
Elementare Zahlentheorie, Vorlesungsskript

Prof. Dr. Irene I. Bouw

Sommersemester 2008

Inhaltsverzeichnis

1 Primzahlen 3
1.1 Teilbarkeit und der euklidische Algorithmus . . . . . . . . . . . . 3
1.2 Der Fundamentalsatz der Arithmetik . . . . . . . . . . . . . . . . 7
1.3 Probedivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Kongruenzen 12
2.1 Kongruenzen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Der Kalenderformel . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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7.1 Pythagoräische Tripel . . . . . . . . . . . . . . . . . . . . . . . . 66
7.2 Welche Zahlen sind die Summe von zwei Quadraten? . . . . . . . 69
7.3 Die gaußsche Zahlen . . . . . . . . . . . . . . . . . . . . . . . . . 73

2



Einleitung

Dies ist ein Skript für der Vorlesung Elementare Zahlentheorie. Dies ist ein Vor-
lesung für Lehrämtler und Bachelorstudenten Mathematik an der Universität
Ulm. Ich danke Dr. Robert Carls, Dominik Ufer und Studenten der Vorlesung
im SS 2008 und SS 2009 für das sorgfaltige Lesen des Manuskripts.

1 Primzahlen

1.1 Teilbarkeit und der euklidische Algorithmus

Wir schreiben N = {1, 2, 3, 4, 5, . . .} für die Menge der natürlichen Zahlen und
Z = {· · · ,−2,−1, 0, 1, 2, · · ·} für die Menge der ganzen Zahlen. Mit Q bezeich-
nen wir die Menge der rationalen Zahlen (“Bruchzahlen”).

Definition 1.1.1 Seien a 6= 0 und b ganze Zahlen. Wir sagen, dass b durch a
teilbar ist, falls es eine ganze Zahl c gibt so, dass b = a · c. In diesem Fall heißt
a ein Teiler von b. Falls b durch a teilbar ist, so schreiben wir a | b. Falls b nicht
durch a teilbar ist, so schreiben wir a ∤ b.

Beispiel 1.1.2 Die Teiler von 12 sind ±1, ±2, ±3, ±4, ±6 und ±12.

Wir brauchen zuerst einige einfache Eigenschaften der Teilbarkeit.

Lemma 1.1.3 Seien a, b, c,m, n ganze Zahlen.

(a) Falls a | b und b | c, so gilt a | c.
(b) Falls c | a und c | b, so gilt c | (ma+ nb).

Beweis: (a) Es existieren ganze Zahlen e und f mit ae = b und bf = c. Also
gilt c = bf = aef . Wir schließen daraus, dass c durch a teilbar ist.

(b) Es existieren ganze Zahlen e und f mit a = ce und b = cf . Daher gilt
ma+ nb = mce+ ncf = c(me+ nf). Also ist ma+ nb durch c teilbar. 2

Definition 1.1.4 Seien a, b ganze Zahlen (nicht beide 0). Der größte gemein-
same Teiler von a und b ist die größte Zahl die sowohl a also auch b teilt. Wir
schreiben dafür: ggT(a, b). Falls ggT(a, b) = 1, so heißen a und b teilerfremd.
Falls a 6= 0, so ist ggT(a, 0) = a. Für a = b = 0 ist ggT(a, b) nicht definiert.

Zwei Beispiele sind ggT(16, 12) = 4 und ggT(120, 225) = 15. Dies kann man
zum Beispiel nachrechnen, indem man die Zahlen faktorisiert: 120 = 23 ·3 ·5 und
225 = 32 ·52. Für größere Zahlen ist dies allerdings nicht praktikabel. Versuchen
Sie zum Beispiel ggT(1160718174, 316258250) mit Hilfe eines Taschenrechners
zu berechnen. Den größten gemeinsamen Teiler berechnet man in Maple mit
dem Kommando igcd.

Ein sehr effizienter Algorithmus zum Berechnen des ggTs, ist der euklidische
Algorithmus. Dieser Algorithmus basiert auf Division mit Rest.
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Satz 1.1.5 Seien a, b ganze Zahlen mit b > 0. Dann existieren eindeutige ganze
Zahlen q, r mit a = bq + r und 0 ≤ r < b. Wir nennen q den Quotienten und r
den Rest. Falls r = 0, so ist b ein Teiler von a.

Beweis: Sei q = [a/b] die größte ganze Zahl kleiner oder gleich a/b. Es gilt
q ≤ a/b < q + 1. Also gilt

qb ≤ a

b
b = a < (q + 1)b = qb + b.

Setzen wir r = a− qb, so folgt 0 ≤ r < b.
Falls r = 0, so gilt a = qb. Also ist b ein Teiler von a.
Zur Überprüfung der Eindeutigkeit nehmen wir an, dass

a = q1b+ r1 = q2b+ r2 mit 0 ≤ r1, r2 < b. (1)

OBdA dürfen wir annehmen, dass r2 < r1. (Falls r1 = r2, so gilt auch q1 = q2.)
Daher gilt 0 < r1 − r2 < b. Insbesondere ist b kein Teiler von r1 − r2. Aus (1)
folgt, dass (q1 − q2)b = r2 − r1. Dies liefert einen Widerspruch. 2

Beispiel 1.1.6 Wir erklären zuerst an Hand eines Beispiels wie man den ggT
mit Hilfe der Division mit Rest berechnen kann. Wir möchten ggT(842, 356)
berechnen. Wir berechnen zuerst den Rest von a := 842 nach Division durch
b := 356. Aus dem Beweis von Satz 1.1.5 folgt, dass q = [842/356] = 2 ist, wie
man leicht mit einem Taschenrechner verifiziert. Der Rest ist nun r = a− qb =
130. Mit Maple berechnet man q und r mit den Kommandos iquo und irem.
Wir teilen nun 356 durch 130 und machen so weiter, bis wir irgendwann den
Rest 0 bekommen. Der vorletzte Rest ist dann ggT(a, b).

842 = 2 · 356 + 130

356 = 2 · 130 + 96

130 = 1 · 96 + 34

96 = 2 · 34 + 28

34 = 1 · 28 + 6

28 = 4 · 6 + 4

6 = 1 · 4 + 2

4 = 2 · 2 + 0.

Allgemein funktioniert der euklidische Algorithmus wie folgt.

Algorithmus 1.1.7 (Der euklidische Algorithmus) Seien a, b ∈ Z \ {0}.
Ohne Einschränkung dürfen wir annehmen, dass 0 < b < a. Wir schreiben
r−1 = a und r0 = b.

(a) Für n > 0 definieren wir nun qi und ri rekursiv durch die folgende Glei-
chung

rn−2 = qn · rn−1 + rn, mit 0 ≤ rn < rn−1. (2)
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(b) Sei m minimal so, dass rm = 0. Nun ist ggT(a, b) = rm−1.

Um überflüssiges Schreiben zu vermeiden, bietet es sich an, die Werte von
qn und rn in einer Tabelle zu notieren. Im obigen Beispiel sieht dies wie folgt
aus:

n rn qn
−1 842
0 356
1 130 2
2 96 2
3 34 1
4 28 2
5 6 1
6 4 4

7 2 1
8 0 2

Das folgende Lemma beschreibt einige wichtige Eigenschaften des ggTs.

Lemma 1.1.8 (a) ggT(a, b) = ggT(b, a).

(b) Für jedes q ∈ Z gilt, dass ggT(a, b) = ggT(b, a− qb).

(c) Falls g := ggT(a, b), so gilt ggT(a/g, b/g) = 1.

Beweis: Aussage (a) ist klar. Wir beweisen nun (b). Sei q ∈ Z beliebig und
sei d ein gemeinsamer Teiler von a und b. Aus Lemma 1.1.3.(b) folgt, dass d
auch ein Teiler von a − qb ist. Umgekehrt, sei e ein gemeinsamer Teiler von b
und a− qb. Da a = (a− qb) + qb ist folgt aus Lemma 1.1.3.(b), dass e auch ein
Teiler von a ist. Daher haben a und b genau die gleichen gemeinsamen Teiler
wie b und a− qb. Insbesondere ist ggT(a, b) = ggT(b, a− qa).

Wir beweisen nun (c). Sei g = ggT(a, b). Wir nehmen an, dass e > 0 ein
gemeinsamer Teiler von a/g und b/g ist. Es existieren ganze Zahlen x und y,
sodass a/g = xe und b/g = ye. Also ist ge ein gemeinsamer Teiler von a und
b. Da g der größte gemeinsame Teiler von a und b ist, gilt also e = 1. Also ist
ggT(a/g, b/g) = 1. 2

Lemma 1.1.8.(b) zeigt, dass der euklidische Algorithmus den ggT berechnet.
Seien nämlich rn definiert durch (2). Da (rn)n≥−1 eine streng monoton fallende
Folge ganzer Zahlen ist, gilt rm = 0 für m hinreichend groß. Sei m minimal
so, dass rm = 0. Wir möchten zeigen, dass rm−1 = ggT(a, b). Da rn = rn−2 −
qnrn−1 (2), folgt aus Lemma 1.1.8.(b), dass ggT(rn−2, rn−1) = ggT(rn−1, rn)
für n ≥ 1. Wir schließen, dass ggT(a, b) = ggT(r−1, r0) = ggT(r0, r1) = · · · =
ggT(rm−2, rm−1) = ggT(rm−1, 0) = rm−1.

Lemma 1.1.9 Seien a, b 6= 0 ganze Zahlen. Sei g := ggT(a, b).

(a) Es existieren x, y ∈ Z so, dass xa+ yb = g.
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(b) Jede Zahl d von der Form d = xa + yb mit x, y ∈ Z ist teilbar durch
ggT(a, b).

Beweis: Wir betrachten die Menge G = {xa+ yb |x, y ∈ Z}. Sei s ∈ G das
kleinste positive Element und seien x0, y0 ∈ Z so, dass s = x0a+ y0b.

Behauptung: s teilt jedes Element α ∈ G. Nämlich, sei α = xαa + yαb ∈ G
beliebig. Für jedes c ∈ Z gilt nun, dass α− cs = (xα − cx0)a+ (yα − cy0)b ∈ G.
Insbesondere gilt dies für c = [α/s]. Aus [α/s] ≤ α/s < [α/s] + 1 schließen wir,
dass

0 ≤ α−
[α

s

]

s < s.

Da α−
[

α
s

]

s ∈ G, folgt aus der Wahl von s, dass α−
[

α
s

]

s = 0, also dass s | α.
Aus der Behauptung folgt insbesondere, dass s = x0a + y0b ein Teiler von

a und b ist, da a, b ∈ G. Falls d ein beliebiger gemeinsamer Teiler von a und b
ist, so folgt aus Lemma 1.1.3.(b), dass d | s. Daher ist s = ggT(a, b) der größte
gemeinsame Teiler von a und b. 2

Lemma 1.1.9 sagt, dass g = ggT(a, b) die kleinste positive Zahl ist, die sich
als g = xa+ yb mit x, y ∈ Z schreiben lässt.

Die Zahlen x und y kann man mit Hilfe des euklidischen Algorithmus be-
rechnen. Wir betrachten nur den Fall, dass 0 < b < a ist. Der allgemeiner Fall
folgt aus diesem Spezialfall.

Sei (rn) definiert durch (2) und sei m minimal so, dass rm = 0. Also ist
ggT(a, b) = rm−1. Wiederholtes einsetzen von (2) liefert, dass ggT(a, b) =
rm−1 = rm−3 − qm−1rm−2 = (1 + qm−1qm−2)rm−3 − qm−1rm−4. Wir machen
dies weiter, bis wir alle Gleichungen (2) benutzt haben.

Eine einfachere Methode zur Berechnung von x und y ist der erweiterte
euklidische Algorithmus. Dies ist eine Variante des euklidischen Algorithmus,
der die Zahlen x, y aus Lemma 1.1.9 gleichzeitig mit dem ggT berechnet. Dies
funktioniert wie folgt. Wir definieren zuerst

x−1 = 1, y−1 = 0,

x0 = 0, y0 = 1.
(3)

Für n ≥ 1 definieren wir

xn = xn−2 − qnxn−1,

yn = yn−2 − qnyn−1,
(4)

wobei qn der n-te Quotient definiert in (2) ist.

Lemma 1.1.10 Für jede n ≥ −1 gilt

rn = xna+ ynb. (5)

Insbesondere gilt ggT(a, b) = rm−1 = xm−1a+ ym−1b.
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Beweis: Wir zeigen (5) mittels vollständiger Induktion.
Induktionsanfang: (5) gilt offensichtlich für n = −1, 0.
Induktionsschritt: Wir nehmen an, dass (5) für n − 1, n gilt und zeigen,

dass (5) auch für n+ 1 gilt.
Wir wissen, dass

rn+1 = rn−1 − qn+1rn,

rn−1 = xn−1a+ yn−1b,

rn = xna+ ynb.

Also gilt

rn+1 = rn−1 − qn+1rn = xn−1a+ yn−1b− qn+1(xna+ ynb)

= a(xn−1 − qn+1xn) + b(yn−1 − qn+1yn) = xn+1a+ yn+1b.

2

Beispiel 1.1.11 Sei a = 93 und b = 42. Wir berechnen nun ggT(a, b), zusam-
men mit Zahlen x, y so, dass ggT(a, b) = x · a + y · b. Wie vorher notieren wir
rn, qn, xn und yn in einer Tabelle.

n rn qn xn yn

−1 93 − 1 0
0 42 − 0 1
1 9 2 1 −2
2 6 4 −4 9

3 3 1 5 −11
4 0 2 − −

Also ist ggT(a, b) = 3 = 5 · 93 − 11 · 42.

1.2 Der Fundamentalsatz der Arithmetik

Definition 1.2.1 Eine natürliche Zahl n ≥ 2 heißt Primzahl, falls 1 und n
die einzigen positiven Teiler sind. Falls n ≥ 2 keine Primzahl ist, so heißt n
zusammengesetzt.

Die erste Primzahlen sind

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, · · ·

Primzahlen von der Form 2n − 1 heißen Mersenne-Primzahlen. Das folgende
Lemma zeigt, dass falls 2n − 1 eine Primzahl ist, so muss n auch eine Primzahl
sein.

Lemma 1.2.2 (a) Seien d, n natürliche Zahlen, sodass d | n. Es gilt

(2d − 1) | (2n − 1).
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(b) Falls 2n − 1 eine Primzahl ist, so ist p auch eine Primzahl.

Beweis: Wir schreiben n = dt. Es gilt xt−1 = (x−1)(xt−1 +xt−2 + · · ·+1).
Wi setzen x = 2d und finden, dass

2n − 1 = 2dt − 1 = (2d − 1)(2d(t−1) + 2d(t−2) · · · + 1).

Also ist 2d − 1 ein Teiler von 2n − 1. Dies beweist (a). Teil (b) folgt direkt aus
(a). 2

Man kann sich fragen, für welche Primzahlen p die Zahl 2p − 1 auch eine
Primzahl ist. In 1536 fand Hudalricus Regius, dass 211 − 1 = 23 · 89 keine
Primzahl ist. In 1644 behauptete der französische Mönch Marin Mersenne, dass
2p − 1 eine Primzahl ist für

p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 und 257,

und, dass 2p − 1 zusammengesetzt ist für alle andere Primzahlen p < 257. Mit
der damalige Methoden kann er bestimmt nicht alle Zahlen versucht haben:
Erst in 1947 war die genaue Liste der Primzahlen p ≤ 257, sodass 2p − 1 eine
Mersenne-Primzahl ist, bekannt. Es stellte sich heraus, dass Mersenne einige
Fehler gemacht hat. Zum Beispiel ist 261 − 1 eine Mersenne-Primzahl, aber
2257 − 1 nicht. Auf der Webseite http : //primes.utm.edu/ können Sie mehr
über Mersenne-Primzahlen lesen.

Die größte bekannte Primzahl ist eine Mersenne-Primzahl: Dies ist die Prim-
zahl 232582657−1. Diese Zahl hat 9808358 Dezimalziffern (Stand: Frühjahr 2008).
Auf der Webseite http://www.mersenne.org/status.htm lesen Sie, wie Sie
mitmachen können dieses Rekord zu brechen.

Das folgende Lemma liefert eine charakterisierende Eigenschaft von Prim-
zahlen. Das Lemma ist der wichtigste Schritt im Beweis des Fundamentalsatzes
der Arithmetik.

Lemma 1.2.3 Sei p eine Primzahl. Falls p | ab, so gilt p | a oder p | b.

Beweis: Wir nehmen an, dass p | ab, aber p ∤ a. Zu zeigen ist, dass p | b.
Da p eine Primzahl ist, so gilt ggT(p, a) = 1. Lemma 1.1.9.(a) impliziert daher,
dass ganze Zahlen x, y mit 1 = xp+ ya existieren. Wir ergänzen die Gleichung
mit b und finden b = pxb+ yab. Wir haben angenommen, dass p ein Teiler von
ab ist. Also ist p auch ein Teiler von b. 2

Falls n eine zusammengesetzte Zahl ist, so gibt es Zahlen a und b für die
Lemma 1.2.3 nicht gilt. Zum Beispiel nehme n = 6, a = 8 und b = 9. Nun gilt
p | ab, aber n ∤ a und n ∤ b.

Theorem 1.2.4 (Fundamentalsatz der Arithmetik) Sei n ≥ 2 eine ganze
Zahl.

(a) Die Zahl n kann als Produkt von Primzahlen geschrieben werden.

(b) Die Zerlegung in (a) ist eindeutig bis auf Reihenfolge.
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Die Aussage ist klar falls n = p ein Primzahl ist: In diesem Fall ist die
Primfaktorzerlegung einfach p = p.

Beweis: Wir beweisen (a) mit vollständiger Induktion.
Induktionsanfang: Sei zuerst n = 2. Da 2 selber ein Primzahl ist, ist 2

sicherlich ein Produkt von Primzahlen.
Induktionsschritt: Wir nehmen an, dass wir die Aussage für alle n < N

überprüft haben. Wir möchten zeigen, dass die Aussage auch für N gilt. Falls
N ein Primzahl ist, so gilt die Aussage für N . Falls N zusammengesetzt ist,
existiert ein Teiler m1 6= 1, N von N . Wir schreiben N = m1 · m2. Da nun
1 < m1,m2 < N können wir m1 und m2 laut Induktionshypothese schreiben
als Produkt von Primzahlen. Also lässt sich auch N als Produkt von Primzahlen
schreiben.

Wir beweisen nun (b). Dazu nehmen wir an, dass wir zwei Primfaktorzerle-
gungen

n = p1 · p2 · · · pm = q1 · q2 · · · qℓ
von n haben. Die zwei Zerlegungen haben nicht notwendigerweise die gleiche
Anzahl von Primfaktoren. Wir dürfen annehmen, dass m ≤ ℓ ist.

Da p1 | n, impliziert Lemma 1.2.3, dass p1 auch eine der qis teilt. Da die
qis Primzahlen sind, gibt es ein i1 sodass p1 = qi1 . Wir kürzen nun p1 und qi1 .
Das gleiche Argument zeigt nun, dass es ein i2 6= i1 gibt, sodass p2 = qi2 . Wir
kürzen p2 und qi2 . Dies machen wir so lange weiter bis es keine pis mehr gibt.
(Wir haben angenommen, dass es mehr qis als pis gibt.) Falls m < ℓ, so sagt
unsere gekürzte Gleichung, dass 1 ein Produkt von (ℓ−m)-viele qis ist. Dies ist
unmöglich. Also ist ℓ = m und die qis sind eine Umordnung der pis. 2

Jeder natürliche Zahl n lässt sich also eindeutig schreiben als Produkt

n =
∏

p

pnp mit np ≥ 0.

Das Produkt läuft über alle Primzahlen. Falls n = 1, so ist np = 0, für alle p.
Schon Euklid bewies in seinem Buch Elemente, dass es unendlich viele Prim-

zahlen gibt. Dies ist ein Korollar der Fundamentalsatz der Arithmetik.

Satz 1.2.5 (Euklid) Es gibt unendlich viele Primzahlen.

Beweis: Wir nehmen an, es gäbe nur endlich viele Primzahlen. Wir bezeig-
nen diese Primzahlen mit p1, . . . , pn. Die natürliche Zahl

N := p1 · p2 · · · · · pn + 1

ist durch keine der Primzahlen p1, . . . , pn teilbar, da sonnst auch 1 durch pi teil-
bar wäre (Lemma 1.1.3.(b)). Da jede Zahl größer als 1 durch mindestens eine
Primzahl teilbar ist (Theorem 1.2.4), existiert mindestens eine weitere Primzahl
pn+1. Aber dies widerspricht der Annahme, dass p1, . . . , pn die einzigen Prim-
zahlen sind. 2
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Definition 1.2.6 Das kleinste gemeinsame Vielfache von a und b ist die kleinste
positive Zahl, die sowohl durch a als auch durch b teilbar ist. Bezeichnung:
kgV(a, b).

Lemma 1.2.7 Seien a =
∏

p p
np und b =

∏

p p
mp natürliche Zahlen.

(a) Es gilt ggT(a, b) =
∏

p p
min(np,mp) und kgV(a, b) =

∏

p p
max(np,mp).

(b) Zwischen kgV und ggT besteht folgende Beziehung

kgV(a, b) =
ab

ggT(a, b)
.

Beweis: Teil (a) ist klar. Für (b) bemerken wir, dass

np +mp = min(np,mp) + max(np,mp).

Also gilt

a · b =
∏

p

pnp+mp =
∏

p

pmin(np,mp)+max(np,mp) = ggT(a, b) · kgV(a, b).

2

Beispiel 1.2.8 Wir haben schon gesehen, dass ggT(93, 42) = 3 (Beispiel 1.1.11).
Daher ist kgV(93, 42) = 93 · 42/3 = 31 · 42 = 1302.

1.3 Probedivision

Der Fundamentalsatz der Arithmetik (Theorem 1.2.4) sagt uns, dass sich jede
natürliche Zahl als Produkt von Primzahlen schreiben lässt. Aber wie funktio-
niert dies in der Praxis? Für kleine Zahlen n findet man die Primfaktorzerlegung
durch Ausprobieren. Zum Beispiel gilt

180 = 2 · 90 = 22 · 45 = 22 · 3 · 15 = 22 · 32 · 5.

Für größere Zahlen sollte man ein bisschen geschickter vorgehen. In diesem
Abschnitt besprechen wir die einfachste Methode zur Berechnung der Primfaktor-
zerlegung von einer Zahl n: Die Probedivision. Im Wesentlichen probieren wir
alle Primzahlen aus, bis wir ein Faktor d von n gefunden haben. Nun ersetzen
wir n durch den Quotient n/d. Eine wichtige Bemerkung ist, dass es reicht die
Primfaktoren mit p ≤ √

n zu betrachten. Der Grund ist, dass wenn n = a · b, so
ist entweder a ≤ √

n oder b ≤ √
n.

Wir gehen davon aus, dass wir eine Liste der Primzahlen p ≤ √
n besitzen.

Wie man so eine Liste erstellt, besprechen wir nachher.

Algorithmus 1.3.1 (Probedivision) (a) Wir fangen mit p = 2 an und ar-
beiten die Liste der Primzahlen ab. Für jede Primzahl p probieren wir ob
p | n. Dies machen wir mittels Division mit Rest: p | n genau dann wenn
der Rest von n nach Division durch p gleich 0 ist.
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(b) Falls p | n, so berechnen wir die höchsten Potenz pe mit pe|n. Wir ersetzen
nun n durch n/pe und betrachten die nächsten Primzahl.

(c) Sobald p2 > n ist, sind wir fertig.

Beispiel 1.3.2 Hier ist ein kleines Beispiel. Sei n = 2331. Wir finden 2 ∤ n und
3 | n. Es gilt 9 | n aber 33 ∤ n. Also ersetzten wir n durch n2 := n/9 = 259. Wir
wissen schon, dass 259 nicht durch 2 und 3 teilbar ist, also gehen wir weiter mit
p = 5. Wir finden dass 5 ∤ 259, aber 7 | 259. Da 259 = 5 · 72 + 14, ist 259 nicht
durch 72 teilbar. Also ersetzten wir 259 durch n3 = 259/7 = 37. Wir wissen
dass n3 = 37 nicht durch 2, 3, 5, 7 teilbar ist. Da 72 = 49 > 37 ist 37 also eine
Primzahl. Die Primfaktorzerlegung von n ist nun

2331 = 32 · 7 · 37.

Das Sieb von Eratosthenes Jetzt besprechen wir noch eine Methode, um eine
Liste aller Primzahlen p ≤ B zu berechnen, wobei B eine vorgegebene Schranke
ist. Dies ist das Sieb von Eratosthenes. Eratosthenes lebte von 276 bis 194 v.
Chr. Er wurde geboren in Cyrene im heutigen Libyen.

Algorithmus 1.3.3 (Sieb von Eratosthenes) Wir machen hierzu eine Liste
aller Zahlen von 2 bis B.

(a) Wir fangen mit der ersten nichtdurchgestrichene Zahl p auf der Liste an.
Im ersten Durchgang ist dies also p = 2.

(b) Wir markieren diese Zahl als Primzahl und streichen alle Vielfachen von
p weg. Dieser Schritt heißt Sieben: Wir sieben alle Vielfachen von p aus.

(c) Wir wiederholen die Schritte (a) und (b) bis alle Zahlen entweder wegge-
strichen oder als Primzahl markiert sind.

Als Beispiel wenden wir nun dieses Verfahren auf B = 49 an. Wir machen
eine Liste alle Zahlen von 2 bis 49, und fangen mit p = 2 an. Nachdem wir
Schritt (b) für p = 2 durchgeführt haben, sieht die Tabelle so aus:

2 3 64 5 66 7 68 9
610 11 612 13 614 15 616 17 618 19
620 21 622 23 624 25 626 27 628 29
630 31 632 33 634 35 636 37 638 39
640 41 642 43 644 45 646 47 648 49.

Als nächstes betrachten wir p = 3, usw. Am Ende des Verfahrens sieht die
Tabelle dann so aus:

2 3 64 5 66 7 68 69
610 11 612 13 614 615 616 17 618 19

620 621 622 23 624 625 626 627 628 29

630 31 632 633 634 635 636 37 638 639

640 41 642 43 644 645 646 47 648 649.
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Die Primzahlen ≤ 49 sind also {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47}.

2 Kongruenzen

2.1 Kongruenzen

In diesem Kapitel studieren wir die Theorie der Kongruenzen. Kongruenzen
beschreiben Teilbarkeitsrelationen. Man findet sie auch im tägliche Leben: Uh-
ren geben die Stunden entweder modulo 12 oder modulo 24 an. Die Wochentage
rechnen wir modulo 7 und die Monate modulo 12. Sobald wir die richtigen Werk-
zeuge bereit gestellt haben, können wir genauso gut mit Kongruenzen rechnen
wie mit Gleichungen.

Definition 2.1.1 Sei m eine natürliche Zahl und seien a, b ganze Zahlen. Wir
sagen, dass a kongruent zu b modulo m ist, falls m | (b − a). Wir schreiben:
a ≡ b (mod m). Die Zahl m heißt der Modul der Kongruenz.

Zum Beispiel ist 200 ≡ 11 (mod 9), da 9 ein Teiler von 200 − 11 = 189 ist.
Anders formuliert: 200 und 11 haben den gleichen Rest nach Division durch 9
nämlich 2.

Satz 2.1.2 Kongruenz ist eine Äquivalenzrelation, d.h. es gelten die folgenden
Eigenschaften:
Reflexivität a ≡ a (mod m), für alle a ∈ Z,
Symmetrie Falls a ≡ b (mod m), so gilt auch b ≡ a (mod m),
Transitivität Falls a ≡ b (mod m) und b ≡ c (mod m), so gilt auch a ≡ c
(mod m).

Beweis: Übungsaufgabe. 2

Satz 2.1.2 impliziert, dass wir die ganze Zahlen für festes m in Kongruenz-
klassen aufteilen können. Eine Kongruenzklasse ist die Menge aller ganzen Zah-
len kongruent zu einer festen Zahl a ∈ Z. Eine solche Zahl heißt Repräsentant
der Kongruenzklasse. Die Division mit Rest (Satz 1.1.5) impliziert, dass es genau
m Kongruenzklassen modulo m gibt.

Beispiel 2.1.3 Für m = 2 gilt a ≡ 0 (mod 2) genau dann wenn a gerade ist
und a ≡ 1 (mod 2) genau dann wenn a ungerade ist. Die Kongruenzklassen
modulo 2 sind daher

0 (mod 2) = {· · · ,−6,−4,−2, 0, 2, 4, 6, · · ·},
1 (mod 2) = {· · · ,−5,−3,−1, 1, 3, 5, 7, · · ·}.

Definition 2.1.4 (a) Wir bezeichnen mit Z/mZ die Menge der Kongruenz-
klassen modulo m.
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(b) Ein vollständiges Restsystem modulo m ist eine Menge ganzer Zahlen so,
dass jede ganze Zahl zu genau einem Element des Restsystem kongruent
modulo m ist.

Jede ganze Zahl ist zu genau einer der Zahlen 0, 1, . . . ,m − 1 kongruent
modulo m, daher ist

R = {0, 1, . . . ,m− 1}
ein vollständiges Restsystem.

Man sieht leicht ein, dass viele Rechenregeln für Gleichungen auch für Kon-
gruenzen gelten. Zum Beispiel, falls a1 ≡ b1 (mod m) und a2 ≡ b2 (mod m) so
gilt auch a1 ± a2 ≡ b1 ± b2 (mod m) und a1 · a2 ≡ b1 · b2 (mod m). Wir sagen:
die Menge Z/mZ ist ein kommutativer Ring.

Mit Teilen muss man vorsichtig sein: Aus ac ≡ bc (mod m) können wir nicht
immer schließen, dass a ≡ b (mod m). Zum Beispiel gilt 16 ≡ 10 (mod 6), aber
8 6≡ 5 (mod 6).

Der folgende Satz sagt uns, wann wir kürzen dürfen.

Satz 2.1.5 (Kürzungssatz) Seien a, b, c ganze Zahlen, m eine natürliche Zahl
und g := ggT(c,m). Falls ac ≡ bc (mod m), so gilt a ≡ b (mod m/g).

Beweis: Da ac ≡ bc (mod m) gilt, existiert eine ganze Zahl x mit xm =
ac−bc = c(a−b). Insbesondere ist c ein Teiler von xm. Da g = ggT(c,m) ist, so
gilt x(m/g) = (c/g)(a− b). Aus Lemma 1.1.8.(c) folgt, dass ggT(c/g,m/g) = 1.
Also ist m/g ein Teiler von a− b. 2

Folgendes Korollar ist ein wichtiger Spezialfall von Satz 2.1.5.

Korollar 2.1.6 Seien a, b, c ganze Zahlen und sei m eine natürliche Zahl mit
ggT(c,m) = 1. Falls ac ≡ bc (mod m), so gilt a ≡ b (mod m).

Wir benutzen Satz 2.1.5, um lineare Kongruenzen von der Form ax ≡ b
(mod m) nach x aufzulösen, ähnlich wie man dies in der linearen Algebra mit
linearen Gleichungen macht. Zuerst diskutieren wir einige Beispiele.

Beispiel 2.1.7 (a) Wir betrachten die Kongruenz 4x ≡ 3 (mod 11). Um die
Kongruenz zu vereinfachen bemerken wir, dass 4 · 3 = 12 ≡ 1 (mod 11). Daher
ergänzen wir beide Seiten der Kongruenz mit 3 und finden 12x ≡ 9 (mod 11),
was sich vereinfachen lässt zu x ≡ 9 (mod 11). Also hat die Kongruenz genau
eine Lösung (modulo 11).

(b) Wir betrachten nun die Kongruenz 4x ≡ 3 (mod 12). Der Trick von oben
funktioniert diesmal nicht, da es keine Zahl c so, dass 4c ≡ 1 (mod 12) gibt.
Da ggT(3, 4) = 1 können wir den Term 4 auch nicht kürzen mit Hilfe von Satz
2.1.5. In der Tat hat die Kongruenz keine Lösung, wie man sieht, wenn man die
Kongruenz modulo 4 betrachtet.

Satz 2.1.8 (Lösungen linearer Kongruenzen) Seien a, b,m ganze Zahlen
mit m ≥ 1 und sei g := ggT(a,m).
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(a) Falls g ∤ b, so hat die Kongruenz ax ≡ b (mod m) keine Lösungen.

(b) Falls g | b, so hat die Kongruenz ax ≡ b (mod m) genau g verschiedene
Lösungen (modulo m).

Beweis: Wir beweisen zuerst, dass die Kongruenz ax ≡ b (mod m) genau
dann Lösungen besitzt, wenn ggT(a,m) | b.

Sei g := ggT(a,m). Lemma 1.1.9.(a) impliziert, dass ganze Zahlen y, z exi-
stieren mit y · a+ z ·m = g. Falls g | b, so ist b/g eine ganze Zahl, daher finden
wir

ay
b

g
+mz

b

g
= g

b

g
= b,

Daher ist x = y(b/g) eine Lösung der Kongruenz.
Umgekehrt, falls x ∈ Z eine Lösung der Kongruenz ax ≡ b (mod m) ist,

existiert eine ganze Zahl y mit ax − ym = b. Lemma 1.1.9.(b) impliziert, dass
g | b. Also hat die Kongruenz ax ≡ b (mod m) genau dann eine Lösung, wenn
g | b.

Wir nehmen nun wieder an, dass g | b. Wir bestimmen die Anzahl der
Lösungen der Kongruenz (modulo m). Wir betrachten zuerst den Spezialfall,
dass g = 1. Da g = ggT(a,m) = 1 existieren y, z ∈ Z mit ay +mz = 1 (Lemma
1.1.9.(a)). Insbesondere gilt ay ≡ 1 (mod m). Wir ergänzen die Kongruenz ax ≡
b (mod m) mit y und finden, dass

x ≡ yb (mod m).

Insbesondere hat die Kongruenz eine eindeutige Lösung (modulo m).
Falls g > 1, so impliziert Satz 2.1.5, dass wir die Kongruenz ax ≡ b (mod m)

umstellen können zu
(

a

g

)

x ≡ b

g
(mod

m

g
).

Da ggT(a/g,m/g) = 1, hat die neue Kongruenz eine Lösung (modulo m/g),
und daher g Lösungen in {0, 1, . . . ,m− 1}. 2

Der Beweis von Satz 2.1.8 liefert auch ein Verfahren, um alle Lösungen einer
Kongruenz zu berechnen. Wir betrachten dazu eine Kongruenz ax ≡ b (mod m)
mit g := ggT(a,m) | b. Eine Lösung x ∈ Z der Kongruenz korrespondiert zu
eine Lösung x, y ∈ Z der Gleichung ax−my = b.

Wir berechnen zuerst Zahlen c, d mit ac−md = g = ggT(a,m) mit Hilfe des
erweiterten euklidischen Algorithmus (Lemma 1.1.10). Nun ist x0 = cb/g eine
Lösung der Kongruenz ax ≡ b (mod m). Der Beweis von Satz 2.1.8 impliziert,
dass die anderen Lösungen der Kongruenz

x ≡ x0 + k
m

g
(mod m), k = 0, 1, 2, . . . , g − 1 (6)

sind.
Ein bisschen allgemeiner formuliert bekommen wir folgender Satz.
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Satz 2.1.9 Seien a und b ganze Zahlen und g := ggT(a, b). Falls g | c so hat
die Gleichung ax + by = c unendlich viele Lösungen x, y ∈ Z. Falls x0, y0 eine
Lösung dieser Gleichung ist, so sind alle Lösungen von der Form

x = x0 +
b

g
k, y = y0 −

a

g
k

für eine ganze Zahl k.

Beweis: Der Beweis ist ähnlich dem Beweis von Satz 2.1.8. 2

Die Gleichung von Satz 2.1.9 ist eine lineare Diophantische Gleichung. Eine
Diophantische Gleichung ist eine Gleichung, für die wir ganzzahlige Lösungen
suchen. Die Gleichungen sind benannt nach den griechischen Mathematiker Dio-
phant (Alexandria, rund 250 n. Chr.) der solche Gleichungen studiert hatte. Li-
neare Diophantische Gleichungen wurde zuerst von den indischen Mathematiker
Brahmagupta im 7-te Jahrhundert n. Chr. vollständig gelöst.

Das folgende Beispiel gibt eine konkrete Anwendung von Satz 2.1.9.

Beispiel 2.1.10 (Das Briefmarkenproblem) Auf einem Päckchen möchten
wir 3,90 Euro an Briefmarken aufkleben. Wir haben nur Briefmarken von 45 und
55 Cent zur Verfügung. Wir fragen uns, ob dies möglich ist. Sei x die Anzahl der
Briefmarken von 55 Cent und y die Anzahl der Briefmarken von 45 Cent. Wir
möchten also die Gleichung x · 55 + y · 45 = 390 lösen. Wir fordern zusätzlich,
dass x und y positiv sind.

Zuerst lösen wir die Gleichung x · 55 + y · 45 = 390 mit x, y ∈ Z. Da
ggT(45, 55) = 5 ein Teiler von 390 ist, hat das Problem eine Lösung. Mit dem
erweiterten euklidischen Algorithmus finden wir, dass 5 = −4 · 55 + 5 · 45 gilt.
Also ist x = −4 · 390/5 = −312 und y = 5 · 390/5 = 390 eine Lösung unse-
rer Gleichung. Dies ist aber noch keine Lösung des Briefmarkenproblems, da
x negativ ist. Da 45/5 = 9 und 55/5 = 11, sagt Satz 2.1.9, dass die anderen
Lösungen der Gleichung von der Form

x = −312 + 9k, y = 390 − 11k, mit k ∈ Z

sind. Die Bedingung x, y ≥ 0 liefert, dass 9k ≥ 312 und 11k ≤ 390. Also finden
wir 312/9 ≤ k ≤ 390/11. Die einzige Lösung ist daher k = 35.

Wir schließen also, dass das Briefmarkenproblem genau eine Lösung hat:
Wir brauchen −312 + 9 · 35 = 3 Briefmarken von 55 Cent und 390− 11 · 35 = 5
Briefmarken von 45 Cent.

2.2 Der Kalenderformel

Ziel dieses Abschnittes ist es, eine Formel für den Wochentag eines bestimmten
Datums zu geben. Dies ist eine Anwendung des Rechnens modulo 7.

Ein Jahr ist die Zeit, welche die Erde braucht, um sich einmal um die Sonne
zu drehen. Ein Tag ist die Zeit, welche die Erde braucht, um einmal um ihre
Achse zu drehen. Ein Jahr ist ungefähr 365, 2422 Tage lang. Dies ist der Grund
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dafür, dass Julius Ceasar und seine Berater in 46 v. Chr. das Schaltjahr ein-
geführt haben, als sie den julianischen Kalender einführten. Das julianische
Jahr war also im Schnitt 365, 25 − 365, 2422 ∼ 0, 0078 Tage zu lang. Um dies
zu kompensieren, führte Papst Gregor IV in 1582 den gregorianischen Kalen-
der ein. Zur Korrektur wurden 10 Tagen gestrichen; auf den 04.10.1582 folgte
der 15.10.1582. Es dauerte noch viele Jahre, bis der gregorianische Kalender
weltweit eingeführt wurde. In Russland zum Beispiel wurde der gregorianische
Kalender erst in 1918 eingeführt. Damals wurden 13 Tage gestrichen. Für die
Geschichte des Kalenders siehe zum Beispiel
http://de.wikipedia.org/wiki/Gregorianischer Kalender.

Wir werden jetzt eine Kalenderformel herleiten. Hierzu geben wir jedem
Wochentag eine Nummer, wie im folgenden Schema:

So Mo Di Mi Do Fr Sa
0 1 2 3 4 5 6.

Obwohl es das Jahr 0 nicht gegeben hat, betrachten wir dies trotzdem als unser
Ausgangsjahr. Sei a der Wochentag des 01.03.0000. Wir werden zuerst a be-
rechnen. Hierzu bemerken wir, dass 365 = 7 · 52 + 1 ≡ 1 (mod 7) und 366 ≡ 2
(mod 7). Falls 01.03.j auf den Wochentag a′ fällt, so gilt

a′ ≡ a+ j + S (mod 7),

wobei S die Anzahl von Schaltjahren zwischen 0 und j ist.
Das Jahr j ist ein Schaltjahr, falls j ≡ 0 (mod 4) und j 6≡ 0 (mod 100) ist.

Falls j ≡ 0 (mod 100), so ist j nur dann ein Schaltjahr, wenn j ≡ 0 (mod 400)
ist. Wir finden daher

S ≡ [
j

4
] − [

j

100
] + [

j

400
] (mod 7).

Z.B. war 2000 ein Schaltjahr, aber 1900 nicht.
Wir definieren

g(j) = j + [
j

4
] − [

j

100
] + [

j

400
] (mod 7).

Also ist der 01.03.j der Wochentag a′ ≡ a + g(j) (mod 7). Da der 01.03.2008
ein Samstag war, gilt:

6 ≡ a+ g(2008) ≡ a+ 2008 + [
2008

4
] − [

2008

100
] + [

2008

400
] ≡ a+ 3 (mod 7).

Wir schließen, dass a = 3, daher war der 01.03.000 ein Mittwoch.
Wie sieht das aus mit einem anderen Datum als dem 1. März? Einfachheits-

halber lassen wir das Jahr am ersten März anfangen, da der zusätzliche Tag
im Schaltjahr der 29.02. ist. Folgende Tabelle listet den Wochentag des ersten
Tages des Monats im Jahre 0000 auf. Wir definieren außerdem eine Funktion
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f(m) durch die Eigenschaft, dass f(m) + 1 die Nummer des Wochentages des
01.m.0000 ist.

Monat Nummer Wochentag f(m)
März 1 3 2

April 2 6 5
Mai 3 1 0
Juni 4 4 3
Juli 5 6 5
August 6 2 1
September 7 5 4
Oktober 8 0 6
November 9 3 2
Dezember 10 5 4
Januar 11 1 0
Februar 12 4 3.

Eine Eselsbrücke für die Zahlen f(m) ist der Satz: My uncle Charles has
eaten a cold supper; he eats nothing hot. Die Anzahl der Buchstaben des mte
Wort ist kongruent zu f(m) (mod 7).

Wir finden daher folgendes Theorem.

Theorem 2.2.1 (Kalenderformel) Der Tag mit Datum t.m.j ist der Wochen-
tag mit Nummer

t+ f(m) + g(j) (mod 7).

Beispiel 2.2.2 (a) Wir berechnen den Tag des Mauerfalls am 09.11.1989. Es
gilt t = 9, m = 11 − 2 = 9 und j = 1989. Daher finden wir f(m) = 2 und
g(j) = 1989 + 497 − 19 + 4 = 2471 ≡ 0 (mod 7), also

t+ f(m) + g(j) ≡ 9 + 2 + 0 ≡ 4 (mod 7).

Wir schließen also, dass der Mauerfall an einem Donnerstag war.
(b) Wir berechnen den Wochentag, an dem Luther seine 95 Thesen an das

Hauptportal der Schlosskirche in Wittenberg geschlagen haben soll (31.10.1517).
Wir berechnen, dass f(m) = 6 und g(j) = 1884 ≡ 1 (mod 7). Daher war der
31.10.1517, laut Gregorianischem Kalender ein Mittwoch:

31 + 6 + 1 ≡ 3 (mod 7).

Da jedoch der Gregorianische Kalender in 1517 noch nicht erfunden war, müssen
wir 10 dazu zählen. In Wirklichkeit war der 31.10.1517 daher ein Samstag!

Eine weitere Anwendung der Kalenderformel, für die Abergläubischen unter
uns, ist folgendes Lemma.

Lemma 2.2.3 Jedes Jahr besitzt mindestens einen Freitag den 13.
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Beweis: Wir betrachten den Wochentag vom Monat m im Jahr j, für die
Monate 1, . . . , 10, also zwischen März und Dezember. Januar und Februar lassen
wir hier aus, da sie zum letzten Jahr gerechnet werden. Wir stellen fest, dass
f(m) alle Werte von 0 bis 6 annimmt. Wir schließen also, dass es im Jahr j
mindestens einen Freitag den 13. gibt. 2

Man berechnet leicht, dass es in 2008 genau einen Freitag den 13. gibt,
nämlich in Juli. Hierzu sollte man Januar und Februar getrennt betrachten, da
sie zu 2007 gerechnet werden.

2.3 Prüfziffer

In diesem Abschnitt geben wir eine weitere Anwendung von Kongruenzen: Wir
diskutieren, wie die Prüfziffer bei den ISBN-Nummern funktioniert.

Seit 1.1.2007 gibt es die ISBN-Nummer als eine 13-stellige Zahl zur Kenn-
zeichnung von Büchern und anderen Veröffentlichungen. Vorher gab es eine 10-
stellige Zahl. Der Grund für die Änderung war, dass im englischsprachigen Raum
die ISBN-Nummern knapp wurden.

Die neue ISBN-13-Nummer besteht aus 4 Bestandteilen. Die Gesamtlänge
für (A)–(C) ist 12 Ziffern.

(A) Die Gruppennummer (oder Ländernummer). Beispiele sind:

0, 1 englischsprachiger Raum (zB Großbritannien, USA, Australien, In-
dien)

2 französischsprachiger Raum

3 deutschsprachiger Raum

4 Japan

5 Russland

(B) Verlagsnummer: dies ist eine unterschiedlich lange Kennzahl für den Ver-
lag.

(C) Titelnummer.

(D) Prüfziffer.

Die Prüfziffer ermöglicht das Erkennen von Tippfehlern. Eine 13-stellige Zahl
x1x2 · · ·x13 ist eine gültige ISBN-13-Nummer, falls

x1 + 3x2 + x3 + · · · + 3x12 + x13 ≡ 0 (mod 10). (7)

Diese Gleichung erlaubt auch die Berechnung der Prüfziffer.
Einer der häufigsten gemachten Fehler beim Abtypen von ISBN-Nummer

ist die Vertauschung von zwei nebeneinander gelegenen Ziffern. Dies kann man
meistens mit Hilfe der Prüfziffer feststellen.

Sei x1x2 · · ·x13 eine gültige ISBN-13-Nummer, also gilt (7). Versehentlich
wurde diese ISBN-13-Nummer als y1y2 · · · y13 := x1x2 · · ·xi−1xi+1xixi+2 · · ·x13
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eingegeben. Wir berechnen die richtige Prüffziffer ỹ13 gehörend zu y1 · · · y12.
Diese neue Prüfziffer erfüllt ỹ13 − y13 ≡ −(y1 +3y2 + · · ·+3y12) (mod 10). Also
gilt:

ỹ13 − y13 ≡ −(y1 + 3y2 + · · · + 3y12) + x1 + 3x2 + · · · + 3x12

≡
{

−2(xi − xi+1) (mod 10) falls i gerade ist,

2(xi − xi+1) (mod 10) falls i ungerade ist.

Also gilt, dass

ỹ13 − y13 ≡ ỹ13 − x13 ≡ ±2(xi − xi+1) (mod 10).

Satz 2.1.5 impliziert daher, dass ỹ13 − y13 ≡ 0 (mod 10) genau dann, wenn
xi − xi+1 ≡ 0 (mod 5).

Die Vertauschung von xi und xi+1 kann daher festgestellt werden, außer
wenn die Differenz von xi und xi+1 gleich 5 ist.

Der zweithäufigste Fehler ist, dass eine Ziffer falsch eingegeben wird. Wir
überlassen es Ihnen als Übungsaufgabe zu überprüfen, dass diese Fehler immer
festgestellt werden kann.

Die alte ISBN-10-Nummer gab mehr Möglichkeiten zur Fehlerfeststellung.
Da heutzutage die ISBN-Nummer meistens gescannt statt abgetippt wird, hat
der Bedarf an einer Fehlerfeststellung abgenommen. Man berechnet die neue
ISBN-13-Nummer aus der alten ISBN-13-Nummer, indem man 978- voranstellt.
Die Prüfziffer muss neu berechnet werden.

2.4 Teilbarkeitskriterien

Wir stellen eine natürliche Zahl n ∈ N im 10er System als

n = (akak−1 · · · a2a1a0)10

= ak · 10k + ak−1 · 10k−1 + · · · + a1 · 10 + a0

dar. An dieser Darstellung kann man leicht feststellen, ob n durch 2 oder 5
teilbar ist, da dies nur von den letzten Ziffer abhängt. Ähnlich leicht stellt man
fest ob n durch 4 = 22 oder 25 = 52 teilbar ist, da dies nur von der letzten 2
Ziffern abhängt. Eine ähnliche Aussage gilt für höhere Potenzen von 2 und 5.

Aus der Schule kennen Sie wahrscheinlich auch die Dreierregel: Eine Zahl
n = (akak−1 · · · a1a0)10 ist genau dann durch 3 teilbar, wenn die Quersumme

Q1(n) :=

k
∑

i=0

ai

durch 3 teilbar ist. Diese Regel folgt unmittelbar, wenn man bemerkt, dass
10 ≡ 1 (mod 3) und daher auch 10i ≡ 1i ≡ 1 (mod 3) für alle i ist.
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In diesem Abschnitt besprechen wir weitere Teilbarkeitskriterien. Dazu de-
finieren wir zuerst einige Verallgemeinerungen des Querschnittes. Wir nennen

Q′
1(n) =

k
∑

i=0

(−1)iai = a0 − a1 + · · · + (−1)kak

die alternierende Quersumme. Allgemeiner nennen wir

Qs(n) =
∑

i≥0

(ais+s−1 · · · ais+1ais)10 = (asas−1 · · · a0)10 + (as+1as · · · a1)10 + · · ·

die Quersumme der Stufe s und

Q′
s(n) =

∑

i≥0

(−1)i(ais+s−1 · · · ais+1ais)10

= (asas−1 · · ·a0)10 − (as+1as · · · a1)10 + (as+2as+1 · · · a2)10 + · · ·
die alternierende Quersumme der Stufe s.

Satz 2.4.1 Seien n, s ∈ N. Es gilt

n ≡ Qs(n) (mod 10s − 1) und n ≡ Q′
s(n) (mod 10s + 1).

Beweis: Es gilt

n =
∑

j≥0

aj10j =
∑

i≥0

(ais+s−1 · · · ais+1ais)1010is.

Da 10s ≡ 1 (mod 10s − 1), gilt auch 10is ≡ 1 (mod 10s − 1) für alle i ≥ 0. Dies
impliziert, dass n ≡ Qs(n) (mod 10s − 1). Die zweite Kongruenz folgt ähnlich
aus 10s ≡ −1 (mod 10s + 1). 2

Für s = 1 sagt Satz 2.4.1 zum Beispiel:

n ≡ Q1(n) (mod 9), n ≡ Q′
1(n) (mod 11).

Hieraus folgen die Teilbarkeitskriterien:

9 | n genau dann, wenn 9 | Q1(n),

11 | n genau dann, wenn 11 | Q′
1(n).

Wenn wir allgemeiner ein Teilbareitskriterium für einer Primzahl p suchen,
betrachten wir die Primfaktorzerlegung von 10s−1 und 10s+1. Falls p ein Teiler
von 10s − 1 (b.z.w., von 10s + 1) ist, so gilt p | n genau dann, wenn p | Qs(n)
(bzw. p | Q′

s(n)). Die Primfaktorzerlegung von 10s ± 1 für kleines s ist

99 = 32 · 11, 101 = 101, 999 = 33 · 37, 1001 = 7 · 11 · 13,

wie man leicht feststellt mit Hilfe der Probedivision (§ 1.3). Daher finden wir,
dass

7 | n ⇐⇒ 7 | Q′
3(n),

11 | n ⇐⇒ 11 | Q′
1(n),

13 | n ⇐⇒ 13 | Q′
3(n).

20



2.5 Der kleine Satz von Fermat

In § 2.1 haben wir gesehen, dass die Kongruenz ax ≡ 1 (mod m) genau dann
eine Lösung hat, wenn ggT(a,m) = 1 (Korollar 2.1.6).

Definition 2.5.1 Seien a und m teilerfremd. Eine Lösung x der Kongruenz
ax ≡ 1 (mod m) heißt die Inverse von a (mod m). Wir bezeichnen es mit a−1

(mod m). Ein Element deren Inverse existiert heißt invertierbar.
Wir bezeichnen mit (Z/mZ)∗ die Menge der invertierbaren Kongruenzklas-

sen modulo m.

Die Inverse eines Element a ∈ Z/mZ∗ kann man mit Hilfe des erweiterten eu-
klidischen Algorithmus berechnen. Sei nämlich a ∈ Z/mZ∗, also ist ggT(a,m) =
1. Mit Hilfe des erweiterten euklidischen Algorithmus berechnet man Zahlen x, y,
sodass 1 = xa+ ym. Da xa ≡ 1 (mod m), ist x ≡ a−1 (mod m) die Inverse von
a modulo m.

Beispiel 2.5.2 Sei a = 35 und m = 111. Mit Hilfe des erweiterten euklidischen
Algorithmus berechnet man, dass ggT(a,m) = 1. Außerdem berechnet man,
dass ggT(a,m) = 1 = 6 · 111 − 19 · 35. Wir schließen, dass a−1 = −19 ≡
111 − 19 = 92 (mod 111).

Definition 2.5.3 Ein reduziertes Restsystem modulo m ist eine Menge ganzer
Zahlen so, dass jede ganze Zahl, die teilerfremd zum ist, genau zu einem Element
des Restsystem kongruent ist.

Die Menge
{0 < a < m | ggT(a,m) = 1}

ist ein reduziertes Restsystem.

Definition 2.5.4 Die Kardinalität eines reduzierten Restsystems modulo m
bezeichnen wir mit ϕ(m). Die Funktion ϕ heißt die eulersche ϕ-Funktion.

Beispiel 2.5.5 Die Menge
{1, 5, 7, 11},

ist ein reduziertes Restsystem modulo 12, also ist ϕ(12) = 4.

Lemma 2.5.6 Falls p eine Primzahl ist, so gilt

ϕ(p) = p− 1.

Beweis: Falls p eine Primzahl ist, so ist {1, 2, . . . , p − 1} ein reduziertes
Restsystem. 2

Satz 2.5.7 (Euler) Sei a eine ganze Zahl mit ggT(a,m) = 1. Es gilt

aϕ(m) ≡ 1 (mod m).
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Beweis: Setze t = ϕ(m). Sei R = {r1, . . . rt} ein reduziertes Restsystem
modulo m und sei a wie in der Aussage des Satzes. Wir betrachten die Menge

A = {ar1, . . . art}.
Da ggT(a,m) = 1, so ist ari ≡ arj (mod m) genau dann, wenn ri ≡ rj (mod m)
(Satz 2.1.5). Also sind die Elementen der Menge A alle teilerfremd zu m und
paarweise verschieden (modulo m). Die Kardinalität von A ist t = ϕ(m), also
ist A auch ein reduziertes Restsystem modulo m. Es folgt daher, dass

t
∏

i=1

ri ≡
t

∏

i=1

(ari) ≡ at
t

∏

i=1

ri (mod m).

Da
∏t

i=1 ri teilerfremd zu m ist, so folgt, dass at ≡ 1 (mod m). 2

Folgendes Korollar des Satzes von Euler ist bekannt als der kleine Satz von
Fermat. Im Gegensatz zum “großen” Satz von Fermat (siehe Einleitung) wurde
diese Aussage von Fermat bewiesen.

Korollar 2.5.8 (Der kleine Satz von Fermat) Sei p eine Primzahl und a ∈ Z.

(a) Falls p ∤ a, so gilt ap−1 ≡ 1 (mod p).

(b) Für alle p und a gilt ap ≡ a (mod p).

Beweis: Teil (a) ist ein Spezialfall von Satz 2.5.7. Falls p ∤ a, so folgt (b)
aus (a). Falls p | a, so gilt a ≡ ap ≡ 0 (mod p). 2

Definition 2.5.9 Sei a ∈ Z/mZ∗. Die Ordnung von a modulo m ist die kleinste
positive Zahl r, sodass ar ≡ 1 (mod m). Bezeichnung: r = ordm(a).

Beispiel 2.5.10 In Beispiel 2.5.5 haben wir gesehen, dass ϕ(12) = 4. Es gilt
52 ≡ 72 ≡ 112 ≡ 1 (mod 12). Also ist ord12(5) = ord12(7) = ord12(11) = 2.

Lemma 2.5.11 Sei a ∈ Z/mZ∗. Die Ordnung von a modulo m ist ein Teiler
von ϕ(m).

Beweis: Sei r = ordm(a), also gilt ar ≡ 1 (mod m). Der Satz von Eu-
ler (Satz 2.5.7) impliziert, dass auch aϕ(m) ≡ 1 (mod m). Wir schreiben g :=
ggT(r, ϕ(m)) = xr + yϕ(m). Es folgt, dass ag ≡ arx · ayϕ(m) ≡ 1 (mod m). Da
die Ordnung die kleinste positive Zahl mit dieser Eigenschaft ist, folgt r = g.
Wir schließen, dass r ein Teiler von ϕ(m). 2

Beispiel 2.5.12 Sei m = 37. Man überprüft leicht, dass m eine Primzahl ist.
Also ist ϕ(m) = 37 − 1 = 36 = 22 · 32 (Lemma 2.5.6). Wir berechnen ordm(8).
Lemma 2.5.11 sagt uns, dass ordm(8) ∈ {2, 3, 4, 6, 9, 12, 18, 36} ist. Da

82 ≡ 27 (mod 37), 83 = 82 · 8 ≡ 31 (mod 37), 84 = (82)2 ≡ 26 (mod 37),

86 = 84 · 82 ≡ 36 ≡ −1 (mod 37), 89 = 86 · 83 ≡ −31 ≡ 6 (mod 37),

812 = (86)2 ≡ 1 (mod 37).
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Wir schließen, dass ord37(8) = 12.
Wir möchten nun 81111 (mod 37) berechnen. Wir bemerken dazu, dass 1111 =

92 · 12 + 7 ist. (Dies ist Division mit Rest). Da die Ordnung von 8 (modulo 37)
gleich 12 ist, gilt

81111 = 892·12 · 87 = (812)92 · 87 ≡ 86 · 8 ≡ −8 ≡ 1 · 87 ≡ 29 (mod 37).

Lemma 2.5.13 Sei n eine natürliche Zahl. Es gilt, dass

∑

d|n

ϕ(d) = n.

Beweis: Sei M := {1, . . . , n}. Wir definieren

Cd = {a ∈ M | ggT(a, n) = d} ⊂ M.

Offensichtlich ist Cd ∩ Cd′ = ∅ für d 6= d′. Also ist

M =
∐

d|n

Cd

die disjunkte Vereinigung der Cds.
Lemma 1.1.8.(c) sagt, dass ggT(a, n) = d impliziert, dass ggT(a/d, n/d) = 1

ist. Dies impliziert, dass die Kardinalität von Cd gleich die Kardinalität von
Z/(n/d)Z∗ , also ϕ(n/d), ist. Wir schließen, dass

n = |M| =
∑

d|n

|Cd| =
∑

d|n

ϕ(
n

d
) =

∑

d|n

ϕ(d)

ist. 2

2.6 Schnelle Exponentiation

Die Berechnung von be (mod m) kann relativ Zeit aufwendig sein (vergleichen
Sie zu Beispiel 2.5.12). Falls der Modul m klein im Vergleich zum Exponenten
ist, kann man die Berechnung von be (mod m) vereinfachen mit Hilfe des Satzes
von Euler. Falls dies nicht der Fall ist, braucht man eine andere Idee.

Die schnelle Exponentiotion ist eine Methode zur Berechnung einer großen
Potenz

be (mod n).

Wir gehen hier wie folgt vor. Schnelle Exponentiation

Schritt 1. Schreibe

e =
k

∑

i=0

ei · 2i, ei ∈ {0, 1}.

Dies ist die binäre Entwicklung von e. Die ei’s berechnet man induktiv mit
folgendem Algorithmus.
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Algorithmus 2.6.1 (Binäre Entwicklung berechnen) Setze i = 0.

(a) Falls e ungerade ist, so ist ei = 1. Ersetzte e durch (e−1)/2. Falls e gerade
ist, ersetzte e durch e/2.

(b) Ersetze i durch i+ 1 und wiederhole Schritt (b) bis e = 0.

Beispiel 2.6.2 Sei zum Beispiel e = 73. Da e ungerade ist, ist e0 = 1. Wir
sehen, dass (e − 1) = 23 · 9. Dies impliziert, dass e1 = e2 = 0 und e3 = 1. Da
9 − 1 = 8 = 23 · 1 ist, finden wir e4 = e5 = 0 und e6 = 1. Wir finden nun

73 = 1 + 23(1 + 23) = 1 + 23 + 26.

Schritt 2. Nun berechnen wir

b2
i

(mod n),

für alle i = 1, . . . , k. Hierbei benutzen wir, dass

b2
i+1

= b2
i·2 = (b2

i

)2.

Schritt 3. Wir bemerken, dass

be = b
P

i
ei·2

i

=

k
∏

i=1

b2
i·ei =

∏

i:ei 6=0

b2
i

.

Mit dieser letzten Formel berechnen wir nun be (mod n).

Beispiel 2.6.3 Wir berechnen 673 (mod 100). Beispiel 2.6.2 impliziert, dass

wir 62i

(mod 100) berechnen sollen, für i = 1, 2, . . . , 6. Wir finden:

62 ≡ 36 (mod 100), 622 ≡ (62)2 ≡ −4 (mod 100),

623 ≡ (622

)2 ≡ (−4)2 ≡ 16 (mod 100), 624 ≡ (16)2 ≡ 56 (mod 100),

625 ≡ (56)2 ≡ 36 (mod 100), 626 ≡ (362) ≡ −4 (mod 100).

Daher gilt:

673 ≡ 61 · 623 · 626 ≡ 6 · 16 · (−4) ≡ 16 (mod 100).

Wir bemerken, dass wir jetzt 6 + 2 = 8 Multiplikationen gebraucht haben.
Falls wir 673 = 6·6·6 · · · 6 (mod n) berechnet hätten und in jedem Schritt modu-
lo n gerechnet hätten, hätten wir 72 Multiplikationen gebraucht, also deutlich
mehr! Die schlechteste Strategie wäre einfach 673 zu berechnen und erst im
allerletzten Schritt modulo 100 zu rechnen: 673 ist eine Zahl mit 57 Dezimalstel-
len. Mit einem Taschenrechner kann man diese Zahl nicht einfach ausrechnen.
Maple hat damit natürlich noch kein Problem. Man stellt leicht fest, dass falls
der Exponent e mindestens 6 Dezimalstellen hat, Maple auch nicht mehr alle
Dezimalstellen von be angibt. Der obige Algorithmus funktioniert aber trotzdem
noch, da alle Zwischenschritte viel kleinere Zahlen ergeben.
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2.7 Der chinesische Restsatz

Im § 2.1 haben wir lineare Kongruenzen gelöst. In diesem Abschnitt betrachten
wir Systeme von linearen Kongruenzen. Eine solche Aufgabe wurde zuerst in
dem Buch Zhang Qiujians mathematisches Handbuch, rund 400 n. Chr.) von
dem chinesischen Mathematiker Zhang Qiujian gelöst. Für mehr Information sie-
he http://www-groups.dcs.st-and.ac.uk/∼history/HistTopics/Chinese overview.html

(the MacTutor History of Mathematics archive).

Theorem 2.7.1 (Der chinesische Restsatz) Seien m1, . . . ,mr ∈ N Moduli
mit ggT(mi,mj) = 1 für alle i 6= j und a1, . . . , ar ∈ Z beliebig. Setze m :=
m1 · · ·mr.

(a) Es existiert ein x ∈ Z, sodass x ≡ ai (mod mi) für alle i.

(b) Die Lösung x wie in (a) is eindeutig (modulo m).

Beweis: Wir definieren Mj = m/mj. Es gilt ggT(mj ,Mj) = 1, also existiert
ein M̄j ∈ Z, sodass Mj · M̄j ≡ 1 (mod mj) (Korollar 2.1.6).

Wir definieren

x =
r

∑

j=1

MjM̄jaj . (8)

Für i 6= j gilt

Mj ≡ m

mj
≡ 0 (mod mi),

da mi | m. Also schließen wir, dass

x ≡MjM̄jaj ≡ 1 · aj (mod mj)

ist. Wir haben gezeigt, dass x eine Lösung des Systems von Kongruenzen ist.
Wir überprüfen nun noch die Eindeutigkeit der Lösung (modulo m). Sei

y ∈ Z eine andere Lösung . Da x ≡ y ≡ ai (mod mi), ist mi ein Teiler von
x − y, für alle i. Da die mi paarweise teilerfremd sind, ist auch m = m1 · · ·mr

ein Teiler von x− y. Wir schließen, dass x ≡ y (mod m) ist. 2

Beispiel 2.7.2 Wir betrachten die Kongruenzen










x ≡ 2 (mod 20),

x ≡ 6 (mod 9),

x ≡ 5 (mod 7).

Es ist M1 = 9 · 7 = 63, M2 = 20 · 7 = 140, M3 = 20 · 9 = 180 und m =
20 · 9 · 7 = 1260. Da M1 = 63 ≡ 3 (mod 20) und 3 · 7 ≡ 1 (mod 20) folgt, dass
M̄1 ≡ 7 (mod 20) ist. Ebenso berechnen wir, dass M̄2 ≡ 2 (mod 9) und M̄3 = 3
(mod 7). Die Gleichung (8) impliziert daher, dass

x =

3
∑

j=1

Mj · M̄j · aj = 63 · 7 · 2 + 140 · 2 · 6 + 180 · 3 · 5 = 5262 ≡ 222 (mod m)
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eine Lösung des Systems von Kongruenzen ist.
Alternativ kann man die Lösung x auch wie folgt (durch ausprobieren) be-

rechnen. Die erste Kongruenz sagt uns, dass die gesuchte Lösung von der Form
x = 2 + 20 · i ist. Wir versuchen nun die Werte i = 1, 2, 3, . . . und finden, dass
x = 2 + 20 · 2 = 42 ≡ 6 (mod 9) ist. Wir wissen nun also, dass x = 42 + j · 20 · 9
ist für eine ganze Zahl j. Wir versuchen die Werte j = 1, 2, 3, . . ., und finden,
dass

x = 42 + 1 · 180 = 222 ≡ 5 (mod 7)

ist. Die gesuchte Lösung ist also x = 42 + 180 = 222.

Das folgende Beispiel illustriert, was passiert wenn die Moduln mi nicht
paarweise teilerfremd sind.

Beispiel 2.7.3 (a) Wir betrachten die Kongruenzen

{

x ≡ 2 (mod 10),

x ≡ 3 (mod 14).

Da ggT(10, 14) = 2 ist, liefern beide Kongruenzen eine Kongruenz modulo 2.
Die erste Kongruenz liefert x ≡ 0 (mod 2). Die zweite Kongruenz liefert x ≡ 1
(mod 2). Da 1 6≡ 0 (mod 2), schließen wir, dass das System von Kongruenzen
keine Lösung besitzt.

(b) Wir betrachten jetzt die Kongruenzen

{

x ≡ 3 (mod 45),

x ≡ 7 (mod 756).

Nun ist ggT(45, 756) = 32. Da 7 6≡ 3 (mod 9) ist, so besitzt das System von
Kongruenzen keine Lösung.

Allgemein gibt es zwei Möglichkeiten für Kongruenzen mit nicht-teilerfremden
Moduln:

(I) Die Kongruenzen widersprechen sich. In diesem Fall gibt es keine Lösung.
Dies kann man feststellen, indem man die induzierten Kongruenzen mo-
dulo den ggT der Moduln berechnet (wie in Beispiel 2.7.3).

(II) Die Kongruenzen widersprechen sich nicht. In diesem Fall kann man das
System von Kongruenzen ersetzen durch ein äquivalentes System von Kon-
gruenzen mit paarweise teilerfremden Moduli (siehe Beispiel 2.7.4).

Beispiel 2.7.4 Wir betrachten

{

x ≡ 7 (mod 200),

x ≡ 82 (mod 375).
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Wir finden, dass ggT(200, 375) = 52 und 200 ≡ 52 ·8 und 375 = 53 ·3. Da 7 ≡ 82
(mod 25), ist das System von Kongruenzen konsistent. Der chinesische Restsatz
impliziert, dass die erste Kongruenz äquivalent ist zu

x ≡ 7 (mod 52) und x ≡ 7 (mod 8).

Die zweite Kongruenz ist äquivalent zu

x ≡ 82 (mod 53) und x ≡ 82 ≡ 1 (mod 3).

Insgesamt ist das System von Kongruenzen äquivalent zu











x ≡ 82 (mod 53),

x ≡ 7 (mod 8),

x ≡ 1 (mod 3).

Mit der Methode des Beweises von Theorem 2.7.1 überprüft man, dass x ≡ 1207
(mod 53 · 8 · 3) eine Lösung des Systems ist. Man bemerke, dass das System von
Kongruenzen eine eindeutige Lösung modulo 53 · 8 · 3 = 3000 statt modulo
200 · 375 = 75000 hat.

Satz 2.7.5 (Multiplikativität der ϕ-Funktion) (a) Seienm1,m2 ∈ N tei-
lerfremd. Es gilt

ϕ(m1m2) = ϕ(m1)ϕ(m2).

(b) Sei p eine Primzahl. Für alle r ≥ 1 gilt, dass

ϕ(pr) = pr−1(p− 1).

(c) Sei n =
∏

i p
ni

i die Primfaktorzerlegung von nmit pi paarweise teilerfremd.
Es gilt

ϕ(n) =
∏

i

pni−1
i (pi − 1) = n

∏

p|n

(1 − 1

p
).

Beweis: Sei m = m1m2 mit ggT(m1,m2) = 1. Wir definieren die Abbildung

Φ : Z/mZ∗ → Z/m1Z∗ × Z/m2Z∗

a (mod m) 7→ (a (mod m1), a (mod m2)).

Da a genau dann teilerfremd zu m ist, wenn ggT(a,m1) = ggT(a,m2) = 1, ist Φ
wohldefiniert. Der chinesische Restsatz (Theorem 2.7.1) impliziert, dass Φ eine
Bijektion ist. Teil (a) folgt.

Für (b) bemerken wir, dass 0 < a < pr genau dann teilerfremd zu pr ist,
wenn a teilerfremd zu p ist, also genau dann wenn p | a. Durch Abzählen findet
man, dass genau pr−1 Zahlen zwischen 0 und pr teilbar durch p sind. Also ist
ϕ(pr) = pr − pr−1 = pr−1(p− 1).

Teil (c) folgt aus (a) und (b). 2
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Beispiel 2.7.6 Da n = 375 = 53 · 3 finden wir, dass

ϕ(375) = ϕ(125) · ϕ(3) = 52 · 4 · 2 = 200.

Alternativ gilt auch

ϕ(375) = 375 · (1 − 1

5
)(1 − 1

3
) = 375 · 4 · 2/15 = 200.

3 Kryptographie

Ziel der Kryptographie ist es, eine geheime Botschaft zu verschicken über einen
unsicheren Kanal, sodass nur der beabsichtigte Empfänger die Botschaft lesen
kann. Dieses Problem beschäftigt Menschen schon seit Jahrtausenden: Das erste
Kryptoverfahren, das wir besprechen, wurde von Julius Ceasar benutzt um mit
seinen Offizieren zu kommunizieren. Mit der Zunahme des modernen Datenver-
kehr im Internet, ist die Kryptographie immer wichtiger geworden: eBay und
Amazon, wären ohne Kryptographie unmöglich.

Wir führen zuerst einige Begriffe ein. Der Klartext ist die eigentliche Nach-
richt. Die Verschlüsselung ändert die Nachricht in einen Geheimtext oder eine
verschlüsselte Nachricht. Die verschlüsselte Nachricht wird von dem Empfänger
entschlüsselt. Zum Ver- und Entschlüsseln braucht man in der Regel einen
Schlüssel.

3.1 Die Caesar-Chiffre

Als Einführung in die Kryptographie besprechen wir in diesem Abschnitt ein
sehr altes Kryptoverfahren: Die Caesar-Chiffre. Diese wurde von Julius Caesar
benutzt um mit seinen Offizieren zu kommunizieren.

Wir fangen damit an, dass wir jedem Buchstaben eine Zahl zuordnen, wie
im folgenden Schema.

a b c d e f g h i j k l m n o
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

p q r s t u v w x y z
15 16 17 18 19 20 21 22 23 24 25

(9)

Man kann wahlweise den Lesezeichen und den Lehrzeichen auch eine Zahl
zuordnen. Wir machen dies hier nicht. Wir machen auch keinen Unterschied
zwischen Groß- und Kleinbuchstaben.

Wir möchten nun den Klartext in einen Geheimtext verschlüsseln. Dies ma-
chen wir, in dem wir jeden Buchstaben des Klartextes einen neuen Buchstaben
des Geheimtextes mittels folgender Vorschrift zuordnen

C ≡ B + 3 (mod 26), (10)
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hierbei istB ein Buchstabe der Nachricht und C ein Buchstabe der verschlüsselten
Nachricht. Die Zahl C wird dann mit (9) wieder in eine Buchstabe umgewan-
delt. Der Effekt ist also, dass jede Buchstabe um 3 verschoben wird: A wird D,
B wird E und so weiter.

Zum Entschlüsseln muss man nur das Verfahren umkehren.

Beispiel 3.1.1 Die Verschlüsselung der Nachricht

Es gibt Kuchen

ist

hvjlewnxfkhq.

Eine Verallgemeinerung der Caesar-Chiffre sind die sogenannte affine Chif-
fren. Diese funktionieren sehr ähnlich wie die Caesar-Chiffre: Auch hier wer-
den einzelne Buchstaben andere Buchstaben zugeordnet. Wir ordnen wieder die
Buchstaben einer Zahl zu, wie oben. Statt (10) benutzen wir nun die Vorschrift

C ≡ aB + d (mod 26), (11)

wonach wir die neue Zahl wieder in einen Buchstaben zurückwandeln. Die Zah-
len (a, d) sind der Schlüssel des Chiffrierverfahrens. Die Caesar-Chiffre hat den
Schlüssel (1, 3). Allgemeiner heißt eine affine Chiffre mit Schlüssel (1, k) eine
Verschiebechiffre: Die Buchstaben werden um k verschoben.

Beispiel 3.1.2 Als Beispiel nehmen wir a = 7 und d = 10. Die Zuordnung der
Buchstaben wird nun:

a b c d e f g h i j k l m n o p q
k r y f m t a h o v c j q x e l s

r s t u v w x y z
z g n u b i p w d

(12)

Zum Beispiel, der Buchstabe l hat die Nummer 11. Da 7 · 11 + 10 = 87 ≡ 9
(mod 26) wird l verschlüsselt zu j, und so weiter.

Die geheime Nachricht

fkgglomjognkug

ist entschlüsselt

dasspielistaus.

Ein Schlüssel (a, d) liefert nur dann eine gültiges Chiffrierverfahren, wenn
die Abbildung (11) bijektiv ist.

Lemma 3.1.3 Das Chiffrierverfahren (11) mit Schlüssel (a, d) ist genau dann
bijektiv, wenn ggT(a, 26) = 1 ist.
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Beweis: Übungsaufgabe. 2

Wie sicher sind diese Schlüsseln? Offensichtlich nicht sehr sicher. Nehmen
wir an, unsere kleine Schwester hat ihren heimlichen Idol einen Liebesbrief ge-
schrieben und dieser mit einem affinen Schlüssel verschlüsselt. Wir haben den
Brief gefunden. Wie schwierig ist es den Brief zu entschlüsseln? Es gibt nur 26
Möglichkeiten für d und 26 − 13 − 2 = 11 Möglichkeiten für a (Lemma 3.1.3),
also insgesamt 26 ·11 = 286 mögliche affine Schlüsseln. Mit einem Rechner kann
man leicht alle Schlüseln durchprobieren. Aber auch ohne Rechner ist es leicht
den Schlüssel zu knacken. Der Schwachstelle des affinen Schlüssels ist nämlich,
dass jeder Buchstabe einem festen Buchstaben zugeordnet wird. Es ist bekannt,
welche Buchstaben am häufigsten vorkommen, zum Beispiel ist e der häufigste
Buchstabe. Dies kann man benutzen um zu raten zu welchem Buchstaben e
verschlüsselt wird. Nach und nach kann man nun weitere Buchstaben raten.

Hier finden Sie die Häufigkeit (in Prozenten) der Buchstaben in der Deutsche
Sprache:

A B C D E F G H I J K
6, 51 1, 89 3, 06 5, 08 17, 4 1, 66 3, 01 4, 76 7, 55 0, 27 1, 21

L M N O P Q R S T U V
3.44 3, 53 9, 78 2, 52 0, 79 0, 02 7, 00 7, 27 6, 15 4, 35 0, 67

W X Y Z
1, 89 0, 03 0, 04 1, 13

Quelle: http://weddige.eu/tools/kryptix/ . Diese Seite hat auch ein
kleines Programm das Verschiebechiffren knacken kann.

3.2 Das RSA-Verfahren

Die Caesar-Ciffre aus § 3.1 ist ein Beispiel eines symmetrischen Schlüsselverfahrens:
Jeder der verschlüsseln kann, kann auch entschlüsseln. Anders gesagt, der gleiche
Schlüssel wird sowohl benutzt um zu verschlüsseln als auch um zu entschlüsseln.
Da jeder, der den Schlüssel besitzt, symmetrische Schlüsselverfahren sowohl ver-
als auch entschlüsseln kann, müssen sich Sender und Empfänger des Geheim-
textes auf einen Schlüssel geeinigt haben. In modernen Internetanwendungen ist
dies oft unmöglich: Man bräuchte dafür einen zweiten sicheren Kommunikati-
onskanal, das, anders als das Internet, nicht abgehört werden kann.

Um dieses Problem zu umgehen benutzt man asymmetrische Schlüsselverfahren
oder auch Public-Key-Kryptosysteme. Diese Systeme benutzen zwei verschie-
dene Schlüssel: Ein öffentlichen Schlüssel (oder: public key), den jeder benut-
zen kann um Nachrichten zu verschlüsseln. Der zweite Schlüssel ist der private
Schlüssel (oder: private key). Nur wer den privaten Schlüssel kennt, kann den
Geheintext entschküsseln.

In diesem Abschnitt besprechen wir das RSA-Verfahren. Es wurde in den
siebziger Jahren des 20ten Jahrhunderts von Ronald Rivest, Adi Shamir und
Leonard Adleman entwickelt und von ihnen auch patentiert (siehe www.RSA.com).
Das Kryptosystem benutzt modulares Potenzieren (§ 2.6).
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Der öffentliche Schlüssel besteht aus einen Exponenten e und einen Modulus
n, welcher ein Produkt n = pq zweier großen Primzahlen p und q ist. Außerdem
gilt, dass ggT(e, ϕ(n)) = 1 ist. Es ist nur n öffentlich bekannt, nicht die Prim-
faktorzerlegung von n. Da n = pq das Produkt zweier Primzahlen ist, folgt aus
Satz 2.7.5, dass ϕ(n) = ϕ(p)ϕ(q) = (p− 1)(q − 1).

Schritt 1: Vorbereitung: Zum Verschlüsseln wandeln wir den Klartext in
eine Zahlenfolge um (A=00, B=01, . . . , Z=25). Dann teilen wir die Nachricht
in Blöcke gleicher, vorgegebener, gerader Länge ein. Falls der letzte Block nicht
voll ist, ergänzen wir mit Dummies: Ein Dummy entspricht den Wert 26.

Als Beispiel betrachten wir die Nachricht “Hilfe” und nehmen Blöcke der
Länge 4. Wir bekommen also die folgenden 3 Blöcke:

0708 1105 0426. (13)

Schritt 2: Verschlüsseln: Der öffentliche Schlüssel besteht aus zwei Zahlen
(e, n), wobei n = pq das Produkt von 2 großen Primzahlen ist und wobei
ggT(e, ϕ(n)) = 1 gilt. Wir bemerken, dass nur n bekannt ist und nicht seine
Primfaktorzerlegung.

Ein Block B des Klartextes wird nun mit folgender Vorschrift verschlüsselt:

C ≡ Be (mod n). (14)

Wir bemerken, dass n größer als der größte mögliche Block sein soll. In
diesem Skript nehmen wir einfachheitshalber Blöcke der Länge 4. Der größte
Block ist daher Z+Dummy also 2526. Wir brauchen daher n > 2526. In der
Praxis braucht man natürlich eine viel größere Schlüssellänge.

Schritt 3: Entschlüsseln: Der private Schlüssel ist (d, n), wobei d die Inverse
von emodulo ϕ(n) ist. Ist ϕ(n) bekannt, kann man dmit Hilfe des erweiteren eu-
klidischen Algorithmus (Lemma 1.1.9) berechnen. Zum Entschlüsseln berechnen
wir nun

D(C) ≡ Cd (mod n) (15)

Um zu sehen, dass wir die Nachricht entschlüsselt haben, schreiben wir de =
1 + kϕ(n). Der Satz von Euler (Satz 2.5.7) sagt, dass Bϕ(n) ≡ 1 (mod n) ist,
falls B und n teilerfremd sind. In diesem Fall gilt daher, dass

D(C) ≡ Cd ≡ Bde = B1+kϕ(n) = B · (Bϕ(n))k ≡ B (mod n).

Also haben wir die NachrichtB entschlüsselt. Die Wahrscheinlichkeit, dass n und
B nicht teilerfremd sind, ist sehr klein: Wir können diese Möglichkeit ignorieren.

Beispiel 3.2.1 (a) Wir verschlüsseln die Nachricht (13) mit Hilfe des Schlüssels
n = 3127 und e = 17:

(0708)17 ≡ 1357 (mod 3127), (1105)17 ≡ 3047 (mod 3127),

(0426)17 ≡ 1222 (mod 3127).
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Der Geheimtext ist daher:
1357 3047 1222.

(b) Wir haben den Geheimtext

1767 1087 0032

abgefangen. Der öffentliche Schlüssel ist (e = 13, n = 2537). Um den Code
zu knacken, berechnen wir das Inverse von e modulo ϕ(n). Hierzu brauchen
wir zuerst ϕ(n). Dies können wir berechnen mit Hilfe von Satz 2.7.5. Hierzu
brauchen wir die Primfaktorzerlegung von n. Mit Probedivision (§ 1.3) finden
wir, dass n = 2537 = 43 · 59. Also folgt, dass ϕ(n) = (43 − 1)(59 − 1) = 2436.

Wir berechnen d ≡ e−1 (mod ϕ(n)) mit Hilfe des erweiteren euklidischen
Algorithmus. Der erweiterte euklidische Algorithmus liefert uns ganze Zahlen
x, y mit xϕ(n) + ye = 1. Da d = y brauchen wir x nicht zu berechnen. Wir
finden

i ai qi yi

−1 2436 − 0
0 13 − 1
1 5 187 −187
2 3 2 375
3 2 1 −562

4 1 1 937

Also ist d = 937.
Wir entschlüsseln den Geheimtext und finden:

(1767)d ≡ 0613 (mod n) (1087)d ≡ 0003 (mod n), (0032)d ≡ 0426 (mod n).

Die Klartext ist daher: Gnade. Wir beachten, dass die letzten zwei Zahlen ein
Dummy darstellen.

Wir haben jetzt gesehen, wie man mit Hilfe des RSA-Verfahern ver- und
entschlüsselt. Aber wieso funktioniert die Methode? Die grundlegende Idee ist,
dass es einfach ist ein Schlüssel zu bauen und ver- und entschlüsseln schnell
geht, aber, dass es schwierig ist ein Code zu knacken.

Um einen Schlüssel zu bauen braucht man zwei große Primzahlen p und q.
Im Prinzip könnte man dies mit Hilfe des Siebes von Eratosthenes (Algorith-
mus 1.3.3) machen. Die aktuelle minimale Sicherheitsstandards schreiben eine
Schlüssellänge von 1024 Bits vor, d.h., dass n ∼= 21024 ist: Dies ist eine Zahl mit
308 Dezimalstellen. Falls n also das Produkt von 2 ungefähr gleich großen Prim-
zahlen p und q ist, sind p, q Zahlen mit ungefähr 154 Dezimalstellen. Es ist klar,
dass wir solche große Primzahlen nicht mit Hilfe des Siebs von Eratosthenes
finden möchten. Wie wir dies trotzdem machen können, lernen wir im nächsten
Abschnitt (§ 3.3).

Eine andere Anforderung an einen praktikablen Kryptosystem ist, dass das
Ver- und Entschlüsseln relativ schnell geht. Zum Ver- und Entschlüsseln muss
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man Potenzen modulo n berechnen. Dies macht man mit schneller Exponentia-
tion (§ 2.6).

Wir schauen uns das Knacken eines Codes etwas genauer an (siehe Beispiel
3.2.1.(b)). Der öffentliche Schlüssel (e, n) ist bekannt. Um den Geheimtext zu
entschlüsseln, müssen wir aus e und n die Zahl d berechnen. Hierzu brauchen
wir ϕ(n). Lemma 3.2.2 sagt uns, dass die Berechung von ϕ(n) äquivalent ist zur
Berechnung der Primfaktorzerlegung von n, also zur Berechnung von p und q.
Die Sicherheit des RSA-Verfahrens beruht daher darauf, dass es schwierig ist
die Primfaktorzerlegung einer großen Zahl zu finden.

Lemma 3.2.2 Gegeben ist eine RSA-Zahl n. Die Berechnung von ϕ(n) ist
äquivalent zur Berechnung der Primfaktorzerlegung n = p · q.

Beweis: So bald wir die Primfaktorzerlegung n = p·q von n gefunden haben,
kennen wir auch ϕ(n) = (p− 1)(q − 1).

Umgekehrt, falls wir n und ϕ(n) = (p− 1)(q − 1) kennen, kennen wir auch

n+ 1 − ϕ(n) = pq + 1 − (p− 1)(q − 1) = p+ q

und

√

(p+ q)2 − 4n =
√

p2 + 2pq + q2 − 4pq =
√

(p− q)2 = |p− q|.

Einfachheitshalber nehmen wir an, dass p ≥ q ist, dann gilt |p− q| = p− q. Wir
kennen nun auch

p =
1

2
[(p+ q) + (p− q)] und q =

1

2
[(p+ q) − (p− q)].

2

Zahlen, die das Produkt zweier großen Primzahlen sind, heißen RSA-Zahlen.
Die größte faktorisierte RSA-Zahl besitzt 200 Dezimalziffern (663 Bits) (Stand:
May 2008). Die RSA-Firma, die das Patent auf RSA besitzt, vergab bis vor
kurzen Geldpreisen von bis zu $100.000 für das Faktorisieren von RSA-Zahlen.
Dies machten sie, um auf dem Laufenden zu bleiben über die schnellsten Fakto-
risierungstechniken. Diese Herausforderung ist aktuel zurückgezogen. Mehr In-
formationen über das Faktorisieren von Primzahlen und wie Sie Ihren Rechner
mithelfen lassen können neue Rekorde zu brechen, finden Sie auf der Webseite:
http://primes.utm.edu/.

3.3 Primzahltests

Das RSA-Verfahren basiert auf der Tatsache, dass es viel einfacher ist zu testen
ob eine Zahl (wahrscheinlich) prim ist als die vollständige Primfaktorzerlegung
zu finden. Um einen privaten Schlüssel füre das RSA-Verfahren zu bauen, sucht
man 2 große Primzahlen p und q. Um den RSA-Verfahren zu knacken, muss
man die Primfaktorzerlegung des öffentlichen Schlüssels n finden.

33



In diesem Abschnitt besprechen wir, wie man große Primzahlen konstruiert.
Genauer gesagt, besprechen wir Tests, die uns sagen ob eine gegebene natürliche
Zahl wahrscheinlich eine Primzahl ist, oder nicht. Hierzu benutzen wir den klei-
nen Satz von Fermat (Korollar 2.5.8). Dieser sagt uns, dass falls p eine Primzahl
ist, so gilt für alle b ∈ N, dass

bp ≡ b (mod p) (16)

ist. Wenn wir also eine Zahl b finden, sodass bn 6≡ b (mod n), so ist n auf jeden
Fall keine Primzahl. Dies ist unser erster Primzahltest: Gegeben ist eine Zahl
n, von der wir wissen möchten ob sie eine Primzahl ist. Wir wählen eine Basis
b und berechnen bn (mod n). Falls bn 6≡ b (mod n), so ist n keine Primzahl.
Falls bn ≡ b (mod n), so könnte n eine Primzahl sein. Wir untersuchen nun,
wie sicher wir uns sein können, dass n tatsächlich eine Primzahl ist.

Definition 3.3.1 Eine natürliche Zahl n > 1 heißt Pseudoprimzahl zur Basis
b, falls n zusammengesetzt ist und bn ≡ b (mod n) gilt.

Beispiel 3.3.2 Wir fragen uns ob n = 123456791 und m = 123456793 Prim-
zahlen sind. Wir könnten dies natürlich mit Hilfe der Probedivision (§ 1.3)
machen. Falls n und m Primzahlen wären, müssten wir

√
n ∼= 11111 Divisionen

mit Rest durchführen.
Wir berechnen mit schnellen Exponentiation (§ 2.6), dass

2123456791 ≡ 2 (mod 123456791), und 2123456793 ≡ 8474892 (mod 123456793).

Also ist m = 123456793 auf jeden Fall keine Primzahl. Die Zahl n = 123456791
ist entweder eine Pseudoprimzahl zur Basis 2 oder eine Primzahl. Es stellt sich
heraus, dass 123456791 tatsächlich eine Primzahl ist.

Beispiel 3.3.3 Die kleinste Pseudoprimzahl zur Basis b = 2 ist n = 341. Es
gilt, nämlich, dass n = 11 · 31, also ist n zusammengesetzt. Außerdem gilt,
dass 2341 ≡ 2 (mod 341). Die einzige andere Pseudoprimzahlen zur Basis b = 2
kleiner als 1000 sind 561 = 3 · 11 · 17 und 645 = 3 · 5 · 43.

Wir fragen uns ob, und wenn ja wie viele, Pseudoprimzahlen n zur Basis b es
gibt, also Zahlen die die Kongruenz (16) erfüllen, obwohl sie zusammengesetzt
sind. Die folgende Tabelle zeigt wie oft dies passiert für die Basis b = 2. Da 2
die einzige gerade Primzahl ist, ignorieren wir die gerade Zahlen.

Anzahl der ungeraden Pseudoprimzahlen < 103 3
Anzahl der Primzahlen < 103 168
Anzahl der ungeraden Pseudoprimzahlen < 106 245
Anzahl der Primzahlen < 103 78498

Die Tabelle zeigt, dass die Anzahl der ungeraden Pseudoprimzahlen zur Basis
b = 2 klein ist im Vergleich zur Anzahl der Primzahlen. Falls 2n ≡ 2 (mod n)
ist, so ist die Wahrscheinlichkeit daher groß, dass n eine Primzahl ist. Trotzdem
gibt es unendlich viele Pseudoprimzahlen zur Basis 2.
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Satz 3.3.4 Es gibt unendlich viele Pseudoprimzahlen zur Basis b = 2.

Beweis: Wir zeigen folgende Aussage: Falls n eine ungerade Pseudoprimzahl
zur Basis b = 2 ist, so ist auch m := 2n − 1 eine ungerade Pseudoprimzahl zur
Basis b = 2. Da es mindestens eine ungerade Pseudoprimzahl zur Basis b = 2
gibt (Beispiel 3.3.3), finden wir so unendlich viele Pseudoprimzahlen zur Basis
b = 2.

Sei n eine ungerade Pseudoprimzahl zur Basis b = 2. Es gilt, dass 2n ≡ 2
(mod n). Da n ungerade ist, gilt auch 2n−1 ≡ 1 (mod n) (Satz 2.1.5). Da n eine
Pseudoprimzahl ist, ist n zusammengesetzt. Sei m = 2n − 1.

Lemma 1.2.2 impliziert, dass m zusammengesetzt ist, da n keine Primzahl
ist. Wir behaupten, dass 2m ≡ 2 (mod m) gilt. Hieraus folgt, dass m auch eine
Pseudoprimzahl zur Basis b = 2 ist.

Da 2n ≡ 2 (mod n), gibt es eine Zahl k mit 2n − 2 = n · k. Also gilt

2m−1 = 22n−2 = 2n·k.

Lemma 1.2.2 impliziert, dass m = (2n − 1) | (2nk − 1). Da n · k = m− 1, gilt

2m−1 ≡ 1 (mod m)

und daher 2m ≡ 2 (mod m). 2

Man kann den Primzahltest wie folgt verbessern. Falls n den Primzahltest
zur Basis b = 2 bestanden hat, so berechnen wir 3n (mod n), 5n (mod n), und
so weiter. Zum Beispiel gilt 2341 ≡ 2 (mod 341) aber 3341 ≡ 168 6≡ 3 (mod 341).
Die Zahl 341 ist daher keine Pseudoprimzahl zur Basis b = 3.

Leider gibt es Zahlen n, die Pseudoprimzahl sind zu alle Basen b. Egal wie
viele Basen wir versuchen, wir werden mit dieser Methode nie herausfinden, dass
n zusammengesetzt ist.

Definition 3.3.5 Eine zusammengesetzte Zahl n > 1 heißt Carmichael-Zahl,
falls

bn ≡ b (mod n), für alle b.

Lemma 3.3.6 Die Zahl n = 561 ist eine Carmichael-Zahl.

Beweis: Da n = 561 = 3 · 11 · 17 ist, so ist 561 zusammengesetzt. Wir
behaupten, dass b561 ≡ b (mod 561) für alle b gilt. Der chinesische Restsatz
sagt, dass die Kongruenz b561 ≡ b (mod 561) äquivalent zu dem System von
Kongruenzen











b561 ≡ b (mod 3),

b561 ≡ b (mod 11),

b561 ≡ b (mod 17)

ist.
Falls 3 | b, so ist gilt sicherlich, dass b561 ≡ b (mod 3). Nehmen wir also

an, dass 3 ∤ b. Da 561 = 1 + 2 · 280 folgt aus dem kleinen Satz von Fermat

35



(Korollar 2.5.8), dass b561 ≡ b · 1280 (mod 3) ist. Die Verifikation der beiden
anderen Kongruenzen ist ähnlich. 2

Der folgende Satz gibt eine Charakterisierung von Carmichael-Zahlen. Der
Satz wurde in 1899 von A. Korselt bewiesen: Dies war 10 Jahren vor Carmichael
die erste Beispiele von Carmichael-Zahlen gefunden hat. Korselt war sich sicher,
dass solche Zahlen nicht existieren und sah seinen Satz als den ersten Schritt
dies zu beweisen. Eine Zahl n heißt quadratfrei, falls 1 das einzige Quadrat,
das n teilt, ist. Der Beweis des Satzes ist nicht sehr schwierig, aber benutzt den
Begriff der Primitivwurzel, den wir erst in § 5.1 einführen werden.

Satz 3.3.7 Sei n eine quadratfreie, zusammengesetzte, natürliche Zahl, also
n = p1 ·p2 · · · pr, wobei die pi paarweise verschiedene Primzahlen sind. Die Zahl
n ist genau dann eine Carmichael-Zahl, wenn (pi − 1) | (n− 1) für alle i gilt.

Mit Hilfe von Satz 3.3.7 können wir einen neuen Beweis von Lemma 3.3.6
geben. Wir haben schon gesehen, dass 561 = 3·11·17, also ist n = 561 quadratfrei
und zusammengesetzt. Da 561 − 1 = 560 = 24 · 5 · 7 ist, folgt, dass p − 1 | 560
für p = 3, 11, 17. Dies zeigt erneut, dass 561 eine Carmichael-Zahl ist.

In 1910 vermutete Carmichael, dass es unendlich viele Carmichael-Zahlen
gibt. Dies wurde in 1994 von W.R. Alford, A. Granville und C. Pomerance
bewiesen. Obwohl es unendlich viele Carmichael-Zahlen gibt, sind diese sehr
selten: Die Anzahl der Carmichael-Zahlen kleiner als 25 · 109 ist 2163.

Die Tatsache, dass Carmichael-Zahlen existieren, zeigt, dass unser Prim-
zahltest noch nicht gut genug ist. Daher besprechen wir nun einen besseren
Primzahltest. Dieser basiert auf folgender Beobachtung.

Lemma 3.3.8 Sei p eine ungerade Primzahl und schreibe

p− 1 = 2st, mit t ungerade.

Sei b eine natürliche Zahl, die nicht von p teilbar ist. Es gilt

(a) entweder bt ≡ 1 (mod p),

(b) oder b2
it ≡ −1 (mod p) für ein i mit 0 ≤ i < s.

Beweis: Der kleine Satz von Fermat (Korollar 2.5.8) impliziert, dass bp−1 ≡
1 (mod p). Da p− 1 = 2st, so ist eine der Zahlen

bt, b2t, . . . , b2
s−1t, b2

st

kongruent zu 1 (mod p). Falls bt ≡ 1 (mod p), so tritt Fall (a) des Lemmas auf.

Sonst existiert ein 1 ≤ i ≤ s, sodass b2
it ≡ 1 (mod p), aber b2

i−1t 6≡ 1 (mod p)
ist. Die impliziert, dass

p | (b2
it − 1) = (b2

i−1t − 1)(b2
i−1t + 1).

Da p eine Primzahl ist mit p ∤ (b2
i−1t − 1), folgt, dass p | (b2

i−1t + 1) (Lemma

1.2.3). Also gilt, dass b2
i−1t ≡ −1 (mod p): Fall (b) des Lemmas trifft zu. 2
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Definition 3.3.9 (a) Eine ungerade, zusammengesetzte Zahl n heißt starke
Pseudoprimzahl zur Basis b, falls n teilerfremd zu b ist und die Bedingung
von Lemma 3.3.8 erfüllt ist.

(b) Falls n keine starke Pseudoprimzahl zur Basis b ist, so heißt b eine Zeuge
für n.

Beispiel 3.3.10 (a) Wir haben gesehen, dass 341 eine Pseudoprimzahl zur Ba-
sis b = 2 ist. Wir überprüfen, dass 341 keine starke Pseudoprimzahl zur Basis
b = 2 ist. Wir schreiben 341 − 1 = 22 · 85, also ist s = 2 und t = 85. Nun gilt

285 ≡ 32 (mod 341) (mod 341), 22·85 ≡ 1 (mod 341).

Daher ist sowohl Lemma 3.3.8.(a) als auch Lemma 3.3.8.(b) nicht erfüllt. Wir
schließen, dass 341 keine starke Pseudoprimzahl zur Basis b = 2 ist.

Wir bemerken, dass 22·85 ≡ 1 (mod 341) aber 285 6≡ ±1 (mod 341). Dies
illustriert, dass a2 ≡ 1 (mod 341) nicht impliziert, dass a ≡ ±1 (mod 341) gilt,
wie im Beweis von Lemma 3.3.8. Der Grund ist, dass 341 keine Primzahl ist.

Die kleinste starke Pseudoprimzahl zur Basis b = 2 ist 2047.
(b) Sei n = 91 und b = 10. Wir schreiben n− 1 = 2 · 45, also ist s = 1 und

t = 45. Da
bt ≡ 1045 ≡ −1 (mod 91),

ist Lemma 3.3.8.(b) erfüllt für i = 0. Daher ist n eine starke Pseudoprimzahl
zur Basis b = 10.

Theorem 3.3.11 Sei n > 9 eine ungerade, zusammengesetzte Zahl. Wir defi-
nieren

S(n) = {b ∈ (Z/nZ)∗ | n ist eine starke Pseudoprimzahl zur Basis b}.

Die Anzahl der Elementen von S(n) ist kleiner gleich ϕ(n)/4.

Beweis: Ein Beweis des Satzes wird zum Beispiel gegeben in [3, Satz 3.2.4].
2

Theorem 3.3.11 bedeutet also, dass mindestens 75 % der Elementen von
(Z/nZ)∗ Zeugen für n sind. Insbesondere, gibt es keine starke Carmichael-
Zahlen. Wir können Theorem 3.3.11 benutzen um mit beliebig hoher Wahr-
scheinlichkeit festzustellen ob eine gegebene Zahl eine Primzahl ist. Wir haben
eine Zahl n gegeben von der wir vermuten, dass sie eine Primzahl ist. Wir
wählen nun zufällig 100 beliebige Basen b mit 0 < b < n und überprüfen ob
n eine starke Pseudoprimzahl zur Basis b ist. Falls dies der Fall ist für alle
100 Basen b, so ist die Wahrscheinlichkeit, dass n trotzdem zusammengesetzt
ist kleiner als 1 − (0, 25)100 ∼= 4 · 10−61. Man wählt die Anzahl der Basen so
groß, dass die erwünschte Genauigkeit erreicht wird. Dieser Primzahltest heißt
Miller–Rabin-Test.
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3.4 Die Pollard-ρ-Methode

In diesem Abschnitt besprechen wir einen anderen Algorithmus zur Berechnung
der Primfaktorzerlegung einer Zahl n. Für größere Zahlen ist diese Methode
schneller als die Probedivision. In der Praxis wird die Probedivision benutzt um
kleine Primfaktoren p zu finden (das heißt p ≤ 104) und Pollard-ρ für Primfak-
toren p von mittlere Größe (ungefähr 104 ≤ p ≤ 1015). Um die wirklich großen
Primfaktoren zu finden, braucht man eine weitere Methode, wie zum Beispiel
das quadratische Sieb. Diese Methode besprechen wir nicht in der Vorlesung
Elementare Zahlentheorie.

Die Pollard-ρ-Methode wurde von J. Pollard im Jahre 1975 entdeckt. Ein
neuer Bestandteil dieser Methode ist eine gewisse Zufallskomponente.

Wir erklären zuerst die Idee der Methode. Gegeben ist eine (zusammenge-
setzte) Zahl n. Wir suchen einen Primfaktor p | n. Es reicht einen nichttrivialen
Faktor d von zu n finden: Wir wenden den Algorithmus nun auf d und n/d an
und wiederholen dies bis wir die Primfaktorzerlegung von n gefunden haben.

Wie finden wir einen nichttrivialen Faktor von n? Sei p ein Primfaktor von
n. Wir betrachten die Funktion

f : Z/pZ → Z/pZ, x 7→ x2 + 1 (mod p).

Wir wählen einen Startwert x0 ∈ Z/pZ und definieren rekursiv xi+1 = f(xi).

Fakt: Die Werte x0, x1 = f(x0), x2 = f(x1), · · · verhalten sich wie eine Zufalls-
folge, dass heißt als ob die xi unabhängig voneinander gewählt wurden.

Da es nur endlich viele Möglichkeiten für xi ∈ Z/pZ gibt, wiederholen die xi’s
sich irgendwann. Sei i < j minimal sodass xi ≡ xj (mod p). Sobald dies passiert,
gilt

xi+t ≡ xj+t (mod p), für alle t ≥ 0.

Graphisch kann man sich dies vorstellen wie in Abbildung 1. Die Name der
Methode kommt von der Form des Bildes.

xi = xj

x0

•x1

•

•

Abbildung 1: Das Pollard-ρ-Verfahren
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Wie hilft uns dies, die Zahl n zu faktorisieren? Ein Problem ist dass wir p
noch nicht kennen, also f(xi) = x2

i + 1 (mod p) nicht berechnen können. Wir
definieren daher die Funktion

F : Z/nZ → Z/nZ, X 7→ X2 + 1 (mod n),

und setzen X0 = x0. Für i > 0 definieren wir rekursiv Xi = F (Xi−1) (mod n).
Da p | n gilt nun Xi ≡ xi (mod p). Falls

xi ≡ xj (mod p),

gilt auch
p | ggT(Xi −Xj , n).

Dies liefert uns folgenden Algorithmus.

Algorithmus 3.4.1 (Die Pollard-ρ-Methode: erste Version) (a) Wähle
X0 ∈ {0, . . . , n − 1}. Für i > 0 definieren wir Xi durch Xi = F (Xi−1)
(mod n).

(b) Für alle j < i berechnen wir ggT(Xi −Xj, n).

(c) – Falls ggT(Xi−Xj, n) = 1, für alle j, so erhöhen wir i und wiederholen
Schritt (b).

– Falls wir ein j finden, sodass ggT(Xi −Xj , n) 6= 1, n, so haben wir
einen nichttrivialen Faktor gefunden.

– Falls ggT(Xi −Xj , n) = n, so müssen wir einen neuen Startwert X0

wählen und von vorne anfangen.

Eine Vereinfachung. Wir möchten nicht alle Paare i < j überprüfen, da dies
zu aufwendig ist. Stattdessen definieren wir

X0 = Y0, Xi+1 = F (Xi) (mod n), Yi+1 = F (F (Yi)) (mod n)

und berechnen nur
d = ggT(Xi − Yi, n).

Man zeigt

Lemma 3.4.2 Es existiert eine Zahl k mit ggT(Xk − Yk, n) 6= 1.

Hier ist die Beweisidee. Man kann sich dies graphisch so vorstellen: X und Y
veranstalten ein Rennen über die Rennstrecke (Abbildung 1). Wir wissen nicht
wo die unterschiedliche Anfangspositionen sind, aber Y läuft 2 Mal so schnell
wie X . (Jedes Mal, wenn wir i erhöhen wenden wir die Funktion F auf X einmal
an und auf Y zweimal.) Also überholt Y irgendwann X . Wenn dies passiert, gilt
Yk ≡ Xk (mod n), und ist es ggT(Yk −Xk, n) 6= 1.

Dies liefert uns nun folgenden Algorithmus.
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Algorithmus 3.4.3 (Die Pollard-ρ-Methode: zweite Version) (a) Wähle
X0 ∈ {0, . . . , n− 1} beliebig.

(b) Setze Xi+1 = F (Xi) und Yi+1 = F (F (Yi)). Berechne di+1 = ggT(Xi+1 −
Yi+1, n).

(c) Wiederhole Schritt (b) bis di+1 6= 1. Falls di+1 6= n ist, so haben wir einen
nicht-trivialen Faktor von n gefunden. Falls di+1 = n ist, so nutzt uns dies
nichts. Wir wählen einen neuen Anfangswert X0 und fangen von vorne an.

Beispiel 3.4.4 Sei n = 8051 und X0 = Y0 = 2. Wir berechnen

i Xi Yi di

1 5 26 1
2 26 7474 1
3 677 871 97

Da d3 6= 1, n, haben wir einen nicht-trivialen Faktor gefunden. Es gilt 8071 = 97·
83. Man stellt leicht fest (zum Beispiel mit Hilfe der Probedivision), dass 83 und
97 Primzahlen sind. Also haben wir die Primfaktorzerlegung von n gefunden.

Bemerkung 3.4.5 Man sollte die Pollard-ρ-Metode nicht auf eine Primzahl
anwenden. Falls n eine Primzahl ist, so ist ggT(Yi − Xi, n) immer entweder 1
oder n. Also endet der Algorithmus in diesem Fall nie. Bevor man die Pollard-
ρ-Methode anwendet um die Primfaktorzerlegung zu finden, sollte man zuerst
einen Primzahltest anwenden um auszuschließen, dass n wahrscheinlich eine
Primzahl ist.

4 Endliche Körper

4.1 Körper

In diesem Abschnitt geben wir eine kurze Einleitung in die Theorie der Körper.
Das Thema wird ausführlicher in der Vorlesung Algebra I behandelt.

Definition 4.1.1 Eine Menge K zusammen mit 2 Verknüpfungen

+ : K ×K → K (a, b) 7→ a+ b,

· : K ×K → K (a, b) 7→ a · b,

heißt Körper, falls folgende Bedingungen erfüllt sind:

(K1) (K,+) ist eine kommutative Gruppe, d.h.

(a) die Addition ist assoziativ, d.h. a + (b + c) = (a + b) + c für alle
a, b, c ∈ K,

(b) es existiert ein neutrales Element 0, sodass 0 + a = a+ 0 = a für alle
a ∈ K,
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(c) für jedes a ∈ K existiert ein negatives Element −a mit a + (−a) =
(−a) + a = 0,

(d) die Addition ist kommutativ, d.h. a+ b = b+ a für alle a, b ∈ K,

(K2) (K \ {0}, ·) ist eine kommutative Gruppe, das heißt

(a) die Multiplikation ist assoziativ, das heißt a · (b · c) = (a · b) · c für alle
a, b, c ∈ K \ {0},

(b) es existiert ein Einheitselement 1, sodass 1 · a = a · 1 = a für alle
a ∈ K \ {0},

(c) für jedes a ∈ K \ {0} existiert ein inverses Element a−1 mit a ·a−1 =
a−1 · a = 1,

(d) die Multiplikation ist kommutativ, das heißt a · b = b · a für alle
a, b ∈ K \ {0},

(K3) es gelten die Distributivgesetzen:

a · (b+ c) = a · b+ a · c, (a+ b) · c = a · c+ b · c,

für alle a, b, c,∈ K.

Ein Unterkörper eines Körpers L ist eine Teilmenge K ⊂ L, sodass K ein
Körper ist bezüglich die Verknüpfungen + und · von L. Falls K ⊂ L ein Un-
terkörper ist, so heißt L eine Körpererweiterung von K.

Beispiel 4.1.2 Beispiele von Körper sind die rationale Zahlen Q, die reelle
Zahlen R und die komplexe Zahlen C.

Lemma 4.1.3 Die Menge Z/nZ ist genau dann ein Körper, wenn n eine Prim-
zahl ist.

Beweis: Alle Axiomen, außer die Existenz des inversen Elements a−1 für
alle a 6= 0, sind erfüllt.

Sei n eine Primzahl. Korollar 2.1.6 impliziert, dass jedes Element a ∈ Z/nZ∗ =
Z/nZ \ {0} ein inverses Element besitzt.

Sei n zusammengesetzt und d | n ein nicht-trivialer Teiler von n, das heißt
d 6= 1, n. Es gilt, dass ggT(d, n) = d 6= 1, also ist d 6∈ (Z/nZ)∗. Wir schließen
daraus, dass Z/nZ kein Körper ist. 2

Lemma 4.1.3 zeigt, dass für jede Primzahl p ein Körper mit p Elemente
existiert. Dieser Körper bezeichnen wir mit Fp. Der Körper Fp ist nichts anderes
als die Menge Z/pZ. Der Buchstabe F kommt vom englischen Wort für Körper:
field.

In diesem Kapitel werden wir zeigen, dass für jede Primzahlpotenz q = pn

ein Körper Fq mit q Elementen existiert. Da Z/pnZ kein Körper ist (Lemma
4.1.3), brauchen wir eine andere Konstruktion.

41



4.2 Polynome

Bevor wir in § 4.4 Körper mit q = pn Elementen konstruieren können, brauchen
wie einige elementare Eigenschaften von Polynome.

Sei K ein Körper, zum Beispiel Q,R oder Fp. Sei

K[x] = {f(x) =

n
∑

i=0

aix
i | ai ∈ K}

die Menge der Polynome mit Koeffizienten in K. Die Menge K[x] erfüllt alle
Axiome aus Definition 4.1.1 außer (K2).(c). Wir nennen K[X ] den Polynomring
über K.

Sei f =
∑n

i=0 aix
i ∈ K[x] ein Polynom mit Koeffizienten ai ∈ K. Das

Nullpolynom f = 0 ist das Polynom dessen Koeffizienten alle Null sind. Falls
f 6= 0 nicht das Nullpolynom ist, so heißt die größte Zahl n, sodass an 6= 0 ist,
der Grad von f (Bezeichnung: Grad(f).) Der Grad des Nullpolynoms definieren
wir als −∞.

Falls f, g ungleich Null sind, gilt Grad(fg) = Grad(f)+Grad(g). Falls f(x) =
∑n

i=0 aix
i mit an 6= 0 ist, heißt anx

n der führende Term von f . Ein Polynom
von Grad n heißt normiert, falls der führende Term xn ist.

Seien f(x), g(x) ∈ K[x]. Wir sagen, dass g(x) ein Teiler von f(x) ist, falls es
ein Polynom h(x) ∈ K[x] gibt mit f(x) = g(x)h(x). Bezeichnung: g | f .

Im PolynomringK[x] kann man in vielerlei Hinsicht genau so rechnen wie in
Z. Zum Beispiel gibt es in K[x] einen euklidischen Algorithmus und man kann
den ggT berechnen. Die Berechnung des ggTs basiert auf Polynomdivision. Der
folgende Satz ist eine Version von Satz 1.1.5 für Polynome.

Satz 4.2.1 Sei K ein Körper und seien f(x), g(x) ∈ K[x] Polynome mit g(x) 6=
0. Es existieren eindeutige Polynomen q(x) und r(x) ∈ K[x] mit

f(x) = q(x)g(x) + r(x),

wobei Grad(r) < Grad(g) ist.

Wie im Fall der ganzen Zahlen nennen wir q(x) den Quotient und r(x) den
Rest nach Division von f(x) durch g(x).

Beweis: Wir beweisen zuerst die Existenz von q und r. Falls g(x) ein Teiler
von f(x) ist, definieren wir q(x) = f(x)/g(x) und r(x) = 0.

Falls g(x) kein Teiler von f(x) ist, betrachten wir die Menge

M := {f(x) − g(x)q(x) | q(x) ∈ K[x]}.

Da g ∤ f , ist 0 6∈ M. Sei r(x) ∈ M ein Element kleinsten Grades. Offensichtlich
existiert ein Polynom q(x) mit f(x) = q(x)g(x) + r(x).

Wir müssen zeigen, dass Grad(r) < Grad(g) ist. Dazu schreiben wir r(x) =
∑m

i=0 rix
i und g(x) =

∑n
i=0 gix

i mit rm 6= 0 und gn 6= 0. Wir nehmen an, dass
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m = Grad(r) ≥ n = Grad(g) ist. Wir betrachten

h(x) = r(x) − rm
gn
xm−ng(x).

Dies ist definiert, da gn 6= 0 ist. Außerdem, ist h ∈ M. Der Koeffizient von xm in
h ist rm−gnrm/gn = 0, also gilt Grad(h) < m = Grad(r). Dies widerspricht den
Wahl von r als Polynom in M kleinsten Grades. Wir schließen, dass Grad(r) <
Grad(g) ist.

Das Beweis der Eindeutigkeit ist ähnlich am Beweis von Satz 1.1.5. 2

Korollar 4.2.2 Sei f(x) ∈ K[x] ein Polynom. Ein Element a ∈ K ist genau
dann eine Nullstelle von f , wenn ein Polynom q(x) mit

f(x) = q(x)(x − a)

existiert.

Beweis: Dies folgt unmittelbar aus Satz 4.2.1, da x − a genau dann ein
Teiler von f(x) ist, wenn der Rest von f nach Division durch x− a gleich 0 ist.
Hier haben wir benutzt, dass Grad(x− a) = 1 ist. 2

Definition 4.2.3 Seien f, g ∈ K[x] Polynomen, die nicht beide null sind. Ein
gemeinsamer Teiler von f und g ist ein Polynom h(x), das sowohl f als auch
g teilt. Der größte gemeinsame Teiler von f und g ist das normierte Polynom
größten Grades, das sowohl f als auch g teilt. Wir bezeichnen den ggT zweier
Polynome mit ggT(f, g).

Wir fordern, dass ggT(f, g) ein normiertes Polynom ist, da der ggT sonst
nicht eindeutig wäre. Wie im Fall ganzer Zahlen, berechnet man den ggT mit
Hilfe des euklidischen Algorithmus. Da Division mit Rest für Polynome existiert
(4.2.1), funktioniert das euklidischen Algorithmus wie für ganzen Zahlen.

Das Beweis des folgenden Lemmas ist identisch zum Beweis von Lemma
1.1.9. Wir überlassen es der LeserIn.

Lemma 4.2.4 Seien f, g ∈ K[x] nicht beide Null. Sei d(x) = ggT(f(x), g(x)).

(a) Es existieren Polynomen s, t ∈ K[x], sodass

d(x) = s(x)f(x) + t(x)g(x).

(b) Jedes Polynom, das sich schreiben lässt als s(x)f(x) + t(x)g(x) ist teilbar
durch d(x).

Beispiel 4.2.5 (a) Sei f(x) := x5 + x2 − 4x − 2 und g(x) := x4 + x3 + 2x2 +
3x + 1 Polynomen in Q[x]. Mit Hilfe des erweiterten euklidischen Algorithmus
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berechnen wir ggT(f(x), g(x)). Wir benutzen die gleiche Bezeichnung wie in
§ 1.1.

n rn qn sn tn
−1 x5 + x2 − 4x− 2 − 1 0
0 x4 + x3 + 2x2 + 3x+ 1 − 0 1
1 −x3 − 2x− 1 x− 1 1 −x+ 1

Da der ggT normiert ist, finden wir, dass

ggT(f, g) = x3 + 2x+ 1 = (−1)f + (x− 1)g.

(b) Wir betrachten nun K = F5 den Körper mit 5 Elementen und

f(x) = x3 + 4x2 + x− 1, g(x) = x3 − x2 + 2x+ 1 ∈ F5[x].

Wie oben berechnet man, dass

ggT(f(x), g(x)) = x+ 2 = −f + g

ist.

Definition 4.2.6 Ein Polynom f ∈ K[x] ein Polynom mit f 6= 0 heißt reduzi-
bel, falls ein Teiler g ∈ K[x] von f mit 1 ≤ Grad(g) < Grad(f) existiert. Sonst
heißt f irreduzibel.

Lemma 4.2.7 (a) Jedes Polynom von Grad 1 ist irreduzibel.

(b) Sei f ∈ K[x] ein Polynom zweiten oder dritten Grades. Das Polynom f
ist reduzibel genau dann, wenn f eine Nullstelle in K besitzt.

Beweis: Teil (a) ist klar. Sei f ein Polynom zweiten oder dritten Grades. Wir
nehmen an, dass f reduzibel ist. Also lässt sich f schreiben als f(x) = g(x)h(x)
mit 1 ≤ Grad(g) < Grad(f). Es folgt, dass entweder g oder f ein Polynom
ersten Grades ist. 2

Beispiel 4.2.8 (a) Ob ein Polynom irreduzibel ist oder nicht, hängt von Körper
K ab. Zum Beispiel ist das Polynom x2 + 1 irreduzibel in R[x], aber reduzibel
in C[x]. In C[x] gilt nämlich x2 + 1 = (x− i)(x+ i), aber i =

√
−1 6∈ R.

(b) Sei f(x) = x4 + 1 ∈ F5[x]. Durch einsetzen der Werte von F5 sieht man
leicht ein, dass f keine Nullstellen in F5 besitzt. Falls f reduzibel ist, ist f = g ·h
also das Produkt zweier Polynome zweiten Grades. Sei g(x) = a0 + a1x+ a2x

2

und h(x) = b0 + b1x+ b2x
2. Koeffizientenvergleich zwischen g · h und f liefert,

dass
x4 + 1 = (x2 + 2)(x2 + 3) ∈ F5[x].

Also ist f reduzibel. Die Faktoren sind irreduzibel, da sie keine Nullstellen be-
sitzen.
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Sei f ∈ K[x] ein Polynom und α ∈ K eine Nullstelle von f . Wiederholtes
Anwenden von Korollar 4.2.2 liefert, dass

f(x) = (x− α)mg(x), mit g ∈ K[x] und g(α) 6= 0.

Wir nennen m die Vielfachheit der Nullstelle α. Falls m > 1, so heißt α eine
mehrfache Nullstelle von f .

Sei f(x) =
∑n

i=0 aix
i. Wir definieren die formale Ableitung von f als

f ′(x) :=

n
∑

i=1

iaix
i−1.

Falls K = R ist, so ist die formale Ableitung einfach die Ableitung von f nach
x. Die formale Ableitung erfüllt die gleichen Rechenregeln wie die Ableitung.
Das folgende Lemma zeigt, dass die formale Ableitung ähnliche Eigenschaften
wie die Ableitung besitzt.

Lemma 4.2.9 (a) Es gilt, dass

(f + g)′ = f ′ + g′, (fg)′ = f ′g + fg′.

(b) Eine Nullstelle α eines Polynoms f ∈ K[x] ist genau dann eine mehrfache
Nullstelle, wenn f ′(α) = 0 ist.

Beweis: Teil (a) folgt leicht aus der Definition.
Sei α ∈ K eine Nullstelle von f mit Vielfachheit m > 1. Wir schreiben

f(x) = (x− α)mg(x) mit g ∈ K[x] und g(α) 6= 0. Es gilt, dass

f ′(x) = m(x− α)m−1g(x) + (x− α)mg′(x).

Da m > 1 ist, gilt also, dass f ′(α) = 0. Die Umkehrung beweist man ähnlich.
2

Satz 4.2.10 Sei K ein Körper und sein f ∈ K[x] ein Polynom von Grad n. So
besitzt f höchstens n Nullstellen in K.

Beweis: Seien α1, . . . , αr ∈ K die Nullstellen von f gezählt mit Vielfachheit.
Korollar 4.2.2 impliziert, dass

f(x) =

r
∏

i=1

(x − αi)g(x)

ist, wobei g(αi) 6= 0 für i = 1, . . . , r ist. Also ist r ≤ Grad(f) = n. 2
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4.3 Polynomkongruenzen

In diesem Abschnitt betrachten wir Polynomkongruenzen: Statt modulo einer
natürlichen Zahl rechnen wir modulo einen Polynom. Dies geht sehr ähnlich an
das Rechnen mit Kongruenzen ganzer Zahlen (§ 2.1).

Definition 4.3.1 Seien f, g, h ∈ K[x] Polynome mit f 6= 0. Wir sagen, dass g
kongruent zu h modulo f ist falls f | (g − h). Bezeichnung: g ≡ h (mod f).

Die Menge der Kongruenzklassen modulo f bezeichnen wir mit K[x]/(f).

Lemma 4.3.2 Seien f, g ∈ K[x] Polynome mit f 6= 0.

(a) Es existiert ein eindeutiges Polynom h mit g ≡ h (mod f) und Grad(h) <
Grad(f).

(b) Sei nun k ein Körper mit q Elementen und sei Grad(f) = n. Die Menge
k[x]/(f) besitzt genau qn Elemente.

Beweis: Teil (a) folgt mit Hilfe der Division mit Rest für Polynome (Satz
4.2.1). Teil (b) folgt aus (a): Die Kongruenzklassen korrespondieren genau zu

den Polynome h(x) =
∑n−1

i=0 aix
i in k[x] mit Grad(h) < n. Da ai ∈ k und |k| = q

besitzt diese Menge qn Elemente. 2

Beispiel 4.3.3 Jede Kongruenzklasse von F3[x]/(x
2 + x− 1) enthält genau ein

Polynom von Grad kleiner gleich 1, also gilt

R := F3[x]/(x
2 + x− 1) = {0, 1, 2, x, x+ 1, x+ 2, 2x, 2x+ 1, 2x+ 2}.

Die Menge R enthält also 9 Elementen.
Wir addieren und multiplizieren Elementen von F3[x]/(f) modulo f . Wir

müssen also sowohl modulo 3 als auch modulo f rechnen. Zum Beispiel gilt

(2x+ 1)(2x+ 2) = 4x2 + 6x+ 2 ≡ x2 + 2 ≡ 1 − x+ 2 = −x ∈ F3[x]/(f).

Satz 4.3.4 Seien f, g ∈ K[x] \ {0} Polynome. Das Polynom g besitzt genau
dann ein inverses Element in K[x]/(f), wenn ggT(f, g) = 1 gilt.

Beweis: Falls ggT(f, g) = 1, existieren Polynome s, t ∈ K[x] mit s·f+t·g =
1 (Lemma 4.2.4). Also ist t ≡ g−1 ∈ K[x]/(f) das inverse Element von g.

Wir nehmen an, ein inverses Element t = g−1 ∈ K[x]/(f) von g existiert.
Also gilt, dass t · g ≡ 1 (mod f) ist. Daher existiert ein Polynom s ∈ K[x],
sodass t · g + s · f = 1 ist. Lemma 4.2.4.(b) impliziert, dass ggT(f, g) = 1. 2

Korollar 4.3.5 Die MengeK[x]/(f) ist genau dann ein Körper, wenn f ∈ K[x]
irreduzibel ist. Falls f irreduzibel ist, so heißt K[x]/(f) der Stammkörper von
f .
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Beweis: Alle Körperaxiomen außer K2.(c) (die Existenz des inversen Ele-
ments) sind automatisch erfüllt. Satz 4.3.4 sagt uns, dass g ∈ K[x]/(f) genau
dann ein inverses Element besitzt, wenn ggT(f, g) = 1 ist. Falls f reduzibel ist,
existieren daher nicht-invertierbare Elementen in K[x]/(f), nämlich die Rest-
klassen der nicht-triviale Teiler von f . Falls f irreduzibel ist, gilt, dass ggT(f, g)
genau dann gleich 1 ist, wenn f ∤ g gilt. Also besitzt jede nicht-triviale Rest-
klasse in K[x]/(f) ein inverses Element. 2

Lemma 4.3.6 Sei f ∈ K[x] ein irreduzibles Polynom und L = K[x]/(f) der
Stammkörper von f . Das Polynom f besitzt mindestens eine Nullstelle α ∈ L,
nämlich die Restklasse α von x.

Beweis: Dies folgt sofort aus der Definition des Stammkörpers und der
Definition von α. 2

Bezeichnung 4.3.7 Sei K ein Körper und f ∈ K[x] ein irreduzibles Polynom
von Grad n. Sei L = K[x]/(f) der Stammkörper von f . Wir definieren α ∈ L
als die Restklasse von x in L. Lemma 4.3.6 impliziert, dass α ∈ L eine Nullstelle
von f(x) ist. Die Elemente von L können wir wie folgt darstellen:

L = {a0 + a1α+ · · · + an−1α
n−1 | ai ∈ K}.

Beispiel 4.3.8 (a) Man überprüft leicht, dass f(x) = x2 + x − 1 ∈ F3[x] irre-
duzibel ist, also ist L = F3[x]/(x

2 +x−1) ein Körper mit 9 Elementen (Beispiel
4.3.3). Sei α ∈ L die Restklasse von x. Die Elementen von L können wir nun
darstellen als

L = {a0 + a1α | ai ∈ F3},
wobei α2 + α− 1 = 0 ist.

Da L ein Körper ist, existiert das inverse Element 1/α von α. Wir schreiben
1/α = b0 + b1α. Mit Hilfe der Relation α2 = −α+ 1 finden wir, dass

1
!
= α(b0 + b1α) = b0α+ b1(−α+ 1) = b1 + (b0 − b1)α.

Die bi erfüllen daher das Gleichungssystem

{

b1 = 1
b0 − b1 = 0

Also gilt b0 = b1 = 1. Wir schließen, dass 1/α = 1 + α ist.
Alternativ finden wir mit Hilfe des erweiterten euklidischen Algorithmus,

dass
ggT(x, x2 + x− 1) = 1 = (1 + x) · x− 1 · (x2 + x− 1)

gilt. Hieraus folgt auch, dass 1/α = 1 + α ist.
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(b) Das Polynom f(x) = x2 + x− 1 ist irreduzibel in F3[x]. Wir überprüfen,
dass dies in L[x] nicht mehr gilt. In L besitzt f eine Nullstelle α (Lemma 4.3.6).
Division mit Rest in L[x] zusammen mit der Relation α2 = 1 − α liefert, dass

f(x) = (x− α)(x + 1 + α) ∈ L[x]

gilt.

Lemma 4.3.9 Sei K ein Körper und f ∈ K[x] ein irreduzibles Polynom von
Grad n. Sei L = K[x]/(f) der Stammkörper von f . Nun ist L ein K-Vektorraum
der Dimension n. Wir nennen n den Grad der Körpererweiterung K ⊂ L. Be-
zeichnung: n = [L : K].

Beweis: Die Tatsache, dass L ein K-Vektorraum ist, folgt aus den Körper-
axiomen (Definition 4.1.1). Bezeichnung 4.3.7 impliziert, dass

(1, α, . . . , αn−1) (17)

ein K-Basis von L ist. Also ist n die Dimension von L als K-Vektorraum. 2

4.4 Endliche Körper

Definition 4.4.1 Ein Körper mit endlich vielen Elementen heißt endlicher Kör-
per.

Satz 4.4.2 Sei k ein endlicher Körper. Es existiert eine Primzahl p, sodass k den
Körper Fp enthält. Falls Fp ⊂ k ein Unterkörper ist, so heißt p die Charakteristik
von k. Bezeichnung: Char(k).

Beweis: Sei 1 ∈ k das Einheitselement (Axiom (K2.(b)). Da k nur endlich
viele Elementen besitzt, existiert ein n > 0, sodass n · 1 = 1 + · · · + 1 = 0 ist.
Sei n > 0 minimal mit dieser Eigenschaft. Wir betrachten die Teilmenge

N := {0, 1, . . . , n− 1}

von k.
Wir nehmen an, dass n eine zusammengesetzte Zahl ist. Sei n = d · e mit

d 6= 1, n. Wir fassen d ∈ N als Element von k auf. Wir behaupten, dass d
kein inverses Element in k besitzt. Da d 6= 0 liefert dies ein Widerspruch zur
Annahme, dass k ein Körper ist. Also folgt, dass n eine Primzahl ist. Dies
beweist den Satz.

Wir beweisen die Behauptung, dass d kein inverses Element d−1 in k besitzt.
Falls d−1 ∈ k existieren würde, so würde gelten, da n = d · e ≡ 0 ∈ Fp ist, dass

0 = d−1 · 0 ≡ d−1 · n = d−1 · d · e = 1 · e = e

ist. Dies liefert ein Widerspruch zur Annahme, dass e ein Teiler von n, also
insbesondere ungleich Null, ist. Also besitzt d kein inverses Element in k. 2
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Satz 4.4.3 Sei k ein endlicher Körper der Charakteristik p. Die Kardinalität
von k ist pn für ein n ≥ 1.

Beweis: Der Beweis von Satz 4.4.2 impliziert, dass Fp ⊂ k ein Unterkörper
ist. Wie im Beweis von Lemma 4.3.9 zeigt man, dass k ein Fp-Vektorraum ist. Sei
n die Fp-Dimension von k und sei (e1, . . . en) ein Basis von k als Fp-Vektorraum.
Es gilt, dass

k = {
n

∑

i=1

aiei | ai ∈ Fp}.

Also besitzt k genau pn Elementen. 2

Falls k = Fp[x]/(f) der Stammkörper eines irreduziblen Polynoms ist, folgt
Satz 4.4.3 aus Lemma 4.3.2. Theorem 4.4.6 impliziert, dass jeder endliche Körper
der Stammkörper eines irreduziblen Polynoms ist.

Satz 4.4.4 (Kronecker) Sei K ein Körper und f ∈ K[x] ein Polynom. Es exi-
stiert eine Körpererweiterung K ⊂ L von K, sodass f in L[x] in Linearfaktoren
zerfällt.

Bemerkung 4.4.5 Ein Polynom f(x) ∈ K[x] zerfällt genau dann in Linear-
faktoren, wenn Zahlen c, αi ∈ K existieren, sodass

f(x) = c
∏

i

(x− αi) ∈ K[x].

Falls f ∈ K[x] in Linearfaktoren zerfällt, so besitzt f daher Grad(f) Nullstellen
in K gezählt mit Vielfachheit.

Beweis: Wir schreiben

f =
∏

i

fi ∈ K[x]

als Produkt von irreduziblen Faktoren. Falls f ∈ K[x] in Linearfaktoren zerfällt,
d.h. wenn Grad(fi) = 1 für alle i, so sind wir fertig.

Wir nehmen an, dass f ∈ K[x] nicht in Linearfaktoren zerfällt. Es exi-
stiert daher ein irreduzibler Faktor g1 von f vom Grad mindestens zwei. (Es ist
möglich, dass g1 = f gilt.) Sei L1 = K[x]/(g1) der Stammkörper von g1. Da
g1 irreduzibel ist, so ist L1 eine Körpererweiterung von K (Korollar 4.3.5). Wir
betrachten f ∈ L1[x] nun als Polynom mit Koeffizienten in L1. Das Polynom g1
besitzt in L1 mindestens eine Nullstelle (Lemma 4.3.6). Das Polynom f besitzt
in L1 daher mehr Nullstellen als in K.

Wir betrachten f als Polynom in L1[x] und wiederholen das Argument: Falls
f in L1[x] in Linearfaktoren zerfällt, so sind wir fertig. Sonst definieren wir L2

als den Stammkörper eines irreduziblen Faktors von f von Grad mindestens
zwei. Und so weiter.
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Dies liefert eine Kette K ⊂ L1 ⊂ L2 ⊂ · · · von Körpererweiterungen. Da
Grad(f) endlich ist, ist diese Kette endlich. Sei Lm der größte Körper der Kette.
So zerfällt f in Lm in Linearfaktoren. 2

Theorem 4.4.6 Sei q = pn eine Primzahlpotenz. Es existiert ein Körper k mit
q Elementen.

Beweis: Sei q = pn eine Primzahlpotenz. Wir betrachten das Polynom

g(x) = xq − x ∈ Fp[x].

Satz 4.4.4 impliziert, dass eine Körpererweiterung L von K existiert, sodass g
in L[x] in Linearfaktoren zerfällt.

Wir behaupten, dass g keine mehrfache Nullstellen in L besitzt. Da q = pn ≡
0 ∈ Fp gilt, dass g′(x) = qxq−1 − 1 ≡ −1 ∈ Fp[x]. Also gilt, dass ggT(g, g′) = 1
ist. Lemma 4.2.9 impliziert, dass g keine mehrfache Nullstellen besitzt. Insbe-
sondere besitzt g genau q Nullstellen in L.

Sei F ⊂ L die Menge der Nullstellen von g. Wir behaupten, dass F ein
Körper ist. Die Definition der Menge F impliziert, dass α ∈ F genau dann,
wenn αq = α ist. Seien nun α, β ∈ F . Es gilt

(αβ)q = αqβq, (−α)q = −α, (1/α)q = 1/αq.

Wir behaupten, dass (α+ β)q = αq + βq für alle α, β ∈ F . Zuerst bemerken
wir, dass es reicht zu zeigen, dass (α+β)p = αp+βp gilt. Die allgemeine Aussage
folgt mit widerholtes Anwenden, da q = pn. Es gilt, dass

(α+ β)p =

p
∑

i=0

(

q

i

)

αiβp−i,

wobei
(

p

i

)

=
p!

i!(p− i)!

ist. Sei i 6= 0, p. Wir sehen, dass p der Zähler der Ausdrück aber nicht der Nenner
teilt. Daher ist

(

p
i

)

≡ 0 (mod p) für i 6= 0, p. Es folgt, dass (α+β)q = αq +βq ∈
F . Wir schließen, dass F ein Körper ist. 2

Bemerkung 4.4.7 Man kann zeigen, dass für jede Primzahlpotenz q = pn

genau ein Körper mit q Elementen gibt, bis auf Körperisomorphie. Wir beweisen
dies hier nicht und definieren auch nicht was ein Körperisomorphismus ist. Mehr
Details finden Sie in [2, § 4.5]. Der Körper mit q = pn Elementen bezeichnen
wir mit Fq.

Beispiel 4.4.8 Sei q = 32 = 9. Wir faktorisieren das Polynom xq − x in ir-
reduziblen Faktoren in F3[x], zum Beispiel mit Hilfe des Maple-Kommando
Factor(xq − x) mod 3:

xq − x = x(x − 1)(x+ 1)(x2 + 1)(x2 − x− 1)(x2 + x− 1).
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Um den Körper mit 9 Elementen darzustellen, wählen wir einen der irreduziblen
Faktoren von g von Grad 2, zum Beispiel h(x) = x2 +1. In Beispiel 4.3.8 haben
wir x2 + x− 1 gewählt. Wir können F9 nun darstellen als

F9 = F3[x]/(x
2 + 1) = {a0 + a1α | aj ∈ F3},

wobei α die Relation α2 = −1 erfüllt. Also ist α ∈ F9 eine Nullstelle des Poly-
noms x2 + 1.

Der Beweis von Theorem 4.4.6 impliziert, dass xq − x über F9 in Linear-
faktoren zerfällt. Wir rechnen dies nach. Wir suchen dazu die Nullstellen von
x2 + 1, x2 − x− 1 und x2 + x− 1 in F9. Wie in Beispiel 4.3.8 finden wir, dass

x2 + 1 = (x+ α)(x − α), x2 − x− 1 = (x+ α+ 1)(x− α+ 1),

x2 + x− 1 = (x− α− 1)(x+ α− 1).

Die Eindeutigkeit des Körpers mit 9 Elementen kann man so verstehen:
Da alle irreduzible Polynomen in F3[x] von Grad 2 in F9[x] in Linearfaktoren
zerfallen, ist es egal ob man F9 konstruiert in dem man eine Nullstelle von x2+1
oder von x2 + x− 1 an F3 hinzufügt.

5 Der diskrete Logarithmus

5.1 Primitivwurzeln

Sei m ∈ N und a ∈ Z teilerfremd zu m. In § 2.5 haben wir die Ordnung ordm(a)
von a modulo m definiert. Wir haben gezeigt (Lemma 2.5.11), dass ordm(a) ein
Teiler von ϕ(m) ist.

Definition 5.1.1 Seien a ∈ Z und m ∈ N mit ggT(a,m) = 1. Die Zahl a heißt
Primitivwurzel modulo m, falls ordm(a) = ϕ(m) ist.

Beispiel 5.1.2 (a) Sei m = 7, also ist ϕ(m) = 6. Man berechnet:

a 1 2 3 4 5 6
ord7(a) 1 3 6 3 6 2

.

Also sind 3 und 5 Primitivwurzeln modulo 7.
(b) Sei m = 12, also ist ϕ(12) = ϕ(3)ϕ(4) = 4. Man berechnet:

a 1 5 7 11
ord12(a) 1 2 2 2

.

Wir schließen, dass keine Primitivwurzeln modulo 12 existieren.

Lemma 5.1.3 Sei a eine Primitivwurzel modulo m. So ist

R := {a, a2, . . . , aϕ(m)}

ein reduziertes Restsystem modulo m.
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Beweis: Seien 1 ≤ i < j ≤ ϕ(m). Die Definition der Ordnung modulo m
impliziert, dass

aj−i 6≡ 1 (mod m).

Also ist aj 6≡ ai (mod m). Außerdem gilt offensichtlich, dass ggT(ai,m) = 1 für
alle i. Da die Kardinalität der Menge R gleich ϕ(m) ist, ist R ein reduziertes
Restsystem modulo m. 2

Lemma 5.1.4 Seien a ∈ Z und m ∈ N Zahlen mit ggT(a,m) = 1. Für alle
k ∈ N gilt, dass

ordm(ak) =
ordm(a)

ggT(ordm(a), k)

ist.

Beweis: Übungsaufgabe. 2

Beispiel 5.1.5 In Beispiel 5.1.2 haben wir gesehen, dass a = 3 eine Primitiv-
wurzel modulo 7 ist. Es gilt

k 1 2 3 4 5 6

ak 3 2 6 4 5 1

ordm(ak) 6 3 2 3 6 1
.

Dies bestätigt Lemmata 5.1.3 und 5.1.4.

Sei p eine Primzahl. Ziel dieses Abschnittes ist die Existenz von Primitiv-
wurzel modulo p zu beweisen (Korollar 5.1.8). Der folgende Satz ist ein erster
Schritt in diesem Beweis.

Satz 5.1.6 Sei p eine Primzahl und d | (p− 1) ein Teiler. Die Kongruenz

xd ≡ 1 (mod p)

besitzt genau d Lösungen.

Beweis: Sei d ein Teiler von p − 1. Wir schreiben p − 1 = d · e. Wie im
Beweis von Lemma 1.2.2 finden wir, dass

xp−1 − 1 = (xd − 1)(xd(e−1) + xd(e−2) + · · · + xd + 1) =: (xd − 1)g(x).

Der kleine Satz von Fermat (Korollar 2.5.8) impliziert, dass die Kongruenz
xp−1 ≡ 1 (mod p) genau p − 1 Lösungen besitzt, nämlich die Elementen von
Z/pZ∗.

Satz 4.2.10 mit K = Fp impliziert, dass die Kongruenz g(x) ≡ 0 (mod p)
höchstens Grad(g) = d(e− 1) = p− 1− d Lösungen besitzt. Es gibt also minde-
stens d Zahlen α ∈ Z/pZ∗ mit g(α) 6≡ 0 (mod p) und αp−1 ≡ 1 (mod p). Diese
Zahlen α erfüllen also αd ≡ 1 (mod p). Da die Kongruenz xd ≡ 1 (mod p)
höchstens d Lösungen besitzt, schließen wir, dass genau d Zahlen α ∈ Z/pZ mit
αd ≡ 1 (mod p) existieren. 2
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Theorem 5.1.7 Sei p eine Primzahl und d | (p − 1) ein Teiler von p − 1. Wir
definieren

ψ(d) = |{1 ≤ a < p | ordp(a) = d}|.
Es gilt, dass

ψ(d) = ϕ(d).

Beweis: Wir nehmen zuerst an, dass ψ(d) > 0. Es existiert nun eine Zahl
1 ≤ a < p mit ordp(a) = d. Insbesondere sind die Zahlen a, a2, . . . , ad nicht
kongruent modulo p (vergleichen Sie zum Beweis von Lemma 5.1.3). Außerdem
gilt, dass

(ai)d ≡ (ad)i ≡ 1i ≡ 1 (mod p).

Also ist ai eine Lösung der Kongruenz xd ≡ 1 (mod p) für i = 1, . . . , d.
Satz 5.1.6 impliziert, dass die Kongruenz xd ≡ 1 (mod p) genau d Lösungen

modulo p besitzt. Diese Lösungen sind daher a, a2, . . . , ad. Lemma 5.1.4 impli-
ziert, dass ordp(a

i) = d genau dann gilt, wenn ggT(i, d) = 1 ist, also wenn
i ∈ Z/dZ∗ ist. Die Anzahl solcher i ist ϕ(d). Wir haben daher gezeigt, dass falls
ψ(d) > 0, so ist ψ(d) = ϕ(d).

Wir zeigen nun noch, dass der Fall ψ(d) = 0 nicht eintreten kann. Wir wissen,
dass die Ordnung ordp(a) jeder Zahl 0 < a < p ein Teiler von p− 1 ist. Daher
gilt, dass

∑

d|(p−1)

ψ(d) = p− 1.

Außerdem gilt, dass
∑

d|(p−1)

ϕ(d) = p− 1,

nach Lemma 2.5.13. Für jedes d gilt, dass ψ(d) ≤ ϕ(d) ist: Falls ψ(d) = 0 ist, so
ist dies offensichtlich, falls ψ(d) > 0 ist, so haben wir gezeigt, dass ψ(d) = ϕ(d).
Daher gilt, dass

p− 1 =
∑

d|(p−1)

ψ(d) ≤
∑

d|(p−1)

ϕ(d) = p− 1.

Aber dies ist nur möglich falls ψ(d) = ϕ(d) für alle d | (p− 1). 2

Korollar 5.1.8 Sei p eine Primzahl. Es existiert eine Primitivwurzel modulo p.

Beweis: Theorem 5.1.7 impliziert, dass die Anzahl der Primitivwurzeln mo-
dulo p gleich ψ(p − 1) = ϕ(p − 1) ist. Satz 2.7.5 impliziert, dass ϕ(p − 1) ≥ 1
ist. 2

Beispiel 5.1.9 In Beispiel 5.1.2 haben wir gesehen, dass zwei Primitivwurzeln
modulo 7 existieren, nämlich 3 und 5. In der Tat gilt, dass ϕ(6) = ϕ(2)ϕ(3) =
1 · 2 = 2.

Es gibt ϕ(10) = 4 Primitivwurzel modulo 11, nämlich 2, 6, 7 und 8.
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Es existieren viele Primitivwurzel modulo p: Die Anzahl ist ϕ(p− 1). Leider
gibt uns Korollar 5.1.8 keine Methode eine Primitivwurzel zu finden. Um eine
Primitivwurzel zu finden, bleibt uns nicht viel anderes übrig als die Ordnung
modulo p von Elementen in Z/pZ∗ zu berechnen bis wir eine Primitivwurzel
gefunden haben. So bald wir eine Primitivwurzel r modulo p gefunden haben,
ist es leicht alle anderen zu finden: Der Beweis von Theorem 5.1.7 impliziert,
dass die anderen Primitivwurzel ri sind, wobei ggT(i, p− 1) = 1 ist.

5.2 Der diskrete Logarithmus

Sei p eine Primzahl. Wir betrachten G = (Z/pZ)∗. Sei r eine Primitivwurzel
modulo p. Diese existiert nach Korollar 5.1.8. Jedes Element von G lässt sich
schreiben als Potenz von r:

G = {r, r2, r3, . . . , rp−1}, (18)

(Lemma 5.1.3).
Wir definieren die Exponentialfunktion bezüglich der Primitivwurzel r durch

expr : Z/(p− 1)Z → G, i 7→ ri.

Diese Abbildung heißt Exponentialfunktion, da expr(i + j) = expr(i) · expr(j)
gilt. Wir bemerken, dass expr wegen (18) eine Bijektion ist. Die Umkehrfunktion

dlogr : G→ Z/(p− 1)Z, a = ri 7→ i (mod p− 1)

heißt der diskrete Logarithmus. (Die Funktion heißt “diskreter” Logarithmus,
da G endlich ist.) Wir bemerken, dass sowohl die Exponentialfunktion als auch
der diskrete Logarithmus von der Wahl des Primitivwurzels r abhängt.

Beispiel 5.2.1 Sei p = 7 und G = (Z/7Z)∗. Die Zahl r = 5 ist eine Primitiv-
wurzel modulo 7. Wir berechnen dlogr : G→ Z/6Z:

a 1 2 3 4 5 6
dlogr(a) 0 4 5 2 1 3

.

Der diskrete Logarithmus ist, zum Beispiel, nützlich für das lösen von Glei-
chungen der Form

xe ≡ a (mod p). (19)

Sei i = dlogr(a) und j = dlogr(x). Die Kongruenz (19) ist äquivalent zur linea-
ren Kongruenz

ej ≡ i (mod p− 1).

Lineare Kongruenzen können wir mit Hilfe von Satz 2.1.5 lösen. Wir erläutern
dies an Hand eines Beispiels.
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Beispiel 5.2.2 Wir lösen die Kongruenz

x5 ≡ 4 (mod 7).

Hierzu bemerken wir, dass dlog5(4) = 2, da 52 ≡ 4 mod 7 ist. Wir schreiben
nun j = dlog5(x) und bekommen die lineare Kongruenz

5j ≡ 2 (mod 6).

Da 5 teilerfremd zu 6 ist, hat diese Kongruenz eine eindeutige Lösung modulo
6, nämlich

j ≡ 2

5
≡ 4 mod 6.

Für die Berechnung der Exponentialfunktion expr ist effizient möglich mit
Hilfe der schnellen Exponentiation (§ 2.6). Für die Berechnung des diskreten
Logarithmus gibt es keine effiziente Algorithmen: Um dlogr(a) zu berechnen,
berechnen wir die Potenzen der Primitivwurzel r bis wir ein i gefunden haben
mit gi ≡ a (mod p). Nun ist i = dlogr(a). Falls p eine große Primzahl ist,
dauert es im Schnitt sehr Lange dlogr(a) zu berechnen, da man im Schnitt
sehr viele Potenzen ausrechnen muss. In der Kryptographie nennt man expr

daher eine Einwegfunktion. Auf dieser Idee basieren verschiedene Verfahren in
der Kryptographie. Genauere Aussage und bessere Algorithmen zur Berechnung
des diskreten Logarithmus finden Sie im Skript der Vorlesung Kryptologie [6].

Problem 5.2.3 (Das diskrete-Logarithmus-Problem) Sei a ∈ Z/pZ∗ ge-
geben und sei r eine Primitivwurzel modulo p. Berechne i = dlogr(a).

Wir besprechen nun eine Anwendung des diskreten Logarithmus in der Kryp-
tographie: Das Diffie–Hellman-Schlüsselaustauschverfahren. Alice und Bob wol-
len über eine unsichere Leitung vertrauliche Nachrichten austauschen. Dazu
benutzen Sie ein symmetrisches Verschüsselungsverfahren. Sie müssen aber zu-
erst einen geheimen Schlüssel austauschen. Hierfür haben sie aber auch nur die
unsichere Leitung zur Verfügung. Sie gehen nun wie folgt vor.

Algorithmus 5.2.4 (Diffie–Hellman) Schritt 1. Alice und Bob wählen eine
Primzahl p und eine Primitivwurzel r modulo p. Dies ist der öffentliche Schlüssel.

Schritt 2. Bob wählt zufällig eine Zahl i ∈ {1, . . . , p − 1} und berechnet a =
gi ∈ G. Er sendet die Zahl a an Alice.

Schritt 3. Alice wählt zufällig eine Zahl j ∈ {1, . . . , p − 1} und berechnet
b = gj ∈ G. Sie sendet die Zahl b an Bob.

Schritt 4. Alice und Bob können nun beide das Element

k = aj = gij = bi ∈ G (20)

berechnen. Dies ist nun der private Schlüssel den sowohl Alice als auch Bob
kennen.
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Eve hat den unsicheren Kanal abgehört. Sie kennt also p, r, a und b. Um den
geheimen Schlüssel k zu berechnen muss Sie aber entweder i oder j kennen (20).
Hierzu muss Sie das diskrete Logarithmusproblem lösen, da

i = dlogr(a), j = dlogr(b).

Falls die Primzahl p groß genug gewählt ist, kann Eve dieses Problem nicht
lösen und daher auch nicht den geheimen Schlüssel k berechnen. Alice und Bob
können ihre verschlüsselten Nachrichten sicher verschicken.

5.3 Das ElGamal-Kryptoverfahren

In diesem Abschnitt besprechen wir das ElGamal-Kryptoverfahren. Dies wurde
im Jahre 1984 von Taher ElGamal erfunden. Das ElGamal-Verfahren ist eine
Weiterentwicklung des Diffie–Hellman-Schlüsselaustauschverfahren. Es benutzt
die Idee des Diffie–Hellman-Verfahren zum ver- und entschlüßeln von Nachrich-
ten statt zum Schlüsselaustausch.

Wie in § 5.2, sind eine Primzahl p und eine Primitivwurzel r modulo p
vorgegeben: Diese Zahlen sind Teil des öffentlichen Schlüssels. Wir gehen davon
aus, dass die Nachricht aus Blöcke Bi mit 0 ≤ Bi < p besteht.

Vorbereitung: Alice möchte Bob eine geheime Nachricht schicken. Sie benutzt
hierzu Bobs öffentlichen Schlüssel (p, r, a). Hierbei ist a = ri die Zahl die Bob
im Schritt 2 des Diffie–Hellman-Verfahrens berechnet hat. Alice wählt wieder
eine Zahl j ∈ Z/pZ, berechnet b = rj ∈ Z/pZ und schickt Bob diese Zahl. Wie
im Diffie–Hellman-Verfahren kann Alice die Zahl

k ≡ aj (mod p)

berechnen. Dies ist wieder der private Schlüssel.

Verschlüsseln: Zum verschlüsseln eines Blocks B des Klartextes, berechnet
Alice

C ≡ k · B (mod p).

Entschlüsseln: Bob hat von Alice den Geheimtext C zusammen mit der Zahl
b empfangen.

Um die Nachricht zu entschlüsseln muss Bob die Zahl k−1 (mod p) berech-
nen, da

B ≡ k−1C (mod p)

ist.
Bob kennt die Zahl i, weil er diese selber gewählt hat. Außerdem kennt er

die Zahl b = rj die er von Alice bekommen hat. Daher kann er

k−1 ≡ r−ij ≡ b−i (mod p)

berechnen und damit den Geheimtext entschlüsseln.

56



Eve versucht den Geheimtext zu entschlüsseln. Sie kennt Bobs öffentliche Schlüs-
sel (p, r, a). Außerdem hat sie über die unsichere Leitung die Zahl b und den
Geheimtext C abgefangen. Um den Geheimtext zu entschlüsseln muss Sie die
Zahl k−1 (mod p) berechnen. Wie in § 5.2 muss sie dazu entweder i = dlogr(a)
oder j = dlogr(b) berechnen, also das diskrete Logarithmusproblem lösen. Die
Sicherheit des ElGamal-Verfahrens beruht darauf, dass Eve dies nicht kann.

6 Das quadratische Reziprozitätsgesetz

In diesem Abschnitt betrachten wir die Lösbarkeit von Kongruenzen von der
Form

x2 ≡ a (mod m).

6.1 Das Legendre-Symbol

Definition 6.1.1 Sei p eine ungerade Primzahl und a ∈ Z teilerfremd zu p. Die
Zahl a heißt quadratischer Rest (mod p), falls die Kongruenz x2 ≡ a (mod p)
eine Lösung besitzt. Sonst heißt a quadratischer Nichtrest (mod p).

Beispiel 6.1.2 Die quadratische Resten (mod 13) sind a = 1, 4, 9, 3, 12, 10.
Die quadratische Nichtreste (mod 13) sind a = 2, 5, 6, 7, 8.

Definition 6.1.3 Sei p eine ungerade Primzahl. Das Legendre-Symbol ist de-
finiert als

(

a

p

)

=











1 falls a ein quadratischer Rest (mod p) ist,

−1 falls a ein quadratischer Nichtrest (mod p) ist,

0 falls p | a.

Lemma 6.1.4 Sei p eine ungerade Primzahl.

(a) Es existieren genau (p− 1)/2 quadratische Reste (mod p) und (p− 1)/2
quadratische Nichtreste (mod p).

(b) Es gilt
(

a

p

)

≡ a(p−1)/2 (mod p).

Beweis: (a) Die Restklassen 12, 22, . . . , (p−1
2 )2 sind offensichtlich quadrati-

sche Reste (mod p). Da a2 ≡ (−a)2 (mod p), sind dies alle quadratische Reste
(mod p). Sei nun a2 ≡ b2 (mod p). Da p eine Primzahl ist, impliziert Lemma
1.2.3, dass a ≡ ±b (mod p). Wir schließen, dass für 1 ≤ a, b ≤ (p − 1)/2 mit
a 6= b die Restklassen a2 und b2 nicht kongruent (mod p) sind. Also ist die
Anzahl der quadratische Reste (mod p) gleich (p− 1)/2.
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(b) Falls a ≡ 0 (mod p), so ist die Aussage offensichtlich. Wir nehmen da-
her an, dass a 6≡ 0 (mod p) ist. Der kleine Satz von Fermat (Korollar 2.5.8)
impliziert, dass

(a(p−1)/2)2 = ap−1 ≡ 1 (mod p).

Also folgt aus Lemma 1.2.3, dass a(p−1)/2 ≡ ±1 (mod p) ist.
Sei a ein quadratischer Rest (mod p). Es existiert ein b ∈ Z/pZ, sodass

b2 ≡ a (mod p). Daher gilt, dass

a(p−1)/2 ≡ (b2)(p−1)/2 = bp−1 ≡ 1 (mod p) =

(

a

p

)

.

Da Z/pZ = Fp ein Körper ist, besitzt die Kongruenz

x(p−1)/2 − 1 ≡ 0 (mod p) (21)

höchtens (p−1)/2 Lösungen (Satz 4.2.10). Aber die (p−1)/2 quadratische Reste
(mod p) sind Lösungen der Kongruenz (21). Also besitzt (21) keine weitere
Lösungen. Falls a ein quadratischer Nichtrest ist, ist a daher keine Lösung von
(21). Wir schließen, dass

a(p−1)/2 ≡ −1 (mod p) =

(

a

p

)

ist. 2

Sei g eine Primitivwurzel (mod p) (Korollar 5.1.8). Lemma 6.1.4 kann man
auch beweisen in dem man bemerkt, dass a ∈ Z/pZ∗ genau dann ein quadra-
tischer Rest (mod p) ist, wenn a ≡ g2i eine gerade Potenz der Primitivwurzel
ist.

Der folgende Satz gibt einige Rechenregel für das Legendre-Symbol.

Satz 6.1.5 Sei p eine ungerade Primzahl und a, b ∈ Z. Es gilt

(a)
(

a

p

) (

b

p

)

=

(

ab

p

)

,

(b) a ≡ b (mod p) impliziert, dass

(

a

p

)

=

(

b

p

)

,

(c) ist ggT(a, p) = 1, so gilt
(

a2b

p

)

=

(

b

p

)

.

Beweis: Die Aussage (a) ist offensichtlich, falls p | ab. Falls p ∤ ab, folgt aus
Lemma 6.1.4.(b), dass

(

a

p

) (

b

p

)

≡ a(p−1)/2b(p−1)/2 (mod p) ≡ (ab)(p−1)/2 (mod p) =

(

ab

p

)

.

Die Teilen (b) und (c) sind klar. 2
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Korollar 6.1.6 Sei p eine ungerade Primzahl. Es gilt

(−1

p

)

= (−1)(p−1)/2 =

{

1 falls p ≡ 1 (mod 4),

−1 falls p ≡ 3 (mod 4).

Beweis: Lemma 6.1.4.(b) impliziert, dass
(−1

p

)

= (−1)(p−1)/2.

Man überprüft leicht, dass (p−1)/2 genau dann gerade ist, wenn p ≡ 1 (mod 4)
ist. Die zweite Gleichung folgt. 2

6.2 Der Beweis des quadratischen Reziprozitätsgesetz

In diesem Abschnitt formulieren und beweisen wir das quadratische Rezipro-
zitätsgesetz. Das quadratische Reziprozitätsgesetz wurde vermutet von Euler
und Legendre und bewiesen von Gauss. Wir werden sehen, wie man diese Aus-
sagen benutzen kann, um das Legendre-Symbol effizient zu berechnen.

Definition 6.2.1 Sei p eine ungerade Primzahl. Für x ∈ Z teilerfremd zu p
bezeichnen wir mit 〈x〉 die eindeutig bestimmte Zahl mit −(p − 1)/2 ≤ 〈x〉 ≤
(p− 1)/2 und 〈x〉 ≡ x (mod p). Die Restklassen −(p − 1)/2 ≤ 〈x〉 < 0 nennen
wir negative Reste. Die Restklassen 0 < 〈x〉 ≤ (p − 1)/2 nennen wir positive
Reste.

Für r ∈ Q schreiben wir [r] für die größte ganze Zahl kleiner gleich r.

Satz 6.2.2 (Lemma von Gauß) Sei p eine ungerade Primzahl und a ∈ Z
teilerfremd zu p. Sei

S = {1 ≤ i ≤ (p− 1)/2 | 〈ia〉 ist ein negativer Rest}

und sei s die Kardinalität von S. Es gilt
(

a

p

)

= (−1)s.

Beweis: Seien a und p wie in der Aussage des Lemmas. Wir schreiben
{〈ia〉 | 1 ≤ i ≤ (p − 1)/2, i ∈ S} = {u1, . . . , us} für die negative Resten und
{〈ia〉 | 1 ≤ i ≤ (p − 1)/2, i 6∈ S} = {v1, . . . , vt} für die überige Reste. Der
Kürzungssatz (Satz 2.1.5) impliziert, dass die ui und vj paarweise verschieden
sind. Wir schließen, dass

u1 · · ·usv1 · · · vt ≡
(p−1)/2

∏

i=1

(ai) ≡ a(p−1)/2

(

p− 1

2

)

! (mod p) (22)

Wir behaupten, dass −ui 6≡ vj (mod p) für alle i und j. Sei nämlich −ui ≡ vj

(mod p). Schreibe ui ≡ 〈ka〉 und vj ≡ 〈ℓa〉 mit 1 ≤ k, ℓ ≤ (p − 1)/2. Es folgt,
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dass −k ≡ ℓ (mod p). Aber dies widerspricht der Annahme 1 ≤ k, ℓ ≤ (p−1)/2.
Die Behauptung folgt.

Die Definition von ui und vj impliziert, dass −ui, vj ∈ {1, . . . , (p − 1)/2}
sind. Da −u1, . . . ,−us, v1, . . . , vt genau s + t = (p− 1)/2 verschiedene Zahlen
(mod p) sind, gilt, dass

{−u1, . . . ,−us, v1, . . . , vt} = {1, . . . , (p− 1)/2}. (23)

Daher folgt, dass

(−u1) · · · (−us)v1 · · · vt = 1 · 2 · · ·
(

p− 1

2

)

=

(

p− 1

2

)

!

ist. Wir schließen, dass

(−1)su1 · · ·usv1 · vt ≡
(

p− 1

2

)

! (mod p) (24)

ist. Die Gleichungen (22) und (24) implizieren daher, dass

(−1)sa(p−1)/2

(

p− 1

2

)

! ≡
(

p− 1

2

)

! (mod p)

ist. Aus Lemma 6.1.4.(b) und Satz 2.1.5 folgt nun, dass
(

a

p

)

= a(p−1)/2 ≡ (−1)s (mod p).

2

Korollar 6.2.3 Sei p eine ungerade Primzahl. Es gilt

(

2

p

)

= (−1)(p
2−1)/8 =

{

1 falls p ≡ ±1 (mod 8),

−1 falls p ≡ ±3 (mod 8).

Beweis: Das Lemma von Gauß (Satz 6.2.2) impliziert, dass
(

2

p

)

= (−1)s,

wobei s die Anzahl der Elemente der Menge S = {1 ≤ i ≤ (p− 1)/2 | 〈2i〉 < 0}
ist. Wir müssen zeigen, dass s = (p2 − 1)/8 ist.

Für 1 ≤ j ≤ (p− 1)/2 gilt 2 ≤ 2j ≤ p− 1. Daher ist 〈2j〉 ≤ (p− 1)/2 genau
dann, wenn j ≤ [(p− 1)/4] ist. Es gilt also, dass s = (p− 1)/2 − [(p− 1)/4] ist.

Wir schreiben p = α + 8k mit α ∈ Z/8Z∗ = {1, 3, 5, 7}. Wir betrachten nur
den Fall, dass p = 1 + 8k ist. Die andere Fälle sind ähnlich. In diesem Fall gilt,
dass s = (p− 1)/2− [(p− 1)/4] = 4k− 2k = 2k gerade ist. Außerdem gilt, dass
(p2 − 1)/8 = (1 + 2 · 8k + 82k2)/8 = 2k + 8k2 auch gerade ist. Wir schließen,
dass

(−1)s = (−1)(p
2−1)/8.

2
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Theorem 6.2.4 (Quadratische Reziprozitätsgesetz) Seien p und q zwei
verschiedene ungerade Primzahlen. Es gilt

(

p

q

) (

q

p

)

= (−1)

p− 1

2

q − 1

2 .

Bemerkung 6.2.5 Seien p und q wie in Theorem 6.2.4. Man kann die Aussage
des quadratische Reziprozitätsgesetz auch wie folgt formulieren:

(

p

q

)

=







(

q
p

)

falls p ≡ 1 (mod 4) oder q ≡ 1 (mod 4),

−
(

q
p

)

falls p ≡ 3 (mod 4) und q ≡ 3 (mod 4).

Der Beweis des quadratische Reziprozitätsgesetz benutzt folgendes Lemma.

Lemma 6.2.6 Sei p eine ungerade Primzahl und a eine ungerade Zahl teiler-
fremd zu p. Es gilt

(

a

p

)

= (−1)T (a,p),

wobei

T (a, p) =

(p−1)/2
∑

j=1

[

ja

p

]

ist.

Beweis: Wir benutzen die gleiche Bezeichnung wie im Lemma von Gauß
(Satz 6.2.2).

Für j = 1, . . . , (p− 1)/2 schreiben wir

ja =

[

ja

p

]

· p+ ρj ,

wobei ρj ∈ {p+u1, . . . , p+us}, falls ρj ein negativer Rest und ρj ∈ {v1, . . . , vt},
falls ρj ein positiver Rest ist.

Es gilt, dass

(p−1)/2
∑

j=1

ja = p

(p−1)/2
∑

j=1

[

ja

p

]

+

(p−1)/2
∑

j=1

ρj

= p

(p−1)/2
∑

j=1

[

ja

p

]

+ ps+

s
∑

j=1

uj +

t
∑

j=1

vi.

(25)

Aus (23) folgt, dass
(p−1)/2

∑

j=1

j = −
s

∑

j=1

uj +

t
∑

j=1

vj . (26)
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Aus (25) und (26) folgt nun, dass

(a− 1)

(p−1)/2
∑

j=1

j = p

(p−1)/2
∑

j=1

[

ja

p

]

+ ps+ 2

s
∑

j=1

uj ≡ p(T (a, p) + s) (mod 2),

da a ungerade ist. Da p ungerade ist, schließen wir, dass T (a, p) ≡ s (mod 2)
ist. Das Lemma von Gauß (Satz 6.2.2) impliziert nun, dass

(

a

p

)

= (−1)s = (−1)T (a,p).

2

Beweis von Theorem 6.2.4: Seien p und q zwei verschiedene, ungerade
Primzahlen. Lemma 6.2.6 impliziert, dass

(

p

q

) (

q

p

)

= (−1)T (p,q)+T (q,p) (27)

ist, wobei

T (p, q) =

(q−1)/2
∑

j=1

[

jp

q

]

, T (q, p) =

(p−1)/2
∑

j=1

[

jq

p

]

ist. Zu zeigen ist, dass T (p, q) + T (q, p) ≡ (p− 1)(q − 1)/4 (mod 2) ist.
Wir betrachten dazu die Menge

G = {(x, y) ∈ Z × Z | 1 ≤ x ≤ (p− 1)/2, 1 ≤ y ≤ (q − 1)/2}.
Wir definieren folgende Teilmengen von G:

G1 = {(x, y) ∈ G | qx > py}, G2 = {(x, y) ∈ G | qx < py}.
Da p 6= q, sind p und q teilerfremd. Dies impliziert, dass kein Paar (x, y) ∈ G
mit qx = py existiert. Daher ist G die disjunkte Vereinigung von G1 und G2. Wir
schließen, dass |G1|+ |G2| = |G| = (p−1)(q−1)/4. Die Anzahl der Gitterpunkte
in G unterhalb der Gerade qx = py ist

|G1| =

(p−1)/2
∑

x=1

[

qx

p

]

= T (q, p).

Ebenso gilt, dass die Anzahl der Gitterpunkte in G oberhalb der Gerade qx = py

|G2| =

(q−1)/2
∑

y=1

[

py

q

]

= T (p, q)

ist. Also folgt, dass

T (p, q) + T (q, p) = |G1| + |G2| =
(p− 1)(q − 1)

4
.

Das quadratische Reziprozitätsgesetz folgt daher aus (27). 2
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Beispiel 6.2.7 (a) Wir erläutern wie man mit Hilfe der Rechnenregeln (Satz
6.1.5) und das quadratische Reziprozitätsgesetz (Theorem 6.2.4, Korollar 6.1.6
und Korollar 6.2.3) Legendre-Symbole berechnen kann. Wir bestimmen ob 7 ein
quadratischer Rest (mod 19) ist. Da 7 ≡ 19 ≡ 3 (mod 4), gilt

(

7

19

)

QR
= −

(

19

7

)

= −
(

5

7

)

QR
= −

(

2

5

)

= 1.

(b) Wir bestimmen ob 713 ein quadratischer Rest (mod 1009) ist. Bemerke,
dass 1009 eine Primzahl ist. Dies überprüft man zum Beispiel mit Hilfe der
Probedivision (§ 1.3). Die Primfaktorzerlegung von 713 ist 23·31. Wir berechnen

(

23

1009

)

QR
= +

(

1009

23

)

(b)
=

(

22 · 5
23

)

(c)
=

(

5

23

)

QR
= +

(

23

5

)

(b)
=

(

3

5

)

QR
= +

(

2

3

)

= −1.

Hierbei ist QR die Abkürzung für das quadratische Reziprozitätsgesetz und (a)-
(c) beziehen sich auf die Teile von Satz 6.1.5. Ebenso folgt, dass
(

31

1009

)

QR
=

(

17

31

)

QR
=

(

14

17

)

(a)
=

(

2

17

)

·
(

7

17

)

QR
= +1

(

3

7

)

QR
= −

(

1

3

)

= −1.

Wir schließen, dass
(

713

1009

)

=

(

23

1009

)

·
(

31

1009

)

= (−1)(−1) = 1.

Also ist 713 ein quadratischer Rest (mod 1009).
(c) Wir fragen uns ob die Kongruenz x2 ≡ 13 (mod 76) lösbar ist. Da 76 =

4·19 sagt der chinesische Restsatz (Theorem 2.7), dass die Kongruenz äquivalent
ist zu

{

x2 ≡ 13 ≡ 1 (mod 4),
x2 ≡ 13 (mod 19).

(28)

Um zu bestimmen ob die zweite Kongruenz lösbar ist, berechnen wir
(

13

19

)

=

(

6

13

)

=

(

2

13

) (

3

13

)

= −
(

1

3

)

= −1.

Wir schließen, dass die zweite Kongruenz von (28) nicht lösbar ist, und also
auch die ursprüngliche Kongruenz nicht.

6.3 Das Jacobi-Symbol

In Beispiel 6.2.7 haben wir gesehen, dass wir die Zahl 713 faktorisieren müssen
um das Legendre-Symbol ( 713

1009 ) zu berechnen. Für kleine Zahlen wie 713 ist dies
kein Problem, aber für sehr große Zahlen ist dies unpraktisch (siehe § 3.4). In
diesem Abschnitt besprechen wir eine Verallgemeinerung des Legendre-Symbols
welches uns erlaubt, das Legendre-Symbol von großen Zahlen zu berechnen,
ohne in jedem Schritt die Primfaktorzerlegung zu berechnen.
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Definition 6.3.1 Seien n ∈ N und a ∈ Z teilerfremd zu n. Sei n = p1 · p2 · · · pr

die Primfaktorzerlegung von n. Das Jacobi-Symbol ( a
n ) ist definiert als

(
a

n
) =

r
∏

i=1

(
a

pi
),

wobei ( a
pi

) das Legendre-Symbol ist.

Bemerkung 6.3.2 Falls ( a
n ) = −1, so ist die Kongruenz x2 ≡ a (mod n) nicht

lösbar, da mindestens eine der Legendre-Symbole ( a
pi

) = −1 ist. Falls ( a
n ) = +1,

können wir nur schließen, dass die Anzahl der Primzahlen pi mit ( a
pi

) = −1
gerade ist. Wir können daher nicht schließen, dass a eine quadratische Rest
(mod n) ist.

Das Jacobi-Symbol erfüllt die gleichen Rechenregeln wie das Legendre-Symbol.

Satz 6.3.3 Seien n und n′ ungerade, natürliche Zahlen.

(a) Falls a ≡ a′ (mod n), so ist ( a
n ) = (a′

n ).

(b) Es gilt ( a
n )( a

n′
) = ( a

nn′
) und ( a

n )(a′

n ) = (aa′

n ).

Beweis: Dies folgt direkt aus der Definition des Jacobi-Symbols. 2

Folgendes Theorem ist das quadratische Reziprozitätsgesetz für Jacobi-Symbole.

Theorem 6.3.4 Seien n und m ungerade natürliche Zahlen, welche teilerfemd
sind. Es gilt:

(a) ( 2
n ) = (−1)(n

2−1)/8,

(b) (−1
n ) = (−1)(n−1)/2,

(c) (m
n )( n

m ) = (−1)(m−1)(n−1)/4.

Beweis: (a) Sei n = p1 · · · pr die Primfaktorzerlegung von n. Laut Definition
des Jacobi-Symbols und Korollar 6.2.3 gilt, dass

(

2

n

)

=

r
∏

i=1

(

2

pi

)

= (−1)
P

r
i=1

(p2
i −1)/8.

Für ungerade Zahlen a und b zeigt man, dass

(a2b2 − 1) − (a2 − 1) − (b2 − 1) = (a2 − 1)(b2 − 1).

Da a ≡ b ≡ 1 (mod 2), folgt, dass a2−1 ≡ b2−1 ≡ 0 (mod 4), also (a2b2−1) ≡
(a2 − 1) + (b2 − 1) (mod 16). Hieraus folgt mit Induktion, dass

p2
1 · · · p2

r − 1 ≡
r

∑

i=1

(p2
i − 1) (mod 16). (29)
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Wir schließen, dass

(

2

n

)

= (−1)
Pr

i=1
(p2

i−1)/8 = (−1)(n
2−1)/8.

Teil (b) folgt ähnlich wie (a) aus

p1 · · · pr − 1 ≡
r

∑

i=1

(pi − 1) (mod 4). (30)

(c) Schreibe m =
∏t

j=1 qj und n =
∏r

i=1 pi. Satz 6.3.3.(b) und Theorem
6.2.4 implizieren, dass

( n

m

) (m

n

)

=

t
∏

j=1

r
∏

i=1

(

pi

qj

) (

qj
pi

)

= (−1)
P

i,j

pi−1

2

qj−1

2 .

Wir schreiben
∑r

i=1(pi−1) = p1 · · · pr−1+4A und
∑t

j=1(qj−1) = q1 · · · qt−
1 + 4B (Kongruenz (30)). Da n und m ungerade sind, folgt, dass

∑

i,j

(pi − 1)(qj − 1) = [

r
∑

i=1

(pi − 1)] · [
t

∑

j=1

(qj − 1)]

= [p1 · · · pr − 1 + 4A][q1 · · · qt − 1 + 4B]

= (n− 1)(m− 1) + 4[A(m− 1) +B(n− 1)] + 16AB

≡ (n− 1)(m− 1) (mod 8).

Dies impliziert (c). 2

Beispiel 6.3.5 Mit Hilfe des Jacobi-Symbol kann man nun schnell das Legendre-
Symbol berechnen:

(

383

443

)

= −
(

443

383

)

= −
(

22 · 15

383

)

= −
(

15

383

)

=

(

383

15

)

=

(

23

15

)

=

(

2

15

)

= 1

Da 443 eine Primzahl ist, schließen wir, dass 383 ein quadratischer Rest (mod
443) ist. Der Vorteil gegenüber der Methode von § 6.2 ist, dass wir die Prim-
faktorzerlegung der Zwischenschritte nur unvolständig Berechnung müssen: Wir
brauchen nur die Faktoren 2.

7 Diophantische Gleichungen

In diesem Abschnitt betrachten wir einige Beispiele von diophantische Glei-
chungen. Eine diophantische Gleichung ist eine Gleichung f(x1, x2, . . . , xn) = 0,
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wobei f ∈ Z[x1, x2, . . . , xn] ein Polynom mit ganzzahligen Koeffizienten ist.
Ziel ist es ganzzahlige Lösungen (x1, x2, . . . , xn) ∈ Zn der Gleichung zu finden.
Diophantische Gleichungen sind benannt nach dem griechischen Mathematiker
Diophant von Alexandrien. Er lebte rund 250 n. Chr. Mehr Information finden
Sie auf der MacTutor-Webseite:
http://www-groups.dcs.st-and.ac.uk/ history/Biographies/Diophantus.html.

Die berühmteste diophantische Gleichung ist xn + yn = zn. Der letzte Satz
von Fermat besagt, dass diese Gleichung keine Lösung besitzt für x, y, z ∈ N
und n > 3. Der Satz ist benannt nach Pierre de Fermat, einem französischen
Mathematiker der rund 1630 in einer Übersetzung von Diophants’ Arithmetica
schrieb, dass er ein wahrhaft wunderbaren Beweis gefunden habe, für den aber
auf dem Rand nicht genug Platz sei. Der Satz wurde letztendlich 1994 von Wiles
und Taylor–Wiles bewiesen. Hier finden Sie mehr Information:
http://www-history.mcs.st-andrews.ac.uk/HistTopics/Fermat’s last theorem.html

7.1 Pythagoräische Tripel

Der Satz des Pythagoras ist der vieleicht bekannteste Satz der Mathematik. Er
besagt, dass in einem rechtwinkligen Dreieck die Summe der Flächeninhalte der
Kathetenquadrate gleich den Flächeninhalt des Hypotenusenquadrates ist. In
Formel:

a2 + b2 = c2, (31)

wobei c die Länge der Hypotenuse eines rechtwinkligen Dreiecks ist, und a
und b die Länge der überigen Seiten sind. In diesem Abschnitt betrachten wir
Lösungen von (31) wobei a, b, c natürliche Zahlen sind.

Definition 7.1.1 (a) Ein Tripel (a, b, c) ∈ N3 heißt pythagoräisches Tripel,
falls a2 + b2 = c2.

(b) Ein pytagoräisches Tripel heißt primitiv, falls ggT(a, b, c) = 1.

Beispiel 7.1.2 Beispiele von primitive pythagoräische Tripeln sind

32 + 42 = 52, 52 + 122 = 132.

Falls (a, b, c) ein primitives pythagoräisches Tripel ist, so ist (αa, αb, αc) auch
ein pythagoräisches Tripel, für jedes α ∈ N. Um alle pythagoräischen Tripeln zu
bestimmen, reicht es also die primitiven Tripel zu bestimmen.

Bemerkung 7.1.3 Sei (a, b, c) ein primitives pythagoräisches Tripel. Die Zah-
len a und b sind nicht beide ungerade. Falls nämlich a ≡ b ≡ 1 (mod 2), gilt
c2 = a2 + b2 ≡ 2 (mod 2). Aber 2 ist ein quadratischer Nichtrest (modulo 4).

Theorem 7.1.4 Sei a, b, c ∈ N mit b gerade und ggT(a, b, c) = 1. Nun ist
(a, b, c) genau dann ein primitives pythagoräisches Tripel, wenn r, s ∈ N mit
r > s und r 6≡ s (mod 2) und ggT(r, s) = 1, sodass

a = r2 − s2, b = 2rs, c = r2 + s2 (32)
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existieren.

Beweis: Sei r, s wie in (32). Es gilt

a2 + b2 = (r2 − s2)2 + (2rs)2 = (r2 + s2)2 = c2.

Außerdem gilt, dass ggT(a, b, c) = 1. Also ist (a, b, c) ein primitives pytha-
goräisches Tripel.

Sei (a, b, c) ein primitives pythagoräisches Tripel. Ohne Einschränkung dürfen
wir annehmen, dass b gerade ist (Bemerkung 7.1.3). Es gilt b2 = c2 − a2 =
(c+a)(c−a). Da b ≡ 0 mod 2, gilt also, dass a ≡ c (mod 2). Da ggT(a, b, c) = 1,
sind a und c beide ungerade. Also finden wir, dass

(

b

2

)2

=

(

c− a

2

) (

c+ a

2

)

. (33)

Wir behaupten, dass d := ggT(a, c) = 1. Es gilt, dass d | (c−a) und d | (c+a).
Also impliziert (33), dass d2 | b2. Da ggT(a, b, c) = 1 ist, folgt also, dass d = 1.

Wir haben gezeigt, dass ggT(a, c) = 1. Hieraus folgt auch, dass ggT((c −
a)/2, (a+c)/2) = 1. Daher impliziert (33), dass (c−a)/2 und (c+a)/2 Quadrate
sind. Wir schreiben

(

c+ a

2

)

= r2,

(

c− a

2

)

= s2,

also
c = r2 + s2, a = r2 − s2, b = 2rs.

Außerdem gilt ggT(r, s) = ggT((c− a)/2, (a+ c)/2) = 1. Da

r2 =

(

c+ a

2

)

=

(

c− a

2

)

+ a = s2 + a ≡ s2 + 1 (mod 2),

gilt r 6≡ s (mod 2). 2

Der geometrische Beweis.
Wir geben einen zweiten geometrischen Beweis von Theorem 7.1.4. Sei (a, b, c)
ein primitives pythagoräisches Tripel. Wir erlauben jetzt a, b, c ∈ Z. Sei P =
(a/c, b/c) =: (p, q) ∈ Q×Q. Es gilt p2 + q2 = 1, also ist P einen Punkt auf dem
Einheitskreis x2 + y2 = 1.

Sei nun P = (p, q) 6= (1, 0) einen Punkt auf dem Einheitskreis mit p, q ∈ Q.
Wir betrachten die Gerade L durch P und (1, 0). Die Gerade L ist gegeben
durch die Gleichung

y = t(1 − x), mit t =
q

1 − p
.
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Lemma 7.1.5 Sei S = {(p, q) ∈ Q × Q | p2 + q2 = 1} \ {(1, 0)}. So ist

F : S → Q\, (p, q) 7→ t =
q

1 − p

eine Bijektion.

Beweis: Sei (p, q) ∈ S. Da (p, q) 6= (1, 0), ist p 6= 1. Also ist t = q/(1−p) ∈ Q.
Sei nun t ∈ Q. Wir betrachten die Gerade Lt durch (1, 0) mit Steigung t.

Die Gleichung der Gerade Lt ist y = t(1− x). Wir berechnen die Schnittpunkte
von Lt mit dem Einheitskreis. Wir finden

1 = x2 + [t(1 − x)]2,

0 = x2(1 + t2) − 2t2x+ t2 − 1,

x =
2t2

2(1 + t2)
± 1

2(1 + t2)

√

4t4 − 4t4 + 4.

Also gilt

(x, y) = (1, 0), oder (x, y) =

(

t2 − 1

t2 + 1
,

2t

t2 + 1

)

.

Beide Punkte haben rationale Koordinaten.
Wir sehen, dass Lt 2 Schnittpunkte mit der Einheitskreis hat: Der Punkt

(1, 0) und ein Punkt P = Pt ∈ S. Wir überlassen es den Leser zu überprüfen,
dass die Abbildung t 7→ Pt eine Umkehrabbildung zu F definiert. Wir schließen,
dass F eine Bijektion ist. 2

Theorem 7.1.6 Die Gleichung x4+y4 = z2 hat keine Lösungen mit x, y, z ∈ N.

Aus Theorem 7.1.6 folgt der letzte Satz von Fermat für n = 4.

Korollar 7.1.7 Die Gleichung x4 +y4 = z4 hat keine Lösungen mit x, y, z ∈ N.

Beweis: Sei (x, y, z) ∈ N3 mit x4 + y4 = z4, so ist (x, y, z2) eine Lösung zu
der Gleichung von Theorem 7.1.6. Dies liefert einen Widerspruch. 2

(p, q)

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J
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Beweis des Theorems: Wir nehmen an, dass die Gleichung x4 + y4 = z2

eine Lösung hat. Sei x0, y0, z0 ∈ N eine Lösung mit z0 minimal. Insbesondere
gilt, dass ggT(x0, y0) = 1 ist.

Sei x0 ≡ y0 ≡ 1 (mod 2). Es gilt, dass x4
0 ≡ y4

0 ≡ 1 (mod 8). Aber 2 ist ein
quadratischer Nichtrest modulo 8. Also sind x0 und y0 nicht beide ungerade.
Wir dürfen also annehmen, dass y0 gerade ist.

Nun ist (x2
0, y

2
0 , z0) ein primitives pythagoräisches Tripel. Theorem 7.1.4 im-

pliziert daher, dass r, s ∈ N existieren, sodass

x2
0 = r2 − s2, y2

0 = 2rs, z0 = r2 + s2, ggT(r, s) = 1.

Da x2
0 + s2 = r2 und ggT(x0, r, s) = 1 folgt, dass (x0, s, r) ein primitives pytha-

goräisches Tripel ist.
Wir wenden Theorem 7.1.4 nun auf (x0, s, r) an und finden, dass ρ, σ ∈ N

existieren, sodass

x0 = ρ2 − σ2, s = 2ρσ, r = ρ2 + σ2, ggT(ρ, σ) = 1.

Da y2
0 = 2rs, finden wir

(y0
2

)2

= ρσ(ρ2 + σ2).

Da ρ, σ, ρ2 + σ2 paarweise teilerfremd sind und das Produkt dieser 3 Elementen
einen Quadratzahl ist, existieren u, v, w ∈ Z, sodass

ρ = u2, σ = v2, ρ2 + σ2 = w2.

Wir finden nun, dass
w2 = ρ2 + σ2 = u4 + v4.

Also ist (u, v, w) eine Lösung der Gleichung u4 + v4 = w2. Aber

|w| =
√

ρ2 + σ2 =
√
r < r2 + s2 = z0.

Dies widerspricht der Wahl der Lösung (x0, y0, z0). Also hat die Gleichung keine
Lösungen. 2

7.2 Welche Zahlen sind die Summe von zwei Quadraten?

In diesem Abschnitt fragen wir uns, welche natürliche Zahlen man als Summe
von zwei Quadraten schreiben kann. Um zu überprüfen ob eine Zahl n sich
schreiben lässt als Summe von zwei Quadraten, überprüfen wir ob n − a2 eine
Quadratzahl ist, wobei es reicht die Zahlen a kleiner gleich

√

n/2 zu überprüfen.
Dies sieht man wie folgt: Sei n = a2 + b2 mit a ≤ b. Es folgt, dass n ≥ 2a2, also
a ≤

√

n/2.
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Zuerst gucken wir uns eine kleine Tabelle an und fragen uns ob wir ein
Muster erkennen können.

1 = 02 + 12 11 Nein 21 Nein
2 = 12 + 12 12 Nein 22 Nein
3 Nein 13 = 22 + 33 23 Nein
4 = 02 + 22 14 Nein 24 Nein
5 = 12 + 22 15 Nein 25 = 02 + 52 = 32 + 42

6 Nein 16 = 02 + 42 26 = 12 + 52

7 Nein 17 = 12 + 42 27 Nein
8 = 22 + 22 18 = 32 + 32 28 Nein
9 = 02 + 32 19 Nein 29 = 22 + 52

10 Nein 20 = 22 + 42 30 Nein

Auf den ersten Blick ist es nicht einfach ein Muster zu erkennen. Einfacher
wird es, wenn wir uns die Primzahlen angucken: Die Primzahlen kleiner 30 die
sich als Summe von zwei Quadraten schreiben lassen sind: 2, 5, 13, 17, 29. Die
übrigen Primzahlen 3, 11, 19, 23 sind keine Summe von zwei Quadraten. Wir
vermuten nun, dass eine Primzahl p genau dann die Summe von zwei Quadraten
ist, wenn p = 2 oder p ≡ 1 (mod 4) ist. Wir werden sehen, dass dies tatsächlich
stimmt (Theorem 7.2.3). Folgendes Lemma zeigt eine Richtung der Aussage.

Lemma 7.2.1 Sei n = a2 + b2, so gilt, dass n 6≡ 3 (mod 4) ist.

Beweis: Die quadratische Reste (mod 4) sind 0, 1. Falls n = a2 + b2 gilt
daher, dass n kongruent zu 0+0 = 0, 0+1 ≡ 1+0 ≡ 1 oder 1+1 ≡ 2 (mod 4)
ist. 2

Bemerkung 7.2.2 Falls p eine ungerade Primzahl ist, können wir auch einen
alternativen Beweis von Lemma 7.2.1 geben mit Hilfe des Legendre-Symbols.
Wir nehmen an, dass p = a2 + b2. Da p eine Primzahl ist, folgt, dass a und
b teilerfemd zu p sind. Also gilt a2 ≡ −b2 (mod p). Die Rechenregeln für das
Legendre-Symbol (Satz 6.1.5) implizieren, dass

1 =

(

a2

p

)

=

(−b2
p

)

=

(−1

p

) (

b2

p

)

=

(−1

p

)

.

Aus Korollar 6.1.6 folgt, dass (−1
p ) = 1 genau dann, wenn p ≡ 1 (mod 4) ist.

Bemerkung 7.2.2 stellt eine Beziehung her zwischen dem Legendre-Symbol
und der Frage welche Zahlen die Summe von zwei Quadraten sind. Diese Idee
benutzen wir im Beweis von Theorem 7.2.3.

Theorem 7.2.3 Eine Primzahl p ist genau dann die Summe von zwei Quadra-
ten, wenn p = 2 oder p ≡ 1 (mod 4).
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Beweis: Falls p = a2 + b2 die Summe von zwei Quadraten ist, so folgt aus
Lemma 7.2.1, dass p = 2 oder p ≡ 1 (mod 4) ist. Wir haben schon gesehen,
dass p = 2 die Summe von zwei Quadraten ist.

Sei p ≡ 1 (mod 4) eine Primzahl. Wir zeigen, dass p = a2 + b2 die Summe
von zwei Quadraten ist. Die Beweismethode heißt Fermats Abstiegargument.

Aus Bemerkung 7.2.2 folgt, dass (−1
p ) = 1. Also existiert eine Zahl 0 ≤ A < p

mit A2 ≡ −1 (mod p). Wähle m mit A2 + 1 = m · p. Da m = (A2 + 1)/p, gilt

m ≤ (p− 1)2 + 12

p
= p− 2(p− 1)

p
< p.

Fallsm = 1, sind wir fertig. Wir nehmen daher an, dassm > 1 ist, und setzen
a0 = A, b0 = 1 und m0 = m. Ziel der Methode ist es neue Zahlen (a1, b1,m1)
zu finden mit a2

1 + b21 = m1 · p und m1 < m0. Wir wiederholen dies so Lange bis
mr = 1. Dann haben wir p = mr · p = a2

r + b2r geschrieben als Summe von zwei
Quadraten.

Das Verfahren beruht auf folgender Formel, welche man leicht überprüft:

(u2 + v2)(A2 +B2) = (uA+ vB)2 + (vA− uB)2. (34)

Fermats Abstiegargument: Gegeben sind Zahlen (ai, bi,mi) mit 1 < mi < p
und a2

i + b2i = mi · p. Wir suchen Zahlen (ai+1, bi+1,mi+1) mit 1 < mi+1 < mi

und a2
i+1 + b2i+1 = mi+1 · p.

Wähle −mi/2 ≤ ui, vi ≤ mi/2, sodass ui ≡ ai (mod mi) und vi ≡ bi
(mod mi). Es gilt, dass

0 ≡ a2
i + b2i ≡ u2

i + v2
i (mod mi).

Wir schreiben u2
i + v2

i = mi · ri.
Wir behaupten, dass

(a) 1 ≤ ri < mi,

(b) mi | (uiai + vibi),

(c) mi | (viai − uibi).

Behauptung (b) und (c) folgen direkt aus der Definition von ui und vi. Für (a),
bemerken wir, dass

ri =
u2

i + v2
i

mi
≤ (mi/2)2 + (mi/2)2

mi
=

1

2

m2
i

mi
=

1

2
mi < mi.

Offensichtlich gilt, dass ri ≥ 0. Wir nehmen an, dass ri = 0. Es folgt, dass
u2

i + v2
i = 0 ist, also gilt ui = vi = 0. Dies impliziert, dass ai ≡ bi ≡ 0 (mod mi)

ist. Also gilt, dass m2
i ein Teiler von a2

i + b2i = mi · p ist. Hieraus folgt, dass
mi = 1 ist, aber dies hatten wir ausgeschlossen. Wir schließen, dass ri ≥ 1 ist.
Dies beweist Behauptung (a).
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Mit Hilfe von (34), schreiben wir nun

m2
i rip = (u2

i + v2
i )(a2

i + b2i ) = (uiai + vibi)
2 + (viai − uibi)

2. (35)

Wir definieren

ai+1 =
uiai + vibi

mi
, bi+1 =

viai − uibi
mi

, mi+1 = ri.

Aus (34) folgt, dass

a2
i+1 + b2i+1 = mi+1p, mit 1 ≤ mi+1 < mi.

Wie oben erklärt, folgt die Aussage des Theorems mittels Induktion. 2

Beispiel 7.2.4 Wir schreiben p = 881 als Summe von zwei Quadraten mit Hilfe
des Abstiegsarguments.

Wir bemerken, dass p = 881 ≡ 1 (mod 4). Wir suchen zuerst eine Lösung der
Kongruenz x2 ≡ −1 (mod p). Hier ist eine Methode so eine Lösung zu finden.
Wähle 0 < a < p beliebig und setze x = a(p−1)/4. Bemerke, dass (p− 1)/4 eine
ganze Zahl ist, da p ≡ 1 (mod 4). Lemma 6.1.4 sagt, dass (a

p ) = a(p−1)/2 = x2

ist. Also ist x2 ≡ −1 (mod p) genau dann, wenn a ein quadratischer Nichtrest
ist.

Wir finden, dass 2(p−1)/2 ≡ 1 (mod p) und 3(p−1)/2 ≡ −1 (mod p), also ist
2 ein quadratischer Rest (mod p) und 3 ein quadratischer Nichtrest (mod p).
Wir schließen, dass x ≡ 3(p−1)/4 ≡ 387 eine Lösung der Kongruenz x2 ≡ −1
(mod p) ist.

Folgende Tabelle gibt die Werte der Variablen ai, bi,mi, ui, vi und ri für jedes
i an.

i ai bi mi ui vi ri
0 387 1 170 47 1 13
1 107 2 13 3 2 1
2 25 16 1 − − −.

Wir finden daher als Lösung 881 = 252 +162. Da 881 eine relativ kleine Zahl
ist, hätte man dies auch einfach durch ausprobieren lösen können.

Als Nächstes möchten wir besprechen welche zusammengesetzte Zahlen man
als Summe von zwei Quadraten schreiben kann. Wir werden sehen, dass die
Antwort für n sich auf der Antwort für die Primfaktoren von n zurückführen
lässt.

Theorem 7.2.5 Sei n eine natürliche Zahl mit Primfaktorzerlegung n =
∏

i p
ei

i ,
wobei pi 6= pj für i 6= j ist. Die Zahl n kann man schreiben als Summe von zwei
Quadraten genau dann, wenn für jedes i mindestens eine der folgenden Bedin-
gungen erfüllt ist:

• pi = 2,
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• pi ≡ 1 (mod 4),

• ei gerade.

Beweis: Der Beweis folgt aus einem wiederholten Anwenden der Formel
(34). Wir überlassen dies dem Leser/der Leserin. 2

Beispiel 7.2.6 Wir betrachten die Zahl n = 585 = 32 · 5 · 13. Da 5 ≡ 13 ≡ 1
(mod 4), lässt n sich schreiben als Summe von zwei Quadraten. Da 5 = 12 + 22

und 13 = 22 + 32, finden wir mit Hilfe von (34), dass

n = 32(12+22)(22+32) = 32[(1·2+2·3)2+(2·2−1·3)2] = (3·8)2+(3·1)2 = 242+32.

7.3 Die gaußsche Zahlen

In diesem Abschnitt geben wir einen alternativen Beweis von Theorem 7.2.5
mit Hilfe der Primfaktorzerlegung in dem Ring der gaußschen Zahlen. Hierzu
betrachten wir die Zerlegung n = a2 + b2 = (a + bi)(a − bi), wobei i2 = −1
ist. Als Hilfmittel für diesen Beweis müssen wir zuerst die Begriffe Primzahl,
Primfaktorzerlegung und euklidischer Algorithmus auf dem Ring der gaußschen
Zahlen verallgemeinern.

Definition 7.3.1 Sei Z[i] = {a+ bi | a, b,∈ Z} der Ring der ganzen gaußschen
Zahlen. Addition und Multiplikation sind definiert durch:

(a+bi)+(c+di) = (a+c)+(b+d)i, (a+bi) ·(c+di) = (ac−bd)+(ad+bc)i.

Insbesondere ist i2 = −1.
Die Norm einer ganzen gaußschen Zahl z = a + bi ist definiert als N(z) =

a2 + b2 ∈ Z≥0.

Wir bemerken, dass jede ganze gaußsche Zahl z = a+ bi auch eine komplexe
Zahl ist. Sei |z| der komplexe Betrag, so gilt N(z) = |z|2 = z · z̄, wobei z̄ = a−bi
die Konjugierte von z ist. Hieraus folgt die Relation N(z)N(w) = N(z · w).
Außerdem gilt, dass N(z) = 0 ist genau dann, wenn z = 0. Für alle z 6= 0 ist
N(z) ≥ 1.

Definition 7.3.2 (a) Seien z, w ganze gaußsche Zahlen. Wir sagen, dass z
ein Teiler von w ist, falls eine ganze gaußsche Zahl v 6= 0 mit z · v = w
existiert. Wir schreiben: z | w.

(b) Eine ganze gaußsche Zahl z heißt Einheit, falls z ein Teiler von 1 ist, oder
äquivalent, falls z−1 ∈ Z[i] ist.

Sei z = a+ bi 6= 0. Die Zahl z−1 berechnet man, wie für komplexe Zahlen:

1

z
=

1

a+ bi

a− bi

a− bi
=

a− bi

a2 + b2
=

z̄

N(z)
. (36)

Folgendes Lemma bestimmt die Einheiten in Z[i].
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Lemma 7.3.3 Die Einheiten in Z[i] sind genau die Zahlen mit N(α) = 1. Dies
sind ±1,±i.

Beweis: Sei z = a + bi ∈ Z[i] eine Einheit. Also existiert w = z−1 ∈
Z[i] mit z · w = 1. Nun gilt, dass N(z)N(w) = N(1) = 1. Da N(z) ∈ N
ist, folgt, dass N(z) = 1. Also gilt a2 + b2 = 1. Hieraus folgt, dass (a, b) ∈
{(1, 0), (−1, 0), (0, 1), (0,−1)} ist. Also ist z ∈ {±1,±i}. 2

Der folgende Satz erklärt wie Division mit Rest in Z[i] funktioniert. Dies
ist die Grundlage für dem euklidischen Algorithmus in Z[i] (Beispiel 7.3.5). Ein
kommutativer Ring R mit einem euklidischen Algorithmus heißt euklidischer
Ring. Aus technischen Gründen müssen wir auch fordern, dass R keine Nullteiler
besitzt. (Dies sind Zahlen z 6= 0 mit z | 0.) Beispiele von euklidischen Ringen
sind Z, Z[i] und k[x], wobei k ein Körper ist.

Satz 7.3.4 (Division mit Rest) Seien α = a + bi, β = c + di 6= 0 ∈ Z[i]. Es
existieren q, r ∈ Z[i], sodass

α = q · β + r, mit 0 ≤ N(r) < N(β).

Beweis: Wir betrachten die komplexe Zahl z = α/β = x + yi ∈ C. Aus
(36) folgt, dass x, y ∈ Q sind. Sei nun q = m + ni die ganze gaußsche Zahl der
so nah wie möglich an z ist, also mit N(z − q) minimal. Diese Zahl muss nicht
eindeutig sein.

Nun gilt, dass |x−m| ≤ 1/2 und |y − n| ≤ 1/2. Also gilt

N(z − q) = (x−m)2 + (y − n)2 ≤ (
1

2
)2 + (

1

2
)2 =

1

2
< 1.

Setze r = (z − q)β. Aus der Definition von z folgt, dass r = α − qβ ∈ Z[i] ist.
Außerdem gilt, dass

N(r) = N(z − q)N(β) < N(β).

2

Beispiel 7.3.5 Sei α = 19 + 10i und β = 2 − 3i. Es ist

z =
α

β
=

19 + 10i

2 − 3i

2 + 3i

2 + 3i
=

8 + 77i

13
=

8

13
+

77

13
i.

Wir wählen q = 1+6i. Die Zahl r = α−qβ = −1+ i erfüllt N(r) = 2 < N(β) =
13.

Wir wenden den euklidischen Algorithmus auf α und β an und benutzen die
gleiche Bezeichnung wie in § 1.1.

n rn qn
−1 19 + 10i −
0 2 − 3i −
1 −1 + i 1 + 6i
2 1 −2 + i
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Was der euklidische Algorithmus für Z[i] genau berechnet, ist zunächst nicht
ganz klar: Wir müssen uns davon überzeugen, dass der Begriff größte gemeinsa-
me Teiler in Z[i] Sinn macht. Wir werden sehen, dass dies in der Tat der Fall ist.
Der folgende Satz ist das Analogon für Z[i] von Lemma 1.1.9. Es gilt nicht nur
für Z[i] sondern für jeden euklidischen Ring. Für R = k[x] haben wir dies schon
gesehen in Lemma 4.2.4. Vergleichen Sie diese drei Beweisen um festzustellen,
dass sie alle drei Spezialfälle eines gemeinsamen Beweises sind!

Satz 7.3.6 Seien α, β ∈ Z[i] mit α, β 6= 0.

(a) Es existiert ein gemeinsamer Teiler d von α und β.

(b) Jeder gemeinsame Teiler von α und β ist auch ein Teiler von d.

Beweis: Wir betrachten die Menge S = {xα+yβ | x, y ∈ Z[i]}. Sei d = x0α+
y0β ∈ S \ {0} mit N(d) minimal. Wir behaupten, dass d jedes a = xα+ yβ ∈ S
teilt. Nämlich, sei a ∈ S und sei a = qd+ r die Division mit Rest. Falls r 6= 0, so
gilt, dass r = a− qd = (x− qx0)α+ (y− qy0)β ∈ S ist. Aber 0 6= N(r) < N(d).
Die widerspricht den Wahl von d. Also ist r = 0 und d ein Teiler von a.

Aus der Darstellung d = xα+ yβ folgt, dass jeder gemeinsame Teiler von α
und β auch d teilt. 2

Satz 7.3.6 impliziert, dass α, β ∈ Z[i] nicht beide Null einen größten gemein-
samen Teiler besitzen: Dies ist die Zahl d aus Satz 7.3.6.(a). Man sollte beachten,
dass der ggT nur bis auf Einheiten eindeutig definiert ist, da die Einheiten Norm
1 haben (Lemma 7.3.3).

Wie für ganze Zahlen und Polynome können wir die ganzen gaußschen Zah-
len x, y mit d = xα + yβ mit Hilfe des erweiterten euklidischen Algorithmus
ausrechnen.

Beispiel 7.3.7 Sei α = 19+10i und β = 2−3iwie in Beispiel 7.3.5. Wir wenden
den erweiterten euklidischen Algorithmus mit der üblichen Bezeichnung an.

n rn qn xn yn

−1 19 + 10i − 1 0
0 2 − 3i − 0 1
1 −1 + i 1 + 6i 1 −1 − 6i
2 1 −2 + i 2 − i −7 − 11i.

Wir schließen also, dass ggT(19 + 10i, 2 − 3i) = 1 = (2 − i)(19 + 10i) + (−7 −
11i)(2 − 3i).

Maple kann auch mit gaußschen Zahlen rechnen. Sie benutzen hierzu das
Paket GaussInt. Achten Sie darauf, dass die komplexe Einheit i in Maple als
I eingegeben werden muss. Um obiges Beispiel mit Maple zu berechnen, typt
man:
with(GaussInt):
GIgcd(19+10*I, 2-3*I);
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Eine alternative Methode um ggT(α, β) zu berechnen ist mit Hilfe der Norm.
Wir bemerken, dass N(19 + 10i) = 461 und N(2 − 3i) = 13. Da 461 und 13
teilerfremd in Z sind, folgt, dass auch α und β in Z[i] teilerfremd sind.

Als Nächstes möchten wir definieren was “Primzahlen” in Z[i] sind. Es gibt
zwei mögliche Verallgemeinerungen des Begriffs Primzahl in Z: Wir können so-
wohl Definition 1.2.1 als auch die Behauptung von Lemma 1.2.3 als Definition
einer Gauß -Primzahl nehmen. Für Z sind beide Definitionen äquivalent. Diese
Aussage war der wichtigste Schritt im Beweis des Fundamentalsatzes der Arith-
metik (Theorem 1.2.4). Wir werden sehen (Satz 7.3.9), dass dies für Z[i] auch
gilt. (Allgemeiner, gilt dies in jedem beliebigen euklidischen Ring.)

Definition 7.3.8 (a) Eine Zahl 0 6= α ∈ Z[i] heißt irreduzibel (oder unzer-
legbar), falls α keine Einheit ist und α = α1 · α2 mit αj ∈ Z[i] impliziert,
dass entweder α1 oder α2 eine Einheit ist.

(b) Eine Zahl 0 6= α ∈ Z[i] heißt Primelement, falls α keine Einheit ist und
α | βγ impliziert, dass α entweder β oder γ teilt.

Satz 7.3.9 Sei α ∈ Z[i]. Die Zahl α ist genau dann irreduzibel, wenn α ein
Primelement ist.

Beweis: Sei α ∈ Z[i] irreduzibel. Wir nehmen an, dass α | β ·γ mit β, γ ∈ Z[i]
und α ∤ β. Da α irreduzibel ist, folgt, dass ggT(α, β) = 1. Also existieren
x, y ∈ Z[i] mit 1 = xα + yβ (Satz 7.3.6). Es folgt, dass γ = xαγ + yβγ ist.
Da α ein Teiler von βγ ist, schließen wir, dass α | γ. Dies zeigt, dass α ein
Primelement ist.

Wir nehmen an, dass α ∈ Z[i] ein Primelement ist. Sei α = α1α2 mit αj ∈
Z[i]. Da α | α = α1α2, so teilt α entweder α1 oder α2. Wir dürfen annehmen,
dass α | α1 und schreiben α1 = βα mit β ∈ Z[i]. Da α 6= 0 ist, folgt βα2 = 1,
also ist α2 eine Einheit. Dies zeigt, dass α irreduzibel ist. 2

Bemerkung 7.3.10 Der Beweis von Satz 7.3.9 zeigt sogar etwas Allgemeineres.
Für jeden kommutativen Ring ohne Nullteiler gilt, dass die Primelemente auch
irreduzibel sind. Die andere Implikation gilt für jeden euklidischen Ring.

Ein Beispiel von einem Ring wo beide Begriffe nicht äquivalent sind, ist
R = Z[

√
−5] = {a + b

√
−5 | a, b ∈ Z}. Ähnlich wie für die gaußschen Zahlen,

definiert man den Norm durchN(a+b
√
−5) = (a+b

√
−5)(a−b

√
−5) = a2+5b2.

In R gilt, dass
6 = 2 · 3 = (1 +

√
−5)(1 −

√
−5). (37)

Man berechnet, dass N(2) = 4, N(3) = 9 und N(1 ±
√
−5) = 6. Außerdem

überprüft man leicht, dass keine Elementen in R mit Norm 2 und 3 existieren.
Dies impliziert, dass 2 und 3 in Z[

√
−5] irreduzibel sind.

Offensichtlich gilt, dass 2 | 6 = (1 +
√
−5)(1 −

√
−5). Da N(2) = 4 ∤ N(1 ±√

−5) = 6 folgt, dass 2 ∤ (1±
√
−5). Wir schließen, dass 2 kein Primelement ist.

Das gleiche Argument zeigt, dass 3 kein Primelement ist.
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Das folgende Lemma gibt ein einfaches Kriterium um zu überprüfen ob α ∈
Z[i] irreduzibel ist.

Lemma 7.3.11 Sei α ∈ Z[i] ein Element mit N(α) = p eine Primzahl, so ist α
irreduzibel.

Beweis: Sei α wie in der Aussage des Lemmas. Wir schreiben α = βγ mit
β, γ ∈ Z[i]. Es folgt, dass p = N(α) = N(β)N(γ). Da N(x) ∈ Z≥0 ist, ist
entweder N(β) oder N(γ) gleich 1. Lemma 7.3.3 impliziert, dass entweder β
oder γ eine Einheit ist. Also ist α irreduzibel. 2

Das folgende Theorem ist das Analogon des Fundamentalsatzes der Arith-
metik (Theorem 1.2.4) für die gaußschen Zahlen. Wir wissen, dass irreduzible
Elementen auch Primelementen sind. Daher können wir den Beweis von Theo-
rem 1.2.4 in dieser Situation übertragen. (Überprüfen Sie dies!)

Theorem 7.3.12 (a) Jedes α ∈ Z[i], das nicht Null oder eine Einheit ist lässt
sich schreiben als Produkt von Primelementen.

(b) Die Primfaktorzerlegung aus (a) ist eindeutig bis auf Einheiten und Rei-
henfolge.

Bemerkung 7.3.13 Ein kommutativer Ring ohne Nullteiler mit eindeutiger
Primfaktorzerlegung heißt faktoriell. Die Ergebnisse aus diesem Abschnitt zei-
gen auch, dass jede euklidischer Ring faktoriell ist. Ein Beispiel für ein nicht
faktorieller Ring ist Z[

√
−5]: Dies folgt aus (37).

Das letzte Ziel dieses Kapitels ist die Bestimmung der Primelementen in Z[i].
Wir nennen diese Zahlen auch die Gauß-Primzahlen.

Lemma 7.3.14 Sei p ∈ Z eine Primzahl, so ist p entweder eine Gauß-Primzahl
oder es existiert ein irreduzibles Element π ∈ Z[i] mit p = π · π̄.

Beweis: Sei p ∈ Z eine Primzahl, so ist p ∈ Z[i] keine Einheit (Lemma
7.3.3). Also existiert ein irreduzibeles Element π = a+ bi ∈ Z[i], das p teilt. Es
folgt, dass N(π) | N(p) = p2, also ist N(π) entweder p oder p2.

Falls N(π) = p2 ist, existiert eine Einheit ǫ mit p = ǫπ. Wir schließen, dass
p irreduzibel ist.

Falls N(π) = p ist, ist π ein echter Teiler von p und es gilt, dass π · π̄ =
N(π) = p ist. 2

Lemma 7.3.15 Sei π ∈ Z[i] eine Gauß-Primzahl, so ist N(π) = π · π̄ entweder
p oder p2, wobei p ∈ Z eine Primzahl ist.

Beweis: Sei π ∈ Z[i] eine Gauß-Primzahl und sei n = N(π) ∈ N. Sei
n = p1 ·p2 · · · pr die Primfaktorzerlegung von n in Z. Dies ist auch eine Zerlegung
in Z[i], aber die pjs sind nicht notwendigerweise Gauß-Primzahlen. Da π eine
Gauß-Primzahl ist, teilt π mindestens eine der pj. Wie im Beweis von Lemma
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7.3.14 folgt, dass N(π) = π · π̄ | N(pj) = p2
j . Also ist N(π) entweder pj oder p2

j .
2

Lemma 7.3.16 Sei p ∈ Z eine Primzahl. Die folgende Aussagen sind äquivalent:

(a) p = π · π̄, wobei π eine Gauß-Primzahl ist,

(b) es existieren a, b ∈ Z mit p = a2 + b2,

(c) p = 2 oder p ≡ 1 (mod 4).

Beweis: (a) ⇒ (b): Sei p = π · π̄, wobei π eine Gauß-Primzahl ist. Schreibe
π = a+ bi. Nun gilt p = π · π̄ = a2 + b2.

(b) ⇒ (a): Sei p = a2 + b2 und π = a+ bi. Es gilt N(π) = π · π̄ = a2 + b2 = p.
Insbesondere ist π irreduzibel (Lemma 7.3.11).

(b) ⇒ (c): Dies folgt aus Lemma 7.2.1.
(c) ⇒ (b): Dies folgt aus Theorem 7.2.3. Alternativ kann man dies auch wie

folgt direkt beweisen.
Falls p = 2, so gilt 2 = (1 + i)(1 − i), wobei 1 ± i irreduzibel sind (Lemma

7.3.11. Sei nun p ≡ 1 (mod 4). Also ist (−1
p ) = 1 (Korollar 6.1.6) und es existiert

ein x ∈ Z mit x2 ≡ −1 (mod p). Daher gilt, dass p | (x2 + 1) = (x − i)(x + i).
Da x± i keine Einheit ist, folgt, dass p keine Gauß-Primzahl ist. Lemma 7.3.14
impliziert daher, dass eine Gauß-Primzahl π = a + bi mit p = π · π̄ = a2 + b2

existiert. 2

Der folgende Satz beschreibt die Gauß-Primzahlen. Der Satz folgt direkt aus
den Lemata 7.3.14–7.3.16.

Satz 7.3.17 (Die Gauß-Primzahlen) Es gibt 3 Typen von Gauß-Primzahlen:

(a) 1 + i,

(b) die Primzahlen p mit p ≡ 3 (mod 4),

(c) falls p eine Primzahl mit p ≡ 1 (mod 4) ist, so existieren a, b ∈ Z mit
p = a2 + b2. Nun ist π = a+ bi eine Gauß-Primzahl.

Alle Gauß-Primzahlen sind vom obigen Typ (bis auf eine Einheit).

Beispiel 7.3.18 Wir berechnen die Primfaktorzerlegung von einigen ganzen
gaußschen Zahlen.

(a) Sei n = 143 = 11·13. Da 11 ≡ 3 (mod 4), also ist 11 eine Gauß-Primzahl.
Die Zahl 13 ≡ 1 (mod 4) lässt sich schreiben als 13 = 22 +32 = (2+3i)(2− 3i).
Die Primfaktorzerlegung von n is daher n = 11(2 + 3i)(2 − 3i).

(b) Sei α = 9 + 5i. Es gilt N(α) = 92 + 52 = 106 = 2 · 53. Für jeden
irreduziblen Teiler π von α giltN(π) | N(α), alsoN(π) ∈ {2, 53}. Wir bemerken,
dass 53 = 22 + 72 = (2 + 7i)(2− 7i). Bis auf Multiplikation mit einer Einheit ist
π ∈ {1 + i, 2 + 7i, 2 − 7i}. Wir berechnen (9 + 5i)/(1 + i) = 7 − 2i = i(2 + 7i).
Also ist α = (1 + i)(7 − 2i) die Primfaktorzerlegung von α.
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