition: Eine Art Umkehrung von (K9) und (K10)
(K9*) VJ: Menge Vf € .Z(X)/ Vge X’
(Vjed: f(j) > e()) = Yo e F(U)VxeX (kfo S x = g(@) = x)]
(K10%) VJ: Menge V f € Fy(X) Vg € X’
(Vjed: f(j) > e()) = Yo e F(U)VxeX (Kfp5x= g(@) = x)]
(K9*) impliziert natiirlich (K10%).

9.2.14 Lemma

1. Sei (X,q) ein (K2)-T3-Konvergenzraum. Dann ist (X,g) auch ein
(K9*)-Konvergenzraum.

2. Sei (X, q) ein (K1)-(K2)-(K10*)-Konvergenzraum, dann ist (X, q) auch Ts.

Beweis: 1. Sei f:J — Z(X), g:J — X mit £(j) > g(j) (Vj € J) und sei ¢ € .F(J) mit
Kfo -5 x. Zu zeigen ist g(@) -5 x. Es reicht cly(kfp) C g(@) zu zeigen. Sei A € kf @, also
A € Njer f(j) fur ein gewisses F' € ¢. Wegen A € f(j) 4, ¢(j) fiir alle j € F folgt g(F) C
cly(A) und insgesamt somit cl,(kf@) C g(@).

2.Sei ¢ € .Z(X) und ¢ 5 x. Zu zeigen ist cly(9) 2, x. Fiir jedes A € ¢ sei
Fr={(€,2) e Zo(X)xX|Ac& und &L 7).
Setze weiter J := Uxgep Fa = qN (Fo(X) X X). Wegen @ # Fanp C F4 N Fp ist (beachte: a €
A = (a,a) € Fy)
p:={/CJ|JAc¢ mit F, CJ'}
ein Filter auf J. Wir definieren nun g : J — X durch (&,z) — zund f : J — %y(X) durch
(&,7) — &. Offenbar gilt dann:

(1) f(j) = g()) firalle j € J,
(2) g(9) = cly(¢) (denn g(Fy) = cly(A)) und
(3) ¢ C kf¢@ (denn A € ¢ impliziert offenbar A € Njcp, f(j) C Kf Q).

Folglich gilt kf¢ % x, also cly(9) =g(o) 2 x.
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9.2.15 Definition: Dichte und extrem dichte Teilmengen

Sei (X,q) ein Konvergenzraum. Wir nennen A C X dicht (in X), falls c/,(A) = X gilt. Wir
nennen einen Filter ¢ € .% (X) a-uniform (fiir eine Kardinalzahl ), falls |P| > o fur alle P € ¢

gilt (fiir = |X| einfach uniform). Wir definieren fiir jede Kardianlzahl « den a-Abschluss
cly : Z(X) — Z(X) durch

cli(A):=AU{xe€X|3¢ € F(X): a-uniform, mit ¢ 2, x und A € ¢}.

Wir nennen A a-dicht (in X), falls c/ff(A) = X. Im Fall o = |A| sprechen wir von extrem
dicht."!

9.2.16 Lemma

Sei (X,q) ein T,-(K2)-Konvergenzraum und D C X. Gilt ¢/ (D) = X, so folgt |X| <
| Fo(D))|.
Dass diese Grenze angenommen werden kann, zeigt Satz 9.6.2.

Beweis: Fiir x € X sei ¢, ein Filter auf X mit D € ¢, und ¢ -5 x. Sei ¢orp:={PND|Pe€ ¢}
Sei y, p ein Ultrafilter auf D mit ¢, p C y, p. Setze @, p:={P CX |3IQ € y, p mit Q C P}.

Wegen ¢, p C &, p gilt auch &, p 4, x. Definiere nun f:X — %y(D) durch x— yyp.
Offenbar ist f injektiv, denn Yy, p = Y, p impliziert ®,, p = &y, p. Aus P, p 4, x1 und
®,, p 4 x folgt dann x| = x, (wegen T»). Also ist | X | < |Fo(D)|.

9.2.17 Definition: Stetige Abbildungen

Sind (X,q), (Y,r) zwei Konvergenzridume und f : X — Y eine Abbildung, so nennen wir f
stetig in x € X (bzgl. (X,q) und (Y,r)), falls fiir alle Filter y auf X gilt:

vLx  impliziert f(w) 5 f(x).

Wir nennen f stetig auf X (bzw. einfach: stetig), falls f fiir jedes x € X stetig ist.

9.2.18 Lemma

Sei (X,q) ein (K2)-Konvergenzraum, (Y,r) ein T;-Konvergenzraum, f,g : X — Y stetig,
D C X mit f|D = g|D. Dann gilt f|cl,(D) = g|cly(D).

""Im Zusammenhang mit dem Fortsetzungsproblem (siehe 9.5.1), ist das Konzept dichter Teilmengen natiirlich
fundamental. Extrem dichte Mengen interessieren uns hier nicht weiter. Eine interessante Anwendung dieses
Konzeptes, zur Kldrung der Frage wieviel Ultrafilter auf einer Menge existieren, findet sich im Anhang.
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Beweis: Sei x € cl,(D)\ D und y' € .Z(X) mit y' % xund D € y'. Sei y € Fo(w). Es folgt
v -5 x und somit ¢; := f(y) 5 f(x) und ¢ := g(W) > g(x). Wire f(x) # g(x), so wiire
01 # ¢, es gibe also Py € @1, P, € ¢ mit PN P, = &. Seien Q,0, € y mit f(Q;) C P, und
8(02) CP.Seide Q1NO,ND € y, alsoist f(d) = g(d) und f(d) € P, bzw. g(d) € P,.

9.2.19 Lemma
1. Seien (X,q), (Y,r) Konvergenzraume und f : X — Y stetig. Dann gilt

flcly(A)) Ccl(f(A)) furalle ACX.

2. Sei (X,q) ein (K2)-Konvergenzraum, (Y,r) ein (K2)-(K6)-Konvergenzraum und f
eine Abbildung mit

flcly(A)) Ccl(f(A)) furalle ACX.

Dann ist f stetig.

3. Sei (X,q) ein (K2) und (Y,r) ein (K5)-Konvergenzraum. In diesem Fall ist eine
Abbildung f : X — Y genau dann stetig, wenn f(¢) — f(x) fiir jedes x € X und
jeden Ultrafilter ¢ auf X mit ¢ 4 gilt.

Beweis: 1. Sei x € cl,(A) \ A. Zeigen wir f(x) € cl,(f(A)). Nun Iy € F(X) mitA € y 5 x.
Dann ist ¢ := f(y) € Z(Y) mit f(A) € ¢ = f(y) = f(x). Also f(x) € cl,(f(A)).

2. Sei ¥ L x. Zu zeigen ist f(y) = f(x). Sei ¢ ein Ultrafilter mit f(y) C ¢ und sei y
ein Ultrafilter mit y C yo und f(yo) = ¢ (Lemma 3.2.5). Wegen (K2) gilt x € cl,(A) fiir
alle A € y. Folglich f(x) € cl,(f(A)) fiir alle A € yy. Das heiit VA € w3 ¢4 € .Z(Y) mit
f(A) € ¢a und ¢4 = f(x). Wegen (K6) folgt ¢’ := {§ € F(¥) | £ = f(x)} = f(x). Fiir
P € ¢’ gilt daher P € ¢, fiir jedes A € yy. Also PN f(A) # & fiir jedes A € yp. Das bedeutet
aber P € f(y), denn f() ist ein Ultrafilter. Wegen f(yp) = ¢ gilt ¢’ C ¢, also ¢ - f(x)
(K2). Wegen (K6) gilt daher auch f(y) - f(x).

3. Zeigen wir, dass f unter dieser Voraussetzung stetig ist. Sei ¢ € % (X) mit ¢ 4, x. Sei
v € Zo(f(@)). Nach Lemma 3.2.5 existiert ein ¢ € F(¢@) mit f( ) = y. Es folgt v =
(@) 5 f(x). Da w € Fo(f(@)) beliebig gewihlt wurde, folgt f(¢) = f(x).

9.2.20 Definition: Grobere und feinere Konvergenzstrukturen

Seien g, r zwei Konvergenzstrukturen auf X. Wir sagen ¢ ist feiner als r bzw. r ist grober als
q, falls g C r. Motiviert wird diese Definition durch die von Topologien induzierten Konver-
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genzstrukturen, denn es gilt fiir zwei beliebige Topologien 7, ¢ auf X:

cCT & ¢q:C¢qo

9.2.21 Definition: Initialkonvergenzstruktur

Seien (X;, q;)ic; Konvergenzriaume, X eine Menge und f; : X — X, i € I entsprechende Abbil-
dungen. Wir setzen

a:={(w,x) € Z(X)x X | Viel gilt fi(y) > fi(x)}.
Fiir ¢ (die Initialkonvergenzstruktur bzgl. (X;,¢;)ic; und f; : X — X;, i € ) gilt:

1. Fiir einen Konvergenzraum (Y, r) ist eine Abbildung f : Y — X genau dann stetig, wenn
fio f fiir jedes i € I stetig ist.

Y*f>X

N

Xi
Durch diese universelle Eigenschaft ist g bereits vollstindig charakterisiert.

2. g ist die grobste Konvergenzstruktur auf X, so dass die Abbildungen f; stetig sind.

9.2.22 Definition: Produktkonvergenzstruktur

Seien (X;,q;)ic; Konvergenzraume, X := [];c; X; und p; die entsprechenden Projektionen. Die
Initialkonvergenzstruktur g auf X bzgl. (X;,q;)ic; und p; : X — X;, i € I nennen wir Produkt-
konvergenzstruktur auf X.

9.2.23 Definition: Kompakt
(X,q) ist kompakt, falls lim, ¢ # @ fiir alle ¢ € .%((X) gilt (alle Ultrafilter konvergieren).

9.2.24 Lemma

Seien (X, q), (Y,r) Konvergenzraume, f : X — Y stetig und surjektiv und (X, q) kompakt.
Dann ist auch (Y, r) kompakt.

Beweis: Sei ¢ ein Ultrafilter auf ¥ und v := {Q C X | 3P € ¢ mit f~!(P) C Q}. Offenbar ist
f(w) C ¢. Sei dann yp in Ultrafilter auf X mit y C yp und f(yp) = ¢ (Lemma 3.2.5). Nun

Jx € lim,(yp) und aus der Stetigkeit von f folgt ¢ = (o) — f(x). Jeder Ultrafilter auf ¥
konvergiert - folglich ist (¥, r) kompakt.
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9.2.25 Satz

Seien (Xj,q;)ic; Konvergenzraume, X := [[;c; X;, pi die entsprechenden Projektionen und
q die Produktkonvergenzstruktur auf X. Dann gilt:

(X,q) ist genau dann kompakt, wenn alle (X;,q;), i € I kompakt sind.

Beweis: Ist (X, g) kompakt, so folgt aus der Stetigkeit der Projektionen p; (mit Lemma 9.2.24),
dass auch (X;,q;) kompakt ist.

Seien andererseits alle (X;,q;), i € [ kompakt. Sei y ein Ultrafilter auf X. Dann ist p;(y)
ein Ultrafilter in X; (fiir jedes i € I ). Dort gilt p;(y) 4, x; fiir ein x; € X;. Setze x 1= (xi)icr. Per
Definition (der Produktkonvergenzstruktur) folgt v 4 x.

9.2.26 Definition: Teilraumkonvergenzstruktur

Sei (X,q) ein Konvergenzraum und Z C X. Die Initialkonvergenzstruktur gz auf Z bzgl. der
Abbildung i : Z — X, 7 — z bezeichnen wir als Teilraumkonvergenzstruktur. Offenbar ist

az=1{(9.2) € F(Z) x Z|i(9) 2} ={(W|Z.2) | (y.,z) €q mit zEZ € y}.

9.2.27 Definition: Finalkonvergenzstruktur

Seien (X;, q;)ic; Konvergenzraume, X eine Menge und f; : X; — X, i € I entsprechende Abbil-
dungen. Wir setzen

q = {(fi(yi), fi(x;)) | i €1 und (y;,x;) € g:}.
Fiir ¢ (die Finalkonvergenzstruktur bzgl. (X;,q;)ic; und f;: X — X;, i € 1) gilt:

1. Fiir einen Konvergenzraum (Y, r) ist eine Abbildung f : X — Y genau dann stetig, wenn
fo fifiir jedes i € I stetig ist.

X, Ji x

N
Y
Durch diese universelle Eigenschaft ist g bereits vollstandig charakterisiert.

2. q ist die feinste Konvergenzstruktur auf X, so dass die Abbildungen f; stetig sind.

9.2.28 Definition: Summenkonvergenzstruktur

Unter der Summe der Konvergenzraume (X, g;);cs verstehen wir die Finalkonvergenzstruktur
auf X := J;c; X x {i} bzgl. der Einbettungen f; : X; — X.
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9.3 Die Konvergenzstruktur der stetigen Konvergenz

Der folgende Abschnitt zeigt nun, wie sich die stetige Konvergenz als Konvergenzstruktur
beschreiben lisst.

9.3.1 Definition: Die Konvergenzstruktur der stetigen Konvergenz

Seien (X,q) und (Y, r) Konvergenzriume, ¢ ein Filter auf @ # Z C YX und f: X — Y eine
Abbildung. Wir sagen ¢ konvergiert stetig auf Z gegen f, falls fiir alle Filter y auf X und
alle x € X gilt:

v L x  impliziert ¢ (y) > F(x).
Da aus der Definition nicht f € Z folgt, handelt es sich hier nicht notwendig um eine Konver-
genzstruktur im Sinne von Definition 9.2.3. Vielmehr haben wir eine Relation

;. = 4 ((X,9),(Y,r)) = {(9.f) € F(Z) x Y | ¢ konvergiert stetig gegen [}.
In den meisten Fillen interessiert man sich aber nur fiir Z = Y¥ oder Z = c(X,Y).
e Fiir Z =YX ist ¢Z natiirlich eine Konvergenzstruktur im Sinne von Definition 9.2.3.

e Unter nicht allzu starken, zusitzlichen Voraussetzungen (siehe dazu Lemma 9.4.3) folgt
fiir Z = c(X,Y) aus (¢, f) € ¢ bereits f € Z. Wir haben also auch hier eine Konver-
genzstruktur im Sinne von Definition 9.2.3.

VA
Fiir (9, f) € ¢% schreiben wir wie gewohnt ¢ %5 f.

9.3.2 Satz
1. Sei (X,q) ein beliebiger Konvergenzraum, (Y,r) ein (K2)-Konvergenzraum, & #
VA
ZCYXund ¢,® € .%(Z) mit ¢ q—CZ'>fund ¢ C ®. Dann gilt auch ® % 7.

2. Sei (X,q) ein (K2)-Konvergenzraum und (Y,r) ein (K2)-(K5)-Konvergenzraum.
Dann ist auch (Y%, g.) ein (K2)-(K5)-Konvergenzraum.

Beweis: 1. Sei y -5 x. Es folgt ¢ () - f(x). Wegen ¢ (y) C ®(y) folgt auch @ 5 f(x).
2.Sei & € .Z(YX) und f € YX derart, dass gilt:
Yy e Fo(§) gilt y 5 f

Zu zeigen istnun & %5 f. Seidazux € X und v € .7 (X) mit v 5 x. Zu zeigen ist & (v) 2 f(x).
Dazu reicht es zu zeigen:
Vae Zo(§(v)) gilt a = f(x)
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Fiir einen Ultrafilter o auf ¥ mit & (v) C o gibt es nach lemma 3.2.5 aber Ultrafilter &) auf YX
und v auf X mit & C &y, v C vp und &y(vp) C . Es folgt vy 4, x und wegen 1. & e, f, also
&o(vo) = f(x) und somit auch ot = f(x).

9.3.3 Satz

1. Sei (X,q) ein beliebiger Konvergenzraum, (Y,r) ein (K2)-Konvergenzraum. Dann
ist Q: YX x X — Y stetig (beziiglich ¢, auf Y und der Produktkonvergenzstruktur).

2. Sei (X,q) ein beliebiger Konvergenzraum, (Y,r) ein (K2)-Konvergenzraum und sei
qo eine Konvergenz auf YX derart, dass Q : YX x X — Y stetig ist. Dann gilt g C g.

3. Sei (X, q) ein beliebiger Konvergenzraum, (Y, r) ein (K2)-Konvergenzraum und g :
Z — YX eine Abbildung. Dann gilt:

g iststetig < Qo(gxidy) iststetig

(beziiglich g, auf YX, ¢’ auf Z bzw. Produktkonvergenz auf YX x X).

1. Bezeichne ¢’ die Produktkonvergenzstruktur auf ¥X x X und p; : Y¥ x X — YX bzw.

p2 1 YX x X — X die entsprechenden Projektionen. Sei ® € .Z(Y¥ x X) und ® L (f,x).
Zu zeigen ist Q(®) 5 Q(f,x) = f(x). Wegen pa(®) =: ¥ 5 x und p; (@) =: ¢ % f folgt
O (w) 5 f(x). Zeigen wir ¢ (y) C Q(®P). Sei dazu P € ¢ und Q € y. O.B.d.A. gilt P = p|(P')
und Q = p,(Q') fiir P',Q" € ®. Fiir P := P'N Q' € ® gilt nun offenbar Q(P") C P(Q), also
P(Q) € Q(®).

2. Sei ¢ ein Filter auf YX mit ¢ 22 f. Zu zeigen ist ¢ 25 f. Sei v -% x. Fiir den Produktfilter
®:= ¢ x y gilt ® — (f, x) (bzgl. der Produktkonvergenzstruktur). Folglich Q(®) = Q(f,x) =
f(x). Wegen Q(P) = ¢(y) folgt ¢ () = f(x).

3.7="ist klar. Sei andererseits Qo (g X idy) : Z x X — Y stetig. Sei ¢ ein Filter auf Z mit

¢ L 2. Zu zeigen ist g(¢) 25 g(z). Sei also W -5 x. Zu zeigen bleibt dann noch g(¢)(y) -

8(2)(x). Nun ist g(¢)(y) = Qo (g x idx)(¢ x y) und g(z)(x) = Qo (g x idx)(z,x). Aus der
Stetigkeit von Qo (g X idx) und wegen ¢ x ¥ — (z,x) (bzgl. der Produktkonvergenzstruktur)

folgt Qo (g x idx ) (¢ x ¥) = Qo (g x idy)(z,x).
9.4 Schwach stetige Abbildungen und wieder (S)-Raume

Im Folgenden verallgemeinern wir Definition 9.1.5 auf allgemeine Konvergenzriume. Man
beachte, dass sich beide Definitionen im Fall topologischer Rdume decken.
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9.4.1 Definition: Schwach Stetig
Wir nennen die Abbildung f : (X,q) — (Y,r) schwach stetig, falls Folgendes gilt:

V(p,x) eq Iy e F(Y) mit (y,f(x)) €r und cl(y) C f(@)

Ist (Y,r) ein (K2)-T3-Konvergenzraum, so ist jede schwach stetige Abbildung nach Y stetig.

9.4.2 Definition: strenger Teilraum

Sei (X, q) ein Konvergenzraum. Wir nennen [18] folgend D C X einen strengen Teilraum, falls

clyD)=X und V(¢,x) g3 ec.F(X) mit & L x,Deé& und cly(&) Co.

9.4.3 Lemma

1. Sei (Y,r) beliebig, (X,q) ein (K1)-Konvergenzraum, f : X — Y eine Abbildung, ¢
ein Filter auf Z C Y¥, der stetig gegen f konvergiert. Dann ist f schwach stetig.

2. Seien (X,q), (Y,r) Konvergenzriume, D ein strenger Teilraum von X, g: D — Y
eine Abbildung derart, dass fiir jedes x € X eine stetige Abbildung f,: DU{x} —Y
existiert, mit fy|D = g. Dannist f : X — Y, f(x) := fi(x) schwach stetig.

3. Sei (X,q) ein (K1)-(K7)-Konvergenzraum, (Y, r) beliebig, f : D C X — Y eine ste-
tige Abbildung mit c/,(D) = X und der Eigenschaft:

VxeX3dy,€eYVoe Z(X): [([De @ und ¢ ix) = f(o|D) Sy (%)
Dannist fy: X — Y, fo(x) =y, schwach stetig.

Korollar in allen Fillen: Ist (Y, r) zusitzlich (K2) und T3, so ist f bzw. fj stetig.

Beweis: 1. Sei ¢ -5 x. In jedem Fall gilt ¢ (@) — f(x). Zeigen wir c,(¢(9)) C f (). Falls dem
nicht so ist, so AP € ¢, Q0 € ¢ mit f(Q) Z cl,(P(Q)). Sei dann v € Q mit f(v) & cl.(P(Q)).

(v
Nun gilt v-% v, also ¢(§) L £(v). Aus f(v) ¢cl (P(Q)) folgt aber P(Q) & (\./) Widerspruch!

2. Sei @ ein Filter auf X mit ¢ 4, x. Nach Voraussetzung an D gibt es einen Filter £ auf X
mit &€ L x, D € € und cly(&) C . Dann gilt auch §|(DU {x}) — x (im Teilraum) und somit
V= f(E|(DU{x})) 5 fi(x) = f(x). Zeigen wir cl(w) C f(@). Zu R € cl,.(y) gibt es ein
P e & mitcly(fo(PN(DU{x}))) CR.Esist Q:=cly,(PND) € ¢.

Angenommen es gibt ein z € @\ (PN D) mit f(z) € R. Da z € cl,(PND) gibt es einen
Filter n mit PND € 1 und 1 - z. Folglich gilt £:(n|(DU{z})) = f.(z) = f(z). Wegen
f(2) & cly(fe(PN(DU{x}))) ist fu(PN(DU{x})) & f2(n[(DU{z})).
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1.Fall z € D impliziert PND € n|(DU{z}) und f,(PND) = g(PND) C fy(PN(DU{x})).
Also doch f (PN (DU{x})) € f:(n|(DU{z})), was ein Widerspruch ist.

2.Fall z € D impliziert nun f;((PND)N(DU{z})) C fi(PN(DU{x})), wegen fi(z) = f:(z).
Also auch in diesem Fall f,(PN(DU{x})) € f:(n|(DU{z})), was ein Widerspruch ist.

3. Wegen cl,(D) = X, gibt es zu jedem x € X ein g(x) € .#(X) m1t D € g(x) % x, also ein
g:X — F(X). Sei nun x € X fest gewihlt und @ € .Z(X) mit ¢ - x. Da (X,q) ein (K7)-

Konvergenzraum ist, folgt kg@ -5 x. Aus (x), der Definition von f und der Stetigkeit von f
folgt schlieBlich f(kg@|D) = fo(x). Nun ist aber

f(xgolD)=f(lJ N s@)IP) S | () fls(z)D)

FEQzeF FezeF

Bs reicht cl (Ureg Ner F(8(2)D)) C fo(9) 2 eigen. Sei 4 € UpcolMer F(5(2)ID). also
A € N,er f(g(2)|D) fur ein gewisses F € ¢. Da g(z) 2, 2, folgt f(g(2)|D) = folz) fiir alle
z€ F,also fy(F) Ccl(A).

9.4.4 Bemerkung

Auch hier lisst sich leicht zeigen, dass es zu einem (nicht T3)-(K1)-Konvergenzraum (Y, q)
eine schwach stetige Abbildung nach Y gibt, die nicht stetig ist. Sei (Y, ¢) nicht T3, d.h. es gibt
ein (y,y) € g mit (cly(y),y) € q. Wir definieren nun » C % (Y) x Y durch

z€Y und ¢ =2z oder
c=y und ely(y) C 9

(0,2) er & {

Dann ist idy : (Y,r) — (Y,q) schwach stetig, aber nicht stetig!
Analog zu Definition 9.1.9 kdnnte man nun weiter definieren:

9.4.5 Definition

(Y,r) heiBt (S*) Konvergenzraum, falls fiir jedes @ # Z C Y, fiir jeden (K1) Konvergenz-
raum (X, q), jeden Filter ¢ auf Z und jede Abbildung f: X — Y gilt:

k iert steti . . i i
( ¢ TEE e o ) impliziert  (f ist stetig)

(Y, r) heiBt (S)-Konvergenzraum, falls fiir jeden (K1)-Konvergenzraum (X, q) und fiir jeden
Filter ¢ auf YX mit ¢(X,Y) € ¢ und jede Abbildung f: X — Y gilt:

k iert steti . ‘o i i
(‘P OIVEIEIET SIS 4 ) impliziert  (f ist stetig)

Unmittelbar aus der Definition, bzw. mit Lemma 9.4.3 folgt: T3 + (K2) = (§8*) = (S).
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9.4.6 Satz
1. Ist (Y, r) ein (K1)-(S)-Konvergenzraum, so gilt fiir alle yp,y; €Y :
Yo y1 impliziert (yo N y1 = yo und yi = yo).
2. Jeder (K1)-(K2)-Ty-(S)-Konvergenzraum (Y, r) ist T».

3. Sei (Y,ri)icsr eine Familie von (S)-Konvergenzriumen (bzw. (S%)-
Konvergenzrdumen) und (f; : ¥ — Yi)ic; eine Familie von Abbildungen. Dann
ist (Y,r) ein (S)-Konvergenzraum (bzw. (S*)-Konvergenzraum), wobei r die
Initialkonvergenzstruktur ist.

4. Die Eigenschaft (S) ist summentreu (analog mit (S*)).

Beweis: 1. Annahme es gibt yg,y; € Y mit y.OL y1 und (y.17r4> yo oder y.() N y.l 7 y0). Sei X 1=
Y U{/}, wobei £ €Y (also z.B. £ =Y)und g := {(¢,x) € .F(X) x X | |Y 5 x oder x = ¢}.
yo fur x € {yo, ¢}
y1  fiir x¢& {yo, £}

Der Filter ¢ :=f konvergiert nun stetig gegen g, denn @ 5 x impliziert ¢(@) = f(¢) =y

Wir betrachten die Abbildungen f,g:X — Y, f(x) := yo und g(x) :=

g(x), aber g ist nicht stetig, denn V15 ¢ und yo N Y] 5 ¢, aber [g(y.l) :y.17r4> yo = g(¥¢) oder
g0 Ny1) =yo N1 A yo = g(0)].

2. Angenommen (Y, r) ist nicht T5. Sei & ein Filter mit & 5 y;, & 5 y, mit y; # y,. Fiir Q €
Eist O\ {y1,y2} # @ (andernfalls ist O C {y;,y>}; dann aber & QE fiir z = y; oder z = y»(!),
also 25 y1 und 25 y, - Widerspruch). Fiir O € & setze Pyp:={gecY,Y)|g(Y)CO\{y1,y2}}
yi fir y#y;
y2 fir y=y
stetig, denn fiir &' := {Q/ C Y | 3Q € & mit Q\ {y1,y2} C Q'} gilt E C &', also &' 5 yy,
E Ly und f (&) :y.1, aber y.17r4> y2. Der Filter ¢ konvergiert nun aber stetig gegen f. Zum

Beweis sei ¢ — y. Es reicht & C ¢ (@) zu zeigen. Sei Q € &. Dannist Py € ¢ und Y € ¢, also
Pp(Y) € ¢(¢p). Wegen Pp(Y) C Q folgt Q € ¢(¢). (K1) brauchen wir nur, da Y die Rolle des
X in der Definition 9.4.5 tibernimmt.

und ¢ := {P CYY | Py C P}. Die Abbildung f:Y — Y, f(y) := ist nicht

3. Sei ¢ ein Filter auf YX mit c¢(X,Y) € ¢, der stetig gegen f konvergiert. Zu zeigen bleibt
fio f ist fiir alle i € I stetig. Sei j €I und o : YX — YJX, g — fjog. Wir zeigen der Filter
¢’ := () konvergiert stetig gegen fjo f. Wegen ¢(X,Y;) € ¢’ ist fjo f dann stetig. Seix € X
und ¢ % x. Es gilt ¢(¢) = f(x), also per Definition der Initialkonvergenzstruktur ¢'(¢) =

Ti
Fi(0(@)) = fi(f(x)).

4. Seien (Y;,ri)icr (S)-Konvergenzraume und (Y,r) deren Summe. Sei (X,g) ein (K1)-
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Konvergenzraum und ¢ ein Filter auf ¢(X,Y) der stetig gegen f : X — Y konvergiert. Sei
(@,x) € q. Zu zeigen ist (f(@), f(x)) € r. In jedem Fall gilt ¢ (@) = f(x). Also gibt es ein
Jj €1und (@;,y;) € rymit f;(@;) = ¢(¢) und f;(y;) = f(x). Wegen Y; x {j} € f;(¢;) gibtes
Py € ¢und Q € ¢ mit Py(Q) CY; x {j}. Zeigen wir als nichstes f(Q) CY; x {j}. Andernfalls
gibt es ein z € Q mit f(z) € ¥; x {l}, wobei j # [. Wegen 7L 2 gilt ¢(E) % f(z). Also gibt es
(@1, y;) € rymit fi(@;) = ¢(2) und f(y;) = f(z). Wegen Y; x {1} € fi(¢;) gibtes ein P’ € ¢ mit
P'(z) CY; x {l}. Fir P" := PyN P’ ergibt sich der Widerspruch P"(z) C (Y; x {j})N(¥; x {I}).

Wegen Po(Q) CYjx{j}und f(Q) CY; x {j}isty:={(P|Q)Nc(Q,Y; x{j})|P€ ¢}ein
Filter auf ¢(Q,Y; x {j}) der stetig gegen f|Q konvergiert. Demzufolge ist f|Q stetig und es
folgt f (@) = (£10)(9|Q) = f(2).

9.5 Aquivalenz von T3 und punktweise stetiger Fortsetzbarkeit

Die folgende alternative Konstruktion, zu der im Beweis von Theorem 1.1 aus dem Artikel
[18], ist deutlich einfacher, beweist aber ebenso dessen Aussage. Satz 9.5.1 ist also eine parti-
elle Verallgemeinerung von Satz 9.1.7.

9.5.1 Satz

Sei (Y,r) ein nicht Tj, aber (K1)-(K2)-(K3)-Konvergenzraum. Dann gibt es einen (K1)-
(K2)-(K3)-Konvergenzraum (X, g) mit strengem Teilraum ¥y C X und einer nicht stetigen
Abbildung f : X — Y, deren Einschriankung auf Yo U {x} fiir jedes x € X stetig ist. Fiir die
Umkehrung siehe Lemma 9.4.3.

Beweis: (Y,r) ist nicht T3, also gibt es ein (y,a) € r mit (cl.(y),a) & r. Setze Yy :=Y x {0},
Y1 :=Y x {1} und X := Yy UY;. Wir betrachten die Abbildungen f: X — Y, (z,€) — z, fo :=
flYoundh:Y — X, y—(y,0),setzen y:={PCX |3Q €y mit (Qx{0})U(cl(Q)x{1}) C
P} und definieren g C .% (X) x X durch

31 € Z(X) mit Yo n, (fo(1l¥o),y) € r und 0N (ne)C ¢ oder
(v.€) = (a,1) und (a,1) "y C ¢

(9,(»€)) cq =

1. Dann ist auch (X,q) ein (K1)-(K2)-(K3)-Konvergenzraum (trivial). Da (Y, r) auch (K1)
ist, gilt cl,(Yo) = X (trivial) und Yp ist sogar ein strenger Teilraum.
Beweis dazu: Sei (¢, (y,€)) € q.
1.Fall 3n € Z(X) mit Yy € 0, (fo(n|¥),y) € rund nN (y,€)C ¢. Offenbar gilt ) >

(v,€). Es reicht also cly(n) € NN (y,€) zu zeigen. Sei P € 1. Wegen P € N 2 (y,€) gilt
offenbar PU {(y,€)} C cl,(P) und damit ist alles gezeigt.
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2. Fall (y,e) = (a,1) und (a,1) Ny C ¢. Setze £ :=(a,1) N{P C X | 0 € y mit O X
{0} C P}. Wegen & L (a,1) reicht es cly(&) C(a, 1) Ny zu zeigen. Dies folgt aus

Qcy = (0x{0})U(cl(Q) x{1}) C cly(Qx{0}) C cly((Q x {0}) U {(a,1)}).

2. f ist nicht stetig, allerdings ist fiir jedes x € X die Einschrinkung g, von f auf Yy U {x}
stetig (und f somit schwach stetig).

Beweis dazu: Wegen f(7) = cl,(y) und ¥ -5 (a,1) ist f nicht stetig.
Seix=(y,€) € X und ¢ - (y,€) mit YoU {(y,€)} € 9.

1. Fall 3n € Z#(X) mit Yy € n, (fo(n|Yo),y) € r und NN (y,.e)g ¢. Hier gilt wegen
fo(MI¥o)N IC g5y (9| (U {(3,€)})) auch giy.e) (91X U{(r,€)})) - y.

2. Fall (y,e) = (a,1) und (a,.l) Ny C ¢. In diesem Fall gilt wegen yn aC ga1)(¢|(YoU
{(a,1)})) auch g(, 1) (9| (Yo U{(a, 1)})) = a.

9.5.2 Bemerkung zu Satz 9.5.1

Fiir topologische Rdume geht es auch so:

Sei (Y, 0) ein topologischer Raum. Sei fernera € Y und U € ano mitVV € ano giltVZU.
Setze Yp:=Y x {0}, Y1 :=Y x {1} und X := Yy UY;. AnschlieBend definieren wir

o :={V x{0}|V € o},

oy ={(Vx{0HU{( 1)} [yeV eomity#a},

oy ={(Vx{0HU [V x {1}) |V eanc},
B:=dUahUssund 1:={0CX|3IA C Bmit o' = 0}
und schlieBlich die Abbildung f: X — Y, (y,€) — y.

Im Zusammenhang mit einer weiteren Klasse von Abbildungen, ndmlich den perfekten, hat-
ten wir bereits das interessante Lemma 4.9.4 (meines Wissens nur fiir topologische Ridume
bekannt), das etwas liber die Unmoglichkeit von Fortsetzungen aussagt. Wir beweisen es hier
fiir allgemeine Konvergenzraume. Zuerst die Definition (fiir topologische Rdume siehe Lem-
ma 4.9.2):

9.5.3 Definition: Perfekte Abbildungen
Seien (X, q) und (Y, r) Konvergenzraume. Wir nennen f : X — Y fast perfekt, falls
VyeYve e Zo(X) gilt: (f(¢) >y impliziert Ix e £~ (y) mit ¢ L x)

Wir nennen f schlieBlich perfekt, wenn sie stetig und fast perfekt ist.
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9.5.4 Lemma

Sei (X, q) ein (K2)-(T>)-Konvergenzraum und (Y, r) ein (K2)-Konvergenzraum, D C X mit
D # X und cly(D) = X und sei f: D — Y eine perfekte Abbildung. Dann gibt es keine
stetige Abbildung g: X — Y mit g|D = f.

Beweis: Sei s die Teilraumkonvergenzstruktur auf D. Angenommen es gibt eine stetige Abbil-
dung g : X — Y mit g|D = f. Es gilt nun:

(1) clr(g(D)) = g(X) und

(2) f(D) = cl,(f(D))

Zeigen wir (1). Sei x € X. Es gibt ein @ € .Z (X) mit D € ¢ -5 x. Wegen der Stetigkeit von g
folgt g(¢) = g(x) und g(D) € g(¢), also g(x) € clx(g(D)).

Zeigen wir (2). Sei y € cl.(f(D)). Es gibt dann ein Ultrafilter y auf ¥ mit f(D) € y 5 y.
Offenbar ist ¢ := {Q C D | 3P € y mit f~!(P) C Q} nun ein Filter auf D mit f(¢) C y. Sei
@o ein Ultrafilter auf D mit ¢ C ¢@o und f(¢p) = y (vergleiche Lemma 3.2.5). Folglich gibt es
einx’ € f~1(y) (C D!) mit ¢y = x’. Es folgt y = f(x') € f(D).

Aus (1) und (2) folgt nun: g(X) = cl(g(D)) = cl.(f(D)) = f(D). Sei x € X \ D. Es gibt dann
ein Ultrafilter ¢ auf X mit D € ¢ - x. Da g stetig ist und D € ¢, gilt f(¢|D) = g(¢) = g(x).
Da f perfekt ist, folgt: 3z € £~ '(g(x)) mit ¢|D - z. Offenbar gilt dann auch ¢ -5 z. Dies ist
ein Widerspruch, da x # z und (X, q) T, ist.

9.6 Wie viele Ultrafilter gibt es auf einer Menge?

Eine Bemerkung zur Definition 9.2.15: Sei (X, 7) ein topologischer Raum und @ # D C X.
Dann ist dquivalent:

1. Fur alle O € 7\ {@} gilt |D| =|0OND|.

2. D ist extrem dicht in X, also cl,‘]lf)‘ (D) =X.

9.6.1 Lemma

1. Jeder a-uniforme Filter auf X, mit & > oo, ist in einem o-uniformen Ultrafilter auf X
enthalten.

2. Sei (X,q) ein T,-(K2)-Konvergenzraum und D C X. Gilt c/g(D) = X, so folgt |X| <
|ﬁ(§a) (D)], fiir jede unendliche Kardinalzahl a. Mit ﬂéa) (X) bezeichnen wir die Menge
aller oc-uniformen Ultrafilter auf X.

Beweis: 1. Sei ¢ ein a-uniformer Filter auf X. Mit Hilfe von Zorns Lemma schnappen wir
uns einen maximalen ¢-uniformen Filter @ der unser ¢ enthilt. Sei v ein Ultrafilter auf X
mit @ C y. Angenommen 3A € y mit |[A| < a. Dann gilt [Y N (X \A)|=[Y \A|=|Y| > «
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fiir jedes Y € w. Setze ¢ :={Z C X |dY € o mit Y N (X \A) C Z}. Offensichtlich ist ¢ dann
o-uniform und @ C ¢ im Widerspruch zur Maximalitidt von ¢. Also ist y auch a-uniform, mit
¢ C y. Fiir 2. gilt fast derselbe Beweis wie in 9.2.16, denn ¢, und y, p kénnen nun a-uniform
gewihlt werden.

9.6.2 Satz

Sei A eine unendliche Menge, dann existiert ein topologischer T-Raum (X, 7) mit [X| =
|Z2(P(A))] und 3 F C X, extrem dicht in X, mit |F| = |A|. Die Schranke aus Lemma
9.6.1 kann also angenommen werden.

Als Korollar erhalten wir |7,V (A)| = | Z(A)| = | Z (A)| = | 2(2(A))|.

Beweis: Setze X := {0,1}7 ). Fiir jedes endliche J C A definieren wir eine Aquivalenzrela-
tion ~; auf Z(A), durch Ly ~; Ly & LiNJ =LyNJ. Setze

Fy:={(aL)rep@a) €X |aL, = ay, fir Ly ~; L} und F:= U{FJ | J CA und J endlich }.

Es gilt |Fj| < |AZV)| = |A

, also |F| < |A|. Andererseits ist ¢ : A — F definiert durch a —

x,=1 fallsaclL .

(XL)Le 2 (4)> mit injektiv und wohldefiniert (@ (a) € F; fir J := {a}).

xz, =0 sonst

Zusammen ergibt dies |F| = [A|. Zu zeigen bleibt noch, dass F' extrem dicht in X ist, dass
also fiir jedes offene O gilt: |F| = |ONF|. Fir K € #(A) und i € {0,1} setz wir Uy :=
0,=1{0,1} fir LK
Or =i} sonst
dukttopologie. Sei dann O = Ui‘l N...N UZ’I eine typische offene Basismenge. Es reicht also
zu zeigen, dass [ONF| = [F|ist. Aus F = U, iyeqoayp F N Ui‘l N...NU;" folgt die Exis-
tenz eines Tupels (i1, ...,i,) € {0, 1}" mit |F| = [FNU;| N...NU;"|. Es gibt aber immer eine
Injektion

[Ize () Or mit .U ,’( ist eine typische Subbasismenge der Pro-

o: FNU. N..0U — FOUIN..NU" fir (ji,...,)a) € {0,137,
wie man folgendermaf3en sieht:
1. Firx€ FNU;' N...NU}" wihle ein endliches J, C A mitx € F;, U, N...NU;".

2. Firx = (xx)gep(a) s€i a(x) := (yk ) ke 2(a), Wobei yx = {
XK sonst

Diese Abbildung ist injektiv! Also gilt |[F| = \FﬂUill N... ﬂU£;| fir alle (iy,...,i,) € {0,1}"
und somit auch |ONF| = |F|. Das Korollar ergibt sich nun direkt aus Lemma 9.6.1 (die letzte
Ungleichung ist trivial):

F A
22 @)= K| <17 (F) = 175" @) < |2(2(4))

225

ji falls K e [Ll]./x (fur [=1,...



9.6.3 Bemerkung

Das Ergebnis iiber die Kardinalitdt der Menge aller uniformen Ultrafilter war natiirlich schon
bekannt. Der Zugang iiber extrem dichte Teilmengen, insbesondere Lemma 9.6.1 und Satz
9.6.2, sind aber neu.

9.6.4 Anzahl aller untereinander nicht homéomorphen Topologien

Auf einer unendlichen Menge X gibt es also genau &2 (% (X))-viele, untereinander nicht ho-
moomorphe, Topologien. Beweis: Sei .7 die Menge aller Topologien auf X. Wir zeigen zu-
erst | 7| = |2(2(X))|. Dies folgt daraus, dass jeder Filter um die leere Menge erweitert
eine Topologie ist und die Anzahl derer kennen wir obigem Satz. Auf .7 fithren wir dann
durch (X, t) ist hombomorph zu (X,0), fiir 7,0 € 7 eine Aquivalenzrelation ein. Aus je-
der Klasse wihlen wir uns nun ein Repridsentanten und fassen diese zu einem Vertretersys-
tem (7;);c; zusammen. Fiir jede einzelne Klasse .7 gilt |.Z;| < |X¥| (offensichtlich). Nun
gilt aber | 2(2(X))| = |.T| = |Uie; Zi| < sup (1],|X%]). Da |XX| = |2(X)|, folgt somit
| =2 (2 (X))].

9.6.5 Korollar

Fiir jede unendliche Menge X existiert eine Familie ¥ C #(X), mit || = |2 (X)| und
der Eigenschaft, dass |[C; N...NCp N (X \ Cpt1) N...N (X \ C,)| = |X| fiir paarweise ver-
schiedene Elemente Cy, ...,Cp,,Cpyt 1, -..,Cp aus € mit 0 < m < n gilt.

Beweis: {0,1}7(X) enthilt eine extrem dichte Teilmenge ¥ mit |X| = |Y|. Fiir K € 2 (X)
setze Ul := [[1c2 O, wobei Oy = {0,1} fiir L # K und Ok = {i}. Mit anderen Worten:
U ,‘< ist eine typische Subbasismenge der Produkttopologie. Setze dann ¢” := {Y N U, 11< | K €
P (X)} C Z(X). Fur paarweise verschiedene K1, ...,K, € Z(X) mit 0 < m < n gilt dann:
(YOUL)N..O¥ NUL)NY\(YNUE )IN..AY\(YNUE )] =Y NUL N...nUg , wobei
iy = 1 fiir k <mund i, = 0 fiir m < k < n. Letztere Menge hat aber Kardinalitit |Y |, da diese
extrem dicht in {0,1}?X) liegt. Fiir ein bijektives f : ¥ — X findet sich unser gesuchtes %
dann als {f(C") | C' e ¢'}.
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10 Boolsche Verbande und Topologie

”Eine Liige ist bereits dreimal um die Erde gelaufen, bevor sich die Wahrheit die Schuhe
anzieht.”
Mark Twain

10.1 Grundlegendes

Topologische Methoden kommen in Gebieten, die auf den ersten Blick nichts mit Topologie zu
tun haben, erstaunlich oft zur Anwendung. Ein Beispiel ist die Theorie Boolscher Verbénde.

10.1.1 Definition

partielle Ordnung Eine Relation < auf einer Menge X heif3t partielle Ordnung, falls gilt:

1) <ist reflexiv (x < x)

2) <isttransitiv(x <yundy <z = x<32)

3) <istantisymmetrisch (x <yundy <x — x=Yy)

Falls < zudem auch noch vollstindig ist (also immer x <y oder y < x oderx =y), so heifit <
eine totale Ordnung. Total geordnete Teilmengen einer partiellen Ordnung werden zuweilen
auch Kette genannt.

10.1.2 Definition

Verband Eine Menge X zusammen mit einer partiellen Ordnung < heifit ein Verband, falls es
zu je zwei Elementen x,y € X zwei Elemente i, s € X gibt mit:

Dx<sundy<s

2) fallsauchx <wuundy < ufireinu € X, so gilt s < u.

3)i<xundi<y

4) falls auch w < xund w < y fiirein w € X, so gilt w < i.

Das Element s wird mit x V y bezeichnet und auch Supremum genannt und das Element i
wird mit x A 'y bezeichnet und auch Infimum genannt.

Zu je zwei Elementen existiert also das Supremum und Infimum (eindeutig bestimmt).

10.1.3 Lemma

In einem Verband gilt:
VixAy=yAxundxVy=yVx
V2xA(yAz) = (xAy)AzundxV (yVz) = (xVy)Vz
V3 (xAy)Vy=y=(xVy)Ay firalle x,y,z

Beweis: 1) ist klar!
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2)Esgiltx < (xVy)Vz,y<(xVy)Vzund z < (xVy)Vz alsoauchyVvz < (xVy)Vzund
zusammen also auch xV (yVz) = (xVy) V z. Die andere Ungleichung beweist man analog.
Ebenso beweist man die zweite Gleichung.

3) Wir haben (x Ay) Vy <y (klar). Falls auch noch (xAy) Vy < z, dann auf jeden Fall auch
y <z. Alsoist (xAy)Vy=y. Vollkommen analog beweist sich die zweite Gleichung.

10.1.4 Bemerkung

Offensichtlich hat in einem Verband auch jede endliche Menge ein Supremum und Infimum.
Und es gilt inf{xy,..x,} = x1 A ... Ax, bzw. sup{x,..x, } =x1 V... Vx,.

Hat die ganze Menge sogar ein Supremum oder Infimum, so ist dies auch eindeutig bestimmt.
Denn wihren sowohl x, als auch y ein Supremum, dann wihre y < xVy < x und analog x <y,
also x = y. Der Beweis der Eindeutigkeit des Infimum lauft wieder analog.

Falls in einem Verband das Supremum existiert, so bezeichnen wir es mit 1. Entsprechend
bezeichnen wir das Infimum mit 0.

10.1.5 Definition

komplementierbar Ein Verband hei3t komplementierbar, wenn er ein Supremum 1, ein Infi-
mum 0 hat. Und wenn zu jedem Element x ein Element y existiert, derart, dass xVy = 1 und
x Ay =0 gelten (das Komplement) (V4). Offensichtlich gilt 1 Ax=x, 1Vx=1,0Vx=xund
0 Ax = 0 fiir jedes x.

Er heifit distributiv, falls beide Distributivgesetze gelten (V5). Also (xAy)Vz= (xVz)A(yVz)
und (xVy)Az= (xAz)V (yAz).

Man rechnet iibrigens leicht nach, dass bereits eins der Distributivgesetze ausreicht um das
andere zu beweisen.

10.1.6 Lemma

In einem distributiven komplementierbaren Verband sind die Komplemente eindeutig be-
stimmt.

Beweis: Seix\Vy=1und xAz=0.Dannhaben wiry=yV0=yV (xAz) = (yVx)A(yVz) =
LA (yVz) =yVz Aus Symmetriegriinden gilt auch z =y Vz.

10.1.7 Definition

Boolscher Verband Ein distributiver komplementierbarer Verband heifit von nun an Bool-
scher Verband oder Boolsche Algebra.
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10.1.8 Bemerkung

Wir bezeichnen das Komplement von x mit x*. Man sieht dann sofort (x*)* = x. Aus der
Eindeutigkeit der Komplemente folgt ferner (x Ay)* = x*Vy* und (xVy)* = x* Ay* (die de
Morganschen Regeln).

10.1.9 Bemerkung

Dualitéitsprinzip In V1 - V5 konnen wir A und V, 1 und O vertauschen und so die Aussagen
in einander iiberfiihren. Falls wir also eine Aussage haben in der A und V, 1 und 0, < und >,
Ideal und Filter vorkommen und diese paarweise miteinander vertauschen, erhalten wir eine
Aussage vom gleichen Wahrheitswert.

10.1.10 Lemma

In einem Boolschen Verband gilt: x Ay* =0 < x <.

Beweis: Falls x Ay* =0, dann gilt: x =xA 1 =xA(yVy") = (xAy)V (xAy*) =xAy, also
x <y. Falls x <y, dann gilt x = x Ay und es folgt: x A\y* =xAyAy* =xA0=0.
10.1.11 Definition

Teilverband Eine nichtleere Teilmenge X’ eines Boolschen Verbandes X heiBt Teilverband,
falls fiir x,y € X" auch x Ay,xV yx* € X’. Offensichtlich umfasst jeder Teilverband {0,1},
welcher selber somit der kleinste Teilverband ist.

10.1.12 Definition

Erzeugnis Sei X ein Boolscher Verband und A C X. Das Erzeugnis von A ist wie folgt defi-
niert: (A) :=N{¥ CX|A CY undY ist ein Teilverband }. Setze & := {a}' A... Ad | a €
A, i € {1,x}}, Dann gilt (A) = {b]' V...V b}i" | by € &, jix € {1,}}, wobei wir x! = x setzen.
Falls A also endlich ist, so auch (A). Der Nachweis bleibt als Ubung.

10.2 Filter und Ultrafilter

Ein Beispiel fiir Verbinde sind die Potenzmengenverbinde. Und in denen haben wir einen
interessanten Begriff definiert: Filter. Diese kann man auch in allgemeinen Boolschen Ver-
binden definieren.

10.2.1 Definition

Filter, Ideal
Eine nichtleere echte Teilmenge ¢ von einem Boolschen Verband X heif3t Filter falls:
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x,ye @ — xAye o fiir alle x,y.

2) Wenn x € ¢ und x <y, dann auch y € ¢.

Eine nichtleere echte Teilmenge .# von einem Verband X heif3t Ideal falls:
Dx,ye s — xVye Zfirallex,y € ./

2) Wenn y € . und x <y, dann auch x € .7.

10.2.2 Definition

endliche Schnitt Eigenschaft (eSE) Eine nichtleere Teilmenge Y eines Boolschen Verbandes
habe die eSE wenn das Infimum jeder endlichen Teilmenge von Y ungleich O ist.

10.2.3 Lemma
A habe die eSE. Dann hat AU {y} oder AU {y*} die eSE.

Beweis: Denn angenommen aj A...Aa, A\y=0=>b1A...Ab,, Ay*, dann folgt auch a; A... A
anANbI N NbyN\y=0=aj \...Naybi \...ANby, N\y*, also folgtaus ay A...ANa, Aby A...Aby <
(Y)Y =yundaj A... N\ay Aby A ... Nbyy <y*alsoaj A ... Nay Ay A .. Abyy <Y Ay=0 =
Widerspruch.

10.2.4 Bemerkung

Fiir eine Teilmenge A eines Verbandes X bezeichne A” := {x € X | 3a € A mit a < x}. Und
A :={inf{E} | E C A und E ist endlich }.

10.2.5 Definition

Basis Subbasis eines Filters Wenn ¢ ein Filter ist und %" = ¢, so heift % Basis von @.
Wenn fiir eine Teilmenge . gilt: .7¢ ist eine Basis von ¢, so heifit . Subbasis von ¢.

10.2.6 Lemma

Fiir jede Teilmenge A eines Boolschen Verbandes X gilt: Jeder Filter, welcher A umfasst,
umfasst auch (A)°. AuBerdem ist (A)° ein Filter genau dann, wenn A die eSE hat.

Beweis: Der erste Teil der Behauptung ist offensichtlich.
Falls (A€)° ein Filter ist, dann hat A die eSE (genauso offensichtlich). Nehmen wir an A habe
die eSE. Wir miissen nun zeigen, dass (A€)° ein Filter ist. Sicherlich ist 0 & (A°)?. Also schon
mal 0 # A° C X. Seien x,y € ( C)O. Dann gibtes a,b € Amita <xund b <y, alsoa=aAx
und b = b Ay. Dann aber auch aAb=a AxANbAy=aAbAxAy, was soviel bedeutet wie
aNb<xAy.Und wegenaAb € A° (a=inf{x),..xy,} =x1 A...Axpyund b =inf{y1,...ym} =
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VIA oo Ay, also inf{x1,..Xn, V1, Ym} = X1 A . AXg AYL A ... Ay = a A b. Somit ist auch
aNb € A°.) folgt dann x Ay € (A)°.
Falls x € (AC)O und x <y, dann gibt es a € A° mit a < x. Also auch a < y und somit y € (AC)O.

10.2.7 Definition

Ultrafilter Ein Filter ¢ in einem Boolschen Verband heifit Ultrafilter, wenn er beziiglich der
Inklusion maximal ist. Das heiflt wenn @ C ¢ ist, fiir einen Filter ¢, dann ist ¢ = ¢.

10.2.8 Lemma

Sei ¢ ein Filter in dem Boolschen Verband X. Dann ist dquivalent:
1) ¢ ist ein Ultrafilter.

2) Fiir jedes x € X gilt x € ¢ oder x* € ¢.

3)Firallex,yc X gil: xVyc @ = xc @oderyc ¢.

Beweis: 1) = 2) Sei x € X beliebig. Da ¢ die eSE hat, hat auch ¢ U {x} oder ¢ U {x*} die
eSE. Also 0.B.d.A. ¢ U {x} habe die eSE. Also ist ((¢ U {x})¢)° ein Filter, welcher ¢ umfasst.
Da letzterer aber ein Ultrafilter ist, gilt ((¢ U {x})¢)? = ¢ und somit x € ¢.

2) = 3) Annahme es gibt x,y € X mit xVy € ¢ aber x ¢ ¢ und y € ¢. Dann ist aber x* € ¢
und y* € @, also auch (xVy)* =x* Ay* € ¢ = Widerspruch.

3) = 2) Fiirjedes x € X giltxVx* =1 € ¢, also x € ¢ oder x* € ¢.

2) = 1) Offensichtlich ist ein Filter mit dieser Eigenschaft bereits maximal.

10.2.9 Ultrafiltersatz (Ultrafilter Theorem =- UFT)

Jede Teilmenge eines Boolschen Verbandes X mit der eSE kann zu einem Ultrafilter er-
weitert werden.

Beweis: Da jede derartige Teilmenge zu einem Filter erweitert werden kann, geniigt es also
zu zeigen, dass jeder Filter in einem Ultrafilter liegt.
Sei also ¢ ein Filter. Betrachte ® := {y C X | y ist ein Filter, und ¢ C y}.
Wir fithren auf @ als natiirliche Ordnung die Inklusion ein und zeigen: Jede Kette aus @ hat
eine obere Schranke in . Sei W eine Kette aus . Setze dann y := [JW. Sicherlich gilt ¢ C y.
Zu zeigen bleibt also noch, dass es sich bei ¥ um einen Filter handelt. Falls x,y € v, so gibt es
o, 7€ Y mitx € ound y € 7. Da W eine Kette ist folgt 0.B.d.A. o C 7, also auch y € 7. Dann
ist aber auch x Ay € 7 C y. Die zweite Bedingung tiberpriift man ebenso. Wir haben also eine
obere Schranke fiir ¥ in ® gefunden. Das Zornsche Lemma garantiert uns also ein maximales
Element y in ®. Offensichtlich muss y dann ein Ultrafilter sein.
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10.2.10 Lemma

Content Detector Sei X ein Boolscher Verband ¢ ein Filter auf X und A eine Teilmenge
von X mit der Eigenschaft: Das Supremum jeder endlichen Teilmenge von A liegt in A.
Dann gilt: ¢ NA # 0 < fiir jeden Ultrafilter v, welcher ¢ umfasst gilt yw NA # 0.

Beweis: ” =" ist klar!

" <" Nehmen wir mal an an fiir jeden Ultrafilter y, welcher ¢ umfasst gilt y NA = 0, aber
@NA=0.Das heifit: Vx € ¢ Va € A giltx £ a. Also: Vx € ¢ Va € A gilt x Aa* # 0. Wenn nun
aber das Supremum jeder endlichen Teilmenge von A bereits in A liegt, so liegt Das Infimum
jeder endlichen Teilmenge von A* := {a* | a € A} bereits in A*. Insgesamt bedeutet dies,
dass @ UA* die eSE hat. Darum gibt es einen Ultrafilter y der ¢ UA* umfasst. Offensichtlich
umfasst dieser dann auch ¢. Nach Voraussetzung gibt es ein a € AN y. Da y aber auch a*
umfasst, ist dann auch 0 = a Aa* € y = Widerspruch.

10.2.11 Korollar

Jeder Filter in einem Boolschen Verband ist der Durchschitt aller ihn enthaltenen Ultrafil-
ter.

10.3 Verbandhommomorphismen und Quotientenverbande

Wir untersuchen Abbildungen zwischen Verbdnden und ”Quotienten” von Verbédnden.

10.3.1 Definition

Homomorphismus Eine Abbildung f zwischen zwei Boolschen Verbidnden f : X — Y heilt
Homomorphismus, falls:

1) Fiir alle x,y € X gilt f(xAy) = f(x) A f(y).

2) Fir alle x,y € X gilt f(xVy) = f(x)V f(y).

3) Fiir alle x € X gilt f(x*) = f(x)*.

Ist f sogar bijektiv, so heiflit f ein Isomorphismus (in Symbolen: X ~ Y).

Das Supremum wird sowohl in X als auch in ¥ mit 1 bezeichnet. Ebenso das Infimum mit O.

10.3.2 Lemma

Fiir einen Homomorphismus f : X — Y gilt:
Dx<y = flx) < f)
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2) £(0) =0 und f(1) =1
3) Fiir ein Teilverband X’ von X ist f(X’) ein Teilverband von Y

Beweis: Trivial.

10.3.3 Lemma

Sei ¢ ein Filter im Boolschen Verband X.

1) Durchx~y = Ip € @ mitx A p = yA p wird auf X eine Aquivalenzrelation definiert.
2) Wenn x ~ x’ und y ~ y/, dann auch

a)xA\y~xX ANy undxVy~x'Vy

b) x* ~ x'*.

3) Fiir x,y setze x Oy := (x Vy*) A (x* Vy). Dann gilt:

Ax~y & xOyeE Q.

b)xOy=1& x=y

4) Bezeichne [x] die Aquivalenzklasse von x, so bildet X /¢ := {[x] | x € X} vermoge
[X] A [y] = [xAyl,[x] V [y] = [xVy] und [x]* = [x*] einen weiteren Boolschen Verband - den
Quotientenverband (modulo @). AuBerdem gilt [x] = [y] <& x©y € @. Im speziellen also
X =[1]=1< x0l=xc¢.

Beweis: 1) ist trivial.
2) a) ist trivial.
2) b) x A p =X A p impliziert x* V p* = x™* V p*. Mit p A (x* V p*) = P A (X'* V p*) folgt dann
pAX* = pAX*
3) a) Sei x ~ y, also x A p = y A p. Aus dem Beweis von 2b) folgt x* A p = y* A p. Also gilt:
(VY )Ap=(xAP)V* Ap)=xAp)V(X*Ap)=@xVX)Ap=pEP = xVy € 0.
Analog sieht man x* Vy € ¢. Also auchx®y € ¢.
Seix®y € ¢@. Setzt man p:=xOy= (xVy )AKX*Vy)=(x"Ay")V(xAy), so kann man
nachrechnen x A p =y A p, also x ~ y.
3) b) Falls x = y, dann offensichtlich x ®y = 1.
Sei x©y = 1. Dann muss xVy* =1 und x* Vy = 1 sein. Also durch komplementieren der
zweiten GlL. x A y* = 0. Die Eindeutigkeit der Komplemente liefert dann x = y.
4) Folgt unmittelbar aus 1) bis 3).

10.3.4 Lemma

Sei f: X — Y Ein Homomorphisms zwischen zwei Boolschen Verbidnden. Dann ist @y :=
{xeX | f(x) =1} ein Filter und f(X) ~ X /¢y.
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Beweis: Das es sich bei ¢y um einen Filter handelt, rechnet man direkt nach.
Definiere g : X/@; — f(X) durch [x] — f(x). Falls [x] = [y], sox®y € ¢f, also 1 = f(x©®
y) = f(x) ® f(y) und damit f(x) = f(y). g ist also wohldefiniert. Das es sich bei g um einen
Homomorphismus handelt ist klar, bleibt noch die Bijektivitit zu zeigen. Sei z € f(X), dann
ist z = f(x) = g([x]) fiir ein x € X. Falls g([x]) = g([y]), dann ist auch f(x) = f(y). Also gilt
fx*Vy)=fx)*VI Q) =1=f(x)Vf(y)*=f(xVy"), woraus x* Vy,xVy* € @y folgt. Dann
aber auch (x* Vy) A (xVy*) =x®y € @, und deshalb gilt [x] = [y]. Also ist g auch injektiv.

10.3.5 Bemerkung

Wir beobachten g([x]) =1 < f(x) =1 & x € ¢y, also ¢, = {[1]}. Folgendes Lemma stellt
dies nochmal klar heraus.

10.3.6 Lemma

Ein Homomorphismus f : X — Y zwischen zwei Boolschen Verbinden ist genau dann
injektiv, wenn @ = {1}.

Beweis: Sei ¢y = {1}. Falls f(x) = f(y), dann (wie eben) auch x®y € ¢, alsoxOy =1
und somit x = y. Falls f injektiv ist, dann klarerweise ¢y = {1}.

10.3.7 Lemma

In einem Boolschen Verband X ist dquivalent:
1) @ ist ein Ultrafilter.

2)X/o~{0,1}.

Beweis: Falls ¢ ein Ultrafilter ist, so priife man bitte nach, dass f: X /¢ — {0,1} definiert
durch [x] — 1, falls x € ¢ und [x] — 0, falls x ¢ @, ein Isomorphismus ist.
Sei andererseits X /¢ ~ {0,1}. Dann ist [x] # [x*], also [x] = 1 und [x*] = 0 oder umgekehrt.
Und demnach x € ¢ oder x* € ¢.

Wir schlieBen diesen Abschnitt mit einer kleinen Anwendung des Ultrafiltersatzes, einem

Lemma von Rasiowa, Sikorski und Tarski, welches Anwendung in der Logik hat (beispiels-
weise Godels Vollstindigkeitssatz der Pradikatenlogik).
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10.3.8 Lemma

Sei X ein Boolscher Verband, X > x # 0 und (A,),en eine Folge von Teilmengen von
X, die alle ein Infimum besitzen, Also a, := inf(A,). Es gibt dann einen Ultrafilter y
in X, mit h(a,) = inf{h(a) | a € A,}, wobei h: X — X/y ~ {0,1} den kanonischen
Homomorphismus bezeichnet (h(x) = [x]).

Beweis: Wir definieren rekursiv eine Folge (by,),en mit b, € A, so dass {x,aq V byj,...,a, V

b} die eSE hat. Sei m € N und fiir n < m seien entsprechende b, bereits gefunden. Wir
definieren dann y :=x A (ag V b§) A ... A (am—1 VD), ), falls m > 0 und y := x, falls m = 0. In
jedem Fall ist y # 0!
Nehmen wir mal an y A (a,, V b*) = 0, fiir jedes b € A;,. Dann also y Aa,, = 0 und y Ab* = 0 fiir
jedes b € A,,. Das heil3t aber y < b fiir jedes b € A, also y < a,,. Dann gilt y =y Aa,, =0 im
Widerspruch zu Voraussetzung. Es muss also ein b =: b,, € A,, geben, mit y A (a,, V b},) # 0.
Die entsprechende Folge der (b,),cn ldsst sich also konstruieren. Wenn {x,aq V b;j,...,a, \V by}
die eSE fiir jedes n € N hat, dann hat also auch Y := {x,a0 V b, ...,a, V b}, ...} die eSE und es
gibt einen Ultrafilter y auf X mitY C y. Betrachten wir 1 : X — X /y. Es gilt h(a,) V h(b,)* =
h(a,Vb})=1,denna, b} € y. Also h(a,) > h(b,) und demnach inf {h(b) | b € A,} < h(ay).
Andererseits gilt a, = inf(Ay), also a, < b, fiir alle b € A, und somit h(a,) < h(b), fir jedes
b € A,. Wir bekommen h(a,) < inf{h(b) | b € A,}. Zusammen ergibt dies dann h(a,) =
inf{h(a)|acA,} (fir jedes n € N).

10.4 Topologische Formulierungen des Ultrafiltersatzes (UFT)
10.4.1 Definition

Spektrum Das Spektrum eines Boolschen Verbandes X ist die Menge aller Homomorphis-
men f: X — {0, 1} und wird mit Spek (X) bezeichnet. Spek (X) steht offenbar in natiirlicher
Bijektion zu @ := {¢@ C X | ¢ ist ein Ultrafilter }.

10.4.2 Lemma

Sei X ein Boolscher Verband und 0 < x,y € X zwei verschiedene Elemente. Dann gibt es
ein Ultrafilter ¢ auf X, welcher genau eines der beiden Elemente enthilt.

Beweis: Da x # y gilt also nicht: x A y* = 0 und x* Ay = 0. Das hiefle sonst ja x <y und
y <x. Also z.B. x Ay* # 0. Dann hat {x,y*} aber die eSE und kann somit zu einem Ultrafilter
erweitert werden, der dann natiirlich nicht y enthilt.
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10.4.3 Satz

Sei X ein Boolscher Verband. Folgende Behauptungen sind dquivalent:
a) UFT

b) Jeder Boolsche Verband hat einen Ultrafilter.

c) Spek (X) # 0.

Beweis: a) = b) < c) ist klar! Zu zeigen ist dann nur noch b) = a).

Sei ¢ ein beliebiger Filter in dem Boolschen Verband X und y ein Ultrafilter in X / ¢. Ferner
bezeichne f : X — X /¢ den kanonischen Homomorphismus. Die Behauptung ist nun, dass
£~ '(y) ein Oberultrafilter von ¢ ist. Wenn x € @, dann f(x) = [x] = [1] € y, alsox € £~ (y).
Das f~!(y) ein Filter ist, bestiitigt eine kleine Rechnung. Exemplarisch sei noch gezeigt, dass
f~Y(w) ein Ultrafilter ist. Sei xVy € f~!(w), also [xVy] = [x] V [y] € v, woraus folgt [x] € ¥
oder [y] € y und somitx € f~!(y) odery € f~!(y).

Wir haben bereits gesehen, dass der Satz von Tychonoff dquivalent zu Auswahlaxiom ist
(auf Basis von ZF). Wir haben aus dem Auswahlaxiom auch den Ultrafiltersatz abgeleitet.
Interessanterweise ist dieser nun echt schwicher als das Auseahlaxiom (werden wir nicht
beweisen), aber wieder dquivalent dazu, das dass Produkt kompakter Hausdorf-Rdaume ein
kompakter Hausdorf-Raum ist. Dieses und ein d@hnliches Resultat werden wir hier zeigen.

10.4.4 Satz

Die folgenden Behauptungen sind dquivalent.

a) Der Ultrafiltersatz (UFT)

b)Ein Produkt X = [];; X; topologischer Rdume (X;, 7;);c; ist genau dann ein kompakter
Hausdorff-Raum, wenn jeder Faktor ein kompakter Hausdorff-Raum ist.

¢) {0,1} ist kompakt in der Produktopologie fiir jede Menge I, wobei {0, 1} mit der
Diskreten Topologie versehen wird.

Beweis: a) =- b) wie beim Satz von Tychonoff. An der Stelle, an der man das Auswahlaxiom
brauchte, muss man nun nicht mehr auswéhlen sondern nimmt den eindeutigen Punkt gegen
den pr;(¢) konvergiert (Hausdorff-Raum). Der Rest ist klar.

b) = ¢) Klar!

¢) = a) Wir zeigen: fiir jeden Verband X ist Spek (X) # 0.

Fiir endliches A C X setze Cy := {f € {0,1}* | fji4) € Spek((A))}. Man verifiziere bit-
te, dass alle C4 abgeschlossen in {0,1}¥ sind (man zeige die Komplemente sind offen und
beachte dabei, dass (A) auch endlich ist).

Falls Ay, ...,A, endliche Teilmengen darstellen, so ist auch (J;_,Ax) endlich und es gibt
somit ein nicht triviales Element f aus Spek (({J;_, Ax)). Dieses kann man (indem man auf
X\ (Ui_;Ax) Nullen zuweist) auf ganz X ausdehnen und somit haben wir ein Element in
Ni=1Ca,- Also gilt Spek (X) = Nacx Ca # 0 (Wenn (4cx C4 = 0, so gibe es endlich viele
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Ap,...,A, mit (_; C4, = 0 im Widerspruch dazu, dass diese nach dem eben gezeigten gerade
einen nicht leeren Schnitt haben. Wir setzen schlieBlich voraus, dass {0, 1}* kompakt ist.).

10.4.5 Satz

Die folgenden beiden Bedingungen sind dquivalent:

a) Der Ultrafiltersatz (UFT).

b) (Stone, Cech) Fiir jeden topologischen Raum (X,T) existiert ein kompakter
Hausdorff-Raum (X, o) und eine stetige Abbildung / : X — BX, so dass fiir jeden kom-
pakten Hausdorff-Raum (K, p) und jede stetige Abbildung f : X — K eine eindeutig be-
stimmte stetige Abbildung f : BX — X existiert, mit f oh = f. Falls auch yX mit einem
h' dieselben Eigenschaften hat, so sind X und X bereits homdomorph.

Beweis: a) = b) Haben wir schon bewiesen (Satz 4.6.4).

b) = a) Es reicht wenn wir zeigen, dass der Produktraum X := [];c;X; einer Familie
(Xi, 7i)icr kompakter Hausdorff-Riume wieder ein kompakter Hausdorff-Raum ist. Nach Vor-
aussetzung existiert fiir (X;, 7;) und pr; : X — X; genau eine stetige Abbildung p7; : BX — X;
mit pr; o h = pr;. Definiere g : BX — X durch g(x) := (p7;(x)) je;. Dann gilt fiir (x;);e; € X

goh((xi)ier) = (pFj(h((xi)ier))) jer = (pri((xi)ier)) jer = (x;) jer, also goh = idx.

Wendet man die Voraussetzung nun auf X und SX an, so erhilt man: Es gibt genau eine
stetige Abbildung f : X — BX mit f o h = h. Offensichtlich tun dies sowohl idgy, als auch
hog. Folglich ist & : X — BX ein Homéomorphismus und X demzufolge ein kompakter T,-
Raum.

10.5 Boolscher Raum, charakteristischer Verband und Stone
Raum

In diesem Abschnitt zeigen wir, dass jeder Boolsche Verband zu einem Teilverband eines
Potenzmengenverbandes isomorph ist.

10.5.1 Definition

Boolscher Raum, charakteristische Verband, Stone Raum

Kompakte Hausdorffraume mit einer Basis aus zugleich offenen und abgeschlossenen Men-
gen heifien Boolsche Riume. Wenn (X, 7) ein Boolscher Raum ist, so wird C(X) := {0 C
X | O ist offen und abgeschlossen } der charakteristische Verband von X genannt (C(X) C
P(X) wird mit N, U ein Teilverband des Potenmengenverbandes! Falls nicht klar = Ubungs-
aufgabe!).

Sei X ein Boolscher Verband. Dann bezeichne ®[X|:= {¢ C X | ¢ ist ein Ultrafilter}, ferne
sei fiir ein x € X u(x) := {@ € ®[X] | x € ¢} (also ist u : X — Z(Phi[X]) eine Abbildung).
Das System u[X] := {u(x) | x € X} ist abgeschlossen gegeniiber endlichen Durchschnitten
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(falls nicht klar = Ubungsaufgabe), ist also eine Basis der Topologie 7 := top (u[X]). Unter
dem Stone Raum des Bolschen Verbandes X verstehen wir nun (®[X], 7).

10.5.2 Lemma

Wenn (X, 7) ein Boolscher Raum ist und .« C &?(X) sowohl ein Teilverband der Potenz-
menge, als auch eine Basis von 7, so gilt &/ = C(X).

Beweis: A € &/ = A: offen. Da &7 ein Teilverband ist, ist also auch X \ A € ./ und somit
ist auch X \ A offen, A also abgeschlossen, ergo A € C(X).
Sei jetzt A € C(X), also A sowohl offen, als auch abgeschlossen. Dann gibt es eine Familie
(Aj)ier von Mengen aus .7 mit A = [J;c;A;. Da X ein kompakter Raum ist, ist A als abge-
schlossene Menge auch kompakt. Somit gibt es also iy, ...i, mit A = J;_;A; € &/ (& istals
Teilverband vorausgesetzt worden). Also tatséchlich &7 = C(X).

10.5.3 Satz

a) Ein Boolscher Verband X ist isomorph zur charakteristischen Algebra seines Stone
Raumes, also X ~ C(P[X]).

b) Ein Boolscher Raum (X, 7) ist homdomorph zum Stone Raum seiner charakteristi-
schen Algebra, also X = ®[C(X)].

Beweis: Seien @,y € ®[X] mit ¢ # y. Dann gibt es ein x € @ \ y, also x* € y, so dass
folgt: u(x) Nu(x*) =0, aber ¢ € u(x) und y € u(x*). Je zwei verschiedene Elemente aus P[X]
lassen sich also durch disjunkte offene Mengen trennen.

Es gelten folgende Rechenregeln: u(x) Nu(y) = u(xAy), u(x) Uu(y) = u(xVy), u(x*) =
®[X]\ u(x) und u(0) = 0 bzw. u(1) = [X].

{u(x) | x € X} ist also ein Teilverband des Potenzmengenverbandes &2 (®[X]) und u : X —
P (®[X]) ein entsprechender isomorphismus ist. Auferdem sieht man damit, dass {u(x) | x €
X } eine Basis aus offenen und abgeschlossenen Mengen ist. Wir zeigen nun noch: ®[X] ist mit
dieser Topologie auch kompakt. Sei (u(x)),ea eine Uberdeckung von ®[X], fiir eine geeignete
Teilmenge A von X. Gibt es keine endliche Teiliiberdeckung, so ist fiir jede endliche Teilmenge
A’ von A dann (I)[X] \ UXEA’ ”(x) = QD[X] \M(VXGA’X) = u(/\xEA’X*) 7é 0, also /\)cEA’f.< # 0.
Dann hat A* := {a* | a € A} die eSE und kann zu eine Ultrafilter ¢ auf X erweitert werden.
Nun gibt es aber auch ein x € A mit ¢ € u(x), also x € ¢. Dies steht aber im Widerspruch
zu x* € A* C @. Zu jeder Uberdeckung gibt es somit eine endliche Teiliiberdeckung. Lemma
10.5.2 liefert somit {u(x) | x € X} = C(P[X]). Teil a) ist damit bewiesen.

b) Wir zeigen die Abbildung f : X — ®[C(X)] definiert durch f(x) := {0 € C(X)| x € O}
ist ein wohldefinierter Homoomorphismus. Als erstes bemerken wir, dass tatsachlich {O €
C(X)|x € O} € ®[C(X)] (falls nicht klar = Ubungsaufgabe).
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Injektivitit: Wenn x # y, dann gibt es disjunkte U,V € C(X) mit x € U und y € V. Also
offensichtlich f(x) # f(y).

Surjektivitit: Wenn ¢ ein Ultrafilter in C(X) ist, dann ist ¢ ein System abgeschlossener
Mengen mit der eSE. Nun ist X kompakt, also gibt es ein x € (\pcq, P. Das heifit ¢ C XNC(X).
Auf der anderen Seite hat (XN C(X)) U ¢ offensichtlich die eSE und ¢ ist ein Ultrafilter. Also
xNC(X) C ¢ und damit ¢ = xNC(X) = f(x).

Zeigen wir nun, dass f offen ist. Sei O € C(X) (Nachweis reicht auf einer Basis). f(0) =
{fx)|[xeO0}={{U e CX) |xeU}|x€0}={p e PC(X)] |0 € @} =u(0), welches
per Konstruktion offen ist. Die Umkehrabbildung f~! : ®[C(X)] — X ist also eine stetige
Bijektion zwischen kompakten Hausdorf-Riumen und somit bereits ein Homdomorphismus.

10.5.4 Korollar

Jeder Boolsche Verband ist zu einem Teilverband eines Potenzmengenverbandes iso-
morph.

10.6 Atome, atomlose Boolsche Verbande, Cantorsches
Diskontinuum

In diesem Abschnitt schauen wir uns endliche Boolsche Verbdnde an und zeigen, dass Ab-
zidhlbar unendliche, atomlose Boolsche Verbinde alle untereinander Isomorph sind.
10.6.1 Definition

Atome Ein Element x eines Verband X heifit Atom, wenn 0 # x und -3y € X mit 0 < y < x.
Ein Verband heifit atomlos, wenn er keine Atome hat.

10.6.2 Lemma

Sei X ein Boolscher Verband. Dann ist 4quivalent:
1) a ist ein Atom.
2) a:={b € X | a < b} ist ein Ultrafilter.
3) Es gibt genau einen Ultrafilter y auf X mita € y.

Beweis: 1) = 2): a ist offensichtlich ein Ultrafilter. Sei a # y € X und y ¢ d und y* ¢ 4,
also a £ y und @ £ y*. Dann muss aber a Ay = 0 = a Ay* gelten. Dann aber 0 =0V 0 =
(any)V(aNy*)=aA(yVy*) =a - ein Widerspruch.

2) Rightarrow 3): Es gibt einen Ultrafilter, ndmlich a. Jeder Ultrafilter der a enthilt, enthilt
zwangslaufig auch 4, kann aber auch nicht grofer sein, da dieser eben ein Ultrafilter ist.
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3) = 1): Wenn 0 < y < a, dann existiert ein Ultrafilter y, der genau eines der Elemente
y,a enthélt. y kann also NICHT y enthalten! Nun kann aber y zu einem Ultrafilter ¢ erweitert
werden, der aber ebenfalls a enthilt. Es gilt y # ¢ - ein Widerspruch.

10.6.3 Lemma

Ein Boolscher Verband X ist genau dann atomlos, wenn zu je zwei x,y € X mit x < y ein
Z € X existiert mit x < z <y, man sagt auch X liegt dicht in sich selbst.

Beweis: Jeder dicht in sich selbst liegende Boolsche Verband ist offensichtlich atomlos.
Fiir die andere Richtung bemerken wir zuerst, dass diese zur charakteristischen Algebra ihres
Stone Raum isomorph sind. Dort ldsst es sich dann einfach beweisen, denn es handelt sich
um einen Boolschen Raum ohne isolierte Punkte (Lemma 10.6.2). Seien U,V zwei sowohl
offene, als auch abgeschlossene Mengen in {0, 1} mit U C V, aber U # V. Dann ist auch
W :=V \ U offen und abgeschlossen und natiirlich nicht leer. W muss aber auch unendlich
sein. Fiir zwei x,y € W mit x # y gibt es offen/abgeschlossene und disjunkte Mengen P, Q mit
x € Pund y € Q. Dann ist aber Z := U U (W N P) ebenfalls offen und abgeschlossen und es
gil: UCZCV, mitU #Z#V.

10.6.4 Lemma

Ein endlicher Boolscher Verband X hat Atome und ist isomorph zu #(A), wenn A die
Menge seiner Atome ist. Insbesondere hat er also 214/ Elemente.

Beweis: Der Verband ist endlich, also existieren klarerweise Atome! Sei y ein Ultrafilter
auf X. Dann ist ay := \cy X € ¥, und da y ein Ultrafilter ist, muss a ein Atom sein! Man
sieht also, dass Atome und Ultrafilter sich einander entsprechen. Der Stone Raum ®[X| =
{a | a € A} ist demnach endlich und es gilt u(a) = {a}, fiir jedes a € A (Bezeichnungen
entstammen dem Beweis zu Satz 10.5.3). Der Stone Raum besitzt somit die diskrete Topologie
({u(a) | a € A} ist eine Basis!) und deshalb ist C(®[X]) = Z(P[X]). Nun sind aber X und
C(®[X]) isomorph.

10.6.5 Definition

Cantorsches Diskontinuum Der Raum {0, 1}, wobei wir auf {0, 1} die diskrete Topologie
betrachten und {0, 1} mit der gewdhnlichen Produkttopologie versehen, heit Cantorsches
Diskontinuum.
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10.6.6 Satz

Ein Boolscher Raum X, ohne isolierte Punkte und mit einer abzihlbaren Basis %, ist
homdomorph zum Cantorschen Diskontinuum.

Beweis: Sei 0 := {(U,V) | U,V € # mit UNV = 0. Dann ist ¢ abzéhlbar, also ¢ =
{(Un,Vyy) | n € N}, fiir eine geeignete Aufzéhlung. Wir konstruieren nun rekursiv fiir jedes
k € N und jedes f : {0,...,k} — {0,1} (also f € {0,1}{%*}) eine nichtleere, offene und
abgeschlossene Menge Xy (g).. s(x) mit folgenden Eigenschaften:

1) X = XpUX; mit Xo N X; = 0 und dann weiter Xf(O)...f(k) = Xf(O),..f(k)O UXf(O),..f(k)l mit
X5(0)...-(k)0 N Xf(0)... 1001 = ©-

2) Falls U := Uy, N Xr(0)...£(k) *0#V; NXr0).. .0 =2V, dann U C X1(0)...£(k)0 und V C
X5(0)..f(k)1-

Das die Konstruktion moglich ist, sollte klar sein (man beachte, dass die U,, und V,, sowohl
offen, als auch abgeschlossen sind). Fiir jedes f € {0, 1} setze nun X5 = NaenX7(0)...1(n)-
Als Schnitt iiber eine Familie abgeschlossener Mengen mit der eSE in einem kompakten Raum
gilt Xy # 0. Fiir jedes solches f ist Xy sogar einelementig. Wiren a # b € X, dann géibe es
disjunkte Umgebungen U,, V), € 4. Fiir ein n € N gilt aber (U,,V;) = (U, V,). Alsoa € U =
UaNXp(0)...r(n) und b € V. =V, N Xy () . r(n)- Aus der Eigenschaft 2) folgt U € Xy(q)... (n)0 bZW.

V C Xr0)...f(n)1 im Widerspruch zu a,b € Xy C Xp(0.. f(nt1)-

Das heiBt X7 = {x/}, fiir eindeutiges x; € X. Die Abbildung g : {0,1} — X, definiert
durch f +— x ist also injektiv. Surjektiv ist sie nach Konstruktion auch. Um zu zeigen, dass
es ein Homdomorphismus ist, brauchen wir (da es sich um kompakte Hausdorff-Riume han-
delt) nur zeigen, dass sie offen ist. Da sie bijektiv ist, reicht es die Offenheit auf der stan-

dard Subbasis {{f € {0,1}N | f(k) =i} | i € {0,1}, k € N} nachzuweisen. Nun ist aber

10.6.7 Korollar

Abzihlbar unendliche, atomlose Boolsche Verbinde sind alle untereinander Isomorph.

Beweis: Seien X und Y zwei solche. Dann sind die zugehorigen Stone Rdume homdomorph
(folgt aus Satz 10.6.6, da sowohl ®[X], als auch ®[Y] Boolsche Riume, ohne isolierte Punkte
mit einer abzihlbaren Basis sind) und somit die charakteristischen Algebren isomorph. Letz-
tere sind aber isomorph zu X bzw. Y.

10.6.8 Bemerkung

Wieviele Ultrafilter hat eigentlich so ein Boolscher Verband? Fiir Potenzmengenverbinde ha-
ben wir diese Frage vollstindig beantwortet. Abschlieend wollen wir uns nun zumindest fiir
abzihlbare, atomlose Boolsche Verbdnde X die Anzahl aller Ultrafilter iiberlegen. Hier reicht
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es namlich, aufgrund des eben gezeigten, sich auf die charakteristische Algebra des Cantor-
schen Diskontinuum zu beschrinken. Fiir ein beliebiges f € {0,1}Nist w:= {0 C {0,1}} | O
ist offen und abgeschlossen und f € O} ein Ultrafilter in C({0, 1}Y). Da der Raum Tj ist, be-
kommen wir fiir verschiedene f demzufolge auch verschiedene Ultrafilter. Eine untere Grenze
ist also |{0,1}"|. Andererseits ist jeder Ultrafilter eines abzihlbaren Boolschen Verbands X
ein Element aus #?(X). Nach oben haben wir also die Grenze |22(X)| = |{0,1}"|. Es gibt
also genau Z(X) - viele Ultrafilter auf X.
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11 Fixpunktsatze

”Sie sagen, der Terrorismus muss bekampft werden und produzieren ihn selber! Sie
sagen, Atomwaffen miissen bekimpft werden und haben sie selber! Sie sagen, Dikta-
turen miissen bekimpft werden und sind selber eine! Sie sagen, Demokratie muss ver-
breitet werden und bauen sie bei sich ab! Sie sagen, sie wollen Frieden und verbreiten
aber Krieg! Sie sagen, sie kiimpfen fiir Menschenrechte und foltern ohne Reue! An ihren
Friichten werdet ihr sie erkennen!!!”

Freeman (http://alles-schallundrauch.blogspot.com/)

11.1 Fixpunkte und Ultrafilter

Eine weitere, sehr interessante Charakterisierung der Ultrafilter:

11.1.1 Lemma

Sei f: X — Z(X) eine Mengenwertige Abbildung mit x ¢ f(x) und |f(x)| < k fiir alle x € X
und festes k € N. Dann gibt es eine Zerlegung X = X; U... UXp;41 von X in 2k 4 1 disjunkte
Mengen X; mit X; NU{f(x) |x € X;} =0 furallei € {1,...,2k+ 1}.

Beweis: Beweisen wir zuerst den Fall, dass X endlich. Dies beweisen wir per Induktion nach
n = |X|. Fir n < 2k + 1 ist die Aussage offensichtlich. Sei also n > 2k + 1 und die Aussage
fiir Mengen X’ mit |X’| < n bewiesen. Setze P := {(x,y) € X x X | y € f(x)}. Fiir jedes y € X
setzen wir auflerdem Ay := {x € X | y € f(x)}. Zédhlen wir nun die Elemente von P auf zwei
Weisen, so erhalten wir ¥\ cx |A,| = [P| = Y ex | f(x)| < k- |X|. Folglich existiert ein x’ € X mit
|Ay| < k. Nun setzen wir X' := X \ {x'} und definieren g : X’ — 27(X’) durch g(x) := f(x) \
{x'}. Sei X" = X{U...UX;, | eine Zerlegung entsprechend der Induktionsvoraussetzung, mit
X' NU{f(x) | x € X/} =0 fiir alle i € {1,...,2k+ 1}. Wegen |f(x")| < k gibt es paarweise
verschiedene i1, ...,ix+1 € {1,...,2k+ 1} mit X N f(x') = 0. Wegen |A,| < k gibt es unter

)q fiir i #1i;
XyLJ{X/} fir i =1
die gesuchte Zerlegung gefunden. Sei nun X unendlich. Fiir jedes endliche A C X definieren
wir eine Abbildung ¢ (f,A) :=AUUueca f(a) = P(AUUzen f(a)) durch

diesen ein i; mit Ay ﬂXi’l = ( Wir setzen nun X; := und haben damit

flx) firx€A
0 fir xeA\Ugeaf(a)

Wir versehen {1,...,2k + 1} mit der diskreten Topologie und Z := {1,...,2k + 1}* mit der
Produkttopologie und nennen g € Z gut fiir ¢(f,A), falls

g (n@ul r@)nU{e(f.A) ) [xeg  (HnAU fla)} =0

acA acA

¢(f,A)(x) := {

ist, fir jedes i € {1,...,2k + 1}. Fiir jedes endliche A C X setzen wir nun G4 :={g € Z | g ist
gut fiir ¢ (f,A)}. Jedes G4 ist in Z abgeschlossen und nicht leer wegen dem bereits bewiesenen
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endlichen Fall. AuBerdem gilt offensichtlich Gy4,y...ua,, € Ga, N ...N Gy, und aus der Kom-
paktheit von Z (Satz von Tychonoff) folgt die Existenz eines g € (\{G4 | A : endlich C X}.
Dann ist X; := g~ ' (i), i € {1,...,2k+ 1} die gesuchte Zerlegung.

11.1.2 Bemerkung

Man beachte, dass wir den Satz von Tychonoff nur fiir den Fall kompakter Hausdorffriume
gebraucht haben. Diese Version ist aber dquivalent zum Ultrafiltersatz (siehe Satz 10.4.4) und
damit echt schwicher als das volle Auswahlaxiom (welches normalerweise zum Beweis ver-
wendet wird)!

11.1.3 Korollar (4-Mengen Zerlegungslemma)

Sei X eine Menge und f : X — X eine Abbildung. Dann gibt es eine Zerlegung Xo, X1, X2, X3
von X mit f(x) = x fir alle x € Xp und f(X;) N X; =0 fur i € {1,2,3}.

Beweis: Wir setzen Xy := {x € X | f(x) = x}. Falls X \ Xo = 0, sind wir fertig. Andernfalls
sei ¥’ € X\ Xy und wir definieren eine Abbildung g : X — Z(X) durch

)} fiir x e X\ Xo
g(x) = {{x’} i v x;

Lemma 11.1.1 liefert uns eine entsprechende Zerlegung X{,X; und X} von X. Wir setzen nun
noch X; := X/ \ Xo fiir i € {1,2,3} und haben zusammen mit X dann die gesuchte Zerlegung
von X gefunden.

11.1.4 Satz

Sei 0 # X eine Menge und ¢ ein Filter auf X. Dann ist dquivalent:
1) ¢ ist ein Ultrafilter.
)V feXXgilt: (Fr:={x€X| f(x) =x} € ¢)oder (30 € ¢ mit QN f(Q) = 0).

Beweis: 1) = 2) Das Zerlegungslemma liefert uns X = F U X; Uy UX3 (siehe oben). Da
X € @, folgt aus Korollar 11.1.3, dass bereits eine der an der Zerlegung beteiligten Mengen
im Filter liegen muss.

2) = 1) Sei 0 # A C X und a € A fest gewihlt. Betrachte die Abbildung f : X — X, definiert
durch f|A =id und f(X\A) C {a}. Wir haben also Fy = A. Falls nun F € @, so offensichtlich
A € ¢. Die Existenz solch eines Q hingegen liefert X \ A € ¢ (denn Q C X \ A). Nach Lemma
3.2.3 haben wir also einen Ultrafilter.

244



11.1.5 Korollar

Wenn f : X — X eine Abbildung ist und es einen Ultrafilter y auf X mit f(y) C y gibt
(Definition 3.2.4), dann ist F := {x € X | f(x) =x} € y. Aus f(y) C y folgt iibrigens
sofort () = v, denn Bildfilter von Ultrafiltern sind wieder Ultrafilter.

11.1.6 Lemma

Sei X eine unendliche Menge und seien ¢,y zwei Ultrafilter auf X und f,g: X — X
zwei Abbildungen mit f(y) = ¢ und g(¢) = y (im Sinne der Definition eines Bildfilters,
Definition 3.2.4). Dann gibt es eine Bijektion /2 : X — X mit 4(y) = ¢ (und dann natiirlich
auch sofort =1 (¢) = w).

Beweis: Es gilt fog(¢) = ¢ und go f(w) = y. Entsprechend Korollar 11.1.3 sei X zerlegt
als X =FUA UAyUA3 und X = GUBUByUB3 mit F = {x € X | fog(x) = x} und
G={xeX|gof(x)=x}.Dann 3!Y € {F,A1,A2,A3} mitY € ¢. Falls A; € ¢ folgt wegen
fog(d) = ¢ dann fog(A;) € ¢, im Widerspruch zu fog(A;)NA; =0. Also F € ¢ und
analog G € y. Aus fog(F) =F folgt go f(g(F)) = g(F), also g(F) C G (andernfalls sei
x€g(F)NB;,also Iz € Fmitx=g(z) = g(fog(z)) =go f(x) & B; - Widerspruch). Analog
auch wieder f(G) C F. Dann gilt aber auch F = f(g(F)) C f(G) C F, also f(G) = F und
analog g(F) = G. Dies bedeutet f|G : G — F ist bijektiv (denn g|F : F — G ist die Inverse).

1. Fall G ist endlich. Dann ist auch F endlich und es gibt x € Gund y € F, mit ¥ =X und
¢ —V. Eine beliebige Bijektion 4 : X — X mit h(x) =y erfiillt dann h(y) = ¢.

2. Fall G ist unendlich. Sei k : G — G x {1,2} bijektiv. G| := k(1) und G, := k~!(2)
erfilllen dann G = G; UG, mit G| NG, =0 und |G| = |G| = |G3|. Da y ein Ultrafilter ist, gilt
0.B.d.A. G| € y. Nun giltin jedem Fall |[X \ G{| = |X| = |X \ f(G})| (in jedem Fall heif3t, egal
ob |G| < |X| oder |G| = |X|). Es gibt also eine Bijekion i : X \ G| — X \ f(G}). Wir definieren
i(x) falls xeX\G
f(x) falls x € Gy
und 2(QNGy) = f(QNGy) € ¢. Wegen h(QNGy) C h(Q) ist offenbar auch h(Q) € ¢. Also
h(y) C ¢. Da mit y auch h(y) ein Ultrafilter ist, gilt A(y) = ¢.

dann A : X — X durch A(x) := Istnun Q € y, soist ONG| € ¥

11.1.7 Lemma

Sei ¢ ein Filter auf X, y ein Ultrafilter auf Y und f : X — Y eine Abbildung mit f(¢) C v
(Definition 3.2.4). Dann gibt es einen Ultrafilter ¢ auf X mit ¢ C ¢ und f(¢@) = y.

Beweis: Seien Py,...,P, € ¢ und Q1,...,0, € Y. Danniist f(PiN...NF,) € f(p) C y, also
f(PLN...NB)NQ1N...NQy # 0. Dann ist auch PN ...NE,N 1O N...0f 1 On) =
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PiN...NPNf 1 (Q1N...NQ,) # 0. Das zeigt, dass o := U {f~'(Q) | Q € y} die endliche
Schnitt Eigenschaft hat. Es gibt somit einen Ultrafilter ¢ mit ¢ C ¢ C ¢. Da dann f(¢) ein
Ultrafilter ist und y C f(¢) gilt, muss bereits y = f(¢) gelten.

11.2 Fixpunktsatz von Banach

Ziel dieses Abschnitts ist der Beweis des klassischen Fixpunktsatzes von Banach (den wohl
jeder aus dem zweiten Semester kennt). Der Satz geht iiber die bloBe Existenz- und Ein-
deutigkeitsaussage hinaus, da der Beweis auch gleichzeitig ein praktisches Verfahren ist, den
Fixpunkt numerisch zu approximieren (eine Abschitzung des Fehlers wird ebenfalls gegeben).

11.2.1 Fixpunktsatz von Banach

Sei (X, d) ein vollstindiger metrischer Raum und f : X — X eine stetige Kontraktion (d.h.
0 < g < 1Vx,y € X : d(f(x),f(y)) < gd(x,y)), dann hat f genau einen Fixpunkt x*.
Bilden wir ferner fiir beliebiges x € X die Folge (x;),en mit xo = x und x,,+1 = f(xy), so
konvergiert (x,),cn gegen x* und es gilt die Abschitzung:

n

d(xp,x") < 1q d(xo,x1).

Beweis: Sei x € X beliebig gewihlt. Wir bilden die Folge (x,),en mit xg = x und x,11 =
f(x,) und rechnen durch iterierte Anwendung der Dreiecksungleichung und Kontraktionsei-
genschaft d(x,, X, 1) < d(Xn, Xng1) + oo Fd Xk 15 Xnak) < qd(x0,X1) + ... +q"T*d (x0,x1) =

d(x0,x1) L ;frk — oo fiir n — oo. Die Folge (x,),cn ist also eine Cauchyfolge und konvergiert

somit gegen ein x*. Sei € > 0. Wir zeigen d(x*, f(x*)) < 2¢€. Und da € beliebig war, muss dann
bereits d(x*, f(x*)) = 0, also x* = f(x*) gelten. Zu € gibt es ein N € N, so dass d(x,,x*) < €
fir alle n > N gilt. d(x*, f(x*)) < d(x*,xn+1) +d(xn+1, f(XF)) < €4+ qd(xn,x*) < 2€.

Gibt es einen Fixpunkt y, d.h. f(y) =y, mit x* # y, so gilt d(x*,y) = d(f(x*),f(y)) <
qd(x*,y) <d(x*,y), was ein Widerspruch ist. Also x* =y.

qni n+k

Die Abschitzung sieht man so: Oben hatten wir bereits gezeigt d (x,, x,1x) < -
Aus |d (X, X1 1) — d (X, x| < d(x*,x,11) Tolgt d(xp, X1 k) — d(xp,x*), fiir k — oo,
Also d(x,,x*) < %}d(xo,xl).

d(xp,x1).

11.3 Fixpunktsatz von Brouwer

”’Gott existiert, weil die Mathematik widerspruchsfrei ist, und der Teufel existiert, weil
wir das nicht beweisen konnen.”
Andre Weil
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Kommen wir zum Fixpunktsatz von Brouwer. Dieser lédsst sich zwar leichter formulieren,
als der von Banach, ist aber unvergleichlich schwerer zu beweisen! In seiner klassischen Form
besagt jener: Jede stetige Abbildung der n dimensionalen Einheitskugel D" := {x € R" | ||x|| =
1} in sich, hat (mindestens) einen Fixpunkt: f : D" — D" stetig = 3x € D", mit f(x) = x. Um
diesen Satz (und seine Verallgemeinerung) verniinftig zu beweisen, fithren wir eine ganze
Reihe von Begriffen und Bezeichnungen ein. Grundlegende Begriffe aus (in der Regel) dem
ersten Semester Lineare Algebra, wie Vektorraum, Linearkombination, linear unabhingig, ...
setzen wir von nun an voraus. Eine Teilmenge A eines Vektorraums X heif3t konvex, wenn
fir x,y € A auch {tx+ (1 —1t)y |t € [0,1]} C A. Fiir eine Teilmenge ¥ C X definieren wir
die konvexe Hiille als convex(Y) := {Y* ,tix; | x; € X und ; € [0,1] mit YX_,# = 1}. Als
kleine Ubung iiberlassen wir dem Leser, dass convex (X) die kleinste konvexe Menge K ist
mit X C K. Eine kleine Sache noch: Mit 0 bezeichnen wir sowohl die Korper-Null, als auch
die Vektorraum-Null. Aus dem jeweiligen Zusammenhang sollte klar hervorgehen, welche
jeweils gemeint ist.

11.3.1 Definition

Erzeugnis Sei V ein Vektorraum iiber einem Korper K und sei A C V. Das Erzeugnis (A) ist
dann definiert als {}."* | k;v; | ki € K und v; € A}, also als die Menge aller Linearkombinationen
von Vektoren aus A.

11.3.2 Lemma

Fiir m + 1 Punkte ao, ..., a,, € R" ist 4quivalent:
) {zeR"|3ie{0,...,m}\ {0} mit z=a; —ap} ist linear unabhingig
2) Vso,....8m € R[(Xosiai =0und Y12 15; =0) = so=... =5, = 0]

Beweis: Der bleibt als leichte Ubung.

11.3.3 Definition

affin unabhingig, Simplex, baryzentrische Koordinaten Mittelpunkt (barycenter) Punkte
ao, ..., a, € R™ mit einer der dquivalenten Eigenschaften aus Lemma 11.3.2 nennt mann affin
unabhingig. Seien m + 1 affin unabhingige Punkte ag,...,a,, € R" gegeben. ag...a,, := {x €
R" | x =Y ysia;, mit Y7 s; = 1 und so, ..., 5, < 0} heiit m dimensionales Simplex. Die a;
nennen wir auch die Ecken des Simplex. Eine Seite von § ist ein Simplex der Form a;,...a;,,
wobei iy, ...,ix € {0,...,m}. Fir x = Y7 (s;a; € ag...a,, mit ' os; = 1 und s9,...,5, < 0}
sind die baryzentrischen Koordinaten (eindeutig nach Lemma 11.3.2) definiert als A;(x) := s;,
i =0,...,m. Der Mittelpunkt von S ist definiert als b(S) := (m+ 1)~ Y a;.
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11.3.4 Lemma

Sei § = apaj...a, ein m dimensionales Simplex, mit den affin unabhéngigen ay, ...,a, €
R". Dann gilt:

a) Jedes x € S hat eine eindeutige Darstellung x = Y ; s;a;, mit }./" ,s; = 1 und s, ..., S <
0.

b) S ist eine kompakte Teilmenge des R"

¢) Die baryzentrischen Koordinaten-Abbildungen A; : § — [0, 1] sind stetig.

d) Je zwei m dimensionale Simplizes sind homdomorph.

Beweis: a) Seix=Y"s,a; = Y.I" (tia;, mit }* s; = 1 und s, ..., s,, < 0} und entsprechend
mit den #;. Dann ist 0 = Y7 ,(s; — #;)a;, mit Y.7" (s; —t;) = 0, also nach Lemma 11.3.2 5; = 1;.
b) Wir betrachten A, := {x € R™ | x; >0und }.7* | x; < 1} =0ej...e;,, wobeie; = (0, ...,0, 1,0,...,0)
eine 1 an der i-ten Stelle hat. A ist abgeschlossen (siehe Definition 2.4.1: Folgen aus A, die kon-
vergieren, tun dies bereits in A) und da A offensichtlich beschrénkt ist, ist A auch kompakt. Wir
zeigen A und S sind homdomorph. Dazu definiere f: A — S durch x =590+ s1€1+... +Smem —
s0ao + ... + smay,. f ist offensichtlich bijektiv und stetig (zeigt sich am leichtesten mittels Fol-
genkonvergenz und Lemma 2.3.3). Da A,,, kompakt und S ein T-Raum ist, muss f bereits ein
Homdoomorphismus sein (Satz 4.1.13). Also ist auch S kompakt (und damit abgeschlossen und
beschrinkt).

c) Seien A/ die baryzentrischen Koordinaten-Abbildungen von A,,, die sind in diesem Fall
nichts anderes als die gewohnlichen Projektionen, also stetig. Die baryzentrischen Koordinaten-
Abbildungen A; von S schreiben sich dann einfach als A; = A;* o f~1, sind also auch stetig.

d) Folgt unmittelbar aus dem Vorhergehenden.

11.3.5 Definition

simpliziale Unterteilung eines Simplex Sei S C R” ein Simplex. Eine Familie .# von Sim-
plizes heifit simpliziale Unterteilung, wenn:

1) .7 ist eine Uberdeckung von S.

2) Fiir §1, 8, € .7 ist §1 NS, entweder leer, oder eine gemeinsame Seite von S; und S5.

3) Jede Seite eines jeden S’ € . ist wieder in ..

11.3.6 Satz

Sei S = ay...a,, ein m dimensionales Simplex.

1) Fiir jede fallende Folge Sop D ... D S¢ von Seiten des Simplex S, sind die Punkte
b(So),...,b(Sy) affin unsbhingig.

2) Die Menge . aller Simplizes der Form b(Sp)...b(Sy) bildet eine simpliziale Untertei-
lung von S.
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3) Jedes m — 1 dimensionale Simplex 7 € . ist die Seite von genau einem, bzw. zwei Sim-
plizes aus ., abhédngig davon, ob T in einer m — 1 dimensionalen Seite von S enthalten
ist.

Beweis: 1) Jede Fallende Folge ldsst sich zu einer fallenden Folge der Form Sg O ... D S,
mit So = aj,...a;,,...,Sm = a;,, erginzen, wobei (ip,...,i,,) eine geeignete Permutation von
(0,...,m) ist und es reicht dann offensichtlich aus zu zeigen, dass b(Sp), ..., »(Sx) affin unab-
hingig sind. Betrachten wir dazu ob(So) + ... + tmb(Sm). Mit der Definition der Mittelpunkte
wird dies zu m“_-ﬁlZZ;Oaik oo Umai, = m“flalo + G+ B ai, + .+ ( ”+01 o W) a;, =
Oodiy + ... + Opai,, (1). Es gilt dann 8o+ ... + &, = Uo + .. +,um Falls also to+ ... + i, =0,
so folgt sofort &y = ... = d,, = 0 (da die a affin unabhéngig sind). Damit haben wir dann aber
auch induktiv oy = ... = t;, = 0.

2) Wir zeigen als erstes b(So) b(Sm) ={x € S| Aiy(x) < ... < A, (x)} fiir eine Folge Sp D

. D Sm, mit S = aj,...a;,. C ist klar nach Gleichung (1) Fiir die andere Richtung neh-
men wir uns ein x € S mlt llo( ) < ... <A, (x). Durch Koeffizientenvergleich erhalten wir
aus x = A, (¥)ai, + ... + Ay, (¥)a;, = m”fla,o + G+ ED)ai, + -+ R + - 4 M) ai, sofort
Uo = (m+1)A;,(x) und allgemein py = A;, (x) — A;,_ l( x). Damit erhalten wir x = b (So) +
e F U (Sp) und Y7 e = Y0 g Ai, =1 mit W > 0. Also x € b(Sp)...b(Sy,). Fiir eine geeig-
nete Permutation ist aber jedes x € S in einer Menge der Form {x € § | A;,(x) < ... <A;,(x)}.
Also ist .7 eine Uberdeckung von S. Punkt 3) aus Definition 11.3.5 ist klar nach Konstrukti-
on. Bleibt noch Punkt 2). Eine Seite S’ eines Elementes aus . ist letztendlich eine Seite von
{xe S| A, (x) <...<A,(x)} fiir eine geeignete Permutation. S hat dann aber die Form
{xeS|A,(x)<... < )»,m( )und {0,...,m} = &JZZIIP, mit A;(x) = Aj(x) fur i, j € I,} (%),
fiir eine Zerlegung {0,....m} = LﬂZ:llp. Das das so ist, sicht man am besten an Gleichung
(1). Jede auf diese Weise definierte Menge ist natiirlich auch eine Seite. Und der Schnitt zwei-
er solcher Seiten ist nun entweder leer, oder wieder eine solche Menge der Form (*) (wobei
sich die definierenden Bedingungen natiirlich in Abhingigkeit der gegebenen Seiten verin-
dern konnen). Damit ist gezeigt, dass . eine simpliziale Unterteilung ist.

3) Sei T = b(Sp)...b(Syu—1) ein m — 1 dimensionales Simplex aus .. Wir unterscheiden zwei
Fille (man beachte 7 ist genau dann in einer m — 1 dimensionalen Seite von § enthalten, wenn
So # S):

1. Fall Sy # S. Dann gibt es genau ein m dimensionales Simplex S’ € .¥, von dem es eine Seite
ist. Ndmlich §" = b(8)b(Sp)...b(Sp)-

2. Fall §p = S. Betrachten wir den Simplex Sy...S,,—1, so stellen wir fest, dass entweder S,
ein 1 dimensionales Simplex ist (also von der Form ab, oder an einer Stelle j mit0 > j <m—1
zwei Ecken von §;_1 zu §; entfernt wurden. In beiden Fillen sieht man, dass es genau zwei m
dimensionale Simplizes gibt, von denen 7 eine Seite ist.
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11.3.7 Lemma

Sei . eine simpliziale Unterteilung eines Simplex S. Fiir jedes T € .% sei .7 eine sim-
pliziale Unterteilung von 7. Dann ist auch & := Uy o -7 eine simpliziale Unterteilung
von S.

Beweis: Wir miissen zeigen:
1) & ist eine Uberdeckung von S.
2) Fiir 81,5, € &2 ist S| N S, entweder leer, oder eine gemeinsame Seite von S; und S5.
3) Jede Seite eines jeden S’ € &7 ist wieder in 2.
1) und 3) sind trivial, bleibt somit noch 2). Seien dazu 1,5, € &, mit §1 NS, # 0. Dann ist
S1 € Y7, und S, € .77, fiir geeignete 71,75 € .. Nun ist " := T} N T5 eine gemeinsame Seite
von 77 und 75 und somit 77 € .7, N.%7,. Man sieht unmittelbar S| NS, = (S;NT")N(S2NT7)
und Sy N T ist eine gemeinsame Seite von Sy und 77, bzw. S, N T’ ist eine gemeinsame Seite
von S, und 77. Also S1NT',SoNT' € .#. Daraus und aus der Tatsache, dass es sich bei
< um eine simpliziale Unterteilung handelt, folgt, dass S1 N S, eine gemeinsame Seite von
S1NT"und S> N T’ ist! Wir hatten bereits weiter oben erkannt, dass S; N7’ eine Seite von S|
und S» N T eine Seite von S5 ist. Also ist $; NS, eine gemeinsame Seite von S; und S5.

11.3.8 Definition

[-te baryzentrische Unterteilung Die simpliziale Unterteilung aus Satz 11.3.6 nenne wir die
1-te bayzentrische Unterteilung. Die /-te baryzentrische Unterteilung eines Simplex definieren
wir nun induktiv. Sei dazu .¥] die [-te baryzentrische Unterteilung von S. fiir jedes S’ € . sei
s die baryzentrische Unterteilung nach Satz 11.3.6. Dann setzen wir %741 := Ugc 9, Ly
Dass es sich bei .7, wieder um eine simpliziale Unterteilung handelt, folgt aus Lemma
11.3.7.

11.3.9 Definition

Maschenweite einer simplizialen Unterteilung Sei . eine simpliziale Unterteilung des
Simplex S. Die Maschenweite von . ist dann definiert als sup{D(T) | T € .}, wobei
D(T) :=sup{|x—y| | x,y € T} der Durchmesser von 7 ist.

11.3.10 Lemma

Sei S = ag...ay, C Z" ein Simplex, x € S,y € Z". Dann ist |x —y| <max {|a; —y| |0 <i <

Beweis: Seix = Z;n:() /’L,a,; mit Z;n:() l,' =1und )L,' > 0. Also |x—y\ = ‘ZZH:O liai —Z;n:() ;Liy| =
i—oNMi\Ai — V)| = Li—oMilGi — Y| S MAXi<m|Ai — Y| Li—o M = MaAXi<m|Ai — Y|.
| Yo Ai(ai —y)| < EitoAil | < | | X0 A | |
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11.3.11 Lemma

Der Durchmesser eines Simplex ay...a,, ist gleich max; j<u|a; —aj|.

Beweis: Seien x,y € ag...a,,. Dann folgt aus vorigem Lemma |x — y| < max;<,|a; — y|. Noch-
malige Anwendung des Lemmas fiihrt auf maxi<,|a; —y| < max; j<m|a; — a;l.

11.3.12 Lemma

Die Maschenweite der baryzentrischen Unterteilung eines Simplex S = ag...a,, ist nicht
groBer als .5 D(S), wobei D(S) = sup {[x—y| | x,y € S}.

Beweis: Betrachten wir dazu einen typischen Simplex T = b(Sp)...b(S;), mit Sy = a;,...q;,
bis §; = a;,, aus der baryzentrischen Unterteilung. Es reicht, nach vorigem Lemma, den Ab-
stand |b(S;) — b(Sk)|, mit j < k < m, fiir zwei Eckpunkte aus T entsprechend abzuschitzen.
b(S;) = H%(a,-o + ... +a;;) und b(Sy) = ,ﬁ%l(aio + ...+ a;,). Also folgt aus Lemma 11.3.10
|b(Sj) — b(Sk)| < |a;, —b(Sk)|, fiir ein gewisses [ < j < k. Nun ist |b(Sy) —a;,| = ]H]_—l(aio +
b ay) —ay| = gl Ep—olai, —ai)| < gy Tyoolai, —ai| < giyD(S) < 77 D(S) (man be-
achte |a;, —a;,| = 0).

11.3.13 Korollar

Fiir jedes Simplex S und jedes € > 0 gibt es eine Zahl /, so dass die Maschenweite der
[-ten baryzentrischen Unterteilung von § kleiner als € ist.

Beweis: Folgt durch wiederholte Anwendung von Lemma 11.3.12. Wenn nidmlich m die
Dimension von S ist, so wird die alte Maschenweite nach jeder Anwendung des Lemmas

mit dem Faktor .- multipliziert. Die I-te baryzentrische Unterteilung von § hat also eine
m

Maschenweite von (m—H)lD(S) und (miﬂ)l wird mit zunehmendem [ beliebig klein.

11.3.14 Lemma

Sperners Lemma Sei S = ag...a,, ein m dimensionaler Simplex und V die Menge aller
Ecken von Simplizes aus der /-ten baryzentrischen Unterteilung .’ von S. Sei weiter £ :
V — {0,...,m} eine Funktion mit der Eigenschaft: h(v) € {ip,...,ix}, wenn v € a;,...a;,.
Dann ist die Anzahl von Simplizes aus .#7, auf denen & alle Werte von O bis m annimmt
ungerade (also insbesondere # 0).
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Beweis: Wir fithren den Beweis durch Induktion nach m. Fiir m = 0O ist die Behauptung
trivialerweise richtig.
m—1 — m: Seien also S = ag...ap, - und h gegeben. Wir setzen ./"' := {T € ./ | T ist
m — 1 dimensional und A/(VNT) = {0,...,m— 1}}, also die Menge aller m — 1 dimensionalen
Simplizes T aus ., auf deren Ecken £ alle Werte von 0 bis m — 1 annimmt. Die einzige m — 1
dimensionale Seite von S, die Simplizes aus .’ enthilt (als Teilmenge) ist ag...a,_1 (folgt
aus der Voraussetzung an /). Und die Anzahl derer, mit a bezeichnet, ist ungerade. Dies folgt
aus der Induktionsvoraussetzung, denn T € . | T C ag...ap—1} ist die I-te baryzentrische
Unterteilung von ag...a,,—1.
Sei {T € . | T ist m dimensional} = {T1, ..., T; }. Fiir jedes j < sei b; die Anzahl der Seiten
von T}, die zu .’ gehdren und N; := h(V N7T;) ist die Menge aller Werte die 4 auf den Ecken
von T; annimmt. Man macht sich nun unmittelbar folgendes klar:
DN;={0,...m} = b;j=1,
2)N;={0,...m—1} = b; =2,
3){0,...m—1} ¢ N; = b; =0.
Bezeichnen wir noch mit ¢ die Anzahl aller Simplizes aus .#7, auf denen & alle Werte von 0 bis
m annimmt, so gilt ¢ — (by +... +b;) = =Y ey bj, wobei J :={j <m | N; = {0,...,m —1}},
was aber gerade ist.
Wir zeigen nun, dass auch a — (b; + ...+ b;) gerade ist, woraus dann folgt, dass ¢ ungerade ist!
Aus Teil 3 von Satz 11.3.6 folgt jedenfalls, dass jedes Simplex T aus .’ in einem oder zwei
der T als Seite enthalten ist, abhéngig davon, ob T in einer m — 1 dimensionalen Seite von §
enthalten ist. Nun gibt es aber nur eine m — 1 dimensionale Seite von S die Simplizes aus .7’
enthilt und die Anzahl derer ist a. In der Summe b + ... 4+ b; werden also die Simplizes, die
auch durch a gezihlt werden, EINFACH gezihlt und alle anderen DOPPELT. Die Differenz
a— (by + ...+ b,) ist also ebenfalls gerade und damit, wie schon erwihnt, ¢ ungerade!

11.3.15 Lemma

Knaster, Kuratowski, Mazurkiewicz Sei S = ay...a,, ein m dimensionales Simplex und
(F,)i”z o €ine Folge abgeschlossener Mengen, mit a;,...a;, € Fi, U...U F, fiir jede Seite
ajy-.-aj,, dann ist Fo N ... N F,, # 0.

k?

Beweis: Angenommen FyN... N F,, = 0. Die Familie (U;)7",, mit U; = S\ F; ist eine offene
Uberdeckung von S (in der Teilraumtopologie). Mit der Kompaktheit von S folgt aus Lemma
4.5.22 die Existenz eines € > 0, derart dass jede Teilmenge von S mit einem Durchmesser
< € bereits in einem der U; enthalten ist (also disjunkt zu einem der F;). Aus Korollar 11.3.13
folgern wir, dass es eine Zahl / gibt, so dass die Maschenweite der /-ten baryzentrischen Un-
terteilung . von S kleiner als € ist. V bezeichne im Folgenden die Menge aller Ecken von
Simplizes aus .#. FUr jedes v € V betracheten wir den den Durchschnitt aller Seiten von S,
die v enthalten. Herauskommt wieder eine Seite a;,...a;, von S. Aus den Voraussetzungen an
(F)i% folgt, dass es ein ein j < k gibt, mit v € F;;. Durch A(v) := j definieren wir nun eine
Funktion, die den Bedingungen in Sperners Lemma (Lemma 11.3.14) geniigt. Es gibt also
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ein m dimensionales Simplex T = vy...v,, € ., mit h(v;) = i (bei geeigneter Nummerierung).
Das bedeutet aber v; € F; und somit 7 N F; # @ fiir i = 0, ..., m, obwohl der Durchmesser von
T Kkleiner als € ist - Widerspruch!

11.3.16 Fixpunktsatz von Brouwer

Jede stetige (Selbst)Abbildung f: T — T eines m dimensionalen Simplex 7" = ay...a,, hat
einen Fixpunkt.

Beweis: Fiir i = 0,...,m definieren wir F; :=x € T | 4;(f(x)) < Ai(x)} (zur Erinnerung:
A; sind die baryzentrischen Koordinaten). Die A; und das f sind stetig, die F; demzufolge
abgeschlossen (der Grenzwert jeder konvergenten Folge aus F; ist wieder in F;). Wir zeigen,
dass die Familie (F;)’", den Voraussetzungen an Lemma 11.3.15 geniigt. Sei dazu a,...a;,
eine Seite von 7 und x € aj,...a;.. Es gilt dann A;(x) + ... + 4, (x) = 1 = A(f(x)) + ... +
An(f(x)), also Ai, (f(x)) +... +A;, (f(x)) < Ajy(x) +... + A, (x). Es muss also ein j < k geben,
mit A;; (flx) < Ai; (x). Das heifit aber x € Fi; und insgesamt also a;,...a;, C Fjy U ... UF;,.
Lemma 11.3.15 liefert also ein x € FyN...N Fyy, also Ag(f(x)) < Ao(x), ..., A (f(x)) < A (x).
Nun gilt aber Ao(f(x)) +... + An(f(x)) = 1 = Ap(x), ..., A (x) und alle Summanden sind > 0.
Es muss also Ag(f(x)) = Ap(x), ..., A (f(x)) = An(x) gelten und somit f(x) = x!

11.3.17 Bemerkung

Wir werden den Fixpunktsatz von Brouwer nun verallgemeinern. Dazu benétigen wir weitere
Erkenntnisse tiber gewisse Teilmengen des R".

11.3.18 Lemma

Seien X,Y zwei topologische Rdume und A C X bzw B C Y. Wir sagen dann, dass (X,A)
homoomorph zu (Y, B) ist, wenn es ein Homdomorphismus f : X — Y gibt mit f(A) = B.
a) Sei A CR", x € R" und A konvex, dann ist Ky 4 := {tx+ (1 —t)a|a € A°undz € [0,1)}
offen (und auch konvex). K, 4 nennt man den offenen Kegel iiber A mit Spitze x (obwohl
x nicht unbedingt zu K, 4 gehdren muss).

b) Sei nun X C R”, X: kompakt, konvex und X° # 0, dann ist (X,dX) homéomorph zu
(D", 5" 1).

Beweis: a) Es ist Ky 4 = Uye(o,1) fi(A°) - und somit offen, wobei f; : R" — R" der durch
fi(u) :=tx+ (1 —t)u definierte Homéomorphismus ist.
b) O.B.d.A. ist D" C X (warum). Definiere dann r : dX — §"~! durch r(x) := ||x||"'x. Die
Stetigkeit ist klar. Um zu zeigen, dass r surjektiv ist, nehmen wir uns ein x € §"~! und setzen
s:=sup{t|t>1undtx € X}.sist dann sx € dX (sonst: 1.Fall sx € (R"\ X)°, dann 3¢ > 0
mit K(sx,€) C R"\ X. Aber |[sx — (s —&/2)x|| = €/2, also (s —&/2)x € K(sx,e) CR"\ X -
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Widerspruch! und im 2.Fall wire sx € X°, also K(sx,€) C X und den Widerspruch fithrt man
analog mit s+ £/2.). Also ist sx € dX und r(sx) = x.

Um Injektivitdt zu zeigen, nehmen wir r(x) = r(y) fiir x,ydX an. Also ||y||x = ||x||y. Falls
x #y,s00.B.d.A.||y|| <|x||. Es gilt dann K, p» C X, da X konvex ist. Nun ist aber Ky p» offen
und y € K, pr. Alsoy € X° - Widerspruch zu y € dX.

Also ist 7 : 9X — S ! stetig und bijektiv, und demzufolge nach Satz 4.1.13 bereits ein Ho-
moomorphismus.

Wir definieren nun g : D" — X durch g(0) = 0 und g(y) := ||y||r~"(||y||~'y). Die Abbildung
ist wohldefiniert, denn fiir y € D" ist 7~ (||y||~y) < i
g ist auch stetig, denny, — 0 = |y — 0 = [lg()|| = 0 (r~'(|ly||~'y) ist beschrinkt). Zu
zeigen bleibt wieder Bijektivitit, damit man Satz 4.1.13 anwenden kann. Fiir x € D" = §"~!
gilt auBerdem g(x) = r~!(x) und der Beweis wire damit dann beendet.

Surjektivitit: Sei x € X (0.B.d.A. x # 0). Also x/||x|| € S"~!. Also gibt es genau ein y € dX

mit r(y) = x/|x||. Aber r(y) = y/||y||. also y = 12Lx und somit (y € 9X = x| < [ly||)

X||X

g(x/|ly|l) = x (die leichte Rechnung dazu, bleibt d¢|3‘r‘r|1 Leser iiberlassen).

Injektivitit: g(x) = g(v) = x| (x/[x]) = Iyl (3/ly])- Falls [lx] = [ly]], dann x =y,
denn r ist bijektiv. Also 0.B.d.A. ||x|| < ||y|| und somit O < ||x||/[|y|| =: A < 1. Falls A =0,
dann x = 0 und somit auch y = 0 - Widerspruch. Also 0 < A < 1. Das bedeutet fiir z :=
r~1(y/|lyll) € dX dann aber A~z = r~!(x/||x||) € X, mit 1 < A~'. Wir betrachten wieder
den offenen Kegel K; -1, pn C X. Es ist dann namlich z = ALz (1-1)0 € Kj -1, pr und
somit z € X° - Widerspruch!

11.3.19 Lemma

Sei K C R" kompakt und konvex und Y := (K) der von K aufgespannte Unterraum. Dann
ist K° # 0, als offener Kern in der Teilraumtopologie von Y.

Beweis: Sei {b1,...,bm} C K eine Basis von Y (m < n). Wir betrachten nun den Simplex
S:=0b;...by,, = {X7 1[3,[9 | Bi>0und Y7 | B; < 1}. Mit b := m+1(b1—i— .+ by) gilt dann
namlich S = {b+Y " ,(Bi — m+1)b | Bi >0 und Y7 1B,§1}—{b+2 VYibi | v > m+1
und Y77, % < m+1} Dann gilt aber V := {b+ Y7 | 1:bi | || < m+1 } C S und V ist offen

und nicht leer, denn V = f(U), wobei f : R™ — Y definiert durch f (X1, .o X) == D+ Y xib;
ein Homoomorphismus ist und U := {(x1,...,xn) | |xi| < e +1 } offen 1st

11.3.20 Korollar

a) Fiir ein m dimensionales Simplex § C R gilt §° # @ (offener Kern in R™).
b) Jede kompakte und konvexe Menge K C R™ mit K° # 0 ist zu einem m dimensionalen
Simplex § C R homdomorph.
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Beweis: Folgt aus Lemma 11.3.18 und 11.3.19.

11.3.21 Verallgemeinerter Fixpunktsatz von Brouwer

Sei @ # K eine kompakte konvexe Teilmenge des R”. Dann hat jede stetige Abbildung
f : K — K einen Fixpunkt.

Beweis: Wir betrachten Y := (K) und einen geeigneten Homdomorphismus g : ¥ — R™,
der zugleich ein Isomorphismus ist (Basisvektoren werden einander zugeordnet). g(K) ist also
kompakt und konvex C R™, mit g(K)° # 0. Es gibt also ein m dimensionales Simplex S C R”
und einen Homoomorphismus /4 : § — g(K). Die Abbildung 7~!ogo fog~!oh hat einen
Fixpunkt, 7' ogo fog~ ! oh(x) = x und somit f(g~'(h(x))) = g~ ! (h(x)). Die Abbildung f
hat also auch einen Fixpunkt!

11.4 Topologische Vektorraume

Um den Brouwerschen Fixpunktsatz auf allgemeinere Raume iibertragen zu konnen, brauchen
wir einige Hilfsmittel aus der Theorie topologischer Vektorrdume. Diese sind hier zusammen
getragen.

11.4.1 Definition

topologischer Vektorraum: Ein topologischer Vektorraum ist ein topologischer Raum (X, 7),
der zusitzlich eine Vektorraumstruktur hat, derart dass die Addition und skalare Multiplikation
stetig sind. Priziser:

+ : X x X — X ist stetig und

- Kx X — X ist stetig.

Wir beschrinken uns auf den Fall K = C oder R. Die Stetigkeit von + bedeutet also: Zu
x+yeWergibtesU,VetmitxceU,yecVundU+V CW. Die Stetigkeit von - bedeutet:
ZukxeW ertgibtesU:offenin K, VetmitkeU,xecVundU-VCW.

Fiir ein festes y € X bzw k € K\ {0} sind die Abbildungen ¢, bzw ;, definiert durch ¢y (x) :=
x+y und y(x) := kx Homéomorphismen. Das heif3it also jede offene Menge U ist von der
Gestalt U = x+V, wobei 0 € V € 7. Man kann sich fiir die meisten Aussagen also auf offene
Mengen, die die 0 enthalten beschrianken. Wir fiihren noch zwei abkiirzende Schreibweisen
ein: x:={ACX |x€A} und % (x) := {A C X | A ist Umgebung von x}. Die Menge aller
offener Mengen welche x enthalten, schreibt sich dann einfach als XN 7.

Wir nennen eine Teilmenge A von X balanciert, wenn kA C A ist, fiir jedes k € K mit |k| < 1.
Der Raum X heil3t lokal konvex, wenn die 0 eine Umgebungsbasis aus offenen, konvexen
Mengen hat.
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11.4.2 Lemma

Sei (X, 7) ein topologischer Vektorraum, und W € % (0). Dann gibt es ein symmetrisches
UexNtmitU+U CW.

Beweis: Ubung.

11.4.3 Lemma

Sei X ein topologischer Vektorraum, K,C C X, K: kompakt, C: abgeschlossen und KNC =
0, dann gibtes V € 0Nt mit (K+V)N(C+V) = 0.

Beweis: Alles ist klar, wenn K = 0, also K # (. Wihleeinx € Kund U e xNTmitUNC =0.
Dann ist U —x € 0N 7, also gibt es V, € 0N 7 mit V, = —V, (symmetrisch) und V, 4 V, 4 V, +
Ve CU —x. Nun gilt V, +V,+V, C V. +V, 4V, +V, und somit x+ V, 4+ V,+V, C U, also
insbesondere (x + Vi + V; + V) NC = 0. Dann aber auch (x4 V, +V,) N (C+ V,) = 0 (sonst
yeEx+Vi+Viundye C+V,=C—V,,alsoy=x+v;+vy =c—v3zund dann (x+V,+V, +
Vi) NC # 0). Nun ist (x + Vy)xek eine offene Uberdeckung von K, also K C (x + Vy,)U... U
(x, + Vi, ) fur endlich viele x. Setze V :=V,, N...NV,,. Dannist K +V C U, (x;+ Vi, +V) C

" (xi + Vi, +Vy,). Aber (x; + Vi, + Vi, ) N (C+Vy,) =0, also auch (K+V)N(C+V) =0.
Bemerkung: Wenn der Topologische Vektorraum also ein Tj-Raum ist, so ist er bereits ein
Hausdorff-Raum (T5).

11.4.4 Lemma

a) Jede Umgebung der O enthilt eine offene balancierte Umgebung der 0.
b) Jede konvexe Umgebung der O enthilt eine offene konvexe balancierte Umgebung der
0.

Beweis: a) Sei V € % (0). Da die skalare Multiplikation stetig ist, ist ¢ := {W € 0N
T|Ve([t| <1 =1tWCV)}#0.Dannist V* := |J¢ die gewiinschte Menge.
b) Sei U € % (0) konvex. Setze A := (4 aU. Wir wihlen uns ein balanciertes W € % (0)
mit W C U. Mit |a| = 1 folgt W = aW C aU, also W C A. Mit U ist auch aU konvex, damit
auch A und dann auch A° (Wenn Y konvex ist, so ist es auch Y°. Es gilt tY° + (1 —¢)Y° C Y.
Da die erste Menge aber offen ist gilt auch C Y°.).
Bleibt noch zu zeigen, dass A° balanciert ist. Sei dazu [t| <1 = r=rbmit0 <r <1 und
|b| = 1. Dann ist
1A = rbA = (=1 rbalU = (g=1 raU C (jq=1aU = A, da auch aU konvex ist mit 0 € aU.
A ist also balanciert und damit auch A° (Wenn Y balanciert ist, so ist es auch Y°. Denn
W, (x) := ax ist ein Homéomorphismus, also y(Y°) = (y(Y))°. Damit gilt tY° = y;(Y°) =
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(Wi (Y))° = (17)° C ¥,
A° ist also die gesuchte Menge.

11.4.5 Lemma

a) Sei X ein topologischer Vektorraum, X ein T1-Raum und f : K" — X linear. Dann ist f
stetig.

b) Sei Y ein n-dimensionaler Teilraum von X, dann ist jeder Isomorphismus f: K" — Y
ein Homdomorphismus.

c) Das Y aus b) ist abgeschlossen.

Beweis: a) Fiir j = 1,...,n sei P; : K" — K die natiirliche Projektion, ey, ..., e, die standard
Basis von K". Ferner bezeichne ¢ die Addition und y die skalare Multiplikation (in X). Dann
folgt f(z) =Y, w(pi(z),f(ei)). Und da ¢ bzw  stetig sind, ist es auch f.

b) Sei S:={ze€K"| ||z]| =1}, B:={z € K" | ||z]| < 1} und K := f(S). Dann ist K kom-
pakt und 0 ¢ K. Also gibt es V € 0N 7, V: balanciert, mit VN K = 0. Setze E := f~1(V) =
f Y vNY) = ENS=0. Dann ist aber 0 € E, auBerdem ist E balanciert und somit weg-
weise zusammenhingend. Zusammen ergibt dies E C B. f~! : Y — K" ist aber von der Form
1= (fl_l, ...,fn_l), fiir lineare f; : Y — K. U :=V NY ist eine offene Umgebung der 0 in Y
und f; ! ist auf U beschrinkt (E C B), d.h. | ;' (u)| < z > Ofiiralle u € U. Dann ist f; ' aber
auch stetig (aufgrund der Linearitit, reicht es diese auf der 0 nachzuweisen: Wenn € > 0, so
folgt fiir u € (&/2)U sofort | £, (u)| < €.) Mit den f;! ist dann aber auch f~! stetig. Das f
stetig ist, wissen wir bereits und bijektiv ist es ja sowieso schon.

c) Seien f und V wie aus b). Wir wihlen uns ein y € Y. Es gibt dann ein 7 > 0, so dass y € tV..
Nun ist Y NtV C f(¢tB) C f(tB) und ¢B ist kompakt, also auch f(¢B). Damit ist f(tB) aber
auch abgeschlossen und somit y € Y Nz C f(tB) C Y. Das heiBit: Y ist abgeschlossen.

11.4.6 Definition

Fréchet Raum, total beschrinkt Ein Fréchet Raum ist ein topologischer Vektorraum, des-
sen Topologie durch eine vollstindige invariante Metrik erzeugt wird. Invariant heit dabei
d(x+z,y+z) =d(x,y) (fiir alle x,y,z). Aus den metrischen Rdumen kennen wir bereits das
Konzept der totalen Beschrinktheit. Eine Teilmenge E eines metrischen Raumes X heift to-
tal beschrénkt, wenn es fiir jedes € > 0 endliche viele Punkte aus X gibt, so dass die Kugeln
mit Radius € um diese Punkte bereits ganz E iiberdecken. Diese Konzept kann man auch
fiir beliebige topologische Vektorrdume formulieren. Eine Teilmenge £ C X heif3t dann total
beschrinkt, wenn es zu jeder Umgebung U der 0O eine endliche Teilmenge F C X gibt mit
ECF+U.
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11.4.7 Lemma

Sei E C R" und x € convex (E). Dann liegt x bereits in der konvexen Hiille von hochstens
n+ 1 Punkten aus E.

Beweis: Es geniigt zu zeigen, dass wenn k > n und x = Zfill tix; eine konvexe Kombi-
nation von k + 1 Vektoren aus R” ist, x dann bereits eine konvexe Kombination von k die-
ser Vektoren ist. Wir betrachten dazu die lineare Abbildung 7 : R¥t! — R” x R, definiert
durch y(ay,...,ax1) = (X aixi, YN ;). Wegen dim (ker (y)) + dim (im (y)) = k+ 1 und
dim (im(y)) <n+1 gilt dim (ker(y)) > 1. Also gibt es (ay, ..., a4 1) mit (mindestens) einem
a; 7 0 und Z;‘;’ll a;x;i = 0, bzw. Zfill a; = 0. Wir setzen nun A := min{t;/|a;| | a; # 0} und
¢; == t; — Aa; (fiir alle i). Dann gilt Y** cox; = x, Y51 ¢; = 1 und ¢; > 0 (fiir alle i). Aber
mindestens eines der ¢; ist 0! Damit ist die Aussage bewiesen.

11.4.8 Lemma

a) Seien Ay, ...,A, kompakte konvexe Mengen in einem topologischen Vektorraum, dann
ist auch convex(A; U...UA,) kompakt.

b) Wenn X ein lokalkonvexer topologischer Vektoraum ist und £ C X total beschrinkt,
dann ist auch convex(E) total beschrinkt.

¢) Wenn X ein Fréchet Raum ist und K C X kompakt, dann ist auch convex(K) kompakt.
d) Wenn K C R” kompakt ist, dann auch convex(K).

Beweis: Sei S:= {(s1,...,5,) | si >0und Y7 ;s; = 1}. Setze A := A X ... X A, und definiere
f:SxA — X durch f(s,a) ;==Y sia;. Damit definieren wir nun K := f(S x A). K ist dann
kompakt, auBerdem K C convex(A; U...UA,). Das auch die umgekehrte Inklusion gilt sieht
man folgendermaf3en:

Als erstes halten wir fest, dass A; C K gilt (fiir alle 7). Und nun zeigen wir noch, dass K auch
konvex ist. Seien dazu (s,a) und (¢,b) aus S XA und a+ 8 = 1 mit ¢, B > 1. Dann rechnet man
einfach nach, dass o f (s,a) + B f(¢t,b) = f(u,c) ist, wobei u = as + Bt und die Komponenten
von ¢ so aussehen ¢; = (as;a; + Bt;b;) /(as; + Pt;). Damit ist a) bewiesen.

b) Sei U eine beliebige Umgebung der 0 in X. Wihle dann eine konvexe Umgebung V der 0
in X mit V 4V C U. Nach Voraussetzung an E gibt es dann eine endliche Teilmenge F C X
mit E C F+V. Also auch E C convex(F)+ V. Die letzte Menge ist aber konvex (als Summe
zweier konvexer Mengen). und damit also auch convex(E) C convex(F) + V. Nun folgt aber
aus a), dass convex(F) eine kompakte Menge ist. Also gibt es eine endliche Menge F; C X
mit convex(F) C Fy + V. Insgesamt bekommen wir convex(E) C F1 +V +V C F; +U. und
damit ist convex(E) total beschrinkt (da U beliebig gewihlt wurde).

¢) Abschliisse total beschriankter Mengen in metrischen Raumen sind wieder total beschridnkt
und demzufolge in vollstindigen metrischen Riumen sogar kompakt. Insbesondere sind aber
kompakte Mengen total beschrénkt, also nach b) auch deren konvexe Hiillen. Und da der Raum
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vollstdndig ist, sind diese wiederum kompakt.

d) Sei S = {(s1, ., 8p+1) | 5; > 0und ¥""'s; = 1} und K C R" kompakt. Definieren wir die
Abbildung A : S x K"t — R* durch A(s,xq,....X,41) := Z?jll six;, so stellen wir mit Hilfe
des vorigen Lemmas fest, dass convex(K) = A(S x K"*1). Da A stetig ist, folgern wir, dass
convex(K) kompakt ist.

11.5 Fixpunktsatz von Schauder-Tychonoff und Leray-Schauder
Prinzip

Kommen wir nun zum spektakuldren Fixpunktsatz von Schauder-Tychonoff. Dazu fiihren wir
einige wichtige Konzepte aus der Theorie der Fixpunkte ein. Fiir eine Umfassende Darstellung
verweise ich auf (Andrzej Granas / James Dugundji: Fixed Point Theory).

11.5.1 Definition

kompakten Abbildung Unter einer kompakten Abbildung f : X — Y, fiir zwei top. Raume,
verstehen wir eine stetige Abbildung, derart dass f(X) in einer kompakten Teilmenge von Y
enthalten ist. Fiir eine Abbildung S : X — 2 (Y) definieren wir S~ : ¥ — Z2(X)und §* : Y —
P(X) durch S~ (y) :={x € X |y € S(x)} und S*(y) := X \ S~! (y). Mit einem Fixpunkt einer
solchen mengenwertigen Funktion S : X — £2(X), meinen wir ein x € X mit x € S(x).

Im Folgenden seien X,Y Teilmengen topologischer Vektorrdume und S : X — Z(Y) eine
mengenwertige Funktion.

Wenn Y konvex ist und die Abbildung S nicht leere konvexe Werte annimmt und S~ (y) offen
ist fiir jedes y € Y, dann heif3t S eine F-Abbildung (I von Ky Fan).

Wenn X konvex ist und die Abbildung S offene Werte annimmt und S~ (y) nicht leere konvexe
Mengen sind (fiir jedes y € Y), dann heifit S eine F*-Abbildung.

Die Menge aller solcher F-Abbildungen bzw F*-Abbildungen bezeichnen wir mit F(X,Y)
und mit F*(X,Y). Um vertrauter mit der Notation zu werden, empfehle ich folgende Ubung:
SeF*(X,Y) & S e F(¥,X).

11.5.2 Satz

Fan-Browder (nicht Brouwer) Sei X eine kompakte, konvexe Teilmenge eines top. Vek-
torraumes und 7 € F(X,X), oder T € F*(X,X). Dann hat T einen Fixpunkt (im oben
beschriebenen Sinn).

Beweis: Es geniigt den Fall 7 € F(X, X) zu betrachten (Warum?). Na gut; als néchstes stel-
len wir fest, dass T*(y) = X \ T~ (y) kompakt ist (fiir jedes y € Y). AuBerdem gilt MNyey T*(y) =
X\ Uyey T-!(y) = 0. Wegen der Kompaktheit muss es also yi,...,y, € ¥ geben mit T*(y;) N
..NT*(yy) = 0. Sei L := (y1,...,yy) der von den y; aufgespannte endliche Unterraum und
sei C := convex(yy,...,yn). Wir haben also dim(L) := m < n und somit ist L isomorph und
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homdomorph zu R™. Insbesondere ist C auch kompakt. Sei nun d eine Metrik auf L, wel-
che die Topologie erzeugt. Nun ist L N T*(y;) abgeschlossen in L. Also d(y,LNT*(y;)) =
0 yeLNT*(y;). DaN (LNT*(y;)) =0, folgt A(y) :=Y" ,d(y,LNT*(y;)) > O fiir al-
le y € C. Die Funktion f : C — C definiert durch f(c) := (1(c)) "' X% d(c,LNT*(y;))y; ist
stetig (Warum?). Das heift, es gibt ein ¢y € C mit f(co) = co (folgt aus dem verallgemei-
nerten Fixpunktsatz von Brouwer). Setze I := {i € {1,...,n} | d(co,LNT*(y;)) > 0}. Nun ist
co € convex({yi | i € I}) \ Uie; T*(vi). Angenommen co & T (co). Dann gibt es ein iy € I mit
viy & T(co), denn T(cp) ist konvex. Dann ist aber co & T~ (y;, ), also co € T*(y;, ), was ein Wi-
derspruch ist! Das heiBt, es gilt bereits co € T(cp). Wir haben also einen Fixpunkt gefunden.

11.5.3 Lemma

Sei X eine Teilmenge eines lokalkonvexen topologischen Vektorraums Z. Sei aullerdem
¥ die Menge aller konvexen, symmettrischen und offenen Umgebungen der 0 in Z und
f: X — X eine kompakte Abbildung (bzgl. der Teilraumtopologie). Wenn fiir jedes U € ¥
ein x € X existiert, mit f(x) —x € U, dann hat f einen Fixpunkt.

Beweis: Nehmen wir das Gegenteil an, d.h. Vx € X : f(x) # x. Dann gibt es fiir jedes x ein V,
und Wy aus ¥ mit 1) (x+ V) N (f(x) +Wy) =0 und 2) f((x+Vy)NX) C f(x)+ W,. Aufgrund
der Kompaktheit der Abbildung, ist m kompakt in X. Es gibt also xq,...,x; € m C X mit
f(X) C Ule(x,- + %in)- Setze nun U := ﬂle %in. Wenn also x € X, dann f(x) € x; + %in
fiir ein i. Dann kann aber x nicht in x; + V;, sein, denn sonst wire ja f(x) € x; + W,,, also
(i 4+ Vi) N (f (xi) + Wy,) # 0. Nun st f(x) + 3Vs, € x; + 2Vy, + 3Vi, € X+ Vy, und somit x ¢
f(x) + 4V, Dann aber auch x ¢ f(x) +U, im Widerspruch zur Voraussetzung.

11.5.4 Lemma

Sei 0 # C eine kompakte konvexe Teilmenge eines lokal konvexen top. Vektorraums X, U
eine offene symmetrische konvexe Umgebung der O und f : C — X eine stetige Abbildung,
mit f(C) C C+U. Dann gibt es ein x € C mit f(x) —x € U.

Beweis: Wir definieren 7 : C — Z(C) durch T'(x) :={yeC|y e f(x)+ U} =CN(f(x)+
U). Nun ist letztere Menge nicht leer (Warum?) und konvex und auBerdem ist 7~ (x) = {y €
ClxeTy}={yeClxef()+U}={yeC|f(y)ex+U}=f""(x+U) (wegen der
Symmetrie). £~ (x+U) ist aber offen und somit T € F(C,C). Das heift es gibt ein x € C mit
x € T(x) und somit x € f(x)+U.

260



11.5.5 Fixpunktsatz von Schauder-Tychonoff (1. Variante)

Sei 0 # C eine konvexe Teilmenge eines lokalkonvexen top. Vektorraumes X, aulerdem
sei X ein T1-Raum und f : C — C eine kompakte Abbildung. Dann hat f einen Fixpunkt.

Beweis: Sei V eine beliebige offene, konvexe und symmetrische Umgebung der 0 und
f(C) € UL, (x; + V) (Kompaktheit!) mit x; € C. Wenn K := convex(xi,...,x;) bezeichnet,
dann gilt offensichtlich f(K) C f(C) C K +V und K ist kompakt und konvex. Nach dem vo-
rigen Lemma gibt es also ein x € K mit f(x) —x € V. DaV eine beliebige offene, konvexe und
symmetrische Umgebung der 0 war, folgt aus dem anderen Lemma die Existenz eines p € C

mit f(p) = p.

11.5.6 Fixpunktsatz von Schauder-Tychonoff (2. Variante)

Sei (X, 7) ein lokal konvexer topologischer Vektorraum, (X, 7) auBerdem Ty, 0 # C C X,
C: kompakt und konvex und f : C — C stetig. Dann gibt es ein p € C mit f(p) = p.

Beweis: Wenn C sogar kompakt ist, dann ist die Abbildung offensichtlich kompakt und hat
somit einen Fixpunkt.

11.5.7 Definition

vollstetig Seien X ein metrischer und Y ein topologischer Raum. Eine stetige Abbildung f :
X — Y heiBt vollstetig, wenn fiir jede beschrinkte Teilmenge A C X der Abschluf3 des Bildes
kompakt ist (also f(A) ist kompakt).

11.5.8 Fixpunktsatz von Schauder-Tychonoff flir normierte Raume

Sei C eine beschrinkte, abgeschlossene und konvexe Teilmenge eines normierten Raumes
X und f: C — C vollstetig. Dann hat f einen Fixpunkt.

Beweis: Offensichtlich ist die Abbildung f kompakt!

Zur Auflockerung mal ne klitzekleine Anwendung, die die Wirkungsweise von Fixpunkt-
prinzipien ganz gut verdeutlicht.

11.5.9 Beispiel

Es gibt eine stetige Funktion f : [0,1] — R, welche die Gleichung f(x) = [y sin(x+ f2(t))dr
erfiillt. (Hinweis: Man verwende die Menge {T(f) | f: [0,1] — R stetig }, wobei T'(f)(x) :=
fo] sin(x+ f%(t))dt, den Satz von Arzela-Ascoli und einen Fixpunktsatz.)
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Ein tiefliegendes Prinzip zur "Gewinnung” von Fixpunkten ist das Leray-Schauder Prinzip.
Das Interessante ist hierbei, dass Objekte, deren Existenz man (noch) nicht nachgewiesen hat,
gewissen Ungleichungen geniigen miissen, woraus dann die Existenz von Fixpunkten folgt.

11.5.10 Leray-Schauder Prinzip

Sei X ein normierter Vektorraum, und f : X — X eine kompakte, oder vollstetige Abbil-
dung. Dann hat f einen Fixpunkt, falls eine der drei folgenden Bedingungen erfiillt ist.

a) Ir>0vre[0,)Vx(x=1f(x) = [|x|| <r),

b) 3r > 0vx(|x| = r = [IF(x)]| < ).

¢)dr>0Vx(|lx||=r=VA>1:Ax# f(x)),

Beweis: Es gelte a). Sei M := {x € X | ||x|| <2r} und S : M — M definiert durch S(x) :=
f(x), falls || £ (x)|| < 2rund S(x) := 27| f(x)|| =" £ (x) fiir || f(x)| > 2r. M ist konvex (klar) und
S ist stetig (folgt aus der Stetigkeit der Norm und dem Klebelemma, siehe Mini-Skript). Wir
zeigen nun, dass S auch kompakt ist. Dazu geniigt es zu zeigen, dass jede Folge aus S(M)
(der Abschluss in M) eine konvergente Teilfolge hat (diese konvergiert dann bereits in S(M)),
denn dann ist S(M) kompakt (X ist ein metrischer Raum). Sei also (x,),cn eine Folge aus
M. Wir betrachten zwei Fille. 1. Fall: Es gibt eine Teilfolge (x/,) mit || f(x},)|| < 2r (fiir alle
n), dann ist S(x,) = f(x],) und die Kompaktheit bzw. Vollstetigkeit von f erledigt den Rest.
2. Fall: Es gibt keine solche Teilfolge. Dann gibt es zu jeder Teilfolge ein Folgenelement x;
mit || f(xg)|| > 2r. Wihlt man die Teilfolgen geschickt, so kann man sich auf diese Weise
eine Teilfolge (x],) konstruieren, so dass ||f(x],)|| > 2r ist, fiir alle n. Wieder nutzen wir die
Kompaktheit bzw. Vollstetigkeit von f und verschaffen uns eine Teilfolge (der Teilfolge) (x)
mit f(x!!) — y € X (fiir n — o). Das heiBt aber || f(x!)||~! — ||y||~!. Das bedeutet aber S(x//) =
2r|lF DT F () — 2r|ly|| "'y € M (fiir n — o). Da S als kompakt erkannt ist liefert uns
der Fixpunktsatz von Schauder-Tychonoff (2. Variante) nun ein x € M mit S(x) = x. Wenn
£ (x)|| > 2r wire, dann ist x = S(x) = ¢ f(x), mit £ := 2r|| f(x)||~! < 1. Aus der Voraussetzung
folgt dann ||x|| < r im Widerspruch zu ||x|| = ||S(x)|| = 2r. Also ist || f(x)|| < 2r und damit
x=S(x) = f(x).

b) impliziert c), also setzen wir nun c) voraus. Setzen wir dazu K := {x € X | ||x|| < r}.
Dann definieren wir eine Abbildung / : X — K durch h(x) = x, fiir x € K und h(x) = r||x|| ~'x
fiir x € K. Die Abbildung £ ist stetig (folgt leicht aus dem Klebelemma). Nun ist auch die
Einschrénkung f|g von f auf K stetig und kompakt bzw vollstetig und demzufolge, ist es auch
die Nacheinanderausfithrung /o f|x (also kompakt bzw. vollstetig). Das heift es gibt es einen
Punkt x € K mit ho ﬁ x(x) = x, da K offensichtlich konvex, beschriankt und abgeschlossen
ist. Wir zeigen noch, dass f(x) auch in K liegt. Wenn nicht, dann ist ||f(x)|| > r. Nun ist
x = h(x) = h(f(x)) = rllf(x)[|7"f(x), also [|x|| = rund f(x) = Ax, wobei A = | f(x)[r~" > 1,
im Widerspruch zur Voraussetzung! Also ist f(x) € K und deshalb x = h(x) = h(f(x)) = f(x).
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12 Lokal-endliche Systeme und Metrisierbarkeit

”Die absurdeste 9/11 Verschworungstheorie von allen, ist die offizielle Story der US-
Regierung, dass ein kranker Bin Laden aus einer Hohle in Afghanistan mit seinen 19
Amateuren, die beste und teuerste Luftwaffe der Welt ausschaltete und Amerika ange-
griffen hat.”

Freeman (http://alles-schallundrauch.blogspot.com/)

12.1 Lokal-endliche Systeme und parakompakte Raume

In diesem Abschnitt geben wir eine Einfiihrung in die Theorie lokal-endlicher Systeme und
parakompakter Rdume. Letztere werden sich als eine hochst interessante und wichtige (fiir
viele Bereiche der Mathematik; insbesondere die hohere Analysis) gemeinsame Verallgemei-
nerung kompakter topologischer Rdume und metrischer Rdume herausstellen.

12.1.1 Definition

parakompakt Sei (X, 7) ein topologischer Raum. Ein System (S;);c; von Teilmengen von X
heifit Punkt-endlich, wenn fiir jedes x € X die Menge {i | x € S;} endlich ist.

Das System (S;)ie; heiBt lokal-endlich, wenn fiir jedes x € X ein U € 7 existiert mit x €
Uderart, dass die Menge {i | U N S; # 0} endlich ist. .7 heiit o-lokal-endlich, wenn . =
Un—o 7% ist und die .7, lokal-endlich sind.

(T}) jes heiBit eine Verfeinerung (oder einfach feiner) von (S;)er, falls Vj e Jdi € Imit T; C S;.
Der topologischer Raum (X, ) heiBt parakompakt, falls jede offene Uberdeckung von X eine
lokal-endliche und offene, Verfeinerungs-Uberdeckung hat.

12.1.2 Lemma

Sei (X, 7) ein top. R. und (A;);e; ein lokal-endliches System. Dann ist auch (A;);es lokal-
endlich und es gilt: |J;c;A; = U;c;Ai. Insbesondere ist also die Vereinigung eines lokal-
endlichen Systems abgeschlossener Mengen wieder abgeschlossen.

Beweis: Sei (A;);c; eine lokal endliche Familie. Sei weiter x € |J;c;A;. Also x € A; fiir ein
gewisses i € [. Offensichtlich gilt dann x € (J;c;A;.
Sei nun x € {J;c;A;. Dann existiertein U € tmitx e Uund {i € I |UNA; #0} = {i1,...,in}.
Sei nun V :=(;_,Vj,, dann folgt VU € T mit x e U: 0 # (VNU)NU;c;Ai = (VNU)N
Ui=14i,. Also x € Uji_1 Ai, = Uj=1 Aip € Uies A
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12.1.3 Lemma

(1) Sei (X, 7) parakompakt und ein T>-Raum, dann ist (X, 7) ein T3-Raum.

(2) Sei (X, ) ein T3-Raum mit der Eigenschaft: Zu jeder offenen Uberdeckung ¢ von
X gibt es eine offene Verfeinerungsiiberdeckung & mit (J&' = Uveg V fiir alle &' C &.
Dann ist (X, 7) ein T4-Raum.

(3) Sei (X, 7) parakompakt und ein T3-Raum, dann ist (X, 7) ein T4-Raum.

Beweis: (1) Sei A eine abgeschlossene Teilmenge von X und b € X \ A, dann gibt es zu
jedemacAeinU,cantundV, € bNt, mit U,NV, =0. Es gibt dann eine lokal endliche,
offene Verfeinerung (W;);c; von (U,)4ea, denn A als abgeschlossener Teilraum ist natiirlich
auch parakompakt. Jedes W; ist in einem U, enthalten und zu b gibt es ein V' € hNt, so dass
J:={iel|V'NW; # 0} endlich ist. Up := U;c; Wi und V,, := V' N(;c; Vs, sind dann offene,
disjunkte Umgebungen von A bzw b.

(2) Seien A, B disjunkte und abgeschlossene Teilmengen von X. Zu jedem b € B gibt es
dann offene und disjunkte Mengen Uy, V;, mit A C U, und b € Vp,. Dannist 6 := {V}, | b€ B} U
{X \ B} eine offene Uberdeckung von X. Sei £ eine entsprechende Verfeinerungsiiberdeckung.
Setze &' :={V € E|VNB#0}. Dann gilt ANV = 0 fiir alle V € &’ (denn zu V € &’ gibt
esein b e Bmit V €V, CX\Up), also 0 =ANUyceV =ANUE'. Setzen wir nun noch

U:=X \U_é’ und W := |J&’, so haben damit unsere disjunkten offenen Umgebungen von A
und B gefunden.

(3) Da jede offene Uberdeckung eine lokal endliche Verfeinerungsiiberdeckung besitzt,
folgt die Aussage sofort aus (2) und Lemma 12.1.2.

12.1.4 Bemerkung

Viele Riaume sind parakompakt. Beispielsweise alle kompakten Raume (klar), aber auch al-
le metrischen Rdume (siehe weiter unten) und auch gutartige Lindel6f-Rdaume, wie wir als
néchstes sehen.

12.1.5 Satz

Sei (X, 1) ein Lindelof-Raum und zusitzlich T3. Dann ist X parakompakt und damit ins-
besondere auch T4.

Beweis: Sei (O;);c; eine offene Uberdeckung von X. Zu x € X wihlen wir ein i, € I und
ein Uy € T mit x € Uy C U, C O, (dies geht, da der Raum Tj ist). Sei nun (Uy, )xen eine
abzihlbare Teiltiberdeckung von (Uy)xex (die xo, ... sind entsprechend abzihlbar viele Punkte
aus X). Fiir n € N setze W, := O;, \ Uy, Ux,, natiirlich Wy = 0i,,- Die Wy, n € N bilden somit
eine offene Verfeinerungsiiberdeckung der (O;);c; und sind (als Mengensystem) aber auch
lokal endlich. Denn fiir jedes x € X konnen wir ein minimales Ny € N wihlen mit x € U, und
somit Uy, "Wn =0, fiir N, < n.
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12.1.6 Lemma

Sei (X, 7) ein topologischer Raum und C(X,t) < m (Souslin Zahl), fiir eine unendliche
Kardinalzahl m. AuBlerdem sei y C 7 lokal-endlich. Dann ist |y| < m.

Beweis: O.B.d.A. ist 7 unendlich und @ ¢ 7. Dann gibt es fiir jedes x € X ein O, € xN T,
so dass % := {g € Y| gNOx # 0} endlich ist. Wir bilden Z := {(x¢)g<s | VB < 0 : xg €
U(Y\Ua<p Yxs), 6 : Ordinalzahl}. Offensichtlich ist Z # @ und wir kénnen Z partiell ordnen:
(Xa)a<s; < Va)a<s, & 01 < & und Yoo < 0) : xq = yo. Man rechnet leicht nach, dass
Ketten aus Z eine obere in Z gelegene Schranke haben und demzufolge maximale Elemente in
Z existieren (Lemma von Zorn). Sei (xq ) o< 5 €in solches. Es gilt dann y =, 5 %, (Beweis!).

Fiir jedes xg, mit § < 63gp € ¥\ Ug<p Y%, mit xg € gg. Fir jedes f < & setze dann
Op =g N [mgGY\YxB (X \ ). Es gilt xg € Og € 7. Man rechnet unmittelbar nach, dass die
Oq, & < & paarweise disjunkt sind und deshalb § < C(X,t) < m gilt. Dann ist aber auch
7= [Uaws Yol < C(X.7). da 8 < C(X,7) und alle |5, < C(X, 7).

12.1.7 Korollar

Wenn die Souslin-Zahl eines parakompakten Raumes abzihlbar ist, dann ist er ein
Lindelof-Raum (beispielsweise ist die Souslin-Zahl eines separablen Raums abzihlbar).

12.1.8 Satz

Sei (X, 7) ein T4-Raum und y = {gq | @ < Q} eine Punkt-endliche offene Uberdeckung
von X (y wird durch die ordinale Abzihlung {go | @ < Q} wohlgeordnet). Dann gibt es
eine offene Uberdeckung (Ug)g<q mit X = Jy<qUq und Uy C go (Vo < Q).

Beweis: Sei ¥y = {gq | ¢ < Q}. Wir zeigen die Existenz einer Folge (Uy) <o offener Men-
gen, welche fiir alle o0 < Q folgende Eigenschaft hat:
1) Uq C g und 2) X = (Us<qUs) U (Uncs 85) ()
Der Induktionstart erfolgt bei 0. Fiir gg € y definieren wir Ag := X \ Ugey\ (g0} & € &o0- Dann
gibt es ein offenes Uy mit Ag C Uy C Uy C go. Uy hat demnach die Eigenschaft (x).
Seien nun fiir alle B < o U definiert, mit 1) Ug C gg und 2) X = (Us<p Us) U(Up<585)> 50
setze Ag = X\ [(Up<a Up) U (Uncs 85)]
Wir zeigen: X = (Uﬁ<a Up)U(Uq<s 85)- Die eine Inklusion ist klar. Fiir die andere sei x € X.
Dannist {g € y|x € g} ={gs,,.--,&5,} mit & < J; fiir i < j. Falls & < §,, dann x € Uy <5 &s-
Falls hingegen 6, < «, so ist x € (Us<s, Us) U (Us,<s5&5) und demnach x € Us<s, Us C
Uﬁ<a Up.
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Wir erhalten somit Ay, C go und da Ay abgeschlossen ist gibt es ein offenes Uy mit Ay C
Ug € Uy € g und somit auch X = (Ug<q Up) U (U< g5)- Damit ist (x) gezeigt!

Wir wihlen nun fiir x € X das minimale o < Q mit x € go. Dann folgt x € (Us<qUs) U
(Ua<s8&s)s also x € Us<q Us, insgesamt also X = Uy q Uq. -

12.1.9 Definition

lokal dominant: Eine Teilmenge oo C &?(X) eines topologischen Raumes (X, 7) heifit lokal
dominant, wenn zu jedem x € X ein O € XN 7T existiert, so dass {A € a | O € A} endlich ist.
Offensichtlich gilt: « ist lokal dominant < {X \ A | A € a} ist lokal-endlich.

12.1.10 Definition

Filter vom Typ P: Ein Filter y in einem topologischen Raum (X, 7) ist vom Typ P, wenn jede
lokal dominante Teilfamilie & C y, bestehend aus abgeschlossenen Mengen einen konvergen-
ten Oberfilter hat. Der Filter y braucht keinen konvergenten Oberfilter haben.

Kompakte Riume konnten wir elegant mittels Filterkonvergenz beschreiben. Eine dhnliche
solche Beschreibung gibt es auch fiir parakompakte Rdume:

12.1.11 Satz

(X, 1) ist parakompakt g.d.w. jeder Filter vom Typ P einen konvergenten Oberfilter hat.

Beweis: Sei X parakompakt. Annahme es existiert ein Filter ¢ vom Typ P, welcher keinen
konvergenten Oberfilter hat. Setze % := {X \P | P € ¢ }. Dann ist % eine offene Uberdeckung
von X (Sei x € X. Annahme: Fiir alle P € ¢ giltx € P, dann gilt VO € xNTVP € ¢ : PNO # 0.
Also existiert ein filtery mit (xN7) U ¢ C y und somit ¥ — x; Widerspruch!).

Nun existiert eine lokal endliche Verfeinerungs-Uberdeckung ¥ von % . Dann ist & := {X \
V |V € ¥} lokal dominant und a C ¢. Also gibt es einen konvergenten Filter y mit a C y.
Sagen wir y — x fiir ein gewisses x € X. Also x € Ngey S € Myvey (X \V) =X \Uyey V =0,
Widerspruch!

Sei andererseits % eine offene Uberdeckung. Falls % eine endliche Teiliiberdeckung hat, sind
wir fertig. Andernfalls setze o := {X \ Uycy V | ¥ C %, ¥ : endlich }. Jeder Filter y mit
o C vy ist nicht konvergent! Also ist der von a erzeugte Filter ¢ NICHT vom Typ P. Und
deshalb gibt es eine lokal dominante Teilfamilie B C ¢ aus abgeschlossenen Mengen, welche
keinen konvergenten Oberfilter hat.

Fiir F € B wihle ein endliches % (F) C %, mit X \Upecz (r)A C F, also X\ F C Useq (r)A-
Setze nun noch 77 (F) := {AN(X\F) | A € % (F)} und schlussendlich % := Upcp 7 (F).
Zu zeigen bleibt: Z ist eine lokal endliche offene Verfeinerungs-Uberdeckung von %/ .

Sei x € X. Da 3 keinen konvergenten Oberfilter hat, gibt es ein O € XNt und F1, ..., F, € B mit
ONFiN..NF,=0,alsoxe X\ F;, C Uiea (r) A fir ein gewisses i € {i1,...,in}. Dann gibt es
aber auch ein A € % (F;) mit x € AN (X \ F;). Dass die Elemente aus % offen sind und # eine
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Verfeinerung von 7/ ist, ist trivial. Z ist auch lokal endlich. Denn x € X bedeutet 3V, € xN T
mit §:={F e B |ViN(X\F)#0}={FecB|V.ZF}istendlich. Aus {0 € Z| 0NV, #
0} C Upes #€ (F) folgern wir dann, dass auch % lokal endlich ist.

12.1.12 Lemma

Sei f: X — Y stetig und ¢ ein Filter vom Typ P (in X). Dann ist f(¢) ein Filter vom Typ
PaufY.

Beweis: Ubung. Hinweis: Sei 8 C f(¢) eine lokal dominante Familie aus abgeschlossenen
Mengen. Dann ist auch & := {f~!(B) | B € B} lokal dominant bestehend aus abgeschlossenen
Mengen. Dann gibt es einen Filter ...

12.1.13 Satz

Sei (Y, o) parakompakt, f : X — Y stetig und abgeschlossen (Bilder abgeschlossener Men-
gen sind wieder abgeschlossen) und zusitzlich mit der Eigenschaft, dass f~!(y) kompakt
ist Vy € Y (in X). Dann ist auch (X, 7) parakompakt.

Beweis: Sei ¢ ein Filter vom Typ P auf X. Dann ist der Bildfilter auch vom Typ P und daher
besitzt er einen konvergenten Oberfilter (gegen ein Element y). Das heift VV € yNoVP € ¢ :
f(P)NV #0 (+). B B
Annahme Npcy P =0, dann gibtes Py,...B, € g mit P N...N P, Nf1y) #0 (f~(y) ist kom-

pakt!). Nunist P := P N...NP, € ¢ und abgeschlossen, also folgt aus () y € f(P) = f(P) und
damit PN £~ (y) # 0; Widerspruch. Also Peo P # 0 und somit gibt es einen konvergenten
Oberfilter.

12.1.14 Korollar

Sei X kompakt und Y parakompakt, dann ist X x Y parakompakt.

Beweis: Betrachte 7 : X x Y — Y definiert durch 7(x,y) := y und wende Satz 12.1.13 an.

12.1.15 Bemerkung

Das Produkt zweier Parakompakter Rdume muss nicht parakompakt sein, wie Beispiel 12.1.17
zeigt.
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12.1.16 Beispiel: Sorgenfrey-Linie

Wir betrachten die reellen Zahlen mit der durch % := {|a,b) | a < b} erzeugten Topologie T,
also (R, 7) mit 7:=rop (A). Hier ist # bereits eine Basis von 7. (R, 7) heiit dann Sorgenfrey-
Linie (oder Gerade). 4 ist eine Basis aus offenen und zugleich auch abgeschlossenen Mengen
- hieraus folgt sofort T3. Aulerdem ist Tg C 7 und damit die Sorgenfrey-Linie auch ein T}-
Raum; sie ist sogar ein T4-Raum. Um letzteres zu beweisen, holen wir ein wenig weiter aus.
Wir zeigen ndmlich (R, 7) ist ein Lindel6f-Raum. Dann ist sie ndmlich auch parakompakt
(Satz 12.1.5). Da sie auch Tj ist, ist sie dann auch T4 (Lemma 12.1.3). Zeigen wir also (R, 7)
ist Lindelof.

Sei dazu O, i € I eine offene Uberdeckung von R. Jedes O; ist eine Vereinigung von Ele-
menten aus . Wir konnen also gleich von einer Uberdeckung der Form [a;,b;), i € I ausge-
hen. Die Idee ist nun, eine abzédhlbare Verfeinerungsiiberdeckung ¢ zu finden. Dann wihlen
wir einfach fiir jedes Element O aus o eines der [a;,b;), welches O enthilt und die entspre-
chenden [a;,b;) bilden dann die abzéhlbare Teiliiberdeckung. Also: Zu jedem i € I und jedem
x € (a;,b;) finden wir ein (p,q), mit p,q € Qund x € (p,q) C [a;,b;). Problematisch sind noch
die a;, die in keinem (a;, b;) enthalten sind. Seien a;j, j € J alle diese a. Dann sind [a;,b;),
J € J paarweise disjunkte Intervalle (0.B.d.A. alle nicht leer). Von denen kann es aber hochs-
ten abzdhlbar viele geben (denn jedes von ihnen enthilt rationale Zahlen). Unser ¢ bilden wir
nun aus all den (p, ¢) und zusitzlich den (hochstens) abzihlbar vielen [a;,b;), j € J. Damit ist
o abzihlbar und klarerweise eine Verfeinerungsiiberdeckung.

12.1.17 Beispiel: Sorgenfrey-Ebene

R x R versehen mit der Produkttopologie 7 x T der Sorgenfrey-Linie heif3t dann Sorgenfrey-
Ebene. Die Sorgenfrey-Ebene ist nun nicht T4 und damit, da sie trotzdem T, ist, auch nicht
parakompakt. Um das zu beweisen, verwenden wir Lemma 3.1.9. Wir bemerken dann zuerst,
dass sie separabel ist (sie also eine abzédhlbare dichte Teilmenge enthilt z.B. Q x Q). AuBler-
dem ist A := {(x,—x) | x € R} ein abgeschlossener (ist ja schon in R x R mit euklidischer
Metrik abgeschlossen) und diskreter Teilraum ({(x, —x)} = AN ([x,x+1) X [-x,—x+ 1)) und
[x,x+ 1) X [—x,—x+ 1) ist offen in der Sorgenfrey-Ebene). Nun gilt |A| > |Z(Q x Q)|, also
ist die Sorgenfrey-Ebene nicht T4.

12.2 Parakompakte Raume und Parakompaktheit metrischer
Réaume

Jeder metrische Raum ist parakompakt. Das vorrangige Ziel dieses Abschnitts ist der Beweis

dieser fundamentalen Eigenschaft metrischer Riume. Auf dem Weg dorthin werden uns einige

hochst interessante Charakterisierungen parakompakter Rdume begegnen (die nicht weniger
wichtig sind).
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12.2.1 Grundlegendes aus der Theorie der Uberdeckungen

Fiir ein y C #(X) und A C X nennen wir Y(A) :=J{B € y| BNA # 0} den (y-)Stern von A.
Fiir A = {x} schreiben wir auch einfach y(x).

Wir nennen eine Familie y C &?(X) eine Sternverfeinerung von A C &7(X), wenn zu
jedem x € X ein B € A existiert, mit y(x) C B ({y(x) | x € X} ist also eine Verfeinerung von A).
7 heiBt starke Sternverfeinerung von A, wenn es zu jedem A € yein B € A gibt, mit y(A) C B.
Eine Folge {7, | n € N} heift (stark) sternmonoton, falls 9, eine (starke )Sternverfeinerung
von ¥, ist.

Fir o, B C Z(X) schreiben wir zuweilen auch o < B, wenn o eine Verfeinerung von f3
ist. Ist o eine Sternverfeinerung von f3, so schreiben wir auch a <* . Ist o sogar eine starke
Sternverfeinerung von f3, so schreiben wir auch or <** f3.

Wir nennen eine Familiey C (X)) diskret, wenn es zu jedem x € X ein U € xN 7 gibt,
welches hochstens ein g € y schneidet.

Allgemein vereinbaren wir folgendes: Haben wir fiir eine Familie y C #(X) die Eigen-
schaft XYZ definiert, dann heilt 6-XYZ, dass sich y schreiben lisst, also ¥y = (J,.cn ¥z, Wobei
die ¥, die Eigenschaft XYZ haben.

Sei § € Z(Z(X)) und A C X. Unter dem &-Kern von A verstehen wir (A)¢ := {x €
A|Jye & mitd# y(x) C A}. Wir nennen eine Menge A &-perfekt, wenn A = (A)¢.

12.2.2 Lemma

Seien 7,7, 7", A C Z(X).

a) Sei y eine Sternverfeinerung von A. Dann gilt fiir jedes A C X : y(y(A)) C A(A).

b) Sei 7 eine Sternverfeinerung von Y und ¥ sei eine Sternferfeinerung von y”. Dann
ist v eine starke Sternverfeinerung von y”.

¢) Sei (X, 7) ein top. Raum und ¥ eine offene Uberdeckung von X, also ¥ C 7 und

X =Jv. Dann gilt y(A) C y(y(A)), fiir jedes A C X.

Beweis: a) Sei x € y(y(A)). Dann gibt es ein g € y mit x € g und gNY(A) # 0. Sei y €
gNy(A). Dann gibt es ein ¢’ € ymity € ¢’ und g’ NA # 0. Nun ist y(y) C L, fiir ein gewisses
LeAund gug' C y(y). Also LNA # @ und somitx € gUg C y(y) CLC A(A).

b) Sei g € yund x € g. Nun existiert ein g’ € Y/ mit y(x) C g”. Dann folgt y(g) C y(y(x)) C
Y(x) Cg".

c) Sei x € Y(A). Dann gibt es ein g € ¥ mit x € g. Dann gilt aber gN7Yy(A) #0. Alsox € g C
Y(v(A)).

12.2.3 Lemma

a) Sei & C 2 (1) fiir einen top. Raum (X, 7). Dann ist jede &-perfekte Menge offen.
b) Sei & = {y, | n € N} eine Stern-monotone Folge von offenen Uberdeckungen von X.
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Dann ist der {-Kern (U )5 einer beliebigen Teilmenge U von X eine offene &-perfekte
Menge.

c) Sei A eine offene Uberdeckung und & = {y, | n € N} eine sternmonotone Folge mit
Y C Tund Vx € X330, € xN13In € NIU € A mit O # ¥,(0,) C U. Dann existiert eine
offene Verfeinerungsiiberdeckung ¢ von A bestehend aus &-perfekten Mengen.

Beweis: a) ist trivial. b) Es bleibt ((U)¢)e = (U)e zu zeigen. Offensichtlich ((U)¢)e C
(U)e. Sei also x € (U)¢. Dann existiert ein n € N mit x € ¥%,(x) C U. Sei y € ¥+1(x). Dann
gilt %u11() € Y1 (Bar1(x)) € ful(x) S U. Also ¥y1(x) € (U)g und somit x € ((U)g)e. Die
Offenheit folgt aus a).
c)Setze 6 :={(U)¢ |U € 1}.

12.2.4 Lemma

Sei & := {y, | n € N} stark stern-monoton, wobei alle ¥, offene Uberdeckungen sind.
Sei weiter y eine Uberdeckung von & -perfekten Mengen, und < Wohlordnung auf y. Fiir
Uecysetzet(U):=U\U{Vey|lV<U}t,(U):={xe€t(U)|y(x) CU}und 0,(U) :=
Ya+1(tn(U)). Dann gilt:

a) {t(U) | U € vy} ist eine Uberdeckung von X.

b) {t,(U) | U € v, n € N} ist eine Uberdeckung von X.

¢) Kein Element aus %, schneidet zwei verschiedene Elemente aus {z,(U) | U € ,}, fiir
jedes n € N.

d) Kein Element aus ¥, | schneidet zwei verschiedene Elemente aus {z,(U) | U € v}.

e) {0,(U) | U € v, n € N} ist eine offene, o-diskrete Verfeinerungsiiberdeckung von 7.

Beweis: a) Sei x € X und U € y minimal bzgl. <, mit x € U. Dann offensichtlich x € ¢(U).
b) Sei x € X. Dann x € t(U). fir U € . Also x € U = (U)¢. Dan heiBit 3n € N mit y,(x) CU.
Alsox € t,(U).

c)SeiW €y, mitWnt,(U) #0#WnNt,(V), furU,V €y.Seixe WNt,(U)undy € WNt, (V).
Dann aber auch W C ¥,(x) CU und W C ¥,(y) C V. Falls U # V, dann 0.B.d.A. U <V und
somity € #(V) CV\U CV\W - Widerspruch.

d) Sei W € g1 mit W N0, (U) # 0% WN0,(V), fiir U,V € . Folglich gibt es P,Q € 7.1
mit PN1,(U) # 0 # QNt, (V) und POW # 0 #= QNW. Nun existiert R € %, mit Y, (W) CR.
Dann aber P,Q C R und somit RN#,(U) # 0 # RNt,(V) und aus c) folgt U = V.

e) Es gilt 0,(U) C U, denn wenn P € ¥,.1 mit PNt,(U) # 0, gibt es a € PNt,(U). Es gibt
aber auch Q € ¥, mit %,1(P) C Q. Also a € Q und somit P C ¥,41(P) CQ C %(a) CU.
{0,(U) | U € v, n € N} ist also eine offene Verfeinerungsiiberdeckung von y. Aus d) folgt
ferner o-diskret.
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12.2.5 Satz

Sei & = {y, | n € N} sternmonoton und jedes ¥, eine offene Uberdeckung von X . Weiter sei
A eine offene Uberdeckung von X mit der Eigenschaft Vx € X 30, € xNtIPcAIneN
mit @ # %,(0,) C P. Dann hat A eine o-diskrete offene Verfeinerungsiiberdeckung.

Beweis: Sei &' := {y; | k = 2n, n € N}. Dann ist &’ stark sternmonoton. Weiterhin gilt:
Vx € X310, € xNT3P € Adn € N mit 0 # ,(0,) C P. Sei 0 eine offene Verfeinerungs-
iiberdeckung von A bestehend aus &’-perfekten Mengen. Wihlen wir auf & eine beliebige
Wohlordnung und wenden das vorige Lemma an, so erhalten wir eine o-diskrete offene Ver-
feinerungsiiberdeckung von 6, die dann offensichtlich auch A verfeinert.

12.2.6 Lemma

Jede offene Uberdeckung eines metrisierbaren Raumes (X, d) besitzt eine o-diskrete (ins-
besondere also o-lokal-endlich), offene Verfeinerungsiiberdeckung. (X,d) besitzt sogar
eine o-diskrete Basis 4.

Beweis: Sei A eine offene Uberdeckung von X. Fiir jedes n € N setze ¥, := {K(x,27") | x €
X} und dann & := {y, | n € N}. Offensichtlich ist & dann sternmonoton und alle Vorausset-
zungen vom vorigen Satz sind erfiillt.

Fiir den zweiten Teil der Behauptung wenden wir den ersten (eben bewiesenen) Teil auf
die Uberdeckungen ¥, an. Es gibt nimlich zu v, eine o-diskrete Verfeinerungsiiberdeckung
B =U{0] | k € N} (die ] sind diskret). Da [N x N| = |NJist Z := {0} | (n,k) e Nx N} =
U,en %, dann die gesuchte o-diskrete Basis.

12.2.7 Lemma

Jede o-lokal-endliche offenen Uberdeckung eines topologischen Raums (X, 7) hat eine
lokal-endliche (nicht notwendig offene) Verfeinerungsiiberdeckung.

Beweis: Sei ¥ = |,y 7 eine offene Uberdeckung von X, mit lokal-endlichen 7. Fiir jedes
x € X und n € N wihle ein Oy, € XN 7, so dass {g € 1, | gN Oy, # 0} endlich ist. Fir jedes
n setze Wy, := U(Ur<n %) A0 := Y und A, := {g\ W,—1 | g € %}. SchlieBlich bilden wir
A :=Uy,en Ar- Dann ist A die gesuchte lokal-endliche Verfeinerungsiiberdeckung.

Uberseckungseigenschaft: Sei x € X. Wihle n minimal mit x € | J7,. Dann gibt es ein g € ¥,
mit x € g\ W,,_1. Das A eine Verfeinerung von 7 ist, ist klar!

Zu zeigen bleibt, dass A lokal-endlich ist. Sei x € X und » minimal mit x € | J¥,. Dann gibt
es ein g € ¥, mit x € g. Setze Vy := (<, Ox) Ng € XN 7. Dann ist {A € A | ANV, # 0}
endlich!
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12.2.8 Lemma

Wenn (X, 7) ein T3-Raum ist, und jede offene Uberdeckung eine lokal-endliche (nicht
notwendig offene) Verfeinerungsiiberdeckung hat, dann hat jede offene Uberdeckung auch
eine lokal-endliche Verfeinerungsiiberdeckung aus abgeschlossenen Mengen.

Beweis: Sei wieder % eine offene Uberdeckung. Fiir x € X sei U, € % Nx. Nun ist X ein
T3-Raum, also 3W, € N7 mitx € W, C W, C U,. Da (W,),ex eine offene Uberdeckung ist 3
lokal-endliche Verfeinerungsiiberdeckung (Oy)iek. Natiirlich ist auch (Oy)icx eine Uberde-
ckung. Nun gilt aber allgemein fiir beliebiges V € : VN O # 0 < VN O # 0. Also ist auch
(Op)rek lokal-endlich. AuBerdem haben wir Vk € K 3x € X mit Oy C Wy, also Oy C W, C U,.
und damit ist (Oy)rek eine lokal-endliche Verfeinerung aus abgeschlossenen Mengen.

12.2.9 Lemma

Wenn jede offene Uberdeckung eines topologischen Raums (X, 7) eine lokal-endliche Ver-
feinerungsiiberdeckung aus abgeschlossenen Mengen hat, dann ist X parakompakt.

Beweis: Sei o C 7 eine Uberdeckung und o eine lokal-endlich Verfeinerungsiiberdeckung
aus abgeschlossenen Mengen. Fiir jedes x € X gibt es ein O, € XN 7, welches nur endlich
viele A aus o schneidet. Nun ist auch (Oy).cx eine offene Uberdeckung, zu der es wieder
eine lokal-endliche Verfeinerungsiiberdeckung 8 aus abgeschlossenen Mengen gibt. Zu jedem
A € a withlen wir ein Uy € 0 mit A C Uy und bilden V4 :=UsN(X\U{B € B | BNA =0})
und 6 := {V4 | A € a}. Offensichtlich ist 6 eine Verfeinerungsiiberdeckung von o. Die V4
sind auch offen, denn Bist lokal-endlich. Zu zeigen bleibt noch, dass & lokal endlich ist. Sei
x € X. Dann gibt es ein Wy € XN 7, so dass B, := {B € B | BNW, # 0} endlich ist. Jedes B € B,
schneidet nur endlich viele A € o. Seien dies jeweils 0. Dann ist 0 := Upep, O endlich.
Wir zeigen nun W, NV =0 fiir A € &\ 0. Nun gilt Wy C Jpcg, B und wenn A € @\ 0, dann
folgt fiir jedes B€ B,: ANB=0.Also B, C{B€ B |ANB=0}fiir A € o\ 0. Nun gilt aber
WeNVy CWA\U{BEPB[ANB =0} C Wi\ Upep, B=0.

12.2.10 Korollar

Ein T3 Raum (X, 7), in dem es zu jeder offenen Uberdeckung eine o-lokal-endliche offene
Verfeinerungsiiberdeckung gibt, ist parakompakt.

Aus diesem Korollar folgt z.B. unmittelbar die Parakompaktheit von Lindelof-Rdumen, die
zusitzlich T3 sind (was wir weiter oben bereits elementar bewiesen haben). Aber es folgt
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auch sofort (mit Lemma 12.2.6) eines der wohl wichtigsten (und mit am héufigsten zitierten)
Ergebnisse in und auflerhalb der Mengentheoretischen Topologie:

12.2.11 Satz von Stone

Jeder metrisierbare Raum ist parakompakt!

12.2.12 Korollar

Sei (X, 7) ein lokal kompakter Hausdorfraum, der die Vereinigung abzihlbar vieler kom-
pakter Teilmengen ist. Dann ist X parakompakt.

Beweis: Sei o C 7 eine offene Uberdeckung von X = UienAi, wobei die A; kompakt sind.
Fiir i € N gibt es o;: endlich C ¢, mit A; C (Jo;. Dann ist 6* := |J;cy 0; eine abzihlbare
Teiliiberdeckung (X ist also Lindelof). Da X auch regulér ist, folgt aus Korollar 12.2.10 und
der Tatsache, dass abzidhlbare Systeme auch o-lokal-endlich sind, dass X parakompakt ist.

12.2.13 Satz

Sei (X,7) ein parakompakter Raum und « eine lokal-endliche Familie abgeschlossener
Mengen. Dann gibt es eine lokal-endliche Familie offener Mengen o, die von o verfeinert
wird.

Beweis: Zu jedem x € X gibt es ein V, € XN 7, welches nur endlich viele Elemente aus
o nicht leer schneidet. Zu {V, x € X} gibt es eine lokal-endliche offene Verfeinerungs-
iiberdeckung . Fiir jedes x € X bilden wir dann g, := V, N [(yNx)] und fiir jedes A € o
bilden wir WA := (J,c4 gx. Offensichtlich gilt A C Wy € 7. Wir miissen noch zeigen, dass
o := {W4 | A € o} lokal-endlich ist. Nun ist y jedenfalls lokal-endlich. Es gibt also ein
U, € xN 7, welches hochstens endlich viele Elemente aus 7y nicht leer schneidet. Zeigen wir,
dass U, auch hochstens endlich viele Elemente aus o trifft. Nehmen wir also - um einen Wi-
derspruch abzuleiten - an, dass es ein x € X gibt, so dass U, unendlich viele Elemente aus o
schneidet. Wir wihlen ein Ay € o mit Uy N Wy, # 0. Sei dann yo € Ag mit gy, N Uy # 0. Sind
Ag,...,A, € aund y; € A;, fiir i = 0,...,n gewihlt. Dann gibt es somit hochstens endlich viele
A € o, das mit einem der g,, fiir kK = 0,...,n einen nicht leeren Schnitt hat. Nach Vorausset-
zung finden wir also in jedem Fall ein A, € @ mit U, "W, ., # 0 und gy, NA,;1 = 0, fiir
k=0,...,1.Seidann y, 1 €A, mit UyNg,, ., # 0. Fiir k <[ folgt aus g,, NA; # 0 = g,, NA;
und der Tatsache, dass die A; paarweise verschieden sind unmittelbar g, # gy,. Da U, jedes
der gy,, fiir n € N nicht leer schneidet, folgt aus der Konstruktion der gy,, dass U, bereits
unendlich viele Elemente aus 7y nicht leer schneidet - ein Widerspruch.
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12.3 Ist doch alles voll normal!

Mit Sternverfeinerungen hatten wir bereits im letzten Abschnitt zu tun. Hier stellen wir Rdume
mit der Eigenschaft, dass jede offene Uberdeckung eine Sternverfeinerung hat, an die Spitze
der Untersuchungen. Es wird sich herausstellen, dass dies just die parakompakten Hausdorft-
Raume sind.

12.3.1 Definition

voll normal Ein topologischer Raum (X, 7) heifit voll-T4 oder auch stern-T4 (bzw. voll normal
oder stern normal, falls X zusétzlich T ist), wenn jede offene Uberdeckung eine Sternverfei-
nerungsiiberdeckung hat.

Wir nennen ihn collectionwise T4 (bzw. collectionwise normal, in Verbindung mit T
wenn es zu jeder diskreten Familie «, bestehend aus abgeschlossenen Mengen eine Familie o
offener paarweise disjunkter Mengen gibt, mit der Eigenschafft: Immer wenn A,B € o, A # B
undAeVeo,BeWeo,dannV #W,

)",

12.3.2 Lemma

Sei (X, 7) collectionwise T4 und ¢ eine diskrete Familie bestehend aus abgeschlossenen
Mengen. Dann ldsst sich das o aus der Definition sogar diskret wihlen.

Beweis: Sei o eine diskrete Familie, bestehend aus abgeschlossenen Mengen und % =
{Us | A € a} eine Familie paarweise disjunkter offener Mengen, welche von o verfeiniert
wird. Dann ist F' := [J4c4 A abgeschlossen und F' C (J4¢c Ua € 7. Da der Raum natiirlich Ty
ist, gibteseinWetmit FCW C W C Uaecq Ua. Fiir A € o setze dann Vy := U4 N'W und
¥V :={Vy | A € a} ist diskret mit Fy C V4 C Uy.

12.3.3 Lemma

Sei (X, 1) collectionwise T4 und o diskret, bestehend aus abgeschlossenen Mengen und
o C T mit @ < 0. Dann gibt es ein diskretes £ C Tmit ¢ < £ < 0.

Beweis: Sei 11 C 7 diskret mit: Immer wenn A,Bc ¢, A#BundAeVen,BeWen,
dann V # W. Fiir jedes A € ot sei Ty € N mit A C T4 und V4 € 6 mit A C Vj. Setze § :=
{TxuNVa|A€ a}. Istnunx € X, so gibtes ein Wy e xNtmit [{T €en | TNW,#0}| <1
Offensichtlich gilt dann [{T € & | TNW, # 0}| < 1.

121ch ziehe die englische Bezeichnung einer holprigen deutschen Ubersetzung vor.
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12.3.4 Lemma

Sei (X, 1) voll-T4 und o C & (X)) diskret. Dann gibt es eine diskrete Familie o C 7, welche
von « verfeinert wird (mit A,B€ ¢, A#BundAcV co,BeW co,dannV #W).
Insbesondere gelten die Implikationen voll T4 = collectionwise T4 = T4 (die zweite
Implikation ist trivial).

Beweis: Vx € X30, € xN 7T mit [{A € @ | AN O, # 0}| < 1. Die offene Uberdeckung
{Oy | x € X} hat eine offene Sternverfeinerungsiiberdeckung A. Wir wihlen dann eine offene
Sternverfeinerungsiiberdeckung 7. Fiir jedes A € o setzen wir V4 :=J{g € Y| gNA # 0} und
o :={V4 | A € a}. Offensichtlich ist @ eine Verfeinerung von o. Zeigen wir, dass o diskret
ist. Sei dazu x € X. Es gibt dann ein g, € ¥ mit x € g,. Angenommen g, NV # 0 # g, NVp,
fiir A # B. Dann gibtes g;,g> € ymit g,Ng; # 0 # g.Ng> und g NA # 0 # go N B. Nun ist
Y(gx) C O, fiir ein gewisses z € X (7 ist eine starke Sternverfeinerung von {O, | x € X }). Nun
gilt O,NA =0 oder O,NB = 0. Aber g; Ug> C y(gx) - Widerspruch!

12.3.5 Lemma

Fiir ein beliebiges 6 C Z(X) fithren wir folgende Bezeichnungen ein: 67 (x) := N{D €
S|xeD}, 6 (x):=X\U{D|Decdundx¢gD}, §°x):=38"(x)Nd (x) und (8) :=
{8%x) | x € X}.

Nun zum Lemma: Seien A und 7 lokal-endliche offene Uberdeckungen von X und
{L|L € A} eine Verfeinerung von 7. Dann ist {(8)(V) |V € A} eine offene Verfeine-
rungsiiberdeckung von ¥, wobei 6 := A U 7. Insbesondere ist & := (8) auch eine Sternver-
feinerung von y. Zur Bezeichnung siehe auch Definition 12.2.1.

Beweis: Zuniichst einmal ist auch § eine lokal-endliche Uberdeckung, 5 (x) eine offene x
enthaltende Menge (nur endlich viele offene Mengen sind am Schnitt beteiligt) und x € § (x).

Aufgrund der lokalen Endlichkeit von & ist ferner 8 (x) = X \ {D € § | x ¢ D} offen und
somit auch 8°(x) eine offene und x enthaltende Menge. {(5)(V) | V € A} ist somit eine offene
Uberdeckung von X. Zu zeigen bleibt, dass es eine Verfeinerung von 7 ist.

Sei V € A und x € X mit §°(x) NV # 0. Es gibt dann ein g € y mit V C g. Nehmen wir mal
an 8°(x) ¢ g. Nun ist §°(x) C 8 (x) C y"(x), also ist x € g (andernfalls y*(x) C g). Dann
ist x € X \ V. Nun ist aber x € §°(x) € 8§~ (x) C A~ (x) € X\ V - ein Widerspruch. Also gilt
8%(x) C g und insgesamt (8)(V) C g. Wie behauptet ist also {(8)(V) |V € A} eine offene
Verfeinerungsiiberdeckung von 7.
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12.3.6 Lemma

Ein topologischer Raum ist genau dann parakompakt und T3, wenn er T3 und voll Ty ist.
Insbesondere sind parakompakte T3-Rdume also auch collectionwise Tj.

Beweis: Wir zeigen zuerst: Parakompakt und T3 impliziert voll T4: Sei dazu ¢ eine offene
Uberdeckung von X und 7y eine zugehorige lokal-endliche Verfeinerungsiiberdeckung. Wir
wihlen zu jedem x € X eine offene Menge O, und ein g, € Yy mitx € O, C O, C g,. Sei A eine
lokal-endliche offene Verfeinerungsiiberdeckung von {O, | x € X. Dann erfiillen A und ¥ alle
Voraussetzungen des vorigen Lemmas und es gibt somit eine Sternverfeinerung & von 7, die
natiirlich auch eine Sternverfeinerung von o ist.

Setzen wir nun voraus, dass der Raum voll Ty ist. Sei A eine beliebige offene Uberdeckung.
Wir definieren dann eine Folge {7, | n € N} offener Uberdeckungen, mit: 7y, ist eine Sternver-
feinerungsiiberdeckung von A und %, ist eine Sternverfeinerungsiiberdeckung von 7,. Dann
sind alle Voraussetzungen von Satz 12.2.5 erfiillt (man beachte Lemma 12.2.2) und es gibt
somit eine o-diskrete offene Verfeinerungsiiberdeckung (also auch o-lokal-endlich) von A.
Da der Raum auch Tj ist, ist der Beweis mit einem Verweis auf Korollar 12.2.10 beendet!

12.3.7 Lemma

Sei (X, 7) ein top. Raum, & eine offene Uberdeckung von X und {7, | n € N} eine Folge
offener Uberdeckungen von X mit der Eigenschaft: Vx € X30, € xN1t3U, € EIn €N
mit 9,(Oy) C Uy. Dann existiert eine Sternverfeinerungsiiberdeckung & von &.

Beweis: Fiir jedes n bilde X,, := {x € X | 30, € xN 13U, € ETk < n mit %(0,) C U,}.
Offensichtlich ist X,, dann offen und es gilt X,, C X, (fiir alle n € N), bzw. X = {J,,enXar-
Wir konnen auBBerdem 0.B.d.A. voraussetzen, dass % immer eine Verfeinerung von 7 ist
(Warum?). Wir definieren dann 9, := {X,NB | B € %, } und 6 := {J,,cn 6n. Das 0 eine offene
Uberdeckung von X ist, ist klar. Zeigen wir, dass es auch eine Sternverfeinerung von & ist: Sei
x € X. Wir wihlen dazu ein minimales n € N mit x € X,,, also %,(O0x) C Uy, fiir geeignete Oy
bzw. Ux und betrachten nun & (x). Sei also y € 6(x), das heifit y € X,, "B und x € X,,, N B, fiir
ein gewisses B € 7;,. Dann ist m > n. Da 7, eine Verfeinerung von ¥, ist und BN O, # 0 gilt,
folgt y € B C %n(Ox) C %(0x) C Uy. Insgesamt also §(x) C U,.

12.3.8 Satz

Wenn zu jeder offenen Uberdeckung & eines Tj-Raums eine Folge offener Uberdeckungen
{7, | n € N} existiert, so dass fiir jedes x € X ein O, € XN 7 existiert, ein n € N existiert und
ein U € & existiert mit %,(O,) C U. Dann ist (X, 7) voll normal (also auch parakompakt).
Die Umkehrung gilt auch.
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Beweis: Folgt unmittelbar aus Lemma 12.3.7. Fiir die Umkehrung konstruiere man zu einer
offenen Uberdeckung & eine Folge {7, | n € N} offener Uberdeckungen, wobei §, eine Stern-
verfeinerung von & ist und ;| eine Sternverfeinerung von 7 ist. Mit dieser Folge verschafft
man sich dann leicht eine Folge, die die geforderte Eigenschaft hat (Lemma 12.2.2).

12.4 Weitere Eigenschaften parakompakter Raume

Wir geben in diesem Abschnitt zwei weitere Charakterisierungen parakompakter Riume. Zum
einen bekommen wir eine Verbindung zwischen Kompaktifizierungen eines top. Raumes X
und der Eigenschaft des Raumes parakompakt zu sein. Zum anderen lernen wir eine tieflie-
gende Uberdeckungseigenschaft kennen, die sich als dquivalent zur parakompaktheit erweist.
Mit Hilfe der letzteren ist es uns dann moglich zu zeigen, dass die Eigenschaft Parakompakt in
der Klasse der Hausdorff-Rdume invariant unter stetigen und abgeschlossenen Abbildungen
(das sind solche, deren Bilder abgeschlossener Mengen wieder abgeschlossen sind) ist!

12.4.1 Satz

Sei (X, 7) ein topologischer Raum. Dann ist dquivalent:
1) (X, 1) ist parakompakt und T».
2) Es gibt eine Hausdorff-Kompaktifizierung cX von X, so dass X x ¢X normal ist.

Beweis: Sei ¢ eine offene Uberdeckung von X. Fiir O € & wihlen wir je ein Vp offen in cX,
mit O =VpNX. Seidann y:={Vp | O € §}. Bsist Z := cX \ Uy, V kompakt und abgeschlos-
sen. Ebenso ist A := {(x,x) | x € X} C X x X abgeschlossen in cX. Nun ist X X cX normal, es
gibt also ein stetiges f : X x cX — [0, 1] mit f(A) C {0} und f(X x Z) C {1}, die beiden Men-
gen sind schlieflich disjunkt. Fiir x,y € X definieren wir d(x,y) := sup.ccx|f(x,2) — f(y,2)]-
d ist zwar nicht unbedingt eine Metrik, immerhin aber eine Pseudometrik, denn es gilt 1)
d(x,y) =d(y,x),2) x=y = d(x,y) = 0 und 3) die Dreiecksungleichung (|f(x,c) — f(z,¢)| <
[f(x.0) = f( )|+ f(v,¢) = f(z,0)| < supacex|f(x,a) = f(y.a)| + sup|f (y,b) — f(z,D)], also
auch supcecx|f(x,c) — f(z,¢)| < supaecx|f(x,a) — f(y,a)| +sup|f(y,b) — f(z,b)|). Die durch
74 auf X erzeugte Topologie ist allerdings nicht gleich der original Topologie 7, sondern im
allgemeinen nur grober, also 7; C 7. Zeigen wir dies:

Fiir x € X und € > 0 betrachten wir die Kugel K(x,€) := {x € X | d(x,y) < €}. Wir zei-
gen K(x,€) € 7. Dazu betrachten wir % := {[0,1] N (r—¢€/3,r+€/3) | r € [0,1]}. Dann ist
{f~Y(U) | U € %} eine offene Uberdeckung von X x cX. Fiir (x,z) mit z € cX wihlen wir
je ein U, € % und G, € T bzw. in cX offene H, mit (x,z) € G, x H, C f~'(U,). Dann ist
8 :={G, x H, | 7 € cX} eine offen Uberdeckung von {x} x cX und diese Menge ist kompakt.
Es gibt also endlich viele zj, ...,z, mit {x} x cX C G;, x H;, U...UG;, x H;, und x € G, fiir
k=1,..,n. Esistdann x € G:=(\_;G; € 7. Seiy € G und z € cX beliebig. Es ist dann

€ H,,, fiir ein gewisses k € {1,...,n}. Und wir bekommen f(G x H;,) C f(G, xH,) C U,
fiir ein gewisses U € % . Dann ist aber diam (f(G x H;,)) < (2/3)€, alsod(x,y) < (2/3)e <&
und damit x € G C K(x,€). Nun gibt es zu jedem x’ € K(x,€) ein € mitx’ € K(x',&’) C K(x,¢€)
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(Dreiecksungleichung). Zu diesem x’ gibt es damit dann ein G’ € T mit X' C G’ C K(¥, €’).
Die Kugel K (x, €) ist somit Element von 7.

Nun sind auch Pseudometrische Ridume T3 (ne leichte Ubung) und Lemma 12.2.6 (mit exakt
dem gleichen Beweis fiir Pseudometriken) zusammen mit Korollar 12.2.10 zeigt, dass (X, 7y)
parakompakt ist. Zu {K(x,1/2) | x € X} bekommen wir also eine lokal-endliche Verfeine-
rungsiiberdeckung o C 7,;. Nun ja, dann ist ¢ aber auch lokal-endlich beziiglich 7.

Firx € X und y € K(x,1/2) gilt f(x,y) = |f(x,y) — f(y,y)| <d(x,y) < 1/2,also f({x} x
K(x,1/2))C[0,1/2). Somit f({x} xK(x,1/2))=f({x} x K(x,1/2)) C f({x} x K(x,1/2)) C
[0,1/2) =[0,1/2] (gemeint ist der Abschluss beziiglich 7). Aus x € X und z € K(x,1/2) folgt
also f(x,z) < 1/2.Fiiralle A € « gilt demnach ANZ = 0. Nun ist jedes A kompakt (fiir A € o),
es gibt also ein endliches y4 C y mit A C |Jy4. Wir sind fast fertig ... B :={ANg|g€m, A€
o} ist nun nimlich eine lokal-endliche offene Verfeinerungsiiberdeckung von &. Somit ist

(X, t) parakompakt.

12.4.2 Definition

cushioned Verfeinerung Sei (X, 7) ein topologischer Raum und § C & (X) bzw. v C Z(X).
Wir sagen V ist eine cushioned Verfeinerung!® von &, wenn es zu jedem U € v ein T(U) € &
gibt (also eine Abbildung 7 : v — &), so dass UV’ C Uyey T(U) fiir alle v/ C v gilt. Sind
v={U,|a€A} und & = {V, | a € A} durch A indiziert, so sprechen wir von einer indi-
zierten cushioned Verfeinerung v von &, wenn J,cqr Us C Ugear Va ist, fiir jedes A’ C A. Wir
sprechen von einer o-cushioned Verfeinerung v von &, wenn v = J,,c Vi, und jedes v, eine
cushioned Verfeinerung von & ist. Sprechen wir von o-cushioned Verfeinerungsiiberdeckun-
gen vV = J,cn Vi, 50 muss nur v eine Uberdeckung sein - keinesfalls die v,,.

Wir konnen uns auf indizierte cushioned Verfeinerungen beschrinken, denn es gilt:

Sei v eine cushioned Verfeinerung von & = {V, | a € A}. Dann hat & auch eine indizierte
cushioned Verfeinerung A = {U, | a € A}.

Beweis: Fiira € Asetze U, ;== J{U € v | T(U) =V, } und weiter A :={U, | a € A}.

Damit kommen wir zu einer sehr tiefliegenden Charakterisierung parakompakter T1-Ridume:

12.4.3 Satz

Ein T;-Raum (X, 7) in dem es zu jeder offenen Uberdeckung % eine o-cushioned Ver-
feinerungsiiberdeckung gibt, ist parakompakt (insbesondere ist er also parakompakt, wenn
er immer eine cushioned Verfeinerungsiiberdeckung hat). Der Leser beachte insbesondere,
dass die Verfeinerungsiiberdeckung keinesfalls aus offenen oder abgeschlossenen Mengen
bestehen muss!

Beweis: Im ersten Schritt zeigen wir, dass wir zu jeder offenen Uberdeckung % eine cushio-
ned Verfeinerungsiiberdeckung finden konnen. Dann zeigen wir - und das ist zur Abwechslung

Bwir benutzen wieder die englische Bezeichnung
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sehr einfach - dass (X, 7) auch Ty ist, insbesondere also auch T3. Im dritten (und aufwendigs-
ten) Schritt zeigen wir, dass es zu jeder offene Uberdeckung dann auch eine o-lokal endliche
offene Verfeinerungsiiberdeckung gibt. Mit Korollar 12.2.10 schliefen wir dann, dass (X, 7)
parakompakt ist. Machen wir uns ans Werk:

1.Schritt: Sei & eine beliebige offene Uberdeckung von X. Dann gibt es eine 6-cushioned
Verfeinerungsiiberdeckung ¥ = (J,.cn 2, Wobei die ¥, je eine cushioned Verfeinerung (aller-
dings nicht notwendig eine Uberdeckung) von & sind. Zu jedem n € N gibt es also eine Ab-
bildung 7;, : %, — &, mit der Eigenschaft aus der Definition 12.4.2. Fiir jedes x € X setze nun
n(x) :=min{n € N|x € Uy} Fir x sei g(x) € ¥y, mit x € g(x). Wir setzen dann W (x) :=
[U%) \U{g 10 <n <n(x), g € % und x & T,(g)}. Nun ist x & U{T(g) | 0 < n < n(x),
ge«Vundx ¢ T,(g)} DU{g|0<n<n(x), g €, x¢T,(g)} und somit W(x) eine (nicht
notwendig offene) Umgebung von x.

Beweisen wir eine kleine Zwischenbehauptung: y ¢ T, (g(x)) impliziert x ¢ W (y). Wir
unterscheiden zwei Fille:

1.Fall n(x) <n(y),dannx € g(x) C U{g|0<n<n(y),g €y undy & T,(g)} (man beachte
Y & Tyx)(8(x))). Na ja, dann aber x ¢ W (y) (folgt ja gerade aus der Definition von W (y)).

2.Fall n(y) < n(x), dann x & U %¥,y), also x € W(y).

Fiir jedes P € & setzen wirnun L(P) := {x € X | T;,(,)(g(x)) = P} und dann A := {L(P) | P €
&}. Dax € L(T,y(g(x))), ist A eine Uberdeckung von X. Zeigen wir, dass es eine cushioned
Verfeinerung von & ist. Fiir Jedes L € A wihlen wir ein P € & mit L = L(P) und definieren
T(L):=P (wenn L(P)=L(P'),soP="P').Seinun &’ C & und y & |J&'. Fiir jedes P € &’ und
fiir jeden Punkt x € L(P) erhalten wir dann 7,,(,)(g(x)) = P. Also y ¢ T,,()(g(x)) und mit Hilfe
der Zwischebehauptung x ¢ W (y). Und somit insgesamt L(P) "W (y) = 0, fiir alle P € &’.
Da W (y) eine Umgebung von y ist, folgt weiter y & J{L(P) | P € &'}. Anders ausgedriickt
bedeutet dies U{L(P) | P € &'} CUE' = U{T(L(P)) | P € £'}. Die Uberdeckung A ist also
eine cushioned Verfeinerungsiiberdeckung von &.

2.Schritt: Seien A, B abgeschlossen und disjunkt. Dann ist {X \ A, X \ B} eine offene Uber-
deckung von X, zu der es nach Schritt 1 eine cushioned Verfeinerungiiberdeckung gibt. Wie
wir bereits gesehen haben (siehe Definition 12.4.2) gibt es dann aber auch eine indizierte cus-
hioned Verfeinerungsiiberdeckung {V,V'}. Also VUV’ =X und V C X \ A bzw. V/ C X \ B.
Dann folgt A C X \V und B C X \ V/, mit (X \ V)N (X \ V/) = 0. Der Raum ist also Ty.

3.Schritt: Sei wieder & = {Uy | o < B}, mit |§] = B eine beliebige offene (indizierte,
Uq # Uy fiir a # ') Uberdeckung von X. Sei 1 = {gq0 | @ < B} eine indizierte cushioned
Verfeinerung von &. Fiir jdes o < 8 definieren wir Uy :=Uq \ | U{gs0 | 6 < &} unddann &; :=
{Ugq1 | o < B}. Wir zeigen &; ist eine (offene) Uberdeckung. Sei x € X. Wiihle o minimal, mit
x €Ugq.Dannist J{ggo | 6 <} CU{Us |0 <} Zx,alsox € Uy;. Seidann y; = {gg1 | @ <
B} eine indizierte cushioned Verfeinerung von &; (und damit auch von &). Es gilt dann

1) U{gs0| 6 <o} Nggr =0und2) gaoNU{gs1 | & > o} = 0 (beides klar nach Konstruk-
tion).

Seien fiir 0 < k < n kombinatorische cushioned Verfeinerungen ¥, = {gax | & < B} von &
gegeben, mit 1) [J{gsx | 0 < @} Ngur+1 =0und2) g NU{gs1+1 |6 > 0} =0, fiir 0 <k <n.
Definiere dann Uy, 11 := Uy \ U{gs, | 6 < &} und dann &, := {Ug,+1 | @ < B}. Dann ist
natiirlich auch &g, 1 eine offene Uberdeckung von X. Wir kénnen dann somit eine indizierte
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cushioned Verfeinerung ,+1 = {gan+1 | @ < B} von &, bilden. Insgesamt erhalten wir somit
eine Folge ()nen von indizierten cushioned Verfeinerungen von &, mit den Eigenschaften

D U{gsn | 6 <0} Ngan+1 =0und 2) gon NU{gsn41 |6 > a} =0.

Fiir jedes n € Nund a < 8 kénnen wir nun Vg, := X \ U{gs, | @ # 8 < B} bilden und dann
A :={Vun | @ < B und n € N}. Zeigen wir, dass 1 eine offene Uberdeckung von X ist. Sei dazu
x€X.Seiv,:=min{a < |x€ gqn} firjedes n € Nund v :=min{vy, vy,...}. Dannist x €
gvik> also x & U{gsk+1 | 6 > Vi }. AuBerdem ist x € gy, 512, also x & U{gsk+1 || 0 < Viga}
und damit erst recht x & J{gsx+1 | 0 < Vi}. Insgesamt somit x € Vy, x4 1.

Es gilt weiterhin 1) Vy, C Uy, fiir alle @ < 8 und

2) VanNVs, =0, fir @ # 6 und n € N.

Zu 1) bemerken wir Vy, = X \U{gsn | @ # S < B} CX\U{gs, | @ # 8} C gan C Uy (da
¥, eine Uberdeckung ist). Zu 2) bemerken wir, dass nach Konstruktion Vs, N g, = 0 gilt. Da
Van C gan, folgt dann Vi, NVs, = 0.

Sei nun N = {Cy, | @ < B und n € N} eine indizierte cushioned Verfeinerung von A. Fiir
alle n € N gilt somit (J{Cqpn | @ < B} C U{Van | & < B}. Nun ist der Raum Ty, es gibt also
offene Mengen W, mit J{Cq, | @ < B} CW,, CW,, € U{Van | @ < B}. Fiir jedes n € N bilden
wir dann ), :={Vg "W, | ¢ < B}.

Zeigen wir, dass jedes y, diskret, also insbesondere lokal-endlich ist. Sei dazu x € X. 1.Fall
x € W,,. Dann gibt es ein & < 8 mit x € Vi, Also {Vs,, MWy, € X | Vo N (Vs,, "W,) # 0} =
{Von "W, }. 2.Fall x € X \ W,,. Dann ist {Vs, "W, € %, | (X \W,) N (Vs,NW,) # 0} = 0.

Zeigen wir abschlieBend, dass y := [, ey Xn €ine Verfeinerungsiiberdeckung von & ist. Nun
ja,ist x € X, so gibtes o’ < B und n € N, mit x € Cy,, (denn 7 ist eine Uberdeckung von X).
Also x € J{Cqn | o < B} C W, und somit x € Vs, "W, € x. Sei andererseits P € x, dann gibt
es o < B und n € N mit P = Vg, NW,. Nun ist P C Vy, C Uy € . Damit haben wir gezeigt,
dass y eine o-diskrete (also o-lokal-endliche) offene Verfeinerungsiiberdeckung von & ist.
Da der Raum normal ist, folgt aus Korollar 12.2.10, dass er auch parakompakt ist.

12.4.4 Korollar

Sei X ein parakompakter To-Raum und f : X — Y eine stetige, abgeschlossene und sur-
jektive Abbildung. Dann ist auch Y ein parakompakter T>-Raum.

Beweis: X ist auch T;. Seiy € Y und x € X mit f(x) =y. Da {x} abgeschlossen ist, ist somit
auch {y} abgeschlossen (als Bild von {x} unter f). Als parakompakter T>-Raum ist X auch
T,4. Zeigen wir das auch von Y. Seien A, U abgeschlossen bzw. offen in Y und A C U. Dann ist
f~1(A) abgeschlossen, f~!(U) offen und f~!1(A) C f~1(U). Es gibt also eine offene Menge
V mit f~1(A) CV CV C f(U). Dann folgt A C Y\ f(X\V) CC f(V) C f(V) CU. Nun
ist W:=Y\ f(X\V) offen und f(V) abgeschlossen und wir erhalten A CW CW C U.

Sei £ eine offene Uberdeckung von Y. Zu jedem y € Y wihlen wir ein offenes W), mit
yEW, CW, CV,.Seidann &’ :={W, |y €Y}.SeiT; : &’ — & eine Abbildung mit W C T(W),
fiir jedes W € &'. Danniist § := {f 1 (W) |V € '} eine offene Uberdeckung von X. Sei dann A
eine lokal-endliche offene Verfeinierungsiiberdeckung von d und 75 : y:= {f(L) | L€ A} —
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&’ eine Abbildung mit f(L) C Tr(f(L)), fiir alle L € A. Wir zeigen, dass ¥ eine cushioned
(nicht notwendige offene oder abgeschlossene) Verfeinerungsiiberdeckung von & ist. Mit Hilfe
des vorigen Satzes schlieBen wir dann, dass auch Y parakompakt ist. Fiir beliebiges A’ C A
gilt nun (man beachte, dass die Abbildung f abgeschlossen ist und lokal-endliche Systeme
Abschlusserhaltend sind):
FUrea L) = f(Urear L) =Urea f(L) €Urea f(L) €Urear f(L) = f(Urear L) = f(Urear L)
Bezeichnen wir mit T die abbildung 7y 0 75 : ¥ — &, so folgt fiir ein beliebiges A’ C A also

Urea f(L) = Uren f(L) € Uren Ta(f(L)) € Uren Ti o Ta(f (L)) = Uren T(F(L))-

12.5 Metakompakte und stark parakompakte Raume

Wir verallgemeinern das Konzept parakompakter Rdéume nun dahingehend, dass wir nur noch
Punkt-endliche offene Verfeinerungsiiberdeckungen fordern. Im Anschluss daran untersuchen
wir einen Begriff, der etwas stirkeren als Parakompaktheit ist.

12.5.1 Definition

metakompakt Ein top. Raum (X, 7) heift metakompakt, wenn jede offene Uberdeckung eine
Punkt-endliche offene Verfeinerungsiiberdeckung hat.

Jeder parakompakte Raum ist also beispielsweise metakompakt. Fiir die Formulierung des
nichsten Satzes fithren wir zwei extra Begriffe ein.

12.5.2 Definition

Ein top. R. (X, 7) heifit metakompakt von Ordnung «, fiir eine unendliche Kardinalzahl x,
wenn jede offene Uberdeckung o eine offene Verfeinerungsiiberdeckung & hat derart, dass
fiir jedes x € X gilt: [xN&| < k. Ein metakompakter Raum ist also metakompakt von Ordnung
K, fiir jedes unendliche k (die Umkehrung muss nicht gelten)!

Ein Raum (X, 7) nennen wir k-kompakt, wenn jede offene Uberdeckung ¢ mit |6| < K eine
endliche Teiliiberdeckung hat (fiir eine unendliche Kardinalzahl k). Fiir k = |N| nennen wir
den Raum auch abzihlbar kompakt (siehe auch Definition 4.5.16).

12.5.3 Satz

Sei (X, 7) metakompakt von Ordnung x und zusitzlich x-kompakt (fiir eine unendliche
Kardinalzahl k), dann ist (X, 7) bereits kompakt!

Beweis: Sei & eine offene Uberdeckung von X und o eine offene Verfeinerungsiiberde-
ckung von & derart, dass fiir jedes x € X gilt: [N o| < k. Falls o eine Teiliiberdeckung ¢’
mit |6'| < k hat, so hat 6’ (und damit auch &, denn o ist eine Verfeinerung), wegen der
k-Kompaktheit eine endliche Teiliiberdeckung. Nehmen wir mal an, dass ¢ keine Teiliiberde-
ckung 6’ von Kardinalitit < x hat.
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Wir wihlen dann xo € X =: X und x,,+1 € X \ Ug<, 0(x¢) =: X,,41. Nach Voraussetzung an
O ist Ug<, 0 (xx) # X, denn | U<, (xxN0)| < k! Wir bilden dann weiter Y, := {x; | k > n}. Die
Y, sind dann abgeschlossen und es gilt ¥, 1 CY,. Insbesondere haben also endlich viele einen
nicht leeren Schnitt. Da X x-kompakt ist, insbesondere also abzédhlbar kompakt, gilt somit
auch ,,en Y # 0 (andernfalls hitte man durch Ubergang zu Komplementen eine abzihlbare
offene Uberdeckung, also auch eine endliche Teiliiberdeckung). Sei x € N,en Yn € Npen Xn-
Dann ist x € V, fiir ein gewisses V € ¢ und es gibt dann auch ein n € N mit x, € V (da x € Y).
Dann ist aber x € X, 11 = X \ Up<, 0(xx) € X\ V - ein Widerspruch!

12.5.4 Korollar

Ein abzidhlbar kompakter und zusétzlich metakompakter (oder auch parakompakter) topo-
logischer Raum ist bereits kompakt.

Wie auch schon bei der Kompaktheit und Parakompaktheit geben wir nun eine Charakteri-
sierung metakompakter Raume durch Filterkonvergenz. Dazu noch zwei kleine Definitionen.

12.5.5 Definition

Punkt dominant: Eine Teilmenge oo C & (X) eines topologischen Raumes (X, 7) heiit Punkt
dominant, wenn zu jedem x € X die Menge {A € o | x € A} endlich ist. Offensichtlich gilt:
ist Punkt dominant < {X \ A | A € o} ist Punkt-endlich.

12.5.6 Definition

Filter vom Typ M: Ein Filter y in einem topologischen Raum (X, 7) ist vom Typ M, wenn
jede Punkt dominante Teilfamilie & C v, bestehend aus abgeschlossenen Mengen einen kon-
vergenten Oberfilter hat. Der Filter y braucht keinen konvergenten Oberfilter haben.

12.5.7 Satz

(X, 7) ist metakompakt g.d.w. jeder Filter vom Typ M einen konvergenten Oberfilter hat.

Beweis: Sei X metakompakt. Annahme es existiert ein Filter ¢ vom Typ M, welcher keinen

konvergenten Oberfilter hat. Setze % := {X\ P| P € ¢ }. Dann ist Z eine offene Uberdeckung
von X (Sei x € X. Annahme: Fiir alle P € ¢ gilt x € P, dann gilt VO € xNTVP C ¢ : PNO #0.
Also existiert ein filtery mit (XN 7) U ¢ C y und somit ¥ — x; Widerspruch!).
Nun existiert eine Punkt-endliche Verfeinerungs-Uberdeckung ¥ von %/. Dann ist o := {X \
V |V € ¥} Punkt dominant und o C ¢. Also gibt es einen konvergenten Filter y mit o C y.
Sagen wir y — x fiir ein gewisses x € X. Also x € Ngey S C Nyey (X\V) =X \Uyey V =0
- Widerspruch!

282



Sei andererseits % eine offene Uberdeckung. Falls % eine endliche Teiliiberdeckung hat, sind
wir fertig. Andernfalls setze o := {X \ Uycy V | ¥ C %, ¥ : endlich }. Jeder Filter y mit
o C y ist nicht konvergent! Also ist der von o erzeugte Filter ¢ NICHT vom Typ M. Und
deshalb gibt es eine Punkt dominante Teilfamilie 8 C ¢ aus abgeschlossenen Mengen, welche
keinen konvergenten Oberfilter hat.

Fir F € B wihle ein endliches % (F) C %, mit X \Upco (r)A C F, also X\ F C Uxeq (r)A-
Setze nun noch 7 (F) := {AN(X\F) | A € % (F)} und schlussendlich % := Upcp 7 (F).
Zu zeigen bleibt: Z ist eine Punkt-endliche offene Verfeinerungs-Uberdeckung von %/ .

Sei x € X. Da B keinen konvergenten Oberfilter hat, gibt es ein O € XNt und Fi,....F, € B
mit ONFN...NF, =0, also x € X \ F; C Upcq () A fiir ein gewisses i € {iy, ..., iy }. Dann
gibt es aber auch ein A € % (F;) mitx € AN (X \ F;). Dass die Elemente aus % offen sind und
Z eine Verfeinerung von %/ ist, ist trivial. & ist auch Punkt-endlich. Denn x € X bedeutet
0:={FeB|xeX\F}={FeB|x¢gF}istendlich. Aus{O € Z |x€ O} CUpcsH(F)
folgern wir dann, dass auch % Punkt-endlich ist.

12.5.8 Lemma

Sei f: X — Y stetig und ¢ ein Filter vom Typ M (in X). Dann ist f(¢) ein Filter vom Typ
M auf Y.

Beweis: Sei B C f(¢) eine Punkt dominante Familie aus abgeschlossenen Mengen. Dann
ist o := {f~!(B) | B € B} eine ebenfalls Punkt dominant Teilmenge von ¢. Es gibt dann einen
konvergenten Filter  mit o C y. Na ja, dann ist eben f(y) ein konvergenter Filter auf ¥ mit

B C fy).

12.5.9 Satz

Sei (Y,0) metakompakt, f : X — Y stetig und abgeschlossen (Bilder abgeschlossener
Mengen sind wieder abgeschlossen) und zusitzlich mit der Eigenschaft, dass f~!(y) kom-
paktist Vy € Y (in X). Dann ist auch (X, 7) metakompakt.

Beweis: Sei ¢ ein Filter vom Typ M auf X. Dann ist der Bildfilter auch vom Typ M und da-
her besitzt er einen konvergenten Oberfilter (gegen ein Element y). Das heilt VV € yNoVP €
0 f(P)AV £0 ().

Annahme (\pey P = 0, dann gibtes Py,...B, € ¢ mit P N... NB,Nf1(y)£0 (f~(y) ist kom-
pakt!). Nun ist P := P;N...NP, € ¢ und abgeschlossen, also folgt aus (x) y € f(P) = f(P) und
damit PN f~1(y) # 0; Widerspruch. Also N peo P # 0 und somit gibt es einen konvergenten

Oberfilter.
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12.5.10 Korollar

Sei X kompakt und ¥ metakompakt, dann ist X X ¥ metakompakt.

Beweis: Betrachte 7 : X x Y — Y definiert durch 7(x,y) :=y und wende Satz 12.5.9 an.

12.5.11 Lemma

1. Sei 7y eine Punkt-endliche offene Uberdeckung eines topologischen Raums (X, 7).
Fiir jedes n € N setzen wir X, :== {x € X | [xN Y] < n} und fiir jedes x € X setzen
wir V, :=(xN Y. Fiir jedes n € N sei U,, € T mit X,, C U,; speziell sei Uy = @. Dann
ist jedes X, in X abgeschlossen und zu X, \ U, gibt es eine diskrete Familie o,
bestehend aus in X abgeschlossenen Mengen, welche X, \ U, itiberdeckt und y
verfeinert.

2. Sei y eine Punktendliche offene Uberdeckung eines topologischen Raums (X, 7),
der T3 und collectionwise Ty ist. Dann gibt es zu y eine o-diskrete offene Verfeine-
rungsiiberdeckung.

Beweis: 1. Das X,, abgeschlossen ist, folgt aus x € X \ X;, = V,NX, =0. Seinunn > 1 und
Xy—1 C U, € 1. Wir definieren Y,, := X, \ U,_. Dann ist ¥, abgeschlossen und Teilmenge
von X, \ X,—1. Nun setzen wir @, := {Y, NV, | x € ¥, }. Jeder Punkt x € ¥, ist in genau n
offenen Mengen aus 7y enthalten. Und da V, gerade der Schnitt all dieser Mengen ist, ist o,
eine Zerlegung von Y,! Nun ist jedes A € o, offen in ¥, (Teilraumtopologie). Also ist auch
U{B € o, | B# A} offenin Y,, und A als dessen Komplement also abgeschlossen. Demzufolge
ist jedes Element aus o, abgeschlossen in X! Das es sich bei o, um eine Verfeinerung von y
handelt ist klar nach Konstruktion. Zeigen wir die Diskretheit: Fiirx € X \ Y, ist X \ ¥, € xN 71
und offensichtlich [{A € o, | AN (X \Y,) #0}| =0. Und fiirx € Y,, gilteben [{A € oy, | ANV, #
0}| =1 (folgt daraus, dass &, = {¥, NV, | x € ¥,,} eine Zerlegung von Y, ist). Damit ist alles
bewiesen.

2. Wir iibernehmen die Bezeichnungen aus 1. und konstruieren rekursiv eine o-diskrete
offene Verfeinerungsiiberdeckung von 7. Sei y; C 7 diskrete mit o) < 73 < ¥. Seien ¥ bis ¥,
bereits konstruiert, mit den Eigenschaften:

1. %, k=1,...,nist diskret.

2. {A\Uy |[A€ o1} <Y1 <7V, k=1,....,n—1,wobei Uy :=J(n U...U%) und oy
entsprechend 1. gewihlt wurde.

Zu X,11 \ Uy, wobei U, := J(y1 U...U7p), betrachte das nach 1. existierende @, ; und
wihle %41 C 7 diskret mit {A\ U, | A € 041} < Ypt1 < 7. Offensichtlich ist dann [ J{y;, | n €
N, n > 1} eine o-diskrete offene Verfeinerungsiiberdeckung von 7.
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12.5.12 Satz

Ein Raum (X, 7) der metakompakt, T3 und auBerdem collectionwise Ty ist, ist auch pa-
rakompakt. Zusammen mit Lemma 12.3.6 ergibt sich dann: Ein Raum ist genau dann
parakompakt und T3, wenn er metakompakt, T3 und collectionwise Ty ist.

Beweis: Sei % eine offene Uberdeckung. Es gibt eine Punkt-endliche offene Verfeinerungs-
iberdeckung ¥ von % . Entsprechend dem vorigen Lemma gibt es eine o-diskrete offene Ver-
feinerungsiiberdeckung von 7, die natiirlich auch %/ verfeinert. Da der Raum Tj ist, folgt mit
Korollar 12.2.10, dass er auch parakompakt ist.

12.5.13 Definition

Wir nennen o C (X)) sternendlich bzw. sternabzihlbar, wenn {A’ € ot | ANA" # 0} fiir alle
A € o endlich bzw. abzéhlbar ist und wir nennen o C &?(X) dominant, wenn {X \A | A € o'}
sternendlich ist. Wir nennen (X, 7) stark parakompakt, wenn jede offene Uberdeckung eine
sternendliche offene Verfeinerungsiiberdeckung hat (Vo C tmit Jo=X3ECtmité <o
und & ist sternendlich). Wir nennen einen Filter ¢ einen SP Filter (oder vom Typ SP), wenn
jede dominante Teilmenge o C @, die aus abgeschlossenen Teilmengen von X besteht einen
konvergenten Oberfilter y hat (Vo C ¢ mit {X\A|A € a} C 7 und o dominant 3 Filter y
und 3x € X mit @ C y — x).
Vollkommen analog zu Satz 12.1.11 beweist man leicht folgenden Satz:

12.5.14 Satz

(X, 7) ist stark parakompakt g.d.w. jeder Filter vom Typ SP einen konvergenten Oberfilter
hat.

Auch die folgenden Sitze lassen sich genauso beweisen, wie wir das schon bei parakom-
pakten und metakompakten Ridumen getan haben.

12.5.15 Lemma

Sei f: X — Y stetig und ¢ ein Filter vom Typ SP (in X). Dann ist f(¢) ein Filter vom Typ
SP auf Y.
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12.5.16 Satz

Sei (Y, 0) stark parakompakt, f : X — Y stetig und abgeschlossen (Bilder abgeschlosse-
ner Mengen sind wieder abgeschlossen) und zusitzlich mit der Eigenschaft, dass f~! (y)
kompakt ist Vy € Y (in X). Dann ist auch (X, 7) stark parakompakt.

12.5.17 Korollar

Sei X kompakt und Y stark parakompakt, dann ist X x Y stark parakompakt.

12.5.18 Lemma

(a) Sei (V,)nen eine Folge offener Mengen und (F,),cn eine Folge abgeschlossener Men-
gen im topologischen Raum (X, 7) mit F, CV,, C F,1 fir alle n € Nund X = J,cn Fn-
Fiir jedes n € N sei A, endlich C 7 mit F,, C |JA,,. Dann hat A := (J,,cy A, eine abzéhlbare
sternendliche offene Verfeinerungsiiberdeckung.

b)SeiA ={U(i,j)|i,jeN} Ctmit A =XundU(i,j) CU(i,j+1) firalle i, j € N.
Setze U; := U;en U (i, j). Dann hat y := {U; | i € N} eine abzéhlbare sternendliche offene
Verfeinerungsiiberdeckung.

(c) Ist (X, 7) ein T4-Raum, 7y eine abzidhlbare offene Uberdeckung und « eine abzihl-
bare Verfeinerungsiiberdeckung aus abgeschlossenen Mengen (also o < yund J @ = X),
so gibt es eine abzihlbare sternendliche offene Verfeinerungsiiberdeckung & von 7.

Beweis: (a) Setze 1o := A, N1 := Ay und Ny :={LN (Vi1 \ Fy) | L € 442} Dann ist
N = U,en N die gesuchte abzihlbare sternendliche offene Verfeinerungsiiberdeckung von
A. Offenbar ist (UNu+2) N (UNm) = 0 fir m > n+4 und jedes 1, ist endlich. Folglich ist 7
sternendlich. Sei x € X. 1.Fall x € Fy, dann x € [Jng C Un. 2.Fall x ¢ Fy. Dann sei kK maximal
mit x € Fy. Es folgt x € Fjy; C Vii1, also x € V1 \ Fy. Es gibt aber auch ein L € A, mit
x € L. Insgesamt demnach x € LN (Vi 41 \ F) € Un. Damit ist  eine Uberdeckung. Das 7
aus offenen Mengen besteht, abzihlbar ist und A verfeinert, ist klar.

(b) Setze V,, := U4 j<, U (i, j). Es folgt

Vo= J UGHS Y UGj+DC | U, j) =V
i+j<n i+j<n i+j<n+l1

Aus (a) folgt, dass {V, | n € N} eine abzihlbare sternendliche offene Verfeinerungsiiber-
deckung & besitzt. Fiir jedes 7 € & sei N(T) endlich C N mit 7 C Ujen(r)Ui- Dann ist
N:={TNU;| T €& undie N(T)} eine abzihlbare sternendliche offene Verfeinerungsiiber-
deckung von 7.
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(c)Zu jedem A € o withle ein g(A) € ymit A C g(A). Fiir jedes A € « gibt es dann eine Folge
(U(A,n))en offener Mengen mitA CU(A,n) CU(A,n+1) Cg(A).Seid :={U(A,n)|A €
a, n € N}. Aus (b) folgt, dass es zu Y := {Uy | A € a}, wobei Uy := U,enU(A,n), eine
abzihlbare sternendliche offene Verfeinerungsiiberdeckung & gibt. Da offenbar ¥ < 7 gilt, ist
& somit auch eine Verfeinerung von Y.

12.5.19 Lemma

Gegeben seien ein T4-Raum (X, 7) und eine abziihlbare offene Uberdeckung ¢. Dann sind
die folgenden drei Aussagen dquivalent.

(a) o hat eine punktendliche offen Verfeinerungsiiberdeckung.

(b) o hat eine abzihlbare Verfeinerungsiiberdeckung aus abgeschlossenen Mengen.

(c) o hat eine abzdhlbare sternendliche offen Verfeinerungsiiberdeckung.

Beweis: (a) = (b). Sei £ eine (nicht notwendig abzihlbare) punktendliche offene Ver-
feinerungsiiberdeckung von . Fiir jedes T € § sei f(T) € o mit T C f(T). Dann setzen
wir U(S) :=U{T € & | f(T) = S} fiir jedes S € o. Offenbar ist n := {U(S) | S € 6} ei-
ne abzihlbare offene Uberdeckung, welche U(S) C S fiir jedes S € o erfiillt. Sei x € X.
Dann ist &' := {T € & | x € T} endlich. Dann ist auch ' := {U € n | x € U} endlich,
denn zu jedem U € ' wihlen wir ein T(U) € &' mit U = U(f(T(U))) und die Abbildung
0:n — &, U T(U) ist injektiv. o hat daher sogar eine abzihlbare punktendliche offene
Verfeinerungsiiberdeckung 1. Sei n = {U,, | n € N}. Aus Satz 12.1.8 folgt, dass es eine offene
Uberdeckung {V,, | n € N} gibt, mit V,, C U, fiir alle n € N. Offenbar ist dann o := {V,, | n € N}
eine abzdhlbare Verfeinerungsiiberdeckung von ¢ aus abgeschlossenen Mengen.

(b) = (c) folgt unmittelbar aus Lemma 12.5.18 und (c) = (a) ist trivial.

12.5.20 Lemma

Sei € C 2 (X) sternabzihlbar. Auf & fiihren wir folgende Aquivalenzrelation ein: T ~
T:< 3Ty,....T,€cémit T =Ty, T' =T, und TyNTj 1 #Ofiralle 0 <k <k+1<n.
Fiir T € & sei [T] := {T’ € £ mit T ~ T’} die Aquivalenzklasse mit Repriisentant 7. Die
Behauptung ist, dass jede Aquivalenzklasse abziihlbar ist und fiir verschiedene Aquiva-
lenzklassen [T], [T7] gilt (U[T]) N (U[T’]) = 0. Ist 7 eine Topologie auf X und & eine stern-
abzihlbare offen Uberdeckung, so ist jedes |J[T] offen und abgeschlossen. AuBerdem ist
& eine o-diskrete offene Uberdeckung.

Beweis: Das ~ eine Aquivalenzrelation ist, ist klar. Fiir jedes n € N fiihren wir die folgende
Relation ein. T ~, T’ : & dm < n3Ty,...T, € Emit T =Ty, T' =T, und T N T 1 # 0
fir alle 0 < k < k+ 1 < m. AuBerdem sei [T], :={T" € & |T ~, T'}. Da jedes [T], abzihl-
bar ist (Induktion nach n), ist auch [T'] = U,en[T], abzihlbar. Das (UJ[T]) N (U[T']) = 0 fiir
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verschiedene Aquivalenzklassen gilt (natiirlich gilt insbesondere [T] N [T'] = 0), ist klar. Sei
[E]:={[T] | T € &} die Menge aller Aquivalenzklassen. Ist & nun eine offen Uberdeckung,
so ist {U[T] | T € &} offenbar eine Zerlegung von X in offene Mengen. Jedes |J[T] ist daher
auch abgeschlossen (als Komplement der Vereinigung der Ubrigen). Beachten wir, dass jedes
Q € [£] abzihlbar ist, sich also folgendermaBen schreiben ldsst Q = {Tn(Q) | n € N}, so sehen
wir mit der Darstellung & = U[£] = U{Q | Q € [E]} = U,end T | Q € [£]} und der Tatsache,
dass offenbar jedes {Tn(Q) | O € [€]} diskret ist, dass & tatséchlich o-diskret ist.

12.5.21 Satz

Fiir einen T3-Raum (X, 7) sind dquivalent:

(a) (X, ) ist stark parakompakt.

(b) Jede offene Uberdeckung hat eine Verfeinerungsiiberdeckung aus abgeschlossenen
Mengen, welche sowohl lokal endlich als auch sternendlich ist.

(c) Jede offene Uberdeckung hat eine Verfeinerungsiiberdeckung aus abgeschlossenen
Mengen, welche sowohl lokal endlich als auch sternabzéhlbar ist.

(d) Jede offene Uberdeckung hat eine sternabzihlbare offene Verfeinerungsiiberde-
ckung.

Beweis: (a) = (b). Sei ¢ eine offene Uberdeckung und & eine sternendliche offene Ver-
feinerungsiiberdeckung. Da (X, 7) als parakompakter T3-Raum auch Ty ist, gibt es nach Satz
12.1.8 eine offene Uberdeckung y:= {Vp | P € £} mit Vp C P fiir jedes P € . Damit ist y
ebenfalls sternendlich und somit auch lokal endlich. Insbesondere ist damit aber auch o :=
{Vp | P € £} lokal endlich und sternendlich.

(b) = (c¢) ist trivial. Kommen wir zu (c) = (d). Sei ¢ eine offene Uberdeckung und o eine
Verfeinerungsiiberdeckung aus abgeschlossenen Mengen, welche sowohl lokal endlich also
auch sternabzéhlbar ist. Wir verwenden die Bezeichnung aus Lemma 12.5.20. Jedes Q € [o]

ldsst sich schreiben als Q = {A,SQ) | n € N}. AuBerdem ist jedes | Q offen und abgeschlossen,
denn o ist lokal endlich (und damit auch Q bzw. J{Q' € [a] | Q' # O})! Fir Q € a und
neNseiS(Q,n) € 6 mitA'? C $(Q,n). Dannist & := {(UQ)NS(Q,n) | Q € &, n € N} eine
sternabzéhlbare offene Verfeinerungsiiberdeckung von o.

(d) = (a). Aus Lemma 12.5.20 folgt, dass jede offene Uberdeckung eine o-diskrete offene
Verfeinerungsiiberdeckung besitzt. Mit Korollar 12.2.10 folgt, dass (X, 7) parakompakt ist.
Als parakompakter T3-Raum ist X auch T4. Sei nun v eine beliebige offene Uberdeckung
und & eine sternabzihlbare offene Verfeinerungsiiberdeckung. Fiir jedes T € & ist J[T] ein
offener und abgeschlossener Unterraum, der folglich auch parakompakt und T4 ist. Demnach
gibt es zur abzihlbaren offenen Uberdeckung &7 := {T'N(U[T]) | T’ € [T]} von [T] eine lokal
endliche, insbesondere also punktendliche offene Verfeinerung. Nach Lemma 12.5.19 gibt es
dann aber auch eine (abzihlbare) sternendliche offene Verfeinerungsiiberdeckung Ay von &r
(in [T]), deren Elemente - und das ist wichtig - auch offen in X sind. Offenbar ist nun Urc¢ Az
eine sternendliche offene Verfeinerungsiiberdeckung von & und damit auch von 7.
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12.5.22 Korollar

Jeder regulédre Lindelofsche T3-Raum ist stark parakompakt und jeder zusammenhédngende
stark parakompakte T3-Raum ist ein Lindel6f-Raum.

12.6 Wann ist X x [0, 1] ein T4-Raum?

In Satz 5.3.12 war eine der Voraussetzungen X X [0, 1] ist ein T4-Raum. In diesem Abschnitt
wollen wir die Rdume (X, t) charakterisieren, fiir die eben dieses Produkt ein T4-Raum ist.
Was wir schon wissen ist folgendes: Ist (X, 7) parakompakt und T, so ist auch X x [0, 1]
parakompakt (da [0, 1] kompakt ist) und T, also auch Ty4. Es geht aber besser ...

12.6.1 Definition

abzihlbar parakompakt Ein topologischer Raum (X, 7) heilt abzdhlbar parakompakt, wenn
jede abzihlbare offene Uberdeckung eine lokal-endliche, offene Verfeinerungsiiberdeckung
hat.

Das nichste Lemma gibt einige einfacher zu handhabende Kriterien fiir abzédhlbare Para-
kompaktheit.

12.6.2 Lemma

Fiir einen topologischen Raum (X, 7) sind dquivalent:

1) (X, 7) ist abzdhlbar parakompakt.

2) Jede abzidhlbare offene Uberdeckung hat eine abzihlbare, lokal-endliche, offene
Verfeinerungsiiberdeckung.

3) Zu jeder abzihlbaren offenen Uberdeckung (Up,),cn, mit U, C U,+ (U, T X), gibt es
eine Folge abgeschlossener Mengen (F,),cn, mit £, C U, und X = J,n Fyy -

4) Zu jeder Folge abgeschlossener Mengen (F,)qen, mit Foy € F, und (,enFn = 0
(F, | 0), gibt es eine Folge offener Mengen (U, ) en, mit F, C Uy, und ey Uy = 0.

Beweis: 2) = 1) ist trivial. Beweisen wir 1) = 2). Sei also ¢ eine abzihlbare offene Uber-
deckung von X. Wihle eine (nicht notwendig abzihlbare) offene Verfeinerung £. Zu V € &
wihle Uy € o, mit V C Uy. Fiir jedes U € o setze nun Wy :=J{V € & | U = Uy }. Die ge-
suchte abzéhlbare, offene, lokal-endliche Verfeinerungsiiberdeckung ist dann {Wy | U € o}
(der Leser iiberzeuge sich davon).

1) = 3) Sei also U,, T X. Sehen wir uns die Konstruktion aus 1) = 2) noch einmal genau
an, so stellen wir fest, dass es eine lokal-endliche, offene Verfeinerungsiiberdeckung (V},),en
gibt, mit V,, C U,. Dann kénnen wir F, := X \ Up~, Vi € U<, Vi € U, definieren. Es gilt
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E? =X \UionVk = Mion X\ Vk). Zux € X 30, € N7, so dass {k € N |V, N O, # 0} endlich
ist. Wir konnen also / maximal mit V; N Oy # @ wihlen. Dann ist aber x € (-, X \ Vk = F’.
Also X = U,en Fy, -

3) < 4) ist klar (man gehe einfach zu den Komplementen tiber).

3) = 1) Sei dazu (P,),en eine offene Uberdeckung. Setze U, := |Ji, Pr. Dann gibt es ei-
ne Folge abgeschlossener Mengen (F;) ey mit F, C U, und X = |J,,cy F°. Wir setzen dann
Vi := X \ Ug<n Fr- Die gesuchte lokal-endliche, offene Verfeinerungsiiberdeckung ist dann
{Vn NP, | ne N} U {P()}.

12.6.3 Korollar

Ist (X, 7) ein T4-Raum, so ist X genau dann abzihlbar parakompakt, wenn zu jeder Folge
abgeschlossener Mengen (F, ) cn, mit F,+1 C F, und (e Fr = 0, es eine Folge offener
Mengen (U, ) en gibt, mit F, C Uy, und (,en U, = 0.

12.6.4 Satz

Fiir einen topologischen Raum (X, 7) ist dquivalent:
1) X x [0,1] ist ein T4-Raum.
2) X ist ein T4-Raum und abzédhlbar parakompakt.

Beweis: 1) = 2) X ist ein T4-Raum, da X homdomorph zum abgeschlossenen Teilraum
X x {0} ist. Zeigen wir nun, dass er abzdhlbar parakompakt ist. Wir wenden Korollar 12.6.3
an. Sei also (F,),cn eine entsprechende Folge. Wir bilden dann A, := F,, x [27",1] und A :=
U,enAn- Diese A ist nun abgeschlossen!. Denn fiir (x,7) € (X x [0,1]) \ A gibt es zwei Fille:
1. Fall x & U,y Fr, dann ist X \ Fp offen und (x,7) € X \ Fy C X x [0, 1]\ A. 2. Fall x € U, Fr-
Dann sei m := max{n € N|x € F,}. Nun ist x € A, also r € [0,27"). W := (X \ Fjpt1) X
[0,27™) ist dann offen, enthélt (x,7) und ist disjunkt zu A. Denn falls (y,s) € W NA, dann
(v,5) € Ag, k < m. Dann ist aber s € [27%,1], also 2% < s, im Widerspruch zu s < 2™,

A und X x {0} sind demnach abgeschlossen und disjunkt, also gibt es disjunkte und offene
U,VmitACUund X x {0} CV.FirneNsei U, :={(x,1) eU |t <27} =UN(X x
[0,27")). Bezeichnen wir mit p : X x [0, 1] — X die Projektion und setzen V,, := p(U,), so gilt
F, CV,und (,en Vi = 0.

2) = 1) Sei X dazu T4 und abzidhlbar parakompakt. Wir konstruieren nun zu zwei disjunkten
abgeschlossenen Mengen F,G entsprechende disjunkte Umgebungen. Dazu beschaffen wir
uns eine geeignete Basis der Topologie auf [0, 1]. Wir starten dazu mit einer abzihlbaren Basis
%' (z.B. die offenen, bzw. halboffenen Intervalle mit rationalen Eckpunkten) und setzen dann
B = {Ui_ Br | By € #'}. Damit ist A also gegen endliche Vereinigungen abgeschlossen.
Dies hat rein technische Hintergriinde. Klar ist jedenfalls, dass auch % abzihlbar ist. So, fiir
x € X setzen wir nun Fy := {r € [0,1] | (x,¢) € F} und analog G,. F und G, sind dann abge-
schlossen und disjunkt. [0, 1] ist ein T4-Raum, also finden wir disjunkte offene Umgebungen
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01,0, von F; und G,. Diese lassen sich als Vereinigung von Elementen aus unserer Basis %
beschreiben, z.B. O = Ugc g B, fiir B” C Z. Also auch F, C (Jpcz B. Fy ist kompakt, also
gibt es bereits endlich viele By € " mit F, C J;_, Bx. Aber |J;_, By € 4. Es gibt also ein
B € #B mit F, C % und G,NB = 0. Zu jedem B € % bilden wir nun U := {x € X | F, C B
und BN Gy = 0} und zeigen Up ist offen. Ug = {x € X | L C B} N{x € X | G, C [0,1]\ B}
und es reicht somit zu zeigen, dass fiir offenes O C [0, 1] auch {x € X | F; C O} offen ist. Dazu
rechnen wir X \ {x € X | F, C 0} = p(¢~'(]0,1]\ O) N F) und sehen, dass letztere Menge nach
Satz 4.1.7 aber abgeschlossen ist. Nun ist (Ug)pec eine abzihlbare offene Uberdeckung von
X, es gibt also eine lokal-endliche, offene Verfeinerungsiiberdeckung (Vg)pe %, mit Vg C Up.
Wir setzen nun V :=Jgc (Vg x B) und zeigen F CV und VNG = 0. Sei (x,¢) € F. Dann gibt
es B € A, mit x € Vg C U, also F, C B und damit ¢ € B. Das heif3t aber (x,7) € Vz x B. Nehmen
wir nun mal an es gibt ein (x,7) € VNG. Nun ist (Vg X B) gc 5 ebenfalls lokal-endlich (ist nicht
schwer) und damit dann V = Jg 5 Vi X B. Also gibtes ein B € Z mit (x,t) € Vg x BC Ug X B.
Aber t € G, im Widerspruch zu BN G, = 0, fiir x € Up.

12.7 Zerlegungen der Eins und Fortsetzbarkeit stetiger
Abbildungen (3)

Wir kommen zu einer wichtigen Konstruktion auf parakompakten Raumen, nimlich zu den
Zerlegungen der Eins. Anwendung haben diese beispielsweise in der Theorie der Mannig-
faltigkeiten. Dort sind sie gewissermallen eine Briicke zwischen lokalen und globalen Un-
tersuchungen. AuBlerdem verallgemeinern wir (unter etwas stirkeren Voraussetzungen) den
Fortsetzungssatz von Tietze (Satz 3.3.1).

12.7.1 Definition

Zerlegung der Eins Eine Familie (f; : X — [0, 1]);c; von stetigen Abbildungen nennt man
eine Zerlegung der Eins (oder Partition der Eins, bzw. Teilung der Eins), wenn fiir alle x € X
gilt: Yes fi(x) = L.

(fi : X — [0, 1]);er nennt man lokal-endlich, wenn es fiir alle x € X eine offene Menge x € V
gibt derart, dass die Menge {i € I | f;|V # 0} endlich ist.

Eine Familie (f; : X — [0, 1]);c; von Abbildungen nennt man eine der offenen Uberdeckung
(U;)ier des Raumes X untergeordnete Zerlegung der Eins, wenn:

a) (fi: X — [0, 1]);es ist eine Zerlegung der Eins,

b) fiirallei € I gilt Tr(f;) :={x € X | fi(x) #0} CU,.

12.7.2 Satz

Sei (fi: X — [0, 1]);er eine Zerlegung der Eins in einem topologischen Raum (X, 7). Dann
gilt:

1)Ve>0Vxe X0, € Tmitx € Oy und {i €I | Iy € O, mit f;(y) > €} ist endlich.

2) 1 : X — (0,1] definiert durch w(x) := sup{ fi(x) | i € I} = max{fi(x) | i € I} ist stetig.
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3) Es gibt eine lokal-endliche Zerlegung der Eins (g;)i; mit g; ' ((0,1]) C £7((0, 1)), fiir
allei e l.

Beweis: 1) Sei € > 0 und x € X. Es gibt dann eine endliche Teilmenge J C I mit Y, fi(x) >
1 —e¢.Setze Oy :={y € X | Yics fi(y) > 1 —€}. Oy ist dann die gesuchte Menge. Man beachte
dazu, dass Y, fi stetig ist und wenn f;(y) > € ist fiir i € I, dann ist bereits i € J (sonst
Yoy fily) > e+ 1—é).
2) folgt aus 1).
3) Setze o;(x) := max(0,2fi(x) — p(x)). Dann ist o stetig und o; ' ((0,1]) C £,'((0,1]). Sei
y € X und € := u(y)/4. Nun gibt es eine offene Menge O > y und ein endliches J mit pt(x) > 2¢
und fj(x) < € fir x € O und i € J (folgt aus 2) und 1)). Hieraus folgt 0;(x) =0 firx € 0,i € J.
Also ist (0;);er lokal endlich. Es gilt aber u(y) = fi(y) fiir ein k € I, also ox(y) = fi(y) =
t(y) > 0 und somit Y ;; 0;(y) > 0, fiir alle y € X. g(x) := 0j(x)/ L;c; 0i(x) fur j € J bildet
dann die gesuchte Familie.

12.7.3 Satz

Sei % eine lokal-endliche offene Uberdeckung eines T4-Raumes. Dann gibt es eine lokal-
endliche, der offenen Uberdeckung % des Raumes X untergeordnete Zerlegung der Eins.

Beweis: Wir wihlen entsprechend Satz 12.1.8 eine offene Uberdeckung {Vy; | U € % } mit
Vy C U. Dann wihlen wir weiter zu jedem U € % ein offenes Wy mit Vy C Wy C Wy C
U. Das Lemma von Urysohn verhilft uns nun zu stetigen Abbildungen gy : X — [0, 1] mit
gu|Vu = 1 und gy|Wy = 0. Damit sind wir fertig, denn (gv/Y.ycs gu)vew ist bereits die
gesuchte Zerlegung.

12.7.4 Bemerkung

Jede offene Uberdeckung eines parakompakten Hausdorff-Raumes besitzt also eine unterge-
ordnete Zerlegung der Eins! Umgekehrt gilt fiir einen topologischen Raum (X, 7): Wenn jede
offene Uberdeckung eine untergeordnete Zerlegung der Eins besitzt, dann ist er parakompakt
(Beweis: Sei (f; : X — [0,1]);e; eine der Uberdeckung ¢ C T untergeordnete Zerlegung der
Eins. Es gibt dann eine lokal-endliche Zerlegung der Eins (g;);c; mit gl.’1 ((0,1]) C fl.’1 ((0,1]),
fiir alle i € I. Offensichtlich ist dann bereits (g; (0, 1]));e; die gesuchte offene, lokal-endliche
Verfeinerungsiiberdeckung.)

Erinnern wir uns noch einmal an Satz 3.3.1. Dort ging es um die stetige Fortsetzbarkeit von
reellen Funktionen, definiert auf einer abgeschlossenen Menge eines T4-Raums. Im néchsten
Satz verwenden wir Zerlegungen der Eins, um stetige Funktionen, definiert auf einer abge-
schlossenen Menge eines metrischen Raums, mit Werten in einem lokalkonvexen topologi-
schen Vektorraum, auf den ganzen Raum auszudehnen.
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12.7.5 Satz von Dugundiji

Sei (X,d) ein metrischer Raum und M abgeschlossen in X. Ferner sei f: M — Y ste-
tig, wobei Y ein lokal konvexer topologischer Vektorraum ist. Dann gibt es eine stetige
Abbildung F : X — convex(f(X)) mit F|M = f.

Beweis: Fiir jedes x € X \ M wihlen wir ein € > 0 mit K(x,2¢) C X \ M. Die Familie
(Ux)xex\p mit Uy := K(x,€) (durch diese Wahl von &€ bekommt man die weiter unten bend-
tigte Elgenschaft: diam(U,) < d(Uy,M)) hat eine offene, lokal-endliche Verfeinerung (P;)cs
(es handelt sich um die Uberdeckung einer Teilmenge eines metrischen Raums). Die Familie
(P;)icr hat demzufolge auch eine untergeordnete Zerlegung der Eins (f;);c;, insbesondere also
mit folgenden Eigenschaften:

1) Yic; fi(x) = 1, fiir alle x € X \ M.

2) fi(x) =0, fir x € P.. Da es zu jedem i € ] ein x; € X \ M gibt, mit P, C U,,, bedeutet dies
sogar fi(x) =0, fir x € U,,.

3) Vx € X\ M 3V, € xNt derart, dass {i € I | VNP, # 0} endlich ist.

Fiir jedes x € X \ M wihlen wir ein m, € M, mit d(my,U,) < 2d(M,U,) und definieren fiir
jedesx € X: F(x) := f(x), firx € Mund F(X) 1= Y;c; fi(x) f(my,), firx € X \ M.
Offensichtlich ist dann F (x) € convex(f(M)). AuBerdem ist F auf M stetig (klar) und ebenso
ist F auf X \ M stetig (folgt aus der lokalen Endlichkeit). Zeigen miissen wir die Stetigkeit
also nur noch auf X \ M. Fiir xo € dM und x € X \ M, mit fj(x) # 0 gilt nach Konstruktion der
fi bereits x € Uy,. Wir erhalten d(my,,x) < d(my,,Uy,) +diam(Uy,) < 3d(M,U,,) < 3d(x,xp),
also d(my;,x0) < d(x,x0) +d(my,,x) < 4d(x,xp). Das heifit also f;(x) = 0, wenn d(my,,xy) >
4d(x,xp). Sei nun V eine konvexe offene (und symmetrische) Umgebung der O in Y. Weiter
wihlen wir 6 > 0, so dass fiir m € M, mit d(xo,m) < 0 bereits f(m) — f(xo) € V gilt (Stetigkeit
von f). Sei nun x € K(xp, 8/4) beliebig gewihlt. Falls x € M, dann sofort F(x) — F(xg) € V.
Falls x € X \ M, dann F (x) — F (x0) = Yz fi(x)(f(my,) — f(x0)), wobei wenn fj(x) # 0, dann
d(my,,x0) < 4d(xp,x) < & gilt und somit f(my,) — f(xg) € V. Die Menge V ist aber kon-
vex, also auch Y ;c; fi(x)(f(my,) — f(x0)) € V (man beachte ) ;c; fi(x) = 1). Insgesamt also
F(K(x0,0/4)) C F(xp)+V und F ist somit stetig!

12.8 Metrisierbarkeit

In diesem Abschnitt kldren wir die Frage, wann ein topologischer Raum metrisierbar ist. Das
hei3t wir geben eine Bedingungen/Eigenschaften an, die ein top. R. erfiillen muss, damit es ei-
ne Metrik gibt, die dessen Topologie erzeugt (auf die gewohnliche Art und Weise). Umgekehrt
wird sich ergeben, dass jeder metrische Raum diese Eigenschaften bereits besitzt.
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12.8.1 Lemma

Sei (X, 7) ein T3-Raum mit einer o-lokal-endlichen Basis Z = [J{}; | n € N} (die 7, sind
lokal-endlich). Dann lidsst sich jede abgeschlossene Menge A als Schnitt von abzihlbar
vielen offenen Mengen schreiben: A = (,,cy Oy, mit O, € T. Man sagt auch kurz: Jede
abgeschlossene Menge ist eine Gg-Menge.

Beweis: Sei n € N. Fiir jedes x € A wihle ein o € ¥nt mit {B € v | o nB # 0}

minimal (dies geht, da ¥, lokal-endlich ist). Setze dann O, := [J,cq 0)(6"). Offensichtlich A C
NnenOn- Seiy € X\ A. Dann gibtesein U € Tundein V € Zmit UNV =0, A C U und
y € V (die T3 Eigenschaft). Sei V € ¥, fiir n € N. Dann muss O, NV = 0 gelten! Sonst gibt es

ein x € A mit O)(Cn) NV # 0. Aber es ist auch Uno €xnrtund {B <€ % | (OJ(Cn) NU)NB #

0} < {B € 7, | OV N B # 0}| (denn (0 NU)YNV =0 und O NV +# 0) im Widerspruch
()

Zur Wahl von O, .

12.8.2 Lemma
Sei (X, 7) ein T4-Raum und @ # A C X eine abgeschlossene Menge. Dann gilt:

(3f:X —[0,1] mit f~1(0)=A) & (A isteine G5 Menge.)

Beweis: Falls f stetig mit f~!(0) = A, dann ist A = f~1(0) = f~ YN\ (=1/n,1/n)) =
N £ ((—1/n,1/n)). Also ist A eine G5 Menge.

Sei umgekehrt A eine Gg Menge. Also A =(,,_; O, mit O, offen. Das Lemma von Urysohn
garantiert fiir jedes n eine stetige Funktion f, : X — [0, 1] mit f,,(A) = {0} und f,(X \ O,) C
{1}. Setze nun f:=Y > ,27"f,. f ist nun stetig (gleichmiBige Konvergenz) und es gilt
£71(0) =A.

12.8.3 Metrisationssatz von Nagata und Smirnow

Ein top. Raum (X, 7) ist genau dann metrisierbar, wenn er T und T3 ist und eine o-lokal-
endliche Basis hat (er hat dann also sogar eine o-diskrete Basis). Ein wichtiger Spezialfall
ist der, wenn der Raum eine abzihlbare Basis hat (die trivialerweise ¢-lokal-endlich ist).

Beweis: Sei (X, T) zuerst als metrisierbar vorausgesetzt. T; und Tj ist dann klar und die
Existenz einer o-lokal-endlichen Basis folgt aus Lemma 12.2.6.

Fiir die andere Richtung sei (X, T) nun als T3-Raum mit o-lokal-endlicher Basis vorausge-
setzt. Offensichtlich hat dann jede offene Uberdeckung eine o-lokal-endliche Verfeinerungs-
tiberdeckung, (X, ) ist nach Korollar 12.2.10 also parakompakt.
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Nun zur Konstruktion der Metrik. Sei Z = [J{y, | n € N} eine o-lokal-endliche Basis (mit
lokal-endlichen ¥,). Fiir jedes n € N und U € 7, ist X \ U nach dem obigen Lemmas eine
Gs-Menge und es existiert eine stetige Abbildung @,y : X — [0,1] mit X \ U = ¢, /;(0), also
U={xeX|@uu(x)>0}. Da ¥, lokal-endlich ist, ist }.7cy, @,y Wohldefiniert und stetig!

Dann ist aber auch
—n (PILV

I+ ZUeyn On,U

fir V € ¥, sinnvoll definiert und stetig. Esistdann 0 < y, y <27"undV ={x € X | v (x) >
0} und sogar 0 < Yyey, Yoy < 27". Wir definieren nun d(x,y) := ¥~ o(Lvey, [Wnv(x) —
Vv (y)|). Symmetrie und Dreiecksungleichung sind unmittelbar klar. Und fiir x # y gibt es
einne€NundeinV € y, mitx € V und y ¢ V (die T Eigenschaft). Somit gilt y;, y(x) >0 =
Vv (y). Insgesamt also d(x,y) =0 & x=y.

Bleibt noch zu zeigen, dass d die Ausgangstopologie induziert. Fiir x € X ist die Funktion
fr : X — R definiert durch f,(y) := d(x,y) stetig beziiglich 7. Sei dann O offen bzgl. d und
x € 0. Es gibt dann ein € > 0 mit K(x,&) C O. Setze W := (f(x) — €, fr(x) +€) = (—¢,¢€).
Dann gibt es U, € T mit x € U, und f,(U,) C W. Es gilt nun U, C K(x,€), denn y € U,
impliziert f,(y) € W, also d(x,y) < €. Also ist O auch offen bzgl. 7.

Sei umgekehrt x € U € 1. Dann existiert n € Nund V € 7, mit x € V C U. Definiere 6 :=
Vi (x) dann folgt fir v € K(5,8): |V (5) — Vi ()] < T Swey, Vi () — v ()] =
d(x,y) < 6 = W,y (x) und damit ¥, y(y) > 0. Also y € V und somit K (x, ) C U. Das heifit U
ist offen in der durch d induzierten Topologie.

ll/n7V = 2

12.8.4 Metrisationssatz von Smirnow

Ist ein parakompakter Raum Hausdorff-Raum (X, 7) nicht metrisierbar, so sind lokale Un-
zuldnglichkeiten der Grund dafiir. Priziser: Ist (X, 7) parakompakt und T», so ist er genau
dann metrisierbar, wenn er lokal metrisierbar ist (zu jedem Punkt gibt es eine Umgebung,
die als Teilraum aufgefasst metrisierbar ist).

Beweis: Jeder metrisierbare Raum ist ganz offensichtlich auch lokal metrisierbar (man neh-
me als Umgebung einfach ganz X). Zeigen wir die andere Richtung. Fiir jedes x € X wihlen
wir eine metrisierbare Umgebung U,. Dann ist {U? | x € X} eine offene Uberdeckung, zu
der es eine lokal-endliche offene Verfeinerungsiiberdeckung & gibt (Parakompaktheit). Jedes
V € & besitzt (als Teilraum) eine o-lokal-endliche Basis By = {5‘5'1) | n € N}, mit lokal-

endlichen 5&"). Fiir jedes n € N bilden wir 6, := UVe& 6‘(,") und stellen fest, dass &, lokal-
endlich ist. Dann ist % := | J,cy 0, eine o-lokal-endliche Basis von (X, 7)! Als parakompak-
ter T> Raum ist X zudem T; und T3 und wir konnen den Metrisationssatz von von Nagata,
Smirnow anwenden.
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12.8.5 Lemma

Sei (X, 7) ein topologischer Raum und sei {7, | n € N} eine Menge offener Uberdeckungen
mit der Eigenschaft: Vx € XV Oy € XN t3n € N mit 9,(x) C Oy. Dann hat (X, ) ein o-
diskretes abgeschlossenes Netzwerk (siehe Definition 2.1.13).

Beweis: Wir zeigen zuerst, dass jede offene Uberdeckung eine o-diskrete abgeschlossene
Verfeinerungsiiberdeckung hat. Sei ¥ also eine offene Uberdeckung. Sei dann < eine (belie-
bige) Wohlordnung auf y. Wir definieren fiir jedes U € y und n € N die Mengen ¢(U) := U \
U{Vey|lV<U}tundt,(U):={x€t(U)|ym(x) CU}.Esistdann 6 :={z,(U) |U €y, n€ N}
eine o-diskrete abgeschlossene Verfeinerungsiiberdeckung von 7.

(Beweis: Das § eine Verfeinerung von 7 ist, ist klar. Anhand der Gleichung 7,(U) = X \
[%(X \U) UUy -y V] sehen wir, dass jedes #,(U) abgeschlossen ist. Zeigen wir die Uber-
deckungseigenschaft. Sei x € X. Wir wihlen U € y minimal (bzgl. <) mit x € U. Dann ist
x € t(U). Ferner gibt es ein n € N mit y,(x) C U. Also x € t,(U) und & ist somit eine Uberde-
ckung. Ferner schneidet kein Element aus 7y, zwei verschiedene Elemente aus {z,(U) | U € ¥}
(fiir jedes n € N). Denn sei W € ¥, mit WN¢#,(U) # 0 # W N, (V), fur U,V € y. Wir kon-
nen dann x € WNt,(U) und y € WN¢,(V) wihlen. Nun ist aber auch W C 7,(x) C U und
W C y,(y) CV.Falls U #V, dann 0.B.d.A. U <V und somit y € (V) CV\U CV\W
- Widerspruch. Da ¥, eine Uberdeckung ist, ist {#,(U) | U € ¥} also diskret und & somit
o-diskret.)

Wenn jede offene Uberdeckung eine o-diskrete abgeschlossene Verfeinerungsiiberdeckung
hat, dann hat also auch jedes der ¥, eine solche; bezeichnen wir diese jeweils mit &,. Dann
ist auch & := U,y &, eine o-diskrete abgeschlossene Familie (zum einfachen Beweis sei an-
gemerkt, dass eine abzihlbare Vereinigung abzihlbarer Mengen wieder abzéhlbar ist). Zeigen
wir, dass & ein Netzwerk ist. Sei x € U € t. Es gibt dann ein n mit %,(x) C U. Nun ist &, eine
Verfeinerungsiiberdeckung von 7, und es gibt ein Ty € &, mit x € Ty. Zu T gibt es aber ein
Gey,mitT, CG.Daauchx € G, folgtx € T, C G C y,(x) CU. Also U = ¢y Iy Damit
ist alles gezeigt.

12.8.6 Metrisationssatz von Bing

Ein top. Raum (X, 7) ist genau dann metrisierbar, wenn er collectionwise normal ist und
es eine Familie {7, | n € N} offener Uberdeckungen mit der Eigenschaft Vx € XV O, €
xN73n € Nmit y,(x) C O, gibt.

Beweis: Sei & = J,cn &, ein o-diskretes abgeschlossenes Netzwerk, mit diskreten &, (vori-
ges Lemma). Die &, seien wieder so gewiihlt, dass sie eine Verfeinerung von 7, sind. Zu &, gibt
es eine o-diskrete offene Familie B, C 7, die von &, verfeinert wird (collectionwise normal).
Zu jedem T € &, wihlen wir nun ein By € 8, und ein D7 € %, mit T C By und T C Gr. Die
Familie o, := {By NGy | T € &, ist dann eine o-diskrete offene Verfeinerungsiiberdeckung
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von %,. Dann ist aber auch o := |J,c O, eine o-diskrete offene Familie. Zeigen wir, dass o
eine Basis ist.

Seix € U € t. Es gibt dann ein n mit y,(x) C U. Nun ist &, eine Verfeinerungsiiberdeckung
von %, und es gibt ein A, € oy, mit x € Ay. Zu A, gibt es aber ein G € ¥, mit A, C G. Da auch
x€G,folgtx € A, CGC y(x) CU. Also U = ey Ax-

Der Raum hat also eine o-diskrete Basis (also auch ¢-lokal endlich) und ist T; und T3 und
somit metrisierbar!

Umgekehrt ist ein metrischer Raum natiirlich collectionwise normal (Lemma 12.3.6) und
das System {y, | n € N>0} mit y, := {K(x,1/n) | x € X} hat die geforderte Eigenschaft, wie
man leicht mit Hilfe der Dreiecksungleichung beweist.

12.8.7 Definition

Moore-Raum Einen Reguldren Raum (d.h. Ty und T3), der eine Familie {%, | n € N} offener
Uberdeckungen mit der Eigenschaft Vx € XV O, € xNt3n € N mit y,(x) C Oy besitzt, nennt
man Moore-Raum. Den Metrisationssatz von Bing konnen wir also formulieren als: Jeder
collectionwise normale Moore-Raum ist metrisierbar.

Leicht ergibt sich nun der klassische Metrisationssatz von Alexandroff-Urysohn (der histo-
risch gesehen der erste war; 1923).

12.8.8 Metrisationssatz von Alexandroff und Urysohn

Metrisationssatz von Alexandroff-Urysohn Ein Tp-Raum (X, 7) ist genau dann metri-
sierbar, wenn es eine sternmonotone Folge (%,),cn offener Uberdeckungen von X gibt,
mit der Eigenschaft: Zu jedem x € O € 7 gibt es ein n € N mit y,(x) C O.

Beweis: Zeigen wir, dass X ein Tj-Raum ist. Sei x # y. O.B.d.A. gibt es dann ein O € xN T
mity ¢ O. Zu diesem x und O gibt es ein n € N mit %;,(x) C O. Aus y € 1, (x) folgt x & 1, (y) =:
Ucynrt.

Bilden wir fiir jedes n € N die Uberdeckung &, := 5, so erfiillt die Folge (&,)nen die
Bedingung an Satz 12.3.8 (siche dazu Lemma 12.2.2). Der Raum ist also voll normal und
damit auch collectionswise normal. Der Metrisationssatz von Bing (Satz 12.8.6) erledigt dann
den Rest.
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13 Uniforme Raume

”Niemand ist mehr Sklave, als der sich fiir frei hilt, ohne es zu sein.”
Johann Wolfgang von Goethe

13.1 Grundlegendes

Die meisten kennen aus der Analysis den Begriff der gleichmifBig stetigen Abbildung. Eine
Abbildung f: X — Y, fiir metrische Ridume (X,d) und (Y,d’) heiBt gleichmiBig stetig, wenn es
zu jedem € > 0 ein & > 0 gibt, so dass fiir alle x,x’ € X gilt: d(x,X') < = d'(f(x),f(x)) <
€. Im Gegensatz zur einfachen Stetigkeit konnen wir dieses Konzept nicht so einfach auf
allgemeine topologische Riume Ubertragen. In diesem Kapitel lernen wir nun eine Klasse
topologischer Rédume kennen (T;;-Réume; wir kennen diese bereits aus dem Abschnitt tiber

Kompaktifizierungen. Das es sich um diese Klasse handelt werden wir weiter unten beweisen.)
in denen wir dieses Konzept doch entwickeln konnen.

13.1.1 Definition

Grundlegendes: Ein uniformer Raum ist ein geordnetes Paar (X, %), wobei X eine Menge
ist und % folgenden Bedingungen gentigt:

1) 7% ist ein Filter auf X x X.

QVV e ¥ ist Ax :={(x,x) | xeX} CV.

HYVVewistV'iew.

HVV ey IU e mitUoU CV.

Die Elemente aus 7%/ sind also Teilmengen von X x X und sind somit Relationen auf X (wir
bezeichnen sie dementsprechend auch mit den iiblichen Buchstaben R, S, ...). Wenn V C X x X,
so ist mit V! die inverse Relation {(y,x) | (x,y) € V} gemeint. Fiir U C X x X ist mit U oU
die Menge {(x,y) | 3z € X mit (x,z),(z,y) € U} gemeint. % wird auch Uniformitit genannt.

Fiir V oV schreiben wir hin und wieder V2 und allgemein V" :=V o V"~ 1,

Fir A C X und V € % definieren wir V(A) :={y € X | 3x € Amit (x,y) € V}. Ist A = {x},
so schreiben wir auch einfach V (x) statt V ({x}).

Elemente V € % mit V = V~! nennen wir symmetrisch.

Wir nennen 4 eine Basis von %7, wenn ZC Z undVV € ZZ 3B € Z mit BC V.

Eine Abbildung f : X — Y zwischen zwei uniformen Riumen (X,%/) und (Y, %) heilit
uniform (oder auch gleichmaBig stetig), wenn es zu jedem V € ¥ ein U € % gibt, mit f X
f(U) CV.Unter f x fistdie Abbildung f x f: X x X — Y xY definiert durch f x f(x,y) :=
(f(x),f(y)) zu verstehen.

Ist f bijektiv und sowohl f, als auch f~! uniform, so sagen wir (X,% ) und (Y, %) sind
isomorph. f nennen wir dann einen Isomorphismus.
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13.1.2 Lemma

{U € % |U =U""} ist eine Basis von % . Sei % eine Basis von %, dann ist fiir jedes
n € Nauch {U" |U € A} eine Basis von % .

Beweis: Sei U € %. Dann ist auch V:=UNU"!' € % C U und es gilt (offensichtlich)
V1 = V. Beweisen wir die Zweite Behauptung:

Wir zeigen die Behauptung erst fiir {U?" | U € %}. Dies folgt namlich leicht durch In-
duktion nach n. Fiir n = 0 ist alles klar. n — n+ 1: Sei U € % . Es gibt dann ein W € %
mit WoW C U. Zu W gibt es aber (Induktionsvoraussetzung) ein V € 2 mit vZ' CW. Also
v =y oy CWow CU.

Offensichtlich gilt U" C U""! fiir alle U € % und n € N. Seien nun n € Nund U € %
fest gewihlt. Wir wihlen m € N mit n < 2™. Dann gibt es ein V € % mit V2" C U. Es folgt
vr C v2" C U. Damit ist alles gezeigt.

13.1.3 Lemma

Sei (X, % ) ein uniformer Raum und % eine Basis von % .

a) Ty :={0C X |Vxe€ 03V € % mit V(x) C O} ist eine Topologie auf X, die durch
die Uniformitit erzeugte (oder induzierte).

b)FirACX istA°={x€A|3U € ZmitU(x) CA}. Gemeint ist natiirlich der offene
Kern bzgl. 79, .

¢) Zu jedem O € %N 1Ty gibt es ein B € & mit x € B(x) C O. Ferner gilt x € B(x)° fiir
alle x € X und alle B € 4. Insbesondere ist somit {B(x) | B € #} eine Umgebungsbasis
des Punktes x € X.

d) FirA C X istA = ez V(A).

e) (X, 1y ) ist ein T3-Raum.

f) Eine uniforme Abbildung f : X — Y zwischen den uniformen Riumen (X,% ) und
(Y, ) ist stetig bzgl. den induzierten Topologien 77 und Ty .

Beweis: a) Offensichtlich @ und X € 74,. Seien 0,0’ € 75 und x € ON O’. Dann gibt es
U,V € % mit U(x) C O und V(x) C O'. Dann ist aber auch U NV € % und offensichtlich
(UNV)(x) CUKX)NV(x) CONO'. Also ist auch ON O’ € 17 . Noch schneller sieht man,
dass mit T’ C 14 auch |J1' € 19 ist. Damit ist alles gezeigt.

b) Wir setzen zur Abkiirzung B:={x €A |3U € Z mitU(x) CA}.Sei O CAmit O € 1.
Aus a) folgt unmittelbar O C B. Da B C A, reicht es also wenn wir zeigen, dass B offen ist. Sei
x € B.Dann gibtesein U € % mitU(x) CA.Zu U gibtes abereinV € ZmitVoV CU.Es
ist dann V(x) C B, denn y € V(x) impliziert (x,y) € V und z € V(y) impliziert (y,z) € V, also
(x,z) € VoV und damit z € VoV (x) C U(x) C A. Schlussendlich somit V (y) C A.

¢) Sei O € xN1y.Dann gibtesein V € 2 mit V(x) C O.Es gibtdannein B€ Zmit BC V.
Also B(x) C V(x) C O. Fiir die letzte Aussage verwende man a) und beachte B(x) C B(x).

299



d) Sei x € A. Annahme x ¢ 4V (A). Es gibt also ein V € % mit x ¢ V(A), also Va € A
gilt x € V(a). Nun gibt es aber ein symmetrisches W € %7 mit W C V. Dan aber auch x ¢ W (a),
fiir alle a € A. Dies ist nun dquivalent zu a ¢ W (x), fiir alle a € A. Also W(x)NA =0 - im
Widerspruch zu x € A. Sei nun x € (24 V (A). Annahme x ¢ A. Dannx € X \A = (X \ A)°, es
gibt also ein V € # mit V(x) C X \ A. Dann gibt es aber auch ein symmetrisches W € % und
einU e BmitU CW CV.Alsoxe U(A) CW(A), es gibt also ein a € A mit x € W(a) oder
dazu gleichwertig a € W (x). Dann ist aber auch a € V(x), im Widerspruch zu V (x) C X \ A.

e) Sei A abgeschlossen und x € X \ A. Nunist A =A =y V(A). Es gibt also ein V € %
mit x ¢ V(A). Zu V gibt es aber ein symmetrisches W € % mit W oW C V. Angenommen
es gibt ein y € W(A) NW(x) (an dieser Stelle beachte man, dass W(A) = J,c4 W(a) eine
Umgebung von A ist, also A C W(A)°). Dann gibt es ein a € A mit (a,y) € W und (x,y) € W,
also auch (y,x) € W. Nun ist dann aber (a,x) € WoW CV, also x € V(a) C V(A) - ein
Widerspruch! Also sind W(A) und W (x) disjunkte Umgebungen von A bzw. x - der Raum ist
also Tj;.

f) Wir verwenden Satz 2.2.2. Sei x € X und O’ offen in ¥ mit f(x) € O'. Dann gibt es
ein V € 7 mit V(f(x)) C 0. Zu V gibt es dann ein U € % mit f x f(U) C V. Dann ist
x € 0:=U(x)° offen in X und es folgt f(O0) C f(U(x)) CV(f(x)) C O

13.1.4 Bemerkung

Sprechen wir in Zukunft von irgendwelchen topologischen Eigenschaften (z.B. Trennungsei-
genschaften, Kompaktheit, Stetigkeit irgendwelcher Abbildungen, ...) uniformer Rédume (X;, %)ies,
so beziehen wir uns (sofern nicht anders gesagt) auf die topologischen Riaume (X;, 77, )icy.

13.1.5 Lemma

Fiir einen uniformen Raum (X, %) sind dquivalent:
a) (X, 1y ) ist ein To-Raum.
b) (X, Ty ) ist ein T{-Raum.
¢) (X, 1ty ) ist ein To-Raum.
d) (X, 79 ) ist regulér.
e) ﬂVG% V= AX.

Beweis: Da (X, 74 ) in jedem Fall Tj ist, folgt die Aquivalenz von a) bis d) aus Bemerkung
3.1.2. e) impliziert aber auch a), denn fiir x # y ist (x,y) & Ay, es gibt also ein V € % mit
(x,y) € V und somit y ¢ V(x). Umgekehrt folgt e) ganz leicht aus b). Denn es gilt immer
Ax C(yeq V und falls x # y, dann gibt es ein O € XN Ty mit y € O. Es gibt dann aber auch
einV € Z mitx € V(x) C O, also y ¢ V(x), was soviel wie (x,y) ¢ V bedeutet. Damit also

(x,y) € Nver V.
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13.2 Initialuniformitat und Finaluniformitat

Wie beschafft man sich auf einer Menge eine Uniformitét die gewissen Bedingungen genii-
gen soll? Zwei fundamentale Konstruktionen dazu lernen wir nun kennen. Wie schon bei der
Initialtopologie bzw. Finaltopologie bekommen wir auch hier die Produktuniformitiit bzw.
Quotientenuniformitit als Spezialfille.

13.2.1 Satz und Definition (Initialuniformitat)

Sei X eine Menge und (X;, % )ic; eine Familie uniformer Riume mit zugehorigen Abbil-
dungen f; : X — X;, i € I. Die grobste Uniformitiat %/ auf X, fiir die alle Abbildungen
fi uniform sind, nennen wir die Initialuniformitét. Die Initialuniformitét existiert immer,
wird von der Subbasis . := {(f; x f;)"N(U) | U € %, i € I} erzeugt und erfiillt die fol-
gende universelle Eigenschaft:

Fiir alle uniformen Rdume (Y, ?") und Abbildungen f:Y — X gilt:

f ist uniform genau dann, wenn alle Abbildungen f;o f : Y — X; uniform sind (i € I).
Ferner ist %/ durch diese Eigenschaft eindeutig bestimmt.

Y*f>X

ff\«l

X;

Beweis: Man rechnet leicht nach, dass .# die endliche Schnitteigenschaft hat und % :=
{NS" | C . und . ist endlich } die Basis eines Filters % ist. Zu zeigen bleibt, dass es
sich bei % um eine Uniformitit handelt. Dies bleibt als leichte Ubungsaufgabe. Unmittelbar
aus der Konstruktion folgt, dass es sich bei %7 um die grobste Uniformitit handelt, so dass alle
Abbildungen f;, i € I uniform sind. Der Nachweis der universellen Eigenschaft und ebenso die
Eindeutigkei, lduft genauso wie bei der Initialtopologie (man beachte, dass man sich wie bei
der Stetigkeit, auch beim Nachweis der Uniformitidt gewisser Abbildungen, auf eine Subbasis
beschrinken kann).

13.2.2 Lemma

Sei % die Initialuniformitit auf X beziiglich der uniformen Ridume (X;,%;);c; und zu-
gehorigen Abbildungen f; : X — X;, i € I. Die Initialtopologie 7;,; auf X beziiglich den
induzierten topologischen Raumen (X;, 7¢,) und Abbildungen f;, i € I ist gleich der durch
% induzierten Topologie 77 .

Beweis: Zeigen wir zuerst T;,; C 74 . Hierzu reicht es wenn wir zeigen, dass die Subbasis
{fl-_l(U,-) | U; € 19, und i € I'} von T, in T4 enthalten ist. Sei dazu x € fl-_l(U,-), fir U; € 14,
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Dann gibt es ein V € % mit V(fi(x)) C U;. Es folgt (f; x £;)~'(V)(x) C f; '(U;). Das heiBt
f;l(Ui) € Ty.

Kommen wir zu 7 C T;,;. Sei O € 79 und x € O. Es gibt dann ein V € % mit V(x) C O.
Zu 'V gibt es iy,...,i, € I und Uy, € %,, k = 1,...,n mit (f_,(fi, < f;,) "1 (U;,) C V. Wieder
kann man leicht nachrechnen, dass x € (}_, flzl (Ui, (fi,(x))) € V(x) ist. Setzen wir noch
Wi, := (U, (i, (0)))° € fi, ()N T4, » S0 erhalten wirx € (;_ f;l (W;,) € O, was nichts anderes
als O € 1;,; bedeutet.

13.2.3 Definition

Produktuniformitit, Teilraumuniformitit Genau wie die Produkttopologie definieren wir
auch die Produktuniformitit der uniformen Riume (X;, %;);c; als die Initialuniformitit %/ auf
X :=[1;e; Xi beziiglich der Projektionsabbildungen p; : X — X;.

Ist A C X und (X,% ) ein uniformer Raum, so definieren die Teilraumuniformitit % auf A
als die Initialuniformitit auf A bzgl. (E,% ) und iy : A — X definiert durch is(a) := a.

Bevor wir nun die Finaluniformitét definieren erst noch ein paar Vorbemerkungen zu soge-
nannten halbuniformen Rdumen.

13.2.4 Definition

Halbuniformer Raum (X,.7) heifit halbuniformer Raum und .7# entsprechend Halbunifor-
mitit, wenn:

1) A7 ist ein Filter auf X x X.

2Q)VU € 7 ist Ax C U.

HVU e A istU ! € A.

Sei (X,.7) ein halbuniformer Raum. Wir setzen dann @, := {% C ¢ | % ist Uniformitit
auf X }. Bilden wir anschlieBend . := Uy co, % und % :={N.7" | ' C .7 und " ist
endlich }, so ist & die Basis einer Uniformitit % *. Zeigen wir dies:

Das 4 eine Filterbasis ist, sollte klar sein. Ebenso leicht sieht man Ay C B, fiir jedes B € 4.
Sei Be A, also B=UN..NU,, fir Uy € % € Py, ..., U, € U, € Py . Dann ist auch
U,:l € U, € Py, firk=1,...,n. Wir erhalten B~ = Ufl N... ﬂUn’1 € 4. Ebenso folgt fiir
dieses B, dass es V), € %, gibt mit V, oV C Uy (fiir k=1,...,n). Fir B :=V,N...V, € A gilt
dann B’ o B’ C B. Damit ist gezeigt, dass * := [#B] ={U CX xX | IB€ Z mit BC U} eine
Uniformitit auf X ist. Wir zeigen im Folgenden % * € ® .

Dazu bilden wir 7 ** := {V C X x X | 3 Folge (V)pen mitV,, € 7, Vo CV und Vn € N
gilt V110V, €V, } und zeigen: % * = % **. Da offensichtlich % ** C ¢, folgt dann sofort
U* €Dy

Esgilt 0 ¢ Z7** und V C W mit V € ** impliziert W € % **. Wenn V,W € 7/**, dann
gibt es entsprechende Folgen (V,,),en und (W,),cn. Offensichtlich erfiillt dann die Folge (V,,N
W, )nen die Bedingung aus der Menge %/ ** bziiglich der Menge V N'W und dementsprechend
ist VW € 2**. Das Ax C U ist, fiir jedes U € % ** ist wieder unmittelbar klar. Zu U € % **
gibt es wieder eine entsprechende Folge (U, ),en aus 52, mit Uy C U und Uy, 11 o Uy, C U,.
Dann ist UO_1 C U und Un_—0—11 oUnjrll - Un_1 und somit U~! € 7**. Das es zujedem U € U **

302



einV € /** gibt mit VoV C U folgt dann wieder unmittelbar aus der Definition von % **. Wir
haben damit gezeigt, dass %7 ** eine Uniformitét ist. Aus 2 ** C ¢ folgt dann % ** C U ™.

Fiir die andere Richtung nehmen wir uns ein U € % *. Dazu gibt es dann Uy, ..., U, mit Uy €
U € Py, firk=1,....,nund UyN...NU, CU.Fiir k= 1,...,n gibt es dann Folgen (Uk(l))ieN
aus % mit Uk(H_l) o Uk(lH) - Uk(l) und U,go) = Uj. Dann bekommen wir mit V; := U](l) N...N U,El)
eine Folge (V;)en aus 72, welche Vi oViy) CV; und Vy C U erfiillt. Mit anderen Worten:
Ueur.

Wie bereits angekiindigt erhalten wir somit % * € ® ,» und % * ist demnach das eindeutig
bestimmte maximale (bzgl. Inklusion) Element aus ® . Wir schreiben auch % * = sup ® .

13.2.5 Satz und Definition (Finaluniformitat)

Sei X eine Menge und (X;, % )ic; eine Familie uniformer Riume mit zugehérigen Abbil-
dungen f; : X; — X, i € I. Die feinste Uniformitidt % auf X, fiir die alle Abbildungen f;
uniform sind, nennen wir die Finaluniformitit. Die Finaluniformitét existiert immer und
erfiillt die folgende universelle Eigenschaft:

Fiir alle uniformen Rdume (Y, ?") und Abbildungen f: X — Y gilt:

f ist uniform genau dann, wenn alle Abbildungen f o f; : X; — Y uniform sind (i € I).
Ferner ist %/ durch diese Eigenschaft eindeutig bestimmt.

Xl'LX

ff\\ if

Y

Beweis: Sei 7 :={V C X x X | Ax CV und Vi€ I gilt (f; x f;) "' (V) € Zes}. Man rechnet
leicht nach, dass .7 eine Halbuniformitit ist. Entsprechend der obigen Konstruktion bilden
wir % = sup ® . Offensichtlich ist %7 dann bereits die Finaluniformitit. Zeigen wir die
universelle Eigenschaft:

Wenn f: (X,%) — (Y,?) uniform ist, so ist auch fiir jedes i € I die Abbildung f o f;
uniform. Sind andererseits alle f o f; uniform, fiir i € I und ist V € 7, so gibt es eine Folge
(Vi)nen aus ¥, mit V1oV, CV,und Vg =V. Firallei € und n € N gilt ((fo f;) x (fo
£ (V) € % und ((Fo f;) % (f o f) ™ (Va) = (fi X f) "' ((f x £)"" (V). Nach Definition
von . folgt also (f x f)~1(V,,) € #. Wir haben also ein Folge ((f x f)~'(Vy))nen aus 7
mit (f X )" (Vg 1) o (f X )7 (Vs1) € (f x £)~1(V,,). Aus dem oben gezeigten folgt also
(f x )~ (V) € %, die Abbildung f ist also uniform.

Betrachten wir eine andere Uniformitiit %/ auf X, die auch die universelle Eigenschaft hat.
Die f; : (X;,%) — (X,% ) sind uniform und es gilt f; : (X;, %) — (X, %) =idx : X, %') —
(X, % )ofi: (Xi, %) — (X,%"). Aus der universellen Eigenschaft fiir das Paar (X,%') folgern
wir also, dass idx : (X, %) — (X, % ) uniform ist und somit %7’ C 7 gilt. Hieraus folgt bereits
unmittelbar, dass die f; : (X;, %) — (X,%") uniform sind.
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Nunistauch f;: (X;, %) — (X, %")=idx : X, %) — (X, %")o f; : (Xi, %) — (X,% ). Aus
der universellen Eigenschalft fiir das Paar (X, %) folgern wir also, dass idy : (X, %) — (X, %)
uniform ist und somit auch % C %’ gilt. Wir bekommen also %' = % - die Eindeutigkeit.

13.2.6 Definition

Quotientenuniformitiit Sei (X,% ) ein uniformer Raum und ~ eine Aquivalenzrelation auf
X. X/ ~ bezeichne die Menge der Aquivalenzklassen und 7 : X — X/ ~ die standard Projek-
tion. Die Finaluniformitit auf X / ~ beziiglich & nennt man Quotientenuniformitit.

13.2.7 Bemerkung

Eine zu Lemma 13.2.2 analoge Aussage ist falsch. Sei %/ die Finaluniformitit auf X beziig-
lich der uniformen Ridume (X;, %;)ic; und zugehérigen Abbildungen f; : X; — X, i € I. Die
Finaltopologie 7y;, auf X beziiglich den induzierten topologischen Ridumen (X;, 77;) und Ab-
bildungen f;, i € I ist nicht notwendig identisch mit der durch %/ induzierten Topologie 7y,
wie das folgende Beispiel lehrt.

13.2.8 Beispiel

Wir betrachten X := [0, 1] mit der durch die euklidische d(x,y) := |x —y| Metrik erzeugten
Uniformitit %/. Auf X fithren wir durch x ~y < {x,y} C[0,1/2) oder {x,y} C [1/2,1]
eine Aquivalenzrelation ein. Die durch die Quotientenuniformitiit auf X / ~ erzeugte Topo-
logie ist - wie wir bereits oben gesehen haben - in jedem Fall ein T3-Raum. X/ ~ mit der
Quotiententopologie beziiglich der durch % auf X induzierten Topologie und der Projektions-
abbildung 7 : X — X/ ~ hingegen ist - wie man leicht nachrechnet - homdomorph zu (Y, o),
wobei ¥ = {a,b} eine zweielementige Menge ist und ¢ = {0, {a},Y }. Insbesondere ist diese
Topologie nicht Ts.

13.3 Uberdeckungsuniforme Raume

Bereits bei den topologischen Riumen hatten wir gesehen, dass sich der Begriff der Topologie
auf mehrere Arten einfiihren ldsst. Einerseits durch den Begriff der offenen Menge (Definition
2.1.1) andererseits durch den Abschluss-Operator (Bemerkung 2.1.10). Wir werden in diesem
Abschnitt nun ein anderen Zugang zu den uniformen Rdumen entwickeln, der sich einerseits
als dquivalent erweisen wird, andererseits aber manchmal etwas handlicher ist.

13.3.1 Definition

Uberdeckungsuniformer Raum, Uberdeckungsuniformitiit Ein iiberdeckungsuniformer Raum
ist ein geordnetes Paar (X,I"), wobei X eine Menge ist und I folgenden Bedingungen geniigt
(fiir die Bezeichnungen siehe auch Definition 12.2.1):

1) I ist eine Menge von Uberdeckungen von X.

DQVa,Beldyelmity< aund y< .

HVael'dyelImity<* a.
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4) Ist & € T und B eine Uberdeckung von X mit o < 8, soistauch § € T.

I" nennen wir dann eine Uberdeckungsuniformitiit. Die Elemente aus I" miissen keineswegs
offene Uberdeckungen sein - von einer Topologie ist hier keine Rede!

Wir werden nun jedem iiberdeckungsuniformen Raum einen uniformen Raum zuordnen
und umgekehrt. Diese Zuordnungen werden sich als zueinander invers erweisen.

13.3.2 Lemma

a) Sei (X,T") ein iiberdeckungsuniformer Raum. Zu jedem 7y € I" definieren wir V; :=
Ugeyg % g und setzen #r := {Vy | y € ['}. Dann ist % := {U C X x X | 3B € Hr mit
B C U} eine Uniformitit auf X.

b) Sei (X, % ) ein uniformer Raum. Zu jedem U € % definieren wir yy :={U(x) | x €
X} und setzen I'y, := {y| v ist eine Uberdeckung von X und 3U € % mit yy < y}. Dann
ist 'y, eine Uberdeckungsuniformitit auf X.

¢) BsistI'y, =T.

d) Esist %, = % .

Beweis: a) Es ist Ay C V), fiir alle y € I'. Fiir o, B € I gibt es ein y € I' mit ¥y < & und
Y < . Damit gilt dann V,, C Vi, N V. Offensichtlich gilt v, e Vy, fiir alle y € I'. und zuletzt
gibtes zu @ € I ein y € I' mit y <* or. Damit folgt dann Vy oV, C V,,. Da 4 eine Filterbasis
fiir 7 ist, ist ZZ offensichtlich eine Uniformitit.

b) Das I'y, eine Menge von Uberdeckungen von X ist, ist klar. Es gilt yyny < v und
Yov < W, fur U,V € % . Wihlen wir wieder U € %/, so gibteseinV € 7/ mit VoV C U und
V~! = V. Man kann dann leicht nachrechnen, dass J <* 1y gilt. Und ist ¥ € 'y, und o eine
Uberdeckung von X mit ¥ < ¢, so folgt aus der Definition von I'y, bereits o € I',. Damit ist
'y also eine Uberdeckungsuniformitiit.

¢) Sei yeT'. Dann gibtesein @ € I'mit ¢ <* y. EsistV :=J,cqaxa € Zrund {V(x) |x €
X} < 7. Also auch y € ', denn {V(x) | x € X} € I'y.. Sei andererseits y € Iy, Dann
gibt es ein V € 24 mit {V(x) | x € X} < 7. Zu diesem V gibt es dann aber ein o € I mit
Useo @ X a € V. Man sieht nun leicht, dass o¢ < ¥ gilt und somit y € I" folgt.

d) Sei U € %.Es gibtdannein V € % mit V=V~ und VoV CU. Nun ist Jy € T’y
und U,cx V(x) x V(x) CU, also U € %,,. Andererseits gibt es fiir U € %, ein V € %/ mit
Ueex V(x) X V(x) CU.DaV C Uyex V(x) x V(x), folgt U € % .

13.3.3 Lemma

a) Sei (X,T) ein tiberdeckungsuniformer Raum. 7r:= {0 C X | Vx € O3y € T mit y(x) C
O} ist dann eine Topologie auf X.

b) Es ist Tr = 7y, fiir einen tiberdeckungsuniformen Raum (X,I").

¢) Es ist Ty = 1r,,, fiir einen uniformen Raum (X, % ).

305



Beweis: a) ist offensichtlich. b) Sei O € tr. Fiir jedes x € O gibt es ein §, € I' mit y(x) C O.
Nun ist Vy := Ugey, & X & € %1 und Vi(x) = 1(x) C O. Alsoist O € Ty.. Seinun O € Ty.. Fiir
x € O gibtes ein V € %t mit V(x) C O. Dann gibt es aber auch ein y € I' mit J,e,g x g C V.
Es ist dann y(x) = (U,ey g x 8)(x) € V(x) C O. Insgesamt also auch O € ..

¢)Sei O € 75 und x € 0. Es gibt dann ein V € % mit V =V ~! und (V ov)(x) C O. Dann
ist v € I', und es gilt 3 (x) C O. Andererseits folgern wir fiir ein O € 1r,, und x € O, dass
es ein y € I'y, geben muss mit y(x) C O. Dann gibt es ein V € %/ mit J < y. Offensichtlich
gilt dann V(x) C 0. Also O € 1.

13.3.4 Lemma

Sei (X, 7) ein topologischer Raum und I eine Uberdeckungsuniformitit auf X mit 1 = 7.
Dann folgt Vy € 'Ja € T’ mit a < y°. Unter y° verstehen wir {g° | g € v}. Es gilt also

Yy eTl.

Beweis: Fiir y € I" gibtes o, B € I' mit o0 <* B <* 7. Zeigen wir, dass dann bereits o < y°
gilt. Sei a € . Es gibt dann ein g € y mit a(a) C g (sieche Lemma 12.2.2). Nun ist g° = {x €
glIVeZmitV(x) Cgt={xcg|3d T mit §(x) C g}. Ausy € a folgt o (y) C g, also
y € g°. Insgesamt also a C g°.

13.3.5 Definition

Seien (X,I") und (Y,I") iiberdeckungsuniforme Rdume. Wir nennen eine Abbildung f: X —Y
iiberdeckungsuniform, wenn {f~!(g’) | g’ € ¥} € Tist, fiir jedes Y € I"".
Wie nicht anders zu erwarten gilt folgende Aussage:

13.3.6 Lemma

Seien X,Y zwei Mengen, % bzw. %' Uniformititen und I" bzw. I” Uberdeckungsunifor-
mitédten auf X bzw Y. Ferner sei f : X — Y eine Abbildung.

a) f:(X,%)— (Y,%') ist genau dann uniform, wenn f : (X,Ty ) — (¥,T'y) liberde-
ckungsuniform ist.

b) f: (X,I') — (¥,I”) ist genau dann iiberdeckungsuniform, wenn f : (X,%t) —
(Y, %) uniform ist.

Beweis: Der Beweis bleibt - zur Abwechslung - als leicht Ubungsaufgabe.

13.3.7 Definition

Initialiiberdeckungsuniformitiit und Finaliiberdeckungsuniformit:it Fiir zwei Uberdeckungs-
uniformititen I'und I auf X fithren wir die Sprechweisen feiner und grober ein. I heift feiner
als I bzw. I heiBt grober als I', wenn I" C T,
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a) Ist X eine Menge und (X;,T7);cs eine Familie iiberdeckungsuniformer Rdume und (f; :
X — X;)ies eine zugehorige Familie von Abbildungen, so gibt es eine grobste Uberdeckungs-
uniformitit I" auf X, bzgl derer alle f; uniform sind.

Beschreiben kann man sie etwa so: Fiir o, C 2(X) setzen wir c A :={ANB|A €
o, B € B}. Fiir jedes i € I und y € T; setzen wir £, ' (y) := {f; '(g) | g € ¥} Dann ist

T={yC 2X)|Jit,.cin €I, N €Ty, W T, mit f; (M)A Af () < 7}

b) Ist X eine Menge und (X;,I';);cs eine Familie iberdeckungsuniformer Rdume und (f; :
X; — X)ies eine zugehorige Familie von Abbildungen, so gibt es eine feinste Uberdeckungs-
uniformitit I" auf X, bzgl derer alle f; uniform sind.

Beweis: Auch der Beweis bleibt als Aufgabe.

13.3.8 Bemerkung

Teilraum-/Produkt-/Quotienteniiberdeckungsuniformititen sind dann auch entsprechend defi-
niert.

13.4 Uniformisierbarkeit und Metrisierbarkeit

Wir geben nun Kriterien an (notwendige und hinreichende), die erfiillt sein miissen, damit es
zu einem topologischer Raum (X, 7) eine Uniformitit % oder eine Uberdeckungsuniformitit
I gibt, mit T = 75 bzw. T = 7r. In diesem Fall nennen wir den topologischen Raum uniformi-
sierbar bzw. tiberdeckungsuniformisierbar. Im Anschluss daran beschiftigen wir uns mit der
Frage ob sich eine Uniformitiit/Uberdeckungsuniformitit durch eine Metrik gewinnen lisst.

13.4.1 Lemma

Sei (X, ) ein kompakter Raum. Dann gibt es hochstens eine Uniformitit % bzw. Uber-
deckungsuniformitét I', mit T = 79 bzw. T = 1.

Beweis: Es reicht die Aussage fiir Uberdeckungsuniformititen zu beweisen. Seien also I"
und I zwei Uberdeckungsuniformititen mit 7 = 7 = 7. Wir zeigen I C I'. Aus Symme-
triegriinden folgt dann I' C I und wir sind fertig. Sei also ¥ € I'. Aus Lemma 13.3.4 folgt
y:=y° eI".Zujedem x € X withlen wir ein Oy € XN Y. Es gibt dann ein S, € T mit f;(x) C Ox.
Zu B, gibtes ein o, € I' mit o, <* B,. Aus Lemma 12.2.2 folgt ot (0 (x)) € By(x) C Oy. Ins-
besondere gibt es somit ein Uy € XN @, mit o, (Uy) C O,. Nun ist (X, 7) kompakt, es gibt also
endlich viele x1,...,x, € X mit X = Uy, U... UU,,. Induktiv schlieBen wir, dass es ein o € I'
geben muss mit & < 0, und ... und & < a@,. Fiir beliebiges x € X gilt x € Uy, fiir gewis-
ses k € {1,...,n} und damit a, (Uy,) C Oy,. Insbesondere also a(x) C O,,. Wir haben somit
a <* v, denn Oy, € yund darum y € I. Dann ist aber auch ¢ in I, denn es gilt y < 7.

307



13.4.2 Satz

Ein topologischer Raum (X, 7) ist genau dann uniformisierbar (das heifit es gibt eine Uni-
formitit %/ auf X mit T = 14,), wenn er ein T;1-Raum ist.
2

Beweis: Sei (X,7) ein T, %-Raum. Sei dann I die Menge aller stetigen Abbildungen f :
X —[0,1], also I := C(X, [0, 1]). Fiir jedes f € I sei Xy := [0, 1]. Wir definieren dann % als
die Initialuniformitdt auf X beziiglich den Xy, f € I (die Xy sind uniforme Ridume, da sie
metrisierbar sind). Wir miissen T = T4 zeigen. Bezeichnen wir mit 7; die Initialtopologie
auf X beziiglich den X mit den zugehdrigen Abbildungen, so folgt aus Lemma 13.2.2 sofort
9, = 7;7. Da 77 die grobste Topologie auf X ist, fiir die die Abbildungen aus / stetig sind,
haben wir schon 7; C 7. Um die andere Inklusion zu beweisen, wihlen wir ein 0 # O € 7.
Sei x € O beliebig. Es gibt dann ein f € I mit f(x) =0 und f(X \ O0) C {1}. Esist U :=
£71([0,1/2)) € 77 und es gilt U C O. Daraus folgt O € 77 (da x € O beliebig war). Der Raum
ist also uniformisierbar.

Zeigen wir nun, dass jeder iiberdeckugsuniforme Raum (X,I") mit 7 := 1 ein T, ] -Raum

ist. Dazu nehmen wir eine abgeschlossene Teilmenge A von X und ein x € X \ A. Es gibt dann
eine Folge (¥;)nen aus I, mit y(x) C X \ A und %41 <* ¥, (fiir alle n € N). Wir definieren nun
R:={k/2" |n € N*Ound k = 1,...,2" — 1}. Fiir jedes R definieren wir nun ein U(r) € N T
mit r < ¥’ = U(r) C U(¥). Dazu definieren wir U(1/2) := ¥ (x) und allgemein:

UK /2" == U (k/2"), fiir k' = 2k, k > 0

UK /2" = 1,11 (x), fiir K’ = 1

UK /21 i= y (U (k/2M) fiir K =2k + 1,k > 0.

AufBerdem setzen wir noch U(1) := X.

Mit diesen Bezeichnungen gilt dann ¥, (U (k/2")) CU((k+1)/2"), firalle n € Nund 1 <
k <k+1<2"—1. Der Beweis ist nicht schwer (er verwendet Lemma 12.2.2) und lduft durch
Induktion iiber n. Ebenso beweist man ¥,41(%,+1(U(k/2"))) C X \ A.

Nun fillt es auch nicht schwer zu zeigen, dass gilt: x € U(k/2") C U(k/2") C U((k+
1)/2") CU((k+1)/27) € X \ A (firr alle n € N"70 und 1 < k < k41 < 2" — 1. Denn wir
haben (man beachte wieder Lemma 12.2.2):

);C G)U(k/2”) CUK/2") C Y1 (U(k/27)) € Yot (Y1 (U (k/27))) S (U (k/27)) CU((k+
1)/2").

Damit bekommen wir dann: r,7 € R und r < ¥ impliziert:

U(r) CU(F) CX\A.

Wir definieren nun f : X — [0, 1] durch f(z) :=inf{r € R |z € U(r)}. Offensichtlich gilt
dann f(x) =0 und f(A) C {1}. Zeigen wir noch, dass f stetig ist. Wir betrachten dazu die
Subbasis . 1= {[0,2) |0 <t < 1} U{(¢,1] | 0 <r < 1} von [0, 1]. Es reicht dann zu zeigen,
dass die Urbilder unter f von Mengen aus . wieder offen sind.

Sei U = [0,¢). Dann ist f~'(U) ={z€ X | f(z) <t} ={z€X | Ir, € R mit r, <t und
z€U(r;)}. Fiirz € f~1(U) ist offensichtlich z € U(r;) C f~'(U). Alsoist f~1(U) offen in X.

Sei U = (t,1]. Dann ist f ' (U)={z€X |t < f(z)} ={z€X|Ir € Rmit ¢ < r und
2@ U(r)}. Istz € f~1(U), so gibt es also ein r € R mit ¢ < r und z & U(r). Nun ist R dicht in
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[0,1], es gibt also ein ¥/ € R mit ¢ < ¥ < r und damit z € V, := X \ U(r') € 7. Offensichtlich
giltdann V, C f~1(U). Also ist f~!(U) wieder offen in X. Damit ist der Beweis beendet.

13.4.3 Beispiel

Analog zur Frage der Uniformisierbarkeit eines topologischen Raumes stellt sich die Frage
der Metrisierbarkeit eines uniformen Raumes. Dazu diese beiden Beispiele: Sei (X,d) ein
metrischer Raum. Fiir jedes € > 0 bilden wir die Menge Ue := {(x,y) | d(x,y) < €}. Es gilt
dann:

1) # :={Ug | € > 0} ist eine Filterbasis.

2)Ve > 0ist Ay C Ug.

3)Ve>0istUs ! = Uk.

4)Ve>0ist U8/2OU£/2 C Us.

Uy :={U CX xX |3IB € A mit BC U} ist somit eine Uniformitit auf X.

Man sieht unmittelbar Ug (x) = K (x, €), es gilt also Ty, = 7,4. Jeder metrische Raum ist also
auf natiirliche Weise auch ein uniformer Raum, wobei die induzierten Topologien identisch
sind.

Einen uniformen Raum (X, %) nennen wir metrisierbar, wenn es eine Metrik d auf X gibt
mit % = %,.

Und nun das ganze mit Uberdeckungsuniformen Riumen.

13.4.4 Beispiel

Einem metrischen Raum (X, d) kénnen wir auch eine Uberdeckungsuniformitiit zuordnen. Fiir
jedes n € N setzen wir dazu einfach y, := {K(x,1/n) | x € X} (hierbei bedeutet K (x, &) :={y €
X | d(x,y) < €}) und bilden dann I'; := {y| 7 ist eine Uberdeckung von X und 37 € N mit
¥, < 7}. Offensichtlich ist T'y eine Uberdeckungsuniformitit und es gilt 7; = T,

Wir nennen einen iiberdeckungsuniformen Raum (X, I") metrisierbar, wenn es eine Metrik
dauf X gibt mit I'=17,.

In Zusammenhang mit Beispiel 13.4.3 sieht man sofort I'y,, = I'y und %, = %,. Wir ge-
ben nun sowohl fiir uniforme, als auch tiberdeckungsuniforme Riume ein Metrisierbarkeits-
kriterium, beweisen aber nur jenes fiir iiberdeckungsuniforme Rdume. Dasjenige fiir uniforme
Rédume, folgt dann sofort.

13.4.5 Satz

a) Fiir einen uniformen Raum (X, %) ist d4quivalent:
1) (X, % ) ist metrisierbar.
2) (X, % ) ist ein T1-Raum und %/ hat eine abzihlbare Basis.
b) Fiir einen iiberdeckungsuniformen Raum (X,I") ist dquivalent:
1) (X,T) ist metrisierbar.
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2) (X,T) ist ein T;-Raum und es gibt eine abzihlbare Menge (%,),en von Uberdeckun-
genmitVyeI'dn e Nmity, <7.

Beweis: Beweisen wir also b). Ist (X,I") metrisierbar, so gibt es klarerweise die abzéhlbare
Menge von Uberdeckungen. Nehmen wir also an, wir haben eine abzihlbare Menge (¥,)nen
von Uberdeckungen mit Vy € I'3dn € N mit ¥, < 7. Wir betrachten den topologischen Raum
(X,7r). Laut Lemma 13.3.4 sind auch §, := 7, € I'. Dann ist (J,),cn aber eine Folge offener
(bzgl. 1) Uberdeckungen von X, mit deren Hilfe man sich leicht auch eine sternmonotone
Folge offener Uberdeckungen, die die Voraussetzung des Metrisationssatz von Alexandroff-
Urysohn (Satz 12.8.8) erfiillt, beschafft. (X, 7r) ist also (als topologischer Raum) metrisierbar
mit Metrik d. Offensichtlich induziert d bereits auch I'. Der iiberdeckungsuniforme Raum
(X,T) ist also metrisierbar.

13.4.6 Beispiel: Metrisierbarkeit topologischer Gruppen

Sei X eine Menge, die einerseits eine Topologie 7 hat und gleichzeitig auch eine Gruppe mit
Multiplikation - ist. Das bedeutet es gibt eine Abbildung (Multiplikation genannt) - : X X X —
X hat, mit folgenden Eigenschaften (fiir - (x,y) schreiben wir einfach xy).

1) Vx,y,z € X gilt (xy)z = x(yz) (Assoziativitit).

2) de € X, so dass ex = x = xe ist (Vx € X); das Einselement (ist dann eindeutig bestimmt).

3)Vx e X dy e X mitxy =e = yx. Das zu x gehorige y ist dann ebenfalls eindeutig bestimmt,
wird mit x~! bezeichnet und Inverses von x genannt.

Das Paar (X,-) wird dann Gruppe genannt. Sind nun zusitzlich die Operationen - : X X
X — X und i : X — X definiert durch i(x) := x~! stetig beziiglich 7 (und der entsprechenden
Produkttopologie), so nennt man (X, 7,-) eine topologische Gruppe.

Sei x € X fest gewdhlt. Dann sind die Abbildungen y+— x-yund y — y-xund y — y~
Homoomorphismen (wenn nicht klar = Ubungsaufgabe). Fiir jedes V € 7 ist insbesondere
x-Ver.

Wir werden nun jeder topologischen Gruppe (X,7,-) eine Uniformitit zuordnen (besser
Uberdeckungsuniformitiit), welche dieselbe original Topologie T induziert.

Sei dazu %, C é Nt eine Umgbungsbasis des neutralen Elementes e. Fiir jedes V € éN 7t
bilden wir die offene Uberdeckung ¥, := {x-V [x€ X} unddannT_:={y|yC 2(X),Uy=
X und 3V € %, mit ¥, < y}. Zeigen wir, dass I'_ eine Uberdeckungsuniformitit ist. Die
Einzige Schwierigkeit ist dabei Punkt 3) in Definition 13.3.1. Sei y € I'_. Es gibtdann V € %,
mit %, < y. Es gibt dann ein U’ € é Nt mit U’'- U’ C V. Wir wihlen dann ein U € %, mit
U CU'NU'"! € ént. Es gilt dann ndmlich ¥, <* ¥, . Betrachten wir dazu x € X. Sei y € X
mit x € y-U € ¥;. Es ist dann x = yu und y = xu~!. Fiir z € U folgt somit yz = xu" 'z €
x- (U1 U)Cx-(U'-U") Cx-V.Insgesamt also y- U C x-V und somit 7, (x) Cx-V € %,
Wir sehen also, dass I'_ eine Uberdeckungsuniformitit ist. Offensichtlich gilt nun 7+ = 7.

Was bringt uns das? Beispielsweise ein notwendiges und hinreichendes Kritierium wann die
Topologie 7 einer topologischen Gruppe (X, 7, -) durch eine Metrik induziert werden kann. Es
gilt ndmlich:

1
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Die Topologie 7 einer topologischen Gruppe (X, 7,-) kann genau dann durch eine Me-
trik induziert werden, wenn (X, 7) ein Tj-Raum ist und e (das neutrale Element von X)
eine abzihlbare Umgebungsbasis besitzt.

Beweis: Folgt unmittelbar aus der Art und Weise wie (X, 7,-) eine Uberdeckungsuniformi-
tit zugeordnet wurde und Satz 13.4.5.

13.5 Volistandigkeit und Vervollstandigungen

Ebenfalls motiviert durch die Analysis ist der Begriff der Vollstdndigkeit. Wie wir wissen ist
R vollstdandig. Zur Erinnerung: Jede Cauchy-Folge aus R konvergiert in R - im Gegensatz zu
Q. Wir wollen versuchen das Konzept der Vollstindigkeit, mit seinen vielen Anwendungen,
auf allgemeinere Rdume - sprich uniforme bzw. iiberdeckungsuniforme Riume - zu iibertra-
gen. Als erstes miissen wir dazu den Begriff der Cauchy-Folge zum Begriff des Cachy-Filters
verallgemeinern.

13.5.1 Definition

Cauchy-Filter Sei (X, % ) ein uniformer Raum und ¢ ein Filter auf X. Wir nennen ¢ Cauchy-
Filter beziiglich % , wenn es zu jedem U € % ein P € ¢ gibt, mit P x P C U. Haben wir eine
Uberdeckungsuniformitit I auf X, so nennen wir ¢ einen Cauchy-Filter beziiglich I', wenn
yN @ # 0 fiir jedes y € I'. Ausfiihrlicher bedeutet dies Vy € T3P € ¢ mit P € }. Als Ubung ver-
suche der Leser sich diese beiden Definitionen anhand seiner Kenntnisse tiber Cauchy-Folgen
in metrischen Raumen sowie Beispiel 13.4.3 und Beispiel 13.4.4 selbstindig zu motivieren.

13.5.2 Lemma

Sei X eine Menge,% eine Uniformitit, I" eine (Jberdeckungsuniformitéit und @ ein Filter
auf X.

a) ¢ ist ein Cauchy -Filter bzgl. %/, genau dann wenn er es auch bzgl. 'y, ist.

b) ¢ ist ein Cauchy -Filter bzgl. I", genau dann wenn er es auch bzgl. %4 ist.

Die Beiden Definitionen sind also kohérent und wir sprechen in Zukunft nur noch von
Cauchy-Filtern, egal ob wir eine Uniformitit oder Uberdeckungsuniformitit zugrunde lie-
gen haben.

Beweis: a) Sei ¢ ein Cauchy -Filter bzgl. 7. Zu y € 'y, gibtesein U € Z mit Yy < % .
Dann gibtesein P € ¢ mit Px P CU.Firx € Pist PC P x P(x) CU(x) € yy. Es gibt dann
ein g € y mit U(x) C g und damit g € yN @.

Sei @ ein Cauchy -Filter bzgl. Ty Fiir U € % gibtesein V€ % mitV =V~ und Vo
V C U. Es gibt dann ein P € % N @, also P = V(z), fiir ein gewisses z € X. Damit gilt dann
P x P CU,denn (x,y) € P x Pimpliziert (x,z) € V und (z,y) € V, also (x,y) € U.
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b) Sei ¢ ein Cauchy -Filter bzgl. I'. Fir U € %t gibtes ein y € I mit Uy, 8 X g C U. nun
gibt es aber ein P € yN ¢. Offensichtlich gilt dann P x P C U.

Sei @ ein Cauchy-Filter bzgl. 4. Fiir Y € T gibt es ein y € I’ mit y <* y. Es gibt dann
ein P€ ¢ mit PX P C Uy =yeyg X g Zux € P gibt es ein g €y mit y(x) C ¢. Es folgt
PCPxP(x) C (Ugeyg x 8)(x) =v(x) C ¢’ Also g" € 9.

13.5.3 Lemma

Sei (X,TI') ein iiberdeckungsuniformer Raum. Ein Filter ¢ konvergiert (bzgl. ) genau
dann gegen ein x € X, wenn XN ¢ ein Cauchy Filter ist. Insbesondere sind bzgl. 7r kon-
vergente Filter bereits Cauchy-Filter.

Beweis: Sei ¢ (bzgl. 1) konvergent gegen x € X. Sei weiter ¥ € I'. Aus Lemma 13.3.4
folgt y:= ¥° € I'. Es gibt dann ein g € ¥ mit x € g. Offensichtlich gilt nun g € N @. Zu g
gibt es ein ¢’ € ¥ mit g C g’ und es folgt g’ € (XN @) N Y. Damit ist XN ¢ ein Cauchy-Filter.
Insbesondere ist damit auch ¢ ein Cauchy-Filter, denn es gilt schlieBlich xN ¢ C ¢.

Sei umgekehrt XN ¢ ein Cauchy-Filter. Sei O € XN 1r. Es gibt dann ein y € I" mit y(x) C O.
Es gibt dann auch ein P € (xN @) N y. Damit folgt P C y(x) C O und darum O € ¢@. Der Filter
¢ konvergiert also gegen x.

13.5.4 Lemma

Sei (X,I') ein Uberdeckungsuniformer Raum und ¢ und y Cauchy-Filter auf X, fiir die
¢ U v die endliche Schnitt Eigenschaft (eSE) hat. Dann ist auch ¢ Ny ein Cauchy-Filter.

Beweis: Sei ¥y € I. Es gibt dann ein ¥ € I’ mit ¢ <* 7. Dann gibt es g; € ¢ Ny und
g2 € wN 7. Nach Voraussetzung gilt g1 N go # 0. Sei dann x € g1 Ng. Es gibt nunein g € ¥
mit ¥ (x) C g. Also ist g € ¢ Ny und g € yN ¥ (also Obermenge von g; und g;) und somit

ge(@ny)ny.

13.5.5 Lemma

Sei (X,I") ein Uberdeckungsuniformer Raum und y ein Cauchy-Filter auf X. Gilt x €
N Pew?, so konvergiert ¥ gegen x (bzgl. ).

Beweis: Da x € (\pcy, P, hat (xN 1) Uy die eSE. Nach Lemma 13.5.4 ist ¢ := (xN7r) Ny
ein Cauchy-Filter. Also ist auch x N y ein Cauchy-Filter (da ¢ C xN y). Lemma 13.5.3 sagt
gerade, dass Y dann gegen x konvergiert.
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13.5.6 Definition

total beschrinkt, vollstéindig Ein iiberdeckungsuniformer Raum (X, I") heifit total beschrinkt,
wenn fiir jedes y € I eine endliche Teiliiberdeckung y' C y existiert. Er heiBt vollstindig, wenn
jeder Cauchy-Filter auch konvergiert.

Nicht fiir jede offene Uberdeckung soll eine endliche Teiliiberdeckung existieren (das wire
Kompaktheit), sondern nur fiir solche aus I'. Was fehlt nun total beschrinkten Riumen zur
Kompaktheit? Sie miissen vollstiandig sein.

13.5.7 Lemma

Ein iiberdeckungsuniformer Raum (X,T") ist genau dann kompakt, wenn er vollstindig
und total beschrinkt ist.

Beweis: Sei (X,I") kompakt. Offensichtlich ist er dann auch total beschrinkt. Zeigen wir,
dass er vollstdndig ist. Sei dazu ¢ ein Cauchy-Filter auf X. Dieser ist in einem Ultrafilter y
enthalten, welcher gegen ein x € X konvergiert. Insbesondere bedeutet dies: x € mPegoF. Aus
Lemma 13.5.5 folgt, dass auch ¢ gegen x konvergiert. Der Raum ist also vollsténdig.

Sei (X,I') nun als vollstdndig und total beschrinkt vorausgesetzt. Angenommen es gibt
einen Ultrafilter ¢ auf X, der nicht konvergiert. Dann ist ¢ kein Cauchy-Filter. Das heif3t es
gibt ein Y € I' mit YN @ = (0. Nun gibt es ein endliches ¥ C y mit Ugey § =X € . Also muss
es ein g € ¥ geben mit g € ¢ - Widerspruch!

13.5.8 Lemma

Ist f: (X,I') — (Y,X) uniform und ¢ ein Cauchy-Filter auf X, so ist f(¢@) ein Cauchy-
Filter auf Y.

Beweis: Sei 6 € £. Dann ist {f~!(w) |w € 6} € . Es gibt also ein w € & mit f~!(w) € ¢.
Dann ist aber w € f(¢) N o. Damit ist alles gezeigt.

13.5.9 Lemma

Sei I' die Initialiiberdeckungsuniformitit auf X bzgl. (X;,I)ic; und (f; : X — X;)ies- Sei
weiter ¢ ein Filter auf X. Dann gilt: @ ist genau dann ein Cauchy-Filter auf X, wenn f;(¢@)
fiir jedes i € I ein Cauchy-Filter auf X; ist.

Beweis: Sei ¢ ein Cauchy-Filter auf X. Dann ist offensichtlich fiir jedes i € I auch f;(¢@)
ein Cauchy-Filter auf X; (denn die f; sind uniform).
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Seien andererseits alle f;(¢) Cauchy-Filter auf X;. Wir wihlen ein y € I'. Dann gibt es
[1,.0yin € Imitfl.l_l(y,-l)/\.../\fi;l(y,-n) < 7.Nun gibtes P, € ¢ und ein g;, € %, mit f; (B;,) C
gi, (denn y;, N fi (@) #0).Mit P:=[_, B, € ¢ folgt P CN;_,; flk_1 (i) € g, fiir ein gewisses
gey Alsogeyne.

13.5.10 Lemma

a) Ist (X,I') vollstdndig und A C X abgeschlossen, so ist (A,T"4) auch vollstindig.
b) Ist (X,T") ein To-Raum und A C X als Teilraum volstindig, so ist A in X abgeschlos-
sen.

Beweis: a) Ist @ ein Cauchy-Filter auf A, so ist y := {P C X | 3P’ € ¢ mit P’ C P} ein
Cauchy-Filter auf X. Dieser konvergiert dann gegen ein x € X. Da A abgeschlossen ist und
A € y ist, folgt x € A. Damit konvergiert aber auch ¢ gegen x € A.

b) Wiire A nicht abgeschlossen, so giibe es ein x € A\ A. Dann gibt es aber einen Filter
¢ auf X mit (xN 1) U{A} C ¢. Dieser Filter konvergiert somit gegen x und ist deshalb ein
Cauchy-Filter auf X. Dann muss aber ¢4 := {ANP | P € ¢} ein Cauchy-Filter auf A sein
(betrachten wir die Inklusion i : A — X, so ist i(¢4) = @; Lemma 13.5.9 erledigt dann den
rest). Das bedeutet es gibt ein a € A mit ¢4 — a. Also auch ¢ — a. Da der Raum ein T-Raum
ist (er ist Tp!), folgt x = a € A - ein Widerspruch.

13.5.11 Lemma

Seien (X,T) und (Y,X) iiberdeckungsuniforme Riume, D C X mit D =X und f: X — Y
eine stetige Abbildung (alles bzgl. den induzierten Topologien). Ist ferner f|D uniform, so
ist f auch uniform.

Beweis: Sei 6’ € X. Es gibt dann ein 0 € £ mit 0 <™ ¢’ (starke Sternverfeinerung; siehe
Definition 12.2.1). Nun ist (f|D)~'(c) € I'p, es gibt also ein B € I' mit B = B° und fBp =
{BND|Bec B} < (f|ID)" (o). Zeigen wir B < f~1(c") ={f~1(S') | §' € 6}. Sei dazu B €
. Dann gibt es ein S € 6 mit BND C f~1(S)ND. Sei §' € o mit 6(S) C §". Wir zeigen
B C f~1(S’). Angenommen es gibt ein x € B\ f~!(5’). Nun ist S C o(S) und von oben wissen
wir 6(S) C 8, also x € f~1(Y'\ S). Da f stetig ist, ist BN f~! (Y \ S) eine nichtleere offene
Menge (x € BN f~1(Y'\ S) und B = B°) und es gibt daher ein d € BN f~1(Y'\ S)ND. Also
d€BNDC f~1(S)ND und somitd € f~1(S)Nf~1(Y\S) =0 - ein Widerspruch.

13.5.12 Lemma

Seien (X,I) und (Y,X) iiberdeckungsuniforme Riume, D = X, f : D — Y uniform und
(Y,X) vollstandig. Dann gibt es eine uniforme Abbildung g : X — Y mit g|D = f.ist (Y, X)
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zudem den Tp-Raum, so ist die Abbildung eindeutig bestimmt.

Beweis: Sei x € X. Dann hat (xN7)U{D} die eSE und somitist ¢ :={PC D |30 €xNt
mit OND C P} ein Cauchy-Filter auf D. Dann ist aber f(¢) ein Cauchy-Filter auf Y (dies
bestitigt eine leichte Rechnung) und somit existiert ein y, € ¥ mit f(¢) — y,. Lemma 3.3.7
erledigt dann den Rest.

13.5.13 Lemma

Seien (X,I") und (Y,X) iiberdeckungsuniforme vollstindige Rdume, die auBerdem T sind.
Ist D C X dichtin X und £ C Y dichtin Y und ist f : D — E eine bijektive Abbildung, fiir
die sowohl f, als auch f —! uniform sind, dann ist die nach dem vorigen Lemma existie-
rende eindeutige Fortsetzung g eine Bijektion und sowohl g, als auch g~ sind uniform.

Beweis: Aus dem vorigen Lemma folgt, dass es eine uniforme Abbildung g : X — Y mit
g|D = f und eine uniforme Abbildung g’ : ¥ — X mit g'|E = f~! gibt. Dannist g’ og: X —
X ebenfalls uniform und es gilt g’ o g|D = f~! o f = idp. Die Abbildung g’ o g ist also die
eindeutige (!) uniforme Fortsetzung von idp. Nun ist aber auch idy eine solche uniforme
Fortsetzung. Es gilt also g’ o g = idp. Analog bekommen wir g o g’ = idy. Insgesamt sehen

wir g =g~ 1.

13.5.14 Definition

minimale Cauchy-Filter Ein Cauchy-Filter ¢ in einem iiberdeckungsuniformen Raum (X,T")
heiBt minimal (bzgl. Inklusion), wenn es keinen Cauchy-Filter ¢' # ¢ mit ¢’ C ¢ gibt.

13.5.15 Lemma

Sei (X,TI') ein iiberdeckungsuniformer Raum und ¢ ein Filter auf X. Dann ist ¢ genau dann
ein minimaler Cauchy-Filter, wenn VP € ¢ 3P’ € ¢3y € T mit y(P’) C P. Insbesondere
erhalten wir, dass jeder Cauchy-Filter ¢ genau einen minimalen Cauchy-Filter ¢ enthiilt,
namlich den von der Subbasis . := {y(P) | y € ' und P € ¢} erzeugten. Tatsichlich ist
- sogar eine Basis, wie der Beweis zeigen wird.

Beweis: Sei ¢ ein Cauchy-Filter. Wir setzen . := {y(P) |y €T und P € ¢} und & :=
NS | " €. und .’ endlich }. Setzen wir ¢y := {P C X | 3B € % mit B C P}, so
ist ¢p offensichtlich ein Filter auf X mit Subbasis . und Basis . Zeigen wir, dass ¢g ein
Cauchy-Filter ist.
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Sei dazu y € I'. Es gibt dann ein ¥ € T mit ¥ <** . Dann gibt es ein P’ € ¢ N Y, zu
dem es auch ein g € y gibt mit Y (P") C g. Damit haben wir dann g € @y Ny und @y ist als
Cauchy-Filter erkannt. Zeigen wir noch die Minimalitit:

Sei dazu ¢’ ein Cauchy-Filter mit ¢’ C ¢. Fiir y € T'und P € @ existiert dann ein P’ € ¢’ Ny
und somit P’ C y(P), also y(p) € ¢’. Insgesamt also . C ¢’ und damit ¢y C ¢’.

Zeigen wir, dass . tatsdchlich bereits eine Basis fiir ¢ ist. Ist namlich P € ¢y, so gibt es
P,...P, € @und y,....,% € I mit 51 (P) N...N ¥%(P,) € P. Wihlen wir nun ein y € T mit
Y <Y firk=1,...,n und bilden P’ := P N...N P, € @, so gilt offensichtlich y(P") C P.

Jeder Cauchy-Filter ¢ enthilt also diesen eindeutig bestimmten minimalen Cauchy-Filter
@o mit Basis .. Ist ¢ also selber bereits minimal, so gilt ¢ = ¢y und ¢ erfiillt somit das
Kriterium.

Erfiillt andererseits ein Cauchy-Filter ¢ das Kriterium, so ist er offensichtlich ein minimaler
Cauchy-Filter (denn besagtes .# ist nun eine Basis von ¢ und somit ¢ = ¢y).

13.5.16 Lemma

Ist (X,I') ein iiberdeckungsuniformer Raum, soist ¢, :={P C X | U € xNtrmit U C P}
fiir jedes x € X ein minimaler Cauchy-Filter (Umgebungsfilter sind also minimale Cauchy-
Filter).

Beweis: Ist P € @, so gibt es ein U € xN 1 mit U C P. Es gibt dann ein ¥ € T mit
Y (x) C U. Dann gibt es aber auch ein y € I’ mit y <* 7. Setzen wir P’ := y(x) € ¢, so folgt
Y(P") C ¥ (x) CU C P. Aus dem vorigen Lemma folgt also, dass ¢, ein Cauchy-Filter ist.

13.5.17 Lemma

Ist ¢ ein minimaler Cauchy-Filter in dem iiberdeckungsuniformen Raum (X,I), so ist
{P° | P € ¢} eine Basis fiir ¢.

Beweis: Sei P € ¢. Dann gibt es ein P’ € ¢ und ein y € ' mit y(P') C P.Da P’ C y(P') € 1,
folgt sofort P’ C P°.

13.5.18 Lemma

Sei (X,TI') ein iiberdeckungsuniformer Raum und D eine in X dichte Teilmenge. Ist jeder
Cauchy-Filter ¢ auf X, mit D € ¢ konvergent, so konvergiert jeder Cauchy-Filter, der
Raum ist also vollstdndig.
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Beweis: Sei ¢ ein Cauchy-Filter. Wir betrachten den (eindeutig bestimmten) minimalen
Cauchy-Filter ¢y C . Da {P° | P € ¢y} eine Basis von ¢y ist, folgt, dass ¢pU{D} die endliche
Schnitt Eigenschaft hat. Demzufolge ist {P C X | 3P’ € ¢y U{D} mit P’ C P} ein Cauchy-
Filter, der gegen ein x € X konvergiert. Insbesondere also x € ﬂpe%l_’. Aus Lemma 13.5.5
folgt, dass @ gegen x konvergiert. Da ¢y C ¢, konvergiert also auch ¢ gegen x.

13.5.19 Bemerkung

Sei (X,T) ein tiberdeckungsuniformer Raum und y bzw. ¢ zwei Cauchy-Filter. Dann ist dqui-
valent:

1) Furalle ye I gilt ynynNeo # 0.

2) yN ¢ ist ein Cauchy-Filter.

3) Es gibt ein minimalen Cauchy-Filter ¢ mit ¢ C y N ¢.

Durch ¥ ~ ¢ < wN ¢ ist ein Cauchy-Filter, bekommen wir eine Aquivalenzrelation auf
der Menge aller Cauchy-Filter in (X,I).

Damit kommen wir nun zum Hauptsatz dieses Abschnitts. Die Menge aller minimalen
Cauchy-Filter in (X,T’) bezeichnen wir mit Xi-. Im Folgenden werden wir nun Xr eine Uber-
deckungsuniformitédt zuordnen, so dass dieser ein vollstindiger Raum wird.

13.5.20 Satz Uber die Vervollstandigung uberdeckungsuniformer Rdume

Sei (X,I’) ein iiberdeckungsuniformer Raum. Fiir jedes A C X setzen wir A := {¢ €
Xr | A € @} und fiir jedes y € T setzen wir 7:= {g | g € y}. Dann gilt:

a) ¥ ist fiir jedes y € I eine Uberdeckung von Xr.

b) Ist y <** 7/, so ist § <** 7.

o Isty< vy, soisty<7.

d) I":= {a | o ist Uberdeckung von Xr- und 3y € ' mit ¥ < o} ist eine Uberdeckungs-
uniformitit auf X und (X, i) ist ein Top-Raum.

e) h: X — Xr definiert durch (x) := ¢,, wobei ¢, := {P C X | 3U € kNt mit U C P},
ist wohldefiniert und es gilt (X)) = Xr-.

f) h: X — Xr ist uniform. Ist y = ¥°, fiir ein y € T, so folgt A~!(g) = ¢ und h(g) =
gNh(X), fur jedes g € 7.

g) [ist die Initialiiberdeckungsuniformitit auf X bzgl. X mit der Abbildung /: X — Xr-.

h) (X, T) ist vollstindig.

i) Sei (Y,X) ein weiterer vollstindiger iiberdeckungsuniformer Raum, der T ist und f :
X — Y eine uniforme Abbildung. Dann gibt es genau eine uniforme Abbildung g : Xp — Y
mit goh = f.

X*h>)~([‘

NE

Y

Der Raum (Xp,I") ist durch diese universelle Eigenschaft bis auf Isomorphie eindeutig
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bestimmit.
j) Ist (X, 1) bereits ein Tp-Raum, so ist die Abbildung / : X — h(X) ein Isomorphismus.
Gibt es einen iiberdeckungsuniformen Raum (¥,%) mit einer Abbildung 7’ : X — ¥, so

dass ' : X — h'(X) ein Isomorphismus ist, #/(X) = ¥ gilt und (¥, 75) ebenfalls ein Tp-
raum ist, so sind (Xr,I') und (¥,£) isomorph.

Beweis: a) Sei ¢ ein minimaler Cauchy-Filter auf X und y € I'. Dann gibt es ein g € YN @.
Also offensichtlich ¢ € g und somit Xr C J7.

b) Sei g € 7. Dann gibt es ein g’ € ¥ mit y(g) C g'. Zeigen wir, dass dann 7(g) C ¢’ gilt. Sei
@ € 7(g). Dann gibt es ein 4 € ymit @ € hund AN g # 0. Man iiberlegt sich leicht, dass dann
auch 1N g # 0 gilt. Also h C y(g) C g’. Dannist g’ € ¢ (denn & € @) und somit ¢ € .

¢)Sei g€ 7. Esgibteing € Y mitg C g'. Ist € &, s0ist g € ¢, also auch g’ € ¢ und damit
peg.

d) Das es sich um eine I"Jberdeckungsunifonnit'at handelt, folgt unmittelbar aus a), b) und
¢). Ist ¢ # v, s0 0.B.d.A. AP € ¢ \ y. Dann gibt es ein P’ € ¢ und ein y € " mit y(P') C P
(Lemma 13.5.15). Es folgt 7(P") C P, also ¢ € P° und y ¢ P. Der Raum ist also Tj.

e) Sei O offen in Xi- und ¢ € O. Es gibt dann ein y € I’ mit 7(¢) C 0. O.B.d.A. Sei y = y°
(siche dazu Lemma 13.3.4). Seinunx € g € ¢ Ny, dann ist g € XN 7 C @, und somit @y € 3.
Offensichtlich gilt § C ¥(¢).

f) Sei 7 € T, fiir ein v € I gegeben. Ohne Einschrinkung kénnen wir voraussetzen, dassy =
v° gilt. Fiir jedes g € yfolgt h 1 (8) = {x€X |gch(x)} ={xeX |FU cxNtrmitU C g} =g.
Die Abbildung 4 ist also uniform.

Sei y=179° und g € y. Ist @, € h(g), so ist ¢, = h(x), fir x € g. Also g € ¢, und damit
¢x € §Nh(X). Ist andererseits ¢, € §NA(X), so ist ¢, = h(x') = @y, fiir ein X’ € X. Es folgt
g € @y, also X’ € g und damit @, = h(x') € h(g).

g) Folgt unmittelbar aus f).

h) Sei @ ein Cauchy-Filter auf Xr. Wir kénnen annehmen, dass D := h(X) € ® (Lemma
13.5.18). Dann ist ®p := {PN D | P € ®} ein Cauchy-Filter auf D. Nun ist ®p = h(¢), wobei
¢:={PCX|3P € Ppmith ! (P') CP}. Aus Lemma 13.5.9 und g) folgt, dass ¢ ein Cauchy-
Filter auf X ist. Sei dann ¢ C ¢ ein minimaler Cauchy-Filter. Wir zeigen nun ¢ € (\pcg P. Mit
Lemma 13.5.5 folgt dann, dass ® gegen ¢ € Xr konvergiert.

Sei also O € N7 und P € ®. Es gibt dann ein Y € I’ mit ¥ = ¥° und (@) C O (siche
Lemma 13.3.4). Es geniigt also zu zeigen, dass (@) NP # 0 ist.

Sei g € yN . Dann ist g € ¢, es gibt also ein P’ € ®p mit A~ (P') C g. Setzen wir P” :=
PNP € ®p, sofolgt h1(P") C g. Seinun x € A~ 1(P"). Dann ist h(x) € P” N g, insbesondere
also gNP # 0 und somit @ # gNP C §(o) N P.

i) Seien (Y,X) und f : X — Y entsprechend der Voraussetzung gewihlt. Wir definieren die
Abbildung g' : h(X) — Y durch g(h(x)) := f(x).

Zeigen wir die Wohldefiniertheit. Sei i(x) = h(x'), also ¢ := ¢, = @.. Dann konvergiert ¢
offensichtlich gegen x und x'. Der Bildfilter f(¢) ist auch ein Cauchy-Filter und somit sowohl
gegen f(x), als auch gegen f(x) konvergent. Da (Y, 7y) ein To-Raum ist, folgt f(x) = f(x').

Zeigen wir nun, dass g’ uniform ist. I'p bezeichne hierfiir die Teilraumiiberdeckungsunifor-
mitit auf D = h(X). Sei o € X. Dann gibtes ein y € T'mit y= 9" und y < {f~'(s) | s € o}.
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Nunist {g/"~'(s) | s € o} = {h(f~'(s)) | s € o}. Da {h(g) | g € v} = {gNh(X) | g € 7} € T,
folgt also auch {g’~!(s) | s € 6} € ['p. Damit ist gezeigt, dass g’ : D — Y uniform ist.

Wir definieren dann g : Xp — Y als die nach Lemma 13.5.12 eindeutig bestimmte uniforme
Fortsetzung von g’ auf ganz Xr.

Zur Eindeutigkeit: Sei auch (¥, &) ein iiberdeckungsuniformer Raum, der zusammen mit
einer Abbildung /' : X — ¥ die universelle Eigenschaft hat. Dann gibt es uniforme Abbildun-
geng:¥ —Xrund g : X, — Y mitgoh' =hund g'oh=H.Esfolgt (gog)oh=goh' =h
und idgy o h = h. Die Eindeutigkeit erzwingt also go g’ = idg, (man male sich entsprechende
Diagramme). Analog bekommt man g’ o g = idy. Damit sind (Xr, 7) und (¥,£) isomorph.

j) Das h: X — h(X) bijektiv ist, ist offensichtlich. Uniform ist 4 : X — h(X) sowieso und
das auch 4! : h(X) — X uniform ist, folgt unmittelbar aus f). Die Isomorphie von (Xr,T") und
(Y,%) folgt dann aus Lemma 13.5.13.

13.6 Funktionenraume (2): GleichmaBige Konvergenz

Wir geben hier eine Fortsetzung des Kapitels iiber Funktionenrdume, wobei der Bildraum
diesmal ein uniformer (genauer: iiberdeckungsuniformer) Raum ist. Beispielsweise erhalten
wir in diesem Fall eine interessante Beschreibung der kompakt-offenen Topologie.

13.6.1 Definition

Uberdeckungsuniforme Struktur der gleichmiiBigen Konvergenz Sei X eine Menge und
(Y,X) ein iiberdeckungsuniformer Raum. Wir betrachten die Menge F := Y (Menge aller
Abbildungen f: X — Y) und bilden fiir f € F und o € X folgende Mengensysteme: o7 :=
{geF|VxeXistg(x) € o(f(x))}, dann of := {0 | f € F} und anschliefend Xr := {o | &
ist eine Uberdeckung von F und 30 € ¥ mit oF < a}. Das Paar (F,Xr) ist dann ebenfalls ein
tiberdeckungsuniformer Raum.

Beweis: Offensichtlich ist jedes o eine Uberdeckung von F und ¢’ < ¢ impliziert o} <
OF. Zu zeigen bleibt nur noch, dass ¢’ <* ¢ auch o <* o impliziert. Sei also 6’ <* ¢ und
f € F. Wir zeigen dazu einfach oy (f) C oy. Dazu sei g € 65 (f). Es gibt dann ein & € F mit
g€ ojund f € o). Sei nun x € X beliebig. Dann gibtes ein S € o mit g(x), f(x) € 6/ (h(x)) C S,
also g(x) € o(f(x)). Da x beliebig gewihlt war, folgt g € 0.

Wir nennen X die iiberdeckungsuniforme Struktur der gleichméBigen Konvergenz auf F.

13.6.2 Lemma

Sei (X, 7) ein topologischer Raum und (Y,X) ein iiberdeckungsuniformer Raum. Wir be-
trachten dann (F,Xr) entsprechend Definition 13.6.1

a) Sei ¢ ein Filter auf X. Dann ist A := {f € F | f(¢) ist ein Cauchy-Filter} in F
abgeschlossen.

b) Die Menge ¢(X,Y):={f € F|f:(X,t) — (Y,1z) ist stetig} ist in F' abgeschlossen.
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Beweis: a) Sei f € A. Zu zeigen ist dann, dass f(¢) ein Cauchy-Filter ist. Sei dazu ¢ € X. Es
gibt dann ¢’,0” € L mit 6" <* 6’ <** 0. Sei g € 67/(f)NA. Es gibtdann ein S’ € g(¢)N 0o’
Sei dann P’ € ¢ mit g(P") C §'.

Dann gibtes ein 2 € F mit g € 6; und f € o, also g(x), f(x) € 6" (h(x)) fiir alle x € X. Fiir
x € P gilt aber auch g(x) € S’ und es gibt stV s e 6" mit g(x),h(x) € stV und g(x), f(X) €
s Es folgt stV ¢ o’ (S") und damit s ¢ o’ (c”(8")) C o/(S’). Nun gibt es aber auch ein
S € o mit 6/(§") C S. Es folgt f(P) C S, also S € f(¢) N o. Damit sehen wir, dass f(¢) ein
Cauchy-Filter ist, also f € A.

b) Wir setzen fiir diesen Beweis Ay := {f € F | f ist stetig in x}. Dann ist (,cy Ax = ¢(X,Y)
abgeschlossen, wenn wir zeigen, dass jedes A, abgeschlossen ist. Fiir jedes x € X setzen wir
0 :={PCX|3U exntmit U C P} und zeigen A, = By := {f € F | f(¢) ist ein Cauchy-
Filter}.

A, C By ist trivial. Zeigen wir also B, C A,. Seidazu f € B,und O € f(x) N 7s. Es gibt dann
einc € Xmit 6(f(x)) CO.Sei P € ¢, und P’ € f(¢,) "o mit f(P) CP' Co(f(x)) C0.Da
f(x) € f(P) folgt somit die Stetigkeit von f an der Stelle x und somit f € A,.

Jedes B, ist nach a) abgeschlossen, also ist es auch c(X,Y).

13.6.3 Definition

Uberdeckungsuniforme Struktur der «-Konvergenz Sei X eine Menge, o C Z?(X) und
(Y,X) ein iiberdeckungsuniformer Raum. Wir betrachten wieder die Menge F := Y*. Fiir jedes
A € a betrachten wir (Y4, Z(*)), wobei £(*) die Uberdeckungsuniforme Struktur auf ¥4 im
Sinne von Definition 13.6.1 ist. Ebenfalls fiir jedes A € o definieren wir die Abbildung Hy :
F — YA durch Hy(f) := f|A. Wir definieren dann Z}a) als die initial Uberdeckungsuniformitit

auf F beziiglich ((Y4,£4)), Hy) scq und nennen Zl(pa) die iiberdeckungsuniforme Struktur der
a-Konvergenz (auf F).

13.6.4 Satz

Sei X eine Menge, oo C & (X) und (Y,X) ein vollstidndiger iiberdeckungsuniformer Raum.
Dann ist (F, Z}a)) ebenfalls vollstindig.

Beweis: Setze B := [Ja. Sei ® ein Cauchy-Filter in (F, Zga)). Fiir jedes x € Bund P € ®
bilden wir P, := {f(x) | f € P}. und anschliefend ®, := {RCY | IP € ® mit P, C R}.

Zeigen wir, dass @, ein Cauchy-Filter auf (Y,X) ist. Das ®, ein Filter ist, folgt jedenfalls
schon aus (PNP'), C PN P..

Sei 6’ € ¥. Dann gibt es ein 6 € £ mit 6 <* 0. Sei A € o mit x € A. Es ist H, | (Oya) 1=
{H; (o) | f € YA} € =% wobei 6 := {g € YA | Va € A ist g(a) € 6(f(a))} und Oya :=
{of | fEYA}. Also Hy ' (oya) N # 0. Sei f € YA mit Hy ' (o7) € Hy ' (oya) N .

Esist P:=H, '(c7) = {g € YX |VacAistg(a) € 6(f(a))} und somit P, C o(f(x)). Sei
dann 8’ € ¢’ mit o(f(x)) C S'. Wir erhalten S’ € ¢, N o’
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&, als Cauchy-Filter erkannt, ist somit konvergent gegen ein Element aus Y (man beachte,
dass (Y, o) vollstandig ist). Bezeichnen wir dieses mit 4(x) und wihlen wir fiir x € X \ B ein
beliebiges h(x), so haben wir damit eine Abbildung /2 : X — Y definiert.

Zeigen wir nun, dass ® gegen h € F konvergiert. Dafiir geniigt es zu zeigen, dass E”(h) N

P#0ist, fijrjedes £ ex\® und P e .
Also selé”EZF % und P € ®. Nun ist §” von der Form §” = A_1]< /1 ))/\ NH, ( /i )).

YAk YAk
Wir wihlen dann Gél,il, Y(Ak) € X mit G;Al < GY(Ak) <* cy/ﬁ’;) und setzen & = HA’II(G(I) )A

Y41

~ANH, ( ol )) Wir withlen nun ein P € ®N &, also P/ = HA’II(G}II)) Nn... ﬂHA’nI(G}:)), fiir

gewisse G](, ) )(/A)k Folglichist P’ = {g € YX |Vk =1,...,nVa € Ay ist g(a) € ¥ (fi(a))}.
Da auBerdem PN P’ # 0, gibtes ein f € P'.

Seinunk € {1,...,n} und x € A. Es gibt dann ein P” € ® mit P, C o (h(x)), wobei ¢ € X so
gewiihlt wurde, dass o < o(1) | ..., 6 gilt (man beachte, dass @, gegen h(x) konvergiert). Wir
setzen nun P := PNP' NP" E CID. Demnach gilt auch P C o(h(x)) C 6'¥) (h(x)). Fiir g € P
folgt somit g(x) € o(h(x)) € 6™ (h(x)) und g(x) € o(fi(x)). Da f € P’ folgt auch f(x) €
o (fi(x)). Es gibt nun S}, 55 € 6'®) mit o (k)(fi(x)) C S| und o(k)(h(x)) C S,. Es gibt aber
auch ein §” € ¢”®) mit /¥ (g(x)) C §". Also f(x),g(x),h(x) € " und somit insbesondere
f(x) € 6" B (h(x)).

Da k € {1,...,n} und x € Ay beliebig waren, folgt f € H,_ ( /(1 ))ﬂ NH, ( )65”
und somit f € £”(h) und damit schlieBlich f € &”(h) N P. Der Bewels ist damit beendet.

13.6.5 Satz

Sei (X,7) ein topologischer Raum und (Y,X) ein iiberdeckungsuniformer Raum. Gilt
X = UpegA° fir a € Z(X), soist c(X,Y):={feF|f:(X,7)— (Y,7z) ist stetig}
in (F, 7 () abgeschlossen.

F

Bewels Offensichtlich gilt f € ¢(X,Y) < VA € o gilt fl|A € c¢(A,Y). Also ¢(X,Y) =
Naco Hy ' (c(A,Y)). Da die Abbildungen Hy, A €  stetig sind und c(A,Y) in (Y4, Xy4) abge-
schlossen ist (Lemma 13.6.2) ist es der Schnitt dann auch.

13.6.6 Lemma

a) Sei X eine Menge, o eine Uberdeckung von X und (Y,X) ein To-Raum (d.h. (Y, 5) ist
Tp). Dann ist auch (F, Zl(pa)) ein To-Raum.

Beweis: a) Sei f # g. Dann gibt es ein x € X mit f(x) # g(x). Zu diesem x gibt es auch ein
A € o mit x € A. Es gibt aber auch ein 0 € ¥ mit g(x) € o(f(x)). Sei dann ¢’ € Z mit o’ <*
o. Es folgt 6/(0’(f(x))) C o(f(x)), also g & ok (f). Nun ist aber 6" := {H,; ()| ¥ €
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op|A} € Z (hler bezeichnet 6|A die Einschrinkung von oy auf Y4). Es folgt g & 6”(f).
Dementsprechend ist (F, T(a «)) ein To-Raum.
F

13.6.7 Satz

Sei ¢ ein Filter und seien I'; und I'; zwei tiberdeckungsuniforme Strukturen auf der Menge
X. Mit ~ sei der Abschluss bzgl. (X, r,) bezeichnet und fiir ein y C &(X) bedeutet
v:={g | g € v}. Es gelte auBerdem V7, € I,y € '} mit y; < }». Ferner existiere ein
'CTymit()Vy €T3y €M mity <y und 2) VY € '3y’ € I’ mit ¥ < . Dann
folgt:

() —qp, X genau dann, wenn ¢ ein Cauchy-Filter bzgl. (X,I"}) ist und x € Mpeo P.

Beweis: Gilt ¢ —7. x, so ist ¢ natiirlich ein Cauchy-Filter bzgl. (X,I'1). Und aus V7, €
I3y €Ty mit 3y <y folgt natiirlich 7, C 71y, also x € Npey P.

Kommen wir zur Riickrichtung: Sei ¢ ein Cauchy-Filter bzgl. (X,I'1) und x € Npey P. Sei
dann O € 1, N%. Es gibt dann ein ¢/ € I” mit y/(x) C O. Sei dann y € I" mit ¥ < 7. Nun gibt es
ein P € ¢ Ny. Es folgt x € P. Es gibt aber auch ein P € Y mit PC P'. AlsoPC P’ C Y (x) CO
und damit O € ¢. Insgesamt somit 7, Nx C ¢ (oder was das gleiche ist: ¢ —1r, X).

13.6.8 Satz

Sei (Y,X) ein iiberdeckungsuniformer Raum und ¢ ein Filter auf X. Sei weiter « C Z(X)
und B := {J . Sei dann 8 := {{b} | b € B}. Dann gilt mit F :=Y*:
o — f genau dann, wenn ¢ ein Cauchy-Filter bzgl. (F, Z}a)) istund f € ﬂP€¢F

wobei der AbschluB in (F, 7 ) gemeint ist.

Beweis: Fiir den Beweis bezeichnen wir mit ~— den Abschlufl bzgl. (F, T2<ﬁ)) und auch
F

bzgl. (Y, 7s) (aus dem Zusammenhang geht dann eindeutig hervor was gemeint ist). Schauen
wir uns nochmal die allgemeine Konstruktion der initial Uberdeckungsuniformitit an, so se-

hen wir, dass ein typisches Element einer Uberdeckung aus Zg;a) die Form HXII (c;](,ll) yN...N

HA_nl( }(c )) hat, wobei Gf ={ge Y |VaecAistg(a) € c®(fi(a))}. Fiirk =1,....n sei
E®) ¥ mit EW <* g gewihlt. Mit Hilfe der Projektionen hy, : YX — Y definiert durch

h(g) = g(a) bekommen wir (man beachte, dass die von Z,(VB ) induzierte Topologie gerade die

Initialtopologie auf Y bzgl. (Y, 7s) und (h,)aep ist und die i, bzgl. T SR Ty stetig sind):

Moy B (E8) € M) Naenha " ER (fi(@))) € My Nuea e €D (fia))) €
Mzt N, i (60 (fi(@))) € My Hy (o), denn ER(fi(a)) € ER(EWR(fi(a))) C
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o(f(a)). Die Voraussetzungen von Satz 13.6.7 sind demnach erfiillt (mit 'y =" = Z}a) und
I = Zl(vﬁ ); noch nicht gezeigt, aber fast offensichtlich: Vy», € I, 3y € I'1 mit 1 < p).

13.6.9 Satz

Sei (X, 7) ein topolgischer und (Y, X) ein iiberdeckungsuniformer Raum. Mit k bezeichnen
wir die kompakten Teilmengen von X. Dann stimmt auf ¢(X,Y) :={f € F | f ist stetig} C
F :=YX die kompakt-offene Topologie mit der von Tyx auf ¢(X,Y) induzierten Topologie
tiberein.

Beweis: Die von Tyx auf ¢(X,Y) induzierte Topologie bezeichnen wir mit 7. Zeigen wir
zuerst, dass jedes S(K,U) offen bzgl. 7’ ist (fiir in X kompaktes K und in (Y, 7y) offenes U).
Sei f € S(K,U). Dann ist f(K) kompakt (denn f ist stetig) und f(K) CU. Zu jedemy € f(K)
gibt es somit ein 6, € ¥ mit 6,(y) C U. Fiir jedes y € f(K) sei oy <* oy. Da K kompakt ist,
gibt es endlich viele xp, ...,x, € K mit f(K) C O-;If(xl)(f(xl)) U...u G}(x )(f(x,,)) (zur prizisen
Rechtfertigung braucht man Lemma 13.3.4). Sei 6 € ¥ mit o <* G}(m)’ vy G}(m)' Dann gilt
c(X,Y)NHg'(oF)(f) C S(K,U). Zeigen wir dies. Sei g € ¢(X,Y) N Hg'(or)(f). Es gibt
dann ein i € F mit g, f € H, '(0y). Sei x € K. Dann folgt f(x),g(x) € o(h(x)). Es gibt ein
ke {l,...n} mit f(x) € G}(xk)(f(xk))' Es gibt aber auch ein §' € G}(Xk) mit ¢ (h(x)) € S und
ein S’ € 6}(3%) mit f(xz), f(x) € S”. Es folgt g(x) € 6}(xk)(6}(xk)(f(xk))) C 0 (f(x)) CU.
Also g(K) C U und somit g € S(K,U).

Zeigen wir nun, dass {S(K,U) | K : kompakt, U : offen} eine Subbasis fiir 7’ ist. Seien
Ki,..,K, € x. Sei f € ¢(X,Y) und O offen mit f € O. Es gibt dann ein & := (G}l)) A

. NHg ( o )) € E( ) mit c(X,Y)N&(f) C O. Gesucht sind nun K, ..., K}, € Kund U1,...,Um
offen in Y m1t fe ﬂk:1 S(K;,Ux) CE(f). Seien 0,6” € X gewihlt mit 6” = {T° | T € ¢}
und 6 <** 0" < V), 6. Es gibt dann 1,5}y € o mit f(K) €51V U..USY) k=
1,...,n. Es gibt weiter Tl(k) € o’ mit Sl(k) C G(Sl(k)) - Tl(k) ,k=1,...,n,1=1,...,n;. Setze dann
Kl(k) = f‘l(Sl(k)) NKg. Esfolgt f € P:=;_; N/~ S(K] k™ (k)) C 5( ) Um dies einzusehen
sei g € P (das f € Pistklar). Dannist g € S := Hy. ( }(f ))ﬂ NHy ( ) € &, denn x € K,
impliziert x € Kl(k) fiir gewisses 1 < I < ny. Also g(x) € 1( ), Aber auch flx) € l( ) und
auBerdem gibt es ein Q € o) mit T C Q. Also g(x) € 6™ (f(x)) und somit g € lekl (Gj(cn)).
Da auch f € S folgt g € E(f).

13.6.10 Korollar

IstY ein T, 1 -Raum, so ist ¢(X,Y ), versehen mit der kompakt-offenen Topologie, auch ein
T, 1 -Raum.
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Beweis: Als T;1-Raum ist ¥ uniformisierbar. Aus Satz 13.6.9 folgt, dass dann auch c¢(X,Y)

2
uniformisierbar ist. Also ist ¢(X,Y) ein T, -Raum.
2
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14 Einfuhrung in die Nichtstandard Topologie

T would like to point out a fact that was not explicitly mentioned by Professor Robinson,
but seems quite important to me; namely that non-standard analysis frequently simpli-
fies substantially the proofs, not only of elementary theorems, but also of deep results.
This is true, e.g., also for the proof of the existence of invariant subspaces for compact
operators, disregarding the improvement of the result; and it is true in an even higher
degree in other cases. This state of affairs should prevent a rather common misinterpre-
tation of non-standard analysis, namely the idea that it is some kind of extravagance or
fad of mathematical logicians. Nothing could be farther from the truth. Rather there are
good reasons to believe that non-standard analysis, in some version or other, will be the
analysis of the future.”
Kurt Godel

In diesem Kapitel kommt es zu einigen Schwierigkeiten mit der Notation im Zusammen-
hang mit Abbildungen. Gewdhnlich verstehen wir fiir eine Abbildung f : X — Y unter f(A)
das Bild von A unter f, also f(A) := {f(a) | a € A}. Normalerweise fiihrte dies nie zu MiB-
verstinden, da fiir A C X in der Regel nicht auch A € X gilt. In Zusammenhang mit z.B.
Ordinalzahlen, oder den unten eingefiirten Superstrukturen, stehen (und standen) wir vor der
Situation, dass aber genau solche Effekte auftreten, dass also Abbildungen auf Mengen defi-
niert sind f : X — Y, fiir die es Teilmengen A C X gibt mit A € X. Der Leser ist also aufgefor-
dert sich in jedem Fall zu tiberlegen, wie der entsprechende Ausdruck zu verstehen ist. In der
Regel sollte es aber keine groen Schwierigkeiten geben.

14.1 Superstrukturen

Wie kann man das mengentheoretische Universum strukturieren? Eine Antwort gibt dieser
Abschnitt.

14.1.1 Hierarchie der Mengen

Rekursiv fiir alle Ordinalzahlen definieren wir

Vo:=0, Vgi1:=P(Vy) und Vy:= U Vg falls « eine Limesordinalzahl ist.
B<a

AnschlieBend setzen wir

vi=J Va

acO0rd

V ist das mengentheoretische Universum (wie wir sogleich beweisen werden) und (Vi) gcora
nennen wir die Hierarchie der Mengen.
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14.1.2 Lemma

Fiir jede Ordinalzahl ist V,, eine transitive Menge. Und wenn o < o, dann Vy C V.

Beweis: Beweis durch Induktion. Vj,V; sind offensichtlich transitiv. Sei die Aussage fiir
alle B < o bewiesen und x € V. Wenn « eine Limesordinalzahl ist, dann ist x € Vs fiir
B < a. Also x C Vg C Vg Falls « eine Nachfolgerordinalzahl ist, also o« = o + 1, dann ist
x€Vyg=PVy), also x C Vy. Aus y € x folgt also y € Vi und damit (Induktion) y C V,
alsoy € Z(Vy). Insgesamt somit x C 2 (V).

Die zweite Aussage beweist man mittels Induktion unter Verwendung der Transitivitit.

14.1.3 Definition: Transitive Hiille

Sei x eine Menge. Setze xp := x, X,+1 := Jx, und TC(x) := |, , *n. Wir nennen 7C(x) die
transitive Hiille von x. Offenbar ist 7C(x) transitiv und es gilt x C TC(x) (der Beweis bleibt
als einfache Aufgabe dem Leser iiberlassen)

14.1.4 Lemma

Jede nichtleere Klasse % hat ein € minimales Element (d.h. ein z € € mit zN% = 0).

Beweis: Sei z € ¢ beliebig. Falls zN% = 0, dann sind wir fertig. Andernfalls sei x =
TC(z)N€. Da x # 0 folgt aus dem Regularitits-Axiom (Axiome der Mengenlehre), dass es
ein y € x gibt, mit y N x = @. Dann folgt aber auch y "% = 0. Andernfalls sei u € yN%’, dann
aber u € TC(z), denn dieses ist transitiv. Es folgt u € yNx - Widerspruch.

14.1.5 Satz

Fiir jede Menge x gibt es ein @ € Ord mit x € V.

Beweis: Sei ¢ die Klasse aller Mengen, welche in keinem V, sind. Wenn %" # @, dann gibt
es ein €-minimales Element x € €. Fiir z € x gibt es aber ein &, € Ord mit z € V. Nun ist
o := U,e, &, eine Ordinalzahl, mit o, < @, also Vi, C Vi fiir z € x. Somit haben wir x C Vy
und damit x € Vg4 = & (Vy) - ein Widerspruch.

14.1.6 Definition: Rang

Sei x eine Menge. Dann heiit R(x) := inf{a € Ord | x € Vy41} der Rang von x.
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14.1.7 Lemma

Sei x € y. Dann ist R(x) < R(y).

Beweis: Annahme R(y) < R(x). Dann folgty € Vg(y) 41 C Vr(xy+1 = P (Vr(y))» also x € Vi(y).-
Falls R(x) eine Limesordinalzahl ist, so x € Vg | mit 8 < R(x). Und wenn R(x) = 8 + 1, so
R(x) < B < R(x). Beides ist ein Widerspruch.

14.1.8 Definition: Superstruktur

Sei x eine Menge. Setze Vj(x) := x, V1 (x) := V,,(x) U Z(V,(x)) und abschlieBend V (x) :=
Un<wo Vu(x). Wir nennen V (x) die Superstruktur iiber x.

14.1.9 Bemerkung

Alle sinnvollen und in endlich vielen Schritten iiber x konstruierbaren Objekte sind in V (x)
enthalten. Da wir iiber die Natur von x aber nichts wissen konnte es Elemente y € x geben,
mit yNV(x) # 0. Im weiteren Verlauf wird sich heraustellen, dass dies ein ungewiinschter
Effekt ist. Man kann diesen auf verschiedene Arten vermeiden. eine Moglichkeit ist es sich x
als eine Menge von Urelementen vorzustellen, welche iiberhaupt keine €-Beziehungen besit-
zen. Im Rahmen des axiomatischen Aufbaus der Mengenlehre fiihrt dies zu Ungereimtheiten.
Wir werden daher einen anderen Weg beschreiten um dieses Problem zu umgehen. Mit Hilfe
des Rang-Begriffes werden wir uns ndmlich Mengen von beliebiger Kardinalitét verschaffen,
welche dann die gewiinschten Eigenschaften haben.

14.1.10 Definition: Basismenge

Wir nennen eine Menge X Basismenge, falls @ ¢ X und xNV (X) = 0 fiir alle x € X ist.

14.1.11 Lemma

Zu jeder (unendlichen) Menge A gibt es eine Basismenge X mit [A| = |X]|.

Beweis: Sei o > o eine Kardinalzahl. Wihle eine Menge X mit |A| = |X| und Vx,y(y € x €
X) = R(y) = a. Das dies moglich ist, sollte klar sein. Dieses X ist dann bereits die gewiinschte
Basismenge. Wir zeigen zuerst: Die Elemente von V,,(X) (n < ®) haben Rang 3, mit < n
oder ¢ < B < o+ n+ 1. Der Beweis erfolgt durch Induktion nach n.

n=0,zeV(X)=X = Vyez: R(y) =, also a < R(z). AuBerdem z C V| und somit
7 € Vgia. Wir bekommen o < R(z) = ot + 1.

n—n+1:SeizeV,11(X)=V,(X)UZLZ(V,(X)). Imersten Fall ist z € V,,(X). Dann R(z) <
n<n+lodera <R(z) <a+n+1<a+(n+1)+ 1. Im zweiten Fall ist z C V,,(X). Das
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heiBt Vy € z: R(y) < a+n+1, also 2 € Vg2 bzw. 2 € Vi (411)12 und somit R(z) < & +
(n+ 1)+ 1. Nun unterscheiden wir noch zwei weitere Fille. 1. Fall 3y € z mit o < R(y), dann
auch o < R(z) oder 2. Fall Vy € z gilt R(y) < n. Dann ist z C V,, also z € V1| und damit
R(z) <n < n+ 1. Der Beweis, dass die Elemente von V,,(X) (n < @) einen Rang §, mit § <n
oder o < B < o +n+ 1 haben, ist beendet.

Nehmen wir mal an wir haben ein x € X mit xNV (X) # 0. Dann gibt es ein n < @ und ein
z € xNV,(X). Nun, dann gilt aber R(z) < n oder @ < R(z) < a+n+ 1. Beides steht aber im
Widerspruch zur Wahl von X.

Wir kommen nun zu den grundlegenden Eigenschaften von V(X). Dabei sei von nun an
vorausgesetzt, dass es sich um eine Basismenge X handelt.

14.1.12 Lemma
Vir1(X) =XUZ(V,(X)) und V11 (X) \ X = Z(V,(X)) fiir jede natiirliche Zahl n.

Beweis: Durch Induktion nach n. Fiir n = 0 ist nichts zu zeigen. n — n+1: V1o (X) =
Vir1 X)U P (V1 (X)) =XUZP(V, (X)) U L (Vyug1). offensichtlich gilt 2 (V,, (X)) € P (V,41),
woraus dann V,,1»(X) = X U & (V,4) folgt. Die zweite Behauptung folgt unmittelbar aus der
Eigenschaft von X eine Basismenge zu sein.

14.1.13 Lemma

Sei X eine Basismenge, a € V(X) und a € b € V,(X). Dannistn >0und a € V,_; (X).

Beweis: Ubung.

14.1.14 Lemma

D) X1y Xm € Vo (X) = {x1,0,xm} € V1 (X)\ X

2) X155 Xm € V(X)) = (X1, 052m) € Vigom—1)(X)\ X
uecV,(X)\Xundv Cu,dannv €V, (X)\ X.
HuyveV,(X)\X =uxveV,3(X)\X
SYuecV,(X)\X = Zu) € Vo(X)\ X

Beweis: Die Beweise sind alle einfach (Induktion, Basismenge, ...).

14.2 Ultrafilter und Ultraprodukte

Um spiter wichtige Eigenschaften unserer Nichtstandard Universen beweisen zu konnen,
brauchen wir die Existenz gewisser Ultrafilter.
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14.2.1 Definition: a-vollstandig

Sei o eine unendliche Kardinalzahl. Ein Filter ¢ heit a-vollstindig, wenn fiir jede Familie
(Xy)y<p von Elementen aus ¢ auch ,.g Xy € ¢ ist, fiir jedes § < a..

14.2.2 Lemma (aquivalente Formulierung von o-vollstandig)

Ein Ultrafilter ¢ tiber einer Menge / ist genau dann o-vollstindig, wenn fiir jede Zerlegung
{Xy|ye€ B} vonlin B Teile (B < o) gilt, dass genau ein X, zu ¢ gehort.

Beweis: Nehmen wir zuerst an ¢ ist ot-vollstindig, und sei {Xy | y € B und X, C I} eine Zer-
legung von I in B < « Teile. Es kann also hochsten ein Xy zu ¢ gehoren. Falls iiberhaupt kein
Xy zu @ gehort, dann ist fiir jedes y € B aber I\ Xy € ¢, also aufgrund der «-Vollstindigkeit
dann auch 0 =I'\ Uycp Xy = Nyep (I \ Xy) € ¢. Offensichtlich ist dies ein Widerspruch.

Fiir die Riickrichtung nehmen wir mal an {Xy | y € B} ist eine Teilmenge von ¢, von weni-
ger als o Elementen. Wir definieren nun eine Funktion f : I — B U{fB} durch

f(l) _ B falls i € mYGﬁ Xy
S:=inf{6' <P |i¢ZXs} sonst

Nun ist {f~'(n) | n € BU{B}} eine Zerlegung von I in weniger als o-Teile. Also gibt es
ein € BU{B} mit f~1(n) € ¢. Man rechnet aber leicht nach, dass f~!(1) N Xy = 0 ist fiir
n € B. Alsomuss f~1(B) = MNyep Xy € @ sein. Somit ist @ als a-vollstéindig erkannt.

14.2.3 Definition: a-gute Filter

Sei « eine Kardinalzahl und X eine Menge, dann bezeichnen wir mit 2 (X):={ACX | |A| <
o}. Da wir die kleinste unendliche Kardinalzahl mit @ bezeichnen, schreibt sich also die
Menge aller endlichen Teilmengen von X als #,(X). Eine Funktion f : X — Y heif}t monoton
(bzw. antimonoton) wenn x C y = f(x) C f(y) (bzw. x Cy=- f(y) C f(x)). Weiterhin nennen
wir f additiv (bzw. antiadditiv) wenn f(xUy) = f(x) U f(y) (bzw. f(xUy) = f(x) N f(y))
fiir alle x,y € X gilt. Fiir zwei Funktionen f,g : X — Y schreiben wir f < g, wenn f(x) C g(x)
fiir alle x € X gilt.

Nun zur Haupt-Definition: Sei o wieder eine unendliche Kardinalzahl. Ein Ultrafilter ¢ auf
einer Menge X heiBt o-gut, wenn es fiir jede Kardinalzahl B < a und jede antimonotone
Funktion f : &, (B) — ¢ eine antiadditive Funktion g : P (B) :— ¢ gibt, mit g < f. Wenn
¢ ein a-guter Ultrafilter ist, und B < a eine ebenfalls unendliche Kardinalzahl ist, dann ist
¢ offensichtlich auch B-gut. Ein Filter heifit abzihlbar unvollstéindig, wenn der Schnitt von
abzihlbar unendlich vielen Elementen leer ist.

Das Ziel, im Folgenden, ist der Beweis des fundamentalen Satzes:
Sei I eine nichtleere Menge von Kardinalitit o (unendlich). Dann gibt es einen ot -guten
abzihlbar unvollstindigen Ultrafilter @ auf /. (Hier ist o™ := Nachfolgerkardinalzahl von )
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14.2.4 Lemma
Sei I eine (nichtleere) Menge. Dann ist dquivalent:
1. @ istein a™-guter Ultrafilter auf /.

2. Zu jeder antimonotonen Funktion f : &, (o) — ¢ gibt es eine antiadditive Funktion
g: Po(a) :— @, mitg < f.

Beweis: 1. = 2. folgt direkt aus der Definition.

2.= 1.:Sei B <ound f: Py (B) — ¢ antimonoton. Definiere f' : Z,(a) — ¢ durch
f(x) == f(xNB) fir x € Py (). Dann gibt es eine antiadditive Funktion g’ : Py (o) — @
mit g < f. Die Einschrinkung g := g'| Z,(B) ist das gesuchte g.

14.2.5 Lemma

Sei o eine Kardinalzahl und (Xp)g., eine Familie von Mengen mit [Xg| = « fiir alle
B < o. Dann 3 eine Familie (Yg)gq mit Yg € Xg, YgNYg = O fiir B # B’ und |Yg| = a.

Beweis: Sei i : o« — o x o bijektiv. Wir definieren uns

F={f:y— |J Xg | f:istinjektiv,y<aund VE € y: (h(&)=(E',&") = f(§) € Xer)}.

B<a

Unser . wird durch Inklusion partiell geordnet. Und wenn (f;)rcx eine Kette aus .Z ist,
ist sofort klar, dass Uyck fi € -# eine obere Schranke ist. Das Zornsche Lemma liefert uns
also ein maximales g € .%#. Angenommen & := dom(g) < a. Sei h(&) = (§',&"”), dann gibt
es ein x € Xz \ rg(g). Setze dann g’ := gU{(&,x)}. Dann haben wir g C g’ € #, was ein
Widerspruch ist. Also gilt dom(g) = a. Man kann nun sofort nachrechnen, dass (Y5)seq mit
Ys:=1{g(&) | & € " 1({8} x @)} die gesuchte Familie ist.

14.2.6 Definition: Konsistent

Sei IT # 0 eine Menge von Partitionen von o derart, dass jede Partition genau o Elemente hat.
Sei @ ein nicht trivialer Filter auf a. Das Paar (I1, @) heifit konsistent wenn fiir jedes X € &
und X1, ..., X, - jedes X; aus einer anderen Partition P, € IT- gilt X NX; N...N X, #O0.
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14.2.7 Lemma

Sei a eine unendliche Kardinalzahl.

1. Sei @ ein uniformer Filter erzeugt von einer Teilmenge ¢ C & von Kardinalitit
< or. Dann gibt es eine Menge IT von Partitionen von «, mit [IT| = 2% und (I1, D)
ist konsistent.

2. Wenn (I1, @) konsistent, IT unendlich und J C « ist, dann ist entweder (I1, [PU{J}])
oder (IT,[® U {a \ J}]) konsistent, fiir ein koendliches IT" C I1. Hier bezeichnet
[®U{J}] den von @ U {J} erzeugten Filter (analog mit [P U {cc\ J}]).

3. Angenommen (IT,®) ist konsistent, p : P, (o) — & ist antimonoton und P € II.
Dann gibt es eine Erweiterung @' von @ und eine antiadditive Abbildung ¢ :
Pp(a) — @' derart, dass ¢ < p und (IT\ {P},P’) konsistent ist.

Beweis: 1. Sei (Jg)g- eine Auflistung aller endlichen Schnitte von Elementen aus ¢. Da
[Jg| = o fiir jedes B < o gilt (P ist ein uniformer Filter), gibt es gemal 14.2.5 eine Familie
(IB)B<O£ mit ‘Iﬁ’ =, Iﬁ g JB und Iﬁ ﬂ]ﬁ/ =0 fur alle ﬁ 75 ﬁ/.

Wir definieren B := {(s,r) | s € Pp(a) und r: P(s) — a}. Es gilt dann |B| = a. Sei
((sg,7g))e<q eine Aufzihlung der Elemente aus B. Wir konnen diese Aufzihlung nun so
wihlen, dass B = {(s¢,7¢) | § €Ig}, fiiralle B < a gilt (eine Aufzihlung mit Wiederholungen;
dies geht, da die /g disjunkt und gleichméchtig zu o sind). Fiir jedes J C « definieren wir

ré(Jﬁsé) falls & € Uﬁ<all3
f1(E)=0 sonst '

Es gibt dann 2% viele solcher Funktionen. (Beweis: J; # J, impliziert 0.B.d.A. 3x € J; \ /5.
Sei dann s := {x} und r := {(s,0),(0,1)}. Dann ist (s,r) € B, also (s,r) = (sg,r¢) fiir ein
& € Ig. Dann ist f7, (&) =0 und f5,(§) = 1.)

Seien nun f3,7,...%, € o und Jy,...,J,, verschiedene Teilmengen von o.. Wir zeigen, dass es
ein & € Ig gibt, mit f;,(&) =¥ firalle 1 <i <n.

Dazu wihle x;; € J; \ Jj, wann immer das geht und setze s := {x;; | 1 <i,j <n}. Also ist
s eine endliche Teilmenge von a mit sNJ; # sNJ; fiir i # j. Nun sei r : &(s) — o eine
Abbildung mit r(J;Ns) = ¥, fiir 1 <i < n. Nun gibt es ein & € Ig mit (s,7) = (s¢,r¢). Also
f1:(&) = re(JiNsg) = r(JiNs) = 7. Jedes f; ist also insbesondere surjektiv. Setze

m:={{f;'(n|y<oa}|JCa}.

(IT, @) ist dann das gesuchte konsistente Paar. (Beweis: Sei X € ® und X1, ..., X, - jedes X; aus
einer anderen Partition P; € II - gewdhlt, also X; = f le(yi) fir alle 1 <i<n. Sei B < o mit
Ig C X. Es gibt nun ein § € Ig mit f5,(§) = %, also § € XNX1N...NX,.)

2. Annahme (I1, [F U {J}]) ist nicht konsistent. Dann gibt es X € ®, X; € P, € I1 - die P, sind
untereinander verschieden - mit JNX NX; N...NX, = 0 (). Sei dann IT' ;=TI\ {P,..., P}

fr:a—a durch f;(&):= {
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und ¥; € Q; € IT fiir verschiedene Q; € IT und 1 < j < m. Dann folgt
Xnxin..nx,NnyYiNn...nY, #0.

Mit (x) ergibt dies (¢ \J)NX NY;N...NY, #0. Also ist (IT',[®@U{a \ J}]) konsistent.
3. Sei (Xg)5q eine Aufzdhlung (ohne Wiederholung) von P und (¢5)5. €ine ebensolche
von P, (). Fiir jedes 8 < o definieren wir eine Funktion

p(ts)NXs falls sCig

P — X durch = .
45 Pol0) = 2(@) durch gs(s) {0 s g1

Es gilt dann

0# g5(s) C p(ts) falls s Ct5 und gg(s1Us2) = gs(s1) Ngs(s2)
denn s1Usy Cts < s1 Ct5und sy C 5. Nun definieren wir

q: Po(a) — P(a) durch g(s):= | gs(s) (fiiralle s € Py(at)).

o<a

Da p antimonoton ist folgt ¢ < p. AuBerdem gs(s) Ngs/(s) = O fiir § # &’. Folglich ist

a(s1))Nq(s2)=(J as(s))N (U as(s2) = U  g6,(s1)Nas,(s2)
S<a S<a (81,6)c0?

= U as(s1)Ngs(s2) = | gs(s1Us2) = q(s1Us2).

o<a o<a
Also ist ¢ antiadditiv. Sei noch @ := [® U g(P,(@))], dann ist ndmlich (IT\ {P},®’) unser
gesuchtes konsistentes Paar. Und das sieht man so: Sei X € ®,5 € Py (), X; € P, € IT\ {P}
mit 1 <i < nund verschiedenen P;. Nun ist s = 7 fiir ein 0 < & und wir haben g(s) 2 ¢s(s) =
p(lg) NXs und X ﬁp(l‘g) NXsNX;N...NX, # 0, also Xﬂq(s) NXiN...nX, #0.

Wir kommen nun zum Hauptsatz dieses Paragraphen:

14.2.8 Existenzsatz liber o-gute Ultrafilter

Sei I eine nichtleere Menge von Kardinalitit o (unendlich). Dann gibt es einen o -guten,
abzihlbar unvollstandigen Ultrafilter ¢ auf / (und somit auch einen @-guten).

Beweis: O.B.d.A. ist I = «. Sei ()< eine Folge von Teilmengen von o mit

L1 €l () 1 =0 und |I,| = o

n<ow

(sei h: o0 — o x o: bijektiv und setze I, := h~ (o x {k < @ | k > n}).)
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Sei Fy = [{I, | n < @}] der von {I, | n < ®} erzeugte uniforme Filter auf & und sei I eine
Menge von Partitionen von o mit |II| = 2% derart, dass (I, F) konsistent ist (14.2.7). Wir
konstruieren mittels transfiniter Induktion zwei Folgen (T1g)goa, (Fg)g<pa derart, dass

[z CTIy und Fz 2 Fy falls 1 <& < 2%

M| =2%, [T \Tlg,| < @, I, = (] Hy falls A limes Ordinalzahl und
n<a

(T1g, F) ist konsistent fiir jedes & < 2%

Sei (pg)e<oe eine Aufzihlung aller monotonen Funktionen pg : Pp() — & () und sei
(J¢ )¢ <20 eine Aufzihlung von & (). Angenommen Iy, Fy seien fiir n < § < 2% bereits kon-
struiert (alle Induktionsvoraussetzungen erfiillend). Wenn & eine Limesordinalzahl ist, dann

setzen wir einfach
I := m II, und Fg:= U Fy.
n<g n<¢
(Ig, F ) ist dann konsistent und |T1g| = 2%,

(Beachte Iz = () Iy =TIp\ (| Ty \TT;11) und | | Iy \ | < 1€ <2%)
n<§ n<§ n<&

Wenn & = A +2n+ 1, A eine Limes-Ordinalzahl, und n < ®, dann sei 1 kleinstméglich derart,
dass sowohl J :=Jy & Fg_,, als auch o\ J & Fz_ ist. Lemma 14.2.7 liefert I1¢, Fr mit

Mz \Ig| < @, [TIg| =2%, J € Fz oder a\J € Fz und (Ilg, fz) konsistent.

Wenn § = A +2n+2, A eine Limes-Ordinalzahl und n < , dann sei p := py : () — Fe_
das erste Element aus der Liste (pg )gpa Welches uns noch nicht untergekommen ist. Wieder
liefert Lemma 14.2.7 I¢, F¢ und ein antiadditives g : &#(a) — Fg mit

e \Ig| <1, [g| =2%, g < p, Fg = [Fz_; Ug(Z(a))] und (I1g,Fg) ist konsistent.

Wir setzen noch F := [Jg o« F haben damit unseren abzéhlbar unvollstindigen ot -guten
Ultrafilter auf .

F ist offensichtlich ein Filter und aus der Konstruktion folgt fiir jede Teilmenge J, dass
entweder J oder &\ J in F ist. Und wenn p : Z,(a) — F eine antimonotone Funktion ist,
dann lduft p bereits vollstindig in ein F¢, und kann somit durch eine antiadditive Funktion
verfeinert werden. Denn andernfalls sei {s¢ | § < o} eine Aufzihlung von Z,(a) und wir
bekidmen ein unbeschrinktes g : o — 2% definiert durch g(&) := inf{f < 2% | p(s¢) € Fg},
was aber ein Widerspruch zu o < cf (2%) ist (Kofinalitit).

14.2.9 Definition: Ultraprodukt

Sei ¢ ein Filter auf einer (nicht leeren) Menge I; ferner sei (A;);c; eine Familie von (nicht
leeren) Mengen A;. Dann wird durch f =4 g :< {i €| f(i) = g(i)} € ¢ eine Aquivalenz-
relation auf [;c;A; definiert. Die Menge der zugehorigen Aquivalenzklassen wird mit [IpAi
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bezeichnet und heiBt von nun an reduziertes Produkt, die Aquivalenzklassen bezeichnen wir
mit [fy]. Im Falle das ¢ ein Ultrafilter ist, nennen wir [1pA: das Ultraprodukt der A; modulo
¢. Das [ ist indirekt in der Notation enthalten, denn es gilt I = |J¢. Fall A; = A fiirallei € 1
ist, dann nennt man [[,A =[], A; eine Ultrapotenz von A modulo ¢.

14.2.10 Lemma

Sei X eine Menge mit R(X) = 8 und ¢ ein Filter auf I mit R(I) = ¥ > 8 + ®. Dann
ist [[, X eine Basismenge und alle Elemente in [], X haben den gleichen (unendlichen)
Rang.

Beweis: Wir zeigen alle Elemente f € [[;c; X haben einen Rang von ¢, wobei & eine un-
endliche Ordinalzahl ist und verwenden dann Lemma 14.1.11 (bzw. dessen Beweis). Erster
Fall 7 ist eine Limesordinalzahl. Behauptung: R(f) = y. Beweis dazu: I € V) 1 = Z(Vy),
also I C Vy = sy Vs. Fiir i € I und x € X gibt es also ein 0 < y mit i,x € V5. Dann ist
(i,x) = {{i},{i,x}} € V542, also f € P(Us<yVs) = Vyt1. Daauchi € {i} € (i, f(i)) € f, fir
ielgiltistR(f)=17.

Zweiter Fall y = ¥ + 1. Dann wieder I € V,; 1, also i € [ und x € X impliziert i,x € V,
und damit f € Vy, 3. Man sieht leicht, dass dann bereits R(f) = y+ 2 gilt. Dann haben aber
auch die Elemente von Elementen in [[, X alle ein und denselben unendlichen Rang und der
Beweis von Lemma 14.1.11 zeigt dann, dass H(pX eine Basismenge ist.

14.2.11 Lemma

Sei A eine Menge mit |[A| = o und ¢ ein Ultrafilter. Dann ist die natiirliche Einbettung
e : A — []yA eine surjektive Abbildung g.d.w. ¢ ein ot -vollstdndiger Ultrafilter ist.

Beweis: Sei ¢ a*-vollstindig und f, € [Ty A. Dann ist f eine Abbildung von I(=J¢) in
A.Da|A| = o, ist {f !(a) | a € A} eine Partition von I in weniger als o™ Teile. Also gibt es
ein a € A mit f~!(a) € ¢. Wenn g die konstante Abbildung g : I — {a} bezeichnet, so gilt also
fo = 8¢ = e(a). also ist e surjektiv.

Wenn andererseits e surjektiv ist, dann sei Xy, N < B eine Partition von / in § < ot Teile.
Wir miissen zeigen, dass eines der X;;, zu ¢ gehort. Da B < a0 = |A| ist gibt es eine Injektion
g:p —A FiraeB:={g(n)|n € P} setze X, := X,-1(, (wir haben einfach die Indizes
umbenannt). Sei f : I — A definiert durch f(i) = a g.d.w. i € X, (man beachte das es sich um
eine Partition handelt). Nunist fy € [T5A, also Ja € A mit fy = e(a). Das heiBt f~'(a) D {i €
1] f(i)=e(a)(i)} € ¢, also auch X, = f~!(a) € ¢. Daraus folgt dann die o:*-Vollstindigkeit.
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14.3 Konstruktion von Nichtstandard Universen
”Es gibt Dinge, die den meisten Menschen unglaublich erscheinen, die nicht Mathematik
studiert haben.”

Archimedes
14.3.1 Definition: Nichtstandard Universum (noch unvolistanig, siehe 14.5.1)
Ein Nichtstandard Universum ist ein Tripel (V(X),V(Y),*) mit folgenden Eigenschaften.

1. X und Y sind unendliche Basismengen.

2. *:V(X)— V(Y) ist eine Einbettung der Superstruktur iiber X in die Superstruktur iiber
Y mit *X = Y .Die Abbildung * heifit Nichtstandard Einbettung.

3. Fiir jedes unendliche A C X ist {*a | a € A} eine echte (!) Teilmenge von *A.
4. Das Transfer-Prinzip (fiir die Formulierung siehe Satz 14.4.12).

5. (V(X),V(Y),*) ist polysaturiert (siche Definition 14.3.5 und Satz 14.3.6).

14.3.2 Bemerkung

Haben wir eine unendliche Menge X, so nehmen wir uns eine Basismenge X’ mit |X| = |X|.
Wir identifizieren gewissermaBen X’ mit X (und all den moglichen Strukturen auf X) und
konnen also 0.B.d.A. gleich von Anfang an annehmen, dass X eine Basismenge ist.

14.3.3 Existenz von Nichtstandard Universen (Konstruktion)

Zu jeder unendlichen Basismenge X gibt es ein Nichtstandard Universum (V(X),V(Y),*).

Konstruktion: Sei X eine Basismenge und ¢ ein abzidhlbar unvollstiandiger Ultrafilter auf
einer Menge /. Sei dann Y := [[, X die Ultrapotenz von X. Nach Lemma?? kann man / so
wihlen, dass auch Y eine Basismenge ist. Fiir n < o sei

Wo:={feV(X) [ {il]| f(i) € Va(X)} € @}.

Es gilt dann W,, C W,y fiir alle n < . Wir setzen nun noch W := {J,, , Wy,. Fiir jedes x € V (X))
sei ¢(x) : I — V(X) die konstante Abbildung ¢(x)(i) = x fir alle i € I. Dann ist ¢(V,(X)) C W,
fiir alle n < @, also ¢(V (X)) C W und somit ¢ : V(X) — W eine Abbildung.

Wir definieren nun induktiv eine Folge £, : W, — V,,(Y) von Abbildungen mit 4,(f) = fo,
falls f € Wo und h,,(f) = {hn(g) | g €W, {icl]|g(i) € f(i)} € @}, falls f € W, \ W, falls
n> 0. (Bemerkung: Wenn f € W1 \W,,ge W, {iel|g(i) € f(i)} € ¢, dann g € W, denn

ea{iel|f(i)eVan(X)in{iel|gl) e f(i)} C{icllgi)eVa(X)})
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Nun zur Konstruktion: Fiir n = 0 setze einfach ho(f) := fj,, wobei f’ € X! beliebig mit {i €
1| f(i)=f'(i)} € @. Induktionsschluss n — n+ 1: Fiir f € W, setze hy1(f) := hn(f) und fiir
f € Wyi1 \ W, setze

hn1(f) = {ha(g) [ g €W, {i € T ] g(i) € (D)} € @}

Aus der Bemerkung folgt, dass alles sinnvoll definiert ist und die 4, die gewiinschten Eigen-
schaften haben. Wir setzen nun noch % := {J,. 4, und haben damit ein 2: W — V(Y) mit
h(f) = fp, falls f € Wy und

h(f) ={n(g) g W {icl|g(i) e f(i)} € @}, falls feW\W.

Wir definieren nun * : V(X) — V(Y) durch * := hoc. Fiira € X gilt *a = f,, wobei f : ] —
V(X)) konstant a ist. Aus der Definition von * folgt weiter

X={n(f) | few licllf(i)eX}eor={n(f)[feW}=Y

(man beachte ¢(X) € Wy). Fiir unendliches A C X gilt Hq,A C *A und nach Lemma 14.2.11 ist
die natiirliche Einbettung (und das ist hier *) nicht surjektiv (denn ¢ ist nicht @-vollstindig).
Das heifit {*a | a € A} ist eine echte (!) Teilmenge von *A.

Zeigen wir noch schnell die Injektivitit: Wir miissen zeigen: *A =* B impliziert A = B.
Dies folgt aus dem Transfer-Prinzip, oder auch leicht direkt: Angenommen A # B. O.B.d.A.
gibt es dann drei mogliche Fille 1) A,B€ X,2)A€ X,BeV(X)\X und3)A,BeV(X)\X.
Fall 1) ist trivial. Fall 3) geht so: Es gibt dann 0.B.d.A. ein x € A\ B. Definiere g : I — V(X))
durch g(i) =xfirallei € I. Also {i € I'| g(i) € c(A)(i) \¢(B)(i)} =1 € ¢, und somit h(g) €
h(c(A))\ h(c(B)) =" A\* B - Widerspruch!

Fiir Fall 2) erst eine allgemeine Bemerkung: A € X, B € V(X) \ X und B # 0 impliziert
B\ A # 0 (sonst ist B C A und es folgt letztendlich ANV (X) # 0@ - Widerspruch zur Basismen-
geneigenschaft). Wir konnen also B als leer voraussetzen (sonst schlieBen wir wie in Fall 3)).
Dann ist aber offensichtlich *B = 0; hingegen *A # 0. Wieder ein Widerspruch!

14.3.4 Definition: Interne Elemente

Ein Element aus A € V (Y) heif3t internes Element, wenn es ein B € V(X)\ X gibt mitA € *B.

14.3.5 Definition: x-saturiert

Sei k eine (unendliche) Kardinalzahl. Das Tripel heif3it k-saturiert bzw. die Einbettung * heif3t
k-kompakt, wenn fiir jede Familie (Ay) el I'| < k, interner Elemente mit der eSE (je endlich
viele Elemente haben nicht leeren Schnitt = endliche Schnitt Eigenschaft) (,crAy £ () ist.

14.3.6 Existenzsatz x-saturierter Nichtstandard Universen

Sei k eine (unendliche) Kardinalzahl. Wenn man den Filter ¢ zusitzlich x-gut wihlt, dann
ist (V(X),V(Y),") k-saturiert.
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Beweis: Sei (Ay)yer, |I'| < k, eine Familie interner Elemente mit der eSE und (*By)yer die
zugehorigen B € V(X) \ X. Jedes Ay ist von der Form A(fy) fiirein f, € W mit {i € I'| f,(i) €
B} € ¢ (mit der Notation der Konstruktion). Wir unterscheiden nun 2 Fille: 1) alle fy liegen
in W\ Wy und 2) Es gibt ein y € I' mit f, € W,

Fall 1) (der schwere Fall): Es geniigt ein g € W zu finden, mit {i € I | g(i) € f,(i)} € ¢, fiir
alle y € I'. Denn dann ist /(g) € (yerh(fy). Der Schnitt der Ay wire also nicht leer.

@ ist ein abzdhlbar unvollstindiger Ultrafilter, also gibt es eine Folge I =1p 2 I} DO ...
von Mengen aus @ mit (),.,/, = 0. Wir definieren nun eine Abbildung p : Z,(I') — @
durch p({71,....%}) = LN{i €| fy, () N...N f, (i) # O} wenn 71,...,%, paarweise ver-
schiedene Elemente sind (die Abbildung ist sinnvoll definiert; man beachte die eSE). Nun
ist p offensichtlich antimonoton und daher existiert ein antiadditives q : & (I") — ¢ mit
q < p. Fir jedes i € I definieren wir nun I; C T durch I'; := {y € ' | i € ¢({y})}. Wenn I;
die n Elemente ¥, ...,% hat, dann i € _ ¢({%}) = ¢({",-- . }) € P15 }) C In-
Da <, In = 0, muss I'; endlich sein! Sei also I'; = {¥},..., %, }. Da i € q(I';) € p(I7),
folgt 3x; € £y (i)n... mfﬂi(i)' Setze dann g(i) := x; fiir i € I und es bleibt zu zeigen, dass
{iel|g(i)e fy(i)} € @ist, furalle y e I'. Es gilt aber {i € I | g(i) € fy(i)} 2 g({7}) € ¢!

Nun zu Fall 2) Wir zeigen wenn ein fy aus Wy kommt, dann kommen bereits alle f, aus
Wo. Wenn das gezeigt ist, sind die A( fy) ndmlich Elemente aus Y = [Io X und wenn je endlich
viele einen nicht leeren Schnitt haben, dann auch @ # ,crh(fy) (Aquivalenzklassen!!). Um
dies zu zeigen, beweisen wir die Implikation: f € W\ W, = h(f) € V(Y) \Y. Fiir so ein
f folgt dann némlich auch h(f) C V(Y). Gibe es dann ein fy, € Wy, also h(fy) € ¥ und ein
fy € W\ Wy, so wire h(fy) Nh(fy) =0 - Widerspruch (denn Y ist eine Basismenge)!

» Behauptung: Vn < wVd € W, : [(3y € Y mit R(y) < R(h(d))) oder R(h(d)) < n.]
Beweis durch Induktion nach n. Fiirn =0 ist h(d) € Y - fertig. n — n+1: Seid € W,.1 \ W,.
Sei 0.B.d.A. h(d) #0. 1.Fall: Vh(d") € h(d) : R(h(d")) < n, dann offensichtlich R(h(d)) < n+
1.2.Fall 3h(d") € h(d)3y € Y mit R(y) < R(h(d')). Dann aber R(y) < R(h(d")) < R(h(d)). «

Sei nun f € W11 \W,, n >0 und 0.B.d.A. sei {i €| f(i) #0} € ¢ (sonst h(f) =0 €
V(Y)\Y). Fiir jedes h(g) € h(f) gilt nun g € W,,. Es treten daher zwei Fille auf: 1.Fall Vh(g) €
h(f): R(h(g)) < n, dann offensichtlich R(h(f)) <n-+ 1. Oder 2.Fall 3h(g) € h(f) Iy € Y mit
R(y) <R(h(g)), dann offensichtlich R(y) < R(h(f)). In jedem Fall stimmt der Rang von A(f)
nicht mit dem Rang der Elemente in Y iiberein, also 4(f) ¢ Y'!

14.3.7 Bemerkung und Definition

Wenn wir ¢ zusitzlich k-gut wihlen, fiir ein ¥ > |V (X)|, dann folgt fiir jede Familie (A;);er
von hochstens |V (X)|-vielen internen Elementen mit der eSE: (o7 A; # 0. Diese starke Form
von saturiert nennt man polysaturiert bzw. spricht man einfach von einer kompakten Ein-
bettung * (statt von einer k-kompakten). Im Grunde genommen interessiert man sich auch
nur fiir den ersten Fall des Beweises. Die Inklusionsbeziehungen zwischen Elementen aus Y
(abgesehen von der Basismengeneigenschaft) haben fiir die Theorie keine Bedeutung.

In der Literatur gibt es in diesem Zusammenhang noch einen weiteren Begriff, nimlich den
der starken Einbettung, bzw. spricht man auch von Enlargements (siehe z.B. [29]). Die Ein-
bettung * wird starke Einbettung genannt, wenn (<., *A # 0 fiir jede Menge &7 C V(X)\ X,
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mit der endlichen Schnitt Eigenschaft (eSE) gilt. Fiir viele Anwendungen reicht die Existenz
einer starken Einbettung aus. Doch haben wir auch die Existenz solcher starken Einbettungen
bewiesen? Ja, denn wenn (V(X),V(Y),*) polysaturiert ist, dann ist die Einbettung * stark!

Fiir den Beweis wihle man ein .« C V(X )\ X, mit der eSE. Nun hatauch o := {*A |A € &/}
die eSE (Klar!) und o hat hochstens |V (X)|-viele Elemente. AuBerdem sind alle Elemente aus
o intern. Da (V(X),V(Y),* ) polysaturiert ist, folgt somit (4, *A =0t # 0.

Bis auf das Transfer-Prinzip habe wir damit den Nachweis der Existenz von Nichtstandard
Universen zu jeder Menge X gegeben.

14.4 Modelltheoretische Grundlagen und das Transfer-Prinzip

Wir definieren nun die Sprache in der dann Aussagen iiber die Superstrukturen formuliert wer-
den. Dazu gehort ein Alphabet <7, eine Menge von Symbolen, aus denen dann Symbolketten
gebildet werden und gewisse Syntax-Regeln, welche die Art und Weise wie Ketten gebildet
werden regeln. Diese Symbole teilen sich in folgende Gruppen auf: Relationssymbole # (z.B.
das 2-stellige Symbol = oder das 2-stellige €), Funktionssymbole .7, Konstenten Symbole
', Variablen Symbole ¥ und die Logischen Symbole .Z, die da wiren ) (, = A V.

Ein Modell fiir unsere Sprache ist dann ein geordnetes Paar (%, ), wobei % eine mogliche
Welt, ein Universum in dem sich alles abspielt, letztendlich aber einfach eine Menge ist, und
F:2U%U% — % eine Abbildung ist, welche jedem n-stelligen Relationssymbol P eine
n-stellige Relation R C 7/" in % zuordnet 1 < n, jedem m-stelligen Funktionssymbol G eine
m-stellige Funktion F : " — %/ zuordnet 1 < m, jedem Konstantensymbol ¢ ein Element
u € % zuordnet. Mit g.d.w. kiirzen wir die Formulierung genau dann wenn ab.

14.4.1 Definition: Symbolkette

Eine Symbolkette ist einfach eine Abbildung S: B — o7, wobei B < @ ist. Wir werden im
weiteren Verlauf Zeichenketten aber nicht als Abbildungen definieren, sondern wie man es
nicht anders erwarten wiirde, einfach die Zeichenkette hinschreiben. Hier zwei Beispiele:
(,P(x1 A ((Y und (=Vx)(=Vy(—y € x)), wobei € das bekannte Relationssymbol (...ist enthalten
in...) bezeichnet. Wir wollen nun aus der groBen Menge aller moglichen Zeichenketten (oder
Symbolketten) die fiir uns interessanten herausfiltern. Dies geschieht induktiv.

Noch eine kleine Bemerkung: Wir fithren (ohne weiter darauf hinzuweisen) intuitiv klare
und leichter lesbare Schreibweisen, wie z.B. P(vy,...,v,) statt Pv;...v,, wobei P ein n-stelliges
Relationssymbol bezeichnet, ein.

14.4.2 Definition: Term, Elementarformeln und Formeln

1. Variablensymbole und Konstantensymbole sind Terme.

2. Wenn F ein n-stelliges Funktionssymbol ist und ¢, ...,, Terme sind, so ist F(zq,...,t,)
ein Term.

Genau die Zeichenketten sind Terme, die sich durch endliches Anwenden von 1. und 2. erzeu-
gen lassen.
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1. Wennty,...,t, Terme sind und P ein n-stelliges Relationssymbol ist, dann ist P(zy, ..., 1,)
eine Elementarformel.

2. Elementarformeln sind Formeln.
3. Wenn ¢ und y Formeln sind, dann auch (—=¢) und (¢ A y)

4. Wenn v eine Variable und ¢ eine Formel ist, dann ist auch (¥v)¢ eine Formel.

Genau die Zeichenketten sind Formeln, die sich in endlich vielen Anwendungen von 1. 2. 3.
und 4. erzeugen lassen.

14.4.3 Definition: Teilformeln, gebundenes bzw. freies Auftreten einer Variable
und Aussage

Wir definieren induktiv die Menge sub (¢) aller Teilformeln von ¢.
1. Wenn ¢ eine Elementarformel ist, dann sub(¢) = {¢}.

2. sub((—9)) = sub(¢) U{(=9)}.
3. sub(¢ ANy) =sub(¢)Usub(y)U{o Ay}.
4. sub((¥Yv)9) = sub(¢)U{(Vv)o}.

Das Auftreten einer Variablen v an einer Stelle in einer Formel ¢ hei3t gebunden, wenn es ein
v € sub(¢9) gibt, mit (Vv)y € sub(¢). Andernfalls ist sie an dieser Stelle frei. Eine Variable
heif}t frei in einer Formel, wenn jedes Auftreten der Variable in der Formel frei ist. Entspre-
chend reden wir dann auch von der Menge der freien Variablen einer Formel. Eine Formel in
der jedes Auftreten einer jeden Variable gebunden ist, heifit Satz oder Aussage.

14.4.4 Notation und Bemerkung

Mit ¢ (v, ...,v,) bezeichnen wir einen Term, dessen Variablen eine Teilmenge von {vo,...,v,}
bilden. Mit ¢ (v, ...,v,) bezeichnen wir eine Formel ¢, deren freie Variablen eine Teilmenge
von {vo,...,v,} bilden.

Unser Ziel ist es nun, bei Wahl einer Sprache (reprisentiert durch ein Alphabet <7, entspre-
chenden Syntax-Regeln und einem Modell .# = (% ,F)) fiir eine Formel ¢ (v, ...,v,) mit all
ihren freien und gebundenen Variablen unter vy, ..., v,, p < g und einer Folge uy, ..., u, aus %
zu entscheiden, ob ¢ bei der Belegung der vy, ...,v,, durch u,...,u, in .# wahr ist oder nicht.
Als abkiirzende Schreibweise fiithren wir dafiir (auch wenn der Inhalt noch gar nicht definiert
ist) folgendes ein: .#Z = ¢[uo,...,u,| oder eben A = @ [uo, ..., u,).

Wir haben in unserer Sprache bislang noch nicht das Symbol = und € (als Symbole fiir
gewisse Relationen) eingefiihrt. Gleichwohl benutzen wir sie nun (wie auch schon friiher)
wenn wir iiber unsere Sprache reden (wie z.B. in der Definition der Teilformeln). Wenn wir
also von zwei Formeln zum Ausdruck bringen mochten, dass sie gleich sind, so schreiben
wir ¢ = y. Das Gleiche gilt fiir Terme. In unserer neuen Kunstsprache hingegen sind diese
Symbole aber einfach nur Symbole, im Rahmen der Syntax Regeln, die erst iiber die folgenden
Definitionen (Erfiillbarkeit,...) mit dem Universum in Verbindung stehen (Semantik).
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14.4.5 Definition: Werte von Termen
Wir definieren den Wert eines Termes ¢(vy, ..., v,) fiir eine Folge xo,...,x, € % :
1. Wenn ¢ = v;, dann t[xy, ...,x;] =x;  (t[xo,...,x4| sei der Wert von ¢ fiir xo, ..., x,)
2. Wenn ¢ ein Konstantensymbol ist, dann ¢[xo, ..., x,] = F(c).
3. Wennrt = F(ty,...,t,;), wobei F ein m-stelliges Funktionssymbol ist, dann #[xo, ..., x,] =
F(F)(t1[x0,---,Xg], > tm[X0, .-, Xg])-
14.4.6 Definition: Erflillbarkeit von Formeln (Vorbereitung)

1. Wenn die Formel ¢ (v, ...,v4) die Elementarformel P(t1, ...,1,) ist, mit einem n-stelligen
Relationssymbol P und den Termen #;(vo, ..., Vg),...,ta(V0, ..., V4), dann

M= Plxo,..xg]  gdow. (t1[x0,...,xg], .. ta[X0, ..., Xg]) € F(P)
(man beachte, dass Elementarformeln keine gebundenen Variablen enthalten).

2. Seinun ¢ eine Formel mit all ihren (freien und gebundenen) Variablen unter vy, ..., vg.

a) Wenn ¢ = (x A\ y), dann
M= Qxo, .. xg] gdw. A= xxo,....xg] und A = Yxo, ..., x4).
b) Wenn ¢ = -y, dann
M= Plx0,..xq] gdw. A Yxo, ..., Xg).
¢) Wenn ¢ = (Vv;)y, mit i < ¢, dann
M Plx0,..0xq] gdW. A= Yxo, . X1, X, Xig 1,0, Xg] fUr jedes x € U

Nun mochten wir allerdings definieren wann eine Formel ¢ (v, ...,v,) durch xo, ..., x), erfiillt
wird. Um die Definition sauber zum Abschluss zu bringen, miissen wir daher noch nachwei-
sen, dass .# = ¢(vo,...,vp)[x0, ..., X4] DU vON X0, ...,x,, abhingt, p < g.

14.4.7 Lemma

1. Seit(vo,...,vp) ein Term und x, ..., x, bzw. yy, ...,y zwei Folgen aus %, mit p < g
und p < rund x; = y; falls v; eine Variable von ¢ ist. Dann ist

1[X0, .-, Xg] = t[Y0, -, V1)

2. Sei ¢ eine Formel mit all ihren freien und gebundenen Variablen unter vy, ...,v, und
seien xo, ...,x4 bzw. yg,...,y, zwei Folgen aus %/, mit p < g und p < rund x; = y;
falls v; eine freie Variable von ¢ ist. Dann

M= Plxo,....xg] gdw. A= Pyo, ...,y
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Beweis: Der Beweis ist sehr einfach und ein typisches Beispiel eines Induktionsbeweises
iber die Komplexitit der Terme und Formeln.

1. Sei t(vo, ..., v,) ein Term. Falls ¢ = v;, dann ¢[xo, ...,x4] = x; = y; =t[yo, ..., ys].

Falls ¢ = ¢ ist fur ein Konstantensymbol ¢, dann t[x, ...,x,| = F(c) =t[yo, ...,y

Fallst = F(ty,...,t,), dann

t[x0, .., xg| =F(F)(t1[X0, .-, Xg], -, tn[X0, -, X)) = F(t1[y0, s V7], oo ta Y0, -, ¥r])) =E[V0, -5 )

2. Sei ¢ eine Elementarformel, also ¢ (vo,...,v,) = P(t1,...,1,), P ein Relationssymbol und
t; Terme. Dann gilt

M= Plxo,..xg] gdw (11]x0, .. X o, tn[X0, .., xg]) € F(P)
gdw.  (t1[y0,.,Yr)s s tnyos - ¥r]) €F(P) gdw. A = Plyo,..., -
Wenn ¢ = (x A y), dann
M= Plxo,..0xg) gdw. A= x[x0,...,x4] und A = yixo, ..., x4]

gdw. A Exo,....y) und A = Yyo,....y,] gdw. A EP]yo,....y]
Analog mit ¢ = —y. Wenn ¢ = (Vv;)y, mit i < p, dann

M= Qlxo,....xg) gdw. furalle xe % gilt A = yxo,..Xi—1,X,Xiq1,...,Xg]

g.d.w. fiiralle x € % gilt A = W[yo,..Yi—1,%,Yit1,--Yr] dW. A = P[yo,..., ]

Nun konnen wir die (sehr umfangreiche) Definition abschlieen:

14.4.8 Definition: Erflillbarkeit von Formeln

Sei ¢(vo, ..., vp) eine Formel, mit all ihren freien und gebundenen Variablen unter vy, ..., v, und
sei xp, ..., x, eine Folge mit Elementen aus % mit p < g. Dann schreiben wir

A = @lxo,...,xp] (und sagen: xo,...,x, erfiillen ¢),

falls es x,11,...,x; aus % gibt mit .# |= ¢[xo,...,x4]. Das obige Lemma bringt nun gerade
zum Ausdruck, dass diese Definition von der Wahl der x, 1, ...,x, unabhingig ist.

14.4.9 Bemerkung

Wir fithren noch einige niitzliche Abkiirzungen ein: ¢ \V y als Abkiirzung fiir —=(—¢ A —y),
¢ — v als Abkiirzung fiir ~¢ V v, ¢ < y als Abkiirzung fiir (¢ — W) A (¥ — ¢) und zu
guter Letzt bezeichnet (Jv;)¢ die Formel —((Vv;)—¢). Mit diesen Abkiirzungen gilt dann z.B.
wenn ¢ die Formel (3v;)y bezeichnet: .4 = ¢[vo,...,v,] g.d.w. es ein x € 7 gibt, mit Z |=
Y[vo,...; Vi—1,X, Vi1, ..., V4] (der Beweis ist eine leichte Ubung).

Im weiteren Verlauf werden wir unser Alphabet und Modell spezieller wihlen. Als Rela-
tionssymbole nehmen wir = und € (wir schreiben auch a = b statt = (a,b), analog mit €),
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wir brauchen keine Funktions - bzw. Konstantensymbole. Die logischen Symbole werden na-
tirlich alle verwendet (und wurden eben bereits um ein paar Abkiirzungen erweitert). Als
Universum unserer Modelle wihlen wir zum einen die Superstruktur iiber einer Basismenge
X und zum anderen das entsprechende V (Y). Dem Symbol = ordnen wir als Relation (wie soll
es auch anders sein) {(a,a) | a aus V(X)} bzw. {(a,a) | a aus V(Y)} zu; entsprechend dem
Symbol €, die Relationen {(a,b) | a,b aus V(X ) und a aus b} bzw. {(a,b) | a,b aus V(Y) und
a aus b}. Wir haben also zwei verschiedene Modelle tiber ein und dem selben Alphabet. Die
beiden Modelle werden wir mit (V(X),€) bzw (V(Y), €) bezeichnen.

14.4.10 Definition: Beschrankt quantifizierte Formeln

Um das Transfer-Prinzip zu formulieren fithren wir nun den Begriff der beschrinkt quanti-
fizierten Formel ein. Wir erinnern uns: Im induktiven Aufbau der Formel kam es zu Quan-
tifizierungen der Form (Vv)¢. Formeln die sich dadurch gewinnen lassen, dass statt dieser
allgemeinen Form nur die folgenden abgeschwichten, so genannten beschrinkten Quantifi-
zierungen,

e (W)((vew)—¢) kurzz (VWvew)p
o (W)((vew)Ag) kurz: (Fvew)ep

benutzt werden, heiflen ab sofort beschrinkt quantifizierte Formeln.

14.4.11 Lemma

Sei (V(X),V(Y),*) das in 14.3.3 konstruierte Nichtstandard Universum mit Ultrafilter ¢.
Dann gilt fiir jede beschrénkt quantifizierte Formel ¢ (xy,...,x,) und fi,..., f, € W:

V(¥),€) = olh(fi),- h(f)] gdw. {iel[(V(X),€)E¢LAi@D), ... a()]} € @.

Fiir die Notation beachte den Existenzbeweis fiir Nichtstandard Universen.

Beweis: Der Beweis erfolgt durch Induktion iiber den Formelaufbau. Sei ¢ die (Elemen-
tar)Formel v{ = v,. Dann folgt:

(V(Y),€) = o[h(f1),h(f2)] gdw. h(fi)=h(f2) gdw. fi=¢/f2

» Zeigen wir die letzte Aquivalenz: Sei h(f;) = h(f>). Angenommen J := {i € I | fi(i) #
)} € . Falls {i € I'| fo(i) =0} € ¢, dann @ = h(f>) = h(f1). Dann muss aber auch {i €
I| fi(i) =0} € ¢ sein! Und somit doch fi =¢ f> - Widerspruch.

Fiir den néchsten Fall erst eine allgemeine Bemerkung: A € X, B€ V(X)\ X und B # 0
impliziert B\ A # 0. Sonst ist B C A und es folgt letztendlich ANV (X) # 0 - Widerspruch (zur
Basismengeneigenschaft)!

Falls also {i € 1| f>(i) # 0} € @, so gilt fiir f; entweder f; € Wy, oder f; € W\ Wy. Im ersten
Fall folgt aus der Bemerkung: {i € I | f2(i) \ fi1(i) # 0} € ¢. Im zweiten Fall folgt, dass fiir
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jedes i € I ein g(i) existiert mit g(i) € f>(i) \ f1(i), oder g(i) € f1(i) \ f2(i). In beiden Fillen
ldasst sich aber leicht ein g : I — V(X)) konstruieren, so dass entweder h(g) € h(f>) \ h(f1) oder
h(g) € h(f1) \ h(f2) gilt. Und wir erhalten h,,(f1) # hn(f2) - Widerspruch. Also J € ¢ und
somit fi =¢ f>. Die Umkehrung f1 =¢ fo = h(f1) = h(f>) ist offensichtlich. «

Offenbar gilt nun

fi=¢ f2 gdw. {iel|(V(X),€) = 0[fi(0),..fu(D)]} € @
Sei nun ¢ die Formel v € v, , dann folgt (V(Y),€) = @[h(f1),h(f2)] gdw. h(fi)€h(fz)
gdw. {iell|fi()e (D} e gdw. {iel|(V(X),€)o[fi(0),..fu(D)]} € 0.

Wenn ¢ die Formel (y A y) ist, beweist man die Aquivalenz, indem man sie auf den rekursi-
ven Formelaufbau und die Filtereigenschaft PN Q € ¢ g.d.w. P € ¢ und Q € ¢ zuriickfiihrt.
Ahnlich geht man vor, wenn ¢ die Formel -~y ist (P € ¢ g.d.w. I\ P ¢ ¢ - Ultrafilter!).

Sei ¢ die Formel (Jvy)((vi € v2) A y) (es ist klar, dass man sich auf den Nachweis fiir V
oder 3 entscheiden kann).

(V(¥),€) | @vi)((vi € v2) AW)[R(f1), ., B f2)]
gdw.esein uecV(Y) gibt,mit (V(Y),€) = ((vi €v2)AY)[u,....h(fn)]
gdw.esein ueV(Y) gibt, mit ueh(fp) und (V(Y),€) = ylu,....h(fy)]-

Nun ist i(f>) entweder (f>)e oder {h(g) | g€ W und {i € I'| g(i) € f>(i)} € ¢. Der erste
Fall kann aber nicht eintreten, da Y eine Basismenge ist. Das impliziert: u = h(g) € h(f>)

und (V(Y),€) = wih(g),....h(fy)] . also {i € I | g(i) € fr(i)} € o und {i € I | (V(X),€) =
v(g(i),..., fn(i)]} € @. Also ist auch

{iel| (V(X),€) E @v)((vi €v2) AW [1(0), - fu(D)]}

als Obermenge des Schnittes dieser beiden Mengen wieder in ¢.

Sei andererseits {i € I | (V(X),€) = (Fvi)((vi € va) Ay)[f1(i),-.., [n(i)]} € . Dann auch
J:={iel| esgibtein g(i) € V(X) mit g(i) € f2(i) und (V(X),€) E y[g(i),..., [n()]} €
¢. Wihle dann noch ein g(i) € X fiir jedes i € I\ J und wir erhalten A(g) € h(f2) (Y ist
Basismenge) und {i € I | (V(X), €) E y[g(i),..., fu(i)]} € @, also per Induktion (V(Y),€) E
yh(g),...,h(fn)].- Zusammen mit h(g) € h(f>) erhalten wir

(V(Y),€) E ()i € v AW)[h(f1), . h(fa)]-

14.4.12 Transfer-Prinzip

Seien ay,...,a, € V(X) und sei ¢ (vy,...,v,) eine beschrinkt quantifizierte Formel. Dann:

(V(Y),€) E o[*ar,...,"ay] genaudann wenn (V(X),€) = dlay,...,an)-

Beweis: Man wihle als f; einfach c¢(ay) (mit den Bezeichnungen aus 14.3.3 und 14.4.11)
und beachte ¢(ay) (i) = gy firallei € Iund I € ¢.
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14.5 Elementare Eigenschaften von Nichtstandard Universen
14.5.1 Zusammenfassung (und Abschluss von Definition 14.3.1)

Haben wir eine unendliche Menge X, so nehmen wir uns eine Basismenge X’ mit |X| = |X|.
Wir identifizieren gewissermaBen X’ mit X (und all den méglichen Strukturen auf X) und kon-
nen also 0.B.d.A. gleich von Anfang an annehmen, dass X eine Basismenge ist. Bei geeigneter
Wahl eines Ultrafilters ¢ bekommen wir die Modelle (V(X),€) und (V(Y),€), mitY =[], X
und das Nichtstandard Universum (V(X),V(Y),*), mit folgenden Eigenschaften:

1. X und Y sind unendliche Basismengen und * : V(X) — V(Y) ist eine Einbettung der
Superstruktur tiber X in die Superstruktur iiber ¥ mit *X =Y. Die Abbildung * heif3t
Nichtstandard Einbettung.

2. Fiir jedes unendliche A C X ist {*a | a € A} eine echte (!) Teilmenge von *A.

3. Fiiray,...,a, € V(X) und eine beschrinkt quantifizierte Formel ¢ (v, ...,v,) gilt:
(V(Y),€) Eo[*ay,...., an) g.dw. (V(X),€) = ¢lal,...,a,] (Transfer-Prinzip).

4. Fiir jede Familie (A;);cr von hichstens |V (X)|-vielen internen Elementen, von denen je
endlich viele einen nicht leeren Schnitt haben (eSE) gilt: (,cr A; # 0.

Dies bezeichnen wir kurz als: (V(X),V(Y),*) ist polysaturiert.

Die unvollstidndige Definition 14.3.1 eines Nichtstandard Universums ist an dieser Stelle damit
vollstindig. Die (aufwendige) Konstruktion in den vorangehenden Abschnitten dient nur dem
Nachweis, dass zu jeder (unendlichen) Menge X ein Nichtstandard Universum existiert. Diese
Eigenschaften stellen wir ab jetzt axiomatisch an den Anfang.

14.5.2 Lemma

Zu jeder natiirlichen Zahl n gibt es beschrinkt quantifizierte Formeln ¢y, ..., ¢g, so dass fiir
jede Superstruktur iiber einer Basismenge X und Elementen xp, ...,x, € V(X) und u,v,w €
V(X)\ X gilt:

O)u=0gdw. (V(X),€) = @olu

(D) u=A{x1,...;x,} g.dw. (V(X),€) = @1[u,x1,..., %]

) u=(x1,...,xn) g.dw. (V(X),€) &= @au,x1,..., %]

B ulvgdw.(V(X),€) = @3[u,v

@ u=vxwgdw. (V(X),€) = Qau,v,w]

S)u:v—wgdw. (V(X),€) = @s[u,v,w]

6)ueV,(X) g.dw. (V(X),€) = @su]

Beweis: Bleibt als Ubungsaufgabe. Bei (6) verwende man Induktion iiber n und ansonsten
benutze man bekannte Formeln zur Konstruktion der Restlichen. Wir werden im Folgenden
ohne extra darauf hinzuweisen @y, ..., @g frei verwenden!
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14.5.3 Lemma

Fir by,....b, € V(X), A € V(X)\ X und eine beschrinkt quantifizierte Formel
(p(v17---7vn+l) gllt

{yeA|(V(X),€) E@lbr,....bwy]} ={ye "A| (V(Y),€) = @["b1, ..., "bu, ]}

Beweis: Fir B:={yc A | (V(X),€) E @[b1,...,bn,y]} gilt

(V(X),€) = (WyeA)(y € B < @[by,....bn,Y])-

Nun handelt es sich hierbei um eine beschridnkt quantifizierte Formel, nach dem Transfer-
Prinzip ist dies gleichwertig zu:

(V(Y),€) = (Vye "A)(y € "B < @["by,..., "bn,)]).

Ebenso folgt (direkt) aus dem Transfer-Prinzip: *B C *A ist gleichwertig zu A C B, woraus
dann insgesamt die Behauptung folgt.

Kombiniert man diese beiden Lemmata, so erhilt man:

14.5.4 Korollar
Seien A,B € V(X) \ X. Dann gilt:

1. *o/ C*o/,*(AUB) = *AU *B, *(ANB) = *AN *B, *(A\ B) = *A\ *B und *(A x
B) = *A x *B.

2. Wenn A = {ay,...,a,}, dann *A = {*ay, ..., *a, }.
3. Wenn #(A) C B, dann *Z(A) = Z(*A)N *B.

4. Wenn V,(X) C B, dann *V,,(X) =V, (Y)N *B.

Beweis: Exemplarisch fithren wir 3. vor. Der Rest geht analog.
PA)={DeB|DCA}={DeB|(V(X),€) = ¢:[D,Al},

also

*PA)={De *B| (V(Y),€) = 3], *A]} = P (*A) N *B.

345



14.5.5 Korollar

Wenn A,B € V(X)\ X und f: A — B eine Funktion ist, so ist *f eine Funktion von *A
nach *B. Ist f injektiv oder surjektiv, so auch *f : *A — *B. AuBlerdem ist

B ="{feVX)[(V(X),€) E oslf. A B} ={f € V(X) | (V(Y),€) F os[f, "A, "B]}

die Menge aller (internen) Funktionen von *A nach *B.

Beweis: Bleibt als Ubungsaufgabe.

14.5.6 Korollar
Sei f:X —=Yund A C X, bzw. BCY. Es gilt dann

(A ="f"AY und (FTNB) =(CHT(B)

Zur Erinnerung: Hier ist f{A} := {f(a) | a € A} das Bild von A unter f.

Beweis: Wir zeigen nur *(f{A}) = *f{*A}. Der Rest geht analog. Wir haben
(AAD ="{yeY [(VX),€) E YA f Yl ={ye Y |(V(Y),€) Ew["A, "f.yl} = “f{"A},

wobei ¥ (u,v,w) die Formel (3x € u)(3z € v)2(z,x,w) bezeichnet.

14.5.7 Lemma

Sei (V(X),V(Y), ™) ein Nichtstandard Universum, Z € V(X)\ X, a C #(Z) und B €
V(X)\ X. Dann gilt:

1. Wenn *B C [Jycq A, dann gibt es ein endliches o C o, mit B C UAeaoA.
2. Wenn (4o “A € *B, dann gibt es ein endliches o C o, mit ﬂAeaOA CB.

3. VA, Beoa:ANBea)=(3C < *oomitC C ey *A)

Beweis: 1. Falls B ¢ (J,cq, A fiir alle endlichen o C o, dann setze f := {B\A| A € a}.
Dieses f hat dann die endliche Schnitt Eigenschaft und demzufolge hat auch g’ := {*B’ | B’ €
B} die eSE (Transfer-Prinzip). Denn es gilt (V(X), €) = w[B,B], also (V(Y),€) = w[*B, *B],
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wenn y(v,w) die Formel (Vu; € v)...(Vu, € v)(Iz € w)(z € u; A ... Az € u,) bezeichnet. Da
B’ C *B und unser Nichtstandard Universum polysaturiert ist, folgt

0# (| "B'=() "(B\A)="B\ | "A - Widerspruch!
Bep Aca Aca

2. Analoger Beweis (oder man geht zu Komplementen iiber und verwendet dann 1.).

3.FirAcasetze ap:={Bea|BCA}. Dannist oo = {B € *ao | BC *A}. Es gentigt
demnach zu zeigen, dass (<, “04 7 0 ist. Na ja, dies liegt daran, dass {*a4 | A € a} eine
Familie interner Elemente mit der eSE ist.

14.5.8 Definition: Extern und standard

Elemente A € V(Y) fiir die es ein B € V(X) \ X mit A € *B gibt, haben wir bereits als inter-
ne Elemente bezeichnet. Elemente aus V(Y) die diese Eigenschaft nicht haben, nennen wir
extern. Elemente A € V(Y) der Form A = *B, fiir ein B € V(X)) heifien standard Elemente.
Standard Elemente sind intern (A = *B fiir B € V(X) ergibt B € V,,(X) fiir n € ® und damit
A =" B € *V,(X)). Fir die Menge ./ aller internen Elemente gilt

A= U A= vX).

AV (X)\X new

Der Nachweis bleibt als Aufgabe. Wenn wir von internen Mengen sprechen, meinen wir in-
terne Elemente aus V(Y) \ Y (obwohl natiirlich auch Elemente aus ¥ Mengen sind).

Wie kann man einer Menge ansehen, ob sie intern oder extern ist? Ein hilfreiches Kriterium
ist das folgende Prinzip der internen Definition.

14.5.9 Prinzip der internen Definition

Seien Ay, ...,A,,B interne Mengen und @(vy,...,v,+1) eine beschriankt quantifizierte For-
mel. Dann ist die Menge D := {y € B| (V(Y),€) = ¢[Ay,...,A,,y]} intern.

Beweis: Aus obiger Bemerkung entnehmen wir, dass es ein k gibt, mit Ay, ...,A,, B € *V(X).
Sei y(v,v') die Formel

(W1 €V)eee(Wps1 €v)(Fu eV ) (@3(u,v) A(Yy €v)((y Eu) = (Y €Vt AQ(V1, ey vy ¥))))-

Es gilt dann nimlich
(V(X),€) = WlVi(X), Vi1 (X)].
» Beweis dieser Aussage: Zu gegebenen xi, ..., x,,b € Vi(X) betrachte man die Menge v :=
{yeVi(X)| (V(X),€) E @[x1,....xs,y]} und anschlieBend u := u' Nb. «
Hieraus folgt dann (V(Y),€) &= y[*Vi(X), *Vis1(X)], das heiBt fir die Ay,...,A,,B gibt
esein U € "V 1(X) mit U C *V;(X) und der Eigenschaft, dass fiir jedes y € *Vi(X) gilt:
yeU < yeBund (V(Y),€) E @[Ay,...,An,y]. Kurz: D=U € *Vj4|(X).
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14.5.10 Lemma (Fast Transitivitat der *V, (X))
Wenn x € *Vi(X) \ Y (natiirlich k > 1), dann x C *V,(X).

Beweis: Fiirx € Vi1 (X)\ X = (Z(Vik(X))UX)\ X folgt x C Vi (X) C Vi11(X). Also haben
wir (V(X),€) E w[Vi(X),Vi(X) \ X], fir kK > 1, wenn y(u,v) die Formel (Vx € u)(x € v —
[(Vy € x)(y € u)]) bezeichnet. Transfer liefert dann (V(Y), €) = w[*Vi(X), *Vi(X) \ Y]. Also
x € *Vi(X) \ Y impliziert x C *Vi(X).

14.5.11 Korollar

Die Menge aller internen Mengen ist gegen endliche Schnitte, Vereinigungen, Differenzen
und Produkte abgeschlossen.

Beweis: Exemplarisch sei dies fiir das Produkt zweier Mengen gezeigt; die anderen Beweise
verlaufen sehr dhnlich. Seien also A, Bintern aus V(Y) \ Y. Dann A, B C *V,(X), fiir geeignetes
k. Nun gilt *(Vi(X) x Vi (X)) = *Vi(X) x *Vi(X). Und damit dann

AXB= {Z € *(Vk(X) XVk(X)) | (V<Y)7€) ): W[AvB7Z]}7

wobei y(u,v,w) die Formel (3x € u)(Jy € v)@2(w, x,y) bezeichnet.

14.6 Elementare Nichtstandard Konzepte in der Topologie

”Das Kreditsystem, das seinen Mittelpunkt hat in den angeblichen Nationalbanken und
den groBBen Geldverleihern und Wucherern um sie herum, ist eine enorme Zentralisa-
tion und gibt dieser Parasitenklasse eine fabelhafte Macht, nicht nur die industriellen
Kapitalisten periodisch zu dezimieren, sondern auf die gefiahrlichste Weise in die wirkli-
che Produktion einzugreifen - und diese Bande weif} nichts von der Produktion und hat
nichts mit ihr zu tun.”

Karl Marx

Wir wenden Nichtstandard Konzepte nun auf topologische Strukturen an und erhalten so
interessante und oftmals sehr intuitive Nichtstandard Charakterisierungen.
14.6.1 Bemerkung

Wir nehmen an, dass die topologischen Rdume, die wir betrachten, immer Teil einer Super-
struktur z.B. V(Z) sind, genauer X C Z. (0.B.d.A. ist Z wieder eine Basismenge). Wir werden
die Superstruktur und entsprechende Nichtstandard Universen nicht immer hinschreiben.
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14.6.2 Definition: Monade

Sei (X, ) ein top. R. und x € X. Dann ist t(x) := (,coer FO als die Monade des Punktes x
definiert. Analog ist t(A) := Nacpe, *O die Monade von A C X. Fiir y € p(x) schreiben wir
zuweilen auch y ~ x.

14.6.3 Lemma

1. Eine Menge U C X, eines top. R. ist offen, genau dann wenn u(x) C *U ist, fiir
jedesx € U

2. Eine Menge A C X ist genau dann abgeschlossen, wenn jedes a € X mit p(a) N *A #
0 bereits in A ist.

Beweis: 1. Sei U offen und x € U. Dann offensichtlich tt(x) = N,cper *O € *U. Sei ande-
rerseits Vx € U: u(x) C *U, also (\ycper “O C *U. Nach Lemma 14.5.7 gibt es Oy, ..., O, mit
x€01N...NO,, CU.U ist also offen.

2. Sei A abgeschlossen und x € X mit u(x) N *A # 0. Wire x € X \ A, so wire u(x) C
*X\ *A = *(X\ A) - Widerspruch! Fiir die andere Richtung betrachte man x € X \ A, also
((x) N *A = 0. Es folgt unmittelbar p(x) C *(X \ A), und somit ist X \ A als offen erkannt.

14.6.4 Lemma

Sei ¢ ein Filter auf dem topologischen Raum (X, 7). Dann gilt

0 >x e [ PCu
Pco

Beweis: Sei ¢ — X und O € xN 7. Es folgt O € ¢, also ﬂpeqj *P C *O und damit ﬂpeq, *PC
p(x). Gilt umgekehrt Npey “P C p(x), so gibt es zu gegebenen O € N T nach Lemma 14.5.7
eine endliche Teilmenge ¢’ von ¢ mit peer P € 0, als0 0 € ¢.

14.6.5 Lemma

f:X —Y ist stetig im Punkt x € X, g.d.w. *f{u(x)} C u(f(x)). Intuitiv steht hier: Ist y
unendlich nahe bei x, so ist * f(y) unendlich nahe bei f(x), also y ~x — (*f)(y) = f(x).
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Beweis: Sei f stetig und y € u(x). Wihle O offen in ¥ mit f(x) € O. Dannist U := f~1(0)
offen in X mitx € U. Also y € *U. Wir bekommen damit *f(y) € *f{*U} = *(f{U}) C *O.
Und somit *f(y) € u(f(x)).

Fiir die Riickrichtung werden wir beweisen, dass U := f -1 (O) offen ist, fiir offenes O C Y.
Sei dazu x € U, also f(x) € O. Wir miissen zeigen p(x) C *U. Nun ist O offen, also u(f(x)) C
*0. Demzufolge auch * f{u(x)} C *0. Die ergibt: u(x) C (*f)~1(*0) = *(f~1(0)) = *U.

14.6.6 Bemerkung

Wenn wir nun Initialtopologien bzw. Finaltopologien zu gegebenen Daten X, (X;);c; und (f;)ier
mit Nichtstandard Methoden untersuchen wollen, setzen wir stillschweigend eine geniigend
grofe Superstruktur V(Z) voraus, wobei Z alle vorkommenden Mengen (die X; fiir i € I, I sel-
ber, irgendwelche Y ...) als Teilmengen enthilt. Das dies geht, garantiert das Ersetzungsaxiom.
Nur wenn unbedingt nétig, schreiben wir das entsprechende Nichtstandard Universum hin.

14.6.7 Lemma

Sei 7 die Initialtopologie auf X bzgl. der Daten (X, 7;)ic; und f; : X — X;. Dann gilt fiir
allexeXundye€ *X:yeu(x) & Viel: “fi(y) € u(fi(x)).

Beweis: Seiy € u(x). Firi € Iund O € f;(x) N1 giltdann y € *(f;1(0)) = (*£)~'(*0),
also *fi(y) € *0.

Fiir die Riickrichtung betrachte man ein O € XN 7. Zu diesem gibt es dann i, ..., i, und ent-
sprechende O;, € 7;, mitx € fl]_] (0i)N...N fl;] (0i,)- Nach Voraussetzung gilt dann * f; (y) €

*Oy,alsoy € (*£;,)71(*0s,) = *(f;1(0y)), fiir k = 1,...,n. Es folgt schlieBlich y € *O.

1

14.6.8 Lemma

Sei (X, 7) ein topologischer Raum.
(0) X ist To g.d.w. Vx # y gilt pu(x) # u(y).
() X ist Ty g.d.w. Vo # y gilt p(x) € p(y) Ap(y) € p(x).
(2) X ist T, g.d.w. Vx # y gilt u(x) Nu(y) = 0.
(3) X ist T3 g.d.w. VA abgeschlossen und x ¢ A gilt u(A) Np(x) = 0.
(4) X ist T4 g.d.w. VANB =0, A, B abgeschlossen gilt i(A) N u(B) = 0.

Beweis: Exemplarisch fiihren wir (2) vor. Die restlichen gehen genauso einfach. Sei X T,
und x # y. Dann offensichtlich g (x) N u(y) = 0.

Wenn andererseits p(x) N u(y) = 0 fiir x # y, dann konnen wir mal annehmen, dass es
keine disjunkten offenen Umgebungen gibt, also (xN7) U (yN 7) die eSE hat. Dann hat aber
auch {*O |0 €xNt}U{*0| O € yN 1} die eSE. Nun arbeiten wir in einem polysaturiertem
Nichtstandard Universum, also gilt dann auch p(x) N p(y) # 0 - Widerspruch.
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14.6.9 Lemma
1. Sei K C X dann gilt:

K ist kompakt g.d.w. u(K)= U 1(x) gdw. K C U L(x).

xek xek

2. X ist genau dann lokal kompakt, wenn Jgxc » *K = U,ex U (x). Hierbei bezeichnet
2 die Menge aller kompakten Teilmengen von X.

Beweis: 1. Sei K kompakt. u(K) D U,cx p(x) gilt allgemein. Sei also z € u(K). Ange-
nommen Vx € K : z ¢ u(x). Wihle fiir jedes x € K ein O, € XN T mit z € *Oy. Nun ist K
kompakt, also gibt es endlich viele solche O,y mit K C Oy, U...UO,, =: 0 € KN 7. Dann ist
aber z € O = "0y, U...U "0y, - Widerspruch!

Es gilt *K C u(K), wir setzen nun also *K C | J,cg U(x) voraus. Sei dann o C 7 eine offene
Uberdeckung, dann gilt auch *K C (Jpes *O (Denn y € *K impliziert y € u(x), fiir x € K und
fiir dieses x gibt es ein O, € ¢ mit x € O,. Dann ist aber y € u(x) C *Oy). Wieder nach Lemma
14.5.7 gibt es ein endliches op C 6 mit K C Upeg, O-

2. Wenn X lokal kompakt ist und wir x € X wihlen, dann gibt es K € J#" mit x € K° (offener
Kern). Also p(x) C *K° C *K. Aus a) folgt allgemein Ugc » *K C U,ex #(x). Und damit ist
diese Richtung bewiesen.

Fiir die andere Richtung betrachte x € X. Es gilt dann pt(x) C Ugc  “K, also 0 =Npcine "0\
Uker "K = Noeintker "(O\K). Nun ist unser Nichtstandard Universum polysaturiert, al-
so gibt es endlich viele Oy, ...,0,,K},....K, mit ® = *(0O; \ K;)N...N *(0, \ K,). Setzt man
noch O :=01N...N 0, und K := K; U... UK, und beachtet entsprechende Eigenschaften der
Einbettung, so erhélt man O \ K = 0, also O C K, wobei natiirlich O offen und K kompakt ist
(die Vereinigung endlich vieler kompakter Mengen ist wieder kompakt).

14.6.10 Korollar

Kompakte T,-Rdume X sind bereits T4 (und somit auch T3).

Beweis: Seien A, B C X abgeschlossen und disjunkt. Da X kompakt ist, sind A, B dies auch.
Also 1(A) N(B) = (Ugea () N (Uyep () = 0, da p(x) Na(y) = 0 fiir x € A und y € B,
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14.6.11 Alexanderscher Subbasissatz

Wenn es eine Subbasis . der Topologie T auf X gibt, so dass jede offene Uberdeckung
o C .7 eine endliche Teiliiberdeckung hat, dann ist X kompakt. Analog natiirlich auch fiir
Teilmengen K von X.

Beweis: Sei .7 eine solche Subbasis. Angenommen der Raum X ist trotzdem nicht kom-
pakt, also *X # [U,cx (x). Dann gibt es also ein y € *X, so dass fiir jedes x € X gilty & u(x).
Wir wihlen dann fiir jedes x € X ein O, € XN T mity ¢ *O,. Nun ist . eine Subbasis, es gibt
also Sp,...,8, € xN.Y, mit §1N...N S, C O,. Somit muss also auch ein S, € XxN.7 geben, mit
y & *Sy (). Da Sy, x € X eine offene Uberdeckung von X aus .7 ist, gibt es xq,...,x,;, € X mit
X =5,U..US§,,, also *X = *§,, U...U *S,, - offensichtlich ein Widerspruch zu ({)!

14.6.12 Lemma

Bilder kompakter Mengen unter stetigen Abbildungen sind wieder kompakt.

Beweis: Sei K C X kompakt und f : X — Y stetig. Wir miissen *(f{K}) C Uzex U(a)
zeigen. Also Seiy € *(f{K}) = *f{*K}. Danny = *f(z) fir z € *K. Also z € pu(x) fiir x € K.
Und somity € *f{u(x)} € u(f(x)) € Uaesix) 1(a).

14.6.13 Satz von Tychonoff

Fiir eine Familie topologischer Raume (X, 7;)ic; gilt: Der Produktraum (X, ) ist genau
dann kompakt, wenn alle (X;, 7;) kompakt sind.

Beweis: X; ist das Bild der surjektiven und stetigen Projektionen pr;, demnach also kom-
pakt. Sind alle X; kompakt und y € *X. Dann erhalten wir Vi € I 3x; € X; mit *pri(y) € u(x;).
Fiir x := (x;);es folgt aus Lemma 14.6.7 y € u(x). Dax € X, sind wir fertig.

Wir kommen nun zu einem wichtigen Konzept, mit dem man Konstruktionen aus der nicht-
standard Welt zuriick in die standard Welt bekommen kann.

14.6.14 Definition

Sei (X, ) ein Hausdorff Raum und a € *X. Falls es ein x € X mit a € u(x) gibt, so ist dies
eindeutig bestimmt und wir setzen st(a) := x. Wir haben also eine Abbildung sz : J,cx tt(x) —
X, welche wir Standardteil-Abbildung nennen. Fiir ganze Teilmengen A C *X konnen wir
sogar in beliebigen topologischen Riumen (also nicht notwendig Hausdorff) den Standardteil
definieren. Dazu setzen wir st(A) := {x € X | AN u(x) # 0}. Nun haben wir beides mit st
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bezeichnet. Was jeweils gemeint ist, geht natiirlich aus dem Kontext hervor. Im néchsten Satz
fassen wir ein paar wichtige Eigenschaften der Standardteil-Abbildung zusammen.

14.6.15 Satz
Sei (X, 7) ein topologischer Raum.
1. Fiir A C X ist st(*A) = A.
2. Ist Bintern C *X, dann ist s#(B) in X abgeschlossen.

3. Ist (X, 7) ein T3-Raum und B intern C *X mit B C (J,cx M (x), dann ist sz(B) sogar
kompakt.

Beweis: 1. Seix € st(*A), also u(x) N *A # 0. Offenbar ist dann ONA # 0 furalle O € xN 7T
(denn falls ONA = 0, so auch *ON *A = 0) und damit x € A.

Ist umgekehrt x € A, so hat {O | O € Nt} U{A} die endliche Schnitt Eigenschaft (eSE),
also hat auch {*O | O € XNt} U{*A} die eSE. Aus der Polysaturiertheit folgt p(x) N *A # 0
und somit x € st(*A).

2. Seix € X\ st(B), also BN u(x) = 0. Wegen der Polysaturiertheit gibtes Oy, ...,0, € XN 7T
mit BN *0;N...N*0, = 0. Das bedeutet x € O := 01N ...N O, C X \ st(B) und damit ist
X \ st(B) offen (denn gibe es einz € O1N...N O, Nst(B), dann wire 1 (z) N B # 0 insbesondere
also *O1N...N *0,N B # 0 - Widerspruch).

3. Sei A := st(B). Zu zeigen ist A C [J,cq 1(x). Sei y € *A gegeben. Setze ¢ := {0 €
yN1T|y€ *0O} (wegen *X € ¢ ist ¢ # 0). Sind Oy,...,0, € G soist O N...NO, NAF£D
(andernfalls wiare y € *O1N...N *0,NA = 0). Sei also x € O1N...N O, NA. Folglich ist
U(x)NB#0. Fir b e u(x)NB gilt b € *O1N...N*0, N B. Aus der Polysaturiertheit folgt
db € BN(Npeo 0. Sei x € X mit b € u(x). Es gilt nun y € u(x). Andernfalls gibt es ein
OcinNntmityd *0.8Sei V € iNtmit V C 0. Folglichy € *(X \ V) und somit X\ V € o.
Alsob e *(X\V)=*X\ *V,aber b € u(x) C *V.

Durch das Transfer-Prinzip iibertragen sich sehr viele Strukturen, wie z.B. Ordnungsstruk-
turen, algebraische Strukturen (Gruppen, Korper, ...) auf X in solche auf *X. Man muss darauf
achten, dass sich diese mittels beschrinkt quantifizierter Formeln beschreiben lassen. In die-
sem Sinn (die genauen Deteils bleiben dem Leser iiberlassen; im Buch [29] werden diese sehr
ausfiihrlich vorgerechnet) ist also *R und auch *C ein Korper, in dem man praktisch genauso
rechnet wie in R oder C. Fiir K € {R,C} ist also *K ein Korper, * : K — *K eine ordnungs-
erhaltende isomorphe Einbettung und st : |J,cx 1 (x) — K ist auch operationstreu.

Als Anwendung dieser Begrifflichkeiten geben wir einen Beweis des Satzes von Banach-
Alaoglu, der an Einfachheit nicht mehr zu unterbieten ist.

353



14.6.16 Satz von Banach-Alaoglu

Sei (X, 7) ein topologischer Vektorraum iiber K und X’ := { f € KX | f: linear und stetig}.
Fiir jedes x € X sei ¢, : X' — K definiert durch @,(f) := f(x). Sei 7’ die initale Topologie
auf X’ bzgl. der {@, | x € X}, sei V € 0N 7 und K kompakt in K (iiblicherweise ist K die
abgeschlossene Einheitskugel um 0). Dann ist V¥ := {f € X' | Vx € V ist f(x) € K} (die
sogenannte Polare) kompakt bzgl. 7.

Beweis: Sei g € *VI' = {h € *(X') | Vx € *V ist h(x) € *K}. Fiir beliebiges x € *V ist
g(x) € *K C Uyeg 1(y). Somit kdnnen wir f : V — K definieren durch f(x) := st(g(*x))
und anschlieBend in offensichtlicher Weise auf ganz X fortsetzen. Die Linearitit von f folgt
unmittelbar aus der Operationstreue von * und sz und somit f € V¥ (beachte: f ist beschrinkt).
Mit dem Transfer-Prinzip folgt fiir alle x € X : *@,(g) = g(*x) € u(f(x)) = u(@.(f)) und mit
Lemma 14.6.7 dann g € u(f).

14.6.17 Bemerkung

(1) Man sollte im Beweis natiirlich beachten, dass wir Monaden bzgl. verschiedener Topolo-
gien gebildet haben (ndmlich 7/ und der euklidischen Topologie in K).

(2) Die laxe Formulierung "Mit dem Transfer-Prinzip folgt [...]” stimmt natiirlich (und hat
eigentlich mit der Beweisidee nicht viel zu tun), aber der Leser sollte sich im Detail klarma-
chen, wie der Transfer von statten geht.

14.6.18 Lemma

1. Sei ¢ ein Filter auf @ # Z C YX und v ein Filter auf X. Dann gilt fiir die Monade
(@ (y)) von ¢(y):

2. ¢ konvergiert stetig auf Z gegen fc¥YX & VxeX gilt u(¢)(u(x)) C u(f(x)).

Beweis: 1. Setze A := u(¢) und B := u(y). Offenbar ist

we(w)= (1 *(P(Q)) und *(P(Q))={g(x)| g€ *Pxc *Q} = *P(*Q).

Peg.Qey

Seiz€ A(B). Dann 3g € A, b € B mit z = g(b). Sei P € ¢ und Q € y. Folglich ist g € *P
und b € *Q, alsoz=g(b) € *P(*Q) = *(P(Q)) und somit z € u(P(y)).
Seiz € u(¢(y)). Fiir jedes P € ¢ und Q € y sei

Lroi={(g.b) € "(r*) x "X | g(b) =z und g€ "P.b € "Q}.
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Nun ist (I'pg) peg,0cy €ine Familie interner Mengen, welche wegen

g ?é Fle-numlemﬂQn g 1—‘P1>Ql n... ﬁl—‘PnaQn

nicht leere endliche Schnitte hat. Folglich 3(g,b) € Npey pey [po- Es giltdann g € (), b €
t1(y) und z = g(b), also z € A(B).

2. Folgt aus 1. und der bekannten Eigenschaft ® — z < u(®) C u(z).
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”There is no book so bad that there is not something good in it.”
Miguel de Cervantes

Als Einfiihrungen in die Mengentheoretische Topologie mochte ich die Biicher [3], [31]
und [42] empfehlen. Als ausfiihrliche standard Referenzen (und gleichzeitig als Lehrbiicher
fiir Fortgeschrittene) eignen sich bestens die Biicher [1], [14] und [36]. Einen sehr guten Uber-
blick iiber neue Entwicklungen der Mengentheoretischen Topologie, ausfiihrlich dargelegt in
schonen Ubersichtsartikeln (von Spezialisten auf dem jeweiligen Gebiet), zumeist mit Bewei-
sen, findet man in [28] und [34]. Ahnliches Werke (allerdings eher ohne Beweise) sind die
Biicher [2] und [23]. Um schnell Uberblick iiber ein Gebiet zu bekommen, greife man zu [21].
Als Lehrbiicher zur Algebraischen Topologie kann ich die Biicher [32] bzw. [44] empfehlen
und als Lehrbuch zur Nichtstandard Analysis [29]. Fiir Grundlagen aus der Analysis bzw. li-
nearen Algebra, auf die wir in diesem Text nicht niher eingehen, verweise ich auf [26] bzw.
[17].
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