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Einleitung

Dies ist ein Skript fiir der Vorlesung Elementare Zahlentheorie. Dies ist ein Vor-
lesung fiir Lehrédmtler und Bachelorstudenten Mathematik an der Universitét
Ulm. Ich danke Dr. Robert Carls, Dominik Ufer und Studenten der Vorlesung
im SS 2008 und SS 2009 fiir das sorgfaltige Lesen des Manuskripts.

1 Primzahlen

1.1 Teilbarkeit und der euklidische Algorithmus

Wir schreiben N = {1,2,3,4,5,...} fiir die Menge der natiirlichen Zahlen und
z={--,-2,—-1,0,1,2,---} fiir die Menge der ganzen Zahlen. Mit Q bezeich-
nen wir die Menge der rationalen Zahlen (“Bruchzahlen”).

Definition 1.1.1 Seien a # 0 und b ganze Zahlen. Wir sagen, dass b durch a
teilbar ist, falls es eine ganze Zahl ¢ gibt so, dass b = a - ¢. In diesem Fall heif3t
a ein Teiler von b. Falls b durch a teilbar ist, so schreiben wir a | b. Falls b nicht
durch a teilbar ist, so schreiben wir a 1 b.

Beispiel 1.1.2 Die Teiler von 12 sind +1, £2, £3, +4, +6 und +12.

Wir brauchen zuerst einige einfache Eigenschaften der Teilbarkeit.

Lemma 1.1.3 Seien a,b,c,m,n ganze Zahlen.
(a) Fallsa |bundb| ¢, sogilt a | c.
(b) Falls ¢|a und ¢ | b, so gilt ¢ | (ma + nb).

Beweis: (a) Es existieren ganze Zahlen e und f mit ae = bund bf = ¢. Also
gilt ¢ = bf = aef. Wir schlieBen daraus, dass ¢ durch a teilbar ist.

(b) Es existieren ganze Zahlen e und f mit a = ce und b = ¢f. Daher gilt
ma 4+ nb = mce + nef = c¢(me + nf). Also ist ma + nb durch ¢ teilbar. ad

Definition 1.1.4 Seien a,b ganze Zahlen (nicht beide 0). Der grofite gemein-
same Teiler von a und b ist die grofite Zahl die sowohl a also auch b teilt. Wir
schreiben dafiir: ggT(a,b). Falls ggT(a,b) = 1, so heiflen ¢ und b teilerfremd.
Falls a # 0, so ist ggT(a,0) = a. Fiir a = b = 0 ist ggT(a, b) nicht definiert.

Zwei Beispiele sind ggT(16,12) = 4 und ggT(120,225) = 15. Dies kann man
zum Beispiel nachrechnen, indem man die Zahlen faktorisiert: 120 = 23-3-5 und
225 = 32.52. Fiir groflere Zahlen ist dies allerdings nicht praktikabel. Versuchen
Sie zum Beispiel ggT(1160718174,316258250) mit Hilfe eines Taschenrechners
zu berechnen. Den grofiten gemeinsamen Teiler berechnet man in Maple mit
dem Kommando igcd.

Ein sehr effizienter Algorithmus zum Berechnen des ggTs, ist der euklidische
Algorithmus. Dieser Algorithmus basiert auf Division mit Rest.



Satz 1.1.5 Seien a,b ganze Zahlen mit b > 0. Dann existieren eindeutige ganze
Zahlen q,r mit a = bq+r und 0 < r < b. Wir nennen q den Quotienten und r
den Rest. Falls r = 0, so ist b ein Teiler von a.

Beweis: Sei ¢ = [a/b] die groBite ganze Zahl kleiner oder gleich a/b. Es gilt
g <a/b< g+ 1. Also gilt

b < %b:a< (g+1)b = gb+b.
Setzen wir r = a — ¢b, so folgt 0 < r < b.
Falls r = 0, so gilt a = gb. Also ist b ein Teiler von a.
Zur Uberpriifung der Eindeutigkeit nehmen wir an, dass

a=qib+11 =qb+ry mit 0 <ry,re <b. (1)

OBdA diirfen wir annehmen, dass ro < 1. (Falls 7, = r, so gilt auch ¢1 = ¢2.)
Daher gilt 0 < 1 — 9 < b. Insbesondere ist b kein Teiler von 1 — ro. Aus (1)
folgt, dass (g1 — g2)b = m9 — r1. Dies liefert einen Widerspruch. o

Beispiel 1.1.6 Wir erkldren zuerst an Hand eines Beispiels wie man den ggT
mit Hilfe der Division mit Rest berechnen kann. Wir méchten ggT(842,356)
berechnen. Wir berechnen zuerst den Rest von a := 842 nach Division durch
b := 356. Aus dem Beweis von Satz 1.1.5 folgt, dass ¢ = [842/356] = 2 ist, wie
man leicht mit einem Taschenrechner verifiziert. Der Rest ist nun r = a — gb =
130. Mit Maple berechnet man ¢ und r mit den Kommandos iquo und irem.
Wir teilen nun 356 durch 130 und machen so weiter, bis wir irgendwann den
Rest 0 bekommen. Der vorletzte Rest ist dann ggT(a,b).

842 =2-356 4+ 130
356 =2-130+ 96
130=1-96+ 34

96 =234+ 28
34=1-28+6
28 = 4.6+ 4
6=1-4+[2]
4=2-240.

Allgemein funktioniert der euklidische Algorithmus wie folgt.

Algorithmus 1.1.7 (Der euklidische Algorithmus) Seien a,b € Z \ {0}.
Ohne Einschrankung diirfen wir annehmen, dass 0 < b < a. Wir schreiben
r_1=aund rg = b.

(a) Fiir n > 0 definieren wir nun ¢; und r; rekursiv durch die folgende Glei-
chung
Tn—2 = (n - Tn—1+ Tn, mit 0<r, <7p_1. (2)



(b) Sei m minimal so, dass r,, = 0. Nun ist ggT(a,b) = rm_1.

Um {iberfliissiges Schreiben zu vermeiden, bietet es sich an, die Werte von
qn und 7, in einer Tabelle zu notieren. Im obigen Beispiel sieht dies wie folgt
aus:

n 'n | Gn
—1 | 842

0 | 356

1 [130] 2
2 196 | 2
3134 |1
4 128 | 2
) 6 1
6 4 14
7 1
8 0 2

Das folgende Lemma beschreibt einige wichtige Eigenschaften des ggTs.

Lemma 1.1.8 (a) ggT(a,b) = ggT(b,a).
(b) Fiir jedes q € Z gilt, dass ggT(a,b) = ggT(b,a — gb).

(c¢) Falls g := ggT(a,b), so gilt ggT(a/g,b/g) = 1.

Beweis: Aussage (a) ist klar. Wir beweisen nun (b). Sei ¢ € Z beliebig und
sei d ein gemeinsamer Teiler von a und b. Aus Lemma 1.1.3.(b) folgt, dass d
auch ein Teiler von a — ¢b ist. Umgekehrt, sei e ein gemeinsamer Teiler von b
und a — gb. Da a = (a — gb) + ¢b ist folgt aus Lemma 1.1.3.(b), dass e auch ein
Teiler von a ist. Daher haben a und b genau die gleichen gemeinsamen Teiler
wie b und a — gb. Insbesondere ist ggT(a,b) = ggT(b,a — qa).

Wir beweisen nun (c). Sei ¢ = ggT(a,b). Wir nehmen an, dass e > 0 ein
gemeinsamer Teiler von a/g und b/g ist. Es existieren ganze Zahlen z und y,
sodass a/g = xe und b/g = ye. Also ist ge ein gemeinsamer Teiler von a und
b. Da g der grofite gemeinsame Teiler von a und b ist, gilt also e = 1. Also ist
ggT(a/g,b/g) = 1. o

Lemma 1.1.8.(b) zeigt, dass der euklidische Algorithmus den ggT berechnet.
Seien néamlich r, definiert durch (2). Da (r,),>_1 eine streng monoton fallende
Folge ganzer Zahlen ist, gilt r,,, = 0 fiir m hinreichend grof}. Sei m minimal
so, dass r,, = 0. Wir mochten zeigen, dass r,,—1 = ggT(a,b). Dar, = rp_2 —
GnTn—1 (2), folgt aus Lemma 1.1.8.(b), dass ggT(rn—2,7n—1) = €8T (rn_1,mn)
fiir n > 1. Wir schliefien, dass ggT(a,b) = ggT(r_1,79) = ggT(ro,r1) = -+ =
ggT(Tmf% Tmfl) = ggT(Tmfla O) = Tm—1-

Lemma 1.1.9 Secien a,b # 0 ganze Zahlen. Sei g := ggT(a,b).

(a) Es existieren x,y € Z so, dass xa + yb = g.



(b) Jede Zahl d von der Form d = za + yb mit x,y € Z ist teilbar durch
ggT(a,b).

Beweis: Wir betrachten die Menge G = {xza + yb|x,y € Z}. Sei s € G das
kleinste positive Element und seien zg,yo € Z so, dass s = xga + yob.

Behauptung: s teilt jedes Element o € G. Néamlich, sei o = zqa + yob € G
beliebig. Fiir jedes ¢ € Z gilt nun, dass @ — ¢s = (24 — c¢zo)a + (Yo — cy0)b € G.
Insbesondere gilt dies fiir ¢ = [a/s]. Aus [a/s] < «/s < [a/s] + 1 schlieBen wir,
dass

a

Oga—[ }s<s.

S

Da a— [%} s € G, folgt aus der Wahl von s, dass oo — [%} s =0, also dass s | .

Aus der Behauptung folgt insbesondere, dass s = xga + yob ein Teiler von
a und b ist, da a,b € G. Falls d ein beliebiger gemeinsamer Teiler von a und b
ist, so folgt aus Lemma 1.1.3.(b), dass d | s. Daher ist s = ggT(a,b) der groBite
gemeinsame Teiler von a und b. ]

Lemma 1.1.9 sagt, dass g = ggT(a,b) die kleinste positive Zahl ist, die sich
als g = za + yb mit z,y € Z schreiben lésst.

Die Zahlen x und y kann man mit Hilfe des euklidischen Algorithmus be-
rechnen. Wir betrachten nur den Fall, dass 0 < b < a ist. Der allgemeiner Fall
folgt aus diesem Spezialfall.

Sei (rp,) definiert durch (2) und sei m minimal so, dass r,, = 0. Also ist
geT(a,b) = rpy_1. Wiederholtes einsetzen von (2) liefert, dass ggT(a,b) =
Tm—-1 = Tm=3 — Gm-1Tm—2 = (1 + ¢m—-10m—2)"m-3 — Gm—1"m—4. Wir machen
dies weiter, bis wir alle Gleichungen (2) benutzt haben.

Eine einfachere Methode zur Berechnung von x und y ist der erweiterte
euklidische Algorithmus. Dies ist eine Variante des euklidischen Algorithmus,
der die Zahlen z,y aus Lemma 1.1.9 gleichzeitig mit dem ggT berechnet. Dies
funktioniert wie folgt. Wir definieren zuerst

r_1 = 1, Yy-1 = O,

(3)

9 = 0, Yo = 1.
Fiir n > 1 definieren wir

Tn = Tn—-2 — qnTn—1,

Yn = Yn—2 = qnYn—1,
wobei ¢, der n-te Quotient definiert in (2) ist.
Lemma 1.1.10 Fiir jede n > —1 gilt
T = Tna + Ynb. (5)

Insbesondere gilt ggT(a,b) = rym—1 = Tm—10 + Ym—1b.



Beweis: Wir zeigen (5) mittels vollstéandiger Induktion.

Induktionsanfang: (5) gilt offensichtlich fiir n = —1,0.

Induktionsschritt: Wir nehmen an, dass (5) fiir n — 1,n gilt und zeigen,
dass (5) auch fiir n + 1 gilt.

Wir wissen, dass

Tn4+1 = Th—1 — Gn+1Tn,
Tn—1 = Tp-10 + yn—lbu
Tn = Tna + Ypb.

Also gilt

T4l = Tne1 — Gnt1Tn = Tn-16 + Yn—1b — ¢n41(Tna + ynb)
=a(Tp—1 — ¢n+1Zn) + b(Yn—1 — Gnt1Yn) = Tn4+16 + Yn41b.

O

Beispiel 1.1.11 Sei a = 93 und b = 42. Wir berechnen nun ggT(a,b), zusam-
men mit Zahlen z,y so, dass ggT(a,b) = x - a + y - b. Wie vorher notieren wir
T,y Qn, Ty und y, in einer Tabelle.

n Tn dn Tn Yn
193 [ -] 1[0
0 42| -0 1
1921 -2
216 |4|-4| 9
3 1] 5 |-11
410121 -

Also ist ggT(a,b) =3 =5-93 —11-42.

1.2 Der Fundamentalsatz der Arithmetik

Definition 1.2.1 Eine natiirliche Zahl n
die einzigen positiven Teiler sind. Falls n
zusamimengesetzt.

2 heifit Primzahl, falls 1 und n

>
> 2 keine Primzahl ist, so heifit n

Die erste Primzahlen sind
2,3,5,7,11,13,17,19,23,29,31, - - -

Primzahlen von der Form 2" — 1 heiflen Mersenne-Primzahlen. Das folgende
Lemma zeigt, dass falls 2 — 1 eine Primzahl ist, so muss n auch eine Primzahl
sein.

Lemma 1.2.2 (a) Seien d,n natiirliche Zahlen, sodass d | n. Es gilt

(24 —1) ] (2" —1).



(b) Falls 2™ — 1 eine Primzahl ist, so ist p auch eine Primzahl.

Beweis: Wir schreiben n = dt. Es gilt 2/ —1 = (x — 1) (2"~ + 272 4. - +1).
Wi setzen z = 2¢ und finden, dass

N _ 1 — 2dt _1= (2d _ 1)(2d(t71) 4 2d(t72) et 1)

Also ist 2¢ — 1 ein Teiler von 2" — 1. Dies beweist (a). Teil (b) folgt direkt aus
(a). ad

Man kann sich fragen, fiir welche Primzahlen p die Zahl 2P — 1 auch eine
Primzahl ist. In 1536 fand Hudalricus Regius, dass 2'' — 1 = 23 - 89 keine
Primzahl ist. In 1644 behauptete der franzdsische Moénch Marin Mersenne, dass
2P — 1 eine Primzahl ist fiir

p=2,3,5713,17,19,31,67,127 und 257,

und, dass 2P — 1 zusammengesetzt ist fiir alle andere Primzahlen p < 257. Mit
der damalige Methoden kann er bestimmt nicht alle Zahlen versucht haben:
Erst in 1947 war die genaue Liste der Primzahlen p < 257, sodass 2P — 1 eine
Mersenne-Primzahl ist, bekannt. Es stellte sich heraus, dass Mersenne einige
Fehler gemacht hat. Zum Beispiel ist 26" — 1 eine Mersenne-Primzahl, aber
2257 — 1 nicht. Auf der Webseite http : //primes.utm.edu/ konnen Sie mehr
iiber Mersenne-Primzahlen lesen.

Die grofite bekannte Primzahl ist eine Mersenne-Primzahl: Dies ist die Prim-
zahl 232582657 1 Diese Zahl hat 9808358 Dezimalziffern (Stand: Frithjahr 2008).
Auf der Webseite http://www.mersenne.org/status.htm lesen Sie, wie Sie
mitmachen kénnen dieses Rekord zu brechen.

Das folgende Lemma liefert eine charakterisierende Eigenschaft von Prim-
zahlen. Das Lemma ist der wichtigste Schritt im Beweis des Fundamentalsatzes
der Arithmetik.

Lemma 1.2.3 Sei p eine Primzahl. Falls p | ab, so gilt p | a oder p | b.

Beweis: Wir nehmen an, dass p | ab, aber p t a. Zu zeigen ist, dass p | b.
Da p eine Primzahl ist, so gilt ggT(p,a) = 1. Lemma 1.1.9.(a) impliziert daher,
dass ganze Zahlen z,y mit 1 = ap + ya existieren. Wir ergénzen die Gleichung
mit b und finden b = pxb + yab. Wir haben angenommen, dass p ein Teiler von
ab ist. Also ist p auch ein Teiler von b. O

Falls n eine zusammengesetzte Zahl ist, so gibt es Zahlen a und b fiir die
Lemma 1.2.3 nicht gilt. Zum Beispiel nehme n = 6, a = 8 und b = 9. Nun gilt
p | ab, aber n{a und n ¢t b.

Theorem 1.2.4 (Fundamentalsatz der Arithmetik) Sein > 2 eine ganze
Zahl.

(a) Die Zahl n kann als Produkt von Primzahlen geschrieben werden.

(b) Die Zerlegung in (a) ist eindeutig bis auf Reihenfolge.



Die Aussage ist klar falls n = p ein Primzahl ist: In diesem Fall ist die
Primfaktorzerlegung einfach p = p.

Beweis: Wir beweisen (a) mit vollstéindiger Induktion.

Induktionsanfang: Sei zuerst n = 2. Da 2 selber ein Primzahl ist, ist 2
sicherlich ein Produkt von Primzahlen.

Induktionsschritt: Wir nehmen an, dass wir die Aussage fir alle n < N
iiberpriift haben. Wir mochten zeigen, dass die Aussage auch fiir N gilt. Falls
N ein Primzahl ist, so gilt die Aussage fiir N. Falls N zusammengesetzt ist,
existiert ein Teiler my; # 1, N von N. Wir schreiben N = m;j - mo. Da nun
1 < my,ms < N kénnen wir my und mo laut Induktionshypothese schreiben
als Produkt von Primzahlen. Also lisst sich auch N als Produkt von Primzahlen
schreiben.

Wir beweisen nun (b). Dazu nehmen wir an, dass wir zwei Primfaktorzerle-
gungen

n=pi1-P2Pm=0G1 q2 """ qe
von n haben. Die zwei Zerlegungen haben nicht notwendigerweise die gleiche
Anzahl von Primfaktoren. Wir diirfen annehmen, dass m < /£ ist.

Da p; | n, impliziert Lemma 1.2.3, dass p; auch eine der ¢;s teilt. Da die
¢:s Primzahlen sind, gibt es ein i1 sodass p; = ¢;,. Wir kiirzen nun p; und ¢;, .
Das gleiche Argument zeigt nun, dass es ein iy # i1 gibt, sodass p2 = ¢;,. Wir
kiirzen p> und g;,. Dies machen wir so lange weiter bis es keine p;s mehr gibt.
(Wir haben angenommen, dass es mehr ¢;s als p;s gibt.) Falls m < ¢, so sagt
unsere gekiirzte Gleichung, dass 1 ein Produkt von (¢ —m)-viele g;s ist. Dies ist
unmdoglich. Also ist £ = m und die ¢;s sind eine Umordnung der p;s. a

Jeder natiirliche Zahl n lésst sich also eindeutig schreiben als Produkt

n:Hp"P mit  n, > 0.
P

Das Produkt lduft {iber alle Primzahlen. Falls n = 1, so ist n, = 0, fiir alle p.
Schon Euklid bewies in seinem Buch Elemente, dass es unendlich viele Prim-
zahlen gibt. Dies ist ein Korollar der Fundamentalsatz der Arithmetik.

Satz 1.2.5 (Euklid) Es gibt unendlich viele Primzahlen.

Beweis: Wir nehmen an, es gébe nur endlich viele Primzahlen. Wir bezeig-

nen diese Primzahlen mit pq, ..., p,. Die natiirliche Zahl
Ni:p1'p2' pn"’l
ist durch keine der Primzahlen py, ..., p, teilbar, da sonnst auch 1 durch p; teil-

bar wire (Lemma 1.1.3.(b)). Da jede Zahl groéfler als 1 durch mindestens eine
Primzahl teilbar ist (Theorem 1.2.4), existiert mindestens eine weitere Primzahl
Pn+t1- Aber dies widerspricht der Annahme, dass p1,...,p, die einzigen Prim-
zahlen sind. a



Definition 1.2.6 Das kleinste gemeinsame Vielfache von a und b ist die kleinste
positive Zahl, die sowohl durch a als auch durch b teilbar ist. Bezeichnung;:
kegV(a,b).

Lemma 1.2.7 Seien a = [[,p"» und b =[], p™» natiirliche Zahlen.
(a) Es gilt ggT(a,b) =], pin(e ) und kgV(a, b) = IL, prax(np,mp)
(b) Zwischen kgV und ggT besteht folgende Beziehung

ab
ggT(a,b)’

Beweis: Teil (a) ist klar. Fiir (b) bemerken wir, dass

keV(a,b) =

n, + m, = min(ny, my) + max(n,, mpy).
Also gilt

a-b= Hpnp-i-mp — Hpmin(np,mp)-i—max(np,mp) _ ggT(a, b) . kgV(a, b)
p p
O

Beispiel 1.2.8 Wir haben schon gesehen, dass ggT(93,42) = 3 (Beispiel 1.1.11).
Daher ist kgV(93,42) = 93 -42/3 = 31 - 42 = 1302.

1.3 Probedivision

Der Fundamentalsatz der Arithmetik (Theorem 1.2.4) sagt uns, dass sich jede
natiirliche Zahl als Produkt von Primzahlen schreiben lisst. Aber wie funktio-
niert dies in der Praxis? Fiir kleine Zahlen n findet man die Primfaktorzerlegung
durch Ausprobieren. Zum Beispiel gilt

180=2-90=2%-45=22.3-15=22.32.5.

Fiir groflere Zahlen sollte man ein bisschen geschickter vorgehen. In diesem
Abschnitt besprechen wir die einfachste Methode zur Berechnung der Primfaktor-
zerlegung von einer Zahl n: Die Probedivision. Im Wesentlichen probieren wir
alle Primzahlen aus, bis wir ein Faktor d von n gefunden haben. Nun ersetzen
wir n durch den Quotient n/d. Eine wichtige Bemerkung ist, dass es reicht die
Primfaktoren mit p < y/n zu betrachten. Der Grund ist, dass wenn n = a - b, so
ist entweder a < y/n oder b < /n.

Wir gehen davon aus, dass wir eine Liste der Primzahlen p < /n besitzen.
Wie man so eine Liste erstellt, besprechen wir nachher.

Algorithmus 1.3.1 (Probedivision) (a) Wir fangen mit p = 2 an und ar-
beiten die Liste der Primzahlen ab. Fiir jede Primzahl p probieren wir ob
p | n. Dies machen wir mittels Division mit Rest: p | n genau dann wenn
der Rest von n nach Division durch p gleich 0 ist.
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(b) Falls p | n, so berechnen wir die hichsten Potenz p© mit p®|n. Wir ersetzen
nun n durch n/p® und betrachten die néchsten Primzahl.

(c) Sobald p? > n ist, sind wir fertig.

Beispiel 1.3.2 Hier ist ein kleines Beispiel. Sei n = 2331. Wir finden 2 { n und
3| n. BEs gilt 9 | n aber 3% { n. Also ersetzten wir n durch ng := n/9 = 259. Wir
wissen schon, dass 259 nicht durch 2 und 3 teilbar ist, also gehen wir weiter mit
p = 5. Wir finden dass 5 { 259, aber 7 | 259. Da 259 = 5 - 72 + 14, ist 259 nicht
durch 72 teilbar. Also ersetzten wir 259 durch nz = 259/7 = 37. Wir wissen
dass ns = 37 nicht durch 2,3,5,7 teilbar ist. Da 72 = 49 > 37 ist 37 also eine
Primzahl. Die Primfaktorzerlegung von n ist nun

2331 =32%.7.37.

Das Sieb von Eratosthenes Jetzt besprechen wir noch eine Methode, um eine
Liste aller Primzahlen p < B zu berechnen, wobei B eine vorgegebene Schranke
ist. Dies ist das Sieb von Eratosthenes. Eratosthenes lebte von 276 bis 194 v.
Chr. Er wurde geboren in Cyrene im heutigen Libyen.

Algorithmus 1.3.3 (Sieb von Eratosthenes) Wir machen hierzu eine Liste
aller Zahlen von 2 bis B.

(a) Wir fangen mit der ersten nichtdurchgestrichene Zahl p auf der Liste an.
Im ersten Durchgang ist dies also p = 2.

(b) Wir markieren diese Zahl als Primzahl und streichen alle Vielfachen von
p weg. Dieser Schritt heifit Sieben: Wir sieben alle Vielfachen von p aus.

(¢) Wir wiederholen die Schritte (a) und (b) bis alle Zahlen entweder wegge-
strichen oder als Primzahl markiert sind.

Als Beispiel wenden wir nun dieses Verfahren auf B = 49 an. Wir machen
eine Liste alle Zahlen von 2 bis 49, und fangen mit p = 2 an. Nachdem wir
Schritt (b) fiir p = 2 durchgefiihrt haben, sieht die Tabelle so aus:

2] 3 4 5 ¢ 7 g 9
11 12 13 1 15 16 17 18 19
21 2 23 74 25 2% 27 W 29
31 32 33 3 35 36 37 3/ 39
41 42 43 4 45 4 AT 4B 49.

Als niichstes betrachten wir p = 3, usw. Am Ende des Verfahrens sieht die
Tabelle dann so aus:

ISRSR=2

2] [3] # [5) ¢ [7] # ¢
wwmwwxe
0 7N 2 (28] 1 B B W W [29]
30 [31] 32 38 3 35 36 [37] 38 3
g0 [41] o2 [43] 90 9 46 [47] B ».
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Die Primzahlen < 49 sind also {2,3,5,7,11,13,17,19, 23,29, 31, 37,41, 43,47}.

2 Kongruenzen

2.1 Kongruenzen

In diesem Kapitel studieren wir die Theorie der Kongruenzen. Kongruenzen
beschreiben Teilbarkeitsrelationen. Man findet sie auch im tégliche Leben: Uh-
ren geben die Stunden entweder modulo 12 oder modulo 24 an. Die Wochentage
rechnen wir modulo 7 und die Monate modulo 12. Sobald wir die richtigen Werk-
zeuge bereit gestellt haben, kénnen wir genauso gut mit Kongruenzen rechnen
wie mit Gleichungen.

Definition 2.1.1 Sei m eine natiirliche Zahl und seien a, b ganze Zahlen. Wir
sagen, dass a kongruent zu b modulo m ist, falls m | (b — a). Wir schreiben:
a =b (mod m). Die Zahl m heifit der Modul der Kongruenz.

Zum Beispiel ist 200 = 11 (mod 9), da 9 ein Teiler von 200 — 11 = 189 ist.
Anders formuliert: 200 und 11 haben den gleichen Rest nach Division durch 9
némlich 2.

Satz 2.1.2 Kongruenz ist eine Aquivalenzrelation, d.h. es gelten die folgenden
Eigenschaften:

Reflexivitét a = a (mod m), fiir alle a € Z,

Symmetrie Falls a =b (mod m), so gilt auch b = a (mod m),

Transitivitit Falls a = b (mod m) und b = ¢ (mod m), so gilt auch a = ¢
(mod m).

Beweis: Ubungsaufgabe. O

Satz 2.1.2 impliziert, dass wir die ganze Zahlen fiir festes m in Kongruenz-
klassen aufteilen kénnen. Eine Kongruenzklasse ist die Menge aller ganzen Zah-
len kongruent zu einer festen Zahl a € Z. Eine solche Zahl heifit Reprédsentant
der Kongruenzklasse. Die Division mit Rest (Satz 1.1.5) impliziert, dass es genau
m Kongruenzklassen modulo m gibt.

Beispiel 2.1.3 Fiir m = 2 gilt ¢ = 0 (mod 2) genau dann wenn a gerade ist
und a = 1 (mod 2) genau dann wenn a ungerade ist. Die Kongruenzklassen
modulo 2 sind daher

0 (mod?2)={--,-6,—4,-2,0,2,4,6,---},
1 (m0d2)={---,—5,—37—171,375;77"'}~

Definition 2.1.4 (a) Wir bezeichnen mit Z/mZ die Menge der Kongruenz-
klassen modulo m.
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(b) Ein vollstdndiges Restsystem modulo m ist eine Menge ganzer Zahlen so,
dass jede ganze Zahl zu genau einem Element des Restsystem kongruent
modulo m ist.

Jede ganze Zahl ist zu genau einer der Zahlen 0,1,...,m — 1 kongruent
modulo m, daher ist
R={0,1,....,m—1}

ein vollstdndiges Restsystem.

Man sieht leicht ein, dass viele Rechenregeln fiir Gleichungen auch fiir Kon-
gruenzen gelten. Zum Beispiel, falls a; = b1 (mod m) und ag = ba (mod m) so
gilt auch a1 4+ as = by + by (mod m) und a; - as = by - by (mod m). Wir sagen:
die Menge Z/mZ ist ein kommutativer Ring.

Mit Teilen muss man vorsichtig sein: Aus ac = be (mod m) kénnen wir nicht
immer schliefen, dass a = b (mod m). Zum Beispiel gilt 16 = 10 (mod 6), aber
8 £ 5 (mod 6).

Der folgende Satz sagt uns, wann wir kiirzen diirfen.

Satz 2.1.5 (Kiirzungssatz) Seien a, b, c ganze Zahlen, m eine natiirliche Zahl
und g := ggT(c,m). Falls ac = be (mod m), so gilt a = b (mod m/g).

Beweis: Da ac = be (mod m) gilt, existiert eine ganze Zahl x mit zm =
ac—bc = ¢(a—Db). Insbesondere ist ¢ ein Teiler von zm. Da g = ggT(c, m) ist, so
gilt x(m/g) = (¢/g)(a —b). Aus Lemma 1.1.8.(c) folgt, dass ggT(c/g,m/g) = 1.
Also ist m/g ein Teiler von a — b. m|

Folgendes Korollar ist ein wichtiger Spezialfall von Satz 2.1.5.

Korollar 2.1.6 Seien a,b,c ganze Zahlen und sei m eine natiirliche Zahl mit
geT(c,m) = 1. Falls ac = be (mod m), so gilt a =b (mod m).

Wir benutzen Satz 2.1.5, um lineare Kongruenzen von der Form ax = b
(mod m) nach z aufzuldsen, dhnlich wie man dies in der linearen Algebra mit
linearen Gleichungen macht. Zuerst diskutieren wir einige Beispiele.

Beispiel 2.1.7 (a) Wir betrachten die Kongruenz 42 = 3 (mod 11). Um die
Kongruenz zu vereinfachen bemerken wir, dass 4 -3 =12 =1 (mod 11). Daher
ergénzen wir beide Seiten der Kongruenz mit 3 und finden 12z =9 (mod 11),
was sich vereinfachen ldsst zu # = 9 (mod 11). Also hat die Kongruenz genau
eine Losung (modulo 11).

(b) Wir betrachten nun die Kongruenz 4z = 3 (mod 12). Der Trick von oben
funktioniert diesmal nicht, da es keine Zahl ¢ so, dass 4¢ = 1 (mod 12) gibt.
Da ggT(3,4) = 1 kénnen wir den Term 4 auch nicht kiirzen mit Hilfe von Satz
2.1.5. In der Tat hat die Kongruenz keine Losung, wie man sieht, wenn man die
Kongruenz modulo 4 betrachtet.

Satz 2.1.8 (L6sungen linearer Kongruenzen) Seien a,b,m ganze Zahlen
mit m > 1 und sei g := ggT(a, m).
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(a) Falls g tb, so hat die Kongruenz ax = b (mod m) keine Losungen.

(b) Falls g | b, so hat die Kongruenz ax = b (mod m) genau g verschiedene
Lésungen (modulo m).

Beweis: Wir beweisen zuerst, dass die Kongruenz az = b (mod m) genau
dann Losungen besitzt, wenn ggT(a,m) | b.

Sei g := ggT(a, m). Lemma 1.1.9.(a) impliziert, dass ganze Zahlen y, z exi-
stieren mit y -a+ z-m = g. Falls g | b, so ist /g eine ganze Zahl, daher finden
wir

b b b
ay—+mz— =g— =2>,
) g g
Daher ist z = y(b/g) eine Losung der Kongruenz.

Umgekehrt, falls € Z eine Losung der Kongruenz ax = b (mod m) ist,
existiert eine ganze Zahl y mit ax — ym = b. Lemma 1.1.9.(b) impliziert, dass
g | b. Also hat die Kongruenz ax = b (mod m) genau dann eine Losung, wenn
glb.

Wir nehmen nun wieder an, dass g | b. Wir bestimmen die Anzahl der
Losungen der Kongruenz (modulo m). Wir betrachten zuerst den Spezialfall,
dass g = 1. Da g = ggT(a,m) = 1 existieren y, z € Z mit ay + mz = 1 (Lemma
1.1.9.(a)). Insbesondere gilt ay = 1 (mod m). Wir ergiinzen die Kongruenz ax =
b (mod m) mit y und finden, dass

x=yb (mod m).

Insbesondere hat die Kongruenz eine eindeutige Losung (modulo m).
Falls g > 1, so impliziert Satz 2.1.5, dass wir die Kongruenz ax = b (mod m)

umstellen konnen zu .
<2> x=-— (mod ﬂ).
g g g

Da ggT(a/g,m/g) = 1, hat die neue Kongruenz eine Losung (modulo m/g),
und daher g Losungen in {0,1,...,m — 1}. a

Der Beweis von Satz 2.1.8 liefert auch ein Verfahren, um alle Lésungen einer
Kongruenz zu berechnen. Wir betrachten dazu eine Kongruenz ax = b (mod m)
mit g := ggT(a,m) | b. Eine Lésung x € Z der Kongruenz korrespondiert zu
eine Losung z,y € Z der Gleichung ax — my = b.

Wir berechnen zuerst Zahlen ¢, d mit ac—md = g = ggT(a, m) mit Hilfe des
erweiterten euklidischen Algorithmus (Lemma 1.1.10). Nun ist 2y = cb/g eine
Losung der Kongruenz ax = b (mod m). Der Beweis von Satz 2.1.8 impliziert,
dass die anderen Losungen der Kongruenz

xzxo—i—km (mod m), k=0,1,2,...,9—1 (6)
g

sind.
Ein bisschen allgemeiner formuliert bekommen wir folgender Satz.
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Satz 2.1.9 Seien a und b ganze Zahlen und g := ggT(a,b). Falls g | ¢ so hat
die Gleichung ax + by = c¢ unendlich viele Lésungen x,y € Z. Falls x¢,yo eine
Losung dieser Gleichung ist, so sind alle Losungen von der Form

b
T =z + —k, y=1yo— —k
g g
fiir eine ganze Zahl k.

Beweis: Der Beweis ist dhnlich dem Beweis von Satz 2.1.8. O

Die Gleichung von Satz 2.1.9 ist eine lineare Diophantische Gleichung. Eine
Diophantische Gleichung ist eine Gleichung, fiir die wir ganzzahlige Losungen
suchen. Die Gleichungen sind benannt nach den griechischen Mathematiker Dio-
phant (Alexandria, rund 250 n. Chr.) der solche Gleichungen studiert hatte. Li-
neare Diophantische Gleichungen wurde zuerst von den indischen Mathematiker
Brahmagupta im 7-te Jahrhundert n. Chr. vollstdndig gelost.

Das folgende Beispiel gibt eine konkrete Anwendung von Satz 2.1.9.

Beispiel 2.1.10 (Das Briefmarkenproblem) Auf einem Péckchen méchten
wir 3,90 Euro an Briefmarken aufkleben. Wir haben nur Briefmarken von 45 und
55 Cent zur Verfiigung. Wir fragen uns, ob dies moglich ist. Sei x die Anzahl der
Briefmarken von 55 Cent und y die Anzahl der Briefmarken von 45 Cent. Wir
mochten also die Gleichung x - 55 + y - 45 = 390 16sen. Wir fordern zusétzlich,
dass z und y positiv sind.

Zuerst losen wir die Gleichung x - 55 + y - 45 = 390 mit z,y € Z. Da
geT(45,55) = 5 ein Teiler von 390 ist, hat das Problem eine Losung. Mit dem
erweiterten euklidischen Algorithmus finden wir, dass 5 = —4 - 55 4+ 5 - 45 gilt.
Also ist * = —4-390/5 = —312 und y = 5-390/5 = 390 eine Losung unse-
rer Gleichung. Dies ist aber noch keine Losung des Briefmarkenproblems, da
x negativ ist. Da 45/5 = 9 und 55/5 = 11, sagt Satz 2.1.9, dass die anderen
Losungen der Gleichung von der Form

r=-3124+9k  y=390— 11k, mit kezZ

sind. Die Bedingung z,y > 0 liefert, dass 9k > 312 und 11k < 390. Also finden
wir 312/9 < k < 390/11. Die einzige Losung ist daher k = 35.

Wir schlieen also, dass das Briefmarkenproblem genau eine Losung hat:
Wir brauchen —312 + 9 - 35 = 3 Briefmarken von 55 Cent und 390 —11-35 =15
Briefmarken von 45 Cent.

2.2 Der Kalenderformel

Ziel dieses Abschnittes ist es, eine Formel fiir den Wochentag eines bestimmten
Datums zu geben. Dies ist eine Anwendung des Rechnens modulo 7.

Ein Jahr ist die Zeit, welche die Erde braucht, um sich einmal um die Sonne
zu drehen. Ein Tag ist die Zeit, welche die Erde braucht, um einmal um ihre
Achse zu drehen. Ein Jahr ist ungefahr 365, 2422 Tage lang. Dies ist der Grund
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dafiir, dass Julius Ceasar und seine Berater in 46 v. Chr. das Schaltjahr ein-
gefithrt haben, als sie den julianischen Kalender einfiihrten. Das julianische
Jahr war also im Schnitt 365,25 — 365,2422 ~ 0,0078 Tage zu lang. Um dies
zu kompensieren, fithrte Papst Gregor IV in 1582 den gregorianischen Kalen-
der ein. Zur Korrektur wurden 10 Tagen gestrichen; auf den 04.10.1582 folgte
der 15.10.1582. Es dauerte noch viele Jahre, bis der gregorianische Kalender
weltweit eingefithrt wurde. In Russland zum Beispiel wurde der gregorianische
Kalender erst in 1918 eingefiithrt. Damals wurden 13 Tage gestrichen. Fiir die
Geschichte des Kalenders siehe zum Beispiel
http://de.wikipedia.org/wiki/Gregorianischer Kalender.

Wir werden jetzt eine Kalenderformel herleiten. Hierzu geben wir jedem
Wochentag eine Nummer, wie im folgenden Schema:

So Mo Di Mi Do Fr Sa
0 1 2 3 4 5 6.

Obwohl es das Jahr 0 nicht gegeben hat, betrachten wir dies trotzdem als unser
Ausgangsjahr. Sei a der Wochentag des 01.03.0000. Wir werden zuerst a be-
rechnen. Hierzu bemerken wir, dass 365 =7-52+1 =1 (mod 7) und 366 = 2
(mod 7). Falls 01.03.j auf den Wochentag o’ fillt, so gilt

ad=a+j+S (mod?7),

wobei S die Anzahl von Schaltjahren zwischen 0 und j ist.

Das Jahr j ist ein Schaltjahr, falls 5 = 0 (mod 4) und j # 0 (mod 100) ist.
Falls j = 0 (mod 100), so ist j nur dann ein Schaltjahr, wenn j = 0 (mod 400)
ist. Wir finden daher

_J J J
S=[7]1-I35g] +zg]  (mod 7).

Z.B. war 2000 ein Schaltjahr, aber 1900 nicht.
Wir definieren

9() =i + 5]~ [5s] +[105]  (mod 7).

Also ist der 01.03.5 der Wochentag a’ = a + ¢g(j) (mod 7). Da der 01.03.2008
ein Samstag war, gilt:

2008] B [2008] n [2008]
4 100 400
Wir schlieflen, dass a = 3, daher war der 01.03.000 ein Mittwoch.
Wie sieht das aus mit einem anderen Datum als dem 1. Mérz? Einfachheits-
halber lassen wir das Jahr am ersten Mérz anfangen, da der zusitzliche Tag

im Schaltjahr der 29.02. ist. Folgende Tabelle listet den Wochentag des ersten
Tages des Monats im Jahre 0000 auf. Wir definieren aulerdem eine Funktion

6 =a+ g(2008) = a + 2008 + | =a+3 (mod7).

16



f(m) durch die Eigenschaft, dass f(m) + 1 die Nummer des Wochentages des
01.m.0000 ist.

Monat Nummer | Wochentag | f(m)
Mérz 1 3 2
April 2 6 5
Mai 3 1 0
Juni 4 4 3
Juli 5 6 5
August 6 2 1
September | 7 5 4
Oktober 8 0 6
November | 9 3 2
Dezember | 10 5 4
Januar 11 1 0
Februar 12 4 3.

Eine Eselsbriicke fiir die Zahlen f(m) ist der Satz: My uncle Charles has
eaten a cold supper; he eats nothing hot. Die Anzahl der Buchstaben des mte
Wort ist kongruent zu f(m) (mod 7).

Wir finden daher folgendes Theorem.

Theorem 2.2.1 (Kalenderformel) Der Tag mit Datum t.m.j ist der Wochen-
tag mit Nummer
t+f(m)+g() (mod 7).

Beispiel 2.2.2 (a) Wir berechnen den Tag des Mauerfalls am 09.11.1989. Es
gilt t =9, m =11 —2 = 9 und 5 = 1989. Daher finden wir f(m) = 2 und
g(j) = 19894497 — 19+ 4 = 2471 =0 (mod 7), also

t+f(m)+9(G)=9+24+0=4 (mod 7).

Wir schlieflen also, dass der Mauerfall an einem Donnerstag war.

(b) Wir berechnen den Wochentag, an dem Luther seine 95 Thesen an das
Hauptportal der Schlosskirche in Wittenberg geschlagen haben soll (31.10.1517).
Wir berechnen, dass f(m) = 6 und g(j) = 1884 = 1 (mod 7). Daher war der
31.10.1517, laut Gregorianischem Kalender ein Mittwoch:

31+464+1=3 (mod 7).

Da jedoch der Gregorianische Kalender in 1517 noch nicht erfunden war, miissen
wir 10 dazu zéhlen. In Wirklichkeit war der 31.10.1517 daher ein Samstag!

Eine weitere Anwendung der Kalenderformel, fiir die Abergldubischen unter
uns, ist folgendes Lemma.

Lemma 2.2.3 Jedes Jahr besitzt mindestens einen Freitag den 13.
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Beweis: Wir betrachten den Wochentag vom Monat m im Jahr j, fiir die
Monate 1, ..., 10, also zwischen Mérz und Dezember. Januar und Februar lassen
wir hier aus, da sie zum letzten Jahr gerechnet werden. Wir stellen fest, dass
f(m) alle Werte von 0 bis 6 annimmt. Wir schlieBen also, dass es im Jahr j
mindestens einen Freitag den 13. gibt. ]

Man berechnet leicht, dass es in 2008 genau einen Freitag den 13. gibt,
namlich in Juli. Hierzu sollte man Januar und Februar getrennt betrachten, da
sie zu 2007 gerechnet werden.

2.3 Priifziffer

In diesem Abschnitt geben wir eine weitere Anwendung von Kongruenzen: Wir
diskutieren, wie die Priifziffer bei den ISBN-Nummern funktioniert.

Seit 1.1.2007 gibt es die ISBN-Nummer als eine 13-stellige Zahl zur Kenn-
zeichnung von Biichern und anderen Veroffentlichungen. Vorher gab es eine 10-
stellige Zahl. Der Grund fiir die Anderung war, dass im englischsprachigen Raum
die ISBN-Nummern knapp wurden.

Die neue ISBN-13-Nummer besteht aus 4 Bestandteilen. Die Gesamtlinge
fiir (A)—(C) ist 12 Ziffern.

(A) Die Gruppennummer (oder Landernummer). Beispiele sind:
0, 1 englischsprachiger Raum (zB Grofibritannien, USA, Australien, In-
dien)
2 franzosischsprachiger Raum
3 deutschsprachiger Raum
4 Japan
5 Russland

(B) Verlagsnummer: dies ist eine unterschiedlich lange Kennzahl fiir den Ver-
lag.

(C) Titelnummer.
(D) Priifziffer.

Die Priifziffer erméoglicht das Erkennen von Tippfehlern. Eine 13-stellige Zahl
T1%2 - - - T13 ist eine giiltige ISBN-13-Nummer, falls

21+ 33+ x5+ -+ 3x12+ 213 =0 (mod 10). (7)

Diese Gleichung erlaubt auch die Berechnung der Priifziffer.

Einer der haufigsten gemachten Fehler beim Abtypen von ISBN-Nummer
ist die Vertauschung von zwei nebeneinander gelegenen Ziffern. Dies kann man
meistens mit Hilfe der Priifziffer feststellen.

Seil x1x9--- 213 eine giiltige ISBN-13-Nummer, also gilt (7). Versehentlich
wurde diese ISBN-13-Nummer als y1y2 - - - Y13 := 122 - - - Tj—1Tj+1%;Tit2 -+ - T13
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eingegeben. Wir berechnen die richtige Priiffziffer ¢35 gehérend zu y; - - - y12.
Diese neue Priifziffer erfiillt 13 — y13 = —(y1 +3y2+ - - + 3y12) (mod 10). Also
gilt:

G13 — Y13 = —(y1 +3y2 + -+ + 3y12) + 21 + 322+ -+ + 3712

) =2(x; —x441) (mod 10) falls ¢ gerade ist,
2(x; — xiy1) (mod 10) falls ¢ ungerade ist.

Also gilt, dass
513 — Y13 = 3113 — 13 = :|:2(.’L'l — .’I]i_;,_l) (mOd 10)

Satz 2.1.5 impliziert daher, dass 13 — y13 = 0 (mod 10) genau dann, wenn
Ty — Ti+1 = 0 (HlOd 5)

Die Vertauschung von z; und ;41 kann daher festgestellt werden, aufler
wenn die Differenz von z; und x;41 gleich 5 ist.

Der zweithéufigste Fehler ist, dass eine Ziffer falsch eingegeben wird. Wir
iiberlassen es Thnen als Ubungsaufgabe zu iiberpriifen, dass diese Fehler immer
festgestellt werden kann.

Die alte ISBN-10-Nummer gab mehr Moglichkeiten zur Fehlerfeststellung.
Da heutzutage die ISBN-Nummer meistens gescannt statt abgetippt wird, hat
der Bedarf an einer Fehlerfeststellung abgenommen. Man berechnet die neue
ISBN-13-Nummer aus der alten ISBN-13-Nummer, indem man 978- voranstellt.
Die Priifziffer muss neu berechnet werden.

2.4 Teilbarkeitskriterien

Wir stellen eine natiirliche Zahl n € N im 10er System als

n = (axar—1-- - a2a100)10

:ak-l()k—l—ak,l~10k71—|—~-~—|—a1~10+a0

dar. An dieser Darstellung kann man leicht feststellen, ob n durch 2 oder 5
teilbar ist, da dies nur von den letzten Ziffer abhiéngt. Ahnlich leicht stellt man
fest ob n durch 4 = 22 oder 25 = 52 teilbar ist, da dies nur von der letzten 2
Ziffern abhéngt. Eine dhnliche Aussage gilt fiir hohere Potenzen von 2 und 5.
Aus der Schule kennen Sie wahrscheinlich auch die Dreierregel: Eine Zahl
n = (arak—1 - -a1a0)10 ist genau dann durch 3 teilbar, wenn die Quersumme

durch 3 teilbar ist. Diese Regel folgt unmittelbar, wenn man bemerkt, dass
10 =1 (mod 3) und daher auch 10° = 1* =1 (mod 3) fiir alle i ist.
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In diesem Abschnitt besprechen wir weitere Teilbarkeitskriterien. Dazu de-
finieren wir zuerst einige Verallgemeinerungen des Querschnittes. Wir nennen

k

Qi(n) =Y (~1)'a; = ap — a1+ + (=1)*ay

i=0
die alternierende Quersumme. Allgemeiner nennen wir
Qs(n) = Z(aiersfl T aierlais)lO = (asasfl T ao)lo + (as+1as " ~a1)10 +
i>0
die Quersumme der Stufe s und
Qi(n) = Z(_l)i(aisﬁ-s—l Tt Qis410is)10
i>0
= (asas—1---ao)10 — (@s410s -~ a1)10 + (Gs420s11 -+~ a2)10 + -

die alternierende Quersumme der Stufe s.

Satz 2.4.1 Seien n,s € N. Es gilt
n=Qs(n) (mod 10°—1) und n=Q%Yn) (mod 10°+1).

S
Beweis: Es gilt
n = Z a;107 = Z(ais—i-s—l S is410i5)1010%.
§>0 i>0

Da 10° = 1 (mod 10° — 1), gilt auch 10** = 1 (mod 10° — 1) fiir alle i > 0. Dies
impliziert, dass n = Qs(n) (mod 10° — 1). Die zweite Kongruenz folgt &hnlich
aus 10° = —1 (mod 10° 4+ 1). m|

Fiir s = 1 sagt Satz 2.4.1 zum Beispiel:
n=Q1(n) (mod9), n=Qy(n) (mod 11).
Hieraus folgen die Teilbarkeitskriterien:
9|n genau dann, wenn 9| Q1(n),
11 n genau dann, wenn 11| Q) (n).

Wenn wir allgemeiner ein Teilbareitskriterium fiir einer Primzahl p suchen,
betrachten wir die Primfaktorzerlegung von 10°—1 und 10°+-1. Falls p ein Teiler
von 10° — 1 (b.z.w., von 10° 4 1) ist, so gilt p | » genau dann, wenn p | Q5(n)
(bzw. p | Q.(n)). Die Primfaktorzerlegung von 10° £ 1 fiir kleines s ist

99 =32.11, 101=101, 999=3%.37, 1001 =7-11-13,
wie man leicht feststellt mit Hilfe der Probedivision (§ 1.3). Daher finden wir,
dass
TIn < 7]Q3n),
11|n < 11|Qi(n),
13|n < 13|Q5(n).
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2.5 Der kleine Satz von Fermat

In § 2.1 haben wir gesehen, dass die Kongruenz axz = 1 (mod m) genau dann
eine Losung hat, wenn ggT(a, m) = 1 (Korollar 2.1.6).

Definition 2.5.1 Seien a¢ und m teilerfremd. Eine Losung = der Kongruenz
ar =1 (mod m) heifit die Inverse von a (mod m). Wir bezeichnen es mit a~*
(mod m). Ein Element deren Inverse existiert heifit invertierbar.

Wir bezeichnen mit (Z/mZ)* die Menge der invertierbaren Kongruenzklas-
sen modulo m.

Die Inverse eines Element a € Z/mZ* kann man mit Hilfe des erweiterten eu-
klidischen Algorithmus berechnen. Sei ndmlich a € Z/mZ*, also ist ggT(a, m) =
1. Mit Hilfe des erweiterten euklidischen Algorithmus berechnet man Zahlen z, y,
sodass 1 = za+ym. Daza =1 (mod m), ist x = a~! (mod m) die Inverse von
a modulo m.

Beispiel 2.5.2 Sei a = 35 und m = 111. Mit Hilfe des erweiterten euklidischen
Algorithmus berechnet man, dass ggT(a,m) = 1. Aulerdem berechnet man,
dass ggT(a,m) = 1 = 6111 — 19 - 35. Wir schlieBen, dass a=! = —19 =
111 — 19 = 92 (mod 111).

Definition 2.5.3 Ein reduziertes Restsystem modulo m ist eine Menge ganzer
Zahlen so, dass jede ganze Zahl, die teilerfremd zu m ist, genau zu einem Element
des Restsystem kongruent ist.

Die Menge
{0<a<m]|ggT(a,m)=1}

ist ein reduziertes Restsystem.

Definition 2.5.4 Die Kardinalitét eines reduzierten Restsystems modulo m
bezeichnen wir mit ¢(m). Die Funktion ¢ heifit die eulersche ¢-Funktion.

Beispiel 2.5.5 Die Menge
{1, 5,7, 11},

ist ein reduziertes Restsystem modulo 12, also ist ¢(12) = 4.
Lemma 2.5.6 Falls p eine Primzahl ist, so gilt

o(p) =p—1.

Beweis: Falls p eine Primzahl ist, so ist {1,2,...,p — 1} ein reduziertes
Restsystem. O

Satz 2.5.7 (Euler) Sei a eine ganze Zahl mit ggT(a,m) = 1. Es gilt

a?™ =1 (mod m).
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Beweis: Setze t = o(m). Sei R = {rq,...7:} ein reduziertes Restsystem
modulo m und sei a wie in der Aussage des Satzes. Wir betrachten die Menge

A={ary,...ar}.

Da ggT(a,m) = 1,soist ar; = ar; (mod m) genau dann, wenn r; = r; (mod m)
(Satz 2.1.5). Also sind die Elementen der Menge A alle teilerfremd zu m und
paarweise verschieden (modulo m). Die Kardinalitit von A ist ¢ = ¢(m), also
ist A auch ein reduziertes Restsystem modulo m. Es folgt daher, dass

HTi = H(ari) =d' Hri (mod m).

i=1 i=1 i=1
Da Hle r; teilerfremd zu m ist, so folgt, dass a* =1 (mod m). i

Folgendes Korollar des Satzes von Euler ist bekannt als der kleine Satz von
Fermat. Im Gegensatz zum “grofien” Satz von Fermat (sieche Einleitung) wurde
diese Aussage von Fermat bewiesen.

Korollar 2.5.8 (Der kleine Satz von Fermat) Seip eine Primzahlunda € Z.
(a) Falls pta, so gilt aP~! =1 (mod p).
(b) Fiir alle p und a gilt a? = a (mod p).

Beweis: Teil (a) ist ein Spezialfall von Satz 2.5.7. Falls p 1 a, so folgt (b)
aus (a). Falls p | a, so gilt a = a? =0 (mod p). O

Definition 2.5.9 Sei a € Z/mZ*. Die Ordnung von a modulo m ist die kleinste
positive Zahl r, sodass a” =1 (mod m). Bezeichnung: r = ord,,(a).

Beispiel 2.5.10 In Beispiel 2.5.5 haben wir gesehen, dass ¢(12) = 4. Es gilt
52=72=112 =1 (mod 12). Also ist ord;2(5) = ordy2(7) = ordy2(11) = 2.

Lemma 2.5.11 Sei a € Z/mZ*. Die Ordnung von a modulo m ist ein Teiler
von ¢(m).

Beweis: Sei r = ord,,(a), also gilt " = 1 (mod m). Der Satz von Eu-
ler (Satz 2.5.7) impliziert, dass auch a?(™ =1 (mod m). Wir schreiben g :=
ggT(r, p(m)) = 2r + yo(m). Es folgt, dass a9 = a™ - a¥#(™ =1 (mod m). Da
die Ordnung die kleinste positive Zahl mit dieser Eigenschaft ist, folgt r = g¢.
Wir schliefien, dass r ein Teiler von ¢(m). a

Beispiel 2.5.12 Sei m = 37. Man tiberpriift leicht, dass m eine Primzahl ist.
Also ist ¢(m) = 37— 1 = 36 = 22 - 3% (Lemma 2.5.6). Wir berechnen ord,,(8).
Lemma 2.5.11 sagt uns, dass ord,,(8) € {2,3,4,6,9,12,18,36} ist. Da

82 =27 (mod 37), 8 =8%.8=31 (mod37), 8" =(8%)2=26 (mod 37),
80 =81.82=36=—1 (mod 37), 89 =85.83=-31=6 (mod 37),
812 =(8%%=1 (mod 37).
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Wir schlieflen, dass ords;(8) = 12.

Wir méchten nun 811! (mod 37) berechnen. Wir bemerken dazu, dass 1111 =
92-12 4+ 7 ist. (Dies ist Division mit Rest). Da die Ordnung von 8 (modulo 37)
gleich 12 ist, gilt

gHI = 89211287 — (812)92 .87 =80 .8=-8=1-8"=29 (mod 37).

Lemma 2.5.13 Sei n eine natiirliche Zahl. Es gilt, dass
Z o(d) = n.
din
Beweis: Sei M := {1,...,n}. Wir definieren
Ca={ae M|gegT(a,n)=d} C M.
Offensichtlich ist Cq N Cq = 0 fiir d # d’. Also ist

M=T]ca
d|n

die disjunkte Vereinigung der Cgs.

Lemma 1.1.8.(c) sagt, dass ggT(a,n) = d impliziert, dass ggT(a/d,n/d) =1
ist. Dies impliziert, dass die Kardinalitit von Cy4 gleich die Kardinalitdt von
Z/(n/d)Z* , also p(n/d), ist. Wir schlielen, dass

=M= Y Il =D w(5) = Y eld)
d|n dn d|n

ist. O

2.6 Schnelle Exponentiation

Die Berechnung von b° (mod m) kann relativ Zeit aufwendig sein (vergleichen
Sie zu Beispiel 2.5.12). Falls der Modul m klein im Vergleich zum Exponenten
ist, kann man die Berechnung von b° (mod m) vereinfachen mit Hilfe des Satzes
von Euler. Falls dies nicht der Fall ist, braucht man eine andere Idee.
Die schnelle Exponentiotion ist eine Methode zur Berechnung einer grofien
Potenz
b (mod n).

Wir gehen hier wie folgt vor. Schnelle Exponentiation
Schritt 1. Schreibe i
e:Zei-T, e; € {0,1}.
i=0

Dies ist die bindre Entwicklung von e. Die e;’s berechnet man induktiv mit
folgendem Algorithmus.
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Algorithmus 2.6.1 (Binire Entwicklung berechnen) Setze i = 0.

(a) Falls e ungerade ist, so ist e; = 1. Ersetzte e durch (e—1)/2. Falls e gerade
ist, ersetzte e durch e/2.

(b) Ersetze i durch ¢ + 1 und wiederhole Schritt (b) bis e = 0.

Beispiel 2.6.2 Sei zum Beispiel e = 73. Da e ungerade ist, ist eg = 1. Wir
sehen, dass (e — 1) = 22 - 9. Dies impliziert, dass e; = e; = 0 und e3 = 1. Da
9—1=8=2%.1ist, finden wir e4 = e5 = 0 und eg = 1. Wir finden nun

73=1+2%(1+2%) =1+2%+2°

Schritt 2. Nun berechnen wir
b2 (mod n),
fir alle ¢ = 1,..., k. Hierbei benutzen wir, dass

bz”l _ b21'-2 _ (bzi)z'

Schritt 3. Wir bemerken, dass

k

he — bzl e;-2° — HbQi-ei _ H b2i.

i=1 i:e; 70

Mit dieser letzten Formel berechnen wir nun ¢ (mod n).

Beispiel 2.6.3 Wir berechnen 673 (mod 100). Beispiel 2.6.2 impliziert, dass
wir 62° (mod 100) berechnen sollen, fiir i = 1,2,...,6. Wir finden:

62=36 (mod 100), 62 = (62)%2=—-4 (mod 100),

62 = (6%)2 = (-4)2=16 (mod 100), 62 = (16)2 =56 (mod 100),

62" = (56)2=36 (mod 100), 62 = (36%) = —4 (mod 100).
Daher gilt:

6@ =666 =6-16-(—4) =16 (mod 100).

Wir bemerken, dass wir jetzt 6 + 2 = 8 Multiplikationen gebraucht haben.
Falls wir 673 = 6:6:6 - - -6 (mod n) berechnet hiitten und in jedem Schritt modu-
lo n gerechnet hétten, hatten wir 72 Multiplikationen gebraucht, also deutlich
mehr! Die schlechteste Strategie wire einfach 6™ zu berechnen und erst im
allerletzten Schritt modulo 100 zu rechnen: 672 ist eine Zahl mit 57 Dezimalstel-
len. Mit einem Taschenrechner kann man diese Zahl nicht einfach ausrechnen.
Maple hat damit natiirlich noch kein Problem. Man stellt leicht fest, dass falls
der Exponent e mindestens 6 Dezimalstellen hat, Maple auch nicht mehr alle
Dezimalstellen von b¢ angibt. Der obige Algorithmus funktioniert aber trotzdem
noch, da alle Zwischenschritte viel kleinere Zahlen ergeben.
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2.7 Der chinesische Restsatz

Im § 2.1 haben wir lineare Kongruenzen gelost. In diesem Abschnitt betrachten

wir Systeme von linearen Kongruenzen. Eine solche Aufgabe wurde zuerst in

dem Buch Zhang Qiujians mathematisches Handbuch, rund 400 n. Chr.) von

dem chinesischen Mathematiker Zhang Qiujian gelost. Fiir mehr Information sie-

he http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Chinese_overview.html
(the MacTutor History of Mathematics archive).

Theorem 2.7.1 (Der chinesische Restsatz) Seien my,...,m, € N Moduli
mit ggT(m,;,m;) = 1 fiir alle i # j und a1,...,a, € Z beliebig. Setze m :=
my - M.

(a) Es existiert ein x € Z, sodass © = a; (mod m;) fiir alle i.
(b) Die Lésung x wie in (a) is eindeutig (modulo m).

Beweis: Wir definieren M; = m/m;. Es gilt ggT(m;, M;) = 1, also existiert
ein M; € Z, sodass M; - M; =1 (mod m;) (Korollar 2.1.6).
Wir definieren

xr = ZM]‘M]‘G]‘. (8)
j=1
Fiir ¢ # j gilt

da m; | m. Also schlieflen wir, dass
Tr = Mijaj =1- Qj (HlOd mj)

ist. Wir haben gezeigt, dass x eine Losung des Systems von Kongruenzen ist.
Wir iiberpriifen nun noch die Eindeutigkeit der Losung (modulo m). Sei
y € Z eine andere Losung . Da x = y = a; (mod m;), ist m; ein Teiler von
x — vy, fur alle i. Da die m; paarweise teilerfremd sind, ist auch m = my - - - m,
ein Teiler von z — y. Wir schliefien, dass = y (mod m) ist. m|

Beispiel 2.7.2 Wir betrachten die Kongruenzen

(mod 20),
(mod 9),
(mod 7).

2
6
5

T
€T
€T

Esist My =9-7 =63, My =20-7 = 140, M3 = 20-9 = 180 und m =
20-9-7=1260. Da M; =63 =3 (mod 20) und 3-7 =1 (mod 20) folgt, dass
M; =7 (mod 20) ist. Ebenso berechnen wir, dass Mz = 2 (mod 9) und M3z = 3
(mod 7). Die Gleichung (8) impliziert daher, dass

3
r= M;-M;-a;=63-7-2+140-2-6+180-3-5 = 5262 = 222 (mod m)
j=1
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eine Losung des Systems von Kongruenzen ist.

Alternativ kann man die Losung 2 auch wie folgt (durch ausprobieren) be-
rechnen. Die erste Kongruenz sagt uns, dass die gesuchte Losung von der Form
x =2+ 20 -1 ist. Wir versuchen nun die Werte ¢ = 1,2, 3, ... und finden, dass
x=2+20-2=42=06 (mod 9) ist. Wir wissen nun also, dass =42+ j-20-9
ist fiir eine ganze Zahl j. Wir versuchen die Werte j = 1,2,3, ..., und finden,
dass

x=42+1-180=222=5 (mod 7)

ist. Die gesuchte Losung ist also x = 42 + 180 = 222.

Das folgende Beispiel illustriert, was passiert wenn die Moduln m,; nicht
paarweise teilerfremd sind.

Beispiel 2.7.3 (a) Wir betrachten die Kongruenzen

z=2 (mod 10),
z=3 (mod 14).

Da ggT(10,14) = 2 ist, liefern beide Kongruenzen eine Kongruenz modulo 2.
Die erste Kongruenz liefert 2 = 0 (mod 2). Die zweite Kongruenz liefert = 1
(mod 2). Da 1 # 0 (mod 2), schlieflen wir, dass das System von Kongruenzen
keine Losung besitzt.

(b) Wir betrachten jetzt die Kongruenzen

x=3 (mod 45),
x =7 (mod 756).

Nun ist ggT(45,756) = 32. Da 7 # 3 (mod 9) ist, so besitzt das System von
Kongruenzen keine Losung.

Allgemein gibt es zwei Moglichkeiten fiir Kongruenzen mit nicht-teilerfremden
Moduln:

(I) Die Kongruenzen widersprechen sich. In diesem Fall gibt es keine Losung.
Dies kann man feststellen, indem man die induzierten Kongruenzen mo-
dulo den ggT der Moduln berechnet (wie in Beispiel 2.7.3).

(IT) Die Kongruenzen widersprechen sich nicht. In diesem Fall kann man das
System von Kongruenzen ersetzen durch ein dquivalentes System von Kon-
gruenzen mit paarweise teilerfremden Moduli (siehe Beispiel 2.7.4).

Beispiel 2.7.4 Wir betrachten

x =7 (mod 200),
=82 (mod 375).
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Wir finden, dass ggT(200, 375) = 52 und 200 = 52-8 und 375 = 5%-3. Da 7 = 82
(mod 25), ist das System von Kongruenzen konsistent. Der chinesische Restsatz
impliziert, dass die erste Kongruenz dquivalent ist zu

r=7 (mod 5?) und x =7 (mod 8).
Die zweite Kongruenz ist dquivalent zu
r =82 (mod 5%) und x=82=1 (mod 3).

Insgesamt ist das System von Kongruenzen dquivalent zu

(mod ),

82 (mod 5%),
7
1 (mod 3).

x
X
x

Mit der Methode des Beweises von Theorem 2.7.1 iiberpriift man, dass z = 1207
(mod 53-8 3) eine Losung des Systems ist. Man bemerke, dass das System von
Kongruenzen eine eindeutige Lésung modulo 52 - 8 - 3 = 3000 statt modulo
200 - 375 = 75000 hat.

Satz 2.7.5 (Multiplikativitét der p-Funktion) (a) Seienmi,ms € N tei-
lerfremd. Es gilt

p(mima) = @(m1)p(mz).
(b) Sei p eine Primzahl. Fiir alle r > 1 gilt, dass

e(p") =p""'(p-1).

c) Sein =[], pi" die Primfaktorzerlegung von n mit p; paarweise teilerfremd.
¥ K2
Es gilt

on) =TT po i — 1) =n [0 - %»
% pln

Beweis: Sei m = myms mit ggT(mq, mg) = 1. Wir definieren die Abbildung

b Z/mZL* — L]miZ* X L]meZ*

a (mod m)— (a (mod mi),a (mod ms)).

Da a genau dann teilerfremd zu m ist, wenn ggT(a,m1) = ggT(a, ma) = 1, ist @
wohldefiniert. Der chinesische Restsatz (Theorem 2.7.1) impliziert, dass ® eine
Bijektion ist. Teil (a) folgt.

Fiir (b) bemerken wir, dass 0 < a < p” genau dann teilerfremd zu p” ist,
wenn a teilerfremd zu p ist, also genau dann wenn p | a. Durch Abzihlen findet
man, dass genau p” ' Zahlen zwischen 0 und p” teilbar durch p sind. Also ist
o) =p —p Tt =p"tp—1).

Teil (c) folgt aus (a) und (b). m|
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Beispiel 2.7.6 Da n = 375 =53 - 3 finden wir, dass
©(375) = p(125) - p(3) = 52 - 4 - 2 = 200.

Alternativ gilt auch

1 1
(375) = 375 (1= 2)(1 - 5) = 375-4-2/15 = 200.

3 Kryptographie

Ziel der Kryptographie ist es, eine geheime Botschaft zu verschicken iiber einen
unsicheren Kanal, sodass nur der beabsichtigte Empfinger die Botschaft lesen
kann. Dieses Problem beschéftigt Menschen schon seit Jahrtausenden: Das erste
Kryptoverfahren, das wir besprechen, wurde von Julius Ceasar benutzt um mit
seinen Offizieren zu kommunizieren. Mit der Zunahme des modernen Datenver-
kehr im Internet, ist die Kryptographie immer wichtiger geworden: eBay und
Amazon, wiren ohne Kryptographie unmoglich.

Wir fithren zuerst einige Begriffe ein. Der Klartext ist die eigentliche Nach-
richt. Die Verschliisselung #ndert die Nachricht in einen Geheimtext oder eine
verschliisselte Nachricht. Die verschliisselte Nachricht wird von dem Empfanger
entschliisselt. Zum Ver- und Entschliisseln braucht man in der Regel einen
Schliissel.

3.1 Die Caesar-Chiffre

Als Einfiihrung in die Kryptographie besprechen wir in diesem Abschnitt ein
sehr altes Kryptoverfahren: Die Caesar-Chiffre. Diese wurde von Julius Caesar
benutzt um mit seinen Offizieren zu kommunizieren.

Wir fangen damit an, dass wir jedem Buchstaben eine Zahl zuordnen, wie
im folgenden Schema.

a|lblcl|d|e|f|lg|h|i|]j|lk|]l|m|n]o
012|345 |6|7|8]9(10|11]12]13|14 9
plalr]|s u| v iw|x|y|z ©)
151161718 [19]20|21 |22 |23 |24 |25

Man kann wahlweise den Lesezeichen und den Lehrzeichen auch eine Zahl
zuordnen. Wir machen dies hier nicht. Wir machen auch keinen Unterschied
zwischen Grof- und Kleinbuchstaben.

Wir mochten nun den Klartext in einen Geheimtext verschliisseln. Dies ma-
chen wir, in dem wir jeden Buchstaben des Klartextes einen neuen Buchstaben
des Geheimtextes mittels folgender Vorschrift zuordnen

C=B+3 (mod 26), (10)
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hierbei ist B ein Buchstabe der Nachricht und C ein Buchstabe der verschliisselten
Nachricht. Die Zahl C wird dann mit (9) wieder in eine Buchstabe umgewan-
delt. Der Effekt ist also, dass jede Buchstabe um 3 verschoben wird: A wird D,
B wird F und so weiter.

Zum Entschliisseln muss man nur das Verfahren umkehren.

Beispiel 3.1.1 Die Verschliisselung der Nachricht
Es gibt Kuchen

ist
hvjlewnxfkhq.

Eine Verallgemeinerung der Caesar-Chiffre sind die sogenannte affine Chif-
fren. Diese funktionieren sehr dhnlich wie die Caesar-Chiffre: Auch hier wer-
den einzelne Buchstaben andere Buchstaben zugeordnet. Wir ordnen wieder die
Buchstaben einer Zahl zu, wie oben. Statt (10) benutzen wir nun die Vorschrift

C=aB+d (mod 26), (11)

wonach wir die neue Zahl wieder in einen Buchstaben zuriickwandeln. Die Zah-
len (a,d) sind der Schliissel des Chiffrierverfahrens. Die Caesar-Chiffre hat den
Schliissel (1,3). Allgemeiner heifit eine affine Chiffre mit Schliissel (1, %) eine
Verschiebechiffre: Die Buchstaben werden um k verschoben.

Beispiel 3.1.2 Als Beispiel nehmen wir ¢ = 7 und d = 10. Die Zuordnung der
Buchstaben wird nun:

alblc|ld|e|f|lg|h|il]j l|m|n Pla
kir|y|f|m|t|a|h|o|v|c|j|la|x]|e]|l]s (12)
r{s|tju|v|w|x|y|z

zlg|n|lu|lb|i|p|w|d

Zum Beispiel, der Buchstabe 1 hat die Nummer 11. Da 7-11+10=87=9
(mod 26) wird 1 verschliisselt zu j, und so weiter.
Die geheime Nachricht

fkgglomjognkug
ist entschliisselt
dasspielistaus.

Ein Schliissel (a,d) liefert nur dann eine giiltiges Chiffrierverfahren, wenn
die Abbildung (11) bijektiv ist.

Lemma 3.1.3 Das Chiffrierverfahren (11) mit Schliissel (a,d) ist genau dann
bijektiv, wenn ggT(a,26) =1 ist.
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Beweis: Ubungsaufgabe. O

Wie sicher sind diese Schliisseln? Offensichtlich nicht sehr sicher. Nehmen
wir an, unsere kleine Schwester hat ihren heimlichen Idol einen Liebesbrief ge-
schrieben und dieser mit einem affinen Schliissel verschliisselt. Wir haben den
Brief gefunden. Wie schwierig ist es den Brief zu entschliisseln? Es gibt nur 26
Mboglichkeiten fiir d und 26 — 13 — 2 = 11 Moglichkeiten fiir a (Lemma 3.1.3),
also insgesamt 26 - 11 = 286 mogliche affine Schliisseln. Mit einem Rechner kann
man leicht alle Schliiseln durchprobieren. Aber auch ohne Rechner ist es leicht
den Schliissel zu knacken. Der Schwachstelle des affinen Schliissels ist ndmlich,
dass jeder Buchstabe einem festen Buchstaben zugeordnet wird. Es ist bekannt,
welche Buchstaben am héufigsten vorkommen, zum Beispiel ist e der hiufigste
Buchstabe. Dies kann man benutzen um zu raten zu welchem Buchstaben e
verschliisselt wird. Nach und nach kann man nun weitere Buchstaben raten.

Hier finden Sie die Haufigkeit (in Prozenten) der Buchstaben in der Deutsche
Sprache:

A B|C]|D]J]E]|]F]|G]H I T | K
6,51 | 1,89 | 3,06 |5,08 | 17,4 | 1,66 | 3,01 | 4,76 | 7,55 | 0,27 | 1,21
L | M| N]J]O[|PJ]Q]R]S]|T]J]U][V
344 (3,53 9,78 12,52 0,79] 0,02 7,00 | 7,27 | 6,15 | 4,35 | 0,67
WX | Y| Z
1,8910,03]0,04 | 1,13

Quelle: http://weddige.eu/tools/kryptix/ . Diese Seite hat auch ein
kleines Programm das Verschiebechiffren knacken kann.

3.2 Das RSA-Verfahren

Die Caesar-Ciffre aus § 3.1 ist ein Beispiel eines symmetrischen Schliisselverfahrens:
Jeder der verschliisseln kann, kann auch entschliisseln. Anders gesagt, der gleiche
Schliissel wird sowohl benutzt um zu verschliisseln als auch um zu entschliisseln.
Da jeder, der den Schliissel besitzt, symmetrische Schliisselverfahren sowohl ver-
als auch entschliisseln kann, miissen sich Sender und Empfinger des Geheim-
textes auf einen Schliissel geeinigt haben. In modernen Internetanwendungen ist
dies oft unmoglich: Man brauchte dafiir einen zweiten sicheren Kommunikati-
onskanal, das, anders als das Internet, nicht abgehort werden kann.

Um dieses Problem zu umgehen benutzt man asymmetrische Schliisselverfahren
oder auch Public-Key-Kryptosysteme. Diese Systeme benutzen zwei verschie-
dene Schliissel: Ein éffentlichen Schliissel (oder: public key), den jeder benut-
zen kann um Nachrichten zu verschliisseln. Der zweite Schliissel ist der private
Schliissel (oder: private key). Nur wer den privaten Schliissel kennt, kann den
Geheintext entschkiisseln.

In diesem Abschnitt besprechen wir das RSA-Verfahren. Es wurde in den
siebziger Jahren des 20ten Jahrhunderts von Ronald Rivest, Adi Shamir und
Leonard Adleman entwickelt und von ihnen auch patentiert (siehe www.RSA. com).
Das Kryptosystem benutzt modulares Potenzieren (§ 2.6).
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Der offentliche Schliissel besteht aus einen Exponenten e und einen Modulus
n, welcher ein Produkt n = pq zweier groflen Primzahlen p und ¢ ist. Auflerdem
gilt, dass ggT(e, p(n)) = 1 ist. Es ist nur n offentlich bekannt, nicht die Prim-
faktorzerlegung von n. Da n = pq das Produkt zweier Primzahlen ist, folgt aus

Satz 2.7.5, dass ¢(n) = p(p)p(q) = (p— 1)(g —1).

Schritt 1: Vorbereitung: Zum Verschliisseln wandeln wir den Klartext in
eine Zahlenfolge um (A=00, B=01, ..., Z=25). Dann teilen wir die Nachricht
in Blocke gleicher, vorgegebener, gerader Lange ein. Falls der letzte Block nicht
voll ist, ergénzen wir mit Dummies: Ein Dummy entspricht den Wert 26.

Als Beispiel betrachten wir die Nachricht “Hilfe” und nehmen Blécke der
Lénge 4. Wir bekommen also die folgenden 3 Blocke:

0708 1105 0426. (13)

Schritt 2: Verschliisseln: Der dffentliche Schliissel besteht aus zwei Zahlen
(e,n), wobei n = pq das Produkt von 2 grofien Primzahlen ist und wobei
ggT(e,o(n)) = 1 gilt. Wir bemerken, dass nur n bekannt ist und nicht seine
Primfaktorzerlegung.

Ein Block B des Klartextes wird nun mit folgender Vorschrift verschliisselt:

C =B° (mod n). (14)

Wir bemerken, dass n grofler als der grofite mogliche Block sein soll. In
diesem Skript nehmen wir einfachheitshalber Blocke der Lénge 4. Der grofite
Block ist daher Z+Dummy also 2526. Wir brauchen daher n > 2526. In der
Praxis braucht man natiirlich eine viel gréflere Schliisselléinge.

Schritt 3: Entschliisseln: Der private Schliissel ist (d,n), wobei d die Inverse
von e modulo (n) ist. Ist ¢(n) bekannt, kann man d mit Hilfe des erweiteren eu-
klidischen Algorithmus (Lemma 1.1.9) berechnen. Zum Entschliisseln berechnen
wir nun

D(C)=C? (mod n) (15)

Um zu sehen, dass wir die Nachricht entschliisselt haben, schreiben wir de =
1 + kp(n). Der Satz von Euler (Satz 2.5.7) sagt, dass B¥(™) = 1 (mod n) ist,
falls B und n teilerfremd sind. In diesem Fall gilt daher, dass

D(C) = ¢4 = Bl = B'tk¢(m) = B.(B*M)* = B (mod n).

Also haben wir die Nachricht B entschliisselt. Die Wahrscheinlichkeit, dass n und
B nicht teilerfremd sind, ist sehr klein: Wir konnen diese Moglichkeit ignorieren.
Beispiel 3.2.1 (a) Wir verschliisseln die Nachricht (13) mit Hilfe des Schliissels
n=3127und e = 17:

(0708)'7 = 1357 (mod 3127), (1105)'7 =3047 (mod 3127),
(0426)'7 = 1222 (mod 3127).
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Der Geheimtext ist daher:
1357 3047 1222.

(b) Wir haben den Geheimtext
1767 1087 0032

abgefangen. Der 6ffentliche Schliissel ist (e = 13,n = 2537). Um den Code
zu knacken, berechnen wir das Inverse von e modulo ¢(n). Hierzu brauchen
wir zuerst ¢(n). Dies kénnen wir berechnen mit Hilfe von Satz 2.7.5. Hierzu
brauchen wir die Primfaktorzerlegung von n. Mit Probedivision (§ 1.3) finden
wir, dass n = 2537 = 43 - 59. Also folgt, dass ¢(n) = (43 — 1)(59 — 1) = 2436.
Wir berechnen d = e~! (mod ¢(n)) mit Hilfe des erweiteren euklidischen
Algorithmus. Der erweiterte euklidische Algorithmus liefert uns ganze Zahlen

x,y mit zp(n) + ye = 1. Da d = y brauchen wir x nicht zu berechnen. Wir
finden

1 a; Qi Yi
—11]2436 | — 0

0 13 — 1

1 5 187 | —187
2 3 2 375
3 2 1 —562
4 1 1 937

Also ist d = 937.
Wir entschliisseln den Geheimtext und finden:

(1767)* = 0613 (mod n) (1087)¢ = 0003 (mod n), (0032)% = 0426 (mod n).

Die Klartext ist daher: Gnade. Wir beachten, dass die letzten zwei Zahlen ein
Dummy darstellen.

Wir haben jetzt gesehen, wie man mit Hilfe des RSA-Verfahern ver- und
entschliisselt. Aber wieso funktioniert die Methode? Die grundlegende Idee ist,
dass es einfach ist ein Schliissel zu bauen und ver- und entschliisseln schnell
geht, aber, dass es schwierig ist ein Code zu knacken.

Um einen Schliissel zu bauen braucht man zwei grofle Primzahlen p und gq.
Im Prinzip kénnte man dies mit Hilfe des Siebes von Eratosthenes (Algorith-
mus 1.3.3) machen. Die aktuelle minimale Sicherheitsstandards schreiben eine
Schliissellinge von 1024 Bits vor, d.h., dass n = 21924 ist: Dies ist eine Zahl mit
308 Dezimalstellen. Falls n also das Produkt von 2 ungeféhr gleich groflen Prim-
zahlen p und gq ist, sind p, ¢ Zahlen mit ungefihr 154 Dezimalstellen. Es ist klar,
dass wir solche grofie Primzahlen nicht mit Hilfe des Siebs von Eratosthenes
finden mo6chten. Wie wir dies trotzdem machen kénnen, lernen wir im néchsten
Abschnitt (§ 3.3).

Eine andere Anforderung an einen praktikablen Kryptosystem ist, dass das
Ver- und Entschliisseln relativ schnell geht. Zum Ver- und Entschliisseln muss
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man Potenzen modulo n berechnen. Dies macht man mit schneller Exponentia-
tion (§ 2.6).

Wir schauen uns das Knacken eines Codes etwas genauer an (siehe Beispiel
3.2.1.(b)). Der offentliche Schliissel (e,n) ist bekannt. Um den Geheimtext zu
entschliisseln, miissen wir aus e und n die Zahl d berechnen. Hierzu brauchen
wir p(n). Lemma 3.2.2 sagt uns, dass die Berechung von ¢(n) dquivalent ist zur
Berechnung der Primfaktorzerlegung von n, also zur Berechnung von p und gq.
Die Sicherheit des RSA-Verfahrens beruht daher darauf, dass es schwierig ist
die Primfaktorzerlegung einer groflen Zahl zu finden.

Lemma 3.2.2 Gegeben ist eine RSA-Zahl n. Die Berechnung von ¢(n) ist
dquivalent zur Berechnung der Primfaktorzerlegung n =1p - q.

Beweis: So bald wir die Primfaktorzerlegung n = p-q von n gefunden haben,
kennen wir auch p(n) = (p — 1)(¢ — 1).
Umgekehrt, falls wir n und ¢(n) = (p — 1)(¢ — 1) kennen, kennen wir auch

n+1l—-—9n)=pg+1-(p-1)(¢g-1)=p+gq

und

Vo+a)?2—dn=p+2ps+¢ —4pg=+/lp—a)2=1p—q

Einfachheitshalber nehmen wir an, dass p > ¢ ist, dann gilt [p — ¢| = p — ¢. Wir
kennen nun auch

(p+4q)—(p—aq)

DN | =

p=%[(p+Q)+(p—Q)] und ¢ =

O

Zahlen, die das Produkt zweier grofien Primzahlen sind, heiflen RSA-Zahlen.
Die grofite faktorisierte RSA-Zahl besitzt 200 Dezimalziffern (663 Bits) (Stand:
May 2008). Die RSA-Firma, die das Patent auf RSA besitzt, vergab bis vor
kurzen Geldpreisen von bis zu $100.000 fiir das Faktorisieren von RSA-Zahlen.
Dies machten sie, um auf dem Laufenden zu bleiben {iber die schnellsten Fakto-
risierungstechniken. Diese Herausforderung ist aktuel zuriickgezogen. Mehr In-
formationen iiber das Faktorisieren von Primzahlen und wie Sie Thren Rechner
mithelfen lassen konnen neue Rekorde zu brechen, finden Sie auf der Webseite:
http://primes.utm.edu/.

3.3 Primzahltests

Das RSA-Verfahren basiert auf der Tatsache, dass es viel einfacher ist zu testen
ob eine Zahl (wahrscheinlich) prim ist als die vollstéindige Primfaktorzerlegung
zu finden. Um einen privaten Schliissel fiire das RSA-Verfahren zu bauen, sucht
man 2 grofle Primzahlen p und ¢. Um den RSA-Verfahren zu knacken, muss
man die Primfaktorzerlegung des 6ffentlichen Schliissels n finden.
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In diesem Abschnitt besprechen wir, wie man grofle Primzahlen konstruiert.
Genauer gesagt, besprechen wir Tests, die uns sagen ob eine gegebene natiirliche
Zahl wahrscheinlich eine Primzahl ist, oder nicht. Hierzu benutzen wir den klei-
nen Satz von Fermat (Korollar 2.5.8). Dieser sagt uns, dass falls p eine Primzahl
ist, so gilt fiir alle b € N, dass

b’ =b (mod p) (16)

ist. Wenn wir also eine Zahl b finden, sodass ™ # b (mod n), so ist n auf jeden
Fall keine Primzahl. Dies ist unser erster Primzahltest: Gegeben ist eine Zahl
n, von der wir wissen mochten ob sie eine Primzahl ist. Wir wéhlen eine Basis
b und berechnen " (mod n). Falls b # b (mod n), so ist n keine Primzahl.
Falls b™ = b (mod n), so kénnte n eine Primzahl sein. Wir untersuchen nun,
wie sicher wir uns sein kénnen, dass n tatséchlich eine Primzahl ist.

Definition 3.3.1 Eine natiirliche Zahl n > 1 heifit Pseudoprimzahl zur Basis
b, falls n zusammengesetzt ist und " = b (mod n) gilt.

Beispiel 3.3.2 Wir fragen uns ob n = 123456791 und m = 123456793 Prim-
zahlen sind. Wir kénnten dies natiirlich mit Hilfe der Probedivision (§ 1.3)
machen. Falls n und m Primzahlen wéren, miissten wir v/n 2 11111 Divisionen
mit Rest durchfiihren.

Wir berechnen mit schnellen Exponentiation (§ 2.6), dass

2123456791 — 9 (mod 123456791), und 2'23456793 = 8474892 (mod 123456793).

Also ist m = 123456793 auf jeden Fall keine Primzahl. Die Zahl n = 123456791
ist entweder eine Pseudoprimzahl zur Basis 2 oder eine Primzahl. Es stellt sich
heraus, dass 123456791 tatséchlich eine Primzahl ist.

Beispiel 3.3.3 Die kleinste Pseudoprimzahl zur Basis b = 2 ist n = 341. Es
gilt, ndmlich, dass n = 11 - 31, also ist n zusammengesetzt. AuBlerdem gilt,
dass 234! = 2 (mod 341). Die einzige andere Pseudoprimzahlen zur Basis b = 2
kleiner als 1000 sind 561 =3 -11-17 und 645 =3-5-43.

Wir fragen uns ob, und wenn ja wie viele, Pseudoprimzahlen n zur Basis b es
gibt, also Zahlen die die Kongruenz (16) erfiillen, obwohl sie zusammengesetzt
sind. Die folgende Tabelle zeigt wie oft dies passiert fiir die Basis b = 2. Da 2
die einzige gerade Primzahl ist, ignorieren wir die gerade Zahlen.

Anzahl der ungeraden Pseudoprimzahlen < 103 3
Anzahl der Primzahlen < 103 168
Anzahl der ungeraden Pseudoprimzahlen < 10° | 245
Anzahl der Primzahlen < 103 78498

Die Tabelle zeigt, dass die Anzahl der ungeraden Pseudoprimzahlen zur Basis
b = 2 klein ist im Vergleich zur Anzahl der Primzahlen. Falls 2™ = 2 (mod n)
ist, so ist die Wahrscheinlichkeit daher grof3, dass n eine Primzahl ist. Trotzdem
gibt es unendlich viele Pseudoprimzahlen zur Basis 2.
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Satz 3.3.4 Es gibt unendlich viele Pseudoprimzahlen zur Basis b = 2.

Beweis: Wir zeigen folgende Aussage: Falls n eine ungerade Pseudoprimzahl
zur Basis b = 2 ist, so ist auch m := 2™ — 1 eine ungerade Pseudoprimzahl zur
Basis b = 2. Da es mindestens eine ungerade Pseudoprimzahl zur Basis b = 2
gibt (Beispiel 3.3.3), finden wir so unendlich viele Pseudoprimzahlen zur Basis
b=2.

Sei n eine ungerade Pseudoprimzahl zur Basis b = 2. Es gilt, dass 2" = 2
(mod n). Da n ungerade ist, gilt auch 2"~! =1 (mod n) (Satz 2.1.5). Da n eine
Pseudoprimzahl ist, ist n zusammengesetzt. Sei m = 2™ — 1.

Lemma 1.2.2 impliziert, dass m zusammengesetzt ist, da n keine Primzahl
ist. Wir behaupten, dass 2™ = 2 (mod m) gilt. Hieraus folgt, dass m auch eine
Pseudoprimzahl zur Basis b = 2 ist.

Da 2™ =2 (mod n), gibt es eine Zahl k& mit 2" — 2 = n - k. Also gilt

2m—1 — 22"—2 _ 2nvkr'

Lemma 1.2.2 impliziert, dass m = (2" — 1) | (2" —1). Dan-k=m — 1, gilt

2m~1 =1 (mod m)

und daher 2™ = 2 (mod m). O

Man kann den Primzahltest wie folgt verbessern. Falls n den Primzahltest
zur Basis b = 2 bestanden hat, so berechnen wir 3" (mod n), 5 (mod n), und
so weiter. Zum Beispiel gilt 234! = 2 (mod 341) aber 334! = 168 # 3 (mod 341).
Die Zahl 341 ist daher keine Pseudoprimzahl zur Basis b = 3.

Leider gibt es Zahlen n, die Pseudoprimzahl sind zu alle Basen b. Egal wie
viele Basen wir versuchen, wir werden mit dieser Methode nie herausfinden, dass
n zusammengesetzt ist.

Definition 3.3.5 Eine zusammengesetzte Zahl n > 1 heifit Carmichael-Zahl,
falls
b"=b (mod n), fiir alle b.

Lemma 3.3.6 Die Zahl n = 561 ist eine Carmichael-Zahl.

Beweis: Da n = 561 = 3 - 1117 ist, so ist 561 zusammengesetzt. Wir
behaupten, dass %' = b (mod 561) fiir alle b gilt. Der chinesische Restsatz
sagt, dass die Kongruenz 656! = b (mod 561) #quivalent zu dem System von
Kongruenzen

bl =5 (mod 3),
b6l =1b  (mod 11),
b5l =1b  (mod 17)

ist.
Falls 3 | b, so ist gilt sicherlich, dass b°®! = b (mod 3). Nehmen wir also
an, dass 3 1 b. Da 561 = 1 4 2 - 280 folgt aus dem kleinen Satz von Fermat
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(Korollar 2.5.8), dass b%6! = b - 1280 (mod 3) ist. Die Verifikation der beiden
anderen Kongruenzen ist dhnlich. O

Der folgende Satz gibt eine Charakterisierung von Carmichael-Zahlen. Der
Satz wurde in 1899 von A. Korselt bewiesen: Dies war 10 Jahren vor Carmichael
die erste Beispiele von Carmichael-Zahlen gefunden hat. Korselt war sich sicher,
dass solche Zahlen nicht existieren und sah seinen Satz als den ersten Schritt
dies zu beweisen. Eine Zahl n heiflt quadratfrei, falls 1 das einzige Quadrat,
das n teilt, ist. Der Beweis des Satzes ist nicht sehr schwierig, aber benutzt den
Begriff der Primitivwurzel, den wir erst in § 5.1 einfithren werden.

Satz 3.3.7 Sei n eine quadratfreie, zusammengesetzte, natiirliche Zahl, also
n = p1-p2---pr, wobei die p; paarweise verschiedene Primzahlen sind. Die Zahl
n ist genau dann eine Carmichael-Zahl, wenn (p; — 1) | (n — 1) fiir alle i gilt.

Mit Hilfe von Satz 3.3.7 kéonnen wir einen neuen Beweis von Lemma 3.3.6
geben. Wir haben schon gesehen, dass 561 = 3-11-17, also ist n = 561 quadratfrei
und zusammengesetzt. Da 561 — 1 = 560 = 2% . 5. 7 ist, folgt, dass p — 1 | 560
fiir p = 3,11,17. Dies zeigt erneut, dass 561 eine Carmichael-Zahl ist.

In 1910 vermutete Carmichael, dass es unendlich viele Carmichael-Zahlen
gibt. Dies wurde in 1994 von W.R. Alford, A. Granville und C. Pomerance
bewiesen. Obwohl es unendlich viele Carmichael-Zahlen gibt, sind diese sehr
selten: Die Anzahl der Carmichael-Zahlen kleiner als 25 - 109 ist 2163.

Die Tatsache, dass Carmichael-Zahlen existieren, zeigt, dass unser Prim-
zahltest noch nicht gut genug ist. Daher besprechen wir nun einen besseren
Primzahltest. Dieser basiert auf folgender Beobachtung.

Lemma 3.3.8 Sei p eine ungerade Primzahl und schreibe
p—1=2%, mit t ungerade.
Sei b eine natiirliche Zahl, die nicht von p teilbar ist. Es gilt
(a) entweder b* =1 (mod p),
(b) oder b2t = —1 (mod p) fiir ein i mit 0 < i < s.

Beweis: Der kleine Satz von Fermat (Korollar 2.5.8) impliziert, dass b?~! =
1 (mod p). Da p — 1 = 2%¢, so ist eine der Zahlen

s—1 s
bt, th, ...,b2 t7 b2t

kongruent zu 1 (mod p). Falls b* =1 (mod p), so tritt Fall (a) des Lemmas auf.
Sonst existiert ein 1 < i < s, sodass b2t = 1 (mod p), aber b2 't # 1 (mod p)
ist. Die impliziert, dass

pl (B 1) =* -1 ).

Da p eine Primzahl ist mit p ¢ (b2 't — 1), folgt, dass p | (b 't 4 1) (Lemma
1.2.3). Also gilt, dass b2 't = —1 (mod p): Fall (b) des Lemmas trifft zu. O
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Definition 3.3.9 (a) Eine ungerade, zusammengesetzte Zahl n heifit starke
Pseudoprimzahl zur Basis b, falls n teilerfremd zu b ist und die Bedingung
von Lemma 3.3.8 erfiillt ist.

(b) Falls n keine starke Pseudoprimzahl zur Basis b ist, so heifit b eine Zeuge
fiir n.

Beispiel 3.3.10 (a) Wir haben gesehen, dass 341 eine Pseudoprimzahl zur Ba-
sis b = 2 ist. Wir iiberpriifen, dass 341 keine starke Pseudoprimzahl zur Basis
b = 2 ist. Wir schreiben 341 — 1 = 22 .85, also ist s = 2 und t = 85. Nun gilt

2% =32 (mod 341) (mod 341), 2*% =1 (mod 341).

Daher ist sowohl Lemma 3.3.8.(a) als auch Lemma 3.3.8.(b) nicht erfiillt. Wir
schlieflen, dass 341 keine starke Pseudoprimzahl zur Basis b = 2 ist.

Wir bemerken, dass 22% = 1 (mod 341) aber 2%° # 41 (mod 341). Dies
illustriert, dass a® = 1 (mod 341) nicht impliziert, dass a = +1 (mod 341) gilt,
wie im Beweis von Lemma 3.3.8. Der Grund ist, dass 341 keine Primzahl ist.

Die kleinste starke Pseudoprimzahl zur Basis b = 2 ist 2047.

(b) Sei n = 91 und b = 10. Wir schreiben n — 1 = 2 - 45, also ist s = 1 und
t =45. Da

b' =10 = -1 (mod 91),

ist Lemma 3.3.8.(b) erfiillt fiir « = 0. Daher ist n eine starke Pseudoprimzahl
zur Basis b = 10.

Theorem 3.3.11 Sei n > 9 eine ungerade, zusammengesetzte Zahl. Wir defi-
nieren

S(n) = {b e (Z/nZ)* | n ist eine starke Pseudoprimzahl zur Basis b}.

Die Anzahl der Elementen von S(n) ist kleiner gleich ¢(n)/4.

Beweis: Ein Beweis des Satzes wird zum Beispiel gegeben in [3, Satz 3.2.4].
O

Theorem 3.3.11 bedeutet also, dass mindestens 75 % der Elementen von
(Z/nZ)* Zeugen fiir n sind. Insbesondere, gibt es keine starke Carmichael-
Zahlen. Wir konnen Theorem 3.3.11 benutzen um mit beliebig hoher Wahr-
scheinlichkeit festzustellen ob eine gegebene Zahl eine Primzahl ist. Wir haben
eine Zahl n gegeben von der wir vermuten, dass sie eine Primzahl ist. Wir
withlen nun zufillig 100 beliebige Basen b mit 0 < b < n und {iberpriifen ob
n eine starke Pseudoprimzahl zur Basis b ist. Falls dies der Fall ist fiir alle
100 Basen b, so ist die Wahrscheinlichkeit, dass n trotzdem zusammengesetzt
ist kleiner als 1 — (0,25)19° = 4. 10761, Man wihlt die Anzahl der Basen so
grof3, dass die erwiinschte Genauigkeit erreicht wird. Dieser Primzahltest heift
Miller-Rabin-Test.
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3.4 Die Pollard-p-Methode

In diesem Abschnitt besprechen wir einen anderen Algorithmus zur Berechnung
der Primfaktorzerlegung einer Zahl n. Fiir groflere Zahlen ist diese Methode
schneller als die Probedivision. In der Praxis wird die Probedivision benutzt um
kleine Primfaktoren p zu finden (das heifit p < 10%) und Pollard-p fiir Primfak-
toren p von mittlere Gréfie (ungefihr 10* < p < 10'%). Um die wirklich grofien
Primfaktoren zu finden, braucht man eine weitere Methode, wie zum Beispiel
das quadratische Sieb. Diese Methode besprechen wir nicht in der Vorlesung
Elementare Zahlentheorie.

Die Pollard-p-Methode wurde von J. Pollard im Jahre 1975 entdeckt. Ein
neuer Bestandteil dieser Methode ist eine gewisse Zufallskomponente.

Wir erkldren zuerst die Idee der Methode. Gegeben ist eine (zusammenge-
setzte) Zahl n. Wir suchen einen Primfaktor p | n. Es reicht einen nichttrivialen
Faktor d von zu n finden: Wir wenden den Algorithmus nun auf d und n/d an
und wiederholen dies bis wir die Primfaktorzerlegung von n gefunden haben.

Wie finden wir einen nichttrivialen Faktor von n? Sei p ein Primfaktor von
n. Wir betrachten die Funktion

f:Z/pZ — Z/pZ, 2?2 +1 (mod p).
Wir wihlen einen Startwert zo € Z/pZ und definieren rekursiv ;11 = f(z;).

Fakt: Die Werte x, 1 = f(x0),z2 = f(x1),--- verhalten sich wie eine Zufalls-
folge, dass heif}t als ob die x; unabhéngig voneinander gewahlt wurden.

Da es nur endlich viele Méglichkeiten fiir x; € Z/pZ gibt, wiederholen die x;’s
sich irgendwann. Sei ¢ < j minimal sodass z; = z; (mod p). Sobald dies passiert,
gilt

Titt = x4 (mod p), fiir alle t > 0.

Graphisch kann man sich dies vorstellen wie in Abbildung 1. Die Name der
Methode kommt von der Form des Bildes.

Ty =Ty

T
Toe

Abbildung 1: Das Pollard-p-Verfahren
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Wie hilft uns dies, die Zahl n zu faktorisieren? Ein Problem ist dass wir p
noch nicht kennen, also f(x;) = 22 + 1 (mod p) nicht berechnen kénnen. Wir
definieren daher die Funktion

F:Z/nZ — Z/nZ, X — X?+1 (modn),

und setzen X = x¢. Fiir ¢ > 0 definieren wir rekursiv X; = F(X;_1) (mod n).
Da p | n gilt nun X; = z; (mod p). Falls

z;=xz; (mod p),
gilt auch
p | ggT(Xi — Xj,n).

Dies liefert uns folgenden Algorithmus.

Algorithmus 3.4.1 (Die Pollard-p-Methode: erste Version) (a) Wéhle
Xo € {0,...,n — 1}. Fiir ¢ > 0 definieren wir X; durch X; = F(X;_1)
(mod n).

(b) Fiir alle j < i berechnen wir ggT(X; — X;,n).
(¢) — FallsggT(X;—X,,n) =1, fiir alle j, so erhéhen wir ¢ und wiederholen
Schritt (b).
— Falls wir ein j finden, sodass ggT(X; — X;,n) # 1,n, so haben wir
einen nichttrivialen Faktor gefunden.

— Falls ggT(X; — X;,n) = n, so miissen wir einen neuen Startwert X
wéihlen und von vorne anfangen.

Eine Vereinfachung. Wir moéchten nicht alle Paare i < j iiberpriifen, da dies
zu aufwendig ist. Stattdessen definieren wir

Xo =Y, Xit1 = F(X;) (mod n), Yiy1 = F(F(Y;)) (modn)
und berechnen nur
d=geT(X; —Y;,n).
Man zeigt

Lemma 3.4.2 Es existiert eine Zahl k mit ggT (X} — Yi,n) # 1.

Hier ist die Beweisidee. Man kann sich dies graphisch so vorstellen: X und Y
veranstalten ein Rennen iiber die Rennstrecke (Abbildung 1). Wir wissen nicht
wo die unterschiedliche Anfangspositionen sind, aber Y lduft 2 Mal so schnell
wie X. (Jedes Mal, wenn wir ¢ erhéhen wenden wir die Funktion F auf X einmal
an und auf Y zweimal.) Also iiberholt Y irgendwann X . Wenn dies passiert, gilt
Yi = Xk (mod n), und ist es ggT (Y — Xp,n) # 1.

Dies liefert uns nun folgenden Algorithmus.
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Algorithmus 3.4.3 (Die Pollard-p-Methode: zweite Version) (a) Wéhle
Xo €{0,...,n — 1} beliebig.

(b) Setze X;11 = F(X;) und Y;41 = F(F(Y;)). Berechne d; 11 = ggT(X;4+1 —
Y;-i—lun)'

(¢) Wiederhole Schritt (b) bis d;j+1 # 1. Falls d; 11 # n ist, so haben wir einen
nicht-trivialen Faktor von n gefunden. Falls d;;1 = n ist, so nutzt uns dies
nichts. Wir wéhlen einen neuen Anfangswert Xy und fangen von vorne an.

Beispiel 3.4.4 Sei n = 8051 und Xy = Yy = 2. Wir berechnen

i Xi Y | ds
115 26 1
2126 | 7474 |1
31677871 |97

Da d3 # 1, n, haben wir einen nicht-trivialen Faktor gefunden. Es gilt 8071 = 97-
83. Man stellt leicht fest (zum Beispiel mit Hilfe der Probedivision), dass 83 und
97 Primzahlen sind. Also haben wir die Primfaktorzerlegung von n gefunden.

Bemerkung 3.4.5 Man sollte die Pollard-p-Metode nicht auf eine Primzahl
anwenden. Falls n eine Primzahl ist, so ist ggT(Y; — X;,n) immer entweder 1
oder n. Also endet der Algorithmus in diesem Fall nie. Bevor man die Pollard-
p-Methode anwendet um die Primfaktorzerlegung zu finden, sollte man zuerst
einen Primzahltest anwenden um auszuschliefen, dass n wahrscheinlich eine
Primzahl ist.

4 Endliche Korper

4.1 Korper

In diesem Abschnitt geben wir eine kurze Einleitung in die Theorie der Korper.
Das Thema wird ausfiihrlicher in der Vorlesung Algebra I behandelt.

Definition 4.1.1 Eine Menge K zusammen mit 2 Verkniipfungen
+:KxK—K (a,b) — a+b,
K xK—>K (a,b) — a-b,

heilt Korper, falls folgende Bedingungen erfiillt sind:

(K1) (K,+) ist eine kommutative Gruppe, d.h.

(a) die Addition ist assoziativ, d.h. a + (b+ ¢) = (a + b) + ¢ fiir alle
a,b,ce K,

(b) es existiert ein neutrales Element 0, sodass 0+ a = a+ 0 = a fiir alle
a€ K,
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(c) fiir jedes a € K existiert ein negatives Element —a mit a + (—a) =
(—a)+a=0,
(d) die Addition ist kommutativ, d.h. a +b = b+ a fiir alle a,b € K,

(K2) (K \ {0},") ist eine kommutative Gruppe, das heifit

(a) die Multiplikation ist assoziativ, das heifit a- (b-¢) = (a-b) - ¢ fiir alle
a,b,c e K\ {0},

(b) es existiert ein Einheitselement 1, sodass 1-a = a-1 = a fir alle
a € K\ {0},
1

(c) fiir jedes a € K \ {0} existiert ein inverses Element a ™! mit a-a™! =

al a=1,

(d) die Multiplikation ist kommutativ, das heifit a - b = b - a fiir alle
a,be K\ {0},

(K3) es gelten die Distributivgesetzen:
a-(b+c)=a-b+a-c, (a+b)-c=a-c+b-ec
fiir alle a, b, c, € K.

Ein Unterkorper eines Korpers L ist eine Teilmenge K C L, sodass K ein
Korper ist beziiglich die Verkniipfungen + und - von L. Falls K C L ein Un-
terkorper ist, so heifit L eine Kérpererweiterung von K.

Beispiel 4.1.2 Beispiele von Korper sind die rationale Zahlen Q, die reelle
Zahlen R und die komplexe Zahlen C.

Lemma 4.1.3 Die Menge 7 /nZ ist genau dann ein Korper, wenn n eine Prim-
zahl ist.

Beweis: Alle Axiomen, aufler die Existenz des inversen Elements a~! fiir
alle a # 0, sind erfiillt.

Sei n eine Primzahl. Korollar 2.1.6 impliziert, dass jedes Element a € Z/nZ* =
Z/nZ\ {0} ein inverses Element besitzt.

Sei n zusammengesetzt und d | n ein nicht-trivialer Teiler von n, das heifit
d # 1,n. Es gilt, dass ggT(d,n) = d # 1, also ist d € (Z/nZ)*. Wir schlieflen
daraus, dass Z/nZ kein Korper ist. a

Lemma 4.1.3 zeigt, dass fiir jede Primzahl p ein Korper mit p Elemente
existiert. Dieser Korper bezeichnen wir mit IF,,. Der Korper [, ist nichts anderes
als die Menge Z/pZ. Der Buchstabe F' kommt vom englischen Wort fiir Korper:
field.

In diesem Kapitel werden wir zeigen, dass fiir jede Primzahlpotenz ¢ = p™
ein Korper F, mit ¢ Elementen existiert. Da Z/p"Z kein Korper ist (Lemma
4.1.3), brauchen wir eine andere Konstruktion.
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4.2 Polynome

Bevor wir in § 4.4 Korper mit ¢ = p™ Elementen konstruieren kénnen, brauchen
wie einige elementare Eigenschaften von Polynome.
Sei K ein Korper, zum Beispiel Q,R oder F,,. Sei

Kfa] = {f(2) = 3 aia’ |a; € K}
=0

die Menge der Polynome mit Koeffizienten in K. Die Menge K|[z] erfiillt alle
Axiome aus Definition 4.1.1 aufler (K2).(c). Wir nennen K[X] den Polynomring
iiber K.

Sei f = Y.I ja;z' € K[z] ein Polynom mit Koeffizienten a; € K. Das
Nullpolynom f = 0 ist das Polynom dessen Koeflizienten alle Null sind. Falls
f # 0 nicht das Nullpolynom ist, so heifit die grofite Zahl n, sodass a, # 0 ist,
der Grad von f (Bezeichnung: Grad(f).) Der Grad des Nullpolynoms definieren
wir als —o0.

Falls f, g ungleich Null sind, gilt Grad(fg) = Grad(f)+Grad(g). Falls f(z) =
St o aizt mit a, # 0 ist, heiBt a,z™ der fithrende Term von f. Ein Polynom
von Grad n heift normiert, falls der fithrende Term z” ist.

Seien f(z), g(x) € Kx]. Wir sagen, dass g(z) ein Teiler von f(z) ist, falls es
ein Polynom h(x) € K[x] gibt mit f(x) = g(z)h(x). Bezeichnung: g | f.

Im Polynomring K [x] kann man in vielerlei Hinsicht genau so rechnen wie in
Z. Zum Beispiel gibt es in K[z] einen euklidischen Algorithmus und man kann
den ggT berechnen. Die Berechnung des ggTs basiert auf Polynomdivision. Der
folgende Satz ist eine Version von Satz 1.1.5 fiir Polynome.

Satz 4.2.1 Sei K ein Korper und seien f(z), g(x) € K|x] Polynome mit g(x) #
0. Es existieren eindeutige Polynomen q(z) und r(x) € K[x] mit

f(x) = q(2)g(x) + r(x),
wobei Grad(r) < Grad(g) ist.

Wie im Fall der ganzen Zahlen nennen wir ¢(x) den Quotient und r(x) den
Rest nach Division von f(x) durch g(z).

Beweis: Wir beweisen zuerst die Existenz von ¢ und r. Falls g(z) ein Teiler
von f(x) ist, definieren wir ¢(z) = f(z)/g(z) und r(x) = 0.
Falls g(z) kein Teiler von f(x) ist, betrachten wir die Menge

M = {f(z) — g(x)q(z) | ¢(x) € K[z]}.

Da gt f, ist 0 € M. Sei r(x) € M ein Element kleinsten Grades. Offensichtlich
existiert ein Polynom ¢(z) mit f(z) = q(x)g(z) + r(x).

Wir miissen zeigen, dass Grad(r) < Grad(g) ist. Dazu schreiben wir r(z) =
S oriet und g(z) = Y, iz’ mit ry, # 0 und g, # 0. Wir nehmen an, dass
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m = Grad(r) > n = Grad(g) ist. Wir betrachten

) = r(z) = 2" g(a).
Dies ist definiert, da g,, # 0 ist. Aulerdem, ist h € M. Der Koeffizient von " in
hist 7, — gnTm/gn = 0, also gilt Grad(h) < m = Grad(r). Dies widerspricht den
Wahl von r als Polynom in M kleinsten Grades. Wir schliefen, dass Grad(r) <
Grad(g) ist.
Das Beweis der Eindeutigkeit ist dhnlich am Beweis von Satz 1.1.5. a

Korollar 4.2.2 Sei f(z) € K|x] ein Polynom. Ein Element a € K ist genau
dann eine Nullstelle von f, wenn ein Polynom q(x) mit

f(x) =q(@)(z —a)
existiert.

Beweis: Dies folgt unmittelbar aus Satz 4.2.1, da « — a genau dann ein
Teiler von f(x) ist, wenn der Rest von f nach Division durch z — a gleich 0 ist.
Hier haben wir benutzt, dass Grad(z — a) = 1 ist. a

Definition 4.2.3 Seien f,g € K[x] Polynomen, die nicht beide null sind. Ein
gemeinsamer Teiler von f und g ist ein Polynom h(z), das sowohl f als auch
g teilt. Der grofite gemeinsame Teiler von f und ¢ ist das normierte Polynom
grofiten Grades, das sowohl f als auch g teilt. Wir bezeichnen den ggT zweier
Polynome mit ggT(f,g).

Wir fordern, dass ggT(f,¢) ein normiertes Polynom ist, da der ggT sonst
nicht eindeutig wére. Wie im Fall ganzer Zahlen, berechnet man den ggT mit
Hilfe des euklidischen Algorithmus. Da Division mit Rest fiir Polynome existiert
(4.2.1), funktioniert das euklidischen Algorithmus wie fiir ganzen Zahlen.

Das Beweis des folgenden Lemmas ist identisch zum Beweis von Lemma
1.1.9. Wir iiberlassen es der LeserIn.

Lemma 4.2.4 Seien f,g € K|z] nicht beide Null. Sei d(z) = ggT(f(z), g(z)).

(a) Es existieren Polynomen s,t € K|x], sodass
d(x) = s(x)f () + t(z)g(z).

(b) Jedes Polynom, das sich schreiben lésst als s(x) f(x) + t(x)g(x) ist teilbar
durch d(z).

Beispiel 4.2.5 (a) Sei f(z) := 2° + 2% — 42 — 2 und g(z) := 2* + 23 + 222 +
32 + 1 Polynomen in Q[z]. Mit Hilfe des erweiterten euklidischen Algorithmus
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berechnen wir ggT(f(z), g(z)). Wir benutzen die gleiche Bezeichnung wie in
§1.1.

n | T | an |sn] ta
-1 0+ 22 — 4 —2 — 1 0
0 |z +a34+222+3x+1 | — 0 1
1 —z3 -2 —1 r—1| 1| —-2x+1

Da der ggT normiert ist, finden wir, dass
geT(f,9) = 2® + 20+ 1= (=1)f + (z —1)g.
(b) Wir betrachten nun K = F5 den Koérper mit 5 Elementen und
flx)=a®+42® +2 -1, g(x) =2 —2%+22+1 € Fs[a].
Wie oben berechnet man, dass

geT(f(z),g9(z)) =x+2=~f+g

ist.

Definition 4.2.6 Ein Polynom f € K[z] ein Polynom mit f # 0 heilt reduzi-
bel, falls ein Teiler g € K[z] von f mit 1 < Grad(g) < Grad(f) existiert. Sonst
heifit f irreduzibel.

Lemma 4.2.7 (a) Jedes Polynom von Grad 1 ist irreduzibel.

(b) Sei f € K|x] ein Polynom zweiten oder dritten Grades. Das Polynom f
ist reduzibel genau dann, wenn f eine Nullstelle in K besitzt.

Beweis: Teil (a) ist klar. Sei f ein Polynom zweiten oder dritten Grades. Wir
nehmen an, dass f reduzibel ist. Also lisst sich f schreiben als f(z) = g(z)h(x)
mit 1 < Grad(g) < Grad(f). Es folgt, dass entweder g oder f ein Polynom
ersten Grades ist. ad

Beispiel 4.2.8 (a) Ob ein Polynom irreduzibel ist oder nicht, hiingt von Korper
K ab. Zum Beispiel ist das Polynom 2 + 1 irreduzibel in R[z], aber reduzibel
in C[z]. In Cla] gilt nimlich 2% + 1 = (x —i)(z + i), aber i = /—1 ¢ R.

(b) Sei f(z) = 2* + 1 € F;[z]. Durch einsetzen der Werte von F5 sieht man
leicht ein, dass f keine Nullstellen in F5 besitzt. Falls f reduzibel ist, ist f = g-h
also das Produkt zweier Polynome zweiten Grades. Sei g(z) = ag + a1z + azz?
und h(z) = bg + b1z + bex?. Koeffizientenvergleich zwischen g - h und f liefert,
dass

ot +1 = (2% 4+ 2)(2* + 3) € F5[z].

Also ist f reduzibel. Die Faktoren sind irreduzibel, da sie keine Nullstellen be-
sitzen.
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Sei f € KJz| ein Polynom und o € K eine Nullstelle von f. Wiederholtes
Anwenden von Korollar 4.2.2 liefert, dass

f(x) = (z —a)"g(x), mit g € K[z] und g(a) # 0.

Wir nennen m die Vielfachheit der Nullstelle a. Falls m > 1, so heifit « eine
mehrfache Nullstelle von f.
Sei f(z) =Y i, a;z’. Wir definieren die formale Ableitung von f als

f(x) = i iart .
i=1

Falls K = R ist, so ist die formale Ableitung einfach die Ableitung von f nach
z. Die formale Ableitung erfiillt die gleichen Rechenregeln wie die Ableitung.
Das folgende Lemma zeigt, dass die formale Ableitung dhnliche Eigenschaften
wie die Ableitung besitzt.

Lemma 4.2.9 (a) Es gilt, dass
(f+9)=f+d. (fo)=Ffg+/[g.

(b) Eine Nulistelle o eines Polynoms f € K|x] ist genau dann eine mehrfache
Nulistelle, wenn f'(«) = 0 ist.

Beweis: Teil (a) folgt leicht aus der Definition.
Sei a € K eine Nullstelle von f mit Vielfachheit m > 1. Wir schreiben
f(z) = (z — a)™g(z) mit g € K[z] und g(a) # 0. Es gilt, dass

f'(@) =m(z —a)"g(z) + (x — &)™y (x).

Da m > 1 ist, gilt also, dass f’(«) = 0. Die Umkehrung beweist man dhnlich.
O

Satz 4.2.10 Sei K ein Kérper und sein f € K|[z] ein Polynom von Grad n. So
besitzt f hochstens n Nullstellen in K.

Beweis: Seien aq, ..., a, € K die Nullstellen von f gezihlt mit Vielfachheit.
Korollar 4.2.2 impliziert, dass

T

f(x) = [ = aig(z)

=1

ist, wobei g(a;) # 0 fiir i = 1,...,r ist. Also ist r < Grad(f) = n. O
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4.3 Polynomkongruenzen

In diesem Abschnitt betrachten wir Polynomkongruenzen: Statt modulo einer
natiirlichen Zahl rechnen wir modulo einen Polynom. Dies geht sehr dhnlich an
das Rechnen mit Kongruenzen ganzer Zahlen (§ 2.1).

Definition 4.3.1 Seien f,g,h € K|z] Polynome mit f # 0. Wir sagen, dass g
kongruent zu h modulo f ist falls f | (¢ — h). Bezeichnung: ¢ = h (mod f).
Die Menge der Kongruenzklassen modulo f bezeichnen wir mit K[z]/(f).

Lemma 4.3.2 Seien f,g € K|[x] Polynome mit f # 0.

(a) Es existiert ein eindeutiges Polynom h mit g = h (mod f) und Grad(h) <
Grad(f).

(b) Sei nun k ein Kérper mit g Elementen und sei Grad(f) = n. Die Menge
klx]/(f) besitzt genau q"™ Elemente.

Beweis: Teil (a) folgt mit Hilfe der Division mit Rest fiir Polynome (Satz
4.2.1). Teil (b) folgt aus (a): Die Kongruenzklassen korrespondieren genau zu

den Polynome h(x) = Z;:Ol a;z" in k[z] mit Grad(h) < n. Daa; € kund |k| = ¢
besitzt diese Menge ¢" Elemente. |

Beispiel 4.3.3 Jede Kongruenzklasse von F3[z]/(2? 4+ 2 — 1) enthélt genau ein
Polynom von Grad kleiner gleich 1, also gilt

R:=TF3[z]/(2®* + 2 —1)={0,1,2, 2,2+ 1,2 + 2,2z, 22 + 1, 2z + 2}.

Die Menge R enthélt also 9 Elementen.
Wir addieren und multiplizieren Elementen von Fs[z]/(f) modulo f. Wir
miissen also sowohl modulo 3 als auch modulo f rechnen. Zum Beispiel gilt

(2e4+1)2z+2) =4a® +6x+2=a2242=1—2+2=—z € F3[z]/(f).

Satz 4.3.4 Seien f,g € Klx] \ {0} Polynome. Das Polynom g besitzt genau
dann ein inverses Element in K[z]/(f), wenn ggT(f,g) = 1 gilt.

Beweis: Falls ggT(f, g) = 1, existieren Polynome s,t € K[z| mit s- f+t-g =
1 (Lemma 4.2.4). Also ist t = g~ € K|[x]/(f) das inverse Element von g.

Wir nehmen an, ein inverses Element t = g~ € KJz]/(f) von g existiert.
Also gilt, dass ¢ - g = 1 (mod f) ist. Daher existiert ein Polynom s € KJz],
sodass t- g+ s- f =1 ist. Lemma 4.2.4.(b) impliziert, dass ggT(f,g) =1. O

Korollar 4.3.5 Die Menge K|x]/(f) ist genau dann ein Kérper, wenn f € K|x]
irreduzibel ist. Falls f irreduzibel ist, so heift K[z]/(f) der Stammkoérper von

f.
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Beweis: Alle Korperaxiomen aufier K2.(c) (die Existenz des inversen Ele-
ments) sind automatisch erfiillt. Satz 4.3.4 sagt uns, dass g € K[z]/(f) genau
dann ein inverses Element besitzt, wenn ggT(f,g) = 1 ist. Falls f reduzibel ist,
existieren daher nicht-invertierbare Elementen in K[x]/(f), ndmlich die Rest-
klassen der nicht-triviale Teiler von f. Falls f irreduzibel ist, gilt, dass ggT(f, g)
genau dann gleich 1 ist, wenn f { g gilt. Also besitzt jede nicht-triviale Rest-
klasse in K[x]/(f) ein inverses Element. O

Lemma 4.3.6 Sei f € K[z] ein irreduzibles Polynom und L = K|z]/(f) der
Stammbkorper von f. Das Polynom f besitzt mindestens eine Nullstelle o € L,
namlich die Restklasse « von x.

Beweis: Dies folgt sofort aus der Definition des Stammkorpers und der
Definition von a. ]

Bezeichnung 4.3.7 Sei K ein Kérper und f € K|x] ein irreduzibles Polynom
von Grad n. Sei L = K|[z]/(f) der Stammkérper von f. Wir definieren o« € L
als die Restklasse von = in L. Lemma 4.3.6 impliziert, dass a € L eine Nullstelle
von f(x) ist. Die Elemente von L kdnnen wir wie folgt darstellen:

L={ag+aia+---+a, 10" ' |a; € K}.

Beispiel 4.3.8 (a) Man iiberpriift leicht, dass f(x) = 2% + 2 — 1 € F3[z] irre-
duzibel ist, also ist L = F3[x]/(2% +x — 1) ein Kérper mit 9 Elementen (Beispiel
4.3.3). Sei a € L die Restklasse von z. Die Elementen von L kénnen wir nun
darstellen als

L= {ao + a1« | a; € Fg},

wobei o + a — 1 = 0 ist.
Da L ein Korper ist, existiert das inverse Element 1/« von «. Wir schreiben
1/a = by + bya. Mit Hilfe der Relation a? = —a + 1 finden wir, dass

12 by + bra) = boa + by (—a + 1) = by + (by — by)a.

Die b; erfiillen daher das Gleichungssystem

by =1
bp—b1 =0
Also gilt by = by = 1. Wir schlieflen, dass 1/a =1 + « ist.
Alternativ finden wir mit Hilfe des erweiterten euklidischen Algorithmus,

dass
geT(z, 2’ 4o —1)=1=04z)-z—1-(>+z—1)

gilt. Hieraus folgt auch, dass 1/a =1+ « ist.
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(b) Das Polynom f(z) = 22 +x — 1 ist irreduzibel in F3[z]. Wir {iberpriifen,
dass dies in L[z] nicht mehr gilt. In L besitzt f eine Nullstelle « (Lemma 4.3.6).
Division mit Rest in L[z] zusammen mit der Relation o = 1 — « liefert, dass

f(@)=(z—a)(x+1+a)e L]
gilt.

Lemma 4.3.9 Sei K ein Korper und f € K|[x] ein irreduzibles Polynom von
Gradn. Sei L = K|[z]/(f) der Stammkérper von f. Nun ist L ein K -Vektorraum
der Dimension n. Wir nennen n den Grad der Korpererweiterung K C L. Be-
zeichnung: n = [L : K.

Beweis: Die Tatsache, dass L ein K-Vektorraum ist, folgt aus den Korper-
axiomen (Definition 4.1.1). Bezeichnung 4.3.7 impliziert, dass

(1,a,...,a™ 1) (17)

ein K-Basis von L ist. Also ist n die Dimension von L als K-Vektorraum. O

4.4 Endliche Korper

Definition 4.4.1 Ein Korper mit endlich vielen Elementen heifit endlicher Kor-
per.

Satz 4.4.2 Seik ein endlicher Korper. Es existiert eine Primzahl p, sodass k den
KorperF, enthélt. FallsIF, C k ein Unterkorper ist, so heifit p die Charakteristik
von k. Bezeichnung: Char (k).

Beweis: Sei 1 € k das Einheitselement (Axiom (K2.(b)). Da k nur endlich
viele Elementen besitzt, existiert ein n > 0, sodassn-1=14---41 = 0 ist.
Sei n > 0 minimal mit dieser Eigenschaft. Wir betrachten die Teilmenge

N:={0,1,...,n—1}

von k.

Wir nehmen an, dass n eine zusammengesetzte Zahl ist. Sei n = d - e mit
d # 1,n. Wir fassen d € N als Element von k auf. Wir behaupten, dass d
kein inverses Element in k besitzt. Da d # 0 liefert dies ein Widerspruch zur
Annahme, dass k ein Korper ist. Also folgt, dass n eine Primzahl ist. Dies
beweist den Satz.

Wir beweisen die Behauptung, dass d kein inverses Element d~! in k besitzt.
Falls d~! € k existieren wiirde, so wiirde gelten, dan =d-e =0 € F,, ist, dass

O0=d ' 0=d ' n=d ' de=1l-e=c¢

ist. Dies liefert ein Widerspruch zur Annahme, dass e ein Teiler von n, also
insbesondere ungleich Null, ist. Also besitzt d kein inverses Element in k. O
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Satz 4.4.3 Sei k ein endlicher Korper der Charakteristik p. Die Kardinalitdt
von k ist p™ fiir ein n > 1.

Beweis: Der Beweis von Satz 4.4.2 impliziert, dass F,, C k ein Unterkérper
ist. Wie im Beweis von Lemma, 4.3.9 zeigt man, dass k ein IF-Vektorraum ist. Sei
n die Fp,-Dimension von k und sei (e, . .. e,) ein Basis von k als F,,-Vektorraum.
Es gilt, dass

k= {Z a;e; | a; € Fp}
i=1

Also besitzt k genau p™ Elementen. O

Falls k = Fp[z]/(f) der Stammkérper eines irreduziblen Polynoms ist, folgt
Satz 4.4.3 aus Lemma 4.3.2. Theorem 4.4.6 impliziert, dass jeder endliche Kérper
der Stammkorper eines irreduziblen Polynoms ist.

Satz 4.4.4 (Kronecker) Sei K ein Kérper und f € K|[z] ein Polynom. Es exi-
stiert eine Korpererweiterung K C L von K, sodass f in L[x] in Linearfaktoren
zerfillt.

Bemerkung 4.4.5 Ein Polynom f(x) € K|[z] zerféllt genau dann in Linear-
faktoren, wenn Zahlen ¢, o; € K existieren, sodass

f@)=c]J(@ - o) € K[a].

%

Falls f € K[x] in Linearfaktoren zerfillt, so besitzt f daher Grad(f) Nullstellen
in K gezahlt mit Vielfachheit.

Beweis: Wir schreiben

f=111/:€ K2l

als Produkt von irreduziblen Faktoren. Falls f € K[z] in Linearfaktoren zerfllt,
d.h. wenn Grad(f;) =1 fiir alle 4, so sind wir fertig.

Wir nehmen an, dass f € K[x] nicht in Linearfaktoren zerfiillt. Es exi-
stiert daher ein irreduzibler Faktor g; von f vom Grad mindestens zwei. (Es ist
moglich, dass g1 = f gilt.) Sei L1 = Klz]/(g1) der Stammkérper von g;. Da
g1 irreduzibel ist, so ist L; eine Korpererweiterung von K (Korollar 4.3.5). Wir
betrachten f € L;[z] nun als Polynom mit Koeffizienten in L;. Das Polynom ¢,
besitzt in L; mindestens eine Nullstelle (Lemma 4.3.6). Das Polynom f besitzt
in Ly daher mehr Nullstellen als in K.

Wir betrachten f als Polynom in L;[z] und wiederholen das Argument: Falls
f in Li[z] in Linearfaktoren zerfillt, so sind wir fertig. Sonst definieren wir Lo
als den Stammkorper eines irreduziblen Faktors von f von Grad mindestens
zwei. Und so weiter.
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Dies liefert eine Kette K C Ly C Lo C --- von Korpererweiterungen. Da
Grad(f) endlich ist, ist diese Kette endlich. Sei L,, der grofite Korper der Kette.
So zerfillt f in L,, in Linearfaktoren. O

Theorem 4.4.6 Sei ¢ = p" eine Primzahlpotenz. Es existiert ein Korper k mit
q Elementen.

Beweis: Sei ¢ = p™ eine Primzahlpotenz. Wir betrachten das Polynom
g(z) = 2% —x € Fpy[x].

Satz 4.4.4 impliziert, dass eine Korpererweiterung L von K existiert, sodass g
in L[z] in Linearfaktoren zerfillt.

Wir behaupten, dass g keine mehrfache Nullstellen in L besitzt. Da ¢ = p™ =
0 € F, gilt, dass ¢/(x) = qz?~! — 1= —1 € Fplxa]. Also gilt, dass ggT(g,¢') =1
ist. Lemma 4.2.9 impliziert, dass g keine mehrfache Nullstellen besitzt. Insbe-
sondere besitzt g genau g Nullstellen in L.

Sei F' C L die Menge der Nullstellen von g. Wir behaupten, dass F' ein
Korper ist. Die Definition der Menge F' impliziert, dass o € F' genau dann,
wenn a? = « ist. Seien nun «, 3 € F. Es gilt

(@f)T = %%, (—a)=—a, (1/a)?=1/a%,

Wir behaupten, dass (a + )7 = a2 + 1 fiir alle o, 3 € F. Zuerst bemerken
wir, dass es reicht zu zeigen, dass (a+3)? = of 4+ 3P gilt. Die allgemeine Aussage
folgt mit widerholtes Anwenden, da ¢ = p™. Es gilt, dass

(a+ B = Zp: (3) al P,

=0

()= w5

ist. Sei ¢ # 0, p. Wir sehen, dass p der Zihler der Ausdriick aber nicht der Nenner
teilt. Daher ist (f) =0 (mod p) fiir ¢ # 0, p. Es folgt, dass (a+03)? = a2+ 47 €
F. Wir schlieflen, dass F ein Korper ist. O

wobel

Bemerkung 4.4.7 Man kann zeigen, dass fiir jede Primzahlpotenz ¢ = p™
genau ein Korper mit ¢ Elementen gibt, bis auf Kérperisomorphie. Wir beweisen
dies hier nicht und definieren auch nicht was ein Kérperisomorphismus ist. Mehr
Details finden Sie in [2, § 4.5]. Der Kérper mit ¢ = p™ Elementen bezeichnen
wir mit [F,.

Beispiel 4.4.8 Sei ¢ = 3% = 9. Wir faktorisieren das Polynom z¢ — x in ir-
reduziblen Faktoren in F3[z], zum Beispiel mit Hilfe des Maple-Kommando
Factor(z? — ) mod 3:

! —z=x(r—1)(z+1)(*+1)(2® —z - 1)(2* + 2z —1).
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Um den Korper mit 9 Elementen darzustellen, wéhlen wir einen der irreduziblen
Faktoren von g von Grad 2, zum Beispiel h(z) = 22 + 1. In Beispiel 4.3.8 haben
wir 22 + x — 1 gewihlt. Wir kénnen Fg nun darstellen als

Fg = F3[$]/(l‘2 + 1) = {ao +aix | a; € Fg},

wobei a die Relation o? = —1 erfiillt. Also ist o € Fy eine Nullstelle des Poly-

noms z2 + 1.

Der Beweis von Theorem 4.4.6 impliziert, dass z¢ — x iiber Fg in Linear-
faktoren zerfillt. Wir rechnen dies nach. Wir suchen dazu die Nullstellen von
2241, 22 —2—1und 2?2 + 2 — 1 in Fy. Wie in Beispiel 4.3.8 finden wir, dass

2 +1=(z+4a)(z — ), P —r—1l=@+at+l)(z—a+l),
Prr—l=@-—a-1)(z+a-1).

Die Eindeutigkeit des Korpers mit 9 Elementen kann man so verstehen:
Da alle irreduzible Polynomen in F3[z] von Grad 2 in Fg[z] in Linearfaktoren
zerfallen, ist es egal ob man Fg konstruiert in dem man eine Nullstelle von 22 +1
oder von 22 + = — 1 an F3 hinzufiigt.

5 Der diskrete Logarithmus

5.1 Primitivwurzeln

Seim € N und a € Z teilerfremd zu m. In § 2.5 haben wir die Ordnung ord,, (a)
von a modulo m definiert. Wir haben gezeigt (Lemma 2.5.11), dass ord,,(a) ein
Teiler von ¢(m) ist.

Definition 5.1.1 Seien a € Z und m € N mit ggT(a,m) = 1. Die Zahl a heifit
Primitivwurzel modulo m, falls ord,,(a) = ¢(m) ist.

Beispiel 5.1.2 (a) Sei m = 7, also ist ¢(m) = 6. Man berechnet:

a_|

ords(a) |

1
1
Also sind 3 und 5 Primitivwurzeln modulo 7.

(b) Sei m = 12, also ist p(12) = ¢(3)¢(4) = 4. Man berechnet:

Wir schlieflen, dass keine Primitivwurzeln modulo 12 existieren.

a_|

7|11
ordia(a) | '

|
[2]2

115
112

Lemma 5.1.3 Sei a eine Primitivwurzel modulo m. So ist
R :={a,d?, ... ,a“’(m)}

ein reduziertes Restsystem modulo m.
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Beweis: Seien 1 < i < j < ¢(m). Die Definition der Ordnung modulo m
impliziert, dass
" #1 (mod m).
Also ist @’ # a® (mod m). AuBerdem gilt offensichtlich, dass ggT(a’, m) = 1 fiir
alle 7. Da die Kardinalitit der Menge R gleich ¢(m) ist, ist R ein reduziertes
Restsystem modulo m. O

Lemma 5.1.4 Seien a € Z und m € N Zahlen mit ggT(a,m) = 1. Fiir alle
k € N gilt, dass
ord,,(a)
dp(aF) = ——
(@) = T ord (@), B
ist.

Beweis: Ubungsaufgabe. O

Beispiel 5.1.5 In Beispiel 5.1.2 haben wir gesehen, dass a = 3 eine Primitiv-
wurzel modulo 7 ist. Es gilt

k 112|345
aF 312 .
ordn,(a®) [6[3]2]3]6]1

D
=~
ot
—_

Dies bestétigt Lemmata 5.1.3 und 5.1.4.

Sei p eine Primzahl. Ziel dieses Abschnittes ist die Existenz von Primitiv-
wurzel modulo p zu beweisen (Korollar 5.1.8). Der folgende Satz ist ein erster
Schritt in diesem Beweis.

Satz 5.1.6 Sei p eine Primzahl und d | (p — 1) ein Teiler. Die Kongruenz
=1 (mod p)
besitzt genau d Losungen.

Beweis: Sei d ein Teiler von p — 1. Wir schreiben p — 1 = d - e. Wie im
Beweis von Lemma 1.2.2 finden wir, dass

P11 = (.I'd _ 1)($d(6_1) + .’L‘d(e_2) IS 24 + 1) = (xd _ 1)9(1.)'

Der kleine Satz von Fermat (Korollar 2.5.8) impliziert, dass die Kongruenz
2P~1 =1 (mod p) genau p — 1 Losungen besitzt, nimlich die Elementen von
Z7./pZ*.

Satz 4.2.10 mit K = F, impliziert, dass die Kongruenz g(z) = 0 (mod p)
hochstens Grad(g) = d(e — 1) = p— 1 — d Losungen besitzt. Es gibt also minde-
stens d Zahlen a € Z/pZ* mit g(a) # 0 (mod p) und a?~1 =1 (mod p). Diese
Zahlen « erfiillen also o = 1 (mod p). Da die Kongruenz z¢ = 1 (mod p)
hochstens d Losungen besitzt, schlieen wir, dass genau d Zahlen « € Z/pZ mit
a? =1 (mod p) existieren. m|
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Theorem 5.1.7 Sei p eine Primzahl und d | (p — 1) ein Teiler von p — 1. Wir
definieren

P(d) =[{1 <a <p|ordy(a) =d}|.
Es gilt, dass

P(d) = ¢(d).
Beweis: Wir nehmen zuerst an, dass 1(d) > 0. Es existiert nun eine Zahl
1 < a < p mit ordy(a) = d. Insbesondere sind die Zahlen a,a?,...,a® nicht

kongruent modulo p (vergleichen Sie zum Beweis von Lemma 5.1.3). Auflerdem
gilt, dass _ _ _
(@)= (a))'=1"=1 (mod p).

Also ist a’ eine Losung der Kongruenz z% =1 (mod p) firi = 1,...,d.

Satz 5.1.6 impliziert, dass die Kongruenz ¢ = 1 (mod p) genau d Losungen
modulo p besitzt. Diese Losungen sind daher a,a?,...,a?. Lemma 5.1.4 impli-
ziert, dass ord,(a’) = d genau dann gilt, wenn ggT(i,d) = 1 ist, also wenn
i € Z/dZ* ist. Die Anzahl solcher i ist ¢(d). Wir haben daher gezeigt, dass falls
¥(d) > 0, so ist ¥ (d) = ¢(d).

Wir zeigen nun noch, dass der Fall ¢)(d) = 0 nicht eintreten kann. Wir wissen,
dass die Ordnung ordy(a) jeder Zahl 0 < a < p ein Teiler von p — 1 ist. Daher

2

gilt, dass
S wd) =p—1.
dl(p—1)
Auflerdem gilt, dass
dl(p—1)

nach Lemma 2.5.13. Fiir jedes d gilt, dass 1(d) < ¢(d) ist: Falls ¢)(d) = 0 ist, so
ist dies offensichtlich, falls ¢)(d) > 0 ist, so haben wir gezeigt, dass ¥(d) = p(d).
Dabher gilt, dass

p—1= > ¢d< > @d=p-1
d|(p—1) d|(p—1)

Aber dies ist nur moglich falls (d) = ¢(d) fiir alle d | (p — 1). O

Korollar 5.1.8 Sei p eine Primzahl. Es existiert eine Primitivwurzel modulo p.

Beweis: Theorem 5.1.7 impliziert, dass die Anzahl der Primitivwurzeln mo-
dulo p gleich ¥(p — 1) = p(p — 1) ist. Satz 2.7.5 impliziert, dass ¢(p — 1) > 1
ist. O

Beispiel 5.1.9 In Beispiel 5.1.2 haben wir gesehen, dass zwei Primitivwurzeln
modulo 7 existieren, ndmlich 3 und 5. In der Tat gilt, dass ¢(6) = ¢(2)¢(3) =
1.-2=2.

Es gibt ¢(10) = 4 Primitivwurzel modulo 11, ndmlich 2,6, 7 und 8.
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Es existieren viele Primitivwurzel modulo p: Die Anzahl ist ¢(p — 1). Leider
gibt uns Korollar 5.1.8 keine Methode eine Primitivwurzel zu finden. Um eine
Primitivwurzel zu finden, bleibt uns nicht viel anderes {ibrig als die Ordnung
modulo p von Elementen in Z/pZ* zu berechnen bis wir eine Primitivwurzel
gefunden haben. So bald wir eine Primitivwurzel » modulo p gefunden haben,
ist es leicht alle anderen zu finden: Der Beweis von Theorem 5.1.7 impliziert,
dass die anderen Primitivwurzel r* sind, wobei ggT(i,p — 1) = 1 ist.

5.2 Der diskrete Logarithmus

Sei p eine Primzahl. Wir betrachten G = (Z/pZ)*. Sei r eine Primitivwurzel
modulo p. Diese existiert nach Korollar 5.1.8. Jedes Element von G lésst sich
schreiben als Potenz von r:

G={rr2 3 . P71 (18)

(Lemma 5.1.3).
Wir definieren die Exponentialfunktion beziiglich der Primitivwurzel » durch

exp, : Z/(p—1)Z — G, it

Diese Abbildung heifit Exponentialfunktion, da exp, (i + j) = exp,.(i) - exp,.(j)
gilt. Wir bemerken, dass exp, wegen (18) eine Bijektion ist. Die Umkehrfunktion

dlog, : G — Z/(p — 1)Z, a=r"+1i (modp—1)

heifit der diskrete Logarithmus. (Die Funktion heifit “diskreter” Logarithmus,
da G endlich ist.) Wir bemerken, dass sowohl die Exponentialfunktion als auch
der diskrete Logarithmus von der Wahl des Primitivwurzels r abhéngt.

Beispiel 5.2.1 Sei p = 7 und G = (Z/7Z)*. Die Zahl r = 5 ist eine Primitiv-
wurzel modulo 7. Wir berechnen dlog, : G — Z/6Z:

[2]3]4]5]6]
1

a | 2
[4]5]2]1]3]

1
dlog,.(a) | 0

Der diskrete Logarithmus ist, zum Beispiel, niitzlich fiir das l6sen von Glei-
chungen der Form
z°=a (mod p). (19)

Sei ¢ = dlog,.(a) und j = dlog,.(x). Die Kongruenz (19) ist dquivalent zur linea-
ren Kongruenz
ej =4 (modp—1).

Lineare Kongruenzen kénnen wir mit Hilfe von Satz 2.1.5 16sen. Wir erldutern
dies an Hand eines Beispiels.
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Beispiel 5.2.2 Wir l6sen die Kongruenz
=4 (mod 7).

Hierzu bemerken wir, dass dlogs(4) = 2, da 52 = 4 mod 7 ist. Wir schreiben
nun j = dlogs () und bekommen die lineare Kongruenz

55 =2 (mod 6).

Da 5 teilerfremd zu 6 ist, hat diese Kongruenz eine eindeutige Losung modulo
6, ndmlich

2
jzgz4mod6.

Fiir die Berechnung der Exponentialfunktion exp, ist effizient moglich mit
Hilfe der schnellen Exponentiation (§ 2.6). Fiir die Berechnung des diskreten
Logarithmus gibt es keine effiziente Algorithmen: Um dlog,.(a) zu berechnen,
berechnen wir die Potenzen der Primitivwurzel r bis wir ein ¢ gefunden haben
mit g = a (mod p). Nun ist i = dlog,(a). Falls p eine grofe Primzahl ist,
dauert es im Schnitt sehr Lange dlog,(a) zu berechnen, da man im Schnitt
sehr viele Potenzen ausrechnen muss. In der Kryptographie nennt man exp,
daher eine Einwegfunktion. Auf dieser Idee basieren verschiedene Verfahren in
der Kryptographie. Genauere Aussage und bessere Algorithmen zur Berechnung
des diskreten Logarithmus finden Sie im Skript der Vorlesung Kryptologie [6].

Problem 5.2.3 (Das diskrete-Logarithmus-Problem) Sei a € Z/pZ* ge-
geben und sei 7 eine Primitivwurzel modulo p. Berechne ¢ = dlog,.(a).

Wir besprechen nun eine Anwendung des diskreten Logarithmus in der Kryp-
tographie: Das Diffie-Hellman-Schliisselaustauschverfahren. Alice und Bob wol-
len iiber eine unsichere Leitung vertrauliche Nachrichten austauschen. Dazu
benutzen Sie ein symmetrisches Verschiisselungsverfahren. Sie miissen aber zu-
erst einen geheimen Schliissel austauschen. Hierfiir haben sie aber auch nur die
unsichere Leitung zur Verfiigung. Sie gehen nun wie folgt vor.

Algorithmus 5.2.4 (Diffie-Hellman) Schritt 1. Alice und Bob wiihlen eine
Primzahl p und eine Primitivwurzel » modulo p. Dies ist der 6ffentliche Schliissel.

Schritt 2. Bob wihlt zufillig eine Zahl ¢ € {1,...,p — 1} und berechnet a =
g* € G. Er sendet die Zahl a an Alice.

Schritt 3. Alice wihlt zufillig eine Zahl j € {1,...,p — 1} und berechnet
b= g’ € G. Sie sendet die Zahl b an Bob.

Schritt 4. Alice und Bob kénnen nun beide das Element
k=ad =¢g7 =b" €@ (20)

berechnen. Dies ist nun der private Schliissel den sowohl Alice als auch Bob
kennen.
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Eve hat den unsicheren Kanal abgehort. Sie kennt also p,r,a und b. Um den
geheimen Schliissel & zu berechnen muss Sie aber entweder @ oder j kennen (20).
Hierzu muss Sie das diskrete Logarithmusproblem 16sen, da

i=dog,(a), ;= dlog,(b).

Falls die Primzahl p grofl genug gewéhlt ist, kann Eve dieses Problem nicht
16sen und daher auch nicht den geheimen Schliissel & berechnen. Alice und Bob
konnen ihre verschliisselten Nachrichten sicher verschicken.

5.3 Das ElGamal-Kryptoverfahren

In diesem Abschnitt besprechen wir das ElGamal-Kryptoverfahren. Dies wurde
im Jahre 1984 von Taher ElGamal erfunden. Das ElGamal-Verfahren ist eine
Weiterentwicklung des Diffie-Hellman-Schliisselaustauschverfahren. Es benutzt
die Idee des Diffie-Hellman-Verfahren zum ver- und entschliifleln von Nachrich-
ten statt zum Schliisselaustausch.

Wie in § 5.2, sind eine Primzahl p und eine Primitivwurzel r modulo p
vorgegeben: Diese Zahlen sind Teil des 6ffentlichen Schliissels. Wir gehen davon
aus, dass die Nachricht aus Blocke B; mit 0 < B; < p besteht.

Vorbereitung: Alice mochte Bob eine geheime Nachricht schicken. Sie benutzt
hierzu Bobs 6ffentlichen Schliissel (p,r,a). Hierbei ist a = r* die Zahl die Bob
im Schritt 2 des Diffie-Hellman-Verfahrens berechnet hat. Alice wéhlt wieder
eine Zahl j € Z/pZ, berechnet b = 7/ € Z/pZ und schickt Bob diese Zahl. Wie
im Diffie-Hellman-Verfahren kann Alice die Zahl

kE=da’ (mod p)
berechnen. Dies ist wieder der private Schliissel.

Verschliisseln: Zum verschliisseln eines Blocks B des Klartextes, berechnet
Alice
C=k-B (modp).

Entschliisseln: Bob hat von Alice den Geheimtext C' zusammen mit der Zahl
b empfangen.

Um die Nachricht zu entschliisseln muss Bob die Zahl k~! (mod p) berech-
nen, da

B=k7'C (mod p)

ist.

Bob kennt die Zahl i, weil er diese selber gew#hlt hat. Aulerdem kennt er
die Zahl b = 77 die er von Alice bekommen hat. Daher kann er

E'=r"Y =b"" (mod p)

berechnen und damit den Geheimtext entschliisseln.
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Eve versucht den Geheimtext zu entschliisseln. Sie kennt Bobs tffentliche Schliis-
sel (p,r,a). AuBerdem hat sie iiber die unsichere Leitung die Zahl b und den
Geheimtext C' abgefangen. Um den Geheimtext zu entschliisseln muss Sie die
Zahl k=1 (mod p) berechnen. Wie in § 5.2 muss sie dazu entweder i = dlog,.(a)
oder j = dlog,.(b) berechnen, also das diskrete Logarithmusproblem lésen. Die
Sicherheit des ElGamal-Verfahrens beruht darauf, dass Eve dies nicht kann.

6 Das quadratische Reziprozititsgesetz

In diesem Abschnitt betrachten wir die Losbarkeit von Kongruenzen von der
Form

z?=a (mod m).

6.1 Das Legendre-Symbol

Definition 6.1.1 Sei p eine ungerade Primzahl und a € Z teilerfremd zu p. Die
Zahl a heifit quadratischer Rest (mod p), falls die Kongruenz ? = a (mod p)

eine Losung besitzt. Sonst heifit a quadratischer Nichtrest (mod p).

Beispiel 6.1.2 Die quadratische Resten (mod 13) sind a = 1,4,9,3,12,10.
Die quadratische Nichtreste (mod 13) sind a = 2,5,6,7,8.

Definition 6.1.3 Sei p eine ungerade Primzahl. Das Legendre-Symbol ist de-
finiert als

1 falls a ein quadratischer Rest  (mod p) ist,

(ﬁ) =4 —1 falls a ein quadratischer Nichtrest (mod p) ist,

P 0 fallsp|a.

Lemma 6.1.4 Sei p eine ungerade Primzahl.

(a) Es existieren genau (p — 1)/2 quadratische Reste (mod p) und (p —1)/2
quadratische Nichtreste (mod p).

(b) Es gilt

(E) = a2 (mod p).
p

Beweis: (a) Die Restklassen 12,22, ..., (251)? sind offensichtlich quadrati-
sche Reste (mod p). Da a? = (—a)? (mod p), sind dies alle quadratische Reste
(mod p). Sei nun a? = b? (mod p). Da p eine Primzahl ist, impliziert Lemma
1.2.3, dass a = £b (mod p). Wir schliefien, dass fir 1 < a,b < (p — 1)/2 mit
a # b die Restklassen a? und b? nicht kongruent (mod p) sind. Also ist die

Anzahl der quadratische Reste (mod p) gleich (p — 1)/2.
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(b) Falls @ = 0 (mod p), so ist die Aussage offensichtlich. Wir nehmen da-
her an, dass a # 0 (mod p) ist. Der kleine Satz von Fermat (Korollar 2.5.8)
impliziert, dass

(aP /22 = P~ =1 (mod p).

Also folgt aus Lemma 1.2.3, dass a®~1/2 = 41 (mod p) ist.
Sei a ein quadratischer Rest (mod p). Es existiert ein b € Z/pZ, sodass
b?> = a (mod p). Daher gilt, dass

aPD/2 = (p2)P=D/2 —pp=l =1 (mod p) = (E) .
p
Da Z/pZ = F, ein Korper ist, besitzt die Kongruenz

#P~D/2_1=0 (mod p) (21)

hochtens (p—1)/2 Losungen (Satz 4.2.10). Aber die (p—1)/2 quadratische Reste
(mod p) sind Losungen der Kongruenz (21). Also besitzt (21) keine weitere

Losungen. Falls a ein quadratischer Nichtrest ist, ist a daher keine Lésung von
(21). Wir schliefien, dass

a?P™V/2 = 1 (mod p) = (2>
p
ist. a
Sei g eine Primitivwurzel (mod p) (Korollar 5.1.8). Lemma 6.1.4 kann man
auch beweisen in dem man bemerkt, dass a € Z/pZ* genau dann ein quadra-
tischer Rest (mod p) ist, wenn a = g% eine gerade Potenz der Primitivwurzel
ist.
Der folgende Satz gibt einige Rechenregel fiir das Legendre-Symbol.

Satz 6.1.5 Sei p eine ungerade Primzahl und a,b € Z. Es gilt

6)-()

(b) a =0 (mod p) impliziert, dass (—) = (é),
p

p

(5)-CG)
p r)

Beweis: Die Aussage (a) ist offensichtlich, falls p | ab. Falls p 1 ab, folgt aus
Lemma 6.1.4.(b), dass

(2) (9) — a®-D/25-D/2 (mod p) = (ab) "D/ (mod p) <a_b> .
p) \p P

Die Teilen (b) und (c) sind klar. m|

(a)

(c) ist ggT(a,p) =1, so gilt
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Korollar 6.1.6 Sei p eine ungerade Primzahl. Es gilt

(—_1) _ (—1)e-D/2 = 1 fallsp=1 (mod 4),
D -1 fallsp=3 (mod 4).

Beweis: Lemma 6.1.4.(b) impliziert, dass

<_?1> - (_1)(%1)/2.

Man iiberpriift leicht, dass (p—1)/2 genau dann gerade ist, wenn p = 1 (mod 4)
ist. Die zweite Gleichung folgt. m]

6.2 Der Beweis des quadratischen Reziprozititsgesetz

In diesem Abschnitt formulieren und beweisen wir das quadratische Rezipro-
zitdtsgesetz. Das quadratische Reziprozitdtsgesetz wurde vermutet von Euler
und Legendre und bewiesen von Gauss. Wir werden sehen, wie man diese Aus-
sagen benutzen kann, um das Legendre-Symbol effizient zu berechnen.

Definition 6.2.1 Sei p eine ungerade Primzahl. Fiir z € Z teilerfremd zu p
bezeichnen wir mit (x) die eindeutig bestimmte Zahl mit —(p — 1)/2 < (z) <
(p—1)/2 und (z) = = (mod p). Die Restklassen —(p — 1)/2 < (x) < 0 nennen
wir negative Reste. Die Restklassen 0 < (z) < (p — 1)/2 nennen wir positive
Reste.

Fiir r € Q schreiben wir [r] fiir die gréfite ganze Zahl kleiner gleich 7.

Satz 6.2.2 (Lemma von Gauf3) Sei p eine ungerade Primzahl und a € Z
teilerfremd zu p. Sei

S={1<i<(p—1)/2] (ia) ist ein negativer Rest}

und sei s die Kardinalitéit von S. Es gilt

5)-cr

Beweis: Seien a und p wie in der Aussage des Lemmas. Wir schreiben
{{ia) |1 <i< (p—1)/2,i € S} = {ua,...,us} fiir die negative Resten und
{(fa) | 1 <& < (p—1)/2,i & S} = {v1,...,v:} fiir die iiberige Reste. Der
Kiirzungssatz (Satz 2.1.5) impliziert, dass die u; und v; paarweise verschieden
sind. Wir schlieflen, dass

(p—1)/2 p—1
ul e usvl e Ut = Hl (G/L) = a(pfl)/Q (T)! (mOd p) (22)

Wir behaupten, dass —u; # v; (mod p) fiir alle ¢ und j. Sei ndmlich —u; = v,
(mod p). Schreibe u; = (ka) und v; = (fa) mit 1 < k,¢ < (p — 1)/2. Es folgt,
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dass —k = ¢ (mod p). Aber dies widerspricht der Annahme 1 < k,¢ < (p—1)/2.
Die Behauptung folgt.
Die Definition von u,; und v; impliziert, dass —u;,v; € {1,...,(p — 1)/2}

sind. Da —uq,..., —us,v1,...,v genau s + ¢ = (p — 1)/2 verschiedene Zahlen
(mod p) sind, gilt, dass
{—u1,...,—us,v1,...,0r ={1,...,(p—1)/2}. (23)

Daher folgt, dass

(—u1)---(—us)v1---vt=1-2---(p%l) = (7%1)!

ist. Wir schlieflen, dass
-1
(=1)%uy - - ugvy - vy = (pT>' (mod p) (24)

ist. Die Gleichungen (22) und (24) implizieren daher, dass

(=1)%aP~1/2 <p%1>! = <p%1)! (mod p)

ist. Aus Lemma 6.1.4.(b) und Satz 2.1.5 folgt nun, dass

(%) = a® /2= (21)* (mod p).

Korollar 6.2.3 Sei p eine ungerade Primzahl. Es gilt

(2) B (_1)(;)2—1)/8 1 fallsp=+1 (mod 8),
p) T l-1 fallsp=+3 (mod ).

Beweis: Das Lemma von Gauf} (Satz 6.2.2) impliziert, dass

2)-cr

wobei s die Anzahl der Elemente der Menge S = {1 <i < (p—1)/2| (2i) < 0}
ist. Wir miissen zeigen, dass s = (p® — 1)/8 ist.

Fir 1 <j<(p—1)/2gilt 2 <2j <p-—1. Daher ist (2j) < (p—1)/2 genau
dann, wenn j < [(p — 1)/4] ist. Es gilt also, dass s = (p—1)/2 — [(p — 1)/4] ist.

Wir schreiben p = o + 8k mit o € Z/8Z* = {1,3,5,7}. Wir betrachten nur
den Fall, dass p = 1 4 8k ist. Die andere Félle sind &hnlich. In diesem Fall gilt,
dass s = (p—1)/2—[(p—1)/4] = 4k — 2k = 2k gerade ist. AuBlerdem gilt, dass
(p> —1)/8 = (1 + 2 - 8k + 82k?)/8 = 2k + 8k? auch gerade ist. Wir schlieBen,
dass

(—1)° = (_1)(102*1)/8'
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Theorem 6.2.4 (Quadratische Reziprozititsgesetz) Seien p und ¢ zwei
verschiedene ungerade Primzahlen. Es gilt

p—1qg—1

BT

Bemerkung 6.2.5 Seien p und g wie in Theorem 6.2.4. Man kann die Aussage
des quadratische Reziprozitidtsgesetz auch wie folgt formulieren:

(p) _ (%) fallsp=1 (mod 4)oder ¢ =1 (mod 4),

q - (%) falls p=3 (mod 4) und ¢ =3 (mod 4).
Der Beweis des quadratische Reziprozitéitsgesetz benutzt folgendes Lemma.

Lemma 6.2.6 Sei p eine ungerade Primzahl und a eine ungerade Zahl teiler-

fremd zu p. Es gilt
a
=) = (=1)T(@p)
(5) =

wobel
(p—1)/2 ja
T(a,p) = Z |:_:|
=1 LP
ist.

Beweis: Wir benutzen die gleiche Bezeichnung wie im Lemma von Gaufl
(Satz 6.2.2).
Fiir j=1,...,(p— 1)/2 schreiben wir

. ja
ja=|=|-p+p;
p
wobei p; € {p+u1,...,p+us}, falls p; ein negativer Rest und p; € {v1,..., v},

falls p; ein positiver Rest ist.
Es gilt, dass

(p—1)/2 (p=1)/2 . (r=1)/2
. ja
ja=mp [—] +

Pj
j=1 j=1 j=1 (25)
(p—1)/2 ja s ¢
=p {—]+ps+§:uf+§:w.
j=1 p J=1 J=1
Aus (23) folgt, dass

(p—1)/2 s t
SRR IS o
j=1 j=1 j=1
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Aus (25) und (26) folgt nun, dass
(p—1)/2 (p—1) /2|: :|

(a—1) Z j=p Z

da a ungerade ist. Da p ungerade ist, schlieen wir, dass T'(a,p) = s (mod 2)
ist. Das Lemma von Gauf} (Satz 6.2.2) impliziert nun, dass

-

Beweis von Theorem 6.2.4: Seien p und ¢ zwei verschiedene, ungerade
Primzahlen. Lemma 6.2.6 impliziert, dass

—i—ps—l—QZu] =p(T(a,p) +s) (mod 2),

=1

O

PY(42) _ T(p,q)+7T(q,p)
£ ) = (-1 27
(2) () - o)
ist, wobei
(g—1)/2 jip (p—1)/2
=1 L4 i=1

ist. Zu zeigen ist, dass T(p,q) + T(¢,p) = (p — 1)(¢ — 1)/4 (mod 2) ist.
Wir betrachten dazu die Menge

G={(z,y)eZxZ]1<z<(p-1)/2,1<y=<(¢—1)/2}.
Wir definieren folgende Teilmengen von G:

Gi={(z,y) €G|qz>py}, Go={(z,y) €G|qz <py}.

Da p # ¢, sind p und ¢ teilerfremd. Dies impliziert, dass kein Paar (x,y) € G
mit gxr = py existiert. Daher ist G die disjunkte Vereinigung von G; und G. Wir
schlieBen, dass |G1|+ |G2| = |G| = (p—1)(g— 1)/4. Die Anzahl der Gitterpunkte
in G unterhalb der Gerade gx = py ist

(p—1)/2

qx
Gil= > {—] =T(q,p).
r=1 p
Ebenso gilt, dass die Anzahl der Gitterpunkte in G oberhalb der Gerade gz = py
(¢—1)/2 oy
Gl = [—} =T(p,q)
y=1 q
ist. Also folgt, dass
p—1)(g—1
T(0,0) + T(a,) = 161 + loo] = L= =Y,
Das quadratische Reziprozitétsgesetz folgt daher aus (27). ad
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Beispiel 6.2.7 (a) Wir erldutern wie man mit Hilfe der Rechnenregeln (Satz
6.1.5) und das quadratische Reziprozititsgesetz (Theorem 6.2.4, Korollar 6.1.6
und Korollar 6.2.3) Legendre-Symbole berechnen kann. Wir bestimmen ob 7 ein
quadratischer Rest (mod 19) ist. Da 7 =19 = 3 (mod 4), gilt

()= () —-()*-()

(b) Wir bestimmen ob 713 ein quadratischer Rest (mod 1009) ist. Bemerke,
dass 1009 eine Primzahl ist. Dies iiberpriift man zum Beispiel mit Hilfe der
Probedivision (§ 1.3). Die Primfaktorzerlegung von 713 ist 23-31. Wir berechnen

23 Qr 1009\ ) (22-5Y\ (© (5 Qr 23

1009 ) 23/ \ 23 ) \23) 5
m) {3\ Qr 2
(3)2+(5)

Hierbei ist QR die Abkiirzung fiir das quadratische Reziprozitiitsgesetz und (a)-
(c) beziehen sich auf die Teile von Satz 6.1.5. Ebenso folgt, dass

() () () (3) (3) )~

Wir schlieflen, dass

(1701039) N (1339) ' (13(1)9) =(-1)(-) =1

Also ist 713 ein quadratischer Rest (mod 1009).

(c) Wir fragen uns ob die Kongruenz 22 = 13 (mod 76) lésbar ist. Da 76 =
4-19 sagt der chinesische Restsatz (Theorem 2.7), dass die Kongruenz dquivalent
ist zu

{ ?=13=1 (mod 4), (28)

2 =13 (mod 19).

Um zu bestimmen ob die zweite Kongruenz lésbar ist, berechnen wir

B)-E-FE-0-

Wir schlieflen, dass die zweite Kongruenz von (28) nicht lésbar ist, und also
auch die urspriingliche Kongruenz nicht.

6.3 Das Jacobi-Symbol

In Beispiel 6.2.7 haben wir gesehen, dass wir die Zahl 713 faktorisieren miissen
um das Legendre-Symbol (52) zu berechnen. Fiir kleine Zahlen wie 713 ist dies
kein Problem, aber fiir sehr grofe Zahlen ist dies unpraktisch (siehe § 3.4). In
diesem Abschnitt besprechen wir eine Verallgemeinerung des Legendre-Symbols
welches uns erlaubt, das Legendre-Symbol von groflen Zahlen zu berechnen,

ohne in jedem Schritt die Primfaktorzerlegung zu berechnen.
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Definition 6.3.1 Seien n € N und a € Z teilerfremd zu n. Sein =py -pa-- - pr
die Primfaktorzerlegung von n. Das Jacobi-Symbol (%) ist definiert als

wobei (pi) das Legendre-Symbol ist.

Bemerkung 6.3.2 Falls (£) = —1, so ist die Kongruenz z* = a (mod n) nicht

16sbar, da mindestens eine der Legendre-Symbole (;*) = —1ist. Falls () = +1,
konnen wir nur schliefen, dass die Anzahl der Primzahlen p; mit (&) = —1
gerade ist. Wir konnen daher nicht schlieflen, dass a eine quadratiséhe Rest
(mod n) ist.

Das Jacobi-Symbol erfiillt die gleichen Rechenregeln wie das Legendre-Symbol.

Satz 6.3.3 Seien n und n' ungerade, natiirliche Zahlen.

(a) Falls a = a' (mod n), so ist (%) = (<.

(b) Es gilt (£)(3%) = (5%) und (£)(%) = (%)

Beweis: Dies folgt direkt aus der Definition des Jacobi-Symbols. a

Folgendes Theorem ist das quadratische Reziprozitatsgesetz fiir Jacobi-Symbole.

Theorem 6.3.4 Seien n und m ungerade natiirliche Zahlen, welche teilerfemd
sind. Es gilt:

(a) (2) = (-1 D/,
(b) (1) = (=)= D72,

(¢) (2)(2) = (~1)m=Dn-n/A

Beweis: (a) Sei n = py - - - p, die Primfaktorzerlegung von n. Laut Definition
des Jacobi-Symbols und Korollar 6.2.3 gilt, dass

2 (2 .
— | = — ) =(-1 Ei:l(pi_l)/S'
Fiir ungerade Zahlen a und b zeigt man, dass

(@®b* = 1) — (a* = 1) — (b* = 1) = (a®* = 1)(b* = 1).

Daa=b=1 (mod 2), folgt, dass a>—1=b>—1=0 (mod 4), also (a?h?>—1) =
(a®> — 1) + (b* — 1) (mod 16). Hieraus folgt mit Induktion, dass

T

pep—1=3(p2 1) (mod 16). (29)
=1
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Wir schlieflen, dass

(z) =(-1) i (i -1)/8 _ (_1)(712—1)/8'

n

Teil (b) folgt &hnlich wie (a) aus

T

propr—1=3% (pi—1) (mod4). (30)

i=1

(c) Schreibe m = H;Zl ¢; und n = []i_, pi. Satz 6.3.3.(b) und Theorem
6.2.4 implizieren, dass

(0 (D) =TI () () = o=

Wir schreiben Y ._, (pi—1) = p1---pr—1+4A und Z;Zl(qj -D=q q—
1+ 4B (Kongruenz (30)). Da n und m ungerade sind, folgt, dass

T

Y=g -1 =D _(pi—1)]- [Z(%‘ - 1)

| :[p_l"'pr_1+4A][Q1"'qt—1+4B]
=(mn—-1)(m—-1)+4[A(m —1)+ B(n—1)] + 16AB
=(n-1)(m—1) (mod 8).

Dies impliziert (c). O

Beispiel 6.3.5 Mit Hilfe des Jacobi-Symbol kann man nun schnell das Legendre-
Symbol berechnen:

BS) (M3 (2 15\ (15 (38
443)  \383) 383 ) \383) \15
23 2
= —_ = —_ = 1
(5)- (%)
Da 443 eine Primzahl ist, schlieen wir, dass 383 ein quadratischer Rest (mod
443) ist. Der Vorteil gegeniiber der Methode von § 6.2 ist, dass wir die Prim-

faktorzerlegung der Zwischenschritte nur unvolstéindig Berechnung miissen: Wir
brauchen nur die Faktoren 2.

7 Diophantische Gleichungen

In diesem Abschnitt betrachten wir einige Beispiele von diophantische Glei-
chungen. Eine diophantische Gleichung ist eine Gleichung f(x1,x2,...,x,) =0,
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wobei f € Z[r1,29,...,z,] ein Polynom mit ganzzahligen Koeffizienten ist.
Ziel ist es ganzzahlige Losungen (z1, 22, ..., o) € Z™ der Gleichung zu finden.
Diophantische Gleichungen sind benannt nach dem griechischen Mathematiker
Diophant von Alexandrien. Er lebte rund 250 n. Chr. Mehr Information finden
Sie auf der MacTutor-Webseite:
http://www-groups.dcs.st-and.ac.uk/ history/Biographies/Diophantus.html.
Die beriihmteste diophantische Gleichung ist ™ + y™ = z™. Der letzte Satz
von Fermat besagt, dass diese Gleichung keine Losung besitzt fiir z,y,2 € N
und n > 3. Der Satz ist benannt nach Pierre de Fermat, einem franzdsischen
Mathematiker der rund 1630 in einer Ubersetzung von Diophants’ Arithmetica
schrieb, dass er ein wahrhaft wunderbaren Beweis gefunden habe, fiir den aber
auf dem Rand nicht genug Platz sei. Der Satz wurde letztendlich 1994 von Wiles
und Taylor—Wiles bewiesen. Hier finden Sie mehr Information:
http://www-history.mcs.st-andrews.ac.uk/HistTopics/Fermat’s_last_theorem.html

7.1 Pythagoriische Tripel

Der Satz des Pythagoras ist der vieleicht bekannteste Satz der Mathematik. Er
besagt, dass in einem rechtwinkligen Dreieck die Summe der Flicheninhalte der
Kathetenquadrate gleich den Flidcheninhalt des Hypotenusenquadrates ist. In
Formel:

a’ +b* =2, (31)
wobei ¢ die Liange der Hypotenuse eines rechtwinkligen Dreiecks ist, und a
und b die Lange der iiberigen Seiten sind. In diesem Abschnitt betrachten wir
Losungen von (31) wobei a, b, ¢ natiirliche Zahlen sind.

Definition 7.1.1 (a) Ein Tripel (a,b,c) € N3 heifit pythagoréisches Tripel,
falls a? + b? = 2.

(b) Ein pytagoriisches Tripel heif$t primitiv, falls ggT(a, b, c) = 1.
Beispiel 7.1.2 Beispiele von primitive pythagoriische Tripeln sind
3% +42 =52, 5% +12%2 = 13%

Falls (a, b, ¢) ein primitives pythagoriisches Tripel ist, so ist («a, ab, ac) auch
ein pythagoréisches Tripel, fiir jedes o € N. Um alle pythagoréischen Tripeln zu
bestimmen, reicht es also die primitiven Tripel zu bestimmen.

Bemerkung 7.1.3 Sei (a, b, ¢) ein primitives pythagoriisches Tripel. Die Zah-
len a und b sind nicht beide ungerade. Falls ndmlich ¢ = b = 1 (mod 2), gilt
2 =a%>+b%>=2 (mod 2). Aber 2 ist ein quadratischer Nichtrest (modulo 4).

Theorem 7.1.4 Sei a,b,c € N mit b gerade und ggT(a,b,¢) = 1. Nun ist
(a,b,c) genau dann ein primitives pythagoriisches Tripel, wenn r,s € N mit
r>sundr#s (mod 2) und ggT(r,s) = 1, sodass

a=r?—s% b=2rs, c=1r?+s* (32)
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existieren.
Beweis: Sei r, s wie in (32). Es gilt
a?+ b =(r* — %)% + (2rs)? = (rP + %) = A

AuBlerdem gilt, dass ggT(a,b,¢) = 1. Also ist (a,b,c¢) ein primitives pytha-
goréisches Tripel.

Sei (a, b, ¢) ein primitives pythagoriisches Tripel. Ohne Einschrinkung diirfen
wir annehmen, dass b gerade ist (Bemerkung 7.1.3). Es gilt v> = ¢? — a® =
(c+a)(c—a). Dab= 0mod 2, gilt also, dass a = ¢ (mod 2). Da ggT(a,b,c) =1,
sind @ und ¢ beide ungerade. Also finden wir, dass

b\’ c—a c+a
Z) = . 33
(z) = () () 5
Wir behaupten, dass d := ggT(a,c) = 1. Es gilt, dass d | (c—a) und d | (c+a).
Also impliziert (33), dass d? | b*. Da ggT(a,b,c) = 1 ist, folgt also, dass d = 1.
Wir haben gezeigt, dass ggT(a,c) = 1. Hieraus folgt auch, dass ggT((c —
a)/2,(a+c)/2) = 1. Daher impliziert (33), dass (c—a)/2 und (c¢+a)/2 Quadrate

sind. Wir schreiben
c+a :r2, c—a 282,
2 2

c=r?+5s% a=r?—s2 b= 2rs.

AuBerdem gilt ggT(r, s) = ggT((c —a)/2,(a+¢)/2) = 1. Da

P2 — (C;a) N (C;a)+a=s2+a582+1 (mod 2),

also

gilt r # s (mod 2). m|

Der geometrische Beweis.
Wir geben einen zweiten geometrischen Beweis von Theorem 7.1.4. Sei (a, b, ¢)
ein primitives pythagoréisches Tripel. Wir erlauben jetzt a,b,c € Z. Sei P =
(a/e,b/c) =: (p,q) € Q x Q. Es gilt p? + ¢® = 1, also ist P einen Punkt auf dem
Einheitskreis 22 + 2 = 1.

Sei nun P = (p, q) # (1,0) einen Punkt auf dem Einheitskreis mit p,q € Q.
Wir betrachten die Gerade L durch P und (1,0). Die Gerade L ist gegeben
durch die Gleichung

y=1t(1—x), mit { = ——.
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Lemma 7.1.5 Sei S = {(p,q) € Q x Q|p* +¢*> =1} \ {(1,0)}. So ist

F:§—-Q\, (pg+rt >

eine Bijektion.

Beweis: Sei (p,q) € S.Da (p,q) # (1,0),ist p # 1. Alsoist t = ¢/(1—p) € Q.

Sei nun ¢ € Q. Wir betrachten die Gerade L; durch (1,0) mit Steigung ¢.
Die Gleichung der Gerade L; ist y = ¢(1 — ). Wir berechnen die Schnittpunkte
von L; mit dem Einheitskreis. Wir finden

1=a?+[t(1— )],
0=2a2%(1+1t*) — 2%z +t* -1,

2t2 1
x = + \Atd — 44 + 4.

21 +12) — 2(1+2)

Also gilt

2 -1 2t
(z,9) = (1,0),  oder  (z,y9)= (m m) '

Beide Punkte haben rationale Koordinaten.

Wir sehen, dass L; 2 Schnittpunkte mit der Einheitskreis hat: Der Punkt
(1,0) und ein Punkt P = P, € S. Wir {iberlassen es den Leser zu iiberpriifen,
dass die Abbildung ¢ — P, eine Umkehrabbildung zu F' definiert. Wir schlieflen,
dass F' eine Bijektion ist. O
Theorem 7.1.6 Die Gleichung z*+y* = 22 hat keine Lésungen mit z,y, 2 € N.

Aus Theorem 7.1.6 folgt der letzte Satz von Fermat fiir n = 4.

Korollar 7.1.7 Die Gleichung x*4y* = z* hat keine Lésungen mit x,y, z € N.
Beweis: Sei (z,y, 2) € N? mit 2% + y* = 24, so ist (2,7, 2?) eine Losung zu

der Gleichung von Theorem 7.1.6. Dies liefert einen Widerspruch. O

(p,q)
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Beweis des Theorems: Wir nehmen an, dass die Gleichung z* 4+ y* = 22

eine Losung hat. Sei g, 40,20 € N eine Losung mit zg minimal. Insbesondere
gilt, dass ggT(xp,y0) = 1 ist.

Sei g = yo = 1 (mod 2). Es gilt, dass 28 = yg =1 (mod 8). Aber 2 ist ein
quadratischer Nichtrest modulo 8. Also sind zy und g nicht beide ungerade.
Wir diirfen also annehmen, dass yo gerade ist.

Nun ist (23,33, 20) ein primitives pythagoriisches Tripel. Theorem 7.1.4 im-
pliziert daher, dass r, s € N existieren, sodass

;103:7“2—32, y§:2rs, 20 =12 + 52, ggT(r,s) = 1.
Da 23 + s* = r? und ggT(zo,r,s) = 1 folgt, dass (xo, s,r) ein primitives pytha-
goraisches Tripel ist.
Wir wenden Theorem 7.1.4 nun auf (zg, s,r) an und finden, dass p,c € N
existieren, sodass

zo=p>—0°, s=2p0, r=p°+0°,  ggT(p,0)=1

Da y2 = 2rs, finden wir

() = o +.0%).

Da p, 0, p? + 0% paarweise teilerfremd sind und das Produkt dieser 3 Elementen
einen Quadratzahl ist, existieren u, v, w € Z, sodass

p:u2, a:v2, p2—|—02:w2.

Wir finden nun, dass
w? :p2—|—a2 :u4+v4.

Also ist (u,v,w) eine Losung der Gleichung u* + v* = w?. Aber

lw| = \/p2+ 02 = r <r®+ 5% = 2.

Dies widerspricht der Wahl der Losung (zo, yo, 20). Also hat die Gleichung keine
Losungen. O

7.2 Welche Zahlen sind die Summe von zwei Quadraten?

In diesem Abschnitt fragen wir uns, welche natiirliche Zahlen man als Summe
von zwei Quadraten schreiben kann. Um zu iiberpriifen ob eine Zahl n sich
schreiben lisst als Summe von zwei Quadraten, iiberpriifen wir ob n — a? eine
Quadratzahl ist, wobei es reicht die Zahlen a kleiner gleich 4/n/2 zu iiberpriifen.
Dies sieht man wie folgt: Sei n = a? + b mit a < b. Es folgt, dass n > 2a?, also

ag\/n—/l
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Zuerst gucken wir uns eine kleine Tabelle an und fragen uns ob wir ein
Muster erkennen kénnen.

1=0%2+12 11 Nein 21 Nein

2=12+1%2 12 Nein 22 Nein

3 Nein 13=22+3% 23 Nein

4=0%2422 14 Nein 24 Nein

5=12+22 15 Nein 25 =02 +52=2324+42
6 Nein 16 =02 +42 26 =12+ 52

7 Nein 17 =12+ 42 27 Nein

8=22422 18=32+32 28 Nein

9=0%2+32 19 Nein 29 = 22 4 52

10 Nein 20 = 22 +42 30 Nein

Auf den ersten Blick ist es nicht einfach ein Muster zu erkennen. Einfacher
wird es, wenn wir uns die Primzahlen angucken: Die Primzahlen kleiner 30 die
sich als Summe von zwei Quadraten schreiben lassen sind: 2,5,13,17,29. Die
iibrigen Primzahlen 3,11,19,23 sind keine Summe von zwei Quadraten. Wir
vermuten nun, dass eine Primzahl p genau dann die Summe von zwei Quadraten
ist, wenn p = 2 oder p = 1 (mod 4) ist. Wir werden sehen, dass dies tatséichlich
stimmt (Theorem 7.2.3). Folgendes Lemma zeigt eine Richtung der Aussage.

Lemma 7.2.1 Sei n = a® + b?, so gilt, dass n # 3 (mod 4) ist.

Beweis: Die quadratische Reste (mod 4) sind 0, 1. Falls n = a? + b2 gilt
daher, dass n kongruent zu 0+0=0, 0+1=14+0=1oder 14+ 1 =2 (mod 4)
ist. o

Bemerkung 7.2.2 Falls p eine ungerade Primzahl ist, kénnen wir auch einen
alternativen Beweis von Lemma 7.2.1 geben mit Hilfe des Legendre-Symbols.
Wir nehmen an, dass p = a® + b%. Da p eine Primzahl ist, folgt, dass a und
b teilerfemd zu p sind. Also gilt a® = —b? (mod p). Die Rechenregeln fiir das
Legendre-Symbol (Satz 6.1.5) implizieren, dass

-(5)-6)-G)G)-)
p p p/)\p /)
Aus Korollar 6.1.6 folgt, dass (%1) =1 genau dann, wenn p =1 (mod 4) ist.

Bemerkung 7.2.2 stellt eine Beziehung her zwischen dem Legendre-Symbol
und der Frage welche Zahlen die Summe von zwei Quadraten sind. Diese Idee
benutzen wir im Beweis von Theorem 7.2.3.

Theorem 7.2.3 Eine Primzahl p ist genau dann die Summe von zwei Quadra-
ten, wenn p = 2 oder p =1 (mod 4).
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Beweis: Falls p = a? + b? die Summe von zwei Quadraten ist, so folgt aus
Lemma 7.2.1, dass p = 2 oder p = 1 (mod 4) ist. Wir haben schon gesehen,
dass p = 2 die Summe von zwei Quadraten ist.

Sei p =1 (mod 4) eine Primzahl. Wir zeigen, dass p = a? + b? die Summe
von zwei Quadraten ist. Die Beweismethode heifit Fermats Abstiegargument.

Aus Bemerkung 7.2.2 folgt, dass (%1) = 1. Also existiert eine Zahl0 < A < p

mit A2 = —1 (mod p). Wihle m mit A% +1=m-p. Dam = (A% +1)/p, gilt

(p—1+12  2p-1)

m < D
p p

<p.

Falls m = 1, sind wir fertig. Wir nehmen daher an, dass m > 1 ist, und setzen
ag = A,bp = 1 und mg = m. Ziel der Methode ist es neue Zahlen (ai,b1,m1)
zu finden mit a% + b% =my -p und m; < mg. Wir wiederholen dies so Lange bis
m, = 1. Dann haben wir p = m,. - p = a2 + b? geschrieben als Summe von zwei
Quadraten.

Das Verfahren beruht auf folgender Formel, welche man leicht iiberpriift:

(u? +v*) (A% + B?) = (uA +vB)* + (vA — uB)>. (34)

Fermats Abstiegargument: Gegeben sind Zahlen (a;, b;, m;) mit 1 < m; <p
und a? + b? = m; - p. Wir suchen Zahlen (a;41,bi41,mi41) mit 1 < m;pq < m;
und af_H + bzz_,_1 = Mit1 - P-

Wéhle —m;/2 < w;,v; < mg/2, sodass u; = a; (mod m;) und v; = b;
(mod m;). Es gilt, dass

0=a?+b?=u?+v? (mod m;).

Wir schreiben u? + v = m; - r;.
Wir behaupten, dass

(a) 1 <r; <my,
(C) m; | (’Uiai — ulbz)

Behauptung (b) und (c) folgen direkt aus der Definition von u; und v;. Fiir (a),
bemerken wir, dass
uf +vf _ (mif2)° + (mi/2)?  1mi 1

r, = < = = —my; < Mm;.
m; m; 2 m; 2

Offensichtlich gilt, dass r; > 0. Wir nehmen an, dass r; = 0. Es folgt, dass
u? +v? = 0 ist, also gilt u; = v; = 0. Dies impliziert, dass a; = b; = 0 (mod m;)
ist. Also gilt, dass m? ein Teiler von a? + b7 = m; - p ist. Hieraus folgt, dass
m; = 1 ist, aber dies hatten wir ausgeschlossen. Wir schlielen, dass r; > 1 ist.
Dies beweist Behauptung (a).
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Mit Hilfe von (34), schreiben wir nun
mirip = (u? + v} (a? +0?) = (usa; + vibi)? + (via; — u;b;)?. (35)
Wir definieren

u;a; + v;b; v;a; — U;b;
Aj41 = T’ bi+1 = T7 mi41 = T4
1 1

Aus (34) folgt, dass
afﬂ + bfﬂ = mMiy1p, mit 1 < m;qp1 < m;.

Wie oben erklért, folgt die Aussage des Theorems mittels Induktion. a

Beispiel 7.2.4 Wir schreiben p = 881 als Summe von zwei Quadraten mit Hilfe
des Abstiegsarguments.

Wir bemerken, dass p = 881 = 1 (mod 4). Wir suchen zuerst eine Losung der
Kongruenz 22 = —1 (mod p). Hier ist eine Methode so eine Losung zu finden.
Wiihle 0 < a < p beliebig und setze x = a(P~1)/%. Bemerke, dass (p — 1)/4 eine
ganze Zahl ist, da p = 1 (mod 4). Lemma 6.1.4 sagt, dass (%) = aP=/2 = y2
ist. Also ist 22 = —1 (mod p) genau dann, wenn a ein quadratischer Nichtrest
ist.

Wir finden, dass 2°~1/2 =1 (mod p) und 3%»~1/2 = —1 (mod p), also ist

2 ein quadratischer Rest (mod p) und 3 ein quadratischer Nichtrest (mod p).
Wir schlieBen, dass z = 3(—1/4 = 387 eine Losung der Kongruenz 22 = —1
(mod p) ist.

Folgende Tabelle gibt die Werte der Variablen a;, b;, m;, u;, v; und r; fiir jedes
7 an.
0387 | 1 |170|47| 1|13
11107 2 |13 |3 |21
2125 |16 1 — | = -

Wir finden daher als Losung 881 = 252+ 162. Da 881 eine relativ kleine Zahl
ist, hdtte man dies auch einfach durch ausprobieren 16sen kénnen.

Als Néchstes mochten wir besprechen welche zusammengesetzte Zahlen man
als Summe von zwei Quadraten schreiben kann. Wir werden sehen, dass die
Antwort fiir n sich auf der Antwort fiir die Primfaktoren von n zuriickfithren
lésst.

Theorem 7.2.5 Sein eine natiirliche Zahl mit Primfaktorzerlegungn = [, p{*,
wobei p; # p; fiir i # j ist. Die Zahl n kann man schreiben als Summe von zwei
Quadraten genau dann, wenn fiir jedes i mindestens eine der folgenden Bedin-
gungen erfiillt ist:

.pi:27
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e p; =1 (mod 4),
e ¢; gerade.

Beweis: Der Beweis folgt aus einem wiederholten Anwenden der Formel
(34). Wir iiberlassen dies dem Leser/der Leserin. O

Beispiel 7.2.6 Wir betrachten die Zahl n = 585 =32-5-13. Da5 =13 =1
(mod 4), ldsst n sich schreiben als Summe von zwei Quadraten. Da 5 = 12 4 22
und 13 = 22 + 32, finden wir mit Hilfe von (34), dass

n = 3%(1242%)(22+3%) = 32[(1-24+2-3)2+(22—1-3)%] = (3-8)?+(3-1)? = 24?432

7.3 Die gaufische Zahlen

In diesem Abschnitt geben wir einen alternativen Beweis von Theorem 7.2.5
mit Hilfe der Primfaktorzerlegung in dem Ring der gauflschen Zahlen. Hierzu
betrachten wir die Zerlegung n = a? + b*> = (a + bi)(a — bi), wobei i2 = —1
ist. Als Hilfmittel fiir diesen Beweis miissen wir zuerst die Begriffe Primzahl,
Primfaktorzerlegung und euklidischer Algorithmus auf dem Ring der gauflschen
Zahlen verallgemeinern.

Definition 7.3.1 Sei Z[i] = {a + bi | a,b, € Z} der Ring der ganzen gaufischen
Zahlen. Addition und Multiplikation sind definiert durch:

(a+bi)+ (c+di) = (a+c)+ (b+d)i, (a+bi)-(c+di) = (ac—bd)+ (ad+be)i.

Insbesondere ist i? = —1.
Die Norm einer ganzen gaufischen Zahl z = a + bi ist definiert als N(z) =
a?+b% € Zzo.

Wir bemerken, dass jede ganze gaufische Zahl z = a + bi auch eine komplexe
Zahl ist. Sei |z| der komplexe Betrag, so gilt N(z) = |2|> = z- 2, wobei Z = a —bi
die Konjugierte von z ist. Hieraus folgt die Relation N(z)N(w) = N(z - w).
Auflerdem gilt, dass N(z) = 0 ist genau dann, wenn z = 0. Fiir alle z # 0 ist
N(z) > 1.

Definition 7.3.2 (a) Seien z,w ganze gaufische Zahlen. Wir sagen, dass z
ein Teiler von w ist, falls eine ganze gauflsche Zahl v # 0 mit z- v = w
existiert. Wir schreiben: z | w.

(b) Eine ganze gaufische Zahl z heifit Einheit, falls z ein Teiler von 1 ist, oder
dquivalent, falls z=1 € Z[i] ist.
Sei z = a + bi # 0. Die Zahl 2! berechnet man, wie fiir komplexe Zahlen:
1 1 a—-bi a—b z

= = = . 36
z a+bia—bi a?>+b N(z) (36)

Folgendes Lemma bestimmt die Einheiten in Z[i].
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Lemma 7.3.3 Die Einheiten in Z[i] sind genau die Zahlen mit N(«) = 1. Dies
sind +1, +3.

Beweis: Sei 2 = a + bi € Z[i] eine Einheit. Also existiert w = 271 €
Z[i] mit z-w = 1. Nun gilt, dass N(z)N(w) = N(1) = 1. Da N(z) € N
ist, folgt, dass N(z) = 1. Also gilt a® + > = 1. Hieraus folgt, dass (a,b) €
{(1,0), (=1,0), (0, 1), (0, 1)} ist. Also ist 2 € {1, +i}. O

Der folgende Satz erklirt wie Division mit Rest in Z[i] funktioniert. Dies
ist die Grundlage fiir dem euklidischen Algorithmus in Z[i] (Beispiel 7.3.5). Ein
kommutativer Ring R mit einem euklidischen Algorithmus heifit euklidischer
Ring. Aus technischen Griinden miissen wir auch fordern, dass R keine Nullteiler
besitzt. (Dies sind Zahlen z # 0 mit z | 0.) Beispiele von euklidischen Ringen
sind Z, Z[i] und k[z], wobei k ein Korper ist.

Satz 7.3.4 (Division mit Rest) Seien o = a + bi,3 = c+ di # 0 € Z[i]. Es
existieren q,r € Z[i], sodass

a=q-f+r, mit 0 < N(r) < N(B).

Beweis: Wir betrachten die komplexe Zahl z = a/8 = = 4+ yi € C. Aus
(36) folgt, dass z,y € Q sind. Sei nun ¢ = m + ni die ganze gauBlsche Zahl der
so nah wie moglich an z ist, also mit N(z — ¢) minimal. Diese Zahl muss nicht
eindeutig sein.

Nun gilt, dass |z —m| < 1/2 und |y — n| < 1/2. Also gilt

1 1 1
NG—aq) =@ —mP+ly—n < (37 + (5P =1 <1.
Setze r = (2 — q)B. Aus der Definition von z folgt, dass r = a — ¢ € Z][i] ist.
AuBlerdem gilt, dass

N(r) = N(z—q)N(B) < N(B).

Beispiel 7.3.5 Sei a =19+ 107 und 3 = 2 — 3i. Es ist
a 19+1002+3i 84 7Ti 8 TT.

7z = — =

>3 213 13 13 13"
Wir wihlen ¢ = 1+6i. Die Zahl r = a— g8 = —1+i erfiillt N(r) =2 < N(8) =
13.

Wir wenden den euklidischen Algorithmus auf o und 8 an und benutzen die
gleiche Bezeichnung wie in § 1.1.

n| mo |
—1[19+10i| -
0| 2-3i -
1| =144 | 1+6i
2 1 24
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Was der euklidische Algorithmus fiir Z[i] genau berechnet, ist zunéchst nicht
ganz klar: Wir miissen uns davon iiberzeugen, dass der Begriff gréfite gemeinsa-
me Teiler in Z[i] Sinn macht. Wir werden sehen, dass dies in der Tat der Fall ist.
Der folgende Satz ist das Analogon fiir Z[i] von Lemma 1.1.9. Es gilt nicht nur
fiir Z[i] sondern fiir jeden euklidischen Ring. Fiir R = k[z] haben wir dies schon
gesehen in Lemma 4.2.4. Vergleichen Sie diese drei Beweisen um festzustellen,
dass sie alle drei Spezialfille eines gemeinsamen Beweises sind!

Satz 7.3.6 Seien «, 8 € Z[i] mit a, 8 # 0.
(a) Es existiert ein gemeinsamer Teiler d von o und 3.
(b) Jeder gemeinsame Teiler von o und 3 ist auch ein Teiler von d.

Beweis: Wir betrachten die Menge S = {xa+yS | z,y € Z[i]}. Seid = xoa+
Yo € S\ {0} mit N(d) minimal. Wir behaupten, dass d jedes a = za+y8 € S
teilt. Namlich, sei a € S und sei a = gd+ r die Division mit Rest. Falls r # 0, so
gilt, dass r = a —qd = (z — quo)a+ (y — qyo) 8 € S ist. Aber 0 # N(r) < N(d).
Die widerspricht den Wahl von d. Also ist » = 0 und d ein Teiler von a.

Aus der Darstellung d = xa + yf3 folgt, dass jeder gemeinsame Teiler von «
und 3 auch d teilt. O

Satz 7.3.6 impliziert, dass «, 8 € Z[i] nicht beide Null einen grofiten gemein-
samen Teiler besitzen: Dies ist die Zahl d aus Satz 7.3.6.(a). Man sollte beachten,
dass der ggT nur bis auf Einheiten eindeutig definiert ist, da die Einheiten Norm
1 haben (Lemma 7.3.3).

Wie fiir ganze Zahlen und Polynome kénnen wir die ganzen gaufschen Zah-
len z,y mit d = xa + yF mit Hilfe des erweiterten euklidischen Algorithmus
ausrechnen.

Beispiel 7.3.7 Sei a = 194107 und 8 = 2—3i wie in Beispiel 7.3.5. Wir wenden
den erweiterten euklidischen Algorithmus mit der iiblichen Bezeichnung an.

L ST N O I
—1[19+10i| - 1 0
0 2-3 | - 0 1
1| —1+4d |1+46i| 1 | —1—6
2 1 | —2+i|2-i|-7T-1L.

Wir schlieen also, dass ggT(19 4 104,2 — 3i) =1 = (2 —4)(19 4+ 10¢) + (=7 —
114)(2 — 34).

Maple kann auch mit gauflschen Zahlen rechnen. Sie benutzen hierzu das
Paket GaussInt. Achten Sie darauf, dass die komplexe Einheit ¢ in Maple als
I eingegeben werden muss. Um obiges Beispiel mit Maple zu berechnen, typt
man:
with(GaussInt):

GIgcd(19+10%I, 2-3%I);
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Eine alternative Methode um ggT(«, 3) zu berechnen ist mit Hilfe der Norm.
Wir bemerken, dass N(19 + 10¢) = 461 und N(2 — 3¢) = 13. Da 461 und 13
teilerfremd in Z sind, folgt, dass auch « und 8 in Z[i] teilerfremd sind.

Als Nichstes mochten wir definieren was “Primzahlen” in Z[i] sind. Es gibt
zwei mogliche Verallgemeinerungen des Begriffs Primzahl in Z: Wir kénnen so-
wohl Definition 1.2.1 als auch die Behauptung von Lemma 1.2.3 als Definition
einer Gaufl -Primzahl nehmen. Fiir Z sind beide Definitionen dquivalent. Diese
Aussage war der wichtigste Schritt im Beweis des Fundamentalsatzes der Arith-
metik (Theorem 1.2.4). Wir werden sehen (Satz 7.3.9), dass dies fiir Z[i] auch
gilt. (Allgemeiner, gilt dies in jedem beliebigen euklidischen Ring.)

Definition 7.3.8 (a) Eine Zahl 0 # « € Z[i] heifit irreduzibel (oder unzer-
legbar), falls « keine Einheit ist und o = o - ag mit o € Z[i] impliziert,
dass entweder o1 oder a eine Einheit ist.

(b) Eine Zahl 0 # « € ZJi] heiit Primelement, falls « keine Einheit ist und
a | By impliziert, dass o entweder 8 oder 7 teilt.

Satz 7.3.9 Sei a € Z[i]. Die Zahl « ist genau dann irreduzibel, wenn o ein
Primelement ist.

Beweis: Sei a € Z[i] irreduzibel. Wir nehmen an, dass « | 8-y mit 3, v € Z[i]
und « 1 B. Da « irreduzibel ist, folgt, dass ggT(a,3) = 1. Also existieren
x,y € Z[i] mit 1 = za + yB (Satz 7.3.6). Es folgt, dass v = zay + yfy ist.
Da « ein Teiler von (7 ist, schlieflen wir, dass « | . Dies zeigt, dass « ein
Primelement ist.

Wir nehmen an, dass a € Z[i] ein Primelement ist. Sei & = e mit a; €
Z[i). Da a | @ = ajas, so teilt a entweder ay oder ap. Wir diirfen annehmen,
dass a | ag und schreiben a3 = Ba mit 8 € Z[i]. Da « # 0 ist, folgt Sas = 1,
also ist ag eine Einheit. Dies zeigt, dass a irreduzibel ist. o

Bemerkung 7.3.10 Der Beweis von Satz 7.3.9 zeigt sogar etwas Allgemeineres.
Fiir jeden kommutativen Ring ohne Nullteiler gilt, dass die Primelemente auch
irreduzibel sind. Die andere Implikation gilt fiir jeden euklidischen Ring.

Ein Beispiel von einem Ring wo beide Begriffe nicht dquivalent sind, ist
R = Z[\V=5] = {a+ by/=5 | a,b € Z}. Ahnlich wie fiir die gauBschen Zahlen,
definiert man den Norm durch N (a+by/=5) = (a+by/=5)(a—by/—5) = a®>+5b°.
In R gilt, dass

6=2-3=(1+v-5)(1—V-5). (37)

Man berechnet, dass N(2) = 4, N(3) = 9 und N(1 + /=5) = 6. AuBerdem
iiberpriift man leicht, dass keine Elementen in R mit Norm 2 und 3 existieren.
Dies impliziert, dass 2 und 3 in Z[/—5] irreduzibel sind.

Offensichtlich gilt, dass 2| 6 = (1 ++/=5)(1 —v/=5). Da N(2) =4{ N(1 +
V/—=5) = 6 folgt, dass 21 (1 £+/=5). Wir schlieflen, dass 2 kein Primelement ist.
Das gleiche Argument zeigt, dass 3 kein Primelement ist.

76



Das folgende Lemma gibt ein einfaches Kriterium um zu {iberpriifen ob « €
Z][i] irreduzibel ist.

Lemma 7.3.11 Sei @ € Z[i] ein Element mit N(«) = p eine Primzahl, so ist «
irreduzibel.

Beweis: Sei a wie in der Aussage des Lemmas. Wir schreiben a = v mit
B,y € Z[i]. Es folgt, dass p = N(a) = N(B)N(v). Da N(z) € Z>q ist, ist
entweder N(B) oder N(v) gleich 1. Lemma 7.3.3 impliziert, dass entweder
oder + eine Einheit ist. Also ist « irreduzibel. O

Das folgende Theorem ist das Analogon des Fundamentalsatzes der Arith-
metik (Theorem 1.2.4) fiir die gaufischen Zahlen. Wir wissen, dass irreduzible
Elementen auch Primelementen sind. Daher kénnen wir den Beweis von Theo-
rem 1.2.4 in dieser Situation iibertragen. (Uberpriifen Sie dies!)

Theorem 7.3.12 (a) Jedes « € Z[i], das nicht Null oder eine Einheit ist ldsst
sich schreiben als Produkt von Primelementen.

(b) Die Primfaktorzerlegung aus (a) ist eindeutig bis auf Einheiten und Rei-
henfolge.

Bemerkung 7.3.13 Ein kommutativer Ring ohne Nullteiler mit eindeutiger
Primfaktorzerlegung heiflt faktoriell. Die Ergebnisse aus diesem Abschnitt zei-
gen auch, dass jede euklidischer Ring faktoriell ist. Ein Beispiel fiir ein nicht
faktorieller Ring ist Z[v/—5]: Dies folgt aus (37).

Das letzte Ziel dieses Kapitels ist die Bestimmung der Primelementen in Z[4].
Wir nennen diese Zahlen auch die Gau-Primzahlen.

Lemma 7.3.14 Sei p € Z eine Primzahl, so ist p entweder eine Gaufi-Primzahl
oder es existiert ein irreduzibles Element € Z[i] mit p = 7 - 7.

Beweis: Sei p € Z eine Primzahl, so ist p € Z][i] keine Einheit (Lemma
7.3.3). Also existiert ein irreduzibeles Element m = a + bi € Z[i], das p teilt. Es
folgt, dass N(7) | N(p) = p?, also ist N(n) entweder p oder p?.

Falls N(7) = p? ist, existiert eine Einheit ¢ mit p = er. Wir schlieflen, dass
p irreduzibel ist.

Falls N(m) = p ist, ist 7 ein echter Teiler von p und es gilt, dass 7 - 7 =
N(m) = p ist. m|

Lemma 7.3.15 Sei 7 € Z[i] eine GauB-Primzahl, so ist N(m) = 7 - T entweder
p oder p?, wobei p € Z eine Primzahl ist.

Beweis: Sei m € Z[i] eine GauB-Primzahl und sei n = N(m) € N. Sei
n = p1-p2 - - - pr die Primfaktorzerlegung von n in Z. Dies ist auch eine Zerlegung
in Z[i], aber die p;s sind nicht notwendigerweise Gaufi-Primzahlen. Da 7 eine
GauB-Primzahl ist, teilt 7 mindestens eine der p;. Wie im Beweis von Lemma
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7.3.14 folgt, dass N(m) = m-7 | N(p;) = p3. Also ist N(m) entweder p; oder p3.
O

Lemma 7.3.16 Seip € Z eine Primzahl. Die folgende Aussagen sind dquivalent:
(a) p=m -7, wobei 7 eine GauB-Primzahl ist,
(b) es existieren a,b € Z mit p = a? + b,
(c) p=2oderp=1 (mod 4).

Beweis: (a) = (b): Sei p = 7 - 7, wobeil 7 eine Gau-Primzahl ist. Schreibe
7 =a+bi. Nun gilt p =7 -7 = a? + b2

(b) = (a): Seip = a?+b? und 7 = a+bi. Es gilt N(7) = 7- 7 = a®> +b* = p.
Insbesondere ist 7 irreduzibel (Lemma 7.3.11).

(b) = (c): Dies folgt aus Lemma 7.2.1.

(c) = (b): Dies folgt aus Theorem 7.2.3. Alternativ kann man dies auch wie
folgt direkt beweisen.

Falls p = 2, so gilt 2 = (1 +4)(1 — 4), wobei 1 £ ¢ irreduzibel sind (Lemma
7.3.11. Seinun p = 1 (mod 4). Also ist (_?1) =1 (Korollar 6.1.6) und es existiert
ein x € Z mit 22 = —1 (mod p). Daher gilt, dass p | (2% + 1) = (z — i)(z +19).
Da x + ¢ keine Einheit ist, folgt, dass p keine Gauf}-Primzahl ist. Lemma 7.3.14
impliziert daher, dass eine Gauf-Primzahl 7 = a 4+ bi mit p = 7 - @ = a? + b?
existiert. a

Der folgende Satz beschreibt die Gauf}-Primzahlen. Der Satz folgt direkt aus
den Lemata 7.3.14-7.3.16.

Satz 7.3.17 (Die Gauf3-Primzahlen) Es gibt3 Typen von GauB-Primzahlen:
(a) 1+1,
(b) die Primzahlen p mit p =3 (mod 4),

(c) falls p eine Primzahl mit p = 1 (mod 4) ist, so existieren a,b € Z mit
p = a?+ b%. Nun ist 7 = a + bi eine Gaul-Primzahl.

Alle Gauf-Primzahlen sind vom obigen Typ (bis auf eine Einheit).

Beispiel 7.3.18 Wir berechnen die Primfaktorzerlegung von einigen ganzen
gaufischen Zahlen.

(a) Seim =143 =11-13. Da 11 = 3 (mod 4), also ist 11 eine Gau}-Primzahl.
Die Zahl 13 = 1 (mod 4) liisst sich schreiben als 13 = 22 + 3% = (2 + 34)(2 — 3i).
Die Primfaktorzerlegung von n is daher n = 11(2 + 37)(2 — 34).

(b) Sei @ = 9 + 5i. Es gilt N(a) = 92 + 52 = 106 = 2 - 53. Fiir jeden
irreduziblen Teiler 7 von « gilt N(7) | N(«), also N (7) € {2,53}. Wir bemerken,
dass 53 = 22472 = (2 + 7i)(2 — 7i). Bis auf Multiplikation mit einer Einheit ist
me{l+1i,2+7i,2—7i}. Wir berechnen (9 + 5¢)/(1+1) =7 — 2i = i(2 + T4).
Also ist a = (1 4+ 4)(7 — 24) die Primfaktorzerlegung von a.
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