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Vorsicht Baustelle! Betreten auf eigene Gefahr!

Um Missverständnisse auszuschließen gleich vorne weg: Dieses Skript ist nicht und war
auch niemals Grundlage irgendeiner Lehrveranstaltung. Ich schreibe es aus reinem Spaß an
der Freude. Die Auswahl der Kapitel und Ergebnisse, ebenso die Anordnung sind demnach
ausschließlich durch meine Vorlieben bestimmt. Dieses Skript ist gewissermaßen ein ”work in
progress” und wird von mit ständig überarbeitet und ergänzt. Auf der folgenden Internetseite
gibt es eine aktuelle (und kostenlose) Version1 zum downloaden.

http://mathekarsten.npage.de

Vorausgesetzt wird (ungefähr) der Stoff aus dem ersten Semester Analysis und Lineare
Algebra (alles notwendige findet man beispielsweise in Analysis 1 von Konrad Königsberger
[26] bzw. in Lineare Algebra von Gerd Fischer [17].

Der Titel Mengentheoretische Topologie (oftmals auch Allgemeine Topologie) kommt daher,
da die meisten der hier behandelten Themen eher mengentheoretischer Natur sind. Ich hoffe,
ich schrecke dadurch niemanden ab! Entgegen einer häufig vertretenden Auffassung bin ich
nämlich der Meinung, dass die Mengentheoretische Topologie quick lebendig ist! Wer das
nicht glaubt, überzeuge sich z.B. durch die Bücher: [2], [21], [23], [28], [33], [34], [38], [48].

Inzwischen hat aber sogar ein bischen Algebraische Topologie Einzug erhalten (in Form
eines Kapitels zur singulären Homologietheorie). In Planung ist außerdem eine Erweiterung
des Kapitels Einführung in die Nichtstandard Topologie. Aber das wird noch ein Weilchen auf
sich warten lassen.

Da ich versucht habe die meisten Lemmas und Sätze selbständig zu beweisen, (angeregt
durch verschiedene Bücher), ist es natürlich sehr wahrscheinlich, dass sich Fehler2 einge-
schlichen haben (neben Tippfehlern möglicherweise auch Fehler inhaltlicher Art). Ich bitte
dies daher zu entschuldigen und freue mich natürlich über jede ernstgemeinte Frage oder Kri-
tik. Kontaktieren kann man mich z.B. per email unter: karsten.evers@uni-rostock.de

. .
^ Rechtschreibfehler sind gewollt und dienen der allgemeinen Belustigung! . .

^

1Alle Rechte an diesem Skript gehören mir!
2Als ich mit dem Schreiben begann, besaß ich zu Hause noch kein funktionierendes TeX-System. Ich hab den

Text mit einem gewöhnlichen Editor gschrieben und das entsprechende pdf ca. einmal pro Woche in einem
PC-Pool erstellt. Insbesondere dadurch haben sich in der Anfangszeit viele Fehler eingeschlichen.
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Les structures sont les armes du mathématicien.

Nicolas Bourbaki
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1 Mengentheoretische Grundlagen
”In a sense set theory can be regarded as the geometrization of logic.”

Masoud Khalkhali

1.1 Einführende Bemerkungen zur Mengentheorie
Die Sätze und Definitionen dieses ersten Kapitels werden wir im Rest vom Skript (in der
Regel) OHNE explizit darauf hinzuweisen frei verwenden.

Wir setzen die Zermelo-Fraenkel-Axiome (ZF) der Mengenlehre voraus (einschließlich dem
Auswahlaxiom⇒ ZFC), halten es uns aber ebenso frei den Klassenbegriff zu benutzen. Auf
die Axiome selber und die Art und Weise wie diese in die einzelnen Aussagen eingehen, gehen
wir nicht näher ein. Der daran interessierte Leser findet all dies (und noch viel mehr) im ersten
Kapitel des sehr schönen Buchs [24] von Thomas Jech.

Die Klasse all derer x, die eine Eigenschaft φ(x) haben bezeichnen wir mit {x | φ(x)}. Wenn
wir bereits wissen, dass es sich um eine Teilmenge einer Menge y handelt, dann schreiben wir
auch {x ∈ y | φ(x)}. Manchmal definieren wir eine Menge indem wir einfach alle Elemente
hinschreiben wie z.B. so: {1,2,3}, die Menge mit den Elementen 1,2,3. Elemente von Men-
gen sind selber auch Mengen! Deshalb verwenden wir sowohl kleine Buchstaben, als auch
große Buchstaben um Mengen zu bezeichnen (wenn wir Klassen benutzen werden wir das
deutlich kennzeichnen). Insbesondere verwenden wir keine Urelemente. Wir sagen x ist eine
Teilmenge von y, wenn jedes Element aus x auch in y ist und schreiben x⊆ y (die Relation ⊆
bezeichnen wir auch oft mit Inklusion). Die Menge aller Teilmengen von x bezeichnen wir mit
P(x). Die Menge aller Elemente welche in x, aber nicht in y ist bezeichnen wir mit x\ y. Die
Menge aller Elemente welche sowohl in x, als auch in y (in wenigstens einem von beiden) sind
bezeichnen wir als den Schnitt (Vereinigung) von x mit y und schreiben x∩ y (x∪ y). Haben
zwei Mengen keine gemeinsamen Elemente, so nennen wir sie disjunkt. Das geordnete Paar
(x,y) ist die Menge {{x},{x,y}}. Induktiv geht das dann weiter: (x, ...,y,z) := ((x, ...,y),z).
Bei der Gelegenheit: Das Symbol := benutzen wir zur Definition. Der auf der Seite des Dop-
pelpunktes stehende Ausdruck wird durch den anderen Ausdruck definiert. Das Kartesische
Produkt x× y ist die Menge {(u,v) | u ∈ x und v ∈ y}, die Menge aller geordneten Paare, in-
duktiv dann x× ...×y× z := (x× ...×y)× z). Für das n-fache Produkt einer Menge x mit sich
selbst schreiben wir xn. Eine Funktion (oder Abbildung) f zwischen zwei Mengen x,y ist eine
Teilmenge von x× y mit der Eigenschaft: Für alle u ∈ x gibt es ein v ∈ y mit (u,v) ∈ f und
wenn (u,v) ∈ f und (u,w) ∈ f , dann bereits v = w in Symbolen f : x→ y. Wenn (u,v) ∈ f ,
so schreiben wir auch v = f (u) (Man beachte, dass wir den Ausdruck f ist eine Funktion zwi-
schen zwei Mengen x,y g.d.w. ... definiert haben, keineswegs lediglich den Ausdruck f ist eine
Funktion g.d.w. ... .Das ist insofern wichtig, als das man sonst von einer Funktion, die lediglich
als Teilmenge irgendeines Kreuzproduktes (mit irgendwelchen Eigenschaften) definiert wäre,
nicht entscheiden könnte ob sie surjektiv ist.). Eine n-stellige Relation R, über einer Menge
x, ist eine Teilmenge von xn. Statt (x, ...,y) ∈ R schreiben wir auch R(x, ...,y) sei erfüllt, oder
einfach nur R(x, ...,y). Für eine Funktion zwischen zwei Mengen definieren wir den Definiti-
onsbereich dom( f ) := {x | es gibt ein y, mit (x,y) ∈ f} und den Wertebereich rg( f ) := {y | es
gibt ein x, mit (x,y) ∈ f}, analog für zweistellige Relationen. f{u} := { f (a) | a ∈ u}, für ein
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u⊆ x und f : x→ y ist als dass Bild von u unter f definiert.
Leider benutze ich diese Schreibweise nicht seit ich dieses Skript schreibe. Infolge dessen

verwende ich an einigen Stellen auch für das Bild von u unter f einfach die Schreibweise
f (u). Ich bemühe mich diese Stellen nach und nach zu verbessern.

Eine Abbildung f : x→ y heißt injektiv (surjektiv; bijektiv) wenn f (u) = f (u′)⇒ u = u′

(∀v ∈ y∃u ∈ x mit f (u) = v; injektiv + surjektiv). Ist f : x→ y eine Funktion von x nach y
und z⊆ x, so ist f |z := f ∩ (z× y) als die Einschränkung von f auf z definiert f |z : z→ y. Wir
schreiben |x|= |y|, wenn es eine Bijektion zwischen x und y gibt, |x| ≤ |y| für eine Surjektion
von y nach x (mittels Auswahlaxiom gleichwertig zur Existenz einer Injektion von x nach y)
und |x|< |y| wenn es keine Surjektion von x nach y gibt (näheres im Abschnitt über Kardinal-
zahlen). Für zwei Mengen x,y bezeichnet yx die Menge aller Abbildungen von x nach y. Sei I
eine nicht leere Menge und für jedes i ∈ I sei xi eine Menge. Eine Familie (xi)i∈I von Mengen
ist dann definiert, als eine Abbildung von I in {xi | i ∈ I}, die jedem i ∈ I eben genau das xi
zuordnet. Wenn nun eine Familie von Mengen gegeben ist, so ist das Produkt ∏i∈I xi definiert,
als die Menge aller Abbildungen von I in die Vereinigung der xi, die jedes i in xi abbilden. Mit
N,Z,Q,R,C bezeichnen wir in dieser Reihenfolge die natürlichen, ganzen, rationalen, reellen
und komplexen Zahlen. Mit der Abkürzung o.B.d.A. ist ohne Beschränkung der Allgemeinheit
gemeint. Das bedeutet soviel wie: Es wird eine weitere Annahme getroffen, die nicht in den
Voraussetzungen des Satzes, oder was auch immer steht, aber ganz einfach gefolgert werden
kann (meistens um unnötige Fallunterscheidungen zu vermeiden). Die Lemmas, Sätze und
Definitionen aus dem Abschnitt ”Mengentheoretische Grundlagen” werden wir im Rest des
Skriptes (in der Regel), OHNE explizit darauf hinzuweisen, frei verwenden.

1.2 Ordinalzahlen
Beginnen wir diese Einführung mit einem kleinen Lemma (der Beweis bleibt als leicht Auf-
gabe).

1.2.1 Lemma

X , Y seien Mengen, (Ai)i∈I , (B j) j∈J Familien von Teilmengen von X bzw. Y , weiter sei
M ⊆ X , N ⊆ Y und f : X → Y sei eine Abbildung.

a) X \
⋃

i∈I Ai =
⋂

i∈I X \Ai
b) X \

⋂
i∈I Ai =

⋃
i∈I X \Ai

c) f (
⋃

i∈I Ai) =
⋃

i∈I f (Ai)
d) f (

⋂
i∈I Ai)⊆

⋂
i∈I f (Ai)

e) f−1(
⋃

j∈J B j) =
⋃

j∈J f−1(B j)
f) f−1(

⋂
j∈J B j) =

⋂
j∈J f−1(B j)

g) M ⊆ f−1( f (M))
h) f ( f−1(N))⊆ N
i) f−1(Y \N) = X \ f−1(N)
An den Stellen, an den ⊆ statt = steht, können die Inklusionen echt sein.
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Bevor es mit Ordinalzahlen losgeht, kommen wir zu dem klassischen Satz von Schröder-
Bernstein. Dieser sagt aus: Wenn es zu zwei Mengen A,B injektive Abbildungen f : A→ B
und g : B→ A gibt, dann gibt es auch eine Bijektion h : A→ B. Wir werden diesen Satz an
vielen Stellen verwenden, aber in der Regel nicht darauf hinweisen. Vorbereitet wird dieser
durch ein ebenfalls recht interessantes Lemma.

1.2.2 Lemma

Sei g : P(M)→P(M) eine monotone Abbildung (d.h. A⊆ B ⇒ g(A)⊆ g(B), für A,B∈
P(M)), dann hat g einen ⊆-minimalen/maximalen Fixpunkt (d.h. es gibt Mengen A,B ∈
P(M) mit g(A) = A und g(B) = B und wann immer auch g(C) = C gilt für C ∈P(M),
dann ist A⊆C ⊆ B).

Beweis: Wir setzen X := {A⊆M | g(A)⊆ A} und Y := {B⊆M | B⊆ g(B)}. Damit ist dann
M ∈ X und /0 ∈ Y , also X 6= /0 6= Y . Sei A :=

⋂
A′∈X A′ und B :=

⋃
B′∈Y B′. Nun ist g monoton

und A ⊆ A′, für jedes A′ ∈ X und es folgt dann g(A) ⊆ g(A′), für jedes A′ ∈ X , also g(A) ⊆⋂
A′∈X g(A′) ⊆

⋂
A′∈X A′ = A. Außerdem ist g(g(A)) ⊆ g(A) (wieder Monotonie von g), also

g(A) ∈ X und somit A⊆ g(A). Insgesamt demnach g(A) = A. Mit B ist es ähnlich. Wir haben
B =

⋃
B′∈Y B′⊆

⋃
B′∈Y g(B′)⊆ g(

⋃
B′∈Y B′) = g(B), denn g ist monoton und B′⊆

⋃
B′∈Y B′, also

g(B′)⊆ g(
⋃

B′∈Y B′). Weiter ist g(B)⊆ g(g(B)) (wieder Monotonie), also g(B) ∈ Y und somit
g(B) ⊆ B. Auch hier also g(B) = B. Bei A und B handelt es sich also um Fixpunkte. Wenn
für C ⊆M ebenfalls ein Fixpunkt ist, also g(C) = C gilt, so ist C ∈ X und C ∈ Y , und somit
A⊆C ⊆ B.

1.2.3 Satz von Schröder-Bernstein

Seien A, B zwei Mengen und f : A→ B injektiv und g : B→ A injektiv. Dann gibt es eine
Bijektion h : A→ B.

Beweis: Definiere F : P(A)→P(A) durch

F(P) := A\g(B\ f (P))

(mit f (P) ist natürlich { f (p) | p ∈ P} gemeint). Dann hat F einen Fixpunkt P0, denn die
Abbildung F ist monoton.

Offensichtlich ist h : A→B definiert durch h(x) := f (x) falls x∈P0 und sonst h(x) := g−1(x)
wohldefiniert und bijektiv (man male sich am besten eine kleine Skizze).

1.2.4 Definition: Wohlordnung

Eine Klasse A heißt Wohlgeordnet durch ≤, falls A durch ≤ total geordnet wird (a ≤ a für
a ∈ A, a≤ b und b≤ c ⇒ a≤ c, a≤ b und b≤ a ⇒ a = b, a,b ∈ A ⇒ a≤ b oder b≤ a), und
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jede nichtleere Teilklasse von A ein kleinstes Element hat. Generell werden Ordnungsrelatio-
nen auf Mengen natürlich als Teilmengen entsprechender Kartesischer Produkte definiert. Die
Schreibweise (x,y)∈≤ ist ungewohnt und wir verwenden statt dessen die übliche Schreibwei-
se x≤ y.

1.2.5 Lemma

Sei < eine Wohlordnung auf einer beliebigen Menge X und f : X → X eine Abbildung
mit x < y ⇒ f (x) < f (y). Dann gilt:

a) ∀x ∈ X : x≤ f (x).
b) f = idX ist die einzige bijektive Abbildung von X nach X mit x < y ⇒ f (x) < f (y).
c) X ist zu keinem Anfangstück Xx := {y ∈ X | y < x} ordnungsisomorph (zwei geord-

nete Mengen X ,Y heißen ordnungsisomorph, wenn es eine bijektive Abbildung f : X→Y
gibt mit x < x′ ⇔ f (x) < f (x′) für alle x,x′ ∈ X).

Beweis: a) Andernfalls betrachte das kleinste Element x ∈ X} mit f (x) < x. Offensichtlich
gilt dann auch f ( f (x)) < f (x) < x im Widerspruch zur Minimalität von x.

b) Sei f : X → X bijektiv mit x < y ⇒ f (x) < f (y). Annahme: f 6= id. Sei x ∈ X minimal
mit f (x) 6= x. Dann gilt x < f (x). Sei f (y) = x. Dann gilt auch y < f (y) (sonst y=f(y)=x und
dann x=f(x)), also y < x im Widerspruch zur Minimalität von x.

c) Annahme es gibt ein f : X→ Xx bijektiv mit y < z ⇒ f (y) < f (z). Für x ist offensichtlich
f (x) ∈ Xx, also f (x) < x im Widerspruch zu a).

1.2.6 Transfinite Induktion

Sei ≤ eine Wohlordnung auf der Klasse A. Für jedes a ∈ A sei ϕ(a) eine Aussage mit der
Eigenschaft: ∀a ∈ A gilt: (∀b < a ist ϕ(b) eine wahre Aussage) ⇒ ϕ(a) ist eine wahre
Aussage. Außerdem gilt (Induktionsvoraussetzung): Es gibt ein a′ ∈ A für das ϕ(a′) gilt.
Dann ist ϕ(a) für jedes a≥ a′ eine wahre Aussage.

Beweis: Annahme es gibt ein a ≥ a′ für die ϕ(a) falsch ist. Dann gibt es auch ein mini-
males a ≥ a′ für die ϕ(a) falsch ist. Das heißt für jedes b < a ist die Aussage ϕ(b) wahr.
Nach Voraussetzung gilt dann aber auch die Aussage ϕ(a). Dies ist ein Widerspruch. Also gilt
tatsächlich für jedes a≥ a′ die Aussage ϕ(a).

1.2.7 Definition: Ordinalzahl

Eine Menge α heißt Ordinalzahl, falls die folgenden drei Bedingungen an α erfüllt sind:

1. ∀β (β ∈ α ⇒ β ⊆ α) diese Eigenschaft nennt man Transitivität.

2. ∀β ,γ(β ,γ ∈ α ⇒ (β = γ oder β ∈ γ oder γ ∈ β ))
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3. ∀A((A⊆ α und A 6= /0) ⇒ ∃β ∈ A mit β ∩A = /0)

1.2.8 Lemma

α bezeichne im Folgenden eine Ordinalzahl.
a) ¬∃δ ,γ,β mit β ∈ δ ∈ γ ∈ β ∈ α . Also insbesondere α 6∈ α , ∀β (β ∈ α ⇒ β 6∈ β )

und ¬∃β ,γ mit β ∈ γ ∈ β ∈ α .
b) ∈ definiert auf α eine Wohlordnung.
c) Jedes β ∈ α ist wieder eine Ordinalzahl.
d) Für jedes transitive β gilt: β ∈ α ⇔ β ( α .
e) Für jede Klasse Ω von Ordinalzahlen ist α :=

⋂
ω∈Ω ω wieder eine Ordinalzahl. Und

es gilt sogar α ∈Ω.
f) Für je zwei Ordinalzahlen α,β gilt entweder α ∈ β oder α = β oder β ∈ α .
g) Sei Ω eine Menge von Ordinalzahlen. Behauptung: α :=

⋃
ω∈Ω ω ist eine Ordinal-

zahl. Offensichtlich handelt es sich um das Supremum von Ω.
h) Die Klasse Ord aller Ordinalzahlen wir durch ∈ wohlgeordnet! Desweiteren ist α ∪
{α} der direkte Nachfolger von einem α ∈Ord und verschiedene Ordinalzahlen sind nicht
Ordnungsisomorph. Für α ∈ β schreiben wir auch α < β .

Beweis: a) Annahme, es gibt doch solche Elemente. Setze /0 6= A := {δ ,γ,β}. Offensichtlich
widerspricht dieses A der dritten Forderung an Ordinalzahlen.

b) Die Irreflexivität folgt aus a). Sei δ ∈ γ ∈ β ∈ α aus 1) folgt δ ,γ,β ∈ α und aus 2) folgt
dann δ = β oder δ ∈ β oder β ∈ β . Und a) reduziert die Möglichkeiten zu δ ∈ β . Also haben
wir die Transitivität. Je zwei Elemente sind außerdem schon per Definition vergleichbar. Zum
Nachweis der Wohlordnung nehmen wir uns einfach mal ein /0 6= A ⊆ α . Aus 3) folgern wir:
Es gibt ein β ∈ A mit A∩β = /0. Offensichtlich handelt es sich bei diesem β um das kleinste
Element von A. Also handelt es sich um eine Wohlordnung.

c) Nachzuweisen sind die Eigenschaften 1) bis 3). Sei β ∈ α . Zu 1): Sei γ ∈ β . Falls δ ∈ γ ,
so folgern wir aus der Transitivität δ ∈ β , also γ ⊆ β

zu 2): Für δ ,γ ∈ β gilt dann δ ,γ ∈ α . Von α setzen wir aber voraus, dass es sich um eine
Ordinalzahl handelt. Also gilt δ = γ oder δ ∈ γ oder γ ∈ δ .

Zu 3): Falls /0 6= A⊆ β , so auch A⊆ α und man folgert die Gültigkeit für 3).
d) Sei β ( α Dann existiert ein γ ∈ α \β mit γ ∩ (α \β ) = /0. Also schon mal γ ⊆ α \ (α \

β ) = β . Nehmen wir mal an es gibt ein δ ∈ β \ γ , also insbesondere δ 6∈ γ . Es tritt also einer
der folgenden zwei Fälle ein.

Fall 1: δ = γ , dann aber γ ∈ β im Widerspruch zu γ ∈ α \β .
Fall 2: γ ∈ δ . Aus der Transitivität folgern wir, da δ ∈ β , dass dann ebenfalls γ ∈ β sein

muss. Also ist β \ γ = /0 und somit β ⊆ γ . Insgesamt erhalten wir β = γ ∈ α , also auch β ∈ α .
Die Rückrichtung folgt aus a).

e) Der Nachweis von 1) bis 3) folgt unmittelbar aus der Definition einer Ordinalzahl und
der Eigenschaft von Schnitten.
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Für jedes ω ∈ Ω gilt natürlich: α ⊆ ω . Annahme, für alle ω gilt sogar α ( ω , dann folgt:
∀ω ∈ Ω gilt α ∈ ω , also α ∈

⋂
ω∈Ω ω = α ⇒ Widerspruch! Es muss also ein ω ∈ Ω geben

mit α = ω . Und somit α ∈Ω.
f) Das höchstens einer der drei Fälle eintreten kann ist klar. Zu zeigen bleibt, dass mindesten

einer eintritt.
Annahme sowohl α \β 6= /0 als auch β \α 6= /0. Dann gibt es ein γ ∈α \β mit γ∩(α \β ) = /0.

Da γ ⊆ α folgt das auch γ ⊆ α \ (α \β ) = α ∩β . Dies führt zu γ ⊆ β . Währe sogar γ ( β ,
dann währe γ ∈ β im Widerspruch zu γ ∈ α \β . Also gilt γ = β und somit β ∈ α , also auch
β ( α . Nach Voraussetzung existiert aber auch ein δ ∈ β \α . Da aber schon β ( α führt dies
zum Widerspruch.
Insgesamt erhalten wir also α \β = /0 oder β \α = /0, also α ⊆ β oder β ⊆α . Die Behauptung
folgt.

g) Die Eigenschaften 1), 2), 3) müssen nachgewiesen werden. 1) ist trivial.
2): Sei β ,γ ∈ α . Dann gibt es ω1,ω2 ∈Ω mit β ∈ ω1 und γ ∈ ω2. O.B.d.A. gilt ω1 ⊆ ω2. Also
β ∈ ω2. Da ω2 eine Ordinalzahl ist, folgern wir β = γ oder β ∈ γ oder γ ∈ β .
3): Sei /0 6= A ⊆ α . Dann gibt es ein ω ∈ Ω mit A∩ω 6= /0. Also existiert ein γ ∈ A∩ω mit
γ ∩A∩ω = /0. Falls γ ∩A 6= /0, so gibt es ein δ ∈ γ ∩A, also auch δ ∈ ω (Transitivität) und
damit δ ∈ γ ∩A∩ω ⇒ Widerspruch. Also γ ∈ A und γ ∩A = /0.
Sei auch β eine Ordinalzahl mit: ∀ω ∈Ω gilt ω ∈ β . Dann ist offensichtlich α :=

⋃
ω∈Ω ω ⊆

β , also α = β oder α ∈ β . Somit gilt tatsächlich α = supΩ.
h) Folgt sofort aus Lemma 1.2.5 und a) bis g).

1.2.9 Bemerkung

Ordinalzahlen α die nicht von der Form α = β ∪{β} sind nennen wir Limesordinalzahlen.

1.2.10 Lemma

Jede wohlordenbare Menge W ist zu genau einer Ordinalzahl ordnungsisomorph.

Beweis: Wir setzen A := {x ∈W |Wx ist ordnungsisomorph zur Ordinalzahl ax}. Offen-
sichtlich ist das kleinste Element aus W auch in A. Sei x ∈W und z ∈ A, für jedes z < x. Wir
unterscheiden zwei Fälle: 1.Fall zu jedem y < x gibt es ein z mit y < z < x. Wir wählen dann
für jedes z < x die eindeutig bestimmte Ordinalzahl αz mit (eindeutig bestimmten) Ordnungs-
isomorphismus fz : Wz→ αz, setzen αx :=

⋃
z<x α :z und fx :=

⋃
z<x fz und haben somit einen

Ordnungsisomorphismus fx : Wx→ αx.
2.Fall Es gibt ein z < x, so dass für jedes y < x bereits y≤ z gilt. Dann wählen wir wieder αz

und fz und definieren fx : Wx→αz∪{αz} := αx durch fx(y) := fz(y), für y < z und fx(z) := αz.
Auch hier bekommen wir einen Ordnungsisomorphismus fx : Wx→αx. isgesammt bekommen
wir somit A = W .

Um zu zeigen, dass auch W zu einer Ordinalzahl ordnungsisomorph ist, unterscheiden wir
wieder zwei Fälle:
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1.Fall es gibt kein größtes Element in W , dann setzen wir einfach α :=
⋃

x∈A αx und f :=⋃
x∈A fx. Aufgrund der Eindeutigkeit der fx ist f dann der gesuchte Ordnungsisomorphismus.
2.Fall Es gibt ein größtes Element xg in W . Dann definieren wir f (x) := fxg(x), für x < xg

und f (xg) := αxg und erhalten so einen Ordnungsisomorphismus f : W → αxg ∪{αxg}

1.2.11 Satz von Hartog; ohne Auswahlaxiom

Zu jeder Menge A gibt es eine Ordinalzahl α mit der Eigenschaft: Es gibt keine Abbildung
f : α → A, welche injektiv ist.

Beweis: Sei A eine vorgegebene Menge (o.B.d.A. ist A unendlich). Setze dann
Ω := {α | ∃B ⊆ A und ∃ <⊆ B× B derart, dass < eine Wohlordnung auf B ist und α

ordnungsisomorph zu B ist }
Aus den obigen Aussagen folgt: Ω ist eine Menge von Ordinalzahlen. Sei dann β :=

⋃
α∈Ω α

und α ′ := β ∪{β}.
Annahme es gibt ein f : α ′ → A injektiv. Dann könnte man auf { f (δ ) | δ ∈ α ′} ⊆ A die

Wohlordnung von α ′ induzieren. Und demzufolge währe α ′ ∈ Ω und somit α ′ ⊆ β ∈ α ′ -
Widerspruch!

1.2.12 Transfinite Rekursion

Sei S eine Klasse, W eine durch < wohlgeordnete Menge. Ferner haben wir für jedes
x ∈W eine Abbildung Kx, welche jeder Abbildung f von Wx := {y ∈W | y < x} in S ein
Element Kx( f )∈ S zuordnet. Dann gibt es eine eindeutig bestimmte Abbildung ϕ : W → S
mit ϕ(x) = Kx(ϕ|Wx), für jedes x ∈W .

Beweis: Sei x′ das kleinste Element aus W . Wir setzen A := {x∈W | x = x′ oder ∃ϕx : Wx→
S mit ∀y < x : ϕx(y) = Ky(ϕx|Wy)}. Wir zeigen zuerst durch transfinite Induktion in Wy, dass
für x,y ∈ A mit y < x bereits ϕx|Wy = ϕy gilt und bezeichnen diese Eigenschaft mit (∗). Es gilt
ϕx(x′) = Kx′(ϕx‖Wx′) = Kx′( /0) = Kx′(ϕy|Wx′) = ϕy(x′). Sei ϕx(z) = ϕy(z), für alle z < x′′ < y.
Dann gilt ϕx(x′′) = Kx′′(ϕx|Wx′′) = Kx′′(ϕy|Wx′′) = ϕy(x′′). Also ϕx|Wy = ϕy.

Die Eindeutigkeit der Abbildung ϕ (im Fall der Existenz) beweist sich vollkommen analog.
kommen wir also zu Existenz:

Wir zeigen mittels transfiniter Induktion, dass A = W gilt. Bezeichnet x′′ den Nachfolger
von x′, so sieht man x′,x′′ ∈ A. Sei x ∈W und z ∈ A, für alle z < x. 1.Fall ∀z < x∃z′ ∈W mit
z < z′ < x, dann setze ϕx :=

⋃
z<x ϕz. Für y < x gibt es dann ein z mit y < z < x und es gilt

ϕx(y) = ϕz(y) = Ky(ϕz|Wy) = Ky(ϕx|Wy) (Eigenschaft (∗)!). 2.Fall Es gibt ein ∃z < x∀y(y <
x→ y ≤ z). Definiere dann ϕx : Wx→ S durch ϕx(y) := ϕz(y), für y < z und ϕx(z) := Kz(ϕz).
Dann gilt wieder ϕx(y) = Ky(ϕx|Wy), für y < x. Insgesamt bekommen wir x ∈ A und somit
A = W .
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Zur Definition von ϕ : W → S unterscheiden wir wieder zwei Fälle. 1.Fall es gibt kein
größtes Element in W . Dann setzen wir einfach ϕ :=

⋃
x∈A ϕx. Aus der Eigenschaft (∗) folgt

unmittelbar, das ϕ sinnvoll definiert ist und die geforderte Eigenschaft besitzt. 2.Fall es gibt ein
größtes Element xg ∈W . Dann definieren wir ϕ(x) := ϕxg(x), für x < xg und ϕ(xg) := Kxg(ϕxg).
Das so definierte ϕ hat dann die geforderte Eigenschaft.

1.3 Äquivalente Formulierungen des Auswahlaxioms
Das Auswahlaxiom ist wohl das berühmteste unter den Axiomen der Mengenlehre. Zur Wie-
derholung. Wir nennen f : P(A)→ A eine Auswahlfunktion, wenn f (A) ∈ A ist, für jedes
A ∈P(A). Das Auswahlaxiom besagt nun: Jede Menge A 6= /0 hat eine Auswahlfunktion. Es
gibt eine ganze Reihe zum Auswahlaxiom (natürlich auf Basis der übrigen Axiome) äquiva-
lente Formulierungen. Einige von ihnen behandeln wir in diesem Abschnitt. Zur Abkürzung
schreiben wir für Auswahlaxiom einfach AC (axiom of choice).

Im ersten der beiden nun folgenden Sätze geht es um die Äquivalenz des Auswahlaxioms zu
so genannten Maximalprinzipien. Im zweiten Satz lernen wir drei weitere wichtige Prinzipien
der Mengenlehre kennen. Zum einen den Wohordnungssatz, der besagt, dass sich auf jeder
Menge eine Wohlordnung finden lässt. Den Multiplikationssatz, der besagt für unendliche
Mengen M gilt |M×M|= |M|. Und last but not least den Vergleichbarkeitssatz. Anschaulich
besagt jener, dass sich zwei Mengen bzgl. der ”Anzahl” ihrer Elemente immer vergleichen
lassen.

1.3.1 Satz (äquivalente Formulierungen des Auswahlaxioms I)

Folgende Aussaagen sind äquivalent:
a) Das Auswahlaxiom.
b) (Lemma von Zorn) Sei /0 6= M durch < partiell geordnet, mit der Eigenschaft, dass

jede total geordnete Teilmenge K von M eine obere in M gelegene Schranke besitzt. Dann
gibt es ein maximales Element in M.

c) (Hausdorff‘s Maximalkettensatz) In jeder partiell geordneten Menge M gibt es maxi-
male total geordnete Teilmengen.

d) (Lemma von Teichmüller-Tuckey) Sei T 6= /0 eine Menge mit ∀ x (x ∈ T ⇔∀ y (y⊆
x ∧ y: endlich ⇒ y ∈ T )), dann existiert ein ⊆-maximales Element in T )

Beweis: a)⇒ b) Der Satz von Hartog liefert eine Ordinalzahl α , welche sich nicht injektiv
in M einbetten lässt. Sei z eine Menge, mit z 6∈M. Nun ist α ist eine wohlgeordnete Menge und
wir definieren für jedes δ ∈ α eine Abbildung Kδ , welche jeder Abbildung f : δ →M∪{z}
ein Element aus M ∪ {z} nach folgender Regel zuordnet. Falls M f := {m ∈ M | ∀δ ′ ∈ δ :
f (δ ′) < m} 6= /0, so sei Kδ ( f ) ein beliebiges Element aus M f . Falls hingegen M f = /0, dann
sei Kδ ( f ) = z (Auswahlaxiom!). Mittels transfiniter Rekursion schließt man auf die Existenz
einer Abbildung ψ : α → M ∪ {z} mit ψ(δ ) = Kδ (ψ|δ ). Falls δ < δ ′ und ψ(δ ),ψ(δ ′) ∈
M, dann ψ(δ ′) = Kδ ′(ψ|δ ′) > ψ(δ ). Es muss nun ein δ < α geben, mit ψ(δ ) = z (sonst
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wäre ψ : α →M injektiv). Wir wählen dann das δ ∈ α minimal mit ψ(δ ) = z und definieren
K := {ψ(δ ′) | δ ′ < δ}. Dann ist K eine Kette in M und nach Voraussetzung gibt es dann ein
maximales Element ψ(δ ′) in K. Dann kann es aber kein δ ′′ geben, mit δ ′ < δ ′′ < δ (sonst
ψ(δ ′) < ψ(δ ′′) und ψ(δ ′′) ∈ M - Widerspruch). Also δ = δ ′ ∪ {δ ′} und somit ist ψ(δ ′)
maximal in M (andernfalls wäre ψ(δ ) = Kδ (ψ|δ ) 6= z).

b)⇒ d): Sei T 6= /0 eine Menge mit ∀ x (x ∈ T ⇔ ∀ y (y ⊆ x ∧ y: endlich ⇒ y ∈ T )). T
wird durch die Inklusion partiell geordnet. Sei (xi)i∈I eine total geordnete Teilmenge aus T .
Setze x :=

⋃
i∈I xi. Sei y⊆ x und y: endlich, dann ∃ i ∈ I mit y⊆ xi. Nach Voraussetzung an xi

also y ∈ T . Und damit auch x ∈ T . Offensichtlich ist x eine obere in T gelegene Schranke von
(xi)i∈I , nach dem Zornschen Lemma hat T ein maximales Element bezüglich Inklusion.

d)⇒ c): Sei M durch < partiell geordnet. Setze T := {x⊆M | x : total geordnet }.
Falls x ∈ T dann folgt klarerweise ∀ y (y⊆ x ∧ y: endlich ⇒ y ∈ T ).
Falls umgekehrt ∀ y (y⊆ x ∧ y: endlich ⇒ y∈ T ), so ist zu zeigen: x ∈ T . Selbstverständlich
ist x ⊆ M und damit schon partiell geordnet. Die totale Ordnung sieht man so: z1,z2 ∈ x ⇒
{z1,z2} ⊆ x, also {z1,z2} ∈ T . Damit folgt o.B.d.A. z1 ≤ z2. Also x ∈ T . Nach Teichmüller-
Tuckey existiert eine max. total geordnete Teilmenge in M.

c)⇒ b): Ist offensichtlich.
b) ⇒ a): Man betrachte eine Menge A zu der man eine Auswahlfunktion haben möchte.

Setze A := { f : P(B)→ B | B ⊆ A und ∀C ∈P(B) gilt f (C) ∈ C}. Die Menge A wird
partiell durch die Inklusion geordnet und total geordnete Teilmengen von A haben obere
in A gelegenen Schranken (man betrachte die Vereinigung einer solchen total geordneten
Teilmenge). Maximale Elemente in A müssen dann Auswahlfunktionen für A sein.

1.3.2 Satz (äquivalente Formulierungen des Auswahlaxioms II)

Folgende Aussagen sind äquivalent:
a) Das Auswahlaxiom.
b) Jede Menge M lässt sich wohlordnen, d.h. es gibt eine totale Ordnung auf M mit der

Eigenschaft: Jede nichtleere Teilmenge von M hat ein minimales Element.
c) Von zwei Mengen M,N lässt sich eine stets injektiv in die andere einbetten.
d) Für jede unendliche Menge M gilt: |M|= |M×M|.

Beweis: Wir führen aus Spaß an der Freude keinen minimalen Kreisschluss. Der Leser ist
aufgefordert sich weitere Äquivalenzen direkt zu überlegen.

a) ⇒ b) Wir verwenden den Satz von Hartog und transfinite Rekursion. Sei also α so ge-
wählt (Ordinalzahl), dass es keine injektive Abbildung f : α →M gibt. Sei z eine Menge, mit
z 6∈M. Nun ist α ist eine wohlgeordnete Menge und wir definieren für jedes δ ∈ α eine Ab-
bildung Kδ , welche jeder Abbildung f : δ →M∪{z} ein Element aus M∪{z} nach folgender
Regel zuordnet. Falls M f := {m ∈ M | ∀δ ′ ∈ δ : f (δ ′) 6= m} 6= /0, so sei Kδ ( f ) ein beliebi-
ges Element aus M f . Falls hingegen M f = /0, dann sei Kδ ( f ) = z (Auswahlaxiom!). Mittels
transfiniter Rekursion schließt man auf die Existenz einer Abbildung ψ : α → M ∪{z} mit
ψ(δ ) = Kδ (ψ|δ ). Falls δ < δ ′ und ψ(δ ),ψ(δ ′)∈M, dann ψ(δ ′) = Kδ ′(ψ|δ ′)∈M \{ψ(δ )},
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also ψ(δ ′) 6= ψ(δ ). Es muss nun ein δ < α geben, mit ψ(δ ) = z (sonst wäre ψ : α → M
injektiv). Wir wählen dann das δ ∈ α minimal mit ψ(δ ) = z. Die Abbildung ψ engeschränkt
auf δ , also ψ|δ : δ →M ist dann injektiv. Sie ist aber auch surjektiv, denn sonst wäre ψ(δ ) =
Kdelta(ψ|δ ) ∈M. Also ist ψ|δ : δ →M bijektiv und wir können auf M die Wohlordnung von
δ induzieren.

a)⇒ c): Seien M und N zwei Mengen. Betrachte M := {(X ,Y, f ) |X ⊆M und Y ⊆N und f :
X →Y ist bijektiv }. Durch (X ,Y, f )≤ (X ′,Y ′, f ′) falls X ⊆ X ′, Y ⊆Y ′ und f ′|X = f wird auf
M eine partielle Ordnung definiert. Offensichtlich hat jede total geordnete Teilmenge von M
eine obere in M gelegene Schranke. Das Zornsche Lemma (äquivalent zum Auswahlaxiom)
garantiert uns ein maximales Element (X ,Y, f ). Dann muss aber bereits X = M oder Y = N
sein.

c) ⇒ b) lässt sich seht einfach beweisen: Sei M eine beliebige (unendliche Menge). Aus
dem Satz von Hartog (siehe Anhang) folgern wir: Es gibt eine Ordinalzahl α , die sich nicht
injektiv in M einbetten lässt. Aus dem Vergleichbarkeitssatz schließen wir dann aber, dass sich
M injektiv in α einbetten lassen muss. Auf M können wir also mittels f eine Wohlordnung
induzieren.

a)⇒ d): Sei M eine unendliche Menge. Setze M := {(X , f ) | X ⊆M und f : X → X ×X
ist eine Bijektion }. Da M eine unendliche Menge ist, besitzt M eine abzählbar unendliche
Teilmenge N. Nun ist aber offensichtlich |N|= |N×N|. Also M 6= /0. Auf M definieren wir
durch (X , f )≤ (Y,g) falls X ⊆Y und g|X = f eine partielle Ordnung. Falls (Xi, fi)i∈I eine total
geordnete Teilmenge darstellt, dann ist (

⋃
i∈I Xi,

⋃
i∈I fi) eine obere in M gelegene Schranke.

Sei dann (X , f ) ein maximales Element in M (Zornsches Lemma). Annahme ∃m ∈ M \X .
Dann gilt
|(X ∪{m})× (X ∪{m})| = |(X ×X)∪ ({m}×X)∪ (X ×{m})∪{(m,m)}| = |Y1 ∪Y2 ∪Y3 ∪
{(m,m)}|, wobei |Yi| = |X | für i = 1,2,3. Nun ist aber |Y1 ∪Y2 ∪Y3| ≤ |X ×X | = |X |, also
|Y1∪Y2∪Y3∪{(m,m)}| ≤ |X ∪{(m,m)}| = |X ∪{m}| im Widerspruch zur Maximalität von
X .

d) → b): Wir benötigen wieder den Satz von Hartog. Sei X eine beliebige Menge und α

eine Ordinalzahl mit ¬(α ≤ X) (Satz von Hartog). Es gilt nun: |X ×α| ≤ |(X ×X)∪ (X ×
α)∪ (α ×X)∪ (α ×α)| = |(X ∪α)× (X ∪α)| = |X ∪α|. Sei also f : X ×α → X ∪α eine
injektive Abbildung.
1 Fall: ∃x ∈ X mit f ({x}×α)⊆ X . Dann folgt aus |α|= |{x}×α| und der Injektivität von f
sofort α ≤ X , im Widerspruch zur Voraussetzung an α .
Also 2. Fall: Für alle x ∈ X gilt f ({x}×α) * X . Das heißt für jedes x ∈ X ist γx := {β ∈
α | f (x,β ) ∈ α} 6= /0.
Für x ∈ X sei g(x) das minimale Element aus γx. Also haben wir eine Abbildung h : X → α

definiert durch h(x) := f (x,g(x)). h ist dann injektiv und wir können auf X eine Wohlordnung
induzieren.

b)⇒ a) Wir wählen auf A eine Wohlordnung und wählen für jedes B ∈P(A) einfach das
kleinste Element aus B. Das definiert eine Auswahlfunktion.
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1.4 Kardinalzahlen
Wir nennen eine Ordinalzahl α Kardinalzahl, wenn ∀β ∈ α gilt ¬∃ f : α → β bijektiv. Die
Klasse aller Kardinalzahlen ist als Teilklasse der Ordinalzahlen natürlich wieder wohlgeord-
net.

Zur Erinnerung: Für zwei Mengen X ,Y hatten wir den Ausdruck |X | = |Y | als Abkürzung
für ”∃ f : X → Y bijektiv” eingeführt.

Wir definieren nun den Ausdruck |X |, für eine Menge X , als die kleinste Ordinalzahl α mit
|X |= |α|. Ist das sinnvoll? Ja, denn X lässt sich wohlordnen und ist somit ordnungsisomorph
zu einer Ordinalzahl β insbesondere also |X | = |β |. Die Klasse A := {β | β ist Ordinalzahl
und |X | = |β |} ist also nicht leer und besitzt somit ein kleinstes Element α . Damit muss α

also auch bereits eine Kardinalzahl sein!
Den Ausdruck |X |= |Y | können wir nun also auf zwei Weisen lesen. zum einen ”∃ f : X→Y

bijektiv” und zum anderen ”die X zugeordnete Kardinalzahl ist gleich der Y zugeordneten Kar-
dinalzahl”. Letztendlich bringt beides die gleiche Vorstellung über X und Y zu Tage, nämlich:
X und Y haben ”gleich viele Elemente”. Sprechen wir also in Zukunft von der Anzahl der
Elemente einer Menge X , so meinen wir |X |. Der Ausdruck |X | ≤ |Y | hat also die Bedeu-
tung α ≤ β , wenn |X | = α und |Y | = β gilt. Dies ist äquivalent dazu, dass es eine Injektion
f : X→Y gibt. |X |< |Y | hat hingegen stärker die Bedeutung α < β , es gibt also eine Injektion
f : X → Y , aber es gibt keine Surjektion X → Y .

1.4.1 Lemma

a) A, B, C seinen Mengen, mit B∩C = /0. Dann gilt: |AB∪C|= |AB×AC|.
b) A, B, C seien diesmal vollkommen beliebige Mengen, dann gilt |(AB)C|= |AB×C| und
|AC×BC|= |(A×B)C|.

Beweis: Übungsaufgabe!

1.4.2 Lemma

Sei X eine unendliche Menge,
Λ eine Menge von Mengen mit |Λ| ≤ |X | und ∀ λ ∈ Λ gilt |λ | ≤ |X |,
Γ := {γ ⊆P(X)\{ /0} | X =

⋃
γ und ∀ g1,g2 ∈ γ gilt (g1 6= g2 ⇒ g1∩g2 = /0)} (die

Menge aller Zerlegungen von X),
P<ω(X) := {A⊂ X | A :endlich } und P|X |(X) := {A⊆ X | |A|= |X |}.
Dann gilt:
a) |
⋃

Λ| ≤ |X |
b) |X |= |Xn|= |P<ω(X)|
c) |Γ|= |P(X)|= |{0,1}X |= |XX |= |P|X |(X)|
d) |X×Y |= max(|X |, |Y |).
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Beweis: Übungsaufgabe!

1.4.3 Lemma (von König)

(Mi)i∈I , (Ni)i∈I seien zwei Familien von Mengen mit ∀ i ∈ I |Mi| < |Ni|. dann gilt:
|
⋃

i∈I Mi|< |∏i∈I Ni|. Speziell erhalten wir: |X |< |P(X)| für jede Menge X .

Beweis: Annahme ∃ f :
⋃

i∈I Mi→∏i∈I Ni surjektiv, weiter seien p j : ∏i∈I Ni→N j für j ∈ I
die natürlichen Projektionen. Wir betrachten dann x = (xi)i∈I mit xi ∈ Ni \ pi( f (Mi)); letztere
Menge ist 6= /0, wegen ∀ i ∈ I |Mi| < |Ni|. Also gibt es ein z ∈ Mi für ein i ∈ I mit f (z) = x.
Dann ist aber xi = pi( f (z)) ∈ pi ◦ f (Mi) im Widerspruch zur Wahl von xi.

1.4.4 Definition von Summe und Produkt von Kardinalzahlen

Sei {αi | i∈ I} eine Menge von Kardinalzahlen. Dann sind die Kardinale Summe und Das Kar-
dinale Produkt folgendermaßen definiert: ∑i∈I αi := |

⋃
i∈I αi×{i}| bzw. ∏i∈I αi := |∏i∈I αi|.

1.4.5 Definition: Kofinalität

Sei A eine geordnete Menge. Eine geordnete Menge B heißt kofinal in A, wenn es eine un-
beschränkte Funktion f : B→ A gibt, also mit der Eigenschaft: Für alle a ∈ A existiert ein
b ∈ B mit a ≤ f (b). Für eine Ordinalzahl α definieren wir c f (α) := kleinste Ordinalzahl β ,
so dass β kofinal in α ist. Z.B. c f (0) = 0 und falls α keine Limesordinalzahl ist, also wenn
α = β ∪{β} so ist c f (α) = 1.

1.4.6 Lemma

a) Für alle Ordinalzahlen α gilt c f (α)≤ α .
b) Für γ = |c f (α)| gibt es auch eine monotone unbeschränkte Funktion f : γ → α .
c) c f (c f (α)) = c f (α)

Beweis: a) Folgt aus der Definition.
b) Sei g : γ → α unbeschränkt (o.B.d.A. sei α eine Limesordinalzahl). Definiere f : γ → α

durch f (δ ) :=
⋃
{g(β ) | β < δ}. Wenn nämlich δ < γ , dann ist g|δ : δ → α nicht unbe-

schränkt, also f (δ ) < α . Andererseits ist g : γ→ α offensichtlich unbeschränkt in α und nach
Konstruktion auch monoton.

c) Ist wieder offensichtlich.
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1.4.7 Lemma

Sei α eine unendliche Kardinalzahl. Dann ist c f (α) die kleinste Kardinalzahl λ derart,
dass eine Folge (Sγ)γ<λ von Teilmengen von α existiert mit: α =

⋃
γ<λ Sγ und |Sγ | < α

für alle γ < λ .

Beweis: Sei f : c f (α)→ α unbeschränkt. Dann ist (Sγ)γ<c f (α) definiert durch

Sγ := { f (δ ) | δ < γ}

die gewünschte Familie.
Sei andererseits λ < c f (α). Nehmen wir mal an es gibt trotzdem eine entsprechende Folge

(Sγ)γ<λ . Wegen λ < c f (α) ist µ := sup{|Sγ | | γ < λ}< α . Für δ < α sei g(δ ) := in f {γ <
λ | δ ∈ Sγ} und für γ < λ sei fγ : Sγ → |Sγ | eine Bijektion. Dann ist aber h : α → λ × µ ,
h(δ ) := (g(δ ), fg(δ )(δ )) injektiv, also α ≤ λ ×µ = max(λ ,µ) < α - ein Widerspruch.

1.4.8 Lemma

Sei α eine unendliche Kardinalzahl. Dann gilt:
a) α < αc f (α) b) α < c f (2α)

Beweis: a) Sei α = ∑ξ<c f (α) αξ mit αξ < α für ξ < c f (α). Dann folgt aus dem Satz von
König α = ∑ξ<c f (α) αξ < ∏ξ<c f (α) α = αc f (α).
b) Angenommen c f (2α)≤ α . Dann folgt mit a) 2α < (2α)c f (2α ) ≤ (2α)α = 2α×α = 2α - ein
Widerspruch.
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2 Erste Topologische Konzepte
”I am a most unhappy man. I have unwittingly ruined my country. A great industrial
nation is controlled by its system of credit. Our system of credit is concentrated. The
growth of the nation, therefore, and all our activities are in the hands of a few men.
We have come to be one of the worst ruled, one of the most completely controlled and
dominated Governments in the civilized world no longer a Government by free opinion,
no longer a Government by conviction and the vote of the majority, but a Government
by the opinion and duress of a small group of dominant men.”

Woodrow Wilson, 1919, after having been tricked to sign the Federal Reserve Act

2.1 Topologische Räume
”Wer sich keinen Punkt denken kann, der ist einfach zu faul dazu.”

Mathematiklehrer Brenneke in Eduards Traum von Wilhelm Busch

In diesem Abschnitt definieren wir den zentralen Begriff des Skriptes, den topologischen
Raum.

2.1.1 Definition grundlegender Begriffe

Ein Topologischer Raum ist ein geordnetes Paar (X ,τ), wobei X eine Menge ist und τ fol-
genden Bedingungen genügt:

1. X ∈ τ ⊆P(X)

2. ∀A,B ∈ τ ist auch A∩B ∈ τ

3. ∀σ ⊆ τ ist auch
⋃

S∈σ S ∈ τ

Die Elemente aus τ heißen offenen Mengen, deren Komplemente heißen abgeschlossene Men-
gen. Aus 3. folgt also z.B. /0 =

⋃
S∈ /0 S ∈ τ . Eine Menge V ⊆ X heißt Umgebung des Punktes

x, wenn es ein U ∈ τ gibt mit x∈U ⊆V . Eine Menge α von Umgebungen eines Punktes x∈ X
heißt Umgebungsbasis von x, wenn es zu jedem O ∈ τ mit x ∈ O ein V ∈ α gibt, mit V ⊆ O.
Analog sprechen wir von Umgebungen von Teilmengen. U ist eine Umgebung von A ⊆ X ,
wenn es ein O∈ τ gibt mit A⊆O⊆U . Analog ist eine Menge α von Umgebungen von A eine
Umgebungsbasis von A, wenn es zu jeder offenen Menge O mit A ⊆ O ein U ∈ α gibt mit
U ⊆ O.

Wir führen eine wichtige Notation ein. Für x ∈ X setzen wir ẋ := {A ⊆ X | x ∈ A}. Die
Menge aller offenen Umgebungen von x schreibt sich dann einfach als ẋ∩ τ (siehe dazu auch
den Abschnitt über Filter und Ultrafilter).

Wenn (X ,τ) ein top. R. ist und Z ⊆ X , so wird (Z,τZ) mit τZ := {O∩Z |O ∈ τ} ein topolo-
gischer Raum. τZ heißt dann die Spurtopologie und (Z,τZ) ist dann ein Teilraum von (X ,τ).
Jede im Teilraum Z offene Menge U ist also von der Form U = O∩Z, für ein in X offenes
O. Ist A eine im Teilraum Z abgeschlossene Menge, so ist Z \A = O∩Z, mit O ∈ τ . Es folgt
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A = (X \O)∩Z. Setzen wir B := X \O, so ist B in X abgeschlossen und es gilt A = B∩Z.
Die in Z abgeschlossenen Mengen sind also ebenfalls die Spuren von in X abgeschlossenen
Mengen.

Eine Abbildung f : X → Y heißt stetig bezüglich den topologischen Räumen (X ,τ),(Y,σ),
falls ∀O ∈ σ f−1(O) ∈ τ . Wenn klar ist welche Topologie wir auf X bzw. Y betrachten schrei-
ben wir auch einfach: Sei f : X → Y stetig. Eine bijektive Abbildung f : X → Y heißt ein
Homöomorphismus, falls f und f−1 stetig sind. Wir nennen eine Abbildung f : X → Y eine
homöomorphe Einbettung (oder auch nur eine Einbettung), wenn f : X → f (Y ) ein Homöo-
morphismus (bzgl. der Spurtopologie) ist.

Wenn wir zwei Topologien τ und σ auf X haben, so sagen wir τ ist feiner als σ bzw. σ ist
gröber als τ , wenn σ ⊆ τ . Offensichtlich ist τ feiner als σ genau dann, wenn idX : (X ,τ)→
(X ,σ) stetig ist.

Die Potenzmenge ist offensichtlich eine Topologie und wird die diskrete Topologie genannt
(Symbol: τdis). { /0,X} ist offensichtlich auch eine Topologie auf einer Menge X . Sie wird die
indiskrete Topologie genannt (Symbol: τind).

Wenn (X ,τ) ein topologischer Raum ist, so gilt τind ⊆ τ ⊆ τdis. Anders gesagt ist τind die
gröbste und τdis die feinste Topologie auf X .

Falls (X ,τ) ein topologischer Raum ist und B ⊆ τ , mit der Eigenschaft: ∀O ∈ τ ∃B0 ⊆B
derart, dass O =

⋃
B∈B0

B, dann heißt B eine Basis von τ . Desweiteren heißt S eine Subbasis
von τ , falls es eine Basis B von τ gibt mit: ∀B ∈B∃S1, ...,Sn ∈S mit B = S1∩ ...∩Sn.

Wenn der Raum X eine abzählbare Basis hat, dann nennen wir ihn ein A2-Raum, oder er
genügt dem zweiten Abzählbarkeitsaxiom. Wenn es ein zweites Abzählbarkeitsaxiom gibt,
dann gibt es natürlich auch ein erstes (zur Abkürzung mit A1 bezeichnet); und zwar sagen wir
X ist ein A1-Raum, wenn jeder Punkt eine abzählbare Umgebungsbasis hat. Jeder A2-Raum
ist also auch ein A1-Raum.

Der Schnitt von beliebig vielen Topologien auf einer Menge X ist wieder eine Topolo-
gie (Beweis?). Die Vereinigung der Topologien, muss keine Topologie mehr sein (Gegenbei-
spiel?). Allerdings gilt:

2.1.2 Satz

Sei X eine Menge und α ⊆P(X). Dann gibt es eine gröbste Topologie top(α) auf X ,
welche α umfasst (also α ⊆ top(α)⊆ τ für jede Topologie τ mit α ⊆ τ).

Beweis: Setze B := {
⋂n

k=1 Ak | Ak ∈ α für k = 1...n≤ 1}∪{X} und top(α) := {
⋃

β | β ⊆
B}. Offensichtlich top(α) ⊆P(X) und X ∈ top(α). Seien

⋃
β ,
⋃

β ′ ∈ top(α) dann ist⋃
β ∩

⋃
β ′ =

⋃
(B,B′)∈β×β ′ B∩B′ =

⋃
γ , wobei γ := {B∩B′ | (B,B′) ∈ β × β ′} ⊆ B. Also⋃

β ∩
⋃

β ′ ∈ top(α). Für σ ⊆ top(α) gilt (offensichtlich)
⋃

σ ∈ top(α). Somit ist top(α)
als Topologie erkannt. Andererseits muss jede Topologie, welche α umfasst auch top(α)
umfassen (Def. der Topologie!), also ist top(α) die gröbste derartige Topologie (man kann
sie auch so definieren: Setze T := {τ ⊆P(X) | τ ist eine Topologie und α ⊆ τ} und dann
top(α) :=

⋂
τ∈T τ . Da T 6= /0 kann hier nichts schiefgehen.).
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Wenn X =
⋃

α ist dann ist α eine Subbasis von top(α).

2.1.3 Variante des Zornschen Lemmas

Sei (X ,<) eine partiell geordnete Menge. Für jedes Y ⊆ X setzen wir <Y :=< ∩(Y ×Y )
und nennen <Y die auf Y von X induzierte Ordnung. Sei nun X mit der Eigenschaft, dass
jede mit der induzierten Ordnung wohlgeordnete Teilmenge Y ⊆ X eine obere Schranke
in X hat. Dann gibt es in X maximale Elemente.

Beweis: Sei Z := {W ⊆X |W ist durch < eingeschränkt auf W wohlgeordnet}. Auf Z führen
wir durch V ≺W :⇔ V (W eine partielle Ordnung ein. Ist nun (Wi)i∈I eine Kette aus Z, dann
ist W :=

⋃
i∈I Wi mit der aus X induzierten Ordnung ebenfalls eine wohlgeordnete Menge, also

W ∈ Z. Das ”original” Zornsche Lemma angewendet sichert uns somit die Existenz maximaler
Elemente in Z. Sei W solch ein maximales Element aus Z. Nach Voraussetzung an X hat W
eine obere Schranke x in X . Dann muss aber bereits x ∈W sein (ansonsten könnte man die
Wohlordnung einfach verlängern). Und nun muss x aber auch maximal in X sein (sonst könnte
man wieder einfach die Wohlordnung verlängern).

2.1.4 Satz

Sei X 6= /0 eine Menge und P eine Eigenschaft, die Teilmengen von X zukommen kann.
Sei ferner τ ⊆P(X) und B unendlich ⊆P(X) mit ∀V ∈ τ ∃BV ⊆B mit V =

⋃
BV .

Außerdem gelte
a) ∀τ ′ ⊆ τ gilt

⋃
τ ′ ∈ τ , ODER b) ∀B′ ⊆B gilt

⋃
B′ ∈ τ .

Hat nun mit jeder durch Inklusion (U ≤ V ⇔U ⊆ V ) wohlgeordneten Menge τ ′ ⊆ τ ,
die |τ ′| ≤ α := |B| erfüllt und deren Elemente alle die Eigenschaft P haben, auch

⋃
τ ′ die

Eigenschaft P, dann gibt es in τ maximale Elemente mit der Eigenschaft P.

Beweis: Wir versehen σ := {V ∈ τ |V hat die Eigenschaft P}mit der Inklusion als Ordnung.
Sei σ ′ eine wohlgeordnete Teilmenge von σ . Für jedes V ∈σ ′ gibt es ein BV ⊆B mit

⋃
BV =

V . Wir setzen B′ :=
⋃

V∈σ ′BV ⊆B.
Zu jedem B ∈B′ gibt es ein VB ∈ σ ′ mit B⊆VB.
Es gilt U :=

⋃
σ ′ =

⋃
B′ ⊆

⋃
B∈B′VB ⊆

⋃
σ ′ = U und somit ist U ∈ τ . Außerdem ist

σ ′′ := {VB | B ∈B′} als Teilmenge von σ ′ ebenfalls wohlgeordnet und erfüllt U =
⋃

σ ′′ und
|σ ′′| ≤ α . Somit hat nach Voraussetzung auch U die Eigenschaft P und ist natürlich eine
obere Schranke in σ für die Elemente aus σ ′. Aus der oben stehenden Variante des Zornschen
Lemmas schließen wir, dass es in σ maximale Elemente gibt.
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2.1.5 Korollar (Reduktionssatz von Brouwer)

Sei (X ,τ) ein top. Raum mit einer abzählbaren Basis B und sei P eine Eigenschaft für
abgeschlossenen Mengen, so dass wenn A0 ⊇ A1 ⊇ A2 ⊇ ... und jedes Ai die Eigenschaft
P hat, auch

⋂
i∈NAi die Eigenschaft P hat, dann gibt es minimale abgeschlossene Mengen,

welche die Eigenschaft P haben.

Beweis: Wir definieren eine Eigenschaft P′ für offene Mengen: O ∈ τ habe die Eigenschaft
P′, wenn X \O die Eigenschaft P hat. Aus obigem Satz folgt, dass es maximale (bzgl. Inklusi-
on) offene Mengen U gibt, mit der Eigenschaft P′. Offenbar ist A := X \U dann eine minimale
abgeschlossene Menge mit der Eigenschaft P.

2.1.6 Lemma

Seien B und B∗ zwei Basen einer Topologie, mit |B∗| ≤ |B|. Dann gibt es ein B′ ⊆B
mit |B′| ≤ |B∗| und B′ ist eine Basis derselben Topologie. Eine analoge Aussage gilt
auch für Subbasen.

Beweis: Für B∈B∗∃ f (B)⊆B mit
⋃

f (B) = B. Für A∈ f (B)∃gB(A)⊆B∗ mit
⋃

gB(A) =
A. Da

⋃
A∈ f (B) gB(A)⊆B∗, folgt |

⋃
A∈ f (B) gB(A)| ≤ |B∗|. Für C ∈

⋃
A∈ f (B) gB(A) wähle je ein

BC ∈B mit C ⊆ BC ⊆ B. Setze dann BC := {BC |C ∈
⋃

A∈ f (B) gB(A)} und B′ :=
⋃

B∈B∗BB.
Dann gilt |BB| ≤ |B∗|, also auch |B′| ≤ |B∗| und außerdem ist B′ eine Basis der Topologie.
Denn B ∈B∗ impliziert B =

⋃
(
⋃

A∈ f (B) gB(A)) =
⋃

BB und BB ⊆B′.
Für den zweiten Teil der Behauptung seien S1 und S2 zwei Subbasen der Topologie. Für ein
Mengensystem M führen wir folgende Schreibweise ein: B(M ) := {

⋂n
i=1 Mi | Mi ∈M }.

Dann sind nämlich B(S1) und B(S2) Basen unserer Topologie und aus dem eben bewiese-
nem folgt, dass es eine Basis B′ ⊆B(S1) der Topologie gibt, mit |B′| ≤ |B(S2)|. Für ein
B∈B′∃ ein endliches AB ⊆B(S1), mit B =

⋂
a∈AB

a. Setze dann S0 :=
⋃

B∈B′ AB ⊆S1. Of-
fensichtlich ist S0 dann eine Subbasis unserer Topologie, mit |S0| ≤ |B′| ≤ |B(S2)|= |S2|.

2.1.7 Definition des Offenen Kerns, Abschluß und Rand einer Menge

Sei Y eine Teilmenge eines topologischen Raumes (X ,τ). Dann heißt Y ◦ := {x ∈ Y | ∃O ∈ τ

mit x ∈ O⊆ Y} der offenen Kern von Y und Y := {x ∈ X | ∀O ∈ τ mit x ∈ O gilt O∩Y 6= /0}
der Abschluss von Y .

2.1.8 Einfachste Eigenschaften

Es gilt: Y ◦=
⋃

O∈τ,O⊆Y O (folgt unmittelbar aus der Definition), also ist Y ◦ die ”größte” offene
Menge in Y (insbesondere ist der offene Kern also offen). Analog ist Y =

⋂
X\A∈τ,Y⊆A A (Be-

weis: Grundsätzlich halten wir fest: Y ⊆ Y . Sei nun x ∈ Y und A abgeschlossen mit Y ⊆ A.
Nun ist X \ A offen. Wäre x ∈ X \ A, so währe Y ∩ (X \ A 6= /0 - ein Widerspruch. Also
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Y ⊆
⋂

X\A∈τ,Y⊆A A. Andererseits ist Y selber auch abgeschlossen, denn zu z ∈ X \Y gibt es
eine offenen Menge O mit z ∈ O ⊆ X \Y . Damit ist dann aber auch jedes z′ ∈ O bereits im
Komplement von Y , also O ⊆ X \Y - Y ist abgeschlossen. Damit ist Y selber eine der am
Schnitt von Y beteiligten Mengen; es gilt also auch

⋂
X\A∈τ,Y⊆A A⊆ Y .).

Y ist somit die ”kleinste” abgeschlossene Menge, welche Y enthält. ∂Y := Y \Y ◦ wird als
der Rand von Y definiert. Es gelten folgende Rechenregeln:

1) Y ◦ ⊆ Y ⊆ Y , 2) X \Y ◦ = X \Y 3) Y ◦◦ = Y ◦ 4) Y = Y 5) Y1 ⊆ Y2 impliziert Y ◦1 ⊆ Y ◦2 und
Y1 ⊆ Y2 6) Y1∪Y2 = Y1∪Y2 und Y ◦1 ∩Y ◦2 = (Y1∩Y2)◦ 7) /0◦ = /0 und /0 = /0

Die Beweise sind allesamt Routine. Wir sagen Y ⊆ X liegt dicht in X , falls Y = X . Je-
de nichtleere offene Menge enthält also Punkte aus Y . Wen ein Raum eine abzählbare dicht
Teilmenge enthält, so bekommt er einen extra Namen: Man nennt ihn separabel.

2.1.9 Beispiel einer interessanten Topologie auf Z

Wir betrachten Teilmengen Na,b := {a+nb | n∈Z}, mit a,b∈Z und b > 0, der ganzen Zahlen
und setzen τ := {O⊆Z | ∀a∈O∃b > 0 mit Na,b ⊆O}. Man zeige (am besten der Reihe nach)
τ ist eine Topologie auf Z, B := {Na,b | a,b ∈ Z und b > 0} ist eine Basis von τ , jede nicht
leere offene Menge ist unendlich, jede Menge Na,b ist abgeschlossen, Z\{−1,1}=

⋃
p∈PN0,p

(P bezeichnet die Menge der Primzahlen) und folgere, dass P unendlich sein muss.

2.1.10 Äquivalente Definition der Topologie duch Abschlussoperator

Sei c : P(X)→P(X) eine Abbildung mit folgenden Eigenschaften: Für alle A,B⊆ X gilt:
1) A⊆ c(A)
2) c( /0) = /0
3) c(A∪B) = c(A)∪ c(B)
4) c(c(A)) = c(A),
dann gibt es genau eine Topologie τ auf X , mit der Eigenschaft: ∀A ⊆ X gilt c(A) = A

(gemeint ist der Abschluss bezüglich τ). Die Abbildung wird auch Hüllenoperator oder Ab-
schlussoperator genannt (nach Kuratowski).

Beweis: Wir setzen τ := {U ⊆X | c(X \U) = X \U}. Aus der Eigenschaft 1) folgt c(X) = X ,
ferner gilt c( /0) = /0, also /0, X ∈ τ . Seien U,V ∈ τ . Dann c(X \ (U ∩V )) = c((X \U)∪ (X \
V )) = c(X \U)∪ c(X \V ) = (X \U)∪ (X \V ) = X \ (U ∩V ), also U ∩V ∈ τ . Zeigen wir als
nächstes A ⊆ B ⇒ c(A) ⊆ c(B). Dies folgt aus c(B) = c(A∪B) = c(A)∪ c(B). Nun können
wir zeigen, dass mit σ ⊆ τ auch

⋃
σ ∈ τ gilt. Wir haben nämlich X \

⋃
σ ⊆ c(X \

⋃
σ) =

c(
⋂

V∈σ (X \V )) ⊆
⋂

V∈σ (X \V ) = X \σ , also c(X \
⋃

σ) = X \σ und damit
⋃

σ ∈ τ . Wir
haben damit gezeigt, dass τ eine Topologie ist. Zu zeigen bleibt ∀A ⊆ X gilt c(A) = A. Es ist
X \ c(A) ∈ τ (folgt aus 4)) und damit c(A) abgeschlossen!, Also A ⊆ c(A). Andererseits ist
X \A ∈ τ , also c(A)⊆ c(A) = A. Insgesamt somit c(A) = A.

2.1.11 Das Abschluss-Komplement Problem

Bereits hier ergibt sich eine interessante Frage: Wie viel verschiedene Menge können wir -
ausgehend von einer fest gewählten Menge A - nur mit Hilfe der Abschluss-Operation, offener
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Kern-Operation und Komplementbildung bekommen. Eine solche ist z.B. X \ (X \A)◦. Diese
Frage hat eine mysteriöse Antwort:

In einem beliebigen topologischen Raum (X ,τ) kann man maximal 14 verschiedene Mengen
auf diese Weise bekommen (ausgehend von einer fest gewählten Menge A)!

Da A = A und (A◦)◦ = A◦ und X \ (X \A) = A gilt, kann man sich darauf beschränken, die
Operationen abwechselnd anzuwenden. Ferner gilt A◦ = X \X \A. Wir können uns schlus-
sendlich also auf abwechselnde Anwendung von Komplement und Abschluss beschränken.
Zur besseren Übersicht führen wir folgende Schreibweise ein: A− := A und A| := X \A. Die
Frage ist also: Haben die Folgen

A,A−,A−|,A−|−, ... (∗) und A|,A|−,A|−|, ... (∗∗)

unendlich viele verschiedene Folgeglieder oder nicht. Und wenn nicht, wie viele haben sie
dann? Schauen wir uns die erste Folge an:

A, A− ,A−|, A−|− = X \A = X \ (A)◦, A−|−| = (A)◦ ,A−|−|− = (A)◦, A−|−|−| = X \ (A)◦,
A−|−|−|− = X \ ((A)◦)◦

Behauptung: (A)◦ = ((A)◦)◦. Zeigen wir dies: Offensichtlich gilt (A)◦ ⊆ (A)◦, also (A)◦ =
((A)◦)◦ ⊆ ((A)◦)◦. Andererseits gilt (auch offensichtlich) (A)◦ ⊆ A, also (A)◦ ⊆ A = A und
damit ((A)◦)◦ ⊆ (A)◦.

Das achte Folgeglied der Folge (∗) ist also gleich dem vierten - wir haben eine Schleife! Die
Folge (∗) hat also maximal 7 verschiedene Folgeglieder. Ersetzen wir in der Folge (∗) jedes A
durch X \A, so erhalten wir die Folge (∗∗). Diese hat also ebenfalls maximal 7 verschiedene
Folgeglieder. Insgesamt bekommen wir somit maximal 14 verschiedene Mengen.

Als Beispiel einer Teilmenge A eines top. Raumes, bei der tatsächlich auch 14 verschiedene
Mengen herauskommen, möge A := {0}∪ (1,2)∪ (2,3)∪ ([4,5]∩Q)⊆ R dienen.

Zum Abschluß dieses ersten Abschnitts noch zwei wichtige Definitionen.

2.1.12 Definition: Fσ -Menge und Gδ -Menge

Sei (X ,τ) ein topologischer Raum und A,O⊆ X . Man nennt O eine Fσ -Menge, wenn es eine
Folge (An)n∈N abgeschlosserner Mengen gibt mit O =

⋃
n∈NAn. Man nennt A eine Gδ -Menge,

wenn es eine Folge (On)n∈N offener Mengen gibt mit A =
⋂

n∈NOn.

2.1.13 Definition: Netzwerk

Sei (X ,τ) ein top. Raum. Eine Menge α ⊆P(X) heißt Netzwerk, wenn es zu jedem U ∈ τ ein
α ′⊆α gibt mit U =

⋃
α ′. Wir sprechen von abgeschlossenen Netzwerken, wenn die Elemente

A ∈ α abgeschlossenen sind (von offenen Netzwerken sprechen wir nicht, dass sind nämlich
einfach die Basen von X).

2.1.14 Bemerkung

Möchte man ”Topologie” mit wenigen Wörtern beschreiben, so fällt das nicht ganz leicht. Was
macht man in der Topologie? Man hat einen sehr allgemeinen Raumbegriff und untersucht
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beispielsweise Eigenschaften, die unter stetigen Abbildungen erhalten bleiben. Ganz vorsich-
tig könnte man dies also als eine Art ”Stetigkeitsgeometrie” beschreiben. Gibt es zu zwei
topologischen Räumen X und Y eine bijektive und in beiden Richtungen stetige Abbildung
f : X → Y , so sagen wir X und Y sind homöomorph. Aus topologischer Sicht unterscheiden
sie sich also nicht - sie werden ineinander deformiert. Ein kleinen Ausschnitt von dem, was
Topologie nun sein kann, erfährt der Leser in den folgenden Kapiteln ;-)

2.2 Stetige, offene und abgeschlossene Abbildungen
Wie kann man verschiedene topologische Räume miteinander vergleichen? Die Antwort ist:
Mit Abbildungen zwischen diesen Räumen, die mit der topologischen Struktur in einem ge-
wissen Sinn ”verträglich” sind. Realisiert wird dies im Konzept der stetigen Abbildung.

2.2.1 Definition: Stetige, offene und abgeschlossene Abbildungen

Eine Abbildung f : X→Y zwischen zwei top. Räumen (X ,τ) und (Y,σ) heißt stetig, wenn die
Urbilder offener Mengen in Y wieder offen in X sind (statt f : X → Y schreiben wir oftmals
auch f : (X ,τ)→ (Y,σ)). Wir nennen die Abbildung offen, wenn die Bilder offener Mengen
in X offen in Y sind. Und wir nennen sie abgeschlossen, wenn die Bilder abgeschlossener
Mengen in X abgeschlossen in Y sind. In der Regel interessiert man sich nur für offene bzw.
abgeschlossene Abbildungen, die bereits stetig sind. Es gibt aber keinen Grund dies bereits
in der Definition einzuschränken (wir sprechen dann halt immer von stetigen und offenen
bzw. stetigen und abgeschlossenen Abbildungen). Eine bijektive Abbildung f : X → Y heißt
ein Homöomorphismus, falls f und f−1 stetig sind. Wir nennen eine Abbildung f : X →
Y eine homöomorphe Einbettung (oder auch nur eine Einbettung), wenn f : X → f (Y ) ein
Homöomorphismus (bzgl. der Spurtopologie) ist.

2.2.2 Charakterisierungen der Stetigkeit

Sei f : X → Y eine Abbildung, dann sind folgende Aussagen äquivalent:
1) f ist stetig.
2) Die Urbilder einer Subbasis für Y sind offen in X .
3) Urbilder abgeschlossener Mengen sind abgeschlossen.
4) ∀M ⊆ X gilt f (M)⊆ f (M).
5) Zu jedem x ∈ X und zu jeder offenen Menge V mit f (x) ∈ V gibt es eine offene

Menge U mit x ∈U und f (U)⊆V .

Beweis: 1)→ 2) ist klar und für 2⇒ 1) genügt es zu bemerken, dass Urbilder von Abbil-
dungen Schnitte und Vereinigungen respektieren (Lemma 1.2.1).

1)⇔ 3) folgt ebenfalls aus Lemma 1.2.1.
1)⇒ 4) Sei y∈ f (M) und y∈V , V ist offen. Dann gibt es ein x∈M mit x∈ f−1(V ), welche

auch offen ist. Also M∩ f−1(V ) 6= /0. Dann aber auch f (M)∩V 6= /0. Also y ∈ f (M).
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4) ⇒ 3) Sei A abgeschlossen in Y . Setze dann M := f−1(A). Es gilt f (M) ⊆ f (M), also
f ( f−1(A))⊆ A = A. Dann folgt aber f−1(A)⊆ f−1(A) und somit f−1(A) = f−1(A). Letztere
Menge ist also abgeschlossen.

1)⇒ 5) Sei x ∈ X und V offen mit f (x) ∈ V . Dann ist U := f−1(V ) auch offen, enthält x
und es gilt f (U)⊆V .

5)⇒ 1) Sei V offen in Y und x ∈ f−1(V ) (falls das Urbild lehr ist, dann ist es offen). Dann
ist f (x)∈V und es gibt somit ein in X offenes Ux mit x∈Ux und f (Ux)⊆V , also Ux⊆ f−1(V ).
Dann ist aber auch f−1(V ) =

⋃
x∈ f−1(V )Ux offen!

2.2.3 Bemerkung

Ist f : X → Y eine Abbildung zwischen den topologischen Räumen (X ,τ) und (Y,σ) und
ist x ∈ X mit der Eigenschaft: ∀O ∈ ˙f (x)∩σ ∃U ∈ ẋ∩ τ mit f (U) ⊆ O, so sagen wir die
Abbildung f ist an der Stelle x stetig. Das obige Lemma sagt also beispielsweise: Ist f an
jeder Stelle x ∈ X stetig, so ist sie als Abbildung zwischen X und Y stetig.

2.2.4 Klebelemma

Seien X und Y Mengen, (Xa)a∈A eine Familie von Mengen mit X =
⋃

a∈A Xa und sei ( fa :
Xa → Y )a∈A eine Familie zugehöriger Abbildungen mit der Eigenschaft: ∀α,β ∈ A gilt
fα |(Xα ∩Xβ ) = fβ |(Xα ∩Xβ ). Dann gibt es genau eine Abbildung f : X → Y mit f |Xα =
fα .

Wenn X und Y zusätzlich top. Räume sind und alle fα stetig (bzgl. der Teilraumto-
pologie) sind, dann folgt aus jeder der beiden folgenden Bedingungen die Stetigkeit von
f .

a) A ist endlich und alle Xα sind abgeschlossen in X ,
b) alle Xα sind offen in X .

Beweis: Die Existenz der Abbildung ist klar, ebenso die Eindeutigkeit. Zu zeigen bleibt die
Stetigkeit von f unter den gegebenen Bedingungen. Dies bleibt als Übung. Man beachte, dass
eine Menge abgeschlossen in der Teiraumtopologie einer anderen abgeschlossenen Menge ist,
g.d.w. sie abgeschlossen im Gesamtraum ist (analog für offene Mengen) und verwende die
verschiedenen Charakterisierungen von Stetigkeit.

2.2.5 Lemma

a) Eine Abbildung f : X → Y ist genau dann abgeschlossen, wenn f (A) ⊆ f (A) ist, für
jede Teilmenge A ⊆ X . Mit Satz 2.2.2 ergibt sich dann: f : X → Y ist genau dann stetig
und abgeschlossen, wenn f (A) = f (A) ist für jedes A⊆ X .

b) Eine Abbildung f : X → Y ist genau dann offen, wenn f (A◦)⊆ ( f (A))◦ ist, für jede
Teilmenge A⊆ X . Ferner ist f offen, wenn die Bilder einer beliebigen Basis offen sind.
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Beweis: a) f (A) ist abgeschlossen und f (A)⊆ f (A), also auch f (A)⊆ f (A).
b) Nun ist f (A◦) offen und f (A◦) ⊆ f (A) und somit auch f (A◦) ⊆ ( f (A))◦. Da das Bild

einer Vereinigung gleich der Vereinigung der Bilder ist, folgt auch die zweite Aussage sofort.

2.2.6 Charakterisierung offener und abgeschlossener Abbildungen

a) Eine Abbildung f : (X ,τ)→ (Y,σ) ist genau dann offen, wenn es zu jedem B⊆ Y und
zu jedem abgeschlossenen A⊆ X mit f−1(B)⊆ A eine abgeschlossene Menge C⊆Y gibt,
mit B⊆C und f−1(C)⊆ A.

b) Eine Abbildung f : (X ,τ)→ (Y,σ) ist genau dann abgeschlossen, wenn es zu jedem
y ∈ Y und zu jedem U ∈ τ mit f−1(y)⊆U ein V ∈ ẏ∩σ gibt, mit f−1(V )⊆U .

Beweis: a) Ist f offen, B⊆Y und A abgeschlossen mit f−1(B)⊆ A, so ist C := Y \ f (X \A)
abgeschlossen und es gilt offensichtlich B⊆C und f−1(C)⊆ A (offensichtlich heißt hier, dass
man es unmittelbar nachrechnen kann).

Zeigen wir nun, dass unter der angegebenen Bedingung die Abbildung f offen ist. Dazu sei
P ∈ τ . Wir zeigen, dass f (P) offen ist. Dazu setzen wir B := Y \ f (P). Setzen wir A := X \P,
so ist A abgeschlossen und es gilt f−1(B) ⊆ A. Nach Voraussetzung gibt es dann ein in Y
abgeschlossenes C mit B ⊆ C und f−1(C) ⊆ A. Damit bekommen wir Y \ f (P) ⊆ C, also
Y \C ⊆ f (P) (∗) und f−1(C)⊆ X \P, also P⊆ X \ f−1(C) = f−1(Y \C) (∗∗). Aus (∗∗) folgt
f (P)⊆ Y \C und zusammen mit (∗) folgt f (P) = Y \C. Da C abgeschlossen ist, folgern wir,
dass f (P) offen ist.

b) Sei f zunächst abgeschlossen und U ∈ τ mit f−1(y) ⊆ U , für y ∈ Y . Dann ist V :=
Y \ f (X \U) ∈ ẏ∩ σ und es gilt f−1(V ) ⊆ U (beide Behauptungen kann man problemlos
nachrechnen).

Zeigen wir nun, dass unter der angegebenen Bedingung die Abbildung f abgeschlossen
ist. Sei dazu A ⊆ X und y ∈ f (A). Angenommen ∀x ∈ f−1(y)∃Ux ∈ ẋ∩ τ mit A∩Ux = /0.
Dann ist U :=

⋃
x∈ f−1(y)Ux ∈ τ mit f−1(y) ⊆U und U ∩A = /0. Es gibt dann ein V ∈ ẏ∩σ

mit f−1(V ) ⊆ U . Dann gilt aber V ∩ f (A) 6= /0, es gibt also ein x ∈ A mit f (x) ∈ V . Dann
folgt x ∈ A∩ f−1(V ) ⊆ A∩U = /0. Offensichtlich ist dies ein Widerspruch und somit ∃x ∈
f−1(y)∀U ∈ ẋ∩ τ : A∩U 6= /0. Das bedeutet aber gerade x ∈ A und somit y = f (x) ∈ f (A).
Damit ist f dann abgeschlossen.

2.3 Initialtopologie und Finaltopologie
Wie beschafft man sich auf einer Menge eine Topologie? Die zwei grundlegenden Konstruk-
tionen - Initialtopologie und Finaltopologie - lernen wir nun kennen. Als wichtigste Anwen-
dung der Initialtopologie werden wir dann die wichtige Produkttopologie (auf einem Produkt
von Mengen) definieren und als wichtigste Anwendung der Finaltopologie werden wir auf
einer Menge von Äquivalenzklassen die sogenannte Quotiententopologie definieren.
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2.3.1 Satz und Definition: Initialtopologie

Sei X eine Menge und (Xi,τi)i∈I eine Klasse von topologischen Räumen und zugehörigen
Abbildungen fi : X → Xi.

a) Es gibt dann eine gröbste Topologie τ auf X , bezüglich derer alle fi stetig sind. Diese
Topologie heißt die Initialtopologie bezüglich der Daten (Xi,τi)i∈I und ( fi : X → Xi)i∈I .

b) Die Initialtopologie τ ist durch folgende universelle Eigenschaft eindeutig bestimmt:
Für jeden topologischen Raum (Y,σ) und jede Abbildung g : Y → X gilt: g ist stetig,

genau dann wenn ∀ i ∈ I fi ◦g stetig ist.

Y

fi◦g ��?
??

??
??

g // X
fi
��

Xi

Beweis: a) Setze α :=
⋃

i∈I{ f−1
i (O) |O∈ τi} und τ := top(α). Für den unwahrscheinlichen

Fall, dass I = /0 ist, setzen wir α := {X}.
b) Sei τ die initiale Topologie auf X bezüglich der Daten (Xi,τi)i∈I und ( fi : X→ Xi)i∈I . Wir

zeigen, dass (X ,τ) die universelle Eigenschaft erfüllt. Sei dazu (Y,σ) ein beliebiger topologi-
scher Raum mit einer Abbildung g : Y → X . Falls g stetig ist, so sind auch alle Kompositionen
fi ◦g stetig (die fi sind schließlich stetig). Seien nun umgekehrt alle Kompositionen fi ◦g ste-
tig. Wir müssen zeigen, dass dann auch g stetig ist. Nun ist α offensichtlich eine Subbasis für
τ . Es reicht also sich die Urbilder unter g von Elementen aus α anzuschauen. U ∈ α impliziert
U = f−1

i (Oi) für ein gewisses i ∈ I (oder U = X). Dann folgt g−1(U) = g◦ f−1
i (Oi). Letzteres

ist aber offen, da g◦ fi stetig ist.
Nun sei τ ′ eine Topologie, welche ebenfalls die universelle Eigenschaft hat. Im ersten Schritt
sieht man, wenn man (Y,σ) = (X ,τ ′) und g = idX setzt und die universelle Eigenschaft für
(X ,τ) verwendet, dass alle fi : (X ,τ ′)→ (Xi,τi) stetig sind (schließlich ist fi ◦ idX = fi). Also
schon mal τ ⊆ τ ′. Im zweiten Schritt setzt man (Y,σ) = (X ,τ) und wieder g = idX (man ma-
le sich Diagramme). Nun wissen wir schon dass alle fi : (X ,τ ′)→ (Xi,τi) stetig sind und da
fi = fi ◦ idX ist also auch idX : (X ,τ)→ (X ,τ ′) stetig und somit τ ′ ⊆ τ . Insgesamt also τ = τ ′.

2.3.2 Definition: Produkttopologie

Sei (Xi,τi)i∈I eine Familie von topologischen Räumen. Auf X := ∏i∈I Xi wird mittels den
Daten (Xi,τi)i∈I und der Projektionen pri : X → Xi die initiale Topologie konstruiert und von
nun an Produkttopologie genannt. Die Produkttopologie bezeichnen wir mit ×i∈Iτi.

Eine Typische offene Subbasismenge hat also die Gestalt: ∏i∈I Oi mit Oi = Xi für i 6= j und
Oi ∈ τi für i = j ( j ist dabei beliebig). Eine typische Basismenge sieht dann so aus: ∏i∈I Oi mit
Oi = Xi für i ∈ I \J für ein endliches J ⊆ I und Oi ∈ τi für i ∈ J. Wenn wir bei Produkträumen
im Folgenden von offenen Basismengen oder offene Subbasismengen (oder vielleicht auch
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einfach nur Basismengen) reden, meinen wir Mengen dieser Bauart.

2.3.3 Lemma

Seien (Xi)i∈I und (Yi)i∈I zwei Familien von topologischen Räumen, Z ein weiterer top.
Raum und ( fi : Xi→Yi)i∈I bzw. (gi : Z→Yi)i∈I zwei Familien von Abbildungen. Bezeich-
ne X (bzw. Y ) den Produktraum der (Xi)i∈I (bzw, (Yi)i∈I) und setze f : X → Y definiert
durch f ((xi)i∈I) := ( fi(xi))i∈I , bzw. g : Z→Y definiert durch g(z) := (gi(z))i∈I . Dann gilt:
f ist genau dann stetig, wenn alle fi stetig sind und g ist genau dann stetig, wenn alle gi
stetig sind.

Beweis: Für i ∈ I seien im Folgenden pi : X → Xi und qi : Y → Yi die entsprechenden Pro-
jektionsabbildungen.

Seien zunächst alle fi stetig. Offensichtlich gilt qi ◦ f = fi ◦ pi. Damit ist qi ◦ f für jedes i∈ I
stetig. Nun trägt Y die Initialtopologie bzgl. der (qi)i∈I und somit ist f stetig.

Sei nun f als stetig vorausgesetzt und j ∈ I fest gewählt. Für jedes i 6= j wählen wir uns ein
festes xi ∈ Xi und definieren dann die stetige Hilfsabbildung s : X j→ X durch s(x j) := (xi)i∈I ,
für jedes x j ∈ X j. Damit ist f j = q j ◦ f ◦ s dann stetig.

Seien nun alle gi stetig. Offensichtlich gilt qi◦g = gi und somit ist qi◦g für jedes i∈ I stetig.
Da Y die Initialtopologie bzgl. der qi trägt, ist also auch g stetig.

Ist umgekehrt g stetig, so folgt aus gi = qi ◦g unmittelbar die Stetigkeit der gi.

2.3.4 Satz und Definition: Finaltopologie

Sei X eine Menge und (Xi,τi)i∈I eine Klasse von topologischen Räumen und zugehörigen
Abbildungen fi : Xi→ X .

a) Es gibt dann eine feinste Topologie τ auf X , bezüglich derer alle fi stetig sind. Diese
Topologie heißt die Finaltopologie bezüglich der Daten (Xi,τi)i∈I und ( fi : X → Xi)i∈I .

b) Die Finaltopologie τ ist durch folgende universelle Eigenschaft eindeutig bestimmt:
Für jeden topologischen Raum (Y,σ) und jede Abbildung g : X → Y gilt: g ist stetig

genau dann, wenn ∀ i ∈ I g◦ fi stetig ist.

Xi

g◦ fi ��?
??

??
??

fi // X
g
��

Y

Beweis: a) Setze τ := {O⊆ X | ∀ i ∈ I gilt f−1
i (O) ∈ τi}.

b) Übung (ähnlich wie bei der Initialtopologie).
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2.3.5 Definition: Quotiententopologie, identifizierende Abbildungen

Sei (X ,τ) ein topologischer Raum und ∼ eine Äquivalenzrelation auf X . Dann bezeichne
X/ ∼ die Menge aller Äquivalenzklassen und π : X → X/ ∼ die standard Projektion. Die
Finaltopologie auf X/ ∼ bezüglich π nennt man Quotiententopologie. Der Raum X/ ∼ mit
der entsprechenden Topologie wird auch Quotientenraum genannt. Seien (X ,τ) und (Y,σ)
top. Räume und f : X → Y eine Abbildung. Man nennt f identifizierend, falls f surjektiv ist
und σ die Finaltopologie bzgl. X und f ist (also O ∈ σ ⇔ f−1(O) ∈ τ).

2.3.6 Definition: Verkleben topologischer Räume

verkleben von top. Räumen Seien X und Y top. Räume, mit X ∩Y = /0, A⊆ X und f : A→Y
eine stetige Abbildung. Wir versehen X ∪Y mit der Finaltopologie bzgl. der standard Ein-
bettungen e1 : X → X ∪Y und e2 : Y → X ∪Y und führen auf X ∪Y folgendermaßen eine
Äquivalenzrelation ein. z1 ∼ z2 :⇔ (z1 = z2 ∨ f (z1) = f (z2) ∨ f (z1) = z2 ∨ f (z2) = z1).
Der Qutientenraum (X ∪Y )/∼ wird als der von X und Y mittels f zusammengeklebte Raum
bezeichnet und als X ∪ f Y bezeichnet. Y ist übrigens (kanonisch) als Teilraum in X ∪ f Y ent-
halten (Beweis als Übung).

2.3.7 Satz

Seien X ,Y,Z top. Räume und f : X → Z bzw. ϕ : X → Y identifizierende Abbildungen
mit der zusätzlichen Eigenschaft ∀a,b ∈ X : ϕ(a) = ϕ(b) ⇔ f (a) = f (b). Dann gibt es
genau ein Homöomorphismus g : Y → Z mit g◦ϕ = f .

Beweis: y∈Y ⇒ y = ϕ(x), setze g(y) := f (x). Dann ist g wohldefiniert, bijektiv und erfüllt
g◦ϕ = f . Die Abbildung g ist auch stetig, denn für O offen in Z ist g−1(O) offen in Y (wegen
ϕ−1(g−1(O)) = f−1(O) und dieses ist offen).

Sei nun O offen in Y . Zu zeigen ist dann, dass g(O) offen in Z ist. Es gilt jedenfalls:

f−1(g(O)) = f−1(g(ϕ(ϕ−1(O)))) = f−1( f (ϕ−1(O)))⊇ ϕ
−1(O)

Annahme: ∃x∈ f−1( f (ϕ−1(O)))\ϕ−1(O), dann folgt ϕ(x) 6∈O aber f (x)∈ f (ϕ−1(O)). Also
f (x) = f (x′) für x′ ∈ ϕ−1(O) und somit ϕ(x) = ϕ(x′) ∈ O - Widerspruch! Also f−1(g(O)) =
ϕ−1(O) Die letzte Menge ist aber offen, also ist auch g(O) offen.

2.4 Metrische Räume
2.4.1 Definition: Metrische Räume

Sei X eine Menge und d : X×X→R eine Abbildung welche folgenden Bedingungen genügt:
1) ∀x,y ∈ X d(x,y) = 0 ⇔ x = y,
2) ∀x,y ∈ X d(x,y) = d(y,x),
3) ∀x,y,z ∈ X d(x,y)≤ d(x,z)+d(z,y),
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dann nennen wir das Paar (X ,d) einen metrischen Raum. Für x,y ∈ X gilt 0 = d(x,x) ≤
d(x,y)+ d(y,x) = 2d(x,y), also 0 ≤ d(x,y). K(x,ε) := {y ∈ X | d(x,y) < ε} nennen wir die
offene Kugel um x mit Radius ε . Durch τd := top({K(x,ε) | x ∈ X und ε ∈ R} bekommen
wir eine Topologie auf X - die durch d induzierte. B := {K(x,1/n) | x ∈ X und n ∈ N\{0}}
ist dann sogar eine Basis für τd (Beweis?). Sprechen wir von irgendwelchen topologischen
Eigenschaften metrischer Räume, so beziehen wir uns auf die durch die Metrik induzierte To-
pologie. Eine Folge (xn)n∈N konvergiert gegen einen Punkt x, wenn es zu jedem ε > 0 ein
Index N ∈ N gibt, so dass für alle n ≥ N d(xn,x) < ε gilt. Beispielsweise ist A ⊆ X genau
dann abgeschlossen, wenn jede Folge aus A, die konvergent ist, auch bereits in A konver-
giert (Beweis als Übung). Eine Abbildung f : X → Y zwischen zwei metrischen Räumen ist
genau dann im Punkt x stetig (siehe dazu den nächsten Abschnitt über Stetigkeit), wenn für
jede Folge, die gegen x konvergiert, die Bildfolge gegen f (x) konvergiert(im Punkt x stetig,
bedeutet Satz 2.2.2 Nr.5). Für spätere Anwendungen definieren wir noch den Durchmesser
einer Teilmenge A von X als diam(A) := sup{d(x,y) | x,y ∈ X} und den Abstand eines Punk-
tes X zu A als d(x,A) := in f {d(x,y) | y ∈ A}, bzw den Abstand zweier Teilmengen A,B als
in f {d(x,y) | (x,y) ∈ A×B}. Sprechen wir in Zukunft von metrisierbaren Räumen, so meinen
wir topologische Räume, deren Topologie durch eine Metrik im obigen Sinn induziert wird.
In diesem Sinn kann man metrisierbare Räume also als metrische Räume auffassen.

Haben wir statt einer Metrik lediglich eine Pseudometrik d, also ein Abbildung d : X×X→
R, die den Bedingungen

1) ∀x ∈ X gilt d(x,x) = 0,
2) ∀x,y ∈ X d(x,y) = d(y,x),
3) ∀x,y,z ∈ X d(x,y)≤ d(x,z)+d(z,y)
genügt, so bekommen wir genau wie bei einer Metrik eine Topologie. Pseudometriken wer-

den im Kapitel über parakompakte Räume eine Rolle spielen.

2.4.2 Euklidische Metrik

Auf dem Rn können wir zum einen die Topologie τdn (erzeugt durch die euklidische Me-
trik dn(x,y) :=

√
∑

n
ν=1(xν − yν)2) und zum anderen die Produkttopologie τRn (bezüglich der

durch d1 auf R erzeugten Topologie) betrachten. Es gilt dann τRn = τdn . Der Beweis bleibt als
Übung.

2.4.3 Lemma

Sei (X ,d) ein metrischer Raum. Dann ist jede offene Menge eine Fσ -Menge und jede
abgeschlossene Menge eine Gδ -Menge.

Beweis: Zeigen wir, dass jede offene Menge eine Fσ -Menge ist. Sei dazu O offen in X . Für
jedes n ∈ N bilden wir die Menge An := {y ∈ O | d(y,X \O) ≥ 1/n}. Man kann dann leicht
nachrechnen, dass An eine abgeschlossene Menge ist und O =

⋃
n∈NAn gilt. Das dann auch je-

de abgeschlossene Menge eine Gδ -Menge ist, folgt leicht durch Übergang zu Komplementen.
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2.4.4 Satz

Sei (X ,d) ein metrischer Raum und α eine unendliche Kardinalzahl. Dann sind die fol-
genden Eigenschaften äquivalent.

1) Der Raum hat eine Basis B mit |B| ≤ α .
2) Der Raum hat ein Netzwerk N mit |N| ≤ α .
3) Jede offene Überdeckung σ von X hat eine Teilüberdeckung σ ′ mit |σ ′| ≤ α .
4) Für jeden diskreten Teilraum D von X gilt |D| ≤ α .
5) Für jeden abgeschlossenen diskreten Teilraum D von X gilt |D| ≤ α .
6) Für jede Familie σ paarweise disjunkter und offener Teilmengen von X gilt |σ | ≤ α .
7) Es gibt eine dichte Teilmenge D von X mit |D| ≤ α .

Beweis: 1) ⇒ 2 ist klar, da jede Basis auch ein Netzwerk ist.
2) ⇒ 3) Sei σ eine offene Überdeckung von X . Für jedes S ∈ σ wählen wir ein NS ⊆N mit⋃
NS = S. Dann bilden wir N′ := {NS | S ∈ σ}. Zu jedem n ∈ N′ wählen wir dann ein Sn ∈ σ

mit n⊆ Sn. Offensichtlich ist σ ′ := {Sn | n ∈ N′} dann eine offene Teilüberdeckung von σ mit
|σ ′| ≤ |N′| ≤ |N| ≤ α .

3) ⇒ 5) Sei D ein abgeschlossener diskreter Teilraum. Für jeden Punkt x ∈D gibt es dann
eine offene Menge Ox mit Ox∩D = {x}. Nun ist aber σ := {Ox | x ∈D}∪{X \D} eine offene
Überdeckung von X , die eine Teilüberdeckung σ ′ mit |σ ′| ≤ α hat. Da die Zuordnung x 7→Ox
injektiv ist und aus {Ox | x ∈ D} nichts weggelassen werden kann, muss |D| ≤ α gelten.

4) ⇒ 5) ist offensichtlich.
5) ⇒ 4) Sei D ein diskreter Teilraum in X . Dann ist D offen in D, und somit eine Fσ -

Menge in D. Es gibt also eine Folge in X abgeschlossener Mengen (An)n∈N mit D =
⋃

n∈N(D∩
An). Nun ist aber jedes D∩An in X abgeschlossen und Teilmenge von D, also diskret. Nach
Voraussetzung gilt dann |D∩An| ≤ α und somit, da α unendlich ist, auch |D| ≤ α .

4) ⇒ 6) ist auch klar, denn ist σ eine Familie paarweise disjunkter und offener Teilmengen
von X , so wählen wir für jedes O ∈ σ ein xO ∈O und D := {xO |O ∈ σ} ist dann ein diskreter
Teilraum mit |σ |= |D| ≤ α .

6) ⇒ 7) Für jedes n ∈ N bilden wir Zn := {A ⊆ X | {K(x,1/n) | x ∈ A} ist eine Familie
paarweise disjunkter Teilmengen }. Auf Zn können wir mittels Inklusion eine partielle Ord-
nung einführen. Man kann nun leicht nachrechnen, dass die Voraussetzungen des Zornschen
Lemmas erfüllt sind (ist (Ai)i∈I eine Kette in Zn, so ist

⋃
i∈I Ai eine in Zn gelegene obere

Schranke). Wir könnewn uns also ein bzgl. Inklusion maximales Element An ∈ Zn wählen.
Nun gilt |An| ≤ α , für jedes n ∈ N, also auch |A| ≤ α , wobei A :=

⋃
n∈NAn. Wir müssen also

nur noch zeigen, dass A dicht in X liegt. Gäbe es ein x ∈ X \A, so gäbe es ein n ∈ n mit
K(x,1/n)⊆ X \A. Dann wäre aber x ∈ An ⊆ A - ein Widerspruch.

7) ⇒ 1) Ist D eine dichte Teilmenge von X mit |D| ≤ α , so ist B :=
⋃

n∈NBn, wobei
Bn := {K(x,1/n) | x ∈ D}, eine Basis von X mit |B| ≤ α . Das |B| ≤ α gilt ist klar. Zeigen
wir, das B eine Basis ist. Sei O offen und x ∈ O. Dann gibt es ein n ∈ N mit K(x,2/n) ⊆ O.
Nun gibt es aber ein y ∈ D mit y ∈ K(x,1/n). Dann ist x ∈ K(y,1/n)⊆ K(x,2/n)⊆ O. Damit
lässt sich O als Vereinigung von Elementen aus B schreiben.

33



3 Trennungsaxiome und Konvergenztheorie
”Unsere Gesellschaft wird von Verrückten geführt, für verrückte Ziele. Ich glaube wir
werden von Wahnsinnigen gelenkt, zu einem wahnsinnigen Ende, und ich glaube ich
werde als Wahnsinniger eingesperrt, weil ich das sage. Das ist das wahnsinnige daran.”

John Lennon

3.1 Trennungsaxiome
Denken wir bei topologischen Räumen an die metrischen Räume, so sind wir es gewohnt zwei
verschiedene Punkte durch disjunkte Kugelumgebungen zu ”trennen”. Bei allgemeinen topo-
logische Räumen muss dies nun keineswegs mehr möglich sein (unabhängig davon, das wir
keinen Kugelbegriff zur Verfügung haben; wir haben halt einfach nur Umgebungen). Als ganz
einfaches Beispiel dazu möge X := {0,1}mit τ := { /0,{0},X} dienen. Es gibt hier einfach kei-
ne disjunkten Umgebungen von 0 und 1 (das es sich bei τ um eine Topologie auf X handelt,
ist offensichtlich). Räume in denen sich Punkte doch von einander trennen lassen, bekommen
hier nun eigene Namen.

3.1.1 Definition der Trennungsaxiome T0 T1, T2 (Hausdorff-Eigenschaft),
T3,regulär, T4, normal

Ein top. Raum heißt T0-Raum, wenn es zu je zwei verschiedenen Punkten eine offene Menge
gibt, die genau einen der beiden Punkte enthält.

Ein top. Raum heißt T1-Raum, wenn alle Einpunktmengen abgeschlossen sind.
Ein toplogischer Raum (X ,τ) heißt Hausdorff-Raum (oder T2), wenn zu je zwei verschie-

denen Elementen x,y∈ X zwei disjunkte offene Mengen O,U gibt (also U ∩V = /0) mit x∈O
und y ∈U . Jeder Teilraum eines Hausdorff-Raumes ist wieder ein Hausdorff-Raum (Beweis?)

Ein top. Raum heißt T3-Raum, wenn es zu jedem Punkt x ∈ X und jeder abgeschlossenen
Menge A mit x 6∈A disjunkte offenen Mengen U,V gibt mit x∈U und A⊆V . Ein top. Raum ist
T3, wenn jeder Punkt x∈X eine Umgebungsbasis aus abgeschlossenen Mengen hat (Beweis?).
Räume die T1 und T3 sind, werden regulär genannt.

Ein top. Raum heißt T4-Raum, wenn es zu zwei disjunkten abgeschlossenen Mengen A,B
zwei disjunkte offene Mengen U,V gibt mit A ⊆U und B ⊆ V . Räume die T1 und T4 sind,
werden normal genannt.

Im Zusammenhang mit Kompaktifizierungen bzw. parakompakten Räumen werden wir ein
paar weitere Trennungsaxiome kennen lernen.

3.1.2 Triviale Folgerungen

Offensichtlich gilt T2 ⇒ T1 ⇒ T0. Dies sind sogar die einzigen ”einfachen” Implikationen
die gelten. Allerdings gilt T4+T1 ⇒ T2+T3 (klar) und T3+T0 ⇒ T2+T3 (Beweis: Der Raum
ist T0, also gilt für x 6= y : x 6∈ {y} oder y 6∈ {x}. Also beispielsweise x 6∈ {y}. Dann folgt -
mit T3 - es gibt disjunkte offene Mengen U,V mit x ∈U und y ∈ {y} ⊆V . Man kann x und y
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also durch disjunkte offene Mengen trennen. Der zweite Fall läuft natürlich analog. Insgesamt
bekommen wir so T2.).

Teilräume von Ti-Räumen sind für i = 0,1,2,3 auch Ti-Räume. Für i = 4 muss das nicht
mehr gelten (es gibt bereits auf vierelementigen Mengen Gegenbeispiele). Allerdings haben
wir folgenden Satz.

3.1.3 Satz über die Vererbung von T4

Sei (X ,τ) ein T4-Raum und
a) A abgeschlossen ⊆ X . Dann ist auch A als Teilraum T4.
b) F eine Fσ -Menge in X (das heißt F =

⋃
n∈NAn, mit in X abgeschlossenen Mengen

An). Dann ist F als Teilraum ebenfalls T4.
c) Sei f : (X ,τ)→ (Y,σ) stetig, abgeschlossen und surjektiv, dann ist auch (Y,σ) ein

T4-Raum.

Beweis: a) Seien P′ und Q′ in der Teilraumtopologie von A abgeschlossen und disjunkt,
also P′ = P∩A und Q′ = Q∩A mit in X abgeschlossenen P und Q. Dann sind P′ und Q′

offenbar auch abgeschlossen in X . Da sie disjunkt sind gibt es disjunkte offene Obermengen
U,V . Dann sind aber U ′ := U ∩A und V ′ := V ∩A in der Teilraumtopologie von A offene und
disjunkte Obermengen von P′ bzw Q′.

b) Sei F =
⋃

n∈NAn, mit in X abgeschlossenen Mengen An gegeben. Wir bilden dann Fn :=⋃
k≤n Ak für jedes n ∈ N. Offenbar ist jedes Fn abgeschlossen und es gilt F =

⋃
n∈NFn bzw.

Fn ⊆ Fn+1 für jedes n ∈ N. Seien nun A′ und B′ abgeschlossene und disjunkte Teilmengen in
F (Teilraumtopologie). Dann gibt es in X abgeschlossene Mengen A,B mit A′ = A∩F und
B′ = B∩F .

Es gibt nun in X offene und disjunkte U ′0 und V ′0 mit A∩F0 ⊆U ′0 und B∩F0 ⊆V ′0. Dann gibt
es aber auch (in X) offene Mengen U0 und V0 mit A∩F0 ⊆U0 ⊆U0 ⊆U ′0 \B und B∩F0 ⊆
V0 ⊆ V0 ⊆ V ′0 \A. Es gilt dann [(A∩F1)∪U0]∩ [(B∩F1)∪V0] = /0. Diese Idee verfolgen wir
nun weiter und konstruieren ausgehend bei U0 und V0 zwei Folgen (Un)n∈N bzw. (Vn)n∈N von
in X offenen Mengen mit:

1) Für alle n ∈ N gilt Un∩Vn = /0, Un ⊆ X \B und Vn ⊆ X \A.
2) Für alle n ∈ N gilt [(A∩Fn+1)∪Un]∩ [(B∩Fn+1)∪Vn] = /0.
3) Für alle n ∈ N gilt (A∩Fn+1)∪Un ⊆Un+1 und (B∩Fn+1)∪Vn ⊆Vn+1.
Seien dementsprechend bereits U0, ...,Un und V0, ...,Vn konstruiert. Nun gilt nach Vorausset-

zung [(A∩Fn+1)∪Un]∩ [(B∩Fn+1)∪Vn] = /0. Wir können also disjunkte, in X offene Mengen
U ′n+1 und V ′n+1 wählen, mit (A∩Fn+1)∪Un ⊆U ′n+1 und (B∩Fn+1)∪Vn ⊆V ′n+1. Dann gibt es
aber auch offene Mengen Un+1 bzw. Vn+1 mit

(A∩Fn+1)∪Un ⊆Un+1 ⊆Un+1 ⊆U ′n+1 \B und (B∩Fn+1)∪Vn ⊆Vn+1 ⊆Vn+1 ⊆V ′n+1 \A.
Nun können wir unbeschwert U :=

⋃
n∈NUn und V :=

⋃
n∈NVn bilden. Dies sind dann offene

(klar) und disjunkte (Annahme x∈U ∩V , dann x∈Uk∩Vl . O.B.d.A. gilt k≤ l, also x∈Ul∩Vl
- im Widerspruch zur Disjunktheit.) Teilmengen von X mit A∩F ⊆U und B∩F ⊆V (das ist
wieder offensichtlich).
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c) Seien A,B in Y abgeschlossene und disjunkte Teilmengen. Dann sind auch f−1(A) und
f−1(B) disjunkt und abgeschlossen. Nach Voraussetzung gibt es dann disjunkte offene Men-
gen U,V mit f−1(A) ⊆U und f−1(B) ⊆ V . Für jedes a ∈ A ist also f−1(a) ⊆U und es gibt
somit (nach Lemma 2.2.6) ein Pa ∈ ȧ∩σ mit f−1(Pa) ⊆U . Dann ist P :=

⋃
a∈A Pa ∈ σ mit

A⊆ P und f−1(P)⊆U . Ananlog gibt es ein Q ∈ σ mit B⊆ Q und f−1(Q)⊆V . Dann sind P
und Q disjunkte offene Obermengen von A und B.

3.1.4 Lemma (Folgen paarweise disjunkter offener Mengen)

Sei (X ,τ) ein unendlicher Hausdorff-Raum. Dann gibt es eine Folge (On)n∈N aus τ mit
On ∩Om = /0 und On 6= /0 für alle m 6= n ∈ N. Insbesondere gilt für τ demnach |τ| ≥ |R|
(unendliche Hausdorff-Räume sind sehr reich an offenen Mengen).

Beweis: Wir nennen einen Punkt x isoliert, falls {x} offen ist. Sei E := {x ∈ X | {x} ∈
τ}. Falls E unendlich ist, sei (xn)n∈N eine Folge aus E derart, dass ({xn})n∈N eine Folge
paarweise disjunkter offener Mengen sind ... und wir sind fertig. Andernfalls sei E endlich.
Setze Z := X \E. Offenbar ist Z unendlich, offen in X und enthält keine isolierten Punkte
(Teilraumtopologie). Wir können also o.B.d.A. E = /0 annehmen. Dann ist aber jedes O ∈
τ \ { /0} unendlich. Seien x,y ∈ X mit x 6= y. Seien U,V ∈ τ mit x ∈U , y ∈ V und U ∩V = /0.
Setze O0 :=U . Sei n∈N und (Ok)n

k=0 eine Folge paarweise disjunkter offener Mengen derart,
dass ∃W ∈ τ \ { /0} mit W ⊆ X \

⋃n
k=0 Ok. Wähle x,y ∈ W mit x 6= y. Seien U,V ∈ τ mit

x ∈U , y ∈ V und U ∩V = /0. Setze On+1 := U ∩W . Offenbar ist W ′ := W ∩V ∈ τ \ { /0} mit
W ′ ⊆ X \

⋃n+1
k=0 Ok. So geht das dann weiter ...

Zeigen wir nun noch |τ| ≥ |R|. Sei dazu (Oi)i∈N eine Folge paarweise disjunkter nichtleerer
Mengen. Für jedes N ⊆ N ist ON :=

⋃
i∈N Oi eine offene Menge mit N 6= M ⇒ OM 6= ON .

Man erhält demnach |τ| ≥ |P(N)|= |R|.

3.1.5 Definition: stark Hausdorff

Wir nennen einen Raum (X ,τ) stark Hausdorff, falls er Hausdorff ist und zu jeder unendli-
chen Teilmenge F ⊆ X eine Folge (On)n∈N aus τ mit On ∩Om = /0 und On ∩F 6= /0 für alle
m 6= n ∈ N existiert.

3.1.6 Lemma

Jeder T2-T3-Raum (X ,τ) ist stark Hausdorff.

Beweis: Sei F ⊆ X eine unendliche Teilmenge. Wähle a,b ∈ F mit a 6= b. Seien U,V ∈ τ

mit a ∈U , b ∈V und U ∩V = /0.

Fall 1 U ∩F und V ∩F sind beide endlich. Seien U ′,V ′ ∈ τ derart, dass a ∈U ′ ⊆U ′ ⊆U und
b ∈V ′ ⊆V ′ ⊆V . Setze dann x0 := a, x1 := b, O0 := U ′ und O1 := V ′.
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Fall 2 O.B.d.A. ist U ∩F unendlich. Setze dann x0 := b und O0 := V .

Sei n ∈ N und (On)k≤n eine Folge aus τ , (xn)k≤n eine Folge aus F mit xk ∈ Ok ∩F (für alle
k ≤ n), Ok ∩Ol = /0 (für alle k 6= l) und ∃W ∈ τ mit W ∩F unendlich und W ⊆ X \

⋃n
k=0 Ok.

Wähle dann a,b ∈ F ∩W mit a 6= b. Seien U,V ∈ τ mit a ∈U , b ∈V und U ∩V = /0.

Fall 1 W ∩U ∩F und W ∩V ∩F sind beide endlich. Seien U ′,V ′ ∈ τ derart, dass a ∈ U ′ ⊆
U ′ ⊆W ∩U und b∈V ′ ⊆V ′ ⊆W ∩V . Setze dann xn+1 := a, xn+2 := b, On+1 := W ∩U ′

und On+2 := W ∩V ′.

Fall 2 O.B.d.A. ist W ∩U ∩F unendlich. Setze dann xn+1 := b und On+1 := W ∩V .

3.1.7 Satz

Sei a ∈ {0,1,2,3}. Ein Produkt X = ∏i∈I Xi nicht leerer topologischer Räume (Xi,τi)i∈I
ist genau dann ein Ta-Raum, wenn jeder Faktor ein Ta-Raum ist.

Beweis: Exemplarisch sei der Beweis für T2 geführt. Seien alle (Xi,τi) Hausdorff-Räume
und x = (xi)i∈I 6= y = (yi)i∈I zwei Punkte aus X . Dann gibt es ein j ∈ I mit x j 6= y j und somit
gibt es zwei disjunkte offene Mengen U j,Vj ∈ τ j mit x j ∈ U j und y j ∈ Vj. Dann sind aber
f−1

j (U j) und f−1
j (Vj) disjunkte offene Mengen in X mit x ∈ f−1

j (U j) und y ∈ f−1
j (Vj). Also

ist auch X ein Hausdorff-Raum.
Sei andererseits X ein Hausdorff-Raum. Also X 6= /0. Wähle a = (ai)i∈I ∈X und j ∈ I und setze
Yj := {(xi)i∈I ∈ X | xi = ai falls i 6= j}. Man kann schnell nachrechnen, dass pr j|Y j : Yj→ X j
ein Homöomorphismus ist (bezüglich der Teilraumtopologie auf Yj). Da Yj als Teilraum von
X nun aber hausdorff ist, ist es auch X j.

Für den Nachweis von T3 sei angeführt, dass das Produkt abgeschlossener Mengen im Pro-
duktraum wieder abgschlossen ist und ein top. Raum ein T3-Raum ist, wenn jeder Punkt x∈ X
eine Umgebungsbasis aus abgeschlossenen Mengen hat.

3.1.8 Bemerkung

Produkte von T4-Räumen müssen nicht wieder T4 sein, wie Beispiel 12.1.17 lehrt.
Wie kann man einigermaßen bequem zeigen, dass ein Raum nicht T4 ist? Eine schöne Mög-

lichkeit dies nachzuweisen, gibt folgendes Lemma.

3.1.9 Lemma

Sei (X ,τ) ein T4-Raum, A ⊆ X eine abgeschlossene diskrete Teilmenge (d.h. die Teil-
raumtopologie ist die diskrete) und D eine dichte Teilmenge (von X). Dann ist |P(A)| ≤
|P(D)|.

Falls also für ein top. Raum eine abgeschlossene und diskrete Teilmenge A und eine
dichte Teilmenge D existiert, mit |A| ≥ |P(D)|, so kann der Raum nicht T4 sein!
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Beweis: Wenn B ∈P(A), dann sind B und A\B in A abgeschlossen und demnach auch in
X . Da sie disjunkt sind, existieren disjunkte UB,VB ∈ τ mit B⊆UB und A\B⊆VB. B 7→UB∩D
definiert ein f : P(A)→P(D). Zu zeigen bleibt dann noch, dass dieses f injektiv ist. Seien
dazu B 6= B′ (B,B′ ⊆ A). O.B.d.A. ∃b ∈ B \B′. Nun ist B ⊆UB, B′ ⊆UB′ und b ∈ VB′ . Also
∃d ∈UB∩VB′ ∩D⊆ f (B), aber d 6∈UB′ ∩D = f (B′). Also f (B) 6= f (B′).

3.2 Filter, Ultrafilter und Filterkonvergenz
”Der Tod von Lincoln ist ein Unglück für das Christentum. Es gibt keinen Mann in den
Vereinigten Staaten der in seine Schuhe paßt. Ich fürchte, daß ausländische Bankiers mit
ihrer List und ihren verwundenen Tricks volle Kontrolle über den üppigen Reichtum von
Amerika erlangen werden und ihn systematisch dazu verwenden werden, die moderne
Zivilisation zu verderben. Sie werden nicht zögern, das gesamte Christentum in Kriege
und Chaos zu stürzen um die Welt zu ihrem Erbe zu machen.”

Otto von Bismarck

Um auch in allgemeinen topologischen Räumen eine vernünftige Konvergenztheorie entwi-
ckeln zu können, brauchen wir den Begriff des Filters. Filter auf einer Menge X sind - wie auch
die Topologie - als gewisse Teilmengen der Potenzmenge von X erklärt. Auch außerhalb der
Topologie finden Filter Anwendung; beispielsweise in der Logik/Modelltheorie (siehe dazu
auch den Abschnitt über Nichtstandard Topologie) und auch ganz allgemein in der Mengen-
theorie. Wer mehr über Filter erfahren möchte, der greife zu Bourbaki General Topology oder
Comfort/Negrepontis The Theory of Ultrafilters oder auch zu Chang/Keisler Model Theory.

3.2.1 Definition: Filter, Ultrafilter und endliche Schnitt Eigenschaft (eSE)

ϕ ⊆P(X) heißt ein Filter auf X , falls ϕ folgenden Bedingungen genügt:
1) /0 6∈ ϕ .
2) ∀P,Q ∈ ϕ ist P∩Q ∈ ϕ , der Schnitt zweier Mengen aus ϕ ist wieder in ϕ .
3) {Q⊆ X | ∃P ∈ ϕ mit P⊆ Q} ⊆ ϕ , jede Obermenge einer Menge aus ϕ ist wieder in ϕ .
Ferner nennen wir den Filter ϕ auf einer Menge X einen Ultrafilter, falls es keinen Filter

ψ auf X gibt mit ϕ ( ψ (er ist bezüglich Inklusion also maximal).
Eine Teilmenge σ ⊆P(X) hat die endliche Schnitt Eigenschaft (eSE) wenn der Schnitt

je endlich vieler Elemente aus σ nicht leer ist.
Für eine nicht leere Teilmenge σ ⊆P(X) definieren wir [σ ] := {A ⊆ X | ∃P1, ...,Pn ∈ σ

mit P1 ∩ ...∩Pn ⊆ A}. Wenn σ die eSE hat, dann ist [σ ] ein Filter mit σ ⊆ [σ ] (Beweis als
Übung).

Für eine einelementige Menge A = {x} schreiben wir für [{A}] einfach ẋ. Es ist dann ẋ =
{P⊆ X | x ∈ P}. Mit Hilfe dieser Notation schreibt sich die Menge aller offenen, den Punkt x
enthaltenen Mengen aus dem topologischen Raum (X ,τ) sehr einfach als ẋ∩τ . Diese Notation
werden wir im Folgenden sehr häufig verwenden.

Filter der Form ẋ nenne wir zuweilen auch trivial, oder Einpunkt-Filter. Dies sind die einzi-
gen explizit angebbaren Ultrafilter.
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Für einen Filter ϕ nennen wir B ⊆ ϕ eine Basis, wenn es zu jedem P ∈ ϕ ein B ∈B gibt
mit B⊆ P. Wir nennen S eine Subbasis von ϕ , wenn {

⋂
S ′ |S ′ ⊆S und S ′ ist endlich }

eine Basis von ϕ ist.

3.2.2 Ultrafiltersatz (Ultrafilter Theorem ⇒ UFT)

Wenn σ ⊆P(X) die eSE hat, dann gibt es einen Ultrafilter Φ auf X mit σ ⊆Φ.

Beweis: Setze Z := {ϕ ⊆P(X) | ϕ ist ein Filter und σ ⊆ ϕ}. Dann ist Z 6= 0, denn z.B.
[σ ] ist in Z. Nun ist Z durch ⊆ partiell geordnet, und eine Kette (ϕk)k∈K hat - wie man leicht
nachrechnet -

⋃
k∈K ϕk als obere Schranke in Z. Das Zornsche Lemma verschafft uns also

maximale Elemente in Z und just diese sind die gesuchten Oberultrafilter.

3.2.3 Lemma (verschiedene Charakterisierungen von Ultrafiltern)

Für einen Filter Φ auf X sind äquivalent:
1) Φ ist ein Ultrafilter.
2) ∀A⊆ X gilt A ∈Φ oder X \A ∈Φ.
3) ∀n≥ 1, A1, ...,An ⊆ X gilt: A1∪ ...∪An ∈Φ ⇒ ∃k ∈ {1, ...,n} mit Ak ∈Φ.
4) Für alle n≥ 1 und Filter ϕ1, ...,ϕn mit ϕ1∩ ...∩ϕn ⊆Φ existiert ein i ∈ {1, ...,n} mit

ϕi ⊆Φ

Beweis: 1)⇒ 2) Das für A ⊆ X höchstens eine der beiden Mengen A, X \A in dem Filter
liegen kann ist klar. Nehmen wir an A 6∈Φ. Das bedeutet kein Element P∈Φ ist als Teilmenge
in A enthalten, jedes P∈Φ hat also mit X \A einen nicht leeren Schnitt. Das System δ := {P∩
(X \A) | P∈Φ} hat also die eSE und ist somit in einem Ultrafilter Φ′ enthalten. Für P∈Φ gilt
P∩(X \A)∈ δ ⊆Φ′. Also ist P als Obermenge von P∩(X \A) auch in Φ′ und wir bekommen
Φ⊆Φ′. Da auch Φ ein Ultrafilter ist, muss Φ = Φ′ gelten. Somit ist X \A = X ∩ (X \A) ∈Φ.

2)⇒ 3) Wir zeigen die Aussage für n = 2. Der Rest geht dann durch vollständige Induktion.
Sei also A∪B ∈Φ. Währe sowohl A 6∈Φ, als auch B 6∈Φ, so währe X \A ∈Φ und X \B ∈Φ.
Dann aber auch X \ (A∪B) = (X \A)∩ (X \B) ∈Φ - ein Widerspruch.

3)⇒ 2) Folgt sofort aus A∪ (X \A) = X ∈Φ.
2)⇒ 1) Filter mit dieser Eigenschaft sind bereits maximal!
2) ⇒ 4) Angenommen keiner der Filter ϕi ist in Φ enthalten. Für i = 1, ...,n wählen wir

je ein Pi ∈ ϕi \Φ. Es ist dann X \ (P1 ∪ ...∪Pn) = (X \P1)∩ ...∩ (X \Pn) ∈ Φ. Aber auch
P1∪ ...∪Pn ∈ ϕ1∩ ...∩ϕn ⊆Φ - ein Widerspruch.

4)⇒ 2) Sei A⊆ X . Betrachten wir ϕ1 := {P⊆ X | A⊆ P} und ϕ2 := {P⊆ X | X \A⊆ P}.
Dann ist ϕ1∩ϕ2 = {X} ⊆Φ. Also z.B. ϕ1 ⊆Φ und damit A ∈Φ.
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3.2.4 Satz und Definition: Bildfilter

Sei ϕ ein Filter auf X und f : X→Y eine Abbildung. Dann ist {Q⊆Y | ∃P∈ϕ mit f (P)⊆
Q} ein Filter, genannt der Bildfilter, auf Y . Bezeichnung: f (ϕ). Falls ϕ ein Ultrafilter ist,
so ist f (ϕ) auch einer.

Beweis: Sei Q∪Q′ ∈ f (ϕ). Dann gibt es ein P ∈ ϕ mit f (P) ⊆ Q∪Q′, also P ⊆ f−1(Q∪
Q′) = f−1(Q)∪ f−1(Q′). Da ϕ ein Ultrafilter ist, gilt also P⊆ f−1(Q) oder P⊆ f−1(Q′), also
f (P)⊆ Q oder f (P)⊆ Q′ und somit Q ∈ f (ϕ) oder Q′ ∈ f (ϕ).

3.2.5 Lemma

1. Seien X ,Y 6=∅, f : X → Y eine Abbildung, φ ein Filter auf X und ψ ein Ultrafilter
auf Y mit f (φ)⊆ ψ . Dann ∃ ein Ultrafilter φ0 auf X mit φ ⊆ φ0 und f (φ0) = ψ .

2. Seien X ,Y 6=∅, ψ ein Filter auf X , φ ein Filter auf Y X und ξ ein Ultrafilter auf Y mit
φ(ψ)⊆ ξ . Dann existieren Ultrafilter φ0, ψ0 mit φ ⊆ φ0, ψ ⊆ ψ0 und φ0(ψ0)⊆ ξ .

Beweis: 1. Setze α := φ ∪{ f−1(Q) | Q ∈ ψ}. Seien P1, ...,Pn ∈ φ und Q1, ...,Qm ∈ ψ . Wegen
f (φ) ⊆ ψ gibt es ein y ∈ f (P1∩ ...∩Pn)∩Q1∩ ...∩Qn. Sei x ∈ P1∩ ...∩Pn mit y = f (x). Es
folgt x ∈ P1∩ ...∩Pn∩ f−1(Q1)∩ ...∩ f−1(Qn). Sei φ0 eine Ultrafilter mit α ⊆ φ0. Sei P ∈ φ0
und Q∈ψ . Wegen f−1(Q)∈ φ0 folgt P∩ f−1(Q) 6=∅, also f (P)∩Q 6=∅. Da ψ ein Ultrafilter
ist, folgt f (φ0)⊆ ψ . Da aber auch f (φ0) ein Ultrafilter ist, gilt f (φ0) = ψ .

2. Sei Ω : Y X ×X → Y die Evaluationsabbildung Ω( f ,x) := f (x). Offenbar gilt nun

Ω(φ ×ψ) = φ(ψ)⊆ ξ .

Aus 1. folgt die Existenz eines Ultrafilters η auf Y X ×X mit φ ×ψ ⊆ η und Ω(η) = ξ . Seien
p1 : Y X×X→Y X , p2 : Y X×X→X die entsprechenden Projektionen. Dann sind p1(η), p2(η)
Ultrafilter auf Y X bzw. X mit φ ⊆ p1(η) und ψ ⊆ p2(η). Setze φ0 := p1(η) und ψ0 := p2(η).
Für T1,T2 ∈ η folgt η 3 T1∩T2 ⊆ p1(T1)× p2(T2) 6=∅, also φ0×ψ0 ⊆ η . Insgesamt bekom-
men wir damit φ0(ψ0) = Ω(φ0×ψ0)⊆Ω(η) = ξ .

3.2.6 Definition: Konvergenz einer Folge und Filterkonvergenz

Sei (X ,τ) ein topologischer Raum und (xn)n∈N eine Folge. Wir sagen diese Folge konvergiert
gegen ein x ∈ X , wenn ∀O ∈ ẋ∩ τ ∃n ∈N∀k≥ n : xk ∈O. So kennen wir das auch schon aus
der Analysis. Bilden wir den Filter ϕ := {P⊆ X | ∃n ∈N∀k≥ n : xk ∈ P} (das es tatsächlich
ein Filter ist, kann man leicht nachrechnen), so könnten wir die Konvergenz der Folge auch
kurz schreiben als ẋ∩ τ ⊆ ϕ! Derart motiviert, definieren wir nun für einen beliebigen Filter
ϕ auf X was es heißt zu konvergieren.
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Wir sagen ϕ konvergiert gegen x ∈ X , falls ẋ∩ τ ⊆ ϕ . Wir schreiben auch ϕ
τ→ x oder

kürzer ϕ → x. Die Folgenkonvergenz ist also ein Spezialfall der Filterkonvergenz.

3.2.7 Charakterisierung abgeschlossener Mengen durch Filterkonvergenz

Ist (X ,τ) ein top. Raum und ϕ ein Filter auf X . Bezeichnen wir mit Kϕ die Menge aller Punkte
aus X , gegen die ϕ konvergiert, so gilt:

A⊆ X ist genau dann abgeschlossen, wenn Kϕ ⊆ A, für jeden Filter ϕ auf X mit A ∈ ϕ gilt.
Der Beweis bleibt als leichte Aufgabe.
Mit Hilfe der Filterkonvergenz lässt sich auch sehr leicht die Stetigkeit einer Abbildung

zwischen zwei topologischen Räumen Räumen beschreiben - ganz analog zur Beschreibung
der Stetigkeit in metrischen Räumen mittels Folgenkonvergenz.

3.2.8 Charakterisierung der Stetigkeit durch Filterkonvergenz

Seien (X ,τ) und (Y,σ) zwei topologische Räume und f : X → Y eine Abbildung. f ist
genau dann an der Stelle x ∈ X stetig, wenn für jeden gegen x konvergenten Filter ϕ auch
f (ϕ) konvergent gegen f (x) ist.

Beweis: Sei f an der Stelle x stetig und ϕ gegen x konvergent. Wir wählen ein beliebiges
O ∈ ˙f (x)∩σ . Dann ist x ∈ f−1(O) ∈ τ , also P := f−1(O) ∈ ẋ∩ τ . Es folgt O ∈ f (ϕ), denn
f (P) ∈ f (ϕ) und f (P)⊆ O. Insgesamt also ˙f (x)∩σ ⊆ f (ϕ).

Nehmen wir nun an, für jeden gegen x konvergenten Filter ϕ ist f (ϕ) konvergent gegen
f (x). Sei dann f (x) ∈O ∈ σ . Wir bilden nun den Filter ϕ := {P⊆ X | ∃U ∈ ẋ∩τ mit U ⊆ P}.
Offensichtlich gilt ϕ → x, also auch f (ϕ)→ f (x). Damit folgt unmittelbar O ∈ f (ϕ). Es gibt
dann ein P ∈ ϕ mit f (P)⊆O. Nach Konstruktion gibt es somit auch ein U ∈ ẋ∩τ mit U ⊆ P,
also f (U)⊆ O. Damit ist alles gezeigt.

3.2.9 Satz: Charakterisierung der Trennungsaxiome in topologischen
Räumen durch Filterkonvergenz

Für jeden topologischen Raum (X ,τ) gilt:

T0 (X ,τ) ist ein T0-Raum, genau dann wenn ∀x,y ∈ X gilt:
•
x τ→ y und

•
y τ→ x impliziert

x = y.

T1 (X ,τ) ist ein T1-Raum, genau dann wenn ∀x ∈ X gilt: | limqτ

•
x | ≤ 1.

T2 (X ,τ) ist ein T2-Raum, genau dann wenn ∀φ ∈F0(X) gilt: | limqτ
φ | ≤ 1.

T3 (X ,τ) ist ein T3-Raum, genau dann wenn ∀φ ∈F (X) gilt: limqτ
φ = limqτ

φ

Hier bezeichnet φ := {Q⊆ X | ∃P ∈ φ mit P⊆ Q}.
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Ferner ist für einen topologischen Raum (Y,σ) äquivalent:

(1) ∀x,y ∈ Y gilt:
•
x σ→ y impliziert

•
y σ→ x

(2) ∀x,y ∈ Y gilt: y ∈ {x} impliziert x ∈ {y}
(3) ∀y ∈ Y ∀O ∈ σ gilt: y ∈ O impliziert {y} ⊆ O

Solch einen topologischen Raum nennen wir R0-Raum.

Beweis: (T0): Ist klar.

(T1): Ist (X ,τ) ein T1-Raum und x ∈ X , so sei
•
x τ→ y. Also

•
y ∩τ ⊆•x. Wäre y 6= x, so sei

O ∈
•
y ∩τ mit x 6∈ O. Folglich /0 = {x}∩O ∈ •x - Widerspruch. Falls andererseits ∀x ∈ X gilt:

| limqτ

•
x | ≤ 1, so folgt für y ∈ {x} offenbar y ∈ limqτ

•
y⊆ limqτ

•
x⊆ {x}, also x = y.

(T2): Sei (X ,τ) ein T2-Raum. Annahme ∃φ ∈F0(X) und ∃x,y ∈ limqτ
φ mit x 6= y. Seien

U,V ∈ τ mit U∩V = /0 und x∈U , y∈V . Offenbar sind U,V ∈ φ - Widerspruch. Angenommen
∀φ ∈F0(X) gilt: | limqτ

φ | ≤ 1. Sei x 6= y. Falls (
•
x ∩τ)∪ (

•
y ∩τ) die eSE hat, dann sei φ ein

Ultrafilter mit (
•
x ∩τ)∪ (

•
y ∩τ)⊆ φ . Offenbar gilt {x,y} ⊆ limqτ

φ - Widerspruch. Also gibt es

ein U ∈ •x ∩τ und ein V ∈
•
y ∩τ mit U ∩V = /0.

(T3): Sei (X ,τ) ein T3-Raum. Sei φ ∈ F (X). In topologischen Räumen gilt natürlich
limqτ

φ ⊆ limqτ
φ . Sei x ∈ limqτ

φ und O ∈ •x ∩τ . Sei U ∈ τ mit x ∈U ⊆U ⊆ O. Sei P ∈ φ

mit P ⊆ U . Offenbar ist P ⊆ O, also O ∈ φ . Nehmen wir andererseits an ∀φ ∈ F (X) gilt:
limqτ

φ = limqτ
φ . Sei x ∈ O ∈ τ . Sei φ := {P ⊆ X | ∃V ∈ •x ∩τ mit V ⊆ P}. Offenbar ist

x ∈ limqτ
φ = limqτ

φ . Es gibt also ein P∈ φ mit P⊆O. Zu P existiert ein V ∈ •x ∩τ mit V ⊆ P.
Also x ∈V ⊆V ⊆ P⊆ O.

Zeigen wir noch die Äquivalenz von (1), (2) und (3):
(1) ⇔ (2) folgt aus der Äquivalenz von y ∈ {x} und

•
x σ→ y. (2) ⇒ (3): Angenommen es

gibt O ∈ σ und y0 ∈ O mit {y0} 6⊆ O. Sei y1 ∈ {y0} \O. Dann wäre aber auch y0 ∈ {y1}, im
Widerspruch zu y0 ∈ O und y1 6∈ O. (3) ⇒ (2): Sei y1 ∈ {y0} und sei O ∈ •y0 ∩σ . Dann ist
{y0} ⊆ O, also y1 ∈ O und folglich y0 ∈ {y1}.

3.2.10 Lemma

Sei (X ,τ) ein Hausdorff-Raum und D eine in X dichte Menge. Dann ist |X | ≤ |F0(D)| ≤
|P(P(D))|.

Beweis: Für ein fest gewähltes x ∈ X ist ϕx
D := {F ⊆ D | ∃O ∈ ẋ∩ τ mit O∩D ⊆ F} ein

Filter auf D wie man durch Nachrechnen bestätigt. Also existiert ein Ultrafilter ψx
D auf D

mit ϕx
D ⊆ ψx

D. Dieser Ultrafilter wird nun durch Φx
D := {A ⊆ X | ∃F ∈ ψx

D mit F ⊆ A} zu
einem Filter auf X erweitert. Für O ∈ ẋ∩τ gilt nun O∩D ∈ ϕx

D ⊆Φ x
D. Daraus folgt dann aber
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ẋ∩τ ⊆Φx
D, also Φx

D→ x. Die Abbildung α : X →F0(D) definiert durch x 7→ ψx
D ist nun aber

injektiv, denn aus ψ
x1
D = ψ

x2
D folgt Φ

x1
D = Φ

x2
D , also Φ

x1
D → x1 und Φ

x2
D → x2. Und damit gilt

dann x1 = x2, denn X ist als Hausdorff-Raum vorausgesetzt worden. Zusammen ergibt dies
|X | ≤ |F 0(D)| ≤ |P(P(D))| (die zweite Ungleichung ist trivial).

3.2.11 Lemma (Filterkonvergenz bzgl Initialtopologien)

Bezeichne τ die initiale Topologie auf X bezüglich einer Familie (Yi,σi)i∈I topologischer
Räume mit zugehörigen Abbildungen ( fi : X→Yi)i∈I . Ein Filter ϕ auf X konvergiert genau
dann gegen ein Element x ∈ X , wenn ∀ i ∈ I fi(ϕ)→ fi(x).

Beweis: Wenn ϕ → x ∈ X und Oi ∈ ˙fi(O)∩ τi, dann ist f−1
i (Oi) ∈ ẋ∩ τ ⊆ ϕ , also Oi ⊆

fi( f−1
i (Oi)) ∈ f (ϕ) und somit fi(ϕ)→ fi(x).

Sei andererseits ∀ i ∈ I fi(ϕ)→ fi(x). Wir zeigen ϕ → x. Sei dazu x ∈ O ∈ τ . Nach Defi-
nition der Initialtopologie gibt es i1, ..., in ∈ I mit x ∈

⋂n
k=1 f−1(Oik) ⊆ O. Da fik(x) ∈ Oik

und fik(ϕ)→ fik(x), gibt es Aik ∈ ϕ mit fik(Aik) ⊆ Oik . Also Aik ⊆ f−1
ik (Oik) und somit ϕ 3⋂n

k=1 Aik ⊆
⋂n

k=1 f−1
ik (Oik)⊆ O. Folglich ist auch O ∈ ϕ .

3.3 Fortsetzbarkeit stetiger Abbildungen (1)
Wir stellen uns die Frage (und geben eine Antwort) unter welchen Bedingungen an einen
Raum X sich eine auf einer abgeschlossenen Teilmenge A definierte stetige reellwertige Ab-
bildung f auf den ganzen Raum X fortsetzen lässt. Es stellt sich dabei heraus, dass dies genau
dann möglich ist, wenn der Raum X ein T4-Raum ist.

Eine ähnliche Frage ist, unter welchen Bedingungen sich eine auf auf einer in X dichten
Teilmenge A definierte stetige Abbildung (in einen Raum Y ), auf ganz X fortsetzen lässt.
Auch hier geben wir Antworten (die von Y abhängen).

Für zwei Abbildungen f ,g : X → R und Elemente a,b ∈ R sind f g,a f +bg : X → R durch
f g(x) := f (x)g(x) bzw. (a f + bg)(x) := a f (x) + bg(x) sinnvoll definiert. Abbildungen von
einer Menge X in R werden reelle Abbildungen genannt.

3.3.1 Satz (Tietze-Urysohn)

Für einen topologischen Raum (X ,τ) sind äquivalent:

1. (X ,τ) ist ein T4-Raum.

2. Zu jeder abgeschlossenen Menge A und jeder offenen Menge O mit A ⊆ O gibt es
eine offenen Menge U mit A⊆U ⊆U ⊆ O.
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3. Zu je zwei disjunkten abgeschlossenen Mengen A,B gibt es eine stetige Abbildung
f : X → [0,1], mit f (A)⊆ {0} und f (B)⊆ {1} (Lemma von Urysohn).

4. Jede auf einer abgeschlossenen Menge definierte und stetige reelle Abbildung lässt
sich zu einer reellen stetigen Abbildung auf X fortsetzen (Fortsetzungssatz von Tiet-
ze).

Beweis: 1.⇔ 2. ist eine leichte Übung.
1. ⇒ 3. Seien A,B disjunkte abgeschlossene Mengen in X . Es gibt dann eine disjunkte

offene Menge U0 von A mit A ⊆ U0 ⊆ U0 ⊆ U1 := X \B. Für jede natürliche Zahl n setze
Pn := {r ∈ Q≥0 | ∃k ≤ 2n mit r = k/2n} und P :=

⋃
n≥0 Pn. Wir zeigen nun, dass es für jedes

r ∈ P eine offene Menge Ur gibt, mit r < r′ ⇒ Ur ⊆ Ur′ . Da n < n′ ⇒ Pn ⊆ Pn′ gilt und
für P0 offensichtlich U0,U1 das gewünschte tun, reicht es, wenn wir uns für die Elemente aus
Pn+1 \Pn entsprechende Ur besorgen, die zusammen mit denen, die wir (per Induktion) bereits
für Pn haben, dann das gewünschte für Pn+1 tun (man mache sich klar welche Elemente in
Pn+1 \Pn liegen und wie sie mit denen aus Pn in Beziehung stehen). Seien also entsprechen-
de (Vt)t∈Pn gegeben und r ∈ Pn+1. Falls r = 2k/2k+1, dann setze Ur := Vk/2k (diese werden
also übernommen). Falls hingegen r = (2k + 1)/2k+1, so gilt ja V 2k/2k+1 ⊆ V(2k+2)/2k+1 , also
existiert ein offenes U mit V 2k/2k+1 ⊆U ⊆U ⊆V(2k+2)/2k+1 . Setze dann Ur := U .

Wir sind noch nicht ganz fertig...
Für t ∈ [0,1) setze Vt :=

⋃
r∈P,r≤t Ur und V1 := X . Für t < t ′ gilt ebenfalls Vt ⊆ Vt ′ (Beweis

als Übung). Nun können wir f : X → [0,1] durch f (x) := in f {t ∈ [0,1] | x ∈Ut} definieren.
Dieses f ist stetig (S := {[0,q) | q ∈ [0,1]}∪ {(q,1] | q ∈ [0,1]} ist eine Subbasis für τ[0,1]
und es gilt x ∈ f−1([0,q)) ⇔ x ∈

⋃
t<qUt , bzw. x ∈ f−1((q,1]) ⇔ ∃s mit f (x) > s > q und

x 6∈Us) und aus der Konstruktion folgern wir f (U0) ⊆ {0} (man beachte U0 = V0). Dieses f
hat dann die geforderten Eigenschaften ( f (A)⊆ {0} ist klar, und für f (B)⊆ {1} beachte man
B = X \U1).

Sei c > 0, und definiere g : X → [−c,c] durch g(x) := 2c( f (x)−1/2), dann ist g ebenfalls
stetig mit g(A)⊆ {−c} und g(B)⊆ {c}.

3.⇒ 4. Wir zeigen die Aussage erst für beschränkte Abbildungen. Sei also f : A→R stetig
und beschränkt. Dann gibt es ein c > 0 mit f : A→ [−c,c]. Doch zunächst noch eine kleine
Vorbemerkung:

Sei f : A→ [−z,z] stetig, dann gibt es ein g : X → [−z/3,z/3] mit | f (x)− g(x)| ≤ 2z/3
für x ∈ A. Der Beweis ist einfach ( Setze A1 := f−1([−z,−z/3]) und A2 := f−1([z/3,z]).
A Aus dem Urysohn-Lemma schließen wir auf die Existenz eines g : X → [−z/3,z/3] mit
g(A1)⊆ {−z/3} und g(A2)⊆ {z/3}, insbesondere also | f (x)−g(x)| ≤ 2z/3 für x ∈ A.).

Sei nun also f : A → [−c,c] stetig. Dann gibt es ein g0 : X → [−c/3,c/3] mit | f (x)−
g0(x)| ≤ 2c/3 für x ∈ A. Nun ist f − g0 : A → [−2c/3,2c/3] stetig, also gibt es ein g1 :
X → [−2c/9,2c/9] mit | f (x)− g0(x)− g1(x)| ≤ 4c/9 für x ∈ A. Den Prozess fortgesetzt er-
gibt: f − g0− ...− gn : A→ [−(2/3)n+1c,(2/3)n+1c] also existiert ein stetiges gn+1 : X →
[−(2/3)n+1c/3,(2/3)n+1c/3], mit | f (x)−g0(x)− ...−gn+1(x)| ≤ (2/3)n+2c für x ∈ A. Setze
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dann noch fn(x) := g0(x) + ... + gn(x) und h(x) := limn→∞ fn(x). Die fn sind stetig und die
Folge ist gleichmäßig konvergent, also ist auch h stetig und offensichtlich gilt h|A = f .

Nun kommen wir zum allgemeinen Fall: Sei f : A→ R stetig. Nun wird R durch φ : R→
(−1,1), φ(x) := x/(1 + |x|) homöomorph auf (−1,1) abgebildet. Also gibt es ein stetiges
g : X → [−1,1] mit g|A = φ ◦ f . Nun ist B := g−1({−1,1}) abgeschlossen in X und A∩B = /0.
Aus dem Urysohn-Lemma schließen wir auf die Existenz eines k : X → [0,1] mit k(A)⊆ {1}
und k(B)⊆ {0}. Also gk : X → (−1,1) (!!!). Schließlich ist φ−1 ◦ (gk) : X → R die gesuchte
Fortsetzung (von dem sich der Leser mit Freuden überzeugt).

4.⇒ 1. Seien A,B disjunkte (nichtleere) abgeschlossene Mengen. Dann ist auch Y := A∪B
abgeschlossen und A,B sind in Y sowohl offen, als auch abgeschlossen!. Das heißt f : Y → R
definiert durch f (a) = 0 und f (b) = 1 für a ∈ A und b ∈ B ist stetig. Also gibt es ein stetiges
g : X→Rmit g|Y = f . U := g−1((−1/3,1/3)) bzw. V := g−1((2/3,5/3)) sind dann disjunkte
offene Obermengen.

3.3.2 Korollar

Wenn f : A→ [a,b] stetig ist und A eine abgeschlossene Menge in dem T4-Raum X ist, so
lässt sich f zu einem stetigem F : X → [a,b] fortsetzen.

Beweis: f lässt sich zu einem stetigem G : X → R fortsetzen. Wir definieren dann g : R→
[a,b] durch g(x) = a für x ≤ a, g(x) = b, für b ≤ x und sonst g(x) = x. Und nun setzen wir
einfach F := g◦G.

Kommen wir nun zu dem Problem stetige, auf einer dichten Teilmenge D von X definierte
Abbildungen auf ganz X fortzusetzen.

3.3.3 Lemma

Seien f ,g : (X ,τ)→ (y,σ) zwei stetige Abbildungen, welche auf einer in X dichten Teil-
menge D übereinstimmen. Ferner Sei Y ein Hausdorff-Raum. Dann stimmen sie auf ganz
X überein.

Beweis: Annahme es gibt ein x ∈ X mit f (x) 6= g(x). Dann gibt es disjunkte offene Mengen
U,V in Y , mit f (x) ∈ U und g(x) ∈ V . Nun enthält aber f−1(U)∩ g−1(V ) das Element x,
ist also nicht leer und enthält somit sogar ein Element d ∈ D. Damit gilt dann f (d) ∈U und
g(d) ∈V . Da aber f (d) = g(d), ist dies ein Widerspruch.
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3.3.4 Lemma

Sei f : X→Y stetig und Y ein Hausdorff Raum. Dann ist G f := {(x,y)∈ X×Y | y = f (x)}
(der Graph von f ) abgeschlossen in X×Y .

Beweisskizze: ∆Y := {(y,y) | y ∈ Y} (die Diagonale) ist abgeschlossen in Y ×Y (Y ist
Hausdorff). φ : X ×Y → Y ×Y definiert durch φ(x,y) := ( f (x),y) ist stetig und es gilt G f =
φ−1(∆Y ).

3.3.5 Lemma

Sei (X ,τ) ein Hausdorff-Raum, (Y,σ) ein beliebiger top. Raum und A⊆ X mit A = X . Ist
f : X → Y eine stetige Abbildung, so dass f |A : A→ f (A) ein Homöomorphismus ist, so
gilt f (A)∩ f (X \A) = /0.

Beweis: Annahme es gilt f (x) = f (a), für ein gewisses x ∈ X \A und a ∈ A. Sei y := f (A)
und seien dann U,V offen und disjunkt mit a ∈ U und x ∈ V . Aus U ∩V = /0 folgt auch
U ∩V = /0 (Wenn z ∈U ∩V , dann z ∈U ∈ ż∩ τ und z ∈V , also U ∩V 6= /0.).

Außerdem ist V = V ∩A, denn z ∈ V und O ∈ ż∩ τ impliziert /0 6= O∩V ∈ τ , also /0 6=
(O∩V )∩A = O∩ (V ∩A), also z ∈V ∩A (das V ∩A⊆V gilt, ist klar).

Da f |A : A→ f (A) ein Homöomorphismus ist, haben wir f (A∩U) = f (A)∩U ′ und f (A∩
V ) = f (A)∩V ′, für gewisse U ′,V ′ ∈ σ . Da f nun auch stetig ist, folgt y ∈ f (V ) = f (V ∩A)⊆
f (V ∩A) = f (A)∩V ′.

Aus y ∈U ′ und y ∈ f (A)∩V ′ folgt /0 6= U ′ ∩ ( f (A)∩V ′) = f (A∩U)∩ f (A∩V ) = f (A∩
U ∩V ) = f ( /0) = /0 - ein Widerspruch!

3.3.6 Satz

Sei (X ,τ) ein topologischer Raum, A eine in X dichte Teilmenge und f : A→Y eine stetige
Abbildung in einen T3-Raum (Y,σ). Dann gibt es genau dann eine stetige Fortsetzung
g : X → Y , wenn es zu jedem x ∈ X eine stetige Fortsetzung fx : A∪{x}→ Y gibt.

Ist Y zusätzlich T0, so ist die Abbildung g eindeutig bestimmt.

Beweis: Die eine Richtung ist trivial. Nehmen wir also an es gibt zu jedem x ∈ X eine
stetige Fortsetzung fx : A∪{x} → Y . Wir definieren g : X → Y durch g(x) := fx(x). Auf A
stimmt g also mit f überein; g ist also eine Fortsetzung auf ganz X . Zeigen wir die Stetigkeit.
Sei V offen in Y und g(x) ∈ V . Es existiert dann ein offenes W mit g(x) ∈W ⊆W ⊆ V . Wir
unterscheiden nun - zur besseren Übersicht - zwei Fälle:

1.Fall x∈A. Da f stetig ist, gibt es ein U ∈ ẋ∩τ mit f (A∩U)⊆W . Angenommen g(U)*V .
Dann gibt es ein z ∈U ∩ (X \A) mit fz(z) ∈ Y \V ⊆ Y \W . Die letzte Menge ist aber offen
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und fz ist stetig, es gibt also ein U ′ ∈ ż∩τ mit fz(U ′∩ (A∪{z}))⊆Y \W . Nun enthält U ′ aber
auch (mindestens) ein Element A aus A, also fz(a) = f (a) ∈W - ein Widerspruch!

2.Fall x ∈ X \A. Dann gibt es ein U ∈ ẋ∩τ mit fx(U ∩ (A∪{x}))⊆W . Wieder nehmen wir
an: g(U)*V und wieder folgt daraus die Existenz eines y ∈U \ (A∪{x}) mit fy(y) = g(y) ∈
Y \W . Dann gibt es auch wieder ein U ′ ∈ ẏ∩ τ mit fy(U ′ ∩ (A∪{y})) ⊆ Y \W . Setzen wir
U ′′ := U ∩U ′, so gilt y ∈U ′′, also /0 6= U ′′ und somit ∃a ∈ A∩U ′′. Es gilt dann fx(a) = fy(a)
und fx(U ′′∩ (A∪{x}))⊆W bzw. fy(U ′′∩ (A∪{y}))⊆ Y \W - wieder ein Widerspruch!

Die Abbildung g ist also stetig. Ist Y nun noch T0, so auch T2 und Lemma 3.3.3 garantiert
die Eindeutigkeit.

3.3.7 Lemma

Seien (X ,τ), (Y,σ) topologische Räume, D eine dichte Teilmenge von X (also D = X),
ferner (Y,σ) ein T3-Raum und f : D→ Y eine stetige Abbildung mit der Eigenschaft:

∀x ∈ X ∃yx ∈ Y mit f (ϕx|D) σ→ yx.

Dann lässt sich f stetig auf ganz X fortsetzen. Hier bezeichnet ϕx den von ẋ∩ τ erzeugten
Filter. Ist Y zudem T0, so ist die Fortsetzung eindeutig bestimmt.

Beweis: Wir definieren für jedes x ∈ X eine stetige Fortsetzung fx : D∪{x}→Y . Satz 3.3.6
erledigt dann den Rest. Wir setzen dazu

fx(z) :=

{
f (d) falls z = d ∈ D
yx falls z = x 6∈ D

Zeigen wir die Stetigkeit:
Sei d ∈ D und f (d) ∈ O ∈ σ . 1.Fall yx ∈ O, dann gibt es ein U ∈ ḋ∩ τ mit f (U ∩D) ⊆ O,

also fx(U ∩ (D∪{x}))⊆ O.
2.Fall yx 6∈ O. Dann ist O 6∈ f (ϕx|D). Es gilt f−1

x (O) = f−1(O) = V ∩D, für ein V ∈ ḋ∩ τ .
Wäre x ∈ V , so wäre V ∩D ∈ ϕx|D, also O ∈ f (ϕx|D) - ein Widerspruch. Also ist x 6∈ V und
somit f−1(O) = V ∩ (D∪{x}).

Sei nun O ∈ yx∩σ . Dann ist O ∈ f (ϕx|D), es gibt also ein P ∈ ϕx mit f (P∩D)⊆ O. Zu P
gibt es ein U ∈ ẋ∩ τ mit U ⊆ P. Damit gilt dann fx(U ∩ (D∪{x}))⊆ O.

Die Stetigkeit ist damit gezeigt und der Beweis beendet.

3.3.8 Notation und Bemerkung

Sei (X ,τ) ein topologischer Raum und D⊆ X mit D = X . Für Teilmengen A⊆D von D setzen
wir nun EX(A) := X \D\A. Ist U in der Teilraumtopologie von D offen, gilt beispielsweise
D∩EX(U) = U (Beweis: Sei z ∈ D∩EX(U). Falls z 6∈U , dann aber z ∈ D\U , also z ∈ D\U
und somit z 6∈ EX(U) - Widerspruch. Sei andererseits z ∈U . Es gibt ein V ∈ τ mit U = V ∩D.
Falls z ∈ D\U , dann V ∩ (D\U) 6= /0 - auch ein Widerspruch.).
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Mit dieser Notation lässt sich ein anderes interessantes Fortsetzungskriterium beweisen.

3.3.9 Satz

Sei (X ,τ) ein top. Raum und D eine dichte Teilmenge, auf der eine stetige Abbildung
f : D→ Y in einen T3-Raum (Y,σ) gegeben ist. Sei ferner B eine Basis von σ . Genau
dann ist f stetig auf X fortsetzbar, wenn

⋃
B∈B′ EX( f−1(B)) = X ist, für jedes B′ ⊆B mit⋃

B′ = Y . Ist Y zudem ein T0-Raum, so ist die Fortsetzung eindeutig bestimmt.

Beweis: Wir verwenden Lemma 3.3.7. Sei also x ∈ X und φx ein Filter auf D, so dass der
Filter {P⊆ X | ∃P′ ∈ φx mit P′⊆ P} gegen x konvergiert. Das bedeutet ∀O∈ ẋ∩τ ∃P∈ φx mit
P⊆O. Nehmen wir an (um einen Widerspruch abzuleiten), dass f (φx) in Y nicht konvergiert.

Dann gibt es zu jedem y ∈ Y ein By ∈ ẏ∩B mit By 6∈ f (φx). Nach Voraussetzung gilt dann
X =

⋃
y∈Y EX( f−1(By)). Es gibt also ein y ∈ Y mit x ∈ EX( f−1(By)). Dann gibt es aber auch

ein P ∈ φx mit P ⊆ EX( f−1(By)). Da P ⊆ D folgt P ⊆ EX( f−1(By))∩D = f−1(By), also
f (P)⊆ By und somit By ∈ f (φx) - Widerspruch!

Die Rückrichtung folgt aus U ⊆ EX(U ∩D), für jedes U ∈ τ . Denn dann gilt für die Fort-
setzung f̃−1(B)⊆ EX( f−1(B)), für jedes B ∈B.

3.4 Minimale topologische Räume
Stark in Zusammenhang mit den ersten Trennungsaxiomen T0 und T1 stehen gewisse mini-
male unendliche topologische Räume (siehe Satz 3.4.4). Um den Hauptsatz (Satz 3.4.4) dises
Abschnitts beweisen zu können, benötigen wir ein Resultat über Ketten bzw. Antiketten in
partiell geordneten Mengen, welches seinerseits aus einen bekannten Satz von Ramsey folgt.
Für beide Resultate geben wir am Ende dieses Abschnitts Beweise.

Zur Erinnerung: Ist (X ,≤) eine partielle Ordnung, so ist eine Kette aus X eine durch ≤
total (oder auch linear) geordnete Teilmenge. Unter einer Antikette aus X verstehen wir eine
Teilmenge A von X mit der Eigenschaft, dass keine zwei Elemente aus A bzgl. ≤ vergleichbar
sind.

3.4.1 Lemma

Sei (X ,τ) ein unendlicher topologischer Raum. Dann gibt es eine unendliche Teilmenge
Y ⊆ X , so dass die induzierte Topologie auf Y die indiskrete ist, oder Y ist als Teilraum ein
T0-Raum.

Beweis: 1.Fall τ ist endlich. Sei dann V ∈ τ inklusionsminimal in der Menge aller unend-
lichen offenen Mengen. Dementsprechend ist dann Y := V \

⋃
O∈τ,O6=V O ebenfalls unendlich

und als Teilraum ist Y indiskret.
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2.Fall τ ist unendlich. Wir unterscheiden nun zwei weitere Fälle.
2.1 τ ist ohne auf/absteigende Folge, also ohne Folgen der Art O0 ⊂ O1 ⊂ ... bzw. O0 ⊃

O1 ⊃ ... mit paarweise verschiedenen Elementen aus τ . Dann ist τ ′ := {O ∈ τ |O ist endlich }
endlich und τ0 := {O ∈ τ \ τ ′ |O ist inklusionsminimal } 6= /0. Für O ∈ τ0 ist Y := O\

⋃
{O′ ∈

τ | O′ ⊆ O und O′ 6= O} somit unendlich und die entsprechende Teilraumtopologie auf Y ist
wieder indiskret.

2.2 Gibt es hingegen in τ aufsteigende oder absteigende Folgen, also beispielsweise O0 ⊂
O1 ⊂ ..., mit paarweise verschiedenen Oi, so wählen wir je ein xi ∈ Oi \Oi−1, für jedes i =
1,2, ... und {xi | i = 1,2, ...} ist offensichtlich ein T0-Teilraum.

3.4.2 Lemma

Sei (X ,τ) ein unendlicher T1-Raum. Dann gibt es eine unendliche Teilmenge Y ⊆ X , so
dass die induzierte Topologie auf Y die diskrete ist, oder Y hat als Teilraum die koendliche
Topologie: {O⊆ Y | Y \O ist endlich }.

Beweis: Wir unterscheiden zwei Fälle:
1.Fall ∀A⊆ X (A: unendlich⇒ ∃O ∈ τ mit O∩A 6= /0 und A\O ist unendlich)
Zu X gibt es dann ein O0 ∈ τ mit O0 6= /0 und A0 := X \O0 ist unendlich. Sei x0 ∈O0 beliebig

gewählt und A−1 := X .
Sind nun O0, ...,On aus τ gewählt mit x0, ...,xn und A0, ...,An, wobei Ak = Ak−1 \Ok, xk ∈

Ak−1∩Ok und jedes Ak unendlich ist, so gibt es ein On+1 ∈ τ mit On+1∩An 6= /0 und An+1 :=
An \On+1 unendlich. Wir wählen dann xn+1 ∈ An∩On+1.

Die so konstruierten Folgen haben die Eigenschaften:
a) xn ∈ On, für alle n.
b) xm 6∈ On, für alle m > n.
c) xm 6∈ O′n := On \{x0, ...,xn−1} ∈ ẋn∩ τ , für alle m < n.
Dementsprechend ist {x0, ...} als Teilraum diskret.
2.Fall ∃A unendlich ⊆ X , mit der Eigenschaft ∀O ∈ τ gilt: O∩A = /0 oder A\O ist endlich.

Offensichtlich hat A als Teilraum dann die koendliche Topologie.

3.4.3 Lemma

Sei (X ,τ) ein unendlicher T0-Raum, der keinen unendlichen T1-Teilraum besitzt. Dann
gibt es eine (abzählbar) unendliche Teilmenge Y ⊆ X , so dass Y als Teilraum zu (N,σ)
homöomorph ist, wobei

σ = { /0,N,{0},{0,1},{0,1,2}, ...} oder σ = { /0,N,{1,2, ...},{2,3, ...},{3,4, ...}, ...}.

Beweis: Da (X ,τ) ein T0-Raum ist, bekommen wir durch x ≤ y ⇔ x ∈ {y} eine partielle
Ordnung (die Relation ist transitiv und antisymmetrisch). Da X als Menge unendlich ist, gibt
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es somit eine unendliche Kette oder eine unendliche Antikette (Korollar 3.4.6). Gäbe es eine
unendliche Antikette A ⊆ X , so gilt für je zwei verschiedene Elemente x,y aus A also ¬(x ∈
{y}) und 6= (y ∈ {x}), als Teilraum währe A also T1. Da das nach Voraussetzung nicht geht,
muss es also eine undliche Kette geben. Insbesondere gibt es dann auch abzählbare Ketten.
Falls x0 < x1 < x2 < ..., so ist A := {x0,x1, ...} als Teilraum homöomorph zu (N,σ), mit
σ = { /0,N,{1,2, ...},{2,3, ...},{3,4, ...}, ...}. Falls hingegen x0 > x1 > x2 > ..., so ist A :=
{x0,x1, ...} als Teilraum homöomorph zu (N,σ), mit σ = { /0,N,{0},{0,1},{0,1,2}, ...}.

3.4.4 Satz über die Existenz minimaler Topologien

Jeder unendliche topologische Raum (X ,τ) enthällt eine unendliche Teilmenge Y , die als
Teilraum zu einem der folgenden fünf topologischen Räume homöomorph ist. Ferner sind
keine zwei dieser fünf topologischen Räume homöomorph, allerdings ist jeder dieser Räu-
me zu jedem unendlichen Teilraum von sich homöomorph. Es handelt sich bei diesen fünf
topologischen Räumen also um minimale unendliche topologische Räume.

1. (N,σ1), wobei σ1 = { /0,N}
2. (N,σ2), wobei σ2 = P(N)
3. (N,σ3), wobei σ3 = {O⊆ N | N\O ist endlich}
4. (N,σ4), wobei σ4 = { /0,N,{0},{0,1},{0,1,2}, ...}
5. (N,σ5), wobei σ5 = { /0,N,{1,2, ...},{2,3, ...},{3,4, ...}, ...}

Beweis: Das nun jeder unendliche topologische Raum (mindestens) einen dieser fünf topo-
logischen Räume als Teilraum enthält, folgt aus einer Kombination der drei vorigen Lemmas.
Das jeder unendliche Teilraum Z von (N,σi) homöomorph zu (N,σi) ist, ist für i = 1,2,3
unmittelbar klar. Für i = 4 und i = 5 kann man durch Induktion einen Homöomorphismus
konstruieren. Das keine zwei dieser fünf topologischen Räume homöomorph sind folgt aus:

1. |σ1|< |σ3|= |σ4|= |σ5|< |σ2|.
2. σ4 ethält mit einer Ausnahme nur endliche Mengen.
3. σ5 enthält mit einer Ausnahme nur unendliche Mengen und ist kein T1-Raum.
4. σ3 enthält mit einer Ausnahme nur unendliche Mengen und ist ein T1-Raum.

3.4.5 Satz (Ramsey)

Sei k,r ∈ N. Für eine Menge X bezeichnen wir mit [X ]k := {A ⊆ X | |A| = k} die Menge
aller k-elementigen Teilmengen von X und mit r := {l ∈ N | l ≤ r}. Ist nun f : [X ]k → r
eine Abbildung, so gibt es eine unendliche Teilmenge Y ⊆ X , so dass f eingeschränkt auf
[Y ]k konstant ist.

Beweis: Wir führen Induktion über k. Für k = 1 und unendliches X ′ ist die Aussage klar
(falls nicht, so bleibt dies als leichte übung)! Nehmen wir an es wurde bewiesen, dass die
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Aussage wurde für k und jede unendliche Menge X ′ bewiesen wurde. Sei f : [X ]k+1 → r
gegeben. Wir wählen ein beliebiges x0 ∈ X und definieren g0 : [X \{x0}]k→ r durch g0(A) :=
f (A∪{x0}). Nach Induktionsvoraussetzung existiert ein X0 ⊆ X \{x0} und ein ro ∈ r, so dass
g(A) = r0 ist, für jedes A ∈ [X0]k.

Sind x0, ...,xn und g0, ...,gn und X0, ...,Xn bzw. r0, ...,rn gewählt, so definieren wir ein gn+1 :
[Xn \{xn}]k→ r durch gn+1(A) := f (A∪{xn}). Nach Induktionsvoraussetzung existiert dann
ein Xn+1 ⊆ X \{xn+1} und ein rn+1 ∈ r, so dass g(A) = rn+1 ist, für jedes A ∈ [Xn+1]k. Ferner
wählen wir ein beliebiges xn+1 ∈ Xn+1. Auf diese Weise bekommen wir vier Folgen:

(xn)n∈N und (gn)n∈N und (Xn)n∈N bzw. (rn)n∈N.
Nun ist (rn)n∈N eine (unendliche) Folge aus der Menge r. Es muss also ein unendliches

J ⊆ N und ein l ∈ r geben mit r j = l, für alle j ∈ J. Wir zeigen nun noch, dass die Menge
Y := {x j | j ∈ J} die geforderten Eigenschaften hat.

Sei also A ∈ [Y ]k+1 Dann ist A = {x j1, ...,x jk+1} mit j1 < ... < jk+1 (die Elemente aus A
sind Elemente der Folge (xn)n∈N und wir ordnen sie einfach nach der Größe ihres Index). Für
i > 1 ist x j1 ∈ X j1 ⊇ X j1 \ {x j1 ⊇ X j1+1 ⊇ X ji 3 x ji . Für B = {x j2, ...,x jk+1} gilt nun l = r j1 =
g j1(B) = f (B∪{x j1}) = f (A). Damit ist alles gezeigt.

3.4.6 Korollar

Sei (X ,≤) eine unendliche partielle Ordnung. Dann gibt es in X eine unendliche Kette oder
eine unendliche Antikette (in einer Antikette sind keine zwei Elemente bzgl. der Ordnung
vergleichbar).

Beweis: Sei (xn)n∈N eine Folge paarweise verschiedener Elemente aus X . Durch [N]2 =
{{i, j} | i < j und xi < x j}∪{{i, j} | i < j und xi > x j}∪{{i, j} | i 6= j und ¬(xi < x j) und
¬(xi > x j)} bekommen wir eine Zerlegung von [N]2 und damit auch eine Abbildung f : [N]2→
{0,1,2} im Sinne von Satz 3.4.5 ( f (A) = 0,1 oder 2, je nachdem in welcher Zerlegungsmenge
A steckt). Damit bekommen wir dann eine unendliche Teilmenge J ⊆ N, wobei f auf [J]2

konstant ist. Es treten nun drei Fälle ein:
1. [J]2 ⊆ {{i, j} | i < j und xi < x j}, dann gibt es eine aufsteigende Kette.
2. [J]2 ⊆ {{i, j} | i < j und xi > x j}, dann gibt es eine absteigende Kette.
3. [J]2 ⊆ {{i, j} | i 6= j und ¬(xi < x j) und ¬(xi > x j)}, dann gibt es eine Antikette.

3.5 Eine Charakterisierung der A1-Räume
Welche Räume erfüllen das erste Abzählbarkeitsaxiom (A1), welches besagt, dass jeder Punkt
im Raum eine abzählbare Umgebungsbasis hat. Es wird sich herausstellen, dass genau die
Bilder metrischer Räume unter stetigen und zugleich offenen Abbildungen das erste Abzähl-
barkeitsaxiom erfüllen
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3.5.1 Beispiel (Baire-Raum mit Basis X)

Sei X eine unendliche Menge undN′ :=N\{0}. Wir werden nun auf B(X) := XN
′
(der Menge

aller Folgen aus X) eine interessante Metrik definieren. Dazu definieren wir für zwei Folgen
z = (xn)n∈N′) und z′ = (yn)n∈N′ wie folgt eine Metrik. Falls z = z′, so setzen wir d(z,z′) = 0.
Andernfalls d(z,z′) := 1

k(z,z′) , wobei k(z,z′) := min{n ∈ N′ | xn 6= yn}. Dann ist d : B(X)×
B(X)→ B(X) eine Metrik:

1) Offensichtlich ist d(z,z′) = d(z′,z), für alle z,z′ ∈ B(X).
2) Ebenso offensichtlich ist d(z,z′) = 0 ⇔ z = z′, für alle z,z′ ∈ B(X).
3) Seien x = (xn)n∈N′, y = (yn)n∈N′ und z = (zn)n∈N′ ∈ B(X). Für den Nachweis der Drei-

ecksungleichung sei o.B.d.A. x 6= y 6= z 6= x. Dann ist d(x,y) ≤ d(x,z)+ d(y,z) äquivalent zu
k(x,z)k(y,z) ≤ k(x,y)(k(x,z)+ k(y,z)). Es reicht also die zweite Ungleichung zu zeigen. Wir
setzen dazu k := k(x,y) und unterscheiden zwei Fälle.

1.Fall k(x,z)≤ k. Damit folgt aber k(x,z)k(y,z)≤ k(x,y)k(y,z)≤ k(x,y)(k(x,z)+ k(y,z)).
2.Fall k < k(x,z). Dann ist k(y,z)≤ k (Andernfalls wäre k < k(y,z). Aber xk = zk und zk =

yk, also auch xk = yk. Dies ist dann aber ein Widerspruch.). Damit haben wir dann k(y,z) ≤
k(x,y) < k(x,z) und somit k(x,z)k(y,z)≤ k(x,z)k(x,y)≤ k(x,y)(k(x,z)+ k(y,z)).

Damit ist gezeigt, dass d eine Metrik ist.
Sei m ∈ N′ und (x1, ...,xm) ∈ Xm. Wir setzen B(x1,...,xm) := {y = (yn)n∈N′ ∈ B(X) | y1 =

x1, ...,ym = xm}. Wie aus allgemeinen metrischen Räumen bereits bekannt, ist K(y,ε) :=
{x | d(x,y) < ε} die offene Kugel um y mit Radius ε . Sei nun y∈B(x1,...,xm). Dann ist K(y, 1

m) =
B(x1,...,xm). Der Beweis bleibt als leichte Übung für den Leser.

Setzen wir X<ω :=
⋃

n∈N′ X
n, so gilt |Xω |= |X |. Damit ist dann gezeigt, dass

B := {B(x1,...,xm) | (x1, ...,xm)∈ X<ω} eine Basis für (B(X),d) ist mit |B|= |X |. Ferner sind
alle Basiselemente zugleich offen und abgeschlossen und zwei Basiselemente sind entweder
disjunkt, oder eins ist in dem anderen enthalten.

Für jedes n ∈N′ sei (Xn,τn) := (X ,P(X)). Bilden wir dann den Produktraum ∏n∈N′ Xn, so
kann man leicht sehen, dass ∏n∈N′ Xn mit der Produkttopologie homöomorph zu B(X) ist. Mit
Hilfe von Lemma 2.1.6 kann man nun leicht beweisen, dass B sogar eine Basis minimaler
Kardinalität für B(X) ist. Die Namensgebung Baire-Raum mit Basis X ist hierdurch und die
Tatsache, dass Baire diesen Raum als erster beschrieben hat, motiviert.

Zum Abschluss sei noch bemerkt, dass B(X) ein vollständiger metrischer Raum ist (siehe
dazu Definition 4.5.19; auch dieser leichte Beweis bleibt dem Leser überlassen).

3.5.2 Lemma

Sei (X ,τ) ein T0 und ein A1-Raum und sei B eine Basis für τ . Dann gibt es ein Y ⊆ B(B)
mit einer stetigen, offenen und surjektiven Abbildung f : Y → X .

Beweis: Y := {(Bn)n∈N′ ∈ B(B) | (Bn)n∈N′ ist eine Umgebungsbasis eines Punktes x ∈ X}.
Da es sich um einen A1-Raum handelt, macht das Sinn. Sei nun (Bn)n∈N′ ∈ Y . Dann gibt es
einen eindeutig bestimmten Punkt x ∈ X , so dass (Bn)n∈N′ eine Umgebungsbasis von x ist
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(denn (X ,τ) ist ein T0-Raum). Bezeichnen wir mit f ((Bn)n∈N′) diesen eindeutig bestimmten
Punkt, so haben wir damit eine Abbildung f : Y → X definiert. Offensichtlich ist f somit
surjektiv (das ist gerade die A1 Eigenschaft).

Zeigen wir, dass f stetig ist. Dazu sei x := f ((Bn)n∈N′) ∈U ∈ τ . Da (Bn)n∈N′ eine Umge-
bungsbasis für x ist, gibt es ein N ∈ N′ mit x ∈ BN ⊆U . Damit gilt f (K((Bn)n∈N′,

1
N+1))⊆U ,

denn für (An)n∈N′ ∈ K((Bn)n∈N′,
1

N+1) ist An = Bn, für n≤ N und es folgt f ((An)n∈N′) ∈ AN =
BN ⊆U . f ist somit stetig.

Zeigen wir nun, dass f offen ist. Dafür genügt es zu zeigen, dass f (K((Bn)n∈N′,
1

n+1)) für
jedes (Bn)n∈N′ ∈ Y eine in X offene Menge ist. Sei x ∈ f (K((Bn)n∈N′,

1
n+1)). Dann ist x =

f ((An)n∈N′), für ein (An)n∈N′ ∈ K((Bn)n∈N′ ,
1

n+1). Insbesondere ist Ak = Bk, für k ≤ n. Setzen
wir B := B1∩ ...∩Bn, so ist x ∈ B⊆ f (K((Bn)n∈N′,

1
n+1)). Aso ist f (K((Bn)n∈N′ ,

1
n+1)) offen.

3.5.3 Lemma

Sei (X ,τ) ein A1-Raum. Dann gibt es einen T2 und A1-Raum (Y,σ) und eine stetige,
offene und surjektive Abbildung f : Y → X .

Beweis: Wir betrachten B(X). Für ein x∈X und ein n∈N′ setzen wir An
x := {(yk)k∈N′ | ∀k≥

n ist yk = x} und anschließend Ax :=
⋃

n∈N′ A
n
x . Dann ist (Ax)x∈X eine Familie paarweise dis-

junkter dichter Teilmengen in B(X). Wir setzen nun Y :=
⋃

x∈X{x}×Ax ⊆ X ×B(X). Da X
und B(X) beides A1-Räume sind, ist auch das Produkt (mit der Produkttopologie) der beiden
Räume ein A1-Raum und somit ist es auch Y (mit Teilraumtopologie σ ). Aber Y ist sogar
noch ein Hausdorffraum, denn (x,(xk)k∈N′) 6= ((y,(yk)k∈N′) ∈Y impliziert (xk)k∈N′ 6= (yk)k∈N′
und da B(X) ein metrischer Raum ist, gibt es dort disjunkte Kugelumgebungen K1 und K2
Setzt man dann V := X×K1 bzw. W := X×K2, so hat man disjunkte offene Obermengen von
(x,(xk)k∈N′) bzw. (y,(yk)k∈N′).

Definiert man nun f : Y → X durch f (x,(xk)k∈N′) := x, so ist f als Einschränkung der steti-
gen Projektion q : X×B(X)→ X auf die Menge Y also auch stetig. f ist aber auch offen, denn
für K := K((xk)k∈N′,

1
n) und U offen in X ist f (Y ∩ (U ×K)) = U , wie man leicht nachrech-

nen kann (hier bracht man, dass die Ax dicht in B(X) sind). Für den Nachweis der Offenheit
braucht man nur zeigen, dass Bilder einer Basis des Grundraums offen sind.

3.5.4 Bemerkung

Der Beweis zeigt sogar, dass jeder topologische Raum (X ,τ) das Bild einer stetigen und offe-
nen Abbildung eines Hausdorff-Raumes ist.

3.5.5 Satz(Charakterisierung der A1-Räume)

Ein Raum (X ,τ) ist genau dann ein A1-Raum, wenn es einen metrischen Raum (Y,d) und
eine stetige, offene und surjektive Abbildung f : Y → X gibt. A1-Räume sind also genau

53



die Bilder metrischer Räume unter stetigen und offenen Abbildungen!

Beweis: Sei (X ,τ) zunächst als A1-Raum vorausgesetzt. Dann gibt es nach Lemma 3.5.3
ein A1 und T2-Raum (Y ′,σ ′) und eine stetige, offene und surjektive Abbildung f ′ : Y ′→ X .
Nach Lemma 3.5.2 gibt es ein metrischen Raum (Y,d) und eine stetige, offene und surjektive
Abbildung f ′′ : Y → Y ′. Dann ist f := f ′ ◦ f ′′ : Y → X ebenfalls stetig, offen und surjektiv!

Ist umgekehrt f : (Y,d)→ (X ,τ) stetig, offen und surjektiv, so gibt es zu einem x ∈ X ein
y ∈ Y mit f (y) = x. Dann ist { f (K(y, 1

n+1)) | n ∈ N} eine abzählbare Umgebungsbasis! Denn
ist x ∈ U ∈ τ , so ist y ∈ f−1(U) offen, es gibt also ein n ∈ N mit y ∈ K(y, 1

n+1) ⊆ f−1(U)
und somit f (K(y, 1

n+1)) ⊆U . Da f (K(y, 1
n+1)) offen ist und x ∈ f (K(y, 1

n+1)), ist damit alles
gezeigt!

3.6 Dichte Teilmengen in Produkträumen
Schauen wir uns die Definition der Produkttopologie nochmal an, so ist folgendes klar: Sind
X und Y topologische Räume und A, B dichte Teilmengen in X bzw. Y , so ist A×B dicht in
X ×Y . Sind also X und Y beispielsweise separabel, so auch X ×Y . Was ist aber wenn wir ein
größeres Produkt ∏i∈I Xi von separablen Räumen bilden? Wie ”groß” darf I sein, damit das
Produkt noch separabel ist? Solcherlei Fragen gehen wir in diesem Abschnitt nach.

3.6.1 Dichte

Für einen topologischen Raum (X ,τ) bezeichne d(X ,τ) die kleinste Kardinalzahl κ , für die
es eine dichte Teilmenge D von X gibt mit |D|= κ (besteht über den top. R. kein Zweifel, so
schreiben wir auch einfach d(X)).

3.6.2 Satz von Hewitt-Marczewski-Pondiczery

Sei (Xα)α∈B eine Familie von topologischen Räumen mit |B| ≤ 2A und d(Xα) ≤ A, für
eine unendliche Kardinalzahl A. Dann gilt: d(X)≤ A, wobei X := ∏α∈B Xα .

Beweis: O.b.d.A. sei B = P(A). Für α ∈ B wähle eine dichte Teilmenge Dα ⊆ Xα mit
|Dα | ≤ A und bilde D := ∏α∈B Dα . Es genügt also zu zeigen, dass D eine dichte Teilmenge
der gewünschten Kardinalität enthält.
Sei fα : A→ Dα surjektiv. Desweiteren versehen wir A mit der diskreten Topologie, also ist
f : AB→ D definiert durch f ((aα)α∈B) := ( fα(aα))α∈B stetig und surjektiv. Es reicht also zu
zeigen, dass AB eine dichte Teilmenge der gewünschten Kardinalität enthält.
Für J ⊆ A, J: endlich, sei eine Äquivalenzrelation∼J auf B durch L1∼J L2 :⇔ L1∩J = L2∩J
erklärt. Setze FJ := {(aL)L∈B | aL1 = aL2 für L1 ∼J L2} und F :=

⋃
{FJ | J ⊆ A, J: endlich }.

Es gilt |FJ| ≤ |AP(J)|= |A|, also |F | ≤ |A|.
Sei O = ∏α∈B Oα eine (offene, nicht leere) typische Basismenge der Produkttopologie, also
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Oα = A für α ∈ B \ {α1, ...,αn}. Wähle zi j ∈ αi \α j, wann immer das geht und setze J =
{zi j | 1≤ i, j≤ n}. Dann gilt FJ∩O 6= /0 (wie man sich leicht überlegt) und somit auch F∩O 6=
/0. Also ist F tatsächlich dicht in AB und deshalb ist f (F) dicht in D. Natürlich gilt auch
| f (F)| ≤ A.

3.6.3 Korollar

Sei (Xα)α∈B eine Familie von topologischen Räumen mit d(Xα) ≤ m, für eine unendli-
che Kardinalzahl m. Dann ist jede Familie von paarweise disjunkten, nicht leeren offenen
Mengen in X := ∏α∈B Xα von Kardinalität ≤ m.

Beweis: Annahme es gibt eine Familie von paarweise disjunkten offenen Mengen (Oi)i∈I
mit |I| > m; o.B.d.A. sind dies standard Basismengen, also von der Form Oi = ∏α∈B Oi

α .
Wähle J ⊆ I, mit m < J ≤ 2m. Offensichtlich sind dann auch (Oi)i∈J paarweise disjunkt. Für
i ∈ J setze σi := {α ∈ B | Oi

α 6= Xα}. Jedes σi ist offensichtlich endlich und deshalb gilt
für σ :=

⋃
i∈J σi auch |σ | ≤ |J| ≤ 2m. Zweifellos ist Ui = ∏α∈σ Oi

α offen in ∏α∈σ Xα und die
(Ui)i∈J sind paarweise disjunkt. Aus dem Hewitt-Pondiczery-Marczewski theorem folgern wir
aber d(∏α∈σ Xα)≤ m im Widerspruch zu m < J.

3.6.4 Definition: Souslin-Zahl

Für einen topologischen Raum (X ,τ) definieren wir wie folgt die Souslin-Zahl: C(X ,τ) :=
sup{|γ| | γ ⊆ τ und U 6= V ∈ γ → U ∩V = /0}. Also das Supremum der Mächtigkeiten aller
Familien von paarweise disjunkten offenen Mengen.

3.6.5 Korollar

Ein beliebiges Produkt separabler Räume hat also eine abzählbare Souslin-Zahl.
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4 Kompaktheit und verwandte Konzepte
”Die Freiheit der Presse im Westen, wobei die viel besser ist als anderswo, ist letztlich die
Freiheit von 200 reichen Leuten ihre Meinung zu veröffentlichen.”

Peter Scholl-Latour

4.1 Kompaktheit
”In mathematics you don’t understand things. You just get used to them.”

John von Neumann

Kompaktheit ist wohl einer der am häufigsten verwendeten Begriffe in und außerhalb der
Topologie. Das liegt daran, dass kompakte topologische Räume sich noch sehr angenehm ver-
halten, ja manchmal geradezu wie endliche Räume. Die meisten werden diesen Begriff bereits
aus der Analysis kennen. Kompakt wurden dort Mengen genannt, die abgeschlossen und be-
schränkt sind. Gewöhnlich zeigt man dann in der Analysis, dass die Eigenschaft beschränkt +
abgeschlossen äquivalent zur Heine-Borelschen Überdeckungseigenschaft ist (im Rn). Diese
besagt, dass jede offene Überdeckung der kompakten Menge mit offenen Intervallen (oder all-
gemeiner offenen Mengen) eine endliche Teilüberdeckung hat (die Beweise zu diesen Dingen
”fallen” bei uns unterwegs einfach ab). Nun haben wir in allgemeinen topologischen Räumen
- im Gegensatz zum Rn - keinen Abstandsbegriff zur Verfügung und definieren den Begriff
”kompakt” somit einfach durch die Heine-Borelsche Überdeckungseigenschaft und geben im
Anschluss weitere äquivalente Formulierungen.

4.1.1 Definition

kompakt Ein topologischer Raum (X ,τ) wird kompakt genannt, wenn jede Überdeckung
von X durch offene Mengen eine endliche Teilüberdeckung hat (eine Überdeckung ist eine
Menge σ ⊆ τ mit X =

⋃
O∈σ O). Offenbar äquivalent ist die Formulierung: Für jede Familie

abgeschlossener Mengen (Ai)i∈I mit leerem Schnitt gilt, dass bereits endlich viele einen leeren
Schnitt haben.

4.1.2 Lemma

Für einen topologischer Raum (X ,τ) ist äquivalent:
a) (X ,τ) ist kompakt.
b) Für jede transfinite Folge (d.h. durch Ordinalzahlen wohlgeordnet) (Aβ )β<κ abge-

schlossener nicht leerer Mengen mit Aβ ⊆ Aβ ′ , für β ′ < β ist
⋂

β<κ Aβ 6= /0.
c) Für jede transfinite Folge (Uβ )β<κ offener Mengen mit Uβ 6= X und Uβ ⊆Uβ ′ , für

β < β ′ ist
⋃

β<κ Aβ 6= X .

Beweis: a)⇒ b) ist klar. Zeigen wir nicht a)⇒ nicht b). Ist der Raum nicht kompakt, dann
gibt es eine Familie α aus abgeschlossenen Mengen mit der endlichen Schnitt Eigenschaft
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(eSE) mit
⋂

α = /0. Setze A := {α ′ ⊆ α |
⋂

α ′ = /0} und A ′ := {|α ′| | α ′ ∈ A }. Sei dann
α∗ ∈A mit |α∗|= minA ′. Wir bezeichnen |α∗|mit κ und wählen uns eine Bijektion f : κ→
α∗. Für alle β < κ definieren wir dann Aβ :=

⋂
δ≤β f (δ ). Es ist gilt dann:

1) Aβ 6= /0 ist abgeschlossen, für alle β < κ .
2) Aβ ⊆ Aβ ′ , für alle β ′ < β < κ .
3)
⋂

β<κ Aβ =
⋂

α = /0.
b)⇔ c) bekommt man durch Übergang zu Komplementen.

4.1.3 Lemma

Sei (X ,τ) ein kompakter Raum, (Y,σ) ein weiterer topologischer Raum und f : X → Y
eine stetige surjektive Abbildung, dann ist auch (Y,σ) kompakt.

Beweis: Sei (Vi)i∈I eine offene Überdeckung von Y . Dann ist offenbar ( f−1(Vi))i∈I eine
offene Überdeckung von X , welche eine endliche Teilüberdeckung ( f−1(Vik))

n
k=1 von X hat.

Dann ist (Vik)
n
k=1 eine endliche Teilüberdeckung von Y . Also ist auch Y kompakt.

4.1.4 Lemma

a) Sei (X ,τ) ein T2-Raum und A⊆ X kompakt. Dann ist A abgeschlossen.
b) Ein kompakter T2-Raum ist bereits normal (d.h. T1 und T4).

Beweis: a) Sei x ∈ X \A. Wir wählen zu jedem a ∈ A offene und disjunkte Mengen Ua, Va
mit a ∈ Ua und x ∈ Va. Nun ist A kompakt. Es gibt also endlich viele a1, ...,an, mit A ⊆⋃n

k=1Uak . Setzen wir noch V := Va1 ∩ ...∩Van , so gilt x ∈V ⊆ X \A. Demnach ist X \A offen
und A abgeschlossene.

b) Zu zeigen ist nur noch T4. Seien dazu A,B disjunkte abgeschlossene Teilmengen von X .
Sei a ∈ A. Zu jedem b ∈ B gibt es dann disjunkte Ub ∈ ȧ∩ τ und Vb ∈ ḃ∩ τ . Die {Vb | b ∈ B}
überdecken B und da dieser kompakt ist, tun dies bereits endlich viele {Vb1, ...,Vbn}. Wir bilden
dann die offenen und disjunkten Mengen Pa := Ub1 ∩ ...∩Ubn und Qa := Vb1 ∪ ...∪Vbn . Es
ist a ∈ Pa und B ⊆ Qa. Dies könne wir für jedes a ∈ A tun und erhalten - mit dem selben
Argument wie eben - eine endliche Teilüberdeckung {Pa1, ...,Pam} von A. Bilden wir dann
U := Pa1 ∪ ...∪Pan und V := Qa1 ∩ ...∩Qan , so erhalten wir zwei disjunkte offene Mengen mit
A⊆U und B⊆V . Der Raum ist also T4.

4.1.5 Lemma

a) In einem topologischen Raum (X ,τ) ist A⊆ X genau dann kompakt, wenn jeder Ultra-
filter auf X , der A enthält, gegen ein Element aus A konvergiert (man beachte, dass man
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für den Beweis nur die Existenz gewisser Ultrafilter braucht (Satz 3.2.2), nicht aber das
volle Auswahlaxiom). Insbesondere ist X kompakt, wenn jeder Ultrafilter auf X auch in X
konvergiert.

b) Konvergiert jeder Ultrafilter φ auf X mit A ∈ φ in X (also nicht unbedingt in A) und
ist A als Teilraum von (X ,τ) ein T3-Raum, so ist immerhin noch A kompakt.

Beweis: a) Sei A kompakt und φ ein Ultrafilter auf X mit A ∈ φ . Annahme: Es gibt kein
x ∈ A mit φ → x. Dann betrachten wir zu jedem a ∈ A die Menge ξa := (ẋ∩ τ)\φ . Für jedes
a ∈ A gilt nun a ∈

⋃
ξa. Die Menge ξ :=

⋃
a∈A ξa ist also eine offene Überdeckung von A, zu

der es somit eine endliche Teilüberdeckung ξ ′ gibt. Also A ⊆
⋃

ξ ′ und somit
⋃

ξ ′ ∈ φ . Über
Ultrafilter wissen wir bereits, dass dann aber (mindestens) eines der P ∈ ξ ′ auch in φ liegt.
Offensichtlich ist dies dann ein Widerspruch!

Nehmen wir nun an jeder Ultrafilter auf X , der A enthält konvergiert gegen ein Element aus
A und es gibt aber eine offene Überdeckung (Ui)i∈I von A welche keine endliche Teilüberde-
ckung hat. Dann ist ϕ := {P⊆ X | ∃ i1, ...in ∈ I mit A\

⋃n
k=1Uik ⊆ P} ein Filter(warum?), der

in einem Ultrafilter φ enthalten ist. Dieser konvergiert aber gegen ein Element x ∈ A, welches
in einem der Ui enthalten ist. Also ist Ui ∈ φ . Nun ist aber auch X \Ui ∈ ϕ ⊆ φ - dies ist ein
Widerspruch. Also ist die Annahme falsch und A somit kompakt.

b) Zum Beweis verwenden wir a). Sei φ ein Ultrafilter auf X mit A∈ φ . Zeigen wir, dass (φ∩
τ)∪{A} die endliche Schnitt Eigenschaft (eSE) hat. Da der Schnitt endlich vieler Elemente
aus φ ∩τ wieder in φ ∩τ liegt, genügt es ein U ∈ φ ∩τ zu wählen. In jedem Fall ist U ∩A 6= /0.
Sei x ∈U ∩A. Per Definition ist dann aber auch U ∩A 6= /0. Das genügt für die eSE. Sei dann
η ein Ultrafilter auf X mit (φ ∩ τ)∪{A} ⊆ η . Nach Voraussetzung gibt es dann ein x ∈ X mit
η → x, also ẋ∩ τ ⊆ η (dieses x liegt bereits in A - Warum?). Zeigen wir nun, dass auch φ

gegen x konvergiert. Wir wählen dazu ein X 6= V ∈ ẋ∩ τ . Da A als Teilraum T3 ist, gibt es ein
W ∈ τ und ein in X abgeschlossenes B mit x ∈ A∩W ⊆ A∩B⊆ A∩V . Wäre V 6∈ φ , so auch
B 6∈ φ . Nun ist dann aber W ′ := X \B ∈ φ ∩ τ , also W ′ ∈ η . Da η → x, ist auch W ∈ η . Aber
W ∩W ′ = /0. Das ist ein Widerspruch. Also doch V ∈ φ und somit insgesamt ẋ∩ τ ⊆ φ . Der
Ultrafilter φ konvergiert also in A und mittels a) schließen wir, dass A kompakt ist.

4.1.6 Lemma (Tubenlemma)

(Tubenlemma) (X ,τ) und (Y,σ) seien topologische Räume. Sei weiter X kompakt, y0 ∈Y
und X×{y0} ⊆U , wobei U offen in X×Y ist. Dann gibt es eine offene Umgebung V von
y0 mit X×V ⊆U .

Beweis: Zu jedem x ∈ X gibt es eine offene Menge Ox ∈ ẋ∩ τ und eine offene Menge
Vx ∈ ẏ0∩σ , mit Ox×Vx ⊆U . Nun ist X kompakt und somit gibt es endlich viele x1, ...,xn, mit
X =

⋃n
k=1 Oxk . Setze nun noch V :=

⋂n
k=1Vxk ⇒ fertig.
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4.1.7 Satz

Für einen topologischen Raum (X ,τ) ist äquivalent:
1) (X ,τ) ist kompakt.
2) Für jeden Hausdorff-Raum (Y,σ) ist die Projektion q : X ×Y → Y abgeschlossen

(d.h. Bilder abgeschlossener Mengen sind wieder abgeschlossen).

Beweis: 1) ⇒ 2) Sei A in X ×Y abgeschlossen und y ∈ Y \ q(A). Das heißt X ×{y} ⊆
(X ×Y ) \A. Aus Lemma 4.1.6 folgt die Existenz einer in Y offenen Menge V mit y ∈ V und
X×V ⊆ (X×Y )\A. Dies bedeutet aber V ⊆ Y \q(A) und q(A) ist somit abgeschlossen.

2)⇒ 1) Sei φ ein Ultrafilter auf X mit
⋂

φ = /0 (Ultrafilter der Form ẋ sind natürlich kon-
vergent) und sei y ein Element, welches nicht in X liegt (z.B. X selber). Wir setzen dann
X ′ := X ∪{y} und bilden τ ′ := P(X)∪ φ ′, wobei φ ′ := {P∪{y} | P ∈ φ}. τ ′ ist dann, wie
man leicht nachrechnet, eine Topologie auf X ′ und (X ′,τ ′) ist ein Hausdorff-Raum (lässt sich
leicht nachweisen). Wir betrachten dann ∆ := {(x,x) | x ∈ X} ⊆ X ×X ′, wobei das Produkt
natürlich mit der Produkttopologie versehen ist. Die Projektion q : X × X ′ → X ′ ist abge-
schlossen und demzufolge q(∆) = q(∆) = X = X ′. Es gibt also ein x0 ∈ X , mit (x0,y) ∈ ∆.
Sei U ∈ ẋ0∩ τ beliebig und P ∈ φ . Dann (x0,y) ∈U × (P∪{y}). Letztere Menge ist aber of-
fen, also ∆∩ [U × (P∪{y})] 6= /0. Das bedeutet U ∩P 6= /0. Da U ∈ ˙x0∩ τ und P ∈ φ beliebig
gewählt worden folgt, dass φ ∪ (ẋ0 ∩ τ) die endliche Schnitt Eigenschaft hat. Dann gilt aber
auch ẋ0 ∩ τ ⊆ φ (φ ist ein Ultrafilter). Der Ultrafilter φ konvergiert also und X ist demnach
kompakt.

4.1.8 Alexanderscher Subbasissatz

Sei β eine Subbasis des top. Raums (X ,τ). Dieser ist genau dann kompakt, wenn jede
Überdeckung mit Elementen aus der Subbasis β eine endliche Teilüberdeckung hat.

Beweis:Sei X nicht kompakt. Dann existiert ein nicht konvergenter Ultrafilter ψ . Das heißt
∀x ∈ X gibt es ein Ox ∈ ẋ∩ τ mit Ox 6∈ ψ . Zu Ox gibt es aber ein endliches βx ⊆ β , mit
x ∈

⋂
βx ⊆ Ox. Also auch

⋂
βx 6∈ ψ . Das heißt dann aber, dass es für x ∈ X auch ein Sx ∈ βx

geben muss, mit x ∈ Sx 6∈ ψ . {Sx | x ∈ X} kann dann aber keine endliche Teilüberdeckung
haben, Denn da X ∈ ψ , wäre sonst auch bereits eines der Sx ∈ ψ (sie den Abschnitt über
Ultrafilter, Lemma 3.2.3). Wir haben also eine Überdeckung mit Elementen aus β gefunden,
welche keine endliche Teilüberdeckung hat.

Die andere Richtung ist trivial, denn ist X kompakt, dann hat klarerweise auch jede Über-
deckung mit Subbasiselementen eine endliche Teilüberdeckung.
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4.1.9 Beispiel

Für eine nicht leere linear geordnete Menge (X ,<) definieren wir die Intervalle: (x,y) := {z ∈
X | x < z < y}, [x,y) := {z ∈ X | x ≤ z < y}, (x,y] := {z ∈ X | x < z ≤ y} und [x,y] := {z ∈
X | x≤ z≤ y}. Setzen wir

S := {{x ∈ X | x < y} | y ∈ X}∪{{x ∈ X | y < x} | y ∈ X}∪{X},

so ist S die Subbasis einer Topologie τ< auf X - der Ordnungstopologie (bezüglich <).
Intervalle der Form (x,y) nennen wir offene Intervalle. Wir haben folgenden Satz:

4.1.10 Satz

Sei (X ,<) eine linear geordnete Menge. Dann ist äquivalent:
a) (X ,τ<) ist kompakt.
b) Zu jeder nicht leeren Menge A⊆ X existiert in f (A) und sup(A) (in X).
c) Zu jeder nicht leeren abgeschlossenen Menge A⊆ X existiert min(A) und max(A).
Insbesondere folgern wir aus der Implikation b)⇒ a), dass in den reellen Zahlen (die

euklidische Topologie ist gleich der Ordnungstopologie) jedes Intervall der Form [x,y]
kompakt ist.

Beweis: b)⇒ c) Es existiert i := in f (A). Für alle x,y mit i ∈ (x,y) gibt es somit ein a ∈ A
mit x < i ≤ a < y, das heißt (x,y)∩A 6= /0. Wir haben also i ∈ A = A und somit i = min(A).
Analog mit max(A).

c)⇒ b) Sei m = min(A). Offensichtlich gilt dann m = in f (A).
b) ⇒ a) Es gilt in f (X) = min(X) =: m und sup(A) = max(A) =: M. Dann ist S :=
{(x,M] | x ∈ X}∪{[m,x) | x ∈ X} eine Subbasis von τ<. Sei X = (

⋃
x∈A(x,M])∪ (

⋃
x∈B[m,x)).

Nach dem Alexanderschen Subbasissatz reicht es aus zu zeigen, dass wir aus dieser Über-
deckung mit Subbasielementen eine endliche Teilüberdeckung auswählen können. Wir bil-
den dazu einfach x := in f (A) und y := sup(B). Es muss x < y gelten, denn sonst wäre
y 6∈ (

⋃
z∈A(z,M])∪ (

⋃
z∈B[m,z)) = X , was eindeutig ein Widerspruch ist.

Wir können dann ein a ∈ A wählen mit a < y. Dann gibt es aber auch ein b ∈ B mit a < b.
Offensichtlich gilt dann X = (a,M]∪ [m,b). Damit haben wir eine endliche Teilüberdeckung
gefunden.

a)⇒ c) Da jede abgeschlossen Menge A auch kompakt ist, reicht es also zu zeigen, dass X
ein kleinstes und ein größtes Element hat.

Hat X kein kleinstes Element, so ist (
⋃

b∈X(a,b))a∈X eine offene Überdeckung ohne endli-
che Teilüberdeckung - ein Widerspruch.

Hat X kein größtes Element, so ist (
⋃

a∈X(a,b))b∈X eine offene Überdeckung ohne endliche
Teilüberdeckung - wieder ein Widerspruch.
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4.1.11 Satz

Sei S eine Subbasis des top. Raums (X ,τ). Dieser ist genau dann kompakt, wenn es zu
jeder unendlichen Teilmenge M⊆X ein Punkt x∈X gibt, mit der Eigenschaft: ∀O∈ ẋ∩S
gilt |O∩M| = |M|. Insbesondere gilt die Aussage für S = τ . Derartige Punkte heißen
vollständige Häufungspunkte (von der Teilmenge M).

Beweis: Sei (X ,τ) kompakt und M eine unendliche Teilmenge von X . Gäbe es zu jedem
x ∈ X ein Ox ∈ ẋ ∩S mit |Ox ∩M| < |M|, so wählen wir aus der offenen Überdeckung
(Ox)x∈X eine endliche Teilüberdeckung {Ox1, ...,Oxn} aus und es würde |M| = |

⋃n
k=1 Oxk ∩

M|= max{|Oxk ∩M| | k = 1, ...,n}< |M| folgen - ein Widerspruch.
Die andere Richtung ist schwieriger: Sei (X ,τ) nicht kompakt. Wir konstruieren nun eine

unendliche Menge, die einen solchen Punkt nicht besitzt. Sei dazu σ ⊆S eine offene Über-
deckung ohne endliche Teilüberdeckung (die existiert nach Satz 4.1.8). Z := {|ξ | | ξ ⊆ σ und⋃

ξ = X} ist dann eine Menge von Kardinalzahlen und besitzt somit ein Minimum β . Sei
dann ξ ⊆ σ mit |ξ | = β (also eine Teilüberdeckung minimaler Kardinalität). Wir können ξ

also schreiben als ξ = {Uα | α < β} (es gibt ein bijektives f : β → ξ und für f (α) schreiben
wir einfach Uα ) und definieren nun für jedes α < β die Menge Aα := X \

⋃
δ<α Uδ . Für jedes

α gilt dann |Aα |= β .
Beweis: Andernfalls gäbe es ein α < β mit |Aα | < β . Wir wählen dann für jedes a ∈ Aα

ein γa ≥ α mit a ∈Uγa . Es folgt X = (
⋃

δ<α Uδ )∪ (
⋃

a∈Aα
Uγa). Aber α < β und |Aα |< β und

demzufolge |{Uδ | δ < α}∪{Uγa | a ∈ Aα}|< β - ein Widerspruch zur minimalen Wahl von
ξ (man beachte auch |α|< β , schließlich ist β eine Kardinalzahl!!!).

Wir werden nun mittels transfiniter Rekursion aus jedem Aα ein xα auswählen, so dass
xα 6= xα ′ für α 6= α ′ gilt. Wir starten mit einem beliebigen x0 ∈ A0. Sei α < β und für jedes
α ′< α sei bereits ein xα ′ ∈Aα ′ gewählt, die alle paarweise verschieden sind. Es ist |{xα ′ |α ′<
α}| = |α| < β = |Aα |. Wir können also ein xα ∈ Aα \ {xα ′ | α ′ < α} wählen. Mit der so
konstruierten transfiniten Folge (xα)α<β bilden wir die Menge M := {xα | α < β}. Es gilt
jetzt nämlich |M| = β . Sei nun x ∈ X beliebig. Dann gibt es ein α < β mit x ∈Uα . Dann ist
aber Uα ∩M ⊆ {xα ′ | α ′ ≤ α} (dies folgt aus der Definition der Aα ) und letztere Menge ist
von kleinerer Kardinalität als β . Somit folgt |Uα ∩M|< β = |M|. Damit sind wir fertig.

4.1.12 Korollar

Sei (X ,τ) ein unendlicher kompakter Hausdorf-Raum und x ∈ X ein nicht isolierter Punkt
(d.h. {x} ist nicht offen). Dann gibt es eine unendliche Teilmenge A von X , die x als
einzigen vollständigen Häufungspunkt hat.

Beweis: Y := X \ {x} ist nicht abgeschlossen und somit, da es sich bei X um einen kom-
pakten T2-Raum handelt, nicht kompakt. Y als nicht kompakter Teilraum besitzt also eine
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unendliche Teilmenge A′, die (in Y ) keinen vollständigen Häufungspunkt hat. Da X aber kom-
pakt ist, hat sie einen vollständigen Häufungspunkt in X! Dies kann nur noch x sein.

4.1.13 Satz

Sei X ein kompakter und Z ein Hausdorff Raum. Ferner sei f : X → Z eine stetige sur-
jektive Abbildung. Durch x∼ x′ ⇔ f (x) = f (x′) bekommen wir eine Äquivalenzrelation
auf X . Wenn Y den entstehenden Quotienten-Raum bezeichnet, dann gilt: Y und Z sind
homöomorph.

Insbesondere ist f bereits ein Homöomorphismus, falls f bijektiv ist.

Beweis: Sei ϕ : X → Y die standard Projektion (ϕ(x) := [x]∼). Definiere g : Y → Z durch
g([x]) := f (x). Dann ist g wohldefiniert und bijektiv (g ◦ϕ = f ). Sei O offen in Z. Dann ist
g−1(O) offen in Y , denn ϕ−1(g−1(O)) = f−1(O) ist offen ( f ist stetig). Folglich ist g stetig.
Zu zeigen bleibt, dass g auch offen ist. Da g surjektiv ist, reicht es zu zeigen, dass g abgeschlos-
sen ist. Na gut. Sei A abgeschlossen in Y . Da Y als Bild eines kompakten Raumes unter einer
stetigen Abbildung selber auch kompakt ist, folgern wir, dass A auch kompakt ist. Das heißt
aber g(A) ist kompakt in Z. Da Z ein Hausdorff Raum ist, ist g(A) dort auch abgeschlossen.

4.2 Basen in kompakten Hausdorff-Räumen

4.2.1 Lemma

a) Sei (X ,τ) ein kompakter T1-Raum (T1 ist kein Druckfehler), α eine unendliche Kardi-
nalzahl und B eine Basis mit |ẋ∩B| ≤ α für jedes x ∈ X . Dann gilt |B| ≤ α .

b) Sei (X ,τ) ein kompakter T2-Raum, α eine unendliche Kardinalzahl und γ ⊆ τ , mit⋂
(ẋ∩ γ) = {x} und |ẋ∩ γ| ≤ α für alle x ∈ X . Dann gilt |γ| ≤ α .

Beweis: a) Wir führen einen Widerspruchsbeweis und nehmen dazu |B| > α an. Eine of-
fene Überdeckung σ ⊆ τ nennen wir minimal, wenn

⋃
σ ′ 6= X für alle σ ′ ⊂ σ mit σ ′ 6= σ

gilt. Wir setzen nun Γ := {σ ⊆B |
⋃

σ = X und σ ist minimal}. Da (X ,τ) ein kompakter
Raum ist, ist jedes σ ∈ Γ endlich. Da (X ,τ) ein kompakter T1-Raum ist, kann man leicht
nachrechnen, dass

⋃
Γ = B gilt. Für jedes n ∈ N setzen wir nun Γn := {σ ∈ Γ | |σ |= n}. Of-

fensichtlich gilt dann B =
⋃

Γ =
⋃

(
⋃

n∈NΓn) =
⋃

n∈N(
⋃

Γn). Es muss also ein n ∈ N geben
mit |

⋃
Γn|> α . Da

⋃
Γn =

⋃
σ∈Γn

σ , folgt |Γn|> α .
Für jedes γ ⊆ B setzen wir Γ

γ
n := {σ ∈ Γn | γ ⊆ σ}. Für γ0 = /0 gilt also |Γγ0

n | > α und
|γ0| = 0. Sei k < n und γk ⊆B mit |γk| = k und |Γγk

n | > α . Dann gilt
⋃

γk 6= X , denn k < n
und die Elemente aus Γn sind minimale Überdeckungen. Sei x ∈ X \

⋃
γk. Dann ist Γ

γk
n =⋃

V∈ẋ∩B Γ
γk∪{V}
n . Da |ẋ∩B| ≤ α , muss es ein V ∈ ẋ∩B geben, mit |Γγk∪{V}

n | > α . Setzen
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wir γk+1 := γk ∪ {V}, so gilt also |γk+1| = k + 1 und |Γγk+1
n | > α . Setzt man dies induktiv

fort, so erhällt man schließlich ein γn ⊆B mit |γn| = n und |Γγn
n | > α . ABER |Γγn

n | ≤ 1 - ein
Widerspruch!

b) Wir setzen σ := {
⋂

γ ′ | γ ′ ⊆ γ und γ ′ ist endlich}∪{ /0,X}. Dann ist σ die Basis einer
Topologie τ ′ auf X , so dass (X ,τ ′) ein kompakter T1-Raum ist und |γ| ≤ |σ | gilt. Ferner haben
wir |ẋ∩σ | ≤ α , für jedes x ∈ X . Also folgt aus a) sofort |σ | ≤ α und damit dann |γ| ≤ α .

4.2.2 Lemma

Sei (X ,τ) ein unendlicher T2-Raum und N ein Netzwerk (siehe Definition 2.1.13). Dann
gibt es eine Topologie τ ′ ⊆ τ , so dass (X ,τ ′) ein T2-Raum ist, der eine Basis B besitzt mit
|B| ≤ |N |.

Beweis: Sei P := {(x,y) ∈ X×X | x 6= y}, dann gilt |P|= |X |. Zu jedem p = (x,y) ∈ P gibt
es (Up,Vp) ∈ τ×τ mit x ∈Up, y ∈Vp und Up∩Vp = /0. Es gibt dann (Np,Mp) ∈N ×N mit
x∈Np, y∈Mp und Np⊆Up bzw. Mp⊆Vp. Wir setzen dann Z := {(N,M)∈N ×N | ∃p∈ P
mit Np = N und Mp = M}. Damit gilt dann |Z| ≤ |N |. Für jedes z = (N,M) ∈ Z können
wir nun seinerseits ein (Uz,Vz) ∈ τ × τ wählen, mit N ⊆ Uz bzw. M ⊆ Vz und Uz ∩Vz = /0.
Nun bilden wir σ∗ := {(Uz,Vz) z ∈ Z} und σ := {U ∈ τ | ∃W ∈ τ mit (U,W ) ∈ σ∗ oder
(W,U) ∈ σ∗}. Offensichtlich ist B := {

⋂
σ ′ | σ ′ ⊆ σ und σ ′ ist endlich} eine Basis einer

Hausdorff-Topologie τ ′ auf X mit |B|= |σ | ≤ |σ∗| ≤ |Z| ≤ |N |.

4.2.3 Lemma

Sei (X ,τ) ein kompakter T2-Raum und N ein Netzwerk. Dann gibt es eine Basis B mit
|B| ≤ |N |.

Beweis: Wir können uns auf den Fall unendlicher kompakter Hausdorff-Räume beschrän-
ken, denn endliche kompakte T2-Räume sind diskret. Laut Lemma 4.2.2 gibt es eine Topologie
τ ′⊆ τ , so dass (X ,τ ′) ein T2-Raum ist, der eine Basis B besitzt mit |B| ≤ |N |. Offensichtlich
ist die Abbildung idX : (X ,τ)→ (X ,τ ′) stetig und bijektiv, also nach Satz 4.1.13 ein Homöo-
morphismus. Es gilt also τ = τ ′.

4.2.4 Lemma

Ist (X ,τ) beliebig, (Y,σ) kompakt und Hausdorff, f : X → Y stetig und surjektiv und ist
B eine Basis für X , dann gibt es eine Basis C von Y mit |C | ≤ |B|.

Beweis: Offenbar ist N := { f (B) | B ∈ N} ein Netzwerk mit |N | ≤ |B|.
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4.2.5 Definition

Sei (X ,τ) ein topologischer Raum. B ist eine Pseudobasis, wenn B ⊆ τ und {x}=
⋂

(ẋ∩B)
für jedes x ∈ X gilt.

4.2.6 Lemma

Sei (X ,τ) ein kompakter T2-Raum und B eine Pseudobasis (siehe Def. 4.2.5).
a) Dann gibt es eine Basis B′ mit |B′| ≤ |B|.
b) Gibt es eine unendliche Kardinalzahl α , so dass |ẋ∩B| ≤ α gilt, für jedes x ∈ X ,

dann gibt es eine Basis B′ mit |B′| ≤ α .

Beweis: a) Sei x ∈U ∈ τ . Für jedes y ∈ X \U gibt es ein By ∈ ẏ∩B mit x 6∈ By. Da X \U
abgeschlossen und demnach kompakt ist, gibt es y1, ...,yn ∈X \U mit X \U ⊆By1∪ ...∪Byn =:
B. Es folgt x ∈ X \B⊆U .

Dies beweist, dass N := {X \
⋃

B′ | B′ ⊆ B und B′ ist endlich} ein Netzwerk ist mit
|N | ≤ |B|. Aus Lemma 4.2.3 folgt, dass es eine Basis B′ gibt mit |B′| ≤ |N | ≤ |B|.

b) Aus a) folgt die Existenz einer Basis B′ mit |B′| ≤ |B|. Aus Lemma 4.2.1 b) folgt für
die Pseudobasis B sofort |B| ≤ α . Insgesammt bekommen wir dann |B′| ≤ α .

4.3 Fortsetzbarkeit stetiger Abbildungen (2)
Im Abschnitt Fortsetzbarkeit stetiger Abbildungen (1) hatten wir uns unter anderem mit der
Fortsetzbarkeit von stetigen Abbildungen f : D→Y , wobei D⊆X und D = X gilt, beschäftigt.
Ist Y nun ein kompakter Hausdorff-Raum, so haben wir folgende interessante Ergänzungen.

4.3.1 Satz

a)Sei (X ,τ) ein beliebiger und (Y,σ) ein kompakter T3-Raum und sei f : D→ Y stetig,
wobei D⊆ X und D = X . Gilt nun immer f−1(B1)∩ f−1(B2) = /0 für abgeschlossene und
disjunkte B1,B2 ⊆Y (hier ist der Abschluss in X gemeint, obwohl f−1(Bi)⊆D gilt), dann
gibt es ein stetiges f̃ : X → Y mit f̃ |D = f . Ist (Y,σ) zusätzlich T0, so ist f̃ eindeutig
bestimmt.

Die Umkehrung gilt natürlich auch (unter viel schwächeren Voraussetzungen).
b) Seien (X ,τ) und (Y,σ) beliebige topologische Räume und f̃ : X → Y eine stetige

Abbildung. Sei D ⊆ X mit D = X und sei f := f̃ |D. Sind B1, B2 ⊆ Y abgeschlossen und
disjunkt, dann ist f−1(B1)∩ f−1(B2) = /0 (gemeint ist natürlich wieder der Abschluss in
X).

Beweis: a) Wir verwenden Lemma 3.3.7. Sei also x ∈ X und sei φx ein Filter auf D, so dass
der Filter {P⊆ X | ∃P′ ∈ φx mit P′⊆ P} gegen x konvergiert. Das bedeutet ∀O∈ ẋ∩τ ∃P∈ φx
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mit P ⊆ O. Sei ψx ein Ultrafilter auf D mit φx ⊆ ψx. Dann ist f (φx) ein Filter auf Y und
f (ψx) sogar ein Ultrafilter auf Y , mit f (φx)⊆ f (ψx). Es gibt also ein yx ∈ Y , gegen das f (ψx)
konvergiert (Kompaktheit). Zu zeigen ist noch, dass f (φx) immer gegen yx konvergiert.

Angenommen ∃x ∈ X und f (φx) konvergiert nicht gegen yx. Dann ∃W ∈ ẏx ∩σ mit W 6∈
f (φx). Das bedeutet ∀P ∈ φx ist P∩ f−1(Y \W ) 6= /0. Nun ist (Y,σ) ein T3-Raum, es gibt also
ein V ∈ σ mit yx ∈V ⊆V ⊆W . Die Voraussetzung auf B1 := V und B2 := Y \W angewendet
ergibt f−1(V )∩ f−1(Y \W ) = /0. Es gilt x ∈ f−1(V ), denn sonst ∃O ∈ ẋ∩τ mit O∩ f−1(V ) =
/0, es gibt dann also auch ein P ∈ φx mit P∩ f−1(V ) = /0. Nun ist aber V ∈ f (ψx), es gibt
also ein P′ ∈ ψx mit P′ ⊆ f−1(V ), also P∩P′ = /0 im Widerspruch zu P ∈ ψx. Es ist aber auch
x∈ f−1(Y \W ), denn sonst gäbe es wieder ein P∈ φx mit P∩ f−1(Y \W ) = /0 im Widerspruch
zu ∀P ∈ φx ist P∩ f−1(Y \W ) 6= /0. Also x ∈ f−1(V )∩ f−1(Y \W ) = /0 - Widerspruch!

b) Nun ist f−1(B)⊆ f̃−1(B), für jedes B⊆ Y . Da f̃ stetig ist und Urbilder abgeschlossener
Mengen unter stetige Abbildungen wieder abgeschlossen sind, folgt natürlich für disjunk-
te und abgeschlossene B1,B2 ⊆ Y sofort f̃−1(B1)∩ f̃−1(B2) = /0 und damit dann f−1(B1)∩
f−1(B2) = /0.

4.3.2 Satz

Sei (X ,τ) ein beliebiger top. Raum und (Y,σ) ein kompakter T3-Raum. Außerdem sei
D ⊆ X eine dichte Teilmenge (also D = X). Für eine stetige Abbildung f : D→ Y gibt
es genau dann eine stetige Fortsetzung f̃ : X → Y , wenn es zu jeder endlichen offenen
Überdeckung (Wj)n

j=1 von Y eine endliche offene Überdeckung (Vi)m
i=1 von X gibt, so dass

{Vi∩D | i = 1, ...,m} eine Verfeinierung von { f−1(Wj) | j = 1, ...,n} ist. Ist (Y,σ) usätzlich
T0, so ist die Abbildung eindeutig bestimmt. Die Umkehrung ist trivial (da braucht man
keine Kompaktheit und T3-Eigenschaft).

Verfeinerung bedeutet Folgendes: Sind α,β ⊆P(X), so nennen wir α eine Verfeine-
rung von β , wenn es zu jedem a ∈ α ein b ∈ β gibt mit a⊆ b.

Beweis: Wieder verwenden wir Lemma 3.3.7. Sei x ∈ X und φx ein Filter auf D, so dass
{P ⊆ X | ∃P′ ∈ φx mit P′ ⊆ P} gegen x konvergiert. Das bedeutet ∀O ∈ ẋ∩ τ ∃P ∈ φx mit
P⊆O. Nehmen wir an (um einen Widerspruch abzuleiten), dass f (φx) in Y nicht konvergiert.

Dann gibt es zu jedem y ∈ Y ein Wy ∈ ẏ∩σ mit Wy 6∈ f (φx). Da (Y,σ) kompakt ist, gibt es
endlich viele y1, ...,yn mit Y = Wy1 ∪ ...∪Wyn . Zu dieser endlichen Überdeckung gibt es nach
Voraussetzung endlich viele V1, ...,Vm ∈ τ mit X =

⋃m
i=1Vi und {Vi∩D | i = 1, .., .m} ist eine

Verfeinerung von { f−1(Wy j) | j = 1, ...,n}.
Sei nun x ∈ Vk, für ein k ∈ {1, ...,m}. Dann gibt es ein P ∈ φx mit P ⊆ Vk. Aufgrund der

Verfeinerungsbedingung gibt s aber auch ein l ∈ {1, ...,n} mit Vk∩D⊆ f−1(Wyl).
Es folgt f (P)⊆ f (Vk∩D)⊆Vyl , also Wyl ∈ f (φx) - Widerspruch!
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4.4 Der Satz von Tychonoff
”I care not what puppet is placed upon the throne of England to rule the Empire on
which the sun never sets. The man who controls Britain’s money supply controls the
British Empire, and I control the British money supply.”

Nathan Mayer Rothschild

Jedes Produkt kompakter Räume (mit der Produkttopologie) ist wieder kompakt. Dieser
Satz ist der wohl wichtigste Satz der Mengentheoretischen Topologie und gehört definitiv zu
den wichtigsten Sätzen in der gesamten Mathematik. Der einfache Beweis mittels Ultrafilter
sollte den Leser nicht über die Tatsache hinwegtäuschen, dass es sich bei diesem Satz um
einen schwierigen Satz handelt (eher ist es ein Zeichen dafür, wie stark die Charakterisierung
der Kompaktheit durch Ultrafilter ist).

Wir beweisen den Satz von Tychonoff allerdings erst für endliche Produkte und tun dies
einfach aus dem Grund, da man in diesem Fall kein Wissen über Ultrafilter oder das Zornsche
Lemma benötigt.

Im Anschluss an die Beweise geben wir eine Reihe von Beispielen in denen dem Satz von
Tychonoff eine zentrale Stellung zukommt.

Zur Wiederholung werfe man nochmal einen Blick auf das Tubenlemma (Lemma 4.1.6).

4.4.1 Satz (Kleiner Satz von Tychonoff)

Seien (X ,τ) und (Y,σ) kompakte Räume. Dann ist auch X ×Y kompakt. Per vollständi-
ger Induktion bekommen wir somit, dass das Produkt endlich vieler kompakter Räume
kompakt ist.

Beweis: Sei (Ui)i∈I eine offene Überdeckung von X ×Y . Zu jedem y ∈ Y gibt es dann
ein endliches Iy ⊆ I, mit X ×{y} ⊆

⋃
i∈Iy

Ui. Aus dem Tubenlemma (Lemma 4.1.6) folgt für
jedes y ∈ Y die Existenz eines Vy ∈ ẏ∩σ mit X ×Vy ⊆

⋃
i∈Iy

Ui. Nun überdecken die Vy mit
y ∈ Y aber ganz Y , es gibt also bereits endlich viele y1, ...,yn mit Y = Vy1 ∪ ...∪Vyn . Dann
ist J :=

⋃n
k=1 Iyk endlich und es gilt X ×Y =

⋃n
k=1 X ×Vyk ⊆

⋃
i∈J Ui. Wir haben somit eine

endliche Teilüberdeckung gefunden.

4.4.2 Eine kleine Anwendung

Wie wir bereits gesehen haben lässt sich mit dem Alexanderschen Subbasis Satz recht einfach
zeigen, dass abgeschlossene Intervalle [a,b] kompakt sind (dies wird normalerweise auch in
dem ersten Semester Analysis ganz elementar gezeigt, bzw. lässt sich auch leicht aus Satz
4.5.20 ableiten, denn Intervalle sind ntürlich metrische Räume). Hieraus und aus dem kleinen
Satz von Tychonoff ergibt sich dann die viel genutzte Charakterisierung kompakter Teilmen-
gen des Rn: Eine Teilmenge des Rn ist genau dann kompakt, wenn sie abgeschlossen und
beschränkt ist. Der Beweis ist leicht. Wenn A⊆Rn kompakt ist, so ist A abgeschlossen (Rn ist
ein Hausdorff-Raum) und klarerweise beschränkt. Umgekehrt bette man A in einem genügend
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großen Würfel ([a,b]× ...× [c,d]) ein, der dann kompakt ist. Als abgeschlossene Teilmenge
ist nun auch A kompakt.

Ferner bekommen wir eine allgemeine Version des Satzes vom Maximum und Minimum.
Sei f : X → R stetig und X kompakt. Dann ist f (X) abgeschlossen und beschränkt in R, also
wird das Minimum und Maximum angenommen!

Kommen wir nun zur vollen Version des Satzes von Tychonoff. Der kleine Satz von Tycho-
noff, wird für diesen Beweis nicht benötigt.

4.4.3 Satz von Tychonoff

Auf Basis der Axiome von Zermelo-Fraenkel (ohne Auswahlaxiom) ist äquivalent:

1. Ein Produkt X = ∏i∈I Xi topologischer Räume (Xi,τi)i∈I ist genau dann kompakt,
wenn jeder Faktor kompakt ist.

2. Das Auswahlaxiom.

Beweis: 1.⇒ 2. Sei (Ai)i∈I eine Familie disjunkter, nichtleerer Mengen. A :=
⋃

i∈I Ai wird
mit der gröbsten Topologie versehen, so dass alle Ai in A abgeschlossen sind, d.h. τ :=
{
⋃

i∈J Ai | J ⊆ I und I \ J endlich }. Es folgt sehr leicht, dass (A,τ) kompakt ist. Also ist
auch AI = ∏i∈I A kompakt. Für i0 ∈ I ist Ci0 := { f ∈ AI | f (i) ∈ Ai} abgeschlossen in AI , denn
AI \Ci0 = { f ∈ AI | f (i) 6∈ Ai}= ∏ j∈I U j, wobei U j = A für j 6= i0 und U j =

⋃
l∈I\{i0}Al . Für

i1, ..., in ∈ I gilt außerdem, dass Ci1 ∩ ...∩Cin 6= /0 ist (Prinzip der endlichen Auswahl). Aus der
Kompaktheit folgt ∃ f ∈

⋂
i∈I Ai. Offensichtlich ist f für (Ai)i∈I eine Auswahlfunktion. Damit

folgt dann sehr leicht das jede Familie eine Auswahlfunktion hat.
2. ⇒ 1. Falls nun (X ,τ) kompakt ist, dann folgt aus der Surjektivität und Stetigkeit der

Projektionsabbildungen pri : X → Xi die Kompaktheit der Xi.
Sind nun umgekehrt alle (Xi,τi) kompakt, dann nehme man sich einen beliebigen Ultrafilter

ϕ auf X . Zu zeigen bleibt dann: ∃x ∈ X mit ϕ → x, also ẋ∩ τ ⊆ ϕ . Betrachte nun für jedes
i ∈ I den Ultrafilter pri(ϕ) auf Xi. Aus der Kompaktheit der (Xi,τi) folgt ∀ i ∈ I∃xi ∈ Xi mit
pri(ϕ)→ xi. Setzt man x = (xi)i∈I (hier braucht man das Auswahlaxiom), so gilt also ∀ i ∈
I pri(ϕ)→ pri(x). Aus Lemma 3.2.11 folgt ϕ → x. Also konvergiert jeder Ultrafilter auf X
und damit ist (X ,τ) kompakt.

4.4.4 Bemerkung

Einen weiteren Beweis des Satzes von Tychonoff bekommen wir im Abschnitt: Elementare
Nichtstandard Konzepte in der Topologie (Satz 14.6.13). Der Beweis ist ebenfalls ausgespro-
chen kurz, vielleicht sogar ein bischen kürzer, die zugrunde liegende Theorie ist aber deutlich
komplizierter.

Es folgt eine starke Verallgemeinerung des Tubenlemmas (auch als Wallace-Theorem be-
kannt):
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4.4.5 Korollar (Verallgemeinertes Tubenlemma)

Seien (Xi,τi)i∈I topologische Räume und Ai⊆ Xi, für jedes i∈ I eine kompakte Teilmenge.
Ist W eine in ∏i∈I Xi (mit der Produkttopologie) offene Menge, mit A := ∏i∈I Ai ⊆W , so
gibt es eine standard Basismenge U mit A⊆U ⊆W .

Zur Erinnerung: Standard Basismenge bedeutet: U = ∏i∈I Ui, mit Ui = Xi für i 6∈ J und
Ui ∈ τi für i ∈ J, wobei J ⊆ I und J : endlich.

Beweis: W ist als offene Menge von der Form W =
⋃

l∈L ∏i∈I U (l)
i , für eine geeignete In-

dexmenge L und standard Basismengen ∏i∈I U (l)
i . Da A kompakt ist, gibt es also eine endliche

Teilmenge L′⊆ L mit A⊆
⋃

l∈L′∏i∈I U (l)
i . Für jedes i∈ I und ai ∈Ai setze Uai :=

⋂
{U (l)

i | l ∈ L′

und ai ∈U (l)
i } und Ui :=

⋃
ai∈Ai

Uai . Wir zeigen nun U := ∏i∈I Ui ist standard offene Basis-
menge in X mit A⊆U ⊆W .

1) Das Ui = Xi gilt - bis auf höchstens endlich viele Ausnahmen - ist klar. ebenso ist klar,
dass jedes Ui offen in Xi ist. U ist also eine offene standard Basismenge.

2) A⊆U ist auch klar!
3) Zeigen wir noch U ⊆W . Sei (xi)i∈I ∈ U . Für jedes i ∈ I gibt es dann ein ai ∈ Ai mit

xi ∈Uai . Nun gibt es ein l ∈ L′ mit (ai)i∈I ∈∏i∈I U (l)
i . Für alle i ∈ I folgt somit Uai ⊆U (l)

i , und
damit (xi)i∈I ∈∏i∈I U (l)

i ⊆W .

4.4.6 Korollar

Sei (Si)i∈N eine Familie von endlichen, nicht leeren Mengen. Für jedes i > 0 sei fi : Si→
Si−1 eine Abbildung. Dann gibt es eine Folge (xi)i∈N mit xi ∈ Si und fi+1(xi+1) = xi für
alle i ∈ N.

1. Beweis (mit Tychonoff): Wir versehen jedes Si wieder mit der diskreten Topologie und
Z := ∏i∈N Si mit der Produkttopologie. Z ist demnach ein kompakter Raum. Für jedes n ∈ N
bilden wir An := {(xi)i∈N ∈ Z | ∀1 ≤ i ≤ n gilt fi(xi) = xi−1}. Es ist klar, dass An+1 ⊆ An
gilt und die An zudem alle nicht leer sind. Wenn (xi)i∈N ∈ Z \An, gibt es also ein 1 ≤ j ≤ n
mit f j(x j) 6= x j−1. Wir bilden dann O := ∏i∈NOi mit O j := {x j}, O j−1 := {x j−1} und Oi :=
Si für i 6= j, j− 1. Dann ist O offen und (xi)i∈N ∈ O ⊆ Z \An. Für jedes n ∈ N ist An also
abgeschlossen. Aus der Kompaktheit von Z folgt

⋂
n∈NAn 6= /0. Jedes Element aus diesem

Schnitt erfüllt dann aber gerade die Behauptung.

2. Beweis (ohne Tychonoff): Für jedes n ∈ N und k ≥ 1 definieren wir Gk
n := fn+1 ◦ ... ◦

fn+k(Sn+k)⊆ Sn und Fn :=
⋂

k≥1 Gk
n ⊆ Sn. Offenbar gilt Gk

n 6= /0 und k≤ l ⇒ Gl
n ⊆Gk

n für alle
n ∈ N und k, l ≥ 1.

Zwischenbehauptung 1: Für alle n ∈ N ist Fn 6= /0.
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Beweis: Angenommen es gibt ein n∈Nmit Fn = /0. Für jedes x∈ Sn gibt es dann ein kx ∈N
mit x 6∈Gk

n. Sei k := max{kx | x∈ Sn}. Dann ist Gk
n⊆Gkx

n für jedes x∈ Sn, also auch x 6∈Gk
n. Das

bedeutet Gk
n = /0. Wie wir bereits bemerkt haben gilt aber immer Gk

n 6= /0 - ein Widerspruch!
Zwischenbehauptung 2: Für alle n ∈ N und x ∈ Fn ist f−1

n+1(x)∩Fn+1 6= /0.
Beweis: Angenommen es gibt ein n ∈ N und x ∈ Fn mit f−1

n+1(x)∩ Fn+1 = /0. Für jedes

y ∈ f−1
n+1(x) gibt es dann ein ky ≥ 1 mit y 6∈ Gky

n+1. Für k := max{ky | y ∈ f−1
n+1(x)} folgt dann

f−1
n+1(x)∩Gk

n+1 = /0, also x 6∈ fn+1(Gk
n+1) = Gk+1

n ⊇ Fn 3 x - ein Widerspruch!
Wir wählen x0 ∈ F0 und xn+1 ∈ f−1

n+1(xn)∩Fn+1, falls xn bereits gewählt wurde. Aufgrund
der beiden bewiesenen Zwischenbehauptungen können wir das machen und die so konstruierte
Folge (xi)i∈N erfüllt fi+1(xi+1) = xi für alle i ∈ N.

4.4.7 Eine Anwendung von Tychonoff’s Satz in der Graphentheorie

Ein Graph G is ein geordnetes Paar G = (V,E) mit einer Menge V von Ecken (vertices) und
einer Menge E von Kanten (edges) (die jeweils zwischen zwei Ecken liegen), wobei wir E
als Teilmenge von [V ]2 := {P⊆V | |P|= 2} auffassen und jede Kante somit durch ihre zwei
Endpunkte repräsentieren (rein technisch wird noch V ∩E = /0 gefordert). Unter einem Teilgra-
phen eines gegeben Graphen G = (V,E) verstehen wir ein Graphen G′ = (V ′,E ′), mit V ′ ⊆V ,
E ′⊆E und zusätzlich ∀P∈E ′ : P⊆V ′ (nur Kanten, deren Eckpunkte zu V ′ gehören, dürfen zu
G′ gehören). Wenn V ′ ⊆V für einen Graphen G = (V,E) gilt, so nennen wir G′ = (V ′,V ′(E))
mit V ′(E) := {P∈ E | P⊆V ′} den von V ′ in G induzierten Teilgraphen (die Forderung V ′⊆V
kann man auch weglassen).

Sei k ∈ N. Wir sagen ein Graph G = (V,E) ist k-färbbar, wenn es eine Abbildung f : V →
{1, ...,k} gibt, so dass f (x) 6= f (y) für alle {x,y} ∈ E gilt (durch eine Kante verbundene Ecken
haben verschiedene Farben). Die Abbildung f wird in diesem Fall eine k-Färbung genannt.

Wir können nun leicht folgenden Satz beweisen:

Ein Graph G = (V,E) ist genau dann k-färbbar ist, wenn jeder durch eine endliche
Teilmenge V ′ von V induzierte Teilgraph k-färbbar ist.

Beweis: Wenn G k-färbbar ist, so offensichtlich auch jeder Teilgraph. Für die Umkehrung
können wir o.B.d.A. voraussetzen, dass V unendlich ist. Auf der Menge {1, ...,k} führen
wir die diskrete Topologie ein und auf Z := {1, ...,k}V (der Menge aller Abbildungen von
{1, ...,k} → V ) entsprechend die Produkttopologie. Nach dem Satz von Tychonoff ist Z da-
mit ein kompakter topologischer Raum. Für jedes endliche A⊆V setzen wir nun GA := { f ∈
Z | f |A ist eine k-Färbung von GA = (A,A(E))}. Die Mengen GA sind in Z nun abgeschlos-
sen (man kann leicht zeigen, dass das Komplement offen ist) und je endlich viele GA1, ...,GAn

haben einen nicht leeren gemeinsamen Schnitt (das ist gerade die Voraussetzung, dass jeder
durch eine endliche Teilmenge A von V induzierte Teilgraph k-färbbar ist). Da Z kompakt ist,
ist der Schnitt von allen diesen GA, also

⋂
{GA | A endlich und ⊆V} nicht leer. Ein Element f

aus diesem Schnitt ist dann aber gerade eine gesucht k-Färbung von G!
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4.4.8 Eine Anwendung auf unendliche Folgen

In diesem Beispiel betrachten wir in beide Seiten unendlich fortlaufende aber vom Wert be-
schränkte Folgen aus R. Wir definieren zu diesem Zweck B := {a = (ai)i∈Z ∈ RZ | ∃N ∈
N∀ i ∈N gilt |ai| ≤ N}. Zwei solche Elemente aus B können wir addieren indem wir sie Kom-
ponentenweise addieren (ai)i∈Z+(bi)i∈Z := (ai + bi)i∈Z. Das Ergebnis ist dann wieder eine
beschränkte Folge. Wir können die Elemente aus B auch mit reellen Zahlen multiplizieren
r · (ai)i∈Z := (r · ai)i∈Z. Die Menge B zusammen mit diesen beiden Operationen ist demnach
ein Vektorraum über R.

Zur Abkürzung führen wir für a = (ai)i∈Z ∈ B folgende Notation ein:
inf(a) := infi∈Z(ai) und sup(a) := supi∈Z(ai)
Uns interessiert nun die folgende Frage: Ist es möglich auf sinnvolle Weise jeder solchen

Folge (ai)i∈Z einen Mittelwert zuzuordnen? Um auf diese Frage antworten zu können, sollten
wir uns zuerst überlegen, was wir unter einem Mittelwert verstehen.

Ein Mittelwert ist eine lineare Abbildung µ : B→ R, mit

∀a ∈ B gilt inf(a)≤ µ(a)≤ sup(a)

Derartige Abbildungen gibt es viele. Zum Beispiel µ((ai)i∈Z) = 1
|E|∑n∈E an, für jede endliche

Teilmenge E ⊆ Z. Wir gehen daher einen Schritt weiter und fragen, ob es einen Mittelwert µ

gibt, der auch die folgende Bedingung erfüllt:

µ ◦S = µ, wobei S : B→ B durch S((ai)i∈Z) := (ai+1)i∈Z definiert ist (Shift-Operator).

Die Antwort ist ja. Die obigen Beispiele für Mittelwerte sind allerdings nicht von dieser Form.
Der nun folgende Existenzbeweis ist nicht konstruktiv.

Die Menge M := {µ ∈ RB | µ ist ein Mittelwert} als Teilraum von RB ist kompakt (RB

bekommt die Produkttopologie).

Beweis: Es gilt M ⊆ X := ∏a∈B[inf(a),sup(a)] und da X als Produkt kompakter Intervalle
kompakt ist, reicht es zu zeigen, dass M in X abgeschlossen ist.

DaRB die Produkttopologie besitzt, ist für jedes a∈B die Abbildung ea :=RB→R definiert
durch ea( f ) := f (a) stetig. Für a,b ∈ B und r ∈R sind somit auch (ea+b−ea−eb) und (era−
rea) als zusammengesetzte Abbildungen stetig. Die Menge M lässt sich nun als geeigneter
Schnitt von Urbildern schreiben:

M = X ∩ [
⋂

a,b∈B(ea+b− ea− eb)−1(0)]∩ [
⋂

a∈B,r∈R(era− rea)−1(0)]
Da alle diese Urbilder (als Urbild der 0) abgeschlossen sind, ist es M als Schnitt auch!

Es gibt einen Mittelwert µ : B→ R mit µ ◦ S = µ . Solch einen Mittelwert nennen wir
Shift invariant.
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Beweis: Wir betrachten die Folge von Mittelwerten (µn)n∈N, definiert durch

µn(a) :=
1
n

n

∑
i=1

ai für a = (ai)i∈N ∈ B.

Nun ist (µn)n∈N eine Folge aus M und da diese Menge kompakt ist, hat die Folge (µn)n∈N
einen Häufungspunkt µ ∈ M, in dem Sinn, dass jede Umgebung von µ unendlich viele der
Folgeglieder µn enthält.

Andernfalls gäbe es zu jedem µ ∈M eine Umgebung welche nur endlich viele µn enthält.
Da M kompakt ist, Würde endlich viele dieser Umgebungen bereits ganz M überdecken und
es gäbe insgesamt nur endlich viele µn, was natürlich ein Widerspruch ist.

Zeigen wir, dass unser Häufungspunkt µ bereits der gesuchte Shift invariante Mittelwert ist.
Dazu sei a ∈ B fest gewählt. Sei auch ε > 0 fest gewählt. Wir setzen U := {ν ∈M | |ν(a)−
µ(a)|< ε und |ν ◦S(a)−µ ◦S(a)|< ε}. Dann ist U eine offene Umgebung (in der Spurtopo-
logie auf M) von µ . Nun gilt: |µn(a)−µn ◦S(a)|= 1

n |a1−an| ≤ 2supi∈Z(|ai|)
n → 0, für n→ ∞.

Wir wählen daher n so groß, dass µn ∈ U und gleichzeitig |µn(a)− µn ◦ S(a)| < ε gilt.
Insgesamt bekommen wir damit dann:
|µ(a)−µ ◦S(a)| ≤ |µ(a)−µn(a)|+ |µn(a)−µn ◦S(a)|+ |µn ◦S(a)−µ ◦S(a)|< 3ε.
Da ε beliebig war, gilt somit µ(a) = µ ◦S(a). Da auch a ∈ B beliebig war, folgt µ = µ ◦S.

4.5 Andere Kompaktheitsbegriffe
Den Begriff der Kompaktheit kann man natürlich in verschiedene Richtungen abschwächen.
Wichtige Verallgemeinerungen von Kompaktheit sind z.B. Hausdorff-Abgeschlossenheit, lo-
kale Kompaktheit, k-Räume, abzählbare Kompaktheit und die Folgenkompaktheit. In diesem
Abschnitt geben wir einen kleinen Überblick über diese Begriffe und wie diese mit dem Be-
griff der Kompaktheit zusammenhängen. Erstaunlicherweise erweisen sich die letzten beiden
Varianten (abzählbare Kompaktheit und Folgenkompaktheit) in einer gewissen Weise - trotz
der Beschränkung auf abzählbare Strukturen (oder vielleicht auch gerade deshalb) - als deut-
lich komplizierter als die gewöhnliche Kompaktheit.

4.5.1 Definition

Hausdorff-Abgeschlossen In Anlehnung an Lemma 4.1.4 nennen wir ein top. Raum (X ,τ)
Hausdorff-Abgeschlossen, wenn er ein Hausdorff-Raum ist und für jede Einbettung f : X→Y
in einen Hausdorff-Raum Y gilt, dass f (X) abgeschlossen in Y ist. Kurz: X ist T2 und wann
immer sich X als Teilraum eines T2-Raumes realisieren lässt, ist X in diesem abgeschlos-
sen. Wie wir bereits gesehen haben, sind kompakte T2-Räume also beispielsweise Hausdorff-
Abgeschlossen.

Für die Formulierung des nächsten Satzes brauchen wir Begriff des offenen Ultrafilters. Sei
(X ,τ) ein top. Raum. Wir nennen φ ⊆ τ einen offenen Filter, wenn 1) X ∈ φ und /0 6∈ φ 2)
U,V ∈ φ ⇒ U ∩V ∈ φ 3) U ∈ φ und U ⊆ V ∈ τ ⇒ V ∈ φ erfüllt sind. Genau wie beim
Ultrafiltersatz (Satz 3.2.2) zeigt man, dass jeder offener Filter in einem maximalen offenen
Filter enthalten ist. Diese nennt man dann halt offene Ultrafilter. Genau wie schon bei den
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Filtern definieren wir, was es heißt, dass ein offener Filter konvergiert. φ konvergiert gegen
x ∈ X (wir verwenden die gleiche Symbolik: φ → x), genau dann wenn ẋ∩ τ ⊆ φ .

4.5.2 Satz

Für einen topologischen Raum (X ,τ) ist äquivalent:
a) (X ,τ) ist Hausdorff-Abgeschlossen.
b) (X ,τ) ist T2 und jeder offene Ultrafilter konvergiert (in X).
c) (X ,τ) ist T2 und zu jeder offenen Überdeckung ξ ⊆ τ von X gibt es eine endliche

Teilmenge ξ ′ ⊆ ξ , mit X =
⋃

U∈ξ ′U

Beweis: Statt a)⇒ b) zeigen wir dazu äquivalent: nicht b)⇒ nicht a). Bezeichnen wir mit
Y die Menge aller nicht konvergierenden offenen Ultrafiltern in X . Die Menge Z := X ∪Y
versehen wir nun mit der Topologie τZ := top(B), wobei B := τ ∪{U ∪{φ} |U ∈ φ ∈ Y}
eine Basis von τZ ist. Es gilt Y 6= /0 und X ∩Y = /0. Die Abbildung f : X → Z, definiert durch
f (x) := x ist offensichtlich eine Einbettung. Ebenso sieht man, dass X in Z dicht liegt (jede
nicht leere offene Teilmenge aus Z hat einen nicht leeren Schnitt mit X). Da X 6= Z, kann X
somit nicht abgeschlossen sein. Zeigen wir noch, dass (Z,τZ) ein Hausdorff-Raum ist (dann
haben wir nämlich gezeigt, dass (X ,τ) nicht Hausdorff-Abgeschlossen ist). Dazu seien z,z′ ∈
Z mit z 6= z′. Wir unterscheiden drei Fälle:

1.Fall z,z′ ∈ X . Da X nach Voraussetzung T2 ist, gibt es disjunkte U,V ∈ τ mit z ∈U und
z′ ∈V . Nach Konstruktion von τZ gilt offensichtlich auch U,V ∈ τZ .

2.Fall z ∈ X und z′ ∈ Y . Dann ist z′ ein nicht konvergierender offener Ultrafilter (er kon-
vergiert somit erst recht nicht gegen z; die Konvergenz in X ist gemeint). Also gibt es ein
U ∈ (ẋ∩ τ) \ z′. Da z′ ein maximaler offener Filter ist, muss es also ein V ∈ z′ geben, mit
U ∩V = /0 (sonst hätte z′∪{U} die eSE und könnte zu einem offenen Ultrafilter z′′ erweitert
werden, der aufgrund der Maximalität von z′ gleich z′ wäre, also V ∈ z′ - ein Widerspruch).
Dann sind aber U und V ∪{z′} offenen und disjunkte Umgebungen von z und z′ in Z.

3.Fall z,z′ ∈ Y . Dann sind z und z′ nicht konvergierende Ultrafilter in X mit z 6= z′. Es gibt
also ein U ∈ z \ z′. Wie im 2.Fall schließt man auf die Existenz eines V ∈ z′ mit U ∩V = /0.
Dann sind U ∪{z} und V ∪{z′} die gesuchten disjunkten und offenen Umgebungen von z und
z′ in Z.

b)⇒ c) Angenommen es gibt eine offene Überdeckung σ ⊆ τ von X , welche keine endliche
Teilmenge σ ′ ⊆ σ besitzt mit X =

⋃
U∈σ ′U . Dann bilden wir φ ′ := {X \

⋃
U∈σ ′U | σ ′ ⊆ σ und

σ ′ ist endlich }. Nun ist φ ′ ⊆ τ und hat die eSE, es gibt somit einen offenen Ultrafilter φ mit
φ ′ ⊆ φ . Dieser konvergiert nach Voraussetzung aber gegen ein x ∈ X . Nun gibt es aber auch
ein U ∈ σ mit x ∈U und da φ gegen x konvergiert gilt U ∈ φ . Nach Konstruktion gilt aber
auch X \U ∈ φ und damit auch /0 = U ∩ (X \U) ∈ φ - ein Widerspruch.

c)⇒ a) Sei (Y,τ ′) ein Hausdorff-Raum, der (X ,τ) als Teilraum enthält (also X ⊆Y und die
Teilraumtopologie von X bezgl. τ ′ ist gleich τ). Wir müssen zeigen, dass X in Y als Teilmenge
abgeschlossen ist. Sei also y ∈Y \X . Zu jedem x ∈ X gibt es dann ein Ux ∈ ẋ∩τ ′ und ein Vx ∈
ẏ∩τ ′ mit Ux∩Vx = /0. Dann aber auch Ux∩Vx = /0. Nun gibt es x1, ...,xn ∈ X mit X ⊆

⋃n
k=1Uxk .
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Bilden wir V := Vx1 ∩ ...∩Vxn ∈ ẏ∩ τ ′, so gilt offensichtlich X ∩V = /0. Als Teilraum ist X in
Y also abgeschlossen.

4.5.3 Korollar

In der Klasse der regulären Räume (das ist T1 zusammen mit T3) fallen die Begriffe
Hausdorff-Abgeschlossen und kompakt zusammen.

Beweis: Das kompakte reguläre Räume Hausdorff-Abgeschlossen sind, ist klar! Zeigen wir,
dass reguläre Hausdorff-Abgeschlossenen Räume kompakt sind. Sei dazu ξ eine beliebige
offene Überdeckung (von von dem Raum (X ,τ)). Zu jedem x ∈ X gibt es dann ein Ux ∈ ξ und
ein Vx ∈ τ mit x ∈ Vx ⊆ Vx ⊆Ux. Zu der offenen Überdeckung γ := {Vx | x ∈ X} gibt es eine
endliche Teilmenge γ ′ ⊆ γ mit X =

⋃
V∈γ ′V . Zu jedem V ∈ γ ′ wählen wir dann ein UV ∈ ξ mit

V ⊆UV . Es ist klar, dass dann ξ ′ := {UV |V ∈ γ ′} eine endliche Teilüberdeckung von ξ ist.

4.5.4 Bemerkung

Die Eigenschaft Hausdorff-Abgeschlossen überträgt sich nicht notwendig auf abgeschlosse-
ne Unterräume. Sie überträgt sich allerdings noch auf so genannte regulär abgeschlossene
Unterräume. Wir nennen eine Teilmenge A⊆ X des topologischen Raums (X ,τ) regulär ab-
geschlossen, wenn A = A◦. Es gilt nun die Aussage: Ist (X ,τ) Hausdorff-Abgeschlossen und
A⊆ X regulär abgeschlossen, so ist auch A Hausdorff-Abgeschlossen.

Beweis: Das A ein Hausdorff-Raum ist, ist klar. Sei ξ eine offene Überdeckung von A.
Dann ist ξ ∪{X \A} eine offene Überdeckung von X . Es gibt dann eine endliche Teilmenge
ξ ′ von ξ , so dass X = (

⋃
U∈ξ ′U)∪X \A = (

⋃
U∈ξ ′U)∪ (X \A◦). Also A◦ ⊆

⋃
U∈ξ ′U und

damit A = A◦ ⊆
⋃

U∈ξ ′U =
⋃

U∈ξ ′U .

4.5.5 Definition

Lindelöf, lokal kompakt Wenn offene Überdeckungen lediglich abzählbare Teilüberdeckung
haben, dann nennen wir X einen Lindelöf-Raum
Ein topologischer Raum (X ,τ) wird lokal kompakt genannt, wenn jeder Punkt eine kompakte
Umgebung hat.

Wir nennen (X ,τ) stark lokal kompakt, wenn es zu jedem x ∈ X und jedem O ∈ ẋ∩ τ eine
kompakte Umgebung K von x gibt mit x ∈ K ⊆ O.

4.5.6 Satz

Sei (X ,τ) ein lokal kompakter topologischer Raum.
1) Ist (X ,τ) ein T3 Raum, so ist er stark lokal kompakt.
2) Ist (X ,τ) ein T2 Raum, so ist er auch ein T3 Raum.
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Beweis: 1) Sei x ∈U ∈ τ . Es gibt eine kompakte Umgebung V von x (also x ∈ V ◦). Dann
gibt es ein W ∈ ẋ∩τ mit W ⊆U ∩V . Offenbar ist W nun eine kompakte Umgebung von x mit
W ⊆U .

2) Sei x ∈ O ∈ τ . Es existiert eine kompakte Umgebung K von x. Setze V := O∩K◦. Für
y ∈ K \V existieren disjunkte Vy, Uy ∈ τ mit x ∈ Vy und y ∈ Uy. Da K kompakt ist gibt es
y1, ...,yn ∈K \V mit K ⊆V ∪Uy1∪ ...∪Uyn . Setze V ′ :=Vy1∩ ...∩Vyn und U ′ :=Uy1∪ ...∪Uyn .
Dann gilt x ∈ V ′ ⊆ K \U ′ ⊆ V . Da K \U ′ abgeschlossen ist folgt V ′ ⊆ V ⊆ O, also ist X ein
T3-Raum.

4.5.7 Lemma

Für einen topologischen Raum (X ,τ) ist äquivalent:
(1) Es gibt einen lokal kompakten Raum (Z,σ) und eine surjektive Abbildung f : Z→

X mit ∀O ⊆ X gilt O ∈ τ ⇔ f−1(O) ∈ σ (man sagt auch f ist eine identifizierende
Abbildung).

(2) ∀O⊆ X gilt: O ∈ τ ⇔ ∀K ∈ κ(X) gilt O∩K ist offen in K (bzgl. der Teilraumto-
pologie), wobei κ(X) := {K ⊆ X | K ist kompakt}.

Beweis: (1) ⇒ (2) Sei O ⊆ X und ∀K ∈ κ(X) sei O∩K offen in K. Es genügt also
zu zeigen, dass f−1(O) offen in Z ist. Sei z ∈ f−1(O). Dann gibt es ein kompaktes V mit
z ∈ V ◦. Es folgt f ( f−1(O)∩V ) = O∩ f (V ). Da f (V ) kompakt ist, ist f ( f−1(O)∩V ) also
offen in f (V ). Sei g := f |V : V → f (V ). Dann ist g stetig und surjektiv, also f−1(O)∩V =
g−1( f ( f−1(O)∩V )) offen in V . Es gibt somit ein offenes U in Z mit f−1(O)∩V = U ∩V . Da
z ∈U ∩V ◦ ⊆U ∩V ⊆ f−1(O) und U ∩V ◦ offen in Z ist, ist f−1(O) offen in Z und O somit
offen in X .

(2) ⇒ (1) Sei Z :=
⋃

K∈κ(X) K×{K}. Für jedes K ∈ κ(X) sei fK : K→ Z definiert durch
fK(x) := (x,K). Sei σ := {O⊆ Z | ∀K ∈ κ(X) ist f−1

K (O) offen in K} (die Finaltopologie auf
Z bzgl. diesen Daten). Damit ist Z offenbar ein lokal kompakter Raum. Sei nun f : Z → X
definiert durch f (x,K) := x. Ist O offen in X , so ist f−1(O) offen in Z, denn ist K ∈ κ(X), so
folgt f−1

K ( f−1(O)) = O∩K. Letzteres ist aber offen in K. Da K beliebig war, folgt f−1(O) ist
offen in Z. Die Abbildung f ist also stetig. Ist f−1(O) offen in Z, so folgt aus f−1

K ( f−1(O)) =
O∩K, dass O∩K offen in K ist, für jedes K ∈ κ(X). Nach Voraussetzung an X ist O also
offen in X . Die Abbildung f ist daher identifizierend.

4.5.8 Definition

Besitzt ein topologischer Raum (X ,τ) die Eigenschaft aus Lemma 4.5.7, so nennen wir ihn
einen k-Raum (oder auch kompakt-erzeugt).
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4.5.9 Korollar

Sei (X ,τ) ein k-Raum und (Y,σ) beliebig. f : X → Y ist genau dann stetig, wenn die
Einschränkung f |K : K→ Y für jede kompakte Teilmenge K ⊆ X stetig ist.

4.5.10 Definition

Wir nennen einen topologischen Raum (X ,τ) sequential, wenn ∀A⊆ X gilt:

A ist abgeschlossen ⇔ für alle Folgen (xn)n∈N aus A ist lim(xn)n∈N ⊆ A.

Hierbei ist lim(xn)n∈N := {x ∈ X | ∀U ∈ ẋ∩ τ ∃k ∈ N∀m≥ k xm ∈U}.

4.5.11 Lemma

Für einen beliebigen topologischen Raum (X ,τ) gelten folgende Implikationen:
Metrisierbar⇒ A1 ⇒ sequential⇒ k-Raum (Zur Erinnerung: A1 bedeutet, dass jeder

Punkt x ∈ X eine abzählbare Umgebungsbasis hat.) und kompakt ⇒ lokal kompakt ⇒
k-Raum.

Beweis: Wir zeigen: A1⇒ sequential⇒ k-Raum (der Rest ist offensichtlich).
A1 ⇒ sequential: Sei A ⊆ X mit der Eigenschaft ∀(xn)n∈N aus A ist limn∈N xn ⊆ A und

sei (Un)n∈N eine abzählbare Umgebungsbasis. Falls ∃x ∈ A \A, so sei xn ∈Un ∩A für jedes
n ∈ N. Offenbar ist dann x ∈ limn∈N xn im Widerspruch zu x ∈ A\A.

sequential⇒ k-Raum: Sei also A ⊆ X und A∩K abgeschlossen in K, für jedes kompakte
K ⊆ X . Wir müssen zeigen, dass A abgeschlossen ist. Sei (xn)n∈N eine Folge aus A und x ∈
limn∈N xn. Offenbar ist K := {xn | n∈N}∪{x} kompakt, also gibt es ein in X abgeschlossenes
B mit A∩K = B∩K. Da (xn)n∈N auch eine Folge aus B ist und B abgeschlossen ist, ist x ∈
B, also x ∈ B∩K = A∩K, also x ∈ A. Da (X ,τ) nach Voraussetzung sequential ist, ist A
abgeschlossen.

4.5.12 Satz von Tychonoff für lokal kompakte Räume

Ein Produkt ∏i∈I Xi lokal kompakter Räume ist genau dann lokal kompakt, wenn alle Xi
lokal kompakt sind und bis auf höchstens endlich viele Ausnahmen die Xi sogar kompakt
sind

Beweis: Ist X := ∏i∈I Xi lokal kompakt und x = (xi)i∈I ∈ X (beliebig fest gewählt), so gibt
es eine kompakt Umgebung U von x. Aus der Definition der Produkttopologie folgt, dass
bis auf endlich viele Ausnahmen pri(U) = Xi gilt. Da die Projektionen pri : X → Xi stetig
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und surjektiv sind, sind also bis auf höchstens endlich viele i ∈ I die Xi kompakt. Und wenn
y j ∈ X j, dann sei K eine kompakte Umgebung von von einem Punkt y∈ X mit pr j(y) = y j. Na
ja, dann ist halt pr j(K) eine kompakte Umgebung von y j (kompakt ist klar; Umgebung bleibt
als Aufgabe).
Umgekehrt seien bis auf J := {i1, ..., in} alle Xi kompakt und x ∈ X . Für i ∈ J sei immerhin
noch Ki eine kompakte Umgebung von xi. Dann ist ∏i∈I Ki, wobei Ki = Xi für i ∈ I \ J, eine
kompakte Umgebung von x.

4.5.13 Satz

Satz von Whitehead Sei f : X → Y identifizierend und A stark lokal kompakt. Dann ist
auch h = f × idA : X×A→ Y ×A identifizierend ( f × idA(x,a) := ( f (x),a)).

Beweis: Das h surjektiv ist, ist klar. Zu zeigen bleibt also: W ist offen in Y ×A ⇔ h−1(W )
ist offen in X×A. Die eine Richtung ist klar, da h stetig ist.

Sei nun h−1(W ) offen in X×A und (y0,a0)∈W , mit f (x) = y0 für ein gewisses x ∈ X . Also
h(x,a0) = (y0,a0) ∈W , also (x,a0) ∈ h−1(W ). Setze A0 := {a ∈ A | (x,a) ∈ h−1(W )}. also
schon mal a0 ∈ A. Außerdem ist A0 offen (wie man so sieht: Sei a ∈ A0 ⇒ (x,a) ∈ h−1(W ).
Aber h−1(W ) ist offen, ⇒ ∃U,V offen in X bzw. A, mit (x,a) ∈ U ×V ⊆ h−1(W ). Also
a′ ∈V ⇒ (x,a′) ∈ h−1(W ) ⇒ a′ ∈ A0 und somit ist a ∈V ⊆ A0).

Da A stark lokal kompakt ist, gibt es eine kompakte Umgebung C von a0, mit C ⊆ A0. Nun
ist x ∈U := {y ∈ X | {x}×C ⊆ h−1} offen, wie wir nun zeigen.

y ∈U ⇒ {y}×C ⊆ h−(W ). Da h−1(W ) offen ist, existiert ein V offen in X mit {y}×C ⊆
V ×C ⊆ h−1(W ) (ein Spezialfall des so genannten Wallace Theorem).

Beweis dazu: B := {O×O′ | O,O′ offen in X bzw. A} ist eine Basis von X × A. Also
h−1(W ) =

⋃
i∈I Oi×O′i, für eine gewisse Familie von Mengen aus B. Somit auch {y}×C ⊆⋃

i∈I Oi×O′i. Da C kompakt und {y} einelementig ist, gibt es i1, ..., in mit {y}×C⊆
⋃n

k=1 Oik×
O′ik und y ∈ Oik , für k = 1, ...,n. Setze nun V :=

⋂n
k=1 Oik ⇒ {y}×C ⊆ V ×C ⊆

⋃n
k=1 Oik ×

O′ik ⊆ h−1(W ). Da y beliebig, V offen und y ∈V ⊆U ist, folgt U ist offen.
Nun gilt immer U ⊆ f−1( f (U)). Andererseits haben wir f−1( f (U)) = h−1(h(U ×C)) ⊆

h−1(h(h−1(W ))) = h−1(W ), da U×C ⊆ h−1(W ), bzw. h surjektiv ist. Aus der Definition von
U folgt f−1( f (U)) ⊆ U . Insgesamt also U = f−1( f (U)). Da f identifizierend ist, ist f (U)
offen! Also (y0,a0) ∈ f (U)×C = h(U×C)⊆ h(h−1(W )) = W . Da f (U)×C eine Umgebung
von (y0,a0) ist, ist W offen.

4.5.14 Korollar

Ist (X ,τ) ein k-Raum und (Y,σ) stark lokal kompakt, so ist X×Y ein k-Raum.

Beweis: Sei f : Z→ X identifizierend, wobei Z lokal kompakt ist. Dann ist auch h := f ×
idY : Z×Y → X×Y identifizierend. Da auch Z×Y lokal kompakt ist, sind wir fertig.
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4.5.15 Satz von Baire (oder auch Bairscher Kategoriensatz)

Falls X
a) ein vollständiger metrischer Raum (Definition 4.5.19), oder
b) ein lokal kompakter Hausdorff Raum ist,
dann gilt für jede Folge (Dn)∞

n=1 dichter offener Teilmengen:
⋂

∞
n=1 Dn ist dicht in X .

Beweis: Sei U eine beliebige offene Menge in X . Setze B0 := U . Falls Bn−1 schon definiert,
dann gibt es eine offene Menge Bn mit Bn ⊆ Bn−1∩Dn, wobei Bn im Fall b) sogar kompakt ist.
im Fall a) nehme man entsprechende Kugelumgebungen und im Fall b) verwende man Satz
4.5.6 ( /0 6= Bn−1 ∩Dn ist offen). Es gilt dann

⋂
∞
n=0 Bn ⊆U ∩

⋂
∞
n=1 Dn und /0 6=

⋂
∞
n=0 Bn. Die

Teilmengenbeziehung ist klar und für die Ungleichung benutze man im Fall a) die Vollständig-
keit und im Fall b) die Charakterisierung kompakter Mengen durch Familien abgeschlossener
Mengen (wenn /0 =

⋂
i∈I Ki, für kompakte Ki, dann gibt es ein endliches J ⊆ I mit /0 =

⋂
i∈J Ki).

4.5.16 Definition

abzählbar kompakt, folgenkompakt, Häufungspunkt einer Folge (HP) Ein Raum (X ,τ)
heißt abzählbar kompakt, wenn jede abzählbare offene Überdeckung eine endliche Teilüber-
deckung hat. Er heißt folgenkompakt, wenn jede Folge aus X eine konvergente Teilfolge hat.
Eine Teilfolge von (xn)n∈N hat die Gestalt (xnk)k∈N, wobei (nk)k∈N eine streng monoton stei-
gende Folge natürlicher Zahlen ist. Ein Punkt x ∈ X heißt HP von (xn)n∈N, wenn für jede
offene Umgebung O von x die Menge {n ∈ N | xn ∈ O} unendlich ist.

4.5.17 Lemma

Sei (X ,τ) ein topolgischer Raum. Dann sind folgende Aussagen äquivalent.
1) (X ,τ) ist abzählbar kompakt.
2) Jeder Filter φ auf X mit einer abzählbaren Basis hat einen konvergenten Oberfilter.
3) Jede Folge aus X hat einen Häufungspunkt (HP).

Beweis: 1) ⇒ 2) Sei φ ein Filter mit einer abzälbaren Filterbasis φ0. Angenommen es gibt
keinen Oberfilter von φ , der gegen ein x ∈ X konvergiert. Dann ist

⋂
A∈φ0

A = /0 und somit
{X \A | A ∈ φ0} eine abzählbare offene Überdeckung von X . Somit gibt es A1, ...,An ∈ φ0 mit
X = (X \A1)∪ ...∪ (X \An). Also /0 = A1∩ ...∩An ∈ φ . Das ist ein Widerspruch.

2) ⇒ 3) Sei (xn)n∈N eine Folge aus X . Dann hat der von φ0 := {{xk | k > n} | n∈N} erzeug-
te Filter φ eine abzählbare Filterbasis (nämlich φ0), besitzt also einen konvergenten Oberfilter
ψ . Sei ψ → x. Dann ist x ∈

⋂
n∈N {xk | k > n}. Offensichtlich ist x ein HP von (xn)n∈N.

3) ⇒ 1) Nehmen wir mal an, dass (Pn)n∈N eine abzählbare offene Überdeckung von X ist,
welche keine endliche Teilüberdeckung hat. Für jedes n∈Nwählen wir dann xn ∈X \

⋃
k≤n Pk.
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Sei x ein HP von (xn)n∈N. Dann gibt es ein n∈Nmit x∈Pn. Da x ein HP ist, muss {k∈N | xk ∈
Pn} aber unendlich sein. Nach Konstruktion der Folge ist {k ∈ N | xk ∈ Pn} abe endlich - ein
Widerspruch.

4.5.18 Lemma

Sei (X ,τ) ein topologischer Raum. Dann gilt:
(a) Ist (X ,τ) folgenkompakt, so ist er abzählbar kompakt.
(b) Ist er abzählbar kompakt und genügt dem ersten Abzählbarkeitsaxiom, so ist er

folgenkompakt.

Beweis: (a)⇒ (b): Sei (xn)n∈N eine Folge aus X . Diese hat dann eine konvergente Teilfolge.
Ein Grenzwert dieser Teilfolge ist dann offenbar auch ein Häufungspunkt von (xn)n∈N und der
Raum ist somit abzählbar kompakt.

(b)⇒ (a): Sei (xn)n∈N eine Folge aus X . Diese hat dann einen Häufungspunkt x. Sei (Un)n∈N
eine abzählbare Umgebungsbasis von x. O.B.d.A. kann Un+1⊆Un für alle n∈N angenommen
werden. Sei xn0 ∈U0. Ist xnk gewählt, so sei xnk+1 ∈Uk+1\{xnl | 0≤ l ≤ k}. Die so konstruierte
Teilfolge konvergiert nun gegen x.

4.5.19 Definition

Cauchy-Folgen und totale Beschränktheit Sei (X ,d) ein metrischer Raum. (xn)n∈N heißt
Cauchy-Folge, wenn es zu jedem ε > 0 ein N ∈N gibt, sa dass d(xm,xn) < ε für alle m,n≥ N
gilt. Wir nennen (X ,d) vollständig, wenn jede Cauchy-Folge in X konvergiert. Der Raum
(X ,d) heißt total beschränkr, wenn es zu jedem ε > 0 eine endliche Teilmenge A ⊆ X gibt,
mit X =

⋃
a∈A K(a,ε).

Erstaunlicherweise fallen für metrische Räume sehr viele Kompaktheitsbegriffe zusammen
(tatsächlich fallen für sehr viel größere Klassen topologischer Räume einige dieser Begriffe
zusammen; man vergleiche dazu die Kapitel über parakompakte Räume und uniforme Räu-
me):

4.5.20 Äquivalente Beschreibung der Kompaktheit für metrische Räume

Sei X ein metrischer Raum mit Metrik d. Dann ist äquivalent:
(a) (X ,d) ist kompakt,
(b) (X ,d) ist abzählbar kompakt,
(c) (X ,d) ist folgenkompakt,
(d) (X ,d) ist vollständig und total beschränkt.

Beweis: (a)⇒ (b)⇔ (c) ist klar!
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(c)⇒ (d) Offensichtlich ist X dann auch vollständig. Wenn X nicht total beschränkt ist, dann
gibt es ein ε > 0 derart, dass keine endlich vielen Kugeln mit Radius ε bereits X überdecken.
Wähle x0 ∈ X ... xn ∈ X \K(x0,ε)∪ ...∪K(xn−1,ε) und so weiter. Diese Folge (xn)n∈N hat ne
konvergente Teilfolge, was dann sofort den Widerspruch ergibt (zu dem festen ε).

(d)⇒ (a) Sei φ ein Ultrafilter der nicht konvergiert. Dann ∃n ∈ N mit

{K(x,1/n) | x ∈ X}∩φ = /0.

(Andernfalls wähle zu jedem n ∈ N ein xn ∈ X mit K(xn,1/n) ∈ φ . Offenbar ist (xn)n∈N dann
eine Cauchyfolge. Gegen deren Grenzwert würde nun auch φ konvergieren.)

Nun gibt es x1, ...,xn ∈ X mit X =
⋃n

k=1 K(xk,1/n). Folglich ∃k mit K(xk,1/n) ∈ φ (wir
haben einen Ultrafilter!) - Widerspruch.

4.5.21 Beispiel

Je zwei Normen ‖ · ‖ und ‖ · ‖∗ auf einem endlich dimensionalen K-Vektorraum V (K = R
oder C) sind äquivalent (d.h. ∃c,C > 0∀x ∈V : c‖x‖ ≤ ‖x‖∗ ≤C‖x‖).

Anleitung: Man zeigt die Aussage erst für zwei Normen ‖·‖ und ‖·‖2 auf demRn. O.B.d.A.
ist ‖·‖2 die euklidische Norm (Warum?). Im ersten Schritt sei dazu e1, ...,en die standard Basis
und Rn 3 x = ∑

n
ν=1 xνeν . Dann ist ‖x‖ ≤ ∑

n
ν=1 |xν |‖eν‖ ≤C‖x‖2, wobei C :=

√
∑

n
ν=1 ‖eν‖2

(Cauchy-Schwartz-Ungleichung).
Für die zweite Ungleichung betrachte man c := in f {‖x‖ | ‖x‖2 = 1}. Dann gilt c > 0 (Kom-

paktheit der ‖ · ‖2-Kugel) und man folgere ‖x‖2 ≤ c−1‖x‖.
Für den allgemeinen Fall eines endlich dimensionalen K-Vektorraums V benutze einen R

Isomorphismus ϕ : Rn → V (V dabei als R-Vektorraum aufgefasst), um die Äquivalenz der
zwei Normen ‖ · ‖ und ‖ · ‖∗ zu zeigen.

hier noch ein Lemma, über offene Überdeckungen in kompakten metrischen Räumen.

4.5.22 Überdeckungslemma von Lebesgue

Sei (X ,d) ein kompakter metrischer Raum und (Ui)i∈I eine offene Überdeckung. Dann
gibt es ein positive Zahl δ derart, dass jede Teilmenge A von X mit einem Durchmesser
kleiner als δ bereits in einem der Ui liegt.

Beweis: Jeder Punkt x ∈ X liegt in wenigstens einem der Ui. Wähle für jedes x ∈ X ein δx >
0, derart, dass die offene Kugel K(x,2δx) um x mit Radius 2δ bereits in einem der Ui liegt (das
geht, da die Ui offen sind). Also ist (K(x,δx))x∈X auch eine offene Überdeckung von X . Nun ist
X kompakt, also gibt es x1, ...,xn ∈ X mit X =

⋃n
k=1 K(xk,δxk) Setze δ := min(dx1, ...,δxn) Mit

Hilfe der Dreiecksungleichung macht man sich schnell klar, dass δ die geforderte Eigenschaft
hat.
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4.5.23 Bemerkung

Wir geben nun eine stark verallgemeinerten Fassung von Korollar 4.4.6. Starke Verallgemei-
nerung deshalb, da die Mengen Si als topologische Räume mit der diskreten Topologie und
die Abbildungen fi+1 : Si+1→ Si alle Voraussetzungen des nachfolgenden Lemmas erfüllen.

4.5.24 Lemma

Sei ≤ eine Relation auf der Menge M mit folgenden Eigenschaften:
A) ∀a ∈M gilt a≤ a.
B) ∀a,b,c ∈M gilt (a≤ b und b≤ c) impliziert a≤ c.
C) ∀a,b ∈M ∃c ∈M mit a≤ c und b≤ c.
D) ∃P⊆MN, P 6= /0 mit:

1) g ∈ P und m,n ∈ N mit m≤ n impliziert g(m)≤ g(n).
2) g,h ∈ P und g 6= h impliziert ∀m,n ∈ N gilt ¬(g(m)≤ h(n))..
3) ∀a ∈M ∃b ∈ N := {g(n) | g ∈ P und n ∈ N} mit a≤ b (N ist kofinal in M).

Sei ferner für jedes a∈M ein abzählbar kompakter topologischer Raum (Xa,τa) und für
jedes Paar a,b ∈M mit a≤ b eine Abbildung f b

a : Xb→ Xa gegeben, welche f c
a = f b

a ◦ f c
b

erfüllt, für a,b,c ∈M mit a≤ b≤ c.
Sind außerdem alle Abbildungen abgeschlossen (nicht unbedingt stetig) und ist das Ur-

bild ( f b
a )−1(x) für jedes x ∈ Xa abzählbar kompakt, dann gibt es eine Familie (xa)a∈M mit

xa ∈ Xa und f b
a (xb) = xa, für a,b ∈M mit a≤ b.

Beweis: Sei g ∈ P. Für jedes n ∈ N definieren wir nun Fg
n :=

⋂
k≤1 f g(n+k)

g(n+1) (Xg(n+k)). Dann

ist Fg
n eine in Xg(n) nicht leere abgeschlossene Menge, denn ( f g(n+k)

g(n+1) (Xg(n+k)))∞
k=1 ist eine

fallende Folge nicht leerer in Xg(n) abgeschlossener Mengen und Xg(n) ist abzählbar kompakt!

Zwischenbehauptung: ∀n ∈ N∀x ∈ Fg
n ist Fg

n+1∩ ( f g(n+1)
g(n) )−1(x) 6= /0.

Beweis: Nun ist Fg
n+1∩( f g(n+1)

g(n) )−1(x) =
⋂

k≤1[ f g(n+k)
g(n+1) (Xg(n+k))∩( f g(n+1)

g(n) )−1(x)]. Für k≥ 1

ist f g(n+k)
g(n+1) (Xg(n+k))∩ ( f g(n+1)

g(n) )−1(x) 6= /0, andernfalls x 6∈ f g(n+1)
g(n) ◦ f g(n+k)

g(n+1) (Xg(n+k))⊇ Fg
n 3 x,

was ein Widerspruch ist.
Da auch hier wieder eine absteigende Folge ( f g(n+k)

g(n+1) (Xg(n+k))∩ ( f g(n+1)
g(n) )−1(x))∞

k=1 von in

( f g(n+1)
g(n) )−1(x) abgeschlossenen Mengen vorliegt und ( f g(n+1)

g(n) )−1(x) abzählbar kompakt ist,
ist somit auch der Schnitt nicht leer!

Mit dem Beweis dieser Zwischenbehauptung können wir uns nun leicht induktiv eine Folge
(xg

n)n∈N basteln, mit 1) xg
n ∈ Fg

n und 2) m≤ n impliziert f g(n)
g(m)(x

g
n) = xg

m.
Wir starten dazu einfach mit einem xg

0 ∈ Fg
0 . Sind xg

0 ∈ Fg
0 , ...,xg

n ∈ Fg
n gewählt, so wählen

wir ein xg
n+1 ∈ Fg

n+1∩ ( f g(n+1)
g(n) )−1(xg

n) ... und so weiter.
Diese Konstruktion funktioniert für jedes g ∈ P. Nun ist N := {g(n) | g ∈ P und n ∈ N}

kofinal in M. Es gibt also ein n ∈ N und genau (!) ein ga ∈ P mit a≤ ga(n).
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(Falls auch h ∈ P mit h 6= ga und a ≤ h(m), für ein m ∈ N, dann gibt es ein f ∈ P und
ein k ∈ N mit ga(n) ≤ f (k) und h(m) ≤ f (k). Aus der Voraussetzung an P folgt, dass dies
nicht sein kann.) Wir setzen nun xa := f ga(n)

a (xga
n ) und behaupten, dass (xa)a∈M die geforderte

Eigenschaft hat. Für den Nachweis sei a ≤ b gewählt. Sei dann xa := f ga(n)
a (xga

n ) und xb :=
f gb(m)
b (xgb

m ), für gewisse m,n ∈ N. Dann muss aber ga = gb := g gelten (andernfalls ∃h ∈
P, k ∈ N mit ga(n) ≤ h(k) und gb(m) ≤ h(k), was aber zu einem Widerspruch führt). Setze
l := max(m,n) und es folgt xg

n = f g(l)
g(n)(x

g
l ) und xg

m = f g(l)
g(m)(x

g
l ). Damit bekommen wir dann

f b
a (xb) = f b

a ( f g(m)
b ( f g(l)

g(m)(x
g
l ))) = f g(n)

a ( f g(l)
g(n)(x

g
l )) = f g(n)

a (xg
n) = xa.

4.5.25 Lemma

Sei (Xi,τi)i∈N eine Folge nicht leerer topologischer Räume und M die Menge aller end-
lichen Teilmengen von N. Falls für alle a,b ∈ M mit a ⊆ b die natürlichen Projektionen
q : ∏i∈b Xi → ∏i∈a Xi abgeschlossen sind und außerdem q−1(z) abzählbar kompakt ist
(∀z∈∏i∈a Xi), dann ist auch X := ∏i∈NXi (mit der Produkttopologie) abzählbar kompakt.

Beweis: Zunächst einmal bemerken wir, dass ∏i∈a Xi für jedes a∈M abzählbar kompakt ist
(für j ∈ N\a ist q−1(z) = (∏i∈a Xi)×{z} abzählbar kompakt, wenn z ∈ X j). Sei nun (Pn)n∈N
eine abzählbare offene Überdeckung von X , wobei die Pn = ∏i∈NPn

i offene standard Basis-
mengen sind. Für jedes n ∈ N gibt es also ein endliches Jn ⊆ N mit Pn

i ∈ τi, für i ∈ Jn und
Pn

i = Xi, für i ∈ N\ Jn. Nehmen wir an (und einen Widerspruch zu bekommen), dass (Pn)n∈N
keine endliche Teilüberdeckung hat. Dann können wir für jedes a ∈ M ein fa ∈ X \

⋃
n∈a Pn

auswählen. Für jedes a∈M setzen wir nun m(a) :=
⋃

n∈a Jn. Dann ist auch m(a)∈M und a⊆ b
impliziert m(a)⊆m(b). Die Einschränkung fa|m(a) von fa auf m(a) ist nun kein Element von⋃

n∈a ∏i∈m(a) Pn
i , also fa|m(a) ∈ Ya := (∏i∈m(a) Xi) \ (

⋃
n∈a ∏i∈m(a) Pn

i ). Damit ist dann jedes
Ya abzählbar kompakt, nicht leer und abgeschlossen in ∏i∈m(a) Xi.

Sind nun a,b∈M mit a⊆ b und ist f ∈Yb, so ist f |m(A)∈Ya (die Einschränkung auf m(a)).
Beweis dazu: Ist f ∈ (∏i∈m(b) Xi)\(

⋃
n∈b ∏i∈m(b) Pn

i ), so insbesondere f 6∈
⋃

n∈a ∏i∈m(b) Pn
i .

Für jedes n ∈ a gibt es somit ein in ∈ m(b) mit f (i) 6∈ Pn
in . Für i ∈ m(b) \m(a) ist nun aber

Pn
i = Xi. Also ist in ∈ m(a). Damit ist f |m(a) 6∈∏i∈m(a) Pn

i , für jedes n ∈ a.
Mit dem Beweis dieser Zwischenbehauptung können wir nun für a,b ∈ M mit a ⊆ b eine

Abbildung gb
a : Yb → Ya durch gb

a( f ) := f |m(a) definieren. gb
a ist einfach die Einschränkung

der Projektion qb
a : ∏i∈m(b) Xi→∏i∈m(a) Xi auf Yb.

Da die Projektionen nach Voraussetzung abgeschlossen sind und abzählbar kompakte Ur-
bilder von Punkten besitzen, gilt dies auch für die entsprechenden gb

a (die Details kann man
sehr leicht nachrechnen). Die Menge M wird mit der Inklusion als Relation und die Abbil-
dungen gb

a erfüllen zudem alle Voraussetzungen von Lemma 4.5.24. Es gibt somit ein F ∈
∏a∈M Ya mit gb

a(F(b)) = F(a), für alle a,b ∈M mit a⊆ b.
Für jedes n ∈ N setzen wir nun n := {k ∈ N | k ≤ n} und anschließend f :=

⋃
n∈NF(n).

Das macht Sinn, denn für n ∈ N ist F(n) ∈ ∏i∈m(n) Xi außerdem F(n+1)|m(n) = F(n) und⋃
n∈Nm(n) = N, also f ∈∏i∈NXi.
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Nun kann es kein n ∈ N geben, mit f ∈ Pn (denn sonst f ∈
⋃

k∈a Pk, mit a := n und somit
f |m(a) ∈

⋃
k∈a ∏i∈m(a) Pk

i , aber f |m(a) = F(a) ∈Ya - offensichtlich ist dies ein Widerspruch).
Da (Pn)n∈N eine offene Überdeckung von X ist, ist das dann aber unser angestrebter Wider-
spruch zur Voraussetzung.

4.5.26 Bemerkung

Weitere (sehr wichtige) Abschwächungen des Begriffs Kompaktheit (Parakompaktheit, Meta-
kompaktheit, ...) werden wir im Kapitel ”Lokal-endliche Systeme und Metrisierbarkeit” ken-
nen lernen.

4.6 Kompaktifizierungen
Wie bereits angemerkt verhalten sich kompakte Räume sehr angenehm. Pech ist nur, dass nicht
alle Räume kompakt sind. Was tun wir also: Wir machen sie kompakt ... Ganz so einfach geht
das natürlich nicht und genau genommen machen wir sie auch nicht kompakt, sondern betten
sie nur in kompakte Räume ein.

4.6.1 Satz (Alexandroff-Kompaktifizierung)

Sei (X ,τ) ein nicht kompakter Raum und ω 6∈ X . Setze X∞ := X∪{ω} und τ∞ := τ∪{O⊆
X∞ | ω ∈ O und X \O ist kompakt+abgeschlossen in (X ,τ)}. Dann gilt:

a) (X∞,τ∞) ist ein kompakter top. Raum und id : X ↪→ X∞ ist eine homöomorphe Ein-
bettung.

b) (X∞,τ∞) ist T2 ⇔ (X ,τ) ist lokal kompakt und T2.
c) Ist auch (X ∪{δ},σ) ein kompakter T2-Raum (δ 6∈ X) derart, dass X mit Spurtopo-

logie homöomorph zu (X ,τ) ist, so sind (X ∪{δ},σ) und (X∞,τ∞) bereits homöomorph.

Beweis: Alle Beweise liegen auf der Hand!

4.6.2 Bemerkung

Auf jeder Menge X gibt es eine kompakte T2-Topologie. Für endliches X ist dies klar. Um dies
auch für unendliches X einzusehen, betrachte man auf X die diskrete Topologie τdis := P(X).
Damit ist (X ,τdis) ein lokal kompakter T2-Raum. Sei (X ′,τ ′) die Alexandroff-Kompaktifzierung.
Dann ist (X ′,τ ′) ein kompakter T2-Raum. Offenbar ist |X |= |X ′|. Mit einer bijektiven Abbil-
dung f : X ′→ X bekommt man durch τ := { f (O) | O ∈ τ ′} eine kompakte T2-Topologie auf
X .

Interessant ist folgende Verallgemeinerung von Satz 4.6.1, die die Frage nach T2 Mehr-
punktkompaktifizierungen vollständig klärt. Der Beweis ist zwar länglich, aber nicht kompli-
ziert.
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4.6.3 Satz über die Existenz von T2 Mehrpunktkompaktifizierungen

(a) Für einen topologischen Raum (X ,τ) und n ∈ N , n≥ 1 ist äquivalent:

1. Es gibt einen kompakten T2-Raum (Y,σ) mit X ⊆ Y , |Y \X |= n , X = Y

und σ|X := {O ∩ X | O ∈ σ} = τ . Wir nennen (Y,σ) eine n-Punkt T2-
Kompaktifizierung.

2. (X ,τ) ist ein lokal kompakter T2-Raum und es gibt V1, ...,Vn ∈ τ \{ /0}mit Vi∩Vj = /0
für i 6= j derart, dass L := X \

⋃n
i=1Vi kompakt ist, aber für alle k ∈ {1, ...,n} die

Menge Zk := (X \
⋃n

i=1Vi)∪Vk nicht kompakt ist.

(b) Hat Ein Raum (X ,τ) eine n-Punkt T2-Kompaktifizierung und ist 1 ≤ j ≤ n, so hat
(X ,τ) auch eine j-Punkt T2-Kompaktifizierung.

Beweis: (a) Zeigen wir 1. ⇒ 2. Sei Y \X = {y1, ...,yn} und seien O1, ...,On ∈ σ paarweise
disjunkt mit yi ∈ Oi für alle i ∈ {1, ...,n}. Für jedes i setze nun Vi := Oi∩X . Nach Vorausset-
zung ist Vi ∈ τ \{ /0}. Es ist X \

⋃n
i=1Vi = Y \

⋃n
i=1 Oi abgeschlossen in Y , also auch kompakt in

Y . Damit ist X \
⋃n

i=1Vi aber kompakt in X . Sei j ∈ {1, ...,n}. Wäre Z j = X \
⋃n

i=1,i6= j Vi kom-
pakt (man beachte, dass Z⊆X genau dann kompakt in X ist, wenn Z kompakt in Y ist), so wäre
Z j abgeschlossen in Y , also Y \Z j offen in Y . Es ist aber Y \Z j = (

⋃n
i=1,i 6= j Vi)∪{y1, ...,yn}=

(
⋃n

i=1,i6= j Oi)∪{y j}, also wäre {y j}= O j∩ (Y \Z j) ∈ ẏ j∩σ - ein Widerspruch zu X = Y .
Zeigen wir 2. ⇒ 1. Seien y1, ...,yn paarweise verschieden Mengen3 mit yi 6∈ X für alle

i ∈ {1, ...,n}. Wir definieren Y := X ∪{y1, ...,yn} und setzen

B := τ ∪
n⋃

i=1

{(Zi \K)∪{yi} | K ⊆ Zi , K ist kompakt in X}

Wir definieren σ dann als die von B erzeugte Topologie auf Y . Offenbar ist B durchschnitts-
stabil, also eine Basis für σ .

Zeigen wir, dass (Y,σ) ein Hausdorff-Raum ist. Sei i 6= j. Es folgt [(Zi \L)∪{yi}]∩ [(Z j \
L)∪{y j}] = (Zi \L)∩(Z j \L) = (Zi∩Z j)\L = L\L = /0. Verschiedene Punkte aus {y1, ...,yn}
können wir also durch disjunkte Umgebungen trennen. Verschiedene Punkte aus X können wir
auch trennen, da (X ,τ) ein Hausdorff-Raum ist und τ ⊆ σ gilt. Sei x ∈ X und y j ∈ {y1, ...,yn}.
Falls x ∈

⋃
i=1,i 6= j Vi, so sind

⋃
i=1,i 6= j Vi und Z j entsprechend disjunkte Umgebungen. Falls

x ∈ X \
⋃

i=1,i6= j Vi = Z j, so sei K kompakt in X mit x ∈ K◦. In diesem Fall sind K◦ und [Z j \
(K∩Z j)]∪{y j} disjunkte (offene) Umgebungen. (Y,σ) ist also ein T2-Raum.

Zeigen wir, dass (Y,σ) kompakt ist. Sei σ ′ ⊆ B eine offene Überdeckung von Y . Für
jedes i ∈ {1, ...,n} sei Ki ⊆ Zi und Ki kompakt in X mit Oi := (Zi \Ki)∪ {yi} ∈ σ ′. Set-
ze O :=

⋃n
i=1 Oi. Es folgt {y1, ...,yn}∪

⋃n
i=1(Vi \Ki) ⊆ O, also Y \O ⊆ X \

⋃n
i=1(Vi \Ki) ⊆

3Was genau die yi sind, spielt für uns keine Rolle; wir brauchen nur irgendwelche zusätzlichen Elemente, die
nicht aus X stammen.
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(X \
⋃n

i=1Vi)∪ (
⋃n

i=1 Ki). Letztere Menge ist in X aber kompakt (also auch in Y ). Demnach ist
Y \O kompakt in Y . Es gibt also W1, ...,Wm ∈ σ ′ mit Y \O⊆

⋃m
k=1Wk. Eine endliche Teilüber-

deckung von σ ′ ist daher {O1, ...,On,W1, ...,Wm} und (Y,σ) ist somit kompakt.
Zeigen wir X = Y . Sei /0 6= O ∈ B. Falls O ∈ τ , so offenbar O∩X 6= /0. Falls O = (Zi \

K)∪{yi} für K kompakt in X und K ⊆ Zi, so ist K 6= Zi, denn Zi ist nach Voraussetzung nicht
kompakt. Es gibt also ein x ∈ X mit x ∈ (Zi \K)∪{yi} und somit O∩X 6= /0.

Zeigen wir σ|X := {O∩X | O ∈ σ} = τ . Da [(Zi \K)∪{yi}]∩X = Zi \K, ist σ|X ⊆ τ . Die
Richtung τ ⊆ σ|X ist trivial. Damit ist (a) vollständig bewiesen.

(b) Sei ein kompakter T2-Raum (Y,σ) mit X ⊆ Y , |Y \X | = n , X = Y und σ|X := {O∩
X |O∈ σ}= τ gegeben. Sei Y \X = {y1, ...,yn} und 1≤ j≤ n. Wir setzen Z := X ∪{y1, ...y j}
und definieren f : Y → Z durch

f (y) =

{
y falls y 6∈ {y j, ...,yn}
y j falls y ∈ {y j, ...,yn}

Sei ξ die Finaltopologie auf Z bzgl. der Abbildung f ,d.h. O ∈ ξ ⇔ f−1(O) ∈ σ . Dann ist
(Z,ξ ) als Bild von Y unter der stetigen Abbildung f kompakt. Für O ∈ ξ ist f−1(O) ∈ σ , also
X ∩O = X ∩ f−1(O) ∈ τ . Ist andererseits O ∈ τ , so ist O ∈ σ . Aus O = f−1(O) folgt dann
O ∈ ξ . Daher gilt ξ|X := {O∩X | O ∈ ξ}= τ . Zeigen wir, dass (Z,ξ ) ein T2-Raum ist. Zwei
verschiedene Punkte aus X können wir durch disjunkte offene Mengen trennen, da τ ⊂ ξ .
Für x ∈ X und yi ∈ {y1, ...,y j} sei O ∈ ẋ∩ τ und V ∈ σ mit {y1, ...,yn} ⊆ V und O∩V = /0.
Offenbar sind O und f (V ) disjunkte, in Z offene Mengen (denn V = f−1( f (V ))) mit x ∈ O
und yi ∈ f (V ). Sei yi ∈ {y1, ...,y j}mit yi 6= y j. Dann gibt es disjunkte V,W ∈ σ mit yi ∈V und
{y j, ...,yn} ⊆W . Offenbar sind f (V ), f (W ) ∈ ξ disjunkt mit yi ∈ f (V ) und y j ∈ f (W ). Der
Nachweis der Hausdorff-Eigenschaft ist damit abgeschlossen. X = Z ist offensichtlich.

4.6.4 Satz (Stone-Cech)

Für jeden topologischen Raum (X ,τ) existiert ein kompakter Hausdorff-Raum (βX ,σ)
und eine stetige Abbildung h : X → βX , so dass für jeden kompakten Hausdorff-Raum
(K,ρ) und jede stetige Abbildung f : X → K eine eindeutig bestimmte stetige Abbildung
f : βX → X existiert, mit f ◦h = f .

X

f   A
AA

AA
AA

A
h // βX

∃ ! f̃
��

K

Falls auch γX mit einem h′ dieselben Eigenschaften hat, so sind γX und βX bereits ho-
möomorph.

Beweis: Betrachte M := {(K,ρ, f ) | K ⊆P(P(X)), (K,ρ) kompakter Hausdorff-Raum
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und f : X → K ist stetig }. Definiere weiter

h : X → ∏
(K,ρ, f )∈M

K durch h(x) := ( f (x))(K,ρ, f )∈M

wobei ∏(K,ρ, f )∈M K mit der gewöhnlichen Produkttopologie versehen wird. βX wird nun fol-
gendermaßen definiert: βX := h(X). Aus dem Vorangehenden schließen wir, dass βX kom-
pakt und Hausdorff ist (aus dem Abschnitt Topologische Formulierungen des Ultrafiltersatzes
entnimmt man, dass der Ultrafiltersatz (UFT) für diesen Schluss ausreicht). Wir zeigen nun
die Gültigkeit der universellen Eigenschaft. Sei (K,ρ) ein kompakter Hausdorff-Raum und
f : X → K stetig. Nun gilt | f (X)| ≤ |X |, also nach Lemma 3.2.10 | f (X)| ≤ |P(P(X)|. Man
mache sich klar, dass es dann auch ein topologischen Raum (K0,ρ0) und einen Homöomor-
phismus g : K0 → f (X) gibt, wobei K0 ⊆P(P(X)). Setzt man nun noch f0 := g−1 ◦ f , so
liegt das Tripel (K0,τ0, f0) also in M . Das f ist jetzt schnell gefunden:

f := g◦ pr(K0,τ0, f0)|βX : βX → K,

wobei pr(K0,τ0, f0) die standard Projektion bezeichnet. Es gilt dann also: f ◦h = g◦ pr(K0,τ0, f0) ◦
h = g◦ f0 = f .

Die Eindeutigkeit des f folgt daraus, dass zwei solche Abbildungen, auf der in βX dicht
liegenden Teilmenge f (X), bereits übereinstimmen müssen.

Falls auch γX mit einem h′ dieselben Eigenschaften hat, so gibt es genau ein φ : βX → γX
mit φ ◦h = h′ und genau ein ψ : γX → βX mit ψ ◦h′ = h, also ψ ◦φ ◦h = h. Nun gibt es aber
auch genau ein δ : βX → βX mit δ ◦h = h, nämlich δ = idβX . also ψ ◦φ = idβX und analog
φ ◦ψ = idγX Also ist φ ein Homöomorphismus.

4.6.5 Definition

Kompaktifizierung Unter einer Kompaktifizierung eines topologischen Raumes (X ,τ) ver-
stehen wir ein Paar ((Y,σ), f ) eines kompakten topologischen Raum (Y,σ), mit einer homöo-
morphen Einbettung f : X → Y mit f (X) = Y .

4.6.6 Bemerkung

Die Alexandroff-Kompaktifizierung ist also eine Kompaktifizierung im Sinne der obigen Defi-
nition. Hingegen können wir das von der Konstruktion aus Satz 4.6.4 nicht unbedingt behaup-
ten. Wenn wir aber Bedingungen angeben könnten, unter dehnen die Stone-Čech-Abbildung
h : X → βX eine homöomorphe Einbettung ist, so hätten wir unsere Kompaktifizierung. Um
diese Bedingungen soll es uns im Folgenden gehen.

4.6.7 Definition

Wir sagen von einem top. R. (X ,τ) er ist ein T3 1
2
-Raum, wenn es zu jeder abgeschlossenen

Teilmenge A und Punkt x∈ X \A ein stetiges f : X→ [0,1] gibt, mit f (A)⊆ {1} und f (x) = 0.
Äquivalent ist natürlich die Existenz eines f : X → [0,1] mit f (A) ⊆ {0} und f (x) = 1. Ein
Raum, der T1 und T3 1

2
ist, nennen wir vollständig regulär oder Tychonoff-Raum.
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4.6.8 Lemma

Teilräume vollständig regulärer Raume und beliebige Produkte vollständig regulärer Räu-
me sind wieder vollständig regulär.

Beweis: Dass Teilräume vollständig regulärer Räume wieder vollständig regulär sind ist tri-
vial. Seien also (Xi,τi)i∈I vollständig reguläre Räume. Es genügt zu zeigen, dass X := ∏i∈I Xi
wieder T3 1

2
ist. Sei dazu A eine abgeschlossene Teilmenge von X und x ∈ X \A. Es gibt dann

eine (offene) Basismenge O = ∏i∈I Oi der Produktopologie mit x∈O⊆X \A. Zu O gibt es ein
endliches J⊆ I mit Oi ∈ τi für i∈ I und Oi = Xi für i∈ I\J. Für i∈ J existiert ein fi : Xi→ [0,1]
mit fi(xi) = 1 und fi(Xi \Oi)⊆ {0}. Wir setzen dann f : X → [0,1] durch f (z) := ∏i∈J fi(zi)
(als Multiplikation in R zu verstehen). Diese f ist stetig und es gilt f (x) = 1 und f (A)⊆ {0}.

4.6.9 Lemma

Sei (X ,τ) ein topologischer Raum. Dann ist äquivalent:
(a) (X ,τ) ist vollständig regulär.
(b) X lässt sich in [0,1]I einbetten (für geeignetes I).
(c)∃ f : X → K mit f : homöomorphe Einbettung, (K,σ): kompakter T2-Raum.

Beweis: (a)⇒ b) Wir setzen I :=C(X , [0,1]) (zur Erinnerung: C(X ,Y ) := { f : X→Y | f ist
stetig }). Nun definieren wir f : X → [0,1]I durch x 7→ (i 7→ i(x)). Dieses f ist dann injektiv,
denn wenn x 6= y, dann existiert ein i ∈ I mit i(x) = 0 und i(y) = 1 (man beachte, dass X
ein T1-Raum ist). Also f (x) 6= f (y). Die Stetigkeit reicht es auf der Subbasis nachzuprüfen.
Sei also O = ∏i∈I Oi offen in [0,1]I , mit Oi = [0,1] für i 6= i0 und Oi0 offen in [0,1]. Dann
ist f−1(∏i∈I Oi) = i−1

0 (Oi0). Letztere Menge ist aber offen! Als letztes zeigen wir, dass f
auch eine offene Einbettung ist. Sei dazu O offen in X und f (x) ∈ f (O), für x ∈ O. Dann
gibt es ein ix ∈ I mit ix(x) = 0 und ix(X \O) ⊆ {1}. Daraus folgt i−1

x ([0,1)) ⊆ O. Wir setzen
nun U := ∏i∈I Oi mit Oi = [0,1) für i = ix und sonst Oi = [0,1]. Dann ist f (x) ∈ U und
U ∩ f (X)⊆ f (O) ( f (y) ∈U ∩ f (X) impliziert f (y)(ix) = ix(y) 6= 1, also y ∈ i−1

x ([0,1))⊆ O).
Das bedeutet aber, dass f (O) offen ist.

(b)⇒ c) ist trivial.
(c)⇒ a) Als kompakter T2-Raum ist K offensichtlich vollständig regulär und demzufolge

auch jeder Teilraum. Also ist (X ,τ) volständig regulär.

4.6.10 Satz

Ein topologischer Raum ist genau dann ein Tychonoff-Raum, wenn die Stone-Čech-
Abbildung h : X → βX eine Einbettung ist.
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Beweis: Nun ja, wenn die Abbildung h eine homöomorphe Einbettung ist, so folgt aus dem
vorigem Lemma sofort, dass X ein Tychonoff-Raum ist. Sei also umgekehrt X ein Tychonoff-
Raum. Dann gibt es ein kompakten T2-Raum K mit einer homöomorphen Einbettung f : X →
K. Wenden wir Satz 4.6.4 an, so erhalten wir f = f ◦ h. Also muss h schon mal injektiv
sein. Stetig ist es sowieso, also müssen wir noch zeigen, dass O offen in X , h(O) offen in
h(X) impliziert. Nun ist h(O) = f−1( f (O))∩ h(X) und f (O) = U ∩ f (X) für U offen in K,
also h(O) = f−1(U)∩ f−1( f (h(X)))∩h(X) = f−1(U)∩h(X) und letztere Menge ist offen in
h(X).

4.6.11 Definition

Jeder Raum hat also eine Kompaktifizierung (Um das einzusehen, braucht man aus einem top.
Raum (X ,τ) nur durch Y := X ∪{X} und σ := τ ∪{Y} einen neuen top. Raum (Y,σ) zu ma-
chen. (Y,σ) ist dann eine Kompaktifizierung von (X ,τ).), aber ein Raum hat eine Hausdorff-
Kompaktifizierung dann und nur dann, wenn er ein Tychonoff-Raum ist. In diesem Fall spre-
chen wir bei der Konstruktion aus Satz 4.6.4, dann von der Stone-Čech-Kompaktifizierung.

Sei (X ,τ) ein fest gewählter top. Raum. K (X ,τ) bezeichne die Klasse aller Kompaktifi-
zierungen von X . Auf K (X ,τ) können wir wie folgt eine Relation festlegen.

Für zwei Kompaktifizierungen (c1X ,c1) und (c2X ,c2) (hierbei sind ciX als die zugrunde
liegenden kompakten Räume zu verstehen und ci : X→ ciX die entsprechenden Einbettungen)
definieren wir (c1X ,c1)≤ (c2X ,c2) :⇔ ∃ ein stetiges f : c1X → c2X mit c2 = f ◦ c1.

Ist (X ,τ) ein Tychonoff-Raum, so ist ≤ fast eine partielle Ordnung auf der Klasse aller
Hausdorff-Kompaktifizierungen. Gilt nämlich c1X ≤ c2X und c2X ≤ c1X , so ist nicht unbe-
dingt c1X = c2X , aber c1X und c2X sind immerhin noch homöomorph (Beweis bleibt als leich-
te Fingerübung. Hinweis: Lemma 3.3.3). In diesem Fall nennen wir die Kompaktifizierungen
äquivalent. Diese Begriffsbildung ist kein Zufall, denn legt man durch c1X ∼ c2X :⇔ c1X ≤
c2X und c2X ≤ c1X eine weitere Relation auf der Klasse aller Hausdorff-Kompaktifizierungen
fest, so stellt sich unmittelbar heraus, dass ∼ eine Äquivalenzrelation ist. Auf der Klasse aller
Äquivalenzklassen ist ≤ dann auch tatsächlich eine partielle Ordnung.

4.6.12 Lemma

Sei (X ,τ) ein Tychonoff-Raum. Zwei Hausdorff-Kompaktifizierungen c1X und c2X von
X sind genau dann äquivalent, wenn c1(A)∩ c1(B) = /0 ⇔ c2(A)∩ c2(B) = /0 für alle
abgeschlossenen A,B⊆ X gilt.

Beweis: Wir zeigen c1X ≤ c2X . Aus Symmetriegründen folgt dann c2X ≤ c1X , also c1X ∼
c2X . Wir verwenden dazu Satz 4.3.1 um zu zeigen, dass es ein stetiges f gibt, so dass folgendes
Diagramm kommutiert:

X

c2   B
BB

BB
BB

B
c1 // c1X

∃ f
��

c2X
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Nun ist c1(X) dicht in c1X und g : c1(X)→ c2X durch g(c1(x)) := c2(x) definiert, stetig.
Zeigen wir also, dass es sich stetig auf c1X fortsetzen lässt.

Seien dazu P,Q ⊆ c2X abgeschlossen mit P∩Q = /0. Dann setzen wir A := c−1
1 (g−1(P))

und B := c−1
1 (g−1(Q)). Nun sind A und B abgeschlossen und es gilt c2(A)⊆ P und c2(B)⊆Q,

also c2(A)∩c2(B) = /0 und somit (nach Voraussetzung) auch c1(A)∩c1(B) = /0. Wir schließen
g−1(P)∩g−1(Q) = /0. Somit lässt sich g (eindeutig) zu einem f : c1X→ c2X fortsetzen. Dieses
f erfüllt dann offenbar f ◦ c1 = c2, also c1X ≤ c2X .

Sind andererseits die beiden Hausdorff-Kompaktifizierungen c1X und c2X äquivalent, so ist
die eindeutig existierende Abbildung f : c1X → c2X mit f ◦ c1 = c2 ein Homöomorphismus
und c1(A)∩c1(B) = /0 ⇔ c2(A)∩c2(B) = /0 für alle abgeschlossenen A,B⊆X gilt klarerweise.

4.6.13 Lemma

Seien c1X und c2X zwei Hausdorff-Kompaktifizierungen von (X ,τ) und sei f : c1X→ c2X
eine stetige Abbildung mit f ◦ c1 = c2, dann gilt:

1) f ist surjektiv.
2) f (c1(X)) = c2(X) und f (c1X \ c1(X)) = c2X \ c2(X).

Beweis: 1) Zeigen wir zuerst, dass f abgeschlossen ist. Ist A⊆ c1X abgeschlossen, so ist A
kompakt und somit auch c1(A). Da c2X ein Hausdorff-Raum ist, ist c1(A) dann abgeschlossen.

Nun ist c2(X) dicht in c2X , also c2(X) = c2X und es gilt c2(X) = f (c1(X)) ⊆ f (c1X) =
f (c1X) (da f abgeschlossen ist). Damit ist dann c2X = c2(X)⊆ f (c1X).

2) f (c1(X)) = c2(X) ist klar. Nun gilt c1(X) = c1X und f |c1(X) : c1(X)→ f (c1(X)) =
c2(X) ist stetig und bijektiv. Sie ist aber auch offen, denn ist O offen in c1(X), so ist c−1

1 (O)
offen in X und somit f (O) = f ◦ c1(c−1

1 (O)) = c2(c−1
1 (O)) offen in c2(X). Aus Lemma 3.3.5

folgt somit f (c1(X))∩ f (c1X \c1(X)) = /0, also f (c1X \c1(X))⊆ c2X \c2(X). Da f surjektiv
ist, gilt somit f (c1X \ c1(X)) = c2X \ c2(X).

4.7 βN und Dynamische Systeme
”It is well enough that people of the nation do not understand our banking and monetary
system, for if they did, I believe there would be a revolution before tomorrow morning.”

Henry Ford

Wir schauen uns in diesem Abschnitt die Stone-Čech-Kompaktifizierung der natürlichen
Zahlen - versehen mit der diskreten Topologie - genauer an und beweisen, als Anwendung,
einen wunderschönen Satz aus der Theorie der Dynamischen Systeme. Uns geht es um das so
genannte Auslander-Ellis Theorem.

Im Folgenden fassen wir die Menge N also als topologischen Raum, mit der Topologie
τ := P(N) auf.
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Als diskreter Raum ist (N,τ) natürlich normal und somit auch vollständig regulär. Es macht
also Sinn von der Stone-Čech-Kompaktifizierung des topologischen Raums (N,τ) zu spre-
chen.

Wir können die Stone-Čech-Kompaktifizierung der natürlichen Zahlen aber auch anders
beschreiben als in Satz 4.6.4: Dazu definieren wir βN als die Menge aller Ultrafilter auf N.
Für A ⊆ N setzen wir A∗ := {ϕ ∈ βN | A ∈ ϕ}. Offensichtlich gilt A∗ ∩B∗ = (A∩B)∗ und
N∗ = βN. Demzufolge ist B := {A∗ | A⊆ N} die Basis einer Topologie τ auf βN.

Zeigen wir, dass (βN,τ) ein kompakter Hausdorff-Raum ist.

Für φ ,ψ ∈ βN mit φ 6= ψ , gibt es ein P ∈ φ \ψ . Dann gibt es aber auch ein Q ∈ ψ mit
P∩Q = /0. Offensichtlich sind P∗ und Q∗ dann disjunkte offene Umgebungen von φ bzw. ψ .

Zeigen wir noch die Kompaktheit.

Sei (A∗i )i∈I eine offene Überdeckung von βN mit Basiselementen (also Elemente der Form
A∗, für A ⊆ N). Gäbe es keine endliche Teilüberdeckung, so währe (Ai)i∈I eine offene Über-
deckung von N ohne endliche Teilüberdeckung (siehe Lemma 3.2.3). Das heißt es gibt einen
Ultrafilter φ mit {N\i∈J Ai | J ⊆ I und J : endlich } ⊆ φ . Dieser würde dann aber in einem A∗i
stecken, im Widerspruch zu N\Ai ∈ φ .

Die Abbildung β :N→ βN definiert durch β (n) := ṅ ist stetig, da N die diskrete Topologie
trägt. Außerdem ist {ṅ | n ∈ N} dicht in βN, denn für n ∈ A⊆ N ist ṅ ∈ A∗.

Zeigen wir, dass der Raum (βN,τ) zusammen mit der Abbildung β die universelle Ei-
genschaft aus Satz 4.6.4 hat und somit homöomorph zur Stone-Čech-Kompaktifizierung der
natürlichen Zahlen ist.

Sei f : N→ X eine stetige Abbildung in einen kompakten Hausdorff-Raum X . Ist φ ∈ βN,
so ist der Bildfilter f (φ) unter f ein in X konvergenter Ultrafilter, konvergiert also gegen ein
eindeutig bestimmtes xφ ∈ X . Wir definieren also f̃ : βN→ X durch f̃ (φ) := xφ . Dieses f̃ ist
stetig, denn ist V offen und x := f̃ (φ) ∈V , so gibt es ein offenes U mit x ∈U ⊆U ⊆V . Nun
ist U ∈ f (φ), es gibt also ein P ∈ φ mit f (P) ⊆U . Es folgt P∗ ⊆ f̃−1(V ), denn ist ψ ∈ P∗,
also P ∈ ψ , so U ∈ f (ψ), also auch U ∈ f (ψ) und somit f̃ (ψ) ∈U ⊆V . Nach Satz 2.2.2 ist f̃
also stetig. Offensichtlich ist f̃ ◦β = f und somit ist f̃ sogar eindeutig bestimmt, da die Werte
auf der dichten Teilmenge {ṅ | n ∈ N} durch f vorgegeben sind. Die universelle Eigenschaft
aus Satz 4.6.4 ist somit erfüllt.

4.7.1 Bemerkung

Überlegen wir uns einmal wie groß denn βN eigentlich ist. Dazu bieten sich zwei Möglich-
keiten an. Die erste Variante folgt aus der Beschreibung von βN mittels Ultrafiltern und Satz
9.6.2. Wir bekommen nämlich sofort |βN|= |P(P(N))|.

Für die zweite Variante schauen wir uns die Konstruktion aus Satz 4.6.4 genauer an. wir
sehen dann sofort |βN| ≤ |P(P(N)). Andererseits enthält beispielsweise [0,1][0,1] nach Satz
3.6.2 eine abzählbare dichte Teilmenge D. Ein surjektives f : N→ D als Abbildung nach
[0,1][0,1] aufgefasst ist dann aber auch stetig (dennN ist mit der diskreten Topologie versehen).
Für die zugehörige Abbildung f folgt dann: f (βN)⊇ f (N) = D, aber f (βN) ist abgeschlos-
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sen. Demzufolge f (βN) = [0,1][0,1], also auch |P(P(N))| = |[0,1][0,1]| ≤ |βN|. Insgesamt
somit (wieder) |βN|= |P(P(N))|.

Die Stone-Čech-Kompaktifizierung der natürlichen Zahlen ist also um sehr vieles größer
als die Ausgangsmenge N.

4.7.2 Satz

Jede unendliche abgeschlossene Teilmenge B⊆ βN besitzt ihrerseits einen Teilraum A⊆
B, der homöomorph zu βN ist.

Beweis: Gemäß Lemma 3.1.6 wählen wir uns eine Folge paarweise disjunkter offener Men-
gen (Un)n∈N aus βN mit ∀n ∈ N : Un ∩B 6= /0. Für jedes n ∈ N sei φn ∈Un ∩B. Wir setzen
A0 := {φn | n ∈ N}. Sei nun K ein beliebiger kompakter Hausdorff-Raum und g : A0→ K ei-

ne stetige Abbildung. Wir definieren dann f : N→ K durch f (n) :=

{
g(φm) falls ṅ ∈Um

z falls n 6∈Um
,

wobei z ∈ K fest gewählt ist. Es gibt dann ein stetiges F : βN→ K mit F ◦β = f . Nun gilt
Um⊆Um∩{ṅ | n ∈ N} und f ist auf Um∩{ṅ | n∈N} konstant. Folglich ist F auch auf Um kon-
stant (Lemma 3.3.3). Das ergibt ∀m ∈ N : F(φm) = g(φm), bzw. F |A0 = g. Sei A := A0 ⊆ B.
Die Abbildung g lässt sich somit (auf genau eine Weise) zu einer Abbildung G : A→ K fort-
setzen (nämlich G = F |A) und A ist somit die Stone-Cech Kompaktifizierung von A0. Da A0
aber homöomorph zu N ist, ist A somit homöomorph zu βN.

4.7.3 Korollar

Ist (xn)n∈N eine in βN konvergente Folge, so ∃ N ∈ N mit xn = xm für alle m,n≥ N.

Beweis: Ist (xn)n∈N konvergent gegen x, so ist A := {xn | n ∈ N}∪{x} kompakt, also abge-
schlossen. Da βN überabzählbar ist, muss A somit endlich sein.

4.7.4 Lemma

Es gibt eine Menge ξ von Teilmengen von N mit den Eigenschaften:
(1) |ξ |= |P(N)|, (2) ∀A∈ ξ gilt |A|= |N| und (3) ∀A,B∈ ξ (A 6= B ⇒ |A∩B|< |N|).

Beweis: Zu jeder irrationalen Zahl x ∈R wählen wir eine Folge rationaler Zahlen (q(x)
n )n∈N

mit x = limn→∞ qn und setzen dann Ax := {q(x)
n | n ∈ N}. Für verschiedene irrationale Zahlen

x,y gilt |Ax ∩ Ay| < |N|. Außerdem ist jedes Ax eine unendliche Teilmenge der Rationalen
Zahlen Q und da es gerade |P(N)|-viele irrationale Zahlen gibt, folgt |{Ax | x ∈ R \Q}| =
|P(N)|. Für eine Bijektion f :Q→ N findet sich unser ξ als ξ := { f (Ax) | x ∈ R\Q}.
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4.7.5 Korollar

In βN\β (N) gibt es eine Menge σ von paarweise disjunkten nicht leeren offenen Mengen
mit |σ |= |P(N)|.

Beweis: Sei ξ wie in Lemma 4.7.4. Dann ist σ = {A∗ \β (N) | A ∈ ξ}.

4.7.6 Korollar

inf{|B| |B : Basis von βN}= inf{|B| |B : Basis von βN\β (N)}= |P(N)|.

4.7.7 Lemma

Sei (Bn)n∈N eine Folge aus P(N) mit ∀n ∈ N : /0 6= B∗n+1 \β (N)⊆ B∗n \β (N). Dann gibt
es ein unendliches B⊆ N mit ∀n ∈ N : B∗ \β (N)⊆ B∗n \β (N).

Beweis: 1.Fall ∃N ∈ N∀m,n≥ N : B∗n \β (N) = B∗m \β (N). Dann setze B := BN - fertig.
2.Fall es gibt kein solches N. Sei dann o.B.d.A. B∗n \ β (N) ( B∗m \ β (N) für alle m < n.

Offenbar gilt: B∗n \β (N)( B∗m \β (N) ⇔ Bn \Bm ist endlich und Bm \Bn ist unendlich.
Für alle n∈N sei xn ∈ Bn\Bn+1. Setze dann B := {xn | n∈N}. Offenbar ist B unendlich und

B\Bn für jedes n ∈N endlich, insbesondere also B∗ \β (N)⊆ B∗n \β (N), denn ψ ∈ B∗ \β (N)
impliziert B ∈ ψ und N\ (B\Bn) ∈ ψ , also auch Bn ⊇ B\ (B\Bn) ∈ ψ und somit ψ ∈ B∗n.

4.7.8 Satz

Unter der Voraussetzung inf{|α| | |N| < α} = |P(N)| gibt es ein x ∈ βN\β (N) mit der
Eigenschaft, dass jeder Schnitt abzählbar vieler Umgebungen von x wieder eine Umge-
bung von x ist.

Beweis: Sei Ω die kleinste überabzählbare Kardinalzahl und sei B := {B∗ \β (N) | B⊆N}.
Aus Korollar 4.7.6 folgt, dass B eine Basis minimaler Kardinalität von βN\β (N) ist. Aus der
Voraussetzung folgt dann, dass es eine Bijektion f : Ω→B gibt. Setze P0 := f (0). Sei α ∈Ω

und für alle β ∈ α sei Pβ ∈B bereits konstruiert mit β ′ < β ⇒ Pβ ⊆ Pβ ′ . Da α abzählbar ist,
gibt es laut Lemma 4.7.7 ein /0 6= BB mit B⊆

⋂
β<α Pβ . Falls B∩ f (α) = /0, so setze Pα := B.

Falls B∩ f (α) 6= /0, so gibt es ein /0 6= B′ ∈B mit B′ ⊆ B∩ f (α).
Damit haben wir eine Folge (Pα)α∈Ω aus B konstruiert mit Pα ′ ⊆ Pα und (Pα ∩ f (α) = /0

oder Pα ⊆ f (α)), für alle α ≤ α ′ ∈ Ω. Jedes Pα ist von der Form Pα = Bα \ β (N), für
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ein unendliches Bα ⊆ N. Aus der für unendliche A,B ⊆ N allgemein gültigen Beziehung
A∗ \β (N) ⊆ B∗ \β (N) ⇔ A \B: ist endlich, folgt, dass {Bα | α ∈ Ω} die endliche Schnitt
Eigenschaft (eSE) hat. Nun hat aber offensichtlich auch {Bα | α ∈ Ω}∪ {A ⊆ N | N \A ist
endliche } die eSE. Es gibt also einen Ultrafilter x ∈ βN \β (N) mit {Bα | α ∈ Ω} ⊆ x, also
x ∈

⋂
α∈Ω Pα . Ist nun P ∈B mit x ∈ P, so gibt es ein α ∈Ω mit f (α) = P, also f (α)∩Pα 6= /0

und somit Pα ⊆ f (α) = P. (Pα)α∈Ω ist also eine Umgebungsbasis von x. Sind Rn, n ∈ N ab-
zählbar viele Umgebungen von x, so sei Pαn ⊆ Rn und α := sup{αn | n ∈ N}. Dann ist auch
α ∈Ω und somit x ∈ Pα ⊆

⋂
n∈NPαn ⊆

⋂
n∈NRn.

4.7.9 Bemerkung

Derartige Punkte aus Satz 4.7.8 nennt man P-Punkte. Wie wir gesehen haben ist x∈ βN\β (N)
ein P-Punkt, wenn es zu jeder Folge (Bn)n∈N aus x ein B ∈ x gibt mit |B \Bn| < |N|, für alle
n ∈ N. Was wir gezeigt haben ist also: Die Kontinuumshypothese impliziert die Existenz von
P-Punkten. Die Annahme, dass keine P-Punkte existieren ist zusammen mit ZFC konsistent
(ein tiefligendes Resultat von S.Shelah).

Uns geht es jetzt aber um etwas anderes. Wir werden die Addition von N auf βN fortsetzen.
Dazu definieren wir eine Operation + : βN×βN→ βN.

4.7.10 Definition

Für P⊆ N und n ∈ N setzen wir P−n := {m ∈ N | m+n ∈ P}. Seien φ und ψ Ultrafilter auf
N, also φ ,ψ ∈ βN. Wir setzen dann φ +ψ := {P⊆ N | {n ∈ N | P−n ∈ φ} ∈ ψ}.

Zeigen wir, dass φ +ψ ∈ βN ist, φ +ψ tatsächlich also ein Ultrafilter auf N ist.

1. /0 6∈ φ + ψ , denn sonst wäre /0 = {n ∈ N | /0− n ∈ φ} ∈ ψ . Ebenso leicht sieht man
{n ∈ N | N−n ∈ φ}= N ∈ ψ , also N ∈ φ +ψ .

2. Seien P,P′ ∈ φ +ψ . Zu zeigen ist {n ∈N | P∩P′−n ∈ φ} ∈ψ . Nun gilt (P−n)∩ (P′−
n) = P∩P′−n, also {n∈N |P−n∈ φ}∩{n∈N |P′−n∈ φ}= {n∈N |P∩P′−n∈ φ},
und damit {n ∈ N | P∩P′−n ∈ φ} ∈ ψ .

3. Sei P∈ φ +ψ und P⊆ P′. Dann ist {n∈N | P−n∈ φ} ∈ψ , also auch {n∈N | p′−n∈
φ} ∈ φ (denn P−n⊆ P′−n), und somit P′ ∈ φ +ψ .

4. Sei P ⊆ N und P 6∈ φ + ψ . Dann ist {n ∈ N | P− n ∈ φ} 6∈ ψ , also {n ∈ N | P− n 6∈
φ} ∈ ψ . Nun ist {n ∈ N | P−n 6∈ φ}= {n ∈ N | (N\P)−n ∈ φ} (das liegt daran, dass
N\ (P−n) = (N\P)−n ist). Demnach ist N\P ∈ φ +ψ .

Insgesamt sehen wir, dass φ +ψ tatsächlich ein Ultrafilter auf N ist.

4.7.11 Lemma

∀ϕ,φ ,ψ ∈ βN gilt ϕ +(φ +ψ) = (ϕ +φ)+ψ .
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Beweis: Da sowohl ϕ +(φ +ψ), als auch (ϕ +φ)+ψ Ultrafilter sind, reicht es zu zeigen,
dass ϕ +(φ +ψ)⊆ (ϕ +φ)+ψ ist. Sei also P ∈ ϕ +(φ +ψ).

Demzufolge ist A := {n ∈N | P−n ∈ ϕ} ∈ φ +ψ , also {n ∈N | A−n ∈ φ} ∈ ψ . Zu zeigen
bleibt {n ∈ N | P−n ∈ ϕ +φ} ∈ ψ .

Zwischenbehauptung: A−n ∈ φ ⇒ P−n ∈ ϕ +φ .
Beweis der Zwischenbehauptung: Sei A−n ∈ φ . Wir setzen B := {m ∈N | (P−n)−m ∈

ϕ}. Es gilt nun A− n ⊆ B. Denn ist m ∈ A− n, so folgt m + n ∈ A, also P− (m + n) ∈ ϕ .
Nun ist aber P− (m + n) = (P− n)−m, und somit m ∈ B. Da A− n ∈ φ , folgt auch {m ∈
N | (P−n)−m ∈ ϕ}= B ∈ φ und somit P−n ∈ ϕ +φ .

Da {n ∈ N | A− n ∈ φ} ∈ ψ und {n ∈ N | A− n ∈ φ} ⊆ {n ∈ N | P− n ∈ ϕ + φ}, folgt
unmittelbar {n ∈ N | P−n ∈ ϕ +φ} ∈ ψ , also P ∈ (ϕ +φ)+ψ .

4.7.12 Lemma

Sei φ ∈ βN. Dann ist die Abbildung fφ : βN→ βN, definiert durch fφ (ψ) := φ +ψ , stetig

Beweis: Es reicht die Stetigkeit auf der Basis B := {A∗ | A⊆N} nachzurechnen. Für A⊆N
betrachten wir dazu f−1

φ
(A∗) = {ψ ∈ βN | A ∈ φ +ψ} und zeigen, dass sich diese Menge als

Vereinigung von Basiselementen schreiben lässt und somit offen ist. Für ψ ∈ f−1
φ

(A∗) folgt
somit Bψ := {n ∈ N | A−n ∈ φ} ∈ ψ . Zeigen wir ψ ∈ B∗ψ ⊆ f−1

φ
(A∗).

Sei ξ ∈ B∗ψ , also Bψ ∈ ξ . Es folgt A ∈ φ +ξ , also fφ (ξ ) ∈ A∗ und somit ξ ∈ f−1
φ

(A∗).
Wir erhalten schlussendlich f−1

φ
(A∗) =

⋃
ψ∈ f−1

φ
(A∗) B∗ψ .

4.7.13 Lemma

a) Sei n ∈ N und φ ∈ βN. Dann ist φ + ṅ = ṅ+φ .
b) Für alle m,n ∈ N gilt ṁ+ ṅ = ˙m+n.

Beweis: a) φ + ṅ = {P ⊆ N | {k ∈ N | P− k ∈ φ} ∈ ṅ} = {P ⊆ N | n ∈ {k ∈ N | P− k ∈
φ}} = {P ⊆ N | P− n ∈ φ} = {P ⊆ N | {k ∈ N | n + k ∈ P} ∈ φ} = {P ⊆ N | {k ∈ N | n ∈
P− k} ∈ φ}= {P⊆ N | {k ∈ N | P− k ∈ ṅ} ∈ φ}= ṅ+φ

b) Es reicht wieder ṁ + ṅ ⊆ ˙m+n zu zeigen (da es sich auf beiden Seiten um Ultrafilter
handelt). Also, sei P ∈ ṁ+ ṅ. Dann ist {k ∈ N | P− k ∈ ṁ} ∈ ṅ, also n ∈ {k ∈ N | P− k ∈ ṁ}
und somit P−n ∈ ṁ. Das bedeutet aber m ∈ P−n und somit m+n ∈ P, also P ∈ ˙m+n.

4.7.14 Definition (dynamisches System)

Sei (X ,τ) ein kompakter Hausdorff-Raum und T : X → X eine stetige Abbildung. Wir nen-
nen dann das Tripel (X ,τ,T ) ein Dynamisches System. Der Einfachheit halber schreiben wir
oftmals einfach (X ,T ).
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In der topologischen Dynamik interessiert man sich für das Verhalten von iterierten Anwen-
dungen der Abbildung T , also T ◦ ...◦T . Mit T n ist die n-fache Nacheinander Ausführung der
Abbildung T gemeint.

Zu diesem Zweck definiert man sich die Abbildung S : βN→ βN durch S(φ) := φ + 1̇ - die
stetige Fortsetzung des Shift-Operators SN : N→ N, definiert durch SN(n) := n+1.

Sei x ∈ X ein fest gewähltes Element. Wir bekommen eine stetige Abbildung fx : N→ X
(da N mit der diskreten Topologie versehen ist), definiert durch fx(n) := T n(x). Es gibt dann
ein stetiges f̃x : βN→ X mit f̃x ◦β = f .

4.7.15 Lemma

f̃x erfüllt die Gleichung f̃x ◦S = T ◦ f̃x. Folgendes Diagramm kommutiert also.

N

fx   A
AA

AA
AA

A
β // βN

f̃x
��

S // βN
f̃x
��

X T
// X

Beweis: Die Menge N := {ṅ | n ∈N} liegt dicht in βN. Da βN ein Hausdorff-Raum ist und
sowohl f̃x ◦S, als auch T ◦ f̃x stetig sind, reicht es also die Gleichheit auf N zu überprüfen. Es
folgt: f̃x ◦S(ṅ) = f̃x(ṅ+ 1̇) = f̃x( ˙n+1) = f̃x ◦β (n+1) = fx(n+1) = T n+1(x) = T ◦T n(x) =
T ◦ fx(n) = T ◦ f̃x(ṅ).

4.7.16 Wichtiges Beispiel

Für (X ,T ) = (βN,S) und φ ∈ βN folgt:
f̃φ : βN→ βN, mit f̃φ ◦S = S◦ f̃φ . Induktiv schließen wir damit f̃φ (ṅ) = Sn(φ) = φ + ṅ.
Nun können wir folgern: f̃φ (ψ) = φ +ψ .
Beweis: Die Abbildung g : βN→ βN definiert durch g(ψ) = φ +ψ ist stetig (siehe oben).

Für n ∈N gilt f̃φ (ṅ) = φ + ṅ = g(ṅ). Auf der dichten Teilmenge N := {ṅ | n ∈N} stimmen die
stetigen Abbildungen fφ und g also überein und damit stimmen sie auch auf ganz βN überein
(Hausdorff-Raum!).

Es folgt also f̃φ (ψ) = φ +ψ , für jedes ψ ∈ βN. Hieraus folgt sofort f̃φ ◦ f̃ψ = f̃φ+ψ .
Es gilt übrigens allgemein für ein dynamisches System:

f̃x ◦ f̃ϕ = f̃ f̃x(ϕ)

denn beide Abbildungen sind stetig und stimmen (wie man leicht nachrechnet) auf N :=
{ṅ | n ∈ N} überein.

Dem dynamischen System (βN,S) wird im Folgenden eine herausragende Rolle bei der
Untersuchung allgemeiner dynamischer Systeme (X ,T ) zukommen. Die Gleichung f̃x ◦ S =
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T ◦ f̃x ist es, die es ermöglicht Eigenschaften des dynamischen Systems (βN,S) auf andere
dynamische Systeme zu übertragen. Um einige dieser Eigenschaften zu formulieren benötigen
wir ein paar neue Begriffe.

4.7.17 Definition (rekurrent, uniform rekurrent, proximal)

Sei (X ,τ,T ) ein dynamisches System.
Ein Punkt x ∈ X heißt rekurrent, wenn für jedes U ∈ ẋ∩ τ die Menge {n ∈ N | T n(x) ∈U}

unendlich ist.
Der Punkt x ∈ X heißt uniform rekurrent, wenn es zu jedem U ∈ ẋ∩ τ ein m ∈ N gibt, so

dass ∀n ∈ N∃k ≤ m mit T n+k(x) ∈U .
Zwei Punkte x,y ∈ X nennen wir proximal, wenn für jede Umgebung U der Diagonale

∆ := {(x,x) | x ∈ X} von X×X die Menge {n ∈ N | (T n(x),T n(y)) ∈U} unendlich ist.
Letztere Definition ist sinnvoll, denn die Abbildung f : X × X → X × X definiert durch

f (x,y) := (y,x) ist ein Homöomorphismus. Und für eine Umgebung U von ∆ ist V :=U∩ f (U)
ebenfalls eine Umgebung von ∆ mit U ⊆V und (x,y) ∈V ⇔ (y,x) ∈V . Wenn x,y proximal
sind, so also auch y,x.

Kommen wir zu einem wichtigen Satz, der die dynamischen Konzepte von eben mit Ultra-
filtern auf N beschreibt.

4.7.18 Satz

Sei (X ,τ,T ) ein dynamisches System.
a) x ∈ X ist genau dann rekurrent, wenn es ein ψ 6= 0̇ gibt mit f̃x(ψ) = x und das ist

genau dann, wenn es ein φ ∈ βN gibt mit
⋂

φ = /0 und f̃x(φ) = x.
b) x ∈ X ist genau dann uniform rekurrent, wenn es zu jedem φ ∈ βN ein ψ ∈ βN gibt,

mit f̃x(φ +ψ) = x.
c) Zwei Punkte x,y ∈ X sind genau dann proximal, wenn es einen Ultrafilter φ gibt mit

f̃x(φ) = f̃y(φ). Dies ist genau dann der Fall, wenn es einen nicht-trivialen Ultrafilter φ gibt
(also

⋂
φ = /0), mit f̃x(φ) = f̃y(φ).

Beweis: a) Sei x zunächst als rekurrent angenommen. Für jedes U ∈ ẋ∩ τ ist die Menge
{n ∈ N | T n(x) ∈U} also unendlich. Beachten wir T n(x) = fx(n), so setzen wir AU := {n ∈
N 6=0 | fx(n) ∈U}. Es gilt dann AU ∩AV = AU∩V und jedes der AU ist unendlich. Sei ψ ein
Ultrafilter mit {AU |U ∈ ẋ∩τ} ⊆ψ . Wir zeigen f̃x(ψ) = x, indem wir zeigen, dass f̃x(ψ)∈U
ist, für jedes U ∈ ẋ∩ τ .

Also sei U ∈ ẋ∩τ gegeben. Es gibt dann ein V ∈ τ mit x ∈V ⊆V ⊆U . Zunächst einmal ist
AV ∈ ψ . Für ψ ∈ P∗, also P ∈ ψ wählen wir ein n ∈ AV ∩P. Es ist dann ṅ ∈ f̃−1

x (V ), also /0 6=
P∗∩ f̃−1

x (V ). Da P⊆ ψ beliebig war, folgt ψ ∈ f̃−1
x (V )⊆ f̃−1

x (V ) und somit f̃x(ψ) ∈V ⊆U .
Offensichtlich ist ψ 6= 0̇.

Nehmen wir mal an, dass gilt ψ = ṅ, für n 6= 0. Dann haben wir T n(x) = x, also auch
T kn(x) = x, für jedes k ∈ N. Sei dann φ ∈ βN mit

⋂
φ = /0 und {kn | k ∈ N} ⊆ φ . Dann gilt
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ebenfalls f̃x(φ) = x. Ist nämlich U ∈ ẋ∩ τ , so wählen wir V ∈ τ mit x ∈ V ⊆ V ⊆ U . Für
P ∈ φ sei l ∈ P∩{kn | n ∈ N}, also f̃x(k̇) = x und somit P∗∩ f̃−1

x (V ) 6= /0. Da P beliebig war
bekommen wir φ ∈ f̃−1

x (V ) ⊆ f̃−1
x (V ) ⊆ f̃−1

x (U), also f̃x(φ) ∈U . Da auch U beliebig war,
bekommen wir f̃x(φ) ∈

⋂
U∈ẋ∩τ U = {x}, also f̃x(φ) = x.

Zeigen wir nun, dass aus f̃x(φ) = x, für
⋂

φ = /0 folgt, dass x rekurrent ist. Sei dazu U ∈ ẋ∩τ ,
also φ ∈ f̃−1

x (U). Dann gibt es aber ein P ∈ φ mit φ ∈ P∗ ⊆ f̃−1
x (U). Da P unendlich ist

und P ⊆ {n ∈ N | f̃x(ṅ) ∈ U}, folgt {n ∈ N | T n(x) ∈ U} ist auch unendlich (man beachte
f̃x(ṅ) = T n(x)). Und somit ist x rekurrent.

b) Sei x uniform rekurrent und φβN gegeben. Zu jeder Umgebung U von x gibt es eine
offene Menge V mit x ∈V ⊆V ⊆U . Zu diesem V gibt es ein m ∈ N, so dass ∀n ∈ N∃k ≤ m
mit T n+k(x) ∈ V . Schreibt man das so {n ∈ N | ∃k ≤ m mit T n+k(x) ∈ V} = N, so sieht
man, dass es ein k ≤ m geben muss mit {n ∈ N | T n+k(x) ∈ V} ∈ φ , oder äquivalent dazu
P := {n ∈ N | f̃x(ṅ) ∈ (T k)−1(V )} ∈ φ .

Jetzt folgern wir, dass dann auch f̃x(φ)∈ (T k)−1(V ) ist. Denn sonst φ ∈ f̃−1
x (X \(T k)−1(V )).

Da (T k)−1(V ) abgeschlossen ist, gibt es somit ein P′ ∈ φ mit φ ∈ P′∗ ⊆ f̃−1
x (X \ (T k)−1(V )).

Für n ∈ P∩P′ folgt dann aber ṅ ∈ P′∗ ⊆ f̃−1
x (X \ (T k)−1(V )) im Widerspruch zu n ∈ P.

Es gilt also T k ◦ f̃x(φ) ∈ U für unser k. Allgemeiner formuliert, bedeutet dies, dass die
Menge YU := {k ∈ N | T k ◦ f̃x(φ) ∈U} 6= /0 ist. Offensichtlich gilt YU ∩YU ′ = YU∩U ′ . Es gibt
somit einen Ultrafilter ψ mit {YU |U ∈ ẋ∩ τ} ⊆ ψ .

Zeigen wir, dass f̃x(φ + ψ) ∈U für jedes Uẋ∩ τ gilt. Andernfalls f̃x ◦ f̃φ (ψ) 6∈U . Es gibt
V ∈ ẋ∩ τ mit x ∈ V ⊆ V ⊆ U . Also ψ ∈ f̃−1

φ
◦ f̃−1

x (X \V ). Damit gibt es ein P ∈ ψ mit
ψ ∈ P∗ ⊆ f̃−1

φ
◦ f̃−1

x (X \V ) und ein n ∈ P∩YV - was aber (fast) offensichtlich nicht sein kann.
Aus f̃x(φ +ψ) ∈U für jedes Uẋ∩ τ folgt dann f̃x(φ +ψ) = x.

Nehmen wir nun an x ist nicht uniform rekurrent. Dann gibt es ein U ∈ ẋ∩ τ ∀m ∈ N∃n ∈
N∀k≤m ist T n+k(x) 6∈U . Für jedes m ∈N ist demnach Am := {n ∈N | ∀k≤m ist T n+k(x) 6∈
U} 6= /0. Da außerdem Am+1 ⊆ Am gilt, gibt es somit einen Ultrafilter φ mit {Am |m ∈N} ⊆ φ .
Aus Am ∈ φ folgt P := {n ∈ N | T n+m(x) 6∈U} ∈ φ (da Am ⊆ P). Es gilt P = {n ∈ N | f̃x(ṅ) 6∈
(T m)−1(U)}. Hieraus folgt nun f̃x(φ) 6∈ (T m)−1(U), denn sonst f̃x(φ) ∈ (T m)−1(U), es gäbe
also ein P′ ∈ φ mit φ ∈ P′∗ ⊆ f̃−1

x ((T m)−1(U)). Dann gibt es aber auch ein n ∈ p∩P′ (denn
/0 6= P∩P′ ∈ φ ) und es würde folgen: ṅ ∈ P′∗, also f̃x(ṅ) ∈ (T m)−1(U) im Widerspruch zu
n ∈ P.

Wir haben somit T m ◦ f̃x(φ) 6∈U , für alle m ∈ N. Anders aufgeschrieben bedeutet dies ge-
rade: ∀m ∈ N ist ṁ 6∈ f̃−1

φ
◦ f̃−1

x (U) =: V . Da f̃φ : βN→ βN und f̃x : βN→ X stetig sind ist
V aber offen. Da {ṁ | m ∈ N} dicht in βN ist, muss also V = /0 gelten. Für jedes ψ ∈ βN gilt
somit f̃x ◦ f̃φ (ψ) 6∈U und damit ∀ψ ∈ βN ist f̃x(φ +ψ) 6= x.

c) Sei f̃x(φ) = f̃y(φ), für φ = ṅ. Dann gilt somit T n(x) = T n(y), also für jedes k ∈ N auch
T kn(x)= T kn(y) und damit ist für jede Umgebung U der Diagonalen {m∈N | (T m(x),T m(y))∈
U} unendlich, x,y sind also proximal.

Sei f̃x(φ) = f̃y(φ), für
⋂

φ = /0. Sei weiter U eine offene Umgebung von ∆. Dann ist U =⋃
i∈I Ui×Vi für gewisse in X offene Ui bzw. Vi. Da ∆ kompakt ist, gibt es ein endliches J ⊆ I

mit ∆ ⊆
⋃

i∈J Ui×Vi. Dann gilt aber X ⊆
⋃

i∈J[Ui ∩Vi] und es gibt demnach ein j ∈ J mit
f̃x(φ) = f̃y(φ) ∈ U j ∩Vj. Dann ist aber Q := f̃−1

x (U j ∩Vj)∩ f̃−1
y (U j ∩Vj) offen und es gilt

φ ∈Q. Es gibt also ein P∈ φ mit φ ∈ P∗⊆Q. Die Menge P ist unendlich (da φ nicht trivial ist)
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und für jedes n∈P gilt ( f̃x(ṅ), f̃y(ṅ))∈ [U j∩Vj]× [U j∩Vj]⊆U , also auch (T n(x),T n(y))∈U .
Also sind auch hier x,y proximal.

Seien nun x,y als proximal vorausgesetzt. Für jede Umgebung U der Diagonalen ist YU :=
{n ∈ N | (T n(x),T n(y)) ∈U} unendlich und es gilt YU ∩YV = YU∩V . Es gibt also einen nicht-
trivialen Ultrafilter φ (also

⋂
φ = /0) mit {YU |U ist Umgebung von ∆} ⊆ φ .

Für jede abgeschlossene Umgebung U von ∆ gilt nun ( f̃x(φ), f̃y(φ)) ∈U . Andernfalls de-
finieren wir die stetige Abbildung f := f̃x × f̃y : βN → X × X und wir bekommen phi ∈
f−1(X ×X \U) =: Q. Da Q offen ist, gibt es somit ein P ∈ φ mit φ ∈ P∗ ⊆ Q. Dann gilt
aber P∩YU = /0 - Widerspruch!

Da der Schnitt aller abgeschlossenen Umgebungen U von ∆ aber gerade ∆ ist (es handelt
sich um einen kompakten Hausdorff-Raum und folglich ist dieser normal), folgern wir f̃x(φ) =
f̃y(φ).

4.7.19 Lemma

Wir befinden uns wieder im dynamischen System (βN,S).
a) Sei φ uniform rekurrent und proximal zu 0̇. Dann gilt φ +φ = φ .
b) Ist φ +φ = φ , so ist φ rekurrent und proximal zu 0̇.

Beweis: a) Nach Voraussetzung gibt es zu jedem ξ ∈ βN ein ψ ∈ βN, mit f̃φ (ξ +ψ) = φ

und es gibt ein η mit f̃φ (η) = f̃0̇(η).
Zu η gibt es also ein ψ mit f̃φ (η +ψ) = φ , also φ +η +ψ = φ . Nun bedeutet f̃φ (η) = f̃0̇(η)

aber φ +η = 0̇+η = η . Es folgt also η +ψ = φ .
φ +η +ψ = φ und η +ψ = φ ergeben dannφ +φ = φ

b) Ist offensichtlich.

4.7.20 Definition

links-topologische Semigruppe, Linksideal, Rechtsideal, Ideal Sei X eine Menge zusam-
men mit einer Operation + : X×X→ X , die assoziativ ist (das heißt x+(y+ z) = (x+y)+ z).
Wir nennen (X ,+) dann eine Semigruppe.

Ist τ eine Topologie auf X , so dass für jedes x ∈ X die Abbildung fx : X → X definiert
durch fx(y) := x+ y stetig ist, so sprechen wir von einer links-topologischen Semigruppe und
bezeichnen diese mit (X ,τ,+) (bzw. wenn klar ist welche Topologie gemeint ist auch einfach
nur mit (X ,+)).

Eine Teilmenge nicht leere Teilmenge I⊆X einer Semigruppe heißt Linksideal (bzw. Recht-
sideal), wenn X + I ⊆ I (bzw. I +X ⊆ I). Sie heißt Ideal, wenn sie sowohl Linksideal, als auch
Rechtsideal ist.

(βN,+) ist also eine links-topologische Semigruppe.
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4.7.21 Lemma

Sei (X ,τ,+) eine kompakte Hausdorff links-topologische Semigruppe. Jedes Rechtsideal
enthält dann ein minimales Rechtsideal (bzgl. Inklusion). Ferner sind minimale Rechts-
ideale kompakt und abgeschlossen.

Beweis: Für ein minimales Rechtsideal I mit a ∈ I gilt I = a + X , denn per Definition gilt
a+X ⊆ I und andererseits ist a+X ebenfalls ein Rechtsideal. Aufgrund der Minimalität also
a + X = I. Da fa : X → X definiert durch fa(x) := a + x stetig ist, ist I = fa(X) kompakt (als
Bild der kompakten Menge X) und damit, da X ein Hausdorff-Raum ist, auch abgeschlossen.

Sei nun /0 6= I ⊆ X ein beliebiges Rechtsideal. Sei

Z := {J ⊆ I | J ist ein kompaktes Rechstsideal }.

Für eine Kette K ⊆ Z (bzgl.Inklusion) ist J :=
⋂

K 6= /0 also offensichtlich ebenfalls ein
kompaktes Rechtsideal und somit eine untere Schranke für K . Mit dem Zornschen Lemma
folgern wir, dass es ein minimales Element J′ in Z geben muss.

Ist J′′ ⊆ J′ ein Rechtsideal, so wählen wir ein a ∈ J′′. Dann ist J′′′ := a + X ein kompak-
tes Rechtsideal mit J′′′ ⊆ J′′ ⊆ J′, also J′′′ = J′, aufgrund der Minimalität. Damit ist J′ ein
minimales Rechtsideal unterhalb von I.

4.7.22 Lemma

Es gibt ein 0̇ 6= ϕ ∈ βN, welcher uniform rekurrent und proximal zu 0̇ ist (im dynamischen
System (βN,S)).

Beweis: Sei I ein minimales Rechtsideal in (βN,+) mit 0̇ 6∈ I (das man solch eines wählen
kann, bleibt als leichte Aufgabe) und sei φ ∈ I. Dann gilt somit I = φ +βN. Sei ξ ∈ βN. Dann
ist auch J := φ + ξ + βN ⊆ I ein Rechtsideal, also J = I. Da φ ∈ I, gibt es also ein ψ ∈ βN
mit φ = φ +ξ +ψ = f̃φ (ξ +ψ).

Nach Satz 4.7.18 ist φ uniform rekurrent.
Nun ist I aber auch eine abgeschlossene Untersemigruppe von βN, denn für φ +η ∈ I und

φ +ξ ∈ I ist (φ +η)+(φ +ξ ) = φ +(η +φ +ξ ) ∈ φ +βN= I. Außerdem ist jedes Element
aus I ebenfalls uniform rekurrent (Das ist wichtig!).

Mit dem Zornschen Lemma folgert man, dass es eine minimale abgeschlossene Untersemi-
gruppe K ⊆ I gibt (diese ist damit dann auch kompakt).

Zeigen wir, dass für jedes Element k aus K gilt k + k = k. Sei dazu k ∈ K.
Wir setzen Z := {Z ⊆ K | k ∈ Z und Z ist abgeschlossen und Z + Z ⊆ Z}. Es ist Z 6= /0,

denn K ∈Z . Sei C eine Kette bzgl. der Inklusion (also total geordnete Teilmenge von Z ). Es
gilt k ∈ Y :=

⋂
C und Y ist abgeschlossen. Für jedes Z ∈ C gilt außerdem Y +Y ⊆ Z +Z ⊆ Z

und damit Y +Y ⊆ Y . Die Menge Y ist also eine untere Schranke für C in Z . Das Zornsche
Lemma liefert also minimale Element in Z .
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Sei Y ein solches minimales Element. Wir zeigen nun k + k = k. Die Menge k +Y = f̃k(Y )
ist als Bild der kompakten Menge Y unter der stetigen Abbildung f̃k selber kompakt und
damit abgeschlossen in K. Außerdem gilt (k +Y )+ (k +Y ) ⊆ k +(Y +Y +Y ) ⊆ k +Y . Also
k+Y ∈Z . Da auch k+Y ⊆Y +Y ⊆Y gilt, folgt aus der Minimalität von Y bereits k+Y = Y .
Die Menge Z := {y ∈ Y | k + y = k} = f̃−1

k (k)∩Y ist somit nicht leer und abgeschlossen
(als Urbild der abgeschlossenen Menge {k}). Außerdem gilt Z + Z ⊆ Z (y,z ∈ Z impliziert
k +(y + z) = k + z = k). Somit ist Z ∈Z und damit Z = Y . Wir bekommen dann k ∈ Z, also
k + k = k.

Wir wählen nun ein beliebiges ϕ ∈K. Dieser Ultrafilter erfüllt dann ϕ +ϕ = ϕ , nach Lemma
4.7.19 ist er also proximal zu 0̇. Da K ⊆ I ist ϕ aber auch uniform rekurrent! Damit ist der
Beweis beendet.

4.7.23 bemerkung

Eine leichte Abwandlung des Beweises von Lemma 4.7.22 ergibt sofort einen Beweis zu fol-
gender Aussage:

Sei (X ,τ,+) eine kompakte Hausdorff links-topologische Semigruppe. Dann gibt es ein
x ∈ X mit x+ x = x.

Insbesondere ist dies dann ein einfacher Beweis dafür, dass es einen Ultrafilter 0̇ 6= φ ∈ βN
gibt mit φ +φ = φ .

Bevor wir nun zum angekündigten Satz von Auslander-Ellis kommen, beweisen wir eine
andere interessante Folgerung, bekannt unter Hindmans Theorem.

4.7.24 Hindman’s Theorem

a) Sei φ 6= 0̇ ein Ultrafilter auf N mit φ +φ = φ . Zu jedem A ∈ φ gibt es ein unendliches
B⊆ A derart, dass ∑n∈E n ∈ A, für jedes endliche E ⊆ B.

b) Wenn N=
⋃n

i=1 Ai, dann existiert k ∈ {1, ...,n} und es existiert ein unendliches B⊆
Ak, so dass ∑n∈E n ∈ Ak, für jedes endliche E ⊆ B.

Beweis: a) Sei also φ 6= 0̇ ein Ultrafilter auf N mit φ + φ = φ und sei weiter A ∈ φ . Wir
setzen A0 := A. Seien A0 ⊇ A1 ⊇ ...⊇ Ak und n0 < n1 < ... < nk aus N gewählt mit:

1) Ai ∈ φ , für i = 0, ...,k
2) ni ∈ Ai und Ai−ni ∈ φ für i = 0, ...,k.
Wir setzen dann Ak+1 := Ak ∩ (Ak− nk). Nun ist Ak+1 ∈ φ und somit auch A′k+1 := {n ∈

N | Ak+1− n ∈ φ} ∈ φ (denn φ = φ + φ ). Wir können also ein nk+1 ∈ Ak+1 ∩A′k+1 ∩ {n ∈
N | n > nk} wählen.

Wir zeigen im Folgenden, dass B := {nk | k ∈ N} die geforderte Eigenschaft hat. B ⊆ A ist
jedenfalls schon mal klar.

Sei nk0 < nk1 < ... < nkl mit 0 < l. Es gilt nkl ∈ Akl . Sei 0≤ i < l und ∑
l
j=i+1 nk j ∈ Aki+1 .

Nun ist Aki+1 ⊆ Aki+1 ⊆ Aki−nki , also ∑
l
j=i+1 nk j ∈ Aki−nki und somit ∑

l
j=i nk j ∈ Aki
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Insgesamt bekommen wir also ∑
l
j=0 nk j ∈ Ak0 ⊆ A.

b) Ist N =
⋃n

i=1 Ai, dann wählen wir einen Ultrafilter φ 6= 0̇, mit φ + φ = φ . Eines der Ak
muss dann in φ liegen (Ultrafilter!). Teil a) angewendet erledigt dann den Rest.

4.7.25 Bemerkung

Wir können sogar noch ein bischen mehr bekommen:
Sei (N,+) eine Semigruppe. Versehen wir die Menge N mit der diskreten Topologie τ :=

P(N), so können wir genauso wie bei den natürlichen Zahlen mit der diskreten Topologie
von der Stone-Čech-Kompaktifizierung βN sprechen. βN sind hier eben die Ultrafilter auf N.
Auch können wir, vollkommen analog zu den natürlichen Zahlen, die Operation + : N×N→
N auf + : βN × βN → βN fortsetzen. Die einfachen Details (formal jedes N durch ein N
ersetzen) bleiben dem Leser überlassen.

4.7.26 Definition

A⊆ N nennen wir eine IP-Menge, wenn es ein unendliches B⊆ A gibt, mit

BΣ := {∑
n∈E

n | E ⊆ B und E endlich } ⊆ A.

Die Menge BΣ mit der gewöhnlichen Addition ist somit eine Semigruppe.
Wir erhalten nun noch folgende Verallgemeinerung von Hindmans Theorem (Satz 4.7.24).

4.7.27 Satz

Sei N eine IP-Menge mit zugehörigem B⊆ N.
a) Sei φ 6= 0̇ ein Ultrafilter auf BΣ mit φ +φ = φ . Zu jedem A∈ φ gibt es ein unendliches

B′ ⊆ A derart, dass ∑n∈E n ∈ A, für jedes endliche E ⊆ B′.
b) Wenn N =

⋃n
i=1 Ai, dann existiert k ∈ {1, ...,n} und es existiert ein unendliches B′ ⊆

Ak, so dass ∑n∈E n ∈ Ak, für jedes endliche E ⊆ B′.

Beweis: Teil a) geht genauso wie im Beweis zu Korollar 4.7.24.
b) Wir wählen einen Ultrafilter φ 6= 0̇ auf BΣ mit φ + φ = φ . Wir bekommen dann BΣ =⋃n

i=1(Ai∩BΣ). Es gibt somit ein k ∈ {1, ...,n} mit Ak∩BΣ ∈ φ . Teil a) erledigt dann den Rest.

4.7.28 Bemerkung

Statt mit ”+” lässt sich natürlich auch alles mit ”·” beweisen. Was wir benötigt haben, war
schließlich nur die Assoziativität der Operation ”+”.

Kommen wir nun zum angekündigten
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4.7.29 Satz von Auslander-Ellis

Sei (X ,τ,T ) ein dynamisches System. Dann gibt es zu jedem x ∈ X ein uniform rekurren-
tes y ∈ X , welches proximal zu x ist.

Beweis: Sei ϕ uniform rekurrent und proximal zu 0̇ (in (βN,S)). Dann ist y := f̃x(ϕ) uni-
form rekurrent und proximal zu x.

Beweis dazu: Es gilt f̃x ◦ f̃ϕ = f̃ f̃x(ϕ), denn beide Abbildungen sind stetig und stimmen (wie
man leicht nachrechnet) auf N := {ṅ | n ∈ N} überein.

Zu beliebigen φ ∈ βN gibt es, da ϕ uniform rekurrent ist, ein ψ mit f̃ϕ(φ + ψ) = ϕ , also
f̃x ◦ f̃ϕ(φ + ψ) = f̃x(ϕ) = y. Da f̃x ◦ f̃ϕ = f̃ f̃x(ϕ) folgt f̃y(φ + ψ) = f̃ f̃x(ϕ)(φ + ψ) = y. Damit
haben wir gezeigt, dass y uniform rekurrent ist.

Zeigen wir noch, dass x,y proximal sind. Da jedenfalls ϕ proximal zu 0̇ ist, gibt es ein φ

mit f̃ϕ(φ) = f̃0̇(φ) = 0̇+φ = φ .
Wir bekommen damit f̃x ◦ f̃ϕ(φ) = f̃x(φ). mit f̃x ◦ f̃ϕ = f̃ f̃x(ϕ) und y := f̃x(ϕ) folgt dann

f̃y(φ) = f̃x(φ) und x,y sind demnach proximal.

4.8 Cantormenge und dyadische Räume
”Die glücklichsten Sklaven sind die erbittersten Feinde der Freiheit.”

Marie von Ebner-Eschenbach

In diesem Abschnitt schauen wir uns ein wichtiges Beispiel eines topologischen Raums
genauer an: Die Cantormenge. Anwendungen hat diese z.B. in der Maßtheorie. Im Anschluss
an die Beweise der wichtigsten Aussagen über dieses interessante Gebilde, führen wir eine
wichtige Klasse topologischer Räume ein, die sogenannten dyadischen Räume und zeigen,
dass alle kompakten metrischen Räume dyadisch sind.

Seien f ,g : R→ R definiert durch f (x) := 1
3x und g(x) := 1

3x + 2
3 . Sei C0 := [0,1] und

Cn+1 := f (Cn)∪g(Cn). Die Cantormenge (auch Cantorsches Diskontinuum) ist nun definiert
als C :=

⋂
n∈NCn. Jedes Cn ist kompakt (klar für C0; der Rest folgt per Induktion, denn f und

g sind stetig), also auch abgeschlossen (R ist ein T2-Raum). Demnach ist auch C als Schnitt
von abgeschlossenen Mengen selber abgeschlossen und somit auch kompakt (da C ⊆ [0,1]).

4.8.1 Lemma

Sei α : {0,1, ...,n−1}→ { f ,g} , n≥ 1 eine beliebige Abbildung. Dann ist

α(n−1)◦ ...◦α(1)◦α(0)(x) =
1
3n x+

n

∑
k=1

ak

3k , wobei ak =

{
0 falls α(n− k) = f
2 falls α(n− k) = g
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Beweis: Wir beweisen dies durch vollständige Induktion nach n. Für n = 1 ist alles klar.
n→ n+1: Sei also α : {0,1, ...,n}→ { f ,g} gegeben. Es ist

α(n)◦ ...◦α(0)(x) = α(n)(
1
3n x+

n

∑
k=1

ak

3k ) =: A

Wir unterscheiden nun zwei Fälle. 1.Fall α(n) = f . Dann ist

A = f (
1
3n x+

n

∑
k=1

ak

3k ) =
1

3n+1 x+
n

∑
k=1

ak

3k+1 =
1

3n+1 x+
n+1

∑
k=1

a′k
3k ,

wobei a′k =

{
0 falls k = 1
ak−1 falls k 6= 1

Für k 6= 1 gilt nach Induktionsvoraussetzung

ak−1 =

{
0 falls α(n− (k−1)) = f
2 falls α(n− (k−1)) = g

also a′k =

{
0 falls α(n+1− k) = f
2 falls α(n+1− k) = g

.

Der Beweis von Fall 2 ist vollkommen analog und bleibt dem Leser überlassen.

4.8.2 Bemerkung

Für α : {0,1, ...,n−1}→ { f ,g} mit n≥ 1, also α ∈ { f ,g}n, setzen wir

A(n)
α := α(n−1)◦ ...◦α(0)([0,1]) = [

n

∑
k=1

ak

3k ,
1
3n +

n

∑
k=1

ak

3k ],

wobei die ak entsprechend Lemma 4.8.1 definiert sind. Offenbar ist Cn =
⋃

α∈{ f ,g}n A(n)
α . Diese

Einsicht motiviert folgende Definition.

4.8.3 Definition

Für n≥ 1 und α : {0, ...,n−1}→ {0,2}, also α ∈ {0,2}n, setzen wir

B(n)
α := [

n

∑
k=1

α(k−1)
3k ,

1
3n +

n

∑
k=1

α(k−1)
3k ].

Für n = 0 und (das eindeutig bestimmte) α : /0→{0,2} sei B(0)
α := [0,1].

Offenbar gilt nun auch Cn =
⋃

α∈{0,2}n B(n)
α für alle n ∈ N, also

C =
⋂

n∈N
Cn =

⋂
n∈N

(
⋃

α∈{0,2}n

B(n)
α ) =

⋃
f∈P

(
⋂

n∈N
B(n)

f (n)) , wobei P := ∏
n∈N
{0,2}n.
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4.8.4 Lemma

Sei f ∈ P und f (n+1) keine Fortsetzung von f (n). Dann ist

B(n+1)
f (n+1)∩B(n)

f (n) = /0.

Analog ist für verschiedene α,α ′ : {0, ...,n−1}→ {0,2} immer B(n)
α ∩B(n)

α ′ = /0.

Beweis: Sei f (n + 1) = α und f (n) = α ′. Da α keine Fortsetzung von α ′ ist, gibt es ein
minimales l < n mit α(l) 6= α ′(l). Es ist

B(n+1)
α := [

n+1

∑
k=1

α(k−1)
3k ,

1
3n+1 +

n+1

∑
k=1

α(k−1)
3k ] und B(n)

α ′ := [
n

∑
k=1

α ′(k−1)
3k ,

1
3n +

n

∑
k=1

α ′(k−1)
3k ]

Wir unterscheiden wieder zwei Fälle.

1.Fall α(l) = 0 und α
′(l) = 2 . Es folgt

1
3n+1 +

n+1

∑
k=1

α(k−1)
3k <

n

∑
k=1

α ′(k−1)
3k , denn

1
3n+1 +

n+1

∑
k=l+1

α(k−1)
3k =

1
3n+1 +

n+1

∑
k=l+2

α(k−1)
3k ≤ 1

3n+1 +
n+1

∑
k=l+2

2
3k <

2
3l+1 ≤

n

∑
k=l+1

α ′(k−1)
3k .

2.Fall α(l) = 2 und α
′(l) = 0 . Es folgt

1
3n +

n

∑
k=1

α ′(k−1)
3k <

n+1

∑
k=1

α(k−1)
3k , denn

1
3n +

n

∑
k=l+1

α ′(k−1)
3k =

1
3n +

n

∑
k=l+2

α ′(k−1)
3k ≤ 1

3n +
n

∑
k=l+2

2
3k <

2
3l+1 ≤

n+1

∑
k=l+1

α(k−1)
3k .

B(n)
α ∩B(n)

α ′ = /0 für festes n und verschiedene α,α ′, beweist man analog dem ersten Teil.

4.8.5 Bemerkung

Für f ∈ {0,2}N, also f : N→ {0,2} und n ∈ N verstehen wir unter f |n die Einschränkung
von f auf {0, ...,n− 1}. Mit dieser Bezeichnung, dem Lemma von eben und der Gleichung
C =

⋃
f∈P(

⋂
n∈NB(n)

f (n)) , wobei P := ∏n∈N{0,2}n ergibt sich der folgende Satz.
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4.8.6 Hauptsatz über die Cantormenge

(a) C =
⋃

f∈{0,2}N
(
⋂

n∈N
B(n)

f |n)= {
∞

∑
k=1

f (k−1)
3k | f ∈{0,2}N} , denn

⋂
n∈N

B(n)
f |n = {

∞

∑
k=1

f (k−1)
3k }

(b) Jedes Cn ist die disjunkte Vereinigung der B(n)
α , α ∈ {0,2}n. Außerdem erhalten

wir {B(n+1)
α | α ∈ {0,2}n+1} aus {B(n)

α | α ∈ {0,2}n}, indem wir aus jedem B(n)
α das

mittlere (offene) Drittel entfernen. Der verbleibende Rest besteht aus zwei (disjunkten)
B(n+1)

α ′ , B(n+1)
α ′′ (für gewisse α ′,α ′′ ∈ {0,2}n+1). Insbesondere bedeutet dies Cn+1 ⊆Cn.

(c) Jedes B(n)
α hat eine Länge von 1

3n . Die Länge von Cn ist also 2n · 1
3n =

(2
3

)n
. Insbe-

sondere hat C das Lebesgue-Maß λ (C) = 0.
(d) Fassen wir {0,2}N = ∏n∈N{0,2} als topologischen Raum auf, wobei wir {0,2} mit

der diskreten Topologie versehen. Dann ist die Abbildung φ : {0,2}N→C definiert durch
φ( f ) := ∑

∞
k=1

f (k−1)
3k ein Homöomorphismus (wobei C mit der entsprechenden Teilraum-

topologie von R versehen ist). Für C gilt demnach insbesondere |C| = |{0,2}N| = |R|.
Man beachte auch Satz 10.6.6 im Kapitel über Verbände.

Beweis: (a), (b) und (c) folgen unmittelbar aus dem bisher bewiesenen.
Zeigen wir (d). Offenbar ist φ surjektiv. Zeigen wir, dass φ injektiv ist. Seien f ,g ∈ {0,2}N

mit f 6= g. Sei n minimal mit f (n) 6= g(n). O.B.d.A. sei f (n) = 2 und g(n) = 0. Es folgt

φ(g) =
∞

∑
k=1

g(k−1)
3k <

n

∑
k=1

g(k−1)
3k +

∞

∑
k=n+1

2
3k =

n

∑
k=1

f (k−1)
3k +

1
3n <

∞

∑
k=1

f (k)
3k = φ( f ).

φ ist stetig: Sei ε > 0 und f ∈ {0,2}N. Es gibt ein N ∈ N mit ∑
∞
k=N+1

2
3k < ε . Setze

O := ∏
n∈N

On mit On =

{
{ f (n)} falls n≤ N
{0,2} falls N < n

.

Dann folgt φ(O) ⊆ ]φ( f )− ε , φ( f ) + ε[ mit f ∈ O. Da f und ε beliebig, beweist dies die
Stetigkeit. Da {0,2}N kompakt und C ein T2-Raum ist, ist φ ein Homöomorphismus.

Abbildung 1: Die 7 Iterationsstufen C0 bis C6 vermitteln einen Eindruck der Cantormenge.
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4.8.7 Lemma (Selbstähnlichkeit der Cantormenge)

Es gilt C = f (C)∪g(C), mit f ,g : R→ R , f (x) := 1
3x und g(x) := 1

3x+ 2
3 .

Beweis: Für den Beweis greifen wir auf Resultate aus dem Abschnitt über die Hausdorff-
Metrik vor. Diese werden dort selbstverständlich unabhängig von denen hier bewiesen. Für
A ⊆ [0,1] sei F(A) := f (A)∪ g(A). Offenbar gilt dann Fn([0,1]) = Cn. Aus Satz 7.1.7 folgt,
dass es eine eindeutig bestimmte nicht leere kompakte Teilmenge C∗ von [0,1] gibt mit F(C∗)=
C∗. Induktiv schließt man, dass C∗ ⊆Cn ist für jedes N ∈N, also C∗ ⊆C. Andererseits konver-
giert Fn([0,1]) gegen C∗ (bzgl. der Hausdorff-Metrik), wie man dem Fixpunktsatz von Banach
entnimmt. Für den Grenzwert C∗ von (Fn([0,1]))n∈N gilt

C∗ = lim
n→∞

Fn([0,1]) = lim
n→∞

Cn =
⋂

n∈N

⋃
k≥n

Ck

wie wir dem Beweis von Satz 7.1.2 entnehmen (die Grenzwerte sind bzgl. der Hausdorff-
Metrik zu verstehen). Da Cn ⊆

⋃
k≥nCk für jedes n∈N gilt, ist C⊆C∗ und schließlich C = C∗.

4.8.8 Lemma

Sei A abgeschlossen in C := {0,1}N (mit der Produkttopologie). Dann ist A ein Retrakt
von C (d.h. ∃ f : C→ A stetig, mit f |A = idA).

Beweis: Wir definieren die Metrik d(x,y) := ∑i∈N 4−i|xi− yi| auf C. Offenbar induziert
diese Metrik die Produkttopologie auf C und erfüllt die (leicht nachzurechnende) Eigenschaft

d(x,y) = d(x,z) ⇒ y = z für alle x,y,z ∈C. (∗)

Für x ∈ C gibt es ein yx ∈ A mit d(x,A) = d(x,yx) (denn A 3 a 7→ d(x,a) ∈ R ist stetig auf
der kompakten Menge A). Wegen (∗) ist dieses yx eindeutig bestimmt. Wir definieren nun
f : C→A durch f (x) := yx. Offenbar gilt f |A = idA. Zu zeigen bleibt somit noch die Stetigkeit.

Sei dazu O := ∏i∈NOi mit Oi =

{
{t} falls i = j
{0,1} falls i 6= j

eine typische Subbasismenge (mit t ∈

{0,1} und j∈N) und sei f (x)∈O. Wir setzen nun V := ∏i∈NVi mit Vi =

{
{xi} falls i≤ j
{0,1} falls i > j

und zeigen, dass f (V )⊆O gilt. Angenommen dem ist nicht so. Dann gilt ( f (x)) j 6= ( f (y)) j für
ein y ∈V . Nun ist wegen (∗) und der Dreiecksungleichung d(y, f (y)) < d(y, f (x))≤ d(x,y)+
d(x, f (x)), also

∑
i∈N

4−i|yi− ( f (y))i|< ∑
i∈N

4−i(|xi− yi|+ |xi− ( f (x))i|)
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Sei dann l ∈ N minimal mit |yl − ( f (y))l| 6= |xl − yl|+ |xl − ( f (x))l|. Da |y j − ( f (y)) j| 6=
|x j− y j|︸ ︷︷ ︸

=0

+|x j−( f (x)) j| folgt l ≤ j und |yl−( f (y))l| 6= |xl−( f (x))l| (wegen xl = yl). Isbeson-

dere folgt auch, dass l minimal ist mit ( f (x))l 6= ( f (y))l . Es folgt nun |yl − ( f (y))l| = 0 und
|xl− ( f (x))l|= 1, also yl = ( f (y))l und xl 6= ( f (x))l .

(Beweis: Andernfalls wäre |yl − ( f (y))l| = 1 und |xl − ( f (x))l| = 0, also ∑i∈N 4−i(|xi−
yi|+ |xi− ( f (x))i|) = ∑i<l 4−i|yi− ( f (y))i|+∑i>l 4−i(|xi−yi|+ |xi− ( f (x))i|)≤∑i<l 4−i|yi−
( f (y))i|+∑i>l 4−i = ∑i<l 4−i|yi−( f (y))i|+4−l/3 < ∑i∈N 4−i|yi−( f (y))i| - ein Widerspruch.)

Nun bekommen wir den gesuchten Widerspruch, denn d(x, f (y)) = ∑i∈N 4−i|xi−( f (y))i|=
∑i<l 4−i|xi−( f (y))i|+∑l<i 4−i|xi−( f (y))i| ≤∑i<l 4−i|xi−( f (y))i|+∑l<i 4−i = ∑i<l 4−i|xi−
( f (y))i|+4−l/3 < ∑i∈N |xi− ( f (x))i|= d(x, f (x)).

4.8.9 Lemma

Sei (X ,τ) ein kompakter Hausdorff-Raum mit einer Basis B. Dann ∃A abgeschlossen
⊆ {0,1}B (mit Produkttopologie) und ∃ ein stetiges und surjektives f : A→ X .

Beweis: Für jedes x ∈ X sei fx ∈ {0,1}B definiert durch fx(B) :=

{
0 falls x 6∈ B
1 falls x ∈ B

Sei A′ := { fx | x ∈ X} und A := A′. Offenbar ist die Abbildung x 7→ fx injektiv (X ist ein
T0-Raum), also ist g : A′→ X , fx 7→ x bijektiv. g ist aber auch stetig, denn für B ∈B folgt

g−1(B) = ( ∏
B′∈B

OB′)∩A′ , wobei OB′ =

{
{1} falls B′ = B
{0,1} falls B′ 6= B

Wir verwenden nun Satz 4.3.1, um zu zeigen, dass ein stetiges f : A→X existiert, mit f |A′= g.
Seien C1,C2 disjunkte abgeschlossene Mengen in X . Angenommen ∃h ∈ g−1(C1)∩g−1(C2).
Nun gibt es endliche Teilmengen B1,B∈ ⊆ B mit C1 ⊆

⋃
B1 , C2 ⊆

⋃
B2 und (

⋃
B1)∩

(
⋃

B2 = /0), denn (X ,τ) ist kompakt und T2. Setze B′ := B1∪B2 und

W := ∏
B∈B

VB , wobei VB :=

{
{h(B)} falls B ∈B′

{0,1} falls B 6∈B′

Seien x,y ∈ X mit fx ∈W ∩ g−1(C1) und fy ∈W ∩ g−1(C2), also insbesondere x ∈ C1 und
y ∈C2. Es gibt dann B1,B2 ∈B′ mit x ∈ B1 und y ∈ B2. Folglich ist y 6∈ B1, also fx(B1) = 1
und fy(B1) = 0. Dies steht im Widerspruch zu fx(B1) = h(B1) = fy(B1) - wir sind fertig.

4.8.10 Definition

Ein topologischer Raum (X ,τ) heißt dyadischer Raum bzw. dyadisch, falls es eine Men-
ge Y und eine stetige und surjektive Abbildung f : {0,1}Y → X gibt ({0,1}Y natürlich mit
Produkttopologie). Da {0,1}Y kompakt ist, sind dyadische Räume kompakt.
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Als interessantes Resultat haben wir nun:

4.8.11 Satz

Jeder kompakte metrische (bzw. metrisierbare) Raum ist ein stetiges Bild der Cantormenge
und damit insbesondere dyadisch.

Beweis: Nun hat ein kompakter metrischer Raum X eine abzählbare Basis (Satz 2.4.4).
Es gibt also eine abgeschlossene Teilmenge A von {0,1}N und eine stetige und surjektive
Abbildung g : A→ X (das ist Lemma 4.8.9). Andererseits gibt es eine stetige Abbildung f :
{0,1}N→ A mit f |A = idA. Die ist dann insbesondere auch surjektiv (das ist Lemma 4.8.8).
Dann ist aber g◦ f : {0,1}N→ X ebenfalls stetig und surjektiv.

4.8.12 Bemerkung

Gezeigt haben wir eigentlich, dass jeder kompakte Hausdorff-Raum mit abzählbarer Basis
dyadisch ist (und kompakte Metrische Räume haben eine abzählbare Basis). Da aber jeder
kompakte Hausdorff-Raum mit abzählbarer Basis auch metrisierbar ist (Satz 12.8.3), scheint
diese Formulierung nur auf den ersten Blick stärker.

4.9 Perfekte Abbildungen
In diesem Abschnitt führen wir eine weitere wichtige Klasse von Abbildungen ein.

4.9.1 Definition

Perfekte Abbildung Wir nennen eine Abbildung f : X → Y zwischen zwei topologischen
Räumen (X ,τ) und (Y,σ) fast perfekt, wenn f abgeschlossen ist und f−1(y) für jedes y ∈ Y
kompakt ist. Eine stetige und fast perfekte Abbildung nennen wir schließlich perfekt.

Wozu dieser Unterschied? Nun einige der folgenden Lemmas gelten eben bereits für in
unserem Sinne fast perfekte Abbildungen. Man braucht eben nicht überall die Stetigkeit. Um
dies deutlich zu machen benutzen wir von vornherein diese Abschwächung des Begriffs der
perfekten Abbildung. Das bedeutet keineswegs das an allen anderen Stellen die Stetigkeit eine
notwendige Voraussetzung ist, sondern eben nur, dass es mir an den Stellen nicht möglich war
es ohne Stetigkeit sinnvoll zu formulieren oder zu beweisen.

4.9.2 Lemma

Für eine Abbildung f : (X ,τ)→ (Z,ξ ) sind folgende Aussagen äquivalent.
a) f ist fast perfekt.
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b) Für jeden T2-Raum (Y,σ) ist f × idY : X×Y → Z×Y fast perfekt.
c) Für jeden T2-Raum (Y,σ) ist f × idY : X×Y → Z×Y abgeschlossen.
d) Für alle Ultrafilter φ auf X gilt ( f (φ)→ z impliziert ∃x ∈ f−1(z) mit φ → x).

Beweis: a) ⇒ b) ⇒ c) ist klar (da idY perfekt ist und fast perfekte Abbildungen auch
abgeschlossen sind).

c) ⇒ a). Offensichtlich ist f : X→ Z abgeschlossen (man betrachte die Einschränkung von
f × idY auf X×{y}, für ein y∈Y ). Zeigen wir, dass für ein beliebig gewähltes z∈ Z die Menge
f−1(z) kompakt ist. Wir verwenden dazu Satz 4.1.7. Sei also z ∈ Z und (Y,σ) ein T2-Raum
und q : f−1(z)×Y → Y die entsprechende Projektion. Um die Abgeschlossenheit von q zu
zeigen, verwenden wir Lemma 2.2.6. Sei also y ∈Y und U offen in X×Y mit q−1(y)⊆U . Da
( f × idY )−1(z,y) = q−1(y), ist ( f × idY )−1(y)⊆U und es gibt somit ein W offen in Z×Y mit
(z,y) ∈W und ( f × idY )−1(W ) ⊆U . Dann ist aber W (z) := {y′ ∈ Y | (z,y′) ∈W} ebenfalls
offen mit y ∈W (z) und q−1(W (z)) ⊆ ( f × idY )−1(W ) ⊆ U . Damit ist q als abgeschlossen
erkannt und f−1(z) somit kompakt.

a)⇒ d) Sei φ ein Ultrafilter auf X mit f (φ)→ z, für ein z ∈ Z. Somit gilt z ∈
⋂

P∈φ f (P)⊆⋂
P∈φ f (P), denn f ist abgeschlossen (⇒ insbesondere ist f−1(z) 6= /0). Angenommen φ kon-

vergiert gegen kein x∈ f−1(z). Dann gibt es zu jedem x∈ f−1(z) ein Ox ∈ ẋ∩τ mit Ox 6∈ φ . Da
f−1(z) kompakt ist, gibt es dann endlich viele x1, ..,xn ∈ f−1(z) mit f−1(z)⊆Ox1∪ ...∪Oxn =:
U ∈ τ Aus unserem Wissen über Ultrafilter folgern wir dann X \U ∈ φ . Da X \U = X \U
schließen wir weiter z ∈ f (X \U), also f−1(z)∩ (X \U) 6= /0 - ein Widerspruch! Es gibt somit
doch ein x ∈ f−1(z) mit φ → x.

d)⇒ a) Zeigen wir, dass f−1(z) kompakt ist. Sei dazu φ ein Ultrafilter auf X mit f−1(z)∈ φ .
Dann ist f (φ) = ż und dieser konvergiert offensichtlich gegen z. Nach Voraussetzung gibt es
somit ein x ∈ f−1(z) mit φ → x. Da φ beliebig gewählt wurde bedeutet dies aber gerade die
Kompaktheit von f−1(z).

Zeigen wir, dass f abgeschlossen ist. Wir verwenden dazu Lemma 2.2.6. Sei z ∈ Z und
f−1(z) ⊆ U ∈ τ . Angenommen ∀V ∈ ż∩ ξ ist f−1(V ) keine Teilmenge von U . Dann hat
ϕ := { f−1(V ) |V ∈ ż∩ξ}∪{X \U} die endliche Schnitt Eigenschaft und es gibt somit einen
Ultrafilter φ mit ϕ ⊆ φ . Dann konvergiert f (φ) aber gegen z und es gibt nach Voraussetzung
somit ein x ∈ f−1(z) mit φ → x. Da X \U ∈ φ , ist x ∈ X \U = X \U ; aber wir haben x ∈
f−1(z) ⊆U - ein Widerspruch! Somit gibt es ein V ∈ ż∩ ξ mit f−1(V ) ⊆U und f ist daher
abgeschlossen.

4.9.3 Lemma

a) Sei f : (X ,τ)→ (Y,σ) fas perfekt und Z ⊆Y kompakt. Dann ist auch f−1(Z) kompakt.
b) Die Nacheinanderausführung fast perfekter (bzw. perfekter) Abbildungen ist fast per-

fekt (bzw. perfekt).

Beweis: a) Sei f : X → Y fast perfekt und K in Y kompakt. Sei dann φ ein Ultrafilter in
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X mit f−1(K) ∈ φ . Dann ist K ∈ f (φ), also gibt es ein y ∈ Y mit f (φ)→ y. Aus Lemma
4.9.2 folgt die Existenz eines x ∈ f−1(y) ⊆ f−1(K) mit φ → x. Die Menge f−1(K) ist somit
kompakt.

b) Sind f : X → Y und g : Y → Z perfekt, dann ist (g ◦ f )−1(z) = f−1(g−1(z)) kompakt,
denn g−1(z) ist kompakt und aus a) folgt, dass dann auch f−1(g−1(z)) kompakt ist. Das die
Nacheinanderausführung abgeschlossener Abbildungen wieder abgeschlossen ist, ist trivial.

4.9.4 Lemma

Sei (X ,τ) ein Hausdorff-Raum, A ⊆ X mit A 6= X , A = X und f : A→ Y eine perfekte
Abbildung. Dann gibt es keine stetige Abbildung g : X → Y mit g|A = f .

Beweis: Nehmen wir an, es gibt doch solch ein g. Sei dann x ∈ X \A. Da g stetig ist, ist
f (A) = g(A) dicht in g(X). Da f (A) abgeschlossen in Y ist, gilt somit f (A) = f (A) = g(A) =
g(X). Also ist K := f−1(g(x)) 6= /0 und zudem kompakt. Da x 6∈ K und (X ,τ) ein T2-Raum ist,
gibt es disjunkte offene Mengen U,V mit K ⊆U und x∈V . Nun ist aber Y \ f (A\U) offen und
g(x) ∈ Y \ f (A\U). Es gibt also ein W ∈ ẋ∩ τ mit g(W )⊆ Y \ f (A\U). Nach Voraussetzung
gibt es dann aber auch ein a ∈V ∩W ∩A. Somit folgt f (a) = g(a) 6∈ f (A\U), also a ∈U - im
Widerspruch zu U ∩V = /0.

4.9.5 Lemma

Sind f : (X ,τ)→ (Y,σ) und g : (Y,σ)→ (Z,ξ ) stetig, ist g ◦ f perfekt und (Y,σ) Haus-
dorff, so sind f : X → Y und g| f (X) : f (X)→ Z perfekt.

Beweis: Ohne Einschränkung können wir voraussetzen, dass f surjektiv ist. Ist nun A
in Y abgeschlossen, so ist f−1(A) in X abgeschlossen und somit ist g(A) = g( f ( f−1(A)))
in Z abgeschlossen. Für z ∈ Z ist f−1(g−1(z)) in X kompakt und somit ist auch g−1(z) =
f ( f−1(g−1(z))) kompakt. Die Abbildung g ist also perfekt.

Zeigen wir, dass auch f perfekt ist. Für y ∈ Y ist f−1(y) jedenfalls abgeschlossen und
Teilmenge von (g ◦ f )−1(y). Letztere Menge ist aber kompakt. Also ist auch f−1(y) kom-
pakt. Sei nun A ⊆ X abgeschlossen. Nehmen wir mal an, wir hätten f (A) 6= f (A). Jeden-
falls ist (g ◦ f )|A : A → Z perfekt und aus dem eben bewiesenen folgern wir, dass auch
g| f (A) : f (A)→ Z perfekt ist. Nun ist aber g| f (A) : f (A)→ Y eine stetige Fortsetzung, die
es nach Lemma 4.9.4 nicht geben kann - Widerspruch. Also ist f (A) = f (A) und f ist somit
abgeschlossen.
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4.9.6 Satz

Das Produkt ∏i∈I fi einer Familie fast perfekter (bzw. perfekter) Abbildungen ( fi :
(Xi,τi)→ (Yi,σi))i∈I ist genau dann fast perfekt (bzw. perfekt), wenn jedes fi fast per-
fekt (bzw. perfekt) ist. Dabei ist f := ∏i∈I fi : ∏i∈I Xi→∏i∈I Yi durch ∏i∈I fi((xi)i∈I) :=
( fi(xi))i∈I definiert.

1.Beweis: Seien zunächst alle fi fast perfekt. Wir verwenden Lemma 4.9.2. Sei φ auf X :=
∏i∈I Xi ein Ultrafilter und y = (yi)i∈I ∈Y := ∏i∈I Yi mit f (φ)→ y. Sei nun j ∈ I beliebig. Aus
der Stetigkeit der Projektionsabbildung p j folgt p j( f (φ))→ y j. Nun ist p j( f (φ)) = f j(p j(φ))
und es gibt somit ein x j ∈ f−1

j (y j) mit p j(φ)→ x j. Für jedes j = i ∈ I gilt das eben gezeigte
und aus Lemma 3.2.11 folgt somit φ → x := (xi)i∈I ∈ f−1(y). Die Abbildung f ist also fast
perfekt. Falls alle fi auch noch stetig sind, so folgt aus Lemma 2.3.3, dass f perfekt ist.

Sei umgekehrt f fast perfekt. Sei j ∈ I. Für jedes i 6= j sei xi ∈ Xi. Wir definieren dann
die stetigen Abbildungen g j : X j → X und h j : Yj → Y durch g j(x′) := (xi)i∈I , wobei x j := x′

und h j(y′) := (zi)i∈I , mit zi = fi(xi) für i 6= j und z j = y′. Sei nun φ j ein Ultrafilter auf X j mit
f j(φ j)→ y j, für ein y j ∈Yj. Dann ist g j(φ j) ein Ultrafilter auf X mit f (g j(φ j)) = h j( f j(φ j))→
h j(y j) =: y. Es gibt somit ein r = (ri)i∈I ∈ f−1(y) mit g j(φ j)→ r. Aus der Stetigkeit der Pro-
jektionsabbildung p j : X → X j folgt dann aber φ j = p j(g j(φ j))→ p j(r) = r j ∈ f−1

j (y j). Die
Abbildung f j ist also fast perfekt. Falls f sogar perfekt ist, folgt aus Lemma 2.3.3, dass f j
auch perfekt ist.

Dieser Satz ist ein sehr starker Satz und seine Bedeutung für die Theorie perfekter Abbil-
dungen ist so groß wie die des Tychonoff Satzes für die kompakten Räume. Beispielsweise
erhalten wir den Satz von Tychonoff und auch das verallgemeinerte Tubenlemma (Korollar
4.4.5) unmittelbar als Korollar. Zuvor geben wir aber noch einen zweiten Beweis.

2.Beweis: Seien zunächst alle fi fast perfekt. Zeigen wir das für y ∈Y := ∏i∈I Yi die Menge
f−1(y) kompakt ist. Dies folgt aber unmittelbar aus dem Satz von Tychonoff, denn für y =
(yi)i∈I ist f−1(y) = ∏i∈I f−1

i (yi) und die f−1
i (yi) sind nach Voraussetzung kompakt. Zu zeigen

bleibt somit noch, dass die Abbildung abgeschlossen ist. Wir verwenden dazu Lemma 2.2.6.
Sei also y = (yi)i∈I ∈ Y und U offen in X mit f−1(y) ⊆U . Aus Korollar 4.4.5 folgt, dass es
eine Basismenge W := ∏i∈I Wi gibt mit f−1(y) ⊆W ⊆ U . Damit haben wir f−1

i (yi) ⊆Wi,
für jedes i ∈ I. Dann gibt es ein Vi ∈ ẏi ∩σi mit f−1(Vi) ⊆Wi (wieder für jedes i ∈ I), denn
die Abbildungen fi sind schließlich abgeschlossen. Nun ist W eine Basismenge, es gibt also
höchstens endlich viele i∈ I mit Wi 6= Xi. An den Stellen, an denen also Wi = Xi gilt, kann man
ebenfalls Vi = Xi wählen. Somit ist V := ∏i∈I Vi ebenfalls eine in Y offene Menge und es gilt
y ∈ V . Damit folgt dann f−1(V ) = ∏i∈I f−1

i (Vi) ⊆∏i∈I Wi = W ⊆U und wir haben gezeigt,
dass f abgeschlossen ist.

Sei nun f = ∏i∈I fi fast perfekt und j ∈ I. Sei y j ∈ Yj. Für jedes i ∈ I \ { j} sei yi ein
beliebiges, aber fest gewähltes Element. Für y := (yi)i∈I ist nach Voraussetzung f−1(y) =
∏i∈I f−1

i (yi) kompakt. Somit ist auch jeder einzelne Faktor kompakt, isbesondere also f−1
j (y j).

Sei A j eine in X j abgeschlossene Menge. Für jedes i 6= j setzen wir Ai := Xi. Dann ist A :=
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∏i∈I Ai in X = ∏i∈I Xi abgeschlossen (kann man ganz leicht nachrechnen), also ist auch f (A) =
∏i∈I fi(Ai) in Y = ∏i∈I Yi abgeschlossen. Aus ∏i∈I fi(Ai) = ∏i∈I fi(Ai) = ∏i∈I fi(Ai) folgt
dann f j(A j) = f j(A j) und f j(A j) ist demnach abgeschlossen. f j ist also eine abgeschlossene
Abbildung.

4.9.7 Korollar

1. Ein Produkt kompakter top. Räume (Xi,τi)i∈I ist wieder kompakt.

2. (Verallgemeinertes Tubenlemma) Seien (Xi,τi)i∈I topologische Räume und Ai ⊆ Xi,
für jedes i∈ I eine kompakte Teilmenge. Ist W eine in X := ∏i∈I Xi (mit der Produkt-
topologie) offene Menge, mit A := ∏i∈I Ai⊆W , so gibt es eine standard Basismenge
U mit A⊆U ⊆W .

Beweis: 1. Setzen wir Y := {0} mit σ := { /0,Y}, so ist für jedes i ∈ I die eindeutige be-
stimmte Abbildung fi : Xi → Y perfekt. Somit ist auch das Produkt f := ∏i∈I Xi =: X → Y
perfekt und ∏i∈I Xi = f−1(0) demnach kompakt.

2. Für jedes i ∈ I sei zi 6∈ Xi. Wir setzen dann Yi := (Xi \Ai)∪{zi} und definieren fi : Xi→Yi
durch fi(x) = x, falls x ∈ Xi \Ai und fi(x) = zi, falls x ∈ Ai. Auf Yi führen wir nun die gröbste
Topologie σi ein, so dass fi eine abgeschlossene Abbildung ist (nicht unbedingt stetig), also
σi := top({Yi \ fi(B) | Xi \B ∈ τi}) (siehe Satz 2.1.2). Damit ist Bi := {Yi \ fi(B) | Xi \B ∈ τi}
sogar eine Basis (!) für σi. Für jedes y ∈ Yi ist f−1

i (y) offensichtlich kompakt. Die Abbildung
fi ist also fast perfekt. Damit ist auch das Produkt f := ∏i∈I fi : X →Y := ∏i∈I Yi fast perfekt!
Setzen wir z := (zi)i∈I , so ist f−1(z) = A⊆W . Aus Lemma 2.2.6 folgt, dass es eine in Y offene
standard Basismenge V = ∏i∈I Vi gibt, mit Vi ∈Bi und z ∈V und A = f−1(z)⊆ f−1(V )⊆W .
Offensichtlich ist f−1(V ) = ∏i∈I f−1

i (Vi) dann eine offene standard Basismenge in X (und
das, obwohl die fi nicht unbedingt stetig sind).

4.9.8 Lemma

Sei f : (X ,τ)→ (Y,σ) fast perfekt, surjektiv und
a) (X ,τ) ein T2-Raum. Dann ist auch (Y,σ) ein T2-Raum.
b) f zusätzlich stetig und (X ,τ) ein T3-Raum dann ist auch (Y,σ) ein T3-Raum.
c) f zusätzlich stetig und (X ,τ) ein T4-Raum dann ist auch (Y,σ) ein T4-Raum.

Beweis: a) Sei y1 6= y2. Dann sind f−1(y1) und f−1(y2) kompakte und disjunkte Teilmengen
von (X ,τ). Es gibt dann disjunkte offene Obermengen U,V (der Beweis dazu läuft analog zu
dem Beweis von Lemma 4.1.4). Also f−1(y1) ⊆U und f−1(y2) ⊆ V . Lemma 2.2.6 folgend
bekommen wir ein U ′ ∈ ẏ1∩σ und ein V ′ ∈ ẏ2∩σ mit f−1(U ′)⊆U und f−1(V ′)⊆V . Damit
sind dann U ′ bzw. V ′ die gesuchten disjunkten offenen Umgebungen von y1 und y2.
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b) Sei B in Y abgeschlossen und y ∈ Y \B. Dann ist f−1(y) kompakt und f−1(B) abge-
schlossen. Zu jedem x ∈ f−1(y) gibt es dann ein Ox ∈ ẋ∩ und ein Ux ∈ τ mit f−1(B) ⊆Ux
und Ox ∩Ux = /0. Nun ist f−1(y) kompakt, es gibt also endlich viele x1, ...,xn ∈ f−1(y) mit
f−1(y)⊆ Ox1 ∪ ...∪Oxn =: O und f−1(B)⊆Ux1 ∩ ...∩Uxn =: U . Es gilt natürlich O∩U = /0.
Dann gibt es jedenfalls ein O′ ∈ ẏ∩σ mit f−1(O′) ⊆ O. Zu jedem b ∈ B gibt es dann ein
Vb ∈ ḃ∩σ mit f−1(Vb)⊆U . Für V :=

⋃
b∈BVb gilt dann B⊆V ∈ σ und f−1(V )⊆U . Es folgt

O′∩V = /0 und (Y,σ) ist damit T3.
c) Folgt aus Satz 3.1.3.

4.9.9 Lemma

Sei (X ,τ) ein T2-Raum, (Y,σ) ein T3-Raum und f : X→Y eine perfekte Abbildung. Dann
ist auch (X ,τ) ein T3-Raum.

Beweis: Sei x ∈U ∈ τ . Für jedes z ∈ f−1( f (x)) \ {x} gibt es ein Uz ∈ ẋ∩ τ und ein Vz ∈
ż∩ τ mit Uz∩Vz = /0. Nun ist {Vz | z ∈ f−1( f (x)) \ {x}}∪{U} eine offene Überdeckung der
kompakten Menge f−1( f (x)), es gilt also f−1( f (x)) ⊆ Vz1 ∪ ...∪Vzn ∪U , für gewisse zi. Zur
Abkürzung setzen wir V := Vz1 ∪ ...∪Vzn und U ′ := Uz1 ∩ ...∩Uzn . Da f abgeschlossen ist,
gibt es nach Lemma 2.2.6 ein W ∈ σ mit f (x) ∈W und f−1(W ) ⊆ V ∪U . Da (Y,σ) ein T3-
Raum ist, gibt es ein P ∈ σ mit f (x) ∈ P ⊆ P ⊆W , also f−1(P) ⊆ V ∪U . Wir setzen nun
Q := U ′∩ f−1(P) und es folgt x ∈ Q⊆ Q⊆ f−1(P)⊆ f−1(P)⊆V ∪U .

Angenommen es ist Q∩V 6= /0, dann ist auch Q∩V 6= /0, aber es gilt Q⊆U ′ und U ′∩V = /0
- ein Widerspruch! Also haben wir Q⊆U und (X ,τ) ist somit auch T3.

4.9.10 Lemma

Sei (X ,τ) lokal kompakt und f : (X ,τ)→ (Y,σ) perfekt und surjektiv. Dann ist auch (Y,σ)
lokal kompakt. Hat jeder Punkt x ∈ X sogar eine Basis aus kompakten Umgebungen, so
hat auch jeder Punkt y ∈ Y eine Basis aus kompakten Umgebungen.

Beweis: Zeigen wir die erste Aussage. Sei y ∈ V ∈ σ . Dann ist f−1(y) ⊆ f−1(V ) ∈ τ . Zu
jedem x ∈ f−1(y) gibt es somit ein Ux ∈ ẋ∩ τ und eine Kompakte Teilmenge Kx mit x ∈
Ux ⊆ Kx. Da f−1(y) kompakt ist, gibt es endliche viele x1, ...,xn ∈ f−1(y) mit f−1(y)⊆U :=
Ux1 ∪ ...∪Uxn ⊆ Kx1 ∪ ...∪Kxn =: K. Somit ist U offen und K kompakt mit f−1(y)⊆U ⊆ K.
Aus Lemma 2.2.6 folgt, dass es ein W ∈ ẏ∩σ gibt mit f−1(W ) ⊆U . Wir bekommen dann
W = f ( f−1(W ))⊆ f (U)⊆ f (K) und f (K) ist kompakt.

Zeigen wir die zweite Aussage. Im obigen Beweis können wir jedes Kx und Ux so wählen,
dass Kx ⊆ f−1(V ) gilt. Dann folgt aber K ⊆ f−1(V ) und somit W ⊆ f (K)⊆V .
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4.9.11 Lemma

Sei f : (X ,τ)→ (Y,σ) perfekt und surjektiv. Ist B eine Basis von (X ,τ), so gibt es eine
Basis B′ von (Y,τ) mit |B′| ≤ |B|.

Beweis: Sei y∈V ∈σ . Dann ist f−1(y)⊆ f−1(V )∈ τ und somit gibt es zu jedem x∈ f−1(y)
ein Bx ∈ B mit x ∈ Bx ⊆ f−1(V ). Da f−1(y) kompakt ist, gibt es endlich viele x1, ...,xn ∈
f−1(y) mit f−1(y)⊆ Bx1 ∪ ...∪Bxn ⊆ f−1(V ). Dann ist aber W := Y \ f (X \ (Bx1 ∪ ...∪Bxn))
offen und y ∈W ⊆V . Das beweist, dass B′ := {Y \ f (X \

⋃
B∈A B) |A ⊆B und A endlich }

eine Basis von (Y,σ) ist, mit |B′| ≤ |B|.

4.10 Eine Ungleichung von Arkhangelskii
”Papiergeld ist eine Hypothek auf den Wohlstand, der gar nicht existiert, gedeckt durch
Pistolen, welche auf die gerichtet sind, die den Wohlstand erarbeiten müssen. Da wir
nur mit echtem Geld zu tun haben wollen, beteiligen wir uns nicht an irgendwelchen
Betrugssystemen der Zentralbanken.”

Selbstdarstellung der freien Bank der Lakota-Indianer, 2008

Wenn kompakte Räume sich manchmal fast wie endliche verhalten, wie groß können sie
dann werden? Unter gewissen zusätzlichen Bedingungen jedenfalls nicht allzu groß. Wie ge-
nau, das beschreibt ein tiefliegender Satz von Arkhangelskii, dem wir uns in diesem Abschnitt
zuwenden.

4.10.1 Definition

Charakter Sei (X ,τ) ein topologischer Raum. χ(x,(X ,τ)) := in f {|B| |B ist Umgebungs-
basis von x} ist der Charakter des Punktes x. Der Charakter des gesamten Raumes ist dann
erklärt als: χ(X ,τ) := sup{χ(x,(X ,τ)) | x ∈ X}. Falls klar ist welche Topologie gemeint ist,
so schreibt man auch einfach kurz χ(x,X), bzw. χ(X).

4.10.2 Lemma

Sei (X ,τ) ein Hausdorff-Raum, dann gilt |X | ≤ d(X)χ(X).

Beweis: Für jedes x ∈ X sei eine Umgebungsbasis B(x) ⊆ τ gewählt, mit |B(x)| ≤ χ(X)
(und B(x) ≥ℵ0). Setze A0 := {Y ⊆ A | |Y | ≤ χ(X)} (A ist irgendeine dichte Teilmenge mit
|A|= d(X)). Also haben wir |A0| ≤ d(X)χ(X).
(Allgemein gilt: Falls X unendlich und Y beliebig, dann ist |{Z ⊆ X | |Z ≤ |Y |}| ≤ |XY |, denn
ϕ : XY →{Z ⊆ X | |Z ≤ |Y |} mit ϕ( f ) := f (Y ) ist surjektiv.)
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Für U ∈B(x) wähle a(x,U)∈U ∩A und setze A(x) := {a(x,U) |U ∈B(x)}. Also A(x)∈A0
(klar). Setze nun noch A0(x) := {U ∩A(x) |U ∈B(x)}⊆A0. Dann bekommen wir |A0(x)| ≤
χ(X) und x ∈ U ∩A(x) ⊆ U (∀U ∈ B(x)). Also

⋂
A∈A0(x) A = {x} ⇒ (x 6= y⇒ A0(x) 6=

A0(y)). Wir erhalten damit dann:
|X |= |{A0(x) | x ∈ X}| ≤ |{Z ⊆A0 | |Z ≤ χ(X)}| ≤ |A0|χ(X) ≤ (d(X)χ(X))χ(X) = d(X)χ(X).

4.10.3 Bemerkung

Für unendliche T1-Räume ist χ(X) unendlich, oder sie sind diskret. Im nächsten Satz können
wir daher o.B.d.A χ(X) als unendlich annehmen.

4.10.4 Satz von Arkhangelskii

Für einen unendlichen Hausdorff-Raum X mit der Eigenschaft, dass jede offene Überde-
ckung (Oi)i∈I eine Teilüberdeckung (Oi)i∈J hat, mit |J| ≤ χ(X), gilt: |X | ≤ 2χ(X). Insbe-
sonder gilt die Aussage also für kompakte und Lindelöfsche Räume. Als besonders schö-
nen Spezielfall erhalten wir, dass für kompakte Hausdorff-Räume X , welche dem ersten
Abzählbarkeitsaxiom (A1) genügen, gilt: |X | ≤ |R|.

Beweis: Sei X unendlich, kompakt und T2 und χ(X) =: m (⇒ ℵ0 ≤ m, klar). Für x ∈ X
wähle eine Umgebungsbasis B(x) ⊆ ẋ∩ τ mit |B(x)| ≤m. Sei τ := m+ die Nachfolgerkar-
dinalzahl. Wähle nun ein beliebiges a ∈ X und setze F0 := {a}. Im Folgenden definieren wir
eine transfinite Folge F0, ...,Fα , ..., α < τ von abgeschlossenen Mengen ⊆ X , mit folgenden
Eigenschaften: ∀α < τ gilt
1) |Fα | ≤m, Fβ ⊆ Fα für β ≤ α und
2) Für jedes U ⊆

⋃
{B(x) | x ∈

⋃
β<α Fβ} mit |U | ≤m und X \

⋃
U 6= /0, gilt Fα \

⋃
U 6= /0.

Sei für alle α < α0 das Fα gegeben. Setze B :=
⋃
{B(x) | x ∈

⋃
α<α0

Fα} und B := {U ⊆
B | |U | ≤m und X \U 6= /0}. Dann gilt: |B| ≤ 2m und |B| ≤ |Bm| ≤ 2m.
Für U ∈B wähle nun ein xU ∈ X \

⋃
U . Setze dann B := {xU | U ∈B} ⇒ |B| ≤ 2m und

Fα0 := B∪
⋃

α<α0
Fα (⇒ |Fα0| ≤ |B∪

⋃
α<α0

Fα |χ(X) ≤ (2m)m = 2m)
(F1 mit F0 auf diese Weise konstruiert, hat die Eigenschaften 1) und 2).)
Dann hat auch Fα0 die Eigenschaften 1) und 2).
1) ist klar!
2) folgt ebenfalls aus der Konstruktion (Sei U ⊆

⋃
{B(x) | x ∈

⋃
α<α0

Fα} mit |U | ≤ m
und X \

⋃
U 6= /0, dann U ∈ B. Also existiert ein xU ∈ X \

⋃
U , mit xU ∈ B und somit

xU ∈ Fα0 \
⋃

U ).
Eine Folge mit den Eigenschaften 1) und 2) existiert also!
Wir zeigen nun im Folgenden:

⋃
α<τ Fα = X .

Im ersten Schritt überlegen wir uns, dass
⋃

α<τ Fα abgeschlossen ist. Sei dazu A ⊆
⋃

α<τ Fα

mit |A| ≤ m. Für ein a ∈ A gibt es ein αa < τ minimal, mit a ∈ Fαa . Also |
⋃

a∈A αa| ≤ m
(man beachte αa < τ ⇒ αa ≤ m). Insbesondere also

⋃
a∈A αa 6= τ also α∗ :=

⋃
a∈A αa < τ

und deshalb A ⊆
⋃

a∈A Fαa ⊆ Fα∗, wobei eben α∗ < τ gilt. Hieraus bekommen wir aber
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A ⊆ Fα∗ = Fα∗ ⊆
⋃

α<τ Fα . Dies heißt aber
⋃

α<τ Fα ist abgeschlossen (Andernfalls ∃x ∈⋃
α<τ Fα \

⋃
α<τ Fα . Wähle dann für U ∈ B(x) je ein yU ∈ U ∩

⋃
α<τ Fα und setze Y :=

{yU |U ∈B(x)} ⊆
⋃

α<τ Fα . Dann gilt |Y | ≤ m, also Y ⊆
⋃

α<τ Fα , aber x ∈ Y ⇒ Wider-
spruch!)!
Mit X hat also auch

⋃
α<τ Fα die Eigenschaft, dass jede offene Überdeckung eine Teilüberde-

ckung von Kardinalität ≤m hat. Annahme ∃y ∈ X \
⋃

α<τ Fα . Dann wähle für x ∈
⋃

α<τ Fα je
ein Ux ∈B(x), mit y 6∈Ux. Es gibt also ein Y ⊆

⋃
α<τ Fα , mit |Y | ≤m und

⋃
α<τ Fα ⊆

⋃
x∈Y Ux.

Nun gibt es aber auch ein α < τ mit Y ⊆
⋃

β<α Fβ , also U := {Ux | x ∈ Y} ⊆ {B(x) | x ∈⋃
β<α Fβ}, |U | ≤m und X \

⋃
U 6= /0; ABER Fα \

⋃
U = /0 ⇒ Widerspruch!

Also gilt X =
⋃

α<τ Fα und somit |X | ≤ 2m = 2χ(X) (denn τ = m+ ≤ 2m und ∀α < τ:
|Fα | ≤ 2m).
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5 Zusammenhang und Homotopie
”TV ist nicht die Wahrheit. TV ist ein Freizeitpark. Wir sind im Langeweiletötungsge-
schäft. Ihr werdet nie die Wahrheit von uns hören. Wir erzählen euch jeden Scheiss den
ihr wollt. Wir lügen wie gedruckt. Wir handeln mit Illusionen, nichts davon ist wahr.
Ihr glaubt tatsächlich TV ist Realität? Das ist Irrsinn. Schaut euch an, ihr macht was
TV sagt, ihr sprecht wie TV, ihr kleidet wie TV, ihr esst wie TV, ja ihr erzieht eure Kin-
der wie TV und denkt wie TV. Das ganze ist eine Massenverrücktheit! Deshalb, schaltet
diesen Kasten sofort aus. Jetzt...sofort!!!”

5.1 Zusammenhang und Wegzusammenhang
Denkt man an offene oder abgeschlossene Intervalle, so hat man intuitiv das Gefühl, dass
diese ”zusammenhängen”. Diese Gefühl drücken wir nun in einer präzisen Definition aus und
beweisen sodann einige wichtige Eigenschaften dieser ”zusammenhängenden” Räume.

5.1.1 Definition

Sei (X ,τ) ein top. Raum. A⊆ X heißt zusammenhängend :⇔ ¬∃U,V ∈ τ mit A⊆U ∪V, A∩
U ∩V = /0, A∩U 6= /0 6= A∩V . Anders formuliert: Außer /0 und A gibt es keine weiteren so-
wohl offenen, als auch abgeschlossenen Mengen in A (Teilraumtopologie). Oder noch anders
formuliert: Jede stetige Abbildung f : A→ Y in einen zweielementigen Raum Y mit diskreter
Topologie ist konstant (Beweis?).

A heißt hingegen wegzusammenhängend :⇔ ∀a,b ∈ A∃ f : [0,1]→ X stetig, mit f (0) = a
und f (1) = b. Derartige f werden als Wege bezeichnet.

5.1.2 Lemma

(X ,τ) ist genau dann zusammenhängend, wenn für jede offene Überdeckung σ ⊆ τ gilt:
∀x,y ∈ X ∃U1, ...,Un ∈ σ mit x ∈U1,y ∈Un und Uk∩Ul 6= /0 ⇔ |k− l| ≤ 1.

Beweis: Gilt für jede offene Überdeckung obige Eigenschaft, so kann es keine offenen,
disjunkten, nichtleeren Mengen U,V geben mit U ∪V = X , denn {U,V} wäre nun eine offene
Überdeckung, die diese Eigenschaft gerade nicht hätte.

Sei andererseits (X ,τ) als zusammenhängend vorausgesetzt und sei σ ⊆ τ eine offene Über-
deckung. Für x∈X setze Dx := {y∈X | ∃U1, ...,Un ∈σ mit x∈U1,y∈Un und Uk∩Uk+1 6= /0}.
Offenbar ist Dx offen und Dx∩Dy 6= /0 ⇔ Dx = Dy für alle x,y ∈ X . Da X zusammenhängend
ist und D := {Dx | x ∈ X} eine Zerlegung von X in paarweise offene Mengen darstellt, gilt
D = {X}. Seien nun x,y ∈ X gegeben und U1, ...,Un eine Folge minimaler Länge aus σ mit
x ∈U1, y ∈Un und Uk∩Uk+1 6= /0. Offenbar gilt dann sogar Uk∩Ul 6= /0 ⇔ |k− l| ≤ 1.
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5.1.3 Satz und Definition

Zusammenhangskomponenten und Wegzusammenhangskomponenten Sei (X ,τ) ein
top. Raum. Dann weden sowohl durch

1) x∼ y ⇔ es gibt ein zusammenhängendes A⊆ X mit x,y ∈ A, als auch
2) x≈ y ⇔ x,y ∈ X sind durch einen Weg verbunden,
Äquivalenzrelationen auf X definiert. Die Äquivalenzklassen heißen entsprechend Zu-

sammenhangskomponenten bzw Wegzusammenhangskomponenten.

Beweis: 1) Zu zeigen ist nur die Transitivität. Sei also x∼ y und y∼ z. Dann gibt es zusam-
menhängende A,B mit x,y ∈ A und y,z ∈ B. Wir zeigen A∪B ist zusammenhängend. Sei dazu
A∪B ⊆U ∪V , für offene U,V mit U ∩ (A∪B) 6= /0 6= V ∩ (A∪B). Dann ist auch A ⊆U ∪V
und B⊆U ∪V . Nehmen wir mal an U ∩V = /0. Dann muss A und B bereits komplett in U oder
V liegen. A∪B⊆U oder A∪B⊆V ist aber nicht möglich. Es liegt also einer von beiden in U
und der andere in V . Dann aber y ∈U ∩V - Widerspruch.

2) bleibt als Übung.

5.1.4 Lemma

Eine Teilmenge A desR ist genau dann zusammenhängend, wenn sie von einer der folgen-
den Formen ist: [a,b],(a,b),(a,b], [a,b), [a,∞),(a,∞),(∞,b],(∞,b),R. Insbesondere sind
wegzusammenhängende Teilmengen A eines topologischen Raums X auch zusammenhän-
gend.

Beweis: Der erste Teil bleibt als Übung. Für den zweiten Teil nehmen wir uns eine nicht
konstante, aber stetige Abbildung f : A→Y (wobei A⊆X ; X ist ein beliebiger top. Raum), wo-
bei Y = {y1,y2 zweielementig ist und mit der diskreten Topologie versehen ist. Also f (a1) = y1
und f (a2) = y2. Dann gibt es eine stetige Abbildung g : [0,1]→A mit g(0) = a1 und g(1) = a2.
Dann ist aber auch f ◦g : [0,1]→ Y stetig und nicht konstant - im Widerspruch zum Zusam-
menhang von [0,1].

5.1.5 Beispiel

Sei A eine abzählbare Teilmenge des Rn mit n > 1. Dann ist Rn \A wegzusammenhängend
(das liegt daran, dass zwei verschiedene Punkte durch überabzählbar viele disjunkte - bis
auf Anfangs und Endpunkt - stetige Kurven verbunden sind, es also wenigstens eine Kurve
gibt, die keinen der abzählbar vielen Punkte trifft), also insbesondere auch zusammenhängend
(denn wegzusammenhängende Räume auch zusammenhängend).
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5.1.6 Lemma

Bilder zusammenhängender (bzw. wegzusammenhängender) Mengen unter stetigen Ab-
bildungen sind zusammenhängend (bzw. wegzusammenhängend).

Beweis: Sei f : X → Y stetig und A ⊆ X zusammenhängend. Wenn f (A) ⊆ U ∪V , mit
f (A)∩U 6= /0 f (B)∩V , dann offensichtlich A⊆ f−1(U)∪ f−1(V ) mit A∩ f−1(U) 6= /0 6= A∩
f−1(V ). Also f−1(U ∩V ) = f−1(U)∩ f−1(V ) 6= /0 und somit U ∩V 6= /0.

Der zweite Teil bleibt als Übung.

5.1.7 Lemma

Sei X ein top. Raum und A eine zusammenhängende Teilmenge von X . Wenn A⊆ B⊆ A,
dann ist auch B zusammenhängend. Insbesondere sind somit die Zusammenhangskompo-
nenten abgeschlossen (sonst wäre der Abschluss einer solchen Komponente echt größer
und ebenfalls zusammenhängend).

Beweis: Wenn B⊆U ∪V mit B∩U 6= /0 6= B∩V , so offensichtlich A∩U 6= /0 6= A∩V , also
auch A∩U 6= /0 6= A∩V und demzufolge auch U ∩V 6= /0.

5.1.8 Beispiel

Sei X := {(x,sin(1/x)) | x > 0} ⊆ R×R. Dann ist X zusammenhängend, aber nicht wegzu-
sammenhängend.

Beweis: Wir haben X = {(0,y) | |y| ≤ 1}∪X . Und das X zusammenhängend ist, folgt aus
vorigem Lemma. Annahme es gibt ein stetiges f : [0,1]→ X , mit f (0) = (0,0) und f (1) =
(1/π,0). Nun ist f (t) = ( f1(t), f2(t)) mit f1, f2 stetig und f1(0) = 0 bzw. f1(1) = 1. Also
existiert ein t1 ∈ [0,1) mit f1(t1) = 2/((2 · 1 + 1)π). Also gibt es ein t2 ∈ [0, t1) mit f1(t2) =
2/((2 ·2+1)π). ... Es gibt ein tn+1 ∈ [0, tn) mit f1(tn+1) = 2/((2 · (n+1)+1)π). (tn) ist nun
eine streng monoton fallende, nach unten durch 0 beschränkte Folge. Demzufolge existiert
limtn =: t ≥ 0. Da ( f1(tn), f2(tn))∈X ( f1(tn) 6= 0), folgt f2(tn) = sin(1/( f1(tn))) = sin(π(2n+
1)/2) = (−1)n. Dann wäre aber f (tn) nicht konvergent - im Widerspruch zur Stetigkeit.

5.1.9 Definition

Sei X ein topologischer Raum. Die Familie (Ai)∈I von Teilmengen von X heißt kettenverbun-
den in X , wenn alle Ai zusammenhängend sind und es zu zwei i, j ∈ I endlich viele Indizes
i = i0, ..., in = j gibt derart, dass Aik ∩Aik+1 6= /0 gilt (für k = 0, ...,n−1).
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5.1.10 Lemma

a) Wenn es zu je zwei Punkten in X eine zusammenhängende die beiden Punkte enthaltene
Teilmenge gibt, dann ist auch X zusammenhängend.
b) Wenn (Ai)∈I kettenverbunden in X ist, dann ist A :=

⋃
i∈I Ai zusammenhängend.

Beweis: Bleibt auch als Übung. Insbesondere ist also die Vereinigung zweier zusammen-
hängender Teilmengen, mit nichtleerem Schnitt, zusammenhängend.

5.1.11 Satz

Sei (Xi)i∈I eine Familie zusammenhängender (wegzusammenhängender) topologischer
Räume. Dann ist auch X := ∏i∈I Xi zusammenhängend (wegzusammenhängend).

Beweisskizze: Erst zeigt man die Aussage für zwei zusammenhängende topologische Räu-
me Z,Y . Wenn nämlich (z,y),(z′,y′) ∈ Z ×Y , dann (z,y),(z′,y′) ∈ (Z ×{y})∪ ({z′}×Y ).
Letztere Menge ist aber zusammenhängend, also ist dies auch Z×Y . Durch Induktion verall-
gemeinert man auf beliebige endliche Produkte. Nun wählen wir ein (yi)i∈I = y ∈∏i∈I Xi und
bilden Y := {x ∈ X | xi = yi bis auf höchstens endlich viele Ausnahmen }. Zwei Punkte aus
Y unterscheiden sich also an höchstens endlich vielen Koordinaten, und man kann nun leicht
mit dem ersten Teil zeigen, dass es eine zusammenhängende die beiden Punkte enthaltene
Teilmenge von Y gibt. Y ist also zusammenhängend. Noch leichter sieht man, dass Y auch
dicht in X liegt. Hieraus gewinnt man dann, dass auch X zusammenhängend sein muss. Das
Produkte wegzusammenhängender Räume wieder wegzusammenhängend sind, lässt sich sehr
viel einfacher beweisen.

5.1.12 Lemma

Seien A,B abgeschlossen und A∪B, A∩B zusammenhängend (in einem top. Raum (X ,τ)).
Dann sind auch A und B zusammenhängend.

Beweis: Es reicht, wenn wir zeigen, dass A zusammenhängend ist. Nehmen wir mal an es
gibt offene und disjunkte U,V mit A ⊆U ∪V und A∩U 6= /0 6= A∩V . Da A∩B zusammen-
hängend ist, können wir o.B.d.A. voraussetzen, dass A∩B ⊆ V (also A∩B∩U = /0).Setzen
wir dann P := U ∩ (X \B) und Q := V ∪ (X \A), so kann man leicht nachrechnen, dass gilt:
A∪B⊆ P∪Q, (A∪B)∩P 6= /0 6= (A∪B)∩Q und (A∪B)∩P∩Q = /0 - ein Widerspruch.
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5.1.13 Satz

Sei (X ,τ) ein zusammenhängender Raum mit |X | ≥ 2.
a) Sei A ⊆ X und A auch zusammenhängend. Sei ferner X \A = U ∪V mit U ∩V = /0

und U,V : offen in X \A. Dann ist A∪U zusammenhängend (in X).
b) Sei A ⊆ X wieder zusammenhängend und B eine Zusammenhangskomponente von

X \A, also von der Form B =
⋃
{C | a ∈C ⊆ X \A, C : zusammenhängend in X \A}, für

ein gewisses a ∈ X \A. Dann ist X \B zusammenhängend!
c) Es gibt zwei disjunkte, nicht leere zusammenhängende Teilmengen M,N mit X =

M∪N.

Beweis: a) U und V sind auch abgeschlossen in X \A, es gibt also in X abgeschlossene
Mengen U ′,V ′ mit U = U ′ ∩ (X \A) und V = V ′ ∩ (X \A). Nehmen wir nun an A∪U ist
nicht zusammenhängend. Dann ist A∪U = C∪D, mit C∩D = /0 und C 6= /0 und D 6= /0 und
C = C′∩ (A∪U) und D = D′∩ (A∪U), wobei C′,D′ offen in X sind. O.B.d.A. ist A⊆C (da A
zusammenhängend ist), also A∩D′ = /0. Wir setzen nun P := (X \V ′)∩D′ und Q := (X \U ′)∪
C′. Wir zeigen nun im Folgenden, dass P und Q nichtleere offene, aber disjunkte Mengen sind,
deren Vereinigung gleich X ist. Dies ist dann ein Widerspruch, da X zusammenhängend ist.

Es ist D ⊆ X \V ′, denn Annahme x ∈ D und x ∈ V ′ impliziert x ∈ V ′ ∩ (X \A) = V , also
x 6∈ A∪U = C∪D - Widerspruch. Also D⊆ (X \V ′)∩D′ und damit P 6= /0.

Offensichtlich ist C ⊆ Q, also Q 6= /0.
Berechnen wir P∩Q. Es gilt P∩Q = [(X \V ′)∩D′∩ (X \U ′)]∪ [(X \V ′)∩D′∩C′]. Nun

ist (X \V ′)∩D′∩ (X \U ′) = D′∩ [X \ (U ′∪V ′)]⊆ D′∩A = /0. Andererseits erhalten wir
(X \V ′)∩D′∩C′ ⊆ (X \V ′)∩ [X \ (A∪U)] = (X \V ′)∩ (X \A)∩ (X \U) = (X \V ′)∩ (U ∪

V )∩ (X \U)⊆ (X \V ′)∩V = /0.
Insgesamt also P∩Q = /0.
Sei nun x ∈ X und x 6∈ Q. Dann ist x ∈U ′ und x ∈ X \C′ ⊆ X \C ⊆ X \A. Also ist x ∈U .

Währe x ∈V ′, so also auch in V , was im Widerspruch zu U ∩V = /0 steht. Also ist x ∈ X \V ′.
Da außerdem x ∈ U ⊆ A∪U = C ∪D und x 6∈ C′, folgt x ∈ D ⊆ D′ und damit x ∈ P. Wir
erhalten also X = P∪Q.

b) Annahme X \B ist nicht zusammenhängend, also von der Form X \B = U ∪V , mit in
X \B offenen, disjunkten und nicht leeren Mengen U,V . Nun ist auch B zusammenhängend in
X und A ⊆ X \B, also o.B.d.A. A ⊆U (da A zusammenhängend ist). Aus a) folgt aber B∪V
ist zusammenhängend und außerdem B∪V ⊆ X \A. Also ist B∪V auch in X \A zusammen-
hängend, und da B eine Komponente (in X \A) ist, folgt V ⊆ B - ein Widerspruch!

c) Folgt unmittelbar aus b). Für x∈ X setzen wir A := {x}. Sei dann B die Zusammenhangs-
komponente (in X \A) eines y ∈ X \A. Wir setzen einfach M := B und N := X \B.
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5.1.14 Satz

Sei (X ,τ) ein lokal-kompakter T4-Raum.
a) Sei C eine kompakte Zusammenhangskomponente von X . Dann bilden die offenen

und gleichzeitig abgeschlossenen Mengen P mit C ⊆ P eine Umgebungsbasis von C.
b) Sei X nun auch zusammenhängend, K ∈ τ mit K kompakt und C 6= /0 eine Zusam-

menhangskomponente von K. Dann gilt C∩ (X \K) 6= /0 (o.B.d.A. sei K 6= X).
c) Sei wieder X zusammenhängend und K ⊆ X kompakt. Sei C eine Komponente von

K. Dann gilt C∩X \K 6= /0.

Beweis: Für jedes A ⊆ X mit C ⊆ A setzen wir φA(C) := {P ⊆ A | P ist offen und abge-
schlossen in A und C ⊆ P}.

Sei nun A offen, mit A kompakt und C ⊆ A (Warum existiert so ein A überhaupt?) Ange-
nommen C (

⋂
P∈φA(C) P =: B.

Da C eine Zusammenhangskomponente ist, können wir B dann zerlegen in B = M ∪N,
mit M,N offen in B, M,N 6= /0, aber M ∩N = /0. Da B abgeschlossen ist und M und N ab-
geschlossen in B sind, sind sie auch in X abgeschlossen. Wir finden also disjunkte und in X
offene Mengen U,V mit M ⊆U und N ⊆V . O.B.d.A. sei C ⊆M. Es gilt dann A\ (U ∪V )⊆
A \B =

⋃
P∈φA(C)(A \P). Aus der Kompaktheit von A \ (U ∪V ) folgern wir, dass es endlich

viele P1, ...,Pn ∈ φA(C) gibt, mit A\ (U ∪V )⊆ A\
⋂n

k=1 Pk. Es gilt also P :=
⋂n

k=1 Pk ⊆U ∪V .
Nun ist auch P in A sowohl offen, als auch abgeschlossen. Darum ist P∩U offen in A und
P∩ (A \V ) abgeschlossen in A. Es ist aber P∩U = P∩ (A \V ), also P∩U ∈ φA(C) - ein
Widerspruch! Also C =

⋂
P∈φA(C) P.

Es ist C ⊆ A, also /0 = C∩ (A\A) = (A\A)∩
⋂

P∈φA(C). Wieder folgt aus der Kompaktheit,
dass es bereits endlich viele P′1, ...,P

′
m ∈ φA(C) gibt, mit (A \A)∩P′1∩ ...∩P′m = /0. Mit P′ :=

P′1 ∩ ...∩P′m ∈ φA(C) gilt also P∩ (A \A) = /0. Nun ist P abgeschlossen und offen in A, also
auch abgeschlossen in X außerdem ist P⊆ A und auch offen in A, also auch offen in X (denn
A ist offen in X). P ist also offen und abgeschlossen in X und da - wie man leicht nachrechnet
- die offenen und relativ kompakten (das heißt hier der Abschluss ist kompakt) Umgebungen
A von C eine Umgebungsbasis bilden, ist somit auch φX(C) eine!

b) Angenommen C ∩ (X \K) = /0, also C ⊆ K. Dann gibt es in X offene und disjunkte
Mengen U,V mit C ⊆ U und X \K ⊆ V (T4). Also auch C ⊆ U ′ := U ∩K ∈ τ . Nun ist U ′

auch offen in K, es gibt also ein P ∈ φK(C) mit C ⊆ P ⊆ U ′. Daraus folgt: P ist offen und
abgeschlossen in X . Nun ist /0 6= P 6= X - ein Widerspruch dazu, dass X zusammenhängend ist.

c) 1.Fall X \K = X - fertig.
2.Fall X \K 6= X . Dann ist K◦ 6= /0 und K◦ kompakt.
Fall 2.1 Es ist C ⊆ K◦. Dann folgt aus b) sofort /0 6= C∩X \K◦ = C∩ (X \K◦) = C∩X \K.
Fall 2.2 Es ist C * K◦. Dann folgt /0 6= C∩ (K \K◦)⊆C∩ (K \K◦) = C∩X \K.
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5.1.15 Korollar

Sei (X ,τ) kompakt, T2 und zusammenhängend, U ∈ τ mit /0 6= U 6= X und C eine nicht
leere Komponente von U . Dann ist C∩ (X \U) 6= /0.

Beweis: Falls C ⊆U , so gäbe es in X offene und disjunkte V,W mit C ⊆V und X \U ⊆W
(der Raum ist auch T4). Nun ist U als Teilraum lokal kompakt und C zusammenhängend mit
C⊆U . Es folgt C = C (!). Es ist ferner C⊆V ′ := V ∩U ∈ τ und C kompakt. Aus dem vorigen
Lemma (einschließlich der dort verwendeten Notation) schließen wir auf die Existenz eines
P ∈ φU(C) mit C⊆ P⊆V ′. Nun ist P offen in U , also auch in X und P ist abgeschlossen in U ,
also auch in X \W (da P⊆ X \W ⊆U) und somit auch in X! Da /0 6= C ⊆ P⊆U ( X , haben
wir einen Widerspruch dazu, dass X zusammenhängend ist.

5.1.16 Satz

Sei (X ,τ) ein kompakter und zusammenhängender T2-Raum. Dann gibt es keine Folge
paarweise disjunkter, nicht leerer abgeschlossener Mengen Ai mit X =

⋃
i∈NAi.

Interessante Spezialfälle sind kompakte Intervalle [a,b] aus R.

Beweis: Angenommen es gibt doch solche Ai, also X =
⋃

i∈NAi.
Sei V ∈ τ mit A2 ⊆V ⊆V ⊆ X \A0. Für ein a ∈ A1 wählen wir eine Komponente C von V

mit a ∈C. Aus Satz 5.1.14 folgt C∩X \V 6= /0. Sei dann x ∈C∩X \V . Somit ist x 6∈ A0∪A1,
also gibt es ein i 6= 0,1 mit x ∈ Ai. Das heißt |{i ∈ N | C∩Ai 6= /0}| ≥ 2 und C∩A0 = /0. Da
C zusammenhängend ist, muss es aber bereits unendlich viele Ai nicht leer schneiden, sonst
C =

⋃n
k=1(C∩Aik), für gewisse Aik und C∩Aik ist in C sowohl offen, als auch abgeschlossen.

Wir setzen nun C0 := C. Seien C0, ...,Cn bereits konstruierte kompakte zusammenhängende
Mengen, mit 1) Cn ⊆ ... ⊆ C0, 2) Ck ∩Ak = /0, für alle 0 ≤ k ≤ n und 3) jedes Ck schneidet
unendlich viele Al , 1≤ k ≤ n und l ∈ N.

Falls Cn∩An+1 = /0, so setzen wir Cn+1 := Cn. Falls hingegen Cn∩An+1 6= /0, dann gibt es
wie schon bei der Konstruktion von C = C0, ein kompaktes zusammenhängendes Cn+1 ⊆Cn
mit 1) Cn+1∩An+1 =Cn+1∩(Cn∩An+1) = /0 und 2) {i∈N |Cn+1∩(Cn∩Ai) 6= /0} ist unendlich
(Cn übernimmt die Rolle von X und Cn∩Ai übernimmt die Rolle von Ai).

Wir bekommen somit eine Folge (Cn)n∈N kompakter, nicht leerer (und zusammenhängen-
der) Mengen mit Cn+1 ⊆Cn. Das bedeutet aber

⋂
n∈NCn 6= /0 (Kompaktheit!). Andererseits gilt

aber
⋂

n∈NCn = (
⋂

n∈NCn)∩ (
⋃

n∈NAn) =
⋃

n∈N[(
⋂

k∈NCk)∩An] = /0 - ein Widerspruch!

5.1.17 Definition

Sei (X ,τ) ein topologischer Raum. Unter der Quasikomponente C eines Punktes x ∈ X ver-
stehen wir

C :=
⋂
{A⊆ X | A,X \A ∈ τ und x ∈ A}
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also den Schnitt aller offenen und abgeschlossenen den Punkt x enthaltenden Mengen.

Offenbar sind Quasikomponenten abgeschlossen und die Menge aller Quasikomponenten
bildet eine Zerlegung von X (d.h. jeder Punkt x∈ X ist in einer Quasikomponente und für zwei
Quasikomponenten C,C′ mit C∩C′ 6= /0 gilt C = C′).

5.1.18 Lemma

Ist C eine Quasikomponente und x ∈C, so gilt

C = {y ∈ X | ∀ f : X →{0,1} stetig ist f (x) = f (y)}

(wir versehen {0,1} natürlich mit der diskreten Topologie).

Beweis: Setze D = {y ∈ X | ∀ f : X → {0,1} stetig ist f (x) 6= f (y)}. Zu zeigen ist C = D.
Sei y ∈C und f : X → {0,1} stetig. Dann ist A := f−1( f (x)) eine offen und abgeschlossene
Teilmenge von X mit x ∈ A. Da y ∈C ist y ∈ A und somit f (y) = f (x). Ist umgekehrt y ∈D, so
muss auch y ∈C gelten. Andernfalls gibt es eine offen abgeschlossene Menge A mit x ∈ A und
y ∈ X \A. Wir definieren ein stetiges f : X → {0,1} durch f (A) = {0} und f (X \A) = {1}.
Offenbar ist nun f (x) 6= f (y) - Widerspruch.

5.1.19 Bemerkung

Man könnte nun auf den Gedanken kommen, dass jede stetige Funktion f : C→ {0,1} kon-
stant ist - C also zusammenhängend ist. VORSICHT: Wir wissen lediglich, dass jede stetige
Abbildung f : X →{0,1} auf der Quasikomponente C konstant ist.

5.1.20 Satz

Seien (Xi,τi) , i ∈ I Topologische Räume und x = (xi)i∈I ∈ X := ∏i∈I Xi. Für jedes i ∈ I sei
Ci die Quasikomponente von xi. Dann ist ∏i∈I Ci die Quasikomponente von x.

Beweis: Sei C die Quasikomponente von x und C′ := ∏i∈I Ci. Sei Ci := {A⊆Xi |A,X \A∈ τi
und xi ∈ A}, also Ci =

⋂
Ci. Für jedes j ∈ I sei C ′j := {∏i∈I Ai | A j ∈C j und ∀ i 6= j : Ai = Xi}.

Die Elemente in C ′j sind offen und abgeschlossen in X und enthalten alle x. Es folgt

C′ = ∏
j∈I

C j =
⋂
j∈I

(
⋂

C ′j) =
⋂

(
⋃
j∈I

C ′j)⊇C (∗)

Für die andere Inkusion müssen wir weiter ausholen. Wir beweisen diese erst für ein Produkt
von zwei Räumen. Sei Cx die Quasikomponente von x ∈ X und Cy die Quasikomponente von
y ∈ Y . Dann ist C := Cx ×Cy die Quasikomponente von (x,y) ∈ X ×Y . Beweis dazu: Sei
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f : X ×Y → {0,1} stetig und (x′,y′) ∈ C. Zu zeigen ist nur noch f (x,y) = f (x′,y′). Dazu
definieren wir die Homöomorphismen g : X × {y} → X , (x0,y) 7→ x0 und h : {x′} ×Y →
Y , (x′,y0) 7→ y0. Dann sind f ◦g−1 : X →{0,1} und f ◦h−1 : Y →{0,1} stetig, also

f (x,y) = f ◦g−1(x) = f ◦g−1(x′) = f (x′,y) = f ◦h−1(y) = f ◦h−1(y′) = f (x′,y′)

Damit haben wir C ⊆ {(x′,y′) ∈ X ×Y | ∀ f : X ×Y → {0,1} stetig ist f (x,y) = f (x′,y′)}.
Aus Lemma 5.1.18 und (∗) folgt dass C die Quasikomponente von (x,y) ist. Per Induktion
bekommen wir, dass C1× ...×Cn die Quasikomponente von (x1, ...,xn) in X1× ...×Xn ist,
falls Ci , i = 1, ...,n die Quasikomponente von xi in Xi ist.

Kommen wir nun zurück zum allgemeinen Fall. Wir setzen dazu

D := {y ∈∏
i∈I

Ci | yi = xi bis auf höchstens endlich viele Ausnahmen }.

und zeigen, dass jede stetige Abbildung f : X → {0,1} auf D konstant ist. Sei also y ∈ D. Es
gibt dann ein endliches J ⊆ I mit yi = xi für alle i ∈ I \ J. Dann gilt

x,y ∈ O := ∏
i∈I

Oi mit Oi =

{
{xi} falls i 6∈ J
Xi falls i ∈ J

g : O→∏i∈J Xi , (zi)i∈I 7→ (zi)i∈J ist ein Homöomorphismus. Dann ist aber g−1(∏i∈J Ci) die
Quasikomponente von x ∈ O. Da y ∈ g−1(∏i∈J Ci) gilt für die stetige Einschränkung f |O :
O→{0,1} von f auf O nach Lemma 5.1.18 aber f |O(y) = f |O(x), also f (y) = f (x).

Nun ist offenbar D =C′(= ∏i∈I Ci) und f |C′ : C′→{0,1} hat Werte in einem T2-Raum. Da
f eingeschränkt auf die dichte Teilmenge D konstant ist, muss auch die Einschränkung f |C′
von f auf C′ konstant sein (Lemma 3.3.3). Mit Lemma 5.1.18 folgern wir C′ ⊆C.

5.2 Lokaler Zusammenhang, lokaler Wegzusammenhang
5.2.1 Definition

lokal zusammenhängend, lokal wegzusammenhängend X heißt lokal zusammenhängend,
wenn jeder Punkt aus X eine Umgebungsbasis aus zusammenhängenden Umgebungen hat.
Entsprechend ist lokal wegzusammenhängend definiert.

5.2.2 Satz

a) Ein Raum, der zusammenhängend und lokal wegzusammenhängend ist, der ist bereits
wegzusammenhängend.
b) Ein Produkt ∏i∈I Xi lokal zusammenhängender Räume ist genau dann lokal zusammen-
hängend, wenn alle Xi lokal zusammenhängend sind und bis auf höchstens endlich viele
Ausnahmen die Xi sogar zusammenhängend sind.
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Beweis: a) Die Wegzusammenhangskomponenten sind offen. Da der Raum zusammenhän-
gend ist, kann er somit nicht disjunkte Vereinigung mehrere offener Mengen sein. Es gibt also
genau eine Wegzusammenhangskomponente. b) Bleibt wieder als Übung :-).

5.2.3 Lemma

Ein Raum (X ,τ) ist genau dann lokal zusammenhängend, wenn jede Zusammenhangs-
komponente einer offenen Teilmenge offen ist. Dann ist offensichtlich die Menge B aller
Zusammenhangskomponenten offener Mengen eine Basis der Topologie. Umgekehrt ist
natürlich jeder topologische Raum, der eine Basis aus zusammenhängenden Mengen hat
lokal zusammenhängend.

Beweis: Sei (X ,τ) lokal zusammenhängend und C eine Komponente von O∈ τ . Wir wählen
dann ein c ∈ C. Nun ist c ∈ C ⊆ O, es gibt also eine zusammenhängende Umgebung V von
c mit c ∈ V ⊆ O. Dann ist aber auch C∪V zusammenhängend und C∪V ⊆ O. Damit gilt
c ∈ V ⊆ C. Dann enthält C mit jedem Punkt c ∈ C also eine Umgebung von c und ist somit
offen.

Für die Rückrichtung nehmen wir ein x ∈ X und ein O ∈ ẋ∩ τ . Der Punkt x steckt in einer
Komponente C von O, die offen ist. Na ja, zusammenhängen ist sie offensichtlich auch. Also
ist C eine Zusammenhängende Umgebung (sogar eine offene) mit c ∈ C ⊆ V . Der Raum ist
also lokal zusammenhängend.

5.2.4 Satz

Sei (X ,τ) lokal zusammenhängend. Seien weiter A,B abgeschlossene Teilmengen von X .
Wenn A∩B und A∪B lokal zusammenhängend sind (als Teilraum), so sind dies auch A
und B.

Beweis: Wir zeigen, dass A lokal zusammenhängend ist. Sei x ∈ A und U ∈ ẋ∩ τ . 1.Fall
x∈ A\B. Dann ist auch x∈U \B∈ τ und es gibt ein V ∈ τ mit V ∩(A∪B) zusammenhängend
und V ∩ (A∪B) ⊆ (U \B)∩ (A∪B) (es ist A∪B lokal zusammenhängend). Es ist V ∩A =
V ∩ (A∪B)⊆ (U \B)∩ (A∪B)⊆U ∩A.

2.Fall x ∈ A∩B und U ∈ ẋ∩τ . Sei W die Zusammenhangskomponente von x ∈U ∩ (A∩B)
in U ∩ (A∩B). Dann ist W offen in U ∩ (A∩B) (denn A∩B ist lokal zusammenhängend).
Also W = W ′ ∩U ∩ (A∩B), mit W ′ ∈ τ . Sei V die Zusammenhangskomponente von W in
W ′ ∩U ∩ (A∪B). Dann ist V offen in A∪B (denn auch A∪B ist lokal zusammenhängend).
Wir haben (A∩V )∪ (B∩V ) = (A∪B)∩V = V und (A∩V )∩ (B∩V ) = A∩B∩V = W . Die
Mengen A∩V und B∩V sind in V abgeschlossen, also ist nach Lemma 5.1.12 auch A∩V
(und auch B∩V ) in V zusammenhängend (und damit auch in X). Nun ist V von der Form V =
V ′∩ (A∪B), mit V ′ ∈ τ . Sei dann P die Zusammenhangskomponente von V in V ′. Dann ist P
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offen in X (denn X ist lokal zusammenhängend) und es gilt V ⊆P∩(A∪B)⊆V ′∩(A∪B) =V ,
also P∩A = V ∩A⊆U ∩A.

5.2.5 Korollar

Sei (X ,τ) lokal zusammenhängend, Y ⊆ X und ∂Y lokal zusammenhängend (∂Y ist der
Rand von Y ). Dann ist auch Y lokal zusammenhängend.

Beweis: Setze A := Y und B := X \Y . Dann sind A und B abgeschlossen, A∩B = ∂Y ist
lokal zusammenhängend und A∪B = X ist auch lokal zusammenhängend. Die Aussage folgt
also aus dem vorigen Satz.

5.3 Homotopie
”Das Buch der Natur ist mit mathematischen Symbolen geschrieben. Genauer: Die Na-
tur spricht die Sprache der Mathematik: die Buchstaben dieser Sprache sind Dreiecke,
Kreise und andere mathematische Figuren.”

Galileo Galilei

Hat man zwei stetige Abbildungen f ,g : [0,1]→R und stellt sich die zugehörigen Graphen
einfach mal als ”Gummibänder” vor, so ist es - irgendwie - klar, dass mann diese ineinander
überführen kann (man zieht sie etwas in die Länge, oder staucht sie, oder legt sie einfach
etwas anders hin). Ebenso ist auch - irgendwie - klar, dass dies alles ”stetig” ablaufen kann.
Der begriff der Homotopie präzisiert dieses ”irgendwie”.

5.3.1 Definition

Seien X ,Y topologische Räume und I := [0,1]. Eine stetige Abbildung F : X × I → Y heißt
Homotopie (X × I mit Produkt-Topologie). Zwei stetige Abbildungen f ,g : X → Y heißen
homotop (in Zeichen: f ' g), wenn es eine Homotopie F : X× I→Y gibt, mit f (x) = F(x,0)
und g(x) = F(x,1) (für alle x ∈ X).

f : X →Y heißt nullhomotop, wenn sie zu einer konstanten Abbildung X →Y homotop ist
Zwei Räume X ,Y heißen homotopieäquivalent, wenn es stetige Abbildungen f : X → Y

und g : Y → X mit g◦ f ' idX und f ◦g' idY gibt.
Wir nennen A⊆ X ein Deformationsretrakt von X , falls es eine Homotopie F : X× I→ X

gibt mit F(x,0) = x und F(x,1) ∈ A für alle x ∈ X bzw. F(a,1) = a für alle a ∈ A. In diesem
Fall nennen wir F eine Deformationsretraktion von X auf A.

5.3.2 Lemma

Ist A ein Deformationsretrakt von X , so sind A,X homotopieäquivalent.
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Beweis: Sei F : X × I → X stetig mit F(x,0) = x und F(x,1) ∈ A für alle x ∈ X bzw.
F(a,1) = a für alle a ∈ A. Definiere f : X → A , x 7→ F(x,1) und g : A→ X , a 7→ a. Dann
ist f ◦g = idA und g◦ f = f . Offenbar ist F eine Homotopie von idX nach f . Fertig.

5.3.3 Lemma

(a) Die Relation f ' g ist eine Äquivalenzrelation auf der Menge C(X ,Y ) aller stetigen
Funktionen von X nach Y .

(b) Homotopieäquivalent ist auch eine Äquivalenzrelation.

Beweis: (a) (1) f ' f durch F(x, t) := f (x)
(2) f ' g ⇒ g' f durch H(x, t) := F(x,1− t)
(3) wenn f ' g durch F und g' h durch H, dann f ' h durch G, wobei G(x, t) := F(x,2t)

für t ∈ [0,1/2] und G(X , t) := H(x,2t − 1) für t ∈ [1/2,1]. Aus dem Klebelemma (Lemma
2.2.4) folgt, dass G stetig ist. Teil (b) bleibt als Übung.

5.3.4 Lemma

Seien X ,Y,Z top. Räume und f , f ′ : X →Y und g,g′ : Y → Z stetige Abbildungen. Außer-
dem gelte f ' f ′ durch F und g' g′ durch G. Dann gilt auch g◦ f ' g′ ◦ f ′.

Man kann nun also ◦ : (C(X ,Y )/ ')× (C(Y,Z)/ ')→ C(X ,Z)/ ' durch [g] ◦ [ f ] :=
[g◦ f ] definieren.

Beweis H(x, t) := G(F(x, t), t) ist eine Homotopie von g◦ f nach g′ ◦ f ′.

5.3.5 Lemma

Wenn X ,Y homotopieäquivalent sind und X wegweise zusammenhängend, dann ist auch
Y wegweise zusammenhängend.

Beweis: Es gibt stetige f : X → Y , g : Y → X , H : X × I → X und G : Y × I → Y , mit
H(x,0) = g( f (x)), H(x,1) = x, G(y,0) = f (g(y)) und G(y,1) = y. Seien y1,y2 ∈ Y , dann
ist k(t) := G(y1,1− 3t) für t ∈ [0,1/3], k(t) := f (h(3t − 1)) für t ∈ [1/3,2/3] und k(t) :=
G(y2,3t−2) für t ∈ [2/3,1] wobei h : I→ X stetig ist mit h(0) = g(y1) und h(1) = g(y2). Es
folgt dann k(0) = y1 und k(1) = y2. Die Stetigkeit von k folgt leicht aus dem Klebelemma.
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5.3.6 Lemma

(a) Sei a ∈ Sn := {x ∈ Rn+1 | |x|= 1}. Dann ist Sn \{a} homöomorph zu Rn.
(b) Sind a,b ∈ Sn , a 6= b, so ist Sn \{a,b} homöomorph zu Rn \{0}.
(c) Sei n > 0 , a,b ∈ Sn mit a 6= b. Dann ist Sn \{a,b} homotopieäquivalent zu Sn−1

Beweis: (a) Sei en = (0, ...,0,1) ∈ Rn Dann ist h : Sn \ {en} → Rn, definiert durch x 7→
(1− xn)−1(x0, ...,xn−1) ein Homöomorphismus (die Umkehrabbildung ist durch
y 7→ ((1− ‖y‖

2−1
‖y‖2+1)y, ‖y‖

2−1
‖y‖2+1) gegeben). Sei nun a ∈ Sn, dann a⊥ := {x ∈ Rn+1 | a · x = 0}.

Es folgt dim(a⊥) = n und es gibt eine orthonormal Basis {a0, ...,an−1} von a⊥. Setzen wir
noch an := a, so ist {a0, ...,an} eine orthonormal Basis vom Rn+1. Wir definieren nun durch
f : Rn+1→ Rn+1 , ei 7→ ai einen Iso. + Homöomorphismus und wie man leicht nachrechnet
gilt ‖ f (x)‖2 = ‖x‖2. Demzufolge ist f |Sn : Sn→ Sn ein Homöomorphismus mit f (en) = an.
Abschließend haben wir also einen Homöomorphismus f |Sn \{en} : Sn \{en}→ Sn \{an}.

(b) Sei h : Sn \ {a} → Rn ein Homöomorphismus. Offenbar ist dann auch h|Sn \ {a,b} :
Sn \{a,b} → Rn \{h(b)} ein Homöomorphismus. Da Rn \{0} homöomorph zu Rn \{h(b)}
ist, sind wir fertig.

(c) Wir definieren eine Homotopie H : (Rn \ {0})× I→ Rn \ {0} , (x, t) 7→ (1− t)x + t x
|x| .

Das ist sinnvoll, denn wäre (1− t)x+ t x
|x| = 0, so folgt 1− t + t

|x| = 0. Da sowohl 1− t ≥ 0 und
t
|x| ≥ 0, wäre dies ein Widerspruch. Sn−1 ist somit ein Deformationsretrakt von Rn \{0}.

Ist allgemein A⊆ X , H : X × I→ X eine Deformationsretraktion von X auf A und f : X →
Y ein Homöomorphismus mit f (A) =: B, so ist G := Y × I → Y definiert durch G(y, t) :=
f (F( f−1(y), t)) eine Deformationsretraktion von Y auf B.

Für einen Homöomorphismus f :Rn\{0}→ Sn\{a,b} bekommen wir damit, dass f (Sn−1)
ein Deformationsretrakt von Sn \{a,b} ist. Also sind f (Sn−1) und Sn \{a,b} homotopieäqui-
valent. Da Sn−1 und f (Sn−1) homöomorph sind, sind somit auch Sn \ {a,b} und Sn−1 homo-
topieäquivalent.

5.3.7 Beispiel

Sei f : X → Sn stetig, aber nicht surjektiv. Dann ist f nullhomotop. Beweis: Sei y′ ∈ Sn \ f (X)
und g : Sn \ {y′} → Rn homöomorph. Wähle x0 ∈ X . Dann ist g| f (X) : f (X)→ Rn homotop
zur konstanten Abbildung k : f (X)→ Rn x 7→ g( f (x0)), durch H : f (X)× I → Rn, (y, t) 7→
(1− t)g(y)+ tg( f (x0)). Definiere nun G : X × I→ Sn durch (x, t) 7→ g−1(H( f (x), t)). Unser
G ist stetig und es gilt (x,0) 7→ f (x) bzw. (x,1) 7→ f (x0)

5.3.8 Definition

Ein Raum Y heißt absolutes Retrakt (absolutes Umgebungsretrakt) wenn jede stetige Abbil-
dung f : A→ Y von einer abgeschlossenen Teilmenge A, eines T4 Raums X , zu einer stetigen
Abbildung auf ganz X (auf eine offene Umgebung U von A in X) erweitert werden kann. Jedes
absolute Retrakt ist offensichtlich ein absolutes Umgebungsretrakt. Der Fortsetzungssatz von
Tietze lehrt also bespielsweise, dass die reellen Zahlen ein absolutes Retrakt sind.
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5.3.9 Lemma

Die Sphäre Sn ist ein absolutes Umgebungsretrakt und die Vollkugel Dn+1 ein absolutes
Retrakt.

Beweis: In beiden Fällen verwenden wir den Fortsetzungssatz von Tietze. Zuerst die Voll-
kugel: Wenn f : A→ Dn+1 stetig ist, schalten wir die standard Projektionen pi dahinter und
erhalten fi = pi ◦ f : A→ [−1,1]. Diese lassen sich fortsetzen zu Fi : X → [−1,1]. Mit der ent-
sprechende Produktabbildung G : X → [−1,1]n+1 konstruieren wir wie folgt die Fortsetzung
von f : Wir definieren H : K→Dn+1 durch H(x) := x, falls x∈Dn+1 und sonst H(x) := x/‖x‖.
H ist stetig (Klebelemma) und wir setzen dann F := H ◦G.

Nun zur Sphäre: Sei also f : A→ Sn stetig. Wie eben setzen wir f durch G : X→ [−1,1]n+1 =:
K stetig fort und setzen U := F−1(K \ {0}). Die Abbildung F : U → Sn definiert durch
F(x) := G(x)/‖G(x)‖ ist dann die gesuchte Fortsetzung.

5.3.10 Definition

Homotopieerweiterungseigenschaft: Ein Raumpaar (X ,A) hat die Homotopieerweiterungs-
eigenschaft (HEE) bzgl. einem Raum Y , wenn es zu jedem stetigen g : X → Y und stetigem
G : A× I→ Y mit ∀a ∈ A : G(a,0) = g(a) ein stetiges F : X× I→ Y existiert, mit F|A×I = G.

5.3.11 Bemerkung

(X ,A) hat die HEE bezüglich jedem Raum Y g.d.w. (A× I)∪ (X×{0}) ein Retrakt von X× I
ist. Der Beweis

5.3.12 Satz

Homotopieerweiterungssatz von Borsuk: Sei A eine abgeschlossene Teilmenge eines
topologischen Raums (X ,τ), für den gilt, dass X× I ein T4-Raum ist. Dann hat (X ,A) die
HEE bzgl. jedem absoluten Umgebungsretrakt Y .

Beweis: Seien g : X →Y und G : A× I→Y , mit ∀a ∈ A : G(a,0) = g(a), stetig. Wir setzen
G auf natürliche Weise stetig zu H : A× I∪X×{0} fort. Dann gibt es eine offene Umgebung
U von A× I ∪X ×{0} in X × [0,1] und eine stetige Fortsetzung K : U → Y von H. Nun ist
X × I ein T4-Raum, also gibt es ein stetiges η : X × I → I welches auf A× I konstant 1 ist
und auf X × I \U verschwindet (=0 ist). Wir setzen nun m(x) := min{η(x, t) | t ∈ I}. Für
jedes (x, t) ∈ X × I ist dann (x,m(x)t) ∈U (1F. ∃t0 ∈ I mit η(x, t0) = 0, dann offensichtlich
(x,m(x)t) ∈U und 2F. ∀t ′ gilt η(x, t ′) 6= 0; dann offensichtlich {x}× I ⊆U , also erst recht
(x,m(x)t) ∈U). Wir setzen nun noch F(x, t) := K(x,m(x)t) und haben damit unsere gesuchte
Fortsetzung.

129



5.3.13 Satz

Seien X ,Y,Z top. Räume und p : X → Y identifizierend. Desweiteren Sei K : Y × I → Z
eine Abbildung, so dass H : X× I→ Z definiert durch H(x, t) := K(p(x), t) stetig ist. Dann
ist auch K stetig.

Beweis: Es ist H = K ◦ (p× idI) stetig. Und da p× idI identifizierend ist (Satz von White-
head) ist K stetig (siehe Finaltopologie).

5.3.14 Satz

Seien X ,Y top. Räume und /0 6= A⊆ X bzw /0 6= B⊆ Y . Setze x∼X x′ :⇔ x = x′ ∨ x,x′ ∈
A und bilde den Quotientenraum X/ ∼X , analog mit Y/ ∼Y ; p : X → X/ ∼X bzw. q :
Y → Y/∼Y seien die standard Projektionen. Schlussendlich sei H : X × I→ Y stetig, mit
H(A× I)⊆ B. Dann gibt es genau eine stetige Abbildung H̄ : (X/∼X)× I→Y/∼Y derart,
dass H̄(p(x), t) = q(H(x, t))

Beweis: Übung.
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6 Einführung in die Singuläre Homologietheorie
”So etwas wie eine freie Presse gibt es nicht. Sie wissen es, und ich weiß es. Nicht einer
unter Ihnen würde sich trauen, seine ehrliche Meinung zu sagen. Die eigentliche Aufgabe
des Journalisten besteht darin, die Wahrheit zu zerstören, faustdicke Lügen zu erzählen,
die Dinge zu verdrehen und sich selbst, sein Land und seine Rasse für sein tägliches
Brot zu verkaufen. Wir sind Werkzeuge und Marionetten der Reichen, die hinter den
Kulissen die Fäden in der Hand halten. Sie spielen die Melodie, nach der wir tanzen.
Unsere Talente, unsere Möglichkeiten und unser Leben befinden sich in den Händen
dieser Leute. Wir sind nichts weiter als intellektuelle Prostituierte.”

John Swaiton, ehem. Herausgeber der New York Times in den 70er und 80ern in seiner
Abschiedsrede

Wenn auch nicht für alle Definitionen und Konstruktionen notwendig, so bezeichne dennoch
R ein kommutativen Ring mit 1, der hier und jetzt für den Rest dieses Kapitels (Ausnahmen
sind kenntlich gemacht) fest gewählt wird.

6.1 Freie Moduln, Exaktheit und Homologie von Kettenkomplexen
6.1.1 Definition

Sei M ein R-Modul. Eine Abbildung x : I→M heißt eine Basis von M, falls

∀y ∈M∃ !r : I→ R mit y = ∑
i∈I

r(i)x(i)

wobei r(i) = 0 bis auf endlich viele Ausnahmen. Solch einen Modul nennen wir frei (über I).

Sei I eine beliebige Menge und R ein Ring. Wir setzen

R〈I〉 := {ϕ : I→ R | ϕ(i) = 0 bis auf endlich viele Ausnahmen }

und nennen R〈I〉 den freien R-Modul mit Basis I. Das es sich bei R〈I〉mit Komponentenwei-
ser Addition und R-Multiplikation um einen Modul handelt, ist klar. Warum mit Basis I? Nun,
für i ∈ I sei e(i) ∈ R〈I〉 definiert durch

(e(i))( j) =

{
1 für i = j
0 für i 6= j

Offenbar ist e : I→ R〈I〉 eine Basis für R〈I〉, welche man aber mit I identifizieren kann. Wir
tun einfach so, als ob I ⊆ R〈I〉. Das führt zu keinen Mißverständnissen.
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6.1.2 Satz

Sei I eine Menge, M ein R-Modul und f : I→M eine beliebige Abbildung. Dann existiert
genau ein Homomorphismus F : R〈I〉 →M, so dass folgendes Diagramm kommutiert.

I

e
��

f // M

R〈I〉
F

=={{{{{{{{

(also F ◦ e = f )

Beweis: Wir definieren F : R〈I〉 →M durch F(ϕ) := ∑i∈I ϕ(i) f (i). Der Rest ist nun klar.

6.1.3 Definition

Sei (Mi)i∈I eine Familie von Moduln über R. Dann ist⊕
i∈I

Mi := {(mi)i∈I ∈∏
i∈I

Mi | mi = 0 bis auf endlich viele Ausnahmen}

mit Komponenterweiser Addition und Multiplikation wieder ein Modul über R, direkte Sum-
me der Mi , i ∈ I genannt. Für endliches I gilt offenbar

⊕
i∈I Mi = ∏i∈I Mi. Ferner fassen wir

den Ring R als Modul über sich selber auf. Für I = {i} folgt somit R∼= R〈I〉=
⊕

i∈I R.

6.1.4 Definition

Eine endliche oder unendliche Sequenz von Gruppen und Homomorphismen

. . . // K
f // L

g // M // . . .

heißt exakt an der Stelle L, falls ker(g) = im( f ). Die Sequenz heißt exakt, wenn sie an jeder
Stelle exakt ist. Eine exakte Sequenz der Form

0 // K
f // L

g // M // 0

nennen wir eine kurze exakte Sequenz. Gruppen werden wir im Folgenden additiv schreiben.

Das folgende Lemma (und dessen Beweis) ist typisch für eine ganze Reihe von Aussagen,
denen wir in diesem Kapitel begegnen werden. Die Beweise sind, obwohl sie auf den ersten
Blick vielleicht etwas länglich erscheinen, allesamt äußerst einfach und laufen gewissermaßen
von ganz alleine. In Lemma 6.1.5 will man beispielsweise zeigen, dass ein Homomorphismus
injektiv ist. Also nimmt man sich ein Element aus dem Kern, jagt entsprechend den Vorausset-
zungen durch das Diagramm und sammelt dabei solange Informationen, bis man weiß, dass
es sich bei diesem Element um das Nullelement handelt - die Abbildung ist also injektiv. Am
besten führt man diese Beweise alle selber und schaut nur im Zweifel nach.
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6.1.5 Fünferlemma

Gegeben sei das folgende kommutative Diagramm von Gruppen und zugehörigen Homo-
morphismen

A1

ϕ1
��

α1 // A2

ϕ2
��

α2 // A3

ϕ3
��

α3 // A4

ϕ4
��

α4 // A5

ϕ5
��

B1
β1

// B2
β2

// B3
β3

// B4
β4

// B5

mit exakten Zeilen (d.h. exakt an den Stellen A2,A3,A4,B2,B3,B4).
(1) Sind ϕ2,ϕ4 injektiv und ϕ1 surjektiv, so ist ϕ3 injektiv.
(2) Sind ϕ2,ϕ4 surjektiv und ϕ5 injektiv, so ist ϕ3 surjektiv.
(3) Sind ϕ1,ϕ2,ϕ4,ϕ5 Isomorphismen, so ist auch ϕ3 ein Isomorphismus.

Beweis: (1) Sei a3 ∈ kerϕ3. Dann ist 0 = β3ϕ3a3 = ϕ4α3a3, also α3a3 = 0 und somit a3 ∈
kerα3 = imα2. Es gibt daher ein a2 mit α2a2 = a3. Aus β2ϕ2a2 = ϕ3α2a2 = ϕ3a3 = 0 folgt
ϕ2a2 ∈ kerβ2 = imβ1, also ϕ2a2 = β1b1 für gewisses b1 ∈ B1. Nun ist ϕ1 surjektiv, also gibt
es a1 mit b1 = ϕ1a1 und es folgt ϕ2a2 = β1ϕ1a1 = ϕ2α1a1 und somit a2 = α1a1 (denn ϕ2 ist
injektiv). Insgesamt a3 = α2a2 = α2α1a1 = 0 (exakte Zeile) und ϕ3 ist somit injektiv.

(2) Sei b3 ∈ B3. Da ϕ4 surjektiv gibt es ein a4 mit β3b3 = ϕ4a4. Es folgt 0 = β4β3b3 =
β4ϕ4a4 = ϕ5α4a4, also 0 = α4a4 und somit a4 ∈ kerα4 = imα3. Daher gibt es a3 mit α3a3 =
a4 und ϕ4α3a3 = β3ϕ3a3. Es folgt β3(ϕ3a3− b3) = 0, also ϕ3a3− b3 ∈ kerβ3 = imβ2 und
es gibt ein b2 mit β2b2 = ϕ3a3− b3. Es gibt aber auch ein a2 mit b2 = ϕ2a2 und es folgt
ϕ3α2a2 = β2ϕ2a2 = β2b2 = ϕ3a3−b3. Insgesamt b3 = ϕ3(a3−α2a2) und ϕ3 ist surjektiv.

(3) Folgt unmittelbar aus (1) und (2).

6.1.6 Lemma von Barrett-Whitehead

Gegeben sei das folgende kommutative Diagramm mit exakten Zeilen, wobei jede dritte
Abbildung hn ein Isomorphismus ist.

. . . // An

fn
��

in // Bn

gn
��

pn //Cn

hn
��

dn // An−1

fn−1
��

// . . .

. . . // A′n jn
// B′n qn

//C′n ∆n

// A′n−1
// . . .

Dann gibt es eine exakte Sequenz der Form

. . . // An
αn // Bn⊕A′n

βn // B′n
γn // An−1 // . . .

wobei αnan := (inan, fnan) , βn(bn,a′n) := gnbn− jna′n und γnb′n := dnh−1
n qnb′n
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Beweis: Exaktheit bei An: Es ist αnγn+1b′n+1 = (indn+1h−1
n+1qn+1b′n+1, fndn+1h−1

n+1qn+1b′n+1)
= (0,0). Sei andererseits (in, fn)an = 0, also inan = 0 und fnan = 0. Dann gibt es ein cn+1 mit
dn+1cn+1 = an. Es folgt ∆n+1hn+1cn+1 = fndn+1cn+1 = fnan = 0, also gibt es ein b′n+1 mit
hn+1cn+1 = qn+1b′n+1 und es folgt cn+1 = h−1

n+1qn+1b′n+1 und somit an = dn+1h−1
n+1qn+1b′n+1.

Exaktheit bei Bn⊕A′n: Es ist βnαnan = gninan− jn fnan = 0. Ist andererseits βn(bn,a′n) = 0,
so folgt gnbn = jna′n also 0 = qn jna′n = qngnbn = hn pnbn und somit pnbn = 0. Es gibt daher
ein an mit inan = bn. Nun ist jn fnan = gninan = gnbn = jna′n und folglich jn( fnan− a′n) = 0.
Es gibt daher auch ein c′n+1 mit ∆n+1c′n+1 = fnan− a′n. Da h bijektiv, gibt es ein cn+1 mit
c′n+1 = hn+1cn+1 und es folgt fnan−a′n = ∆n+1c′n+1 = ∆n+1hn+1cn+1 = fndn+1cn+1 und somit
a′n = fn(an−dn+1cn+1) und bn = in(an−dn+1cn+1).

Exaktheit bei B′n: Es ist γβ (bn,a′n) = dnh−1
n qngnbn−dnh−1

n qn jna′n = dnh−1
n hn pnbn = dn pnbn

= 0. Ist andererseits dnh−1
n qnb′n = 0, so gibt es ein bn mit pnbn = h−1

n qnb′n, also qnb′n =
hn pnbn = qngnbn. Also qn(gnbn− b′n) = 0. Somit gibt es ein a′n mit jna′n = gnbn− b′n und
es folgt b′n = gnbn− jna′n = β (bn,a′n).

6.1.7 Lemma

Gegeben sei folgende kurze exakte Sequenz von R-Moduln:

0 // A′
α // A

β // A′′ // 0

Wir definieren: A′
i // A′⊕A′′

p // A′′ durch i(a′) := (a′,0) und p(a′,a′′) := a′′. Dann
sind folgende Behauptungen äquivalent:

(a) β hat eine Rechtsinverse (also ein Homomorphismus β ′′ : A′′→ A mit ββ ′′ = idA′′).
(b) Es gibt ein kommutatives Diagramm:

A′

i ##G
GGGGGGGG

α // A
β // A′′

A′⊕A′′

γ

OO

p

;;vvvvvvvvv

(c) Es gibt ein kommutatives Diagramm:

A′

i ##G
GGGGGGGG

α // A

δ

��

β // A′′

A′⊕A′′
p

;;vvvvvvvvv

(d) α hat eine Linksinverse (also ein Homomorphismus α ′ : A→ A′ mit α ′α = idA′).
Wenn eine der äquivalenten Bedingungen erfüllt ist, so sagt man die Sequenz spaltet.

Für die im Beweis erhaltenden Abbildungen gilt δ = γ−1 und αα ′+ β ′′β = idA. Insbe-
sondere ist A isomorph zu A′⊕A′′. Außerdem (das brauchen wir später) ist ker(α ′)∼= A′′.
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Beweis: Wir geben nur die Abbildungen an. Das Nachrechnen ist trivial.
(a)⇒ (b) Wir setzen γ(a′,a′′) := α(a′)+β (a′′).
(b)⇒ (a) Wir definieren β ′′(a′′) := γ(0,a′′).
(c)⇒ (d) Setze q : A′⊕A′′→ A′ , q(a′,a′′) := a′ und α ′ := qδ .
(d)⇒ (c) Setze δ (a) := (α ′(a),β (a)).
(b)⇒ (c) Betrachte das Diagramm

0 // A′
i //

id
��

A′⊕A′′

γ

��

p // A′′

id
��

// 0

0 // A′ α
// A

β

// A′′ // 0

und wende Lemma 6.1.5 an.
(c)⇒ (b) Betrachte das Diagramm

0 // A′
α //

id
��

A

δ

��

β // A′′

id
��

// 0

0 // A′ i
// A′⊕A′′ p

// A′′ // 0

und wende Lemma 6.1.5 an. Die Gleichung αα ′+ β ′′β = idA verifiziert man durch nach-
rechnen. Zeigen wir noch ker(α ′)∼= A′′. Definiere dazu β0 : ker(α ′)→ A′′ durch a 7→ βa. Ist
a ∈ ker(β0), so ist, da δa := (α ′a,βa), pδa = βa = 0 und 0 = α ′a = qδa, also δa = 0 und
folglich a = 0 (da δ ein Iso. ist). Für a′′ ∈ A′′ setze a := δ−1(0,a′′). Es folgt α ′a = qδa = 0,
also a ∈ ker(α ′) und β0a = βa = pδa = a′′.

6.1.8 Definition

Ein Kettenkomplex K = (Kn,∂n)n∈Z ist eine Sequenz

. . . // Kn+1
∂n+1 // Kn

∂n // Kn−1 // . . .

von R-Moduln (Kn)n∈Z und Homomorphismen ∂n : Kn→Kn−1, welche ∂n∂n+1 = 0 für alle n∈
Z erfüllen. Die ∂n nennen wir Randoperatoren. Statt Kettenkomplex schreiben wir manchmal
kürzer Komplex.

∂n∂n+1 = 0 bedeutet im(∂n+1)⊆ ker(∂n). Schreiben wir kurz ZnK := im(∂n+1) bzw. BnK :=
ker(∂n), so haben wir also ZnK ⊆ BnK ⊆ Kn. Es macht daher Sinn den Quotienten HnK :=
BnK/ZnK zu betrachten, den wir von nun an n-te Homologie von K nennen. Die Familie
(HnK)n∈Z nennen wir den K zugeordneten graduierten R-Homologiemodul (oder auch ein-
fach nur graduierten Homologiemodul).

Eine Kettenabbildung f : K′→ K zwischen zwei Komplexen K′ = (K′n,∂
′
n)n∈Z und K =

(Kn,∂n)n∈Z ist eine Familie f = ( fn)n∈Z , fn : K′n→ Kn von Homomorphismen, welche

∂n fn = fn−1∂
′
n für alle n ∈ Z
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erfüllt. Damit folgt fn(ZnK′)⊆ ZnK und fn(BnK′)⊆ BnK. Durch (Hn f )[z′] := [ f z′] bekommen
wir somit einen Homomorphismus Hn f : HnK′→ HnK. Offenbar gilt

Hn( f f ′) = Hn( f )Hn( f ′) und Hn(idK) = idHnK.

Sei K = (Kn,∂n)n∈Z ein Kettenkomplex und für jedes n ∈ Z sei K′n ein Untermodul von
Kn mit ∂n(K′n) ⊆ K′n−1. Dann ist auch K′ = (K′n,∂

′
n)n∈Z, mit ∂ ′n := ∂n|K′n ein Kettenkomplex.

In diesem Fall können wir für jedes n ∈ Z den Quotienten Kn/K′n bilden und dazu definieren
wir ∂ n : Kn/K′n → Kn−1/K′n−1 durch ∂ n([x]) := [∂n(x)] (wohldefiniert, da ∂n(K′n) ⊆ K′n−1).
Offenbar gilt ebenfalls ∂ n∂ n+1 = 0. Das heißt wir haben einen weiteren Kettenkomplex, den
Quotientenkettenkomplex K/K′ := (Kn/K′n,∂ n)n∈Z. Man kann nun leicht nachrechnen, dass

0 // K′
i // K

p // K/K′ // 0 (∗)

wobei i = (in)n∈Z die Einbettungen in : K′n→ Kn , in(x) = x und p = (pn)n∈Z die Projektionen
pn : Kn→Kn/K′n , pn(x) = [x] sind, eine exakte Sequenz von Kettenabbildungen ist (man muss
natürlich auch nachrechnen, dass es sich wirklich um Kettenabbildungen handelt). Hierbei ist

exakt so zu verstehen, dass die Sequenz 0 // K′n
i // Kn

p // Kn/K′n // 0 für jedes
n ∈ Z exakt ist. Umgekehrt folgt aus der Exaktheit einer Sequenz

0 // K′
α // K

β // K′′ // 0 (∗∗)

von Kettenkomplexen und Kettenabbildungen und dem allgemeinen Homomorphisatz

Kn/im(α) = Kn/ker(βn)∼= im(βn) und im(αn)∼= K′n.

Mit anderen Worten: (∗∗) ist bis auf Isomorphie von der Bauart (∗).

6.1.9 Lemma

Ist 0 // K′
α // K

β // K′′ // 0 eine exakte Sequenz von Kettenkomplexen und
Kettenabbildungen, dann ist für jedes n ∈ Z die Sequenz

HnK′
Hnα // HnK

Hnβ // HnK′′

exakt an der Stelle HnK.

Beweis: Zu zeigen ist ker(Hnβ ) = im(Hnα).
Sei [xn] ∈ ker(Hnβ ), also [βnxn] = Hnβ [xn] = 0. Das bedeutet βnxn ∈ im(∂ ′′n+1). Es gibt

daher ein x′′n+1 ∈ K′′n+1 mit βnxn = ∂ ′′n+1x′′n+1. Nun ist βn+1 surjektiv, es gibt also ein xn+1 ∈
Kn+1 mit βn+1xn+1 = x′′n+1. Es folgt βnxn = ∂ ′′n+1βn+1xn+1 = βn∂n+1xn+1 (denn β ist eine
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Kettenabbildung) und weiter βn(xn−∂n+1xn+1) = 0. Also xn−∂n+1xn+1 ∈ ker(βn) = im(α)
und somit gibt es ein x′n ∈ K′n mit xn− ∂n+1xn+1 = αnx′n. Schließlich bekommen wir [xn] =
[αnx′n +∂n+1xn+1] = [αnx′n] = Hnα([x′n]) ∈ im(Hnα).

Gilt umgekehrt [xn] ∈ im(Hnα), also [xn] = Hnα([x′n]) = [αnx′n], so folgt
Hnβ ([xn]) = Hnβ ([αnx′n]) = [βn ◦αnx′n] = [0] = 0, also [xn] ∈ ker(Hnβ ).

Für jedes n ∈ Z haben wir nun solche kleinen Sequenzen, die in der Mitte exakt sind. Ist es
denn aber möglich diese vielen losen Stücke miteinander zu verbinden? Ja! Und unser Ziel ist
es nun einen Homomorphismus δ∗n : HnK′′→ Hn−1K′ zu konstruieren derart, dass

. . . // Hn+1K
Hn+1β// Hn+1K′′

δ∗n+1 // HnK′
Hnα // HnK

Hnβ // HnK′′
δ∗n // Hn−1K′ // . . .

an jeder Stelle exakt ist. An den Stellen HnK , n ∈ Z ist diese Sequenz nach Lemma 6.1.9
bereits exakt. Wir müssen also noch die Konstruktion von δ∗n durchführen und die Exaktheit
an den Stellen HnK′′ und Hn−1K′ zeigen. Ans Werk:

Gegeben sei eine exakte Sequenz von Kettenkomplexen und Kettenabbildungen

0 // K′
α // K

β // K′′ // 0 (∗)

Die folgende Konstruktion verfolge man an dem ausführlicheren Diagramm der Sequenz (∗).

��
∂ ′n+2�� ��

∂n+2
�� ��

∂ ′′n+2��

0 // K′n+1
αn+1 //

∂ ′n+1
��

Kn+1
βn+1 //

∂n+1
��

K′′n+1
//

∂ ′′n+1
��

0

0 // K′n
αn //

∂ ′n
��

Kn
βn //

∂n
��

K′′n //

∂ ′′n
��

0

0 // K′n−1
αn−1 //

∂ ′n−1

��

Kn−1
βn−1 //

∂n−1

��

K′′n−1
//

∂ ′′n−1

��

0

Sei x′′n ∈ ZnK′′. Dann gibt es ein xn ∈ Kn mit x′′n = βnxn. Also 0 = ∂ ′′n x′′n = ∂ ′′n βnxn = βn−1∂nxn
und somit ∂nxn ∈ ker(βn−1) = im(αn−1). Es gibt daher ein x′n−1 ∈ K′n−1 mit ∂nxn = αn−1x′n−1.
Aus αn−2∂ ′n−1x′n−1 = ∂n−1αn−1x′n−1 = ∂n−1∂nxn = 0 folgt ∂ ′n−1x′n−1 = 0, also x′n−1 ∈ Z′n−1.
Wir definieren daher allgemein δn : ZnK′′→ Hn−1K′ durch δn(x′′n) := [x′n−1]. Zeigen wir, dass
δn : ZnK′′→ Hn−1K′ auch wirklich wohldefiniert ist:

Falls x′′n = βnyn und ∂nyn = αn−1y′n−1, so folgt 0 = βn(xn− yn), also xn− yn = αnz′n für
ein gewisses z′n ∈ K′n. Es folgt αn−1∂ ′nz′n = ∂nαnz′n = ∂n(xn− yn) = αn−1(x′n−1− y′n−1) und
somit x′n−1−y′n−1 = ∂nz′n, also [x′n−1] = [y′n−1]. Das es sich bei δn um einen Homomorphismus
handelt ist klar.
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Nun können wir δ∗n : HnK′′→Hn−1K′ durch δ∗n([x′′n]) := δn(x′′n) definieren. Das es sich um
einen Homomorphismus handelt ist klar. Zu zeigen ist nur die Wohldefiniertheit:

Sei [x′′n] = [y′′n], also x′′n − y′′n = ∂ ′′n+1z′′n+1. Sei x′′n = βnxn und y′′n = βnyn, also βn(xn− yn) =
∂ ′′n+1z′′n+1. Nun gibt es aber auch ein zn+1 mit βn+1zn+1 = z′′n+1 und es folgt ∂ ′′n+1z′′n+1 =
∂ ′′n+1βn+1zn+1 = βn∂n+1zn+1, also βn(xn− yn− ∂n+1zn+1) = 0. Es gibt daher auch ein z′n mit
xn− yn− ∂n+1zn+1 = αnz′n und wir erhalten x′′n − y′′n = βn(xn− yn) = βn(αnz′n + ∂n+1zn+1) =
βn∂n+1zn+1 = ∂ ′′n+1βn+1zn+1 und damit [x′′n] = [y′′n].

6.1.10 Lemma

Die Sequenz

. . . // Hn+1K
Hn+1β// Hn+1K′′

δ∗n+1 // HnK′
Hnα // HnK

Hnβ // HnK′′
δ∗n // Hn−1K′ // . . .

ist an jeder Stelle exakt.

Beweis: Exaktheit an den Stellen HnK , n ∈ Z ist gerade in Lemma 6.1.9 bewiesen worden.
Teil 1: Es gilt im(Hnβ ) = ker(δ∗n). Beweis dazu: Sei [x′′n] = Hnβ ([xn]) = [βnxn], für [xn] ∈

HnK, also xn ∈ ZnK. Es folgt 0 = ∂nxn und somit δ∗n([x′′n]) = [0], da 0 = ∂nxn = αn−10.
Sei 0 = δ∗n([x′′n]) = [x′n−1], wobei βnxn = x′′n und ∂nxn = αn−1x′n−1. Es gibt daher ein x′n ∈K′n

mit ∂ ′nx′n = x′n−1. Wir folgern αn−1x′n−1 = αn−1∂ ′nx′n = ∂nαnx′n , βn(xn−αnx′n) = x′′n−βnαnx′n =
x′′n und ∂n(xn−αnx′n) = αn−1x′n−1−αn−1∂ ′nx′n = 0. Also ist der Ausdruck [xn−αnx′n] sinnvoll
und es gilt Hnβ ([xn−αnx′n]) = [x′′n].

Teil 2: Es gilt im(δ∗n) = ker(Hn−1α). Beweis dazu: Sei [xn−1] ∈ im(∂∗n), also ∂∗n([x′′n]) =
[x′n−1] , x′′n = βnxn , ∂nxn = αn−1y′n−1 und [x′n−1] = [y′n−1]. Es folgt Hn−1α([y′n−1])= [αn−1y′n−1] =
[∂nxn] = 0, also [x′n−1] ∈ ker(Hn−1α).

Sei [x′n−1] ∈ ker(Hn−1α), also 0 = [αn−1x′n−1]. Es folgt αn−1x′n−1 = ∂nxn für gewisses xn ∈
Kn. Für x′′n := βxn gilt dann ∂ ′′n βnxn = βn−1∂nxn = βn−1αn−1x′n−1 = 0, also x′′n ∈ ZnK′′ und
∂∗n([x′′n]) = [x′n−1] und somit [x′n−1] ∈ im(∂∗n).

6.1.11 Lemma

Gegeben sei das folgende kommutative Diagramm von Kettenkomplexen und Kettenab-
bildungen, wobei beide Zeilen exakt sind.

0 // K′
α //

γ ′

��

K
β //

γ

��

K′′ //

γ ′′

��

0

0 // L′ κ
// L

λ

// L′′ // 0
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Dann ist auch das folgende (unendliche) Diagramm kommutativ und hat exakte Zeilen.

. . . // Hn+1K
Hn+1β//

Hn+1γ

��

Hn+1K′′
δ 1
∗n+1 //

Hn+1γ ′′

��

HnK′
Hnα //

Hnγ ′

��

HnK
Hnβ //

Hnγ

��

HnK′′
δ 1
∗n //

Hnγ ′′

��

Hn−1K′

Hn−1γ ′

��

// . . .

. . . // Hn+1L
Hn+1λ // Hn+1L′′

δ 2
∗n+1 // HnL′

Hnκ // HnL
Hnλ // HnL′′

δ 2
∗n // Hn−1L′ // . . .

Beweis: Es reicht die Kommutativität in diesem Teil des Diagramms zu überprüfen.

HnK′′
δ 1
∗n //

Hnγ ′′

��

Hn−1K′

Hn−1γ ′

��
HnL′′

δ 2
∗n // Hn−1L′

Sei [x′′n]∈HnK′′. Schauen wir uns den oberen Weg an: Es folgt Hn−1γ ′◦δ 1
∗n([x

′′
n]) = [γ ′n−1x′n−1],

wobei x′′n = βnxn und ∂ 1
n xn = αn−1x′n−1.

Für den unteren Weg bemerken wir zunächst γ ′′n x′′n = γ ′′n βnxn = λnγnxn = λnyn mit yn :=
γnxn. Damit folgt ∂ 2

n yn = ∂ 2
n γnxn = γn−1∂ 1

n xn = γn−1αn−1x′n−1 = κn−1(γ ′n−1x′n−1), also auch
δ 2
∗n ◦Hn(γ ′′)([x′′n]) = δ 2

∗n([γ
′′
n x′′n]) = [γ ′n−1x′n−1].

6.2 Singuläre Homologie
6.2.1 Definition

∆q := {(x0, ...,xq) ∈ Rq+1 | 0 ≤ xi ≤ 1 , i = 0, ...,q und ∑
q
i=0 xi = 1} heißt der standard q-

Simplex. Offenbar ist ∆q konvex, abgeschlossen, beschränkt (also auch kompakt). Sei (X ,τ)
ein topologischer Raum. Eine stetige Abbildung σ : ∆q → X bezeichnen wir als singuläres
q-Simplex ist.

Sei q≥ 1 und i ∈ {0, ...,q}. Wir definieren di
q : ∆q−1→ ∆q durch

di
q(t0, ..., tq−1) = (t0, ..., ti−1,0, ti, ..., tq−1).

Man sieht leicht, dass di
q die Einschränkung der linearen Abbildung d̃i

q : Rq→ Rq+1

d̃i
q(e j) =

{
e j falls j < i
e j+1 falls i≤ j

ist, wobei ei ein standard Basisvektor der Form (0, ...,0,1,0, ...,0) ist. Als lineare Abbildung
ist d̃i

q und damit auch die Einschränkung di
q = d̃i

q|∆q−1 stetig. Noch eine kleine aber wichtige
Bemerkung: Für alle i, j ∈ {0, ...q} mit j < i ist

di
qd j

q−1 = d j
qdi−1

q−1
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(beweist man leicht durch Anwendung auf die Basisvektoren). Sei nun (X ,τ) ein topologischer
Raum. Für alle q ∈ Z setzen wir nun

Mq(X)(= Mq(X ,τ)) :=

{
/0 falls q < 0
{σ | σ : ∆q→ X ist stetig} falls 0≤ q

und anschließend Sq(X) := R〈Mq(X)〉, den R-Modul der singulären q-Ketten. Man beach-
te unsere Konvention aus dem ersten Abschnitt: Wir fassen Mq(X) als Teilmenge von Sq(X)
auf (um unnötige Notationen zu vermeiden)! Für 0 ≤ i ≤ q betrachten wir die Abbildung
∂ i

q : Mq(X)→Mq−1(X) definiert durch ∂ i
q(σ) := σ ◦di

q und deren eindeutig bestimmte Fortset-
zung auf Sq(X) (Satz 6.1.2), die wir ebenfalls mit ∂ i

q bezeichnen (also ∂ i
q : Sq(X)→ Sq−1(X)).

Anschließend definieren wir den Randoperator4

∂q : Sq(X)→ Sq−1(X) durch ∂q :=
q

∑
i=0

(−1)i
∂

i
q bzw. ∂q = 0 für q≤ 0.

6.2.2 Lemma

Es ist ∂q∂q+1 = 0 für alle q ∈ Z und (Sq(X),∂q)q∈Z ist somit ein Kettenkomplex.

Beweis: Wir rechnen dies auf der Basis Mq+1(X) nach. Sei also σ ∈Mq+1(X). Es folgt

∂q∂q+1(σ) = ∂q(
q+1

∑
i=0

(−1)i
∂

i
q+1(σ)) = ∂q(

q+1

∑
i=0

(−1)i
σdi

q+1) =
q+1

∑
i=0

q

∑
j=0

(−1)i+ j
σdi

q+1d j
q

= ∑
0≤ j<i≤q+1

(−1)i+ j
σdi

q+1d j
q + ∑

0≤i≤ j≤q
(−1)i+ j

σdi
q+1d j

q

= ∑
0≤ j<i≤q+1

(−1)i+ j
σd j

q+1di−1
q + ∑

0≤i≤ j≤q
(−1)i+ j

σdi
q+1d j

q = 0

Einem beliebigen topologischen Raum X haben wir seinen singulären Kettenkomplex SX =
(Sq(X),∂q)q∈Z zugeordnet. Haben wir zwei topologische Räume X ,Y und eine stetige Ab-
bildung f : X → Y , so wäre es natürlich schön, wenn wir mittels f eine Kettenabbildung
S f = (Sq f )q∈Z : S(X)→ S(Y ) bekommen. Für σ ∈Mq(X) ist f ◦σ ∈Mq(Y ). Diese Beobach-
tung führt im Zusammenhang mit Satz 6.1.2 zur Existenz eines eindeutig bestimmten Homo-
morphismus Sq f : SqX → SqY derart, dass Sq f (σ) = f ◦σ für alle σ ∈Mq(X) gilt. Für zwei

stetige Abbildungen X
f→ Y

g→ Z gilt (Sqg)(Sq f ) = Sq(g f ) und SqidX = idSq(X).

4Randoperatoren zu verschiedenen Räumen kennzeichnen wir durch ein hochgestellten Index (z.B. ∂ X
q )
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6.2.3 Lemma

Für eine stetige Abbildung f : X→Y ist S f := (Sq f )q∈Z eine Kettenabbildung S f : S(X)→
S(Y ), d.h. folgendes Diagramm kommutiert.

. . . // Sq+1(X)
∂ X

q+1 //

Sq+1 f
��

Sq(X)
∂ X

q //

Sq f
��

Sq−1(X) //

Sq−1 f
��

. . .

. . . // Sq+1(Y )
∂Y

q+1 // Sq(Y )
∂Y

q // Sq−1(Y ) // . . .

Beweis: Es reicht die Behauptung auf der Basis Mq(X) zu überprüfen. Sei σ ∈Mq(X).

∂
Y
q ◦Sq f (σ) = ∂

Y
q ( f σ) =

q

∑
i=0

∂
i
q( f σ) =

q

∑
i=0

( f σ)di
q =

q

∑
i=0

f (σdi
q)

=
q

∑
i=0

f ◦ (∂ i
q(σ)) = Sq f (

q

∑
i=0

∂
i
q(σ)) = Sq f (∂ X

q (σ)) = Sq f ◦∂
X
q (σ)

6.2.4 Definition

Unter einem Raumpaar (X ,A) verstehen wir einen topologischen Raum (X ,τ) mit einer Teil-
menge A⊆ X . Die Topologie wird (da meistens klar ist welche gemeint ist) in dieser Notation
unterdrückt. Unter einer Abbildung von Raumpaaren f : (X ,A)→ (Y,B) verstehen wir eine
stetige Abbildung f : X → Y mit f (A) ⊆ B. Statt (X , /0) schreiben wir auch einfach X . Wir
identifizieren X also mit (X , /0).

Sei ein Raumpaar (X ,A) mit der Inklusionsabbildung iA : A→ X , iA(a) = a gegeben. Of-
fenbar ist SqiA injektiv und wir definieren Sq(X ,A) := Sq(X)/SqiA(Sq(A)) und p : Sq(X)→
Sq(X ,A) als die Projektion. Tatsächlich fassen wir Sq(A) als Untermodul von Sq(X) auf und
schreiben daher Sq(X ,A) = Sq(X)/Sq(A). Da ∂q(Sq(A)) ⊆ Sq−1(A) können wir den Quotien-
tenkettenkomplex S(X ,A) := S(X)/S(A) bilden. Dies führt zu der exakten Sequenz

0 // SA
SiA // SX

p // S(X ,A) // 0 (∗)

Offenbar ist dann Sq(X)∼= Sq(A)⊕Sq(X ,A) für jedes q ∈ Z, das heißt die Sequenz (∗) spaltet.
(Beweis: Jedes Element aus Sq(X) lässt sich als Linearkombination von Elementen aus Mq(X)
schreiben; diejenigen, deren Bild in A ist und die, deren Bild nicht in A ist.)

6.2.5 Definition

Sei (X ,A) ein Raumpaar. Den zum Kettenkomplex S(X ,A) zugehörigen graduierten R-Homologiemodul
(Hq(X ,A))q∈Z mit Hq(X ,A) := HqS(X ,A) nennen wir den relativen singulären graduierten
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R-Homologiemodul von (X ,A). Für X = (X , /0) erhalten wir den singulären graduierten
R-Homologiemodul (HqX)q∈Z mit HqX := HqSX .

Eine Abbildung f : (X ,A)→ (Y,B) induziert ein kommutatives Diagramm (S f entsteht aus
S f durch Übergang zu Quotienten).

0 // SA
SqiA //

S( f |A)
��

SX
p //

S f
��

S(X ,A) //

S f
��

0

0 // SB
SqiB // SY

p // S(Y,B) // 0

Beachten wir, dass p offenbar durch die Inklusion j : (X , /0)→ (X ,A) induziert ist, also
pq = Sq j, so bekommen wir mit Lemma 6.1.11 den wichtigen Satz:

6.2.6 Satz

(a) Für jedes Raumpaar (X ,A) mit den Inklusionen i : A→ X und j : X → (X ,A) ist die
folgende lange Sequenz von Homomorphismen exakt.

. . . // HqA
Hqi
// HqX

Hq j
// Hq(X ,A)

δ
(X ,A)
∗q // Hq−1A // . . .

(b) Ist f : (X ,A)→ (Y,B) so bekommen wir das folgende kommutative, in den Zeilen
exakte Diagramm, wobei Hq f |A := HqS( f |A) und entsprechend Hq f , Hq f , HqiA , Hq j

. . . // HqA
HqiA //

Hq f |A
��

HqX
Hq jX//

Hq f
��

Hq(X ,A)
δ 1
∗q //

Hq f
��

Hq−1A //

Hq−1 f |A
��

. . .

. . . // HqB
HqiB // HqY

Hq jY// Hq(Y,B)
δ 2
∗q // Hq−1B // . . .

6.2.7 Beispiel

Sei P = {p} ein Einpunktraum. Dann ist Mq(P) = {σ : ∆q→ P | σ ist stetig}= {ξq} für q≥ 1
auch einelementig und folglich Sq(P)∼= R (Für q≤ 0 ist Mq(X) = /0). Ferner ist

∂
P
q ξq =

{
ξq−1 für q gerade und q≥ 1
0 (Nullabbildung) für q ungerade, oder q≤ 0

Damit überlegt man sich dann leicht

HqP = ker(∂ X
q )/im(∂ X

q+1)∼=

{
R für q = 0
{0} für q 6= 0
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6.2.8 Lemma

Sei (X ,A) ein Raumpaar und (Xd)d∈D eine Zerlegung von X in paarweise disjunkte offene
Mengen. Mit Ad := A∩Xd für d ∈ D ist Hq(X ,A)∼=

⊕
d∈D Hq(Xd,Ad) für alle q ∈ Z.

Beweis: Wir betrachten das folgende Diagramm und verwenden das Fünferlemma.⊕
d∈D Hq(Ad)

fq
��

//
⊕

d∈D Hq(Xd) //

gq
��

⊕
d∈D Hq(Xd,Ad) //

hq
��

0 //

��

0

��
Hq(A) // Hq(X) // Hq(X ,A) // 0 // 0

Die horizontalen Abbildungen sind inklusionsinduziert (in der oberen Zeile in jeder Dimensi-
on d) und die vertikalen Abbildungen fq,gq,hq sind alle von der Art

hq(([cd])d∈D) := ∑
d∈D

Hqid([cd]) = [ ∑
d∈D

cd]

wobei id : (Xd,Ad)→ (X ,A) die entsprechende Inklusion ist. Um Lemma 6.1.5 anwenden zu
können, müssen wir nur noch zeigen, dass gq ein Isomorphismus ist. Die restlichen Voraus-
setzungen (Exaktheit, Kommutativität, ...) sind offensichtlich erfüllt. Wir betrachten also die
Abbildung gq(([cd])d∈D) := ∑d∈D Hqid([cd]) = [∑d∈D cd], mit Inklusion id : Xd → X . Dass es
sich um einen wohldefinierten Homomorphismus handelt, ist klar. Da ∆q wegweise zusam-
menhängend ist, gilt für alle q ∈ Mq(X) σ(∆q) ⊆ Xd für genau ein d ∈ D. Damit sieht man
Sq(X)∼=

⊕
d∈D Sq(Xd) (∗) und natürlich auch ∂q(Sq(Xd))⊆ Sq−1(Xd) für alle q ∈ Z.

Injektivität: Sei gq(([cd])d∈D) = [∑d∈D cd] = 0. Dann gibt es ein b ∈ Sq+1(X) mit ∂q+1b =
∑d∈D cd . Es gibt aber auch eindeutig bestimmte bd ∈ Sq+1(Xd) mit b = ∑d∈D bd . Aus ∑d∈D cd =
∂q+1b = ∑d∈D ∂q+1bd und der Eindeutigkeit der Darstellung (folgt aus (∗)) folgt nun ∂q+1bd =
cd . Dann folgt aber [cd] = 0 in Hq(Xd).

Surjektivität: Sei [c]∈Hq(X), mit c∈ ker(∂q). Es ist c = ∑d∈D cd (mit eindeutig bestimmten
cd ∈ Sq(Xd)). Aus 0 = ∂qc = ∑d∈D ∂qcd und der Eindeutigkeit der Darstellung folgt ∂qcd = 0
für alle d ∈ D, also [c] = gq(([cd])d∈D) mit ([cd])d∈D ∈

⊕
d∈D Hq(Xd).

6.3 Homotopieinvarianz
6.3.1 Definition

Seien f ,g : K→K′ zwei Kettenabbildungen zwischen zwei Kettenkomplexen K = (Kn,∂n)n∈Z
und K′ = (K′n,∂

′
n)n∈Z. Eine Familie p = (pn)n∈Z von Homomorphismen pn : Kn→ K′n+1 be-

zeichnet man als Kettenhomotopie von f nach g (in Zeichen p : f → g), falls ∂ ′n+1 pn +
pn−1∂n = fn− gn für alle n ∈ Z gilt. Wir schreiben f ∼ g falls solch eine Kettenhomotopie
existiert und sagen f und g sind kettenhomotop.
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6.3.2 Lemma

(1) Kettenhomotop ist eine Äquivalenzrelation.
(2) Seien f ,g : K→ K′ und f ′,g′ : K′→ K′′ Kettenabbildungen und f ∼ g mittels p =

(pn)n∈Z bzw. f ′ ∼ g′ mittels q = (qn)n∈Z, so ist f ′ ◦ f ∼ g′ ◦ g mittels ( f ′n+1 ◦ pn + qn ◦
gn)n∈Z.

(3) Wenn f ∼ g : K→ K′, so gilt Hn f = Hng für alle n ∈ Z.

Beweis: (1) f ∼ f mittels p = (0)n∈Z (Familie von 0-Homomorphismen).
Falls p : f → g, so −p = (−pn)n∈Z : g→ f .
p : f → g und q : g→ h, so p+q = (pn +qn)n∈Z : f → h.
(2) Es gilt f ′ ◦ f ∼ f ′ ◦g mittels p′ = ( f ′n+1 ◦ pn)n∈Z und f ′ ◦g∼ g′ ◦g mittels
q′ = (qn ◦gn)n∈Z. Der Rest folgt aus dem Beweis der Transitivität in (1).
(3) Sei p = (pn)n∈Z : f → g und [xn] ∈ HnK. Da ∂nxn = 0 und [∂ ′n+1 pnxn] = 0 folgt
Hn f ([xn])−Hng([xn]) = [( fn−gn)(xn)] = [∂ ′n+1 pnxn]+ [pn−1∂nxn] = 0.

6.3.3 Definition

Sei X konvex und A0, ...,Aq ∈ X . Dann ist [A0, ...,Aq] : ∆q→ X definiert durch

[A0, ...,Aq](t0, ..., tq) :=
q

∑
i=0

tiAi

Das Ziel des Rest dieses Abschnitts ist der Beweis des folgenden fundamentalen Satzes:
Sind f ,g : X → Y homotop, so ist Hq f = Hqg für alle q ∈ Z. Sind f ,g : X → Y homotop, so
gibt es eine stetige Abbildung F : X×I→Y , wobei I = [0,1] derart, dass ∀x∈X f (x) = F(x,0)
und g(x) = F(x,1). Definieren wir λt : X → X × I , x 7→ (x, t) für t ∈ I, so ist also f = F ◦λ0
und g = F ◦λ1. Es folgt damit Hq f = (HqF)◦ (Hqλ0) und Hqg = (HqF)◦ (Hqλ1). Wenn wir
also Hqλ0 = Hqλ1 zeigen können, so sind wir fertig. Nach Lemma 6.3.2 genügt es dafür eine
Kettenhomotopie (PX

q )q∈Z : (Sqλ0)q∈Z→ (Sqλ1)q∈Z zu finden. Wir definieren dazu

Aq
i := [(e0,0), ...,(ei,0),(ei,1), ...,(eq,1)] : ∆q+1→ ∆q× I

Für σ ∈Mq(X) setzen wir nun

PX
q (σ) :=

q

∑
i=0

(−1)i(σ × idI)◦Aq
i

und betrachten dann die lineare Fortsetzung auf Sq(X).
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6.3.4 Lemma

Ist f : X → Y stetig, so ist das folgende Diagramm kommutativ.

Sq(X)
PX

q //

Sq f
��

Sq+1(X× I)

Sq+1( f×idI)
��

Sq(Y )
PY

q // Sq+1(Y × I)

Beweis: Wir rechnen die Behauptung auf Mq(X) nach. Sei also σ ∈Mq(X). Es folgt
PY

q ◦Sq f (σ) = ∑
q
i=0(−1)i(( f ◦σ)× idI)◦Aq

i = ∑
q
i=0(−1)iSq+1(( f ◦σ)× idI)(A

q
i )

= Sq+1(( f ◦σ)× idI)(∑
q
i=0(−1)iAq

i ) = Sq+1( f × idI)◦Sq+1(σ × idI)(∑
q
i=0(−1)iAq

i )
= Sq+1( f × idI)(∑

q
i=0(−1)i(σ × idI)◦Aq

i ) = Sq+1( f × idI)◦PX
q (σ).

6.3.5 Lemma

Es ist

∂
∆q×I
q+1 P∆q

q ([e0, ...,eq])+P∆q
q−1∂

∆q
q ([e0, ...,eq]) = [(e0,1), ...,(eq,1)]− [(e0,0), ...,(eq,0)]

Beweis: Es ist

∂
∆q×I
q+1 P∆q

q ([e0, ...,eq]) = ∂
∆q×I
q+1 P∆q

q (id∆q) = ∂
∆q×I
q+1 (

q

∑
i=0

(−1)i(id∆q× idI)◦Aq
i )

= ∂
∆q×I
q+1 (

q

∑
i=0

(−1)iAq
i ) =

q

∑
i=0

(−1)i
∂

∆q×I
q+1 Aq

i = T1 +T2 +T ′3

mit

T1 :=
q

∑
i, j=0, j<i

(−1)i+ j[(e0,0), ..., ˆ(e j,0), ...,(ei,0)(ei,1), ...,(eq,1)],

T2 := ∑
0≤i= j≤q

[(e0,0), ..., ˆ(ei,0),(ei,1), ...,(eq,1)] und

T ′3 :=
q+1

∑
i, j=0,i< j

(−1)i+ j[(e0,0), ...,(ei,0),(ei,1), ..., ˆ(e j−1,1), ...,(eq,1)]

=−
q

∑
i, j=0,i< j

(−1)i+ j[(e0,0), ...,(ei,0),(ei,1), ..., ˆ(e j,1), ...,(eq,1)]
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−
q

∑
i=0

[(e0,0), ...,(ei,0), ˆ(ei,1), ...,(eq,1)].

Setzen wir T3 :=−
q

∑
i, j=0,i< j

(−1)i+ j[(e0,0), ...,(ei,0),(ei,1), ..., ˆ(e j,1), ...,(eq,1)] und

T4 :=−
q

∑
i=0

[(e0,0), ...,(ei,0), ˆ(ei,1), ...,(eq,1)], so bekommen wir

∂
∆q×I
q+1 P∆q

q ([e0, ...,eq])= T1+T2+T3+T4 und T2+T4 = [(e0,1), ...,(eq,1)]−[(e0,0), ...,(eq,0)].

Andererseits ist P∆q
q−1∂

∆q
q ([e0, ...,eq]) = P∆q

q−1(
q

∑
j=0

(−1) j[e0, ..., ê j, ...,eq])

=
q

∑
j=0

(−1) jP∆q
q−1([e0, ..., ê j, ...,eq]) =

q

∑
j=0

q−1

∑
i=0

(−1)i+ j([e0, ..., ê j, ...,eq]× idI)◦Aq−1
i

=
q

∑
i, j=0,i< j

(−1)i+ j[(e0,0), ...,(ei,0),(ei,1), ..., ˆ(e j,1), ...,(eq,1)]

+
q−1

∑
i, j=0, j≤i

(−1)i+ j[(e0,0), ..., ˆ(e j,0), ...,(ei+1,0),(ei+1,1), ...,(eq,1)]

=
q

∑
i, j=0,i< j

(−1)i+ j[(e0,0), ...,(ei,0),(ei,1), ..., ˆ(e j,1), ...,(eq,1)]

−
q

∑
i, j=0, j<i

(−1)i+ j[(e0,0), ..., ˆ(e j,0), ...,(ei,0),(ei,1), ...,(eq,1)] =−T3−T1.

6.3.6 Lemma

(PX
q )q∈Z ist eine Kettenhomotopie von (Sqλ0)q∈Z nach (Sqλ1)q∈Z.

Beweis: Mit dem vorigen Lemma erhalten wir für σ ∈ Sq(X)

∂
X×I
q+1 PX

q (σ) = ∂
X×I
q+1 PX

q Sqσ(id∆q) = ∂
X×I
q+1 Sq+1(σ × idI)P

∆q
q (id∆q)

= Sq+1(σ × idI)∂
∆q×I
q+1 P∆q

q (id∆q) = Sq+1(σ × idI)∂
∆q×I
q+1 P∆q

q ([e0, ...,eq])

= Sq+1(σ × idI)(−P∆q
q−1∂

∆q
q ([e0, ...,eq])+ [(e0,1), ...,(eq,1)]− [(e0,0), ...,(eq,0)])

=−PX
q−1∂

X
q (σ)+Sq(λ1)(σ)−Sq(λ0)(σ)

wobei wir Lemma 6.3.4 und Sq+1(σ × idI)([(e0, t), ...,(eq, t)]) = Sq(λt)(σ) verwendet haben.

Damit haben wir den folgenden Satz bewiesen:
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6.3.7 Homotopieinvarianz für Räume

Sind f ,g : X → Y homotop, so ist Hq f = Hqg : HqX → HqY für alle q ∈ Z.

6.3.8 Definition

f ,g : (X ,A)→ (Y,B) sind homotop, falls ein stetiges F : (X × I,A× I)→ (Y,B) existiert mit
f (x) = F(x,0) und g(x) = F(x,1) (für alle x ∈ X).

6.3.9 Homotopieinvarianz für Paare

Sind f ,g : (X ,A)→ (Y,A) homotop, so ist Hq f = Hqg : Hq(X ,A)→ Hq(Y,B).

Beweis: Setze wieder λs := (X ,A)→ (X×I,A×I) , x 7→ (x,s). Damit gilt wieder f = F ◦λ0
und g = Fλ1. Wir müssen zeigen Hqλ0 = Hqλ1 : Hq(X ,A)→ Hq(X × I,A× I). Dafür genügt
es eine Kettenhomotopie (Pq : Sq(X)/Sq(A)→ Sq+1(X × I)/Sq+1(A× I))q∈Z von (Sqλ0)q∈Z
nach (Sqλ1)q∈Z zu finden. Beachten wir, dass folgendes Diagramm kommutativ ist,

Sq(A)
Sqi

//

PA
q
��

Sq(X)

PX
q
��

Sq+1(A× I)
Sq+1i

// Sq+1(X× I)

ist klar, dass es eine Quotientenabbildung Pq : Sq(X)/Sq(A)→ Sq+1(X× I)/Sq+1(A× I) gibt.

6.4 Ausschneidungssatz

6.4.1 Satz

Für einen topologischen Raum X ist äquivalent:

• Aussschneidung 1: Für alle U ⊆ A⊆ X mit U ⊆ A◦ induziert die Inklusion

i : (X \U,A\U)→ (X ,A) für jedes q ∈ Z einen Isomorphismus

Hqi : Hq(X \U,A\U)→ Hq(X ,A)
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• Aussschneidung 2: Für alle X1,X2 ⊆ X mit X = X◦1 ∪X◦2 induziert die Inklusion

j : (X1,X1∩X2)→ (X ,X2) einen Isomorphismus

Hq j : Hq(X1,X1∩X2)→ Hq(X ,X2)

Beweis: 1.⇒ 2. Sei X = X◦1 ∪X◦2 . Setze A := X2 und U := X \X1. Dann ist U = X \X◦1 ⊆
X◦2 = A◦ und (X \U,A \U) = (X1,X1 ∩X2) und (X ,A) = (X ,X2). Die Inklusionen stimmen
überein. Da 1. gilt, wird ein Iso. induziert.

2.⇒ 1. Sei ⊆U ⊆ A◦ ⊆ A⊆ X . Wir setzen X2 := A und X1 := X \U . Dann folgt X◦1 ∪X◦2 =
A◦ ∪X \U ⊇ U ∪X \U = X und (X1,X1 ∩X2) = (X \U,A \U) bzw. (X ,X2) = (X ,A). Die
Inklusionen stimmen also wieder überein und da 2. gilt, wird ein Iso. induziert.

6.4.2 Definition

Für konvexes X ⊆ Rn sei

SLq(X) := 〈MLq(X)〉 , wobei MLq(X) := {[A0, ...,Aq] | A0, ...,Aq ∈ X},

also SLq(X)≤ Sq(X). Dann definieren wir für jedes P ∈ X durch lineare Fortsetzung

Kq
P : SLq(X)→ SLq+1(X) durch Kq

P([A0, ...,Aq]) := [P,A0, ...,Aq].

Offenbar gilt auch ∂ X
q (SLq(X))⊆ SLq−1(X) und (SLq(X),∂ X

q |SLq(X))q∈Z können wir als Un-
terkomplex von (Sq(X),∂ X

q )q∈Z auffassen.
Ohne Probleme nachrechnen (auf MLq(X)) kann man folgendes Lemma.

6.4.3 Lemma

Sei X ⊆ Rn konvex und P ∈ X . Dann gilt:
(a) ∀q≥ 1∀cq ∈ SLq(X) ist (∂ X

q+1 ◦Kq
P)(cq) = cq− (Kq−1

P ◦∂ X
q )(cq).

(b) ∀c0 ∈ SL0(X) ist (∂ X
1 ◦K0

P)(c0) = c0− εX(c0) · [P], wobei εX : S0(X)→ R durch
lineare Fortsetzung von M0 3 σ 7→ 1 definiert ist.

Für A0, ...,Aq ∈ X definieren wir den Schwerpunkt B(A0, ...,Aq) := 1
q+1 ∑

q
i=0 Ai.

Ohne Beweis noch folgende einfache aber nützliche Bemerkung: Seien X bzw. Y konvexe
Teilmengen des Rn bzw. Rk und f : X→Y die Einschränkung einer linearen Abbildung Rn→
Rk und B ∈ X . Dann ist (Sq+1 f )◦Kq

B = Kq
f (B) ◦ (Sq f ) für alle q ∈ N.
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6.4.4 Definition

Wir definieren induktiv eine Abbildung UX
q : Sq(X)→ Sq(X), den sogenanten Unterteilungs-

operator durch

UX
q σ :=

{
0 für q < 0

(Sqσ)U∆q
q id∆q für q≥ 0

mit U∆q
q id∆q := Kq−1

Bq
U∆q

q−1∂
∆q
q id∆q und U∆0

0 id∆0 := id∆0

Durch Induktion lassen sich dann leicht folgende Aussagen beweisen.

(1) Sq f ◦UX
q = UY

q ◦Sq f für alle stetigen f : X → Y .
(2) Ist X ⊆ Rn konvex und q≥ 1, σ = [A0, ...,Aq], so ist UX

q σ = Kq−1
B(A0,...,Aq)

UX
q−1∂ X

q σ .

(3) UX
q (SLq(X))⊆ SLq(X), falls X ⊆ Rn konvex ist.

6.4.5 Lemma

UX := (UX
q : Sq(X)→ Sq(X))q∈Z : SX → SX ist eine Kettenabbildung.

Beweis: Wir führen einen Induktionsbeweis. Für q≤ 0 ist alles klar.
Sei q = 1: ∂ X

1 UX
1 σ = ∂ X

1 (S1σ)U∆1
1 id∆1 = (S0σ)∂ ∆1

1 U1∆1id∆1 = (S0σ)∂ ∆1
1 K0

B1
U∆1

0 ∂
∆1
1 id∆1

= (S0σ)∂ ∆1
1 K0

B1
∂

∆1
1 id∆1 = (S0σ)(∂ ∆1

1 id∆1− εX(∂ ∆1
1 ) · [B1]) = (S0σ)∂ ∆1

1 id∆1 = ∂ X
1 (S1σ)id∆1

= ∂ X
1 σ = UX

0 ∂ X
1 σ .

Schritt q−1→ q: ∂ X
q UX

q σ = ∂ X
q (Sqσ)U∆q

q id∆q = (Sq−1σ)∂ ∆q
q U∆q

q id∆q

= (Sq−1σ)∂ ∆q
q Kq−1

Bq
U∆q

q−1∂
∆q
q id∆q︸ ︷︷ ︸

=:c

= (Sq−1σ)(c−Kq−1
Bq

∂
∆q
q−1c)

= (Sq−1σ)c− (Sq−1σ)Kq−1
Bq

∂
∆q
q−1U∆q

q−1︸ ︷︷ ︸
=U

∆q
q−2∂

∆q
q−1

∂
∆q
q id∆q = (Sq−1σ)U∆q

q−1∂
∆q
q id∆q

= UX
q−1(Sq−1σ)∂ ∆q

q id∆q = UX
q−1∂ X

q (Sqσ)id∆q = UX
q−1∂ X

q σ .

Unser nächstes Ziel ist es eine Kettenhomotopie (RX
q : Sq(X)→ Sq+1(X))q∈Z von (UX

q )q∈Z
nach (idSq(X))q∈Z zu konstruieren. Die Definition zieht sich (ähnlich wie beim Unterteilungs-
operator) induktiv über zwei Etappen.

6.4.6 Definition

Sei σ ∈Mq(X). Setze dann

RX
q σ :=

{
0 für q≤ 0

(Sq+1σ)R∆q
q id∆q für q≥ 1

mit R∆q
q id∆q := Kq

Bq
(id∆q−U∆q

q id∆q−R∆q
q−1∂

∆q
q id∆q)
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Und wieder lassen sich durch Induktion leicht folgende Aussagen zeigen.

6.4.7 Lemma

(1) Es gilt Sq+1 f RX
q = RY

q Sq f für stetiges f : X → Y und RX
q (SLq(X))⊆ SLq+1(X).

(2) (RX
q : Sq(X) → Sq+1(X))q∈Z ist eine Kettenhomotopie von (UX

q )q∈Z nach
(idSq(X))q∈Z.

6.4.8 Definition

Sei σ = [A0, ...,Aq] ∈MLq(Rn) gegeben.

D(σ) := diam(σ(∆q)) = sup
x,y∈∆q

(|σ(x)−σ(y)|)

bezeichnen wir als den Durchmesser von σ .
Da σ(∆q) = {∑q

i=0 λiAi | (λ0, ...,λq) ∈ ∆q}= {∑q
i=0 λiAi | 0≤ λi ≤ 1 , ∑

q
i=0 λi = 1} folgt:

6.4.9 Lemma

Sei σ = [A0, ...,Aq] für A0, ...,Aq ∈ Rn. Dann gilt:
(1) Ist x ∈ σ(∆q) und y ∈ Rn. Dann ist |x− y| ≤max{|Ai− y| | 0≤ i≤ q}.
(2) Es ist D(σ) = maxi, j≤q |Ai−A j|.

Beweis: (1) Sei x = ∑
q
i=0 λiAi, mit ∑

q
i=0 λi = 1 und λi ≥ 0. Also |x− y| = |∑q

i=0 λiAi−
∑

q
i=0 λiy|= |∑q

i=0 λi(Ai− y)| ≤ ∑
q
i=0 λi|Ai− y| ≤ maxi≤q|Ai− y|∑q

i=0 λi = maxi≤q|Ai− y|.
(2) Seien x,y∈ σ(∆q). Dann folgt aus (1) |x−y| ≤maxi≤q|Ai−y|. Nochmalige Anwendung

von (1) führt auf maxi≤q|Ai− y| ≤ maxi, j≤q|Ai−A j|.

6.4.10 Lemma

Sei X ⊆ Rn konvex, A0, ...,Aq ∈ X und UX
q ([A0, ...,Aq]) = ∑σ∈MLq(X) rσ σ . Dann gilt für

alle σ ∈MLq(X) : rσ 6= 0 ⇒ D(σ)≤ q
q+1D([A0, ...,Aq]).

Beweis: Für q = 0 ist alles klar. Sei die Behauptung für alle k < q bewiesen. Nun ist

UX
q [A0, ...,Aq] = Kq−1

B(A0,...,Aq)
UX

q−1∂
X
q [A0, ...,Aq] = Kq−1

B(A0,...,Aq)

q

∑
i=0

(−1)iUX
q−1[A0, ..., Âi, ...,Aq].
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Per Induktion folgt für die linearen τ’s, welche in UX
q−1[A0, ..., Âi, ...,Aq] vorkommen

D(τ)≤ q−1
q

D([A0, ..., Âi, ...,Aq])≤
q−1

q
D([A0, ...,Aq]).

Nun sind die linearen σ ’s aus UX
q [A0, ...,Aq] solche, deren eine Ecke B(A0, ...,Aq) und deren

restliche Ecken von einem τ aus der Darstellung von UX
q−1[A0, ..., Âi, ...,Aq] stammen. Schät-

zen wir den Abstand von B(A0, ...,Aq) zu den Ecken eines der τ’s ab. Dieser ist

≤ sup{|B(A0, ...,Aq)− x | x ∈ τ(∆q−1)} ≤ sup{|B(A0, ...,Aq)− x | x ∈ [A0, ...,Aq](∆q)}

≤max{|B(A0, ...,Aq)−Ai| | 0≤ i≤ q}= max{| 1
q+1

(
q

∑
i=0

A j)−Ai| | 0≤ i≤ q}

≤max{ 1
q+1

q

∑
i=0
|A j−Ai| | 0≤ i≤ q}≤ q

q+1
max{|Ai−A j| | 0≤ i, j≤ q}=

q
q+1

D([A0, ...,Aq])

Zwei Ecken aus einem solchen σ haben also einen Abstand

≤max(
q−1

q
D([A0, ...,Aq]),

q
q+1

D([A0, ...,Aq])) =
q

q+1
D([A0, ...,Aq])

und damit folgt dann D(σ)≤ q
q+1D([A0, ...,Aq]) nach Lemma 6.4.9.

6.4.11 Definition

Sei X ein topologischer Raum und Γ⊆P(X) mit
⋃

Γ = X . Wir setzen

Simpq(X ,Γ) := {σ ∈Mq(X) | ∃G ∈ Γ mit σ(∆q)⊆ G} und Sq(X ,Γ) := 〈Simpq(X ,Γ)〉.

Offenbar gilt ∂ X
q (Sq(X ,Γ)) ⊆ Sq−1(X ,Γ) und wir können (Sq(X ,Γ),∂ X

q |Sq(X ,Γ))q∈Z als Un-
terkomplex von (Sq(X),∂ X

q )q∈Z auffassen. Ist A⊆X so ist Sq(A)∩Sq(X ,Γ) = Sq(A,ΓA), wobei
ΓA := {G∩A | A ∈ α}.

(Beweis dazu: Sq(A,ΓA) ⊆ Sq(A)∩ Sq(X ,Γ) ist klar. Ist x ∈ Sq(A)∩ Sq(X ,Γ), so folgt x =
∑σ∈Mq(X) rσ σ , wobei rσ 6= 0 ⇒ σ ∈ Simpq(X ,Γ) und x = ∑σ∈Mq(X) sσ σ , wobei sσ 6= 0 ⇒
σ ∈ Sq(A). Also 0 = ∑σ∈Mq(X)(rσ−sσ )σ und somit rσ = sσ für alle σ ∈Mq(X). Das bedeutet
aber rσ 6= 0 ⇒ σ ∈ Simpq(X ,Γ)∩Sq(A) = Simpq(A,ΓA) und damit offenbar x ∈ Sq(A,ΓA).)

Wir bilden nun den Quotienten S(X)/S(X ,Γ) := (Sq(X)/Sq(X ,Γ),∂
X
q )q∈Z und beweisen im

Anschluss das folgende fundamentale Lemma.
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6.4.12 Lemma

(a) Sei X ein topologischer Raum und Γ⊆P(X) mit X =
⋃

G∈Γ G◦. Dann ist

Hq(S(X)/S(X ,Γ)) = 0 für alle q ∈ Z.

(b) Inklusion iq : Sq(X ,Γ)→ SqX induziert einen Isomorphismus Hqiq : Hq(X ,Γ)→HqX

(c) Ist zusätzlich A ⊆ X , dann induziert der durch Inklusion iq : Sq(X ,Γ)→ Sq(X) indu-
zierte Homomorphismus

ηq : Sq(X ,Γ)/Sq(A,ΓA)→ Sq(X)/Sq(A)

einen Isomorphismus der Homologiegruppen

Hqη : Hq(S(X ,Γ)/S(A,ΓA))→ Hq(X ,A).

Beweis5: (a) Für q < 0 ist alles klar. Sei q≥ 0 und z ∈ Hq(S(X)/S(X ,Γ)), also z = [c′] mit

c′ ∈ ker(∂
X
q ). Nun ist c′ = c + Sq(X ,Γ) und aus c′ ∈ ker(∂

X
q ) folgt ∂ X

q c ∈ Sq−1(X ,Γ). Wir
zeigen, dass es ein n ∈ N gibt mit Un

q c ∈ Sq(X ,Γ).
Nun gibt es σ1, ...,σm ∈Mq(X) mit c = ∑

m
i=1 riσi. Für jedes i = 1, ...,m ist {σ−1

i (G◦) |G∈Γ}
eine offene Überdeckung von ∆q. Es gibt daher ein εi > 0 derart, dass zu jedem V ⊆ ∆q mit
diam(V ) := sup{|A−B| | A,B ∈V}< εi ein G ∈ Γ existiert mit V ⊆ σ

−1
i (G), also σi(V )⊆G.

Für alle V ⊆ ∆q mit diam(V ) < ε := min(ε1, ...,εm) und jedes i ∈ {1, ...,m} gibt es somit
ein G = G(i,V ) ∈ Γ mit σi(V ) ⊆ G. Nach Lemma 6.4.10 enthält Uqid∆q nur τ’s mit D(τ) ≤

q
q+1D(∆q) = q

q+1

√
2. Da 0 ≤ q

q+1 < 1 gibt es ein hinreichend großes n ∈ N mit ( q
q+1)n

√
2 <

ε . Da Un
q id∆q nur τ’s enthält mit D(τ) ≤ ( q

q+1)n
√

2 und außerdem Un
q σi = (Un

q Sqσi)id∆q =
(Sqσi)Un

q id∆q gilt (einfache Induktion), folgt Un
q σi ∈ Sq(X ,Γ) (man beachte, dass τ : ∆q→ ∆q

und D(τ) = diam(τ(∆q))), also auch Un
q c ∈ Sq(X ,Γ).

Nun ist (Rq)q∈Z eine Kettenhomotopie von (Uq)q∈Z nach (idSq(X))q∈Z (Lemma 6.4.7), also:

∂q+1Rqc =−Rq−1∂qc+ c−Uqc
∂q+1RqUqc =−Rq−1∂qUqc+Uqc−U2

q c
...

∂q+1RqUn−1
q c =−Rq−1∂qUn−1

q c+Un−1
q c−Un

q c

Addition der Gleichungen ergibt:

∂q+1(
n−1

∑
i=0

RqU i
qc) =−(

n−1

∑
i=0

Rq−1∂qU i
qc)+ c−Un

q c =−(
n−1

∑
i=0

Rq−1U i
q−1∂qc)+ c−Un

q c

Es ist Un
q c ∈ Sq(X ,Γ). Da ∂qc ∈ Sq−1(X ,Γ) und somit auch U i

q−1∂qc ∈ Sq−1(X ,Γ), ist auch

5Wir vereinfachen die Notation ein wenig, indem wir obere Indizes teilweise fort lassen.
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Rq−1U i
q−1∂qc ∈ Sq(X ,Γ) und daher ∂q+1(∑n−1

i=0 RqU i
qc)− c = −(∑n−1

i=0 Rq−1U i
q−1∂qc)−Un

q c ∈
Sq(X ,Γ). Also ist z = [c′] = [c+Sq(X ,Γ)] = [∂ q+1((∑n−1

i=0 RqU i
qc)+Sq(X ,Γ))] = 0.

(b) Zur der Inklusion iq : Sq(X ,Γ)→ Sq(X) , q ∈ Z gehört eine kurze exakte Sequenz

0 // S(X ,Γ) // S(X) // S(X)/Sq(X ,Γ) // 0

von entsprechenden Kettenkomplexen, zu der nach Lemma 6.1.10 die lange exakte Sequenz

. . . // Hq+1(S(X)/S(X ,Γ)) // Hq(X ,Γ)
Hqiq // Hq(X) // Hq(S(X)/S(X ,Γ)) // . . .

gehört. Da Hq(S(X)/S(X ,Γ)) = 0 ist für alle q ∈ Z ist Hqiq ein Isomorphismus!

(c) Wir betrachten nun das folgende durch Inklusionen und Projektionen induzierte kom-
mutative Diagramm mit exakten Zeilen

0 // Sq(A,ΓA)

jq
��

// Sq(X ,Γ)

iq
��

// Sq(X ,Γ)/Sq(A,ΓA)

ηq
��

// 0

0 // Sq(A) // Sq(X) // Sq(X)/Sq(A) // 0

Dieses induziert nach Lemma 6.1.11 eine kommutative und in den Zeilen exakte ”Leiter”.
Aus (b) folgt, dass Hqi und Hq j Isomorphismen sind und mit dem Fünferlemma (Lemma
6.1.5) folgt, dass Hqη : Hq(S(X ,Γ)/S(A,ΓA))→ Hq(X ,A) ein Isomorphismus ist.

6.4.13 Ausschneidungssatz

Sei (X ,A) ein Raumpaar und U ⊆ X mit U ⊆ A◦. Dann induziert die Inklusion e : (X \
U,A\U)→ (X ,A) einen Isomorphismus Hqe : Hq(X \U,A\U)→ Hq(X ,A).

Beweis: Γ := {X \U,A} ist eine Überdeckung und erfüllt die Voraussetzung von Lemma
6.4.12 und Hqη : Hq(S(X ,Γ)/S(A,ΓA))→ Hq(X ,A) ist ein Isomorphismus. Aus dem Dia-
gramm

Sq(X \U)/Sq(A\U)
jq //

=
��

Sq(X ,Γ)/Sq(A,ΓA)

=
��

Sq(X \U)/Sq(X \U)∩Sq(A)
∼= // (Sq(X \U)+Sq(A))/Sq(A,ΓA)

(man beachte Sq(A,ΓA) = Sq(A)∩Sq(X ,Γ) = Sq(A), da wegen A∈Γ bereits Sq(A)⊆ Sq(X ,Γ))
folgt, dass die Inklusion induzierte Abbildung jq ein Isomorphismus ist. Da Sqe = ηq jq und
Hq j nun auch ein Isomorphismus ist, ist auch Hqe = (Hqη)◦ (Hq j) ein Isomorphismus.
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6.5 Eilenberg-Steenrod Axiome
6.5.1 Definition

Eine Kategorie C besteht aus

1. einer Klasse von Objekten, bezeichnet mit Ob(C ).

2. Mengen [X ,Y ]C von Morphismen, für jedes Paar X ,Y von Objekten. Wenn F ∈ [X ,Y ]C ,
dann schreiben wir auch F : X →Y . Die Klasse Mor(C ) :=

⋃
X ,Y∈Ob(C )[X ,Y ]C nennen

wir die Morphismenklasse von C .

3. Abbildungen von ◦ : [X ,Y ]C × [Y,Z]C → [X ,Z]C , für jedes geordnet Tripel X ,Y,Z von
Objekten, Kompositionen genannt, welche die folgenden beiden Eigenschaften erfüllen:

(a) γ ◦ (β ◦α) = (γ ◦β )◦α für alle A,B,C,D ∈ Ob(C ) mit A α→ B
β→C

γ→ D.

(b) Für alle X ∈ Ob(C ) existiert ein idX ∈ [X ,X ]C mit α ◦ idX = α und idY ◦α = α für
alle α ∈ [X ,Y ]C (die idX nennen wir Identität von X ; sie ist offenabr eindeutig).

Sind C und C ′ Kategorien, so ist C ′ eine Unterkategorie von C , falls
(1) jedes Objekt von C ′ auch Objekt von C ist.
(2) [X ,Y ]C ′ ⊆ [X ,Y ]C für alle X ,Y ∈ Ob(C ′).
(3) β ◦C ′ α = β ◦C α für alle X ,Y ;Z ∈ Ob(C ′) und alle α ∈ [X ,Y ]C ′ bzw. β ∈ [Y,Z]C ′ .
(4) Die Identitäten aller X ∈ Ob(C ′) stimmen in C und C ′ überein.

6.5.2 Definition

Seien C und D Kategorien. Ein (kovarianter) Funktor T von C nach D (in Symbolen T :
C →D) ist eine Abbildung T : Ob(C )∪Mor(C )→ Ob(D)∪Mor(D) mit

1. T (Ob(C ))⊆ Ob(D)

2. T ([X ,Y ]C )⊆ [T (X),T (Y )]D , für alle X ,Y ∈ Ob(C ) mit

(a) T (β ◦α) = T (β )◦T (α) für alle α ∈ [X ,Y ]C , β ∈ [Y,Z]C .

(b) T (idX) = idT X für alle X ∈ Ob(C ).

Sind S : C → D und T : D → E Funktoren, so kann man diese (als Abbildung aufgefasst)
offenbar nacheinander ausführen. Das Ergebnis T ◦S ist offenbar wieder ein Funktor.

6.5.3 Definition

Seien S,T : C →D zwei Funktoren. Eine natürlichen Transformation φ = (φX)X∈Ob(C ) von
S nach T (in Symbolen φ : S→ T ) nennen wir ein System von Morphismen φX ∈ [SX ,T X ]D ,
einen für jedes X ∈ Ob(C ) derart, dass jedes der folgenden Diagramme

SX Sα //

φX
��

SY
φY
��

T X T α

// TY
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für alle X ,Y ∈ Ob(C ) und alle α ∈ [X ,Y ]C kommutiert.
Mit TOP bezeichnen wir die Kategorie, die als Objekte topologische Räume und als Mor-

phismen stetige Abbildungen hat. Mit TOP2 bezeichnen wir die Kategorie, die als Objekte
Raumpaare und als Morphismen stetige Abbildungen zwischen Raumpaaren hat. Durch den
Funktor I : TOP→ TOP2 mit X ∈Ob(TOP) ⇒ IX := (X , /0) und f ∈ [X ,Y ]TOP ⇒ I f := f
können wir TOP als Unterkategorie von TOP2 auffassen

Mit GRAD R-MODULN bezeichnen wie die Kategorie der Graduierten R-Moduln und
Familien ( fq)q∈Z von Homomorphismen als Morphismen.

Wir fassen die wichtigsten Ergebisse nun in der Sprache der Kategorientheorie zusammen.

6.5.4 Singuläre Homologietheorie

Unter einer singulären Homologietheorie verstehen wir ein Paar (H,∂∗), bestehend aus einem
kovarianten Funktor

H = (Hq)q∈Z : TOP2→GRAD R-MODULN

und einer natürlichen Transformation ∂∗ = (∂ (X ,A)
∗ )(X ,A)∈Ob(TOP2) : H→ H−1 ◦ J

wobei H−1 := (Hq−1)q∈Z aus H durch Indexverschiebung hervorgeht und J : TOP2→ TOP2

durch J(X ,A) := (A, /0) und J( f : (X ,A)→ (Y,B)) := f |A : (A, /0)→ (B, /0) definiert ist, so dass
die Eilenberg-Steenrod Axiome erfüllt sind:

1. Exaktheit: Für jedes Raumpaar (X ,A) mit den Inklusionen i : A → X und j : X =
(X , /0)→ (X ,A) ist die folgende lange Sequenz von Homomorphismen exakt.

. . . // HqA
Hqi
// HqX

Hq j
// Hq(X ,A)

δ
(X ,A)
∗q // Hq−1A // . . .

2. Homotopieinvarianz: Sind f ,g : (X ,A)→ (Y,B) homotope Abbildungen von Raum-
paaren, so ist H f = Hg : H(X ,A)→ H(Y ;B).

3. Ausschneidungseigenschaft: Für jedes Raumpaar (X ,A) und jede Teilmenge U von
X mit U ⊆ A◦ ist He : H(X \U,A \U)→ H(X ,A) ein Isomorphismus; hierbei sei e :
(X \U,A\U)→ (X ,A) die Inklusion.

4. Dimensionseigenschaft: Ist P = {p} ein topologischer Raum, der aus einem Punkt

besteht, so ist HP = (HqP)q∈Z mit HqP =

{
R für q = 0
0 für q 6= 0

5. Additivitätseigenschaft: Für jedes Raumpaar (X ,A) und Zerlegung von X in paarweise
disjunkte offene Mengen (Xd)d∈D, ist Hq(X ,A)∼=

⊕
d∈D Hq(Xd,Ad) für alle q∈Z, wobei

Ad := A∩Xd für d ∈ D
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Die Natürlichkeit von ∂∗ : H→ H−1 ◦ J bedeutet ausführlich, dass das Diagramm

Hq(X ,A)
Hq f

//

∂
(X ,A)
∗q

��

Hq(Y,B)

∂
(Y,B)
∗q
��

Hq−1(A, /0)
Hq−1( f |A)

// Hq−1(B, /0)

für alle Raumpaare und Abbildungen f : (X ,A)→ (Y,B) und q ∈ Z kommutiert.
Die Existenz solch einer singulären Homologietheorie (H,∂∗) wurde ausführlich in den

vorangehenden Abschnitten bewiesen. Fragen, die Eindeutigkeit betreffend, werden wir hier
nicht erörtern. Aus der langen Sequenz

. . . // HqX id // HqX
Hq j
// Hq(X ,X)

δ
(X ,X)
∗q // Hq−1X id // . . .

folgt übrigens sofort Hq(X ,X) = 0 für alle q ∈ Z.

6.6 Reduzierte Homologie und Mayer-Vietoris Sequenz
Noch eine kleine Bemerkung: Da wir jeden Raum X mit dem Paar (X , /0) identifizieren, schrei-
ben wir zuweilen statt Hq(X , /0) auch einfach Hq(X) (und entsprechend auch für die gleich
definierten H̃q).

6.6.1 Definition

/0 6= A⊆ X heißt ein Retrakt von X , wenn es eine stetige und surjektive Abbildung r : X → A
gibt mit r|A = idA. Die Abbildung r nennen wir auch eine Retraktion.

6.6.2 Lemma

Ist A ein Retrakt von X , so ist HqX ∼= Hq(A)⊕Hq(X ,A) und Hq(X ,A)∼= ker(Hqr).

Beweis: Sei r : X → A eine Retraktion und i : A→ X bzw. j : X = (X , /0)→ (X ,A) Inklusio-
nen. Dann ist folgende lange Sequenz

. . . // Hq+1(X ,A)
δ

(X ,A)
∗q+1 // HqA

Hqi
// HqX

Hq j
// Hq(X ,A)

δ
(X ,A)
∗q // Hq−1A // . . .

exakt. Aus (Hqr)◦ (Hqi) = idHqA folgt, dass Hqi injektiv und Hqr surjektiv ist. Also im(∂∗q) =
ker(Hq−1i) = 0 und somit im(Hq j) = ker(∂∗q) = Hq(X ,A). Also ist auch Hq j surjektiv und
folgende kurze Sequenz ist exakt und spaltet

0 // HqA
Hqi
// HqX

Hq j
// Hq(X ,A) // 0
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(Hqr ist Linksinverse von Hqi)! Folglich ist (wie wir allgemein in Lemma 6.1.7 gesehen haben)
HqX ∼= HqA⊕Hq(X ,A) und auch Hq(X ,A)∼= ker(Hqr).

Für den Einpunktraum P = { /0} sei kX : X→ P die für jeden topologischen Raum X eindeu-
tig bestimmte (stetige und konstante) Abbildung.

6.6.3 Definition

Unter dem q-ten reduzierten Homologiemodul H̃q(X ,A) eines Raumpaares (X ,A) verstehen
wir

H̃q(X ,A) :=

{
Hq(X ,A) für A 6= /0
ker(HqrX) für A = /0

6.6.4 Lemma

Für jeden topologischen Raum X mit x0 ∈ X ist H̃qX ∼= Hq(X ,{x0}) und damit HqX ∼=
Hq({x0})⊕ H̃qX . Insbesondere ist auch H̃q({x0}) = 0 für alle q ∈ Z.

Außerdem gilt Hq f (H̃qX)⊆ H̃qY für stetiges f : X →Y und die Einschränkung H̃q f :=
Hq f |H̃qX : H̃qX → H̃qY definiert ein Homomorphismus.

Für homöomorphe Räume X ,Y folgt aus dem oberen Teil übrigens sofort H̃q(X) ∼=
H̃q(Y ) für alle q ∈ Z.

Beweis: Die erste Behauptung folgt aus Lemma 6.6.2, da {x0} offenbar ein Retrakt von X
ist. Damit ist dann HqX ∼= Hq({x0})⊕Hq(X ,{x0})∼= Hq({x0})⊕ H̃qX .

Der Rest folgt aus (HqrY )◦ (Hq f ) = HqrX , denn rY ◦ f = rX .

6.6.5 Lemma

Sei F : X × I → X stetig, A ⊆ X , a0 ∈ A, q ∈ Z, F(x,0) = x , F(x,1) ∈ A für alle x ∈ X ,
F(a,1) = a für alle a ∈ A und F(a0, t) = a0 für alle t ∈ I. Dann ist H̃q(X) = H̃q(A).

Beweis: Definiere f : (X ,{a0})→ (A,{a0}), x 7→ F(x,1) und g : (A,{a0})→ (X ,{a0}),
a 7→ a. Dann ist g◦ f : (X ,{a0})→ (X ,{a0}) homotop zu id(X ,{a0}) vermöge H : (X×I,{a0}×
I)→ (X ,{a0}) , (x, t) 7→ F(x, t) und f ◦g = id(A{a0}). Es folgt aus Satz 6.3.9 (Hq f )◦ (Hqg) =
idHq(A,{a0}) und (Hqg) ◦ (Hq f ) = idHq(X ,{a0}). Also ist Hq f : Hq(X ,{a0})→ Hq(A,{a0}) ein
Isomorphismus. Da Hq(A,{a0})∼= H̃q(A) und Hq(X ,{a0})∼= H̃q(X) folgt H̃q(X)∼= H̃q(A).
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6.6.6 Satz

Zu jedem Raumpaar (X ,A) mit A 6= /0 existiert die reduzierte lange exakte Homologiese-
quenz

. . . // H̃qA // H̃qX // H̃q(X ,A) // H̃q−1A // . . .

deren Homomorphismen Einschränkungen der Homomorphismen aus der Homologiese-
quenz des Paares (X ,A) sind.

Beweis: Aus Lemma 6.6.2 und der Dimensionseigenschaft schließen wir, dass es genügt
die Exaktheit (und Wohldefiniertheit der Abbildungen) auf dem Stück

H̃1(X ,A)
∂̃

(X ,A)
∗1 // H̃0A // H̃0X // H̃0(X ,A)

∂̃
(X ,A)
∗0 // H̃−1A (∗)

nachzuprüfen (hier ist ∂̃
(X ,A)
∗q := ∂

(X ,A)
∗q |H̃q(X ,A)). Zu k : (X ,A)→ (P,P) gehört das kommuta-

tive und in den Zeilen exakte Diagramm

H1(X ,A)
∂

(X ,A)
∗1 //

��

H0A //

��

H0X //

��

H0(X ,A)
∂

(X ,A)
∗0 //

��

H−1A

��
0 // H0P // H0P // 0 // 0

da H1(P,P) = 0, H0(P,P) = 0 und H−1P = 0. Die Wohldefiniertheit von ∂̃
(X ,A)
∗1 ist nun klar.

Ebenso sieht man nun über den Umweg der unteren Zeile, dass die Sequenz (∗) exakt ist.

6.6.7 Definition

Ein Raumtripel (X ,A,B) ist ein toplogischen Raum X mit B⊆ A⊆ X .

6.6.8 Lemma

Zu jedem Raumtripel (X ,A,B) existiert eine lange exakte Sequenz

. . . // Hq(A,B) // Hq(X ,B) // Hq(X ,A) d // Hq−1(A,B) // . . .

Gibt es zudem ein kommutatives Diagramm von Raumpaaren

(A,B) //

��

(X ,B) //

��

(X ,A)

��
(A′,B′) // (X ′,B′) // (X ′,A′)
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dann gibt es ein kommutatives Diagramm mit exakten Zeilen

. . . // Hq(A,B) //

��

Hq(X ,B) //

��

Hq(X ,A) d //

��

Hq−1(A,B) //

��

. . .

. . . // Hq(A′,B′) // Hq(X ′,B′) // Hq(X ′,A′)
∆ // Hq−1(A′,B′) // . . .

Beweis: Wir könne dies auf zwei Arten beweisen. Mit den Inklusionen i, j bekommen wir

0 // S(A,B) i // S(X ,B)
j // S(X ,A) // 0 und mit Lemma 6.1.10 die Sequenz

. . . // Hq+1(A,B)
Hq+1i

// Hq+1(X ,B)
Hq+1 j

// Hq+1(X ,A)
δ∗q+1 // Hq(A,B)

Hqi
// Hq(X ,B) // . . .

Eine andere Möglichkeit ist eine Diagrammjagd auf Basis der Eilenberg-Steenrod Axiome.

6.6.9 Satz (Existenz der Mayer-Vietoris Sequenz)

ei X ein top. Raum und X1,X2 ⊆ X mit X = X◦1 ∪X◦2 und X1∩X2 6= /0. Dann gibt es eine
exakte Sequenz der Form

. . . // H̃q(X1∩X2)
αn // H̃q(X1)⊕ H̃q(X2)

βn // H̃q(X)
γn// H̃q−1(X1∩X2) // . . .

Beweis: Sei x0 ∈ X1∩X2. Wir betrachten das Diagramm von Inklusionen

(X1∩X2,x0)
i1 //

i2
��

(X1,x0)
p //

g
��

(X1,X1∩X2)

h
��

(X2,x0) j
// (X ,x0) r

// (X ,X2)

Obiges Lemma führt zu folgendem kommutativen Diagramm mit exakten Zeilen

. . . // Hq(X1∩X2,x0)
Hqi1 //

Hqi2
��

Hq(X1,x0)
Hq p
//

Hqg
��

Hq(X1,X1∩X2)
d //

Hqh
��

Hq−1(X1∩X2,x0) //

Hq−1i2
��

. . .

. . . // Hq(X2,x0) Hq j
// Hq(X ,x0) Hqr

// Hq(X ,X2)
∆ // Hq−1(X2,x0) // . . .

Die Ausschneidung liefert, dass jedes Hqh ein Isomorphismus ist. Die Aussage folgt nun aus
Lemma 6.1.6 und 6.6.4.
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6.7 Anwendungen im Rn

”The paradox is now fully established that the utmost abstractions are the true weapons
with which to control our thought of concrete fact.”

Alfred North Whitehead

Sei Sn := {x ∈Rn+1 | |x|= 1} und Dn := {x ∈Rn | |x| ≤ 1}. Mit 〈a,b〉 := ∑
n
i=1 aibi bezeich-

nen wir das standard Skalarprodukt im Rn.

6.7.1 Lemma

(a) Sei n > 0, q ∈ Z und a,b ∈ Sn mit a 6= b. Dann gilt H̃q(Sn \{a,b})∼= H̃q(Sn−1).
(b) Sei n≥ 0, q ∈ Z und a ∈ Sn. Dann ist H̃q(Sn \{a}) = 0.
(c) Für n≥ 1 und q ∈ Z ist H̃q(Sn)∼= H̃q−1(Sn−1).

(d) Für q ∈ Z und n≥ 0 ist H̃q(Sn) =

{
R falls q = n
0 falls q 6= n

Beweis: (a) Die Abbildung H : (Rn \{0})× I→ Rn \{0} , (x, t) 7→ (1− t)x+ t x
|x| mit X :=

Rn \{0} und A := Sn−1 erfüllen alle Voraussetzungen von Lemma 6.6.5. Also H̃q(Rn \{0})∼=
H̃q(Sn−1). Die Behauptung folgt nun aus Lemma 5.3.6 und 6.6.4.

(b) Sei a ∈Rn. Definiere F :Rn× I→Rn , (x, t) 7→ (1− t)x+ ta und A := {a}. Aus Lemma
6.6.5 folgt H̃q(Rn) = 0. Die Behauptung folgt nun aus Lemma 5.3.6 und 6.6.4.

(c) Seien a,b ∈ Sn mit a 6= b. Setze X1 := Sn \ {a} und X2 := Sn \ {b}. Da X1 ∩ X2 =
Sn \ {a,b} 6= /0 und Sn = X◦1 ∪ X◦2 gilt (tatsächlich sind X1,X2 sogar selbst offen), existiert
die Mayer-Vietoris Sequenz (Satz 6.6.9)

// H̃q(X1)⊕ H̃q(X2) // H̃q(Sn) // H̃q−1(X1∩X2) // H̃q(X1)⊕ H̃q(X2) //

Aus (a) und (b) folgt H̃q(X1)⊕ H̃q(X2) = 0, H̃q−1(X1)⊕ H̃q−1(X2) = 0 und H̃q−1(X1∩X2) ∼=
H̃q−1(Sn−1). Da die Sequenz exakt ist folgt schließlich H̃q(Sn)∼= H̃q−1(Sn−1).

(d) Aus (c) folgt mit Lemma 6.6.4 und der Additivitätseigenschaft H̃q(Sn) ∼= H̃q−n(S0) =
H̃q−n({−1,1}) = Hq−n({−1,1},{−1}) ∼= Hq−n({−1},{−1})⊕Hq−n({1}, /0) = Hq−n({1})
Mit einem Verweis auf die Dimensionseigenschaft sind wir fertig.

6.7.2 Satz

Sn ist kein Retrakt von Dn+1.

Beweis: Mit Lemma 6.6.5 macht man sich sehr schnell klar, dass H̃q(Dn+1) = 0 ist für
alle q ∈ Z. Wäre r : Dn+1 → Sn eine Retraktion und i : Sn → Dn+1 die Einbettung, so folgt
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r◦ i = idSn , also (Hqr)◦ (Hqi) = idHqSn . Das heißt Hqr ist für alle q ∈ Z surjektiv. Wir kennnen
nun aber HqSn und HqDn+1 und sehen, dass das nicht für alle q ∈ Z stimmen kann. (Der Fall
n = 0 geht elementar, da S0 nicht zusammenhängend ist D1 aber schon.) Man kann das Ganze
auch direkt mit Lemma 6.6.2 beweisen.

6.7.3 Fixpunktsatz von Brouwer

Jede stetige Abbildung f : Dn→ Dn , n≥ 0 hat einen Fixpunkt.

Beweis: Für n = 0 ist alles klar (elementare Analysis)! Sei n > 0. Annahme f (x) 6= x für
alle x ∈ Dn. Für alle x ∈ Dn suche t(x) > 0 mit f (x)+ t(x)(x− f (x)) ∈ Sn−1, d.h. 1 = | f (x)+
t(x)(x− f (x))|2 = | f (x)|+2t(x)〈 f (x),x− f (x)〉+ t(x)2|x− f (x)|2. Mit A(x) := |x− f (x)|2 >
0 , B(x) := 2〈 f (x),x− f (x)〉 und C(x) := | f (x)|2− 1 ≤ 0 haben wir A(x)t(x)2 + B(x)t(x) +
C(x) = 0. Da t(x) > 0 ist

t(x) =
−B(x)+

√
B(x)2−4A(x)C(x)
2A(x)

Setze t : Dn→R , x 7→ t(x). Dann ist t stetig und r : Dn→ Sn−1 , r(x) := f (x)+ t(x)(x− f (x))
ist eine Retraktion - Widerspruch! Einen elementaren Beweis gibt es im Kapitel Fixpunktsätze.

6.7.4 Definition

Sei r ∈ N und I := [0,1]. Ein Raum X heißt r-Zelle falls X homöomorph zuIr.

6.7.5 Lemma

Ist er ⊆ Sn eine r-Zelle, n≥ 0. Dann ist H̃q(Sn \ er) = 0 für alle q ∈ Z.

Beweis: Induktion über r. Für r = 0 ist er = {a} und es folgt mit Lemma 6.7.1 H̃q(Sn\er) =
H̃q(Sn \{a}) = 0. Sei r ≥ 1 und die Behauptung für alle k < r bewiesen. Sei ϕ : Ir−1× I→ er
ein Homöomorphismus. Setze Y := er , Y ′ := ϕ(I−1× [0, 1

2 ]) und Y ′′ := ϕ(I−1× [1
2 ,1]). Dann

sind Y ′,Y ′′ ebenfalls r-Zellen und Y ′∩Y ′′ = ϕ(Ir−1×{1
2}) ist eine r−1-Zelle. Da Y ′ und Y ′′

kompakt sind, sind Sn \Y ′ , Sn \Y ′′ offen in Sn \ (Y ′∩Y ′′). Mit der Mayer-Vietoris Sequenz

H̃q+1(Sn \ (Y ′∩Y ′′)) // H̃q(Sn \Y ) // H̃q(Sn \Y ′)⊕ H̃q(Sn \Y ′′) // H̃q(Sn \ (Y ′∩Y ′′))

sehen wir, dass (H̃qi′, H̃q j) : H̃q(Sn \Y )→ H̃q(Sn \Y ′)⊕ H̃q(Sn \Y ′′) ein Isomorphismus ist,
wobei i′ : Sn \Y → Sn \Y ′ und entsprechend j Inklusionen sind. Nehmen wir - um einen
Widerspruch zu erhalten - an, dass H̃q(Sn \Y ) 6= 0 ist. Sei also 0 6= z ∈ H̃q(Sn \Y ). Dann
ist wenigstens einer der beiden Werte H̃qi′z oder H̃q jz ungleich 0. Dieses Argument iteriert
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angewendet ergibt eine Folge (Ep)p∈N von r-Zellen, Ep = ϕ(Ir−1× Ip) mit Intervall Ip ⊆
I , Ip+1 ⊆ Ip und diam(Ip) = 2−p und eine Folge (ip : Sn \Y → Sn \Ep)p∈N von Inklusionen
mit Hqipz 6= 0. Offenbar ist E :=

⋂
p∈NEp eine r− 1-Zelle und daher H̃q(Sn \E) = 0. Sei i

die Inklusion i : Sn \Y → Sn \E. Dann ist H̃qiz = 0 in H̃q(Sn \E). Sei z = [x]. Es gibt daher
eine endliche Summe β = ∑l rlσl ∈ Sq+1(Sn \E) mit ∂q+1β = Sqix. Nun ist A :=

⋃
l σl(∆q+1)

kompakt in Sn \E =
⋃

p∈N(Sn \Ep), wobei letzteres eine aufsteigende Folge offener Mengen
ist. Es gibt somit ein p mit A ⊆ Sn \Ep. Wir sind im Grunde fertig, der Rest ist nur noch
die präzise Herausschälung des offensichtlichen Widerspruches. Sei g : Sn \Ep→ Sn \E die
Inklusion. Zu jedem l gibt es ein eindeutiges σ ′l : ∆q+1→ Sn \Ep mit g◦σ ′l = σl . Setze β ′ :=
∑l rlσ

′
l . Mit g◦ ip = i folgt (Sqg)(Sqip)x = Sqix = ∂q+1β = ∂q+1(Sq+1g)β ′= (Sqg)∂q+1β ′, also

Sqipx = ∂q+1β ′ denn Sqg ist offenbar injektiv. Also H̃qipz = Hqipz = [Sqipx] = [∂q+1β ′] = 0
im Widerspruch zur Konstruktion!

6.7.6 Lemma

Sei n > 0 , r ≥ 0 und Sr ⊆ Sn, wobei Sr homöomorph zu Sr ist. Dann ist

H̃q(Sn \Sr)∼=

{
R falls q = n− r−1
0 falls q 6= n− r−1

für alle q ∈ Z.

Beweis: Für r = 0 ist Sr = {a,b} mit a 6= b. Der Induktionsstart folgt daher aus Lemma
6.7.1.

Sei jetzt r > 0 und für jedes k < r sei die Aussage bewiesen. Wir setzen E+ := {(x0, ...,xr)∈
Sr | xr ≥ 0} und E− := {(x0, ...,xr)∈ Sr | xr ≤ 0}. Offenbar ist ϕ : (E+,E+∩E−)→ (Dr,Sr−1),
(x0, ...,xr) 7→ (x0, ...,xr−1) stetig und bijektiv und somit, da es sich um kompakte Hausdorffräu-
me handelt, bereits ein Homöomorphismus. Analog mit ψ : (E−,E+∩E−)→ (Dr,Sr−1). Da
wegen Lemma 11.3.18 Ir homöomorph zu Dr ist, ist Ir auch homöomorph zu E+ bzw. E− und
diese sind daher r-Zellen. Sei φ : Sr → Sr ein Homöomorphismus. Wir setzen e+ := φ(E+)
und e− := φ(E−). Dementsprechend sind auch e+ und e− r-Zellen. Da diese kompakt sind,
sind sie abgeschlossen in Sn und X ′ := Sn \ e+ , X ′′ := Sn \ e− offen in Sn und somit auch in
X ′∪X ′′ = Sn \ (e+∩ e−). Mit Lemma 6.7.5 bekommen wir aus der Mayer-Vietoris Sequenz

H̃q+1(X ′)⊕ H̃q+1X ′′ // H̃q+1(X ′∪X ′′) // H̃q(X ′∩X ′′) // H̃q(X ′)⊕ H̃qX ′′

sofort H̃q+1(X ′ ∪X ′′) ∼= H̃q(X ′ ∩X ′′). Da e+ ∩ e− homöomorph zu Sr−1 folgt dann aus der
Induktionsvoraussetzung

H̃q(Sn \Sr) = H̃q(X ′∩X ′′)∼= H̃q+1(Sn \ (e+∩ e−))∼=

{
R falls q+1 = n− (r−1)−1
0 falls q+1 6= n− (r−1)−1
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6.7.7 Lemma

Ist X wegzusammenhängend und /0 6= A ⊆ X , so ist H0(X ,A) = 0. Insbesondere folgt aus
Lemma 6.6.4 dann H̃0(X) = 0.

Beweis: Zur Erinnerung: Sq(X ,A) := Sq(X)/Sq(A) und Hq(X ,A) := ker(∂ q)
im(∂ q+1)

wobei ∂ q :

Sq(X ,A)→ Sq−1(X ,A). Sei x0 ∈ A. Jedes σ ∈ M0(X) wird eindeutig durch einen Punkt x ∈
X repräsentiert. Wir identifizieren deshalb M0(X) mit X . Sei nun β = (∑x∈X rxx)+ S0(A) ∈
ker(∂ 0) = S0(X ,A) gegeben. Für jedes x ∈ X sei σx : ∆1 → X stetig mit σx(e0) = x0 und
σx(e1) = x. Dann ist γ := (∑x∈X rxσx)+S1(A) ∈ S1(X ,A).

Nun ist ∂1(∑x∈X rxσx) = (∑x∈X rxx)− (∑x∈X rxx0), wobei ∑x∈X rxx0 ∈ S0(A). Also ist

β = (∑
x∈X

rxx)+S0(A) = (∑
x∈X

rxx)− (∑
x∈X

rxx0)+S0(A) = ∂ 1(γ)

Insgesamt demnach ker(∂ 0)⊆ im(∂ 1) und somit H0(X ,A) = 0.

6.7.8 Lemma

(a) Sn \ er, wobei er eine r-Zelle ⊆ Sn ist, ist wegzusammenhängend.
(b) Sei s homöomorph zu Sr. Für r = n−1 hat Sn \ s genau zwei offene Wegzusammen-

hangskomponenten = Zusammenhangskomponenten. Für r 6= n− 1 ist Sn \ s wegzusam-
menhängend.

Beweis: (a) Es ist nach Lemma 6.7.5 H̃0(Sn\er) = 0, also H0(Sn\er)∼= R. Sei x∈ s. Nun ist
s kompakt, also abgeschlossen in Sn. Demzufolge ist Sn \ s als offener Teilraum von Sn \ {x}
ebenfalls lokal wegzusammenhängend. Eine Zerlegung von Sn \ s in seine Wegzusammen-
hangskomponenten (Xd)d∈D ist daher eine Zerlegung von Sn \ s in paarweise offene und dis-
junkte Teilmengen. Aus der Additivitätseigenschaft und Lemma 6.7.7 folgt R∼=

⊕
d∈D R. Wir

hatten uns ganz am Anfang darauf geeinigt, dass R einen fest gewählten Ring bezeichnet. Set-
zen wir für R z.B. den KörperR ein, so kann die Gleichung R∼=

⊕
d∈D R für ein D mit mehr als

einem Element offenbar nicht mehr gelten (Dimension von Vektorräumen)! Folglich |D| = 1
und Sn \ s ist wegzusammenhängend!

(b) Sei r 6= n− 1. Es folgt H̃0(Sn \ s) = 0 und wir schließen wie eben. Ist r = n− 1, so sei
(Xd)d∈D wieder die Zerlegung von Sn\s in Wegzusammenhangskomponenten. Es folgt wieder
mit Lemma 6.7.6, 6.7.7 und der Ausschneidungseigenschaft

⊕
d∈D R ∼= H0(Sn \ s) = R

⊕
R.

Für R = R geht dies nur für |D|= 2!

163



6.7.9 Trennungssatz von Jordan-Brouwer

Sei s ⊆ Sn homöomorph zu Sn−1. Dann hat Sn \ s genau zwei offene
(Weg)Zusammenhangskomponenten U,V mit ∂U = ∂V = s.

Beweis: Sn \ s hat nach Lemma 6.7.8 genau zwei offene Wegzusammenhangskomponenten
= Zusammenhangskomponenten U,V . Da V offen ist und Sn \V = U ∪ s, folgt U ⊆U ∪ s und
somit auch ∂U = U \U ⊆ s Analog mit V .

Sei x ∈ s und W offen in Sn mit x ∈W . Wegen /0 6= W ∩ (V ∪ s) = W ∩ (Sn \U) bleibt
nur noch W ∩U 6= /0 zu zeigen. Sei ϕ : s → Sn−1 ein Homöomorphismus und a := ϕ(x).
Es ist W ∩ s offen in s und demnach P := ϕ(W ∩ s) offen in Sn−1. Sei ψ : Sn−1 \ {a} →
Rn−1 ebenfalls ein Homöomorphismus. Wegen Rn−1 =

⋃
k∈NK(0,k) und Sn−1 \P ⊆ Sn−1 \

{a} ⊆
⋃

k∈Nψ−1(K(0,k)) gibt es ein k ∈ N mit Sn−1 \P ⊆ ψ−1(K(0,k)) (beachte: Sn−1 \P
ist kompakt). Es folgt A := s\ϕ−1(ψ−1(K(0,k)))⊆ ϕ−1(P) = W ∩ s und s\A ist eine n−1-
Zelle, denn K(0,k) ist eine. Also H̃0(Sn \ (s \A)) = 0 und Sn \ (s \A) = (Sn \ s)∩A ist daher
wegzusammenhängend! Sei u∈U und v∈V . Es gibt dann ein f : I→ Sn \(s\A) mit f (0) = u
und f (1) = v. Folglich f (I)∩A 6= /0. Nun ist f (I)∩A ⊆ f (I)∩ s ⊆ f (I)∩ (Sn \ (s \A))∩ s ⊆
f (I)∩A, also f (I)∩A = f (I)∩ s. Setze t0 := inf{t ∈ I | f (t) ∈ s} = inf{t ∈ I | f (t) ∈ A}.
Folglich f (t0) ∈ f (I)∩A = f (I)∩ s und somit f (t0) ∈W . Da f (0) = u, f (1) = v und f (t0) ∈ s
ist 0 < t0 < 1. Setze J := [0, t0). Dann ist f (J) zusammenhängend und f (J)⊆ f (I)∩(Sn \s)⊆
f (I)∩ (U ∪V ). Da u ∈ f (J) folgt f (J)⊆U . Da t0 ∈ f−1(W ): offen, ist J∩ f−1(W ) 6= /0, also
f (J)∩W 6= /0 und somit W ∩U 6= /0. Es folgt x ∈ Sn \U ∩U = ∂U und analog x ∈ ∂V .

Leicht kann man dieses Ergebnis nun auch auf den Rn übertragen:

6.7.10 Korollar

Sei n≥ 2, s⊆ Rn homöomorph zu Sn−1. Dann zerfällt Rn \ s in exakt zwei offene Wegzu-
sammenhangskomponenten = Zusammenhangskomponenten U,V mit s = ∂U = ∂V .

6.7.11 Satz von der Invarianz des Gebietes

Sind U,V homöomorphe Teilmengen von Sn, von denen eine offen ist, dann ist auch die
andere offen.

Beweis: Sei U offen, h : U → V ein Homöomorphismus und y ∈ V . Sei h(x) = y. Sei W
eine abgeschlossene zu In (also auch Dn) homöomorphe Umgebung von x in U , so dass ∂W
homöomorph zu Sn−1 ist. W und h(W ) sind dementsprechend n-Zellen. Nun ist Sn \ h(W )
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zusammenhängend und Sn \ h(∂W ) hat zwei Komponenten. Da Sn \ h(∂W ) = (Sn \ h(W ))∪
(h(W ) \ h(∂W )) und beide Terme der rechten Seite disjunkt und zusammenhängend sind,
handelt es sich um die Komponenten von Sn \ (∂W ). Sie sind also auch offen. insbesondere ist
h(W )\h(∂W ) offen in Sn. Aber y ∈ h(W )\h(∂W )⊆V . Also ist V offen.

Auch dieses Ergebnis lässt sich nun leicht auf den Rn übertragen:

6.7.12 Korollar

Sind U,V ⊆Rn homöomorph und ist eine der beiden Mengen offen, so ist auch die andere
Menge offen.
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7 Hyperräume
”Die Menschheitsgeschichte wird mehr und mehr zu einem Rennen zwischen Aufklä-
rung und Katastrophe.”

H.G. Wells

7.1 Hausdorff-Metrik und Selbstähnlichkeit
Sei (E,d) ein metrischer Raum mit Metrik d und sei α := {A⊆E | /0 6= A ist abgeschlossen und
beschränkt}. Unser Ziel ist es α zu einem metrischen Raum zu machen (mit der sogenannten
Hausdorff-Metrik). Für A,B ∈ α setzen wir dazu

δ (A,B) := max(sup
x∈A

d(x,B),sup
y∈B

d(A,y)) wobei d(x,A) := inf
a∈A

d(x,a).

Man beachte, dass d(x,A) = d(A,x) für alle A ⊆ E und für alle x ∈ E gilt. Ein Wort zur
Notation: Mit KE

d (x,ε) bezeichnen wir in jedem metrischen Raum (E,d) die offene Kugel um
x mit Radius ε , also KE

d (x,ε) := {y∈ E | d(x,y) < ε} (wenn klar ist um welchen Raum es sich
handelt, schreiben wir einfach K(x,ε)).

7.1.1 Satz (Existenz der Hausdorff-Metrik)

δ ist eine Metrik auf α .

Beweis: (1) Die Symmetrie ist klar.
(2) Es gilt δ (A,B) = 0 ⇔ supx∈A d(x,B) = 0 = supy∈B d(A,y) ⇔ A ⊆ B und B ⊆ A. Da

A,B ∈ α ist A = A und B = B. Es folgt δ (A,B) = 0 ⇔ A = B.
(3) (Dreiecksungleichung) Seien A,B;C ∈ α .
Sei x ∈ A beliebig.
1.Fall x ∈ A\C, dann ∀c∈C : d(x,B)≤ d(x,c)+d(c,B), also d(x,B)≤ δ (A,C)+δ (C,B).
2.Fall x ∈ A∩C, dann d(x,B)≤ δ (B,C)≤ δ (A,C)+δ (B,C).
Sei nun y ∈ B beliebig.
1.Fall y ∈ B\C, dann ∀c ∈C : d(y,A)≤ d(y,c)+d(c,A), also d(y,A)≤ δ (B,C)+δ (A,C).
2.Fall y ∈ B∩C, dann d(y,A)≤ δ (A,C)≤ δ (A,C)+δ (B,C).
Es folgt δ (A,B) := max(supx∈A d(x,B),supy∈B d(A,y))≤ δ (A,C)+δ (B,C).

7.1.2 Satz (Vollständigkeit der Hausdorff-Metrik)

Ist (E,d) vollständig, so ist auch (α,δ ) vollständig.

Beweis: Sei (An)n∈N eine Cauchyfolge in α . Setze Yn :=
⋃

k≥n Ak und A :=
⋂

n∈NYn.
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1.Schritt: Alle Yn sind beschränkt. Außerdem ist A 6= /0, abgeschlossen und beschränkt.
Beweis dazu: Für ε = 1 ∃M ∈N∀k, l ≥M : δ (Al,Ak) < 1. Sei n≥M und x∈Yn =

⋃
k≥n Ak.

Dann gibt es ein x′ ∈
⋃

k≥n Ak mit d(x,x′) < 1. Es gibt also ein l ≥ n mit x′ ∈ Al und es folgt
d(x,An)≤ d(x,x′)+d(x′,An) < 1+δ (Al,An) < 2. Da x ∈ Yn beliebig war und An beschränkt
ist, muss auch Yn beschränkt sein. Also sind alle Yn , n≥M beschränkt. Aus der Beschränktheit
von Yp+1 folgt aber die Beschränktheit von Yp, denn Yp :=

⋃
k≥p Ak = Ap∪

⋃
k≥p+1 Ak = Ap∪

Yp+1 und Ap ist natürlich auch beschränkt. Also sind auch alle Yn , n < M beschränkt.
Als Schnitt abgeschlossener und beschränkter Mengen ist A offenbar abgeschlossen und

beschränkt. Zeigen wir A 6= /0: Für jedes n∈N∃Nn ∈N , Nn ≥N0,N1, ...,Nn−1, so dass ∀k, l ≥
Nn : δ (Ak,Al) < 2−n. Für jedes n ∈N setze nun Bn := ANn . Für alle k, l,n ∈N mit k, l ≥ n gilt
δ (Bk,Bl) = δ (ANk ,ANl) < 2−n, da Nk,Nl ≥ Nn. Wähle x0 ∈ B0. Sei xn ∈ Bn gewählt.

1.Fall xn ∈ Bn+1, dann setze xn+1 := xn.
2.Fall xn 6∈ Bn+1. Nun gilt δ (Bn,Bn+1) < 2−n, insbesondere supx∈Bn+1

d(x,Bn) < 2−n (und
Bn+1 6= /0). Wähle dann xn+1 ∈ Bn+1 mit d(xn,xn+1) < 2−n.

Offenbar ist (xk)k∈N eine Cauchyfolge in E. Bis auf endlich viele Anfangsglieder ist (xk)k∈N
daher auch eine Cauchyfolge in jedem Yn. Für y := limn→∞ yn gilt somit y ∈

⋂
n∈NYn = A.

2.Schritt: (Yn)n∈N ist eine Cauchyfolge in α .
Beweis dazu: Sei ε > 0. Wähle N ∈ N, so dass ∀k, l ≥ N : δ (Ak,Al) < ε/2. Seien k, l ≥ N

und y∈Yk =
⋃

p≥k Ap. Dann ∃y′ ∈ K(y,ε/2)∩(
⋃

p≥k Ap). Also ist y′ ∈ Ap, für gewisses p≥ k.
Es folgt d(y,Yl)≤ d(y,y′)+d(y′,

⋃
q≥l Aq) = d(y,y′)+d(y′,

⋃
q≥l Aq) < ε/2+d(y′,Al)≤ ε/2+

δ (Ap,Al) < ε/2 + ε/2 = ε . Analog bekommt man d(y,Yk) < ε für jedes y ∈ Yl . Damit folgt
nun aber δ (Yk,Yl)≤ ε für alle k, l ≥ N.

3.Schritt: A ist ein Häufungspunkt von (Yn)n∈N (das heißt zu jeder Umgebung O von A ist
{n ∈ N | Yn ∈ O} unendlich) und damit limn→∞ δ (Yn,A) = 0.

Beweis dazu: Für jedes n∈N sei Nn ∈N , Nn ≥N0,N1, ...,Nn−1 mit ∀k, l ≥Nn : δ (Yk,Yl) <
2−n. Für Zn :=YNn folgt für alle k, l ≥ n : δ (Zk,Zl) = δ (YNk ,YNl) < 2−n, da Nk,Nl ≥Nn. Ange-
nommen A ist kein Häufungspunkt von (Zn)n∈N. Dann gibt es ein ε > 0∀n∈N : δ (Zn,A)≥ ε .
Wähle N ∈ N mit ∑

∞
k=N 2−k < ε/2.

Wähle zN ∈ ZN mit d(zN ,A)≥ 3ε

4 (man beachte A⊆ ZN). Sei zn ∈ Zn , n≥ N gewählt. Falls
zn ∈ Zn+1, so setze zn+1 := zn. Falls zn 6∈ Zn+1, so ist trotzdem δ (Zn,Zn+1) < 2−n. Es gibt also
ein zn+1 ∈ Zn+1 mit d(zn,zn+1) < 2−n.

Für jedes k ∈ N ist d(zN+k,A) ≥ d(zN ,A)− (d(zN+k− zN+k−1)+ ...+ d(zN+1,zN)) ≥ 3ε

4 −
(2−N + ... + 2−(N+k−1)) > 3ε

4 −
ε

2 = ε

4 . Nun ist (zk)∞
k=N eine Cauchyfolge in jedem Yn (bis

auf endliche viele Ausnahmen), also z := limn→∞ zn ∈ A. Es folgt d(zn,A) ≤ d(zn,z)→ 0 im
Widerspruch zu d(zn,A) ≥ ε

4 für alle n ≥ N. Also ist A ein Häufungspunkt von (Zn)n∈N und
damit auch von (Yn)n∈N. Da (Yn)n∈N eine Cauchyfolge ist, folgt limn→∞ δ (Yn,A) = 0.

4.Schritt: Es gilt limn→∞ δ (An,A) = 0.
Beweis dazu: Sei ε > 0. Dann ∃N ∈ N∀k, l ≥ N : δ (Al,Ak) < ε . Nun ist δ (An,A) ≤

δ (Yn,A)+ δ (Yn,An), für jedes n ∈ N. Außerdem δ (Yn,An) = sup{d(x,An) | x ∈
⋃

k≥n Ak}, da
An ⊆ Yn =

⋃
k≥n Ak. Sei nun x ∈

⋃
k≥n Ak. Dann gibt es ein x′ ∈

⋃
k≥n Ak mit d(x,x′) < ε . Es

gibt also ein l ≥ n mit x′ ∈ Al und es folgt d(x,An)≤ d(x,x′)+d(x′,An) < ε +δ (Al,An) < 2ε

für n≥ N, also auch δ (Yn,An)≤ 2ε für n≥ N. Schließlich gibt es ein N′ ∈ N mit N′ ≥ N und
δ (Yn,A) < ε für n≥ N′und es folgt ∀n≥ N′ : δ (An,A)≤ δ (Yn,A)+δ (Yn,An) < 3ε .

167



7.1.3 Satz

(a) Ist (E,d) total beschränkt, so ist auch (α,δ ) total beschränkt.
(b) Ist (E,d) kompakt, so ist auch (α,δ ) kompakt.

Beweis: (a) Sei ε > 0. Es gibt ein F ⊆ E, F : endlich mit d(x,F) < ε

2 , für alle x ∈ E.
Setze F := P(F). Sei A ∈ α . Zu jedem a ∈ A gibt es ein fa ∈ F mit d(a, fa) < ε

2 . Set-
ze F ′ := { fa | a ∈ A}. Dann ist δ (A,F ′) = max(supa∈A d(a,F ′),sup f∈F ′ d(A, f )). Es folgt
supa∈A d(a,F ′) ≤ ε

2 < ε . Schauen wir uns noch sup f∈F ′ d(A, f ) an. Für f ∈ F ′ ∃a ∈ A mit
f = fa, folglich d(A, f ) ≤ d(a, fa) < ε

2 . Also auch hier sup f∈F ′ d(A, f ) ≤ ε

2 < ε . Und somit
δ (A,F ′) < ε , also δ (A,F ) < ε für alle A ∈ α .

(b) Ist (E,d) kompkakt so ist (E,d) vollständig und total beschränkt, also ist (α,δ ) voll-
ständig und total beschränkt und somit auch kompakt.

7.1.4 Lemma

Sei (Kn)n∈N eine Folge aus α mit ∃K := limn→∞ Kn , K ∈ α . Sind alle Kn total beschränkt,
so ist auch K total beschränkt.

Beweis: Sei ε > 0. Sei n ∈ N mit δ (Kn,K) < ε

4 . Da Kn total beschränkt ist, gibt es eine
endliche Teilmenge F ⊆ Kn mit ∀x ∈ Kn gilt d(x,F) < ε

4 . Aus δ (Kn,K) < ε

4 folgt, dass es zu
jedem y ∈ K ein f (y) ∈ Kn gibt mit d(y, f (y)) < ε

4 . Außerdem gibt es zu jedem x ∈ Kn ein

g(x) ∈ F mit d(x,g(x)) < ε

4 . Wir haben also Abbildungen K
f→ Kn

g→ F . Setze h := g◦ f . Für
jedes z ∈ F mit h−1(z) 6= /0 sei yz ∈ h−1(z) und Az := {yz}. Falls h−1(z) = /0, setze Az := /0. Sei
dann F ′ :=

⋃
z∈F Az. Offenbar ist F ′ endlich und F ′ 6= /0.

Sei nun y ∈ K. Dann ist d(y,h(y))≤ d(y, f (y))+d( f (y),g( f (y))) < ε

4 + ε

4 = ε

2 . Setze z :=
h(y), also h−1(z) 6= /0. Folglich gibt es ein yz ∈ F mit h(yz) = z. Es folgt d(y,yz)≤ d(y,h(y))+
d(h(y),yz) = d(y,h(y))+d(h(yz),yz) < ε

2 + ε

2 = ε .

7.1.5 Lemma

Sei κ := {K ⊆ E | K kompakt und K 6= /0}. Ist (E,d) vollständig, so ist (κ,δ ) vollständig,
wobei wir δ auf κ einschränken.

Beweis: Wir zeigen, dass κ ein abgeschlossener Teilraum von α ist. Da (α,δ ) vollständig
ist, sind wir dann fertig. Sei (Kn)n∈N eine Folge aus κ , die in α konvergiert (bzgl. δ ), also
limn→∞ Kn = K ∈ α . Nun sind alle Kn total beschränkt (da sie kompakt sind). Folglich ist auch
K (wie eben gezeigt wurde) total beschränkt. Da K aber auch abgeschlossen ist, ist K somit
auch kompakt, folglich K ∈ κ! Damit ist gezeigt, dass κ abgeschlossen ist.
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7.1.6 Lemma

Sei (E,d) ein metrischer Raum und fi : E→E , i = 1, ...,n eine Familie von Kontraktionen
(d.h. ∀ i = 1, ...,n ist qi := supx 6=y

d( fi(x), fi(y))
d(x,y) < 1). Dann ist auch f : α→α , definiert durch

f (A) :=
⋃n

i=1 fi(A) eine Kontraktion.

Beweis: Setze q := max(q1, ...,qn). Wir zeigen δ (
⋃n

i=1 fi(A),
⋃n

i=1 fi(B)) ≤ q · δ (A,B), für
beliebige A,B ∈ α . Sei ε > 0 beliebig gewählt. Sei x ∈

⋃n
i=1 fi(A). Dann gibt es ein y ∈⋃n

i=1 fi(A) mit d(x,y) < ε . Sei l ∈ {1, ...,n} und a ∈ A mit fl(a) = y. Nun gibt es ein b ∈ B mit
d(a,b) < d(a,B)+ ε . Sei z ∈

⋃n
i=1 fi(B) mit d( fl(b),z) < ε . Es folgt

d(x,z)≤ d(x,y)+d(y, fl(b))+d( fl(b),z) < ε +qd(a,b)+ ε < qd(a,B)+(2+q)ε.

Da ε beliebig war gilt d(x,
⋃n

i=1 fi(B)) ≤ d(x,z) ≤ qd(a,B) ≤ qsupa∈A d(a,B). Da auch x ∈⋃n
i=1 fi(A) beliebig war, gilt supx∈

⋃n
i=1 fi(A) d(x,

⋃n
i=1 fi(B)) ≤ qsupa∈A d(a,B). Aus Symme-

triegründen folgt damit dann δ (
⋃n

i=1 fi(A),
⋃n

i=1 fi(B))≤ q ·δ (A,B).

7.1.7 Satz (Existenz selbstähnlicher Mengen)

Sei (E,d) ein vollständiger metrischer Raum und fi : E→ E , i = 1, ...,n eine Familie von
Kontraktionen. Dann gibt es eine eindeutig bestimmte und nicht leere kompakte Teilmenge
K von E mit K =

⋃n
i=1 fi(K).

Beweis: Sei wieder κ := {K ⊆ E | K kompakt und K 6= /0}. Dann ist (κ,δ ) vollständig.
Satz 7.1.6 lehrt, dass f : κ→ κ , definiert durch f (K) :=

⋃n
i=1 fi(K) eine Kontraktion ist, denn⋃n

i=1 fi(K) =
⋃n

i=1 fi(K), da alle fi stetig sind, die fi(K) somit kompakt, also auch abgeschlos-
sen sind und daher auch

⋃n
i=1 fi(K) kompakt und abgeschlossen ist. Laut dem Banchschen

Fixpunktsatz gibt es genau ein K ∈ κ mit f (K) = K, also K =
⋃n

i=1 fi(K).

7.2 Vietoris-Topologie
7.2.1 Definition

Sei (X ,τ) ein topologischer Raum und α := {A ⊆ X | /0 6= A ist abgeschlossen}. Wir werden
α nun zu einem topologischen Raum machen. Für U1, ...,Un ∈ τ \{ /0} setzen wir

V (U1, ...,Un) := {A ∈ α | A⊆
n⋃

k=1

Uk und ∀k ∈ {1, ...,n} ist Uk∩A 6= /0}
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und B := {V (U1, ...,Un) | U1, ...,Un ∈ τ \ { /0}}. Seien U1, ...,Up,W1, ...,Wq ∈ τ \ { /0}. Setze
U := (

⋃p
k=1Uk)∩ (

⋃q
l=1Wl). Dann ist offenbar

V (U1, ...,Up)∩V (W1, ...,Wq) = V (U ∩U1, ...,U ∩Un,U ∩W1, ...,U ∩Wn).

Die von B erzeugte Topologie τV nennnen wir die Vietoris-Topologie auf α . Aus dem
bisher gezeigten folgt, dass B eine Basis für τV ist. Aus

V (U1, ...,Up) = V (
p⋃

k=1

Uk)∩
p⋂

k=1

V (X ,Uk)

folgt, dass S := {V (U) |U ∈ τ \{ /0}}∪{V (X ,U) |U ∈ τ \{ /0}} eine Subbasis für τV ist.

7.2.2 Satz

Ein topologischer Raum (X ,τ) ist genau dann kompakt, wenn (α,τV ) kompakt ist.

Beweis: Sei (α,τV ) kompakt und sei (Ui)i∈I eine offene Überdeckung von X . Dann ist
(V (X ,Ui))i∈I offensichtlich eine offene Überdeckung von α . Es gibt also eine endliche Teil-
überdeckung V (X ,Ui1), ...,V (X ,Uin). Dann ist Ui1, ...,Uin eine Überdeckung von X , denn sonst
wäre A := X \

⋃n
k=1Uik eine nicht leere abgeschlossene Menge, also A ∈V (X ,Uik), für ein ge-

wisses k ∈ {1, ...,n} und somit A∩Uik 6= /0 - ein Widerspruch.
Sei (X ,τ) kompakt und {V (Ui) | i ∈ I}∪{V (X ,Wj) | j ∈ J} eine offene Überdeckung von

α mit Elementen aus der Subbasis S (wir verwenden den Alexanderschen Subbasissatz).
Wir setzen dann B := X \

⋃
j∈J Wj ∈ α . Ist B = /0, so gibt es endlich viele Wj1, ...,Wjn mit

X = Wj1 ∪ ...∪Wjn . Dann offensichtlich α = V (X ,Wj1)∪ ...∪V (X ,Wjn).
Gilt B 6= /0, so ist B dann aber in einer der Überdeckungsmengen als Element enthalten.

Dass kann aber nur noch eine Menge der Form V (Ui0) sein, für ein i0 ∈ I. Also B ⊆Ui0 . Das
bedeutet aber X =Ui0∪

⋃
j∈J Wj. Da X kompakt ist, gibt es wieder endlich viele Wj1, ...,Wjn mit

X = Ui0∪Wj1∪ ...∪Wjn . Dann folgt aber leicht α = V (Ui0)∪V (X ,Wj1)∪ ...∪V (X ,Wjn), denn
jede abgeschlossene Menge A, die nicht Element von V (Ui0) ist, also Teilmenge von Ui0 , muss
bereits eines der Wik schneiden (der Grund liegt in der Gleichung X =Ui0∪Wj1∪ ...∪Wjn) und
ist somit Element von V (X ,Wjk).

7.2.3 Satz

Sei (X ,τ) ein T1-Raum. Dann ist (X ,τ) genau dann zusammenhängend, wenn auch
(α,τV ) zusammenhängend ist.

Beweis: Sei (X ,τ) zusammenhängend. Sei a ∈ X fest gewählt. Für n ≥ 1 setze Yn := { f ∈

XN | ∀k≥ n ist f (n) = a}, also Yn = ∏k∈NX (n)
k mit X (n)

k :=

{
X für k < n
{a} für n≤ k

. Offenbar ist je-

des Yn somit zusammenhängend. Sei φn : Yn→ α definiert durch φn( f ) := { f (0), ..., f (n−1)}.
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Zeigen wir, dass φ stetig ist. Dies rechnen wir auf der Subbasis {V (U),V (X ,U) | /0 6= U ∈ τ}
von τV nach. Es ist φ−1

n (V (U)) = { f ∈ Yn | { f (0), ..., f (n− 1)} ⊆ U} = (∏k∈NOk) ∩Yn

mit Ok :=

{
U für k < n
X für n≤ k

und φ−1
n (V (X ,U)) = { f ∈ Yn | ∃k < n mit f (k) ∈ U}. Für f ∈

φ−1
n (V (X ,U)) sei k f < n mit f (k f ) ∈U . Dann ist f ∈ (∏k∈NWk)∩Yn ⊆ φ−1

n (V (X ,U)), wo-

bei Wk :=

{
U für k = k f

X sonst
. φn ist daher stetig und Dn := φn(Yn) somit zusammenhängend in

α . Nun gilt Dn ⊆ Dn+1, also ist auch
⋃

1≤n Dn = {A ⊆ X | /0 6= A und A ist endlich} zusam-
menhängend und zudem dicht in α . Dann muss aber auch α zusammenhängend sein! Die T1
Eigenschaft braucht man damit φn stetig und

⋃
1≤n Dn dicht in α ist.

Sei umgekehrt (X ,τ) nicht zusammenhängend. Dann gibt es ein offenes und abgeschlosse-
nes U ⊆ X mit /0 6= U 6= X . Aus α \V (X ,U) = V (X \U) folgt, dass auch V (X ,U) offen und
abgeschlossen ist. Da (X ,τ) ein T1-Raum ist, gilt /0 6= V (X ,U) 6= α .

7.2.4 Lemma

Sei (X ,τ) ein T1-Raum. Dann ist V (U1, ...,Un) = V (U1, ...,Un).

Beweis: Setze P := V (U1, ...,Un) und Q := V (U1, ...,Un). Zeigen wir, dass Q abgeschlossen
ist. Sei A∈ α \Q. Falls A 6⊆U1∪ ...∪Un, dann A∈V (X ,W )⊆ α \Q, wobei W := X \U1∪ ...∪
Un. Falls A∩Uk = /0, für gewisses k ∈ {1, ...,n}, so ist A ∈ V (X \Uk)⊆ α \Q. Also ist α \Q
offen und es folgt P ⊆ Q = Q (da P ⊆ Q). Zeigen wir die andere Inklusion. Sei A ∈ Q und
seien W1, ...,Wm ∈ τ gegeben, mit A∈V (W1, ...,Wm). Für i∈ {1, ...,n} sei ai ∈ A∩Ui. Dann ist
ai ∈

⋃m
l=1Wl , also Ui∩

⋃m
l=1Wl 6= /0. Für j ∈ {1, ...,m} sei b j ∈ A∩Wj. Also b j ∈

⋃n
k=1Uk und

somit Wj ∩
⋃n

k=1Uk 6= /0. Da (X ,τ) ein T1-Raum ist, folgt V (U1, ...,Un)∩V (W1, ...,Wm) 6= /0
und somit A ∈V (U1, ...,Un). Also auch Q⊆ P.

7.2.5 Satz

Sei (X ,τ) ein topologischer Raum und α := {A⊆ X | /0 6= A abgeschlossen}.
(1) (α,τV ) ist ein T0-Raum.
(2) Ist (X ,τ) ein T1-Raum, dann gilt: (α,τV ) ist T2 ⇔ (X ,τ) ist T3.
(3) Ist (X ,τ) ein T1-Raum, dann gilt: (α,τV ) ist T3 ⇔ (X ,τ) ist T4.

Beweis: (1) Seien A,B ∈ α mit A 6= B. Also o.B.d.A. A∩ (X \B) 6= /0. Setze U := X \B.
Dann ist A ∈V (X ,U) und B 6∈V (X ,U).

(2) Ist (α,τV ) ein T2-Raum und x ∈ X \ A, wobei A abgeschlossen (und o.B.d.A. A 6=
/0), so sind A∪ {x},A ∈ α , es gibt also U1, ...,Un,W1, ...,Wm ∈ τ \ { /0} mit A∪ {x} ∈ P :=
V (U1, ...,Un) , A ∈ Q := V (W1, ...,Wm) und P∩Q = /0. Nun ist (rein formal) P∩Q = V (U ∩
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U1, ...,U ∩Un,U ∩W1, ...,U ∩Wm), wobei U := (
⋃n

k=1Uk)∩ (
⋃m

l=1Wl). Also existiert ein k ∈
{1, ...,n} mit U ∩Uk = /0. Dann muss aber x ∈ Uk sein (andernfalls wäre Uk ∩A 6= /0, also
Uk∩U 6= /0).

Sei andererseits (X ,τ) ein T3-Raum und A,B ∈ α , A 6= B. O.B.d.A. sei x ∈ B\A. Dann gibt
es U,W ∈ τ mit x ∈U , A⊆W und U ∩W = /0. Setze P := V (W ) , Q := V (X ,U) und es folgt
A ∈ P , B ∈ Q und P∩Q = /0. Das heißt (α,τV ) ist T2.

(3) Sei (X ,τ) ein T4-Raum. Sei B ∈ V (U1, ...,Un). Seien Wi ∈ τ derart, dass Wi ⊆Wi ⊆
Ui , B⊆

⋃n
i=1Wi und Wi∩B 6= /0 für alle i ∈ {1, ...,n} (siehe Satz 12.1.8; dieser endliche Spe-

zialfall lässt sich aber auch leichter beweisen). Es folgt

B ∈V (W1, ...,Wn)⊆V (W1, ...,Wn) = V (W1, ...,Wn)⊆V (U1, ...,Un).

Sei andererseits (α,τV ) ein T3-Raum. Sei A⊆U , also A∈V (U). Dann gibt es W1, ...,Wn ∈ τ

mit P := V (W1, ...,Wn) und A ∈ P⊆ P⊆V (U). Da P = V (W1, ...,Wn), folgt
A⊆

⋃n
k=1Wk ⊆

⋃n
k=1Wk =

⋃n
k=1Wk ⊆U .

7.2.6 Lemma

(a) Sei (E,d) ein metrischer Raum, ε > 0 und A⊆ E. Dann ist Ud
ε (A) := {y∈ E | d(x,y) <

ε} eine offene Menge mit A⊆Ud
ε (A).

(b) Sei K kompakt und U offen in (E,d) mit K ⊆U . Dann ∃ε > 0 mit K ⊆Ud
ε (K)⊆U .

(c) Sei (E,d) ein metrischer Raum, A abgeschlossen ⊆ E und δ die zu α := {A ⊆
E | A ist abgeschlossen und beschränkt} gehörige Hausdorff-Metrik. Dann ist Ud

ε (A) =⋃
Kα

δ
(A). Ist A kompakt und beschränken wir δ auf κ := {K ⊆ E | K ist kompakt und

K 6= /0}, so gilt ebenfalls Ud
ε (A) =

⋃
Kκ

δ
(A).

Beweis: (a) A⊆Ud
ε (A) ist klar. Sei y ∈Ud

ε (A) und setze r := ε−d(y,A). Dann ist K(y,r)⊆
Ud

ε (A), denn x∈K(y,r) impliziert d(x,A)≤ d(x,y)+d(y,A) < r+d(y,A) = ε , also x∈Ud
ε (A).

(b) Für jedes x ∈ K sei εx > 0 mit K(x,2ε) ⊆ U . Da K kompakt, gibt es endlich viele
x1, ...,xn ∈ K mit K ⊆

⋃n
k=1 K(xk,εxk). Setze ε := min(εx1, ...,εxn). Zeigen wir Ud

ε (K) ⊆ U .
Sei x ∈Ud

ε (K), also d(x,K) < ε . Also gibt es z ∈ K mit d(x,z) < ε . Dann gibbt es aber auch
ein k ∈ {1, ...,n} mit z ∈ K(xk,εxk). Es folgt d(x,xk)≤ d(x,z)+d(z,xk) < ε + εxk ≤ 2εxk , also
x ∈ K(xk,2εxk)⊆U .

(c) Sei x ∈Ud
ε (A), also d(x,A) < ε . Setze A′ := A∪{x}. Dann ist auch A′ abgeschlossen

(bzw. kompakt, falls A kompakt ist). Es ist supy∈A d(y,A′) = 0, da A⊆ A′ und supz∈A′ d(z,A) =
d(x,A), also δ (A,A′) = max(supy∈A d(y,A′),supz∈A′ d(z,A)) = d(x,A) < ε . Demnach x∈ A′ ⊆⋃

Kα

δ
(A,ε).

Zu x ∈
⋃

Kα

δ
(A,ε) ∃ A′ ∈ Kα

δ
(A,ε) mit x ∈ A′. Also max(supy∈A d(y,A′),supz∈A′ d(z,A)) =

δ (A,A′) < ε . Insbesondere d(x,A)≤ supz∈A′ d(z,A) < ε und somit x ∈Ud
ε (A).
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7.2.7 Satz

Sei (E,d) ein metrischer Raum, δ die Hausdorff-Metrik auf α := {A ⊆ E | /0 6= A ist
abgeschlossen und beschränkt} und sei κ := {K ⊆ E | /0 6= K ist kompakt}. Sei τ die
Vietoris-Topologie auf {A ⊆ E | /0 6= A ist abgeschlossen}. Dann stimmt die durch τ auf
dem Teilraum κ induzierte Teilraumtopologie τκ mit der von der auf κ eingeschränkten
Metrik δ induzierten Topologie überein. Wichtiger Spezialfall: Ist (E,d) selber kompakt,
so wird τ von δ induziert.

Beweis: Sei ε > 0 und K ∈ κ . Zeigen wir Kκ

δ
(K,ε) ∈ τκ . Es genügt, wenn wir in E offene

U1, ...,Un finden mit K ∈V (U1, ...,Un)⊆Kκ

δ
(K,ε). Da K kompakt ist, gibt es x1, ...,xn ∈K mit

K⊆
⋃n

k=1 KE
d (xk,

1
3ε). Setze dann Uk := KE

d (xk,
1
3ε). Sei K′ ∈V (U1, ...,Un). Es folgt δ (K,K′) =

max(supx∈K d(x,K′),supy∈K′ d(y,K)). Schätzen wir supx∈K d(x,K′) ab. Sei x ∈ K. Dann gibt
es ein k mit x ∈Uk. Sei y ∈Uk∩K′. Es folgt d(x,K′)≤ d(x,y) < 2 · 1

3ε , also supx∈K d(x,K′)≤
2
3ε < ε . Analog bekommen wir supy∈K′ d(y,K) < ε , also δ (K,K′) < ε .

Für die Rückrichtung beweisen wir, dass die Elemente der Subbasis S := {V (U) | U ∈
τ \{ /0}}∪{V (X ,U) |U ∈ τ \{ /0}} offen bzgl. δ sind. Sei K ∈V (U), für in E offenes U . Also
K ⊆U . Dann ∃ε > 0 mit K ⊆Ud

ε (K) ⊆U (Lemma 7.2.6). Es folgt Kκ

δ
(K,ε) ⊆ V (U), denn

K′ ∈ Kκ

δ
(K,ε) impliziert K′ ⊆

⋃
Kκ

δ
(K,ε) = Ud

ε (K)⊆U (wieder Lemma 7.2.6).
Sei nun K ∈ V (X ,U). Es folgt K ∩U 6= /0. Sei x ∈ K ∩U und sei ε > 0 mit KE

d (x,ε) ⊆U
Offenbar ist nun K ∈Kκ

δ
(K,ε)⊆V (X ,U), denn falls K′ ∈Kκ

δ
(K,ε) mit K∩U = /0, isbesondere

somit K′∩KE
d (x,ε) = /0, so wäre supy∈K d(y,K′)≥ d(x,K′)≥ ε , also δ (K,K′)≥ ε .
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8 Funktionenräume
”What you need is that your brain is open.”

Paul Erdös

8.1 Der Satz von Stone-Weierstraß
Was unterscheidet stetige Abbildungen (in R) von nicht stetigen? Man könnte sagen, sie sind
im allgemeinen etwas ”ruhiger”als ihre nicht stetigen Kollegen. Stetige Abbildungen auf kom-
pakten Mengen sind sogar schon fast ”zahm”. Wie zahm sie sind, das bring z.B. der klassische
Approximationssatz von Weierstraß zum Ausdruck: Jede stetige Funktion f : [0,1]→ R ist
Grenzwert einer gleichmäßig konvergenten Folge von Polynomen - und Polynome sind schon
ziemlich ”zahm” ;-)

Diesen schönen Satz erhalten wir als Korollar aus einem sehr viel allgemeineren Resultat -
dem Satz von Stone-Weierstraß.

8.1.1 Definition

Grundlegendes Sei (X ,τ) ein kompakter topologischer Raum. Mit C(X ,τ) bezeichnen wir
die Menge aller stetigen reellwertigen Funktionen auf X , also C(X ,τ) := { f : X → R | f ist
stetig}. Besteht über die Topologie τ kein Zweifel, so schreiben wir einfach C(X). Für zwei
Funktionen f ,g ∈ C(X) und reelle Zahlen a,b ist a f + bg durch (a f + bg)(x) := a f (x) +
bg(x) sinnvoll definiert. Wir bekommen damit einen reellen Vektorraum. Ebenso ist aber
auch f g definiert durch ( f g)(x) := f (x)g(x) sinnvoll und der Vektorraum C(X) (mit Ad-
dition und skalarer Multiplikation) wird mit dieser zusätzlichen Multiplikation eine reelle
(Funktionen)Algebra (das Linearkombination und Produkte reellwertiger stetiger Funktionen
wieder stetig sind, bleibt als Übungsaufgabe). Auf C(X) führen wir nun die Norm ‖ f‖ :=
sup{| f (x)| | x ∈ X} (ist sinnvoll, da X kompakt ist) ein und bekommen damit ein topologi-
scher Raum, dessen Topologie durch die Metrik d( f ,g) := ‖ f − g‖ erzeugt wird. Für zwei
f ,g ∈ C(X) ist max( f ,g) und min( f ,g) definiert als max( f ,g)(x) := max( f (x),g(x)) und
min( f ,g)(x) := min( f (x),g(x)) (wieder als Übung bleibt zu zeigen, dass max( f ,g), min( f ,g)∈
C(X)). Unter einer Unteralgebra verstehen wir ein C0 ⊆C(X) mit C0 6= /0, und mit der Eigen-
schaft falls f ,g ∈C0 und a,b ∈ R, dann auch a f +bg ∈C0 und f g ∈C0.

8.1.2 Bemerkung

Für einen kompakten Raum X ist C(X) mit der oben eingeführten Norm eine Banach Alge-
bra, das heißt eine Algebra im Sinne von oben, die zudem vollständig ist (jede Cauchy-Folge
konvergiert). Der Nachweis der Vollständigkeit bleibt als Übungsaufgabe.
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8.1.3 Lemma

Sei (X ,τ) ein kompakter Raum und A eine Teilmenge von C(X) mit den folgenden Ei-
genschaften:

1. Für alle x,y∈ X mit x 6= y und alle a,b∈Rmit a 6= b gibt es ein f ∈A , mit f (x) = a
und f (y) = b.

2. Für alle f ,g ∈A ist max( f ,g), min( f ,g) ∈A .

Dann ist A dicht in C(X).

Beweis: Sei f ∈C(X) und ε > 0. Wir müssen zeigen, dass es ein h∈A gibt, mit h∈K( f ,ε).
Zuerst zeigen wir dass wir zu x 6= y und a∈R auch ein f ∈A finden mit g(x) = a = g(y). Wir
finden nämlich ein g′ mit g′(x) = a und g′(y) = a+1 und wir finden ein g′′ mit g′′(x) = a+1
und g′′(y) = a. Dann ist aber g := min(g′,g′′)∈A und leistet das gewünschte. Zurück zu f und
ε . Für x,y ∈ X finden wir ein gxy ∈A mit gxy(x) = f (x) und gxy(y) = f (y). Aus der Stetigkeit
von gxy− f folgern wir die Existenz von Uxy ∈ ẋ∩ τ bzw. Vxy ∈ ẏ∩ τ mit (gxy− f )(Uxy) ⊆
K(0,ε) und (gxy− f )(Vxy)⊆ K(0,ε). Für festes y und ”laufendes” x gilt somit X =

⋃
x∈X Uxy.

Nun ist X kompakt, also gibt es ein endliches Xy ⊆ X mit X =
⋃

x∈Xy
Uxy. Wir setzen dann

hy := min{gxy | x∈Xy}. Für z∈X gilt z∈Ux′y, für x′ ∈Xy und somit hy(z)≤ gx′y(z) < f (z)+ε .
Dies gilt für jedes y ∈ X und wir bezeichnen dies mit (∗). Wir bilden nun Wy :=

⋂
x∈Xy

Vxy. Für
z ∈Wy gilt hy(z) > f (z)−ε , da gxy(z) > f (z)−ε für jedes x ∈ Xy gilt; dies bezeichnen wir mit
(∗∗). Aus der Kompaktheit folgern wir nun die Existenz von y1, ...,ym, mit X = Wy1 ∪ ...∪Wym

und setzen h := max(hy1, ...,hym). Für z ∈ X gilt dann z ∈Wyl und somit nach (∗∗) h(z) ≥
hyl(z) > f (z)−ε . Aus (∗) hingegen folgt h(z) = hyl′ (z) < f (z)+ε . Insgesamt also ‖h− f‖< ε

und somit h ∈ K( f ,ε).

8.1.4 Lemma

Sei X(,τ) wieder ein kompakter topologischer Raum und C0 eine Unteralgebra von C(X).
a) Für alle x 6= y existiert f ∈C0 mit f (x) 6= f (y). Außerdem enthalte C0 alle konstanten

Abbildungen (für a ∈ R bezeichne die fa die konstante Abbildung x 7→ a). Dann gibt es
für x 6= y und a,b ∈ R ein k ∈C(X) mit k(x) = a und k(y) = b.

b) Ist C0 in C(X) abgeschlossen und enthält die konstanten Abbildungen, so ist mit
f ,g ∈C0 auch max( f ,g) und min( f ,g) in C0.

Beweis: a) Seien x 6= y und a,b ∈ R. Es gibt dann ein f ∈ C0 mit f (x) 6= f (y). Setze
g := f − f f (x), h := g · f b−a

g(y)
und k := h+ fa.

b) Es gilt max( f ,g)(x) = 1
2( f (x)+ g(x)+ | f (x)− g(x)|) und min( f ,g)(x) = 1

2( f (x)+ g(x)−
| f (x)−g(x)|). Es genügt demnach zu zeigen, dass mit f ∈C0 auch | f | ∈C0 (dabei ist | f |(x) :=
| f (x)| und f ∈C(X) ⇒ | f | ∈C(X)). Wir verwenden dafür die Reihenentwicklung von

√
1− x =
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1− 1
2x− 1·1

2·4x2− 1·1·3
2·4·6x3− ..., für |x| ≤ 1. Außerdem gilt |a f |= |a|| f |, wir brauchen die Aussa-

ge also nur für f mit ‖ f‖ ≤ 1 beweisen. Wir setzen gn(h) := 1− 1
2 f − 1·1

2·4 f 2− 1·1·3
2·4·6 f 3− ...−

1·...·(2n−3)
2·...·2n f n für h ∈ C(X) mit ‖h‖ ≤ 1. Für f ∈ C0 mit ‖ f‖ ≤ 1 gilt auch ‖1− f 2‖ ≤ 1 und

somit gn(1− f 2)→
√

1− (1− f 2) = | f |. Da gn(1− f 2) ∈ C0 und C0 abgeschlossen ist, ist
auch | f | ∈C0.

8.1.5 Lemma

Sei C0 ⊆C(X) eine Unteralgebra. Dann ist auch C0 eine Unteralgebra.

Beweis: Seien f ,g ∈C0 und a,b ∈ R. Dann gibt es zwei Folgen ( fn)n∈N und (gn)n∈N aus
C0 mit fn→ f und gn→ g. Dann ist aber auch (a fn + bgn)n∈N eine Folge aus C0 und es gilt
‖a fn +bgn− (a f +bg)‖ ≤ |a|‖ fn− f‖+ |b|‖gn−g‖→ 0 für n→ ∞. Also a f +bg ∈C0.

Es gilt weiterhin ‖ fngn− f g‖≤‖ fngn− fng‖+‖ fng− f g‖= ‖ fn‖‖gn−g‖+‖g‖‖ fn− f‖→
∞, da die ‖ fn‖ beschränkt sind. Also auch f g ∈C0.

8.1.6 Satz von Stone-Weierstraß

Ist C0 ⊆ C(X) eine Unteralgebra für einen kompakten Raum (X ,τ), enthält C0 die kon-
stanten Abbildungen und gibt es zu je zwei Punkten x 6= y ein f ∈ C0 mit f (x) 6= f (y),
dann liegt C0 dicht in C(X).

Beweis: C0 ist nach Lemma 8.1.5 eine abgeschlossene Unteralgebra, die nach Lemma 8.1.4
alle Voraussetzungen von Lemma 8.1.3 erfüllt. C0 ist also dicht in C(X) und demnach ist auch
C0 dicht in C(X).

8.1.7 Klassischer Approximationssatz von Weierstraß

Jede stetige Funktion f : [0,1]→ R ist Grenzwert einer gleichmäßig konvergenten Folge
von Polynomen.

Beweis: Die Menge aller Polynome von [0,1]→ R erfüllt alle Voraussetzungen von Satz
8.1.6, liegt somit dicht in C([0,1]). Für f ∈ C([0,1]) gibt es also eine Folge (pn)n∈N von
Polynomen, die gegen f konvergiert (im Sinne der Metrik von C([0,1])). Dies bedeutet aber
gerade gleichmäßige Konvergenz.

8.2 Allgemeines über Funktionenräume
Unter Funktionenräumen versteht man im allgemeinen Mengen von Abbildungen, auf denen
einen Topologie erklärt ist. Also eine Teilmenge H der Menge aller Abbildungen von X nach

176



Y (H ⊆ Y X ). Natürlich sollte die Topologie auf Y X schon irgendwie mit schon vorhandenen
Strukturen auf X bzw. Y in sinnvoller Beziehung stehen. Ist z.B (Y,σ) ein topologischer Raum,
so bekommen wir auf Y X eine natürliche Topologie. Wir fassen Y X dazu einfach als ∏x∈X Y
auf und betrachten die Produkttopologie. Diese Topologie auf Y X beschreibt die Punktweise
Konvergenz. Als Spezielfall von Lemma 3.2.11 erhalten wir nämlich, dass ein Filter Φ auf Y X

genau dann gegen ein Element f ∈ Y X konvergiert, wenn prx(Φ) gegen f (x) ∈ Y konvergiert
(hier ist prx : ∏x∈X Y → Y die x-te Projektion).

8.2.1 Definition

Seien X ,Y ;Z Mengen. Die natürliche Bijektion Λ :Y Z×X→ (Y X)Z definiert durch Λ( f )(z)(x) :=
f (z,x) bezeichnen wir als Exponentialabbildung. Die Abbildung Ω : Y X × X → Y defi-
niert durch Ω( f ,x) := f (x) bezeichnen wir als Auswertungsabbildung. Die Abbildung Σ :
ZY ×Y X → ZX definiert durch Σ(g, f ) := g ◦ f bezeichnet die gewöhnliche Nacheinander-
ausführung.

Seien (X ,τ) und (Y,σ) zwei topologische Räume. Die Menge aller stetigen Abbildungen
zwischen X und Y bezeichnen wir mit c(X ,Y ) (eigentlich mit c((X ,τ),(Y,σ)), aber in der
Regel betrachten wir nur eine Topologie auf den Mengen X bzw. Y , so dass es nicht zu Ver-
wechslungen kommen kann; falls wir mehrere Topologien betrachten, so werden wir dass
dann eindeutig kennzeichnen).

Im Folgenden betrachten wir zunächst Topologien auf c(X ,Y ), zwischen zwei topologi-
schen Räumen X und Y .

Wir führen folgende Konvention ein. Ist f : A→ B eine Abbildung und C⊆ A, so schreiben
wir statt f |C : C → B einfach f : C → B. Betrachten wir beispielsweise die Abbildung Ω

eingeschränkt auf c(X ,Y )×X , so schreiben wir einfach Ω : c(X ,Y )×X → Y .

8.2.2 Definition

Sei τ eine Topologie auf c(X ,Y ). Wir nennen
a) τ propper6, wenn Λ(c(Z×X ,Y ))⊆ c(Z,c(X ,Y )) für jeden topologischen Raum Z gilt.
b) τ admissible, wenn Λ−1(c(Z,c(X ,Y )))⊆ c(Z×Z,Y ) für jeden top. Raum Z gilt.
c) τ aktzeptabel, wenn τ propper und admissible ist.

8.2.3 Satz

Seien X und Y topologische Räume und τ , τ ′ zwei Topologien auf c(X ,Y ).
(1) τ ist auf c(X ,Y ) genau dann admissible, wenn Ω : c(X ,Y )×X → Y stetig ist.
(2) Ist τ ′ ⊆ τ und τ propper, so ist auch τ ′ propper.
(3) Ist τ ⊆ τ ′ und τ admissible, so ist auch τ ′ admissible.
(4) Ist τ propper und τ ′ admissible, so ist τ ⊆ τ ′.
(5) Auf c(X ,Y ) gibt es höchstens eine aktzeptable Topologie.

6Lieber die englische Bezeichnung als eine holprige deutsche Übersetzung.
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Beweis: (1) Sei τ admissible. Zu zeigen ist Ω ∈ c(c(X ,Y )×X ,Y ). Setzen wir in Definition
8.2.2 c(X ,Y ) für Z ein, so reicht es also zu zeigen, dass Ω ∈ Λ−1(c(c(X ,Y ),c(X ,Y ))), also
Λ(Ω) ∈ c(c(X ,Y ),c(X ,Y )) ist. Nun ist Λ(Ω)( f )(x) = f (x) und somit Λ(Ω) = idc(X ,Y ). Da
offensichtlich idc(X ,Y ) ∈ c(c(X ,Y ),c(X ,Y )), sind wir fertig.

Sei andererseits Ω : c(X ,Y )×X→Y stetig. Sei Z beliebig und f : Z→ c(X ,Y ) stetig. Dann
ist Λ−1( f ) : Z × X → Y . Zu zeigen bleibt, dass Λ−1( f ) stetig ist. Dies folgt aber aus der
Stetigkeit von f × idX und der von Ω und aus der Gleichung Λ−1( f ) = Ω◦ ( f × idX).

Die Aussagen (2) und (3) sind offensichtlich. Zeigen wir also (4). Sei Z := (c(X ,Y ),τ)
und Z′ := (c(X ,Y ),τ ′). Zu zeigen ist also idc(X ,Y ) : Z′→ Z ist stetig. Da τ ′ admissible ist, ist
Ω ∈ c(Z′×X ,Y ) und somit, da τ propper ist, Λ(Ω) ∈ c(Z′,Z). Nun ist aber Λ(Ω) = idc(X ,Y ).

Aussage (5) folgt nun unmittelbar aus (4).

8.3 Kompakt-offene Topologie
Neben der gewöhnlichen Produkttopologie auf Y X (auch Topologie der Punktweisen Konver-
genz genannt) ist die kompakt-offene Topologie wohl die wichtigste.

8.3.1 Definition

(kompakt-offene Topologie) Seien (X ,τ) und (Y,σ) zwei topologische Räume und E ⊆ F :=
Y X . Für A ⊆ X und B ⊆ Y setzen wir S(A,B) := { f ∈ E | f (A) ⊆ B}. Seien nun α ⊆P(X)
und β ⊆P(Y ) gegeben. Dann nennen wir die von der Subbasis S := {S(A,B) | A ∈ α und
b ∈ β} erzeugte Topologie, die von α und β erzeugte α − β -Topologie (auf E). Als einen
wichtigen Spezialfall erhalten wir so die gewöhnliche Produkttopologie (die Topologie bzgl.
der Punktweisen Konvergenz) auf F = ∏x∈X Y . Wir setzen dazu einfach α = {M ⊆ X | M :
endlich} und β = σ (Beweis als leichte Aufgabe).

Von größerer Bedeutung ist die sogenannte kompakt offene Topologie auf c(X ,Y ). Dazu
setzen wir einfach α := κ := {K ⊆ X | K ist kompakt} und β := σ . Die kompakt-offene
Topologie ist dann die κ−σ Topologie.

Offenbar ist die kompakt-offene Topologie feiner als die gewöhnliche Produktopologie.

8.3.2 Lemma

Seien X ,Y topologische Räume, A ⊆ X und B ⊆ Y . Ist B abgeschlossen, so ist S(A,B) in
Y X bzgl. der Produktopologie ebenfalls abgeschlossen. Da die kompakt-offene Topologie
feiner als die gewöhnliche Produktopologie ist, ist S(A,B) auch bzgl. der kompakt offenen
Topologie abgeschlossen.

Beweis: Sei f ∈ Y X \S(A,B). Dann ∃a ∈ A mit f (a) ∈ Y \B. Also ist f ∈ S({a},Y \B) ⊆
Y X \S(A,B). Da S({a},Y \B) offen ist, ist alles gezeigt.
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8.3.3 Lemma

Sei k ∈ {0,1,2,3} und Y ein Tk-Raum. Dann ist auch Y X mit der kompakt-offenen Topo-
logie ein Tk-Raum (gilt auch für T3 1

2
-Räume, beweisen wir aber erst später).

Beweis: Für k ∈ {0,1,2} folgt dies daher, da die kompakt-offene Topologie feiner als
die gewöhnliche Produktopologie ist. Sei k = 3. Sei f ∈ O und O offen. O.B.d.A. ist O =
S(K1,U1)∩ ...∩S(Kn,Un). Das bedeutet f (Ki)⊆Ui für i = 1, ...,n. Da f (Ki) kompakt und Y ein
T3-Raum ist, gibt es ein offenes V mit f (Ki)⊆Vi⊆Vi⊆Ui. Für W := S(K1,V1)∩ ...∩S(Kn,Vn)
und W ′ := W := S(K1,V1)∩ ...∩S(Kn,Vn) gilt dann f ∈W ⊆W ⊆W ′ ⊆ O, denn W ′ ist abge-
schlossen.

8.3.4 Satz

(1) Für zwei top. Räume X ,Y ist die kompakt-offene Topologie auf c(X ,Y ) propper.
(2) Ist X zusätzlich stark lokal kompakt, so ist die kompakt offene Topologie aktzepta-

bel.

Beweis: (1) Sei Z ein beliebiger top. Raum. Zu zeigen ist Λ(c(Z×X ,Y )) ⊆ c(Z,c(X ,Y )).
Sei also f : Z×X→Y stetig und z∈ Z fest gewählt. Dann ist die Einschränkung f : {z}×X→
Y stetig und da {z}×X und X homöomorph sind, ist es auch Λ( f )(z) : X → Y . Demnach ist
Λ( f ) eine Abbildung von Z→ c(X ,Y ). Zu zeigen bleibt, dass Λ( f ) stetig ist. Für kompaktes K
und offenes O betrachten wir dazu S(K,O) und zeigen, dass (Λ( f ))−1(S(K,O)) offen ist. Sei
z ∈ (Λ( f ))−1(S(K,O)), also {z}×K ⊆ f−1(O). Aus dem Tubenlemma (Lemma 4.1.6) folgt,
dass es offene U und V gibt mit {z}×K⊆U×V ⊆ f−1(O). Es folgt z∈U ⊆ (Λ( f ))−1S(K,O).

(2) Zu zeigen bleibt, dass Ω : c(X ,Y )×X → Y stetig ist. Sei O offen in Y und ( f ,x) ∈
Ω−1(O). Dann ist f (x) ∈ O. Es gibt dann eine kompakte Umgebung K von x mit f (K) ⊆ O.
Dann ist W := S(K,O)×K◦ offen in c(X ,Y )×X mit ( f ,x) ∈W und W ⊆Ω−1(O).

8.3.5 Satz

Seien X ,Y ;Z top. Räume und Y zudem stark lokal kompakt. Dann ist Σ : c(Y,Z)×
c(X ,Y )→ c(X ,Z) stetig, bzgl der kompakt offenen Topologie auf c(Y,Z) , c(X ,Y ) und
c(X ,Z).

Beweis: Zeigen wir, dass Σ−1(S(K,O)) offen ist, für kompaktes K ⊆ X und offenes O⊆ Z.
Sei (g, f ) ∈ Σ−1(S(K,O)), also g ◦ f (K) ⊆ O, bzw. f (K) ⊆ g−1(O). Nun ist f (K) kompakt
und Y lokal kompakt. Zu jedem y ∈ f (K) gibt es daher eine kompakte Umgebung V von
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y mit V ⊆ g−1(O). Dann gibt es endliche vieler solcher V mit f (K) ⊆ V ◦1 ∪ ...∪V ◦n . Nun
ist U := V ◦1 ∪ ...∪V ◦n offen und L := V1 ∪ ...∪Vn kompakt mit U ⊆ L ⊆ g−1(O). Für W :=
S(L,O)×S(K,U) folgt damit (g, f ) ∈W ⊆ Σ−1(S(K,O)).

8.3.6 Lemma

Sei (X ,τ) ein top. Raum und K ⊆ X und K als Teilraum kompakt und T2. Sind U1, ...,Un ∈
τ und K ⊆

⋃n
k=1Uk, so gibt es kompakte Kk ⊆Uk mit K =

⋃n
k=1 Kk.

Beweis: Beweisen wir den Fall n = 2. Der Rest folgt durch Induktion. Sei K⊆U1∪U2. Dann
sind K \U1 und K \U2 in K abgeschlossen und disjunkt. Es gibt somit U ′,V ′ ∈ τ mit K \U1 ⊆
V ′ , K \U2⊆U ′ und K∩U ′∩V ′= /0. Dann ist K1 := K \V ′⊆U1 und K2 := K \U ′⊆U2, wobei
K1 und K2 in K abgeschlossen, also auch kompakt sind. Es folgt K1∪K2 = K \ (U ′∩V ′) = K.

8.3.7 Lemma

Seien X und Y top. Räume, β eine Subbasis für Y und X ein T2-Raum. Dann ist
{S(K,B) | K : kompakt und B ∈ β} eine Subbasis für die kompakt-offene Topologie auf
c(X ,Y ).

Beweis: Sei K kompakt ⊆ X und O offen ⊆ Y . Sei f ∈ S(K,O). Gesucht sind kompakte
K1, ...,Km ⊆ X und B1, ...,Bm ∈ β mit f ∈ S(K1,B1)∩ ...∩ S(Km,Bm) ⊆ S(K,O). Da O of-
fen und β eine Subbasis ist, gibt es eine Menge I und für jedes i ∈ I ein endliches βi ⊆
β mit O =

⋃
i∈I(

⋂
βi). Da f (K) kompakt ist, gibt es endlich viele dieser βi mit f (K) ⊆

(
⋂

βi1)∪ ...∪ (
⋂

βin). Für jedes k = 1, ...,n setzen wir Uk :=
⋂

βik und Vk := f−1(Uk). Es
gilt also K ⊆

⋃n
k=1Vk. Entsprechend Lemma 8.3.6 gibt es kompakte Teilmengen Kk ⊆ Vk mit

K =
⋃n

k=1 Kk. Ist βik = {B(k)
1 , ...,B(k)

nk } für k = 1, ...,n, so gilt f ∈ W ⊆ S(K,O) mit W :=⋂n
k=1

⋂nk
l=1 S(Kk,B

(k)
l ).

8.3.8 Satz

(1) Seien X ,Y,Z topologische Räume und X ,Z zusätzlich T2. Dann ist Λ : c(Z×X ,Y )→
c(Z,c(X ,Y )) eine topologische Einbettung (d.h. Λ : c(Z×X ,Y )→ Λ(c(Z×X ,Y )) ist ein
Homöomorphismus) bzgl. der kompakt offenen Topologie auf c(X ,Y ).

(2) Ist X zusätzlich lokal kompakt, so ist Λ : c(Z×X ,Y )→ c(Z,c(X ,Y )) bijektiv, die
Räume c(Z×X ,Y ) und c(Z,c(X ,Y )) somit sogar homöomorph.

Beweis: (1) Aus Satz 8.3.4 folgt, dass die kompakt-offene Topologie propper ist. Also schon
mal Λ(c(Z×X ,Y ))⊆ c(Z,c(X ,Y )). Zeigen wir, dass Λ : c(Z×X ,Y )→ c(Z,c(X ,Y )) stetig ist.
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Sei dazu V := S(K,W ) ein typisches Subbasiselement in c(Z,c(X ,Y )) und f ∈ Λ−1(V ). Aus
Lemma 8.3.7 folgt, dass wir o.B.d.A. W = S(L,O) wählen können. Dann ist f (K×L) ⊆ O
und M := K×L ist kompakt. Es folgt f ∈ S(M,O)⊆ Λ−1(V ).

Zeigen wir, dass Λ offen in Λ(c(Z×X ,Y )) ist. Sei dazu W ein offenes Basiselement in
c(Z×X ,Y ). Zu zeigen ist, dass Λ(W ) offen in Λ(c(Z×X ,Y )) ist. Es ist W = S(K1,O1)∩ ...∩
S(Kn,On), wobei die Ki kompakt in Z×X und die Oi offen in Y sind. Da Lambda injektiv
ist folgt Λ(

⋂n
k=1 S(Kk,Ok)) =

⋂n
k=1 Λ(S(Kk,Ok)). Es reicht also zu zeigen, dass Λ(S(K,O))

offen ist für K in Z×X kompakt und O offen in Y . Sei f ∈ S(K,O), also K ⊆ f−1(O). Es gibt
dann Uk,Vk offen in Z bzw. X mit K ⊆

⋃n
k=1Uk×Vk ⊆ f−1(O). Aus Lemma 8.3.6 folgt die

Existenz kompakter Mengen P1, ...,Pn ⊆ Z×X mit K =
⋃n

k=1 Pk und Pk ⊆Uk×Vk. Bezeichnen
pZ : Z×X→ Z und pX : Z×X→X die entsprechenden Projektionen, so sind Kk := pZ(Pk) und
Lk := pX(Pk) kompakt mit Pk ⊆ Kk×Lk ⊆Uk×Vk. Es folgt Λ( f ) ∈ [

⋂n
k=1 S(Kk,S(Lk,O))]∩

Λ(c(Z×X ,Y ))⊆ Λ(S(K,O)).
(2) Als lokal kompakter T2-Raum ist X stark lokal kompakt. Nach Satz 8.3.4 ist Λ(c(Z×

X ,Y )) = c(Z,c(X ,Y )). Die Behauptung folgt somit aus (1).

8.3.9 Satz

Sei α eine Kardinalzahl, C eine Basis für X und D eine Basis für Y mit |C | ≤ α und
|D | ≤ α . Ferner habe X die Eigenschaft: ∀x ∈ X ∀U offen mit x ∈ U ∃ offenes V mit
x ∈ V ⊆ V ⊆ U und V ist kompakt. Dann hat auch c(X ,Y ) versehen mit der kompakt-
offenen Topologie eine Basis von Kardinalität kleiner oder gleich α .

Beweis: Offenbar genügt es zu zeigen, dass es eine Subbasis β gibt mit |β | ≤ α . Sei B :=
{
⋃

C ′ | C ′ ⊆ C und C ′ ist endlich}. Dann ist auch B eine Basis von X mit |B| ≤ α . Nach
Lemma 8.3.7 ist S := {S(K,U) | K: kompakt ⊆ X und U ∈ D} eine Subbasis von c(X ,Y ).
Sei f ∈ S(K,U). Dann gibt es zu jedem x ∈ K ein offenes Vx mit x ∈ Vx ⊆ Vx ⊆ f−1(U) und
Vx kompakt. Da K kompakt und B eine Basis ist, gibt es ein B ∈B mit K ⊆ B⊆ B⊆ f−1(U)
und B ist kompakt. Es folgt f ∈ S(B,U)⊆ S(K,U). Dementsprechend ist β := {S(B,U) | B ∈
B , U ∈D} eine Subbasis mit |β | ≤ α .

8.4 Semiuniforme Räume und der Satz von Arzelà-Ascoli
Widmen wir uns nun einem wichtigen Satz, der z.B. in der Theorie gewöhnlicher Differenti-
algleichungen häufig Anwendung findet. Bevor wir diesen formulieren, geben wir eine kleine
Einführung in die Theorie der semiuniformen Räume (genauer: semiuniforme Überdeckungs-
räume). Nebenbei bekommen wir auf diesem Weg auch eine interessante Charakterisierung
der T3-Räume.

8.4.1 Definition

Γ⊆P(P(X)) heißt Semiuniformität auf X und (X ,Γ) heißt semiuniformer Raum (eigent-
lich müsste man Γ Semiüberdeckungsuniformität nennen), falls
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1. ∀γ ∈ Γ gilt
⋃

γ = X

2. ∀α ⊆P(X) [(
⋃

α = X und ∃γ ∈ Γ mit γ < α) ⇒ α ∈ Γ]

3. ∀α,β ∈ Γ∃γ ∈ Γ mit γ < α,β

4. ∀γ ∈ Γ∃α ∈ Γ∀A ∈ α ∃βA ∈ Γ∃g ∈ γ mit βA(A)⊆ g

Nochmal zur Erinnerung: Für α,β ⊆P(X) bedeutet α < β :⇔ ∀A∈α ∃B∈ β mit A⊆B.
Und mit α(A) meinen wir α(A) :=

⋃
{B ∈ α | B∩A 6= /0}. Die Beziehung zwischen γ und α

in 4. bezeichnen wir kurz mit α <+ γ und nennen α eine lokale Sternverfeinerung von γ .
Einem semiuniformen Raum (X ,Γ) werden wir nun eine Topologie zuordnen. Wir setzen

dazu τΓ := {O⊆ X | ∀x ∈ O∃γ ∈ Γ mit γ(x)⊆ O}.

8.4.2 Lemma

Sei (X ,Γ) ein seminuniformer Raum. Dann gilt:
(1) τΓ ist eine Topologie und ∀A⊆ X ist A′ := {x ∈ A | ∃γ ∈ Γ mit γ(x)⊆ A}= A◦.
(2) ∀x ∈ X ∀α ∈ Γ∃A ∈ α mit x ∈ A◦. Oder kürzer: Γ 3 α◦ := {A◦ | A ∈ α}< α .
(3) (X ,τΓ) ist ein T3-Raum.
(4) ∀x ∈ X ∀α ∈ Γ∃γ ∈ Γ mit γ(γ(x))⊆ α(x).

Beweis: (1) Offenbar ist /0,X ∈ τΓ und mit U,V ∈ τΓ ist auch U ∪V ∈ τΓ. Es ist aber auch
U ∩V ∈ τΓ, denn wenn x ∈ U ∩V , so gibt es α,β ∈ Γ mit α(x) ⊆ U und β (x) ⊆ V . Sei
dann γ < α,β , γ ∈ Γ. Offenbar ist dann γ(x)⊆U ∩V . Damit haben wir gezeigt, dass τΓ eine
Topologie ist.

Sei A ⊆ X . Zeigen wir zuerst A′ ∈ τΓ. Sei x ∈ A′. Dann ∃γ ∈ Γ mit γ(x) ⊆ A. Sei α <+ γ .
Wir zeigen α(x) ⊆ A′. Sei y ∈ α(x). Dann ∃A0 ∈ α mit x,y ∈ A0. Dann ∃βA0 ∈ Γ∃g ∈ γ mit
βA0(A0) ⊆ g, also βA0(y) ⊆ A und somit y ∈ A′. Aus A′ ∈ τΓ und A′ ⊆ A folgt A′ ⊆ A◦. Für
die andere Inklusion nehmen wir uns ein x ∈ A◦. Dann gibt es ein B ∈ τΓ mit x ∈ B⊆ A◦, also
∃γ ∈ Γ mit γ(x)⊆ B. Folglich ist γ(x)⊆ A, also x ∈ A′.

(2) Seien x ∈ X und α ∈ Γ gegeben. Es gibt dann ein β ∈ Γ mit β <+ α . Sei x ∈ B∈ β . Nun
gibt es ein γB ∈ Γ und A ∈ α mit γB(B)⊆ A, also γB(x)⊆ A und folglich x ∈ A′ = A◦.

(3) Sei x ∈ O ∈ τΓ. Sei γ ∈ Γ mit γ(x)⊆ O. Dann gibt es ein α ∈ Γ mit α <+ γ . Sei A ∈ α

mit x ∈ A◦. Behauptung: A ⊆ O. Beweis davon: Sei y ∈ A. Nun gibt es βA ∈ Γ und g ∈ γ mit
βA(A) ⊆ g. Sei B ∈ β mit y ∈ B◦. Folglich ist B∩A 6= /0, also y ∈ B ⊆ βA(A) ⊆ g. Da auch
x ∈ βA(A), folgt x,y ∈ g und somit y ∈ γ(x)⊆ O.

(4) Sei x ∈ X und α ∈ Γ. Es gibt ein β ∈ Γ mit β <+ α . Sei B ∈ β mit x ∈ B◦. Es gibt ein
δB ∈ Γ und es gibt ein A ∈ α mit δB(B)⊆ A. Zu x gibt es aber auch ein η ∈ Γ mit η(x)⊆ B◦.
Sei γ ∈ Γ mit γ < δB,η . Es folgt γ(γ(x))⊆ γ(B)⊆ δB(B)⊆ A⊆ α(x), denn x ∈ A.
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8.4.3 Lemma

Sei (X ,τ) ein T3-Raum. Dann gilt:

1. Γτ := {γ ⊆P(X) | ∃α ⊆ τ mit
⋃

α = X und α < γ} ist eine Semiuniformität auf
X .

2. τ wird durch die Semiuniformität Γτ erzeugt, also τ = τΓτ
.

Als Korollar erhalten wir, dass ein topologischer Raum (X ,τ) genau dann ein T3-Raum
ist, wenn es eine Semiuniformität Γ auf X gibt mit τ = τΓ.

Beweis: 1. Offenbar gilt
⋃

γ = X für jedes γ ∈ Γ. Sind γ1,γ2 ∈ Γ gegeben, so gibt es offene
Überdeckungen α,β mit α < γ1 und β < γ2. Offenbar ist dann α∧β := {A∩B |A∈α, B∈ β}
eine offene Überdeckung mit α ∧β < γ1,γ2.

Sei γ ∈ Γ. Zu zeigen bleibt, dass es ein α ∈ Γ gibt mit α <+ γ . Nun gilt: ∀g ∈ γ ∀x ∈
g∃Og,x ∈ τ mit x ∈ Og,x ⊆ Og,x ⊆ g. Setze α := {Og,x | g ∈ γ , x ∈ g}. Dann ist α eine lokale
Sternverfeinerung von γ . Ist nämlich A ∈ α , so ist A = Og,x, für gewisses g ∈ γ, x ∈ g und wir
haben βA := {g,X \Og,x} ∈ Γτ mit βA(A) = g⊆ g.

2. Sei O∈ τ . Für jedes x∈O gibt es U ∈ τ mit x∈U ⊆U ⊆O. Nun ist γ := {O,X \U} ∈ Γτ

und γ(x) = O ⊆ O, also O ∈ τΓτ
. Sei andererseits O ∈ τΓτ

. Zu x ∈ O gibt es ein γ ∈ Γτ mit
γ(x)⊆ O. Zu γ gibt es ein α ⊆ τ mit

⋃
α = X und α < γ , also τ 3 α(x)⊆ O. Es folgt O ∈ τ .

8.4.4 Definition

Eine Abbildung f : X → Y zwischen zwei semiuniformen Räumen (X ,Γ), (Y,Σ) nennen wir
semiuniform, wenn f−1(σ) := { f−1(S) | S ∈ σ} ∈ Γ für alle σ ∈ Σ gilt.

8.4.5 Lemma

Ist f : X → Y semiuniform zwischen zwei semiuniformen Räumen (X ,Γ), (Y,Σ), so ist f
stetig bezüglich (X ,τΓ), (Y,τΣ).

Beweis: Sei O ∈ τΣ. Zu zeigen ist f−1(O) ∈ τΓ. Sei x ∈ f−1(O), also f (x) ∈ O. Dann gibt
es ein σ ∈ Σ mit σ( f (x))⊆ O. Es folgt γ(x)⊆ f−1(O) mit γ := f−1(σ) ∈ Γ.

Für die Formulierung des Satzes von Arzelà-Ascoli brauen wir zwei weiter Definitionen:

8.4.6 Definition

1. Seien (X ,τ) und (Y,σ) topologische Räume und sei F ⊆ Y X .
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Wir nennen F gleichstetig in x ∈ X , falls

∀y ∈ Y ∀V ∈ ẏ∩σ ∃Uy ∈ ẋ∩ τ ∃Wy ∈ ẏ∩σ ∀ f ∈ F ( f (x) ∈Wy ⇒ f (Uy)⊆V ).

2. Sei (X ,τ) ein topologischer, (Y,Σ) ein semiuniformer Raum und sei F ⊆ Y X .

Wir nennen F gleichgradig stetig in x ∈ X , falls

∀σ ∈ Σ ∃U ∈ ẋ∩ τ mit ∀ f ∈ F gilt f (U)⊆ σ( f (x)).

Wir nennen F gleichstetig bzw. gleichgradig stetig auf A⊆X , wenn F für alle a∈A gleichs-
tetig bzw. gleichgradig stetig ist. Sprechen wir davon, dass F ⊆ Y X gleichstetig ist, wobei
(Y,Σ) ein semiuniformer Raum ist, so meinen wir natürlich gleichstetig bzgl. τΣ.

8.4.7 Lemma

Sei (X ,τ) ein topologischer, (Y,Σ) ein semiuniformer Raum und sei F ⊆ Y X .

1. Ist F gleichgradig stetig (in x), so ist F gleichstetig (in x).

2. Ist F gleichstetig (in x) und F(x) := { f (x) | f ∈ F} relativ kompakt, so ist F gleich-
gradig stetig (in x). Relativ kompakt bedeutet hier, dass jede offene Überdeckung
von Y eine endliche Teilüberdeckung von F(x) besitzt.

Beweis: 1. Sei y ∈ V ∈ τΣ. Es gibt ein σ ∈ Σ mit σ(σ(y)) ⊆ V . Zu σ gibt es nun ein
U ∈ ẋ∩ τ , so dass ∀ f ∈ F gilt f (U) ⊆ σ( f (x)). Sei nun W ∈ σ mit y ∈W ◦. Gilt f (x) ∈W ◦

für ein f ∈ F , so folgt f (U)⊆ σ( f (x))⊆ σ(W )⊆ σ(σ(y))⊆V .
2. Sei ξ ∈ Σ gegeben. O.B.d.A. sei ξ = ξ ◦. Zu jedem y ∈ Y wählen wir ein Sy ∈ ẏ∩ ξ . Es

gibt nun ein Uy ∈ ẋ∩ τ und ein Wy ∈ ẏ∩ τΣ mit ∀ f ∈ F gilt ( f (x) ∈Wy ⇒ f (Uy) ⊆ Sy). Da
F(x) relativ kompakt ist, gibt es endlich viele y1, ...,yn ∈ Y mit F(x) ⊆Wy1 ∪ ...∪Wyn . Setze
U := Uy1 ∩ ...∩Uyn . Damit gilt ∀ f ∈ F : f (U) ⊆ ξ ( f (x)). Denn für f ∈ F gibt es ein yk mit
f (x) ∈Wyk . Es folgt f (U) ⊆ f (Uyk) ⊆ Syk ⊆ ξ ( f (x)). Für die letzte Inklusion beachte man
x ∈Uyk , also f (x) ∈ Syk .

8.4.8 Lemma

Sei (X ,τ) ein k-Raum, (Y,σ) ein T3-Raum, c(X ,Y ) sei mit der kompakt-offenen Topolo-
gie versehen und F sei lokal kompakt ⊆ c(X ,Y ). Dann ist Ω : F×X → Y stetig.

Beweis: Da auch c(X ,Y ) ein T3-Raum ist, ist es auch F . Als lokal kompakter T3-Raum
ist F stark lokal kompakt. Daher ist auch F ×X ein k-Raum. Es reicht also die Stetigkeit
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von Ω auf kompakten Teilmengen K von F×X nachzuprüfen. Sei also K kompakt ⊆ F×X .
Bezeichne p : F×X→X die Projektion ( f ,x) 7→ x. Da K ⊆F× p(K), reicht es zu zeigen, dass
Ω|F× p(K) stetig ist. Sei ( f ,x) ∈ F× p(K) und Ω( f ,x) ∈V ∈ σ . Es gibt dann ein W ∈ σ mit
Ω( f ,x)∈W ⊆W ⊆V . Dann ist K′ := f−1(W )∩ p(K) eine kompakte Umgebung von x in p(K)
und es folgt Ω(S(K′,V )× [ f−1(W )∩ p(K)])⊆V , wobei ( f ,x) ∈ S(K′,V )× [ f−1(W )∩ p(K)]
offen in F× p(K) ist.

8.4.9 Lemma

Sei (X ,τ) beliebig und (Y,σ) ein T3-Raum. Ist F kompakt ⊆ c(X ,Y ) (bzgl. der der kom-
pakt offenen Topologie) und Ω : F×X → Y stetig, so ist F gleichstetig.

Beweis: Sei x∈ X , y∈Y und V ∈ ẏ∩σ . Sei dann W ∈ ẏ∩σ mit W ⊆V . Dann ist S(x,W ) =
{ f ∈ c(X ,Y ) | f (x) ∈W} nach Lemma 8.3.2 abgeschlossen und F ∩ S(x,W ) demnach kom-
pakt. Nun ist [F ∩S(x,W )]×{x} ⊆Ω−1(V ). Aus Lemma 4.1.6 (Tubenlemma) folgt die Exis-
tenz eines U ∈ ẋ∩τ mit [F∩S(x,W )]×U ⊆Ω−1(V ). Offenbar folgt dann Ω(S({x},W )×U)⊆
V .

8.4.10 Lemma

Sei E ⊆ Y X gleichstetig und (Y,σ) ein T3-Raum und (X ,τ) beliebig. Dann ist E gleichs-
tetig, wobei der Abschluß bzgl. der Produkttopologie auf Y X = ∏x∈X Y gemeint ist.

Beweis: Sei x ∈ X , y ∈ Y und V offen mit y ∈ V . Es gibt dann ein P ∈ ẏ∩σ mit P ⊆ V .
Außerdem gibt es U ∈ ẋ∩τ und W ∈ ẏ∩σ mit ∀g∈ E g(x)∈W ⇒ g(U)⊆ P. Sei dann f ∈ E
mit f (x) ∈W . Angenommen es gibt ein z ∈U mit f (z) ∈ Y \P.

Sei dann O := ∏
a∈X

Ya , wobei Ya :=


W falls a = x
Y \P falls a = z
Y falls a 6∈ {x,z}

Offenbar ist f ∈ O. Es gibt somit ein g ∈ O∩E. Aus g(x) ∈W folgt aber g(U) ⊆ P, im
Widerspruch zu z ∈U und g(z) ∈ Y \P. Also f (U)⊆ P⊆V .

8.4.11 Lemma

Seien (X ,τ) und (Y,σ) beliebige topologische Räume und F ⊆ Y X gleichstetig. Dann ist
Ω : F×X → Y stetig (bzgl. der Produkttopologie auf Y X = ∏x∈X Y ).
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Beweis: Sei Ω( f ,x) ∈ V ∈ σ . Setze y := f (x). Dann ∃U ∈ ẋ∩ τ ∃W ∈ ẏ∩σ ∀g ∈ F gilt

(g(x) ∈W impliziert g(U)⊆V ). Setze O := ∏z∈X Yz, wobei Yz :=

{
W falls z = x
Y falls z 6= x

Dann ist ( f ,x) ∈O×U und Ω(O×U)⊆V (denn (h,a) ∈O×U impliziert h(x) ∈W , denn
h ∈ O, also h(U)⊆V und somit Ω(h,a) = h(a) ∈V ).

8.4.12 Satz von Arzelà-Ascoli

Für einen k-Raum (X ,τ), einen semiuniformen Raum (Y,Σ) (den wir auch als topologi-
schen Raum (Y,τΣ) auffassen) und F ⊆ c(X ,Y ) ist äquivalent:

1. F ist kompakt (bzgl. der komkpakt offenen Topologie).

2. F ist gleichgradig stetig auf X (oder gleichstetig; siehe Lemma 8.4.7) und

für jedes x ∈ X ist F(x) kompakt (wobei F(x) := { f (x) | f ∈ F}).

Beweis: 1. ⇒ 2. Da F kompakt ist, ist es auch lokal kompakt. Aus Lemma 8.4.8 folgt, dass
Ω : F×X → Y stetig ist. Aus Lemma 8.4.9 folgt, dass F gleichstetig ist. Demnach ist auch F
gleichstetig. Für x ∈ X ist Ω(F ×{x}) kompakt. Da Y ein T3-Raum ist, ist auch Ω(F×{x})
kompakt und aus F(x)⊆Ω(F×{x}) folgt, dass F(x) kompakt ist.

2. ⇒ 1. Sei F ′ der Abschluß von F bzgl. der Produkttopologie auf Y X = ∏x∈X Y (und
mit der Produkttopologie versehen). Wegen Lemma 8.4.7 und Lemma 8.4.10 ist F ′ gleichs-
tetig (also auch gleichgradig stetig). Lemma 8.4.11 impliziert, dass Ω : F ′×X → Y stetig ist
(bzgl. Produkttopologie auf F ′). Für K kompakt in X , V offen in Y und f ∈ S(K,V )∩F ′, also
{ f}×K ⊆ Ω−1(V ) folgt aus Lemma 4.1.6 (Tubenlemma) die Existenz eines in F ′ offenen
W mit f ∈W und W ×K ⊆ Ω−1(V ), also f ∈W ⊆ S(K,V ). Folglich stimmt auf F ′ die Pro-
dukttopologie mit der kompakt offenen Topologie überein. Es ist also F = F ′. Da ∏x∈X F(x)
kompakt und abgeschlossen (bzgl. der Produkttopologie) ist, folgt aus F ′ ⊆∏x∈X F(x), dass
auch F ′ kompakt ist. Demzufolge ist auch F mit der kompakt offenen Topologie kompakt!

Zum Abschluss dieses Abschnitts geben wir noch eine interessante Charakterisierung der
Gleichstetigkeit. Zuvor noch etwas Notation. Für eine gegebene Menge X sei Φ(X) die Menge
aller Filter auf X . Sei H ⊆ Y X , F ∈Φ(H) , ϕ ∈Φ(X) und x ∈ X . Dann definieren wir

F (x) := {P⊆ Y | ∃F ∈F mit F(x) = { f (x) | f ∈ F} ⊆ P}

F (ϕ) := {P⊆ Y | ∃F ∈F ∃A ∈ ϕ mit F(A) = { f (a) | f ∈F , a ∈ A} ⊆ P}.

Offenbar sind F (x) und F (ϕ) Filter auf Y .
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8.4.13 Lemma

Seien (X ,τ), (Y,σ) topologische Räume und H ⊆ Y X . Dann ist äquivalent:
(a) H ist gleichstetig.
(b) ∀x ∈ X ∀y ∈ Y ∀F ∈Φ(H)∀ϕ ∈Φ(X) [(F (x)→ y und ϕ → x) ⇒ F (ϕ)→ y]

Beweis: (a)⇒ (b): Sei x ∈ X , y ∈Y , F ∈Φ(H) und ϕ ∈Φ(X) mit F (x)→ y , ϕ→ x. Sei
nun V ∈ ẏ∩σ . Dann gibt es U ∈ ẋ∩ τ , W ∈ ẏ∩σ mit ∀ f ∈ H ( f (x) ∈W ⇒ f (U)⊆V ). Es
ist U ∈ ϕ und W ∈F (x), es gibt also ein F ∈F mit F(x)⊆W . Das bedeutet aber f (x) ∈W
für alle f ∈ F und somit auch f (U)⊆V für alle f ∈ F , also F(U)⊆V . Da F(U) ∈F (ϕ), ist
auch V ∈F (ϕ). Zeigen wir (b)⇒ (a): Angenommen

∃x∈X , y∈Y, V ∈ ẏ∩σ ∀U ∈ ẋ∩τ ∀W ∈ ẏ∩σ ∃ fU,W ∈H mit fU,W (x)∈W und fU,W (U) 6⊆V

Setze PU,W := { f ∈ H | ∃U ′ ∈ ẋ∩ τ , ∃W ′ ∈ ẏ∩σ mit U ′ ⊆U , W ′ ⊆W und f = fU ′,W ′}
und F := {F ⊆ H | ∃U ∈ ẋ∩ τ ∃W ∈ ẏ∩σ mit PU,W ⊆ F}. Dann ist F ein Filter auf H.

Es gilt F (x)→ y. Beweis: Für O ∈ ẏ∩σ ist PU,O ⊆ O!
Es gilt F (ϕ) 6→ y, wobei ϕ := {A ⊆ X | ∃U ∈ ẋ∩ τ mit U ⊆ A}. Beweis: Angenommen

F (ϕ)→ y. Dann gibt es A∈ ϕ , F ∈F mit F(A)⊆V (denn V ∈F (ϕ)). Also gibt es U,U ′ ∈
ẋ∩ τ , W ∈ ẏ∩σ mit PU ′,W (U) ⊆ V und somit auch PU∩U ′,W (U) ⊆ V . Aber für f ∈ PU∩U ′,W
gilt f (U ∩U ′) 6⊆V (und natürlich ist PU∩U ′,W 6= /0). Dies ist ein Widerspruch!
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9 Stetige Konvergenz und allgemeine
Konvergenzräume

Mein Vorschlag geht nun dahin, jedesmal, wo es vorteilhaft ist - und es ist, wie ich
glaube, mit ganz wenigen Ausnahmen immer vorteilhaft, den Begriff der gleich-
mäßigen Konvergenz in der Funktionentheorie durch den Begriff der stetigen Kon-
vergenz zu ersetzen, den H. Hahn vor einigen Jahren in die Mathematik eingeführt
hat und dessen Handhabung unvergleichlich einfacher ist.

Constantin Caratheodory

Der Inhalt dieses Kapitels ist aus [15].

9.1 Stetige Konvergenz, schwach stetige Abbildungen und
(S)-Räume

1921 führte H. Hahn den Begriff der stetigen Konvergenz von reellen Funktionen in seinem
Buch [20] offiziell in die Mathematik ein7 (genau genommen definierte er stetige Konvergenz
in einem Punkt). Caratheodory griff dieses Konzept 1929 auf (siehe [7]) und ersetzte mit
diesem den Begriff der gleichmäßigen Konvergenz in der Funktionentheorie.

9.1.1 Ursprüngliche Definition der stetigen Konvergenz

Eine Folge reeller Funktionen fn : R→ R konvergiert stetig gegen f : R→ R, wenn für jede
in R gegen x ∈ R konvergente Folge (xn)n∈N die Folge ( fn(xn))n∈N gegen f (x) konvergiert.
Der Begriff der stetigen Konvergenz in einem Punkt ergibt sich nun auch unmittelbar.

Übertragen wir dieses Konzept nun auf allgemeine topologische Räume.

Für die reellen Zahlen oder auch für metrische Räume reicht das Konzept konvergierender Fol-
gen völlig aus, um topologische Fragestellungen zu behandeln, aber eben nicht für allgemei-
ne topologische Räume8 (Beispiele hierzu findet man in [22]). In allgemeinen topologischen
Räumen brauchen wir daher auch allgemeine Konzepte. Definition 9.1.1 wird sich also bei
allgemeinen topologischen Räumen kaum sinnvoll anwenden lassen, da selbst so elementare
Konzepte wie die Stetigkeit nicht allein durch Folgenkonvergenz beschreibbar sind.

Definition 9.1.2 und Lemma 9.1.3 geben nun Auskunft darüber, wie sich das obige Konzept
der stetigen Konvergenz mittels Filter beschreiben lässt.

7Die Definition geht aber bereits auf Weierstrass zurück und der Name stammt von P. Du Bois-Reymond
8Natürlich sind metrische Räume nicht die größte Klasse topologischer Räume, deren Topologie bereits durch

die Kenntnis aller Folgen (und ihrer Grenzwerte) bestimmt sind. Sinnigerweise werden diese im deutsch
sprachigen Raum als Folgen bestimmte Topologische Räume bezeichnet (bzw. als sequential spaces im Eng-
lischen).
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9.1.2 Definition: Stetige Konvergenz eines Filters

Für einen Filter φ auf /0 6= Z ⊆ Y X und einen Filter ψ auf X sei φ(ψ) := {A ⊆ Y | ∃P ∈
φ , Q ∈ ψ mit P(Q)⊆ A}, wobei P(Q) := {g(x) | g ∈ P und x ∈ Q}. Seien (X ,τ) und (Y,σ)
topologische Räume. Wir sagen φ konvergiert stetig auf Z gegen f : X → Y , falls für alle

Filter ψ auf X und alle x ∈ X gilt: ψ
τ→ x impliziert φ(ψ) σ→ f (x) .

Es folgen noch ein paar Bemerkungen.

1. φ konvergiert offenbar genau dann stetig gegen f : X → Y , wenn zu jedem x ∈ X und

W ∈
•

f (x) ∩σ ein P ∈ φ und V ∈ •x ∩τ existiert, mit P(V )⊆W .

2. Sei φ ein Filter auf ∅ 6= Z ⊆ Y X und f ∈ Y X . Wir setzen Φ := {A ⊆ Y X | ∃P ∈ φ mit
P⊆ A}. Dann gilt:

φ konvergiert stetig auf Z gegen f ⇔ Φ konvergiert stetig auf Y X gegen f

Bei Bedarf können wir in Definition 9.1.2 von Z = Y X ausgehen.

3. Sei f ∈ Y X und φ :=
•
f stetig konvergent gegen f . Offenbar ist f dann stetig.

Wenn wir möchten, dass Einpunktfilter auf Z wenigstens stetig gegen ihr erzeugendes
Element konvergieren, sollten wir uns auf Z = c(X ,Y ) zurückziehen.

9.1.3 Lemma

Seien (X ,τ) und (Y,σ) topologische Räume, ( fn)n∈N eine Folge aus Z ⊆Y X und sei (X ,τ)
ein A1-Raum (jeder Punkt hat abzählbare Umgebungsbasis). Dann ist äquivalent:

1. Der mit ( fn)n∈N assoziierte Filter konvergiert stetig auf Z gegen f .

2. ∀x ∈ X ∀ Folgen (xn)n∈N aus X mit xn
τ→ x gilt fn(xn)

σ→ f (x).
(Die ursprüngliche Definition der stetigen Konvergenz von Hans Hahn.)

Beweis: 1. ⇒ 2. Sei xn→ x. Sei ϕ der mit (xn)n∈N und φ der mit ( fn)n∈N assoziierte Filter.

Wegen ϕ
τ→ x folgt φ(ϕ) σ→ f (x). Das bedeutet zu jedem U ∈

•
f (x)∩σ existieren P∈ φ , Q∈ ϕ

mit P(Q)⊆U . Folglich gibt es N ∈ N mit fn(xm) ∈U für alle n,m≥ N. Für n≥ N gilt somit
fn(xn) ∈U . Diese Richtung geht also auch ohne A1.

2.⇒ 1. Sei wieder φ der von ( fn)n∈N induzierte Filter auf Z, x∈X und ϕ ∈F (X) mit ϕ
τ→ x

gegeben. Zu zeigen ist φ(ϕ) σ→ f (x). Sei (An)n∈N eine Umgebungsbasis von x (o.B.d.A. mit

An+1 ⊆ An), insbesondere {An | n ∈N} ⊆ ϕ . Falls nicht φ(ϕ) σ→ f (x), so ∃U ∈
•

f (x) ∩σ ∀k ∈
N∀P ∈ ϕ ∃n≥ k mit fn(P) 6⊆U .
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Zu 0 und A0 gibt es n0 ≥ 0 und x0 ∈ A0 mit fn0(x0) 6∈U .
Zu n0 +1 und An0+1 gibt es n1 ≥ n0 +1 und x1 ∈ An0+1 mit fn1(x1) 6∈U .
Zu n1 +1 und An1+1 gibt es n2 ≥ n1 +1 und x2 ∈ An1+1 mit fn2(x2) 6∈U .

...

Es gibt also eine streng monoton steigende Folge (nl)l∈N aus N und eine Folge (xl)l∈N aus X
mit xl → x und fnl(xl) 6∈U . Zu jedem n ∈ N bilden wir nun l(n) := min{l ∈ N | n ≤ nl} und
x′n := xl(n). Offenbar gilt auch x′n→ x aber nicht fn(x′n)→ f (x). Dies ist ein Widerspruch!

9.1.4 Bemerkung

Definition 9.1.2 ist die Definition, mit der ich im Folgenden arbeiten werden. Sollte ich an
einer Stelle von der stetigen Konvergenz einer Funktionenfolge sprechen, so ist dies nicht
im Sinne von Definition 9.1.1, sondern ich meine die stetige Konvergenz des mit der Folge
assoziierten Filter (im Sinne von 9.1.2).

9.1.5 Definition: Schwach stetig

Wir nennen f : (X ,τ)→ (Y,σ) schwach stetig, falls

∀x ∈ X ∀O ∈
•

f (x) ∩σ ∃Q ∈ •x ∩τ mit f (Q)⊆ O.

Offenbar ist f genau dann schwach stetig, wenn das Urbild jeder abgeschlossenen Umgebung
von f (x) eine Umgebung von x ist. Ist Y T3 und f schwach stetig, so ist f offenbar stetig.

9.1.6 Lemma

Seien (X ,τ) und (Y,σ) beliebige topologische Räume.

1. Ist φ ein Filter, der stetig gegen f : X → Y konvergiert, so ist f schwach stetig.

2. Ist f : D→Y stetig, mit D⊆ X = D und der Eigenschaft: ∀x ∈ X ∃ ein stetiges fx :
D∪{x}→ Y mit fx|D = f , dann ist g : X → Y , x 7→ fx(x) schwach stetig.

Korollar in beiden Fällen: Ist (Y,σ) zusätzlich T3, so ist f bzw. g stetig.

Beweis: 1. Sei U ∈
•

f (x) ∩σ . Sei ψ der von
•
x ∩τ erzeugte Filter. Wegen φ(ψ) σ→ f (x) gibt

es P ∈ φ , Q ∈
•

f (x) ∩σ mit P(Q) ⊆U . Angenommen f (Q)∩ (Y \U) 6= ∅. Wähle dann ein
z∈Q mit f (z)∈Y \U . Nun gilt

•
z τ→ z, also φ(

•
z) σ→ f (z). Es gibt also P′ ∈ φ mit P′(z)⊆Y \U .

Für P′′ := P∩P′ ∈ φ folgt schließlich P′′(z)⊆ P′(z)⊆ Y \U . Dies ist ein Widerspruch, denn
P′′(z)⊆ P(z)⊆ P(Q)⊆U und P′′(z) 6=∅.

2. Sei x ∈ X mit g(x) ∈ V ∈ σ . Es gibt nun ein U ∈ •x ∩τ mit fx(U ∩ (D∪ {x})) ⊆ V .
Angenommen es ist g(U) 6⊆V . Sei dann z ∈U mit g(z) ∈Y \V . Da auch fz stetig ist, ∃U ′ ∈

•
z
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∩τ mit fz(U ′∩ (D∪{z}))⊆ Y \V . Wegen z ∈U ∩U ′ ∈ τ gibt es ein d ∈U ∩U ′∩D. Es folgt
fz(d) ∈ Y \V , aber fz(d) = fx(d) ∈V !

9.1.7 Satz

Für jeden topologischen Raum (Y,σ) sind die folgenden Eigenschaften äquivalent:

1. (Y,σ) ist ein T3-Raum.

2. Für jeden topologischen Raum (X ,τ), jeden Filter φ auf Y X und jede Abbildung
f : X → Y gilt: (

φ
konvergiert stetig−→ f

)
impliziert ( f ist stetig)

3. Jede schwach stetige Abbildung von einem topologischen Raum (X ,τ) nach (Y,σ)
ist stetig.

4. Für jeden Raum (X ,τ), jede Teilmenge D⊆X mit D = X und jede stetige Abbildung
f : D→ Y mit der Eigenschaft

∀x ∈ X existiert eine stetige Abbildung fx : D∪{x}→ Y mit fx|D = f

ist die Abbildung f : X → Y mit f (x) := fx(x) stetig.

5. Für jeden Raum (X ,τ), jede Teilmenge D⊆X mit D = X und jede stetige Abbildung
f : D→ Y mit der Eigenschaft

∀x ∈ X \D ∃yx ∈ Y ∀ϕ ∈F (X) : [(D ∈ ϕ und ϕ
τ→ x) ⇒ f (ϕ|D) σ→ yx]

ist die Abbildung f : X →Y mit f (x) := yx für x ∈ X \D und f (x) := f (x) für x ∈D
stetig. (Offenbar gilt f |D = f .)

Beweis: 1.⇒ 2. Siehe Lemma 9.1.6.

2. ⇒ 1. Beweisen wir statt dessen: ¬1. ⇒ ¬2. Sei a ∈ Y , U ∈ •a ∩σ derart, dass a keine
abgeschlossene Umgebung unterhalb U hat. Für jedes V ∈ •a∩σ sei~V := {W ∈ •a∩σ |W ⊆V}.
Sei ` eine Menge, die in keiner bereits definierten Menge als Element vorkommt. Wir setzen

X := (
⋃

V∈ •a∩σ
V ×{V})∪{(a, `)},

A1 := {(W ∩V )×{W} |W ∈ •a ∩σ und V ∈ σ},

A2 := {(
⋃

Q∈~W Q×{Q})∪{(a, `)} |W ∈ •a ∩σ},
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B := A1∪A2 und anschließend τ := {
⋃

B′ |B′ ⊆B}

und zeigen, dass τ eine Topologie auf X ist. Dazu zeigen wir, dass B das Folgende erfüllt und
damit bereits eine Basis für τ ist (beachte auch

⋃
B = X .).

∀x ∈ X ∀A,A′ ∈B : (x ∈ A∩A′ impliziert ∃A′′ ∈B mit x ∈ A′′ ⊆ A∩A′),
Beweis dazu: (1) Sind A,A′ ∈ A1, so gilt mit A = (W1∩V1)×{W1}, A′ = (W2∩V2)×{W2}
und (y,Q) ∈ A∩A′ offenbar W1 = Q = W2 und (y,Q) ∈ A′′ := (Q∩V1∩V2)×{Q} ∈A1 und
A′′ ⊆ A∩A′.

(2) Sind A,A′ ∈A2, so gilt mit W3 := W1∩W2 ∈
•
a ∩σ , A = (

⋃
Q∈ ~W1

Q×{Q})∪{(a, `)} und
A′ = (

⋃
Q∈ ~W2

Q×{Q})∪{(a, `)} offenbar A∩A′ = (
⋃

Q∈ ~W3
Q×{Q})∪{(a, `)} ∈A2.

(3) Sind A ∈ A1 und A′ ∈ A2, so gilt mit A = (W1 ∩V )×{W1}, A′ = (
⋃

Q∈ ~W2
Q×{Q})∪

{(a, `)} und (y,z) ∈ A∩A′ offenbar z = W1 ∈ ~W2 und (y,z) ∈ A = A∩A′.

Wir definieren nun f : X → Y , (y,z) 7→ y.

f ist in (a, `) nicht stetig. Beweis dazu: Nach Voraussetzung an a und U gilt V 6⊆U , für alle

V ∈ •a∩σ . Wäre f doch in (a, `) stetig, so gäbe es ein A∈A2 mit f (A)⊆U . Sei W ∈ •a∩σ mit
A = (

⋃
Q∈~W Q×{Q})∪{(a, `)}. Wir erhalten den Widerspruch W = f (W×{W})⊆ f (A)⊆U!

Wir werden nun einen Filter ψ konstruieren, der stetig gegen f konvergiert. Für (y,Q)∈X , V ∈
•
y ∩σ , Q 6= ` bzw. W ∈ •a ∩σ setze dazu

P0((y,Q),V ) := {g : X → Y | g((Q∩V )×{Q})⊆V}

Pa(W ) := {g : X → Y | g((
⋃

Q∈~W Q×{Q})∪{(a, `)})⊆W}

und anschließend

ψ
′ := {P0((y,Q),V ) | (y,Q) ∈ X , V ∈

•
y ∩σ , Q 6= `}∪{Pa(W ) |W ∈ •a ∩σ}.

Endlich viele Elemente aus ψ ′ haben einen nicht leeren Schnitt.
Beweis dazu: Seien endlich viele Elemente P0((yi,Qi),Vi), i ∈ J und Pa(Wi), i ∈ K aus ψ ′

gegeben (J∩K =∅). Setze

Di :=

{
{(Qi∩Vi)×{Qi} , X \ [(Qi∩Vi)×{Qi}]} falls i ∈ J
{(
⋃

Q∈~Wi
Q×{Q})∪{(a, `)} , X \ [(

⋃
Q∈~Wi

Q×{Q})∪{(a, `)}]} falls i ∈ K

und anschließend

D := ∏
i∈J∪K

Di und ξ := {
⋂

i∈J∪K

α(i) | α ∈D}.

Offenbar ist ξ eine Zerlegung von X . Wir definieren nun ein g : X → Y , welches im Schnitt
liegt. Sei dazu (y,z) ∈ X . Es gibt nun ein α ∈D mit (y,z) ∈

⋂
i∈J∪K α(i). Sei

Jα := {i ∈ J | α(i) = (Qi∩Vi)×{Qi}}
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Kα := {i ∈ K | α(i) = (
⋃

Q∈~Wi
Q×{Q})∪{(a, `)}}

Wir unterscheiden vier Fälle.

Fall 1 Jα =∅, Kα 6=∅. Dann sei g(y,z) beliebig aus
⋂

k∈Kα
Wk.

Fall 2 Jα 6=∅, Kα =∅. Dann sei g(y,z) beliebig aus
⋂

i∈Jα
Vi.

Fall 3 Jα =∅, Kα =∅. Dann sei g(y,z) vollkommen beliebig aus Y .

Fall 4 Jα 6=∅. Kα 6=∅. Dann ist

(y,z) ∈ [
⋂

i∈Jα

(Qi∩Vi)×{Qi}]∩ [
⋂

i∈Kα

(
⋃

Q∈~Wi

(Q×{Q})∪{(a, `)})].

Also Qi = z =: Q′ für alle i ∈ Jα und Q′ ∈ ~Wi für alle i ∈ Kα . Es folgt y ∈ (
⋂

i∈Jα
Vi)∩

Q′ und damit ∅ 6= (
⋂

i∈Jα
Vi)∩Q′ ⊆ (

⋂
i∈Jα

Vi)∩ (
⋂

k∈Kα
Wk). In diesem Fall sei g(y,z)

beliebig aus (
⋂

i∈Jα
Vi)∩ (

⋂
k∈Kα

Wk).

Offenbar gilt nun g ∈ (
⋂

i∈J P0((yi,Qi),Vi))∩ (
⋂

i∈K Pa(Wi)). Wir setzen

ψ := {P⊆ Y X | ∃P1, ...,Pn ∈ ψ
′ mit P1∩ ...∩Pn ⊆ P}.

Der Filter ψ konvergiert stetig gegen f . Beweis dazu: Sei f (y,z) ∈ O ∈ σ .
Fall 1 z = `. Dann ist y = a und für P := Pa(O) ∈ψ gilt P((

⋃
Q∈~O Q×{Q})∪{(a, `)})⊆O.

Fall 2 z 6= `, also z = Q′ ∈ •a ∩σ . Dann gilt für P := P0((y,Q′),O) ∈ ψ in diesem Fall
P((Q′∩O)×{Q′})⊆ O.

1.⇒ 3. ist trivial. Also 3.⇒ 1. Wir zeigen wieder ¬1. ⇒ ¬4. Dies folgt aber unmittelbar
aus obiger Konstruktion und Lemma 9.1.6 (siehe auch Bemerkung 9.1.8).

4. ⇒ 1. Wir zeigen ¬1. ⇒ ¬4. und knüpfen dazu an obiger Konstruktion an. Neben (X ,τ)
und f : X → Y definieren wir nun noch

D :=
⋃

Q∈ •a∩σ

Q×{Q} und g : D→ Y , (y,Q) 7→ y.

Es gilt X = D. Beweis dazu: (a, `) ∈ D ist offensichtlich. Sei (y,Q0) ∈
⋃

Q∈ •a∩σ
Q×{Q},

also y ∈ Q0. Falls (y,Q0) ∈ A ∈ A2, so offenbar A∩D 6= ∅. Falls (y,Q0) ∈ A ∈ A1, also
A = (Q0∩V )×{Q0}, so folgt y∈V und daher V ∩Q0 6=∅. Für y∈V ∩Q0 folgt nun (y,Q0)∈
A∩D.

g lässt sich stetig auf jedes (y,z) ∈ X fortsetzen. Beweis dazu: Tatsächlich ist die Einschrän-
kung von f auf X \ {(a, `)} stetig. Gilt nämlich (y,Q0) ∈ X \ {(a, `)} und f (y,Q0) ∈ O ∈ σ ,
so folgt (y,Q0) ∈ (Q0∩O)×{Q0} und f ((Q0∩O)×{Q0}) ⊆ O. Andererseits ist aber auch
die Einschränkung von f auf D∪ {(a, `)} (also f0 := f |(D∪ {(a, `)})) stetig. Gilt nämlich
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a = f0(a, `) ∈W ∈ •a ∩σ , so folgt f0(D∩ [(
⋃

Q∈~W Q×{Q})∪{(a, `)}])⊆W . Und gilt a 6= y =

f0(y,Q) ∈V ∈
•
y ∩σ , so folgt f0(D∩ [(Q∩V )×{Q}])⊆V .

Bezeichnet g(y,z) : D∪ {(y,z)} → Y die stetige Fortsetzung von g auf D∪ {(y,z)}, so gilt
f (y,z) = g(y,z)(y,z). Aber f ist nicht stetig! Damit ist der Beweis beendet.

1.⇒ 4. Folgt aus Lemma 9.1.6 zusammen mit Eigenschaft 4. aus diesem Satz.

4. ⇒ 5. Sei x ∈ X \D beliebig. Wir zeigen, dass sich f stetig auf D∪{x} fortsetzen lässt.
Der Filter ϕ := {P⊆ X | ∃U ∈ •x ∩τ mit U ∩D⊆ P} konvergiert gegen x. Wir definieren die
Abbildung

fx(z) :=

{
f (z) falls z ∈ D
yx falls z = x

Zeigen wir die Stetigkeit:

Sei d ∈ D und f (d) ∈ O ∈ σ . 1.Fall yx ∈ O, dann gibt es ein U ∈
•
d ∩τ mit f (U ∩D) ⊆ O,

also fx(U ∩ (D∪{x}))⊆ O.

2.Fall yx 6∈ O. Dann ist O 6∈ f (ϕ|D). Es gilt f−1
x (O) = f−1(O) = V ∩D, für ein V ∈

•
d ∩τ .

Wäre x ∈ V , so wäre V ∩D ∈ ϕ|D, also O ∈ f (ϕ|D) - ein Widerspruch. Also ist x 6∈ V und
somit f−1(O) = V ∩ (D∪{x}).

Sei nun O ∈
•
yx ∩σ . Dann ist O ∈ f (ϕ|D), es gibt also ein P ∈ ϕ|D mit f (P)⊆O. Zu P gibt

es ein U ∈ •x ∩τ mit U ∩D⊆ P. Damit gilt dann fx(U ∩ (D∪{x}))⊆ O.
Die Stetigkeit ist damit gezeigt und folglich ist f : X → Y stetig (wobei f (z) := fz(z)).

Wegen fz(z) = yz ist alles gezeigt.

5. ⇒ 4. Sei x ∈ X \D und ϕx := {P ⊆ X | ∃Q ∈ •x ∩τ mit Q ⊆ P}. Betrachte den auf
D∪{x} eingeschränkten Filter ϕ ′x := {P∩ (D∪{x}) | P ∈ ϕx}. Nun gilt auch ϕ ′x→ x (in der
Teilraumtopologie) und folglich fx(ϕ ′x)→ fx(x) =: yx. Offenbar erfüllt dieses yx gerade die
Bedingung aus 5. und folglich ist f : X → Y mit f (x) := yx stetig. Es gilt aber fx(x) = yx.

9.1.8 Bemerkungen zu Satz 9.1.7

1. Die obige Konstruktion von X := (
⋃

V∈ •a∩σ
V ×{V})∪ {(a, `)} funktioniert auch in-

dem wir σ durch eine beliebig gewählte Basis ρ von σ ersetzen. Diese Einsicht ist für
Definition 9.1.11 und Lemma 9.1.12 wichtig.

2. Dass es in einen nicht T3-Raum eine schwach stetige Abbildung gibt, die nicht stetig ist,
sieht man leicht direkt. Sei (Y,σ) ein top. Raum, y ∈Y und U ∈

•
y ∩σ mit V 6⊆U für alle

V ∈
•
y∩σ . Nun ist B := {{z} | z∈Y \{y}}∪{V |V ∈

•
y∩σ} die Basis einer Topologie τ

auf Y und idY : (Y,τ)→ (Y,σ) ist nicht stetig (U = id−1
Y (U) 6∈ τ), aber schwach stetig!

3. Betrachte den Sierpinski-Raum (Y,σ) mit Y := {0,1} und σ := {{0},Y, /0}. Seien ferner
(X ,τ) mit D ⊆ X völlig beliebig. Ist f : D→ Y eine beliebige stetige Abbildung, so
lässt sich f stetig auf ganz X fortsetzen. Beweis: O.B.d.A. ist f nicht konstant und
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demzufolge surjektiv. Da f−1(0) offen in D ist, gibt es V ∈ τ mit f−1(0) = D∩V .

Definiere f̃ : X → Y durch f̃ (x) =

{
0 falls x ∈V
1 falls x ∈ X \V

. Dann ist f̃ stetig mit f̃ |D = f .

4. Der Notationsaufwand beim Nachweis, dass endlich viele Elemente aus ψ ′ einen nicht
leeren Schnitt haben, mag etwas übertrieben sein, allerdings ist so die Konstruktion des
g besonders deutlich! Interessant ist nun nämlich die Frage, ob sich auch ein Filter auf
c(X ,Y ) finden lässt, der stetig gegen f konvergiert (das g aus dem Schnitt also immer
stetig gewählt werden kann)?

Nehmen wir Bemerkung 4 aus 9.1.8 als Anlass für das Folgende.

9.1.9 Definition: (S)-Raum

Ein topologischer Raum (Y,σ) heißt (S)-Raum, falls für jeden topologischen Raum (X ,τ),
jeden Filter φ auf c(X ,Y ) und jede Abbildung f : X → Y gilt:(

φ
konvergiert stetig−→ f

)
impliziert ( f ist stetig)

Offenbar ist jeder T3-Raum ein (S)-Raum (Satz 9.1.7). Im Folgenden betrachten wir ein Bei-
spiel eines recht gutartigen Raumes (d.h. unter anderem T2), der kein (S)-Raum ist.

9.1.10 Allgemeines Beispiel

Sei (Y,σ) ein topologischer Raum und A⊆ Y nicht abgeschlossen mit der Eigenschaft

(E) ∀a ∈ A ∀U ∈ •a ∩σ ∃z ∈U \A.

Sei y ∈ A\A. Wir definieren die Topologie T (σ) := {U \B |U ∈ σ und B⊆ A} auf Y . Wegen

1. ∅,Y ∈ T (σ)

2. U1 \B1,U2 \B2 ∈ T (σ) impliziert (U1 \B1)∩ (U2 \B2) = (U1∩U2)\ (B1∪B2) ∈ T (σ)

3. Ui \Bi ∈ σ für alle i ∈ I impliziert
⋃

i∈I(Ui \Bi) = (
⋃

i∈I Ui)\B ∈ T (σ),
wobei B := {a ∈ A | ∀ i ∈ I (a 6∈Ui oder a ∈ Bi)}

ist T (σ) tatsächlich eine Topologie auf Y mit σ ⊆ T (σ). Der Raum (Y,T (σ)) ist nicht T3.
Beweis: A ist bzgl. T (σ) abgeschlossen und y ∈ Y \ A. Seien U,V ∈ σ und B,B′ ⊆ A mit
y ∈U \B und A⊆V \B′. Folglich ist B′ =∅. Wegen y ∈ A\A (bzgl. σ ) gibt es ein a ∈U ∩A.
Da auch a ∈V , ∃z ∈ (U ∩V )\A (wegen (E)). Folglich ist z ∈U \B und z ∈V .

Wir wenden diese Überlegungen auf die euklidische Topologie τR auf R mit A := { 1
n+1 | n ∈

N} an. Offenbar erfüllt A die Eigenschaft (E). Da τR T2 ist und τR ⊆ T (τR), ist (R,T (τR))
ein T2, aber kein T3-Raum. Ist B eine Basis für die euklidische Topologie τR, so kann man
schnell nachrechnen, dass

B′ := {B\A | B ∈B}∪{(B\A)∪{ 1
n+1

} | B ∈B, n ∈ N,
1

n+1
∈ B}
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eine Basis für T (τR) ist. Da es für τR abzählbare Basen gibt, gibt es die auch für T (τR).
(Bemerkung: Offenbar kann man sich sogar auf die rationalen Zahlen Q einschränken, mit
der entsprechend induzierten Topologie T (τR)|Q. Also ist (Q,T (τR)|Q) ein abzählbarer Raum,
mit abzählbarer Basis, der T2, aber nicht T3 ist. Im Folgenden bleiben wir aber bei (R,T (τR)).)

Sei X := { 1
n+1 | n ∈ N}∪ {0} und ξ die euklidische Topologie von R eingeschränkt auf X .

Sei (rn)n∈N eine Folge irrationaler Zahlen mit rn→ 1 (bzgl. der euklidischen Topologie). Wir
definieren wie folgt Abbildungen f , fn : (X ,ξ )→ (R,T (τR)).

f (x) := x und fn(x) := rnx (∀n ∈ N)

1. ( fn)n∈N konvergiert stetig gegen f .

Beweis: Zum Nachweis verwenden wir (der Einfachheit halber) Lemma 9.1.3. Sei also
(xn)n∈N eine in (X ,ξ ) konvergente Folge, also xn→ x. Falls x 6= 0. Dann ∃N ∈ N∀n≥
N : xn = x. Für n≥ N folgt fn(xn) = fn(x) = rnx und damit fn(xn)→ x für n→∞. Falls
x = 0 folgt fn(xn) = rnxn→ 0 für n→ ∞. Man beachte, dass rnxn 6∈ A!

2. Die Abbildungen fn sind alle stetig.

Beweis: Sei wieder (xk)k∈N eine in (X ,ξ ) konvergente Folge, also xk→ x. Falls x 6= 0.
Dann ∃N ∈N∀k≥N : xk = x. Für k≥N folgt fn(xk) = fn(x) und damit fn(xk)→ fn(x).
Falls x = 0 folgt fn(xk) = rnxk→ 0 für n→ ∞. Beachte, dass fn(X)∩A =∅ gilt.

3. Die Abbildung f ist nicht stetig.

Beweis: Offenkundig konvergiert ( 1
n+1)n∈N in (X ,ξ ) gegen 0, aber ( f ( 1

n+1) = 1
n+1)n∈N

konvergiert in (R,T (τR)) nicht gegen 0. Folglich kann f nicht stetig sein.

Bemerkung: Auch in obiger allgemeiner Konstruktion mit (Y,σ) und (Y,T (σ)) können wir
X := A∪{y} setzen und für U ∈ σ mit U∩X 6=∅ die Menge P(U) := {g : X→Y | g(U∩X)⊆
U \A} definieren. Wegen Eigenschaft (E) gilt für alle U ∈ σ \{∅}: U \A 6=∅. Und mit einem
analogen Argument wie im Beweis zu Satz 9.1.7 sieht man, dass je endlich viele Elemente aus

ϕ
′ := {P(U) |U ∈ σ mit U ∩X 6=∅}

einen nicht leeren Schnitt haben und der von ϕ ′ erzeugte Filter folglich stetig gegen die nicht
stetige Abbildung f : X → Y , x 7→ x konvergiert. Genau wie in Satz 9.1.7 kann ich aber auch
hier nicht sagen, ob man immer stetige Abbildungen im Schnitt finden kann, ob also ϕ ′ ∪
{c(X ,Y )} die endliche Schnitt Eigenschaft hat.

9.1.11 Definition: Stabil

Wir nennen den topologischen Raum (Y,σ) an der Stelle a ∈ Y stabil, falls eine Basis ρ

existiert, so dass für alle Q ∈ •a ∩ρ und für alle V1, ...,Vn ∈ ρ eine stetige Abbildung f : Q→Q
existiert, mit f (Q∩Vi)⊆ Q∩Vi für alle i = 1, ...,n.
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9.1.12 Lemma

Ist der topologische Raum (Y,σ) an der Stelle a∈Y stabil, aber bei a nicht T3 (d.h. es gibt
U ∈ •a ∩σ , so dass V 6⊆U für alle V ∈ •a ∩σ gilt ), so ist (Y,σ) kein (S)-Raum.

Beweis: Sei ρ eine Basis für σ , im Sinne von Definition 9.1.11 (beachte Bemerkung 9.1.8).
Wir setzen an der Konstruktion im Beweis zu Satz 9.1.7 an und zeigen: Je endlich viele Ele-
mente aus ψ ′∪{c(X ,Y )} haben einen nicht leeren Schnitt. Der von ψ ′∪{c(X ,Y )} erzeugte
Filter konvergiert dann nämlich immer noch stetig gegen das nicht stetige f , enthält nun aber
auch c(X ,Y ). Wir müssen also zeigen, dass das g ∈ (

⋂
i∈J P0((yi,Qi),Vi))∩ (

⋂
i∈K Pa(Wi)) ste-

tig gewählt werden kann.

1. Für (a, `) setzen wir g(a, `) := a.

2. Sei Q∈ •a∩ρ . Wir definieren g auf Q×{Q}. Sei dazu J′ := {i∈ J |Qi = Q}. Nun gibt es
ein stetiges hQ : Q→Q mit hQ(Q∩Vi)⊆Vi für alle i∈ J′ und wir setzen g(y,Q) := hQ(y),
für (y,Q) ∈ Q×{Q}.

Für W ∈ •a ∩ρ gilt offenbar g(
⋃

Q∈~W (Q×{Q})∪{(a, `)})⊆W , also ist g in (a, `) stetig. Für

(y,Q) mit g(y,Q) ∈V ′ ∈ ρ gibt es ein V ∈
•
y ∩ρ mit hQ(Q∩V )⊆V ′. Folglich gilt g((Q∩V )×

{Q})⊆V ′ und g ist auch in (y,Q) stetig. g ist natürlich auch im Schnitt enthalten.

9.1.13 Definition: T0-Reflexion

Sei (Y,σ) ein topologischer Raum. Wir definieren folgende Äquivalenzrelation auf Y :

y1 ∼ y2 :⇔ ∀O ∈ σ gilt (O∩{y1,y2} 6=∅ ⇒ {y1,y2} ⊆ O)

Sei Z := Y/∼:= {[y]∼ | y ∈ Y}, mit [y]∼ := {y′ ∈ Y | y∼ y′} und q : Y → Z , y 7→ [y]∼. Setze
dann ξ := {O ⊆ Z | q−1(O) ∈ σ}. Offenbar ist ξ die Quotiententopologie bezüglich ∼. Wir
nennen (Z,ξ ) im Folgenden die T0-Reflexion (oder T-nullifizierung ;-)) von (Y,σ).

9.1.14 Lemma

1. Die T0-Reflexion (Z,ξ ) eines Raumes (Y,σ) ist immer T0. Ist (Y,σ) bereits selber
T0, so lassen sich Z und Y auf offensichtliche Weise miteinander identifizieren. Für
O∈ σ gilt q−1(q(O)) = O und q−1(q(Y \O)) =Y \O. Die Abbildung q ist demnach
offen und abgeschlossen.

2. (Y,σ) ist genau dann T3, wenn die T0-Reflexion (Z,ξ ) ein T3-Raum ist.

3. (Y,σ) ist genau dann (S), wenn die T0-Reflexion (Z,ξ ) ein (S)-Raum ist.
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Beweis: 1. Sei O ∈ σ . O ⊆ q−1(q(O)) ist klar. Sei y ∈ q−1(q(O)), also q(y) ∈ q(O). Es gibt
ein y′ ∈ O mit q(y) = q(y′). Also gilt y ∈ O! Wegen q−1(q(O)) = O ∈ σ ist q(O) ∈ ξ und
q ist offen. Sei A := Y \O. A ⊆ q−1(q(A)) ist wieder offensichtlich. Sei y ∈ q−1(q(A)), also
q(y)∈ q(A). Es gibt ein a∈A mit q(y) = q(A). Wäre y∈Y \A = O, so wäre auch a∈O =Y \A.
Also ist y ∈ A. Wegen q−1(Z \q(A)) = Y \q−1(q(A)) = Y \A = O ∈ σ ist Z \q(A) ∈ ξ , also
q(A) abgeschlossen. Also ist q auch abgeschlossen.

Seien z,z′ ∈ Z mit z 6= z′, also z = q(y) und z′ = q(y′). Wegen y 6∼ y′ existiert ein O ∈ σ mit
|O∩{y,y′}|= 1. O.B.d.A. sei y∈O und y′ 6∈O. Setze V := q(O)∈ ξ . Es gilt dann z = q(y)∈V
und z′ = q(y′) 6∈V (andernfalls q(y′) = q(y′′) mit y′′ ∈ O, also auch y′ ∈ O).

2. Sei (Y,σ) T3 und q(y) = z ∈O ∈ ξ . Es ist y ∈V := q−1(O) ∈ σ . Sei W ∈ σ mit y ∈W ⊆
W ⊆V . Da q offen und abgeschlossen ist folgt z = q(y) ∈ q(W )⊆ q(W )⊆ q(W )⊆ q(V ).

Sei umgekehrt (Z,ξ ) ein T3-Raum. Sei y ∈O ∈ σ . Es folgt z := q(y) ∈ q(O) ∈ ξ . Also gibt
es ein V ∈ ξ mit z ∈ V ⊆ V ⊆ q(O). Es ist y ∈U := q−1(V ) ∈ σ . Da U ⊆ q−1(V ) ⊆ O und
q−1(V ) abgeschlossen ist, gilt y ∈U ⊆U ⊆ O.

3. Sei (Y,σ) ein (S)-Raum und φ stetig konvergent auf c(X ,Z) gegen f : X → Z. Wir defi-
nieren wie folgt eine Abbildung α : c(X ,Z)→ c(X ,Y )

(a) Ist h ∈ c(X ,Z), so wählen wir zu jedem x ∈ X ein yx ∈ Y mit q(yx) = h(x).
(b) Wir definieren α(h) durch α(h)(x) := yx.
(c) g : X → Z ist stetig, genau dann wenn α(g) : X → Y stetig ist. Beweis: Sei g stetig und

O ∈ σ . Es folgt α(g)−1(O) = α(g)−1(q−1(q(O))) = g−1(q(O)) ∈ τ . Ist andererseits α(g)
stetig, folgt für U ∈ ξ : g−1(U) = α(g)−1(q−1(U)) ∈ τ .

Zeigen wir, dass α(φ) stetig gegen α( f ) konvergiert. Sei x ∈ X und α( f )(x) ∈ O ∈ σ . Für
V := q(O)∈ ξ gilt f (x) = q(α( f )(x))∈ q(O) =V , also gibt es Q∈ φ , U ∈ •x∩τ mit Q(U)⊆V .
Dann ist aber α(Q)(U) ⊆ O, denn es gilt q(α(Q)(U)) ⊆ Q(U) ⊆ V = q(O) und O ∈ σ . Da
α(φ) stetig gegen α( f ) konvergiert, ist α( f ) stetig, also auch f .

Sei umgekehrt (Z,ξ ) ein (S)-Raum und φ stetig konvergent auf c(X ,Y ) gegen f : X →
Y . Definiere β : c(X ,Y )→ c(X ,Z) durch β (h) := q ◦ h. Definiere anschließend ψ := {P ⊆
c(X ,Z) | ∃Q ∈ φ mit β (Q) ⊆ P}. Man rechnet leicht nach, dass ψ stetig gegen q◦ f konver-
giert, q◦ f also stetig ist. Dann ist aber auch f stetig (Quotiententopologie)!

9.1.15 Satz

1. Jeder (S)-Raum (Y,σ) ist ein R0-Raum.

2. Jeder T0-(S)-Raum (Y,σ) ist auch T2.

3. Sei (Yi,σi)i∈I eine Familie von (S)-Räumen und ( fi : Y → Yi)i∈I eine Familie von
Abbildungen. Dann ist (Y,σ) ein (S)-Raum, wobei σ die Initialtopologie ist.

4. Die topologische Summe von (S)-Räumen ist ein (S)-Raum.
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Beweis: 1. Angenommen ∃y0 ∈ Y und O ∈ •
y0 ∩σ mit {y0} 6⊆ O. Sei y1 ∈ A := {y0} \O.

Offenbar ist A in Y abgeschlossen. Sei X := Y ∪{`}, wobei ` 6∈ Y (also z.B. ` = Y ) und τ :=
σ ∪{X}. Wir erhalten einen Widerspruch, wenn wir folgende Abbildungen definieren f : X→

Y, x 7→ y0 und g : X→Y, g(x) :=

{
y0 für x ∈ X \A
y1 für x ∈ A

Dann ist f stetig und g nicht stetig (denn

g−1(A) = A ist nicht in X abgeschlossen), aber
•
f konvergiert auf c(X ,Y ) stetig gegen g. Gilt

nämlich ϕ
τ→ x, so folgt

•
f (ϕ) = f (ϕ) =

•
y0

σ→ g(x).

2. (Y,σ) ist nach 1. R0, also wegen T0 bereits T1. Angenommen y1 6= y2 lassen sich in Y
nicht durch offene Mengen trennen. Wir bilden den Filter (Y ist ein T1-Raum!)

ξ := {Q⊆ Y \{y1,y2} | ∃U ∈ •y1 ∩σ , V ∈ •y2 ∩σ mit (U ∩V )\{y1,y2} ⊆ Q}.

Für jedes Q ∈ ξ sei PQ := {g ∈ c(Y,Y ) | g(Y )⊆ Q} und anschließend

φ := {P⊆ YY | ∃Q ∈ ξ mit PQ ⊆ P}.

Offenbar ist φ ein Filter mit c(Y,Y )∈ φ . Wir definieren f :Y→Y durch f (y) :=

{
y1 für y 6= y2

y2 für y = y2

Dann ist f : (Y,σ)→ (Y,σ) nicht stetig (andernfalls wäre {y2} = f−1(Y \ {y1}) offen, denn
(Y,σ) ist T1 und y1,y2 wären doch durch offene Mengen trennbar). Der Filter φ konvergiert
nun aber stetig gegen f .
Beweis: Sei ϕ ∈F (Y ) mit ϕ

σ→ y.
Falls y = y2, so sei V ∈ •y2 ∩σ . Dann ist Q := V \{y1,y2} ∈ ξ und es folgt PQ(Y )⊆ Q⊆V ,

wobei PQ ∈ φ und Y ∈ ϕ . Also φ(ϕ) σ→ y2 = f (y2).
Falls y 6= y2, so sei U ∈ •y1 ∩σ . Dann ist Q := U \{y1,y2} ∈ ξ und es folgt PQ(Y )⊆Q⊆U ,

wobei PQ ∈ φ und Y ∈ ϕ . Also φ(ϕ) σ→ y1 = f (y).

3. Sei (X ,τ) ein top. Raum und φ ein Filter auf c(X ,Y ), der stetig gegen f : X → Y konver-
giert. Zu zeigen ist, dass fi ◦ f für jedes i ∈ I stetig ist. Sei j ∈ I. Wir betrachten α : c(X ,Y )→
c(X ,Yj), g 7→ f j ◦ g. Dann ist φ ′ := α(φ) ein Filter auf c(X ,Y j), der stetig gegen f j ◦ f kon-
vergiert. Beweis dazu: Für x ∈ X und f j ◦ f (x) ∈U j ∈ σ j gilt f (x) ∈ f−1

j (U j) ∈ σ , es existiert

demnach ein P ∈ φ und Q ∈ •x ∩τ mit P(Q)⊆ f−1
j (U j). Nun ist P′ := {α(g) | g ∈ P} ∈ φ ′ und

offenbar gilt P′(Q)⊆U j. Da φ ′ somit stetig gegen f j ◦ f konvergiert, ist f j ◦ f stetig.

4. Sei (Yi,σi)i∈I eine Menge von (S)-Räumen und bezeichne (Y,σ) die topologische Sum-
me. Sei (X ,τ) ein weiterer topologischer Raum und φ ein Filter auf c(X ,Y ), der stetig gegen
f : X→Y konvergiert. Sei x∈X und f (x)∈O∈σ . Es gibt genau ein j ∈ I mit f (x)∈Yj×{ j}.
Sei X j := f−1(Yj×{ j}) und P0 ∈ φ , Q ∈ •x ∩τ , mit P0(Q)⊆ Y j×{ j}. Man beachte: Y j×{ j}
ist homöomorph zu Y j, also auch ein (S)-Raum.

Es gilt Q⊆ X j. Andernfalls sei z∈Q mit f (z)∈Yl×{l}, j 6= l. Es gäbe dann ein P′ ∈ φ und

Q′ ∈
•
z∩τ mit P′(Q′)⊆Yl×{l}. Für P′′ := P0∩P′ ∈ φ folgt dann aber P′′(z)⊆P0(Q)⊆Yj×{ j}

und P′′(z)⊆ P′(Q′)⊆ Yl×{l} - ein Widerspruch.

199



Wegen Q ⊆ X j und P0(Q) ⊆ Y j×{ j} ist ϕ := {P∩ c(Q,Yj×{ j}) | P ∈ φ} ein Filter auf
c(Q,Y j×{ j}), der stetig gegen f |Q : Q→Yj×{ j} konvergiert. Folglich ist f |Q : Q→Y j×{ j}
stetig und es gibt demnach ein U ∈ •x ∩τ mit ( f |Q)(U)⊆ O. Also f (Q∩U)⊆ O.

9.1.16 Bemerkungen

1. Aus Satz 9.1.15 folgt, dass Produkte und Teilräume von (S)-Räumen wieder (S)-Räume
sind, insbesondere also auch der inverse Limes eines inversen Systems von (S)-Räumen
(da Teilraum des Produktes).

2. Der Quotient eines (S)-Raumes braucht selber nicht (S) sein. Betrachte dazu X := [0,1]
mit euklidischer Topologie und die Äquivalenzrelation x ∼ y ⇔ {x,y} ⊆ [1,1/2) oder
{x,y} ⊆ [1/2,1]. Der Quotientenraum ist homöomorph zum Sierpinskiraum (Y,σ) mit
Y := {0,1} und σ := {∅,{0},Y}. Dieser ist nicht R0, insbesondere also nicht (S).

3. Es reicht, wegen Lemma 9.1.14 und Satz 9.1.15, die Implikation T2 + (S) ⇒ T3 zu

beweisen, um die Gleichheit T3 = (S) zu zeigen. Oder anders: Wenn es (S)-Räume
gibt, die nicht T3 sind, dann gibt es auch T2-(S)-Räume, die nicht T3 sind.

4. Sei E eine topologische Eigenschaft derart, dass T2 ∧ E⇒ T3 gilt und wenn ein Raum
die Eigenschaft E hat, dann auch seine T0-Reflexion (z.B. E = parakompakt or E = lokal
kompakt). Dann gilt E ∧ ¬T3⇒¬(S).

Beweis: Sei (Y,σ) ein (S)-Raum mit Eigenschaft E. Die T0-Reflextion (Z,ξ ) von (Y,σ)
ist ebenfalls T0 und (S), ist also T2 und wegen E auch T3. Dann ist aber auch Y T3.

9.1.17 Beispiel

Sei (Y,σ) nicht T3, aber R0 und f : (X ,τ)→ (Y,σ) nicht stetig. Sei ferner φ ein Filter auf Y X

mit c(X ,Y ) ∈ φ und φ
konvergiert stetig−→ f (also z.B. der Raum aus Beispiel 9.1.10). Seien a,b 6∈Y

(irgendwelche vollkommen beliebigen Mengen). Wir setzen Z :=Y ∪{a,b}, q : Y → Z , y 7→ y,
α : Y X → ZX , h 7→ q◦h und B := σ ∪{{a,b}} und schließlich ξ := {

⋃
B′ |B′ ⊆B}. Dann

ist (Z,ξ ) nicht T3, nicht T0, aber immer noch R0 und nicht (S), denn α(φ) konvergiert stetig
gegen α( f ), wobei α( f ) nicht stetig ist und c(X ,Z) ∈ α(φ).

9.1.18 Satz

Ist f : (X ,τ)→ (Y,σ) perfekt, X ein T2 und Y ein (S)-Raum, so ist auch X ein (S)-Raum.
Vergleiche dazu auch Lemma 4.9.9.

Beweis: Sei g : (Z,ξ )→ (X ,τ) eine Abbildung und φ ein Filter auf c(Z,X), der stetig gegen
g konvergiert. Sei α : c(Z,X)→ c(Z,Y ) definiert durch α(h) := f ◦h. Dann konvergiert α(φ)

stetig gegen α(g) = f ◦ g, denn aus ϕ
ξ→ z folgt (α(φ))(ϕ) = f (φ(ϕ)) σ→ f (g(z)), wegen
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φ(ϕ) τ→ g(z). Folglich ist f ◦ g stetig. Zeigen wir nun die Stetigkeit von g. Sei dazu ϕ ein

Filter auf Z mit ϕ
ξ→ z. Sei ψ0 ∈F0(g(ϕ)). Es reicht, wenn wir ψ0

τ→ g(z) zeigen (dann folgt

nämlich
•

g(z) ∩τ ⊆
⋂

ψ0∈F0(g(ϕ)) ψ0 = g(ϕ), also g(ϕ) τ→ g(z)). Nach Lemma 3.2.5 gibt es

einen Ultrafilter ϕ0 ∈F0(ϕ) mit g(ϕ0) = ψ0, also f (g(ϕ0))
σ→ f (g(z)). Da f perfekt ist und

g(ϕ0) ein Ultrafilter ist, gibt es ein x ∈ f−1( f (g(z))) mit g(ϕ0)
τ→ x. Angenommen x 6= g(z).

Seien U,V ∈ τ mit U∩V =∅ und x∈U und g(z)∈V . Seien Q,Q′ ∈ ϕ0 und P∈ φ mit g(Q)⊆
U und P(Q′) ⊆ V (wegen g(ϕ0)

τ→ x ist U ∈ g(ϕ0), wegen φ(ϕ0)
τ→ g(z) ist V ∈ φ(ϕ0)). Sei

z0 ∈ Q∩Q′. Offenbar gilt φ(
•
z0)

τ→ g(z0) ∈ U , folglich gibt es P′ ∈ φ mit P′(z0) ⊆ U . Sei
h∈ P∩P′. Es folgt h(z0)∈ P′(z0)⊆U und h(z0)∈ P(Q′)⊆V , im Widerspruch zu U ∩V =∅.

9.2 Allgemeine Konvergenzstrukturen
In diesem Absachnitt stellen wir den Begriff der Konvergenz axiomatisch an den Anfang und
entwickeln systematisch Teile dieser umfangreichen Theorie. Im Anschluss daran verallge-
meinern wir einige der neuen Resultate sogleich in diesen Kontext.

Die Motivation, allgemeine topologische Räume zu untersuchen, rührt unter anderem da-
her, dass man mit Metriken im Allgemeinen nicht einmal die punktweise Konvergenz von
Funktionen beschreiben kann. Zur Erinnerung: Ein Filter φ auf Y X konvergiert punktweise
gegen f ∈ Y X , wenn φ(x) := {Q ⊆ Y | ∃P ∈ φ mit P(x) ⊆ Q} gegen f (x) konvergiert (für
jedes x ∈ X). Offenbar wird diese Konvergenz durch die Produkttopologie auf Y X = ∏x∈X Y
beschrieben (ein Filter auf Y X konvergiert genau dann punktweise, wenn er bzgl. der Pro-
dukttopologie konvergiert). Die punktweise Konvergenz ist also immer topologisierbar, aber
nicht immer metrisierbar. Es gilt nämlich: Ein Produkt ∏i∈I Xi von mindestens zweipunktigen
metrischen Räumen (Xi,di) ist genau dann metrisierbar, wenn die Indexmenge abzählbar ist9.
Beispielsweise ist die punktweise Konvergenz auf RR folglich nicht durch eine Metrik auf
RR beschreibbar. Für die stetige Konvergenz ergibt sich nun als natürliche Frage: Wann gibt
es eine Topologie ξ0 auf c(X ,Y ), so dass ein Filter auf c(X ,Y ) genau dann stetig gegen eine
Abbildung f konvergiert, wenn er bzgl. ξ0 gegen f konvergiert? Der folgende Satz10

9.2.1 Satz

Sei (X ,τ) ein top. Raum. Mit (a), (b), ... seien folgende Eigenschaften bezeichnet.

(a) (X ,τ) ist stark lokal kompakt.

(b) ∀ topologischen Räume (Y,σ) ist Ω : c(X ,Y )×X→Y, Ω( f ,x) := f (x) stetig, wobei
c(X ,Y ) mit der kompakt offenen Topologie versehen ist.

9Dies folgt unmittelbar aus dem Metrisationssatz von Nagata und Smirnow. Siehe dazu z.B. [16].
10Der Satz entstammt - in mehrere Teile zerlegt - den Büchern [22], gibt Antworten auf diese Frage und zeigt sehr

interessante Beziehungen zwischen (auf den ersten Blick) sehr verschiedenen topologischen Eigenschaften
auf (der Beweis dort enthält allerdings einige Lücken, sowie kleinere Fehler).

201



Bemerkung: Für A ⊆ X , B ⊆ Y sei S(A,B) := { f ∈ Y X | f (A) ⊆ B}. Die kompakt
offene Topologie τco ist die durch folgende Subbasis S erzeugte Topologie.

S := {S(K,O) | K kompakt ⊆ X und O offen ⊆ Y}

(c) ∀ topologischen Räume (Y,σ) ∃ gröbste Topologie ξ0 auf c(X ,Y ), so dass Ω :
c(X ,Y )×X → Y stetig ist.

(d) ∀ topologischen Räume (Y,σ) wird die Struktur qc der stetigen Konvergenz auf
c(X ,Y ) durch eine Topologie ξ0 erzeugt.

(e) ∀ topologischen Räume (Y,σ) ∃ Topologie ξ0 auf c(X ,Y ), so dass ∀ topologischen
Räume (Z,η) die Abbildung Γ : c(X ×Z,Y )→ c(Z,c(X ,Y )) bijektiv ist, wobei Γ

definiert ist durch Γ( f )(z)(x) := f (x,z).

(f) ∀ topologischen Räume (Y,σ), (Z,σ ′) und Quotientenabbildungen g : Y → Z ist
idX ×g : X×Y → X×Z eine Quotientenabbildung.

(g) ∀ topologischen T2-Räume (Y,σ), (Z,σ ′) und Quotientenabbildungen g : Y → Z ist
idX ×g : X×Y → X×Z eine Quotientenabbildung.

Es gilt nun:

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (f) ⇒ (g) und (g)+T2 ⇒ (a)

Die durch (c), (d) und (e) definierte Topologie ist gerade die kompakt offene Topologie.

Beweis: (a)⇒ (b): Sei (Y,σ) ein topologischer Raum und c(X ,Y ) mit der kompakt-offenen
Topologie versehen. Sei Ω( f ,x) ∈ V ∈ σ , also f (x) ∈ V und somit x ∈ f−1(V ) ∈ τ . Sei K
kompakt mit x ∈ K◦ ⊆ K ⊆ f−1(V ). Es folgt ( f ,x) ∈ S(K,V )×K◦ und Ω(S(K,V )×K◦)⊆V .

(b)⇒ (c): Bezeichnet τco die kompakt-offene Topologie auf c(X ,Y ) und ist ξ eine Topolo-
gie auf c(X ,Y ), so dass Ω : c(X ,Y )×X→Y stetig ist, so reicht es zu zeigen, dass τco ⊆ ξ gilt.

Sei f ∈ S(K,U) gegeben, also f (K) ⊆U . Für jedes x ∈ K sei Ox ∈
•
x ∩τ und Vx ∈

•
f ∩ξ mit

Ω(Ox×Vx) ⊆U . Es gibt x1, ...,xn ∈ K mit K ⊆ O :=
⋃n

k=1 Oxk und V :=
⋂n

k=1Vxk ∈ ξ . Also
Ω(V ×O)⊆U . Wegen K ⊆ O folgt f ∈V ∈ S(K,U) und S(K,U) ∈ ξ .

(c) ⇒ (d): Sei ξ0 die gröbste Topologie auf c(X ,Y ), so dass Ω : c(X ,Y )×X → Y stetig
ist. Konvergiert φ bzgl. ξ0 auf c(X ,Y ) gegen f und ϕ auf X bzgl. τ gegen x, so konvergiert
φ(ϕ) = Ω(φ ×ϕ) gegen Ω( f ,x) = f (x). Folglich konvergiert φ stetig gegen f .

Konvergiert φ umgekehrt stetig gegen f , so sei

ξ1 := {O⊆ c(X ,Y ) | f 6∈ O oder O ∈ φ}= φ ∪ [P(c(X ,Y ))\
•
f ].

Zeigen wir die Stetigkeit von Ω : c(X ,Y )×X→Y bzgl. ξ1. Sei Ω(g,x)∈O∈ σ , also g(x)∈O.
Sei U ∈ τ , V ∈ ξ0 mit (g,x) ∈V ×U und Ω(V ×U)⊆ O.
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1. Fall f = g. Dann ist f (x) ∈ O und folglich ∃U ′ ∈ •x ∩τ und P ∈ φ mit P(U ′) ⊆ O. Für
U ′′ := U ∩U ′ und P′ := P∪{g} ∈ φ gilt dann P′(U ′′)⊆O, also Ω(P′×U ′′)⊆O, mit (g,x) ∈
P′×U ′′.

2. Fall f 6= g. Setze B := {h ∈ c(X ,Y ) | h(U) ⊆ O und h 6= f}. Es folgt g ∈ B ∈ ξ1 und
Ω(B×U)⊆ O.

Aus der Stetigkeit von Ω folgt nun ξ0⊆ ξ1. Falls also A∈
•
f ∩ξ0, so auch A∈ ξ1, also A∈ φ .

Das heißt φ
ξ0→ f .

(d)⇒ (e): Sei ξ0 entsprechend (d) auf c(X ,Y ) gewählt. Zeigen wir, dass Γ : c(X ×Z,Y )→
c(Z,c(X ,Y )) sinnvoll definiert ist. Für f ∈ c(X ×Z,Y ) ist Γ( f )(z) = f ◦ qz, wobei qz : X →
X ×Z, x 7→ (x,z) ist. Da qz stetig ist, ist Γ( f )(z) ∈ c(Z,c(X ,Y )). Zu zeigen bleibt, dass Γ( f )
stetig ist. Sei φ ein Filter auf Z mit φ → z. Zu zeigen ist Γ( f )(φ)→ Γ( f )(z). Da auf c(X ,Y )
Konvergenz bzgl. ξ0 = stetige Konvergenz ist, genügt es für jeden Filter ϕ auf X mit ϕ → x
zu zeigen, dass Γ( f )(φ)(ϕ)→ Γ( f )(z)(x) gilt, also f (ϕ ×φ)→ f (x,z). Letzteres folgt aber
gerade aus der Stetigkeit von f . Die Injektivität von Γ ist offensichtlich.

Zeigen wir die Surjektivität: Sei g : Z → c(X ,Y ) stetig. Definiere f : X × Z → Y durch
f (x,z) := g(z)(x). Zu zeigen ist nur noch, dass f stetig ist. Sei ϕ ein Filter auf X × Z mit
ϕ → (x,z). Seien P1 : X ×Z→ X und P2 : X ×Z→ Z die Projektionen und ϕ1 := P1(ϕ) bzw.
ϕ2 := P2(ϕ). Wegen ϕ1→ x, ϕ2→ z und ϕ1×ϕ2⊆ ϕ reicht es f (ϕ1×ϕ2)→ f (x,z) zu zeigen.
Da g(ϕ2) stetig gegen g(z) konvergiert, folgt g(ϕ2)(ϕ1)→ g(z)(x), also f (ϕ1×ϕ2)→ f (x,z).

(e)⇒ (f): Sei ξ0 entsprechend (e) eine Topologie auf c(X ,X ×Z), mit Produkttopologie ρ

auf X ×Z, so dass ΓB : c(X ×B,X ×Z)→ c(B,c(X ,X ×Z)) für jeden topologischen Raum B
bijektiv ist. Sei ξ die Finaltopologie auf X×Z bzgl. idX×g. Da idX×g stetig ist bzgl. ρ , folgt
ρ ⊆ ξ . Zu zeigen bleibt ξ ⊆ ρ , also die Stetigkeit von idX×Z : (X×Z,ρ)→ (X×Z,ξ ).

Nun sind die nach (e) bijektiven Abbildungen ΓB : c(X ×B,X × Z)→ c(B,c(X ,X × Z))
natürlich nicht nur auf c(X ×B,X ×Z) definiert, sondern auf ganz (X ×Z)X×B (für jeden to-
pologischen Raum B). Es reicht also zu zeigen, dass ΓZ(idX×Z) stetig ist. Dafür wiederum
genügt es, die Stetigkeit von h := ΓZ(idX×Z) ◦ g zu zeigen (denn g ist eine Quotientenabbil-
dung). Für die Bijektion ΓY : c(X×Y,X×Z)→ c(Y,c(X ,X×Z)) gilt aber h = ΓY (idX ×g).

(g)+T2⇒ (a): Vorweg ein paar Bezeichnungen und Bemerkungen (nur für diesen Beweis).
Für einen Filter ϕ auf X und P ∈ ϕ sei ~P := {Q ∈ ϕ | Q⊆ P}. Setze

Xϕ := ϕ ∪{ϕ} und τϕ := P(ϕ)∪{A⊆ Xϕ | ϕ ∈ A und ∃P ∈ ϕ mit ~P⊆ A}.

Ist ϕ ein freier Filter auf X (also
⋂

ϕ =∅), so ist (Xϕ ,τϕ) ein T2-Raum.
Beweis dazu: Sei P ∈ ϕ und ϕ ∈ Xϕ gegeben. Sei p ∈ P. Wegen

⋂
ϕ =∅ gibt es ein Q ∈ ϕ

mit p 6∈ Q. Für R := P∩Q ∈ ϕ gilt ~R∪{ϕ}=: A ∈ τϕ , ϕ ∈ A, {P} ∈ τϕ und {P}∩A =∅.
(X ,τ) ist ein T3-Raum. Beweis dazu: Wäre er nicht T3, so gäbe es ein x0 ∈X und U ∈ •x0 ∩τ ,

so dass ∀V ∈ •x0 ∩τ gilt V \U 6=∅. Setze U := {V ∈ •x0 ∩τ |V ⊆U}. Für jedes V ∈U gibt
es nun einen freien Ultrafilter ϕV auf X mit

(1) V ∈ ϕV und (2) ϕV konvergiert gegen einen Punkt aus V \U
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Beweis dazu: Sei x ∈V \U und ϕ ′V := {P⊆ X | ∃W ∈ •x ∩τ ∃F endlich ⊆ X mit (W ∩V )\
F ⊆ P}. Offenbar ist V = (X ∩V )\∅ ∈ ϕ ′V . Für W ∈ •x ∩τ gilt (W ∩V )\∅⊆W , also W ∈ ϕ ′V
und folglich ϕ ′V → x. Außerdem ist

⋂
ϕ ′V ⊆

⋂
z∈X [(X∩V )\{z}] =∅. Für W ∈ •x∩τ ist W ∩V 6=

∅ und offen. Wäre W ∩V endlich, so auch abgeschlossen (T2-Raum!) und demzufolge auch
W ′ := W \ (W ∩V ) offen mit x ∈W ′. Allerdings wäre nun W ′ ∩V = ∅ im Widerspruch zu
x ∈V . Also ist ϕ ′V ein freier Filter. Sei nun ϕV ein beliebiger Ultrafilter mit ϕ ′V ⊆ ϕV .
Wir setzen nun:

1. Y :=
⋃

V∈U XϕV ×{V} und jV : XϕV → Y , a 7→ (a,V )

2. σ := {O⊆ Y | ∀V ∈U ist j−1
V (O) ∈ τϕV }

(Y,σ) ist also die topologische Summe der (XϕV ,τϕV ), V ∈ U (und damit auch T2). Auf Y
definieren wir durch

(a,V )∼ (a′,V ′) :⇔

{
(a,V ) = (a′,V ′) oder
a = ϕV und a′ = ϕV ′

eine Äquivalenzrelation und betrachten den Quotientenraum Y∼ mit der Topologie σ∼ := {O⊆
Y∼ | q−1(O) ∈ σ}, wobei q : Y → Y∼ die natürlich Projektion y 7→ [y]∼ ist. Wir zeigen nun
idX×q : X×Y→X×Y∼ ist keine Quotientenabbildung, im Widerspruch dazu, dass q :Y→Y∼
eine ist (beachte auch Y∼ ist T2). Hierzu setzen wir

B := [(X \U)×{(ϕV ,V ) |V ∈U }]∪
[⋃
{P×{(P,V )} |V ∈U , P ∈ ϕV}

]
B ist in X×Y abgeschlossen. Beweis dazu: Sei (z,a,V ) ∈ (X×Y )\B.

1. Fall a = ϕV . Dann ist z 6∈ X \U , also z ∈ U . Da ϕV gegen ein Element aus V \U
konvergiert und da (X ,τ) ein T2-Raum ist, konvergiert ϕV nicht gegen z. Da ϕV ein
Ultrafilter ist, gibt es folglich ein O ∈

•
z ∩τ und Q ∈ ϕV mit O ⊆U und O∩Q = ∅. Es

folgt
(z,a,V ) ∈ O× (A×{V})⊆ (X×Y )\B,

wobei A := ~Q∪{ϕV} offen in XϕV ist und demzufolge O× (A×{V}) offen in X×Y ist.

2. Fall a = P0 ∈ ϕV . Dann ist z 6∈ P0. Für O := X \P0 ist O×{(P0,V )} offen in X ×Y
mit (z,a,V ) ∈ O×{(P0,V )} ⊆ (X×Y )\B.

C := (idX×q)(B) ist in X×Y∼ nicht abgeschlossen. Beweis dazu: Es ist (x0,q(ϕU ,U))∈ (X×
Y )\C. Sei W ×L eine offene Basisumgebung von (x0,q(ϕU ,U)) bzgl. der Produkttopologie.
Dann ist q−1(L) offen in Y mit {(ϕV ,V ) |V ∈U } ⊆ q−1(L). Folglich gibt es gewisse PV ∈ ϕV
mit

⋃
V∈U (~PV ∪{ϕV})×{V} ⊆ q−1(L). Da(

W × [
⋃

V∈U
(~PV ∪{ϕV})×{V}]

)
∩B 6=∅
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ist auch (W ×q−1(L))∩B 6=∅, also

∅ 6= (idX ×q)((W ×q−1(L))∩B)⊆W ×q(q−1(L))︸ ︷︷ ︸
⊆W×L

∩(idX ×q)(B)︸ ︷︷ ︸
=C

und folglich (W ×L)∩C 6=∅. Dann kann C nicht abgeschlossen sein.
Wegen (idX × q)−1(C) = B (diese Gleichung ist offensichtlich) kann idX × q keine Quotien-
tenabbildung sein - Widerspruch und (X ,τ) ist daher doch T3.

(X ,τ) ist stark lokal kompakt. Beweis dazu: Wäre x0 ∈ X ein Punkt, an dem X nicht stark

lokal kompakt ist, so wäre für alle V ∈ •x0 ∩τ der Abschluss V nicht kompakt (beachte, dass
(X ,τ) als T3 erkannt ist). Das heißt, für alle V ∈ •x0 ∩τ gibt es einen Ultrafilter ϕV auf X mit
V ∈ ϕV und ϕV konvergiert überhaupt nicht in X (beachte, dass ϕV frei ist).
Wir setzen analog zur obigen Konstruktion

1. Y :=
⋃

V∈ •x0∩τ
XϕV ×{V} und jV : XϕV → Y , a 7→ (a,V )

2. σ := {O⊆ Y | ∀V ∈U ist j−1
V (O) ∈ τϕV }

3. Y∼ mit entsprechender Quotiententopologie

4. B :=
⋃
{P×{(P,V )} |V ∈ •x0 ∩τ, P ∈ ϕV}

B ist in X×Y abgeschlossen: Beweis dazu: Sei (z,a,V ) ∈ (X×Y )\B.

1. Fall a = ϕV . Da ϕV nicht gegen z konvergiert und ϕV ein Ultrafilter ist, gibt es O∈
•
z∩τ

und Q ∈ ϕV mit O∩Q =∅ (also auch O∩Q =∅). Es folgt (z,a,V ) ∈O× (A×{V})⊆
(X×Y )\B, wobei A := ~Q∪{ϕV}.

2. Fall a = P0 ∈ ϕV geht genauso wie beim Nachweis von T3.

A := (idX × q)(B) ist in X ×Y∼ nicht abgeschlossen. Beweis dazu: Sei W × L eine offene
Basisumgebung von (x0,q(ϕX ,X)) bzgl. der Produkttopologie (beachte (x0,q(ϕX ,X)) ∈ (X×
Y∼)\A). Dann ist q−1(L) offen in Y mit {(ϕV ,V ) |V ∈ •x0 ∩τ} ⊆ q−1(L). Folglich gibt es PV ∈
ϕV mit

⋃
V∈ •x0∩τ

(~PV ∪{ϕV})×{V} ⊆ q−1(L). Wäre
(

W × [
⋃

V∈ •x0∩τ
(~PV ∪{ϕV})×{V}]

)
∩

B = ∅, so wäre auch W ∩PV = ∅, für alle V ∈ •x0 ∩τ . Sei W0 ∈
•
x0 ∩τ mit W 0 ⊆W . Wegen

W ∩ PW0 = ∅ folgt W ∩ PW0 = ∅, also W 0 ∩ PW0 = ∅ im Widerspruch zu W 0,PW0 ∈ ϕW0 .

Also
(

W × [
⋃

V∈ •x0∩τ
(~PV ∪{ϕV})×{V}]

)
∩B 6= ∅ und wir schließen wie schon oben (W ×

L)∩A 6= ∅. Also ist A nicht abgeschlossen. Wegen (idX × q)−1(A) = B (offensichtlich) ist
idX × q im Widerspruch zur Voraussetzung keine Quotientenabbildung. Also ist (X ,τ) stark
lokal kompakt.

205



9.2.2 Bemerkung

Ist (X ,τ) nicht stark lokal kompakt, aber trotzdem T2 (siehe [46] oder betrachte einfach un-
endlich dimensionale Topologische Vektorräume), so gibt es einen Raum (Y,σ), so dass die
stetige Konvergenz auf c(X ,Y ) nicht durch eine Topologie erzeugt wird. Andernfalls gilt für
den Raum X die Eigenschaft (d)+T2, also ist er nach Satz 9.2.1 auch stark lokal kompakt. Es
bietet sich also an, allgemeinere Strukturen als topologische Räume zu untersuchen und die
stetige Konvergenz in diesem Rahmen zu entwickeln:

9.2.3 Definition: Konvergenzstruktur und Konvergenzraum

Sei X eine Menge. Eine Relation q⊆F (X)×X zwischen Filtern auf X und Elementen aus X
nennen wir Konvergenzstruktur. Für (φ ,x)∈ q schreiben wir auch φ

q→ x oder einfach φ→ x,
wenn über q kein Zweifel besteht. Das Paar (X ,q) nennen wir einen Konvergenzraum.

Als Einführung in die Theorie allgemeiner Konvergenzräume greife man z.B. zu [19],[39] oder
dem klassischen Artikel [17]. Im Folgenden nennen wir grob die wichtigsten Eigenschaften,
denn in obiger allgemeiner Formulierung lässt sich keine befriedigende Theorie entwickeln.

Ein paar zusätzliche Eigenschaften sind z.B.

(K0) ∀x ∈ X gilt: ∃φ ∈F (X) mit φ
q→ x.

(K1) ∀x ∈ X gilt:
•
x q→ x.

(K2) ∀x ∈ X ∀φ ,ψ ∈F (X) gilt: (φ
q→ x und φ ⊆ ψ) impliziert ψ

q→ x.

(K3) ∀x ∈ X ∀φ ∈F (X) gilt: φ
q→ x impliziert φ∩ •x q→ x.

(K4) ∀x ∈ X ∀φ ,ψ ∈F (X) gilt: (φ
q→ x und ψ

q→ x) impliziert φ ∩ψ
q→ x.

(K5) ∀x ∈ X ∀φ ∈F (X) gilt: (∀ψ ∈F0(φ) gilt ψ
q→ x) impliziert φ

q→ x.

(K6) ∀x ∈ X gilt: ∃φ ∈F (X) mit φ
q→ x impliziert

⋂
{φ ∈F (X) | φ q→ x} q→ x.

Um z.B. zum Ausdruck zu bringen, dass (X ,q) ein Konvergenzraum ist, der (K1) und (K2)
erfüllt, schreiben wir: Sei (X ,q) ein (K1)-(K2)-Konvergenzraum. Für jedes A⊆ X sei

clq(A) := A∪{x ∈ X | ∃φ ∈F (X) mit A ∈ φ und φ
q→ x}

der q-Abschluss von A und clq : P(X)→P(X) der zu q gehörige Abschlussoperator. Für
einen Filter φ führen wir für die Menge seiner Konvergenzpunkte folgende Schreibweise ein:

lim
q

φ := q(φ) = {x ∈ X | φ q→ x}.
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9.2.4 Bemerkung zur Notation

Schaut man sich die Artikel und Bücher zur Konvergenztheorie an, so stellt man fest, dass sich
im Gegensatz zur Theorie topologischer Räume kaum eine einheitliche Notation durchgesetzt
hat. Jeder Autor scheint für sich neu festzulegen, was ein Konvergenzraum, Limesraum, etc.
ist. Diesem Umstand folgend habe ich beschlossen, nur einen Begriff zu verwenden (Konver-
genzraum, so wie oben definiert) und in jedem Satz genau jene Voraussetzungen, die notwedig
sind, um die Aussage zu beweisen, aufzuschreiben. Insofern sind viele Aussagen etwas allge-
meiner, als in der üblichen Literatur.

9.2.5 Definition: Induzierte Konvergenzstruktur und assoziierte Topologie

Ist (X ,τ) ein topologischer Raum, so sei qτ die von τ induzierte Konvergenzstruktur

qτ := {(φ ,x) ∈F (X)×X | •x ∩τ ⊆ φ}.

Offenbar gilt nun φ
τ→ x ⇔ φ

qτ→ x.

Unter der von einer Konvergenzstruktur q auf X assoziierten Topologie τq verstehen wir

τq := {O⊆ X | ∀(φ ,x) ∈ q gilt : (x ∈ O ⇒ O ∈ φ)}.

Es gelten folgende allgemeine Beziehungen:

1. τ = τ(qτ ) und q⊆ qτq .

2. Für P⊆ X gilt: X \P ∈ τq ⇒ P = clq(P).

Falls (X ,q) ein (K2)-Konvergenzraum ist, gilt auch: P = clq(P) ⇒ X \P ∈ τq.

Beweis: 1. Sei O ∈ τ . Zu zeigen ist ∀(φ ,x) ∈ qτ gilt : (x ∈ O ⇒ O ∈ φ). Dies ist of-
fensichtlich. Sei andererseits O ∈ τ(qτ ). Zu x ∈ O bilden wir φ := {P ⊆ X | ∃U ∈ •x ∩τ mit

U ⊆ P}. Folglich ist (φ ,x) ∈ qτ . Wegen x ∈O und O ∈ τ(qτ ) folgt O ∈ φ . Also ∃U ∈ •x ∩τ mit
x ∈U ⊆ O. Da x beliebig war, folgt O ∈ τ .

2. Sei X \P ∈ τq. Falls x ∈ clq(P)\P existiert ein ϕ ∈F (X) mit P ∈ ϕ
q→ x, also (ϕ,x) ∈ q

und P ∈ ϕ . Wegen x ∈ X \ P folgt wegen (ϕ,x) ∈ q aber X \ P ∈ ϕ - Widerspruch. Also
x ∈ P. Da P ⊆ clq(P) immer gilt, haben wir Gleichheit. Ist (X ,q) (K2) und gilt P = clq(P),
so betrachte (ϕ,x) ∈ q mit x ∈ X \P. Sei ψ ∈F0(ϕ) beliebig. Wegen (K2) folgt (ψ,x) ∈ q.
Wegen x 6∈ clq(P) folgt P 6∈ ψ , also X \P ∈ ψ . Folglich X \P ∈

⋂
F0(ϕ) = ϕ . Schliesslich

folgt X \P ∈ τq.
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9.2.6 Lemma

Sei (X ,q) ein (K2)-Konvergenzraum. Dann gilt für den zu q gehörigen Abschlussoperator:

(a) clq(∅) =∅,

(b) ∀A⊆ X ist A⊆ clq(A) und

(c) ∀A,B⊆ X ist clq(A∪B) = clq(A)∪ clq(B).

Beweis: (a) und (b) sind trivial (und gelten für jeden Konvergenzraum). Sei x ∈ clq(A∪B).
Falls x ∈ A∪B, dann x ∈ clq(A)∪ clq(B). Sei also φ ∈F (X) mit A∪B ∈ φ und φ

q→ x. Sei ψ

ein Ultrafilter mit φ ⊆ψ . Aus (K2) folgt ψ
q→ x. Da ψ ein Ultrafilter ist, ist A∈ψ oder B∈ψ ,

also x ∈ clq(A)∪ clq(B). Die Umkehrung: clq(A)∪ clq(B)⊆ clq(A∪B) ist trivial.

9.2.7 Satz

Sei cl : P(X)→P(X) eine Abbildung mit

(a) cl(∅) =∅,

(b) ∀A⊆ X ist A⊆ cl(A) und

(c) ∀A,B⊆ X ist cl(A∪B) = cl(A)∪ cl(B).

Dann bekommen wir durch

qcl := {(φ ,x) ∈F (X)×X | ∀A⊆ X gilt: x 6∈ cl(X \A) impliziert A ∈ φ}

eine (K1)-(K2)-(K6)-Konvergenzstruktur auf X . Ferner gilt

1. cl(qcl)(A) = cl(A) für alle A⊆ X und

2. q(clq) = q für jede (K1)-(K2)-(K6)-Konvergenzstruktur q auf X .

Insbesondere haben wir bewiesen: Eine (K1)-(K2)-(K6)-Konvergenzstruktur q wird genau
dann durch eine Topologie induziert, wenn der zugehörige Abschlussoperator idempotent
ist (das bedeutet: clq(clq(A)) = clq(A) für alle A⊆ X).

Beweis: (K1), (K2) und (K6) prüft man für qcl schnell nach. Zeigen wir 1. Es ist

cl(qcl)(A) = A∪{x ∈ X | ∃φ ∈F (X) mit A ∈ φ und φ
qcl→ x}.

Sei x ∈ cl(qcl)(A). O.B.d.A. ∃φ ∈ F (X) mit A ∈ φ und φ
qcl→ x. Falls x 6∈ cl(A), dann folgt

X \A ∈ φ (denn (φ ,x) ∈ qcl) - Widerspruch.
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Sei andernfalls x ∈ cl(A). Setze β := {B⊆ X | x 6∈ cl(X \B)}. Für B1, ...,Bn ∈ β ist

x 6∈
n⋃

k=1

cl(X \Bk) = cl(
n⋃

k=1

(X \Bk)) = cl(X \ (
n⋂

k=1

Bk)),

also B1 ∩ ...∩Bn ∈ β . Außerdem gilt für B ∈ β : A∩B 6= ∅, denn andernfalls ist A ⊆ X \B
und somit x ∈ cl(A)⊆ cl(A)∪cl(X \B) = cl(A∪(X \B)) = cl(X \B) - Widerspruch. Sei dann
φ ein Filter auf X mit {A}∪β ⊆ φ . Also (φ ,x) ∈ qcl und wegen A ∈ φ ist x ∈ cl(qcl)(A).

2. Es ist q(clq) = {(φ ,x) ∈F (X)×X | ∀A⊆ X gilt: x 6∈ clq(X \A) impliziert A ∈ φ}.

Sei (φ ,x) ∈ q. Sei A ⊆ X mit x 6∈ clq(X \A). Sei Φ ein Ultrafilter mit φ ⊆ Φ. Offenbar gilt
(Φ,x) ∈ q. Aus der Definition von clq(X \A) folgt für alle ψ ∈F (X):

X \A 6∈ ψ oder (ψ,x) 6∈ q.

Also X \A 6∈Φ und damit A ∈Φ. Wegen φ =
⋂

Φ∈F0(φ) Φ folgt A ∈ φ , also (φ ,x) ∈ q(clq).
Sei andernfalls (φ ,x) ∈ q(clq). Setze ψ :=

⋂
{ρ ∈F (X) | (ρ,x) ∈ q} (sinnvoll!). Dann gilt

(ψ,x) ∈ q. Wir zeigen ψ ⊆ φ , dann folgt nämlich (φ ,x) ∈ q. Sei A ∈ ψ . Nehmen wir einmal
an, dass x ∈ clq(X \A) ist. Wir unterscheiden dann zwei Fälle:

Fall 1: x ∈ X \A, dann ist aber A ∈ ψ ⊆ •x. Offensichtlich ist dies ein Widerspruch.

Fall 2: ∃ψ ′ ∈F (X) mit (ψ ′,x) ∈ q und X \A ∈ ψ ′, dann ist A ∈ ψ ⊆ ψ ′ - Widerspruch.

Also x 6∈ clq(X \A). Aus (φ ,x) ∈ q(clq) folgt nun A ∈ φ . Die letzte Behauptung über die to-
pologische Induktion der Konvergenzstruktur folgt aus wohl bekannten Fakten über die Ku-
ratowskischen Hüllenaxiome (siehe z.B. [16]) und der Gleichung qτ = qclτ , wobei clτ der
Abschlussopearator bzgl. τ ist.

9.2.8 Definition und Lemma: (K6∗)-Konvergenzraum

Wir nennen (X ,q) einen (K6∗)-Konvergenzraum, wenn

ϕx := {P⊆ X | ∃O ∈ •x ∩τq mit O⊆ P} q→ x für alle x ∈ X gilt.

Ist (X ,q) ein (K2)-(K6∗)-Konvergenzraum, so gilt clq(clq(A)) = clq(A) für alle A ⊆ X .
Außerdem gilt (K6∗)⇒ (K6) und (K2)+(K6 ∗)⇒ (K1).
Als Korollar erhalten wir: Ein Konvergenzraum (X ,q) wird genau dann durch eine To-
pologie τ erzeugt (also q = qτ ), wenn q eine (K2)-(K6∗)-Konvergenzstruktur ist, denn
die durch die Topologie erzeugte Konvergenzstruktur, stimmt offenbar mit der durch den
Abschlussoperator erzeugten überein (und dann Satz 9.2.7 verwenden).

Beweis: (K2)+(K6∗) implizieren unmittelbar q(τq)⊆ q. Da q⊆ q(τq) immer gilt, folgt q(τq) = q.
Folglich ist clq der Abschlussoperator im Sinne einer Topologie und damit idempotent.
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9.2.9 Definition (noch mehr Eigenschaften allgemeiner Konvergenzräume)

[25] folgend sei für eine Menge J, einen Filter ϕ auf J und eine Abbildung f : J→F (X)

κ f ϕ :=
⋃

F∈ϕ

⋂
j∈F

f ( j).

Zeigen wir, dass κ f ϕ ein Filter auf X ist:
1. ∅ 6∈ κ f ϕ ist klar. 2. Seien A,B ∈ κ f ϕ , also A ∈

⋂
j∈F1

f ( j), B ∈
⋂

j∈F2
f ( j). Also A,B ∈⋂

j∈F1∩F2
f ( j). Es folgt A∩B ∈

⋂
j∈F1∩F2

f ( j) und somit A∩B ∈ κ f ϕ . 3. Sei A ∈ κ f ϕ, A ⊆
B⊆ X . Also A ∈

⋂
j∈F f ( j) und folglich B ∈

⋂
j∈F f ( j), also B ∈ κ f ϕ .

Mit diesem Operator können wir ein paar weitere Eigenschaften formulieren.

(K7) ∀ f ∈F (X)X [(∀x ∈ X : f (x)
q→ x) ⇒ ∀ϕ ∈F (X)∀x ∈ X (ϕ

q→ x ⇒ κ f ϕ
q→ x)]

(K8) ∀ f ∈F0(X)X [(∀x ∈ X : f (x)
q→ x) ⇒ ∀ϕ ∈F (X)∀x ∈ X (ϕ

q→ x ⇒ κ f ϕ
q→ x)]

(K9) ∀J : Menge ∀ f ∈F (X)J ∀g ∈ XJ

[(∀ j ∈ J : f ( j)
q→ g( j)) ⇒ ∀ϕ ∈F (J)∀x ∈ X (g(ϕ)

q→ x ⇒ κ f ϕ
q→ x)]

(K10) ∀J : Menge ∀ f ∈F0(X)J ∀g ∈ XJ

[(∀ j ∈ J : f ( j)
q→ g( j)) ⇒ ∀ϕ ∈F (J)∀x ∈ X (g(ϕ)

q→ x ⇒ κ f ϕ
q→ x)]

9.2.10 Lemma

1. Offenbar gilt (daher ohne Beweis): (K9) ⇒ (K7) ⇒ (K8) und (K10) ⇒ (K8)

2. Sei (X ,q) ein (K1)-(K7) oder ein (K1)-(K2)-(K8)-Konvergenzraum. Dann gilt
clq(clq(A)) = clq(A) für jedes A⊆ X .

3. Sei (X ,q) ein (K1)-(K9) oder ein (K1)-(K2)-(K10)-Konvergenzraum.
Dann ist (X ,q) ein (K6)-Konvergenzraum.

Beweis: 2. Zu zeigen ist lediglich clq(clq(A))⊆ clq(A). Wir führen den Nachweis für ein (K1)-
(K2)-(K8)-Konvergenzraum (für (K1)-(K7) geht es analog). Sei x ∈ clq(clq(A)). Wähle dann
ein φ ∈F0(X) mit clq(A) ∈ φ

q→ x. Für jedes y ∈ clq(A) sei φy ∈F0(X) mit A ∈ φy
q→ y. Wir

definieren nun

f : X →F0(X) durch f (y) =

{
φy, falls y ∈ clq(A)
ξy andernfalls, wobei ξy ∈F0(X) beliebig mit ξy

q→ y
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Nach Voraussetzung gilt κ f φ
q→ x. Für B := clq(A) ∈ φ folgt

A ∈
⋂
y∈B

f (y)⊆
⋃

F∈φ

⋂
y∈F

f (y) = κ f φ ,

also x ∈ clq(A) (wegen κ f φ
q→ x und A ∈ κ f φ ).

3. Sei x ∈ X . Zu zeigen ist
⋂
{φ ∈ F (X) | φ q→ x} q→ x. Wir führen den Beweis für den

(K2)-(K10) Konvergenzraum (der andere Fall geht analog). Sei J := {φ ∈F0(X) | φ q→ x} und
f : J→F0(X), φ 7→ φ , sowie g : J→X , j 7→ x und schließlich ϕ := {J}. Alle Voraussetzungen
(für (K10)) sind erfüllt und wir erhalten κ f ϕ

q→ x. Wegen (K2) und weil jeder Filter gleich
dem Durchschnitt seiner Oberultrafilter ist, ist der Durchschnitt aller gegen x konvergierenden
Filter gleich dem Durchschnitt aller gegen x konvergierenden Ultrafilter und das ist hier gerade
κ f ϕ , ist alles gezeigt.

9.2.11 Definition: Trennungsaxiome

Sei (X ,q) ein Konvergenzraum.

(T0) (X ,q) heißt T0-Raum genau dann, wenn ∀x,y ∈ X gilt:
•
x q→ y und

•
y q→ x impliziert x = y.

(T1) (X ,q) heißt T1-Raum genau dann, wenn ∀x ∈ X gilt: | limq
•
x | ≤ 1.

(T2) (X ,q) heißt T2-Raum genau dann, wenn ∀φ ∈F (X) gilt: | limq φ | ≤ 1.

(T2)∗ (X ,q) heißt T∗2-Raum genau dann, wenn ∀φ ∈F0(X) gilt: | limq φ | ≤ 1.

(T3) (X ,q) heißt T3-Raum genau dann, wenn ∀φ ∈F (X) gilt: limq φ = limq clq(φ)

Hier und im Folgenden bezeichnet clq(φ) := {Q⊆ X | ∃P ∈ φ mit clq(P)⊆ Q}.

(T4) (X ,q) heißt T4-Raum genau dann, wenn (X ,τq) ein T4-Raum ist.

Man beachte, dass sich im Fall topologischer Räume diese Definition mit der gwöhnlichen
Definition der Trennungsaxiome (siehe Anhang) deckt.

9.2.12 Bemerkung (siehe Definition 9.2.5)

Statt clq(φ) kann man nun auch folgenden Filter betrachten:

clτq(φ) := {Q⊆ X | ∃P ∈ φ mit P⊆ Q und X \P ∈ τq}

Darauf aufbauend haben wir folgende Alternativ-Definition für T3:

(X ,q) heißt T3s-Raum genau dann, wenn ∀φ ∈F (X) gilt: lim
q

φ = lim
q

clτq(φ).

Es gelten folgende Beziehungen:
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1. Jeder T3s-(K2)-Konvergenzraum ist auch T3.

Beweis: Folgt aus clτq(φ)⊆ clq(φ). Siehe dazu Definition 9.2.5.

2. Jeder T3-(K2)-Konvergenzraum mit idempotenten Abschlussoperator clq ist auch T3s.

Beweis: Folgt aus clτq(φ) = clq(φ). Siehe wieder Definition 9.2.5.

9.2.13 Definition: Eine Art Umkehrung von (K9) und (K10)

(K9∗) ∀J : Menge ∀ f ∈F (X)J ∀g ∈ XJ

[(∀ j ∈ J : f ( j)
q→ g( j)) ⇒ ∀ϕ ∈F (J)∀x ∈ X (κ f ϕ

q→ x ⇒ g(ϕ)
q→ x)]

(K10∗) ∀J : Menge ∀ f ∈F0(X)J ∀g ∈ XJ

[(∀ j ∈ J : f ( j)
q→ g( j)) ⇒ ∀ϕ ∈F (J)∀x ∈ X ( κ f ϕ

q→ x⇒ g(ϕ)
q→ x)]

(K9∗) impliziert natürlich (K10∗).

9.2.14 Lemma

1. Sei (X ,q) ein (K2)-T3-Konvergenzraum. Dann ist (X ,q) auch ein
(K9∗)-Konvergenzraum.

2. Sei (X ,q) ein (K1)-(K2)-(K10∗)-Konvergenzraum, dann ist (X ,q) auch T3.

Beweis: 1. Sei f : J → F (X), g : J → X mit f ( j)
q→ g( j) (∀ j ∈ J) und sei ϕ ∈ F (J) mit

κ f ϕ
q→ x. Zu zeigen ist g(ϕ)

q→ x. Es reicht clq(κ f ϕ) ⊆ g(ϕ) zu zeigen. Sei A ∈ κ f ϕ , also
A ∈

⋂
j∈F f ( j) für ein gewisses F ∈ ϕ . Wegen A ∈ f ( j)

q→ g( j) für alle j ∈ F folgt g(F) ⊆
clq(A) und insgesamt somit clq(κ f ϕ)⊆ g(ϕ).

2. Sei φ ∈F (X) und φ
q→ x. Zu zeigen ist clq(φ)

q→ x. Für jedes A ∈ φ sei

FA := {(ξ ,z) ∈F0(X)×X | A ∈ ξ und ξ
q→ z}.

Setze weiter J :=
⋃

A∈φ FA = q∩ (F0(X)×X). Wegen ∅ 6= FA∩B ⊆ FA∩FB ist (beachte: a ∈
A ⇒ (

•
a,a) ∈ FA)

ϕ := {J′ ⊆ J | ∃A ∈ φ mit FA ⊆ J′}
ein Filter auf J. Wir definieren nun g : J → X durch (ξ ,z) 7→ z und f : J → F0(X) durch
(ξ ,z) 7→ ξ . Offenbar gilt dann:

(1) f ( j)
q→ g( j) für alle j ∈ J,

(2) g(ϕ) = clq(φ) (denn g(FA) = clq(A)) und

(3) φ ⊆ κ f ϕ (denn A ∈ φ impliziert offenbar A ∈
⋂

j∈FA
f ( j)⊆ κ f ϕ).

Folglich gilt κ f ϕ
q→ x, also clq(φ) = g(ϕ)

q→ x.
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9.2.15 Definition: Dichte und extrem dichte Teilmengen

Sei (X ,q) ein Konvergenzraum. Wir nennen A ⊆ X dicht (in X), falls clq(A) = X gilt. Wir
nennen einen Filter φ ∈F (X) α-uniform (für eine Kardinalzahl α), falls |P| ≥α für alle P∈ φ

gilt (für α = |X | einfach uniform). Wir definieren für jede Kardianlzahl α den α-Abschluss
clα

q : P(X)→P(X) durch

clα
q (A) := A∪{x ∈ X | ∃φ ∈F (X) : α-uniform, mit φ

q→ x und A ∈ φ}.

Wir nennen A α-dicht (in X), falls clα
q (A) = X . Im Fall α = |A| sprechen wir von extrem

dicht.11

9.2.16 Lemma

Sei (X ,q) ein T2-(K2)-Konvergenzraum und D ⊆ X . Gilt clq(D) = X , so folgt |X | ≤
|F0(D)|.
Dass diese Grenze angenommen werden kann, zeigt Satz 9.6.2.

Beweis: Für x ∈ X sei φx ein Filter auf X mit D ∈ φx und φx
q→ x. Sei φx,D := {P∩D | P ∈ φx}.

Sei ψx,D ein Ultrafilter auf D mit φx,D ⊆ψx,D. Setze Φx,D := {P⊆ X | ∃Q∈ψx,D mit Q⊆ P}.
Wegen φx,D ⊆ Φx,D gilt auch Φx,D

q→ x. Definiere nun f : X → F0(D) durch x 7→ ψx,D.

Offenbar ist f injektiv, denn ψx1,D = ψx2,D impliziert Φx1,D = Φx2,D. Aus Φx1,D
q→ x1 und

Φx2,D
q→ x2 folgt dann x1 = x2 (wegen T2). Also ist |X | ≤ |F0(D)|.

9.2.17 Definition: Stetige Abbildungen

Sind (X ,q), (Y,r) zwei Konvergenzräume und f : X → Y eine Abbildung, so nennen wir f
stetig in x ∈ X (bzgl. (X ,q) und (Y,r)), falls für alle Filter ψ auf X gilt:

ψ
q→ x impliziert f (ψ) r→ f (x).

Wir nennen f stetig auf X (bzw. einfach: stetig), falls f für jedes x ∈ X stetig ist.

9.2.18 Lemma

Sei (X ,q) ein (K2)-Konvergenzraum, (Y,r) ein T∗2-Konvergenzraum, f ,g : X → Y stetig,
D⊆ X mit f |D = g|D. Dann gilt f |clq(D) = g|clq(D).

11Im Zusammenhang mit dem Fortsetzungsproblem (siehe 9.5.1), ist das Konzept dichter Teilmengen natürlich
fundamental. Extrem dichte Mengen interessieren uns hier nicht weiter. Eine interessante Anwendung dieses
Konzeptes, zur Klärung der Frage wieviel Ultrafilter auf einer Menge existieren, findet sich im Anhang.

213



Beweis: Sei x ∈ clq(D)\D und ψ ′ ∈F (X) mit ψ ′
q→ x und D ∈ ψ ′. Sei ψ ∈F0(ψ). Es folgt

ψ
q→ x und somit φ1 := f (ψ) r→ f (x) und φ2 := g(ψ) r→ g(x). Wäre f (x) 6= g(x), so wäre

φ1 6= φ2, es gäbe also P1 ∈ φ1,P2 ∈ φ2 mit P1∩P2 =∅. Seien Q1,Q2 ∈ ψ mit f (Q1)⊆ P1 und
g(Q2)⊆ P2. Sei d ∈ Q1∩Q2∩D ∈ ψ , also ist f (d) = g(d) und f (d) ∈ P1 bzw. g(d) ∈ P2.

9.2.19 Lemma

1. Seien (X ,q), (Y,r) Konvergenzräume und f : X → Y stetig. Dann gilt

f (clq(A))⊆ clr( f (A)) für alle A⊆ X .

2. Sei (X ,q) ein (K2)-Konvergenzraum, (Y,r) ein (K2)-(K6)-Konvergenzraum und f
eine Abbildung mit

f (clq(A))⊆ clr( f (A)) für alle A⊆ X .

Dann ist f stetig.

3. Sei (X ,q) ein (K2) und (Y,r) ein (K5)-Konvergenzraum. In diesem Fall ist eine
Abbildung f : X → Y genau dann stetig, wenn f (φ) r→ f (x) für jedes x ∈ X und
jeden Ultrafilter φ auf X mit φ

q→ x gilt.

Beweis: 1. Sei x ∈ clq(A)\A. Zeigen wir f (x) ∈ clr( f (A)). Nun ∃ψ ∈F (X) mit A ∈ ψ
q→ x.

Dann ist φ := f (ψ) ∈F (Y ) mit f (A) ∈ φ = f (ψ) r→ f (x). Also f (x) ∈ clr( f (A)).

2. Sei ψ
q→ x. Zu zeigen ist f (ψ) r→ f (x). Sei φ ein Ultrafilter mit f (ψ) ⊆ φ und sei ψ0

ein Ultrafilter mit ψ ⊆ ψ0 und f (ψ0) = φ (Lemma 3.2.5). Wegen (K2) gilt x ∈ clq(A) für
alle A ∈ ψ0. Folglich f (x) ∈ clr( f (A)) für alle A ∈ ψ0. Das heißt ∀A ∈ ψ0∃φA ∈F (Y ) mit
f (A) ∈ φA und φA

r→ f (x). Wegen (K6) folgt φ ′ :=
⋂
{ξ ∈F (Y ) | ξ r→ f (x)} r→ f (x). Für

P ∈ φ ′ gilt daher P ∈ φA für jedes A ∈ ψ0. Also P∩ f (A) 6=∅ für jedes A ∈ ψ0. Das bedeutet
aber P ∈ f (ψ0), denn f (ψ0) ist ein Ultrafilter. Wegen f (ψ0) = φ gilt φ ′ ⊆ φ , also φ

r→ f (x)
(K2). Wegen (K6) gilt daher auch f (ψ) r→ f (x).

3. Zeigen wir, dass f unter dieser Voraussetzung stetig ist. Sei ϕ ∈F (X) mit ϕ
q→ x. Sei

ψ ∈ F0( f (ϕ)). Nach Lemma 3.2.5 existiert ein φ ∈ F0(ϕ) mit f (φ) = ψ . Es folgt ψ =
f (φ) r→ f (x). Da ψ ∈F0( f (ϕ)) beliebig gewählt wurde, folgt f (ϕ) r→ f (x).

9.2.20 Definition: Gröbere und feinere Konvergenzstrukturen

Seien q,r zwei Konvergenzstrukturen auf X . Wir sagen q ist feiner als r bzw. r ist gröber als
q, falls q ⊆ r. Motiviert wird diese Definition durch die von Topologien induzierten Konver-
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genzstrukturen, denn es gilt für zwei beliebige Topologien τ,σ auf X :

σ ⊆ τ ⇔ qτ ⊆ qσ

9.2.21 Definition: Initialkonvergenzstruktur

Seien (Xi,qi)i∈I Konvergenzräume, X eine Menge und fi : X → Xi, i ∈ I entsprechende Abbil-
dungen. Wir setzen

q := {(ψ,x) ∈F (X)×X | ∀ i ∈ I gilt fi(ψ)
qi→ fi(x)}.

Für q (die Initialkonvergenzstruktur bzgl. (Xi,qi)i∈I und fi : X → Xi, i ∈ I) gilt:

1. Für einen Konvergenzraum (Y,r) ist eine Abbildung f : Y → X genau dann stetig, wenn
fi ◦ f für jedes i ∈ I stetig ist.

Y

fi◦ f ��?
??

??
??

f // X
fi
��

Xi

Durch diese universelle Eigenschaft ist q bereits vollständig charakterisiert.

2. q ist die gröbste Konvergenzstruktur auf X , so dass die Abbildungen fi stetig sind.

9.2.22 Definition: Produktkonvergenzstruktur

Seien (Xi,qi)i∈I Konvergenzräume, X := ∏i∈I Xi und pi die entsprechenden Projektionen. Die
Initialkonvergenzstruktur q auf X bzgl. (Xi,qi)i∈I und pi : X → Xi, i ∈ I nennen wir Produkt-
konvergenzstruktur auf X .

9.2.23 Definition: Kompakt

(X ,q) ist kompakt, falls limq φ 6=∅ für alle φ ∈F0(X) gilt (alle Ultrafilter konvergieren).

9.2.24 Lemma

Seien (X ,q),(Y,r) Konvergenzräume, f : X → Y stetig und surjektiv und (X ,q) kompakt.
Dann ist auch (Y,r) kompakt.

Beweis: Sei φ ein Ultrafilter auf Y und ψ := {Q⊆ X | ∃P ∈ φ mit f−1(P)⊆ Q}. Offenbar ist
f (ψ) ⊆ φ . Sei dann ψ0 in Ultrafilter auf X mit ψ ⊆ ψ0 und f (ψ0) = φ (Lemma 3.2.5). Nun
∃x ∈ limq(ψ0) und aus der Stetigkeit von f folgt φ = f (ψ0)

r→ f (x). Jeder Ultrafilter auf Y
konvergiert - folglich ist (Y,r) kompakt.
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9.2.25 Satz

Seien (Xi,qi)i∈I Konvergenzräume, X := ∏i∈I Xi, pi die entsprechenden Projektionen und
q die Produktkonvergenzstruktur auf X . Dann gilt:

(X ,q) ist genau dann kompakt, wenn alle (Xi,qi) , i ∈ I kompakt sind.

Beweis: Ist (X ,q) kompakt, so folgt aus der Stetigkeit der Projektionen pi (mit Lemma 9.2.24),
dass auch (Xi,qi) kompakt ist.

Seien andererseits alle (Xi,qi), i ∈ I kompakt. Sei ψ ein Ultrafilter auf X . Dann ist pi(ψ)
ein Ultrafilter in Xi (für jedes i ∈ I ). Dort gilt pi(ψ)

qi→ xi für ein xi ∈ Xi. Setze x := (xi)i∈I . Per
Definition (der Produktkonvergenzstruktur) folgt ψ

q→ x.

9.2.26 Definition: Teilraumkonvergenzstruktur

Sei (X ,q) ein Konvergenzraum und Z ⊆ X . Die Initialkonvergenzstruktur qZ auf Z bzgl. der
Abbildung i : Z→ X , z 7→ z bezeichnen wir als Teilraumkonvergenzstruktur. Offenbar ist

qZ = {(φ ,z) ∈F (Z)×Z | i(φ)
q→ z}= {(ψ|Z,z) | (ψ,z) ∈ q mit z ∈ Z ∈ ψ}.

9.2.27 Definition: Finalkonvergenzstruktur

Seien (Xi,qi)i∈I Konvergenzräume, X eine Menge und fi : Xi→ X , i ∈ I entsprechende Abbil-
dungen. Wir setzen

q := {( fi(ψi), fi(xi)) | i ∈ I und (ψi,xi) ∈ qi}.

Für q (die Finalkonvergenzstruktur bzgl. (Xi,qi)i∈I und fi : X → Xi, i ∈ I) gilt:

1. Für einen Konvergenzraum (Y,r) ist eine Abbildung f : X →Y genau dann stetig, wenn
f ◦ fi für jedes i ∈ I stetig ist.

Xi

f◦ fi ��?
??

??
??

fi // X
f
��

Y
Durch diese universelle Eigenschaft ist q bereits vollständig charakterisiert.

2. q ist die feinste Konvergenzstruktur auf X , so dass die Abbildungen fi stetig sind.

9.2.28 Definition: Summenkonvergenzstruktur

Unter der Summe der Konvergenzräume (Xi,qi)i∈I verstehen wir die Finalkonvergenzstruktur
auf X :=

⋃
i∈I X×{i} bzgl. der Einbettungen fi : Xi→ X .
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9.3 Die Konvergenzstruktur der stetigen Konvergenz
Der folgende Abschnitt zeigt nun, wie sich die stetige Konvergenz als Konvergenzstruktur
beschreiben lässt.

9.3.1 Definition: Die Konvergenzstruktur der stetigen Konvergenz

Seien (X ,q) und (Y,r) Konvergenzräume, φ ein Filter auf ∅ 6= Z ⊆ Y X und f : X → Y eine
Abbildung. Wir sagen φ konvergiert stetig auf Z gegen f , falls für alle Filter ψ auf X und
alle x ∈ X gilt:

ψ
q→ x impliziert φ(ψ) r→ f (x).

Da aus der Definition nicht f ∈ Z folgt, handelt es sich hier nicht notwendig um eine Konver-
genzstruktur im Sinne von Definition 9.2.3. Vielmehr haben wir eine Relation

qZ
c = qZ

c ((X ,q),(Y,r)) := {(φ , f ) ∈F (Z)×Y X | φ konvergiert stetig gegen f}.

In den meisten Fällen interessiert man sich aber nur für Z = Y X oder Z = c(X ,Y ).

• Für Z = Y X ist qZ
c natürlich eine Konvergenzstruktur im Sinne von Definition 9.2.3.

• Unter nicht allzu starken, zusätzlichen Voraussetzungen (siehe dazu Lemma 9.4.3) folgt
für Z = c(X ,Y ) aus (φ , f ) ∈ qZ

c bereits f ∈ Z. Wir haben also auch hier eine Konver-
genzstruktur im Sinne von Definition 9.2.3.

Für (φ , f ) ∈ qZ
c schreiben wir wie gewohnt φ

qZ
c→ f .

9.3.2 Satz

1. Sei (X ,q) ein beliebiger Konvergenzraum, (Y,r) ein (K2)-Konvergenzraum, ∅ 6=

Z ⊆ Y X und φ ,Φ ∈F (Z) mit φ
qZ

c→ f und φ ⊆Φ. Dann gilt auch Φ
qZ

c→ f .

2. Sei (X ,q) ein (K2)-Konvergenzraum und (Y,r) ein (K2)-(K5)-Konvergenzraum.
Dann ist auch (Y X ,qc) ein (K2)-(K5)-Konvergenzraum.

Beweis: 1. Sei ψ
q→ x. Es folgt φ(ψ) r→ f (x). Wegen φ(ψ)⊆Φ(ψ) folgt auch Φ

r→ f (x).

2. Sei ξ ∈F (Y X) und f ∈ Y X derart, dass gilt:

∀ψ ∈F0(ξ ) gilt ψ
qc→ f

Zu zeigen ist nun ξ
qc→ f . Sei dazu x∈ X und ν ∈F (X) mit ν

q→ x. Zu zeigen ist ξ (ν) r→ f (x).
Dazu reicht es zu zeigen:

∀α ∈F0(ξ (ν)) gilt α
r→ f (x)
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Für einen Ultrafilter α auf Y mit ξ (ν)⊆ α gibt es nach lemma 3.2.5 aber Ultrafilter ξ0 auf Y X

und ν0 auf X mit ξ ⊆ ξ0, ν ⊆ ν0 und ξ0(ν0)⊆ α . Es folgt ν0
q→ x und wegen 1. ξ0

qc→ f , also
ξ0(ν0)

r→ f (x) und somit auch α
r→ f (x).

9.3.3 Satz

1. Sei (X ,q) ein beliebiger Konvergenzraum, (Y,r) ein (K2)-Konvergenzraum. Dann
ist Ω : Y X×X→Y stetig (bezüglich qc auf Y X und der Produktkonvergenzstruktur).

2. Sei (X ,q) ein beliebiger Konvergenzraum, (Y,r) ein (K2)-Konvergenzraum und sei
q0 eine Konvergenz auf Y X derart, dass Ω : Y X×X→Y stetig ist. Dann gilt q0 ⊆ qc.

3. Sei (X ,q) ein beliebiger Konvergenzraum, (Y,r) ein (K2)-Konvergenzraum und g :
Z→ Y X eine Abbildung. Dann gilt:

g ist stetig ⇔ Ω◦ (g× idX) ist stetig

(bezüglich qc auf Y X , q′ auf Z bzw. Produktkonvergenz auf Y X ×X).

1. Bezeichne q′ die Produktkonvergenzstruktur auf Y X ×X und p1 : Y X ×X → Y X bzw.

p2 : Y X × X → X die entsprechenden Projektionen. Sei Φ ∈ F (Y X × X) und Φ
q′→ ( f ,x).

Zu zeigen ist Ω(Φ) r→ Ω( f ,x) = f (x). Wegen p2(Φ) =: ψ
q→ x und p1(Φ) =: φ

qc→ f folgt
φ(ψ) r→ f (x). Zeigen wir φ(ψ)⊆Ω(Φ). Sei dazu P ∈ φ und Q ∈ψ . O.B.d.A. gilt P = p1(P′)
und Q = p2(Q′) für P′,Q′ ∈ Φ. Für P′′ := P′∩Q′ ∈ Φ gilt nun offenbar Ω(P′′) ⊆ P(Q), also
P(Q) ∈Ω(Φ).

2. Sei φ ein Filter auf Y X mit φ
q0→ f . Zu zeigen ist φ

qc→ f . Sei ψ
q→ x. Für den Produktfilter

Φ := φ×ψ gilt Φ→ ( f ,x) (bzgl. der Produktkonvergenzstruktur). Folglich Ω(Φ) r→Ω( f ,x) =
f (x). Wegen Ω(Φ) = φ(ψ) folgt φ(ψ) r→ f (x).

3. ”⇒” ist klar. Sei andererseits Ω◦ (g× idX) : Z×X → Y stetig. Sei φ ein Filter auf Z mit

φ
q′→ z. Zu zeigen ist g(φ)

qc→ g(z). Sei also ψ
q→ x. Zu zeigen bleibt dann noch g(φ)(ψ) r→

g(z)(x). Nun ist g(φ)(ψ) = Ω ◦ (g× idX)(φ ×ψ) und g(z)(x) = Ω ◦ (g× idX)(z,x). Aus der
Stetigkeit von Ω◦ (g× idX) und wegen φ ×ψ → (z,x) (bzgl. der Produktkonvergenzstruktur)
folgt Ω◦ (g× idX)(φ ×ψ) r→Ω◦ (g× idX)(z,x).

9.4 Schwach stetige Abbildungen und wieder (S)-Räume
Im Folgenden verallgemeinern wir Definition 9.1.5 auf allgemeine Konvergenzräume. Man
beachte, dass sich beide Definitionen im Fall topologischer Räume decken.
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9.4.1 Definition: Schwach Stetig

Wir nennen die Abbildung f : (X ,q)→ (Y,r) schwach stetig, falls Folgendes gilt:

∀ (ϕ,x) ∈ q ∃ ψ ∈F (Y ) mit (ψ, f (x)) ∈ r und clr(ψ)⊆ f (ϕ)

Ist (Y,r) ein (K2)-T3-Konvergenzraum, so ist jede schwach stetige Abbildung nach Y stetig.

9.4.2 Definition: strenger Teilraum

Sei (X ,q) ein Konvergenzraum. Wir nennen [18] folgend D⊆ X einen strengen Teilraum, falls

clq(D) = X und ∀(ϕ,x) ∈ q ∃ξ ∈F (X) mit ξ
q→ x , D ∈ ξ und clq(ξ )⊆ ϕ.

9.4.3 Lemma

1. Sei (Y,r) beliebig, (X ,q) ein (K1)-Konvergenzraum, f : X → Y eine Abbildung, φ

ein Filter auf Z ⊆ Y X , der stetig gegen f konvergiert. Dann ist f schwach stetig.

2. Seien (X ,q), (Y,r) Konvergenzräume, D ein strenger Teilraum von X , g : D→ Y
eine Abbildung derart, dass für jedes x ∈ X eine stetige Abbildung fx : D∪{x}→Y
existiert, mit fx|D = g. Dann ist f : X → Y , f (x) := fx(x) schwach stetig.

3. Sei (X ,q) ein (K1)-(K7)-Konvergenzraum, (Y,r) beliebig, f : D⊆ X → Y eine ste-
tige Abbildung mit clq(D) = X und der Eigenschaft:

∀x ∈ X ∃yx ∈ Y ∀ϕ ∈F (X) : [(D ∈ ϕ und ϕ
q→ x) ⇒ f (ϕ|D) r→ yx] (∗)

Dann ist f0 : X → Y , f0(x) = yx schwach stetig.

Korollar in allen Fällen: Ist (Y,r) zusätzlich (K2) und T3, so ist f bzw. f0 stetig.

Beweis: 1. Sei ϕ
q→ x. In jedem Fall gilt φ(ϕ) r→ f (x). Zeigen wir clr(φ(ϕ))⊆ f (ϕ). Falls dem

nicht so ist, so ∃P ∈ φ , Q ∈ ϕ mit f (Q) 6⊆ clr(P(Q)). Sei dann v ∈ Q mit f (v) 6∈ clr(P(Q)).
Nun gilt

•
v q→ v, also φ(

•
v) r→ f (v). Aus f (v) 6∈ clr(P(Q)) folgt aber P(Q) 6∈ φ(

•
v) - Widerspruch!

2. Sei ϕ ein Filter auf X mit ϕ
q→ x. Nach Voraussetzung an D gibt es einen Filter ξ auf X

mit ξ
q→ x, D ∈ ξ und clq(ξ ) ⊆ ϕ . Dann gilt auch ξ |(D∪{x})→ x (im Teilraum) und somit

ψ := fx(ξ |(D∪{x}))
r→ fx(x) = f (x). Zeigen wir clr(ψ) ⊆ f (ϕ). Zu R ∈ clr(ψ) gibt es ein

P ∈ ξ mit clq( fx(P∩ (D∪{x})))⊆ R. Es ist Q := clq(P∩D) ∈ ϕ .
Angenommen es gibt ein z ∈ Q \ (P∩D) mit f (z) 6∈ R. Da z ∈ clq(P∩D) gibt es einen

Filter η mit P∩D ∈ η und η
q→ z. Folglich gilt fz(η |(D∪ {z}))

r→ fz(z) = f (z). Wegen
f (z) 6∈ clq( fx(P∩ (D∪{x}))) ist fx(P∩ (D∪{x})) 6∈ fz(η |(D∪{z})).
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1.Fall z 6∈ D impliziert P∩D ∈ η |(D∪{z}) und fz(P∩D) = g(P∩D)⊆ fx(P∩ (D∪{x})).
Also doch fx(P∩ (D∪{x})) ∈ fz(η |(D∪{z})), was ein Widerspruch ist.

2.Fall z∈D impliziert nun fz((P∩D)∩(D∪{z}))⊆ fx(P∩(D∪{x})), wegen fx(z) = fz(z).
Also auch in diesem Fall fx(P∩ (D∪{x})) ∈ fz(η |(D∪{z})), was ein Widerspruch ist.

3. Wegen clq(D) = X , gibt es zu jedem x ∈ X ein g(x) ∈F (X) mit D ∈ g(x)
q→ x, also ein

g : X →F (X). Sei nun x ∈ X fest gewählt und ϕ ∈F (X) mit ϕ
q→ x. Da (X ,q) ein (K7)-

Konvergenzraum ist, folgt κgϕ
q→ x. Aus (∗), der Definition von f0 und der Stetigkeit von f

folgt schließlich f (κgϕ|D) r→ f0(x). Nun ist aber

f (κgϕ|D) = f (
⋃

F∈ϕ

⋂
z∈F

g(z)|D)⊆
⋃

F∈ϕ

⋂
z∈F

f (g(z)|D).

Es reicht clr(
⋃

F∈ϕ

⋂
z∈F f (g(z)|D)) ⊆ f0(ϕ) zu zeigen. Sei A ∈

⋃
F∈ϕ

⋂
z∈F f (g(z)|D), also

A ∈
⋂

z∈F f (g(z)|D) für ein gewisses F ∈ ϕ . Da g(z)
q→ z, folgt f (g(z)|D) r→ f0(z) für alle

z ∈ F , also f0(F)⊆ clr(A).

9.4.4 Bemerkung

Auch hier lässt sich leicht zeigen, dass es zu einem (nicht T3)-(K1)-Konvergenzraum (Y,q)
eine schwach stetige Abbildung nach Y gibt, die nicht stetig ist. Sei (Y,q) nicht T3, d.h. es gibt
ein (ψ,y) ∈ q mit (clq(ψ),y) 6∈ q. Wir definieren nun r ⊆F (Y )×Y durch

(φ ,z) ∈ r :⇔

{
z ∈ Y und φ =

•
z oder

z = y und clq(ψ)⊆ φ

Dann ist idY : (Y,r)→ (Y,q) schwach stetig, aber nicht stetig!
Analog zu Definition 9.1.9 könnte man nun weiter definieren:

9.4.5 Definition

(Y,r) heißt (S∗) Konvergenzraum, falls für jedes ∅ 6= Z ⊆ Y X , für jeden (K1) Konvergenz-
raum (X ,q), jeden Filter φ auf Z und jede Abbildung f : X → Y gilt:(

φ
konvergiert stetig−→ f

)
impliziert ( f ist stetig)

(Y,r) heißt (S)-Konvergenzraum, falls für jeden (K1)-Konvergenzraum (X ,q) und für jeden
Filter φ auf Y X mit c(X ,Y ) ∈ φ und jede Abbildung f : X → Y gilt:(

φ
konvergiert stetig−→ f

)
impliziert ( f ist stetig)

Unmittelbar aus der Definition, bzw. mit Lemma 9.4.3 folgt: T3 + (K2) ⇒ (S∗) ⇒ (S).
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9.4.6 Satz

1. Ist (Y,r) ein (K1)-(S)-Konvergenzraum, so gilt für alle y0,y1 ∈ Y :
•
y0

r→ y1 impliziert (
•
y0 ∩

•
y1

r→ y0 und
•
y1

r→ y0).

2. Jeder (K1)-(K2)-T0-(S)-Konvergenzraum (Y,r) ist T2.

3. Sei (Yi,ri)i∈I eine Familie von (S)-Konvergenzräumen (bzw. (S∗)-
Konvergenzräumen) und ( fi : Y → Yi)i∈I eine Familie von Abbildungen. Dann
ist (Y,r) ein (S)-Konvergenzraum (bzw. (S∗)-Konvergenzraum), wobei r die
Initialkonvergenzstruktur ist.

4. Die Eigenschaft (S) ist summentreu (analog mit (S∗)).

Beweis: 1. Annahme es gibt y0,y1 ∈ Y mit
•
y0

r→ y1 und (
•
y1 6

r→ y0 oder
•
y0 ∩

•
y1 6

r→ y0). Sei X :=
Y ∪{`}, wobei ` 6∈ Y (also z.B. ` = Y ) und q := {(ϕ,x) ∈F (X)×X | ϕ|Y r→ x oder x = `}.

Wir betrachten die Abbildungen f ,g : X → Y , f (x) := y0 und g(x) :=

{
y0 für x ∈ {y0, `}
y1 für x 6∈ {y0, `}

.

Der Filter φ :=
•
f konvergiert nun stetig gegen g, denn ϕ

q→ x impliziert φ(ϕ) = f (ϕ) =
•
y0

r→
g(x), aber g ist nicht stetig, denn

•
y1

q→ ` und
•
y0 ∩

•
y1

q→ `, aber [g(
•
y1) =

•
y1 6

r→ y0 = g(`) oder
g(
•
y0 ∩

•
y1) =

•
y0 ∩

•
y1 6

r→ y0 = g(`)].

2. Angenommen (Y,r) ist nicht T2. Sei ξ ein Filter mit ξ
r→ y1, ξ

r→ y2 mit y1 6= y2. Für Q∈
ξ ist Q\{y1,y2} 6=∅ (andernfalls ist Q⊆ {y1,y2}; dann aber ξ ⊆

•
z für z = y1 oder z = y2(!),

also
•
z r→ y1 und

•
z r→ y2 - Widerspruch). Für Q∈ ξ setze PQ := {g∈ c(Y,Y ) | g(Y )⊆Q\{y1,y2}}

und φ := {P ⊆ YY | PQ ⊆ P}. Die Abbildung f : Y → Y , f (y) :=

{
y1 für y 6= y2

y2 für y = y2
ist nicht

stetig, denn für ξ ′ := {Q′ ⊆ Y | ∃Q ∈ ξ mit Q \ {y1,y2} ⊆ Q′} gilt ξ ⊆ ξ ′, also ξ ′
r→ y1,

ξ ′
r→ y2 und f (ξ ′) =

•
y1, aber

•
y1 6

r→ y2. Der Filter φ konvergiert nun aber stetig gegen f . Zum
Beweis sei ϕ

r→ y. Es reicht ξ ⊆ φ(ϕ) zu zeigen. Sei Q ∈ ξ . Dann ist PQ ∈ φ und Y ∈ ϕ , also
PQ(Y ) ∈ φ(ϕ). Wegen PQ(Y )⊆ Q folgt Q ∈ φ(ϕ). (K1) brauchen wir nur, da Y die Rolle des
X in der Definition 9.4.5 übernimmt.

3. Sei φ ein Filter auf Y X mit c(X ,Y ) ∈ φ , der stetig gegen f konvergiert. Zu zeigen bleibt
fi ◦ f ist für alle i ∈ I stetig. Sei j ∈ I und α : Y X → Y X

j , g 7→ f j ◦ g. Wir zeigen der Filter
φ ′ := α(φ) konvergiert stetig gegen f j ◦ f . Wegen c(X ,Yj)∈ φ ′ ist f j ◦ f dann stetig. Sei x ∈ X
und ϕ

q→ x. Es gilt φ(ϕ) r→ f (x), also per Definition der Initialkonvergenzstruktur φ ′(ϕ) =
f j(φ(ϕ)) ri→ f j( f (x)).

4. Seien (Yi,ri)i∈I (S)-Konvergenzräume und (Y,r) deren Summe. Sei (X ,q) ein (K1)-
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Konvergenzraum und φ ein Filter auf c(X ,Y ) der stetig gegen f : X → Y konvergiert. Sei
(ϕ,x) ∈ q. Zu zeigen ist ( f (ϕ), f (x)) ∈ r. In jedem Fall gilt φ(ϕ) r→ f (x). Also gibt es ein
j ∈ I und (ϕ j,y j) ∈ r j mit f j(ϕ j) = φ(ϕ) und f j(y j) = f (x). Wegen Yj×{ j} ∈ f j(ϕ j) gibt es
P0 ∈ φ und Q∈ ϕ mit P0(Q)⊆Yj×{ j}. Zeigen wir als nächstes f (Q)⊆Yj×{ j}. Andernfalls

gibt es ein z ∈ Q mit f (z) ∈ Yl×{l}, wobei j 6= l. Wegen
•
z q→ z gilt φ(

•
z) r→ f (z). Also gibt es

(ϕl,yl)∈ rl mit fl(ϕl) = φ(
•
z) und fl(yl) = f (z). Wegen Yl×{l} ∈ fl(ϕl) gibt es ein P′ ∈ φ mit

P′(z)⊆Yl×{l}. Für P′′ := P0∩P′ ergibt sich der Widerspruch P′′(z)⊆ (Yj×{ j})∩(Yl×{l}).
Wegen P0(Q)⊆Yj×{ j} und f (Q)⊆Y j×{ j} ist ψ := {(P|Q)∩c(Q,Yj×{ j}) | P ∈ φ} ein

Filter auf c(Q,Yj×{ j}) der stetig gegen f |Q konvergiert. Demzufolge ist f |Q stetig und es
folgt f (ϕ) = ( f |Q)(ϕ|Q) r→ f (z).

9.5 Äquivalenz von T3 und punktweise stetiger Fortsetzbarkeit
Die folgende alternative Konstruktion, zu der im Beweis von Theorem 1.1 aus dem Artikel
[18], ist deutlich einfacher, beweist aber ebenso dessen Aussage. Satz 9.5.1 ist also eine parti-
elle Verallgemeinerung von Satz 9.1.7.

9.5.1 Satz

Sei (Y,r) ein nicht T3, aber (K1)-(K2)-(K3)-Konvergenzraum. Dann gibt es einen (K1)-
(K2)-(K3)-Konvergenzraum (X ,q) mit strengem Teilraum Y0 ⊆ X und einer nicht stetigen
Abbildung f : X → Y , deren Einschränkung auf Y0∪{x} für jedes x ∈ X stetig ist. Für die
Umkehrung siehe Lemma 9.4.3.

Beweis: (Y,r) ist nicht T3, also gibt es ein (ψ,a) ∈ r mit (clr(ψ),a) 6∈ r. Setze Y0 := Y ×{0},
Y1 := Y ×{1} und X := Y0∪Y1. Wir betrachten die Abbildungen f : X → Y , (z,ε) 7→ z, f0 :=
f |Y0 und h :Y→X , y 7→ (y,0), setzen γ := {P⊆X | ∃Q∈ψ mit (Q×{0})∪(clr(Q)×{1})⊆
P} und definieren q⊆F (X)×X durch

(φ ,(y,ε)) ∈ q ⇔

∃η ∈F (X) mit Y0 ∈ η , ( f0(η |Y0),y) ∈ r und η∩
•

(y,ε)⊆ φ oder

(y,ε) = (a,1) und
•

(a,1) ∩γ ⊆ φ

1. Dann ist auch (X ,q) ein (K1)-(K2)-(K3)-Konvergenzraum (trivial). Da (Y,r) auch (K1)
ist, gilt clq(Y0) = X (trivial) und Y0 ist sogar ein strenger Teilraum.

Beweis dazu: Sei (φ ,(y,ε)) ∈ q.

1. Fall ∃η ∈F (X) mit Y0 ∈ η , ( f0(η |Y0),y) ∈ r und η∩
•

(y,ε)⊆ φ . Offenbar gilt η
q→

(y,ε). Es reicht also clq(η)⊆ η∩
•

(y,ε) zu zeigen. Sei P ∈ η . Wegen P ∈ η
q→ (y,ε) gilt

offenbar P∪{(y,ε)} ⊆ clq(P) und damit ist alles gezeigt.
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2. Fall (y,ε) = (a,1) und
•

(a,1) ∩γ ⊆ φ . Setze ξ :=
•

(a,1) ∩{P ⊆ X | ∃Q ∈ ψ mit Q×

{0} ⊆ P}. Wegen ξ
q→ (a,1) reicht es clq(ξ )⊆

•
(a,1) ∩γ zu zeigen. Dies folgt aus

Q ∈ ψ ⇒ (Q×{0})∪ (clr(Q)×{1})⊆ clq(Q×{0})⊆ clq((Q×{0})∪{(a,1)}).

2. f ist nicht stetig, allerdings ist für jedes x ∈ X die Einschränkung gx von f auf Y0∪{x}
stetig (und f somit schwach stetig).

Beweis dazu: Wegen f (γ) = clr(ψ) und γ
q→ (a,1) ist f nicht stetig.

Sei x = (y,ε) ∈ X und φ
q→ (y,ε) mit Y0∪{(y,ε)} ∈ φ .

1. Fall ∃η ∈ F (X) mit Y0 ∈ η , ( f0(η |Y0),y) ∈ r und η∩
•

(y,ε)⊆ φ . Hier gilt wegen

f0(η |Y0)∩
•
y⊆ g(y,ε)(φ |(Y0∪{(y,ε)})) auch g(y,ε)(φ |(Y0∪{(y,ε)})) r→ y.

2. Fall (y,ε) = (a,1) und
•

(a,1) ∩γ ⊆ φ . In diesem Fall gilt wegen ψ∩ •a⊆ g(a,1)(φ |(Y0∪
{(a,1)})) auch g(a,1)(φ |(Y0∪{(a,1)})) r→ a.

9.5.2 Bemerkung zu Satz 9.5.1

Für topologische Räume geht es auch so:

Sei (Y,σ) ein topologischer Raum. Sei ferner a ∈Y und U ∈ •a ∩σ mit ∀V ∈ •a ∩σ gilt V 6⊆U .
Setze Y0 := Y ×{0}, Y1 := Y ×{1} und X := Y0∪Y1. Anschließend definieren wir

A1 := {V ×{0} |V ∈ σ},

A2 := {(V ×{0})∪{(y,1)} | y ∈V ∈ σ mit y 6= a},

A3 := {(V ×{0})∪ (V ×{1}) |V ∈ •a ∩σ},

B := A1∪A2∪A3 und τ := {O⊆ X | ∃B′ ⊆B mit
⋃

A ′ = O}

und schließlich die Abbildung f : X → Y , (y,ε) 7→ y.

Im Zusammenhang mit einer weiteren Klasse von Abbildungen, nämlich den perfekten, hat-
ten wir bereits das interessante Lemma 4.9.4 (meines Wissens nur für topologische Räume
bekannt), das etwas über die Unmöglichkeit von Fortsetzungen aussagt. Wir beweisen es hier
für allgemeine Konvergenzräume. Zuerst die Definition (für topologische Räume siehe Lem-
ma 4.9.2):

9.5.3 Definition: Perfekte Abbildungen

Seien (X ,q) und (Y,r) Konvergenzräume. Wir nennen f : X → Y fast perfekt, falls

∀y ∈ Y ∀φ ∈F0(X) gilt : ( f (φ) r→ y impliziert ∃x ∈ f−1(y) mit φ
q→ x)

Wir nennen f schließlich perfekt, wenn sie stetig und fast perfekt ist.
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9.5.4 Lemma

Sei (X ,q) ein (K2)-(T2)-Konvergenzraum und (Y,r) ein (K2)-Konvergenzraum, D⊆ X mit
D 6= X und clq(D) = X und sei f : D→ Y eine perfekte Abbildung. Dann gibt es keine
stetige Abbildung g : X → Y mit g|D = f .

Beweis: Sei s die Teilraumkonvergenzstruktur auf D. Angenommen es gibt eine stetige Abbil-
dung g : X → Y mit g|D = f . Es gilt nun:

(1) clr(g(D)) = g(X) und
(2) f (D) = clr( f (D))

Zeigen wir (1). Sei x ∈ X . Es gibt ein ϕ ∈F (X) mit D ∈ ϕ
q→ x. Wegen der Stetigkeit von g

folgt g(ϕ) r→ g(x) und g(D) ∈ g(ϕ), also g(x) ∈ clr(g(D)).
Zeigen wir (2). Sei y ∈ clr( f (D)). Es gibt dann ein Ultrafilter ψ auf Y mit f (D) ∈ ψ

r→ y.
Offenbar ist ϕ := {Q⊆ D | ∃ P ∈ ψ mit f−1(P)⊆ Q} nun ein Filter auf D mit f (ϕ)⊆ ψ . Sei
ϕ0 ein Ultrafilter auf D mit ϕ ⊆ ϕ0 und f (ϕ0) = ψ (vergleiche Lemma 3.2.5). Folglich gibt es
ein x′ ∈ f−1(y) (⊆ D !) mit ϕ0

s→ x′. Es folgt y = f (x′) ∈ f (D).
Aus (1) und (2) folgt nun: g(X) = clr(g(D)) = clr( f (D)) = f (D). Sei x∈X \D. Es gibt dann

ein Ultrafilter φ auf X mit D ∈ φ
q→ x. Da g stetig ist und D ∈ φ , gilt f (φ |D) = g(φ) r→ g(x).

Da f perfekt ist, folgt: ∃ z ∈ f−1(g(x)) mit φ |D s→ z. Offenbar gilt dann auch φ
q→ z. Dies ist

ein Widerspruch, da x 6= z und (X ,q) T2 ist.

9.6 Wie viele Ultrafilter gibt es auf einer Menge?
Eine Bemerkung zur Definition 9.2.15: Sei (X ,τ) ein topologischer Raum und ∅ 6= D ⊆ X .
Dann ist äquivalent:

1. Für alle O ∈ τ \{∅} gilt |D|= |O∩D|.
2. D ist extrem dicht in X , also cl|D|qτ

(D) = X .

9.6.1 Lemma

1. Jeder α-uniforme Filter auf X , mit α > ∞, ist in einem α-uniformen Ultrafilter auf X
enthalten.
2. Sei (X ,q) ein T2-(K2)-Konvergenzraum und D ⊆ X . Gilt clα

q (D) = X , so folgt |X | ≤
|F (α)

0 (D)|, für jede unendliche Kardinalzahl α . Mit F
(α)
0 (X) bezeichnen wir die Menge

aller α-uniformen Ultrafilter auf X .

Beweis: 1. Sei ϕ ein α-uniformer Filter auf X . Mit Hilfe von Zorns Lemma schnappen wir
uns einen maximalen α-uniformen Filter ω der unser ϕ enthält. Sei ψ ein Ultrafilter auf X
mit ω ⊆ ψ . Angenommen ∃ A ∈ ψ mit |A| < α . Dann gilt |Y ∩ (X \A)| = |Y \A| = |Y | ≥ α
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für jedes Y ∈ ω . Setze φ := {Z ⊆ X | ∃Y ∈ ω mit Y ∩ (X \A)⊆ Z}. Offensichtlich ist φ dann
α-uniform und ω ( φ im Widerspruch zur Maximalität von ϕ . Also ist ψ auch α-uniform, mit
ϕ ⊆ψ . Für 2. gilt fast derselbe Beweis wie in 9.2.16, denn φx und ψx,D können nun α-uniform
gewählt werden.

9.6.2 Satz

Sei A eine unendliche Menge, dann existiert ein topologischer T2-Raum (X ,τ) mit |X |=
|P(P(A))| und ∃ F ⊆ X , extrem dicht in X , mit |F | = |A|. Die Schranke aus Lemma
9.6.1 kann also angenommen werden.

Als Korollar erhalten wir |F (|A|)
0 (A)|= |F0(A)|= |F (A)|= |P(P(A))|.

Beweis: Setze X := {0,1}P(A). Für jedes endliche J ⊆ A definieren wir eine Äquivalenzrela-
tion ∼J auf P(A), durch L1 ∼J L2 :⇔ L1∩ J = L2∩ J. Setze

FJ := {(aL)L∈P(A) ∈ X | aL1 = aL2 für L1 ∼J L2} und F :=
⋃
{FJ | J ⊆ A und J endlich }.

Es gilt |FJ| ≤ |AP(J)| = |A|, also |F | ≤ |A|. Andererseits ist ϕ : A→ F definiert durch a 7→

(xL)L∈P(A), mit

{
xL = 1 falls a ∈ L
xL = 0 sonst

injektiv und wohldefiniert (ϕ(a) ∈ FJ für J := {a}).

Zusammen ergibt dies |F | = |A|. Zu zeigen bleibt noch, dass F extrem dicht in X ist, dass
also für jedes offene O gilt: |F | = |O∩ F |. Für K ∈P(A) und i ∈ {0,1} setz wir U i

K :=

∏L∈P(A) OL mit

{
OL = {0,1} für L 6= K
OL = {i} sonst

. U i
K ist eine typische Subbasismenge der Pro-

dukttopologie. Sei dann O = U i1
L1
∩ ...∩U in

Ln
eine typische offene Basismenge. Es reicht also

zu zeigen, dass |O∩F | = |F | ist. Aus F =
⋃

(i1,...,in)∈{0,1}n F ∩U i1
L1
∩ ...∩U in

Ln
folgt die Exis-

tenz eines Tupels (i1, ..., in) ∈ {0,1}n mit |F | = |F ∩U i1
L1
∩ ...∩U in

Ln
|. Es gibt aber immer eine

Injektion

α : F ∩U i1
L1
∩ ...∩U in

Ln
→ F ∩U j1

L1
∩ ...∩U jn

Ln
für ( j1, ..., jn) ∈ {0,1}n,

wie man folgendermaßen sieht:

1. Für x ∈ F ∩U i1
L1
∩ ...∩U in

Ln
wähle ein endliches Jx ⊆ A mit x ∈ FJx ∩U i1

L1
∩ ...∩U in

Ln
.

2. Für x =(xK)K∈P(A) sei α(x) :=(yK)K∈P(A), wobei yK =

{
jl falls K ∈ [Ll]Jx (für l = 1, ...,n)
xK sonst

Diese Abbildung ist injektiv! Also gilt |F | = |F ∩U i1
L1
∩ ...∩U in

Ln
| für alle (i1, ..., in) ∈ {0,1}n

und somit auch |O∩F |= |F |. Das Korollar ergibt sich nun direkt aus Lemma 9.6.1 (die letzte
Ungleichung ist trivial):
|P(P(A))|= |X | ≤ |F (|F |)

0 (F)|= |F (|A|)
0 (A)| ≤ |P(P(A))|
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9.6.3 Bemerkung

Das Ergebnis über die Kardinalität der Menge aller uniformen Ultrafilter war natürlich schon
bekannt. Der Zugang über extrem dichte Teilmengen, insbesondere Lemma 9.6.1 und Satz
9.6.2, sind aber neu.

9.6.4 Anzahl aller untereinander nicht homöomorphen Topologien

Auf einer unendlichen Menge X gibt es also genau P(P(X))-viele, untereinander nicht ho-
möomorphe, Topologien. Beweis: Sei T die Menge aller Topologien auf X . Wir zeigen zu-
erst |T | = |P(P(X))|. Dies folgt daraus, dass jeder Filter um die leere Menge erweitert
eine Topologie ist und die Anzahl derer kennen wir obigem Satz. Auf T führen wir dann
durch (X ,τ) ist homöomorph zu (X ,σ), für τ,σ ∈ T eine Äquivalenzrelation ein. Aus je-
der Klasse wählen wir uns nun ein Repräsentanten und fassen diese zu einem Vertretersys-
tem (τi)i∈I zusammen. Für jede einzelne Klasse Ti gilt |Ti| ≤ |XX | (offensichtlich). Nun
gilt aber |P(P(X))| = |T | = |

⋃
i∈I Ti| ≤ sup(|I|, |XX |). Da |XX | = |P(X)|, folgt somit

|I|= |P(P(X))|.

9.6.5 Korollar

Für jede unendliche Menge X existiert eine Familie C ⊆P(X), mit |C | = |P(X)| und
der Eigenschaft, dass |C1∩ ...∩Cm∩ (X \Cm+1)∩ ...∩ (X \Cn)| = |X | für paarweise ver-
schiedene Elemente C1, ...,Cm,Cm+1, ...,Cn aus C mit 0≤ m≤ n gilt.

Beweis: {0,1}P(X) enthält eine extrem dichte Teilmenge Y mit |X | = |Y |. Für K ∈P(X)
setze U i

K := ∏L∈P OL, wobei OL = {0,1} für L 6= K und OK = {i}. Mit anderen Worten:
U i

K ist eine typische Subbasismenge der Produkttopologie. Setze dann C ′ := {Y ∩U1
K | K ∈

P(X)} ⊆P(X). Für paarweise verschiedene K1, ...,Kn ∈P(X) mit 0 ≤ m ≤ n gilt dann:
(Y ∩U1

K1
)∩ ...∩(Y ∩U1

Km
)∩ [Y \(Y ∩U1

Km+1
)]∩ ...∩ [Y \(Y ∩U1

Kn
)] =Y ∩U i1

K1
∩ ...∩U in

Kn
, wobei

ik = 1 für k ≤ m und ik = 0 für m < k ≤ n. Letztere Menge hat aber Kardinalität |Y |, da diese
extrem dicht in {0,1}P(X) liegt. Für ein bijektives f : Y → X findet sich unser gesuchtes C
dann als { f (C′) |C′ ∈ C ′}.
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10 Boolsche Verbände und Topologie
”Eine Lüge ist bereits dreimal um die Erde gelaufen, bevor sich die Wahrheit die Schuhe
anzieht.”

Mark Twain

10.1 Grundlegendes
Topologische Methoden kommen in Gebieten, die auf den ersten Blick nichts mit Topologie zu
tun haben, erstaunlich oft zur Anwendung. Ein Beispiel ist die Theorie Boolscher Verbände.

10.1.1 Definition

partielle Ordnung Eine Relation ≤ auf einer Menge X heißt partielle Ordnung, falls gilt:
1) ≤ ist reflexiv (x≤ x)
2) ≤ ist transitiv (x≤ y und y≤ z ⇒ x≤ z)
3) ≤ ist antisymmetrisch (x≤ y und y≤ x → x = y)
Falls≤ zudem auch noch vollständig ist (also immer x≤ y oder y≤ x oderx = y), so heißt≤

eine totale Ordnung. Total geordnete Teilmengen einer partiellen Ordnung werden zuweilen
auch Kette genannt.

10.1.2 Definition

Verband Eine Menge X zusammen mit einer partiellen Ordnung ≤ heißt ein Verband, falls es
zu je zwei Elementen x,y ∈ X zwei Elemente i,s ∈ X gibt mit:

1) x≤ s und y≤ s
2) falls auch x≤ u und y≤ u für ein u ∈ X , so gilt s≤ u.
3) i≤ x und i≤ y
4) falls auch w≤ x und w≤ y für ein w ∈ X , so gilt w≤ i.
Das Element s wird mit x∨ y bezeichnet und auch Supremum genannt und das Element i

wird mit x∧ y bezeichnet und auch Infimum genannt.
Zu je zwei Elementen existiert also das Supremum und Infimum (eindeutig bestimmt).

10.1.3 Lemma

In einem Verband gilt:
V1 x∧ y = y∧ x und x∨ y = y∨ x
V2 x∧ (y∧ z) = (x∧ y)∧ z und x∨ (y∨ z) = (x∨ y)∨ z
V3 (x∧ y)∨ y = y = (x∨ y)∧ y für alle x,y,z

Beweis: 1) ist klar!
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2) Es gilt x≤ (x∨ y)∨ z, y≤ (x∨ y)∨ z und z≤ (x∨ y)∨ z, also auch y∨ z≤ (x∨ y)∨ z und
zusammen also auch x∨ (y∨ z) = (x∨ y)∨ z. Die andere Ungleichung beweist man analog.
Ebenso beweist man die zweite Gleichung.

3) Wir haben (x∧y)∨y≤ y (klar). Falls auch noch (x∧y)∨y≤ z, dann auf jeden Fall auch
y≤ z. Also ist (x∧ y)∨ y = y. Vollkommen analog beweist sich die zweite Gleichung.

10.1.4 Bemerkung

Offensichtlich hat in einem Verband auch jede endliche Menge ein Supremum und Infimum.
Und es gilt in f{x1, ...xn}= x1∧ ...∧ xn bzw. sup{x1, ...xn}= x1∨ ...∨ xn.
Hat die ganze Menge sogar ein Supremum oder Infimum, so ist dies auch eindeutig bestimmt.
Denn währen sowohl x, als auch y ein Supremum, dann währe y≤ x∨y≤ x und analog x≤ y,
also x = y. Der Beweis der Eindeutigkeit des Infimum läuft wieder analog.
Falls in einem Verband das Supremum existiert, so bezeichnen wir es mit 1. Entsprechend
bezeichnen wir das Infimum mit 0.

10.1.5 Definition

komplementierbar Ein Verband heißt komplementierbar, wenn er ein Supremum 1, ein Infi-
mum 0 hat. Und wenn zu jedem Element x ein Element y existiert, derart, dass x∨ y = 1 und
x∧y = 0 gelten (das Komplement) (V4). Offensichtlich gilt 1∧x = x, 1∨x = 1, 0∨x = x und
0∧ x = 0 für jedes x.
Er heißt distributiv, falls beide Distributivgesetze gelten (V5). Also (x∧y)∨z = (x∨z)∧(y∨z)
und (x∨ y)∧ z = (x∧ z)∨ (y∧ z).
Man rechnet übrigens leicht nach, dass bereits eins der Distributivgesetze ausreicht um das
andere zu beweisen.

10.1.6 Lemma

In einem distributiven komplementierbaren Verband sind die Komplemente eindeutig be-
stimmt.

Beweis: Sei x∨y = 1 und x∧z = 0. Dann haben wir y = y∨0 = y∨(x∧z) = (y∨x)∧(y∨z) =
1∧ (y∨ z) = y∨ z. Aus Symmetriegründen gilt auch z = y∨ z.

10.1.7 Definition

Boolscher Verband Ein distributiver komplementierbarer Verband heißt von nun an Bool-
scher Verband oder Boolsche Algebra.
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10.1.8 Bemerkung

Wir bezeichnen das Komplement von x mit x∗. Man sieht dann sofort (x∗)∗ = x. Aus der
Eindeutigkeit der Komplemente folgt ferner (x∧ y)∗ = x∗∨ y∗ und (x∨ y)∗ = x∗∧ y∗ (die de
Morganschen Regeln).

10.1.9 Bemerkung

Dualitätsprinzip In V1 - V5 können wir ∧ und ∨, 1 und 0 vertauschen und so die Aussagen
in einander überführen. Falls wir also eine Aussage haben in der ∧ und ∨, 1 und 0, ≤ und ≥,
Ideal und Filter vorkommen und diese paarweise miteinander vertauschen, erhalten wir eine
Aussage vom gleichen Wahrheitswert.

10.1.10 Lemma

In einem Boolschen Verband gilt: x∧ y∗ = 0 ⇔ x≤ y.

Beweis: Falls x∧ y∗ = 0, dann gilt: x = x∧1 = x∧ (y∨ y∗) = (x∧ y)∨ (x∧ y∗) = x∧ y, also
x≤ y. Falls x≤ y, dann gilt x = x∧ y und es folgt: x∧ y∗ = x∧ y∧ y∗ = x∧0 = 0.

10.1.11 Definition

Teilverband Eine nichtleere Teilmenge X ′ eines Boolschen Verbandes X heißt Teilverband,
falls für x,y ∈ X ′ auch x∧ y,x∨ yx∗ ∈ X ′. Offensichtlich umfasst jeder Teilverband {0,1},
welcher selber somit der kleinste Teilverband ist.

10.1.12 Definition

Erzeugnis Sei X ein Boolscher Verband und A ⊆ X . Das Erzeugnis von A ist wie folgt defi-
niert: 〈A〉 :=

⋂
{Y ⊆ X | A ⊆ Y und Y ist ein Teilverband }. Setze α := {ai1

1 ∧ ...∧ ain
n | ak ∈

A, ik ∈ {1,∗}}, Dann gilt 〈A〉= {b j1
1 ∨ ...∨b jm

m | bk ∈ α, jk ∈ {1,∗}}, wobei wir x1 = x setzen.
Falls A also endlich ist, so auch 〈A〉. Der Nachweis bleibt als Übung.

10.2 Filter und Ultrafilter
Ein Beispiel für Verbände sind die Potenzmengenverbände. Und in denen haben wir einen
interessanten Begriff definiert: Filter. Diese kann man auch in allgemeinen Boolschen Ver-
bänden definieren.

10.2.1 Definition

Filter, Ideal
Eine nichtleere echte Teilmenge ϕ von einem Boolschen Verband X heißt Filter falls:
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1) x,y ∈ ϕ → x∧ y ∈ ϕ für alle x,y.
2) Wenn x ∈ ϕ und x≤ y, dann auch y ∈ ϕ .
Eine nichtleere echte Teilmenge I von einem Verband X heißt Ideal falls:
1) x,y ∈I → x∨ y ∈I für alle x,y ∈I
2) Wenn y ∈I und x≤ y, dann auch x ∈I .

10.2.2 Definition

endliche Schnitt Eigenschaft (eSE) Eine nichtleere Teilmenge Y eines Boolschen Verbandes
habe die eSE wenn das Infimum jeder endlichen Teilmenge von Y ungleich 0 ist.

10.2.3 Lemma

A habe die eSE. Dann hat A∪{y} oder A∪{y∗} die eSE.

Beweis: Denn angenommen a1∧ ...∧an∧y = 0 = b1∧ ...∧bm∧y∗, dann folgt auch a1∧ ...∧
an∧b1∧ ...∧bm∧y = 0 = a1∧ ...∧anb1∧ ...∧bm∧y∗, also folgt aus a1∧ ...∧an∧b1∧ ...∧bm≤
(y∗)∗ = y und a1∧ ...∧an∧b1∧ ...∧bm ≤ y∗ also a1∧ ...∧an∧b1∧ ...∧bm ≤ y∗∧ y = 0 ⇒
Widerspruch.

10.2.4 Bemerkung

Für eine Teilmenge A eines Verbandes X bezeichne A0 := {x ∈ X | ∃a ∈ A mit a ≤ x}. Und
Ac := {in f{E} | E ⊆ A und E ist endlich }.

10.2.5 Definition

Basis Subbasis eines Filters Wenn ϕ ein Filter ist und B0 = ϕ , so heißt B Basis von ϕ .
Wenn für eine Teilmenge S gilt: S c ist eine Basis von ϕ , so heißt S Subbasis von ϕ .

10.2.6 Lemma

Für jede Teilmenge A eines Boolschen Verbandes X gilt: Jeder Filter, welcher A umfasst,
umfasst auch (Ac)0. Außerdem ist (Ac)0 ein Filter genau dann, wenn A die eSE hat.

Beweis: Der erste Teil der Behauptung ist offensichtlich.
Falls (Ac)0 ein Filter ist, dann hat A die eSE (genauso offensichtlich). Nehmen wir an A habe
die eSE. Wir müssen nun zeigen, dass (Ac)0 ein Filter ist. Sicherlich ist 0 6∈ (Ac)0. Also schon
mal /0 6= A0 ( X . Seien x,y ∈ (Ac)0. Dann gibt es a,b ∈ Ac mit a≤ x und b≤ y, also a = a∧ x
und b = b∧ y. Dann aber auch a∧ b = a∧ x∧ b∧ y = a∧ b∧ x∧ y, was soviel bedeutet wie
a∧b≤ x∧y. Und wegen a∧b ∈ Ac (a = in f{x1, ...xn}= x1∧ ...∧xn und b = in f{y1, ...ym}=
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y1 ∧ ...∧ ym, also in f{x1, ...xn,y1, ...ym} = x1 ∧ ...∧ xn ∧ y1 ∧ ...∧ ym = a∧ b. Somit ist auch
a∧b ∈ Ac.) folgt dann x∧ y ∈ (Ac)0.
Falls x ∈ (Ac)0 und x≤ y, dann gibt es a ∈ Ac mit a≤ x. Also auch a≤ y und somit y ∈ (Ac)0.

10.2.7 Definition

Ultrafilter Ein Filter ϕ in einem Boolschen Verband heißt Ultrafilter, wenn er bezüglich der
Inklusion maximal ist. Das heißt wenn ϕ ⊆ φ ist, für einen Filter φ , dann ist ϕ = φ .

10.2.8 Lemma

Sei ϕ ein Filter in dem Boolschen Verband X . Dann ist äquivalent:
1) ϕ ist ein Ultrafilter.
2) Für jedes x ∈ X gilt x ∈ ϕ oder x∗ ∈ ϕ .
3) Für alle x,y ∈ X gilt: x∨ y ∈ ϕ ⇒ x ∈ ϕ oder y ∈ ϕ .

Beweis: 1)⇒ 2) Sei x ∈ X beliebig. Da ϕ die eSE hat, hat auch ϕ ∪{x} oder ϕ ∪{x∗} die
eSE. Also o.B.d.A. ϕ ∪{x} habe die eSE. Also ist ((ϕ ∪{x})c)0 ein Filter, welcher ϕ umfasst.
Da letzterer aber ein Ultrafilter ist, gilt ((ϕ ∪{x})c)0 = ϕ und somit x ∈ ϕ .
2)⇒ 3) Annahme es gibt x,y ∈ X mit x∨ y ∈ ϕ aber x 6∈ ϕ und y 6∈ ϕ . Dann ist aber x∗ ∈ ϕ

und y∗ ∈ ϕ , also auch (x∨ y)∗ = x∗∧ y∗ ∈ ϕ ⇒ Widerspruch.
3)⇒ 2) Für jedes x ∈ X gilt x∨ x∗ = 1 ∈ ϕ , also x ∈ ϕ oder x∗ ∈ ϕ .
2)⇒ 1) Offensichtlich ist ein Filter mit dieser Eigenschaft bereits maximal.

10.2.9 Ultrafiltersatz (Ultrafilter Theorem ⇒ UFT)

Jede Teilmenge eines Boolschen Verbandes X mit der eSE kann zu einem Ultrafilter er-
weitert werden.

Beweis: Da jede derartige Teilmenge zu einem Filter erweitert werden kann, genügt es also
zu zeigen, dass jeder Filter in einem Ultrafilter liegt.
Sei also ϕ ein Filter. Betrachte Φ := {ψ ⊆ X | ψ ist ein Filter, und ϕ ⊆ ψ}.
Wir führen auf Φ als natürliche Ordnung die Inklusion ein und zeigen: Jede Kette aus Φ hat
eine obere Schranke in Φ. Sei Ψ eine Kette aus Φ. Setze dann ψ :=

⋃
Ψ. Sicherlich gilt φ ⊆ψ .

Zu zeigen bleibt also noch, dass es sich bei ψ um einen Filter handelt. Falls x,y∈ψ , so gibt es
σ ,τ ∈Ψ mit x ∈ σ und y ∈ τ . Da Ψ eine Kette ist folgt o.B.d.A. σ ⊆ τ , also auch y ∈ τ . Dann
ist aber auch x∧y ∈ τ ⊆ ψ . Die zweite Bedingung überprüft man ebenso. Wir haben also eine
obere Schranke für Ψ in Φ gefunden. Das Zornsche Lemma garantiert uns also ein maximales
Element ψ in Φ. Offensichtlich muss ψ dann ein Ultrafilter sein.
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10.2.10 Lemma

Content Detector Sei X ein Boolscher Verband ϕ ein Filter auf X und A eine Teilmenge
von X mit der Eigenschaft: Das Supremum jeder endlichen Teilmenge von A liegt in A.
Dann gilt: ϕ ∩A 6= /0 ⇔ für jeden Ultrafilter ψ , welcher ϕ umfasst gilt ψ ∩A 6= /0.

Beweis: ′′⇒′′ ist klar!
′′⇐′′ Nehmen wir mal an an für jeden Ultrafilter ψ , welcher ϕ umfasst gilt ψ ∩A 6= /0, aber
ϕ∩A = /0. Das heißt: ∀x∈ ϕ ∀a∈ A gilt x� a. Also: ∀x∈ ϕ ∀a∈ A gilt x∧a∗ 6= 0. Wenn nun
aber das Supremum jeder endlichen Teilmenge von A bereits in A liegt, so liegt Das Infimum
jeder endlichen Teilmenge von A∗ := {a∗ | a ∈ A} bereits in A∗. Insgesamt bedeutet dies,
dass ϕ ∪A∗ die eSE hat. Darum gibt es einen Ultrafilter ψ der ϕ ∪A∗ umfasst. Offensichtlich
umfasst dieser dann auch ϕ . Nach Voraussetzung gibt es ein a ∈ A∩ψ . Da ψ aber auch a∗

umfasst, ist dann auch 0 = a∧a∗ ∈ ψ ⇒ Widerspruch.

10.2.11 Korollar

Jeder Filter in einem Boolschen Verband ist der Durchschitt aller ihn enthaltenen Ultrafil-
ter.

10.3 Verbandhommomorphismen und Quotientenverbände
Wir untersuchen Abbildungen zwischen Verbänden und ”Quotienten” von Verbänden.

10.3.1 Definition

Homomorphismus Eine Abbildung f zwischen zwei Boolschen Verbänden f : X → Y heißt
Homomorphismus, falls:
1) Für alle x,y ∈ X gilt f (x∧ y) = f (x)∧ f (y).
2) Für alle x,y ∈ X gilt f (x∨ y) = f (x)∨ f (y).
3) Für alle x ∈ X gilt f (x∗) = f (x)∗.
Ist f sogar bijektiv, so heißt f ein Isomorphismus (in Symbolen: X ' Y ).
Das Supremum wird sowohl in X als auch in Y mit 1 bezeichnet. Ebenso das Infimum mit 0.

10.3.2 Lemma

Für einen Homomorphismus f : X → Y gilt:
1) x≤ y ⇒ f (x)≤ f (y)
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2) f (0) = 0 und f (1) = 1
3) Für ein Teilverband X ′ von X ist f (X ′) ein Teilverband von Y

Beweis: Trivial.

10.3.3 Lemma

Sei ϕ ein Filter im Boolschen Verband X .
1) Durch x∼ y ⇒ ∃ p ∈ ϕ mit x∧ p = y∧ p wird auf X eine Äquivalenzrelation definiert.
2) Wenn x∼ x′ und y∼ y′, dann auch
a) x∧ y∼ x′∧ y′ und x∨ y∼ x′∨ y′

b) x∗ ∼ x′∗.
3) Für x,y setze x� y := (x∨ y∗)∧ (x∗∨ y). Dann gilt:
a) x∼ y ⇔ x� y ∈ ϕ .
b) x� y = 1 ⇔ x = y
4) Bezeichne [x] die Äquivalenzklasse von x, so bildet X/ϕ := {[x] | x ∈ X} vermöge
[x]∧ [y] = [x∧ y],[x]∨ [y] = [x∨ y] und [x]∗ = [x∗] einen weiteren Boolschen Verband - den
Quotientenverband (modulo ϕ). Außerdem gilt [x] = [y] ⇔ x� y ∈ ϕ . Im speziellen also
[x] = [1] = 1 ⇔ x�1 = x ∈ ϕ .

Beweis: 1) ist trivial.
2) a) ist trivial.
2) b) x∧ p = x′∧ p impliziert x∗∨ p∗ = x′∗∨ p∗. Mit p∧ (x∗∨ p∗) = P∧ (x′∗∨ p∗) folgt dann
p∧ x∗ = p∧ x′∗.
3) a) Sei x ∼ y, also x∧ p = y∧ p. Aus dem Beweis von 2b) folgt x∗∧ p = y∗∧ p. Also gilt:
(x∨ y∗)∧ p = (x∧ p)∨ (y∗ ∧ p) = (x∧ p)∨ (x∗ ∧ p) = (x∨ x∗)∧ p = p ∈ ϕ ⇒ x∨ y∗ ∈ ϕ .
Analog sieht man x∗∨ y ∈ ϕ . Also auch x� y ∈ ϕ .
Sei x� y ∈ ϕ . Setzt man p := x� y = (x∨ y∗)∧ (x∗ ∨ y) = (x∗ ∧ y∗)∨ (x∧ y), so kann man
nachrechnen x∧ p = y∧ p, also x∼ y.
3) b) Falls x = y, dann offensichtlich x� y = 1.
Sei x� y = 1. Dann muss x∨ y∗ = 1 und x∗ ∨ y = 1 sein. Also durch komplementieren der
zweiten Gl. x∧ y∗ = 0. Die Eindeutigkeit der Komplemente liefert dann x = y.
4) Folgt unmittelbar aus 1) bis 3).

10.3.4 Lemma

Sei f : X →Y Ein Homomorphisms zwischen zwei Boolschen Verbänden. Dann ist ϕ f :=
{x ∈ X | f (x) = 1} ein Filter und f (X)' X/ϕ f .
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Beweis: Das es sich bei ϕ f um einen Filter handelt, rechnet man direkt nach.
Definiere g : X/ϕ f → f (X) durch [x] 7→ f (x). Falls [x] = [y], so x� y ∈ ϕ f , also 1 = f (x�
y) = f (x)� f (y) und damit f (x) = f (y). g ist also wohldefiniert. Das es sich bei g um einen
Homomorphismus handelt ist klar, bleibt noch die Bijektivität zu zeigen. Sei z ∈ f (X), dann
ist z = f (x) = g([x]) für ein x ∈ X . Falls g([x]) = g([y]), dann ist auch f (x) = f (y). Also gilt
f (x∗∨y) = f (x)∗∨ f (y) = 1 = f (x)∨ f (y)∗ = f (x∨y∗), woraus x∗∨y,x∨y∗ ∈ ϕ f folgt. Dann
aber auch (x∗∨ y)∧ (x∨ y∗) = x� y ∈ ϕ f , und deshalb gilt [x] = [y]. Also ist g auch injektiv.

10.3.5 Bemerkung

Wir beobachten g([x]) = 1 ⇔ f (x) = 1 ⇔ x ∈ ϕ f , also ϕg = {[1]}. Folgendes Lemma stellt
dies nochmal klar heraus.

10.3.6 Lemma

Ein Homomorphismus f : X → Y zwischen zwei Boolschen Verbänden ist genau dann
injektiv, wenn ϕ f = {1}.

Beweis: Sei ϕ f = {1}. Falls f (x) = f (y), dann (wie eben) auch x� y ∈ ϕ f , also x� y = 1
und somit x = y. Falls f injektiv ist, dann klarerweise ϕ f = {1}.

10.3.7 Lemma

In einem Boolschen Verband X ist äquivalent:
1) ϕ ist ein Ultrafilter.
2) X/ϕ ' {0,1}.

Beweis: Falls ϕ ein Ultrafilter ist, so prüfe man bitte nach, dass f : X/ϕ → {0,1} definiert
durch [x] 7→ 1, falls x ∈ ϕ und [x] 7→ 0, falls x 6∈ ϕ , ein Isomorphismus ist.
Sei andererseits X/ϕ ' {0,1}. Dann ist [x] 6= [x∗], also [x] = 1 und [x∗] = 0 oder umgekehrt.
Und demnach x ∈ ϕ oder x∗ ∈ ϕ .

Wir schließen diesen Abschnitt mit einer kleinen Anwendung des Ultrafiltersatzes, einem
Lemma von Rasiowa, Sikorski und Tarski, welches Anwendung in der Logik hat (beispiels-
weise Gödels Vollständigkeitssatz der Prädikatenlogik).
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10.3.8 Lemma

Sei X ein Boolscher Verband, X 3 x 6= 0 und (An)n∈N eine Folge von Teilmengen von
X , die alle ein Infimum besitzen, Also an := in f (An). Es gibt dann einen Ultrafilter ψ

in X , mit h(an) = in f {h(a) | a ∈ An}, wobei h : X → X/ψ ' {0,1} den kanonischen
Homomorphismus bezeichnet (h(x) = [x]).

Beweis: Wir definieren rekursiv eine Folge (bn)n∈N mit bn ∈ An, so dass {x,a0∨b∗0, ...,an∨
b∗n} die eSE hat. Sei m ∈ N und für n < m seien entsprechende bn bereits gefunden. Wir
definieren dann y := x∧ (a0∨b∗0)∧ ...∧ (am−1∨b∗m−1), falls m > 0 und y := x, falls m = 0. In
jedem Fall ist y 6= 0!
Nehmen wir mal an y∧(am∨b∗) = 0, für jedes b∈ Am. Dann also y∧am = 0 und y∧b∗= 0 für
jedes b ∈ Am. Das heißt aber y≤ b für jedes b ∈ Am, also y≤ am. Dann gilt y = y∧am = 0 im
Widerspruch zu Voraussetzung. Es muss also ein b =: bm ∈ Am geben, mit y∧ (am∨b∗m) 6= 0.
Die entsprechende Folge der (bn)n∈N lässt sich also konstruieren. Wenn {x,a0∨b∗0, ...,an∨b∗n}
die eSE für jedes n ∈N hat, dann hat also auch Y := {x,a0∨b∗0, ...,an∨b∗n, ...} die eSE und es
gibt einen Ultrafilter ψ auf X mit Y ⊆ψ . Betrachten wir h : X→ X/ψ . Es gilt h(an)∨h(bn)∗=
h(an∨b∗n) = 1, denn an∨b∗n ∈ψ . Also h(an)≥ h(bn) und demnach in f {h(b) | b∈An}≤ h(an).
Andererseits gilt an = in f (An), also an ≤ b, für alle b ∈ An und somit h(an)≤ h(b), für jedes
b ∈ An. Wir bekommen h(an) ≤ in f {h(b) | b ∈ An}. Zusammen ergibt dies dann h(an) =
in f {h(a) | a ∈ An} (für jedes n ∈ N).

10.4 Topologische Formulierungen des Ultrafiltersatzes (UFT)
10.4.1 Definition

Spektrum Das Spektrum eines Boolschen Verbandes X ist die Menge aller Homomorphis-
men f : X → {0,1} und wird mit Spek (X) bezeichnet. Spek (X) steht offenbar in natürlicher
Bijektion zu Φ := {ϕ ⊆ X | ϕ ist ein Ultrafilter }.

10.4.2 Lemma

Sei X ein Boolscher Verband und 0 < x,y ∈ X zwei verschiedene Elemente. Dann gibt es
ein Ultrafilter ϕ auf X , welcher genau eines der beiden Elemente enthält.

Beweis: Da x 6= y gilt also nicht: x∧ y∗ = 0 und x∗ ∧ y = 0. Das hieße sonst ja x ≤ y und
y≤ x. Also z.B. x∧y∗ 6= 0. Dann hat {x,y∗} aber die eSE und kann somit zu einem Ultrafilter
erweitert werden, der dann natürlich nicht y enthält.
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10.4.3 Satz

Sei X ein Boolscher Verband. Folgende Behauptungen sind äquivalent:
a) UFT
b) Jeder Boolsche Verband hat einen Ultrafilter.
c) Spek (X) 6= /0.

Beweis: a)⇒ b)⇔ c) ist klar! Zu zeigen ist dann nur noch b)⇒ a).
Sei ϕ ein beliebiger Filter in dem Boolschen Verband X und ψ ein Ultrafilter in X/ϕ . Ferner

bezeichne f : X → X/φ den kanonischen Homomorphismus. Die Behauptung ist nun, dass
f−1(ψ) ein Oberultrafilter von ϕ ist. Wenn x ∈ ϕ , dann f (x) = [x] = [1]∈ψ , also x ∈ f−1(ψ).
Das f−1(ψ) ein Filter ist, bestätigt eine kleine Rechnung. Exemplarisch sei noch gezeigt, dass
f−1(ψ) ein Ultrafilter ist. Sei x∨y ∈ f−1(ψ), also [x∨y] = [x]∨ [y] ∈ ψ , woraus folgt [x] ∈ ψ

oder [y] ∈ ψ und somit x ∈ f−1(ψ) oder y ∈ f−1(ψ).
Wir haben bereits gesehen, dass der Satz von Tychonoff äquivalent zu Auswahlaxiom ist

(auf Basis von ZF). Wir haben aus dem Auswahlaxiom auch den Ultrafiltersatz abgeleitet.
Interessanterweise ist dieser nun echt schwächer als das Auseahlaxiom (werden wir nicht
beweisen), aber wieder äquivalent dazu, das dass Produkt kompakter Hausdorf-Räume ein
kompakter Hausdorf-Raum ist. Dieses und ein ähnliches Resultat werden wir hier zeigen.

10.4.4 Satz

Die folgenden Behauptungen sind äquivalent.
a) Der Ultrafiltersatz (UFT)
b)Ein Produkt X = ∏i∈I Xi topologischer Räume (Xi,τi)i∈I ist genau dann ein kompakter

Hausdorff-Raum, wenn jeder Faktor ein kompakter Hausdorff-Raum ist.
c) {0,1}I ist kompakt in der Produktopologie für jede Menge I, wobei {0,1} mit der

Diskreten Topologie versehen wird.

Beweis: a)⇒ b) wie beim Satz von Tychonoff. An der Stelle, an der man das Auswahlaxiom
brauchte, muss man nun nicht mehr auswählen sondern nimmt den eindeutigen Punkt gegen
den pri(ϕ) konvergiert (Hausdorff-Raum). Der Rest ist klar.

b)⇒ c) Klar!
c)⇒ a) Wir zeigen: für jeden Verband X ist Spek (X) 6= /0.
Für endliches A ⊆ X setze CA := { f ∈ {0,1}X | f|〈A〉 ∈ Spek (〈A〉)}. Man verifiziere bit-

te, dass alle CA abgeschlossen in {0,1}X sind (man zeige die Komplemente sind offen und
beachte dabei, dass 〈A〉 auch endlich ist).

Falls A1, ...,An endliche Teilmengen darstellen, so ist auch 〈
⋃n

k=1 Ak〉 endlich und es gibt
somit ein nicht triviales Element f aus Spek (〈

⋃n
k=1 Ak〉). Dieses kann man (indem man auf

X \ 〈
⋃n

k=1 Ak〉 Nullen zuweist) auf ganz X ausdehnen und somit haben wir ein Element in⋂n
k=1CAk . Also gilt Spek (X) =

⋂
A⊆X CA 6= /0 (Wenn

⋂
A⊆X CA = /0, so gäbe es endlich viele

236



A1, ...,An mit
⋂n

k=1CAk = /0 im Widerspruch dazu, dass diese nach dem eben gezeigten gerade
einen nicht leeren Schnitt haben. Wir setzen schließlich voraus, dass {0,1}X kompakt ist.).

10.4.5 Satz

Die folgenden beiden Bedingungen sind äquivalent:
a) Der Ultrafiltersatz (UFT).
b) (Stone, Čech) Für jeden topologischen Raum (X ,τ) existiert ein kompakter

Hausdorff-Raum (βX ,σ) und eine stetige Abbildung h : X → βX , so dass für jeden kom-
pakten Hausdorff-Raum (K,ρ) und jede stetige Abbildung f : X → K eine eindeutig be-
stimmte stetige Abbildung f : βX → X existiert, mit f ◦ h = f . Falls auch γX mit einem
h′ dieselben Eigenschaften hat, so sind γX und βX bereits homöomorph.

Beweis: a)⇒ b) Haben wir schon bewiesen (Satz 4.6.4).
b) ⇒ a) Es reicht wenn wir zeigen, dass der Produktraum X := ∏i∈I Xi einer Familie

(Xi,τi)i∈I kompakter Hausdorff-Räume wieder ein kompakter Hausdorff-Raum ist. Nach Vor-
aussetzung existiert für (X j,τ j) und pr j : X→ X j genau eine stetige Abbildung pr j : βX→ X j
mit pr j ◦h = pr j. Definiere g : βX → X durch g(x) := (pr j(x)) j∈I . Dann gilt für (xi)i∈I ∈ X

g◦h((xi)i∈I) = (pr j(h((xi)i∈I))) j∈I = (pr j((xi)i∈I)) j∈I = (x j) j∈I , also g◦h = idX .
Wendet man die Voraussetzung nun auf X und βX an, so erhält man: Es gibt genau eine

stetige Abbildung f : βX → βX mit f ◦ h = h. Offensichtlich tun dies sowohl idβX , als auch
h ◦ g. Folglich ist h : X → βX ein Homöomorphismus und X demzufolge ein kompakter T2-
Raum.

10.5 Boolscher Raum, charakteristischer Verband und Stone
Raum

In diesem Abschnitt zeigen wir, dass jeder Boolsche Verband zu einem Teilverband eines
Potenzmengenverbandes isomorph ist.

10.5.1 Definition

Boolscher Raum, charakteristische Verband, Stone Raum
Kompakte Hausdorffräume mit einer Basis aus zugleich offenen und abgeschlossenen Men-

gen heißen Boolsche Räume. Wenn (X ,τ) ein Boolscher Raum ist, so wird C(X) := {O ⊆
X | O ist offen und abgeschlossen } der charakteristische Verband von X genannt (C(X) ⊆
P(X) wird mit ∩,∪ ein Teilverband des Potenmengenverbandes! Falls nicht klar⇒ Übungs-
aufgabe!).

Sei X ein Boolscher Verband. Dann bezeichne Φ[X ] := {ϕ ⊆ X | ϕ ist ein Ultrafilter}, ferne
sei für ein x ∈ X u(x) := {ϕ ∈ Φ[X ] | x ∈ ϕ} (also ist u : X →P(Phi[X ]) eine Abbildung).
Das System u[X ] := {u(x) | x ∈ X} ist abgeschlossen gegenüber endlichen Durchschnitten
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(falls nicht klar⇒ Übungsaufgabe), ist also eine Basis der Topologie τ := top(u[X ]). Unter
dem Stone Raum des Bolschen Verbandes X verstehen wir nun (Φ[X ],τ).

10.5.2 Lemma

Wenn (X ,τ) ein Boolscher Raum ist und A ⊆P(X) sowohl ein Teilverband der Potenz-
menge, als auch eine Basis von τ , so gilt A = C(X).

Beweis: A ∈A ⇒ A : offen. Da A ein Teilverband ist, ist also auch X \A ∈A und somit
ist auch X \A offen, A also abgeschlossen, ergo A ∈C(X).
Sei jetzt A ∈ C(X), also A sowohl offen, als auch abgeschlossen. Dann gibt es eine Familie
(Ai)i∈I von Mengen aus A mit A =

⋃
i∈I Ai. Da X ein kompakter Raum ist, ist A als abge-

schlossene Menge auch kompakt. Somit gibt es also i1, ...in mit A =
⋃n

k=1 Aik ∈A (A ist als
Teilverband vorausgesetzt worden). Also tatsächlich A = C(X).

10.5.3 Satz

a) Ein Boolscher Verband X ist isomorph zur charakteristischen Algebra seines Stone
Raumes, also X 'C(Φ[X ]).

b) Ein Boolscher Raum (X ,τ) ist homöomorph zum Stone Raum seiner charakteristi-
schen Algebra, also X ∼= Φ[C(X)].

Beweis: Seien ϕ,ψ ∈ Φ[X ] mit ϕ 6= ψ . Dann gibt es ein x ∈ ϕ \ψ , also x∗ ∈ ψ , so dass
folgt: u(x)∩u(x∗) = /0, aber ϕ ∈ u(x) und ψ ∈ u(x∗). Je zwei verschiedene Elemente aus Φ[X ]
lassen sich also durch disjunkte offene Mengen trennen.

Es gelten folgende Rechenregeln: u(x)∩ u(y) = u(x∧ y), u(x)∪ u(y) = u(x∨ y), u(x∗) =
Φ[X ]\u(x) und u(0) = /0 bzw. u(1) = Φ[X ].
{u(x) | x ∈ X} ist also ein Teilverband des Potenzmengenverbandes P(Φ[X ]) und u : X →

P(Φ[X ]) ein entsprechender isomorphismus ist. Außerdem sieht man damit, dass {u(x) | x ∈
X} eine Basis aus offenen und abgeschlossenen Mengen ist. Wir zeigen nun noch: Φ[X ] ist mit
dieser Topologie auch kompakt. Sei (u(x))x∈A eine Überdeckung von Φ[X ], für eine geeignete
Teilmenge A von X . Gibt es keine endliche Teilüberdeckung, so ist für jede endliche Teilmenge
A′ von A dann Φ[X ] \

⋃
x∈A′ u(x) = Φ[X ] \ u(

∨
x∈A′ x) = u(

∧
x∈A′ x

∗) 6= /0, also
∧

x∈A′ x
∗ 6= 0.

Dann hat A∗ := {a∗ | a ∈ A} die eSE und kann zu eine Ultrafilter ϕ auf X erweitert werden.
Nun gibt es aber auch ein x ∈ A mit ϕ ∈ u(x), also x ∈ ϕ . Dies steht aber im Widerspruch
zu x∗ ∈ A∗ ⊆ ϕ . Zu jeder Überdeckung gibt es somit eine endliche Teilüberdeckung. Lemma
10.5.2 liefert somit {u(x) | x ∈ X}= C(Φ[X ]). Teil a) ist damit bewiesen.

b) Wir zeigen die Abbildung f : X → Φ[C(X)] definiert durch f (x) := {O ∈C(X) | x ∈ O}
ist ein wohldefinierter Homöomorphismus. Als erstes bemerken wir, dass tatsächlich {O ∈
C(X) | x ∈ O} ∈Φ[C(X)] (falls nicht klar⇒ Übungsaufgabe).
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Injektivität: Wenn x 6= y, dann gibt es disjunkte U,V ∈ C(X) mit x ∈ U und y ∈ V . Also
offensichtlich f (x) 6= f (y).

Surjektivität: Wenn ϕ ein Ultrafilter in C(X) ist, dann ist ϕ ein System abgeschlossener
Mengen mit der eSE. Nun ist X kompakt, also gibt es ein x∈

⋂
P∈ϕ P. Das heißt ϕ ⊆ Ẋ∩C(X).

Auf der anderen Seite hat (ẋ∩C(X))∪ϕ offensichtlich die eSE und ϕ ist ein Ultrafilter. Also
ẋ∩C(X)⊆ ϕ und damit ϕ = ẋ∩C(X) = f (x).

Zeigen wir nun, dass f offen ist. Sei O ∈C(X) (Nachweis reicht auf einer Basis). f (O) =
{ f (x) | x ∈ O} = {{U ∈C(X) | x ∈U} | x ∈ O} = {ϕ ∈ Φ[C(X)] | O ∈ ϕ} = u(O), welches
per Konstruktion offen ist. Die Umkehrabbildung f−1 : Φ[C(X)]→ X ist also eine stetige
Bijektion zwischen kompakten Hausdorf-Räumen und somit bereits ein Homöomorphismus.

10.5.4 Korollar

Jeder Boolsche Verband ist zu einem Teilverband eines Potenzmengenverbandes iso-
morph.

10.6 Atome, atomlose Boolsche Verbände, Cantorsches
Diskontinuum

In diesem Abschnitt schauen wir uns endliche Boolsche Verbände an und zeigen, dass Ab-
zählbar unendliche, atomlose Boolsche Verbände alle untereinander Isomorph sind.

10.6.1 Definition

Atome Ein Element x eines Verband X heißt Atom, wenn 0 6= x und ¬∃y ∈ X mit 0 < y < x.
Ein Verband heißt atomlos, wenn er keine Atome hat.

10.6.2 Lemma

Sei X ein Boolscher Verband. Dann ist äquivalent:
1) a ist ein Atom.
2) ȧ := {b ∈ X | a≤ b} ist ein Ultrafilter.
3) Es gibt genau einen Ultrafilter ψ auf X mit a ∈ ψ .

Beweis: 1) ⇒ 2): ȧ ist offensichtlich ein Ultrafilter. Sei a 6= y ∈ X und y 6∈ ȧ und y∗ 6∈ ȧ,
also a � y und a � y∗. Dann muss aber a∧ y = 0 = a∧ y∗ gelten. Dann aber 0 = 0∨ 0 =
(a∧ y)∨ (a∧ y∗) = a∧ (y∨ y∗) = a - ein Widerspruch.

2) Rightarrow 3): Es gibt einen Ultrafilter, nämlich ȧ. Jeder Ultrafilter der a enthält, enthält
zwangsläufig auch ȧ, kann aber auch nicht größer sein, da dieser eben ein Ultrafilter ist.
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3) ⇒ 1): Wenn 0 < y < a, dann existiert ein Ultrafilter ψ , der genau eines der Elemente
y,a enthält. ψ kann also NICHT y enthalten! Nun kann aber ẏ zu einem Ultrafilter φ erweitert
werden, der aber ebenfalls a enthält. Es gilt ψ 6= φ - ein Widerspruch.

10.6.3 Lemma

Ein Boolscher Verband X ist genau dann atomlos, wenn zu je zwei x,y ∈ X mit x < y ein
z ∈ X existiert mit x < z < y, man sagt auch X liegt dicht in sich selbst.

Beweis: Jeder dicht in sich selbst liegende Boolsche Verband ist offensichtlich atomlos.
Für die andere Richtung bemerken wir zuerst, dass diese zur charakteristischen Algebra ihres
Stone Raum isomorph sind. Dort lässt es sich dann einfach beweisen, denn es handelt sich
um einen Boolschen Raum ohne isolierte Punkte (Lemma 10.6.2). Seien U,V zwei sowohl
offene, als auch abgeschlossene Mengen in {0,1}N mit U ⊆ V , aber U 6= V . Dann ist auch
W := V \U offen und abgeschlossen und natürlich nicht leer. W muss aber auch unendlich
sein. Für zwei x,y ∈W mit x 6= y gibt es offen/abgeschlossene und disjunkte Mengen P,Q mit
x ∈ P und y ∈ Q. Dann ist aber Z := U ∪ (W ∩P) ebenfalls offen und abgeschlossen und es
gilt: U ⊆ Z ⊆V , mit U 6= Z 6= V .

10.6.4 Lemma

Ein endlicher Boolscher Verband X hat Atome und ist isomorph zu P(A), wenn A die
Menge seiner Atome ist. Insbesondere hat er also 2|A| Elemente.

Beweis: Der Verband ist endlich, also existieren klarerweise Atome! Sei ψ ein Ultrafilter
auf X . Dann ist aψ :=

∧
x∈ψ x ∈ ψ , und da ψ ein Ultrafilter ist, muss a ein Atom sein! Man

sieht also, dass Atome und Ultrafilter sich einander entsprechen. Der Stone Raum Φ[X ] =
{ȧ | a ∈ A} ist demnach endlich und es gilt u(a) = {ȧ}, für jedes a ∈ A (Bezeichnungen
entstammen dem Beweis zu Satz 10.5.3). Der Stone Raum besitzt somit die diskrete Topologie
({u(a) | a ∈ A} ist eine Basis!) und deshalb ist C(Φ[X ]) = P(Φ[X ]). Nun sind aber X und
C(Φ[X ]) isomorph.

10.6.5 Definition

Cantorsches Diskontinuum Der Raum {0,1}N, wobei wir auf {0,1} die diskrete Topologie
betrachten und {0,1}N mit der gewöhnlichen Produkttopologie versehen, heißt Cantorsches
Diskontinuum.
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10.6.6 Satz

Ein Boolscher Raum X , ohne isolierte Punkte und mit einer abzählbaren Basis B, ist
homöomorph zum Cantorschen Diskontinuum.

Beweis: Sei σ := {(U,V ) | U,V ∈ B mit U ∩V = /0. Dann ist σ abzählbar, also σ =
{(Un,Vn) | n ∈ N}, für eine geeignete Aufzählung. Wir konstruieren nun rekursiv für jedes
k ∈ N und jedes f : {0, ...,k} → {0,1} (also f ∈ {0,1}{0,...,k}) eine nichtleere, offene und
abgeschlossene Menge X f (0)... f (k) mit folgenden Eigenschaften:

1) X = X0∪X1 mit X0∩X1 = /0 und dann weiter X f (0)... f (k) = X f (0)... f (k)0∪X f (0)... f (k)1 mit
X f (0)... f (k)0∩X f (0)... f (k)1 = /0.

2) Falls U := Uk ∩X f (0)... f (k) 6= /0 6= Vk ∩X f (0)... f (k) =: V , dann U ⊆ X f (0)... f (k)0 und V ⊆
X f (0)... f (k)1.

Das die Konstruktion möglich ist, sollte klar sein (man beachte, dass die Un und Vn sowohl
offen, als auch abgeschlossen sind). Für jedes f ∈ {0,1}N setze nun X f :=

⋂
n∈NX f (0)... f (n).

Als Schnitt über eine Familie abgeschlossener Mengen mit der eSE in einem kompakten Raum
gilt X f 6= /0. Für jedes solches f ist X f sogar einelementig. Wären a 6= b ∈ X f , dann gäbe es
disjunkte Umgebungen Ua,Vb ∈B. Für ein n ∈ N gilt aber (Ua,Vb) = (Un,Vn). Also a ∈U =
Ua∩X f (0)... f (n) und b∈V =Vb∩X f (0)... f (n). Aus der Eigenschaft 2) folgt U ⊆ X f (0)... f (n)0 bzw.
V ⊆ X f (0)... f (n)1 im Widerspruch zu a,b ∈ X f ⊆ X f (0)... f (n+1).

Das heißt X f = {x f }, für eindeutiges x f ∈ X . Die Abbildung g : {0,1}N → X , definiert
durch f 7→ x f ist also injektiv. Surjektiv ist sie nach Konstruktion auch. Um zu zeigen, dass
es ein Homöomorphismus ist, brauchen wir (da es sich um kompakte Hausdorff-Räume han-
delt) nur zeigen, dass sie offen ist. Da sie bijektiv ist, reicht es die Offenheit auf der stan-
dard Subbasis {{ f ∈ {0,1}N | f (k) = i} | i ∈ {0,1}, k ∈ N} nachzuweisen. Nun ist aber
g({ f ∈ {0,1}N | f (k) = i}) =

⋃
f∈{0,1}{0,...,k−1} X f (0)... f (k−1)i und die letztere Menge ist offen.

10.6.7 Korollar

Abzählbar unendliche, atomlose Boolsche Verbände sind alle untereinander Isomorph.

Beweis: Seien X und Y zwei solche. Dann sind die zugehörigen Stone Räume homöomorph
(folgt aus Satz 10.6.6, da sowohl Φ[X ], als auch Φ[Y ] Boolsche Räume, ohne isolierte Punkte
mit einer abzählbaren Basis sind) und somit die charakteristischen Algebren isomorph. Letz-
tere sind aber isomorph zu X bzw. Y .

10.6.8 Bemerkung

Wieviele Ultrafilter hat eigentlich so ein Boolscher Verband? Für Potenzmengenverbände ha-
ben wir diese Frage vollständig beantwortet. Abschließend wollen wir uns nun zumindest für
abzählbare, atomlose Boolsche Verbände X die Anzahl aller Ultrafilter überlegen. Hier reicht
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es nämlich, aufgrund des eben gezeigten, sich auf die charakteristische Algebra des Cantor-
schen Diskontinuum zu beschränken. Für ein beliebiges f ∈ {0,1}N ist ψ := {O⊆ {0,1}N |O
ist offen und abgeschlossen und f ∈ O} ein Ultrafilter in C({0,1}N). Da der Raum T2 ist, be-
kommen wir für verschiedene f demzufolge auch verschiedene Ultrafilter. Eine untere Grenze
ist also |{0,1}N|. Andererseits ist jeder Ultrafilter eines abzählbaren Boolschen Verbands X
ein Element aus P(X). Nach oben haben wir also die Grenze |P(X)| = |{0,1}N|. Es gibt
also genau P(X) - viele Ultrafilter auf X .

242



11 Fixpunktsätze
”Sie sagen, der Terrorismus muss bekämpft werden und produzieren ihn selber! Sie
sagen, Atomwaffen müssen bekämpft werden und haben sie selber! Sie sagen, Dikta-
turen müssen bekämpft werden und sind selber eine! Sie sagen, Demokratie muss ver-
breitet werden und bauen sie bei sich ab! Sie sagen, sie wollen Frieden und verbreiten
aber Krieg! Sie sagen, sie kämpfen für Menschenrechte und foltern ohne Reue! An ihren
Früchten werdet ihr sie erkennen!!!”

Freeman (http://alles-schallundrauch.blogspot.com/)

11.1 Fixpunkte und Ultrafilter
Eine weitere, sehr interessante Charakterisierung der Ultrafilter:

11.1.1 Lemma

Sei f : X →P(X) eine Mengenwertige Abbildung mit x 6∈ f (x) und | f (x)| ≤ k für alle x ∈ X
und festes k ∈ N. Dann gibt es eine Zerlegung X = X1∪ ...∪X2k+1 von X in 2k +1 disjunkte
Mengen Xi mit Xi∩

⋃
{ f (x) | x ∈ Xi}= /0 für alle i ∈ {1, ...,2k +1}.

Beweis: Beweisen wir zuerst den Fall, dass X endlich. Dies beweisen wir per Induktion nach
n = |X |. Für n ≤ 2k + 1 ist die Aussage offensichtlich. Sei also n > 2k + 1 und die Aussage
für Mengen X ′ mit |X ′|< n bewiesen. Setze P := {(x,y) ∈ X×X | y ∈ f (x)}. Für jedes y ∈ X
setzen wir außerdem Ay := {x ∈ X | y ∈ f (x)}. Zählen wir nun die Elemente von P auf zwei
Weisen, so erhalten wir ∑y∈X |Ay|= |P|= ∑x∈X | f (x)| ≤ k · |X |. Folglich existiert ein x′ ∈X mit
|Ax′| ≤ k. Nun setzen wir X ′ := X \{x′} und definieren g : X ′→P(X ′) durch g(x) := f (x)\
{x′}. Sei X ′ = X ′1∪ ...∪X ′2k+1 eine Zerlegung entsprechend der Induktionsvoraussetzung, mit
X ′i ∩

⋃
{ f (x) | x ∈ X ′i } = /0 für alle i ∈ {1, ...,2k + 1}. Wegen | f (x′)| ≤ k gibt es paarweise

verschiedene i1, ..., ik+1 ∈ {1, ...,2k + 1} mit X ′il ∩ f (x′) = /0. Wegen |Ax′| ≤ k gibt es unter

diesen ein il mit Ax′ ∩X ′il = /0 Wir setzen nun Xi :=

{
X ′i für i 6= il
X ′i ∪{x′} für i = il

und haben damit

die gesuchte Zerlegung gefunden. Sei nun X unendlich. Für jedes endliche A ⊆ X definieren
wir eine Abbildung φ( f ,A) := A∪

⋃
a∈A f (a)→P(A∪

⋃
a∈A f (a)) durch

φ( f ,A)(x) :=

{
f (x) für x ∈ A
/0 für x ∈ A\

⋃
a∈A f (a)

Wir versehen {1, ...,2k + 1} mit der diskreten Topologie und Z := {1, ...,2k + 1}X mit der
Produkttopologie und nennen g ∈ Z gut für φ( f ,A), falls

g−1(i)∩ (A∪
⋃
a∈A

f (a))∩
⋃
{φ( f ,A)(x) | x ∈ g−1(i)∩ (A∪

⋃
a∈A

f (a))}= /0

ist, für jedes i ∈ {1, ...,2k +1}. Für jedes endliche A⊆ X setzen wir nun GA := {g ∈ Z | g ist
gut für φ( f ,A)}. Jedes GA ist in Z abgeschlossen und nicht leer wegen dem bereits bewiesenen
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endlichen Fall. Außerdem gilt offensichtlich GA1∪...∪Am ⊆ GA1 ∩ ...∩GAm und aus der Kom-
paktheit von Z (Satz von Tychonoff) folgt die Existenz eines g ∈

⋂
{GA | A : endlich ⊆ X}.

Dann ist Xi := g−1(i), i ∈ {1, ...,2k +1} die gesuchte Zerlegung.

11.1.2 Bemerkung

Man beachte, dass wir den Satz von Tychonoff nur für den Fall kompakter Hausdorffräume
gebraucht haben. Diese Version ist aber äquivalent zum Ultrafiltersatz (siehe Satz 10.4.4) und
damit echt schwächer als das volle Auswahlaxiom (welches normalerweise zum Beweis ver-
wendet wird)!

11.1.3 Korollar (4-Mengen Zerlegungslemma)

Sei X eine Menge und f : X → X eine Abbildung. Dann gibt es eine Zerlegung X0, X1, X2, X3
von X mit f (x) = x für alle x ∈ X0 und f (Xi)∩Xi = /0 für i ∈ {1,2,3}.

Beweis: Wir setzen X0 := {x ∈ X | f (x) = x}. Falls X \X0 = /0, sind wir fertig. Andernfalls
sei x′ ∈ X \X0 und wir definieren eine Abbildung g : X →P(X) durch

g(x) :=

{
{ f (x)} für x ∈ X \X0

{x′} für x ∈ X0

Lemma 11.1.1 liefert uns eine entsprechende Zerlegung X ′1,X
′
2 und X ′3 von X . Wir setzen nun

noch Xi := X ′i \X0 für i ∈ {1,2,3} und haben zusammen mit X0 dann die gesuchte Zerlegung
von X gefunden.

11.1.4 Satz

Sei /0 6= X eine Menge und ϕ ein Filter auf X . Dann ist äquivalent:
1) ϕ ist ein Ultrafilter.
2) ∀ f ∈ XX gilt: (Ff := {x ∈ X | f (x) = x} ∈ ϕ) oder (∃Q ∈ ϕ mit Q∩ f (Q) = /0).

Beweis: 1) ⇒ 2) Das Zerlegungslemma liefert uns X = F ∪X1 ∪2 ∪X3 (siehe oben). Da
X ∈ ϕ , folgt aus Korollar 11.1.3, dass bereits eine der an der Zerlegung beteiligten Mengen
im Filter liegen muss.

2)⇒ 1) Sei /0 6= A⊆ X und a∈ A fest gewählt. Betrachte die Abbildung f : X→ X , definiert
durch f |A = idA und f (X \A)⊆{a}. Wir haben also Ff = A. Falls nun Ff ∈ϕ , so offensichtlich
A ∈ ϕ . Die Existenz solch eines Q hingegen liefert X \A ∈ ϕ (denn Q⊆ X \A). Nach Lemma
3.2.3 haben wir also einen Ultrafilter.
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11.1.5 Korollar

Wenn f : X → X eine Abbildung ist und es einen Ultrafilter ψ auf X mit f (ψ) ⊆ ψ gibt
(Definition 3.2.4), dann ist F := {x ∈ X | f (x) = x} ∈ ψ . Aus f (ψ) ⊆ ψ folgt übrigens
sofort f (ψ) = ψ , denn Bildfilter von Ultrafiltern sind wieder Ultrafilter.

11.1.6 Lemma

Sei X eine unendliche Menge und seien φ ,ψ zwei Ultrafilter auf X und f ,g : X → X
zwei Abbildungen mit f (ψ) = φ und g(φ) = ψ (im Sinne der Definition eines Bildfilters,
Definition 3.2.4). Dann gibt es eine Bijektion h : X→ X mit h(ψ) = φ (und dann natürlich
auch sofort h−1(φ) = ψ).

Beweis: Es gilt f ◦g(φ) = φ und g◦ f (ψ) = ψ . Entsprechend Korollar 11.1.3 sei X zerlegt
als X = F ∪ A1 ∪ A2 ∪ A3 und X = G∪ B1 ∪ B2 ∪ B3 mit F = {x ∈ X | f ◦ g(x) = x} und
G = {x ∈ X | g◦ f (x) = x}. Dann ∃ ! Y ∈ {F,A1,A2,A3} mit Y ∈ φ . Falls Ai ∈ φ folgt wegen
f ◦ g(φ) = φ dann f ◦ g(Ai) ∈ φ , im Widerspruch zu f ◦ g(Ai)∩ Ai = /0. Also F ∈ φ und
analog G ∈ ψ . Aus f ◦ g(F) = F folgt g ◦ f (g(F)) = g(F), also g(F) ⊆ G (andernfalls sei
x ∈ g(F)∩Bi, also ∃ z ∈ F mit x = g(z) = g( f ◦g(z)) = g◦ f (x) 6∈ Bi - Widerspruch). Analog
auch wieder f (G) ⊆ F . Dann gilt aber auch F = f (g(F)) ⊆ f (G) ⊆ F , also f (G) = F und
analog g(F) = G. Dies bedeutet f |G : G→ F ist bijektiv (denn g|F : F → G ist die Inverse).

1. Fall G ist endlich. Dann ist auch F endlich und es gibt x ∈ G und y ∈ F , mit ψ =
•
x und

φ =
•
y. Eine beliebige Bijektion h : X → X mit h(x) = y erfüllt dann h(ψ) = φ .

2. Fall G ist unendlich. Sei k : G→ G×{1,2} bijektiv. G1 := k−1(1) und G2 := k−1(2)
erfüllen dann G = G1∪G2 mit G1∩G2 = /0 und |G|= |G1|= |G2|. Da ψ ein Ultrafilter ist, gilt
o.B.d.A. G1 ∈ψ . Nun gilt in jedem Fall |X \G1|= |X |= |X \ f (G1)| (in jedem Fall heißt, egal
ob |G|< |X | oder |G|= |X |). Es gibt also eine Bijekion i : X \G1→ X \ f (G1). Wir definieren

dann h : X → X durch h(x) :=

{
i(x) falls x ∈ X \G1

f (x) falls x ∈ G1
. Ist nun Q ∈ ψ , so ist Q∩G1 ∈ ψ

und h(Q∩G1) = f (Q∩G1) ∈ φ . Wegen h(Q∩G1)⊆ h(Q) ist offenbar auch h(Q) ∈ φ . Also
h(ψ)⊆ φ . Da mit ψ auch h(ψ) ein Ultrafilter ist, gilt h(ψ) = φ .

11.1.7 Lemma

Sei ϕ ein Filter auf X , ψ ein Ultrafilter auf Y und f : X→Y eine Abbildung mit f (ϕ)⊆ψ

(Definition 3.2.4). Dann gibt es einen Ultrafilter φ auf X mit ϕ ⊆ φ und f (ϕ) = ψ .

Beweis: Seien P1, ...,Pn ∈ ϕ und Q1, ...,Qm ∈ ψ . Dann ist f (P1∩ ...∩Pn) ∈ f (ϕ)⊆ ψ , also
f (P1 ∩ ...∩Pn)∩Q1 ∩ ...∩Qm 6= /0. Dann ist auch P1 ∩ ...∩Pn ∩ f−1(Q1)∩ ...∩ f−1(Qm) =
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P1∩ ...∩Pn∩ f−1(Q1∩ ...∩Qm) 6= /0. Das zeigt, dass σ := ϕ ∪{ f−1(Q) |Q ∈ψ} die endliche
Schnitt Eigenschaft hat. Es gibt somit einen Ultrafilter φ mit ϕ ⊆ σ ⊆ φ . Da dann f (φ) ein
Ultrafilter ist und ψ ⊆ f (φ) gilt, muss bereits ψ = f (φ) gelten.

11.2 Fixpunktsatz von Banach
Ziel dieses Abschnitts ist der Beweis des klassischen Fixpunktsatzes von Banach (den wohl
jeder aus dem zweiten Semester kennt). Der Satz geht über die bloße Existenz- und Ein-
deutigkeitsaussage hinaus, da der Beweis auch gleichzeitig ein praktisches Verfahren ist, den
Fixpunkt numerisch zu approximieren (eine Abschätzung des Fehlers wird ebenfalls gegeben).

11.2.1 Fixpunktsatz von Banach

Sei (X ,d) ein vollständiger metrischer Raum und f : X→ X eine stetige Kontraktion (d.h.
∃0 ≤ q < 1∀x,y ∈ X : d( f (x), f (y)) ≤ qd(x,y)), dann hat f genau einen Fixpunkt x∗.
Bilden wir ferner für beliebiges x ∈ X die Folge (xn)n∈N mit x0 = x und xn+1 = f (xn), so
konvergiert (xn)n∈N gegen x∗ und es gilt die Abschätzung:

d(xn,x∗)≤
qn

1−q
d(x0,x1).

Beweis: Sei x ∈ X beliebig gewählt. Wir bilden die Folge (xn)n∈N mit x0 = x und xn+1 =
f (xn) und rechnen durch iterierte Anwendung der Dreiecksungleichung und Kontraktionsei-
genschaft d(xn,xn+k)≤ d(xn,xn+1)+...+d(xn+k−1,xn+k)≤ qnd(x0,x1)+...+qn+k−1d(x0,x1)=
d(x0,x1)

qn−qn+k

1−q →∞ für n→∞. Die Folge (xn)n∈N ist also eine Cauchyfolge und konvergiert
somit gegen ein x∗. Sei ε > 0. Wir zeigen d(x∗, f (x∗)) < 2ε . Und da ε beliebig war, muss dann
bereits d(x∗, f (x∗)) = 0, also x∗ = f (x∗) gelten. Zu ε gibt es ein N ∈ N, so dass d(xn,x∗) < ε

für alle n≥ N gilt. d(x∗, f (x∗))≤ d(x∗,xN+1)+d(xN+1, f (x∗)) < ε +qd(xN ,x∗) < 2ε .
Gibt es einen Fixpunkt y, d.h. f (y) = y, mit x∗ 6= y, so gilt d(x∗,y) = d( f (x∗), f (y)) ≤

qd(x∗,y) < d(x∗,y), was ein Widerspruch ist. Also x∗ = y.
Die Abschätzung sieht man so: Oben hatten wir bereits gezeigt d(xn,xn+k)≤ qn−qn+k

1−q d(x0,x1).
Aus |d(xn,xn+k)−d(xn,x∗| ≤ d(x∗,xn+k) folgt d(xn,xn+k)→ d(xn,x∗), für k→ ∞.

Also d(xn,x∗)≤ qn

1−qd(x0,x1).

11.3 Fixpunktsatz von Brouwer
”Gott existiert, weil die Mathematik widerspruchsfrei ist, und der Teufel existiert, weil
wir das nicht beweisen können.”

Andre Weil
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Kommen wir zum Fixpunktsatz von Brouwer. Dieser lässt sich zwar leichter formulieren,
als der von Banach, ist aber unvergleichlich schwerer zu beweisen! In seiner klassischen Form
besagt jener: Jede stetige Abbildung der n dimensionalen Einheitskugel Dn := {x∈Rn | ‖x‖=
1} in sich, hat (mindestens) einen Fixpunkt: f : Dn→Dn stetig⇒ ∃x ∈Dn, mit f (x) = x. Um
diesen Satz (und seine Verallgemeinerung) vernünftig zu beweisen, führen wir eine ganze
Reihe von Begriffen und Bezeichnungen ein. Grundlegende Begriffe aus (in der Regel) dem
ersten Semester Lineare Algebra, wie Vektorraum, Linearkombination, linear unabhängig, ...
setzen wir von nun an voraus. Eine Teilmenge A eines Vektorraums X heißt konvex, wenn
für x,y ∈ A auch {tx + (1− t)y | t ∈ [0,1]} ⊆ A. Für eine Teilmenge Y ⊆ X definieren wir
die konvexe Hülle als convex(Y ) := {∑k

i=1 tixi | xi ∈ X und ti ∈ [0,1] mit ∑
k
i=1 ti = 1}. Als

kleine Übung überlassen wir dem Leser, dass convex(X) die kleinste konvexe Menge K ist
mit X ⊆ K. Eine kleine Sache noch: Mit 0 bezeichnen wir sowohl die Körper-Null, als auch
die Vektorraum-Null. Aus dem jeweiligen Zusammenhang sollte klar hervorgehen, welche
jeweils gemeint ist.

11.3.1 Definition

Erzeugnis Sei V ein Vektorraum über einem Körper K und sei A ⊆ V . Das Erzeugnis 〈A〉 ist
dann definiert als {∑m

i=1 kivi | ki ∈K und vi ∈A}, also als die Menge aller Linearkombinationen
von Vektoren aus A.

11.3.2 Lemma

Für m+1 Punkte a0, ...,am ∈ Rn ist äquivalent:
1) {z ∈ Rn | ∃ i ∈ {0, ...,m}\{0} mit z = ai−a0} ist linear unabhängig
2) ∀s0, ...,sm ∈ R [(∑m

i=0 siai = 0 und ∑
m
i=0 si = 0) ⇒ s0 = ... = sm = 0]

Beweis: Der bleibt als leichte Übung.

11.3.3 Definition

affin unabhängig, Simplex, baryzentrische Koordinaten Mittelpunkt (barycenter) Punkte
a0, ...,am ∈ Rn mit einer der äquivalenten Eigenschaften aus Lemma 11.3.2 nennt mann affin
unabhängig. Seien m + 1 affin unabhängige Punkte a0, ...,am ∈ Rn gegeben. a0...am := {x ∈
Rn | x = ∑

m
i=0 siai, mit ∑

m
i=0 si = 1 und s0, ...,sm ≤ 0} heißt m dimensionales Simplex. Die ai

nennen wir auch die Ecken des Simplex. Eine Seite von S ist ein Simplex der Form ai0...aik ,
wobei i0, ..., ik ∈ {0, ...,m}. Für x = ∑

m
i=0 siai ∈ a0...am, mit ∑

m
i=0 si = 1 und s0, ...,sm ≤ 0}

sind die baryzentrischen Koordinaten (eindeutig nach Lemma 11.3.2) definiert als λi(x) := si,
i = 0, ...,m. Der Mittelpunkt von S ist definiert als b(S) := (m+1)−1

∑
m
i=0 ai.
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11.3.4 Lemma

Sei S = a0a1...am ein m dimensionales Simplex, mit den affin unabhängigen a0, ...,am ∈
Rn. Dann gilt:
a) Jedes x∈ S hat eine eindeutige Darstellung x = ∑

m
i=0 siai, mit ∑

m
i=0 si = 1 und s0, ...,sm≤

0.
b) S ist eine kompakte Teilmenge des Rn

c) Die baryzentrischen Koordinaten-Abbildungen λi : S→ [0,1] sind stetig.
d) Je zwei m dimensionale Simplizes sind homöomorph.

Beweis: a) Sei x = ∑
m
i=0 siai = ∑

m
i=0 tiai, mit ∑

m
i=0 si = 1 und s0, ...,sm≤ 0} und entsprechend

mit den ti. Dann ist 0 = ∑
m
i=0(si− ti)ai, mit ∑

m
i=0(si− ti) = 0, also nach Lemma 11.3.2 si = ti.

b) Wir betrachten Am := {x∈Rm | xi≥ 0 und ∑
m
i=1 xi≤ 1}= 0e1...em, wobei ei =(0, ...,0,1,0, ...,0)

eine 1 an der i-ten Stelle hat. A ist abgeschlossen (siehe Definition 2.4.1: Folgen aus A, die kon-
vergieren, tun dies bereits in A) und da A offensichtlich beschränkt ist, ist A auch kompakt. Wir
zeigen A und S sind homöomorph. Dazu definiere f : A→ S durch x = s00+s1e1+ ...+smem 7→
s0a0 + ...+ smam. f ist offensichtlich bijektiv und stetig (zeigt sich am leichtesten mittels Fol-
genkonvergenz und Lemma 2.3.3). Da Am kompakt und S ein T2-Raum ist, muss f bereits ein
Homöomorphismus sein (Satz 4.1.13). Also ist auch S kompakt (und damit abgeschlossen und
beschränkt).
c) Seien λ ∗i die baryzentrischen Koordinaten-Abbildungen von Am, die sind in diesem Fall
nichts anderes als die gewöhnlichen Projektionen, also stetig. Die baryzentrischen Koordinaten-
Abbildungen λi von S schreiben sich dann einfach als λi = λ ∗i ◦ f−1, sind also auch stetig.
d) Folgt unmittelbar aus dem Vorhergehenden.

11.3.5 Definition

simpliziale Unterteilung eines Simplex Sei S ⊆ Rn ein Simplex. Eine Familie S von Sim-
plizes heißt simpliziale Unterteilung, wenn:
1) S ist eine Überdeckung von S.
2) Für S1,S2 ∈S ist S1∩S2 entweder leer, oder eine gemeinsame Seite von S1 und S2.
3) Jede Seite eines jeden S′ ∈S ist wieder in S .

11.3.6 Satz

Sei S = a0...am ein m dimensionales Simplex.
1) Für jede fallende Folge S0 ⊃ ... ⊃ Sk von Seiten des Simplex S, sind die Punkte
b(S0), ...,b(Sm) affin unsbhängig.
2) Die Menge S aller Simplizes der Form b(S0)...b(Sk) bildet eine simpliziale Untertei-
lung von S.

248



3) Jedes m−1 dimensionale Simplex T ∈S ist die Seite von genau einem, bzw. zwei Sim-
plizes aus S , abhängig davon, ob T in einer m− 1 dimensionalen Seite von S enthalten
ist.

Beweis: 1) Jede Fallende Folge lässt sich zu einer fallenden Folge der Form S0 ⊃ ...⊃ Sm,
mit S0 = ai0...aim , ...,Sm = aim ergänzen, wobei (i0, ..., im) eine geeignete Permutation von
(0, ...,m) ist und es reicht dann offensichtlich aus zu zeigen, dass b(S0), ...,b(Sk) affin unab-
hängig sind. Betrachten wir dazu µ0b(S0)+ ...+µmb(Sm). Mit der Definition der Mittelpunkte
wird dies zu µ0

m+1 ∑
m
k=0 aik + ...+µmaim = µ0

m+1ai0 +( µ0
m+1 + µ1

m )ai1 + ...+( µ0
m+1 + ...+µm)aim =

δ0ai0 + ...+δmaim (1). Es gilt dann δ0 + ...+δm = µ0 + ...+ µm. Falls also µ0 + ...+ µm = 0,
so folgt sofort δ0 = ... = δm = 0 (da die a affin unabhängig sind). Damit haben wir dann aber
auch induktiv µ0 = ... = µm = 0.
2) Wir zeigen als erstes b(S0)...b(Sm) = {x ∈ S | λi0(x) ≤ ... ≤ λim(x)} für eine Folge S0 ⊃
... ⊃ Sm, mit S0 = ai0...aim . ⊆ ist klar nach Gleichung (1). Für die andere Richtung neh-
men wir uns ein x ∈ S mit λi0(x) ≤ ... ≤ λim(x). Durch Koeffizientenvergleich erhalten wir
aus x = λi0(x)ai0 + ...+λim(x)aim = µ0

m+1ai0 +( µ0
m+1 + µ1

m )ai1 + ...+( µ0
m+1 + ...+ µm)aim sofort

µ0 = (m + 1)λi0(x) und allgemein µk = λik(x)−λik−1(x). Damit erhalten wir x = µ0b(S0)+
...+ µmb(Sm) und ∑

m
k=0 µk = ∑

m
k=0 λik = 1 mit µk ≥ 0. Also x ∈ b(S0)...b(Sm). Für eine geeig-

nete Permutation ist aber jedes x ∈ S in einer Menge der Form {x ∈ S | λi0(x)≤ ...≤ λim(x)}.
Also ist S eine Überdeckung von S. Punkt 3) aus Definition 11.3.5 ist klar nach Konstrukti-
on. Bleibt noch Punkt 2). Eine Seite S′ eines Elementes aus S ist letztendlich eine Seite von
{x ∈ S | λi0(x)≤ ...≤ λim(x)} für eine geeignete Permutation. S′ hat dann aber die Form
{x ∈ S | λi0(x)≤ ...≤ λim(x) und {0, ...,m}=

⊎q
p=1 Ip, mit λi(x) = λ j(x) für i, j ∈ Ip} (∗),

für eine Zerlegung {0, ...,m} =
⊎q

p=1 Ip. Das das so ist, sieht man am besten an Gleichung
(1). Jede auf diese Weise definierte Menge ist natürlich auch eine Seite. Und der Schnitt zwei-
er solcher Seiten ist nun entweder leer, oder wieder eine solche Menge der Form (∗) (wobei
sich die definierenden Bedingungen natürlich in Abhängigkeit der gegebenen Seiten verän-
dern können). Damit ist gezeigt, dass S eine simpliziale Unterteilung ist.
3) Sei T = b(S0)...b(Sm−1) ein m−1 dimensionales Simplex aus S . Wir unterscheiden zwei
Fälle (man beachte T ist genau dann in einer m−1 dimensionalen Seite von S enthalten, wenn
S0 6= S):
1. Fall S0 6= S. Dann gibt es genau ein m dimensionales Simplex S′ ∈S , von dem es eine Seite
ist. Nämlich S′ = b(S)b(S0)...b(Sm).
2. Fall S0 = S. Betrachten wir den Simplex S0...Sm−1, so stellen wir fest, dass entweder Sm−1
ein 1 dimensionales Simplex ist (also von der Form ab, oder an einer Stelle j mit 0 > j≤m−1
zwei Ecken von S j−1 zu S j entfernt wurden. In beiden Fällen sieht man, dass es genau zwei m
dimensionale Simplizes gibt, von denen T eine Seite ist.
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11.3.7 Lemma

Sei S eine simpliziale Unterteilung eines Simplex S. Für jedes T ∈S sei ST eine sim-
pliziale Unterteilung von T . Dann ist auch P :=

⋃
T∈S ST eine simpliziale Unterteilung

von S.

Beweis: Wir müssen zeigen:
1) P ist eine Überdeckung von S.
2) Für S1,S2 ∈P ist S1∩S2 entweder leer, oder eine gemeinsame Seite von S1 und S2.
3) Jede Seite eines jeden S′ ∈P ist wieder in P .
1) und 3) sind trivial, bleibt somit noch 2). Seien dazu S1,S2 ∈P , mit S1∩ S2 6= /0. Dann ist
S1 ∈ST1 und S2 ∈ST2 für geeignete T1,T2 ∈S . Nun ist T ′ := T1∩T2 eine gemeinsame Seite
von T1 und T2 und somit T ′ ∈ST1 ∩ST2 . Man sieht unmittelbar S1∩S2 = (S1∩T ′)∩ (S2∩T ′)
und S1∩T ′ ist eine gemeinsame Seite von S1 und T ′, bzw. S2∩T ′ ist eine gemeinsame Seite
von S2 und T ′. Also S1 ∩ T ′,S2 ∩ T ′ ∈ ST ′ . Daraus und aus der Tatsache, dass es sich bei
ST ′ um eine simpliziale Unterteilung handelt, folgt, dass S1∩S2 eine gemeinsame Seite von
S1∩T ′ und S2∩T ′ ist! Wir hatten bereits weiter oben erkannt, dass S1∩T ′ eine Seite von S1
und S2∩T ′ eine Seite von S2 ist. Also ist S1∩S2 eine gemeinsame Seite von S1 und S2.

11.3.8 Definition

l-te baryzentrische Unterteilung Die simpliziale Unterteilung aus Satz 11.3.6 nenne wir die
1-te bayzentrische Unterteilung. Die l-te baryzentrische Unterteilung eines Simplex definieren
wir nun induktiv. Sei dazu Sl die l-te baryzentrische Unterteilung von S. für jedes S′ ∈Sl sei
SS′ die baryzentrische Unterteilung nach Satz 11.3.6. Dann setzen wir Sl+1 :=

⋃
S′∈Sl

SS′ .
Dass es sich bei Sl+1 wieder um eine simpliziale Unterteilung handelt, folgt aus Lemma
11.3.7.

11.3.9 Definition

Maschenweite einer simplizialen Unterteilung Sei S eine simpliziale Unterteilung des
Simplex S. Die Maschenweite von S ist dann definiert als sup{D(T ) | T ∈ S }, wobei
D(T ) := sup{|x− y| | x,y ∈ T} der Durchmesser von T ist.

11.3.10 Lemma

Sei S = a0...am ⊆Rn ein Simplex, x ∈ S, y ∈Rn. Dann ist |x−y| ≤max{|ai−y| | 0≤ i≤
m}.

Beweis: Sei x = ∑
m
i=0 λiai, mit ∑

m
i=0 λi = 1 und λi≥ 0. Also |x−y|= |∑m

i=0 λiai−∑
m
i=0 λiy|=

|∑m
i=0 λi(ai− y)| ≤ ∑

m
i=0 λi|ai− y| ≤ maxi≤m|ai− y|∑m

i=0 λi = maxi≤m|ai− y|.
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11.3.11 Lemma

Der Durchmesser eines Simplex a0...am ist gleich maxi, j≤m|ai−a j|.

Beweis: Seien x,y∈ a0...am. Dann folgt aus vorigem Lemma |x−y| ≤maxi≤m|ai−y|. Noch-
malige Anwendung des Lemmas führt auf maxi≤m|ai− y| ≤ maxi, j≤m|ai−a j|.

11.3.12 Lemma

Die Maschenweite der baryzentrischen Unterteilung eines Simplex S = a0...am ist nicht
größer als m

m+1D(S), wobei D(S) = sup{|x− y| | x,y ∈ S}.

Beweis: Betrachten wir dazu einen typischen Simplex T = b(S0)...b(Sl), mit S0 = ai0...ail
bis Sl = ail , aus der baryzentrischen Unterteilung. Es reicht, nach vorigem Lemma, den Ab-
stand |b(S j)− b(Sk)|, mit j < k ≤ m, für zwei Eckpunkte aus T entsprechend abzuschätzen.
b(S j) = 1

j+1(ai0 + ... + ai j) und b(Sk) = 1
k+1(ai0 + ... + aik). Also folgt aus Lemma 11.3.10

|b(S j)− b(Sk)| ≤ |ail − b(Sk)|, für ein gewisses l ≤ j < k. Nun ist |b(Sk)− ail | = |
1

k+1(ai0 +
...+aik)−ail |=

1
k+1 |∑

k
p=0(aip−ail)| ≤

1
k+1 ∑

k
p=0 |aip−ail | ≤

k
k+1D(S)≤ m

m+1D(S) (man be-
achte |ail −ail |= 0).

11.3.13 Korollar

Für jedes Simplex S und jedes ε ≥ 0 gibt es eine Zahl l, so dass die Maschenweite der
l-ten baryzentrischen Unterteilung von S kleiner als ε ist.

Beweis: Folgt durch wiederholte Anwendung von Lemma 11.3.12. Wenn nämlich m die
Dimension von S ist, so wird die alte Maschenweite nach jeder Anwendung des Lemmas
mit dem Faktor m

m+1 multipliziert. Die l-te baryzentrische Unterteilung von S hat also eine
Maschenweite von ( m

m+1)lD(S) und ( m
m+1)l wird mit zunehmendem l beliebig klein.

11.3.14 Lemma

Sperners Lemma Sei S = a0...am ein m dimensionaler Simplex und V die Menge aller
Ecken von Simplizes aus der l-ten baryzentrischen Unterteilung S von S. Sei weiter h :
V → {0, ...,m} eine Funktion mit der Eigenschaft: h(v) ∈ {i0, ..., ik}, wenn v ∈ ai0...aik .
Dann ist die Anzahl von Simplizes aus Sl , auf denen h alle Werte von 0 bis m annimmt
ungerade (also insbesondere 6= 0).
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Beweis: Wir führen den Beweis durch Induktion nach m. Für m = 0 ist die Behauptung
trivialerweise richtig.
m− 1→ m: Seien also S = a0...am, S und h gegeben. Wir setzen S ′ := {T ∈ S | T ist
m−1 dimensional und h(V ∩T ) = {0, ...,m−1}}, also die Menge aller m−1 dimensionalen
Simplizes T aus S , auf deren Ecken h alle Werte von 0 bis m−1 annimmt. Die einzige m−1
dimensionale Seite von S, die Simplizes aus S ′ enthält (als Teilmenge) ist a0...am−1 (folgt
aus der Voraussetzung an h). Und die Anzahl derer, mit a bezeichnet, ist ungerade. Dies folgt
aus der Induktionsvoraussetzung, denn T ∈ S | T ⊆ a0...am−1} ist die l-te baryzentrische
Unterteilung von a0...am−1.
Sei {T ∈S | T ist m dimensional}= {T1, ...,Tt}. Für jedes j ≤ t sei b j die Anzahl der Seiten
von Tj, die zu S ′ gehören und N j := h(V ∩Tj) ist die Menge aller Werte die h auf den Ecken
von Tj annimmt. Man macht sich nun unmittelbar folgendes klar:
1) N j = {0, ...,m} ⇒ b j = 1,
2) N j = {0, ...,m−1} ⇒ b j = 2,
3) {0, ...,m−1}* N j ⇒ b j = 0.
Bezeichnen wir noch mit c die Anzahl aller Simplizes aus Sl , auf denen h alle Werte von 0 bis
m annimmt, so gilt c− (b1 + ...+bt) =−∑ j∈J′ b j, wobei J′ := { j ≤ m | N j = {0, ...,m−1}},
was aber gerade ist.
Wir zeigen nun, dass auch a−(b1 + ...+bt) gerade ist, woraus dann folgt, dass c ungerade ist!
Aus Teil 3 von Satz 11.3.6 folgt jedenfalls, dass jedes Simplex T aus S ′ in einem oder zwei
der Tj als Seite enthalten ist, abhängig davon, ob T in einer m−1 dimensionalen Seite von S
enthalten ist. Nun gibt es aber nur eine m−1 dimensionale Seite von S die Simplizes aus S ′

enthält und die Anzahl derer ist a. In der Summe b1 + ...+ bt werden also die Simplizes, die
auch durch a gezählt werden, EINFACH gezählt und alle anderen DOPPELT. Die Differenz
a− (b1 + ...+bt) ist also ebenfalls gerade und damit, wie schon erwähnt, c ungerade!

11.3.15 Lemma

Knaster, Kuratowski, Mazurkiewicz Sei S = a0...am ein m dimensionales Simplex und
(Fi)m

i=0 eine Folge abgeschlossener Mengen, mit ai0...aik ⊆ Fi0 ∪ ...∪Fik , für jede Seite
ai0 ...aik , dann ist F0∩ ...∩Fm 6= /0.

Beweis: Angenommen F0∩ ...∩Fm = /0. Die Familie (Ui)m
i=0, mit Ui = S\Fi ist eine offene

Überdeckung von S (in der Teilraumtopologie). Mit der Kompaktheit von S folgt aus Lemma
4.5.22 die Existenz eines ε > 0, derart dass jede Teilmenge von S mit einem Durchmesser
< ε bereits in einem der Ui enthalten ist (also disjunkt zu einem der Fi). Aus Korollar 11.3.13
folgern wir, dass es eine Zahl l gibt, so dass die Maschenweite der l-ten baryzentrischen Un-
terteilung S von S kleiner als ε ist. V bezeichne im Folgenden die Menge aller Ecken von
Simplizes aus S . FÜr jedes v ∈ V betracheten wir den den Durchschnitt aller Seiten von S,
die v enthalten. Herauskommt wieder eine Seite ai0...aik von S. Aus den Voraussetzungen an
(Fi)m

i=0 folgt, dass es ein ein j ≤ k gibt, mit v ∈ Fi j . Durch h(v) := j definieren wir nun eine
Funktion, die den Bedingungen in Sperners Lemma (Lemma 11.3.14) genügt. Es gibt also
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ein m dimensionales Simplex T = v0...vm ∈S , mit h(vi) = i (bei geeigneter Nummerierung).
Das bedeutet aber vi ∈ Fi und somit T ∩Fi 6= /0 für i = 0, ...,m, obwohl der Durchmesser von
T kleiner als ε ist - Widerspruch!

11.3.16 Fixpunktsatz von Brouwer

Jede stetige (Selbst)Abbildung f : T → T eines m dimensionalen Simplex T = a0...am hat
einen Fixpunkt.

Beweis: Für i = 0, ...,m definieren wir Fi := x ∈ T | λi( f (x)) ≤ λi(x)} (zur Erinnerung:
λi sind die baryzentrischen Koordinaten). Die λi und das f sind stetig, die Fi demzufolge
abgeschlossen (der Grenzwert jeder konvergenten Folge aus Fi ist wieder in Fi). Wir zeigen,
dass die Familie (Fi)m

i=0 den Voraussetzungen an Lemma 11.3.15 genügt. Sei dazu ai0 ...aik
eine Seite von T und x ∈ ai0...aik . Es gilt dann λi0(x) + ... + λik(x) = 1 = λ0( f (x)) + ... +
λm( f (x)), also λi0( f (x))+ ...+λik( f (x))≤ λi0(x)+ ...+λik(x). Es muss also ein j≤ k geben,
mit λi j( f (x)) ≤ λi j(x). Das heißt aber x ∈ Fi j und insgesamt also ai0...aik ⊆ Fi0 ∪ ...∪ Fik .
Lemma 11.3.15 liefert also ein x ∈ F0∩ ...∩Fm, also λ0( f (x))≤ λ0(x), ...,λm( f (x))≤ λm(x).
Nun gilt aber λ0( f (x))+ ...+λm( f (x)) = 1 = λ0(x), ...,λm(x) und alle Summanden sind ≥ 0.
Es muss also λ0( f (x)) = λ0(x), ...,λm( f (x)) = λm(x) gelten und somit f (x) = x!

11.3.17 Bemerkung

Wir werden den Fixpunktsatz von Brouwer nun verallgemeinern. Dazu benötigen wir weitere
Erkenntnisse über gewisse Teilmengen des Rn.

11.3.18 Lemma

Seien X ,Y zwei topologische Räume und A⊆ X bzw B⊆ Y . Wir sagen dann, dass (X ,A)
homöomorph zu (Y,B) ist, wenn es ein Homöomorphismus f : X → Y gibt mit f (A) = B.
a) Sei A⊆Rn, x ∈Rn und A konvex, dann ist Kx,A := {tx+(1− t)a | a ∈ A◦ und t ∈ [0,1)}
offen (und auch konvex). Kx,A nennt man den offenen Kegel über A mit Spitze x (obwohl
x nicht unbedingt zu Kx,A gehören muss).
b) Sei nun X ⊆ Rn, X : kompakt, konvex und X◦ 6= /0, dann ist (X ,∂X) homöomorph zu
(Dn,Sn−1).

Beweis: a) Es ist Kx,A =
⋃

t∈[0,1) ft(A◦) - und somit offen, wobei ft : Rn → Rn der durch
ft(u) := tx+(1− t)u definierte Homöomorphismus ist.
b) O.B.d.A. ist Dn ⊆ X (warum). Definiere dann r : ∂X → Sn−1 durch r(x) := ‖x‖−1x. Die
Stetigkeit ist klar. Um zu zeigen, dass r surjektiv ist, nehmen wir uns ein x ∈ Sn−1 und setzen
s := sup{t | t ≥ 1 und tx ∈ X}. s ist dann sx ∈ ∂X (sonst: 1.Fall sx ∈ (Rn \X)◦, dann ∃ε > 0
mit K(sx,ε) ⊆ Rn \X . Aber ‖sx− (s− ε/2)x‖ = ε/2, also (s− ε/2)x ∈ K(sx,ε) ⊆ Rn \X -
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Widerspruch! und im 2.Fall wäre sx ∈ X◦, also K(sx,ε)⊆ X und den Widerspruch führt man
analog mit s+ ε/2.). Also ist sx ∈ ∂X und r(sx) = x.
Um Injektivität zu zeigen, nehmen wir r(x) = r(y) für x,y∂X an. Also ‖y‖x = ‖x‖y. Falls
x 6= y, so o.B.d.A.‖y‖< ‖x‖. Es gilt dann Kx,Dn ⊆ X , da X konvex ist. Nun ist aber Kx,Dn offen
und y ∈ Kx,Dn . Also y ∈ X◦ - Widerspruch zu y ∈ ∂X .
Also ist r : ∂X → Sn−1 stetig und bijektiv, und demzufolge nach Satz 4.1.13 bereits ein Ho-
möomorphismus.
Wir definieren nun g : Dn→ X durch g(0) = 0 und g(y) := ‖y‖r−1(‖y‖−1y). Die Abbildung
ist wohldefiniert, denn für y ∈ Dn ist r−1(‖y‖−1y) ∈ ∂X , ‖y‖ ≤ 1 und X ist konvex mit 0 ∈ X .
g ist auch stetig, denn yn→ 0 ⇒ ‖y‖ → 0 ⇒ ‖g(y)‖ → 0 (r−1(‖y‖−1y) ist beschränkt). Zu
zeigen bleibt wieder Bijektivität, damit man Satz 4.1.13 anwenden kann. Für x ∈ ∂Dn = Sn−1

gilt außerdem g(x) = r−1(x) und der Beweis wäre damit dann beendet.
Surjektivität: Sei x ∈ X (o.B.d.A. x 6= 0). Also x/‖x‖ ∈ Sn−1. Also gibt es genau ein y ∈ ∂X
mit r(y) = x/‖x‖. Aber r(y) = y/‖y‖, also y = ‖y‖

‖x‖xx und somit (y ∈ ∂X ⇒ ‖x‖ ≤ ‖y‖!)
g(x/‖y‖) = x (die leichte Rechnung dazu, bleibt dem Leser überlassen).
Injektivität: g(x) = g(y) ⇒ ‖x‖r−1(x/‖x‖) = ‖y‖r−1(y/‖y‖). Falls ‖x‖ = ‖y‖, dann x = y,
denn r ist bijektiv. Also o.B.d.A. ‖x‖ < ‖y‖ und somit 0 ≤ ‖x‖/‖y‖ =: λ < 1. Falls λ = 0,
dann x = 0 und somit auch y = 0 - Widerspruch. Also 0 < λ < 1. Das bedeutet für z :=
r−1(y/‖y‖) ∈ ∂X dann aber λ−1z = r−1(x/‖x‖) ∈ ∂X , mit 1 < λ−1. Wir betrachten wieder
den offenen Kegel Kλ−1z,Dn ⊆ X . Es ist dann nämlich z = λλ−1z +(1−λ )0 ∈ Kλ−1z,Dn und
somit z ∈ X◦ - Widerspruch!

11.3.19 Lemma

Sei K ⊆ Rn kompakt und konvex und Y := 〈K〉 der von K aufgespannte Unterraum. Dann
ist K◦ 6= /0, als offener Kern in der Teilraumtopologie von Y .

Beweis: Sei {b1, ...,bm} ⊆ K eine Basis von Y (m ≤ n). Wir betrachten nun den Simplex
S := 0b1...bm = {∑m

i=1 βibi | βi ≥ 0 und ∑
m
i=1 βi ≤ 1}. Mit b := 1

m+1(b1 + ...+ bm) gilt dann
nämlich S = {b + ∑

m
i=1(βi− 1

m+1)bi | βi ≥ 0 und ∑
m
i=1 βi ≤ 1} = {b + ∑

m
i=1 γibi | γi ≥ − 1

m+1
und ∑

m
i=1 γi ≤ 1

m+1}. Dann gilt aber V := {b + ∑
m
i=1 γibi | |γi| < 1

m(m+1)} ⊆ S und V ist offen
und nicht leer, denn V = f (U), wobei f :Rm→Y definiert durch f (x1, ...,xm) := b+∑

m
i=1 xibi

ein Homöomorphismus ist und U := {(x1, ...,xm) | |xi|< 1
m(m+1)} offen ist.

11.3.20 Korollar

a) Für ein m dimensionales Simplex S⊆ Rm gilt S◦ 6= /0 (offener Kern in Rm).
b) Jede kompakte und konvexe Menge K ⊆ Rm mit K◦ 6= /0 ist zu einem m dimensionalen
Simplex S⊆ Rm homöomorph.
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Beweis: Folgt aus Lemma 11.3.18 und 11.3.19.

11.3.21 Verallgemeinerter Fixpunktsatz von Brouwer

Sei /0 6= K eine kompakte konvexe Teilmenge des Rn. Dann hat jede stetige Abbildung
f : K→ K einen Fixpunkt.

Beweis: Wir betrachten Y := 〈K〉 und einen geeigneten Homöomorphismus g : Y → Rm,
der zugleich ein Isomorphismus ist (Basisvektoren werden einander zugeordnet). g(K) ist also
kompakt und konvex ⊆Rm, mit g(K)◦ 6= /0. Es gibt also ein m dimensionales Simplex S⊆Rm

und einen Homöomorphismus h : S→ g(K). Die Abbildung h−1 ◦ g ◦ f ◦ g−1 ◦ h hat einen
Fixpunkt, h−1 ◦g◦ f ◦g−1 ◦h(x) = x und somit f (g−1(h(x))) = g−1(h(x)). Die Abbildung f
hat also auch einen Fixpunkt!

11.4 Topologische Vektorräume
Um den Brouwerschen Fixpunktsatz auf allgemeinere Räume übertragen zu können, brauchen
wir einige Hilfsmittel aus der Theorie topologischer Vektorräume. Diese sind hier zusammen
getragen.

11.4.1 Definition

topologischer Vektorraum: Ein topologischer Vektorraum ist ein topologischer Raum (X ,τ),
der zusätzlich eine Vektorraumstruktur hat, derart dass die Addition und skalare Multiplikation
stetig sind. Präziser:
+ : X×X → X ist stetig und
· :K×X → X ist stetig.
Wir beschränken uns auf den Fall K = C oder R. Die Stetigkeit von + bedeutet also: Zu
x+y ∈W ∈ τ gibt es U,V ∈ τ mit x ∈U , y ∈V und U +V ⊆W . Die Stetigkeit von · bedeutet:
Zu kx ∈W ∈ τ gibt es U : offen in K, V ∈ τ mit k ∈U , x ∈V und U ·V ⊆W .
Für ein festes y ∈ X bzw k ∈K\{0} sind die Abbildungen φy bzw ψk definiert durch φy(x) :=
x + y und ψk(x) := kx Homöomorphismen. Das heißt also jede offene Menge U ist von der
Gestalt U = x+V , wobei 0 ∈V ∈ τ . Man kann sich für die meisten Aussagen also auf offene
Mengen, die die 0 enthalten beschränken. Wir führen noch zwei abkürzende Schreibweisen
ein: ẋ := {A ⊆ X | x ∈ A} und U (x) := {A ⊆ X | A ist Umgebung von x}. Die Menge aller
offener Mengen welche x enthalten, schreibt sich dann einfach als ẋ∩ τ .
Wir nennen eine Teilmenge A von X balanciert, wenn kA⊆ A ist, für jedes k ∈K mit |k| ≤ 1.
Der Raum X heißt lokal konvex, wenn die 0 eine Umgebungsbasis aus offenen, konvexen
Mengen hat.
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11.4.2 Lemma

Sei (X ,τ) ein topologischer Vektorraum, und W ∈U (0). Dann gibt es ein symmetrisches
U ∈ ẋ∩ τ mit U +U ⊆W .

Beweis: Übung.

11.4.3 Lemma

Sei X ein topologischer Vektorraum, K,C⊆X , K: kompakt, C: abgeschlossen und K∩C =
/0, dann gibt es V ∈ 0̇∩ τ mit (K +V )∩ (C +V ) = /0.

Beweis: Alles ist klar, wenn K = /0, also K 6= /0. Wähle ein x∈K und U ∈ ẋ∩τ mit U∩C = /0.
Dann ist U−x ∈ 0̇∩ τ , also gibt es Vx ∈ 0̇∩ τ mit Vx =−Vx (symmetrisch) und Vx +Vx +Vx +
Vx ⊆U − x. Nun gilt Vx +Vx +Vx ⊆ Vx +Vx +Vx +Vx und somit x +Vx +Vx +Vx ⊆U , also
insbesondere (x +Vx +Vx +Vx)∩C = /0. Dann aber auch (x +Vx +Vx)∩ (C +Vx) = /0 (sonst
y ∈ x+Vx +Vx und y ∈C +Vx = C−Vx, also y = x+v1 +v2 = c−v3 und dann (x+Vx +Vx +
Vx)∩C 6= /0). Nun ist (x +Vx)x∈K eine offene Überdeckung von K, also K ⊆ (x1 +Vx1)∪ ...∪
(xn +Vxn) für endlich viele x. Setze V := Vx1 ∩ ...∩Vxn . Dann ist K +V ⊆

⋃n
i=1(xi +Vxi +V )⊆⋃n

i=1(xi +Vxi +Vxi). Aber (xi +Vxi +Vxi)∩ (C +Vxi) = /0, also auch (K +V )∩ (C +V ) = /0.
Bemerkung: Wenn der Topologische Vektorraum also ein T1-Raum ist, so ist er bereits ein
Hausdorff-Raum (T2).

11.4.4 Lemma

a) Jede Umgebung der 0 enthält eine offene balancierte Umgebung der 0.
b) Jede konvexe Umgebung der 0 enthält eine offene konvexe balancierte Umgebung der
0.

Beweis: a) Sei V ∈ U (0). Da die skalare Multiplikation stetig ist, ist φ := {W ∈ 0̇ ∩
τ | ∀ t (|t| ≤ 1 ⇒ tW ⊆V )} 6= /0. Dann ist V ∗ :=

⋃
φ die gewünschte Menge.

b) Sei U ∈ U (0) konvex. Setze A :=
⋂
|a|=1 aU . Wir wählen uns ein balanciertes W ∈ U (0)

mit W ⊆U . Mit |a| = 1 folgt W = aW ⊆ aU , also W ⊆ A. Mit U ist auch aU konvex, damit
auch A und dann auch A◦ (Wenn Y konvex ist, so ist es auch Y ◦. Es gilt tY ◦+(1− t)Y ◦ ⊆ Y .
Da die erste Menge aber offen ist gilt auch ⊆ Y ◦.).
Bleibt noch zu zeigen, dass A◦ balanciert ist. Sei dazu |t| ≤ 1 ⇒ t = rb mit 0 ≤ r ≤ 1 und
|b|= 1. Dann ist
tA = rbA =

⋂
|a|=1 rbaU =

⋂
|a|=1 raU ⊆

⋂
|a|=1 aU = A, da auch aU konvex ist mit 0 ∈ aU .

A ist also balanciert und damit auch A◦ (Wenn Y balanciert ist, so ist es auch Y ◦. Denn
ψa(x) := ax ist ein Homöomorphismus, also ψ(Y ◦) = (ψ(Y ))◦. Damit gilt tY ◦ = ψt(Y ◦) =
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(ψt(Y ))◦ = (tY )◦ ⊆ Y ◦.).
A◦ ist also die gesuchte Menge.

11.4.5 Lemma

a) Sei X ein topologischer Vektorraum, X ein T1-Raum und f :Kn→ X linear. Dann ist f
stetig.
b) Sei Y ein n-dimensionaler Teilraum von X , dann ist jeder Isomorphismus f : Kn→ Y
ein Homöomorphismus.
c) Das Y aus b) ist abgeschlossen.

Beweis: a) Für j = 1, ...,n sei Pj :Kn→K die natürliche Projektion, e1, ...,en die standard
Basis von Kn. Ferner bezeichne φ die Addition und ψ die skalare Multiplikation (in X). Dann
folgt f (z) = ∑

n
i=1 ψ(pi(z), f (ei)). Und da φ bzw ψ stetig sind, ist es auch f .

b) Sei S := {z ∈ Kn | ‖z‖ = 1}, B := {z ∈ Kn | ‖z‖ ≤ 1} und K := f (S). Dann ist K kom-
pakt und 0 6∈ K. Also gibt es V ∈ 0̇∩ τ , V : balanciert, mit V ∩K = /0. Setze E := f−1(V ) =
f−1(V ∩Y ) ⇒ E ∩ S = /0. Dann ist aber 0 ∈ E, außerdem ist E balanciert und somit weg-
weise zusammenhängend. Zusammen ergibt dies E ⊆ B. f−1 : Y →Kn ist aber von der Form
f−1 = ( f−1

1 , ..., f−1
n ), für lineare fi : Y →K. U := V ∩Y ist eine offene Umgebung der 0 in Y

und f−1
i ist auf U beschränkt (E ⊆ B), d.h. | f−1

i (u)| ≤ z≥ 0 für alle u ∈U . Dann ist f−1
i aber

auch stetig (aufgrund der Linearität, reicht es diese auf der 0 nachzuweisen: Wenn ε > 0, so
folgt für u ∈ (ε/z)U sofort | f−1

i (u)| < ε .) Mit den f−1
i ist dann aber auch f−1 stetig. Das f

stetig ist, wissen wir bereits und bijektiv ist es ja sowieso schon.
c) Seien f und V wie aus b). Wir wählen uns ein y ∈Y . Es gibt dann ein t > 0, so dass y ∈ tV .
Nun ist Y ∩ tV ⊆ f (tB) ⊆ f (tB) und tB ist kompakt, also auch f (tB). Damit ist f (tB) aber
auch abgeschlossen und somit y ∈ Y ∩ t ⊆ f (tB)⊆ Y . Das heißt: Y ist abgeschlossen.

11.4.6 Definition

Fréchet Raum, total beschränkt Ein Fréchet Raum ist ein topologischer Vektorraum, des-
sen Topologie durch eine vollständige invariante Metrik erzeugt wird. Invariant heißt dabei
d(x + z,y + z) = d(x,y) (für alle x,y,z). Aus den metrischen Räumen kennen wir bereits das
Konzept der totalen Beschränktheit. Eine Teilmenge E eines metrischen Raumes X heißt to-
tal beschränkt, wenn es für jedes ε > 0 endliche viele Punkte aus X gibt, so dass die Kugeln
mit Radius ε um diese Punkte bereits ganz E überdecken. Diese Konzept kann man auch
für beliebige topologische Vektorräume formulieren. Eine Teilmenge E ⊆ X heißt dann total
beschränkt, wenn es zu jeder Umgebung U der 0 eine endliche Teilmenge F ⊆ X gibt mit
E ⊆ F +U .
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11.4.7 Lemma

Sei E ⊆ Rn und x ∈ convex(E). Dann liegt x bereits in der konvexen Hülle von höchstens
n+1 Punkten aus E.

Beweis: Es genügt zu zeigen, dass wenn k > n und x = ∑
k+1
i=1 tixi eine konvexe Kombi-

nation von k + 1 Vektoren aus Rn ist, x dann bereits eine konvexe Kombination von k die-
ser Vektoren ist. Wir betrachten dazu die lineare Abbildung γ : Rk+1 → Rn ×R, definiert
durch γ(a1, ...,ak+1) = (∑k+1

i=1 aixi,∑
k+1
i=1 ai). Wegen dim(ker (γ)) + dim(im(γ)) = k + 1 und

dim(im(γ))≤ n+1 gilt dim(ker (γ))≥ 1. Also gibt es (a1, ...,ak+1) mit (mindestens) einem
ai 6= 0 und ∑

k+1
i=1 aixi = 0, bzw. ∑

k+1
i=1 ai = 0. Wir setzen nun λ := min{ti/|ai| | ai 6= 0} und

ci := ti− λai (für alle i). Dann gilt ∑
k+1
i=1 cixi = x, ∑

k+1
i=1 ci = 1 und ci ≥ 0 (für alle i). Aber

mindestens eines der ci ist 0! Damit ist die Aussage bewiesen.

11.4.8 Lemma

a) Seien A1, ...,An kompakte konvexe Mengen in einem topologischen Vektorraum, dann
ist auch convex(A1∪ ...∪An) kompakt.
b) Wenn X ein lokalkonvexer topologischer Vektoraum ist und E ⊆ X total beschränkt,
dann ist auch convex(E) total beschränkt.
c) Wenn X ein Fréchet Raum ist und K ⊆ X kompakt, dann ist auch convex(K) kompakt.
d) Wenn K ⊆ Rn kompakt ist, dann auch convex(K).

Beweis: Sei S := {(s1, ...,sn) | si ≥ 0 und ∑
n
i=1 si = 1}. Setze A := A1× ...×An und definiere

f : S×A→ X durch f (s,a) := ∑
n
i=1 siai. Damit definieren wir nun K := f (S×A). K ist dann

kompakt, außerdem K ⊆ convex(A1∪ ...∪An). Das auch die umgekehrte Inklusion gilt sieht
man folgendermaßen:
Als erstes halten wir fest, dass Ai ⊆ K gilt (für alle i). Und nun zeigen wir noch, dass K auch
konvex ist. Seien dazu (s,a) und (t,b) aus S×A und α +β = 1 mit α,β ≥ 1. Dann rechnet man
einfach nach, dass α f (s,a)+β f (t,b) = f (u,c) ist, wobei u = αs+β t und die Komponenten
von c so aussehen ci = (αsiai +β tibi)/(αsi +β ti). Damit ist a) bewiesen.
b) Sei U eine beliebige Umgebung der 0 in X . Wähle dann eine konvexe Umgebung V der 0
in X mit V +V ⊆U . Nach Voraussetzung an E gibt es dann eine endliche Teilmenge F ⊆ X
mit E ⊆ F +V . Also auch E ⊆ convex(F)+V . Die letzte Menge ist aber konvex (als Summe
zweier konvexer Mengen). und damit also auch convex(E) ⊆ convex(F)+V . Nun folgt aber
aus a), dass convex(F) eine kompakte Menge ist. Also gibt es eine endliche Menge F1 ⊆ X
mit convex(F) ⊆ F1 +V . Insgesamt bekommen wir convex(E) ⊆ F1 +V +V ⊆ F1 +U . und
damit ist convex(E) total beschränkt (da U beliebig gewählt wurde).
c) Abschlüsse total beschränkter Mengen in metrischen Räumen sind wieder total beschränkt
und demzufolge in vollständigen metrischen Räumen sogar kompakt. Insbesondere sind aber
kompakte Mengen total beschränkt, also nach b) auch deren konvexe Hüllen. Und da der Raum
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vollständig ist, sind diese wiederum kompakt.
d) Sei S := {(s1, ...,sn+1) | si ≥ 0 und ∑

n+1
i=1 si = 1} und K ⊆ Rn kompakt. Definieren wir die

Abbildung λ : S×Kn+1 → Rn durch λ (s,x1, ...,xn+1) := ∑
n+1
i=1 sixi, so stellen wir mit Hilfe

des vorigen Lemmas fest, dass convex(K) = λ (S×Kn+1). Da λ stetig ist, folgern wir, dass
convex(K) kompakt ist.

11.5 Fixpunktsatz von Schauder-Tychonoff und Leray-Schauder
Prinzip

Kommen wir nun zum spektakulären Fixpunktsatz von Schauder-Tychonoff. Dazu führen wir
einige wichtige Konzepte aus der Theorie der Fixpunkte ein. Für eine Umfassende Darstellung
verweise ich auf (Andrzej Granas / James Dugundji: Fixed Point Theory).

11.5.1 Definition

kompakten Abbildung Unter einer kompakten Abbildung f : X → Y , für zwei top. Räume,
verstehen wir eine stetige Abbildung, derart dass f (X) in einer kompakten Teilmenge von Y
enthalten ist. Für eine Abbildung S : X→P(Y ) definieren wir S−1 : Y →P(X) und S∗ : Y →
P(X) durch S−1(y) := {x ∈ X | y ∈ S(x)} und S∗(y) := X \S−1(y). Mit einem Fixpunkt einer
solchen mengenwertigen Funktion S : X →P(X), meinen wir ein x ∈ X mit x ∈ S(x).
Im Folgenden seien X ,Y Teilmengen topologischer Vektorräume und S : X →P(Y ) eine
mengenwertige Funktion.
Wenn Y konvex ist und die Abbildung S nicht leere konvexe Werte annimmt und S−1(y) offen
ist für jedes y ∈ Y , dann heißt S eine F-Abbildung (F von Ky Fan).
Wenn X konvex ist und die Abbildung S offene Werte annimmt und S−1(y) nicht leere konvexe
Mengen sind (für jedes y ∈ Y ), dann heißt S eine F∗-Abbildung.
Die Menge aller solcher F-Abbildungen bzw F∗-Abbildungen bezeichnen wir mit F(X ,Y )
und mit F∗(X ,Y ). Um vertrauter mit der Notation zu werden, empfehle ich folgende Übung:
S ∈ F∗(X ,Y ) ⇔ S−1 ∈ F(Y,X).

11.5.2 Satz

Fan-Browder (nicht Brouwer) Sei X eine kompakte, konvexe Teilmenge eines top. Vek-
torraumes und T ∈ F(X ,X), oder T ∈ F∗(X ,X). Dann hat T einen Fixpunkt (im oben
beschriebenen Sinn).

Beweis: Es genügt den Fall T ∈ F(X ,X) zu betrachten (Warum?). Na gut; als nächstes stel-
len wir fest, dass T ∗(y)= X \T−1(y) kompakt ist (für jedes y∈Y ). Außerdem gilt

⋂
y∈Y T ∗(y)=

X \
⋃

y∈Y T−1(y) = /0. Wegen der Kompaktheit muss es also y1, ...,yn ∈ Y geben mit T ∗(y1)∩
...∩ T ∗(yn) = /0. Sei L := 〈y1, ...,yn〉 der von den yi aufgespannte endliche Unterraum und
sei C := convex(y1, ...,yn). Wir haben also dim(L) := m ≤ n und somit ist L isomorph und
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homöomorph zu Rm. Insbesondere ist C auch kompakt. Sei nun d eine Metrik auf L, wel-
che die Topologie erzeugt. Nun ist L∩ T ∗(yi) abgeschlossen in L. Also d(y,L∩ T ∗(yi)) =
0 ⇔ y ∈ L∩T ∗(yi). Da

⋂n
i=1(L∩T ∗(yi)) = /0, folgt λ (y) := ∑

n
i=1 d(y,L∩T ∗(yi)) > 0 für al-

le y ∈C. Die Funktion f : C→C definiert durch f (c) := (λ (c))−1
∑

n
i=1 d(c,L∩T ∗(yi))yi ist

stetig (Warum?). Das heißt, es gibt ein c0 ∈ C mit f (c0) = c0 (folgt aus dem verallgemei-
nerten Fixpunktsatz von Brouwer). Setze I := {i ∈ {1, ...,n} | d(c0,L∩T ∗(yi)) > 0}. Nun ist
c0 ∈ convex({yi | i ∈ I}) \

⋃
i∈I T ∗(yi). Angenommen c0 6∈ T (c0). Dann gibt es ein i0 ∈ I mit

yi0 6∈ T (c0), denn T (c0) ist konvex. Dann ist aber c0 6∈ T−1(yi0), also c0 ∈ T ∗(yi0), was ein Wi-
derspruch ist! Das heißt, es gilt bereits c0 ∈ T (c0). Wir haben also einen Fixpunkt gefunden.

11.5.3 Lemma

Sei X eine Teilmenge eines lokalkonvexen topologischen Vektorraums Z. Sei außerdem
V die Menge aller konvexen, symmettrischen und offenen Umgebungen der 0 in Z und
f : X→ X eine kompakte Abbildung (bzgl. der Teilraumtopologie). Wenn für jedes U ∈V
ein x ∈ X existiert, mit f (x)− x ∈U , dann hat f einen Fixpunkt.

Beweis: Nehmen wir das Gegenteil an, d.h. ∀x∈X : f (x) 6= x. Dann gibt es für jedes x ein Vx
und Wx aus V mit 1) (x+Vx)∩ ( f (x)+Wx) = /0 und 2) f ((x+Vx)∩X)⊆ f (x)+Wx. Aufgrund
der Kompaktheit der Abbildung, ist f (X) kompakt in X . Es gibt also x1, ...,xk ∈ f (X)⊆ X mit
f (X) ⊆

⋃k
i=1(xi + 1

2Vxi). Setze nun U :=
⋂k

i=1
1
2Vxi . Wenn also x ∈ X , dann f (x) ∈ xi + 1

2Vxi

für ein i. Dann kann aber x nicht in xi +Vxi sein, denn sonst wäre ja f (x) ∈ xi +Wxi , also
(xi +Vxi)∩ ( f (xi)+Wxi) 6= /0. Nun ist f (x)+ 1

2Vxi ⊆ xi + 1
2Vxi +

1
2Vxi ⊆ xi +Vxi und somit x 6∈

f (x)+ 1
2Vxi . Dann aber auch x 6∈ f (x)+U , im Widerspruch zur Voraussetzung.

11.5.4 Lemma

Sei /0 6= C eine kompakte konvexe Teilmenge eines lokal konvexen top. Vektorraums X , U
eine offene symmetrische konvexe Umgebung der 0 und f : C→ X eine stetige Abbildung,
mit f (C)⊆C +U . Dann gibt es ein x ∈C mit f (x)− x ∈U .

Beweis: Wir definieren T : C→P(C) durch T (x) := {y ∈C | y ∈ f (x)+U}= C∩ ( f (x)+
U). Nun ist letztere Menge nicht leer (Warum?) und konvex und außerdem ist T−1(x) = {y ∈
C | x ∈ T (y)} = {y ∈ C | x ∈ f (y)+U} = {y ∈ C | f (y) ∈ x +U} = f−1(x +U) (wegen der
Symmetrie). f−1(x+U) ist aber offen und somit T ∈ F(C,C). Das heißt es gibt ein x ∈C mit
x ∈ T (x) und somit x ∈ f (x)+U .
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11.5.5 Fixpunktsatz von Schauder-Tychonoff (1. Variante)

Sei /0 6= C eine konvexe Teilmenge eines lokalkonvexen top. Vektorraumes X , außerdem
sei X ein T1-Raum und f : C→C eine kompakte Abbildung. Dann hat f einen Fixpunkt.

Beweis: Sei V eine beliebige offene, konvexe und symmetrische Umgebung der 0 und
f (C) ⊆

⋃k
i=1(xi +V ) (Kompaktheit!) mit xi ∈ C. Wenn K := convex(x1, ...,xk) bezeichnet,

dann gilt offensichtlich f (K)⊆ f (C)⊆ K +V und K ist kompakt und konvex. Nach dem vo-
rigen Lemma gibt es also ein x ∈ K mit f (x)−x ∈V . Da V eine beliebige offene, konvexe und
symmetrische Umgebung der 0 war, folgt aus dem anderen Lemma die Existenz eines p ∈C
mit f (p) = p.

11.5.6 Fixpunktsatz von Schauder-Tychonoff (2. Variante)

Sei (X ,τ) ein lokal konvexer topologischer Vektorraum, (X ,τ) außerdem T1, /0 6= C ⊆ X ,
C: kompakt und konvex und f : C→C stetig. Dann gibt es ein p ∈C mit f (p) = p.

Beweis: Wenn C sogar kompakt ist, dann ist die Abbildung offensichtlich kompakt und hat
somit einen Fixpunkt.

11.5.7 Definition

vollstetig Seien X ein metrischer und Y ein topologischer Raum. Eine stetige Abbildung f :
X → Y heißt vollstetig, wenn für jede beschränkte Teilmenge A⊆ X der Abschluß des Bildes
kompakt ist (also f (A) ist kompakt).

11.5.8 Fixpunktsatz von Schauder-Tychonoff für normierte Räume

Sei C eine beschränkte, abgeschlossene und konvexe Teilmenge eines normierten Raumes
X und f : C→C vollstetig. Dann hat f einen Fixpunkt.

Beweis: Offensichtlich ist die Abbildung f kompakt!

Zur Auflockerung mal ne klitzekleine Anwendung, die die Wirkungsweise von Fixpunkt-
prinzipien ganz gut verdeutlicht.

11.5.9 Beispiel

Es gibt eine stetige Funktion f : [0,1]→ R, welche die Gleichung f (x) =
∫ 1

0 sin(x+ f 2(t))dt
erfüllt. (Hinweis: Man verwende die Menge {T ( f ) | f : [0,1]→ R stetig }, wobei T ( f )(x) :=∫ 1

0 sin(x+ f 2(t))dt, den Satz von Arzela-Ascoli und einen Fixpunktsatz.)
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Ein tiefliegendes Prinzip zur ”Gewinnung” von Fixpunkten ist das Leray-Schauder Prinzip.
Das Interessante ist hierbei, dass Objekte, deren Existenz man (noch) nicht nachgewiesen hat,
gewissen Ungleichungen genügen müssen, woraus dann die Existenz von Fixpunkten folgt.

11.5.10 Leray-Schauder Prinzip

Sei X ein normierter Vektorraum, und f : X → X eine kompakte, oder vollstetige Abbil-
dung. Dann hat f einen Fixpunkt, falls eine der drei folgenden Bedingungen erfüllt ist.

a) ∃r > 0∀ t ∈ [0,1)∀x(x = t f (x) ⇒ ‖x‖ ≤ r),
b) ∃r > 0∀x(‖x‖= r ⇒ ‖ f (x)‖ ≤ r),
c) ∃r > 0∀x(‖x‖= r ⇒ ∀λ > 1 : λx 6= f (x)),

Beweis: Es gelte a). Sei M := {x ∈ X | ‖x‖ ≤ 2r} und S : M→ M definiert durch S(x) :=
f (x), falls ‖ f (x)‖ ≤ 2r und S(x) := 2r‖ f (x)‖−1 f (x) für ‖ f (x)‖ ≥ 2r. M ist konvex (klar) und
S ist stetig (folgt aus der Stetigkeit der Norm und dem Klebelemma, siehe Mini-Skript). Wir
zeigen nun, dass S auch kompakt ist. Dazu genügt es zu zeigen, dass jede Folge aus S(M)
(der Abschluss in M) eine konvergente Teilfolge hat (diese konvergiert dann bereits in S(M)),
denn dann ist S(M) kompakt (X ist ein metrischer Raum). Sei also (xn)n∈N eine Folge aus
M. Wir betrachten zwei Fälle. 1. Fall: Es gibt eine Teilfolge (x′n) mit ‖ f (x′n)‖ ≤ 2r (für alle
n), dann ist S(x′n) = f (x′n) und die Kompaktheit bzw. Vollstetigkeit von f erledigt den Rest.
2. Fall: Es gibt keine solche Teilfolge. Dann gibt es zu jeder Teilfolge ein Folgenelement xk
mit ‖ f (xk)‖ > 2r. Wählt man die Teilfolgen geschickt, so kann man sich auf diese Weise
eine Teilfolge (x′n) konstruieren, so dass ‖ f (x′n)‖ > 2r ist, für alle n. Wieder nutzen wir die
Kompaktheit bzw. Vollstetigkeit von f und verschaffen uns eine Teilfolge (der Teilfolge) (x′′n)
mit f (x′′n)→ y∈X (für n→∞). Das heißt aber ‖ f (x′′n)‖−1→‖y‖−1. Das bedeutet aber S(x′′n) =
2r‖ f (x′′n)‖−1 f (x′′n)→ 2r‖y‖−1y ∈ M (für n→ ∞). Da S als kompakt erkannt ist liefert uns
der Fixpunktsatz von Schauder-Tychonoff (2. Variante) nun ein x ∈ M mit S(x) = x. Wenn
‖ f (x)‖> 2r wäre, dann ist x = S(x) = t f (x), mit t := 2r‖ f (x)‖−1 < 1. Aus der Voraussetzung
folgt dann ‖x‖ ≤ r im Widerspruch zu ‖x‖ = ‖S(x)‖ = 2r. Also ist ‖ f (x)‖ ≤ 2r und damit
x = S(x) = f (x).

b) impliziert c), also setzen wir nun c) voraus. Setzen wir dazu K := {x ∈ X | ‖x‖ ≤ r}.
Dann definieren wir eine Abbildung h : X → K durch h(x) = x, für x ∈ K und h(x) = r‖x‖−1x
für x 6∈ K. Die Abbildung h ist stetig (folgt leicht aus dem Klebelemma). Nun ist auch die
Einschränkung f|K von f auf K stetig und kompakt bzw vollstetig und demzufolge, ist es auch
die Nacheinanderausführung h◦ f|K (also kompakt bzw. vollstetig). Das heißt es gibt es einen
Punkt x ∈ K mit h ◦ f|K(x) = x, da K offensichtlich konvex, beschränkt und abgeschlossen
ist. Wir zeigen noch, dass f (x) auch in K liegt. Wenn nicht, dann ist ‖ f (x)‖ > r. Nun ist
x = h(x) = h( f (x)) = r‖ f (x)‖−1 f (x), also ‖x‖= r und f (x) = λx, wobei λ = ‖ f (x)‖r−1 > 1,
im Widerspruch zur Voraussetzung! Also ist f (x)∈K und deshalb x = h(x) = h( f (x)) = f (x).
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12 Lokal-endliche Systeme und Metrisierbarkeit
”Die absurdeste 9/11 Verschwörungstheorie von allen, ist die offizielle Story der US-
Regierung, dass ein kranker Bin Laden aus einer Höhle in Afghanistan mit seinen 19
Amateuren, die beste und teuerste Luftwaffe der Welt ausschaltete und Amerika ange-
griffen hat.”

Freeman (http://alles-schallundrauch.blogspot.com/)

12.1 Lokal-endliche Systeme und parakompakte Räume
In diesem Abschnitt geben wir eine Einführung in die Theorie lokal-endlicher Systeme und
parakompakter Räume. Letztere werden sich als eine höchst interessante und wichtige (für
viele Bereiche der Mathematik; insbesondere die höhere Analysis) gemeinsame Verallgemei-
nerung kompakter topologischer Räume und metrischer Räume herausstellen.

12.1.1 Definition

parakompakt Sei (X ,τ) ein topologischer Raum. Ein System (Si)i∈I von Teilmengen von X
heißt Punkt-endlich, wenn für jedes x ∈ X die Menge {i | x ∈ Si} endlich ist.
Das System (Si)i∈I heißt lokal-endlich, wenn für jedes x ∈ X ein U ∈ τ existiert mit x ∈
Uderart, dass die Menge {i | U ∩ Si 6= /0} endlich ist. S heißt σ -lokal-endlich, wenn S =⋃

∞
n=0 Sn ist und die Sn lokal-endlich sind.

(Tj) j∈J heißt eine Verfeinerung (oder einfach feiner) von (Si)i∈I , falls ∀ j∈ J ∃ i∈ I mit Tj ⊆ Si.
Der topologischer Raum (X ,τ) heißt parakompakt, falls jede offene Überdeckung von X eine
lokal-endliche und offene, Verfeinerungs-Überdeckung hat.

12.1.2 Lemma

Sei (X ,τ) ein top. R. und (Ai)i∈I ein lokal-endliches System. Dann ist auch (Ai)i∈I lokal-
endlich und es gilt:

⋃
i∈I Ai =

⋃
i∈I Ai. Insbesondere ist also die Vereinigung eines lokal-

endlichen Systems abgeschlossener Mengen wieder abgeschlossen.

Beweis: Sei (Ai)i∈I eine lokal endliche Familie. Sei weiter x ∈
⋃

i∈I Ai. Also x ∈ Ai für ein
gewisses i ∈ I. Offensichtlich gilt dann x ∈

⋃
i∈I Ai.

Sei nun x ∈
⋃

i∈I Ai. Dann existiert ein U ∈ τ mit x ∈U und {i ∈ I |U ∩Ai 6= /0}= {i1, ..., in}.
Sei nun V :=

⋂n
k=1Vik , dann folgt ∀U ∈ τ mit x ∈ U : /0 6= (V ∩U)∩

⋃
i∈I Ai = (V ∩U)∩⋃n

k=1 Aik . Also x ∈
⋃n

k=1 Aik =
⋃n

k=1 Aik ⊆
⋃

i∈I Ai
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12.1.3 Lemma

(1) Sei (X ,τ) parakompakt und ein T2-Raum, dann ist (X ,τ) ein T3-Raum.
(2) Sei (X ,τ) ein T3-Raum mit der Eigenschaft: Zu jeder offenen Überdeckung σ von

X gibt es eine offene Verfeinerungsüberdeckung ξ mit
⋃

ξ ′ =
⋃

V∈ξ ′V für alle ξ ′ ⊆ ξ .
Dann ist (X ,τ) ein T4-Raum.

(3) Sei (X ,τ) parakompakt und ein T3-Raum, dann ist (X ,τ) ein T4-Raum.

Beweis: (1) Sei A eine abgeschlossene Teilmenge von X und b ∈ X \A, dann gibt es zu
jedem a ∈ A ein Ua ∈ ȧ∩ τ und Va ∈ ḃ∩ τ , mit Ua∩Va = /0. Es gibt dann eine lokal endliche,
offene Verfeinerung (Wi)i∈I von (Ua)a∈A, denn A als abgeschlossener Teilraum ist natürlich
auch parakompakt. Jedes Wi ist in einem Uai enthalten und zu b gibt es ein V ′ ∈ ḃ∩ τ , so dass
J := {i ∈ I | V ′∩Wi 6= /0} endlich ist. Ub :=

⋃
i∈I Wi und Vb := V ′∩

⋂
i∈J Vai sind dann offene,

disjunkte Umgebungen von A bzw b.
(2) Seien A,B disjunkte und abgeschlossene Teilmengen von X . Zu jedem b ∈ B gibt es

dann offene und disjunkte Mengen Ub,Vb mit A⊆Ub und b ∈Vb. Dann ist σ := {Vb | b ∈ B}∪
{X \B} eine offene Überdeckung von X . Sei ξ eine entsprechende Verfeinerungsüberdeckung.
Setze ξ ′ := {V ∈ ξ | V ∩B 6= /0}. Dann gilt A∩V = /0 für alle V ∈ ξ ′ (denn zu V ∈ ξ ′ gibt
es ein b ∈ B mit V ∈ Vb ⊆ X \Ub), also /0 = A∩

⋃
V∈ξ ′V = A∩

⋃
ξ ′. Setzen wir nun noch

U := X \
⋃

ξ ′ und W :=
⋃

ξ ′, so haben damit unsere disjunkten offenen Umgebungen von A
und B gefunden.

(3) Da jede offene Überdeckung eine lokal endliche Verfeinerungsüberdeckung besitzt,
folgt die Aussage sofort aus (2) und Lemma 12.1.2.

12.1.4 Bemerkung

Viele Räume sind parakompakt. Beispielsweise alle kompakten Räume (klar), aber auch al-
le metrischen Räume (siehe weiter unten) und auch gutartige Lindelöf-Räume, wie wir als
nächstes sehen.

12.1.5 Satz

Sei (X ,τ) ein Lindelöf-Raum und zusätzlich T3. Dann ist X parakompakt und damit ins-
besondere auch T4.

Beweis: Sei (Oi)i∈I eine offene Überdeckung von X . Zu x ∈ X wählen wir ein ix ∈ I und
ein Ux ∈ τ mit x ∈ Ux ⊆ Ux ⊆ Oix (dies geht, da der Raum T3 ist). Sei nun (Uxk)k∈N eine
abzählbare Teilüberdeckung von (Ux)x∈X (die x0, ... sind entsprechend abzählbar viele Punkte
aus X). Für n ∈N setze Wn := Oixn

\
⋃

k<nUxk , natürlich W0 = Oix0
. Die Wn, n ∈N bilden somit

eine offene Verfeinerungsüberdeckung der (Oi)i∈I und sind (als Mengensystem) aber auch
lokal endlich. Denn für jedes x∈ X können wir ein minimales Nx ∈N wählen mit x∈UxNx

und
somit UxNx

∩Wn = /0, für Nx < n.
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12.1.6 Lemma

Sei (X ,τ) ein topologischer Raum und C(X ,τ) ≤ m (Souslin Zahl), für eine unendliche
Kardinalzahl m. Außerdem sei γ ⊆ τ lokal-endlich. Dann ist |γ| ≤ m.

Beweis: O.B.d.A. ist γ unendlich und /0 6∈ γ . Dann gibt es für jedes x ∈ X ein Ox ∈ ẋ∩ τ ,
so dass γx := {g ∈ γ | g∩Ox 6= /0} endlich ist. Wir bilden Z := {(xα)α<δ | ∀β < δ : xβ ∈⋃

(γ \
⋃

α<β γxα
), δ : Ordinalzahl}. Offensichtlich ist Z 6= /0 und wir können Z partiell ordnen:

(xα)α<δ1 ≤ (yα)α<δ2 :⇔ δ1 ≤ δ2 und ∀α < δ1 : xα = yα . Man rechnet leicht nach, dass
Ketten aus Z eine obere in Z gelegene Schranke haben und demzufolge maximale Elemente in
Z existieren (Lemma von Zorn). Sei (xα)α<δ ein solches. Es gilt dann γ =

⋃
α<δ γxα

(Beweis!).
Für jedes xβ , mit β < δ ∃gβ ∈ γ \

⋃
α<β γxα

mit xβ ∈ gβ . Für jedes β < δ setze dann
Oβ := gβ ∩ [

⋂
g∈γ\γx

β

(X \ g)]. Es gilt xβ ∈ Oβ ∈ τ . Man rechnet unmittelbar nach, dass die

Oα , α < δ paarweise disjunkt sind und deshalb δ ≤ C(X ,τ) ≤ m gilt. Dann ist aber auch
|γ|= |

⋃
α<δ γxα

| ≤C(X ,τ), da δ ≤C(X ,τ) und alle |γxα
| ≤C(X ,τ).

12.1.7 Korollar

Wenn die Souslin-Zahl eines parakompakten Raumes abzählbar ist, dann ist er ein
Lindelöf-Raum (beispielsweise ist die Souslin-Zahl eines separablen Raums abzählbar).

12.1.8 Satz

Sei (X ,τ) ein T4-Raum und γ = {gα | α < Ω} eine Punkt-endliche offene Überdeckung
von X (γ wird durch die ordinale Abzählung {gα | α < Ω} wohlgeordnet). Dann gibt es
eine offene Überdeckung (Uα)α<Ω mit X =

⋃
α<ΩUα und Uα ⊆ gα (∀α < Ω).

Beweis: Sei γ = {gα | α < Ω}. Wir zeigen die Existenz einer Folge (Uα)α<Ω offener Men-
gen, welche für alle α < Ω folgende Eigenschaft hat:
1) Uα ⊆ gα und 2) X = (

⋃
δ≤α Uδ )∪ (

⋃
α<δ gδ ) (∗)

Der Induktionstart erfolgt bei 0. Für g0 ∈ γ definieren wir A0 := X \
⋃

g∈γ\{g0} g ⊆ g0. Dann
gibt es ein offenes U0 mit A0 ⊆U0 ⊆U0 ⊆ g0. U0 hat demnach die Eigenschaft (∗).
Seien nun für alle β < α Uβ definiert, mit 1) Uβ ⊆ gβ und 2) X = (

⋃
δ≤β Uδ )∪ (

⋃
β<δ gδ ), so

setze Aα := X \ [(
⋃

β<α Uβ )∪ (
⋃

α<δ gδ )].
Wir zeigen: X = (

⋃
β<α Uβ )∪(

⋃
α≤δ gδ ). Die eine Inklusion ist klar. Für die andere sei x ∈ X .

Dann ist {g ∈ γ | x ∈ g}= {gδ1, ...,gδn} mit δi < δ j für i < j. Falls α ≤ δn, dann x ∈
⋃

α≤δ gδ .
Falls hingegen δn < α , so ist x ∈ (

⋃
δ≤δn

Uδ )∪ (
⋃

δn<δ gδ ) und demnach x ∈
⋃

δ≤δn
Uδ ⊆⋃

β<α Uβ .
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Wir erhalten somit Aα ⊆ gα und da Aα abgeschlossen ist gibt es ein offenes Uα mit Aα ⊆
Uα ⊆Uα ⊆ gα und somit auch X = (

⋃
β≤α Uβ )∪ (

⋃
α<δ gδ ). Damit ist (∗) gezeigt!

Wir wählen nun für x ∈ X das minimale α < Ω mit x ∈ gα . Dann folgt x ∈ (
⋃

δ≤α Uδ )∪
(
⋃

α<δ gδ ), also x ∈
⋃

δ≤α Uδ , insgesamt also X =
⋃

α<ΩUα .

12.1.9 Definition

lokal dominant: Eine Teilmenge α ⊆P(X) eines topologischen Raumes (X ,τ) heißt lokal
dominant, wenn zu jedem x ∈ X ein O ∈ ẋ∩ τ existiert, so dass {A ∈ α | O 6⊆ A} endlich ist.
Offensichtlich gilt: α ist lokal dominant⇔ {X \A | A ∈ α} ist lokal-endlich.

12.1.10 Definition

Filter vom Typ P: Ein Filter ψ in einem topologischen Raum (X ,τ) ist vom Typ P, wenn jede
lokal dominante Teilfamilie α ⊆ψ , bestehend aus abgeschlossenen Mengen einen konvergen-
ten Oberfilter hat. Der Filter ψ braucht keinen konvergenten Oberfilter haben.

Kompakte Räume konnten wir elegant mittels Filterkonvergenz beschreiben. Eine ähnliche
solche Beschreibung gibt es auch für parakompakte Räume:

12.1.11 Satz

(X ,τ) ist parakompakt g.d.w. jeder Filter vom Typ P einen konvergenten Oberfilter hat.

Beweis: Sei X parakompakt. Annahme es existiert ein Filter φ vom Typ P, welcher keinen
konvergenten Oberfilter hat. Setze U := {X \P |P∈ φ}. Dann ist U eine offene Überdeckung
von X (Sei x∈ X . Annahme: Für alle P∈ φ gilt x∈ P, dann gilt ∀O∈ ẋ∩τ ∀P∈ φ : P∩O 6= /0.
Also existiert ein filterψ mit (ẋ∩ τ)∪φ ⊆ ψ und somit ψ → x; Widerspruch!).
Nun existiert eine lokal endliche Verfeinerungs-Überdeckung V von U . Dann ist α := {X \
V |V ∈ V } lokal dominant und α ⊆ φ . Also gibt es einen konvergenten Filter ψ mit α ⊆ ψ .
Sagen wir ψ→ x für ein gewisses x ∈ X . Also x ∈

⋂
S∈ψ S⊆

⋂
V∈V (X \V ) = X \

⋃
V∈V V = /0,

Widerspruch!
Sei andererseits U eine offene Überdeckung. Falls U eine endliche Teilüberdeckung hat, sind
wir fertig. Andernfalls setze α := {X \

⋃
V∈V V | V ⊆ U , V : endlich }. Jeder Filter ψ mit

α ⊆ ψ ist nicht konvergent! Also ist der von α erzeugte Filter φ NICHT vom Typ P. Und
deshalb gibt es eine lokal dominante Teilfamilie β ⊆ φ aus abgeschlossenen Mengen, welche
keinen konvergenten Oberfilter hat.
Für F ∈ β wähle ein endliches U (F)⊆U , mit X \

⋃
A∈U (F) A⊆ F , also X \F ⊆

⋃
A∈U (F) A.

Setze nun noch H (F) := {A∩ (X \F) | A ∈U (F)} und schlussendlich R :=
⋃

F∈β H (F).
Zu zeigen bleibt: R ist eine lokal endliche offene Verfeinerungs-Überdeckung von U .
Sei x∈ X . Da β keinen konvergenten Oberfilter hat, gibt es ein O∈ ẋ∩τ und F1, ...,Fn ∈ β mit
O∩F1∩ ...∩Fn = /0, also x ∈ X \Fi ⊆

⋃
A∈U (Fi) A für ein gewisses i ∈ {i1, ..., in}. Dann gibt es

aber auch ein A ∈U (Fi) mit x ∈ A∩ (X \Fi). Dass die Elemente aus R offen sind und R eine
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Verfeinerung von U ist, ist trivial. R ist auch lokal endlich. Denn x ∈ X bedeutet ∃Vx ∈ ẋ∩ τ

mit δ := {F ∈ β | Vx∩ (X \F) 6= /0} = {F ∈ β | Vx 6⊆ F} ist endlich. Aus {O ∈R | O∩Vx 6=
/0} ⊆

⋃
F∈δ H (F) folgern wir dann, dass auch R lokal endlich ist.

12.1.12 Lemma

Sei f : X → Y stetig und φ ein Filter vom Typ P (in X). Dann ist f (φ) ein Filter vom Typ
P auf Y .

Beweis: Übung. Hinweis: Sei β ⊆ f (φ) eine lokal dominante Familie aus abgeschlossenen
Mengen. Dann ist auch α := { f−1(B) | B∈ β} lokal dominant bestehend aus abgeschlossenen
Mengen. Dann gibt es einen Filter ...

12.1.13 Satz

Sei (Y,σ) parakompakt, f : X→Y stetig und abgeschlossen (Bilder abgeschlossener Men-
gen sind wieder abgeschlossen) und zusätzlich mit der Eigenschaft, dass f−1(y) kompakt
ist ∀y ∈ Y (in X). Dann ist auch (X ,τ) parakompakt.

Beweis: Sei φ ein Filter vom Typ P auf X . Dann ist der Bildfilter auch vom Typ P und daher
besitzt er einen konvergenten Oberfilter (gegen ein Element y). Das heißt ∀V ∈ ẏ∩σ ∀P ∈ φ :
f (P)∩V 6= /0 (∗).
Annahme

⋂
P∈φ P = /0, dann gibt es P1, ...Pn ∈ φ mit P1∩ ...∩Pn∩ f−1(y) 6= /0 ( f−1(y) ist kom-

pakt!). Nun ist P := P1∩ ...∩Pn ∈ φ und abgeschlossen, also folgt aus (∗) y∈ f (P) = f (P) und
damit P∩ f−1(y) 6= /0; Widerspruch. Also

⋂
P∈φ P 6= /0 und somit gibt es einen konvergenten

Oberfilter.

12.1.14 Korollar

Sei X kompakt und Y parakompakt, dann ist X×Y parakompakt.

Beweis: Betrachte π : X×Y → Y definiert durch π(x,y) := y und wende Satz 12.1.13 an.

12.1.15 Bemerkung

Das Produkt zweier Parakompakter Räume muss nicht parakompakt sein, wie Beispiel 12.1.17
zeigt.
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12.1.16 Beispiel: Sorgenfrey-Linie

Wir betrachten die reellen Zahlen mit der durch B := {[a,b) | a≤ b} erzeugten Topologie τ ,
also (R,τ) mit τ := top(B). Hier ist B bereits eine Basis von τ . (R,τ) heißt dann Sorgenfrey-
Linie (oder Gerade). B ist eine Basis aus offenen und zugleich auch abgeschlossenen Mengen
- hieraus folgt sofort T3. Außerdem ist τR ⊆ τ und damit die Sorgenfrey-Linie auch ein T1-
Raum; sie ist sogar ein T4-Raum. Um letzteres zu beweisen, holen wir ein wenig weiter aus.
Wir zeigen nämlich (R,τ) ist ein Lindelöf-Raum. Dann ist sie nämlich auch parakompakt
(Satz 12.1.5). Da sie auch T2 ist, ist sie dann auch T4 (Lemma 12.1.3). Zeigen wir also (R,τ)
ist Lindelöf.

Sei dazu Oi, i ∈ I eine offene Überdeckung von R. Jedes Oi ist eine Vereinigung von Ele-
menten aus B. Wir können also gleich von einer Überdeckung der Form [ai,bi), i ∈ I ausge-
hen. Die Idee ist nun, eine abzählbare Verfeinerungsüberdeckung σ zu finden. Dann wählen
wir einfach für jedes Element O aus σ eines der [ai,bi), welches O enthält und die entspre-
chenden [ai,bi) bilden dann die abzählbare Teilüberdeckung. Also: Zu jedem i ∈ I und jedem
x∈ (ai,bi) finden wir ein (p,q), mit p,q∈Q und x∈ (p,q)⊆ [ai,bi). Problematisch sind noch
die a j, die in keinem (ai,bi) enthalten sind. Seien a j, j ∈ J alle diese a. Dann sind [a j,b j),
j ∈ J paarweise disjunkte Intervalle (o.B.d.A. alle nicht leer). Von denen kann es aber höchs-
ten abzählbar viele geben (denn jedes von ihnen enthält rationale Zahlen). Unser σ bilden wir
nun aus all den (p,q) und zusätzlich den (höchstens) abzählbar vielen [a j,b j), j ∈ J. Damit ist
σ abzählbar und klarerweise eine Verfeinerungsüberdeckung.

12.1.17 Beispiel: Sorgenfrey-Ebene

R×R versehen mit der Produkttopologie τ× τ der Sorgenfrey-Linie heißt dann Sorgenfrey-
Ebene. Die Sorgenfrey-Ebene ist nun nicht T4 und damit, da sie trotzdem T2 ist, auch nicht
parakompakt. Um das zu beweisen, verwenden wir Lemma 3.1.9. Wir bemerken dann zuerst,
dass sie separabel ist (sie also eine abzählbare dichte Teilmenge enthält z.B. Q×Q). Außer-
dem ist A := {(x,−x) | x ∈ R} ein abgeschlossener (ist ja schon in R×R mit euklidischer
Metrik abgeschlossen) und diskreter Teilraum ({(x,−x)}= A∩([x,x+1)× [−x,−x+1)) und
[x,x +1)× [−x,−x +1) ist offen in der Sorgenfrey-Ebene). Nun gilt |A| ≥ |P(Q×Q)|, also
ist die Sorgenfrey-Ebene nicht T4.

12.2 Parakompakte Räume und Parakompaktheit metrischer
Räume

Jeder metrische Raum ist parakompakt. Das vorrangige Ziel dieses Abschnitts ist der Beweis
dieser fundamentalen Eigenschaft metrischer Räume. Auf dem Weg dorthin werden uns einige
höchst interessante Charakterisierungen parakompakter Räume begegnen (die nicht weniger
wichtig sind).
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12.2.1 Grundlegendes aus der Theorie der Überdeckungen

Für ein γ ⊆P(X) und A⊆ X nennen wir γ(A) :=
⋃
{B ∈ γ | B∩A 6= /0} den (γ-)Stern von A.

Für A = {x} schreiben wir auch einfach γ(x).
Wir nennen eine Familie γ ⊆P(X) eine Sternverfeinerung von λ ⊆P(X), wenn zu

jedem x∈ X ein B∈ λ existiert, mit γ(x)⊆ B ({γ(x) | x∈ X} ist also eine Verfeinerung von λ ).
γ heißt starke Sternverfeinerung von λ , wenn es zu jedem A ∈ γ ein B ∈ λ gibt, mit γ(A)⊆ B.
Eine Folge {γn | n ∈ N} heißt (stark) sternmonoton, falls γn+1 eine (starke )Sternverfeinerung
von γn ist.

Für α, β ⊆P(X) schreiben wir zuweilen auch α < β , wenn α eine Verfeinerung von β

ist. Ist α eine Sternverfeinerung von β , so schreiben wir auch α <∗ β . Ist α sogar eine starke
Sternverfeinerung von β , so schreiben wir auch α <∗∗ β .

Wir nennen eine Familieγ ⊆P(X) diskret, wenn es zu jedem x ∈ X ein U ∈ ẋ∩ τ gibt,
welches höchstens ein g ∈ γ schneidet.

Allgemein vereinbaren wir folgendes: Haben wir für eine Familie γ ⊆P(X) die Eigen-
schaft XYZ definiert, dann heißt σ -XYZ, dass sich γ schreiben lässt, also γ =

⋃
n∈N γn, wobei

die γn die Eigenschaft XYZ haben.
Sei ξ ⊆P(P(X)) und A ⊆ X . Unter dem ξ -Kern von A verstehen wir 〈A〉ξ := {x ∈

A | ∃γ ∈ ξ mit /0 6= γ(x)⊆ A}. Wir nennen eine Menge A ξ -perfekt, wenn A = 〈A〉ξ .

12.2.2 Lemma

Seien γ,γ ′,γ ′′,λ ⊆P(X).
a) Sei γ eine Sternverfeinerung von λ . Dann gilt für jedes A⊆ X : γ(γ(A))⊆ λ (A).
b) Sei γ eine Sternverfeinerung von γ ′ und γ ′ sei eine Sternferfeinerung von γ ′′. Dann

ist γ eine starke Sternverfeinerung von γ ′′.
c) Sei (X ,τ) ein top. Raum und γ eine offene Überdeckung von X , also γ ⊆ τ und

X =
⋃

γ . Dann gilt γ(A)⊆ γ(γ(A)), für jedes A⊆ X .

Beweis: a) Sei x ∈ γ(γ(A)). Dann gibt es ein g ∈ γ mit x ∈ g und g∩ γ(A) 6= /0. Sei y ∈
g∩ γ(A). Dann gibt es ein g′ ∈ γ mit y ∈ g′ und g′∩A 6= /0. Nun ist γ(y)⊆ L, für ein gewisses
L ∈ λ und g∪g′ ⊆ γ(y). Also L∩A 6= /0 und somit x ∈ g∪g′ ⊆ γ(y)⊆ L⊆ λ (A).

b) Sei g∈ γ und x∈ g. Nun existiert ein g′′ ∈ γ ′′ mit γ ′(x)⊆ g′′. Dann folgt γ(g)⊆ γ(γ(x))⊆
γ ′(x)⊆ g′′.

c) Sei x ∈ γ(A). Dann gibt es ein g ∈ γ mit x ∈ g. Dann gilt aber g∩ γ(A) 6= /0. Also x ∈ g⊆
γ(γ(A)).

12.2.3 Lemma

a) Sei ξ ⊆P(τ) für einen top. Raum (X ,τ). Dann ist jede ξ -perfekte Menge offen.
b) Sei ξ = {γn | n ∈ N} eine Stern-monotone Folge von offenen Überdeckungen von X .
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Dann ist der ξ -Kern 〈U〉ξ einer beliebigen Teilmenge U von X eine offene ξ -perfekte
Menge.
c) Sei λ eine offene Überdeckung und ξ = {γn | n ∈ N} eine sternmonotone Folge mit
γn ⊆ τ und ∀x ∈ X∃Ox ∈ ẋ∩ τ ∃n ∈ N∃U ∈ λ mit /0 6= γn(Ox) ⊆U . Dann existiert eine
offene Verfeinerungsüberdeckung σ von λ bestehend aus ξ -perfekten Mengen.

Beweis: a) ist trivial. b) Es bleibt 〈〈U〉ξ 〉ξ = 〈U〉ξ zu zeigen. Offensichtlich 〈〈U〉ξ 〉ξ ⊆
〈U〉ξ . Sei also x ∈ 〈U〉ξ . Dann existiert ein n ∈ N mit x ∈ γn(x) ⊆U . Sei y ∈ γn+1(x). Dann
gilt γn+1(y) ⊆ γn+1(γn+1(x)) ⊆ γn(x) ⊆U . Also γn+1(x) ⊆ 〈U〉ξ und somit x ∈ 〈〈U〉ξ 〉ξ . Die
Offenheit folgt aus a).
c) Setze σ := {〈U〉ξ |U ∈ λ}.

12.2.4 Lemma

Sei ξ := {γn | n ∈ N} stark stern-monoton, wobei alle γn offene Überdeckungen sind.
Sei weiter γ eine Überdeckung von ξ -perfekten Mengen, und ≤Wohlordnung auf γ . Für
U ∈ γ setze t(U) :=U \

⋃
{V ∈ γ |V <U}, tn(U) := {x∈ t(U) | γn(x)⊆U} und On(U) :=

γn+1(tn(U)). Dann gilt:
a) {t(U) |U ∈ γ} ist eine Überdeckung von X .
b) {tn(U) |U ∈ γ, n ∈ N} ist eine Überdeckung von X .
c) Kein Element aus γn schneidet zwei verschiedene Elemente aus {tn(U) |U ∈ γn}, für
jedes n ∈ N.
d) Kein Element aus γn+1 schneidet zwei verschiedene Elemente aus {tn(U) |U ∈ γ}.
e) {On(U) |U ∈ γ, n ∈ N} ist eine offene, σ -diskrete Verfeinerungsüberdeckung von γ .

Beweis: a) Sei x ∈ X und U ∈ γ minimal bzgl. ≤, mit x ∈U . Dann offensichtlich x ∈ t(U).
b) Sei x ∈ X . Dann x ∈ t(U). für U ∈ γ . Also x ∈U = 〈U〉ξ . Dan heißt ∃n ∈N mit γn(x)⊆U .
Also x ∈ tn(U).
c) Sei W ∈ γn mit W ∩tn(U) 6= /0 6=W ∩tn(V ), für U,V ∈ γ . Sei x∈W ∩tn(U) und y∈W ∩tn(V ).
Dann aber auch W ⊆ γn(x) ⊆U und W ⊆ γn(y) ⊆ V . Falls U 6= V , dann o.B.d.A. U < V und
somit y ∈ t(V )⊆V \U ⊆V \W - Widerspruch.
d) Sei W ∈ γn+1 mit W ∩On(U) 6= /0 6= W ∩On(V ), für U,V ∈ γ . Folglich gibt es P,Q ∈ γn+1
mit P∩ tn(U) 6= /0 6= Q∩ tn(V ) und P∩W 6= /0 6= Q∩W . Nun existiert R ∈ γn mit γn+1(W )⊆ R.
Dann aber P,Q⊆ R und somit R∩ tn(U) 6= /0 6= R∩ tn(V ) und aus c) folgt U = V .
e) Es gilt On(U) ⊆U , denn wenn P ∈ γn+1 mit P∩ tn(U) 6= /0, gibt es a ∈ P∩ tn(U). Es gibt
aber auch Q ∈ γn mit γn+1(P) ⊆ Q. Also a ∈ Q und somit P ⊆ γn+1(P) ⊆ Q ⊆ γn(a) ⊆ U .
{On(U) |U ∈ γ, n ∈ N} ist also eine offene Verfeinerungsüberdeckung von γ . Aus d) folgt
ferner σ -diskret.
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12.2.5 Satz

Sei ξ = {γn | n∈N} sternmonoton und jedes γn eine offene Überdeckung von X . Weiter sei
λ eine offene Überdeckung von X mit der Eigenschaft ∀x ∈ X ∃Ox ∈ ẋ∩τ ∃P ∈ λ ∃n ∈N
mit /0 6= γn(Ox)⊆ P. Dann hat λ eine σ -diskrete offene Verfeinerungsüberdeckung.

Beweis: Sei ξ ′ := {γk | k = 2n, n ∈ N}. Dann ist ξ ′ stark sternmonoton. Weiterhin gilt:
∀x ∈ X ∃Ox ∈ ẋ∩ τ ∃P ∈ λ ∃n ∈ N mit /0 6= γ2n(Ox) ⊆ P. Sei δ eine offene Verfeinerungs-
überdeckung von λ bestehend aus ξ ′-perfekten Mengen. Wählen wir auf δ eine beliebige
Wohlordnung und wenden das vorige Lemma an, so erhalten wir eine σ -diskrete offene Ver-
feinerungsüberdeckung von δ , die dann offensichtlich auch λ verfeinert.

12.2.6 Lemma

Jede offene Überdeckung eines metrisierbaren Raumes (X ,d) besitzt eine σ -diskrete (ins-
besondere also σ -lokal-endlich), offene Verfeinerungsüberdeckung. (X ,d) besitzt sogar
eine σ -diskrete Basis B.

Beweis: Sei λ eine offene Überdeckung von X . Für jedes n ∈N setze γn := {K(x,2−n) | x ∈
X} und dann ξ := {γn | n ∈ N}. Offensichtlich ist ξ dann sternmonoton und alle Vorausset-
zungen vom vorigen Satz sind erfüllt.

Für den zweiten Teil der Behauptung wenden wir den ersten (eben bewiesenen) Teil auf
die Überdeckungen γn an. Es gibt nämlich zu γn eine σ -diskrete Verfeinerungsüberdeckung
Bn =

⋃
{δ n

k | k ∈N} (die δ n
k sind diskret). Da |N×N|= |N| ist B :=

⋃
{δ n

k | (n,k)∈N×N}=⋃
n∈NBn dann die gesuchte σ -diskrete Basis.

12.2.7 Lemma

Jede σ -lokal-endliche offenen Überdeckung eines topologischen Raums (X ,τ) hat eine
lokal-endliche (nicht notwendig offene) Verfeinerungsüberdeckung.

Beweis: Sei γ =
⋃

n∈N γn eine offene Überdeckung von X , mit lokal-endlichen γn. Für jedes
x ∈ X und n ∈ N wähle ein Oxn ∈ ẋ∩ τ , so dass {g ∈ γn | g∩Oxn 6= /0} endlich ist. Für jedes
n setze Wn :=

⋃
(
⋃

k≤n γk) ,λ0 := γ0 und λn := {g \Wn−1 | g ∈ γn}. Schließlich bilden wir
λ :=

⋃
n∈Nλn. Dann ist λ die gesuchte lokal-endliche Verfeinerungsüberdeckung.

Überseckungseigenschaft: Sei x ∈ X . Wähle n minimal mit x ∈
⋃

γn. Dann gibt es ein g ∈ γn
mit x ∈ g\Wn−1. Das λ eine Verfeinerung von γ ist, ist klar!

Zu zeigen bleibt, dass λ lokal-endlich ist. Sei x ∈ X und n minimal mit x ∈
⋃

γn. Dann gibt
es ein g ∈ γn mit x ∈ g. Setze Vx := (

⋂
k≤n Oxk)∩ g ∈ ẋ∩ τ . Dann ist {A ∈ λ | A∩Vx 6= /0}

endlich!
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12.2.8 Lemma

Wenn (X ,τ) ein T3-Raum ist, und jede offene Überdeckung eine lokal-endliche (nicht
notwendig offene) Verfeinerungsüberdeckung hat, dann hat jede offene Überdeckung auch
eine lokal-endliche Verfeinerungsüberdeckung aus abgeschlossenen Mengen.

Beweis: Sei wieder U eine offene Überdeckung. Für x ∈ X sei Ux ∈U ∩ ẋ. Nun ist X ein
T3-Raum, also ∃Wx ∈ ẋ∩τ mit x ∈Wx ⊆Wx ⊆Ux. Da (Wx)x∈X eine offene Überdeckung ist ∃
lokal-endliche Verfeinerungsüberdeckung (Ok)k∈K . Natürlich ist auch (Ok)k∈K eine Überde-
ckung. Nun gilt aber allgemein für beliebiges V ∈ τ: V ∩O 6= /0 ⇔ V ∩O 6= /0. Also ist auch
(Ok)k∈K lokal-endlich. Außerdem haben wir ∀k ∈ K ∃x ∈ X mit Ok ⊆Wx, also Ok ⊆Wx ⊆Ux.
und damit ist (Ok)k∈K eine lokal-endliche Verfeinerung aus abgeschlossenen Mengen.

12.2.9 Lemma

Wenn jede offene Überdeckung eines topologischen Raums (X ,τ) eine lokal-endliche Ver-
feinerungsüberdeckung aus abgeschlossenen Mengen hat, dann ist X parakompakt.

Beweis: Sei σ ⊆ τ eine Überdeckung und α eine lokal-endlich Verfeinerungsüberdeckung
aus abgeschlossenen Mengen. Für jedes x ∈ X gibt es ein Ox ∈ ẋ∩ τ , welches nur endlich
viele A aus α schneidet. Nun ist auch (Ox)x∈X eine offene Überdeckung, zu der es wieder
eine lokal-endliche Verfeinerungsüberdeckung β aus abgeschlossenen Mengen gibt. Zu jedem
A ∈ α wählen wir ein UA ∈ σ mit A⊆UA und bilden VA := UA∩ (X \

⋃
{B ∈ β | B∩A = /0})

und δ := {VA | A ∈ α}. Offensichtlich ist δ eine Verfeinerungsüberdeckung von σ . Die VA
sind auch offen, denn β ist lokal-endlich. Zu zeigen bleibt noch, dass δ lokal endlich ist. Sei
x∈ X . Dann gibt es ein Wx ∈ ẋ∩τ , so dass βx := {B∈ β | B∩Wx 6= /0} endlich ist. Jedes B∈ βx
schneidet nur endlich viele A ∈ α . Seien dies jeweils αx

B. Dann ist αx :=
⋃

B∈βx
αx

B endlich.
Wir zeigen nun Wx∩VA = /0 für A ∈ α \αx. Nun gilt Wx ⊆

⋃
B∈βx

B und wenn A ∈ α \αx, dann
folgt für jedes B ∈ βx : A∩B = /0. Also βx ⊆ {B ∈ β | A∩B = /0} für A ∈ α \αx. Nun gilt aber
Wx∩VA ⊆Wx \

⋃
{B ∈ β | A∩B = /0} ⊆Wx \

⋃
B∈βx

B = /0.

12.2.10 Korollar

Ein T3 Raum (X ,τ), in dem es zu jeder offenen Überdeckung eine σ -lokal-endliche offene
Verfeinerungsüberdeckung gibt, ist parakompakt.

Aus diesem Korollar folgt z.B. unmittelbar die Parakompaktheit von Lindelöf-Räumen, die
zusätzlich T3 sind (was wir weiter oben bereits elementar bewiesen haben). Aber es folgt
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auch sofort (mit Lemma 12.2.6) eines der wohl wichtigsten (und mit am häufigsten zitierten)
Ergebnisse in und außerhalb der Mengentheoretischen Topologie:

12.2.11 Satz von Stone

Jeder metrisierbare Raum ist parakompakt!

12.2.12 Korollar

Sei (X ,τ) ein lokal kompakter Hausdorfraum, der die Vereinigung abzählbar vieler kom-
pakter Teilmengen ist. Dann ist X parakompakt.

Beweis: Sei σ ⊆ τ eine offene Überdeckung von X =
⋃

i∈NAi, wobei die Ai kompakt sind.
Für i ∈ N gibt es σi: endlich ⊆ σ , mit Ai ⊆

⋃
σi. Dann ist σ∗ :=

⋃
i∈Nσi eine abzählbare

Teilüberdeckung (X ist also Lindelöf). Da X auch regulär ist, folgt aus Korollar 12.2.10 und
der Tatsache, dass abzählbare Systeme auch σ -lokal-endlich sind, dass X parakompakt ist.

12.2.13 Satz

Sei (X ,τ) ein parakompakter Raum und α eine lokal-endliche Familie abgeschlossener
Mengen. Dann gibt es eine lokal-endliche Familie offener Mengen σ , die von α verfeinert
wird.

Beweis: Zu jedem x ∈ X gibt es ein Vx ∈ ẋ∩ τ , welches nur endlich viele Elemente aus
α nicht leer schneidet. Zu {Vx x ∈ X} gibt es eine lokal-endliche offene Verfeinerungs-
überdeckung γ . Für jedes x ∈ X bilden wir dann gx := Vx ∩ [

⋂
(γ ∩ ẋ)] und für jedes A ∈ α

bilden wir WA :=
⋃

x∈A gx. Offensichtlich gilt A ⊆WA ∈ τ . Wir müssen noch zeigen, dass
σ := {WA | A ∈ α} lokal-endlich ist. Nun ist γ jedenfalls lokal-endlich. Es gibt also ein
Ux ∈ ẋ∩ τ , welches höchstens endlich viele Elemente aus γ nicht leer schneidet. Zeigen wir,
dass Ux auch höchstens endlich viele Elemente aus σ trifft. Nehmen wir also - um einen Wi-
derspruch abzuleiten - an, dass es ein x ∈ X gibt, so dass Ux unendlich viele Elemente aus σ

schneidet. Wir wählen ein A0 ∈ α mit Ux∩WA0 6= /0. Sei dann y0 ∈ A0 mit gy0 ∩Ux 6= /0. Sind
A0, ...,An ∈ α und yi ∈ Ai, für i = 0, ...,n gewählt. Dann gibt es somit höchstens endlich viele
A ∈ α , das mit einem der gyk für k = 0, ...,n einen nicht leeren Schnitt hat. Nach Vorausset-
zung finden wir also in jedem Fall ein An+1 ∈ α mit Ux∩WAn+1 6= /0 und gyk ∩An+1 = /0, für
k = 0, ...,1. Sei dann yn+1 ∈ An+1 mit Ux∩gyn+1 6= /0. Für k < l folgt aus gyl ∩Al 6= /0 = gyk ∩Al
und der Tatsache, dass die Ai paarweise verschieden sind unmittelbar gyk 6= gyl . Da Ux jedes
der gyn , für n ∈ N nicht leer schneidet, folgt aus der Konstruktion der gyn , dass Ux bereits
unendlich viele Elemente aus γ nicht leer schneidet - ein Widerspruch.
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12.3 Ist doch alles voll normal!
Mit Sternverfeinerungen hatten wir bereits im letzten Abschnitt zu tun. Hier stellen wir Räume
mit der Eigenschaft, dass jede offene Überdeckung eine Sternverfeinerung hat, an die Spitze
der Untersuchungen. Es wird sich herausstellen, dass dies just die parakompakten Hausdorff-
Raume sind.

12.3.1 Definition

voll normal Ein topologischer Raum (X ,τ) heißt voll-T4 oder auch stern-T4 (bzw. voll normal
oder stern normal, falls X zusätzlich T1 ist), wenn jede offene Überdeckung eine Sternverfei-
nerungsüberdeckung hat.

Wir nennen ihn collectionwise T4 (bzw. collectionwise normal, in Verbindung mit T1)12,
wenn es zu jeder diskreten Familie α , bestehend aus abgeschlossenen Mengen eine Familie σ

offener paarweise disjunkter Mengen gibt, mit der Eigenschafft: Immer wenn A,B∈ α , A 6= B
und A ∈V ∈ σ , B ∈W ∈ σ , dann V 6= W .

12.3.2 Lemma

Sei (X ,τ) collectionwise T4 und α eine diskrete Familie bestehend aus abgeschlossenen
Mengen. Dann lässt sich das σ aus der Definition sogar diskret wählen.

Beweis: Sei α eine diskrete Familie, bestehend aus abgeschlossenen Mengen und U =
{UA | A ∈ α} eine Familie paarweise disjunkter offener Mengen, welche von α verfeiniert
wird. Dann ist F :=

⋃
A∈α A abgeschlossen und F ⊆

⋃
A∈α UA ∈ τ . Da der Raum natürlich T4

ist, gibt es ein W ∈ τ mit F ⊆W ⊆W ⊆
⋃

A∈α UA. Für A ∈ α setze dann VA := UA∩W und
V := {VA | A ∈ α} ist diskret mit FA ⊆VA ⊆UA.

12.3.3 Lemma

Sei (X ,τ) collectionwise T4 und α diskret, bestehend aus abgeschlossenen Mengen und
σ ⊆ τ mit α < σ . Dann gibt es ein diskretes ξ ⊆ τ mit α < ξ < σ .

Beweis: Sei η ⊆ τ diskret mit: Immer wenn A,B ∈ α , A 6= B und A ∈V ∈ η , B ∈W ∈ η ,
dann V 6= W . Für jedes A ∈ α sei TA ∈ η mit A ⊆ TA und VA ∈ σ mit A ⊆ VA. Setze ξ :=
{TA ∩VA | A ∈ α}. Ist nun x ∈ X , so gibt es ein Wx ∈ ẋ∩ τ mit |{T ∈ η | T ∩Wx 6= /0}| ≤ 1.
Offensichtlich gilt dann |{T ∈ ξ | T ∩Wx 6= /0}| ≤ 1.

12Ich ziehe die englische Bezeichnung einer holprigen deutschen Übersetzung vor.
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12.3.4 Lemma

Sei (X ,τ) voll-T4 und α ⊆P(X) diskret. Dann gibt es eine diskrete Familie σ ⊆ τ , welche
von α verfeinert wird (mit A,B ∈ α , A 6= B und A ∈ V ∈ σ , B ∈W ∈ σ , dann V 6= W ).
Insbesondere gelten die Implikationen voll T4 ⇒ collectionwise T4 ⇒ T4 (die zweite
Implikation ist trivial).

Beweis: ∀x ∈ X ∃Ox ∈ ẋ∩ τ mit |{A ∈ α | A∩Ox 6= /0}| ≤ 1. Die offene Überdeckung
{Ox | x ∈ X} hat eine offene Sternverfeinerungsüberdeckung λ . Wir wählen dann eine offene
Sternverfeinerungsüberdeckung γ . Für jedes A ∈ α setzen wir VA :=

⋃
{g ∈ γ | g∩A 6= /0} und

σ := {VA | A ∈ α}. Offensichtlich ist α eine Verfeinerung von σ . Zeigen wir, dass σ diskret
ist. Sei dazu x ∈ X . Es gibt dann ein gx ∈ γ mit x ∈ gx. Angenommen gx∩VA 6= /0 6= gx∩VB,
für A 6= B. Dann gibt es g1,g2 ∈ γ mit gx∩g1 6= /0 6= gx∩g2 und g1∩A 6= /0 6= g2∩B. Nun ist
γ(gx)⊆Oz, für ein gewisses z ∈ X (γ ist eine starke Sternverfeinerung von {Ox | x ∈ X}). Nun
gilt Oz∩A = /0 oder Oz∩B = /0. Aber g1∪g2 ⊆ γ(gx) - Widerspruch!

12.3.5 Lemma

Für ein beliebiges δ ⊆P(X) führen wir folgende Bezeichnungen ein: δ+(x) :=
⋂
{D ∈

δ | x ∈ D}, δ−(x) := X \
⋃
{D | D ∈ δ und x 6∈ D}, δ 0(x) := δ+(x)∩ δ−(x) und 〈δ 〉 :=

{δ 0(x) | x ∈ X}.
Nun zum Lemma: Seien λ und γ lokal-endliche offene Überdeckungen von X und
{L | L ∈ λ} eine Verfeinerung von γ . Dann ist {〈δ 〉(V ) | V ∈ λ} eine offene Verfeine-
rungsüberdeckung von γ , wobei δ := λ ∪ γ . Insbesondere ist ξ := 〈δ 〉 auch eine Sternver-
feinerung von γ . Zur Bezeichnung siehe auch Definition 12.2.1.

Beweis: Zunächst einmal ist auch δ eine lokal-endliche Überdeckung, δ+(x) eine offene x
enthaltende Menge (nur endlich viele offene Mengen sind am Schnitt beteiligt) und x∈ δ−(x).
Aufgrund der lokalen Endlichkeit von δ ist ferner δ−(x) = X \ {D ∈ δ | x 6∈ D} offen und
somit auch δ 0(x) eine offene und x enthaltende Menge. {〈δ 〉(V ) |V ∈ λ} ist somit eine offene
Überdeckung von X . Zu zeigen bleibt, dass es eine Verfeinerung von γ ist.

Sei V ∈ λ und x ∈ X mit δ 0(x)∩V 6= /0. Es gibt dann ein g ∈ γ mit V ⊆ g. Nehmen wir mal
an δ 0(x) * g. Nun ist δ 0(x) ⊆ δ+(x) ⊆ γ+(x), also ist x 6∈ g (andernfalls γ+(x) ⊆ g). Dann
ist x ∈ X \V . Nun ist aber x ∈ δ 0(x) ⊆ δ−(x) ⊆ λ−(x) ⊆ X \V - ein Widerspruch. Also gilt
δ 0(x) ⊆ g und insgesamt 〈δ 〉(V ) ⊆ g. Wie behauptet ist also {〈δ 〉(V ) | V ∈ λ} eine offene
Verfeinerungsüberdeckung von γ .
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12.3.6 Lemma

Ein topologischer Raum ist genau dann parakompakt und T3, wenn er T3 und voll T4 ist.
Insbesondere sind parakompakte T3-Räume also auch collectionwise T4.

Beweis: Wir zeigen zuerst: Parakompakt und T3 impliziert voll T4: Sei dazu σ eine offene
Überdeckung von X und γ eine zugehörige lokal-endliche Verfeinerungsüberdeckung. Wir
wählen zu jedem x ∈ X eine offene Menge Ox und ein gx ∈ γ mit x ∈Ox ⊆Ox ⊆ gx. Sei λ eine
lokal-endliche offene Verfeinerungsüberdeckung von {Ox | x ∈ X . Dann erfüllen λ und γ alle
Voraussetzungen des vorigen Lemmas und es gibt somit eine Sternverfeinerung ξ von γ , die
natürlich auch eine Sternverfeinerung von σ ist.

Setzen wir nun voraus, dass der Raum voll T4 ist. Sei λ eine beliebige offene Überdeckung.
Wir definieren dann eine Folge {γn | n ∈ N} offener Überdeckungen, mit: γ0 ist eine Sternver-
feinerungsüberdeckung von λ und γn+1 ist eine Sternverfeinerungsüberdeckung von γn. Dann
sind alle Voraussetzungen von Satz 12.2.5 erfüllt (man beachte Lemma 12.2.2) und es gibt
somit eine σ -diskrete offene Verfeinerungsüberdeckung (also auch σ -lokal-endlich) von λ .
Da der Raum auch T3 ist, ist der Beweis mit einem Verweis auf Korollar 12.2.10 beendet!

12.3.7 Lemma

Sei (X ,τ) ein top. Raum, ξ eine offene Überdeckung von X und {γn | n ∈ N} eine Folge
offener Überdeckungen von X mit der Eigenschaft: ∀x ∈ X ∃Ox ∈ ẋ∩ τ ∃Ux ∈ ξ ∃n ∈ N
mit γn(Ox)⊆Ux. Dann existiert eine Sternverfeinerungsüberdeckung δ von ξ .

Beweis: Für jedes n bilde Xn := {x ∈ X | ∃Ox ∈ ẋ∩ τ ∃Ux ∈ ξ ∃k ≤ n mit γk(Ox) ⊆Ux}.
Offensichtlich ist Xn dann offen und es gilt Xn ⊆ Xn+1 (für alle n ∈ N), bzw. X =

⋃
n∈NXn.

Wir können außerdem o.B.d.A. voraussetzen, dass γk+1 immer eine Verfeinerung von γk ist
(Warum?). Wir definieren dann δn := {Xn∩B | B ∈ γn} und δ :=

⋃
n∈N δn. Das δ eine offene

Überdeckung von X ist, ist klar. Zeigen wir, dass es auch eine Sternverfeinerung von ξ ist: Sei
x ∈ X . Wir wählen dazu ein minimales n ∈ N mit x ∈ Xn, also γn(Ox) ⊆Ux, für geeignete Ox
bzw. Ux und betrachten nun δ (x). Sei also y ∈ δ (x), das heißt y ∈ Xm∩B und x ∈ Xm∩B, für
ein gewisses B ∈ γm. Dann ist m≥ n. Da γm eine Verfeinerung von γn ist und B∩Ox 6= /0 gilt,
folgt y ∈ B⊆ γm(Ox)⊆ γn(Ox)⊆Ux. Insgesamt also δ (x)⊆Ux.

12.3.8 Satz

Wenn zu jeder offenen Überdeckung ξ eines T1-Raums eine Folge offener Überdeckungen
{γn | n∈N} existiert, so dass für jedes x∈ X ein Ox ∈ ẋ∩τ existiert, ein n∈N existiert und
ein U ∈ ξ existiert mit γn(Ox)⊆U . Dann ist (X ,τ) voll normal (also auch parakompakt).
Die Umkehrung gilt auch.
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Beweis: Folgt unmittelbar aus Lemma 12.3.7. Für die Umkehrung konstruiere man zu einer
offenen Überdeckung ξ eine Folge {γn | n ∈ N} offener Überdeckungen, wobei γ0 eine Stern-
verfeinerung von ξ ist und γk+1 eine Sternverfeinerung von γk ist. Mit dieser Folge verschafft
man sich dann leicht eine Folge, die die geforderte Eigenschaft hat (Lemma 12.2.2).

12.4 Weitere Eigenschaften parakompakter Räume
Wir geben in diesem Abschnitt zwei weitere Charakterisierungen parakompakter Räume. Zum
einen bekommen wir eine Verbindung zwischen Kompaktifizierungen eines top. Raumes X
und der Eigenschaft des Raumes parakompakt zu sein. Zum anderen lernen wir eine tieflie-
gende Überdeckungseigenschaft kennen, die sich als äquivalent zur parakompaktheit erweist.
Mit Hilfe der letzteren ist es uns dann möglich zu zeigen, dass die Eigenschaft Parakompakt in
der Klasse der Hausdorff-Räume invariant unter stetigen und abgeschlossenen Abbildungen
(das sind solche, deren Bilder abgeschlossener Mengen wieder abgeschlossen sind) ist!

12.4.1 Satz

Sei (X ,τ) ein topologischer Raum. Dann ist äquivalent:
1) (X ,τ) ist parakompakt und T2.
2) Es gibt eine Hausdorff-Kompaktifizierung cX von X , so dass X× cX normal ist.

Beweis: Sei ξ eine offene Überdeckung von X . Für O ∈ ξ wählen wir je ein VO offen in cX ,
mit O =VO∩X . Sei dann γ := {VO |O∈ ξ}. Es ist Z := cX \

⋃
V∈γ V kompakt und abgeschlos-

sen. Ebenso ist ∆ := {(x,x) | x ∈ X} ⊆ X×X abgeschlossen in cX . Nun ist X× cX normal, es
gibt also ein stetiges f : X×cX→ [0,1] mit f (∆)⊆ {0} und f (X×Z)⊆ {1}, die beiden Men-
gen sind schließlich disjunkt. Für x,y ∈ X definieren wir d(x,y) := supz∈cX | f (x,z)− f (y,z)|.
d ist zwar nicht unbedingt eine Metrik, immerhin aber eine Pseudometrik, denn es gilt 1)
d(x,y) = d(y,x), 2) x = y ⇒ d(x,y) = 0 und 3) die Dreiecksungleichung (| f (x,c)− f (z,c)| ≤
| f (x,c)− f (y,c)|+ | f (y,c)− f (z,c)| ≤ supa∈cX | f (x,a)− f (y,a)|+ sup| f (y,b)− f (z,b)|, also
auch supc∈cX | f (x,c)− f (z,c)| ≤ supa∈cX | f (x,a)− f (y,a)|+sup| f (y,b)− f (z,b)|). Die durch
τd auf X erzeugte Topologie ist allerdings nicht gleich der original Topologie τ , sondern im
allgemeinen nur gröber, also τd ⊆ τ . Zeigen wir dies:

Für x ∈ X und ε > 0 betrachten wir die Kugel K(x,ε) := {x ∈ X | d(x,y) < ε}. Wir zei-
gen K(x,ε) ∈ τ . Dazu betrachten wir U := {[0,1]∩ (r− ε/3,r + ε/3) | r ∈ [0,1]}. Dann ist
{ f−1(U) |U ∈ U } eine offene Überdeckung von X × cX . Für (x,z) mit z ∈ cX wählen wir
je ein Uz ∈ U und Gz ∈ τ bzw. in cX offene Hz mit (x,z) ∈ Gz×Hz ⊆ f−1(Uz). Dann ist
δ := {Gz×Hz | z ∈ cX} eine offen Überdeckung von {x}× cX und diese Menge ist kompakt.
Es gibt also endlich viele z1, ...,zn mit {x}× cX ⊆ Gz1×Hz1 ∪ ...∪Gzn×Hzn und x ∈ Gzk , für
k = 1, ...,n. Es ist dann x ∈ G :=

⋂n
k=1 Gzk ∈ τ . Sei y ∈ G und z ∈ cX beliebig. Es ist dann

z ∈ Hzk , für ein gewisses k ∈ {1, ...,n}. Und wir bekommen f (G×Hzk) ⊆ f (Gzk ×Hzk) ⊆U ,
für ein gewisses U ∈U . Dann ist aber diam( f (G×Hzk)) < (2/3)ε , also d(x,y)≤ (2/3)ε < ε

und damit x∈G⊆K(x,ε). Nun gibt es zu jedem x′ ∈K(x,ε) ein ε ′ mit x′ ∈K(x′,ε ′)⊆K(x,ε)

277



(Dreiecksungleichung). Zu diesem x′ gibt es damit dann ein G′ ∈ τ mit x′ ⊆ G′ ⊆ K(x′,ε ′).
Die Kugel K(x,ε) ist somit Element von τ .

Nun sind auch Pseudometrische Räume T3 (ne leichte Übung) und Lemma 12.2.6 (mit exakt
dem gleichen Beweis für Pseudometriken) zusammen mit Korollar 12.2.10 zeigt, dass (X ,τd)
parakompakt ist. Zu {K(x,1/2) | x ∈ X} bekommen wir also eine lokal-endliche Verfeine-
rungsüberdeckung α ⊆ τd . Nun ja, dann ist α aber auch lokal-endlich bezüglich τ .

Für x ∈ X und y ∈ K(x,1/2) gilt f (x,y) = | f (x,y)− f (y,y)| ≤ d(x,y) < 1/2, also f ({x}×
K(x,1/2))⊆ [0,1/2). Somit f ({x}×K(x,1/2))= f ({x}×K(x,1/2))⊆ f ({x}×K(x,1/2))⊆
[0,1/2) = [0,1/2] (gemeint ist der Abschluss bezüglich τ). Aus x ∈ X und z ∈ K(x,1/2) folgt
also f (x,z)≤ 1/2. Für alle A∈α gilt demnach A∩Z = /0. Nun ist jedes A kompakt (für A∈α),
es gibt also ein endliches γA ⊆ γ mit A⊆

⋃
γA. Wir sind fast fertig ... β := {A∩g | g ∈ γA, A ∈

α} ist nun nämlich eine lokal-endliche offene Verfeinerungsüberdeckung von ξ . Somit ist
(X ,τ) parakompakt.

12.4.2 Definition

cushioned Verfeinerung Sei (X ,τ) ein topologischer Raum und ξ ⊆P(X) bzw. ν ⊆P(X).
Wir sagen ν ist eine cushioned Verfeinerung13 von ξ , wenn es zu jedem U ∈ ν ein T (U) ∈ ξ

gibt (also eine Abbildung T : ν → ξ ), so dass
⋃

ν ′ ⊆
⋃

U∈ν ′ T (U) für alle ν ′ ⊆ ν gilt. Sind
ν = {Ua | a ∈ A} und ξ = {Va | a ∈ A} durch A indiziert, so sprechen wir von einer indi-
zierten cushioned Verfeinerung ν von ξ , wenn

⋃
a∈A′Ua ⊆

⋃
a∈A′Va ist, für jedes A′ ⊆ A. Wir

sprechen von einer σ -cushioned Verfeinerung ν von ξ , wenn ν =
⋃

n∈Nνn und jedes νn eine
cushioned Verfeinerung von ξ ist. Sprechen wir von σ -cushioned Verfeinerungsüberdeckun-
gen ν =

⋃
n∈Nνn, so muss nur ν eine Überdeckung sein - keinesfalls die νn.

Wir können uns auf indizierte cushioned Verfeinerungen beschränken, denn es gilt:
Sei ν eine cushioned Verfeinerung von ξ = {Va | a ∈ A}. Dann hat ξ auch eine indizierte

cushioned Verfeinerung λ = {Ua | a ∈ A}.
Beweis: Für a ∈ A setze Ua :=

⋃
{U ∈ ν | T (U) = Va} und weiter λ := {Ua | a ∈ A}.

Damit kommen wir zu einer sehr tiefliegenden Charakterisierung parakompakter T1-Räume:

12.4.3 Satz

Ein T1-Raum (X ,τ) in dem es zu jeder offenen Überdeckung U eine σ -cushioned Ver-
feinerungsüberdeckung gibt, ist parakompakt (insbesondere ist er also parakompakt, wenn
er immer eine cushioned Verfeinerungsüberdeckung hat). Der Leser beachte insbesondere,
dass die Verfeinerungsüberdeckung keinesfalls aus offenen oder abgeschlossenen Mengen
bestehen muss!

Beweis: Im ersten Schritt zeigen wir, dass wir zu jeder offenen Überdeckung U eine cushio-
ned Verfeinerungsüberdeckung finden können. Dann zeigen wir - und das ist zur Abwechslung

13wir benutzen wieder die englische Bezeichnung
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sehr einfach - dass (X ,τ) auch T4 ist, insbesondere also auch T3. Im dritten (und aufwendigs-
ten) Schritt zeigen wir, dass es zu jeder offene Überdeckung dann auch eine σ -lokal endliche
offene Verfeinerungsüberdeckung gibt. Mit Korollar 12.2.10 schließen wir dann, dass (X ,τ)
parakompakt ist. Machen wir uns ans Werk:

1.Schritt: Sei ξ eine beliebige offene Überdeckung von X . Dann gibt es eine σ -cushioned
Verfeinerungsüberdeckung γ =

⋃
n∈N γn, wobei die γn je eine cushioned Verfeinerung (aller-

dings nicht notwendig eine Überdeckung) von ξ sind. Zu jedem n ∈ N gibt es also eine Ab-
bildung Tn : γn→ ξ , mit der Eigenschaft aus der Definition 12.4.2. Für jedes x ∈ X setze nun
n(x) := min{n ∈ N | x ∈

⋃
γn}. Für x sei g(x) ∈ γn(x), mit x ∈ g(x). Wir setzen dann W (x) :=

[
⋃

γn(x)] \
⋃
{g | 0 ≤ n ≤ n(x), g ∈ γn und x 6∈ Tn(g)}. Nun ist x 6∈

⋃
{Tn(g) | 0 ≤ n ≤ n(x),

g ∈ γn und x 6∈ Tn(g)} ⊇
⋃
{g | 0≤ n≤ n(x), g ∈ γn, x 6∈ Tn(g)} und somit W (x) eine (nicht

notwendig offene) Umgebung von x.
Beweisen wir eine kleine Zwischenbehauptung: y 6∈ Tn(x)(g(x)) impliziert x 6∈W (y). Wir

unterscheiden zwei Fälle:
1.Fall n(x)≤ n(y), dann x ∈ g(x)⊆

⋃
{g | 0≤ n≤ n(y), g ∈ γn und y 6∈ Tn(g)} (man beachte

y 6∈ Tn(x)(g(x))). Na ja, dann aber x 6∈W (y) (folgt ja gerade aus der Definition von W (y)).
2.Fall n(y) < n(x), dann x 6∈

⋃
γn(y), also x 6∈W (y).

Für jedes P∈ ξ setzen wir nun L(P) := {x∈ X | Tn(x)(g(x)) = P} und dann λ := {L(P) | P∈
ξ}. Da x ∈ L(Tn(x)(g(x))), ist λ eine Überdeckung von X . Zeigen wir, dass es eine cushioned
Verfeinerung von ξ ist. Für Jedes L ∈ λ wählen wir ein P ∈ ξ mit L = L(P) und definieren
T (L) := P (wenn L(P) = L(P′), so P = P′). Sei nun ξ ′ ⊆ ξ und y 6∈

⋃
ξ ′. Für jedes P ∈ ξ ′ und

für jeden Punkt x ∈ L(P) erhalten wir dann Tn(x)(g(x)) = P. Also y 6∈ Tn(x)(g(x)) und mit Hilfe
der Zwischebehauptung x 6∈W (y). Und somit insgesamt L(P)∩W (y) = /0, für alle P ∈ ξ ′.
Da W (y) eine Umgebung von y ist, folgt weiter y 6∈

⋃
{L(P) | P ∈ ξ ′}. Anders ausgedrückt

bedeutet dies
⋃
{L(P) | P ∈ ξ ′} ⊆

⋃
ξ ′ =

⋃
{T (L(P)) | P ∈ ξ ′}. Die Überdeckung λ ist also

eine cushioned Verfeinerungsüberdeckung von ξ .
2.Schritt: Seien A,B abgeschlossen und disjunkt. Dann ist {X \A,X \B} eine offene Über-

deckung von X , zu der es nach Schritt 1 eine cushioned Verfeinerungüberdeckung gibt. Wie
wir bereits gesehen haben (siehe Definition 12.4.2) gibt es dann aber auch eine indizierte cus-
hioned Verfeinerungsüberdeckung {V,V ′}. Also V ∪V ′ = X und V ⊆ X \A bzw. V ′ ⊆ X \B.
Dann folgt A⊆ X \V und B⊆ X \V ′, mit (X \V )∩ (X \V ′) = /0. Der Raum ist also T4.

3.Schritt: Sei wieder ξ = {Uα | α < β}, mit |ξ | = β eine beliebige offene (indizierte,
Uα 6= Uα ′ für α 6= α ′) Überdeckung von X . Sei γ0 = {gα0 | α < β} eine indizierte cushioned
Verfeinerung von ξ . Für jdes α < β definieren wir Uα1 :=Uα \

⋃
{gδ0 | δ < α} und dann ξ1 :=

{Uα1 | α < β}. Wir zeigen ξ1 ist eine (offene) Überdeckung. Sei x∈ X . Wähle α minimal, mit
x∈Uα . Dann ist

⋃
{gδ0 | δ < α}⊆

⋃
{Uδ | δ < α} 63 x, also x∈Uα1. Sei dann γ1 = {gα1 |α <

β} eine indizierte cushioned Verfeinerung von ξ1 (und damit auch von ξ ). Es gilt dann
1)
⋃
{gδ0 | δ < α}∩gα1 = /0 und 2) gα0∩

⋃
{gδ1 | δ > α}= /0 (beides klar nach Konstruk-

tion).
Seien für 0 ≤ k ≤ n kombinatorische cushioned Verfeinerungen γk = {gαk | α < β} von ξ

gegeben, mit 1)
⋃
{gδk | δ < α}∩gαk+1 = /0 und 2) gαk∩

⋃
{gδk+1 | δ > α}= /0, für 0≤ k < n.

Definiere dann Uαn+1 := Uα \
⋃
{gδn | δ < α} und dann ξn+1 := {Uαn+1 | α < β}. Dann ist

natürlich auch ξαn+1 eine offene Überdeckung von X . Wir können dann somit eine indizierte

279



cushioned Verfeinerung γn+1 = {gαn+1 |α < β} von ξn+1 bilden. Insgesamt erhalten wir somit
eine Folge (γn)n∈N von indizierten cushioned Verfeinerungen von ξ , mit den Eigenschaften

1)
⋃
{gδn | δ < α}∩gαn+1 = /0 und 2) gαn∩

⋃
{gδn+1 | δ > α}= /0.

Für jedes n∈N und α < β können wir nun Vαn := X \
⋃
{gδn | α 6= δ < β} bilden und dann

λ := {Vαn |α < β und n∈N}. Zeigen wir, dass λ eine offene Überdeckung von X ist. Sei dazu
x ∈ X . Sei νn := min{α < β | x ∈ gαn} für jedes n∈N und νk := min{ν0,ν1, ...}. Dann ist x ∈
gνkk, also x 6∈

⋃
{gδk+1 | δ > νk}. Außerdem ist x ∈ gνk+2k+2, also x 6∈

⋃
{gδk+1 ‖ δ < νk+2}

und damit erst recht x 6∈
⋃
{gδk+1 | δ < νk}. Insgesamt somit x ∈Vνkk+1.

Es gilt weiterhin 1) Vαn ⊆Uα , für alle α < β und
2) Vαn∩Vδn = /0, für α 6= δ und n ∈ N.
Zu 1) bemerken wir Vαn = X \

⋃
{gδn | α 6= δ < β} ⊆ X \

⋃
{gδn | α 6= δ} ⊆ gαn ⊆Uα (da

γn eine Überdeckung ist). Zu 2) bemerken wir, dass nach Konstruktion Vδn∩gαn = /0 gilt. Da
Vαn ⊆ gαn, folgt dann Vαn∩Vδn = /0.

Sei nun η = {Cαn | α < β und n ∈ N} eine indizierte cushioned Verfeinerung von λ . Für
alle n ∈ N gilt somit

⋃
{Cαn | α < β} ⊆

⋃
{Vαn | α < β}. Nun ist der Raum T4, es gibt also

offene Mengen Wn mit
⋃
{Cαn | α < β} ⊆Wn ⊆Wn ⊆

⋃
{Vαn | α < β}. Für jedes n∈N bilden

wir dann χn := {Vαn∩Wn | α < β}.
Zeigen wir, dass jedes χn diskret, also insbesondere lokal-endlich ist. Sei dazu x ∈ X . 1.Fall

x ∈Wn. Dann gibt es ein α < β mit x ∈ Vαn. Also {Vδn∩Wn ∈ χn | Vαn∩ (Vδn∩Wn) 6= /0} =
{Vαn∩Wn}. 2.Fall x ∈ X \Wn. Dann ist {Vδn∩Wn ∈ χn | (X \Wn)∩ (Vδn∩Wn) 6= /0}= /0.

Zeigen wir abschließend, dass χ :=
⋃

n∈N χn eine Verfeinerungsüberdeckung von ξ ist. Nun
ja, ist x ∈ X , so gibt es α ′ < β und n ∈ N, mit x ∈Cα ′n (denn η ist eine Überdeckung von X).
Also x∈

⋃
{Cαn | α < β} ⊆Wn und somit x∈Vα ′n∩Wn ∈ χ . Sei andererseits P∈ χ , dann gibt

es α < β und n ∈ N mit P = Vαn∩Wn. Nun ist P⊆Vαn ⊆Uα ∈ ξ . Damit haben wir gezeigt,
dass χ eine σ -diskrete (also σ -lokal-endliche) offene Verfeinerungsüberdeckung von ξ ist.
Da der Raum normal ist, folgt aus Korollar 12.2.10, dass er auch parakompakt ist.

12.4.4 Korollar

Sei X ein parakompakter T2-Raum und f : X → Y eine stetige, abgeschlossene und sur-
jektive Abbildung. Dann ist auch Y ein parakompakter T2-Raum.

Beweis: X ist auch T1. Sei y∈Y und x∈ X mit f (x) = y. Da {x} abgeschlossen ist, ist somit
auch {y} abgeschlossen (als Bild von {x} unter f ). Als parakompakter T2-Raum ist X auch
T4. Zeigen wir das auch von Y . Seien A,U abgeschlossen bzw. offen in Y und A⊆U . Dann ist
f−1(A) abgeschlossen, f−1(U) offen und f−1(A) ⊆ f−1(U). Es gibt also eine offene Menge
V mit f−1(A) ⊆ V ⊆ V ⊆ f−1(U). Dann folgt A ⊆ Y \ f (X \V ) ⊆⊆ f (V ) ⊆ f (V ) ⊆U . Nun
ist W := Y \ f (X \V ) offen und f (V ) abgeschlossen und wir erhalten A⊆W ⊆W ⊆U .

Sei ξ eine offene Überdeckung von Y . Zu jedem y ∈ Y wählen wir ein offenes Wy mit
y∈Wy⊆Wy⊆Vy. Sei dann ξ ′ := {Wy | y∈Y}. Sei T1 : ξ ′→ ξ eine Abbildung mit W ⊆ T (W ),
für jedes W ∈ ξ ′. Dann ist δ := { f−1(W ) |V ∈ ξ ′} eine offene Überdeckung von X . Sei dann λ

eine lokal-endliche offene Verfeinierungsüberdeckung von δ und T2 : γ := { f (L) | L ∈ λ} →
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ξ ′ eine Abbildung mit f (L) ⊆ T2( f (L)), für alle L ∈ λ . Wir zeigen, dass γ eine cushioned
(nicht notwendige offene oder abgeschlossene) Verfeinerungsüberdeckung von ξ ist. Mit Hilfe
des vorigen Satzes schließen wir dann, dass auch Y parakompakt ist. Für beliebiges λ ′ ⊆ λ

gilt nun (man beachte, dass die Abbildung f abgeschlossen ist und lokal-endliche Systeme
Abschlusserhaltend sind):

f (
⋃

L∈λ ′ L)= f (
⋃

L∈λ ′ L)=
⋃

L∈λ f (L)⊆
⋃

L∈λ ′ f (L)⊆
⋃

L∈λ ′ f (L)= f (
⋃

L∈λ ′ L)= f (
⋃

L∈λ ′ L).
Bezeichnen wir mit T die abbildung T1 ◦T2 : γ → ξ , so folgt für ein beliebiges λ ′ ⊆ λ also⋃

L∈λ ′ f (L) =
⋃

L∈λ ′ f (L)⊆
⋃

L∈λ ′ T2( f (L))⊆
⋃

L∈λ ′ T1 ◦T2( f (L)) =
⋃

L∈λ ′ T ( f (L)).

12.5 Metakompakte und stark parakompakte Räume
Wir verallgemeinern das Konzept parakompakter Räume nun dahingehend, dass wir nur noch
Punkt-endliche offene Verfeinerungsüberdeckungen fordern. Im Anschluss daran untersuchen
wir einen Begriff, der etwas stärkeren als Parakompaktheit ist.

12.5.1 Definition

metakompakt Ein top. Raum (X ,τ) heißt metakompakt, wenn jede offene Überdeckung eine
Punkt-endliche offene Verfeinerungsüberdeckung hat.

Jeder parakompakte Raum ist also beispielsweise metakompakt. Für die Formulierung des
nächsten Satzes führen wir zwei extra Begriffe ein.

12.5.2 Definition

Ein top. R. (X ,τ) heißt metakompakt von Ordnung κ , für eine unendliche Kardinalzahl κ ,
wenn jede offene Überdeckung σ eine offene Verfeinerungsüberdeckung ξ hat derart, dass
für jedes x ∈ X gilt: |ẋ∩ξ | ≤ κ . Ein metakompakter Raum ist also metakompakt von Ordnung
κ , für jedes unendliche κ (die Umkehrung muss nicht gelten)!

Ein Raum (X ,τ) nennen wir κ-kompakt, wenn jede offene Überdeckung σ mit |σ | ≤ κ eine
endliche Teilüberdeckung hat (für eine unendliche Kardinalzahl κ). Für κ = |N| nennen wir
den Raum auch abzählbar kompakt (siehe auch Definition 4.5.16).

12.5.3 Satz

Sei (X ,τ) metakompakt von Ordnung κ und zusätzlich κ-kompakt (für eine unendliche
Kardinalzahl κ), dann ist (X ,τ) bereits kompakt!

Beweis: Sei ξ eine offene Überdeckung von X und σ eine offene Verfeinerungsüberde-
ckung von ξ derart, dass für jedes x ∈ X gilt: |ẋ∩σ | ≤ κ . Falls σ eine Teilüberdeckung σ ′

mit |σ ′| ≤ κ hat, so hat σ ′ (und damit auch ξ , denn σ ist eine Verfeinerung), wegen der
κ-Kompaktheit eine endliche Teilüberdeckung. Nehmen wir mal an, dass σ keine Teilüberde-
ckung σ ′ von Kardinalität ≤ κ hat.
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Wir wählen dann x0 ∈ X =: X0 und xn+1 ∈ X \
⋃

k≤n σ(xk) =: Xn+1. Nach Voraussetzung an
σ ist

⋃
k≤n σ(xk) 6= X , denn |

⋃
k≤n(ẋk∩σ)| ≤ κ! Wir bilden dann weiter Yn := {xk | k ≥ n}. Die

Yn sind dann abgeschlossen und es gilt Yn+1 ⊆Yn. Insbesondere haben also endlich viele einen
nicht leeren Schnitt. Da X κ-kompakt ist, insbesondere also abzählbar kompakt, gilt somit
auch

⋂
n∈NYn 6= /0 (andernfalls hätte man durch Übergang zu Komplementen eine abzählbare

offene Überdeckung, also auch eine endliche Teilüberdeckung). Sei x ∈
⋂

n∈NYn ⊆
⋂

n∈NXn.
Dann ist x ∈V , für ein gewisses V ∈ σ und es gibt dann auch ein n ∈Nmit xn ∈V (da x ∈Y0).
Dann ist aber x ∈ Xn+1 = X \

⋃
k≤n σ(xk)⊆ X \V - ein Widerspruch!

12.5.4 Korollar

Ein abzählbar kompakter und zusätzlich metakompakter (oder auch parakompakter) topo-
logischer Raum ist bereits kompakt.

Wie auch schon bei der Kompaktheit und Parakompaktheit geben wir nun eine Charakteri-
sierung metakompakter Räume durch Filterkonvergenz. Dazu noch zwei kleine Definitionen.

12.5.5 Definition

Punkt dominant: Eine Teilmenge α ⊆P(X) eines topologischen Raumes (X ,τ) heißt Punkt
dominant, wenn zu jedem x ∈ X die Menge {A ∈ α | x 6∈ A} endlich ist. Offensichtlich gilt: α

ist Punkt dominant⇔ {X \A | A ∈ α} ist Punkt-endlich.

12.5.6 Definition

Filter vom Typ M: Ein Filter ψ in einem topologischen Raum (X ,τ) ist vom Typ M, wenn
jede Punkt dominante Teilfamilie α ⊆ ψ , bestehend aus abgeschlossenen Mengen einen kon-
vergenten Oberfilter hat. Der Filter ψ braucht keinen konvergenten Oberfilter haben.

12.5.7 Satz

(X ,τ) ist metakompakt g.d.w. jeder Filter vom Typ M einen konvergenten Oberfilter hat.

Beweis: Sei X metakompakt. Annahme es existiert ein Filter φ vom Typ M, welcher keinen
konvergenten Oberfilter hat. Setze U := {X \P |P∈ φ}. Dann ist U eine offene Überdeckung
von X (Sei x∈ X . Annahme: Für alle P∈ φ gilt x∈ P, dann gilt ∀O∈ ẋ∩τ ∀P∈ φ : P∩O 6= /0.
Also existiert ein filterψ mit (ẋ∩ τ)∪φ ⊆ ψ und somit ψ → x; Widerspruch!).
Nun existiert eine Punkt-endliche Verfeinerungs-Überdeckung V von U . Dann ist α := {X \
V |V ∈ V } Punkt dominant und α ⊆ φ . Also gibt es einen konvergenten Filter ψ mit α ⊆ ψ .
Sagen wir ψ→ x für ein gewisses x ∈ X . Also x ∈

⋂
S∈ψ S⊆

⋂
V∈V (X \V ) = X \

⋃
V∈V V = /0

- Widerspruch!
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Sei andererseits U eine offene Überdeckung. Falls U eine endliche Teilüberdeckung hat, sind
wir fertig. Andernfalls setze α := {X \

⋃
V∈V V | V ⊆ U , V : endlich }. Jeder Filter ψ mit

α ⊆ ψ ist nicht konvergent! Also ist der von α erzeugte Filter φ NICHT vom Typ M. Und
deshalb gibt es eine Punkt dominante Teilfamilie β ⊆ φ aus abgeschlossenen Mengen, welche
keinen konvergenten Oberfilter hat.
Für F ∈ β wähle ein endliches U (F)⊆U , mit X \

⋃
A∈U (F) A⊆ F , also X \F ⊆

⋃
A∈U (F) A.

Setze nun noch H (F) := {A∩ (X \F) | A ∈U (F)} und schlussendlich R :=
⋃

F∈β H (F).
Zu zeigen bleibt: R ist eine Punkt-endliche offene Verfeinerungs-Überdeckung von U .
Sei x ∈ X . Da β keinen konvergenten Oberfilter hat, gibt es ein O ∈ ẋ∩ τ und F1, ...,Fn ∈ β

mit O∩F1 ∩ ...∩Fn = /0, also x ∈ X \Fi ⊆
⋃

A∈U (Fi) A für ein gewisses i ∈ {i1, ..., in}. Dann
gibt es aber auch ein A ∈U (Fi) mit x ∈ A∩ (X \Fi). Dass die Elemente aus R offen sind und
R eine Verfeinerung von U ist, ist trivial. R ist auch Punkt-endlich. Denn x ∈ X bedeutet
δ := {F ∈ β | x ∈ X \F}= {F ∈ β | x 6∈ F} ist endlich. Aus {O ∈R | x ∈O} ⊆

⋃
F∈δ H (F)

folgern wir dann, dass auch R Punkt-endlich ist.

12.5.8 Lemma

Sei f : X → Y stetig und φ ein Filter vom Typ M (in X). Dann ist f (φ) ein Filter vom Typ
M auf Y .

Beweis: Sei β ⊆ f (φ) eine Punkt dominante Familie aus abgeschlossenen Mengen. Dann
ist α := { f−1(B) | B∈ β} eine ebenfalls Punkt dominant Teilmenge von φ . Es gibt dann einen
konvergenten Filter ψ mit α ⊆ ψ . Na ja, dann ist eben f (ψ) ein konvergenter Filter auf Y mit
β ⊆ f (ψ).

12.5.9 Satz

Sei (Y,σ) metakompakt, f : X → Y stetig und abgeschlossen (Bilder abgeschlossener
Mengen sind wieder abgeschlossen) und zusätzlich mit der Eigenschaft, dass f−1(y) kom-
pakt ist ∀y ∈ Y (in X). Dann ist auch (X ,τ) metakompakt.

Beweis: Sei φ ein Filter vom Typ M auf X . Dann ist der Bildfilter auch vom Typ M und da-
her besitzt er einen konvergenten Oberfilter (gegen ein Element y). Das heißt ∀V ∈ ẏ∩σ ∀P∈
φ : f (P)∩V 6= /0 (∗).
Annahme

⋂
P∈φ P = /0, dann gibt es P1, ...Pn ∈ φ mit P1∩ ...∩Pn∩ f−1(y) 6= /0 ( f−1(y) ist kom-

pakt!). Nun ist P := P1∩ ...∩Pn ∈ φ und abgeschlossen, also folgt aus (∗) y∈ f (P) = f (P) und
damit P∩ f−1(y) 6= /0; Widerspruch. Also

⋂
P∈φ P 6= /0 und somit gibt es einen konvergenten

Oberfilter.
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12.5.10 Korollar

Sei X kompakt und Y metakompakt, dann ist X×Y metakompakt.

Beweis: Betrachte π : X×Y → Y definiert durch π(x,y) := y und wende Satz 12.5.9 an.

12.5.11 Lemma

1. Sei γ eine Punkt-endliche offene Überdeckung eines topologischen Raums (X ,τ).
Für jedes n ∈ N setzen wir Xn := {x ∈ X | |ẋ∩ γ| ≤ n} und für jedes x ∈ X setzen
wir Vx :=

⋂
ẋ∩ γ . Für jedes n ∈N sei Un ∈ τ mit Xn ⊆Un; speziell sei U0 = /0. Dann

ist jedes Xn in X abgeschlossen und zu Xn+1 \Un gibt es eine diskrete Familie αn+1
bestehend aus in X abgeschlossenen Mengen, welche Xn+1 \Un überdeckt und γ

verfeinert.

2. Sei γ eine Punktendliche offene Überdeckung eines topologischen Raums (X ,τ),
der T3 und collectionwise T4 ist. Dann gibt es zu γ eine σ -diskrete offene Verfeine-
rungsüberdeckung.

Beweis: 1. Das Xn abgeschlossen ist, folgt aus x ∈ X \Xn ⇒ Vx∩Xn = /0. Sei nun n≥ 1 und
Xn−1 ⊆Un−1 ∈ τ . Wir definieren Yn := Xn \Un−1. Dann ist Yn abgeschlossen und Teilmenge
von Xn \ Xn−1. Nun setzen wir αn := {Yn ∩Vx | x ∈ Yn}. Jeder Punkt x ∈ Yn ist in genau n
offenen Mengen aus γ enthalten. Und da Vx gerade der Schnitt all dieser Mengen ist, ist αn
eine Zerlegung von Yn! Nun ist jedes A ∈ αn offen in Yn (Teilraumtopologie). Also ist auch⋃
{B∈ αn | B 6= A} offen in Yn und A als dessen Komplement also abgeschlossen. Demzufolge

ist jedes Element aus αn abgeschlossen in X! Das es sich bei αn um eine Verfeinerung von γ

handelt ist klar nach Konstruktion. Zeigen wir die Diskretheit: Für x ∈ X \Yn ist X \Yn ∈ ẋ∩τ

und offensichtlich |{A∈αn |A∩(X \Yn) 6= /0}|= 0. Und für x∈Yn gilt eben |{A∈αn |A∩Vx 6=
/0}| = 1 (folgt daraus, dass αn = {Yn∩Vx | x ∈ Yn} eine Zerlegung von Yn ist). Damit ist alles
bewiesen.

2. Wir übernehmen die Bezeichnungen aus 1. und konstruieren rekursiv eine σ -diskrete
offene Verfeinerungsüberdeckung von γ . Sei γ1 ⊆ τ diskrete mit α1 < γ1 < γ . Seien γ1 bis γn
bereits konstruiert, mit den Eigenschaften:

1. γk , k = 1, ...,n ist diskret.

2. {A\Uk | A ∈ αk+1}< γk+1 < γ , k = 1, ...,n−1, wobei Uk :=
⋃

(γ1∪ ...∪ γk) und αk+1
entsprechend 1. gewählt wurde.

Zu Xn+1 \Un, wobei Un :=
⋃

(γ1 ∪ ...∪ γn), betrachte das nach 1. existierende αn+1 und
wähle γn+1 ⊆ τ diskret mit {A\Un | A ∈ αn+1}< γn+1 < γ . Offensichtlich ist dann

⋃
{γn | n ∈

N, n≥ 1} eine σ -diskrete offene Verfeinerungsüberdeckung von γ .
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12.5.12 Satz

Ein Raum (X ,τ) der metakompakt, T3 und außerdem collectionwise T4 ist, ist auch pa-
rakompakt. Zusammen mit Lemma 12.3.6 ergibt sich dann: Ein Raum ist genau dann
parakompakt und T3, wenn er metakompakt, T3 und collectionwise T4 ist.

Beweis: Sei U eine offene Überdeckung. Es gibt eine Punkt-endliche offene Verfeinerungs-
überdeckung γ von U . Entsprechend dem vorigen Lemma gibt es eine σ -diskrete offene Ver-
feinerungsüberdeckung von γ , die natürlich auch U verfeinert. Da der Raum T3 ist, folgt mit
Korollar 12.2.10, dass er auch parakompakt ist.

12.5.13 Definition

Wir nennen α ⊆P(X) sternendlich bzw. sternabzählbar, wenn {A′ ∈α |A∩A′ 6= /0} für alle
A ∈ α endlich bzw. abzählbar ist und wir nennen α ⊆P(X) dominant, wenn {X \A | A ∈ α}
sternendlich ist. Wir nennen (X ,τ) stark parakompakt, wenn jede offene Überdeckung eine
sternendliche offene Verfeinerungsüberdeckung hat (∀σ ⊆ τ mit

⋃
σ = X ∃ξ ⊆ τ mit ξ < σ

und ξ ist sternendlich). Wir nennen einen Filter φ einen SP Filter (oder vom Typ SP), wenn
jede dominante Teilmenge α ⊆ φ , die aus abgeschlossenen Teilmengen von X besteht einen
konvergenten Oberfilter ψ hat (∀α ⊆ φ mit {X \A | A ∈ α} ⊆ τ und α dominant ∃ Filter ψ

und ∃x ∈ X mit α ⊆ ψ → x).
Vollkommen analog zu Satz 12.1.11 beweist man leicht folgenden Satz:

12.5.14 Satz

(X ,τ) ist stark parakompakt g.d.w. jeder Filter vom Typ SP einen konvergenten Oberfilter
hat.

Auch die folgenden Sätze lassen sich genauso beweisen, wie wir das schon bei parakom-
pakten und metakompakten Räumen getan haben.

12.5.15 Lemma

Sei f : X →Y stetig und φ ein Filter vom Typ SP (in X). Dann ist f (φ) ein Filter vom Typ
SP auf Y .

285



12.5.16 Satz

Sei (Y,σ) stark parakompakt, f : X → Y stetig und abgeschlossen (Bilder abgeschlosse-
ner Mengen sind wieder abgeschlossen) und zusätzlich mit der Eigenschaft, dass f−1(y)
kompakt ist ∀y ∈ Y (in X). Dann ist auch (X ,τ) stark parakompakt.

12.5.17 Korollar

Sei X kompakt und Y stark parakompakt, dann ist X×Y stark parakompakt.

12.5.18 Lemma

(a) Sei (Vn)n∈N eine Folge offener Mengen und (Fn)n∈N eine Folge abgeschlossener Men-
gen im topologischen Raum (X ,τ) mit Fn ⊆ Vn ⊆ Fn+1 für alle n ∈ N und X =

⋃
n∈NFn.

Für jedes n ∈N sei λn endlich ⊆ τ mit Fn ⊆
⋃

λn. Dann hat λ :=
⋃

n∈Nλn eine abzählbare
sternendliche offene Verfeinerungsüberdeckung.

(b) Sei λ = {U(i, j) | i, j ∈N}⊆ τ mit
⋃

λ = X und U(i, j)⊆U(i, j+1) für alle i, j ∈N.
Setze Ui :=

⋃
j∈NU(i, j). Dann hat γ := {Ui | i ∈ N} eine abzählbare sternendliche offene

Verfeinerungsüberdeckung.
(c) Ist (X ,τ) ein T4-Raum, γ eine abzählbare offene Überdeckung und α eine abzähl-

bare Verfeinerungsüberdeckung aus abgeschlossenen Mengen (also α < γ und
⋃

α = X),
so gibt es eine abzählbare sternendliche offene Verfeinerungsüberdeckung ξ von γ .

Beweis: (a) Setze η0 := λ0 , η1 := λ1 und ηn+2 := {L∩ (Vn+1 \Fn) | L ∈ λn+2}. Dann ist
η :=

⋃
n∈Nηn die gesuchte abzählbare sternendliche offene Verfeinerungsüberdeckung von

λ . Offenbar ist (
⋃

ηn+2)∩ (
⋃

ηm) = /0 für m ≥ n + 4 und jedes ηn ist endlich. Folglich ist η

sternendlich. Sei x ∈ X . 1.Fall x ∈ F0, dann x ∈
⋃

η0 ⊆
⋃

η . 2.Fall x 6∈ F0. Dann sei k maximal
mit x 6∈ Fk. Es folgt x ∈ Fk+1 ⊆ Vk+1, also x ∈ Vk+1 \Fk. Es gibt aber auch ein L ∈ λk+2 mit
x ∈ L. Insgesamt demnach x ∈ L∩ (Vk+1 \Fk) ⊆

⋃
η . Damit ist η eine Überdeckung. Das η

aus offenen Mengen besteht, abzählbar ist und λ verfeinert, ist klar.
(b) Setze Vn :=

⋃
i+ j≤nU(i, j). Es folgt

Vn =
⋃

i+ j≤n

U(i, j)⊆
⋃

i+ j≤n

U(i, j +1)⊆
⋃

i+ j≤n+1

U(i, j) = Vn+1.

Aus (a) folgt, dass {Vn | n ∈ N} eine abzählbare sternendliche offene Verfeinerungsüber-
deckung ξ besitzt. Für jedes T ∈ ξ sei N(T ) endlich ⊆ N mit T ⊆

⋃
i∈N(T )Ui. Dann ist

η := {T ∩Ui | T ∈ ξ und i ∈ N(T )} eine abzählbare sternendliche offene Verfeinerungsüber-
deckung von γ .
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(c) Zu jedem A∈α wähle ein g(A)∈ γ mit A⊆ g(A). Für jedes A∈α gibt es dann eine Folge
(U(A,n))n∈N offener Mengen mit A⊆U(A,n)⊆U(A,n+1)⊆ g(A). Sei λ := {U(A,n) | A ∈
α , n ∈ N}. Aus (b) folgt, dass es zu γ ′ := {UA | A ∈ α}, wobei UA :=

⋃
n∈NU(A,n), eine

abzählbare sternendliche offene Verfeinerungsüberdeckung ξ gibt. Da offenbar γ ′ < γ gilt, ist
ξ somit auch eine Verfeinerung von γ .

12.5.19 Lemma

Gegeben seien ein T4-Raum (X ,τ) und eine abzählbare offene Überdeckung σ . Dann sind
die folgenden drei Aussagen äquivalent.

(a) σ hat eine punktendliche offen Verfeinerungsüberdeckung.
(b) σ hat eine abzählbare Verfeinerungsüberdeckung aus abgeschlossenen Mengen.
(c) σ hat eine abzählbare sternendliche offen Verfeinerungsüberdeckung.

Beweis: (a) ⇒ (b). Sei ξ eine (nicht notwendig abzählbare) punktendliche offene Ver-
feinerungsüberdeckung von σ . Für jedes T ∈ ξ sei f (T ) ∈ σ mit T ⊆ f (T ). Dann setzen
wir U(S) :=

⋃
{T ∈ ξ | f (T ) = S} für jedes S ∈ σ . Offenbar ist η := {U(S) | S ∈ σ} ei-

ne abzählbare offene Überdeckung, welche U(S) ⊆ S für jedes S ∈ σ erfüllt. Sei x ∈ X .
Dann ist ξ ′ := {T ∈ ξ | x ∈ T} endlich. Dann ist auch η ′ := {U ∈ η | x ∈ U} endlich,
denn zu jedem U ∈ η ′ wählen wir ein T (U) ∈ ξ ′ mit U = U( f (T (U))) und die Abbildung
φ : η ′→ ξ ′ , U 7→ T (U) ist injektiv. σ hat daher sogar eine abzählbare punktendliche offene
Verfeinerungsüberdeckung η . Sei η = {Un | n ∈N}. Aus Satz 12.1.8 folgt, dass es eine offene
Überdeckung {Vn | n∈N} gibt, mit Vn⊆Un für alle n∈N. Offenbar ist dann α := {Vn | n∈N}
eine abzählbare Verfeinerungsüberdeckung von σ aus abgeschlossenen Mengen.

(b)⇒ (c) folgt unmittelbar aus Lemma 12.5.18 und (c)⇒ (a) ist trivial.

12.5.20 Lemma

Sei ξ ⊆P(X) sternabzählbar. Auf ξ führen wir folgende Äquivalenzrelation ein: T ∼
T ′ :⇔ ∃T0, ...,Tn ∈ ξ mit T = T0 , T ′ = Tn und Tk∩Tk+1 6= /0 für alle 0≤ k < k +1≤ n.
Für T ∈ ξ sei [T ] := {T ′ ∈ ξ mit T ∼ T ′} die Äquivalenzklasse mit Repräsentant T . Die
Behauptung ist, dass jede Äquivalenzklasse abzählbar ist und für verschiedene Äquiva-
lenzklassen [T ], [T ′] gilt (

⋃
[T ])∩(

⋃
[T ′]) = /0. Ist τ eine Topologie auf X und ξ eine stern-

abzählbare offen Überdeckung, so ist jedes
⋃

[T ] offen und abgeschlossen. Außerdem ist
ξ eine σ -diskrete offene Überdeckung.

Beweis: Das∼ eine Äquivalenzrelation ist, ist klar. Für jedes n ∈N führen wir die folgende
Relation ein. T ∼n T ′ :⇔ ∃m ≤ n∃T0, ...,Tm ∈ ξ mit T = T0 , T ′ = Tm und Tk ∩ Tk+1 6= /0
für alle 0 ≤ k < k + 1 ≤ m. Außerdem sei [T ]n := {T ′ ∈ ξ | T ∼n T ′}. Da jedes [T ]n abzähl-
bar ist (Induktion nach n), ist auch [T ] =

⋃
n∈N[T ]n abzählbar. Das (

⋃
[T ])∩ (

⋃
[T ′]) = /0 für
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verschiedene Äquivalenzklassen gilt (natürlich gilt insbesondere [T ]∩ [T ′] = /0), ist klar. Sei
[ξ ] := {[T ] | T ∈ ξ} die Menge aller Äquivalenzklassen. Ist ξ nun eine offen Überdeckung,
so ist {

⋃
[T ] | T ∈ ξ} offenbar eine Zerlegung von X in offene Mengen. Jedes

⋃
[T ] ist daher

auch abgeschlossen (als Komplement der Vereinigung der Übrigen). Beachten wir, dass jedes
Q ∈ [ξ ] abzählbar ist, sich also folgendermaßen schreiben lässt Q = {T (Q)

n | n ∈ N}, so sehen
wir mit der Darstellung ξ =

⋃
[ξ ] =

⋃
{Q |Q∈ [ξ ]}=

⋃
n∈N{T

(Q)
n |Q∈ [ξ ]} und der Tatsache,

dass offenbar jedes {T (Q)
n | Q ∈ [ξ ]} diskret ist, dass ξ tatsächlich σ -diskret ist.

12.5.21 Satz

Für einen T3-Raum (X ,τ) sind äquivalent:
(a) (X ,τ) ist stark parakompakt.
(b) Jede offene Überdeckung hat eine Verfeinerungsüberdeckung aus abgeschlossenen

Mengen, welche sowohl lokal endlich als auch sternendlich ist.
(c) Jede offene Überdeckung hat eine Verfeinerungsüberdeckung aus abgeschlossenen

Mengen, welche sowohl lokal endlich als auch sternabzählbar ist.
(d) Jede offene Überdeckung hat eine sternabzählbare offene Verfeinerungsüberde-

ckung.

Beweis: (a) ⇒ (b). Sei σ eine offene Überdeckung und ξ eine sternendliche offene Ver-
feinerungsüberdeckung. Da (X ,τ) als parakompakter T3-Raum auch T4 ist, gibt es nach Satz
12.1.8 eine offene Überdeckung γ := {VP | P ∈ ξ} mit VP ⊆ P für jedes P ∈ ξ . Damit ist γ

ebenfalls sternendlich und somit auch lokal endlich. Insbesondere ist damit aber auch α :=
{VP | P ∈ ξ} lokal endlich und sternendlich.

(b)⇒ (c) ist trivial. Kommen wir zu (c)⇒ (d). Sei σ eine offene Überdeckung und α eine
Verfeinerungsüberdeckung aus abgeschlossenen Mengen, welche sowohl lokal endlich also
auch sternabzählbar ist. Wir verwenden die Bezeichnung aus Lemma 12.5.20. Jedes Q ∈ [α]
lässt sich schreiben als Q = {A(Q)

n | n ∈N}. Außerdem ist jedes
⋃

Q offen und abgeschlossen,
denn α ist lokal endlich (und damit auch Q bzw.

⋃
{Q′ ∈ [α] | Q′ 6= Q})! Für Q ∈ α und

n∈N sei S(Q,n)∈ σ mit A(Q)
n ⊆ S(Q,n). Dann ist ξ := {(

⋃
Q)∩S(Q,n) |Q∈ α , n∈N} eine

sternabzählbare offene Verfeinerungsüberdeckung von σ .
(d)⇒ (a). Aus Lemma 12.5.20 folgt, dass jede offene Überdeckung eine σ -diskrete offene

Verfeinerungsüberdeckung besitzt. Mit Korollar 12.2.10 folgt, dass (X ,τ) parakompakt ist.
Als parakompakter T3-Raum ist X auch T4. Sei nun γ eine beliebige offene Überdeckung
und ξ eine sternabzählbare offene Verfeinerungsüberdeckung. Für jedes T ∈ ξ ist

⋃
[T ] ein

offener und abgeschlossener Unterraum, der folglich auch parakompakt und T4 ist. Demnach
gibt es zur abzählbaren offenen Überdeckung ξT := {T ′∩(

⋃
[T ]) | T ′ ∈ [T ]} von [T ] eine lokal

endliche, insbesondere also punktendliche offene Verfeinerung. Nach Lemma 12.5.19 gibt es
dann aber auch eine (abzählbare) sternendliche offene Verfeinerungsüberdeckung λT von ξT
(in [T ]), deren Elemente - und das ist wichtig - auch offen in X sind. Offenbar ist nun

⋃
T∈ξ λT

eine sternendliche offene Verfeinerungsüberdeckung von ξ und damit auch von γ .
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12.5.22 Korollar

Jeder reguläre Lindelöfsche T3-Raum ist stark parakompakt und jeder zusammenhängende
stark parakompakte T3-Raum ist ein Lindelöf-Raum.

12.6 Wann ist X× [0,1] ein T4-Raum?
In Satz 5.3.12 war eine der Voraussetzungen X × [0,1] ist ein T4-Raum. In diesem Abschnitt
wollen wir die Räume (X ,τ) charakterisieren, für die eben dieses Produkt ein T4-Raum ist.
Was wir schon wissen ist folgendes: Ist (X ,τ) parakompakt und T2, so ist auch X × [0,1]
parakompakt (da [0,1] kompakt ist) und T2, also auch T4. Es geht aber besser ...

12.6.1 Definition

abzählbar parakompakt Ein topologischer Raum (X ,τ) heißt abzählbar parakompakt, wenn
jede abzählbare offene Überdeckung eine lokal-endliche, offene Verfeinerungsüberdeckung
hat.

Das nächste Lemma gibt einige einfacher zu handhabende Kriterien für abzählbare Para-
kompaktheit.

12.6.2 Lemma

Für einen topologischen Raum (X ,τ) sind äquivalent:
1) (X ,τ) ist abzählbar parakompakt.
2) Jede abzählbare offene Überdeckung hat eine abzählbare, lokal-endliche, offene
Verfeinerungsüberdeckung.
3) Zu jeder abzählbaren offenen Überdeckung (Un)n∈N, mit Un ⊆Un+1 (Un ↑ X), gibt es
eine Folge abgeschlossener Mengen (Fn)n∈N, mit Fn ⊆Un und X =

⋃
n∈NF◦n .

4) Zu jeder Folge abgeschlossener Mengen (Fn)n∈N, mit Fn+1 ⊆ Fn und
⋂

n∈NFn = /0
(Fn ↓ /0), gibt es eine Folge offener Mengen (Un)n∈N, mit Fn ⊆Un und

⋂
n∈NUn = /0.

Beweis: 2)⇒ 1) ist trivial. Beweisen wir 1)⇒ 2). Sei also σ eine abzählbare offene Über-
deckung von X . Wähle eine (nicht notwendig abzählbare) offene Verfeinerung ξ . Zu V ∈ ξ

wähle UV ∈ σ , mit V ⊆UV . Für jedes U ∈ σ setze nun WU :=
⋃
{V ∈ ξ |U = UV}. Die ge-

suchte abzählbare, offene, lokal-endliche Verfeinerungsüberdeckung ist dann {WU |U ∈ σ}
(der Leser überzeuge sich davon).
1) ⇒ 3) Sei also Un ↑ X . Sehen wir uns die Konstruktion aus 1) ⇒ 2) noch einmal genau
an, so stellen wir fest, dass es eine lokal-endliche, offene Verfeinerungsüberdeckung (Vn)n∈N
gibt, mit Vn ⊆ Un. Dann können wir Fn := X \

⋃
k>nVk ⊆

⋃
k≤nVk ⊆ Un definieren. Es gilt
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F◦n = X \
⋃

k>nVk =
⋂

k>n(X \Vk). Zu x ∈ X ∃Ox ∈ ẋ∩τ , so dass {k ∈N |Vk∩Ox 6= /0} endlich
ist. Wir können also l maximal mit Vl ∩Ox 6= /0 wählen. Dann ist aber x ∈

⋂
k>l X \Vk = F◦l .

Also X =
⋃

n∈NF◦n .
3)⇔ 4) ist klar (man gehe einfach zu den Komplementen über).
3) ⇒ 1) Sei dazu (Pn)n∈N eine offene Überdeckung. Setze Un :=

⋃
k≤n Pk. Dann gibt es ei-

ne Folge abgeschlossener Mengen (Fn)n∈N mit Fn ⊆Un und X =
⋃

n∈NF◦n . Wir setzen dann
Vn := X \

⋃
k≤n Fk. Die gesuchte lokal-endliche, offene Verfeinerungsüberdeckung ist dann

{Vn∩Pn+1 | n ∈ N}∪{P0}.

12.6.3 Korollar

Ist (X ,τ) ein T4-Raum, so ist X genau dann abzählbar parakompakt, wenn zu jeder Folge
abgeschlossener Mengen (Fn)n∈N, mit Fn+1 ⊆ Fn und

⋂
n∈NFn = /0, es eine Folge offener

Mengen (Un)n∈N gibt, mit Fn ⊆Un und
⋂

n∈NUn = /0.

12.6.4 Satz

Für einen topologischen Raum (X ,τ) ist äquivalent:
1) X× [0,1] ist ein T4-Raum.
2) X ist ein T4-Raum und abzählbar parakompakt.

Beweis: 1) ⇒ 2) X ist ein T4-Raum, da X homöomorph zum abgeschlossenen Teilraum
X ×{0} ist. Zeigen wir nun, dass er abzählbar parakompakt ist. Wir wenden Korollar 12.6.3
an. Sei also (Fn)n∈N eine entsprechende Folge. Wir bilden dann An := Fn× [2−n,1] und A :=⋃

n∈NAn. Diese A ist nun abgeschlossen!. Denn für (x, t) ∈ (X× [0,1])\A gibt es zwei Fälle:
1. Fall x 6∈

⋃
n∈NFn, dann ist X \F0 offen und (x, t)∈ X \F0⊆ X× [0,1]\A. 2. Fall x∈

⋃
n∈NFn.

Dann sei m := max{n ∈ N | x ∈ Fn}. Nun ist x 6∈ Am, also t ∈ [0,2−m). W := (X \Fm+1)×
[0,2−m) ist dann offen, enthält (x, t) und ist disjunkt zu A. Denn falls (y,s) ∈W ∩A, dann
(y,s) ∈ Ak, k ≤ m. Dann ist aber s ∈ [2−k,1], also 2−k ≤ s, im Widerspruch zu s < 2−m.
A und X ×{0} sind demnach abgeschlossen und disjunkt, also gibt es disjunkte und offene
U,V mit A ⊆ U und X ×{0} ⊆ V . Für n ∈ N sei Un := {(x, t) ∈ U | t < 2−n} = U ∩ (X ×
[0,2−n)). Bezeichnen wir mit p : X× [0,1]→ X die Projektion und setzen Vn := p(Un), so gilt
Fn ⊆Vn und

⋂
n∈NVn = /0.

2)⇒ 1) Sei X dazu T4 und abzählbar parakompakt. Wir konstruieren nun zu zwei disjunkten
abgeschlossenen Mengen F,G entsprechende disjunkte Umgebungen. Dazu beschaffen wir
uns eine geeignete Basis der Topologie auf [0,1]. Wir starten dazu mit einer abzählbaren Basis
B′ (z.B. die offenen, bzw. halboffenen Intervalle mit rationalen Eckpunkten) und setzen dann
B := {

⋃n
k=1 Bk | Bk ∈B′}. Damit ist B also gegen endliche Vereinigungen abgeschlossen.

Dies hat rein technische Hintergründe. Klar ist jedenfalls, dass auch B abzählbar ist. So, für
x ∈ X setzen wir nun Fx := {t ∈ [0,1] | (x, t) ∈ F} und analog Gx. Fx und Gx sind dann abge-
schlossen und disjunkt. [0,1] ist ein T4-Raum, also finden wir disjunkte offene Umgebungen
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O1,O2 von Fx und Gx. Diese lassen sich als Vereinigung von Elementen aus unserer Basis B
beschreiben, z.B. O1 =

⋃
B∈B′′ B, für B′′ ⊆B. Also auch Fx ⊆

⋃
B∈B′′ B. Fx ist kompakt, also

gibt es bereits endlich viele Bk ∈B′′ mit Fx ⊆
⋃n

k=1 Bk. Aber
⋃n

k=1 Bk ∈B. Es gibt also ein
B ∈B mit Fx ⊆B und Gx ∩B = /0. Zu jedem B ∈B bilden wir nun UB := {x ∈ X | Fx ⊆ B
und B∩Gx = /0} und zeigen UB ist offen. UB = {x ∈ X | Fx ⊆ B}∩{x ∈ X | Gx ⊆ [0,1] \B}
und es reicht somit zu zeigen, dass für offenes O⊆ [0,1] auch {x ∈ X | Fx ⊆O} offen ist. Dazu
rechnen wir X \{x∈ X | Fx ⊆O}= p(q−1([0,1]\O)∩F) und sehen, dass letztere Menge nach
Satz 4.1.7 aber abgeschlossen ist. Nun ist (UB)B∈B eine abzählbare offene Überdeckung von
X , es gibt also eine lokal-endliche, offene Verfeinerungsüberdeckung (VB)B∈B, mit VB ⊆UB.
Wir setzen nun V :=

⋃
B∈B(VB×B) und zeigen F ⊆V und V ∩G = /0. Sei (x, t)∈ F . Dann gibt

es B∈B, mit x∈VB⊆UB, also Fx⊆B und damit t ∈B. Das heißt aber (x, t)∈VB×B. Nehmen
wir nun mal an es gibt ein (x, t)∈V ∩G. Nun ist (VB×B)B∈B ebenfalls lokal-endlich (ist nicht
schwer) und damit dann V =

⋃
B∈B VB×B. Also gibt es ein B∈B mit (x, t)∈VB×B⊆UB×B.

Aber t ∈ Gx im Widerspruch zu B∩Gx = /0, für x ∈UB.

12.7 Zerlegungen der Eins und Fortsetzbarkeit stetiger
Abbildungen (3)

Wir kommen zu einer wichtigen Konstruktion auf parakompakten Räumen, nämlich zu den
Zerlegungen der Eins. Anwendung haben diese beispielsweise in der Theorie der Mannig-
faltigkeiten. Dort sind sie gewissermaßen eine Brücke zwischen lokalen und globalen Un-
tersuchungen. Außerdem verallgemeinern wir (unter etwas stärkeren Voraussetzungen) den
Fortsetzungssatz von Tietze (Satz 3.3.1).

12.7.1 Definition

Zerlegung der Eins Eine Familie ( fi : X → [0,1])i∈I von stetigen Abbildungen nennt man
eine Zerlegung der Eins (oder Partition der Eins, bzw. Teilung der Eins), wenn für alle x ∈ X
gilt: ∑i∈I fi(x) = 1.

( fi : X→ [0,1])i∈I nennt man lokal-endlich, wenn es für alle x ∈ X eine offene Menge x ∈V
gibt derart, dass die Menge {i ∈ I | fi|V 6≡ 0} endlich ist.

Eine Familie ( fi : X→ [0,1])i∈I von Abbildungen nennt man eine der offenen Überdeckung
(Ui)i∈I des Raumes X untergeordnete Zerlegung der Eins, wenn:

a) ( fi : X → [0,1])i∈I ist eine Zerlegung der Eins,
b) für alle i ∈ I gilt Tr ( fi) := {x ∈ X | fi(x) 6= 0} ⊆Ui.

12.7.2 Satz

Sei ( fi : X→ [0,1])i∈I eine Zerlegung der Eins in einem topologischen Raum (X ,τ). Dann
gilt:
1) ∀ε > 0∀x ∈ X ∃Ox ∈ τ mit x ∈ Ox und {i ∈ I | ∃y ∈ Ox mit fi(y)≥ ε} ist endlich.
2) µ : X → (0,1] definiert durch µ(x) := sup{ fi(x) | i ∈ I}= max{ fi(x) | i ∈ I} ist stetig.
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3) Es gibt eine lokal-endliche Zerlegung der Eins (gi)i∈I mit g−1
i ((0,1])⊆ f−1

i ((0,1]), für
alle i ∈ I.

Beweis: 1) Sei ε > 0 und x∈ X . Es gibt dann eine endliche Teilmenge J⊆ I mit ∑i∈J fi(x) >
1−ε . Setze Ox := {y ∈ X | ∑i∈J fi(y) > 1−ε}. Ox ist dann die gesuchte Menge. Man beachte
dazu, dass ∑i∈J fi stetig ist und wenn fi(y) > ε ist für i ∈ I, dann ist bereits i ∈ J (sonst
∑i∈J∪{i} fi(y) > ε +1− ε).
2) folgt aus 1).
3) Setze σi(x) := max(0,2 fi(x)− µ(x)). Dann ist σ stetig und σ

−1
i ((0,1]) ⊆ f−1

i ((0,1]). Sei
y∈X und ε := µ(y)/4. Nun gibt es eine offene Menge O3 y und ein endliches J mit µ(x) > 2ε

und fi(x) < ε für x ∈O und i 6∈ J (folgt aus 2) und 1)). Hieraus folgt σi(x) = 0 für x ∈O, i ∈ J.
Also ist (σi)i∈I lokal endlich. Es gilt aber µ(y) = fk(y) für ein k ∈ I, also σk(y) = fk(y) =
µ(y) > 0 und somit ∑i∈I σi(y) > 0, für alle y ∈ X . g j(x) := σ j(x)/∑i∈I σi(x) für j ∈ J bildet
dann die gesuchte Familie.

12.7.3 Satz

Sei U eine lokal-endliche offene Überdeckung eines T4-Raumes. Dann gibt es eine lokal-
endliche, der offenen Überdeckung U des Raumes X untergeordnete Zerlegung der Eins.

Beweis: Wir wählen entsprechend Satz 12.1.8 eine offene Überdeckung {VU |U ∈U } mit
VU ⊆ U . Dann wählen wir weiter zu jedem U ∈ U ein offenes WU mit VU ⊆WU ⊆WU ⊆
U . Das Lemma von Urysohn verhilft uns nun zu stetigen Abbildungen gU : X → [0,1] mit
gU |VU ≡ 1 und gU |WU ≡ 0. Damit sind wir fertig, denn (gV /∑U∈U gU)V∈U ist bereits die
gesuchte Zerlegung.

12.7.4 Bemerkung

Jede offene Überdeckung eines parakompakten Hausdorff-Raumes besitzt also eine unterge-
ordnete Zerlegung der Eins! Umgekehrt gilt für einen topologischen Raum (X ,τ): Wenn jede
offene Überdeckung eine untergeordnete Zerlegung der Eins besitzt, dann ist er parakompakt
(Beweis: Sei ( fi : X → [0,1])i∈I eine der Überdeckung σ ⊆ τ untergeordnete Zerlegung der
Eins. Es gibt dann eine lokal-endliche Zerlegung der Eins (gi)i∈I mit g−1

i ((0,1])⊆ f−1
i ((0,1]),

für alle i∈ I. Offensichtlich ist dann bereits (g−1
i ((0,1]))i∈I die gesuchte offene, lokal-endliche

Verfeinerungsüberdeckung.)
Erinnern wir uns noch einmal an Satz 3.3.1. Dort ging es um die stetige Fortsetzbarkeit von

reellen Funktionen, definiert auf einer abgeschlossenen Menge eines T4-Raums. Im nächsten
Satz verwenden wir Zerlegungen der Eins, um stetige Funktionen, definiert auf einer abge-
schlossenen Menge eines metrischen Raums, mit Werten in einem lokalkonvexen topologi-
schen Vektorraum, auf den ganzen Raum auszudehnen.
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12.7.5 Satz von Dugundji

Sei (X ,d) ein metrischer Raum und M abgeschlossen in X . Ferner sei f : M → Y ste-
tig, wobei Y ein lokal konvexer topologischer Vektorraum ist. Dann gibt es eine stetige
Abbildung F : X → convex( f (X)) mit F |M = f .

Beweis: Für jedes x ∈ X \M wählen wir ein ε > 0 mit K(x,2ε) ⊆ X \M. Die Familie
(Ux)x∈X\M mit Ux := K(x,ε) (durch diese Wahl von ε bekommt man die weiter unten benö-
tigte EIgenschaft: diam(Ux) ≤ d(Ux,M)) hat eine offene, lokal-endliche Verfeinerung (Pi)i∈I
(es handelt sich um die Überdeckung einer Teilmenge eines metrischen Raums). Die Familie
(Pi)i∈I hat demzufolge auch eine untergeordnete Zerlegung der Eins ( fi)i∈I , insbesondere also
mit folgenden Eigenschaften:
1) ∑i∈I fi(x) = 1, für alle x ∈ X \M.
2) fi(x) = 0, für x 6∈ Pi. Da es zu jedem i ∈ I ein xi ∈ X \M gibt, mit Pi ⊆Uxi , bedeutet dies
sogar fi(x) = 0, für x 6∈Uxi .
3) ∀x ∈ X \M ∃Vx ∈ ẋ∩ τ derart, dass {i ∈ I |Vx∩Pi 6= /0} endlich ist.
Für jedes x ∈ X \M wählen wir ein mx ∈ M, mit d(mx,Ux) < 2d(M,Ux) und definieren für
jedes x ∈ X : F(x) := f (x), für x ∈M und F(X) := ∑i∈I fi(x) f (mxi), für x ∈ X \M.
Offensichtlich ist dann F(x) ∈ convex( f (M)). Außerdem ist F auf M stetig (klar) und ebenso
ist F auf X \M stetig (folgt aus der lokalen Endlichkeit). Zeigen müssen wir die Stetigkeit
also nur noch auf X \M. Für x0 ∈ ∂M und x ∈ X \M, mit fi(x) 6= 0 gilt nach Konstruktion der
fi bereits x ∈Uxi . Wir erhalten d(mxi,x) ≤ d(mxi,Uxi)+ diam(Uxi) ≤ 3d(M,Uxi) ≤ 3d(x,x0),
also d(mxi,x0)≤ d(x,x0)+d(mxi,x)≤ 4d(x,x0). Das heißt also fi(x) = 0, wenn d(mxi,x0) >
4d(x,x0). Sei nun V eine konvexe offene (und symmetrische) Umgebung der 0 in Y . Weiter
wählen wir δ > 0, so dass für m∈M, mit d(x0,m) < δ bereits f (m)− f (x0)∈V gilt (Stetigkeit
von f ). Sei nun x ∈ K(x0,δ/4) beliebig gewählt. Falls x ∈M, dann sofort F(x)−F(x0) ∈ V .
Falls x ∈ X \M, dann F(x)−F(x0) = ∑i∈I fi(x)( f (mxi)− f (x0)), wobei wenn fi(x) 6= 0, dann
d(mxi,x0) ≤ 4d(x0,x) < δ gilt und somit f (mxi)− f (x0) ∈ V . Die Menge V ist aber kon-
vex, also auch ∑i∈I fi(x)( f (mxi)− f (x0)) ∈ V (man beachte ∑i∈I fi(x) = 1). Insgesamt also
F(K(x0,δ/4))⊆ F(x0)+V und F ist somit stetig!

12.8 Metrisierbarkeit
In diesem Abschnitt klären wir die Frage, wann ein topologischer Raum metrisierbar ist. Das
heißt wir geben eine Bedingungen/Eigenschaften an, die ein top. R. erfüllen muss, damit es ei-
ne Metrik gibt, die dessen Topologie erzeugt (auf die gewöhnliche Art und Weise). Umgekehrt
wird sich ergeben, dass jeder metrische Raum diese Eigenschaften bereits besitzt.
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12.8.1 Lemma

Sei (X ,τ) ein T3-Raum mit einer σ -lokal-endlichen Basis B =
⋃
{γn | n ∈N} (die γn sind

lokal-endlich). Dann lässt sich jede abgeschlossene Menge A als Schnitt von abzählbar
vielen offenen Mengen schreiben: A =

⋂
n∈NOn, mit On ∈ τ . Man sagt auch kurz: Jede

abgeschlossene Menge ist eine Gδ -Menge.

Beweis: Sei n ∈ N. Für jedes x ∈ A wähle ein O(n)
x ∈ ẋ∩ τ mit |{B ∈ γn | O(n)

x ∩B 6= /0}|
minimal (dies geht, da γn lokal-endlich ist). Setze dann On :=

⋃
x∈A O(n)

x . Offensichtlich A ⊆⋂
n∈NOn. Sei y ∈ X \A. Dann gibt es ein U ∈ τ und ein V ∈B mit U ∩V = /0, A ⊆U und

y ∈V (die T3 Eigenschaft). Sei V ∈ γn für n ∈ N. Dann muss On∩V = /0 gelten! Sonst gibt es
ein x ∈ A mit O(n)

x ∩V 6= /0. Aber es ist auch U ∩O(n)
x ∈ ẋ∩ τ und |{B ∈ γn | (O(n)

x ∩U)∩B 6=
/0}| < |{B ∈ γn | O(n)

x ∩B 6= /0}| (denn (O(n)
x ∩U)∩V = /0 und O(n)

x ∩V 6= /0) im Widerspruch
Zur Wahl von O(n)

x .

12.8.2 Lemma

Sei (X ,τ) ein T4-Raum und /0 6= A⊆ X eine abgeschlossene Menge. Dann gilt:

(∃ f : X → [0,1] mit f−1(0) = A) ⇔ (A ist eine Gδ Menge.)

Beweis: Falls f stetig mit f−1(0) = A, dann ist A = f−1(0) = f−1(
⋂

∞
n=1(−1/n,1/n)) =⋂

∞
n=1 f−1((−1/n,1/n)). Also ist A eine Gδ Menge.
Sei umgekehrt A eine Gδ Menge. Also A =

⋂
∞
n=1 On mit On offen. Das Lemma von Urysohn

garantiert für jedes n eine stetige Funktion fn : X → [0,1] mit fn(A) = {0} und fn(X \On) ⊆
{1}. Setze nun f := ∑

∞
n=1 2−n fn. f ist nun stetig (gleichmäßige Konvergenz) und es gilt

f−1(0) = A.

12.8.3 Metrisationssatz von Nagata und Smirnow

Ein top. Raum (X ,τ) ist genau dann metrisierbar, wenn er T1 und T3 ist und eine σ -lokal-
endliche Basis hat (er hat dann also sogar eine σ -diskrete Basis). Ein wichtiger Spezialfall
ist der, wenn der Raum eine abzählbare Basis hat (die trivialerweise σ -lokal-endlich ist).

Beweis: Sei (X ,τ) zuerst als metrisierbar vorausgesetzt. T1 und T3 ist dann klar und die
Existenz einer σ -lokal-endlichen Basis folgt aus Lemma 12.2.6.

Für die andere Richtung sei (X ,τ) nun als T3-Raum mit σ -lokal-endlicher Basis vorausge-
setzt. Offensichtlich hat dann jede offene Überdeckung eine σ -lokal-endliche Verfeinerungs-
überdeckung, (X ,τ) ist nach Korollar 12.2.10 also parakompakt.
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Nun zur Konstruktion der Metrik. Sei B =
⋃
{γn | n ∈ N} eine σ -lokal-endliche Basis (mit

lokal-endlichen γn). Für jedes n ∈ N und U ∈ γn ist X \U nach dem obigen Lemmas eine
Gδ -Menge und es existiert eine stetige Abbildung ϕn,U : X → [0,1] mit X \U = ϕ

−1
n,U(0), also

U = {x ∈ X | ϕn,U(x) > 0}. Da γn lokal-endlich ist, ist ∑U∈γn ϕn,U wohldefiniert und stetig!
Dann ist aber auch

ψn,V := 2−n ϕn,V

1+∑U∈γn ϕn,U

für V ∈ γn sinnvoll definiert und stetig. Es ist dann 0≤ψn,V < 2−n und V = {x∈ X |ψn,V (x) >
0} und sogar 0 ≤ ∑V∈γn ψn,V < 2−n. Wir definieren nun d(x,y) := ∑

∞
n=0(∑V∈γn |ψn,V (x)−

ψn,V (y)|). Symmetrie und Dreiecksungleichung sind unmittelbar klar. Und für x 6= y gibt es
ein n ∈ N und ein V ∈ γn mit x ∈V und y 6∈V (die T1 Eigenschaft). Somit gilt ψn,V (x) > 0 =
ψn,V (y). Insgesamt also d(x,y) = 0 ⇔ x = y.

Bleibt noch zu zeigen, dass d die Ausgangstopologie induziert. Für x ∈ X ist die Funktion
fx : X → R definiert durch fx(y) := d(x,y) stetig bezüglich τ . Sei dann O offen bzgl. d und
x ∈ O. Es gibt dann ein ε > 0 mit K(x,ε) ⊆ O. Setze W := ( fx(x)− ε, fx(x)+ ε) = (−ε,ε).
Dann gibt es Ux ∈ τ mit x ∈ Ux und fx(Ux) ⊆ W . Es gilt nun Ux ⊆ K(x,ε), denn y ∈ Ux
impliziert fx(y) ∈W , also d(x,y) < ε . Also ist O auch offen bzgl. τ .

Sei umgekehrt x ∈U ∈ τ . Dann existiert n ∈ N und V ∈ γn mit x ∈ V ⊆U . Definiere δ :=
ψn,V (x) dann folgt für y ∈ K(x,δ ): |ψn,V (x)−ψn,V (y)| ≤ ∑

∞
k=0 ∑W∈γk

|ψk,W (x)−ψk,W (y)| =
d(x,y) < δ = ψn,V (x) und damit ψn,V (y) > 0. Also y ∈V und somit K(x,δ )⊆U . Das heißt U
ist offen in der durch d induzierten Topologie.

12.8.4 Metrisationssatz von Smirnow

Ist ein parakompakter Raum Hausdorff-Raum (X ,τ) nicht metrisierbar, so sind lokale Un-
zulänglichkeiten der Grund dafür. Präziser: Ist (X ,τ) parakompakt und T2, so ist er genau
dann metrisierbar, wenn er lokal metrisierbar ist (zu jedem Punkt gibt es eine Umgebung,
die als Teilraum aufgefasst metrisierbar ist).

Beweis: Jeder metrisierbare Raum ist ganz offensichtlich auch lokal metrisierbar (man neh-
me als Umgebung einfach ganz X). Zeigen wir die andere Richtung. Für jedes x ∈ X wählen
wir eine metrisierbare Umgebung Ux. Dann ist {U◦x | x ∈ X} eine offene Überdeckung, zu
der es eine lokal-endliche offene Verfeinerungsüberdeckung ξ gibt (Parakompaktheit). Jedes
V ∈ ξ besitzt (als Teilraum) eine σ -lokal-endliche Basis BV = {δ (n)

V | n ∈ N}, mit lokal-
endlichen δ

(n)
V . Für jedes n ∈ N bilden wir δn :=

⋃
V∈ξ δ

(n)
V und stellen fest, dass δn lokal-

endlich ist. Dann ist B :=
⋃

n∈N δn eine σ -lokal-endliche Basis von (X ,τ)! Als parakompak-
ter T2 Raum ist X zudem T1 und T3 und wir können den Metrisationssatz von von Nagata,
Smirnow anwenden.
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12.8.5 Lemma

Sei (X ,τ) ein topologischer Raum und sei {γn | n∈N} eine Menge offener Überdeckungen
mit der Eigenschaft: ∀x ∈ X ∀Ox ∈ ẋ∩ τ ∃n ∈ N mit γn(x) ⊆ Ox. Dann hat (X ,τ) ein σ -
diskretes abgeschlossenes Netzwerk (siehe Definition 2.1.13).

Beweis: Wir zeigen zuerst, dass jede offene Überdeckung eine σ -diskrete abgeschlossene
Verfeinerungsüberdeckung hat. Sei γ also eine offene Überdeckung. Sei dann < eine (belie-
bige) Wohlordnung auf γ . Wir definieren für jedes U ∈ γ und n ∈ N die Mengen t(U) := U \⋃
{V ∈ γ |V <U} und tn(U) := {x∈ t(U) | γn(x)⊆U}. Es ist dann δ := {tn(U) |U ∈ γ, n∈N}

eine σ -diskrete abgeschlossene Verfeinerungsüberdeckung von γ .
(Beweis: Das δ eine Verfeinerung von γ ist, ist klar. Anhand der Gleichung tn(U) = X \

[γn(X \U)∪
⋃

V<U V ] sehen wir, dass jedes tn(U) abgeschlossen ist. Zeigen wir die Über-
deckungseigenschaft. Sei x ∈ X . Wir wählen U ∈ γ minimal (bzgl. <) mit x ∈ U . Dann ist
x ∈ t(U). Ferner gibt es ein n ∈N mit γn(x)⊆U . Also x ∈ tn(U) und δ ist somit eine Überde-
ckung. Ferner schneidet kein Element aus γn zwei verschiedene Elemente aus {tn(U) |U ∈ γn}
(für jedes n ∈ N). Denn sei W ∈ γn mit W ∩ tn(U) 6= /0 6= W ∩ tn(V ), für U,V ∈ γ . Wir kön-
nen dann x ∈W ∩ tn(U) und y ∈W ∩ tn(V ) wählen. Nun ist aber auch W ⊆ γn(x) ⊆ U und
W ⊆ γn(y) ⊆ V . Falls U 6= V , dann o.B.d.A. U < V und somit y ∈ t(V ) ⊆ V \U ⊆ V \W
- Widerspruch. Da γn eine Überdeckung ist, ist {tn(U) | U ∈ γn} also diskret und δ somit
σ -diskret.)

Wenn jede offene Überdeckung eine σ -diskrete abgeschlossene Verfeinerungsüberdeckung
hat, dann hat also auch jedes der γn eine solche; bezeichnen wir diese jeweils mit ξn. Dann
ist auch ξ :=

⋃
n∈N ξn eine σ -diskrete abgeschlossene Familie (zum einfachen Beweis sei an-

gemerkt, dass eine abzählbare Vereinigung abzählbarer Mengen wieder abzählbar ist). Zeigen
wir, dass ξ ein Netzwerk ist. Sei x ∈U ∈ τ . Es gibt dann ein n mit γn(x)⊆U . Nun ist ξn eine
Verfeinerungsüberdeckung von γn und es gibt ein Tx ∈ ξn mit x ∈ Tx. Zu Tx gibt es aber ein
G ∈ γn mit Tx ⊆ G. Da auch x ∈ G, folgt x ∈ Tx ⊆ G ⊆ γn(x) ⊆U . Also U =

⋃
x∈U Tx. Damit

ist alles gezeigt.

12.8.6 Metrisationssatz von Bing

Ein top. Raum (X ,τ) ist genau dann metrisierbar, wenn er collectionwise normal ist und
es eine Familie {γn | n ∈ N} offener Überdeckungen mit der Eigenschaft ∀x ∈ X ∀Ox ∈
ẋ∩ τ ∃n ∈ N mit γn(x)⊆ Ox gibt.

Beweis: Sei ξ =
⋃

n∈N ξn ein σ -diskretes abgeschlossenes Netzwerk, mit diskreten ξn (vori-
ges Lemma). Die ξn seien wieder so gewählt, dass sie eine Verfeinerung von γn sind. Zu ξn gibt
es eine σ -diskrete offene Familie βn ⊆ τ , die von ξn verfeinert wird (collectionwise normal).
Zu jedem T ∈ ξn wählen wir nun ein BT ∈ βn und ein DT ∈ γn mit T ⊆ BT und T ⊆ GT . Die
Familie αn := {BT ∩GT | T ∈ ξn ist dann eine σ -diskrete offene Verfeinerungsüberdeckung
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von γn. Dann ist aber auch α :=
⋃

n∈Nαn eine σ -diskrete offene Familie. Zeigen wir, dass α

eine Basis ist.
Sei x ∈U ∈ τ . Es gibt dann ein n mit γn(x)⊆U . Nun ist αn eine Verfeinerungsüberdeckung

von γn und es gibt ein Ax ∈ αn mit x ∈ Ax. Zu Ax gibt es aber ein G ∈ γn mit Ax ⊆ G. Da auch
x ∈ G, folgt x ∈ Ax ⊆ G⊆ γn(x)⊆U . Also U =

⋃
x∈U Ax.

Der Raum hat also eine σ -diskrete Basis (also auch σ -lokal endlich) und ist T1 und T3 und
somit metrisierbar!

Umgekehrt ist ein metrischer Raum natürlich collectionwise normal (Lemma 12.3.6) und
das System {γn | n ∈ N>0} mit γn := {K(x,1/n) | x ∈ X} hat die geforderte Eigenschaft, wie
man leicht mit Hilfe der Dreiecksungleichung beweist.

12.8.7 Definition

Moore-Raum Einen Regulären Raum (d.h. T1 und T3), der eine Familie {γn | n ∈ N} offener
Überdeckungen mit der Eigenschaft ∀x ∈ X ∀Ox ∈ ẋ∩ τ ∃n ∈ N mit γn(x)⊆ Ox besitzt, nennt
man Moore-Raum. Den Metrisationssatz von Bing können wir also formulieren als: Jeder
collectionwise normale Moore-Raum ist metrisierbar.

Leicht ergibt sich nun der klassische Metrisationssatz von Alexandroff-Urysohn (der histo-
risch gesehen der erste war; 1923).

12.8.8 Metrisationssatz von Alexandroff und Urysohn

Metrisationssatz von Alexandroff-Urysohn Ein T0-Raum (X ,τ) ist genau dann metri-
sierbar, wenn es eine sternmonotone Folge (γn)n∈N offener Überdeckungen von X gibt,
mit der Eigenschaft: Zu jedem x ∈ O ∈ τ gibt es ein n ∈ N mit γn(x)⊆ O.

Beweis: Zeigen wir, dass X ein T1-Raum ist. Sei x 6= y. O.B.d.A. gibt es dann ein O ∈ ẋ∩ τ

mit y 6∈O. Zu diesem x und O gibt es ein n∈Nmit γn(x)⊆O. Aus y 6∈ γn(x) folgt x 6∈ γn(y) =:
U ∈ ẏ∩ τ .

Bilden wir für jedes n ∈ N die Überdeckung ξn := γ2n, so erfüllt die Folge (ξn)n∈N die
Bedingung an Satz 12.3.8 (siehe dazu Lemma 12.2.2). Der Raum ist also voll normal und
damit auch collectionswise normal. Der Metrisationssatz von Bing (Satz 12.8.6) erledigt dann
den Rest.
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13 Uniforme Räume
”Niemand ist mehr Sklave, als der sich für frei hält, ohne es zu sein.”

Johann Wolfgang von Goethe

13.1 Grundlegendes
Die meisten kennen aus der Analysis den Begriff der gleichmäßig stetigen Abbildung. Eine
Abbildung f : X→Y , für metrische Räume (X ,d) und (Y,d′) heißt gleichmäßig stetig, wenn es
zu jedem ε > 0 ein δ > 0 gibt, so dass für alle x,x′ ∈ X gilt: d(x,x′) < δ ⇒ d′( f (x), f (x′)) <
ε . Im Gegensatz zur einfachen Stetigkeit können wir dieses Konzept nicht so einfach auf
allgemeine topologische Räume Übertragen. In diesem Kapitel lernen wir nun eine Klasse
topologischer Räume kennen (T3 1

2
-Räume; wir kennen diese bereits aus dem Abschnitt über

Kompaktifizierungen. Das es sich um diese Klasse handelt werden wir weiter unten beweisen.)
in denen wir dieses Konzept doch entwickeln können.

13.1.1 Definition

Grundlegendes: Ein uniformer Raum ist ein geordnetes Paar (X ,U ), wobei X eine Menge
ist und U folgenden Bedingungen genügt:

1) U ist ein Filter auf X×X .
2) ∀V ∈U ist ∆X := {(x,x) | x ∈ X} ⊆V .
3) ∀V ∈U ist V−1 ∈U .
4) ∀V ∈U ∃U ∈U mit U ◦U ⊆V .
Die Elemente aus U sind also Teilmengen von X×X und sind somit Relationen auf X (wir

bezeichnen sie dementsprechend auch mit den üblichen Buchstaben R,S, ...). Wenn V ⊆X×X ,
so ist mit V−1 die inverse Relation {(y,x) | (x,y) ∈V} gemeint. Für U ⊆ X ×X ist mit U ◦U
die Menge {(x,y) | ∃z ∈ X mit (x,z),(z,y) ∈U} gemeint. U wird auch Uniformität genannt.

Für V ◦V schreiben wir hin und wieder V 2 und allgemein V n := V ◦V n−1.
Für A⊆ X und V ∈U definieren wir V (A) := {y ∈ X | ∃x ∈ A mit (x,y) ∈V}. Ist A = {x},

so schreiben wir auch einfach V (x) statt V ({x}).
Elemente V ∈U mit V = V−1 nennen wir symmetrisch.
Wir nennen B eine Basis von U , wenn B ⊆U und ∀V ∈U ∃B ∈B mit B⊆V .
Eine Abbildung f : X → Y zwischen zwei uniformen Räumen (X ,U ) und (Y,V ) heißt

uniform (oder auch gleichmäßig stetig), wenn es zu jedem V ∈ V ein U ∈ U gibt, mit f ×
f (U)⊆V . Unter f × f ist die Abbildung f × f : X×X→Y ×Y definiert durch f × f (x,y) :=
( f (x), f (y)) zu verstehen.

Ist f bijektiv und sowohl f , als auch f−1 uniform, so sagen wir (X ,U ) und (Y,V ) sind
isomorph. f nennen wir dann einen Isomorphismus.
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13.1.2 Lemma

{U ∈ U |U = U−1} ist eine Basis von U . Sei B eine Basis von U , dann ist für jedes
n ∈ N auch {Un |U ∈B} eine Basis von U .

Beweis: Sei U ∈ U . Dann ist auch V := U ∩U−1 ∈ U ⊆ U und es gilt (offensichtlich)
V−1 = V . Beweisen wir die Zweite Behauptung:

Wir zeigen die Behauptung erst für {U2n | U ∈ B}. Dies folgt nämlich leicht durch In-
duktion nach n. Für n = 0 ist alles klar. n→ n + 1: Sei U ∈ U . Es gibt dann ein W ∈ U
mit W ◦W ⊆U . Zu W gibt es aber (Induktionsvoraussetzung) ein V ∈B mit V 2n ⊆W . Also
V 2n+1

= V 2n ◦V 2n ⊆W ◦W ⊆U .
Offensichtlich gilt Un ⊆ Un+1 für alle U ∈ U und n ∈ N. Seien nun n ∈ N und U ∈ U

fest gewählt. Wir wählen m ∈ N mit n < 2m. Dann gibt es ein V ∈B mit V 2m ⊆U . Es folgt
V n ⊆V 2m ⊆U . Damit ist alles gezeigt.

13.1.3 Lemma

Sei (X ,U ) ein uniformer Raum und B eine Basis von U .
a) τU := {O⊆ X | ∀x ∈ O∃V ∈U mit V (x)⊆ O} ist eine Topologie auf X , die durch

die Uniformität erzeugte (oder induzierte).
b) Für A⊆ X ist A◦ = {x ∈ A | ∃U ∈B mit U(x)⊆ A}. Gemeint ist natürlich der offene

Kern bzgl. τU .
c) Zu jedem O ∈ ẋ∩ τU gibt es ein B ∈B mit x ∈ B(x) ⊆ O. Ferner gilt x ∈ B(x)◦ für

alle x ∈ X und alle B ∈B. Insbesondere ist somit {B(x) | B ∈B} eine Umgebungsbasis
des Punktes x ∈ X .

d) Für A⊆ X ist A =
⋂

V∈B V (A).
e) (X ,τU ) ist ein T3-Raum.
f) Eine uniforme Abbildung f : X → Y zwischen den uniformen Räumen (X ,U ) und

(Y,V ) ist stetig bzgl. den induzierten Topologien τU und τV .

Beweis: a) Offensichtlich /0 und X ∈ τU . Seien O,O′ ∈ τU und x ∈ O∩O′. Dann gibt es
U,V ∈ U mit U(x) ⊆ O und V (x) ⊆ O′. Dann ist aber auch U ∩V ∈ U und offensichtlich
(U ∩V )(x) ⊆U(x)∩V (x) ⊆ O∩O′. Also ist auch O∩O′ ∈ τU . Noch schneller sieht man,
dass mit τ ′ ⊆ τU auch

⋃
τ ′ ∈ τU ist. Damit ist alles gezeigt.

b) Wir setzen zur Abkürzung B := {x ∈ A | ∃U ∈U mit U(x)⊆ A}. Sei O⊆ A mit O∈ τU .
Aus a) folgt unmittelbar O⊆ B. Da B⊆ A, reicht es also wenn wir zeigen, dass B offen ist. Sei
x ∈ B. Dann gibt es ein U ∈U mit U(x)⊆ A. Zu U gibt es aber ein V ∈B mit V ◦V ⊆U . Es
ist dann V (x)⊆ B, denn y ∈V (x) impliziert (x,y) ∈V und z ∈V (y) impliziert (y,z) ∈V , also
(x,z) ∈V ◦V und damit z ∈V ◦V (x)⊆U(x)⊆ A. Schlussendlich somit V (y)⊆ A.

c) Sei O∈ ẋ∩τU . Dann gibt es ein V ∈U mit V (x)⊆O. Es gibt dann ein B∈B mit B⊆V .
Also B(x)⊆V (x)⊆ O. Für die letzte Aussage verwende man a) und beachte B(x)⊆ B(x).
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d) Sei x ∈ A. Annahme x 6∈
⋂

V∈B V (A). Es gibt also ein V ∈B mit x 6∈V (A), also ∀a ∈ A
gilt x 6∈V (a). Nun gibt es aber ein symmetrisches W ∈U mit W ⊆V . Dan aber auch x 6∈W (a),
für alle a ∈ A. Dies ist nun äquivalent zu a 6∈W (x), für alle a ∈ A. Also W (x)∩A = /0 - im
Widerspruch zu x∈ A. Sei nun x∈

⋂
V∈B V (A). Annahme x 6∈ A. Dann x∈ X \A = (X \A)◦, es

gibt also ein V ∈B mit V (x)⊆ X \A. Dann gibt es aber auch ein symmetrisches W ∈U und
ein U ∈B mit U ⊆W ⊆V . Also x ∈U(A)⊆W (A), es gibt also ein a ∈ A mit x ∈W (a) oder
dazu gleichwertig a ∈W (x). Dann ist aber auch a ∈V (x), im Widerspruch zu V (x)⊆ X \A.

e) Sei A abgeschlossen und x ∈ X \A. Nun ist A = A =
⋂

V∈U V (A). Es gibt also ein V ∈U
mit x 6∈ V (A). Zu V gibt es aber ein symmetrisches W ∈ U mit W ◦W ⊆ V . Angenommen
es gibt ein y ∈W (A)∩W (x) (an dieser Stelle beachte man, dass W (A) =

⋃
a∈AW (a) eine

Umgebung von A ist, also A⊆W (A)◦). Dann gibt es ein a ∈ A mit (a,y) ∈W und (x,y) ∈W ,
also auch (y,x) ∈ W . Nun ist dann aber (a,x) ∈ W ◦W ⊆ V , also x ∈ V (a) ⊆ V (A) - ein
Widerspruch! Also sind W (A) und W (x) disjunkte Umgebungen von A bzw. x - der Raum ist
also T3.

f) Wir verwenden Satz 2.2.2. Sei x ∈ X und O′ offen in Y mit f (x) ∈ O′. Dann gibt es
ein V ∈ V mit V ( f (x)) ⊆ O′. Zu V gibt es dann ein U ∈ U mit f × f (U) ⊆ V . Dann ist
x ∈ O := U(x)◦ offen in X und es folgt f (O)⊆ f (U(x))⊆V ( f (x))⊆ O′.

13.1.4 Bemerkung

Sprechen wir in Zukunft von irgendwelchen topologischen Eigenschaften (z.B. Trennungsei-
genschaften, Kompaktheit, Stetigkeit irgendwelcher Abbildungen, ...) uniformer Räume (Xi,Ui)i∈I ,
so beziehen wir uns (sofern nicht anders gesagt) auf die topologischen Räume (Xi,τUi)i∈I .

13.1.5 Lemma

Für einen uniformen Raum (X ,U ) sind äquivalent:
a) (X ,τU ) ist ein T0-Raum.
b) (X ,τU ) ist ein T1-Raum.
c) (X ,τU ) ist ein T2-Raum.
d) (X ,τU ) ist regulär.
e)
⋂

V∈U V = ∆X .

Beweis: Da (X ,τU ) in jedem Fall T3 ist, folgt die Äquivalenz von a) bis d) aus Bemerkung
3.1.2. e) impliziert aber auch a), denn für x 6= y ist (x,y) 6∈ ∆X , es gibt also ein V ∈ U mit
(x,y) 6∈ V und somit y 6∈ V (x). Umgekehrt folgt e) ganz leicht aus b). Denn es gilt immer
∆X ⊆

⋂
V∈U V und falls x 6= y, dann gibt es ein O ∈ ẋ∩ τU mit y 6∈ O. Es gibt dann aber auch

ein V ∈ U mit x ∈ V (x) ⊆ O, also y 6∈ V (x), was soviel wie (x,y) 6∈ V bedeutet. Damit also
(x,y) 6∈

⋂
V∈U V .

300



13.2 Initialuniformität und Finaluniformität
Wie beschafft man sich auf einer Menge eine Uniformität die gewissen Bedingungen genü-
gen soll? Zwei fundamentale Konstruktionen dazu lernen wir nun kennen. Wie schon bei der
Initialtopologie bzw. Finaltopologie bekommen wir auch hier die Produktuniformität bzw.
Quotientenuniformität als Spezialfälle.

13.2.1 Satz und Definition (Initialuniformität)

Sei X eine Menge und (Xi,Ui)i∈I eine Familie uniformer Räume mit zugehörigen Abbil-
dungen fi : X → Xi, i ∈ I. Die gröbste Uniformität U auf X , für die alle Abbildungen
fi uniform sind, nennen wir die Initialuniformität. Die Initialuniformität existiert immer,
wird von der Subbasis S := {( fi× fi)−1(U) |U ∈Ui, i ∈ I} erzeugt und erfüllt die fol-
gende universelle Eigenschaft:

Für alle uniformen Räume (Y,V ) und Abbildungen f : Y → X gilt:
f ist uniform genau dann, wenn alle Abbildungen fi ◦ f : Y → Xi uniform sind (i ∈ I).

Ferner ist U durch diese Eigenschaft eindeutig bestimmt.

Y

fi◦ f ��?
??

??
??

f // X
fi
��

Xi

Beweis: Man rechnet leicht nach, dass S die endliche Schnitteigenschaft hat und B :=
{
⋂

S ′ |S ′ ⊆S und S ′ ist endlich } die Basis eines Filters U ist. Zu zeigen bleibt, dass es
sich bei U um eine Uniformität handelt. Dies bleibt als leichte Übungsaufgabe. Unmittelbar
aus der Konstruktion folgt, dass es sich bei U um die gröbste Uniformität handelt, so dass alle
Abbildungen fi, i∈ I uniform sind. Der Nachweis der universellen Eigenschaft und ebenso die
Eindeutigkei, läuft genauso wie bei der Initialtopologie (man beachte, dass man sich wie bei
der Stetigkeit, auch beim Nachweis der Uniformität gewisser Abbildungen, auf eine Subbasis
beschränken kann).

13.2.2 Lemma

Sei U die Initialuniformität auf X bezüglich der uniformen Räume (Xi,Ui)i∈I und zu-
gehörigen Abbildungen fi : X → Xi, i ∈ I. Die Initialtopologie τini auf X bezüglich den
induzierten topologischen Räumen (Xi,τUi) und Abbildungen fi, i ∈ I ist gleich der durch
U induzierten Topologie τU .

Beweis: Zeigen wir zuerst τini ⊆ τU . Hierzu reicht es wenn wir zeigen, dass die Subbasis
{ f−1

i (Ui) |Ui ∈ τUi und i ∈ I} von τini in τU enthalten ist. Sei dazu x ∈ f−1
i (Ui), für Ui ∈ τUi .
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Dann gibt es ein V ∈ Ui mit V ( fi(x)) ⊆Ui. Es folgt ( fi× fi)−1(V )(x) ⊆ f−1
i (Ui). Das heißt

f−1
i (Ui) ∈ τU .

Kommen wir zu τU ⊆ τini. Sei O ∈ τU und x ∈ O. Es gibt dann ein V ∈U mit V (x) ⊆ O.
Zu V gibt es i1, ..., in ∈ I und Uik ∈ Uik , k = 1, ...,n mit

⋂n
k=1( fik × fik)

−1(Uik) ⊆ V . Wieder
kann man leicht nachrechnen, dass x ∈

⋂n
k=1 f−1

ik (Uik( fik(x))) ⊆ V (x) ist. Setzen wir noch
Wik := (Uik( fik(x)))

◦ ∈ ˙fik(x)∩τUik
, so erhalten wir x∈

⋂n
k=1 f−1

ik (Wik)⊆O, was nichts anderes
als O ∈ τini bedeutet.

13.2.3 Definition

Produktuniformität, Teilraumuniformität Genau wie die Produkttopologie definieren wir
auch die Produktuniformität der uniformen Räume (Xi,Ui)i∈I als die Initialuniformität U auf
X := ∏i∈I Xi bezüglich der Projektionsabbildungen pi : X → Xi.

Ist A⊆ X und (X ,U ) ein uniformer Raum, so definieren die Teilraumuniformität UA auf A
als die Initialuniformität auf A bzgl. (E,U ) und iA : A→ X definiert durch iA(a) := a.

Bevor wir nun die Finaluniformität definieren erst noch ein paar Vorbemerkungen zu soge-
nannten halbuniformen Räumen.

13.2.4 Definition

Halbuniformer Raum (X ,H ) heißt halbuniformer Raum und H entsprechend Halbunifor-
mität, wenn:

1) H ist ein Filter auf X×X .
2) ∀U ∈H ist ∆X ⊆U .
3) ∀U ∈H ist U−1 ∈H .

Sei (X ,H ) ein halbuniformer Raum. Wir setzen dann ΦH := {U ⊆H |U ist Uniformität
auf X}. Bilden wir anschließend S :=

⋃
U ⊆ΦH

U und B := {
⋂

S ′ |S ′ ⊆S und S ′ ist
endlich }, so ist B die Basis einer Uniformität U ∗. Zeigen wir dies:

Das B eine Filterbasis ist, sollte klar sein. Ebenso leicht sieht man ∆X ⊆ B, für jedes B∈B.
Sei B ∈ B, also B = U1 ∩ ...∩Un, für U1 ∈ U1 ∈ ΦH , ..., Un ∈ Un ∈ ΦH . Dann ist auch
U−1

k ∈Uk ∈ ΦH , für k = 1, ...,n. Wir erhalten B−1 = U−1
1 ∩ ...∩U−1

n ∈B. Ebenso folgt für
dieses B, dass es Vk ∈Uk gibt mit Vk ◦Vk ⊆Uk (für k = 1, ...,n). Für B′ := V1∩ ...Vn ∈B gilt
dann B′ ◦B′ ⊆ B. Damit ist gezeigt, dass U ∗ := [B] = {U ⊆ X×X | ∃B ∈B mit B⊆U} eine
Uniformität auf X ist. Wir zeigen im Folgenden U ∗ ∈ΦH .

Dazu bilden wir U ∗∗ := {V ⊆ X ×X | ∃ Folge (Vn)n∈N mit Vn ∈H , V0 ⊆ V und ∀n ∈ N
gilt Vn+1 ◦Vn+1 ⊆Vn} und zeigen: U ∗ = U ∗∗. Da offensichtlich U ∗∗ ⊆H , folgt dann sofort
U ∗ ∈ΦH .

Es gilt /0 6∈ U ∗∗ und V ⊆W mit V ∈ U ∗∗ impliziert W ∈ U ∗∗. Wenn V,W ∈ U ∗∗, dann
gibt es entsprechende Folgen (Vn)n∈N und (Wn)n∈N. Offensichtlich erfüllt dann die Folge (Vn∩
Wn)n∈N die Bedingung aus der Menge U ∗∗ bzüglich der Menge V ∩W und dementsprechend
ist V ∩W ∈U ∗∗. Das ∆X ⊆U ist, für jedes U ∈U ∗∗ ist wieder unmittelbar klar. Zu U ∈U ∗∗

gibt es wieder eine entsprechende Folge (Un)n∈N aus H , mit U0 ⊆U und Un+1 ◦Un+1 ⊆Un.
Dann ist U−1

0 ⊆U und U−1
n+1 ◦U−1

n+1 ⊆U−1
n und somit U−1 ∈U ∗∗. Das es zu jedem U ∈U ∗∗
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ein V ∈U ∗∗ gibt mit V ◦V ⊆U folgt dann wieder unmittelbar aus der Definition von U ∗∗. Wir
haben damit gezeigt, dass U ∗∗ eine Uniformität ist. Aus U ∗∗ ⊆H folgt dann U ∗∗ ⊆U ∗.

Für die andere Richtung nehmen wir uns ein U ∈U ∗. Dazu gibt es dann U1, ...,Un mit Uk ∈
Uk ∈ΦH , für k = 1, ...,n und U1∩ ...∩Un ⊆U . Für k = 1, ...,n gibt es dann Folgen (U (i)

k )i∈N

aus Uk mit U (i+1)
k ◦U (i+1)

k ⊆U (i)
k und U (0)

k =Uk. Dann bekommen wir mit Vi :=U (i)
1 ∩ ...∩U (i)

n
eine Folge (Vi)∈N aus H , welche Vi+1 ◦Vi+1 ⊆ Vi und V0 ⊆U erfüllt. Mit anderen Worten:
U ∈U ∗∗.

Wie bereits angekündigt erhalten wir somit U ∗ ∈ ΦH und U ∗ ist demnach das eindeutig
bestimmte maximale (bzgl. Inklusion) Element aus ΦH . Wir schreiben auch U ∗ = sup ΦH .

13.2.5 Satz und Definition (Finaluniformität)

Sei X eine Menge und (Xi,Ui)i∈I eine Familie uniformer Räume mit zugehörigen Abbil-
dungen fi : Xi→ X , i ∈ I. Die feinste Uniformität U auf X , für die alle Abbildungen fi
uniform sind, nennen wir die Finaluniformität. Die Finaluniformität existiert immer und
erfüllt die folgende universelle Eigenschaft:

Für alle uniformen Räume (Y,V ) und Abbildungen f : X → Y gilt:
f ist uniform genau dann, wenn alle Abbildungen f ◦ fi : Xi→ Y uniform sind (i ∈ I).

Ferner ist U durch diese Eigenschaft eindeutig bestimmt.

Xi

f◦ fi ��?
??

??
??

fi // X
f
��

Y

Beweis: Sei H := {V ⊆X×X |∆X ⊆V und ∀ i∈ I gilt ( fi× fi)−1(V )∈Ui∈I}. Man rechnet
leicht nach, dass H eine Halbuniformität ist. Entsprechend der obigen Konstruktion bilden
wir U := sup ΦH . Offensichtlich ist U dann bereits die Finaluniformität. Zeigen wir die
universelle Eigenschaft:

Wenn f : (X ,U )→ (Y,V ) uniform ist, so ist auch für jedes i ∈ I die Abbildung f ◦ fi
uniform. Sind andererseits alle f ◦ fi uniform, für i ∈ I und ist V ∈ V , so gibt es eine Folge
(Vn)n∈N aus V , mit Vn+1 ◦Vn+1 ⊆Vn und V0 = V . Für alle i ∈ I und n ∈ N gilt (( f ◦ fi)× ( f ◦
fi)−1(Vn) ∈ Ui und (( f ◦ fi)× ( f ◦ fi)−1(Vn) = ( fi× fi)−1(( f × f )−1(Vn)). Nach Definition
von H folgt also ( f × f )−1(Vn) ∈H . Wir haben also ein Folge (( f × f )−1(Vn))n∈N aus H
mit ( f × f )−1(Vn+1) ◦ ( f × f )−1(Vn+1) ⊆ ( f × f )−1(Vn). Aus dem oben gezeigten folgt also
( f × f )−1(V ) ∈U , die Abbildung f ist also uniform.

Betrachten wir eine andere Uniformität U ′ auf X , die auch die universelle Eigenschaft hat.
Die fi : (Xi,Ui)→ (X ,U ) sind uniform und es gilt fi : (Xi,Ui)→ (X ,U ) = idX : (X ,U ′)→
(X ,U )◦ fi : (Xi,Ui)→ (X ,U ′). Aus der universellen Eigenschaft für das Paar (X ,U ′) folgern
wir also, dass idX : (X ,U ′)→ (X ,U ) uniform ist und somit U ′⊆U gilt. Hieraus folgt bereits
unmittelbar, dass die fi : (Xi,Ui)→ (X ,U ′) uniform sind.
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Nun ist auch fi : (Xi,Ui)→ (X ,U ′) = idX : (X ,U )→ (X ,U ′)◦ fi : (Xi,Ui)→ (X ,U ). Aus
der universellen Eigenschaft für das Paar (X ,U ) folgern wir also, dass idX : (X ,U )→ (X ,U ′)
uniform ist und somit auch U ⊆U ′ gilt. Wir bekommen also U ′ = U - die Eindeutigkeit.

13.2.6 Definition

Quotientenuniformität Sei (X ,U ) ein uniformer Raum und ∼ eine Äquivalenzrelation auf
X . X/∼ bezeichne die Menge der Äquivalenzklassen und π : X → X/∼ die standard Projek-
tion. Die Finaluniformität auf X/∼ bezüglich π nennt man Quotientenuniformität.

13.2.7 Bemerkung

Eine zu Lemma 13.2.2 analoge Aussage ist falsch. Sei U die Finaluniformität auf X bezüg-
lich der uniformen Räume (Xi,Ui)i∈I und zugehörigen Abbildungen fi : Xi → X , i ∈ I. Die
Finaltopologie τ f in auf X bezüglich den induzierten topologischen Räumen (Xi,τUi) und Ab-
bildungen fi, i ∈ I ist nicht notwendig identisch mit der durch U induzierten Topologie τU ,
wie das folgende Beispiel lehrt.

13.2.8 Beispiel

Wir betrachten X := [0,1] mit der durch die euklidische d(x,y) := |x− y| Metrik erzeugten
Uniformität U . Auf X führen wir durch x ∼ y ⇔ {x,y} ⊆ [0,1/2) oder {x,y} ⊆ [1/2,1]
eine Äquivalenzrelation ein. Die durch die Quotientenuniformität auf X/ ∼ erzeugte Topo-
logie ist - wie wir bereits oben gesehen haben - in jedem Fall ein T3-Raum. X/ ∼ mit der
Quotiententopologie bezüglich der durch U auf X induzierten Topologie und der Projektions-
abbildung π : X → X/∼ hingegen ist - wie man leicht nachrechnet - homöomorph zu (Y,σ),
wobei Y = {a,b} eine zweielementige Menge ist und σ = { /0,{a},Y}. Insbesondere ist diese
Topologie nicht T3.

13.3 Überdeckungsuniforme Räume
Bereits bei den topologischen Räumen hatten wir gesehen, dass sich der Begriff der Topologie
auf mehrere Arten einführen lässt. Einerseits durch den Begriff der offenen Menge (Definition
2.1.1) andererseits durch den Abschluss-Operator (Bemerkung 2.1.10). Wir werden in diesem
Abschnitt nun ein anderen Zugang zu den uniformen Räumen entwickeln, der sich einerseits
als äquivalent erweisen wird, andererseits aber manchmal etwas handlicher ist.

13.3.1 Definition

Überdeckungsuniformer Raum, Überdeckungsuniformität Ein überdeckungsuniformer Raum
ist ein geordnetes Paar (X ,Γ), wobei X eine Menge ist und Γ folgenden Bedingungen genügt
(für die Bezeichnungen siehe auch Definition 12.2.1):

1) Γ ist eine Menge von Überdeckungen von X .
2) ∀α, β ∈ Γ∃γ ∈ Γ mit γ < α und γ < β .
3) ∀α ∈ Γ∃γ ∈ Γ mit γ <∗ α .
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4) Ist α ∈ Γ und β eine Überdeckung von X mit α < β , so ist auch β ∈ Γ.
Γ nennen wir dann eine Überdeckungsuniformität. Die Elemente aus Γ müssen keineswegs

offene Überdeckungen sein - von einer Topologie ist hier keine Rede!
Wir werden nun jedem überdeckungsuniformen Raum einen uniformen Raum zuordnen

und umgekehrt. Diese Zuordnungen werden sich als zueinander invers erweisen.

13.3.2 Lemma

a) Sei (X ,Γ) ein überdeckungsuniformer Raum. Zu jedem γ ∈ Γ definieren wir Vγ :=⋃
g∈γ g× g und setzen BΓ := {Vγ | γ ∈ Γ}. Dann ist UΓ := {U ⊆ X ×X | ∃B ∈BΓ mit

B⊆U} eine Uniformität auf X .
b) Sei (X ,U ) ein uniformer Raum. Zu jedem U ∈U definieren wir γU := {U(x) | x ∈

X} und setzen ΓU := {γ | γ ist eine Überdeckung von X und ∃U ∈U mit γU < γ}. Dann
ist ΓU eine Überdeckungsuniformität auf X .

c) Es ist ΓUΓ
= Γ.

d) Es ist UΓU
= U .

Beweis: a) Es ist ∆X ⊆ Vγ , für alle γ ∈ Γ. Für α, β ∈ Γ gibt es ein γ ∈ Γ mit γ < α und
γ < β . Damit gilt dann Vγ ⊆Vα ∩Vβ . Offensichtlich gilt V−1

γ = Vγ , für alle γ ∈ Γ. und zuletzt
gibt es zu α ∈ Γ ein γ ∈ Γ mit γ <∗ α . Damit folgt dann Vγ ◦Vγ ⊆ Vα . Da B eine Filterbasis
für U ist, ist U offensichtlich eine Uniformität.

b) Das ΓU eine Menge von Überdeckungen von X ist, ist klar. Es gilt γU∩V < γU und
γU∩V < γV , für U,V ∈U . Wählen wir wieder U ∈U , so gibt es ein V ∈U mit V ◦V ⊆U und
V−1 = V . Man kann dann leicht nachrechnen, dass γV <∗ γU gilt. Und ist γ ∈ ΓU und α eine
Überdeckung von X mit γ < α , so folgt aus der Definition von ΓU bereits α ∈ ΓU . Damit ist
ΓU also eine Überdeckungsuniformität.

c) Sei γ ∈ Γ. Dann gibt es ein α ∈ Γ mit α <∗ γ . Es ist V :=
⋃

a∈α a×a∈UΓ und {V (x) | x∈
X} < γ . Also auch γ ∈ ΓUΓ

, denn {V (x) | x ∈ X} ∈ ΓUΓ
. Sei andererseits γ ∈ ΓUΓ

, Dann
gibt es ein V ∈ UΓ mit {V (x) | x ∈ X} < γ . Zu diesem V gibt es dann aber ein α ∈ Γ mit⋃

a∈α a×a⊆V . Man sieht nun leicht, dass α < γ gilt und somit γ ∈ Γ folgt.
d) Sei U ∈ U . Es gibt dann ein V ∈ U mit V = V−1 und V ◦V ⊆ U . Nun ist γV ∈ ΓU

und
⋃

x∈X V (x)×V (x)⊆U , also U ∈UΓU
. Andererseits gibt es für U ∈UΓU

ein V ∈U mit⋃
x∈X V (x)×V (x)⊆U . Da V ⊆

⋃
x∈X V (x)×V (x), folgt U ∈U .

13.3.3 Lemma

a) Sei (X ,Γ) ein überdeckungsuniformer Raum. τΓ := {O⊆ X | ∀x∈O∃γ ∈ Γ mit γ(x)⊆
O} ist dann eine Topologie auf X .

b) Es ist τΓ = τUΓ
, für einen überdeckungsuniformen Raum (X ,Γ).

c) Es ist τU = τΓU
, für einen uniformen Raum (X ,U ).
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Beweis: a) ist offensichtlich. b) Sei O∈ τΓ. Für jedes x∈O gibt es ein γx ∈ Γ mit γx(x)⊆O.
Nun ist Vx :=

⋃
g∈γx

g×g ∈UΓ und Vx(x) = γx(x)⊆O. Also ist O ∈ τUΓ
. Sei nun O ∈ τUΓ

. Für
x ∈ O gibt es ein V ∈UΓ mit V (x)⊆ O. Dann gibt es aber auch ein γ ∈ Γ mit

⋃
g∈γ g×g⊆V .

Es ist dann γ(x) = (
⋃

g∈γ g×g)(x)⊆V (x)⊆ O. Insgesamt also auch O ∈ τΓ.
c) Sei O ∈ τU und x ∈ O. Es gibt dann ein V ∈U mit V = V−1 und (V ◦ v)(x)⊆ O. Dann

ist γV ∈ ΓU und es gilt γV (x) ⊆ O. Andererseits folgern wir für ein O ∈ τΓU
und x ∈ O, dass

es ein γ ∈ ΓU geben muss mit γ(x) ⊆ O. Dann gibt es ein V ∈U mit γV < γ . Offensichtlich
gilt dann V (x)⊆ O. Also O ∈ τU .

13.3.4 Lemma

Sei (X ,τ) ein topologischer Raum und Γ eine Überdeckungsuniformität auf X mit τΓ = τ .
Dann folgt ∀γ ∈ Γ∃α ∈ Γ mit α < γ◦. Unter γ◦ verstehen wir {g◦ | g ∈ γ}. Es gilt also
γ◦ ∈ Γ.

Beweis: Für γ ∈ Γ gibt es α, β ∈ Γ mit α <∗ β <∗ γ . Zeigen wir, dass dann bereits α < γ◦

gilt. Sei a ∈ α . Es gibt dann ein g ∈ γ mit α(a)⊆ g (siehe Lemma 12.2.2). Nun ist g◦ = {x ∈
g | ∃V ∈UΓ mit V (x)⊆ g} = {x ∈ g | ∃δ ∈ Γ mit δ (x)⊆ g}. Aus y ∈ a folgt α(y) ⊆ g, also
y ∈ g◦. Insgesamt also a⊆ g◦.

13.3.5 Definition

Seien (X ,Γ) und (Y,Γ′) überdeckungsuniforme Räume. Wir nennen eine Abbildung f : X→Y
überdeckungsuniform, wenn { f−1(g′) | g′ ∈ γ ′} ∈ Γ ist, für jedes γ ′ ∈ Γ′.

Wie nicht anders zu erwarten gilt folgende Aussage:

13.3.6 Lemma

Seien X ,Y zwei Mengen, U bzw. U ′ Uniformitäten und Γ bzw. Γ′ Überdeckungsunifor-
mitäten auf X bzw Y . Ferner sei f : X → Y eine Abbildung.

a) f : (X ,U )→ (Y,U ′) ist genau dann uniform, wenn f : (X ,ΓU )→ (Y,ΓU ′) überde-
ckungsuniform ist.

b) f : (X ,Γ) → (Y,Γ′) ist genau dann überdeckungsuniform, wenn f : (X ,UΓ) →
(Y,UΓ′) uniform ist.

Beweis: Der Beweis bleibt - zur Abwechslung - als leicht Übungsaufgabe.

13.3.7 Definition

Initialüberdeckungsuniformität und Finalüberdeckungsuniformität Für zwei Überdeckungs-
uniformitäten Γ und Γ′ auf X führen wir die Sprechweisen feiner und gröber ein. Γ heißt feiner
als Γ′ bzw. Γ′ heißt gröber als Γ, wenn Γ′ ⊆ Γ.
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a) Ist X eine Menge und (Xi,Γi)i∈I eine Familie überdeckungsuniformer Räume und ( fi :
X → Xi)i∈I eine zugehörige Familie von Abbildungen, so gibt es eine gröbste Überdeckungs-
uniformität Γ auf X , bzgl derer alle fi uniform sind.

Beschreiben kann man sie etwa so: Für α,β ⊆P(X) setzen wir α ∧ β := {A∩B | A ∈
α, B ∈ β}. Für jedes i ∈ I und γ ∈ Γi setzen wir f−1

i (γ) := { f−1
i (g) | g ∈ γ}. Dann ist

Γ = {γ ⊆P(X) | ∃ i1, ..., in ∈ I , γ1 ∈ Γi1 , ..., γn ∈ Γin mit f−1
i1 (γ1)∧ ...∧ f−1

in (γn) < γ}.
b) Ist X eine Menge und (Xi,Γi)i∈I eine Familie überdeckungsuniformer Räume und ( fi :

Xi→ X)i∈I eine zugehörige Familie von Abbildungen, so gibt es eine feinste Überdeckungs-
uniformität Γ auf X , bzgl derer alle fi uniform sind.

Beweis: Auch der Beweis bleibt als Aufgabe.

13.3.8 Bemerkung

Teilraum-/Produkt-/Quotientenüberdeckungsuniformitäten sind dann auch entsprechend defi-
niert.

13.4 Uniformisierbarkeit und Metrisierbarkeit
Wir geben nun Kriterien an (notwendige und hinreichende), die erfüllt sein müssen, damit es
zu einem topologischer Raum (X ,τ) eine Uniformität U oder eine Überdeckungsuniformität
Γ gibt, mit τ = τU bzw. τ = τΓ. In diesem Fall nennen wir den topologischen Raum uniformi-
sierbar bzw. überdeckungsuniformisierbar. Im Anschluss daran beschäftigen wir uns mit der
Frage ob sich eine Uniformität/Überdeckungsuniformität durch eine Metrik gewinnen lässt.

13.4.1 Lemma

Sei (X ,τ) ein kompakter Raum. Dann gibt es höchstens eine Uniformität U bzw. Über-
deckungsuniformität Γ, mit τ = τU bzw. τ = τΓ.

Beweis: Es reicht die Aussage für Überdeckungsuniformitäten zu beweisen. Seien also Γ

und Γ′ zwei Überdeckungsuniformitäten mit τΓ = τ = τΓ′ . Wir zeigen Γ′ ⊆ Γ. Aus Symme-
triegründen folgt dann Γ ⊆ Γ′ und wir sind fertig. Sei also γ ′ ∈ Γ′. Aus Lemma 13.3.4 folgt
γ := γ ′◦ ∈Γ′. Zu jedem x∈X wählen wir ein Ox ∈ ẋ∩γ . Es gibt dann ein βx ∈Γ mit βx(x)⊆Ox.
Zu βx gibt es ein αx ∈ Γ mit αx <∗ βx. Aus Lemma 12.2.2 folgt αx(αx(x))⊆ βx(x)⊆ Ox. Ins-
besondere gibt es somit ein Ux ∈ ẋ∩αx mit αx(Ux)⊆ Ox. Nun ist (X ,τ) kompakt, es gibt also
endlich viele x1, ...,xn ∈ X mit X = Ux1 ∪ ...∪Uxn . Induktiv schließen wir, dass es ein α ∈ Γ

geben muss mit α < αx1 und ... und α < αxn . Für beliebiges x ∈ X gilt x ∈ Uxk , für gewis-
ses k ∈ {1, ...,n} und damit αxk(Uxk) ⊆ Oxk . Insbesondere also α(x) ⊆ Oxk . Wir haben somit
α <∗ γ , denn Oxk ∈ γ und darum γ ∈ Γ. Dann ist aber auch γ ′ in Γ, denn es gilt γ < γ ′.
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13.4.2 Satz

Ein topologischer Raum (X ,τ) ist genau dann uniformisierbar (das heißt es gibt eine Uni-
formität U auf X mit τ = τU ), wenn er ein T3 1

2
-Raum ist.

Beweis: Sei (X ,τ) ein T3 1
2
-Raum. Sei dann I die Menge aller stetigen Abbildungen f :

X → [0,1], also I := C(X , [0,1]). Für jedes f ∈ I sei X f := [0,1]. Wir definieren dann U als
die Initialuniformität auf X bezüglich den X f , f ∈ I (die X f sind uniforme Räume, da sie
metrisierbar sind). Wir müssen τ = τU zeigen. Bezeichnen wir mit τI die Initialtopologie
auf X bezüglich den X f mit den zugehörigen Abbildungen, so folgt aus Lemma 13.2.2 sofort
τU = τI . Da τI die gröbste Topologie auf X ist, für die die Abbildungen aus I stetig sind,
haben wir schon τI ⊆ τ . Um die andere Inklusion zu beweisen, wählen wir ein /0 6= O ∈ τ .
Sei x ∈ O beliebig. Es gibt dann ein f ∈ I mit f (x) = 0 und f (X \O) ⊆ {1}. Es ist U :=
f−1([0,1/2)) ∈ τI und es gilt U ⊆ O. Daraus folgt O ∈ τI (da x ∈ O beliebig war). Der Raum
ist also uniformisierbar.

Zeigen wir nun, dass jeder überdeckugsuniforme Raum (X ,Γ) mit τ := τΓ ein T3 1
2
-Raum

ist. Dazu nehmen wir eine abgeschlossene Teilmenge A von X und ein x ∈ X \A. Es gibt dann
eine Folge (γn)n∈N aus Γ, mit γ0(x)⊆ X \A und γn+1 <∗ γn (für alle n∈N). Wir definieren nun
R := {k/2n | n ∈ N6=0 und k = 1, ...,2n− 1}. Für jedes R definieren wir nun ein U(r) ∈ ẋ∩ τ

mit r < r′ ⇒ U(r)⊆U(r′). Dazu definieren wir U(1/2) := γ1(x) und allgemein:
U(k′/2n+1) := U(k/2n), für k′ = 2k, k > 0
U(k′/2n+1) := γn+1(x), für k′ = 1
U(k′/2n+1) := γn+1(U(k/2n)) für k′ = 2k +1, k > 0.
Außerdem setzen wir noch U(1) := X .
Mit diesen Bezeichnungen gilt dann γn(U(k/2n))⊆U((k +1)/2n), für alle n ∈ N und 1≤

k < k+1≤ 2n−1. Der Beweis ist nicht schwer (er verwendet Lemma 12.2.2) und läuft durch
Induktion über n. Ebenso beweist man γn+1(γn+1(U(k/2n)))⊆ X \A.

Nun fällt es auch nicht schwer zu zeigen, dass gilt: x ∈ U(k/2n) ⊆ U(k/2n) ⊆ U((k +
1)/2n) ⊆ U((k +1)/2n) ⊆ X \A (für alle n ∈ Nn6=0 und 1 ≤ k < k + 1 ≤ 2n− 1. Denn wir
haben (man beachte wieder Lemma 12.2.2):

x∈U(k/2n)⊆U(k/2n)⊆ γn+1(U(k/2n))⊆ γn+1(γn+1(U(k/2n)))⊆ γn(U(k/2n))⊆U((k+
1)/2n).

Damit bekommen wir dann: r,r′ ∈ R und r < r′ impliziert:
U(r)⊆U(r′)⊆ X \A.
Wir definieren nun f : X → [0,1] durch f (z) := in f {r ∈ R | z ∈U(r)}. Offensichtlich gilt

dann f (x) = 0 und f (A) ⊆ {1}. Zeigen wir noch, dass f stetig ist. Wir betrachten dazu die
Subbasis S := {[0, t) | 0 < t ≤ 1}∪{(t,1] | 0 ≤ t < 1} von [0,1]. Es reicht dann zu zeigen,
dass die Urbilder unter f von Mengen aus S wieder offen sind.

Sei U = [0, t). Dann ist f−1(U) = {z ∈ X | f (z) < t} = {z ∈ X | ∃rz ∈ R mit rz < t und
z∈U(rz)}. Für z∈ f−1(U) ist offensichtlich z∈U(rz)⊆ f−1(U). Also ist f−1(U) offen in X .

Sei U = (t,1]. Dann ist f−1(U) = {z ∈ X | t < f (z)} = {z ∈ X | ∃r ∈ R mit t < r und
z 6∈U(r)}. Ist z ∈ f−1(U), so gibt es also ein r ∈ R mit t < r und z 6∈U(r). Nun ist R dicht in
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[0,1], es gibt also ein r′ ∈ R mit t < r′ < r und damit z ∈ Vz := X \U(r′) ∈ τ . Offensichtlich
gilt dann Vz ⊆ f−1(U). Also ist f−1(U) wieder offen in X . Damit ist der Beweis beendet.

13.4.3 Beispiel

Analog zur Frage der Uniformisierbarkeit eines topologischen Raumes stellt sich die Frage
der Metrisierbarkeit eines uniformen Raumes. Dazu diese beiden Beispiele: Sei (X ,d) ein
metrischer Raum. Für jedes ε > 0 bilden wir die Menge Uε := {(x,y) | d(x,y) < ε}. Es gilt
dann:

1) B := {Uε | ε > 0} ist eine Filterbasis.
2) ∀ε > 0 ist ∆X ⊆Uε .
3) ∀ε > 0 ist U−1

ε = Uε .
4) ∀ε > 0 ist Uε/2 ◦Uε/2 ⊆Uε .
Ud := {U ⊆ X×X | ∃B ∈B mit B⊆U} ist somit eine Uniformität auf X .
Man sieht unmittelbar Uε(x) = K(x,ε), es gilt also τUd = τd . Jeder metrische Raum ist also

auf natürliche Weise auch ein uniformer Raum, wobei die induzierten Topologien identisch
sind.

Einen uniformen Raum (X ,U ) nennen wir metrisierbar, wenn es eine Metrik d auf X gibt
mit U = Ud .

Und nun das ganze mit Überdeckungsuniformen Räumen.

13.4.4 Beispiel

Einem metrischen Raum (X ,d) können wir auch eine Überdeckungsuniformität zuordnen. Für
jedes n∈N setzen wir dazu einfach γn := {K(x,1/n) | x∈ X} (hierbei bedeutet K(x,ε) := {y∈
X | d(x,y) < ε}) und bilden dann Γd := {γ | γ ist eine Überdeckung von X und ∃n ∈ N mit
γn < γ}. Offensichtlich ist Γd eine Überdeckungsuniformität und es gilt τd = τΓd .

Wir nennen einen überdeckungsuniformen Raum (X ,Γ) metrisierbar, wenn es eine Metrik
d auf X gibt mit Γ = Γd .

In Zusammenhang mit Beispiel 13.4.3 sieht man sofort ΓUd = Γd und UΓd = Ud . Wir ge-
ben nun sowohl für uniforme, als auch überdeckungsuniforme Räume ein Metrisierbarkeits-
kriterium, beweisen aber nur jenes für überdeckungsuniforme Räume. Dasjenige für uniforme
Räume, folgt dann sofort.

13.4.5 Satz

a) Für einen uniformen Raum (X ,U ) ist äquivalent:
1) (X ,U ) ist metrisierbar.
2) (X ,U ) ist ein T1-Raum und U hat eine abzählbare Basis.
b) Für einen überdeckungsuniformen Raum (X ,Γ) ist äquivalent:
1) (X ,Γ) ist metrisierbar.
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2) (X ,Γ) ist ein T1-Raum und es gibt eine abzählbare Menge (γn)n∈N von Überdeckun-
gen mit ∀γ ∈ Γ∃n ∈ N mit γn < γ .

Beweis: Beweisen wir also b). Ist (X ,Γ) metrisierbar, so gibt es klarerweise die abzählbare
Menge von Überdeckungen. Nehmen wir also an, wir haben eine abzählbare Menge (γn)n∈N
von Überdeckungen mit ∀γ ∈ Γ∃n ∈ N mit γn < γ . Wir betrachten den topologischen Raum
(X ,τΓ). Laut Lemma 13.3.4 sind auch δn := γ◦n ∈ Γ. Dann ist (δn)n∈N aber eine Folge offener
(bzgl. τΓ) Überdeckungen von X , mit deren Hilfe man sich leicht auch eine sternmonotone
Folge offener Überdeckungen, die die Voraussetzung des Metrisationssatz von Alexandroff-
Urysohn (Satz 12.8.8) erfüllt, beschafft. (X ,τΓ) ist also (als topologischer Raum) metrisierbar
mit Metrik d. Offensichtlich induziert d bereits auch Γ. Der überdeckungsuniforme Raum
(X ,Γ) ist also metrisierbar.

13.4.6 Beispiel: Metrisierbarkeit topologischer Gruppen

Sei X eine Menge, die einerseits eine Topologie τ hat und gleichzeitig auch eine Gruppe mit
Multiplikation · ist. Das bedeutet es gibt eine Abbildung (Multiplikation genannt) · : X×X →
X hat, mit folgenden Eigenschaften (für ·(x,y) schreiben wir einfach xy).

1) ∀x,y,z ∈ X gilt (xy)z = x(yz) (Assoziativität).
2) ∃e ∈ X , so dass ex = x = xe ist (∀x ∈ X); das Einselement (ist dann eindeutig bestimmt).
3) ∀x∈X ∃y∈X mit xy = e = yx. Das zu x gehörige y ist dann ebenfalls eindeutig bestimmt,

wird mit x−1 bezeichnet und Inverses von x genannt.
Das Paar (X , ·) wird dann Gruppe genannt. Sind nun zusätzlich die Operationen · : X ×

X → X und i : X → X definiert durch i(x) := x−1 stetig bezüglich τ (und der entsprechenden
Produkttopologie), so nennt man (X ,τ, ·) eine topologische Gruppe.

Sei x ∈ X fest gewählt. Dann sind die Abbildungen y 7→ x · y und y 7→ y · x und y 7→ y−1

Homöomorphismen (wenn nicht klar ⇒ Übungsaufgabe). Für jedes V ∈ τ ist insbesondere
x ·V ∈ τ .

Wir werden nun jeder topologischen Gruppe (X ,τ, ·) eine Uniformität zuordnen (besser
Überdeckungsuniformität), welche dieselbe original Topologie τ induziert.

Sei dazu Be ⊆ ė∩ τ eine Umgbungsbasis des neutralen Elementes e. Für jedes V ∈ ė∩ τ

bilden wir die offene Überdeckung γ
−
V := {x ·V | x∈X} und dann Γ− := {γ | γ ⊆P(X),

⋃
γ =

X und ∃V ∈ Be mit γ
−
V < γ}. Zeigen wir, dass Γ− eine Überdeckungsuniformität ist. Die

Einzige Schwierigkeit ist dabei Punkt 3) in Definition 13.3.1. Sei γ ∈ Γ−. Es gibt dann V ∈Be
mit γ

−
V < γ . Es gibt dann ein U ′ ∈ ė∩ τ mit U ′ ·U ′ ⊆ V . Wir wählen dann ein U ∈Be mit

U ⊆U ′∩U ′−1 ∈ ė∩ τ . Es gilt dann nämlich γ
−
U <∗ γ

−
V . Betrachten wir dazu x ∈ X . Sei y ∈ X

mit x ∈ y ·U ∈ γ
−
U . Es ist dann x = yu und y = xu−1. Für z ∈ U folgt somit yz = xu−1z ∈

x · (U−1 ·U) ⊆ x · (U ′ ·U ′) ⊆ x ·V . Insgesamt also y ·U ⊆ x ·V und somit γ
−
U (x) ⊆ x ·V ∈ γ

−
V .

Wir sehen also, dass Γ− eine Überdeckungsuniformität ist. Offensichtlich gilt nun τΓ− = τ .
Was bringt uns das? Beispielsweise ein notwendiges und hinreichendes Kritierium wann die

Topologie τ einer topologischen Gruppe (X ,τ, ·) durch eine Metrik induziert werden kann. Es
gilt nämlich:
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Die Topologie τ einer topologischen Gruppe (X ,τ, ·) kann genau dann durch eine Me-
trik induziert werden, wenn (X ,τ) ein T1-Raum ist und e (das neutrale Element von X)
eine abzählbare Umgebungsbasis besitzt.

Beweis: Folgt unmittelbar aus der Art und Weise wie (X ,τ, ·) eine Überdeckungsuniformi-
tät zugeordnet wurde und Satz 13.4.5.

13.5 Vollständigkeit und Vervollständigungen
Ebenfalls motiviert durch die Analysis ist der Begriff der Vollständigkeit. Wie wir wissen ist
R vollständig. Zur Erinnerung: Jede Cauchy-Folge aus R konvergiert in R - im Gegensatz zu
Q. Wir wollen versuchen das Konzept der Vollständigkeit, mit seinen vielen Anwendungen,
auf allgemeinere Räume - sprich uniforme bzw. überdeckungsuniforme Räume - zu übertra-
gen. Als erstes müssen wir dazu den Begriff der Cauchy-Folge zum Begriff des Cachy-Filters
verallgemeinern.

13.5.1 Definition

Cauchy-Filter Sei (X ,U ) ein uniformer Raum und ϕ ein Filter auf X . Wir nennen ϕ Cauchy-
Filter bezüglich U , wenn es zu jedem U ∈U ein P ∈ ϕ gibt, mit P×P⊆U . Haben wir eine
Überdeckungsuniformität Γ auf X , so nennen wir ϕ einen Cauchy-Filter bezüglich Γ, wenn
γ∩ϕ 6= /0 für jedes γ ∈Γ. Ausführlicher bedeutet dies ∀γ ∈Γ∃P∈ϕ mit P∈ γ . Als Übung ver-
suche der Leser sich diese beiden Definitionen anhand seiner Kenntnisse über Cauchy-Folgen
in metrischen Räumen sowie Beispiel 13.4.3 und Beispiel 13.4.4 selbständig zu motivieren.

13.5.2 Lemma

Sei X eine Menge,U eine Uniformität, Γ eine Überdeckungsuniformität und ϕ ein Filter
auf X .

a) ϕ ist ein Cauchy -Filter bzgl. U , genau dann wenn er es auch bzgl. ΓU ist.
b) ϕ ist ein Cauchy -Filter bzgl. Γ, genau dann wenn er es auch bzgl. UΓ ist.
Die Beiden Definitionen sind also kohärent und wir sprechen in Zukunft nur noch von

Cauchy-Filtern, egal ob wir eine Uniformität oder Überdeckungsuniformität zugrunde lie-
gen haben.

Beweis: a) Sei ϕ ein Cauchy -Filter bzgl. U . Zu γ ∈ ΓU gibt es ein U ∈ U mit γU < U .
Dann gibt es ein P ∈ ϕ mit P×P⊆U . Für x ∈ P ist P⊆ P×P(x)⊆U(x) ∈ γU . Es gibt dann
ein g ∈ γ mit U(x)⊆ g und damit g ∈ γ ∩ϕ .

Sei ϕ ein Cauchy -Filter bzgl. ΓU . Für U ∈ U gibt es ein V ∈ U mit V = V−1 und V ◦
V ⊆U . Es gibt dann ein P ∈ γV ∩ϕ , also P = V (z), für ein gewisses z ∈ X . Damit gilt dann
P×P⊆U , denn (x,y) ∈ P×P impliziert (x,z) ∈V und (z,y) ∈V , also (x,y) ∈U .
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b) Sei ϕ ein Cauchy -Filter bzgl. Γ. Für U ∈UΓ gibt es ein γ ∈ Γ mit
⋃

g∈γ g×g⊆U . nun
gibt es aber ein P ∈ γ ∩ϕ . Offensichtlich gilt dann P×P⊆U .

Sei ϕ ein Cauchy-Filter bzgl. UΓ. Für γ ′ ∈ Γ gibt es ein γ ∈ Γ mit γ <∗ γ ′. Es gibt dann
ein P ∈ ϕ mit P×P ⊆Uγ =

⋃
g∈γ g× g. Zu x ∈ P gibt es ein g′ ∈ γ ′ mit γ(x) ⊆ g′. Es folgt

P⊆ P×P(x)⊆ (
⋃

g∈γ g×g)(x) = γ(x)⊆ g′. Also g′ ∈ ϕ ∩ γ .

13.5.3 Lemma

Sei (X ,Γ) ein überdeckungsuniformer Raum. Ein Filter ϕ konvergiert (bzgl. τΓ) genau
dann gegen ein x ∈ X , wenn ẋ∩ϕ ein Cauchy Filter ist. Insbesondere sind bzgl. τΓ kon-
vergente Filter bereits Cauchy-Filter.

Beweis: Sei ϕ (bzgl. τΓ) konvergent gegen x ∈ X . Sei weiter γ ′ ∈ Γ. Aus Lemma 13.3.4
folgt γ := γ ′◦ ∈ Γ. Es gibt dann ein g ∈ γ mit x ∈ g. Offensichtlich gilt nun g ∈ ẋ∩ϕ . Zu g
gibt es ein g′ ∈ γ ′ mit g ⊆ g′ und es folgt g′ ∈ (ẋ∩ϕ)∩ γ ′. Damit ist ẋ∩ϕ ein Cauchy-Filter.
Insbesondere ist damit auch ϕ ein Cauchy-Filter, denn es gilt schließlich ẋ∩ϕ ⊆ ϕ .

Sei umgekehrt ẋ∩ϕ ein Cauchy-Filter. Sei O ∈ ẋ∩τΓ. Es gibt dann ein γ ∈ Γ mit γ(x)⊆O.
Es gibt dann auch ein P ∈ (ẋ∩ϕ)∩ γ . Damit folgt P⊆ γ(x)⊆O und darum O ∈ ϕ . Der Filter
ϕ konvergiert also gegen x.

13.5.4 Lemma

Sei (X ,Γ) ein Überdeckungsuniformer Raum und φ und ψ Cauchy-Filter auf X , für die
φ ∪ψ die endliche Schnitt Eigenschaft (eSE) hat. Dann ist auch φ ∩ψ ein Cauchy-Filter.

Beweis: Sei γ ∈ Γ. Es gibt dann ein γ ′ ∈ Γ mit γ ′ <∗ γ . Dann gibt es g1 ∈ φ ∩ γ ′ und
g2 ∈ ψ ∩ γ ′. Nach Voraussetzung gilt g1∩g2 6= /0. Sei dann x ∈ g1∩g2. Es gibt nun ein g ∈ γ

mit γ ′(x) ⊆ g. Also ist g ∈ φ ∩ γ und g ∈ ψ ∩ γ (also Obermenge von g1 und g2) und somit
g ∈ (φ ∩ψ)∩ γ .

13.5.5 Lemma

Sei (X ,Γ) ein Überdeckungsuniformer Raum und ψ ein Cauchy-Filter auf X . Gilt x ∈⋂
P∈ψ P, so konvergiert ψ gegen x (bzgl. τΓ).

Beweis: Da x ∈
⋂

P∈ψ P, hat (ẋ∩τΓ)∪ψ die eSE. Nach Lemma 13.5.4 ist φ := (ẋ∩τΓ)∩ψ

ein Cauchy-Filter. Also ist auch ẋ∩ψ ein Cauchy-Filter (da φ ⊆ ẋ∩ψ). Lemma 13.5.3 sagt
gerade, dass ψ dann gegen x konvergiert.
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13.5.6 Definition

total beschränkt, vollständig Ein überdeckungsuniformer Raum (X ,Γ) heißt total beschränkt,
wenn für jedes γ ∈Γ eine endliche Teilüberdeckung γ ′⊆ γ existiert. Er heißt vollständig, wenn
jeder Cauchy-Filter auch konvergiert.

Nicht für jede offene Überdeckung soll eine endliche Teilüberdeckung existieren (das wäre
Kompaktheit), sondern nur für solche aus Γ. Was fehlt nun total beschränkten Räumen zur
Kompaktheit? Sie müssen vollständig sein.

13.5.7 Lemma

Ein überdeckungsuniformer Raum (X ,Γ) ist genau dann kompakt, wenn er vollständig
und total beschränkt ist.

Beweis: Sei (X ,Γ) kompakt. Offensichtlich ist er dann auch total beschränkt. Zeigen wir,
dass er vollständig ist. Sei dazu ϕ ein Cauchy-Filter auf X . Dieser ist in einem Ultrafilter ψ

enthalten, welcher gegen ein x ∈ X konvergiert. Insbesondere bedeutet dies: x ∈
⋂

P∈ϕ P. Aus
Lemma 13.5.5 folgt, dass auch ϕ gegen x konvergiert. Der Raum ist also vollständig.

Sei (X ,Γ) nun als vollständig und total beschränkt vorausgesetzt. Angenommen es gibt
einen Ultrafilter ϕ auf X , der nicht konvergiert. Dann ist ϕ kein Cauchy-Filter. Das heißt es
gibt ein γ ∈ Γ mit γ ∩ϕ = /0. Nun gibt es ein endliches γ ′ ⊆ γ mit

⋃
g∈γ ′ g = X ∈ ϕ . Also muss

es ein g ∈ γ ′ geben mit g ∈ ϕ - Widerspruch!

13.5.8 Lemma

Ist f : (X ,Γ)→ (Y,Σ) uniform und ϕ ein Cauchy-Filter auf X , so ist f (ϕ) ein Cauchy-
Filter auf Y .

Beweis: Sei σ ∈ Σ. Dann ist { f−1(w) | w ∈ σ} ∈ Γ. Es gibt also ein w ∈ σ mit f−1(w) ∈ ϕ .
Dann ist aber w ∈ f (ϕ)∩σ . Damit ist alles gezeigt.

13.5.9 Lemma

Sei Γ die Initialüberdeckungsuniformität auf X bzgl. (Xi,Γi)i∈I und ( fi : X → Xi)i∈I . Sei
weiter ϕ ein Filter auf X . Dann gilt: ϕ ist genau dann ein Cauchy-Filter auf X , wenn fi(ϕ)
für jedes i ∈ I ein Cauchy-Filter auf Xi ist.

Beweis: Sei ϕ ein Cauchy-Filter auf X . Dann ist offensichtlich für jedes i ∈ I auch fi(ϕ)
ein Cauchy-Filter auf Xi (denn die fi sind uniform).
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Seien andererseits alle fi(ϕ) Cauchy-Filter auf Xi. Wir wählen ein γ ∈ Γ. Dann gibt es
i1, ..., in ∈ I mit f−1

i1 (γi1)∧ ...∧ f−1
in (γin) < γ . Nun gibt es Pik ∈ ϕ und ein gik ∈ γik mit fik(Pik)⊆

gik (denn γik∩ fik(ϕ) 6= /0). Mit P :=
⋂n

k=1 Pik ∈ ϕ folgt P⊆
⋂n

k=1 f−1
ik (gik)⊆ g, für ein gewisses

g ∈ γ . Also g ∈ γ ∩ϕ .

13.5.10 Lemma

a) Ist (X ,Γ) vollständig und A⊆ X abgeschlossen, so ist (A,ΓA) auch vollständig.
b) Ist (X ,Γ) ein T0-Raum und A⊆ X als Teilraum volständig, so ist A in X abgeschlos-

sen.

Beweis: a) Ist ϕ ein Cauchy-Filter auf A, so ist ψ := {P ⊆ X | ∃P′ ∈ ϕ mit P′ ⊆ P} ein
Cauchy-Filter auf X . Dieser konvergiert dann gegen ein x ∈ X . Da A abgeschlossen ist und
A ∈ ψ ist, folgt x ∈ A. Damit konvergiert aber auch ϕ gegen x ∈ A.

b) Wäre A nicht abgeschlossen, so gäbe es ein x ∈ A \A. Dann gibt es aber einen Filter
ϕ auf X mit (ẋ∩ τΓ)∪{A} ⊆ ϕ . Dieser Filter konvergiert somit gegen x und ist deshalb ein
Cauchy-Filter auf X . Dann muss aber ϕA := {A∩P | P ∈ ϕ} ein Cauchy-Filter auf A sein
(betrachten wir die Inklusion i : A→ X , so ist i(ϕA) = ϕ; Lemma 13.5.9 erledigt dann den
rest). Das bedeutet es gibt ein a∈ A mit ϕA→ a. Also auch ϕ→ a. Da der Raum ein T2-Raum
ist (er ist T0!), folgt x = a ∈ A - ein Widerspruch.

13.5.11 Lemma

Seien (X ,Γ) und (Y,Σ) überdeckungsuniforme Räume, D⊆ X mit D = X und f : X → Y
eine stetige Abbildung (alles bzgl. den induzierten Topologien). Ist ferner f |D uniform, so
ist f auch uniform.

Beweis: Sei σ ′ ∈ Σ. Es gibt dann ein σ ∈ Σ mit σ <∗∗ σ ′ (starke Sternverfeinerung; siehe
Definition 12.2.1). Nun ist ( f |D)−1(σ) ∈ ΓD, es gibt also ein β ∈ Γ mit β = β ◦ und βD =
{B∩D | B ∈ β}< ( f |D)−1(σ). Zeigen wir β < f−1(σ ′) = { f−1(S′) | S′ ∈ σ}. Sei dazu B ∈
β . Dann gibt es ein S ∈ σ mit B∩D ⊆ f−1(S)∩D. Sei S′ ∈ σ mit σ(S) ⊆ S′. Wir zeigen
B⊆ f−1(S′). Angenommen es gibt ein x ∈ B\ f−1(S′). Nun ist S⊆ σ(S) und von oben wissen
wir σ(S) ⊆ S′, also x ∈ f−1(Y \ S). Da f stetig ist, ist B∩ f−1(Y \ S) eine nichtleere offene
Menge (x ∈ B∩ f−1(Y \ S) und β = β ◦) und es gibt daher ein d ∈ B∩ f−1(Y \ S)∩D. Also
d ∈ B∩D⊆ f−1(S)∩D und somit d ∈ f−1(S)∩ f−1(Y \S) = /0 - ein Widerspruch.

13.5.12 Lemma

Seien (X ,Γ) und (Y,Σ) überdeckungsuniforme Räume, D = X , f : D→ Y uniform und
(Y,Σ) vollständig. Dann gibt es eine uniforme Abbildung g : X→Y mit g|D = f . ist (Y,Σ)
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zudem den T0-Raum, so ist die Abbildung eindeutig bestimmt.

Beweis: Sei x ∈ X . Dann hat (ẋ∩ τ)∪{D} die eSE und somit ist ϕ := {P⊆ D | ∃O ∈ ẋ∩ τ

mit O∩D ⊆ P} ein Cauchy-Filter auf D. Dann ist aber f (ϕ) ein Cauchy-Filter auf Y (dies
bestätigt eine leichte Rechnung) und somit existiert ein yx ∈ Y mit f (ϕ)→ yx. Lemma 3.3.7
erledigt dann den Rest.

13.5.13 Lemma

Seien (X ,Γ) und (Y,Σ) überdeckungsuniforme vollständige Räume, die außerdem T0 sind.
Ist D⊆ X dicht in X und E ⊆Y dicht in Y und ist f : D→ E eine bijektive Abbildung, für
die sowohl f , als auch f−1 uniform sind, dann ist die nach dem vorigen Lemma existie-
rende eindeutige Fortsetzung g eine Bijektion und sowohl g, als auch g−1 sind uniform.

Beweis: Aus dem vorigen Lemma folgt, dass es eine uniforme Abbildung g : X → Y mit
g|D = f und eine uniforme Abbildung g′ : Y → X mit g′|E = f−1 gibt. Dann ist g′ ◦g : X →
X ebenfalls uniform und es gilt g′ ◦ g|D = f−1 ◦ f = idD. Die Abbildung g′ ◦ g ist also die
eindeutige (!) uniforme Fortsetzung von idD. Nun ist aber auch idX eine solche uniforme
Fortsetzung. Es gilt also g′ ◦ g = idD. Analog bekommen wir g ◦ g′ = idY . Insgesamt sehen
wir g′ = g−1.

13.5.14 Definition

minimale Cauchy-Filter Ein Cauchy-Filter ϕ in einem überdeckungsuniformen Raum (X ,Γ)
heißt minimal (bzgl. Inklusion), wenn es keinen Cauchy-Filter ϕ ′ 6= ϕ mit ϕ ′ ⊆ ϕ gibt.

13.5.15 Lemma

Sei (X ,Γ) ein überdeckungsuniformer Raum und ϕ ein Filter auf X . Dann ist ϕ genau dann
ein minimaler Cauchy-Filter, wenn ∀P ∈ ϕ ∃P′ ∈ ϕ∃γ ∈ Γ mit γ(P′) ⊆ P. Insbesondere
erhalten wir, dass jeder Cauchy-Filter ϕ genau einen minimalen Cauchy-Filter ϕ0 enthält,
nämlich den von der Subbasis S := {γ(P) | γ ∈ Γ und P ∈ ϕ} erzeugten. Tatsächlich ist
S sogar eine Basis, wie der Beweis zeigen wird.

Beweis: Sei ϕ ein Cauchy-Filter. Wir setzen S := {γ(P) | γ ∈ Γ und P ∈ ϕ} und B :=
{
⋂

S ′ | S ′ ⊆ S und S ′ endlich }. Setzen wir ϕ0 := {P ⊆ X | ∃B ∈ B mit B ⊆ P}, so
ist ϕ0 offensichtlich ein Filter auf X mit Subbasis S und Basis B. Zeigen wir, dass ϕ0 ein
Cauchy-Filter ist.
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Sei dazu γ ∈ Γ. Es gibt dann ein γ ′ ∈ Γ mit γ ′ <∗∗ γ . Dann gibt es ein P′ ∈ ϕ ∩ γ ′, zu
dem es auch ein g ∈ γ gibt mit γ ′(P′) ⊆ g. Damit haben wir dann g ∈ ϕ0 ∩ γ und ϕ0 ist als
Cauchy-Filter erkannt. Zeigen wir noch die Minimalität:

Sei dazu ϕ ′ ein Cauchy-Filter mit ϕ ′ ⊆ ϕ . Für γ ∈ Γ und P∈ ϕ existiert dann ein P′ ∈ ϕ ′∩γ

und somit P′ ⊆ γ(P), also γ(p) ∈ ϕ ′. Insgesamt also S ⊆ ϕ ′ und damit ϕ0 ⊆ ϕ ′.
Zeigen wir, dass S tatsächlich bereits eine Basis für ϕ0 ist. Ist nämlich P ∈ ϕ0, so gibt es

P1, ...,Pn ∈ ϕ und γ1, ...,γn ∈ Γ mit γ1(P1)∩ ...∩ γn(Pn) ⊆ P. Wählen wir nun ein γ ∈ Γ mit
γ < γk, für k = 1, ...,n und bilden P′ := P1∩ ...∩Pn ∈ ϕ , so gilt offensichtlich γ(P′)⊆ P.

Jeder Cauchy-Filter ϕ enthält also diesen eindeutig bestimmten minimalen Cauchy-Filter
ϕ0 mit Basis S . Ist ϕ also selber bereits minimal, so gilt ϕ = ϕ0 und ϕ erfüllt somit das
Kriterium.

Erfüllt andererseits ein Cauchy-Filter ϕ das Kriterium, so ist er offensichtlich ein minimaler
Cauchy-Filter (denn besagtes S ist nun eine Basis von ϕ und somit ϕ = ϕ0).

13.5.16 Lemma

Ist (X ,Γ) ein überdeckungsuniformer Raum, so ist ϕx := {P⊆ X | ∃U ∈ ẋ∩τΓ mit U ⊆ P}
für jedes x∈X ein minimaler Cauchy-Filter (Umgebungsfilter sind also minimale Cauchy-
Filter).

Beweis: Ist P ∈ ϕx, so gibt es ein U ∈ ẋ∩ τΓ mit U ⊆ P. Es gibt dann ein γ ′ ∈ Γ mit
γ ′(x)⊆U . Dann gibt es aber auch ein γ ∈ Γ mit γ <∗ γ ′. Setzen wir P′ := γ(x) ∈ ϕx, so folgt
γ(P′)⊆ γ ′(x)⊆U ⊆ P. Aus dem vorigen Lemma folgt also, dass ϕx ein Cauchy-Filter ist.

13.5.17 Lemma

Ist ϕ ein minimaler Cauchy-Filter in dem überdeckungsuniformen Raum (X ,Γ), so ist
{P◦ | P ∈ ϕ} eine Basis für ϕ .

Beweis: Sei P∈ ϕ . Dann gibt es ein P′ ∈ ϕ und ein γ ∈ Γ mit γ(P′)⊆ P. Da P′⊆ γ(P′)∈ τΓ,
folgt sofort P′ ⊆ P◦.

13.5.18 Lemma

Sei (X ,Γ) ein überdeckungsuniformer Raum und D eine in X dichte Teilmenge. Ist jeder
Cauchy-Filter ϕ auf X , mit D ∈ ϕ konvergent, so konvergiert jeder Cauchy-Filter, der
Raum ist also vollständig.
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Beweis: Sei ϕ ein Cauchy-Filter. Wir betrachten den (eindeutig bestimmten) minimalen
Cauchy-Filter ϕ0⊆ϕ . Da {P◦ |P∈ϕ0} eine Basis von ϕ0 ist, folgt, dass ϕ0∪{D} die endliche
Schnitt Eigenschaft hat. Demzufolge ist {P ⊆ X | ∃P′ ∈ ϕ0 ∪{D} mit P′ ⊆ P} ein Cauchy-
Filter, der gegen ein x ∈ X konvergiert. Insbesondere also x ∈

⋂
P∈ϕ0

P. Aus Lemma 13.5.5
folgt, dass ϕ0 gegen x konvergiert. Da ϕ0 ⊆ ϕ , konvergiert also auch ϕ gegen x.

13.5.19 Bemerkung

Sei (X ,Γ) ein überdeckungsuniformer Raum und ψ bzw. φ zwei Cauchy-Filter. Dann ist äqui-
valent:

1) Für alle γ ∈ Γ gilt γ ∩ψ ∩φ 6= /0.
2) ψ ∩φ ist ein Cauchy-Filter.
3) Es gibt ein minimalen Cauchy-Filter ϕ mit ϕ ⊆ ψ ∩φ .
Durch ψ ∼ φ ⇔ ψ ∩φ ist ein Cauchy-Filter, bekommen wir eine Äquivalenzrelation auf

der Menge aller Cauchy-Filter in (X ,Γ).
Damit kommen wir nun zum Hauptsatz dieses Abschnitts. Die Menge aller minimalen

Cauchy-Filter in (X ,Γ) bezeichnen wir mit X̃Γ. Im Folgenden werden wir nun X̃Γ eine Über-
deckungsuniformität zuordnen, so dass dieser ein vollständiger Raum wird.

13.5.20 Satz über die Vervollständigung überdeckungsuniformer Räume

Sei (X ,Γ) ein überdeckungsuniformer Raum. Für jedes A ⊆ X setzen wir Ã := {ϕ ∈
X̃Γ | A ∈ ϕ} und für jedes γ ∈ Γ setzen wir γ̃ := {g̃ | g ∈ γ}. Dann gilt:

a) γ̃ ist für jedes γ ∈ Γ eine Überdeckung von X̃Γ.
b) Ist γ <∗∗ γ ′, so ist γ̃ <∗∗ γ̃ ′.
c) Ist γ < γ ′, so ist γ̃ < γ̃ ′.
d) Γ̃ := {α | α ist Überdeckung von X̃Γ und ∃γ ∈ Γ mit γ̃ < α} ist eine Überdeckungs-

uniformität auf X̃Γ und (X̃Γ,τ
Γ̃
) ist ein T0-Raum.

e) h : X→ X̃Γ definiert durch h(x) := ϕx, wobei ϕx := {P⊆ X | ∃U ∈ ẋ∩τΓ mit U ⊆ P},
ist wohldefiniert und es gilt h(X) = X̃Γ.

f) h : X → X̃Γ ist uniform. Ist γ = γ◦, für ein γ ∈ Γ, so folgt h−1(g̃) = g und h(g) =
g̃∩h(X), für jedes g ∈ γ .

g) Γ ist die Initialüberdeckungsuniformität auf X bzgl. X̃Γ mit der Abbildung h : X→ X̃Γ.
h) (X̃Γ, Γ̃) ist vollständig.
i) Sei (Y,Σ) ein weiterer vollständiger überdeckungsuniformer Raum, der T0 ist und f :

X→Y eine uniforme Abbildung. Dann gibt es genau eine uniforme Abbildung g : X̃Γ→Y
mit g◦h = f .

X

f ��@
@@

@@
@@

@
h // X̃Γ

∃ !g
��

Y

Der Raum (X̃Γ, Γ̃) ist durch diese universelle Eigenschaft bis auf Isomorphie eindeutig
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bestimmt.
j) Ist (X ,τΓ) bereits ein T0-Raum, so ist die Abbildung h : X→ h(X) ein Isomorphismus.

Gibt es einen überdeckungsuniformen Raum (Ỹ , Σ̃) mit einer Abbildung h′ : X → Ỹ , so
dass h′ : X → h′(X) ein Isomorphismus ist, h′(X) = Ỹ gilt und (Ỹ ,τ

Σ̃
) ebenfalls ein T0-

raum ist, so sind (X̃Γ, Γ̃) und (Ỹ , Σ̃) isomorph.

Beweis: a) Sei ϕ ein minimaler Cauchy-Filter auf X und γ ∈ Γ. Dann gibt es ein g ∈ γ ∩ϕ .
Also offensichtlich ϕ ∈ g̃ und somit X̃Γ ⊆

⋃
γ̃ .

b) Sei g̃ ∈ γ̃ . Dann gibt es ein g′ ∈ γ ′ mit γ(g)⊆ g′. Zeigen wir, dass dann γ̃(g̃)⊆ g̃′ gilt. Sei
ϕ ∈ γ̃(g̃). Dann gibt es ein h ∈ γ mit ϕ ∈ h̃ und h̃∩ g̃ 6= /0. Man überlegt sich leicht, dass dann
auch h∩g 6= /0 gilt. Also h⊆ γ(g)⊆ g′. Dann ist g′ ∈ ϕ (denn h ∈ ϕ) und somit ϕ ∈ g̃′.

c) Sei g̃∈ γ̃ . Es gibt ein g′ ∈ γ ′ mit g⊆ g′. Ist ϕ ∈ g̃, so ist g∈ ϕ , also auch g′ ∈ ϕ und damit
ϕ ∈ g̃′.

d) Das es sich um eine Überdeckungsuniformität handelt, folgt unmittelbar aus a), b) und
c). Ist φ 6= ψ , so o.B.d.A. ∃P ∈ φ \ψ . Dann gibt es ein P′ ∈ φ und ein γ ∈ Γ mit γ(P′) ⊆ P
(Lemma 13.5.15). Es folgt γ̃(P̃′)⊆ P̃, also φ ∈ P̃◦ und ψ 6∈ P̃. Der Raum ist also T0.

e) Sei O offen in X̃Γ und φ ∈ O. Es gibt dann ein γ ∈ Γ mit γ̃(φ)⊆ O. O.B.d.A. Sei γ = γ◦

(siehe dazu Lemma 13.3.4). Sei nun x ∈ g ∈ φ ∩ γ , dann ist g ∈ ẋ∩ τΓ ⊆ ϕx und somit ϕx ∈ g̃.
Offensichtlich gilt g̃⊆ γ̃(φ).

f) Sei γ̃ ∈ Γ̃, für ein γ ∈ Γ gegeben. Ohne Einschränkung können wir voraussetzen, dassγ =
γ◦ gilt. Für jedes g∈ γ folgt h−1(g̃) = {x∈X | g∈ h(x)}= {x∈X | ∃U ∈ ẋ∩τΓ mit U ⊆ g}= g.
Die Abbildung h ist also uniform.

Sei γ = γ◦ und g ∈ γ . Ist ϕx ∈ h(g), so ist ϕx = h(x), für x ∈ g. Also g ∈ ϕx und damit
ϕx ∈ g̃∩ h(X). Ist andererseits ϕx ∈ g̃∩ h(X), so ist ϕx = h(x′) = ϕx′ , für ein x′ ∈ X . Es folgt
g ∈ ϕx′ , also x′ ∈ g und damit ϕx = h(x′) ∈ h(g).

g) Folgt unmittelbar aus f).
h) Sei Φ ein Cauchy-Filter auf X̃Γ. Wir können annehmen, dass D := h(X) ∈ Φ (Lemma

13.5.18). Dann ist ΦD := {P∩D | P ∈Φ} ein Cauchy-Filter auf D. Nun ist ΦD = h(φ), wobei
φ := {P⊆X | ∃P′ ∈ΦD mit h−1(P′)⊆P}. Aus Lemma 13.5.9 und g) folgt, dass φ ein Cauchy-
Filter auf X ist. Sei dann ϕ ⊆ φ ein minimaler Cauchy-Filter. Wir zeigen nun ϕ ∈

⋂
P∈Φ P. Mit

Lemma 13.5.5 folgt dann, dass Φ gegen ϕ ∈ X̃Γ konvergiert.
Sei also O ∈ ϕ̇ ∩ τ

Γ̃
und P ∈ Φ. Es gibt dann ein γ ∈ Γ mit γ = γ◦ und γ̃(ϕ) ⊆ O (siehe

Lemma 13.3.4). Es genügt also zu zeigen, dass γ̃(ϕ)∩P 6= /0 ist.
Sei g ∈ γ ∩ϕ . Dann ist g ∈ φ , es gibt also ein P′ ∈ ΦD mit h−1(P′) ⊆ g. Setzen wir P′′ :=

P∩P′ ∈ΦD, so folgt h−1(P′′)⊆ g. Sei nun x ∈ h−1(P′′). Dann ist h(x) ∈ P′′∩ g̃, insbesondere
also g̃∩P 6= /0 und somit /0 6= g̃∩P⊆ γ̃(ϕ)∩P.

i) Seien (Y,Σ) und f : X → Y entsprechend der Voraussetzung gewählt. Wir definieren die
Abbildung g′ : h(X)→ Y durch g(h(x)) := f (x).

Zeigen wir die Wohldefiniertheit. Sei h(x) = h(x′), also ϕ := ϕx = ϕx′ . Dann konvergiert ϕ

offensichtlich gegen x und x′. Der Bildfilter f (ϕ) ist auch ein Cauchy-Filter und somit sowohl
gegen f (x), als auch gegen f (x′) konvergent. Da (Y,τΣ) ein T2-Raum ist, folgt f (x) = f (x′).

Zeigen wir nun, dass g′ uniform ist. Γ̃D bezeichne hierfür die Teilraumüberdeckungsunifor-
mität auf D = h(X). Sei σ ∈ Σ. Dann gibt es ein γ ∈ Γ mit γ = γ◦ und γ < { f−1(s) | s ∈ σ}.

318



Nun ist {g′−1(s) | s ∈ σ}= {h( f−1(s)) | s ∈ σ}. Da {h(g) | g ∈ γ}= {g̃∩h(X) | g ∈ γ} ∈ Γ̃D,
folgt also auch {g′−1(s) | s ∈ σ} ∈ Γ̃D. Damit ist gezeigt, dass g′ : D→ Y uniform ist.

Wir definieren dann g : X̃Γ→ Y als die nach Lemma 13.5.12 eindeutig bestimmte uniforme
Fortsetzung von g′ auf ganz X̃Γ.

Zur Eindeutigkeit: Sei auch (Ỹ , σ̃) ein überdeckungsuniformer Raum, der zusammen mit
einer Abbildung h′ : X → Ỹ die universelle Eigenschaft hat. Dann gibt es uniforme Abbildun-
gen g : Ỹ → X̃Γ und g′ : X̃γ → Ỹ mit g◦h′ = h und g′ ◦h = h′. Es folgt (g◦g′)◦h = g◦h′ = h
und idX̃γ

◦h = h. Die Eindeutigkeit erzwingt also g◦g′ = idX̃Γ
(man male sich entsprechende

Diagramme). Analog bekommt man g′ ◦g = idỸ . Damit sind (X̃Γ, γ̃) und (Ỹ , Σ̃) isomorph.
j) Das h : X → h(X) bijektiv ist, ist offensichtlich. Uniform ist h : X → h(X) sowieso und

das auch h−1 : h(X)→ X uniform ist, folgt unmittelbar aus f). Die Isomorphie von (X̃Γ, Γ̃) und
(Ỹ , Σ̃) folgt dann aus Lemma 13.5.13.

13.6 Funktionenräume (2): Gleichmäßige Konvergenz
Wir geben hier eine Fortsetzung des Kapitels über Funktionenräume, wobei der Bildraum
diesmal ein uniformer (genauer: überdeckungsuniformer) Raum ist. Beispielsweise erhalten
wir in diesem Fall eine interessante Beschreibung der kompakt-offenen Topologie.

13.6.1 Definition

Überdeckungsuniforme Struktur der gleichmäßigen Konvergenz Sei X eine Menge und
(Y,Σ) ein überdeckungsuniformer Raum. Wir betrachten die Menge F := Y X (Menge aller
Abbildungen f : X → Y ) und bilden für f ∈ F und σ ∈ Σ folgende Mengensysteme: σ f :=
{g ∈ F | ∀x ∈ X ist g(x) ∈ σ( f (x))}, dann σF := {σ f | f ∈ F} und anschließend ΣF := {α | α
ist eine Überdeckung von F und ∃σ ∈ Σ mit σF < α}. Das Paar (F,ΣF) ist dann ebenfalls ein
überdeckungsuniformer Raum.

Beweis: Offensichtlich ist jedes σF eine Überdeckung von F und σ ′ < σ impliziert σ ′F <
σF . Zu zeigen bleibt nur noch, dass σ ′ <∗ σ auch σ ′F <∗ σF impliziert. Sei also σ ′ <∗ σ und
f ∈ F . Wir zeigen dazu einfach σ ′F( f )⊆ σ f . Dazu sei g ∈ σ ′F( f ). Es gibt dann ein h ∈ F mit
g∈σ ′h und f ∈σ ′h. Sei nun x∈X beliebig. Dann gibt es ein S∈σ mit g(x), f (x)∈σ ′(h(x))⊆ S,
also g(x) ∈ σ( f (x)). Da x beliebig gewählt war, folgt g ∈ σ f .

Wir nennen ΣF die überdeckungsuniforme Struktur der gleichmäßigen Konvergenz auf F .

13.6.2 Lemma

Sei (X ,τ) ein topologischer Raum und (Y,Σ) ein überdeckungsuniformer Raum. Wir be-
trachten dann (F,ΣF) entsprechend Definition 13.6.1

a) Sei φ ein Filter auf X . Dann ist A := { f ∈ F | f (φ) ist ein Cauchy-Filter} in F
abgeschlossen.

b) Die Menge c(X ,Y ) := { f ∈ F | f : (X ,τ)→ (Y,τΣ) ist stetig} ist in F abgeschlossen.
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Beweis: a) Sei f ∈A. Zu zeigen ist dann, dass f (φ) ein Cauchy-Filter ist. Sei dazu σ ∈ Σ. Es
gibt dann σ ′,σ ′′ ∈ Σ mit σ ′′ <∗ σ ′ <∗∗ σ . Sei g ∈ σ ′′F( f )∩A. Es gibt dann ein S′ ∈ g(φ)∩σ ′.
Sei dann P′ ∈ φ mit g(P′)⊆ S′.

Dann gibt es ein h∈ F mit g∈ σ ′′h und f ∈ σ ′′h , also g(x), f (x)∈ σ ′′(h(x)) für alle x∈ X . Für
x ∈ P gilt aber auch g(x) ∈ S′ und es gibt S(1)

x ,S(2)
x ∈ σ ′′ mit g(x),h(x) ∈ S(1)

x und g(x), f (X) ∈
S(2)

x . Es folgt S(1)
x ⊆ σ ′′(S′) und damit S(2)

x ⊆ σ ′′(σ ′′(S′))⊆ σ ′(S′). Nun gibt es aber auch ein
S ∈ σ mit σ ′(S′) ⊆ S. Es folgt f (P) ⊆ S, also S ∈ f (φ)∩σ . Damit sehen wir, dass f (φ) ein
Cauchy-Filter ist, also f ∈ A.

b) Wir setzen für diesen Beweis Ax := { f ∈ F | f ist stetig in x}. Dann ist
⋂

x∈X Ax = c(X ,Y )
abgeschlossen, wenn wir zeigen, dass jedes Ax abgeschlossen ist. Für jedes x ∈ X setzen wir
φx := {P⊆ X | ∃U ∈ ẋ∩ τ mit U ⊆ P} und zeigen Ax = Bx := { f ∈ F | f (φx) ist ein Cauchy-
Filter}.

Ax ⊆ Bx ist trivial. Zeigen wir also Bx ⊆ Ax. Sei dazu f ∈ Bx und O∈ ˙f (x)∩τΣ. Es gibt dann
ein σ ∈ Σ mit σ( f (x))⊆ O. Sei P ∈ φx und P′ ∈ f (φx)∩σ mit f (P)⊆ P′ ⊆ σ( f (x))⊆ O. Da
f (x) ∈ f (P) folgt somit die Stetigkeit von f an der Stelle x und somit f ∈ Ax.

Jedes Bx ist nach a) abgeschlossen, also ist es auch c(X ,Y ).

13.6.3 Definition

Überdeckungsuniforme Struktur der α-Konvergenz Sei X eine Menge, α ⊆P(X) und
(Y,Σ) ein überdeckungsuniformer Raum. Wir betrachten wieder die Menge F :=Y X . Für jedes
A ∈ α betrachten wir (Y A,Σ(A)), wobei Σ(A) die Überdeckungsuniforme Struktur auf Y A im
Sinne von Definition 13.6.1 ist. Ebenfalls für jedes A ∈ α definieren wir die Abbildung HA :
F→Y A durch HA( f ) := f |A. Wir definieren dann Σ

(α)
F als die initial Überdeckungsuniformität

auf F bezüglich ((Y A,Σ(A)),HA)A∈α und nennen Σ
(α)
F die überdeckungsuniforme Struktur der

α-Konvergenz (auf F).

13.6.4 Satz

Sei X eine Menge, α ⊆P(X) und (Y,Σ) ein vollständiger überdeckungsuniformer Raum.
Dann ist (F,Σ

(α)
F ) ebenfalls vollständig.

Beweis: Setze B :=
⋃

α . Sei Φ ein Cauchy-Filter in (F,Σ
(α)
F ). Für jedes x ∈ B und P ∈ Φ

bilden wir Px := { f (x) | f ∈ P}. und anschließend Φx := {R⊆ Y | ∃P ∈Φ mit Px ⊆ R}.
Zeigen wir, dass Φx ein Cauchy-Filter auf (Y,Σ) ist. Das Φx ein Filter ist, folgt jedenfalls

schon aus (P∩P′)x ⊆ Px∩P′x.
Sei σ ′ ∈ Σ. Dann gibt es ein σ ∈ Σ mit σ <∗ σ ′. Sei A ∈ α mit x ∈ A. Es ist H−1

A (σY A) :=
{H−1

A (σ f ) | f ∈ Y A} ∈ Σ
(α)
F , wobei σ f := {g ∈ Y A | ∀a ∈ A ist g(a) ∈ σ( f (a))} und σY A :=

{σ f | f ∈ Y A}. Also H−1
A (σY A)∩φ 6= /0. Sei f ∈ Y A mit H−1

A (σ f ) ∈ H−1
A (σY A)∩φ .

Es ist P := H−1
A (σ f ) = {g ∈ Y X | ∀a ∈ A ist g(a) ∈ σ( f (a))} und somit Px ⊆ σ( f (x)). Sei

dann S′ ∈ σ ′ mit σ( f (x))⊆ S′. Wir erhalten S′ ∈ φx∩σ ′.
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Φx als Cauchy-Filter erkannt, ist somit konvergent gegen ein Element aus Y (man beachte,
dass (Y,σ) vollständig ist). Bezeichnen wir dieses mit h(x) und wählen wir für x ∈ X \B ein
beliebiges h(x), so haben wir damit eine Abbildung h : X → Y definiert.

Zeigen wir nun, dass Φ gegen h ∈ F konvergiert. Dafür genügt es zu zeigen, dass ξ ′′(h)∩
P 6= /0 ist, für jedes ξ ′′ ∈ Σ

(α)
F und P ∈Φ.

Also sei ξ ′′ ∈ Σ
(α)
F und P∈Φ. Nun ist ξ ′′ von der Form ξ ′′= H−1

A1
(σ ′′(1)

Y Ak
)∧ ...∧H−1

An
(σ ′′(n)

Y Ak
).

Wir wählen dann σ
(k)
Y Ak

,σ
′(k)
Y Ak
∈ Σ mit σ

(k)
Y Ak

<∗ σ
′(k)
Y Ak

<∗ σ
′′(k)
Y Ak

und setzen ξ := H−1
A1

(σ (1)
Y A1

)∧
...∧H−1

An
(σ (n)

Y An ). Wir wählen nun ein P′ ∈ Φ∩ ξ , also P′ = H−1
A1

(σ (1)
f1

)∩ ...∩H−1
An

(σ (n)
fn ), für

gewisse σ
(k)
fk
∈ σ

(k)
Y Ak

. Folglich ist P′ = {g ∈ Y X | ∀k = 1, ...,n∀a ∈ Ak ist g(a) ∈ σ (k)( fk(a))}.
Da außerdem P∩P′ 6= /0, gibt es ein f ∈ P′.

Sei nun k ∈ {1, ...,n} und x∈ Ak. Es gibt dann ein P′′ ∈Φ mit Px ⊆ σ(h(x)), wobei σ ∈ Σ so
gewählt wurde, dass σ < σ (1), ...,σ (n) gilt (man beachte, dass Φx gegen h(x) konvergiert). Wir
setzen nun P′′′ := P∩P′∩P′′ ∈Φ. Demnach gilt auch P′′′x ⊆ σ(h(x))⊆ σ (k)(h(x)). Für g∈ P′′′

folgt somit g(x) ∈ σ(h(x)) ⊆ σ (k)(h(x)) und g(x) ∈ σ( fk(x)). Da f ∈ P′ folgt auch f (x) ∈
σ( fk(x)). Es gibt nun S′1,S

′
2 ∈ σ ′(k) mit σ(k)( fk(x)) ⊆ S′1 und σ(k)(h(x)) ⊆ S′2. Es gibt aber

auch ein S′′ ∈ σ ′′(k) mit σ ′(k)(g(x)) ⊆ S′′. Also f (x),g(x),h(x) ∈ S′′ und somit insbesondere
f (x) ∈ σ ′′(k)(h(x)).

Da k ∈ {1, ...,n} und x ∈ Ak beliebig waren, folgt f ∈ H−1
A1

(σ ′′(1)
h )∩ ...∩H−1

An
(σ ′′(n)

h ) ∈ ξ ′′

und somit f ∈ ξ ′′(h) und damit schließlich f ∈ ξ ′′(h)∩P. Der Beweis ist damit beendet.

13.6.5 Satz

Sei (X ,τ) ein topologischer Raum und (Y,Σ) ein überdeckungsuniformer Raum. Gilt
X =

⋃
A∈α A◦ für α ⊆P(X), so ist c(X ,Y ) := { f ∈ F | f : (X ,τ)→ (Y,τΣ) ist stetig}

in (F,τ
Σ

(α)
F

) abgeschlossen.

Beweis: Offensichtlich gilt f ∈ c(X ,Y ) ⇔ ∀A ∈ α gilt f |A ∈ c(A,Y ). Also c(X ,Y ) =⋂
A∈α H−1

A (c(A,Y )). Da die Abbildungen HA, A ∈ α stetig sind und c(A,Y ) in (Y A,ΣY A) abge-
schlossen ist (Lemma 13.6.2) ist es der Schnitt dann auch.

13.6.6 Lemma

a) Sei X eine Menge, α eine Überdeckung von X und (Y,Σ) ein T0-Raum (d.h. (Y,τΣ) ist
T0). Dann ist auch (F,Σ

(α)
F ) ein T0-Raum.

Beweis: a) Sei f 6= g. Dann gibt es ein x ∈ X mit f (x) 6= g(x). Zu diesem x gibt es auch ein
A ∈ α mit x ∈ A. Es gibt aber auch ein σ ∈ Σ mit g(x) 6∈ σ( f (x)). Sei dann σ ′ ∈ Σ mit σ ′ <∗

σ . Es folgt σ ′(σ ′( f (x))) ⊆ σ( f (x)), also g 6∈ σ ′F( f ). Nun ist aber σ ′′ := {H−1
A (S ) | S ∈
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σ ′F |A} ∈ Σ
(α)
F (hier bezeichnet σ ′F |A die Einschränkung von σ ′F auf Y A). Es folgt g 6∈ σ ′′( f ).

Dementsprechend ist (F,τ
Σ

(α)
F

) ein T0-Raum.

13.6.7 Satz

Sei φ ein Filter und seien Γ1 und Γ2 zwei überdeckungsuniforme Strukturen auf der Menge
X . Mit − sei der Abschluss bzgl. (X ,τΓ2) bezeichnet und für ein γ ⊆P(X) bedeutet
γ := {g | g ∈ γ}. Es gelte außerdem ∀γ2 ∈ Γ2∃γ1 ∈ Γ1 mit γ1 < γ2. Ferner existiere ein
Γ′ ⊆ Γ1 mit (1) ∀γ1 ∈ Γ1∃γ ′ ∈ Γ′ mit γ ′ < γ1 und (2) ∀γ ′ ∈ Γ′∃γ ′′ ∈ Γ′ mit γ ′′ < γ ′. Dann
folgt:

φ →τΓ1
x genau dann, wenn φ ein Cauchy-Filter bzgl. (X ,Γ1) ist und x ∈

⋂
P∈φ P.

Beweis: Gilt φ →τΓ1
x, so ist φ natürlich ein Cauchy-Filter bzgl. (X ,Γ1). Und aus ∀γ2 ∈

Γ2∃γ1 ∈ Γ1 mit γ1 < γ2 folgt natürlich τΓ2 ⊆ τΓ1 , also x ∈
⋂

P∈φ P.
Kommen wir zur Rückrichtung: Sei φ ein Cauchy-Filter bzgl. (X ,Γ1) und x ∈

⋂
P∈φ P. Sei

dann O∈ τΓ1∩ ẋ. Es gibt dann ein γ ′ ∈ Γ′ mit γ ′(x)⊆O. Sei dann γ ∈ Γ′ mit γ < γ ′. Nun gibt es
ein P∈ φ ∩γ . Es folgt x∈ P. Es gibt aber auch ein P′ ∈ γ ′ mit P⊆ P′. Also P⊆ P′ ⊆ γ ′(x)⊆O
und damit O ∈ φ . Insgesamt somit τΓ1 ∩ ẋ⊆ φ (oder was das gleiche ist: φ →τΓ1

x).

13.6.8 Satz

Sei (Y,Σ) ein überdeckungsuniformer Raum und φ ein Filter auf X . Sei weiter α ⊆P(X)
und B :=

⋃
α . Sei dann β := {{b} | b ∈ B}. Dann gilt mit F := Y X :

φ →τ
Σ
(α)
F

f genau dann, wenn φ ein Cauchy-Filter bzgl. (F,Σ
(α)
F ) ist und f ∈

⋂
P∈φ P

wobei der Abschluß in (F,τ
Σ

(β )
F

) gemeint ist.

Beweis: Für den Beweis bezeichnen wir mit − den Abschluß bzgl. (F,τ
Σ

(β )
F

) und auch

bzgl. (Y,τσ ) (aus dem Zusammenhang geht dann eindeutig hervor was gemeint ist). Schauen
wir uns nochmal die allgemeine Konstruktion der initial Überdeckungsuniformität an, so se-
hen wir, dass ein typisches Element einer Überdeckung aus Σ

(α)
F die Form H−1

A1
(σ (1)

f1
)∩ ...∩

H−1
An

(σ (n)
fn ) hat, wobei σ

(k)
fk

:= {g ∈ Y Ak | ∀a ∈ Ak ist g(a) ∈ σ (k)( fk(a))}. Für k = 1, ...,n sei
ξ (k) ∈ Σ mit ξ (k) <∗ σ (k) gewählt. Mit Hilfe der Projektionen ha : Y X → Y definiert durch
h(g) := g(a) bekommen wir (man beachte, dass die von Σ

(β )
F induzierte Topologie gerade die

Initialtopologie auf Y X bzgl. (Y,τΣ) und (ha)a∈B ist und die ha bzgl. τ
Σ

(β )
F

, τΣ stetig sind):⋂n
k=1 H−1

Ak
(ξ (k)

fk
)⊆

⋂n
k=1

⋂
a∈Ak

h−1
a (ξ (k)( fk(a)))⊆

⋂n
k=1

⋂
a∈Ak

h−1
a (ξ (k)( fk(a)))⊆⋂n

k=1
⋂

a∈Ak
h−1

a (σ (k)( fk(a))) ⊆
⋂n

k=1 H−1
Ak

(σ (k)
fk

), denn ξ (k)( fk(a)) ⊆ ξ (k)(ξ (k)( fk(a))) ⊆
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σ( f (a)). Die Voraussetzungen von Satz 13.6.7 sind demnach erfüllt (mit Γ1 = Γ′ = Σ
(α)
F und

Γ2 = Σ
(β )
F ; noch nicht gezeigt, aber fast offensichtlich: ∀γ2 ∈ Γ2∃γ1 ∈ Γ1 mit γ1 < γ2).

13.6.9 Satz

Sei (X ,τ) ein topolgischer und (Y,Σ) ein überdeckungsuniformer Raum. Mit κ bezeichnen
wir die kompakten Teilmengen von X . Dann stimmt auf c(X ,Y ) := { f ∈ F | f ist stetig} ⊆
F := Y X die kompakt-offene Topologie mit der von τΣκ

F
auf c(X ,Y ) induzierten Topologie

überein.

Beweis: Die von τΣκ
F

auf c(X ,Y ) induzierte Topologie bezeichnen wir mit τ ′. Zeigen wir
zuerst, dass jedes S(K,U) offen bzgl. τ ′ ist (für in X kompaktes K und in (Y,τΣ) offenes U).
Sei f ∈ S(K,U). Dann ist f (K) kompakt (denn f ist stetig) und f (K)⊆U . Zu jedem y∈ f (K)
gibt es somit ein σy ∈ Σ mit σy(y) ⊆U . Für jedes y ∈ f (K) sei σ ′y <∗ σy. Da K kompakt ist,
gibt es endlich viele x1, ...,xn ∈ K mit f (K)⊆ σ ′f (x1)

( f (x1))∪ ...∪σ ′f (xn)
( f (xn)) (zur präzisen

Rechtfertigung braucht man Lemma 13.3.4). Sei σ ∈ Σ mit σ <∗ σ ′f (x1)
, ...,σ ′f (x1)

. Dann gilt

c(X ,Y )∩H−1
K (σF)( f ) ⊆ S(K,U). Zeigen wir dies. Sei g ∈ c(X ,Y )∩H−1

K (σF)( f ). Es gibt
dann ein h ∈ F mit g, f ∈ H−1

k (σh). Sei x ∈ K. Dann folgt f (x),g(x) ∈ σ(h(x)). Es gibt ein
k ∈ {1, ...,n} mit f (x) ∈ σ ′f (xk)

( f (xk)). Es gibt aber auch ein S′ ∈ σ ′f (xk)
mit σ(h(x))⊆ S′ und

ein S′′ ∈ σ ′f (xk)
mit f (xk), f (x)∈ S′′. Es folgt g(x)∈ σ ′f (xk)

(σ ′f (xk)
( f (xk)))⊆ σ f (xk)( f (xk))⊆U .

Also g(K)⊆U und somit g ∈ S(K,U).
Zeigen wir nun, dass {S(K,U) | K : kompakt, U : offen} eine Subbasis für τ ′ ist. Seien

K1, ...,Kn ∈ κ . Sei f ∈ c(X ,Y ) und O offen mit f ∈ O. Es gibt dann ein ξ := H−1
K1

(σ (1)
F )∧

...∧H−1
Kn

(σ (n)
F ) ∈ Σ

(κ)
F mit c(X ,Y )∩ξ ( f )⊆O. Gesucht sind nun K′1, ...,K

′
m ∈ κ und U1, ...,Um

offen in Y mit f ∈
⋂m

k=1 S(K′k,Uk) ⊆ ξ ( f ). Seien σ ,σ ′′ ∈ Σ gewählt mit σ ′′ = {T ◦ | T ∈ σ ′′}
und σ <∗∗ σ ′′ < σ (1), ...,σ (n). Es gibt dann S(k)

1 , ...,S(k)
nk ∈ σ mit f (Kk)⊆ S(k)

1 ∪ ...∪S(k)
nk , k =

1, ...,n. Es gibt weiter T (k)
l ∈σ ′′ mit S(k)

l ⊆σ(S(k)
l )⊆ T (k)

l , k = 1, ...,n , l = 1, ...,nk. Setze dann

K(k)
l := f−1(S(k)

l )∩Kk. Es folgt f ∈ P :=
⋂n

k=1
⋂nk

l=1 S(K(k)
l ,T (k)

l )⊆ ξ ( f ). Um dies einzusehen

sei g ∈ P (das f ∈ P ist klar). Dann ist g ∈ S := H−1
K1

(σ (1)
f )∩ ...∩H−1

Kn
(σ (n)

f ) ∈ ξ , denn x ∈ Kk

impliziert x ∈ K(k)
l für gewisses 1 ≤ l ≤ nk. Also g(x) ∈ T (k)

l . Aber auch f (x) ∈ T (k)
l und

außerdem gibt es ein Q∈ σ (k) mit T (k)
l ⊆Q. Also g(x)∈ σ (k)( f (x)) und somit g∈H−1

Kk
(σ (n)

f ).
Da auch f ∈ S folgt g ∈ ξ ( f ).

13.6.10 Korollar

Ist Y ein T3 1
2
-Raum, so ist c(X ,Y ), versehen mit der kompakt-offenen Topologie, auch ein

T3 1
2
-Raum.
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Beweis: Als T3 1
2
-Raum ist Y uniformisierbar. Aus Satz 13.6.9 folgt, dass dann auch c(X ,Y )

uniformisierbar ist. Also ist c(X ,Y ) ein T3 1
2
-Raum.
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14 Einführung in die Nichtstandard Topologie
”I would like to point out a fact that was not explicitly mentioned by Professor Robinson,
but seems quite important to me; namely that non-standard analysis frequently simpli-
fies substantially the proofs, not only of elementary theorems, but also of deep results.
This is true, e.g., also for the proof of the existence of invariant subspaces for compact
operators, disregarding the improvement of the result; and it is true in an even higher
degree in other cases. This state of affairs should prevent a rather common misinterpre-
tation of non-standard analysis, namely the idea that it is some kind of extravagance or
fad of mathematical logicians. Nothing could be farther from the truth. Rather there are
good reasons to believe that non-standard analysis, in some version or other, will be the
analysis of the future.”

Kurt Gödel

In diesem Kapitel kommt es zu einigen Schwierigkeiten mit der Notation im Zusammen-
hang mit Abbildungen. Gewöhnlich verstehen wir für eine Abbildung f : X → Y unter f (A)
das Bild von A unter f , also f (A) := { f (a) | a ∈ A}. Normalerweise führte dies nie zu Miß-
verständen, da für A ⊆ X in der Regel nicht auch A ∈ X gilt. In Zusammenhang mit z.B.
Ordinalzahlen, oder den unten eingefürten Superstrukturen, stehen (und standen) wir vor der
Situation, dass aber genau solche Effekte auftreten, dass also Abbildungen auf Mengen defi-
niert sind f : X →Y , für die es Teilmengen A⊆ X gibt mit A ∈ X . Der Leser ist also aufgefor-
dert sich in jedem Fall zu überlegen, wie der entsprechende Ausdruck zu verstehen ist. In der
Regel sollte es aber keine großen Schwierigkeiten geben.

14.1 Superstrukturen
Wie kann man das mengentheoretische Universum strukturieren? Eine Antwort gibt dieser
Abschnitt.

14.1.1 Hierarchie der Mengen

Rekursiv für alle Ordinalzahlen definieren wir

V0 := /0 , Vα+1 := P(Vα) und Vα :=
⋃

β<α

Vβ falls α eine Limesordinalzahl ist.

Anschließend setzen wir
V :=

⋃
α∈Ord

Vα .

V ist das mengentheoretische Universum (wie wir sogleich beweisen werden) und (Vα)α∈Ord
nennen wir die Hierarchie der Mengen.

325



14.1.2 Lemma

Für jede Ordinalzahl ist Vα eine transitive Menge. Und wenn α < α ′, dann Vα ⊆Vα ′ .

Beweis: Beweis durch Induktion. V0,V1 sind offensichtlich transitiv. Sei die Aussage für
alle β < α bewiesen und x ∈ Vα . Wenn α eine Limesordinalzahl ist, dann ist x ∈ Vβ für
β < α . Also x ⊆ Vβ ⊆ Vα . Falls α eine Nachfolgerordinalzahl ist, also α = α ′+ 1, dann ist
x ∈ Vα = P(Vα ′), also x ⊆ Vα ′ . Aus y ∈ x folgt also y ∈ Vα ′ und damit (Induktion) y ⊆ Vα ′ ,
also y ∈P(Vα ′). Insgesamt somit x⊆P(Vα ′).

Die zweite Aussage beweist man mittels Induktion unter Verwendung der Transitivität.

14.1.3 Definition: Transitive Hülle

Sei x eine Menge. Setze x0 := x , xn+1 :=
⋃

xn und TC(x) :=
⋃

n<ω xn. Wir nennen TC(x) die
transitive Hülle von x. Offenbar ist TC(x) transitiv und es gilt x ⊆ TC(x) (der Beweis bleibt
als einfache Aufgabe dem Leser überlassen)

14.1.4 Lemma

Jede nichtleere Klasse C hat ein ∈ minimales Element (d.h. ein z ∈ C mit z∩C = /0).

Beweis: Sei z ∈ C beliebig. Falls z∩C = /0, dann sind wir fertig. Andernfalls sei x =
TC(z)∩C . Da x 6= /0 folgt aus dem Regularitäts-Axiom (Axiome der Mengenlehre), dass es
ein y ∈ x gibt, mit y∩ x = /0. Dann folgt aber auch y∩C = /0. Andernfalls sei u ∈ y∩C , dann
aber u ∈ TC(z), denn dieses ist transitiv. Es folgt u ∈ y∩ x - Widerspruch.

14.1.5 Satz

Für jede Menge x gibt es ein α ∈ Ord mit x ∈Vα .

Beweis: Sei C die Klasse aller Mengen, welche in keinem Vα sind. Wenn C 6= /0, dann gibt
es ein ∈-minimales Element x ∈ C . Für z ∈ x gibt es aber ein αz ∈ Ord mit z ∈ Vαz . Nun ist
α :=

⋃
z∈x αz eine Ordinalzahl, mit αz ≤ α , also Vαz ⊆ Vα für z ∈ x. Somit haben wir x ⊆ Vα

und damit x ∈Vα+1 = P(Vα) - ein Widerspruch.

14.1.6 Definition: Rang

Sei x eine Menge. Dann heißt R(x) := inf{α ∈ Ord | x ∈Vα+1} der Rang von x.
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14.1.7 Lemma

Sei x ∈ y. Dann ist R(x) < R(y).

Beweis: Annahme R(y)≤R(x). Dann folgt y∈VR(y)+1⊆VR(x)+1 = P(VR(x)), also x∈VR(x).
Falls R(x) eine Limesordinalzahl ist, so x ∈ Vβ+1 mit β < R(x). Und wenn R(x) = β + 1, so
R(x)≤ β < R(x). Beides ist ein Widerspruch.

14.1.8 Definition: Superstruktur

Sei x eine Menge. Setze V0(x) := x, Vn+1(x) := Vn(x)∪P(Vn(x)) und abschließend V (x) :=⋃
n<ω Vn(x). Wir nennen V (x) die Superstruktur über x.

14.1.9 Bemerkung

Alle sinnvollen und in endlich vielen Schritten über x konstruierbaren Objekte sind in V (x)
enthalten. Da wir über die Natur von x aber nichts wissen könnte es Elemente y ∈ x geben,
mit y∩V (x) 6= /0. Im weiteren Verlauf wird sich heraustellen, dass dies ein ungewünschter
Effekt ist. Man kann diesen auf verschiedene Arten vermeiden. eine Möglichkeit ist es sich x
als eine Menge von Urelementen vorzustellen, welche überhaupt keine ∈-Beziehungen besit-
zen. Im Rahmen des axiomatischen Aufbaus der Mengenlehre führt dies zu Ungereimtheiten.
Wir werden daher einen anderen Weg beschreiten um dieses Problem zu umgehen. Mit Hilfe
des Rang-Begriffes werden wir uns nämlich Mengen von beliebiger Kardinalität verschaffen,
welche dann die gewünschten Eigenschaften haben.

14.1.10 Definition: Basismenge

Wir nennen eine Menge X Basismenge, falls /0 6∈ X und x∩V (X) = /0 für alle x ∈ X ist.

14.1.11 Lemma

Zu jeder (unendlichen) Menge A gibt es eine Basismenge X mit |A|= |X |.

Beweis: Sei α ≥ω eine Kardinalzahl. Wähle eine Menge X mit |A|= |X | und ∀x,y(y ∈ x ∈
X)⇒ R(y) = α . Das dies möglich ist, sollte klar sein. Dieses X ist dann bereits die gewünschte
Basismenge. Wir zeigen zuerst: Die Elemente von Vn(X) (n < ω) haben Rang β , mit β < n
oder α < β ≤ α +n+1. Der Beweis erfolgt durch Induktion nach n.

n = 0, z ∈V0(X) = X ⇒ ∀y ∈ z : R(y) = α , also α < R(z). Außerdem z⊆Vα+1 und somit
z ∈Vα+2. Wir bekommen α < R(z) = α +1.

n→ n+1: Sei z ∈Vn+1(X) = Vn(X)∪P(Vn(X)). Im ersten Fall ist z ∈Vn(X). Dann R(z) <
n < n + 1 oder α < R(z) ≤ α + n + 1 < α +(n + 1)+ 1. Im zweiten Fall ist z ⊆ Vn(X). Das
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heißt ∀y ∈ z: R(y) ≤ α + n + 1, also z ⊆ Vα+n+2 bzw. z ∈ Vα+(n+1)+2 und somit R(z) ≤ α +
(n+1)+1. Nun unterscheiden wir noch zwei weitere Fälle. 1. Fall ∃y ∈ z mit α < R(y), dann
auch α < R(z) oder 2. Fall ∀y ∈ z gilt R(y) < n. Dann ist z ⊆ Vn, also z ∈ Vn+1 und damit
R(z)≤ n < n+1. Der Beweis, dass die Elemente von Vn(X) (n < ω) einen Rang β , mit β < n
oder α < β ≤ α +n+1 haben, ist beendet.

Nehmen wir mal an wir haben ein x ∈ X mit x∩V (X) 6= /0. Dann gibt es ein n < ω und ein
z ∈ x∩Vn(X). Nun, dann gilt aber R(z) < n oder α < R(z) ≤ α + n + 1. Beides steht aber im
Widerspruch zur Wahl von X .

Wir kommen nun zu den grundlegenden Eigenschaften von V (X). Dabei sei von nun an
vorausgesetzt, dass es sich um eine Basismenge X handelt.

14.1.12 Lemma

Vn+1(X) = X ∪P(Vn(X)) und Vn+1(X)\X = P(Vn(X)) für jede natürliche Zahl n.

Beweis: Durch Induktion nach n. Für n = 0 ist nichts zu zeigen. n→ n + 1: Vn+2(X) =
Vn+1(X)∪P(Vn+1(X))= X∪P(Vn(X))∪P(Vn+1). offensichtlich gilt P(Vn(X))⊆P(Vn+1),
woraus dann Vn+2(X) = X ∪P(Vn+1) folgt. Die zweite Behauptung folgt unmittelbar aus der
Eigenschaft von X eine Basismenge zu sein.

14.1.13 Lemma

Sei X eine Basismenge, a ∈V (X) und a ∈ b ∈Vn(X). Dann ist n > 0 und a ∈Vn−1(X).

Beweis: Übung.

14.1.14 Lemma

1) x1, ...,xm ∈Vn(X) ⇒ {x1, ...,xm} ∈Vn+1(X)\X
2) x1, ...,xm ∈Vn(X) ⇒ (x1, ...,xm) ∈Vn+2(m−1)(X)\X
3) u ∈Vn(X)\X und v⊆ u, dann v ∈Vn(X)\X .
4) u,v ∈Vn(X)\X ⇒ u× v ∈Vn+3(X)\X
5) u ∈Vn(X)\X ⇒P(u) ∈Vn(X)\X

Beweis: Die Beweise sind alle einfach (Induktion, Basismenge, ...).

14.2 Ultrafilter und Ultraprodukte
Um später wichtige Eigenschaften unserer Nichtstandard Universen beweisen zu können,
brauchen wir die Existenz gewisser Ultrafilter.
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14.2.1 Definition: α-vollständig

Sei α eine unendliche Kardinalzahl. Ein Filter ϕ heißt α-vollständig, wenn für jede Familie
(Xγ)γ<β von Elementen aus ϕ auch

⋂
γ<β Xγ ∈ ϕ ist, für jedes β < α .

14.2.2 Lemma (äquivalente Formulierung von α-vollständig)

Ein Ultrafilter ϕ über einer Menge I ist genau dann α-vollständig, wenn für jede Zerlegung
{Xγ | γ ∈ β} von I in β Teile (β < α) gilt, dass genau ein Xγ zu ϕ gehört.

Beweis: Nehmen wir zuerst an ϕ ist α-vollständig, und sei {Xγ | γ ∈ β und Xγ ⊆ I} eine Zer-
legung von I in β < α Teile. Es kann also höchsten ein Xγ zu ϕ gehören. Falls überhaupt kein
Xγ zu ϕ gehört, dann ist für jedes γ ∈ β aber I \Xγ ∈ ϕ , also aufgrund der α-Vollständigkeit
dann auch /0 = I \

⋃
γ∈β Xγ =

⋂
γ∈β (I \Xγ) ∈ ϕ . Offensichtlich ist dies ein Widerspruch.

Für die Rückrichtung nehmen wir mal an {Xγ | γ ∈ β} ist eine Teilmenge von ϕ , von weni-
ger als α Elementen. Wir definieren nun eine Funktion f : I→ β ∪{β} durch

f (i) =

{
β falls i ∈

⋂
γ∈β Xγ

δ := inf{δ ′ < β | i 6∈ Xδ ′} sonst

Nun ist { f−1(η) | η ∈ β ∪{β}} eine Zerlegung von I in weniger als α-Teile. Also gibt es
ein η ∈ β ∪{β} mit f−1(η) ∈ ϕ . Man rechnet aber leicht nach, dass f−1(η)∩Xη = /0 ist für
η ∈ β . Also muss f−1(β ) =

⋂
γ∈β Xγ ∈ ϕ sein. Somit ist ϕ als α-vollständig erkannt.

14.2.3 Definition: α-gute Filter

Sei α eine Kardinalzahl und X eine Menge, dann bezeichnen wir mit Pα(X) := {A⊆X | |A|<
α}. Da wir die kleinste unendliche Kardinalzahl mit ω bezeichnen, schreibt sich also die
Menge aller endlichen Teilmengen von X als Pω(X). Eine Funktion f : X→Y heißt monoton
(bzw. antimonoton) wenn x⊆ y⇒ f (x)⊆ f (y) (bzw. x⊆ y⇒ f (y)⊆ f (x)). Weiterhin nennen
wir f additiv (bzw. antiadditiv) wenn f (x∪ y) = f (x)∪ f (y) (bzw. f (x∪ y) = f (x)∩ f (y))
für alle x,y ∈ X gilt. Für zwei Funktionen f ,g : X →Y schreiben wir f ≤ g, wenn f (x)⊆ g(x)
für alle x ∈ X gilt.

Nun zur Haupt-Definition: Sei α wieder eine unendliche Kardinalzahl. Ein Ultrafilter ϕ auf
einer Menge X heißt α-gut, wenn es für jede Kardinalzahl β < α und jede antimonotone
Funktion f : Pω(β )→ ϕ eine antiadditive Funktion g : Pω(β ) :→ ϕ gibt, mit g ≤ f . Wenn
ϕ ein α-guter Ultrafilter ist, und β ≤ α eine ebenfalls unendliche Kardinalzahl ist, dann ist
ϕ offensichtlich auch β -gut. Ein Filter heißt abzählbar unvollständig, wenn der Schnitt von
abzählbar unendlich vielen Elementen leer ist.

Das Ziel, im Folgenden, ist der Beweis des fundamentalen Satzes:
Sei I eine nichtleere Menge von Kardinalität α (unendlich). Dann gibt es einen α+-guten

abzählbar unvollständigen Ultrafilter ϕ auf I. (Hier ist α+ := Nachfolgerkardinalzahl vonα)
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14.2.4 Lemma

Sei I eine (nichtleere) Menge. Dann ist äquivalent:

1. ϕ ist ein α+-guter Ultrafilter auf I.

2. Zu jeder antimonotonen Funktion f : Pω(α)→ ϕ gibt es eine antiadditive Funktion
g : Pω(α) :→ ϕ , mit g≤ f .

Beweis: 1.⇒ 2. folgt direkt aus der Definition.
2. ⇒ 1.: Sei β ≤ α und f : Pω(β )→ ϕ antimonoton. Definiere f ′ : Pω(α)→ ϕ durch

f ′(x) := f (x∩β ) für x ∈Pω(α). Dann gibt es eine antiadditive Funktion g′ : Pω(α)→ ϕ

mit g≤ f . Die Einschränkung g := g′|Pω(β ) ist das gesuchte g.

14.2.5 Lemma

Sei α eine Kardinalzahl und (Xβ )β<α eine Familie von Mengen mit |Xβ | = α für alle
β < α . Dann ∃ eine Familie (Yβ )β<α mit Yβ ⊆ Xα , Yβ ∩Yβ ′ = 0 für β 6= β ′ und |Yβ |= α .

Beweis: Sei h : α → α×α bijektiv. Wir definieren uns

F := { f : γ→
⋃

β<α

Xβ | f : ist injektiv, γ ≤α und ∀ξ ∈ γ : (h(ξ ) = (ξ ′,ξ ′′) ⇒ f (ξ )∈Xξ ′)}.

Unser F wird durch Inklusion partiell geordnet. Und wenn ( fk)k∈K eine Kette aus F ist,
ist sofort klar, dass

⋃
k∈K fk ∈F eine obere Schranke ist. Das Zornsche Lemma liefert uns

also ein maximales g ∈F . Angenommen ξ := dom(g) < α . Sei h(ξ ) = (ξ ′,ξ ′′), dann gibt
es ein x ∈ Xξ ′ \ rg(g). Setze dann g′ := g∪ {(ξ ,x)}. Dann haben wir g ( g′ ∈ F , was ein
Widerspruch ist. Also gilt dom(g) = α . Man kann nun sofort nachrechnen, dass (Yδ )δ∈α mit
Yδ := {g(ξ ) | ξ ∈ h−1({δ}×α)} die gesuchte Familie ist.

14.2.6 Definition: Konsistent

Sei Π 6= /0 eine Menge von Partitionen von α derart, dass jede Partition genau α Elemente hat.
Sei Φ ein nicht trivialer Filter auf α . Das Paar (Π,Φ) heißt konsistent wenn für jedes X ∈ Φ

und X1, ...,Xn - jedes Xi aus einer anderen Partition Pi ∈Π - gilt X ∩X1∩ ...∩Xn 6= 0.
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14.2.7 Lemma

Sei α eine unendliche Kardinalzahl.

1. Sei Φ ein uniformer Filter erzeugt von einer Teilmenge ϕ ⊆ Φ von Kardinalität
≤ α . Dann gibt es eine Menge Π von Partitionen von α , mit |Π| = 2α und (Π,Φ)
ist konsistent.

2. Wenn (Π,Φ) konsistent, Π unendlich und J⊆α ist, dann ist entweder (Π, [Φ∪{J}])
oder (Π′, [Φ∪ {α \ J}]) konsistent, für ein koendliches Π′ ⊆ Π. Hier bezeichnet
[Φ∪{J}] den von Φ∪{J} erzeugten Filter (analog mit [Φ∪{α \ J}]).

3. Angenommen (Π,Φ) ist konsistent, p : Pω(α)→ Φ ist antimonoton und P ∈ Π.
Dann gibt es eine Erweiterung Φ′ von Φ und eine antiadditive Abbildung q :
Pω(α)→Φ′ derart, dass q≤ p und (Π\{P},Φ′) konsistent ist.

Beweis: 1. Sei (Jβ )β<α eine Auflistung aller endlichen Schnitte von Elementen aus ϕ . Da
|Jβ | = α für jedes β < α gilt (Φ ist ein uniformer Filter), gibt es gemäß 14.2.5 eine Familie
(Iβ )β<α mit |Iβ |= α , Iβ ⊆ Jβ und Iβ ∩ Iβ ′ = 0 für alle β 6= β ′.

Wir definieren B := {(s,r) | s ∈Pω(α) und r : P(s)→ α}. Es gilt dann |B| = α . Sei
((sξ ,rξ ))ξ<α eine Aufzählung der Elemente aus B. Wir können diese Aufzählung nun so
wählen, dass B = {(sξ ,rξ ) | ξ ∈ Iβ}, für alle β < α gilt (eine Aufzählung mit Wiederholungen;
dies geht, da die Iβ disjunkt und gleichmächtig zu α sind). Für jedes J ⊆ α definieren wir

fJ : α → α durch fJ(ξ ) :=

{
rξ (J∩ sξ ) falls ξ ∈

⋃
β<α Iβ

fJ(ξ ) = 0 sonst
.

Es gibt dann 2α viele solcher Funktionen. (Beweis: J1 6= J2 impliziert o.B.d.A. ∃x ∈ J1 \ J2.
Sei dann s := {x} und r := {(s,0),(0,1)}. Dann ist (s,r) ∈ B, also (s,r) = (sξ ,rξ ) für ein
ξ ∈ Iβ . Dann ist fJ1(ξ ) = 0 und fJ2(ξ ) = 1.)

Seien nun β ,γ1, ...γn ∈ α und J1, ...,Jn verschiedene Teilmengen von α . Wir zeigen, dass es
ein ξ ∈ Iβ gibt, mit fJi(ξ ) = γi für alle 1≤ i≤ n.

Dazu wähle xi j ∈ Ji \ J j, wann immer das geht und setze s := {xi j | 1 ≤ i, j ≤ n}. Also ist
s eine endliche Teilmenge von α mit s∩ Ji 6= s∩ J j für i 6= j. Nun sei r : P(s)→ α eine
Abbildung mit r(Ji∩ s) = γi, für 1 ≤ i ≤ n. Nun gibt es ein ξ ∈ Iβ mit (s,r) = (sξ ,rξ ). Also
fJi(ξ ) = rξ (Ji∩ sξ ) = r(Ji∩ s) = γi. Jedes fJ ist also insbesondere surjektiv. Setze

Π := {{ f−1
J (γ) | γ < α} | J ⊆ α}.

(Π,Φ) ist dann das gesuchte konsistente Paar. (Beweis: Sei X ∈Φ und X1, ...,Xn - jedes Xi aus
einer anderen Partition Pi ∈ Π - gewählt, also Xi = f−1

Ji
(γi) für alle 1 ≤ i ≤ n. Sei β < α mit

Iβ ⊆ X . Es gibt nun ein ξ ∈ Iβ mit fJi(ξ ) = γi, also ξ ∈ X ∩X1∩ ...∩Xn.)
2. Annahme (Π, [F∪{J}]) ist nicht konsistent. Dann gibt es X ∈Φ, Xi ∈ Pi ∈Π - die Pi sind

untereinander verschieden - mit J ∩X ∩X1 ∩ ...∩Xn = 0 (∗). Sei dann Π′ := Π \ {P1, ...,Pn}
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und Yj ∈ Q j ∈Π′ für verschiedene Q j ∈Π′ und 1≤ j ≤ m. Dann folgt

X ∩X1∩ ...∩Xn∩Y1∩ ...∩Ym 6= 0.

Mit (∗) ergibt dies (α \ J)∩X ∩Y1∩ ...∩Ym 6= 0. Also ist (Π′, [Φ∪{α \ J}]) konsistent.
3. Sei (Xδ )δ<α eine Aufzählung (ohne Wiederholung) von P und (tδ )δ<α eine ebensolche

von Pω(α). Für jedes δ < α definieren wir eine Funktion

qδ : Pω(α)→P(α) durch qδ (s) :=

{
p(tδ )∩Xδ falls s⊆ tδ
0 falls s* tδ

.

Es gilt dann

0 6= qδ (s)⊆ p(tδ ) falls s⊆ tδ und qδ (s1∪ s2) = qδ (s1)∩qδ (s2)

denn s1∪ s2 ⊆ tδ ⇔ s1 ⊆ tδ und s2 ⊆ tδ . Nun definieren wir

q : Pω(α)→P(α) durch q(s) :=
⋃

δ<α

qδ (s) (für alle s ∈Pω(α)).

Da p antimonoton ist folgt q≤ p. Außerdem qδ (s)∩qδ ′(s) = 0 für δ 6= δ ′. Folglich ist

q(s1)∩q(s2) = (
⋃

δ<α

qδ (s1))∩ (
⋃

δ<α

qδ (s2)) =
⋃

(δ1,δ2)∈α2

qδ1(s1)∩qδ2(s2)

=
⋃

δ<α

qδ (s1)∩qδ (s2) =
⋃

δ<α

qδ (s1∪ s2) = q(s1∪ s2).

Also ist q antiadditiv. Sei noch Φ′ := [Φ∪ q(Pω(α))], dann ist nämlich (Π \ {P},Φ′) unser
gesuchtes konsistentes Paar. Und das sieht man so: Sei X ∈ Φ,s ∈Pω(α), Xi ∈ Pi ∈Π\{P}
mit 1≤ i≤ n und verschiedenen Pi. Nun ist s = tδ für ein δ < α und wir haben q(s)⊇ qδ (s) =
p(tδ )∩Xδ und X ∩ p(tδ )∩Xδ ∩X1∩ ...∩Xn 6= 0, also X ∩q(s)∩X1∩ ...∩Xn 6= 0.

Wir kommen nun zum Hauptsatz dieses Paragraphen:

14.2.8 Existenzsatz über α-gute Ultrafilter

Sei I eine nichtleere Menge von Kardinalität α (unendlich). Dann gibt es einen α+-guten,
abzählbar unvollständigen Ultrafilter ϕ auf I (und somit auch einen α-guten).

Beweis: O.B.d.A. ist I = α . Sei (In)n<ω eine Folge von Teilmengen von α mit

In+1 ⊆ In,
⋂

n<ω

In = 0 und |In|= α.

(sei h : α → α×ω: bijektiv und setze In := h−1(α×{k < ω | k ≥ n}).)
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Sei F0 = [{In | n < ω}] der von {In | n < ω} erzeugte uniforme Filter auf α und sei Π0 eine
Menge von Partitionen von α mit |Π| = 2α derart, dass (Π0,F0) konsistent ist (14.2.7). Wir
konstruieren mittels transfiniter Induktion zwei Folgen (Πξ )ξ<2α , (Fξ )ξ<2α derart, dass

Πξ ⊆Πη und Fξ ⊇ Fη falls η ≤ ξ < 2α ,

|Πξ |= 2α , |Πξ \Πξ+1|< ω , Πλ =
⋂

η<λ

Πη falls λ limes Ordinalzahl und

(Πξ ,Fξ ) ist konsistent für jedes ξ < 2α .

Sei (pξ )ξ<2α eine Aufzählung aller monotonen Funktionen pξ : Pω(α)→P(α) und sei
(Jξ )ξ<2α eine Aufzählung von P(α). Angenommen Πη , Fη seien für η < ξ < 2α bereits kon-
struiert (alle Induktionsvoraussetzungen erfüllend). Wenn ξ eine Limesordinalzahl ist, dann
setzen wir einfach

Πξ :=
⋂

η<ξ

Πη und Fξ :=
⋃

η<ξ

Fη .

(Πξ ,Fξ ) ist dann konsistent und |Πξ |= 2α .

(Beachte Πξ =
⋂

η<ξ

Πη = Π0 \ (
⋃

η<ξ

Πη \Πη+1) und |
⋃

η<ξ

Πη \Πη+1| ≤ |ξ |< 2α .)

Wenn ξ = λ +2n+1, λ eine Limes-Ordinalzahl, und n < ω , dann sei η kleinstmöglich derart,
dass sowohl J := Jη 6∈ Fξ−1, als auch α \ J 6∈ Fξ−1 ist. Lemma 14.2.7 liefert Πξ , Fξ mit

|Πξ−1 \Πξ |< ω , |Πξ |= 2α , J ∈ Fξ oder α \ J ∈ Fξ und (Πξ , fξ ) konsistent.

Wenn ξ = λ +2n+2, λ eine Limes-Ordinalzahl und n < ω , dann sei p := pη : P(α)→ Fξ−1
das erste Element aus der Liste (pξ )ξ<2α welches uns noch nicht untergekommen ist. Wieder
liefert Lemma 14.2.7 Πξ , Fξ und ein antiadditives q : P(α)→ Fξ mit

|Πξ−1 \Πξ | ≤ 1 , |Πξ |= 2α , q≤ p , Fξ = [Fξ−1∪q(P(α))] und (Πξ ,Fξ ) ist konsistent.

Wir setzen noch F :=
⋃

ξ<2α Fξ haben damit unseren abzählbar unvollständigen α+-guten
Ultrafilter auf α .

F ist offensichtlich ein Filter und aus der Konstruktion folgt für jede Teilmenge J, dass
entweder J oder α \ J in F ist. Und wenn p : Pω(α)→ F eine antimonotone Funktion ist,
dann läuft p bereits vollständig in ein Fξ , und kann somit durch eine antiadditive Funktion
verfeinert werden. Denn andernfalls sei {sξ | ξ < α} eine Aufzählung von Pω(α) und wir
bekämen ein unbeschränktes g : α → 2α definiert durch g(ξ ) := inf{β < 2α | p(sξ ) ∈ Fξ},
was aber ein Widerspruch zu α < c f (2α) ist (Kofinalität).

14.2.9 Definition: Ultraprodukt

Sei ϕ ein Filter auf einer (nicht leeren) Menge I; ferner sei (Ai)i∈I eine Familie von (nicht
leeren) Mengen Ai. Dann wird durch f =ϕ g :⇔ {i ∈ I | f (i) = g(i)} ∈ ϕ eine Äquivalenz-
relation auf ∏i∈I Ai definiert. Die Menge der zugehörigen Äquivalenzklassen wird mit ∏ϕ Ai
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bezeichnet und heißt von nun an reduziertes Produkt, die Äquivalenzklassen bezeichnen wir
mit [ fϕ ]. Im Falle das ϕ ein Ultrafilter ist, nennen wir ∏ϕ Ai das Ultraprodukt der Ai modulo
ϕ . Das I ist indirekt in der Notation enthalten, denn es gilt I =

⋃
ϕ . Fall Ai = A für alle i ∈ I

ist, dann nennt man ∏ϕ A = ∏ϕ Ai eine Ultrapotenz von A modulo ϕ .

14.2.10 Lemma

Sei X eine Menge mit R(X) = β und ϕ ein Filter auf I mit R(I) = γ ≥ β + ω . Dann
ist ∏ϕ X eine Basismenge und alle Elemente in ∏ϕ X haben den gleichen (unendlichen)
Rang.

Beweis: Wir zeigen alle Elemente f ∈∏i∈I X haben einen Rang von α , wobei α eine un-
endliche Ordinalzahl ist und verwenden dann Lemma 14.1.11 (bzw. dessen Beweis). Erster
Fall γ ist eine Limesordinalzahl. Behauptung: R( f ) = γ . Beweis dazu: I ∈ Vγ+1 = P(Vγ),
also I ⊆ Vγ =

⋃
δ<γ Vδ . Für i ∈ I und x ∈ X gibt es also ein δ < γ mit i,x ∈ Vδ . Dann ist

(i,x) = {{i},{i,x}} ∈Vδ+2, also f ∈P(
⋃

δ<γ Vδ ) = Vγ+1. Da auch i ∈ {i} ∈ (i, f (i)) ∈ f , für
i ∈ I gilt, ist R( f ) = γ .

Zweiter Fall γ = γ ′+ 1. Dann wieder I ∈ Vγ+1, also i ∈ I und x ∈ X impliziert i,x ∈ Vγ

und damit f ∈ Vγ+3. Man sieht leicht, dass dann bereits R( f ) = γ + 2 gilt. Dann haben aber
auch die Elemente von Elementen in ∏ϕ X alle ein und denselben unendlichen Rang und der
Beweis von Lemma 14.1.11 zeigt dann, dass ∏ϕ X eine Basismenge ist.

14.2.11 Lemma

Sei A eine Menge mit |A| = α und φ ein Ultrafilter. Dann ist die natürliche Einbettung
e : A→∏φ A eine surjektive Abbildung g.d.w. φ ein α+-vollständiger Ultrafilter ist.

Beweis: Sei φ α+-vollständig und fφ ∈∏φ A. Dann ist f eine Abbildung von I(=
⋃

φ) in
A. Da |A|= α , ist { f−1(a) | a ∈ A} eine Partition von I in weniger als α+ Teile. Also gibt es
ein a∈ A mit f−1(a)∈ φ . Wenn g die konstante Abbildung g : I→{a} bezeichnet, so gilt also
fφ = gφ = e(a). also ist e surjektiv.

Wenn andererseits e surjektiv ist, dann sei Xη , η < β eine Partition von I in β < α+ Teile.
Wir müssen zeigen, dass eines der Xη zu φ gehört. Da β ≤ α = |A| ist gibt es eine Injektion
g : β → A. Für a ∈ B := {g(η) | η ∈ β} setze Xa := Xg−1(a) (wir haben einfach die Indizes
umbenannt). Sei f : I→ A definiert durch f (i) = a g.d.w. i ∈ Xa (man beachte das es sich um
eine Partition handelt). Nun ist fφ ∈∏φ A, also ∃a∈ A mit fφ = e(a). Das heißt f−1(a)⊇ {i∈
I | f (i) = e(a)(i)} ∈ φ , also auch Xa = f−1(a) ∈ φ . Daraus folgt dann die α+-Vollständigkeit.
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14.3 Konstruktion von Nichtstandard Universen
”Es gibt Dinge, die den meisten Menschen unglaublich erscheinen, die nicht Mathematik
studiert haben.”

Archimedes

14.3.1 Definition: Nichtstandard Universum (noch unvollstänig, siehe 14.5.1)

Ein Nichtstandard Universum ist ein Tripel (V (X),V (Y ),∗ ) mit folgenden Eigenschaften.

1. X und Y sind unendliche Basismengen.

2. ∗ : V (X)→V (Y ) ist eine Einbettung der Superstruktur über X in die Superstruktur über
Y mit ∗X = Y .Die Abbildung ∗ heißt Nichtstandard Einbettung.

3. Für jedes unendliche A⊆ X ist {∗a | a ∈ A} eine echte (!) Teilmenge von ∗A.

4. Das Transfer-Prinzip (für die Formulierung siehe Satz 14.4.12).

5. (V (X),V (Y ),∗ ) ist polysaturiert (siehe Definition 14.3.5 und Satz 14.3.6).

14.3.2 Bemerkung

Haben wir eine unendliche Menge X , so nehmen wir uns eine Basismenge X ′ mit |X |= |X ′|.
Wir identifizieren gewissermaßen X ′ mit X (und all den möglichen Strukturen auf X) und
können also o.B.d.A. gleich von Anfang an annehmen, dass X eine Basismenge ist.

14.3.3 Existenz von Nichtstandard Universen (Konstruktion)

Zu jeder unendlichen Basismenge X gibt es ein Nichtstandard Universum (V (X),V (Y ),∗ ).

Konstruktion: Sei X eine Basismenge und ϕ ein abzählbar unvollständiger Ultrafilter auf
einer Menge I. Sei dann Y := ∏ϕ X die Ultrapotenz von X . Nach Lemma?? kann man I so
wählen, dass auch Y eine Basismenge ist. Für n < ω sei

Wn := { f ∈V (X)I | {i ∈ I | f (i) ∈Vn(X)} ∈ ϕ}.

Es gilt dann Wn⊆Wn+1 für alle n < ω . Wir setzen nun noch W :=
⋃

n<ω Wn. Für jedes x∈V (X)
sei c(x) : I→V (X) die konstante Abbildung c(x)(i) = x für alle i ∈ I. Dann ist c(Vn(X))⊆Wn
für alle n < ω , also c(V (X))⊆W und somit c : V (X)→W eine Abbildung.

Wir definieren nun induktiv eine Folge hn : Wn→Vn(Y ) von Abbildungen mit hn( f ) = fϕ ,
falls f ∈W0 und hn( f ) = {hn(g) | g ∈W, {i ∈ I | g(i) ∈ f (i)} ∈ ϕ}, falls f ∈Wn \Wn−1 falls
n > 0. (Bemerkung: Wenn f ∈Wn+1 \Wn, g ∈W , {i ∈ I | g(i) ∈ f (i)} ∈ ϕ , dann g ∈Wn, denn

ϕ 3 {i ∈ I | f (i) ∈Vn+1(X)}∩{i ∈ I | g(i) ∈ f (i)} ⊆ {i ∈ I | g(i) ∈Vn(X)}.)
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Nun zur Konstruktion: Für n = 0 setze einfach h0( f ) := f ′ϕ , wobei f ′ ∈ X I beliebig mit {i ∈
I | f (i) = f ′(i)} ∈ ϕ . Induktionsschluss n→ n+1: Für f ∈Wn setze hn+1( f ) := hn( f ) und für
f ∈Wn+1 \Wn setze

hn+1( f ) := {hn(g) | g ∈W, {i ∈ I | g(i) ∈ f (i)} ∈ ϕ}.

Aus der Bemerkung folgt, dass alles sinnvoll definiert ist und die hn die gewünschten Eigen-
schaften haben. Wir setzen nun noch h :=

⋃
n<ω hn und haben damit ein h : W → V (Y ) mit

h( f ) = fϕ , falls f ∈W0 und

h( f ) = {h(g) | g ∈W, {i ∈ I | g(i) ∈ f (i)} ∈ ϕ} , falls f ∈W \W0.

Wir definieren nun ∗ : V (X)→V (Y ) durch ∗ := h◦c. Für a ∈ X gilt ∗a = fϕ , wobei f : I→
V (X) konstant a ist. Aus der Definition von ∗ folgt weiter

∗X = {h( f ) | f ∈W, {i ∈ I | f (i) ∈ X} ∈ ϕ}= {h( f ) | f ∈W0}= Y

(man beachte c(X)∈W1). Für unendliches A⊆ X gilt ∏ϕ A⊆ ∗A und nach Lemma 14.2.11 ist
die natürliche Einbettung (und das ist hier ∗) nicht surjektiv (denn ϕ ist nicht ω-vollständig).
Das heißt {∗a | a ∈ A} ist eine echte (!) Teilmenge von ∗A.

Zeigen wir noch schnell die Injektivität: Wir müssen zeigen: ∗A =∗ B impliziert A = B.
Dies folgt aus dem Transfer-Prinzip, oder auch leicht direkt: Angenommen A 6= B. O.B.d.A.
gibt es dann drei mögliche Fälle 1) A,B ∈ X , 2) A ∈ X ,B ∈V (X)\X und 3) A,B ∈V (X)\X .
Fall 1) ist trivial. Fall 3) geht so: Es gibt dann o.B.d.A. ein x ∈ A\B. Definiere g : I→ V (X)
durch g(i) = x für alle i ∈ I. Also {i ∈ I | g(i) ∈ c(A)(i)\ c(B)(i)}= I ∈ ϕ , und somit h(g) ∈
h(c(A))\h(c(B)) =∗ A\∗B - Widerspruch!

Für Fall 2) erst eine allgemeine Bemerkung: A ∈ X , B ∈ V (X) \X und B 6= /0 impliziert
B\A 6= /0 (sonst ist B⊆ A und es folgt letztendlich A∩V (X) 6= /0 - Widerspruch zur Basismen-
geneigenschaft). Wir können also B als leer voraussetzen (sonst schließen wir wie in Fall 3)).
Dann ist aber offensichtlich ∗B = /0; hingegen ∗A 6= /0. Wieder ein Widerspruch!

14.3.4 Definition: Interne Elemente

Ein Element aus A∈V (Y ) heißt internes Element, wenn es ein B∈V (X)\X gibt mit A∈ ∗B.

14.3.5 Definition: κ-saturiert

Sei κ eine (unendliche) Kardinalzahl. Das Tripel heißt κ-saturiert bzw. die Einbettung ∗ heißt
κ-kompakt, wenn für jede Familie (Aγ)γ∈Γ, |Γ|< κ , interner Elemente mit der eSE (je endlich
viele Elemente haben nicht leeren Schnitt⇒ endliche Schnitt Eigenschaft)

⋂
γ∈Γ Aγ 6= /0 ist.

14.3.6 Existenzsatz κ-saturierter Nichtstandard Universen

Sei κ eine (unendliche) Kardinalzahl. Wenn man den Filter ϕ zusätzlich κ-gut wählt, dann
ist (V (X),V (Y ),∗ ) κ-saturiert.
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Beweis: Sei (Aγ)γ∈Γ, |Γ|< κ , eine Familie interner Elemente mit der eSE und (∗Bγ)γ∈Γ die
zugehörigen B ∈V (X)\X . Jedes Aγ ist von der Form h( fγ) für ein fγ ∈W mit {i ∈ I | fγ(i) ∈
B} ∈ ϕ (mit der Notation der Konstruktion). Wir unterscheiden nun 2 Fälle: 1) alle fγ liegen
in W \W0 und 2) Es gibt ein γ ∈ Γ mit fγ ∈W0.

Fall 1) (der schwere Fall): Es genügt ein g ∈W zu finden, mit {i ∈ I | g(i) ∈ fγ(i)} ∈ ϕ , für
alle γ ∈ Γ. Denn dann ist h(g) ∈

⋂
γ∈Γ h( fγ). Der Schnitt der Aγ wäre also nicht leer.

ϕ ist ein abzählbar unvollständiger Ultrafilter, also gibt es eine Folge I = I0 ⊇ I1 ⊇ ...
von Mengen aus ϕ mit

⋂
n<ω In = /0. Wir definieren nun eine Abbildung p : Pω(Γ)→ ϕ

durch p({γ1, ...,γn}) := In ∩ {i ∈ I | fγ1(i)∩ ...∩ fγ2(i) 6= /0} wenn γ1, ...,γn paarweise ver-
schiedene Elemente sind (die Abbildung ist sinnvoll definiert; man beachte die eSE). Nun
ist p offensichtlich antimonoton und daher existiert ein antiadditives q : Pω(Γ) → ϕ mit
q ≤ p. Für jedes i ∈ I definieren wir nun Γi ⊆ Γ durch Γi := {γ ∈ Γ | i ∈ q({γ})}. Wenn Γi
die n Elemente γ1, ...,γn hat, dann i ∈

⋂n
k=1 q({γk}) = q({γ1, ...,γn}) ⊆ p({γ1, ...,γn}) ⊆ In.

Da
⋂

n<ω In = /0, muss Γi endlich sein! Sei also Γi = {γ i
1, ...,γ

i
ni
}. Da i ∈ q(Γi) ⊆ p(Γi),

folgt ∃xi ∈ f
γ i

1
(i)∩ ...∩ fγ i

ni
(i). Setze dann g(i) := xi für i ∈ I und es bleibt zu zeigen, dass

{i ∈ I | g(i) ∈ fγ(i)} ∈ ϕ ist, für alle γ ∈ Γ. Es gilt aber {i ∈ I | g(i) ∈ fγ(i)} ⊇ q({γ}) ∈ ϕ!
Nun zu Fall 2) Wir zeigen wenn ein fγ aus W0 kommt, dann kommen bereits alle fγ aus

W0. Wenn das gezeigt ist, sind die h( fγ) nämlich Elemente aus Y = ∏ϕ X und wenn je endlich
viele einen nicht leeren Schnitt haben, dann auch /0 6=

⋂
γ∈Γ h( fγ) (Äquivalenzklassen!!). Um

dies zu zeigen, beweisen wir die Implikation: f ∈W \W0 ⇒ h( f ) ∈ V (Y ) \Y . Für so ein
f folgt dann nämlich auch h( f ) ⊆ V (Y ). Gäbe es dann ein fγ ∈W0, also h( fγ) ∈ Y und ein
fγ ′ ∈W \W0, so wäre h( fγ)∩h( fγ ′) = /0 - Widerspruch (denn Y ist eine Basismenge)!

I Behauptung: ∀n < ω ∀d ∈Wn : [(∃y ∈ Y mit R(y) ≤ R(h(d))) oder R(h(d)) ≤ n.]
Beweis durch Induktion nach n. Für n = 0 ist h(d) ∈ Y - fertig. n→ n+1: Sei d ∈Wn+1 \Wn.
Sei o.B.d.A. h(d) 6= /0. 1.Fall: ∀h(d′)∈ h(d) : R(h(d′))≤ n, dann offensichtlich R(h(d))≤ n+
1. 2.Fall ∃h(d′)∈ h(d)∃y∈Y mit R(y)≤ R(h(d′)). Dann aber R(y)≤ R(h(d′)) < R(h(d)). J

Sei nun f ∈Wn+1 \Wn, n ≥ 0 und o.B.d.A. sei {i ∈ I | f (i) 6= /0} ∈ ϕ (sonst h( f ) = /0 ∈
V (Y )\Y ). Für jedes h(g)∈ h( f ) gilt nun g∈Wn. Es treten daher zwei Fälle auf: 1.Fall ∀h(g)∈
h( f ) : R(h(g))≤ n, dann offensichtlich R(h( f ))≤ n+1. Oder 2.Fall ∃h(g)∈ h( f )∃y∈Y mit
R(y)≤ R(h(g)), dann offensichtlich R(y) < R(h( f )). In jedem Fall stimmt der Rang von h( f )
nicht mit dem Rang der Elemente in Y überein, also h( f ) 6∈ Y !

14.3.7 Bemerkung und Definition

Wenn wir ϕ zusätzlich κ-gut wählen, für ein κ > |V (X)|, dann folgt für jede Familie (At)t∈T
von höchstens |V (X)|-vielen internen Elementen mit der eSE:

⋂
t∈T At 6= /0. Diese starke Form

von saturiert nennt man polysaturiert bzw. spricht man einfach von einer kompakten Ein-
bettung ∗ (statt von einer κ-kompakten). Im Grunde genommen interessiert man sich auch
nur für den ersten Fall des Beweises. Die Inklusionsbeziehungen zwischen Elementen aus Y
(abgesehen von der Basismengeneigenschaft) haben für die Theorie keine Bedeutung.

In der Literatur gibt es in diesem Zusammenhang noch einen weiteren Begriff, nämlich den
der starken Einbettung, bzw. spricht man auch von Enlargements (siehe z.B. [29]). Die Ein-
bettung ∗ wird starke Einbettung genannt, wenn

⋂
A∈A

∗A 6= /0 für jede Menge A ⊆V (X)\X ,
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mit der endlichen Schnitt Eigenschaft (eSE) gilt. Für viele Anwendungen reicht die Existenz
einer starken Einbettung aus. Doch haben wir auch die Existenz solcher starken Einbettungen
bewiesen? Ja, denn wenn (V (X),V (Y ),∗ ) polysaturiert ist, dann ist die Einbettung ∗ stark!

Für den Beweis wähle man ein A ⊆V (X)\X , mit der eSE. Nun hat auch α := {∗A |A∈A }
die eSE (Klar!) und α hat höchstens |V (X)|-viele Elemente. Außerdem sind alle Elemente aus
α intern. Da (V (X),V (Y ),∗ ) polysaturiert ist, folgt somit

⋂
A∈A

∗A =
⋂

α 6= /0.
Bis auf das Transfer-Prinzip habe wir damit den Nachweis der Existenz von Nichtstandard

Universen zu jeder Menge X gegeben.

14.4 Modelltheoretische Grundlagen und das Transfer-Prinzip
Wir definieren nun die Sprache in der dann Aussagen über die Superstrukturen formuliert wer-
den. Dazu gehört ein Alphabet A , eine Menge von Symbolen, aus denen dann Symbolketten
gebildet werden und gewisse Syntax-Regeln, welche die Art und Weise wie Ketten gebildet
werden regeln. Diese Symbole teilen sich in folgende Gruppen auf: Relationssymbole R (z.B.
das 2-stellige Symbol = oder das 2-stellige ∈), Funktionssymbole F , Konstenten Symbole
K , Variablen Symbole V und die Logischen Symbole L , die da wären )( , ¬ ∧ ∀.

Ein Modell für unsere Sprache ist dann ein geordnetes Paar (U ,F), wobei U eine mögliche
Welt, ein Universum in dem sich alles abspielt, letztendlich aber einfach eine Menge ist, und
F : R ∪F ∪K → U eine Abbildung ist, welche jedem n-stelligen Relationssymbol P eine
n-stellige Relation R⊆U n in U zuordnet 1≤ n, jedem m-stelligen Funktionssymbol G eine
m-stellige Funktion F : U n → U zuordnet 1 ≤ m, jedem Konstantensymbol c ein Element
u ∈U zuordnet. Mit g.d.w. kürzen wir die Formulierung genau dann wenn ab.

14.4.1 Definition: Symbolkette

Eine Symbolkette ist einfach eine Abbildung S : β → A , wobei β < ω ist. Wir werden im
weiteren Verlauf Zeichenketten aber nicht als Abbildungen definieren, sondern wie man es
nicht anders erwarten würde, einfach die Zeichenkette hinschreiben. Hier zwei Beispiele:
(,P(x1∧((∀ und (¬∀x)(¬∀y(¬y∈ x)), wobei ∈ das bekannte Relationssymbol (...ist enthalten
in...) bezeichnet. Wir wollen nun aus der großen Menge aller möglichen Zeichenketten (oder
Symbolketten) die für uns interessanten herausfiltern. Dies geschieht induktiv.

Noch eine kleine Bemerkung: Wir führen (ohne weiter darauf hinzuweisen) intuitiv klare
und leichter lesbare Schreibweisen, wie z.B. P(v1, ...,vn) statt Pv1...vn, wobei P ein n-stelliges
Relationssymbol bezeichnet, ein.

14.4.2 Definition: Term, Elementarformeln und Formeln

1. Variablensymbole und Konstantensymbole sind Terme.

2. Wenn F ein n-stelliges Funktionssymbol ist und t1, ..., tn Terme sind, so ist F(t1, ..., tn)
ein Term.

Genau die Zeichenketten sind Terme, die sich durch endliches Anwenden von 1. und 2. erzeu-
gen lassen.
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1. Wenn t1, ..., tn Terme sind und P ein n-stelliges Relationssymbol ist, dann ist P(t1, ..., tn)
eine Elementarformel.

2. Elementarformeln sind Formeln.

3. Wenn φ und ψ Formeln sind, dann auch (¬φ) und (φ ∧ψ)

4. Wenn v eine Variable und φ eine Formel ist, dann ist auch (∀v)φ eine Formel.

Genau die Zeichenketten sind Formeln, die sich in endlich vielen Anwendungen von 1. 2. 3.
und 4. erzeugen lassen.

14.4.3 Definition: Teilformeln, gebundenes bzw. freies Auftreten einer Variable
und Aussage

Wir definieren induktiv die Menge sub(φ) aller Teilformeln von φ .

1. Wenn φ eine Elementarformel ist, dann sub(φ) = {φ}.

2. sub((¬φ)) = sub(φ)∪{(¬φ)}.

3. sub(φ ∧ψ) = sub(φ)∪ sub(ψ)∪{φ ∧ψ}.

4. sub((∀v)φ) = sub(φ)∪{(∀v)φ}.
Das Auftreten einer Variablen v an einer Stelle in einer Formel φ heißt gebunden, wenn es ein
ψ ∈ sub(φ) gibt, mit (∀v)ψ ∈ sub(φ). Andernfalls ist sie an dieser Stelle frei. Eine Variable
heißt frei in einer Formel, wenn jedes Auftreten der Variable in der Formel frei ist. Entspre-
chend reden wir dann auch von der Menge der freien Variablen einer Formel. Eine Formel in
der jedes Auftreten einer jeden Variable gebunden ist, heißt Satz oder Aussage.

14.4.4 Notation und Bemerkung

Mit t(v0, ...,vp) bezeichnen wir einen Term, dessen Variablen eine Teilmenge von {v0, ...,vp}
bilden. Mit φ(v0, ...,vp) bezeichnen wir eine Formel φ , deren freie Variablen eine Teilmenge
von {v0, ...,vp} bilden.

Unser Ziel ist es nun, bei Wahl einer Sprache (repräsentiert durch ein Alphabet A , entspre-
chenden Syntax-Regeln und einem Modell M = (U ,F)) für eine Formel φ(v0, ...,vp) mit all
ihren freien und gebundenen Variablen unter v0, ...,vq, p≤ q und einer Folge u0, ...,up aus U
zu entscheiden, ob φ bei der Belegung der v0, ...,vp durch u0, ...,up in M wahr ist oder nicht.
Als abkürzende Schreibweise führen wir dafür (auch wenn der Inhalt noch gar nicht definiert
ist) folgendes ein: M |= φ [u0, ...,up] oder eben M 6|= φ [u0, ...,up].

Wir haben in unserer Sprache bislang noch nicht das Symbol = und ∈ (als Symbole für
gewisse Relationen) eingeführt. Gleichwohl benutzen wir sie nun (wie auch schon früher)
wenn wir über unsere Sprache reden (wie z.B. in der Definition der Teilformeln). Wenn wir
also von zwei Formeln zum Ausdruck bringen möchten, dass sie gleich sind, so schreiben
wir φ = ψ . Das Gleiche gilt für Terme. In unserer neuen Kunstsprache hingegen sind diese
Symbole aber einfach nur Symbole, im Rahmen der Syntax Regeln, die erst über die folgenden
Definitionen (Erfüllbarkeit,...) mit dem Universum in Verbindung stehen (Semantik).
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14.4.5 Definition: Werte von Termen

Wir definieren den Wert eines Termes t(v0, ...,vq) für eine Folge x0, ...,xq ∈U :

1. Wenn t = vi, dann t[x0, ...,xq] = xi (t[x0, ...,xq] sei der Wert von t für x0, ...,xq)

2. Wenn t ein Konstantensymbol ist, dann t[x0, ...,xq] = F(c).

3. Wenn t = F(t1, ..., tm), wobei F ein m-stelliges Funktionssymbol ist, dann t[x0, ...,xq] =
F(F)(t1[x0, ...,xq], ..., tm[x0, ...,xq]).

14.4.6 Definition: Erfüllbarkeit von Formeln (Vorbereitung)

1. Wenn die Formel φ(v0, ...,vq) die Elementarformel P(t1, ..., tn) ist, mit einem n-stelligen
Relationssymbol P und den Termen t1(v0, ...,vq), ..., tn(v0, ...,vq), dann

M |= φ [x0, ...,xq] g.d.w. (t1[x0, ...,xq], ..., tn[x0, ...,xq]) ∈ F(P)

(man beachte, dass Elementarformeln keine gebundenen Variablen enthalten).

2. Sei nun φ eine Formel mit all ihren (freien und gebundenen) Variablen unter v0, ...,vq.

a) Wenn φ = (χ ∧ψ), dann

M |= φ [x0, ...,xq] g.d.w. M |= χ[x0, ...,xq] und M |= ψ[x0, ...,xq].

b) Wenn φ = ¬ψ , dann

M |= φ [x0, ...,xq] g.d.w. M 6|= ψ[x0, ...,xq].

c) Wenn φ = (∀vi)ψ , mit i≤ q, dann

M |= φ [x0, ...,xq] g.d.w. M |= ψ[x0, ...xi−1,x,xi+1, ...,xq] für jedes x ∈U

Nun möchten wir allerdings definieren wann eine Formel φ(v0, ...,vp) durch x0, ...,xp erfüllt
wird. Um die Definition sauber zum Abschluss zu bringen, müssen wir daher noch nachwei-
sen, dass M |= φ(v0, ...,vp)[x0, ...,xq] nur von x0, ...,xp abhängt, p≤ q.

14.4.7 Lemma

1. Sei t(v0, ...,vp) ein Term und x0, ...,xq bzw. y0, ...,yr zwei Folgen aus U , mit p≤ q
und p≤ r und xi = yi falls vi eine Variable von t ist. Dann ist

t[x0, ...,xq] = t[y0, ...,yr].

2. Sei φ eine Formel mit all ihren freien und gebundenen Variablen unter v0, ...,vp und
seien x0, ...,xq bzw. y0, ...,yr zwei Folgen aus U , mit p ≤ q und p ≤ r und xi = yi
falls vi eine freie Variable von t ist. Dann

M |= φ [x0, ...,xq] g.d.w. M |= φ [y0, ...,yr].
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Beweis: Der Beweis ist sehr einfach und ein typisches Beispiel eines Induktionsbeweises
über die Komplexität der Terme und Formeln.

1. Sei t(v0, ...,vn) ein Term. Falls t = vi, dann t[x0, ...,xq] = xi = yi = t[y0, ...,yr].
Falls t = c ist für ein Konstantensymbol c, dann t[x0, ...,xq] = F(c) = t[y0, ...,yr].
Falls t = F(t1, ..., tn), dann

t[x0, ...,xq] =F(F)(t1[x0, ...,xq], ..., tn[x0, ...,xq])=F(t1[y0, ...,yr], ..., tn[y0, ...,yr])= t[y0, ...,yr].

2. Sei φ eine Elementarformel, also φ(v0, ...,vp) = P(t1, ..., tn), P ein Relationssymbol und
ti Terme. Dann gilt

M |= φ [x0, ...,xq] g.d.w. (t1[x0, ...,xq], ..., tn[x0, ...,xq]) ∈ F(P)

g.d.w. (t1[y0, ...,yr], ..., tn[y0, ...,yr]) ∈ F(P) g.d.w. M |= φ [y0, ...,yr].

Wenn φ = (χ ∧ψ), dann

M |= φ [x0, ...,xq] g.d.w. M |= χ[x0, ...,xq] und M |= ψ[x0, ...,xq]

g.d.w. M |= χ[y0, ...,yr] und M |= ψ[y0, ...,yr] g.d.w. M |= φ [y0, ...,yr].

Analog mit φ = ¬ψ . Wenn φ = (∀vi)ψ , mit i≤ p, dann

M |= φ [x0, ...,xq] g.d.w. für alle x ∈U gilt M |= ψ[x0, ...xi−1,x,xi+1, ...,xq]

g.d.w. für alle x ∈U gilt M |= ψ[y0, ...yi−1,x,yi+1, ...,yr] g.d.w. M |= φ [y0, ...,yr].

Nun können wir die (sehr umfangreiche) Definition abschließen:

14.4.8 Definition: Erfüllbarkeit von Formeln

Sei φ(v0, ...,vp) eine Formel, mit all ihren freien und gebundenen Variablen unter v0, ...,vq und
sei x0, ...,xp eine Folge mit Elementen aus U mit p≤ q. Dann schreiben wir

M |= φ [x0, ...,xp] (und sagen: x0, ...,xp erfüllen φ),

falls es xp+1, ...,xq aus U gibt mit M |= φ [x0, ...,xq]. Das obige Lemma bringt nun gerade
zum Ausdruck, dass diese Definition von der Wahl der xp+1, ...,xq unabhängig ist.

14.4.9 Bemerkung

Wir führen noch einige nützliche Abkürzungen ein: φ ∨ψ als Abkürzung für ¬(¬φ ∧¬ψ),
φ → ψ als Abkürzung für ¬φ ∨ψ , φ ↔ ψ als Abkürzung für (φ → ψ)∧ (ψ → φ) und zu
guter Letzt bezeichnet (∃vi)φ die Formel ¬((∀vi)¬φ). Mit diesen Abkürzungen gilt dann z.B.
wenn φ die Formel (∃vi)ψ bezeichnet: M |= φ [v0, ...,vq] g.d.w. es ein x ∈U gibt, mit M |=
ψ[v0, ...,vi−1,x,vi+1, ...,vq] (der Beweis ist eine leichte Übung).

Im weiteren Verlauf werden wir unser Alphabet und Modell spezieller wählen. Als Rela-
tionssymbole nehmen wir = und ∈ (wir schreiben auch a = b statt = (a,b), analog mit ∈),
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wir brauchen keine Funktions - bzw. Konstantensymbole. Die logischen Symbole werden na-
türlich alle verwendet (und wurden eben bereits um ein paar Abkürzungen erweitert). Als
Universum unserer Modelle wählen wir zum einen die Superstruktur über einer Basismenge
X und zum anderen das entsprechende V (Y ). Dem Symbol = ordnen wir als Relation (wie soll
es auch anders sein) {(a,a) | a aus V (X)} bzw. {(a,a) | a aus V (Y )} zu; entsprechend dem
Symbol ∈, die Relationen {(a,b) | a,b aus V (X) und a aus b} bzw. {(a,b) | a,b aus V (Y ) und
a aus b}. Wir haben also zwei verschiedene Modelle über ein und dem selben Alphabet. Die
beiden Modelle werden wir mit (V (X),∈) bzw (V (Y ),∈) bezeichnen.

14.4.10 Definition: Beschränkt quantifizierte Formeln

Um das Transfer-Prinzip zu formulieren führen wir nun den Begriff der beschränkt quanti-
fizierten Formel ein. Wir erinnern uns: Im induktiven Aufbau der Formel kam es zu Quan-
tifizierungen der Form (∀v)φ . Formeln die sich dadurch gewinnen lassen, dass statt dieser
allgemeinen Form nur die folgenden abgeschwächten, so genannten beschränkten Quantifi-
zierungen,

• (∀v)((v ∈ w)→ φ) kurz: (∀v ∈ w)ϕ

• (∃v)((v ∈ w)∧φ) kurz: (∃v ∈ w)ϕ

benutzt werden, heißen ab sofort beschränkt quantifizierte Formeln.

14.4.11 Lemma

Sei (V (X),V (Y ),∗ ) das in 14.3.3 konstruierte Nichtstandard Universum mit Ultrafilter ϕ .
Dann gilt für jede beschränkt quantifizierte Formel φ(x1, ...,xn) und f1, ..., fn ∈W :

(V (Y ),∈) |= φ [h( f1), ...,h( fn)] g.d.w. {i ∈ I | (V (X),∈) |= φ [ f1(i), ..., fn(i)]} ∈ ϕ.

Für die Notation beachte den Existenzbeweis für Nichtstandard Universen.

Beweis: Der Beweis erfolgt durch Induktion über den Formelaufbau. Sei φ die (Elemen-
tar)Formel v1 = v2. Dann folgt:

(V (Y ),∈) |= φ [h( f1),h( f2)] g.d.w. h( f1) = h( f2) g.d.w. f1 =ϕ f2.

I Zeigen wir die letzte Äquivalenz: Sei h( f1) = h( f2). Angenommen J := {i ∈ I | f1(i) 6=
f2(i)} ∈ ϕ . Falls {i ∈ I | f2(i) = /0} ∈ ϕ , dann /0 = h( f2) = h( f1). Dann muss aber auch {i ∈
I | f1(i) = /0} ∈ ϕ sein! Und somit doch f1 =ϕ f2 - Widerspruch.

Für den nächsten Fall erst eine allgemeine Bemerkung: A ∈ X , B ∈ V (X) \X und B 6= /0
impliziert B\A 6= /0. Sonst ist B⊆ A und es folgt letztendlich A∩V (X) 6= /0 - Widerspruch (zur
Basismengeneigenschaft)!

Falls also {i∈ I | f2(i) 6= /0} ∈ ϕ , so gilt für f1 entweder f1 ∈W0, oder f1 ∈W \W0. Im ersten
Fall folgt aus der Bemerkung: {i ∈ I | f2(i) \ f1(i) 6= /0} ∈ ϕ . Im zweiten Fall folgt, dass für
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jedes i ∈ I ein g(i) existiert mit g(i) ∈ f2(i) \ f1(i), oder g(i) ∈ f1(i) \ f2(i). In beiden Fällen
lässt sich aber leicht ein g : I→V (X) konstruieren, so dass entweder h(g)∈ h( f2)\h( f1) oder
h(g) ∈ h( f1) \ h( f2) gilt. Und wir erhalten hm( f1) 6= hm( f2) - Widerspruch. Also J ∈ ϕ und
somit f1 =ϕ f2. Die Umkehrung f1 =ϕ f2 ⇒ h( f1) = h( f2) ist offensichtlich. J

Offenbar gilt nun

f1 =ϕ f2 g.d.w. {i ∈ I | (V (X),∈) |= φ [ f1(i), ..., fn(i)]} ∈ ϕ

Sei nun φ die Formel v1 ∈ v2 , dann folgt (V (Y ),∈) |= φ [h( f1),h( f2)] g.d.w. h( f1)∈ h( f2)

g.d.w. {i ∈ I | f1(i) ∈ f2(i)} ∈ ϕ g.d.w. {i ∈ I | (V (X),∈) |= φ [ f1(i), ..., fn(i)]} ∈ ϕ.

Wenn φ die Formel (ψ ∧ χ) ist, beweist man die Äquivalenz, indem man sie auf den rekursi-
ven Formelaufbau und die Filtereigenschaft P∩Q ∈ ϕ g.d.w. P ∈ ϕ und Q ∈ ϕ zurückführt.
Ähnlich geht man vor, wenn φ die Formel ¬ψ ist (P ∈ ϕ g.d.w. I \P 6∈ ϕ - Ultrafilter!).

Sei φ die Formel (∃v1)((v1 ∈ v2)∧ψ) (es ist klar, dass man sich auf den Nachweis für ∀
oder ∃ entscheiden kann).

(V (Y ),∈) |= (∃v1)((v1 ∈ v2)∧ψ)[h( f1), ...,h( fn)]

g.d.w. es ein u ∈V (Y ) gibt, mit (V (Y ),∈) |= ((v1 ∈ v2)∧ψ)[u, ...,h( fn)]

g.d.w. es ein u ∈V (Y ) gibt, mit u ∈ h( f2) und (V (Y ),∈) |= ψ[u, ...,h( fn)].

Nun ist h( f2) entweder ( f2)ϕ oder {h(g) | g ∈W und {i ∈ I | g(i) ∈ f2(i)} ∈ ϕ . Der erste
Fall kann aber nicht eintreten, da Y eine Basismenge ist. Das impliziert: u = h(g) ∈ h( f2)
und (V (Y ),∈) |= ψ[h(g), ...,h( fn)] , also {i ∈ I | g(i) ∈ f2(i)} ∈ ϕ und {i ∈ I | (V (X),∈) |=
ψ[g(i), ..., fn(i)]} ∈ ϕ . Also ist auch

{i ∈ I | (V (X),∈) |= (∃v1)((v1 ∈ v2)∧ψ)[ f1(i), ..., fn(i)]}

als Obermenge des Schnittes dieser beiden Mengen wieder in ϕ .
Sei andererseits {i ∈ I | (V (X),∈) |= (∃v1)((v1 ∈ v2)∧ψ)[ f1(i), ..., fn(i)]} ∈ ϕ . Dann auch

J := {i ∈ I | es gibt ein g(i) ∈ V (X) mit g(i) ∈ f2(i) und (V (X),∈) |= ψ[g(i), ..., fn(i)]} ∈
ϕ . Wähle dann noch ein g(i) ∈ X für jedes i ∈ I \ J und wir erhalten h(g) ∈ h( f2) (Y ist
Basismenge) und {i ∈ I | (V (X),∈) |= ψ[g(i), ..., fn(i)]} ∈ ϕ , also per Induktion (V (Y ),∈) |=
ψ[h(g), ...,h( fn)]. Zusammen mit h(g) ∈ h( f2) erhalten wir

(V (Y ),∈) |= (∃v1)(v1 ∈ v2∧ψ)[h( f1), ...,h( fn)].

14.4.12 Transfer-Prinzip

Seien a1, ...,an ∈V (X) und sei φ(v1, ...,vn) eine beschränkt quantifizierte Formel. Dann:

(V (Y ),∈) |= φ [∗a1, ...,
∗ an] genau dann wenn (V (X),∈) |= φ [a1, ...,an].

Beweis: Man wähle als fk einfach c(ak) (mit den Bezeichnungen aus 14.3.3 und 14.4.11)
und beachte c(ak)(i) = ak für alle i ∈ I und I ∈ ϕ .
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14.5 Elementare Eigenschaften von Nichtstandard Universen
14.5.1 Zusammenfassung (und Abschluss von Definition 14.3.1)

Haben wir eine unendliche Menge X , so nehmen wir uns eine Basismenge X ′ mit |X |= |X ′|.
Wir identifizieren gewissermaßen X ′ mit X (und all den möglichen Strukturen auf X) und kön-
nen also o.B.d.A. gleich von Anfang an annehmen, dass X eine Basismenge ist. Bei geeigneter
Wahl eines Ultrafilters ϕ bekommen wir die Modelle (V (X),∈) und (V (Y ),∈), mit Y = ∏ϕ X
und das Nichtstandard Universum (V (X),V (Y ),∗ ), mit folgenden Eigenschaften:

1. X und Y sind unendliche Basismengen und ∗ : V (X)→ V (Y ) ist eine Einbettung der
Superstruktur über X in die Superstruktur über Y mit ∗X = Y . Die Abbildung ∗ heißt
Nichtstandard Einbettung.

2. Für jedes unendliche A⊆ X ist {∗a | a ∈ A} eine echte (!) Teilmenge von ∗A.

3. Für a1, ...,an ∈V (X) und eine beschränkt quantifizierte Formel φ(v1, ...,vn) gilt:

(V (Y ),∈) |= φ [∗a1, ...,
∗ an] g.d.w. (V (X),∈) |= φ [a1, ...,an] (Transfer-Prinzip).

4. Für jede Familie (At)t∈T von höchstens |V (X)|-vielen internen Elementen, von denen je
endlich viele einen nicht leeren Schnitt haben (eSE) gilt:

⋂
t∈T At 6= /0.

Dies bezeichnen wir kurz als: (V (X),V (Y ),∗ ) ist polysaturiert.

Die unvollständige Definition 14.3.1 eines Nichtstandard Universums ist an dieser Stelle damit
vollständig. Die (aufwendige) Konstruktion in den vorangehenden Abschnitten dient nur dem
Nachweis, dass zu jeder (unendlichen) Menge X ein Nichtstandard Universum existiert. Diese
Eigenschaften stellen wir ab jetzt axiomatisch an den Anfang.

14.5.2 Lemma

Zu jeder natürlichen Zahl n gibt es beschränkt quantifizierte Formeln ϕ0, ...,ϕ6, so dass für
jede Superstruktur über einer Basismenge X und Elementen x1, ...,xn ∈V (X) und u,v,w ∈
V (X)\X gilt:

(0) u = /0 g.d.w. (V (X),∈) |= ϕ0[u]
(1) u = {x1, ...,xn} g.d.w. (V (X),∈) |= ϕ1[u,x1, ...,xn]
(2) u = (x1, ...,xn) g.d.w. (V (X),∈) |= ϕ2[u,x1, ...,xn]
(3) u⊆ v g.d.w.(V (X),∈) |= ϕ3[u,v]
(4) u = v×w g.d.w. (V (X),∈) |= ϕ4[u,v,w]
(5) u : v→ w g.d.w. (V (X),∈) |= ϕ5[u,v,w]
(6) u ∈Vn(X) g.d.w. (V (X),∈) |= ϕ6[u]

Beweis: Bleibt als Übungsaufgabe. Bei (6) verwende man Induktion über n und ansonsten
benutze man bekannte Formeln zur Konstruktion der Restlichen. Wir werden im Folgenden
ohne extra darauf hinzuweisen ϕ0, ...,ϕ6 frei verwenden!
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14.5.3 Lemma

Für b1, ...,bn ∈ V (X), A ∈ V (X) \ X und eine beschränkt quantifizierte Formel
ϕ(v1, ...,vn+1) gilt:

∗{y ∈ A | (V (X),∈) |= ϕ[b1, ...,bn,y]}= {y ∈ ∗A | (V (Y ),∈) |= ϕ[∗b1, ...,
∗bn,y]}

Beweis: Für B := {y ∈ A | (V (X),∈) |= ϕ[b1, ...,bn,y]} gilt

(V (X),∈) |= (∀y ∈ A)(y ∈ B ↔ ϕ[b1, ...,bn,y]).

Nun handelt es sich hierbei um eine beschränkt quantifizierte Formel, nach dem Transfer-
Prinzip ist dies gleichwertig zu:

(V (Y ),∈) |= (∀y ∈ ∗A)(y ∈ ∗B ↔ ϕ[∗b1, ...,
∗bn,y]).

Ebenso folgt (direkt) aus dem Transfer-Prinzip: ∗B ⊆ ∗A ist gleichwertig zu A ⊆ B, woraus
dann insgesamt die Behauptung folgt.

Kombiniert man diese beiden Lemmata, so erhält man:

14.5.4 Korollar

Seien A,B ∈V (X)\X . Dann gilt:

1. ∗A ⊆ ∗A , ∗(A∪B) = ∗A∪ ∗B, ∗(A∩B) = ∗A∩ ∗B, ∗(A\B) = ∗A\ ∗B und ∗(A×
B) = ∗A× ∗B.

2. Wenn A = {a1, ...,an}, dann ∗A = {∗a1, ...,
∗an}.

3. Wenn P(A)⊆ B, dann ∗P(A) = P(∗A)∩ ∗B.

4. Wenn Vn(X)⊆ B, dann ∗Vn(X) = Vn(Y )∩ ∗B.

Beweis: Exemplarisch führen wir 3. vor. Der Rest geht analog.

P(A) = {D ∈ B | D⊆ A}= {D ∈ B | (V (X),∈) |= ϕ3[D,A]},

also
∗P(A) = {D ∈ ∗B | (V (Y ),∈) |= ϕ3[D, ∗A]}= P(∗A)∩ ∗B.
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14.5.5 Korollar

Wenn A,B ∈ V (X) \X und f : A→ B eine Funktion ist, so ist ∗ f eine Funktion von ∗A
nach ∗B. Ist f injektiv oder surjektiv, so auch ∗ f : ∗A→ ∗B. Außerdem ist

∗BA = ∗{ f ∈V (X) | (V (X),∈) |= ϕ5[ f ,A,B]}= { f ∈ ∗V (X) | (V (Y ),∈) |= ϕ5[ f , ∗A, ∗B]}

die Menge aller (internen) Funktionen von ∗A nach ∗B.

Beweis: Bleibt als Übungsaufgabe.

14.5.6 Korollar

Sei f : X → Y und A⊆ X , bzw. B⊆ Y . Es gilt dann

∗( f{A}) = ∗ f{∗A} und ∗( f−1(B)) = (∗ f )−1(∗B)

Zur Erinnerung: Hier ist f{A} := { f (a) | a ∈ A} das Bild von A unter f .

Beweis: Wir zeigen nur ∗( f{A}) = ∗ f{∗A}. Der Rest geht analog. Wir haben

∗( f{A})= ∗{y∈Y | (V (X),∈) |= ψ[A, f ,y]}= {y∈ ∗Y | (V (Y ),∈) |= ψ[∗A, ∗ f ,y]}= ∗ f{∗A},

wobei ψ(u,v,w) die Formel (∃x ∈ u)(∃z ∈ v)ϕ2(z,x,w) bezeichnet.

14.5.7 Lemma

Sei (V (X),V (Y ), ∗) ein Nichtstandard Universum, Z ∈ V (X) \ X , α ⊆P(Z) und B ∈
V (X)\X . Dann gilt:

1. Wenn ∗B⊆
⋃

A∈α
∗A, dann gibt es ein endliches α0 ⊆ α , mit B⊆

⋃
A∈α0

A.

2. Wenn
⋂

A∈α
∗A⊆ ∗B, dann gibt es ein endliches α0 ⊆ α , mit

⋂
A∈α0

A⊆ B.

3. (∀A,B ∈ α : A∩B ∈ α)⇒ (∃C ∈ ∗α mit C ⊆
⋂

A∈α
∗A)

Beweis: 1. Falls B *
⋃

A∈α0
A für alle endlichen α0 ⊆ α , dann setze β := {B \A | A ∈ α}.

Dieses β hat dann die endliche Schnitt Eigenschaft und demzufolge hat auch β ′ := {∗B′ | B′ ∈
β} die eSE (Transfer-Prinzip). Denn es gilt (V (X),∈) |= ψ[β ,B], also (V (Y ),∈) |= ψ[∗β , ∗B],
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wenn ψ(v,w) die Formel (∀u1 ∈ v)...(∀un ∈ v)(∃z ∈ w)(z ∈ u1∧ ...∧ z ∈ un) bezeichnet. Da
β ′ ⊆ ∗β und unser Nichtstandard Universum polysaturiert ist, folgt

/0 6=
⋂

B′∈β

∗B′ =
⋂

A∈α

∗(B\A) = ∗B\
⋃

A∈α

∗A - Widerspruch!

2. Analoger Beweis (oder man geht zu Komplementen über und verwendet dann 1.).
3. Für A ∈ α setze αA := {B ∈ α | B ⊆ A}. Dann ist ∗α = {B ∈ ∗α | B ⊆ ∗A}. Es genügt

demnach zu zeigen, dass
⋂

A∈α
∗αA 6= /0 ist. Na ja, dies liegt daran, dass {∗αA | A ∈ α} eine

Familie interner Elemente mit der eSE ist.

14.5.8 Definition: Extern und standard

Elemente A ∈ V (Y ) für die es ein B ∈ V (X) \X mit A ∈ ∗B gibt, haben wir bereits als inter-
ne Elemente bezeichnet. Elemente aus V (Y ) die diese Eigenschaft nicht haben, nennen wir
extern. Elemente A ∈ V (Y ) der Form A = ∗B, für ein B ∈ V (X) heißen standard Elemente.
Standard Elemente sind intern (A = ∗B für B ∈ V (X) ergibt B ∈ Vn(X) für n ∈ ω und damit
A =∗ B ∈ ∗Vn(X)). Für die Menge N aller internen Elemente gilt

N =
⋃

A∈V (X)\X

∗A =
⋃

n∈ω

∗Vn(X).

Der Nachweis bleibt als Aufgabe. Wenn wir von internen Mengen sprechen, meinen wir in-
terne Elemente aus V (Y )\Y (obwohl natürlich auch Elemente aus Y Mengen sind).

Wie kann man einer Menge ansehen, ob sie intern oder extern ist? Ein hilfreiches Kriterium
ist das folgende Prinzip der internen Definition.

14.5.9 Prinzip der internen Definition

Seien A1, ...,An,B interne Mengen und ϕ(v1, ...,vn+1) eine beschränkt quantifizierte For-
mel. Dann ist die Menge D := {y ∈ B | (V (Y ),∈) |= ϕ[A1, ...,An,y]} intern.

Beweis: Aus obiger Bemerkung entnehmen wir, dass es ein k gibt, mit A1, ...,An,B∈ ∗Vk(X).
Sei ψ(v,v′) die Formel

(∀v1 ∈ v)...(∀vn+1 ∈ v)(∃u ∈ v′)(ϕ3(u,v)∧ (∀y ∈ v)((y ∈ u)↔ (y ∈ vn+1∧ϕ(v1, ...,vn,y)))).

Es gilt dann nämlich
(V (X),∈) |= ψ[Vk(X),Vk+1(X)].

I Beweis dieser Aussage: Zu gegebenen x1, ...,xn,b ∈ Vk(X) betrachte man die Menge u′ :=
{y ∈Vk(X) | (V (X),∈) |= ϕ[x1, ...,xn,y]} und anschließend u := u′∩b. J

Hieraus folgt dann (V (Y ),∈) |= ψ[∗Vk(X), ∗Vk+1(X)], das heißt für die A1, ...,An,B gibt
es ein U ∈ ∗Vk+1(X) mit U ⊆ ∗Vk(X) und der Eigenschaft, dass für jedes y ∈ ∗Vk(X) gilt:
y ∈U ↔ y ∈ B und (V (Y ),∈) |= ϕ[A1, ...,An,y]. Kurz: D = U ∈ ∗Vk+1(X).
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14.5.10 Lemma (Fast Transitivität der ∗Vk(X))

Wenn x ∈ ∗Vk(X)\Y (natürlich k ≥ 1), dann x⊆ ∗Vk(X).

Beweis: Für x∈Vk+1(X)\X = (P(Vk(X))∪X)\X folgt x⊆Vk(X)⊆Vk+1(X). Also haben
wir (V (X),∈) |= ψ[Vk(X),Vk(X) \X ], für k ≥ 1, wenn ψ(u,v) die Formel (∀x ∈ u)(x ∈ v→
[(∀y ∈ x)(y ∈ u)]) bezeichnet. Transfer liefert dann (V (Y ),∈) |= ψ[∗Vk(X), ∗Vk(X)\Y ]. Also
x ∈ ∗Vk(X)\Y impliziert x⊆ ∗Vk(X).

14.5.11 Korollar

Die Menge aller internen Mengen ist gegen endliche Schnitte, Vereinigungen, Differenzen
und Produkte abgeschlossen.

Beweis: Exemplarisch sei dies für das Produkt zweier Mengen gezeigt; die anderen Beweise
verlaufen sehr ähnlich. Seien also A,B intern aus V (Y )\Y . Dann A, B⊆ ∗Vk(X), für geeignetes
k. Nun gilt ∗(Vk(X)×Vk(X)) = ∗Vk(X)× ∗Vk(X). Und damit dann

A×B = {z ∈ ∗(Vk(X)×Vk(X)) | (V (Y ),∈) |= ψ[A,B,z]},

wobei ψ(u,v,w) die Formel (∃x ∈ u)(∃y ∈ v)ϕ2(w,x,y) bezeichnet.

14.6 Elementare Nichtstandard Konzepte in der Topologie
”Das Kreditsystem, das seinen Mittelpunkt hat in den angeblichen Nationalbanken und
den großen Geldverleihern und Wucherern um sie herum, ist eine enorme Zentralisa-
tion und gibt dieser Parasitenklasse eine fabelhafte Macht, nicht nur die industriellen
Kapitalisten periodisch zu dezimieren, sondern auf die gefährlichste Weise in die wirkli-
che Produktion einzugreifen - und diese Bande weiß nichts von der Produktion und hat
nichts mit ihr zu tun.”

Karl Marx

Wir wenden Nichtstandard Konzepte nun auf topologische Strukturen an und erhalten so
interessante und oftmals sehr intuitive Nichtstandard Charakterisierungen.

14.6.1 Bemerkung

Wir nehmen an, dass die topologischen Räume, die wir betrachten, immer Teil einer Super-
struktur z.B. V (Z) sind, genauer X ⊆ Z. (o.B.d.A. ist Z wieder eine Basismenge). Wir werden
die Superstruktur und entsprechende Nichtstandard Universen nicht immer hinschreiben.
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14.6.2 Definition: Monade

Sei (X ,τ) ein top. R. und x ∈ X . Dann ist µ(x) :=
⋂

x∈O∈τ
∗O als die Monade des Punktes x

definiert. Analog ist µ(A) :=
⋂

A⊆O∈τ
∗O die Monade von A⊆ X . Für y ∈ µ(x) schreiben wir

zuweilen auch y≈ x.

14.6.3 Lemma

1. Eine Menge U ⊆ X , eines top. R. ist offen, genau dann wenn µ(x) ⊆ ∗U ist, für
jedes x ∈U

2. Eine Menge A⊆X ist genau dann abgeschlossen, wenn jedes a∈X mit µ(a)∩ ∗A 6=
/0 bereits in A ist.

Beweis: 1. Sei U offen und x ∈U . Dann offensichtlich µ(x) =
⋂

x∈O∈τ
∗O⊆ ∗U . Sei ande-

rerseits ∀x ∈U : µ(x)⊆ ∗U , also
⋂

x∈O∈τ
∗O⊆ ∗U . Nach Lemma 14.5.7 gibt es O1, ...,On mit

x ∈ O1∩ ...∩On ⊆U . U ist also offen.
2. Sei A abgeschlossen und x ∈ X mit µ(x)∩ ∗A 6= /0. Wäre x ∈ X \ A, so wäre µ(x) ⊆

∗X \ ∗A = ∗(X \A) - Widerspruch! Für die andere Richtung betrachte man x ∈ X \A, also
µ(x)∩ ∗A = /0. Es folgt unmittelbar µ(x)⊆ ∗(X \A), und somit ist X \A als offen erkannt.

14.6.4 Lemma

Sei φ ein Filter auf dem topologischen Raum (X ,τ). Dann gilt

φ
τ→ x ⇔

⋂
P∈φ

∗P⊆ µ(x)

Beweis: Sei φ→ X und O∈ ẋ∩τ . Es folgt O∈ φ , also
⋂

P∈φ
∗P⊆ ∗O und damit

⋂
P∈φ

∗P⊆
µ(x). Gilt umgekehrt

⋂
P∈φ

∗P⊆ µ(x), so gibt es zu gegebenen O ∈ ẋ∩τ nach Lemma 14.5.7
eine endliche Teilmenge φ ′ von φ mit

⋂
P∈φ ′ P⊆ O, also O ∈ φ .

14.6.5 Lemma

f : X → Y ist stetig im Punkt x ∈ X , g.d.w. ∗ f{µ(x)} ⊆ µ( f (x)). Intuitiv steht hier: Ist y
unendlich nahe bei x, so ist ∗ f (y) unendlich nahe bei f (x), also y≈ x→ (∗ f )(y)≈ f (x).

349



Beweis: Sei f stetig und y ∈ µ(x). Wähle O offen in Y mit f (x) ∈O. Dann ist U := f−1(O)
offen in X mit x ∈U . Also y ∈ ∗U . Wir bekommen damit ∗ f (y) ∈ ∗ f{∗U}= ∗( f{U})⊆ ∗O.
Und somit ∗ f (y) ∈ µ( f (x)).

Für die Rückrichtung werden wir beweisen, dass U := f−1(O) offen ist, für offenes O⊆Y .
Sei dazu x∈U , also f (x)∈O. Wir müssen zeigen µ(x)⊆ ∗U . Nun ist O offen, also µ( f (x))⊆
∗O. Demzufolge auch ∗ f{µ(x)} ⊆ ∗O. Die ergibt: µ(x)⊆ (∗ f )−1(∗O) = ∗( f−1(O)) = ∗U .

14.6.6 Bemerkung

Wenn wir nun Initialtopologien bzw. Finaltopologien zu gegebenen Daten X ,(Xi)i∈I und ( fi)i∈I
mit Nichtstandard Methoden untersuchen wollen, setzen wir stillschweigend eine genügend
große Superstruktur V (Z) voraus, wobei Z alle vorkommenden Mengen (die Xi für i ∈ I, I sel-
ber, irgendwelche Y ...) als Teilmengen enthält. Das dies geht, garantiert das Ersetzungsaxiom.
Nur wenn unbedingt nötig, schreiben wir das entsprechende Nichtstandard Universum hin.

14.6.7 Lemma

Sei τ die Initialtopologie auf X bzgl. der Daten (Xi,τi)i∈I und fi : X → Xi. Dann gilt für
alle x ∈ X und y ∈ ∗X : y ∈ µ(x) ⇔ ∀i ∈ I : ∗ fi(y) ∈ µ( fi(x)).

Beweis: Sei y ∈ µ(x). Für i ∈ I und O ∈ ˙fi(x)∩ τi gilt dann y ∈ ∗( f−1
i (O)) = (∗ fi)−1(∗O),

also ∗ fi(y) ∈ ∗O.
Für die Rückrichtung betrachte man ein O ∈ ẋ∩ τ . Zu diesem gibt es dann i1, ..., in und ent-

sprechende Oik ∈ τik mit x∈ f−1
i1 (Oi1)∩ ...∩ f−1

in (Oin). Nach Voraussetzung gilt dann ∗ fik(y)∈
∗Oik , also y ∈ (∗ fik)

−1(∗Oik) = ∗( f−1
ik (Oik)), für k = 1, ...,n. Es folgt schließlich y ∈ ∗O.

14.6.8 Lemma

Sei (X ,τ) ein topologischer Raum.
(0) X ist T0 g.d.w. ∀x 6= y gilt µ(x) 6= µ(y).
(1) X ist T1 g.d.w. ∀x 6= y gilt µ(x)* µ(y)∧µ(y)* µ(x).
(2) X ist T2 g.d.w. ∀x 6= y gilt µ(x)∩µ(y) = /0.
(3) X ist T3 g.d.w. ∀A abgeschlossen und x 6∈ A gilt µ(A)∩µ(x) = /0.
(4) X ist T4 g.d.w. ∀A∩B = /0, A,B abgeschlossen gilt µ(A)∩µ(B) = /0.

Beweis: Exemplarisch führen wir (2) vor. Die restlichen gehen genauso einfach. Sei X T2
und x 6= y. Dann offensichtlich µ(x)∩µ(y) = /0.

Wenn andererseits µ(x)∩ µ(y) = /0 für x 6= y, dann können wir mal annehmen, dass es
keine disjunkten offenen Umgebungen gibt, also (ẋ∩ τ)∪ (ẏ∩ τ) die eSE hat. Dann hat aber
auch {∗O | O ∈ ẋ∩ τ}∪{∗O | O ∈ ẏ∩ τ} die eSE. Nun arbeiten wir in einem polysaturiertem
Nichtstandard Universum, also gilt dann auch µ(x)∩µ(y) 6= /0 - Widerspruch.
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14.6.9 Lemma

1. Sei K ⊆ X dann gilt:

K ist kompakt g.d.w. µ(K) =
⋃

x∈K

µ(x) g.d.w. ∗K ⊆
⋃

x∈K

µ(x).

2. X ist genau dann lokal kompakt, wenn
⋃

K∈K
∗K =

⋃
x∈X µ(x). Hierbei bezeichnet

K die Menge aller kompakten Teilmengen von X .

Beweis: 1. Sei K kompakt. µ(K) ⊇
⋃

x∈K µ(x) gilt allgemein. Sei also z ∈ µ(K). Ange-
nommen ∀x ∈ K : z 6∈ µ(x). Wähle für jedes x ∈ K ein Ox ∈ ẋ∩ τ mit z 6∈ ∗Ox. Nun ist K
kompakt, also gibt es endlich viele solche Ox mit K ⊆ Ox1 ∪ ...∪Oxn =: O ∈ K̇ ∩ τ . Dann ist
aber z ∈ ∗O = ∗Ox1 ∪ ...∪ ∗Oxn - Widerspruch!

Es gilt ∗K ⊆ µ(K), wir setzen nun also ∗K ⊆
⋃

x∈K µ(x) voraus. Sei dann σ ⊆ τ eine offene
Überdeckung, dann gilt auch ∗K ⊆

⋃
O∈σ

∗O (Denn y ∈ ∗K impliziert y ∈ µ(x), für x ∈ K und
für dieses x gibt es ein Ox ∈ σ mit x∈Ox. Dann ist aber y∈ µ(x)⊆ ∗Ox). Wieder nach Lemma
14.5.7 gibt es ein endliches σ0 ⊆ σ mit K ⊆

⋃
O∈σ0

O.
2. Wenn X lokal kompakt ist und wir x∈ X wählen, dann gibt es K ∈K mit x∈K◦ (offener

Kern). Also µ(x)⊆ ∗K◦ ⊆ ∗K. Aus a) folgt allgemein
⋃

K∈K
∗K ⊆

⋃
x∈X µ(x). Und damit ist

diese Richtung bewiesen.
Für die andere Richtung betrachte x∈X . Es gilt dann µ(x)⊆

⋃
K∈K

∗K, also /0 =
⋂

O∈ẋ∩τ
∗O\⋃

K∈K
∗K =

⋂
O∈ẋ∩τ,K∈K

∗(O\K). Nun ist unser Nichtstandard Universum polysaturiert, al-
so gibt es endlich viele O1, ...,On,K1, ...,Kn mit /0 = ∗(O1 \K1)∩ ...∩ ∗(On \Kn). Setzt man
noch O := O1∩ ...∩On und K := K1∪ ...∪Kn und beachtet entsprechende Eigenschaften der
Einbettung, so erhält man O\K = /0, also O⊆ K, wobei natürlich O offen und K kompakt ist
(die Vereinigung endlich vieler kompakter Mengen ist wieder kompakt).

14.6.10 Korollar

Kompakte T2-Räume X sind bereits T4 (und somit auch T3).

Beweis: Seien A,B⊆ X abgeschlossen und disjunkt. Da X kompakt ist, sind A,B dies auch.
Also µ(A)∩µ(B) = (

⋃
x∈A µ(x))∩ (

⋃
y∈B µ(y)) = /0, da µ(x)∩µ(y) = /0 für x ∈ A und y ∈ B.
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14.6.11 Alexanderscher Subbasissatz

Wenn es eine Subbasis S der Topologie τ auf X gibt, so dass jede offene Überdeckung
σ ⊆S eine endliche Teilüberdeckung hat, dann ist X kompakt. Analog natürlich auch für
Teilmengen K von X .

Beweis: Sei S eine solche Subbasis. Angenommen der Raum X ist trotzdem nicht kom-
pakt, also ∗X 6=

⋃
x∈X µ(x). Dann gibt es also ein y ∈ ∗X , so dass für jedes x ∈ X gilt y 6∈ µ(x).

Wir wählen dann für jedes x ∈ X ein Ox ∈ ẋ∩τ mit y 6∈ ∗Ox. Nun ist S eine Subbasis, es gibt
also S1, ...,Sn ∈ ẋ∩S , mit S1∩ ...∩Sn ⊆Ox. Somit muss also auch ein Sx ∈ ẋ∩S geben, mit
y 6∈ ∗Sx (¶). Da Sx, x ∈ X eine offene Überdeckung von X aus S ist, gibt es x1, ...,xm ∈ X mit
X = Sx1 ∪ ...∪Sxm , also ∗X = ∗Sx1 ∪ ...∪ ∗Sxm - offensichtlich ein Widerspruch zu (¶)!

14.6.12 Lemma

Bilder kompakter Mengen unter stetigen Abbildungen sind wieder kompakt.

Beweis: Sei K ⊆ X kompakt und f : X → Y stetig. Wir müssen ∗( f{K}) ⊆
⋃

a∈K µ(a)
zeigen. Also Sei y∈ ∗( f{K}) = ∗ f{∗K}. Dann y = ∗ f (z) für z∈ ∗K. Also z∈ µ(x) für x∈K.
Und somit y ∈ ∗ f{µ(x)} ⊆ µ( f (x))⊆

⋃
a∈ f{K} µ(a).

14.6.13 Satz von Tychonoff

Für eine Familie topologischer Räume (Xi,τi)i∈I gilt: Der Produktraum (X ,τ) ist genau
dann kompakt, wenn alle (Xi,τi) kompakt sind.

Beweis: Xi ist das Bild der surjektiven und stetigen Projektionen pri, demnach also kom-
pakt. Sind alle Xi kompakt und y ∈ ∗X . Dann erhalten wir ∀ i ∈ I∃xi ∈ Xi mit ∗pri(y) ∈ µ(xi).
Für x := (xi)i∈I folgt aus Lemma 14.6.7 y ∈ µ(x). Da x ∈ X , sind wir fertig.

Wir kommen nun zu einem wichtigen Konzept, mit dem man Konstruktionen aus der nicht-
standard Welt zurück in die standard Welt bekommen kann.

14.6.14 Definition

Sei (X ,τ) ein Hausdorff Raum und a ∈ ∗X . Falls es ein x ∈ X mit a ∈ µ(x) gibt, so ist dies
eindeutig bestimmt und wir setzen st(a) := x. Wir haben also eine Abbildung st :

⋃
x∈X µ(x)→

X , welche wir Standardteil-Abbildung nennen. Für ganze Teilmengen A ⊆ ∗X können wir
sogar in beliebigen topologischen Räumen (also nicht notwendig Hausdorff) den Standardteil
definieren. Dazu setzen wir st(A) := {x ∈ X | A∩ µ(x) 6= /0}. Nun haben wir beides mit st
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bezeichnet. Was jeweils gemeint ist, geht natürlich aus dem Kontext hervor. Im nächsten Satz
fassen wir ein paar wichtige Eigenschaften der Standardteil-Abbildung zusammen.

14.6.15 Satz

Sei (X ,τ) ein topologischer Raum.

1. Für A⊆ X ist st(∗A) = A.

2. Ist B intern ⊆ ∗X , dann ist st(B) in X abgeschlossen.

3. Ist (X ,τ) ein T3-Raum und B intern ⊆ ∗X mit B ⊆
⋃

x∈X µ(x), dann ist st(B) sogar
kompakt.

Beweis: 1. Sei x∈ st(∗A), also µ(x)∩ ∗A 6= /0. Offenbar ist dann O∩A 6= /0 für alle O∈ ẋ∩τ

(denn falls O∩A = /0, so auch ∗O∩ ∗A = /0) und damit x ∈ A.
Ist umgekehrt x ∈ A, so hat {O | O ∈ ẋ∩ τ}∪{A} die endliche Schnitt Eigenschaft (eSE),

also hat auch {∗O | O ∈ ẋ∩ τ}∪{∗A} die eSE. Aus der Polysaturiertheit folgt µ(x)∩ ∗A 6= /0
und somit x ∈ st(∗A).

2. Sei x ∈ X \st(B), also B∩µ(x) = /0. Wegen der Polysaturiertheit gibt es O1, ...,On ∈ ẋ∩τ

mit B∩ ∗O1 ∩ ...∩ ∗On = /0. Das bedeutet x ∈ O := O1 ∩ ...∩On ⊆ X \ st(B) und damit ist
X \st(B) offen (denn gäbe es ein z∈O1∩ ...∩On∩st(B), dann wäre µ(z)∩B 6= /0 insbesondere
also ∗O1∩ ...∩ ∗On∩B 6= /0 - Widerspruch).

3. Sei A := st(B). Zu zeigen ist ∗A ⊆
⋃

x∈A µ(x). Sei y ∈ ∗A gegeben. Setze σ := {O ∈
ẏ∩ τ | y ∈ ∗O} (wegen ∗X ∈ σ ist σ 6= /0). Sind O1, ...,On ∈ σ so ist O1 ∩ ...∩On ∩A 6= /0
(andernfalls wäre y ∈ ∗O1 ∩ ...∩ ∗On ∩ A = /0). Sei also x ∈ O1 ∩ ...∩On ∩ A. Folglich ist
µ(x)∩B 6= /0. Für b ∈ µ(x)∩B gilt b ∈ ∗O1 ∩ ...∩ ∗On ∩B. Aus der Polysaturiertheit folgt
∃b ∈ B∩

⋂
O∈σ

∗O. Sei x ∈ X mit b ∈ µ(x). Es gilt nun y ∈ µ(x). Andernfalls gibt es ein
O ∈ ẋ∩ τ mit y 6∈ ∗O. Sei V ∈ ẋ∩ τ mit V ⊆ O. Folglich y ∈ ∗(X \V ) und somit X \V ∈ σ .
Also b ∈ ∗(X \V ) = ∗X \ ∗V , aber b ∈ µ(x)⊆ ∗V .

Durch das Transfer-Prinzip übertragen sich sehr viele Strukturen, wie z.B. Ordnungsstruk-
turen, algebraische Strukturen (Gruppen, Körper, ...) auf X in solche auf ∗X . Man muss darauf
achten, dass sich diese mittels beschränkt quantifizierter Formeln beschreiben lassen. In die-
sem Sinn (die genauen Deteils bleiben dem Leser überlassen; im Buch [29] werden diese sehr
ausführlich vorgerechnet) ist also ∗R und auch ∗C ein Körper, in dem man praktisch genauso
rechnet wie in R oder C. Für K ∈ {R,C} ist also ∗K ein Körper, ∗ : K→ ∗K eine ordnungs-
erhaltende isomorphe Einbettung und st :

⋃
x∈K µ(x)→K ist auch operationstreu.

Als Anwendung dieser Begrifflichkeiten geben wir einen Beweis des Satzes von Banach-
Alaoglu, der an Einfachheit nicht mehr zu unterbieten ist.
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14.6.16 Satz von Banach-Alaoglu

Sei (X ,τ) ein topologischer Vektorraum überK und X ′ := { f ∈KX | f : linear und stetig}.
Für jedes x ∈ X sei ϕx : X ′→K definiert durch ϕx( f ) := f (x). Sei τ ′ die initale Topologie
auf X ′ bzgl. der {ϕx | x ∈ X}, sei V ∈ 0̇∩ τ und K kompakt in K (üblicherweise ist K die
abgeschlossene Einheitskugel um 0). Dann ist V P := { f ∈ X ′ | ∀x ∈V ist f (x) ∈ K} (die
sogenannte Polare) kompakt bzgl. τ ′.

Beweis: Sei g ∈ ∗V P = {h ∈ ∗(X ′) | ∀x ∈ ∗V ist h(x) ∈ ∗K}. Für beliebiges x ∈ ∗V ist
g(x) ∈ ∗K ⊆

⋃
y∈K µ(y). Somit können wir f : V → K definieren durch f (x) := st(g(∗x))

und anschließend in offensichtlicher Weise auf ganz X fortsetzen. Die Linearität von f folgt
unmittelbar aus der Operationstreue von ∗ und st und somit f ∈V P (beachte: f ist beschränkt).
Mit dem Transfer-Prinzip folgt für alle x ∈ X : ∗ϕx(g) = g(∗x) ∈ µ( f (x)) = µ(ϕx( f )) und mit
Lemma 14.6.7 dann g ∈ µ( f ).

14.6.17 Bemerkung

(1) Man sollte im Beweis natürlich beachten, dass wir Monaden bzgl. verschiedener Topolo-
gien gebildet haben (nämlich τ ′ und der euklidischen Topologie in K).

(2) Die laxe Formulierung ”Mit dem Transfer-Prinzip folgt [...]” stimmt natürlich (und hat
eigentlich mit der Beweisidee nicht viel zu tun), aber der Leser sollte sich im Detail klarma-
chen, wie der Transfer von statten geht.

14.6.18 Lemma

1. Sei φ ein Filter auf ∅ 6= Z ⊆ Y X und ψ ein Filter auf X . Dann gilt für die Monade
µ(φ(ψ)) von φ(ψ):

µ(φ(ψ)) = µ(φ)(µ(ψ))

2. φ konvergiert stetig auf Z gegen f ∈Y X ⇔ ∀x ∈ X gilt µ(φ)(µ(x))⊆ µ( f (x)).

Beweis: 1. Setze A := µ(φ) und B := µ(ψ). Offenbar ist

µ(φ(ψ)) =
⋂

P∈φ ,Q∈ψ

∗(P(Q)) und ∗(P(Q)) = {g(x) | g ∈ ∗P, x ∈ ∗Q}= ∗P(∗Q).

Sei z ∈ A(B). Dann ∃g ∈ A, b ∈ B mit z = g(b). Sei P ∈ φ und Q ∈ ψ . Folglich ist g ∈ ∗P
und b ∈ ∗Q, also z = g(b) ∈ ∗P(∗Q) = ∗(P(Q)) und somit z ∈ µ(φ(ψ)).

Sei z ∈ µ(φ(ψ)). Für jedes P ∈ φ und Q ∈ ψ sei

ΓP,Q := {(g,b) ∈ ∗(Y X)× ∗X | g(b) = z und g ∈ ∗P, b ∈ ∗Q}.
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Nun ist (ΓP,Q)P∈φ ,Q∈ψ eine Familie interner Mengen, welche wegen

∅ 6= ΓP1∩...∩Pn,Q1∩...∩Qn ⊆ ΓP1,Q1 ∩ ...∩ΓPn,Qn

nicht leere endliche Schnitte hat. Folglich ∃(g,b)∈
⋂

P∈φ ,Q∈ψ ΓP,Q. Es gilt dann g∈ µ(φ), b∈
µ(ψ) und z = g(b), also z ∈ A(B).

2. Folgt aus 1. und der bekannten Eigenschaft Φ→ z ⇔ µ(Φ)⊆ µ(z).
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”There is no book so bad that there is not something good in it.”
Miguel de Cervantes

Als Einführungen in die Mengentheoretische Topologie möchte ich die Bücher [3], [31]
und [42] empfehlen. Als ausführliche standard Referenzen (und gleichzeitig als Lehrbücher
für Fortgeschrittene) eignen sich bestens die Bücher [1], [14] und [36]. Einen sehr guten Über-
blick über neue Entwicklungen der Mengentheoretischen Topologie, ausführlich dargelegt in
schönen Übersichtsartikeln (von Spezialisten auf dem jeweiligen Gebiet), zumeist mit Bewei-
sen, findet man in [28] und [34]. Ähnliches Werke (allerdings eher ohne Beweise) sind die
Bücher [2] und [23]. Um schnell Überblick über ein Gebiet zu bekommen, greife man zu [21].
Als Lehrbücher zur Algebraischen Topologie kann ich die Bücher [32] bzw. [44] empfehlen
und als Lehrbuch zur Nichtstandard Analysis [29]. Für Grundlagen aus der Analysis bzw. li-
nearen Algebra, auf die wir in diesem Text nicht näher eingehen, verweise ich auf [26] bzw.
[17].
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